wireless word:

Electronic compass

Satellite dish antennas

The protlem: logging telephone and radio messages without sfending a fortune on equipment or hiring an expensive technician to operate it.

The solution: the new Racal Recorders Autostore. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another, Autostore can-quite literally-be operated by whoever happens to be around.

And it provides over 24 hours of unattended continuous recording on eight channels.

VERSATILITY

Able to log radio and telephone messages simultaneously, Autostore can form part of a new system -or fit just as easily into an existing one.

And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences, oil instaliation communications and taxi services.

Racal Recorders

Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England. Tel: (0703) 843265 Telex: 47600
BACAL

RELIABILITY
Ava lable in 4 or 3 channel versions, and with integral micro-processor controlled automatic Timesearch capability to enable rapid message retrieval, Autostore is engineered to the very highest standards by the company wrich pioneered air traffic control recording techniques. FULL DETAILS
For full details of Autostore send off the coupon today.
\square arrange for ademonstration at my own premises

```
Nane
Position
```

Company
Address

Front cover is John Linsley Hood's new preamplifier, shown on the power amplifier featured in June, July and August: Photograph by Alan McFaden and Alan Kerr

IEXT MONTH

Twc-metre transceiver. Six-mode design with microprocessor control for mobile use. Nine frequency memories are committed by push buttons.
Robin Howes explores the theme that many thoughtful people in responsible positions are concerned about the way industrial societies are going in a two part article on engineers and social responsibility.
Instend of trying to ignore Planck's quantum hypothesis suppose we afford it more than lip service; what then? Dr Murray continues Heretics Guide to Physics by discussing the new situations that would arise.
J. H. Buijs analyses reproduction of binaural recordings via
loudspeakers and gives a circuit that also improves headphone reproduction of stereo programmes.

Current issue price 80p, back issues (if availatie) E 1 , at Retail and Trade Counter, Umits 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By pos:', current issue $£ 1.23$, back issues (if available) $£ 1.80$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey House, Th
Editorial \& Advertising offices: QuadEditorial \& Advertising offices: Quad-
rant House. The Quadrant, Sutton, rant House, Th
Surrey SM2 5AS.
Telephenes: Editorial 01-661 3500. Advertising 01-661 3130.
Telegrams/Telex: 892084 BISPRS G.
Subscription rates: 1 year £14 UK and E17 outside UK.
Student rates: 1 year £9.35 UK and E11.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500
Subsciptions: Oakfield House, PerrySubscip Road, Hawwards Heath, Sussex RH16 SDH. Telephone: 044459188. Please notify a change of address
Please notify a change of address. USA: $\$ 39$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P., Subscriptio
10017.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd class po:tage paid at New York.
(C) IPC Business Press Ltd. 1982 ISSN 00436062.
31 VISION OF THE FUTURE
32 MODULAR PREAMPLIFIER
THE ETHER - AN ASSESSMENTby H. Aspden
40 COMMUNICATIONS
42 circuit ideas
44
FAULT-FINDING IN MICRO-BASED SYSTEMS
by S . Day
49
ELECTRONIC COMPASS
by N. Pollack
55
INTRODUCTION TO V.D.Us
INTRODUCTION TO V.D.Us
by C. P. Altworth
59
AUDIO OSCILLATOR WITH TONE-BURST
by J. T. Tieman
63
LETTERS
67
PARABOLIC ANTENNA DESIGN
by M. L. Chvistieson
PROGRAMMABLE GPIB-TO-SERIAL INTERFACE in C. Jay
73
EPROM EMULATOR
by P. Nicholls
74 NEWS
77 IMPACT OF THE PHOTON
by W. A. Scoul Muriay
80
FLOPPY-DISC DRIVESby J. P. Watkinson
(0)
meteosat hich-resolution images
by M. L. Christieson

SIDEBANDS: PAST, PRESENT AND FUTURE
by D. A. Bell
87 NEW PRODUCTS

The Adcola 444 operates from 24 VAC. $50 \mathrm{VA} .50 / 60 \mathrm{~Hz}$. supply. Temperature range normally factory set at $360^{\circ} \mathrm{C}$ is fully variable between $220^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$. The control circuit is based on a specially designed integrated circuit and uses a thermocouple temperature sensor. Full specifications and prices from

DCOLA
 (Regd Trode Mark)

ADCOLA PRODUCTS LIMITED
ADCOLA HOUSE, GAUDEN ROAD, LONDON SW4 6LH Telephone: 01-622 0291/4 Telex 21851 ADCOLA G WW - 049 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Audio compressor/limiter-Dec. 1975-1 s.s. (stereo)
Cassette recorder-May 1976-1 s.s.
Audio compander-July 1976-1 s.s.
Audio preamplifier-November 1976-2 s.s
Additional circuits-October 1977-1 s.s.
Stereo coder-April 1977-1 d.s. 2 s.s.
Low distortion disc amplifier (stereo)-September T9フラ-
$\begin{array}{r}\text { E2.00 } \\ \hline\end{array}$
Synthesized f.m. transceiver-November 1977 - $\mathrm{s} . \mathrm{s}$
Morsemaker-June 1978-1 d.s
Metal detector-July 1978-1 d
Oscilloscope waveform store-October 1978-4 d.s
Regulator for car alternator-August 1978-1 s.s.
Wideband noise reducer-November 1978-1 d.s
Versatile noise generator-January 1979-1 s.s.
200 MHz frequency meter-January $1979-1 \mathrm{~d}$ s.
High performance preamplifier-February $1979-1 \mathrm{~s}$ s
Distortion meter and oscillator-July $1979-2 \mathrm{~s} . \mathrm{s}$.
Moving coil preamplifier-August 1979-1 s.s.
Multi-mode transceiver-October 1979-10 d.s
Amplification system-Oct. 1979-3 preamp 1 poweramp
Digital capacitance meter-April 1980-2 s.s.
Colour graphics system-April 1980-1 d.s
Audio spectrum analyser-May $1980-3 \mathrm{~s}$ s.
Multi-section equalizer-June $1980-2 \mathrm{~s} . \mathrm{s}$.
Floating-bridge power amp-Oct. 1980-1 s.s. (12 V or 40 V)
Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s. \qquad
Cassette interface - July, 1981 - $1 \mathrm{~s} . \mathrm{s}$.
Eprom programmer - Jan., 1982 -
Modular frequency counters - March, 1981-8s....................................

- \quad. 6.00 Opto electronic contact breaker (Deico) - April, 1981 - 2 s.s...00 CB synthesiser - Sept. - 1 d.s \qquad
Boards and glassfibre roller-tinned and drilled Prices includ VAT and UK postage. Airmail add 30%, Europe add 10%. Insurance 10%. Remittance with order to:

> M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

WW - 016 FOR FURTHER DETAILS

WW - 017 FOR FURTHER DETAILS

Electronic Brokers are Europe＇s leading Second User Equipment Company．We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer＇s sales specifications． When you buy used equipment from Electronic Brokers，it can be yours in just days．No waiting for manufacturers lengthy production schedules．All equipment is fully guaranteed．

ANALOGUE VOLTMETERS Bruel and Kjaer 2409 TRUE RMS．Average and Peak 2 Hz 200 KHz £250．00	OSCILLOSCOPES Marconi． TF2213／1＋TK2214X－Y Display and memory 6550.00
Fluke 845AB Nuil Detector £610．00 B83A AC／OC Differential Voltmeter £615．00	Philipa PM 3234 True Dual Beam Storage Oscilloscope 10 MHz New CRT ． 1750.00 PM 3244 50MHz 4 Chennel Deiay T＂Base
Hewlett Packard 3400A True RMS $1 \mathrm{mV}-300 \mathrm{~V} 10 \mathrm{~Hz}$－ 10 MHz 3406 1 $1 \mathrm{mV}-3 V \mathrm{FSO} 10 \mathrm{KHz}-1$ 2GHz	Taktronix． 475 Dual Trace 200 MHz Portable 82000.00 7313100 MHz Storage Mainframe 225.00
Marconi． TF2600A 1 mV －10C1V FSD $10 \mathrm{~Hz}-10 \mathrm{MHz}$ ع245．00	
Racal 9301A RF Milivoltmeter ．．．．．．．．．525．00	Ampifier，7426 Oual Channel． 7880 Timebase and 7885 Delaying Timebase
Pohde E Schwarz． URV RF－DC Millivoltmeter OC $50 \mu \mathrm{~V}$－1050V RF $10 \mathrm{KHz}-2 \mathrm{GHz}$ c950．00 ANALYSERS	
Howlett Packard 3580A Spectrum Analyser $5 \mathrm{~Hz}-50 \mathrm{KHz}$ £2950．00	434 Dption 01 Storage Dscilloscope
141T／8552B／8555A 10MHz－1 EGHz	Tolequipmont
3324 Distortion Meter 5Hz－600kHz	$2 \times \vee 4$ Prug－ins to give 4 Trace 15 MHz
84074／841 2 A Network Analyser	CT 71 Curve Tracer \ldots E．．．．．．E450．00
Marconi	Texscen． OU12012 Display E425．00
c47	RECORDERS
Solartron 1172 TFA．	Howlett Packard 7045 A X－Y Plotter T＇Base Matric
Takeronix 7001／F2 Logic Analyser in 7704A Mainframe £4050．00	Watenabe． MC641 6 Channel 250 mm Chert Recorder
	Yokagawa 3047 2 Channel $2 \mathrm{~cm} / \mathrm{HR}$－ $60 \mathrm{~cm} / \mathrm{MIN}$ £550．00
Rohdo E Schwarz． LRT（BNE 100 ）Inductance Meter． 1 pH ． 	SIGNAL SOURCES Hewlett Packard． 42044 Decade LF Oscillator． $10 \mathrm{~Hz}-1 \mathrm{MHz}$
Wayno Kar B642LCRO． SR26日 Source \＆Desector．．．．．E895．00	1 mV －10V into 600 s？ £685．00 606B AM Signei Generator． 50 KHz 65 MHz AM -95% £850．00
DVM＇s AND DMM ${ }^{\text {s }}$	$608 F 10-455 \mathrm{MHz}$ AM／PCM Modulation $0.1 \mu \mathrm{~V}-1 \mathrm{~V}$ output \quad E600．00
Fluke 日300A $5 \frac{1}{2}$ Digit DC ornly $1 \mu V$ sensitivity 5 ranges to 1100 V $£ 750.00$	616 B 1．8－4．2GHz int or ext PCM／FM $0.1 \mu \mathrm{~V}-0.224 \mathrm{~V} \quad . \quad 1000.00$ 651 B Test Oscilletor． $10 \mathrm{~Hz}-10 \mathrm{MHz}$
Philips PM 2523－01 LEO 3\％Digit DMM ．$£ 95.00$	$0.1 \mathrm{mv}-3.16 \mathrm{~V}$
Solartron． 7055 Microprocessar DMM．Scale Length 20，OOD．AC／OC volts，resistance． $1 \mu \mathrm{~V}$ ．	8616A Signal Generator $1.8-4.5 \mathrm{GHz}$ $8620 c+86250$ B Sweep Dscillator $8-12.4 \mathrm{GHz}$
FREQUENCY COUNTERS Fluke 1920A with Option 159 Digit 1 GHz $\Sigma 750.00$	Marconi． TF2OO2B AM／FM 1OK Hz－BBMHz \qquad
Howlett Packard 534048 Digit $10 \mathrm{~Hz}^{-4}$ 日GHz ．\quad E3750．00	TF2 170 Bynchronizer for TF20028

TF995B／2 AM／FM $200 \mathrm{KHz}-200 \mathrm{MHz}$ c695．00	
TF2005R 2 Tone Signal Source． $20 \mathrm{Hz-}$20 KHz －111dB in 101 dB steps E295．00	
2008 AM／FM $10 \mathrm{KHz}-510 \mathrm{MHz}$ built in	
per．Dutput $0.24 V-200 \mathrm{mV}$ E3500．00	
$10 \mathrm{KHz}-102 \mathrm{MHz}$	
TF2169 Pulse Modulator for use with 000.00	
TF $2015+$ TF 2171 Generator E	
Synchroniser ．．．．．．．．．．．．．．£1850．00	
Philips．	
Stereo G	
Rediometer	0
Telonic	
Sweep Uscillator 450	6750.00

TRANSMISSION

 MEASURING EQUIPMENT siamens．$\mathrm{D} 2072+\mathrm{W} 2072$ Level Meter and
Dscillator． $50 \mathrm{KHz}-100 \mathrm{MHz} \ldots \mathrm{Eg200.00}$ W2006 +02006 Carrier Level Test Set
$10 \mathrm{KHz}-17 \mathrm{MHz} .-100$ to +10 dB
10KHz－17MHz．－10 $£ 1650.00$ W2007＋D2007 Carrier Level Test Set
$6 \mathrm{KHz}-18.6 \mathrm{MHz} .-120$ to +20 dB

Wandel and Golterman．
PF－1 Digital Error Rate Measuring Set
Consisting of PFM－1 Digital Error Rate
Meter and PrG－1 Pettern Generator \quad £2480．00 SPM－6 and PS－6 Level Maasuring Set．
$6 \mathrm{KHz}-18 \mathrm{MHz}-110 \mathrm{~dB}$ to +20 dB ． Mains／battery operation E2150．00 MISCELLANEOUS
Brual © Kjasr
Brual © Kjasr
2209 Sound Level Meter ．．．．．．．£975．00
Dymar
2085 AF Power meter $20 \mathrm{~Hz}-30 \mathrm{KHz}$
Forragraph Fluke
£355．00
301 DA Logictester．Self Contaned．
Portable．Full Spec on Request E8500．00 Hewlett Peckard．
H403A Modulator Fitted With 8732 B PIN MDCULATOR $\mathbf{\$ 1 5 0 0 . 0 0}$日412A Phase Magnitude CRT display for
netwark analyser
$\mathbf{E 1 5 0 0 . 0 0}$ network analyser E1500．00 8482H Power Sensor 100K Hz－4．2GHz．AS B745 S Parameter Test Set．Fitted with 11 EO4A Universa：Arms 0．1－2GHz $59308 A$ HP－1B Timing Generator $£ 300.00$ Marconi．
TF2162 M．F．Attenuator D－111dB
TF TF 2502 RF Power Moter DC－1GHz 10W TF2331 AF Distortion Meter 50 O2500 AF Power Meter 7 ranges 100 watts to 25 watts Mer．．．．．．．275．00 TM8339 AC／OC mixer for use with TF2702
£250．00

Pohdy and Schwarz． Schalfner
NSG 509 Pulse Test Generator ．©785．00 Shacilman $\begin{aligned} & \text { Super } 7 \mathrm{MKll} \text { Camera ．．．．．．．．．．．．．275．00 }\end{aligned}$ Tektronix
141APAL Test Signal Generator
481CPALTV £ $£ 750.00$
191 Constant Ampli．．E2375．00 $100 \mathrm{NiHz} 5 \mathrm{mV}-5.5 \mathrm{~V} . . . \mathrm{ig}$ ． $\mathbf{6 5 0 . 0 0}$ 106 Square Wave Generator 1 nS risetime 294 Fulse Generator 70pS risetime $\mathbf{5 9 5 0}$ 1502 TOR ．．．．．．．．．．$£ 3500.00$ 2901 Time－Mark Generator \quad £185．00 $10 \mu \mathrm{~W}$－50W input imp 1．2－1000 2 E250．00
Please note：Prices shown do not include VAT or carriage．

Electronic Brokers Limited 61／65 Kings Cross Road LONDON WC1X 9LN Telephone：01－278 3461 Telex： 298694 Elebro G
Stand J7
Latest Second User Test Equipment Catalogue

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

FOR INSTANT MAINS DISTRIBUTION IN OFFICES, LABORATORIES, WORKSHOPS AND FOR MAXIMUM SAFETY
 £61, £2.25 P\&P + VAT

PEL 1 $£ 44.50, £ 1.50$ P\&P + VAT

13A/4SW
$£ 22.40, £ 1.50$ P\&P + VAT

WEL 2
T13A/5 £21.75 £1.50 P\&P + VAT

PEL 3
£65, £2.25 P\&P + VAT

TR9 $£ 38.75, £ 2.50 \mathrm{P} \& \mathrm{P}+\mathrm{VAT}$

N13A/3 £16.77, £1.50 P\&P + VAT
DELIVERY EX-STOCK OLSON Electronics Ltd. FACTORY NO. 8, 5-7 LONG STREET

WW - 029 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order

Full Information from:
HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. 1. Phone: 01/837/7937
Telex: 892301 HARTRO G.

WW - 046 FOR FURTHER DETAILS

C90 Carry case for hand held
801-600 Amp clamp
80J-10 Current shunt 10 A
$80 \mathrm{~K}-40 \mathrm{HV}$ probe 40 kV
$80 \mathrm{~K}-6 \mathrm{HV}$ probe 6 kV
$80 \mathrm{~K}-6 \mathrm{HV}$. probe 6 kV
$80 \mathrm{~T}-150$ Temperature probe
80T. H Touch hold probe
83RF R.F. probe 100 MHz
85RF R.F probe 500 MHz
Y8102 Thermocouple probe
 and $10 \mathrm{~m} \Omega$ sensitivity Display annunciators for low battery (BT) and special functions Hequency (kHz), dB , contınuty $(\rightarrow-$. $\|$ and relative reference (REL) Autoranging $M \Omega$ measurements from 2 $\mathrm{M} \Omega$ to $300 \mathrm{M} \Omega$.
Concuctance functions for resistance measurements to $10,000 \mathrm{M} \Omega$ measurements to Separate constant-current source diodeseparate constant-current
test function for checking semiconductor junctions Full range capability for voitage. current. resistance $200 \mathrm{\mu A} .200 \mathrm{mV}$ and 200Ω ranges).
Wideband True RMS AC measurements to 100 kHz .
Overload protection to 750 VAC or 1000 VDC on voltage inputs and 500 V on resistance Protection on current inputs provided by a 2A/250V fuse in line with a hear'y-duty $3 A / 600 \mathrm{~V}$ fuse. for all range and furiction selections plus LCD display. battery and CMOS circuitry
Fluke's 8062 A makes many of the same measurements as the 8060A at a lower price.
Continuity and relative reference
functions Identizal to 8060A.
True RMS measurements to 30 kHz . Basic dc accuracy $0.05 \% \quad 10 \mu \mathrm{~V}, 10 \mathrm{nA}$ and $10 \mathrm{~m} \Omega$ sensitivity
Fluke 8060.A E275.00
Fluke 8062.A

£210.00

$£ 95.00$

§ 105,00
\leqslant
135.00
$£ 135.00$
$\varepsilon 165.00$
Mains Model $£ 275.00$ Mains Bartery $£ 305.00$
MainsModel $£ 245.00$ Mains Battery $£ 270.00$ Mains Model $£ 245.00$ Mains Battery $£ 270.00$
Mains Model $£ 185.00$ Mains Battery $£ 215.00$

A81.230 Battery eliminator
C90 Carry case for hand held

CX80 oooun MATRIX PRINTER

New low price $\mathbf{£ 7 9 5}$ + V.A.T.
At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated,

 makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

IITECREK LIMITED

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner Telephone 445 2713/0749
(9461)

WW-071 FOR FURTHER DETAILS

The initial range is as follows. 1. Diameter $\mathbf{3 0 m m} 120$ slots - Price $1-5$ off $\mathbf{£ 5}$ each 2. Diameter 60 mm 120 slots - Price 1.5 off $£ 7$ each 3. Diameter 60 mm 240 slots - Price 1.5 off $£ 9$ each 4. Diameter 60 mm 360 slots - Price $1-5$ off $£ 12$ each Price reductions available according to quantity. Price recuction
Specification:
Material Hard Nickel 0.08 to 0.09 mm thick
Centre Hole $10 \mathrm{~mm} \pm 20$ microns.
Centre Hole $10 \mathrm{~mm} \pm 20$ microns.
Slot Width Tolerance ± 7 microns.
Slot Width Tolerance \pm
Mark Space ratio 1 to 1 .
Mark Space ratio 1 to 1.
Angular Tolerances ± 20 seconds
Angular Tolerances ± 20 seconds.
General Tolerances ± 20 microns.
Delivery is from stock.
Contact: VECO ELECTROFORMING/PHOTO-ETCHING LTD
36 Essendene Road
Caterham, Surrey CR3 5PA Tel: Caterham (0883) 46062
Please send further details without
obligation to

NEW OFF THE SHELF QUALITY ENCODER DISCS

Veco Electroforming Photo-etching Limited, one of the argest European suppliers of custom-designed electroformed and photo-etched components is now These will These will enable small users to purchase at highly develorive prices and larger users to carry out initial purchase of production quantities. In addition, these "off the shelf" designs can also be supplied in larger quantities for production with a relatively short delivery time.

Name.
Job Title
Company Name and Address
Tel. No.

Bigger and Better for 1982

the colourful Wilmslow Audio brochure - the definitive loudspeaker catalogue!

Everything for the speaker constructor - kits, drive units, components for HiFi and PA .
50 DIY HiFi speaker designs including the exciting new dB Total Concept speaker kits, the Kef Constructor range, Wharfedale Speakercraft, etc.
Flatpack cabinet kits for Kef, Wharfedale and many others.
\star Lowest prices - Largest stocks
\star Expert staff - Sound advice

* Choose your DiY HiFi Speakers in the comfort of our * two listening lounges
(Customer operated demonstration facilities) * Ample parking *

Send 11.50 for catalogue
(cheque, M.O. or stamps -or phone with your credit card number)

* Access - Visa - American Express accepted * also HiFi Markets Budget Card. 0625529599

35/39 Church Street, Wilmslow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders!

WW - 061 FOR FURTHER DETAILS

AUCTION
 Appointed by the plant management we are auctioning modern production equipment of the Color-TV-Tube Manufacturing Plant of Messrs
 VIDEOCOLOR GMBH
 0-7900 ULM-DONAUTAL, Graf Arco St. 3
 Tuesd. Sept. 28, '82 Wednesd. Sept. 29,'82
 starting from 9.30 A.M. each day

The following will be auctioned: approx. 700 measuring and testing units electrical and mechanical, laboratory agitators, measuring devises, degreasing plants, ultra-sonic washing plants, kiln systems, automatic welders, continuous reduction furnaces, AEG-make, planishers, UNGERER RM 900 1/23, hydraulic drawing presses, continuous annealing furnaces, automatic coating machines, automatic foil applicators, vacuum pump units, automatic color-TV picture tube testers, solder applicators, rotary conveyors, foil and acetone reclaiming machines, fully automatic media preparation and mixer systems, neutral ization plant, laboratory equipment, centrifuges, goods wagons, lifting platform, palletizing and racking systems, office furniture and office machines, automatic lathes, machine tools, EDV-system AEG 8020/4 type and many other items. Inspection: on Monday September 27, 1982 from 10 A.M. to 6 P.M. on auction days from 8 A.M. to 9.45 A.M.. Preliminary inspection of large plant and equipment can be arranged subject to prior agreement.
Please ask for our detailed catalogue.
HORST F.G. ANGERMANN HAMBURG VEREIDIGTER U. OFFENTLICH SCHATZER FUR SCHATZER FUR IMMOBILIEN, MASCHINEN UND INDUSTRIEANLAGEN IMMOBILIEN, MASCHINEN UND IND
D-2000 Hamburg 11. Mattentwiete 5
Telefon (040) 3676 91-93. Telex 02-13 303.02-15 272

We supply frivec Egimiustry $1 \frac{1}{\operatorname{sean}}$

HM 307
OSCILLOSCOPE
Single trace DC to 10 MHz Risetime $35 \mathrm{~ns} 5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ Timebase $0.5 \mu \mathrm{~s}-0.2 \mathrm{~S}$. Built in component tester LPS technique provides stable and rellable triggering up to 30 MHz \& $\mathbf{3 8 . 0 0}$

HM4 12-5
Dual Trace DC io $20 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display with internal graticule Rise time 175 ns Variable input $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ Add and invert modes Timebase $05 \mu 5-0.25$ with sweep delay 100 ns - is $\times 5$ expansion $X-Y$ operation Z modulation Trigger CH1.CH2. CH1/2. Line or EXT
§ 350.00

HM 203 PORTABLE OSCILLOSCOPE
 Dual trace DC to $20 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display Risetime 175 ns . Sensitivity $5 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$. Timebase $0.5 \mu \mathrm{~S}-02 \mathrm{~S}$ $\times 5$ magnifier X-Yoperation Auto or variable thigger Channel 1. Channel 2. line and external Couping $A C$ or $T V$ low pass filter Weighs only 6 Kg Size (m.m.) H 145 W 285. D $380 £ 220.00$

HM705

Dual Trace DC $70 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$ display with internal graticule Risetime 5 ns V arrable input 2 mV - 20 V Add and invert modes $95 n$ Signat Delay Line Timeoase $50 n 5-15 / \mathrm{cm}$ with Sweep delay $100 \mathrm{~ns}-15 \times 10$ expansion XY operation 2 modulation T nigger CHI . CH 2 CHI/2 line or EXT $\quad £ 580.00$

WW - 005 FOR FURTHER DETAILS
umbit ${ }^{\text {nemaname }}$
THE MLOST COMPREHENSIVE RANGE OF COMPONENTS，KITS AND MODDULES IN THE WORLD \＆THERE＇S ONLY ROOM FOR A FRAGTION HERE，GET THE GATALOGUE AND FIND THE REST．
BAND 2 TUNERHEADS（Varicap Tuning）
OSFET of stages MOSFET mixar，
JFET IF preamp，with internaily fiod PiN dioge AGC．Tuning ovitase
tor $88-108 \mathrm{MHz}$ is 2.8 BC Buffored LO

7255 The lazess complete FM
tunethead from RF InDut io stereo output．MOSFET AF
stages，MA11225 IF and E 30.00 plus VAT
91225A The 911225 A is the 7230
＇edited＇and shrunk into a sereoned unit is ideally suited to us $\begin{array}{lll}\text { Stock No } \\ 40.91225 & \text { Built } & { }^{1-24} \\ 20.82 & { }^{25 *} \\ \text { T6．25 }\end{array}$ 944378 ＇Hyperfit series decoder module
with the TOKO K $\mathrm{KA437}$ pilot cancel PLL I C birdy filter and the KB4438 muting stereo
gudlo praamp with $26 / 38 \mathrm{kHz}$ pilot tone filterimg． $\begin{array}{lllc}\text { Stock NO } & & 1.24 & 254+ \\ 40-04378 & \text { Built } & 19.95 & 1805\end{array}$ DFCM500 Wide renge digitsl frequency，
capacitance meter．Frequency range：；

 AUTOBRIDGE
An Automatic power tracking VSWR and self
ranging power merer．Complete Kit：All PEBs， board mounted components．meters，case FET DIP OSCILLATOR

 Stock No．Kit 17.90
MH2 SSB GENERATOR
Stock No
RREW PROJECT AND DAT ABRIEF PCBs

7 MHz Deviation Meter
PA105 Deviation Meto
TV Patern Gonarator

\qquad
SSBExCiter
HA12017
2m PRE－AMP
Very compact low noise MOSFET 2 mpre
amp．Gain 220 B ．Noise figure，less than 1.5 d
 Stack No
40.14400

Ocm PRE．AMP

stock No．
40.07000

2 m POWER AMP
 ain． 2 W input． 20 W output．Automatic switched relay．By－passes power amp In recerver mode．Qevaloped trom original class C version $\begin{array}{lll} & 28.50 & 25.65 \\ 40.14421 & \text { Leas Preamp } & 28.50 \\ 40.14422 \text { Wirh Prasmp } & 30.40 & 27.36\end{array}$

 AND TH巴Rङ＇S PLæNTY MOR円 IN TH円 CATALOGUङ 70pinc． RETAIL SHOP OPENING HOUR8Monday to Thursday 8．30－6．30 \qquad 30．Switched－Capacitor Filter－ （Access＋Barclaycard orders accepted） ALL PR\｜CES SHOWN EXCLUDE VAT．P\＆P 50p per order．

Seqtronio Brokers DECSALE －a selection fromourhuge stocks

NORD PROCESSORS

SPECIAL PURCHASE DF THE BEST
SELLING DEC WS78 WORD
＊VT7日 32KB Video Data Processor
＊AX01 Dual Foppy Disk Drive
＊Diablo Letter Quality Printer
＊Mounted in mobile unit with storage
＊Mounted in mobile unit with storag
＊Includes complete WP Software £2，850 GY8TEMS
PDP11V03 SYSTEM
$11 / 03$ 32KB Processor including
Console Interface Low Cabinet on Castors

PDP11／34A SYSTEM

RK611 14 MB Disk Drive and Contro
RKOG Add－on Disk Drive
LA36 Console
H967 Rack Cabin
£11，750
PDP11／70 SYGTEM（NEW）
$11 / 70$ CPU 512 KB MO
Dual Data System Cab．
RWM03 67 MB Disk Dr
RWh CtI
¢55，000
pROCESSORS
PDPBA－205 32KWMOS［NEW PDPGA－4008KWCore PDP11／34A 12BKBMOS PDP1 1／34A256KBMOS
PDP11／4096KWCore，KT11D PDP11／44256KBMOS PDP1 1×44－CB256KB．TU5B PDP11／70512KBMOS［NEW］ PRINTERS／TERMINALS
LA36 DECwriter 1120 mA
LA36 DECwriter IIRS232
LA34 DECwriter IV
LA180－PD Parallel
DECprinter［NEW］
LA180－ED AS232 DECprinter
VESODECscope 20ma VT50DECscope RS232
VT55 Graphics DECscope

DL11 WAsynchronousl／F
 DL11 WAsynchronousI／F

DUP11 DA Synchronousl／F KLBE Asynchronous［8E］ KLBJAASychronous［BE，BA］ KLBJABPrinterI／F［PDP11］ M8207 Printer $/ / F(L S T 11$ ）
M8342 Printer $/ / F[B E, ~ B A]$ PDPBA
PDPBA－205 Processor 10\％
32KWMOS［NEW］
32KWMOS［NEW］
PDPBA－4OO Processor，BKW KCBAA Programmers Console KMBAA Option Module
KMBAA Option Module
MMBAABK WCore Memory MMBAABK WCore Memory
MMBAB 16 KW Core Memory MSBCB32KWMOSMemory RX28 Dual Floppy and CuI［NFW DPTIONS
AR11 16 chánnelAD BA11FE expander box BA1 1 KF expanderbox
BA1 1 LF expanderbox． DH1 1 ACMultiplexor DH1 1 AOMultiplexor
D 11 AAMultiplexor E1 A［NEW］ DL 11 Serial interface DL1 1 W Asynchronous interface DM1 1DALine Adaptor
DR1 1 K Digitall／
DU1 1DASynchronousinterface
DUP110 Synchronousinterface
DZ11AMuluplexor
OZ11BMultiplexor
FP1 1E Floating Point（11／60）
H720Power Supply
H744 Power Supply
H754Power Supply
H7758BBBattery Back－up
H775CBBattery Back－up［11／34］．
£1500
$\$ 275$
$£ 275$
$£ 275$
$£ 275$
$£ 500$
£500
$£ 995$
$£ 750$
$£ 750$
$£ 995$
£995
e1，450
$\begin{array}{r}£ 750 \\ £ 995 \\ \hline 355\end{array}$
$\begin{array}{r}2985 \\ \text { ع } 1325 \\ \hline 825\end{array}$
23,250
84,000
24，000
21,250
1250
2250
£385
E425
£525
£750
$£ 750$
ع 1,395
1995
+1500
ع1，500
ع1，975
1975
$\mathbf{2} 175$

H775DBD Battery Back－up（11／44） E 695
KE11A Extended Arthemtic
KE11BExtendedArithmetic
KG11ACRCmodule
KK11A Cache Memory
KT11DMemory Management（NEW） $\mathbf{£ 1 , 5 0 0}$
KW11LReal TimeClock
KW1 1 PProgrammable Clock
LP1 Printer Contralmodule．

Scoop purchase of factory refurbished Anderson Jacobson AJ832 daisy wheel printers complete with full keyboard． integral stand，and RS232 interface．Utilising the famous QUME Printer Mechanism NOW ONLY £750

HAYZiling VoUs GAVEUPTO 51\％

Manufacturer＇s
surplus－ALL
BRAND NEW BOXED

HAZELTINE 1510
［MLP £880］．Only£550
hazeltine 1520
［MLP £1050］．Onlye625
hazeltine 1552
［MLP £800）．Only£395 hazeltine 1410 ［MLP £475］．Only £295 hazeltine 1420 ［MLP £515］．Only £350
New Autumn＇82 Catalogue now out． Send for your FREE copy now．

> Nomememe

Electronic Brokers Ltd．，61／65 Kings Cross Road， London WC1X 9LN．Tel：01－2783461．Telex 298694 $1=$

Electronic Brokers I

WATFOBD EEECTRONICS
33／34 CARDIFF ROAD，WATFORD，HERTS，ENGLAND MAIL ORDER，CALLERS WELCOME
Tel．Watford（0923）40588．Telex： 8956095
ALI DEVCES BRAND NEW，FUL SPEC．AND FULY GUARANTEED ORDERS DES
PATCHED BY RETURN OF POST．TERMS OF GUSINESS：CASHCHEQUE

 PAP ADO SOD TO ALL CASH ORDERS．OVER
AIRSURFACE．ACCESS ORDERS WELCOME．

VAT

Export ordera no VAT．Applicable to U．K．Cuetomers only．Unieas stated otherwise，

 470070

POLYESTER CAPACTTORS：Axled Leed Trpe

MYUAR FIM CAPACTTOAS

CERAMMC CapACTTORS SOV

POLYSTVRENE CAPACTIORS：
10pf to 1 nF Ep：$\quad 1.5 \mathrm{nF}$ to 12

 47，50， $56,68,7$ 180 pF 15 p eac

200，220，250，270，300，330， 360,390
$470,600,880,82021 \mathrm{p}$ ө8ch
$41000,1200,1800,2200$ each
10 p each
$3300,4700 \mathrm{pF}$ 800 each

RESISTORS

\qquad Hp，2u2 40．1000p／450V op

SIEMENS
Yyp：Miriature
pesyy Capacitors
250 l

家

PRESET POTENTIOMETERS 0．1W 50n－5Mn Miniature		
	ertical \＆Horizontal	
	－25W 100n－3－3Mn horiz．targer	
	－25W 200n－4．7Mn vert．	

7．RAM COMPUTER

ACCESS hrough，we do
$A C$
d
ACY2
ACY3
AD14
LD14
吅號品

		$\begin{array}{r} 0 \\ 0 \end{array}$				$\underset{\infty}{\infty}$		－		
								＜		\％N0
B	 							（ex	㓭萝	

 \qquad

> 岁すそう

\qquad

IEEE PROGRAMMABLES from TIME

9814 IEEE PROGRAMMABLE VOLTAGE STANDARD
A higher performance voltage standard with 4 ranges from 0.1 volt to 10 volt output. Accuracy is 0.01% and the resolution of setting is 1 in 200,000 . Output resistance is less than 0.01 ohms, and output current adjustable menual control is available via front penel controls. Availa long term stabitity better than 50 ppm per year. Full

9816 IEEE PROGRAMMABLE VOICE
A high quality speech synthesizer which has a 280 word vocabulary. By suitable programming via the IEEE bus it is possible to output single words, phrases and sentences. The vocabulary has been chosen to be applicable

- 9815 IEEE PROGRAMMMABLE SCREWORIVER

The unit has been designed to overcome the problems of adjusting large numbers of multi-turn trimmers in ATE systems. The screwdriver is fully programmable via the IEEE bus with 3 speeds of rotation and 2 selectable torque values available. The unit is supplied complete with a flexible drive shaft and drill chuck into which
various adjusting tools can be located.

9810 IEEE/PROGRAMMABLE POWER SUPPLY
$0-33 \mathrm{~V}$ in 0.1 V steps. Local or remote (IEEE) operation. Fully programmable on the IEEE bus with 3 settable current limits $1 \mathrm{~mA}, 10 \mathrm{~mA}$ and 1.1 A . A dual version of the 9810 is also available. The unit is 3 Euro units high and
standard $19^{\prime \prime}$ rack mounting width.

9812 IEEE PROGRAMMABLE SWITCH

24 double pole changeover switches are available with full IEEE control. Each switch is rated at $1 \mathrm{Amp}, 30 \mathrm{~V}$ dc or 100 V ac. Thermal emfs have been minimised to less than $1 \mu \mathrm{~V}$ per switch. All outputs are on the rear panel along set of front panel switches which also incorporate LED indicators.

9811 IEEE PROGRAMMABLE RESISTANCE

$0-1$ Megohm in 1 Ohm steps, fully programmable via the IEEE bus. Accuracy is 0.1% over most of the resistance range. Resistors are rated at 1 watt each. An attractive feature is the option to switch to local operation when the output resistance can be set up manually via front panel switches.

WW - 045 FOR FURTHER DETAILS

Faircrest Engineering Ltd manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers requirements

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CRO 2XX 01-684 1422/01-684 0246

HaNDSOM:

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match.
Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout.

The result is an unrivalled selection of handheld measuring devices. Each specification carefully matshed to a given need. With performance that looks pretty good on paper. And evenbetter in the field!

Double Top

This new addition to the Eddystone range of diecast boxes is supplied with interchangeable deep or shallow, close fitting flanged lids giving flexibility of application with minimum stocking.

Please write or telephone for details of the new, versatile 10758P box. And ask about the whole Eddystone range of strong, lightweight, corrosion-resistant, diecast aluminium boxes, water-resistant boxes and moulded ABS plastic boxes. in a range of sizes to meet a thousand applications.

STOP PRESS!

The flexibility of deep/shallow and base lids has now been extended to a number of standard sizes.

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

Alvechurch Road, Birmingham B31 3PP, England
Telephone 021-475 2231 Telex: 337081
A GEC Marconi Electronics Company

MIDWICH HAS MOVED! OUR PRICES HAVE TOO - DOWN!

In order to maintain our standard of service and house our ever growing range of stock, we've moved to larger premises. You can stili use our old telephone number for a limited period, but please make a note of our new one and our address.
To celebrate the move we have reduced our prices still further. We know thls will displease our competitors, but we'd rather please our customers.

NB NO SUPCHARGE ON CREDIT CARD OROERS
Be happy - move with Midwich. And remember, we always try to give you the best deal and the best service. If we fall just let us know - we will always try to make amends.

MEMORIES ** NEW LOWER PRICES **

"2114 Low Power 200ns	0.80	"2732 350ns	4.40	-4164 200
-2716 450ns (5V)	2.10	-2532 450ns	3.60	*4816/4516 100ns
*2716 350ns (5V)	3.59	*4116 200 ns	0.70	*5516 200ns
-2716 450ns (3 raif)	5.95	-4116 150 ns	1.10	-6116P3 150ns
-2732 450ns	3.90	-4118150ns	3.38	-6116LP3 150ns

BBC MICRO UPGRADE KITS ** NEW LOWER PRICES **

BUILD A PAIR OF MICRO MONITORS!

Just a few hours easy and
interesting work and you'll have
a superb pair of compact
louospeakers for about halt the
price of equivalent 'assembled' price of equivalent 'assembled
mociels.
The Wilmslow Audio Micro
Monitor will stand comparison

The Micro Monitor kit contains all the components needed - a pair of cabinets in flat-pack form - accurately machined for easy assembly, all drive units, crossover networks, acoustic wadding, grille foam, velcro, nuts and bolts, etc. No electronic or woodworking knowledge required simple, foolproof instructions supplied. The cabinets can be stained, painted or finished with iron-on veneer. Dimensions of assembled cabinet: $32 \times 24 \times 20 \mathrm{cms}$. Suitable for amplifiers of $20-50$ watts.

8
0625529599
35/39 Church Street, Wilmslow, Cheshire SK9 1AS 1982 Catalogue - £1.50 post free
Lightning service on telephoned credit card orders!

WW - 020 FOR FURTHER DETAILS

BBC1	$4516 / 4816 \times 8100 \mathrm{~ns}$	25.50
BBC2	Primter/User VO kit (IC69,70 + PL9.10)	8.00

BBCA Analogue input kit (IC73 $77+$ SK6) $\quad 8.70$
$\begin{array}{lll}\text { BBC5 } & \text { Seriat VO and RGB kit (} 1 C 74,75+S K 3,4) & 11.45 \\ \text { BBC6 } & 8.25\end{array}$
BBC6 Expansion bus and tube
kit (IC71, 72.76+ PL11,
MOST KITS ARE NOW EX-STOCK!

䗉刍 We've done it again! Massive price reductions on

Device	Price	Device Price	Device Price	Dentce	Price	Oevica	Prices	
*200 FAMILY		- WD1391 KIT 45.50	CEYSTALS	09	0.11	245	0.88	
- ZBOCPY	3.15	-W01393 KT 45.50	1 MHZ 290	10	0.11	251	0.28	
- ZBOACPJ	3.50	-W01395 KT 45.50	1.008 MHZ 22.50	12	0.11	257	0.34	
- 780CTC	2.75	- WD1397 KT 45.50	1.8432 MHZ 220	13 14	0.15	259	0.57 0.19	
- 780 ACTC	2.95	(KTS INCLUDE	3.6864MHZ 2.88	14	0.33	266		
- 780 ADART	5.70	FD179X + W02143	4 MHZ	15	0.12	273	0.50	
- Z80ADMA	11.95	+ W01691)	$6 \mathrm{MHZ} \quad 1.45$	20	0.12	279	0.59	
-280P10	275		$\begin{array}{ll}\text { 8MHZ } & 1.70\end{array}$	21	0.12	${ }_{3}^{283}$		
- 280 APIO	2.85	mISC SUPPORT		26	0.12	365	0.29	
- 780 ASIO-O	11.90	CHIPS	Cmos 4000'8'	27	0.12	${ }_{36} 36$	0.29 .	
* 780 ASIO-1	11.69	- AY3-1015 2.90	SERIES	28	0.12	367		
- 280 ASIO-2	11.99	- AY3 $1270 \quad 7.05$	40010.10	30	0.12	368 373	0.39 0.59	
- MK 3886	11.00	- AY3-8910 $\quad 5.89$	$4001 \quad 0.10$	32	0.12	${ }_{3} 374$	0.59	
-MK3886-4	14.47	- AY5-1013 2.90	40020.12	37	0.12	374	0.09	
		-AY5-3600 7.95	$4007{ }^{4} 0.15$	38		390	0.49	
$\begin{gathered} 6800 \text { FAN IIY } \\ -6800 \end{gathered}$	2.59	- AY5. 237655.99	$\begin{array}{ll}4011 & 0.11 \\ 4012 & 0.15\end{array}$	40 42	0.12	393	0.44	
-6802	3.49	- DP8304 MC1488 0.50	$\begin{array}{ll}4012 & 0.15 \\ 4013 & 0.24\end{array}$	47	0.34	DIL zockets lew		
-6803C	12.10	- MC1489 0.55	401500.48	51	0.14			
-6809	8.45	-MC3446 2.95	4016	54	0.14			
-6810	1.12	- MC3448A 4.25	4017	74	0.16	Pins Tin Godo	WW	
-6821	1.20	- MC3480 7.95	$4020 \quad 0.49$	75	0.19	$8 \quad 7 \quad 22$	25	
-6840	3.85	- MC3487 $\quad 2.95$	$4023 \quad 0.15$	76	0.17	$\begin{array}{llll}14 & 9 & 29\end{array}$	35	
-6845	8.75	- MC14411	$4024 \quad 0.31$	83	0.34	$\begin{array}{lrr}16 & 9 & 31 \\ 18 & 13\end{array}$	35	
-6850	1.40	-MC14412 7.99	4025	85	0.51	$\begin{array}{lll}18 & 13 & 33\end{array}$	52	
-68887		-R03-2513L 8.90	4027	86	0.15	$20 \quad 14 \quad 35$	60	
-68488	9.11	-R03-2513U 5.99	$\begin{array}{ll}4028 & 0.49 \\ 4040\end{array}$	92	0.31	$\begin{array}{llll}24 & 19 & 42\end{array}$	70	
-6875	5.62	OVM CHIPs	4042 0.44	93	0.25	$\begin{array}{llll}28 & 25 & 54\end{array}$	80	
-6843	13.89	- ZM450E 7.61	4046	109	0.27	$40 \quad 2981$	99	
-68800	6.30	- $2 \mathrm{~N} 550 \mathrm{KIT} \quad 17.35$	4047 (0.49	122	0.35	OIL JUMPERS Simile endad $24^{\prime \prime}$		
-68802	19.11	2N50 KT 7 . ${ }^{\text {a }}$	$4049 \quad 0.24$	123	0.35			
-68821	2.29		4050	125	0.24	14 Plin	1.40	
-68810	2.00	LM301AN 0.25	$4051 \quad 0.44$	126	0.25	16 PIN	1.60	
-68840	4.70 286	LM308N $\quad 0.80$	4052 0.58	132 +136	0.33	24 PIN	2.35	
-68850	2.86	LM311N 0.69	4060	138	0.31	40 PIN	3.25	
6500 family		$\begin{array}{ll}\text { LM319N } & 2.14\end{array}$	$\begin{array}{ll}4066 \\ 4069 & 0.15\end{array}$	139	0.31	Doubte Ended ${ }^{\text {an }}$		
-6502	3.45	LM324N $\quad 0.30$	4070	148	0.89			
-6520	2.89	LM5 LM	$4071 \quad 0.14$	151	0.39	16 PIN	2.05	
-6522	3.19	LM556CN 0.45	$4073 \quad 0.14$	153	0.28	24 PIN	3.10	
-6532	5.95	LM741 (8 PIN) 0.14	4075	155	0.34	40 PIN	4.85	
8080 FAMILY		LM747CN 0.64	$4081 \quad 0.15$	156				
-8085A	4.40	LM748(8 PIN) 0.34	$4093-0.25$		0.25	Doutio Ended 12"		
*8212	1.55	LM725CN $\quad 3.20$	$\begin{array}{ll}4508 & 129 \\ 4511 & 0.44\end{array}$	${ }_{161}$	0.35	14 PIN	200	
-8216	0.60	hegulators	4512	163	0.34	16 PIN	2.15	
+8251	3.19	780500.38	4518 0.39	164	0.38	24 PIN	3.25	
-8255	2.95	$7812 \quad 0.38$	$4520 \quad 0.49$	165	0.54	40 PIN	5.10	
		78150.38	$4526 \quad 0.89$	166	0.63	Double Ended 18"		
SUFFERS		78.050	4528 0.69	173	0.64			
81 LS95	0.90	781120	$4541 \quad 0.89$	174	0.40	16 PIN	2.25	
81 LS97	0.80	$78 L 150$	4543 (0.79	175	0.44	16 PIN	2.40 3.40	
81 LS97	0.00	790500.55		191	0.44	${ }^{24} \mathrm{PPN}$	5.25	
81 LS98	0.90	79120.55	NR. Other derices	192	0.44	$40 \mathrm{PNN} \quad 5.20$		
87264	1.20	791500.55		193	0.44	ZERD INS ETTIOM FOACE SOCMETS		
8128 A	1.20	LM309K 0.99	74LS Semies	194	0.34			
8795	1.35	LM317K $\quad 3.20$	$00 \quad 0.10$	195	0.34	FOACE SOCKETS		
8 897A	1.35	LM323K 4.05	010.11	221	0.54	$\begin{aligned} & 28 \mathrm{PIN} \\ & 40 \mathrm{PIN} \end{aligned}$	7.40	
8798	1.45	LM33BK POA	020.11	240	0.84			
			$03 \quad 0.11$	241	0.84			
OATA CONvER	TERS	UHF MODULATOAS	040.11	242	0.84	25 way ${ }^{0}$ COMNECTORS		
-2N425	3.45	6MHZUM1111) 3.70	050.11	243 244	0.84 0.59			
- Zn428	4.99	8MHZUM1233) 4.40	080.11	244	0.59	$\begin{aligned} & \text { MALE-MALE } 10.15 \\ & \left(36^{\circ}\right. \text { CABLE } \end{aligned}$		
- 2 N 432	13.00	(1) A^{\prime} BiBIB						
- ZN433	25.50							
- ZN447/8/9	P0A	Special prices available for bulk purchases.				MALE S ENDED 5.83 (18" CABLE)		
Floppy olsc						FEMALE S 0.25		
COMTHOLIER		Large slocks held on many items!				$\begin{aligned} & \text { ENDED }\left(18^{"}\right. \\ & \text { CABLE) } \end{aligned}$		
*FD1771	17.12							

Data sheets available on asterisked items. Please telephone for prices and detalls.

moulded nylonTRANSIPILLARS*

probably the most versatile and rugged insulating mounting system ever developed

Transipillar insulating mounts hold heavy sub-assemblies totally secure. Because they're precision moulded from very tough Nylon. Metric or Imperial versions are available, with insulator lengths from $1 / 2$ in to $23 / 4$ in, and a choice of metal screw or threaded insert end fittings from 0 to 6BA.
If one of the preferred sizes won't suit your application, the chances are we can make one that will.

Write today for samples, full technical details and prices of TRANSIPILLARS.

WW - O63 FOR FURTHER DETAILS

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST, leap year and parallel BCD (including WEEKDAY) output, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME, £69.60.
60KHZ RUGBY RECEIVER, as in MSF Clock, serial date output for computer, etc., decoding details and ZX81 listing for local, GMT and SIDEREAL time, $£ 22.20$
Tunable Audio Notch Filter £16.40, Speech Compressor $£ 15.30$, Antenna Noise Bridge $£ 18.60, \mathbf{1 0 - 1 5 0 K H z}$ Receiver $£ 19.40$. Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, postage, etc., instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS

45 (WK) Old School Lane, Milton, Cambridge. Tel: 860150
LASTCHANCE AT THIS PRICE. METALFILM RESISTORS 1% Tolerance, $1 / 4$ Watt

1008	/k	10k	100k
1108	1 k 1	1 lk	110 k
12098	1 $\times 2$	12k	120k
1308	1 k 3	13k	130\%
+1508	1k5	${ }^{156}$	150k
1608	${ }^{1 / 46}$	16k	160k
180R		${ }^{18 \mathrm{Bk}}$	180k
220 R	2 k 2	22k	220\%
${ }_{2700}^{2408}$	${ }_{2}^{2 \times 4}$	24k	${ }^{270 k}$
${ }^{2700}$	2k7	27k	270 k
330R	3 k 3	33k	$330{ }^{\text {a }}$
36008	346	36k	
3902	3k9	39k	
${ }_{4} 4008$	${ }_{4 \times 7}$	${ }_{4}^{43 \mathrm{k}} \mathrm{k}$	470*
5108	5ki	51k	
${ }_{5}^{560 \mathrm{R}}$	$5 \mathrm{5k}$	56k	560k
6208 6800	6k2	62 k	
${ }_{750 R}$	${ }_{7}^{6 \times 5}$	68k	680k
${ }_{8208}^{820}$	8k2	82k	820k
9108	9k1	91k	19

ONLY 3p EACH
High Quality High Stability. Huge Strength
Minimum 5 ocs per value 89 Values (E24)
VAT, p\&ip inctusive.
SPECIALOFFER £23.00 ORION SCIENTIFIC PRODUCTS LTD. $\begin{aligned} & 4 \text { GOLDEN SQ } \\ & \text { LONDONWI }\end{aligned}$ wW - 057 FOR FURTHER DETAILS

The
 Profesional Choice

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged ard reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor

G.A.S. ELECTRONICS
 16, ST. ALFEGE PASSAGE, LONDON SE10
 TELEPHONE: 01-853 5295
 TELEX: 923393 LASER G

The ligitweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the QTM mast can provide the ideal answer for:

- Mobile Radio Telephone
- Police Mobile HO (UHF)
- Field Telecommunications
- Environmental gas sampling collector
- High level photography
- Floodlighting
- Meteorology
- Anemometer and Wind - And a host of other uses Measurement

CLARK MASTS

Find out more about the QTM series by writing or phoning: u.k

CLARK MASTS LTD..(W.W.) Evergreen House Ringwood Road Binstead, Isle of Wight.
England PO33 3 PA
Tel' Isle of Wight (0983) 63691 EUROPE
GENK TECHNICAL PRODUCTS N VIW W Woudstraat 21. 3600 Genk Belgium.
Telefoon 011 1-380831
Telex 39354 Genant B

EV88 - A low-cost evaluation system for the 8088 microprocessor

EV88 is a single board microcomputer that is ideal for evaluating the 80888 -bit/16-bit microprocessor. EV88 can also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and an EPROM programmer, for low-cost development of 8088based systems.

EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5V 1A power supply and a terminal or a suitable microcomputer.

* 8088 microprocessor in minimum mode (software compatible with the 8086 16-bit microprocessor).
* Comprehensive monitor in 2 K EPROM
- 2K CMOS RAM
* Cassette interface.
* 24 lines of I/O.
\star Eight levels of interrupt
* RS-232 compatible serial interface (300 baud to 9600 baud).
\star Three-channel counter/timer.
\star Buffered data, address and control lines.
* Double Eurocard.
\star On-board expansion to 16 K EPROM/RAM (sockets provided).
\star Breadboarding area.
* All bus signals available on 64-way DIN 41612 connector. * Single 5V supply
* Price $£ 300$ plus VAT. Includes delivery.

8088/8086 design service available (software and hardware).
LFH Associates Ltd.
40A High Street
Stony Stratford
Milton Keynes
(0908) 564271

WW - 034 FOR FURTHER DETAILS

GREENWELD 443G Millbrook Road, Southampton, SO1 OHX

WW-022 FOR FURTHER DETAILS

TEST EQUIPMENT CENTRES

GALL IN AND SEF FOR YOURSELT

\section*{| BCC |
| :--- |
| GENERATORS |
| A-G P PUse: Rf funcion: wutio |
 $\frac{\text { GENERATORS }}{\text { A-C. Pulse RF function wutio }}$
 An models $220 / 240 \mathrm{~V}$ aC
 AUDIO 4 band Sine/Sploutput TE22D Max distortion $1^{1 / 2}$ $20 \mathrm{~Hz} / 200 \mathrm{KHz} \quad 369.95$ LaG27 Maxdlstortion 0.s. 1% (LEAOER) 10Hz-1MHz 886.25 A62022 Max distortion 0.5% LAG120A 5 band 10 HZ - IMHZ. Sine/SO $0.05-0.8 \%$ dist. \&il 46.00}

LAG125 As LAG120A but 0.02\% 5020 A 1 HZ -200 KHZ dist (LEADER) £273.00 [SABTRONICS)
 AF (All with Int/Ext mod. variable TG102 $0.2 \mathrm{HZ}-2 \mathrm{mHz}$ Output) TE20D 100 KHz . 100 MHZ 6 band (300 MHZ harm) $£ 59.95$ LSG17 $100 \mathrm{KHz}-150 \mathrm{MHz}$
1450MHz (450MHz harm) LEADER $£ 71.30$
SG402 100 KHZ . 30 MHZ 6 band (TR10)

Triangle/TTL etc. .
PULSE
TG105 5 HZ - 5 MHZ Various outputs (THANOARI £97.75 4001 Ulira-variable
0.5 Hz .5 MHz ICSC] 0.5 Hz .5 MHz [CSC] $£ 113.85$

Bench Models 3% digit LCO Bench £26.50 2010 A LED 31 range IOA AC/ DC basic 0.1% [Sabironics]
TM353 LCO 27 range 2A AC/OC basic 0.15% (Sinclair) 2015A LCO 31 range lda AC/OC basic 0.1\% (Sabtronics) $£ 81.50$ KD25C 13 range 0.2A DC KD30C $2 \overline{6}$ range $1 \mathrm{~A} A C / D C$ 200 Meg Ohm with carry cas version of a rove 2033 A 26 range push button 2 amp AC/DC $188 \mathrm{~m} / 6 \mathrm{~J} 11 \mathrm{~A} 15$ range + Hie tester pus bution 10A DC 189 m 3 E range plus Hfe tester. Rotary switch 10A AC/DC 2037A 28 range $0.1 \% 2 \mathrm{~A}$
AC/DC +2 temp ranges push buton
12925 range 0.8% basic 10A AC/OC rotary switches (Keithley) £79.35 130 As model 129 but 0.5% basic $£ 102.35$ accessories
AC Adaptors (2010A\&2015A only) £5.69 Cases TM351/353 £6.8 $2001 £ 7.50 \quad 1503 £ 20.45$ Touch and hold probe THP20 $£ 14.95$

OSCILLOSCOPES

Thio CS 1566 A $20 \cdot 20 \mathrm{MHZ}$

20.20 MHz
dual trace triggered
5
 us/CH2 InV/x 10 ma
19 sweep ranges.

Llimited offer WAS $£ 363.40$ NOW £.320.00 (UK C/P £4.00) HM307 Single irace 10 MHZ 5mV:0.5 microsec. Plus built in componenl lester | $\begin{array}{l}6 \times 7 \mathrm{~cm} \text { display } \text { IHAMEG } \\ \text { Optional case }\end{array} \begin{array}{r}£ 158.70 \\ \mathbf{£ 1 8 . 4 0}\end{array}$ |
| :--- | 3030 Single trace 15 MHZ .5 mV : 0.5 micro sec. Plus built in companent tester 95 mm

tube. Trig. to 20 MHZ |CAOTECHI $£ 172.5$ 3035 Single race 15 MHz .5 mV . Trig to 20 MHZ plus buill in component tester $0.2 \mu \mathrm{Sec}$. 130 mm TUbe [CAOTECH] E189.75 HM203 Oual 20 MHZ : Trig to 30 MHZ 5 mV : 0.5 micro secs. $8 \times 10 \mathrm{~cm}$ displa [HAMEG] £253.00
 3131 Dual Irace 15 MHZ trig. to 35 MHZ $5 \mathrm{mV}: 0.5$ micro sec. 130 mm lube. $£ 276.00$ plus component tester. $\mathbf{£ 2 7 6 . 0 0}$ CS 1575 Oual 5 MHZ 1 mV 0.5 MSec. Tamm lube. Phase display
autio arape. (TRIO) CS1560All Dual 15 MHZ IOmV 0.5 SSec. (ITAIOI

3034 Baltery-mains dual trace 15 MHZ
trig to 20 MHZ built in micads. 5 mV .05
irig tr 20 mHZ builr in
micro secs. [CROTECH]

INSULATION AND GLAMP METERS

mutivrange clamps an with resislan case and teads. Also diqita! and DC 8T300 300A. 6000V AC. 9 ranges. K2cos 300 lOplianal temp probe fi3 801 (2903 500. 750 V AC. 9 :ange
这景

ST303TR 21 range plus Hie test AT1020 18 range Deluxe 2KV \& e Teste lus cont buzter 30KNoll 09.50 168 m 36 range large scale 10A $\mathrm{AC/DC} 50 \mathrm{~K}$ Nolt $£ 28.50$ AT21D 21 range 12A AC/DC 100 KV Volt 360TR 23 range large scale 10A AC/DC Hfe test 50 meg ohm. IKV AC/DC 100KNoit $\quad \mathbf{£ 3 4 . 9 5}$
hoose from UK's largest range

UKK C/P Single trace $£ 3$ ea. Safgan $£ 3$
Oualtrac EA ea. SC110 £1.00) HM4412-5 Qual 20 MHZ del layed sweep:
Irig 1040 MHZ .5 mV 0.1 micra sec $\mathrm{a} \times 10 \mathrm{~cm}$
 [Oplional case £21.85] SC110A Mew Model io MH2 Datter
 $\begin{array}{ll}\text { IOptions: Carry case } & \text { E6.84, } \\ & \text { E. Acaptor } \\ & \text { E.69. }\end{array}$ Nicads cs 1820 Duat 20 MHz 2.5 mv 0.1 HSec . Delay zweep 140 mm tube (TA10) £483.00 CS 1577 AL Oual 35 MHZ 2 mV $0.1 \mu \mathrm{Sec}$. Singla a weep faclity.
40 mm lube. ITRIO| CS183011. Dual 30 mHz .2 mV 0.2μ Sec flited del ay inal Nelay
 HM705 Oual 70 MHZ delayod
sween: Single swe en: Detay line 8weep: SIngle sween: Oulay line

Sange ol low cost Oual Trace
copes mains operated Made in UK to

xacting slandards. Available as 10 MHZ
SnHZ, or 20 MHZ All festure 5 mV sensitivity.
[SAGGAN]
OPTIONS HM203/412/705
View Hoods
OT 410 Oual 10 MHZ
OT415 Ouai 15 MHZ

probes all madals - see below

(hal madels battery optratedl (UK C/P \&1)

 PFM200A Pocket 8 digille 200 MHZ 10 mV |THAMOARI £67.50 I 501020

 8610 A digitleo 3 range 600 [THAMOARI EA3 13 MHZ Benth (SABTRONICS) $£ 94.00$ TP1000 IGHz prescalar $£ 74.75$
 8610 B 9 Aloil L EO 3 ranal GOO AC adaptors

DIRECT READ HV PROBE
(UK C/P 65p)
$0 / 40 \mathrm{NY}: 20 \mathrm{~K}$

DIRECT READ TEMPERATURE

LOGIC PROBES/MONITOR

Sobironics LP10 10 MHz
probe
£28.50

 GSC LM1 montior 18 10 16 pinn G8C OPI Oigital pulaser. Singito/

TOP QUALITY
ANALOGUE MULTIMETERS (UK C/P E 1.20] All lealuring AC/OC Voltz/ Currenl and 0 hms Major zok 29 range $20 \mathrm{~K} / \mathrm{V}$
 [233.90 PAM3001 34 range
50 Meg. IPANTECI
Also 500 KHz - 500 MHZ slqnat inpector and $£ 59.80$
3 range cap. meler
Pan 3003 42 42
 (NOTE 3001 \& 3003 Electronic Protection Mirror Scales)
K 1400 26 range large scate $20 \mathrm{k} /$ AC/0C 20 Meg ohm. 5 KV AC/OC

VARIABLE POWER SUPPLIES

PP241 0/12.12/24 Valt PR24
/12. $12 / 24$ Volt $0 / 3$ amp

	$£ 59.95$

10 A
895.00

£ 105.00

1307 S twin meter 8.15V 2.7A $£ 35.95$

'SCOPE ADD ON UNITS

Sinclair ZX Spectı

16Kor 48K RAM... full-size movingkey keyboard... colour and sound.... high-resolution graphics... From only ± 125 !

First, there was the world-beating Sinclair ZX80. The first personal computer for under $£ 100$.

Then, the ZX81. With up to 16 K RAM available, and the ZX PrInter. Giving more power and more flexibility. Together, they've sold over 500,000 so far, to make Sinclair world leaders in personal computing. And the $\mathrm{ZX81}$ remains the ideal low-cost introduction to computing.

Now there's the ZX Spectrum! With up to 48 K of RAM. A full-size moving-key keyboard. Vivid colour and sound. Highresolution graphics. And a low price that's unrivalled.

Professional powerpersonal computer price!

The ZX Spectrum incorporates all the proven features of the ZX 81 . But its new 16K BASIC ROM drarnatically increases your computing power.

You have access to a range of 8 colours for foreground, background and border, together with a sound generator and high-resolution graphics.

You have the facility to support separate data files.

You have a choice of storage capacities (governed by the amount of RAM). 16K of RAM (which you can uprate later to 48 K of RAM) or a massive 48 K of RAM

Yet the price of the Spectrum 16 K is an amazing $£ 125$! Even the popular 48 K version costs only $£ 175$!

You may decide to begin with the 16 K version. If so, you can still return it later for an upgrade. The cost? Around $£ 60$.

Ready to use today, easy to expand tomorrow

Your ZX Spectrum comes with a mains adaptor and all the necessary leads to connect to most cassette recorders and TVs (colour or black and white).

Employing Sinclair BASIC (now used in over 500,000 computers worldwide) the ZX Spectrum comes complete with two manuals which together represent a detailed course in BASIC programming. Whether you're a beginner or a competent programmer, you'll find them both of immense help. Depending on your computer experience, you'll quickly be moving into the colourful world of ZX Spectrum professional-level computing.

There's no need to stop there. The ZX Printer-available now - is fully compatible with the $Z \times$ Spectrum. And later this year there will be Microdrives for massive amounts of extra on-line storage, plus an RS232 / network interface board.

Key features of the

 Sinclair ZX Spectrum- Full colour-8 colours each for foreground, background and border, plus flashing and brightness-intensity control.
* Sound-BEEP command with variable pitch and duration.
- Massive RAM-16K or 48K.
- Full-size moving-key keyboard-all keys at normal typewriter pitch, with repeat facility on each key.
- High-resolution-256 dots horizontally $\times 192$ vertically, each individually addressable for true highresolution graphics
- ASCll character set - with upper- and lower-case characters.
- Teletext-compatible-user software can generate 40 characters per line or other settings.
- High speed LOAD \& SAVE-16K in 100 seconds via cassette, with VERIFY \& MERGE for programs and separate data files.
- Sinclair 16K extended BASICincorporating unique 'one-touch' keyword entry, syntax check, and report codes.

um

The ZX Printeravailable now

Designed exclusively for use with the Sinclair ZX range of computers, the printer offers ZX Spectrum owners the full ASClI character set-including lower-case characters and high-resolution graphics.

A special feature is COPY which prints out exactly what is on the whole TV screen without the need for further instructions. Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your $Z X$ Spectrum. A roll of paper (65 ft long and 4 in wide) is supplied, along with full instructions. Further supplies of paper are available in packs of five rolls.

The ZX Microdrivecoming soon

The new Microdrives, designed especially for the ZX Spectrum, are set to change the face of personal computing.

Each Microdrive is capable of holding up to 100 K bytes using a single interchangeable microfloppy.

The transfer rate is 16 K bytes per second, with average access time of 3.5 seconds. And you'll be able to connect up to 8 ZX Microdrives to your ZX Spectrum.

All the BASIC commands required for the Microdrives are included on the Spectrum

A remarkable breakthrough at a remarkable price. The Microdrives are available later this year, for around $£ 50$.

How to order your ZX Spectrum

BY PHONE-Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST-use the no-stamp needed coupon below. You can pay by cheque, postal order, Access,

Barclaycard or Trustcard.
EITHER WAY-please allow up to 28 days for delivery. And there's a 14-day money-back option, of course. We want you to be satisfied beyond doubt - and we have no doubt that you will be.

RS232/network interface board

This interface, available later this year, will enable you to connect your ZX Spectrum to a whole host of printers, terminals and other computers.

The potential is enormous. And the astonishingly low price of only $£ 20$ is possible only because the operating systems are already designed into the ROM.

ZX Spectrum

Available only by mail order and only from

Sinclair Research Ltd,

Stanhope Road, Camberley, Surrey, GU15 3PS
Tel: Camberley (0276) 685311

To: Sinclair Research, FREEPOST, Camberley, Surrey, GUI5 3BR.				Order
Qty	Item	Code	ItemPrice	Total £
	Sinclair $Z \times$ Spectrum $-16 K$ RAM version	100	125.00	
	Sinclair ZX Spectrum-48K RAM version	101	175.00	
	Sinclair ZX Printer	27	59.95	
	Printer paper (pack of 5 rolls)	16	11.95	
	Postage and packing: orders under £100	28	2.95	
	orders over £100	29	4.95	
			Total £	
Please tick if you require a VAT receipt \square				
* enclose a cheque/postal order payable to Sinclair Research Ltd for $£$ *Please charge to my Access/Barclaycard/Trustcard account no.				
*Please delete/complete as applicable				
Signature				
PLEASEPRINT	Name: Mr/Mrs/Miss			
Address				
FREEPOST-no stamp needed. Prices apply to UK only. Export prices on application.				

For further information contact Mike Taylor

1
Henting
Fieldtech
Heathrow
IFR precision simulators

Fieldtech Heathrow Ltd Huntavia Hous 420 Bath Road Middlesex UB7 OLL Tel 01.8976446 Telex 23734 felex 2373

$\sqrt{7} A \sqrt{2}$			Minimum Order £1		VALVES VAT IS INCLUDED				
A106	1.40	EL821 8.20	SC1/600 4.50	GANBA	28	$12 \mathrm{~A} \mathrm{~L}^{1}$	0.60	3146	
A2293	8.00	EL822 9.95	SP61 1.80	GAO4	3.40	12AV6	0.s5	(146	
A2900	13.75	EM80 0.05	T21 23.00	6A05	1.00	12AX7			
AR8	0.75	EM87 1.30	172218.50	6a05w	1.00	12BA6	0.90	6550	
ARP3	0.70	EY51 0.56	$425 \quad 1.18$	6AS6	1.15	12BE6	1.28	6870	14.00
ATP4	0.60	EY91 0.65	U26 1.15	6at6	0.90	128H7	1.95	855	
${ }^{\text {B12H }}$	3.90	EY86/87 0.60	U27 $\quad 1.15$	6AU6	0.60	12BY7A	230	7199	2%
CY31	1.40	EY88 0.68	4191 0.86	gav6	0.5	12 cg	0.65	38P1	11.00
DAF96	0.70	EZ80 0.70	$4281 \quad 0.70$	6AX4GT	1.30	12 E 1	8.85	5FP7	
DE 722	28.85	EZ81 0.70	U 301 0.65	6AX5GT	1.30	12J5GT	0.55	${ }^{4 E P 1}$	22.00
DF96	0.70	GM4 $\quad 5.90$	$4600 \quad 11.50$	68A6	0.65	12K7GT	0.70	${ }^{88}$	14.00
DH76	0.76	GY501 1.30	4801 0.90	68E6	0.60	$12 \mathrm{K8GT}$	0.80		14.00
OL92	0.60	G232 1.08	UBCAI 1.20	68G6G	1.00	1207GT	0.80	CV1526	14.00
DY86/87	0.88	G233 4.20	UABC80 0.75	88. 6	1.30	$12 \mathrm{SC7}$	0.65	DG7. 32	
DY802	0.70	G234 2.78	UAFF22 1.20	68077	0.85	$12 \mathrm{SH7}$	0.65	DG7. 38	
E585CC	14.90	GZ37 3.96	UBF80 0.70	68月7	4.0	$12 \mathrm{SJ7}$	0.70	DPM9	
E888CC E88CC/01	1.60	KT66 $\quad 6.30$	U8F89 0.70	68W6	8.20	$12 \mathrm{SO7}$	1.46	D13-336	
E988CC/01	3.10 2.00	9.20	UBL21 1.\%	68W	0.90	12SQ7GT	T 0.85		41
	2.20	KT88 8,95	UCC84 0.85	${ }_{6}^{6 C 4}$	0.50	12 P 4	0.70	-	
E180F	7.70	MH4 2.50	UCC855 0.70	6 C	0.5	1303	0.70		
E182C	6.25	ML6 ${ }^{2.50}$	UCH42 1.06	${ }_{6 C L}^{6 C}$	2.78	1305	0.90		
EA76	225	M $\times 10 / 0121.50$	UCH81 0.7	$6{ }^{6} \times 8$	3.80	1457	1.15	PLUM	
EABC	0.80	N78 9.90	UCL82 0.85	${ }_{6} \mathrm{CY}^{5}$	1.15	19A05	0.85		
E891	0.00	OA2 0.70	UF41 $\quad 1.36$	806	0.70	19G3	1.50	800	
EAC33	1.15	OB2 0.00	UF80 0.35	6F6	1.60	$19 \mathrm{G6}$	6.50	- 01018	
E8Cs0	0.90	PABC80 0.00	UF85 0.95	6F6G	1.10	19 H 5	33.65	X01020n	
E8F80	0.80	PC85 0.75	UL84 0.96	$6 \mathrm{F7}$	2.00	20 D 1	0.00	$\times \mathrm{Xaro} \mathrm{\%}$	
E8F83	0.60	PC86 0.86	UM80 0.50	6FgG	0.55	20F2	0.5\%		
E日F69	0.80	РС88 0.90	UM84 0.70	$6 F 12$	1.50	20E1	1.30		
EC52	0.85	$\mathrm{PCO}^{\text {ca }} 1.25$	UY82 0.70	$6{ }^{6} 14$	1.15	20P1	0.65	SPE	
EC91	4.40	PC900 0.90	UY85 0.85	6F15	1.30	$20 \mathrm{P}_{3}$	0.75	CX 1000	
EC92	${ }_{0}^{0.85}$	PCCB4 0.50	VR105/30 1.25	$6 F 17$	3.20	$20{ }^{2} 4$	1.25	4 CX 5000 A	
ECC81	0.65	PCC89 0.86	VR 150/30 1.35	6F23	0.75	20 P 5	1.35		
ECC82	0.60	PCC189 0.85	${ }^{\times 66} 00.95$	6F24	1.75	25L6GT	0.56	8W 153	
ECC83	0.65	PCF80 0.80	$\times 61 \mathrm{M} \quad 1.70$	6F33	10.50	2524 G	0.76	DM. 2518	
ECC85	0.80	PCF68 0.70	XR1-6400A	6FH8	4.20	30 C 15	0.50	YL 1430	
ECCO8	1.70	PCF84 0.75	19.90	6GA	1.96	30 C 17	0.80	YL 1440	
ECC88	0.20	${ }^{\text {PCFF87 }} 0$	$2749 \quad 0.75$	${ }_{6}^{6 G 46}$	1.90	${ }^{30 \mathrm{~F} 5} 5$	${ }_{1.15}$	GXU6	
ECC189	0.96	PCF200 1.45	28000 3.45	6 J 4	1.25	30 FL 2	1.40	CV1697	
ECC804	0.90	PCF201 1.08	280143.75	6 JWW	2.00	30 FL 12	1.28	CV2118	
ECF80	0.85	PCFB00 0.50	2803 U 18.00	Q5	2.30	30FL14	215	9	
ECF82	0.68	PCF801 1.75	290012.45	615G	0.90	30.15	1.10	8R 179	
ECF801	1.05	PCF802 0.70	14300	8 86	0.85	30.17	1.10	c) 6131	
ECH34	2.28	PCF806 1.20	11.40	6J6W	0.90	30P12	1.18	GMU 2	
ECH35	1.70	PCF808 1.45	1 F 50.00	6JE6C	2.96	30PL. 13	1.25		
	$210{ }^{\circ}$	${ }^{\text {PCH200 }} 1.35$	154	6US6	2.85	30 PL 14	2.46	K485/55	
ECH42	1.20	PCL81 0.75	1 $\mathrm{T}^{1} 50.45$	6K7	0.0	35L6GT	1.40		
ECH89	0.70	PCLL82 0.95	174	6KD6	3.38	35W4	0.80		
ECH84	0.80	PCLEA 0.90	$1{ }^{1} 40.80$	6L6M	2.0	3524GT	0.00		
ECL80	0.70	$\begin{array}{ll}\text { PCL86 } & 0.75\end{array}$	1×28 $\quad 1.40$	6L6G	2.50	50 C 5	1.15	$1 \cdot$	
ECL82	0.76	PCL805/85 0.96	$2021 \quad 1.10$	6L6GC	210	50CD6G	1.35	SN5402N	
ECL83	1.40	PD500/5104.30	$1.85{ }^{\text {c }}$	6L6GT	1.28	7581	1.25	SN5410F	0.12
ECL85	0.80	PFL200 1.10	2K25 16.5	6L7G	0.6	75 Ci	1.70	SN5470F	0.0
ECL86	0.90	$2.80{ }^{\circ}$	$24.50{ }^{*}$	8L 18	0.70	76	0.95	SN54196U	120
EFF37A	2.15	PL36 $\quad 1.10$	2×2	6LO6	258	78	0.55	SN7407N	0.20
EF39	1.25	PL81 0.86	$3 \mathrm{A4}$ - 0.70	6LO20	0.70	80	1.70	SN7408N	0.11
EF80	0.65	PL82 0.70	$34 T 2 \quad 240$	6KG6A	270	85A2	1.40	SN7445P	
EF83	1.75	PL83 0.60	$306 \quad 0.50$	607G	1.30		2.	SN74453P	1.10
EF85	0.60	PL8s 0.95	$3 \mathrm{~L} 22 \quad 23.00$	6SA7	1.00	807	1.25	SN7453N	0.18
EF86	0.75	PL504 1.00	3E29 19.00	6SG7	1.15		$1.90{ }^{\circ}$	SN74473N	- 2
EF89	1.05	PL508 1.95	354	6S 7	1.05	813	19.32	SN7474N	0.30
EF91	1.50	PL509 3.20	4832 16.25	6SK7	0.95		8.80	SN7485N	6
EF92	2.90	5.05*	58/254M 16.90	BSL7GT	0.45	8298	14.00	SN74L85N	1.10
EF95	0.65	PL519 3.95	58/255M 14.50	ESN7G	0.80	${ }^{8324}$	8.90	SN7491AN	0.38
EF183	0.60	Pl802 $\begin{array}{r}\text { 8.10 } \\ 3.20\end{array}$	${ }_{5 C 22} 58 / 250 \mathrm{M}$ 1250	${ }_{6 S 07}$	1.10	886A	3.80	SN74123N	0.42
EF184	0.80	Pr33 0.70	5R4GY 1.00	8VE	1.50	${ }_{931}$	13.00	SN15838N	
EF812	0.75	PV80 0.70	$514 \mathrm{GG} \quad 0.75$	6V6GT	0.95	954	0.60	cx4	
EFL200	1.85	PY81/800 0.85	$5 \mathrm{~V} 4 \mathrm{G} \quad 0.76$	6X4	0.96	955	1.20	SN76013N	1.0
EH90	0.65	PY82 0.65	5Y3GT 0.95	6Xawa	2.10	956	0.60	SN76003N	1
EL32	1.10	PY83 0.80	523 1.50	6X5GT	2.	957	1.05	SN76033N	1
34	1.60	PY88 0.60	524 G 0.75	${ }^{\text {8Y6G }}$	0.50	1625	1.80	MC6800P	5.00
	$2.90{ }^{\circ}$	PY500A2.10	524 GT 1.06	824	0.70	1629	1.85	MC68800	
EL81	2.45	Pr809 6.45	6/3012 0.90	787	1.75	2051	2.90		
EL82	0.70	PY801 0.80	6 6AB7 0.70	8BNB	2.95	5763	4.20	MC145118	A
EL84	0.80	Qov03/10 7.50	6AC7 1.15	902	0.70	5842	7.50		
EL86	0.95	Qav03-20A	6AG5 0.60	$9 \mathrm{D6}$	2.90	5881	3.40	B1702AL	
EL90	1.00	21.50	6AH6 1.15			5933	6.90	MM6300	
EL99	4.20	Qov03-25A	6AK5	10 F 18	0.70	6057	2.20		
El504	1.70	Qav06/40A ${ }^{30.50}$	6AL5 0.00			${ }_{6064}^{6060}$	1.95 2.30	CM6810A	
EL803	5.90	16.10	6AL5W 0.85	1246	0.70	6065	3.20	6340.1 J	
E1509	3.95	Qvo3-12 4.20	6AM5 4.20	12AT6	0.70	6067	2.30	M1C945-50	
EL802	1.70	SC1/400 4.50	6AM6 $\quad 1.80$	12AT7	0.68	6080	5.30	MIC936-50	0.22
VALVES AND TRANSISTORS Telephone enquiries for valves, transigtors, etc: retail 7493934 , trade and export 7430899. "D10" CABLE FELD TELEPHONES Geiger Muller Tubes GM4, MX12/01 and others. TEST SET FT2 FOR TESTING Transceivers A40. A41, A42 and CPRC26. HARNESS "A" \mathbf{A}^{2} " \mathbf{B}^{\prime} CONTROL UNITS "A" "R". "J1" "J2." Microphones No 5. 6. 7 connectors. frames, carrier sers, etc DRUM CABLE continuous connection YC 00433. FIELD TELEPHONES TYPE "J". Tropical, in metal cases. 10-line MAGNETO SWITCH- BOARD. Can work with every type of magneto telephones. PRICES MAY VARY POSTAGE: $£ 1-£ 345 p$; $£ 3-£ 555 p$; £5-£10 60p; £10-£15 80p; £15£20 100p. Signal Generators MARCONI TF 144H/4S; TF144H/85 $10 \mathrm{ktz}-72 \mathrm{MHzz}$ Prices on application									
COLOMOR ELECTRONICS LTD.) oldhawk Rd., London W. 12				Tel. 01-743 0899 or 01-749 3934 Open Monday to Friday 9 a.m.-5.30 p.m.					

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS

FITTING A NEW TAPE HEAD CAN TRANSFORM THE PE RFORMANCE OF YOUR TAPE AECOROER OUR FULL CATALOGUE (PRICE 50p) ALSO INCLUDES TAPE TRANSPORTS. DISC DRIVES PRE-AMPLIFIERS ANO ACCESSORIES
POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS C21RPS18 MONO R/P.
\%le Centres 17 Tim $\begin{array}{ll}\text { B24.07 } & \text { STEREO R/P FOR DOLBY } \\ \text { STEREO R/P }\end{array}$

THE HEADSET THAT'S WAYAHEAD OF ITS TIME.

 THE DANAVOX HMT 808.

 THE DANAVOX HMT 808.}

The Danavox HMT 808 is the most advanced headset of its kind that you can buy today. Employing Danavox expertise and quality throughout, it offers many unique features at a remarkably low price

- Lightweight. Weighs only 35 grams - Comfortable and hygienic. Does not go in the ear so it can be comfortably positioned in seconds Versatile. Can be worn under the chin or over the head using single ear of binaurally Multiple version microphone. Available with either magnetic microphone or electret with noise cancelling feature and pre-amplifier for matching into telephone systems
- Technically advanced Pre-amp employs latest thick film technology © Easy servicing and repairs. Quick changing of earphones, cords, earpieces and switches - Realistically priced Danavox quality engineering and guarantee.

For full details contact John Carter at Danavox.

The simple answer to all your power supply problems．
 As supplied to

International Telecommunications Companies Uninterruptible Power Supplies－UPS CVT Reliability 125 va to $50 \mathrm{kva}, 50$ or 60 hz ．
STANDBY POWER．Invaluable for winding down a computer programme on mains failure and wherever continuous power is essential．
STABILISATION．土 5% Vital to combat mains voltage fluctuations and ensure the operation of equipment at peak efficiency．Frequency stabilised $\pm 0.1 \% 47$ to 65 Hz ．

TRANSIENT ATTENUATION．Provides suppression of mains born interference（spikes）
An unbeatable power package at a price to suit all budgets from Galatrek International，UPS are DOWN to unbeatable prices．
For more information，cut the coupon．
Galatrek International，FREEPOST，Scotland Street， Llanrwst，nr．Llandudno，Gwynedd LL26 OAL，BRITAIN Tel No：0492－640311／641298，Telex： 617114 A／B Galahu． Made and Designed in Britain by Galatrek． stabilisers，filters，cutouts，generatorsand CVT＇s Please send mefulldetails of UPS
Please send mea requirement check sheet Consultation with Galatrek Engineer
Name
Position \qquad
Company
Address
TelNo
Telex
Trade \square OEM \square（please tick where appropriate）

WW－ 010 FOR FURTHER DETAILS

D．IL．MINIATURE OH－OFF SWITCHES Gold－plated contacis Sealed base Ideat for pro－ gramming 6 －position at less than malf manufacturet 5 price ONLY $15 p$ Will fitt into 14 －pin dil socket Ten at 65p ea，；per 10055 pe e．	HONEWEEL PROXIMITY OETECTOR integral amplifier．BV D．C．E3．50 ea PHOTO CONDUCTIVE CELL $£ 125$ ．High－power Cds cell， 600 MW ． 10 r controt circuits He sistance 800 ohm to 4 K Max，volis 240 Size $\mathrm{I}^{1 / 2} \times$ $1 / 2 \mathrm{in}$ RIBBON MICROPHONE with pre－amp on chassis． £ 1.75 ．		ULTRA SONIC TRANSOUCERS 4OKC／S Complete on lion Screened cable，f1．75 each；pairs $\mathbf{E 2} 95$. ULTRA SONIC TAANSMITTER．Complete unit luncased requires 1．5VI．£3．25 FOSTEA OYNAMIC MICROPHONES． 200 ohm umpedance．Moving coil Complete on chassis．f1．75 pair．
U．H．F．MODULATORS Larest rype，adjustable， ideal for computers with data circuit Size $3 \times 21 / 2 \times 1$ inch Only ez .50 In scraened case	．85 p LM318N Hi－Siew Op Amp LM323K，5v．3－amp，reg． £1．50 LM310N volt．Follower	MINIATURE HIGH－ QUALITY FANS ＂Whisper Model＂by Ro ton．Low－power consump－ tion lless that 10 watts） Silent ruaning．115v．Itwo in series for 230v）	STERED CASSETHE Mechanisms 6 of 12 volt． Complete with Heads + Erase and Solenoid．Brand new f5 5
miniature ege INDICATOR METER W：th illuminated dial scale 0.10 F．SD 100 microamp． Size $1^{1 / 2} \times 1^{1 / 2} \times 1 / 2$ deep． Only E 1.65 ．	Amp LM311H High Perf Volt M384N，5－war Amp $£ 1.20$ 7905 年的，-5 v	$50 / 60 \mathrm{~Hz}$ ．Size $41 / 2 \times 41 / 2 \times$ 1／2in．Only f6．50 each inci VAT． brand new 50% less than manufactur－ er＇s price	TV CENOERGEMCE MOTS （LN）
MONSANTO Half－inch ＋ 1 Display High Intensity f1 each set of $4 £ 3.50$ Commonanorie 14 Pin Dil Package	heads． Quality repacement for most recorders with mounting plate Record／Replay $\mathbf{£ 2 . 8 0}$ manriott tape heads Quanter rack． Type XRPS 18 9ecord／Replay	HEWLETT－PACKARO OISPLAYS 5032－7650 HIGH EFFICIENCY AND VEAY BRIGHT Only £1．00 each	$\begin{aligned} & \text { EX-MOTOROLA } \\ & 5+5 \text {-WAT } \\ & \text { CAR } \\ & \text { STEREO } \\ & \text { AMPLIFIERS } \end{aligned}$ Complete and tested units．
BRIDGE RECTIFIER 800 PIV 35 amps $11 / 2 \times 1 / 2 \times 1 / 210.19 .50$	XRPS36 Record／Replay leach）．．．．．．E300	Set of 6 for E 5 Half－inch red common enode will raplace OL70／14－pin Dil．	Medium and Long Wave $15 \times 2 \times 2$ in 1 with circuit and data Daly 55 pair． includes pre－amp
mational P8080A Chips 8216 IMA148 DIOOES Ful spec．but no polarty band．Per 1.000 ．．．．．．．．．．．f70 miniature mp．c． POTENTIOMETERS．MOde｜ M2 High－quality，5\％ tolerance， 2 －watt，with lin． spindles．All values， 47 ohms－47k only 60 p each per $10 ; 50 \mathrm{p}$ each per t00： 40 p zach	RECHARGEABLE 8ATTERIES VARTA 3.6 volts DEAC M／AH 225 E1 50 DRYFIT 6 －volt． 4.5 amp． £7． 50 XTAL FILTEA $10.7 \mathrm{mc} / \mathrm{s}$ ． 12.50 B separation． $1 / 2 \times 11 / 4 \times 1$ inch $E 7.00$ $100 \mathrm{KC} / \mathrm{s}+1 \mathrm{meg} \begin{array}{r}3.0 \mathrm{pm} \\ \mathbf{5 2 0 0}\end{array}$		N MEYPAD A compact 12 －button keypad suitable for use with Keyboard extend its tunctions olus four extra keys Suppleed brand new A 3×4 non－encoded single mode keyboard

QUANTITY DISCOUNTS on ALL items（unless stated）． 15% per $10,20 \%$ per $50,25 \%$ per 100．All items BRAND NEW（unless otherwise stated）
DELIVERY from stock－Add post 35 p per order，

EXPORT enquiries
TELEX 262284 Transonics
Mono 1400

01－723 1008／9
Cafers to： 404 EDGWARE ROAD，LONDON W2 1ED

ALL MAIL ORDERSEXPORT EDGIAES $11 / 12$ PÁDDINGTON GREE

WW－ 037 FOR FURTHER DETAILS

INSTANT PRINTED CIRCUITS！！

Make your own－to professional standards－within minutes using either＂Fotolak＂Light－sensitive Aerosol Lacquer or Pre－coated board No Darkroom or Ultra－violet source needed！
Fotolak aerosol
£2．50（30p）Developer \qquad f0． $30(15 p)$
f0．15（15p） Ferric Chloride． £0．60（45p） Developer ．．．．．
Acetate Sheet \qquad
Copper－clad Fibre－glass Boards
Single－sided E2 ft．sq．（45p）

Pre－coated Fibre－glass Board：
$8^{\prime \prime} \times 41 / 2^{\prime \prime} \ldots £ 1.75(25 p) \quad 16^{\prime \prime} \times 9^{\prime \prime} \ldots £ 7(60 p) \quad 24^{\prime \prime} \times 18^{\prime \prime} \ldots £ 18(£ 1.70)$ $8^{\prime \prime} \times 9^{\prime \prime} \ldots . . . £ 3.50(45 \mathrm{p}) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots £ 13(£ 1.20)$ Eurocard $£ 1.25(25 \mathrm{p})$

Double－sided Board（all sizes）add 20\％
Postage individual items in brackets．Maximum charge $£ 2$ per order．

WHITE HOUSE ELECTRONICS

P．O．Box 19，Praa Sands，Penzance TR20 9TF
Telephone：Germoe（073－676） 2329

RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller.

Synchronisation of separate equipment and events.
Programmable energy management system
Computer clock/calendar with battery backup.
Data logging and time recording.
Process and equipment control.
Broadcasting, Astronomy, Navigation.
Satellite tracking
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive Ruislip, Middlesex. Ruislip 76962

With the new LM2A logic monitor from GSC, you can see just what's going on in an integrated circuit for only £75.*

The LM2A's sixteen LED indicators show the static and dynamic logic states of all the pins on 14 or 16 -pin IC packages, and GSC's unique Proto-Clip provides rapid, reliable contact with the circuit. You can use the LM2A with different logic families, too. A front-panel switch lets you select TTL or C-MOS, and a variable threshold control covers any voltage from +1 V to +9 V for other logic levels. It's small and light enough to hold in the hand, and operation is simplicity itself. Take the logical course of action - fill in the coupon now.

GLOBAL SPECIALTIES CORPORATION

G.S.C. (UK) Limited, Dept. 7L Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

EP4000
 EPROM EMULATOR PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), $2508,2758,2516,2716,2532$ and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - £39; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; - 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

Write or phone for more details

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Marconi Type R1020 Hinged Antenna Column. Easy to raise Easy to lower

OTHER MARCONI SUPPORT STRUCTURES
Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a pegistered trademark of the BP Group

Marconi

Communication Systems

[^0]
POPULAR FRONT IN POWER

Probably Europe's most popular bench power supply range. More than 50,000 in use. Nine models to choose from (most with NATO stock numbers).
The Farnell L series feature large recessed meters, constant voltage or constant current, overload and short circuit protection, coarse and fine conirols, a separate output switch and LED indicators for mains on and current limit.
THEY'RE EX-STOCK TOO!
Models available:
L50-05 0-50V, 0.5A

L30-1	0-30V.1A
L10-3C ${ }^{\text {- }}$	0.10V, 3 A
L30-2	0-30V, 2A
L30-5	0-30V, 5A
L12-10C*	0-12V, 10A
LT50-05 (twin)	$2 \times 0-50 \mathrm{~V}, 0.5 \mathrm{~A}$
LT30-1 (twin)	$2 \times 0-30 V .1 A$
LT30-2 (twin)	$2 \times 0-30 \mathrm{~V}, 2 \mathrm{~A}$
- with adjustable	

For quick delivery or specs. and prices contact

FARNELL INSTRUMENTS LIMITED
WETHERBY-WEST YORKSHIRE LS22 4OH-TELEPHONE 093761961 TELEX 557294 FARIST G
or Harpenden (05827) 69071

ONY HB ELEGROMNGS CFFER SUOHHCHCUA : PANEE AISUCHUN:AA/A:LEPNCES

Whatever your requirements in

 soldering and desoldering equipmentyou won't find better value at such competitive prices.

Just take a look
at these:

$\begin{gathered} 30103010 \\ \sec -30: 15 \end{gathered}$		
HANDLE (71)		
HEATER (76/77/78)		
-433(+£1.72VAT		
$77370^{\circ} \mathrm{C}\left(700^{\circ} \mathrm{F}\right)$ Temperature Ranges $76315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$ $78430^{\circ} \mathrm{C}\left(800^{\circ} \mathrm{F}\right)$		
TIPS Long Life interchangeable		
Iron-clad, chrome plated and pretinned.		
$\square \mathrm{CO}$ 8. Long Screwdriver 3.17 mm		
$\square \square$	81. Screwdriver	5.95 mm
-	82. Spade	. 79 mm
$\square 0$	83. Screwdriver	2.38 mm
\square	84. Long Screwdr	1.98 mm
- $=0$	85. Stepped Spad	1.19 mm
\square	86. Needle Tip	1.19 mm
\bigcirc	87. Screwdriver	1.59 mm
\square	88. Long Screwdr	1.19 mm
$\square-15$	92. Screwdriver	3.17 mm
$=1-\infty$	93. Screwdriver	. 79 mm
	94. Short Conical	. 79 mm
\square	95. Adaptor	

The over and outperformer

You simply can't make it any clearer.

wireless world

Editor:
PHILIP DARRINGTON

Deputy Editor:

GEOFF SHDRTER, B.Sc 01-661 8639

Technical Editor:
MARTIN ECCLES
01-661 8638

News Editor:
 DAVID SCOBIE
 01-661 8632

Drawing Office Manager: ROGER GOODMAN

Technical Illustrator: BETTY PALMER

Advertisement Manager:
BOB NIBBS. A.C.I.I.
01-661 3130
BARBARA MILLER
01-661 8640

Northern Sales:

HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Group Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-6618648

Vision of the future

Viewed dispassionately, broadcasting information between fixed points on the earth seems to be a nonsense - a little like throwing a bowlful of sugar in the air in the expectation that some of it will fall into one's cup of coffee.

The UK is about to take the step of laying broad-band cables (optical-fibre and copper coax.) to provide more television, radio and interactive information services in the home, at a cost of several thousand million pounds. This use of cable is greatly to be applauded - not necessarily because yet more television will be provided, but because it at least makes possible the eventual use of the radio spectrum at v.h.f. and u.h.f. up to 1 GHz for communication between mobile stations, which cannot use alternative means.

But there is some doubt, at least, that cable, used in the way recommended by the Information Technology Advisory Panel, is the best way of going about it. Thirty channels, twenty of them for entertainment, are proposed for the main network of optical fibre, but a reversion to copper in the form of coaxial cable for each group of users will reduce the bandwidth to around 35 MHz - say four tv channels and interactive information for banking, shopping, alarms, etc.
There seems little need to institute a new programme of cable laying to provide not much more in the way of facilities than already exists, particularly when the new Telecom digital telephone network will be able to handle the two-way information teletex, and the rest - quite adequately. If there is a real need for tens of channels of television - a need felt by viewers, not that experienced by those hoping to see the first Lord Thomson of Fleet's remarks about commercial television revived then a direct-broadcasting satellite is the answer.
Given a commercial incentive, it seems more than likely that small dish aerials and down-converters could be manufactured at a reasonable cost, and the compromise solution, microwave distribution of
satellite broadcasts, would possibly be somewhat cheaper.

British Telecom are, after all, in the business of cables, and have been since the telephone; they would therefore seem to be the best people to instal, and supervise any system of communications using cable as a medium. The BBC and IBA have unrivalled reputations in the production of programmes and in the technical business of broadcasting. Who better, then, to continue to do so?

The 'nonsense' of broadcasting may not, therefore, be quite as nonsensical as it seems, so long as it can be kept well away from those users who need radio communication for other than entertainment purposes - the real users of radio.
The rush of information technology to the head evidently being experienced by the government could, if not regulated by wise counsel, undo the years of effort by broadcasters to provide superbly wellengineered and programmed services. There is no need for national cable television: its popularity in the US is only in part due to the proliferation of channels it affords. US television suffers from two handicaps vis-à-vis its UK counterpart its use of the NTSC standard and its infestation with 'sponsorship'. NTSC does not take kindly to the kind of terrain US cities provide - phase errors more or less ignored by PAL create chaos in NTSC and the kind of programmes Americans receive from broadcast transmissions are not of the highest quality in the first place. And yet only about a third of US homes are connected to a cable. In the UK there would be even less point in taking cable signals, where almost everyone can receive good signals and reasonably good programmes.
Why the need for haste? It seems unlikely that the increased export market for programmes and services anticipated by Kenneth Baker at Communications ' 82 would materialize, and a sudden Cabinet fascination with IT is not a good reason for impetuous change in the name of progress.

MODULAR PREAMPLIFIER

A matching unit to the 80-100W power amplifier described in the June, July and August issues of Wireless World. Each circuit in the design is separate, and can be included or omitted, as desired, or switched in and out from the front panel. The design includes a noise blanker and image-width control

In the July 1969 issue of Wireless World, and in a subsequent postscript in December 1970, I described a 'Modular preamplifier' which I had built to drive a Williamson (valve-operated) audio power amplifier (subsequently replaced by a pair of 10 watt, class ' A ' transistor-operated power amps).

This preamplifier was of modular form almost by accident, in that it was intended to fit, with the minimum of inconvenience, into odd corners within the massive antique oak 'radiogram' cabinet which currently housed the Williamson power amplifer, the turntable, a home-made communications receiver, and the existing valve preamplifier - together with a short exponential-horn loudspeaker unit! To remove the valve preamplifier was too difficult a task, since it was integral with the demodulator and i.f. stages of the radio receiver, so its replacements would have to fit in where they could. This necessitated the assembly of the pre-amp. circuit from a series of modules having a low output impedance and a high input impedance, so that they could be interconnected as re-

by J. L. Linsley Hood

quired by lengths of screened cable without the need to worry about any audible degradation of frequency response.

In the event, it became clear that a modular design of this type had many attractions for potential constructors, in that they could use those bits which fitted their needs, and ignore those for which they had no requirement. The attractiveness of this approach has remained with me, and was very much in my mind when I considered what type of signal conditioning stages I should use to precede the $80-100$ watt power amplifier, if these were to be of interest to anyone other than myself.

However, much has changed since 1969, and it was apparent that in the fiercely competitive and highly demanding world of 'Hi-fi' of the 1980s, much more was

Fig. 1. Layout of modules in preamplifier assembly, shown in the mode adopted for normal input from a good quality record.
necessary than the types of circuit block which were merely a large improvement on a rather off-colour 1950 d.i.y. hotchpotch. I have, therefore, tried to take a new look at what could or should be provided in the way of signal amplification and conditioning prior to the main power amplifier stage, and to put together circuits which would meet these requirements with the greatest economy in circuit design consistent with the type of performance now expected from such equipment.

The task of the circuit designer in this field has been enormously assisted by the availability of low-noise, low-distortion integrated circuit operational amplifiers of the Texas Instruments 'TL071-TL072' series, and its equivalents such as the NS 'LF351-LF353'.* Under proper conditions of use, these can give a total harmonic distortion, over the whole effective audio bandwidth, of the order of 0.01% at 10 volts r.m.s. output, and with an effective input noise resistance of the order of 2000 ohms or less. This makes it a

* An article by J.L.L.H. on these integrated circuits appeared in WW, September, 1982.

sensible proposition to envisage the preamplifier modules operating at the 0 dB level (referred to 0.774 V r.m.s. in 600Ω), employing this type of op. amp. gain block, to give both an adequate overload margin and a negligible contribution to total circuit noise and distortion. (The gain characteristics of the power amplifier unit were chosen to give maximum output at 0.774 V r.m.s. input).

I should, perhaps, explain at this point that my decision to use conventional 'au-dio-oriented' operational amplifiers, rather than the many, often equally good, specialpurpose 'consumer' circuit blocks which are readily available, is due mainly to inward doubts on my part as to whether such consumer ics, with their special circuit applications and their unique package and pin configurations, have an adequate guarantee of availability. Certainly some of these introduced during the 1970s have long since vanished, while the 8 -pin dil or T099-based 741 and its successors have gone from strength to strength, as process or technology improvements have been incorporated into 741 pin-compatible designs - such as the TL071!

Basic design philosophy

The intention of tre design is to handle the signal, at all stages after the input-signal amplification, at a low impedance - say 600 ohms - and a peak signal level not greatly in excess of 0.774 V r.m.s. through a series of optional, unity-gain, non-inverting conditioning modules (there is one exception to this, to which I shall refer later). They can be included or omitted as required without design problems, or indeed - as in the case of the prototype - included physically but omitted or selected by means of a switch. This allows the signal handling chain to have as few elements in its sequence as is necessary, while allowing the inclusion of other stages as and when these are thought to be useful. The modules I have included in this design are: a microphone amplifier; a low-noise, lowimpedance head-amplifier intended specifically for use with moving-coil pickups; a two-stage 'series-shunt' RIAA-characteristic pick-up input amplifier; and a four-input, virtual-earth mixer stage. The output signal level from this stage is at a nominal 0.774 V , 6.00 ohms impedance, and the subsequent stages operate at this level. These are: a noise-blanker stage to minimize the annoying intrusion of 'clicks' due to scratches on records; a stereo 'image-width' control stage; a two-frequency, variable-slope treble filter; an eight-octave $\pm 3 \mathrm{~dB}$ additive lift or cut tonecontrol stage; a rumble filter having a steep cut (approximately $-22 \mathrm{~dB} /$ octave) below 30 Hz ; and a signal strength display meter.

For convenience in the use of the preamplifier when recording on to tape from the microphone inputs, I have also included a separate, twin-output headphone amplifier, in parallel with the switchable output to the main amplifier. This allows the preamplifier to be used on its own as a very high quality system for private headphone listening.

Fig. 2. Circuit diagram of power supply. Toroidal transformer from RS Components.

These stages are all based, where practicable, on the use of dual fet-input, lownoise operational amplifiers (TL072 or equivalent) operated from $\pm 15 \mathrm{~V}$ d.c. supply lines, which are derived from a conventional bridge-rectifier power supply via a pair of positive and negative output integrated-circuit voltage stabilizers ($7815 / 7915$ series). This gives a signal line which normally resides within 15 mV of the 0 V centre-line potential, and eliminates clicks when stages are switched in or out of circuit.
I have shown the layout of the prototype preamplifier, in block diagram form, in Fig. 1, though I expect that most potential users would wish to employ a simpler combination of these component modules.

With this last thought in mind, I have described the modules, not in the sequence in which they have been listed above, but in their order of practical importance from the point of view of the user wishing to build the simplest of the possible useful combinations.

Power supply unit (Fig. 2)

This is of simple and conventional form, using a small, 10VA $20-0-20$ volt p.c.b.mounted toroidal transformer, a bridge connected rectifier, and a pair of inte-grated-circuit voltage regulators giving a smooth, reasonably ripple-free pair of 15 V
supply lines. In addition, a pair of less well smoothed 25 V lines are provided for the headphone amplifier circuit, to avoid the possible intrusion of undesirable high-current signal components into the voltage supply lines used to power the early, small signal, stages.

Although small toroidal transformers are substantially more expensive than their ' E ' and ' I ' cored counterparts, the very low external magnetic field associated with these toroids make it very much easier to incorporate a power supply on to the preamp. chassis, without hum problems. Even so, care should be exercised in the disposition of the wiring associated with the inputs to the microphone amp., the RIAA stage, and, particularly, with regard to the moving-coil head amplifier. All in all, I think the extra cost of the toroidal transformer is amply justified.

Mixer stage (Fig. 3)

Although most normal usage of any preamplifier will not require any form of signal mixing, nevertheless some form of input amplification and impedance transformation will be needed for most likely external input sources if it is intended to handle the signal through the remaining stages of the preamp. at 0.77 V r.m.s. and a nominal 600 ohms tine impedance. Nothing will be lost, therefore,

Fig. 3. Input mixer and buffer stage is at (a) Careless wiring of balance control could introduce stray capacitance, resulting h.f. lift configuration at (b).
in economy or simplicity, if the input buffer amplifier is arranged as a 'virtual-earth' mixer stage, which can operate equally well with a single or with multiple inputs.

A minor inconvenience does arise, however, in this context, due to what I think of as the absurd DIN convention for signal outputs from such things as radio receivers and tape recorders. This stipulates an output operating effectively as a constant-current source, giving an output voltage of 1 mV for each $1 \mathrm{k} \Omega$ of load resistance. This cannot give a decent signal to noise ratio at load impedances much less than some $100 \mathrm{k} \Omega$, and at this value or above, care must be taken to avoid electrostatically induced 50 Hz ripple. The need to cater for inputs of this type has forced the adoption in this circuit of component resistor values which are much higher than I would otherwise have preferred. If the user intends only to use the circuit with signal sources having output impedances of $10 \mathrm{k} \Omega$ or lower, all of the resistor values in the circuit can be reduced, with advantage, by a factor of 10 , which will much reduce 'hum' pick-up and similar problems. If this is done, however, the capacitor values, with the exception of C_{9} and C_{10} should be proportionally increased.

Only one channel is fully drawn in Fig. 3(a): the other channel is identical with the exception of the connexions to the 'balance' potentiometers $\left(\mathrm{PR}_{4(\mathrm{a})}\right.$ and $\left.\mathrm{PR}_{4(\mathrm{~b})}\right)$ which are reversed, so that one half will increase in value as the other is reduced. One point should be noted, however, in wiring this potentiometer - screened cable should only be used for this as a last resort, if the siting of the mixer circuit board makes it essential, since the effect of stray capacitance will be to form the circuit shown in Fig 3(b), which operates as an h.f. 'lift' configuration. The purpose of the

(a)

(d)

Fig. 5. Possible RIAA correction circuit arrangements: passive circuit (a); shunt feedback (b); series feedback (c); series feedback with h.f. correction RC; series plus passive network; series/shunt feedback.
smail capacitors (C_{9} and C_{10}), of $5-10 \mathrm{pF}$ value, is to preclude possible instability due to this type of stray capacitance. An ideal embodiment of this circuit would be to enclose it within a small metal box, within which the balance pot. could be fixed, and short, unscreened leads used in its wiring.

On setting up, the input potentiometers (and the gain pots within the RIAA stage) should be set so that the signal levels on all the inputs peak at about the IV level ($0 \mathrm{~dB}+3 \mathrm{~dB}$).

Series-shunt RIAA equalizing stage (Fig. 6)

Few aspects of audio engineering have generated so much debate as that concerned with the niceties of the frequency response correction required for the reproduction of RIAA-standard gramophone recordings. This debate is, I think, fully justified since so many of the circuit configurations employed to achieve this aim, even when apparently quite well designed, can be shown by mathematical analysis, when all the appropriate circuit parameters are included, to perform relatively badly.

The basic RIAA replay specification sti-

Flg. 4. RIAA recommended equalization characteristic (a). Curve at (b) shows response of series-feedback circuit seen at Fig. 5 (c).
pulates the response curve generated by three time constants - 3180, 318 and 75 microseconds. This leads to the wellknown curve shown in Fig. 4(a) in which the 3 dB break points occur at 50.05 Hz , 500.5 Hz and 2122.1 Hz , and in which the response at 21.221 kHz and the $1 . \mathrm{f}$. asymptote below 20 Hz are respectively -20 dB and +20 dB with respect to 1 kHz . Part of the performance shortcomings of even well-known and prestigious commercial units stem from the almost universal adoption of the equalization circuit arrangement shown in Fig. 5(c), which employs series-connected feedback. This is done because it allows a lower apparent input noise component when measured under input short circuit conditions, although this advantage is lessened when measured with pick-up cartridge inductance in circuit. The snag with the arrangement of $5(c)$ is that it has a gain characteristic which tends to unity at high frequencies, as shown in Fig. 4(b), which gives a transient response to the system which is significantly different from that ideally required, and this difference is, in my experience, quite audible.
The possible configurations which can

be used to provide the RIAA characteristic compensation are shown in Fig. 5. An almost perfect approach to the required curve is possible with the passive network of (a) and the shunt feedback system of (b). The difficulty in the case of (a) is that some form of input buffer amplifier stage is necessary, and this will work under nonideal conditions of high signal inputs at high frequencies, leading to problems of overload margins. For this reason it is seldom employed commercially. The somewhat less good overall noise figure associated with the circuit arrangement of (b) has also ensured its neglect in commercial designs, even though it has the merits of simplicity and accuracy of frequency and transient response. The inherent unity gain at h.f. characteristic of (c) presents the circuit designer with a problem, in that the unwanted h.f. break-point depends on the feedback factor. If a low closed-loop gain is used, to allow a high measure of n.f.b. in the interests of circuit linearity and constancy of input impedance, the upper break point will occur at a lower, and more instrusive, part of the frequency spectrum. On the other hand, a high closed-loop gain may not offer adequate circuit performance.
A solution to this dilemma may be found in the addition of a supplementary $\mathbf{C R}$ time-constant, as shown in (d), to straighten out the unwanted h.f. breakpoint due to the amplifier reverting to

Teble 1
Gain of RIAA stage as a function of signal frequency

Finftel	$\begin{aligned} & \text { Galn } \\ & \text { (dB) } \end{aligned}$	
10	60.33	due to input coupling ca pacitor and feedback d.c. blocking capacitor (C_{1} and C_{114})
20	61.25	
30	60.64	
50 100	58.95 55.05	
200	50.06	
500.5	44.47	
1k	41.63	
2122.1	38.81	
3k	36.89	
5k	33.41	
10k	27.89	
21.221k	21.67	

Note. The recent amendment to the RIAA recommended curve below 30 Hz is intended to take recognition of unwanted v.l.f. components of signal output and is redundant where ancillary rumble filtering is available.
unity gain. This, however, leaves the query as to why, if a passive h.f. integrating time-constant is to be employed at all, this should not have the 75μ s characteristic called for by the RIAA specification, leading to the system of (e), which has been used for some years by one or two of the more thoughtful manufacturers. This can have an almost ideal frequency and transient response, and its only snag is that the inherent attenuation of the output integration network requires that the output of the amplifier A_{1} must be fairly large at h.f., which lessens the possible overload margins of the system.

This difficulty can be removed if the passive integration network is replaced by an active stage, as shown in (f), which results in a very satisfactory solution to the various conflicting requirements of this stage, and, in view of the ready availability of high quality i.cs, having a satisfactorily low noise component at the signal levels associated with this second stage, does not

Fig. 7. Printed-board pattern and component layout for RIAA stage.
substantially increase the cost of the system in comparison with that of (e). Moreover, the independence of the overall performance, apart from gain, of the circuit in respect of the value of $\mathrm{R}_{\mathrm{f} 1}$ allows this to be used to set the overall RIAA stage gain. In view of these many advantages I have used this 'series-shunt', twostage configuration as the RIAA input stage in this design. Because the target noise resistance, referred to the input, was 500 ohms, which is lower than can be obtained from currently available i.c. operational amplifiers, I have used a discrete component design for the input stage. The circuit of this is shown in Fig. 6.

This is of conventional form, employing an input long-tailed pair of low-noise p-n-p transistors ($\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$) driving a currentmirror load ($\mathrm{Tr}_{4}, \mathrm{Tr}_{5}$). Transistors Tr_{3} and Tr_{7} are constant-current sources for the
input long-tailed pair and the output class A amplifier stage (Tr_{6}). The RC network $\mathrm{C}_{14}, \mathrm{C}_{15}, \mathrm{R}_{15}, \mathrm{R}_{16}, \mathrm{R}_{17}, \mathrm{R}_{18}, \mathrm{R}_{19}$ and \mathbf{R}_{25} provides the required frequency response adjustment for the $10 \mathrm{~Hz}-1 \mathrm{kHz}$ part of the RIAA curve, while the network $\mathrm{C}_{18}, \mathrm{R}_{20}$ and R_{21} gives the necessary $75 \mu \mathrm{~s}$ de-emphasis to generate that part of the curve from 1 kHz upwards.

The input integration network R_{10} and C_{12} lessens the possibility of radio signal breakthrough, and the potentiometer PR, allows the output signal voltage to be adjusted to a level adequately close to 0 V , if it is desired to operate the amplifier in a completely direct-coupled mode to minimize v.l.f. phase-shifts. The calculated frequency response of the RIAA stage, for all the component values shown, is given in Table 1. In this the l.f. openloop gains of the two amplifier stages are assumed to be 100,000 (which is close to

Table 2 Performance of RIAA stage
Maximum output voltage swing 10 V r.m.s. Distortion at 10 V r.m.s. and $1 \mathrm{kHz} \quad 0.01 \%$ Distortion at 10 V r.m.s. and $20 \mathrm{kHz} \quad 0.018 \%$ Current consumption (two channels) 17 mA Distortion at 0.774 V r.m.s. and $1 \mathrm{kHz} 0.003 \%$ Input noise resistance 450 ohms (Measured with first stage only, and with feedback network adjusted to give a flat response gain of $100 \times$. Input s/c, measurement bandwidth 250 kHz , temperature $20^{\circ} \mathrm{C}$.)
Mains hum components (50 and 100 Hz)
-100 dB ref. 0.774 V
when fed from recommended power supply.
the expected value), and a value of $10 \mathrm{k} \Omega$ is assumed for the total value of $\mathrm{PR}_{6}+\mathrm{R}_{24}-$ this will only affect the gain, not the frequency response. The conformity of the frequency response to the RIAA standard, using preferred-value resistors and capacitors, is within 0.2 dB over this frequency range. In view of likely component tolerances it does not seem profitable to aim for a closer fit than this. The other performance characteristics of the circuit are listed in Table 2.

Since the layout of the circuit may be critical to its performance, I am showing the p.c.b. layout employed in the prototype in Fig. 7. Measurements on the performance of this showed agreement with the calculated results within the 0.5 dB level of confidence in the accuracy of test instruments and signal sources.

To illustrate the differences in the transient response given by the various possible types of RIAA equalizing stage, Fig. 8 shows the output given by the system

Fig. 8. Response of equalizing circuits to square-wave input. Passive circuit of Fig. 5(a) produces curve (a); curve (b) is output of system when conventional series-feedback equalizer is used; series/shunt circuit chosen and shown in Fig. 6 produces trace at (c).
when it is driven by an input 1 kHz square wave. That of a passive RC equalizing network is shown at (a), that from a conventional series-feedback system with an upper gain asymptote of 25 kHz at (b), and that from the series-shunt feedback system adopted in Fig. 6 in that of (c). This is very similar in shape to that given by the passive network.

Overload margin

An important design characteristic in any input stage, where this precedes any signal level control, is its ability to avoid input overloads. Typical moving-magnet and

variable-reluctance cartridges have output signal levels in the range $0.5-2 \mathrm{mV} / \mathrm{cm} / \mathrm{s}$ recorded velocity. The highest modulation levels capable of being traced by the best of modern cartridges are of the order of $40 \mathrm{~cm} / \mathrm{s}$, but, in general, the maximum groove velocities will be a good bit less than this. These very high modulation levels also only occur at frequencies in excess of 1 kHz - since at lower frequencies there would be a substantial risk of groove breakthrough. The first stage gain at 1 kHz is $28.58 \mathrm{~dB}(26.85 \times$) which would give a worst possible output voltage of 2.15 V at the collector of Tr_{6}. The clipping level at this point is 10.2 V r.m.s., which gives an adequate margin for overload avoidance. The gain of the second stage can be made as low as necessary by adjustment to PR_{6}. The $47 \mathrm{k} \Omega$ value suggested is likely to cover all practical cartridge requirements.

Practical preamplifier system

Although the complete preamplifier, in its prototype form, contains more modules than this, a very satisfactory performance will be given, under most normal conditions, by the relatively simple system built up from the units described above, comprising the RIAA input stage, the mixer module, and the ± 15 volt d.c. power supply unit, with the power amplifier stage fed directly from a $10 \mathrm{k} \Omega$ log. dual-gang pot connected to the output of the mixer module, as shown in Fig. 1. Indeed, for the bulk of my own listening, this is all I leave switched into circuit.

The remaining modules and some constructional notes will be given in the following parts of this article.

NoN

THE ETHER - AN ASSESSMENT

Does the ether exist? Dr Aspden shows that Oliver Heaviside's insight could have preempted Einstein's success with the General Theory of Relativity and encouraged investigations into the properties of the ether.

Though relativity has very little bearing upon the practical problems of radio transmission, it does preclude belief in the ether and wave propagation as contemplated by Maxwell, leaving us with no tangible alternative. Until we have a better understanding of the vacuum medium and the way in which it regulates electromagnetic wave motion, it is likely that Einstein's ideas will be questioned.

Essex, writing about relativity and time signals (Wireless World, October 1978), and Wellard, writing about the work of James Clerk Maxwell (Wireless World, March and May, 1981), both evoke this controversy.

In fact, special relativity, which dates from 1905, has very dubious support, because alternative explanation of $\mathrm{E}=$ Mc^{2} and mass increase with speed is available from textbooks on classical electromagnetism ${ }^{1}$. Besides, the transmutation of mass and energy, the basis of $\mathrm{E}=\mathrm{Mic}^{2}$, was recognized by Jeans, writing in 1904, one year before Einstein introduced his theory ${ }^{2}$. How, then, can we have confidence in relativity, when Essen demenstrates so convincingly the absurdity of expecting time to pass at a different rate when perceived by different observers in relative motion?

Einstein's theory really depends, for its acceptance, principally upon the success of the later 1916 General Theory of Relativity, which brought a slight modification to Newton's Law of Gravitation. The successive elliptical orbits of the planet Mercury were known to have a progressive advance, part of which was anomalous, as judged from Newton's Law. Enstein's Law gave the right answer and relativity was thereby acclaimed.
Einstein made no reference to an earlier paper by Gerber ${ }^{3}$, entitled 'The Space and Time Propagation of Gravitation'. It appeared in 1898, eighteen years before Einstein wrote on the subject, and gave precisely the same formula for the advance of Mercury's perihelion as that presented by Einstein. Gerber's paper explained how the anomalous per helion motion of the planet could be explained by recognizing that gravitation propagated at the speed of light. When Einstein's paper appeared in Ann. d. Phys. in 1916, a colleague of Gerber arranged for the publication of an updated version of Gerber's work in the 1917 issue of this same journal. However,
*IBM United Kingdom Ltd.

by H. Aspden*

Ph.D., B.Sc., F.I.E.E.

Gerber, then deceased, was unable to defend his theory against attack. It was in error; the direct propagation of gravitational action between sun and planet at the speed of light only gives a partial account of the anomaly.

Meanwhile, as we may read from the opening passage of Leon Brillouin's book 'Relativity Reexamined'4, Heaviside, in 1893, had pointed out that 'to form any notion at all of the flux of gravitational energy, we must first localize the energy'. If this is taken to heart, it leads us to recognize that the flow of gravitational energy is not directly along the line between sun and planet, but is, of necessity, via a longer route. The energy must flow from one of these bodies to the surrounding field and then from the field to the other body. This modifies the resulting retardation of gravitational action and affects the perihelion motion accordingly. The result, as the author ${ }^{5}$ has shown, is in exact accord with that originally predicted by Gerber. Einstein's Law of Gravitation, the only significant consequence of his general relativity theory, can be deduced by a simple classical analysis, which exploits the intuitive remark of Oliver Heaviside dating from 1893.

This, in itself, does not prove that Einstein's theory is wrong. We do, however, have viable alternative theory which is quite simple, and one must wait for the experimental evidence to direct us on the right course. This evidence is likely to come from measurements evidencing the properties of the ether. Already, in 1980, we have the experimental data of Graham and Lahoz ${ }^{6}$ showing that the ether can assert a force, and supporting Maxwell. Burrows (Letter to the Editor, Wireless World, October 1981) asserts that this is a one-off measurement needing verification. It is nevertheless backed by the discovery that the Earth's cosmic motion through space at a speed of some $400 \mathrm{~km} / \mathrm{s}$ can be detected by measuring anisotropy in the intensity of the 3 K background radiation. (See article entitled 'The Cosmic Background Radiation and the New Aether Drift' in Scientific American, May 1978). Furthermore, as we shall see below, it is supported by other evidence on electromagnetic-wave
propagation suggesting that the Earth's West-East motion due to its rotation can be directly measured as a linear velocity by optical techniques.

On such a course, the ether is destined for reacceptance and Einstein's theory may have to yield ground. There is, therefore, purpose in reassessing the ether and its properties, and in this quest we will again be mindful of Heaviside. It is to his great credit that he discovered how to design a telegraph line capable of propagating signals without distortion. The inductive and capacitative properties of a telegraph line cause the speed of propagation to depend upon frequency. By appropriate matching of these properties, as well as resistance and leakance, the attenuated signal can propagate without distortion. Now, electromagnetic waves propagate through the ether without distortion and, though the ether is not subject to resistance and leakance, it does have inductance and capacitance, because there are magnetic fields and electric fields in the vacuum.

Nature, anticipating Heaviside's contribution to telegraphic communication, has provided that extra something in the ether to secure distortionless signal propagation. This becomes an important clue in our quest to understand more about the ether.
According to its dictionary definition, 'ether' is 'a medium, not matter, that has been assumed to fill all space and transmit electromagnetic waves'. With such definition, the 'ether' remains valid terminology. The problem which some scientists have in accepting the existence of the ether arises from a further assumption that the ether cannot adapt to its environment and so must regulate the constancy of the speed of light in a universal frame of reference. When motion of the Earth about the sun could not be detected by speed of light measurements in the laboratory frame, the very existence of the ether came under challenge. Yet what logic is there in saying that A is believed to have property B , but we cannot detect property B, so A does not exist? Surely, the only valid conclusion is that A may still exist but it appears not to have property B.
Why bother? We have Maxwell's equations and we have relativity. The latter tells us not to expect to detect anything at all except according to physical laws which adapt to the reference frame of an observer. Without an observer, whether real or hypothetical, there can, in
relativity, be no definitive physical phenomena. Hence we are supposed to live in a somewhat abstract world and are encouraged not to seek to understand the universal and uniform nature of whatever it is that permeates the vacuum and regulates electromagnetic wave propagation.

I have good reason for believing that a great deal of opportunity is being missed in scientific and technological research by accepting doctrinaire theory and not keeping an open mind on this ether question. For example, it is to the credit of those engaged in precision measurement in fundamental physics that some constants can now be determined to a few parts in 10^{12}. Such precision defies imagination if related to the measurement tasks we undertake domestically or in industry. Yet, what is really fascinating is that Nature is actually able to regulate physical quantities universally and hold them stable to such accuracy, notwithstanding environmental fluctuations, wherever we look in the universe. This surely suggests a fundamental mechanisma and a reference or control medium, having a universal metric binding all matter together as part of a common system. To me, this is the primary role of the so-called ether, with the light propagation characteristic assuming secondary importance.

By postulating an electric but neutral medium of the simplest possible kind and analyzing its structure, as if it were a kind of invisible and elusive crystal extending throughout space, the author ${ }^{7}$, in collaboration with Dr Eagles of the National Standards Laboratory in Australia, has found it possible to deduce fundamental constants (notably $\alpha=$ $2 \pi \mathrm{e}^{2} / \mathrm{hc}$) to the measured accuracy of less than one part per million. It is this that has committed me to a course of scientific enquiry founded upon a positive belief in the ether rather than a passive acceptance of a rather sterile theory of relativity.

In the above expression, e is the electric charge of the electron, h is Planck's constant and c is the speed of light in vacuo. Hence the dependence of α upon the metric of the ether medium is very closely related to electomagnetic wave propagation, because E $=\mathrm{h} v$, Planck's radiation law, signifies the energy of quanta propagated as electromagnetic disturbances at the speed of light and at frequency v.

It is a relatively simple task to show that this structured vacuum medium can accommodate to the propagation properties of electromagnetic waves, and particularly on two basic counts. These are: (a) the fact that the speed of propagation is referred not to an absolute frame but to one which can adapt to the reference frame of an Earthly observer and (b) the equally important fact that light travelling in true vacuum suffers no dispersion resulting from its speed varying with frequency.

From the optical characteristics of ionic crystals it is known that there is dispersion, significant at frequencies in the vicinity of the natural resonant frequency
of the crystal. One should than bear in mind that energy quanta of sufficient strength can induce the creation of electron-positron pairs in the vacuum. This suggests that the ether sets a critical frequency threshold v_{0} and so may have an electrical structure conforming with this resonant frequency. Thus, in proposing a kind of crystal structure for the vacuum medium and establishing, as I have ${ }^{7}$, that it has a natural frequency v_{0} given by $\mathrm{mc}^{2} / \mathrm{h}$, the Compton frequency of the electron of mass m, one is led directly into the question of dispersion.
Before dealing with this, consider first the other problem. Michelson's experiments towards the end of the 19th century have shown that the Earth itself determines the local frame in which light has a speed c independent of direction. This is not in the least surprising if we admit the vacuum medium to be electrically-structured. Lorentz has shown that, according to classical electron theory, the speed of light in matter depends upon electron density and the oscillation period of such electrons in material media. Electron density does not depend upon rotation, nor is it a vector. Therefore, the speed of light (as opposed to its direction) should be unaffected by rotation. Hence, if there is any theoretical connexion or analogy between this situation in matter and what may govern the speed of light in vacuum, the expectation must be that, in the laboratory vacuum, the speed of light is referred to the Earth's inertial (nonrotating) frame. An experiment aimed at detecting the Earth's rotation using optical techniques referred to the vacuum should give a positive result.

Such an experiment was performed by Michelson in 1925, confirming the classical expectation from ether theory by sensing the Earth's rotation. Earlier, Sagnac had sensed the rotation of optical apparatus by speed of light measurement, a technique now applied in the ring-laser gyro. It is assumed that detection of speed of rotation accords with relativity, owing to parts of the rotating apparatus having motion relative to other parts. On the
other hand, if such experiments permit comparison of the speed of light East-West versus West-East and afford a measure of linear speed difference, it is relativity that is in difficulty. With the advance of optical measurement techniques, it should soon be possible to resolve this question.
For translational motion with the Earth, the vacuum structure acquires a linear displacement. Clearly, any displacement of electric charge in the vacuum must be transitory and oscillatory, unless it is balanced by a matching counterflow or reverse displacement of some of the charge present. Otherwise there would be a steady build-up of charge and an ever-increasing electric field. One may, therefore, visualize the vacuum as having two charge structures capable of moving through one another in opposite directions. This is quite possible because there are no rigid bonds between the charges, just electric field interactions.

It is this dual structure for charge displacement that is the key. The primary structure moves forward with the Earth. The secondary structure moves through the primary structure in the reverse direction and, by analogy with an optical effect named after Fresnel, we expect this reverse flow to affect the speed of light through the primary structure. Fresnel's theory explains why the speed of light increases in proportion to $u\left(1-1 / \mu^{2}\right)$, where u is the velocity of the disturbing medium and μ is the applicable refractive index. This can be deduced from electron theory, but it has been verified by experiments in which the speed of light through moving water is measured.

Applying this same theory to the vacuum itself, and recognizing the counter displacement, it is an easy matter to arrive at the result discovered experimentally by the Michelson-Morley observations.

Let there be N like charges, e, per unit volume within an electrical continuum of uniform but opposite charge density σ. Then:
$\mathrm{Ne}=\sigma$
Let N_{1} and N_{2} denote the population

density in the primary structure and the secondary structure, respectively. Then:

$$
\begin{equation*}
\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2} \tag{2}
\end{equation*}
$$

On electron theory, the propagation velocity is proportional to $\left(\mathrm{ne}^{2} / \mathrm{m}\right)^{1 / 2}$, where there are n charges e of mass m per unit volume, also having a resonant mode at frequency given by the angular velocity ω :

$$
\begin{equation*}
\omega^{2}=4 \pi n e^{2} / \mathrm{m} \tag{3}
\end{equation*}
$$

From the properties of matter, we know that the propagation velocity in a structured medium is given by $(\mathrm{P} / \mathrm{\rho})^{1 / 2}$, where P is the pressure modulus of the medium and ρ its mass density.

These considerations guide us to the formula:

$$
\begin{equation*}
c_{1}=\left(P / N_{1} m\right)^{1 / 2} \tag{4}
\end{equation*}
$$

for the speed of Light c_{1} set by the primary vacuum structure, where ρ becomes $\mathrm{N}_{1} \mathrm{~m}$. P becomes the pressure or energy density modulus of this pzimary structure.

Let v denote the velocity of the primary structure and u the velocity of the secondary structure in reverse flow. The linear momentum of the vacuum has to be zero unless there is a steady build-up of electric field. Hence:

$$
\begin{equation*}
\mathrm{vN}_{1}+u \mathrm{~N}_{2}=0 \tag{5}
\end{equation*}
$$

Even in the absence of matter, the vacuum has a refractive index μ referenced on the primary structure and attributable to the disturbing effect of the secondary structure. This is simply:

$$
\begin{equation*}
\mu=c / c_{1} \tag{6}
\end{equation*}
$$

The speed of light in the frame of reference set by (5), the rest frame, then becomes c , the value set by the combined effect of the primary and secondary vacuum structures, augmented by the Fresnel drag of $u\left(l-1 / \mu^{2}\right)$ caused by the disturbance of the secondary structure.

From (4) and (6), μ^{2} becomes proportional to N_{1}, with P constant, so that, from (2), μ^{2} is $1-\mathbf{N}_{2} / \mathrm{N}$ and $1-1 / \mu^{2}$ is $-\mathrm{N}_{2} / \mathrm{N}_{1}$. We then see from (5) that $1-1 / \mu^{2}$ becomes simply v/u. Thus the Fresnel drag in the vacuum, which is $u\left(1-1 / \mu^{2}\right)$, is the velocity v of the primary structure, proving, from simple classical electron theory, that the speed of light will be referenced on the vacuum structure moving with the Earth, as was found by Michelson.

We do not need to appeal to relativity for an explanation of this basic observation. The Michelson-Morley experiment verifies that Maxwell's electric displacement can be a dual and reciprocal phenomenon. Oscillations of the electrical structure of the vacuum can occur at the resonant frequency v_{0} with no reverse motion of the secondary structure or counter-displacement. However, we may expect light propagation at lower frequencies to involve counterdisplacement and it is this that brings a new and important dimension to Maxwell's theory. With it comes a solution to the dispersion problem.

Note that the irequency of an electromagnetic wave has no meaning at a point in space and time. Frequency concerns rate of change and this

The Author

Following electrical engineering studies at Manchester University and two years of graduate training in industry, Harold Aspden did Ph.D. research on magnetism at Trinity College, Cambridge. Shortly after embarking on a career in the patents profession, some 29 years ago, he had an idea on electromagnetic reaction which intrigued him and led to a firm belief in the need for an ether. Dr Aspden has had success in his chosen career, having directed IBM's European Patent Operations for the last 18 years, but his ambition is to achieve success in his private quest to bring the ether back into favour. The very substantial scientific potential which Dr Aspden sees in an ether revival is evident from his book 'Physics Unified', published in 1980.
information implies comparison of signal strengths at two points in time or two points in space. However, given dual displacement at a point in space, as we now have in the theory just presented, the frequency can be codified by the relative strengths of the two displacement parameters.

The frequency of the signal is, in fact, preserved in transit through the vacuum medium, because the medium propagates two electric displacement signals in antiphase, and the relative amplitude of the signal strengths determines the frequency. As we shall now see, this involves the vacuum adjusting to the signal in transit to adopt a locally-tuned condition having the resonant frequency of the signal. The frequency v_{0} at which electron-position pair creation occurs is the limit frequency beyond which there is no counterdisplacement. However, the interesting point is that there is no forced oscillation and so no dispersion characteristic in the vacuum, since the vacuum adapts to any frequency and exhibits the properties of a tuned LC system.
It is easily shown how the capacitance and inductance of unit volume of the vacuum can be evaluated. The capacitance per unit volume is $1 / 4 \pi$ and the inductance per unit volume is frequency-dependent and proportional to ρ / σ^{2}, where $\rho=\mathrm{Nm}$ and $\sigma=\mathrm{Ne}$.
The presence of an electric field of strength V signifies imbalance between displacement and counter-displacement, represented by a displacement distance \mathbf{x},
where x is $x_{1}+x_{2}, x_{1}$ and x_{2} being the respective displacements of the primary and secondary structures and x_{2} being a negative quantity. The restoring force on charge e is then:

$$
\begin{equation*}
\mathrm{Ve}=4 \pi \sigma \mathrm{ex} \tag{7}
\end{equation*}
$$

The energy stored by this displacement is $2 \pi \sigma e x^{2}$, owing to the linear force rate, and, in energy density terms, this becomes $2 \pi \sigma^{2} x^{2}$, which, from (7), is $V^{2} / 8 \pi$, as expected. This is also $1 / 2 \mathrm{CV}^{2}$, where C is the capacitance per unit volume, and so C is $1 / 4 \pi$.

Under dynamic conditions, we can equate the force given by (7) with mx_{1} to find a resonant angular frequency ω. (7) becomes $4 \pi \sigma e k x_{1}$, where kx_{1} is x . Thus, from (1):

$$
\begin{equation*}
\omega^{2}=4 \pi \mathrm{Ne}^{2} \mathrm{k} / \mathrm{m} \tag{8}
\end{equation*}
$$

At the threshold angular frequency $2 \pi v_{0}$ $=\omega_{0}$ and this applies for the zero counterdisplacement condition for which $\mathrm{x}=\mathrm{x}_{1}$ and $k=1$. Thus, since k is $1+x_{2} / x_{1}$, $\left(\omega / \omega_{0}\right)^{2}$ becomes $1+\mathrm{x}_{2} / \mathbf{x}_{1}$, showing how the frequency ω is codified by the ratio of the displacements. (x_{2} is negative.)

The value of the inductance L per unit volume is readily found from (8), because ω^{2} is $1 / L C$ and C is $1 / 4 \pi$. We find that L is $\left(\rho / \sigma^{2}\right) / \mathbf{k}$.

Such analysis assures us that the vacuum medium does not forcibly respond to the dynamic frequency characteristics of a signal. It propagates the primary and secondary displacements and the local vacuum resonates at the optimum frequency set by these displacements. In this way the signal frequency is preserved over vast distances.

The dual electrical displacement suggested above greatly strengthens the basis on which one can develop a phenomenological ether theory supporting Maxwell's equations. More important, however, it opens the path for new avenues of research into the effects of energy absorption from electromagnetic waves and their mutual interference. Meanwhile, note that Einstein's $\mathrm{E}=\mathrm{Mc}^{2}$ law, the keystone of special relativity and his law of gravitation, the basis of his general relativity, have both succumbed to alternative explanation ${ }^{5-8}$.

It is likely to be in the optical measurement field, involving speed of light tests in relation to Earth rotation, that we may see the determining experiments, crucial to relativity. The ether will surely survive.

References

1. H. A. Wilson, 'Modern Physics', 2nd., Blackie, 1946.
2. H. H. Jeans, Nature, 70, 101 (1904. 3. P. Gerber, Zeitschrift f. Math, u. Phys., 43, 93 Z1898).
3. L. Brillouin, 'Relativity Reexamined', Academic Press, 1970.
4. H. Aspden, J. Phys. A: Math. Gen., 13, 3649 (1980).
5. G. M. Graham and D. H. Lahoz, Nature, 285, 154 (1980).
6. H. Aspden and D. M. Eagles, Physics

Letters, 41A, 423 (1972).
8. H. Aspden, Int. Jour. Theor. Phys., 15, 631 (1976).

Falklands electronics

The fierce media criticism of inconsistent censorship and the absence of any video link with the British Task Force in the South Atlantic (at least until the despatch of Gresham Lion digital slowscan tv equipment) has been followed by many revelations of the improvisations that were necessary to overcome operational problems and the absence of airborne earlywarning radar.

The satellite-carried speech links made available to the reporters, but also presumably used for encrypted Service traffic, certainly provided reliable and reasonably good-quality communications (though this would not necessarily be the case against an enemy with more sophisticated jamming or anti-satellite systems). Nevertheless it has been alleged that there remains a serious e.m.c. problem that required radar to be turned off during satellite transmissions. It has also come as a surprise to find the extent to which missile countermeasures still depend on the use of vast amounts of "chaff" - the "window" technique of World War 2 - with Aviation Week reporting that Plessey Aerospace were working a 24 -hour-day, 7 -days-aweek producing the stuff. Chaff and helicopter decoys seem to have proved moderately effective in diverting some Exocet missiles away from their intended targets - though one that was deflected from an aircraft carrier promptly locked on to the ill-fated Atlantic Conveyor. There have been rumours of attempts to recover nuclear weapons from some sunken Royal Navy vessels, though it is equally possible that the work is aimed at recovering cryptographic or other sensitive material. Equally alarming are the reports that two Russian Cosmos ocean surveillance satellites launched during this period were carrying nuclear electric-generators for the radars and were similar to the nuclearpowered satellite that caused so much public concern when it came down over Northern Canada on January 24, 1978. If the Falklands have underlined anything it is that we live in an extremely dangerous world - to which advanced electronics and communications contribute. It can be claimed that the British electronics systems were used defensively as well as offensively, and mostly worked, though in some cases not without considerable lastminute improvisation.

Manpack satellite

The Special Air Service had its own communications links back to the UK as well as what was clearly a considerable number of clandestine infiltration links between the Task Force and the SAS reconnaissance and intelligence-gathering parties.

There has been no public information given on whether these communications were effected via satellite or on h.f. or a mixture of both. But at least one British firm, Ferranti Electronics, has recently announced the development of a manpack portable satellite terminal "Mansat" that has a shallow-reflector aerial built into a rigid carrying module. It could, one imagines, be used for infiltration communications. This equipment, working on about 7.5 GHz , can provide a duplex telephony link and a $50 \mathrm{bit} / \mathrm{sec}$ telegraphy link using a standard QWERTY-type keyboard. It works from internal batteries, and GaAs field-effect transistors are used in both the receiver and transmitter chain. Microprocessors take care of message storage, encoding, display and alarm monitoring. It is claimed that the equipment can be positioned and in contact within two minutes. But I rather doubt if such equipment was used in the South Atlantic, and "old-fashioned" h.f. may have provided the intelligence.

Wideawake Ascension

Back in 1967 I was lucky enough to be one of a small party of journalists forming possibly the only press trip ever made to Ascension Island. It was at the time of the opening of the Cable and Wireless earth station built by Marconi on the island as part of the elaborate NASA Apollo communications system. The island, even then, was an amazing contrast between modern communications, missile tracking aerials, a BBC overseas relay station with four 250 kW transmitters and an old-style brass-instrumented telegraph cable station (this was before the South African telephone cable), giant turtles coming ashore to lay their eggs and millions of wideawake terns, all to a backdrop of a desolate, crater-pitted, near lunar landscape. Water was in short supply but whisky was 60 p a bottle, gin 25p and the temporary residents paid no income tax! And though I recall well the computerized, air-conditioned NASA tracking station and the large futuristic "aerial farms" what really remains in the memory is the pleasant English farm at the top of Green Mountain where, on behalf of Cable and Wireless, a Somerset farm-manager looked after 2000 sheep, 300 pigs and 35 milking cows! The island has been a natural communications centre since the days when it was garrisoned by the Royal Navy and Royal Marines. Sadly, there are still the graves of young sailors put ashore with yellow fever in the nineteenth century. Landing a large Britannia aircraft at Wideawake Airport was quite an event for the island and one wonders how much it has all been changed by the furious burst of activity this year.

Whose light pipe?

British Telecom do not believe in hiding their light under a bushel or burying their talents in a napkin. Not only have they instituted a prestigious Martlesham Medal to give recognition to their own research engineers but they recently put out a 1500 word, seven-page press release to mark the second such award to Dr George Newns and Dr Keith Beales. This was for their development of the double crucible production process for optical fibres. I am all for giving medals to engineers and full credit to those whose work is seldom in the public eye. But BT's publicity boys do lay it on a bit thick. Was it really BT who, to quote the press release, "first took up the challenge (of optical fibres) and began devoting time and resources to the enormous problems of translating theory into practice"?
It is evident from the release that BT set up its research team for optical fibres during 1968. Yet I recall talking to Dr Kao at STL at Harlow, early that year. He showed me some of his continuing work on optical fibres which had obviously been started many months earlier. It was devoted to the very practical problem of producing low-attenuation glass. He was convinced this was possible and outlined to me the role optical fibres could play in telecommunications.

BT's press release also recalls that the first Martlesham Medal went last year to Dr Tommy Flowers "the man who invented Britain's and possibly the world's first computer . . . Collossus (sic)". Again Tom Flowers deserves the highest praise for his important pioneering work on the Bletchley Park cryptographic computers but it would have been nice if BT's publicity boys had included just a passing reference to Alan Mathison Turing - but then Turing owed his allegiance to GCCS and " C " of the Secret Service and not to the inventive British Post Office!

Stormy ionosphere

Solar storms, sudden ionospheric disturbances and blackouts, high levels of polar cap absorption and intense auroral conditions continued to dominate the h.f. scene in July. In fact July 12-18 witnessed one of the biggest proton flare events for many years. A blackout on h.f. on July 12 lasted four hours. While this resulted in generally poor h.f. conditions, v.h.f. operators were able to take advantage of the near-sensational auroral conditions which unusually extended as far south as the Mediterranean area. British and Irish stations, for example were able on 144 MHz to contact F6KAW/EA6 in Minorca.

Although it is possible to trace a link between solar storms and auroral conditions, there still remains no positive way of
predicting "sporadic E" openings which are linked to wind shears in the upper atmosphere. However Jim Stewart, WA4MV1 has recently convirmed in a letter to QST the growing belief that a link can be shown between Sporadic E and certain types of severe weather, particularly severe thunderstorms. He notes that apart from heary rain and turbulence, some thunderstorms appear to produce wind shears and large static-electric charges that play a significant part in the process. Examination of hundreds of weather maps and other data have convinced the American that there is very often a severe weather area roughly midway between stations linked by sporadic \mathbf{E} propagation. Storm activity above $60,000 \mathrm{ft}$ could result in 144 MHz openings, whereas storms at around $40,000 \mathrm{ft}$ tend to result in 50 MHz openings. While his results may apply primarily to the large land area of the United States, it is one of the few ideas so far adyanced that could lead to prediction of Sporadic E openings.

Amateur satellites

So far attempts by Stanford University, using a large dish Eerial, to regain control of the British UoSAT OSCAR satellite, built by the team at the University of Surrey - appear to have failed. As reported earlier a "one-in-a-million" software error caused both beacon transmitters to be switched on simultaneously with consequent desensitizing of the on-board receivers. At the time of writing it is still hoped that control can be regained by a strong command signal but hopes are fading, and this experimental scientific satellite remains virtually out of action.

A low-orbit Russian amateur radio satellite "Iskra Two" which was ejected from the manned Salyut/Soyuz orbiting space station on May 17 re-entered the earth's atmosphere early in the morning of July 9 . Although it carried an h.f. transponder this was activated only for a brief period.

Amsat-UK (94 Herongate Road, Wanstead Park, London E12 5EQ) has published a new edition of its useful 16 page booklet "Guide to Oscar Operating" providing the basic information needed by amateurs who wish to have a go at making contacts through Oscar satellites and background information and practical experiences since the first amateur satellite was launched in October 1961.

Here and there

I.A.R.U. statistics now put the total number of licensed amateurs at over 1.1million of which about 200,000 are in Region 1 (Europe/ Africa), about 480,000 in Region 2 (North and South America) and about 470,000 in Region 3 (Asia and Oceania). Japan heads the table with around 450,000 , U.S.A. 390,000 , West Germany 42,000 , U.S.S.R. and Argentina each 26,000 . Then comes the U.K. with around 25,000 followed by Canada 21,000 , Italy 17,000, Brazil 14,000 and Australia 13,000 though these figures may already be a little out-of-date.
A Dutch enthusiast, Ryn Muntjewerff is now known to have received 435 MHz amateur television pictures in November 1979 from F1AJD, Angouleme, France over a distance of about 1000 km , thought to be a record for this band. Among the journals and newsletters devoted entirely to amateur television are: CQ-TV of the British Amateur Television Club, "A5 Amateur Television Magazine" (USA monthly), "The ATVer" (Australia), NBTV (Narrow Bandwidth Television Association, UK) and "Der TV Amateur" (West Germany).

Aerial pioneers

Two names that have become almost part of the language of aerials - Beverage and Kraus - have recently been reflecting in the columns of QST on the continued value of designs put forward in 1922 and 1937 respectively. Harold Beverage, exW2BML first developed and described his very long but low aerials 60 years ago when working for RCA. He has revealed that after becoming interested in radio as early as 1912 he had two job offers on graduating from college: playing trombone at Loews Theatre for ' 2 per week or working for General Electric for $\$ 11.20$ a week. Such was his enthusiasm for radio that he opted for G.E.! Apart from the still famous Beverage aerial, he was co-inventor with H. O. Pearson of the "diversity reception system" for combating fading on h.f. Curiously the most complex diversity systems these days - quadruple diversity - are usually at much higher frequencies for troposcatter or long microwave links across sea paths.
Professor John Kraus, W8JK - for many years a leading figure among American radio astronomers - made his name initially when he adapted Dr George Brown's work on close-spaced mediumwave aerials in order to produce the first effective bi-directional rotary h.f. beams in 1937. This was a few months before another leading amateur, Van Roberts, similarly adapted Brown's work on closespaced parasitic arrays to come up with the aerial that has made Yagi's name famous throughout the amateur radio world. John

Kraus shows that a special attraction of the original W8JK-type of array is that it can work effectively over a continuous frequency range of more than 3 to 1 without traps or loading coils and with non-critical dimensions. The availability (so far in some countries only) of 18 and 24 MHz bands makes the W8JK design particularly attractive and its may well be heading for a revival.
So far American amateurs have not been able to make use of any of the new h.f. bands (10,18 and 24 MHz) since the USA have not yet ratified the WARC 1979 agreements. Japanese amateurs were authorized to use the 10 MHz band from April 1, 1982. Maximum power is 500 watts for stations having a frequency measuring instrument and 10 watts for those without!

Heavy guns

The American FCC have been firing some heavy guns recently in its efforts to stamp out abuses of the American radio regulations. A former Californian amateur indicted of operating a station without a licence and using obscene, indecent and profane language has been facing, if found guilty, a possible maximum sentence of 10 years imprisonment and a fine of up to $\$ 70,000$. Another Californian lost his amateur licence after taking a licence examination on behalf of a candidate. The FCC has refused to renew the licence of a former amateur who two years ago was found to have deliberately jammed an amateur repeater. Unlicensed operators facing charges of putting out broadcast transmission on 7040 kHz from Miami directed at Cuba have been referred to the U.S. Department of Justice with a request for criminal prosecution which could result in a $\$ 10,000$ fine and/or a one year prison sentence.

In brief

A reminder that many local adult centres are starting RAE classes in the second half of September. In Beckenham, Kent the demand for morse classes in the London area has caused a switch from RAE classes to morse training Date of the Midlands v.h.f. convention has been changed to October 9 at The Polytechnic Wolverhampton. Reminder that Welsh Amateur Radio Convention is at Oakdale Community Centre, Blackwood, Gwent on September $26 \ldots$ There are hopes that amateur radio activities may be permitted again soon in Poland. . . A "congress of radio amateurs connected with the railways" (FIRAC - Federation International Radio Amateur Cheminot) is to be held at Gunton Hall, Lowestoft from October 4 to 8 (details G. Sims, G4GNQ, 85 Surrey Street, Glossop, Derbyshire SK13 9AJ).

PAT HAWKER, G3VA

Static b.c.d.-to-binary converter

Converters such as those used in synthesizers, where a decimal channel number might have to be changed into binary form to drive a p.I.1., might be in the form of a relatively expensive and, perhaps inconvenient prom, or as binary and decimal up/down counters in parallel, which can give carry and synchronizing problems, or they may be made up using shift registers with correction networks like the 74184. The following is a static cmos converter on similar lines.
For digits zero to nine, both binary and b.c.d. forms are the same but the first decimal carry, at 10 , leads to problems at the 'tens' A input, resulting in a binary 16 being interpreted. Therefore, six has to be subtracted to return the original value, 10 . At the next carry, b.c.d. 20, binary 32 is interpreted, and must be corrected by

Decoded output IC_{1}	Equiv. decimal range	Subtraction value	Added complement								
			IC_{3}				IC_{2}				
			$\left(B_{4}\right)$	B_{3}	B_{2}	B_{1}	B_{4}	B_{3}	B_{2}	B_{1}	
			(128)	64	32	16	8	4	2	1	
0	0-9	\%	x	L	L	L	L	L	L	L	
1	10-19	5	x	H	H	H	H	L	H	L	
2	20-29	11	x	H	H	H	L	H	L	L	
3	30-39	17	x	H	H	L	H	H	H	L	
4	40-49	23	x	H	H	L	H	L	L	L	
5	50-59	29	x	H	H	L	L	L	H	L	
6	60-69	35	x	H	L	H	H	H	L	L	
7	70-79	41	x	H	L	H	L	H	H	L	
8	80-89	47	x	H	1.	H	L	L	L	L	$X=$ don't care
9	90-99	53	x	H	L	L	H	L	H	L	

subtracting twice 6 , and so on for each successive decade. Here, rather than carrying out subtractions, two's complements implemented by diode matrices are added using two 4 -bit full adders. A one-out-of10 decoder chooses the correction value as represented in the table. B_{4} of the second
adder is not used, but should be tied to either rail. Nine of the 33 diodes may be replaced by the inverter as shown. Expansion of the circuit is possible.
Falko Kuhnke
Institut für Geophysik und Meteorologie Braunschweig

Oscilloscope supply

Circuit shown provides around 850 V at $75 \mu \mathrm{~A}$ and 300 V at 2 mA from a 15 V supply. Insulation of the output transformer (an RS196 224) is flash tested to 5 kV but one could be specially wound using, say, a Mullard FX2243 or Siemens 631 N 27. The prototype was driven by a unijunction transistor oscillator and buffer circuit.
G. V. Whitney

Sale
Cheshire

Minimum-parts sequencer

Combining a cmos decade counter with the 555 timer yields a simple yet versatile ad-justable-delay sequencer. Buffered outputs 1 to 9 are activated in succession as the 4017 counter is clocked. Each output remains on for a duration proportional to the values of R_{1} to R_{9} respectively.
A momentary high level on the start input resets the counter, activates output 1 and starts charging C_{1} through R_{1}, D_{1} and R_{10}. As C_{1} charges, the timer output goes high, causing a negative transition, due to the inverter, on the counter's clock input, which is ignored. When C_{1} reaches $2 / 3 \mathrm{~V}_{2}$, the timer output goes low, clocking the counter, enabling output 2 , setting R_{1} low while pulling R_{2} high, and enabling another charge cycle on completion of discharge through \mathbf{R}_{10}.

The sequence continues until the ninth count, when inhibit input (pin 13) is activated, preventing further clocking. Since all charging resistors are deactivated, the system remains inactive until start is pulsed. A more elegant approach would be to connect an extra inverter between the junction of the 9 and inhibit outputs of the counter and the reset (pin 4) input of the timer. Keep in mind that upon power-on or after the timer has been reset (low on pin 4), the first timing period will be approximately twice as long as the reset, due to the capacitor having to charge from ground instead of $1 / 3 \mathrm{~V}_{\mathrm{s}}$.

Many variations are possible. For example, repetitive sequences of up to 10 steps can be obtained by grounding the counter's inhibit input and connecting an extra resistor and diode to timer pin 7 from the counter's 9 output. A 4-bit binary counter feeding a $4-\mathrm{to}-16$ converter (e.g. cmos 14515) will provide up to 16 lines.

Pin 5 of the timer, shown de-coupled to ground through C_{2}, can be used as a modulation input to compress or expand all output times simultaneously, i.e. scale factor. Output buffers can be selected according to requirements or omitted entirely if driving other cmos logic.

Values of resistors $\mathrm{R}_{1}-\mathrm{R}_{10}$ should be kept as large as possible to minimize loading of the cmos output stages during
charging. If potentiometers are used to trim timing, R_{10} should be at least $4.7 \mathrm{k} \Omega$ to minimize inrush current, should any pot be turned to zero resistance. The time delay caused by the combination of R_{10} and C_{1} adds a constant to the time that each output remains high.
V. Labuc

Noranda Research Centre Quebec

FAULT-FINDING IN MICROPROCESSOR-BASED SYSTEMS

The complexity of some systems aggravates the problem of fault location. 「echniques include the use of special equipment and the ability of the processor to diagnose itself. The author discusses some of the available equipment and techniques.

During the last decade electronic systems have changed substantially in conception and complexity due to the introduction of microprocessors and their accompanying devices. Previously, such systems were designed using families of integrated circuit logic elements, the most complex of which would probably have been a four-bit synchronous updown counter. Fault finding in sequential random logic systems involved the use of logic diagrams annotated with waveforms and timing sequences, and required that the fault finder had a detailed understanding of the system operation. The equipment required would be a two-channel oscilloscope with various trigger and sweep facilities, and possibly a special test rig to provide signals to stimulate the printed circuit board, if it were being tested remote from its system. The time required to find a fault would depend largely on the skill of the test or service lengineer. Equipment in service could be repaired quickly by module or PCB replacement, but ultimately, fault finding down to component level had to be undertaken in the manner described above.

Systems designed around microprocessors are conceptually different in that they are bus structured with data being transferred around the system in parallel. In general, input data is read and processed in the CPU to produce the output under the control of the system software. When debugging or fault finding on this type of system, many lines need to be monitored simultaneously and in synchronism with some derivative of the system clock. 'Glitches' and undefined levels on tri-state busses at other times are of no consequence.

Currently systems are being designed using the fourth generation of microprocessors with 20 -bit address busses and 16 bit data busses. Clock rates are up to 11 MHz ; and multiprocessor systems, with bus access time division multiplexed between processors under the control of a master, are being implemented as solutions to the demands of more processing power. All these advances in technology and system compiexity aggravate the problems of fault location. To assist the designer and test technician in overcoming these problems various techniques can be used, some requiring special equipment and some utilising the power of the proces-

by Stephen Day

sor in self-diagnosis of faults. It is the purpose of this paper to discuss the current state of the art equipment and techniques and indicate how they are applicable to fault finding from design and development through assembly and test to in-field service.

Logic analysers

The logic analyser was the first of a range of equipments designed specifically for data domain analysis and was initially produced as an instrument for use in the laboratory during the development phase of a microprocessor implementation project. Its appearance was similar to an oscilloscope but having multiline data probes. The data on each probe line could be sampled under control of a system clock which could be qualified typically to sample once every processor instruction cycle. The samples were stored in an internal memory with a capacity of up to 16x16-bit words, and the trigger word, from which sampling was initiated, was set up on a bank of switches.
More recently the ergonomics of logic analysers have been significantly improved and memory size has been increased up to 1000×20-bit words. The options available for setting up the equipment are displayed as a menu on the screen, with a cursor to indicate the next input required. The keyboard is used to enter the information to give the required operating sequence. Typical of the options for trigger selection are: clock source, edge polarity, trigger word, clock cycles delay, trigger start or end, block pattern recognition etc. Possible data display modes on the screen are: (a) Table. A listing of the sampled data states in binary or to some other numerical base such as hexadecimal (Fig. 1a)
(b) Timing. Data is displayed across the screen as several channels showing the HILO activity (Fig. 1b).
(c) Graph. The horizontal axis represents analyser store addresses and the vertical axis the numerical value of the stored data (Fig lc).
(d) Map. Each 16-bit sample is divided into its upper and lower 8 -bic bytes. The values of these produce the vertical and
horizontal deflection. (1d). The top left of the display is address 0000 and bottom right is FFFF. The map display will assume some unique pattern depending on the frequency of access of the various address lacations being accessed by the program being executed.

When monitoring the data on a microprocessor bus it is possible to reconvert the binary data back into its maemonic assembly language from automatically and this feature, known as disassembly, has been built into some instruments. The analyser has a personality module according to the microprocessor in the system under development and the table display can then be a list of assembly language statements which are more readily interpreted for program debugging.

Remote access for initialisation and interrogation can also be provided by

connection to an instrumentation bus.
A further development of the logic state analyser is the logic timing analyser. This device samples the data input lines with a clock which is asynchronous with the system under test. In this way it is possible to trap random events or 'glitches' as small as 5 ns wide by using clock frequencies up to 20 MHz . The display is usually presented as a timing diagram. One particularly useful application for this type of instrument is in trapping intermittent faults. The technique is known as 'babysitting'. Having established what trigger condition to use, a set of normal data is sampled and transferred to the secondary or reference memory. The user can now leave the instrument to monitor the system under test and it will acquire new data each time the pre-selected trigger point is encountered. Any difference between the new data and the reference data will cause the analyser to stop sampling and indicate where the difference has occurred. On return the user can step through the logic timing diagram on the display and draw conclusions for futher investigation of the fault.

In circuit emulation (ICE)

This is a technique for using a microprocessor development system to debug both hardware and software during the developmental phase of a project. Early microprocessor development systems were essentially for software development. They had the usual suite of routines for editing and assembling programs and it was possible to partially debug the software by limited execution within the development system. It was then necessary to commit the software to eprom in order to transfer it to the hardware of the system being developed. For further debugging use was made of a logic analyser to find out why programs operated incorrectly or whether the fault was in the hardware.

In-circuit emulation is created by additional hardware which allows the microprocessor in the target system to be emulated by a similar microprocessor in the development system. The ICE module connects to the target system by multi-way umbilical cable terminated with a plug which is inserted into the socket where the microprocessor would normally reside. In this way the resources of the development system are extended to the prototype in order to facilitate the hardware/software integration. Figure 2 shows a typical microprocessor development system with ICE. Resource allocation is extremely flexible in all modes of operation and will depend to some extent on the state of development of the prototype hardware. The development system mass storage medium, usually floppy disc, is used to store the target system software in both source and object form. Loading is quick and errors can be patched out in the object code to try modifications. These changes can then be incorporated in the source code and rapidly reassembled. Random access memory and i/o facilities of the development system can be used as though they are local memory and i/o of the prototype system even before this part of the hardware is built.

(a)

(c)

Fig. 1. Block diagram of a logic analyser. Its various modes of display are: a. a table; b. a timing chart; c. a graph; and d. a map (see text).

During emulation a breakpoint can be specified which can be conditional on a number of different factors such as memory read, memory write, instruction fetch or i/o operation at selected addresses. When the breakpoint has been encountered the internal registers of the processor and any memory locations can be interrogated and modified as necessary before restarting emulation. It is also possible to display the contents of the trace memory to check the instruction sequence before the breakpoint.

Another possible mode of operation is single stepping. In this way more detailed

(b)

information can be acquired by the trace memory as the program is executed one instruction at a time.

Probably the most important advantage of ICE is the simple connection into the prototype system. One cable is all that is required with no need for circuit modifications or temperary jumpers. Early development and debugging of the software enables completion of the total system integration in the shortest possible timescale. Finally, the time consuming procedure of using eproms to transfer programs under development to the target system is eliminated.

Fig. 2. In-circuit emulation system.

Fig. 3. Derivation of signature from data stream.

Signature analysis

If a piece of equipment is made to repetitively execute a certain sequence of instructions then it should be possible to identify correct operation by monitoring the changing logic levels at each node in the circuit. This would produce a mass of information which would be completely un-manageable in a test situation. In order to compress this information into a more useful form a technique known as signature analysis was developed by Hewlett Packard Ltd. The data appearing at a given node is sampled for a known period, between start and stop signals, by clocking it with the system clock into a feedback shift register. The residue at the end of the sampling period is a characteristic of the activity at that node.

Using a 16-bit shift register and arranging the feedback such that a maximal length sequence is produced will give 65 536 possible residual states. The parallel 16-bit output from the register is used to drive four hexadecimal displays and the resulting number is termed the 'signature' of that node. Errors in the data stream will normally cause a different signature to be displayed. It is possible to show ${ }^{1}$ that all single bit errors will change the signature and that the probability of multiple bit errors being missed is less than 0.002%. This is far better than the performance of other techniques such as bit or transition counting.
An example of how a signature is derived is shown in Fig. 3. The data signal is gated with the four feedback bits in a gate
which produces a logic one output only when the modulo two sum of the inputs is one. The clock is enabled during the window between the start and stop pulses and in this case samples the data 20 times. The chart shows how the bits propagate through the shift register and the resulting signature is A682. Superimposed on the chart is the result of introducing a single bit error in the first bit. The signature changes to F3AA. In a similar way it could be shown that the signature would be 8 E 92 for an error in bit 8 and 2682 for an error in the last bit. Thus it can be seen that a single bit error even in such a short sequence will produce quite a dramatic change in the readout from the signature analyser. In a practical situation the window period would be considerably more than 20 clock periods and can be more than 2^{16} (the cycle length of the register) if appropriate.

Signatures for a given circuit are not designed or calculated. What must be decided at the design stage is how start and stop signals can be produced and what hierarchy of tests is required to fully validate each node. This may involve the use of special test sockets to break feed-. back loops and isolate parts of the ciccuit under test. Finally, when the design is complete, the test routines are executed and the signatures at each node in the equipment are recorded. Documentation is completed by adding the singatures to the circuit diagram an example of which is shown in Fig. 4. The handbook should detail the sequence of tests and fixtures, switches or jumpers that are required.

After proving the operation of the system kernel a series of tests are run which sucessively introduce a larger percentage of the system until a signature fault is found. Faulty components can be located by backtracking until a device with a correct input signature but erroneous output signature is found.

Signature analysis is a very powerful service aid and is also useful for final assembly testing. The equipment is relatively inexpensive and the extra design work is minimal. Retrospective design into existing systems is also an attractive proposition.

Automatic test equipment (ATE)

This is the name given to usually large equipment sets which allow the user to test, thoroughly and quickly, complex circuit boards. They represent a considerable capital investment and are essentially fixed. Usually they can be justified only in a production situation with a high throughput although sometimes there is a case for them in a repair and maintenance department.
A typical ATE system is shown diagrammatically in Fig. 5. User communication with the system is via the console keyboard and v.d.u. Test routines are stored either on floppy or rigid discs. The processor controls setting up and running of the tests. It communicates with the unit under test (u.u.t) via the digital control unit and the high speed read/write memory. Connection to the u.u.t is made in a number of ways including via its edge
connector, through a bed of nails fixture and through test clips and probes.

The usual test procedure involves the stimulation of the input nodes of the u.u.t with data in the form of arrays of sequential test patterns. The u.u.t is clocked at its normal operating speed and response data at all outputs and internal nodes is captured in the memory for comparison with the correct response pattern. Input sequences up to 4000 bits long are used and the output comparison is done either on a bit for bit basis or the response data is compressed into a siznature for each node and then compared with stored signatures.
The imput test patterns are usually algorithmically generated by the test procedure in order to simulate some functional response. Another possibility is to use pseudo-random binary sequences as input data providing a more exhaustive though lengthy test. The correct response patterns are assessed either by emulation or heuristically. In the first case it is necessary for the ATE to have detailed circuit information of the u.u.t and also to store a library of device models so that the correct response can be calculated. Functional models of complex l.s.i devices such as microprocessors are therefore required. In the second case a known good unit is monitored through all the tests and the correct

responses are learnt and stored for later use.
The result of this initial testing is that the unit is either good or faulty, and in the latter case there is no information concerning the possible fault location. A second series of diagnostic tests then has to be executed and these will involve the operator following a set of simple instructions displayed on the v.d.u. The operator is guided through the circuitry applying either current or voltage probes until a faulty component is found. A label is then

Fig. 7. A test set consisting of a p.c.b. and a control module.

Fault finding follows a logical sequence of building up confidence in the operation of the system components. The c.p.u of the main system is used as the processor to execute the tests. The address and data busses and the c.p.u are confirmed as operational if the tester initialises correctly. Memory tests consist of write-read pattern checks on ram and checksum test on prom. The serial inputs are tested by lopping to the tester serial output. The serial outputs are looped to the tester serial input and known data sequences can be sent out to assist with fault finding at the peripherals. The tester displays diagnostics for each test to indicate success or mode of failure. In the case of proms and
rams the actual faulty chip can be indicated. The fault, when located. can be rectified by changing a circuit card; or a series of lower level test can be executed in order to fault-find down to component level with the aid of scope and logic analyser.
In many systems validation routines are an integral part of the software and are run at initialisation. However, they cannot perform such comprehensive tests as this type of portable test set with interaction of a maintenance engineer. The operation of the tester is straightforward and requires minimum documentation. It is also readily acceptable as part of the maintenance engineer's kit.

Conclusions

Several techniques have been discussed in this paper which make fault analysis in the data domain a practical proposition. In a design and development laboratory, use is made of logic analysers and microprocessor development systems with in circuit emulation. In production and field maintenance the choice is less straightforward. ATE for assembly use appears to be the best technique for thorough testing but is costly both in initial equipment and in programming. Equipment for service use can be selected only when a maintenance philosophy has been evolved depending on the type of equipment, numbers in service, ability and availabilty of field personnel, acceptable down time etc.

Future developments will see the introduction of 32 and 64 bit microprocessor systems which will require even more sophisticated techniques for fault finding. Designs will become fault tolerant by the introduction of both chip and peripheral hardware redundancy. In the field there will be greater use of remote fault analysis. Faulty systems will be connected by telephone lines to central installations, the test routines being down loaded and results fed back for analysis.

There will therefore be a continuing trend towards improved system reliability by increasing MTBF and minimising down time on the occurrence of a fault.

N~V

References

1. Frohwerk, R. A. 'Signature analysis: a new digital field service method'. HP Journal, May 1977

Reprinted from IBA Technical Review, No. 15, 1981.

Regulated Power Supplies, (3rd ed.), by I. M. Gottleib
423 pp., paperback
Prentice-Hall International, $£ 13.95$. ISBN 0-672-21808-9
AN expansion of the earlier works, dealing in an extremely thorough manner with a subject -which is not often treated in isolation. Practice, rather than theory is the approach, from a description of basic requirements to the implementation of linear and switching-type voltage and current regulators. The author not only provides an exceptionally detailed treatment of the subject, but does it in a literate manner.

Computing

Mastering Computer Programming

by P. E. Gosling
212 pages, hardback/paperback
MacMillan $£ 8.95 / £ 2.95$
The title of this book is one result of its forming part of the Master series, but the author lays no claim to omnipotence. He has produced a very 'accessible' description of the processes involved in writing programs, with a useful chapter on
errors and a piece on Fortran, Cobol and Pascal - Basic is used in the body of the book. The writing is direct and easy to read.

Microprocessor Development and Development Systems
Edited by Vincent Tseng
202 pages, hardback
Granada, $£ 16.00$
In the development of most applications using microprocessors, a 'development system' to aid programming and testing is of great benefit. The book, written by several authorities in the field, describes a number of such systems and their use and includes a chapter on emulators. There is also a section on managing without a d.s. The style is descriptive and 'readable'.

Microcomputer Design and Troubleshooting by Eugene M. Zumchak
 350 pages, paperback

Prentice-Hall, £12.55
A rather more down to earth treatment of the practicalities of design with micros than is usually found at this level. A home-built development system is described and further chapter headings include read/write timing, in terfacing, hardware testing and software design.

Circuit Design Programs for the Apple II

by Howard M. Berlin
132 pages, plastic bound
Prentice-Hall, $£ 11.15$
One of the Blacksburg series, this is a set of Basic programs intended to take the labour out of circuit design calculations, graph plotting and signal analysis, including average and r.m.s. values and Fourier series. Equipment needed to use the programs is either an Apple II Plus or Apple II with Applesoft card. A minimum of 32 K ram is required, 48 K being preferable.

Amateur radio

Amateur Radio Equipment Fundamentals
by A. D. Helphick, K2BLA
248 pp., hardback
Prentice-Hall International, £14.20. ISBN 0-13-023655-1
The tradition of home-built amateur radio equipment has largely given way to the operation of commercial gear. In an attempt to offset this trend, Mr Helphick has provided a course of instructions in the basics of design and construction of transmitting and receiving equipment, and has included two chapters of designs for receivers, transmitters and a 100 W linear amplifier.

ELECTRONIC COMPASS USING A FLUXGATE SENSOR

A device to fill the gap between the old-fashioned compass and expensive gyro-based navigation systems - an all-solid-state, high-resolution magnetic sensor.

With the ready availability of micro-computers, simple dead reckoning navigation systems for boats and cars can be constructed, if suitable distance and direction inputs are available. A 'distance-travelled' signal can usually be obtained quite easily, but the provision of a digital magnetic heading is more difficult. It would be possible to arrange a servo pointer follower and angle digitizer attachment for a conventional moving magnet compass, but this would be mechanically complex and unattractive for amateur construction. An inherently digital solid-state compass is a much more elegant solution. A compass of this type would be valuable in any application where multiple output displays are needed, a computer readable output is required or where the sensor will be subject to high vibration or accelerations. In addition, the electronic nature of the sensor permits its location far from large metallic masses which can lccally distort the field.

All solid-state compasses operate by sensing two or three resolutes of the horizontal component of the earth's magnetic field and then perform appropriate trigonometry with these resolutes to obtain the resultant magnetic flux direction. Using Hall-effect sensors, it is possible to produce very simple arrangements ${ }^{1}$. Unfortunately, during preliminary testing none of the low-cost, commercially available Hall-effect probes, including those with integral ferrite flux-concentrators, were found to have sufficient accuracy at magnetic field levels appropriate for compasses. Even when extra flux-concentrators formed by 2 cm long Mumetal strips attached to each side of the sensor were added, increasing their output from microvolt to millivoit levels, the temperature drifts were of similar magnitude to the output produced by the earth's field. The disappointing results obtained with Halleffect sensors forced the adoption of a fluxgate sensor with its inherently greater circuit complexity.
The theory of fluxgate magnetometers and compasses is beyond the scope of this paper and interested readers are referred to References 2 and 3. For a brief description of the principle of operation, see box.

An initial prototype of a fluxgate sensor used magnetic cores cut from Mumetal sheet, but an inconvenient post-fabrication annealing operation in a hydrogen atmosphere was required to obtain the desired magnetic properties. To overcome this dif-

by Neil Pollock

ficulty, attention was directed to magnetometer designs which could be constructed using readily available commercial ferrite components.

Circuit

The arrangement finally chosen (based on a design intended for sounding rockets ${ }^{4}$), uses a 14 mm diameter Philips ferrite toroid type number 4322-020-97140 (grey coating) or the equivalent uncoated toroid 4322-020-31390. Notes on adapting the design to use other toroid types are included later.

The circuit diagram and coil winding details are shown in Figs 2 and 3. The toroid is driven into saturation in alternate directions at about 10 kHz by a magnetic multivibrator circuit of the type often used in inverters.
Windings P_{1} and P_{2} are the drive primaries while P_{3} and P_{4} provide the necessary
feedback to maintain oscillation. The two secondary coils $S_{\mathbf{x}}$ and S_{y} are arranged so that in the absence of an applied external magnetic field they, at least in theory, experience no induced voltage. In practice, due to imperfections in the toroid and coils, voltage spikes are induced in the secondaries as the toroid goes into and out of saturation. These spikes have amplitudes varying from barely detectable to over one volt for different coil assemblies (Fig. 4).
When an external field is applied in the plane of the toroid some initial magnetization is induced in it. This initial magnetization results in one part of the toroid being driven into saturation before the part 180° away from it during one half of the oscillator cycle and the reverse situation occurring during the other half cycle. This non-symmetrical saturation of the core produces a flux unbalance and an induced voltage in the secondary windings. The magnitude of this induced voltage is closely proportional to the applied flux

Fluxgate magnetometers

There are very few means of measuring absolute values of magnetic fields. The most papular one is the Hall effect sensor, but most commercial units are designed for relatively high values of field.

The fluxgate configuration can measure very low field magnitudes by using the chopper-amplifier principle. Briefly, it is based on the fact that all parts of an uniformly excited toroidal magnetic circuit would be equally magnetized in the absence of external magnetic fields and therefore no voltage would be induced into a coil encompassing the whole magnetic circuit.

The introduction of external field in the plane of the toroid would result in a slight unbalance between the two halves of the magnetic circuit (see Fig. 1).

The flux at point A equals $\phi_{A}=\phi_{0}+\phi_{\text {, }}$, whereas point B, situated 180° away would correspond to a flux $\phi_{\mathrm{B}}=\phi_{0}-\phi$, Where ϕ_{c} is due to local toroid excitation and ϕ, to the external field.
Although the unbalance is very slight, it can be measured through one of its side effects: If we cyclically change the local excitation so as to switch the toroid between its two magnetic saturation points, we find that due to the unbalance, one half would be driven
into saturation a short time before the opposite half and the toroid as a whole would, for a short period of time act as a small magnet. The net result is that a coil encompassing the complete magnetic circuit would pick up an induced voltage impulse, proportional to the external field.
By mounting two such coils perpendicularly to each other onto the same toroid, we can resolve any external field into its X and Y components in the toroid plane.

Fig. 1. Flux interference pattern.

component perpendicular to the plane of the appropriate secondary coil. In practice, the effect of applying an external field is to change the amplitude of the pre-existing secondary voltage spikes. The amplitude of these spikes is also quite strongly temperature dependent. Figure 5 illustrates how the effect of an applied field is separated from the effect of temperature.
To perform the necessary arithmetic on spike amplitudes, a phase sensitive detector and summing amplifier is used for each secondary. The detector control signals (Fig. 6) are generated by differentiating, half wave rectifying and attenuating the primary drive voltages. The phase detector outputs are summed and the resulting

Fig. 3. Toroid windings.

Fig. 2. Fluxgate sensor circuit diagram.
mean voltages (outputs V_{x} and V_{y}) are proportional to the sine and cosine of the angle between the applied field and the plane of the $\mathrm{S}_{\mathbf{x}}$ coil. In principle the compass output is simply the arctangent of the output voltage ratio. It is essential that the coil assembly and the associated electronics be located on the same circuit board because the zero offset is very sensitive to the relationship between the wires connecting the coil to the electronics.

Construction details

The coils are the heart of the device and, although they are relatively non-critical, an effort applied to winding them carefully and neatly will be well repaid. The primary drive windings P_{1} and P_{2} are wound on the toroid first and fill it about $1^{1} / 2$ layers deep. These two coils are bifilar wound, that is they are wound with two wires side by side to produce two closely identical windings. The feedback windings P_{3} and P_{4} are bifilar wound on top of P_{1} and P_{2}. The two secondary windings can either be wound on a tubular former with notches at 90° intervals, which fits around the prewound toroid (Fig. 7) or wound separately and then glued in place. If the latter method is adopted it is suggested that each secondary be wound around a 6 mm by 16.5 mm rectangle formed by four pins. On removal of the pins the preformed rectangular coil should be bound with another piece of coil wire (taking care not to create a shorted turn) so that is is bundled together. The two secondaries can then be

Fig. 4. Primary drive voltage (lower trace) and resulting secondary $\left(S_{X}\right)$ voltage spikes (upper trace).
placed around the toroid and secured with quick-setting epoxy glue. However the secondaries are wound, it is essential that they are a neat fit and closely coupled is the toroid. On completion of the windings the toroid assembly should be glued to the circuit board and the leads connected, being careful to observe the correct hand of the P_{1}, P_{2}, P_{3} and P_{4} windings. All windings should be securely glued to prevent any relative movement between them.
The remainder of the circuit is straightforward and a board layout and component positions are reproduced in Figs. 8 and 9. The use of metal-can transistors and integrated circuits should be avoided, since they could distort the applied magnetic field.

If it is desired to use a toroid other than the one specified, the following procedure
is recommended. If necessary, change the number of turns on the primary windings, keeping the same ratio between drive and feedback windings, so that the operating frequency is in the range 5 kHz to 50 kHz . Change the value of C_{2} and C_{3} so that the phase sensitive detector control pulses are similar in length to the secondary spikes. Alter the value of R_{20} and R_{21} to obtain the desired overall sensitivity. Although they have not been tried, their specifications suggest that the following toroids could be used with only minor component value changes: Philips 4322-020-97060 (blue coating); Philips 4322-020-31390 (uncoated); Siemens B64290-K0045-X026 (coated); Siemens B64290-A0045-X026 (uncoated).

Performance

To facilitate calibration, the sensor board should be taped to a 360° plastic protractor which can be retated inside a circle drawn on a piece of paper placed on a wooden table top. Care must be taken not to move any ferrous or magnetic objects near the compass sensor during calibration. The author experienced inconsistent results which were eventually traced to the effect of his metal belt buckle. A typical calibration chart is shown in Fig. 10. The $V_{\mathbf{x}}$ and V_{y} outputs are usually within $\pm 1^{\circ}$ of best fit sine curves with zero offsets in the range ± 2 volts. A peak-to-peak amplitude of about 1.2 volts was produced by a horizontal flux density of 2.2×10^{-5} tesla (we$\mathrm{ber} / \mathrm{m}^{2}$ - the value for Melbourne, Australia). Similar outputs should be obtained.

Fig. 5. Effects of temperature versus applied magnetic field on secondary waveform.

Fig. 6. Secondary output ($S_{X}-I C 1$, pin 1 upper trace) and phase sensitive detector's control signals: middle trace: $/ C_{1}$, pin 5. lower trace: IC $_{7}$, pin 6

The sensitivity of the sensor is quite strongly temperature dependent (about 5% per ${ }^{\circ} \mathrm{C}$) but since both outputs are affected equally the indicated angle is unchanged. The zero offsets vary by about $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and for operation in environments which are not temperature controlled, these changes would have to be corrected for, if maximum accuracy was required. The repeatability of the sensor calibration is excellent with no measurable change over a one month test period, and presumably for much longer periods since there is no obvious mechanism for long term drifts. The sensor is very sensitive to temperature gradients in the ferrite core and it is essential that it be protected from draughts. The sensor board draws 17 mA from the +9 volt supply and 2 mA from the -9volt supply.

Installation

The sensor must be mounted in a horizontal attitude if accurate results are to be obtained. In a boat, where large attitude changes are often experienced, the sensor would have to be mounted on a set of gimbals. In a land vehicle subject to large accelerations but normally operating on an approximately level surface, it may be better to rigidly mount the sensor. If mounted near large ferrous objects or sources of magnetism, the sensor must be compensated as for a normal compass ${ }^{3}$. Fortunately with the freedom to remotely mount the sensor it is often possible to find a location where compensation is not required and the small residual errors can be treated as part of the calibration. If very long connecting leads are to be used between the sensor board and readout electronics, it may be necessary to include $1 \mathrm{k} \Omega$ resistors in series with the V_{x} and V_{y} outputs to decouple the operational amplifiers from the cable capacitance.

Microprocessor readout system

In a microprocessor-based system the sensor outputs V_{z} and V_{y} would be multiplexed into an analog-to-digital

Fig. 8. Fluxgate sensor p.c.b. layout.

converter with a useful resolution of at least 10 bits. An a. to d. converter like the Intersil ICL7 109 would be the first choice in this application since it could be simply interfaced to most microprocessors using parallel or serial data transfer. When the digital values of V_{x} and V_{y} were read in, the ratio $R=\left(V_{x}-V_{x_{0}}\right) /\left(V_{y}-V_{y_{0}}\right)$ should be calculated, where V_{xo} and $\mathrm{V}_{\mathrm{y} 0}$ are the zero offsets which should be varied with the measured sensor temperature unless it is placed in a temperature-controlled enclosure. Using the value of R and the signs of $\mathrm{V}_{\mathrm{x}}-\mathrm{V}_{\mathrm{x}}$ and $\mathrm{V}_{\mathrm{y}}-\mathrm{V}_{\mathrm{yo}}$ it would be possible to construct a look up table to give the heading angle with 1° resolution. The actual sensor will resolve heading changes of much less than 1° but when all sources of error are considered there is little point in aiming for greater overall resolution. Alternatively, if a dedicated arithmetic chip like the National Semiconductor MM57109 was available, it may be more efficient to take the arctangent of R and apply any necessary corrections to the computed heading later.

Hard-wired logic readout

In applications where a microprocessor is not available, it may be desired to have a

Flg. 12. Angle decoder: input circuitry and vector rotator.
dedicated hard wired readout system. A relatively simple, low cost, arrangement which was used during the development of the sensor is shown in block diagram form in Fig. 11. The operation of this system depends primarily on a vector rotator
which has as inputs two analogue voltages $X_{\text {in }}$ and $Y_{\text {in }}$ which are taken as the X and Y components of an input vector and a digital angle θ (0 to 1024 for 0 to 360°). The outputs $X_{\text {out }}$ and $Y_{\text {out }}$ are the X and Y components of the input vector rotated through the angle θ. The heading angle is given by the value of θ which reduces the X output to zero (ie. the angle through

Fig. 10. Typical calibration chart.

Fig. 11. Principle of operation of angle decoder.
which the input vector must be rotated, to align it with the system Y axis).

When a reading is initiated by the $\mathbf{2 H z}$ update clock, the binary and b.c.d. counters start counting from zero. When $\mathbf{X}_{\text {out }}$ passes through zero in a negative going direction, a latch enable pulse is generated which gates the current b.c.d. counter contents into the display. The RS flip-flop is needed to ensure that only the first zerocrossing in each update clock cycle produces a latch-enable pulse. The 360/1024 ratio between F_{2} and F_{3} produces an output in degrees. Outputs in other units, eg. tenths of degrees or grads, could be produced simply by changing this ratio. For this system to work correctly, the X_{in} and $\mathrm{Y}_{\text {in }}$ inputs must have the same sensitivity and no offsets; this is achieved with a pair of offset and gain adjustment amplifiers.
The circuit which is designed around a simple vector rotators ${ }^{5}$, using a pair of Analog Devices AD7533 low-cost multiplying digital to analog converters, is presented in Figs. 12 and 13. This circuit, which has an overall decoding accuracy of about $\pm 1^{\circ}$, draws 15 mA from the +9 volt supply, 7 mA from the -9 volt supply and 170 mA from the +5 volt display supply.
The set up procedure, which consists of adjusting offsets, sensitivities and balance is as follows: with the sensor board not connected, adjust \mathbf{R}_{101} and \mathbf{R}_{102} to set $\mathbf{X}_{\text {in }}$ $=5$ volts and $Y_{i n}=0$. Remove the 4040

FIg. 13. Angle decoder: control logic and display.

counter and ground its socket's pins 2-7, 9 and 12-14. Adjust R_{104} and R_{105} to set $\mathrm{X}_{\text {out }}$ $=-Y_{\text {out }}=5 / \sqrt{ } 2=3.54$ volts. Readjust R_{101} and R_{102} to obtain $\mathrm{X}_{\text {in }}=\mathrm{O}$ and $\mathrm{Y}_{\text {in }}=$ 5 volt. Check that $X_{\text {out }} \approx Y_{\text {out }} \approx 3.54$ volts. This set up procedure for R_{104} and R_{105} is sufficiently accurate for most applications, but if maximum accuracy is needed an interative procedure ${ }^{4}$ should be adopted. Replace the 4040 and connect the sensor board. While rotating the sensor board through 360° set R_{101} to remove the V_{x} zero offset so $X_{i n, \max }=-X_{i n, \min }$. Set R_{102} to remove the V_{y} zero offset so $Y_{\text {in,max }}=$ - $Y_{i n, \min }$ and finally set R_{103} to equalize X and Y sensitivities so that $X_{i n, \max }=Y_{i n, \max }$. Since this circuit was developed primarily for bench testing, no compensation for changes in X and Y zero offsets with temperature is provided. An enthusiastic analog circuit designer could perform this compensation with thermistors in resistor networks around the input amplifiers.

Power supply

Since this system will normally be used in mobile applications, it is desirable that it should operate off a 12 volt supply. A regulated power supply suitable for this purpose is shown in Fig. 14. Two alternative methods, (1) or (2) of generating the -9volt supply are shown. The Fairchild $\mu \mathrm{A} 78 \mathrm{~S} 40$ universal switching regulator was used for most of the development of this project. However quite recently the Intersil ICL 7660 voltage converter became available and proved to have equal performance in this application with a considerably simpler circuit.
Magnetic compasses and the precautions required for their effective use are complex and it is strongly recommended that potential users read Ref. 3 and thoroughly check the accuracy of their own installation before relying on it in circumstances where life or property might be at risk.

References

1. Steinbaugh, G. Hall Compass Points Digitally to Headings. Electronics, Dec. 18, 1980, pp. 112-114
2. Stuart, W. F. Earth's Field Magnetometry. Reports on Progress in Physics, Vol. 35, 1972, pp. 803-881
3. Hine, A. Magnetic Compasses and Magnetometers. Adam Hilger Ltd. London, 1968
4. Acuna, M. H. and Pellerin, C. J. A Afiniature Two-Axis Fluxgate Magnetometer. IEEE Transactions on Geoscience Electronics, Vol. GE-7, No. 4, Oct. 1969, pp. $252-$ 260.
5. Mayer, A. Low-Cost Co-ordinate Converter Rotates Vectors Easily. Electronics, Sept. 22, 1981, pp. 133-135

M. G. Scroggie - Fifty-nine years a WW author

There can be very few electronic engineers, from this country or abroad, to whom the nom de plume Cathode Ray is not part of their education. For nearly sixty years Marcus Scroggie has contributed articles on wireless and other manifestations of the mobile electron which have instructed, entertained and humiliated more readers than would probably care to admit to it.

His technique has often been to take a 'simple' circuit and concede that nothing could be easier. The next step in the process, to demonstrate that the apparent simplicity is a snare and a delusion, would possibly have reduced the number of engineers to a dangerous level had he not quickly moved on to show that, if approached in the proper manner, the circuit was unlikely to bite.
M. G. S. is not adverse to an argument, the most notable perhaps being the Affair of the Arrow, his contention being that to

put arrows on both ends of a vector/phasor was akin to not knowing whether the voltage is coming or going. He has also, on occasion, been a touch professorial with those who approach the Queen's English with evil intent. The editorial people in WW have long been terrified of writing 'd.c.' (meaning zero frequency) or phrases such as decoupling to earth' in case M. G. S. saw the piece and fired a broadside.

The first WW article under the name of Marcus Scroggie appeared in the issue for August 15, 1923 - a method of raising 800 V for a valve transmitter, M. G. S. being also amateur operator 5 JX . But the pieces which have contributed most to the stature of WW since the first article appeared in 1934 are the articles by Cathode Ray, for which tens of thousands of engineers have cause to thank him.

On his 81 st birthday, we wish Marcus Scroggie well.

A simple explanation for newcomers to computing of the characteristics of visual display units, their method of working and control, and a description of some integrated-circuit video-display controllers.

In the world of computers, the word 'monitor' has an unfortunate double meaning. A software monitor is a program, permanently resident in a computing system, which can be used to test peripherals or memory on that system and perform simple program debugging. An electronic monitor is almost a television set without the receiver and loudspeaker: essentially it is the tube, sometimes the power supply, and the electronics required to produce a picture. Instead of the aerial being the signal source, an unmodulated signal has to be provided - either composite video or direct drive. The former is a single line, whereas the latter is made up from three lines - a video line, horizontal sync. and vertical sync. lines.

Composite video

Figure 1 shows some sample video waveforms. In the composite video signal, the quiescent level is usually 0.3 V , which corresponds to black level on the screen. Synchronizing pulses are superimposed on this black level, the short pulses forcing a horizontal retrace and the long ones vertical retraces. The majority of the time between horizontal sync. pulses can be used for the display, the remaining time from just before to just after the sync. pulses being the blanking period, during which the tube does a retrace. During blanking, the signal must not exceed the black level, or the retrace will be seen on the screen. The composite video signal rises to 1 V , the 'white level' or brightest white on a white monochrome set: since the signal varies between 0.3 V and 1 V , the picture increases in intensity through levels of grey. The waveform shown would produce a bright white dot at the left-hand end of that scan line. A line impedance of 75 ohms is normally associated with composite video signals.

Direct drive

The direct-drive waveforms, also seen in Fig. 1, should produce the same visible results as the composite waveform shown above them. Direci-drive voltage levels are not as well defined as composite video some monitors take signals from t.t.I. buffers, while others need IV signals.

Direct drive has the advantage that all the drive signals are, normally, readily available from the circuitry generating the video signal; however, it is difficult to send these signals over long lengths of cable. This problem is avoided with composite video, which can be transmitted down metres of coaxial cable without much of a problem. Direct-drive signals can be converted to composite video with a

by Colin Carson

handful of components, but the reverse procedure is not so easy. Generally, there are more direct-drive t.t.l. monitors on the market than the composite-video type and the price of the former is normally slightly lower.

Of course, a monitor is not essential: a low-resolution picture can easily be produced on a television set, by connecting a composite-video signal to a u.h.f. modulator. The modulated signal is fed down coaxial cable to the aerial socket on the television receiver, which is then tuned to the new signal on a spare channel.

Bandwidth

The picture is made up from discrete dots, which merge together when viewed from a distance. Only a finite number of dots can be fitted into the display time available and this number is limited by the bandwidth of the monitor or television. If a monitor possesses a bandwidth of $10 \mathrm{MHz}(1 / \mathrm{f}=$ 100 ns), then the minimum width of a dot must at least be equal to $1 / \mathrm{f}$ and preferably double - that is 100 to 200 ns . If this constraint is not met, then the monitor will be unable faithfully to interpret the video waveform. Having decided upon a dot width, its inverse is termed the dot-clock frequency and is usually the highest frequency needed in a system. When incorporating a video display into a system it is always desirable to generate dot-clock, processor clock and band rate from dividers driven from a single crystal oscillator - although this is not always possible.

Suppose a dot clock frequency of 10 MHz is used with a monitor having a horizontal scan rate of 15.625 kHz (64 microseconds) with 48 microseconds of that allowed for display, then it would be possible to display x dots on each horizontal scan line, where x equals the available
time (48) divided by the dot width (0.1) that is 480 dots.

A domestic television set has a bandwidth of between 4 and 8 MHz , whereas monitors commonly have bandwidths up to 20 MHz , some up to 65 MHz .

Horizontal scan rates

The television standard of 15.625 kHz has the disadvantage that, to much of the population, it is audible. There is a growing trend to increase this frequency so that it cannot be heard, 18 to 20 kHz being common. Obviously, as this frequency increases, so does the bandwidth necessary to display the required number of dots.

Vertical scan rate/refresh rate

In the UK, the vertical scan rate is nearly always 50 Hz , although an increase of 5 Hz or so can be useful for reducing screen flicker. As soon as a monitor is run at anything but 50 Hz , care must be taken to avoid hum loops.

Knowing the vertical and horizontal scan frequencies, the maximum number of horizontal scan lines can be calculated. A frequency of 50 Hz corresponds to $20 \mathrm{mil}-$ liseconds between vertical sync. pulses, of which one millisecond might be needed for vertical blanking. The remaining 19 mil-

	Codes	
0000	0100	04 H
0000	1010	0 AH
0001	0001	11 H
	1111	1 FH
	0001	11 H
	0001	11 H
	0001	11 H

Fig. 2. Capital A formed in a 7×5 matrix, with matrix patterns obtained from character generator and hex. equivalents.

Fig. 1. Video waveforms. Top is composite-
fed separately, form the direct drive. video signal, while other three waveforms,

liseconds is available for horizontal scan lines, the number of which is calculated by dividing this period by the horizontal scan time, i.e. $19000 / 64=296$ scan lines.

Characters

A character can be displayed on the screen by illuminating specific dots within a small matrix, 5×7 and 7×9 being common matrix sizes. Figure 2 shows an upper case ' A ' formed in a 5×7 matrix, which is adequate for low-bandwidth applications. Larger matrices improve character resolution, provided the monitor has sufficient bandwidth. With a 5×7 matrix, an intercharacter spacing of one dot is acceptable, so a scan line supporting 480 dots could handle $480 /(5+1)$ - i.e. 80 characters horizontally.

The matrix patterns for each character displayable by a video system are stored in a prom or rom character generator and make up what is known as the character set. Each pattern has to be coded into binary, using a 1 where the matrix is to be illuminated and 0 elsewhere. Each horizontal bit pattern in Fig. 2 is converted to a byte and stored, scan line by scan line, in the character generator, which is often a prom, so that the character set can be changed at will.

If 296 horizontal scan lines are available, and a 5×7 matrix is being used with three scan lines free between each row of characters, then 29 rows of characters could be fitted onto that screen. This would not be very readable and would not allow for lower-case letters with descenders such as ' g ' or ' y '. They are accommodated by in-
creasing the depth of the matrix or by raising them into the matrix, which can be strange visibly.
The character clock indicates the rate that characters appear on the screen. If dot clock is 100 MHz and each character is $5+1$ dots wide, then the character clock rate is $10 /(5+1)=1.67 \mathrm{MHz}$.

Cursor

The cursor is a block or bar of light, often flashing, which moves around the screen indicating the position where the next character is to appear. As the screen is filled with text, so the cursor moves along covering each line in turn: carriage return sends the cursor to the start of the next line down. When the cursor reaches the end of the bottom line on the screen, it is common for the text to scroll, which means that each line of text moves up the screen one line and the top line disappears.

Video ram

Figure 3 shows a typical, minimum visualdisplay system.

Screen information is stored in an area of ram known as video ram: in older designs, this ram often has separate data input and output pins. Each byte in the video ram corresponds to a position on the screen; for example, a screen having 16 rows of characters with 64 characters in each row requires 16×64, i.e. 1024 contiguous bytes of video ram. The first byte corresponds to the first character on the first row, the second to the second character on the first row . . . the 65th byte to the
first character on the second row and so on until the 1024th byte which corresponds to the last character in the last row.
A code has to be stored in each location to define what character will appear at the allocated position on the screen. This code is usually an ASCII seven-bit code; the character generator is coded similarly. As the video ram is likely to be eight bits wide, and the ASCII code only seven, the spare bit can be used for other purposes.
The video ram is accessible by both the video control circuitry and the user's system - the latter may well want to read the video ram as well as write to it. Exactly how the circuitry arbitrates between the two interested parties is a matter for some care. In Fig. 3 a multiplexer is fitted to the address lines feeding the video ram so that they can be switched between the user's system and the video control circuitry, which issues a series of 64 sequential video ram addresses. At the top of the screen, the first address issued is 000 H , as this corresponds to the first byte on the first row, the next 001 H and so on up to 03 FH . Suppose that 41 H is stored in location 000 H ; shortly after the issue of that address by the control circuitry, 41 H appears data output pins and this code is presented at the input of the character generator. The control circuitry also issues a row address for the character generator, which increments for each scan line of the character. The display-enable line is active except during blanking and the cursor line at the time it is present on the screen.

Continued next month

Hangover, a rather loose term to describe the stored energy resonance in a loudspeaker, the principal cause of colouration that immediately tells you you're listening to a loudspeaker.

Take it away and there's a new world the loudspeakers have nothing more to say instead there's just the orchestra and the magic of the music.

Perhaps even something to celebrate about.

For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE18 7DB. Telephone: (0480) 52561.
important part of your life, then a pair of ESL-63 loudspeakers could be the best investment you've ever made.

WW - 013 FOR FURTHER DETAILS

The best ref.for the low power game.

What makes the new Ferranti ZNREF Series such a sharp-eyed reference source in the lower power field?

A minimum operating current of 150 u A . Voltages from 2.5 V to 10 V . Excellent temperature stability. Low dynamic impedance. Trimmable output. A choice of initial voltage tolerances. And the ability to control the game over a wide range of currents and temperatures.

Whatever league you're in-data
acquisition systems, portable instrumentation, codec systems or digital voltmeters, put the whistle in the hands of one of our ZNREF Series and win the game.

Send for data or contact,
Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP. Tel: 061-624 0515/6661
Telex: 668038

FERRANTI Semiconductors

[^1]
AUDIO OSCILLATOR WITH TONE BURST

An audio signal generator, providing both sine and square outputs from 10 Hz to 250 kHz . Switch-controlled logic circuitry provides a variable mark/space-ratio tone burst, and the output can be switched to include a RIAA network

This article describes the design and construction of a signal generator capable of producing both sine and square waves in the range $10 \mathrm{~Hz}-250 \mathrm{kHz}$. Comprehensive tone-burst generation facilities are also provided. The oscillator section is a conventional Wien-bridge configuration, using an RA53 thermistor for amplitude stabilization; and for those who have no requirement for tone burst facilities, the oscillator, associated attenuator, and output amplifier may be used as the basis for a good general-purpose sinewave generator. The sine-wave distortion has not been measured, but the distortion figure for this type of circuit is usually claimed to be 0.5 1.0% over the $20 \mathrm{~Hz}=20 \mathrm{kHz}$ range. Also included in the oscillator section is an octave switching arrangement (very convenient for checking filter slope rates) and an RIAA pre-emphasis network, which may be used for testing the performance of magnetic pickup preamplifier inputs.

Circuit description

The oscillator, shown in Fig. 1 employs a Wien-bridge network to determine frequency and the oft-used R53 thermistor stabilizes the oscillator output at about 1 V r.m.s. It is the simplest (and most reliable) form of stabilization, its main drawback being a relatively long thermal time constant which gives rise to some output-amplitude bounce or changing frequency.
Variation of R_{A} / R_{B} and/or C_{A} / C_{B} control output frequency: R_{1} and R_{6} set the maximum frequency for a given value of C ; minimum frequency is determined by the

by J. T. Tiernan, F.S.E.RT.

maximum value of $\mathbf{R}_{\mathbf{A}} / \mathbf{R}_{\mathbf{B}}$ (plus, of course, R_{1} and R_{6}). In practice, the value of C_{2} also affects the lowest frequency that can be obtained - the larger the value of C_{2} the lower you can go.
A CA3140 op-amp is used as the active element in the oscillator, with R_{7} included to help it sink current to the 0 V line. With out R_{7}, there is noticable clipping of negative half cycles of the output sinewave. A 741 may be substituted directly for the 3140, but the 741's poor slew-rate performance will limit the upper frequency obtained to around 50 kHz .
Frequency determination. Many signal generators have frequency bands spanning the $15-200$ range; but that is not always convenient, and this design works in bands of $10-150$ via the secection of CA_{1-4} and CB_{1-4} (Fig. 2). An additional and useful feature is provided by capacitors CA_{11-4} and CB_{11}. 44 in conjunction with S_{7}, operation of which effectively halves the value of the selected capacitors and causes the output frequency to be exactly doubled. It allows for quick and convenient checking of filter roll-off slopes.
The bandwidth of a given effect is usually proportional to its centre frequency, and this implies that it would be appropriate to give more dial space to the

Fig. 1. Wien-bridge oscillator circuit with output amplifier. Frequency determining network shown in Fig. 2.
lower frequencies in order to keep bandwidth vs frequency in proper perspective. Many commercial signal generators for serious audio work give approximately equal space on the dial scale for each octave of frequency covered, and the (nearly) ideal component for R_{A} / R_{B} is a dual square-law potentiometer. Such components are available but, besides the expense, they are wirewound, rather large, and not well suited to high-frequency operation. However, shunting the active section of a log-potentiometer, as shown in Fig. 2 (\mathbf{R}_{32} and \mathbf{R}_{33} across \mathbf{R}_{A} and R_{B}) produces a very acceptable result. Frequency calibration holds good up to about 50 kHz , but above that there is a gradual divergence leading to a -15% error at the maximum output frequency.
The output from the oscillator at points E and F of Fig. 1, is about 1 V r.m.s. and is fed to the tone-burst section (to be eventually returned to point G for output conditioning). Those who wish to make use of the oscillator section only may link points E and G directly.
Attenuator. Resistors $\mathbf{R}_{8,9,10}$, in conjunction with S_{2} and P_{1}, form a simple decade attenuator. The decade divisions are not exact owing to the finite input impedance (47 k) of the output amplifier. The attenuator is placed before the amplifier in order to realise minimum output impedance, and hence maximum drive capability at the output terminal. If 600 ohm output impedance is required it can be achieved by bridging points M and N with a 600 ohm resistor.

Fig. 2. Components shown as C_{A}, R_{A}, etc in Fig. 1. Frequency is switched in decade steps and S_{7} doubles frequency.
inputs which approximate to the real-life situation, and the following applications spring immediately to mind:

- amplifier peak power determination;
-visual inspection of amplifier transient behaviour;
-measurement of noise reduction circuitry performance; (attack/release times and frequency sensitivity)
-loudspeaker tone burst testing.
In the circuit to be described, c.m.o.s. logic i.cs are used to generate the toneburst control signals. The design uses four i.cs, and tone-burst timing is controlled by the outputs of a single 12 bit counter, clocked at the oscillator signal frequency. An oscilloscope pre-trigger is produced one half cycle before the start of a tone burst.

Logic description. The circuit diagrams for the control logic are given at Figs 4 and 5 , but to aid understanding, an equivalentfunction logic version, with associated waveforms, is given at Fig. 3. (The waveforms assume selection of the Q_{1} and Q_{2} outputs - points \mathbf{G} and H - from the counter, to set the number of cycles in the burst and the total sequence period respectively.)
Referring to Fig. 3; the counter is running constantly, clocked via a squaring amplifier and Schmitt trigger (note that the counter advances on the negative transition of the clock signal). Every time

Output section. The output amplifier is a simple class B design with a gain of about 2.5 , and it is capable of driving output loads as low as 10 ohm (but at reduced output, about 300 mV maximum). There are no discernible crossover effects and its performance is far superior to that which could be obtained by using, say, another $3140 \mathrm{op}-\mathrm{amp}$. The d.c. levels have been chosen to allow operation down to +7.5 V supply voltage (the lowest value at which the battery supply can be considered usable) at which the amplifier will deliver 2 V r.m.s. before the onset of clipping. This approach restricts the maximum potential output which could be realised for supply voltages above 7.5 V , but it should prove adequate for most test applications. With the amplifier gain value chosen it will always be possible to provide slight overdrive at the maximum settings of S_{2} and P_{1}; and the short circuit output current is limited to 50 mA r.m.s. with $\mathbf{R}_{16}=\mathbf{R}_{17}=560 \mathrm{hms}$. Output rise and fall times (square-wave input with $\mathrm{C}_{12}=$ 18pF) are symmetrical and surprisingly good for so simple a design.
The final bit of output circuitry is a passive RIAA pre-emphasis network, accurate to within 1 dB , and useful for carrying out equalization checks on magnetic pickup preamplifiers. The attenuation factor of the network measures 31 dB , and output impedance 3 k 3 ohms , at 1 kHz .

Tone burst generator

The ability to generate short but precisely defined bursts of signal is a very useful attribute for a piece of audio test equipment; audio systems can be fed with test

Fig. 3. Basic circuit of tone-burst switching, with waveforms.

G goes positive it will either set or maintain toggle output J at logic 1. Each positive transition of H will reverse the status of the first toggle, but reset will occur as soon as there is a positive transition at G.

Since the counter advances on the negative clock transition, the states of J and K will not be transferred to X and Y until half a cycle after they (J and K) have changed: this system ensures there will be no odd triggering effects due to counter propogation delays, but it will provide a convenient (and necessary, for some 'scopes) sync. waveform half a cycle before the analogue gate IC_{5} is opened for a toneburst transmission. During the X 'on' period, the upper gate of ICs transmits the input signal to the output attenuator: during the Y 'on' period it will pass whatever is present at the input of the lower gate, which is a d.c. level set by P_{4} (usually to the centre level of the signal waveform on the upper gate) on which may be superimposed the input sine wave from point A, at an amplitude determined by the setting of P_{3}. The trigger control, P_{2}, sets the mark/space ratio of the Schmitt-derived square wave, and hence either (a) the duty cycle of the output waveform (square-wave output selected) or (b) the point on the sine wave at which the tone burst starts. Wave-

Fig. 4. Tone-burst gating. Inputs from circuit of Fig. 1. (E and F) and output to G in Fig. 1.
forms M_{1}, M_{2} and P give some idea of the effects of P_{2}, P_{3}, and P_{4}. Note that the waveform lettering is correct in relation to Figs 4 and 5 except those noted arbitrarily as X and Y at the inputs to the analogue gates.

Taking the real-world circuits and dealing first with Fig. 4, Tr_{4} takes the input sinewave, plus a 4.5 V d.c. level, from point F in the oscillator section and raises it to a level suitable for operating the Schmitt trigger $\mathrm{IC}_{2 / 1 \text {. }}$. Variation of P_{2} allows variation of the m / s ratio of the resulting square wave between 0 and 100%. The Schmitt circuits invert the input waveform, and thus S_{4} will select a
clock-pulse train which may be either in phase or 180° displaced from the input sinewave. The setting of S_{4} (INVERT) determines the polarity of the output tone burst, i.e. ' n ' cycles, starting with a positive half cycle, or ' n ' cycles starting negative. A third Schmitt, $\mathrm{IC}_{2} / 3$, is used to invert and buffer the square wave for input to the analogue gate, and $\mathrm{R}_{26} / \mathrm{C}_{12}$ attenuate it to approximately the same pk-pk amplitude as the sinewave (but only at $\mathrm{V}_{\text {supply }}=$ 9 V ; the square wave amplitude will vary according to the actual supply voltage).

The square wave at point F clocks the counter to produce division ratios $2,4,8$, 16 . . 2048,4096 at the $Q_{0} \ldots Q_{11}$ terminals, and the selected Q points are fed to the 'set direct' and clock inputs of $\mathrm{IC}_{4 / 2}$ (a D-type flip-flop with the D input on pin 9) - refer back to Fig. 3 for the

Fig. 6. Setting S_{8} in Fig. 5. to "PATTERN" produces this type of output.

Fig. 5. Switching for tone-burst gating. Circuit connects to G and H in Fig. 4.
waveforms. Either the J or K output may be selected to feed the D input of $\mathrm{IC}_{4 / 1}$, and the position of S_{5} determines the toneburst /space relationship of the output sequence. For $G=Q_{2}, H=Q_{7}, S_{5}=K$, the output will consist of sequences of eight cycles of signal followed by 248 ($=256-8$) cycles of 'space'. With $\mathrm{S}_{5}=\mathrm{J}$ and Qs unchanged, the output sequence will be reversed to 248 cycles of signal and eight cycles of 'space'.
For constant sine or square-wave output $\left(\mathrm{S}_{6}\right)$ the Q selection switches (Fig. 5) are all set to 'off' ($J=1$ via R_{25}) and $S_{5(a)}$ is set to select K (REVERSE).
The sync. output is taken from either J or K via $S_{S_{(b)}}$ and buffered out via $\mathrm{IC}_{2 / 6}$
and $\mathrm{R}_{28} / \mathrm{C}_{14}$. In practice, point M can be connected directly to point $\mathrm{L} ; \mathrm{S}_{5(\mathrm{~b})}$ is only required if your oscilloscope 'prefers' triggering from a particular polarity waveform when $\mathrm{S}_{5_{(b)}}$ can be wired accordingly.
Q switching (Fig. 5). It is appropriate to look at the counter switching arrangements at this point rather than going immediately to the circuitry around $\mathrm{IC}_{2 / 4}$ and $\mathrm{IC}_{2 / 5}$. There are 12 Q switches, one for each of the counter outputs $Q_{0}-Q_{11}$, and the interconnexions are such that, regardless of the total number of switches in the 'on' position, only the outer two are effective and feeding Q signals to S_{8}. With S_{8} in the BURST position, the generated control signals are as depicted in Fig. 3. The time period contribution of an 'effective' Q switch depends on whether it is the first (feeding G) or the last (feeding H); the last switch sets the overall sequence time period in accordance with the normal binary weighting of its Q input, i.e. $Q_{0}=2, Q_{2}=4, Q_{2}=8$ etc. The first switch sets the burst-time period within the overall sequence at a value equal to half its binary weighting ($Q_{0}=1, Q_{1}=2$, etc). Waveforms G, H, J make the relationship clear.

When S_{8} is in the PATTERN position, the situation is rather different and the operation cannot be seen from the simple representation at Fig. 3. The waveforms given in Fig. 6 show what happens when $\mathrm{G}=\mathrm{Q}_{3}$ and $\mathrm{H}=\mathrm{Q}_{0}$. When, say, $\mathrm{G}=\mathrm{Q}_{6}$ and $\mathrm{H}=\mathrm{Q}_{2}$, the output will consist of 128 cycle sequence periods, within which there will be four bursts of eight cycles spaced at eight-cycle intervals. This option may have no useful application, but the result is too pretty to ignore, and it is the only option which can produce $1: 1$ mark-space ratio in tone-burst mode.

Turning now to the last two elements of IC_{2} ($\mathrm{IC}_{2 / 4}$ and $\mathrm{IC}_{2 / 5}$); these are used to form a 'battery saver' circuit feeding a front panel led 'on' indicator $\left(\mathrm{D}_{3}\right)$. With the component values specified, C_{16} charges (via R_{29}) and discharges (Tr_{5} and D_{3}) on a three-second cycle, causing the led to flash appropriately. But with the led buried in a plastic bung for panel mounting, and in a well-lit room, the effect is, frankly, disappointing; the led needs to be reasonably openly mounted, and angled upwards, for it to be worthwhile.
The resistor R_{30} and terminal AA are provided to give constant led operation when the generator is fed from an external supply (see Fig. 7); but if a rise to 16 mA on battery operation can be tolerated, terminal AA may be connected permanently to the +9 V supply line.

Finally, in this description of the toneburst logic, a couple of points about the nature of the input to terminal A should be mentioned. In order to exercise smooth control of the m / s ratio fo the square wave out of $\mathrm{IC}_{2 / 1}$, the input circuitry for Tr_{4} has been designed to accept a sinewave input of about IVr.m.s. with a d.c. component of about +4.5 V . It is also worth mentioning that shunting $P_{2}(22 k)$ with a 33 k resistor gives smoother control than the potentiometer on its own. The signal inputs to

	Specification
All measurements taken with battery supply, $\mathrm{V}=9.5 \mathrm{~V}$	
Frequency range	$10 \mathrm{~Hz}-250 \mathrm{kHz}$ in four overlapping bands. $10-150$ nominal band scale plus octave multiplier.
Output waveforms	1. continuous sine wave
	2. continuous square wave with variable m / s ratio and symmetrical rise/fall times:
	to 70\% 60ns
	at 7 V pk-pk output and $10 \mathrm{k} \Omega$ load.
	3. Sine-wave burst:
	any binary figure ($1,2,4,8 \mathrm{etc}$) between 1 and 2048 cycles within
	an overall timing sequence selectable between 2 and 4096 cycles.
	4. Square-wave burst, as for 3 .
	5. Either 3 or 4, but with variable-amplitude
	sine-wave, interposed between the main burst signals.
	6. Group burst patterns
	7. All the above but with RIAA pre-emphasis.
Maximum output signal (1 KHz sine wave)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega 2.5 \mathrm{~V}$ r.m.s.
	$\mathrm{R}_{\mathrm{L}}=600 \Omega 2.25 \mathrm{Vr} . \mathrm{m} . \mathrm{s} .(+9 \mathrm{dBm})$
	$\mathrm{R}_{\mathrm{L}}=100 \Omega 1.5 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$.
	$\mathrm{R}_{\mathrm{L}}=10 \Omega 300 \mathrm{mVr.m.s}$.
Amplitude/frequency stability *Square wave amplitude	$+0.5-1.0 \mathrm{~dB}, 10 \mathrm{~Hz}-250 \mathrm{kHz}$ (ref. 1 kHz .2 V r.m.s.)
	Variable up to 7V pk-pk
Short-circuit output current	Limited at 50 mA r.m.s.
Supply requirement	7.5-9.5V at 10 mA (internal bateries) or
	7.5-12 V at 12-20mA (ext. s
*set approximately equal	to sine wave pk-pk output (with 9 V supply)

the analogue gates (IC_{5}) must not go outside the limits bounded by the power supply feeds to the i.c. Slight overdrive will result in clipping of the output and severe overdrive may cause permanent damage to the device. The output from Point F on the oscillator fulfils both the above, and if anyone wishes to make up the tone-burst logic only, to be driven from a generator with an earth-referred output, a coupling network similar to that

at Fig. 8 must be used for coupling to point A (TBG/A) in the tone-burst logic.
continued on page 86

Fig. 8. Circuit to allow the use of the tone-burst generator alone.

TAPE VOICES

It is now more than eleven years ago that Konstantin Raudive's book, "Breakthrough" announced the discovery of the tape-voice phemonenon to the English speaking world. The publication started what at that time was expected to become the greater challenge in the field of parapsychology and electronics

Wireless World also carried a detailed review of the book "which I strongly commend to your attention" (Vector, June 1971), and the comment that "the probiem cries out for investigation". For the sake of truth, it must be admitted that some interesting investigations indeed was carried out, and the results of some very convincing tests by Pye, Belling-Lee, and others) were published. Also, a lot of articles, radio and television programmes dealt with the matter. But after a short time, the interest decreased, and today (to my best knowledge) all research is done outside Britain.

Can it really be true that British engineers and technicians (I mean, of course, real technicians and not modern black-box manipulators with digitalized brains) have completely given up this, "the greatest challenge"? I can't believe that this should be the case.

Anyhow, if there is somebody working on the technical aspects of this matter, I should be very glad to hear of it.
Peter Stein
3400 Hilleroed
Denmark

LM 109

In Appendix 1 of the interesting article "LM 109 three-terminal voltage regular" (March 1982), J. L. Linsley Hood sounded hardly convincing when he neglected the last two terms of equation (1), as these are strongly tempera-ture-dependent. I would like to propose a simpler, but more credible solution.

The voltage across a forward-biased emitter junction in silicon is approximately 0.6 V and decreases by 2 mV per degree Centigrade. Therefore $V_{\mathrm{BE}}=0.6$ and $a V_{\mathrm{BE}} / \mathrm{a} T=-0.002$. On the other hand,

$$
V_{\mathrm{BE}}=\frac{k T}{q} \ln \left(1+\frac{I_{\mathrm{E}}-\alpha_{I} I_{\mathrm{C}}}{I_{\mathrm{EO}}}\right)
$$

where α_{I} is the inverted common-base current gain. As I_{E} and I_{C} are much greater than the leakage current I_{EO} and α_{1} is in the order of 0.5 , it is reasonable to assume that

$$
\begin{gathered}
\frac{I_{\mathrm{E}}-\alpha_{\mathrm{I}} I_{\mathrm{C}} \gg 1}{I_{\mathrm{EO}}} \\
V_{\mathrm{BE}} \approx \frac{k T}{q} \ln \left(\frac{I_{\mathrm{E}}-\alpha_{\mathrm{I}} I_{\mathrm{C}}}{I_{\mathrm{EO}}}\right)
\end{gathered}
$$

Imposing the condition $I_{\mathrm{Cl}}=10 I_{\mathrm{C} 2}$ for two identical transistors at the same temperature,

$$
\begin{gathered}
\frac{I_{\mathrm{E} 1}}{I_{\mathrm{E} 2}}=\frac{I_{\mathrm{Cl}}}{I_{\mathrm{C} 2}}=\frac{I_{\mathrm{E} 1}-\alpha_{1} I_{\mathrm{C} 1}}{I_{\mathrm{E} 2}-\alpha_{1} I_{\mathrm{C} 2}}=10 \\
\Delta V_{\mathrm{BE}}=\frac{k T}{q} \ln \left(\frac{I_{\mathrm{C} 1}}{I_{\mathrm{C} 2}}\right)
\end{gathered}
$$

which is equation (3) in the article.

$$
\frac{\partial}{\partial \bar{T}} \Delta V_{\mathrm{BE}}=\frac{k}{q} \ln \left(\frac{I_{\mathrm{C} 1}}{I_{\mathrm{C} 2}}\right)=\frac{\Delta V_{\mathrm{BE}}}{T}
$$

The reference voltage should be independent from temperature:

$$
\begin{gathered}
V_{\text {out }}=V_{\mathrm{BE}}+\delta \Delta V_{\mathrm{BE}} \\
\frac{\partial}{\partial T} V_{\text {out }}=\frac{\partial V_{\mathrm{BE}}}{\partial T}+\delta \frac{\mathrm{a} \Delta V_{\mathrm{BE}}}{\partial T} \\
=-0.002+\frac{\mathrm{a} \Delta V_{\mathrm{BE}}}{T}=0
\end{gathered}
$$

$\delta \Delta V_{\mathrm{BE}}=0.002 T=0.6$ volts for $T=300^{\circ} \mathrm{K}$.
Finally,

$$
V_{\text {out }}=V_{\mathrm{BE}}+\mathrm{a} \Delta V_{\mathrm{BE}}=0.6+0.6=1.2 \mathrm{~V}
$$

which is the "band-gap" potential for silicon. W. Falcone,

Department of Pharmacology
Leeds University

CALCULATING V.S.W.R.

I have stumbled upon a quick method of calculating v.s.w.r. when the reflection coefficient is known and vice versa, which may be of interest to Wireless World readers. This method is especially helpful for use with a scientific pocket calculator. The theory behind this method is as follows:

$$
\text { v.s.w.r.(s) }=\frac{1+|r|}{1-|r|}
$$

where r is the reflection coefficient. This function has a minimum value of 1 when $|r|=0$, and a maximum value of infinity where $|r|=1$.

A function with identical properties is tan $\left(45^{\circ}+|x|\right)$ which is 1 for $|x|=0$ and infinity for $|x|=45^{\circ}$. Expanding,

$$
\tan \left(45^{\circ}+|x|\right)=\frac{\tan 45^{\circ}+\tan |x|}{1-\tan 45^{\circ} \tan |x|}=\frac{1+\tan |x|}{1-\tan |x|}
$$

This leads to the conclusion that if

$$
\begin{aligned}
& s=\tan \left(45^{\circ}+|x|,|x|=\tan ^{-1}|r|\right. \\
& \therefore \tan \\
&-1 \\
& s=45^{\circ} \tan ^{-1}|r|
\end{aligned}
$$

The method of calculating $|r|$ from s is therefore to convert s into an angle by taking the inverse or arc tan on the calculator, subtract 45° and then take the tan of the difference.
A. Marshall

Teddington
Middlesex.

DOUBLE-BLIND لISTENING TESTS

IT would seem that the double-blind listening test (d.b.l.t.) method has been primarily concerned with measurement oriented methodology. Little, if any, consideration has been given to the hearing processes and the listening behaviour involved in the design of the test method. I believe there is reasonable cause to doubt the results of this test method.

The A-B d.b.l.t. is conducted in conditions which do not represent the situation in which we normally experience reproduced music. Perhaps a test that more closely parallels conditions in which audiophiles say they've heard
differences would be a step in the right direction. Those conditions include but, are not limited to: aural familiarity with the equipment; aural familiarity with the room; and both of the above achieved through listening periods of an extended length of time.
Consequently, for a valid listening test, the person doing the test needs to be very familiar with the system; all of its components together in the partiuclar room in which the test is being conducted. This would probably be the home system of the person doing the test. A d.b.l.t. which ignores the normal listening conditions should be suspect

Differences seem most noticeable (after long familiarity with one unit) the first few moments after a change is made. After changing to the unit on which one heard a difference, the longer one is exposed to only this new unit the less one is struck by the difference between the two. Long term listening periods (familiarity) are necessary to hear differences that are most noticeable when initially changed to another unit.

Shortening the listening period (as d.b.l.t. are now conducted) does not seem to lead to the same degree of noticeable difference. It seems that as we shorten the listening period between units the more alike they tend to sound. Carried to extreme, if we switched between the two units under test very rapidly there would be no percieved difference at all. We hear a composite of the two. Such qualities as imaging and related sound field perceptions require careful long term listening. In many cases only long term listening comparisons will clearly reveal a difference between the two and what that difference is

Audophiles spend many hours listening to music via their own systems and develop a high degree of sensitivity with those particular systems. In many cases the equipment used compliments their perceptual biases, which increases the person's enjoyment and sensitivity to certain interests. Equipment changes are more likely to be noticeable in this environment, and it is in just this kind of environment that many audiophiles say that they hear differences.

The process of subjecting an individual, or worse, a panel of listeners, to only an evening of d.b.l.t. in an unfamiliar acoustical environment, with unfamiliar equipment and adding a randomizing procedure to the testing, results in just what one would expect - insensitivity and aural confusion. Such testing to date has been rather like an experiment where we design instrumentation to measure very accurately certain parameters but we don't understand the experiment and therefore gather accurate garbage.

No method exists that can "prove" either the existence or non-existence of a given perceptual phenomenon. Thus the astute audiophile will note the claims and counter-claims and the conditions that produced them, and will attempt for himself to hear (or not hear) what was claimed. He would be better served to listen for himself rather than accept others' biases and perceptions or the results of d.b.l.ts. As long as there continues to be an interest in listening tests, inquiry into the nature and behaviour of the listening and hearing processes must be sought, understood and appropriately incorporated.

Richard N. Marsh

Livermore
California, USA.

TELETEXT DECODER

Mr Alan Pemberton's letter on p. 49 of February $1982 W$ points out why the original erase page circuitry does not work correctly with interleaved magazines, as currently used on 'Oracle'

Unfortunately, I found that the circuit he suggested, while working fine on Oracle, caused the loss of the first 4 rows of Ceefax pages (following the header) on my decoder. In his modified circuit, when 77,1 is high, the negative strobe pulses from 71,3 pass through 77,6 and clock IC_{78} on their positive going back edges. When 77,1 is low, 78,11 is held low regardless of 71,3 .
However, as 71,3 is normally high, IC_{78} will also be clocked when 71,5 goes high, and I suspect that I was encountering unwanted loading of IC_{78} at this point.

The modification can be simplified by leaving the feed to 78,12 unchanged from the original design, while And gating 71,3 with $Q(78,8)$ instead of 71,5 ; so that once IC_{78} is set, the clock is disabled until the bistable is cleared by the next field sync. on pin 13

As my decoder uses the whole of IC_{77} for other purposes, the And gating was achieved by inserting a germanium diode between 71,3 and 78,11 (cathode to 71,3); and adding a second one from 78,11 to 78,8 (cathode to 78,8).

For the correct operation of the decoder with interleaved magazines, it is essential to break the link from 5,9 to 21,1 ; and to carry out the modifications described on p. 60 of February $1977 W$ W, which check the magazine number of every row.
J. H. Hinton

Cambridge

I have received details from Humphrey Hinton of his own modification, and now see the reason for the odd behaviour of my modification in his decoder. An earlier obscure modification of my own had resulted in IC_{78} being clocked by posi-tive-going pulses, and not negative-going as in the original design

A simple re-arrangement of the gates of IC_{77} will ensure that 'standard' decoders will function correctly on both Oracle and Ceefax.

I thank Mr. Hinton for bringing this to my attention and apologise to constructors who have tried the modification without success.
Alan Pemberton
Sheffield

I was pleased to see in the Letter Column (WW February 1982) that an interest on the $W W$ Teletext decoder still prevails. I was encouraged by Mr. Pemberton's letter to modify the clear page detection circuit enabling the decoder to work with interleaved magazines. Alas, I could not get it to work satisfactorily so I reconfigured the two spare gates as shown below.
This works upon the simple strategy that once a clear page bit has been correctly detected by 78(8), it can only be reset by the frame sync. pulses one field later, thus producing the required clear page action.
A few simple modifications which avid teletext followers may find useful are:-
i) Reduce value of C_{16} in the analogue board from 4 n 7 to a value closer to 470 pF , particularly if "missing rows" are experienced. This increases the attack rate of the peak detector such that during the framing code the slice level changes by less than 5%.
ii) A spare Nand gate (e.g. $49(4,5,6)$) may be used to display rolling headers only from the selected magazine, in order to prevent the ITV/ITN characters twinkling during "roll headers".
iii) Of greater annoyance than (ii) are the flashing time digits on Oracle, due to a difference (at present) between magazine 200 and all other magazines. With a difference of one or two seconds, the time display gives the illusion of an incorrectly adjusted decoder, whilst greater differences are simply confusing. The cure is straight forward, $62(10)$ is taken from $80(4)$, but the time is only updated from the selected magazine, which, for example, leads to

THE DEATH OF ELECTRIC CURRENT

Oh dear! Ivor Catt's latest letter (August) identifies him as a prime candidate for compulsory reading of Dr Scott Murray's series of articles. Then, at least, he might not confuse theories.

Classical electromagnetism, as developed by Maxwell in the 1860's, makes no appeal to the existence of the electron. For the case of a wave guided by a pair of wires, the wires determine the boundary conditions to the solution of the equations. Electrostatic theory requires that electric flux lines terminate on charges, but this is not always so for the electromagnetic wave. In any case, the classical theory of electric conduction imposes no limit on the speed of charges in the conductors - that comes from relativity theory.
So, Mr Catt is muddling models, which brings me back to the original point. Electric current and electromagnetic waves are only mechanistic models of processes which are beyond our comprehension - what Dr Scott Murray calls miracles. Hence, to say that a model does not exist is meaningless. If Mr Catt chooses not to like the electric current model that is his privilege, but it does not seriously devalue the usefulness of the model, which is judged by criteria other than credibility or personal preference.
Incidentally, M. G. Wellard may wish to note that the speed of light in water (refractive index ~ 1.33) is considerably less than that in vacuum. Cerenkov radiation is the electromagnetic equivalent of Concorde's sonic boom. Its existence (which is a fact) does not conflict with relativity. Perhaps Mr Wellard will apologize to Cerenkov.
R. T. Lamb

British Telecom
Milton Keynes
If Mr Catt's difficulties with electromagnetism are summarised by the example he gives at the end of his letter of August 82 then perhaps he can be helped.

As a pulse travels along the line the charge that terminates the electric field lines is provided by a current I. This consists of mobile electrons of charge e and if there are n such electrons per unit length of the line their velocity is $v=I / n e$. Suppose that $I=1 A$ and the conductors are copper wires of $1 \mathrm{~mm}^{2}$ cross section then, ignoring the skin effect V is about 10^{21} per cm . Thus with $\mathrm{e}=1.6 \cdot 10^{-19} \mathrm{C}$ we have $V=6.10^{-3} \mathrm{~cm} \mathrm{~s}$ or 2.10^{-13} the velocity of light. The skin effect, for a pulse of 1 ns risetime might raise V to $2 \mathrm{~cm} \mathrm{~s}^{-1}$ and, if the conductor is perfect and the electronic motion is solely limited by inertia V might even be as high as 100 cm^{-1}, so that she electrons actually have to scquire a kinetic energy of $2 \cdot 5 \cdot 10^{-12} \mathrm{eV}$ from the field.
F. N. H. Robinsoa

Clarendon Laboratory

Offord

I write in renponse to Mr Ivor Catt's request in his letter on "The Death of Electric Current" (W.W. Aug. 1982).

The contradiction claimed by Mr Catt stems from hia assumption that the apparent velocity with which charge moves along a conductor is the mame an the velocity of individual electrons. It is well known from the free electron model of metrale (ree for example Solid State Phyaics: Second Edition: C. Kittel, Wiley 1956) that this is not the case. The current density, $\mathrm{J}(\mathrm{N} / \mathrm{m})$, is diven by $\mathrm{NeV}_{\mathrm{D}}$, where N is the number of electrons per cu. metre, e the electronic charge and V_{D} the drift velocity of the electrons. The drift velocity is the directed velocity component resulting from an electric field and superimposed on the thermal velocities of the electrons. The drift velocity is much less than the thermal velocity except in electric fields of very high values. The curreat density may be interpreted us $q \mathbf{q}$, where q is the charge per unit length of conductor to sustain the electric flux of the TEM wave and v is the velocity with which the wave moves. Hence,

$$
\mathbf{v q}=\mathrm{Ne}_{\mathbf{D}}
$$

and $V_{D} / v=q / N e$ will be a small ratio in typical conductors. The statement that "such electrons would have to travel at the speed of light in a vacuum" is thus wrong.
Dr J. Brown, C.B.E.
Technical Director
Marconi Electronic Devices Ltd

PHASE-SHIFTING OSCILLATOR

I read with great interest the February article by Roger Rosens on a phase shifting oscillator as I developed a similar oscillator recently. A feature of this type of oscillator is that amplitude stabilization can be much simpler than usual, and the circuit exhibits no amplitude bounce as the frequency is changed. As it is necessary only to limit the amplitude of oscillation and not the loop gain - which is constant with frequency - it is not necessary to include a thermistor, and the circuit shown has been found satisfactory.
This circuit is used successfully in our new high performance portable mixers, the 2000 series, giving 60 Hz to 16 kHz in a single sweep, at a distortion of less than 0.8%, and I have had the circuit working correctly at up to 500 kHz .

Finally, another feature of this circuit, as developed by my colleague Steve Dove, is that if the loop gain is kept below unity, the circuit functions as a good bendpass filter!
Mike Law
Alice (Stancoil Ltd)

LOW-DISTORTION WIEN OSCILLATOR

With reference to Mr Linsley Hood's "New way of using Wien network," in the May issue, this 'way' was described in one of my originating Briush patents on RC oscillators about 35 years ago. An r.f. pentode amplifier was followed by a valve phase splitter and a filament lamp was used for amplitude stabilisation. Since then, this oscillator has been continuously updated by the use of bipolars, f.e.ts, and i.cs for the amplifier, and thermistors, f.e.ts, i.cs, and opto-electronics for the amplitude stabilizer. We still think that this is the best 'way' to use a Wien bridge and are grateful for Mr Linsley Hood's enthusiastic support. As he says, quite a lot of harmonic distortion is produced at the 'input' of semiconductors and op. amps and this is made worse when using the high driving impedances that we prefer for other reasons. Our measurements of distortion on TL 072 op . amps at output voltages of about 2 V are far worse than those quoted for his oscillator and we have attributed this distortion mainly to a non-true class A output stage, perhaps wrongly. It is a pity that his curve of distortion against frequency is limited by hum, as it would be interesting to see whether the worsening at the lower frequencies was mainly due to the time constant of the thermistor or the increasing drive impedance.
As a 'two for the price of one,' the voltagecontrolled, variable-reactance device shown in Circuit Ideas in the issue November 1980 was described in my British patent, through the NRDC, about 25 years ago. The main advantages over variable-capacitance diodes are better frequency linearity and larger frequency variation due mainly to the fact that variable positive and/or negative reactance can be applied to a tuned circuit. This system allows the use of wideband swept oscillators with reasonably flat amplitude responses. It is also particularly useful for modulating the frequency of crystalcontrolled oscillators. We have considered the use of this system in variable-frequency filters and would be interested to know if our New Zealand friends have also considered this.

F. G. Clifford

Wynberg
South Africa

CARTRIDGE ALIGNMENT

The letter from Mr R. J. Gilson in our August issue contained an error in the second semeence of the second paragraph, which should read ". . . the angular arror wo vary with radius . . ." - Ed.

AMATEURS AND BAND 1

G. M. Pheasant (August, 1982, page 60) expressed the hope that radio amateurs would be permitred access to the 50 MHz band when the 405-line relevision transmitters are withdrawn from service.
The BBC acknowledges the valuable contributions by radio amateurs to the study of propagation and wishes to encourage such activities. The Home Office and the BBC have recently discussed a proposal that exceptional permission could be given to a strictly limited number of UK radio amateurs to operate outside broadcasting hours in the $50-52 \mathrm{MHz}$ band.
The BBC has no plans to continue broadcasting in Bands I and III after the existing 405 line television services have been withdrawn. The future use of these bands is being urgently considered by the Independent Review of the Radio Spectrum from 30 MHz to 960 MHz .
P. A. Laven

Assistant Head
BBC Engineering Information Department

It will be a great shame if a small portion of Band 1 isn't allocated to radio amateurs when it becomes available. This is a unique and valuable section of the spectrum for experimentation.
I propose the section $48 \mathrm{MHz}-48.6 \mathrm{MHz}$, giving $48 \times 12.5 \mathrm{kHz}$ channels with the third harmonics falling in the amateur 2 metre band, and making them easily policed and identifiable. Any fourth harmonics would fall on the IBA's Ch. 9 only. (As a tv technician in North Devon, I know only of ome customer using this channel.)
With careful avoidance of specific local radio frequencies second harmonics shouldn't be any problem either.
These are my personal views and I welcome comment or letters of support.
John Stacey G8BXO
South Molton
Devon

MODERN PHYSICS

"Nobody ever became sunburnt as a result of exposure to a differential equation" remarks Dr Murray (The Electromagnetic Analogy, Wireless World August, 1982). No, but somebody may have avoided sunburn by taking note of the differential equations which describe the attenuation of ultra-violet radiation in its passage through the atmosphere and the reaction kinetics of the ozone layer. Seriously, though, there seems to be a basic misconception about the role of mathematics in physics, for its role is essentially predictive and in no way explanatory. One feeds whatever data may be available into a mathematical model and if the operation of the mathematics at least declares the input data to be mutually consistent and preferably also indicates a future state of the physical system which coincides with its actual evolution, then the mathematical model is regarded as a correct representation of the physical system.
A more fundamental and problematic question is whether every physical phenomenon can be "explained" by a mechanical analogy in which one can see a cause-and-effect relationship between the parts, of the type which occurs in the large-scale physical world and can be appreciated by our five senses. The answer appears to be negative, ever since the development of quantum mechanics, which has no parallel in ordinary large-scale mechanics. One has only to cite the application of particle/ wave quality both to electrons and to photons; but worst of all, there is even doubt whether causation rules in the world of microphysics which is represented by quantum theory. At this point one has to admit that one cannot "understand" the behaviour of elementary particles in terms of mechanical models. But if one accepts the logic of mathematics, one can accept the logic of mathematical models.

D. A. Bell

Walkington
Beverley

By the end of the last century it was conceded that space contained no unique reference point.

In a book on mechanics, published in 1888, Oliver Lodge commented "No such thing as absolute rest is known, but it is convenient, in mechanics proper, to consider the earth as a body at rest". This is still the current practice and as a result we have some very funny physics and peculiar paradozes. In his 1905 paper on moving bodies, Einstein reiterated that there is no absolute rest, adding that his theory would not require an absolutely stationary space or an ether. He then proceeded to invent his own 'stationary'. He suggested we call a set of coordinates the "stationary system" and then use them to define the position and movement of a point, employing rigid standards of measurement, a completely impossible task since a fictional reference point can only produce fictional position and velocity.

In fairness to Einstein it should be mentioned that every physics text extant uses the words 'the velocity of a material point' in a manner which requires whimsical decision. We are told, B has a velocity v with respect to A and so travels from B to B^{\prime} a distance 1 , in time t, so that $\mathrm{I}=\mathrm{BB}^{\prime}=\mathrm{vt}$. By a simple change of mind it could be claimed with equal truth that A has a velocity v with respect to B and moves a distance $1=A A^{\prime}$. This dilemma is not solved by introducing conjurers' props like co-ordinate
systems or frames of reference, inertial or otherwise.

The solution is simple. In space with no absolute rest only the separation of material bodies and the change of separation with time, can be described. Individual velocity and distance travelled must remain permanently indeterminate.

Mention whould be made of Einstein's cooperative myopic observers, without whose help the theory would not have been possible. The one sitting on an imaginatively moving plank, claimed he saw a flashing lamp (A) screwed to the end of it; the other observer, riding on the declared stationary co-ordinates said he say the lamp fastened to the x axis of his system.

Einstein's science fiction was most successful from his point of view; it earned him notoriety and a better job. How relativity theory became required reading in our universities is something I cannot understand.
Edwin Hill
Stockton
Rugby

CIRCUIT MODELLING BY HOME COMPUTER

Further to my own article appearing alongside Mr Weaver's in the August issue I compared the technique of my article using Mr Weaver's examples.

I enclose the resulting graph. It is interesting to note that whereas Mr Weaver's technique takes 75 seconds for 15 points, the enclosed graph of his Fig. 1 took 20 seconds to calculate 50 points for the same circuit, and a further minute to print the graph. This shows the undoubted power of a compiler, although the ladder technique is inherently faster than the indefinite admittance matrix technique of my article.

The ladder technique is normally superior for passive networks, but for active networks the indefinite admittance technique is essential.
R. I. Harcourt

Orpington
Kent

PARABOLIC ANTENNA DESIGN

Guidelines for designing and constructing parabolic antennas are presented here. Theoretical background, applications and how the prime-feed configuration is affected by reflector parameters are discussed and emphasis is given to problems that arise when constructing such an antenna using a minimum of facilities.

Within the past decade or two, developments in technology caused by the demand for more frequency allocations and the need to use frequencies where background noise is less obtrusive have allowed good use of the radio spectrum above 1 GHz to be made. At these frequencies reflector-type antennas come into their own. The parabolic-dish antenna symbol of the modern communications world of satellites and microwave links is just one variety of reflector antenna, but one with which high gains can be realized in a modest physical space, provided that it is correctly made and fed. This article discusses the theoretical background to the design and application of parabolic antennas, and how a prime-feed configuration is affected by reflector parameters.
The gain of a parabolic dish over an isotropic antenna is given by

$$
\mathrm{G}=\frac{4 \pi A \eta}{\lambda^{2}}
$$

where G is the gain in real numbers (i.e. not decibels), A is the area of the aperture, λ is the wavelength and η is the overall efficiency of the system. η is always fractional and an efficiency of greater than 0.5 is difficult to obtain.
Much information about theoretical performance can be gleaned from this equation. Gain is directly proportional to area, and therefore to the reflector-diameter's square, and is also inversely proportional to the wavelength squared, so each time the diameter is doubled, or the wavelength halved, there is a possible increase of 6 dB in forward gain. A difficult figure to estimate is efficiency. Apart from a reduction in gain predicted by the equation, efficiency is reduced as the wavelength becomes a significant fraction of the dish diameter. Further reduction in efficiency is caused by the presence of the prime feed, which also obscures part of the dish aperture.

For a given frequency there is a minimum dish size below which it may well be better to examine other forms of antenna. This occurs at around 10λ although that is by no means a sharp cut off. It may be of interest to compare the dish with another type of antenna which is more common al lower frequencies. The obvious alternative to a dish is a multielement Yagi. These are much used at u.h.f. and there is no reason why they cannot be used in the microwave bands. It

by M. L. Christieson*

is very difficult to adjust a simple linearelement Yagi to obtain useful gain, but those with quad loops can provide excellent gain in the $1-$ to -3 GHz region. Yagis that have more than 30 elements become inefficient and it is normal practice to stack several individual antennas'. Each time the number of antennas is doubled a further 3 dB is possible, but never realized, primarily because of additional loss introduced by the combiner. There is an upper limit when additional gain from further antennas is nullified by the ever more complex combiner. Parabolic dishes do not suffer from this drawback as they use a single antenna, making them the simplest type to design and adjust.
Highly directional arrays are generally used for two reasons and the type of paraboloid depends on which is more important in the particular application. The reasons are to

- reduce unwanted signals from other directions
- improve the signal from a very weak source.
The two effects are inseparable but any antenna may be optimized for one, usually at the expense of the other.

A parabolic dish may be either deep or shallow depending on the equation parameters. A deep dish obviously has its focus close to the surface while a shallow one has its focus at some distance. Rather than using the parabola equation to define
shape, it is more convenient to use the focal-length-to-diameter ratio. This ratio is very important in dish specifications. Figure 1 shows two dishes with the same diameter but with different f / d ratios. Note that because the diameter is the same, the maximum gain is the same. Dishes with a low f / d ratio, of about 0.25 , are usually designed to give a high degree of side-lobe suppression while those with f / d ratios of about 0.5 are designed for optimum forward gain. The main use of the former type is in terrestrial microwave links where signal levels are quite high. For amateur work, good forward gain is usually more timportant and methods of optimizing this are now to be examined more fully.

For a given size of dish, it is efficiency that determines the system gain. Main factors which reduce total efficiency are

- spill-over

1- aperture efficiency

- phase errors
- blocking loss.

The first three are interdependent because spill-over, the amount of energy lost when the prime feed illuminates more than the dish area, is reduced by tapering the radiation pattern towards the edge of the dish. This however reduces the aperture efficiency which is greatest when the dish is uniformly illuminated. Phase errors, which may be caused either by a poor feed or by errors in the shape of the dish, are worse if no edge taper is used.
The first consideration of the dish builder is accuracy of the paraboloid. Clearly the nearer to the ideal shape the

Fig. 1. Two dishes with the same diameter but with different focus-to-diameter ratios. Dishes with a low f / d ratio usually give a high degree of side-lobe suppression while those with higher f / d ratios of around 0.5 are designed for optimum forward gain.

[^2]better, but this is very difficult to obtain, particularly for the amateur constructor. It is generally accepted that little benefit is realized by reducing peak errors to less than $\pm 1 / 8$ wavelength. Sometimes this is quoted in terms of r.m.s. errors which results in a much smaller figure and may be off-putting. Peak error means that no part of the structure should be more than $\lambda / 8$ in either direction away from the ideal shape, so the most serious type of error is when the dish smoothly departs from the true parabolic shape.
At 2 GHz , for example, $\lambda 8$ is nearly 2 cm so at the low end of the microwave spectrum there is considerable latitude for the constructor. At higher frequencies, such as those proposed for direct satellite broadcasting at 12 GHz , surface errors are more of a problem.

Another factor concerning the surface is the material from which it is made. Most commercial dishes are made from spun aluminium, and clearly a solid conducting surface is ideal. For amateur purposes it is permissible to make a dish from wire mesh, providing that the holes are not too large. A good approximation is that the mesh size should not exceed $\lambda / 10$. This means that various sizes of chicken wire are satisfactory at low frequencies and many good systems have been built for the $2-3 \mathrm{GHz}$ region using aluminium screening material. Dishes designed for operation above 10 GHz should have a solid construction. The thickness need not be great; aluminium foil on a fibre-glass backing could be used. On large dishes a mesh surface reduces the wind loading and weight, although a build-up of snow or ice can demolish an installation designed on that assumption.

Feeds

Once the reflecting surface has been constructed the feed must be optimized. Referring to Fig. 1, to avoid wasting energy,

Fig. 3. Basic front-feed parabolic antenna and two variations. Cassegrain feed is used for -nteninas with unfavourable f/d ratios, but subreflector obscures part of the dish, causing problems with small antennas. The offset feed gives no blocking problems but is difficult to construct as the dish is neither symmetrical nor parabolic.
the radiation pattern of the prime feed should all be within a solid angle of $2 \theta^{\circ}$. It is easier to visualize this in terms of a transmitting antenna but the same applies to a receiver. Ideally the radiation should be uniform over that area and then cut off sharply at the edge. This is impossible in practice and the compromise often used in amateur projects is a 10 dB -beam width of 20°.
This is difficult to achieve for 2θ angle greater than about 150° because at that point the horn aperture required becomes smaller than the waveguide capable of supporting wave transmission. A simple dipole and splash plate (reflector disc) could be used but it is difficult to adjust and its performance never equals that of a horn. It is convenient to arrange the 2θ angle to correspond with the pattern from the open end of a square or circular waveguide: this simplifies construction considerably. There is a direct relationship between f / d ratio and 2θ angle so that the f / d ratio can be chosen to ease the construction of an efficient feed. This type of work cannot be exact without specialized test

Fig. 2. Once the required f/d ratio has been judged, the dish's 2θ angle and the horn's $L \lambda$ ratio (α) can be found from this graph. There is a direct relationship between f/d ratio and 2θ angle so the f/d ratio can be chosen to ease construction of the feed. The feed is easiest to make when the 20 angle chosen corresponds with the waveguide opening. Approximate relationships between these parameters are shown here.
equipment, but it is surprising how efficient a system designed using these rules of thumb can be. Figure 2 shows the approximate relationships between these parameters. There have been several good designs for high-efficiency feeds developed by amateur radio operators, some of which are referred to at the end of this article.
Problems of feeding a dish with an unfavourable f / d ratio can be reduced by using a hyperboloid sub-reflector and feeding the dish from behind. This is called a Cassegrain feed and is shown in Fig. 3. The disadvantage of this is that the diameter of the sub-reflector needs to be several wavelengths, depending on its position, and so it obscures part of the dish area. This blocking loss also occurs with front fed systems and is a factor worth considering when dealing with a small dish. Larger dishes have much greater surface areas compared with their associated sub-reflectors, and Cassegrain feeds are common on communication-satellite earth stations.

One method of preventing blocking loss is to use an offset feed, also shown in Fig. 3. Although an improvement in efficiency would be obtained using this method, it is not easy to construct as the dish is no longer symmetrical or paraboloid, which makes it particularly unsuitable for amateur construction.
Another loss which may occur is polarization loss, where the polarization of the incoming signal is not matched to that of the prime feed. High loss can occur when two linear polarizations are crossed. A linear to circular mismatch will usually result in a 3 dB loss, but between left- and right-hand circular polarization a high degree of isolation is possible. This effect may be exploited to re-use frequencies on the same satellite. It is worth remembering that, when reflected from the dish surface, the sense of a circularly-polarized wave is reversed.

The method by which the dish is mounted depends on its use. In some applications it is not necessary to move it, as in a ground microwave link for example. Many dishes are used with geostationary satellites which only move a small amount each day. This small movement, which is non-cumulative, is often within the beamwidth of the dish so a simple fixed mounting will suffice. Where very-high gains are
required it may be necessary to use some form of automatic-tracking system. These can be simple or complex and a decision between performance and cost is not easy to make.

Many methods have been used to construct paraboloidal dishes and the exact method depends on the facilities available. Most traditional methods rely on the reflecting surface being supported by struts or pulled into shape by nylon cord. These struts can be made from metal or wood providing that it is well protected. A method that is beginning to find favour, particularly for higher frequencies, is a glass-fibre shell with a thin conductive surface which is sometimes sprayed on. Once a former has been made several dishes can be cast, so it might be worth several individuals combining their skills. A fibre dish has the overwhelming advantage of being very light but it may need to be made with a turn-over at the rim to prevent it distorting when mourted.

Any system designed for outside use must be protected against weather. Reference has already been made to the effect of
snow and ice, but excessive heat can be equally damaging. At high frequencies, dimensional changes due to temperature can be a considerable problem as can distortion caused by a gust of wind, but these effects are not often noticeable on small dishes. Front-fed systems can also focus the sun's heat on the prime feed. It would be slightly annoying to see an expensive amplifier burst into flames on the first sunny day. If the amplifier is located at the feed the rain must be kept out of it by using a sealed container, preferably with a dessicator. My view is that if rain cannot be kept out it is far better to have a semi-open cover to make sure it runs out again. Precautions such as mounting the amplifier upside down so that water cannot collect in it, and a supply of plastic dustbin liners have kept several amplifiers operational for a number of years.
It is hoped that these ideas have equipped readers with the knowledge to start designing and building dish antennas with a reasonable trade-off between performance and economics. It is likely that with the interest in satellite television
many more articles will appear describing individual practical designs; they will however all be based on the basic design parameters outlined here.

Further reading

- The ARRL Antenna Book, American Radio Relay League (latest edition)
- Performances of Fixed-Mount Earth-Station Antennas, S. E. Dinwiddy, ESA fournal 81/3
- Gain-Beamwidth Product and other Reflec-tor-Antenna Relationships, A Saitto, ESA fournal 81/3
- Tubular Radiator for Parabolic Antennas, VHF Communications 4/1976, Verlag UKWBerichte
- A Dish Anyone Can Build, Michael Brown, 73 Magazine, February 1982
- VHF-UHF Handbook, RSGB
- Pyramidal Horn Feeds for Parabolic Dishes,
D. Evans, Radio Communications March 1975
- Dish Antenna, D. Wardley, Break-in, May 1982
- Reference Data for Radio Engineers, Sections 25 and 27, Sams

PROGRAMMABLE GPIB-TOSERIAL INTERFACE

Development of an earlier interface with talker/listener capability to remotely program functions within the instrument interface.

The original interface design (see panel) was extended to accommodate a secondary addressing feature to allow remote initalization of the uart control register, the instrument data speed generator, load an end-of-message byte into a latched comparator, and address the instrument as a GPIB/RS232C interface. These remote programmable facilities permit the designer to dispense with some of the switch packs used in the first design, adding a degree of programmable flexibility.

On any one contiguous bus up to 15 devices are permitted, but the primary address range is 31 talk and 31 listen addresses using single byte addressing. A controller may issue a primary address to identify an instrument then issue a secondary address to indentify a function within that instrument. For example, before an instrument can be operated effectively it may require initialization and range information, which could be programmed into latches selected by unique secondary addresses (Table 3 shows the range of addresses). When the controller issues the primary address over the bus the instru-

[^3]
by Chris Jay

The GPIB-to-serial interface featured in the July 82 issue of WW was conceived as a low-cost interface solution for instruments with a serial data link such as an RS232C port. When configured to a keyboard and addressed as a talker, characters typed on the keys are converted by the interface from serial to paraliel data and transmitted over the bus data lines. A printer interfaced to the bus is addressed as a listener; data bytes received are serially encoded and fed to the serial input port of the printer. The interface used 13 i.cs including a 96LS488 to perform interface functions and message decoding, an IM6402 uart for the serial/parallel encoding of data, and an MC14411 as a frequency reference for serial transmission and reception at four link-selectable rates. During the talker-active state the interface could automatically recognize an end-of-text character, and assert the EOI line concurrent with the transmission of the final data byte in the character string. A 74F521 octal comparator achieved this by comparing the binary data waiting for transmission with an 8-bit data pattern set with switches.
ment will be conditioned to receive a one-of-four secondary address. For example, my listen address followed by my secondary address 1 (MSA 1) selects the instruments control register, MSA 2 selects the instrument data rate register, and MSA 3 selects an octal latched comparator so a unique end-of-text code may by programmed ${ }^{1}$. MSA 0 is the secondary listen address that selects the uart transmit buffer register. When addressed into the listener active state, data bytes sent to the uart are serially encoded and transmitted to the RS232C interface at a programmed speed and in the character format specified by the uart control register.
The 96LS488 may be configured for extended addressing by wire-linking the mode inputs M0-3 to the appropriate binary code as shown in Table 2 on page 72 of the July article. There are five choices of extended addressing but for a talker/listener there are two choices of TE/LE low

1. The end-of-message latched comparator is used when the interface is an active talker. A string of data bytes may be sent over the bus, terminated by the unique end-of-text character. When this character is transmitted the comparator automatically recognizes the bit pattern and asserts the bus end-or-identify (EOI) line to indicate end-of-message.
speed, or TE/LE high speed. The choice of high speed is selected for instruments using three-state driver devices; in this design the mode inputs M0-3 are all configured to V_{cc}.
Table 4 illustrates a typical initalization procedure that should be completed by the controller-in-charge (c.i.c.) prior to the interface becoming an active talker. It does this by asserting the $\overline{\mathrm{ATN}}$ management line; any current active talker relinquishes control of the bus lines. The first message issued is the unlisten command to ensure that unscheduled listeners do not receive data bytes intended for the interface circuit. To address the interface the c.i.c. issues the primary listen address (MLA); after receipt the interface expects to see one of its four secondary addresses. Assuming that the uart control register is to be initialized first, the controller sends MSA 1 . When selected, the register is capable of receiving a data byte (DAB 1) over the bus lines. The control register is a fivebit latch in the 6402 uart; format of the control-bit pattern is shown in Table 6a. If the c.i.c. addresses itself as talker it can release the assertion on $\overline{\mathrm{ATN}}$ and send the initalizing data byte to the instrument. After sending DAB 1 it regains control of the bus by asserting $\overline{\mathrm{ATN}} \overline{\mathrm{N}}$.

It is necessary to un-address the control register by sending the unlisten message before sending the primary listen address of the interface, followed by the secondary address MSA 2 to select the data-rate generator latch. The controller releases the true assertion of $\overline{\mathrm{ATN}}$ and as an active talker issues DAB 2 to program the correct speed code - Table 6 b gives the format. When the data byte has been sent, it reasserts the ATN line to regain control of the bus and complete initialization. The unlisten command is sent followed by MLA and MSA 3 which selects the end-ofmessage latched comparator. When selected the controller releases the true assertion of $\overline{\mathrm{AT}} \overline{\mathrm{N}}$ to send the end-of-message byte DAB 3. When latched it re-asserts the $\overline{\mathrm{AT}} \overline{\mathrm{N}}$ line, sends the unlisten command to unaddress the latched comparator and then sends the talk address of the interface (MTA), followed by the secondary address MSA 0 of the receiver register. The controller addresses the listeners by sequentially transmitting each listen address. On completion of addressing the controller releases the assertion in ATN, enabling the, interface to enter the talker active state for transmission of data bytes ${ }^{2}$.
In the circuit configuration of the programmable interface, the 96LS488 handles the interface functions and message decoding. An Intersil IM4602 uart converts parallel data to serial and serial to parallel and an MC14411 bit rate generator
2. Data is transmitted in ASCII, a seven-bit code representation, with the eighth bit for parity checking.
3. Both the MC14411 and IM6402 devices are cmos requiring a VIH of $\mathrm{V}_{\mathrm{cc}}-2$ volts. The 74LS outputs have a guaranteed VOH of 2.7 V for a $V_{\text {co }}$ of 5 volts. To ensure good noise immunity provide passive pull-up resistors of $2.2 \mathrm{k} \Omega$ on each LS output that drives a cmos input.

Table 1. Talk and listen address assignment

gives a wide range of frequencies for rate generation ${ }^{3}$. Other logic circuits used are 74 LS t.t.l. devices and two 74 F i.cs, one of which is an inverting bus driver to buffer the cmos outputs from the uart onto the bus data lines because it satisfies the 48 mA sinking requirement by the IEEE 488A specification. The $\mu A 1488$ and $\mu A 1489$ provide signal conditioning for RS232C line driving and reception.

Addressing

Secondary addressing is acheived by the quad two-to-one multiplexers of IC_{11}, 74LS157, which select the primary and secondary addresses. The 96LS488 ASEL output is low when the primary address is being received, and high for secondary address selection. Address inputs A1-4 of the 96LS488 are driven by the 74LS157 multiplexer outputs which select a one-offour binary code set by switches $2-5$. Note that A5 is configured directly to switch 1 ; this effectively reduces the secondary address range to 49 but saves on the multiplexing hardware. The primary address range of the interface is therefore configured on the switches 1-5. Secondary addressing is acheived when ASEL drives the select input of IC_{11} high. The bit pattern on switches $6 \& 7$ routes through to the inputs A4 \& 3. Address inputs A1 \& 2 are derived from the bus data lines $1 \& 2$ respectively. So a one-of-four secondary address will select the interface, purting it into the talker or listener-addressed state. On receipt of the secondary listen or talk address the 96LS488 outputs LAD or TAD go low producing a rising edge at the output of gate 1 , connected to the clock input of IC_{7}, a dual D-type latch.

So the logic state on inverted data lines 1 \& 2 is strobed into the 74LS74 latch when the instrument is addressed. A one-of-four logic condition is stored, enabling the instrument to receive a data byte which can be sent to either the uart transmitter, uart control register, bit rate generator latch, or the $\overline{\mathrm{EOI}}$ end-message comparator latch. When statisized the information remains programmed until the instrument is unaddressed then re-addressed. The Q outputs of the 74LS74 latches are wired to the address inputs of IC_{8}, a dual one-of-four demultiplexer 74LS139. Outputs of IC_{8} route the RXST signal to the selected latch or register; $\mathrm{IC}_{8 \mathrm{~b}}$ outputs O 0 and O 3 are used as enable signals ENBL0 and ENBL3 Signal ENBL0 drives the S input of IC_{12}, a quarter of 74LS157, which selects the correct handshake for the one-of-four instrument functions. The ENBL3 $\mathrm{IC}_{8 \mathrm{~b}}$ output, selects the load function at theS0 and S1 inputs of the 74F524 latched comparator.

Table 2. Status codes
TAD LAD D/S/E State

H	H	L		
H	L	L		Offline
:---				
Addressed to listen				
(LADS)				

DRB goes low when the interface is in talker active or serial-poll active state.

Status decoding

To perform the necessary interface status decoding the 96LS488 LAD, TAD and $\overline{\text { DRB }}$ outputs drive the A2, A1, A0 inputs of a 74LS138, one-of-eight decoder, IC_{9}. Output O 2 of IC_{9} will be active low when the interface is either in the talker active state, or the serial poll active state, see Table 2 for status codes. Gate 2 is enabled by the $\overline{\mathrm{D}} / \mathrm{S} / \mathrm{E}$ signal to provide a low output when the instrument is talker-active. The D/S/E signal when inverted by I_{3}, provides an enabling low for the input of gate 3 . The gate 3 output goes low when the interface enters the serial poll active state. These or-gate outputs and the output O5 of IC_{9} are labelled TACSENBF, SPASENBF and LACSENBF and used as low enable inputs for the three-state buffer-drivers. When talker-active the 6402 receiver buffer register outputs, buffer devices IC_{4} and I_{13} (the EOI driver circuit) are enabled. During the serial poll, one half of IC_{10} is enabled to drive data lines 1 to 3 with status bits and a second $\overline{\text { EOI }}$ buffer driver is enabled. During the listener active state the 74LS240, IC_{3} (input buffer) is enabled. Appendix 2 gives a brief description of serial and parallel poll.

Buffering

Although the 96LS488 data lines are connected to the bus, it is necessary to use buffer circuits (with hysteresis inputs essential for the listener function) to provide a data path to or from the instrument's internal logic circuitry. An internal instrument bus, eight bits wide, is isolated from the bus data lines by inverting LS240 and F240, IC 3 \& 4 respectively. It is also necessary to use hysteresis buffering and inversion to the address multiplexer IC_{11}, acheived by the two inverters I_{1} and I_{2}, of a 74LS14. The 74LS240 will be enabled by LACSENBF, going low when the instrument is listener active. In this state, the octal inverter drives the internal instrument bus with valid data. The IM6402 receive buffer register is disabled so no data conflict occurs on the internal bus. During the talker-active state, the IM6402 r.r.d. input is driven low by TACSENBF, which also enables 74 F 240 buffer circuit.

Table 3. Primary and secondary address of the interface.

MLA	My listen address, primary listen address of the instrument My secondary address for g.p.i.b. uart, to provide serial/parallel conver- MSA 0
MSA 1	My secondary address for uart control register
MSA 2	My secondary addiess for bit rate generator latch
MSA 3	My secondary adciress for end-of-message latched comparator
MTA	My talk address, primary talk address for the g.p.i.b./RS232C instrument
MSA)0	My secondary address for g.p.i.b./uart, to privide parallel/serial conver- sion of data
MSA 1	Not used
MSA 2	
MSA 3	

Table 4. Interface initalization procedure and talker addressing.

ATN	MSG	FUNCTION
1	UNL	Unlisten to clear the bus of listeners
1	MLA	Listen address of the instrument
1	MSA 1	Address of uart, control register
0	DAB 1	Issue the uart control register byte
1	UNL	Unlisten the control register
1	MLA	Listen address of the instrument
1	MSA 2	Address of data Speed control latch
0	DAB 2	Issue the data speed control byte
1	UNL	Unlisten the speed control latch
1	MLA	Send listen address of the instrument
1	MSA 3	Send address of the end-message latched comparator
0	DAB 3	Send end-of-message byte to the latched comparator
1	UNL	Unlisten the 'end-of-message' comparator
1	MTA	Send talk address of instrument
1	MSA	Send secondary address of uart
1	MLA 1	
1	MLA 1	
1	MLA 1	Address listeners on to the bus
1	MLA 1	
1	MLA n	
0	DAB	Instrument addressed as a talker, sends first data byte
0	DAB	
0	DAB	

This establishes the data path from the RB1-8 outputs to the data bus.

Loading registers from internal bus

On receipt of MLA followed by MSA 1 the Instrument latches the binary code of 01 into IC_{7} which drives the $\mathrm{A} 1, \mathrm{~A} 0$ inputs of IC_{8}. Signal $\overline{\mathrm{E} N B L 0}$ drives the S input of IC_{12} high, selecting the RXST to RXRDY
handshake through inverter I_{5}, multiplexer $\mathrm{IC}_{8 \mathrm{a}}$ onto the $\overline{\mathrm{STB} 1}$ input of $A G_{3}$. The output of $A G_{3}$ drives the selected input I_{12} of IC_{12}, and the output Za drives the RXRDY 96LS488 input. This local automatic handshake path is identical for STB2 and STB3. In the acceptor data state a data byte present on the data lines, inverted by IC_{3} onto the internal instrument bus, is clocked into the uart control
register, data bits one to five, as RXST drives the control register load input high via the path through I_{5}, output Ol of IC_{8} and inverter I_{12}. The bit rate generator latch is loaded in a similar manner. When the interface receives UNL, MLA followed by MSA 2, the binary code 10 is latched into IC_{7}. The A1 and A0 address inputs of IC_{8} select output O 2 of the decoders. In the acceptor-data state the rising edge of the RXST output clocks the CP input of $\mathrm{IC}_{13}, 74 \mathrm{LS} 374$ through the path $\mathrm{I}_{5}, \mathrm{O} 2$ of $\mathrm{IC}_{8 \mathrm{a}}$ and I_{4}. The RXST/RXRDY handshake is acheived automatically, as described for the loading of the u.a.r.t. control register. Data present on the internal instrument bus, bits one to three of IC_{13} are clocked through to the Q outputs on the rising edge at the CP input. The bit rate generator latch, IC_{13}, uses three of the eight internal D-type flip-flops, the other five latches are available for functional expansion. The latched code on Q0-2 outputs are used to select clock frequencies for the u.a.r.t. and inputs. See Table 5b for code input versus bit rate selection; the frequency input is 16 times the data rate. The Q0 output of IC_{13} selects either the F3 or F7 outputs from the clock generator chip IC_{6}. When high, the clock output F3 is selected through the multiplexer circuit comprising OG3, OG4 and AG_{2}. When low the F7 clock output is selected. The Q1 and Q2 74LS374 outputs select an internal divider in IC_{6}, which provide the clock outputs in Table 5 (part 2). To provide a good stable frequency source for the MC14411 it is necessary to connect a 1.8432 MHz crystal to the crystal inputs.

If the instrument is to be used as a talker it will be necessary to load the EOI latched comparator. The select inputs of IC_{5} are enabled high by the inversion of ENBL3, the O 3 output of $74 \mathrm{LS} 139 \mathrm{IC}_{8 \mathrm{~b}}$. This output goes low when MSA 3 is received. Inverted by I_{11}, it drives the select inputs S0 and S1 of the 74F524 latched comparator high.

To be continued
 ，时
 Nロロロ品品以
客

囚raow

制
的

 군

 should be replaced by a 100 nF polyester type to
avoid leakage－current problems．In Fig． 5 ，
R_{23-2} are $47 \mathrm{k} \Omega$ and，of course，digits 2 and 6 are
not used and will confuse the display if connec－
ted．We apologize for these inaccuracies． Referring to last month＇s article，Fig．4， C_{4}
should be replaced by a 100 nF polyester type to

 Room L303，Quadrant House，The Quadrant，
Sutton，Surrey SM2 5AS．Fully etched but un－

[^4]

 ท以
 TT T O W ORNMW

 пп тTI二の日

 ワT

UK nearer to US tv encryption

Racal Electronics plc and Oak Industries Inc. of California are to form a joint company "to exploit the anticipated explosive growth of pay television services following the expansion of cable and satellite service in the UK and Europe". The new 50:50 company is formed in anticipation of Government support for the operation of cable systems for television programme distribution before the end of the year.
Although based on the UK the new company, Racal-Oak Communications, will have a mandate covering the whole of Europe, a nd in addition to producing equipment the joing benture will also seek to operate, license and supply pay television systems.

Commenting on the announcement, Sir Ernest Harrison, chairman and chief executive of Racal Electronics, said: "The potential in the UK alone is exciting, but total European demand is huge. Oak's imported technology will provide an opportunity to build a new and important export business. The pay television business can be measured in billions of pounds over the next 20 years and the UK must win its share". Kenneth Baker MP, Minister for information technology, said of the deal: "There have been several contacts over the years between Oak and the Government. Most recently I met Mr Carter, Oak's Chairman and Chief executive, in June when he told me of his interest expanding Oak's European interests. I am delighted that he has decided to bring Oak's technological expertise in encryption technology to the UK."

Founded in 1932, Oak Industries evolved from a manufacturer of radio switches and television tuners into a diversified supplier of products and services in electronics. In 1977, Oak's first year in the entertainment business, it started over-the-air subscription television in Los Angeles and now owns five systems in the US with around 600,000 subscribers and a turnover of $\$ 500$ million. Oak developed both the hardware and computer software to manage the systems and later adapted its software for pay cable television. It claims to be the only cable tv manufacturer which supplies all the software necessary for a pay television operation, and produces converters for American cable television, computer-addressable converter and decoders and decoders for pay cable and subscription tv.
It developed an encoding and decoding technique for satellite television signals called Orion, a more sophisticated version of the encryption technology for subscription tv. Over 8,000 Orion decoders are already in use or on order in Canada and deliveries have recently begun to Sa tellite TV pic (see "Cryptic satellite tv"). Through a subsidiary it is also a major supplier of programming for both pay cable and subscription television, comprising recently-released movies, sports, concerts, comedy, dramatic productions and other entertainment special events.

Last July, Oak filed an application with the FCC to construct, launch and operate communications satellites to eventually serve all four US time zones.

Digital radio outshines lightline

The fanfare surrounding BTs ceremonial opening of its longest fibre route last July was well justified. The BICC 8 -fibre line between London and Birmingham took only nine months to install and is the longest BT fibre route at 204 km . Though only two fibre pairs are currently operating, at $34 \mathrm{Mbit} / \mathrm{s}$, the other two pairs will be brought into use next year at $140 \mathrm{Mbit} / \mathrm{s}$. More significant perhaps is that it is the first to operate at the long wavelength of 1300 nm , using high radiance l.e.ds instead of the more expensive lasers. At $1.5 \mathrm{~dB} / \mathrm{km}$ loss they have lower attenuation than the earlier 850 nm systems and allow repeaters at 10 km intervals instead of 8 km .

It's interesting timing in view of the Project Mercury London to Birmingham announcement. But what BT didn't sing about was the fact that only the day before GEC had announced the start of a multimillion pound digital network with steam radio, albeit using q.p.s.k. This was a

Coinciding with the London to
Birmingham Mercury project, BT open 34Mbit/s optical fibre and 140Mbit/s digital microwave links.
world first in being the first national 11 GHz high-capacity digital link and yet it was largely ignored in the press. The network will cover routes from London to various points in the UK including earth stations at Goonhilly and Madley and forms part of BTs plan to convert the entire UK telecommunications to digital operation by the early 1990s. Ironically, at $140 \mathrm{M} \mathrm{bit} / \mathrm{s}$ the capacity is far greater than the new fuss-making light-fibre link of 34Mbit/s.

Electronics for peace

Two electronics engineers who are concerned at the involvement of the electronics industry in the arms trade and the nuclear arms race are intending to do something about it. They plan to set up a network to link those in the industry who feel that their skills should not be used in the cause of war, nuclear or conventional. Possible functions of this network would be to encourage conversion of military electronics research, development and production to creative and socially useful purposes; to stimulate discussion and where possible disseminate information on military electronics and constructive alternatives, both within the industry and among the general public; and to provide technical advice and information where appropriate to the peace movement.

They propose a preliminary meeting in November, in or near London, to discuss the aims and structure of the network. Interested engineers should contact either Tim Williams, Weir Cottage, The Dens, Wadhurst, East Sussex or Steve Holmes, 151 Courthouse Road, Maidenhead, Berks for further details of the meeting.

Forth they went, together

The designers of Britain's latest microcomputer have chosen the Forth programming language in a bid to gain advantage in the crowding micro market. They claim its principles are so simple that newcomers to computing need only a few minutes to learn how to calculate, and at the same time, it is easy to invent extensions to the language. The two originators of the Jupiter Ace computer, Steven Vickers and Richard Altwasser (see caption), both discovered Forth at the same time (they read the same issue of Byte) and immediately recognised it, they say, as the ideal language for microcomputers.
Forth is fast and easier to write in as well as more compact in memory because it is

"Leading computer designers with a reputation for pushing technology forwards" is how Altwasser and Vickers describe themselves in their pramotional copy for their new computer. Vickers, left, who previously had joined a saftware consultancy near Cambridge with a doctorate in algebra, adaptated the $4 K$ ZX80 rom into an $8 K$ for the 2X81. He wrote the manual for the ZX81 as well as most of the Spectrum rom. Altwasser, an engineering graduate, worked on the application of microprocessors in automation before joining Sinclair. He was soon made responsible for computer research which included the hardware development of the Spectrum. "It's about time someone got away from Basic" says Vickers. Doveloped in 1965, it was then a lot easier to use than Fortran. "But it is hardly the language of the future; our money is on Forth".
compiled, yet its compiled code is accessible to the user in the simplest way possible, say Jupiter. One gives each compiled routine a name, a Forth word, and to run it just type in the word.

Stringing old words together can define new words, which process lies at the root of Forth's power and enables one to define an infinite variety of one's own words from the standard words provided in the
firmware. Older languages make assumptions about how they will be used that inevitably lead to a straight-jacket for the programmer; Forth is not based on any such assumptions they argue and allows the programmer "to do absolutely anything". If one doesn't have exactly the instruction needed in Forth, it is simply invented.

Forth usually relies on disc-based virtual

First shown at last month's Personal Computer Show at London's Barbican Centre, this $£ 90$ mail-order computer features full-size keyboard, user-defined high resolution graphics, programmable sound generator, upper and lower-case ascii characters, 24×32 flicker-free display, 1500baud cassette interface, and the Forth language. Jupiter Cantab are at 22 Foxhollow, Bar Hill, Cambridge, 10954 80437.
memory for editing the source program but the designers say unique editing facilities operating on the compiled word definitions mean that words can be defined, listed, debugged, edited and redefined without using any external storage. This they say makes Forth even easier to use on the Ace than on other implementations.

The memory saving coded form used to store programs allows it to work much faster than it would do in another language the company say - typically in less than a tenth of the time, which makes it ideal for games. Capacity is 8 K bytes of rom and 3 K of ram but because of the language it is more effective than, say, the $1 K_{2}$ memory of the ZX81. Expansion to $16 \mathrm{~K}^{2}$ (costing $£ 35$) should be available by the year end, as well as a printer interface board (costing $£ 25$), and later next year a collor board. By then, the company hop to selling 3000 units a month.

Cost effective satellites

The posiponed launch of the second European maritime communications satellite should take place while this issue is in the press. Though European in origin, this satellite's station is over the Pacific ocean and like its Atlantic partner will be leased to Inmarsat for international telecommunication at sea.

The two Marecs satellites grew out of the earlier, lower power Marots proposal and had their frequencies reduced down to $4 / 6 \mathrm{GHz}$ for compatibility with installations for Marisat, which they replace. The delay, from April last, has given time for modifications in the light of experience with the interference from electrostatic
discharge in the Atlantic satellite (see News, May issue).
(Vienna. - According to Olof Lundberg, the director general of Inmarsat, speaking at the Unispace ' 82 conference, the number of ships and oil rigs fitting earth stations for Marecs increased by 30% in the first half of this year, to 1,350 .)

Simultaneously with Marecs B, a second Sirio satellite is launched, using Italy's spare model built as a back-up for a 1977 communication satellite. In addition to providing meteorological data for the African continent, the satellite carries retroreflectors and time markers for laser pulses sent from ground stations. Object is
to provide a laser-based distance synchronization of afonic las with sub-nanosecond accuracs as as giving an opportunity of comparing both laser and microwave time synchronization methods, using information gained from Sirio 1.

After the first six operational satellite launchers - ordered back in 1978 - are spent next year, the responsibility for Ariane launches transfers from ESA to Arianespace, a private company formed to exploit Ariane in 1980 and ratified by ESA last year. With a capital of 120 million francs its shareholders are the 36 principal European aerospace firms, 11 banks and CNES, in 11 countries, with France having the lion's share of 60%, Germany next with about 20% and the remainder having

DATE 1982 Sept	NAME Marecs B + Sirio 2	AUTHORITY ESA ESA
Nov	Exosat	ESA
1983 Jan	ECS $1+$	ESA
	Oscar 9B	Amsat
Mar	IntelsatV F7	Intelsat
May	IntelsatV F8	Intelsat
Jul/	ECS 2 or	ESA
Aug	Telecom 1A or	France
	IntelsatV F9	Intelsat
Oct	IntelsatV F9 or ECS 2 and/or	Intelsat SEA
	Telecom 1A or B	France
	or ECS 2	ESA
1984 Feb	Spacenet 1 +	Southern Pacific
	Arabsat or	Arabsat
	Telecom 1B	France
May	GStar1 +	GTE
	Telecom 1B or	France
	Arabsat 1	Arabsat
Aug	GStr $2+$	GTE
	Spacenet 2	Southern Pacific
Oct	Spot $1+$	CNES
	Viking	Swedish Space Corp
Dec	Slot available	
1985 Feb	SBTS 1 +	Brazil
	Spacenet 3 or	Southern Pacific
	ECS 3	ESA
Mar	Intelsat VA F14	Intelsat
May	TV-Sat 1	Germany
Jun	Intelsat VA F15	Intelsat
	or TDF-1	France
Jul	Giotto +	ESA
	STC-1	Satellite TV Corp
Aug	Aussat $1+$	Australia
	SBTS 2	Brazil
Sept	TDF-1 or	France
	Intelsat VA F15	Intelsat
Oct	Ariane 4-01	
Dec	Aussat $2+$	Australia
	Anik D	Canada

shares varying from 0.25 to 4.4% in similar proportions to their ESA funding. Current orders with Arianespace - see table - are said to be worth 3,000 million francs at 1980 prices.

With competition in satellite launch facilities on the increase cost per kilogram in orbit has become a significant selling point. Together with increasing mass of satellites, this led to the dual launch experiment of September 10 with Marecs B and Sirio 2. To increase cost-effectiveness further it's planned to recover the first stage rocket by parachute. And if that's not enough, the thrust of the first two stages is set for a 10% increase, together with 25% for the mass of third-stage fuel. That will put a payload of 2000 kg into orbit. And that's not all; this up-rated Ariane 2 launcher will be ripe for augmentation by adding two first-stage boosters so that 2580 kg can be orbited (or two lots of 1195 kg).
For satellite launches from 1985 onwards, the ESA earlier this year approved development of Ariane 4, with 50% more stage-one fuel with either two or four boosters with solid or liquid propellants and a flexibility to match a range of payloads between 2000 and 4300 kg . Such a rocket would reduce mean cost per kilogram to 60% of that for Ariane 1 , and have the capability to launch the Intelsat VI series, scheduled for 1986 onwards.

To accommodate the launch of this vehicle a second site is being completed for 1984, but equally important, this will allow time between launches to be reduced to a month. ESA/CNES studies of requirements beyond Ariane 4 suggest that Europe could one day be in a position not only to put 15 tonnes into low orbit in 1992 but also to recover launchers, returning payloads, and perhaps humans too.

Four today, how many tomorrow?

Only 87% of the UK population will be able to receive Sianel 4 Cymru and Channel 4 television services when they start up on the first and second days of November. This is hecause only 31 of 51 major transmucters will come into operation by that date, and about 100 of 600 low-power relays. Twelve main stations will need to be equipped next year to bring coverage up to 94%, the remaining eight waiting till 1984 . But it will take until the end of 1986 for the relay stations to be completed. Coverage for Wales is higher at 90% with all six main transmitters operational and at least 80 local relays, with 13 more for 1983. If Wales gets better than average cover, Scotland comes off worse with only three main transmitters completed in time for the launch. Three more come into use next year but it's not until 1984 that it catches up, with six of the eight main transmitters for installation being scheduled for Scotland. The IBA, who are responsible for all the UK transmitters (but not the Welsh programming, this belonging to the Welsh Fourth Channel Authority), say the rest of the relays will be equipped as soon as possible from 1984 onward to bring the new
services to everybody now receiving ITV, BBCl and BBC 2 on u.h.f. They point to the sheer size of the undertaking; the number of transmitters is far greater now than it used to be with the 405 -line v.h.f. broadcasts, necessitating a massive investment in new equipment amounting to some $£ 50$ million. And, they emphasize, this will be the first time a television service will have been started in all 14 regions at the same time .

Cryptic satellite tv for Europe

Satellite Television plc will be transferring its European subscription tv service started earlier this year from OTS-2 to the ECS satellite next year, when OTS reaches the end of its planned life. To clear a space for ECS OTS has already been moved from its old $10^{\circ} \mathrm{E}$ position, to a new location at $5^{\circ} \mathrm{E}$.

Based in London, Satellite TV transmits programmes between 18 and 20 h u.t. every night via the OTS-2 spotbeam transponder on 11.64 GHz . The service, financed by advertising and consisting of a
wide variety of programmes from many countries including Britain, USA and Australia, is described as an "entertainment channel". It is received by licensed cable companies in European countries, among them Finland, Malta, Netherlands, Norway and Switzerland, although reception is not permitted by UK Home Office .

The transmissions are unfortunately encrypted at the insistance of Eutelsat, the European organisation of telecommunication authorities, to prevent "unauthorized use". There seems no prospect of an early liberalization of this rule which would make it possible for individuals to receive the programmes without having to hire or buy expensive decoders. The encryption method is the Oak Orion system developed for US cable tv (see "UK nearer to US tv encryption") and is generally accepted to be fairly difficult to break, particularly as the sound is carried on the sync pulses.

The level of power from the spotbeam transponder means that for reception with a good signal-to-noise radio a dish of around two metres diameter is needed. Although the transponder channel is 120 MHz wide only a single 18 MHz channel is used, with two transponders on the same frequency, one horizontally polarized and one vertical. On the present evening schedule, one carries the programmes of STV, and the other a French programme TV Tunis for North Africa.

Smart card, smart price

Known variously as the electronic chip card, debit card, payment card, pocket data card, memory card and smart card, the electronic credit card has spawned its own (non-electronic) publication. "Electronic chip card report" is a four part work, with updates, issued in 50 page instalments over a year for intending makers and users of the cards, and containing market research reports of card developments, especially in France, Germany, Italy and the USA. The most popular format for a card, consisting of memory and microprocessor circuitry embedded inside a card that is physically indistinguishable from an ordinary plastics credit card, is already in use for payment applications in France, according to the Report's promotional blurb. It is published by Steve Sziram of HTE at $\$ 2,500$, and is available through Geoff Coole in the UK at 26 Pamber Heath Road, Pamber Heath, Basingstoke, Hants (0734 700543) - but not by electronic credit card.

- Coole Marketing Services otherwise represents Micropower Systems Inc of California, Catalyst Research Corp (maker of lithium iodide cells for cmos ram), Inmos to specific UK customers, and SIBS Report, a $\$ 400$ p.a. semiconductor industry newsletter from the same publisher.

IMPACT OF THE PHOTON

Abstract

The experimental discovery of photons at the turn of the century showed finally that electromagnetic theory had failed. Waves or particles, or both or neither? "Double-think" became the order of the day, a required belief; but are we sure that the last word has been said about this logical conflict?

The impression given by writers of scientific textbooks is that everything in classical physics was tidy, or about to become tidy, until 1899 when Max Planck came along and spoiled it with his quantum hypothesis. We have seen that this popular history misrepresents the truth. Electromagnetic theory, which formed one of the three structurel pillars of classical physics, had already been placed in extreme philosophical difficulty by the Michelson-Morley result - no physical ether, therefore no electromagnetic waves. The whole of fundamental thinking at this time was based on electromagnetics; even the ordinary mechanical mass of an ordinary physical particle, such as an electron, was considered to be "electromagnetic mass', attributable to the inertia of its electromagnetic field, so that this field could be thought of as replacing the electron's material mass and even, by some physicists, to be the electron itself. In these circumstances the suggestion that anything could be seriously wrong with electromagnetic theory just didn't bear thinking about. One simply had to soldier on, hoping that some solution would turn up to relieve the anxiety.

However, the inconvenient absence of a physical ether was not the only evidence of failure of the electromagnetic theory. Serious difficulty was also encountered in describing the processes of radiation and absorption of light. The trouble in the radiation process was resolved by Planck by means of the revolutionary hypothesis which finally shattered the complacency of his times: the radiation of energy in the form of light by a material substance is not a continuous process. Individual mechanical oscillators in the material - atoms or molecules - radiate individual quanta of light energy. In the case of the absorption of light there is additional evidence of a discontinuous process: the photoelectric effect, which had similarly defied analysis by classical theory, was readily explained by Einstein on the basis of Planck's new hypothesis. Thee only possible interpreta-

BY W. A. SCOTT MURRAY B.Sc, Ph.D.

tion of this high-quality experimental evidence is that the whole of an individual package of light energy or quantum must always interact, at any rate in the first instance, with one individual microsystem in the photocell surface. The light energy seems to be localized in space.
There was on the face of it, and in retrospect, nothing very surprising about this deduction. The essential granularity of matter on the microphysical scale, atoms and molecules, had been recognized for a hundred years. These newly discovered quantum interactions suggested that light energy also is packaged granularly into "photons" which behave as discrete corpuscles or particles, as Newton believed. The reason for the fuss was that the concept of a light beam as a shower of photons was in direct conflict with electromagnetic theory, because the latter, being a theory of linear force fields, depended absolutely on the continuity and extension in space of the quantities it was dealing with. By contrast, the concept of a particle or photon epitomizes discontinuity. Electro-magnetic theory was bound to fail when confronted with this discontinuity and fail it did.

To those physicists who had believed the beautiful electromagnetic theory to be universally true and who had accordingly espoused it with a quasi-religious fervour, and likewise to those who so revere it by tradition today, its overthrow in the face of the quantum evidence, undeniable though that evidence might be, was simply not to be tolerated. Human feelings at levels deeper than mere reason were involved in this conflict. If mysticism was to regain its lost foothold in science, here was fertile ground.

Naturally, various attempts were made to compromise. The most hopeful of these led to the concept of the wave-packet. In certain circumstances, chief among which
is that the physical medium in which they travel must be dispersive - a technical term - a group of water waves will propagate together across a pond and will remain concentrated together in the form of a package. The energy represented by the wave system travels at the speed of the group, which is not the same as the speed of the individual waves. (The mathematics of this situation is quite elegant). Hence it was suggested that the quantum, the parti-cle-like concentration of light energy which was deduced from the experiments, might be merely a wave-packet of dispersive electromagnetic waves. That was the view which Planck himself took of the matter and maintained with some vehemence.
The trouble with this idea - it is distressing but noteworthy how often one is forced to say "the trouble with this idea . . ." - the main trouble with this idea is that although a suitable wavepacket could remain stable indefinitely in the longitudinal direction, no configuration of linear (Maxwell) waves can be devised which would prevent a wave packet from dissipating across the direction of the propagation. Now a beam of light will dissipate laterally, exactly like a wave system, but the individual quanta of which it seems to be composed do not dissipate. The unimpeachable experimental evidence for this is that the intensity of light decreases with distance from its source (the beam becomes more widely spread out), but the energy of its individual photoelectric impacts (its colour) does not change with distance. For this reason, Einstein, the radical, disagreed with Planck and came to regard the quanta as photons, essentially indivisible whilst in transit and therefore of the nature of particles. The wave-packet concept was a non-starter, disproved by the evidence, but it is still offered to physics students today as though it were valid and relevant.
In the end, and in my view prematurely, a thoroughly unsatisfactory compromise based on mysticism seems to have won the
day. Modern physics as now taught accepts the doctrine of duality, which says that light radiation (sunlight, radio waves and x -rays) consist of both waves and particles at the same time. Whether its wavelike or particle-like properties predominate will depend on the details of the particular experimental set-up. If I use a diffraction grating I shall see waves; if I use a photocell I shall see photons; if I follow a diffraction grating by a photocell I shall see both forms of light within the confines of the same experiment. It matters not that waves (as in electromagnetic theory) and photons (quantum theory) are mutually-exclusive concepts, each of which specifically denies the validity of the other. If I am to make a successful career in physics I must learn to ignore that logical conflict and get on with the remainder of my job as though the conflict did not exist.

The duality doctrine can be fully accepted only by a person who is able and willing to "double-think" in the George Orwell sense. For every other professional physicist the choice is either to live with the doctrine - reluctantly and with resignation, no doubt, knowing it to be unsound - or to try to do something about it: but what? The problem of the true nature of light radiation is recognized to be one of surpassing difficulty which may "for fundamental reasons" actually be insoluble. There even exists a powerful school of thought which believes that matters of this fundamental kind are intrinsically beyond the power of the human mind to understand, so that it would be wrong to expend time, effort, or public money on attempting to understand them. It is asserted by this school that modern quantum theory is "complete" (Niels Bohr), and since that ultimate theory offers no solution to the problem there can be no solution to it (von Neumann).

Believe me about this, please, for I am telling you the truth: that view is the accepted dogma of today's scientific establishment. It follows from the arguments of the so-called Copenhagen School during the 1930's, while the body of doctrine now known as the quantum mechanics was under development. That doctrine is no more sacrosanct than was electromagnetic theory, and it rests on very much less secure experimental foundations (see later). It categorizes the fundamental nature of light as a non-problem for physics, about which it would be improper to ask further questions. Its bland assertion that there "can be" no further progress toward understanding in this and similar areas constitutes the ultimate in defeatism. For myself, I do not accept it.

Now if I declare that I do not accept one of the currently established doctrines of physics, in this case the doctrine of duality, the onus is on me to provide an alternative that 1 and others may find more acceptable. This I cannot yet do; nor, I expect, will anyone now be found who is able to review and revise the whole of modern physics single-handed. What I can do is invite those of my colleagues who are interested and not too busy to take a fresh look with me at the duality paradox, and I
can start the ball rolling by mentioning a few neglected facts that may help us on our way.

My first hopeful factor is this. It is not waves as such, but electromagnetic theory a field theory - which is inconsistent with the existence of discrete, particulate photons. When we are dealing with the most familiar waves of all, sound-waves in air, we do not normally have to remember that the true picture is one of interactions on the microphysical scale between myriads of individual air molecules. Rather than seek to follow and account in detail for the motion of each and every air molecule, which would be an impossible task anyway, it is sufficient for almost all purposes to consider their average behaviour. We speak in terms of local mean pressure and local mean velocity, and using these terms we can describe the propagation of sound as "waves" of pressure and velocity moving through the gas. Now the point to be made is that the mathematics of this description of sound is concerned with waves in a continuous medium, yet we know from other experiments that the true nature of a gas is not that of a continuous medium but of discontinuous, discrete molecules. The sound waves are real waves, however; their crests and troughs represent concentrations of air molecules which move progressively and systematically through the gas; and those density changes remain wavelike even though the gas is not mathematically continuous. It is not the waves but the mathematical theory of the waves which is inconsistent with the molecular nature of the gas. Clearly the theory is an approximate description, valid only in limited circumstances.

In electromagnetic theory the roles corresponding to local gas pressure and velocity are played roughly, but not exactly, by Maxwell's field potentials and displacement currents. It is these mathematical artefacts of the field theory, demanding as they do continuity in an ether medium, which are in conflict with the quantum evidence for the granularity of light. Light waves might very well consist of periodic
variations in the density of photons as they travel in bunches through empty space at velocity c. If this should be so the infamous dualistic doctrine would be shown up for the mystical nonsense that I, for one, believe it to be. And the conflict would no longer lie between the concepts of light waves and photons, no longer incompatible, but between the electromagnetic theory and the experimental evidence. That theory also would be no more than a limited analogy at best.

It would be quite wrong to pretend to any originality for this idea, which Sir Karl Popper has quoted as representing Einstein's view. The concept that light waves consist of bunches or concentrations of photons is so obvious that one has to ask why it has not been generally accepted in place of the duality doctrine. Part of the answer would seem to lie in a general belief that it has been disproved experimentally. I am now going to argue that despite popular belief the concept has not in fact been disproved, but that it deserves at least one further, careful examination.
Typical of the experiments in question is one involving the interference of light, which is so readily accounted for on a "pure-waves" theory. I cannot do better than quote from an article written by Professor Frisch, of Cambridge, in 1969:
"But what happens to the photons in an interferometer? At first it was thought that interference occurred when two or more photons came together; but that was disproved when G. I. Taylor (1909) showed that interference fringes were formed just the same whether the light was strong or whether it was so weak that hardly ever two photons passed through the apparatus together. It follows that single photons can exhibit interference, that 'a photon can interfere with itself. It would seem that something does travel along both paths in the interferometer even when only one photon is admitted; but what is it? "Such questions were discussed a good deal when photons were new, and similar questions arose out of wave-particle duality of 'material' particles such as electrons. Some agreement has been reached on the way they should be answered, but the agreement is not unequivocal, and many of us are not sure what to tell our students

> Summary
> The crisis in electromagnetic theory threatened the whole of 19 th-century physics. The threat became extrame when evidence of the radiation law (Planck, 1899) and the photoelectric effect (Einstain, 1905) showed that on these issues at least the electromagnetic theory had already definitely failed. The concept of the wave-packet, proposed by way of compromise, proved to be untenable. Eventually the mystical doctrine of the simultaneous waveparticle duality of light radiation came to be accepted, perhaps with resignation, together with the parallel doctrine that no fundemental understanding of this duality could ever be achieved. The onus was thereby placed on those
who do not accept such negative doctrines to provide more acceptable alternatives to them. One such alternative, attributable originally to Einstein, proposes that light "waves" may consist of periodic variations of photon density. It is generally believed nowadays that this concept was disproved long ago, but careful investigation suggests that this is not so. Modern technology provides the possibility of a series of more rigorous experiments which could decide this very fundamental question once and for all. The main difficulty with such experiments is the practical one of obtaining financial support, because the concept underlying them is in conflict with the established donma of modern physics.

The G. I. Taylor referred to was a research student at Cambridge under Sir J. J. Thomson. In his experiment he set up and recorded interference fringes on photographic plates, and the essence of his result was that no change could be discerned in these fringes whether the light was of visible intensity or so weak that to record the patterns required an exposure lasting three months. In the latter, extreme, case it could be calculated that if photons existed they must on average be separated by 30 cm , which was appreciably more than the dimensions of the apparatus. Hence on average only one photon was present at any one time; yet the interference fringes still appeared in the photographs.

I submit that a point may have been missed by Taylor, by Thomson, by later experimenters who may have repeated the test, and by all who have accepted this result as evidence that "a photon can interfere with itself".^ Everybody seems to have assumed that natural photons are evenly distributed in space, and that their density will be diluted evenly when the light intensity is attenuated toward zero. That is the assumption on which the deduction rests in this and similar experiments, but I suggest that it may be a false assumption. I propose in its place the idea that photons generated naturally - by a black-body radiator for instance, or in a discharge tube - are generated not singly but in very large bunches. Then in the experiments of Taylor and others the photons, although infrequent in an average sense, would nevertheless have continued to manoeuvre in bunches. There never was a time when the apparatus contained only a single photon, and interference between
photons, rather than within individual photons, remained the order of the day.
Can I substantiate this proposal? Yes, I believe I can. In 1917 Einstein published a derivation of Planck's quantum law which later became the theoretical basis of the modern laser, and is therefore quite likely to be true. In this derivation he deduced the existence of two kinds of radiating mechanism which he denoted A and B. The A-type was spontaneous emission, self-triggering, while the B-type was stimulated emission, in which an atom or molecule previously primed with energy was triggered by the arrival of a photon already in flight. Following from Einstein's proposal, in the radiation of visible light the occurrence of B-type (stimulated) emission may be up to a thousand million times more frequent than A-type (spontaneous) emission.
We may interpret this result in nonmystical, mechanical terms. It should mean that photons are normally radiated in a cascade process: that is, in bunches. Each bunch would consist of up to a thousand million stimulated emissions, triggered ultimately from the one photon that is emitted spontaneously to initiate the cascade. This would represent the biggest snowball effect known to man - going on all the time on our doorstep, without our having noticed it. (I have coined the phrase semi-laser action to describe this process; the emission of wave trains can be explained in a natural way by interpreting Planck's $E=h v$ as $E=h / \tau$, where τ is the delay-time for emission of a photon of energy E).
If this argument should prove to be even moderately near to the truth (and I would gladly settle for a bunch of a million photons rather than a thousand million, not
being greedy), we would have good reasons for repeating the Taylor experiment with modern photon-counting equipment. At sufficiently low light levels the interference phenomenon should simply fade away, like sound in sufficiently rarefied air. It would not be an expensive experiment by modern standards but it would be very fundamental and I say, worth the trouble of performing it. (I would have done it myself at home if I could have found the necessary $£ 50,000$ for equipment!) The key to the test would be to ensure and demonstrate that the photons were constrained to pass through the apparatus truly one-at-a-time. To forestall misinterpretation in these mystical and doctrinally-loaded surroundings would call for the greatest care. Also we may note that there is nothing "impossible" about this experiment, except that according to the Copenhagen dogma the question it asks is an improper question - just a bit too fundamental for comfort.

If it were thus to be shown that, contrary to current doctrine, the interference of light is a group phenomenon not evidenced by individual photons, we would be well on the way to a resolution of the duality paradox. A series of options in physics would be re-opened, which for fifty years have been dismissed as oldfashioned, "unphysical", or merely "unrealistic" - epithets which, in context, carry a pleasing irony. In the meantime we may examine some of the consequences to which a positive experimental result might lead.

[^5]
Next month

Two-metre transceiver. Complete design for a two-metre band, sixmode transceiver for mobile use by T. D. Forrester, call-sign G8GIW. Microprocessor control simplifies functions such as scanning, tuning, frequency display and use of the unit's nine memories. The transmitter power rating is 16.5 watts in the f.m. mode.

> Technological choices for the UK. Robin Howes sets out to bring the
discussion about educating engineers in social responsibility down to earth in this first of two articles. Written in response to Peter Hartley's article on educating engineers, it relates the ideas to the current industrial situation: part one deals with technological choices for the UK.

Heretics guide to physics. Instead of trying to ignore Planck's quantum hypothesis because it conflicts with electromagnetic theory, suppose we were to afford it more than lip
service; what then? In A More Realistic Duality Dr Murray continues the Heretics Guide to Physics series by discussing new situations that could be tested by experiment.

Interfacing the Nanocomp. Bob Coates describes how to expand i/o interfacing for the nanocomp and gives connection details for the Cuban interface.

On sale Sept 15

FLOPPY-DISC DRIVES

Abstract

Despite the floppy-disc drive's disadvantages in relation to the hard-disc drives already discussed, it is widely used and popular, particularly with microcomputer systems, because of its low cost. John Watkinson looks at the progress of floppy-disc drive technology this month.

Floppy discs are the result of a search for a convenient and fast, yet cheap non-volatile memory for storing instruction-coverting data used with a processor under development at IBM in the late 1960s. Both magnetic-tape and hard-dise storage were ruled out as means of quickly restoring the system's data after a supply interruption on grounds of cost, since only intermittent duty was required. The device designed to fulfil these requirements - the 8 -inch floppy-disc drive - incorporated both magnetic-tape and disc technologies.
The floppy concept was so cost effective that it transcended its original application to become a standard in industry as an online data-storage device. The original floppy disc, or diskette as it is commonly called, is 8 in in diameter and the more recent 'mini-floppy' is $51 / 4 \mathrm{in}$ in diameter. Still more recently, the 'micro-floppy', measuring around $31 / 2 \mathrm{in}$ in diameter has been introduced.
Strictly speaking the floppy disc is a disc-storage medium since it rotates and repeatedly presents the data on any track to the heads, and it has a positioner to give the fast access characteristic of disc drives; but the device is also very similar to a tape drive in that the medium consists of an oxide coating on a flexible substrate which deforms when the read/write head is pressed against it.
Being stamped from a tape, a floppy disc is anisotropic, owing to the oxide being oriented along the tape during manufacture. On many brands this can be seen by the naked eye as parallel striations on the surface. A more serious symptom is the presence of sinusoidal amplitude modulation of the head output at the rotational frequency of the disc, illustrated in Fig. 1.

Standard and $51 / 4$ in floppy discs have straight radial apertures in their protective envelopes to allow access by the linear head positioner, but micro-floppy discs have curved slots since they use the lower cost rotary positioner, Fig. 2. A further aperture in the envelope allows a photoelectric index sensor to detect a small hole in the disc which gives an output signal once per revolution to synchronize the read/write circuits (discussed in an earlier article).
The disc is inserted into the drive edge first, and slides between an upper and lower hub assembly, Fig. 3. One of these assemblies has a fixed bearing which transmits the drive and the other is spring loaded and mates with the drive hub when the door is closed, causing the disc to be Digital Equipment Co.

by J. R. Watkinson
B.Sc., M.Sc.

gripped firmly. The moving hub is usually tapered to accurately centre the disc. To avoid frictional heating and in the interests of longevity the spindle speed is restricted to about one tenth of that used for hard discs. The spindle is commonly driven by an induction motor, but more recent units incorporate electronically-governed d.c. motors, which have the advantage of needing no modification to run on different supply frequencies, and generate less heat.
Since the rotational latency of the slowly turning disc is so great, there is little point in providing a fast positioner so the carriage is moved by a stepping motor driving a leadscrew in the case of standard and mini-floppy discs, Fig. 4. This approach also provides detenting. To appreciate why this is so, it is necessary to understand how a stepping motor works.

Flg. 1. Being stamped from tape, a floppy disc is anisotropic. This can cause sinusoidal-amplitude modulation of the type shown.

Figure 5 shows that this type of motor consists of a multi-lobed iron rotor and a stator with the same number of poles, each of which has a coil. If current is passed, the rotor lobes will be attracted by the poles, and will move into alignment. A smaller current, known as a holding current, will maintain this alignment against considerable external torque.
In smaller motors the holding current can be dispensed with as the rotor is a permanent magnet which naturally has a detenting action. A simple stepping motor of this type will only work if it is pushstarted at the frequency of the coil pulses. Motors of this type can be found in most a.c. electric clocks. To permit starting under load, extra poles and windings with seperate connections are interposed between the original windings. If the windings are pulsed in turn, the rotor will jump round, following the pulses, and detent at the last coil to pass current. This is the basis of the poly-phase-stepping motor, which is the type used in floppydisc and many 'mini-Winchester' drives. A typical standard floppy-disc drive uses a stepping motor with four windings and two steps correspond to a one cylinder seek.

Figure 6 shows a typical drive circuit, in which a 2 -bit counter counts up or down according to pulse from the controller, and this count is decoded to one of four outputs which will be in the correct sequence for the chosen direction of travel. Although the pulses from the controller may

Fig. 2. A slot in the disc's protective envelope allows the read/write head to access the disc surface, and a further small aperture lets the photo-electric index sensor detect a small hole in the disc for signalling one revolution. Various types of micro-floppy disc-drives are appearing, one of which has a rotary positioner to keep costs down. Micro-disc shown is for the Sony SMC-70. Relative sizes shown are approximate.

Fig. 3. Floppy-disc drive mechanism. Closing the drive door (not shown) forces the moving disc hub (here the upper hub) toward the fixed driving hub to both grip the disc and centre it by means of a location taper.

Fig. 4. Floppy discs
turn much more
slowly than hard
discs so there is no need for a highspeed positioning system. The leadscrew-type positioner shown is usually used.

Leadscrew

only be a few-hundred nanoseconds long, the motor drive circuit stretches these to about 10 milliseconds.
All incremental positioners need a reference from which to start counting. At the rearward limit of carriage travel, the carriage interrupts a slotted light-beam-type sensor which generates a logic signal indicating cylinder zero. From then on, the controller must remember the sum of how many pulses forward and how many back have been sent in order to know what the current cylinder is. Should this count be lost, say due to a power failure, it is necessary to execute a recalibrate function. In this case the drive is sent reverse pulses until the cylinder-zero sensor is activated.
Head alignment. One of the less endearing features of plastics materials is lack of dimensional stability. Temperature affects plastics much more than metals, and they also change their dimensions as a function of humidity. For this reason the track spacing has to be generous, being only 77 tracks on the industry-standard floppy, and 35 on the basic mini-floppy disc. Owing to this coarse track spacing, head alignment in the field is seldom necessary, but is nevertheless quite easy on a leadscrew drive. After loosening a clamp screw, the stepping motor can be turned bodily while dentented, which has the effect of rotating the leadscrew, hence moving the head. It is also important that the cylinder
zero sensor be at the correct radial position, or a recalibrate could cause the positioner to detent on the wrong track.

The read/write head of a standard floppy-disc drive operates on the lower surface only, and is rigidly fixed to the carriage. Contact with the medium is achieved with the help of a spring-loaded pressure pad applied to the top surface of the disc opposite the head. To reduce head wear, the pressure pad is often retracted when data is not actually being transferred.

Flg. 5. Stepping motors are used to turn the floppy-disc drive positioner's leadscrew. The most basic form of stepping motor, shown here, requires external torque to start it, and if the rotor is a permanent magnet, detenting is obtained when the rotor is stationary. This type of motor may be found in mains-driven electric clocks, but a commonly used, more advanced type with extra, separately-driven windings and poles is used to turn a floppy-disc-drive positioner's leadscrew in either direction without starting torque from outside.

Some drives have provision for adjusting the pressure-pad loading. The pressurepad solenoid can often be heard operating in an otherwise virtually silent drive. The recording technique used with standard floppy-discs is f.m. (described earlier in the series). Owing to the indifferent stability of the medium, side-trim or tunnel erase recording is used, which can withstand considerable misregistration.

Figure 7 shows the construction of a side-trimming head, and the extra erase poles can be seen. Figure 8 shows a typical write circuit from a double-sided drive which incorporates a head-select matrix. During writing, the erase poles are energized by switching power to a fourth head connection.
At the inner tracks, writing density becomes higher, and the write current needs to be reduced. This is the function of the

Fig. 6. Stepping-motor drive circuit in which a 2-bit counter counts up or down according to pulses from the controller. The count direction determines the switching sequence of four output drivers and hence the motor's direction of rotation.

Fig. 7. If a head writes over a track that it is not accurately aligned with, chances are that some of the data that should be overwritten will be left at the edge of the new track. On a subsequent read, signal-tonoise ratio may be significantly worsened by the presence of the remaining unwanted signal. A plastic floppy disc has poor dimensional stability and would suffer from this problem were it not for two smallerase heads at either side of the read/write head which clean the track edges during a write.
signal 'above-43', which refers to the higher cylinder addresses.

The major signals between the drive and its controller have now been introduced and are summarized in Fig. 9.

Formatting

Since it has become a standard, the format of the floppy-disc warrants inclusion here.

Figure 10 shows that there are 26 blocks on each track, which commence at the index point. A considerable tolerance gap is left after the last block to allow for variations in disc speed changing the length of blocks written at constant write frequency.

Figure 11 details each block, and shows that the header contains the cylinder and sector address of the block for the purpose of position confirmation before transferring data. The header finishes with a cyclic-redundancy-check character (c.r.c.) which is used to establish that the header was correctly read. Between the header and the data block proper is a space where the write current can be turned on. The block contains 128 bytes of data followed by a 2 -byte check character. The IBM specification also details which tracks are to be used for particuluar purposes, but this is not adhered to by other manufacturers of floppy disc drives.

Developments

As with all disc drives, developments have increased the storage capacity of the floppy disc. The first step was to use modified f.m. (m.f.m.) encoding instead of f.m., which effectively doubles the capacity (described in the second article). Such drives are referred to as double-density, and are to be found in both sizes. Some drives have been built which are capable of continued on page 84
 head connection. 'Above 43^{\prime} refers to higher cylinder addresses and is a signal used to reduce write current at the inner tracks where the writing density is higher.

Fig. 10. There are 26 blocks on each track of a standard floppy disc commencing at the index point. A considerable gap is left at the end of the last block to allow for rotational-speed changes, which will change the length of blocks written at a constant write frequency.

Fig. 11. Details of a data block. In the header-field section, the first byte is a unique pattern decoded by the controller to identify the beginner of the header field, called the identification-address mark. The last two bytes in the header-field section are for cyclicredundancy checking (c.r.c.). The data field is broken into 131 bytes of information and is preceded by a field of zeros and the header field just mentioned. Here, the first byte is also a unique pattern but for identifying the beginning of the data field, called the data- or deleted-data-address mark. Bytes two to 129 comprise the data field used to store 128, 8-bytes of information. Bytes 130 and 131 are a cyclic-redundancy-check character.

METEOSAT HIGHRESOLUTION IMAGES

Final details of circuits for receiving Meteosatll high-resolution pictures on a home-built station.
The original weather-satellite receiver, designed for Tiros- N high-resolution images, was described towards the end of last year.

Word and frame synchronization is achieved by passing the serial data through a 24 -bit shift register and detecting the sync. sequence. This is similar to the system used for h.r.p.t. but a more straightforward method of detecting a clock-phase error is used. The effect of this type of error is that the data appears inverted, and with an increased error rate. This situation is detected by checking the serial data for sync. as well as sync. and correcting the clock if sync. is found.

Figure 5 shows the circuit of the serial-to-parallel converter together with the associated sync. detector. The error signal is fed back to the bit conditioner. This circuit should replace the sync. detector section of the serial-to-parallel converter used for h.r.p.t. The counter that provides the word clock should be changed to divide by eight because of the different word length. The sync. guarantee counter which resets at 11090 for h.r.p.t. should be decoded to reset at 364 for p.d.u.s. In the prototype

by M. L. Christieson

station, switching between the two systems is controlled by the computer.

Data handling and display

One of the advantages of using computer software to process the data is that different types of image can be handled easily. In the prototype station, the computer interface was modified to receive two 8 -bit words and flags as one 18 -bit word rather than the original four, 4-bit words of the experimental h.r.p.t. system. This change was made to accommodate a more advanced colour display which stores 6 -bit words to give 64 colours. Reception of h.r.p.t. data is now also through this interface and colour display.
The software that controls data from the interface for the tape drive in real time has

Fig. 5. Sync. detector with serial-to-parallel converter. The error signal if fed back to the bit conditioner, Fig. 3.
first to locate frame zero and hence the label. Subframes containing the required image data are stripped of unwanted words, such as syncs, and the 6 most significant bits stored in the main memory. Data is then transferred to tape in a similar manner to that used for h.r.p.t., i.e., with data channel and interrupts.

The colour display, which operates as a

Meteosat now relays GEOS pictures

As pointed out in this article, Mereasnt's schedule is subject to occasional revision, and since the time of writing new schedule has been introduced. This inclades formats containing data fram the GEOS-E satellite siruated at $75^{\circ} \mathrm{W}$. There formats are relayed via CMS-Lamion in France, and comprise both p.d.u.s, and s.d.u.s. images of the Americas and the Western Atlantic. The p.d.u.s. formits, called LX, have been successinily received by the prototype station.

Fig. 4. This is how the top-middle section of the circuit diagram on page 64 of last month's Wireless World should have looked; we apologize.
computer peripheral, has a basic image of 315 lines by 384,6 -bit pixels. The raster store is made from dynamic mos memory and uses the line rate as the refresh. A oneline buffer is used to transfer data to and
from the main store. The output is fed to a d-to-a converter from a hardware adder and subtracter loaded by the computer. This means that the colours may be changed without loss of the stored image.

Adjustment and results

Final adjustment is simplified by the continuous nature of the Meteosat signal and a satellite simulator was not necessary. A final check on the system is most easily made by using the computer to check for errors in the sync. sequences. This information may be used to calculate an approximate error rate which was better than 1 in 10^{7} in the prototype.

A large number of images have been received and the quality has been excellent. There are relatively few p.d.u.s. users at the moment, possibly because of the high cost of commercial equipment and the apparent reluctance of people to make it.

It is hoped that these ideas may form the basis for further exploitation of the service and facilitate further work on the interpretation and use of the data, a field where much important work remains to be done.

VNON

Further reading

Use of data from Meteorological satellites, Technical conference, Lannion, Sept. 1979, ESA, SP143
Satellite meteorology of the Mediterranean, ESA, SP159
Climate and man's environment, J. E. Oliver, Wiley and Sons
Proceedings of the second Meteosat scientific user meeting, Mar. 1980, ESA
Publications relating specifically to Meteosat may be obtained from ESOC, MDMD/OPS, Robert Bosch Strasse 5, D-6100 Darmstadt, W. Germany. Other ESA publications, for which there is a charge, should be obtained from Scientific and Technical Publications Branch, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands.

accepting either single or double-density discs. A bit in the headers will tell if the subsequent data is f.m. or m.f.m., the disc format being otherwise the same.

The next step was to record on both sides of the disc. In this approach, the pressure pad is replaced by a second gimballed head, which constrains the medium to pass neatly between in contact with both heads. The floppy disc is somewhat thinner than a hard disc so to reduce crosstalk the magnetic gaps of the two heads are displaced slightly along the track from one another. The two heads are always at the same distance from the spindle. A doublesided double-density drive yield four times the storage capacity of the standard product. As the recording density increases, however, it becomes more important to have high quality media. Recent advances in head technology permit continuous contact with the medium, thus eliminating the solenoid mechanism, making it especially important to use discs recommended by the manufacturer.

Dimensional instability is compensated for in some drives by a section of disc material in the positioner baseplate. As the disc changes its dimensions, so too does the baseplate, reducing the resulting misregistration.

An unconventional approach to doubling the density of a floppy disc drive is to engineer a more compact mechanism which is half the height of a standard drive. This allows two drives to be fitted in the space of one. A unit of this type is shown in Fig. 12.

The most recent development is the use of vertical recording, where the magnetic domains in the medium are arranged on end throughout the thickness of the coating. Research has now provided a suitable medium in the form of Chromium-Cobalt crystals which are sputtered onto the substrate. It is predicted that this technique will increase the capacity of a floppy disc by initially a factor of 3 to 5 . This technology can then be expected to migrate to hard discs with staggering results.

In mainframe and minicomputer applications, the floppy disc provides an excellent low-cost medium for loading diagnostic programs, particularly useful if the hard disc subsystem is faulty. In microcomputers, the floppy disc is the only product which is of the same order of cost as the other components of the system, and the disc needs less consideration in handling than the hard disc. With the current popularity of microcomputers, the floppy disc is a significant growth area. This article concludes the information on disc drives themselves. Future aricles will discuss the control logic required to support the drives, and techniques used to ensure data integrity.

Acknowledgments

The author would like to thank HAL Computers Ltd for photographs of the mini-floppy and half-height drives, and Digital Equipment Co. Ltd for permission to use the standard floppy-disc drive photograph.
, MN

SIDEBANDS: PAST, PRESENT AND FUTURE

The debate on the existence of sidebands was recently revived by letters in Wireless World. Professor Bell thinks they are here to stay - for the moment, at least.

A recent letter in Wireless World ${ }^{1}$ recalled rather nostalgically some of the writer's earliest experiences of radio in the 1930s. In those days engineers did not always rely on mathematics - after all, Marconi successfully defied the predictions of diffraction theory about the propagation of short waves - and there was substantial argument as to whether sidebands really existed. The extreme point of the argument came when J. Robinson produced a type of receiver which he named "Stenode Radiostat" ("Stenode" from the Greek for "Narrow path") which he claimed utilized the modulated carrier and ignored sidebands ${ }^{2}$. This receiver used a single, high-Q resonant circuit (quartz crystal) to give high selectivity. The higher modulation frequencies were admittedly attenuated by the slow response of the high- Q element to changes in carrier amplitude but this effect was compensated by a suitably large top boost in the audio-frequency circuits.

Now, in a truly linear system, the attenuation of high frequencies in one stage followed by their restoration in a later stage would restore the original condition, with no net advantage. But the Stenode Radiostat worked! It was claimed that an interfering station only one kilocycle (kilohertz) off the wanted station could be eliminated. (The weakness of the system was that the large top boost in the audio stages also magnified any harmonic distortion which might have been generated in the detector stage). The success of the Stenode Radiostat also tied in with something which had already been puzzling other experimenters. If one had, for example, a simple crystal set with a single tuned circuit of very modest Q , it was possible to separate two local medium-wave broadcasting stations much more completely than one would have calculated from the resonance curve of given Q .
A demonstration of the existence of sidebands was given at one of the Physical Society's Annual Exhibitions. One exhibit (from the N.P.L.?) showed a carrier of comparatively low frequency (perhaps 15 kHz) modulated by a single audio frequency; and a wavemeter with galvanometer indication of response (there were no spectrum analysers in those days) could be tuned across the frequency band, showing separate responses to each sideband and the carrier.

As sidebands could be shown to exist, why did the Stenode Radiostat work? Remember the qualification above that in a truly linear system no net advantage was to be expected. The fact is that a 'linear' detector, in the sense of one which has a

by D. A. Bell, F. Inst.P., F.I.E.E.

linear relationship between input and output, is not linear in the circuit-theory sense of obeying the law of superposition which requires the output due to two signals applied simultaneously to be equal to the sum of the outputs obtainable from the two signal applied separately. Put very crudely, and assuming the two signals to be of very different amplitude, the opening and closing of the conducting path through the rectifier is controlled by the stronger signal and any signal of different frequency is 'mashed up' because some cycles which coincide periodicially with those of the stronger carrier are allowed through but others are blocked. It turns out that only the modulation of the weaker signal is suppressed, to an extent depending on the ratio of carrier amplitudes, any heterodyne note between carriers remaining. In the Wireless World's then sister journal, originally entitled Experimental Wireless but later Wireless Engineer, there was a sequence of papers under the title "Apparent Demodulation of a Weak Station by a Strong One". The first was a mathematical paper by Beatty ${ }^{3}$, but the mathematics of non-linear systems is notoriously difficult and Butterworth ${ }^{4}$ disagreed with the results of Beatty's mathematical analysis. Then a paper by Colebrook ${ }^{5}$ was concerned to present a simpler mathematical treatment and finally a paper by Appleton (later Sir Edward Appleton) and Boohariwalla ${ }^{6}$ from King's College, London, reported an experimental verification of the theory. This last paper has a footnote suggesting that the effect in question might have some relevance to the Stenode Radiostat. So one now takes account of the effect of relative carrier amplitudes in receiver design, while using a flat-topped pre-detector filter to avoid the problem of harmonic distortion exaggeration by audio-frequency top boost.

So at the present time sidebands are universally accepted, as indeed they should be. To anyone of modest mathematical competence, the statement \sin $\omega \mathrm{t} \cdot \sin \mathrm{pt}=1 / 2[\cos (\mathrm{p}-\omega) \mathrm{t}-\cos (\mathrm{p}+\omega) \mathrm{t}]$ is just as true as $2+2=4$. (The modifications to the trigonometric formula to provide for a non-negative carrier and defined depth of modulation are trivial.) The important thing to remember, however, is that an equation has two sides, so that carrier-of-varying-amplitude and constant-
carrier-plus-sidebands are equally valid representations of the modulated carrier: one finds whichever one is looking for, whichever one's test apparatus is capable of detecting. Thus, if one uses an oscilloscope one will see only a carrier of varying amplitude, but if one uses a spectrum analyser one will see carrier and sidebands. The idea of time/frequency duality was not well developed in the 1930s, when one thought of applying Fourier series only to the analysis of repetitive waveforms of non-sinusoidal shape, as in the treatment of harmonic distortion.

The most graphic example of time/frequency relationships (though in a different context) was given by Gabor ${ }^{7}$ in 1946. A pure sine wave will appear in the spectrum (frequency) analysis as a line of zero width, but to have zero width it must extend over an infinite range in time. Conversely, a pure pulse is concentrated in an infinitesimal time but in the frequency domain is spread over all frequencies (as evidenced experimentally by its potentiality for causing interference). Any intermediate waveform - e.g. a chopped sinusoid or a lengthened pulse - will occupy a finite range in both time and frequency. The idea that the communication of information requires a finite bandwidth has somehow become associated with "information theory' and has thereby acquired an unquestionable authority. Nowadays we expect to be able to shift between time and frequency descriptions of a phenomenon as the immediate problem may demand, by the (mathematical) Fourier Transform, where an analytic description is possible, by the (computer) Fast Fourier Transform (F.F.T.) where numerical transformation of an arbitrary signal is required or by the Wiener-Khintchine Transform to find the power spectrum of a random signal.

So sidebands are firmly with us at present, but will they always be in future? For a long time the frequency domain of sinusoids has seemed inherent in nature: there are so many natural phenomena which involve harmonic oscillation, in fact anything which involves inertia and a restoring force proportional to displacement from a central state. The most obvious electrical version of this is the combination of inductance and capacitance, and at moderate frequencies the LC resonant circuit seemed a natural part of most tuned systems. Perhaps a hint of the future lay in the low-frequency RC oscillator which avoided the use of an inconveniently large inductance. Now we have integrated circuits which are unable to produce reason-
able magnitudes of either L or C but are appropriate for digital working with an external driving clock.
This brings us to consider Walsh functions ${ }^{8}$ as an alternative to trigonometric functions. The use of non-sinusoidal signals has been surveyed in detail by Harmuth ${ }^{9}$ who has shown how to construct (with operational amplifiers) circuits analogous to the ordinary resonant circuits, but which respond selectively to particular non-sinusoidal waveforms. Direct digital transmission (without a carrier) is used for high-speed transmission over optical fibres; and Harmuth describes the use of a radar with non-sinusoidal waveform for the detection of buried pipes. As long as one is concerned with local or confined transmission there is no problem, though in optical fibres one may tend to go to a frequency description of the dispersion as a property of the medium, while still speaking of a time delay to the signal. But modulated sinusoids seem essential in free radio communication for three reasons:

1. Maxwell's equations imply sinusoidal radiation.
2. Changing the whole world's "channel" allocations from frequency-division to time-division would be a worse problem than changing the rule of the road from right to left throughout Europe and America - for in the radio case it would be necessary for everyone throughout the world to change simultaneously.
3. Time-division would require synchronism with a world-wide standard clock, in phase as well as frequency, and this could not be maintained over a long distance of propagation.
It therefore seems that modulated-carrier radio, and thus sidebands, will be with us for the foreseeable future.

CNON

References.

1. D. C. Sutherland, Wireless World, vol. 88, p.50, June 1982.
2. J. Robinson, The Stenode, Wireless World, vol. 28, pp. 9-11, January 7th, 1931
3. R. T. Beatty, Apparent Demodulation of a Weak Station by a.Stronger One, Experimental Wireless, vol. 5, pp. 300-303, 1928.
4. S. Butterworth, Apparent Demodulation of a Weak Station by a Stronger One, Experimental Wireless, vol. 6, pp. 619-621, 1929.
5. F. M. Colebrook, A Further Note on the Apparent Demodulation of a Weak Station by a Stronger One, Wireless Engineer, vol. 8, pp. 409-412, 1931.
6. E. V. Appleton and D. Boohariwalla, The Mutual Interference of Wireless Signals in Simultaneous Detection, Wireless Engineer, vol. 9, pp. 136-139, 1932.
7. D. Gabor, Theory of Communication, Journ. I.E.E., vol. 93, part III, pp. 429-441, 1946.
8. Thomas Roddam, The Function of Functions. An Approach to Walsh Functions from Telecommunications History. Wireless World, vol. 87, pp. 36-39. December 1981.
9. H. F. Harmuth, Nonsinusoidal Waves for radar and radio communication. Academic Press, 1981 (Advances in Electronics and Electron Physics, Supplement 14).
continued from page 62

The author

Mr Tierman is currently manager of British Telecom's Prestel computer network. He has spent the last 12 years being largely concerned with the design and mànagement of on-line computer systems for use within British Telecom, and the LACES air cargo control scheme. Prior to that, 12 vears RAF service was spent in close company with radar and associated computers. This article is the result of a consuming interest in audio systems, to which much of his leisure time has been devoted in the past 25 years.

Construction

The only item mounted directly on the main front panel are the 4 mm sockets for Sync, Common, and output; a 5 pin DIN socket with pins 2 and 3 connected to Common and output respectively; and the led D_{3}.

With one exception, there were no special screening or wiring constraints observed in making up the unit, but there has been a penalty in so far as there is some slight, but obvious, high-frequency breakthrough at the output (thought to be picked up at the junction of R_{13} / R_{15}) when the attenuators are set for something less than maximum output. The exception is the connexion between P_{2} and TBG/B; this is a link between two high-impedance points and a screened lead should be used to prevent spurious triggering of $\mathrm{IC}_{2 / 1}$ via Tr_{4}. There may also be slight notching of the output sinewave at points corresponding to the switching of $\mathrm{IC}_{2 / 1}$, and this may be minimized by using a 4069 (hex. inverter) i.c. for IC_{2} in place of the 4584 . If
this is done, the led driver circuit will not work properly on battery operation and $\mathrm{C}_{16} / \mathrm{R}_{29}$ should be omitted.

Readers who would like copies of Mr Tiernan's suggested p.c.b. pattern sketches should send a stamped, addressed envelope to Wireless World, Room L302, Quadrant House, The Quadrant, Sutton, Surrey. Mark the envelope 'Oscillator'.

MNO

Wireless World index and binding

The index for Volume 8 (1982) of Wireless World is now available, price 75 p including postage, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Our publishers also offer a service of binding volumes of Wireless World, each complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London, SE17 with your name and address enclosed. Confirm your order to the General Sales Department (address in first paragraph) and with this letter to Quadrant House send a remittance of $£ 6.90$ for each volume (this price includes the index).

In both cases cheques should be made payable to IPC Business Press Ltd.

Motorola now manufactures some 15,000 semiconductor devices and selection can be somewhat overwhelming. To make it easier they have published a European Master Selection which lists approximately 4,000 preferred devices that correspond to the majority of customers' needs in Europe. This is still quite a daunting volume but includes all the microcomputer components, integrated circuits for digital and linears operation; a wide selection of discrete components and packaged devices for hybrid circuits. Motorola Ltd, York House, Enfield Way, Wembley, Middlesex.

WW401

The Technit 10 -section Electro Magnetic Interference Shielding Design Guide is a source of reference for design engineers who are faced with EMI shielding problems. It is available from MCP Electronics Ltd. 38 Rosemount Road, Wembley, Middlesex.

WW402

Perdir Components, of 98 Crofton Park Road, London SE4, have expanded with five new divisions and have produced a product guide to list the components available. There are liquid crystal, vacuum fluorescent and gas plasma display panels; switching power supplies; microprocessor application boards and video monitors.

WW403

Within the Catalogue of the Open University Press is a technology section which includes some interesting titles on the social implications of technology. The Future of the Printed Word is a collection of papers edited by P. Hills. A book by David Collingridge is entitled The Social Control of Technology. There is also The Future with Microelectronics by I. Barron and R. Curnow, and Microelectronics and Society edited by T. W. Jones. The books are not written for specific OU courses.

WW404

'SIMPLE' LOGIC ANALYSER

A microprocessor-based logic analyser with a minimum of controls, the 7600 , has been added to Enertec Instrumentation's range of laboratory instruments. Screen information is divided into two sections, one containing processed and labelled data from the analyser and the other containing prompts for the operator, supplemented by 1.e.d. indications on the control keys. One of two 4096-bit memories is used for data storage, in either four, eight, 16 or 32 -bitword form, and the other is a truthtable memory. Four possible operating modes are automatic step, manual step, externallytriggered step and 'halt-if-different-from-truth-table'. Stored data can be displayed in seven different ways. When operated synchronously, the 7600 has a frequency range of 0 to 30 MHz , or, when operated asynchronously, up to 100 MHz , with thresholds adjustable in 50 mV steps between $\pm 6.35 \mathrm{~V}$. Propagation delay difference between channels is 5 ns and glitches 10 ns wide at 3 V p-p can be detected. Enertec
Intrumentation Ltd, Progress House, Albert Road, Aldershot, GUll ISZ.

WW301

DISPLAYS

Liquid-crystal displays from Sharp with 240 by 64 -dot matrixes, orange and green 40 -character by 12-line plasma displays from Oki, and colour and monochrome monitors for low and highresolution applications are stocked by an offspring of the Vako group formed in June called Vako Display Systems Ltd. VDS claim to be one

of the few companies that stock the whole Sharp display range, including a 40-by-two-line character display, and they supply Oki plasma displays for graphics and character applications. They also supply $51 / 2$ to 12 in monochrome chassis monitors with various phosphors and 12 to 20in colour monitors for either low or high resolution. These products will be shown at the Electronic Displays Exhibition on October 5, 6 and 7 at the Kensington
Exhibition Centre. Vako Display Systems Ltd, Pass Street, Werneth, Oldham, Manchester OL96HZ. WW302

STORAGE FOR PETS

Eproms are the basis of Progstor a unit which turns the Pet into a dedicated microcomputer with a selectable initiate-on-switch-on facility that makes the computer suitable for use by untrained operators. The program for the task concerned is written in Basic or machine-code or both and then, after debugging, is automatically stored in between 2 and 28 K byte of eprom (2716 or 2732), so mechanically less reliable and physically more vulnerable magnetic-storage media are not required. Progstor, mounted inside the computer, can be set to operate automatically when the computer is switched on, or on receipt of a system command, and is intended for use in hostile environments, by untrained operators and in any application where the same program is used frequently. Of course, it may also be used as an eprom programmer. Microscience, P.O. Box 14, Bramhall, Stockport, Cheshire SK7 2QS.
WW303

VIDEO PRINTER

Hard copy can be oblained from any standard composite video signal using an electro-sensitive dot-matrix printer called the TPS5 from Thandar Electronics. Both positive and negative prints of information on the screen can be produced, on a 5 in-wide paper roll, in 12 seconds for normal resolution which gives 480 by 350 points, or 24 seconds for high resolution, giving 480 by 640 points. We rang to check whether a decimal point had been left out of the price, stated
as $£ 753$. There wasn't, but we were told that the actual price is $£ 737$. Thandar Electronics Ltd, London Road, St Ives, Huntingdon, Cambs PE174HJ.
WW304

64K EPROM

Customers with industrial or commercial applications for a 64 K eprom can obtain one free from Rapid Recall. The Intel device concerned is a $2764-4$, 450 ns eprom which draws 100 mA from a 5 V supply when enabled or 40 mA in standby mode. Other versions, not free, are for $\pm 10 \%$ supply-voltage variation tolerance, and with 200, 250 or 300 ns access times. Rapid Recall Ltd, Rapid House, Denmark Street, High Wycombe, Bucks.
WW305

HIGH-VOLTAGE, AND 250W POWER MOSFETS

Two high-voltage mos devices, one rated at 350 V , the MTM15N35, and the other called MTM15N40 rated at 400 V can dissipate 250 W according to a recent product announcement by Motorola. Both 15 A transistors have a 0.4Ω on resistance and 70A peak draincurrent rating. Two high-voltage pchannel mosfets, one with a 50 V higher rating than the other at 500 V , are also available from Motorola, Both p-channel devices can carry 2A continuous drain currents or 8 A peak. Motorola Ltd, York House, Empire Way, Wembley, Middlesex HA9 OPR. WW306

EXPANSION FOR POPULAR MICROCOMPUTER

English is not the best language that human beings could use from a technical viewpoint, but what is perhaps more important, most English-speaking people believe that it is. Basic, the microcomputer world's equivalent of English, is contested by Forth, even in the domestic microcomputer world (note the introduction of a popular microcomputer from Jupiter Cantab Ltd with Forth as its basic language). This purportedly more practical language is also one subject of four plug-in cartridges from Adda Computers. All four cartridges, of which VicForth with 3 K byte of additional memory is one, are designed for the Vic 20 computer. One cartridge of the remaining three has six 24 V by 10W relay-switch outputs and two 5-to-12V-'on' d.c. inputs. The remaining two cartridges are statistics-calculation and graphplotting aids. A forth cartridge costs $£ 38.95$ including vat and the other three cartridges cost under £30 including vat. Adda Computers Ltd, Mercury House, Hanger Green, Ealing, London W5 3BA. WW307

POWER SUPPLIES

Open-frame power supplies providing 5 V at 3 A and 3.75 kV isolation form a new series from ITT Power Components. Efficiency of these units is typically 45% and output ripple 3 mV pk-pk. A 10% input-voltage change produces an output change of $\pm 0.05 \%$ and transient response is 30 us for a 50% load change. Dimensions of the series 15 power supplies are 125 by 102 by 52 mm STC Ltd, Edinburgh Way, Harlow CM20 2DE. WW308

1 MEGABYTE FLEXIBLE DISCS

A $51 / 4$ in flexible-disc drive similar in appearance and interface requirements to a standard $51 / 4$ in drive but capable of storing one magabyte of data is available from Hi-Tek. 96 -track double-sided discs are recorded using the modified frequency-modulation technique through ceramic read/write heads. Up to four CDC 9409 T disc drives may be used with one controller. Hard or soft sectored discs may be used, and a write-protect function is

incorporated. Hi-Tek Distribution Ltd, Trafalgar Way, Bar Hill,
Cambridge CB3 8SQ
WW309

VME-TO-EURO-6 INTERFACE

Connection between 68000 -based circuit boards with VME buses (VME is a bus standard for Eurocard boards based on 16/32-bit microprocessors, agreed by a number of companies including Philips/Signetics, Motorola and Mostek) and boards with a Euro-6 bus for 6800,6802 and 6809 -based systems is possible using Euroka's VMEI interface board. With this board, various Euro-6-bus input/output modules designed for 68006802 and 6809 processor systems can be used with 68000 VME boards and, using a secondary processor, software written for the 6809 processor can be implemented on 68000 VME systems. Clock signals can be generated for timing i/o boards in single-processor applications, where the clock from a 6809 secondary processor is not present. Hawke Electronics Ltd, Amotex House, 45 Hanworth Road,
Sunbury-on-Thames, Middlesex. WW310

TURNTABLE KIT

Main elements of this basic turntable kit from Input Design are a synchronous motor, glass platter with felt mat, belt, spindle components, instructions and baseplate drawings, leaving tonearm, plinth, base-plate and cover construction to the customer. The drive motor, claimed to be used in decks costing $£ 350$, is manufactured for 110 V operation and an inefficient but cheap mains adapting device called a resistor is placed in series with the motor for 240 V operation. (Why not have two motors driving together?) The British manufacturers, who also produce another turntable kit and an assembled deck, say they will be pleased to offer any advice, assistance or further information about the product after purchase. Each Home Constructor Turntable kit costs 49.50 including vat (an 'introductory-offer' price of £44 will run until mid-December). Input Designs Ltd, Palace Street, Biggleswade, Bedfordshire
SG18 8DP.
WW311
Professional readers are invited to request further details on items featured here by entering the appropriate WW reference numberis) on the mauva reply-paid card.

Charelombar
 A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tili-over facility enathing all maintenance to be at ground level.

Designed in accordance with CP3 Chapter V: part 2; 1972 for a minimum wind speed of 85 mph in conditions of maximum exposure and specified by professionals world-wide where hostile environments demand the ultimate n design. quality and reliability.

Surtable for mounting equipment in the fields of:
Communications
Security surveillance - CCIV
Meteorology
Environmental monitoring
Geographical survey
[Lefence range-finding
Marine \& aero navigation
Floodlighting
Airport approach lighting
F rther details available on request

Strumech Engineering Limited, Portland House, Coppice Side, Brcwnhills, Walsall, West Midlands WS8 7EX, England Telephone: Brownhills (05433) 4321. Telex: 335243 SEL G.

TOROIDAS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quartity orders which can be programmed to your requirements with no price penalty.

IMPORTANT: Regulation - All voltages quoted are FULL LOAD. Please add regulation figure to secondary voltage to obtain off load voltage.
The benefins of ILP toroidal transformers
ILP toroidal transtormers are only halt the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows For 110 V primary insert " O " in place of " X " in type number.
For 220 V primary (Europe) insen " 1 " in place of " X " in type nl mber
For 240 V primary (UK) insert " 2 " in place of " X " in type number
How to order Freepost
Use this coupon, or a separate sheet of paper, to order these products, or any products from other ILP Electronics advertisements. No stamp is needed if you address io Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd. Access and Barclaycard welcome. All UK orders sent within 7 days of receipt of order for single and small quantity orders
Also available at Electrovalue. Maplin and Technomatic

Please send
Total purchase price
I enclose Cheque $\square \quad$ Postal Orders $\square \quad$ Int. Money Order \square
Debit my Access/Barclaycard No.
Name
Address

Signature

Post to: ILP Electronics Ltd., Freepost 5, Graham Bell House, Roper Close Canterbury CT2 7EP. Kent, Er gland
Telephone Sales (0227) 54778: Technical (0227) 64723: Telex 965780

1LP Electronics Lid) TRANSFORMERS
w- -1 O

01-452 1500 Tbchnomatic Ltd 01-450 6597

BGO Micro Computer

Now available from stock

BBC Model B £399 (incl. VAT)
(Carr £8/unit)
Model A to Model B upgrade kit $\mathbf{£ 6 0 . 0 0}$ Fitting charge $\mathbf{£ 2 0}$.

All mating Connectors with Cables in stock.
Full range of ACORNSOFT, PROGRAM POWER \& BUGBYTE SOFTWARE AVAILABLE
Phone or send for our BBC leaflet

BBC FLOPPY DISC DRIVES

Single $514^{\prime \prime}$ ' Drive $£ 200+£ 3$ p\&p Dual $5{ }^{1 / 4^{\prime \prime}}$ Drive $£ 335+£ 5 p \& p$

MEMORY UPGRADE 8×4816 AP-3 100nS £21.60
F.D. INTERFACE KIT IC 77-78£70.00

ANALOGUE PORT KIT
IC 73, SK6 £7.30
RS423 \& VDU Port Kit £10.80

PRINTER \& USER PORT KIT
IC 69, 70, 71 PL9, $10 £ 9.50$ Bus \& Tube Port Kit $£ 6.50$

OFFICIAL BGB DEALER

CASSETTE RECORDER

Sanyo Computer Grade Recorder
$\mathrm{E} 24.50+£ 1.50$ Carr
Cassette Leads $£ 3.50$

NEC PC 8023 BE - C $100 \mathrm{CPS}, 80 \mathrm{cols}$ Logic Seeking, Bidirectional,
Forward and Reverse Line Feed, Proportional Spacing, Auto Underline Hi-Res and Block Graphics, Greek Char.
Set.
Only £340 + Carr
£8.00

MONITORS

BMC BM1401 14" Colour Monitor RGB Input 18 MHz Bandwidth 400 dots at Centre 25×40 Char. £240 + £8.00 Carr
BMC $12^{\prime \prime}$ Green Monitor Composite Input 18MHz Bandwidth £99 + £6.00 Carr

ACORN ATOM

$8 \mathrm{~K}+2 \mathrm{~K}$ Built $£ 13512 \mathrm{~K}+12 \mathrm{~K}$ Expanded $£ 175$
$8 \mathrm{~K}+5 \mathrm{~K}+$ Colour Card $£ 170$ (Carr £3/unit)
Atom Disc Pack $£ 299+£ 6$ Carr Atom Disc Pack
$3 A 529$
Requlated $£ 26+£ 2$ Carr $3 A 5 v$ Regulated $£ 26+£ 2$ Car
Atom PSU $£ 7.00+70$ p Carr Atom PSU $£ 7.00+70 \mathrm{p}$ Carr
Full Range of Atomsoft in stock Full Range of Atomsott in stock.
Phone/send for our ATOM LIST

PRINTERS

SEIKOSHA GP 100A
80 cols 30 CPS
Single and Double Width Char.
Full Graphics, $10^{\prime \prime}$ wide paper
Tractor Feed Standard
Friction Optional
Now only $£ 175$ + £6 Carr
Parallel Printer lead for BBC/Atom $\mathbf{£ 1 3 . 5 0}$ Variety of interfaces, ribbons in stock. 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 14+£ 3$ p\&p

EPSOM MX 80 and

 100F/T3MX 80 80CPS 80 cols MX 100100 CPS -aic Seeking cols Logic Seeking, Bidirectional Bit Image Printing,
9×9 Matrix
Auto Underline MX 80 F/T3 £330 MX 100 F/T3£430 (£8 Carr/Printer)

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem lt tests a microsystem and gives a prined re prin -it will prim and /O - it will print memory map, search for code, check dataline shorts and operates peripherals and even disassembles the ROM.
Microdoctor complete with psu, printer probe cable and two configuration board £295.

MENTA

A sophisticated $Z 80$ development system and trainer Powerful keyboard assembler and program debugging facility. Audible feedback on keyboard imput. Menta and PSU and TV Lead $£ 115$.

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$
UV140 up to 14 Eproms $£ 61.50$
UV1T with Timer $£ 60.00$
UV141 with Timer $£ 78.00$
(Carr £2/eraser)
All erasers are fitted with mains switches and safety interlocks.

TRAINER KITS

6502 Junior Computer
6809 Nanocomp II $\mathbf{£ 8 0 . 0 0}$. $\mathbf{8 5 5} \mathbf{0 0}$ 1802 Micro Trainer $\mathbf{£ 6 4 . 0 0}$ 6802 Nanocomp I...... $\mathbf{£ 8 0 . 0 0}$ Full details on request

EP4000 EMULATING PROGRAMMER

This EPROM programmer will accept most single and three rail eproms by simple rotary switch personality selection. Output to TV and monitor. Comprehensive I/O Ports - TTL and RS232 20 mA current Loop, parallel port, cassette I/O, printer port and DMA. £545 + £8.00 Carr.

P4000 PRODUCTION PROGRAMMER

This unit offers simple and reliable programming of up to 8 EPROMS simultaneously Self-check - blank check - program and verity sequence built in.
£545 + £8 Carr.
BP4 - TI Bi-polar Prom Programming module for EP4000. This module will program most TI devices and read equivalent devices from other manufacturers enabling copies to be made. $£ 180+£ 6$ Carrr

SOFTY II INTELLIGENT PROGRAMMER

The complete micro processor development system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV.
Accepts most + 5v Eproms
Softy II complete with PSU, TV Lead and Romulator lead £169

RUGBY ATOMIC CLOCK

This $\mathbf{Z 8 0}$ micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 independent alarms and for ties include 8 independent alarms and for each alarm there is a choice of meloctrical alternatively these can be used for electrical
switching. A separate timer allows switching. A separate timer allows
recording of up to 240 lap times without interrupting the count. Expansion facilities provided.
See July/August ETI for details. Complete Kit £120 + £2 p\&p

BOOKS
 No VAT p\&p $£ 1$

CMOS Cook Book....... CRT Controllar H/Book Programming the 780

 7.75 £5.95信 280 Microcomp handbook Programming the 65026502 Assy. Lang..
6502 Applications
6502 Software Design 6502 Games.
£6.95

E 12.10
$\mathbf{~} 10.20$ (............... E9.05 arge selection of databooks, interfac ing books, books on BBC, etc in stock. Ask for our list.

* communcitinns TEST Equapment MARCONN TF2002. AM Signal Generators . 10KHz-72MHz. Also 2002A S S available AM/FM | $10 \mathrm{KHz}-72 \mathrm{MHz}$. |
| :--- |
- MARCONITRP95A. 2-216MHz. AM/FM E200 - tor. $10-470 \mathrm{MHz} 0.2 \mathrm{UV}$ - 200 mV output. FM De-- viations up to $\pm 100 \mathrm{KHz}$ from $30 \mathrm{~Hz}-15 \mathrm{KHz} \mathrm{E} 550$ - MARCON TFGStAS. AM/FM Signal Generator * Narrow deviation model 995 covering 1.5 -220 mHz E450
- MARCONI TF1064B/5. FM Signal Generato - covering in thice ranges 68-108, 118 -185 and - $450-470 \mathrm{MHz}$. Modulation FM fixed deviations MARCON TFT91D. FM Deviation mo - MARCOA TrI. A.
- 'DOLBY' MOISE WEMATIMS FILERS

Cat. No. 98 A . Noise weighting fiters for CCIR/ARM
signal-to-noise ratio measurements. As naw units. signalto-noise ratio measurements. As new units.

BECHINN TURNS COUNTER DALS
Miniature type (22 mm diam.). Counting up to 15 tur Hempots. Brad now with mounting instructions. Only $£ \mathbf{£} .50$ each
BECKMAN TURNS COUNTER DIALS
Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each.

* ALDIO WATMETERS

Switchable IW \& 10 W Fod internal $3.5 \& 8 \mathrm{Ohm}$ sed in gray enamellad case x6x3. Large easy to resd ${ }^{\prime \prime}$ sq. mster. Scope axput provision. $\mathrm{E} 10(+$ ti).
HEATHKIT Model AW-IU. Internal load switchable 3, 8, 15 \& 600 Ohm . Meter scaled 0.50 W (+dB) scale). 5 Ranges from 5 mW -50W FSD. Mains powered. $\mathbf{2 5 5}(+$ E1).
MAACONI TFE93A. 1 mW -10W Full scale in 5

GPO JACK SOCKET STRIPS. 20-WAY TYpe 320 (3 pole) $\mathbf{E 2} 50$ ea. Type 520 (3-pole with switching contacts) E4 ea. Please include 35p each for postage on these. GPO type 316 jack plugs for above 20 p oa. $110+$ post freel. Plus VAT please.
PHILPS Model PMG456/01 FM STEREO GENERATOR. AF Output frequency 1 MHz Stendardised Stereo multiplex output signal As new with
handbook $£ 195$.

OSCILOSCOPES

SOLARTRON CD1740 SVstem. DC.50MHz Sweep Delay

SOLARTRON CD1400. DC-15MHz $\stackrel{t}{4} 125$
TEKTRONIX 565. Twin Timebase c/W two 2 A63 Y-Amps (DC.

SPECIALPURCİASE OF TENTRONIX 454 PORTABLE OSCILLOSCOPES

Teitronix $454 \mathrm{OC}-150 \mathrm{MHz}$ duai-beam
oscilloscopes in stock now. 5 mV . plifier (1mV cascaded). 2.4 ns risetime Calibrated sweep delay. We can offer these units in first-class operational condition complate with three months' guer antee, for a once only price of f 750 .

DYNAMCO D7200. Mains/battery portable. DC-15MHz £250 cossor CDU150. DC-35MHz $E 200$
TELEQUIPMENT DS3 $\mathbf{E 1 5 0}$ TELEQUIPMENT O53 £150
TEKTRONIX $454 . \quad$ DC-150MHz MARCONI Component Bridges. Models ADVANCE VM77D Millivoltmeters. $15 \mathrm{~Hz}-4.5 \mathrm{MHz}$. 1 mV Full scale - 300 V ACEE5
WOELKE ME 104C. Wow \& Flutter Meter $\mathrm{E95}$
AVO TYpe 1 LCR Component Bridge.
WAYNE KERR AF Signal Generator Type S121 175
ARMEC Wave Analysers Models 853 and 248A.
CENTRONICS P1 Printer, one only. AND Type 663 Printer.
ROHDE \& SCHWARZ SDR Signal Generar
ROHDE \& SCHWARZ SDR Signal Generator. 300 MHz -1 GHz .
HFWLII PACKARD 608C Signal Generator. 10-480MHz AM.
cable a mireless Telegraph Signalling Twin DC Power supply units. 240 V AC input. DC output $80-0.80 \mathrm{~V}$. $\mathrm{Di}-$ mensions $8 \times 7 \times 19^{\prime \prime}$. Model No. DD30. Price ea. $£ 12.50$. Carriage $£ 1.50$.

MICROFICHE VIEWERS
Type SR5. Screen size $9 \times 5^{\prime \prime}$. ReType SR5. Screen size 9×5, Re-
cent smail quantity now avail. E 55 TEXSCAM SWEEPERS Texscan Model VS40 Sweep Gen-
erators. 0.300 MH erators. $0.300 \mathrm{MHz}_{\mathrm{z}}$ Internal Markers. Also avil
pU- $88 \times$ - Y Monitor.
PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessany. It is sold in
first-class operational condition and guarantee. For our mail order customers we have a money-back schentie. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15\% YAT TOAI PRICES.

- DC POMER SUPPLES 1. APT. 10459/8. Stabilised Regulated supplies: New stock arrival hence LOWER PRICES. AVailable in
preset output voltages between 6 and $30 V D C$ (state requirements) $\pm 4 \mathrm{~V}$ approx. Three sizes available, 5A, $71 / 2$ A \& 10A Prices f20, e25 \& £ 30 respectivaly (+£2 p\&p\&VAT).

2. Mullard Dual supplies, Pos/Neg 12V @ 1A \& 0.4 A . Dimensions $9 \times 4 \times 5^{\prime \prime}, £ 10$ вa. $1+£ 1$ p\&pl. 3. Farnell Current limitad. 13-17V DC @ 2A. E15. 27. $32 V D C$ @ 1A. E15 (+£1 p\&p). 4. Lambara LXS Series supplied 110 V AC Input. 5V @ 14A. $£ 20(+£ 2.50$ p\&ipl. Various other voltages available from stock in small quantity;
(+ ¢ 1).
3. Variable 0-30V@1A. Volt-metered. £30.
4. Farreell 5V Switching. 60A. £85.

- RF SIGNL GENERATORS \star ADVANCE TYPe E2. $100 \mathrm{KHz}-100 \mathrm{MHz}$. Internal AM \& Audio O/P. 1 UV .100 mV output. Price each e50 inc. VAT
Ternal Modulation E8AM. 100 KHz -240MHz. Internal Modulation. $\mathbf{E 6 0}$ inc. VAT.
and carry our usual 90-Day Warranty. In both cases please add $£ 2$ each for carriaon

大 MULVOLT MEASUMEMENT, MMLOME E
MARCONI TF2800. Twelve ranges 1 mV -300V FSD Wide-band to 10 MHz
MARCONI TF2803. Frequen High Sensitivity from 300 uV 300 mV Full scat. Electronic Multi-meter. AC/DC ranged. AC Frequency range $20 \mathrm{~Hz}-1500 \mathrm{MHz}$.

BPREL E MJOER

Model 2006 Heterodyne Voltmeter. AM/FMNoltages measurements to 240 MHz .

ROTRON IMSTRUMENT
COOLNG FANS
Supplied in excellent condition, fully tested.
$115 \mathrm{~V}, 4.5 \times 4.5 \times 1.5^{\prime \prime} \mathrm{E4.50}$. $230 \mathrm{~V} \mathrm{e5}$.

Happy Memories

Z80A-CPU £4.35 Z80A-P10 £3.25 Z80A-CTC £3.25 6522.PIA £3.98 7805 reg. . 50 7812 reg. 50 $\begin{array}{llllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40 \\ \text { Pence } & 9 & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD 17.005 inch SSDD 19.255 inch DSDD f21.00

741 S series TTL large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

> Please add 30p post and packing to orders under $\mathbf{£ 1 5}$ and
> Access \& Barclaycard welcome
> and Edicational orders welcome $E 15$ minimum
> HAPPY MEMORIES (WW)
> Herefordshire HR5 3NY Tel: (054 422) 618 or 628

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70 EACH + VAT

NEW CENTRONIC 779 PRINTERS, $£ 325$ + VAT
NEW CENTRONIC 781 PRINTERS, $£ 350$ + VAT LA DECK WRITERS MODS. 35,36 \& 180, FROM £ $325+$ VAT. ALL NEW
NEW CIFA VDUs. 1 ONLY £ 300 + VAT
POWER UNITS 5 VOLT 6 AMP, £20 EACH
FANS, PCBs, KEYBOARDS AND LOTS OF ODDS \& ENDS \&
COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440

WW - 069 FOR FURTHER DETALLS

DIGITAL CIRCUITS

Price: 23.00

THE MODERN BOOK CO.

Spocialist in scientific and technical books
$15 / 21$ PRAED ST. LONDON W2 1 NP
PHONE: 01 -402 9176 - Closed SATURDAY 1 p.m
Please allow 14 days for reply or delivery

Well worth looking into

Television

October issue ON SALE NOW 80p

GARBLEDEGOOK

A look at Teletext reception problems
FREQUENCY SYNTHESIS TUNING
We explain theory and practice behind something which is now becoming prominent in continental and up-market British TVs.

MICROCOMPUTER CONTROL

The concept and possibilities of future and present uses in VCRs and TVs.

PLUS

TV4 VCR
servicing-newsdevelopments. GET A COPY TODAY

International TV Standards Chart to pull-out and display. Notes on most countries' systems and voltages.

No other cleaner has all these advantages:-

1. Only 100% pure natural diamond grains are utilised
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains to obviate loosening or breakaway during use This p
diamonded surface by residues resulting from use
3. All diamonded blades are pectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive
scratching during use
4. All diamone grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200. 300 or 400
5. The chrome gives a very weak co-efficient of Iriction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures an highly delicate relays.

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industria elays and switching equibiment. etc
Grain size 300 . thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For smaller equipments. like
- Grain size 400 thickness $75 / 100 \mathrm{~mm}$
contacts Two close contacts facing each other dia monded. For sensitive relays and tiny face of the spatula is abrasive.

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 An supplied to the M.O.D., U.K.A.E.A., C.E.G.B. Britizh Rail and othor Public Authorities also major industriw and oloctronic users throughout tho United Kingdom WW - 087 FOR FURTHER DETAILS
\square The NEW KEF Constructor Series

A new generation of drive units from KEF is now available to the home constructor.
KEF's drive units have been improved in terms of reducing audible colouration as a result of the detailed analysis of speaker vibrational characteristics, using computer aided techniques
Now the improved units and complete technical data on them are available to you to build a system to your own design or to use in any prescribed combinations to complete a system designed by KEF.
DRIVE UNITS

Mellinex dome high frequency unlt with ex
frequency response and wide dlisperslon.

Compact, bass/mid range unit.
sultable for use In elther a compert full range systecr, or as a speclalised mid range untt \ln a mulli-way system
 polystyrene daphragm and highly compliant surround. sultable for totally enclosed box, refle surround, suitabie for toraly enclosed box, reflex
transmisslon llne, horn and'other speciallsed low frequency applications.

The Speaker Engineers KEF Electronics Ltd., Tovil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140.

Please send me complete technical data of

Address:

extended frequency response.

Long throw bass/mid range unit, sultable for use In eft her a compact full range system, or as a sperlallised midd range unit in a multi-way syatem.

Low/mild range unit with visco-elastic damped Hextrane diaphragm and high temperature volce col asme mbly, suttable for use where low coll asmembly, suttabie for use where low
distortion and high power handing are required.

KEF Drive Units

WW-031 FOR FURTHER DETAILS

The Answer to Testing Questions

Intra Connector - Intra Switch
 Test Clips - Logical Connections - Logical Clips Ex-Stock Jumpers and Headers

IC TEST CLIPS

Type	Model	Row-to-Row-Dim	Prices
923695	TC-8	.3 inch	6.30
923698	TC-14	.3 inch	3.82
923700	TC-16	.3 inch	4.03
923702	TC-16LS	$.5 / .6$ inch	7.59
923703	TC-18	.3 inch	8.48
923704	TC-20	.3 inch	9.80
923705	TC-22	.4 inch	11.10
923714	TC-24	$.5 / .6$ inch	11.77
923718	TC-28	$.5 / 6$ inch	12.94
923720	TC-36	$.5 / .6$ inch	16.93
923722	TC-40	$5 / .6$ inch	17.82

Provide full access to integrated circuit DIP leads. Solve probe attachment problems. Simplify prototype and production testing. field service work and quality control. Removes DIP's damage free. Non-shorting electrical connection Gold-plated phosphor bronze spring contacts.

LOGICAL CONNECTIONS

deal for interfacing with remote logic analyzers. Simplify testing of

Type	Model	Remote End Termination	Prices
$923880-40$	LC-400	No Connector	31.68
$923881-40$	LC-401	Socket Connector	33.56
$923882-40$	LC-402	Card-Edge Connector	34.48
$923883-40$	LC 403	PCB Connector	35.88
$923884-40$	LC-404	DIP Plug	32.13

We also supply logical connections for 16 and 24 pin. Ask for free colour catalogue.

INTRA-CONNECTOR AND INTRA-SWITCH

Type	Model	Contacts	Prices
$922576-20$	Intra-Conn.	20	5.10
$922576-26$	Intra-Conn.	26	5.85
$922576-34$	Intra-Conn.	34	6.87
$922576-40$	Intra-Conn.	40	7.63
$922576-50$	Intra-Conn.	50	8.90
Type	Model	Contacts	Prices
$922578-20$	Intra-Switch	20	10.18
$922578-26$	Intra-Switch	26	11.70
$922578-34$	Intra-Switch	34	13.75
$922578-40$	Intra-Switch	40	1527
$922578-50$	Intra-Switch	50	17.82

Both Intras mate with standard $10^{\prime \prime} \times .10^{\prime \prime}$ dual-row connectors

EXCLUSIVE PRODUCTS TO AP
intra-Connector: Provides full access to lines. Permits quick testing of previously improbable circuits. Provides both straight-in and right-angle functions.
 by-line switching for diagnostic or QA testing.

FLAT RIBBON CABLE ASSEMBLIES AND MALE AND FEMALE HEADERS

GREAT JUMPERS Choice of 3 types of end connectors moulded on and factory tested Daisy chain and single-end also available Ask for Caralogue!
HEADERS For economical attachment of complete matrices of $.025^{\prime \prime}$ square posts to PC-boards for interconnection systems. 78 different types are available. Ask for Catalogue

Lowest cost of mating two boards together
Please add $£ 2.00 p \& p+15 \%$ VAT to all prices

1ำ

6 ft dia. for use in satellite reception and microwave transmissions. 4 gHz feed horns and electronics available. Please send s.a.e. for full details and data sheet.

FTarrison Bros.
Electronic Distributors
22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX Tel. Southend (0702) 332338

WW - 073 FOR FURTHER DETAILS

Chiltern Electronics

High Street, Chalfont St Giles, Bucks HP8 4QH

NOTE OUR NEW ADDRESS!!

We now have a superb new computer showroom only 40 minutes from London where hundreds of bargains are on display. Over 1000 sq. ft . of space is devoted to display of processors, VDUs, printers, drives, keyboards, power supplies, monitors and 1001 other items all at incredible low prices. Thousands of bargains for callers.
Check with CHILTERN for . . .

$$
\begin{array}{ll}
\star & \text { LOWEST PRICES } \\
\star & \text { LARGEST STOCK } \\
\star & \text { BEST SERVICE }
\end{array}
$$

SURPLUS COMPUTER EQUIPMENT SALE EVERY SATURDAY

Telephone Enquiries to: Chalfont St Giles (02407) 71234

The ideal design of a loudspeaker system involves the detailed and scientific study of the enclosure, drive units and crossover network. By applying computer aided techniques to the questions of enclosure volume, band width, efficiency, power handling capacity, probable system location and required directional characteristics, KEF have prepared detailed designs for the home constructor All this experience is now available to you - to help you build your own system - successfully and at the right price.

LOUDSPEAKER DESIGNS

Model CS5
This floor standing loudspeaker, based on the KEF Carlton, can provide remarkably sharp stereo imaging due to a novel method of minimising inter-unit time delay, and will produce a full frequency range with outstanding clarity and low distortion.

Model CS7

A new three way design incorporating the B139 which was the world's first flat diaphragm loudspeaker. The system offers an extended bass response and excellent power handling capability. with the three drive units being combined through a computer designed crossover network to give a very smooth frequency response characteristic with finely detailed reproduction of critical mid-rangeinformation.

Making it together
KEF Electronics Ltd., Tovil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140.

Please send me details of KEF Systems Designs

Name:

Address

WW/10/82

CHOLSITG R TILERD?

Then take a look at the October issue of एous which reviews three new lowCOMPUUER cost computers - the Vic 64 from Commodore, the Colour Genie and the MPF II from Multitech. Invest 60p in Your Computer and save yourself a lot of money!

Also in this issue:

Word processing on the ZX81. Yes, it can be done! And this article tells you how.
A survey of commercially available software for the BBC micro.
Also the mystery of the control key on the BBC micro - solved!
Pocket computer from Sanyo. Or, when is a calculator a computer?
All this, plus our regular advice column and pages of program listings. Get a copy from your newsagent now - or take out a subscription by completing the coupon.

To: Marketing

 Department, Room L214, IPC ElectricalElectronic Press Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5ASPlease send me 12 issues of Couk
COMPNTER
I enclose a cheque/PO for $£ 8$ UK/£14 Overseas, payable to IPC Business Press Ltd.

N.mu

Autreas

LOW COST VOLTMETERS

These voltmeters give accurate readings over a wide range of frequencies They are housed in robust steel cases and are powered by long life batteries. Mains power units and leather carrying cases are available as optional extras.

A.C. MICROVOLTMETERS

VOLTAGE \& dB RANGES	$\begin{aligned} & 15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V} \text { fsd } \\ & \text { Acc. } \pm 1 \% \pm \pm \% \mathrm{fsd} \pm 1 \mu \mathrm{~V} \text { at } 1 \mathrm{kHz}, \\ & -100,-90 \%+50 \mathrm{~dB} . \\ & \text { Scale }-20 \mathrm{~dB} /+6 \mathrm{~dB} \text { ref. } 1 \mathrm{~mW} / 600 \Omega . \end{aligned}$
RESPONSE	$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz , $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. TM3B filter switch; LF cut 10 Hz . HF cut $100 \mathrm{kHz}, 10 \mathrm{kHz}$. or 350 Hz .
INPUT IMPEDANCE	Above 50 mV : $10 \mathrm{M} \Omega<20 \mathrm{pF}$. On $50 \mu V$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pF}$.

type

TM3A
£140
type
TM3B £156

BROADBAND VOLTMETERS
H.F. VOLTAGE \&
dB RANGES
H.F. RESPONSE
L.F. RANGES

LEVELL ELECTRONICS LTD.
Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686
See us on Stand D1 at TESTMEX 82
WW - 009 FOR FURTHER DETAILS

EUROPEAN FLOPPY DISK DRIVES AT ATTRACTIVE PRICES

$+2 / 3$ height 5.25 inch drives
All reconditioned, as new, with 3 month warranty Single-sided $£ 100+£ 3$ carriage + VAT $=£ 118.45$ CWO ea.
Double-sided $£ 160+£ 3$ carriage + VAT $=£ 187.45$ CWO ea.
$+8^{\prime \prime}$ floppy drives, reconditioned, as new with 3 months' warranty
Single-sided $£ 210+£ 6$ carriage + VAT $=£ 248.40$ CWO ea.
Double-sided $£ 270+£ 6$ carriage + VAT $=£ 317.40$ CWO ea.

+ Also a few US made $51 / 4^{\prime \prime}$ single-sided floppy drives at $£ 60$ ea. $+£ 3$ carriage and VAT $=£ 72.45$ CWO ea. Note all prices are CWO and cheques/POs should be made payable to: "WW READERS ACCOUNT", Manuals are $£ 20$ ea. post paid or $£ 5$ if ordered with drives
Circle enquiry number below for details
MELKUIST LTD
35A GUILDFORD STREET
LUTON, BEDS.
TELEPHONE: LUTON 416028 TELEX: 825828
MLKST-G
WW - 078 FOR FURTHER DETAILS

FIRST IN THE WORLD

The ICM-12, synthesized, marine hand-portable radio
FEATIJRES:

- 12 ctiannels - 6 and 16 fitted as standard.
- No waiting for crystals, can be diode programmed between $156-164 \mathrm{MHz}$.
- Automatic semi-duplex for private and link calls.
- Slide-on nicad pack recharges from mains or 12 V .
- Lots of options, speaker mics, alternative battery packs, 12 V leads, and desk chargers.
- Complete with nicad battery pack, mains charger, belt clip, earphone, rubber antenna.
- Home Office type approved. RTD HP 105 - PRICE E199.13 + VAT. Free carriage.

Trade enquiries very welcome - Ask for Phil Hadler

We can also supply the ICOM IC100E and IC410A VHF \& UHF PMR Base and Mobile transceivers. Fully approved, very compact, built-in CTCSS and at very competitive prices.
Also the first synthesized hand portable ICH2. Two channels, high band, Simplex or Duplex. Dealers, forget your crystal problemsl

Dealer outlets required, ask for Dave Stockley.
Thanet Electronics ©D ICOM
143 Recuiver Road, Herne Bay, Kent
Tel: 0227363859 . Telex 965179

BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome

CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and $2-5 \mathrm{pm}$ Monday to Saturday inc

MARCONI AMFM SIGNAL GENERATOR type TF1066B/6S 10-470 MHZ in 5 bands f250 each Carriage 16 .
WAYNE KERR COMPONENT BRIDGE TYPE B521 (CT 375) Resistance 1 mOhm - 1000 MegOhm Capacitance 1pF - 5000Kuf Induc once $1 \mu \mathrm{H}-500 \mathrm{kH}$. With copy of manua

AVO VALVE TESTER type CT160 (22 valve bases) with copy of manual $£ 20$ each. Carriage | base |
| :--- |
| f6. |

AVO TRANSISTOR ANALYSER type CT446 with copy of manual $£ 20$ each. Carriage E6.

AVO SIGNAL GENERATOR No. 2 AM/FM AM 0.45-225MHZ; FM 20-100MH
manual £75 esch. Carriage E6.

MARCONI COUNTERFREQUENCY METER TF1417/2 with Convertor type TF 2400/TM7265 -500MHZ E35 each. Carriage E6.
TELETYPE PRINTERS KSR33 - ASCII Keyoard E50. ASR 33- as above with 8-bit Punch and Reader $\mathbf{7 7 5}$. Carriage ef eech unit
DATA MODEM
COLUNS TMX 202G
115/230V Operation
Complete with
information
ONLY E25 each
P\&P $£ 5$

SINE SQUARE GENERATOR GENE-22, 20HZ type 200 KHZ . Portable as ONLY E How each. P\&P MULTIMETER LSOLATING TRANSFORMER 240 V input 240 V Output 1300 Watts £15 each. Carr. £6 Runeian Type 4324 current; ohms, ftc.

10% DISCOUNT ON ALL ORDERS RECEIVED BY SEPTEMBER 30th
For turter derals please contact Dwayne Stewart

All units $\mathbf{£ 6}$ carriage. Plus V.A.T. on total

 \rightarrow n
 TELEPHONE NO. REAUING 669656
 NORWOOD ROAD, READING

(2nd turning left past Reading Technical College in King's Road then first right - look on right for door with "Spoked Wheel")
19" Rack Mounting Cabinet - Ör Free Standing
$£ 23.95$ £19.50
OFFER ENDS SOON
Front Panel $480 \times 150 \mathrm{~mm}$. Rear Case $425 \times 250 \times 140 \mathrm{~mm}$末 Top, bottom and rear cover removabie for access \# Plates have heavy duty grey paint finish Front included Heavy gauge chassis mounting plate is pre-drilled and has four mounting positions to
choose from Front penel is of brushed aluminium finish enhanced with haeavily chromed handes
Many sold to TANGERINE' usars and INDUSTRY

ADD VAT AT STD. RATE \& ORDERS UNDER £5. P\&P 50p ABOVE ITEMS £1 P\&P			
Ask for our FREE γ	atalogue 'metal cabinets a $£ 1.70$ b $\mathbf{E} 2.55$ c $£ 3.04$ d £4.08	SLIDE SWITCHES 1P2T 10p 2P2T pcb 12p 2P2T $12 p$ 2P3T 20p 1P4T pcb 26p 4P2T pcb 28p 4P3T pcb $35 p$ 6P3T pcb 42p 4P4T pcb 45p	
		Bridge WO-005	16p

These are beautifully manufactured cabinets with an aluminium \quad a $-102(\mathrm{~d}) \times 56(\mathrm{~h}) \times 83(\mathrm{w}) \mathrm{mm}$ feet to please the wifel) louvred for come fitted with rubber $\quad b-150(\mathrm{~d}) \times 61(\mathrm{~h}) \times 103(\mathrm{w} / \mathrm{mm}$ an attractive two tone finish. They make excellent cabinets for $\quad c-150(\mathrm{~d}) \times 76(\mathrm{~h}) \times 134(\mathrm{w}) \mathrm{mm}$

-		$\begin{aligned} & \text { DIODES } \\ & \text { 1N4148-2p } \\ & \text { 1N4001 - 3p } \end{aligned}$	$\begin{aligned} & \mathbf{N} 4002-3 p \\ & \mathbf{N} 4003-4 p \\ & \mathbf{N} 4004-5 p \end{aligned}$
$\begin{array}{\|c\|} \hline \text { RELAY-A-QU\|P } \\ \text { QRODUCTS } \\ \hline \end{array}$	Moat Lodge, Stock Chase MALDON, Essex, UK Tel: 062157242 10am-8pm Mon.-Sat.		$\begin{aligned} & \text { TRADE } \\ & \text { P.O.A. } \end{aligned}$
			$\begin{aligned} & \text { SEIKO } \\ & \text { 30w Iron } \end{aligned}$

WW - 062 FOR FURTHER DETALLS

(T) NESTRIK	
	隹
XLRLNE MAIN SERIES	
$\underbrace{\text { xifine }}$	

KELSEY ACOUSTICS LTD.

 28 POWIS TERRACE, LONDON W11 1JH01-727 1046/0780

WW - 059 FOR FURTHER DETAILS

ScheTronics Limited

For repair and calibration of test equipment.
We also have the following second user LF/HF equipment for sale.
Siemens return L bridge R 273 complete $1 \mathbf{m g h z}$ to $\mathbf{1 0 0} \mathbf{m g h z} £ 850$ Marconi 2600 V -v
Hatfield SLM 100130 HZ to 30 KHZ
Siemens 17 mghz pair
Siemens level difference meter D2003 300HZ to 2mghz
Siemens Pegamat spares.

Unit 10, Dunstall Estate Crabtree Manorway Belvedere, Kent DA17 6AW Telephone: 01-3119657

instruments set the pace

TV \& FM Test

- Colour Bar Pattern Generators
- Sweep and Marker Generator
- CRT Tester
- Field Level Checker
- Signal Level Meter
- High Voltage Metered Probe
- Signal Generators

Audio Test

- Generators
- Attenuators
- Systen Analyser
- Audic Tester
- Distortion Meter
- Equaliser Amp
- Wow and Flutter Meter
- Freql ency Response Recorders
- Millivaltmeters
- Log Amplifier
- Speaker Analyser

When you select an instrument from the Leader range, you get more than just sound engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year warranty. A broad range that covers most areas of test, measurement and calibration, with advanced features and high specification as standard, Prices that are lower than you'd expect are the bonus. Probes, covers, hoods and pouches are all available to enhance the application potential and ensure that Leader instruments set the pace for others to follow.

ค~s ?
 ELECT ONICS LINIITED

ww - cos FOR Fuxitiz DETAIL

Oscilloscopes

- 4 to 50 mHz
- Single, Dual and Quad trace
- Delayed sweep
- Wide bandwidth
- High sensitivity
- High accuracy
- Battery operated

General Test

- LCR Bridge
- Semiconductor

Curve Tracer

- Transistor

Testers

- Logic Probe

Power Supplies

- Laboratory bench type - 5 models
- 500mA to 5A
- Overload Protected

Thandar Electronics Ltd,
London Road, St. Ives, Huntingdon, Cambridgeshire PE17 4HJ England. Tel: (0480) 64646. Telex: 32250.

umbit INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A FRACTION H
CMOS-TTL

-0000-000000 -00000000000000000000000000000000000

0.30
0.30
1.20
0.30
0.27
0.99
0.35
0.37
0.30
0.30
0.37
0.37
0.37
0.37
0.40
0.60
0.70
0.85
0.90
0.60
0.40
0.40
1.05
0.60
0.60
0.45
0.42
0.35
0.35
0.55
0.50
0.80
0.80
0.70
0.70
0.60
0.80
0.40
0
Memory Micros Linears:

LM10C	388	St1611	1.60	KB4433	1.52	U265	3.16
149		SL1612	1.60	KB44	1.95		. 43
02378	88	SL1.13	${ }_{2}^{2.06}$	K84436	175	(1)	19.50
		5162	2,17	K84445	1.29	1 CM 7216 C	9,95
			244	K B4a	2, 7	ICM7217A	
				NE			
込				MC5229			
				S	3	H0.0551	45
				SL6310	2.03	H412001	.
CM348		T0	125	SL	3.38	H0440	
	0.49			S	3.75	H044752	
LF353	0.76	U		5		MC145151P	O
CM380N	1.00	-	d	S	2.75	z80A	3.75
2N4	1.98	CA3130E		SL669	3.20	Z80A P10	3.50
NE544	1.80	CA3130T	0.90	S		280A CTC	
NE555N	0.20	CA3140E	0.46	SA56710	148	Z80A DMA	95
SL560C	1.98	CA3189E	2.20	LS7225	3.65	280A DART	
564	4.29	CA3240E	1.27	CM755			
	1.30	MC3357	2.85	CL8038CC	50	2804	
741		ULN3859	2.95	Tk10170		崕	
A820	0.78	LM3900	0.60	TK1032	75	2800	00
Na	2.10	LM3909N	0.68	HA1)223	15	8255	
LM1035		LM3914N	2.80	HA112	1.45	${ }^{6800}$	90
62	1.95	K84412	1.95	HA: 2002	1.22	6809	5
TDA 1083		K84417	1.80	HA12402	1.95		55
tDa 1090		K844208	1.09	HA12	1.20	68400 P	25
HA1197		KB4423	2.30	HA124.2	1.55	6880	
MC		K84424	1.65	LF1374	0.33	2114.2	. 59
HA:3	1.90	K84430	2.30	MK55375	3.85		4.59
1388		K84431	1.95	MM5 2200	327	2716	3.00
Sl1610	1.60	K84432	1.9	0254	2.27		

AND THERE'S PLENTY MORE IN THE CATALOGUE 70p inc
Coils, Filters: Toko, Murata, NTK, Cathodeon.

SFE6.OMA	0.80	CDA10.7MA	0.70	10M150	14.50
CFSE10.7	0.80	SFE27MA	0.94	LFB4	1.95
SFE10.7MA	0.45	SAF10.7MC-2	3.75	LFB6/CFU455H	1.95
CFSB10.7	0.50	MF45510AZ12118.55	LFB8	1.95	
SFE10.7MJ	0.50	MFL455011	11.95	LFB10	1.95
SFA10.7MF	0.75	$10 M 15 A$	1.99	LFB12/CFU455F	1.95
SFE10.7ML	0.70	21M15A	3.45	LFH6S/	
SFE10.7MX	0.95	45M15A	5.95	CFW455HT	2.45
CFSH10.7M1	0.50	10M220	17.20	LFH8S	2.45
CFSH10.7M2	0.50	$10 M 80$	15.50	LFH12S/	2.45
CFSH10.7M3	0.50			CFW455FT	2.45

TOKO FIXED VALUE CHOKES (E12 Values)
$\begin{array}{llll}78 \mathrm{CA} \cdot 9 \text { to } 1000 \mathrm{uH} & 16 \mathrm{p} & 10 \mathrm{HB} \cdot 1 \text { to } 120 \mathrm{mH} & 33 \mathrm{p} \\ 8 \mathrm{RB} \cdot 1 \text { to } 33 \mathrm{mH} & 19 \mathrm{p} & 10 \mathrm{RB} \cdot 15 \text { to } 1.5 \mathrm{H} & 43 \mathrm{p}\end{array}$
RETAIL SHOP OPENING HOURS
Monday to Thursday 8.30-6.30
Friday 8.30-8.30 Saturday 9.00-5.30
NOW IN STOCK
MF10 - National's Me
(Access + Barclaycard orders accepted) Price 85.05
ALL PRICES SHOWN EXCLUDE VAT. P\&P 50p per order.
AMBIT INTERNATIONAL DEPT. WW

TELEPHONE (STD 0277) 230909 TELEX 995194 AMBBT G POSTCODE CM14 456

HF ANTENNAS

- MODE; Full half wave operation
* BANDS; Up to 4 spot frequencies.
\star POWER; Receive to 800W (PEP)

SWR; Better than 1.5:1 on channel

THE SMC TRAPPED DIPOLE ATITEMMA

has been developed to satisfy the needs of commerical and military users. It is capable of operation between 2 and 30 MHz on as many as four spot trequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxia feed is offered by the use of SMC H10 traps and the incorporation of a ferrite balun in full halr wave design. NB: Power absorbing terminating resistors are not employed. Th light duly portable masts| can be easily effected by two people in half an hour
HF SSB TRAISCEIVER

FT180 "PIONEER" HF SSB TRANSCEIVER. $1.8-18 \mathrm{MHz}, 6$ channels 100 warts RF output measuring only $95(\mathrm{H}) \times 240(\mathrm{~W})$ $\times 310$ (D)rmm and weighing 6 kg . May be operated as a base or menting our trap dipole and HW4 mobile aerials Prices atert at $£ 500$, making this unit not only very attractive but highly competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

OSBORNE ROAD, TOTTON
Telex: 477351 SMCOMM G
SOUTHAMPTONSO4 4DN
Tel: Totton (0703) 867333

WW - 044 FOR FURTHER DETAILS

pantechnic

THE POWERFET

 SPECIALISTS
POWERFET AMPLIFIER MODULES

The people at Pantechnic have been designing with powerfets since they first became commercially available. Their experience of powerfet amplifiers, coupled with their insight into the sources of non-linearity often neglected by others, has resulted in a new range of powerfet amplifiers that are fast, tough, linear and cheap.

MODEL
PFA 100
PFA 200
PFA 500
PFA HV
POWER RANGE
IContinuous RMS
$50 \mathrm{~W}-150 \mathrm{~W}$ 100W-300W 250W-600W

200W-300W

TYPICAL LOADS TYPICAL
$4 \Omega, 8 \Omega$ $4 \Omega, 8 \Omega$ $2 \Omega, 4 \Omega, 8 \Omega$
$4 \Omega, 8 \Omega, 16 \Omega$

NOTES Physically smal $30 \mathrm{~mm} \times 79 \mathrm{~mm} \times 108 \mathrm{~mm}$ High Watts per $£$ ratio 25A continuous output current
5 dB dynamic headroom Drives 70V line direct

Key features:

RELIABLE	- Powerfet freedom from thermal runaway and secondary breakdown
LINEAR	- TID zero, IM/THD < 0.01\% full power, (mid band THD down to 0.0015%) .
FAST	- Show rate $>30 \mathrm{~V} / \mu \mathrm{S}$. $(45 \mathrm{~V} / \mu \mathrm{S}$ typical)
QUIET	- Signal to noise ratio 120dB
BRIDGEABLE	- (100,200, 500 without extra circuitry)
STABLE	- Unconditionally
LOW COST	- 10watts to 20watts per $£$, depending on model and quantity

As they stand these modules suit most P.A. and industrial applications and satisfy all foreseeable audiophile requirements. (The HV is aimed at digital audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low cost customising is often a possibility. Alternatively entirely now boards can be produced

Pantechnic make more than just PFAs. Loudspeaker protection boards and the quietest, lowest distortion preamp boards currently available are just two of an ever-expanding range
Pantechnic sell high quality power supply and other components at excellent prices.

CHECK US OUT

WW - 094 FOR FURTHER DETAILS

QUALITY OSCILLOSCOPES, THE RANGE FOR EUROPE!

HM307.4 £138
Y: Bancwidth DC-10MHz $(-3 \mathrm{~dB})$ - Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} /$ cm ($\ddagger 5 \%$)
X: Timebase $0.25-0.5 \mu \mathrm{~s} / \mathrm{cm}(\pm 5 \%)$ - Triggering $2 \mathrm{~Hz} \approx 0 \mathrm{MHz}$ (3 mm) - Built in component tester- - Calibrator - Screen $6 \times 7-2 k V$.

HV203 £220
Y: Bandwidth $\mathrm{CC}-20 \mathrm{MHz}(-3 \mathrm{~dB})-$ Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} /$ $\mathrm{cm}(\pm 3 \%)$ - Dual trace
X : Timebase $0.2 \mathrm{~s}-40 \mathrm{~ns} / \mathrm{cm}$ incl. $\times 5$ Magni-TEigger $3-\mathrm{tz}$ -
$30 \mathrm{MHz}(4 \mathrm{~mm})-X-Y$ operation - Calibrator - Screen $8 x$
$10 \mathrm{~cm}-2 \mathrm{kV}$.

WW - Oe6 FOR FURTHER DETAILS

DAROM SUPPLIES Dept.AW. Tel: (0925)64764

4 Sandy Lane, Stockton Heath Warrington, Cheshire, WA4 2AY
sabtronics
FREQUENCY METERS

8 digit:

* Convenient single input
for entire range
* Big easy to read LED display
* Excellent sensitivity
* 10 MHz crystal controlled timebase * Battery or mains operated * 3 switch selectable gate times K Leading zero suppression

8110A......... $20 \mathrm{~Hz}-100 \mathrm{MHz}$........f67
$8610 \mathrm{~A}20 \mathrm{~Hz}-600 \mathrm{MHz}$.......f82

I.C.E. Multitester

2000V. DC

2500V. AC
10 Amps DC
$\frac{10 \mathrm{Amps} \mathrm{DC}}{100 \mathrm{M} \Omega}$
Add 15\% VAT on all prices correct at 1-5-82 E8 OE cash with order or credit card Carriage E 1 for all orders

WW - 066 FOR FURTHER DETALLS

WW - 041 FOR FURTHER DETAILS

A.B. Dick Magna II WORD PROCESSORS at $\mathbf{£ 8 5 0}$ plus V.A.T.

45 cps Qume Printer
8K Working Store
Thin Window Display
Permanent Storage on Magnetic Cards
Limited stock of ex-demonstration machines factory reconditioned by manufacturer to 'as new' standard

AUTOTYPE (The 2nd-User W.P. Specialists)
1 Church Street
Cuckfield, Sussex
Haywards Heath (0444) 414484 and 454377

WW - 097 FOR FURTHER DETAILS

BSR DE LUXE AUTOCHANGER £18

Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records,
Auto or Manual. A high quality unit backed by BSA Cartridge. AC 200/250V. Size $131 / 2 \times 11^{1 / 4}$ in Above motor board $33 / 4 \mathrm{ai}$
 Below motor board $21 / 2$
Cut Board $\mathrm{f1}$ extra
HEAVY METAL PLINTHS
Cut out for most BSR or Garrard decks.
Silver grey finish, black trim. Size $16 \times 13 / 4 / 4$ Post E2 Silver grey finish, black trim. Size 16×13 3/ain. DECCA TEAK VENEERED PLNTH. PCST £ small amplifier. Board is cut for B.S.R.
boards cut out for Garrard $£ 3$. Tinted plastic cover $\mathrm{E5}$
TINTED PLASTIC COVERS
$171 / 8 \times 131 / 8 \times 31 / 4 i n$
$171 / 4 \times 92 / 8 \times 3^{1 / 2 i n}$.
$11 / 4 \times 99 \times 31 / 2 i n$
$13^{3 / 4} \times 12 \times 2^{1 / 2 i n}$.

$131 / 4 \times 12 \times 21 / 4 i n$
$151 / 4 \times 13^{1 / 2} \times 4 \mathrm{in}$

$17 \times 12^{7 / 8 \times 3^{1 / 2} \mathrm{in} \text {. }}$

$211 / 2 \times 141 / 4 \times 2^{1 / 2}$ in Only (not sultebie for Dost)

$211 / 2 \times 141 / 4 \times 21 / 2 \mathrm{in}$.	E5	$21 \times 13^{7 / 8} \times 4^{1 / 8 i n}$.	65
$233 / 4 \times 14 \times 37 / 8 \mathrm{in}$.	E5	$3034 \times 133 / 8 \times 31 / 4 \mathrm{in}$.	E5

BSR SINGLE
 PLAYER DECKS
 QUAUTY DECK
 Manual or automatic play Precision ultra slim arm.
 解 with silvar trim, stereo ceramic cartridg

BSR P204 SINGLE PLAYERS SPECIAL OFFERS Two speed $33 / 45$ r.p.m. hi-fi decks with stereo cartridges, cueing device and snake arm Magnetic-240VAC E20 or 12 V DC 224

THE "INSTANT"' BULK TAPE ERASER Suitable for cassettes and all sizes of tape with switch and lead (120 volt to order). Will also demagnetise small tools.
Head Demagnetieer only $\mathbf{E 5}$

RELAYS. 6 V DC 95p. 12 V DC £1.25. 18 V £1.25. $24 \mathrm{~V} £ 1.30$ BLANK ALUMINHM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$ BLANK ALUMINIUM CHASSHS. $6 \times 4-£ 1.45 ; ~ 8 \times 6-£ 1.80 ;$
$10 \times 7-£ 2.30 ; \quad 12 \times 8-£ 2.60 ; \quad 14 \times 9-£ 3 ; 16 \times 6-£ 2.90 ;$ $16 \times 10-\mathrm{E}^{2} .20 .14 \times 3 \mathrm{£1} .80$. Al $21 / 2 \mathrm{in}$. deep. 18 swg . ANGLE ALL. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$.18 swg. 30p.
ALUMINIUM PANELS, $18 s w g{ }^{2}$. $6 \times 4-45 \mathrm{p}$; $8 \times 6-75 p$;
 $16 \times 6-£ 1.10 ; 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-$
PLSTIC AND AL BOXES IN STOCK. MANY SIZES PLASTIC AND ALI BOXES IN STOCK. MANY SIZES
 $12 \times 5 \times 3$ £2.75. $12 \times 8 \times 3 £ 3.60$. All with lids. BPHOGERECTIFIER 200 V PIV 2 a £1.4a £1.50. $6 \mathrm{a} \mathbf{E} 2.50$. TOGGLE SWITCHES SP 40p. DPST 50p. DPDT 60p MNLATURE TOGGLES SP 40p. DPDT $80 p$. RESHSTORS. 10Ω to $10 \mathrm{M}, 1 / a \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{p}$: $2 \mathrm{~W} 10 p$ HGH STABIUTTY. $1 / \mathrm{ww} 2 \% 10$ ohms to 1 meg . 10 p . Ditto 5%. Preferred values, 10 ohms to $10 \mathrm{meg}, 3 \mathrm{p}$.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20 WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20
PICK-UP CARTRIDGES SONOTONE $9 T A$. 2.50 . BSR Stereo Ceramic SC7 Medium Output £2. SC12 $£ 3$. 8SR Stereo Ceremic SC7 Medium Output E2. SC12 E3.
PHILPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306, E2. A.D.C., QLM 30/3 Magnetic $£ 5$. LOCKTIE SEALNG KIT DECCA 118 . Complete $£ 1$. ANTEX SOLOERING IRON 240V 15W £5.25. 25W f6. JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p
JACK SOCKETS Mono 25p. Stereo 30p.
FREE SOCKETS - Cable end 30 p . Metal 45
FREE SOCKETS - Cable end 30 p . Metal 45p.
2.5 mm and 3.5 mm JACK SOCKETS 25p. Plugs 25 p . 2.5 mm and 3.5 mm JACK

Sockets 3-pin, 5-pin 15p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20p; 5-pin 25p; Speaker plugs 25p; Sockets 15p.解
Free Socket for cable end 20p. Screened Phono Plugs 25 SOO Ohm TWIN RIBBON FEEDER 10 p Yd .
U.H.F COATCHING TRANSFORMER $300 / 75$ ohm $£$ COAX PLUGS 30p. COAX SOCKETS $20 p$. NEON INDICATORS 250V, round 30p. Rectangular 45p
POTENTIOMETERS Carbon Track
5ks to $2 M \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S
£1.10. DP $£ 1.30$. Edge Pot 5 K . SP 45p.
 MIN-MULLTI TESTER NEW
Oe luxe pocket size precision moving
coil instrument. Impedance + Capacity - 4000 o.p.v. Battery included.

11 instant ranges measur
DC volts $5.25,250,500$.
AC volts $10,50,500,1000$. E6.50
DC amps 0-250 $14,0-250 \mathrm{~m}$
0 to 600 K ohms
De Luxe Range Doubler Model.

NEW PANEL METERS $£ 4.50$

$50 \mu а, 100 \mu$, 500μ а
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$, 500 ma , 1 amp, 2 amp 25 volt, VU Meter.
$21 / 4 \times 2 \times 11 / 4$

Post 50p

RCS SOUND TO LIGHT CONTROL KIT Kit of parts to build a 3 channel sound to light
unit. 1,000 watts per channel. Suitable for home 15 or disco. Easy to buitd. Full instructions supplied. Post 95 Cabinet $£ 4.50$ extra. Operates from 200 MV to 100 W . 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights, Edison Scrow. 6 for E4, or 12 for $£ 7.50$

RCS "MINOR" 10 watt AMPLIFIER KTT $£ 14$

 This kit is suitable for record players, guitars, tape playback, electronic instruments or small PA systems. fication 10 W per channel; size, $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details. Full instructions supplied. 240 V AC mains. Post $£ 1$. RCS STEREO PAE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp $£ 2.95$ per channel, with volume control and PC Board Post 65 pMAINS TRANSFORMERS
$250-0.350 \mathrm{~V} 250 \mathrm{~mA} .3 .3 \mathrm{~V} 6 \mathrm{~A}$ CT
220 V 25 ma 6 V lomp 2 z.
250 V 50 mA FV 2 A
AUTO 115 V t GENERAL PURPOSE LOW VOLTAG

$6-0.6$
90.25
$9 V .3$
\qquad
\qquad
\qquad
$2-0-12 V .2$ amps
CHARGER TRAN
$6-12$ voth 3 a
$6-12$ volt 4 a

AECTIFERS
OPUS COMPACT
SPEAKERS £22 pair Post C 2 TEAK VENEERED CABINE
$11 \times 81 / 2 \times 7$ in, 15 watts
50 to $14,000 \mathrm{cps} 4$.
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt
2-way system $£ 39$ pair. Post $£ 3$.
LOW VOLTAGE ELECTROLYTICS Wire ends $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ mf , 250 mf . All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf} /$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} \mathrm{20p;} 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 100 \mathrm{~V}$ E1.20. 2200 mF 63 V 90 p . $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ;$ 500 mF 64V E2. 4700 mF 63 V £1.20. $4700 \mathrm{mF} / 40 \mathrm{~V} 85 \mathrm{p}$ HIGH VOLTAGE ELECTROLYTICS $2 / 500 \mathrm{~V}$ 45p $8+8 / 450 \mathrm{~V} \quad 75 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} \mathrm{90p}$ $\begin{array}{llllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \text { f1 } & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p} \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p}\end{array}$ $\begin{array}{rrrrll}16 / 350 \mathrm{~V} & \mathbf{4 5 p} & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{£1.80} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p}\end{array}$ $\begin{array}{lllll}32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathbf{£ 1 . 8 0} & 32+32+32 / 325 \mathrm{~V} \\ \mathbf{7 5} \\ 50 / 450 \mathrm{p} & 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} \\ 95 \mathrm{p}\end{array}$
CAPACITORS WRE END High Voltage
$.001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 \mathrm{p}$
1 MF 200 V 5 p .400 V 10 p .600 V 15 p .1000 V 25 p.
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p.
${ }_{47 \mathrm{MF}} 1500 \mathrm{~V} 12 \mathrm{p} .600 \mathrm{~V} .400 \mathrm{~V} 20 \mathrm{p} .630 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{~V} 60 \mathrm{p}$ VALVE OUTPUf Transformers (small) 90 p
TRIMMERS 30pF, 50 pF , 10 p . $100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p} .500 \mathrm{pF} 30 \mathrm{p}$. MICROSWITCH SINGLE POLE CHANGEOVER 40p.
SUB-MIN MICROSWITCH, 50 p , Single pole changeover
TWN GANG, $120 \mathrm{pF} £ 1.500+200 \mathrm{pF}$ f1. WIN GANG, $120 \mathrm{pF} \mathrm{E} 1.500+200 \mathrm{pF} £ 1$.
GEARED $365+365+25+25$ pF £ 1 .
TRANSISTOR TWIN GANG. Japenese Replacement £ SOLID ELECTRIC 100pf $£ 1.50,500 \mathrm{pf} £ 1.50$

HEATNG ELEMENTS, WAFER THIN

Size $11 \times 9 \times 1 / 8 \mathrm{in}$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx. Suitable for Heating Pads, food Warmers, Convector two sheets of metal or ceramic, etc.
ONLY 60 EACH (FOUR FOR $£$) ALL POST PAID.

NEW baker Star sound
high power full range quality loudspeakers produced to give exceptional reproduction. Ideal for $\mathrm{Hi}-\mathrm{Fi}$, music P.A. or
discotheques. These discotheques. The loudspeakers are recommended where required with quality
 results. The high flux
ceramic magnet ensures clear response.

BAKER 150 WATT MIXER/POWER

AMPLIFIER $\mathbf{1 8 9}$ Post tz

For Discotheque, Vocal, Public Address. Three speaker outlets for 8 or 16 ohms. Four high gain inputs, 20 my, 50 K ohm. hms R.M.S.Music Pows "Four channel" mixing. 150 watts 8 Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-fi preamp separate Bass \& Tfoble Size $-11^{\prime \prime} \times 8^{\prime \prime} \times 5^{\prime \prime \prime}$. Wh - 14t: Master volume control. British made. 12 months' guarante 240 V A. C mains or 120 V to order. All transistor and solid state.
MONO SLAVE VERSION €75. 100 Volt Lime Modal E104.
BAKET'S NEW PA150 MICAOPHONE PA AMPLIRER E12. PP ET.
4 channel a inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel ining, volume, treble, bass. Presence controls, Mastor volume

BAKER $£ 69$
 50 WATT
 AMPLIFIER

Mixer, Volume, Controls, Masterd Groups. Two inputs, RCS oflors MOBILE PA AMPUFERS. Outpets 4- 16
 00 -watt RMS, Mobile 24 vot DC \& 240 -vot AC mains. inputs 50 K . 3 mics +1 music. Outputs 4-8-16 ohm +100 volts line Ess PP E2 Bettery only Portable PA Amplifier 10w max. Includes mika and sperties, atc. Batteries included (6 of U 2) £27.50 post $£ 1.50$.
R.C.S. 100 ROBUST VAIVE

AMPLRE
Channel mixing. Master controls. 5 Speaker outlats suits $4,8,16$ ohm. Black

FAMOUS LOUDSPPEAKERS

 "SPECIALPRICES| ake | MODEL. | SIZE | WATTS | OHMS | PRICE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEAS | TWEETER | 4 in | 50 | ! | 59.50 | 81 |
| GOOOMANS | TWEETER | 31/2in | 25 | 3 | E4 | 81 |
| avoax | TWEETER | 4 in | 30 | 8 | c5. 50 | 1 |
| SEAS | MIO-RANGE | E 4 in | 50 | 8 | 17.50 | 81 |
| SEAS | MID-RANGE | 5 in | 0 | \% | 112 | f1 |
| SEAS | MID-RANGE | 43/2in | 100 | \% | 112.50 | f1 |
| G000MANS | HIFAX | T/2x ${ }^{\text {a }}$ / | 100 | 4/216 | f\% | 12 |
| GOOOMANS | WOOFER | 8 B | 25 | 41 | E5.50 | 1 |
| gOOOMANS | H8 | 8 in | 60 | 1 | 512.50 | 11 |
| RIGOMOA | general | 10in | 15 | 8 | E5 | 12 |
| SEAS | WOOFER | 10in | 50 | 8 | 516 | $\underline{\square}$ |
| GODOMANS | HPG | 12in | 120 | 215 | 129.50 | 0 |
| G000mans | GR12 | 12in | 90 | 415 | 627. 50 | 0 |
| GO00MANS | HPO | 12 in | 120 | 915 | Eta 50 | 0 |

BAF. LOUOSPEAKER CABINET WADOING 18 in wide $35 \mathrm{f} f$. MOTOROLA PIEZO ELECTRIC HORN TWEEEER, $3^{3} \mathrm{sin}$. square ES CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ Wett 8 or 15 ohm ES. $3-$ way $950 \mathrm{cps} / 3000 \mathrm{cps} .40$ watt rating. $£ 4.3$ way 60 watt Et.
LOUOSPEAYER BARGAMS LOUOSPEAKER BARGANS
3 ohm. $5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathbf{£ 2} 50 ; 61 / \mathrm{in}, 8 \times 5 \mathrm{in}, £ 3 ; 8 \mathrm{in}, \mathfrak{f} 3.50$. $10 \mathrm{in}, \mathrm{f5}$.
 $15 \mathrm{ohm}, 31 / 2 \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \ldots 250$.

CASSETIE MONO REPLAY. Complete working 12.50
CAR CASSETTE MECHANISM. 12 V Stereo Head 85
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions

\qquad f3.95. Post 65p mains transformer 240 V a.c. Output 6 or $71 / 2$ or 9 or 12 V d.

Get your hands on a low-cost, highperformance digital multimeter.
Choose from these three models:
EDM-101, at £39 (+VAT, pEp), has 5 functions and 19 ranges, plus diode test (200 mV to $1000 \mathrm{Vdc} ; 200$ and $600 \mathrm{Vac} ; 200 \mu \mathrm{~A}$ to $2 \mathrm{Adc} ; 200 \Omega$ to $20 \mathrm{M} \Omega$).

T100 (illustrated), at $£ 49$ (+VAT, pEp), incorporates 7 functions and 29 ranges including diode test and a direct 10A input. (200 mV to 1000 Vdc or $750 \mathrm{Vac} ; 200 \mu \mathrm{~A}$ to 10 Aac or dc; 200Ω to $20 \mathrm{M} \Omega$).

T110, at £59 (+VAT, pEp), has an additional buzzer for fast continuity testing. Send your order in today!

VAKO DISPLAY SYSTEMS LTD
Pass Street, Werneth, Oldham, Lancs OL9 6HZ
Tel: 061-6525111 Telex: 668250

Please send me:
EDM-101 multimeters at $£ 46.60$ (incl.VAT, $p \mathcal{E}$ p)
.T 100 multimeters at $£ 58.10$ (incl.VAT, pEp)
T1 10 multimeters at $£ 69.50$ (incl.VAT, pEp)

Cheque/P.O. enclosed payable to
Vako Display Systems Ltd. for:
\mathcal{E}
Name:

Address

PHONE
 P. M. COMPONENTS LTD
 SELECTRON HOUSE, WROTHAMROAD
 0474813225 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOQY WEST ST G

BASES ETC.
ZENER DIODES

4 Watt
7 Watt
11 Watt
17 Watt
${ }_{87 \text { B }}^{\text {B7 }} \stackrel{0.1}{0.1}$

$\begin{array}{ll}4 \mathrm{AR7} 1 \mathrm{KE} \\ 2 \mathrm{~K}-6 \mathrm{~KB} & 0.1 \\ 0.1 \\ & 0.1\end{array}$

\section*{| 867.4×7 | |
| :--- | :--- |
| $5 K 6.12 \mathrm{~K}$ | $\begin{array}{l}0.18 \\ 0.19\end{array}$ |}

9A Skitred 0.30
$108 \quad 0.15$

14 Pin DHLO 0.30
$\begin{array}{lll}16 \text { Pin DL } & 0.15 \\ \text { CTIAL } & 0.35 \\ \text { CANS } & 0.27 \\ & 0.27\end{array}$

ZEX

 BZY88 0.07 $566 V_{2} 687757_{5 V} 9 V 110 V 11 V$

CALLERS WELCOME

\star ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN
CAR PARKING AVAILABLE

- HOURS: MON.-FRI. 9.00-5.30. SATURDAY 9.30-12.00

ACCESS AND BARCLAYCARD ORDERS WELCOME

UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%
EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

COMPUTERS AUDIO • BOOKS • MUSIC © LOGIC

Breadboard ' 82 gives you the opportunity to have a day out in London AND attend Britain's regular exhibition for you, the enthusiast. NOT ONLY will there be stands from which you'll be able to buy the latest in kits, components, books and magazines, BUT ALSO lectures, demonstrations, competitions AND a chance to take part in a computer-assisted wargame that could make you the military tactician of tomorrow. DON'T MISS Breadboard '82 .. . Adults $£ 2.00$, children, students and senior citizens $£ 1.00$.

COMPONENTS MAGAZINES GAMES KITS

ROYAL HORTICULTURAL SOCIETY'S NEW HALL WESTMINSTER LONDON SW1 NOVEMBER 10th-14th

Wed 10th 10am - 6pm Thure 11th 10am - 8pm Friday 12th 10am-6pm Sat 13th 10am - 6pm Sun 14th 10am - 4pm

DAROM SUPPIIES Dept. AW-Tel: (0925) 64764

4 Sandy Lane, Stockton Heath, Warrington, Cheshire WA4 2AY

SAFGAN British Made Scopes
A range of high-performance, economically priced scopes featuring:

* Dual Trace
* $5 \mathrm{mV} / \mathrm{div}$ Sensitivity + X Y Facility * Z Modulation * Solid Trigger with Auto., Normal and TV \& Portable/Lightweight DT 41010 MHz $\mathbf{£ 1 7 9 . 0 0}$ DT $41515 \mathrm{MHz} \ldots E 185.00$ DT 420 20Mhz $\mathbf{1 9 8 . 0 0}$ X1 - REF - X 10 probe£ 11.50

OSCILLOSCOPES

 FUTUREs smas BY LEADERAll Models feature

- Dual Trace
\star 6-inch rectangular CRT
\star Max. sensitivity $500 \mu \mathrm{~V}$
\star TV-V, TV-H sync.
- ALT trigger
\star Hold OFF variable
- X Y Facility
* Preset Sync.
- 2 Modulation
\star Includes 2 XI/XIO Probes
LBO 524 features Delayed
Sweep and Dual Time Base

Add 15\% V.A.T. on all prices - prices correct at 1-5-82 - E\&OE cash with order ó credit card - Carriage $£ 5$ for Express Delivery WW - 065 FOR FURTHER DETAILS

ARWWVES EIECTRONCS

Call in and see us for a Comprehensive Range of Electronic Components Audio Leads, Adaptors Hobby Kits, Fuses Connectors Etc.

AIRWAVES ELECTRONICS

151 London Road, Camberley, Surrey GU15 3JY Write/phone for catalogue (0276) 62949

LOW DISTORTION AUDIO SIGNAL GENERATORS

Also available in kit form and alternative versions, i.e.: battery or mains. With or without frequency meter.
Literature on these units, R.F. Sig. Gen., T.H.D. meters, MVMT, Function Generators and many other instruments is available on request.

TELERADtO ELECTRONICS, 325 FORE STREET, LONDON N9 OPE Telephone 01-807 3719 Closed Thursdays

POWER AMPS

PRE-AMP
MODULES

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.

(~) ELECTAONICE LTD.

FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780 FREEPOST
Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

TO: I.L.P. ELECTRONICS LTD.

 PLEASE SEND ME IL.P. CATALOGUE, POST PAID BY RETURN1 have/have not previously BULL WITH I.L.P. MODULES

Did you know

I.L.P. are the worid's largest designers and manufacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durablity?
There are TWENTY power amplifiers from 15 to 240 watts RMS Including the very latest super-qua lity Mosiots to choose from?
TWENTY pre-amp modules allow you to incerporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A , N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your ordet reaching us and coverad by our 5 year no-quibble guarantee?

पPUS SUPPLIES RGB COLOUR MONITOR

LIMITED QUANTITY
AVAILABLE FOR USE WITH
B.B.C., MICRO, VIC, APPLE,
DRAGON, etc
Specification: The VMC 22 Colour Monitor is designed to meet the high reliability and perform ancestandards asso ciated with the games data and computer colour graphics industries Input levels: Video-TTL compatible either + ive or -ive going for RGB (IC37416 -ive going 7417 +ive going)
Composite Sync: TTL compatible either + ive or -ive going set by PCB link. Separate sync: (Frame and line) TL compatible +ive going = video response 10 MHz
Deflection: Scanning systems, 625 line 50 Hz and
Deflection:
525 line 60 Hz
Scan linearity: Errors less than 5%
Scan geometry: Errors less than 3%
High voltage: 25 KV .

ISOLATING TRANSFORMER ON FIRST 100 ORDERS

A fabulous 22 inch colour monitor Featuring: Mullard 2 inch $110^{\circ} \mathrm{CC}$ RT Controls: Brightness, RGB video amp bias, height, width, vertical hold, horizontal hold, linearity, east-west correction, phase, focus, H.T. adjust, beam cut-off switch convergence controls
De Gaussing: Automatic on switch on Power requirements: $155 \mathrm{VAC}, 44-60 \mathrm{~Hz}$ 20VA (isolated suplly).
Temperature: Storage $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Operating $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

X radiation: Less than $0.5 \mathrm{MR} / \mathrm{h}$.
After months of negotiation we have finally secured the computer user's dream. We have bought the complete manufacturer's production of these superb British made R.G.B. Colour Monitors and can offer them to you at this unrepeatable price. This offer, available to readers of "Wireless World" also includes a FREE isolating transformer. So with a little of your time and our buying power - you can save pounds. For shipping purposes the C.R.T.' and scan coil assembly are separate from the chassis. The lugs of the C.R.T. allow it to be mounted in a standard 22 " colour TV cabinet or a unit of your own design. The unit is assembled by plugging the wires from the chassis to the tube, soldering the input connector, power connector and isolating transformer. The monitor has been fully tested and adjusted prior to packing thus simplifying assembly. A comprehensive instruction sheet will be supplied with each unit

A computer supplies company have established an enviable reputation for reliable service and value for money - so pick up your telephone and discuss your supplies requirement with us.

LOCKABLE DISC FILING BOXES:
To hold 40 Minis $£ 16.00$ 80 Minis $£ 21.00$
old $408^{\prime \prime \prime}$ Discs $£ 71.00$
80 8 $8^{\prime \prime}$ Discs
DISC MAILERS: $£ 28.00$
Mini 60p
ESK TOP LECTERN ${ }^{80}$ OJUSIABLE WITH MOVABIE CURSOR

ONLY $£ 19.95$

HOW TO

ORDER

ATHANA FLOPPY DISCS

MINIS WITH FREE PLASTIC LIBRARY CASE \& HUB RINGS

S/S S/D	$£ 17.95$ for 10
S/S DD	$£ 19.95$ for 10
D/S D/D	$£ 23.50$ for 10
S/S 77 Track	$£ 26.50$ for 10
S/S 96 Track	$£ 28.50$ for 10
$8^{\prime \prime}$ DISCS	
S/S S/D	$£ 15.50$ for 10
S/S D/D	$£ 24.50$ for 10
D/S D/D	$£ 25.50$ for 10
HARD SECTORED AND ALL	
OTHER DISCS AVAILABLE	

BAN BARPAINS		
PART	1 off	25-99 100
4116-200ns	80	75.68
4116-250ns	75	70.55
2114 -300ns	85	. 80.75
2114-450ns	80	. 75.70
2114-L-200ns	. 95	. $87 \quad 83$
4516-100ns		
BBC RAM	3.10	2.952 .80
4164-200ns	4.80	4.504 .20
6116-150ns	4.20	3.953 .50
$2716-5 \mathrm{v}-450 \mathrm{~ns}$	2.40	2.152 .00
2716 Triple		
Rail	6.00	- -
2732-450ns	3.95	3.753 .25
2532-450ns	3.95	3.753 .25
8080A	1.90	1.70
8212	1.40	1.30
25-WAY D SOLDER CONNECTORS		
25 P		f1.30 each
$25 S$		¢1.50 each
OTHER DEVICES AVAILABLE PLEASE RING FDR QUOTE		

apUS
Deses

- 5 MODELS

 AVAILABLE CHOOSE WITHIN YOUR BUDGET \star - CREAM \& BROWNCO-ORDINATING PANELS \star \star DRAWER FOR DISC STORAGE \star
\star MOBILE
\star AMPLE SPACE FOR
HARDWARE AND PERIPHERALS
\star Through Shelf
FOR DISC DRIVES, PAPER FEED, FILES \star

SEND S.A.E. FOR YOUR FREE COLOUR BROCHURE

Carriage should be added to prices at the following rates: Monitor £10; Discs 85p; Rems 50 p; Filing Boxes/Lecturns £2; Desks $£ 10$. Please add carriage as apolicable and then VAT at 15% to total and send Cheque/P. Order payable to "Opus Supplies"' to Dept. W.W., Opus Supplies, 10 Beckenham Grove, Shortlands, Kent BR2 0JU. Telephone order hotline: $01-4645040$ (24 -hour service) or $01-464$ 1598. Access and Barclaycard accepted. If you are not completely satisfied return the goods within 14 days and your

F/3A

Apple 2 users HEW 16k printer buffer card -

 which saves your computer time. Serial and parallel.Send for specification and price

Anentire range of low-cost high-
 performance instruments

$\begin{array}{r}\square-569 \\ -500 \\ \hline\end{array}$

sabtronios

'Waking Performance Affordable'

5020A $1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generator $8000 \mathrm{~B} \quad 1 \mathrm{GHz} 9$-Digit Frequency Meter 2033 31122-Digit L.C.D. Hand DMM 365-S Protoboard
LP-10 10MHz Logic Probe
8110 A 100 MHz 8 -Digit Frequency Meter 8610 B 50 MHz 9 -Digit Frequency Meter PSC-65 600 MHz Prescaler AT-001 $\times 1$ Passive Probe
AT-010 $\times 10$ Passive Probe AT-110 $\times 1 \times 10$ Passive Probe (Switchable)

Also Oscilloscopes $15-30 \mathrm{MHz}$ Single or Dual trace.
Test our low priced test equipment. It measures up
to the best. Compare our specs and our prices- no-one can beat our price/performance ratio.

Illustrated brochure and price list from: BLACK STAR LTD
9a Crown Street, St. Ives, Cambs. PE17 4EB
Tel: (0480) 62440. Telex: 32339

WW - 014 FOR FURTHER DETAILS

FREQ. CONVERTERS I/P 240 v AC $0 / \mathrm{P} 115 \mathrm{v} 400 \mathrm{c} / \mathrm{s} 100$ Va 1 phase sine wave, all solid state, low dist o/p, new, unused, $£ 115$. INSULATION TEST' SETS, $240 \mathrm{v} 1 / P$ provides $30 / \mathrm{Ps}$ of $15 / 20 / 25 \mathrm{kv}$, uses contact breaker (Vibrator) from 12v DC with test leads in fitted wood case, size $14 \times 8 \times 9 i n .$, thought to have been used for testing lgnition Harnesses, £27. BENCH P.U. Solartron, 200/250v I/P O/P var. from 0 to 40 v DC in $100 \mathrm{Mill} / \mathrm{V}$ steps current var from 0 to 5 amps , will operate in constant voltage or current mode, O/P volts, set by dig swt, current by swt and pot, \% load meter tested with book, £75. A.M. MOD UNIT, Marconi TF1'102, will mod Sine, Sq, Pulse or Video on to un mod RF', req ext mod signals, for 240 v with book, £25. BENCH P.U. Army 240 v I/P provides 2 low HT and 2 low LT Ó/P all DC and Var, fitted $4 x$ meters, volts and Ma on all circs, intended to power Army radios normally using dry batteries, two-part unit, £28. PYE PF. 1 UHF FM Pocket phone Rxs nom $450 \mathrm{Mc} / \mathrm{s}$ req 9 v batt. with circ, $\mathbf{9 9 . 5 0}$. AUDIO TEST SET CT373 $240 \mathrm{v} 1 / \mathrm{P}$ AF osc $17 \mathrm{c} / \mathrm{s}$ to 170 Kc in 4 ranges, VTVM 30 Mill/V to 100 v FSD, Dist meas set 20 c to 20 Kc in case size $14 \times 17 \times 21$ in new cond. with book and leads, $£ 115$. VIDEO RECORDERS, Philips type N1500, no cassettes, $\mathbf{E 7 5}$. Also Philips LDL. 1000 reel-to-reel with 3 tapes, $1 / 2 i n$., both with circ., f75. SPEAKER UNITS, ex-A/C, cabin spk., size $17 \times 31 / 2 \times 21 / 2 i n$., fitted $4 \times 3 \mathrm{ohm}, 3 \times 3 \mathrm{in}$. spks., black, crackle case, $£ 6.50$. Also small amp that fits into spk. case, need pre$\mathrm{amp}, £ 3.50$. HANDSETS, lightweight, with M.C. mike, 50 ohm , ext. cord and press to talk swt., $\mathbf{£ 4 . 5 0}$. ROTARY CONVERTERS, 24 v DC I/P O/P 230v AC 140 -watt sine wave, in case, £45, or Rot Conv, only s/h, tested, £27. H.F. Trans Amp, part of STR. 18 Equip, $2 / 18 \mathrm{Mc} / \mathrm{s}, 100$-watt O/P req. ext. power and RF drive, $2 \times 4 \times 150$ in P.A. with circ., etc., £37 (new cond.) or $£ 27$ (S/H), other units available. Q BAND TEST EOUIP RF sources and N.G. available inc. w.g. swts, etc. RADIOSONDE UNITS, old British Mk. II, new cond. with chart, $\mathbf{£ 7 . 5 0}$; also new type M.60, £12.50. POWER UNIT, 240 v I/P O/P nom 28 v DC at 15 amps load range for reg. O/P, 5 to 15 amps, made by Plessey for testing A/C RT sets, tested, $\mathbf{£ 3 8}$. AUTO TRANS $200 / 250$ to nom 115 v at 560 watts, fully enclosed, size $61 / 2 \times 4 \times 31 / 2$, new cond., $£ 14.50$. ARMY-TYPE HEADSETS WITH THROAT MIKES, new cond. with contral box, $\mathbf{E 7 . 5 0}$. BLOWER UNITS, single-ended, 240 v , outlet size $21 / 2 \times 31 / 2 \mathrm{in}$., very powerful, new condition, $£ 13.50$. OSC AMP UNITS, $240 \mathrm{v} 1 / \mathrm{P}$, comprises amp 150 watt and var. freq. Osc 30 c to 30 Kc ; the amp can be connected for various $0 /$ Ps down to 16.7 ohm , fitted $0 / P$ voltmeter, can be used as normal amp or can be used with Osc to provide var. freq. $A C O / P$ in table case valve unit, £115.
Above prices inc. carr./post and V.A.T Allow 14 days for delivery. Goods are in secondhand condition unless stated new. S.a.e. with enquiry for List 29.

122 Handsworth Road, SHEFFIELD S9 4AE Phone 444278 (0742)
 WW - 075 FOR FURTHER DETAILS

TEST COMPONENTS
 ON THIS NEW OSCILLOSCOPE

USE READER CARD FOR DETAILS

WW - 040 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers fall types, Miniature transformers, Microminiature transformers ior Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR .A. SMALI OUANTITIES AND EVEN SINGIE TATIVE AND WE SUPPLY LARGE types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have averseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quota-
tions by return.

E. A. Sowter Ltd.

Manufacturers and Deaigners

E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffollik O. Box 36, lpewich, iP 2EL, England Phone: 047352794 and 0473219390

Telex 987703G Sowter

TO YOU TTS JUSTA MOVING IMAGE

But to us it's the result of electrons travelling 10,000 times faster than Concorde, deflected by 100 cm^{2} of ultra pure stainless steel plate, welded in over 1000 places, and all in a vacuum of $10^{-7} \mathrm{~mm} \mathrm{Hg}$.

Not only are we at the forefront of modern tube technology but we can also, through our unique worldwide sourcing service. probably locate those out of production, hard to find, items.
Let us help you with your requirement.

SAMSOMS
9-10 Chapel Street, Marylebone London NW1 5DN
21-23 Bell Street, London, NW1 $01-2625125$ \& 01-723 7851

PLEASE ADD 15\% TO ALL ORDERS INC. CARR.

	12	or 24	VOLT	
Ref.	12v	v 24 v	£	
111	0.5	50.25	2.42	1.0
213	1.0	00.5	2.90	1.
71	2	1	3.86	1.0
18	4	2	4.46	1.
85	5	2.5	6.16	1.2
70	6	3	6.99	1.2
108	8	4	8.16	1.3
72	10	5	8.93	1.
116	12	6	9.89	1.5
17	16	8	11.79	1.5
115	20	10	15.38	1.
187	30	15	19.72	1.
226	60	30	40.41	2.
	50 VOLT RANGE			
Ref.		Amps	f	
102		0.5	3.75	1.1
103		1.0	4.57	1.1
104		2.0	7.88	1.
105		3.0	9.42	1.
106		4.0	12.82	1.
107		6.0	16.57	1.
118		8.0	22.29	2.0
119		10.0	27.48	4.0
109		12.0	31.79	4.

	30	VOLT
Rof.	RANGE	
112	0.5	\mathbf{f}
79	1.0	$\mathbf{2 . 9 0}$
3	2.0	$\mathbf{3 . 9 3}$
20	3.0	6.35
21	4.0	8.79
51	5.0	10.86
117	6.0	12.29
88	8.0	16.45
89	10.0	18.98
90	12.0	$\mathbf{2 1 . 0 9}$
91	15.0	$\mathbf{2 4 . 1 6}$
92	20.0	$\mathbf{3 2 . 4 0}$

60 VOLT RANGE

VOLTAGES OBTAINABLE
30 r range $3,4,5,6,8,9,10,12,15,18,20,24,30 \mathrm{v}, 12-0-12 \mathrm{v}$ or $45-0-15 \mathrm{v}$. 50 v range
$5,7,810,13,15,17,20,25,30.33,40,20.0-20 \mathrm{v}$ or $25-0-25,60 \mathrm{v}$ range $6,8,10,12$,

AUTO STEPDOWN TRANSFORMER
40/110 Volts. $80-2250$ watts. Regular stock line. Typ
shrouded. Fitted with American two or three pin socket outlets and 3 -core 240 y mains lead. Types 1750 and 2250 watts are steel cased with two American socke price list and further details American sockets, plugs, adaptors also available.

HINCHIEY MANSECLAL OFFEA

Prim 240 V HINCHLEY MAINS ISOLATHON TRANSFORMERS
input, £10, P\&P £2, VAT $£ 1.80$. Parmeno prit tapped $115-220-240 \mathrm{v}$. Sec 240 c . amps. Fully shrouded top panel connections. Sec can be wired to give $120-0-$
$120 \mathrm{~V}, \mathrm{E} 5$, carr. $£ 5$, VAT $£ 4.50$.

MUFFIN FANS
SPECIAL OFFEAI!
SPECIAL OFFEAI!
240
4120

$41 / 2 \times 41 / 2 \times 91 / 8^{2} \times 4.75$
inc. VAT + postage,
Radiospares price
£ 14.5011
£ 14.50111

SPECLAL OFFER: Variable transformers Brand new, boxed, input 240 V , output $0-265$ volts 5 amps. Base or panel mounting with calibrated dial 0.265 volts and control knob. Price £28, inc. carr. and VAT.
SPECLAL OFFER: HIGH POWER AMPLIFER TRANSFORMEAS Pri tapped $120-240 \mathrm{~V}$ sec tapped 34 -29-0-2934 V 6 amps and 46 V 1 A . Open frame type. Tag connection. Size $5 \times 4^{1 / 2 \times 4 i n s . ~} 59$ inc. postage and VAT.
LATEST PURCHASE COMPUTER GRADE TRANSFORMERS. Conservatively rated. All Primaries $220-240 \mathrm{~V}$. No. 1 secs. 27 V 10A, 9 A, $3 \mathrm{~A}, 15 \mathrm{~V} 1 / 2 \mathrm{~A} \times 2$ Separate windings. $\mathbf{\varepsilon 6}, 50$, 3A, ${ }^{15 \mathrm{~V}} \mathrm{P}^{1 / 2} \mathrm{P} 1.50$. No. 2 sec. rapped $26.31-36 \mathrm{~V}, 11.2 \mathrm{~A} \mathrm{f} 12$. Pap ${ }_{c} \mathrm{E} 2$. No. 3 sec .36 V 6 A 88.50 . P\&P $£ 1.50$. No. $4 \mathrm{sec} .43 \mathrm{~V} 3 \mathrm{~A} £ 4.75$. P\&P $£ 1.50$. No. 5 sec. 24 V 2A $£ 2.75$. P\&\& $£ 1.25$. No. 6 sec . $27.5-0-27.5 \mathrm{~V} 1.2 \mathrm{~A}$ and $7-0-7 \mathrm{~V} 0.75 \mathrm{~A}$ E3.50. P\&P E1.25. No. 7 17V 1 A \& P\&P 75p. No. 813 V 3 A and 15 V IA $£ 3.50$. P\&P $£ 1.25$. No. 918 V 2 A £2.80. P\&P $£ 1$. No. $10 \mathrm{sec} .29 \cdot 28-27 \cdot 0 \cdot 27 \cdot 28-29 \mathrm{~V} 350 \mathrm{M} / \mathrm{A}$ " C " Core 83 . PAP EA_{1}. No. 11 sec. 10.7-0.7-10V 0.6 A and 29-29-0-21. 29 V 0.37 A E3. P\&P £1. No. 12. 27V $1 \mathrm{~A} 22 \mathrm{~V} 1 \mathrm{~A} 10 \mathrm{~V} 1 \mathrm{~A} 10 \mathrm{~V} 1 \mathrm{~A}, 4$ separate windings " C " core type. \&4.96. Páp No. 13. 65 V 1 A and $18-24 \mathrm{~V} 1 / 2 \mathrm{~A}$ E3.95. P\&P £1.50. No. 14. Tapped 12-15-27V 1A E2. P\&P 75p. No. $15.6 .3 \mathrm{~V} 600 \mathrm{M} / \mathrm{A} 6.3 \mathrm{~V} 330 \mathrm{M} / \mathrm{A} 6.3 \mathrm{~V} 20 \mathrm{M} / \mathrm{A}$ 8V $500 \mathrm{M} / \mathrm{A} 50 \mathrm{~V} 40 \mathrm{M} / \mathrm{A}$ \&. P\&P E1. No. 16. Tppped 14-15-16V 2A EZ. P\&P E1. No. 17. Tapped 36-37-38-39-41-42-43V $1 A^{\prime \prime} \mathrm{C}^{\prime}$
heavy duty isolation THANSFORMERS $240-240 \mathrm{~V}$ ex-computer equipment. Large selection available 10.15 amps. Fraction of maker price. Telephone for further details.
INDUSTRIAL $12 \mathrm{~V} / 24 \mathrm{~V}$ 20-AMP BATTERY CHARGERS $A C$ input 240 V 50 Hz DC output 20A Built-in steel case, size $15 \times 12 \times 91 / 2$ ins Complete with battery leads, f8s + VAT Callers only.
SPECLAL OFFERIII PARVALUX GEARED MOTORS Cap stant 24 CV AC RPM 44. Torque 4 lb . I ins., fitted with small cog on output shaft. Ideal for garage door opener or curtain puller. Our price 86.96 inc. carr. and VAT.
MONTTOAS Ultronics 12" monochrome monitor 750 ohm Video in Video out circuit breaker protected, housed in stylish case with side mounted controis. A must for home computer users. Only a few leftll f45 inc. VAT. Callers only.

SPECLAL OFFEAII Printed Circuit Board Motore manufactured by Servalco. 60v D.C. WKG $5.5 \mathrm{amps}, 2350$ r.p.m. Continuque torqua 1400z. in oxtremely powarful $4 / 4 \mathrm{in}$. output shaft (keyed). Liet price £ 180 approx. Our Price only $\mathbf{2 1} .50$ Inc. carr. V.A.T.	SPECLAL OFFER HEAVY DUTY TRANSHORMERS Pri 240 V sec 50 V 15 Amps . Twice will give 100 V CT or 50 V 30 A . Open frame type. Tarminal block primary. Sec heavy wire leads. Frame size $81 / 2 \times 7 \times 5$ inchas Brand new, fraction of liet price. 832 . carr. £5, VAT £5.55.
block paper capactions 8 MFD 1000 V DC WKG E3. P\&P £1. 8 MFD 350 V DC WKG. E1. PAP 50 P. 6 MFD $350 v$ DC WKG.	
O00v DC WKG. E0p. PL	HEAVY DUTY LT C CORE TRANSFORMERS Pri $110-220-240 \mathrm{~V}$. Secs $14 \mathrm{~V}, 3 \mathrm{~V}, 11 / 2 \mathrm{~V}, 1 \mathrm{~V}$. Separate windings. All at 40 Amps. 14 15-151/2-17.48-181/2-19-191/2V cain be obtained. E25, carr. E4, VAT E4.35.
ONSTANT VOLTAGE TRANSFORMERS	
We have a wide selection of CVT , all made by famous makers for many varied applications. Please ring for detailt.	
IMPORTANT NEWSII We would like to announce the opening of our new branch at 21.23 BELL STREET, NW1. will, of course, stock our fantestic range of products that have made us famous over the past 25 years. PLUSII many now ranges, i.e. computer and electronic components, test equipment, panel meters, muttimeters, semi-conductors, ICs and a large selection of plugs anc sockets. WHY NOT PAY US A VISIT - IT COULD SAVE YOU POUNDSII	
ISOLATION TRANSFORMERS Pri tapped $220-240 \mathrm{~V}$ sec. 240 V 500 watts. Open frame type, top panel connections. Exequipment, but in perfect conditions. $£ 15$, cart. £3, VAT $£ 2.70$	110v. ISOLATION TRANSFOAMERS $5,000 \mathrm{w}$. Intermittent Rating. Hourod in sturdy attel case, tapped $55 \mathrm{v} .0-\mathrm{-} 5 \mathrm{v}$. Fitted whth 16 -amp twin outlets. idaal for any outhide use of 110 V . power tools, etc. 20 inc. carr. V.A.T.
E.H.T. TRANSFORNERS	SPECIAL OFFEA OF ERTE ELECTROLVTC CAPACTIORS
High-grade E.H.T. Tranny, PRI 240 N	
10	
Es inc. carr. - V A. T.	and VAT. 6800 MFED 100 V DC WKG $\mathbf{E 2} .50$ inc. postage and VAT. 3600 MFD 150 V DC WKG 22.50 inc. portage and VAT. 10,000
DC WKG BLOCK CAPACTTORS MFD 1000 V DC WKG. E3. P\&P $£ 1$, VAT 60 . 8 MFD 350 V DC WKG E1.25. P\&P 50 p. VAT 26p. 5 MFD 350 V DC WKG £1. P\&, P 50p, VAT 22 p .4 MFD 500 V DC WKG f1, P\&P 50p, VAT 22p. 2 MFD 600 V WKG. 600 , P\&P 200 , VAT 12 D .	WKG $\frac{2.50}{}$ inc. portage and VAT. 10,000 MFD 16 V DC WKG five for 22.50 inc. portage and VAT. 4.7 MFD 50V DC WKG 10 for 7 Pp , inc. postage and VAT. 22,000 MFD 10V DC WKG 5 for 2.50 inc. postage and vat.
MFD 600 V DC WKG 5 for $E 1.50$. Ps P 50 p . VAT 30p. 0.25 MFD 500 V DC WKG. 5 for E1.25. PAP	SPECLAL OFFER LT TRANSFORMERS
- P, VAT 16p. 0.1 MFD 1500 V DC WKG E for E1.25, P\&P 50p, VAT 16p. 2 MFD 100 V DC WKG, 10 for £1.50, P\&P 75p, VAT 33p. Tubular metallised paper caps 20 MFD 350 V DC WKG with clip E3, P\&P 50p. VAT 52p.	Computer grade Pri 115-230V sec 27 V $10 \mathrm{~A}, 9 \mathrm{~V} 3 \mathrm{~A}, 15 \mathrm{~V} 0.5 \mathrm{~A}, 15 \mathrm{~V} 0.5 \mathrm{~A}, 15 \mathrm{~V} 0.5 \mathrm{~A}$, $175 \mathrm{~V} 100 \mathrm{M} / \mathrm{A}$. Separate windings, open frame type, top panel connections, 83.96 , postage E2.40, VAT 94 p .
LOW CUAAENT LT TRANSFORMERS Open frame clamped type, split bobbin. All primaries 240 V No. 1 sec tapped 12 . 15-20-24-30V $750 \mathrm{M} / \mathrm{A}$ E4. No. 2 sec . 9-0gV 1 A and $6.3 \mathrm{~V} 200 \mathrm{M} / \mathrm{A} £ 2.50$. No. 315 $0.15 \mathrm{~V} 600 \mathrm{M} / \mathrm{A}$ and $6.3 \mathrm{~V} 200 \mathrm{M} / \mathrm{A}$. No. 4 sec. $12.0-12 \mathrm{~V} 750 \mathrm{M} / \mathrm{A}$ and $6.3 \mathrm{~V} 200 \mathrm{M} / \mathrm{A}$ f4. No 5 sec $13 \mathrm{~V} 1 / 2 \mathrm{~A}$ f1.50. No. 6 sec . 8 V $1 / 2 \mathrm{~A} 6.3 \mathrm{~V} 600 \mathrm{M} / \mathrm{A}, 6.3 \mathrm{~V} 300 \mathrm{M} / \mathrm{A} 50 \mathrm{~V} 40$ M/A f2.50. No. 7 sac 17V 1/2A (DC) £1.75. No. $8 \mathrm{sec} 16.5 \mathrm{~V} 1 / 2 \mathrm{~A} \times 2$ £1.75. No. 9 sec $18 \mathrm{~V} 2 \mathrm{~A} f 4$. No. 10 sec . $24 \mathrm{~V} 2 \mathrm{~A} £ 4.50$, No. t1 sec 15V 2A e3,50. All prices include postage and VAT,	LATEST PURCMASE COMPUTEA GRADE T TRANSFORMERS. All primaries 240V. No. 1 secs, 26 V GA EB. 50 , cayriage $£ 1.50$. No. 2 sec . tapped $26-31-36 \mathrm{~V}, 11.2 \mathrm{~A}$ t12, Pap E 2 No. 3 sec. 36 V 6 A £6.50. P\&P $£ 1.50$. No. 4 sec .43 V 3 A 4.75 . P\&P $£ 1.50$ No. 5 sec . 24V 2 A \&2.75, P\&P E1.25. No. 6 zec. $27.5-0-27.5 \mathrm{~V} 1.2 \mathrm{~A}$ and $7-0-7 \mathrm{~V}$ 0.75A £3.50. P\&P $£ 1.25$. No. 717 V 1A \&. P\& P 75 p . No. 813 V 3A and 15 V 1 A E. 50 . P\&P E 1.25. No. 9 1gV 2A 2.50 . P\& PE 1 .
	Please ado vat

WW-091 FOR FURTHER DETAILS

MONTE CARLO METHODS

Imagine using random numbers to control the firing of depth charges. Or to design a computer game. In this issue we explain Monte Carlo methods - and how they can solve numerical problems
We review a British-built product: the Dragon 32 alow-cost colour computer We report on a programming method that uses speech synthesisers, we compare the BBC micro and the Sinclair Spectrum

AND THLAT'S JUST A SAMPLE OF PRACTICAL COMPUTING - TOGETHER WITH ADVICE FOR USERS OF PET, APPLE, TANDY AND SINCLAIR ZX 80/81 COMPUTERS. BUY BRITAIN'S LEADING PERSONAL COMPUTER MAGAZINE.

OCTOBER ISSUE OUT NOW
80p AT YOUR NEWSAGENT'S - BUT HURRY

GOMPDHA WARHICOUSG THE 'ALLADINS' GAVE OF COMPUTER AND FLWCIRONIC EQUPMDNT

FARD DIST DRTVHE
 Dlablo/DRE Serles 302.5 mb . fully refurbished D mec ia and sof Topload E295
 PSL for 2 drives $£ 125$
 Diablo-Dre 44A-4000A or $4000310 \mathrm{mb} 5+5$ removable pac < new and refurbished from $£ 995$.
 CDC 80 mb removable pack DEC RMO3 media and sottware corr patible brand new from $£ \mathbf{2}, 950$
 Horeywell $5+510 \mathrm{mb}$ drives $£ 450$ good s / h condition. For nore information on controllers, expansions and go sub systems contact sales office.
 $01-683$ call 133 mox kay pir per day
 DISTET
 The UKs FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your compute and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS
 CALL NOW, IT'S FREE? 7 days per

COOLITG FANS

 range of professional ETRI gexuot Miniatu

va: working DIM 92×25 equipment fan 240 complete with finger guard Makers price $£ 16$ our price 59.5
BEHLER 69.11 .22 micro miniature $8.16 \vee \mathrm{DC}$
re*ersible fan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$ reversible tan. Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Uses a brushless DC servo motor almost silent -ru ining ideal portable eguipment, ifo in excess
of 10,000 hours BRAND NEW manufactures of 10,000 hours BRAND NE
pr ce $\Omega 32.00$ our price $£ / 2.95$ M JFFIN/CENTAUR cooling fans DIM $120 \times$ $115 \mathrm{k} 84.95+\mathrm{psp}$ £ 1.90
KOOLTRONICS Powertul snail trpe blower
 2.5" with flange fixing. BRAND NEW
ac working ONLY $£ 9.95+£ 1.90$ p\&

SUPER SCOOP

 Intertace Cable 10.000
RS232 Convereres 59.00

SOFTY 2

The amazing sOFTY 2. The complete "toolkit for ine open heart sotware surgeon. Copies,
Dis lays Emulates ROM. RAM and EPROMS oft e 2516,2532 variety. Many otherfeatures
include keyboard, JHF modulator Cassette interace etc. Functions exceedcepabilities of units costing 7 times the price! Only
\& 10.00 pp 1.95 Data sheet
RGA FULIY CASBD ASCII CODED KCYBOARDS

TANOERINE OHIO ETC,
Streight from the USA made by the worid
famous RCA Co. the VP800 Series of case freestanding keybcards meet all requirements of the most exacting user, right dcwn to the
prica! Utilising the batest in switch technology. prica! Utilising the bestest in switch technology.
Gur anted in excess of 5 million operations. The keyboard has a host of other ieatures incl Iding full ASCII 128 character set, user
definable keys, upper/lower case, rollover definable keys upper/lower case, rollover
prowection single 5 V rail, keyboarc impervious an (n-board tone generator tor keypress feedback and a 1 yearfull RCA backed gurantee.
VPEO1
bit strcee, e VFF 11 Same as VP601 with
Whe nunteric pad
VPSO8 Serial, RS232, 20MA and TTL Outputwith6 selectable Baud Rates

$V P 616$ Same as VP606, with | elayed |
| :--- |
| E $\mathbf{~} \mathbf{5} .95$ | E54. 95 nurneric pad E64. 26 Plug and cable for'vP601, VP6611 12.25

Plug for VP666, VP616 Plus for VP606, VP616 £2. 10 £14.50 + £2.50 pp. Ell.95+pp regulated. Fan coolec. Supplied tested, with circuit $\mathbf{E} 5.00+£ 8.50$ carr and tested. Ex-Equip. 110 v AC input Only $£ 49.95$ + carr. £10.50.

66\% DISCOUNT

 All prices quotedare for U.K Mainland, paid cash with order in Pounds Stlring PLUSVAT. Minimum ordervalue $\mathbf{E 2 . 0 0}$, Minimum Credit Card order£ 10.00 . Minimum BONA FIDE account orders from Governmentdepts, Schools, Universities and established companie$£ 20.00$ Whe epost and packing not indicated please ADD BOp + VAT Warehouse open Mon-Fri $9.30-5.30$. Sat $10.15-530$. 01-689 7702-01-689 6800 Telex 27924

COMPUTER 'CAB'

All in one quality computer cabinet with integral switched mode PSU. Mains filtering and twinfancoollng
Originaly made for computer system cos DeC and designed to run will deliver a massive day. The PSU is fully screened and will deliver a massive $+5 v D C$ at 17 amps
$+15 v D C$ at 1 amp and $-15 v D C$ at 5 amps. The unit is full enclosed with removable top lid, win fan cooling, mains filtering, trip switch, 'power on' and 'run' LED's, aluminium
front panel and rear cable entrys. Give your system that front panel and rear cable entrys. Give your system that professional finish for only $\mathbf{\varepsilon 4 9 . 9 5 + \varepsilon 9 . 5 0 \text { carr. - Dim. } 1 9 ^ { \prime \prime }}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Usable area 16
Units are in good but usedcondition 240 Units are in good but used condition 240 or 110 vworking-
complete with data Large stocks of PDP 8 spares-

CEENTRONICS 739-2

 The "Do everything Printer" at a price that will NEVER be repeated. Standiard Centronics interface, fulfonts with high definition \& proportional fonts with high definition \& proportional
spacing for word processor applicalitons, 80-132
 ridiculous price of only $£ 299.00$

MAINS FILTERS

ER MHOPPY DISK DRIVES
 give you 100\% bus compatability with most drives available today dine technology to give you 100% bus compatability with most drives available today; the only difference being our PRICE and the superb manufacturing quality. The 7100 single sided $\& 7200$ double sided drive accept hard or soft sectoring. IBM or ANS! standard giving a SIEMENS etc compatable. Supplied BRAND NEW with user manual and 90 day warranty.
 $\boldsymbol{E 2 2 5 . 0 0}+9.50+$ vat
 7200 double sided
 $\mathbf{8 2 5 . 0 0}+9.50 \mathrm{carr}+\mathrm{va}$ of difference on purchase
 full technical manua $\mathbf{\$ 2 0 . 0 0}$ alone $\mathbf{\$ 9 . 0 0}$ with drive, refund of difference on purchase
 of drive. SHUGART $\mathrm{s} / \mathrm{h} 800-\mathrm{z}^{\prime} 8^{\prime \prime}$ Drive's 110 v 50 Hz motor $£ 160+£ 9.50$ carr.
 Removed from work ng equipment but untested. SA120 Alignment disk's $£ 9.95$

TELJTYPE ASBB3I $\Rightarrow 1$

I/O TEBMMITALS
FROM 195 + CAR + VAT
Fully fledged industry standard ASR 33 data terminal. Many features including ASCII keyboard and printer for data I/O auto data
detect circuitry. RS232 serial interface 110 detect circuitry. RS232 serial interface 110
baud, 8 bit paper tape punch and reader for baud, 8 bit paper tape ounch and reader cheap and reliable data storage. Suppl good condition and in working orde
Options: Floor stand $\mathbf{£ 1 8 . 5 0}+$ VAT KSR33 with 2Oma loop interface $\mathcal{1} 125.00+$ KSR33 with 20 ma loop interface
Sound proof enclosure $\mathbf{£ 2 5 . 0 0}+$ VAT

RECHARGEABLE BATTERIES

"Main Frame" manufacturers. Ideal for curing those unnerving hang ups and data g
fit one now and cure cur problems. fit one now and cure ycur problems upto 5 ampload $\mathbf{E} 5.95$ Corcom Inc F1886 up to 20 amp load $£ 9.50$ Corcom Inc F1900 uptz 30 ampload $£ / 2.25$

9" Monitors

DT10 Monlto MOTOROLA ${ }^{\prime}$ housed in
an attractive metal
case DIM approx
$10^{\prime \prime}$ deep $16^{\prime \prime}$ wide and 11
high. The monith
high. The monitor has a 75 ohm composite video input with a bandwidth of 18 mhz . A seperate internal PSU delivers 5 v dc for
external use and 12 vDC for videomonitor. The case has sufficient room inside for mounting other units such as 5 " disk drives etc. Interna pots give full control over all monitor function
Supplied in a tested as new or little used condition. $240 \vee$ AC. operation $\mathbf{5 5 5 . 0 0}$ Carrage and Insurance £10.50
MOTOROLA 9" open chassis monitor. Standard 240 vAC with composite 75 ohm video input, bandwidth in excess of 18 mh
Monitors are ex equipment and although Monitors are ex equipment and although
unguaranteed they are all tested prior to unguaranteed they are alitested prior to despatch, and have no visible burns on tre
screens Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$ Supplied screens. Dim approx $9^{\prime \prime} \times 9^{\prime \prime} \times 9^{\prime \prime}$. Supplied
complete with mains and input lead Ideal complete with mains and input lead ldea Black and White phosphor $£ \mathbf{3 5 . 0 0}+£ 9.00$ Carr.

SEMICONDUCTOR

 'GRAB BAGS'
Mixed Semis amazing value contents

 include transistors, digital, linear, I.C.'s triacs, diodes, bridge recs, etc. etc. Alldevices guaranteed brand new full spe: devices guaranteed brand new full spe: with manufacturer's markings, fully
guaranteed, $50-£ 2.95100+£ 5.15$ TTL 74 Series A gigantic purchase of an TTL 74 Series A gigantic purchase of series I.C. senables us to ofter 100+ which two or three chips in the bag would normallv cost to buy. Fully
guaranteed ail 1.C.'s full spec. $100+\varepsilon e .90$ $200+£ 12.30300+£ 19.50$

300 BAUD

DATA MODEMS

Experimentors PV@80mata 350 mm . All outputs fully regulated and shor circuit proof. Removed from working
equipment, but untested. Complete with circuit. Transformer guaranteed. Only

POWER ONE CP143 super compact unit giving continuous output of $5 \mathrm{v} @ 5 \mathrm{amps}$ dim. $215 \times 67 \times 80 \mathrm{rm}$. BRAND NEW and guaranteed Only $£ 21.00+£ 1.50 \mathrm{pp}$.
CUSTOMPOWERCOS5 5 V 3 amp. Very compact unit dim. approx60 $\times 90 \times 190 \mathrm{~mm}$ Semi open chassis full crowbar overvoltage protection. Tested Ex Equipmen MINI SYSTEM PSL Ex equipment unit ideal for the small micro. Outputs give 5 v @ 3 amps. $+12 \mathrm{v} @ 1$ amp and $-12 \mathrm{v} @ 300 \mathrm{ma}$. Crowbar overvoltage protection and
current limit. Fully tested. Dim $70 \times 165 \times 320 \mathrm{~mm}$. Complete with Circuit only E 12.95 + PERIPHEP. PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little
used condition Outouts give $5 \mathrm{v} @ 11$ amps, "+" $15-17 \mathrm{v} @ 8$ amps,"-" $15-17 \mathrm{v} @ 8$ amps used condition. Outputs qive 5 V @ 11 amps, "+" $15-17 \mathrm{~V} @ 8$ amps, " $-15-17 \mathrm{v} @ 8$ amps
and " +24 v @ 4 amps. All outputs are crowbar protected and the 5 volt output is fully MAIN FRAME SUPPLY. A real beefy unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps $+12 v @ 5$ amps $-12 v @ 10$ amps. All output are fully

ELECTRONIC COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the
best possible bargains, we have thousands of I.C's. Transistors, Relays. Cap's., P.C.B.'s. best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap's. P.C.B.'s, have sufficient stocks of any one item to include in our ads, we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME" Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you play plus we always

5 kls wigh
5kis $£ 5.90+p p £ 1.80$

in the communications revolution with our

 standard EX GPO 2a/b data MODEMS.Modem operates on standard CCITTtones with full auto answer facilities. Will switch to ANSWER orORIG NATE. StandardRS232 i/ connections Ideal networks. DISTEL etc condition \&55.00 carr. £8.50.

1200 BAUD
 DATA PUMP MODEMS

Compact unit for use with private or Dial up

 lines Designed tc work in pairs at any beud duplex (2 wire circuit). Features include remote test facilities. RS232 i/o lines etc Supplied with data in working order, but less
OLIVFITI

 TH300 REDUCED TO CLEAR operates at 150 baud in standard ASCII. hdeal as a cheap printer for a MICRO etc. 120 columns, Serial data i/o. Supplied completewith data, untested, unguaranteed $\mathbf{£ 5 . 0 0}$

BRITAIN'S bargain BETTER STILL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - $2 \quad 27$ Linear cmos-1 28 Linear cmos-2 29 Analogue multipliers $30 \mathrm{Rms} / l o g / p o w e r ~ l a w s ~ 31$ Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications-1 35 Analogue gate applications-2.

To IPC Electrical - Electronics Press Ltd.
General Sales Department,

Room 205,

Quadrant House,
Sutton,
Surrey SM2 5AS

[^6]Please send me the following sets of
Circards:
£2 each,
£18 for 10 post free.
Remittance enclosed payable
to IPC BUSINESS PRESS LTD.
Name (Please print)
Address (Please print)

CONTINU
MAINS ISOLATORS

Ref. VA (Watts)			E	P\&P
07		20	5.32	1.50
149		60	8.84	1.60
150		100	10.06	1.84
151		200	13.69	2.12
152		250	16.31	2.64
153		350	20.34	2.12
154		500	25.02	2.90
155		750	35.91	OA
156		300	45.89	OA
157		500	60.52	OA
158		000	72.43	OA
159		000	101.12	OA
161		.000	203.65	OA
- 115 or 240 v sec only. State volls required. PriO-220-240V.				
50 VOLT RANGE $2 \times 25 \mathrm{~V}$ tapped secs Volts available $5,7,8,10,13,15,17,20$, $25,30,33,40$ or $2 \mathrm{JV}-0-20 \mathrm{~V}$ or $25 \mathrm{~V}-\mathrm{c}-25 \mathrm{~V}$				
Amps				
Ref.	50 v	25v	£	P\&P
102	0.5	1	4.13	1.40
103	1	2	5.03	1.40
104	2	4	8.69	1.84
105		6	10.35	1.90
106	4	8	14.10	2.12
107	6	12	18.01	1.84
118	8	16	24.52	2.70
119	10	20	30.23	OA
109	12	24	36.18	OA

S 12 or 24-VOLT RANGE Separate 12 V windir gs Pri 220-240V $\begin{array}{ccccc}\text { Rof. } & 12 v \text { Amps } & 24 \mathrm{v} & \mathbf{f} & \mathbf{P \& P} \\ 242 & 300 \mathrm{~mA} & 150 \mathrm{~mA} & 2.41 & 90 \\ 213 & 1 & 05 & \mathbf{3 . 1 9} & 1.20\end{array}$

VA
60
25
350
50
1000
2000
30
60

CASEDAUTOS-
240 V cable ingert USA 115 V outlets
SCREENED MINIATURES Pri 240 V

Ref	mA	Sec Volts	\mathbf{E}	P退
238	200	3.0-3	3.11	. 90
212	$1 \mathrm{~A}, 1 \mathrm{~A}$	0-6, 0-6	3.45	1.20
13	100	9-0-9	2.58	80
235	330,330	0-9, 0-9	2.41	90
207	500, 500	0-8-9, 0-8-9	3.36	1.20
208	1A, 1A	0-8-9, 0-8-9	4.27	1.40
236	200, 200	0-15,0-15	2.41	. 90
239	50MA	12-0-12	3.11	. 90
214	300, 300	0-20, 0-20	3.39	1.20
221	700 (DC)	20-12-0-12-2)	4.13	1.20
206	1A, 1A	0-15-20, 0-15-20	5.60	1.60
203	500,500	0-15-27, 0-15-27	4.83	1.50
204	1A. 1A	0-15-27, 0-15-27	7.30	1.60

AUTO TRANSFORMERS Voltages available 105, 115, 190, 200, 210, 220, 230, 240 . For step up or step down.
Rel. VA (Watts) TAPS $113 \quad 15$ 0.10-115-210-240V \& $800-10-115-210-240 \mathrm{~V}$ $1500-10-115-200-220-240 \mathrm{~V}$
$500010-115-200-220-240 \mathrm{~V}$ $5000-10-115-200-220-240 \mathrm{~V}$
$10000-10-115-20-220-20 \mathrm{~V}$ $\begin{array}{ll}84 & 1000 \\ 93 & 1500 \\ 0 & 0-10-115-200-220-240 \mathrm{~V}\end{array}$ $\begin{array}{lll}93 & 1500 & 0-10-115-200-220-240 \mathrm{~V} \\ 95 & 2000 & 0-10-115-200-220-240 \mathrm{~V}\end{array}$ $\begin{array}{lll}95 & 2000 & 0-10-115-200-220-240 \vee \\ 73 & 3000 & 0-10-115-200-220-240 \mathrm{~V}\end{array}$ $\begin{array}{lllll}80 & 4000 & 0-10-115-200-220-240 \mathrm{~V} & 71.64 & \mathrm{OA} \\ 57 & 5000 & 0.10-115-200-220-240 \mathrm{~V} & 108.30 & \mathrm{OA} \\ \mathrm{OA}\end{array}$

VA
20
150
250
500
1000
2

INVERTERS (Cased) 12 V irput 240 V a.c. continuous (tool rating 150 W). $£ 46 \mathrm{p} \& \mathrm{p} £ 2+\mathrm{VAT}$. 24 V input and $250 \mathrm{~W}, 500 \mathrm{~W}$
$30 \mathrm{VA}, 60 \mathrm{VA}, 100 \mathrm{VA}, 160 \mathrm{VA}, 230 \mathrm{VA}, 330 \mathrm{VA}, 530 \mathrm{VA}$ Send for list
PLEASE ADD 15\% VAT AFTER P若P

OTHER PRODUCTS

AVO TEST METERS 8 Mk. 5 Latest Model $\mathbf{£ 1 2 2 . 1 0}$	MAINS BATTERY ELIMIN
	wiring
73 portable size) $\mathbf{6 8 8 . 9 0}$	6,7.5V 9, 12 V DC @ 300mA £5. 10 + £1.20 p\&p
MM5 Minor $£$	
DA211 LCD Digital	A
DA212 LCD Digital	Safety stand.............£1.75 25W $\times 25 £ 5.30$
OA116 LCD Digital $£ 131.3$	12V 25W car soldering kit........................... £5.30,
Megger 70143500 N $£ 101.50$ Megger Battery BM7 $£ 71.60$	P\&P 50p + VAT
DA117 Autorange LCD £157.00	CABLES
Avo Cases and Accessories	eg: URM 70 Multicores, singles. Phone for 0
BRIDGE RECTIFIERS	Precision De-Solder Pumps - Spring loaded. quick action button release for one hand
200v 2A 45p	working. Large $£ 5.86$ P\&P $\mathbf{3 5 p}+\sqrt{ }$ AT Small $£ 5.17$
-400V 2A 55p	P\&P 30p+VAT. Replacemert tips: Small
100 v 25A+ E2.10	$65 p+V A T \text { Large } 86 p+V A T$
$\begin{array}{lll}\text { 200v } & \text { 4A } & \text { E2.60 }\end{array}$	Telephones: Trimphone $£ 28+£ 1.20 \mathrm{p}$ \&p + VAT.
400 V 4 A - 85p	Desk phones $746 £ 11.50+£ 120$ p\&ip + VAT.
400 V 6A £1.40	Wall phones $£ 14.50+£ 1.20 \mathrm{p}$ \% $\mathrm{p}+\mathrm{VAT}$.
500 V 12A £2.85	METAL OXIDE RESISTORS $£ 1 / 100+$ VAT
P\&P 20p. VAT 15\%	Social
Send 20 p for catalogue. Prices corract at 27/8/81	510ת - 560Ω - 820Ω - 1 K - $1 \mathrm{~K} 2-1 \mathrm{~K} 3-1<6$ - 1 K 8 - $2 \mathrm{~K}-2 \mathrm{~K} 4-$ $3 K-16 K-20 K-22 K-24 K-27 K-47 K-82 K-100 K-110 K$ -120K-130K - 180K-220K-270K - 300K.. P\&P 30p + VAT

Barrie Electronics Lta.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHON F: $01-488$ 3316/7/8
 nearest ide satons alocate luerpoolst

WW - 039 FOR FURTHER DETAILS

hi: performance his competitive hi: Fully Guaranteed for One Year, send for FREE DATA

House of Instruments
Clition Chambers, 62 High Street Saffron Walden, Essex CB10 1EE Tel: (0799) 24922 Telex. 818750

Extended CREDIT available
e his

House of Instruments Ltd

HEMMINGS $\begin{gathered}\text { EEccrooncs AnN } \\ \text { mctocomivirs }\end{gathered}$
16 BRANDST HITCHIN HERTS

Tel: (0462) 33031
Shop open Mon. Sot. 9 e.m. 5.30 p.m.

Professional quality electronic components, brand now and fuily guaranteed. Mail order by bturn of post. Cash/Chequa/POs or Banker's Draft with order, payable to Hommings ElectronCricial
Oficial orders from schools, colleges and universtiles walcome. Trade and export enquiry PP
Ansaphone service all orders under $£ 10$. Telephone your Access orders, using our 24 -hr Ansaphone service. Ploase send SAE for full price list.

No VAT on expore of VAT-Plase add 15% to total cost including P.eP. No VAT on export orders or books.

\title{

POWER AMPS

PRE-AMP MODULES

SEND COUPON (NO STAMP NECESSARY) FOR YOUR FREE IL.P CATALOCUE AND OPENUP TOA
NEW WORLD OF QUALTYYVALUE

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase' is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects

WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARD THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details. wiring and circuit diagrams etc. and it's yours. FREE You don't even have to stamp the envelope if you address it the way we tell you.

FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7 EP
Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

FREEPOST

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated
I.L.P. pioneered encapsulated
power amps and pre-amps for enhanced thermal stability, enhanced thermal stability, durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee? guarantee?

\section*{Did

Did you you know

 know}| | for sefvice youcan tru | RESISTORS

 |
| :---: | :---: | :---: |
| | | POTENTIOMETERS

 SLDEALS 58 mm . low cont 10K-1M log only 2p; Std 50 mm mono |
| | | |
| | | |
| SOLDERING IRONS | | |
| SWITCHES - Tho wions
 Nation ind juan ori
 LOW CORTDH $4 P$ DNSO 4 日Gp; \&P DNSOB E1. | | |
| | | |
| NICAD CHARGERS

 OC Stabilieed $3 / 6 / 7.5 / 9 \mathrm{~V}$ 400mA out 8.28 | ion 1001250 | |
| BOXES |

 | |
| | | |
| | | Computing at: 700 Burnage Lana, Manchester (061-431 |

11000

 PRINTERA 19 rack mounted printer for industrial or laboratory data recording.

- 7×5 impact dot matrix.
- 32 characters on 3 plain paper.

Red-Black printing on one line Internal 4 year calendar clock option.
Available with RS232, IEEE488 \& parallel BCD input options. Standard 96 character, alphanumeric character set. Foreign languages, including Arabic, Cyrillic \& Greek also available.

3 Reading rd. Lower Basildon Berks RG8 9NL 049162775

r RADFORD

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast
RADFORD AUDIO LTD.
10 BEACH ROAD WESTON-S-MARE, AVON BS23 2AU

TEL. 0934416033
WW - 058 FOR FURTHER DETAILS

WW - 098 FOR FURTHER DETAILS
WIRELESS WORLD OCTOBER 1982

Appointments

Advertisements accepted up to 12 noon Wednesday, September 29th, for November issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 15.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3$ per line, minimum $£ 20$ (prepayable).
BOX NUMBERS: $£ 3$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. 'TN4 8 AS.

Tel: 089239388

BROMLEY HEALTH AUTHORITY

ELECTRONICS TECHNICIAN

 Sone of 3 - graded as Medical Physics III)required for acceptence testing and routine maintenance of electriobiomedical equipment and other electronic equipment. Based in Orpington district
Salary scale $£ 5,536-£ 7,155$ plus f 557 London Weighting p.a.
For further details telephone The Chief Electronics Technician on

Orpington 27050 Ext 29 Write or telephone for job description and application form to

District Personnel Officer
"Bassetts", Starts Hill Road Farnborough, Kent
Telephone Farnborough 50254 Closing date:
29th September, 1982
(1792)

DIGITAL EXPERIENCE?

 FIELD SUPPORT R \& D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC.For free registration ring 0453883264 01-290 0267

ELECTRONICS RECRUITMENT SEAVICE LOGEX HOUSE BURLEIGH STPOUD GLOUCESTERSHIRE GLS SPW TEL. 0453 883264, 01-290 0267

Appointments

Test Engineers and Technicians -Wembley,Middlesex

Racal-BCC are members of the highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical radio communications equipment. We require a number of test technicians and test engineers to fill a variety of grades within the Test Department on both the day and night shift. The department is responsible for the manual and automatic testing and
fault finding of the Company's equipments at various stages of manufacture.

Applicants should be qualified to $\mathrm{HNC} / \mathrm{HTC}$ level and have experience of radio communications equipment

We offer excellent conditions of service including good basic pay and a Group Productivity scheme

Racal-BCC

ELECTRONICS TECHNICIAN TO SUPPORT OUR DEVELOPMENT ENGINEERING TEAM

E5600 TO E8450, OXFORD-BASED

The Research Machines Basic Systems Group designs, develops and implements the hardware and systems software enhancements which have established the 380 Z as one of the UK's top professional microcomputer systems.

We now have an opportunit y for a qualified and enthusiastic electronics technician to join this important team and provide a comprehensive range of support services to it.
The job will include
\square assembly and test of prototypes \square installation and maintenance of equipment
\square preparation of documentation
\square control of stocks of components and consumables

\square liaison with contractors

We are looking for candidates with HNC qualifications and one or two years practical experience - particularly in prototype wiring for circuit boards and digital electronics. It is likely that you will also have experience in one or more of: technical drawing: analogue systems; microprocessors; and/or prototype testing.
We offer a particularly attractive range of benefits, including good salary; 25 days paid holiday; free BUPA, life and disability insurance; pension scheme and help with relocation expenses.
If you are interested in this vacancy. please contact Pat Kember by 'phone or letter for an application form WW8

ROYAL OBSERVATORY, EDINBURGH PROFESSIONAL AND TECHNOLOGY OFFICERS
(2 POSTS)

There are two vacancies for Professional and Technology Officers at the Royal Observatory, Edinburgh which is an establishment of the Science and Engineering Research Council. Both vacancies are in the Technology Unit which provides engineering support to the three national facilities for which the Royal Observatory is responsible - the UK Infrared Telescope Unit, the UK Schmidt Telescope Unit and the Image and Data Processing Unit - and also to in-house research programmes.

PROFESSIONAL AND TECHNOLOGY OFFICER GRADE II - £6868 to £9241 pa
This vacancy is in a small team of engineers and scientists currently working on infrared techniques in the $1-5 \mu \mathrm{~m}$ and $7-13 \mu \mathrm{~m}$ bands on applying these techniques to the design and development of astronomical instruments such as photometers and spectrometers for use on the 3.8 m UK Infrared Telescone in Hawaii.

DUTIES

The successful applicant will be responsible to the team leader, a PTO I, and will work closely with a project astronomer, who is a physicist, and will be required to:

1. Assist in the evaluation of infrared detectors, both single elements and arrays to determine their performance and optimum operating conditions using the necessary electronic and cryogenic apparatus.
2. Develop low noise preamplifiers for use with the above detectors under low infrared radiation levels.
3. Develop suitable thermal and mechanical mounting and packaging methods for detector preamplifier combinations for use in instruments.
4. Assist in the design, development, test and commissioning of such instruments both in respect of the above detector/preamplifier packages and also the associated optics, mechanics and cryostats.
The successful candidate may also be required to work abroad on short term detached duty or on postings of up to three years. It is a prerequisite of working in Hawaii that a special high altitude medical examination be taken and passed.

QUALIFICATION AND EXPERIENCE

Applicants are expected to have a degree or equivalent in an appropriate subject such as Electronic Engineering, Applied Physics or Physics leading to corporate membership of the appropriate professional body.
Recent experience of the theory and practice in any of the following would be an advantage: Low light level imaging systems, especially at infrared wavelengths, cryogenics, low noise, low-level analogue signal amplifiers, optics design.
Applicants are expected to be able to programme in a high level language such as FORTRAN, or be prepared to acquire such ability, as the instruments are controlled by means of minicomputers.
Applicants are expected to be skilled in the use of a wide variety of laboratory instruments and must possess manual skills appropriate to assembly and disassembly of small electromechanical devices and to the handling of cryofluids. Applicants must have good eyesight (with glasses if worn).

PROFESSIONAL AND TECHNOLOGY OFFICER GRADE III - $\mathbf{£ 6 8 6 8}$ to $£ 7876$ pa

This vacancy is in the Laboratory Workshop which is currently working on a variety of devices for the measuring of photographic plates and on instruments for use on telescopes at visual and infrared wavelengths.

DUTIES

1. Supervise the electronic and wiring activities of the Laboratory Workshop.
2. Organise and maintain the electronic instrument, tool, component and wire stores of the Technology Unit.
3. Be directly involved with Technology Unit Scientific and Technical staff in the instruction, development, testing and maintenance of instrumentation and equipment associated with the national facilities, in-house research and the work programmes of the Technology Unit. Preparation of drawings may form a part of these duties and training will be provided as required.
4. Deputise in the general Laboratory Workshop supervision as and when required.

QUALIFICATIONS AND EXPERIENCE

Applicants must have an ONC/SCDTEC or equivalent and should have served a recognised apprenticeship in electronic engineering. Experience in light electrical or electronic wiring and assembly is essential and knowledge of the mechanical assembly and test of complex instruments would be an advantage.
Application forms for both posts are available from the Personnel Officer, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, and should be returned by 1 October 1982.

Appointments

Telecommunications Officers Up to $£ 9270$

The posts available are varied, but broadly they fall into 2 groups at 5 different locations.
Hanslope Park (Milton Keynes), North Bucks and Central London
Work associated with HF communications equipment, VHF, UHF and microwave links and associated test equipment; teleprinters, telephone subscribers' apparatus, PMBXs, PAXs, PABXs and ancillary equipment including that using analogue and digital techniques and voice frequency telegraph.

Crowborough, Sussex and Orfordness, Suffolk

The maintenance and operation of high power, medium and short wave broadcasting transmitters and associated equipments.

Candidates must have had appropriate training. They should normally have 4 years' relevant experience, and hold either ONC in Engineering (with pass in Electrical Engineering ' A ') or ONC in Applied Physics or TEC/SCOTEC certificate or City \& Guilds Telecommunications Technicians Certificate Part II (Course No 271), or Part I plus 3 ' B ' subjects or a pass in the Council of Engineering Institutions Part I examination or an equivalent or higher relevant qualification. Ex-Service personnel who have had suitable training and at least 3 years' appropriate service (as Staff Sergeant or equivalent) will also be considered.

Salary: $£ 5980-£ 8180$; London $£ 1087$ more. Starting salary may be above minimum for those with additional relevant experience. Promotion prospects.

Relocation assistance may be available

For further information and an application form (to be returned by 7th October 1982) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: T/5782.

Foreign and Commonwealth Office

ELEGTRONIGS ENAINEER

We have a world wide reputation in the design and manufacture of automatic handling equipment for the production of hybrid circuits.

We require a Technician/Electronics Engineer to join our design team. The applicant should have experience of simple Digital Control Circuits and some analogue circuitry work, and will be joining a team that is responsible for the design, development and testing of these automatic systems.

The applicant should have had several years experience in the above field and will be in possession of ONC or similar as an absolute minimum qualification.

Saiary is negotiable but will reflect the seniority of the position Applicants should write, enclosing full C.V. to:
H. E. IRWIN

PRODUCTION DIRECTOR
DEK Printing Machines Lid. 22 Albany Road
Granby Industrial Estate
WEYMOUTH
Dorset DT4 9TH
Please mark the envelope HEI. 100

Share in the Sony Broadcast Success Story

One of the world leaders in professional broadcast television equipment and systems, we are currently undergoing a significant planned expansion programme. A number of excellent career opportunities now exist and applications are invited for the following positions:

Systems Project Engineer

To join a young and enthusiastic team involved in the design, manufacture and commissioning of complex static and mobile television systems. Candidates for this challenging and responsible position should have direct experience of sound and television principles gained in operational television or its allied
manufacturing industry
Proposals Engineer
Ideal for engineers experienced in the Broadcast TV industry who now wish to utilize their knowledge in a dynamic commercial environment Duties will include the preparation of detailed and concise customer proposals, complete with pricing information and extensive customer and inter Company liaison will be necessary

Field Service Engineer

To be engaged in the service and repair of a wide range of sophisticated equipment, including video cameras, VTR's and editing control systems A high level of self motivation and initiative is required in order to successfully undertake customer visits throughout Europe, Africa and the Middle East
Sales Englneer (UK)
An engineer with experience in operational teievision or its allied manufacturing industry is required to join our UK sales team. Applicants should be aged 25-35, highly motivated and able to work on their own initiative Previous sales experience would be advantageous although this is not essential Commissioning/QA Support Engineer
To join a small team responsible for the evaluation of product performance. Key activities will include commissioning. assistance in product customisation and the establishment and maintenance of ATE Lecturer
To conduct theoretical and practical training courses on our major products Applicants should have experience of professional broadcast television equipment and possess the ability to present ideas clearly
If you like the thought of enjoying the success of world leadership together with a highly attractive salary and benefits package, write with details of career to date. andpresent salary to: Mike Jones, Senior Personnel Officer, Somy Broadcast Ltd, City Wall House, Basing View, Basingstoke, Hants RG21 2LA Telephone (0256)55011

Sony Broadcast Ltd.
City Wall House Basing View, Basingstoke Hampshire RG212LA Hampsnire RG21
United Kingdom Telephone (0256) 55011
(1787)

 \section*{\section*{Radio/RadioRelayTechs-2-year trainingassignmentsinSaudi
 \section*{\section*{Radio/RadioRelayTechs-2-year trainingassignmentsinSaudi On balance, you'd be better off On balance, you'd be better off with Lockheed} with Lockheed}
defence system, we figure it's the least we can do.
For a Radio Tech's job to be yours, you need a C\&G or
forces equivalent and at least seven years experience in

When you compare an electronics technician's job in the UK with working for Lockheed in Saudi Arabia, there's no contest Because with Lockheed, you win on just about every count You won't pay any tax at all for the two years you're with us And you'll earn over $£ 20,000$ during that time.
To help you turn earnings into savings, we give you for free all the things some of the others make you pay for - free bachelor accommodation, food and laundry, free return flights to the UK for your three leave periods a year; medical and life insurance

But when you're tackling an important job like training Royal Saudi Air Force personnel to maintain the Kingdom's air

HF (SSB), VHF/UHF and SHF equipment, and for Radio Relay you'll also need multiplex and tropo experience.

On balance it's not much to ask when we've so much to offer, and what's more we give you free equipment familiarisation courses before you go.

Contact The Senior Recruitment Executve (Lockheed), IAL, Personnel Consultancy, Aeradio House, Hayes Road, Southall, Middlesex UB2 5NJ. Tel: 01.5745000 . Please quote ref L130.

$\overline{\bar{Z}}$ Lockheed

Television International

Television International has made some additions ... a new Super Tempo 5 computer-controlled editing suite; a Rank Cintel MK IIIC Telecine mastering suite, and a new lightweight Ou*side Broadcast vehicle to name but three! As a result, we require additional staff for the following areas:

TELECINE OPERATIONS

Two experienced engineers required - a knowledge of TOPSY and Digiscan would be an advantage.

VIDEO TAPE OPERATIONS

Engineers are required with experience of $1^{\prime \prime} \mathrm{C}$-format and 2^{\prime}
Quad machines, to work in Base and on Outside Broadcasts.
Staff in these areas will be required to liaise directly with clients.

MAINTENANCE

An experienced engineer is required who is capable of looking after all of this and carrying out standard Base maintenance.

Salaries and conditions will be in accordance with the ACTT grades plus local supplements but will reflect the responsibilities involved. The Company benefits from an attractive contributory Group Pension Scheme, which includes free Life Assurance. Training will be provided where necessary to keep staff abreast of current developments within the industry.

For an application form, please write to the address below quoting Ref. UC/WW.

Lindy Campbell
Television International Operations Limited,
9-11 Windmill Street,
London W1P 1HF.
Tel: 01-637 2477.
A Subsidiary of $\star_{\text {RANK PHKOM VIDEOG GROUP ITD }} \boldsymbol{\psi}$

Himckier Power Consultants sto.
 149 Church Street, Burbage, Hinckley Leicestershire, LE10 2DB
 A firm of international consulting engineers engaged on various exciting broadcasting and communications projects in Nigeria require keen, competent engineers to fill the following overseas appointments.

Field Contract Controller

to oversee contract implementation from equipment delivery to customer acceptance, including provision of services and technical support to field engineers. Must have comms./broadcast experience, preferably in an overseas environment.

Installation and Commissloning Engineers

Qualified and experienced in one or more of the following fields:

- VHF, UHF Television transmitters and studio equipment
- Microwave and UHF radio links
- Diesel generators and associated electrical plant
- Erection of masts, towers, antennas and feeders

Good salaries paid commensurate with experience

Apply with c.v. to Martin Rhodes, Project Manager, or telephone for more information on Hinckley 611461.

Appointments

Dingineers \& Scientists \&9,126

Communications R\&D... ...the leading edge

At HM Government Communications Centre, we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information.

The work is of the highest technical challenge. offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.
MAGNETICS SIGNAL ANALYSIS
SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply

Appointments are as Higher Scientific Officer $(£ 6,840-£ 9,126)$ or Scientific Officer ($£ 5,422-£ 7,399$) according to qualifications and experience. Promotion prospects.

For an application form, please write to the Recruitment Officer, (Dept. W/W10), HM Government Communications Centre, Hanslope Park, Milton Keynes, MK197BH.

Electronic Wireman/Woman

We have a vacancy at our Glasgow studios in our installation and maintenance section for a man or woman with extensive experience in electronic wiring.
Applicants must be familiar with all types of audio and video cables and connectors and be able to work from cable schedules with minimal supervision.
A high standard of practical ability and neatness is essential and candidates invited to interview will be expected to undertake a short practical test working from drawings supplied
Interviews will be held in Glasgow and travelling expenses will be refunded.
The company offers excellent staff conditions of employment including a contributory pension scheme with free life assurance. The starting salary is at present $£ 6,695$ per annum rising by five annual increments to $£ 9,478$ per annum but this scale is currently under annual review.
Those with the necessary experience should write giving age and brief details of experience to the Recruitment and Training Officer.
(1782)

$\rightarrow \sqrt{\infty}$

Scottish Television
Cowcaddens, Glasgow G23PR.

WHERE SERVICE COUNTS - -

Cambs. based
To $\mathbf{£ 7 , 4 0 0}+$ bonus + car
High technology company manufacturing scientific instruments seeks ONC/HNC qualified electronics engineers. Min. 2 years' experience of servicing to component level and knowledge of computer systems. U.K. and some overseas assignments.

Phone Royston (0763) 60602 till 9 p.m.

HOLIDAY OVER? REFRESHED READY FOR A NEW JOB? TRY THESE DESIGN DEVELOPMENT ENGINEERS
 for lighting, heating and ventiating control systems, each one to be negotiated and designed to the requirements of a specific client. Must have experience of $Z 80$ (and other microprocessors could be called for) and analogue switching Salary up to $£ 9,500$ p.a. in Avon.
 Hardware or software to design $T V$ and video products, such as digitel standards convertors, the hardware being PDPil and also 16 -bit microprocessors, the soft ware Pascal, Fortran and Assembler under RSX 11 M operating systern. Must have degree end video experience. Salary up to $f 10,500$ p.a. in West Berks.
 ALL-ROUND ENGINEER
 Capable of evaluating linear LSi chip circuits. Must be graduate, prefarably with hands-on experience of a test system such as the LTX MTS-77 and I-C applica tions. Salary rewarding, in Liverpool.
 PRINCIPAL AND DESIGN ENGINEERS
 For all now infre-red imaging systerns under CMOS and logic control, with atso analog displays. Must be graduates with both digital and analog experience Salary up to $\mathrm{E} 11,000$ p. a., in West Essex.
 Charles Airey Associates

Tempo House, 15 Falcon Road, Bettersoa, London SW 11 2PJ Tel: 01.223 7662 or 2286294

SERVICE \& INSTALLATION ENGINEERS

London \& Home Counties Area

British subsidiary of French X-Ray Company requires service and installation engineers to work on modern X-ray equipment in National Health Hospitals.
The work involves an unusual blend of high-voltage plus analogue and digital technologies. Successful candidates will be qualified to BSc or HND level, be practically minded and have the initiative to cope with problem solving in the field.
Company car provided, salary negotiable, expenses paid.
Please write, enclosing CV or telephone for interview to M W Ridgeon, Asst. Service Manager, 01-890 8166.

Technicians in Communications

GCHQ We are the Government Communications Headquarters, based at Cheltenham. Our interest is $R \& D$ in all types of modern radio communications - HF to satellite - and their security.
THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; opportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus practical experience. HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to

Recruitment Office

GCHQ, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ

Radio Technician

We are an internationally successful manufacturer of mining machinery and explosion proof electrical equipment. At our Kirkintilloch site we are setting up a new Electronics Unit in which there is a vacancy for a Radio Technician to undertake special assembly operations on r.f. equipment and be responsible for performing full production tests on radio control systems.

The successful candidate will have extensive experience
in the servicing and testing of VHF and UHF, P.R.
equipment preferably gained in a manufacturing
environment. A working knowledge of analogue and digital
encoding and decoding circuits would be an advantage.
An attractive salary is offered for this position along
with terms and conditions of employment to best modern
standards.
Please write giving full details of age, experience and
qualifications to:
Mr A. M. SMITH,
GROUP PERSONNEL
(:778)
ADMINISTRATION
MANAGER
Anderson 4 Strathclyde PLC
47 Broad Street,Glasgow G40 2QW'
놈뭄뭄

SULTANATE OF OMAN, ROYAL OMAN POLICE

TELECOMMUNICATION TECHNICIAN

The Royal Oman Police are seeking persons for appointment as Telecommunication Technician. Applicants should be suitably qualified with at least 12 years' experience in the following subjects:
(A) HF, VHF, UHF Fixed/Mobile Equipt.
(B) Teleprinters (Electronic)
(C) Microwave/Multiplex Equipt
(D) Marine Radar

Applicants should possess at least City \& Guilds intermediate or equivalent. Previous Police/Military experience and a knowledge of Arabic would be an advantage, but is not essential.

GENERAL

Thís appointment is offered in the Uniform Rank of Superintendent Grade II on contract terms of service for an initial period of 2 years. Conditions of service include annual emoluments of the equivalent of R.O. 7980.000 ($£ 13,017$) at current rate of exchange) and normal benefits which are associated with working overseas including Furnished airconditioned accommodation, Medical Treatment, 60 days leave per annum with paid passages, plus an end-of-contract benefit equal to 25% of basic salary.
Applications with detailed curriculum vitae attached to be forwarded to:

> Inspector General of Police and Customs
> Attn: Assistant Commissioner of Police
> (Personnel \& Training)
> Royal Oman Police, P.O. Box No. 2
> Muscat
> (1794)

> Sultanate of Oman

£25,000?
 DEVELOPMENT
 ENGINEERS

Des. Dev. of AM, FM and TV Broadcast
transmimers. Circa MET Easok.
2. PROJECT LEADER To lead tram engaged on microwave project, VHF and UHF techniques, receives and synthesizers. Circe 14K
Herts
3. RF DESIGN ENGINEERS RF Circuit designers to work in small design group involved in microprocessor based signal source development. Circe 10K. Herts.
4. MICROWAVE SPECIALIST For commercial and military systems. Circe 12K. Berks. 5.

SENIOR DESIGN ENGINEER
To lead team in the design and development of RF and microwave equip ment. Circa $111 / 2 \mathrm{~K}$. Beds.

6. DEVELOPMENT

ENGINEERS
Des. Dev. of microwave line-of-sight, tropospheric scatter and satellite com-
munication systems. Circa $12 \mathbb{2}$. Essex. munication systems. Circa $12 k$. Essex vacancies to $£ 25,000$

Phone or write: Roger Howard
C.Eng., M.I.E., R.E., M.I.E.E. CLIVEDEN CONSULTANTS 87 St. Leonard's Road Windsor, Berks Windsor (07535) $57818 / 58022$
24-hour service

SITUATIONS WANTED
RADIO TELEGRAPHIST seeks position. Leaving Army shortly after 15 years service Royal Signals. Experienced is HF and VHF systems. Morse and teleprinter. City and Guilds communication operators. Ceruificate and RAE held. Any
thing considered. Box 1770 .

R \& D OPPORTUNITIES. Senior level vacar: cies for Communications Hardware and Software Engineers, based in West Sussex. Competitive salaries offered. Please ring David Bird at Redif-
fusion Radio Systems on 01.8747281 . (1152

ARTICLES FOR SALE

INVERTERS

High quality DC-ACi Also "no break" (2ms) static switch. 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Lid. POB 51, London W11 3B2 Tel: 01-727 7042 or 0225310916
(910)

MEGA GOLD PLATING UNIT. Type PLAU Z5. Accepts up to 12 " double-sided boards. Sold complete with 250 ml gold solution, accessories and instructions. Unused. $£ 120$ ono. Tel. 0592 202729.

TEST EQUIPMENT. Gould Advance 10 MHz dual trace scope. Alpha 2 D.M.M. Farnell L30-1 bench power supply and LF1 audio oscillator. Almost immaculate! Old scope and some bench
tools included $£ 280$ (+ VAT). ALSO goodwill tools included, 8280 (+ VAT). ALSO goodwill small repairs workshop in Leeds. Offers invited.
(1791
Phone (0532) 793614 .

LITTON 1231 BUSINESS COMPUTERWITH PRINTER Perfect working order. E330. 6613039 or 5150013 .

TELETEXT (ORACLE/CEEFAX) add-on adaptors for your existing television. Only £149.95 inclusive. Also Viewdata (Prestel) adaptors and fantastic colour graphics microcomputer interface. Trade enquiries welcome. AccessNisa,
Avon Office Services BS106BR. (0272) 502008 anytume. (1767)

EXIDY SURPLUS SALE
 We have thousands of

 O PEASONABLE OFFER PEFUSED NO REAONADLE O.FER REFUSED $\begin{array}{lll}\text { 74LSO4 } & \text { 74LS157 } & \text { 3130 OP AM } \\ \text { 74LS05 } & \text { 74LS373 } & 6850 \text { AC1A }\end{array}$ $\begin{array}{lll}\text { 74LS05 } & \text { 74LS373 } & \text { 6850 ACIA } \\ \text { 74LS32 } & \text { 74LS373 } & 6502 \text { Processo }\end{array}$ 24LS10 14LS365 4027 RAM
1805 I AMP SV REG

LSI Breakout TV Game Chip

PCB for Breakout TV Game

4700 MFD 10V \quad IK Resisitors $1 / 2 \mathrm{~W}$ Sockets: 40 PIN, 24 PIN, 20 PIN, 16 PIN, 14 PIN
Joystick Plastic Holders (Over 1.000 sers) Transformers for Cominodore Pet: 8:0:8 5AMP 16V I AMP. 22V I AMP. 240V Primary

Telephone Answering Machines - Ail fauly

TEL: 01-440 7033

POWER Y MOS-FET TECHNOLOGY

We specialise in all aspects of this important subject. A comprehensive service is ofrered to
individual or OEM users, including. * Hitachi Supertex and RCA V MOS-FET from

V MOS-FET power modules from stoc \star Competitive prices (120 wBtt modules
\star Printed circuits and kits.

- Data books and application notes.
- Design, evaluation and advice service Catalogue/sample data sent free (50p stamp Phone t2514 22303 and ask Richard about your application requirement or write:

AUDIO TECHNOLOGY
Freepotet, Church Crookham
Aldershot, Hante. GU130BR

TS 32

CTCSS Programmable microminiature encoder/decoder $1.25 \mathrm{in} . \times 2 \mathrm{in} . \times 0.4 \mathrm{in}$

No counter or other test equipment required to set fre quency.

CAR LINK

COMMUNICATIONS LTD.
29e Parham Drive
Eastleigh, Hants.
Tel: 0703619834

TELERADIO

For low cost instruments. Freq meters, audio \& RF generators. Distortion anaysers, otc. Assembled \& kits. Hlustrated lists sent on request

325 Fore Street, Edmonton
London NS OPE
Tel: 01-807 3719

Perforated Metals - Screens Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.
We specialise in one-offs or large quantities.

GRAEPEL PERFORATORS

LTD.

Unit 1-B, Charless Street, Dept. WS, Wel sill Siaff: WS2 $9 L 2$.
611644/611414. Tolex 335291.

- PSS model for Microline $\mathbf{t a v z 2}$. Ex. Epson MX-80, Shei-

AME PADOLE

* Maia connector to Apple siot with $12^{\prime \prime}$ colour codod
cables for prow boards, extemal units, atc $f 5.95$ inc.

CAMBRIDGE MICROELECTRONICS LTO One Miton Road, Camonage CB4 IUY

80×24 VDU

All the electronics for a 24 lines by 80 characters visual display unit on one assembled and tested printed circuit board measuring 8.75 inch $\times 6.50$ inch. You provide: power supply $+5 v$ at 1.2 amps $+12 v /-12 v$ at 25 mA , ASC11 enCoded keyboard, video monitor. The VDU-1 will talk to the R.S. 232 serial Baud 56 features including cursor (X, Y) addressing.
VOU-1 Assembled and tested PCB $£ 135$ PSU-1 VDU-1 power supply $£ 32$
All prices subject to $£ 2.50$ registered deAll prices subjec
livery, plus VAT.

SIRIUS CYBERNETICS
 Comyn Lodge, 68 Holly Waik

Tol. (0926) 316110
OSCILLOSCOPE. Hewlett Packard 181A sto rage mainframe, plug ins, 1801A dual trace 50 601 A logic analyser. Offers invited time base Chiswell $061-6780229$ (day).
PRINTED CIRCUITS. Make your own simply, cheaply and quickly. Golden Fotolak Light Sensi much faster. Aerosol cans with full instructions, £2.25. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibre-
lass Board approx. 1 mm thick $£ 1.75$ sq ft Post glass Board approx. 1 mm thick $£ 1.75 \mathrm{sq}$. ft. Post Packing 60p. White House Electronics, Castl Drive, Praa Sands, Penzance, Cornwall
SIGNAL GENERATOR. Marconi TF144H/S 10 KHz to 72 MHz calibrated and resprayed by manual. £300. Ring Allan Laneer 0925572332 for further information.

Calcomp Head Alignment Meter $£ 45$ Sweep Ganarstors $4-900 \mathrm{MHz}$ f $40-\mathrm{f} 135$ Now Xuron Tools Set ©55. Avo 8 Mk 5 ¢69. 24-channel UV Recorder, £75. Pneumatic Shears - fast trimming assembled PC Boards, etc., E25. Contaflex SLR (Sinusoidal shutter), ideal video, TV stills, E49. Oxygen Analyser, £59. Decade Box (mhos), Sullivan Standard Spectrum Analyser, E35. Fenlow SA4 f65. 30KV EHT Meter, E29. Marconi TF 2600, £65. TF 1064, £75. Various RF AF sig-gens. HP clip-on DC Milliameter, £65, Tektronix Transistor Curve Tracer, £95 Centrifuge, £49. EEL Universal Densimoter, E25. Headphones, stereo, mono, binaural, suit school, etc., $£ 4.50$ ea. Laser, C49. Melting Point Apparatus, £25. Cryogenic (refrigeration) Tester,

040-376 236

THE SCIENTIFIC WIRE COMPANY

GMMELIED COPPER WIRE
SW6
810
3010
3510
4110
47
4810
1029
1034
1040
1043
7
81049
$\begin{array}{lll}1 \mathrm{lb} & 802 & \\ 2.76 & 1.50 & \\ 3.20 & 1.80 & \\ 3.40 & 2.00 & 1 . \\ 4.75 & 2.60 & 2 . \\ 8.37 & 5.32 & 3 . \\ 15.96 & 9.58 & 6 .\end{array}$
SILVER PLATED COPPER WHE
$6.50 \quad 3.75 \quad 2$
TINNED COPPER WRRE
14 to $30 \quad 3.38 \quad 2.36 \quad 1.34 \quad .90$
SaE for lst Dealer ennuiries watcoma
Reg Ollice: $\mathbf{Z 2}$ Coningsby Garden

NEWBURY 7004/5 LDGis RS232/Current Loop printer, port complete with data and power cables plus terminators. Pege/scroll mode, edit, line page transmission, as new. List price £895. Our price $£ 399$ only plus VAT. Many other screens, printers and complete systems available. S.U.S Sydney Road, Birmingham OL1. 7713888

STYLI ALL TYPES supplied, send SAE for price list. Warts Radio, 8 The Apple Market

RKOS COMPATTBLE 2.5 Mb hard disc (DR Rodel 33F) and Q-bus concoller for DEC ISII including 3 disc packs. $£ 880$. Tel. Cambridge (0223) 312923.

PRINTED CRRCUTT BOARDS manufactured from artwork or films. Smal or large quantities. Average turnaround two weeks. Aso pre-conted positive resist boards. Sizes to order. Mayland PCB Company Ltd, 4 The Drive, Maylandsea, Chelmsford, Essex CM3 6AB. (0621) 741560

QUANTTTY COMPONENTSI Tants $1 / 35 \mathrm{~V}$ $33 / 35 \mathrm{~V}, 1 / 35 \mathrm{~V} £ 85 / 1,000$. Minidiscs, $1000 / 500 \mathrm{~V}$ $01 / 500 \mathrm{~V}, .02 / 50 \mathrm{~V}$ £14.50/1,000. Polystyrenes P\&P $£ 150 \mathrm{~V}$, radial $220 / 160 \mathrm{~V}$ E14.501,000 speakers, etc. SAE enquiries, callers welcome Letchworth Electronic Components, Spirella Building, Bridge Road, Letchworth, Herts. SG6
4ET. Tel. (04626) 70354.

RTTY/CW DECODER. Computerised with alphanumeric LED display or ASCII output. 5-30 W.p.m. and 45,50 baud. In world-wide use. Kit
from $£ 39.50$. Construction data $£ 295$ refund (rom ${ }^{2} 39.50$. Construction data $£ 2.95$ (refund able.
Drakies Avenue, linverness. (1769)

RACAL COMMUNICATIONS RECEIVERS
$500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}$ wide. RA17L - $£ 175$ Rh117E - £225. A fow sets available as new a E75 extra. All receivers are air tested and cali brated in our workshop, supplied with full manual, dust covar, in fair used condition. Now each. RASEO - ISB - SSB - 775 . HAR1: SSB - ISB and fine tune tor RA117 - $£ 50$ TRANSMITTER ORIVE UNIT RATS. $1.5 \mathrm{mc} / \mathrm{s}$ £150 AERLAL TUMMG UNIT And MA1978 - f75 to f5 DECADE FREOUENCY GENERATOR MAZCO8 Solid state synthesise for MATS or RA117 - RA217 - RA1217 - £150 to $£ 200$. M 2250 - $1.6 \mathrm{mc} / \mathrm{s}$ to $31.6 \mathrm{mc} / \mathrm{s}$ - $£ 150$ (New). MAZSAG - precision frequency stan dard - $5 \mathrm{mc} / \mathrm{s} \mathrm{mc} / \mathrm{s} \quad 100 \mathrm{khz}$ - $£ 100$ to $£ 250$ RACAL MA152 - Standing wave ratio indica tor $5 \times 2 \mathrm{mc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}$ Power up to 1000 watts - 50 ohms - Auto trip switch - Transistor mains lol - $2504 N T E R 836$, new and boxed - 940 RACAL COUNTER 836 (9036) $32 \mathrm{mc} / \mathrm{s}$ TI circuit OSCILLOSCOPES COSSOR COU150-35mc/s Twin Beam - Solid State - $£ 175$ with manual TEXTRONIC OSCMLOSCOPE 647 and 647A Solid State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ bandwidth - $£ 250$ and E 350 . Testad, circuit and instructions. Alacal counter 801 M- $125 \mathrm{Mc}-\mathbf{S} 550$
IMAGE INTENSIFIER ASSEMBLY - XX 4000 (Mullard). Vory high-gain self-focusing image intensifier for night vision systems. Minimutio luminance gain 35,000 . $£ 12$ (used)

All items are bought direct from H.M. Government, being surplus equipment. Price is oxworks. SAE for all enquiries. Phone for appoint Radio, Whitehall Works, 84 WhitehaH Road East, Birkenshaw, Bradford BDII 2ER. Tel. (0274) 684007. V.A. T. and Carriage extre.

BRDOGS, wavelorm/transistor analysers. brators, Standards. Millivoltmeters. Dynamome ters. KW meters. Oscilloscopes. Recorders. Sig nal generators - sweep, low distortion, true

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, mers, components. Vacuum equipment, low cost, used and new. Also for CRT reguaning metallising. Research \& Development. Barratts, Mayo Rod, Croydon CR0 2QP. 01-684 9917. (9678)

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investi gating the advantages of using a profes sional subcontractor. Such an u
ing requires certain assurances.
TW are able to satisty all of them quality, competitive pricing, firm de livery, and
customer
Assembled boards äre 100% inspected before flow soldering and reinspected fter automatic cropping and cleaning Every batch of completed boards issued with a signed certificate of
conformity and quality our final conformity and quality
assurance. assurance.
For further details, contact us at our new
works:
Blenheim Industrial Park Bury St. Edmunds
Suffolk 1 P33 34T Tel: 02843931

ELECTRONIC DESIGN SERVICE. Immed te capacity avaiable for circuit design and de velopment work, PC artwork, etc. Small batch and prototype production welcome. - E.P.D.S Lid., la Eva Road, Gillingham, Kent. Tel: Med way (0634) 57785
BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lid 19b Station Parade, Ealing Common, London
W'S. Tel: 01.9928976 .

PHONE YOUR
CLASSIFIEDS TO

Classified

Micro Processor Design
Our team of experts offer the complete service from Design to Manufacture

- Artwork Prototype Development Testing - Board Manufacture Assombly Packaging For more information contact Maro Control. 1 Chertywod Drtve, Aspley, Notes. NG8 3NN. Tolephone 0602288281 (24 hour service). (1597)

CIRCOLEC
THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy, Prototypes, Final Assembly. Quality workmanship by professionals at economic prices. Please telephone $01-767$ 1233 for advice or further details. 1FRANCISCAN ROAD TOOTING, LONDON SW17

ELECTRONIC SUB-CONTRACTING SERVICES

A smal Company with experienced stat * Printed circuit board assembly from fro procurement procurement Hand soldering
Chassis wring and cable harnesses

* Crincuir design and development
tion tion
* Modifications and repairs
* Small or large erroduction quantities

Let us know your requirements - we'll show
LONGBOW ELECTRONICS LTD
21 Clifford Rosd, London SE25 5لll Tel: 654 1199

CUSTOM METALWORK

made efficiently to your specification inmade efficientry
cluding: Stage boxes, mic panels, en closed audio and video jackfields prewired to connectors of your choice, de livered and instelled.
For further information contact: Integrated Electronics, 68 Portnall Roed, London, W9 3BE. Tel: 9694135.

DESIGN SERVICES, Electronic design de velopment and production service available for velopment and production service available for
digitas and analogue instruments. RF Transmitdigital and analogue instruments. RF Transmitsystems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner $\$ 3661$

 P.C.B. Artworks

FAST TURNROUND
To ensure immediate turnround of you artwork contact JULIAN WILLIAMS ARTWORK GRAYS LANE WILLIAMS ARTWORK, GRAYS LAN
MORETON-IN-MARSH, GLOS. Tel: MORETON-IN-MARSH 51444 Tel: MORETON-IN-MARSH 51444

DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell $\$ 2023$.

SMALL BATCH PCBs produced from your art work. Also DIALS, PANELS, LABELS. Camera work undertaken. FASI London ECIN 8RU. TeL 01-405 4123/0960.

FÖR THE BEST PCB SERVIC̈E AVAILABLE

* Circuit Design \& Development

Digital and Analogue

- Artwork Layout

Work of the highest standard by experienced
draughtsmen. No minimum charge
Corard Manisfacture
Protatype to semi-production, excellent rates 24 hour prototvpe service from filmwork

- Wiring \& Assembly

PCB assembly, wiring and cable forming by
qualified staff.
Thent

One or all services avait-
able no order too small. Please teleohone Chelms(ford (0245) 357935, or write to HCR Electronics, The Inoustrial
Cheimstord.

30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE TV Monos $£ 2$, Transistor Radios $\mathrm{f2}$, Tuners f2, Tape Recorders, Record
Players and Stereograms f2. Stamped addressed envelopes with all puota addressed envelopes with all quotations. Also colours available. Car Radios
$€ 3+$ stamped addressed envelope. All $\mathrm{E} 3+$ stamped addressed envelope. All
valve radios f . Stamped addressed envelope please. Quote Edvert. no. with order C. CARANNA

$$
71 \text { Boaufort Park, London NW11 68X }
$$

$$
\begin{aligned}
& \text { oatiort Park, London NWY } \\
& 01-4584882 \text { (Masil Order) }
\end{aligned}
$$

SHEET METAL WORK, fine or general fron SHEET METAL WORK, itne or general fron patch work, fast turnround. - 01.449 2695. M. Gear Ltd., 179A Victoria Road, New Barnet, Hers.

ARTICLES WANTED

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS 1 4BB 053235649

WANTED

Scrap and re-usable mainframe computer and industrial electronic equipment
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk. Tel. 039-45 328

WANTED FOR CASH: 7F7, 7N7, 53, 6L6 metal, $304 \mathrm{TL}, 4 \mathrm{CX} 1000 \mathrm{~A}$, all transmitting, special purpose valves of Eimac/Varian. DCO, INC, 10 Schuyler Avenue, North Arlington, New
Jersey 07032 , USA. Jersey 07032, USA
MARCONI TF 2603 RF electronic millivolumeer (with accessories in case) and operating manual. Must be clean, undamaged and in Boz No. 1768.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

* Rate E3 PER LINE. Average six words per

NAME. line. Minimum $£ 20$ (prepayable)

- Name and address to be included in charge if used in advertisement

ADDRESS
(Box No. Allow two words plus $£ 3$

- Cheques, etc., payable to "IPC Business Press Ltd." and cross "\& Co.'

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 843221

BM Selective (goiftall) keyboard printer, similar to 735 ..
CENTRONICS Model 101 matrix printer (180 c.p.s.s) Parallel TTL interface .. 150 keyboard, MOTOROLA or BALL Monitor, power 24×80. Theste modern (1979) VOUs comprise a detached Ideal for single board micro users printer and single-line LED display. Dratazisor. Microproceasor-controlled phationsingle-line te dizplay. Data is recorded on magnetic cards BIABLO Series 30 . Removable disc drive. 2.5 megabyte with induatry slandard interface. These drives ere hardware, software and media compatible with the RK05 and controllers are available for PDP 11, NOVA
machines and most micros
E2S Power supply for above
SYSTIME RKOS UNIBUS controiler (similar to RK11-D), complete with a pair of DIABLO drives as above and
PERTEC Minature 9-track 800 b.p.i. NRZ tape drivo
FACIT Model 4070 high-speed paper tape bunch (75 c.p.s.) with perallel $T \mathrm{TL}$ interface

ERA 1 KVA 60 Hz converter. All solid state. Contained in four-foot rack
PERTEC Model FO-250 dual-density, double-sided 51/4in. floppy disc drive. NEW
OOCUMATON Model M600L compect card reader
NDK MOde1 4410 CARD READER, NEW 1.06 micron wavelength, $1-2 \mathrm{~J}$ per pulse. Fully operational... NASHUA Model 1215 plain paper copier.
Plonee note:

- V.A.T and carriage extra all iterns
\star Visitors welcome but by appointment please We are keen to bid competitively for all good used equipment

INDEX TO ADVERTISERS OCTOBER

Appointments Vacant Advertisements appear on pages 119-127

Acoustical Mfg. Co. Ltd. 57	Galatrek International............................. 24	Racal Recorders Ltd........................ PAGEr ii
Adcola Products Ltd. 2	GAS Electronics................................... 17	Radford Audio Ltd. 118
AEL Crystals ... 118	Global Specialities Corp (UK) Ltd. 25	Radio Components Specialists................... 103
AH Supplies 109	GP Industrial Electronics Ltd.26, 27	Ralfe, P. F. Electronics 92
Airwaves Electronics 10.	Greenweld... 18	Relay-A-Quip Ltd. 98
Ambit International 9, 100	Greenwood Electronics Ltd.cover iv	RST Valves... 110
Analogue Associates 8		
Anglia Components................................. 4	Hameg Ltd. .. 101	
Antex (Electronics) Ltd......................cover iii	Happy Memories... 92	Sagin, M. R. .. 2
AP Products.. 94	Harris Electronics (London)...................... 4 Harrison Bros Electronic Distributors......... 95	Samsons (Electronics) Ltd. 112
Audio Electronics 19	HB Electronics 29	Sescom Inc. .. 24
Autotype.. 102	Hemmings Electronics and Microcomputers 116	Shure Electronics Ltd.............................. 30
Avel Lindberg (Cotswold Electronics)........... 12	Henry's Radio 6, 24	Sinclair Research Ltd. 20, 21
	Hilomast Ltd. .. 5	South Midlands Communications Ltd......... 100
Barrie Electronics Ltd. 115	Horst F. G. Angermann, Hamburg 7	Sowter, E. A. Ltd................................. 111
Beckman Instruments (Vako Display Systems)	House of Instruments Ltd........................ 115	Special Products (Distributors) Ltd. 93
... 104		Strumech Engineering Ltd........................ 89
Black Star Ltd. 109	ILP Electronics Ltd. 89, 107, 117	Surrey Electronics Ltd.............................. 12
Bread Board '82 106	Integrex Ltd. .. 6	
Broadfields \& Mayco Disposals 6	Interface Quartz Devices Ltd...................... 15	
Cambridge Kits 16		Technomatic Ltd. 90, 91
Chiltern Electronics .. 95	KEF Electronics Ltd........................... 93, 95	Teleradio Electronics Ltd. 106
Chiltmead Ltd. .. 98	Keithley Instruments Ltd. 13	Television Magazine.................................. 93
Circuit Services... 25	Kel sey Acoustics Ltd................................ 98	Teloman Products Lid.................................. 16 Thandar Electronics Ltd. 99
Clark Mast Ltd. 18		Thanet Electronics. \qquad
Clef Products (Electronics) Ltd. 102	Langrex Supplies Ltd. 110	Time Electronics Ltd. 12
Colomor (Electronics Ltd) 22	Levell Electronics Ltd. 97	Time Electronics Ltd. 12
Computer Appreciation.......................... 128	LFH Associates Ltd. 18	
Crotech Instruments Ltd. 96	oni Communication Systems 28	Valradio Ltd. 2
Danavox (Gt. Britain) Ltd. 23	Melkuist ... 97	Veco Electroforming/Photo-Etching Ltd. 6
Darom Supplies 102, 106	Midwich Computer Co. Ltd. 15	
Digitalis Ltd. 118	Modern Book Co., The 92	
Display electronics................................ 113	Monolith Electronics Co. Lid. 22	Watford Electronics 10, 11 Which? MagazineLoose Insert
DSN Marketing Ltd. 101		White House Electronics 24
Eddystone Radio Ltd. 14	Oison Electronics Ltd............................... 4	Wilmslow Audio7, 15, 25
Electronic Brokers Ltd3, 5, 7, 9	Opus Supplies 108	Wireless World Circards......................... 114
Electrovalue Ltd. 118	Orion Scientific Products Ltd. 16	WK Electronics Ltd. 16
Faircrest Engineering Ltd........................ 12		
Farnell Instruments Ltd. 28, Reader Card, 111 Ferranti Electronics \qquad	Pantechnic.. 100 PM Components 105	Your Computer..................................... 96
Fieldtech Heathrow Ltd................................... 22	Practical Computing............................... 112	
Flight Electronics Ltd. 8	Practical Wireless 102	
Foundations of Wireless and Electronics....... 116	P\&R Computer Shop................................ 92	Zaerix Electronics............................ 109,111
OVERSEAS ADVERTISEMENT AGENTS: France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.	Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B.212. Azabu Heights. 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581. United States of America: Ray Barnes, IPC Business	Mr Jack Mentel, The Farley Co., Suite 650, Ranna Build: ing, Cleveranc, unio 441 b $^{- \text {- Telephön: }}(216) 6211919$. Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 5327301 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E.,
Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525 INTFOIRE	Press, 205 East 42nd Street, New York. NY 10017 - Telephone: (212) 867-2080. Telex: 238327. Mr Jack Farley Jnr., The Farley Co.., Suite 1584, 35 East Walker Drive. Chicago, Illinois 60601 - Telephone: (312)	Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6.20154 Milan. Telephone: 347051 - Telex: 37342 Kompass.	63074. Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821. 8581 - Telex: 18-1059.	Canada: Mr Colin H. MacCulloch, International Advertising Consultants Ltd.; 915 Cariton Tower, 2 Cariton Street, Toronto 2 - Telephone (416) 3642269 * Also subscription agents.

[^7]

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

This eliminates the need for temperature
measuring equipment. You get faster and better soldering.
For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT).
The TC82 240 volt is also available as a 30 watt general purpose iron at only $£ 4.95$ (+VAT).
Greenvood Electronics

[^8]
[^0]: Antenna Systems Division
 Marconi Communication Systems Limited,
 Lane Works, Waterhouse Lane, Cheimsford CM1 2QX, England
 Tel: 0245353221 Telex: 99108

[^1]: Distributors: Celdis, Reading, Iel: $0734585171 \bullet$ Farnell Electronic Components, Leeds, Tel: $0532636311 \bullet$ Intel Electronics, Henlow, Tel. 0462812505 - ITT Electronic Services, Harlow, Tel 027926777 • Midwich Computer Co., Bury St Edmunds, Tel: 0284701321 - Sernicomps, Keighley, Tel: 053565191 - Semicomps, Kelso, Tel: $057324366 \bullet$ Swift-Sasco, Crawley, Tel:029328700.

[^2]: *Feedback Instruments Ltd

[^3]: *Chris Jay was formerly with the Fairchild European Design Centre, Bristol and is now working at Marion Electronics, in Stroud.

[^4]: WIRELESS WORID OCTOBER 1982

[^5]: *The wording of Taylor's report makes it clear that his boss, Thomson, did not hold with the new-fangled quantum ideas. Having obtained a result in accord with classical theory he was not disposed to investigate the issue further

[^6]: Company registration in England Quadrant House, The Quadrant,
 Sutton, Surrey SM2 5AS
 feg, No 677128

[^7]: Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS, telephone 01.6613500 . Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND; Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co, CANADA: Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N.Y. 10011

[^8]: Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 1NE. Telephone: (0734) 595844. Telex: 848659

