wireless word

OCTOBER 1982 80p

Electronic compass

Satellite dish antennas

V.d.us

Modular preamplifier

Australia A\$ 2.70 Canada C\$ 3.25 Denmark DKR 33.25 Germany DM. 7.00 Greeze DRA 190.00 Holland DFL 8.50 raly L 3700 New Zealand NZ\$ 3.00 Norway NKR 26.00 Singapore M\$ 5.50 Spain PTS 275.00 RACAL

Autostore. Low-cost voice-logging for people with more important things to do.

RAGAN

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it.

The solution: the new Racal Recorders <u>Autostore</u>. SIMPLICITY

With its automatic cassette-loading and fully automatic changeover from one deck to another, <u>Autostore can-quite literally – be operated by</u> whoever happens to be around.

And it provides over 24 hours of unattended continuous recording on eight channels. VERSATILITY

Able to log radio and telephone messages simultaneously, <u>Autostore</u> can form part of a new system – or fit just as easily into an existing one.

And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences, oil installation communications and taxi services.

Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England. Tel: (0703) 843265 Telex: 47600

RELIABILITY

Ava lable in 4 or 8 channel versions, and with integral micro-processor controlled automatic Timesearch capability to enable rapid message retrieval, <u>Autostore</u> is engineered to the very highest standards by the company which pioneered air traffic control recording techniques.

FULL DETAILS For full details of <u>Autostore</u> send off the coupon today.

lam interested in recording my communications accurately and reliably. Please:

send me full details of Autostore

arrange for ademonstration at my own premises

Name	
Position_	_

Company_

Address____

Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England.

Tel:

ww

Front cover is John Linsley Hood's new preamplifier, shown on the power amplifier featured in June, July and August: Photograph by Alan McFaden and Alan Kerr.

NEXT MONTH

Two-metre transceiver. Six-mode design with microprocessor control for mobile use. Nine frequency memories are committed by push buttons. **Robin Howes explores the theme** that many thoughtful people in responsible positions are concerned about the way industrial societies are going in a two part article on engineers and social responsibility

Instead of trying to ignore Planck's quantum hypothesis suppose we afford it more than lip service; what then? Dr Murray continues Heretics Guide to Physics by discussing the new situations that would arise.

J. H. Buijs analyses reproduction of binaural recordings via loudspeakers and gives a circuit that also improves headphone reproduction of stereo programmes.

Current issue price 80p, back issues (if available) £1, at Retail and Trade Coun-ter, Umits 1 & 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.

By posr, current issue £1.23, back issues (if available) £1.80, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Editorial & Advertising offices: Quad-rant House, The Quadrant, Sutton, Surrey SM2 5AS.

Telephenes: Editorial 01-661 3500. Ad-vertising 01-661 3130. Telegrams/Telex: 892084 BISPRS G. Subscription rates: 1 year £14 UK and

Subscription rates: 1 year £14 UK and £17 outside UK. Student rates: 1 year £9.35 UK and £11.70 cutside UK. Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500. Subsciptions: Oakfield House, Perry-mount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 0444 59188. Please notify a change of address. USA: \$39 surface mail, \$98.30 airmail. US subscriptions from IPC B.P., Sub-scriptions Office, 205 E.42nd Street, NY 10017.

10017

USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd

class postage paid at New York. © IPC Business Press Ltd. 1982 ISSN 0043 6062.

ELECTRONICS BROADCASTING AUDIO

OCTOBER 1982

COMMUNICATIONS COMPUTING VIDEO

Vol 88 No 1561

31	VISION OF THE FUTURE
32	MODULAR PREAMPLIFIER by J. L. Linsley Hood
37	THE ETHER – AN ASSESSMENT by H. Aspden
40	COMMUNICATIONS
42	CIRCUIT IDEAS
44	FAULT-FINDING IN MICRO-BASED SYSTEMS by S. Day
49	ELECTRONIC COMPASS by N. Pollock
55	INTRODUCTION TO V.D.Us by C. P. Aldworth
59	AUDIO OSCILLATOR WITH TONE-BURST by J. T. Tiernan
63	LETTERS
67	PARABOLIC ANTENNA DESIGN by M. L. Christieson
69	PROGRAMMABLE GPIB-TO-SERIAL INTERFACE by C. Jay
73	EPROM EMULATOR by P. Nicholis
74	NEWS
77	IMPACT OF THE PHOTON by W. A. Scott Murray
80	FLOPPY-DISC DRIVES by J. R. Watkinson
83	METEOSAT HIGH-RESOLUTION IMAGES by M. L. Christieson
85	SIDEBANDS: PAST, PRESENT AND FUTURE
87	NEW PRODUCTS

ood used test equipmer

Onic Broke

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALOGUE VOLTMETERS OSCILLOSCOPES

MINHLOOGE AOFINIFIEI	7
Bruel and Kjaer 2409 TRUE RMS. Average and Peak 2Hz- 200KHz. £250.00	
Fluke 845AB Null Detector £610.00 883A AC/DC Differential Voltmeter £615.00	
Newlett Backard	

3400A		-300v	10Hz-
10MHz		 	£600.00

3406A 1mV-3V FSD 10KHz-1.2GHz £850.0	0
Marconi. TF2600A 1mV-100V FSD 10Hz-10MHz £245.0	
Racel 9301A RF Millivoltmeter	
Rohde & Schwerz URV RF-DC Millivoltmeter DC 50µV-1050\ BF 10KHz-2GHz £950.0	/

ANALYSERS

3580A Spectrum Analyser 5Hz-50KHz
£2950.00 141T/8552B/8555A 10MHz-18GHz
332A Distortion Meter 5Hz-600KHz
£495.00 8407A/8412A Network Analyser
£1950.00
Marconi

TF2331 Distortion Meter 20Hz — 20KHz
£475.00
Solartron 1172 TFA£4000.00
Tektronix

Mainframe	£4950.00
BRIDGES	

		_	÷.	
B.C.	агс	a mi		
1414				

Marconi TM4520 Set of Inductors	£350.00.
Rohde & Schwarz. LRT (BN6100) Inductance Meter 100µH. 2.2-285KHz	1pH £395.00

Wayne Kerr B642 LCR 0.1% SR 268 Source & Desector £795.00 £875.00 **DVM's AND DMM's**

Fluke B300A 5½ Digit DC only 1µV sensitivity 5 ranges to 1100V £750.00

Philips PM 2523-01 LED 31/2 Digit DMM . £95.00

Solartron.

FREQUENCY COUNTERS

1920A with Option 13 9 Digit 1GHz £750.00

Hewlett Packard 5340A 8 Digit 10Hz-18GHz £3750.00

See us at

TF2213/1 + TK2214 X-Y Display	and
memory	£550.00
Philips PM 3234 True Dual Beam Storag	e

Discilloscope 10MHz New CRT. **£1750.00** PM 3244 50MHz 4 Channel Delay T*Base **£1500.00**

Tektronix. 475 Dual Trace 200MHz Portable 62000.00

LEUUU.UU
7313 100MHz Storage Mainframe
£2225.00
7603 100MHz Mainframe with 7A18N and
7853N £3000.00
7704A 200MHz Mainframe c/w 7A22 Diff.
Amplifier, 7A26 Dual Channel, 7B80
Timebase and 7885 Delaying Timebase

£4010.0	O
7904 500MHz Mainframe	0
S1 Sampling Head. As New £450.0	0
7D14 Digital Counter plug-in 525MHz	

£850.00 434 Dption 01 Storage Dscilloscop 25MHz P6015 HV Probe £2250.00 £295.00

Telequipment DM63 Storage Oscilloscope Fitted with 2 x V4 Plug-ins to give 4 Trace 15MHz £1350

E1350.00 CT 71 Curve Tracer £450.00

RECORDERS

HEUUngern Hewlett Packard 7045A X-Y Plotter T'Base Matric £1150.00

Watena	
MC641	6 Channel 250mm Chart Recorder
	£1495.00

Yokagawa 3047 2 Channel 2 cm/HR — 60cm/MIN £550.00

SUG / 2 Channel 2 CM/HH — BUCHWINN ESS0.00 SIGNAL SOURCES Hewlett Packard. 4204A Decade LF Docillator. 10Hz-1MHz. 1mV-10V into 6000. 6058 AM Signal Generator. 50KHz. 65MHz. AM 0-95% 608F 10-455MHz AM/PCM Modulation 0-1µV-1V output. 6169 1.94.2 (EHz int or ext PCM/FM 0-1µV-0.224V 21000.00 651B Test Dscillator. 10Hz-10MHz. 0-1mV-0.316V 3200A Frequency Synthesizer. 0.01Hz. 3204A Frequency Synthesizer. 0.01Hz. 616A Signal Generator 1.8 — 4.5GHz 22000.00 6520C + 86250B Sweep Dscillator 8-12.4GHz. P.O.A. Marconi.

TF2170B Synchronizer for TF2002B **£450.00**

TF995B/2 AM/FM 200KHz-200MHz

TF2005R 2 Tone Signal Source. 20Hz- 20KHz. 0-111dB in 0.1dB steps. £295.00	
TF2008 AM/FM 10KHz-510MHz built in sweeper: Dutput 0.2µV-200mV £3500.00 TF2016 + TF2173 Synchroniser AM/FM	
10KHz-102MHz £2000.00 TF2169 Pulse Modulator for use with TF2015 or TF2016 £200.00	
TF 2000 AF Signal Source £365.00 TF 2015 + TF 2171 Generator & Synchroniser £1850.00	
Philips. PM6456 Stereo Generator. £250.00	
Radiometer 5375.00	

SMG1 Stereo Generator £375.00	
Telonic 1006A Sweep Dscillator 450 — 850MHz £750.00	

TRANSMISSION MEASURING EQUIPMENT

Siamens. D2072 + W2072 Level Meter and Dscillator. 50KHz.100MHz. ... £2200.00 W2006 + D2006 Carrier Level Test Set. 10KHz-17MHz. --100 to + 10dB £1650.00

10KHz-17MHz. --100 to + 10dB **£1850.00** W2007 + D2007 Carrier Level Test Set. 6KHz-18.6MHz. --120 to + 20dB **£1800.00**

Wandel and Golterman. PF-1 Digital Error Rate Measuring Set. Consisting of PFM-1 Digital Error Rate Meter and PFG-1 Pettern Generator 62490.00

SPM-6 and PS-6 Level Maasuring Set. 6KHz-18.6MHz. — 110dB to + 20dB. Mains / battery operation £2150.00

MISCELLANEOUS

Dymer 2085 AF Power meter 20Hz-30KHz 10 μ W-50W input imp 1.2-1000 Ω £250.00

Please note: Prices shown do not include VAT or carriage.

£355.00

Fluke 30110A Logictester: Self Contained, Portable, Full Spec, on Request . £8500.00

Ferrograph RTS 2 Test Set.

61/65 Kings Cross Road	
LONDON WC1X 9LN Telephone: 01-278 3461	K
Telex: 298694 Elebro G	THE S

Latest Second User now out. Send for your FREE copy

Stand J7

8-12:45H2 Marconi. 15f144H/4 AM Signal Generator. 10KHz-72MHz. 2,V-2V 152002B AM/FM 10KHz-8BMHz £1200.00

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

WW - 018 FOR FURTHER DETAILS

Hilomast Ltd

PNEUMATIC TELESCOPIC MASTS

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480 TELEX NO. 995855

WW - 043 FOR FURTHER DETAILS WIRELESS WORLD OCTOBER 1982

New Fluke 4¹/₂ Digit Hand-held D.M.M.s

Fluke 8022B. With 2 year warranty Fluke 8021B. With 2 year warranty Fluke 8020B. With 2 year warranty Fluke 8024B. With 2 year warranty Fluke 8050A Fluke 8012A Fluke8010A

ACCESSORIES

A81-230 Battery eliminator C90 Carry case for hand held 801-600 Amp clamp 80J-10 Current shunt 10A 80J-10 Current shunt 10A 80K-40 H.V. probe 40kV 80K-6 H.V. probe 6kV 80T-150 Temperature probe 801 H Touch hold probe 83RF R.F. probe 100MHz 85RF R.F. probe 500MHz Y8102 Thermocouple probe

DR

Electronic Brokers

Now in Stock

Basic dc accuracy 0.04%; $10 \mu V$, 10 n Aand $10 m \Omega$ sensitivity. Display annunciators for low battery (BT) and special functions. (requency (kHz), dB, continuity ($\rightarrow \leftarrow$, II) and relative reference (REL). Autoranging M Ω measurements from 2 M Ω to 300 M Ω .

Conductance functions for resistance measurements to 10,000 M Ω

Separate constant-current source diodetest function for checking

semiconductor junctions. Full range capability for voltage, current, resistance (200 $\mu A,$ 200 mV and 200 Ω

ranges). Wideband True RMS AC measurements

to 100 kHz Overload protection to 750 VAC or 1000 VDC on voltage inputs and 500 V on resistance. Protection on current inputs provided by a 2A/250V fuse in line with a heavy-duty 3A/600V fuse. Sophisticated self-diagnostics provided for all range and furiction selections plus LCD display, battery and CMOS circuitry

Fluke's 8062A makes many of the same measurements as the 8060A, at a lower

Continuity and relative reference functions identical to 8060A. True RMS measurements to 30 kHz. Basic de accuracy 0.05%, 10 µV, 10 nA and $10 \text{ m}\Omega$ sensitivity

,	
riance occorri	£275.00 £210.00
	£95.00
	£105.00
	£135.00
	£165.00
sModel £275.00 MainsBatt	ery £305.00

Mair Mains Model £245.00 Mains Battery £270.00 Mains Model £185.00 Mains Battery £270.00 Mains Model £185.00 Mains Battery £215.00

4	£15.00
d	£11.00
	£75.00
	£24.00
	£62.00
	£44.00
	£79.00
	644.00
	676.00
	645.00
	A CALLER AT A COV
Y8103 Bead thermocouple	£20.00

£9.00 Y8104 K type thermocouple termination Y8133 Deluxe test leads £15.00

Full Specs. on Request. The above prices do not include carriage or VAT (15%).

Simply Phone or Telex your order for Immediate dispatch.

Electronic Brokers Ltd 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G WW - 201 FOR FURTHER DETAILS

CX80 COLOUR MATRIX PRINTER

New low price **£795** + V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours – sophisticated internal programme makes the CX80 easy to use.

Dot Addressable + 15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

INTEGREX LIMITED

Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432. Telex: 377106

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTI-TIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS & MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho corner Telephone 445 2713/0749 (9461)

WW - 071 FOR FURTHER DETAILS

	DESCRIPTION DESCRIPTION D	The initial range is as follows: 1. Diameter 30mm 120 slots - Price 1-5 off £5 each 2. Diameter 60mm 120 slots - Price 1-5 off £7 each 3. Diameter 60mm 360 slots - Price 1-5 off £9 each 4. Diameter 60mm 360 slots - Price 1-5 off £12 each Price reductions available according to quantity. Specification: Material Hard Nickel 0.08 to 0.09mm thick. Centre Hole 10mm ± 20 microns. Slot Width Tolerance ± 7 microns. Mark Space ratio 1 to 1. Angular Tolerances ± 20 seconds. General Tolerances ± 20 seconds. G
Please send	Name	Job Title
further details without obligation to:	Company Name and Address	Tel. No.

WW-051 FOR FURTHER DETAILS

Bigger and Better for 1982 the colourful Wilmslow Audio brochure – the definitive loudspeaker catalogue!

WW - 061 FOR FURTHER DETAILS

Appointed by the plant management we are auctioning modern production equipment ot the Color-TV-Tube Manufacturing Plant of Messrs.:

VIDEOCOLOR GMBH D-7900 ULM-DONAUTAL, Graf Arco St. 3

Tuesd. Sept. 28, '82 Wednesd. Sept. 29, '82 starting from 9.30 A.M. each day

The following will be auctioned:

The following will be automatic. approx. 700 measuring and testing units electrical and mechanical, laboratory agitators, measuring devises, degreasing plants, ultra-scnic washing plants, kiln systems, automatic welders, continuous reduction furnaces, AEG-make, planishers, UNGERER RM 900 1/23, hydraulic drawing presses, continuous annealing furnaces, automatic coating machines, automatic foil applicators, vacuum pump units, automatic color-TV picture tube testers, solder applicators, rotary conveyors, foil and acetone reclaiming machines, fully automatic media preparation and mixer systems, neutral ization plant, laboratory equipment, centrifuges, goods wagons, lifting platform, palletizing and racking systems, office furniture and office machines, automatic lathes, machine tools, EDV-system AEG 8020/4 type and many other items.

Inspection: on Monday September 27, 1982 from 10 A.M. to 6 P.M. on auction days from 8 A.M. to 9.45 A.M. Preliminary inspection of large plant and equipment can be arranged subject to prior agreement.

Please ask for our detailed catalogue.

WW - 079 FOR FURTHER DETAILS

HM 307 OSCILLOSCOPE

Single trace. DC to 10MHz. Risetime 35n5. SmV/cm to 20V/cm. Timebase 0.5µS-0.2S. Built in component tester. LPS technique provides stable and reliable triggering up to 30MHz **£138.00**

HM412-5

Dual Trace DC to 20MHz 8 × 10cm display with internal graticule. Rise time 17.5 nS. Variable input 2mV-20V/cm. Add and invert modes. Timebase 0.5µS-0.2S with sweep delay 100nS-1S × 5 expansion X-Y operation Z modulation. Trigger CH1, CH2, CH1/2, Line or EXT. £350.00

HM 203 PORTABLE OSCILLOSCOPE

Dual Trace DC to 20MHz 8 x 10cm display. Risetime 17:5nS. Sensitivity 5mV/cm-20V/cm. Timebase 0.5µS-0.2S. x 5 magnifier X-Y operation. Auto or variable trigger. Channel 1. Channel 2. line and external. Coupling AC. or TV low pass filter. Weighs only 6Kg. Size (m.m.) H: 145. W. 285. D. 380 £220.00

HM705

The above prices do not include carriage or VAT (15%).

Simple Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

WW - 202 FOR FURTHER DETAILS

WW - 005 FOR FURTHER DETAILS

a selection from our huge stocks All items reconditioned unless otherwise stated INTERFACES INTERFACE INTERFACE DU11 DA Synchronous I/F DUP11 DA Synchronous I/F KLBE Asynchronous (BE) KLBJA Asychronous (BE) M7258 Phinter I/F (PDP11) M8207 Phinter I/F (BE, BA) M8207 Phinter I/F (BE, BA) WORD PROCESSORS 6395 SPECIAL PURCHASE DF THE BEST-SELLING DEC WS78 WORD £395 £525 £750 £175 £275 SELLING DEC VIS/S WORD PROCESSORS VT78 32KB Video Data Processor RX01 Dual Roppy Disk Drive Diablo Letter Guality Printer Mounted in mobile unit with storage £325 £175 £225 cuphoard POPBA PDP8A-205 Processor 10½". 32KW M05 (NEW) PDP8A-400 Processor, 8KW Core, KM8AA, 0KC8AA KC8AA Programmers Console KM8AA Option Module Includes complete WP Software * £2,950 package £1,750 **SYSTEMS** £1,500 £275 £275 PDP11V03 SYSTEM 1/03 32KB Processor including Console Interface RXV11 Dual Floppy Disk Drive and Control Low Cabinet on Castors RT11 Licence £1, £500 £995 MMBAABKW Core Memory MMBAB16KW Core Memory MSBCB32KW MOS Memory RXBE Dual Roppy & Ctl [NEW]. £1.525 £750 £995 PDP11/34A SYSTEM RX28 Dual Floppy and Ctl [NEW] £1,450 11/34A 128KB Processor RK611 14MB Disk Drive and Control £750 £995 £1,325 £825 AR1116 channel A/D RKO6 Add-on Disk Drive BA11FE expander box LA36 Console H967 Rack Cabinet BA11KFexpanderbox BA11KFexpanderbox BA11LFexpanderbox DH11ACMultiplexor DH11AOMultiplexor £11,750 £825 £3,250 £4,000 £1,250 £250 PDP11/70 SYSTEM (NEW) 11/70 CPU 512KB MOS UH11ADMultiplexor DJ11AAMultiplexorE1A(NEW) DL11SerialInterface DL11WAsynchronous Interface DM11DALineAdaptor. DR11KDigitalI/0 Dual Data System Cab. RWM03 67MB Disk Drive and Ctl £395 £55.000 LA120 Console Printer £525 PROCESSORS £425 £525 £1,750 £1,500 £3,625 £5,000 £6,250 £4,650 £11,500 £12,750 DH11K Digitail/O DU11DA Synchronous Interface DUP11DA Synchronous Interface DUP11BA Whitplexor FP11A Roating Point FP11A Floating Point H720 Power Supply H744 Power Supply H745 Power Supply H754 Power Supply H755B Battery Back-up H775CB Battery Back-up H775CB Battery Back-up H775CB Battery Back-up H775CB Battery Back-up H711A Extended Anthemtic KE11A Extended Anthemtic KE11A Extended Anthemtic PROCESSORS PDPBA-20532KWMOS(NEW) PDPBA-4008KWCore. PDP11/0410%"32KBMDS PDP11/34A128KBMOS PDP11/34A2256KBMOS PDP11/34A256KBMOS £750 £1.395 £995 £1, 500 PDP11/34A256KBM0S PDP11/4096KWCore,KT11D PDP11/44256KBM0S PDP11/24256KBM0S PDP11/0512KBM0S(NEW) KMC11A Auxilliary Processor 1,975 £175 £125 Ē £43.000 £90 £175 É875 PRINTERS/TERMINALS £495 £495 £695 £695 £625 £595 £465 LA36 DECwriter II 20mA LA36 DECwriter II RS232 LA34 DECwriter IV LA180-PD Parallel DECprinter (NEW) LA180-ED RS232 DECprinter £295 6325 £425 KE118ExtendedArithmetic KG11ACR-module KIT11HBushterface KK11A Cache Memory KT11DMemory Management (NEW) KW111 L Real TimeClock KW11Programmable Clock LP11 Printer Control module £495 £250 £ 500 (NEW) VT50 DECscope 20mA VT50 DECscope RS232 VT55 Graphics DECscope £670 500 £750 £150 £199 £225 £345 £325 £495 (NEW) PRIN 1 3 3 4 DAIS NEW LOW PRICE Scoop purchase of factory 9 refurbished Anderson Jacobson AJ832 daisy wheel printers complete with full keyboard. integral stand, and RS232 interface. Utilising the famous **QUME Printer Mechanism. NOW ONLY £750** TO 51% JP HAZELTINE 1510 [MLP £880].Only £550 **HAZELTINE 1520** [MLP £1050].Only £625 **HAZELTINE 1552** [MLP £800]. Only £395 HAZELTINE 1410 [MLP £475].Only £295 **HAZELTINE 1420**

Manufacturer's surplus — ALL BRAND NEW BOXED ADD 15% VAT TO ALL PRICES

Electronic Brokers 🛘 🗖

New Autumn '82 Catalogue now out. Send for your FREE copy now. Carriage and Packing extra

Electronic Brokers Ltd., 61/65 Kings Cross Road, London WC1X 9LN. Tel:01-278 3461. Telex 298694

WW - 203 FOR FURTHER DETAILS

[MLP £515].Only £350

				_		
196/v: 100-f; 12n, 33n, 100 n 11p; 15n, 220 n 17p; 330n, 470 a 30p; 680 n 30p; 100 n 100, 11p; 15n, 220 n 17p; 330n, 470 a 30p; 680 n; 100, 15n, 220 n; 100 n; 15n, 220 n; 15n, 120 n; 100, 15n, 220 n; 10n, 15n, 220 n; 13n, 13n, 10n ; 13n, 13n, 10n ; 13n, 13n, 13n, 15n ; 13n, 13n ; 13n, 13n, 13n ; 13n,	AC126 AC126 AC128 AC147 AC128 AC147 AC128 AC147 AC128 AC147 AC128 AC147 AC128 AC147 AC188 AC188 AC147 AC188	7/7 35 8C:183.L 10 30 8C:184.L 10 42 30 4C:184.L 10 42 30 4C:184.L 10 32 8C:212.L 10 32 32 8C:213.L 10 1/18.70 32 8C:213.L 10 1/27 32 8C:214.L 10 1/27 37 8C:214.L 10 1/27 37 8C:214.L 10 1/2 37 8C:237.R 14 1/2 41 85 8C:307.8 14 42 8C:447.6 34 42 8C:447.6 34 42 8C:447.6 12 42 8C:457.6 12 42 8C:473.6 12 42 8C:473.4 14 10 8C:735 50 10 8C:735 50 10 8C:735 50 10	MPF103 MPF103 B+179 36 MPF104 BF180/2 38 MPF105 BF180/2 38 MPF106 BF194/5 38 MPF106 BF196/7 12 MPSA01 BF198/5 MPSA01 BF204 BF200 300 MPSA02 BF224A 23 MPSA01 BF226A 35 MPSU03 BF256A 36 MPSU04 BF256A 35 MPSU24 BF274A 23 OC26 BF274 20 OC274/7 BF3940 05 OC74/75 BF783 05 OC274/75 BF783 06 OF8750/51 32 TIP29A TIP31A BFY85/6 28 OCC170/7 BFY850 32	25 VN663AF 22 VN88AF 30 VN89AF 30 ZTX107/8 58 ZTX107/8 56 ZTX212 56 ZTX212 56 ZTX301 60 ZTX302 57 ZTX304 50 ZTX303 57 ZTX304 50 ZTX304 50 ZTX550 40 ZTX550 4	es 2 N3053 28 2 80 2N3054 58 2N3055 58 55 2N3055 48 7 78 2N3105 48 7 78 2N3108 45 80 2N3252 46 94 2N3202 30 96 2N341/2 140 13 11 2N3161/5 19 12 2N3702/3 10 13 2N3702/3 10 12 2N3703/3 10 12 <td< th=""><th>2N5879 190 2N5877 250 2N6027 32 2SA671 250 2SA715 60 2SA715 60 2SSA715 60 2SSA716 70 2SSC495 70 2SSC495 70 2SSC496 70 2SSC1061 250 2SSC17306 80 2SSC17306 100 2SSC1862 30 2SSC1873 50 2SSC1873 50 2SSC1873 50 2SSC1873 50 2SSC2874 100 2SSC2874 100 2SSC2874 70 2SSC2874 74 2SSC287 70 2SSC287 70 2SSC287 70 2SSC287 70 2SSC287 70 2SSC288 225 2SB38 225 2SB38 225 2SB38 22</th></td<>	2N5879 190 2N5877 250 2N6027 32 2SA671 250 2SA715 60 2SA715 60 2SSA715 60 2SSA716 70 2SSC495 70 2SSC495 70 2SSC496 70 2SSC1061 250 2SSC17306 80 2SSC17306 100 2SSC1862 30 2SSC1873 50 2SSC1873 50 2SSC1873 50 2SSC1873 50 2SSC2874 100 2SSC2874 100 2SSC2874 70 2SSC2874 74 2SSC287 70 2SSC287 70 2SSC287 70 2SSC287 70 2SSC287 70 2SSC288 225 2SB38 225 2SB38 225 2SB38 22
Self Stick Graduated Barel 405 Sance: 477, 559, 1000, 740, 750, 759, 700, 759, 700, 759, 700, 769, 85, 758, 72, 733, 73, 75, 758, 759, 759, 759, 759, 759, 759, 759, 759	HC 1/9 lephone HC 181 lephone HC 181 MC 185 HC 184 Vau HC 184 MA HS05 Vau HC 187 MA HS05 MA HS05 MA HS05 MA HS06 MA HS07 MA HS07 MA HS07 MA HS08	20 FF 67 29 20 FF 73 27 10 FF 74 25 10 FF 74 25 307 45 NE554 318 75 NE55674 319 215 NE5534 314 30 NE55343 334 64 S5668 3347 70 NE55343 319 215 SA82019 317 75 SA832119 317 75 SA832119 317 75 SA832119 317 75 SA832119 317 75 SA932 3810 <	HULES21 95 TISA6 MUE2305 70 TIS58/A MUE3055 70 TIS58/A MUE3055 70 TIS58/A 420 UAA180 170, 120 UAA1003 935 135 ULN2003 835 140 ULN2004 90 410 ULN2003 835 150 UPC1025-H 375 150 UPC1182 300 150 UPC1166-H 200 225 UPC1166-H 200 360 ZA2206 360 375 SE2207 375 385 ZA2206 360 390 ZA2216 360 391 ZA2246 380 392 ZA2246 380 393 ZA428E 410 390 ZA428E 410 391 ZA428E 400 392 ZA234E 380 393 ZA403	45 2N2906,7 50 2N2907A 50 2N2907A 50 2N2926G 50 2N2926G 50 2N2926G 74/2 24 74/3 26 74/4/3 20 7482 60 7481 120 7482 65 7484 70 7485 60 7485 60 7489 20 7491 35 7491 35 7493 25 7493 25	26 205,459 36 4 10 2N5459 36 4 10 2N5777 45 4 10 2N5777 45 4 10 2N5777 45 4 10 2N5777 45 4 11 13137 240 1512 13 1337 240 1513 20 13 1337 240 1513 30 13 1337 240 1513 31 33 1337 240 1533 13 33 157 37 38 1537 15 30 50 1537 15 15 30 50 1537 15 15 113 30 50 1537 15 123 25 1547 15 15 121 155 13 13 15 121 155 16 <t< td=""><td>00603 110 00634 175 00635 175 00673 85 00871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0872 275 18224 85 18244 60 18244 60 18244 60 18244 60 18244 50 18245 50 18257 35 18257 35 18257 60 18270 61 18270 61 18270 62 18281 70 18298 85 18299 190 18290 15 18292 7</td></t<>	00603 110 00634 175 00635 175 00673 85 00871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0871/2 90 0872 275 18224 85 18244 60 18244 60 18244 60 18244 60 18244 50 18245 50 18257 35 18257 35 18257 60 18270 61 18270 61 18270 62 18281 70 18298 85 18299 190 18290 15 18292 7

SPST 33p 5 way 900, 10 way 190p. 21 2 - 31.4 80p 80p 21 2 - 31.4 80p 80p 21 2 - 51.8 00p Sp C 0 SUB_MIN TOGGLE ROTARY SWITCHES: 44p 1450p 12 - 5.8 1p - 33 4 - 51.8 0p 50p 12 - 5.8 1p - 33 4 - 51.8 0p 50p 2 × 5 way 90p	ed, PCB mount.
TOGGLE 2A, 2500 SPS1 33p	
DPDT 440 CSPUT 449	T
Spst convolt Stdp (Adjustable St0b right) (Adjustable St0b	VA/50W 210p
SPD1 biased both ways portoff ROTARY: Mains DP 250V 4Amp on/off Provide 10 purs sets Spd1 biased soft Spd2 biased soft <	
Open Control Grago Open Co	8V-14V, 250V AC
PDT biased holt more port spectrum Make a multivay switch Shafting as- modates up to 6 waters modates up to 6 waters on/on on spole 2 way Vertowinking sembly has adjustable stop Accom port spectrum Fear Spol spectrum Pass Spectrum Builting spectrum Interval sembly has adjustable stop Accom port spectrum Interval sembly has adjustable stop Accom port	1. 17V5-29V 250V
Op/Dif 3 positions modates up to 6 wafers op/on/on/on op/on/on/on op/on/on/on EURO CONNECTORS 0-25V	222p
3-pole 2 way 205p Mechanism only 90p FERRIC CHLORIDE ULTRASONIC Still Auge Still	UCERS
SLDE 230* 14p The above switch mechanism. 199 + 50P Par 40kn2 328 pi 31way 180p - 180p 495p each DPDT 1A c/off 15p Table 12 way. 5p/2 kway 56p S6p S6p S2p S2	55p
OPDT 1:2A 13p Way: 4 pole/3 way, 6p/2 way Sep 300 Sep 300 2450 2550 2560 327 CRYSTALS BUZZERS	
PUSHBUTTON 6A with 10mm Button SPDT1atching CKER + 5A/250V SPST 28p 28p Stded 9.5 2 x 32 A+C 380p 360p 32/38kHz 100 PDT1atching 95p 95p 95p 95p 95p 95p 01kHz 235 PDT1atching 95p 86.5 01p 95p 95p 375p 380p 260p 370p 370p 370p 200KHz 200KHz 260kHz 260kHz <th>iature. solid-state 70p</th>	iature. solid-state 70p
with 10mm Button BOCKER: 10A/250V SPDT 38p 6 12 150p 195p A+8+C 37sp 38up 500 and 37up 455KH 370 455KH 370 455KH 370 455KH 370 455KH 370 455KH 370 100/32 275 100/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32 12/32	
DPD1 latching 143P ROCKER: 10A/250V DPST with neon DIL SOCKETS EDGE DI AUTORIA 275 2m 3/1m 2/1m 3	
SPD1 moment 145p Structure 1, 156 BIBBON CABLE Solder UC 1, 28MHz 392 2 jin 42m, 24M	n 80p
Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 2200 Bpin Bp 25P 2×15 way 1400 Historic CABLE Solder UC 1.6MHz 395 - 1100 Mini Nor Locking Decade Switch Module 200 Mini Nor Locking	
Push to Make 15p B.C.D. Switch Module 2:59 14pin 10p 35p 2 x 22 way 199 200p 10 way 12p 22p 2 pin 30p 176p 1.8432M 200 A STC OMM 200 Push to Free 25p Mounting Check (sper pair) 75p 16pin 10p 42p 2 x 22 way 199 200p 10 way 12p 22p 2 pin 30p 12p 22 5 Standard MHz	280p 425p
HIMPER LEADS (Bibbon Cable Assembly) Telp 1 app 2 app 2 x 25 way 255 p 20p 20 way 25p 20 may 2 app 2 x 28 way 20p 2 way 35p 50p 71E DUI 3 2 78 M 15p	4230
ETI Length 14 pin 16 pin 24 pin 40 pin 25 p 70 2 × 30 way 245 p 34 way 48 p 60 SOCKETS 3 signal way 24 pin 40 pin 25 p 70 p 2 × 36 way 245 p 34 way 48 p 60 SOCKETS 3 signal way 35 p 73 p 80 p 2 × 36 way 25 p 74 pin 575 p 4 pin 575 p 40 pin 4 pin 15 p WEMON' P	lew Version
We stock 24 inches 145p 165p 240p 380p 40p in 30p 99p 2 × 40 way 35p - 50 way 65p 30p 28 pin 820 4 032MH, 290 WATFORD most of Double ended DPI Header Plug Jumper	
the parts 6 inches 185p 205p 300p 466p 2 2 4 9 way 300p 4 4.194304M 200 4.194304M 200 4.433619M 100	
24 inches 210p 250p 345p 540p ANTEA SOLDERING IRON 00000 Pins 0 CONNECTORS: Miniature 5.0MHz 160 A 4K Monitor 0 to produce the 1 100 Heads 520 250p 375p 595p C.15W 450p CX17W 475p 100 pins 0 convectors: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECTORS: Miniature 5.185MHz 300 to produce the 1 100 Heads 520 CONNECT	hip specially designed - est from your: Super- II, Enhanced Super-
Single ended 160p 200p 260r 300p Spare Elements 210p 500 pins Solder lugs 80p 110p 160p 250p 6 144MHz 150 A Berk in Prac	As reviewed by Dr A. ical Electronics, June
Double ended 290p 370p ve0p 525p Iron stand with sponge 165p 325p Angle Pins 160p 210p 250p 355p 6.5536MHz 225 1981 W/Wrap 150 W/Wrap 150 0.1440MHz 225 1981 0.1440MHz 225 1981	
AMPHENOL PLUGS IEEE (24 way) 575p Centronic parallel (39 way) 575p Centronic parallel (39 way) 576p VOLTACE PECILIATOPS CA3085 95p Seckare	op i di
TRANSFORMERS: Prim. 240V + ve LM304H 170p Angled Pins 110p 160p 210p 30p 440p 395	MICRO
60-6V; 90 9V; 12:0:12V 100mA 98p 1A T03 Metal case -ve LM309K 135p W/Wrap 8.86723M 175 BBC 100 900 900 100 100 100 100 100 100 100	
3vA: 2x6V 0 55A: 2x9V 0.15A; 2x12V 0.12A; 12V 7815 1400 7915 2200 LM317KP 990 UV815 100 10 24MHz 200 (Our BBC Mic 2x15V 0.15A; 2x12V 0.12A; 12V 0.12A; 1400 7915 2200 LM317KP 990 UV815 100 100 100 100 100 100 100 100 100 1	o Upgrade Kits will
6VA: 2x6V-0.5A; 2x9V-0.3A; 2x12V-0.25A; 1A T0220 Plastic LM325N 240p 12.0NHz 175 16K Memory 175 175 175 175 175 175 175 175 175 175	3×4816AP) £18
Standard Split Bobbin type. 5v 7805 40p 7905 45p LotSolv 1-9p Zs way D CUNNECTOR 14 31814M 170 Printer Oser 0 100 1705 Jumper Lead Cable Assembly 16 0MHz 200 SK10 with 36	Cable £2
2x15V-0.25A 2x20 15V 7815 40p 7912 45p 1-34550 50 18 100, 5-10 18 000 18 00Hz 180 (Complete Print 190 (Com	Cable £3
2x12V-0.5A; 2x15V-0.4A; 2x20V-0.3A 24V / 824 40p 7918 45p ToA1412 150p 36* 100p 36* 100p 2000 File Folded, File 1050p 2000 Disc Interface 70 2000 Disc Interface	Kit E41
24VA 246V-15A 249V-12A 2412V-1A 100/m4.1032 Flastic 2500 240/m12 1/0 Serial //O Kit 240/m12 1/0 Serial //O Kit 2500 265/m12 1/0 Kit 250	£7,50
1.5A; 2x20V 1.2A; 2x25V 1A; 2x30V 0.8A 6V 78L62 30P 78HG 15V to 125V 7Y81 16K DAM DACK 27.648M 170 SK11 with Ca	ble 36" £3
1000 vA 2129 vA 2415 v3 wordpoop papin 12 v 78.12 30 p 79.12 60 p 3A 399 p Fully built & tested, Plugs 38.66667M 175 5K12 Will variable of Cc 399 p Fully built & tested, Plugs 48.0MHz 176 Range of Cc 396 v 2.5A 170 range of Cc 396 v 2.5A	nnectors & Cables
2x25V-2A 2x30V-15A 2x50V-15A 2x50V-1	end SAE for list
CMOS 4075 15 4539 110	
4000 10 4076 46 4541 140 OPTO ELEC- COMPUTER CORNER WATFOLD S BOOK	1020
4006 50 408 16 4549 375 LEDs with Clips umn, Speed 80 cps, Bi-directional, Centronics interface, Baud 6502 Assembly Lang, Subjoutine	1200
4008 48 4085 50 4554 190 TIL211 Grn 14	950 1240
4010 24 4909 125 4556 35 TIL220.2" Red 12 resolution bit image graphics. Subscript & Superscript, Italics & Programming the 6502	1120 1350
4012 16 4094 120 4558 120 Ambient, force 14 4013 25 4095 75 4560 160 160 20 ambient, force 14 4013 25 4095 75 4560 160 160 20 ambient, force 14	1290 790
4014 50 4096 70 4561 104 Red/Green 65 money f489 8080/280 Assembly Lang. Technii	
4017 38 4099 110 4568 250 Bed/Green / Velice 85 SERVOTA GETORA OF TOTA OF THE AUTOM THE SERVICE ACTIVITY OF THE AUTOM ACTIVITY ACTIV	800
4019 25 4161 99 45/2 30 LED 2" red 55 tor reed. Parallel intrace Standard. Apple II User's Guide	990 1250
4020 50 4163 99 4581 250 Square LEUS, Red, Gen, Yellow 0 VIDEO MONITOR 9", B&W, Attractively cased, Fully Apple Machine Language 4021 50 4163 99 4582 99 Rectangle Stackable guarantced. Value for money at £69 Bereath Apple DOS (Version 3.3) 4023 50 4174 99 4582 99 Rectangle Stackable guarantced. Value for money at £69 Bereath Apple DOS (Version 3.3) Vor Atari Computer 400/800	1090 1250
4023 16 4175 106 4583 99 LEDs 4024 32 4194 105 4584 48 and Green or Yell 18 ● ZENITH 12" Green Screen MONITOR	1250 390
4025 16 4408 790 4585 99 Triangular LEOs 4026 en 4409 790 4587 330 Deck 18 Basic Computer Games	650 690
4028 50 4411 675 4599 290 U0271 Intra Red 46 plete microprocessor development system for Engineers and A Bit of Basic 4029 60 4412 775 40085 90 524205 Deverting 18 beginners alike. New powerful instructions Accepts any 24 pin 5V	590 1200
4030 30 (4415 4480 40097 445 TIL32 Intra Red 58 single rail EPROM. Supplied fully built, tested. Enclosed in a Diack Basic Programs for Sci/Eng 4031 125 (4419 2480 4008 133 TIL32 Intra Red 58 Single rail EPROM. Supplied fully built, tested. Enclosed in a Diack Basic Programs for Sci/Eng	1220 690
4032 30 4422 770 40100 215 TL38 45 30 hour BASIC BBC Computer 4033 125 4433 770 40101 130 TL100 80 • TEX EPROM ERASER Erases up to 32 ICs in 15-30 minutes£33 30 hour BASIC BBC Computer 400 + 10	550 690
4034 140 4433 770 40102 140 BARGRAPH Red 10 TEXPROMERASER with a safety switch f40 Practical Programs/BBC ADDM 4035 66 4435 850 40103 175 segments 225 TEXPROMERASER with a safety switch f44 CProgramming Language	1300
4037 110 4450 350 40105 110 LLZ4 55 110 4451 150 40105 45 LLC2 55 ELECTRONIC TIMER Solid state 15-30 min. Connects directly CP/M Handbook with MP/M	1200 1220
4039 290 4490 390 40107 60 LC074 185 to above Erasers. Protects your expensive Chips from overcook Souther Crim Self Teaching Guide	1200 900
4042 45 4502 60 40110 300 4N33 Phore	1130 1040
4043 50 4504 75 40114 240 Darlington 135 SPARE Ov Lamb Back 240 Lamb Back 25 Pascal from Basic	790 1250
4046 65 4507 35 40174 65 TH 312 3" CA 105 1	
4048 40 4510 46 40181 220 T(L321.5" CA 115 Tested output: +5V; +25V at 5A; +12V, 12V, 5V at 1A L37 V(C Revealed	1000
4050 25 4512 50 40192 90 DL704 31 CC 99 • ABS CASE Attractive, Berge/Brown for Superboard, UK101 Learn Computer Prog. with Victor 4051 451 31 199 40193 88 DL704 31 CC 99	195 790
4052 60 4514 115 40194 90 FN0357 Re 120 NASCOM, or HOme brew liplease state). L20 Programming the 280 3e 4053 50 4515 115 40195 72 FN0500 115	1250 1250
4054 85 4516 55 40244 195 3" Green CA 150 Stack-Pak Drawers including 10 / C12 Cassettes. 5000 Z80 Assem Lang. Program./Stud	
	600 700
4056 85 4518 40 4029/ 195 3 + 1 Red CA 150 € 37 + 1 Green CA 150 € 37 +	750
4056 85 4518 40 4025/ 795 3* ± 1 Red CA 150 93" Fan Fold paper (500 sheets) £5 Z00 03et shared back 4057 1915 4519 30 40373 240 3" ± 1 Green CA 150 93" Fan Fold paper (500 sheets) £5 ZX81 Basic Book 2X81 Basic Book	550
4056 85 4518 40 40227 79 3" + 1 Red CA 150 4057 1915 4519 30 40373 240 2457 156 257 4059 490 4520 50 40374 245 247 156 158 4060 60 4521 110 110 110 1285 457 4061 2295 4522 125 70 0PT0 1284 4061 2295 4522 70 0PT0 1284 4061 2295 4522 70 0PT0 1284	640
4056 85 4518 40 40227 79 3" + 1 Red CA 150 4057 1915 4519 30 40373 240 2457 156 257 4059 490 4520 50 40374 245 247 156 158 4060 60 4521 110 110 110 1285 457 4061 2295 4522 125 70 0PT0 1284 4061 2295 4522 70 0PT0 1284 4061 2295 4522 70 0PT0 1284	640 500 790
4056 85 4518 40 4029' 79's 3" + 1 Green CA 150 4057 1915 4519 30 40373 240 3" + 1 Green CA 150 4058 480 4520 50 40374 245 50's 10'reen CA 150 4061 2295 4522 126	640 500 790
4056 85 4518 40 40257 195 3*+1 Red CA 150 83 *Fan Fold paper (500 sheets) £5 200 sheets £55 55 200 sheets £55	640 500 790 ion) 935 980

WW - 030 FOR FURTHER DETAILS

IEEE PROGRAMMABLES from TIME

9814 IEEE PROGRAMMABLE VOLTAGE STANDARD

A higher performance voltage standard with 4 ranges from 0.1 volt to 10 volt output. Accuracy is 0.01% and the resolution of setting is 1 in 200,000. Output resistance is less than 0.01 ohms, and output current adjustable 20mA-200mA. Temperature coeff is less than 20ppm/°C and long term stability better than 50ppm per year. Full manual control is available via front panel controls. Available for benchtop use or 19" rack mounting.

9816 IEEE PROGRAMMABLE VOICE

A high quality speech synthesizer which has a 280 word vocabulary. By suitable programming via the IEEE bus it is possible to output single words, phrases and sentences. The vocabulary has been chosen to be applicable to many ATE applications.

9815 IEEE PROGRAMMABLE SCREWDRIVER

The unit has been designed to overcome the problems of adjusting large numbers of multi-turn trimmers in ATE systems. The screwdriver is fully programmable via the IEEE bus with 3 speeds of rotation and 2 selectable torque values available. The unit is supplied complete with a flexible drive shaft and drill chuck into which various adjusting tools can be located.

9810 IEEE/PROGRAMMABLE POWER SUPPLY

0-33V in 0.1V steps. Local or remote (IEEE) operation. Fully programmable on the IEEE bus with 3 settable current limits 1mA, 10mA and 1.1A. A dual version of the 9810 is also available. The unit is 3 Euro units high and standard 19" rack mounting width.

9812 IEEE PROGRAMMABLE SWITCH

24 double pole changeover switches are available with full IEEE control. Each switch is rated at 1 Amp, 30V dc or 100V ac. Thermal emfs have been minimised to less than 1µV per switch. All outputs are on the rear panel along with the IEEE address selector switch and bus connector. Manual control of the switches is also provided via a set of front panel switches which also incorporate LED indicators.

9811 IEEE PROGRAMMABLE RESISTANCE

0-1 Megohm in 1 Ohm steps, fully programmable via the IEEE bus. Accuracy is 0.1% over most of the resistance range. Resistors are rated at 1 watt each. An attractive feature is the option to switch to local operation when the output resistance can be set up manually via front panel switches.

TIME ELECTRONICS LTD, Botany Industrial Est., Tonbridge, Kent, England TN9 1RS. Tel: (0732) 355993. Telex: 95481

WW - 086 FOR FURTHER DETAILS

The Stabilizer is a high quality frequency shifter for howl reduction on speech and music. It offers variable shifts either up or down between 1 and 10 Herz so allowing choice of the optimum shift for the particular ecoustics and sound sources involved in each installation. Rack and box versions. +5 Hz FIXED SHIFT CIRCUIT BOARDS as WW July 1973 article but improved noise level, lower distortion, adjustment-free oscillator and IC sockets: Mark 4. Small enough to be built inside the cabinets of many amplifiers. Complete kit and board £40. Board built and eligned £56. Including psu and meins transformer. DESIGNER APPROVED. C.W.O. less 5% + V.A.T. 15%.

Stereo Disc Amplifier 3 and 4 10 Outlet Distribution Amplifier * PPM2 and PPM3 Drive Circuits and Ernest Turner Movements * Illuminated PPM Boxes * Peak Deviation Mater * Programme and Deviation Chart Recorders * Moving Coil Preamplifier * Broadcast Monitor Receiver 150kHz-

SURREY ELECTRONICS LTD., The Forge, Lucks Green, Cranleigh, Surrey GU8 7BG Telephone: 0483 275997

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CR0 2XX 01-684 1422/01-684 0246

WW - 056 FOR FURTHER DETAILS

WIRELESS WORLD OCTOBER 1982

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match. Next came the 131. The introduction of the 135 saw 41/2 digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout. The result is an unrivalled selection of handheld measuring devices. Each specification carefully

matched to a given need. With performance that looks pretty good on paper. And even better in the field!

KFITHI

Keithley Instruments Ltd 1 Boulton Road Reading Berkshire RG2 0NL Telephone (0734) 861287 Telex 847047 Also available from I.T.T. Instrument Services, Tel. Harlow 29522 WW - 083 FOR FURTHER DETAILS

Introducing two new hand-held digital multimeters 28 Ranges, each with full overload protection

10 amp AC/DC

SPECIFICATION 6010 & 7030

BATTERY: Single 9v dry cell. BATTERY LIFE: 200 hours. DIMENSIONS: 170 x 89 x 38mm. WEIGHT: 400g inc. battery. MODE SELECT: Push button. AC DC CURRENT: 200 μ A to 10A. AC VOLTAGE: 200mV to 750V. DC VOLTAGE: 200mV to 1000V. RESISTANCE: 200 Ω to 20M Ω . INPUT IMPEDANCE: 10M Ω . DISPLAY: 3½ Digit 13mm LCD. O/LOAD PROTECTION: All ranges.

OTHER FEATURES:

Auto polarity, auto zero, battery-low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.

Please add 15% to your order for VAT. Postage and packing is free of charge. Trade prices available on application.

ARMON ELECTRONICS LTD Cottrell House, 53-63 Wembley Hill Road Wembley, Middlesex HA9 8BH, England Tel. 01-902 4321 (3 lines). TIx: No. 923985

WW - 055 FOR FURTHER DETAILS

Double Top

N V

2001

1 0

MULTIMETER

DC =

AC

NOP

2000ml

200mA

20m

2m/

MODEL 7030

ACCURACY 0.1

95

This new addition to the Eddystone range of diecast boxes is supplied with interchangeable deep or shallow, closefitting flanged lids giving flexibility of application with minimum stocking.

Please write or telephone for details of the new, versatile 10758P box. And ask about the whole Eddystone range of strong, lightweight, corrosion-resistant, diecast aluminium boxes, water-resistant boxes and moulded ABS plastic boxes, in a range of sizes to meet a thousand applications.

STOP PRESS!

The flexibility of deep/shallow and base lids has now been extended to a number of standard sizes.

Eddystone Radio Limited

Member of Marconi Communication Systems Limited

Alvechurch Road, Birmingham B31 3PP, England Telephone: 021-475 2231 Telex: 337081 A GEC-Marconi Electronics Company

moulded nylon TRANSIPILLARS®

probably the most versatile and rugged insulating mounting system ever developed

Transipillar insulating mounts hold heavy sub-assemblies totally secure. Because they're precision moulded from very tough Nylon.

Metric or Imperial versions are available, with insulator lengths from $\frac{1}{2}$ in to $2\frac{3}{4}$ in, and a choice of metal screw or threaded insert end fittings from 0 to 6BA.

If one of the preferred sizes won't suit your application, the chances are we can make one that will.

Write today for samples, full technical details and prices of TRANSIPILLARS.

WK ELECTRONICS LTD Napier Road Bromley Kent BR2 9JA

Telephone: 01-464 4346 Telex: 896691 Extn WKE.

WW - 063 FOR FURTHER DETAILS

ALSO

1977131317

power transistor mica washers

the patented insulating mount for 1/18 in thick heatsinks. Eliminates the need for

LAST CHANCE AT THIS PRI WRONG TIME? METALFILM RESISTORS 1% Tolerance, ¼ Watt MSF CLOCK is ALWAYS CORRECT – never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (includ-ing WEEKDAY) output, receives Rugby 60KHz atomic time signals, built-in antenna, 1000Km range, GET the RIGHT TIME, center of the signals. 100R 110R 120A 130R 150R 160R 180R 220R 240R 240R 240R 240R 330R 360R 330R 360R 430R 430R 450R 560R 100k 110k 120k 130k 150k 160k 160k 200k 220k 240k 240k 270k ONLY 3p EACH 1k 1k1 1k2 1k3 1k8 2k 2k2 2k3 3k3 3k3 4k3 7k5 5k6 6k8 5k6 6k8 5k6 8k1 8k2 High Quality High Stability. Huge Strength Minimum order £20 £69.60 Minimum 5 pcs per v 89 Values (E24) 60KHZ RUGBY RECEIVER, as in MSF Clock, serial date output for computer, etc., decoding details and ZX81 listing for local, GMT and SIDEREAL time, £22.20. **Tunable Audio Notch Filter** £16.40, **Speech Compressor** £19.40. **Antenna Noise Bridge** £18.60, **10-150KHz Receiver** £19.40. VAT, p&p inclusive ALOFFER 330k Each fun-to-build kit (ready made to order) includes all parts, 470% 560k printed circuit, case, postage, etc., instructions, money back assurance so GET yours NOW. 6801 750R 820R 910R **CAMBRIDGE KITS** 820k 4 GOLDEN SQ 45 (WK) Old School Lane, Milton, Cambridge. Tel: 860150 ORION SCIENTIFIC PRODUCTS LTD. LONDON WI WW - 057 FOR FURTHER DETAILS THE TL100 HAS DEL. INSTRUMENT TECHNICIAN. CONST. STRONG ALUMINIUM FRAMES, TWIN HAINDLE STRONG ALUMINIUM FRAMES, TWIN HAINDLE NOULDED TRAY IN THE BASE, A COMPREHENSIVE 2-SIDED MOULDED TRAY IN THE BASE, A COMPREHENSIVE 2-SIDED THAT IS REVERSIBLE WITH SPACE FOR OVER 40 TOOLS. THERE IS SI FOR DOCUMENTS AND A HEATSINK FOR A HOT SOLDERING IRON. ALSO AVAILABLE IS THE TL99 17in. × 12in. × 6in. £39.90 THE TL100 HAS BEEN DESIGNED FOR THE PROFESSIONAL ELECTRONICS, TV OR INSTRUMENT TECHNICIAN. CONSTRUCTED FROM HARD-WEARING ABS WITH STRONG ALUMINIUM FRAMES, TWIN HANDLES AND TOGGLE LOCKS. A MOULDED TRAY IN THE BASE, A COMPREHENSIVE 2-SIDED TOOL PALLET THAT IS REVERSIBLE WITH SPACE FOR OVER 40 TOOLS. THERE IS SPACE Enclosed my cheque for c Name Company ww

•

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide – wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10 TELEPHONE: 01-853 5295 TELEX: 923393 LASER G

WW - 025 FOR FURTHER DETAILS

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer for

- Mobile Radio Telephone
- Police Mobile HQ (UHF)
- Field Telecommunications
- Floodlighting
- Anemometer and Wind Measurement
- sampling collector High level photography

Environmental - gas

- Meteorology
- And a host of other uses

Find out more about the QTM series by writing or phoning:-

U.K

CLARK MASTS LTD. (W.W.) Evergreen House, Ringwood Road, Binstead, Isle of Wight, England PO33 3PA Tel: Isle of Wight (0983) 63691 Telex 86686

EUROPE GENK TECHNICAL PRODUCTS N V (W W) Woudstraat 21, 3600 Genk Belgium Telefoon 011-380831 Telex 39354 Genant B

WW - 028 FOR FURTHER DETAILS

EV88 – A low-cost evaluation system for the 8088 microprocessor

EV88 is a single board microcomputer that is ideal for evaluating the 8088 8-bit/16-bit microprocessor. EV88 can also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and an EPROM programmer, for low-cost development of 8088based systems.

EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5V 1A power supply and a terminal or a suitable microcomputer.

- ★ 8088 microprocessor in minimum mode (software compa-tible with the 8086 16-bit microprocessor).
- Comprehensive monitor in 2K EPROM.
- 2K CMOS RAM.
- Cassette interface.
- × 24 lines of I/O
- Eight levels of interrupt.
- + RS-232 compatible serial interface (300 baud to 9600 baud).
- Three-channel counter/timer.
- Buffered data, address and control lines. Double Eurocard. *
- ★ On-board expansion to 16K EPROM/RAM (sockets provided).
- Breadboarding area. All bus signals available on 64-way DIN 41612 connector. Single 5V supply. Price £300 plus VAT. Includes delivery.
- ★

8088/8086 design service available (software and hardware).

LFH Associates Ltd. 40A High Street Stony Stratford Milton Keynes (0908) 564271

IS4020A 5056A 25G10

WW - 034 FOR FURTHER DETAILS

GREENWELD 443G Millbrook Road, Southampton, SO1 OHX **BULK BARGAINS** 4W 5% Carbon Film Resist V4W 5% Carbon Film Resistors -The following values only: 4R7 5R1 6R2 6R8 5R2 13R 15R 27R 33R 39R 56R 68R 100R 180R 220R 270R 470R 1k 2k7 3k 4k7 12k 18k 22k 30k 33k 36k 39k 75k 200k 220k 240k 390k 560k 620k 680k 1M5 - all at €3/1000. All goods new full spec. Prices are for 100 or 1k of one type. Add £1 carriage and V.A.T. to all orders. Send s.a.e. for bulk buyers lists, or 75p for full cetalogue (free to schools, etc.). 4520B 4528B 4582 40014 74C00 DIODES BRIDGES 39 42 60 32 18 ALSO: 7 million $\frac{1}{4}$ / $\frac{1}{2}$ w. resistors, carbon/carbon film for sale as one lot - £3000. 100+ .15 .16 .17 .19 .19 .22 .28 .39 1.20 .65 .14 W01 W02 W04 S02 S04 S06 PW005 15A100V 12A200V B80C600 Tant Beeds: 2.2/16.04; 10/35.16. ITT PMT POLYESTERS: 01/400 02; .22/100.023; .33/100.025; .47/100 .028; .68/100.04; 1/100.055. TTL 100+ 400mW Zeners, 5%; All E24 values from 2V4 to 36V and 75V at .035; 1k (mixed 1006).029. 1.3W 5% Zeners: 3V6 3V9 4V3 7V5 11V 12V 13V 16V 18V 30V 56V 75V 110V 180V at .06. 1k (mixed 100s) 045 CMOS Type 40018 4007A 400128 40128 40128 40128 40134 40148 40138 40148 40165 4016A 4022A 4023C 4057 8 4035C 8 4035C 8 40578 4005 TRANSISTORS AC 127 AC128 AD161/2 BC107 BC108C BC109C BC182B BC182L BC183L BC183L BC184 BC2128 BC213 BC214B BC214L BC308B BC214L BC308B BC327 BC328 BD4333 BD695A BD695A BF173 BF181 BF195 BF258 BFY50 BFY51 BFY52 BRY46 BU206 CO35 PBC108 TIP31A TIP32A TIP32A TIP32A TIP31A ZN2252 ZN2369 ZN2369 ZN2365 ZN3055 ZN3055 10

WW-022 FOR FURTHER DETAILS

BC548 BC549 BC557

BC558 BC559 BCY70 BCY71

WW - 011 FOR FURTHER DETAILS

Sinclair ZX Spect

16K or 48K RAM... full-size movingkey keyboard... colour and sound... high-resolution graphics... From only £125!

First, there was the world-beating Sinclair ZX80. The first personal computer for under £100.

Then, the ZX81. With up to 16K RAM available, and the ZX Printer. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the ZX81 remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX81. But its new 16K BASIC ROM dramatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48K of RAM) or a massive 48K of RAM.

Yet the price of the Spectrum 16K is an amazing \pounds 125! Even the popular 48K version costs only \pounds 175!

You may decide to begin with the 16K version. If so, you can still return it later for an upgrade. The cost? Around £60.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer – available now – is fully compatible with the ZX Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the Sinclair ZX Spectrum

- Full colour 8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
- Sound BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution 256 dots horizontally x 192 vertically, each individually addressable for true highresolution graphics.
- ASCII character set with upper- and lower-case characters.
- Teletext-compatible user software can generate 40 characters per line or other settings.
- High speed LOAD & SAVE 16K in 100 seconds via cassette, with VERIFY & MERGE for programs and separate data files.
- Sinclair 16K extended BASIC incorporating unique 'one-touch' keyword entry, syntax check, and report codes.

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASCII character set – including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your ZX Spectrum. A roll of paper (65ft long and 4in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrive – coming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100K bytes using a single interchangeable microfloppy.

The transfer rate is 16K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum.

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $\pounds 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard.

EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

Item		rey, GUI Code	Item Price £	Total £
Sinclair ZX Spectrum	-16K RAM version	100	125.00	
Sinclair ZX Spectrum		101	175.00	
Sinclair ZX Printer		27	59.95	
Printer paper (pack of	f 5 rolls)	16	11.95	
Postage and packing		28	2.95	
	orders over £100	29	4.95	
			Total £	
e a cheque/postal ord	der payable to Sinclai	r Resear rd accou	rch Ltd for \pounds unt no.	
e a cheque/postal ord	der payable to Sinclai	r Resear rd accou	rch Ltd for £_ unt no.	
e a cheque/postal orc charge to my Access/ delete/complete	der payable to Sinclai	r Resear rd accou	rch Ltd for £_ unt no.	
e a cheque/postal orc charge to my Access/ delete/complete cable	der payable to Sinclai	r Resear rd accou	rch Ltd for £_ unt no.	
e a cheque/postal orc charge to my Access/ delete/complete cable re	der payable to Sinclai	r Resear	rch Ltd for £_ unt no.	
e a cheque/postal orc charge to my Access/ delete/complete cable re PRINT	der payable to Sinclai	r Resear rd accou	rch Ltd for £_ unt no.	
e a cheque/postal ord charge to my Access/ delete/complete cable re PRINT Mr/Mrs/Miss	der payable to Sinclai	r Resear	rch Ltd for £ unt no.	
e a cheq charge to delete/co cable re PRINT Mr/Mrs/M	ue/postal oro my Access/ omplete	ue/postal order payable to Sinclai my Access/Barclaycard/Trustcar omplete	omy Access/Barclaycard/Trustcard accou omplete	ue/postal order payable to Sinclair Research Ltd for £ my Access/Barclaycard/Trustcard account no. pmplete

WW - 021 FOR FURTHER DETAILS

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $\pounds 20$ is possible only because the operating systems are already designed into the ROM.

Available <u>only</u> by mail order and <u>only</u> from

Sinclair Research Ltd, Stanhope Road, Camberley, Surrey, GU15 3PS. Tet: Camberley (0276) 685311

WW - 064 FOR FURTHER DETAILS

WW - 072 FOR FURTHER DETAILS

THE HEADSET THAT'S WAY AHEAD OF ITS TIME.

THE DANAVOX HMT 808.

The Danavox HMT 808 is the most advanced headset of its kind that you can buy today. Employing Danavox expertise and quality throughout, it offers many unique features at a remarkably low price.

● Lightweight. Weighs only 35 grams ● Comfortable and hygienic. Does not go in the ear so it can be comfortably positioned in seconds ● Versatile. Can be worn under the chin or over the head using single ear of binaurally● Multiple version microphone. Available with either magnetic microphone or electret with noise cancelling feature and pre-amplifier for matching into telephone systems Technically advanced. Pre-amp employs latest thick film technology
 Easy servicing and repairs. Quick changing of earphones, cords, earpieces and switches

 Realistically priced
 Danavox quality engineering and guarantee.

DANAVOX (Gt. Britain) Ltd., 1 Cheyne Walk, Northampton NN1 5PT Tel: (0604) 36351 Telex 312395

WW - 012 FOR FURTHER DETAILS

he Simp le answer n a wer supp lv Ì

As supplied to

International Telecommunications Companies Uninterruptible Power Supplies - UPS CVT Reliability 125va to 50kva, 50 or 60hz.

STANDBY POWER. Invaluable for winding down a computer programme on mains failure and wherever continuous power is essential.

■ STABILISATION. ±5% Vital to combat mains voltage fluctuations and ensure the operation of equipment at peak efficiency. Frequency stabilised ±0.1% 47 to 65Hz. TRANSIENT ATTENUATION. Provides suppression of mains born interference (spikes)

An unbeatable power package at a price to suit all budgets from Galatrek International, UPS are DOWN to unbeatable prices.

For more information, cut the coupon. Galatrek International, FREEPOST, Scotland Street, Llanrwst, nr. Llandudno, Gwynedd LL26 OAL, BRITAIN, Tel No: 0492-640311/641298, Telex: 617114 A/B Galahu. Made and Designed in Britain by Galatrek.

	ATIONAL		
Please send me full of stabilisers, filters, cut Please send me full de Please send me a requ Consultation with Ga	outs, generators a stails of UPS uirement check sh	and CVT's	
Name			
Position Company			
Address			
Tel No Trade OEM (plea		Telex propriate)	WW 2/10

WW - 010 FOR FURTHER DETAILS

D.I.L. MINIATURE	HONEYWELL PROXIMITY	MULLARD MODULES	ULTRA SONIC
ON-OFF SWITCHES Gold-plated contacts.	DETECTOR integral	LP1171 LP1179 IF. Strip AM, FM	TRANSDUCERS 40KC/S. Complete on 18 in Screened cable, £1.75
Sealed base Ideal for pro- gramming. 6-position at less than half	PHOTO CONDUCTIVE CELL, £1.25. High-power Cds cell, 600MW, for	Pair £5.75 Complete with Data	each; pairs £2.95. ULTRA SDNIC
manufacturer's price	Resistance 800 ohm to 4K Max. volts 240. Size 1/2 ×	tricap LP1157 varicap Med. & Long £5.00 Tuner £2.50	TRANSMITTER. Complete unit (uncased requires 1.5VI, £3.25.
Will fit into t4-pin dil socket Ten at 65p ea.; per 100 55p ea.	1/2in. RIBBON MICROPHONE with pre-amp on chassis, £1.75.	CRYSTALS COLOUR TV 4.433619 mc/s £1.25	FOSTER DYNAMIC MICROPHONES. 200 ohm impedance. Moving coil Complete on chassis. £1.75
U.H.F. MODULATORS Latest type, adjustable,	LM380 Amplifier	Miniature type sealed MINIATURE HIGH- QUALITY FANS	pair. STERED CASSETTE
ideal for computers. with data circuit	LM318N Hi-Slew Op Amp £1.50	"Whisper Model" by Ro- ton, Low-power consump-	Mechanisms 6 or 12 volt. Complete with Heads +
Size 3×2½×1 inch Only £3.50 In screened case	LM323K, 5v. 3-amp, reg. £3.50 LM310N Volt, Follower	tion (less than 10 watts). Silent running, 115v. (two in series for 230v.)	Erase and Solenoid. Brand new
MINIATURE EDGE	Amp. £1.20 LM311H High Perf Volt. Comparator. £1.00	50/60Hz. Size 41/2 × 41/2 × 11/2in. ONLY £6.50 EACH	TV CENDERGENCE POTS
With illuminated dial scale 0-10. F.S.D. 100 microamp. Size 1 ¹ /2 × 1 ¹ /2 × ¹ /2 deep.	LM384N, 5-watt Amp £1.20 LM393N Dual Com	Incl. V.A.T. BRAND NEW 50% less than manufactur-	50 ohm 100., ALL 200., Shp
Only £1.65.	STEREO CASSETTE TAPE	er's price	5K ., 🐽.
Half-inch + 1 Display	HEADS. Quality replacement for most	HEWLETT-PACKARD DISPLAYS 5082-7650	EX-MOTOROLA 5 + 5-WATT
High Intensity £1 each set of 4 £3.50	recorders with mounting plate. Record/Replay £2.80 MARRIOTT TAPE HEADS	HIGH EFFICIENCY	CAR STEREO
Common anode 14 Pin Dil Package	Quarter track. Type XRPS18 Record/Replay	AND VERY BRIGHT	AMPLIFIERS Complete and tested units.
BRIDGE RECTIFIER	(each) £2.00 XRPS36 Record/Replay	Set of 6 for £5 Half-inch red common	Medium and Long Wave. Supplied as two built units $(5 \times 2 \times 2in.)$ with circuit
800 PIV 35 amps 1½×1½×½in, £3.50	(each) £3.00 XES11 Erase (each) £1.00	en o de will replaca OL70/14-pin Dil.	and data Only £5 pair. Includes pre-amp.
NATIONAL P.8088A Chips	RECHARGEABLE BATTERIES	"CHERRY" ADD	D-ON KEYPAD
IN4148 DIODES Full spec. but no polarity band. Per 1,000£10	VARTA 3.6 volts DEAC, M/AH 225 £1 50 DRYFIT 6-volt, 4.5 amp.	PATATA LIST P	RICE A compact 12-buttor
MINIATURE MP.C. POTENTIOMETERS. Model	£7.50		00 with Keyboard extend its functions
M2. High-quality, 5% tolerance, 2-watt, with lin. spindles. All values, 47	XTAL FILTER 10.7 mc/s. 12.5DB separation,	ON DN	Supplied brand new
spindles. All values, 47 ohms-47k only 60p each per 10; 50p each per 100; 40p each.	1½×1¼×1 inch £7.00 100KC/S + 1 meg. 3-pin £2.00		JU A 1 A 3 × 4 non-encoded A 1 Single mode keyboard
ALL MAIL ORDERS/E	01-1 ors to: 404 EDGWARE XPORT ENQUIRIES 11	invited 723 1008/9 ROAD, LONDON W2 1 /12 PADDINGTON GR DER YOUR FA	EEN, LONDON, W2
ALL MAIL ONDERSE	OI	723 1008/9 ROAD, LONDON W2 1 /12 PADDINGTON W2 1 DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES.	ED LONDON, W2
ALL WALL OHDERSE	OT-	723 1008/9 ROAD, LONDON W2 1 /12 PADDINGTON W2 1 DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM	ED LONDON, WZ
ALL WALL OHDERSE	OI- TAR TO A CONTENDUIRIES IN XPORT ENQUIRIES IN (OR AUDIO SEND F OF O INCLU SIGNA TRAN	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON GR DER YOUR FA ACCESSORII OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC	ED LONDON, W2
ALL WALL OHDERSTE	OI- TARE TO A CONTENDURINES IN XPORT ENQUIRIES IN (OR AUDIO SEND F OF O INCLU SIGNA TRAN V	723 1008/9 ROAD, LONDON W2 1 7/12 PADDINGTON W2 1 1/12 PADDINGTON W2 1 DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGE	ED LONDON, WZ
ALL WALL OHDERSE FROM 48 PAGES 8 ¹ /2 [°] X I I [°] We Ship the fastest	OI	723 1008/9 ROAD, LONDON W2 1 7/12 PADDINGTON W2 1 1/12 PADDINGTON W2 1 DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGE	ED LONDON, WZ
ALL WALL OHDERSE PAGES B ¹ /2 [°] X11 [°] We Ship the fastest	A most convenient w SESCOM, INC. RETAIL SALES DIVI	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON GR DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O VITH TECHNIC & USE DIAGE BY for youl Most Shi SION	ED LONDON, WZ
ALL WALL OHDERSE PAGES B ¹ /2 [°] X11 [°] We Ship the fastest	01-7 TYPORT ENQUIRIES 11 (OR AUDIO SEND F OF O UNCLU SIGNA TRAN V & most convenient w SESCOM, INC.	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON W2 1 712 PADDINGTON W2 1 DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O VITH TECHNIC & USE DIAGE BY for youl Most Shi SION	ED LONDON, W2 AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, MODULES. THER ACCESSORIES AL DATA RAMS
ALL WALL OHDERSE	A most convenient w SESCOM, INC. RETAIL SALES DIVI	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON GR DER YOUR FA ACCESSORII OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES. L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGE BY for you! Most Shi SION (d. North (DI-1197 U.S.A. TY	ED LONDON, W2 AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, MIC
ALL WALL OHDERSE	A most convenient w Convenient w Convenien	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON GR DER YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGS ay for youl Most Shi SION (C d. North (C) D1-1197 U.S.A. TW RTHER DETAILS	ED LONDON, W2 AVOURITE ES BY MAIL ECOPY ALOG S MIC-SPLITTERS, MIC-SPLITTERS, MODULES. THER ACCESSORIES AL DATA AMS Ipments From Stock
ALL WALL OHDERSE ALL WALL OHDERSE PROM 48 PAGES 8 V2"X I I" We Ship the fastest We Ship the fastest INSTA Make your own - either "Fotolak" Lig	A most convenient w BESCOM, INC. RESCOM, INC. RETAIL SALES DIVI 1111 Las Vegas Biv Las Vegas, NV 8911 WW – 037 FOR FU NT PRINT	723 1008/9 ROAD, LONDON W2 1 712 PADDINGTON GR DER YOUR FA ACCESSORII OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES. L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGA MAY for you! Most Shi SION (d. North (DI-1197 U.S.A. THER DETAILS TED CIRCC Standards - withing of Pre- o Lacquer or Pre-	ED LONDON, W2 AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, MODULES. THER ACCESSORIES AL DATA AMS Ipmente From Stock 702/384-0893 800/03.4-3457 WX (910)397-8998 UITS!!
ALL WAL OHDERSE ALL WAL OHDERSE PAGES BV2"XII" We Ship the fastest We Ship the fastest INSTAN Make your own - either "Fotolak" Lig No Darkroom or UI otolak aerosol	A most convenient w A most convenient w COR AUDIO SEND F OF O INCLU SIGNA TRAN V A most convenient w SESCOM, INC. RETAIL SALES DIVI 1111 Las Vegas BM Las Vegas, NV 8911 WW - 037 FOR FU WW - 037 FOR FU NT PRINT	ACCESSORI OR YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGE MANY for Youl Most Shi COL-1197 U.S.A. THER DETAILS TED CIRCC Standards - withi IOLACQUETO PROCESSING Standards - withi IOLACQUETO PROCESSING STANDARD - WITHING AND	ED LONDON, WZ AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, MODULES. THER ACCESSORIES AL DATA AMS Ipments From Stock 7027384-0893 8000034-3457 WX (910)387-6996 UITS!! In minutes using coated board.
ALL WALL OHDERSE ALL WALL OHDERSE PROM 48 PAGES 8 U2"X11" We Ship the fastest We Ship the fastest INSTAN Make your own - either "Fotolak" Lig No Darkroom or U	A most convenient w A most convenient w SESCOM, INC. A most convenient w A most convenien	ACCESSORI OR YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGH ay for youl Most Shi CI-1197 U.S.A. THER DETAILS CED CIRCC Standards - withing Include the sheet Accetate Sheet Single-sided	ED, LONDON, W2 AVOURITE ES BY MAIL ECOPY ALOG S MIC-SPLITTERS, D MODULES, THER ACCESSORIES AL DATA AMS Ipments From Stock 7023384-0893 800/034-3457 W (010)397-6996 UITS!! n minutes using coated board.
ALL WAL OHDERSE ALL WAL OHDERSE PAGES B ¹ /2 ^a X11 ^a We Ship the fastest We Ship the fastest INSTAN Make your own either "Fotolak" Lig No Darkroom or UU otolak aerosol erric Chloride Copper-clad Fibre-g Pre-coated Fibre-g	A most convenient w A most convenient w COR AUDIO SEND F OF O INCLU SIGNA TRAN V A most convenient w SESCOM, INC. A most convenient w COR SESCOM, INC. A most convenient w SESCOM, INC. A most convenient w SESC	ACCESSORI OR YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGS ay for youl Most Shi SION (C d. North (C) 1-1197 U.S.A. TW RTHER DETAILS ED CIRCC Standards – withing I lacquer or Pre- ceeded Developer	ED. LONDON, W2 AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, D MODULES. THER ACCESSORIES AL DATA AMS Ipments From Stock Ipments From Stock Ipments From Stock Ipments Color Ipments From Stock Ipments Color Ipments From Stock Ipments From Stock I
ALL WALL OHDERSE ALL WALL OHDERSE PROVINGE AB PAGES B U2" X I I" We Ship the fastest We Ship the fastest INSTAN Make your own either "Fotolak" Lig No Darkroom or UP Totolak aerosol Pre-coated Fibre-g 8" X41/2"E1.75 (2 8" X9"E3.50 (4)	A most convenient w A most convenient w A most convenient w A most convenient w BESCOM, INC. ACCM, AUDIO SEND F OF O INCLU SIGNA TRAN V SESCOM, INC. ACCM, INC. ACCM, INC. A most convenient w BESCOM, INC. A most convenient w BESCOM, INC. A most convenient w COR A most convenient w COR A most convenient w COR A most convenient w COR COR SESCOM, INC. A most convenient w COR SESCOM, INC. COR COR SESCOM, INC. COR COR SESCOM, INC. COR COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. COR SESCOM, INC. SESCOM, INC. SESC	ACCESSORI OR YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT OVER 250 ITEM DING DIRECT BOXES. L PROCESSING, AUDIO SFORMERS & MANY O' VITH TECHNIC & USE DIAGF MANY for youl Most Shi COL-1197 U.S.A. THER RTHER DETAILS CED CIRCC Standards - withing I Lacquer or Pre- cededil Developer Acetate Sheet Single-sided Developer Acetate Sheet Double-Sided Developer Acetate Sheet Double-Sided Developer Acetate Sheet Developer Acetate Sheet Developer Acetate Sheet Developer Acetate Sheet Developer Acetate Sheet Double-Sided Developer Acetate Sheet Double-Sided Developer Acetate Sheet Developer Acetate Sheet Develo	ED. LONDON, W2 AVOURITE ES BY MAIL E COPY ALOG S MIC-SPLITTERS, MODULES. THER ACCESSORIES AL DATA AMS Ipments From Stock 7023384-0893 B00/034-3457 VX (910)397-0996 UITS!! In minutes using coated board.
ALL WALL OHDERSE ALL WALL OHD	A most convenient w A most convenient w COR AUDIO SEND F OF O INCLU SIGNA TRAN V A most convenient w SESCOM, INC. A most convenient w COR SESCOM, INC. A most convenient w SESCOM, INC. A most convenient w SESC	ACCESSORI OR YOUR FA ACCESSORI OR YOUR FRE UR 1982 CAT/ OVER 250 ITEM DING DIRECT BOXES, L PROCESSING, AUDIO SFORMERS & MANY O VITH TECHNIC & USE DIAGS ay for youl Most Shi CA. North CI-1197 U.S.A. TW RTHER DETAILS ED CIRCC Standards - within tol Lacquer or Pre- ceeded Developer Acetate Sheet Side Standards - within tol Lacquer or Pre- ceeded Developer Acetate Sheet Side Standards - within COL-1197 U.S.A. TW RTHER DETAILS CED CIRCC Standards - within tol Lacquer or Pre- ceeded Developer Acetate Sheet Double-sided 	ED. LONDON, W2 AVOURITE ES BY MAIL ECOPY ALOG S MIC-SPLITTERS, MIC-SPLI

Telephone: Germoe (073-676) 2329

Now, really reason with IC's

With the new LM2A logic monitor from GSC, you can see just what's going on in an integrated circuit for only £75.* The LM2A's sixteen LED indicators show the static and dynamic logic states of all the pins on 14 or 16-pin IC packages, and GSC's unique Proto-Clip provides rapid, reliable contact with the circuit.

You can use the LM2A with different logic families, too. A front-panel switch lets you select TTL or C-MOS, and a variable threshold control covers any voltage from +1V to +9V for other logic levels. It's small and light enough to hold in the hand, and operation is simplicity itself.

Take the logical course of action - fill in the coupon now.

* Price excluding P&P and 15% VAT.

G.S.C. (UK) Limited, Dept. 7L Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

WIRELESS WORLD OCTOBER 1982

Model LM2A	LOGIC MONITOR	Unit price inc. P & P 15% VAT £88.55	Qnty. Reqd.	
Name				
Address				
l enclose cheque/P.O. for £		or debit by Barclaycard/Access		
	a cord no	exp. date		
American Expres	s caru no.	Exp. date		

WW - 077 FOR FURTHER DETAILS

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

 As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer – £545 + £12 delivery; BSC buffered simulator cable – £39; MESA 4 multi EPROM simulator cable – £98; 2732A Programming adaptor – £39; 2764 Programming adaptor – £64; 2564 Programming adaptor – £64;

As a slave programmer used in conjunction with a software development system or microcomputer.

 As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300ns).

Data can be loaded into the 4k x 8 static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a 1k x 8 RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module – £190

Also available (not shown): VM10 Video monitor – £99; UV141 EPROM Eraser with timer – £78; GP100A 80 column Printer – £225; Pl100 interface for EP4000 to GP100A – £65. VAT should be added to all prices

EXPORT ENQUIRIES WELCOME

DISTRIBUTORS REQUIRED

Tel: Plymouth (0752) 332961 Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

GP Industrial Electronics Ltd.

P8000 – THE PRODUCTION PROGRAMMER THAT HANDLES ALL NMOS EPROMS

Rollingin and the of the

- Checks, Programs, Compares up to 8 devices simultaneously
 Handles all NMOS EPROMS up to projected 128K designs with no personality modules or characterisers See list
- Easy to use, menu driven operation for blankcheck, program, verify, illegal bit check, checksum, self-test
- Constant display of device type, mode and fault codings
- Individual socket LED indicators for EPROM status
- Comprehensive EPROM integrity checks Illegal bit check, data and address shorts, constant power line monitoring
- Full safeguard protection on all sockets
- Automatic machine self-test routine
- Powered down sockets
- Cost effective price £695 + VAT
- Available from stock

Write or phone for more details

DISTRIBUTORS REQUIRED • EXP GP Industrial Electronics Ltd.

EXPORT ENQUIRIES WELCOME

Tel: Plymouth (0752) 332961 Telex: 42513

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Marconi Type R1020 Hinged Antenna Column.

Easy to raise Easy to lower

- Lightweight, easy to install, and can be safely lowered by one man
- Can support a number of VHF/UHF antennas
- Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance
- Available in heights from 11 to 19.5 metres

OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a registered trademark of the BP Group

Communication Systems

Antenna Systems Division

Marconi Communication Systems Limited, Lane Works, Waterhouse Lane, Chelmsford CM1 2QX, England Tel: 0245 353221 Telex: 99108

A GEC-Marconi Electronics Company

WW - 008 FOR FURTHER DETAILS

POPULAR FRONT

Probably Europe's most popular bench power supply range. More than 50,000 in use. Nine models to choose from (most with NATO stock numbers).

The Farnell L series feature large recessed meters, constant voltage or constant current, overload and short circuit protection, coarse and fine controls, a separate output switch and LED indicators for mains on and current limit.

THEY'RE EX-STOCK TOO!

Models available:

L50-05	0-50V, 0.5A
L30-1	0-30V, 1A
L10-3C*	0·10 V , 3A
L30-2	0-30V, 2A
L30-5	0-30V, 5A
L12-10C*	0-12V, 10A
LT50-05 (twin)	2 x 0-50V, 0.5A
LT30-1 (twin)	2 x 0-30V, 1A
LT30-2 (twin)	2 x 0-30V, 2A

*with adjustable overvoltage protection

For quick delivery or specs. and prices contact

FARNELL INSTRUMENTS LIMITED WETHERBY WEST YORKSHIRE LS22 40H TELEPHONE 0937 61961 TELEX 557294 FARIST G or Harpenden (05827) 69071

The over and outperformer

For the address of your nearest dealer together with full details of the Shure Microphone range, write to: Shure Electronics Ltd., Eccleston Road, Maidstone ME15 6AU or telephone: 0622 59881.

wireless world

Editor: PHILIP DARRINGTON

Deputy Editor: GEOFF SHORTER, B.Sc. 01-661 8639

Technical Editor: MARTIN ECCLES 01-661 8638

News Editor: DAVID SCOBIE 01-661 8632

Drawing Office Manager: ROGER GOODMAN

Technical Illustrator: BETTY PALMER

Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130

BARBARA MILLER 01-661 8640

Northern Sales: HARRY AIKEN 061-872 8861

Midland Sales: BASIL McGOWAN 021-356 4838

Group Classified Manager: BRIAN DURRANT 01-661 3106

IAN FAUX 01-661 3033

Production: BRIAN BANNISTER (*Make-up and copy*) 01-661 8648

Vision of the future

Viewed dispassionately, broadcasting information between fixed points on the earth seems to be a nonsense - a little like throwing a bowlful of sugar in the air in the expectation that some of it will fall into one's cup of coffee.

The UK is about to take the step of laying broad-band cables (optical-fibre and copper coax.) to provide more television, radio and interactive information services in the home, at a cost of several thousand million pounds. This use of cable is greatly to be applauded – not necessarily because yet more television will be provided, but because it at least makes possible the eventual use of the radio spectrum at v.h.f. and u.h.f. up to 1GHz for communication between mobile stations, which cannot use alternative means.

But there is some doubt, at least, that cable, used in the way recommended by the Information Technology Advisory Panel, is the best way of going about it. Thirty channels, twenty of them for entertainment, are proposed for the main network of optical fibre, but a reversion to copper in the form of coaxial cable for each group of users will reduce the bandwidth to around 35MHz – say four tv channels and interactive information for banking, shopping, alarms, etc.

There seems little need to institute a new programme of cable laying to provide not much more in the way of facilities than already exists, particularly when the new Telecom digital telephone network will be able to handle the two-way information – teletex, and the rest – quite adequately. If there is a real need for tens of channels of television – a need felt by viewers, not that experienced by those hoping to see the first Lord Thomson of Fleet's remarks about commercial television revived – then a direct-broadcasting satellite is the answer.

Given a commercial incentive, it seems more than likely that small dish aerials and down-converters could be manufactured at a reasonable cost, and the compromise solution, microwave distribution of satellite broadcasts, would possibly be somewhat cheaper.

British Telecom are, after all, in the business of cables, and have been since the telephone; they would therefore seem to be the best people to instal, and supervise any system of communications using cable as a medium. The BBC and IBA have unrivalled reputations in the production of programmes and in the technical business of broadcasting. Who better, then, to continue to do so?.

The 'nonsense' of broadcasting may not, therefore, be quite as nonsensical as it seems, so long as it can be kept well away from those users who need radio communication for other than entertainment purposes – the real users of radio.

The rush of information technology to the head evidently being experienced by the government could, if not regulated by wise counsel, undo the years of effort by broadcasters to provide superbly wellengineered and programmed services. There is no need for national cable television: its popularity in the US is only in part due to the proliferation of channels it affords. US television suffers from two handicaps vis-à-vis its UK counterpart its use of the NTSC standard and its infestation with 'sponsorship'. NTSC does not take kindly to the kind of terrain US cities provide - phase errors more or less ignored by PAL create chaos in NTSC and the kind of programmes Americans receive from broadcast transmissions are not of the highest quality in the first place. And yet only about a third of US homes are connected to a cable. In the UK there would be even less point in taking cable signals, where almost everyone can receive good signals and reasonably good programmes.

Why the need for haste? It seems unlikely that the increased export market for programmes and services anticipated by Kenneth Baker at Communications '82 would materialize, and a sudden Cabinet fascination with IT is not a good reason for impetuous change in the name of progress.

MODULAR PREAMPLIFIER

A matching unit to the 80-100W power amplifier described in the June, July and August issues of Wireless World. Each circuit in the design is separate, and can be included or omitted, as desired, or switch

and can be included or omitted, as desired, or switched in and out from the front panel. The design includes a noise blanker and image-width control

In the July 1969 issue of Wireless World, and in a subsequent postscript in December 1970, I described a 'Modular preamplifier' which I had built to drive a Williamson (valve-operated) audio power amplifier (subsequently replaced by a pair of 10 watt, class 'A' transistor-operated power amps).

This preamplifier was of modular form almost by accident, in that it was intended to fit, with the minimum of inconvenience. into odd corners within the massive antique oak 'radiogram' cabinet which currently housed the Williamson power amplifer, the turntable, a home-made communications receiver, and the existing valve preamplifier - together with a short exponential-horn loudspeaker unit! To remove the valve preamplifier was too difficult a task, since it was integral with the demodulator and i.f. stages of the radio receiver, so its replacements would have to fit in where they could. This necessitated the assembly of the pre-amp. circuit from a series of modules having a low output impedance and a high input impedance, so that they could be interconnected as re-

by J. L. Linsley Hood

quired by lengths of screened cable without the need to worry about any audible degradation of frequency response.

In the event, it became clear that a modular design of this type had many attractions for potential constructors, in that they could use those bits which fitted their needs, and ignore those for which they had no requirement. The attractiveness of this approach has remained with me, and was very much in my mind when I considered what type of signal conditioning stages I should use to precede the 80-100 watt power amplifier, if these were to be of interest to anyone other than myself.

However, much has changed since 1969, and it was apparent that in the fiercely competitive and highly demanding world of 'Hi-fi' of the 1980s, much more was

Fig. 1. Layout of modules in preamplifier assembly, shown in the mode adopted for normal input from a good quality record. necessary than the types of circuit block which were merely a large improvement on a rather off-colour 1950 d.i.y. hotchpotch. I have, therefore, tried to take a new look at what could or should be provided in the way of signal amplification and conditioning prior to the main power amplifier stage, and to put together circuits which would meet these requirements with the greatest economy in circuit design consistent with the type of performance now expected from such equipment.

The task of the circuit designer in this field has been enormously assisted by the availability of low-noise, low-distortion integrated circuit operational amplifiers of the Texas Instruments 'TL071-TL072' series, and its equivalents such as the NS 'LF351-LF353'.* Under proper conditions of use, these can give a total harmonic distortion, over the whole effective audio bandwidth, of the order of 0.01% at 10 volts r.m.s. output, and with an effective input noise resistance of the order of 2000 ohms or less. This makes it a * An article by J.L.L.H. on these integrated circuits appeared in WW, September, 1982.

sensible proposition to envisage the preamplifier modules operating at the 0dB level (referred to 0.774V r.m.s. in 600Ω), employing this type of op. amp. gain block, to give both an adequate overload margin and a negligible contribution to total circuit noise and distortion. (The gain characteristics of the power amplifier unit were chosen to give maximum output at 0.774 V r.m.s. input).

I should, perhaps, explain at this point that my decision to use conventional 'audio-oriented' operational amplifiers, rather than the many, often equally good, specialpurpose 'consumer' circuit blocks which are readily available, is due mainly to inward doubts on my part as to whether such consumer i.cs, with their special circuit applications and their unique package and pin configurations, have an adequate guarantee of availability. Certainly some of these introduced during the 1970s have long since vanished, while the 8-pin dil or T099-based 741 and its successors have gone from strength to strength, as process or technology improvements have been incorporated into 741 pin-compatible designs - such as the TL071!

Basic design philosophy

The intention of the design is to handle the signal, at all stages after the input-signal amplification, at a low impedance - say 600 ohms - and a peak signal level not greatly in excess of 0.774 V r.m.s. through a series of optional, unity-gain, non-inverting conditioning modules (there is one exception to this, to which I shall refer later). They can be included or omitted as required without design problems, or indeed as in the case of the prototype - included physically but omitted or selected by means of a switch. This allows the signal handling chain to have as few elements in its sequence as is necessary, while allowing the inclusion of other stages as and when these are thought to be useful. The modules I have included in this design are: a microphone amplifier; a low-noise, lowimpedance head-amplifier intended specifically for use with moving-coil pickups; a two-stage 'series-shunt' RIAA-characteristic pick-up input amplifier; and a four-input, virtual-earth mixer stage. The output signal level from this stage is at a nominal 0.774V, 600 ohms impedance, and the subsequent stages operate at this level. These are: a noise-blanker stage to minimize the annoying intrusion of 'clicks' due to scratches on records; a stereo 'image-width' control stage; a two-frequency, variable-slope treble filter; an eight-octave ±3dB additive lift or cut tonecontrol stage; a rumble filter having a steep cut (approximately -22dB/octave) below 30Hz; and a signal strength display meter.

For convenience in the use of the preamplifier when recording on to tape from the microphone inputs, I have also included a separate, twin-output headphone amplifier, in parallel with the switchable output to the main amplifier. This allows the preamplifier to be used on its own as a very high quality system for private headphone listening.

Fig. 2. Circuit diagram of power supply. Toroidal transformer from RS Components.

These stages are all based, where practicable, on the use of dual fet-input, lownoise operational amplifiers (TL072 or equivalent) operated from $\pm 15V$ d.c. supply lines, which are derived from a conventional bridge-rectifier power supply via a pair of positive and negative output integrated-circuit voltage stabilizers (7815/7915 series). This gives a signal line which normally resides within 15mV of the 0V centre-line potential, and eliminates clicks when stages are switched in or out of circuit.

I have shown the layout of the prototype preamplifier, in block diagram form, in Fig. 1, though I expect that most potential users would wish to employ a simpler combination of these component modules.

With this last thought in mind, I have described the modules, not in the sequence in which they have been listed above, but in their order of practical importance from the point of view of the user wishing to build the simplest of the possible useful combinations.

Power supply unit (Fig. 2)

This is of simple and conventional form, using a small, 10VA 20-0-20 volt p.c.b.mounted toroidal transformer, a bridge connected rectifier, and a pair of integrated-circuit voltage regulators giving a smooth, reasonably ripple-free pair of 15V supply lines. In addition, a pair of less well smoothed 25V lines are provided for the headphone amplifier circuit, to avoid the possible intrusion of undesirable high-current signal components into the voltage supply lines used to power the early, small signal, stages.

Although small toroidal transformers are substantially more expensive than their 'E' and 'I' cored counterparts, the very low external magnetic field associated with these toroids make it very much easier to incorporate a power supply on to the preamp. chassis, without hum problems. Even so, care should be exercised in the disposition of the wiring associated with the inputs to the microphone amp., the RIAA stage, and, particularly, with regard to the moving-coil head amplifier. All in all, I think the extra cost of the toroidal transformer is amply justified.

Mixer stage (Fig. 3)

Although most normal usage of any preamplifier will not require any form of signal mixing, nevertheless some form of input amplification and impedance transformation will be needed for most likely external input sources if it is intended to handle the signal through the remaining stages of the preamp. at 0.77V r.m.s. and a nominal 600 ohms line impedance. Nothing will be lost, therefore,

Fig. 3. Input mixer and buffer stage is at (a) Careless wiring of balance control could introduce stray capacitance, resulting h.f. lift configuration at (b).

in economy or simplicity, if the input buffer amplifier is arranged as a 'virtual-earth' mixer stage, which can operate equally well with a single or with multiple inputs.

A minor inconvenience does arise, however, in this context, due to what I think of as the absurd DIN convention for signal outputs from such things as radio receivers and tape recorders. This stipulates an output operating effectively as a constant-current source, giving an output voltage of 1 mV for each $1 \text{k}\Omega$ of load resistance. This cannot give a decent signal to noise ratio at load impedances much less than some 100k Ω , and at this value or above, care must be taken to avoid electrostatically induced 50Hz ripple. The need to cater for inputs of this type has forced the adoption in this circuit of component resistor values which are much higher than I would otherwise have preferred. If the user intends only to use the circuit with signal sources having output impedances of $10k\Omega$ or lower, all of the resistor values in the circuit can be reduced, with advantage, by a factor of 10, which will much reduce 'hum' pick-up and similar problems. If this is done, however, the capacitor values, with the exception of C₉ and C₁₀ should be proportionally increased.

Only one channel is fully drawn in Fig. 3(a): the other channel is identical with the exception of the connexions to the 'balance' potentiometers ($PR_{4(a)}$ and $PR_{4(b)}$) which are reversed, so that one half will increase in value as the other is reduced. One point should be noted, however, in wiring this potentiometer – screened cable should only be used for this as a last resort, if the siting of the mixer circuit board makes it essential, since the effect of stray capacitance will be to form the circuit shown in Fig 3(b), which operates as an h.f. 'lift' configuration. The purpose of the

small capacitors (C₉ and C₁₀), of 5-10pF value, is to preclude possible instability due to this type of stray capacitance. An ideal embodiment of this circuit would be to enclose it within a small metal box, within which the balance pot. could be fixed, and short, unscreened leads used in its wiring.

On setting up, the input potentiometers (and the gain pots within the RIAA stage) should be set so that the signal levels on all the inputs peak at about the 1V level (0dB+3dB).

Series-shunt RIAA equalizing stage (Fig. 6)

Few aspects of audio engineering have generated so much debate as that concerned with the niceties of the frequency response correction required for the reproduction of RIAA-standard gramophone recordings. This debate is, I think, fully justified since so many of the circuit configurations employed to achieve this aim, even when apparently quite well designed, can be shown by mathematical analysis, when all the appropriate circuit parameters are included, to perform relatively badly.

The basic RIAA replay specification sti-

pulates the response curve generated by three time constants - 3180, 318 and 75 microseconds. This leads to the wellknown curve shown in Fig. 4(a) in which the 3dB break points occur at 50.05Hz, 500.5Hz and 2122.1Hz, and in which the response at 21.221kHz and the l.f. asymptote below 20Hz are respectively -20dB and +20dB with respect to 1kHz. Part of the performance shortcomings of even well-known and prestigious commercial units stem from the almost universal adoption of the equalization circuit arrangement shown in Fig. 5(c), which employs series-connected feedback. This is done because it allows a lower apparent input noise component when measured under input short circuit conditions, although this advantage is lessened when measured with pick-up cartridge inductance in circuit. The snag with the arrangement of 5(c) is that it has a gain characteristic which tends to unity at high frequencies, as shown in Fig. 4(b), which gives a transient response to the system which is significantly different from that ideally required, and this difference is, in my experience, quite audible.

The possible configurations which can

C2

Fig. 5. Possible RIAA correction circuit arrangements: passive circuit (a); shunt feedback (b); series feedback (c); series feedback with h.f. correction RC; series plus passive network; series/shunt feedback.

be used to provide the RIAA characteristic compensation are shown in Fig. 5. An almost perfect approach to the required curve is possible with the passive network of (a) and the shunt feedback system of (b). The difficulty in the case of (a) is that some form of input buffer amplifier stage is necessary, and this will work under nonideal conditions of high signal inputs at high frequencies, leading to problems of overload margins. For this reason it is seldom employed commercially. The somewhat less good overall noise figure associated with the circuit arrangement of (b) has also ensured its neglect in commercial designs, even though it has the merits of simplicity and accuracy of frequency and transient response. The inherent unity gain at h.f. characteristic of (c) presents the circuit designer with a problem, in that the unwanted h.f. break-point depends on the feedback factor. If a low closed-loop gain is used, to allow a high measure of n.f.b. in the interests of circuit linearity and constancy of input impedance, the upper break point will occur at a lower, and more instrusive, part of the frequency spectrum. On the other hand, a high closed-loop gain may not offer adequate circuit performance.

A solution to this dilemma may be found in the addition of a supplementary CR time-constant, as shown in (d), to straighten out the unwanted h.f. breakpoint due to the amplifier reverting to

 Table 1

 Gain of RIAA stage as a function of signal frequency

FinHz)	Gain (dB)	***
10	60.33	due to input coupling ca- pacitor and feedback d.c. blocking capacitor (C_{11} and C_{114})
20	61.25	114
30	60.64	
50	58.95	
100	55.05	
200	50.06	
500.5	44.47	
1k	41.63	
2122.1	38.81	
3k	36.89	
5k	33.41	
10k	27.89	
21.221k	21.67	

Note. The recent amendment to the RIAA recommended curve below 30Hz is intended to take recognition of unwanted v.l.f. components of signal output and is redundant where ancillary rumble filtering is available.

unity gain. This, however, leaves the query as to why, if a passive h.f. integrating time-constant is to be employed at all, this should not have the 75µs characteristic called for by the RIAA specification, leading to the system of (e), which has been used for some years by one or two of the more thoughtful manufacturers. This can have an almost ideal frequency and transient response, and its only snag is that the inherent attenuation of the output integration network requires that the output of the amplifier A_1 must be fairly large at h.f., which lessens the possible overload margins of the system.

This difficulty can be removed if the passive integration network is replaced by an active stage, as shown in (f), which results in a very satisfactory solution to the various conflicting requirements of this stage, and, in view of the ready availability of high quality i.cs, having a satisfactorily low noise component at the signal levels associated with this second stage, does not

substantially increase the cost of the system in comparison with that of (e). Moreover, the independence of the overall performance, apart from gain, of the circuit in respect of the value of Rf1 allows this to be used to set the overall RIAA stage gain. In view of these many advantages I have used this 'series-shunt', twostage configuration as the RIAA input stage in this design. Because the target noise resistance, referred to the input, was 500 ohms, which is lower than can be obtained from currently available i.c. operational amplifiers, I have used a discrete component design for the input stage. The circuit of this is shown in Fig. 6.

This is of conventional form, employing an input long-tailed pair of low-noise p-n-p transistors (Tr_1, Tr_2) driving a currentmirror load (Tr_4, Tr_5) . Transistors Tr_3 and Tr_7 are constant-current sources for the input long-tailed pair and the output class A amplifier stage (Tr_6). The RC network C₁₄, C₁₅, R₁₅, R₁₆, R₁₇, R₁₈, R₁₉ and R₂₅ provides the required frequency response adjustment for the 10Hz-1kHz part of the RIAA curve, while the network C₁₈, R₂₀ and R₂₁ gives the necessary 75µs de-emphasis to generate that part of the curve from 1kHz upwards.

The input integration network R_{10} and C_{12} lessens the possibility of radio signal breakthrough, and the potentiometer PRs allows the output signal voltage to be adjusted to a level adequately close to 0V, if it is desired to operate the amplifier in a completely direct-coupled mode to minimize v.l.f. phase-shifts. The calculated frequency response of the RIAA stage, for all the component values shown, is given in Table 1. In this the l.f. open-loop gains of the two amplifier stages are assumed to be 100,000 (which is close to

Table 2 Performance of RIAA stage

Maximum output voltage swing 10V r.m.s. Distortion at 10V r.m.s. and 1kHz 0.01% Distortion at 10V r.m.s. and 20kHz 0.018% Current consumption (two channels) 17mA Distortion at 0.774V r.m.s. and 1kHz 0.003% Input noise resistance 450 ohms (Measured with first stage only, and with feedback network adjusted to give a flat response gain of 100×. Input s/c, measurement bandwidth 250kHz, temperature 20°C.)

Mains hum components (50 and 100Hz) – 100dB ref. 0.774V when fed from recommended power supply.

the expected value), and a value of $10k\Omega$ is assumed for the total value of PR_6+R_{24} – this will only affect the gain, not the frequency response. The conformity of the frequency response to the RIAA standard, using preferred-value resistors and capacitors, is within 0.2dB over this frequency range. In view of likely component tolerances it does not seem profitable to aim for a closer fit than this. The other performance characteristics of the circuit are listed in Table 2.

Since the layout of the circuit may be critical to its performance, I am showing the p.c.b. layout employed in the prototype in Fig. 7. Measurements on the performance of this showed agreement with the calculated results within the 0.5dB level of confidence in the accuracy of test instruments and signal sources.

To illustrate the differences in the transient response given by the various possible types of RIAA equalizing stage, Fig. 8 shows the output given by the system

Fig. 8. Response of equalizing circuits to square-wave input. Passive circuit of Fig. 5(a) produces curve (a); curve (b) is output of system when conventional series-feedback equalizer is used; series/shunt circuit chosen and shown in Fig. 6 produces trace at (c).

when it is driven by an input 1kHz square wave. That of a passive RC equalizing network is shown at (a), that from a conventional series-feedback system with an upper gain asymptote of 25kHz at (b), and that from the series-shunt feedback system adopted in Fig. 6 in that of (c). This is very similar in shape to that given by the passive network.

Overload margin

An important design characteristic in any input stage, where this precedes any signal level control, is its ability to avoid input overloads. Typical moving-magnet and

variable-reluctance cartridges have output signal levels in the range 0.5-2mV/cm/s recorded velocity. The highest modulation levels capable of being traced by the best of modern cartridges are of the order of 40cm/s, but, in general, the maximum groove velocities will be a good bit less than this. These very high modulation levels also only occur at frequencies in excess of 1kHz - since at lower frequencies there would be a substantial risk of groove breakthrough. The first stage gain at 1kHz is 28.58dB (26.85×) which would give a worst possible output voltage of 2.15V at the collector of Tr₆. The clipping level at this point is 10.2V r.m.s., which gives an adequate margin for overload avoidance. The gain of the second stage can be made as low as necessary by adjustment to PR₆. The $47k\Omega$ value suggested is likely to cover all practical cartridge requirements.

Practical preamplifier system

Although the complete preamplifier, in its prototype form, contains more modules than this, a very satisfactory performance will be given, under most normal conditions, by the relatively simple system built up from the units described above, comprising the RIAA input stage, the mixer module, and the ± 15 volt d.c. power supply unit, with the power amplifier stage fed directly from a 10k Ω log. dual-gang pot connected to the output of the mixer module, as shown in Fig. 1. Indeed, for the bulk of my own listening, this is all I leave switched into circuit.

The remaining modules and some constructional notes will be given in the following parts of this article.

THE ETHER - AN ASSESSMENT

Does the ether exist? Dr Aspden shows that Oliver Heaviside's insight could have preempted Einstein's success with the General Theory of Relativity and encouraged investigations into the properties of the ether.

Though relativity has very little bearing upon the practical problems of radio transmission, it does preclude belief in the ether and wave propagation as contemplated by Maxwell, leaving us with no tangible alternative. Until we have a better understanding of the vacuum medium and the way in which it regulates electromagnetic wave motion, it is likely that Einstein's ideas will be questioned.

Essex, writing about relativity and time signals (Wireless World, October 1978), and Wellard, writing about the work of James Clerk Maxwell (Wireless World, March and May, 1981), both evoke this controversy.

In fact, special relativity, which dates from 1905, has very dubious support, because alternative explanation of E =Mc² and mass increase with speed is available from textbooks on classical Besides, electromagnetism¹. the transmutation of mass and energy, the basis of $E = Mc^2$, was recognized by Jeans, writing in 1904, one year before Einstein introduced his theory². How, then, can we have confidence in relativity, when Essen demonstrates so convincingly the absurdity of expecting time to pass at a different rate when perceived by different observers in relative motion?

Einstein's theory really depends, for its acceptance, principally upon the success of the later 1916 General Theory of Relativity, which brought a slight modification to Newton's Law of Gravitation. The successive elliptical orbits of the planet Mercury were known to have a progressive advance, part of which was anomalous, as judged from Newton's Law. Einstein's Law gave the right answer and relativity was thereby acclaimed.

Einstein made no reference to an earlier paper by Gerber³, entitled 'The Space and Time Propagation of Gravitation'. It appeared in 1898, eighteen years before Einstein wrote on the subject, and gave precisely the same formula for the advance of Mercury's perihelion as that presented by Einstein. Gerber's paper explained how the anomalous perihelion motion of the planet could be explained by recognizing that gravitation propagated at the speed of light. When Einstein's paper appeared in Ann. d. Phys. in 1916, a colleague of Gerber arranged for the publication of an updated version of Gerber's work in the 1917 issue of this same journal. However,

by H. Aspden*

Ph.D., B.Sc., F.I.E.E.

Gerber, then deceased, was unable to defend his theory against attack. It was in error; the direct propagation of gravitational action between sun and planet at the speed of light only gives a partial account of the anomaly.

Meanwhile, as we may read from the opening passage of Leon Brillouin's book 'Relativity Reexamined'4, Heaviside, in 1893, had pointed out that 'to form any notion at all of the flux of gravitational energy, we must first localize the energy'. If this is taken to heart, it leads us to recognize that the flow of gravitational energy is not directly along the line between sun and planet, but is, of necessity, via a longer route. The energy must flow from one of these bodies to the surrounding field and then from the field to the other body. This modifies the resulting retardation of gravitational action and affects the perihelion motion accordingly. The result, as the author⁵ has shown, is in exact accord with that originally predicted by Gerber. Einstein's Law of Gravitation, the only significant consequence of his general relativity theory, can be deduced by a simple classical analysis, which exploits the intuitive remark of Oliver Heaviside dating from 1893.

This, in itself, does not prove that Einstein's theory is wrong. We do, however, have viable alternative theory which is quite simple, and one must wait for the experimental evidence to direct us on the right course. This evidence is likely to come from measurements evidencing the properties of the ether. Already, in 1980, we have the experimental data of Graham and Lahoz⁶ showing that the ether can assert a force, and supporting Maxwell. Burrows (Letter to the Editor, Wireless World, October 1981) asserts that this is a one-off measurement needing verification. It is nevertheless backed by the discovery that the Earth's cosmic motion through space at a speed of some 400 km/s can be detected by measuring anisotropy in the intensity of the 3K background radiation. (See article entitled 'The Cosmic Background Radiation and the New Aether Drift' in Scientific American, May 1978). Furthermore, as we shall see below, it is supported by other evidence on electromagnetic-wave

propagation suggesting that the Earth's West-East motion due to its rotation can be directly measured as a linear velocity by optical techniques.

On such a course, the ether is destined for reacceptance and Einstein's theory may have to yield ground. There is, therefore, purpose in reassessing the ether and its properties, and in this quest we will again be mindful of Heaviside. It is to his great credit that he discovered how to design a telegraph line capable of propagating signals without distortion. The inductive and capacitative properties of a telegraph line cause the speed of propagation to depend upon frequency. By appropriate matching of these properties, as well as resistance and leakance, the attenuated signal can propagate without distortion. Now, electromagnetic waves propagate through the ether without distortion and, though the ether is not subject to resistance and leakance, it does have inductance and capacitance, because there are magnetic fields and electric fields in the vacuum.

Nature, anticipating Heaviside's contribution to telegraphic communication, has provided that extra something in the ether to secure distortionless signal propagation. This becomes an important clue in our quest to understand more about the ether.

According to its dictionary definition, 'ether' is 'a medium, not matter, that has been assumed to fill all space and transmit electromagnetic waves'. With such definition, the 'ether' remains valid terminology. The problem which some scientists have in accepting the existence of the ether arises from a further assumption that the ether cannot adapt to its environment and so must regulate the constancy of the speed of light in a universal frame of reference. When motion of the Earth about the sun could not be detected by speed of light measurements in the laboratory frame, the very existence of the ether came under challenge. Yet what logic is there in saying that A is believed to have property B, but we cannot detect property B, so A does not exist? Surely, the only valid conclusion is that A may still exist but it appears not to have property B.

Why bother? We have Maxwell's equations and we have relativity. The latter tells us not to expect to detect anything at all except according to physical laws which adapt to the reference frame of an observer. Without an observer, whether real or hypothetical, there can, in relativity, be no definitive physical phenomena. Hence we are supposed to live in a somewhat abstract world and are encouraged not to seek to understand the universal and uniform nature of whatever it is that permeates the vacuum and regulates electromagnetic wave propagation.

I have good reason for believing that a great deal of opportunity is being missed in scientific and technological research by accepting doctrinaire theory and not keeping an open mind on this ether question. For example, it is to the credit of those engaged in precision measurement in fundamental physics that some constants can now be determined to a few parts in 10¹². Such precision defies imagination if related to the measurement tasks we undertake domestically or in industry. Yet, what is really fascinating is that Nature is actually able to regulate physical quantities universally and hold them stable to such accuracy, notwithstanding environmental fluctuations, wherever we look in the universe. This surely suggests a fundamental mechanisma and a reference or control medium, having a universal metric binding all matter together as part of a common system. To me, this is the primary role of the so-called ether, with the light propagation characteristic assuming secondary importance.

By postulating an electric but neutral medium of the simplest possible kind and analyzing its structure, as if it were a kind of invisible and elusive crystal extending throughout space, the author⁷, in collaboration with Dr Eagles of the National Standards Laboratory in Australia, has found it possible to deduce fundamental constants (notably $\alpha = 2\pi e^2/hc$) to the measured accuracy of less than one part per million. It is this that has committed me to a course of scientific enquiry founded upon a positive belief in the ether rather than a passive acceptance of a rather sterile theory of relativity.

In the above expression, e is the electric charge of the electron, h is Planck's constant and c is the speed of light *in vacuo*. Hence the dependence of α upon the metric of the ether medium is very closely related to electomagnetic wave propagation, because E = hv, Planck's radiation law, signifies the energy of quanta propagated as electromagnetic disturbances at the speed of light and at frequency v.

It is a relatively simple task to show that this structured vacuum medium can a c c o m m o d a te to the propagation properties of electromagnetic waves, and particularly on two basic counts. These are: (a) the fact that the speed of propagation is referred not to an absolute frame but to one which can adapt to the reference frame of an Earthly observer and (b) the equally important fact that light travelling in true vacuum suffers no dispersion resulting from its speed varying with frequency.

From the optical characteristics of ionic crystals it is known that there is dispersion, significant at frequencies in the vicinity of the natural resonant frequency of the crystal. One should than bear in mind that energy quanta of sufficient strength can induce the creation of electron-positron pairs in the vacuum. This suggests that the ether sets a critical frequency threshold v_0 and so may have an electrical structure conforming with this resonant frequency. Thus, in proposing a kind of crystal structure for the vacuum medium and establishing, as I have⁷, that it has a natural frequency v_0 given by mc²/h, the Compton frequency of the electron of mass m, one is led directly into the question of dispersion.

Before dealing with this, consider first the other problem. Michelson's experiments towards the end of the 19th century have shown that the Earth itself determines the local frame in which light has a speed c independent of direction. This is not in the least surprising if we admit the vacuum medium to be electrically-structured. Lorentz has shown that, according to classical electron theory, the speed of light in matter depends upon electron density and the oscillation period of such electrons in material media. Electron density does not depend upon rotation, nor is it a vector. Therefore, the speed of light (as opposed to its direction) should be unaffected by rotation. Hence, if there is any theoretical connexion or analogy between this situation in matter and what may govern the speed of light in vacuum, the expectation must be that, in the laboratory vacuum, the speed of light is referred to the Earth's inertial (nonrotating) frame. An experiment aimed at detecting the Earth's rotation using optical techniques referred to the vacuum should give a positive result.

Such an experiment was performed by Michelson in 1925, confirming the classical expectation from ether theory by sensing the Earth's rotation. Earlier, Sagnac had sensed the rotation of optical apparatus by speed of light measurement, a technique now applied in the ring-laser gyro. It is assumed that detection of speed of rotation accords with relativity, owing to parts of the rotating apparatus having motion relative to other parts. On the other hand, if such experiments permit comparison of the speed of light East-West versus West-East and afford a measure of linear speed difference, it is relativity that is in difficulty. With the advance of optical measurement techniques, it should soon be possible to resolve this question.

For translational motion with the Earth, the vacuum structure acquires a linear displacement. Clearly, any displacement of electric charge in the vacuum must be transitory and oscillatory, unless it is balanced by a matching counterflow or reverse displacement of some of the charge present. Otherwise there would be a steady build-up of charge and an ever-increasing electric field. One may, therefore, visualize the vacuum as having two charge structures capable of moving through one another in opposite directions. This is quite possible because there are no rigid bonds between the charges, just electric field interactions.

It is this dual structure for charge displacement that is the key. The primary structure moves forward with the Earth. The secondary structure moves through the primary structure in the reverse direction and, by analogy with an optical effect named after Fresnel, we expect this reverse flow to affect the speed of light through the primary structure. Fresnel's theory explains why the speed of light increases in proportion to $u(1-1/\mu^2)$, where u is the velocity of the disturbing medium and μ is the applicable refractive index. This can be deduced from electron theory, but it has been verified by experiments in which the speed of light through moving water is measured.

Applying this same theory to the vacuum itself, and recognizing the counter displacement, it is an easy matter to arrive at the result discovered experimentally by the Michelson-Morley observations.

Let there be N like charges, e, per unit volume within an electrical continuum of uniform but opposite charge density σ . Then:

 $Ne = \sigma$ (1) Let N₁ and N₂ denote the population

Being a physicist, Nurse, he may be allergic to ether, but ask him if he wants our highspeed rejuvenation treatment. Oh, and the nearest Relativist to contact if it fails.

WIRELESS WORLD OCTOBER 1982

density in the primary structure and the secondary structure, respectively. Then:

 $N = N_1 + N_2$ (2)On electron theory, the propagation velocity is proportional to $(ne^2/m)^{\frac{1}{2}}$, where there are n charges e of mass m per unit volume, also having a resonant mode at frequency given by the angular velocity ω :

$$\omega^2 = 4\pi ne^2/m$$

(3)

(6)

From the properties of matter, we know that the propagation velocity in a structured medium is given by $(P/\rho)^{\frac{1}{2}}$, where P is the pressure modulus of the medium and ρ its mass density.

These considerations guide us to the formula:

$$\mathbf{c}_1 = (\mathbf{P}/\mathbf{N}_1\mathbf{m})^{\frac{1}{2}} \tag{4}$$

for the speed of light c1 set by the primary vacuum structure, where ρ becomes N₁m. P becomes the pressure or energy density modulus of this primary structure.

Let v denote the velocity of the primary structure and u the velocity of the secondary structure in reverse flow. The linear momentum of the vacuum has to be zero unless there is a steady build-up of electric field. Hence:

$$\mathbf{vN}_1 + \mathbf{uN}_2 = 0 \tag{5}$$

Even in the absence of matter, the vacuum has a refractive index µ referenced on the primary structure and attributable to the disturbing effect of the secondary structure. This is simply:

$$\mu = c/c_1$$

The speed of light in the frame of reference set by (5), the rest frame, then becomes c, the value set by the combined effect of the primary and secondary vacuum structures, augmented by the Fresnel drag of $u(1-1/\mu^2)$ caused by the disturbance of the secondary structure.

From (4) and (6), μ^2 becomes proportional to N₁, with P constant, so that, from (2), μ^2 is $1-N_2/N$ and $1-1/\mu^2$ is $-N_2/N_1$. We then see from (5) that $1-1/\mu^2$ becomes simply v/u. Thus the Fresnel drag in the vacuum, which is $u(1-1/\mu^2)$, is the velocity v of the primary structure, proving, from simple classical electron theory, that the speed of light will be referenced on the vacuum structure moving with the Earth, as was found by Michelson.

We do not need to appeal to relativity for an explanation of this basic observation. The Michelson-Morley experiment verifies that Maxwell's electric displacement can be a dual and reciprocal phenomenon. Oscillations of the electrical structure of the vacuum can occur at the resonant frequency v_0 with no reverse motion of the secondary structure or counter-displacement. However, we may expect light propagation at lower frequencies to involve counterdisplacement and it is this that brings a new and important dimension to Maxwell's theory. With it comes a solution to the dispersion problem.

Note that the frequency of an electromagnetic wave has no meaning at a point in space and time. Frequency concerns rate of change and this

The Author

Following electrical engineering studies at Manchester University and two years of graduate training in industry, Harold Aspden did Ph.D. research on magnetism at Trinity College, Cambridge. Shortly after embarking on a career in the patents profession, some 29 years ago, he had an idea on electromagnetic reaction which intrigued him and led to a firm belief in the need for an ether. Dr Aspden has had success in his chosen career, having directed IBM's European Patent Operations for the last 18 years, but his ambition is to achieve success in his private quest to bring the ether back into favour. The very substantial scientific potential which Dr Aspden sees in an ether revival is evident from his book 'Physics Unified', published in 1980

information implies comparison of signal strengths at two points in time or two points in space. However, given dual displacement at a point in space, as we now have in the theory just presented, the frequency can be codified by the relative strengths of the two displacement parameters.

The frequency of the signal is, in fact, preserved in transit through the vacuum medium, because the medium propagates two electric displacement signals in antiphase, and the relative amplitude of the signal strengths determines the frequency. As we shall now see, this involves the vacuum adjusting to the signal in transit to adopt a locally-tuned condition having the resonant frequency of the signal. The frequency v_0 at which electron-position pair creation occurs is the limit frequency beyond which there is no counterdisplacement. However, the interesting point is that there is no forced oscillation and so no dispersion characteristic in the vacuum, since the vacuum adapts to any frequency and exhibits the properties of a tuned LC system.

It is easily shown how the capacitance and inductance of unit volume of the vacuum can be evaluated. The capacitance per unit volume is $1/4\pi$ and the inductance per unit volume is frequency-dependent and proportional to ρ/σ^2 , where $\rho = Nm$ and $\sigma = Ne$.

The presence of an electric field of strength V signifies imbalance between displacement and counter-displacement, represented by a displacement distance x,

where x is $x_1 + x_2$, x_1 and x_2 being the respective displacements of the primary and secondary structures and x₂ being a negative quantity. The restoring force on charge e is then:

$$Ve = 4\pi\sigma ex$$
(7)

The energy stored by this displacement is $2\pi\sigma ex^2$, owing to the linear force rate, and, in energy density terms, this becomes $2\pi\sigma^2 x^2$, which, from (7), is $V^2/8\pi$, as expected. This is also $\frac{1}{2}CV^2$, where C is the capacitance per unit volume, and so C is $1/4\pi$.

Under dynamic conditions, we can equate the force given by (7) with mx1 to find a resonant angular frequency ω . (7) becomes $4\pi\sigma ekx_1$, where kx_1 is x. Thus, from (1):

$$\omega^2 = 4\pi N e^2 k/m \tag{8}$$

At the threshold angular frequency $2\pi v_0$ $= \omega_0$ and this applies for the zero counterdisplacement condition for which $x = x_1$ and k = 1. Thus, since k is $1 + x_2/x_1$, $(\omega/\omega_0)^2$ becomes $1 + x_2/x_1$, showing how the frequency ω is codified by the ratio of the displacements. $(x_2 is negative.)$

The value of the inductance L per unit volume is readily found from (8), because ω^2 is 1/LC and C is 1/4 π . We find that L is $(\rho/\sigma^2)/k$.

Such analysis assures us that the vacuum medium does not forcibly respond to the dynamic frequency characteristics of a signal. It propagates the primary and secondary displacements and the local vacuum resonates at the optimum frequency set by these displacements. In this way the signal frequency is preserved over vast distances.

The dual electrical displacement suggested above greatly strengthens the basis on which one can develop a phenomenological ether theory supporting Maxwell's equations. More important, however, it opens the path for new avenues of research into the effects of energy absorption from electromagnetic waves and their mutual interference. Meanwhile, note that Einstein's $E = Mc^2$ law, the keystone of special relativity and his law of gravitation, the basis of his general relativity, have both succumbed to alternative explanation 5-8.

It is likely to be in the optical measurement field, involving speed of light tests in relation to Earth rotation, that we may see the determining experiments, crucial to relativity. The ether will surely survive.

References

1. H. A. Wilson, 'Modern Physics', 2nd., Blackie, 1946.

- 2. H. H. Jeans, Nature, 70, 101 (1904.
- 3. P. Gerber, Zeitschrift f. Math., u. Phys., 43, 93 Z1898).
- 4. L. Brillouin, 'Relativity Reexamined',
- Academic Press, 1970.
- 5. H. Aspden, J. Phys. A: Math. Gen., 13, 3649 (1980).
- 6. G. M. Graham and D. H. Lahoz, Nature, 285, 154 (1980).
- 7. H. Aspden and D. M. Eagles, Physics
- Letters, 41A, 423 (1972).
- 8. H. Aspden, Int. Jour. Theor. Phys., 15, 631 (1976).

Falklands electronics

The fierce media criticism of inconsistent censorship and the absence of any video link with the British Task Force in the South Atlantic (at least until the despatch of Gresham Lion digital slowscan tv equipment) has been followed by many revelations of the improvisations that were necessary to overcome operational problems and the absence of airborne earlywarning radar.

The satellite-carried speech links made available to the reporters, but also presumably used for encrypted Service traffic, certainly provided reliable and reasonably good-quality communications (though this would not necessarily be the case against an enemy with more sophisticated jamming or anti-satellite systems). Nevertheless it has been alleged that there remains a serious e.m.c. problem that required radar to be turned off during satellite transmissions. It has also come as a surprise to find the extent to which missile countermeasures still depend on the use of vast amounts of "chaff" - the "window" technique of World War 2 - with Aviation Week reporting that Plessey Aerospace were working a 24-hour-day, 7-days-aweek producing the stuff. Chaff and helicopter decoys seem to have proved moderately effective in diverting some Exocet missiles away from their intended targets - though one that was deflected from an aircraft carrier promptly locked on to the ill-fated Atlantic Conveyor. There have been rumours of attempts to recover nuclear weapons from some sunken Royal Navy vessels, though it is equally possible that the work is aimed at recovering cryptographic or other sensitive material. Equally alarming are the reports that two Russian Cosmos ocean surveillance satellites launched during this period were carrying nuclear electric-generators for the radars and were similar to the nuclearpowered satellite that caused so much public concern when it came down over Northern Canada on January 24, 1978. If the Falklands have underlined anything it is that we live in an extremely dangerous world - to which advanced electronics and communications contribute. It can be claimed that the British electronics systems were used defensively as well as offensively, and mostly worked, though in some cases not without considerable lastminute improvisation.

Manpack satellite

The Special Air Service had its own communications links back to the UK as well as what was clearly a considerable number of clandestine infiltration links between the Task Force and the SAS reconnaissance and intelligence-gathering parties. There has been no public information given on whether these communications were effected via satellite or on h.f. or a mixture of both. But at least one British firm, Ferranti Electronics, has recently announced the development of a manpack portable satellite terminal "Mansat" that has a shallow-reflector aerial built into a rigid carrying module. It could, one imagines, be used for infiltration communications. This equipment, working on about 7.5 GHz, can provide a duplex telephony link and a 50 bit/sec telegraphy link using a standard OWERTY-type keyboard. It works from internal batteries, and GaAs field-effect transistors are used in both the receiver and transmitter chain. Microprocessors take care of message storage, encoding, display and alarm monitoring. It is claimed that the equipment can be positioned and in contact within two minutes. But I rather doubt if such equipment was used in the South Atlantic, and "old-fashioned" h.f. may have provided the intelligence.

Wideawake Ascension

Back in 1967 I was lucky enough to be one of a small party of journalists forming possibly the only press trip ever made to Ascension Island. It was at the time of the opening of the Cable and Wireless earth station built by Marconi on the island as part of the elaborate NASA Apollo communications system. The island, even then, was an amazing contrast between modern communications, missile tracking aerials, a BBC overseas relay station with four 250 kW transmitters and an old-style brass-instrumented telegraph cable station (this was before the South African telephone cable), giant turtles coming ashore to lay their eggs and millions of wideawake terns, all to a backdrop of a desolate, crater-pitted, near lunar landscape. Water was in short supply but whisky was 60p a bottle, gin 25p and the temporary residents paid no income tax! And though I recall well the computerized, air-conditioned NASA tracking station and the large futuristic "aerial farms" what really remains in the memory is the pleasant English farm at the top of Green Mountain where, on behalf of Cable and Wireless, a Somerset farm-manager looked after 2000 sheep, 300 pigs and 35 milking cows! The island has been a natural communications centre since the days when it was garrisoned by the Royal Navy and Royal Marines. Sadly, there are still the graves of young sailors put ashore with yellow fever in the nineteenth century. Landing a large Britannia aircraft at Wideawake Airport was quite an event for the island and one wonders how much it has all been changed by the furious burst of activity this year.

Whose light pipe?

British Telecom do not believe in hiding their light under a bushel or burying their talents in a napkin. Not only have they instituted a prestigious Martlesham Medal to give recognition to their own research engineers but they recently put out a 1500word, seven-page press release to mark the second such award to Dr George Newns and Dr Keith Beales. This was for their development of the double crucible production process for optical fibres. I am all for giving medals to engineers and full credit to those whose work is seldom in the public eye. But BT's publicity boys do lay it on a bit thick. Was it really BT who, to quote the press release, "first took up the challenge (of optical fibres) and began devoting time and resources to the enormous problems of translating theory into practice"?

It is evident from the release that BT set up its research team for optical fibres during 1968. Yet I recall talking to Dr Kao at STL at Harlow, early that year. He showed me some of his continuing work on optical fibres which had obviously been started many months earlier. It was devoted to the very practical problem of producing low-attenuation glass. He was convinced this was possible and outlined to me the role optical fibres could play in telecommunications.

BT's press release also recalls that the first Martlesham Medal went last year to Dr Tommy Flowers "the man who invented Britain's and possibly the world's first computer . . . Collossus (sic)". Again Tom Flowers deserves the highest praise for his important pioneering work on the Bletchley Park cryptographic computers but it would have been nice if BT's publicity boys had included just a passing reference to Alan Mathison Turing – but then Turing owed his allegiance to GCCS and "C" of the Secret Service and not to the inventive British Post Office!

Stormy ionosphere

Solar storms, sudden ionospheric disturbances and blackouts, high levels of polar cap absorption and intense auroral conditions continued to dominate the h.f. scene in July. In fact July 12-18 witnessed one of the biggest proton flare events for many years. A blackout on h.f. on July 12 lasted four hours. While this resulted in generally poor h.f. conditions, v.h.f. operators were able to take advantage of the near-sensational auroral conditions which unusually extended as far south as the Mediterranean area. British and Irish stations, for example were able on 144 MHz to contact F6KAW/EA6 in Minorca.

Although it is possible to trace a link between solar storms and auroral conditions, there still remains no positive way of

predicting "sporadic E" openings which are linked to wind shears in the upper atmosphere. However Jim Stewart, WA4MV1 has recently convirmed in a letter to QST the growing belief that a link can be shown between Sporadic E and certain types of severe weather, particularly severe thunderstorms. He notes that apart from heavy rain and turbulence. some thunderstorms appear to produce wind shears and large static-electric charges that play a significant part in the process. Examination of hundreds of weather maps and other data have convinced the American that there is very often a severe weather area roughly midway between stations linked by sporadic E propagation. Storm activity above 60,000ft could result in 144 MHz openings, whereas storms at around 40,000 ft tend to result in 50 MHz openings. While his results may apply primarily to the large land area of the United States, it is one of the few ideas so far advanced that could lead to prediction of Sporadic E openings.

Amateur satellites

So far attempts by Stanford University, using a large dish aerial, to regain control of the British UoSAT OSCAR satellite, built by the team at the University of Surrey – appear to have failed. As reported earlier a "one-in-a-million" software error caused both beacon transmitters to be switched on simultaneously with consequent desensitizing of the on-board receivers. At the time of writing it is still hoped that control can be regained by a strong command signal but hopes are fading, and this experimental scientific satellite remains virtually out of action.

A low-orbit Russian amateur radio satellite "Iskra Two" which was ejected from the manned Salyut/Soyuz orbiting space station on May 17 re-entered the earth's atmosphere early in the morning of July 9. Although it carried an h.f. transponder this was activated only for a brief period.

Amsat-UK (94 Herongate Road, Wanstead Park, London E12 5EQ) has published a new edition of its useful 16page booklet "Guide to Oscar Operating" providing the basic information needed by amateurs who wish to have a go at making contacts through Oscar satellites and background information and practical experiences since the first amateur satellite was launched in October 1961.

Here and there

I.A.R.U. statistics now put the total number of licensed amateurs at over 1.1million of which about 200,000 are in Region 1 (Europe/ Africa), about 480,000 in Region 2 (North and South America) and about 470,000 in Region 3 (Asia and Oceania). Japan heads the table with around 450,000, U.S.A. 390,000, West Germany 42,000, U.S.S.R. and Argentina each 26,000. Then comes the U.K. with around 25,000 followed by Canada 21,000, Italy 17,000, Brazil 14,000 and Australia 13,000 though these figures may already be a little out-of-date.

A Dutch enthusiast, Ryn Muntjewerff is now known to have received 435 MHz amateur television pictures in November 1979 from F1AJD, Angouleme, France over a distance of about 1000 km, thought to be a record for this band. Among the journals and newsletters devoted entirely to amateur television are: CQ-TV of the British Amateur Television Club, "A5 Amateur Television Magazine" (USA monthly), "The ATVer" (Australia), NBTV (Narrow Bandwidth Television Association, UK) and "Der TV Amateur" (West Germany).

Aerial pioneers

Two names that have become almost part of the language of aerials - Beverage and Kraus - have recently been reflecting in the columns of QST on the continued value of designs put forward in 1922 and 1937 respectively. Harold Beverage, ex-W2BML first developed and described his very long but low aerials 60 years ago when working for RCA. He has revealed that after becoming interested in radio as early as 1912 he had two job offers on graduating from college: playing trombone at Loews Theatre for '2 per week or working for General Electric for \$11.20 a week. Such was his enthusiasm for radio that he opted for G.E.! Apart from the still famous Beverage aerial, he was co-inventor with H. O. Pearson of the "diversity reception system" for combatting fading on h.f. Curiously the most complex diversity systems these days - quadruple diversity - are usually at much higher frequencies for troposcatter or long microwave links across sea paths.

Professor John Kraus, W8JK – for many years a leading figure among American radio astronomers – made his name initially when he adapted Dr George Brown's work on close-spaced mediumwave aerials in order to produce the first effective bi-directional rotary h.f. beams in 1937. This was a few months before another leading amateur, Van Roberts, similarly adapted Brown's work on closespaced parasitic arrays to come up with the aerial that has made Yagi's name famous throughout the amateur radio world. John Kraus shows that a special attraction of the original W8JK-type of array is that it can work effectively over a continuous frequency range of more than 3 to 1 without traps or loading coils and with non-critical dimensions. The availability (so far in some countries only) of 18 and 24MHz bands makes the W8JK design particularly attractive and its may well be heading for a revival.

So far American amateurs have not been able to make use of any of the new h.f. bands (10, 18 and 24MHz) since the USA have not yet ratified the WARC 1979 agreements. Japanese amateurs were authorized to use the 10MHz band from April 1, 1982. Maximum power is 500 watts for stations having a frequency measuring instrument and 10 watts for those without!

Heavy guns

The American FCC have been firing some heavy guns recently in its efforts to stamp out abuses of the American radio regulations. A former Californian amateur indicted of operating a station without a licence and using obscene, indecent and profane language has been facing, if found guilty, a possible maximum sentence of 10 years imprisonment and a fine of up to \$70,000. Another Californian lost his amateur licence after taking a licence examination on behalf of a candidate. The FCC has refused to renew the licence of a former amateur who two years ago was found to have deliberately jammed an amateur repeater. Unlicensed operators facing charges of putting out broadcast transmission on 7040kHz from Miami directed at Cuba have been referred to the U.S. Department of Justice with a request for criminal prosecution which could result in a \$10,000 fine and/or a one year prison sentence.

In brief

A reminder that many local adult centres are starting RAE classes in the second half of September. In Beckenham, Kent the demand for morse classes in the London area has caused a switch from RAE classes to morse training . . . Date of the Midlands v.h.f. convention has been changed to October 9 at The Polytechnic Wolverhampton. Reminder that Welsh Amateur Radio Convention is at Oakdale Community Centre, Blackwood, Gwent on September 26 . . . There are hopes that amateur radio activities may be permitted again soon in Poland. . . A "congress of radio amateurs connected with the railways" (FIRAC - Federation International Radio Amateur Cheminot) is to be held at Gunton Hall, Lowestoft from October 4 to 8 (details G. Sims, G4GNQ, 85 Surrey Street, Glossop, Derbyshire SK13 9AJ).

PAT HAWKER, G3VA

Static b.c.d.-to-binary converter

Converters such as those used in synthesizers, where a decimal channel number might have to be changed into binary form to drive a p.l.l., might be in the form of a relatively expensive and, perhaps inconvenient prom, or as binary and decimal up/down counters in parallel, which can give carry and synchronizing problems, or they may be made up using shift registers with correction networks like the 74184. The following is a static cmos converter on similar lines.

For digits zero to nine, both binary and b.c.d. forms are the same but the first decimal carry, at 10, leads to problems at the 'tens' A input, resulting in a binary 16 being interpreted. Therefore, six has to be subtracted to return the original value, 10. At the next carry, b.c.d. 20, binary 32 is interpreted, and must be corrected by

Decoded output IC1	Equiv. decimal range	Subtraction value	Added complement								
			IC ₃				IC ₂				
			(B4)	B ₃	B ₂	B ₁	B4	B3	B ₂	81	
			(128)		32	16	8	4	2	1	
0	0 - 9	%	x	L	L	L	L	L	L	L	
1	10 - 19	5	х	н	н	н	н	L	н	L	1
2	20 - 29	11	X	н	н	н	L	н	L	L	
3	30 - 39	17	X	Н	н	L	Н	н	н	L	
4	40 - 49	23	X	н	н	L	н	L	L	L	
4	50 - 59	29	X	н	н	L	1 L	L	н	L	
6	60 - 69	35	X	н	L	н	н	н	L	L	
7	70 - 79	41	X	н	L	н	L	н	H	L	
8	80 - 89	47	X	н	L.	н	L	L	L	L	X = don't car
9	90 - 99	53	x	н	L	L	н	L	н	L	

subtracting twice 6, and so on for each successive decade. Here, rather than carrying out subtractions, two's complements implemented by diode matrices are added using two 4-bit full adders. A one-out-of-10 decoder chooses the correction value as represented in the table. B_4 of the second

adder is not used, but should be tied to either rail. Nine of the 33 diodes may be replaced by the inverter as shown. Expansion of the circuit is possible. Falko Kuhnke

Institut für Geophysik und Meteorologie Braunschweig

Oscilloscope supply

Circuit shown provides around 850V at 75μ A and 300V at 2mA from a 15V supply. Insulation of the output transformer (an RS196 224) is flash tested to 5kV but one could be specially wound using, say, a Mullard FX2243 or Siemens 631 N 27. The prototype was driven by a unijunction transistor oscillator and buffer circuit.

G. V. Whitney Sale Cheshire

Minimum-parts sequencer

Combining a cmos decade counter with the 555 timer yields a simple yet versatile adjustable-delay sequencer. Buffered outputs 1 to 9 are activated in succession as the 4017 counter is clocked. Each output remains on for a duration proportional to the values of R_1 to R_9 respectively.

A momentary high level on the start input resets the counter, activates output 1 and starts charging C_1 through R_1 , D_1 and R_{10} . As C_1 charges, the timer output goes high, causing a negative transition, due to the inverter, on the counter's clock input, which is ignored. When C_1 reaches 2/3 V_2 , the timer output goes low, clocking the counter, enabling output 2, setting R_1 low while pulling R_2 high, and enabling another charge cycle on completion of discharge through R_{10} .

The sequence continues until the ninth count, when inhibit input (pin 13) is activated, preventing further clocking. Since all charging resistors are deactivated, the system remains inactive until start is pulsed. A more elegant approach would be to connect an extra inverter between the junction of the 9 and inhibit outputs of the counter and the reset (pin 4) input of the timer. Keep in mind that upon power-on or after the timer has been reset (low on pin 4), the first timing period will be approximately twice as long as the reset, due to the capacitor having to charge from ground instead of $1/3 V_s$.

Many variations are possible. For example, repetitive sequences of up to 10 steps can be obtained by grounding the counter's inhibit input and connecting an extra resistor and diode to timer pin 7 from the counter's 9 output. A 4-bit binary counter feeding a 4-to-16 converter (e.g. cmos 14515) will provide up to 16 lines.

Pin 5 of the timer, shown de-coupled to ground through C_2 , can be used as a modulation input to compress or expand all output times simultaneously, i.e. scale factor. Output buffers can be selected according to requirements or omitted entirely if driving other cmos logic.

Values of resistors R_1 - R_{10} should be kept as large as possible to minimize loading of the cmos output stages during charging. If potentiometers are used to trim timing, R_{10} should be at least $4.7k\Omega$ to minimize inrush current, should any pot be turned to zero resistance. The time delay caused by the combination of R_{10} and C_1 adds a constant to the time that each output remains high. V. Labuc

Noranda Research Centre Quebec

FAULT-FINDING IN MICROPROCESSOR-BASED SYSTEMS

The complexity of some systems aggravates the problem of fault location. Fechniques include the use of special equipment and the ability of the processor to diagnose itself. The author discusses some of the available equipment and techniques.

During the last decade electronic systems have changed substantially in conception and complexity due to the introduction of microprocessors and their accompanying devices. Previously, such systems were designed using families of integrated circuit logic elements, the most complex of which would probably have been a four-bit synchronous updown counter. Fault finding in sequential random logic systems involved the use of logic diagrams annotated with waveforms and timing sequences, and required that the fault finder had a detailed understanding of the system operation. The equipment required would be a two-channel oscilloscope with various trigger and sweep facilities, and possibly a special test rig to provide signals to stimulate the printed circuit board, if it were being tested remote from its system. The time required to find a fault would depend largely on the skill of the test or service lengineer. Equipment in service could be repaired quickly by module or PCB replacement, but ultimately, fault finding down to component level had to be undertaken in the manner described above.

Systems designed around microprocessors are conceptually different in that they are bus structured with data being transferred around the system in parallel. In general, input data is read and processed in the CPU to produce the output under the control of the system software. When debugging or fault finding on this type of system, many lines need to be monitored simultaneously and in synchronism with some derivative of the system clock. 'Glitches' and undefined levels on tri-state busses at other times are of no consequence.

Currently systems are being designed using the fourth generation of microprocessors with 20-bit address busses and 16bit data busses. Clock rates are up to 11 MHz; and multiprocessor systems, with bus access time division multiplexed between processors under the control of a master, are being implemented as solutions to the demands of more processing power. All these advances in technology and system complexity aggravate the problems of fault location. To assist the designer and test technician in overcoming these problems various techniques can be used, some requiring special equipment and some utilising the power of the proces-

by Stephen Day

sor in self-diagnosis of faults. It is the purpose of this paper to discuss the current state of the art equipment and techniques and indicate how they are applicable to fault finding from design and development through assembly and test to in-field service.

Logic analysers

The logic analyser was the first of a range of equipments designed specifically for data domain analysis and was initially produced as an instrument for use in the laboratory during the development phase of a microprocessor implementation project. Its appearance was similar to an oscilloscope but having multiline data probes. The data on each probe line could be sampled under control of a system clock which could be qualified typically to sample once every processor instruction cycle. The samples were stored in an internal memory with a capacity of up to 16x16-bit words, and the trigger word, from which sampling was initiated, was set up on a bank of switches.

More recently the ergonomics of logic analysers have been significantly improved and memory size has been increased up to 1000x20-bit words. The options available for setting up the equipment are displayed as a menu on the screen, with a cursor to indicate the next input required. The keyboard is used to enter the information to give the required operating sequence. Typical of the options for trigger selection are: clock source, edge polarity, trigger word, clock cycles delay, trigger start or end, block pattern recognition etc. Possible data display modes on the screen are: (a) Table. A listing of the sampled data states in binary or to some other numerical base such as hexadecimal (Fig. 1a)

(b) Timing. Data is displayed across the screen as several channels showing the HI-LO activity (Fig. 1b).

(c) Graph. The horizontal axis represents analyser store addresses and the vertical axis the numerical value of the stored data (Fig 1c).

(d) Map. Each 16-bit sample is divided into its upper and lower 8-bit bytes. The values of these produce the vertical and horizontal deflection. (1d). The top left of the display is address 0000 and bottom right is FFFF. The map display will assume some unique pattern depending on the frequency of access of the various address lacations being accessed by the program being executed.

When monitoring the data on a microprocessor bus it is possible to reconvert the binary data back into its mnemonic assembly language from automatically and this feature, known as disassembly, has been built into some instruments. The analyser has a personality module according to the microprocessor in the system under development and the table display can then be a list of assembly language statements which are more readily interpreted for program debugging.

Remote access for initialisation and interrogation can also be provided by

The Author

Stephen Day, BSc, CEng. MIEE, graduated from Manchester University during his student/graduate apprenticeship with the UKAEA at Aldermaston. Later he moved to Godwin Warren Engineering as Senior Design Engineer. In 1974 he joined the IBA as a Senior Engineer and is at present working there as Project Leader for enhanced teletext. connection to an instrumentation bus.

A further development of the logic state analyser is the logic timing analyser. This device samples the data input lines with a clock which is asynchronous with the system under test. In this way it is possible to trap random events or 'glitches' as small as 5 ns wide by using clock frequencies up to 20 MHz. The display is usually presented as a timing diagram. One particularly useful application for this type of instrument is in trapping intermittent faults. The technique is known as 'babysitting'. Having established what trigger condition to use, a set of normal data is sampled and transferred to the secondary or reference memory. The user can now leave the instrument to monitor the system under test and it will acquire new data each time the pre-selected trigger point is encountered. Any difference between the new data and the reference data will cause the analyser to stop sampling and indicate where the difference has occurred. On return the user can step through the logic timing diagram on the display and draw conclusions for futher investigation of the fault.

In circuit emulation (ICE)

This is a technique for using a microprocessor development system to debug both hardware and software during the developmental phase of a project. Early microprocessor development systems were essentially for software development. They had the usual suite of routines for editing and assembling programs and it was possible to partially debug the software by limited execution within the development. system. It was then necessary to commit the software to eprom in order to transfer it to the hardware of the system being developed. For further debugging use was made of a logic analyser to find out why programs operated incorrectly or whether the fault was in the hardware.

In-circuit emulation is created by additional hardware which allows the microprocessor in the target system to be emulated by a similar microprocessor in the development system. The ICE module connects to the target system by multi-way umbilical cable terminated with a plug which is inserted into the socket where the microprocessor would normally reside. In this way the resources of the development system are extended to the prototype in order to facilitate the hardware/software integration. Figure 2 shows a typical microprocessor development system with ICE. Resource allocation is extremely flexible in all modes of operation and will depend to some extent on the state of development of the prototype hardware. The development system mass storage medium, usually floppy disc, is used to store the target system software in both source and object form. Loading is quick and errors can be patched out in the object code to try modifications. These changes can then be incorporated in the source code and rapidly reassembled. Random access memory and i/o facilities of the development system can be used as though they are local memory and i/o of the prototype system even before this part of the hardware is built.

External clock Probes High speed Input memory and Internal clock buffer reference stores Display Control Display processor memory Trigger Trig comparator Keyboard ABORTED; KEY "PUN" TO START BORTED, KEY "RUN" TO STAPT CH,8] C4,16,64,256,2[₽-] ON CEXECUTE] EXPANSION FSFT CURSOR POSH CURSOR POSN 30 WORD 9507 Key "Graph" to centre cursor posn HIGH LINIT 9529

(d)

ABORTED; KEY	"RUN" TO START
DATA SOURCE	E.BJ EXPANSION E.4.83 ON
CURSOR POSN	30 WORD 9507
BITS 0-3	
81TS 4-7	
8175 8-B	
BITS C-F	

Fig. 1. Block diagram of a logic analyser. Its various modes of display are: a. a table; b. a timing chart; c. a graph; and d. a map (see text).

During emulation a breakpoint can be specified which can be conditional on a number of different factors such as memory read, memory write, instruction fetch or i/o operation at selected addresses. When the breakpoint has been encountered the internal registers of the processor and any memory locations can be interrogated and modified as necessary before restarting emulation. It is also possible to display the contents of the trace memory to check the instruction sequence before the breakpoint.

Another possible mode of operation is single stepping. In this way more detailed

information can be acquired by the trace memory as the program is executed one instruction at a time.

Probably the most important advantage of ICE is the simple connection into the prototype system. One cable is all that is required with no need for circuit modifications or temporary jumpers. Early development and debugging of the software enables completion of the total system integration in the shortest possible timescale. Finally, the time consuming procedure of using eproms to transfer programs under development to the target system is eliminated.

Fig. 3. Derivation of signature from data stream.

Signature analysis

If a piece of equipment is made to repetitively execute a certain sequence of instructions then it should be possible to identify correct operation by monitoring the changing logic levels at each node in the circuit. This would produce a mass of information which would be completely un-manageable in a test situation. In order to compress this information into a more useful form a technique known as signature analysis was developed by Hewlett Packard Ltd. The data appearing at a given node is sampled for a known period, between start and stop signals, by clocking it with the system clock into a feedback shift register. The residue at the end of the sampling period is a characteristic of the activity at that node.

Using a 16-bit shift register and arranging the feedback such that a maximal length sequence is produced will give 65 536 possible residual states. The parallel 16-bit output from the register is used to drive four hexadecimal displays and the resulting number is termed the 'signature' of that node. Errors in the data stream will normally cause a different signature to be displayed. It is possible to show¹ that all single bit errors will change the signature and that the probability of multiple bit errors being missed is less than 0.002%. This is far better than the performance of other techniques such as bit or transition counting.

An example of how a signature is derived is shown in Fig. 3. The data signal is gated with the four feedback bits in a gate which produces a logic one output only when the modulo two sum of the inputs is one. The clock is enabled during the window between the start and stop pulses and in this case samples the data 20 times. The chart shows how the bits propagate through the shift register and the resulting signature is A682. Superimposed on the chart is the result of introducing a single bit error in the first bit. The signature changes to F3AA. In a similar way it could be shown that the signature would be 8E92 for an error in bit 8 and 2682 for an error in the last bit. Thus it can be seen that a single bit error even in such a short sequence will produce quite a dramatic change in the readout from the signature analyser. In a practical situation the window period would be considerably more than 20 clock periods and can be more than 2¹⁶ (the cycle length of the register) if appropriate.

Signatures for a given circuit are not designed or calculated. What must be decided at the design stage is how start and stop signals can be produced and what hierarchy of tests is required to fully validate each node. This may involve the use of special test sockets to break feed-. back loops and isolate parts of the ciccuit under test. Finally, when the design is complete, the test routines are executed and the signatures at each node in the equipment are recorded. Documentation is completed by adding the singatures to the circuit diagram an example of which is shown in Fig. 4. The handbook should detail the sequence of tests and fixtures, switches or jumpers that are required.

After proving the operation of the system kernel a series of tests are run which sucessively introduce a larger percentage of the system until a signature fault is found. Faulty components can be located by backtracking until a device with a correct input signature but erroneous output signature is found.

Signature analysis is a very powerful service aid and is also useful for final assembly testing. The equipment is relatively inexpensive and the extra design work is minimal. Retrospective design into existing systems is also an attractive proposition.

Automatic test equipment (ATE)

This is the name given to usually large equipment sets which allow the user to test, thoroughly and quickly, complex circuit boards. They represent a considerable capital investment and are essentially fixed. Usually they can be justified only in a production situation with a high throughput although sometimes there is a case for them in a repair and maintenance department.

A typical ATE system is shown diagrammatically in Fig. 5. User communication with the system is via the console keyboard and v.d.u. Test routines are stored either on floppy or rigid discs. The processor controls setting up and running of the tests. It communicates with the unit under test (u.u.t) via the digital control unit and the high speed read/write memory. Connection to the u.u.t is made in a number of ways including via its edge connector, through a bed of nails fixture and through test clips and probes.

The usual test procedure involves the stimulation of the input nodes of the u.u.t with data in the form of arrays of sequential test patterns. The u.u.t is clocked at its normal operating speed and response data at all outputs and internal nodes is captured in the memory for comparison with the correct response pattern. Input sequences up to 4000 bits long are used and the output comparison is done either on a bit for bit basis or the response data is compressed into a signature for each node and then compared with stored signatures.

The imput test patterns are usually algorithmically generated by the test procedure in order to simulate some functional response. Another possibility is to use pseudo-random binary sequences as input data providing a more exhaustive though lengthy test. The correct response patterns are assessed either by emulation or heuristically. In the first case it is necessary for the ATE to have detailed circuit information of the u.u.t and also to store a library of device models so that the correct response can be calculated. Functional models of complex l.s.i devices such as microprocessors are therefore required. In the second case a known good unit is monitored through all the tests and the correct

responses are learnt and stored for later use

The result of this initial testing is that the unit is either good or faulty, and in the latter case there is no information concerning the possible fault location. A second series of diagnostic tests then has to be executed and these will involve the operator following a set of simple instructions displayed on the v.d.u. The operator is guided through the circuitry applying either current or voltage probes until a faulty component is found. A label is then

Fig. 5. An automatic test equipment layout.

printed which can be attached to the unit for return to assembly.

Thus an ATE system is very comprehensive in its ability to fault find large numbers of different circuits by having different bed of nails configurations and storing its programs and responses on disc.

It does suffer from the drawback that, although the operator requires little skill or training, it is necessary to program the system in some considerable detail for each new bosrd. Special high level languages have been developed to make programming easier, but there is no standard, and usually a skilled ATE programer is required.

Portable diagnostic test sets

A diagnostic tester designed to fault-find and validate a specific microprocessor system can sometimes prove to be a cost effective solution to provision of field service maintenance equipment. It is portable and versatile and is used to perform automatic functional tests on the equipment within its normal operating environment.

A typical microprocessor system is shown in Fig. 6. It comprises 10 printed circuit cards with connection to various peripherals. The tester has access to the system bus and the i/o sockets. One convenient form of implementation is therefore an extra circuit card which plugs into a spare socket in the system rack and connects to a hand held controller with an alphanumeric display. The components necessary for such a test set are shown in Fig. 7.

The test programs are stored in prom on the test card and the small ram is used as stack, display buffer and workspace, so that the main system ram need not be operational. The u.s.a.r.t with its clock divider chain producing clock rates for 110 and 1200 baud is used to test the serial links. One p.i.a controls the display and reads the keypad and the other is used to test the interrupt system and the parallel i/o. The most convenient address at which to locate the test routine will normally be zero so that system reset will initiate the test sequence. It will probably therefore be necessary to have a switch on the main system which will disable memory at overlapping addresses while the test routines are executing.

Fig. 7. A test set consisting of a p.c.b. and a control module.

Fault finding follows a logical sequence of building up confidence in the operation of the system components. The c.p.u of the main system is used as the processor to execute the tests. The address and data busses and the c.p.u are confirmed as operational if the tester initialises correctly. Memory tests consist of write-read pattern checks on ram and checksum test on prom. The serial inputs are tested by lopping to the tester serial output. The serial outputs are looped to the tester serial input and known data sequences can be sent out to assist with fault finding at the peripherals. The tester displays diagnostics for each test to indicate success or mode of failure. In the case of proms and rams the actual faulty chip can be indicated. The fault, when located. can be rectified by changing a circuit card; or a series of lower level test can be executed in order to fault-find down to component level with the aid of scope and logic analyser.

In many systems validation routines are an integral part of the software and are run at initialisation. However, they cannot perform such comprehensive tests as this type of portable test set with interaction of a maintenance engineer. The operation of the tester is straightforward and requires minimum documentation. It is also readily acceptable as part of the maintenance engineer's kit.

Conclusions

Several techniques have been discussed in this paper which make fault analysis in the data domain a practical proposition. In a design and development laboratory, use is made of logic analysers and microprocessor development systems with in circuit emulation. In production and field maintenance the choice is less straightforward. ATE for assembly use appears to be the best technique for thorough testing but is costly both in initial equipment and in programming. Equipment for service use can be selected only when a maintenance philosophy has been evolved depending on the type of equipment, numbers in service, ability and availability of field personnel, acceptable down time etc.

Future developments will see the introduction of 32 and 64 bit microprocessor systems which will require even more sophisticated techniques for fault finding. Designs will become fault tolerant by the introduction of both chip and peripheral hardware redundancy. In the field there will be greater use of remote fault analysis. Faulty systems will be connected by telephone lines to central installations, the test routines being down loaded and results fed back for analysis.

There will therefore be a continuing trend towards improved system reliability by increasing MTBF and minimising down time on the occurrence of a fault.

References

1. Frohwerk, R. A. 'Signature analysis: a new digital field service method'. HP Journal, May 1977.

Reprinted from IBA Technical Review, No. 15, 1981.

Regulated Power Supplies, (3rd ed.), by I. M. Gottleib 423 pp., paperback

Prentice-Hall International, £13.95. ISBN 0-672-21808-9

AN expansion of the earlier works, dealing in an extremely thorough manner with a subject which is not often treated in isolation. Practice, rather than theory is the approach, from a description of basic requirements to the implementation of linear and switching-type voltage and current regulators. The author not only provides an exceptionally detailed treatment of the subject, but does it in a literate manner.

Computing

Mastering Computer Programming by P. E. Gosling 212 pages, hardback/paperback

MacMillan £8.95/£2.95

The title of this book is one result of its forming part of the Master series, but the author lays no claim to omnipotence. He has produced a very 'accessible' description of the processes involved in writing programs, with a useful chapter on errors and a piece on Fortran, Cobol and Pascal - Basic is used in the body of the book. The writing is direct and easy to read.

Microprocessor Development and Development Systems Edited by Vincent Tseng 202 pages, hardback Granada, £16.00 In the development of most applications using microprocessors, a 'development system' to aid programming and testing is of great benefit.

The book, written by several authorities in the field, describes a number of such systems and their use and includes a chapter on emulators. There is also a section on managing without a d.s. The style is descriptive and 'readable'.

Microcomputer Design and Troubleshooting by Eugene M. Zumchak

350 pages, paperback Prentice-Hall, £12.55 A rather more down to earth treatment of the practicalities of design with micros than is usually found at this level. A home-built development system is described and further chapter headings include read/write timing, interfacing, hardware testing and software design.

Circuit Design Programs for the Apple II by Howard M. Berlin

132 pages, plastic bound

Prentice-Hall, £11.15

One of the Blacksburg series, this is a set of Basic programs intended to take the labour out of circuit design calculations, graph plotting and signal analysis, including average and r.m.s. values and Fourier series. Equipment needed to use the programs is either an Apple II Plus or Apple II with Applesoft card. A minimum of 32K ram is required, 48K being preferable.

Amateur radio

Amateur Radio Equipment Fundamentals by A. D. Helphick, K2BLA

248 pp., hardback

Prentice-Hall International, £14.20. ISBN 0-13-023655-1

The tradition of home-built amateur radio equipment has largely given way to the operation of commercial gear. In an attempt to offset this trend, Mr Helphick has provided a course of instructions in the basics of design and construction of transmitting and receiving equipment, and has included two chapters of designs for receivers, transmitters and a 100W linear amplifier.

ELECTRONIC COMPASS USING A FLUXGATE SENSOR

A device to fill the gap between the old-fashioned compass and expensive gyro-based navigation systems – an all-solid-state, high-resolution magnetic sensor.

With the ready availability of micro-computers, simple dead reckoning navigation systems for boats and cars can be constructed, if suitable distance and direction inputs are available. A 'distance-travelled' signal can usually be obtained quite easily, but the provision of a digital magnetic heading is more difficult. It would be possible to arrange a servo pointer follower and angle digitizer attachment for a conventional moving magnet compass, but this would be mechanically complex and unattractive for amateur construction. An inherently digital solid-state compass is a much more elegant solution. A compass of this type would be valuable in any application where multiple output displays are needed, a computer readable output is required or where the sensor will be subject to high vibration or accelerations. In addition, the electronic nature of the sensor permits its location far from large metallic masses which can locally distort the field.

All solid-state compasses operate by sensing two or three resolutes of the horizontal component of the earth's magnetic field and then perform appropriate trigonometry with these resolutes to obtain the resultant magnetic flux direction. Using Hall-effect sensors, it is possible to produce very simple arrangements¹. Unfortunately, during preliminary testing none of the low-cost, commercially available Hall-effect probes, including those with integral ferrite flux-concentrators, were found to have sufficient accuracy at magnetic field levels appropriate for compasses. Even when extra flux-concentrators formed by 2cm long Mumetal strips attached to each side of the sensor were added, increasing their output from microvolt to millivoit levels, the temperature drifts were of similar magnitude to the output produced by the earth's field. The disappointing results obtained with Halleffect sensors forced the adoption of a fluxgate sensor with its inherently greater circuit complexity.

The theory of fluxgate magnetometers and compasses is beyond the scope of this paper and interested readers are referred to References 2 and 3. For a brief description of the principle of operation, see box.

An initial prototype of a fluxgate sensor used magnetic cores cut from Mumetal sheet, but an inconvenient post-fabrication annealing operation in a hydrogen atmosphere was required to obtain the desired magnetic properties. To overcome this dif-

by Neil Pollock

ficulty, attention was directed to magnetometer designs which could be constructed using readily available commercial ferrite components.

Circuit

The arrangement finally chosen (based on a design intended for sounding rockets⁴), uses a 14mm diameter Philips ferrite toroid type number 4322-020-97140 (grey coating) or the equivalent uncoated toroid 4322-020-31390. Notes on adapting the design to use other toroid types are included later.

The circuit diagram and coil winding details are shown in Figs 2 and 3. The toroid is driven into saturation in alternate directions at about 10kHz by a magnetic multivibrator circuit of the type often used in inverters.

Windings P_1 and P_2 are the drive primaries while P_3 and P_4 provide the necessary

Fluxgate magnetometers

There are very few means of measuring absolute values of magnetic fields. The most popular one is the Hall effect sensor, but most commercial units are designed for relatively high values of field.

The fluxgate configuration can measure very low field magnitudes by using the chopper-amplifier principle. Briefly, it is based on the fact that all parts of an uniformly excited toroidal magnetic circuit would be equally magnetized in the absence of external magnetic fields and therefore no voltage would be induced into a coil encompassing the whole magnetic circuit.

The introduction of external field in the plane of the toroid would result in a slight unbalance between the two halves of the magnetic circuit (see Fig. 1).

The flux at point A equals $\phi_A = \phi_0 + \phi$, whereas point B, situated 180° away would correspond to a flux $\phi_B = \phi_0 - \phi$, Where ϕ_C is due to local toroid excitation and ϕ , to the external field.

Although the unbalance is very slight, it can be measured through one of its side effects: If we cyclically change the local excitation so as to switch the toroid between its two magnetic saturation points, we find that due to the unbalance, one half would be driven feedback to maintain oscillation. The two secondary coils S_x and S_y are arranged so that in the absence of an applied external magnetic field they, at least in theory, experience no induced voltage. In practice, due to imperfections in the toroid and coils, voltage spikes are induced in the secondaries as the toroid goes into and out of saturation. These spikes have amplitudes varying from barely detectable to over one volt for different coil assemblies (Fig. 4).

When an external field is applied in the plane of the toroid some initial magnetization is induced in it. This initial magnetization results in one part of the toroid being driven into saturation before the part 180° away from it during one half of the oscillator cycle and the reverse situation occurring during the other half cycle. This non-symmetrical saturation of the core produces a flux unbalance and an induced voltage in the secondary windings. The magnitude of this induced voltage is closely proportional to the applied flux

into saturation a short time before the opposite half and the toroid as a whole would, for a short period of time act as a small magnet. The net result is that a coil encompassing the complete magnetic circuit would pick up an induced voltage impulse, proportional to the external field.

By mounting two such coils perpendicularly to each other onto the same toroid, we can resolve any external field into its X and Y components in the toroid plane.

Fig. 1. Flux interference pattern.

component perpendicular to the plane of the appropriate secondary coil. In practice, the effect of applying an external field is to change the amplitude of the pre-existing secondary voltage spikes. The amplitude of these spikes is also quite strongly temperature dependent. Figure 5 illustrates how the effect of an applied field is separated from the effect of temperature.

To perform the necessary arithmetic on spike amplitudes, a phase sensitive detector and summing amplifier is used for each secondary. The detector control signals (Fig. 6) are generated by differentiating, half wave rectifying and attenuating the primary drive voltages. The phase detector outputs are summed and the resulting

Fig. 3. Toroid windings.

Fig. 2. Fluxgate sensor circuit diagram.

mean voltages (outputs V_x and V_y) are proportional to the sine and cosine of the angle between the applied field and the plane of the S_x coil. In principle the compass output is simply the arctangent of the output voltage ratio. It is essential that the coil assembly and the associated electronics be located on the same circuit board because the zero offset is very sensitive to the relationship between the wires connecting the coil to the electronics.

Construction details

The coils are the heart of the device and, although they are relatively non-critical, an effort applied to winding them carefully and neatly will be well repaid. The primary drive windings P1 and P2 are wound on the toroid first and fill it about 11/2 layers deep. These two coils are bifilar wound, that is they are wound with two wires side by side to produce two closely identical windings. The feedback windings P3 and P_4 are bifilar wound on top of P_1 and P_2 . The two secondary windings can either be wound on a tubular former with notches at 90° intervals, which fits around the prewound toroid (Fig. 7) or wound separately and then glued in place. If the latter method is adopted it is suggested that each secondary be wound around a 6mm by 16.5mm rectangle formed by four pins. On removal of the pins the preformed rectangular coil should be bound with another piece of coil wire (taking care not to create a shorted turn) so that is is bundled together. The two secondaries can then be

Fig. 4. Primary drive voltage (lower trace) and resulting secondary (S_X) voltage spikes (upper trace).

placed around the toroid and secured with quick-setting epoxy glue. However the secondaries are wound, it is essential that they are a neat fit and closely coupled to the toroid. On completion of the windings the toroid assembly should be glued to the circuit board and the leads connected, being careful to observe the correct hand of the P_1 , P_2 , P_3 and P_4 windings. All windings should be securely glued to prevent any relative movement between them.

The remainder of the circuit is straightforward and a board layout and component positions are reproduced in Figs. 8 and 9. The use of metal-can transistors and integrated circuits should be avoided, since they could distort the applied magnetic field.

If it is desired to use a toroid other than the one specified, the following procedure is recommended. If necessary, change the number of turns on the primary windings, keeping the same ratio between drive and feedback windings, so that the operating frequency is in the range 5kHz to 50kHz. Change the value of C2 and C3 so that the phase sensitive detector control pulses are similar in length to the secondary spikes. Alter the value of R20 and R21 to obtain the desired overall sensitivity. Although they have not been tried, their specifications suggest that the following toroids could be used with only minor component value changes: Philips 4322-020-97060 (blue Philips 4322-020-31390 (uncoating); coated); Siemens B64290-K0045-X026 (coated); Siemens B64290-A0045-X026 (uncoated).

Performance

To facilitate calibration, the sensor board should be taped to a 360° plastic protractor which can be rotated inside a circle drawn on a piece of paper placed on a wooden table top. Care must be taken not to move any ferrous or magnetic objects near the compass sensor during calibration. The author experienced inconsistent results which were eventually traced to the effect of his metal belt buckle. A typical calibration chart is shown in Fig. 10. The V_x and V_v outputs are usually within $\pm 1^\circ$ of best fit sine curves with zero offsets in the range ±2volts. A peak-to-peak amplitude of about 1.2volts was produced by a horizontal flux density of 2.2×10^{-5} tesla (we ber/m^2 – the value for Melbourne, Australia). Similar outputs should be obtained

Fig. 5. Effects of temperature versus applied magnetic field on secondary waveform.

Fig. 6. Secondary output $(S_X - |C1, pin 1 - upper trace)$ and phase sensitive detector's control signals: middle trace: $|C_1, pin 5$. lower trace: $|C_1, pin 6$

WIRELESS WORLD OCTOBER 1982

Fig. 7. Toroid with primary windings and former for secondaries.

in Europe and the USA. In other parts of the world the horizontal flux density varies from zero at the magnetic poles to 4.13 \times 10⁻⁵ tesla in the Bay of Bengal. If the sensor is not horizontal, total flux densities exceeding 6×10^{-5} tesla may be found. The sensor peak-to-peak output voltages are directly proportional to the field strength in the plane of the toroid. For carefully wound coils the phase angle between the two output voltages will be within a few degrees of the desired 90°. It is suggested that any departure from 90° is treated as a correction in the angle computation, but if desired the coils can be bent by trial and error prior to final glueing to produce the desired angle between them.

Fig. 8. Fluxgate sensor p.c.b. layout.

The sensitivity of the sensor is quite strongly temperature dependent (about 5% per °C) but since both outputs are affected equally the indicated angle is unchanged. The zero offsets vary by about 10mV/°C and for operation in environments which are not temperature controlled, these changes would have to be corrected for, if maximum accuracy was required. The repeatability of the sensor calibration is excellent with no measurable change over a one month test period, and presumably for much longer periods since there is no obvious mechanism for long term drifts. The sensor is very sensitive to temperature gradients in the ferrite core and it is essential that it be protected from draughts. The sensor board draws 17mA from the +9volt supply and 2mA from the -9volt supply.

Installation

The sensor must be mounted in a horizontal attitude if accurate results are to be obtained. In a boat, where large attitude changes are often experienced, the sensor would have to be mounted on a set of gimbals. In a land vehicle subject to large accelerations but normally operating on an approximately level surface, it may be better to rigidly mount the sensor. If mounted near large ferrous objects or sources of magnetism, the sensor must be compensated as for a normal compass³. Fortunately with the freedom to remotely mount the sensor it is often possible to find a location where compensation is not required and the small residual errors can be treated as part of the calibration. If very long connecting leads are to be used between the sensor board and readout electronics, it may be necessary to include $1k\Omega$ resistors in series with the V_x and V_y outputs to decouple the operational amplifiers from the cable capacitance.

Microprocessor readout system

In a microprocessor-based system the sensor outputs V_x and V_y would be multiplexed into an analog-to-digital

converter with a useful resolution of at least 10 bits. An a. to d. converter like the Intersil ICL7109 would be the first choice in this application since it could be simply interfaced to most microprocessors using parallel or serial data transfer. When the digital values of V_x and V_y were read in, the ratio $R = (V_x - V_{x0})/(V_y - V_{y0})$ should be calculated, where V_{x0} and V_{y0} are the zero offsets which should be varied with the measured sensor temperature unless it is placed in a temperature-controlled enclosure. Using the value of R and the signs of $V_x - V_{xo}$ and $V_y - V_{yo}$ it would be possible to construct a look up table to give the heading angle with 1° resolution. The actual sensor will resolve heading changes of much less than 1° but when all sources of error are considered there is little point in aiming for greater overall resolution. Alternatively, if a dedicated arithmetic chip like the National Semiconductor MM57109 was available, it may be more efficient to take the arctangent of R and apply any necessary corrections to the computed heading later.

Hard-wired logic readout

In applications where a microprocessor is not available, it may be desired to have a

Fig. 12. Angle decoder: input circuitry and vector rotator.

dedicated hard wired readout system. A relatively simple, low cost, arrangement which was used during the development of the sensor is shown in block diagram form in Fig. 11. The operation of this system depends primarily on a vector rotator which has as inputs two analogue voltages X_{in} and Y_{in} which are taken as the X and Y components of an input vector and a digital angle θ (0 to 1024 for 0 to 360°). The outputs X_{out} and Y_{out} are the X and Y components of the input vector rotated through the angle θ . The heading angle is given by the value of θ which reduces the X output to zero (i.e. the angle through

Fig. 10. Typical calibration chart.

Fig. 13. Angle decoder: control logic and display.

which the input vector must be rotated, to align it with the system Y axis).

When a reading is initiated by the 2Hz update clock, the binary and b.c.d. counters start counting from zero. When Xout passes through zero in a negative going direction, a latch enable pulse is generated which gates the current b.c.d. counter contents into the display. The RS flip-flop is needed to ensure that only the first zerocrossing in each update clock cycle produces a latch-enable pulse. The 360/1024 ratio between F2 and F3 produces an output in degrees. Outputs in other units, eg. tenths of degrees or grads, could be produced simply by changing this ratio. For this system to work correctly, the Xin and Yin inputs must have the same sensitivity and no offsets; this is achieved with a pair of offset and gain adjustment amplifiers.

The circuit which is designed around a simple vector rotator⁵, using a pair of Analog Devices AD7533 low-cost multiplying digital to analog converters, is presented in Figs. 12 and 13. This circuit, which has an overall decoding accuracy of about $\pm 1^\circ$, draws 15mA from the +9volt supply, 7mA from the -9volt supply and 170mA from the +5volt display supply.

The set up procedure, which consists of adjusting offsets, sensitivities and balance is as follows: with the sensor board not connected, adjust R_{101} and R_{102} to set X_{in} = 5volts and Y_{in} = 0. Remove the 4040

WIRELESS WORLD OCTOBER 1982

counter and ground its socket's pins 2-7, 9 and 12-14. Adjust R₁₀₄ and R₁₀₅ to set X_{out} $=-Y_{out} = 5/\sqrt{2} = 3.54$ volts. Readjust R_{101} and R_{102} to obtain $X_{in} = O$ and $Y_{in} = Svolt$. Check that $X_{out} \approx Y_{out} \approx 3.54$ volts. This set up procedure for R_{104} and R_{105} is sufficiently accurate for most applications, but if maximum accuracy is needed an interative procedure⁴ should be adopted. Replace the 4040 and connect the sensor board. While rotating the sensor board through 360° set R_{101} to remove the V_x zero offset so $X_{in,max} = -X_{in,min}$. Set R_{102} to remove the Vy zero offset so $Y_{in,max} =$ $-Y_{in,min}$ and finally set R_{103} to equalize X and Y sensitivities so that $X_{in,max} = Y_{in,max}$. Since this circuit was developed primarily for bench testing, no compensation for changes in X and Y zero offsets with temperature is provided. An enthusiastic analog circuit designer could perform this compensation with thermistors in resistor networks around the input amplifiers.

Power supply

Since this system will normally be used in mobile applications, it is desirable that it should operate off a 12volt supply. A regulated power supply suitable for this purpose is shown in Fig. 14. Two alternative methods, (1) or (2) of generating the -9volt supply are shown. The Fairchild μ A78S40 universal switching regulator was used for most of the development of this project. However quite recently the Intersil ICL7660 voltage converter became available and proved to have equal performance in this application with a considerably simpler circuit.

Magnetic compasses and the precautions required for their effective use are complex and it is strongly recommended that potential users read Ref. 3 and thoroughly check the accuracy of their own installation before relying on it in circumstances where life or property might be at risk.

References

- Steinbaugh, G. Hall Compass Points Digitally to Headings. Electronics, Dec. 18, 1980, pp. 112-114
- Stuart, W. F. Earth's Field Magnetometry. Reports on Progress in Physics, Vol. 35, 1972, pp. 803-881
- Hine, A. Magnetic Compasses and Magnetometers. Adam Hilger Ltd. London, 1968
- 4. Acuna, M. H. and Pellerin, C. J. A Miniature Two-Axis Fluxgate Magnetometer. IEEE Transactions on Geoscience Electronics, Vol. GE-7, No. 4, Oct. 1969, pp. 252-260.
- 5. Mayer, A. Low-Cost Co-ordinate Converter Rotates Vectors Easily. Electronics, Sept. 22, 1981, pp. 133-135

M. G. Scroggie – Fifty-nine years a WW author

There can be very few electronic engineers, from this country or abroad, to whom the nom de plume Cathode Ray is not part of their education. For nearly sixty years Marcus Scroggie has contributed articles on wireless and other manifestations of the mobile electron which have instructed, entertained and humiliated more readers than would probably care to admit to it.

His technique has often been to take a 'simple' circuit and concede that nothing could be easier. The next step in the process, to demonstrate that the apparent simplicity is a snare and a delusion, would possibly have reduced the number of engineers to a dangerous level had he not quickly moved on to show that, if approached in the proper manner, the circuit was unlikely to bite.

M. G. S, is not adverse to an argument, the most notable perhaps being the Affair of the Arrow, his contention being that to

put arrows on both ends of a vector/phasor was akin to not knowing whether the voltage is coming or going. He has also, on occasion, been a touch professorial with those who approach the Queen's English with evil intent. The editorial people in *WW* have long been terrified of writing 'd.c.' (meaning zero frequency) or phrases such as decoupling to earth' in case M. G. S. saw the piece and fired a broadside.

The first WW article under the name of Marcus Scroggie appeared in the issue for August 15, 1923 – a method of raising 800V for a valve transmitter, M. G. S. being also amateur operator 5JX. But the pieces which have contributed most to the stature of WW since the first article appeared in 1934 are the articles by Cathode Ray, for which tens of thousands of engineers have cause to thank him.

On his 81st birthday, we wish Marcus Scroggie well.

INTRODUCTION TO VDUs

A simple explanation for newcomers to computing of the characteristics of visual display units, their method of working and control, and a description of some integrated-circuit video-display controllers.

In the world of computers, the word 'monitor' has an unfortunate double meaning. A software monitor is a program, permanently resident in a computing system, which can be used to test peripherals or memory on that system and perform simple program debugging. An electronic monitor is almost a television set without the receiver and loudspeaker: essentially it is the tube, sometimes the power supply, and the electronics required to produce a picture. Instead of the aerial being the signal source, an unmodulated signal has to be provided - either composite video or direct drive. The former is a single line, whereas the latter is made up from three lines - a video line, horizontal sync. and vertical sync. lines.

Composite video

Figure 1 shows some sample video waveforms. In the composite video signal, the quiescent level is usually 0.3V, which corresponds to black level on the screen. Synchronizing pulses are superimposed on this black level, the short pulses forcing a horizontal retrace and the long ones vertical retraces. The majority of the time between horizontal sync. pulses can be used for the display, the remaining time from just before to just after the sync. pulses being the blanking period, during which the tube does a retrace. During blanking, the signal must not exceed the black level, or the retrace will be seen on the screen. The composite video signal rises to 1V, the white level' or brightest white on a white monochrome set: since the signal varies between 0.3V and 1V, the picture increases in intensity through levels of grey. The waveform shown would produce a bright white dot at the left-hand end of that scan line. A line impedance of 75 ohms is normally associated with composite video signals.

Direct drive

The direct-drive waveforms, also seen in Fig. 1, should produce the same visible results as the composite waveform shown above them. Direct-drive voltage levels are not as well defined as composite video some monitors take signals from t.t.l. buffers, while others need 1V signals.

Direct drive has the advantage that all the drive signals are, normally, readily available from the circuitry generating the video signal; however, it is difficult to send these signals over long lengths of cable. This problem is avoided with composite video, which can be transmitted down metres of coaxial cable without much of a problem. Direct-drive signals can be converted to composite video with a

by Colin Carson

handful of components, but the reverse procedure is not so easy. Generally, there are more direct-drive t.t.l. monitors on the market than the composite-video type and the price of the former is normally slightly lower.

Of course, a monitor is not essential: a low-resolution picture can easily be produced on a television set, by connecting a composite-video signal to a u.h.f. modulator. The modulated signal is fed down coaxial cable to the aerial socket on the television receiver, which is then tuned to the new signal on a spare channel.

Bandwidth

The picture is made up from discrete dots, which merge together when viewed from a distance. Only a finite number of dots can be fitted into the display time available and this number is limited by the bandwidth of the monitor or television. If a monitor possesses a bandwidth of 10MHz (1/f = 100ns), then the minimum width of a dot must at least be equal to 1/f and preferably double - that is 100 to 200ns. If this constraint is not met, then the monitor will be unable faithfully to interpret the video waveform. Having decided upon a dot width, its inverse is termed the dot-clock frequency and is usually the highest frequency needed in a system. When incorporating a video display into a system it is always desirable to generate dot-clock, processor clock and band rate from dividers driven from a single crystal oscillator although this is not always possible.

Suppose a dot clock frequency of 10MHz is used with a monitor having a horizontal scan rate of 15.625kHz (64 microseconds) with 48 microseconds of that allowed for display, then it would be possible to display x dots on each horizontal scan line, where x equals the available time (48) divided by the dot width (0.1) – that is 480 dots.

A domestic television set has a bandwidth of between 4 and 8 MHz, whereas monitors commonly have bandwidths up to 20MHz, some up to 65MHz.

Horizontal scan rates

The television standard of 15.625kHz has the disadvantage that, to much of the population, it is audible. There is a growing trend to increase this frequency so that it cannot be heard, 18 to 20kHz being common. Obviously, as this frequency increases, so does the bandwidth necessary to display the required number of dots.

Vertical scan rate/refresh rate

In the UK, the vertical scan rate is nearly always 50Hz, although an increase of 5Hz or so can be useful for reducing screen flicker. As soon as a monitor is run at anything but 50Hz, care must be taken to avoid hum loops.

Knowing the vertical and horizontal scan frequencies, the maximum number of horizontal scan lines can be calculated. A frequency of 50Hz corresponds to 20 milliseconds between vertical sync. pulses, of which one millisecond might be needed for vertical blanking. The remaining 19 mil-

	Codes	
0000	0100	04 H
0000	1010	0 A H
0001	0001	11 <mark>H</mark>
	1111	1 FH
	0001	1 1 H
ľ	0001	<u>11н</u>
*	0001	1 <mark>1н</mark>

Fig. 2. Capital A formed in a 7 × 5 matrix, with matrix patterns obtained from character generator and hex. equivalents.

Fig. 1. Video waveforms. Top is compositevideo signal, while other three waveforms,

fed separately, form the direct drive.

liseconds is available for horizontal scan lines, the number of which is calculated by dividing this period by the horizontal scan time, i.e. 19000/64 = 296 scan lines.

Characters

A character can be displayed on the screen by illuminating specific dots within a small matrix, 5×7 and 7×9 being common matrix sizes. Figure 2 shows an upper case 'A' formed in a 5×7 matrix, which is adequate for low-bandwidth applications. Larger matrices improve character resolution, provided the monitor has sufficient bandwidth. With a 5×7 matrix, an intercharacter spacing of one dot is acceptable, so a scan line supporting 480 dots could handle 480/(5 + 1) - i.e. 80 characters horizontally.

The matrix patterns for each character displayable by a video system are stored in a prom or rom character generator and make up what is known as the character set. Each pattern has to be coded into binary, using a 1 where the matrix is to be illuminated and 0 elsewhere. Each horizontal bit pattern in Fig. 2 is converted to a byte and stored, scan line by scan line, in the character generator, which is often a prom, so that the character set can be changed at will.

If 296 horizontal scan lines are available, and a 5 \times 7 matrix is being used with three scan lines free between each row of characters, then 29 rows of characters could be fitted onto that screen. This would not be very readable and would not allow for lower-case letters with descenders such as 'g' or 'y'. They are accommodated by increasing the depth of the matrix or by raising them into the matrix, which can be strange visibly.

The character clock indicates the rate that characters appear on the screen. If dot clock is 100MHz and each character is 5+1 dots wide, then the character clock rate is 10/(5+1) = 1.67MHz.

Cursor

The cursor is a block or bar of light, often flashing, which moves around the screen indicating the position where the next character is to appear. As the screen is filled with text, so the cursor moves along covering each line in turn: carriage return sends the cursor to the start of the next line down. When the cursor reaches the end of the bottom line on the screen, it is common for the text to scroll, which means that each line of text moves up the screen one line and the top line disappears.

Video ram

Figure 3 shows a typical, minimum visualdisplay system.

Screen information is stored in an area of ram known as video ram: in older designs, this ram often has separate data input and output pins. Each byte in the video ram corresponds to a position on the screen; for example, a screen having 16 rows of characters with 64 characters in each row requires 16×64 , i.e. 1024 contiguous bytes of video ram. The first byte corresponds to the first character on the first row, the second to the second character on the first row . . . the 65th byte to the first character on the second row and so on until the 1024th byte which corresponds to the last character in the last row.

A code has to be stored in each location to define what character will appear at the allocated position on the screen. This code is usually an ASCII seven-bit code; the character generator is coded similarly. As the video ram is likely to be eight bits wide, and the ASCII code only seven, the spare bit can be used for other purposes.

The video ram is accessible by both the video control circuitry and the user's system - the latter may well want to read the video ram as well as write to it. Exactly how the circuitry arbitrates between the two interested parties is a matter for some care. In Fig. 3 a multiplexer is fitted to the address lines feeding the video ram so that they can be switched between the user's system and the video control circuitry, which issues a series of 64 sequential video ram addresses. At the top of the screen, the first address issued is 000H, as this corresponds to the first byte on the first row, the next 001H and so on up to 03FH. Suppose that 41H is stored in location 000H; shortly after the issue of that address by the control circuitry, 41H appears data output pins and this code is presented at the input of the character generator. The control circuitry also issues a row address for the character generator, which increments for each scan line of the character. The display-enable line is active except during blanking and the cursor line at the time it is present on the screen.

Continued next month

No hangover!

Hangover, a rather loose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you're listening to a loudspeaker.

Take it away and there's a new world – the loudspeakers have nothing more to say – instead there's just the orchestra and the magic of the music. If music is an important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you've ever made.

Perhaps even something to celebrate about. For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE18 7DB. Telephone: (0480) 52561.

WW - 013 FOR FURTHER DETAILS

The best ref.for the low power game.

What makes the new Ferranti ZNREF Series such a sharp-eyed reference source in the lower power field?

A minimum operating current of 150µA. Voltages from 2.5V to 10V. Excellent temperature stability. Low dynamic impedance. Trimmable output. A choice of initial voltage tolerances. And the ability to control the game over a wide range of currents and temperatures.

Whatever league you're in-data

acquisition systems, portable instrumentation, codec systems or digital voltmeters, put the whistle in the hands of one of our ZNREF Series and win the game. Send for data or contact.

Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP. Tel: 061-624 0515/6661 Telex: 668038

FERRANTI Semiconductors

WW - 0% FOR FURTHER DETAILS

Distributors: Celdis, Reading, Tel: 0734 585171 • Farnell Electronic Components, Leeds, Tel: 0532 636311 • Intel Electronics, Henlow, Tel: 0462 812505 • ITT Electronic Services, Harlow, Tel: 0279 26777 • Midwich Computer Co., Bury St Edmunds, Tel: 0284 701321 • Semicomps, Keighley, Tel: 0535 65191 • Semicomps, Kelso, Tel: 0573 24366 • Swift-Sasco, Crawley, Tel: 0293 28700.

AUDIO OSCILLATOR WITH TONE BURST

An audio signal generator, providing both sine and square outputs from 10Hz to 250kHz. Switch-controlled logic circuitry provides a variable mark/space-ratio tone burst, and the output can be switched to include a RIAA network

This article describes the design and construction of a signal generator capable of producing both sine and square waves in the range 10Hz-250kHz. Comprehensive tone-burst generation facilities are also provided. The oscillator section is a conventional Wien-bridge configuration, using an RA53 thermistor for amplitude stabilization; and for those who have no requirement for tone burst facilities, the oscillator, associated attenuator, and output amplifier may be used as the basis for a good general-purpose sinewave generator. The sine-wave distortion has not been measured, but the distortion figure for this type of circuit is usually claimed to be 0.5 -1.0% over the 20Hz - 20kHz range. Also included in the oscillator section is an octave switching arrangement (very convenient for checking filter slope rates) and an RIAA pre-emphasis network, which may be used for testing the performance of magnetic pickup preamplifier inputs.

Circuit description

The oscillator, shown in Fig. 1 employs a Wien-bridge network to determine frequency and the oft-used R53 thermistor stabilizes the oscillator output at about 1V r.m.s. It is the simplest (and most reliable) form of stabilization, its main drawback being a relatively long thermal time constant which gives rise to some output-amplitude bounce on changing frequency.

Variation of R_A/R_B and/or C_A/C_B control output frequency: R_1 and R_6 set the maximum frequency for a given value of C; minimum frequency is determined by the

by J. T. Tiernan, F.S.E.RT.

maximum value of R_A/R_B (plus, of course, R_1 and R_6). In practice, the value of C_2 also affects the lowest frequency that can be obtained – the larger the value of C_2 the lower you can go.

A CA3140 op-amp is used as the active element in the oscillator, with R_7 included to help it sink current to the 0V line. With out R_7 , there is noticable clipping of negative half cycles of the output sinewave. A 741 may be substituted directly for the 3140, but the 741's poor slew-rate performance will limit the upper frequency obtained to around 50kHz.

Frequency determination. Many signal generators have frequency bands spanning the 15-200 range; but that is not always convenient, and this design works in bands of 10-150 via the secection of $CA_{1.4}$ and $CB_{1.4}$ (Fig. 2). An additional and useful feature is provided by capacitors $CA_{11.44}$ and $CB_{11.}$ 4 in conjunction with S₇, operation of which effectively halves the value of the selected capacitors and causes the output frequency to be exactly doubled. It allows for quick and convenient checking of filter roll-off slopes.

The bandwidth of a given effect is usually proportional to its centre frequency, and this implies that it would be appropriate to give more dial space to the

Fig. 1. Wien-bridge oscillator circuit with output amplifier. Frequency determining network shown in Fig. 2.

lower frequencies in order to keep bandwidth vs frequency in proper perspective. Many commercial signal generators for serious audio work give approximately equal space on the dial scale for each octave of frequency covered, and the (nearly) ideal component for R_A/R_B is a dual square-law potentiometer. Such components are available but, besides the expense, they are wirewound, rather large, and not well suited to high-frequency operation. However, shunting the active section of a log-potentiometer, as shown in Fig. 2 (R₃₂ and R₃₃ across R_A and R_B) produces a very acceptable result. Frequency calibration holds good up to about 50kHz, but above that there is a gradual divergence leading to a -15% error at the maximum output frequency.

The output from the oscillator at points E and F of Fig. 1, is about 1V r.m.s. and is fed to the tone-burst section (to be eventually returned to point G for output conditioning). Those who wish to make use of the oscillator section only may link points E and G directly.

Attenuator. Resistors $R_{8, 9, 10}$, in conjunction with S_2 and P_1 , form a simple decade attenuator. The decade divisions are not exact owing to the finite input impedance (47k) of the output amplifier. The attenuator is placed before the amplifier in order to realise minimum output impedance, and hence maximum drive capability at the output terminal. If 600 ohm output impedance is required it can be achieved by bridging points M and N with a 600 ohm resistor.

Output section. The output amplifier is a simple class B design with a gain of about 2.5, and it is capable of driving output loads as low as 10 ohm (but at reduced output, about 300mV maximum). There are no discernible crossover effects and its performance is far superior to that which could be obtained by using, say, another 3140 op-amp. The d.c. levels have been chosen to allow operation down to +7.5V supply voltage (the lowest value at which the battery supply can be considered usable) at which the amplifier will deliver 2V r.m.s. before the onset of clipping. This approach restricts the maximum potential output which could be realised for supply voltages above 7.5V, but it should prove adequate for most test applications. With the amplifier gain value chosen it will always be possible to provide slight overdrive at the maximum settings of S2 and P1; and the short circuit output current is limited to 50mA r.m.s. with $R_{16}=R_{17}=56$ ohms. Output rise and fall times (square-wave input with $C_{12} =$ 18pF) are symmetrical and surprisingly good for so simple a design.

The final bit of output circuitry is a passive RIAA pre-emphasis network, accurate to within 1dB, and useful for carrying out equalization checks on magnetic pickup preamplifiers. The attenuation factor of the network measures 31dB, and output impedance 3k3 ohms, at 1kHz.

Tone burst generator

The ability to generate short but precisely defined bursts of signal is a very useful attribute for a piece of audio test equipment; audio systems can be fed with test inputs which approximate to the real-life situation, and the following applications spring immediately to mind:

-amplifier peak power determination;

-visual inspection of amplifier transient behaviour;

-measurement of noise reduction circuitry performance; (attack/release times and frequency sensitivity)

-loudspeaker tone burst testing. In the circuit to be described, c.m.o.s.

In the circuit to be described, c.m.o.s. logic i.cs are used to generate the toneburst control signals. The design uses four i.cs, and tone-burst timing is controlled by the outputs of a single 12 bit counter, clocked at the oscillator signal frequency. An oscilloscope pre-trigger is produced one half cycle before the start of a tone burst.

Logic description. The circuit diagrams for the control logic are given at Figs 4 and 5, but to aid understanding, an equivalentfunction logic version, with associated waveforms, is given at Fig. 3. (The waveforms assume selection of the Q_1 and Q_2 outputs – points G and H – from the counter, to set the number of cycles in the burst and the total sequence period respectively.)

Referring to Fig. 3; the counter is running constantly, clocked via a squaring amplifier and Schmitt trigger (note that the counter advances on the negative transition of the clock signal). Every time

Fig. 3. Basic circuit of tone-burst switching, with waveforms.

G goes positive it will either set or maintain toggle output J at logic 1. Each positive transition of H will reverse the status of the first toggle, but reset will occur as soon as there is a positive transition at G.

Since the counter advances on the negative clock transition, the states of J and K will not be transferred to X and Y until half a cycle after they (J and K) have changed: this system ensures there will be no odd triggering effects due to counter propogation delays, but it will provide a convenient (and necessary, for some 'scopes) sync. waveform half a cycle before the analogue gate IC5 is opened for a toneburst transmission. During the X 'on' period, the upper gate of IC5 transmits the input signal to the output attenuator: during the Y 'on' period it will pass whatever is present at the input of the lower gate, which is a d.c. level set by P_4 (usually to the centre level of the signal waveform on the upper gate) on which may be superimposed the input sine wave from point A, at an amplitude determined by the setting of P₃. The trigger control, P₂, sets the mark/space ratio of the Schmitt-derived square wave, and hence either (a) the duty cycle of the output waveform (square-wave output selected) or (b) the point on the sine wave at which the tone burst starts. Wave**Fig. 4.** Tone-burst gating. Inputs from circuit of Fig. 1. (E and F) and output to G in Fig. 1.

forms M_1 , M_2 and P give some idea of the effects of P_2 , P_3 , and P_4 . Note that the waveform lettering is correct in relation to Figs 4 and 5 except those noted arbitrarily as X and Y at the inputs to the analogue gates.

Taking the real-world circuits and dealing first with Fig. 4, Tr_4 takes the input sinewave, plus a 4.5V d.c. level, from point F in the oscillator section and raises it to a level suitable for operating the Schmitt trigger IC_{2/1}. Variation of P₂ allows variation of the m/s ratio of the resulting square wave between 0 and 100%. The Schmitt circuits invert the input waveform, and thus S₄ will select a

clock-pulse train which may be either in phase or 180° displaced from the input sinewave. The setting of S₄ (INVERT) determines the polarity of the output tone burst, i.e. 'n' cycles, starting with a positive half cycle, or 'n' cycles starting negative. A third Schmitt, IC₂/₃, is used to invert and buffer the square wave for input to the analogue gate, and R₂₆/C₁₂ attenuate it to approximately the same pk-pk amplitude as the sinewave (but only at V_{supply} = 9V; the square wave amplitude will vary according to the actual supply voltage).

The square wave at point F clocks the counter to produce division ratios 2, 4, 8, 16 . . . 2048, 4096 at the $Q_0 cdots cdots Q_{11}$ terminals, and the selected Q points are fed to the 'set direct' and clock inputs of IC_{4/2} (a D-type flip-flop with the D input on pin 9) – refer back to Fig. 3 for the

Fig. 6. Setting S₈ in Fig. 5. to "PATTERN" produces this type of output.

Fig. 5. Switching for tone-burst gating. Circuit connects to G and H in Fig. 4.

waveforms. Either the J or K output may be selected to feed the D input of IC_{4/1}, and the position of S₅ determines the toneburst /space relationship of the output sequence. For $G=Q_2$, $H=Q_7$, $S_5=K$, the output will consist of sequences of eight cycles of signal followed by 248 (=256-8) cycles of 'space'. With S₅ = J and Qs unchanged, the output sequence will be reversed to 248 cycles of signal and eight cycles of 'space'.

For constant sine or square-wave output (S_6) the Q selection switches (Fig. 5) are all set to 'off' $(J = 1 \text{ via } R_{25})$ and $S_{5(a)}$ is set to select K (REVERSE).

The sync. output is taken from either J or K via $S_{5(b)}$ and buffered out via $IC_{2/6}$

and R_{28}/C_{14} . In practice, point M can be connected directly to point L; $S_{5(b)}$ is only required if your oscilloscope 'prefers' triggering from a particular polarity waveform when $S_{5(b)}$ can be wired accordingly.

Q switching (Fig. 5). It is appropriate to look at the counter switching arrangements at this point rather than going immediately to the circuitry around IC2/4 and IC_{2/5}. There are 12 Q switches, one for each of the counter outputs $Q_0 - Q_{11}$, and the interconnexions are such that, regardless of the total number of switches in the 'on' position, only the outer two are effective and feeding Q signals to S₈. With S₈ in the BURST position, the generated control signals are as depicted in Fig. 3. The time period contribution of an 'effective' Q switch depends on whether it is the first (feeding G) or the last (feeding H); the last switch sets the overall sequence time period in accordance with the normal binary weighting of its Q input, i.e. $Q_0 = 2$, $Q_2 = 4$, $Q_2 = 8$ etc. The first switch sets the burst-time period within the overall sequence at a value equal to half its binary weighting $(Q_0=1, Q_1=2, etc)$. Waveforms G, H, J make the relationship clear.

When S_8 is in the PATTERN position, the situation is rather different and the operation cannot be seen from the simple representation at Fig. 3. The waveforms given in Fig. 6 show what happens when $G=Q_3$ and $H=Q_0$. When, say, $G=Q_6$ and $H=Q_2$, the output will consist of 128 cycle sequence periods, within which there will be four bursts of eight cycles spaced at eight-cycle intervals. This option may have no useful application, but the result is too pretty to ignore, and it is the only option which can produce 1:1 mark-space ratio in tone-burst mode.

Turning now to the last two elements of IC₂ (IC $_{2/4}$ and IC_{2/5}); these are used to form a 'battery saver' circuit feeding a front panel led 'on' indicator (D₃). With the component values specified, C₁₆ charges (via R₂₉) and discharges (Tr₅ and D₃) on a three-second cycle, causing the led to flash appropriately. But with the led buried in a plastic bung for panel mounting, and in a well-lit room, the effect is, frankly, disappointing; the led needs to be reasonably openly mounted, and angled upwards, for it to be worthwhile.

The resistor R_{30} and terminal AA are provided to give constant led operation when the generator is fed from an external supply (see Fig. 7); but if a rise to 16mA on battery operation can be tolerated, terminal AA may be connected permanently to the +9V supply line.

Finally, in this description of the toneburst logic, a couple of points about the nature of the input to terminal A should be mentioned. In order to exercise smooth control of the m/s ratio fo the square wave out of $IC_{2/1}$, the input circuitry for Tr_4 has been designed to accept a sinewave input of about 1Vr.m.s. with a d.c. component of about 1Vr.m.s. with a d.c. component of about +4.5V. It is also worth mentioning that shunting P_2 (22k) with a 33k resistor gives smoother control than the potentiometer on its own. The signal inputs to

	Specification
All measurements taken	with battery supply, V=9.5V
Frequency range	10Hz-250kHz in four overlapping bands. 10-150 nominal band scale plus octave multiplier.
Output waveforms	 continuous sine wave continuous square wave with variable m/s ratio and symmetrical rise/fall times: to 70% 60ns to 90% 250ns at 7V pk-pk output and 10k Ω load. Sine-wave burst: any binary figure (1,2,4,8 etc) between 1 and 2048 cycles within an overall timing sequence selectable between 2 and 4096 cycles. Square-wave burst, as for 3. Either 3 or 4, but with variable-amplitude sine-wave, interposed between the main burst signals. Group burst patterns All the above but with RIAA pre-emphasis.
Maximum output signal (1KHz sine wave)	$R_L = 10k \Omega 2.5Vr.m.s.$ $R_L = 600 \Omega 2.25Vr.m.s. (+9dBm)$ $R_L = 100 \Omega 1.5Vr.m.s.$ $R_L = 10 \Omega 300mVr.m.s.$
Amplitude/frequency stability *Square wave amplitude	+0.5 -1.0dB, 10Hz-250kHz (ref. 1kHz, 2V r.m.s.) Variable up to 7V pk-pk
Short-circuit output current	Limited at 50mA r.m.s.
Supply requirement	7.5-9.5V at 10mA (internal batteries) or 7.5-12V at 12-20mA (ext. supery)

the analogue gates (IC₅) must not go outside the limits bounded by the power supply feeds to the i.c. Slight overdrive will result in clipping of the output and severe overdrive may cause permanent damage to the device. The output from Point F on the oscillator fulfils both the above, and if anyone wishes to make up the tone-burst logic only, to be driven from a generator with an earth-referred output, a coupling network similar to that

continued on page 86

+9V

15k

WIRELESS WORLD OCTOBER 1982

TAPE VOICES

It is now more than eleven years ago that Konstantin Raudive's book, "Breakthrough" announced the discovery of the tape-voice phemonenon to the English speaking world. The publication started what at that time was expected to become the greater challenge in the field of parapsychology and electronics.

Wireless World also carried a detailed review of the book "which I strongly commend to your attention" (Vector, June 1971), and the comment that "the problem cries out for investigation". For the sake of truth, it must be admitted that some interesting investigations indeed was carried out, and the results of some very convincing tests (by Pye, Belling-Lee, and others) were published. Also, a lot of articles, radio and television programmes dealt with the matter. But after a short time, the interest decreased, and today (to my best knowledge) all research is done outside Britain.

Can it really be true that British engineers and technicians (I mean, of course, real technicians and not modern black-box manipulators with digitalized brains) have completely given up this, "the greatest challenge"? I can't believe that this should be the case.

Anyhow, if there is somebody working on the technical aspects of this matter, I should be very glad to hear of it. Peter Stein 3400 Hilleroed

Denmark

In Appendix 1 of the interesting article "LM 109 three-terminal voltage regular" (March 1982), J. L. Linsley Hood sounded hardly convincing when he neglected the last two terms of equation (1), as these are strongly temperature-dependent. I would like to propose a simpler, but more credible solution.

The voltage across a forward-biased emitter junction in silicon is approximately 0.6V and decreases by 2mV per degree Centigrade. Therefore $V_{BE}=0.6$ and $\partial V_{BE}/\partial T = -0.002$. On the other hand,

$$V_{\rm BE} = \frac{kT}{q} \ln \left(1 + \frac{I_{\rm E} - \alpha_{\rm I}I_{\rm C}}{I_{\rm EO}} \right)$$

where α_I is the inverted common-base current gain. As I_E and I_C are much greater than the leakage current I_{EO} and α_I is in the order of 0.5, it is reasonable to assume that

$$\frac{I_{\rm E} - \alpha_{\rm I} I_{\rm C}}{I_{\rm EO}} \gg 1$$
$$V_{\rm BE} \approx \frac{kT}{q} \ln \left(\frac{I_{\rm E} - \alpha_{\rm I} I_{\rm C}}{I_{\rm EO}} \right)$$

Imposing the condition $I_{C1}=10I_{C2}$ for two identical transistors at the same temperature,

$$\frac{I_{\rm E1}}{I_{\rm E2}} = \frac{I_{\rm C1}}{I_{\rm C2}} = \frac{I_{\rm E1} - \alpha_1 I_{\rm C1}}{I_{\rm E2} - \alpha_1 I_{\rm C2}} = 10$$
$$\Delta V_{\rm BE} = \frac{kT}{q} \ln\left(\frac{I_{\rm C1}}{I_{\rm C2}}\right)$$

which is equation (3) in the article.

$$\frac{\partial}{\partial T} \Delta V_{\text{BE}} = \frac{k}{q} \ln \left(\frac{I_{\text{Cl}}}{I_{\text{C2}}} \right) = \frac{\Delta V_{\text{BE}}}{T}$$

WIRELESS WORLD OCTOBER 1982

The reference voltage should be independent from temperature:

$$V_{out} = V_{BE} + \delta \Delta V_{BE}$$
$$\frac{\partial}{\partial T} V_{out} = \frac{\partial V_{BE}}{\partial T} + \delta \frac{a \Delta V_{BE}}{\partial T}$$
$$= -0.002 + \frac{a \Delta V_{BE}}{T} = 0$$
$$\delta \Delta V_{BE} = 0.002T = 0.6 \text{ volts for } T = 300^{\circ} \text{K}.$$

Finally,

$$V_{\rm out} = V_{\rm BE} + a\Delta V_{\rm BE} = 0.6 + 0.6 = 1.2 \rm V,$$

which is the "band-gap" potential for silicon. W. Falcone,

Department of Pharmacology Leeds University.

CALCULATING V.S.W.R.

I have stumbled upon a quick method of calculating v.s.w.r. when the reflection coefficient is known and vice versa, which may be of interest to *Wireless World* readers. This method is especially helpful for use with a scientific pocket calculator. The theory behind this method is as follows:

$$\mathbf{v}.\mathbf{s}.\mathbf{w}.\mathbf{r}.(\mathbf{s}) = \frac{\mathbf{l} + |\mathbf{r}|}{|\mathbf{l} - |\mathbf{r}|}$$

where r is the reflection coefficient. This function has a minimum value of 1 when |r|=0, and a maximum value of infinity where |r|=1.

A function with identical properties is tan $(45^\circ+|x|)$ which is 1 for |x|=0 and infinity for $|x|=45^\circ$. Expanding,

$$\tan (45^{\circ} + |x|) = \frac{\tan 45^{\circ} + \tan |x|}{1 - \tan 45^{\circ} \tan |x|} = \frac{1 + \tan |x|}{1 - \tan |x|}$$

This leads to the conclusion that if

 $s = \tan (45^{\circ} + |x|, |x| = \tan^{-1}|r|$

 \therefore tan ⁻¹s=45°tan⁻¹|r|

The method of calculating |r| from s is therefore to convert s into an angle by taking the inverse or arc tan on the calculator, subtract 45° and then take the tan of the difference. A. Marshall

Teddington

Middlesex.

DOUBLE-BLIND

IT would seem that the double-blind listening test (d.b.l.t.) method has been primarily concerned with measurement oriented methodology. Little, if any, consideration has been given to the hearing processes and the listening behaviour involved in the design of the test method. I believe there is reasonable cause to doubt the results of this test method.

The A-B d.b.l.t. is conducted in conditions which do not represent the situation in which we normally experience, reproduced music. Perhaps a test that more closely parallels conditions in which audiophiles say they've heard differences would be a step in the right direction. Those conditions include but, are not limited to: aural familiarity with the equipment; aural familiarity with the room; and both of the above achieved through listening periods of an extended length of time.

Consequently, for a valid listening test, the person doing the test needs to be very familiar with the system; all of its components together in the particular room in which the test is being conducted. This would probably be the home system of the person doing the test. A d.b.l.t. which ignores the normal listening conditions should be suspect.

Differences seem most noticeable (after long familiarity with one unit) the first few moments after a change is made. After changing to the unit on which one heard a difference, the longer one is exposed to only this new unit the less one is struck by the difference between the two. Long term listening periods (familiarity) are necessary to hear differences that are most noticeable when initially changed to another unit.

Shortening the listening period (as d.b.l.t. are now conducted) does not seem to lead to the same degree of noticeable difference. It seems that as we shorten the listening period between units the more alike they tend to sound. Carried to extreme, if we switched between the two units under test very rapidly there would be no percieved difference at all. We hear a composite of the two. Such qualities as imaging and related sound field perceptions require careful long term listening. In many cases only long term listening comparisons will clearly reveal a difference between the two and what that difference is.

Audophiles spend many hours listening to music via their own systems and develop a high degree of sensitivity with those particular systems. In many cases the equipment used compliments their perceptual biases, which increases the person's enjoyment and sensitivity to certain interests. Equipment changes are more likely to be noticeable in this environment, and it is in just this kind of environment that many audiophiles say that they hear differences.

The process of subjecting an individual, or worse, a panel of listeners, to only an evening of d.b.l.t. in an unfamiliar acoustical environment, with unfamiliar equipment and adding a randomizing procedure to the testing, results in just what one would expect – insensitivity and aural confusion. Such testing to date has been rather like an experiment where we design instrumentation to measure very accurately certain parameters but we don't understand the experiment and therefore gather accurate garbage. No method exists that can "prove" either the

No method exists that can "prove" either the existence or non-existence of a given perceptual phenomenon. Thus the astute audiophile will note the claims and counter-claims and the conditions that produced them, and will attempt for himself to hear (or not hear) what was claimed. He would be better served to listen for himself rather than accept others' biases and perceptions or the results of d.b.l.ts. As long as there continues to be an interest in listening tests, inquiry into the nature and behaviour of the listening and hearing processes must be sought, understood and appropriately incorporated. Richard N. Marsh

Livermore

California, USA.

TELETEXT DECODER

Mr Alan Pemberton's letter on p. 49 of February 1982 WW points out why the original erase page circuitry does not work correctly with interleaved magazines, as currently used on 'Oracle'.

Unfortunately, I found that the circuit he suggested, while working fine on Oracle, caused the loss of the first 4 rows of Ceefax pages (following the header) on my decoder. In his modified circuit, when 77,1 is high, the negative strobe pulses from 71,3 pass through 77,6 and clock IC₇₈ on their positive going back edges. When 77,1 is low, 78,11 is held low regardless of 71,3.

However, as 71,3 is normally high, IC_{78} will also be clocked when 71,5 goes high, and I suspect that I was encountering unwanted loading of IC_{78} at this point.

The modification can be simplified by leaving the feed to 78,12 unchanged from the original design, while And gating 71,3 with Q (78,8) instead of 71,5; so that once IC₇₈ is set, the clock is disabled until the bistable is cleared by the next field sync. on pin 13.

As my decoder uses the whole of IC_{77} for other purposes, the And gating was achieved by inserting a *germanium* diode between 71,3 and 78,11 (cathode to 71,3); and adding a second one from 78,11 to 78,8 (cathode to 78,8).

For the correct operation of the decoder with interleaved magazines, it is essential to break the link from 5,9 to 21,1; and to carry out the modifications described on p.60 of February 1977 WW, which check the magazine number of every row.

J. H. Hinton

Cambridge

I have received details from Humphrey Hinton of his own modification, and now see the reason for the odd behaviour of my modification in his decoder. An earlier obscure modification of my own had resulted in IC₇₈ being clocked by positive-going pulses, and not negative-going as in the original design.

A simple re-arrangement of the gates of IC_{77} will ensure that 'standard' decoders will function correctly on both Oracle and Ceefax.

I thank Mr. Hinton for bringing this to my attention and apologise to constructors who have tried the modification without success. Alan Pemberton Sheffield

I was pleased to see in the Letter Column (WWFebruary 1982) that an interest on the WW-Teletext decoder still prevails. I was encouraged by Mr. Pemberton's letter to modify the clear page detection circuit enabling the decoder to work with interleaved magazines. Alas, I could not get it to work satisfactorily so I reconfigured the two spare gates as shown below.

This works upon the simple strategy that once a clear page bit has been correctly detected by 78(8), it can only be reset by the frame sync. pulses one field later, thus producing the required clear page action.

A few simple modifications which avid teletext followers may find useful are: -

i) Reduce value of C_{16} in the analogue board from 4n7 to a value closer to 470 pF, particularly if "missing rows" are experienced. This increases the attack rate of the peak detector such that during the framing code the slice level changes by less than 5%.

ii) A spare Nand gate (e.g. 49 (4,5,6)) may be used to display rolling headers only from the selected magazine, in order to prevent the ITV/ITN characters twinkling during "roll headers".

iii) Of greater annoyance than (ii) are the flashing time digits on Oracle, due to a difference (at present) between magazine 200 and all other magazines. With a difference of one or two seconds, the time display gives the illusion of an incorrectly adjusted decoder, whilst greater differences are simply confusing. The cure is straight forward, 62(10) is taken from 80(4), but the time is only updated from the selected magazine, which, for example, leads to

an update every 16 seconds on Ceefax 700 magazine.

iv) If the ram disable pulse is used from $IC_{318}(11)$ the page clearing function will not clear those locations where the selected page or time information is displayed. This can result in the header row changing colour during page/time selection due to the random bits stored in the rams at these locations. This can be overcome if $IC_{309}(9)$ is taken from 78(9) which then ensures that Hamming bits are erased following roll or switch on. Ken Drew

Nottingham

THE DEATH OF ELECTRIC CURRENT

Oh dear! Ivor Catt's latest letter (August) identifies him as a prime candidate for compulsory reading of Dr Scott Murray's series of articles. Then, at least, he might not confuse theories.

Classical electromagnetism, as developed by Maxwell in the 1860's, makes no appeal to the existence of the electron. For the case of a wave guided by a pair of wires, the wires determine the boundary conditions to the solution of the equations. Electrostatic theory requires that electric flux lines terminate on charges, but this is not always so for the electromagnetic wave. In any case, the classical theory of electric conduction imposes no limit on the speed of charges in the conductors – that comes from relativity theory.

So, Mr Catt is muddling models, which brings me back to the original point. Electric current and electromagnetic waves are only mechanistic models of processes which are beyond our comprehension – what Dr Scott Murray calls miracles. Hence, to say that a model does not exist is meaningless. If Mr Catt chooses not to like the electric current model that is his privilege, but it does not seriously devalue the usefulness of the model, which is judged by criteria other than credibility or personal preference.

Incidentally, M. G. Wellard may wish to note that the speed of light in water (refractive index ~ 1.33) is considerably less than that in vacuum. Cerenkov radiation is the electromagnetic equivalent of Concorde's sonic boom. Its existence (which is a fact) does not conflict with relativity. Perhaps Mr Wellard will apologize to Cerenkov.

R. T. Lamb British Telecom Milton Keynes

If Mr Catt's difficulties with electromagnetism are summarised by the example he gives at the end of his letter of August 82 then perhaps he can be helped. As a pulse travels along the line the charge that terminates the electric field lines is provided by a current I. This consists of mobile electrons of charge e and if there are n such electrons per unit length of the line their velocity is v=I/ne. Suppose that I=1A and the conductors are copper wires of 1 mm² cross section then, ignoring the skin effect V is about 10^{21} per cm. Thus with e=1.6.10⁻¹⁹C we have V=6.10⁻³ cm s⁻¹ or 2.10⁻¹³ the velocity of light. The skin effect, for a pulse of 1 ns risetime might raise V to 2 cm s⁻¹ and, if the conductor is perfect and the electronic motion is solely limited by inertia V might even be as high as 100 cm s⁻¹, so that the electrons actually have to acquire a kinetic energy of 2.5.10⁻¹² eV from the field.

F. N. H. Robinson Clarendon Laboratory Oxford

I write in response to Mr Ivor Catt's request in his letter on "The Death of Electric Current" (W.W. Aug. 1982).

The contradiction claimed by Mr Catt stems from his assumption that the apparent velocity with which charge moves along a conductor is the same as the velocity of individual electrons. It is well known from the free electron model of metals (see for example Solid State Physics: Second Edition: C. Kittel, Wiley 1956) that this is not the case. The current density, J (A/m), is given by NeV_D, where N is the number of electrons per cu. metre, e the electronic charge and V_D the drift velocity of the electrons. The drift velocity is the directed velocity component resulting from an electric field and superimposed on the thermal velocities of the electrons. The drift velocity is much less than the thermal velocity except in electric fields of very high values. The current density may be interpreted as qv, where q is the charge per unit length of conductor to sustain the electric flux of the TEM wave and v is the velocity with which the wave moves. Hence,

$$vq = NeV_D$$

and $V_D/v = q/Ne$ will be a small ratio in typical conductors. The statement that "such electrons would have to travel at the speed of light in a vacuum" is thus wrong. Dr J. Brown, C.B.E. Technical Director Marconi Electronic Devices Ltd

PHASE-SHIFTING OSCILLATOR

I read with great interest the February article by Roger Rosens on a phase shifting oscillator as I developed a similar oscillator recently. A feature of this type of oscillator is that amplitude stabilization can be much simpler than usual, and the circuit exhibits no amplitude bounce as the frequency is changed. As it is necessary only to limit the amplitude of oscillation and not the loop gain — which is constant with frequency — it is not necessary to include a thermistor, and the circuit shown has been found satisfactory.

This circuit is used successfully in our new high performance portable mixers, the 2000 series, giving 60Hz to 16kHz in a single sweep, at a distortion of less than 0.8%, and I have had the circuit working correctly at up to 500kHz.

Finally, another feature of this circuit, as developed by my colleague Steve Dove, is that if the loop gain is kept below unity, the circuit functions as a good bandpass filter! Mike Law

Alice (Stancoil Ltd)

LOW-DISTORTION WIEN OSCILLATOR

With reference to Mr Linsley Hood's "New way of using Wien network ," in the May issue, this 'way' was described in one of my originating British patents on RC oscillators about 35 years ago. An r.f. pentode amplifier was followed by a valve phase splitter and a filament lamp was used for amplitude stabilisation. Since then, this oscillator has been continuously updated by the use of bipolars, f.e.ts, and i.cs for the amplifier, and thermistors, f.e.ts, i.cs, and opto-electronics for the amplitude stabilizer. We still think that this is the best 'way' to use a Wien bridge and are grateful for Mr Linsley Hood's enthusiastic support. As he says, quite a lot of harmonic distortion is produced at the 'input' of semiconductors and op. amps and this is made worse when using the high driving impedances that we prefer for other reasons. Our measurements of distortion on TL 072 op. amps at output voltages of about 2V are far worse than those quoted for his oscillator and we have attributed this distortion mainly to a non-true class A output stage, perhaps wrongly. It is a pity that his curve of distortion against frequency is limited by hum, as it would be interesting to see whether the worsening at the lower frequencies was mainly due to the time constant of the thermistor or the increasing drive impedance.

As a 'two for the price of one,' the voltagecontrolled, variable-reactance device shown in Circuit Ideas in the issue November 1980 was described in my British patent, through the NRDC, about 25 years ago. The main advantages over variable-capacitance diodes are better frequency linearity and larger frequency variation due mainly to the fact that variable positive and/or negative reactance can be applied to a tuned circuit. This system allows the use of wideband swept oscillators with reasonably flat amplitude responses. It is also particularly useful for modulating the frequency of crystalcontrolled oscillators. We have considered the use of this system in variable-frequency filters and would be interested to know if our New Zealand friends have also considered this. F. G. Clifford Wynberg

South Africa

CARTRIDGE ALIGNMENT

The letter from Mr R. J. Gilson in our August issue contained an error in the second sentence of the second paragraph, which should read "... the angular error to vary with radius ..." – Ed.

AMATEURS AND BAND 1

G. M. Pheasant (August, 1982, page 60) expressed the hope that radio amateurs would be permitted access to the 50 MHz band when the 405-line television transmitters are withdrawn from service.

The BBC acknowledges the valuable contributions by radio amateurs to the study of propagation and wishes to encourage such activities. The Home Office and the BBC have recently discussed a proposal that exceptional permission could be given to a strictly limited number of UK radio amateurs to operate outside broadcasting hours in the 50-52 MHz band.

The BBC has no plans to continue broadcasting in Bands I and III after the existing 405line television services have been withdrawn. The future use of these bands is being urgently considered by the Independent Review of the Radio Spectrum from 30 MHz to 960 MHz. P. A. Laven

Assistant Head

BBC Engineering Information Department

It will be a great shame if a small portion of Band 1 isn't allocated to radio amateurs when it becomes available. This is a unique and valuable section of the spectrum for experimentation.

I propose the section 48MHz-48.6MHz, giving 48 \times 12.5kHz channels with the third harmonics falling in the amateur 2 metre band, and making them easily policed and identifiable. Any fourth harmonics would fall on the IBA's Ch.9 only. (As a tv technician in North Devon, I know only of one customer using this channel.)

With careful avoidance of specific local radio frequencies second harmonics shouldn't be any problem either.

These are my personal views and I welcome comment or letters of support. John Stacey G8BXO

South Molton

Devon

"Nobody ever became sunburnt as a result of exposure to a differential equation" remarks Dr Murray (The Electromagnetic Analogy, Wireless World August, 1982). No, but somebody may have avoided sunburn by taking note of the differential equations which describe the attenuation of ultra-violet radiation in its passage through the atmosphere and the reaction kinetics of the ozone layer. Seriously, though, there seems to be a basic misconception about the role of mathematics in physics, for its role is essentially predictive and in no way explanatory. One feeds whatever data may be available into a mathematical model and if the operation of the mathematics at least declares the input data to be mutually consistent and preferably also indicates a future state of the physical system which coincides with its actual evolution, then the mathematical model is regarded as a correct representation of the physical system.

A more fundamental and problematic question is whether every physical phenomenon can be "explained" by a mechanical analogy in which one can see a cause-and-effect relationship between the parts, of the type which occurs in the large-scale physical world and can be appreciated by our five senses. The answer appears to be negative, ever since the development of quantum mechanics, which has no parallel in ordinary large-scale mechanics. One has only to cite the application of particle/ wave quality both to electrons and to photons; but worst of all, there is even doubt whether causation rules in the world of microphysics which is represented by quantum theory. At this point one has to admit that one cannot "understand" the behaviour of elementary particles in terms of mechanical models. But if one accepts the logic of mathematics, one can accept the logic of mathematical models.

D. A. Bell Walkington Beverley

By the end of the last century it was conceded that space contained no unique reference point.

In a book on mechanics, published in 1888, Oliver Lodge commented "No such thing as absolute rest is known, but it is convenient, in mechanics proper, to consider the earth as a body at rest". This is still the current practice and as a result we have some very funny physics and peculiar paradoxes. In his 1905 paper on moving bodies, Einstein reiterated that there is no absolute rest, adding that his theory would not require an absolutely stationary space or an ether. He then proceeded to invent his own 'stationary'. He suggested we call a set of coordinates the "stationary system" and then use them to define the position and movement of a point, employing rigid standards of measurement, a completely impossible task since a fictional reference point can only produce fictional position and velocity.

In fairness to Einstein it should be mentioned that every physics text extant uses the words 'the velocity of a material point' in a manner which requires whimsical decision. We are told, B has a velocity v with respect to A and so travels from B to B' a distance l, in time t, so that l=BB' = vt. By a simple change of mind it could be claimed with equal truth that A has a velocity v with respect to B and moves a distance l = AA'. This dilemma is not solved by introducing conjurers' props like co-ordinate The solution is simple. In space with no absolute rest only the separation of material bodies and the change of separation with time, can be described. Individual velocity and distance travelled must remain permanently indeterminate.

Mention whould be made of Einstein's cooperative myopic observers, without whose help the theory would not have been possible. The one sitting on an imaginatively moving plank, claimed he saw a flashing lamp (A) screwed to the end of it; the other observer, riding on the declared stationary co-ordinates said he say the lamp fastened to the x axis of his system.

Einstein's science fiction was most successful from his point of view; it earned him notoriety and a better job. How relativity theory became required reading in our universities is something I cannot understand.

Rugby

CIRCUIT MODELLING BY HOME COMPUTER

Further to my own article appearing alongside Mr Weaver's in the August issue I compared the technique of my article using Mr Weaver's examples.

I enclose the resulting graph. It is interesting to note that whereas Mr Weaver's technique takes 75 seconds for 15 points, the enclosed graph of his Fig. 1 took 20 seconds to calculate 50 points for the same circuit, and a further minute to print the graph. This shows the undoubted power of a compiler, although the ladder technique is inherently faster than the indefinite admittance matrix technique of my article.

The ladder technique is normally superior for passive networks, but for active networks the indefinite admittance technique is essential. R. I. Harcourt

Orpington Kent

WIRELESS WORLD OCTOBER 1982

This comy of SSECM is licenced to HARCOURT SYSTEMS

PARABOLIC ANTENNA DESIGN

Guidelines for designing and constructing parabolic antennas are presented here. Theoretical background, applications and how the prime-feed configuration is affected by reflector parameters are discussed and emphasis is given to problems that arise when constructing such an antenna using a minimum of facilities.

Within the past decade or two, developments in technology caused by the demand for more frequency allocations and the need to use frequencies where background noise is less obtrusive have allowed good use of the radio spectrum above 1GHz to be made. At these frequencies reflector-type antennas come into their own. The parabolic-dish antenna – symbol of the modern communications world of satellites and microwave links is just one variety of reflector antenna, but one with which high gains can be realized in a modest physical space, provided that it is correctly made and fed. This article discusses the theoretical background to the design and application of parabolic antennas, and how a prime-feed configuration is affected by reflector parameters.

The gain of a parabolic dish over an isotropic antenna is given by

$$G = \frac{4\pi A\eta}{\lambda^2}$$

where G is the gain in real numbers (i.e. not decibels), A is the area of the aperture, λ is the wavelength and η is the overall efficiency of the system. η is always fractional and an efficiency of greater than 0.5 is difficult to obtain.

Much information about theoretical performance can be gleaned from this equation. Gain is directly proportional to area, and therefore to the reflector-diameter's square, and is also inversely proportional to the wavelength squared, so each time the diameter is doubled, or the wavelength halved, there is a possible increase of 6dB in forward gain. A difficult figure to estimate is efficiency. Apart from a reduction in gain predicted by the equation, efficiency is reduced as the wavelength becomes a significant fraction of the dish diameter. Further reduction in efficiency is caused by the presence of the prime feed, which also obscures part of the dish aperture.

For a given frequency there is a minimum dish size below which it may well be better to examine other forms of antenna. This occurs at around 10λ although that is by no means a sharp cut off. It may be of interest to compare the dish with another type of antenna which is more common at lower frequencies. The obvious alternative to a dish is a multielement Yagi. These are much used at u.h.f. and there is no reason why they cannot be used in the microwave bands. It

*Feedback Instruments Ltd

WIRELESS WORLD OCTOBER 1982

by M. L. Christieson*

is very difficult to adjust a simple linearelement Yagi to obtain useful gain, but those with quad loops can provide excellent gain in the 1-to-3GHz region. Yagis that have more than 30 elements become inefficient and it is normal practice to stack several individual antennas'. Each time the number of antennas is doubled a further 3dB is possible, but never realized, primarily because of additional loss introduced by the combiner. There is an upper limit when additional gain from further antennas is nullified by the ever more complex combiner. Parabolic dishes do not suffer from this drawback as they use a single antenna, making them the simplest type to design and adjust.

Highly directional arrays are generally used for two reasons and the type of paraboloid depends on which is more important in the particular application. The reasons are to

- reduce unwanted signals from other directions

- improve the signal from a very weak source.

The two effects are inseparable but any antenna may be optimized for one, usually at the expense of the other.

A parabolic dish may be either deep or shallow depending on the equation parameters. A deep dish obviously has its focus close to the surface while a shallow one has its focus at some distance. Rather than using the parabola equation to define

shape, it is more convenient to use the focal-length-to-diameter ratio. This ratio is very important in dish specifications. Figure 1 shows two dishes with the same diameter but with different f/d ratios. Note that because the diameter is the same, the maximum gain is the same. Dishes with a low f/d ratio, of about 0.25, are usually designed to give a high degree of side-lobe suppression while those with f/d ratios of about 0.5 are designed for optimum forward gain. The main use of the former type is in terrestrial microwave links where signal levels are quite high. For amateur work, good forward gain is usually more important and methods of optimizing this are now to be examined more fully.

For a given size of dish, it is efficiency that determines the system gain. Main factors which reduce total efficiency are

- spill-over

- 1 aperture efficiency
- phase errors
- blocking loss.

The first three are interdependent because spill-over, the amount of energy lost when the prime feed illuminates more than the dish area, is reduced by tapering the radiation pattern towards the edge of the dish. This however reduces the aperture efficiency which is greatest when the dish is uniformly illuminated. Phase errors, which may be caused either by a poor feed or by errors in the shape of the dish, are worse if no edge taper is used.

The first consideration of the dish builder is accuracy of the paraboloid. Clearly the nearer to the ideal shape the

Fig. 1. Two dishes with the same diameter but with different focus-to-diameter ratios. Dishes with a low f/d ratio usually give a high degree of side-lobe suppression while those with higher f/d ratios of around 0.5 are designed for optimum forward gain.

better, but this is very difficult to obtain, particularly for the amateur constructor. It is generally accepted that little benefit is realized by reducing peak errors to less than $\pm 1/8$ wavelength. Sometimes this is quoted in terms of r.m.s. errors which results in a much smaller figure and may be off-putting. Peak error means that no part of the structure should be more than $\lambda/8$ in either direction away from the ideal shape, so the most serious type of error is when the dish smoothly departs from the true parabolic shape.

At 2GHz, for example, $\lambda/8$ is nearly 2cm so at the low end of the microwave spectrum there is considerable latitude for the constructor. At higher frequencies, such as those proposed for direct satellite broadcasting at 12GHz, surface errors are more of a problem.

Another factor concerning the surface is the material from which it is made. Most commercial dishes are made from spun aluminium, and clearly a solid conducting surface is ideal. For amateur purposes it is permissible to make a dish from wire mesh, providing that the holes are not too large. A good approximation is that the mesh size should not exceed $\lambda/10$. This means that various sizes of chicken wire are satisfactory at low frequencies and many good systems have been built for the 2-3GHz region using aluminium screening material. Dishes designed for operation above 10GHz should have a solid construction. The thickness need not be great; aluminium foil on a fibre-glass backing could be used. On large dishes a mesh surface reduces the wind loading and weight, although a build-up of snow or ice can demolish an installation designed on that assumption.

Feeds

Once the reflecting surface has been constructed the feed must be optimized. Referring to Fig. 1, to avoid wasting energy,

Fig. 3. Basic front-feed parabolic antenna and two variations. Cassegrain feed is used for •antennas with unfavourable f/d ratios, but subreflector obscures part of the dish, causing problems with small antennas. The offset feed gives no blocking problems but is difficult to construct as the dish is neither symmetrical nor parabolic.

the radiation pattern of the prime feed should all be within a solid angle of $2\theta^{\circ}$. It is easier to visualize this in terms of a transmitting antenna but the same applies to a receiver. Ideally the radiation should be uniform over that area and then cut off sharply at the edge. This is impossible in practice and the compromise often used in amateur projects is a 10dB-beam width of $2\theta^{\circ}$.

This is difficult to achieve for 2θ angle greater than about 150° because at that point the horn aperture required becomes smaller than the waveguide capable of supporting wave transmission. A simple dipole and splash plate (reflector disc) could be used but it is difficult to adjust and its performance never equals that of a horn. It is convenient to arrange the 2θ angle to correspond with the pattern from the open end of a square or circular waveguide: this simplifies construction considerably. There is a direct relationship between f/d ratio and 2 θ angle so that the f/d ratio can be chosen to ease the construction of an efficient feed. This type of work cannot be exact without specialized test

equipment, but it is surprising how efficient a system designed using these rules of thumb can be. Figure 2 shows the approximate relationships between these parameters. There have been several good designs for high-efficiency feeds developed by amateur radio operators, some of which are referred to at the end of this article.

Problems of feeding a dish with an unfavourable f/d ratio can be reduced by using a hyperboloid sub-reflector and feeding the dish from behind. This is called a Cassegrain feed and is shown in Fig. 3. The disadvantage of this is that the diameter of the sub-reflector needs to be several wavelengths, depending on its position, and so it obscures part of the dish area. This blocking loss also occurs with front fed systems and is a factor worth considering when dealing with a small dish. Larger dishes have much greater surface areas compared with their associated sub-reflectors, and Cassegrain feeds are common on communication-satellite earth stations.

One method of preventing blocking loss is to use an offset feed, also shown in Fig. 3. Although an improvement in efficiency would be obtained using this method, it is not easy to construct as the dish is no longer symmetrical or paraboloid, which makes it particularly unsuitable for amateur construction.

Another loss which may occur is polarization loss, where the polarization of the incoming signal is not matched to that of the prime feed. High loss can occur when two linear polarizations are crossed. A linear to circular mismatch will usually result in a 3dB loss, but between left- and right-hand circular polarization a high degree of isolation is possible. This effect may be exploited to re-use frequencies on the same satellite. It is worth remembering that, when reflected from the dish surface, the sense of a circularly-polarized wave is reversed.

The method by which the dish is mounted depends on its use. In some applications it is not necessary to move it, as in a ground microwave link for example. Many dishes are used with geostationary satellites which only move a small amount each day. This small movement, which is non-cumulative, is often within the beamwidth of the dish so a simple fixed mounting will suffice. Where very-high gains are required it may be necessary to use some form of automatic-tracking system. These can be simple or complex and a decision between performance and cost is not easy to make.

Many methods have been used to construct paraboloidal dishes and the exact method depends on the facilities available. Most traditional methods rely on the reflecting surface being supported by struts or pulled into shape by nylon cord. These struts can be made from metal or wood providing that it is well protected. A method that is beginning to find favour, particularly for higher frequencies, is a glass-fibre shell with a thin conductive surface which is sometimes spraved on. Once a former has been made several dishes can be cast, so it might be worth several individuals combining their skills. A fibre dish has the overwhelming advantage of being very light but it may need to be made with a turn-over at the rim to prevent it distorting when mounted.

Any system designed for outside use must be protected against weather. Reference has already been made to the effect of snow and ice, but excessive heat can be equally damaging. At high frequencies, dimensional changes due to temperature can be a considerable problem as can distortion caused by a gust of wind, but these effects are not often noticeable on small dishes. Front-fed systems can also focus the sun's heat on the prime feed. It would be slightly annoying to see an expensive amplifier burst into flames on the first sunny day. If the amplifier is located at the feed the rain must be kept out of it by using a sealed container, preferably with a dessicator. My view is that if rain cannot be kept out it is far better to have a semi-open cover to make sure it runs out again. Precautions such as mounting the amplifier upside down so that water cannot collect in it, and a supply of plastic dustbin liners have kept several amplifiers operational for a number of years.

It is hoped that these ideas have equipped readers with the knowledge to start designing and building dish antennas with a reasonable trade-off between performance and economics. It is likely that with the interest in satellite television many more articles will appear describing individual practical designs; they will however all be based on the basic design parameters outlined here.

Further reading

- The ARRL Antenna Book, American Radio Relay League (latest edition)

- Performances of Fixed-Mount Earth-Station Antennas, S. E. Dinwiddy, ESA Journal 81/3

- Gain-Beamwidth Product and other Reflector-Antenna Relationships, A Saitto, ESA Journal 81/3

- Tubular Radiator for Parabolic Antennas, VHF Communications 4/1976, Verlag UKW-Berichte

- A Dish Anyone Can Build, Michael Brown, 73 Magazine, February 1982

- VHF-UHF Handbook, RSGB

- Pyramidal Horn Feeds for Parabolic Dishes.

D. Evans, Radio Communications March 1975 – Dish Antenna, D. Wardley, Break-in, May

1982

- Reference Data for Radio Engineers, Sections 25 and 27, Sams

PROGRAMMABLE GPIB-TO-SERIAL INTERFACE

Development of an earlier interface with talker/listener capability to remotely program functions within the instrument interface.

The original interface design (see panel) was extended to accommodate a secondary addressing feature to allow remote initalization of the uart control register, the instrument data speed generator, load an end-of-message byte into a latched comparator, and address the instrument as a GPIB/RS232C interface. These remote programmable facilities permit the designer to dispense with some of the switch packs used in the first design, adding a degree of programmable flexibility.

On any one contiguous bus up to 15 devices are permitted, but the primary address range is 31 talk and 31 listen addresses using single byte addressing. A controller may issue a primary address to identify an instrument then issue a secondary address to indentify a function within that instrument. For example, before an instrument can be operated effectively it may require initialization and range information, which could be programmed into latches selected by unique secondary addresses (Table 3 shows the range of addresses). When the controller issues the primary address over the bus the instru-

*Chris Jay was formerly with the Fairchild European Design Centre, Bristol and is now working at Marion Electronics, in Stroud.

by Chris Jay

The GPIB-to-serial interface featured in the July 82 issue of WW was conceived as a low-cost interface solution for instruments with a serial data link such as an RS232C port. When configured to a keyboard and addressed as a talker, characters typed on the keys are converted by the interface from serial to parallel data and transmitted over the bus data lines. A printer interfaced to the bus is addressed as a listener; data bytes received are serially encoded and fed to the serial input port of the printer. The interface used 13 i.cs including a 96LS488 to perform interface functions and message decoding, an IM6402 uart for the serial/parallel encoding of data, and an MC14411 as a frequency reference for serial transmission and reception at four link-selectable rates. During the talker-active state the interface could automatically recognize an end-of-text character, and assert the EOI line concurrent with the transmission of the final data byte in the character string. A 74F521 octal comparator achieved this by comparing the binary data waiting for transmission with an 8-bit data pattern set with switches.

ment will be conditioned to receive a oneof-four secondary address. For example, my listen address followed by my secondary address 1 (MSA 1) selects the instruments control register, MSA 2 selects the instrument data rate register, and MSA 3 selects an octal latched comparator so a unique end-of-text code may by programmed ¹. MSA 0 is the secondary listen address that selects the uart transmit buffer register. When addressed into the listener active state, data bytes sent to the uart are serially encoded and transmitted to the RS232C interface at a programmed speed and in the character format specified by the uart control register.

The 96LS488 may be configured for extended addressing by wire-linking the mode inputs M0-3 to the appropriate binary code as shown in Table 2 on page 72 of the July article. There are five choices of extended addressing but for a talker/listener there are two choices of TE/LE low

^{1.} The end-of-message latched comparator is used when the interface is an active talker. A string of data bytes may be sent over the bus, terminated by the unique end-of-text character. When this character is transmitted the comparator automatically recognizes the bit pattern and asserts the bus end-or-identify (EOI) line to indicate end-of-message.

speed, or TE/LE high speed. The choice of high speed is selected for instruments using three-state driver devices; in this design the mode inputs M0-3 are all configured to V_{cc} .

Table 4 illustrates a typical initalization procedure that should be completed by the controller-in-charge (c.i.c.) prior to the interface becoming an active talker. It does this by asserting the ATN management line; any current active talker relinquishes control of the bus lines. The first message issued is the unlisten command to ensure that unscheduled listeners do not receive data bytes intended for the interface circuit. To address the interface the c.i.c. issues the primary listen address (MLA); after receipt the interface expects to see one of its four secondary addresses. Assuming that the uart control register is to be initialized first, the controller sends MSA 1. When selected, the register is capable of receiving a data byte (DAB 1) over the bus lines. The control register is a fivebit latch in the 6402 uart; format of the control-bit pattern is shown in Table 6a. If the c.i.c. addresses itself as talker it can release the assertion on ATN and send the initalizing data byte to the instrument. After sending DAB 1 it regains control of the bus by asserting ATN.

It is necessary to un-address the control register by sending the unlisten message before sending the primary listen address of the interface, followed by the secondary address MSA 2 to select the data-rate generator latch. The controller releases the true assertion of ATN and as an active talker issues DAB 2 to program the correct. speed code - Table 6b gives the format. When the data byte has been sent, it reasserts the ATN line to regain control of the bus and complete initialization. The unlisten command is sent followed by MLA and MSA 3 which selects the end-ofmessage latched comparator. When selected the controller releases the true assertion of ATN to send the end-of-message byte DAB 3. When latched it re-asserts the ATN line, sends the unlisten command to unaddress the latched comparator and then sends the talk address of the interface (MTA), followed by the secondary address MSA 0 of the receiver register. The controller addresses the listeners by sequentially transmitting each listen address. On completion of addressing the controller releases the assertion in ATN, enabling the interface to enter the talker active state for transmission of data bytes².

In the circuit configuration of the programmable interface, the 96LS488 handles the interface functions and message decoding. An Intersil IM4602 uart converts parallel data to serial and serial to parallel and an MC14411 bit rate generator Table 1. Talk and listen address assignment

DIO ₈	DIO ₇	DIO ₆	DIO ₅	DIO ₄	DI003	DIO ₂	DIO ₁	
× × × ×	HHLLL	L L H H L						Primary listen address Unlisten Primary talk address Untalk Secondary address

gives a wide range of frequencies for rate generation³. Other logic circuits used are 74LS t.t.l. devices and two 74F i.cs, one of which is an inverting bus driver to buffer the cmos outputs from the uart onto the bus data lines because it satisfies the 48mA sinking requirement by the IEEE 488A specification. The μ A1488 and μ A1489 provide signal conditioning for RS232C line driving and reception.

Addressing

Secondary addressing is acheived by the quad two-to-one multiplexers of IC111, 74LS157, which select the primary and secondary addresses. The 96LS488 ASEL output is low when the primary address is being received, and high for secondary address selection. Address inputs A1-4 of the 96LS488 are driven by the 74LS157 multiplexer outputs which select a one-offour binary code set by switches 2-5. Note that A5 is configured directly to switch 1; this effectively reduces the secondary address range to 496 but saves on the multiplexing hardware. The primary address range of the interface is therefore configured on the switches 1-5. Secondary addressing is acheived when ASEL drives the select input of IC11 high. The bit pattern on switches 6 & 7 routes through to the inputs A4 & 3. Address inputs A1 & 2 are derived from the bus data lines 1 & 2 respectively. So a one-of-four secondary address will select the interface, putting it into the talker or listener-addressed state. On receipt of the secondary listen or talk address the 96LS488 outputs LAD or TAD go low producing a rising edge at the output of gate 1, connected to the clock input of IC7, a dual D-type latch.

So the logic state on inverted data lines 1 & 2 is strobed into the 74LS74 latch when the instrument is addressed. A one-of-four logic condition is stored, enabling the instrument to receive a data byte which can be sent to either the uart transmitter, uart control register, bit rate generator latch, or the EOI end-message comparator latch. When statisized the information remains programmed until the instrument is unaddressed then re-addressed. The Q outputs of the 74LS74 latches are wired to the address inputs of IC8, a dual one-of-four demultiplexer 74LS139. Outputs of IC8a route the RXST signal to the selected latch or register; IC_{8b} outputs O0 and O3 are used as enable signals ENBL0 and ENBL3 Signal **ENBLO** drives the S input of IC12, a quarter of 74LS157, which selects the correct handshake for the oneof-four instrument functions. The ENBL3 IC_{8b} output, selects the load function at theS0 and S1 inputs of the 74F524 latched comparator.

Table 2. Status codes

TAD	LAD	D/S/	E State
Н	н	L	Off line
н	L	L	Addressed to listen (LADS)
L	Н	L	Addressed to talk (TADS)
L	н	H	Serial poll mode (SPM)
н	L	Н	Receiving end-message (LACS)

DRB goes low when the interface is in talker active or serial-poll active state.

Status decoding

To perform the necessary interface status decoding the 96LS488 LAD, TAD and DRB outputs drive the A2, A1, A0 inputs of a 74LS138, one-of-eight decoder, IC9. Output O2 of IC₉ will be active low when the interface is either in the talker active state, or the serial poll active state, see Table 2 for status codes. Gate 2 is enabled by the $\overline{D}/S/E$ signal to provide a low output when the instrument is talker-active. The $\overline{D}/S/E$ signal when inverted by I₃, provides an enabling low for the input of gate 3. The gate 3 output goes low when the interface enters the serial poll active state. These or-gate outputs and the output O5 of IC₉ are labelled TACSENBF, SPASENBF and LACSENBF and used as low enable inputs for the three-state buffer-drivers. When talker-active the 6402 receiver buffer register outputs, buffer devices IC_4 and I_{13} (the EOI driver circuit) are enabled. During the serial poll, one half of IC₁₀ is enabled to drive data lines 1 to 3 with status bits and a second EOI buffer driver is enabled. During the listener active state the 74LS240, IC₃ (input buffer) is enabled. Appendix 2 gives a brief description of serial and parallel poll.

Buffering

Although the 96LS488 data lines are connected to the bus, it is necessary to use buffer circuits (with hysteresis inputs essential for the listener function) to provide a data path to or from the instrument's internal logic circuitry. An internal instrument bus, eight bits wide, is isolated from the bus data lines by inverting LS240 and F240, IC 3 & 4 respectively. It is also necessary to use hysteresis buffering and inversion to the address multiplexer IC_{11} , acheived by the two inverters I_1 and I_2 , of a 74LS14. The 74LS240 will be enabled by LACSENBF, going low when the instrument is listener active. In this state, the octal inverter drives the internal instrument bus with valid data. The IM6402 receive buffer register is disabled so no data conflict occurs on the internal bus. During the talker-active state, the IM6402 r.r.d. input is driven low by TACSENBF, which also enables 74F240 buffer circuit.

^{2.} Data is transmitted in ASCII, a seven-bit code representation, with the eighth bit for parity checking.

^{3.} Both the MC14411 and IM6402 devices are cmos requiring a VIH of $V_{cc}-2$ volts. The 74LS outputs have a guaranteed VOH of 2.7V for a V_{cc} of 5 volts. To ensure good noise immunity provide passive pull-up resistors of 2.2kΩ on each LS output that drives a cmos input.

WIRELESS WORLD OCTOBER 1982

71

MLA	My listen address, primary listen address of the instrument
MSA 0	My secondary address for g.p.i.b. uart, to provide serial/parallel conver- sion of data
MSA 1	My secondary address for uart control register
MSA 2	My secondary address for bit rate generator latch
MSA 3	My secondary address for end-of-message latched comparator
MTA	My talk address, primary talk address for the g.p.i.b./RS232C instrument
MSA)0	My secondary address fcr g.p.i.b./uart, to privide parallel/serial conver- sion of data
MSA 1	
MSA 2	Notused
MSA 3	

Table 4. Interface initalization procedure and talker addressing.

ATN	MSG	FUNCTION
1	UNL	Unlisten to clear the bus of listeners
1	MLA	Listen address of the instrument
1	MSA 1	Address of uart, control register
0	DAB 1	Issue the uart control register byte
1	UNL	Unlisten the control register
1	MLA	Listen address of the instrument
1	MSA 2	Address of data Speed control latch
0	DAB 2	Issue the data speed control byte
1	UNL	Unlisten the speed control latch
1	MLA	Send listen address of the instrument
1	MSA 3	
0	DAB 3	Send end-of-message byte to the latched comparator
1	UNL	Unlisten the 'end-of-message' comparator
1	MTA	Send talk address of instrument
1	MSA 0	Send secondary address of uart
1	MLA 1	
1	MLA 1	A dia and Paramana and Andra Kara
]	MLA 1	Address listeners on to the bus
	MLA 1	
1	MLA n	In statute and descend on a talk on sounds first data buto
0	DAB	Instrument addressed as a talker, sends first data byte.
0	DAB	
0	DAB	

This establishes the data path from the **RB1-8** outputs to the data bus.

Loading registers from internal bus

On receipt of MLA followed by MSA 1 the Instrument latches the binary code of 01 into IC₇ which drives the A1, A0 inputs of IC₈. Signal $\overline{ENBL0}$ drives the S input of IC₁₂ high, selecting the RXST to RXRDY handshake through inverter I_5 , multiplexer IC_{8a} onto the STB1 input of AG₃. The output of AG₃ drives the selected input I_{1a} of IC₁₂, and the output Za drives the RXRDY 96LS488 input. This local automatic handshake path is identical for STB2 and STB3. In the acceptor data state a data byte present on the data lines, inverted by IC₃ onto the internal instrument bus, is clocked into the uart control

register, data bits one to five, as RXST drives the control register load input high via the path through I5, output O1 of IC8a and inverter I12. The bit rate generator latch is loaded in a similar manner. When the interface receives UNL, MLA followed by MSA 2, the binary code 10 is latched into IC7. The A1 and A0 address inputs of IC₈ select output O2 of the decoders. In the acceptor-data state the rising edge of the RXST output clocks the CP input of IC13, 74LS374 through the path I₅, O2 of IC_{8a} and I₄. The RXST/RXRDY handshake is acheived automatically, as described for the loading of the u.a.r.t. control register. Data present on the internal instrument bus, bits one to three of IC₁₃ are clocked through to the Q outputs on the rising edge at the CP input. The bit rate generator latch, IC13, uses three of the eight internal D-type flip-flops, the other five latches are available for functional expansion. The latched code on Q0-2 outputs are used to select clock frequencies for the u.a.r.t. and inputs. See Table 5b for code input versus bit rate selection; the frequency input is 16 times the data rate. The Q0 output of IC13 selects either the F3 or F7 outputs from the clock generator chip IC₆. When high, the clock output F3 is selected through the multiplexer circuit comprising OG3, OG4 and AG2. When low the F7 clock output is selected. The Q1 and Q2 74LS374 outputs select an internal divider in IC₆, which provide the clock outputs in Table 5 (part 2). To provide a good stable frequency source for the MC14411 it is necessary to connect a 1.8432 MHz crystal to the crystal inputs.

If the instrument is to be used as a talker it will be necessary to load the EOI latched comparator. The select inputs of IC₅ are enabled high by the inversion of ENBL3, the O3 output of 74LS139 IC_{8b}. This output goes low when MSA 3 is received. Inverted by I₁₁, it drives the select inputs S0 and S1 of the 74F524 latched comparator high.

To be continued

WIRELESS WORLD OCTOBER 1982

EPROM EMULATOR by Peter Nicholls, M.A.

microprocessor, has World. tor featured on page 83 of last month's Wireless rom board/led display and uses two memory i.cs, one Shown here is the software for the eprom emula idapter and three 'LS' t.t.l. devices These and a handful and the This emulator, based on other ram, its own hexadecimal keyø parallel-interface the 8060

sending an s.a.e. to Wireless World Emulator, produce such a cassette-interface components, may be mounted 220mm. uncluding B single-sided board Photo-copies of an batteries for memory retention p.c.b. of other components, can measuring be obtained overlay used and t to ×

> Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Fully etched but undrilled fibre-glass boards, also single-sided, and programmed eproms for the emulator are available from PKG Electronics, Oak Lodge, Tansley, Derbyshire at £8 and £5 respectively. Prices include vat, postage and packing. Referring to last month's article, Fig. 4, C4

Referring to last month's article, Fig. 4, C4 should be replaced by a 100nF polyester type to avoid leakage-current problems. In Fig. 5, R23.23 are 47kΩ and, of course, digits 2 and 6 are not used and will confuse the display if connected. We apologize for these inaccuracies.

<u>+40040040004</u> NNNNNNNH H H H μ. t. ۰Ĵ ₿ ÚĪ, A D þ WN HO N (ĵ, ω 89 90 37 C9 FI. TI TI ΞĒ 94 86 C4 C4 80 ω ω 6 06 C1 C1 C1 16 90 C1 βĘ C4 FF FF ED Ci C_1 $\frac{N}{\omega}$ FT 4 **ω** 6 F7 90 C4 23 Ŀ IE 1 A Ξ 17 NO 0.4 D4 80 22 ŝ E 4 90 90 F. Ē T T ц. Ţ <u>8</u>F Ш C1 18 D4 02 ω ω 80 OF 00 C 6 A 0 D4 Cl C1 12 7 12 2 0 E T. D4 90 A9 90 C 9 Ω 6 Ω F, F, 10 01 23 19 2 Ϋ́Ε 60 86 01 ω ω 10 Ţ 21 Ë 60 ŝ 86 Ţ D490 0 E 00 E4 D4 1 C4 C 2 C4 8F 86 C 4 90 Ē 09 2 10 28 05 T. E4 21C 01 C4 08 C4 00 80 7A FΕ Ţ Ŀ 23 23 7.0 7 A C 6 01 18 05 00 00 Ci C4 L L Ē CA 94 90 86 04 TI C4 90 E4 2 37 C4 04 80 μ 36 C4 Ci 10 07 $\frac{\omega}{N}$ NA $\frac{\omega}{P}$ L D Ť. 0 0 90 FZ 90 21 C4 05 06 1C 23 86 60 C4 C 4 60 T. Ţ 6.5 63 36 8F ΑA C4 07 05 C4 D4 DC 86 ω CЭ L. FF 04 D4 02 C1 00 37 00 63 30 90 60 01 0 0 00 F 07 20 90 28 28 20 80 Ϋ́ 3 C 4 F T. FF 0 0 0F C1 0F 02 69 3 CO C1 C4 83 ωĘ Ξ 5 63 90 Ē FF Ē 37 63 D4 C4 C4 17 60 65 2 C4 **0**8 05 0 2 4 3 20 2 60 T. 86 2 17 ω ω ω 0 0.0 T Ŀ. \mathbb{P}_{1} ¢Ο 80 0.0 **8**F 20 90 4 C2 E4 <u>C</u>1 ω V ω 06 60 C 1 8 2 28 63 T T: $\frac{\omega}{\Gamma}$ Ξ ω, 06 23 D4 60 C4 A6 21 01 04 C4 C4 C1 F.F. Ŀ. F $\frac{\omega}{\omega}$ 0.0 86 $\frac{\omega}{T}$ 21 86 D4 01 C 1 86 0 5 00 T. $\frac{\omega}{r}$ 1E 23 00 06 17 32 32 04 Ē Ţ 23 07 E4 37

€) Ø Ш Ш Ū. û Û もい 1 - C A I 0 1-Q Q Ŵ NN ц Ц Ø 00 10 ÷ ¢ The day ω Ш ω ф Ф \$ 0 0 0 ₩ \$ ₩ (1 ⊕ ⊕ © N ٨ ¢ ф (j Ч. Ф ¢ ¢ Ŷ ֯ Ą Ŷ N 0 <u>i i i</u> N -Ņ ų N ώ μ Y ØFF ω Ŋ T FF 04 ω6 36 A A A T T : 40 FF4 04 F4 D2 C4 F4 80 9 F E4 NA NP aF 63 40 C4 C4 ω 20 10 0.0 6.5 08 FF B F7 90 aμ 01 01 Ψ C 4 **9** ω 60 86 36 90 C4 90 90 60 F4 D4 20 C4 90 31ω N E Ξ L L 0 0 63 0 90 40 C4 C4 09 20 00 Ţ. T.T. 02 06 79 Ţ. 01 3 $\frac{\omega}{\Gamma}$ 60 0 0 C4 40 90 $\tilde{\omega}$ 12 20 03 F 0 FA 980 D4 06 П П FΕ 37 32 10 L. L ED 8 01 37 NT 90 0F C1 NA D4 22 L L C1 90 F 4 FF6 06 C 4 36 C4 C4 C4 60 C4 C4 C 4 NE 07 0 0 69 60 63 Ψ 0 0 0 ហ ប 0 4 63 02 C4 90 т Г D4 T C C4 20 01 21 0 F D4 L L TI TI Ţ FF FF FΘ 04 ω ?? T: T: 0 E C4 30 C4 20 19 27 90 80 $\frac{\omega}{\Gamma}$ C4 90 F4 40 Ţ 0 0 80 F.F. T. Ť. 00 C4 00 22 C_1 10 03 C O 07 0 0 98 2 9 C 19 19 FF 03 00 9 C 02 C4 F 8 C4 60 36 $\frac{\omega}{r}$ <u>仁</u>市 (月 80 FC 07 T) ۲B (i) 0 86 63 63 80 90 60 90 60 T T, T ω ω6 36 CE 60 Ţ 37 12 FF E4 01 $_{\omega}^{\omega}$ 10 37 09 60 01 F:4 07 7F 27 NE 36 6 0 6 0 6 01 CO С П ωF Ц Ц F 60 ЕŶ 01 FIF لنہ زب FF 4 86 09 C4 06 8F 00 Υ 2 5 10 2A 60 01 10 29 80 C1 ÷ C 4 E 4 C 4 63 60 C4 $\frac{\omega}{\Gamma}$ ωF 90 2 A 36 02 ΡF FF C101 36 C 4 25 L L <u>ц</u> <u>C</u>1 01 94 80 Ē 00 C 4 25 00 04 C4 Ţ $\underline{\alpha}_{\mathrm{F}}$ 10 78 77 00 86 $\widetilde{\omega}$ 20 28 28 28 0 0 BF4 00 04 04 D4 F1 T. Ч. ωF F 4 F.F. 30 L L 201 37 3F BF C1 23 aμ 08 F4 21 0.2 36 Ţ FF 00 FΒ FΒ 80 80 90 90 80 80 80 60 မှုမှု 60 25 75 0F 90 63 F.F. F FF Ч. 63 90 D4 28 60 0 F 19 60 80 F 8 98 3F E F 22 90 97 63 66 30 0 0 2FA C9 2C T Ч. Г 86 ω 9 29 $\frac{\omega}{\Gamma}$ ω L L L Ц. F 8 F C100FCE 2F 0F 01 T 01 40 20 T T E 32200 8F 80 09 C4 C.4 Ϋ́ CE 90 30 C 4 Ŀ 고> (기 07 02 36 C 1 i. L 01 L. Ч. Г FB C 1 F4 L. L FοF C14 C2 01 T: 60 7 F NF $\frac{\omega}{1}$ C4 40 80 2F F 4 C1 63 C4 36 00 08 F 36 Ţ 0 0 2 F 06 $\frac{\omega}{N}$ T. T 60 04 40 FF 95 08 FF PF12 FF FF 2F 04 60 6.0 $\frac{\omega}{1}$ 36 ωF 30 00 <u>C</u>1 80 8 T 10 Ŧ. L. ω 6 0.6 6.5 63 $\frac{3}{2}$ Ţ D4 86 06 01 F1079 63 01 T I FIN F 18 <u>1</u> 1 2 28 E6 86 C4 C1 C2 C2 C_{1} 9.0 28 ω T Ţ 06 60 02 36 37 C1 01 CO Т. 2 E F 0.7 E4 00 Ē Ŀ 90 C4 28 10 21 FF 6 T NG 19 69 01 C4 90 90 90 E4 C 9 C 9 C 9 C 9 86 19 0 1 F Б Ш Ŀ. E 4 90 T E.F. T: T: Ţ. OE 73 WIRELESS WORLD OCTOBER 1982

UK nearer to US tv encryption

Racal Electronics plc and Oak Industries Inc. of California are to form a joint company "to exploit the anticipated explosive growth of pay television services following the expansion of cable and satellite service in the UK and Europe". The new 50:50 company is formed in anticipation of Government support for the operation of cable systems for television programme distribution before the end of the year.

Although based on the UK the new company, Racal-Oak Communications, will have a mandate covering the whole of Europe, and in addition to producing equipment the joing benture will also seek to operate, license and supply pay television systems.

Commenting on the announcement, Sir Ernest Harrison, chairman and chief executive of Racal Electronics, said: "The potential in the UK alone is exciting, but total European demand is huge. Oak's imported technology will provide an opportunity to build a new and important export business. The pay television business can be measured in billions of pounds over the next 20 years and the UK must win its share". Kenneth Baker MP, Minister for information technology, said of the deal: "There have been several contacts over the years between Oak and the Government. Most recently I met Mr Carter, Oak's Chairman and Chief executive, in June when he told me of his interest expanding Oak's European interests. I am delighted that he has decided to bring Oak's technological expertise in encryption technology to the UK.'

Founded in 1932, Oak Industries evolved from a manufacturer of radio switches and television tuners into a diversified supplier of products and services in electronics. In 1977, Oak's first year in the entertainment business, it started overthe-air subscription television in Los Angeles and now owns five systems in the US with around 600,000 subscribers and a turnover of \$500 million. Oak developed both the hardware and computer software to manage the systems and later adapted its software for pay cable television. It claims to be the only cable tv manufacturer which supplies all the software necessary for a pay television operation, and produces converters for American cable television, computer-addressable converter and decoders and decoders for pay cable and subscription tv.

It developed an encoding and decoding technique for satellite television signals called Orion, a more sophisticated version of the encryption technology for subscription tv. Over 8,000 Orion decoders are already in use or on order in Canada and deliveries have recently begun to Satellite TV pic (see "Cryptic satellite tv"). Through a subsidiary it is also a major supplier of programming for both pay cable and subscription television, comprising recently-released movies, sports, concerts, comedy, dramatic productions and other entertainment special events.

Last July, Oak filed an application with the FCC to construct, launch and operate communications satellites to eventually serve all four US time zones.

Digital radio outshines lightline

The fanfare surrounding BTs ceremonial opening of its longest fibre route last July was well justified. The BICC 8-fibre line between London and Birmingham took only nine months to install and is the longest BT fibre route at 204km. Though only two fibre pairs are currently operating, at, 34Mbit/s, the other two pairs will be brought into use next year at 140Mbit/s. More significant perhaps is that it is the first to operate at the long wavelength of 1300nm, using high radiance l.e.ds instead of the more expensive lasers. At 1.5dB/km loss they have lower attenuation than the earlier 850nm systems and allow repeaters at 10km intervals instead of 8km.

It's interesting timing in view of the Project Mercury London to Birmingham announcement. But what BT didn't sing about was the fact that only the day before GEC had announced the start of a multimillion pound digital network with steam radio, albeit using q.p.s.k. This was a

Coinciding with the London to Birmingham Mercury project, BT open 34Mbit/s optical fibre and 140Mbit/s digital microwave links.

world first in being the first national 11GHz high-capacity digital link and yet it was largely ignored in the press. The network will cover routes from London to various points in the UK including earth stations at Goonhilly and Madley and forms part of BTs plan to convert the entire UK telecommunications to digital operation by the early 1990s. Ironically, at 140M bit/s the capacity is far greater than the new fuss-making light-fibre link of 34Mbit/s.

Electronics for peace

Two electronics engineers who are concerned at the involvement of the electronics industry in the arms trade and the nuclear arms race are intending to do something about it. They plan to set up a network to link those in the industry who feel that their skills should not be used in the cause of war, nuclear or conventional. Possible functions of this network would be to encourage conversion of military electronics research, development and production to creative and socially useful purposes; to stimulate discussion and where possible disseminate information on military electronics and constructive alternatives, both within the industry and among the general public; and to provide technical advice and information where appropriate to the peace movement.

They propose a preliminary meeting in November, in or near London, to discuss the aims and structure of the network. Interested engineers should contact either Tim Williams, Weir Cottage, The Dens, Wadhurst, East Sussex or Steve Holmes, 151 Courthouse Road, Maidenhead, Berks for further details of the meeting.

Forth they went, together

The designers of Britain's latest microcomputer have chosen the Forth programming language in a bid to gain advantage in the crowding micro market. They claim its principles are so simple that newcomers to computing need only a few minutes to learn how to calculate, and at the same time, it is easy to invent extensions to the language. The two originators of the Jupiter Ace computer, Steven Vickers and Richard Altwasser (see caption), both discovered Forth at the same time (they read the same issue of Byte) and immediately recognised it, they say, as the ideal language for microcomputers.

Forth is fast and easier to write in as well as more compact in memory because it is

"Leading computer designers with a reputation for pushing technology forwards" is how Altwasser and Vickers describe themselves in their promotional copy for their new computer. Vickers, left, who previously had joined a software consultancy near Cambridge with a doctorate in algebra, adaptated the 4K ZX80 rom into an 8K for the ZX81. He wrote the manual for the ZX81 as well as most of the Spectrum rom. Altwasser, an engineering graduate, worked on the application of microprocessors in automation before joining Sinclair. He was soon made responsible for computer research which included the hardware development of the Spectrum. "It's about time someone got away from Basic" says Vickers. Developed in 1965, it was then a lot easier to use than Fortran. "But it is hardly the language of the future; our money is on Forth".

compiled, yet its compiled code is accessible to the user in the simplest way possible, say Jupiter. One gives each compiled routine a name, a Forth word, and to run it just type in the word.

Stringing old words together can define new words, which process lies at the root of Forth's power and enables one to define an infinite variety of one's own words from the standard words provided in the firmware. Older languages make assumptions about how they will be used that inevitably lead to a straight-jacket for the programmer; Forth is not based on any such assumptions they argue and allows the programmer "to do absolutely anything". If one doesn't have exactly the instruction needed in Forth, it is simply invented.

Forth usually relies on disc-based virtual

First shown at last month's Personal Computer Show at London's Barbican Centre, this £90 mail-order computer features full-size keyboard, user-defined high resolution graphics, programmable sound generator, upper and lower-case ascii characters, 24×32 flicker-free display, 1500baud cassette interface, and the Forth language. Jupiter Cantab are at 22 Foxhollow, Bar Hill, Cambridge, tel 0954 80437.

memory for editing the source program but the designers say unique editing facilities operating on the compiled word definitions mean that words can be defined, listed, debugged, edited and redefined without using any external storage. This they say makes Forth even easier to use on the Ace than on other implementations.

The memory saving coded form used to store programs allows it to work much faster than it would do in another language the company say – typically in less than a tenth of the time, which makes it ideal for games. Capacity is 8K bytes of rom and 3K of ram but because of the language it is more effective than, say, the 1K memory of the ZX81. Expansion to 16K (costing £35) should be available by the year end, as well as a printer interface board (costing £25), and later next year a colour board. By then, the company hope to the seeling 3000 units a month.

Cost effective satellites

The postponed launch of the second European maritime communications satellite should take place while this issue is in the press. Though European in origin, this satellite's station is over the Pacific ocean and like its Atlantic partner will be leased to Inmarsat for international telecommunication at sea.

The two Marecs satellites grew out of the earlier, lower power Marots proposal and had their frequencies reduced down to 4/6GHz for compatibility with installations for Marisat, which they replace. The delay, from April last, has given time for modifications in the light of experience with the interference from electrostatic discharge in the Atlantic satellite (see News, May issue).

(Vienna. – According to Olof Lundberg, the director general of Inmarsat, speaking at the Unispace '82 conference, the number of ships and oil rigs fitting earth stations for Marecs increased by 30%in the first half of this year, to 1,350.)

Simultaneously with Marecs B, a second Sirio satellite is launched, using Italy's spare model built as a back-up for a 1977 communication satellite. In addition to providing meteorological data for the African continent, the satellite carries retroreflectors and time markers for laser pulses sent from ground stations. Object is to provide a laser-based method tor longdistance synchronization of afonic vicks with sub-nanosecond accuracy, as well as giving an opportunity of comparing both laser and microwave time synchronization methods, using information gained from Sirio 1.

After the first six operational satellite launchers – ordered back in 1978 – are spent next year, the responsibility for Ariane launches transfers from ESA to Arianespace, a private company formed to exploit Ariane in 1980 and ratified by ESA last year. With a capital of 120 million francs its shareholders are the 36 principal European aerospace firms, 11 banks and CNES, in 11 countries, with France having the lion's share of 60%, Germany next with about 20% and the remainder having

DATE	NAME	AUTHORITY
1982 Sept	Marecs B +	ESA
	Sirio 2	ESA
Nov	Exosat	ESA
1983 Jan	ECS 1 +	ESA
	Oscar 9B	Amsat
Mar	IntelsatV F7	Intelsat
May	IntelsatV F8	Intelsat
Jul/	ECS 2 or	ESA
Aug	Telecom 1A or	France
	IntelsatV F9	Intelsat
Oct	IntelsatV F9 or	Intelsat
	ECS 2 and/or	SEA
	Telecom 1A or B	
	or ECS 2	ESA
1984 Feb	Spacenet 1 +	Southern Pacific
	Arabsat or	Arabsat
	Telecom 1B	France
May	GStar1 +	GTE
	Telecom 1B or	France
	Arabsat 1	Arabsat
Aug	GStr 2 +	GTE
	Spacenet 2	Southern Pacific
Oct	Spot 1 +	CNES
	Viking	Swedish Space
D	Class and the bala	Corp
Dec	Slot available SBTS 1 +	Deseil
1985 Feb		Brazil
	Spacenet 3 or ECS 3	Southern Pacific
Mar	Intelsat VA F14	Intelsat
May	TV-Sat 1	
Jun	Intelsat VA F15	Germany Intelsat
Juli	or TDF-1	France
Jul	Giotto +	ESA
501	STC-1	Satellite TV Corp
Aug	Aussat 1 +	Australia
Aug	SBTS 2	Brazil
Sept	TDF-1 or	France
Debr	Intelsat VA F15	Intelsat
Oct	Ariane 4-01	
Dec	Aussat 2 +	Australia
	Anik D	Canada
change war	ing from 0.25 to	A AV/. in cimailar

shares varying from 0.25 to 4.4% in similar proportions to their ESA funding. Current orders with Arianespace – see table – are said to be worth 3,000 million francs at 1980 prices.

With competition in satellite launch facilities on the increase cost per kilogram in orbit has become a significant selling point. Together with increasing mass of satellites, this led to the dual launch experiment of September 10 with Marecs B and Sirio 2. To increase cost-effectiveness further it's planned to recover the first stage rocket by parachute. And if that's not enough, the thrust of the first two stages is set for a 10% increase, together with 25% for the mass of third-stage fuel. That will put a payload of 2000kg into orbit. And that's not all; this up-rated Ariane 2 launcher will be ripe for augmentation by adding two first-stage boosters so that 2580kg can be orbited (or two lots of 1195kg).

For satellite launches from 1985 onwards, the ESA earlier this year approved development of Ariane 4, with 50% more stage-one fuel with either two or four boosters with solid or liquid propellants and a flexibility to match a range of payloads between 2000 and 4300kg. Such a rocket would reduce mean cost per kilogram to 60% of that for Ariane 1, and have the capability to launch the Intelsat VI series, scheduled for 1986 onwards.

To accommodate the launch of this vehicle a second site is being completed for 1984, but equally important, this will allow time between launches to be reduced to a month. ESA/CNES studies of requirements beyond Ariane 4 suggest that Europe could one day be in a position not only to put 15 tonnes into low orbit in 1992 but also to recover launchers, returning payloads, and perhaps humans too.

Four today, how many tomorrow?

Only 87% of the UK population will be able to receive Sianel 4 Cymru and Channel 4 television services when they start up on the first and second days of November. This is because only 31 of 51 major transmaters will come into operation by that date, and about 100 of 600 low-power relays. Twelve main stations will need to be equipped next year to bring coverage up to 94%, the remaining eight waiting till 1984. But it will take until the end of 1986 for the relay stations to be completed. Coverage for Wales is higher at 90% with all six main transmitters operational and at least 80 local relays, with 13 more for 1983. If Wales gets better than average cover, Scotland comes off worse with only three main transmitters completed in time for the launch. Three more come into use next year but it's not until 1984 that it catches up, with six of the eight main transmitters for installation being scheduled for Scotland. The IBA, who are responsible for all the UK transmitters (but not the Welsh programming, this belonging to the Welsh Fourth Channel Authority), say the rest of the relays will be equipped as soon as possible from 1984 onward to bring the new

services to everybody now receiving ITV, BBC1 and BBC2 on u.h.f. They point to the sheer size of the undertaking; the number of transmitters is far greater now than it used to be with the 405-line v.h.f. broadcasts, necessitating a massive investment in new equipment amounting to some \pounds 50 million. And, they emphasize, this will be the first time a television service will have been started in all 14 regions at the same time . . .

Cryptic satellite tv for Europe

Satellite Television plc will be transferring its European subscription tv service started earlier this year from OTS-2 to the ECS satellite next year, when OTS reaches the end of its planned life. To clear a space for ECS OTS has already been moved from its old 10°E position, to a new location at 5°E.

Based in London, Satellite TV transmits programmes between 18 and 20h u.t. every night via the OTS-2 spotbeam transponder on 11.64GHz. The service, financed by advertising and consisting of a wide variety of programmes from many countries including Britain, USA and Australia, is described as an "entertainment channel". It is received by licensed cable companies in European countries, among them Finland, Malta, Netherlands, Norway and Switzerland, although reception is not permitted by UK Home Office.

The transmissions are unfortunately encrypted at the insistance of Eutelsat, the European organisation of telecommunication authorities, to prevent "unauthorized use". There seems no prospect of an early liberalization of this rule which would make it possible for individuals to receive the programmes without having to hire or buy expensive decoders. The encryption method is the Oak Orion system developed for US cable tv (see "UK nearer to US tv encryption") and is generally accepted to be fairly difficult to break, particularly as the sound is carried on the sync pulses.

The level of power from the spotbeam transponder means that for reception with a good signal-to-noise radio a dish of around two metres diameter is needed. Although the transponder channel is 120MHz wide only a single 18MHz channel is used, with two transponders on the same frequency, one horizontally polarized and one vertical. On the present evening schedule, one carries the programmes of STV, and the other a French programme TV Tunis for North Africa.

Smart card, smart price

Known variously as the electronic chip card, debit card, payment card, pocket data card, memory card and smart card, the electronic credit card has spawned its own (non-electronic) publication. "Electronic chip card report" is a four part work, with updates, issued in 50 page instalments over a year for intending makers and users of the cards, and containing market research reports of card developments, especially in France, Germany, Italy and the USA. The most popular format for a card, consisting of memory and microprocessor circuitry embedded inside a card that is physically indistinguishable from an ordinary plastics credit card, is already in use for payment applications in France, according to the Report's promotional blurb. It is published by Steve Sziram of HTE at \$2,500, and is available through Geoff Coole in the UK at 26 Pamber Heath Road, Pamber Heath, Basingstoke, Hants (0734 700543) but not by electronic credit card.

• Coole Marketing Services otherwise represents Micropower Systems Inc of California, Catalyst Research Corp (maker of lithium iodide cells for cmos ram), Inmos to specific UK customers, and SIBS Report, a \$400 p.a. semiconductor industry newsletter from the same publisher.

- 1 Theories and Miracles 2 Electromagnetic Analogy
- 3 Impact of the Photon
- 4 A more realistic Duality?
 - 5 Quantization and Quantization
 - 6 Waves of Improbability
 - 7 Limitation of Indeterminacy
 - 8 Haziness and its applications
 - 9 The State of Physics Today

A Hereinen Physics **IMPACT OF THE PHOTON**

The experimental discovery of photons at the turn of the century showed finally that electromagnetic theory had failed. Waves or particles, or both or neither? "Double-think" became the order of the day, a required belief; but are we sure that the last word has been said about this logical conflict?

The impression given by writers of scientific textbooks is that everything in classical physics was tidy, or about to become tidy, until 1899 when Max Planck came along and spoiled it with his quantum hypothesis. We have seen that this popular history misrepresents the truth. Electromagnetic theory, which formed one of the three structural pillars of classical physics. had already been placed in extreme philosophical difficulty by the Michelson-Morley result - no physical ether, therefore no electromagnetic waves. The whole of fundamental thinking at this time was based on electromagnetics; even the ordinary mechanical mass of an ordinary physical particle, such as an electron, was considered to be "electromagnetic mass', attributable to the inertia of its electromagnetic field, so that this field could be thought of as replacing the electron's material mass and even, by some physicists, to be the electron itself. In these circumstances the suggestion that anything could be seriously wrong with electromagnetic theory just didn't bear thinking about. One simply had to soldier on, hoping that some solution would turn up to relieve the anxiety.

However, the inconvenient absence of a physical ether was not the only evidence of failure of the electromagnetic theory. Serious difficulty was also encountered in describing the processes of radiation and absorption of light. The trouble in the radiation process was resolved by Planck by means of the revolutionary hypothesis which finally shattered the complacency of his times: the radiation of energy in the form of light by a material substance is not a continuous process. Individual mechanical oscillators in the material - atoms or molecules - radiate individual quanta of light energy. In the case of the absorption of light there is additional evidence of a discontinuous process: the photoelectric effect, which had similarly defied analysis by classical theory, was readily explained by Einstein on the basis of Planck's new hypothesis. The only possible interpreta-

BY W. A. SCOTT MURRAY B.Sc, Ph.D.

tion of this high-quality experimental evidence is that the whole of an individual package of light energy or quantum must always interact, at any rate in the first instance, with one individual microsystem in the photocell surface. The light energy seems to be localized in space.

There was on the face of it, and in retrospect, nothing very surprising about this deduction. The essential granularity of matter on the microphysical scale, atoms and molecules, had been recognized for a hundred years. These newly discovered quantum interactions suggested that light energy also is packaged granularly into "photons" which behave as discrete corpuscles or particles, as Newton believed. The reason for the fuss was that the concept of a light beam as a shower of photons was in direct conflict with electromagnetic theory, because the latter, being a theory of linear force fields, depended absolutely on the continuity and extension in space of the quantities it was dealing with. By contrast, the concept of a particle or photon epitomizes discontinuity. Electro-magnetic theory was bound to fail when confronted with this discontinuity and fail it did.

To those physicists who had believed the beautiful electromagnetic theory to be universally true and who had accordingly espoused it with a quasi-religious fervour, and likewise to those who so revere it by tradition today, its overthrow in the face of the quantum evidence, undeniable though that evidence might be, was simply not to be tolerated. Human feelings at levels deeper than mere reason were involved in this conflict. If mysticism was to regain its lost foothold in science, here was fertile ground.

Naturally, various attempts were made to compromise. The most hopeful of these led to the concept of the wave-packet. In certain circumstances, chief among which

is that the physical medium in which they travel must be dispersive - a technical term - a group of water waves will propagate together across a pond and will remain concentrated together in the form of a package. The energy represented by the wave system travels at the speed of the group, which is not the same as the speed of the individual waves. (The mathematics of this situation is quite elegant). Hence it was suggested that the quantum, the particle-like concentration of light energy which was deduced from the experiments, might be merely a wave-packet of dispersive electromagnetic waves. That was the view which Planck himself took of the matter and maintained with some vehemence

The trouble with this idea - it is distressing but noteworthy how often one is forced to say "the trouble with this idea . . ." - the main trouble with this idea is that although a suitable wavepacket could remain stable indefinitely in the longitudinal direction, no configuration of linear (Maxwell) waves can be devised which would prevent a wave packet from dissipating across the direction of the propagation. Now a beam of light will dissipate laterally, exactly like a wave system, but the individual quanta of which it seems to be composed do not dissipate. The unimpeachable experimental evidence for this is that the intensity of light decreases with distance from its source (the beam becomes more widely spread out), but the energy of its individual photoelectric impacts (its colour) does not change with distance. For this reason, Einstein, the radical, disagreed with Planck and came to regard the quanta as photons, essentially indivisible whilst in transit and therefore of the nature of particles. The wave-packet concept was a non-starter, disproved by the evidence, but it is still offered to physics students today as though it were valid and relevant.

In the end, and in my view prematurely, a thoroughly unsatisfactory compromise based on mysticism seems to have won the

day. Modern physics as now taught accepts the doctrine of duality, which says that light radiation (sunlight, radio waves and x-rays) consist of both waves and particles at the same time. Whether its wavelike or particle-like properties predominate will depend on the details of the particular experimental set-up. If I use a diffraction grating I shall see waves; if I use a photocell I shall see photons; if I follow a diffraction grating by a photocell I shall see both forms of light within the confines of the same experiment. It matters not that waves (as in electromagnetic theory) and photons (quantum theory) are mutually-exclusive concepts, each of which specifically denies the validity of the other. If I am to make a successful career in physics I must learn to ignore that logical conflict and get on with the remainder of my job as though the conflict did not exist.

The duality doctrine can be fully accepted only by a person who is able and willing to "double-think" in the George Orwell sense. For every other professional physicist the choice is either to live with the doctrine - reluctantly and with resignation, no doubt, knowing it to be unsound – or to try to do something about it: but what? The problem of the true nature of light radiation is recognized to be one of surpassing difficulty which may "for fundamental reasons" actually be insoluble. There even exists a powerful school of thought which believes that matters of this fundamental kind are intrinsically beyond the power of the human mind to understand, so that it would be wrong to expend time, effort, or public money on attempting to understand them. It is asserted by this school that modern quantum theory is "complete" (Niels Bohr), and since that ultimate theory offers no solution to the problem there can be no solution to it (von Neumann).

Believe me about this, please, for I am telling you the truth: that view is the accepted dogma of today's scientific establishment. It follows from the arguments of the so-called Copenhagen School during the 1930's, while the body of doctrine now known as the quantum mechanics was under development. That doctrine is no more sacrosanct than was electromagnetic theory, and it rests on very much less secure experimental foundations (see later). It categorizes the fundamental nature of light as a non-problem for physics, about which it would be improper to ask further questions. Its bland assertion that there "can be" no further progress toward understanding in this and similar areas constitutes the ultimate in defeatism. For myself, I do not accept it.

Now if I declare that I do not accept one of the currently established doctrines of physics, in this case the doctrine of duality, the onus is on me to provide an alternative that I and others may find more acceptable. This I cannot yet do; nor, I expect, will anyone now be found who is able to review and revise the whole of modern physics single-handed. What I can do is invite those of my colleagues who are interested and not too busy to take a fresh look with me at the duality paradox, and I can start the ball rolling by mentioning a few neglected facts that may help us on our way.

My first hopeful factor is this. It is not waves as such, but electromagnetic theory a field theory - which is inconsistent with the existence of discrete, particulate photons. When we are dealing with the most familiar waves of all, sound-waves in air, we do not normally have to remember that the true picture is one of interactions on the microphysical scale between myriads of individual air molecules. Rather than seek to follow and account in detail for the motion of each and every air molecule, which would be an impossible task anyway, it is sufficient for almost all purposes to consider their average behaviour. We speak in terms of local mean pressure and local mean velocity, and using these terms we can describe the propagation of sound as "waves" of pressure and velocity moving through the gas. Now the point to be made is that the mathematics of this description of sound is concerned with waves in a continuous medium, yet we know from other experiments that the true nature of a gas is not that of a continuous medium but of discontinuous, discrete molecules. The sound waves are real waves, however; their crests and troughs represent concentrations of air molecules which move progressively and systematically through the gas; and those density changes remain wavelike even though the gas is not mathematically continuous. It is not the waves but the mathematical theory of the waves which is inconsistent with the molecular nature of the gas. Clearly the theory is an approximate description, valid only in limited circumstances.

In electromagnetic theory the roles corresponding to local gas pressure and velocity are played roughly, but not exactly, by Maxwell's field potentials and displacement currents. It is these mathematical artefacts of the field theory, demanding as they do continuity in an ether medium, which are in conflict with the quantum evidence for the granularity of light. Light waves might very well consist of periodic variations in the density of photons as they travel in bunches through empty space at velocity c. If this should be so the infamous dualistic doctrine would be shown up for the mystical nonsense that I, for one, believe it to be. And the conflict would no longer lie between the concepts of light waves and photons, no longer incompatible, but between the electromagnetic theory and the experimental evidence. That theory also would be no more than a limited analogy at best.

It would be quite wrong to pretend to any originality for this idea, which Sir Karl Popper has quoted as representing Einstein's view. The concept that light waves consist of bunches or concentrations of photons is so obvious that one has to ask why it has not been generally accepted in place of the duality doctrine. Part of the answer would seem to lie in a general belief that it has been disproved experimentally. I am now going to argue that despite popular belief the concept has not in fact been disproved, but that it deserves at least one further, careful examination.

Typical of the experiments in question is one involving the interference of light, which is so readily accounted for on a "pure-waves" theory. I cannot do better than quote from an article written by Professor Frisch, of Cambridge, in 1969:

"But what happens to the photons in an interferometer? At first it was thought that interference occurred when two or more photons came together; but that was disproved when G. I. Taylor (1909) showed that interference fringes were formed just the same whether the light was strong or whether it was so weak that hardly ever two photons passed through the apparatus together. It follows that single photons can exhibit interference, that 'a photon can interfere with itself'. It would seem that something does travel along both paths in the interferometer even when only one photon is admitted; but what is it? "Such questions were discussed a good deal when photons were new, and similar ques-

tions arose out of wave-particle duality of 'material' particles such as electrons. Some agreement has been reached on the way they should be answered, but the agreement is not unequivocal, and many of us are not sure what to tell our students"

Summary

The crisis in electromagnetic theory threatened the whole of 19th-century physics. The threat became extreme when evidence of the radiation law (Planck, 1899) and the photoelectric effect (Einstein, 1905) showed that on these issues at least the electromagnetic theory had already definitely failed. The concept of the wave-packet, proposed by way of compromise, proved to be untenable. Eventually the mystical doctrine of the simultaneous waveparticle duality of light radiation came to be accepted, perhaps with resignation, together with the parallel doctrine that no fundamental understanding of this duality could ever be achieved. The onus was thereby placed on those

who do not accept such negative doctrines to provide more acceptable alternatives to them. One such alternative, attributable originally to Einstein, proposes that light "waves" may consist of periodic variations of photon density. It is generally believed nowadays that this concept was disproved long ago, but careful investigation suggests that this is not so. Modern technology provides the possibility of a series of more rigorous experiments which could decide this very fundamental question once and for all. The main difficulty with such experiments is the practical one of obtaining financial support, because the concept underlying them is in conflict with the established dogma of modern physics.

The G. I. Taylor referred to was a research student at Cambridge under Sir I. I. Thomson. In his experiment he set up and recorded interference fringes on photographic plates, and the essence of his result was that no change could be discerned in these fringes whether the light was of visible intensity or so weak that to record the patterns required an exposure lasting three months. In the latter, extreme, case it could be calculated that if photons existed they must on average be separated by 30cm, which was appreciably more than the dimensions of the apparatus. Hence on average only one photon was present at any one time; yet the interference fringes still appeared in the photographs.

I submit that a point may have been missed by Taylor, by Thomson, by later experimenters who may have repeated the test, and by all who have accepted this result as evidence that "a photon can interfere with itself".* Everybody seems to have assumed that natural photons are evenly distributed in space, and that their density will be diluted evenly when the light intensity is attenuated toward zero. That is the assumption on which the deduction rests in this and similar experiments, but I suggest that it may be a false assumption. I propose in its place the idea that photons generated naturally - by a black-body radiator for instance, or in a discharge tube - are generated not singly but in very large bunches. Then in the experiments of Taylor and others the photons, although infrequent in an average sense, would nevertheless have continued to manoeuvre in bunches. There never was a time when the apparatus contained only a single photon, and interference between

photons, rather than within individual photons, remained the order of the day.

Can I substantiate this proposal? Yes, I believe I can. In 1917 Einstein published a derivation of Planck's quantum law which later became the theoretical basis of the modern laser, and is therefore quite likely to be true. In this derivation he deduced the existence of two kinds of radiating mechanism which he denoted A and B. The A-type was spontaneous emission, self-triggering, while the B-type was stimulated emission, in which an atom or molecule previously primed with energy was triggered by the arrival of a photon already in flight. Following from Einstein's proposal, in the radiation of visible light the occurrence of B-type (stimulated) emission may be up to a thousand million times more frequent than A-type (spontaneous) emission.

We may interpret this result in nonmystical, mechanical terms. It should mean that photons are normally radiated in a cascade process: that is, in bunches. Each bunch would consist of up to a thousand million stimulated emissions, triggered ultimately from the one photon that is emitted spontaneously to initiate the cascade. This would represent the biggest snowball effect known to man - going on all the time on our doorstep, without our having noticed it. (I have coined the phrase semi-laser action to describe this process; the emission of wave trains can be explained in a natural way by interpreting Planck's E=hv as $E=h/\tau$, where τ is the delay-time for emission of a photon of energy E).

If this argument should prove to be even moderately near to the truth (and I would gladly settle for a bunch of a million photons rather than a thousand million, not being greedy), we would have good reasons for repeating the Taylor experiment with modern photon-counting equipment. At sufficiently low light levels the interference phenomenon should simply fade away, like sound in sufficiently rarefied air. It would not be an expensive experiment by modern standards but it would be very fundamental and I say, worth the trouble of performing it. (I would have done it myself at home if I could have found the necessary £50,000 for equipment!) The key to the test would be to ensure and demonstrate that the photons were constrained to pass through the apparatus truly one-at-a-time. To forestall misinterpretation in these mystical and doctrinally-loaded surroundings would call for the greatest care. Also we may note that there is nothing "impossible" about this experiment, except that according to the Copenhagen dogma the question it asks is an improper question - just a bit too fundamental for comfort.

If it were thus to be shown that, contrary to current doctrine, the interference of light is a group phenomenon not evidenced by individual photons, we would be well on the way to a resolution of the duality paradox. A series of options in physics would be re-opened, which for fifty years have been dismissed as oldfashioned, "unphysical", or merely "unrealistic" – epithets which, in context, carry a pleasing irony. In the meantime we may examine some of the consequences to which a positive experimental result might lead.

*The wording of Taylor's report makes it clear that his boss, Thomson, did not hold with the new-fangled quantum ideas. Having obtained a result in accord with classical theory he was not disposed to investigate the issue further...

Next month

Two-metre transceiver. Complete design for a two-metre band, sixmode transceiver for mobile use by T. D. Forrester, call-sign G8GIW. Microprocessor control simplifies functions such as scanning, tuning, frequency display and use of the unit's nine memories. The transmitter power rating is 16.5 watts in the f.m. mode.

Technological choices for the UK. Robin Howes sets out to bring the discussion about educating engineers in social responsibility down to earth in this first of two articles. Written in response to Peter Hartley's article on educating engineers, it relates the ideas to the current industrial situation: part one deals with technological choices for the UK.

Heretics guide to physics. Instead of trying to ignore Planck's quantum hypothesis because it conflicts with electrom a g n e t i c t h e o r y, suppose we were to afford it more than lip service; what then? In A More Realistic Duality Dr Murray continues the Heretics Guide to Physics series by discussing new situations that could be tested by experiment.

Interfacing the Nanocomp. Bob Coates describes how to expand i/o interfacing for the nanocomp and gives connection details for the Cuban interface.

On sale Sept 15

FLOPPY-DISC DRIVES

Despite the floppy-disc drive's disadvantages in relation to the hard-disc drives already discussed, it is widely used and popular, particularly with microcomputer systems, because of its low cost. John Watkinson looks at the progress of floppy-disc drive technology this month.

Floppy discs are the result of a search for a convenient and fast, yet cheap non-volatile memory for storing instruction-coverting data used with a processor under development at IBM in the late 1960s. Both magnetic-tape and hard-disc storage were ruled out as means of quickly restoring the system's data after a supply interruption on grounds of cost, since only intermittent duty was required. The device designed to fulfil these requirements – the 8-inch floppy-disc drive – incorporated both magnetic-tape and disc technologies.

The floppy concept was so cost effective that it transcended its original application to become a standard in industry as an online data-storage device. The original floppy disc, or diskette as it is commonly called, is 8in in diameter and the more recent 'mini-floppy' is 5¼in in diameter. Still more recently, the 'micro-floppy', measuring around $3\frac{1}{2}$ in in diameter has been introduced.

Strictly speaking the floppy disc is a disc-storage medium since it rotates and repeatedly presents the data on any track to the heads, and it has a positioner to give the fast access characteristic of disc drives; but the device is also very similar to a tape drive in that the medium consists of an oxide coating on a flexible substrate which deforms when the read/write head is pressed against it.

Being stamped from a tape, a floppy disc is anisotropic, owing to the oxide being oriented along the tape during manufacture. On many brands this can be seen by the naked eye as parallel striations on the surface. A more serious symptom is the presence of sinusoidal amplitude modulation of the head output at the rotational frequency of the disc, illustrated in Fig. 1.

Standard and 51/4in floppy discs have straight radial apertures in their protective envelopes to allow access by the linear head positioner, but micro-floppy discs have curved slots since they use the lower cost rotary positioner, Fig. 2. A further aperture in the envelope allows a photoelectric index sensor to detect a small hole in the disc which gives an output signal once per revolution to synchronize the read/write circuits (discussed in an earlier article).

The disc is inserted into the drive edge first, and slides between an upper and lower hub assembly, Fig. 3. One of these assemblies has a fixed bearing which transmits the drive and the other is spring loaded and mates with the drive hub when the door is closed, causing the disc to be Digital Equipment Co.

by J. R. Watkinson B.Sc., M.Sc.

gripped firmly. The moving hub is usually tapered to accurately centre the disc. To avoid frictional heating and in the interests of longevity the spindle speed is restricted to about one tenth of that used for hard discs. The spindle is commonly driven by an induction motor, but more recent units incorporate electronically-governed d.c. motors, which have the advantage of needing no modification to run on different supply frequencies, and generate less heat.

Since the rotational latency of the slowly turning disc is so great, there is little point in providing a fast positioner so the carriage is moved by a stepping motor driving a leadscrew in the case of standard and mini-floppy discs, Fig. 4. This approach also provides detenting. To appreciate why this is so, it is necessary to understand how a stepping motor works.

Fig. 1. Being stamped from tape, a floppy disc is anisotropic. This can cause sinusoidal-amplitude modulation of the type shown.

Figure 5 shows that this type of motor consists of a multi-lobed iron rotor and a stator with the same number of poles, each of which has a coil. If current is passed, the rotor lobes will be attracted by the poles, and will move into alignment. A smaller current, known as a holding current, will maintain this alignment against considerable external torque.

In smaller motors the holding current can be dispensed with as the rotor is a permanent magnet which naturally has a detenting action. A simple stepping motor of this type will only work if it is pushstarted at the frequency of the coil pulses. Motors of this type can be found in most a.c. electric clocks. To permit starting under load, extra poles and windings with seperate connections are interposed between the original windings. If the windings are pulsed in turn, the rotor will jump round, following the pulses, and detent at the last coil to pass current. This is the basis of the poly-phase-stepping motor, which is the type used in floppydisc and many 'mini-Winchester' drives. A typical standard floppy-disc drive uses a stepping motor with four windings and two steps correspond to a one cylinder seek.

Figure 6 shows a typical drive circuit, in which a 2-bit counter counts up or down according to pulse from the controller, and this count is decoded to one of four outputs which will be in the correct sequence for the chosen direction of travel. Although the pulses from the controller may

Fig. 2. A slot in the disc's protective envelope allows the read/write head to access the disc surface, and a further small aperture lets the photo-electric index sensor detect a small hole in the disc for signalling one revolution. Various types of micro-floppy disc-drives are appearing, one of which has a rotary positioner to keep costs down. Micro-disc shown is for the Sony SMC-70. Relative sizes shown are approximate.

rig. 3. riopp-use arive mechanism. Closing the drive door (not shown) forces the moving disc hub (here the upper hub) toward the fixed driving hub to both grip the disc and centre it by means of a location taper.

Disc drive motor

only be a few-hundred nanoseconds long, the motor drive circuit stretches these to about 10 milliseconds.

All incremental positioners need a reference from which to start counting. At the rearward limit of carriage travel, the carriage interrupts a slotted light-beam-type sensor which generates a logic signal indicating cylinder zero. From then on, the controller must remember the sum of how many pulses forward and how many back have been sent in order to know what the current cylinder is. Should this count be lost, say due to a power failure, it is necessary to execute a recalibrate function. In this case the drive is sent reverse pulses until the cylinder-zero sensor is activated. Head alignment. One of the less endearing features of plastics materials is lack of dimensional stability. Temperature affects plastics much more than metals, and they also change their dimensions as a function of humidity. For this reason the track spacing has to be generous, being only 77 tracks on the industry-standard floppy, and 35 on the basic mini-floppy disc. Owing to this coarse track spacing, head alignment in the field is seldom necessary, but is nevertheless quite easy on a leadscrew drive. After loosening a clamp screw, the stepping motor can be turned bodily while dentented, which has the effect of rotating the leadscrew, hence moving the head. It is also important that the cylinder

zero sensor be at the correct radial position, or a recalibrate could cause the positioner to detent on the wrong track.

The read/write head of a standard floppy-disc drive operates on the lower surface only, and is rigidly fixed to the carriage. Contact with the medium is achieved with the help of a spring-loaded pressure pad applied to the top surface of the disc opposite the head. To reduce head wear, the pressure pad is often retracted when data is not actually being transferred.

Fig. 6. Stepping -motor drive circuit in which a 2-bit counter counts up or down according to pulses from the controller. The count direction determines the switching sequence of four output drivers and hence the motor's direction of rotation.

Motor

Fig. 5. Stepping motors are used to turn the floppy-disc drive positioner's leadscrew. The most basic form of stepping motor, shown here, requires external torque to start it, and if the rotor is a permanent magnet, detenting is obtained when the rotor is stationary. This type of motor may be found in mains-driven electric clocks, but a commonly used, more advanced type with extra, separately-driven windings and poles is used to turn a floppy-disc-drive positioner's leadscrew in either direction without starting torque from outside.

Some drives have provision for adjusting the pressure-pad loading. The pressurepad solenoid can often be heard operating in an otherwise virtually silent drive. The recording technique used with standard floppy-discs is f.m. (described earlier in the series). Owing to the indifferent stability of the medium, side-trim or tunnel erase recording is used, which can withstand considerable misregistration.

Figure 7 shows the construction of a side-trimming head, and the extra erase poles can be seen. Figure 8 shows a typical write circuit from a double-sided drive which incorporates a head-select matrix. During writing, the erase poles are energized by switching power to a fourth head connection.

At the inner tracks, writing density becomes higher, and the write current needs to be reduced. This is the function of the

signal 'above-43', which refers to the higher cylinder addresses.

The major signals between the drive and its controller have now been introduced and are summarized in Fig. 9.

Formatting

Since it has become a standard, the format of the floppy-disc warrants inclusion here.

Figure 10 shows that there are 26 blocks on each track, which commence at the index point. A considerable tolerance gap is left after the last block to allow for variations in disc speed changing the length of blocks written at constant write frequency.

Figure 11 details each block, and shows that the header contains the cylinder and sector address of the block for the purpose of position confirmation before transferring data. The header finishes with a cyclic-redundancy-check character (c.r.c.) which is used to establish that the header was correctly read. Between the header and the data block proper is a space where the write current can be turned on. The block contains 128 bytes of data followed by a 2-byte check character. The IBM specification also details which tracks are to be used for particuluar purposes, but this is not adhered to by other manufacturers of floppy disc drives.

Developments

As with all disc drives, developments have increased the storage capacity of the floppy disc. The first step was to use modified f.m. (m.f.m.) encoding instead of f.m., which effectively doubles the capacity (described in the second article). Such drives are referred to as double-density, and are to be found in both sizes. Some drives have been built which are capable of continued on page 84

Fig. 8. Typical write circuit from a doublesided disc drive with head-select matrix. During writing, the erase poles are energized by switching power to a fourth head connection. 'Above 43' refers to higher cylinder addresses and is a signal used to reduce write current at the inner tracks where the writing density is higher.

Fig. 10. There are 26 blocks on each track of a standard floppy disc commencing at the index point. A considerable gap is left at the end of the last block to allow for rotational-speed changes, which will change the length of blocks written at a constant write frequency.

Fig. 11. Details of a data block. In the header-field section, the first byte is a unique pattern decoded by the controller to identify the beginner of the header field, called the identification-address mark. The last two bytes in the header-field section are for cyclic-redundancy checking (c.r.c.). The data field is broken into 131 bytes of information and is preceded by a field of zeros and the header field just mentioned. Here, the first byte is also a unique pattern but for identifying the beginning of the data field, called the data- or deleted-data-address mark. Bytes two to 129 comprise the data field used to store 128, 8-bytes of information. Bytes 130 and 131 are a cyclic-redundancy-check character.

Read amp

METEOSAT HIGH-RESOLUTION IMAGES

Final details of circuits for receiving Meteosatll high-resolution pictures on a home-built station. The original weather-satellite receiver, designed for Tiros-N high-resolution images, was described towards the end of last year.

Word and frame synchronization is achieved by passing the serial data through a 24-bit shift register and detecting the sync. sequence. This is similar to the system used for h.r.p.t. but a more straightforward method of detecting a clock-phase error is used. The effect of this type of error is that the data appears inverted, and with an increased error rate. This situation is detected by checking the serial data for sync. as well as sync. and correcting the clock if sync. is found.

Figure 5 shows the circuit of the serialto-parallel converter together with the associated sync. detector. The error signal is fed back to the bit conditioner. This circuit should replace the sync. detector section of the serial-to-parallel converter used for h.r.p.t. The counter that provides the word clock should be changed to divide by eight because of the different word length. The sync. guarantee counter which resets at 11090 for h.r.p.t. should be decoded to reset at 364 for p.d.u.s. In the prototype

by M. L. Christieson

station, switching between the two systems is controlled by the computer.

Data handling and display

One of the advantages of using computer software to process the data is that different types of image can be handled easily. In the prototype station, the computer interface was modified to receive two 8-bit words and flags as one 18-bit word rather than the original four, 4-bit words of the experimental h.r.p.t. system. This change was made to accommodate a more advanced colour display which stores 6-bit words to give 64 colours. Reception of h.r.p.t. data is now also through this interface and colour display.

The software that controls data from the interface for the tape drive in real time has

Fig. 5. Sync. detector with serial-to-parallel converter. The error signal if fed back to the bit conditioner, Fig. 3.

first to locate frame zero and hence the label. Subframes containing the required image data are stripped of unwanted words, such as syncs, and the 6 most significant bits stored in the main memory. Data is then transferred to tape in a similar manner to that used for h.r.p.t., i.e., with data channel and interrupts.

The colour display, which operates as a

Meteosat now relays GEOS pictures

As pointed out in this article, Meteosat's schedule is subject to occasional revision, and since the time of writing a new schedule has been introduced. This includes formats containing data from the GEOS-E satellite situated at 75°W. These formats are relayed via CMS-Lannion in France, and comprise both p.d.u.s. and s.d.u.s. images of the Americas and the Western Atlantic. The p.d.u.s. formats, called LX, have been successfully received by the prototype station.

Fig. 4. This is how the top-middle section of the circuit diagram on page 64 of last month's Wireless World should have looked; we apologize.

computer peripheral, has a basic image of 315 lines by 384, 6-bit pixels. The raster store is made from dynamic mos memory and uses the line rate as the refresh. A oneline buffer is used to transfer data to and from the main store. The output is fed to a d-to-a converter from a hardware adder and subtracter loaded by the computer. This means that the colours may be changed without loss of the stored image.

Adjustment and results

Final adjustment is simplified by the continuous nature of the Meteosat signal and a satellite simulator was not necessary. A final check on the system is most easily made by using the computer to check for errors in the sync. sequences. This information may be used to calculate an approximate error rate which was better than 1 in 10^7 in the prototype.

A large number of images have been received and the quality has been excellent. There are relatively few p.d.u.s. users at the moment, possibly because of the high cost of commercial equipment and the apparent reluctance of people to make it. It is hoped that these ideas may form the basis for further exploitation of the service and facilitate further work on the interpretation and use of the data, a field where much important work remains to be done.

Further reading

Use of data from Meteorological satellites, Technical conference, Lannion, Sept. 1979, ESA, SP143

Satellite meteorology of the Mediterranean, ESA, SP159

Climate and man's environment, J. E. Oliver, Wiley and Sons

Proceedings of the second Meteosat scientific user meeting, Mar. 1980, ESA

Publications relating specifically to Meteosat may be obtained from ESOC, MDMD/OPS, Robert Bosch Strasse 5, D-6100 Darmstadt, W. Germany. Other ESA publications, for which there is a charge, should be obtained from Scientific and Technical Publications Branch, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands.

accepting either single or double-density discs. A bit in the headers will tell if the subsequent data is f.m. or m.f.m., the disc format being otherwise the same.

The next step was to record on both sides of the disc. In this approach, the pressure pad is replaced by a second gimballed head, which constrains the medium to pass neatly between in contact with both heads. The floppy disc is somewhat thinner than a hard disc so to reduce crosstalk the magnetic gaps of the two heads are displaced slightly along the track from one another. The two heads are always at the same distance from the spindle. A doublesided double-density drive yield four times the storage capacity of the standard product. As the recording density increases, however, it becomes more important to have high quality media. Recent advances in head technology permit continuous contact with the medium, thus eliminating the solenoid mechanism, making it especially important to use discs recommended by the manufacturer.

Dimensional instability is compensated for in some drives by a section of disc material in the positioner baseplate. As the disc changes its dimensions, so too does the baseplate, reducing the resulting misregistration.

An unconventional approach to doubling the density of a floppy disc drive is to engineer a more compact mechanism which is half the height of a standard drive. This allows two drives to be fitted in the space of one. A unit of this type is shown in Fig. 12.

The most recent development is the use of vertical recording, where the magnetic domains in the medium are arranged on end throughout the thickness of the coating. Research has now provided a suitable medium in the form of Chromium-Cobalt crystals which are sputtered onto the substrate. It is predicted that this technique will increase the capacity of a floppy disc by initially a factor of 3 to 5. This technology can then be expected to migrate to hard discs with staggering results.

In mainframe and minicomputer applications, the floppy disc provides an excellent low-cost medium for loading diagnostic programs, particularly useful if the hard disc subsystem is faulty. In microcomputers, the floppy disc is the only product which is of the same order of cost as the other components of the system, and the disc needs less consideration in handling than the hard disc. With the current popularity of microcomputers, the floppy disc is a significant growth area. This article concludes the information on disc drives themselves. Future articles will discuss the control logic required to support the drives, and techniques used to ensure data integrity.

Acknowledgments

The author would like to thank HAL Computers Ltd for photographs of the mini-floppy and half-height drives, and Digital Equipment Co. Ltd for permission to use the standard floppy-disc drive photograph.

SIDEBANDS: PAST, PRESENT AND FUTURE

The debate on the existence of sidebands was recently revived by letters in Wireless World. Professor Bell thinks they are here to stay — for the moment, at least.

A recent letter in Wireless World¹ recalled rather nostalgically some of the writer's earliest experiences of radio in the 1930s. In those days engineers did not always rely on mathematics - after all, Marconi successfully defied the predictions of diffraction theory about the propagation of short waves - and there was substantial argument as to whether sidebands really existed. The extreme point of the argument came when J. Robinson produced a type of receiver which he named "Stenode Radiostat" ("Stenode" from the Greek for "Narrow path") which he claimed utilized the modulated carrier and ignored sidebands². This receiver used a single, high-Q resonant circuit (quartz crystal) to give high selectivity. The higher modulation frequencies were admittedly attenuated by the slow response of the high-Q element to changes in carrier amplitude but this effect was compensated by a suitably large top boost in the audio-frequency circuits.

Now, in a truly linear system, the attenuation of high frequencies in one stage followed by their restoration in a later stage would restore the original condition, with no net advantage. But the Stenode Radiostat worked! It was claimed that an interfering station only one kilocycle (kilohertz) off the wanted station could be eliminated. (The weakness of the system was that the large top boost in the audio stages also magnified any harmonic distortion which might have been generated in the detector stage). The success of the Stenode Radiostat also tied in with something which had already been puzzling other experimenters. If one had, for example, a simple crystal set with a single tuned circuit of very modest Q, it was possible to separate two local medium-wave broadcasting stations much more completely than one would have calculated from the resonance curve of given Q.

A demonstration of the existence of sidebands was given at one of the Physical Society's Annual Exhibitions. One exhibit (from the N.P.L.?) showed a carrier of comparatively low frequency (perhaps 15 kHz) modulated by a single audio frequency; and a wavemeter with galvanometer indication of response (there were no spectrum analysers in those days) could be tuned across the frequency band, showing separate responses to each sideband and the carrier.

As sidebands could be shown to exist, why did the Stenode Radiostat work? Remember the qualification above that in a truly linear system no net advantage was to be expected. The fact is that a 'linear' detector, in the sense of one which has a

by D. A. Bell, F. Inst.P., F.I.E.E.

linear relationship between input and output, is not linear in the circuit-theory sense of obeying the law of superposition which requires the output due to two signals applied simultaneously to be equal to the sum of the outputs obtainable from the two signal applied separately. Put very crudely, and assuming the two signals to be of very different amplitude, the opening and closing of the conducting path through the rectifier is controlled by the stronger signal and any signal of different frequency is 'mashed up' because some cycles which coincide periodicially with those of the stronger carrier are allowed through but others are blocked. It turns out that only the modulation of the weaker signal is suppressed, to an extent depending on the ratio of carrier amplitudes, any heterodyne note between carriers remaining. In the Wireless World's then sister journal, originally entitled Experimental Wireless but later Wireless Engineer, there was a sequence of papers under the title "Apparent Demodulation of a Weak Station by a Strong One". The first was a mathematical paper by Beatty³, but the mathematics of non-linear systems is notoriously difficult and Butterworth⁴ disagreed with the results of Beatty's mathematical analysis. Then a paper by Colebrook⁵ was concerned to present a simpler mathematical treatment and finally a paper by Appleton (later Sir Edward Appleton) and Boohariwalla⁶ from King's College, London, reported an experimental verification of the theory. This last paper has a footnote suggesting that the effect in question might have some relevance to the Stenode Radiostat. So one now takes account of the effect of relative carrier amplitudes in receiver design, while using a flat-topped pre-detector filter to avoid the problem of harmonic distortion exaggeration by audio-frequency top boost.

So at the present time sidebands are universally accepted, as indeed they should be. To anyone of modest mathematical competence, the statement sin $\omega t.\sin pt = \frac{1}{2} [\cos(p-\omega)t - \cos(p+\omega)t]$ is just as true as 2 + 2 = 4. (The modifications to the trigonometric formula to provide for a non-negative carrier and defined depth of modulation are trivial.) The important thing to remember, however, is that an equation has two sides, so that carrier-of-varying-amplitude and constantcarrier-plus-sidebands are equally valid representations of the modulated carrier: one finds whichever one is looking for, whichever one's test apparatus is capable of detecting. Thus, if one uses an oscilloscope one will see only a carrier of varying amplitude, but if one uses a spectrum analyser one will see carrier and sidebands. The idea of time/frequency duality was not well developed in the 1930s, when one thought of applying Fourier series only to the analysis of repetitive waveforms of non-sinusoidal shape, as in the treatment of harmonic distortion.

The most graphic example of time/frequency relationships (though in a different context) was given by Gabor⁷ in 1946. A pure sine wave will appear in the spectrum (frequency) analysis as a line of zero width, but to have zero width it must extend over an infinite range in time. Conversely, a pure pulse is concentrated in an infinitesimal time but in the frequency domain is spread over all frequencies (as evidenced experimentally by its potentiality for causing interference). Any intermediate waveform - e.g. a chopped sinusoid or a lengthened pulse - will occupy a finite range in both time and frequency. The idea that the communication of information requires a finite bandwidth has somehow become associated with 'information theory' and has thereby acquired an unquestionable authority. Nowadays we expect to be able to shift between time and frequency descriptions of a phenomenon as the immediate problem may demand, by the (mathematical) Fourier Transform, where an analytic description is possible, by the (computer) Fast Fourier Transform (F.F.T.) where numerical transformation of an arbitrary signal is required or by the Wiener-Khintchine Transform to find the power spectrum of a random signal.

So sidebands are firmly with us at present, but will they always be in future? For a long time the frequency domain of sinusoids has seemed inherent in nature: there are so many natural phenomena which involve harmonic oscillation, in fact anything which involves inertia and a restoring force proportional to displacement from a central state. The most obvious electrical version of this is the combination of inductance and capacitance, and at moderate frequencies the LC resonant circuit seemed a natural part of most tuned systems. Perhaps a hint of the future lay in the low-frequency RC oscillator which avoided the use of an inconveniently large inductance. Now we have integrated circuits which are unable to produce reasonable magnitudes of either L or C but are appropriate for digital working with an external driving clock.

This brings us to consider Walsh functions⁸ as an alternative to trigonometric functions. The use of non-sinusoidal signals has been surveyed in detail by Harmuth⁹ who has shown how to construct (with operational amplifiers) circuits analogous to the ordinary resonant circuits, but which respond selectively to particular non-sinusoidal waveforms. Direct digital transmission (without a carrier) is used for high-speed transmission over optical fibres; and Harmuth describes the use of a radar with non-sinusoidal waveform for the detection of buried pipes. As long as one is concerned with local or confined transmission there is no problem, though in optical fibres one may tend to go to a frequency description of the dispersion as a property of the medium, while still speaking of a time delay to the signal. But modulated sinusoids seem essential in free radio communication for three reasons:

1. Maxwell's equations imply sinusoidal radiation.

- 2. Changing the whole world's "channel" allocations from frequency-division to time-division would be a worse problem than changing the rule of the road from right to left throughout Europe and America - for in the radio case it would be necessary for everyone throughout the world to change simultaneously.
- 3. Time-division would require synchronism with a world-wide standard clock, in phase as well as frequency, and this could not be maintained over a long distance of propagation.

It therefore seems that modulated-carrier radio, and thus sidebands, will be with us for the foreseeable future.

References.

- 1. D. C. Sutherland, Wireless World, vol. 88,
- J. B. Sol, June 1982.
 J. Robinson, The Stenode, Wireless World, vol. 28, pp. 9-11, January 7th, 1931.

- 3. R. T. Beatty, Apparent Demodulation of a Weak Station by a Stronger One, Experimental Wireless, vol. 5, pp. 300-303, 1928.
- 4. S. Butterworth, Apparent Demodulation of a Weak Station by a Stronger One, Experimental Wireless, vol. 6, pp. 619-621, 1929.
- 5. F. M. Colebrook, A Further Note on the Apparent Demodulation of a Weak Station by a Stronger One, Wireless Engineer, vol. 8, pp. 409-412, 1931.
- 6. E. V. Appleton and D. Boohariwalla, The Mutual Interference of Wireless Signals in Simultaneous Detection, Wireless Engineer, vol. 9, pp. 136-139, 1932.
- 7. D. Gabor, Theory of Communication, Journ. I.E.E., vol. 93, part III, pp. 429-441, 1946.
- 8. Thomas Roddam, The Function of Functions. An Approach to Walsh Functions from Telecommunications History. Wireless World, vol. 87, pp. 36-39. December 1981.
- 9. H. F. Harmuth, Nonsinusoidal Waves for radar and radio communication. Academic Press, 1981 (Advances in Electronics and Electron Physics, Supplement 14).

continued from page 62

The author

Mr Tierman is currently manager of British Telecom's Prestel computer network. He has spent the last 12 years being largely concerned with the design and management of on-line computer systems for use within British Telecom, and the LACES air cargo control scheme. Prior to that, 12 years RAF service was spent in close company with rader and associated computers. This article is the result of a consuming interest in audio systems, to which much of his leisure time has been devoted in the past 25 years.

Construction

The only item mounted directly on the main front panel are the 4mm sockets for Sync, Common, and output; a 5 pin DIN socket with pins 2 and 3 connected to Common and output respectively; and the led Da.

With one exception, there were no special screening or wiring constraints observed in making up the unit, but there has been a penalty in so far as there is some slight, but obvious, high-frequency breakthrough at the output (thought to be picked up at the junction of R_{13}/R_{15}) when the attenuators are set for something less than maximum output. The exception is the connexion between P₂ and TBG/B; this is a link between two high-impedance points and a screened lead should be used to prevent spurious triggering of IC_{2/1} via Tr4. There may also be slight notching of the output sinewave at points corresponding to the switching of $IC_{2/1}$, and this may be minimized by using a 4069 (hex. inverter) i.c. for IC2 in place of the 4584. If

this is done, the led driver circuit will not work properly on battery operation and C_{16}/R_{29} should be omitted.

Readers who would like copies of Mr Tiernan's suggested p.c.b. pattern sketches should send a stamped, addressed envelope to Wireless World, Room L302, Quadrant House, The Quadrant, Sutton, Surrey. Mark the envelope 'Oscillator'. MARAN

Wireless World index and binding

The index for Volume 8 (1982) of Wireless World is now available, price 75p including postage, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Our publishers also offer a service of binding volumes of Wireless World, each complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London, SE17 with your name and address enclosed. Confirm your order to the General Sales Department (address in first paragraph) and with this letter to Quadrant. House send a remittance of £6.90 for each volume (this price includes the index).

In both cases cheques should be made payable to IPC Business Press Ltd.

Motorola now manufactures some 15,000 semiconductor devices and selection can be somewhat overwhelming. To make it easier they have published a European Master Selection which lists approximately 4,000 preferred devices that correspond to the majority of customers' needs in Europe. This is still quite a daunting volume but includes all the microcomputer components, integrated circuits for digital and linears operation; a wide selection of discrete components and packaged devices for hybrid circuits. Motorola Ltd, York House, Enfield Way, Wembley, Middlesex. WW401

The Technit 10-section Electro Magnetic Interference Shielding Design Guide is a source of reference for design engineers who are faced with EMI shielding problems. It is available from MCP Electronics Ltd. 38 Rosemount Road, Wembley, Middlesex. WW402

Perdix Components, of 98 Crofton Park Road, London SE4, have expanded with five new divisions and have produced a product guide to list the components available. There are liquid crystal, vacuum fluorescent and gas plasma display panels; switching power supplies; microprocessor application boards and video monitors. WW403

Within the Catalogue of the Open University Press is a technology section which includes some interesting titles on the social implications of technology. The Future of the Printed Word is a collection of papers edited by P. Hills. A book by David Collingridge is entitled The Social Control of Technology. There is also The Future with Microelectronics by I. Barron and R. Curnow, and Microelectronics and Society edited by T. W. Jones. The books are not written for specific OU courses. WW404

'SIMPLE' LOGIC ANALYSER

A microprocessor-based logic analyser with a minimum of controls, the 7600, has been added to Enertec Instrumentation's range of laboratory instruments. Screen information is divided into two sections, one containing processed and labelled data from the analyser and the other containing prompts for the operator, supplemented by l.e.d. indications on the control keys. One of two 4096-bit memories is used for data storage. in either four, eight, 16 or 32-bitword form, and the other is a truthtable memory. Four possible operating modes are automatic step, manual step, externallytriggered step and 'halt-if-differentfrom-truth-table'. Stored data can be displayed in seven different ways. When operated synchronously, the 7600 has a frequency range of 0 to 30MHz, or, when operated asynchronously, up to 100MHz, with thresholds adjustable in 50mV steps between ±6.35V. Propagation delay difference between channels is 5ns and glitches 10ns wide at 3V p-p can be detected. Enertec Intrumentation Ltd, Progress House, Albert Road, Aldershot, GU11 ISZ. WW301

DISPLAYS

Liquid-crystal displays from Sharp with 240 by 64-dot matrixes, orange and green 40-character by 12-line plasma displays from Oki, and colour and monochrome monitors for low and highresolution applications are stocked by an offspring of the Vako group formed in June called Vako Display Systems Ltd. VDS claim to be one

of the few companies that stock the whole Sharp display range, including a 40-by-two-line character display, and they supply Oki plasma displays for graphics and character applications. They also supply 51/2 to 12in monochrome chassis monitors with various phosphors and 12 to 20in colour monitors for either low or high resolution. These products will be shown at the Electronic Displays Exhibition on October 5, 6 and 7 at the Kensington Exhibition Centre. Vako Display Systems Ltd, Pass Street, Werneth, Oldham, Manchester OL9 6HZ. **WW302**

WIRELESS WORLD OCTOBER 1982

STORAGE FOR PETS

Eproms are the basis of Progstor a unit which turns the Pet into a dedicated microcomputer with a selectable initiate-on-switch-on facility that makes the computer suitable for use by untrained operators. The program for the task concerned is written in Basic or machine-code or both and then, after debugging, is automatically stored in between 2 and 28Kbyte of eprom (2716 or 2732), so mechanically less reliable and physically more vulnerable magnetic-storage media are not required. Progstor, mounted inside the computer, can be set to operate automatically when the computer is switched on, or on receipt of a system command, and is intended for use in hostile environments, by untrained operators and in any application where the same program is used frequently. Of course, it may also be used as an eprom programmer. Microscience, P.O. Box 14, Bramhall, Stockport, Cheshire SK7 2QS. WW303

VIDEO PRINTER

Hard copy can be obtained from any standard composite video signal using an electro-sensitive dot-matrix printer called the TP55 from Thandar Electronics. Both positive and negative prints of information on the screen can be produced, on a 5in-wide paper roll, in 12 seconds for normal resolution, which gives 480 by 350 points, or 24 seconds for high resolution, giving 480 by 640 points. We rang to check whether a decimal point had been left out of the price, stated as £753. There wasn't, but we were told that the actual price is £737. Thandar Electronics Ltd, London Road, St Ives, Huntingdon, Cambs PE17 4HJ. WW304

64K EPROM

Customers with industrial or commercial applications for a 64K eprom can obtain one free from Rapid Recall. The Intel device concerned is a 2764-4, 450ns eprom which draws 100mA from a 5V supply when enabled or 40mA in standby mode. Other versions, not free, are for $\pm 10\%$ supply-voltage variation tolerance, and with 200, 250 or 300ns access times. Rapid Recall Ltd, Rapid House, Denmark Street, High Wycombe, Bucks. **WW305**

HIGH-VOLTAGE, AND 250W POWER MOSFETS

Two high-voltage mos devices, one rated at 350V, the MTM15N35, and the other called MTM15N40 rated at 400V can dissipate 250W according to a recent product announcement by Motorola. Both 15A transistors have a 0.4Ω on resistance and 70A peak draincurrent rating. Two high-voltage pchannel mosfets, one with a 50V higher rating than the other at 500V, are also available from Motorola, Both p-channel devices can carry 2A continuous drain currents or 8A peak. Motorola Ltd, York House, Empire Way Wembley, Middlesex HA9 OPR. WW306

NEW PRODUCTS

EXPANSION FOR POPULAR MICROCOMPUTER

English is not the best language that human beings could use from a technical viewpoint, but what is perhaps more important, most English-speaking people believe that it is. Basic, the microcomputer world's equivalent of English, is contested by Forth, even in the domestic microcomputer world (note the introduction of a popular microcomputer from Jupiter Cantab Ltd with Forth as its basic language). This purportedly more practical language is also one subject of four plug-in cartridges from Adda Computers. All four cartridges, of which VicForth with 3Kbyte of additional memory is one, are designed for the Vic 20 computer. One cartridge of the remaining three has six 24V by 10W relay-switch outputs and two 5-to-12V-'on' d.c. inputs. The remaining two cartridges are statistics-calculation and graphplotting aids. A forth cartridge costs £38.95 including vat and the other three cartridges cost under £30 including vat. Adda Computers Ltd, Mercury House, Hanger Green, Ealing, London W5 3BA. WW307

POWER SUPPLIES

Open-frame power supplies providing 5V at 3A and 3.75kV isolation form a new series from ITT Power Components. Efficiency of these units is typically 45% and output ripple 3mV pk-pk. A 10% input-voltage change produces an output change of ±0.05% and transient response is 30µs for a 50% load change. Dimensions of the series 15 power supplies are 125 by 102 by 52mm. STC Ltd, Edinburgh Way, Harlow CM20 2DE. WW308

1 MEGABYTE FLEXIBLE DISCS

A 5¼ in flexible-disc drive similar in appearance and interface requirements to a standard 5¼ in drive but capable of storing one magabyte of data is available from Hi-Tek. 96-track double-sided discs are recorded using the modified frequency-modulation technique through ceramic read/write heads. Up to four CDC 9409T disc drives may be used with one controller. Hard or soft sectored discs may be used, and a write-protect function is

incorporated. Hi-Tek Distribution Ltd, Trafalgar Way, Bar Hill, Cambridge CB3 8SQ. **WW** 309

VME-TO-EURO-6 INTERFACE

Connection between 68000-based circuit boards with VME buses (VME is a bus standard for Eurocard boards based on 16/32-bit microprocessors, agreed by a number of companies including Philips/Signetics, Motorola and Mostek) and boards with a Euro-6 bus for 6800, 6802 and 6809-based systems is possible using Euroka's VMEI interface board. With this board, various Euro-6-bus input/output modules designed for 6800 6802 and 6809 processor systems can be used with 68000 VME boards and, using a secondary processor, software written for the 6809 processor can be implemented on 68000 VME systems. Clock signals can be generated for timing i/o boards in single-processor applications, where the clock from a 6809 secondary processor is not present. Hawke Electronics Ltd, Amotex House, 45 Hanworth Road, Sunbury-on-Thames, Middlesex. WW31Å

TURNTABLE KIT

Main elements of this basic turntable kit from Input Design are a synchronous motor, glass platter with felt mat, belt, spindle components, instructions and baseplate drawings, leaving tonearm, plinth, base-plate and cover construction to the customer. The drive motor, claimed to be used in decks costing £350, is manufactured for 110V operation and an inefficient but cheap mains adapting device called a resistor is placed in series with the motor for 240V operation. (Why not have two motors driving together?) The British manufacturers, who also produce another turntable kit and an assembled deck, say they will be pleased to offer any advice, assistance or further information about the product after purchase. Each Home Constructor Turntable kit costs 49.50 including vat (an 'introductory-offer' price of £44 will run until mid-December). Input Designs Ltd, Palace Street, Biggleswade, Bedfordshire SG18 8DP. WW311

Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

ersatower:

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt-over facility enabling all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V: part 2; 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate n design, quality and reliability.

Suitable for mounting equipment in the fields of: **Communications** Security surveillance - CCTV Meteorology Environmental monitoring Geographical survey Defence range-finding Marine & aero navigation Floodlighting Airport approach lighting

ZXXX

Further details available on request

Strumech Engineering Limited, Portland House, Coppice Side, Brcwnhills, Walsall, West Midlands, WS8 7EX, England. Telephone: Brownhills (05433) 4321. Telex: 335243 SEL G.

WW - 080 FOR FURTHER DETAILS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty.

TYPE	SERIES No	SECONDARY Volts	RMS Current	PRICE					E FROM! D WITHIN 7
30 VA 70 × 30mm 0.45Kg Regulation 18%	1x010 1x011 1x012 1x013 1x014 1x015 1x016 1x017	6+6 9+9 12+12 15+15 18+18 22+22 25+25 30+30	2 50 1.66 1.25 1.00 0 83 0 68 0.60 0.50	£5.12 • p/p £1 04 • vat co 92 TOTAL E7 08	S	AYS (MALI YEAI	OF RECEI	PT FO (TY O) BBLE	R SINGLE O
50 VA 80 × 35mm 0.9 Kg Regulation 13% -	2x010 2x011 2x012 2x013 2x014 2x015 2x016 2x016 2x017 2x028 2x029 2x030	6+6 9+9 12+12 15+15 18+18 22+22 25+25 30+30 110 220 240	4.18 2.77 2.08 1.66 1.38 1.13 1.00 0.83 0.45 0.22 0.20	£5.70 • <i>p/</i> £1:30 • VAT £1:05 TOTAL £8:05	TYPE 225 VA 110 × 45mm 2 2 Kg Regulation 7%	No 5x012 5x013 6x014 6x015 6x016 6x017 6x018 6x026 6x025	Volts 12 + 12 15 + 15 18 + 18 22 + 22 25 + 25 30 + 30 35 + 35 40 + 40 45 + 45	RMS Current 9.38 7.50 6.25 5.11 4.50 3.75 3.21 2.81 2.50	PRICE £9.20 - p/p 52 00 - VAT 51 68 TOTAL 512 88
80 VA 90 × 30mm 1 Kg Regulation 12%	3x010 3x011 3x012 3x013 3x014 3x015 3x016 3x016 3x017 3x028 3x029 3x030	6+6 9+9 12+12 15+15 18+18 22+22 25+25 30+30 110 220 240	6.64 4.44 3.33 2.66 2.22 1.81 1.60 1.33 0.72 0.36 0.33	£6.08 • p/p £1.67 • VAT (1 18 TOTAL 68 91.	300 VA 110 × 50mm 2.6 Kg Regulation 6%	7x015 7x016 7x017 7x018 7x026	50 + 50 110 220 240 15 + 15 18 + 18 22 + 22 25 + 25 30 + 30 35 + 35 40 + 40	2 25 2 04 1 02 0 93 10 00 8 33 6 82 6.00 5.00 4.28 3 75	£10.17
120 VA 90 × 40mm 1.2 Kg Regulation 11%	4x010 4x011 4x012 4x013 4x013 4x015 4x016 4x017 4x018 4x028 4x029	6+6 9•9 12+12 15+15 18+18 22+22 25+25 30+30 35+35 110 220	10 00 6.66 5.00 4.00 3.33 2.72 2.40 2.00 1.71 1 09 0.54	£6.90 • p/D £1 67 • VAT E1 29 TOTAL £9 86	500 VA 140×60mm 4 Kg Regulation 4%	8x018 8x026 8x025 8x033	45 + 45 50 + 50 110 220 240 25 + 25 30 + 30 35 + 35 40 + 40 45 + 45 50 + 50	3 33 3.00 2 72 1 36 1.25 10.00 8 33 7 14 6.25 5.55 5 00	101AL E14 00 £13.53 - p/p f2 35 - yAT f2 38
160 VA 110 × 40mm 1.8 Kg Regulation 8%	4x030 5x011 5x012 5x013 5x014 5x015 5x016 5x016 5x017 5x018 5x026 5x028 5x029 5x030	240 9+9 12+12 15+15 18+18 22+22 25+25 30+30 35+35 40+40 110 220 240	0.50 8 89 6:66 5:33 4.44 3 83 3.20 2.66 2.28 2.00 1.45 0.72 0.66	£7.91 • \$75.51 67 • \$41 67 • \$41 61 44 TOTAL C11 02	625 vA 140 × 75mm 5 Kg Regulation 4%	8x042 8x028 8x029 8x030 9x017 9x018 9x026 9x025 9x025 9x023 9x028 9x029 9x029 9x029 9x029	55 + 55 110 220 240 30 + 30 35 + 35 40 + 40 45 + 45 50 + 50 55 + 55 110 220 240	4 54 4 54 2 27 2 08 10 41 8 92 7 81 6 94 6 25 5 68 5 68 2 84 2 80	TOTAL 818 26

 $\rm IMPORTANT:$ Regulation – All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain off load voltage. The benefits of ILP toroidal transformers

ILP toroidal transformers are only half the weight and height of their laminated equivalents, and are available with 110V, 220V or 240V primaries coded as follows:

For 110V primary insert "0" in place of "X" in type number.

For 220V primary (Europe) insert "1" in place of "X" in type number.

For 240V primary (UK) insert "2" in place of "X" in type number.

How to order Freepost:

Use this coupon, or a separate sheet of paper, to order these products, or any products from other LP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to LP Electronics Ltd. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders. Also available at Electrovalue, Maplin and Technomatic

Please send		
Total purchase price		
enclose Cheque	Postal Orders	Int. Money Order
Debit my Access/Barclaycard	No	
Name		
Address		
Signature		
Post to: ILP E	lectronics Ltd., Freepost 5, Grah	
Telepho	Canterbury CT2 7EP, Ki one Sales (0227) 54778: Technic	ent, Ergland. cal (0227) 64723: Telex 965780.
		(a division of ILP Electronics Ltd)
	<u>RANSFOR</u>	

WW - 068 FOR FURTHER DETAILS

01-452 1500 TECHNOMATIC LTD 01-450 6597

BBB Micro Computer

Now available from stock

MEMORY UPGRADE 8 × 4816 AP-3 100nS £21.60 F.D. INTERFACE KIT IC 77-78 £70.00

CASSETTE RECORDER

Sanyo Computer Grade Recorder £24.50 + £1.50 Carr Cassette Leads £3.50 Computer Cassette £0.50 ea. £4,50 for 10

NEW LOW PRICES NEC PC 8023 BE - C 100CPS, 80 cols Logic Seeking, Bidirectional,

Forward and Reverse Line Feed, Proportional Spacing, Auto Underline, Hi-Res and Block Graphics, Greek Char. Set Only £340 + Carr £8.00

MICRODOCTOR

This is not a logic ana-lyser or an oscilloscope. It tests a microsystem and gives a printed re-print on RAM, ROM and I/O – it will print memory map, search for code, check dataline shorts and operates peripherals and even disassembles the ROM.

Microdoctor complete with psu, printer probe cable and two configuration board £295.

MENTA

A sophisticated Z80 development system and trainer. Powerful keyboard assembler and program debugging facility. Audible feedback on keyboard imput. Menta and PSU and TV Lead £115.

UV ERASERS

UV1B up to 6 Eproms £47.50 UV140 up to 14 Eproms £61.50 UV1T with Timer £60.00 UV141 with Timer £78.00 (Carr £2/eraser) All erasers are fitted with mains switches and safety interlocks.

TRAINER KITS

6502 Junior Computer 6802 Nanocomp I..... £80.00 Full details on request

6809 Nanocomp II £80.00 £85.00 1802 Micro Trainer £64.00

BBC Model B £399 (incl. VAT) (Carr £8/unit) Model A to Model B upgrade kit £60.00 Fitting charge £20.

> **ANALOGUE PORT KIT** IC 73, SK6 £7.30 RS423 & VDU Port Kit £10.80

OFFICIAL **DEALER**

MONITORS BMC BM1401 14" Colour Monitor RGB Input 18 MHz Bandwidth 400 dots at Centre 25 × 40 Char. £240 + £8.00 Carr BMC 12'' Green Monitor Composite Input 18MHz Bandwidth £99 + £6.00 Carr

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Single and Double Width Char Full Graphics, 10" wide

paper Tractor Feed Standard Friction Optional Now only £175 + £6 Carr

Parallel Printer lead for BBC/Atom £13.50 Variety of interfaces, ribbons in stock. 2,000 fan fold sheets 91/2" × 11" £14 + £3 p&p

All mating Connectors with Cables in stock. Full range of ACORNSOFT, PROGRAM **POWER & BUGBYTE SOFTWARE AVAILABLE**

Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES Single $5\frac{1}{4}$ Drive **£200** + £3 p&p Dual 5¹/₄'' Drive £335 + £5 p&p

PRINTER & USER PORT KIT IC 69, 70, 71 PL9, 10 £9.50 Bus & Tube Port Kit £6.50

8K + 2K Built £135 12K + 12K Expanded £175 8K + 5K + Colour Card £170 (Carr £3/unit) (Carr £3/Unit) Atom Disc Pack £299 + £6 Carr 3A 5v Regulated £26 + £2 Carr Atom PSU £7.00 + 70p Carr Full Range of Atomsoft in stock. Phone/send for our ATOM LIST

EPSOM MX 80 and 100F/T3

MX 80 80CPS 80 cols MX 100 100CPS 136 cols Logic Seeking, Bidirectional, Bit Image Printing, 9 × 9 Matrix Auto Underline MX 80 F/T3 £330 MX 100 F/T3 £430 (£8 Carr/Printer)

EP4000 EMULATING PROGRAMMER

This EPROM programmer will accept most single and three rail eproms by simple rotary switch personality selection. Output to TV and monitor. Comprehensive I/O Ports – TTL and RS232 20 mA current Loop, parallel port, cassette I/O, printer port and DMA. £545 + £8.00 Carr

P4000 PRODUCTION PROGRAMMER

This unit offers simple and reliable programming of up to 8 EPROMS simultaneously. Self-check – blank check – program and verify sequence built in.

2545 + £8 Carr. **BP4** – TI Bi-polar Prom Programming module for EP4000. This module will program most TI devices and read equivalent devices from other manufacturers enabling copies to be made. **£180** + £6 Carr.

SOFTY II INTELLIGENT PROGRAMMER The complete micro processor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV Softy II complete with PSU, TV Lead and Romulator lead $\pounds 169$

RUGBY ATOMIC CLOCK

This Z80 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facili-ties include 8 independent alarms and for each alarm there is a choice of melody or alternatively these can be used for electrical switching. A separate timer allows recording of up to 240 lap times without interrupting the count. Expansion facilities

See July/August ETI for details. Complete Kit £120 + £2 p&p

D	0	0	K	2
D	U	U		2
No	\/Δ	Tr	Sen.	£

(No VAT p&p £1)	
CMOS Cook Book	£7.75
CRT Controller H/Book	£5.95
Programming the Z80	£11.50
Z80 Microcomp handbook	
Programming the 6502	£10,25
6502 Assy. Lang.	
6502 Applications	£10.20
6502 Software Design	£9.05
6502 Games	£10.25
Large selection of databooks,	interfac-
ing books, books on BBC, etc.	in stock.
Ask for our list.	

ECHNOMATIC LTD (Export: no VAT, p&p at Cost)

P.&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70 EACH + VAT

NEW CENTRONIC 779 PRINTERS, £325 + VAT NEW CENTRONIC 781 PRINTERS, £350 + VAT LA DECK WRITERS MODS. 35, 36 & 180, FROM £325 +. VAT. ALL NEW NEW CIFA VDUs. 1 ONLY £300 + VAT POWER UNITS 5 VOLT 6 AMP, £20 EACH FANS, PCBs, KEYBOARDS AND LOTS OF ODDS & ENDS +

COME AND LOOK AROUND

SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX. PHONE MALDON (0621) 57440

WW - 069 FOR FURTHER DETAILS

DIGITAL CIRCUITS	
READY REFERENCE MANUAL by Markus COMMUNICATION CIRCUITS, READY, REF, MANUAL by Markus COMMUNICATION CIRCUITS, READY REF, MANUAL by Markus POPULAR CIRCUITS READY REF. MANUAL by Markus ENCYCLOPAEDIA OF INTEGRATED CIRCUITS by Morbabum DIGITAL INTEGRATED ELECTRONICS by Taub INTRO. TO PASCAL 2ND EDITION by Weish MACHINE CODE AND BETTER BASIC by Stower MICROPROCESSOR DEVELOPMENT & SYSTEMS by Taub MICROPROCESSOR SYSTEM DESIGN VOL II by Kiengiman MICROPROCESSOR SYSTEM DESIGN VOL II by RUCROPROCESSOR SYSTEM DESIGN VOL II BY RUCROPROCE	Price: £10.50 Price: £10.50 Price: £10.50 Price: £10.50 Price: £10.00 Price: £10.00 Price: £30.00 Price: £35.00 Price: £35.00 Price: £35.00

WW-036 FOR FURTHER DETAILS

Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	.83	.72	.66
4116 250ns	.75	.65	.60
4816 100ns For BBC comp	2.45	2.10	1.95
4164 200ns	4.95	4.55	4.20
2114 200ns Low power	1.15	1.00	.90
2114 450ns Lower power	.95	.85	.80
4118 250ns	3.25	2.85	2.65
6116 150ns CMOS	3.70	3.20	3.00
2708 450ns	2.60	2.25	2.10
2716 450ns 5 volt	2.60	2.25	2.10
2716 450ns three rail	5.75	5.00	4.65
2732 450ns Intel type	3.95	3.45	3.25
2532 450ns Texas type	3.95	3.45	3.25
Z80A-CPU £4.35 Z80A-P10 £3.2	5	Z80A-CT	C f3.25
6522 PIA £3.98 7805 reg5		7812 reg.	
Low profile IC sockets: Pins 8 14 Pence 9 10	16 18 11 14	20 22 24 15 18 19	

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00 5 inch SSDD £19.25 5 inch DSDD £21.00 8 inch SSSD £19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 30p post and packing to orders under £15 and VAT to total Access & Barclaycard welcome

24-hour service on (954 422) 618 Government and Educational orders welcome £15 minimum Trade accounts operated, 'phone or write for details

> **HAPPY MEMORIES (WW) Gladestry**, Kington **Herefordshire HR5 3NY** Tel: (054 422) 618 or 628

The Answer to Testing Questions

Intra Connector — Intra Switch **Test Clips** — Logical Connections — Logical Clips **Ex-Stock Jumpers and Headers**

IC TEST CLIPS

Туре	Model	Row-to-Row-Dim	Prices
923695	TC-8	.3 inch	6.30
923698	TC-14	.3 inch	- 3.82
923700	TC-16	.3 inch	4.03
923702	TC-16LSI	.5/.6 inch	7.59
923703	TC-18	.3 inch	8.48
923704	TC-20	.3 inch	9.80
923705	TC-22	.4 inch	11.10
923714	TC-24	.5/.6 inch	11.77
923718	TC-28	.5/.6 inch	12.94
923720	TC-36	.5/.6 inch	16.93
923722	TC-40	.5/.6 inch	17.82

Provide full access to integrated circuit DIP leads. Solve probe attachment problems. Simplify prototype and production testing, field service work, and quality control. Removes DIP's damage free. Non-shorting electrical connection. Gold-plated phosphor bronze spring contacts

LOGICAL CONNECTIONS

INTRA-CONNECTOR AND INTRA-SWITCH

Гуре	Model	Contacts	Prices
22576-20	Intra-Conn.	20	5.10
922576-26	Intra-Conn.	26	5.85
22576-34	Intra-Conn.	34	6.87
22576-40	Intra-Conn.	40	7.63
922576-50	Intra-Conn.	50	8.90
Гуре	Model	Contacts	Prices
22578-20	Intra-Switch	20	10.18
		0.0	11 70
922578-26	Intra-Switch	26	
922578-26	Intra-Switch	34	13.75

EXCLUSIVE PRODUCTS TO AP

Intra-Connector: Provides full access to lines. Permits quick testing of previously improbable circuits. Provides both straight-in and right-angle functions

Intra-Switch: Allows any line to be opened or closed. Permits instant line by-line switching for diagnostic or QA testing.

FLAT RIBBON CABLE ASSEMBLIES AND MALE AND FEMALE HEADERS

GREAT JUMPERS Choice of 3 types of end connectors moulded on and factory tested Daisy chain and single-end also available. Ask for Catalogue!

HEADERS For economical attachment of complete matrices of .025" square posts to PC-boards for interconnection systems. 78 different types are available. Ask for Catalogue!

Lowest cost of mating two boards together

Please add £2.00 p & p + 15% VAT to all prices.

WW - 084 FOR FURTHER DETAILS

Chiltern Electronics

High Street, Chalfont St Giles, Bucks HP8 4QH

NOTE OUR NEW ADDRESS!!

We now have a superb new computer showroom only 40 minutes from London where hundreds of bargains are on display. Over 1000 sq. ft. of space is devoted to display of processors, VDUs, printers, drives, keyboards, power supplies, monitors and 1001 other items all at incredible low prices. Thousands of bargains for callers.

Check with CHILTERN for . . .

SURPLUS COMPUTER EQUIPMENT SALE EVERY SATURDAY

Telephone Enquiries to: Chalfont St Giles (02407) 71234

The NEW KEF Constructor Series

The ideal design of a loudspeaker system involves the detailed and scientific study of the enclosure, drive units and crossover network. By applying computer aided techniques to the questions of enclosure volume, band width, efficiency, power handling capacity, probable system location and required directional characteristics, KEF have prepared detailed designs for the home constructor All this experience is now available to you - to

help you build your own system - successfully and at the right price.

LOUDSPEAKER DESIGNS

Enclosure B

This floor standing loudspeaker, based on the KEF Carlton, can provide remarkably sharp stereo imaging due to a novel method of minimising inter-unit time delay, and will produce a full frequency range with outstanding clarity and low distortion.

A new three way design incorporating the B139, which was the world's first flat diaphragm loudspeaker. The system offers an extended bass response and excellent power handling capability, with the three drive units being combined through a computer designed crossover network to give a very smooth frequency response characteristic with finely detailed reproduction of critical mid-range information.

KEF Electronics Ltd., Tovil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140. Please send me details of KEF Systems Designs Name:_______ Address:______

WW-032 FOR FURTHER DETAILS

WW/10/82

YOU DON'T NEED ME TO DETECT CROTECH'S VALUE

Its elementary. Just look at the **3030** at £150 and the **3131** at £240, both are 15MHz scopes with 5mV/Div maximum deflection coefficient. And the Dual Trace 3131 has matched X—Y, Algebraic Add and Subtract, and TV Trigger, all selected on easy to use clearly marked push buttons.

But that's not all, both incorporate a Component Tester, yes, even the Single Trace 3030, for the in or out of circuit testing of semiconductor and passive devices. With the resultant characteristic being displayed directly on the CRT.

Theres only one thing left to say Do you want a Violinist?

For full details just fill in the enquiry card or call us direct.

Crotech Instruments Limited

5 Nimrod Way · Elgar Road · Reading · Berkshire RG2 0EB · United Kingdom

Telephone: (0734) 866945 Telex: 847073 POWLIN G

WW - 074 FOR FURTHER DETAILS

CHOOSING A MICAO?

Then take a look at the October issue of Will: which reviews three new low- **COMPUTER** cost computers — the Vic 64 from Commodore, the Colour Genie and the MPF II from Multitech. Invest 60p in Your Computer and save yourself a lot of money!

Also in this issue:

Word processing on the ZX81. Yes, it can be done! And this article tells you how.

A survey of commercially available software for the BBC micro. Also the mystery of the control key on the BBC micro — solved!

Pocket computer from Sanyo. Or, when is a calculator a computer?

All this, plus our regular advice column and pages of program listings. Get a copy from your newsagent now — or take out a subscription by completing the coupon. To: Marketing Department, Room L214, IPC Electrical-Electronic Press Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Please send me 12 issues of

COMPUTER

I enclose a cheque/PO for £8 UK/£14 Overseas, payable to IPC Business Press Ltd.

Address		-															
	£ +															~	
			1												•		
									5								

LOW COST VOLTMETERS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of our comprehensive range of test and measuring instruments. These voltmeters give accurate readings over a wide range of frequencies. They are housed in robust steel cases and are powered by long life batteries.

Mains power units and leather carrying cases are available as optional extras.

A.C. MICROVOLTMETERS

VOLTAGE & dB RANGES	15μV, 50μV, 150μV 500V fsd Acc. ±1% ±1% fsd ±1μV at 1kHz, –100, –90 +50dB. Scale →20dB/+6dB ref. 1mW/600Ω.	тмза £140
RESPONSE	±3dB from 1Hz to 3MHz, ±0.3dB from 4Hz to 1MHz above 500μV. TM3B filter switch; LF cut 10Hz. HF cut 100kHz, 10kHz. or 350Hz.	∰38 £156
INPUT IMPEDANCE	Above 50mV: $10M\Omega < 20pF$. On 50µV to 50mV: $>5M\Omega < 50pF$.	LIJU
BROADBAND V	OLTMETERS	type TM6A
H.F. VOLTAGE & dB RANGES	1mV, 3mV, 10mV3V fsd. Acc. ±4% ±1% fsd at 30MHz, -50, -40+20dB. Scale -10dB/+3dB ref. 1mW/50Ω	£220
H.F. RESPONSE	±3dB from 300kHz to 400MHz. ±0.7dB from 1 MHz to 50MHz.	type TM6B
L.F. RANGES	As TM3	£240
LEVELL ELE	CTRONICS LTD.	
Moxon Street, Barr	net, Herts. Tel. 01-449 5028/440 8686	+P&P and VAT

Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686

See us on Stand D1 at TESTMEX 82

WW - 009 FOR FURTHER DETAILS

WW-035 FOR FURTHER DETAILS

WIRELESS WORLD OCTOBER 1982

instruments set the pace

- Colour Bar Pattern Generators
- Sweep and Marker Generator
- CRT Tester

- Field Level Checker
 Signal _evel Meter
 High Voltage Metered Probe
- Signal Generators

Audio Test

Generators

- Attenuators
- System Analyser
 Audic Tester
 Distortion Meter

- Equaliser Amp
- •
- Wow and Flutter Meter FreqLency Response Recorders
- **Millivoltmeters**
- Log Amplifier
- Speaker Analyser

WW - 092 FOR FURTHER DETAILS

When you select an instrument from the Leader range, you get more than just sound engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year warranty. A broad range that covers most areas of test, measurement and calibration, with advanced features and high specification as standard, Prices that are lower than you'd expect are the bonus. Probes, covers, hoods and pouches are all available to enhance the application potential and ensure that Leader instruments set the pace for others to follow.

thandar

ELECT PONICS LIMITED

Oscilloscopes

- 4 to 50mHz
- Single, Dual and Quad trace •
- Delayed sweep •
- Wide bandwidth
- High sensitivity
- High accuracy
- Battery operated

General Test

- LCR Bridge
- Semiconductor Curve Tracer
- Transistor Testers
- Logic Probe

Power Supplies

 Laboratory bench type • 5 models 500mA to 5A Overload Protected

> Thandar Electronics Ltd, London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ England. Tel: (0480) 64646. Telex: 32250.

> > **TH02**

ar	n	bi	ł	INTE	RNA	TION	AL
AND MOI	DULES	IN THE V	VORLD	ANGE OF & THERE' ALOGUE /	SONL	Y ROOM I	'OR A
CMOS-T 4001 4007 4009UB 4010 4011 4012 4012 4012 4012 4013 4012 4013 4014 4017 4019 4021 4022 4022 4022 4022 4022 4022 4022 4022 4022 4022 4022 4025 4027 4026 4027 4026 4026 4026 4026 4026 4026 4026 4026 4027 4026 4026 4026 4026 4026 4027 4026 4026 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4027 4026 4027 4026 4027 4026 4026 4027 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4027 4026 4026 4026 4026 4027 4026 4026 4027 4026 4026 4026 4027 4026 4026 4027 4026 4026 4026 4026 4026 4026 4026 4026 4026 4026 4026 4027 4076 4076 4077 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4076 4077 4075 4076 40	TL: 0.113 0.230 0.301 0.220 0.38 0.555 0.154 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.555 0.335 0.244 0.336 0.244 0.355 0.306 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.555 0.306 0.116 0.244 0.355 0.306 0.116 0.244 0.355 0.3	4515 4516 4520 4521 4522 4522 4522 4522 4522 4522 4522	1.25 0.60 0.35 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.25 0.80 0.23 0.80 0.23 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.85 0.80 0.23 0.80 0.23 0.80 0.23 0.80 0.23 0.80 0.23 0.80 0.25 0.80 0.25 0.80 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.2	74LS10 74LS11 74LS12 74LS13 74LS20 74LS20 74LS20 74LS20 74LS20 74LS20 74LS20 74LS20 74LS30 74LS30 74LS30 74LS30 74LS40 74LS40 74LS40 74LS51 74LS55 74LS75 74LS76 74LS76 74LS76 74LS85 74LS30 74LS85 74LS86 74	$\begin{array}{c} 0.12\\ 0.22\\ 0.20\\ 0.24\\$	74LS138 74LS138 74LS1451 74LS151 74LS151 74LS155 74LS156 74LS156 74LS156 74LS156 74LS160 74LS161 74LS161 74LS162 74LS164 74LS165 74LS165 74LS165 74LS165 74LS165 74LS165 74LS195 74LS195 74LS195 74LS196 74LS195 74LS196 74LS221 74LS196 74LS221 74LS224 74LS224 74LS225 74LS224 74LS225 74LS225 74LS226 74LS256 74LS256 74LS256 74LS257 74LS256 74LS257 74LS256 74LS257 74LS256 74LS257 74LS256 74LS257 74LS257 74LS257 74LS257 74LS257 74LS258 74LS257 74LS258 74LS257 74LS258 74LS257 74LS258 74LS257 74LS258 74LS2	$\begin{smallmatrix} & 30 \\ & 0 & 30 \\ & 1 & 20 \\ & 0 & 30 \\ & 0 & 0 \\ & 0 & 30 \\ & 0 & 0 \\ & 0 & 0 \\ & 0 & 0 \\ & 0 & 0$
LM10CN L149 U2378 U2578 U2578 LM324 LM339N LF347 LF357 LF351 LF351 LF351 LF351 LF351 LF353 LM380N ZNA19CE ZN427E/8 NE555N SL560C NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE564 NE3664 NE3664	3 88 1 86 1 28 1 98 1 30 0 76 1 98 1 30 0 76 1 98 1 30 0 78 1 30 1 95 1 305 1 00 1 95 1 305 1 00 1 95 1 20 1 95 1 60 1 95 1 60	SL1611 SL1612 SL1613 SL1620 SL1621 SL1623 SL1625 SL1630 SL1640 SL1641 SL1640 SL1641 SL1640 SL1641 SL1640 SL1641 SL1640 SL1640 SL1641 SL1623 CA3089 CA31305 CA31305 CA31305 CA31305 CA31305 CA31405 KB4412 KB4417 KB4412 KB4423 KB4423 KB4423 KB4423 KB4423	1.60 1.60 2.06 2.17 2.44 1.217 2.47 1.89 1.25 3.05 1.25 3.05 1.25 3.05 1.25 3.05 1.25 2.30 0.46 2.20 1.84 0.90 0.46 2.20 0.46 2.20 0.68 0.040 0.94 0.05 1.95	KB4433 KB4433 KB4437 KB4437 KB4443 KB4445 KB4446 KB4446 KB4446 KB4446 SL6600 SL6700 SL6640 SL6640 SL6690 SL6700 SL6640 SL6690 SL6700 SL6640 SL6700 SL6640 SL6700 SL6640 SL6700 SL6700 SAS6710 LS7225 ICL8038CC TK10170 TK10321 HA11223 HA11223 HA12402 HA12412 HA12412 HA12412 LF13741 MM553200 U264	$\begin{array}{c} 1.52\\ 1.953\\ 1.729\\ 2.726\\ 9.603\\ 3.378\\ 2.720\\ 2.038\\ 3.748\\ 2.75\\ 3.378\\ 2.75\\ 1.42\\ 2.75\\ 1.42\\ 2.75\\ 1.42\\ 2.75\\ 1.42\\ 2.75\\ 3.890\\ 2.27\\ 1.925\\ 3.890\\ 2.27\\ 1.85\\ 3.890\\ 2.27\\ 1.85\\ 3.890\\ 2.27\\ 1.85\\ 3.890\\ 2.27\\ 1.85\\ 3.890\\ 2.27\\ 1.85\\ 1$	U265 U266 LC7137 ICM7216C ICM7216C ICM7217A 95H90 HD1401551 HD1401551 HD44015 HD44015 HD44015 HD44752 WC145151F Z80A P10 Z80A P10 Z80A DART Z80A S10/1 Z80A S10/1 Z80A S10/2 Z80A S10/2 Z80	3,75 3.50 4.00 9.95 7.50 11.00 9.95 65.00 2.58 2.90 8.75 3.50 4.25 4.25 4.49 1.59 4.00 3.00
				ata, NTK,			pinc.
SFE6.0M/ CFSE10.7 SFE10.7W CFSB10.7 SFE10.7W SFA10.7N SFE10.7W SFE10.7W SFE10.7W SFE10.7W SFE10.7W SFE10.7T CFSH10.7 CFSH10.7 7BA - 1 to	A 0 1A 0 1J 0 1L 0 1L 0 7M1 0 7M2 0 7M3 0 TOK	0.80 CD 0.80 SFI 0.45 SA 0.50 MF 0.75 10 0.70 21 0.95 45 0.50 10 0.95 10 0.95 45 0.50 10 0.50 10	0A10.7M E27MA F10.7M0 45510A L45501L M15A M15A M15A M22D M8D VALUE 0	A 0.70 0.94 C-Z 3.75 212118.55 11.95 3.45 5.95 17.20 15.50	10M LFB4 LFB6 LFB1 LFB1 LFB1 LFB1 LFH6 CFV LFH8 LFH1 CFV	15D /CFU455H 0 2/CFU455F S/ v455HT S 2S/ v455FT s)	14.50 1.95 1.95 1.95 1.95 2.45 2.45 2.45 33p
8RB - 1 to RETAI Mond Friday 8	33mH IL SHO lay to I 1.30-8.3	19; P OPEN 'hursday 30 Satur	9 ING HO 9 8.30-0 day 9.0	10RE 0URS 6.30 00-5.30	815 to NOW 1F10 - 1	1.5H IN STOCK National's ne - Capacitor I	43p w Dual
ALL F	RICES	SHOWN	EXCLU ATION	DE VAT. I IAL	%P 50	p per orde	r.

WW - 047 FOR FURTHER DETAILS

FT180 "PIONEER" HF SSB TRANSCEIVER. 1.8-18MHz, 6 channels 100 watts RF output measuring only 95(H) x 240(W) x 310(D)mm and weighing 6kg. May be operated as a base or mobile transceiver, comple-menting our trap dipole and HW4 mobile aerials. Prices start at £500, making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

OSBORNE ROAD, TOTTON SOUTHAMPTON SO4 4DN

Telex: 477351 SMCOMM G Tel: Totton (0703) 867333

WW - 044 FOR FURTHER DETAILS

pantechnic THE POWERFET SPECIALISTS

POWERFET AMPLIFIER MODULES

The people at Pantechnic have been designing with powerfets since they first became commercially available. Their experience of powerfet amplifiers, coupled with their insight into the sources of non-linearity often neglected by others, has resulted in a new range of powerfet amplifiers that are fast, tough, linear and cheap.

	POWER RANGE		
MODEL	(Continuous RMS)	TYPICAL LOADS	NOTES
PFA 100	50W-150W	4Ω, 8Ω	Physically small
			30mm x 79mm x 108mm
PFA 200	100W-300W	$4\Omega, 8\Omega$	High Watts per £ ratio
PFA 500	250W-600W	$2\Omega, 4\Omega, 8\Omega$	25A continuous output
		,,	current
PFA HV	200W-300W	4Ω. 8Ω. 16Ω	5dB dynamic headroom
	20011 00011		
PFA HV	200W-300W	4Ω, 8Ω, 16Ω	5dB dynamic headroom Drives 70V line direct

Key features:

- Powerfet freedom from thermal runaway and secondary RELIABLE Poweret freedom from thermal runaway and secondary breakdown
 TiD zero, IM/THD < 0.01% full power, (mid band THD dowh to 0.0015%)
 Shew rate > 30V/µS, (45V/µS typical) LINEAR FAST QUIET — Signal to noise ratio 120dB BRIDGEABLE — (100, 200, 500 without extra circuitry) STABLE LOW COST ____ _ tity

As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low cost customising is often a possibility. Alternatively entirely new boards can be produced.

Pantechnic make more than just PFAs. Loudspeaker protection boards and the quietest, lowest distortion preamp boards currently available are just two of an ever-expanding range. Pantechnic sell high quality power supply and other components at excellent

prices. CHECK US OUT

Price and Delivery PANTECHNIC (Dept WW10) 17a-WOOLTON STREET LIVERPOOL L25 SNH Tel: 051-428 8485	Technical Enquiries contact Phil Rimmer on 01- 800 6667

WW - 094 FOR FURTHER DETAILS

WIRELESS WORLD OCTOBER 1982

WW - 041 FOR FURTHER DETAILS

WIRELESS WORLD OCTOBER 1982

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

 £6.50. Size 18×11×6in. Post £1.50.
 10012100

 RELAYS. 6V DC 95p. 12V DC £1.25. 18V £1.25. 24V £1.30

 BLANK ALUMINIUM CHASSIS. 6×4-£1.45; 8×6-£1.80;

 10×7-£2.30; 12×8-£2.60; 14×9-£3; 16×6-£2.90;

 10×7-£2.30; 12×8-£2.60; 14×9-£3; 16×6-£7.50;

 ANGLE ALL 6×3x3*3/ain. 18 swg. 30p.

 ALUMINIUM PANELS, 18swg. 6×4-45p; 8×6-75p;

 14×3-75p; 10×7-95p; 12×8-£1.10; 12×5-75p;

 16×6-£1.10; 14×9-£1.45; 12×2-£1.50; 16×10-£1.75.

 PLASTIC AND ALI BOXES IN STOCK. MANY SIZES

 ALUMINIUM BOXES, 4×4×1½ £1.4×2½×2 £1.3×2×1 £1.

 6×4-2 £1.60; 7×5×3 £2.40, 8×6×3 £2.50, 10×7×3 £3.

 12×6×3 £2.75, 12×8×3 £3.60. All with lids.

 BRIDGE RECTIFIER 200V PIV 2a £1.45 ±1.50, 6a £2.50.

 TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p.

 MINIATURE TOGGLES SP 40p. DPDT 60p.

 MINIATURE TOGGLES SP 40p. DPDT 60p.

 MINIATURE TOGGLES SP 40p. DPDT 60p.

 MINIATURE TOGGLES SON OTONE 97A £2.50.

 BSR Stareo Ceramic SC7 Medium Output £2. SC1 £3.

 PHILIPS PLUGAIN HEAD. Stareo Ceramic. AU1020 (G306

 GP310 - GP23 - AG3306, £2. A.D.C., QLM 30/3 Magnetic £3.

 LOCKTITE SEALING KIT DECCA 118. Complete £1.

 ANTEX SOLDERING Plastic 30p.

 JACK PLUGS Stence Orasinsc 52. 50W £6.

 JA ANTEX SOLDERING IRON 240V 15W £5.25 × £6. JACK PLUGS Mono Plastic 25p; Metal 30p. JACK PLUGS Stereo Plastic 30p; Metal 35p. JACK SOCKETS Mono 25p. Stereo 30p. FREE SOCKETS – Cable end 30p. Metal 45p. 2.5mm and 3.5mm JACK SOCKETS 25p. Plugs 25p. DN TYPE CONNECTORS Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p. PHONO PLUGS and SOCKETS ea. 20p. Free Socket for cable end 20p. Screened Phono Plugs 25p. 300 ohm TWIN RIBBON FEEDER 10p yd. AERIAL MATCHING TRANSFORMER 300/75 ohm £1. U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p yd. COAX PLUGS 30p. COAX SOCKETS 20p. NEON INDICATORS 250V, round 30p. Rectangular 45p.

POTENTIOMETERS Carbon Track

5kΩ to 2MΩ. LOG or LIN. L/S 50p. DP 90p. Stereo L/S £1.10. DP £1.30. Edge Pot 5K. SP 45p.

Esttery only Portable PA Amplifier 10w max. Includes mike and speaker, OK for meetings, crowd control, stalls, fetes, traders, parties, etc. Batteries included (6 of U2) **£27.50** post £1.50. R.C.S. 100 ROBUST VALVE AMPLIFIER AMPLIFIEN 4 Channel mixing. Master treble, bass and volume controls. 5 Speaker outlets, suits 4, 8, 16 ohm. Black cabinet. £125. Carr. & ins. £15. 0.0 FAMOUS LOUDSPEAKERS "SPECIAL PRICES" ES*** SIZE WATTS OHMS PRICE POST 4in 50 8 £9.50 £1 31/2in 25 8 £4 £1 4in 30 8 £6.50 £1 5in 80 8 £12.50 £1 4in 70 8 £12.50 £1 2×41/4 100 4/8/16 £22 £2 8in 25 48 £8.50 £1 10in 15 8 £5 £2 10in 50 8 £16 £2 AL PRIL MODEL TWEETER TWEETER MIO-RANGE MIO-RANGE MIO-RANGE HIFAX 71 MAKE MAKE SEAS GOOOMANS AUDAX SEAS SEAS 4in 30 4in 50 5in 80 4½in 100 SEAS ≂ 972111 100 71⁄2×41⁄4 100 8in 25 8in 60 10in 15 10in 50 8 £12.50 4/8/16 £22 4/8 £8.50 8 £12.59 8 £5 8 £16 GOODMANS HIFAY GOODMANS HIFA GOODMANS WOO GOODMANS HB RIGONOA GENE SEAS WOO GOODMANS HPG GOODMANS GR12 GOODMANS HPO WOOFER HB GENERAL WOOFER 1222 10in 50 120 £29.50 £27.50 £29.50 HPG GR12 12in 8/15 12in 90 8/15 12ia 120 8/15 69 SPEAKER COVERING MATERIALS. Samples Large S.A.E. B.A.F. LOUOSPEAKER CABINET WAOOING 18in wide 35p ft. MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33sin. square 100 watts. No crossover required. 4-8-16 ohm, 73bc3/bin. Too watts. Too Clossover Feddred. + a + to ohim, 7 + Bus / ant. CROSSOVERS. TWO-WAY 3000 c/s 30 wait 8 or 15 ohm £1. 3 -way 950 cps/3000 cps. 40 wait rating. £4.3 way 60 wait £5. LOUDSPEAKER BARGAINS 3 ohm. Sin / Y-4in, £2.50; 6/2in, 8 × Sin, £3; 8in, £3.50. 10in, £5. 8 ohm, 3/2 x - 3/2 s, 5 × 3/n, 7 × 4in, Sin, £2.50; 6/2in, 8 × Sin, £3; 8in, £4.50; 10in, £5; 12in, £6. 15 ohm, 3/in, 5 × 3/in, 5 × 4in, £2.50. 120 ohm, 3/4in dia, £1. CASSETTE MONO REPLAY. Complete working £12.50 CAR CASSETTE MONO REPLAY. COMPLETE WORKING £15.50 CAR CASSETTE WORKING £15.50 CAR CASSETTE WORKING £15.50 CAR CASSETTE WORK

NEW baker Star sound

results. The high flux ceramic magnet ensures clear response

4-8-16

8-16

8-16

8-16 4-8-16 4-8-16 8-16 8-16 8-16 8-16

8-16

BAKER 150 WATT MIXER/POWER

AMIPLIFIEM 1283 Post 22 For Discotheque, Vocal, Public Address. Three speaker outlets for 4, 8 or 16 ohms. Four high gain inputs, 20 mv, 50K ohm. Individual volume controls "Four channel" mixing. 150 watts 8 ohms R.M.S. Music Power. Slave output 500 M.V. 25K.ohm. Response 25 Hz – 20kHz ± 3dB. Integral Hi-Fi preamp separate Bass & Treble. Size – 16" x 8" x 5/x". WT – 14b: Master volume control. British made. 12 months' guarantee. 240v A.C. mains or 120V to order. All transistor and solid state. MONO SLAVE VERSION 675. 100 Volt Line Model £104. New Storee Slave Model 150 + 150 watt £125. Post £4. BAKEYS NEW PAISO MICROPHOME PA AMIPLIFICR £129. PP £3. 4 channel 8 inputs, dual impedance. 50K-600 bm 4 channel

4 channel 8 inputs, dual impedance, 50K-600 ohm 4 channel mixing, volume, treble, bass. Presence controls, Master volume

Ideal for PA systems, Discos and Groups. Two inputs, Mixer, Volume, Controls, Master Bass, Treble Gain.

RCS offers MOBILE PA AMPLIFIERS. Outputs 4-8-16 ohms 20-watt RMS 12v DC, AC 240v, 3 inputs. 50K £46 PP £2 40-watt RMS 12v DC, AC 240v, 4 inputs. 50K £75 PP £ Mic 1; Mic 2; Phono; aux. outputs 4 or 8 or 16 and 100v line 60-watt RMS, Mobile 24 volt DC & 240-volt AC mains. inputs 50K. 3 mics + 1 music. Outputs 4-8-16 ohm + 100 volts line £35 PP £2

50

000

£46 PP £2. £75 PP £2

0 0 5

control, echo/send/return socket. Slave input/output sockets.

INCHES OHMS

TYPE HI-FI HI-FI HI-FI

HI-FI HI-FI PA Guitar Oisco

Guita

Oisce

1 M

.

PRICE POST

WATTS

15

100

-

baker

high power full range quality loudspeakers

reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These

recommended where

high power handling is required with quality

12

12 15

1

2 1

AMPLIFIER £89 Post £2

BAKER £69 Post £2

50 WATT

AMPLIFIER

0 0 0 0 100

produced to give exceptional

loudspeakers are

MODEL

MODEL MAJOR OELUXE MK II SUPERB AUOITORIUM AUOITORIUM

GROUP 45 GROUP 75 GROUP 100 DISCO 100 GROUP 100 OISCO 100

R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS £3.95. Post 65p All parts and instructions with Zener diode printed circuit, mains transformer 240V a.c. Output 6 or 7½ or 9 or 12V d.c. up to 100mA or less. Please state voltage required.

HEATING ELEMENTS, WAFER THIN Size 11×9×/bin. Operating voltage 240V, 250W approx. Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between hyrochort of starthy

two sheets of metal or ceramic, etc. ONLY 60p EACH (FOUR FOR £2) ALL POST PAID.

		a <mark>n an an</mark>		
BARCLAYCARD	PM C	OMPO	NENT	'S LTD
Hay It wath Access	ALVE &	COMPON	IENTS SP	ECIALIST
INTEGRATE	D CIRCUITS	TA7120P 1.65 TA7130P 1.50	TBA651 1.75 TBA720A 2.45	TDA2540 2.15 TDA2541 2.15 TDA2550 2.15
AN124 2:50 AN214Q 2:50 AN214Q 2:50 AN240P 2:80 AN240P 2:50 AN240P 2:50 HA1151P 2:50 HA1151P 2:50 HA1366W 1:95 LA403P 2:70 LA4102 2:95 LA4102 2:95 LA4102 2:95 LA4102 2:95 LA4102 2:95 LA4102 2:95 LA4102 3:25 LC7130 3:50 LC7137 5:50 LC7137 5:50 LC7137 5:50 LC7137 5:50 LC7137 2:50 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M51513L 2:30 M5131P 1:50 M51327Q 0:95 M5133P 1:20 M5135P 1:00 M5135P 1:00 M5135	ML231B 1.75 ML232B 1.75 ML232B 1.75 ML232B 1.75 ML232B 1.95 ML237B 1.95 ML237B 1.95 ML323B 4.20 ML920 6.75 PLL02A 5.75 SA45000 7.75 SA45000 7.75 SA45000 6.75 SA55705 1.60 SA55705 1.60 SA766131N 1.65 SA766131N 1.65 SA76633N 1.65 SA76633N 1.65 SA76533N 1.65 SA76533N 1.65 SA76533N 1.65 SA76553N 1.40 SA76553N 1.40 SA765650N 1.55 SA765650N 1.55 SA76553N 1.55 SA76553	TA7203 2.96 TA7204P 2.15 TA7205AP 1.80 TA7222P 2.15 TA7222P 4.25 TA7310P 1.80 TA72313AP 2.95 TAA550 0.25 TAA557 1.80 TAA661B 1.20 TAA661B 1.20 TAA661B 1.20 TAA670 1.70 TBA12050 0.70 TBA12050 0.70 TBA395 1.50 TBA390 0.75 TBA4800 1.25 TBA390 1.25 TBA510 1.85 TBA500 1.10 TBA520 1.10 TBA540 1.25 TBA500 1.30 TBA641A12 2.50 TBA641BX1 3.00 TBA641.811 3.00	TBA7500 1.85 TBA800 0.89 TBA810AS 1.35 TBA8200 1.45 TBA820 1.45 TBA920 1.65 TBA920 1.65 TBA920 1.65 TBA930 1.69 TBA930 1.49 TBA9900 1.49 TBA9900 1.49 TBA1441 2.15 TCA2705 1.10 TCA650 2.50 TDA1327 1.65 TDA1026 2.50 TDA1026 2.51 TDA1026 2.50 TDA1026 2.50 TDA127 1.95 TDA127 1.95 TDA127 2.52 TDA122 2.55 TDA2252 1.95 TDA2522 1.95	TDA2560 2.15 TDA2581 2.95 TDA2591 2.95 TDA2593 2.95 TDA2593 2.95 TDA2610 2.50 TDA2610 2.50 TDA2640 2.80 TDA2640 2.80 TDA2640 1.35 TDA2640 1.35 TDA2550 3.95 TDA3550 3.95 TDA3550 3.95 UPC566H 2.95 UPC562 2.75 UPC101H 2.50 UPC156H 2.75 UPC1185H 2.95 UPC1185H 3.95 UPC1185H 3.95 UPC1185H 3.95 UPC1185H 3.95 UPC1185H 3.95 UPC1355 0.55 741 0.55 742 0.50 744 0.35 744 0.35 744 0.35 744 0.35 744 0.35 744 0.35 745 0.50 745 0.50 745 0.50 745 0.50 746 0.55 747 0.50 748 0.55 748 0.55 747 0.50 748 0.55 747 0.50 748 0.55 748 0.55 748 0.55 747 0.55 748 0.55 748 0.55 749 0.55 749 0.55 747 0.55 748 0.55 748 0.55 748 0.55 748 0.55 749 0.55 740 0.55 750 0.55 750 0.55 750 0.55 750 0.55 750 0.55 750 0.55 7
SEMICON		BD139 0.32 BD140 0.30 BD144 1.10 BD159 0.65	BF338 0.32 BF355 0.37 BF362 0.38 BF363 0.38	RCA16335 0.80 SKE5F 1.45 TIP29 0.40 TIP29C 0.42
AAY12 0.25 AC127 0.20 AC127 0.20 AC128 0.20 AC127 0.20 AC128 0.20 AC128 0.20 AC128 0.20 AC128 0.20 AC128 0.32 AC141 0.28 AC141 0.28 AC176 0.31 AC176 0.21 AC176 0.22 AC176 0.25 AC187 0.28 AC187 0.28 AC188 0.37 AD143 0.82 AD143 0.82 </th <td>BC172C 0.10 BC173B 0.10 BC174B 0.09 BC177A 0.10 BC177A 0.10 BC177A 0.19 BC177B 0.15 BC178B 0.16 BC178C 0.15 BC178B 0.10 BC178B 0.10 BC178C 0.09 BC182L 0.09 BC124L 0.09 BC214L 0.09 BC212LA 0.09 BC213L 0.09 BC214C 0.09 BC213L 0.09 BC237D 0.09 BC237D<</td> <td>BD166 0.48 BD179 0.72 BD182 0.70 BD201 0.83 BD202 0.65 BD202 0.65 BD202 0.65 BD202 0.74 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.45 BD223 0.45 BD234 0.35 BD234 0.35 BD234 0.35 BD234 0.45 BD237 0.40 BD242 0.45 BD245 0.45 BD236 0.45 BD376 0.32 BD410 0.55 BD438 0.60 BD520 0.65 BD538 0.60 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD597 1.00 BF115 0.35 BF115 0.35 BF127 0.24 BF154 0.12 BF164 0.27 BF160 0.27 BF181 0.28 BF181 0.28 BF181 0.28 BF181 0.28 BF185 0.38 BF185 0.30 BF265(C 0.28 BF257 0.28 BF259 0.28 BF233 0.34 BF337 0.29</td> <td>BF371 0.20 BF334 0.19 BF455 0.23 BF458 0.28 BF459 0.23 BF595 0.23 BF595 0.23 BF440 0.23 BF440 0.23 BF443 0.24 BF443 0.28 BF443 0.28 BF443 0.28 BF443 0.28 BF443 0.28 BF7443 0.28 BF745 0.26 BF788 0.26 BF788 0.26 BF788 0.26 BF790 0.77 BRC4443 0.86 BT108 1.22 BT108 1.22 BT108 1.22 BU124 1.60 BU208 1.39 BU208 1.39 BU208 1.39 BU208 1.30 BU208 1.30 BU208 1.30</td> <td>IF-30C 0.43 ITP30C 0.43 ITP31C 0.42 ITP32C 0.42 ITP32C 0.42 ITP32B 0.75 ITP44D 0.45 ITP42C 0.45 ITP31C 0.40 2N3055 0.52 2N3055 0.52 2N3054 0.52 2N3055 0.52 2N3705 0.12 2N3706 0.12 2N3737 1.75 2N427 1.50 2N5296 0.48 2N5</td>	BC172C 0.10 BC173B 0.10 BC174B 0.09 BC177A 0.10 BC177A 0.10 BC177A 0.19 BC177B 0.15 BC178B 0.16 BC178C 0.15 BC178B 0.10 BC178B 0.10 BC178C 0.09 BC182L 0.09 BC124L 0.09 BC214L 0.09 BC212LA 0.09 BC213L 0.09 BC214C 0.09 BC213L 0.09 BC237D 0.09 BC237D<	BD166 0.48 BD179 0.72 BD182 0.70 BD201 0.83 BD202 0.65 BD202 0.65 BD202 0.65 BD202 0.74 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.44 BD223 0.45 BD223 0.45 BD234 0.35 BD234 0.35 BD234 0.35 BD234 0.45 BD237 0.40 BD242 0.45 BD245 0.45 BD236 0.45 BD376 0.32 BD410 0.55 BD438 0.60 BD520 0.65 BD538 0.60 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD538 0.65 BD597 1.00 BF115 0.35 BF115 0.35 BF127 0.24 BF154 0.12 BF164 0.27 BF160 0.27 BF181 0.28 BF181 0.28 BF181 0.28 BF181 0.28 BF185 0.38 BF185 0.30 BF265(C 0.28 BF257 0.28 BF259 0.28 BF233 0.34 BF337 0.29	BF371 0.20 BF334 0.19 BF455 0.23 BF458 0.28 BF459 0.23 BF595 0.23 BF595 0.23 BF440 0.23 BF440 0.23 BF443 0.24 BF443 0.28 BF443 0.28 BF443 0.28 BF443 0.28 BF443 0.28 BF7443 0.28 BF745 0.26 BF788 0.26 BF788 0.26 BF788 0.26 BF790 0.77 BRC4443 0.86 BT108 1.22 BT108 1.22 BT108 1.22 BU124 1.60 BU208 1.39 BU208 1.39 BU208 1.39 BU208 1.30 BU208 1.30 BU208 1.30	IF-30C 0.43 ITP30C 0.43 ITP31C 0.42 ITP32C 0.42 ITP32C 0.42 ITP32B 0.75 ITP44D 0.45 ITP42C 0.45 ITP31C 0.40 2N3055 0.52 2N3055 0.52 2N3054 0.52 2N3055 0.52 2N3705 0.12 2N3706 0.12 2N3737 1.75 2N427 1.50 2N5296 0.48 2N5
DIODES	BY199 0.40 BY206 0.14	IN4001 0.04 IN4002 0.04	CRTT	
AA119 0.08 BA102 0.17 BA115 0.13 BA145 0.16 BA144 0.06 BA156 0.13 BA156 0.15 BAX16 0.06 BB1055 0.30 BT151 0.79 BY127 0.11 BY127 0.11 BY128 0.10 BY127 0.45 BY179 0.63 BY184 0.35	BY206 0.14 BY208 0.033 BY210-800 0.33 BY2210-800 0.33 BY2210-800 0.32 BY228 400 0.22 BY398 600 2.2 BY395 600 2.2 BYX10 0.20 0.20 BYX36-600R 0.80 0.82 BYX55 600 0.80 BYX55 0.45 0.47 CA47 0.99 0.490 0.25 CA50 0.60 0.04 0.491 0.04 CA202 0.10 1.0914 0.04	IN4002 0.04 IN4003 0.04 IN4005 0.05 IN4005 0.05 IN4006 0.06 IN4148 0.02 IN4448 0.02 IN4448 0.10 IN5401 0.12 IN5402 0.14 IN5403 0.12 IN5405 0.13 IN5405 0.13 IN5405 0.13	A selection available. P able on requ 3BP1 5BHP11 5BKP1 13BP4 1768 CV429 D10-210GH D13-450GH/01 D13-481GM D14-1206GH	Jest. D14-260GH D14-250GH DG7-32 DH7-11 DP7-11 M17-151GVR M38-121GH/R

PHONE 0474 813225 3 LINES MEOP	P. M. COMPONE SELECTRON HOUSE, WR PHAM GREEN, MEOPHAM	NTS LTD TELEX OTHAM ROAD 965966 I, KENT DAI3OQY WEST ST G	
ASELECTION FROM OUR A1398 1150 EA79 1.00 EF183 0.00 A1398 1150 EAA91 1.00 EF183 0.00 A2293 17.20 EAA620 0.05 EF732 1.80 A2243 17.20 EAA620 0.05 EF8045 1.86 A2253 37.80 EAA621 1.20 EF8055 9.86 A2559 37.80 EAA91 1.40 EF8055 9.86 A2200 1180 EB13 0.53 E132 0.05 AC/VP1 4.00 EBC31 0.45 E133 1.90 AC/VP1 4.00 EBC31 0.55 E134 1.90 AC/VP1 4.00 EBC31 0.56 E134 1.90 AC2/FENDD EBF83 0.450 E143 1.20 EA43 1.80 AC2/FENDD EBF3 0.450 E143 1.20 EA43 1.80 AC2/FENDD EBF3 0.450	HAAS31 1.00 PCF201 1.35 C206-20 25.00 HBCS10 0.00 PCF801 1.36 C206-20 25.00 HBCS1 0.00 PCF802 0.60 PCF802 0.60 PCF802 0.60 HBCS1 0.00 PCF802 1.40 PT11 1.50 HLS3 0.00 PCF802 1.40 PT11 1.50 HL33 0.00 PCF802 1.40 PT5 1.75 HL41 3.60 PCL80 0.65 RG3-1220A 1.175 HL410 3.60 PCL80 0.66 RG3-1220A 1.175 HL30 0.60 PCL80 0.66 RK2.25 2.50 RK2.25 2.50 RK2.25 2.50 RK2.25 2.50 RK2.25 2.50 RK2.25 2.50 RK3.25 2.50 RK2.25 2.50	V1359 3.8.0 227.5 17.80 CEC 0.20 12.4.GB 1.00 4.8.4.3.1 1.2 V1359 1.26 3.4.4.7 1.00 6C11 2.50 12.4.77 0.56 5728 35 VP48 4.50 3.4.5 0.30 6C11 2.50 12.4.77 0.56 12.4.77 VP41 2.50 3.4.7 1.76 6.6.7.4 4.60 12.4.77 0.56 12.7.75 VP43 2.50 3.4.7 1.76 6.6.7.4 4.60 12.4.77 0.56 1.60 12.5.7 1.75 6.6.7 1.60 12.4.7 1.56 1.60 12.5.7 1.75 6.6.7 1.60 12.5.6 1.77 1.75 6.6.7 1.60 12.8.6 0.77 1.75 6.6.7 1.60 12.8.6 0.77 1.75 6.6.7 1.60 12.8.6 0.70 1.75 6.6.7 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	4 00 8 000 5 000 8 0000 8 0000 8 0000 8 0000 8 0000 8 0000000 8 0000000000
4 Watt 10K 0.24 B9A	Skirted 6V2 7V5 8V2 9V1 10V 11V 12V 13V 0.30 15V 16V 18V 20V 22V 24V 27V 30V 0.70 33V 36V 39V 47V 51V 56V 68V 75V 0.20 27V5 8V2 9V1 10V 11V 12V 13V	★ ENTRANCE ON A227 50 YDS SOUTH OF MEOPHAM GREEN	
R47-4K7 0.18 B9A 5K6-12K 0.19 8106 7 Watt 15K-22K 0.20 8136	0.30 2V7 3V 3V3 3V6 3V9 4V3 4V7 5V1 B 0.16 5V6 6V2 6V8 7V5 8V2 9V1 10V 11V B 0.50 12V 13V 15V 18V 20V 24V 27V 30V DILL 0.10	CAR PARKING AVAILABLE + HOURS: MONFRI. 9.00-5.30. SATURDAY 9.30-12.00 + 24 HOUR ANSWERPHONE SERVICE +	
1R-10K 0.20 14 Pi 11 Watt 15K-22K 0.24	in DIL 0.12 DIL/Q 0.30 in DIL 0.15 VA1040 0.23 7V Power Mike	ACCESS AND BARCLAYCARD ORDERS WELCOME MANY OTHER ITEMS AVAILABLE *	
17 Watt CAN		UK ORDERS P&P 50p PLEASE ADD V.A.T. AT 15% EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST	

WIRELESS WORLD OCTOBER 1982

WW - 070 FOR FURTHER DETAILS

105

COMPUTERS AUDIO BOOKS MUSIC LOGIC

Breadboard '82 gives you the opportunity to have a day out in London AND attend Britain's regular exhibition for you, the enthusiast. NOT ONLY will there be stands from which you'll be able to buy the latest in kits, components, books and magazines, BUT ALSO lectures, demonstrations, competitions AND a chance to take part in a computer-assisted wargame that could make you the military tactician of tomorrow. DON'T MISS Breadboard '82 ... Adults £2.00, children, students and senior citizens £1.00.

COMPONENTS @ MAGAZINES @ GAMES @ KITS

ROYAL HORTICULTURAL SOCIETY'S NEW HALL WESTMINSTER LONDON SW1

NOVEMBER 10th-14th

Wed 10th	10am - 6pm
Thurs 11th	10am - 8pm
Friday 12th	10am - 6pm
	10am - 6pm
	10am - 4pm

frequency meter

AIRWAVES ELECTRONICS 151 London Road, Camberley, Surrey GU15 3JY Write/phone for catalogue (0276) 62949

WW-052 FOR FURTHER DETAILS

TELERADIO ELECTRONICS, 325 FORE STREET, LONDON N9 0PE Telephone 01-807 3719 Closed Thursdays

Literature on these units, R.F. Sig. Gen., T.H.D. meters, MVMT, Function Generators and many other instruments is available on request.

It's the chance every constructor wants

POWER AMPS

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780 FREEPOST

Name:

Address:

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

TO: I.L.P. ELECTRONICS LTD. PLEASE SEND ME I.L.P. CATALOGUE, POST PAID BY RETURN

I HAVE/HAVE NOT PREVIOUSLY BUILT WITH I.L.P. MODULES Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?

I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

				فستنبصبت				-
II P	products an	e evailable	also from	Hennis	Marshall	's Techno	matic & V	Nattor

WW - 087 FOR FURTHER DETAILS

WW - 014 FOR FURTHER DETAILS

FREQ. CONVERTERS I/P 240v AC O/P 115v 400c/s 100 Va 1 phase sine wave, all solid state, low dist o/p, new, unused, £115. INSULATION TEST SETS, 240v I/P provides 3 O/Ps of 15/20/25kv, uses contact breaker (Vibrator) from 12v DC with test leads in fitted wood case, size 14 × 8 × 9in., thought to have been used for testing Ignition Harnesses, £27. BENCH P.U. Solartron, 200/250v I/P O/P var. from 0 to 40v DC in 100 Mill/V steps current var from 0 to 5 amps, will operate in constant voltage or current mode, O/P volts, set by dig swt, current by swt and pot, % load meter tested with book, £75. A.M. MOD UNIT, Marconi TF1102, will mod Sine, Sq. Pulse or Video on to un mod RF, req ext mod signals, for 240v with book, £25. BENCH P.U. Army 240v I/P provides 2 low HT and 2 low LT O/P all DC and Var, fitted 4x meters, volts and Ma on all circs, intended to power Army radios normally using dry batteries, two-part unit, £28. PYE PF.1 UHF FM Pocket phone Rxs nom 450Mc/s req 9v batt. with circ, £9.50. AUDIO TEST SET CT373 240v I/P A fos c17C/s to 170K cin 4 ranges, VTVM 30 Mill/V to 100v FSD, Dist meas set 20c to 20Kc in case, size 14 × 17 × 21 in new cond. with book and leads, £115. VIDEO RECORDERS, Philips UP N1500, no cassettes, £75. Also Philips LD1 1000 reel-to-reel with 3 tapes, ½in., both with circ., £75. SPEAKER UNITS, ex-A/C, cabin spk., size 17 × 3½ × 2½in., fitted 4x 3 ohm, 3 × 3in. spks., black, crackle case, £6.50. Also small amp that fits into spk. case, need preamp, £3.50. HANDSETS, lightweight, with M.C. mike, 50 ohm, ext. cord and press to talk swt., £4.50. ROTARY CONVERTERS, 24V DC I/P O/P req. ext. power and RF drive, 2x 4 × 150 in P.A. with circ., £75. Is speaked. 215. MOV AC 140-watt sine wave, in case, £45, or Rot Conv, only s/h, tested, £27. H.F. Trans Amp, part of STR.18 Equip, 2/18 Mc/s, 100-watt O/P req. ext. power and RF drive, 2x 4 × 150 in P.A. with circ., £75. Is also new type M.60, £125.0. POWER UNIT, 240v I/P O/P nom 28v DC at 15 amps load range for reg. O/P, 5 to 15 amps, made by Plessey for tes

Above prices inc. carr./post and V.A.T Allow 14 days for delivery. Goods are in secondhand condition unless stated new. S.a.e. with enquiry for List 29.

TO YOU IT'S JUST A POWER VALVE

But to us it is probably the key component within a Radio Communication, Radar, Broadcast, Electronic Warfare, or Industrial Heating System.

By utilising our advanced testing and strict quality control facilities we can supply MOD and NATO approved items to DEF Standard 05-29 and 05-31.

As a major MOD Contractor holding £0.5 million of stock we can supply almost any power valve.

For the difficult to locate devices, we have an 'Out of Production' sourcing service linked to an in-house NATO, CV and Commercial Part Number microfiche system.

Contact us with your power problems.

WW - 075 FOR FURTHER DETAILS

SEMICONI	DUCTOR		BD131 0.51 BD132 0.55	677 2 BF257 0.31 BF258 0.31	424 T	OAZ207 1.73 OC16 2.88		ZTX504 0.24 ZTX531 0.28	2N1671 5.75 2N1893 0.37	2N3819 0.35 2N3820 0.45
AAY30 0.20 / AAY30 0.20 / AAY32 0.48 / AAZ13 0.17 / AAZ13 0.17 / AAZ13 0.17 / AAZ17 0.17 / AC107 0.63 / AC125 0.29 / AC127 0.29 / AC126 0.29 / AC127 0.29 / AC126 0.32 / AC14 0.32 / AC14 0.32 / AC14 0.32 / AC14 0.32 / AC14 0.32 / AC17 0.32 / AC17 0.29 / AC17 0.29 / AC17 0.32 / AC17 0.33 / AC18 0.32 / AC17 0.33 / AC18 0.32 / AC17 0.33 / AC18 0.32 / AC17 0.46 / AC17 0.46 / AC17 0.46 / AC17 0.46 / AC17 0.46 / AC18 0.32 / AC18 0.40 / AC18 0.40 / AC18 0.40 / AC11 / AC10 / AC11 0.40 / AC11 / AC1 / AC10 / AC1 / A	SSZ16 1.27 SSZ17 1.15 SSZ20 2.64 SSZ21 2.88 UU113 2.88 UU110 2.88 VU110 2.88 SA148 6.15 SA148 6.17 SA148 6.12 SA154 6.12 SA155 6.13 SA156 6.12 SAX05 6.07 SAX13 6.07 SAX16 6.07 SAX16 0.71 SC107 0.18 SC107 0.18 SC116 0.21 SC116 0.22 SC117 0.26 SC118 0.21 SC126 0.21 SC137 0.17 SC138 0.17 SC138 0.15 SC148 0.14 SC149 0.15 SC157 0.13 SC170 0.13 SC174 0.14 </td <td>BC172 0.13 BC173 0.13 BC177 0.32 BC177 0.32 BC178 0.16 BC179 0.32 BC183 0.13 BC183 0.13 BC183 0.13 BC184 0.13 BC213 0.13 BC214 0.13 BC213 0.13 BC214 0.13 BC307 0.13 BC307 0.13 BC308 0.13 BC307 0.14 BC332 0.14 BC333 0.14 BC333 0.14 BCY30 3.22 BCY41 0.35 BCY42 0.35 BCY42 0.35 BCY70 0.20 BCY14 0.21 BCY42 0.20 BCY14 0.21 BCY12 0.20 BCY12 0.20 BCY12 0.20 <!--</td--><td>ED135 0.46 ED135 0.46 ED137 0.46 ED137 0.46 ED138 0.55 BD139 0.55 BD138 0.55 BD140 0.58 BD141 2.30 BD181 1.36 BD237 0.62 BD238 0.62 BD238 0.62 BDX10 1.05 BDX32 2.30 BDY20 1.73 BDY60 3.16 BF152 0.18 BF154 0.20 BF160 0.20 BF173 0.35 BF174 0.40 BF175 0.40 BF178 0.40 BF180 0.32 BF181 0.32 BF182 0.35 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 B</td><td>BF229 0.32 BF336 0.39 BF337 0.38 BF338 0.41 BF528 2.58 BF558 0.41 BF528 2.58 BF558 0.23 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFY50 0.29 BFY51 0.29 BFY52 0.29 BFY52 0.29 BFY52 0.31 BSX21 0.31 BSX21 0.31 BSX21 0.31 BSX2 0.31 BSX2 0.31 BY7790 1.09 BY74 0.35 BFY90 1.09 BY74 0.31 BSX2 0.31 BSX2 0.31 BY77 90 BY205 1.50 BY120 0.45 BY120 0.45 BY127 0.15 BY127 0.16 BY127 0.16 BY126 0.29 Sertes BY128 0.12 Sertes BY128 0.13 Sertes BY128 0.13 Sert</td><td>GM0378A 2.02 KS100A 0.52 M[E340 0.69 M[E370 0.84 M[E371 0.82 M]E521 0.84 M[E521 0.84 M]E525 1.50 M[E3055 1.70 MPF102 0.40 MPF104 0.40 MPF104 0.40 MPF104 0.40 MPF105 0.40 MPSA56 0.30 MPSU06 0.75 NKT401 2.53 OA5 1.38 OA7 0.69 OA10 0.63 OA47 0.14 OA79 0.14 OA79 0.04 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA91 0.17 OA200 0.17 OA2200 1.73 OA2200 1.73</td><td>OC20 2.88 OC22 2.88 OC23 4.60 OC24 2.88 OC25 1.15 OC26 2.30 OC27 2.30 OC35 1.73 OC35 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC45 0.75 OC74 0.81 OC75 1.15 OC76 1.15 OC81 0.75 OC76 1.35 OC141 4.49 OC170 1.44 OC21 2.36 OC170 1.44 OC20 3.45 OC20 3.45 OC200 3.45 OC200 3.45 OC201 3.45 OC202 3.16 OC202 3.16 OC202 3.45 <t< td=""><td>OC207 2.88 OCP71 2.30 ORP12 1.15 R2008 2.30 R2009 2.59 R20108 2.30 R1C44 0.31 T1C226D 1.38 T1C226D 1.38 T1C226D 1.38 T1P30A 0.49 T1P31A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.47 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 ZS170 0.42 ZS170 0.24 ZS178 0.62 ZS271 0.26 ZS271 0.26 ZS1710 0.24 ZS170 0.14 ZTX108 0.14 ZTX304 0.23 ZTX314 0.29 ZTX501 0.16 ZTX500 0.16 ZTX501</td><td>271X550 0.29 1N916 0.06 1N4001 0.10 1N4001 0.07 1N4002 0.07 1N4003 0.07 1N4003 0.07 1N4004 0.08 1N4005 0.10 1N4005 0.10 1N4005 0.10 1N4006 0.13 1N4007 0.14 1N4006 0.13 1N4007 0.14 1N44008 0.05 1N5401 0.15 1S520 0.09 1S521 0.10 2G301 1.15 2G306 1.15 2N404 1.50 2N697 0.37 2N697 0.37 2N698 0.37 2N697 0.37 2N696 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N1131 0.35 2N1130 0.5 2N1130 0.5 2N1</td><td>Image 4.60 Image 4.31 Image 4.31 Image 4.31 Image 4.31 Image 0.37 Image 0.37 Image 0.37 Image 0.33 Image 0.34 Image 0.33 Image 0.33 Image 0.34 Image 0.34 Image 0.37 Image 0.33 Image 0.33 Image 0.33 <!--</td--><td>2N3823 0.69 2N3866 1.15 2N3904 0.20 2N3905 0.20 2N4058 0.23 2N4059 0.23 2N4050 0.18 2N4061 0.18 2N4062 0.18 2N4062 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4126 0.17 2N4545 0.37 2N5459 0.37 2S017 11.50 2S019 1.3.80 2S026 28.75 2S103 1.73 2S302 4.03 2S302 4.03 2S302 4.03 2S302 4.03 2S324 4.03 2S745A 1.09</td></td></t<></td></td>	BC172 0.13 BC173 0.13 BC177 0.32 BC177 0.32 BC178 0.16 BC179 0.32 BC183 0.13 BC183 0.13 BC183 0.13 BC184 0.13 BC213 0.13 BC214 0.13 BC213 0.13 BC214 0.13 BC307 0.13 BC307 0.13 BC308 0.13 BC307 0.14 BC332 0.14 BC333 0.14 BC333 0.14 BCY30 3.22 BCY41 0.35 BCY42 0.35 BCY42 0.35 BCY70 0.20 BCY14 0.21 BCY42 0.20 BCY14 0.21 BCY12 0.20 BCY12 0.20 BCY12 0.20 </td <td>ED135 0.46 ED135 0.46 ED137 0.46 ED137 0.46 ED138 0.55 BD139 0.55 BD138 0.55 BD140 0.58 BD141 2.30 BD181 1.36 BD237 0.62 BD238 0.62 BD238 0.62 BDX10 1.05 BDX32 2.30 BDY20 1.73 BDY60 3.16 BF152 0.18 BF154 0.20 BF160 0.20 BF173 0.35 BF174 0.40 BF175 0.40 BF178 0.40 BF180 0.32 BF181 0.32 BF182 0.35 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 B</td> <td>BF229 0.32 BF336 0.39 BF337 0.38 BF338 0.41 BF528 2.58 BF558 0.41 BF528 2.58 BF558 0.23 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFY50 0.29 BFY51 0.29 BFY52 0.29 BFY52 0.29 BFY52 0.31 BSX21 0.31 BSX21 0.31 BSX21 0.31 BSX2 0.31 BSX2 0.31 BY7790 1.09 BY74 0.35 BFY90 1.09 BY74 0.31 BSX2 0.31 BSX2 0.31 BY77 90 BY205 1.50 BY120 0.45 BY120 0.45 BY127 0.15 BY127 0.16 BY127 0.16 BY126 0.29 Sertes BY128 0.12 Sertes BY128 0.13 Sertes BY128 0.13 Sert</td> <td>GM0378A 2.02 KS100A 0.52 M[E340 0.69 M[E370 0.84 M[E371 0.82 M]E521 0.84 M[E521 0.84 M]E525 1.50 M[E3055 1.70 MPF102 0.40 MPF104 0.40 MPF104 0.40 MPF104 0.40 MPF105 0.40 MPSA56 0.30 MPSU06 0.75 NKT401 2.53 OA5 1.38 OA7 0.69 OA10 0.63 OA47 0.14 OA79 0.14 OA79 0.04 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA91 0.17 OA200 0.17 OA2200 1.73 OA2200 1.73</td> <td>OC20 2.88 OC22 2.88 OC23 4.60 OC24 2.88 OC25 1.15 OC26 2.30 OC27 2.30 OC35 1.73 OC35 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC45 0.75 OC74 0.81 OC75 1.15 OC76 1.15 OC81 0.75 OC76 1.35 OC141 4.49 OC170 1.44 OC21 2.36 OC170 1.44 OC20 3.45 OC20 3.45 OC200 3.45 OC200 3.45 OC201 3.45 OC202 3.16 OC202 3.16 OC202 3.45 <t< td=""><td>OC207 2.88 OCP71 2.30 ORP12 1.15 R2008 2.30 R2009 2.59 R20108 2.30 R1C44 0.31 T1C226D 1.38 T1C226D 1.38 T1C226D 1.38 T1P30A 0.49 T1P31A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.47 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 ZS170 0.42 ZS170 0.24 ZS178 0.62 ZS271 0.26 ZS271 0.26 ZS1710 0.24 ZS170 0.14 ZTX108 0.14 ZTX304 0.23 ZTX314 0.29 ZTX501 0.16 ZTX500 0.16 ZTX501</td><td>271X550 0.29 1N916 0.06 1N4001 0.10 1N4001 0.07 1N4002 0.07 1N4003 0.07 1N4003 0.07 1N4004 0.08 1N4005 0.10 1N4005 0.10 1N4005 0.10 1N4006 0.13 1N4007 0.14 1N4006 0.13 1N4007 0.14 1N44008 0.05 1N5401 0.15 1S520 0.09 1S521 0.10 2G301 1.15 2G306 1.15 2N404 1.50 2N697 0.37 2N697 0.37 2N698 0.37 2N697 0.37 2N696 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N1131 0.35 2N1130 0.5 2N1130 0.5 2N1</td><td>Image 4.60 Image 4.31 Image 4.31 Image 4.31 Image 4.31 Image 0.37 Image 0.37 Image 0.37 Image 0.33 Image 0.34 Image 0.33 Image 0.33 Image 0.34 Image 0.34 Image 0.37 Image 0.33 Image 0.33 Image 0.33 <!--</td--><td>2N3823 0.69 2N3866 1.15 2N3904 0.20 2N3905 0.20 2N4058 0.23 2N4059 0.23 2N4050 0.18 2N4061 0.18 2N4062 0.18 2N4062 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4126 0.17 2N4545 0.37 2N5459 0.37 2S017 11.50 2S019 1.3.80 2S026 28.75 2S103 1.73 2S302 4.03 2S302 4.03 2S302 4.03 2S302 4.03 2S324 4.03 2S745A 1.09</td></td></t<></td>	ED135 0.46 ED135 0.46 ED137 0.46 ED137 0.46 ED138 0.55 BD139 0.55 BD138 0.55 BD140 0.58 BD141 2.30 BD181 1.36 BD237 0.62 BD238 0.62 BD238 0.62 BDX10 1.05 BDX32 2.30 BDY20 1.73 BDY60 3.16 BF152 0.18 BF154 0.20 BF160 0.20 BF173 0.35 BF174 0.40 BF175 0.40 BF178 0.40 BF180 0.32 BF181 0.32 BF182 0.35 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 BF184 0.32 B	BF229 0.32 BF336 0.39 BF337 0.38 BF338 0.41 BF528 2.58 BF558 0.41 BF528 2.58 BF558 0.23 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 1.12 BFW10 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFX87 0.35 BFY50 0.29 BFY51 0.29 BFY52 0.29 BFY52 0.29 BFY52 0.31 BSX21 0.31 BSX21 0.31 BSX21 0.31 BSX2 0.31 BSX2 0.31 BY7790 1.09 BY74 0.35 BFY90 1.09 BY74 0.31 BSX2 0.31 BSX2 0.31 BY77 90 BY205 1.50 BY120 0.45 BY120 0.45 BY127 0.15 BY127 0.16 BY127 0.16 BY126 0.29 Sertes BY128 0.12 Sertes BY128 0.13 Sertes BY128 0.13 Sert	GM0378A 2.02 KS100A 0.52 M[E340 0.69 M[E370 0.84 M[E371 0.82 M]E521 0.84 M[E521 0.84 M]E525 1.50 M[E3055 1.70 MPF102 0.40 MPF104 0.40 MPF104 0.40 MPF104 0.40 MPF105 0.40 MPSA56 0.30 MPSU06 0.75 NKT401 2.53 OA5 1.38 OA7 0.69 OA10 0.63 OA47 0.14 OA79 0.14 OA79 0.04 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA95 0.09 OA91 0.17 OA200 0.17 OA2200 1.73 OA2200 1.73	OC20 2.88 OC22 2.88 OC23 4.60 OC24 2.88 OC25 1.15 OC26 2.30 OC27 2.30 OC35 1.73 OC35 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC43 1.73 OC41 1.04 OC45 0.75 OC74 0.81 OC75 1.15 OC76 1.15 OC81 0.75 OC76 1.35 OC141 4.49 OC170 1.44 OC21 2.36 OC170 1.44 OC20 3.45 OC20 3.45 OC200 3.45 OC200 3.45 OC201 3.45 OC202 3.16 OC202 3.16 OC202 3.45 <t< td=""><td>OC207 2.88 OCP71 2.30 ORP12 1.15 R2008 2.30 R2009 2.59 R20108 2.30 R1C44 0.31 T1C226D 1.38 T1C226D 1.38 T1C226D 1.38 T1P30A 0.49 T1P31A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.47 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 ZS170 0.42 ZS170 0.24 ZS178 0.62 ZS271 0.26 ZS271 0.26 ZS1710 0.24 ZS170 0.14 ZTX108 0.14 ZTX304 0.23 ZTX314 0.29 ZTX501 0.16 ZTX500 0.16 ZTX501</td><td>271X550 0.29 1N916 0.06 1N4001 0.10 1N4001 0.07 1N4002 0.07 1N4003 0.07 1N4003 0.07 1N4004 0.08 1N4005 0.10 1N4005 0.10 1N4005 0.10 1N4006 0.13 1N4007 0.14 1N4006 0.13 1N4007 0.14 1N44008 0.05 1N5401 0.15 1S520 0.09 1S521 0.10 2G301 1.15 2G306 1.15 2N404 1.50 2N697 0.37 2N697 0.37 2N698 0.37 2N697 0.37 2N696 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N1131 0.35 2N1130 0.5 2N1130 0.5 2N1</td><td>Image 4.60 Image 4.31 Image 4.31 Image 4.31 Image 4.31 Image 0.37 Image 0.37 Image 0.37 Image 0.33 Image 0.34 Image 0.33 Image 0.33 Image 0.34 Image 0.34 Image 0.37 Image 0.33 Image 0.33 Image 0.33 <!--</td--><td>2N3823 0.69 2N3866 1.15 2N3904 0.20 2N3905 0.20 2N4058 0.23 2N4059 0.23 2N4050 0.18 2N4061 0.18 2N4062 0.18 2N4062 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4126 0.17 2N4545 0.37 2N5459 0.37 2S017 11.50 2S019 1.3.80 2S026 28.75 2S103 1.73 2S302 4.03 2S302 4.03 2S302 4.03 2S302 4.03 2S324 4.03 2S745A 1.09</td></td></t<>	OC207 2.88 OCP71 2.30 ORP12 1.15 R2008 2.30 R2009 2.59 R20108 2.30 R1C44 0.31 T1C226D 1.38 T1C226D 1.38 T1C226D 1.38 T1P30A 0.49 T1P31A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 T1P34A 0.47 T1P34A 0.49 T1P34A 0.49 T1P34A 0.49 ZS170 0.42 ZS170 0.24 ZS178 0.62 ZS271 0.26 ZS271 0.26 ZS1710 0.24 ZS170 0.14 ZTX108 0.14 ZTX304 0.23 ZTX314 0.29 ZTX501 0.16 ZTX500 0.16 ZTX501	271X550 0.29 1N916 0.06 1N4001 0.10 1N4001 0.07 1N4002 0.07 1N4003 0.07 1N4003 0.07 1N4004 0.08 1N4005 0.10 1N4005 0.10 1N4005 0.10 1N4006 0.13 1N4007 0.14 1N4006 0.13 1N4007 0.14 1N44008 0.05 1N5401 0.15 1S520 0.09 1S521 0.10 2G301 1.15 2G306 1.15 2N404 1.50 2N697 0.37 2N697 0.37 2N698 0.37 2N697 0.37 2N696 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N708 0.29 2N1131 0.35 2N1130 0.5 2N1130 0.5 2N1	Image 4.60 Image 4.31 Image 4.31 Image 4.31 Image 4.31 Image 0.37 Image 0.37 Image 0.37 Image 0.33 Image 0.34 Image 0.33 Image 0.33 Image 0.34 Image 0.34 Image 0.37 Image 0.33 Image 0.33 Image 0.33 </td <td>2N3823 0.69 2N3866 1.15 2N3904 0.20 2N3905 0.20 2N4058 0.23 2N4059 0.23 2N4050 0.18 2N4061 0.18 2N4062 0.18 2N4062 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4126 0.17 2N4545 0.37 2N5459 0.37 2S017 11.50 2S019 1.3.80 2S026 28.75 2S103 1.73 2S302 4.03 2S302 4.03 2S302 4.03 2S302 4.03 2S324 4.03 2S745A 1.09</td>	2N3823 0.69 2N3866 1.15 2N3904 0.20 2N3905 0.20 2N4058 0.23 2N4059 0.23 2N4050 0.18 2N4061 0.18 2N4062 0.18 2N4062 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4124 0.18 2N4126 0.17 2N4545 0.37 2N5459 0.37 2S017 11.50 2S019 1.3.80 2S026 28.75 2S103 1.73 2S302 4.03 2S302 4.03 2S302 4.03 2S302 4.03 2S324 4.03 2S745A 1.09
VAL VC3 E Alas4 10.35 E Alas4 10.35 E A2087 13.58 E A2134 20.13 E A2426 17.63 E A2426 17.63 E A2426 17.63 E A2434 1.7.63 E A2435 17.75 E A2500 14.43 E A241 1.32 E BK448 10.97 E BS448 10.97 E BS458 S1.13 E BT7 58.13 E BT7 33.79 E BT79 32.17 E BT79 32.30 E Cl33 2.30 E Cl33 2.30 E Cl31 2.30 E Cl31 2.30 E Cl31 2.30 E Cl32 2.30 E	180CC 11.39 180F 7.83 182CC 13.80 184CF 12.58 186CF 2.58 186CC 9.40 280F 25.88 283CC 18.54 A52 28.18 A76 2.30 AR601 0.92 AF42 1.44 AF801 2.32 BA1 2.30 BC3 2.01 BC3 2.02 BF3 0.47 BC3 0.48 BC43 1.26 BF3 0.57 BB73 0.44 BC3 0.44 BC3 0.44 BC3 0.44 BC41 1.28 C90 1.28 C91 9.33 C92 1.44 C157 349.26 CC44 1.36 CC43 1.01 CC43 1.01 CC44<	EF69 1.64 EF91 2.07 EF92 2.07 EF93 1.15 EF93 1.15 EF93 1.24 EF93 1.24 EF94 1.24 EF95 6.27 EF98 1.42 EF98 1.42 EF183 0.92 EF184 0.96 EF1804S 12.65 EF805S 12.65 EH90 1.61 EL32 1.73 EL33 4.02 EL34TH 2.53 EL34TH 2.53 EL34 1.55 EL34 1.56 EL42 2.02 EL35 1.16 EL44 1.15 EL35 1.16 EL42 1.20 EL35 1.10 EL43 1.35 EL44 1.55 EL36 9.77 EL509 3.61	GXU12 18.13 GXU13 30.49 GXU13 30.49 GXU13 32.77 GXU500 17.25 GXU501 31.6 GZ33 1.44 GZ33 1.44 GZ34 2.88 GZ37 4.60 KT66 1.50 KT66 2.02 KTW61 2.02 KTW63 2.02 KTW64 2.02 KTW63 2.02 KTW64 2.02 KTW63 2.02 KTW64 2.02 KTW63 2.02 M8079 1.29 M8080 9.49 M8091 11.30 M8082 9.87 M8095 5.99 M8086 9.49 M8190 5.17 M8140 5.17 M8141 5.17 M8142 7.77 M8143 5.17 M8144 4.31	PC900 1.38 PC034 1.15 PCC85 1.38 PCC89 1.56 PCC89 1.56 PCC89 1.56 PCC89 1.57 PC780 1.57 PC780 1.57 PC780 1.57 PC780 1.57 PC780 1.54 PC780 1.54 PC780 1.84 PC780 1.84 PC180 1.84	356.66 QZ06-20 QZ06-20 QZ06-20 QZ0-10 Strip R17 1.88 R19 1.38 RQ3-250 S5.77 RG3-250 RG3-250 S5.77 RG3-250 RG4-1250 RG4-1250 S177 RG3-250 S177 RG3-250 S177 RG3-250 S177 RG3-250 S177 RG3-250 S177 RG3-250 S130P RG3-250 S130P RG3-250 S130P RG3-250 S130P S130P RG3-251 S130P RG3-251 S130P RG3-251 S130P R03-30 S130P R03-31 S130P	UM80 1.15 UY41 1.44 UY45 1.200 VLS631 15.24 XG1-2500 58.02 8.23 XG2-6400 155.42 XR1-1600A XR1-400 87.15 XR1-3200 87.15 XR1-3200 87.15 XR1-3200 87.15 XR1-400 XR1-6400 16.30 XR1-6400 16.30 XR1-6400 16.30 XR1-6400 16.30 XR1-6400 16.33 ZM1021 10.43 ZM1021 10.43 ZM1021 10.43 ZM1021 10.43 ZM1021 10.43 ZM1021 20.44 ZM1021 20.44 ZM1021 20.44 ZM1021 20.44 ZM1031 100.05 ZM1021 10.43 ZM1021 10.43 ZM1021 20.44 ZM1041 19.16 ZM1022 20.44 ZM1041 19.16 ZM1023 8.81 ZM1041 19.16 ZM1023 18.35 ZM1021 10.45 ZM1021 20.44 ZM1041 19.16 ZM1042 20.44 ZM1051 100.65 ZM1023 1.21 ZM1041 19.16 ZM1042 20.44 ZM1051 100.65 ZM12 20.44 ZM1051 100.57 ZM12 20.44 ZM1051 20.44 ZM1050	4(35) 74.75 4(CX250B 51.75 4(CX350A 80.50 4(CX250B 51.75 4(CX350A 80.50 4X150A 24.41 4X150D 28.75 5B254M 23.12 5B254M 23.12 5B254M 23.12 5B254M 23.12 5B254M 23.12 5B254M 23.12 5B254M 23.12 5C22 74.75 5J14GB 1.380.00 5V4G 1.75 5V4G 1.75 6-30L2 1.75 7-30L2 1.7	CD2 1.01 CD3 1.01 <td>12BH7 1.29 12BH7 1.19 12BH7 19.67 12E1 19.67 12E1 19.67 12E1 19.66 13E1 123.65 19H4 28.75 20H5 52.04 30C18 1.84 30FL1 2.86 30FL1 2.87 30FL1 2.88 30FL1 2.88 30FL1 2.87 30FL1 2.88 30FL1 2.88 30FL1 2.88 30FL1 2.07 30FL1 2.07 30FL1 2.07 30FL1 2.07 30FL1 2.07 30PL1 1.84 30PL1 2.07 30PL1 2.07 30PL1 2.07 30PL1 1.84 30PL1 1.06 30PL1 1.06 30PL1 1.07 30AV 1.490</td> <td>5670 5.18 5675 2.1.47 5687 6.31 5696 4.35 5718 7.87 5725 5.62 5722 6.47 5727 5.42 5726 3.62 5727 6.47 5749 5.14 5761 4.80 5763 4.66 5842 5.842 5846 1.39 5876 1.39 5876 1.39 5876 1.39 5876 1.39 5876 3.38 5863 3.38 5863 3.38 5863 3.38 5865 4.00 6005 5.62 6058 1.20 6057 4.02 6057 4.02 6057 4.02 6057 4.02 6058 1.20 6064 8.54 6067 4.02 6077 5.80 6044 8.54 6059 1.03 6067 4.02 6077 5.80 6044 8.54 6058 1.00 6064 8.54 6058 1.00 6067 4.02 6077 4.02 6078 4.60 6078 4.20 6078 4.60 6078 4.60 6078 4.20 6078 4.20 6078 4.20 6078 4.60 6078 4.20 6078 4.2</td>	12BH7 1.29 12BH7 1.19 12BH7 19.67 12E1 19.67 12E1 19.67 12E1 19.66 13E1 123.65 19H4 28.75 20H5 52.04 30C18 1.84 30FL1 2.86 30FL1 2.87 30FL1 2.88 30FL1 2.88 30FL1 2.87 30FL1 2.88 30FL1 2.88 30FL1 2.88 30FL1 2.07 30FL1 2.07 30FL1 2.07 30FL1 2.07 30FL1 2.07 30PL1 1.84 30PL1 2.07 30PL1 2.07 30PL1 2.07 30PL1 1.84 30PL1 1.06 30PL1 1.06 30PL1 1.07 30AV 1.490	5670 5.18 5675 2.1.47 5687 6.31 5696 4.35 5718 7.87 5725 5.62 5722 6.47 5727 5.42 5726 3.62 5727 6.47 5749 5.14 5761 4.80 5763 4.66 5842 5.842 5846 1.39 5876 1.39 5876 1.39 5876 1.39 5876 1.39 5876 3.38 5863 3.38 5863 3.38 5863 3.38 5865 4.00 6005 5.62 6058 1.20 6057 4.02 6057 4.02 6057 4.02 6057 4.02 6058 1.20 6064 8.54 6067 4.02 6077 5.80 6044 8.54 6059 1.03 6067 4.02 6077 5.80 6044 8.54 6058 1.00 6064 8.54 6058 1.00 6067 4.02 6077 4.02 6078 4.60 6078 4.20 6078 4.60 6078 4.60 6078 4.20 6078 4.20 6078 4.20 6078 4.60 6078 4.20 6078 4.2
BASES 376 unskirred 0.25 376 skirred 0.35 39A unskirred 0.35 Int Octal 0.40 Loctal 0.40 Vortal 0.40 Vortal 0.40 Valve screening cans all sizes 0.35 Terms of business 0.40	CRTS 2AP1 9.78 2BP1 10.35 3BP1 11.50 3DP1 5.75 3EG1 11.50 3GP1 6.90 3GP1 6.90 3JP2 9.20 3JP7 11.50 3KP1 17.25 3KP1 40.25 3WP1 23.00	5ADP1 40.25 58P1 11.50 5CP1 46.00 5CP15A 17.25 5CP75 72.82 5CP7-5 72.82 5CP7-5 72.82 5CP7-5 72.82 5CP7-10.66 78 5CP32 66 78 5CP32 66 78 5CP32 16.78 5CP32 16.78 5	VCR138A 14.38 VCR139A 9.20 VCR517A 11.50 VCR517B 11.50 VCR517C 11.50 Tube Bases Prices on application	INTEG 7400 0.18 7401 0.20 7403 0.20 7404 0.21 7405 0.21 7407 0.49 7408 0.23 7410 0.49 7412 0.23 7413 0.33 7413 0.37 7417 0.37 742 0.23 7417 0.37 742 0.21 742 0.21 742 0.24	7423 0.38 7425 0.35 7427 0.35 7428 0.50 7430 0.20 7433 0.46 7437 0.37 7438 0.37 7440 0.37 7441 1.04 7442 0.83 7445 0.21 7451 0.21 7451 0.21 7454 0.21	7460 0.21 7472 0.44 7473 0.44 7474 0.44 7475 0.62 7476 0.44 7477 0.44 7478 0.44 7480 0.44 7481 1.15 7482 0.86 7483 1.21 7486 0.49 7492 0.69 7493 0.69 7493 0.69 7493 0.94 7493 0.94	7495 0.84 7496 0.94 7497 3.62 74100 1.77 74107 0.52 74110 0.59 74110 0.59 74110 0.59 74111 0.59 74112 0.49 74122 0.49 74123 1.67 74123 1.66 74123 0.67 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72 74128 0.72	74141 1.02 74142 2.64 74143 2.99 74144 2.99 74145 1.15 74147 2.30 74148 2.02 74151 1.08 74155 1.04 74155 1.04 74155 1.04 74157 2.53 74170 2.53 74172 5.06 74174 1.84	74176 1.33 74179 1.56 74179 1.56 74180 1.38 74190 2.19 74190 2.19 74191 2.19 74192 2.19 74192 2.19 74192 2.19 74195 1.38 74196 1.55 74198 3.11 74196 1.55 74198 3.11 76013N 2.02 TAA570 2.65 TAA503 4.50	TBA520Č 2.65 TBA530 2.29 TBA540Q 2.65 TBA550CQ 3.70 TBA560CQ 3.70 TBA560CQ 2.65 TBA720Q 2.65 TBA720Q 2.65 TBA720Q 2.65 TBA720Q 2.38 TBA920Q 3.34 TBA920Q 3.34 TCA760A 1.59

Terms of business: CWO, Postage and packing valves and semiconductors sopper order. On STL73, Air prices include VAL Price ruling at time of despatch. In some cases prices of Mullard and USA valves will higher than those advertised. Prices correct when going to press. Account facilities available to approved companies with minimum order charge £10. Carriage and packing £1 on credit orders. Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for any types not listed. S.A.E.

Telex 946708 E. & O.E.

Open to callers Monday-Friday 9 a.m.-5 p.m.

USE READER CARD FOR DETAILS WW - 040 FOR FURTHER DETAILS

Sowter 'ransformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! **OUR RANGE INCLUDES**

OUR PACAGE INCLUDES Microphone transformers (all types), Microphone Splitter/Combiner transfor-mers, Input and Output transformers, Direct Injection transformers for Guitars, Mutti-Secondary output transformers, Bridging transformers, Line transformers, the transformers to G.P.O. Isolating Test Specification, Tapped impedance pransformers (all types), Miniature transformers, Microminiature transformers, Utra linear and other transformers, Microminiature transformers, Utra low requency transformers, Bridging transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers, Utra linear and other transformers, Micromers, Microminiature transformers, Utra low requency transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Joudspeaker transformers up to 300 watts or more. We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR PA, CQUALITY, OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS, Many standard types are in stock and normal dispatch times are short and sensible. UR CIENTS COVER A LARGE NUMBER OF BROADCASTING WITHORITIES, MAD GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Shard for our questionnaire which, when completed, enables us to post quota-tions by retur.

Telex 987703G Sowter

WW - 033 FOR FURTHER DETAILS

IT'S JUST A MOVING IMAGE

But to us it's the result of electrons travelling 10,000 times faster than Concorde, deflected by 100 cm² of ultra pure stainless steel plate, welded in over 1000 places, and all in a vacuum of 10⁻⁷mm Hg.

Not only are we at the forefront of modern tube technology but we can also, through our unique worldwide sourcing service, probably locate those out of production, hard to find, items.

Let us help you with your requirement.

Zaerix Electronics Limited Electron House, Cray Avenue, St Mary Cray. Orpington, Kent BR5 3PN England Telephone Orpington (0689) 27099 Telex 896810 ZANDI G

WW - 076 FOR FURTHER DETAILS

(ELECTRONICS) LTD. 9-10 Chapel Street, Marylebone London NW1 5DN 21 22 Boll Street NiM1	N FANS OFFERI! f a n si (1%" £5.75 + postage. f a n si (1%" £4.76 + postage. ares price	SPECIAL OFFER: VARIABLE TRANSFORMERS Brand new, boxed, input 240V, output 0-265 voits 5 emps. Base or panel mount- ing with calibrated dial 0-265 volts and control knob. Price £26, inc. carr. and VAT. SPECIAL OFFER: HIGH POWER AMPLIFIER TRANSFORMERS Pri tapped 120-240V sec tapped 34-29-0-29- 34V 6 amps and 46V 1A. Open frame type. Tag connection Size 5x4/2x4/sis. £9 inc. postage	SPECIAL OFFERI Printed Circuit Board Motors manufactured by Servalco. 600 D.C. WKG 5. semps. 2300 r.p.m. Continuous torque 1400z. in extremely powerdul ¥in. output shafe (keyed). List price E180 approx. Our Price only £28.50 Inc. carr. VA.T. BLOCK PAPER CAPACITORS 8 MFD 1000 DC WKG £3. P&P £1.8 MFD 3500 DC WKG £1. P&P 50, 6 MFD 3500 VC WKG E78. F&P 25, 6 MFD 3000 CW KG 560, P&P 250, CW KG 51, P&P 25, 6 MFD 3000 CW KG 560, P&P 250, CW KG 50, P&P 25, 250, 250, 250, 250, 250, 250, 250,	SPECIAL OFFER HEAVY DUTY TRANSFORMERS Pri 240V sec 50V 15 Annys. Twice will give 100V sec 50V 15 Annys. Twice will type Terminal olock pi30A. Open frame wire leads. Frame size 30V 50V 50V wire leads. Frame size 30V 50V 50V 50V 50V Screen winding between pri and sec. Screen winding between pri and sec.		
PLEASE ADD 15% TO ALL ORDERS INC. CARR. 12 or 24 VOLT 30 VOLT RAM Ref. 12v 24v £ Ref. Amps £ 111 0.5 0.25 2.42 1.00 112 0.5 2.9 213 1.0 0.5 2.90 1.00 79 1.0 3.9	€ 1.00 3 1.00	ATTEST PURCHASE COMPUTER GRADE TRANSFORMERS. Conservatively rated. All Primaries 220-240V. No. 1 secs. 27V 10A, 9V 3A, 15V V/2A x 2. Separate windings. 65.80, P&P 21.50. No. 2 sec. tapped 26-31-36V, 11.2A £12. P&P 22. No. 3 sec. 36V 6A £8.50, P&P £1.50.	We have a wide selection of CVTs, all made by famous makers for many varied applications. Please ring for details.	HEAVY DUTY LT C CORE TRANSFORMERS Pri 10-22020, Sec 14V, 3V, 142V, 1V, Separate windings, All at 40 Amps, 14- 15-15/2-17-18-18/2-19-19/2V can be ob- tained. £25, carr. £4, VAT £4.35.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1.20 1.2 1.30 9 1.40 1.40 1.40 1.50 1.50 5 1.80 8 1.90 9 4.00	No. 3 sec. 36v 54 26.50, Petr 11.50, No. 4 sec. 34V 3A 24.76, Petr 11.50, No. 5 sec. 24V 2A 22.75, Petr 12.5, No. 6 sec. 27.5-0.27.5V 1.2A and 7-0-7V 0.75A 43.80, Petr 12.5, No. 7 17V 1A 22 Petr 755, No. 9 13V 3A and 15V 1A 23.50, Petr 11.25, No. 10 sec. 29-28.27.0-27.28.29V 350 M/A "C" Core 23, Petr 11, No. 11 sec. 107-0-7-10V 0.6A and 29-21-0-21-	We would like to announce the opening of our will, of course, stock our fantastic range of proc 25 years. PLUSII many new ranges, i.e. comp ment, panel meters, multimeters, semi-condu sockets. WHY NOT PAY US A VISIT - IT ISOLATION TRANSFORMERS Pri tapped 220:240V sec. 240V 500 watts.	r new branch at 21:23 BELL STREET, NW1. In flucts that have made us famous over the past uter and electronic components, test equip- ctors, ICs and a large selection of plugs and COULD SAVE YOU POUNDSII 1100. ISOLATION TRANSFORMERS 5.000w. Intermittent Rating. Housed in		
187 30 15 19.72 1.70 92 20.0 32.4 226 60 30 40.41 2.00 20.0 32.4 50 VOLT RANGE 60 VOLT RANGE 60 VOLT RANGE Ref. Amps £ Ref. Amps £ 102 0.5 4.2 103 1.0 4.57 1.10 126 1.0 6.5 104 2.0 7.88 1.30 127 2.0 8.3	0 4.00 NGE 7 1.20 0 1.20	29V 0.37A £3, P&P £1. No. 12, 27V 1A 22V 1A 10V 1A 10V 1A, 4 separate windings "C" core type. £4.96, P&P (1:50, No. 13, 65V 1A and 18-24V 12A £3.96, P&P (1:50, No. 14, Tapped 12-15-27V 1A £2, P&P £1, No. 15, 63V 600/M A 63, Y3.30M (A 63, Y2.0M /A 8V 500 M/A 50V 40 M/A £2, P&P £1, No. 16, Tapped 14-15-16V 2A £2, P&P £1	E.H.T. TRANSFORMERS High-grade E.H.T. Tranny, PRI 240v. sec. 10.000v.18 WA.Probably used for boiler igni- tion but with 101 other uses!!!	sturdy steel case, tapped 55%, -0-55%. Fitted with 16-amp twin outlets. ideal for any outside use of 110%, power tools, etc. 285 inc. cerr. V.A.T. SPECIAL OFFER OF ERSE ELECTROLYTIC CAPACITORS 22,000 MFD 63V WKG £4.50 incostage and VAT. 6800 MFED 100V DC WKG £2.60 inc. postage and VAT. 3600 MFD 150V DC		
105 3.0 9.42 1.50 125 3.0 12.11 106 4.0 12.82 1.60 123 4.0 13.77 107 6.0 16.57 1.70 40 5.0 17.44 118 8.0 22.29 2.00 120 6.0 19.87 119 10.0 27.48 4.00 121 8.0 27.93 109 12.0 31.79 4.00 122 10.0 32.5 189 12.0 37.47 120 37.47	7 1.70 2 1.70 7 2.00 2 3.00 1 4.00	No. 17. Tepped 36-37-38-39-41-42-43V 1A "C" core £2.75. P&P £1. HEAVY DUTY ISOLATION TRANSFORMERS 240-240V ex-computer equipment. Large selection aveilable 10.15 amps. Fraction of maker price. Telephone for further de- tails.	MFD 350V DC WKG F1.25 , P&P 50p, VAT 25p, 6 MFD 350V DC WKG F1.25 , P&P 50p, VAT 25p, 6 MFD 350V DC WKG F1 , P&P 50p, VAT 25p, MFD 500V DC WKG 61 , P&P 20p, VAT 25p, MFD 1000V DC WKG 610 , P&P 20p, VAT 12p, MFD 1000V DC WKG 610 , P&P 20p, VAT 12p, MFD 1000V DC WKG 610 , P&P 20p, VAT 12p, MFD 500V DC WKG 615 , S15, P&P 50p, AAT 30p, 0.25 MFD 500V DC WKG 610 , P01, P125, P&P n, VAT 160, 0.1 MED 1500V DC WKG 6 467, 24 646	Inc. postage and VAT. 3600 MFD 150V DC WKG 22.80 inc. postage and VAT. 10.000 MFD 16V DC. WKG five for 22.50 inc. postage and VAT. 47. MFD 50V DC WKG 10 for 75p, inc. postage and VAT. 22,000 MFD 10V DC WKG 5 for 22.50 inc. postage and VAT. SPECIAL OFFER LT TRANSFORMERS Computer grade Pri 155-230V sec 27V		
VOLTAGES OBTAINABLE 30r range 3, 4, 5, 6, 8, 9, 10, 12, 15, 8, 20, 24, 300, 12-0-12v or 15-0-15v 5, 7, 8 10, 13, 15, 17, 20, 25, 30, 33, 40v, 20-0-20v or 25-0-25. 60v range 16, 18, 20, 24, 30, 36, 40, 48, 60v, 24-0-24 or 30-0-30. AUTO STEPDOWN TRANSFORMERS FOR AMERICAN EQUIPMENT 240/110 Volts. 80-2250 watts. Regular stock line. Types 80-1500 watt shrouded. Fitted with American two or three pin socket outlets and 3 mains lead. Types 1750 and 2250 watts are steel cased with two Ameri	6, 8, 10, 12, is are fully -core 240v	AC input 240V 50Hz. DC output 20A. Built-in steel case, size 15x12x9/2ins. Complete with bettery leads, £85 + VAT. Callers only. SPECIAL OFFERIII PARV 4LUX GEARED MOTORS Cap ster 240V AC RPM 44. Torque 4th /ins	E1.25, P&P 50p, VAT 16p, 2 MFD 100V DC WKG, 10 for 51.50, P&P 75p, VAT 33p, Tubular metallised paper caps 20 MFD 350V DC WKG with clip E3, P&P 50p, VAT 52p. LOW CURRENT LT TRANSFORMERS Open frame clamped type, split bobbin. All primaries 240V No. 1 sec tapped 12- 15-202-430V 750 M/A E4. No.2 sec. 9-0-	104, 9V 3A, 15V 0.5A, 15V 0.5A, 15V 0.5A, 175V 100 W/A. Separate windings, open frame type, top panel connections, E3.96 , postage E2.40 , VAT 94p. LATEST PURCHASE COMPUTER GRADE T TRANSFORMERS . All primaries 240V. No. 1 secs, 26V 6A 65.60 , carriage E1.50 . No. 2 sec. topped 26.31-36V , 11.2A 212 .		
outlets. Neon indicator, three-core mains lead and carrying handle. See price list and further details. American sockets, plugs, adaptors also SPECAL OFFER: HINCHLEY MAINS ISOLATION TRANSFORMERS Prim 240v. Sec 240v 250 watts. Open frame type. Tag connections input, £10, P&P £2, VAT £1.80. Parmeko pri tapped 115-220-240v. Se amps. Fully shrouded top panel connections. Sec can be wired to giv 120V, £25, carr. £5, VAT £4.50.	available.	fitted with small cog on output shaft, ideal for garage door opener or curtain puller. Our price £8.95 inc. carr. and VAT. MONITORS Ultronics 12'' monochrome monitor 750 ohm Video in Vilse out circuit breaker protected, housed in stylish case with side mounted con- trols. A must for home computer users. Only a few left!! £45 inc. VAT. Callers only.	90 1 JA and 6.37 200 M/A 22.50 / No. 3 15- 0-159 600 M/A and 6.37 200 M/A No. 4 sec. 12-0-127 750 M/A and 6.37 200 M/A 64. No. 5 sec. 137 /2A 21:50. No. 5 sec. 87 /2A 6.37 500 M/A, 6.37 300 M/A 507 40 M/A 22.50. No. 7, sec. 170 / 2A / 2A (54.50 No. 187 24 / 2A / 2A / 2A / 2A (54.50 No. 187 24 / 2A / 2A / 2A / 2A (54.50 No. 187 24 / 2A / 2A / 2A / 2A (54.50 No. 187 24 / 2A / 2A / 2A / 2A (54.50 No. 187 24 / 2A /	P&P E2. No. 3 soc. 36V 5A £8.50. P&P £1 50. No. 4 soc. 43V 3A £4.75. P&P £1 50. No. 5 soc. 24V 3A £2.76. P&P £1 25. No. 6 soc. 27.5-0-27.5V 1.2A and 7-0-7V 0.75 A £2 B 0. P&P £1 25. No. 7 17V 1A £2. P&P 75p. No. 8 13V 3A and 15V 1A £3.50. P&P £1.25. No. 9 18V ZA £2.60. P&P£1.		
Imagine using random numbers to control the firing of depth charges Onto design a computer game. In this issue						
 depth charges. Or to design a corr we explain Monte Carlo methods solve numerical problems. We review a British-built product a low-cost colour computer. We report on a programming met synthesisers, we compare the BB the Sinclair Spectrum AND THAT'S JUST A SAMP: COMPUTING – TOGETHER N OF PET, APPLE, TANDY AN COMPUTERS. BUY BRITALL COMPUTER MAGAZINE. OCTOBER ISSUE OUT NOW 80p AT YOUR NEWSAGENT 	nputer = and t: the I thod t: 3C mic: LE OI WITH VD SI N'S L:	rgame. In this issue how they can Dragon 32, hat uses speech ro and F PRACTICAL ADVICE FOR USEF NCLAIR ZX 80/81 EADING PERSONAI	Complu as	ting		

WIRELESS WORLD OCTOBER 1982

BRITAIN'S BETTE RGAIN ST

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

	200 Contract of the Contract of Contract o	Fill gaps in your circuit files with these sets of 127 x 204 mm cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested
Since leases woorld circard Since leases could circard Since lease could circard <th></th> <th>circuits, together with ideas for modifying them to suit special needs.</th>		circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers – signal processing 17 Current differencing amplifiers – signal generation 18 Current differencing amplifiers – measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators – 1 26 RC oscillators – 2 27 Linear cmos – 1 28 Linear cmos – 2 29 Analogue multipliers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 1 35 Analogue gate applications - 2.

To IPC Electrical – Electronics Press Ltd. General Sales Department, Room 205, Quadrant House, Sutton, Surrey SM2 5AS	Please send me the following sets of Circards: £2 each, £18 for 10 post free. Remittance enclosed payable to IPC BUSINESS PRESS LTD.
	Name (Please print)
Company registration in England Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS	Address (Please print)
Reg. No 677128	

CONTINUOUS BATTINGS 22 - VOLT PANGE MAINS ISOLATORS PID 720 - 200 1207 Sec 04-1187/2 PID 720 - 200 1207 Sec 04-1187/2 PID 720 - 200 1207 Sec 04-1187/2 PID 720 - 200 1207 Sec 04-118 PID 720 20 12.05 12.00 PID 720 20 12.05 12.00 PID 720 20 12.05 12.00 PID 720 20 72.43 PID 720 20 72.43 PID 720 20 72.44 PID 720 20 72.44 PID 720 20 72.44 PID 720 20 72.44 PID 720 72 PID 720 72 <th c<="" th=""><th></th><th>OB</th><th>MF</th><th>RS</th><th>Desp</th><th>etch ·</th><th></th></th>	<th></th> <th>OB</th> <th>MF</th> <th>RS</th> <th>Desp</th> <th>etch ·</th> <th></th>		OB	MF	RS	Desp	etch ·	
Prior 1200 Sec 0-0119742 Pert VA (Wetter Pert VA (Wetter Pert VA (Wetter Part VA (Wett	CONTINU		NGS 12	or 24-	VOLT	RAN	GE	
Org. Org. Org. State St	Pri 0-120; 0-100-120V. Sec 0-CT-115V		Ref. 12	v Amps	24v	£	P&P	
150 100 10.06 1.84 18 4 2.50 4.53 1.60 151 2.50 12.34 1.55 5 2.56 7.60 3.30 7.68 1.60 154 5.00 2.50 7.2 1.60 1.6 1.2 6.00 1.224 2.14 159 7.00 5.83 0.04 1.16 1.2 6.00 1.224 2.14 159 5.000 10.11 0.0 1.16 1.2 6.00 1.224 2.14 159 5.000 10.11 0.10 1.50 1.124 2.14 1.50 1.244 2.14 1.50 1.244 2.14 1.50 1.244 2.14 1.50 1.244 2.14 1.50 1.244 2.14 1.50 1.244 2.14 1.50 1.15 1.24 2.14 1.50 1.15 1.15 1.15 1.16 1.25 2.00 1.16 1.24 2.16 1.16 1.25 2.00 1.16 1.16 1.25 2.00 1.16 1.16 1.16 1.16<	07 20 5.32	1.50	213	11	0.5	3.19	1.20	
122 250 163.1 2.64 170 6 3.0 7.89 1.40 123 250 250 100 6 3.0 7.89 1.40 155 750 25.37 0.0 115 2.0 0.0 128 2.00 1.15 2.00 1.00 17.44 2.44 0.0 1.15 2.00 1.00 17.44 2.44 0.00 1.15 2.00 1.00 17.44 2.44 0.0 1.00 1.74 2.44 0.0 1.00 1.74 2.44 0.0 1.00 <t< td=""><td>150 100 10.06</td><td>1.84 2.12</td><td>18</td><td>4</td><td>2.0</td><td>4.91</td><td>1.60</td></t<>	150 100 10.06	1.84 2.12	18	4	2.0	4.91	1.60	
155 750 35.91 0.A 116 12 26.0 12.82 12.12 159 1500 62.43 0.A 115 20 10.0 17.44 2.44 159 2000 10.1 0.A 22 30 10.0 17.44 2.44 150 2000 10.1 0.A 22 30 10.0 17.44 2.44 150 2000 10.1 10.0 17.44 2.44 2.44 2.44 50 WOLT RANGE 20.7 10.1	153 350 20.34	2.12	108	6 8	3.0 4.0	7.69 8.98	1.64	
157 1500 69.52 0.A 115 220 10.6 17.44 2.44 159 2000 101.12 0.A 127 30 10.6 27.44 2.44 150 2000 101.12 0.A 30 UCLT RANGE 2.44 30 1.5 1.5 2.6 30.0 4.44 0.A 50 VOLT RANGE 2.5 1.5 1.6 2.3 30.4 2.44 5.0 1.6 </td <td>155 750 35.91</td> <td>OA</td> <td>116</td> <td>12</td> <td>6.0</td> <td>10.89</td> <td>1.90</td>	155 750 35.91	OA	116	12	6.0	10.89	1.90	
159 3000 101.12 0.A 4115 200 sec orb, State wolk-required. 50 VOLT RANGE State wolk-required. 50 VOLT RANGE State wolk-required. 87 300 157 State wolk-required. 87 300 250 State wolk-required. 87 300 250 State wolk-required. 87 300 30 3 4 45 3.8 1.2 87 300 3 4 4.8 9.67 1.3 1.2 4.32 1.30 106 3 10.2 2.4 8.68 1.90 1.7 6 1.90	157 1500 60.52	OA	115	20	10.0	17.46	2.44	
Ph 0220-2400' Sec. Voils are idealing 3, 55 2, 83, 10, 12. 50 VOILT RANGE 22, 250' termed 28, 03 and 250', 50' termed 28, 03 and 250', 50' termed 29, 03 and 20' termed 29, 03 and 20' termed 29, 03 and 20' termed 29, 03 and 20' termed 20, 12 and 20' termed 20'	159 3000 101.12							
50 VOLT RANDE PAP 50 VOLT RANDE F 112 0.5 12 1.3 1.20 25,0.33,40 2240.200 r38V-238V RANDE F 90 15 1.3 1.20 25,0.33,40 2240.200 r38V-238V F 90 12 4.43 1.80 1.80 104 2 4.83 1.40 21 4.43 9.457 1.80 105 3 1.04 1.90 17 5 1.15 2.02 0.04 9.95 1.80 1.80 1.15 2.02 0.04 9.95 1.80 2.02 0.04 9.95 1.80 2.00 A.8 9.95 1.80 2.00 A.8 3.00 2.00 A.9 2.00 A.9<	★115 or 240v sec only. State volts Pri 0-220-240V.	required.	Sec. Volts	availabla	3.4.5.6.	8.9.10.1	2,	
Best Solution	50 VOLT RANGE2×25	/ tapped		Amp	5			
Ref. Sov. E PAP 3 2 4 6.8.39 1.80 103 1 2 5.03 1.40 51 5 M 9 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.24 3.80 1.80 1.80 2.24 3.80 1.80 1.80 2.24 4.83 1.80 1.80 1.80 1.80 2.24 3.80 1.80	25, 30, 33, 40 or 20V-0-20V or 25V-C-2 Amps	5V	112 79	0.5	1 2	4.32	1.20 1.40	
104 2 4 586 150 5 10 11.95 2.00 106 4 8 14.10 2.12 88 8 5 16 18.10 2.22 2.00 107 6 12 12.02 20 20.42 2.24	Ref. 50v 25v £ 102 0.5 1 4.13	1.40	20	3 A	6	8.10	1.85	
106 3 8 14.70 2.72 98 8 5 16 18.70 2.24 118 8 16 24.52 2.70 90 12 24 23.20 0A 119 10 20 30.23 0A 90 12 24 23.20 0A 119 10 24 23.20 0A 90 12 24 03 55.64 4.83 60 VOLD RANCE Probiotics	104 2 4 8.69	1.84	51	5 P	10	11.95	2.00	
118 10 22 23.20 0.4 119 10 20 30.23 0.4 91 15 02.40 30.00 119 10 24 35.14 4.50 3.60 3.60 3.60 60 VGL TRANCE PRE 60 90 15 30 26.60 3.61 4.40 6.0 115 15.20 24.00 35.64 4.83 1.60 2.01 1.60 9.09 2.59 80 Ref. 600, 2200, 200 15.15 2.00 1.60 9.09 2.59 80 1.60 3.41 1.50 1.60 9.90 2.59 80 1.21 1.21 1.40 9.09 2.59 80 1.21 1.21 1.21 1.51 1.20 1.22 1.31 1.20 1.31 1.20 1.31 1.20 1.31 1.21 1.31 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.33 1.32 1.32 1.33 1.32 1.32 1.32	106 4 8 14.10	2.12	88	8 3	16	18.10	2.26	
60 VOLT RANGE Pro 120/v2 Sch Vite Pro 120/v2 FPF Pro 120/v2 2300 Lipped Ses volts avoid-300 Amps F PFF PFF 200 5 PFF 25 200 3.0-3 3.11 90 212 1A, 1A 0-6, 0-6 3.46 1.25 9.0 3.0-3 3.11 90 212 1A, 1A 0-6, 0-6 3.46 1.25 9.0 3.0-3 3.46 1.25 212 1A, 1A 0-6, 0-6 3.46 1.25 1.1 90 126 1A 4.20 0.50 0.46, 0-6 3.46 1.25 126 1A 4.930 1.50 1.50 1.50 1.1 90 121 1B 15 1.50 2.24 2.21 70.10 2.21 2.11 90 2.24 1.11 1.90 2.00 2.00 2.00 3.39 1.20 1.11 1.90 2.00 2.00 2.00 3.39 1.20 1.11 1.90 2.00 2.00 2.00	118 8 16 24.52	2.70	90 91	12 15	24 30	26.60	OA 3.00	
Prio 120v/2 Prio 120v/2 PF PF TmA See Voits £ PF 2300 tapped sees voits available 64 000, 27 240 v340 er300v-300 Amps 11 300 9-0-3 3.11 300 212 1A, 1A 0-6, 0-6 3.46 1.20 212 1A, 1A 0-6, 0-6 3.46 1.20 212 1A, 1A 0-6, 0-6 3.46 1.20 126 1 4.70 1.50 1.50 1.50 1.50 126 1 4.70 1.50 </td <td>109 12 24 36.18</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>	109 12 24 36.18	-	-	-			-	
6, 6, 10, 12, 16, 18, 20, 24, 30, 36, 40, 47, 40, 30, 40, 40, 40, 40, 40, 40, 40, 40, 40, 4	Pri 0-120V×2 2×30V tapped secs volts available	Ref.	mA	Sec Vo		1	E P&P	
Ref. 600 Sov. E P&F 235 330 30 -2.41 300 126 1 2 7.15 1.5C 207 500 500 -89 -89 -89 -4.27 1.40 126 1 2 7.15 1.5C 207 500 500 -89 -89 -89 4.27 1.40 127 2 4 9.20 1.50 50 241 300 200 -0.15 -0.15 -1.13 300 126 5 5 10 19.16 2.24 200 1.00 -1.527 -1	6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, 60V, or 24V-0-24V or 30V-0-30V	212 1	A, 1A	0-6, 0-	6	3.	45 1.20 59 .80	
126 1 2 7.15 1.56 208 1A, 1A 0-89, 0.89 4.21 1.40 127 2 4 9.20 1.50 1.5 1.50	Ref. 60v 30v £ P&F 124 0.5 1 4.70 1.50	235 3 207 5	30, 330 00, 500	0-9, 0- 0-8-9,	0-8-9	3.3	36 1.20	
123 4 7 300 0.20, 0.20 3.39 1.20 120 6 5 10 19.16 2.24 217 300, 0.20, 0.20, 0.20, 0.32 4.13 1.20 121 6 5.30, 7.6 0.40 205 1.50, 0.15-27 4.13 1.20 121 8 16 30.72 0.15-27 0.15-27 4.13 1.20 400/440V ISOLATORS 400/440v ISOLATORS 400/440v ISOLATORS 400/440v ISOLATORS 400/440v ISOLATORS 90.00.20, 0.20, 20, 20, 200 2.33 1.60 120 24 1.12 0.41 1.10 1.50 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.20 2.00 1.60 <td>126 1 2 7.15 1.50 127 2 A 4 9.20 1.90</td> <td>236 2</td> <td>00,200</td> <td>0-15,0</td> <td>-15</td> <td>2.4</td> <td>41 .90</td>	126 1 2 7.15 1.50 127 2 A 4 9.20 1.90	236 2	00,200	0-15,0	-15	2.4	41 .90	
120 6 S 122 18 126 18 126 12 <	123 4 P 8 15.15 2.26	214 3	00,300	0-20,0	-20	3.	39 1.20 13 1.20	
122 10 20 35.76 0.4 204 1A.1A 0.15-27,0.15-27 7.30 1.60 400/440V ISOLATORS 400/440 to 200/240V 4.120 AUTO TRANSFORMERS 200,240, for step up or step down. PAP 50 243 8.11 1.50 1.31 15-016-115-210-240V 2.39 1.20 500 243 8.11 1.50 64 0.016-115-200-220-240V 4.84 1.40 500 247 19.83 0.4 4 150<0-10-115-200-220-240V	120 6 12 21.86 2.64	206 1 203 5	A, 1A	0-15-2 0-15-2	0, 0-15- 7, 0-15-	20 5 .0 27 4 .0	83 1.50	
400/4400 V ISOLATORS Voltages available 105, 115, 190, 200, 210, 220, 200, 721, 220, 200, 721, 220, 200, 721, 220, 200, 721, 200, 210, 220, 200, 721, 200, 210, 220, 200, 721, 200, 210, 220, 200, 721, 200, 220, 200, 721, 200, 220, 200, 721, 200, 220, 200, 721, 200, 220, 200, 721, 200, 220, 200, 721, 200, 220, 200, 220, 200, 721, 200, 220, 200, 221, 200, 220, 200, 221, 200, 220, 200, 221, 200, 220, 200, 221, 200, 220, 200, 221, 200, 220, 200, 221, 200, 220, 200, 221, 200, 200	122 10 20 35.76 OA	204 1				-	30 1.60	
VA North 113 115 015 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 115 016 016 115 006 016			s availabl	e 105, 1	15, 190	, 200, 2		
250 246 16.07 0.4 64 80 0-10-115-200-220-240V 6.48 1.60 500 247 19.88 0.4 67 500 0-10-115-200-220-240V 27.80 2.80 2000 252 74.79 0.A 93 1500 0-10-115-200-220-240V 28.17 0.A 2000 252 74.79 0.A 93 1500 0-10-115-200-220-240V 28.17 0.A 3000 253 104.86 0.A 93 1500 0-10-115-200-220-240V 28.17 0.A 6000 254 207.92 0.A 93 1500 0-16-115-200-220-240V 168.10 0.A 73 3000 0-10-115-200-220-240V 108.30 0.A 73 200 640 4000 100-115-200-220-240V 108.30 0.A 150 £12.10 1.84 4.40 7.3 3000 150.700 108.30 0.A 200 £60.47 0.A 950 170.48 £13.74 12.80 2.400VA, £93.74 128.400 128.400 160.7	60 243 8.11 1.50	Ref. VA	(Watts) 5 0-10-1	15-210-2	TAPS 10V	£ 2.35	1.20	
1000 2500 50,53 0A 1000 252 74,73 0A 1000 252 74,73 0A 1000 251 104,86 0A 1000 253 104,86 0A 1000 254 207,92 0A 1000 254 207,92 0A 1000 254 207,92 0A 1000 257 5000 10-115-200-220-2400/ 42.14 0A 1000 271 125 560 71.64 0A 1000 253 5000 10-115-200-220-2400/ 108.30 0A 1000 253 500 10-115-200-220-240/ 108.30 0A 1000 253 500 10-115-200-220-240/ 108.30 0A 1000 253 </td <td>250 246 16.07 OA 350 247 19.88 OA</td> <td>4 15</td> <td>0-10-1</td> <td>15-200-2</td> <td>20-240</td> <td>6.4</td> <td>3 1.60</td>	250 246 16.07 OA 350 247 19.88 OA	4 15	0-10-1	15-200-2	20-240	6.4	3 1.60	
Soud Status Status <td>1000 250 50.53 OA</td> <td>84 100</td> <td>0 0-10-1</td> <td>15-200-2</td> <td>20-240</td> <td>22.70</td> <td>2.80</td>	1000 250 50.53 OA	84 100	0 0-10-1	15-200-2	20-240	22.70	2.80	
80 4000 0-10-115-200-220-240V 93.01 00 2007 cable input USA 115V outlets VA Price P&P Price P&P Picke Pick	3000 253 104.86 OA	95 200 73 300	0 0-10-1	15-200-2 15-200-2	20-240 20-240	42.14	OA OA	
VA Price 20 Price 21.25 Set 25.5 Changing 25.5 20 £7.21 1.25 Set 25.5	CASED AUTOS	57 500	0 0-10-1	15-200-2			0A 30 0A	
80 £9.35 1.50 64.W Stabilisers 150 £12.10 1.84 4W 250 £14.73 1.60 69W 5000 £22.14 2.24 67W 200VA £137.36 + p&p 200VA £137.36 + £2 p&p + VAT 1000 £3.74 2.80 84W 2000 £60.47 0.A 95W COTSWOLD TOROIDALS INVERTERS (Cased) 12V input 240V a.c., 13 amp socket outlet. 100W SodVA. 619X.43 + VAT Send for list SodVA f 152 VAT AFTER PAP INVERTERS MAINS BATTERY ELIMINATORS SodVA f 152 VAT AFTER PAP OTHER PRODUCTS MAINS BATTERY ELIMINATORS Sod 200 VA 459.9 <td>VA Price P&P Ref</td> <td>TRAM</td> <td>ISFORME</td> <td>RS</td> <td>т.</td> <td></td> <td></td>	VA Price P&P Ref	TRAM	ISFORME	RS	т.			
500 £22.14 2.24 67W 1000 £3.74 2.80 84W 2000 £60.47 0.A 95W INVERTERS (Cased) 12V input 240V a.c., 13 amp socket outlet. 100W continuous (tool rating tool). 240V a.s. 30VA, 60VA, 100VA, 160VA, 230VA, 330VA, 530VA Send for list OTHER PRODUCTS MAINS BATTERY ELIMINATORS NANINS BATTERY ELIMINATORS MAINS BATTERY ELIMINATORS MAINS BATTERY ELIMINATORS MAINS BATTERY ELIMINATORS Nating IRONS 15W CCN240 or C £5. ANTEX SOLDERING IRONS 15W CCN240 or C £5. ANTEX SOLDERING IRONS 15W CCN240 or C £5. ANTEX SOLDERING IRONS 15W CCN240 or C £5. MAINS BATTERY ELIMINATORS MAINS BATTERY ELIMINATORS MAINTEX	80 £9.35 1.50 64W 150 £12.10 1.84 4W	250VA	ars, peripl	herals.		ype. Ca	sed.	
2000 EBN PROFILE COTSWOLD TOROIDALS (Cased) 12V irput 240V a.c., 13 amp socket outlet. OFF THE SHELF 30VA, 60VA, 100VA, 160VA, 230VA, 330VA, 530VA 150WJ. E46 page 22 + VAT. 24V input and 250W, 500W 1000W available. 0 0 0 AVO TEST METERS 8 Mk. 5 Latest Model 71 (Handy 743 500V. 5108 73 portable size) 0 A211 LCD Digital 71 (Handy 743 500V. 5101.56 0A211 LCD Digital 71 (Handy 743 500V. 5101.56 0A211 LCD Digital 71 Autorange LCD 6157.06 Avo Cases and Accessories PRP 1.60 + VAT 15% BRIDGE RECTIFIERS 200v 2A 45p 400v 4A 700v 25A + £2.10 100v 25A + £2.10 100v 25A + £2.10 100v 25A + £2.10 100v 25A + £2.10 100v <td>500 £22.14 2.24 67W</td> <td>500VA E</td> <td>159.43</td> <td>+ poup + VAT</td> <td></td> <td></td> <td></td>	500 £22.14 2.24 67W	500VA E	159.43	+ poup + VAT				
(Cased) 12V irput 240V a.c. 13 amp socket outlet. 100W tootinuous (tool rating 150W). £46 p&p £2 + VAT. OFF THE SHELF 30VA, 60VA, 100VA, 160VA, 230VA, 330VA, 530VA Send for list 24V input and 250W, 500W Send for list 24W input and 250W, 500W PLEASE ADD 15% VAT AFTER P&P Oversees post extre 24W input and 250W, 500W OTHER PRODUCTS 24W input and 250W, 500W ANO TEST METERS 8 Mk 5 Latest Model f £12.10 73 portable size) £88.90 73 portable size) £88.90 DA116 LCD Digital £81.90 DA116 LCD Digital £81.90 DA116 LCD Digital £81.90 DA116 LCD Digital £131.30 Megger 70143 500V £101.56 Wegger Battary BM7 200V 2A 45p 200V 2A	2000 £60.47 OA 95W	co	TSWO	OLD '	TOR	OIDA	LS	
Continuous (tool rating 150W): E48 p&p £2 + VAT. Send for list 24V input and 250W, 500W 1000W available. PLEASE ADD 15% VAT AFTER P&P Oversees post extre OTHER PRODUCTS Image: Content of the second	(Cased) 12V input 240V a.c.,						FORM	
24V input and 250W, 500W PLEASE ADD 15% VAT AFTER P& Doerses post extrey 000W available. OTHER PRODUCTS Image: Construction of the states of the	continuous (tool rating 150W). £46 p&p £2 + VAT.	30VA, 60		Send for	or list		A, 530VA	
Avo TEST METERS MAINS BATTERY ELIMINATORS 8 MK. 5 Latest Model £122.10 No wiring, ready to plug into 13A socket. 3, 4.5V, 6, 7.5V 9, 12V DC @ 300mA £5.70 + £1.20 p&p 71 (Handy £49.30 £49.30 73 portable size) £58.50 DA211 LCD Digital £58.50 £53.60 DA116 LCD Digital £81.90 ANTEX SOLDERING IRONS 15W CCN240 or C £5. DA116 LCD Digital £81.90 ANTEX SOLDERING IRONS 15W CCN240 or C £5. DA116 LCD Digital £81.90 ANTEX SOLDERING IRONS 15W CCN240 or C £5. DA116 LCD Digital £81.90 ANTEX SOLDERING IRONS 15W CCN240 or C £5. DA116 LCD Digital £81.90 F1.50 Megger 70143 500v £101.56 F1.50 Megger 804 200 bit £13.90 £157.00 Avo Cases and Accessories F1.50 PAP £1.60 + VAT 15% Precision De-Solder Pumps - Spring loaded quick action buttor release for one hand working. Large £5.86 P&P 35p + vAT. Small £5.17 100v 25A £2.60 Precision De-Solder Pumps - Spring loaded quick action buttor release for one hand working. Large £6 Re PUAT. 200v 4A £5p Bap + vAT. 15% Send 20p tor catalogue. F1.50 + £1.20 p&p + VAT. Yeles 20p. VAT 15% Send 20p tor catalogue. Send 20p tor catalogue. F10c. 5600 + £20c. 27K + 27K + 27K + 27K + 27K + 27K +	24V input and 250W, 500W							
8 Mk 5 Latest Model f122 10 71 (Handy f43.30 71 (Handy f43.30 71 portable size) No wiring, ready to plug into 13A socket. 3, 4.5V, 6, 7.5V 9, 12V DC @ 300mA f5.10 + £1.20 p&p 9 Mk 5 Latest Model f122.10 73 portable size) F88.30 F88.30 MMS Minor f43.30 MMS Minor f43.30 DA116 LCD Digital f81.39 DA116 LCD Digital f81.39 E157.09 Avo Cases and Accessories P&P f1.60 + VAT 15% ANTEX SOLDERING IRONS 15W CCN240 or C f5. Safety stand f17.78 SolW X25 f5.30 P&P 50p + VAT BRIDGE RECTIFIERS 200v 2A 45p 400v 4A 85p 400v 6A f1.40 Solm 220, bor catalogue. Prices correct at 278/81 Precision De-Solder Pumps - Spring loaded quick action button release for one hand working, Large 858 P&P 35p + vAT Small f5.17 P&P 30p + VAT Replacement tips: Small 65p + VAT Large 86p + VAT. Send 20p for catalogue. Prices correct at 278/81 Send 20p for catalogue. Prices correct at 278/81 Send 20p for catalogue. Prices correct at 278/81 Send 20p for catalogue. PRE PLONDE: 01-488 3316/7/8 VAT ISON 180K 220K 270K 300F PL 30p + VAT.		R PF	RODI	JCT	S		4	
73 portable size) £68.90 MM5 Minor £43.60 DA211 LCD Digital £58.50 DA211 LCD Digital £13.90 DA116 LCD Digital £13.90 DA116 LCD Digital £13.90 DA116 LCD Digital £13.90 DA116 LCD Digital £13.90 Megger Retary BM7 £1.70 Avo Cases and Accessories PBP 50p + VAT BRIDGE RECTIFIERS guick action button release for one hand working. Large £5.86 P&P 35p + VAT 200v 2A 45p 400v 2A 55p 400v 4A 85p 400v 4A 85p 400v 4A 85p 98P 20p. VAT 15% Telephones: Trimphone £28 + £1.20 p&p + VAT. Send 20p for catalogue. Precision De- 2004 : 180- 3601 - 3901 - 3901 - 4901 - 4900 Send 20p for catalogue. Precision 0 - 8201 : 1801 - 1801 - 3601 - 3901 - 4901 + VAT Send 20p for catalogue. Precision 1800 - 3601 - 3901 - 4900 + VAT. Send 20p for catalogue. Precision 1800 - 220K - 270K - 300K - PB 30p + VAT. Send 20p for catalogue. Precision 1800 - 3601 - 3901 - 4900 + VAT. Send 20p for catalogue. Precision 1800 - 3601 - 3901 - 490	8 Mk. 5 Latest Model £122.10	No wirir	g, ready	to plug i	nto 13A	socket.	3, 4.5V,	
DA212 LCD Digital £83.50 DA212 LCD Digital E81.90 Eastery stand	73 portable size) £68.90	0, 7.5V 9 + VAT 1	5%	@ 300m	A £5.1) + £1.2	0 p&p	
DA116 LCD Dicital £131.39 Megger R143 500v £101.59 DA117 Autorange LCD £157.09 Avo Cases and Accessories F82 F160 + VAT CABLES eg: URM 70 Multicores, singles. Phone for quote. 200v 2A 45p 400v 2A 45p 400v 2A 45p 400v 2A 45p 400v 4A 85p 400v 4A 85p 920 P20p. VAT 15% Telephones: Trimphone £28 + £1.20 p&p + VAT. Send 20p tor catalogue. Prices correct at 278/81 Appendix 4200 Send 200 Sen	DA211 LCD Digital £58.50 DA212 LCD Digital £81.90	Safety s	tand	£1.75	25W X	.25	£5.30	
DA117 Autorange LCD f157.06 Avo Cases and Accessories P&P f1.60 + VAT 15% BRIDGE RECTIFIERS 200v 2A 45p 400v 2A 55p 100v 25A f 22.10 100v 25A f 22.60 400v 4A 65p 400v 4A 65p 400v 6A f1.40 Send 20p for catalogue. Prices correct at 278/81 Send 20p for catalogue. Prices correct at 278/81 Barrie E Beleving LCD average Action button release for one hand working. Large f5.86 P& 35p + VAT. Telephones: Trimphone f28 + f1.20 p&p + VAT. Beleving LCD average Accessories PRICes Correct at 278/81 Barrie E Beleving LCD average Accessories Prices correct at 278/81 Barrie E Beleving LCD average Accessories Average Accessories PRICes Correct at 278/81 Prices correct at 278/81 Prices correct at 278/81 Prices correct at 278/81 CABLES g: URM 70 Multicores, singles. Phone for quote. Prices correct at 278/81 Barrie E Beleving LCD average Accessories Average Accessories Accessories Prices correct at 278/81 Prices correct at 278/81 CABLES g: URM 70 Multicores, singles. Phone for quote. Prices correct at 278/81 Prices correct at 278/81 Prices correct at 278/81 CABLES g: URM 70 Multicores, singles. Phone for quote. Prices correct at 278/81 Prices corect at 278/81 Prices correct at 278/81 Prices corre	Megger 70143 500v £101.50	12V 25V	V car sold	ering kit.				
Avo Cases and Accessories P&P f1.60 + VAT 15% BRIDGE RECTIFIERS 300v 2A 45p 400v 2A 55p 100v 25A + f2.10 100v 25A + f2.10 100v 25A 4 65p 400v 4A 65p 400v 4A 65p 400v 4A 65p 400v 6A f1.40 500v 12A f2.85 P&P 20p. VAT 15% Send 20p for catalogue. Prices correct at 278/81 Send 20p for catalogue. Prices correct at 278/81 Barrie Electrosil 100s only. Use in place of cfim. 470 - 750 - 1801 - 3601 - 3901 - 4900 - 501 - 4901 - 4901 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 501 - 4900 - 500 - 4900 - 500 - 5000 -	DA117 Autorange LCD £157.00			CAB	LES			
200v 2A 45p 400v 2A 55p 100v 25A+ 62.10 100v 35A 62.60 200v 4A 65p 200v 6A 61.40 50v 12A 62.85 P&P 20p. VAT 15% P&P 20p. VAT 15% Send 20p for catalogue. Prices correct at 27/8/81 METAL 0XIDE RESISTORS £1/100 + VAT Special Offer TR4 5% Electrosil 100s only. Use in place of cfilm. 470 - 750 - 1800 - 3601 - 3601 - 4700 + 1	Avo Cases and Accessories	eg: UR	M 70 Mult			Phone fo	or quote.	
100v 25A + 22.10 100v 35A £2.60 200v 4A 65p 400v 6A 85p 400v 6A 85p 400v 6A 81.40 500v 12A £2.85 P&P 20p. VAT 15% Telephones: Trimphone £14.50 v bpt + VAT. Send 20p. br catalogue. Prices correct at 27/8/81 METAL 0XIDE RESISTORS £1/100 + VAT. Send 20p. br catalogue. Prices correct at 27/8/81 METAL 0XIDE RESISTORS £1/100 + VAT. Barrie Electronics Ltd., 3,THE MINORIES, LONDON EC 3N 1BJ. TELEPHONE: 01-488 3316/7/8 VEAREST TUBE STATIONS: ALDGATE & LIVERPOOL STATIONS		Precisio	action b	Ider Pul	nps -	Spring for on	loaded. e hand	
100v 35.4 £2.60 200v 4.4 65.p 400v 4.8 85.p 400v 6.4 £1.40 500v 12.4 £2.85 P&P 20p. VAT 15% METAL ÓXIDE RESISTORS £1/100 + VAT. Send 20p for catalogue. Prices correct at 2778/81 Barrie Electronic Study .20x - 20x - 20	400v 2A 55p 100v 25A+ £2.10	P&P :	30p+VAL	Repla	cemer	t tips:	ali £5.17 Small	
400v 6A £1.40 500v 12A £2.85 PB/20p. VAT 15% METAL OXIDE RESISTORS £1/100 + VAT Send 20p for catalogue. Prices currect at 278/81 Metral OXIDE RESISTORS £1/100 + VAT Send 20p for catalogue. Prices currect at 278/81 Send 20p for catalogue. Prices currect at 278/81 Barrie Electrosil (1000 + 2001 + 2001 - 3001 - 3001 - 4001 + 2001 - 3001 - 4001 + 2001 +	100v 35A £2.60 200v 4A 65p	Telepho	nes: Trin	phone f	28 + f	1.20 p&p	+ VAT.	
P&P 20p. VAT 15% Send 20p. Vor. cstalogue. Prices correct at 27/8/81 Barrie Electronics Ltd. 3,THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8 Verage States Tube Stations: ALDGATE & LIVERPOOLS	400v 6A £1.40	Wall ph	ones £14.	50 + £1.	20 p&p	+ VAT.		
Barrie Electronics Ltd. 3,THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8 NEAREST TUBE STATIONS: ALDGATE & LIVERPOOLS		1 0	044 TD4 F	Or Electron	11/100-	and dates	in minon	
Barrie Electronics Ltd. 3,THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/7/8 NEAREST TUBE STATIONS: ALDGATE & LIVERPOOLS	Send 20p for catalogue. Prices correct at 27/8/81	510Ω - 5 3K - 16K 120K - 1	60Ω - 820Ω - 20K - 22K 30K - 180K	- 1K - 1K2 - 24K - 27 220K - 27	- 1K3 - 14 K - 47K - 10 K - 300F	6 - 1K8 - 1 82K - 100 P&P 30	2K - 2K4 - (- 110K -)p + VAT	
3,THE MINORIES, LONDON EC 3N 1BJ TELEPHONE: 01-488 3316/7/8 VEAREST TUBE STATIONS: ALDGATE & LIVERPOOL ST	Barrie E						6	
TELEPHONE: 01-488 3316/7/8 NEAREST TUBE STATIONS: ALDGATE & LIVERPOOLS	3 THE MINOR				FC	31	1R L	
NEAREST TUBE STATIONS: ALDGATE & LIVERPOOLS						/7/9		
						FRPC		
WW – 039 FOR FURTHER DETAILS	NEAREST TUBE STA			100				

hi! performance hi! competitive hi!

TO HAND

Hand held Colour Pattern Generators. Truly portable, an overnight charge gives a full day's use from internal batteries. Many in use, both Workshop and Field.

Pocket sized, 131 \times 81 \times 23mm.

MC10 SERIES

reliability hi? service hi? performance hi? competitive

hit

performance

hi

service

hi:

reliability.

hi!

Ideal for TV servicing, both Colour and Mono, with a 10mV output level and weighing only 250 g inc. battery.

AT LESS than £150 inc. P+D

RGB 11 SERIES

Just the answer for Commercial and Hobby CCTV monitors, VDU's and Video Games, with an output that is TTL Compatible and weighs only 220 g inc. battery. **£120** inc. P+D

Features of both models include:

- 8 CCIR 1 PAL Colour Patterns
- Fingertip tuning: UHF channels 21 thru 41
- Subcarrier freq: 4.433619 MHz, crystal controlled
- Lines: 625 derived from subcarrier
- Sound: FM + 6 MHz, modulated at 650 Hz
- Video Modulation: Negative, double sideband
- Red, Green and Blue TTL Output signals
- Blanking Pulse and other characteristics in accordance with CCIR

BOTH COMPLETE with Carrying Case, 75 Ohms Aerial Lead or TTL Output Lead, Nicad Battery, Mains Power Unit Battery Charger and Handbook

PLUS MC32 Series of BENCH MODELS for all Applications

Fully Guaranteed for One Year, send for FREE DATA

House of Instruments Clifton Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex: 818750

competitive hi: House of Instruments Ltd.

WW - 067 FOR FURTHER DETAILS

HEMMINGS ELECTRON MICROCO	NICS AND MPUTERS Professional quality electronic components, brand new and fully guaranteed. Mail order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to Hemmings Electron- ics Ltd. Official orders from schools, colleges and universities welcome. Trade and export enquiry
HITCHIN Tel: (0462) 3303 HERTS Shop open Mon. Set SG5 1JE Closed all day Wedni	t. 9 c.m. 5.30 p.m. P.&P. add 60p to all orders under £10. Telephone your Access orders, using our 24-hr.
74LS TTL L5180 259 L5386A 300 4025U 1 LS01 11p L5137 400 LS387A 300 A027 2 LS01 12p L51380 300 LS373 300 A028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4028 4033 10 LS377 400 4034 10 100 4034 10 100	Action Check Affic Commercing
BLARD	WW-060 FOR FURTHER DETAILS
An Edition IN G Scrowyie	Intravel the mysteries of radio and electronics with a copy of Foundations of Wireless and Electronics by M.G. Scroggie. So,000 enthusiasts and students have already used this remarkable book to master the elementary principles of electronics. In fact, many of today's radio and electronic engineers were weaned on Scroggie. The book is written clearly and concisely in Mr. Scroggie's well-known and often humorous style. He assumes no previous technical knowledge and only uses mathematics where essential. Order your copy now — Postage and packing is £1.10 each copy in the UK, £1.30 oversea's (surface mail). Please send me copy/copies of Foundations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Please send me copy/copies of Foundations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electronics by M.G. Scroggie at £5.25 per copy plus postage and acking as above. Mathematical mediations of Wireless and Electroni
Registered Office: Quadrant House. The Quadrant, Sutton. Surrey SM2 5AS	Return to: General Sales Manager, IPC Electrical-Electronic Press Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS England.

WIRELESS WORLD OCTOBER 1982

It's the chance every constructor wants

POWER AMPS

It's something you have always wanted something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780 FREEPOST

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us

To: I.L.P. ELECTRONIC

BUILT WITH I.L.P. MOOULES

TO: I.L.P. ELECTRONICS LTD. Please send me i.l.p. catalogue, Post paid by return	Name:	
I HAVE/HAVE NOT PREVIOUSLY		

L.P. products are available also from Henry's Marshall's, Technomatic & Watford

WW-089 FOR FURTHER DETAILS

Did vou know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?

I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?

There are TWENTY power amplifiers from 15 to 240 watts **RMS including the very** latest super-quality Mosfets to choose from?

TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?

I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls **Royce etc?**

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble quarantee?

METERS Large range of types in stock; also probes, leads, accessories, etc. PANEL MOUNTING in 50, 100, 500µA; 1, 5, 10, 50, 100 500mA; 1 A either model.	ELECTROVALU	CATALOGUE 82, 70p POST FREE INC. 70p REFUND VOUCHER RESISTORS 14, 1/3, 1/2, 1/4 writt – all 2p sech, 10 of one value 15p. 2% Mulliard metal film 5,1 ohms – 300K Bp sech, 10 of one value 40p. 5% wire wound 3W or 7W, most E12 values 1.2 ohms to 8K2 Bp sech. 10 for 77.
MU bases 50 x 45mm 22.00 MULTIMETERS	VEROBOX CASES ional finish to valued project ABS, light grey top; dark grey bottom + 2 anodised panels L D H TYPE PRICE 205 140 40 21034 (24.52	y profes- a much CARBON ROTARY (P20) 100 ohms – 4M7 lin, 220 ohms – 2M2 log 32p or with switch – \$7p; Dual gang (JP20) 4K7–2M2 lin, or log 95p or with switch e1.50.
N E W - ZOKGAV: A C / D C /- RES / dB n 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	205 140 75 21035 25.02 205 140 110 21036 28.04 180 120 39 21037 24.11 180 120 39 21037 24.11 180 120 65 21038 24.40 180 120 90 21039 24.00 180 120 90 21039 24.00 185 85 39 21040 £3.31 155 85 60 21041 £3.61 155 85 80 21041 £3.40	SLIDERS S8mm, low cost 10K-1M log only 21p; Std 58mm mono 4K7-1M lin or log 70p, streso matched 12.32; Greduted basels 34p. PRESET min. 10mm dis. Horizontal or vert. 100 ohms-1M se. 13p. Cermet 10mm dis. Horiz or Vert. 1000-1M se. 22p. Cermet redilinear type 50p; 1000-1M se. £1.06. PLESSEY MPW moulded carbon 470- 2M2 se. 58p. DISCOUNTS ON ALL PRICES EXCEPT PRICES MARKED N
130 x 60 x 37mm c1 32M x SOLDERING IRONS	165 85 80 21042 £4.30 125 65 30 21047 £2.36 125 65 39 21048 £2.99 125 65 50 21049 £3.37 ALL ITEMS BRAND NEW AND GUARANTEED TO \$	CMOS SUPER SAVERS!
Also large stocks of bits, desoldering devices, accessories, etc. ANTEX C-240V E4.80N; X.25-240V E5.30N; CSBP E5.46N; XSBP E5.56N; ST4 Stand E1.70N. ORYX 50 watt temp: controlled £13.7EN; Stand £4.90N. SOLDER 500gm/18SWG £7.80N; Desolder braid 1.5m E49.	CAPACITORS POLYSTYRENE, SIEMENS 5% Tolerance. 160V 5,7, 10, 12, 15, 18, 22, 27, 33, 39p F 18p; 47, 56, 68, 82, 100, 1 180, 220, 270, 330, 390, 470, 560, 680, 820p F; 10, 11, 12, 115, 11	4000 14p 4015 55p 4027 32p 4089 18p
SWITCHES — Wavechange Type CK - 1P/12 wey; 2P/6W; 3P/3W 44p. MN. TOGGLES - S7101, SPDT 5P; 57201 DPDT 50p; S7301 3PDT £1.64; S7401 4PDT £2.75; 7211 1P3W £1.40; Centre off S7103 SPDT 71p; 57203 DPDT 50p. Push burton min 8531 make/8533 break 62p; 8225 DPDT £1.34- DUAL, IN LINE EFM Colour coded 0.3"x0.1" format, On/Off single throw 2P SDS2 54p; 4P SDS4 56p; 6P SDS6 £1.36; 8P SDS8 £1.87; 10P SDS0 22.10.	2n7, 3n3, 3n9, 4n7 12p; 5n6, 6n8, 8n2, 10n 13p. CERANNC Very small. 1.8, 2.2, 2.7, 6tc. up to 1n 5p each. 1 3n3, 4n7, 6n8 5p; 10n, 22n 6p. 33n, 47n 7p; 100n 6p. POLYESTER, SHEMENS LAYER-TYPE 7.5mm lead spacing 100 1n, 1n5, 2n2, 3n3, 6p; 4n7, 6n8, 8n2, 10n, 12n, 15n, 16n, 22n, 39n, 47n 7p; 56n, 68n 6p; 82n, 100n 5p; 120n, 150n, 11p; 180 12p; 270n, 330n, 330n, 470n 15p; 560n, 680n 42p; 100mm 1µE 25p; 15mm spacing 2µ2 35p; 22.5mm spacing 1µF 40 3.3µF 100V 50p; in-deph stocks.	7n, 33n, m, 220n, specing OV 86p; III.CENV21D
LOW COST D-H. 4P DNSO4 66p; 8P DNS08 £1. PROFESSIONAL KEYBOARD FOR USE WITH 20(81 £31.30N Keyboard Case for above £13.46N	ELECTNOLYTICS NON-polar (for LS X-overs) 50V peak 2µF 2 200; 6, 8, 10, 16µF 320; 25µF 370; 40, 60µF 500; 100µF 600. POLARSED, SIEMENS OR MULLARD FOR QUALITY EVERY T	(to our Egham address)
NICAD CHARGERS For PP3 - NC75G £4,56N; for AA, C or D - NC1230 £2,20N; Power Units MW88 3/4.5/6/7.5/9/12V; 13A fitting 300mA out £3,46; HC244R DC Stabilited 3/6/7.5/9/4 400mA out £3,25.	(µF/N) 10/40, 47/10 11p; 47/25 12p; 100/10 13p; 10/53, 22/40 14p; 22/53, 47/40, 100/25, 100/40 18p; 220/10, 220/16 16p; 22 220/40 20p; 470/10, 470/16, 470/25, 100/10 19p; 470/40, 1000 1000/25 36p; 1000/40, 2200/16 44p; 1000/63 76p; 2200/40, 78p.	20/25 10p
BOXES High quality Black ABS plastic or discast plain or stove	PLUGGABLE SHEMMENS single ended 1/63, 22/63, 47/63 109; 10/63, 22/63 129; 22/40, 47/16 109; 4 47/63 189; 100/16, 100/25 129; 100/40 189; 100/63 209; 220 220/16, 220/25 139; 470/63 189; 470/10 189; 470/16 189; 470 470/40 259; 1000/10 229; 1000/16 249.	47/40 12p; biscounts do not apply to 'Net' items (shown by N after the price, or to orders paid for by credit card) y/25 22p; Most items are available from stock and despatched promptly. Unfo- reseen delays are notified and customers instructions awaited
50 50 25 5001P 500 5011 123p 100 80 25 2002 80p 5002P 117p 5002 1184p 113 63 31 2003 180p 5002P 143p 5003 180p 121 66 50 2006 115p 5004P 143p 5004 214p 152 82 50 2006 130p 5005P 214p 5005 200p 182 113 81 2008 220p 5005P 314p 5005 400p	LARGE CANS - SIEMENS 2200/63 £1.77; 4700/40 £1.78; 4700/63 £2.98; 4700/100 10000/16 £1.93; 10000/25 £2.78; 22000/16 £3.20; 22000/25 £4 TANTALUM 0.1/35, 0.22/35, 0.47/35, 1/35, 2.2/16 13p; 2.2/35, 4.7/16 18p 18p; 4.7/35, 10/16, 22/6.3, 10/25 18p; 22/16, 22/25, 33/10, 47/ 30p.	73. ELECTROVALUE LTD 28 St. Jude's Road, Englefield Green, Egham, Surrey TW20 0HB Telephone Egham (STD 0784; London 87) 33603; Telex 254475
VEND RANGE plastic boxes B RANGE professional Instrument L W D Cases Cases 72 47 25 21024 Flue 134 90 44 21089 £7,2881 120 50 55 21390 Rap 224 140 64 21080 £11,8291 180 110 55 21391 151p 302 170 84 21091 £14,3691	JUDW LEAKAGE All single ended 0.1/50, 0.22/50, 0.47/50, 4.7/35 10p; 1/50, 2.2/50, 4.7/50 12p 22/6, 10p; 10/35, 22/10, 22/16, 22/35, 47/6, 47/10 12p; 47/16, 12p DELIVERY BY RETURN ALL ITEMS EX STOCK	Northern Branch (Personal shoppers only) 600 Burnage, Manchester M19 INA 100/6 129- 700 Burnage Lane, Manchester (061-431 4866)
11000		RADFORD
PRINTER	— Audi	io Measuring Instruments, io Amplifiers, Loudspeakers and
A 19" rack mounted printer for laboratory data recording.	industrial or LOUC	Ispeaker Components for the professional and enthusiast
		RADFORD AUDIO LTD.

7x5 impact dot matrix. 32 characters on 3" plain paper.
 Red – Black printing on one line.
 Internal 4 year calendar clock option.

Available with RS232, IEEE488 & parallel BCD input options. Standard 96 character, alphanumeric character set. Foreign languages, including Arabic, Cyrillic & Greek also available.

3 Reading rd.

Lower Basildon Berks RG8 9NL 049162 775

WW - 095 FOR FURTHER DETAILS

WW - 098 FOR FURTHER DETAILS WIRELESS WORLD OCTOBER 1982

33

TO BE CRYSTAL CLEAR

Tel. 029-34-5353 Telex 87116 Aero G

D

MOD approved

10 BEACH ROAD WESTON-S-MARE, AVON BS23 2AU TEL. 0934 416033 WW - 058 FOR FURTHER DETAILS

CAA approved

Electronic Engineers-What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around £4000 to £12000 p.a.

If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

1	***************************************
TJB ELECTROTECHNICAL PERSONNEL SERVICES,	Please send me a TJB Appointments Registration form:
12 Mount Ephraim, Tunbridge Wells,	Name
Kent. TN4 8AS.	Address
Tel: 0892 39388	(861)

WIRELESS WORLD OCTOBER 1982

ppointments

Test Engineers and Technicians -Wembley, Middlesex

Racal-BCC are members of the highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical radio communications equipment. We require a number of test technicians and test engineers to fill a variety of grades within the Test Department on both the day and night shift. The department is responsible for the manual and automatic testing and

fault finding of the Company's equipments at various stages of manufacture

Applicants should be qualified to HNC/HTC level and have experience of radio communications equipment.

We offer excellent conditions of service including good basic pay and a Group Productivity scheme

Please apply in writing to: The Personnel Officer Racal-BCC, South Way Wembley, Middlesex

(1773)

Racal-BCC

World leaders in electronics

CAREER OPPORTUNITY WITH TOP BRITISH MICRO MANUFACTURER

ECTRONICS TECHNICIAN TO SUPPORT OUR DEVELOPMENT ENGINEERING TEAM E5600 TO E8450, OXFORD-BASED

The Research Machines Basic Systems Group designs, develops and implements the hardware and systems software enhancements which have established the 380Z as one of the UK's top professional microcomputer systems.

We now have an opportunity for a qualified and enthusiastic electronics technician to join this important team and provide a comprehensive range of support services to it.

The job will include:

- assembly and test of prototypes
- installation and maintenance of equipment
- preparation of documentation
- control of stocks of components and consumables

□ liaison with contractors

We are looking for candidates with HNC gualifications and one or two years practical experience - particularly in prototype wiring for circuit boards and digital electronics. It is likely that you will also have experience in one or more of: technical drawing; analogue systems; microprocessors; and/or prototype testing.

We offer a particularly attractive range of benefits, including good salary; 25 days paid holiday; free BUPA, life and disability insurance; pension scheme and help with relocation expenses.

If you are interested in this vacancy, please contact Pat Kember by 'phone or letter for an application form WW8

RACAL

APPOINTMENTS

IN **ELECTRONICS** to £15,000

MICROPROCESSORS **COMPUTERS - MEDICAL** OATA COMMS - RADIO Design, test, field and support engineers -

for

immediate action on salary and career ad-vancement, please contact. Technomark 11, Westbourne Grove London W2.01-229 9239 (1296) VIDEO ENGINEER We are looking for an engi-

neer to service and maintain our specialist video products. Working on equipment up to broadcast level the applicant must be between 25 and 40, have a good understanding of electronics and possess a current driving licence. We offer enormous potential to the successful applicant. Salary Salary negotiable depending upon experience.

Contact Fred Smith or Peter Rowsell, Polar Video Limited, 17-18 Brook Mews North, Lon-don W2 3BW. Telephone: 01-724 3736/3779.

RESEARCH MACHINES LTD Mill Street, Oxford OX2 0BW, Tel: (0865) 726136

(1786)

ROYAL OBSERVATORY, EDINBURGH

PROFESSIONAL AND TECHNOLOGY OFFICERS (2 POSTS)

There are two vacancies for Professional and Technology Officers at the Royal Observatory, Edinburgh which is an establishment of the Science and Engineering Research Council. Both vacancies are in the Technology Unit which provides engineering support to the three national facilities for which the Royal Observatory is responsible – the UK Infrared Telescope Unit, the UK Schmidt Telescope Unit and the Image and Data Processing Unit – and also to in-house research programmes.

PROFESSIONAL AND TECHNOLOGY OFFICER GRADE II - £6868 to £9241 pa

This vacancy is in a small team of engineers and scientists currently working on infrared techniques in the 1-5 μ m and 7-13 μ m bands on applying these techniques to the design and development of astronomical instruments such as photometers and spectrometers for use on the 3.8m UK Infrared Telescope in Hawaii.

DUTIES

The successful applicant will be responsible to the team leader, a PTO I, and will work closely with a project astronomer, who is a physicist, and will be required to:

1. Assist in the evaluation of infrared detectors, both single elements and arrays to determine their performance and optimum operating conditions using the necessary electronic and cryogenic apparatus.

Develop low noise preamplifiers for use with the above detectors under low infrared radiation levels.
 Develop suitable thermal and mechanical mounting and packaging methods for detector preamplifier combinations for use in instruments.

4. Assist in the design, development, test and commissioning of such instruments both in respect of the above detector/preamplifier packages and also the associated optics, mechanics and cryostats.

The successful candidate may also be required to work abroad on short term detached duty or on postings of up to three years. It is a prerequisite of working in Hawaii that a special high altitude medical examination be taken and passed.

QUALIFICATION AND EXPERIENCE

Applicants are expected to have a degree or equivalent in an appropriate subject such as Electronic Engineering, Applied Physics or Physics leading to corporate membership of the appropriate professional body.

Recent experience of the theory and practice in any of the following would be an advantage: Low light level imaging systems, especially at infrared wavelengths, cryogenics, low noise, low-level analogue signal amplifiers, optics design.

Applicants are expected to be able to programme in a high level language such as FORTRAN, or be prepared to acquire such ability, as the instruments are controlled by means of minicomputers.

Applicants are expected to be skilled in the use of a wide variety of laboratory instruments and must possess manual skills appropriate to assembly and disassembly of small electromechanical devices and to the handling of cryofluids. Applicants must have good eyesight (with glasses if worn).

PROFESSIONAL AND TECHNOLOGY OFFICER GRADE III - £6868 to £7876 pa

This vacancy is in the Laboratory Workshop which is currently working on a variety of devices for the measuring of photographic plates and on instruments for use on telescopes at visual and infrared wavelengths.

DUTIES

1. Supervise the electronic and wiring activities of the Laboratory Workshop.

2. Organise and maintain the electronic instrument, tool, component and wire stores of the Technology Unit.

3. Be directly involved with Technology Unit Scientific and Technical staff in the instruction, development, testing and maintenance of instrumentation and equipment associated with the national facilities, in-house research and the work programmes of the Technology Unit. Preparation of drawings may form a part of these duties and training will be provided as required. 4. Deputise in the general Laboratory Workshop supervision as and when required.

QUALIFICATIONS AND EXPERIENCE

Applicants must have an ONC/SCOTEC or equivalent and should have served a recognised apprenticeship in electronic engineering. Experience in light electrical or electronic wiring and assembly is essential and knowledge of the mechanical assembly and test of complex instruments would be an advantage.

Application forms for both posts are available from the Personnel Officer, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, and should be returned by 1 October 1982.

Appointments

Telecommunications Officers Up to £9270

The posts available are varied, but broadly they fall into 2

groups at 5 different locations.

Hanslope Park (Milton Keynes), North Bucks and Central London

Work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.

Crowborough, Sussex and Orfordness, Suffolk

The maintenance and operation of high power, medium and short wave broadcasting transmitters and associated equipments.

Candidates must have had appropriate training. They should normally have 4 years' relevant experience, and hold either ONC in Engineering (with pass in Electrical Engineering 'A') or ONC in Applied Physics or TEC/SCOTEC certificate or City & Guilds Telecommunications Technicians Certificate Part II (Course No 271), or Part I plus 3 'B' subjects or a pass in the Council of Engineering Institutions Part I examination or an equivalent or higher relevant qualification. Ex-Service personnel who have had suitable training and at least 3 years' appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary: £5980-£8180; London £1087 more. Starting salary may be above minimum for those with additional relevant experience. Promotion prospects.

Relocation assistance may be available

For further information and an application form (to be returned by 7th October 1982) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). *Please quote ref: T/5782*.

Foreign and Commonwealth Office (1764)

ELECTRONICS ENGINEER

We have a world wide reputation in the design and manufacture of automatic handling equipment for the production of hybrid circuits.

We require a Technician/Electronics Engineer to join our design team. The applicant should have experience of simple Digital Control Circuits and some analogue circuitry work, and will be joining a team that is responsible for the design, development and testing of these automatic systems.

The applicant should have had several years experience in the above field and will be in possession of ONC or similar as an absolute minimum qualification.

Salary is negotiable but will reflect the seniority of the position. Applicants should write, enclosing full C.V. to: (1772)

> H. E. IRWIN PRODUCTION DIRECTOR **DEK Printing Machines Ltd.** 22 Albany Road Granby Industrial Estate WEYMOUTH Dorset DT4 9TH Please mark the envelope HEI. 100

Share in the Sony Broadcast Success Story

One of the world leaders in professional broadcast television equipment and systems, we are currently undergoing a significant planned expansion programme. A number of excellent career opportunities now exist and applications are invited for the following positions:

Systems Project Engineer

To join a young and enthusiastic team involved in the design, manufacture and commissioning of complex static and mobile television systems. Candidates for this challenging and responsible position should have direct experience of sound and television principles gained in operational television or its allied manufacturing industry.

Proposals Engineer

Ideal for engineers experienced in the Broadcast TV industry who now wish to utilize their knowledge in a dynamic commercial environment. Duties will include the preparation of detailed and concise customer proposals, complete with pricing information and extensive customer and inter Company liaison will be necessary

Field Service Engineer

To be engaged in the service and repair of a wide range of sophisticated equipment, including video cameras, VTR's and editing control systems. A high level of self motivation and initiative is required in order to successfully undertake customer visits throughout Europe, Africa and the Middle East.

Sales Engineer (UK)

An engineer with experience in operational television or its allied manufacturing industry is required to join our UK sales team. Applicants should be aged 25–35, highly motivated and able to work on their own initiative. Previous sales experience would be advantageous although this is not essential

Commissioning/QA Support Engineer

To join a small team responsible for the evaluation of product performance. Key activities will include commissioning, assistance in product customisation and the establishment and maintenance of ATE.

Lecturer

To conduct theoretical and practical training courses on our major products. Applicants should have experience of professional broadcast television equipment and possess the ability to present ideas clearly.

If you like the thought of enjoying the success of world leadership together with a highly attractive salary and benefits package, write with details of career to date, and present salary to: Mike Jones, Senior Personnel Officer, Sony Broadcast Ltd, City Wall House, Basing View, Basingstoke, Hants RG21 2LA. Telephone (0256) 55011

Sony Broadcast Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom Telephone (0256) 55 0 11 (1787)

Ask for a Free Jobs List

Telephone: 01-637 5551 (3 lines)

(291)

Appointments

Radio/RadioRelayTechs-2-year training assignments in Saudi

On balance, you'd be better off with Lockheed

When you compare an electronics technician's job in the UK with working for Lockheed in Saudi Arabia, there's no contest. Because with Lockheed, you win on just about every count. You won't pay any tax at all for the two years you're with us. And you'll earn over £20,000 during that time.

To help you turn earnings into savings, we give you for free all the things some of the others make you pay for - free bachelor accommodation, food and laundry, free return flights to the UK for your three leave periods a year; medical and life insurance.

But when you're tackling an important job like training Royal Saudi Air Force personnel to maintain the Kingdom's air defence system, we figure it's the least we can do. For a Radio Tech's job to be yours, you need a C&G or forces equivalent and at least seven years experience in HF (SSB), VHF/UHF and SHF equipment, and for Radio Relay you'll also need multiplex and tropo experience.

On balance it's not much to ask when we've so much to offer, and what's more we give you free equipment familiarisation courses before you go.

Contact The Senior Recruitment Executive (Lockheed), IAL, Personnel Consultancy, Aeradio House, Hayes Road, Southall, Middlesex UB2 SNJ. Tel: 01-574 5000. Please quote ref L130.

Television International

Television International has made some additions ... a new Super Tempo 5 computer-controlled editing suite; a Rank Cintel MK IIIC Telecine mastering suite, and a new lightweight Outside Broadcast vehicle to name but three! As a result, we require additional staff for the following areas:

TELECINE OPERATIONS

Two experienced engineers required—a knowledge of TOPSY and Digiscan would be an advantage.

VIDEO TAPE OPERATIONS

Engineers are required with experience of 1" C-format and 2" Quad machines, to work in Base and on Outside Broadcasts.

Staff in these areas will be required to liaise directly with clients.

MAINTENANCE

An experienced engineer is required who is capable of looking after all of this and carrying out standard Base maintenance.

Salaries and conditions will be in accordance with the ACTT grades plus local supplements but will reflect the responsibilities involved. The Company benefits from an attractive contributory Group Pension Scheme, which includes free Life Assurance. Training will be provided where necessary to keep staff abreast of current developments within the industry.

For an application form, please write to the address below quoting Ref. LIC/WW.

Lindy Campbell Television International Operations Limited, 9-11 Windmill Street, London W1P 1HF. Tel: 01-637 2477.

(1766)

HINCKLEY POWER CONSULTANTS LTD 149 Church Street, Burbage, Hinckley

Leicestershire, LE10 2DB

A firm of international consulting engineers engaged on various exciting broadcasting and communications projects in Nigeria require keen, competent engineers to fill the following overseas appointments.

Field Contract Controller

to oversee contract implementation from equipment delivery to customer acceptance, including provision of services and technical support to field engineers. Must have comms./broadcast experience, preferably in an overseas environment.

Installation and Commissioning Engineers

Qualified and experienced in one or more of the following fields:

- VHF, UHF Television transmitters and studio equipment
- Microwave and UHF radio links
- Diesel generators and associated electrical plant
- Erection of masts, towers, antennas and feeders

Good salaries paid commensurate with experience

Apply with c.v. to Martin Rhodes, Project Manager, or telephone for more information on Hinckley 611461.

(1784

Appointments

Engineers & Scientists £9,126

Communications R&D... ...the leading edge At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information.

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest: —

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.

MAGNETICS SIGNAL ANALYSIS SYSTEMS ENGINEERING

Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer (£6,840-£9,126) or Scientific Officer (£5,422-£7,399) according to qualifications and experience. Promotion prospects.

For an application form, please write to the Recruitment Officer, (Dept. W/W10), HM Government Communications Centre, Hanslope Park,

Milton Keynes, MK197BH.

Electronic Wireman/Woman

We have a vacancy at our Glasgow studios in our installation and maintenance section for a man or woman with extensive experience in electronic wiring.

Applicants must be familiar with all types of audio and video cables and connectors and be able to work from cable schedules with minimal supervision.

A high standard of practical ability and neatness is essential and candidates invited to interview will be expected to undertake a short practical test working from drawings supplied.

Interviews will be held in Glasgow and travelling expenses will be refunded.

The company offers excellent staff conditions of employment including a contributory pension scheme with free life assurance. The starting salary is at present £6,695 per annum rising by five annual increments to £9,478 per annum but this scale is currently under annual review.

Those with the necessary experience should write giving age and brief details of experience to the Recruitment and Training Officer. (1782)

GO WHERE SERVICE COUNTS ...

Cambs. based

To £7,400 + bonus + car

(1779)

High technology company manufacturing scientific instruments seeks ONC/HNC qualified electronics engineers. Min. 2 years' experience of servicing to component level and knowledge of computer systems. U.K. and some overseas assignments.

Phone Royston (0763) 60602 till 9 p.m.

Susan Hyde—Staff Consultant

HOLIDAY OVER? REFRESHED READY FOR A NEW JOB? TRY THESE

SERVICE & INSTALLATION ENGINEERS

London & Home Counties Area

British subsidiary of French X-Ray Company requires service and installation engineers to work on modern X-ray equipment in National Health Hospitals.

The work involves an unusual blend of high-voltage plus analogue and digital technologies. Successful candidates will be qualified to BSc or HND level, be practically minded and have the initiative to cope with problem solving in the field.

Company car provided, salary negotiable, expenses paid.

Please write, enclosing CV or telephone for interview to M W Ridgeon, Asst. Service Manager, 01-890 8166.

SITUATIONS VACANT

Classified

add-on

(910)

(1789

(1794)

RACAL COMMUNICATIONS RECEIVERS

500 Kc/s - 30Mc/s 1Mhz wide. RA17L - £175. RA117E - £225. A few sets available as new at £75 extra. All receivers are air tested and calibrated in our workshop, supplied with full manual, dust cover, in fair used condition. New black metal louvred cases for above sets £25 each. RA980 - 15B - SSB - £75, RA218 -SSB - 15B and fine tune for RA117 - £50. TRANSMITTER DRIVE UNIT RA79. 15mc/s -30mc/s - SSB - 15B - OSB - FSM - CW -£150. AERNAL TUNING UNIT and protection unit MA197B - £25 to £50. DECADE FREQUENCY GENERATOR MA350B Solid state synthesiser for MA79 or RA117 - RA217 - RA1217 - £150 to £200. MA259G - precision frequency standard - 5mc/s Imc/s 100khz - £100 to £250. RACAL MA152 - Standing wave ratio indicator. FX2mc/s - 25mc/s Power up to 1000watts - 50 ohms - Auto trip switch - Transistor mains 100 - 250AC, new and boxed - £40. RACAL COUNTER 836 (9036) 32mc/s TTL circuit design - tested with manual - £50 to £75. OSCILLOSCOPES COSSOR COU150 - 35mc/s -Twin Beam - Solid State - £175 with manual. TEXTRONIC OSCILLOSCOPE 647 and 647A Solid State - 50mc/s and 100mc/s bandwidth - £250 and £30. Tested, circuit and instructions. Racel counter 801 M-125 Mc-5 £50. IMAGE INTERNSIFIER ASSEMBLY - XX 1000 (Mullard). Vey high-gein setf-focusing image

Mullard). Very high-gain self-focusing image intensifier for night vision systems. Minimuth luminance gain 35,000.£12 (used). All items are bought direct from H.M. Govern-

All items are bought direct from H.M. Government, being surplus equipment. Price is exworks. SAE for all enquiries. Phone for appointment for demonstration of any item. John's Radio, Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BD11 ZER. Tel. (0274) 684007. V.A.T. and Carriage extre

BRIDGES, waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators – sweep, low disortion, true RMS, audio, FM, deviation. Tel. 040 376236. (1627

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoyr. Lost war casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallising. Research & Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (%78)

CAPACITY AVAILABLE

TW ELECTRONICS LTD. THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.

TW are able to satisfy all of them quality, competitive pricing, firm delivery, and close co-operation with the customer.

Assembled boards are 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of conformity and quality – our final assurance.

For further details, contact us at our new works:

Blenheim Industrial Park Bury St. Edmunds Suffolk IP33 3UT Tel: 0284 3931

(1466)

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome. – E.P.D,S. Ltd., 1A Eva Road. Gillingham, Kent. Tel: Medway (0634) 577854. (9667)

way (0634) 57/834. (9667) BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Ltd, 19b Station Parade, Ealing Common, London W5. Tel: 01-992 8976. (169

WIRELESS WORLD OCTOBER 1982

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION.

NUMBER OF INSERTIONS

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 843221

POP 11/10 COMPUTER SYSTEM comprising 28KW processor with switch console, 3 × RK05/J 2.5 megabyte removable disc drives with RK11-D, 2 × Model VT50 VDU Terminals (12 lines × 80), TALY Model 2000 200 Lp.m. line printer, bootstrep and console smulter card. The whole system is contained in two four-foot DEC cobinets and is in immaculate condition. Software includes RT11, BASIC, FORTRAN, etc. manufacture1 1977 c7376

Cabinets and is in immaculate condition. Software includes RT11, BASIC, FURI HAN, etc. manurectures. (2750) PDP 1103 MICROCOMPUTER SYSTEM comprising LSI 11 processor in BA11 MF box with 64KB memory. DU11J qued serial interface REVII bootstrap and diagnostic ROM card, RX01 dual floppy disc drive. SYSTIME VDU Terminal with 24 × 80 U/L case display and Model LA120 DECwriter (120 cp.s. bi-directional U/L case). The processor and disc drives are contained in a 24-inch high DEC cabinet. Software includes RT11 with BASIC, etc. (2500) DEC Model B130 MICROCOMPUTER SYSTEM. INTEL 8060 based machine with 64KB memory (and battery backup), twin dual-density floppy disc drives. VDU and keyboard, 180 cp.s. bi-directional univ perialists for reading bar coded ledger cards. The system is under 2 years old and full support is evailable from NCR. (2500)

printer and facilities for reading bar coded ledger cards. The system is under 2 years old and full support is explisible from NCR. ET250 RATTHEON Model PTS100 System. Comprising 16-bit processor with 64KB MOS memory, 3 VDU terminals, cassette drive and numerous option and interface cards. A test set is included. Contained in a six-foot rack. Menufactured 1978. Six-foot rack with the set is included. Contained in a six-foot rack. Menufactured 1978. Six-foot rack with the set is included. Contained in a six-foot rack. Menufactured 1978. Six-foot rack with the set is included. Contained in a six-foot rack. Menufactured 1978. Six-foot rack with the set is included by the set of the set o

£350 £350 £350 £450 £450 £450 £150

Please note:

★ V.A.T. and carriage extra all items ★ We are keen to bid competitively for all good used equipment

INDEX TO ADVERTISERS OCTOBER Appointments Vacant Advertisements appear on pages 119-127

Galatrek International......24

Hameg Ltd. 101

AH Supplies 109 Analogue Associates 8 Barrie Electronics Ltd. Broadfields & Mayco Disposals 6 Cambridge Kits16 Chiltmead Ltd......98 Danavox (Gt. Britain) Ltd. .23 Digitalis Ltd. 118 DSN Marketing Ltd. 101 Eddystone Radio Ltd. Electrovalue Ltd. 118 Faircrest Engineering Ltd......12 Farnell Instruments Ltd......28, Reader Card, 111

OVERSEAS ADVERTISEMENT

AGENTS: France & Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.

Hungery: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225 008 – Telex: Budapest 22-4525 INTFOIRE

<mark>Italy:</mark> Sig C. Epis, Etas-Kompass, S.p.a. – Servizio Estero, Via Mantegna 6, 20154 Milan. Telephone: 347051 – Telex: 37342 Kompass.

Japan: Mr. Inatsuki. Trade Media – IBPA (Japan), B.212. Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 585 0581.

United States of America: Ray Barnes, IPC Business Press, 205 East 42nd Street, New York, NY 10017 – Tele-phone: (212) 867-2080. Teles: 238327. Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, Illinois 60601 – Telephone: (312) 63074

63074 osor4. Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA – Telephone (213) 821-8581 – Telex: 18-1059.

PAGE Racal Recorders Ltd...... cover ii

Hameg Ltd 101	
Happy Memories	Sagin, M. R
Harris Electronics (London) 4	Samsons (Electronics) Ltd 112
Harrison Bros Electronic Distributors	Sche Tronics Ltd
HB Electronics	Sescom Inc
Hemmings Electronics and Microcomputers 116	Shure Electronics Ltd
Henry's Radio	Sinclair Research Ltd
Hilomast Ltd	South Midlands Communications Ltd
Horst F. G. Angermann, Hamburg	South Midiands Communications Ltd
House of Instruments Ltd	Sowter, E. A. Ltd
House of Instruments Ltd	Special Products (Distributors) Ltd93
	Strumech Engineering Ltd
ILP Electronics Ltd 89, 107, 117	Surrey Electronics Ltd12
Integrev I td	
Interface Quartz Devices Ltd15	
•	Technomatic Ltd
KEF Electronics Ltd93, 95	Teleradio Electronics Ltd 106
Keithley Instruments Ltd	Television Magazine
Kelsey Acoustics Ltd	Teloman Products Ltd16
Keisey Acoustics Liu	Thandar Electronics Ltd
	Thanet Electronics
Langrex Supplies Ltd 110	Time Electronics Ltd
Levell Electronics Ltd	The Electronics Etd.
LFH Associates Ltd18	
	Valradio Ltd
Marconi Communication Systems	Vairadio Ltd.
Melkuist	Veco Electroforming/Photo-Etching Ltd6
Midwich Computer Co. Ltd	
Modern Book Co., The92	
Monolith Electronics Co. Ltd	Watford Electronics10, 11
Mononin Electromes Co. Ela.	Which? Magazine Loose Insert
	White House Electronics
Olson Electronics Ltd4	Wilmslow Audio7, 15, 25
Opus Supplies	Wireless World Circards
Orion Scientific Products Ltd	WK Electronics Ltd
Pantechnic100	
PM Components 104, 105	Your Computer
Practical Computing	
Practical Wireless	
P&R Computer Shop	Zaerix Electronics

Mr Jack Mentel, The Farley Co., Suite <u>650</u>, <u>Ranna Build:</u> ing, *Cieverand*, Unio 4415 – Telephone: (216) 621 1919. Mr Ray Rickles, Ray Rickles & Co., P.O. Box 2028, *Miami Beach*, Florida 33140. – Telephone (305) 532 7301. Mr Tim Parks, Ray Rickles & Co., 3116 Maple Drive N.E., *Atlanta*, Georgia 30305. Telephone: (404) 237 7432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119, *Houston*, Texas 77079 – Telephone (713) 783 8673.

Canada: Mr Colin H. MacCulloch, International Advertis-ing Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 – Telephone (416) 364 2269. * Also subscription agents.

Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS, telephone 01-661 3500. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon & Gotch Ltd. INDIA: A. H. Wheeler & Co, CANADA: The Wm. Dawson Subscription Service Ltd, Gordon & Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd: William Dawson & Sons (S.A.) Ltd. UNITED STATES: Eastern News Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N.Y. 10011.

SK5-BP and SK6-BP Soldering Kits fitted with safety plugs. SK5-BP Kit R.R.P. £7.10 SK6-BP Kit R.R.P. £7.20

12345678910

ST4 Stand B.B.P. £1.60

TCSU1 Soldering Station for safe 24 volt temperature-controlled miniature soldering iron, variable tip temperature 65 - 430°C, antistatio earth connection, with XSTC or CSTC iron. R.R.P. £40.50

Icike

Dut

Model XS-BP 25 Watts fitted with safety plug 240 volts R.R.P. £5.55

Model XS - 25 Watts Available for 240 and 115 volts R.R.P. £4.70 50, 24 and 12 volts B.B.P. £4.80

Model CS Model CS-BP - 17 Watts Available for 240 17 Watts. Fitted with safety and 115 volts plug. 240 volts R.R.P. £5.45

R.R.P. £4.60 50, 24 and 12 volts R.R.P. £4.80

SK6 Seldering kit contains Model XS230 iron

and the ST4 stand R.R.P. £6.35

Model C - 15 Watts Stainless steel shaft only 240 and 115 volts R.R.P. £4.60 50 and 24 volts R.R.P. £4.80

Madentinand

Our poly troughout the internet

there and the station of the states

House Fundative and procents to

Address.

House

Name

Etclugh Orene 1000 Juin Postale Preving

Model CCN - 15 Watts Ceramic shaft only. 240 volts. R.R.P. £5.00

Plug in Everything you need in the NEW Antex all-in-one pack!

Iron, stand, lead, plug and solder — it's all ready to go.

The new stand is tough and compact, designed for greater efficiency in minimum bench space.

And each iron has all the Antex features — the big range of push-on bits, the low leakage factor, the superb insulation, and the strong lightweight case.

So when you need another soldering unit fast - here's a hot tip. The new Antex all-in-one pack.

Now there is another choice in high quality solder. The new Oryx resin cored solder. Try it and you will find it spreads easier than the solder you are using.

Specially formulated for fast precision solder work, it is 60% tin, 40% lead alloy with quality flux construction and metts at 183°C. Two gauges are available – 18 SWG (1.2mm) and 22 SWG (0.71mm) in 2.5 Kg, 500g, 250g and 100g reels. Pocket size dispenser with 10 feet of Oryx 1 mm solder is also available at only 68p (+VAT). Oryx is competitively priced – write now for details and technical information.

Greenwood Electronics

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844. Telex: 848659

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in 24 V, 50 V, 115 V and 210/240 V models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between 260°C and 420°C by setting a dial in the handle without changing tips.

This eliminates the need for temperature measuring equipment. You get faster and better soldering.

For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.

°C 420

The Oryx TC 82 is also **extra-safe**. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles. And more good news

The Oryx TC 82 iron costs only £13.00 (+VAT) and the power unit for 24 V operation £23.00 (+VAT). The TC82 240 volt is also available as a 30 watt general purpose iron at only £4.95 (+VAT).

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 1NE. Telephone: (0734) 595844. Telex: 848659

WW-003 FOR FURTHER DETAILS