

## TEST COMPONENTS on this new oscilloscope!

- Test solid state devices in, or out of, circuit
- Fast location of shorted, open and leaky components
- Test diodes, transistors, LEDs, electrolytics, FETS, MOS and CMOS etc. PLUS
- Full function, dual trace, 12 MHz oscilloscope
- Fine sweep and gain controls
- Differential measurement mode-essential for effective servicing of disc drives and tape recorders


A really versatile 'scope for the test, service or development engineer


Front cover shows antennae of the Swiss PTT at Niederhorn television transmitting station. Photo: Hamer-Smith Collection

## NEXT MONTH

Micro-controlled radio-code clock-uses the MSF standard-frequency time-code transmission to provide automatically corrected date and time information. The design uses a 6502 microprocessordecoder and a reliable receiver design.
Heretics guide to modern physics is a controversial investigation into electromagnetic theory, photons, duality, quantization, matter waves, indetermancy and haziness.
Psychology of crisis control, the requirement for new types of equipment for data marshalling and methods of training personnel are examined by a consultant engaged in the planning of control complexes.
A high power mosfot amplifier is described In a series beginning with an explanation of design problems. followed by a new modular preamplifler design.
Underground radio, a review of progress in the use of radiating cables in mines.
Cürrent issue price 70 p , back issues (if available) E1, at Retail and Trade Coun ter, Units 1 \& 2, Bankside Industria Centre, Hopton Street, London SE1 Available on microfilm; please contact editor.
By post, current issue $£ 1.6 \mathrm{p}$, back issues (if available) $£ 1.50$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS.
Editorial \& Advertising offices: Quad rant House, The Quadrant, Sutton, Surrant House,
rey SM2 5AS.
rey SM2 5AS. Editorial 01-661 3500. Advertising 01-661 3130.
Tolegrams/Tolex: 892084 BISPRS G.
Subscription rates: 1 year f12 UK and £15 outside UK.
Student rates: 1 year E8 UK and £10 outside UK.
Distribution: Quadrant House, The Quad rant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500.
Subscriptions: Oakfield House, PerrySubscriptions: Oakfield House, Perry-
mount Road, Haywards Heath, Sussex mount Road, Haywards Heath, Sussex
RH16 3DH. Telephone 044459188. Please notify a change of ardress.
USA: $\$ 39$ surtace mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P. Subscriptions Office, 205 E.42nd Street, NY 10017
USA malling agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2ndclass postage paid at New York.
(C) IPC Business Press Ltd, 1982 ISSN 00436062

## wireless world

MAY 1982 Vol 88 No 1556

## 29

ARMS AND THE MAN


ORCHESTRAL SOUND, HALLS AND TIMBRE by Denis Vaughan
 ELECTRONICS

## WETWORKING SMALL COMPUTERS

by Phillip G. Barker

## TELEDON VIDEOTEX IN UK

DIGITAL TELEVISION STANDARDS by A. Howard Jones

## digital Fllter desigin

by B. W. G. Cheelham and P. Hughes

## 57 LETEERS TO THE EDITOR

## 61 <br> DIGITAL OPTICAL RECEIVERS <br> by lan Garrett



## WEWS OF THE MONTH

## 67 <br> EPROM PROGRAMMER by H. S. Lynes

## 70

DISC DRIVE POSITIONERS
by J. R. Watkinson

## 76

DESIGUING WITH MICROPROCESSORS by D. Zissos and Jane Pleus

## CEPSTRUM ANALYSIS

by R. B. Randall and Jens Hee

## NEW PRODUCTS

## Index to advertisers

# THE HEADSET THAT'S WAY AHEAD OF 

 ITS TIME.

## THE DANAVOX HMT 808.

The Danavox HMT 808 is the most advanced headset of its kind that you can buy today. Employing Danavox expertise and quality throughout, it offers many unique features at a remarkably low price.

Lightweight. Weighs only 35 grams - Comfortable and hygienic. Does not go in the ear so it can be comfortably positioned in seconds $O$ Versatile. Can be worn under the chin or over the head using single ear of binaurally Multiple version microphone. Available with either magnetic microphone or electret with noise cancelling feature and pre-amplifier for matching into telephone systems

Technically advanced. Pre-amp employs latest thick film technology Easy servicing and repairs. Quick changing of earphones, cords, earpieces and switches - Realistically priced Danavox quality engineering and guarantee.

For full details contact John Carter at Danavox.


DANAVOX (Gt. Britain) Ltd., 1 Cheyne Walk, Northampton NN1 5PT Tel: (0604) 36351 Telex 312395

# Hectronic Brokers <br> Second User Test Equipment. Makes engineers smile without making accountants cry. 

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the
manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

## ANALOGUE VOLTMETERS

 Bruel and KJaer240 KHz .
20 KMS . Average and Peak 2 Hz .
$\$ 250.00$
Hewlett Packard
3400 A True RMS $1 \mathrm{mV} \cdot 300 \mathrm{~V} 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$ 3406 A ImV-3V FSD IOKHz $1.2 \mathrm{GHz} Z \begin{aligned} & \sum 600.00 \\ & \$ 850.00\end{aligned}$
Marconl.
TF 2600 A 1 mV -100V FSD $10 \mathrm{~Hz}-10 \mathrm{MHz}$
TF2603 RF Mitivolemeter 300 V V Sensintity $£ 245.00$
$50 \mathrm{KHz} \cdot 1.5 \mathrm{GHz}$....................... $£ 525.00$ TF 2604 Electronic Voitmete. AC
$20 \mathrm{~Hz}-1.5 \mathrm{GHz} 300 \mathrm{mV}-1 \mathrm{KV}$ DC $10 \mathrm{mV} \cdot 1 \mathrm{KV}$. $20 \mathrm{~Hz}-1.5 \mathrm{GHz} 300 \mathrm{mV} \cdot 1 \mathrm{kV}$ DC $10 \mathrm{mV} \cdot 1 \mathrm{KV}$.
$0.28-500 \mathrm{Mg}$.
$\$ 350.00$ Rohde \& Schwarz URV RF-DC Millivoltmeter DC $50 \mu \mathrm{~V}$-1050V RF
IOKHz-2GHz.
$\$ 950.00$

## ANALYSERS

Hewlett Packard
141T/8552B/8555A 10 MHz -18GHz $£ 9750.00$ 332A Distortion Meter 5 Hz -600KHz, $\$ 495.00$
333 A Distortion Meter with Auto nuill $£ 675.00$ 333A Distortion Meter with Auto nuil $\Sigma 675.00$
$8407 \mathrm{~A} / 8412 \mathrm{~A}$ Network Analy ser
E 1950.00 $\begin{array}{ll}\text { 8407A/841 } 2 \text { A Network Analyser } & £ 1950.00 \\ \text { 8555A Plug in } 10 \mathrm{MHz}-18 \mathrm{GHz} & \\ \$ 5000.00\end{array}$ Sound Technology
Sound technology
AC vottage $30 \mu \mathrm{~V} \cdot 300 \mathrm{~V}$. S/N Ratio 100 dB
Dynamic range. power into $88.0 .001 \%$
distonion Oscillator
E 950.00

## Marcon

TF 2370 Specrrum Analyser. $30 \mathrm{~Hz} \cdot 110 \mathrm{MHz}$. O. I dB and 5 Hz resolution
TK2374 Zero loss probe for TF $2370 \quad \mathbf{\$ 3 5 0 0 . 0 0}$
$\mathbf{\$ 3 7 5 . 0 0}$ Tektronix
R491 Spectrum Analyser $10 \mathrm{MHz} \mathrm{40GHz}$
ASNEW
$£ 3500.00$

## BRIDGES

Boonton.
63 H Inductance Bridge. $0 .-110 \mathrm{mH}$. Bridge
53 H inductance Bridge. $0-110 \mathrm{mH}$. Bridge
frequency 5.500 kHz
$\mathbf{~} 1250.00$
Marconi
TFI245A + TF1246 O meter $\$ 1100.00$
M4520 Set of Inducto
Rohde \& Schwar
 2.2-285KHz.


B642LCRO.1\%
$£ 750.00$

## FREQUENCY COUNTERS

Fluke
$1912 A$
$\begin{array}{ll}\text { 1912A } 7 \text { digit } 520 \mathrm{MHz} \\ \text { 1920A with Option } 139 \text { Digit IGHz } . & £ 750.00\end{array}$ 1920A with Option 139 Digit IGHz \& 750.00
1925 M Multifunction. EMI Proof 9 Digit 125 MHz 1953A Counter Timer Opt i4. 15.0
with prescalers. I.E.E.E. interiace $£ 625.00$
.25 GHz
$£ 975.00$
Hewlett Packard
5340A 8 Digit 10 H स18 18 Hz
\$3750.00

## Marconl.

2432A 8 digit $10 \mathrm{~Hz}-560 \mathrm{MHz}$ Battery Mains
$\$ 650.00$

## DVM's AND DMM's

Fluke
8022 A $31 / 2$ digit hand held
$£ 65.00$
Solartron.
7055 Microprocessor DMM. Scale Length
20.000. ACIDC volts. resistance $1 \mu \mathrm{~V}$
tesolution
$\mathbf{4} 495.00$

## OSCILLOSCOPES

Marconl.
TF2213/i + TK2214 X-Y Display and
£550.00


Philip
PM3212 25MHz Dual Trace Portable، $\$ 475.00$ Tektronlx.
$453 A$ Dual Trace DC-60MHz Portable Sweep
Delay 465 bual Trace Portable Oscilloscope. DC $100 \mathrm{MHz} 5 \mathrm{mV} .5 \mathrm{v} / \mathrm{div}$. Full delayed sw 465 with DM 40 ............... 1395.00 475 Dual Trace ZOOMHZ Portable... $\$ 25000.00$ 7603 IOOMHz Manframe with 7A 8 N and $7753 \mathrm{~N} . .$. 7104A 200 MHz Mainirame C/w 7A22 Dift.
Amplier. 7 A 26 Dual Channel. 7 B80 Timebase Amplifier. 7 A26 Dual Channel. 7B80 Timebase
and 7B85 Delaying Timebase... $\$ 4610.00$ Si Sampling Head. As New. ... $\$ 450.00$ 7D14 Digital Counter plug-n 525 MHiz . 8850.00

## Texscan.

DU12012" Display.
£425.00

## RECORDERS

MC6416 $\qquad$
Yokagawa
30472 Chan

## SIGNAL SOURCES

Hewlett Packard.
4204 A Decade LF Oscillator. $10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$. 1 mV -10V into 600 』. 8695.00 606 B AM Signal Generator. $50 \mathrm{KMz}-65 \mathrm{MHz}$
AM $0.95 \%$ AM 0.95\%
$608 F 10.455 \mathrm{MHZ}$ AMIPCMMOdulation $0.1 \mu \mathrm{~V}$.

 $0.1 \mu \vee \cdot 0.224 \mathrm{~V}$. $\$ 1000.00$ | 616 B UHF Signal Generator 1.8104 .2 GHz . Int |
| :--- |
| pulse Mor |
| 1000.00 | 651 T Test Oscillator. $10 \mathrm{~Hz}-10 \mathrm{MHz}$. $0.1 \mathrm{mV}-3.16 \mathrm{~V}$

3200 B 10-500MHz Signal source $\quad 415.00$
335.00 3320 A Frequency 5 Synthesizer. 0.01 Hz .13 MHz Marconl.
$£ 995.00$
TF144H/4
$72 \mathrm{MHz}, 2 \mu \mathrm{~V}-2 \mathrm{~V}$ Sigal Generator. 10 KHz -
$\$ 750.00$ TF20028 AM/FM $10 K H Z-88 \mathrm{MHz} \ldots 1200.00$ TF21708 Synchronizer for TF2002B. $\$ 450.00$


#### Abstract

TF2005R 2 Tone Signal Source. $20 \mathrm{~Hz}-20 \mathrm{KHz}$ 0.111 dB in 0.108 sleps $£ 295.00$  TF 2008 AM/FM $10 \mathrm{KHz}-510 \mathrm{MHz}$ buit in sweeper. Output $0.2 \mu \mathrm{~V} \cdot 200 \mathrm{mV} \ldots £ 3500.00$ TF2016 + TF2173 Synchroniser AM/FM 10KHz TF $2950 / 8 \mathrm{MHz}$ Moble Radio Tesi Set . . . $£ 1950.00$ TF2169 Pulse Modulator for use with TF2015 or TF2016 F 2000 6070 signal source $400 \cdot 1200 \mathrm{MHz} \quad 695.00$




Philips.
PMS 115 Pulse Generator $1 \mathrm{~Hz} .50 \mathrm{MHz} \$ 675.00$ PM6456 Stereo Generator. .... $£ 250.00$
Racal
Po81 Synthesized AM/FM. Phase and Pulse
modulation 5.520 MHz
$\mathbf{~} 2200.00$ Radlometer
Radlometer
SMGI Stereo Generator .............. $£ 375.00$

## TRANSMISSION

MEASURING EOUIPMENT
Slemens.
O 2040 Selective Level Analyser and Voltmeter.
$10 \mathrm{~Hz}-60 \mathrm{KHz}$ $\mathrm{D} 2072+\mathrm{W} 2072$ Level Meter and Oscllator $50 \mathrm{KHz} \cdot 100 \mathrm{MHz}$. .............. 2200.00 $W 2006+$ D2006 Carner Level Test Set. 10 KHz
$17 \mathrm{MHz}-100$ to $+10 \mathrm{~dB} \quad \$ 1650.00$ W2007 + D2007 Carrier Level Test Set. $6 \mathrm{KHz} \cdot 18.6 \mathrm{MHz}$. 120 to +20 dB . $₹ 1800.00$ Wrandel and Gotterman.
PF. 1 Digital Error Rate Measuring Set.
Consisting of PFM. 1 Digital Error Rate Meter Consisting of PFM- 1 Digital Error Rate Meter
and PFG-1 Pettern Generator..... $\mathbf{\Sigma 2 4 9 0 . 0 0}$ and PFG-1 Pettern Generator..... $£ 2490.00$
SPM. 6 and PS-6 Level Measuring Set. SPM. 6 and
$6 \mathrm{KHz} \cdot 18.6 \mathrm{MHz}$. -110 dB to +20 dB . Mains/
£2150.00

Please note: Prices shown do not Include VAT or carriage.

## 

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN
Telephone: 01-278 3461
Telex: 298694 Elebro G
PCM. 1 PCM Test Ser. PDA-64 PCM Signalling Analyser. PSM-4 Level Measuring Set Scanner. PDG- Digital Signal Generator. PDA-I PCM
Digital Signal Analyser
P.O.A

## MISCELLANEOUS

Dymar

Fluke
3010 Logictester Self Contanned. Portable.
Full Spec. on Reques: Hewlett Packard.
355E 12 dB Programmable Attenuator unused
$\$ 90.00$
8403A Modulator Filted With 87328 PIN
MODULATOR.
§ 1500.00 8412A Phase Magnirude CRT display for 8482 H Power Sensar 100 kHz 42 GHz . AS
NEW
$\$ 250.00$ 8745A SParameter Test Set Finted with 50.00
 Marconl.
 TF21635 UHF Attenuator 0.1420850 S impedance DC. 1 GHz .
IF 2331 AF Distorion Meter
20 Hz -20KHz.... $£ 395.00$ TF 2500 AF Power Meter 7 ranges $100 \mu$ watts
to 25 watts...
$\$ 275.00$ TM8339 ACIDC muxer for use with TF2702

$\mathbf{\$ 2 5 0 . 0 0}$

## Philips

NEW 19 Colour TV Partern Generator AS

Rohde and Schwarz.
MSC Siereo Coder. 30 Mz
Tektronlx
I41A PAL Test Sigrial Generator $£ 1750.00$ 1481C PAL TV Waveform Monitor. $£ 2375.00$ 191 Constant Amplitude sig. Gen. 350 KHz.
$100 \mathrm{MHz} 5 \mathrm{mV}-5.5 \mathrm{~V}$. $£ 250.00$ 106 Square Wave Gener ator Ins nisetime
$10 \mathrm{~Hz} \mid \mathrm{MHz}$ without acressaries $\$ 175.00$ 284 Pulse Generator 70 SS risetume $\quad \$ 1250.00$ relonia Mark Generar
51250.00
$\$ 195.00$ relonic.
£ $£ 50.00$
her details

## PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

FOR INSTANT MAINS DISTRIBUTION IN OFFICES, LABORATORIES, WORKSHOPS AND FOR MAXIMUM SAFETY


BEL 5SW
£61, £2.25 P\&P + VAT


13A/5/R £25.30, £1.50 P\&P + VAT


13A/6SW Slopina £26. £1.50 P\&P + VAT


PEL 1
£44.50, £1.50 P\&P + VAT


13A/4SW £22.40, £1.50 P\&P + VAT


WEL 2
T13A/5 £21.75
E1.50 P\&P

+ VAT
£52.80, £2.25 P\&P + VAT


N13A/3
$£ 16.77, £ 1.50$ P\&P + VAT
DELIVERY EX-STOCK

## OLSON Electronics Ltod. FACTORY NO. 8, 5-7 LONG STREET LONDON E2 8HJ Tel: 01-739 2343 <br> IL

WW - 041 FOR FURTHER DETAILS


WW - 026 FOR FURTHER DETAILS


WW - 021 FOR FURTHER DETAILS

## ADCOLA <br> TReğ Trade Mark SOLDERINGTOOL TYPE 444



The Adcola 444 operates from 24 VAC . $50 \mathrm{VA} .50 / 60 \mathrm{~Hz}$. supply. Temperature range normally factory set at $360^{\circ} \mathrm{C}$ is fully variable between $220^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$. The control circuit is based on a specially designed integrated circuit and uses a thermocouple temperature sensor. Full specifications and prices from

## DCO <br> ADCOLA PRODUCTS LIMITED

ADCOLA HOUSE, GAUDEN ROAD, LONDON SW4 6LH Telephone: 01-622 0291/4 Telex 21851 ADCOLA G WW - 030 FOR FURTHER DETAILS
WIRELESS WORLD MAY 1982

- NOW WITH A 2 YEAR WARRANTY
* Fluke 8022B
$31 / 2$ Digit hand held LCD. DMM. ACIDC volts DCIAC Current, resistance, diode test. $0.25 \%$ basic DC accuracy. Overioad protection. Vinyl cartying case C90 £8.00
$\varepsilon 85.00$
* Fluke 8021 B .
same spec as 8022B with additional audio tone for continuity. Vinyl case C90 £8.00
$€ 95.00$


## *Fluke 8020B

$31 / 2$ digit $0.1 \%$ basic DC accuracy. DCIAC voits,
DCIAC current. resistance, diode test and conductance. Continuity beeper. Vinyl case C90 £8.00.
£125.00

* Fluke 8024B
$31 / 2$ digit. $0.1 \%$ basic DC accuracy. DCIAC volts. DCIAC current, resistance. Diode test. conductance, logic + continuity detect + temperature. Peak hold on voltage and current functions. continuity beeper. Vinyl case C90 £8.00.


## FLUKE 8050A

$41 / 2$ Digit LCD DMM with true RMS on AC volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$. $10 \mu \mathrm{~V}$ resolution AC volts. 200 mV - $750 \mathrm{~V}, 10 \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A} .0 .01 \mu \mathrm{~A}$ resolution resistance $200 \Omega-20 \mathrm{M} \Omega$. $0.01 \Omega$ resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 ns. £ 255 mains model £285 mans Dattery.

## FLUKE 8012A

$31 / 2$ Digit LCD DMM with true RMS on AC volts and current. DC volts $200 \mathrm{mV} \cdot 1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V} .100 \mathrm{HV}$ resolution. DC/AC current 200uA.2A. O.: $\mu \mathrm{A}$ resolution. Resistance 2002-20M2, 0.1 1 resolution Low resistance $2 \Omega$ and $20 \Omega$. $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{~ms}-20 \mathrm{H}$-200ns £229.00 mains model $£ 259.00$ mains battery. FLUKE 8010A
31/2 Digit LCD DMM Same spec as 8012 A plus a $10 A m p$ ACIDC current range. but not low resistance range. £175.00 mains model $£ 203.00$ mains battery.

## ACCESSORIES

A81-230 Battery eliminator
C90 Carry case for hand held
$801-600$ Amp clamo
80J-10 Current shunt IOA
$80 \mathrm{~K}-40 \mathrm{H} . \mathrm{V}$. probe 40 kV
$80 \mathrm{~K}-6$ H.V. probe 6 kV
80T-1 50 Temperature probe. 80T-H Touch hold probe 83RF R.F. probe 100 MHz 85RF R.F. probe 500 MHz . Y 8102 Thermocouple probe
$\varepsilon 14.00$
E10.00
£68.00
£22.00
£56.00
556.00
540.00
£ 72.00
E 72.00
ع36.00
E40.00
$E 69.00$
E18.00
. 8.00
E 13.00

The above prices do not Include carrlage or VAT (15\%).

Simply Phone or Telex your order for Immediate dispatch.
Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN
Telephone: 01-278.3461
Telex: 298694 Elebro G WW - 201 FOR FURTHER DETAILS

## NEW LOW COST 12 BIT ANALOGUE I/O \& DIGITAL I/O FOR "PET" USER PORT

By using the "PET"s own 6502 Microprocessor, we are able to offer an unheard of ratio of performance vs value for money. Price includes operating program in EPROM which greatly simplifies its use.

## CALL CIL FOR DETAILS

Coming soon, a suite of applications programs in EPROM to include waveform generation, data acquisition etc..

CIL MICROSYSTEMS LTD DECOY ROADWORTHING w. SUSSEX (0903) 210474

Telex 87515

## Digital Accuracy, Effortless Convenience:

 through VHF and UHF frequencies in $1 \frac{1}{6}$ ", $31 / \mathrm{g}^{\prime \prime}$ or $61 / \mathrm{m}^{\prime \prime}$ coax lines. Three models cover $1-10 \mathrm{~kW}, 1-25 \mathrm{~kW}$ and 1.50 kW ranges with calorimetric accuracy of $\pm 21 / 2 \%$ of indication (above 5 kW ).
Self-cooled MODULOAD Termination assures low SWR in 50 -ohm lines, can be permanently mounted - or wheeled in place on dolly.
To measure power, push a button, wait briefly to stabilize, zero the display and apply RF I
Can be used to calibrate or check ocher meters. Detailed specs in CalMOD Bulletin. Ask for it


Aspen Electronics Limited your exclusiveu.k. representative
2/3 Kildare:Close, Eastcote,
Ruislip, Middlesex HA4 9UR
Telephone: 01-868 1188
Telex: 8812727
FAX: 01-866 6596

## Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

## AUDIO FREQUENCY TRANSFORMERS OF EVERYTYPE YOU NAMEIT! WEMAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Gultars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance ranching transformers, Gramophone Pickup transformers, Aucio Mixing Ders for PCB mers (altypes), Miniature transformers, Microminiature transformersers, Ultra linear and Experimental transformers, Uitra low frequency trans up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY, OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible, OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, BAND GROUPS AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

## E. A. Sowter Ltd.

## Manufacturert and Designers

E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk P.O. Box 36, 1pswich. IP 12 EL, England Phone: 047352794 and 0473219390 Telox 987703G Sowter

## METER PROBLEMS?



137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

## HARRIS ELECTRONICS (London) Phone: 01-837/7937 . 138 GRAY'S INN ROAD, W.C. 1 Telex: 892301

WW - 027 FOR FURTHER DETAILS

## Eurefal

This revolutionary New Blue LED, the ESL 50B2, from Anglia Components is a miracle of scientific tenacity previously thought to be light years away.
Its applications in science and industry are unlimited.
Development quantities are available ex-stock.


THE PARTS YOU NEED

## - fast!

Burdett Road, Wisbech, Cambs, PE13 2PS
Telephone 094563281 Telex 32630 ANGLIA G

## We supply 1 TMISC for Industry



HM 203 PORTABLE OSCILLOSCOPE
Dual Trace. DC to $20 \mathrm{MHz} .8 \times 10 \mathrm{~cm}$ display. Risetime $17.5 n$ S. Sensitivity $5 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}$. Timebase $0.5 \mu S-0.25$ $\times 5$ magnifier. $X$ - $Y$ operation. Auto or variable trigger. Channel I. Channel 2 . line and external Coupling AC, or TV low pass filter. Weighs only 6 Kg . Size (m.m.) H. 145. W. 285. D. $380 £ 220.00$


## HM705

Dual Trace DC-70MHz $8 \times 10 \mathrm{~cm}$ display with internal graticule. Risetime 5 ns . $V$ ariable input $2 \mathrm{mV} \cdot 20 \mathrm{~V}$. Add and invert modes. 95 ns Signal Delay Line Timebase $50 \mathrm{~ns} 518 / \mathrm{cm}$ with Sweep delay 100 ns. $15 \times 10$ expansion. $X Y$ operation. 2 modulation. Trigger CHI. CH 2 . CH1/2 line or EXT . . . . $£ 580,00$

The above prices do not liclude carrlage or VAT (15\%)

## Simple Phone or Telex your order for immediate dispatch.

Electronic Brokers Ltd 61/65 Kings Cross Road London WCIX 9LN
Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 For further details


## 图

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUTPUT POWER IN EXCESS OF 1.5 KK INTO 2.75 Ohm LOAD [CONTINUOUS R.M.S.)

* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
* HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1kW INTO 6 OHMS.
* PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION oscillators
* IINIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION

GENERATORS, AND MANY OTHERS

* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW * INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS. 4-YEAR PARTS AND LABOUR WARRANTY.
$\star$ UNITS AVAILABLE FROM 100VA-12KVA.



## Analogue Associates

## HF ANTENNA

MULTI FREQUENCY TRAP DIPOLES $2-30 \mathrm{MHz}$

* MODE; Full half wave operation.
* BANDS; Up to 4 spot frequencies.
* POWER; Receive to 800W (PEP).
$\star$ SWR; Better than 1.5:1 on channel.


## THE SMC TRAPPED DIPOLE ANTENNA

has been developed to satisfy the needs of commerical and military users. It is capable of operation between 2 and 30 MHz on as many as four spot frequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial feed is offered by the use of SMC H1Q traps and the incorporation of a ferrite balun in a full haff wave design. NB: Power absorbing terminating resistors are not employed. The light duty porable masts) can be easily ettected by two people in half an hour

Antennas
SMC/TDA/ 22 freq $£ 125$, SMC/TOA/3 3 freq $£ 170$, SME/TDA/4 POA.

## Complete Installation

2 freq antenna, 210 m support masts, kit bags, erection equipment f 434
Exact specifications are to customers' requirements.
(Above include 30 m UR67, balun etc).
SMC Masts and Towers; cost effective
Support structures, 250 models available.

* Tubular aluminium alioy masts $20-60 \mathrm{ft}$.
*Tubular steel masts 3-4.5" Dia. 20-100
t Self-supporting, telescopic, fold-over towers 20 -60ft
Self-supporting and guyed towers 20-160t1


## SOUTH WIDLANDS COMMUNICATIONS LTD.

OSBORNE ROAD TOTTON SOUTHAMPTON SO 4 4DN

ONLY $£ 48.50$ Post free, inc VAT


HOLDS UP TO SIX EPROMS SAFETY INTERLOCKED TRAY FAST ERASE TIME OUALITY STEEL CASE MONEY-BACK GUARANTEE
[OXCl COST EPROSD ERFISTRE

Send cheyue or official order for prompi Send cheque or official order for prom despatched C.O.D. at no extra charge. Also available in London from: Also available in Lo
Technomatic Lid. Transam
and in Aberdeen from:
Granite Chip. 51 Arundel Sureet, Mossley, Lancashire Tel: Mossley (04575) 4119 WW - 017 FOR FURTHER DETAILS

## RADINIION DETHCCIORS BE PREPARED <br> Ideal for the experimenter <br> THIS DOSIMETER WILL AUTOMATICAUY DETECT GAMMA AND X-RAYS <br> UNIT IS SIZE OF FOUNTAIN PEN \& CLIPS ONTO TOP POCKET <br> PRECISION INSTRUMENT <br> - MANUFACTURERS CURRENT PRICE OF A SIMILAR MODEL OVER £ 25 EACH - 0.5 R <br> Tested and fully guaranteed. Ex-stock delivery As supplled to Fire Services/Civil Defence

## FAST ERECTING GIARK MASTS

Here is the expertise you can depend on－


Clark P．T．mast， vehicle－mounted in Range－Rover．The P．T． series of masts is widely accepted by international broadcasting authorities．It is for field strength measurement work that they have been in particular demand．


## CLARK MASTS LTD．

Binstead，
Isle of Wight，
PO33 3PA，England．
Telephone：Ryde（0983）6369I，Telex： 86686.

WW－ 036 FOR FURTHER DETALLS
WIRELESS WORLD MAY 1982

## LGFtronc ingers

 a selection from our huge stocks
## SYSTEMS

11／34A CPU 128 KB MOS， $2 \times$ RLO1 disks． $\mathrm{H960}$ cab，LA3E Console RSX1 1 M Licence ．．．£8，750．00 $11 / 44$ CPU 256 KB MOS ，dual TU5B， $2 \times$ RLO2 disks，H9642 cabs，LA120 Console RSX11M Licence．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $17,450.00$ 11／70 CPU 512KB MOS，RWM05 disk，LA120 Console ．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{\Sigma 5 7 , 0 0 0 . 0 0}$

## PROCESSORS

PDP8A 101⁄＂ 32 KW MOS［NEW］． PDP11／04 $101 / 2^{\prime \prime} 32 \mathrm{~KB}$ MOS［NEW） PDP11／34A 128K8MOS PDP11／34A 256KBMOS PDP1 1／35 32kW Core PDP11／40 96KW Core KT11D PDP11／44 256KB MOS PDP11／44 256 KB TU58，Cab POP11／45 32kW Core，Cab POP11／45 96KW Core，Cab PDP11／70512KBMOS．

ع1，750．00 E3，625．00 E5，000．00 E6，250．00 E2，350．00 E4，650．00 £11，500．00 ع12，750．00 E5，950．00 £7，450．00 £30，000．00

## DISK DRIVES

RKOG 14 meg （NEW）
RK611 RKO $\&$ ct
RL01 5 meg ．
RL11 RL01 \＆ct
RLO2 10 meg ．
RL211 RLO2 \＆cti
RWMO5 RM05 \＆cti NEW RXBE Dual Foppy \＆ctl（NEW） RX11BD Dual Floppy \＆ctI（NEW） RXV11日D Dual Foppy \＆ctl．（NEW）

ع2，500．00 ع4，250．00 ．£995．00
ع1，745．00
ع1，450．00
ع2，200．00 を25，500．00 6，595．00 £995．00 £995．00

# VDU\＆REINTER －ーアコー 

Electronic Brokers Ltd．，61／65 Kings Cross Road， London WC1X 9LN．Tel：01－2783461．Telex 298694
三 Electronic Brokers I

HAZELTINE HEOOO VDU $27 \times 74$ Display． 64 ASCII，RS232． full hall duplex and full editing $X Y$ cursor addressing and batch mode， green phosphor CRT．detachable keyboard．
SPECIAL QUANTITY DISCOUNT OFFER
1－2 $\quad$ £299．00 $\quad 5-9 \quad £ 255.00$ 3－4 $£ 275.00 \quad 10+£ 250.00$


## AJB3EDAISY WHEEL

 PRINTER／PLOTTER Scoop purchase of Anderson－ Jacobson AJ832 Daisy Wheel Printers complete with full keyboard integral stand and PS232 interface Utilising the famous QUME Printer Mechanism 1－4 8995.00 5－9 $\quad 8950.00$ $10+\varepsilon 895.00$

## LINE PRINTERS

DEC LP11－VD 3001 pm Drum Printer upper／lower case，including control module．

モ2，750．00
DEC LPOA 9001 pm upper／lower case drum printer BRAND NEW SURPLUS， including control module．．．．．E5，750．00 DATA PRODUCTS 8600 band printer including control module．．．．．83，750．00

DEC LA35／LA36 and LA18OMATRIX PRINTERS LA36 30cps keyboard printer with integral stand， 132 column tractor－ feed upper／lower case ASCII A36 with 20 mA interface ．． 450.00 A36 with RS232 interface ．£495．00 A35－Receive only version of LA36－AMAZING VALUE： A35 with 20 mA interface
$\varepsilon 250.00$
L435 with RS232 interface ．£275．00 A1 80 high－speed output printer with 180 cps printing． 132 column tractor－feed，upper lower case ASCII．Integral stand（NEW） LA180 printer standard parallel ［Centronics type）interface ．E495．00 LA180－ED with optional RS232 or
20 mA interface
8870.00

## AJ212 ACOU8TIC COUPLER8

Special Purchase of Anderson－Jacabson Acoustic Couplers suitable for use with RS232 or 20 mA devices，full or half duplex，at speeds up to 300 baud． Attractive woodencase ．．．．．£125．00 VT50 AND VT52 DECSCOPE VDUS $V$ VIO DECscope， $12 \times 80$ upper case ASCll， 9 switch selectable baud rates 75－9600 baud，20mA or RS232． interface．
． 250.00 VT52 DECscope， $24 \times 80$ upper／lower case ASCll， 9 switch－selectable baud rates 75－9600 baud，20mA or RS232 interface．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 525.00 All items reconditioned uniess otherwise stated
ADO 15\％VAT TO ALL PRICES
Carriage and Packing extra pRINTER8

# Sinclair ZX81 Personal Com the heart of a system that grows with you. 

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

## Lower price: higher capability

 With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80It uses the same micro-processor, but incorporates a new, more power ful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer


Every ZxB1 comes with a comprehensive specially-written manual - a complete course in BASIC programming. from first principles to complex programs.

## Kit: £49.,5

## Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !
New, improved specification - Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing $18.2 \times 80$ chips.


## Builf: £69.95

## Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor - 600 mA at 9 VDC nominal unregulated (supplied with built version)

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.


## 16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by $16!$

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example.

## Available nowthe IX Printer for only \&49.95

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

## How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper ( 65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be

| Oty | Item | Code | Item price $\varepsilon$ | Total E |
| :---: | :---: | :---: | :---: | :---: |
|  | Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor. | 12 | 49.95 |  |
|  | Ready-assembled Sinclair ZX81 Personal Computer(s). Price includes ZX81 BASIC manual and mains adaptor. | 11 | 69.95 |  |
|  | Mains Adaptor(s) ( 600 mA at 9 V DC nominal unregulated). | 10 | 8.95 |  |
|  | 16K-BYTE RAM pack. | 18 | 49.95 |  |
|  | Sinclair ZX Printer. | 27 | 48.95 |  |
|  | 8K BASIC ROM to fit $2 \times 80$. | 17 | 18.95 |  |
|  | Post and Packing. |  |  | 2.95 |

$\square$ Please tick if you require a VAT receipt
TOTAL £

* enclose a cheque/postal order payable to Sinclair Research Ltd, for $£$
*Please charge to my Access/Barclaycard/Trustcard account no.

Name: Mr/Mrs/Miss $L+\mid$


FREEPOST - no stamp needed. Offer applies to UK only.
WRW 05


WW - 070 FOR FURTHER DETAILS


## ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all A Full Technical Back
Please request our current catalogues and Data Information.


Telephone: (0789) 76452784100. Telex: 312354 Grifem G

With 1,100 instrument cases in over 750 sizes, and some 250,000 case parts currently in stock, we certainly enable you to box clever. A practical solution to every electronic packaging requirement, without the problem of high tooling costs, that's our aim at West Hyde. By being able to supply an 'off the shelf' enclosure for just about any electronic or electrical instrument, we can certainly make sure when it comes to enclosing your particular product, we can help you to box clever! For more information send for our catalogue, price $£ 1.00$ inc. P\&P.

## WEST HYDE

West Hyde Dévelopments Ltd., Unit 9 , Park Street Industrial Estate, Aylesbury, Bucks. HP20 1ET. Telephone: Aylesbury (0296) 20441. Telex: 83570 W HYDE G.
WW - 039 FOR FURTHER DETAILS

## Memotech's New Memory System for the ZX81 Itgrowsas youprogress



Memopak 16K Memory Extension - $£ 39.95$ incl.VAT

It is a fact that the ZX81 has revolutionised home computing. and coupled with the new Memopak 16 K it gives you a massive 16K of Directly Addressable RAM. which is neither switched nor paged. With the addition of the Memopak 16 K your ZX81's enlarged memory capacity will enable it to execute longer and more sophisticated programs. and to hold an extended database
The 16 K and 64 K Memopaks come in attractive customdesigned and engineered cases which fit snugly on to the back of the $\mathrm{ZX81}$. giving firm, wobble-free connections See below for ordering information
Coming Soon...


All these products are designed to fit 'piggy-back fashion on to each other. and use the Sinclair power supply. WATCH THIS SPACE for further details. We regret we are as yet unable to accept orders or enquiries concerning these products but well let you know as soon as they become available

## How to order your Memopak.

By Post: Fill in the coupon below and enclose your cheque'P.O. Access or Barclaycard number.
By Phone: Access/Barclaycard holders please ring Oxford (0865) 722102 (24-hour answering service)


## Memopak 64K Memory Extension -\&'9.00 ind.VAT

The 64 K Memopak is a pack which extends the memory of the ZX 81 by a further. 56 K . and together with the $\mathrm{ZX81}$ gives a full 64 K . which is neither switched nor paged and is directly addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).

## BREAKDOWN OF MEMOHY AREAS

0-8K... Sinclair ROM
8-16K ... This section of memory switches in or out in 4 K blocks to leave space for memory mapping. holds its contents during cassette loads. allows communication between programmes. and can be used to run assembly language routines.
$16-32 \mathrm{~K}$... This area can be used for basic programmes and assembly language routines
$32-64 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large arrays.
With the Memopak 64K extension the ZX81 is transformed into a powerful computer. suitable for business. leisure and educational use. at a fraction of the cost of comparable systems.

## Unique 3 month trade-in offer!

When your programming needs have outgrown the capacity provided by 16 K RAM. and you find it necessary to further extend your $Z \times 8$ 1's capacity. we will take back your 16 K Memopak and allow a discount of $£ 15.00$ against your purchase of our 64 K model.
We reserve the right to reject. for discounting purposes unvis which
have been either opened or damaged in any way

| Please debit my Access/Barclaycard* account number |  | Quantity | Price | Total |
| :---: | :---: | :---: | :---: | :---: |
| T | 16K RAM. Assembled |  | £39.95 |  |
| - Please detele whichever does not appyr | 64K RAM, Assembled |  | £79:00 |  |
| SIGNATURE |  |  | Postage | $\underline{2.00}$ |
| NAME | ADDRESS |  | Total Enclosed |  |

We want to be sure you are satisfied with your Memopak - so we offer a 14-day money back Guarantee on all our products. Memotech Limited, 3 Collins Street, Oxford OX4 1XL, England Telephone: Oxford (0865) 722102/3/4/5

[^0]
## Air conditioning



## is not enough!

## £117* CAN BE!

Electricity mains cause all sorts of problems, which Galatrek solve.

You need Galatrek Voltstab® protection for voltage sensitive circuits. Galatrek offers the most economical protection against mains variation, high voltage transients, momentary breaks and even supply failure.

We have a comprehensive range of Constant Voltage Transformers (CVT) from 250VA for efficient, trouble free use of microprocessors, computers, scientific production and process equipment and instruments.

For TOTAL SAFETY AND EFFICIENCY the Galatrek Voltstab* Uninterruptible Power Supply (UPS) unit offers the ultimate in protection. The output voltage is stabilised, transient attenuated and sinusoidal. Even in a power failure or when the input varies from zero to $30 \%$ above normal and the frequency starts to drift, the Galatrek UPS ensures normal power supply.
*E117 (ex. VAT) ex works.
Mr R Koffler, Galatrek International Scotland Street, Llanrwst, nr Colwyn Bay, Gwynedd LL26 OAL, North Wales, Great Britain. Tel No: 0492-640311/641298 Telex: 617114 A/B Galahu

ALATREK


Please send me full details of CVT units Please send me full details of UPS units Please send mea requirement check sheet Please do anon-site investigation

## Name

$\qquad$
Address $\qquad$

Country Tel

## RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.


Applications

- Automatic master clock and slave controller.
- Synchronisation of separate equipment and events.

Programmable energy management system.
Computer clock/calendar with battery backup.
Data logging and time recording.
Process and equipment control. Broadcasting, Astronomy, Navigation.
Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive Ruislip, Middlesex. Ruislip 76962

WW - 028 FOR FURTHER DETAILS

## OLYMPIC TRANSFORMERS LTD <br> 224 Hornsey Road, Holloway, London N7. 01-607 2914



## STEP DOWN TRANSFORMERS FOR AMERICAN EQUIPMENT

$0-240-110 \mathrm{~V}$ For use with 50 cycles Non-Motorised Appliances
$0-240-100 \mathrm{~V}$ For use with 60 cycles Motorised Appliances
RANGE 1 Fully Shrouded. Complete with 3-Pin American Socket. Fitted 6ft 240V Mains Lead
RANGE 2 Complete with Carrying Case. 240 V Mains Lead. First 3 items.
(") fitted with one 3-Pin American Socket. All other items fitted with two 3-Pin American Sockets.

## RANGE 1

Values 80 WATTS £7.50 £1.20 150 WATTS £9.50 £1.20 300 WATTS $£ 11.50 £ 1.40$ 500 WATTS £ 15.00 £1.60 1.000 WATTS $£ 19.00$ £ 2.50 1,500 WATTS £24.00 £3.00 1,750 WATTS £29.00 OA

15\%V.A.T. TO BE ADDED TO COST OF ALL ITEMS INC. POSTAGE HOURS OF BUSINESS
WEEKDAYS, 9 a.m. to 5 p.m.; SATURDAYS, 11 a.m. to 2 p.m.
For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies Use with virtually all parts - most
plug in directly, in seconds.
Ideal for design, prototype and hobby

| NO | MODEL <br> NO | NO OF SOLOEALESS TIE-POINTS | ${ }^{16}$ CAPACIT <br> (14-DII DIP's | \|UNIT | $\begin{aligned} & \text { PRICE } \\ & \text { NC PAP } \\ & 15 \% \text { VAT } \end{aligned}$ | OTMER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | P86 | 630 | 6 | 9.75 | 12.36 | Kit |
| 2 | PB100 | 760 | 10 | 12.50 | 15.52 | Kit |
| 3 | PB10t | 940 | 10 | 17.90 | 22.31 |  |
| 4 | PB102 | 1240 | 12 | 24.95 | 30.41 |  |
| 5 | PB103 | 2250 | 24 | 39.00 | 46.57 |  |
| 6 | PB104 | 3060 | 32 | 49.00 | 58.07 |  |
| 7 | PB105 | 4560 | 48 | 71.00 | 83.95 |  |
| 8 | PE203 | 2250 | 24 | 61.00 | 72.95 | 5V@1A |
| 9 | PB203A | 2250 | 24 | 89.00 | 104.65 | $5 \mathrm{~V} \pm 15 \mathrm{~V}$ |
| 10 | PB203AK | 2250 | 24 | 71.00 | 83.95 | $\begin{aligned} & 5 \mathrm{~V} \pm 15 \mathrm{~V} \\ & \& \mathrm{Kit} \end{aligned}$ |

## Tomorrow's tools for today's problems

GLOBAL SPECIALTIES CORPORATION


## LINSLEY-HOOD 300 SERIES AMPLIFIERS

LINSLEY HOOD CASSETTE RECORDER 2


Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board
layouts have been altered and improved but retain the outstandingly successful mother-anddaughter arrangement used on our Linsley. Hood Cassette Recorder 9 This latest version has the following extra features: Ultra low wow-and-fluter of $09 \%$ top on all medes. Tape counter with in rewind modes and do not have to be held. Full Auto utton for modes. Tape counter with memory rewind. Oil damped cassette door. Latching record facility if required. Record interlock prevents rerecording on valued cassettes. Frequency enenerat facility if required. Record interlock prevents rerecording on valued cassettes. Frequency generat-
ing feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful feazures added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest, $£ 9490+$ V.A.T. we ask for the complete kit

LINSLEY-HOOD CASSETTE RECORDER 1


We are the Designer Approved suppliers of kits for this excellent design. The Author's reputatlon
tells all you need to know about the circuiry and Hart expertise and experience tells all you need to know about the circuitry and Hart expertise and experience guarentees the
engineering design of the kit. Advanced features include: High-quality separate VU meters with excelient ballistics. Controls, switches and sockets mounted on PCB to elfiminate difficult wifing
ent Proper moulded escutchoon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot tasy to use, robust
Lenco mechanism. Switched bias and equalisation for different tape formulations, All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high-quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our latest HS 16 Sendus Alloy super head, available separately at 8820 but Included free with the complete $k$ kit at $\varepsilon 75$ plus VAT.
Reprint of the subsequent postscript article 30p. No VAT. No VAT

## PRACTICAL WIRELESS 'WINTON' TUNER

Brilliant new Ted Rule designed Tuner with everything! Gives you fantastic stereo $\mathrm{f} / \mathrm{m}$ reception with pilot cancelling decoder i.c., fluorescent display, digital frequency readout along with clock
and timer functions. In addition to f.m. covers I.w., m.w., s.w. and even TV sound. Further details are in our lists; send for your copy.

Order up to $f 10-50$
Order up to $£ 10-50 p$
Orders $£ 10$ to $£ 49-£ 1$
P\&P Export Orders-Postage or shipping at cost plus
Over E50-£1.50
Please send $9 \times 4$ S.A.E. or telephone for lists giving fuller details and price breakdowns.

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

# AMATEUR RADIO HANDBOOK 1982 <br> by A.R.R.L. <br> $£ 8.50$ 

30-hour Basic by Prigmore
UCSD Pascal Handbook by Clark
Electronic Equipment Reliability by Cluley £8.00
Micros in Amateur Radio by Kasser
How to Design, Build Remote Control Devices by Stearne $£ 10.00$ Art of Electronics by Horowitz

- PRICES INCLUDE POSTAGE AND PACKING $\leqslant$

THE MODERN BOOK CO.
Specialist in Scientific and Technical Books
15/21 Praed Street, London, W2 1NP PHONE: 01-402 9176 : Closed SATURDAY 1 p.m.

Please allow 14 days for reply or delivery
WW - 058 FOR FURTHER DETAILS

## TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers requirements

For full details of our service contact Neil Jupp

## FAIRCREST ENGINEERING LTD.

4 Union Road, Croydon, CR0 2XX 01-684 1422/01-684 0246


WW - 024 FOR FURTHER DETAILS


WW - 031 FOR FURTHER DETALLS

Our May issue is a must for all microcomputing enthusiasts:
TIPPING THE BALANCE

- Can a micro-based system really offer the facilities of a mainframe? We investigate.

THE SOFT APPROACH
COMPILING THE PROBLEM

AFTERMATH

- Supercharging the Apple is currently a popular pastime. We look at the CP/M option from Microsoft.
- Use a compiler to accelerate your BASICI We review a commercial offering.
- With the first screening of the Computer Programme now complete the BBC's Computer Literacy project moves into top gear. We bring you the inside story.


## AT YOUR NEWSAGENTS NOW



WW - 012 FOR FURTHER DETAILS


## QUALITY REEL TO REEL \& CASSETTE TAPE HEADS

FITTING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUR TAPE RECOROER. OUR FULL CATALOGUE (PRICE 5Op) ALSO INCLUDES TAPE TRANSPORTS, OISC DRIVES, PRE-AMPLIFIERS AND ACCESSORIES
POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS C21RPS18 MONO R/P.............. 4.62 Hole Centras 17 mm Apart, 12 mmm From Head Face £7.66 C42RPH2O STEREO R/P SENDUST FOR $\begin{array}{lll}\text { B24.07 } & \text { SYSTEMS.......................... } \\ \text { C21ES18 } \\ \text { MONO/STEREO ERASE }\end{array}$ HIGH PERFORMANCE HEAD $£ 13.34$

The Monolith Electionies Co. Led.,
5/7 Church Street, Crewkerne.
Somerset TA18 7HR
Tel: : 046074321 .
Telex: 46306 MONLTH $g$.

## Hitachi Oscilloscopes performance, reliability, exceptional value and immediate delivery!



Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a range that represents the best value for money available anywhere.

V-152B 15 MHz Dual Trace
V-202 20 MHz Dual Trace (illustrated)
V-302B 30 MHz Dual Trace
V-352 35 MHz Dual Trace
Prices start from around $\mathbf{\epsilon 2 3 0}$ and we hold the range in stock for immediate delivery.

For colour brochures giving detailed specifications and prices, ring 0480 63570.

Reltech Instruments
46 High St., Solihull, W. Midlands B91 3TB

It's something you have always wanted....something to build your equipment into that's smart, modern, strong, adaptable to requirement and not expensive. The 'UniCase' is yet another triumph of I.L.P. design policy. It presents totally professional appearance and finish, ensuring easier and better assembly to make it equal to the most expensive cased equipment. The all-metal 'UniCase', is enhanced by precision aluminium extruded panels engineered for speedy and perfect aligned assembly within a mere five minutes. Designed in the first case to accommodate I.L.P. power amps with P.S.U's, the range will shortly be extended to house any other modular projects.

## WHAT WE DO FOR CONSTRUCTORS

Our product range is now so vast we cannot possibly hope to show it all in our advertisments without overcrowding or abridging information to the point of uselessness. So we have devised a solution which we invite you to take advantage of without delay. ALL YOU NEED DO IS FILL IN AND FORWARO THE COUPON BELOW TO RECEIVE OUR NEWEST COMPREHENSIVE I.L.P. CATALOGUE POST FREE BY RETURN. It gives full details of all current I.L.P. products for the constructor together with prices, full technical and assembly details, wiring and circuit diagrams etc. and it's yours, FREE. You don't even have to stamp the envelope if you address it the way we tell you.


## FREEPOST 5

GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY CT2 7EP Telephone Sales (0227) 54778 Technical Only (0227) 64723 Telex 965780

## FREEPOST

Mark your envelope clearly FREEPOST 5 and post it WITHOUT a stamp to I.L.P. at address above. We pay postage when your letter reaches us.

## Did you know

I.L.P. are the world's largest designers and manufacturers of hi-fi audio modules?
I.L.P. pioneered encapsulated power amps and pre-amps for enhanced thermal stability, mechanical protection and durability?
There are TWENTY power amplifiers from 15 to 240 watts RMS including the very latest super-quality Mosfets to choose from?
TWENTY pre-amp modules allow you to incorporate exciting professional applications to your equipment never before available to constructors and experimenters?
I.L.P. are suppliers to the B.B.C., I.B.A., N.A.S.A., British Aerospace, Marconi, Racal, Ferranti, G.E.C., Rolls Royce etc?

Goods are despatched within 7 days of your order reaching us and covered by our 5 year no-quibble guarantee?

## TO: I.L.P. ELECTRONICS LTD.

 PLEASE SEND ME I.L.P. CATALOGUE, POST PAID BY RETURHI HAVE/HAVE NOT PREVIOUSLY
BUILT WITH I.L.P. MODULES


# गone 

## Used fest equipment, calibrated to Manufacturer's original specitication.

## Prices frome

## ACOUSTIC \& VIBRATION

BRUEL \& KJAER
1621 Tunable Band Pass Filter
2113 Audio Frequency Spectrometer
203 Sound Level Merer
2215 Sound Level Meter inc. Oct. Filter
2218 Sound Level Meter inc. Leq.
23058 Level Recorder inc. 50 dB pot
2625 Vibration pick-up amplifier
2808 Power Supply/Mains Adapter
2972 Tape Signal Gate
4230 Sound Level Callibrator
4423 Noise Dosemeter
4424 Noise Dosemeter
CASTLE ACOUSTICS
CS181 Sound Lovel Meter \& Calibrato
C.E.L.

112 Environmental Noise Analyser
144 Environmental Noise Analyser
DAWE
419C Audio White Noise Generator
1461 CV Vibration Analyser
1463B $1 / 3$ Octave Filter
14638 O Octave Filter
KISTLER
504A Charge Amplifier
S.T.C.

74184B Selective Level Measuring Ser 74216A Noise Generator
74261 A Psophometer
74262 B White Noise Generator \& Receive
74307C Level Measuring Set
74834 C Distortion Measuring Set
96016 Selective Null Detector
GTA-2 Quantization Distortion Tester GTA4B Pattern Generator
TEKTRONIX

## 1502 TDR Cable Tester CRT + Recorder

Prices
rome

## COMPUTER EQUIPMENT ( 90 day guarantee)

CENTRONICS
702 matrix printer

WAYNE KERR
37318 Vibration Meter inc. probe
BRIDGES \& V and I STANDARDS
ADVANCE
TIO Meter $100 \mathrm{KHz}-100 \mathrm{MHz}$
160
CINTEL
273 Inductance Bridge
HEWLETT PACKARD
4261 A Digital Automatic LCR Bridge 976
4342 OLC Meter $22 \mathrm{KHz}-70 \mathrm{MHz}$ MARCONI
F868A Universal LCR Bridge 250
MUIRHEAD
D30A DC Bridge 0.15\%
PHILIPS
PM6302 ACL Bridge - direct reading 180

WAYNE KERR
B224 RCL B idge $0.1 \%$
B521 LCR Bridge
B801/CU681/0801/SR268 VHF
Admittance Bridge with source and
detector transistor adapter \& D.C. Control
Unit for transistor measurements

## COMMS \& CABLE TEST

## EOUIPMENT

DYMAR
BC282 Banery charger for 883 Radio

## Telephone

883 Radio Teleohone - VHF band - hand held
HEWLETT PACKARD
3556 A Psophometer $20 \mathrm{~Hz}-20 \mathrm{KHz}$ MARCONI
TF2809 Data Line Analyser
NORTHEAST ELECTRONICS
TT5378 Psophometer/VU Meter
SEIMENS
U2033 Psophmeter

## Carston <br> Electronics Ltd 01-267 5311

Shirley House, 27 Comden Road, London NWI 9NR. Telex: 23920.

TEKTRONIX
4610-1 Hard copy printer for 4010 series
computer display terminals

## COUNTERS \& TIMERS

## FLUKE

 1912520 MHz 7 digit Counter1912A01 As 1912A but inc. re-charging
1920A 520 MHz 9 digit Counter inc. Brst. mode
1920A14 1250 MHz otherwise as 1920A
HEWLETT PACKARD
5243 L 20 MHz 8 Digit Counter
5245 L 50 MHz 8 Digit Counter
$5300 \mathrm{~A} / 5304 \mathrm{~A} 10 \mathrm{MHz} 6$ Digit Counter Timer
$5300 \mathrm{~A} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 6$ Digit Counter 5345500 MHz 11 Digit Counter Timer MARCONI
TF 2432560 MHz 8 digit Counter RACAL-DANA
37118 GHz 11 digit Counter with Source Locking facility
811050 MHz 8 Digit Counter Timer $9024600 \mathrm{MHz} 7 /$ digit Counter 90251 GHz 8 digit Counter
952010 MHz 4 Digit
9905200 MHz 8 digit Counter Timer SYSTRON DONNER 60533 GHz 9 digit Counter BCD O/P 51038 Strip Printer for 6053/6054
TEKTRONIX
DC501 7 Digit 100 MHz Counter - TM500
Plug-in

DIGITAL TESTING EOUIPMENT 600 HEWLETT PACKARD

1600A Logic Analyser 16 ch 20 MHz 1600 Logic Analyser 32 ch 20 MHz 1602 A Logic Analyser 16 ch 10 MHz 1607 Logic Analyser 16 ch 20 MHz TEKTRONIX
832 Daracom Tester R5232/V24 833 As 832 plus BERT/BLERT feature 7DOIF/DFI Logic Analyser/Formatter 16 ch 50 MHz P/ in
2950 7603/7DOIF/DFI As above with display mainframe

PM 6455 Stereo FM Generator PM 6456 Stereo FM Generator
RESEARCH INSTRUMENTS
Micro manipulator - 4 Probes moveable in all planes. Adjustable test table - Watson Barnet optics. Complete system mounted in perspex enclosure
ROHDE \& SCHWARZ
BN252 Transistor Y Parameter Test Ser S.T.C.

## frome

steps
74616 A Attenuator $0-100 \mathrm{~dB} 6005$ in 0.1 dB steps
TEKTRONIX
250 521PAL Vectorscope
900528 TV Waveform Monitor
950575 Semiconductor Curve Tracer 1485C TV Waveform Monitor PAL/NTSC YELLOW SPRINGS
1150
YS157 Water Pollution Measurement System

## 2650 NETMORK ANALYSERS

## PHASEMETERS

GENERAL RADIO
1710/11/12/140.4-500 MHz 115 dB range
MAINS TEST EQUIPMENT

## 500 COLE

T1007 Voly/Freq/Spike Monitor Rec O/P DATALAB

8405A Vector Voltmeter 1-1000 MHz
8414A Polar Display for 8410 N. W. A. 8745A S Parameter Test Set 0.1-2 GHz 11570A Accessory Kit for 8405A 11600A Transistor Test Fixtures T018/TO-72
11602A Transistor Test Fbitures TO5/TO-12
11604A Universsl extension arm for 8745A 11605A Flexible arm for 8743A

## OSCILLOSCOPES E

## ACCESSORIES

CROTECH
(New CROTECH Oscilloscopes) 303015 MHz 1 Trace 5 mV built-in
component tester
303315 MHz 1 Trace 5 mV battery operation 303415 MHz 2 Trace 5 mV battery operation 303510 MHz 1 Trace 5 mV built-in component tester
313115 MHz 2 Trace 5 mV built-in
component tester
333730 MHz 2 Trace 5 mV with signal delay
GOULD ADVANCE
OS 1000B 20 MHz 5 mV 2 Trace OS3000A 40 MHz 5 mV 2 Trace 2 T base HEWLETT PACKARD
182 C 100 MHz Mainframe 182T 100 MHz Mainframe with digital normaliser interface
1804A 50 MHz 20 mV 4 Trace Plug-in 1825A Dual Timebase Plug-in 1805A 100 MHz 5 mV 2 Trace Plug-in PHILIPS
PM 320715 MHz 5 mV 2 Trace TV trig PM3211 15 MHz 2 mV 2 Trace TV trig PM3212 25 MHz 2 mV 2 Trace TV trig PM3233 10 MHz 2 mV 2 Ch fixed delay Dual Beam
PM324450 MHz 5 mV 4 Trace 2 T base PM3260 120 MHz 5 mV 2 Trace 2T base PM3262 100 MHz 5 mV 2 Trace $2 T$ base Tr View
TEKTRONIX
465100 MHz 5 mV 2 Trace 2 T base 4658100 MHz 5 mV 2 Trace 2TB, inc Probes 475200 MHz 2 mV 2 Trace 2 T base 475 A 250 MHz 2 mV 2 Trace 2T base 485350 MHz 5 mV 2 Trace $2 T$ base $58422 \mathrm{~T} /$ base plug-in 50 MHz Trig for 5000 series Mainframe
DD501 Digital Events Delay - P/in for TM500 series
$661 / 4$ S3/5T1A 1 GHz Sampling scope
1257 A 12105 MHz 5 mV 2 Trace Plug-in 7 A 1875 MHz 5 mV 2 Trace Plug-in $7 A 19500 \mathrm{MHz} 10 \mathrm{mV} 1$ Trace Plug-in
$50 \quad 7 \mathrm{~A} 221 \mathrm{MHz} 10 \mu \mathrm{~V}$ Differential Plug-in 7 A 24350 MHz 5 mV 2 Trace Plug-in
$7 A 26200 \mathrm{MHz} 5 \mathrm{mV} 2$ Trace Plug-in 7B53A 2 Timebase Plug-in 100 MHz Trig $7 B 80$ Single Timebase 400 MHz Trig 5007 7B85 Timebase with delay 400 MHz Trig
1757403 N 75 MHz 3 slot M/Frame
7603100 MHz CRT r/out 3 slot M/Frame 7704A 200 MHz CRT r/out 4 slot M/Frame
P6013A X1000 12KV Probe
TELEQUIPMENT
$199 \mathrm{D} 63 / \mathrm{V} 1 / \mathrm{V} 15 \mathrm{MHz} 2$ Trace 1 mV

DRANETZ
606 3ch Volts Av/Spike/Time/Printer
3006162 ch AC 1ch DC Volts/Av/Spike/
375

55

150
200 BRADLEY
192 Oscilloscope Calibrator
255 COMARK
2000 16018LS Thermom $10 \mathrm{ch} 87+1000^{\circ} \mathrm{C}$ type K 60 N.B. Tharmocouples not included CROWCON
350 71P Inflammable Gas Detector/Alarm DATALAB
DL905 Digital Transient Recorder/ Display
320 Storage

## FLANN

16/11 Rotary Vane Attenuator WG16
HEWLETT PACKARD
342A Noise Figure Meter
X382A Rotary Vane Antenuator WG16
790 MULTIMETRICS
376 AF 120 Dual H/Pass L7Pass active filter $20 \mathrm{~Hz}-2 \mathrm{MHz}$
PHILIPS
180 PM 5501 Colour TV Pattem Generator

## 

## 3／V5／V5 15 MHz 5 mV 2 Trace \＆fixed

$5 / \mathrm{V} 4 / \mathrm{S} 2 \mathrm{~A} 50 \mathrm{MHz} 1 \mathrm{mV} 2$ Trace 2
3／V4／S2A 50 MHz ImV 2 Trace 2T CRT
01515 MHz 5 mV 2 Trace TV trig 15 MHz 5 mV 1 Trace
EXSCAN
J120 Large CRT XY Display with nodulation

## JSCILLOSCOPES ISTORAGE

 EWLETT PACKARD1 A 100 MHz Mainframe $5 \mathrm{~cm} / \mu \mathrm{s}$ $93435 \mathrm{MHz} 10 \mathrm{mV} 2 \mathrm{Tr} 2 \mathrm{R} 81000 \mathrm{Div} / \mathrm{ms}$ EKTRONIX
$6100 \mathrm{MHz} 5 \mathrm{mV} 2 \operatorname{Tr} 2 \mathrm{~TB} 1350 \mathrm{~cm} / \mathrm{\mu s}$
$1210 \mathrm{MHz} 2 \mathrm{mV} 2 \mathrm{Tr} 1 \mathrm{~TB} 250 \mathrm{~cm} / \mathrm{ms}$ 1325 MHz 3 slot $\mathrm{M} /$ frame split screen m／$\mu \mathrm{s}$ 13100 MHz 3 slot $\mathrm{M} /$ frame $4.5 \mathrm{~cm} / \mathrm{ss}$ 3400 MHz 4 slot $\mathrm{M} /$ frame $2500 \mathrm{~cm} / \mu \mathrm{s}$
＇OMER MEASUREMENT

## UKE

$21 \mathrm{~A} 10 \mathrm{~Hz}-20 \mathrm{MHz} 41 / 2$ digit \＆Analogue ns 8 dBm
EWLETT PACKARD 2A RF－Microwave Powermeter for use th 470 series sensors
3A Co－ax sensor for 432 meter
$\mathrm{MHz}-10 \mathrm{GHz}$
86A Power sensor for 432 meter W．G． 16 2A／478A combined price
2A／X486A combined price
31A Type N Coax sensor for 435A
32 H Co－ax sensor for $435 / 436$
）KHz－4． 2 GHz
ARCONI
$893 \mathrm{~A} 10 \mathrm{~Hz}-20 \mathrm{KHz}$ Powermeter 02 R．F．Powermeter DC－ 1 GHz 10 W max 03 R．F．Powermeter DC－1 GHz OW max
80／6421 Microwave Powermeter \＆
nor 0．01－12．4 GHz
OOWER SUPPLIES otc
DVANCE
G5－20 Switching PSU module 5V－20A ed
RANDENBURG
O EHT Power supply 3－30 KV－1mA ARNELL
10／5 0－30V－5A variable 10／20 0－30V－20A variable SL 5V－20A PSU module 30／25 0－60V－25A variable metered OB O－30V variable 1A Metered 330／100－30V－10A variable JPS／2 Twin 5V＠5A＋15－0－15V＠1A $\$ \mathrm{~V} 700-35 \mathrm{~V}-10 \mathrm{~A}$ or $0-70 \mathrm{~V}-5 \mathrm{~A}$ variable stered
EWLETT PACKARD $6880-40 \mathrm{~V}$ variable 30 A Metered $\mathrm{V}+1$ IARCON
$540-30 \mathrm{~V}$ variable 2 A metere HILIPS

## pulse generators

DVANCE
3 52A Modular pulse generator system－ de range of configurations－cost pendent on modules－typical $35002 \mathrm{D} 0.1 \mathrm{~Hz}-1 \mathrm{MHz} 50 \mathrm{~V} 100 \Omega$ Double Ilse R．T． 15 ns
H RESEARCH
$210 \mathrm{~Hz}-3.5 \mathrm{MHz} 50 \mathrm{~V} 508$ RT 10 ns 2 puise EWLETT PACKARD
11A $0.1 \mathrm{~Hz}-20 \mathrm{MHz} 16 \mathrm{~V} 508 \mathrm{RT} 10 \mathrm{~ns}$ inc urst mode

Prices
from
8016A Digital word generator to 50 MHz

## $9 \times 32$ bit

## LYONS

PG73N 20 MHz 10 V 508 R．T． 5 ns
750 RECORDERS \＆ACCESSORIES
295
BRYANS SOUTHERN
BS316 Char 10． 6 P 16 spoed
DCM
280 8100W Wow \＆Flutter Analyser
EM

8601A Gen／Sweeper 0．1－110 MHz Attr： AM／FM
8614 A Generator $800-2400 \mathrm{MHz}$
AM／FM／Pulse
$8660 \mathrm{C} / 86632 \mathrm{~A} / 86603 \mathrm{~A}$ Synthesised Signa
Generator $1-2600 \mathrm{MHz}$ AM／FM digital
readout，push button controls，BCD programmable
8640 B Generator $500 \mathrm{KHz}-512 \mathrm{MHz}$
AM／FM Phase Lock
618 G Generator $3.8-7.5 \mathrm{GHz}$
612 Generator $450-1230 \mathrm{MHz}$
614 Generator $0.8-2.1 \mathrm{GHz}$
IEC
F51A Function $1 \mathrm{mHz}-10 \mathrm{MHz}$
Sin／Sq／Tri／Pulse／Ramp
LEVELL
TG150DM Generator $1.5 \mathrm{~Hz}-150 \mathrm{KHz}$
battery operated
MARCONI
TF144H／4S Generator $10 \mathrm{KHz}-72 \mathrm{MHz}$ AM TF801D Generator $10 \mathrm{MHz}-470 \mathrm{MHz}$ AM TF955／2 Generator 0．2－220 MHz AM／FM F10568／1 Generator $10-470$ MHz AM／FM TF2000 Generator $20 \mathrm{~Hz}-20 \mathrm{KHz}-111 \mathrm{~dB}$ attenuator
TF2002／3MI Generator $10 \mathrm{KMz}-72 \mathrm{MHz}$
AM only
TF2011／S Generator 96－140 MHz FM only F2012 Generator $400-520 \mathrm{MHz}$ FM
TF2015 Generator $10-520 \mathrm{MMz}$ AM／FM
TF2015／1 Generator as 2015 with narrow FM deviation
TF2015／2171 Genera tor system with phase lock synchroniser
TF2015－1／2171 Generator system with phase lock synchroniser
TF2171 Synchroniser for 2015
PHILIPS
PM5108L Function $0.1 \mathrm{~Hz}-1 \mathrm{MHz}$
$\mathrm{Sin} / \mathrm{Sq} /$ Tri O／P meter－ 50 and $600 \Omega$
PM5127 Function $0.1 \mathrm{~Hz}-1 \mathrm{MHz} \mathrm{Sin} / \mathrm{Sq} /$ Tri／Rmp
PM5129 Function $1 \mathrm{mHz}-1 \mathrm{MHz} \mathrm{Sin} / \mathrm{Sa} /$ Tri／Ramp／Pulse＋Sweep＋Burst TEKTRONIX
fG503 Function $1 \mathrm{~Hz}-3 \mathrm{MHz} \mathrm{Sin} / \mathrm{Sq} /$ Tri－ P／in for TM500 series

## TELONIC

2003 Sweeper system 0．1－130 MHz with Attn．
TEXSCAN
9900 Sweeper $10-300 \mathrm{MHz} 6 /$ in CRT disp V60 Sweeper $5-1000 \mathrm{MHz}$
WAVETEK
143 Function $0.0001 \mathrm{~Hz}-20 \mathrm{MHz}$ Sin／Sa／Tri／Pulse

## SPECTRUM ANALYSERS

HEWLETT PACKARD
141T／8552B／8553B $1 \mathrm{KHz}-110 \mathrm{MHz}$
system
$141 \mathrm{~T} / 8552 \mathrm{~B} / 8554 \mathrm{~B} 100 \mathrm{KHz}-1250 \mathrm{MHz}$ system
$141 \mathrm{~T} / 8552 \mathrm{~B} / 8555 \mathrm{~A} 10 \mathrm{MHz}-18 \mathrm{GHz}$ system
$3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{KHz}$ with digi store disp 8445A Pre－selector $0.01-18 \mathrm{GHz}$ 5588 0．1－1500 MHz Pluo in for
MARCONI
TF2370 30 Hz － 110 MHz Digi－store display built－in counter and tracking gen
TEKTRONIX
7 L13 1 K Hz－ 1800 MHz Plug－in for 7000 series M／Frame
7 L 18 1．5－18 GHz Plug－in for 7000 series． High resolution．Digital storage display． Buitt－in pre－selector
7603／7L13 System with display 0．1－1800 MHz
7613／7L13 Systern with storage／var． persist．display

Prices
7603／7L18 System with display 1．5－18 GMz
$1950(60 \mathrm{GHz}$ with external mixers）
2800 VOLT／MULTHMETER

## （ANALOCUE）

BOONTON
92 C AC／RF $10 \mathrm{KHz}-1.2 \mathrm{GHZ} 1 / 2 \mathrm{mV}-3 \mathrm{~V}$
15000 HEWLETT PACKARD
$400 \mathrm{E} 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$ DC O／P $500 \mathrm{H} 10 \mathrm{~Hz}-4 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
$411 \mathrm{~A} 0.5-500 \mathrm{MHz} 10 \mathrm{mV}-10 \mathrm{~V}$ DC O／P
427 AC／DC／V／$\Omega$
3400 TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$ DC－O／P

## LEVELL

TM11 Analogue Multimeter $\mathrm{AC} / \mathrm{DC} / \mathrm{V} / 1 / \Omega$
M．L．ENGINEERING
NAMV－DC sensitive $\mu$ Volt／nAmp meter centre zero
MARCONI
TF2600 $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V} \mathrm{AC}+\mathrm{DC}$
$0 / P$
TF $260350 \mathrm{KHz}-1.5 \mathrm{GHz} 300 \mu \mathrm{~V}-3 \mathrm{~V}$ TF2604 $20 \mathrm{~Hz}-1.5 \mathrm{GHz} 300 \mathrm{mV}-300 \mathrm{~V}$ PHILIPS
PM2404 Analogue Multimeter
AC／DC／V／I／R
RACAL－DANA
$9301 \mathrm{RMS} 10 \mathrm{KHz}-1.5 \mathrm{GHz} 100 \mu \mathrm{~V}-300 \mathrm{~V}$
VIBRON／E．I．L．
33B－2 1 mV －1V Electrometer
VOLT／MULTIMETER（DIGITAU
BOONTON
92AD 1999FSD $10 \mathrm{KHz}-1.2 \mathrm{GHz} 10 \mu \mathrm{~V}$ res 525
FARNELL
DM1310 1999 F．S．D．AC／DC／V／I／ת \＆
Temperature，Mains／battery－Temp
probe included
FLUKE
450 8010A 2000 FSD TRMS AC／DC／VI』
8010 A 01 As $8010 \mathrm{~A}+$ re－charging batteries
8020A 2000，FSD Handheld
AC／DC／VIR＋cond．
8022A 2000 FSD Handheld AC／DC／VIת 8030A－1 2000 FSD AC／DC／VI Batt＋AC 8050 A 20000 FSD AC／DC／VIS dB TRMS 8050A－01 As 805JA＋re－chg batteries 9200A 16000 F．S．D．DC only fast reading system Voltmeter
8300 A 120000 F．S．D．DC only fast reading
system Voltmeter
8800 A
200000 FSD AC／DC／Vת
GOULD
DMM7 1999 FSD AC／DC／V／I／』
695 HEWLETT PACKARD
3490A 100000FSD AC／DC／V／』
SOLARTRON
A200 19999FSD DC only $1 \mu \mathrm{~V}-1 \mathrm{KV}$
A203 19999FSD AC／DC／V／』
7100 A205 19999 FSD TRMS AC／DC／V／8

10700
2950
2400
4450

## M．L．ENGINEERING NAMV

7500
TEKTRON
$547 / 1 \mathrm{~A} 450 \mathrm{MHz}$ Dual Trace Dual Timebase
4 channel oscilloscope
TEKTRONIX
10100575 Transistor Curve Tracer
TAYLOR
8900 62A AM／FM Signal Generator $4-120 \mathrm{MHz}$


Space-saving, efficient ILP power supplies are designed to give you flexibility in planning audio assemblies. Nine of the eleven models have toroidal iransformers manufactured on
new cost efficient high technology
machines in our own lactory. So we keep the quality up, and the price down.

ILP power supplies are compatible with all other ILP modules - combine them to produce almost any audio system. All carry the IL.P 5 year no quibble guarantee and include full connection cata.

So send your order on the Freepost coupon below today!
POWER SUPPLY UNITS

| Mode No. | For use with | $\begin{array}{\|c\|} \hline \text { Price } \\ \text { inc. VAT } \end{array}$ | $\begin{aligned} & \text { PTICe } \\ & \text { ex. VAT } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| PSU 30 | $=15 \mathrm{~V}$ combinations of HY6/66 series 10 a maximum ol 100 MA or one HY67. | ¢5. 18 | £4.50 |
|  | The following will also drive the HY6/66 series except HY67 which requires the PSU 30. |  |  |
| PSU 36 | 1 or 2 HY 30 | c9.32 | ¢8.10 |
| PȘU 50 | 1 or 2 HY 60. | $\underline{12.58)}$ | 110.94 |
| PSU 60 | 1 XHY 120/HY 120P/HD 120/HD 120P. | £15.00 | £13.04 |
| PSU 65 | $1 \times$ M0S 120/1× MOS 120P. | ¢15.32 | £13.32 |
| PSU 70 | 10 2 2 HY 120/HY 120P/HD 120/HD 120P. | £18.31 | £15.92 |
| PSU 75 | Lor 2 MOS 120/MOS 120P. | $¢ 18.63$ | £16.20 |
| PSU90 | $1 \times \mathrm{HY} 200 / \mathrm{HY}$ 200P/HD 200/HD 200P. | $\{18.63$ | £16.20 |
| PSU 95 | $1 \times$ MOS 200/MOS 200P | $¢ 18.77$ | £16.32 |
| PSU 180 | $2 \times \mathrm{HY}$ 200/HY 200P/HD 200/HD 200P or $1 \times$ HY $400 / 1 \times$ HY 400P/HD 400/HO 400 P . | £24.54 | £21.34 |
| PSU 185 | $\begin{aligned} & 1 \text { or } 2 \text { MOS } 200 / \text { MOS } 200 \mathrm{P} / 1 \times \text { MOS } 400 \\ & \text { i } \times \text { MOS } 400 \text { ? } \end{aligned}$ | £24.68 | $£ 21.46$ | which include our own laminated transformers.

How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these modules, or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postalorders must be crossed and payable to ILP Electronics Ltd: cash must be registered. C.O.D. - add £1 to total order value. Access and Barclaycard welcome. Atl UK orders sent post free within 7 days of receipt of order.

```
Please send me the following
```

ILP modules

## Total purchase price

$\qquad$ Ienclose Cheque $\square$ Postal Orders $\square \quad$ int. Money Order $\square$
Please debit my Access/Barclaycard No.
Name
Address


## KONTAKT



The European name of Aerosol Excellence. Special cleaners for all electrical contacts and switches.

## Kontakt 60

Dissolves oxides and sulphides, removes dirt, oil, resin and traces against erosion. Ensures perfect against erosion. Ensures perfect

## Kontakt 61

Special cleaning, lubricating and anti-corrosion fluid for NEW (non oxydised) and specially sensitive contacts. An excellent lubricant for all electrical and electro mechanical systems.

## Spray Wash WL

A rapid cleaner for reliable washing and degreasing of electrical equipment and components. For ing residues and other impurities.

## ALSO AVAILABLE:

A COMPLETE RANGE OF INDUSTRIAL AEROSOL SPRAYS
SK 10 Soldering Lacquer, K75 Cold Spray, K70 Plastic Spray, K88 Oil Spray, K701 Vaseline Spray, K90 Video Spray, K33 Graphite Spray, K100 Antistatic Spray, K101 Fluid Spray and, of course, Positiv 20 positive photo resist for printed circuits.

## Details from:

## Special Products Distributors Lid.

Tel: 01-629 9556. Telax. 81 Piccadilly, London, W1V OHL W1

WW - 046 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.


49/51 Fyide Road Preston PR1 2X0
Telephone 077257560



## TRIO OSCILLOSCOPES

Range of mains operated Scopes with $5^{\prime \prime}$ displays, triggered sweep (UK c/p £3.50)
dual trace
CSI562A $10 \mathrm{MHZ} ; 10 \mathrm{MV}$; 1 micro sec. CSI560A II 15 MHZ ; 10 mV ; 0.5 micro sec. CSI566A 20 MHZ ; $5 \mathrm{mV}: 0.5$ micro sec. Cs1577A $35 \mathrm{MHZ}: 2 \mathrm{mV}: 0.1$ micro sec CS1820 $20 \mathrm{MHZ} ; 2-5 \mathrm{mV} 11$ micro delay sweep CS $1830 \mathrm{Mk} \| 300 \mathrm{MHZ}, 2 \mathrm{mV}, 0.2$ micro sec (fitted delay line)
CS1575 $5 \mathrm{MHZ}, 1 \mathrm{mV}$, 0.5 micro sec. Multi display Audlo £267.95 simgle trace
C013030 5 MH and up to 450 MHZ . 75 mm display ( $\mathrm{UK} \mathrm{c} / \mathrm{p} \mathrm{£} 2.00$ ) $\quad £ 124.20$

## DIRECT READ

 HV PROBE (Uk $\mathrm{c} / \mathrm{p} 65 \mathrm{p}$ ) '0/40KV: 20K Volt $£ 18.40$
## MULTIMETERS


(UK c/p 65 p or $£ 1.00$ for two

CHOOSE FROM UK: LARGEST RANGE
KAT 10110 range pocket 1k/Volt
$£ 4.95$
KRTIOO 12 range pocket $1 \mathrm{k} / \mathrm{Volt}$
THOL 12 range $1 \mathrm{k} /$ Volt + overlead
NH55 10 range pocket $2 \mathrm{~K} /$ Volt
ST5 11 range pocket 4K/Volt
AT1 12 range pocket Deluxe 2K/Voil WH56R 22 range pocket 20K/Volt Y Y 360 Th 19 range plus Hfe test $20 \mathrm{~K} / \mathrm{Volt}$ KRT6001 16 range 10 amp DC range
KRT6001 16 range 10 amp DC range
double 50 KNolt
$£ 5.50$
$£ 5.75$
$£ 5.50$
$£ 6.50$
$£ 7.50$
£8.95 £ 11.50
$£ 1495$
$£ 17.95$
SI303TR 21 range plus He Test $20 \mathrm{~K} / \mathrm{Volt} \quad £ 18.95$ AT1020 19 range Deluxe plus Hfe Test $20 \mathrm{k} /$ Volt $£ 18.95$ ECT5000 As KRT5001 plus colour scales $50 \mathrm{~K} /$ Volt

708118 range double 10a DC $50 \mathrm{~K} / \mathrm{Volt}$
$£ 18.95$
TMK500 23 range plus 12A DC plus cont. buzz 30k/Volt
168 m 36 range large scale 10 A ACIDC 50 KIVolt E28.50 AT2050 17 range Deluxe plus Hfe tester $50 \mathrm{~K} / \mathrm{Vo}$

AT21023 range Deluxe t2A AC/DC $100 \mathrm{~K} / \mathrm{Volt}$
$360 T \mathrm{R} 23$ range large scale $10 \mathrm{~A} A \mathrm{C} / \mathrm{DC}$ He tes
50 meg ohm. 1 KV AC/OC $100 \mathrm{~K} / \mathrm{Volt}$
$\begin{array}{ll}50 \text { meq ohm. } 1 \mathrm{KV} \text { AC } / 0 \mathrm{C} 100 \mathrm{~K} / \mathrm{Volt} & £ 39.95 \\ \text { SCOPE ADD ON UNITS }\end{array} \stackrel{\text { SUITABLE }}{\text { FOR ALL SCOPES }}$
LTC905 Sémiconductor Curve tracer AL SOPES
HZ65 Component Tester

## OSCILLOSCOPE PROBE KITS

 (UK c/p 50 p per 1 to 3 ) Available BNC plug or Banana x $1 £ 7.95 \times 10 £ 9.45: \times 1-\times 10$ $£ 10.50$ Also $\times 100$ (BNC only) £ 16.95CLAMP-ON-METERS
INSULATION TESTERS


Multi-range clamps all with resistance range. carry rase \& leads. Also digital and DC clamp in stock (UK c/p 75p) ST300 3004 600V 9 ranges ST300 300A 600 V 9 ranges ST310 300A 600 V ranges 228.95 2602 150A. 600 V . AC 7 ranges $£ 35.95$ K2000 304A. 60 V. AC 7 ranges 249.50 K2803 300A. 600V. AC 9 ra nges 259.95 K2903 900A. 750 V . AC 9 ranges $£ 77.50$ K2103 1000A. 750 V AC 9 ranges $£ 95.00$ -Optional temperature probe $£ 13.80$ ELECTRONIC INSULATION TESTEAS Battery operated complete with carry case (UK c/p £1.00)
YF500L $500 \mathrm{~V} / 100 \mathrm{Meg}$. Plus $0-100 \mathrm{ohm}$ $\mathrm{K} 3103600 \mathrm{~V} / 100 \mathrm{Meg}$ Plus 0.2 .6 K ohm K3106 500V \& Ho0V 1000 \& 109.00 £11900
K4101 Earth resistance tester $£ 149.00$ M50C Hand cranked insulation $500 \mathrm{~V} / 100 \mathrm{Meg}$ £79.50


## CROTECH OSCILLOSCOPES

Range of Portable Scopes mains and battery oper ated. Plus special features (UK c/p £3.00)
3030 Single trace $15 \mathrm{MHZ}, 5 \mathrm{mV}, 0.5$ micro secs. Plus built in component tester. 95 mm tube
3131 Dual trace 15 MHZ , trg to $35 \mathrm{MHZ}, 5 \mathrm{mV}, 0.5$ micro sec
130 mm tube. plus component tester.
3034 Battery-mains dual trace 15 MHZ , trig to 20 MHZ built in Nicads, $5 \mathrm{mV}, 0.5$ micro secs. E. 276.00 (Eliminator charger optional £28.75)
Also Avallable 3033, single trace 3034 $£ 356.50$ £322.00.
3337, dual MHZ. 130 mm £454.00

STOP PRESS
Model 3035 was $£ 189.75$ - Special olfer $£ 168.50$

|  |  |
| :---: | :---: |
|  | uilt in £172.50 |
|  | sec. $โ 276.00$ |
|  | £356.50 |
|  | £322.00. |
|  | £454.00 |



## THANDAR - SINCLAIR

Reliable low cost portable instruments, bench models all $255 \times 15 \times 15 \mathrm{~cm}$. Generators mains operated rest battery (supplied). UK c/p Hand models $65 p$. bench $£ 1.15$ )
 OIGITAL MULTIMETERS ( $31 / 2$ digit LCD) TM354 Hand held, DC $2 \mathrm{~A}, 2 \mathrm{~m}$ ohm. $1 \mathrm{mV}-1000 \mathrm{~V} 0 \mathrm{C}, 500 \mathrm{~V}$ AC £45.94 Tm 352 Hand held; DC 10A. Hfe test. Continuity test $£ 57.44$ TM353 Bench 2A AC/DC 1000V AC/DC 20M ohm. Typical $0.25 \%$

NEW LOW PRICE £86. 25 TM351 Bench, 10A AC/DC, 1000V AC/DC, 20M ohm Typical 0.1\%
FREOUENCY COUNTERS $\{8$ Olohl
PFM200A Hand held LED $200 \mathrm{MHZ} 10 \mathrm{mV}(600 \mathrm{MHZ}$ with TPGOO) New Model fitted BNC sockets.
New Model fitted BNC Sockets.
TF040 Bench LCD. $40 \mathrm{MHZ} .40 \mathrm{mV}(400 \mathrm{MHZ}$ with TP600) $£ 126.50$ TFO40 Bench LCD. 40 MHZ .40 mV ( 400 MHZ with TP600) $£ 126.50$
TF 200 Bench LCD $200 \mathrm{MHZ} .10-30 \mathrm{mV}(600 \mathrm{MHZ}$ with (TP600)) § 166.75
TP600 $600 \mathrm{MHZ}=10$ Prescaler 10 mV
$£ 166.75$
$£ 43.13$
GEMERATORS (All bench models) mains operated
C 100 Function $1 \mathrm{HZ}-100 \mathrm{KHZ}$. Sine / S $0 /$ Triangle $/ T \mathrm{TL} \quad £ 90.85$ TG102 Function $0.2 \mathrm{HZ}-2 \mathrm{MHZ}$ Sine/SO/Triangle/TTL $£ 166.75$ TG105Pulse. 5 MHZ -5HZ (200nS-200mS) various outputs $£ 97.75$ OSCILLOSCOPE (Bench model low power portable)
10 MHZ で trace 10 mV 0. 1 micro sec. All facillies.
$10 \mathrm{MHZ} Z^{\prime \prime}$ trace. 10 mV . $0.1 \mathrm{micro} \mathrm{sec} .\mathrm{All} \mathrm{facilities}. \mathrm{£I} 59.85$
Model SC 110 Model SC 110
Rechargeable battery pack $£ 8.63$. AC adaplor/charger $£ 5.69$ Rechargeable b
Carry case (bench only) £6.84 AC Adaptors (state model) $£ 5.69$


KEITHLEY PROFESSIONAL

DIGITAL MULTIMETER
Model 130.25 range. Easy to
LCD DMM Size $7 \times 3.1 \times 15$
UK c/p 75p

Ranges
DC Volts 200 mV - $1000 \mathrm{~V} 0.5 \% 100$ micro volt AC Volts $200 \mathrm{mV}-750 \mathrm{~V} 1^{\circ} \circ 100$ micro volt DC current 2 mA -10AMP $1-2 \% 1$ micro amp AC current 2mA-10AMP $2^{\circ} \circ 1$ micro amp Resistance 200 ohm- $20 \mathrm{Meg} 0.5 \% 0.1 \mathrm{hm}$
£ 102.35


301 EDGWARE ROAD,LONDON, W2 1BN, ENGLAND. TEL O1-7243564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD, LONDON W2 WE ARE OREN 6 DAY' A WEEK - CALL IN AND SEE FOR YOURSELF'́

## NRDC-AMBISONIC UHJ SURROUND/ SOUND DECODER

## (4) $\begin{aligned} & \text { NROC-AMBISONIC } \\ & \text { Surround Sound Decoder }\end{aligned}$

The first over kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonc team. W.W. July. Aug.. ' 77 The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output sh, ilals are provided in this most versatile unit
Complete with mains power supply, wooden cabine?, panel, knobs, etc

## INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

```
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns oft after approximatety 40 seconds and the unit re-arms. 240 V ac mains or. 12 V battery operated. Disguised as a hard-backed book. Detection ranqe up to 45 feet. Internal mains rated voltage free contacts for external bells etc.
Complete kit \(£ 52.50\) plus VAT, or ready buitt and tested \(£ \mathbf{£ 8 . 5 0}\) plus VAT.
```


## Wireless World Dolby noise reducer



Complete Kit PRICE: £49.95 + VAT (3 head model available)
Also available ready built and tested............................................................................Pricé $£ 67.50$ + VAT Calibration tapes are avallabie for open-reel use and for cassette (specify which) ........ Price £2.75 + VAT

Nypical pertomsence
Noise reduction better than 9 dB weighted. Clipping level 16.5 dB above Dolby level (measured at $1 \%$ third
harmoniccontent) harmonic content) Harmonic distomion $0.1 \%$ at Dolby level typically $0.05 \%$ over most of band. rising to a maximum of $0.12 \%$
Signal-to-noise ratio: $75 \mathrm{~dB}\{20 \mathrm{~Hz}$ to 20 kHz . signal ar Dotby levell) at Monitor output Dynamic range >yuau
30 mV sensitivity

ACCESS and VISA welcome
Please send SAE for complete lists and speciticalions Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

## NICADS: UK'S LOWEST PRICES

AMBIT'S NEW CONCISE COMPONENTT CATALOGUE IS OUT NOW -

Price on the page


Ambit's new style catalogue continues to lead the market with low prices, new items, info, $3 \times f 1$ discount vouchers. Here's a few examples of some super. low prices:
$78 \times \times 1 \mathrm{~A}$ BC237/8/9 3SK51 10 MHz XTALS 8 Pole 10.7 MHz XTAL filters $£ 14.50$ 2 GHz coax relay $150 \mathrm{~W} \quad £ 10.95$

+ all the usual stuff at rock bottom prices + Toko coils, crystal and ceramic filters, micrometals toroids, Fairite ferrites, Alps switches, OKI LSI, Piezo sounders, RF, IF Modules + Kits etc. Availarile at your newsagent or i direct, for 70 p

TELEPHONE (STO 02771230909 TELEX 995194 AMBITG POSTCODE CMI4 4 SG 210 north Servire Road, Brentwand, Essak

##  COUNHERTMER a professional, portable low cost unit <br> Tetemet AB64 Countrimer 15399714

- 3 frequency ranges DC to 180 MHz with 1 Sec gate including phase locked loop $1 \mathrm{~Hz}-1 \mathrm{KHz}$ providing 0.01 Hz resolution within 10 seconds.
- Period/Time ranges to $1 \mu \mathrm{Sec}, 1 \mathrm{mSec}$ and 1 Sec resolution.
- Manual and logic gating on the time and event ranges.
- 13 mm 8 digit display with leading zero suppression.
- Internal charger and NiCad batteries. Price $£ 195.00$ plus VAT (carriage incl.) from


## Telemet

Unit S17, Europa House,
Fraser Road, Erith,
Kent DA8 1QL
Tel. (03224) 39677.


# The Professionals 

## VALVES,SEMICONDUCTORS

 \& COMPONENTS for:-Communications, Displays,
Radar, Computer,
Audio etc.

Hall Electric Limited
Electron House
Cray Avenue, St. Mary Cray
Orpington, Kent BR5 30 J
Telephone: Orpington 27099
Telex: 896141
MIN DEF APPROVAL 0529/0531

## TEST COMPONENTS ON THIS NEW OSCILLOSCOPE



## USE READER CARD FOR DETAILS

ww - 001 FOR FURTHER DETAILS

$\square$ The NEW KEF Constructor Series

The ideal design of a loudspeaker system involves the detailed and scientific study of the enclosure. drive units and crossover network. By applying computer aided techniques to the questions of enclosure volume, band width, efficiency, power handling capacity, probable system location and required directional characteristics, KEF have prepared detailed designs for the home constructor. All this experience is now available to you - to help you build your own system - successfully and at the right price.

## LOUDSPEAKER DESIGNS



Model CS5
This floor standing loudspeaker, based on the KEF Carlton, can provide remarkably sharp stereo imaging due to a novel method of minimising inter-unit time delay, and will produce a full frequency range with outstanding clarity and low distortion.

## Model CS7




A new three way design incorporating the B139. which was the world's first flat diaphragm loudspeaker. The system offers an extended bass response and excellent power handling capability, with the three drive units being combined through a computer designed crossover network to give a very smooth frequency response characteristic with finely detailed reproduction of critical mid-range information.


Making it together
KEF Electmonics Ltd., Tovil, Maidstone, Kent ME15 6QP. Telephone: (0622) 672261. Telex: 96140.

Please send me details of KEF Systems Designs

[^1]Address:


The Sound of the Professionalse


Shure Electronics Limited Eccleston Road Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881


# brings a new dimension to a hand-held condenser microphone 

This new high lechnology Shure microphone will change the way people think of condenser microphones. The SM85 is designed especially for on-stage, hand-held use Its sound is unique - far more tailored to the special needs of the vocalist: sizzling highs and a shaped mid-range for superb vocal reproduction. and a gentle bass rolloff that minimizes handling noise and "boominess" associated with close-up use. Ultra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dualdensity foam windscreen provides built-in pop protection.

What's more. the'SM85 Condenser Microphone must pass the same ruggedness and dependability tests required of Shure dynamic microphones. As a result, the SM85 sets a new standard of reliability for hand-held condenser microphones.

The SM85 is extremely lightweight. beautifully balanced -it feels good, looks good on-stage, on-camera, on-tour. Ask your dealer for a demonstration of the new SM85 PRO TECH Sound, or write to us (ask for AL664) for full details.

SM85
Cardioid Condenser
Hand-Held Professional Microphone

## wireless world

## Editor: <br> PHILIP DARRINGTON

Technical Editor:
GEOFF SHORTER, B.Sc. 01-661 8639

Communications Editor:
MARTIN ECCLES
01-661 8638
Nows Editor:
DAVID SCOBIE
01-661 8632
Design Editor
ALAN KERR
Drawing Office Manager: ROGER GOODMAN

Technical Illustrator: BETTY PALMER

Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130

DAVID DISLEY
01-661 8641
BARBARA MILLER
01-661 8640
Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838
Classified Manager:
BRIAN DURRANT
01-661 3106
OPHELIA SMITH
01-661 3033
Production:
BRIAN-BANNISTER
(Make-up and copy)
01-661 8648

## Arms and the man

A great many words have been written in the last year or two on the amorality and expediency of engineering. On the one hand, some engineers have come to believe that the responsibility for rendering the bellicose ambitions of political leaders capable of realisation lies squarely with the designers and makers of lethal hardware engineers themselves. If it were not for the complaisance of engineers, they say, the means to wage war in the modern manner would not exist.

Those who do not embrace this belief (or who choose to disregard its implications) point out that if "defence systems" - a weasel expression, referring to all military equipment, including that which by no stretch of the imagination can be seen in a posture of defence - were not available, then one "side" would subdue the other and impose its own ideology on the defeated. The solution to this problem, the holders of this view assert, is for each camp to arm itself to the teeth at an everincreasing rate, threaten to irradiate the planet if provoked, but only to do so if the other side does it first. The unspeakable, impenetrable folly of such an attitude is almost too obvious to warrant argument: its holders would scarcely deny that that this method of preserving life and liberty is hardly compatible with the pursuit of happiness.
It is perfectly true, as apologists for the arms race often point out, that some of the effects of the insane compulsion to accumulate weapons are not at all as unsavoury as their raison d'être. "Spinoff" has provided most of the advances in, for example, electronics in the last few decades. Innovation and development are accelerating at such a rate that it is barely possible to see five years into the future, assuming there is one. But to what effect? After the expenditure of so much effort over so many years, with neither East or West yet persuaded that that an unstable equilibrium is a poor way to avoid catastrophic failure, are we being asked to believe that the possession of home computers, video games and digital wristwatches makes the whole thing worth while?

Some of the greatest scientists and engineers in the world, in both East and West, have laboured their entire working
lives to produce hellish machinery, the whole point of which is that it shall never be used. Hospitals, schools, universities are closed or run down so that more weapons can be bought or made and the only benefits in our own field that we have to show for all this misdirection of effort and resources are a few gadgets. Admittedly, communications have improved immeasurably in response to the stimulus of military requirement, but a good deal of the improvement is taken up by the provision of entertainment.
It is a specious argument, which takes no account of the time scale involved: even in the absence of military urgency, the "improvements" and engineering advances would most probably occur in their own good time, and who is to say that that sooner is better than later when the pace of progress outstrips our understanding of it?

Much that has been written on this theme has not dwelt on the inconveniently large question of waste. Materials, the efforts of gifted men and women, irreplaceable earth resources, time and the wealth of nations are all squandered to produce equipment which, if employed in the manner for which it was designed, would have failed in its purpose. And this while millions of people in all continents are deprived of the simplest staples of life. The contrast between profligacy in the highly developed and privation in the primitive is too stark for us to contemplate the continuation of useless armed posturing into the indefinite future: for that is the outlook - either a sudden and complete end to humanity or an interminable attitude of menace between East and West. Scientific American has pointed out that there are now more than three TNT - equivalent tons of nuclear explosive for every single person on earth.

It has been said before on this page, and it will bear repeating, that engineers in all ${ }^{*}$ the developed countries have made the confrontation possible. It is therefore engineers who are in the best position to bring it to an end, by simply refusing to work on armaments. Call it rebellion or simply common sense, but since politicians the world over seem bent on killing us all, it is the only way to avoid collective suicide.

# ORCHESTRAL SOUND, HALLS AND TIMBRE or-'why does it sound so beautiful?' 

## This article examines aspects of the appreciation of orchestral sound, with particular reference to the transfer characteristics of the outer ear and its influence on timbre in various directions and on our sense of orientation. New subjective criteria are proposed. The Kingsway Hall is used as a model in the discussion <br> by Denis Vaughan*



For several decades the most sought-after venue for recording orchestral music in England has been the Kingsway Hall in London: legend has it that Sir Thomas Beecham was the first to identify this hall as particularly suited for the purpose. Are there some identifiable reasons for its superior warmth and clarity? Could they be applied elsewhere.
My interest in acoustics was stimulated by a request from the Australian Broadcasting Commission. The quest to find a common denominator for warm, rich string tone in a hall and in a recording has led me to study many halls, and to analyse musical qualities and our hearing capacities. These analyses have brought several surprises. First of all come our hearing capacities.

## Timbre

Our localization of sound is based on three main complementary systems: only two of

[^2]Horseshoe balcony in the Kingsway Hall is only 17m wide, giving early reflections back at the orchestra.
these have been used so far in stereo recording techniques. The first is based on the exact timing of impulses to each ear. A difference of 0.63 milliseconds we interpret as a change of angle of $90^{\circ}$ in the direction of the earlier impulse. So we can, miraculously, recognise a timing difference is small as 0.007 ms , the time necessary to move the sound source one degree to the side. The second is based. on loudness and intensity: a softer sound will seem farther away. We apply this in localization: just a small change in volume on one channel will shift a stereo picture to the left or right and a general rise in level brings an instrument nearer to us. But the third system, timbre, has yet to be explored.
We hear a different timbre from every angle. Move a small clock around close to your ear, and you will notice that you can always tell where it is, and that the sound
is never identical. If the clock is near your ear but always equidistant from it, this test excludes the possibility of the impulse or intensity methods contributing to the effect: we recognize each and every direction partly by its own particular timbre. If you change the timbre, the apparent direction changes. The filtering effect of our external ear, illustrated by Fig. 1 and Fig. 2, causes us to hear a very odd balance in sound reaching us face-on. The left-hand column of Fig. 3 shows that, with 400 Hz as 0 dB , there is a strong peak at 3 kHz of 12 dB and a deep trough at 10 kHz of -10.5 dB . So we hear certain upper-high frequencies (e.icept 14 and 15 kHz ) frontally very much weaker than those at 3 kHz .

[^3]

Fig．1．Filtering effect of the ear canal， showing peaks near 5 and 10 kHz ，common to all that we hear．All frequencies above 11 kHz are much weaker．


Fig．2．Filtering effect of the outer ear on sounds arriving in the horizontal plane． $0^{\circ}$ corresponds to a point straight in front．

Horizontally to the side at $90^{\circ}$ the balance is more even．The upper frequencies become as much as 15 dB stronger than the frontal spectrum and the various peaks at lower pitches are smoother，thus reducing the range between the extremes to only 15 dB as opposed to the 22.5 dB range of the frontal spectrum．But the sensitivity which we have at $90^{\circ}$ for 12 and 13 kHz starts to disappear already at $54^{\circ}$ and $144^{\circ}$ ．Figures 4 and 5 summarize the table of Fig． 1 graphically．

You may have noticed another aural characteristic．We tend to identify bass notes as coming from below our ears；also， the higher we sit in a hall，the warmer it sounds．I believe that we react similarly to loudspeaker placing．Surprisingly，above our heads we can hear a strong peak at 8 and 9 kHz ，as shown by Fig．6．In fact we can only hear 8 kHz as coming from that direction，no matter where the sound source．But further up the spectrum， above 10.5 kHz ，we hear very little from over our heads．Therefore in a low room or a hall，where the predominant early reflections come from the ceiling，we can perceive very little refinement，delicacy or texture in the sound．Figure 7 is the graphical representation of Fig． 6.

## Musical qualities

It is no easy task to prepare a preferential list of musical qualities in sound． Celibidache and other conductors，and several recording engineers and producers have approved the following list，which should only be regarded as tentative，and wide open to improvements：
richness－powerful multiple reflections； density－many reflections across the hall within one second from a single impulse；
warmth－a strong bass－heavy frequency response curve，with a plateau in the tenor octave（ $125-250 \mathrm{~Hz}$ ）tapering off smoothly towards the top；
clarity－medium high frequencies arriving from all directions shortly after the original sound；
intimacy－an adequate supply of frequencies between 11 and 15 kHz arriving early at the ear between $54^{\circ}$ and $144^{\circ}$ horizontally，and below $60^{\circ}$ vertically； weight－low frequencies arriving shortly after the original sound；
singing tone－a growth in the reverberation reaching a peak about 100 milliseconds after the original sound，then dying away smoothly over about 1.8 secs．
One reason why richness－and not a long reverberation－tops the list is because a variety of reflections coming from many angles close upon each other gives our ears a full frequency coverage． With our aural limitations of timbre in any one direction，the deficiencies can be made good only by receiving sound from all sides．In Avery Fisher Hall in New York， you can hear that in some upper／front balcony seats，where richness is present， any lack of the other qualities is much less noticeable．

## Impulses

Another reason for our appreciation of richness is our astonishing capacity for quickly perceiving separate impulses in
sound．Tests have shown that all listeners prefer to hear orchestral sound impulses which do not arrive simultaneously in both ears－hence the preference for stereo over mono．This scattering of the impulses is called＇binaural dissimilarity＇．In a concert hall，it is the extent of the initial time－delay gap between the original sound and the first reflection－often about 40 ms in a medium－sized hall－which gives much of the character to the acoustic．（Intimacy has －been associated with this gap，but my list suggests other requisites．）Our ears appreciate these reflections most when they arrive close to horizontally from the side．My timbre lists show that the timbre of a hall is influenced for us first by the angle at which we hear the strongest first reflection，and then by the shape and materials of the hall，or room，and the reverberant spaces beneath it．

When we receive a lot of early reflections，one shortly after another，these impulses come in an arpeggiated form－ in slow motion rather like the thrumming of a chord on a harp．This sequence of impulses we perceived as being much richer than an instantaneous reflection．A digital delay unit demonstrates this quickly，by making two or three string instruments sound like a rich chorus．Halls are preferred where the sequence of impulses，whether first or later reflections， dies away evenly．It is called a＇smooth decay curve＇．

## Home simulation

These two keys to richness，namely timbre and impulses，are demonstrable in the home with a system which I hope will be developed in the phonographic industry， as soon as the field of the external ear is completely measured．The system would need at least ten loudspeakers：one large one on the floor to represent the orchestra， and the smaller ones set around the room－ above and below the ear level，with the apposite timbre applied to each speaker

| FRONTAL SPECTRUM | FREQUENCY | $0^{\circ}$ | $18^{\circ}$ | $36^{\circ}$ | $54^{\circ}$ | $72^{\circ}$ | $90^{\circ}$ | $108^{\circ}$ | $126^{\circ}$ | $144^{\circ}$ | $162^{\circ}$ | $180^{\circ}$ |  | TE FIE ing from ight ea |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －0．5dB | 200 Hz | OdB | 1.5 | 2.5 | 2 | 1 | 2 | 1 | 0.5 | 0.5 | 0.5 | 0 | $\left\|\begin{array}{ll} \text { Low } & \text { Angle } \\ -3 & -108 \end{array}\right\|$ | $\begin{aligned} & \text { Peak } \\ & +2 \end{aligned}$ | Angle $-36$ |
| ＋0．5 | 500 | 0 | 1 | 25 | 4 | 4 | 5.5 | 4.5 | 4 | 3.5 | 2 | －05 | －25 -140160 | 0 | －90 |
| ＋1 | 700 | 0 | 1 | 2.5 | 3.5 | 4.5 | 5 | 5 | 45 | 35 | 1 | －05 | －4 $-1601-45$ | －2 | －90 |
| －2 | 1 kHz | 0 | 25 | 4 | 45 | 6.5 | 7.5 | 7 | 6.5 | 55 | 5 | 4 | $\begin{array}{ll}-6 & -30\end{array}$ | $+15$ | －90 |
| ＋10 | 2 | 0 | 2 | 2 | 15 | 1.5 | 0.5 | 0 | －15 | －2 | －2 | －35 | $-12-110 \%-75$ | －7 | －90 |
| ＋12 | 3 | 0 | 1 | 2 | 3 | 2 | －1 | －2 | －2．5 | $-25$ | －3 | －35 | －15－110 | －8 | －90 |
| ＋5 | 4 | 0 | 3 | 4 | 3.5 | 1.5 | －2 | $-5.5$ | －85 | －8 | －6．5 | －55 | －15 $-120 /-75$ | －9 | －90 |
| －1．5 | 5 | 0 | 35 | 4 | 5 | 45 | 35 | 05 | －5．5 | $-9$ | －8 | －7 | －135－120／－75 | －12 | －90 |
| －0．5 | 6 | 0 | 4 | W3） | \％ | W | 2． | 去点 | ＋+ | $-3$ | －4．5 | －5 | $\mid-13-110 /-60$ |  | －85 |
| ＋1．5 | 7 | 0 | 45 | 85 | to | 11 | 10 | 85 | 54 | 2.5 | －1 | －25 | －13－110／－50 | $-10$ | －90 |
| －2 | 8 | 0 | 4.5 | 戓 | 11 | 1\％ | 15 | 165 | \％2 | ，\％ | 3.5 | 25 | －10－120／－75 | －5 | －90 |
| －8 | 9 | 0 | 3.5 | $5{ }^{5}$ | 7 | 8.5 | 11.5 | 31 | \％ | 4.5 | 1 | －0．5 | －7．5－130／－50 | $-5$ | －90 |
| －10．5 | 10 | 0 | 3 | 4 | 7 | \％ | 6 | 7 | rim | 45 | 25 | －25 | －6 135／－90－50 | －3 | －110／－75 |
| －10 | 11 | 0 | 3 | 3.5 | 6. | \％ | 3 | 75 | 7 | 6.5 | 2 | －2 |  |  |  |
| －7 | 12 | 0 | Six. | 1.5 | 3.5 | \％ | 8.5 | 8 | 6.5 | 3.5 | 1.5 | －25 | $-75-130 /-90$ | －3 | －75 |
| －2 | 13 | 0 | \％ | 0 | 1.5 | \％ 3 | ． 5.8 | 0 | 5． | 1 | 0 | －4．5 |  |  |  |
| ＋2 | 14 | 0 | \％\％ | 2 | 2 | 2.5 | 2 | 1.5 | －0．5 | －2．5 | $-4$ | $-7$ | －11－120／－50 | －3 | －75 |
| ＋3．5 | 15 | 0 | ， 3 3 | 2.5 | 3 | 1.5 | 0.5 | $-1$ | －2 | $-3.5$ | －5 | －7．5 |  |  |  |

Fig．3．Lateral differences in timbre for one ear，compared to sound reaching us from straight ahead at eve level（from Mehrgardt and Mellert）．
according to its direction (to help to lock the stereo image) and with increasing timedelays on each speaker, equivalent to those we hear in a fine hall like Kingsway. A sixtrack tape or cassette could probably supply sufficient source material. All initial tests I have made in this direction improve the timbre and richness far beyond the one-plane, identical-timing and timbre of the quadrophonic system. Without dropping hints, we might call the new system 'decaphonic'. It develops the Bose system of reflections from all sides, which works best for me in rooms with little or no damping. Both point to the increased physical satisfaction when our orientation filtering system is being fully utilized in the appreciation of musical sound. The main problem lies in fixing the delicate balance between focused image and general immersion in the sound.

I have always found a stereo image to improve greatly when the frontal speakers stand at least three feet in front of a wall, as the timing of the frontal wall reflection seems to give full depth to the image. Thus, under ideal circumstances, an orchestra seems to be the same distance behind the speakers as the orchestra was behind the microphones in the studio hence the need for simple microphone techniques. To obtain this effect in a room, I have often needed to set the speakers parallel and not angled towards me. In general, and sometimes despite manufacturers' advice, the adage of the RCA engineer Albert Pulley seems to work well in practice - that is, to set the speakers at a quarter of the width in from the sides and a quarter of the length of the room from the end. (Domestic bliss can be rreserved with this obstructive placing if


Fig. 4. Graphical summary of lateral differences in sound pressure for the right ear. Negative angles refer to sound coming from the left side of the head. Range is from 500 Hz to 3 kHz .
the speakers are disguised as occasional tables.)

## Long reverberation

Until such a time as a 'decaphonic' system is common currency, it is fairly obvious why very reverberant halls will be favoured for recording. Present systems use mainly microphones which pick up frontally frequencies that we can never hear there (with our 3 kHz peak, 10 kHz trough, and general cut-off in the ear canal above 11 kHz ). Also the loudspeakers are usually placed at angles where we cannot perceive several other frequencies very well, showing a 20 dB range between the 3 kHz and 11 kHz readings. The simplest way of covering up these two aural mismatches is to add reverberation to diffuse and thus beautify the sound.

This has the unfortunate effect of robbing the interpreter of a number of breathtaking dramatic effects, because he can never achieve a quick silence, until the common 2.5 s of reverberation has died away. That would never have done for Verdi, Toscanini or Callas.
Instead we should seek out a true and satisfying way to give us global ( $360^{\circ}$ ) reflections in the reproduction, and thus a natural, full-frequency spectrum, concentrating on our most sensitive area, between $40^{\circ}$ and $140^{\circ}$ laterally. Even most headphones are unnatural (save those with multi-speakers) in that they eliminate the whole of our own aural frequency filter system. The great advances in 'Kopfbezogene stereophonie' (binaural recording) fall back at this point.

## Architectural prerequisites

The quest for the physical conditions necessary to produce warm, rich string tone in a concert hall was sparked off by the decision of my home town, Melbourne, Australia, to spend 33.5 million dollars (A) to build a 35 metre square, virtually all-concrete hall for that purpose. Of the many indications given to me, two of the most revealing were from Villem Jordan and Derek Sugden. Jordan could not obtain 'lateral efficiency' in a hall wider than 27 metres, and observed that all the famous halls had smaller widths. Sugden stated:
"A hall must have 'presence' so that you not only preserve clarity in a reverberant field but the music will have 'weight'. A powerful sound in the first 100 milliseconds in necessary. This can be achieved preferably with a width of about 18 metres, and if this is not possible then deep balconies must be used, or the technique of putting the audience in terraces and providing large surfaces for lateral reflections. There must be rapidly following early reflections to really achieve intimacy or presence."

A third useful piece of wisdom came from Decca's former chief engineer, Kenneth Wilkinson:
"I have recorded in many halls thoughout Europe and America and have found that halls built of mainly brick, wood and soft plaster, which are usually older halls, always produce a good,


Fig. 5. Continuation of Fig. 4 in range 3.5 kHz to 14 kHz . Small peak at $-90^{\circ}$ on left side persists up to 9 kHz , then moves to $-75^{\circ}$.
natural, warm sound. Halls built with concrete and hard plaster seem to produce a thin, hard sound and always a lack of warmth and bass. Consequently, when looking for halls to record in, I always avoid modern concrete structures." This statement has been endorsed by most. of the other large record companies.

## First reflections

In all the famous orchestral halls, the first lateral reflections come from the side balcony faces. Their timing is exactly controlled by the width ( 1 foot $\approx 1 \mathrm{~s}$ ). So a central seat in the Leipzig Gewandhaus, with only 12.5 m between the balcony faces, had an initial time delay gap of around 41 ms . Vienna Musikvereinsaal with 15 m had 49 ms , Boston Symphony Hall ( $17 / 19.3 \mathrm{~m}$ ) $56 / 63 \mathrm{~ms}$, and the Amsterdam Concertgebouw ( 19.3 m ) 63 ms . Those figures give a very good idea of the relative. clarity and definition, intimacy and density of sound in each of the above halls. As upper-high frequencies fall off audibly through atmospheric absorption after about 15 metres, Leipzig and Vienna must have the best quality.

Looking at the Kingsway Hall, it is easy to see where it satisfies the main requirements. Its full width is at the upper limit, 27 metres, with inner walls set on pillars at 19 metres width. But the width between the horseshoe balcony faces, with. a very useful curved reflecting surface beneath them, is only 17 metres at its widest point. The balcony surrounds the orchestra at a height of 3.5 metres. To be honest, I think that such a horseshoe would bring any large symphony orchestra good acoustical luck. It gives all the players reflections back early enough, and at the right angle, to allow them to obtain
good ensemble. The unbroken surface allows early bass reflections to come back to the microphones (not too strong, mind you) because the long bass waves are reflected intact, and from a shape consonant to their own. It might be worth copying this reflecting shape in Abbey Road, Maida Vale, Henry Wood, Walthamstow, Brent and Watford, to name but a few London recording halls. The shape is reminiscent of those marvellous small Italian theatres.

In recent years, the Kingsway lease has been shared by EMI and Decca, also subletting it to RCA and other companies. Virtually all the seats have been removed downstairs and many upstairs covered with cloth. At the moment its reverberation time with an orchestra present is about 2.5 seconds.

## Hall background noise

Poor Wagner cannot have guessed that in 'Tristan and Isolde', by giving his shepherd on the rocks a woodwind solo which lasted more than four minutes, he was condemning one of his greatest interpreters - Furtwangler - to recording a duet for English Horn and Piccadilly Line Train. Unfortunately, collaboration between EMI and London Underground is not yet such that the engineer's 'red light area' can extent to such nether regions. The rumble of the tube trains would not be so noticeable, were Kingsway not such a good hall. Moreover the cavernous storerooms and airducts beneath the main floor, which undoubtedly contributes to the warmth of the sound there, develop the tube rumble with equal generosity - a sound which is cruelly revealed by digital recording techniques. The hall is very much alive at all frequencies, even when no-one is in it. The presence of 80 musicians is something which you not only feel there, but which gives the indispensable and audible human element to the music, with myriad small high-frequency extra-musical sounds. The ease of tone and spaciousness achieved in Beecham's 'Scheherezade' and Furtwangler's 'Tristan' have to my ears yet to be bettered on disc. Both recordings managed to reproduce the 'hush' which was present during the sessions, and which is an integral part of the greatness of the musical interpretations. A bald silence behind the music is the antithesis of this spell-binding, breathless hush, and unfortunately I fear that Dolby techniques so far, in their valiant battle to eliminate tape hiss and mechanical noise, have also eliminated some of this integral part of the music. Digital recording is proving to be one of the better ways, which do not reduce the human element in a performance, and the comment of the acoustic on this human element.

## 'Singing' decay curve

It would be fascinating to know just why the string sound at the beginning of the third movement of the Beecham 'Scheherezade' is so natural. To write this article, I went down on my hands and

| FRONTAL SPECTRUM | FREQUENCY | $0^{\circ}$ | $9^{\circ}$ | $27^{\circ}$ | $45^{\circ}$ | $63^{\circ}$ |  | $\begin{gathered} 99^{\circ} \\ \text { head } \end{gathered}$ | $177^{\circ}$ | $135^{\circ}$ | $153^{\circ}$ | $171^{\circ}$ | $\begin{gathered} 180^{\circ} \\ \text { (behind) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-0.5 \mathrm{~dB}$ | 200 Hz | 0 | -0.5 | -05 | 1.5 | 1.5 | -1.5 | -1 | 0 | 1 | -1 | 0 | 0 |
| +0.5 | 500 | 0 | 0.5 | 2 | 1.5 | -0.5 | $-1.5$ | -0.5 | 0 | 1 | $9 \cdot 5$ | 0 | -0.5 |
| $+1$ | 700 | 0 | 0 | -1 | - 4 | -4.5 | -5 | -3 | -2.5 | -2 | 1 | 0 | -0.5 |
| -2 | 1 kHz | 0 | 0.5 | 1 | 1.5 | 2 | 0.5 | 0 | 0.5 | 1.5 | 35 | 4 | 4 |
| $+10$ | 2 | 0 | -2 | 4 | -5 | -55 | -65 | -7 | -55 | -4.5 | -4 | $-4.5$ | -3.5 |
| $+12$ | 3 | 0 | -0.5 | -2 | -3 | $-4$ | $-4.5$ | $-5.5$ | -6 | -5.5 | -5 | -3.5 | -3.5 |
| +5 | 4 | 0 | $-0.5$ | -1 | -2 | -25 | -4 | $-5.5$ | -6.5 | -7 | -7 | -6 | $-5.5$ |
| $-1.5$ | 5 | 0 | $-0.5$ | -1 | -0.5 | -2 | $-4.5$ | -5.5 | -6.5 | -7 | -7 | -7 | -7 |
| -05 | 6 | 0 | 1 | 3 | 25 | 2 | -0.5 | -2 | -2.5 | $-3.5$ | -4 | -45 | -5 |
| +1.5 | 7 | 0 | 15 | 5 | 7 | 65 | 4 | 2 | 2.5 | 2 | 0.5 | -2 | -2.5 |
| -2 | 8 | 0 | 2 | 8 | 12 | 12.5 | 12 | 10 | 9 | 10 | 7 | 4 | 2.5 |
| -8 | 9 | 0 | 1.5 | 7 | 10 | 12.5 | 135 | 12 | 115 | 11 | 7 | 4.5 | -0.5 |
| -10.5 | 10 | 0 | 1 | 5 | 55 | 8 | 85 | 7.5 | 7 | $3 \cdot 5$ | 0.5 | $-1.5$ | -25 |
| -10 | 11 | 0 | 0.5 | 1 | -1 | 2 | 4.5 | 0.5 | -1 | -1.5 | $-4.5$ | -2 | -2 |
| -7 | 12 | 0 | 0.5 | 2 | -1 | -25 | 0 | -3 | -5.5 | -2.5 | -3 | -2.5 | -2.5 |
| -2 | 13 | 0 | 1 | 2 | -35 | -75 | -4 | -7.5 | -10 | -6 | -8 | -7 | -45 |
| +2 | 14 | 0 | 0.5 | 1 | -3 | -7 | -2 | -8 | -10 | -8 | $-7.5$ | -7 | -7 |
| +3.8 | 15 | 0 | 0 | 0 | $-35$ | -8 | -0.5 | -8.5 | -11.5 | -8 | -7 | -7.5 | -7.5 |

Outlined area $=$ stronger sensitivity at 7 to 10 kHz
Fig. 6. Vertical differences in timbre (equal for both ears) compared to sound reaching us from straight ahead at eye level. From Mehrgardt and Mellert.
knees, and with the generous help of the Kingsway caretaker, measured the various distances, counter-checking them against the few remaining plans of the hall. So please do not expect total accuracy.

All the great halls have a certain 'singing' tone, characterized by a crescendo in the decay curve. Just as we can all sing better in the bathroom, because the acoustic supports us, so the 'singing' curve gives a lift to the performers, and allows the music to take wing, without need for forcing. (I think that adding a short peak of this nature to a dry recording would give more musical results than the general confusion caused by the usual long reverberation.) No one has the formula for its production in a hall. Guildford thinks that it needs a large area of parallel surfaces above the highest seat, as in Vienna, Boston, Amsterdam, etc. Joan Sutherland (and I) think that it needs also a set of hard surfaces around the hall at the level of the performers. Schultz that it needs a filigree of smaller surfaces for the very first reflections. It is probably a combination of all three.

For the Beecham sessions, with the orchestra facing the organ, the microphones were about 2 metres in front of the stage. For an instrument just under the microphone this gives the following sequence of delays in the reflections from various parts of the hall after the original sounds:
Stage front, 14 ms ; upper stage front, 30 ms ; side balconies, 48 ms ; back balcony, 54 ms (first frontal reflection); ceiling, 57 ms (larger); diagonal walls beside organ, 73 ms ; side walls down stairs, 81 ms (larger); arches between side pillars and inner walls, 93 ms (et seq.); ceiling curves, 100 ms (larger); backwall downstairs, 105ms (larger); curves organ ceiling, 111 ms ; side wall upstairs, 133 ms (larger); back wall upstairs, 147 ms (larger).

Some of these figures should be higher, where the reflection can only come back to
the microphone with the help of a secondary surface, such as side wall upstairs/lower ceiling. As the microphone is not very sensitive on top (and fickle memory suggests that the stereo microphones were hung upside down for 'Scheherezade'), this means that the effectively larger reflections start about 18 ms after the original sound. Boston's singing tone is based on a growth up to a peak in the decay curve, the peak reaching from 100 to 150 ms . Amsterdam puts it even later. By Sugden's standards of 'presence' and 'weight' Kingsway has quite a lot of powerful reflections to offer within the first 105 ms , because the larger reflections continue to return up to 14 ms , the substantial and lengthy support of the musicians is assured, before the riotous ping-pong of the subsequent reverberation


Fig. 7. Vertical differences in sought pressure perceived equally by both ears. $90^{\circ}$ is overhead, $180^{\circ}$ behind.
in every direction sets in. All later refections are naturally weaker.

## Curves

Robert Lloyd, the bass, has observed that wherever there are a lot of curved surfaces, the acoustic tends to be very good. When the curves are concave, they may match the shape in which the sound waves first reach them, and thus reflect them well. When the curves are convex, they distribute the sound waves evenly over wide areas. Kingsway is rich in both types of curve. Nearly all the stage-end surfaces are curved one way or the other, with many interim small reflections, such as curves over doors, etc. I hope sincerely that this article may stimulate others to copy them, above all because of the full-frequencyrange efficiency of the initial long horseshoe curve of the balcony face and its undercurve. For a full symphony orchestra it comes at an ideal moment to break up the sound, and is as worthy of respect as the exact measurements of the orchestral shell in the Boston Symphony Hall. If you wish to copy a Stradivarious, all details are relevant!

## Reversal

It would be interesting to know whether sharp-eared listeners with refined equipment can detect the differences in recordings made in Kingsway the other way round, with the orchestra's back to the organ. Many recent opera recordings use this setup, which puts the singers in a better relationship to the orchestra, and allows them to move as though on a stage. It also allows the full depth of the voices to develop, in the essential $8-10$ metre distance to the main orchestral microphones.

But this way round, the reflection pattern for the orchestra is changed. The low front of the stage and the small upper stage must substitute for the 3.5 m high curve of the long back balcony face. The frontal, early deep-bass reflection at microphone height at 54 ms has been replaced by a very early one at about $8-10 \mathrm{~ms}$. The difference ought to be noticeable to keen listeners as this new reflection is behind the microphones.

## Awareness

Perhaps the foregoing analyses of several aspects of hearing will help listeners
towards a greater appreciation of colour and texture in sound. The measurements of timbre are far from complete, and more details are due to be published next year, covering the whole of the upper right hemisphere of our field of hearing.

When stereophony was introduced, analyses of aural localization mentioned the three systems available to our body giving the greatest importance to the timing of impulses, much less to intensity, and virtually dismissing timbre differences as inessential. It remains to be seen whether in fact timbre is not the Cinderella of the trio, ready to blossom into the most beautiful attribute when it is identified, recognized and espoused for its true worth.

## Further reading

Analyses of musical qualities and hearing: $\mathcal{F}$. Sound and Vibration, 1980, vol. 69 pp 110-138. Musical Times, Jan./Feb./Mar. 1981. Studio Sound, J y 1981, pp 62-66.
Timbre lists; Musical Times, Jan./Feb./Mar. 1981.

## Langmuir thin-film trough for molecular electronics

Collaboration between scientific instrument makers Joyce Loebl and a number of research establishments, especially Durham University, RSRE Malvern and ICI, has resulted in what is believed to be the world's first commercial ultra-thin film "growing" equipment. The films in question are monomolecular layers of a class of materials floated on a liquid surface, usually water transferable to a solid surface by passing it through the liquid. The material originally used by the pioneer of this technique - Irving Langmuir of General Electric back in 1917 - was the soap-like fatty acid salt sodium stearate, but other materials and their deposition on solid surfaces were subsequently investigated by Langmuir and Blodgett, one result being the development of glass anti-reflection coatings. Chief property of the materials used is a rod-like molecule, one end of which is attracted to water and the other end repelled so they stand end-on (assuming the material is correctly compressed). But the trough is aimed at possible new applications of L-B films that arise largely out of microelectronics technology. Such layers, one molecule thick, are becoming important in what is called molecular electronics - the "science of


clever chemistry and electronics". Applications include insulating layers as thin as $10^{-9}$ metre in gallium arsenide devices and as a resist in electron-beam lithography. Organic layers may have application for gas detection, while biological molecules such as antibodies and enzymes may make field-effect devices feasible for in vivo monitoring. In integrated optics they offer a route to the precise building of multilayer films to one tenth of an Angstrom unit, perhaps with the molecular addition of metallic atoms to tailor response to radiation.
"Molecular Lego", as it has been dubbed, also has potential application to energy conversion devices, photosynthesis, magneto-optics, three-dimentional memory devices, and to display devices, where high electric fields may allow a highspeed alternative to current technology.

Molecules are compressed in the Lang-
muir trough with a constant-perimeter variable-area boundary which encloses the monolayer and prevents film contamination. A sensitive microbalance with sensor in the liquid surface monitors differential surface tension, and links through a control system to the barrier drive. A motor-driven micrometer screw automatically drives a substrate in and out of the liquid. Constant surface pressure is provided by a differential feedback system to maintain film integrity. A pre-determined number of monolayers can be programmed by a control unit using a range of dipping speeds, and a two-pen recorder charts surface pressure and area during deposition.
The trough is made by Joyce-Loebl, a subsidiary of Vickers Instruments, of Team Valley, Gateshead.

Enter WW 500 on reply card for further details.

# NETWORKING SMALL COMPUTERS 


#### Abstract

Simply transferring a program or data from one computer to another by telephone is not too great a problem, but if a number of remote computers are to work together regularly in a network, relatively complex software is required to organize received information efficiently. This article describes such software designed for Pet microcomputers and outlines networking generally.


As personal computers become more popluar, the need for simple methods of exchanging programs and data between them increases. Eventually, it may be possible to exchange this information through some form of readily accessible global communications network, but at present, we have to make the best possible use of the facilities available. Some of the more important information dissemination techniques currently being explored are

- teletext broadcasts
- viewdata systems, such as Prestel
- and distributed computer networks.

Each of these approaches has its advantages and disadvantages. In the UK, experiments have been carried out using Ceefax and Oracle as a means of distributing software ${ }^{1}$ but these methods can only be used to access information from a central point. With Prestel, twoway information exchange is possible, but there are two categories of 'user' - the ordinary customer, who can only receive and examine pages of stored material, and information providers. The major drawback of this method is that not all users can be information providers $\dagger$. The Council for Education Technology is. currently investigating this type of information dissemination in conjunction with a number of schools and colleges ${ }^{2}$.

A truly distributed computing network ${ }^{3,4}$ is the third approach to program and data distribution. Such a system has the advantage of allowing totally unrestricted bi-directional data exchange between any two parties. In this article I describe using the public switched network (p.s.n.) as a means of distributing programs and data between owners of personal computers.

## Source program transmission

The distributed computing system's architecture significantly influences the type of data it can accommodate. Broadly speaking, these systems fall into one of two categories - one in which intermediate data storage is available, and one in which data transfer is direct.

In Fig. 1(a), the microcomputer owner at site X is able to dial the telephone

[^4]by Philip G. Barker*

number of the owner at site $Y$ and then transmit information to him/her. In the context of data exchange, transmission takes place as if the two microcomputers were linked together directly ${ }^{5}$. No intermediate data storage is available so error detection and correction procedures have to be incorporated in the software used for receiving the data. Messages passing over the communication network are susceptible to corruption by noise or crosstalk and as a result, if the receiver fails to respond to the transmitter, data transfer is inhibited.
In Fig. 1(b), the microcomputer owner at point $X$ can store material in a mainframe at site $V$ or $W$ for later retrieval. Provided that the computers at points $Y$ and $Z$ can meet all the necessary
access control requirements, they too can gain access to the data. With this kind of network, information can be shared easily and distribution to other geographical locations is simplified.
Details of using a microcomputer as an interactive terminal, in conjunction with the public switched telephone network ${ }^{6,7}$, and of using a microcomputer as an intelligent terminal ${ }^{8}$ have been presented. In reference 8, algorithms for informationfile transfer between a mainframe and microcomputer are discussed in detail. These files may contain machine-code programs, high-level (source-language) programs or data. Using the software described, communicating programs between one microcomputer and another (via a mainframe) is reasonably straightforward but a decision has to be made regarding whether the programs are
(a) Direct transfer

(b) Transfer via intermediate mainframe


Fig. 1. In (a), the public switched network is used to link two computers together directly. Messages passing over the network are susceptible to corruption by noise or crosstalk - if the receiver fails to respond to the transmitter, data transfer is inhibited. Data from any of the three microcomputers shown in (b) may be stored in a mainframe computer and retrieved later. Using this type of network, certain codes can be imposed to restrict access of information from the mainframes to those microcomputer owners with knowledge of the code.
to be transmitted in machine-code or source-language form.

Factors influencing the ease with which programs may be communicated are

- the level of language used
- the availability of internationally accepted language standards and the ability of programmers to keep within limitations imposed by these standards - compatibility of the computers used.

These factors alone are probably sufficient to justify transmitting program files in source language form rather than as machine-code memory images. In this context we have been examining the problems associated with transmitting both Pascal and Basic programs over the p.s.n. between microcomputers and mainframes. Some interesting results have been obtained - a few of which are described here.
Files transmitted between the two computers consist of a contiguous set of characters. Certain special characters interspersed in the sequence, for example end-of-line $\$ 0 \mathrm{D}^{\star}$, impose a simple record structure on these files. That the files may not be physically stored in this way in either the source or destination computer is of little consequence as far as this article is concerned.

## Loading Basic from secondary storage

Once a Basic program has been transmitted from a remote computer and stored locally on a secondary storage medium such as a tape or disc drive, it is a simple matter to load the program into memory for subsequent execution. How the program is loaded will depend on the type of microcomputer used. To illustrate the purpose of this article, specific descriptions pertaining to the 3000 series Commodore PET microcomputer are included.
The function of a loading program is to recognize Basic statements contained in a secondary storage file, convert them to the appropriate format, and store them at the correct location in the memory space available. Functional requirements of such a program for the PET are summarized in Fig. 2(a), where it can be seen that the storage area for Basic programs starts at $\$ 0400$ and ends at $\$ 7 \mathrm{FFF}$ where 32 K of memory is available. Obviously, the loading program at the top end of the memory will slightly reduce the amount of space available for other programs.

One of the loading program's main tasks is to convert the incoming source code to a code which can be stored in the computer's memory, the two forms of which are represented in Fig. 2(b). When the source code is stored, each statement consists of a two-byte pointer, a two-byte encoding of the statement number, a sequence of bytes representing the original source line and a byte containing the 'end-of-line' marker. Further details on how Basic
*The 'dollar sign' indicates that the number immediately following it is in hexadecimal form. This is not the standard method of indicating hexadecimal numbers, but is familiar to most users of the microcomputer concerned. - Ed.

(b) Comparisan of internal and external forms of Basic

## SOURCE CODE

10 PRINT"HELLO"
$20 \quad X=3+2$
$30 \mathrm{Y}=3 * 2$
$40=$ PRINT $X, Y$
50 PRINT"GOODBYE"

INTERNAL FORMAT
0400 OD OE O4 OA OO 992248 $\begin{array}{llllllll}0408 \quad 45 & 4 C & 4 C & 4 F & 22 & 00 & 18 & 04\end{array}$ $0410 \quad 14 \quad 0058$ B2 33 AA 3200 $04182204 \quad 1 \mathrm{E} 005982 \quad 33 \mathrm{AC}$ $04203200 \quad 2 \mathrm{C} 04 \quad 28 \quad 00 \quad 99 \cdot 20$ $0428 \quad 58 \quad 2 \mathrm{C} 59 \quad 00 \overline{38} 04 \quad 3200$ $0430992247 \quad 4 F \quad 4 F 44 \quad 42 \quad 59$ $043845 \quad 22000000$ AA AA AA
(c) Memory map for a typical loading program



Fig. 2. The function of a source-language loading program. These diagrams, although specifically relating to the PET, are typical of most microcomputers. Underlined sections in (b) indicate the positions in memory of the Basic statement numbers.
programs are stored in memory can usually be found in the computer's manuals ${ }^{9}$.

Once a statement has been converted, it has to be placed in the correct memory location. Both conversion and insertion are usually carried out by routines built into the computer's operating system, which in the case of the PET are locations $\$$ C34B to $\$ \mathrm{C} 43 \mathrm{~F}$, and there is no reason why these routines may not be used in the programs concerned. But for most readers, copying the relevent r.o.m. information into r.a.m. will be more practical than altering the system's r.o.m. A simple assembly language program will serve this purpose. The loading program's basic structure is as follows;
Step 0: borrow code from the operating system
Step 1: initialize Basic (usually using NEW)
Step 2: read input file (get next source character)

Step 3: if 'end-of-line', go to step 6
Step 4: if 'end-of-file', go to step 8
Step 5: store source character in Basic buffer then go to step 2
Step 6: prepare for operating-system entry routines
Step 7: convert source statement held in buffer, enter into Basic memory area, then go to step 2
Step 8: pass control back to Basic command mode with a 'READY' message.
As was suggested earlier, step 7 will probably be carried out by a 'borrowed code', and the remaining steps will be implemented by the operator, see Fig. 2(c). An assembly-language program for the above algorithm - for Basic source files on cassette - is shown in Fig. 3, and a complementary flow diagram is shown in Fig. 4. When invoked, the initialization code copies $\$ 94$ bytes, starting from $\$ C 34 B$, in the slot reserved for it through manipulation of the assembler location counter. When this is completed, the loading operation starts. The program uses a subroutine called TPREAD to transfer a block of data from cassette into the relevant buffer area. In turn, this routine makes use of the operating utility code commencing at \$F855. Characters are then
；PROCESS NEXT STATEMENT RESTORE Y－REGISTER GO BACK TO MAIN LOOP ；END OF FILE
；RETURN TO BASIC ；ROUTINE TO READ A TAPE BLOCK bad input dey
；LOAD INP OPSYS ；PASS TO OPSYS RREAD A TAPE BLOCK ；RETURN TO CALLER data storage areas NUMBER OF BYTES TO COPY ；PLACE FOR X－REGISTER ；DISK SUPPORT ROUTINES FDR LOADER PROGRAM sü uмочs wejboлd aч1 fo uo！sfan pa！！pou modified version of the program shown in
Fig．3，is for loading source－code programs in a disc－based system．

## 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ <br> 둥ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ






ㄴ․․ ㅆ․
88～
万す出尔药

ず88


U



















Fig. 4. Data flow diagram for the source code loading program shown in Fig. 3.
copied one at a time from the tape buffer, $\$ 027 \mathrm{~A}$, across to the Basic input buffer, $\$ 0200$ - $\$ 0250$, using the Y and X registers respectively as pointers in the indexed load and store operations. Each time an end-of-the-line character, $\$ 0 \mathrm{D}$, is encountered in the input data-stream (INCHAR) an end-of-statement marker, $\$ 00$, is sent to the output stream (OUTCHAR) for placement in the Basic buffer. Subsequently, at step 6, the pointers at $\$ 77$ and $\$ 78$ are set to point to the memory area containing the new statement. A subroutine call to the operating system utility CHRGET is then made. This is essentially a line-fetch routine that sets up the next Basic statement for processing. More details on how the routine operates are given elsewhere ${ }^{10,11,12}$. Once the CHRGET routine has been primed, the code for converting/inserting the new line into the BASIC program area can commence. Further source statements are then processed one at a time until an end-of-file code, $\$ 00$ for tape files, detected on INCHAR terminates the loading process and passes control back to Basic directcommand mode with the prompt "READY".

A major disadvantage of the loader shown in Fig. 3 is its lack of identity checking. Inherent in the program is the assumption that the tape will be positioned at the point from which loading is to commence; the first block (program identity) is then skipped over. If necessary, it would be a simple matter to replace the first reference to TPREAD (line 21) by a call to asubroutine that allows the operator to interact. This
subroutine could be used to ask the operator for the name of the file to be loaded and then automatically position the tape ready for loading. A routine of this type is essential in a loading program designed for handling source programs from discs.

To enable the loading program shown in Fig. 3 to handle disc files, two additional subroutines are needed: one to open the disk file, DKOPEN, and another to read and close it, DKREAD. Implementations of each of these are presented in Fig. 5. DKOPEN fulfills the requirements outlined above, that is, it prompts the operator for the name of the file to be loaded, checks its validity and then returns an appropriate message. The DKREAD routine emulates the action of the tape cassette thereby minimizing the number of changes necessary to the code listed in Fig. 3. Indeed, only three changes are required; the reference to TPREAD in line 21 must be changed to DKOPEN and that to TPREAD (line 65) must be altered to DKREAD. Finally, the device number in line 62 must be changed from 1 to 8 .

As a means of checking that tape cassette emulation was a reasonable approach to use, a second version of the disc loading program was written using a different approach. This involved reading the whole of the disc file into memory, storing it, and then processing it as an internal file. Other than the slight modifications needed for the revised input method, no major changes to the logic of the program shown in Fig. 3 were required and no detectable difference in performance between the two disk-loading programs was observed. Furthermore, as can be seen from the fol-
lowing table their load size differed by only five bytes.

|  | Main <br> code | DKOPEN DKREAD | Total <br> store |  |
| :--- | ---: | :---: | :---: | :---: |
| Tape loader | 257 | - | - | 257 |
| Disc loader 1 | 257 | 152 | 95 | 504 |
| Disc loader 2 | 242 | 152 | 115 | 509 |

The loading programs can be located in e.p.r.o.m. or in any part of the memory space available for program loading. When siting these programs, two important factors must be considered;

- that the programs do not over-write themselves while running (this is usually caused by locating them too near the low end of memory), and,
- that they do not interfere with any of the operating system support software that may be partly in r.a.m. (for example, DOS support uses r.a.m. above $\$ 7 \mathrm{EAB}$ in 3040 disc-based 32 PET systems).
Each of these restraints can be avoided by using an appropriately structured e.p.r.o.m. However, if the loading programs are to be stored in r.a.m. their security and effectiveness depends on finding a suitable memory space into which they may be loaded and run. Unfortunately, disc loader 2 is too large to fit into the tape cassette buffer areas, $\$ 027 \mathrm{~A}$ through $\$ 03 \mathrm{~F} 9$, but its main body and the smaller of the two input routines (DKREAD) easily slot into this area; DKREAD could now reside at the high end of r.a.m. above about \$7E10, the exact location depending what other software is present in this area. Because the version of the loading program for handling tapebased source files is too large to be stored in cassette buffer 2, as with the DKOPEN routine, it would also need to be positioned somewhere above memory address $\$ 7 \mathrm{E} 10$. Similar arguments apply in the case of disk loader 1. Whatever parts of high r.a.m. are used, the limit of Basic memory would need to be lowered by suitably adjusting the pointers held in zero page locations $\$ 34$ and $\$ 35$.

Each of the software systems described above successfully loads Basic programs from tape/disc files into memory ready for execution. These files will usually have been created by program transfer from another remote computer through the public switched network or a private communication system. Alternatively, they may have been prepared by an editing system or as a result of LISTing to either tape or disc. Because these files are in conventional ASCII form rather than in internal machine-code form they are more easily exchanged between different types of personal computer.

## Comparing load times

Given that there are now several ways of loading Basic programs into memory some consideration of loading times would be appropriate. There are two important comparisons to make

- the relative speed of loading source programs compared with memory image programs, and
- the relative speed of tape loads compared with those from disc.

To carry out the above comparisons a simple program generator was constructed. This consisted of a series of Basic statements which when executed produced (as output) another Basic program. This could be written as an ASCII file to tape and/or disk. Furthermore, once processed by either of the loaders described above, this program could also be saved in the conventional manner using a SAVE command. The program consisted of 1000 statements whose average length was about 22 characters. Its load size was 19 K bytes. Measures of the time required to load this program under different conditions are

- time to load source program from tape, 1037 s
- time to load source program from disk, 260 s
- tape load time for SAVEd program, 357 s
- disk load time for SAVEd program, 10s.
There are two observations immediately apparent. Firstly, loading source programs is much slower than loading memory images; secondly, loading from disc is very much faster than loading from tape. These relationships could have been predicted intuitively and so the only value of the above figures lies in the quantitive comparisons they permit. From the values shown it can be seen that disc loading is about 35 times faster than tape loading where memory images are concerned but
only about four times faster in the case of source-code loading. In the latter case, it took only 11 seconds to read the source program into memory from disc. This would suggest that about $96 \%$ of the program loading time is devoted to converting source statements into a form suitable for storage, and storing them. Similarly, in the case of tape loading, it takes about six seconds to read a block from tape into memory. The test program contained 131 blocks, i.e., $192 \times 131$ characters, and so its input/output time would be about 786 seconds. This means that only $24 \%$ of the program loading time is spent on conversion operations. It is interesting to note that the time spent converting and inserting programs in memory is the same for both programs 249 s for the disc loading program and 251 s for the tape version. This means that the modifications converting the tape loading program into its disc equivalent do not influence the program's performance characteristics. These results illustrate the advantages of memory-image loading over source-code loading, but most readers will probably prefer to sacrifice some efficiency to make their programs more compatible with computers of a different type.


## References

1 Hayman, M., Brighton project sets out on the micro road, Practical Computing, Aug. 1981, pp. 75-76.

2 Technical Developments Programme Telesoftware Project, paper CID 81.2, 198 「, Council for Educational Technology.
3 Cannon, D. L., and Luecke, G., Understanding Communications Systems, Radio Shack, ISBN: 0-89512-035-6.
4 Davies, D. W., and Barber, D. L. A., Communications Networks for Computers, Wiley, ISBN: 0-471-19874-9.
5 Campbell, G., Commodore 8010 modem, Commodore Club News, July 1981, p. 18. (Nick Hampshire Publications, 19 Hobhouse Court, Whitcombe St, London WC2).
6 Barker, P. G., Using a Microcomputer as an Interactrive Terminal, Interactive Systems Research Group Working Paper, Apr. 1981 (Dept. of Computer Science, Teesside Polytechnic, County Cleveland).
7 Barker, P. G., Using the PET as an Interactive Terminal, Interactive Systems
Research Group Working Paper, Jun. 1981.
8 Barker, P. G., Algorithms for Intelligent Terminal Operation, Interactive Systems Research Group Working Paper, Jul. 1981.
9 Donahue, C. S., and Enger, J. K., PET/CBM Personal Computer Guide, Osborne/McGraw-Hill, ISBN: 0-931988-306, pp. 312-314.
10 Hampshire, N., The PET Revealed, Computabits Ltd, pp. 77-78.
11 Doyle, D., DIMP: A Machine Language Routine for the PET to Handle Algebraic Input, Commodore PET Users Club Newsletter, vol. 2, issue 8, 1980, pp. 19-20, (ICPUG, 109 York Road, Farnborough, Hants).
12 Doyle, D., DIMP Revisited, Commodore PET Users Club Newsletter vol. 3, Issue 2, 1980, p. 31.

## Teledon videotex in UK

The first private viewdata system based on Teledon technology has been introduced by Poulter Computervision, a new company in the Poulter advertising and marketing group. Developed by the Canadian Department of Communications, Teledon is an easy-to-use system to enable text and high-quality animated images to be transmitted to to sets. It was chosen for audiovisual communication by Poulter largely because of its impressive graphic capability.

The company have moved fast since they discovered it late last year. In fact Graham Poulter told Ww he didn't even know of it until 14 weeks prior, when Peter Ashley (now a director) told him of it after seeing it on an Australian NEB trip. They now have sole UK rights to Teledon, negotiated with the CDC licensee Norpak.

Two equipments are available, the simplest being a decoder with 64 K of usable r.a.m. (there is further memory for screen mapping and holding software) controlled by a 6809 microprocessor and fed from a cassette player. Up to 200 frames or "slides" can be displayed in any order, each one appearing either instantly or progressively. With a modem attached, 10 pages of information can be recorded in 60 seconds - ten times faster than other viewdata systems of the alpha-mosaic kind. The other terminal is an information provider's graphic creation unit with digitizing tablet, colour monitors, two floppy disc drives and PDP11/03 computer. With
about ten minutes ${ }^{\text {r }}$ learning time, it is claimed, images can be created by retrieving an image from a library to edit, by sketching or tracing drawings on the tablet, or by using high-level commands defined as geometric elements. Animations of any length are possible and the combinations of colours with grey shades are unlimited. A page of text takes about 5 minutes to assemble while a chart might take 10 to 15 minutes.
Secret of Teledon is the picture description instruction coding that describes image content by co-ordinates - two for
lines and rectangles, three for arcs, more for polygons, hence the name alpha-geometric. Images can also be described by scanning point-to-point, and they are reconstructed to whatever resolution the receiving equipment allows. Among claims made for it are future equipment compatibility as well as future information compatibility, easy conversion to alpha-mosaic or d.r.c.s. and it is said to handle more CCITT videotex-attributes than any other scheme. Teledon is in regular use in Canada, on trial in the USA, and European rights have been bought by Siemens.


# DIGITAL TELEVISION STANDARDS 

> Towards a worldwide compatibility for broadcasting studio equipment at recent meetings of the CCIR in Geneva, decisions were taken which will have an important bearing on the introduction of digital systems into television studios throughout the world.

Discussions on digital video coding have been going on for many years; in Europe they have taken place mainly in the EBU. In fact, the CCIR was largely responding to a submission from the EBU reached after extensive consultations among its members and with industry, other broadcasting unions and the American SMPTE.

It had long been accepted that to obtain the maximum benefit from digital technology one should handle the three components of the video signal (e.g. luminance and colour-difference signals) separately throughout the digital studio rather than combined into the composite PAL, SECAM or NTSC composite form as in most of the analogue studio operations of today. The use of component coding will also ensure commonality of equipment design throughout the 625line world and to a valuable degree with the 525 -line world - assuming agreement on the basic parameters defining the video signal.

There may be a case for establishing in due course a compatible family of coding standards to suit different quality requirements, e.g. of ENG at one extreme

by A. Howard Jones BBC Research Department

and high-definition television at the other. But the most urgent requirement was to specify the standard that will be used within all of the main studio equipment and at the inputs to the recording and transmission equipment used for international programme exchange.

It was agreed at Geneva that the main studio standard would use sampling rates of 13.5 MHz for luminance and 6.75 MHz for each of the two colour-difference signals. This corresponds to 864 and 432 samples per line respectively in 625 -line countries and 858 and 429 samples per line respectively in 525 -line countries.

8 -bit linear p.c.m. coding will be used and it was agreed by most delegations that the coding ranges should be set as indicated in Fig. 1.

There is a good chance that these figures will have been formally written into the Recommendation by the time of

The author is chairman of EBU Specialist Group V1VID in which much of the discussion on standardization has taken place.

CODING RANGES


Fig. 1. Coding ranges for the 8 -bit linear p.c.m. system


Fig. 2. The EBU proposal for 625 -line signal and nominal analogue timing for reference with 864 luminance samples for each line.
the Plenary Assembly next year, together with a statement to the effect that in both 625 - and 525 -line areas the circuits which process only the active part of the television line should accommodate 720 luminance and 360 colour difference samples per line.

At a sampling frequency of 13.5 MHz , 720 samples occupy somewhat more than either of the nominal active line periods. The intention is that the latter will be defined by a blanking operation to be carried out when the signal eventually emerges into the analogue composite world. Meanwhile, an appropriate positioning of the 720 samples (Fig. 2 shows the EBU proposal for 625 -line sig. nals and digital and nominal analogue timing for reference) will ensure that the system will accept the whole of an analogue active line at its input regardless of the actual timing within permitted tolerances.
The adoption of this specification will ensure maximum compatibility of equipment throughout the world and will lay the foundation upon which further specifications, covering studio interfaces, digital video tape formats, and the multiplex structure to be used on international digital links, can be built.

## Corrections

Remote control for a hi-fi system. Unmarked components in Steve Kirby's article in the March issue, page 54, are p-n-p transistor in Fig. 1 and $3.9 \mathrm{k} \Omega$ for its base-emitter resistor. Transmitter diodes are high-power types - RS Components $308-512$ or equivalent. Labels "standby" and "normalise" should be transposed on the keyboard. Notes on setting up the link, a simplified tone control summing circuit, and p.r.o.m. listing will be published next month ln the mean time they can be obtained by sending a stamped, addressed envelope to Steve Kirby at the Department of Electronics, University of York, Heslington, York YO1 5DD.
Heating-fuel saver. The introductory paragraph states that the outdoor temperature sensor is not essential but in fact, the scheme would not work without it. The non-essential part is the meter to indicate the reading of the sensor. If this is not required, the milliameter and $\mathrm{IC}_{2 \mathrm{~b}}$ can be omitted. In the first paragraph of the main text a d-to-a converter has been misprinted as a 'data-a converter'.
Digital, multi-track tape recorder. Contrary to the impression by the April part of this article, it was not the final section. A further part on the playback facility will be published in the next issue.
BBC micro. See News of the month.


## Tracking vehicles

Disclosure of hitherto secret Home Office guidelines on the police use of "bugging" and other electronic equipment has drawn attention to a form of surveillance that has largely passed unnoticed: the "tracking" of suspect vehicles by the attachment of a miniature transmitter which can then be located using sophisticated fixed or mobile Doppler-type v.h.f. and u.h.f. directionfinding equipment that overcomes many of the usual problems of accurate $d / f$ in builtup areas. Equipment of this type is made in several countries, and indeed two years ago Rohde \& Schwarz specifically described their PA002 and PA005 systems as suitable for "specialized applications in the field of personal protection or even in trailing 'prepared' vehicles". From fixed bases such equipment can locate an urban transmission to within about 100 metres. At least one American firm makes mobile equipment that would have little difficulty in following a vehicle at a discreet distance.
Direction-finding, the first application of a radio navigational aid early this century is once again in vogue. Marine v.h.f. d/f systems in the English Channel supplied by Racal have proved their use in sea rescues. American portable (man-pack) $\mathrm{d} / \mathrm{f}$ equipment is currently being promoted for military detection and tracking of armoured vehicles.

## Broadcast relays

For several years, some of the European external broadcasting services have been using satellite circuits to carry programmes to their overseas relays. But most of these have made use of Intelsat earth stations built primarily for telecommunications services.

However, Marconi Communication Systems have recently announced a $£ 500,000$-plus order from the Foreign and Commonwealth Office for a 10 -metre, re-ceive-only, Standard B earth station to be located on Masirah Island, off the east coast of Oman, to be completed this year. This station is expressly to receive the BBC Overseas Service programmes for retransmission on the high-power FCO transmitters forming the Middle East Relay Station, including two 750 kW m.f. transmitters.

The users of extremely high-power h.f. over-the-horizon radar and broadcasting stations may have noticed with some concern a report of recent joint-work of the Max-Planck-Institut für Aeronomie and the University of Leicester (Nature, 25 February 1982). This shows that the ionosphere has non-linear characteristics such that above a certain optimum power, signals received at remote sites decrease with
additional power. The optimum power is usually not much more than about 6.5 MW e.r.p. - a power less than that currently used by some broadcast and radar stations.

## Mobile radio and s.s.b.

The outlook for the use of v.h.f. singlesideband with 5 kHz channelling in the private-mobile radio or in the Radiophone services cannot be regarded as bright - and seems to depend on whether the fast-acting, companding-type a.g.c. system being developed by Dr McGeehan at Bath University proves suitable for incorporating into s.s.b. mobile phones.

The intensive work in the UK over the past few years on the Wolfson project for mobile s.s.b. has failed to produce the clear-cut results needed to convince users. Completely independent user-trials by British Telecom Research and by the Home Office, and related trials by manufacturers, all seem to have shown that on frequencies of the order of 160 MHz , s.s.b. equipment (without companding) does not provide fully equivalent performance to that of 12.5 kHz channelling f.m. systems and is significantly degraded in comparison with 25 kHz channelling f.m. The British Telecom results suggest that s.s.b. also requires a much higher co-channel interference protection ratio (about 20 dB) which would mean that there could be much less re-use of channels, substantially reducing the theoretical spectrum-saving advantages of s.s.b. The earlier Home Office trials highlighted the problem of Doppler frequency shift and the need for an extremely good a.g.c. system if speech quality is to be maintained above 200 MHz with vehicles travelling at more than 30 $\mathrm{km} / \mathrm{h}$.

The BT trials (Electronics Letters, October 29, 1981) used s.s.b. equipment specially designed to assess the suitability of the mode as a replacement for f.m. in the Radiophone service, with tests carried out under carefully controlled conditions. Speech of a well defined level was transmitted simultaneously over three radio links ( $12.5,25 \mathrm{kHz}$ f.m. and s.s.b.) and recorded in a moving vehicle. The recordings were later carefully assessed in an acoustic room with simulated vehicle noise, under conditions of fading, interference and signal level. The conclusion was that s.s.b. subjectively degraded the performance compared with $12.5 \mathrm{kHz} \mathrm{f.m}$. by as much as a change from 25 to 12.5 kHz f.m. With co-channel interference, "mean scores" were: s.s.b. $1.8,12.5 \mathrm{kHz}$ f.m. 2.1 , and 25 kHz f.m. 2.4.

Unless the Bath University work on a.g.c. reverses the situation, early widespread adoption of s.s.b. seems unlikely.

## Marine communications

The official opening of the Marecs-A maritime satellite communications system on March 1 provided a notable technical hiccup. The planned inaugural call by Kenneth Baker, Minister for Information Technology, had to be called off at the last moment due to the aftermath of "intense solar activity"

While we all know how easy it is for press and public demonstrations to go adrift, this incident must have been particularly galling for those promoting a sophisticated system that seeks to highlight and then supersede the radio propagation vagaries of traditional marine radio!

Shipping companies have seldom proved eager to introduce new communications or navigational systems unless the costs can be off-set by lower marine insurance rates - so that 24 -hour reliability must be counted a vital consideration.

There can be little doubt that marine satellite systems offer many advantages for deep-sea vessels, and will eventually supersede long-distance h.f., just as marine v.h.f. has gradually won through for short-range operations. But I wonder if I am alone in recalling the high communications efficiency of the old pre-war passenger ships using "long waves" above 2000 metres?
When static was not too bad, the highly professional radio officers and coast stations could handle traffic in a manner seldom heard on the other marine frequencies. Today, with few large passengercarrying ships, marine traffic tends to be lighter and largely confined to the running of the ships or personal messages of the crew. As with all radio communications "progress" seems to be a matter of everhigher frequencies - though marine radars have long paved the way to microwaves.

## Topics in the air

M. Hansen and J. P. Loughlin of the American Naval Ocean Systems Center, San Diego have described (IEEE Trans., Vol. AP, No 6, November 1981) a fourelement adaptive aerial array that automatically minimizes multipath reception. Typically, at frequencies between 3.4 and 9.3 MHz over a 234 km over-ocean path, unwanted modes were reduced by more than 15 dB .
George J. Flynn of Washington University, St Louis, Missouri has forecast that if the rate of increase of objects in orbit continues to increase, the first collision between satellites can be expected in the next 10-15 years. He warns: "A reversal of this trend is required to prevent a serious
hazard to orbiting satellites in the twentyfirst century". Although the number of objects in near-Earth orbit decreased between 1978-1980, they have since increased rapidly to an all-time high of 4,740 objects, in October 1981. 137 new objects were associated with the US Landsat 3 satellite, launched in 1978, and 118 with Cosmos 1275, launched in June 1981.


## Licence snafu

Following meetings between the R.S.G.B. and the Home Office, the Home Office confirmed officially that the new amateurradio licence schedule, as published in The London Gazette on February 12, contained errors and a revised schedule would be published with a minimum of delay. The Home Office also issued a statement that they had had "no intention of changing the basis of amateur radio operation in the U.K.".

In other words, the sensation caused by the February 12 schedule was ascribed to yet another "snafu" on the part of the licensing authorities - although to the credit of the officials concerned they reacted promptly and fairly when the consequences of the error-prone schedule were brought to their notice by the R.S.G.B. and by many horrified amateurs!

Perhaps a light-hearted side of the incident was that, by omitting a key line, the Gazette unwittingly deleted all regulatory differences between Class A and Class B licences. Any Class B amateur could have legally operated on h.f. etc., until an amending notice was hastily published on February 26. The Home Office has accepted that the introduction of new power restrictions and mode restrictions on 3.5 MHz and 432 MHz , etc.; were errors and may revert to traditional power regulations above 1 GHz at least while the question of "equivalent isotropic radiated power" is reconsidered further.

## The world scene

No firm announcement about the release, on a non-interference basis, of the 18 and 24 MHz bands had been made at the times these notes were written. All three new bands, $10.1,18$ and 24 MHz , were released to amateurs in South Africa on January 18.
American c.b. licences are reported to have fallen from 16 million to about 10 million during the past two years. There
are just over 400,000 amateur licences in the USA. A recent survey indicates that only about one-in-eight instances of radiofrequency interference (r.f.i.) problems from all types of transmitters (but basically due to inadequate electromagnetic compatibility in consumer electronic appliances etc) are reported officially to FCC - a ratio that is believed to be roughly comparable with similar interference problems in the UK.
A 16 -year-old instructor for the December 1981 Radio Amateur's Examination John Morris, GU6BG1, of the Guernsey Amateur Radio Society - coached six candidates. Five passed both sections while the sixth passed one section. One who passed, Tim Hodkinson, will have to wait for his licence until his 14th birthday next June, when he is likely to become (at least for a time) the UK's youngest licensed amateur.

## Here and there

Fifty-years ago, during 1932, the internatinal Madrid conference resulted in the first clear recognition of amateur radio by defining in the international radio regulations what amateurs could and could not do. The Madrid conference was one of the last of the international conferences in which no major changes were made to the frequencies allocated to radio amateurs although it was already clear that pressure on their frequencies from rival users was more intense in Europe than in North America and only with difficulty was the " 1.7 MHz " band retained in Europe. At that time the major ITU conferences were held every four years.

Detailed observations on and conclusions about the remarkable 5000 -mile 145 MHz Euro-Asia to Africa paths by transequatorial ionospheric reflection during Solar Cy cle 21 have been reported by Ray Cracknell, Z22JV in Zimbabwe, Fred Anderson, ZS6PW in Pretoria, and Costas Fimerelis, SV1DH in Athens (QST, December 1981). They show that high-density, ionized zones exist 10 to 15 degrees north and south of the magnetic dip equator capable at times of providing circuits between stations up to 5000 miles apart at frequencies up to 432 MHz . They believe that amateurs in suitable locations "have a unique opportunity to engage in pioneer research".

## Amateur satellites

Ivan James, G51J has described, in Oscar News No 36, a novel form of 145 MHz crossed-delta loop aerial suitable for uplinks to amateur satellites in low orbits. The aerial is based on the principles of the
broadband, apex-fed, polygonal loop as described by T. Sukiji and Tou (IEEE Trans AP-28, No 4, July 1980). The system provides some horizontal gain, requires no impedance transformer and can readily be made from soft 8 mm diameter copper tubing. It has been tested on Oscar 9.

The six Russian amateur satellites, RS3 to RS8, launched last December have all been transmitting telemetry data but RS3 and RS4 are not expected to be fully activated until later in the year. The satellites are in a nearly circular orbit about 1700 km above Earth (periods of about 118.5 to about 119.8 minutes). As with other satellites in relatively low orbits it is proving difficult to provide accurate predictions for more than a few days at a time. The Russian transponders have uplink frequencies in the band 145.86 to 146 MHz and down links 29.36 to $29: 5 \mathrm{MHz}$.

## In brief

The 10.1 MHz band has still not been released to American amateurs and there is opposition from other users . . . A "diamond jubilee hamfest" to mark the setting up of the original "Lincoln \& District Amateur Wireless \& Scientific Society" in February 1921 is being organized by Lincoln Short Wave Club (G5FZ, G6COL) at the Lincolnshire Showground, 4-5 miles north of Lincoln on the A15, on Sunday May 9. The Club is aiming at a 5000 attendance, with trade and "bring and buy" stands plus family attractions . . . Derby Dale \& District Amateur Radio Society has its 2nd mobile rally at Shelley High School, June 20 . . . The Worcester Club has its annual radio rally on July 11 at the High School, Ombersley Road, Droitwich

The RSGB has forecast 80 trade stands at the 1982 National Amateur Radio Exhibition at the New Alexandra Pavilion, Alexandra Park, north London from April 15-17 . . . Mobile rallies at Harrogate and Barry (May 23), Hull and Plymouth (May 30), Elvaston Castle, MHS Mercury (June 13) . . . With the legalization of c.b. radio it would seem that some of the former users of 27 MHz have moved elsewhere. Recent reports indicate that an illegal group of so-called "International Breakers" have been active on about 6.6 MHz , a frequency that was a "piratehaunt" several years ago . . . . The Marconi Group recently noted the 60 th anniversary of the 2 MT Writtle broadcasts in 1922 paying tribute to the efforts of the amateurs, grouped in wireless clubs, recognizing that it was their petitioning of the Post Master General that helped set off regular broadcasting in the UK.

PAT HAWKER, G3VA

# MICRO CONTROLLED LIGHTING SYSTEM 

# Hardware for the input side of the lighting system - the control desk. Modular construction is suggested to allow for variations in total system size 

The input portion of the lighting system the control desk - transforms the positions of the numerous faders into data in the processor memory. To maintain processing speed and hence the interactive nature of the system input and output operations are designed so that no processor WAIT states are required. This is readily achievable in the output to the dimmers by ensuring that the access time to each dimmer is less than 410 ns (the maximum data bus access time permitted by the processor) and the use of a mappedmemory input technique was chosen. However, the analogue-to-digital conversion of the fader positions is inherently slow, and so some method of increasing their apparent conversion speed is required. Three possible methods can be considered.

- Allocate a slow a-d converter to each fader which continuously tracks the analogue level of the fader and then the processor addresses each converter in turn to obtain data. The large number of faders in a lighting desk means that this would probably be a very expensive solution.
- Use an a-d converter which is fast enough to perform a conversion in the maximum access time of 410 ns . The practical conversion time must be much shorter than this to allow for the multiplex-

John D. H. White and Nigel M. Allinson

ing of the faders and the sampling of the analogue levels. The cost of high-speed converters and multiplexers means this solution is also expensive.

- Rather than set the conversion speed by the processor requirements, set the speed by the desk operator's requirements. For instance, the maximum useable "response time" of the system should be about 20 ms. Hence use a converter which is fast enough to perform all the conversions required in this maximum response time. The faders can then be scanned by an analogue multiplexer, converted to digital code and stored in a block of memory locations. The processor is then able to access this block of memory. The major difficulty with this method is the unambiguous access to a block of memory by both the processor and the converter.

The final method was chosen for use in the control desk because of its lower cost. The fader units in this prototype system were designed on a modular basis. Each multiplexer connects one of 16 faders to a

The authors are at Keele University.


Fig. 11. Address decoding is performed by a 4-bit code.
common analogue bus and the faders addressed via a 4 -to-16 line decoder by a 4 bit digital address bus. One a-d converter was allocated to each of these 16 fader modules; however, the converter and sample-and-hold circuit used have a total conversion time of $26 \mu \mathrm{~s}$ at a 500 kHz clock frequency so one converter can access over 600 faders within a response time of 20 ms .
The input circuits can be split into three parts - an analogue multiplexer which connects the faders to the a-d converter, the converter itself and associated sample-and-hold and timing circuits, and the shared memory with access control logic.

## Analogue multiplexer module

The fader connected to the common analogue bus is determined by a four-bit code, and address decoding is performed by a 4 -to-16 line demultiplexer (74154), Fig. 11. Analogue switch control inputs are buffered by level-shifting inverters. Fader potentiometers are connected to a bipolar reference bus derived from the a-d converter internal reference voltage, Fig. 12.

As the lighting system scales the channel presets by a master preset control, as mentioned in the first article, this requires the multiplication of stored data. For any reasonable interaction time between fader position and light output, software multiplication by the processor is out of the question. As described in the final article, fader levels are stored in log form; multiplication and division become simple addition and subtraction, and an anti-log look-up table r.o.m. is used to provide the correct code for each output dimmer. Unusually, log-law potentiometers are used for the faders.

The potentiometers can be considered as a voltage source with an internal impedance which varies with slider position. The highest internal impedance is (track resistance)/4, that is $25 \mathrm{k} \Omega$ in this case. As the output capacitance of each c.m.o.s. switch is about 5 pF , the worst-case switching time constant for 16 switches on a common analogue bus is $2 \mu \mathrm{~s}$. With a sample time for the a-d conversion of $6 \mu \mathrm{~s}$, this gives a significant sampling error. The solution is to introduce a capacitor $C_{\mathrm{s}}$ to the input side of each switch. The percentage error in the final output voltage is $100 \% \times C_{\mathrm{d}}\left(C_{\mathrm{s}}+C_{0}\right)$ so for $C_{0}=100 \mathrm{nF}$ the error is only $0.08 \%$. The switching time constant is now about 25 ns ; $\tau$ is

switch on-resistance $\times C_{0}$. However, there is now a significant time constant associated with the potentiometer resistance and $C_{s}$, but the worse-case value is 2.5 ms which does not effect operation of the control desk.

## AD conversion and timing module

The ZN427E 8-bit converter of Fig. 12 is clocked at 500 kHz , derived from the terminated processor system's 1 MHz clock (generated from the 3 MHz microprocessor clock in the Quarndon development system). The various control signals and associated sample-and-hold, are generated by a 2 -bit twisted ring counter, comprised of two D-type flip-flops (7474). This type of counter was chosen for its simplicity and that all states can be detected by two-input NAND gates. The first state of the sequence enables the sample-and-hold circuit, the second state is used as a write request for the memory access logic, and the final state is used to clock a third D-type flip-flop. The output
of this flip-flop is used as the start conversion pulse of the a-d converter. The end of conversion signal (EOC) goes low, and is used to hold the counter in its reset state. The positive-going edge of EOC clocks a 4bit counter ( 74161 A ) used to address the shared block of memory and the analogue multiplexer. The data outputs are always
enabled, by holding OE (pin 2) low. The LF398 sample-and-hold circuit has more than adequate specifications for 8 -bit accuracy at 6 us sample time.

The 2.55 V a-d converter reference voltage is used to bias the fader potentiometers. To reduce processing time, fader codes (positions) are first checked to determine if they are zero (i.e. channel not in use); only if they are non-zero will further processing be performed. Contact and end-resistance in the potentiometers gives a small d.c. offset, even when the channel is not being used. Hence a bipolar voltage reference is supplied to the faders to give a small "deadband", for which the output code is zero. These references are obtained by buffering and inverting the converter reference voltage by a 747 dual op-amp.

Shared memory and access control
The memory can be accessed by either the microprocessor or the a-d converter, and hence the data and address buses must be multiplexed between the microprocessor and converter. It differs from conventional direct memory access techniques in that the converter and processor have separate buses and operate independently, Fig. 13.

The shared memory consists of two AM27S07 (16-word $\times 4$-bit Schottky r.a.m.), and as these devices have separate data inputs and outputs and the a-d converter only writes to this memory while the processor-only reads from it, no data bus multiplexing is required. Data outputs are tri-state which allows direct connection to the processor data bus. Address bus multiplexing is performed by two 74125 tri-state buffers; the appropriate one is enabled for read or write operations. For large systems standard 250 ns memory chips may be used instead of the AM27S07's, but they will require additional data bus multiplexing.
The eight high-order bits of the processor address bus are compared with a bit pattern set by eight wire links to determine the page location in the memory map of the input data addresses, Fig. 14. This is achieved in the same manner as the output addressing decoding described in Part 1. When the processor needs to read from the shared memory, a read request signal is generated before the system enable signal E goes low, achieved by AND-ing the address decoder output, $M / I O$ and $W / R$ signals. The output is latched by the 8085


address latch enable signal $\overline{\text { ALE }}$ to ensure that the read request signal is low before E goes low. Timing diagram: Fig. 15. The read request signal enables the appropriate address buffer and sets the memory to read mode.


Fig. 14. Eight high-order bits of address bus are compared with bit pattern set by eight wire links to determine page location in memory map.

The absence of a read request signal sets the memory to write mode and enables the a-d converter address buffer. A write request signal from the converter timing control enables the memory and data is clocked into the memory by the system
enable, $\mathbf{E}$. The duration of the write request is long enough to ensure that any data is always stored in the memory. Since the processor controls access to the memory at all times, no conflict of simultaneous access requests occur.

## Continued

The authors ask us to point out that $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ in Fig. 9 should be inverted, for which the two spare 7400 gates may be used.


Fig. 15. READ REQUEST enables the appropriate address buffer and sets memory to read mode.

# 16-CHANNEL DATA ACOUISITION SYSTEM 

## The article concludes with a continuation of the circuit description, its operation and a sample program for scanning through sixteen channels.

Figure 8 is the timing diagram for the listening sequence. On power-up, the Reset line is brought low for approximately 150 ms via $\mathrm{R}_{3}$ and $\mathrm{C}_{2}$ to reset the address latch $\mathrm{IC}_{7}$ and the addressenable flip-flop $\mathrm{IC}_{5}$.

To select a channel and start an a-to-d conversion, the Basic statement below is executed:
PRINT \# DN, "*n"
where DN is the device number ( $0-30$ )
*is the ASCII character ""\#"
$n$ is the ASCII equivalent of the required channel " 0 " to " $F$ ".
When the system receives a device number (DN) corresponding to that selected on the address switches ( $\mathrm{S}_{5}-\mathrm{S}_{1}$ in Fig. 7), the 96LS488 will initiate a timing sequence, as shown in Fig. 8 (not to scale). The r.o.m. ( $\mathrm{IC}_{6}$ ) decodes ASCII information to binary data, its contents being outlined in Table 1. Four outputs of the r.o.m. give the binary data obtained by converting ASCII " 0 " - " $F$ " to binary 0000 - 1111 and additional outputs are used to detect a " "" character and a carriage return (CR) data outputs 06 and 05 are used for this purpose.

When the first " *" character is sent (2 in Fig. 8) the * line goes low (3) and the RXST and RXRDY are pulsed (4) and (5) in accordance with Fig. 5. As the data is removed (6), * detect goes high and sets the address enable FF - $\mathrm{Q}^{\star}$ goes high (8). The next data byte is presented (9), representing one of 16 address channels, and as RXST goes high (10), CLK goes high (11) and latches the address latch (12). RXST and CLK than go low (13) and (14), and data is removed (15).

A Carriage Return is now presented at the data bus (16) and the CR detect (or GO signal) goes low (17), and starts conversion in the AD7555 (to be discussed later). This signal also resets the address enable F-F (18), while RXST pulses (19) and (20), CRD is removed (21) and GO is returned high.

The result of all this activity is that one of 16 channels is enabled in the AD7506 ( 16 channel multiplexer) and a conversion cycle of the appropriate channel is started.

## Talking sequence (conversion cycle)

The AD7555 is a $41 / 2 / 5 \frac{1}{2}$-digit a-to-d conversion subsystem. A free-running clock (DMC) strobes out the b.c.d. data from the AD7555 in a 4-bit-wide bus. In

[^5]by Pat Hickey*

this application, the DMC signal is controlled by the 96 LS 488 handshake signals to transmit the information to the GPIB. Each b.c.d. data byte is signalled by a digit line which goes low when that byte is being outputted, D0 going low for the most significant digit (sign and first digit), D1 for the next significant digit, etc., and D5 for the least-significant digit. In this application, D5 going low is used to send a carriage return code on the IEEE-488 bus. Although this loses one digit of resolution, it considerably eases the interface circuitry.

Figure 9 highlights the conversion timing sequence. Upon receipt of a GO signal (2) (from the listening sequence in Fig. 8) HOLD goes high (3) which instructs the AD7555 to start conversion: the free-running DMC clock is also
enabled (4). Upon comparator crossing at the end of phase 0 , (the beginning of the quad-slope a-to-d conversion procedure) SCC goes low (5), enabling the 1.024 MHz clock to pin 12.

At the end of the conversion, SCC returns high (6) and on the next DMC rising edge (7), DAV goes high and remains high for two DMC pulses (9): during this period, the internal buffers are updated with the latest data. After this, DAV returns low (10) and brings HOLD Low (11). This is known as the master reset and disables the free-flowing DMC clock. From this point control of DMC is taken over by the TXST handshake during read-back.

At this stage, the data presented by the AD7555 is the mosi significant digit; TXRDY is high, indicating that data is ready; and SRQ has been brought low (12) telling the controller that a conversion has been completed and the new data is ready.

Fig. 8. Timing diagram for the listening sequence.


Fig. 9. Conversion cycle timing sequence.



## Readback cycle

Data is transferred to the controller via the input instruction INPUT \# DN, R\$, where DN is the device number, and $\mathrm{R} \$$ is an ASCII string. When this statement is executed, the 96 LS 488 checks that TXRDY is high (indicating that the first character is ready). It takes the byte and brings TXST in Fig. 10 high (1) to show that it has received the data. This clocks DMC high (2), which brings D0 back high and loads the next data byte (4), and brings TXRDY low (5), acknowledging that the last byte has been received. TXST goes low (6), completing the sequence. This clocks DMC low (7) which brings D1 low (8). TXRDY goes high (9) indicating that the second data byte is ready.

The sequence is repeated for $\mathrm{D} 1, \mathrm{D} 2$, D3 and D4 (10)-(23). TXRDY goes low (23), acknowledging that D4 has been received, and TXST goes low (24) to complete the handshake. This clocks DMC low (25) and brings D5 low (26). The output from the AD7555 is D5 at this stage (the last and unused digit of the $51 / 2$ digits). However, a carriage return is transmitted to the controller instead, indicating the end of the string, via the data selector ( $\mathrm{IC}_{11}$ ). As D 5 goes low, a carriage return (ASCII 13) is presented to the 96LS988 (27) and TXRDY goes high (28), indicating that it has a byte (CR) to send. DS going low also resets the SRQ

Fig. 10. Timing of the readback sequence.
flag (29). The CR is loaded during the rising edge of TXST (30) and the usual handshake follows.
The data string received by the controller is a 5 character string encoding a $41 / 2$ digit word. The first character is an encoded version of the sign and most significant digit as outlined in the table.
The program shows a simple method of converting the input string $\mathbf{R} \$$ to a number R. A positive or negative over-range (caused by a voltage greater than $\pm 1.999$ volts) is transmitted as " $0 \lll \ll$ " and " $2 \lll \ll$ " respectively.
INPUT \# 27, R\$
IF RS $=$ " $0 \lll \ll$ " THEN PRINT "+VE OVERRANGE": END
IF R\$ = " $2 \lll \ll$ " THEN PRINT
"-VE OVERRANGE" : END
X $\$=\operatorname{LEFT} \$(\mathrm{R} \$, 1)$
IF X $\$=$ " 0 " THEN $\mathrm{X} \$="+1$."
IF X $\$=" 2 "$ THEN X $\$="-1 . "$
IF X $\$="<"$ THEN X $\$="+0$."
IF X $\$=" 7$ " THEN X $\$="-0 "$.
$\mathrm{R} \$=\mathrm{X} \$+\mathrm{RIGHT} \$(\mathrm{R} \$, 4)$
$R=V A L(R \$)$
PRINT"READING = ";R; "VOLTS" END.

## Service request and status byte

Bit 6 of the status byte, shown in Fig. 11, contains the service request bit (needed in the case of a serial poll), high when a service is requested. The rest of the status byte contains information as to why a service was requested. (In this case there is only one reason, an end of conversion caused by Bit 4 high.) The four l.s.bs contain the address of the last selected channel. The status byte is read during a serial poll and handshaking is performed by STRDY and STST similar to Fig. 5.

## System performance

As discussed, the a-to-d converter is operated as a $51 / 2$-digit system, but only $41 / 2$ digits are used. The a-to-d conversion time varies from 1.3 seconds for full-scale negative input, to 1.7 seconds for full-scale



Fig．11．Service request and data byte．
positive input．The conversion time can be reduced by a factor of ten by operating the a－to－d converter in the $41 / 2$ digit mode． Some minor changes in circuit values and pin－straps are necessary．

## －Change $R_{27}$ to $360 \mathrm{k} \Omega$ and $C_{7}$ to

 $0.22 \mu \mathrm{~F}$ ．－Disconnect wire from pin 22 of IC9 to pin $1\left(\mathrm{IC}_{11}\right)$ and pins 2，5，（ $\mathrm{IC}_{24}$ ）．
－Connect wire from pin 23 （ICя）to pin 1 （ $\mathrm{IC}_{11}$ ）and pins，2，5，（ $\mathrm{IC}_{24}$ ）．
－Disconnect pin 8 （ $\mathrm{IC}_{9}$ ）from +5 V and connect to GND．
In the $41 / 2$ digit a－to－d conversion mode only $31 / 2$ digits of information are transmitted on the bus．

The a－to－d converter handles input sig－ nals in the range $\pm 1.9999$ volts．Resolu－ tion is $100 \mu \mathrm{~V}$ and accuracy of the proto： type wire－wrap system was $\pm 200 \mu \mathrm{~V}$ ．The converter exhibits no flicker or offser．Ac－ curacy would be improved by using a printed－circuit board and by paying more attention to leakage paths through i．c． sockets，etc：it is also recommended that

| Sign and most <br> significant digit | Output of <br> AD7555 | Input to <br> controller | ASCII <br> equivalent |
| :---: | :---: | :---: | :---: |
| +1 | 0000 | 00110000 | 0 |
| -1 | 0010 | 00110010 | 2 |
| +0 | 1100 | 00111100 | $<$ |
| -0 | 0111 | 00110111 | 7 |

the operational amplifiers and reference $\left(\mathrm{IC}_{17}-\mathrm{IC}_{21}\right)$ be kept as close to the AD7555 as possible，and as far as possible from the digital circuitry．The AD7555 data sheet gives information on appropriate p．c．b． layout．Calibration procedure：
－Adjust RP1 until pin 1 （ $\mathrm{IC}_{9}$ ）is at +4.096 V ．
－Adjust RP2 until pin $2\left(\mathrm{IC}_{20}\right)$ is at +2.0480 V ．
Correction．Four errors occurred in Fig． 7 of the April part of the article：diode $\mathrm{D}_{4}$ should go to +5 V ，instead of ground； $\mathrm{IC}_{11}$ is a 74 C 157 ；IC2 on pin 42 of $\mathrm{IC}_{3}$ should be $\mathrm{C}_{3}$ ．It is not clear on the drawing that $\mathrm{R}_{15}{ }^{-}$ $\mathbf{R}_{20}$ go to +5 V ．

## Two programs，for Commodore Pet and Fluke

 1720A，to scan 16 channels．

30 REM＊$\$$ PAT HICSET＊＊＊

56 PEM
1G日 TERN CHF：（ $<13 \%$ ）
ITERMIMATION EHFRRCTER IS CK
110 FORNK＝ $0 \%$ TÜ $15 \%$
$120 \mathrm{c} \%=\mathrm{x}$
130 IFC\％$\%$ THENC $\%=C \%+7 \%$

150 PRINTA16＊，CF
170 INFIITIE，F：
1 EO FEMW＊FFICESS FEPL＇rk＊
$190 \mathrm{~K}=$ LEFTS（ F E ， $1 \%$ ）



SCAN IE CHFINELS

239 IF $5="$ T＂THEN
！OVERRANGE
239 IF：$=$＂G＂THEN $\quad$ K $t="+1 \cdot "$
249 IFX





300 NEXTX：
310 PFIHT
320 COTD110
REATY＇．

```
10 REM***FFGORAN FOR SCANNING THFOULGH 15 CHANNELS.***
20 REM+$$13IHO COUNOLORE FET ***
3) REMY & FFRT HICKET'$
40 FEM絆 1% OCT 1981宋**
5 0 ~ R E M
100 REM:**MMINLINE FROGFAT|***
110 OFE|I15,16
120 PRIMT",""
130 FOR:=0TO15
140 C=X: IFC`STHENC=C+7
150 Ct="*"+CHF.&(C+43)
160 PRIHT#1E,C专
170 GOSUE1 9勹@
16% GüSUF*MDO
190 PRIHTT"CHATNEL";CH;":- ":R*;" VOLTS"
205 NEST::
219 PRINT:FRINT
2%0 GOTO1S1
100G FEM-t*LOOF FOR SERVICE REOIJEST***
1010 I FFEEK(524E6)
192G I=FEEK (5-427)
104G IFL O12STHEH1g20
10EG FEMWWWREMI STMTUS EYTE***
1060 AII=153:PE|t %AII='SEFIAL FOLL ENFELE(SPE)
```





```
40 FEM䋛 15 OCT \(1981 * * *\)
50 REM
```



```
110 QFEHIS，16
130 FOR：\(=\) OTO15
\(149 \mathrm{C}=\mathrm{X}: 1 \mathrm{FE} 9\) THENC \(=C+7\)
\(156 \mathrm{C}="+1+\mathrm{HF}+(\mathrm{F}+43)\)
\(150 \mathrm{C}=\mathrm{F}=\mathrm{F}+\mathrm{CHF} \mathrm{F}(\mathrm{C}+43)\)
160 PRIHT\＃1E，G
170 GOSUE1969
170 GOEUE1906
190 PRIHT＂CHANNEL＂；CH；＂：－＂：R未；＂VOLTS＂
2015 NEST：
21．PRINT ：FPINT
1000 REM＊＊LOOF FOF．SERVICE REOUEST＊＊＊
1010 I＝FEEK（534 B6）
```



```
1054 REM WREMI STHTUS BYTE＊＊
```



GTG GOSLIE120


1100 GOBLELEDO
$1110 \mathrm{CH}=\mathrm{HSC}$（St）AND15
120 FETURK

1210 FOKE59456，日 ：REM偻＊RTA LOW

1230 FOKE59427．52：REM\＆＊LHV LOW

1250 POKE594．6，4 ：RET溹執TN HIGH
1260 RETUPK
2 GGC PEMt 3 PEAII MATA FROM EUS＊＊＊
2016 INPUT\＃16．RF
$202 \mathrm{O}=1 \mathrm{EFT}+(\mathrm{P}=1)$
203日 Y士＝FI IHTs（Rs，4）


2069 IF：
2086 RF $=x=+4$ 相

2096 IFTS＝＂
REATH＇


Elements of Microprogramming，by D．K． Banerii and J．Raymond． 434 pages，hardback． Prentice－Hall，£18．70．
The advantages of microprogramming over hard－wired control logic systems are described from a historical viewpoint prior to a thorough treatment of the theory，practice and application．A microinstruction is at a lower level than a machine－code instruction；an Add， for example，requires four microinstructions． Microprogrammed control possesses the advantages of flexibility and economy and the possibility of changing the instruction set or architecture of a computer by altering the microprogram．

Digital Control Using Microprocessors，by P． Katz． 293 pages，hardback．Prentice－Hall， £16．95．
Differences in emphasis between digital processing of signals and the digital control of processes are stressed in this book，which is at a suitable level for final－year degree students and engineers who are already familiar with analogue control．Sample 8085 programs are included．
Computers and the Radio Amateur，by P． Anderson． 208 pages，hardback．Prentice－Hall， £14．20．
A thorough and well presented introduction to computers in amateur radio．Presents a very readable explanation of Basic and assembly－ level programming，and goes on to describe interfacing to amateur equipment and to detail electronic keying and Morse reading．

World＇s Radio Broadcasting Stations，by C．J． Both． 214 pages，paperback．Newnes Technical Books，£5．50．
European f．m．radio and television transmitters are included in this comprehensive listing of stations．The book，first published in Holland， presents the relevant information to enable a listener to identify or locate stations in the long， medium and short wavebands，giving frequency and wavelength，power，co－ordinates of the transmitters and their place names．In the case of television and f．m．radio，there are columns to indicate channel number，aerial polarization and whether the station transmits in stereo．A number of appendices list the addresses of broadcasting stations and DX clubs and there is a five－language glossary，a frequency／ wavelength conversion table and a table giving the characteristics of tv transmitters．

## Waveform synthesizer

Here, an $\mathrm{X} / \mathrm{Y}$ matrix is used to plot a given waveform. The waveform to be synthesized is divided into a number of time domains and the voltage at the end of each domain is set on a diode-chain potentiometer. If the length of the time domain is less than half the period of the maximum frequency present in the waveform and the number of discrete levels is large, accurate reproduction of the original can be achieved. This circuit lends itself to computer control and expansion.

By varying the 555 -clock frequency, the output waveform frequency may be adjusted proportionally. A 7493 counter converts the clock signal into 4 -bit binary to drive a 4 -to-16-line decoder, which in turn drives 16 output transistors through t.t.I. buffers. Each transistor output is fed to a common point through a resistor. For certain waveforms, an integrating capacitor may be connected accross the output to filter out steps and switching pulses.
P. D. Somerville

Crawley
Sussex

## NiCd battery protection

Essentially a fold-back current limiter with a low-voltage detection capability, this circuit draws less than $300 \mu \mathrm{~A}$ and drops less than 0.35 V on full transmit load.
The low loss on load, important in many battery applications, is due to the use of germanium as the control element. Only one control transistor is shown in the simplified diagram although two in parallel are used. The germanium control transistor $\mathrm{Tr}_{1}$ is held on by a silicon transistor, $\mathrm{Tr}_{2}$, whose base current flows through zener $\mathrm{D}_{1}$ and $R_{1}$. With a 12 V battery $D_{1}$ is 9.1 V . In the event of an overload or short circuit the p.d. across $\mathrm{Tr}_{1}$ rises and on reaching 0.6 V is detected by silicon transistor $\mathrm{Tr}_{3}$ with emitter-base connected across the emittercollector of the germanium control transistor. $\mathrm{Tr}_{3}$ turns on, raising the junction of $D_{1}$ and $R_{1}$ to battery voltage. This action turns off $\mathrm{Tr}_{1,2}$ and they remain off while any load is connected.

A similar action occurs if the voltage on or off load falls below IV/cell, i.e. below 10 V . In this case the battery voltage fails to support a current through $\mathrm{Tr}_{2}$ (requiring 0.6 V ) and $\mathrm{D}_{1}$ (requiring 9.1 V ) and $\mathrm{Tr}_{1}$ starts to turn off, initiating the same foldback action. $\mathrm{C}_{1}$ is included to damp the fold-back loop. A low-value resistor $\mathbf{R}_{2}$ is used to control thermal run-away of $\mathrm{Tr}_{1}$.
J. B. H. Stead

## Salisbury



## Glitch detector

Using two fast monostable multivibrators, such as e.c.l. MC10198's, it is possible to detect extremely short glitches. These devices provide a very short pulse, but although the pulse is short, it is at least twice as long as anticipated glitches. As the timing diagram shows, normal pulses are rejected using an AND gate.
D. Vialetto

Castellanza
Italy

## Wideband f.m. demodulator

Operation of the demodulator relies on the linear relationship between power consumption ( $I_{D D}$ where $V_{D D}$ is fixed) and operating frequency of c.m.o.s. logic circuits. A 4013B D-type flop-flop is used because the internal clock elements have a high clock rate capability which extends beyond the normal range of usage. Measurements indicate that the demodulator will work satisfactorily from d.c. up to and beyond 20 MHz .

The flip-flop is clocked by logic level transitions and the resultant current flow converted to an output voltage by the current mirror and output components. The
current mirror ensures a minimal interaction between supply voltage and current in the flip-flop - a higher performance mirror could be constructed using spare devices in the 3046 array if required.

The resistor is chosen to suit the maximum input frequency (the output can swing the full supply voltage, limited only be quiescent device consumption and $\mathrm{V}_{\mathrm{ce}}$ saturation) and the capacitor provides lowpass filtering to remove input frequency noise. Values shown have been used in a 10.7 MHz f.m demodulator prior to "birdy" filtering and stereo decoding.
G. C. Hammond

Whitestone
Nuneaton


## Constant-current supply

This circuit is extremely simple, uses no special components, yet has a very wide range of output currents, $2 \mu \mathrm{~A}$ to 100 mA in six ranges. The only limitation to output is component ratings. It also has a performance that is comparable to more expensive equipment.
$\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and $\mathrm{IC}_{1}$ comprise a constantvoltage supply that can be varied from 0 to 100 V by varying $\mathrm{V}_{\text {ref. } 1}$. When testing this section, no change in the output voltage could be detected on both analogue and $31 / 2$-digit voltmeters with change of supply voltage from 150 V to 250 V and with sudden application of a 100 mA load.
$\mathrm{Tr}_{3}$ and $\mathrm{IC}_{2}$ comprise the constant-current section, $R_{c}$ is the current sensing resistor. By choosing the appropriate value of $R_{c}$ or switching different values, the required current range is obtained.
The voltage drop across $\mathrm{R}_{\mathrm{c}}$ which equals $V_{\text {ref. } 2}$ was chosen to be about 0.7 V so that the error in voltage measurement will not exceed this value plus the drop in the am-
meter circuit, a total of less than 1 V . A multi-turn potentiometer to obtain $\mathrm{V}_{\text {ref. } 2}$ enabled accurate current adjustment.

Capacitors $C_{1}$ and $C_{2}$ suppress oscillations that would otherwise occur; $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ protect $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ from possible negative voltages that may occur due to switching transients. Switching $R_{c}$ during
operation proved to be of no harm, but $\mathrm{IC}_{2}$ may need some extra protection if intermittent loading with outputs greater than 30 V is used frequently (a diode between pins 3 and 7 might help. Ed).
Hussein A. Eassa
Cairo University


# DIGITAL FILTER DESIGN 


#### Abstract

In the next few years digital filters will be increasingly used in place of their analogue. counterparts, not only on account of their accuracy and versatility but also their rapidly declining cost. Authors Cheetham and Hughes introduce the basic theory in this article, give design techniques for a useful class of filters in the next, and describe their implementation by special-purpose microprocessor in a third article.


The conversion of an analogue signal into digital form requires a process of sampling at successive points in time separated by equal intervals, say $T$. Each sample is then converted to a binary number proportional to the sampled voltage. The sampling process requires that the analogue signal be bandlimited to below the Nyquist frequency $1 / 2 f_{s}$, where $f_{s} \approx 1 / T$. This may be achieved to an acceptable accuracy by lowpass filtering the analogue signal before sampling. Failure to do this will result in frequency components above the Nyquist frequency being folded back into the range below $1 / 2 f_{\mathrm{s}}$, causing a form of distortion known as aliasing.
Further distortion is introduced by the process of representing each sample by a finite wordlength or number of bits; the true voltage must be truncated or rounded to one of the discrete levels which correspond to a permissible binary number. The noise introduced by this quantization error may be reduced to acceptable levels by a judicious choice of wordlength and sampling rate.
The discrete-time signal produced by sampling an analogue signal is defined to be an infinite sequence of numbers each corresponding to a sampling point at time $t=n T$ for $-\infty<n<\infty$. Such a sequence is always referred to by its value at $t=n T$. Thus the sequence $\{x(n)\}$ is defined as
$\{\ldots x(-2), x(-1), x(0), x(1), x(2), \ldots\}$
with element $x(n)$ occuring at $t=n T$. By this definition, $\{x(n-k)\}$ denotes the sequence whose value at $t=n T$, is $x(n-k)$. Hence $k>0,\{x(n-k)\}$ is a delayed version of $\{x(k)\}$ where each element is shifted $k$ places to the right and is thus delayed by $k$ sampling intervals. It is often assumed, and arranged in practice, that elements of a discrete-time signal are zero for $n<0$, but this would not always be the case. A discrete-time signal becomes a digital signal when its elements are represented by fixed-wordlength binary numbers. Not all signals encountered in the study of digital filters originate as analogue signals. Many digital signals, such as the discrete time impulse $\{\delta(n)\}$ illustrated, are readily generated in digital form but would be unlikely to occur in that precise form as sampled analogue signals. Further, a perfectly rectangular digital square wave is not necessarily the sampled version of a bandlimited analogue square wave.

Conversion from a digital to an analogue signal involves reconstituting the sampled

by B. M. G. Cheetham and P. Hughes*


#### Abstract

The importance of digital filters as devices for processing digitized signals is rapidly increasing now with the introduction of special-purpose microprocessors and integrated circuits specifically designed for signal processing. Using the numerical processing power of such circuits, digital filters are able to perform operations corresponding to those of analogue filters. For example, the Intel 2920 analogue signal processor with its analogue/digital converters acts as a one-chip replacement for an analogue filter.


In addition to their uses in emulating the frequency responses of established forms of analogue filters, digital filters have a wide range of other applications which take advantage of the much greater power and flexibility. of numerical processing as compared with analogue methods, and the filter may not easily be described as having a particular type of frequency response. Digital filter inputs need not originate from analogue sources, and numerically generated signals are encountered in many applications. In developing the basic theory of digital filters, therefore, it is best to consider them as general devices for processing sequencies of numerical data rather than as digital realisations of analogue filters. But before doing this, this article briefly considers the sampling process often used to produce digital signals and introduces notation for representing such signals.
voltage levels as electrical pulses at the sampling instants, and low-pass filtering to remove frequencies at and above the Ny quist limit. In practice, the sampling rate employed for analogue to digital conversion is normally considerably greater than twice the highest frequency of interest to ensure that the analogue low-pass filters required may be relatively simple and inexpensive.

A digital signal may be subjected to numerical operations such as addition, subtraction and multiplication by passing the sequence of numbers (referred to as samples) through some form of digital

[^6]processing system. Such a system could be a program implemented on a main-frame scientific research computer normally used to process blocks of stored digital signal samples for analysis some time later. Alternatively, the system may be a piece of special-purpose hardware consisting of some digital integrated circuits and/or a microprocessor. With such a dedicated hardware system the processing may be carried out in real time so that an output signal is generated as an uninterrupted stream of samples with at most a small fixed delay between each input sample and its corresponding output sample. In this case the digital system, with associated analogue to digital converters, may act as a direct replacement for an analogue system such as a filter or a modulator.

Digital processing systems can be designed to carry out a very wide range of operations on digital signals. A digital filter is a processing system which generates the output sequence $\{y(n)\}$ from an input sequence $\{x(n)\}$

$$
\begin{equation*}
y(n)=\sum_{i=0}^{M} a_{i} x(n-i)-\sum_{j=1}^{N} b_{i} y(n-j) \tag{1}
\end{equation*}
$$

at time $n T$ for $-\infty<n<\infty$. This is a difference equation of order $M$ or $N$, whichever is the larger. When $N>0$ the filter is said to be recursive as previous output samples are used in the calculation of the present output sample. Coefficients $a_{0}, a_{1}, \ldots a_{M}$ and $b_{1}, b_{2}, \ldots b_{\mathrm{N}}$ are fixed (time invariant) multiplication constants which characterize the effect of the filter. The design of a useful digital filter requires the selection of these constants using design techniques corresponding to those adopted for calculating component values in analogue filters, and an example for a class of digital filters is given in a subsequent article. As a simple example, consider the digital filter defined by the firstorder difference equation

$$
\begin{equation*}
y(n)=x(n)+b y(n-1) \tag{2}
\end{equation*}
$$

where $b$ is a constant. This filter is shown in diagrammatic form in Fig. 1, illustrat-


Fig. 1. First-order digital filter applies numerical operations to the sampled input slgnal $x(n)$ to produce an output $y(n)$.


Fig. 2. The discrete-time impulse $\delta(n)$ is defined only at sampling points $t=n T$, $\delta(n)=\left\{\begin{array}{ll}0, t=n T, & n \neq 0 . \\ 1, t=0\end{array}\right\}$
ing the three basic operations required for any digital filter: addition, multiplication by constants and delay. Make the input sequence $\{x(n)\}$ equal to the discrete-time impulse sequence $\{\delta(n)\}$ of Fig. 2, with

$$
\delta(n)= \begin{cases}1, & n=0 \\ 0, & n \neq 0\end{cases}
$$

The output from this simple filter may be calculated by hand. Assuming $y(-1)$ to be zero, then

$$
y(0)=x(0)+b y(-1)=1
$$

Following on from this
$y(1)=x(1)+b y(0)=b$
$y(2)=x(2)+b y(1)=b^{2}$, and so on.
Hence the output will be the real exponential sequence:
$\{y(n)\}=\left\{\ldots, 0, b, b^{2}, \ldots, b^{r}, \ldots\right\}$
illustrated below in Fig. 3 for $\boldsymbol{b}=0.7$. If $|b|>1$, the sequence $\{y(n\}$ would increase without limit and the digital filter would then be said to be unstable. A stable filter is one which produces a bounded output sequence, i.e. a sequence whose elements do not increase without limit as $n$ increases or decreases (looking backwards in time) for any bounded input sequence. As the input signal in the example above is the discrete-time impulse $\{\delta(n)\}$ the output obtained is termed the impulse response of the filter. If the input had been $\{\delta(n-k)\}$, a delayed version of the discrete-time impulse, the output would have been $\{y(n-k)\}$ a similarly delayed version of $\{y(n)\}$.
Assuming the impulse response of a general filter, as given by equation 1 , to be the sequence $\{h(n)\}$, consider its response to an arbitrary input sequence $\{x(n)\}$. Such a sequence may be expressed as the weighted sum of delayed unit impulses

$$
\begin{equation*}
\{x(n)\}=\left\{\sum_{k=-\infty}^{\infty} x(k) \cdot \delta\left(n^{\prime}-k\right)\right\} \tag{4}
\end{equation*}
$$

If only bounded input and output sequences are allowed, it may be shown that the digital filter defined by equation 1 is linear in the sense that if input sequences $\left\{x_{1}(n)\right\}$ and $\left\{x_{2}(n\}\right.$ produce outputs $\left\{y_{1}(n)\right\}$ and $\left\{y_{2}(n)\right\}$ respectively, the response to $\left\{\lambda x_{1}(n)+\mu x_{2}(n\}\right.$ will be $\left\{\lambda y_{1}(n)\right.$ $\left.+\mu y_{2}(n)\right\}$ for any values of $\lambda$ and $\mu$. By extending this property to the infinite sum of scaled impulses as given by (4) one deduces that the response to $\{x(n)\}$ is

$$
\{y(n)\}=\left\{\sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k)\right\}
$$

The right hand side is the convolution of $\{x(n)\}$ with $\{h(n)\}$, often denoted by $\{x(n)\} *\{h(n)\}$. By a simple change of variable it may be shown that an entirely equivalent expression is

$$
\begin{aligned}
& \{y(n)\}=\{h(n)\} \text { मे }\{x(n)\} \\
& =\left\{\sum_{k=-\infty}^{\infty} h(k) x_{x}(n-k)\right\}
\end{aligned}
$$

The impulse response of a filter therefore provides a complete characterization of its behaviour, allowing the response to any input sequence to be deduced from these two equations.

## Alternative characterization

An alternative method of characterizing a digital filter is to specify its effect on sinusoidal input signals over a range of frequencies. A fundamental property of fixed linear systems in that their steady-state response to a sinusoidal input is a sinusoidal output of identical frequency but modified amplitude and phase. Define a sinusoidal sequence of radian frequency $\omega$ to be the sampled version of a sinusoidal function of time, with frequency $F=\omega / 2 \pi T$; for example $\{A \cos (\omega n)\}$. The response of a filter with impulse response $\{h(n)\}$ to this sequence as input may be readily calculated by first considering the theoretical response to the com-plex-valued exponential sequence $\left\{\mathrm{e}_{\text {iwn }}\right\}$, where $j=\sqrt{-1}$. The response is an output sequence:

$$
\begin{align*}
& \qquad \begin{aligned}
\{y(n)\} & =\left\{\sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{j \omega(n-k)}\right\} \\
& =\left\{\mathrm{e}^{j \omega n} \sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-j \omega k}\right\} \\
& =\left\{\mathrm{e}^{j \omega n} H\left(\mathrm{e}^{j \omega}\right)\right\} \\
\text { where } H\left(\mathrm{e}^{j \omega}\right) & =\sum_{k=-\infty}^{\infty} h(k) \mathrm{e}^{-j \omega k}
\end{aligned} \text { ( }
\end{align*}
$$

The function $H\left(\mathrm{e}_{j \omega}\right)$ is defined as the frequency response of the digital filter and is a complex number for any value of $\omega$ (subject to the convergence of the series in equation 5 ; by the definition of stability


Fig. 3. Output sequence obtained by feeding $\delta(n)$ in Fig. 2 into the digital filter shown in Fig. 1 with $b=0.7$ is the real exponential sequence $y(n)=0.7^{n}$ for $n>0$.
given earlier, convergence is assured for a stable filter).
The response to $\{A \cos (\omega n)\}$ is a sequence $\{y(n)\}$ with

$$
y(n)=1 / 2 A\left(H\left(\mathrm{e}^{j \omega}\right) \mathrm{e}^{j \omega n}+H\left(\mathrm{e}^{-j \omega}\right) \mathrm{e}^{-j \omega m}\right)
$$

Denoting by $\phi(\omega)$ the argument of $H\left(e^{\omega \omega}\right)$ and noting that since all values of $h(k)$ in equation 3 are real, $\left|H\left(\mathrm{e}^{j \omega}\right)\right|=\left|H\left(\mathrm{e}^{-j \omega}\right)\right|$ and the argument of $H\left(e^{-j \omega}\right)=-\phi(\omega)$ :

$$
\begin{gathered}
y(n)=1 / 2 A\left|H\left(\mathrm{e}^{j \omega}\right)\right| x \\
\left(\mathrm{e}^{j(\omega n+\phi(\omega))}+\mathrm{e}^{-j(\omega \mathrm{n}+\phi(\omega))}\right) \\
=A\left|H\left(\mathrm{e}^{j \omega}\right)\right| \cos (\omega n+\phi(\omega))
\end{gathered}
$$

Hence the modulus and argument of the complex-valued frequency response $H$ ( $\left.{ }^{\mathrm{j} \omega}\right)$ give the gain and phase shift of the filter output relative to a sinusoidal input of radian frequency $\omega$. Bearing in mind that

$$
\int_{-\pi}^{\pi} \mathrm{e}^{j \omega(n-k)} \mathrm{d} \omega= \begin{cases}2 \pi & \text { if } n=k \\ 0 & \text { if } n \neq k\end{cases}
$$

it may be deduced from equation 3 that
$h(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega$ for $-\infty<n<\infty$

The transformation from the sequence $\{h(n)\}$ to the complex function $H\left(e^{j \omega}\right)$ of $\omega$ defined by equation 5 is a Fourier transform; the reverse process given by equation 6 is an inverse Fourier transform.

As an illustration of frequency response, consider again the simple digital filter defined by equation 2. By equations 3 \& 5

$$
H\left(\mathrm{e}^{j \omega}\right)=\sum_{k=0}^{\infty} b^{k} \mathrm{e}^{-j \omega k}
$$

which may be summed for $|b|<1$ as a geometric series, giving

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\left(1-b e^{-j \omega}\right)^{-1} \tag{7}
\end{equation*}
$$

Evaluating this expression for $b=0.7$ gives

$$
\begin{aligned}
& \left|H\left(e^{j \omega}\right)\right|=(1.49-1.4 \cos \omega)^{-1 / 2} \\
& \text { and } \phi(\omega)=\tan ^{-1}\left(\frac{0.7 \sin \omega}{0.7 \cos \omega-1}\right)
\end{aligned}
$$

Frequency response graphs of gain, $\left|H\left(\mathrm{e}^{j \omega}\right)\right|$, and phase $\phi(\omega)$ over radian frequencies 0 to $\pi$, corresponding to analogue frequencies from zero to the Nyquist, are shown in Fig. 4(a) and (b).

## z-transforms

Analysis and design of digital filters is greatly simplified by the use of the $z$ transform which is analogous to the Laplace transform for analogue filters.


Fig. 4. Frequency response of a digital filter (in this case Fig. 1 with $b=0.7$ ) characterizes its response to sampled sinusoidal inputs of the form Acoswn. Amplitude response at top, phase response bottom.

The $z$-transform of the sequence $\{x(n)\}$ is defined as the infinite sum

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

for a complex variable $z$. Notice the similarity between this expression and equation 3 ; setting $z=e^{\text {iw }}$ gives $X(z)$ as the Fourier transform of $\{x(n)\}$. The $z$ transform of the impulse response $\{h(n)\}$ is $H(z)$ and hence the setting of $z=\mathrm{e}^{i \omega}$ in this case gives the frequency response already defined as $H$ (eiv). The equation above may therefore be thought of as a generalization of the Fourier transform. Also, the $z$-transform of the delayed sequence $\{x(n-1)\}$ is $z^{-1} X(z)$ as each coefficient of $z^{-n}$ is shifted along by one place. In general the $z$-transform of $\{x(n-k)\}$ is $z^{-k} X(z)$. Also notice that the $z$-transform of the impulse $\{\delta(n)\}$ is $\Delta(z)=1$.
Applying the $z$-transform to the output of a digital filter as defined by equation 1 gives

$$
Y(z)=\sum_{i=0}^{M} a_{i} z^{-i} X(z)-\sum_{j=1}^{N} b_{j} z^{-j} Y(z)
$$

which may be rearranged and expressed in the form

$$
Y(z)=\left[\left(\sum_{i=0}^{M} a_{i} z^{-i}\right) /\left(1+\sum_{j=1}^{N} b_{j} z^{-j}\right)\right] X(z)
$$

The expression in square brackets above is equal to $H(z)$ as if the input sequence
$\{x(n)\}=\{\delta(n)\}$ then $Y(z)$ becomes equal to the $z$-transform of the impulse response. Hence $H(z)$ may be expressed directly in terms of the multiplier coefficients, and the frequency response may be obtained directly from this expression by setting $z=e^{j \omega}$. This may be verified for the simple filter defined by equation 2 where $H(z)=1 /\left(1-b z^{-1}\right)$ and hence an expression for $H$ ( ${ }^{j \omega}$ ) identical to equation 7 .
The transfer function of a filter, $H(z)$, has now been expressed as the ratio of two polynomial expressions in $z^{-1}$, the roots of which are the poles and zeros of $H(z)$. Hence

$$
H(z)=a_{0} \prod_{i=1}^{M}\left(1-z_{i} z^{-i}\right) \int_{j=1}^{N}\left(1-p_{j} z^{-1}\right)(8)
$$

assuming $a_{0}=0$, where the poles are $p_{j}$ and the zeros by $z_{i}$. Expanding by partial fractions (assuming there are no repeated roots other than at $z=0$ ),

$$
H(z)=\sum_{i=0}^{M-N} B_{i} z^{-1}+\sum_{j=1}^{N} A_{j} /\left(1-p_{j} z^{-1}\right)
$$

which expresses $\boldsymbol{H}(z)$ as the weighted sum of sequences whose $z$-transforms are $z^{-1}$ and $1 /\left(1-p_{i} z^{-1}\right)$. Clearly $z^{-1}$ corresponds to a delayed impulse $\{\delta(n-i)\}$. By referring back to the example of a first-order filter whose transfer function is $1 /\left(1-b z^{-1}\right)$ it may be deduced that $1 /\left(1-p_{\mathrm{i}} z^{-1}\right)$ is the $z$-transform of an exponential sequence of the form
$\left\{\ldots 0, \ldots 0,1, p_{i}, p_{i}^{2}, \ldots p_{i}^{r}, \ldots\right\}$
The roots of a polynomial may of course be complex numbers and therefore the sequences above may be complex. As complex roots occur in conjugate pairs, the sequence obtained for $\{h(n)\}$ is always real. A non-recursive filter, i.e. one with $N=0$, will have an impulse response with $h(n)=B_{\mathrm{n}}$ for $0 \leqslant n \leqslant M$ and zero otherwise. Such an impulse response is termed finite as only a finite number of elements are


Fig. 5. Argand diagram shows pole and zero positions for $\mathrm{H}(z)$ obtained from Fig. 1 which determines the frequency response $H\left(\mathrm{e}^{\mathrm{j} \omega}\right)$.
non-zero. The impulse response of a recursive filter ( $N>0$ ) will include at least one sequence of the form in equation 9 and can therefore be of infinite duration. For such a filter to be stable, the above sequence 9 corresponding to each of its $N$ poles $p_{i}$ must be a decaying exponential. Hence a stable filter must have $\left|p_{i}\right|<1$ for all its poles.
Considerable insight into the behaviour of digital fileters may be gained by plotting. Argand diagrams showing the positions of poles and zeros as values $z$. Such a diagram is shown in Fig. 5 for the transfer function $H(z)=1 /\left(1-0.7 z^{-1}\right)$ which has a pole at $z=0.7$, and a zero at $z=0$. The points for which $z=\mathrm{e}^{j \omega}$ on this plane correspond to the unit circle with centre $z=0$ and radius 1. The frequency response $H\left(\mathrm{e}^{j \omega}\right)$ is obtained by an evaluation of $H(z)$ for values of $z$ on this unit circle, where $\omega$ is the angle subtended from the real axis to the point corresponding to $z=e^{j \omega}$. Frequencies zero and the Nyquist appear at opposite sides of the unit circle on the real axis.
A stable filter will have all its poles inside the unit circle $\left(\left|p_{i}\right|<1\right)$. From equation 8 the value of $\left|H\left(e^{j \omega}\right)\right|$ at any point on the unit circle is equal to $a_{0}$ multiplied by the product of the distances from that point to each of the zeros, divided by the product of distances to the poles. The phase of $H(z)$ may also be readily calculated. Consequently zeros close to the unit circle correspond to frequencies for which $\left|H\left(e^{j \omega}\right)\right|$ is close to zero. Poles close to the unit circle produce large values of $\left|H\left({ }^{j \omega}\right)\right|$, the closer the pole, the larger the modulus. Such poles can also affect $\phi(\omega)$ resulting in severe phase non-linearity.
The design of digital filters with specified frequency responses is often carried out by locating zeros and poles at appropriate points on the $z$-plane. Design techniques exist for both recursive and non-recursive filters: refer for details to any of the standard references, some of which are listed below. Non-recursive filters have certain advantages of guaranteed stability and easily specifiable phase characteristics, but tend to involve a large number of arithmetical operations which could make them more difficult to implement. Recursive filters are perhaps still more commonly used, and therefore the next article will introduce a design procedure for this class of filters.

## continued

## Further reading

Digital Signal Processing, by A. V. Oppenheim and R. W. Schafer, Prentice-Hall, 1975.
Theory and Application of Digital Signal Processing, by L. R. Rabiner and B. Gold, Prentice-Hall, 1975.
Digital and Kalman Filtering, by S. M. Bosic, Edward Arnold, London, 1979.
Introduction to Digital Filters, by T. J. Terrell, Macmillan, 1980.
Digital Signal Processing Thoery, Design and Implementation, by A. Peled and B. Liu, Wiley, 1976.

!


What brings home the world's best broadcasting system at the touch of a button?

## Simple. <br> The OUADFM4

Simply write or phone for more information to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone: (0480) 52561.
for the closest approach to the original sound

WW - 052 FOR FURTHER DETAILS

## EP4000 <br> EPROM EMULATOR <br> PROGRAMMER

* Programs 2704/2708/2716(3)/2508/2758 2516/2716/2532/2732
* Emulates same devices with a single keypress
$\star 300$ ns access time in emulation mode
$\star$ Editing facilities - data entry, match, display, shift, move, clear, define, block program, etc.
* Input/output as standard - RS232 (ASC11-hex), 20 mA , printer, cassette \& DMA
* Video output for memory map display
$\star$ Expandable with 2764 adaptor \& Bipolar Prom modules
$\star$ Fully buffered cold ZIF socket
$\star$ Price $£ 545+$ VAT $+£ 12$ delivery


## P4000 PRODUCTION PROGRAMMER

- Program 1-8 devices simultaneously
$\star$ Programs same devices as EP4000
* No personality cards needed
$\star$ Simple operation
$\star$ Blank check \& verify functions
$\star$ Powered down master \& copy sockets
* Individual socket LED indicators
* Mode indicators for blank check, program verify, and socket power down
$\star$ Price $£ 545+$ VAT $+£ 12$ delivery



## MODEL 14 EPROM <br> ERASERS

$\star 14$ EPROM capacity
$\star$ Safety interlocked
$\star$ Convenient tray loading of devices

* UV141 (with timer) £78 + VAT
$\star$ UV140 £61.50 + VAT


# To cope with increased demand <br> WE HAVE MOVED 

## GP Industrial Electronics Ltd.

Unit E, Huxley Close Newnham Industrial Estate Plymouth PL7 4JN

Tel: Plymouth (0752) 332961

## A CHARTER FOR ISOLATION

I wish to quote from your editorial "A Charter for Isolation" in the December issue:
"It leaves us, says Hartley, with a "conception of the engineer as no more than a high-grade technician, a functionary not fully professional

This conforms to a view held in this country in a previous age $-1920-50$. But it surprises me that you did not correlate the holding of this view with the photo on page 37 of that issue, where "engineers practice climbing on these short poles". By our definitions, if British engineers still spend time climbing poles then we would have to say they are technicians.

The engineering profession down-graded itself for too long be accepting such jobs, even in training; besides who can afford such at present starting salaries of US $\$ 22,000$ or thereabouts?
J. D. Ryder,
formerly Dean of Engineering,
Michigan State University.

## THE DEATH OF ELECTRIC CURRENT

Ivor Catt's letter in the February issue only serves to illustrate the deficiences in his knowledge of mathematics and conventional EM theory and the confusion of his own theory.

Can he not see that $E / H=\sqrt{\mu / \epsilon}$ is wrong and $H=B / \mu$ is right for mathematical reasons? There is indeed a small chance that the latter does not describe correctly the true physics of magnetism but at least it is dimensionally sound.

His difficulty with step waveforms on transmission lines becomes clearer. Of course the conduction and displacement currents are both present in the line together, but only as the wave advances. The displacement current $\mathrm{d} D / \mathrm{d} T$ is associated with the wave front only ( $D$ is constant elsewhere). If the wave reaches a (correct) resistive termination $\mathrm{d} D / \mathrm{d} T$ ceases, the step is terminated and the resistor begins to absorb the energy in the wave. It is precisely because the displacement current flows across the transmission line that the wave is called a transverse EM wave and the displacement current is distinct from the conduction current. The energy associated with the displacement current is stored and can be recovered later (cf. radar pulse generators). It can be seen from Mr Catt's own illustration (Fig. 3, p. 68 March, 1979) that the $E$ vector ( $\mathrm{d} B / \mathrm{d} T$ ) and the displacement current vector ( $\mathrm{d} D / \mathrm{d} T$ ) are at right angles, therefore $E \times H$ is purely reactive. This is analogous with reactive power ( $V A_{\mathrm{r}}$ ), where current and voltage are $90^{\circ}$ out of phase. The $H$ vector associated with the conduction current is also at $90^{\circ}$ to the $E$ field and again no energy is dissipated; the power flow is in the direction of the conduction current. In a third case, the transmission line is resistive and there is a component of the $E$ field along the line in a direction opposite to the current flow. Here some of the power is dissipated.

Mr Catt is further confused with regard to electric charge. The existence of electric charge is not a theory; it is a fact like the sun and coal in South Wales. Since one of the manifestations of electric charge is electric potential, any theory of electric waves that dispenses with electric charge must be rubbish. It is the objective of

EM theory to explain the various manifestations of electric charge.

Mr Catt's mathematics is wrong; he does not understand the application of vectors to TEM waves and he does not distinguish fact from theory.

I'm sorry if he believes his version of Maxwell is correct; it isn't. If he was right in his belief some changes would indeed be needed and radios would not work.
Dermod O'Reilly,
Antwerp,
Belgium.

## RECHARGING DRY CELLS

With reference to the letter from Mr D. F . Caudrey (Letter, August 1981) I should like to offer my findings on the subject, and also beg more information from the author
I have been using the same four SP2 cells for about 11 weeks, five days a week, approximately 1 hour per day. At first I would recharge them (using the circuit and method due to Mr Caudrey) for an hour or two, twice a week but now I need to re-charge every day for about 2-3 hours to get an hour's use from the cells. Although I am convinced that the method is feasible in practice, I do not seem to have had the same success as Mr Caudrey, and so I would like to hear from Mr Caudrey his recommendations about charging, i.e. when and for how long.
S. P. Narey,

## Idle,

Bradford.

## MILLIMETRE-WAVE LENS AERIALS

I have read Dr K. L. Smith's article on millimetre wave lens aerials with interest (and some nostalgia as I was in the lens business in the carly 1950s) and congratulate him on an excellent reintroduction to an almost forgotten topic.

Has it occurred to Dr Smith that his method of fabrication would be equally applicable to another of Winston Koch's inventions, the serpentine lens? This form of lens can be assembled from a set of plates which have been crimped into sinusoids. Propagation is in the TEM mode and the quasi-refraction index is simply the ratio between the widths of crimped and uncrimped sheets. Dr Smith has only to stack a set of crimped sheets and machine a profile to produce a set of path-length lenses.

The serpentine lens has two advantages over the $\mathrm{H}_{01}$ wave-guide lens. It is unaffected by the spacing between plates, so tolerances are easier, and by arranging for the surfaces of the sinusoidal sheets to be normal to the phase surface of the lens where they meet this surface, the lensmedium will be matched to free-space, avoiding the alternating $\lambda / 4$ and $\lambda / 2$ transformers which degrade the side-lobe performance of a waveguide lens in which the refractive index has been pushed too far from unity.

The path-length lens may have disadvantages as well, but since to the best of my knowledge one has never been produced for operational use, perhaps Dr Smith will Identify them by investigating the first thirteen models?

## S. S. D. jones <br> Malvern

Worcestershire

The author replies:
I was pleased to hear that Mr Jones enjoyed the article on mm-wave lens aerials. He has raised a very interesting point regarding the development of the serpentine plate lens aerial, which he is right in ascribing to Winston Koch. I agree on the added advantages of the corrugated conductor planes, but I did not consider employing them in the lens I made. Mr Jones raises a very interesting possibility, as I also agree with him that there would not be any fundamental problem in turning out such modified lenses by the same method I originated.

It would be most interesting to see an attempt made practically on such a design. We should thank Mr Jones for the suggestion.

## LINEAR POWER AMPLIFIER

Operation of the output transistors at an approximately constant low voltage, as recommended by D. Rawson-Harris (Letter, Jan. 1982, p.40), can be used to give a class-A amplifier which retains to a considerable extent the efficiency of a class-B amplifier.
The low-voltage transistors are operated in class A from a low-voltage supply, perhaps +2 , $0,-2$ as suggested by Mr Rawson-Hiarris, and this supply is carried up and down by a slave class- $B$ amplifier of gain +1 . The class- $B$ amplifier may produce noticeable crossover distortion; but as the effect of the distortion (or error) is only a small modulation of the almost constant c-e voltage of the class-A transistors its effect on the performance of the complete amplifier may be expected to be very small. An outline of the system is shown in the diagram.

As a piece of engineering the system cannot be rated very highly: Peter Walker's Quad amplifiers are much simpler, and their distortion is so low that they sound like a piece of wire. But the economics of producing an amplifier may be different for the amateur constructor and experimenter, and this alternative class-AB system may therefore be of interest. It has been used in some expensive Japanese amplifiers, but may be new to many Wireless World readers.


Mr Rawson-Harris calls his triples current amplifiers. Certainly their current gain is high; but it is poorly defined, having at least the current-gain spread of their first transistors, and they have high inlet resistance. I feel that a current amplifier should approximate to a short circuit and present a low resistance. To me the triples are enhanced transistors giving a voltage gain of many hundreds as a common-emitter amplifier, or enhanced emitter followers giving a voltage gain $\rightarrow 1$ very closely.
E. F. Good

Neasham
Darlington
Co. Durham

## CLANDESTINE RADIO

Pat Hawker's review in the January and February, 1982 issues ably covers an area of interest to technical people which is noticeably omitted in the many books dealing with Resistance and Intelligence activity in World War II. Inevitably, in a collation from many sources, errors appear and among many statements of fact one finds items which are the opinions or deductions of a particular source. Some corrections which I am qualified to make, will, I hope, contribute to a valuable summary.
SOE began to design and make radio equipment before mid-1942, particularly the Type A Mk1 and the B Mk1 in 1941. The "early French Resistance suitcase set" illustrated in p. 82 of the February issue was indeed the Type A MkII, which I designed in late 1941, just after the completion of the B MkI. This set was produced by Marconi, first at Writtle then at Hackbridge in quantity believed well over 1000 . Many were allocated to Russia as well as to France and other areas of Occupied Europe, but details of distribution and usage are not available so far. The modular form of the A MkII, like that of the later B MkII, was to assist in assembly onto various housings, transport and concealment, as well as service by substitution.
Operational demand for a one-piece unit of the smallest size led to the re-engineering of the A MkII into the A MkIII, by Marconi production engineers. The main difference in the design was in the replacement of the TT11 Tx valve by the $7 C 5$, which had then become available. Volume production from about the end of 1942 onwards totalled, I believe, over 4000.

The "A" series was designed for short to medium-range communication particularly to UK from France, Belgium, Holland, Denmark and Norway. While the " $B$ " series was intended for medium to long range in Balkan, Middle East and African countries as well as from Southern France. A "C" series was considered but not developed, but a B MkIII was produced especially for the Far East and long-range jungle patrols. The transmitter was c.w. and a.m./r.t., and like the receiver, was hermetically sealed, positively buoyant, and entirely powered by a pedal-generator. The station was in two manpacks. The tendency of technical people to contract titles led to the general use of "A2", "B II" etc., but the term "B2 minor" is a misleading post-war usage.
SOE development was not centred on Gorhambury at St . Albans, which was only one of many large country houses used, but at the Frythe in Welwyn. Producton of the B MkII was entirely by the ISRB (ie. SOE) factory at Stonebridge Park, employing mainly Services personnel: RAF, Royal Signals, REME, ATS
and FANY. About 7000 sets were made, with output reaching 400 per month in 1944.
I will not contest the relative merits of SIS/SOE/Polish sets since $I$ am as biased to one as Pat Hawker is to another, following our respective wartime employment and loyalties, but would beg to differ, since the operational requirements differed. The SOE sets were essentially para-military, with far wider application than to agent use in Northern France, and for a greater variety of operators. Too little has been said of the Polish sets and the Polish contribution, for which I have the greatest admiration. The OSS started development of suitcase sets from about mid-1942, learned rapidly, from British and their own experience, and made their contribution world-wide. Naturally, each historian tends to present the story as seen through the records and reports of his countrymen, and frequently dates are omitted, so that the order in which facts are presented implies their precedence. Reading G3VA's account of air-to-ground links (February, p.83) he quotes first MI-6 use of "early American f.m. equipment on $30 \mathrm{MH} z$ " then "SOE developed the 450 MHz S-Phone" and gives one date August 1944. I have no information of the use of the American R/T sets before 1944, about the time of the "Joan-Eleanor" project, but the Sphone was working in 1941, and my colleague, Charles Bovill tested the first airborne equipment on a flight in Wellington No. L7772 on October 6th 1941. The air-set was a protorype superhet tuning through $60-70 \mathrm{~cm}$. It was used in Operation "Claude" on October 28th in a Whitley Mk.V. The S-Phone ground-set was developed by Capt. Bert Lane and the airset by Major Hobday, both of Royal Signals. The airset was destroyed in a crash later in 1941, but replaced by a super-regenerative air-set ten days later, by a rapid development by F/Lt Bovill. This remained standard operational equipment by 138 and 161 Squadrons until the production of the Homing Aircraft-superhet in 1943. In January 1944, a USAF Liberator was fitted with Homing S-phone gear, and in summer of that year F/Lt Bovill equipped and flew with thirty C47 aircraft of the American 60th Group Troop Carrier Sqdns, at Brindisi. These aircraft used S-phone continuously in operations until the end of the war, mainly over Albania, Yugoslavia and N. Italy. This is only a small part of the Sphone story, appropriate now in context with Pat Hawker's article.
John I. Brown, G3EUR,

## S. Ockendon,

(late Major R. Signals).

## THE NEW ELECTRONICS

I am afraid that my own experiences with interviewees is closely similar to that described by Mr Jaques in the January 1982 issue. I could hear an echo of my own comments and experiences as I read it through.
I like to finish an interview with a few simple technical questions, not to cause the interviewee any difficulty but to ensure that his understanding of the fundamentals of the subject is adequate. In the situation, slick, polished textbook answers are not expected but the right approach to achieving a satisfactory answer is expected. At this stage of the interview the interviewees are likely to be reasonably relaxed, and frequently have done a good job on selling
themselves, so that the situation for both parties looks good.
My opening question starts with a battery feeding a capacitor through a resistor and switch in series. Assuming the capacitor is discharged at time zero, tell me how the capacitor voltage varies with time? All too frequently we do not get on to the second part (adding a series inductor) or the third part (replacing the battery with a sine-wave generator). Perhaps the interview situation is too upsetting, I try to provide not too serious help and guidance. Nevertheless one hopeful believed that the linear network with a sinusoidal input produced squarewaves.
It is very difficult explaining to the MD that, in spite of the excellent paper qualifications of those already interviewed, further interviewing will be necessary.
N. A. Haran,

St. Albans,
Herts.

## INTENTIONAL LOGIC SYMBOLS

In reply to Christopher Hudson (Letters, February 1982) the question as to whether a NAND gate is performing the function of positive NAND or negative NOR is to me as daft as asking whether a bucket is half full or half empty. The answer is both, not merely because the truth table says so but because, as an experienced logic designer I can, and do think of it as either with complete dexterity, although more frequently I think of a gate in terms of its truth table. If then I, as the designer of a circuit, cannot identify an intention, how can there be one?
Logic 1 and 0 are two states of complete equality: one is not merely the absence of the other. Some inputs, a 'clear' on a flip-flop for example, may be responsive to one state rather than the other, but this is a function of the input not of the signal feeding it. Mr Hudson does not

(a)

(b)

$\mathrm{m}, \mathrm{n}$ may be $00,01,10$ or 1 ?
if all inputs $=m$, output $=n$
if any inputs $\neq \mathrm{m}$, output $=\bar{n}$
define what he means by the assertive state, I can only assume that he means the state which asserts itself, but that gets me no further. Even in the case of flip-flop 'clear' inputs, one could have an active-high and an active-low flip-flop connected to the same signal. How can the signal itself be thought of as having an assertive state? Mr Hudson illustrates the point himself in the mess he gets into over his Fig. 2. Essentially a 1 or 0 on the select are equally assertive and I maintain that, far from being unusual, it represents the general case.
In a practical design what may start out in the draft design as Fig. 1(a) may finish up as Fig. l(b). The question is, is the two-input NOR performing the function of low-assertive NAND or high-assertive NOR? If Fig. 1(a) represents the intention then it is performing both. Should we draw it twice? Well why not, we are already being asked to show the outputs on flip-flops twice, use twice as many logic symbols as before, accept that identical devices may have different symbols, that a connection may be shown broken with a naming ceremony in between and even to accept that an inherently symmetrical device like a two gate latch should be drawn so as to make it look asymmetric, (see Cassera, November 1980) all inthe name of simplification.

The AND and OR names are a useful aid to memory as to the truth table of the gates so described. The predominance in practical logic of NANDS and NORs spoils the essential simplicity of the concept to the point where the names may be more of a hindrance. Intentional logic symbols are an attempt to restore the original simplicity. Mr Hudson's letter is in my opinion ample proof that they have failed miserably to do so.
My proposed logic symbols exploit the fact that if one is forced to live with negative and positive logic, one does not need to also live with both AND and OR because we can redefine the OR as a negative AND. As we now have only one type of function that function does not need a name, it is only necessary to define whether it is positive or negative logic, inverting or noninverting. This is most easily achieved by putting the simplified AND truth within the symbol, thus nothing need be committed to memory: it speaks for itself.
By way of a field test I introduced my 10 year old son to my logic symbols. Within half an hour he could derive the waveforms out of any gate combination I gave him. (Previous knowledge of logic nil). With intentional logic it is necessary to define eight types of gate, with truth-table logic symbols, Fig. 2 gives a full definition. Simplicity is the name of the game.
J. E. Kennaugh,

Callington,
Cornwall.

I disagree with your correspondent, C. Hudson, over his proposal for intentional logic diagrams.

Whilst these may at first seem attractive from an academic viewpoint, in practice such circuitry can cause a good deal of confusion, particularly where multiple gate packages are in use. Consider for instance, a 7400 NAND gate split up in a circuit such that part is used as NAND, part is used as low-active OR, and the remainder as inverters. Under Mr Hudson's instructions, this results in three different drawings for the same device. A service technician trying to relate the drawing to a particular chip pack would have difficulty, without a great deal of cross-referencing. In addition, an increasing number of complex devices have inputs in which clock high and low could be equally considered to be active, since important but differing instructions are conveyed by each polarity. How would such an input be drawn?
Even if the traditional method of drawing diagrams is for some reason to be deplored, I consider that it should be retained on the basis that it is at least an established standard. To change symbols every time someone has a new idea is a recipe for annoying confusion.
To sum up, I would say that I consider Mr Hudson's proposals a change for the sake of change - rather like using Hertz for the perfectly acceptable $\mathrm{c} / \mathrm{s}$, and changing the spelling of enquiry to inquiry.
L. Hayward

Wareham
Dorset

## TWINS PARADOX OF RELATIVITY

I refer to L. J. Higgins' letter (April 1981) in which I am accused of addressing myself to a "fundamental flaw" and also of imagining a "miraculous coincidence".

The first is easily disposed of, since the accusation is quite false and originates in Mr Higgins' failure to pay close attention to the text being discussed, in particular W.W. Oct. 1980 p.56., the first column of which cites Einstein's own activities and his words to which the second paragraph of my letter (January 1981) alluded. Thus Mr Higgins accuses Einstein, not me, of contriving a fundamental flaw.
I come now to the matter of coincidence and all that ensues.

The equation $F L / 1 / 2 v=m v$ shows how momentum is achieved. Unfortunately Newton did not know that material particles are held separate by interatomic forces and that, in consequence, all force acts at a distance, but today any competent radio engineer knows that the l.h.s. of the above equation represents the cu mulative Doppler modification to an impressed force acting from a distance and having its origin fixed to some arbitarily stationary datum, motion and energy being of course related to that datum.
So we have two methods of obtaining the KE equation, the classical which is based upon an analogue with friction and this present one which depends upon Doppler. Being a physical description, the latter represents the application of negative feedback to ancient hypothesis, serving to convert that hypothesis into the form of unassailable physical description and allowing direct comparison with modern experimental results. This is an addition to the scientific method.
Even though the two methods of obtaining the RE equation differ so widely, each not mentioning what the other contains, they yield
the same result which in its turn accords with experiment. The fact that the original derivation of the KE equation is in accord with experiment and also with the physical description is pure coincidence, nothing more.

I come next to the experimental facts which lead to the falsification of both the concept of variable time and the light postulate, thereby putting an end to the twins controversy.

When referring to J. C. Maxwell (Letters, February 1982), P. G. M. Dawe tells us that the mass increase hypothesis has been verified by experiment. He also inverts history by putting $E$ $=M C^{d}$ before mass increase. In a linear particle accelerator the origin of the motive force is at rest relative to the machine and since the force acts at a distance its effect must be subject to first-order Doppler. This is a physical fact, which is never mentioned. If the force travelled at infinite velocity then the experiment would yield the Newtonian energy equation as its result.

However, in reality the force is known to move at the lesser velocity $C$ and hence the declining effectiveness of the force with relative velocity is modified by a second-order term coincidentally identical to the Lorentz transform.

Electron beam and linear particle accelerator experiments prove quite conclusively that mass is velocity-invariant. If, as Mr Dawe would have us believe, mass increase can be derived from $E$ $=M C^{2}$ then either the mathematic or the derivation or the equation itself is wrong. The falsehood is proven by experiment.

Let us now contemplate the consequences of these things.

Mass increase is justified by the consideration of the elastic collision of two projectiles. Within this scenario the conclusion that mass is veloc-ity-variant rests solely upon the stationary observer 'knowing that the clock of the moving participant of the experiment runs slower'.

If, as has earlier been shown, mass is velocity invariant then time is, inevitably, velocity-invariant as well.

In its turn the derivation showing time to be velocity variant rests entirely upon the assumption that the light postulate is true.

Because time is in fact velocity invariant there is no alternative but to accept that the light postulate is false.

The fact that an experimental result can appear to confirm the end product of a flight of pure fancy is indeed a miraculous coincidence. Should anyone question the fact that $E=M C^{2}$ is disproven, other than in the limited sense of mathematic equivalence, I would point out that the matter has never been tested directly due to insurmountable technical problems ${ }^{1}$.

I suggest that Prof. H. Dingle's misgivings about atomic experiments were entirely justified because it has been shown that matter has never, on this planet, been converted into energy. We are left with the distinct risk that interconversion might one day accidentally occur and there exists neither mathematic nor experience to predict the outcome.

A valid alternative has been provided to replace S.R.T. and it is to be hoped that the scientists will emerge from behind their wall of icy silence and discuss the matter in terms which do not involve the double standards that thave been observed by I. Catt (Letters, February 1982).
Alex Jones,
Swanage,
Dorset.

## Reference

J. Chappell. S.S.T. Vol. 2., No. 3, p.316-317.

# AMATEUR LICENCES IN GERMANY 

Just in case nobody else objects, may I correct V. A. Sancto's statement in your February issue.

Licence | Morse |
| :---: |
| Class |
| requirement | Amateur bands

B

## 60 letters <br> p.m.

All amateur bands, most modes including telephony except 1815-1832 and the new<br>$10,18,24 \mathrm{MHz}$ bands<br>which are telegraphy (A1A) only

A 30 letters $3520-3700$ telegraphy
p.m. 3600-3700 also
telephony
21090-21150
telegraphy $28.0-29.7 \mathrm{MHz}$ also
telephony

C none v.h.f./u.h.f. only
H. Borsutzky,

Cologne,
W. Germany.

## POWER TRANSISTOR FAILURE

I have some pulse-width-modulated switching output power amplifiers which deliver up to 18 A at $\pm 170 \mathrm{~V}$ into a d.c. motor and inductor of about 5 mH . The amplifiers have been unreliable over a long period, apparently random power-transistor failures occurring even after several hundred hours of operation.

The output stage uses parallel pairs of 2N6547 transistors (others have been tried), switching the load alternately between the supplies. Unmodulated switching rate is about 4 kHz , rise and fall times are typically $5 \mu s$, and the collectors are clamped at the total supply, i.e. 340 V . During part of the cycle the collectorbase junction is forward biased. There is active turn-off of the transistors.

Any light on the possible causes of failure will be appreciated.

## I. E. Shepherd

Hydraulics Research Station
Wallingford
Oxfordshire

## ORIGINS OF THE HIGHPOWER TRANSMITTER

It is now $90^{\circ}$ years since Nicola Tesla delighted the eyes of engineers in Europe with demonstrations ${ }^{1}$ of high-frequency discharges in gases. To obtain a voltage sufficiently high, he used what we now recognise as a loose-coupled transformer with tuned primary and self-resonant secondary, to step up the more modest levels obtainable from a high-frequency alternator and
power transformer. To the more critical eye of, today his circuit with its two spark gaps may seem a trifle over-complicated; but he also used a simpler arrangement with only one spark gap, powered from a low-frequency generator. Readers familiar with the circuits of early wireless transmitters, for example, that of Poldhu designed by Fleming ca 1900 , would undoubtedly recognise some antecedent features. It may not be generally appreciated that Tesla himself suggested such an alternative application for his discharges: "I think that it may find practical applications in telegraphy. With such a brush it would be possible to send dispatches across the Atlantic (sic) . . " It is clear from the contextual wording that Tesla was thinking more in terms of an ion or plasma beam than of any "etheric force"; and his later patent ${ }^{2}$, though it includes what is recognisably an antenna, confirms this. He was probably aware of the telegraph based on atmospheric conduction proposed by Loomis and Ward ${ }^{3}$ in the previous decade, which would certainly have benefited from a transmitter of phenomenal power. Though Tesla here seems to have had his head in the clouds, the practicality of his transformer engineering shows that his feet were certainly well grounded.

Hard on his heels we find another American (though Tesla was in fact Yugoslav), the engineer Elihu Thomson, describing ${ }^{4}$ a similar circuit capable of providing the high potentials needed for testing electrical apparatus. This circuit appears to correspond to the simpler one of Tesla, and actually uses an air-blast at the sparkgap as suggested in Tesla's paper. As neither of these two engineers acknowledges the work of the other, we are left in some doubt as to which of them invented what. Unless earlier contenders appear, it is not unreasonable to allow them both to share the honours. Again, there is no mention of etheric telegraphy in Thomson's paper, nor in his subsequent patent ${ }^{5}$. And this indifference to the communication potentialities of his apparatus is the more surprising in that he had himself (it is alleged by Snyder ${ }^{6}$ ) practical experience of "Maxwell Electro-Magnetic Waves", and also had published ${ }^{7}$ a joint account of his work with Edwin Houston on "The Alleged Etheric Force" demonstrated by Edison's experiments.

Wireless, therefore, waited for others to demonstrate viable communication, Lodge with his "syntonized" tuning and the entrepreneurial Marconi with an aerial. And only then, as wireless took off, did companies in search of higher spark power embody features of Tesla and Thomson circuits in almost every transmitter of consequence. With the subsequent demise of spark telegraphy, these features eventually vanished from wireless transmitters, though the blown spark-gap surfaced again in radar modulators in World War II ${ }^{8,9}$ and later still in photographic flash-gear ${ }^{10}$. Where then can we look today for the Tesla-Thomson "coil". Open up a "tickler" vacuum tester and you will find one; start up a xenon arc lamp and you will be using another. "Tesla Lives" is my centennial toast!
Desmond Thackeray
Music Department
University of Surrey

## References:

1. Jour. I.E.E. 21, (1892), Lecture of 3 February by N. Tesla
2. U.S. Patent 645,576 of 20 March 1900 (filed 2 Sept. 1897)
3. E. N. Sivowitch, Jour. Broadcasting, 15, (1970), pp. 3 to 5
4. E. Thomson, Electrical World, 19, (1892), 116
5. U.S. Patent 500,630 of 4 July 1893 (filed 18 July 1892)
6. M. B. Snyder, General Elec. Rev. 23, (1920), 208
7. E. J. Houston \& E. Thomson, Jour. Franklin Inst. (April 1876), 270
8. J. D. Craggs, M. E. Haine \& J. M. Meek, Jour. I.E.E. 93, IIIA, (1946), 963
9. K. J. R. Wilkinson, ibid, 1090
10. R. H. J. Brown \& J. A. Popple, Med. E Biol. Illustr. 5, (1955), 23

## HORN LOUDSPEAKER DESIGN

Bernard Jones' thoughuful letter (January, 1982) prompted me to re-examine my 1974 articles on horn loudspeaker design*, and in particular Fig. 13. The intention of this figure was to illustrate how a treble horn could be given a degree of directivity in the horizontal plane by modifying the standard circular cross section to be rectangular, with aspect ratio 2.5:1, but still ensuring that the area profile from throat to mouth followed a true exponential law (it could have been a tractrix law, but there are good reasons for avoiding tractrices at high audio frequencies).

I have re-checked my design calculations, and must agree with Mr Jones that on strictly mathematical grounds, neither vertical nor horizontal profile should fall inside the circular horn profile (in fact, the two sides of the rectangle should respectively be 1.12 and 2.8 times the. radius of the circular horn). I began this particular design of horn with a circular throat to suit a circular loudspeaker, and my imperfect attempt at "fairing" from circular to rectangular crosssection has resulted in this anomaly. In practice, I can see that my artwork with damp plaster-ofParis probably made the profile even more approximate at this point, but horns and ears are remarkably tolerant, and I doubt whether any colorations thus produced are audible, or if audible are at all obtrusive.

I can confirm Mr Jones' suspicions that treble horns give disappointing results unless mounted on baffles (hemisphere loading) to minimise diffraction effects. The sound quality from small piezo-electric tweeters (those fitted with integral plastic horns "a few inches across) is very dependent on the mounting topography within a radius of up to 12 inches from the mouth.
Jack Dinsdale
Carlton
Bedfordshire
*March, May and June, 1974. Reprinted in High Fidelity Designs, volume 2.

## CARTRIDGE ALIGNMENT

Good grief, Mr Frost (Letters, January), how will Wireless World ever graduate to promulgating the concept of pickup arm rigidity as an over-riding design concern if you want to introduce further, unnecessary bearings? It's not quite so specious an idea as the infamous threadsuspended pickup arm, but . . . As a final touch, perhaps the APT design team should develop it.
Keith Howard
Teddington
Middlesex

# DIGITAL OPTICAL RECEIVERS 

## Dr Garrett concludes his review of receivers for optical fibre communication with the theory of digital reception and gives practical achievements with $p-i-n$ diode/f.e.t. receivers

In a receiver for a binary digital system, the aim is to process the signal in such a way as to be able to distinguish between two hypotheses, which we label zero and one, with the minimum possible error. In this way we seek the best estimate of the original message from the attentuated, distorted and noisy signal in the receiver. Commonly the signal is detected, amplified and filtered and then presented to a decision gate which is opened for a short interval at the centre of each bit period by a pulse from a clock circuit. This interval is called the decision time. Assume that, for a received zero bit, the receiver output voltage $v(0)$ at the decision time has a mean value $m_{0}$ and variance $s_{0}$, while for 'a received one, the mean is $m_{\mathrm{i}}$ and the variance $s_{1}$, Fig. 9. Because the quantum noise is signal-dependent, $s_{0}$ and $s_{1}$ are different, in contrast to microwave transmission systems. Assume also for simplicity that $v(0)$ has a Gaussian distribution, although the multiplied quantum noise has in fact a compound Poisson distribution. The error probability is then
$P_{\mathrm{e}}=1 / 2 \operatorname{erfc}(Q / \sqrt{ } 2)$
where $m_{1}-m_{0}=Q\left(s_{1}+s_{0}\right)$.


Graduating from Trinity College, Cambridge in 1965, lan Garrett completed a PhD on radiation damage in metals in
1969. He joined the Post Office Research Department, now British Telecom Research Laboratories, as a Research Fellow working on the theory of chemical transport reactions. In 1971 he became group leader responsible for the preparation of compound semiconducting films and crystals. Since 1976 he has lead a section responsible for optical transmitters and receivers and integrated optical devices.

## by lan Garrett

This says what difference there must be in optical power between the zero and one bits in terms of the noise (variances) and $Q$, which is related to the signal-to-noise ratio (in fact, $4 Q^{2}$ ). The equation gives the value of $Q$ needed for a given acceptable error rate. For example, $Q=6.00$ for $P_{\mathrm{e}}=10^{-9}$; small changes in $Q$ produce large changes in error rate. For design error rates of this magnitude, errors arise from the far tails of the noise distribution - six standard deviations away from the mean. That is why accurate models of noise statistics are important in optical systems. In fact the Gaussian approximation used here is successful at predicting error rate as a function of mean signal power, but is poor at giving the correct signal threshold level and the optimum avalanche gain, for this reason.
The theory of optical receivers enables calculation of $m_{0}$ and $m_{1}, s_{0}$ and $s_{1}$, in terms of the received optical waveform and the component values of the receiver. One can then predict the sensitivity of the receiver and model how it is affected by changes in receiver or system parameters. Details theoretical analyses are listed in the bibliography, and is only the very simplest case is considered here. If the received optical power $p(t)$ is $p$ during a one-pulse and zero during a zero-pulse, the pulse energy for a one-pulse $b_{1}$ is $p T$ and for a zero-pulse $b_{0}$ is zero. The photocurrent ( $i_{p}$ ) is then $\eta q M p / h v$ during a one-pulse and zero during a zero pulse. This current is filtered by the receiver front-end.

A typical circuit is shown in Fig. 9 with the equivalent circuit for noise analysis. The photocurrent is then amplified and passed through an equalizing and bandlimiting filter $H(f)$ resulting in an output voltage $<v_{\text {out }}>$, which corresponds to $m_{1}$ or $m_{0}$.

The noise sources which contribute to $s_{0}$ and $s_{1}$ are the amplifier thermal noise, the multiplied quantum noise and excess avalanche noise, and the shot noise on the photodiode dark current. The meansquare noise voltage at the receiver output may be expressed as:
$\left\langle v_{\mathrm{R}}^{2}\right\rangle=(h \vee \eta)^{2}\left[M^{x} T I_{2}\left(\left\langle i_{\mathrm{p}}^{2}\right\rangle+I_{\mathrm{d}}\right) / q+Z / M^{2}\right]$
in which $T$ is the bit-time, $M$ is the current gain of the photodiode, $I_{2}$ is a dimensionless band:width integral of order unity, $I_{\mathrm{d}}$ is the dark current, and $Z$ is a dimensionless parameter characterizing the amplifier noise. In fact, $Z$ is the r.m.s. amplifier noise voltage normalized with respect to


Fig. 9. In the unfiltered output pulse from an optical receiver, the shaded region indicates the variance (mean-square noise voltage), shown to depend on signal level. Mean levels $m_{1}$ and $m_{1}$ correspond to zero and one bits (spaces and marks). Pulse is slightly dispersed so that some energy is outside the bit-time $T$.
the receiver's response to one photoelectron. Typical values are $10^{5}$ at a few Mbits/s to $10^{7}$ at a few hundred Mbits/s. This equation also assumes that $m_{1}$ has been normalized to be equal to $b_{1}$, the optical energy for a one pulse.

Shortly before this article went to press, British Telecom Research Laboratories at Martlesham Heath announced the transmission in the laboratory of an optical signal capable of carrying nearly 2000 simultaneous telephone calls over 102 km of optical fibre, without the need for intermediate repeaters. Operating at 160 Mbaud , this is the longest single-span fibre system yet demonstrated. Many of the critical components were made in British Telecom's laboratories at Martlesham, including the very low-loss fibre and the receiver, which is the most sensitive in the world at wavelengths between 1.3 and $1.6 \mu \mathrm{~m}$. A $\operatorname{lnGaAs} / \mathrm{InP} p-i-n$ diode, of the sort described in this article, with a Plessey GAT4 m.e.s.f.e.t. were used for the critical first-stage amplifier.


Fig. 10. In this typical circuit for an optical receiver the broken-line connections and the peak deisctor and voltage regulator are only necessary if an avalanche photodiode is used to control the gain. Noise model of the receiver șhows principle noise sources and equalizing filters (see text).

More detailed treatments listed in the bibliography take into account the shape of the received pulses, pulse spreading into neighbouring bit-times because of dispersion, and other system impairments, and give detailed expressions for $Z$ in terms of the receiver components. Here consider a simple case first and then look at some of the results of the detailed theories.

Consider a p-i-n photodiode which has unity gain only. The quantum noise is insignificant, so from equation 2 :

$$
s_{1}=s_{0}=\frac{h v}{\eta} \sqrt{Z}
$$

so from equation 1 :

$$
m_{1}=b_{1}=2 Q_{\eta v}^{h v} \sqrt{Z}
$$

With typical component values, $Z$ might be $10^{6}$. So with $Q=6$, we need 12,000 photogenerated electrons per one-pulse, in agreement with the earlier rough calculation. Using discrete components, a unity-gain photodiode provides a receiver sensitivity typically 10 to 15 dB worse than an avalanche diode. However, by hybrid integrating the p-i-n diode with the first amplifier stage using a gallium arsenide m.e.s.f.e.t., the input capacitance of the receiver can be reduced so that $Z$ falls to


Fig. 11. Hybrid p-i-n f.e.t. integrated optical receiver for high data rates, say 30Mbits/s upwards in a standard 14-pin d-i-I package is the most sensitive so far for the range 1 to $1.6 \mu \mathrm{~m}$. Input fibre tail, visible at the top left, enters package and passes through glass block supporting the photodiode vertically so that it can be illuminated through the substrate. The thick-film circuit comprises a GaAs m.e.s.f.e.t. input stage with bipolar shunt feedback and emitter-followerstages.

10,000 or less. The receiver noise parameter $Z$ is proportional to $C^{2} / g_{m}$, at high data rates where $C$ is the total input capacitance (photodiode, gate-source and stray capacitance) and $g_{\mathrm{m}}$ is the transconductance. In state-of-the-art receivers, $C$ is around 0.5 pF and $g_{\mathrm{m}}$ is 20 ms . Such receivers have a sensitivity of -44.2 dBm at 160 M baud and -40.1 dBm at 294 M baud, at $1.3 \mu \mathrm{~m}$ wavelength, and similar sensitivity at $1.55 \mu \mathrm{~m}$, better than that of a.p.d. receivers. The $\mathrm{p}-\mathrm{i}-\mathrm{n} / \mathrm{f} . \mathrm{e} . \mathrm{t}$. hybrid approach also offers the advantages of low-voltage operation, no need for feedback to control the avalanche gain, simpler device technology and probably greater reliability. Typical photodiodes, for use in p-i-n/f.e.t. receivers are shown in the first part of this article. The receiver uses a high impedance (integration) front-end amplifier for the best performance, although a trans-impedance amplifier could be used with a slight penalty. The integrating characteristic (time constant typically 1000 times the bit period) has to be equalized, which can be done simply by differentiating with a capacitor-resistor arrangement. Fig. 11
shows a typical receiver module.
Look now at how the sensitivity is reduced by the reverse bias leakage of the photodiode. Fig. 12 shows some theoretical results for the mean number of photoelectrons required per bit time $n$ and optimum avalanche gain $M$ as a function of the number $N_{\mathrm{d}}$ of dark current electrons per bit-time. Parameter $x$ is the excess noise exponent of the a.p.d. and Fig. 12 is calculated assuming $Z=10^{6}$, typical of a receiver using discrete components at a few hundred Mbaud, and with zero optical power on zero-pulses and no pulse spreading.
It can be seen that when the dark current is negligible, we need about 300 to 1500 photons per bit-time, depending on the noise properties of the photodiode. When the dark current is large, the number of photons per bit-time which is needed is roughly proportional to the square root of the number of dark current electrons. The noise properties of the diode become far less important. This is hardly surprising as the dominant noise is then the shot noise on the dark current, and both are subject to the excess noise of the photodiode. The optimum gain decreases markedly once the dark current becomes a significant noise source.

Clearly it is important to minimize $N_{\mathrm{d}}$ and to a lesser extent to reduce $x$. Note that a leakage current of 160 nA gives $N_{\mathrm{d}}$ of 1000 at 1 Gbaud , which is large enough to affect the optimum gain and the receiver sensitivity. At lower data rates the effect would be greater still.
Fig. 13 shows how $n$ and $M$ vary with extinction ratio $\epsilon$ and pulse spreading (extinction ratio is the mean power on zero-pulse divided by the mean power on one-pulse; if it is not zero the optical power on the zero level contributes to the noise


Fig. 12. Receiver sensitivity and optimum avalanche gain as functions of the number of dark current electron per bit-time (see text)


Fig. 13. Receiver sensitivity and optimum avalanche gain as functions of the source extinction ratio, assuming a value of unity for the excess noise factor exponent $x$. Parameter $\alpha$ is the r.m.s. width of the impulse response of the fibre normalized to the bit-time $T$, and . assumed to be Gaussian for convenience in calculation, ie it is a measure of the bandwidth of the fibre.
$\left.s_{0}\right)$. The pulse spreading is represented by $\alpha$, the normalized r.m.s. width of the fibre impulse response, assumed to be gaussian. The pulse originally launched into the fibre is taken to be rectangular and to occupy half the bit-time, and the dark current is assumed to be zero. Notice that the receiver sensitivity is strongly affected by pulse spreading and by non-zero extinction, and the optimum gain is reduced by zero-level noise and by fibre dispersion, the effect being greatest when $x$ is small.
This type of calculation, which assumes gaussian noise statistics, tends to over-estimate the optimum gain although relative magnitudes are predicted more accurately. Obviously, combinations of appreciable pulse spreading, non-zero extinction and considerable dark current ( $N_{\mathrm{d}}=100000$ ) reduces the receiver sensitivity very much, and also reduce the optimum avalanche gain to near unity.

## Future developments

There are some obvious approaches to improving the sensitivity of present optical receivers. The p-i-n f.e.t., currently the most suitable for the important wavelength range 1 to $1.6 \mu \mathrm{~m}$, can be improved by reducing $c^{2} / g_{m}$; that is by developing small-area photodiodes ( $30 \mu \mathrm{~m}$ diameter), very short f.e.t. gates $(0.3 \mu \mathrm{~m})$, and by increasing the transconductance. The mized compound InGaAs may be a better f.e.t. material than GaAs in the future because of its high carrier mobility, particularly if it can be cooled, and it would also permit monolithic integration of the f.e.t.,
the photodiode, and eventually other receiver components. Between 5 and 8 dB could be gained here. Avalanche photodiodes could offer some improvement, at least over present day $\mathrm{p}-\mathrm{i}-\mathrm{n}$ f.e.ts, if a lownoise material could be found. Recent work on $(\mathrm{CdHg}) \mathrm{Te}$ looks promising, although it is at a very early stage of development yet.

A third possibility is to amplify the optical signal before detection, using a FabryPerot or a travelling-wave amplifier. These devices would be similar in structure to injection lasers; their biggest problems are noise due to spontaneous emission which can be reduced only with a very narrowband optical filter, and gain saturation in the case of the Fabry-Perot amplifier. An optical amplifier is an almost essential component for optical integration of any useful complexity, so there is considerable incentive to overcome these problems.

Finally, one may consider coherent optical transmission systems with heterodyne detection. The outstanding problems here are: divising an optical source and local oscillator with sufficiently narrow linewidth; tracking the local oscillator; obtaining spatial coherence of the signal and local oscillator when they are mixed on the photodiode; and controlling the polarization of the receiver optical signal. The payoff for overcoming this daunting list of problems is not only increased receiver sensitivity ( 10 to 15 dB possibly), but the familiar advantages of using the frequency and phase information on the carrier which is present optical communication systems is lost.

Further reading
Physics of Semiconductor Devices, by S. M. Sze. Wiley, 1969.
Optical Fibre Communications, S. E. Miller and A. G. Chynoweth. Academic Press, 1979. Optical Fibre Communication, by the Technical Staff of CSELT. McGraw-Hill, 1980.
Receiver Design for digital fibre optic communication systems, by S. D. Personick. Parts 1 and II, Bell Sys Tech $\mathcal{J}$ vol. 521973 p. 843-86.
Simplified approach to digital optical receiver design, by D. R. Smith, R. C. Hooper and I. Garrett. Opt Quant Electr vol. 101978 p. 211 21.

Properties of avalanche photodiodes, by P. P. Webb, R. J. McIntyre and J. Conradi. RCA Rev, July 1974.
Receivers for optical communications: a comparison of avalanche photodiodes and p-i-n f.e.t. hybrids, by D. R. Smith, R. C. Hooper and I. Garrett. Opt Quant Electr vol. 101978 p. 293-300.
InGaAs $\mathbf{p - i - n}$ photodiodes for long-wavelength fibre-optic systems, by R. F. Leheny, R. E.
Nahory and M. A. Pollack. Electr Lett vol. 15 1980 P. 713-5.
III-V alloy hetero structure high-speed avalanche photodiodes, by H. D. Law, K. Nakano and L. R. Tomasetta. IEEE 7 Quantum Electr vol. QE-15 1979 p. 549-58. InGaAsP heterostructure avalanche photodiodes with high avalanche gain, by K . Nishida, K. Takaguchi and Y. Matsumoto. Appl Phys Lett vol. 351979 p. 251-3.
Avalanche multiplication and noise
characteristics of low dark-current
GaInAsP/InP avalanche photodetectors, by V. Diadiuk, S. H. Groves and C. E. Hurwitz. Appl Phys Lett vol. 371980 P.807-10.
Band structure dependence of impact ionization by hot carriers in semiconductors: GaAs, by T. P. Pearsal, F. Capasso, R. E. Nahory, M. A. Pollack and J. R. Chelikovsky. Solid-State Electron vol. 211978 p. 297-302.
Required donor concentration of epitaxial layer for efficient $\operatorname{In}$ GaAsP avalanche photodiodes, by Y. Takanashi, M. Kawashima and Y.
Horikoshi. Japan f Appl Phys vol. 191980 P. 693-701.
PIN-FET hybrid optical receivers for longer wavelength optical communications systems, by R. C. Hooper, M. A. Z. Rejman, S. T. D. Ritchie, D. R. Smith and B. R. White. 6th European Conference on Optical
Communications, York, Sept 1980.

## In brief . . .

Technician engineers change their image. The term 'technician engineer' was coined to cater for the non-chartered electrical and electronics engineer. But the IEETE feel the name has become confused with the general description 'technician' and that this may be a stumbling block to the understanding of the role played by their corporate members. So they will call themselves the Institution of Electrical and Electronics Incorporated Engineers, as a reflection of a professional body incorporated other than by charter, and which requires a specific level of achievement and qualification for its membership. Corporate members are now entitled to call themselves Incorporated Engineers (Electrical and Electronics) and to use the letters FIElecIE or MIElecIE.

# Cables and politics 

A broadband cable system connected to all houses in urban areas and covering about half the population is the recommendation of the Government's IT Advisory Panel. Although all the services to be provided are not specified, it is suggested that the system should include tv channels, f.m. radio channels, and the panel also recommends that the system should have a two-way link which would allow any information service to be interactive, to include such facilities as links with a bank account or electronic shopping. There could also be monitoring of premises against burglary or fire and the emergency services could be summoned automatically if needed.
The scheme involves an entirely new network as the existing telephone network does not offer sufficient bandwidth. It could link in with those British Telecom networks which are of suffi-
cient bandwidth and thus be provided with packet switching. Each home would be fed through a cable, probably coaxial, with channel selection provided at the distribution point which would have the full bandwidth service and would be able to serve up to 100 houses.
In arguing for urgency, the panel say that existing cable distribution networks are ceasing to have much value when the country is well provided with broadcasting transmitters. The panel believes that cable would be the best way of distributing the direct broadcasts from satellites; the PAL system comes out of patent restrictions at the end of 1983 and could lead to a flooding in the large-screen tv market of cheap sets from the Far East, leading to the downfall of our domestic tv manufacturing industry. If a decision were taken for an early launch of the cable system, the telecommunications industries
involved would get a boost and a world lead with the possibility of high exports.
One of the pre-requisites for such a system is that current restrictions should be withdrawn and that potential information providers or broadcasters be allowed to transmit whatever they like, within the bounds of decency or sedition. There should be a self-regulating body similar to those in advertising and in newspapers.
But as the panel believes that the system should be self-financing, requiring no public funds at all, it sees a further need for urgency. The system should be at an advanced stage of planning before the next General Election before a possible change of Government could lead to a change in policy, so that potential investors, especially programme providers, can be assured of a return on their investment.

## Satellite tv gets go-ahead

On the fourth of March, the Home Secretary, William Whitelaw, announced in the House of Commons that the country should make an early start with direct broadcasting by satellite (DBS), with the aim of having a service in operation by 1886. Because of the importance of making this early start, the Government had concluded that the best course would be to start with two channels initially, though this could be increased later to the maximum of five channels permitted by international allocation. The services would be transmitted at powers sufficent for individual reception and for community reception with cable distribution.
The system is to be financed privately, and there were indications that there were interested participants in the aerospace and electronics industries who were ready to pay a part.
As far as the programmes were concerned it had been decided to award both DBS channels to the BBC as they had already formulated proposals for the programming of such channels. One channel would be a subscription service including a substantial element of feature films and major sporting, cultural and other events not presently available for transmission through the usual channels. The other would be a service which would draw on the best tv programmes from around the world, and would probably be financed by a supplementary licence fee.
The Home Secretary said that although the IBA and commercial television companies had also shown some interest in providing DBS services, "their plans were less well advanced. Additionally, more time would be needed to devise the right framework, which would be likely to involve legislation".
But the IBA say that their proposals for satellite broadcasting are as well prepared as any from the BBC. Following the Government study document on DBS last year, the IBA has argued for the use of satellites to improve picture quality and for the need to have uniform standards throughout Europe, because of the overlap of satellite footprints. IBA engineers have developed the multiplexed analogue component technique for satellite broadcasting which overcomes the problems of incompatibility between the different colour systems in

Europe, providing a single 625 -line system with clearer pictures than are presently available on television receivers, and with multi-channel sound. Only one design for an adaptor unit would be required throughout Europe. They also argued that they had more commercial experience which would be useful for organising a subscription service.

Following immediately on the Home Secretary's announcement, British Aerospace, Marconi and British Telecom made a joint announcement that they would take equal shares in a new company, United Satellites, to provide Britain's first national broadcasting and telecommunications satellite system. The three companies had already investigated potential markets, and the technical and operational means needed both in the long and short term. The system would probably have the capacity for two tv channels and three or four communications channels. There could be sufficent bandwidth to transmit high-definition tv and digital sound channels and the possibility of transmitting a Prestel-type service this way could also be possible. Discussions with broadcasting and telecommunications organisations will define the facilities to be provided. The satellites will be leased to the users.
The satellite, to be known as Halley 1, as the 1986 launch will coincide with the appearance of Halley's Comet, is likely to be of a similar type to the European Communications Satellite (ECS) and it is planned to have two satellites in orbit, with the second as a standby and a third on the ground ready for launching.

United Satellites hope to sell their satellites around the world and believe there is a potential market for up to 100 of them.

- The IBA is participating in the experimental European service, organized within the EBU. The five-week tv experiment, to start at the end of this month, includes four sound channels, each with a different language and the IBA's teletext system for sub-titling. The closed-circuit service is to be transmitted using a mobile dish antenna via the ESA orbital test satellite.
A Pan-European service is due to be launched in 1986 and the IBA has suggested that the allBritish satellite should carry that service.


## Maritime satellite gets sunstroke

What was to have been a blaze of publicity when the Minister for Information Technology, Mr Kenneth Baker, was to have made the first shore-to-ship telephone call by way of the new Marecs-A maritime satellite, turned into a bit of a damp squib when it was announced that the satellite had certain anomalies which needed to be sorted out before it became fully operational.

The anomalies had been caused by an overactive sun which had produced an unusually high number of sunspots. Sunspots emit highenergy particles which when they encounter a satellite can electrostatically charge the outer thermal blanket of the spacecraft. As different surfaces are charged at different levels, this can give rise to arcing and if any electromagnetic disturbance penetrates the screening this can cause spurious pulses in the electronics. The first occasion on which this happened in Ma-recs-A, it caused the orientation system to think that it had lost contact with the earth. It automatically went into a 'search' mode when it rotated slowly to find the earth again. This manoeuvre took eight hours before contact was reestablished and this caused a whole series of checks to be carried out to assure the ground controllers and users that all was well. It was not possible to complete these checks before the official inauguration of the service. Since then, there have been further small 'glitches' caused by sunspot activity.

A major event during the initialisation of the satellite was the failure of two modules in the battery discharge regulator. Standby modules were switched in, but there is no further replacements for these components. A spokesman from British Aerospace told us that although it was worrying to lose the redundancy factor so early into the mission they were confident that this would have no effect on the planned life of the satellite of seven years and more. They were investigating the cause of the failure, and of the anomalous behaviour of the vehicle in order to build additional safeguards into Marecs-B


Marecs - A.maritime communications satellite suffering from anomalies caused by an overactive sun.
which is to occupy a geosynchronous orbit over the Pacific Ocean.
The two Marecs spacecraft in conjunction with an Intelsat V over the Indian Ocean offer a ship-to-shore telecommunications system which covers all the oceans. Marecs-A is the first European Space Agency's communications satellite to enter commercial service. It is also the first to be dedicated to merchant shipping, and the first to be leased by ESA to an international organisation, Inmarsat.

Marecs offers some 40 telephone circuits, four times the capacity of the Marisat satellite it
replaces. It is also 11 degrees further west than Marisat and so can cover the western part of the Gulf of Mexico and some of the eastern Pacific. In addition to telephone contact the satellite can be used to receive and transmit telex, facsimile and digital data links. There is also a special emergency signal link.

In order for the satellite to operate efficiently, as much attention needs to be made to the coastal receiving stations as to the on-board system. Europe's first maritime communications station has been inaugurated at Eik, southwest Norway. Eik is the fifth in the global satellite system of earth stations and another 14 are planned including one at Goonhilly, Cornwall which will be commissioned by mid 1982.

## 3-D spectacle

The first British broadcast of 3-D tv takes place on May 4th at 19.00 h over the transmitters of TVS, the Southern region ITV company. This follows the four 3-D tv programmes transmitted over Norddeutscher Rundfunk in West Germany, the first of which was on Febuary 28 th . TVS is negotiating rights to some of the German material, and also producing some original British material. The British programme, one of the weekly series The Real World, deals with three-dimensional images in general, and the 3-D inserts are being used for illustrative purposes.
The system being used for these transmissions is the old and imperfect method of 'anaglyph stereo': that is, separation of the two images is achieved by colour coding, and the viewer has to wear red-and-green spectacles. This is clearly not a system with any prospect of future acceptance as a practical method for broadcast stereo. It is however at the present time the only method by which stereo images can be broadcast, pending future technical developments. Consent has accordingly been given by the IBA to TVS transmission as a oneoff experiment.

IBA consent was required because the anaglyph system is non-compatible: 3-D can only be seen by viewers with colour receivers. Viewers with black-and-white sets will merely see a pair of overlapping images, whether or not they look through the spectacles. And viewers who don't have the anaglyph specs will also see merely a pair of flat images.
Colour scenes cannot be transmitted, since the colour-coding is already being used for 3-D separation. The left-eye image is put out on the red channel and the red tube phosphors, and the right-eye view in green plus blue.

In fact, if a colour scene is coded in this way, a certain sensation of the colours of the scene is retained even through the red/green glasses, as the brain attempts to add together the differing information received from each eye. But ambiguity and some discomfort is caused by any brightly-coloured objects; for instance a red dress will appear bright to the left eye but dark to the right eye. Without spectacles however the scene appears relatively normal in colour values. Experiments are now being made in the transfer of colour scenes, but none are expected to be included in the first British transmission.

The research behind the German programmes has been carried out in the Eindhoven
laboratories of Philips Ltd. Anaglyph image separation on tv is at best imperfect, since the green phosphors on tv tubes have quite a high red content. This means that 'crosstalk' is introduced: the left eye sees some of the green image, which should be confined to the right eye. In addition, colour coding within the PAL transmission system is itself imperfect, and allows some spread of colour information to the wrong guns. Philips have developed a method of coding the master video tapes, which at present remains secret, to eliminate this overlap and ensure the best possible separation of the two images that can be obtained within the PAL system.

The greatest problem remains the provision of the red/green anaglyph spectacles. TVS has obtained half a million of these cardboard lorgnettes, and are distributing one in every copy of TV Times in the Southern region. Even so, it seems there will be at best one viewing device to each set, so the programme is being scripted to allow time for it to be passed from hand to hand. The programme cannot of course be networked outside the Southern region, because of the lack of sufficent spectacles. Lucky viewers outside the region who are able to pick up TVS programmes will have to make their own arrangements to get hold of a pair of anaglyph specs.
Viewers who have seen the German programmes agree that in spite of the limitations, the results are remarkably successful; the crosstalk or double-imaging only becomes worrying when the normal, rather restricted, depth range for any scene is exceeded. And the 3-D scenes, particularly in the 'live' studio sequences, are certainly good enough to serve as a glimpse into the future. The people in the studio scenes, even in black-and-white, look much more like rounded human beings than the usual 'flat' tv images.

## Mercury and British Telecom

The consortium of Cable and Wireless, British Petroleum and Barclays Merchant Bank have been given a licence to operate a private telecommunications system in the UK. The system, to be known as Mercury, will have access to the public switched network when 'appropriate terms' have been established. It will also provide an earth station for business telecommunications via satellite. The licence has been granted for a period of up to 25 years with provisions for review. Patrick Jenkin, Secretary of State for Industry said that "the British Telecommunications Act 1981 and the licence have been structured in a way to enable the Government to ensure that both British Telecom and the licensee co-exist and compete to generate new services and job opportunities and to enhance customer choice within the UK while increasing the national share of the world telecommunications market".
It seems that the competition has already started with BT cutting its charges on some of the main trunk lines joining the main business and industrial centres. The principal reason for instituting Mercury was the high cost of trunk calls.

All this may be thrown into the melting pot if the telecommunications network is to be bound in with the proposed tv cable system. Iain Carson reports in The Observer that the Government
is to introduce a new Telecommunications Bill towards the end of the year. The Bill will propose the selling of about half the shares of BT to the public and to establish a new telecommunications authority to oversee the provision of cable tv, telephone, data and electronic mail links. The so-called Busby Bonds, announced by the Chancellor in the Budget with which it was planned to inject public investment into BT, are now likely to be replaced by the much wider de-nationalisation. BT say the report is "pure speculation".

## Bildschirmtext

At the heart of Prestel is the GEC 4080 computer which uses its own language, Babbage. With a five-year lead over any rivals, GEC must have felt that they had a very good chance in the world's markets and particularly in Europe. Their confidence received a severe blow, however, when the West German Bundespost placed an order worth several millions with IBM. What was even more galling was that IBM have not demonstrated any system in public.
The GEC equipment has undergone a field trial in Germany, and the Bundespost has selected a Prestel-compatible system, as recommended by the CEPT, but the selection of an IBM system means that IBM will have to write all the software by the contract deadline in 1983.

## Sweden in space by 1984

Sweden's Space Corporation is likely to be given the krona it requested for this year's space research programme, more than double the 1979/80 figure. About half of this will be contributed to the European Space Agency where Sweden collaborates actively in the programmes of research. But its national programme includes its own space research where the largest project is the Viking satellite, to be launched by Ariane in 1984 for North Pole magnetosphere studies, as well as the industrial Tele-X project. Due for launch in 1986 from Guyane Space Centre, South America, Tele-X is an experimental telecommunication satellite that will have pre-operational direct broadcast application. And it will provide high-speed digital communication for inter-office links, a teletype service to mobile stations in vehicles, and propagation measurements in the $20-30 \mathrm{GHz}$ band for high-speed digital data communication, as well as wideband services.
Monitoring oil spillages is the chief application of the Corporation's other main programme - in remote sensing. Marine surveillance from aircraft determines oil thickness and volume, a microwave radiometer while a laser fluorosensor classifies oil rype, this information being transmitted to oil combat vessels. Remote sensors also monitor ocean ice distribution and thickness, atmospheric pollution and map vege-


Auditoria designers are often "very surprised" with the results they obtain, said Hugh Creighton, acoustical consultant to London's latest concert hall in answer to our question about reverberation time turning out lower than planned. "Hall acoustics is-not a complete science" he reminded us, "but design guided by science". For although r.t. had been calculated from the hall's volume and absorbencies to be 1.8 seconds, it turned out to measure only 1.4. But the simple expedient of adding hardboard to the backs of the (fixed) seats increased the figure to 1.6 seconds, or 1.9 with an audience. And that seems to satisfy the LSO, according to a spokesman, for whom it was designed. A height restriction meant that the concrete roof beams protrude into the auditorium, their disruptive effect being reduced by the suspension of some 1,000 diffusing spheres (some also acting as lighting fittings) open at both ends to prevent undue aborption. And while siting the hell close to the foundations of the Barbican complex may reduce the vibration due to the nearby underground railway, it didn't obviate the need to re-lay the tracks and mount them on rubber.
tation, deserts and lake water to study seasonal changes.

- The Corporation manages the Esrange station which receives, processes, stores and distributes images from ESA satellites in the Earthnet scheme, and regularly collects data from Landsat. The station conducts ionospheric soundings to give investigate electron density profile (see WW February issue, page 37).


## Where is <br> Chernobilsky?

The position of the Russian electronics engineer Boris Chernobilsky who, as we reported in October 1981, page 70, was being harassed by the KGB, is giving his wife Elena great cause for alarm: After his harassment and arrest on a relatively trivial charge (hitting a policeman) Chernobilsky was sentenced to one year's imprisonment in a corrective labour camp, much against the wishes of the court, who came under a great deal of public pressure to relax the intended five-year sentence. The court sentence was that Chernobilsky be taken to the labour camp immediately, but instead was held in prison for two months, whereupon he disappeared. According to our informant, he started his journey to the camp many weeks ago, but neither his destination nor present whereabouts are known, in spite of a telegram from his wife to $L$. Brezhnev, and other Soviet leaders, to which she has had no reply. His wife and friends fear that the KGB are victimizing Chernobilsky because he was awarded a 'light' sentence, and that his health will be damaged by the extremely severe conditions on the journey and in the labour camp.

## BBC micro

The gremlins got into the BBC micro program listings at the Paisley Microelectronics Educational Development Centre, John Gordon tells us. Routine ( $f$ ) on page 82, March issue, should be

```
500 PROCITAXCALC(450, 100)
600 PRINT tax_to_pay
700 END 
1000 DIFF PHOCIAXCALC(total_
    pay, tax_allowance)
1010 LOCAL pay_left,pay_
    this_rate,rate
1020 tax_to_pay=0:pay_left=
        total pay - tax
        allowance : rate =}\overline{0}\mathrm{ .
1030 REPEAT
1040 IF pay_Ioft>100 THEN
        pay_this_rate= 100
        EDSE pay_this_rate=
        pay_left
1050 tax_to_pay=tax_to_
        pay + rate*pay_this
        rate
1060 rate=rate+0.1
1070 pay_left=pay_left -
        pay_this rate
1080 UNMIL pay_Ieri<0.1
1090 ENDPROC
```

It is useful to use lower-case characters for datanames he points out: this gets round the problem of BASIC keywords appearing at the beginning of a dataname.

> Also in this issue . . .
> Book notes 49 Communication news 42 Corrections 41
> In our next issue 77
> Langmuir thin film trough for
> "molecular electronics" 34 Teledon videotex in the UK 40

# EPROM PROGRAMMER 


#### Abstract

Most commercially available e.p.r.o.m. programmers are expensive as they include software and other facilities to enable them to be used on their own. The cost of a programmer can be significantly reduced if it is designed for use with an existing microprocessor system as shown in this second of two articles. The design presented is for 2708, 2716 and 2532 e.p.r.o.ms, but with small modifications other devices may be programmed.


On entering the program one is given the system options and prompted to reply either Y (yes) or N. Next the addresses are requested in hexadecimal numbering, starting from 0000 . If the e.p.r.o.m. already has data in the first 256 locations the starting address must be given as 0100 , even though it is intended to reside at, say, DCBO. Options and addresses are displayed on the monitor screen. When sufficient information has been given the program repeats the e.p.r.o.m. type and prompts you to press $G(g o)$. At this point the scratchpad has been loaded with data relevant to the e.p.r.o.m. selected and whether it is in read or write mode, as defined by the options on entering the program. (A changeover d.i.l. switch is needed to select the 2708 rails; for convenience this was fitted to the plug-in card carrying the socket together with a jack for the program voltage.)
Scratchpad data is loaded by the index register as though it represented addresses; this seems to be the quickest method of loading for the 6800 . Data stored in the scratchpad is given in the panel and explained as follows. The device code in ASCII enables it to be displayed on the monitor screen and serves as a check that the scratchpad has been loaded correctly. Number 04 signals the end of the ASCII data. The term "pin profiles" is one I've coined to define the logic levels on a port which are independently varied within a program. The existing address port is insufficient to drive the e.p.r.o.m., which needs 12 lines, so some are borrowed from the control port. By OR-ing the pin-profile with the other data the port will support the two functions. For example, during a read operation the address part of the port will be changing and the levels on the control will be static, during write the control part will change from pulseoff $\rightarrow$ pulse-on $\rightarrow$ pulse-off during each changed address. The loops will normally $=1$, except when the 2708 is being programmed which requires 200 loops. It is not permissible to apply $N$ pulses to one location and move on. The number of loops may be varied in the range 100 to 1000 , depending on the pulse width; $N=$ 200 was chosen for convenience in generating the timing. Locations E,F contain a number which is used with the index register and decremented to zero. The time at the pulse output (port) should be measured with a universal counter or an accurate 'scope since it depends on the software route taken by the programmer, as well as the system clock frequency. Random

by H. S. Lynes

access memory addresses determine the area of the system memory that will be written to or read from. The e.p.r.o.m. start/finish enables part-used ones to be added to. This is not to be done with 2708s as already explained. The control word is either 80 (port B is output, so write e.p.r.o.m.) or 82 (port B is input, so read e.p.r.o.m.) which shows the ease of using the 8255 in mode 0 . (Other numbers in the control register will cause all kinds of trouble).
The shorthand CAD and CAP were useful since they are frequently referred to in the software. The "loops left" is loaded with the value of the loops at location A and decremented on starting at the first e.p.r.o.m address, i.e. when CAP is set to the address at 14,15 . In the case of a 2708 , this will now represent a value greater than 1 , so the same addresses must be programmed again until 1E reaches zero. For reading an e.p.r.o.m. whether dumping the contents into r.a.m. or checking a program cycle, the loop facility is not needed as the program will exit when either CAD or CAP reach the respective addresses in 12,13 or $\mathbf{1 6 , 1 7}$. Thus the programmer should ensure that whichever is the smaller number of locations will cause the program to exit. The last three loca-
tions are loops-left, as explained, and the error address, to be explained later.

Port control. Since the software controls the 8255 it is essential to check that all is well before proceeding. The sequence is as follows. Select the e.p.r.o.m. type, the mode (read/write), as well as the addresses for both e.p.r.o.m. and system r.a.m. The program responds by displaying the type in four decimal figures followed by the prompt to press G. There are two chances to get this right: it's frustrating to enter the data again just because you accidentally touch the space-bar. Before the program starts the control port is checked for either 80 or 82 , since other numbers will cause chaos. At this point the scratchpad has been checked twice; once visually by the user and once in software to fairly tight margins ( $2 / 256$ ). Any error should be resolved by starting again. After a program sequence the 8255 is put into the read mode and the data is compared with the r.a.m. area specified. Any error will store the error address at the scratchpad $1 F, 20$ locations. A message is written on the screen to invite inspection - the system 'errors' each time at the last address (which proves it's working) since to program one e.p.r.o.m. location, say $01 F 2$, requires the user to enter ep.r.o.m start $=01 F 2$ and, logically, e.p.r.o.m. finish 01F3.

Reading an e.p.r.o.m. This is the easiest part. Select the appropriate pin supplies

Scratchpad data defined. Location of the scratchpad is at the option of the programmer.

| 0, 1, 2, 3 | Device code in ASCII 32373038 for 2708 |
| :---: | :---: |
| 4,5 | EOT code and blank 0400 |
| 6 | 'read' |
| 7 | 'progam' pin profiles e.g. as in Table 1 |
| 8 | 'pulse-on' |
| 9 |  |
| A | Loops $=1$ except for $2708=$ hex equivalent of 200 |
|  | - (normally biank, except during verify) |
| $\begin{aligned} & C \\ & D \end{aligned}$ | Maximum bytes, could be used to check 'space available' |
| E | delay $=$ pulse time |
| 10,11 | r.a.m, start address |
| 12, 13 | r.a.m. finish Entered by user; 'start' must be lower |
| 14, 15 | e.p.r.o.m. start number than the 'finish' number |
| 16,17 | e.p.r.o.m. finish |
| 18 | 8255 control word |
| 19 | - |
| 1A, 1B | Current address data (CAD) |
| $1 \mathrm{C}, 1 \mathrm{D}$ | Current address p.r.o.m. (CAP) |
| 1 E | Loops left |
| 1F, 20 | Error address - in hex (could be converted to ASCII if screen display required) |

using the small d.i.I. switch next to the socket, and enter the necessary information to fill the scratchpad. After pressing G set-up the 8255 ports by sending 82 (hex) to the control register at X503. The starting address of the e.p.r.o.m. is placed in the address ports A and C . The control pin-profile is OR-ed with the address in port C and the data read by the c.p.u. from the address of port B. This is stored in the area of r.a.m. pointed to by CAD using the indexed mode of addressing. $C A D$ and CAP are checked to make sure they are not outside limits and only then will they be incremented until the e.p.r.o.m. data is placed in system r.a.m.
The time taken is quite short, but it is not possible to run a program from an e.p.r.o.m. in the programmer without some considerable delay and a dedicated program to do it. In my system a facility exists to move some of the system r.a.m., having set up the new start address on d.i.I. switches. Thus by moving a toggle switch the r.a.m. can be made to behave as though it was a programmed e.p.r.o.m., residing at the same address as the e.p.r.o.m will in the finished system. This may be write-protected if desired: Ensure that only one device is enabled when shifting.

Programming. This is more difficult, since the e.p.r.o.m needs to be given a program pulse for a defined time. An external voltage is required, about 27 V to allow for losses, and on my system a circuit measures this voltage and turns on an l.e.d. if it is correct. Thus the light indicates that the e.p.r.o.m can be programmed. The use of a built-in program voltage is left to you; if the ports are likely to be used for general use I think it is safer to bring it in separately. Pin selection d.i.l. switch, address entry, etc is as explained for reading. After pressing $G$ the e.p.r.o.m is placed in the write condition using the pin-profile described. A program pulse is applied by OR-ing CAP with the pulseon pin-profile and placing it at the port. This is timed using the delay routine, after which the address is OR-ed with the write pulse-off pin-profile and stored at the port. Thus the port is in the write mode all the time, some of which is in the pulse-on mode; the e.p.r.o.m. address is only changed when the port is in plain write mode.

The choice of software timing for the pulse or the use of a monostable is left to you. If you choose monostable timing the clock frequency is not important; but a monostable is another i.c. to wire and


Flg. 6. In this transistor interface and reset logic PC7 is used to detect the high impedance state after reset occurs. This prevents unwelcome voltage appearing on the e.p.r.o.m. socket. Normal operation with PC7 $=$ output, logic 0 is $V_{p}=26 \mathrm{~V}$ with PC5 = logic 1 . Notes:

1. Pulse output is critical and should be checked against manufacturer's data.
Measurements must be from e.p.r.o.m. socket. For $C_{0} 1800 \mathrm{pF}, T_{r} 1 \mu \mathrm{~s} T_{f} 1.2 \mu \mathrm{~s}$. $C_{0} 2800 \mathrm{pF}, \mathrm{T}_{r} 1.5 \mu \mathrm{~s} T_{f} 2 \mu \mathrm{~s}$ measured on 50 MHz 'scope Th input waveform 1:3 ratio, 1 cycle $25 \mu$ s.
2. The CS/WE pin needs to be taken low at the finish of programming before the address is changed. Since PC4 is only used with 2708 this can be done at the end of any programming sequence, as a forerunner to the verify routine.
3. Test point is a convenient place to drive the interface, with link 1 open.
4. LED is on when $V_{p}$ is high. If no 'scope is available $V_{p}$ should be set to 26 V using a $20 \mathrm{k} \Omega / \mathrm{V}$ multimeter. Test point $=3.5 \mathrm{~V}$ with link 1 open.
could be susceptible to interference. Software timing has its critics too, but when other e.p.r.o.ms as well as 2708 s are to be catered for it is justified in my view. Programming does take time - typically one minute for every $1024 \times 8$ bits. Thus for a 4 K e.p.r.o.m the processor is tied-up for at least four minutes. If any interference occurs during this time it could cause trouble, so there may be some advantage to be gained by switching off any well-known generators of interference. In the home this can include anything with a thermostatic control inductive load.

Software development. Some of the development, done in hex machine code, was made easier by using the sub-routines available in the monitor, such as the "print ASCII string" sub-routine, and the "input characters from keyboard" sub-routine for setting-up the scratchpad data. If you wish to develop your own programs for any c.p.u. type, I recommend that you include a facility for additional features you may wish to try. For example, my program asks if the user wants to "read?" and if the response isn't 59 (ASCII for $Y$ ) it goes to "write?", after which it exits. There would be some advantage in writing "extra facilities; enter facility number"; you then enter different routines, to be developed later, without rewriting the remainder of the software. What you do is to reserve two memory locations at the end of the program (in the final e.p.r.o.m. for the moment a 2716) and set the index register to the address of the first, less two. Thus if the number entered is 1 the index register will be incremented by $1 \times 2$, so by going to this location a new starting address may be inserted. By leaving say six memory locations all FF they may be programmed later. Arrange the address routines as a subroutine so they may be used in later developments.
Infrequent users may find some advantage in making use of a 37 -way D connector and a small plug-in p.c.b. with the socket on it. This is only plugged in when an e.p.r.o.m. is to be programmed or read. The diagrams show the wiring for the d.i.l. switches connected to pins 18-21, Fig. 6 It is essential that such switches are suitable for the low-power duty that is required. Protect the wiring on this p.c.b. from handling; an unetched piece of copper laminate is ideal for the purpose as it may be connected to 0 V .

Erasing e.p.r.o.ms. It is essential that e.p.r.o.ms are correctly erased before programming is started. This means exposing them to "hard" ultra-violet light for a period of between 5 and 20 minutes, depending upon the strength and closeness of a suitable source. So-called u.v. tubes with fluorescent coatings inside glass will not be satisfactory; this rules out disco black-light tubes and soft tubes used to generate artwork. The correct tubes are usually small, low-wattage with a quartz tube that permits the transmission of the mercuryvapour radiation of 254 nm wavelength. Although satisfactory erasers are available commercially, you may be tempted to make your own using a replacement tube.

Fig. 7. In the prototype programming board the 78L05, which should have been shown here with a diode in its ground lead, was mounted on the programming board together with a z.i.f. socket, d.i.I. switch and programming pulse jack socket. The diode in the regulator's ground lead raises its output to 5.7V. Current limiting at 50 mA is used on the ' 30 V ' supply, which should never be less than 26 V and without overshoot. The line at the junction of the two diodes is at either 5 or 25.25 V , depending on the device to be programmed.

$+30 \vee(25$ to 30 V )


Take care in the design of a close-fitting lid or drawer to prevent the incidence of u.v. burns to eyes or skin. It is a sine qua non to include an interlock which breaks the tube-current in the event of the lid (or drawer) being opened during the erase period. The addition of a timer is a useful refinement as the tube has limited life. Clean the i.c's window before erasure afterward it may be covered to guard against possible loss of data when it has been programmed. And keep the e.p.r.o.ms in conductive foam whenever
possible to prevent electrostatic charge causing degradation or destruction.
Whilst this programmer satisfies the initial design requirements there is no reason why other e.p.r.o.m. types should not be catered for. Probably the easiest method of altering the pin requirements is to bring those pins which are likely to need changes to a separate header which may be used as a patch-board, in the same way that the d.i.l. switch was necessary in Fig. 6.

The 26V transistor interface, Fig. 7, is tolerant of the value of output capacitance
although I recommend that the output waveform is checked. The l.e.d. is illuminated when the output is at high potantial, which should be typically 26 V to ensure that the miminum swing of 25 V is met.

Reset logic prevents unwelcome voltage appearing on the e.p.r.o.m. when an output port is arranged so that logic $0=0 \mathrm{~V}$. If this is inverted then the problem may be resolved and the port PC-7 becomes spare and could be used to perform some other function. Personally I like to have ports at logic 0 meaning no output.


April 23-25
The Computer Fair, at Earls Court, (sponsored by Practical Computing and Your Computer). Details from Exhibition Manager, IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey.
April 25
Audiojumble: sale of audio equipment at the Gandhi Hall, YMCA, 41 Fitzroy Square,
London W1. Organised by Ed Lord, 67
Liverpool Road, London N1.
April 26
Amateur radio satellites; IEE lecture for younger members. IEE, Savoy Place, London WC2P 0BL.
April 27
Recent developments in the measurement of
weak magnetic fields and associated
applications: IEE colloquium.
April 29
Software engineeringt IEE lecture.
April 29
UOSAT - a low cost spacecraft for professional and amateur scientists: IEE lecture.

April 29-30
Spectral analysis and its use in underwater acoustics: Institute of Acoustics/IEE
conference. Imperial College, London SW7
Details from: Dr T. S. Durrani, Department of Electronic Science and Telecommunications, University of Strathclyde, Glasgow G1 1XW. April 30
Up-to-date applications of dataview systems: IEE colloquium.
May 3-6
Video '82: Trade fair and Congress: International Congress Centre, Berlin. Organised by AMK Berlin, Postfach 191740 , Messedamm 22, D-1000 Berlin 19.
May 4
Human factors in word processing: IEE colloquium.
May 5-7
Videotext Systems '82: Conference and Exhibition. Cunard International Hotel, London. Organised by IPC Exhibitions Ltd, Surrey House, Throwley Way, Sutton, Surrey. May 6
Digital tv effects: IEE Younger Member's lecture. Ship Hotel, Duke Street, Reading, Berks.

## May 11-13

Micro City '82: Information technology
exhibition. Bristol Exhibition Complex. Details
from Tomorrows World Exhibitions Ltd, 9
Park Place, Bristol BS8 1JP.

## May 12

Microprocessor projects for the plastics industry: Seminar at the National Computing Centre, Manchester. Organised by the British Plastics Federation, 5 Belgrave Square, London SW1X 8PH.
May 12
Electrostatics and optical effects: IOP Meering:
Institute of Physics, 47 Belgrave Square, London SWIX 8QX.
May 12
Time delay systems control: IEE colloquium.
May 12
Effects of obstacles and dielectric structures in
the near-field on antenna performance: IEE
colloquium.
May 12
Teletex and its protocols: IEE lecture.
May 13
Development environments for microprocessor systems: IEE colloquium.

## Within 80 ms a mass of $1 / 4 \mathrm{~kg}$ can be moved a distance of four inches and stopped to within a quarter micron of a specified point - this article shows how.



In any positioning system the most crucial components are the prime mover and the transducer used to describe the position and velocity of the element under control. Here, the main features of disc-drive positioners, including feedback loops and control circuits, are described.

With the exception of fixed head and Winchester type disc drives, the read/write heads are mounted on a rigid platform called the carriage. This carriage has one degree of freedom radial to the drive spindle and is restricted by guideways, usually in the form of rails or bars; in most cases, the carriage runs on ball bearings, one or more of which is spring loaded to take up play and ensure that the bearings roll instead of skidding. Not all carriages run on ball bearings - some run directly on the guideway - but the way in which four types of those that do are constructed is shown in Fig. 1. Rotary positioners, such as those used in Winchester disc drives, will be described in a subsequent article.

In multi-platter drives, the heads are usually mounted side-by-side between the platters to reduce the overall height of the pack and minimize the weight of the carriage. The part of the carriage to which the heads are attached is often called the Tblock because more often than not it is Tshaped. For convenience, the two sides of the T-block are designated A and B, and each side will have upward and downward facing heads. So in this case there are four read/write head labels; A-up, A-down, Bup and B-down. A and B heads designed for opposite directions are similar in appearance but if they are mistakenly interchanged, slipper aerodynamics will be

[^7]by J. R. Watkinson*


Fig. 1. Four methods used for mounting disc-drive positioner carriages. Common purpose of these is to allow only one degree of freedom, ideally along radius of the disc.


Fig. 2. Mounting read/write heads side-by-side in multi-platter drives reduces height of the disc pack and hence weight moved by the positioner, but alignment between carriage centre line and disc radius becomes more critical. Here, the heads are aligned at track $A$ and the error caused by carriage/track-radius misalignment becomes apparent at $B$.
affected, so the head type is usually clearly marked. Slots in the T-block allow radial adjustment of the heads.
As the heads are in two rows, it is vital that the centre line along which the carriage travels is precisely on the disc radius. Figure 2 shows why. Alignment fixtures provided with the drives allow the heads to be accurately aligned and, equally important, keep the head adjustment standard between drives using interchangeable discs.

## Motive power

There are three main methods of driving the carriage.

- hydraulically
- by moving coil.
- or by electric motor.

Hydraulics. The first moving-head disc drives stored data at very low density by modern standards, so if large amounts of data had to be stored, large discs had to be used. Some of these discs measured several feet in diameter. The carriage was equally large, and the only practical way of moving it was by hydraulics. Much research into hydraulic systems for applications such as power-operated gun turrets on military aircraft had already been carried out so the design of a system for driving the carriage of a disc drive was simplified.

Figure 3(a) shows the essentials of an hydraulically powered positioner, in which the pump may be driven either by the spindle motor or by a separate motor. The accumulator is required for rapid seeks, when the peak-flow requirement is greater than the pump can deliver; the analogy with a power-supply capacitor is clear. Fluid pressure is regulated by a bypass valve, the fluid equivalent of a zener diode and a series of solenoid-operated valves with calibrated orifices are used to move


Fig. 3. Essential elements of an hydraulic positioner are shown at (a), In which the pressure from the fluid pump is regulated by a bypass valve and control signals from the drive logic operate solenoid valves in the control block. Accumulator permits high peak-flow rates without large pressure fluctuations. In (b), two opposed positioners are used to cancel out. reactions caused by fast carriage acceleration.
the carriage at different speeds. Some drives with hydraulic positioners would move from their position in the computer room, because of the reaction from fast carriage acceleration, and had to be moved back into place from time to time. Behemoth drives had two parallel spindles with

## Disc format

The access mechanism of a disc drive works from three dimensions: cylinder, track or head, and sector. A malfunction in any of these could bring the heads to the wrong data block. In the interests of data integrity, each blockiof data is preceded by a header which conteins the disc address of the block. Before a data transfer can take plàce, the dise address according to the access mechanism is compared with the disc address in the header. If the two are the same, the data transfer proceeds, if not, the transfer is aborted and a mispositioning condition exists, usually referred to as a header mismatch error. The headers
are usually written once when the disc is first used, by a process known as formatting, and are then subsequently only read. Because of this, the header and the associated data require individual preambles when used with an encoding technique requiring phase-locked recovery, as the header and the data have not necessarily been written at the same time, or for that matter, on the same disc drive. Some drives, however, treat the header and the data as an entity, such that the header is rewritten every time a block is written. The diagram shows a fairly common discblock format and lists the functions of each element.


Representative disc-data block. Header cyclic-redundáncy check (c.r.c) and dataerror correction words will be discussed later. The postamble is included to prevent data corruption when the write current is switched off.
opposed positioners between them to cancel out this effect, Fig. 3(b).

Moving coil. As head and medium design improved the storage density increased, allowing the platters to be made smaller. This made the carriage smaller and lighter so less power was required to move it. At the same time, advances in semiconductor technology brought down the price of power transistors. It thus became feasible to use a moving coil to drive the carriage, with the further weight reduction of the carriage that the principle allows being used to reduce access time.

A typical coil has a diameter of three inches and works in the radial flux from a permanent magnet weighing about 50 pounds. Smaller drives use a copper wire coil on a glass fibre former, but larger units may use self-supporting coils wound from rectangular-section aluminium strip. Aluminium has a higher strength-to-weight ratio than copper, and this consideration outweighs the disadvantage of higher resistance. The coil frequently requires forced air cooling in large units. The assembly is usually described as an e.m.a. (electromagnetic actuator), Fig. 4.

Electric motor drive. There are two main types-one is as shown in Fig. 5. In the first, the motor drives a leadscrew which moves the carriage as it turns. In some cases a stepping motor is used, where the stable positions of the rotor correspond to the positions of disc cylinders.


Fig. 4. Essentials of a disc-drive positioner.


Fig. 5. One type of motor-driven positioner. This assembly illustrates how a positioner using steel wires to drive the carriage looks.

(a)

(b)

Fig. 6. Mechanical detenting. Detent pawl is split and has two sets of teeth at $180^{\circ}$ to each other. At (a), the carriage is detented to an odd numbered cylinder and the upper pawl teeth are engaged. The lower pawl, represented by the broken line, rests against the tops of the rack teeth. In ( $b$ ), the carriage is detented at an even cylinder and the lower pawl is engaged. Tooth pitch on the rack is twice the cylinder spacing.


Fig. 7. Carrier-wave cylinder transducer. Oscillator feeds the transducer primary coil and the two secondaries are connected in opposite phase. Output signal phase, determined by the relative reluctance of the magnetic circuit's two limbs, is a function of the rack position. Three examples are given with associated waveforms.


Fig. 8. Parallel bar and Moiré type gratings used to modulate a light beam produce triangle and sine-wave outputs respectively. These gratings are used to detect position and velocity.

The motor in the second type drives a drum which imparts linear motion to the carriage through flexible steel wires. These two types are normally used only in small drives.

## Detenting

When the carriage is held at rest with the heads correctly aligned above the disk tracks, it is said to be detented. Early drives used mechanical detenting where pawls on a detent actuator move to engage a rack on the carriage. Figure 6 shows a two-phase detent mechanism, where the spacing between cylinders is one half the rack pitch. Mechanical detenting can be found on both hydraulic and moving coil positioners, and the pawl will be operated by a ram in the former case, or by a solenoid in the latter. The teeth on the rack are asymmetrical so that after the detent has engaged, some forward drive can be applied to take up any backlash without fear of the pawl jumping out of engagement. The detent actuator is a fine piece of precision engineering, and as such is expensive. Recent drives take advantage of the falling cost of electronic circuitry and employ electronic detenting, where the carriage is held by a feedback loop using a position transducer. Should for any reason the positioner find itself off track, the position transducer generates an error voltage which will drive the carriage until the error is cancelled. When operating in this way the carriage servo system is said to be in detent mode, track following mode, fine mode or linear mode, depending on the specific documentation consulted. During a seek, the servo system changes to velocity mode, also known as coarse mode. These are the two major operating modes of the servo.

## Transducers

The purpose of a transducer will be one or more of the following

- to count the number of cylinders crossed during a seek,
- to generate a signal proportional to carriage velocity,
- or to generate a position error proportional to the distance from the centre of the desired track.


Fig. 9. Optical velocity transducer. Four quadrature signals are produced from the twophase transducer. Each of these is differentiated, and the four derivatives are selected one at a time by analogue switches. This process results in a continuous analogue-output voltage proportional to the slope of the transducer waveform, whish is itself proportional to carriage velocity. In some drives one of the transducer signals may also be used to count cylinder crossings during a seek and to provide a position error for detenting.

Sometimes the same transducer will be used to provide all three signals. For this reason, transducers are best classified by principle of operation, rather than by function.

Magnetic transducers. There are three distinct types

## - moving coil

- moving magnet
- carrier wave.

The first two types simply give an output proportional to the rate of change of flux. The only difference is whether the coil or the flux moves. Moving-magnet types often have the coil concentric with the actuator, which provides good noise shielding. Moving-coil types sometimes have a bucking coil connected in phase opposition which does not link the magnetic circuit in order to cancel out induced noise. These two types of transducer can only generate a velocity signal, but have the advantage that no precision alignment is necessary; a working clearance is all that is required.

The third type is illustrated in Fig. 7. The flux path of the transducer is completed by a rack on the carriage, often the
same one as is used by the detent actuator. As the rack moves, the reluctance of the two limbs will rise and fall, and as the secondary coils are wound in opposition to each other, the output will be alternately in and out of phase with the input. A phase-
sensitive rectifier gives a binary output which can be used to count cylinder crossings during a seek. As no accurate position error or velocity information can be extracted, this type of transducer is restricted to use in mechanical detent drives, in conjunction with a magnetic-velocity transducer. Adjustment of carrier-wave transducers is critical, as the signal becomes rapidly attenuated if the distance from the rack is too great, but the transducer may be damaged by the rack teeth if the clearance is too small.
Optical transducers. These devices consist of gratings, one fixed and one movable. The relative positions of the two will control the amount of light from an 1.e.d. or bulb which can pass through to one or more photo-transistors.

Referring to Fig. 8, it can be seen that this class of transducer falls into two categories

## - Moiré-fringe

- parallel-grating.

In a Moire-fringe transducer the bars on the moving grating are not parallel with the bars on the fixed grating. Relative movement causes a fringe pattern which travels at a right angle to the direction of motion. This results in sinusoidal modulation of the light beam.

In the second type, all the bars are parallel so the sensor's output is a triangle wave. In both types of uptical transducer, the spacing between the two gratings is critical.

Whether the waveform used for counting cylinder crossings is sinusoidal or triangular is not important, so the choice between the two transducers is governed by whether a position error or a velocity signal is required. The slope of a sine wave is steeper in the zero region than an equivalent triangle wave so it is more useful for detecting position error. Conversely the constant slope of a triangle wave is easily differentiated to produce a velocity signal. Because the differential of a triangle wave changes sign twice per cycle, a two-phase optical system is often used to give a continuous velocity-output signal. The stationary grating has two sets of bars with a $90^{\circ}$ phase relationship and the resultant


Fig. 10. Carriage velocity control by cylinder difference. Cylinder-difference value is loaded into the difference counter, A. A d-to-a. converter generates an analogue voltage; called the scheduled velocity, from the cylinder difference. This is compared with the actual velocity from transducer $B$ to generate a velocity error signal which drives the servo amplifier.


Fig. 11. In example (a), dissipation in the positioner is continuous, causing a heating problem. The effect of limiting the scheduled velocity above a certain cylinder difference is shown in (b), where heavy current only flows during acceleration and deceleration. In between, only enough current to overcome friction is required. Back to e.m.f. causes the curver acceleration slope.
waveforms are referred to as $\sin$ and $\cos$, even if they are triangle waves. The two waveforms and their complements, known as $-\sin$ and $-\cos$, are differentiated and the four differentials selected in turn at times when there is no sign change. This process of commutation is achieved by f.e.t. analogue switches controlled by comparators looking for points where the input waveforms cross. The result is a clean output signal proportional to velocity.
Where one transducer has to generate all three of the required parameters, Moiré type gratings are preferable because of their better position-error detecting performance. A certain amount of ripple on the velocity output derived from a sinusoid has to be accepted.
Optical transducers often contain additional light paths to aid carriage-travel limit detection. The resulting signals may be used during the head-loading sequence to position the heads at cylinder zero, as the sine or triangle outputs are cyclic and do not give an absolute cylinder address. Mechanical detent drives pose the problem of finding an absolute reference to the cyclic output from the rack transducer. One solution is to drive the carriage forward slowly until it contacts the forward stop, and then to preset the cylinder count to two or three cylinders more than the maximum.

## Seeking

A seek is a process where the positioner moves from one cylinder to another. The speed with which a seek can be completed is a major factor in determining the access time of the drive. The main parameter controlling the carriage during a seek is the cylinder difference:

## cylinder difference $=$ <br> desired address - current address.

The cylinder difference is a signed binary number representing the number of cylinders to be crossed to reach the target cylinder, direction being indicated by the sign. The cylinder difference is loaded into
a counter which is decremented each time a cylinder is crossed. The counter drives a d.-to-a. converter which generates an analogue voltage proportional to the cylinder difference. As shown in Fig. 10 this voltage, known as the scheduled velocity, is compared with the output of the car-riage-velocity transducer. Hence any difference between the two results in a veloc-ity-error voltage, which is then used to reposition the carriage hence cancelling the error. As the carriage approaches the target cylinder, the cylinder difference becomes smaller with the result that the.runin to the target is critically damped (velocity $\alpha$ - distance) to eliminate overshoot.
Figure 11(a) shows graphs of scheduled velocity, actual velocity and actuator current with respect to cylinder difference during a seek. In the first half of the seek the actual velocity is less than the scheduled velocity causing a large velocity error. This saturates the servo amplifier, providing maximum current to the actuator which in turn accelerates the carriage to reduce the error. In the second half of the graph, the scheduled velocity falls below the actual velocity generating a negative


Fig. 13. Staircase from a d.-to-a. smoothed by adding a sawtooth waveform.
velocity error, and the servo amplifier is now driving a reverse current through the actuator to decelerate the carriage in accordance with the scheduler. The scheduler deceleration slope can never be steeper than the saturated acceleration slope. Areas A and B on the current graph will be almost equal, as the kinetic energy put into the carriage has to be taken out. Any difference will be due to friction and other losses. The current through the coil is continuous which would result in a heating problem, so to counter this the d.-to-a. converter is made non-linear so that above a certain cylinder difference no increase in the scheduled velocity occurs. This results in the graph of Fig. 11(b). The actual-velocity graph is called a velocity profile, and consists of three regions: acceleration, where the system is saturated, a constant-velocity plateau, where only enough current is required to overcome friction, and the scheduled run-in to the desired cylinder. Dissipation is only significant in the first and last regions. The effect of carriage velocity on dissipation is as follows.


Fig. 12. Voltage-dependent feedback around the operational amplifier permits a piecewise linear approximation to a curved velocity profile. This speeds up short seeks without causing dissipation problems on long seeks.

Carriage acceleration, $a$, is $\propto$ actuator current, $I$, and

$$
a=\frac{2 s}{t^{2}}
$$

where $t$ is the seek time. Dissipation is $I^{2} R$, which is proportional to $a^{2} R$

$$
a^{2} R=\left(\frac{2 s}{t^{2}}\right)^{2} R=\frac{4 s^{2}}{t^{4}} R
$$

Average carriage veolocity $v \propto 1 / t$, therefore, dissipation $\alpha v^{4}$. As a result, it is necessary to limit the maximum velocity of the positioner very accurately or severe overheating of the coil or amplifier may result.

A consequence of the critically damped run-in to the target cylinder is that short seeks are slow. Sometimes further nonlinearity is introduced into the velocity scheduler to speed up short seeks. The velocity profile becomes a piecewise linear approximation to a curve by using nonlinear feedback. Figure 12 shows the effect of using a shaper or profile generator, as this device is known.

## Servo amplifiers

In small disk drives the amplifier is usually linear in all modes of operation, resembling nothing more than an audio output stage. As the scheduled velocity signal comes from a d.-to-a. converter, the deceleration ramp is depicted by a staircase waveform. When the staircase is compared with the actual velocity signal, the resulting velocity-error signal contains an a.c.


Fig. 14. Comparison of velocity error with a sawtooth waveform results in a pulsewidth modulated output which can be used to reduce dissipation in the servo amplifier.
 transducer drive the error amplifier. In track-following made, position error is the only inout. clearly.
component due to the steps. This increases e.m.a. dissipation and can cause an audible output from the coil - a problem that is sometimes solved by adding a saw-toath waveform, at the same rate as the steps, to the shaper output. This approach is shown in Fig. 13.

Larger units employ pulse-width modulation to reduce dissipation in the servo amplifier. The duty cycle is established typically by comparing the velocity error with a sawtooth waveform. A simplified example of this process is shown in Fig. 14. Appreciable electromagnetic radiation is caused by p.w.m. servo systems, but this is generally of no consequence as no data transfer takes place during a seek. In track following mode, p.w.m. servos re-


In this photograph of a moving-coil transducer, the magnet under the coil can be seen
vert to a linear amplifier configuration, which is why the term linear mode is often used to describe the detented state of the positioner.
The input of the servo amplifier normally has a number of analogue switches which select the appropriate signals according to the mode of the servo. As the output of the position transducer is a triangle or sine function, the sense of the position feedback loop has to be inverted on odd numbered cylinders, to allow detenting on the negative slope. In some cases a different velocity transducer is used when the heads are being retracted from the pack. Figure 15 shows a typical servoamplifier input-selection circuit.


Fig. 16. Alignment disc has flux patterns displaced alternately about the centre line of the reference track. In the resulting oscillograph at (a), the head is too close to the spindle, at (b) too far from the spindle, and at (c), in the correct position.

## Head alignment

On drives where interchangeable discs are used, the distance between the read/write heads and the spindle axis is critical. So to set the heads, an alignment disc (sometimes called a 'custom engineer') containing prerecorded flux patterns at a reference cylinder is used. Figure 16 shows a typical alignment-disc pattern and resulting oscilloscope waveforms for correct and incorrect head alignments.

Disc rotation, cooling, filtration, power supplies and safety will be discussed in the next chapter.

# DESIGNING WITH MICROPROCESSORS 


#### Abstract

Linking a mocroprocessor with a printer directly is wasteful: much time can be saved by sending data to a buffer for reading at a slower rate. Professor Zissos concludes his series with two articles on programmable i/o chips, this first on basic concepts, and the second on design procedure and implementation.


It is not always necessary or indeed desirable for two devices to communicate directly, particularly if one device is much faster than the other. For example, a microprocessor transmitting data directly to a slow character printer will be idling while a character is being printed. In this situation much time can be saved by the fast device transmitting each item of data to a port (in practice a data buffer) and allowing the printer to read the data from the port in its own time - see Fig 1. Such a scheme would release the microprocessor from the unproductive task of waiting and allow it to look after other tasks while the printer is printing.
Input/output ports are normally implemented with programmable chips, that is chips whose operations can be specified within limits by the user. Designing such systems involves two steps. First, the i/o chip is programmed. And second, the interface between the i/o chip and the peripheral unit is designed. Although the second stage presents no difficulty, programming the chip in practice is not always a trivial task, because of lack of a systematic method. This often prevents one from taking full advantage of the main property of such chips - that their terminal characteristics can be specified to some extent by the designer.

Clearly the source must not send data to the port until it can accept it. For this purpose the port sends a signal (hl) to the source indicating its status, namely whether it is empty or full. Signal hl must also be sent to the acceptor to prevent it from reading old data that it has already read, as shown in Fig. 2 ( $\mathrm{hl}=0$ indicates that the port is empty, and $\mathrm{hl}=1$ that the port is full). Reference to Fig. 2 shows that status signal hl must be turned on by the source when it sends data to the port, and turned off by the acceptor when it reads the data; variables $h 2$ and $h 3$ denote these "handshake" signals.
In practice signal hl is generated by a flip-flop, the status flip-flop. A JK flipflop impiementation is shown in Fig. 3. By pulling its J terminal high and the K terminal low, a pulse on its clock terminal sets it ( $\mathrm{hl}=\mathrm{l}$ ) and pulsing its clear terminal resets it. That is, a pulse on line h2 sets the flipflop and a pulse on line h3 resets it. The function of the AND gate is to terminate the clear signal (CLR) immediately after the flip-flop is reset, CLR $=\mathrm{hl} \cdot \mathrm{h} 3=0$ when $\mathrm{hl}=0$. In practice, the port is a buffer which requires a strobe pulse with

## by D. Zissos and Jane Pleus

every new item of data before it accepts it: the pulse on handshake line h2 can be used directly for this.

In summary the step-by-step operation of the handshake system in Fig. 2 is as follows. The source monitors status line $h$ l
to determine whether the port is full or empty. If empty, it outputs the next item of data and pulses line h 2 , which strobes the data into the port and sets the status flip-flop ( $\mathrm{hl}=1$ ) by pulsing its clock terminal. This constitutes the write operation; the read operation is initiated by the acceptor when line hl is high. When the data is read it resets the status flip-flop by pulsing its clear terminal.


Fig. 1. Fast device feeding a slow device needs buffer stage to avoid microprocessor wasting time.


Fig. 2. Handshake signals are exchanged before data is transferred from source to buffer and buffer to acceptor. Source monitors status lines 1 to see if port empty: Line h2 then strokes data into port. Read operation is intended by the acceptor when h1 is high.


Fig. 3. Status flip-flop generates signal h1. With J high and K low, pulse on line h2 sets circuit and on h3 resets it.


Fig. 4. A handshake system requires two interfaces, one to coordinate source/buffer activity and the other acceptor/buffer activity.


Flg. 5. Microprocessor-based system with input port and source (paper tape reader), top, output port and acceptor (printer), bottom.

To implement a handshake system requires two interfaces, one to coordinate the activity of the source with the activity of the buffer, and the second to coordinate the activity of the acceptor with that of the buffer, Fig. 4.

Because most commercially-available microprocessor systems are normally provided with ports which are already interfaced to them, one need only consider
interfacing peripheral devices to the ports. Therefore microprocessor-based systems with io ports can be represented by the two block diagrams in Fig. 5. A paper tape reader and printer act as source and acceptor because their action is easy to visualize - they can clearly be replaced by any other device, equipment or process.
Next article - Design steps and implementation.

John Linsley Hood's new amplifier is described in a threepart article, beginning with an explanation of design problems in relation to the characteristics of mosfets. The design will be closely followed by a new, modular preamplifier, the pair forming possibly the best amplifying equipment yet described in these pages.
Microprocessor-controlled radio-code clock. Using the 60 kHz standard-frequency time-code transmission from Rugby, this clock provides date and time information automatically, in that the display is continually corrected by the transmission. Particular attention to receiver design has greatly reduced the effects of interference, and a 6502 microprocessor is used to perform the cucoding function.
Heretics gulde to modern physics is a controversial review of current doctrine, set at the level of the sixth-form student or educated layman. Enormous gaps exist in our understanding of Nature and many of our fundamental theories are not very credible, says $W$. A. S. Murray, who in nine articles investigates electromagnetic theory, photons, duality, quantization, matter waves and haziness, and reviews the state of physics today.
Control technology and safoty. Presenting information on large systems - oil rigs, nuclear power stations, aircraft - to control engineers is not a simple matter of laying out alarms and indicators on a large panel. The psychology of crisis control, the requirement for new types of equipment for data marshalling and methods of training personnel are examined by R. E. Young.
Radio in tunnels by loaky feoder. D. J. R. Martin, a specialist in underground radio communication, reviews developments in the use of leaky, or radiating, cables.

# CEPSTRUM ANALYSIS 


#### Abstract

This final part of the review gives uses in speech analysis and machine diagnostics, as well as calculation with an FFT analyser using the digital form. Part 2 gave application to signals containing echoes (March), while part 1 derived the cepstrum as the spectrum of a logarithmic spectrum.


The applications of the cepstrum to speech analysis are mainly connected with its ability to separate source and transmission path effects, provided they have different quefrency contents. This is usually the case with speech where the source spectrum is very flat, containing a large number of harmonics of the voice pitch, but is modified by the resonance characteristics of the vocal tract, the so-called formants, which determine which vowel is being uttered. Fig. 13 shows spectra and cepstra for the vowels "oh" $|0|$ and "ee" $\mid i$ and illustrates how the differences mainly lie in the low quefrency part of the cepstrum, which is dominated by the formant characteristic. Non-voiced sounds, such as many consonants and whispered speech, do not give peaks in the cepstrum corresponding to the voice pitch, and one of the earliest applications of the cepstrum was to separate voiced and non-voiced sounds and to measure voice pitch ${ }^{10}$
It is also possible by editing in the cepstrum to remove one effect completely, for example the voice, and thus simplify the tracking of the formants. Fig. 14 from ref. 11 shows a typical situation, a three-dimensional representation of the section "ea" from the word "Montreal". The picture is confused but by short-pass liftering each of the spectra to remove the voice components, as shown in Figs 15 and 16, only the formants are left and the picture becomes much clearer.
The cepstrum can be used for efficient vocoding and transmission of speech. ${ }^{12}$ Most of the intelligence is contained in the low quefrency part of the cepstrum so only this is transmitted, along with information as to whether the speech is voiced and if so the voice pitch. At the receiver end the speech is reconstituted using the low quefrency information to generate a filter char-

Fig. 13. Spectra and cepstra for "ee" III vowel


by R. B. Randall and J. Hee

acteristic or impulse response for a source which would either be a variable frequency pulse generator for the voiced sections or a noise generator for the unvoiced sections. Despite the syntheric voice the speech was reported as sounding natural.
It can also be useful to include it along with spectral and other information in pattern recognition algorithms for speaker identification. Inclusion of the cepstral information improved the ability of the technique to exclude impostors. ${ }^{13}$

## Machine diagnostics

The applications of the cepstrum to machine diagnosis are mainly based on its ability to detect periodicity in the spectrum, e.g. families of harmonics and uniformly spaced sidebands, while being in-

Fig. 14. Scan spectrum of "ea" in "Montreal"
sensitive to the transmission path of the signal from an internal source to an external measurement point.

The cepstrum technique has been proposed to aid detection of missing blades in turbines. Such blade anomalies give rise to a large number of harmonics of the shaft rotational speed in measurements ${ }^{14}$ made both internally and externally on the casing in the vicinity of the affected blade row. Even though the harmonic pattern can be seen by eye, the whole family of harmonics is reduced in the cepstrum basically to one component which is much easier to monitor.

Similar reasoning is applicable to gearbox diagnosis; tooth anomalies have a very similar influence on gearbox vibration signals, as do blading anomalies on turbine signals. ${ }^{15}$ A very detailed discussion is given in reference 15 of the application of cepstrum analysis to gearbox diagnosis and so here the discussion is limited to a couple of typical examples.


In gearbox vibrations deviations from exact uniformity of each toothmesh show up partly as harmonics of the shaft speed and also as sidebands around the toothmeshing harmonics caused by modulation of the toothmesh signal by the lower rotational frequencies. The sideband spacing thus contains valuable information as to the source of the modulation and can be extracted using the cepstrum. The cepstrum has the two advantages of being able to detect periodicity not immediately apparent to the eye, and of being able to measure it very accurately because it gives the average sideband spacing over the whole spectrum.

The first advantage is illustrated in Fig.



Quefrency

Fig. 15. Cepstrum liftering a) log power spectrum of vowel b) magnitude of cepstrum


c) short pass lifter characteristic d) short pass liftered log power spectrum


Fig. 16. Short-pass liftered scan spectrum of "ea" in "Montreal"

17 and was made using an FFT analyser type 2033 in conjunction with an HP9825 desk-top calculator, A 2000 -line spectrum includes the first three harmonics of the toothmeshing frequency of a single reduction gearbox (a). It purposely excludes the low harmonics of the shaft speeds since these may have other causes than the toothmeshing. The spectrum was obtained by performing five 400 -line zoom analyses on the same data and storing the intermediate results in the calculator memory. The 2000 -line spectrum was then read digitally back into the 10 K input memory of the analyser and frequency analysed once more using the scan average procedure with $75 \%$ overlapping Hanning windows to obtain the cepstrum. Fig. 17 (b) represents the average of five such cepstra. Even though it is difficult to see any periodic structure in the spectrum, it is apparent from the cepstrum that there are two families of sidebands with spacings of 85 Hz and 50 Hz respectively, the rotational speeds of the two gears. All significant components in the cepstrum stem from one or other of these two shaft speeds.
The other advantage is illustrated in

Fig. 18 which shows spectra and cepstra for two truck gearboxes, in good and bad condition respectively, running on a test stand. The good gearbox shows no marked spectrum periodicity, but the spectrum of the bad one contains a large number of sidebands with a spacing of approximately 10 Hz . The cepstrum gives this spacing very accurately as 10.4 Hz and thus excludes the possibility that it was the second harmonic of the output shaft speed 5.4 Hz .


Fig. 17. Example of a cepstrum analysis on a gearbox vibration signal
(a) 2000-line logarithmic power spectrum
(b) Average cepstrum calculated from

It was traced to the rotational speed of second gear, even though this was idling because first gear was engaged.

## References

10. Noll, A.M. Cepstrum pitch determination, J.A.S.A. vol.41. 1967, pp. 293-309. Schafer, R.W. \& Rabiner, L.R., Digital representations of speech signals. Proc. IEEE. 1975, pp. 662-77.
11. Thrane, N, Application of a long memory FFT analyser in speech analysis. B\&K application note 066-81.
12. Schafer, R.W. \& Rabiner, L.R. System for automatic formant analysis of voiced speech J.A.S.A. 1970, pp. 634-48. Oppenheim, A.V. Speech analysis-synthesis system based on homomorphic filtering. J.A.S.A. 1969, pp. 458-65. 13. Luck, J.E. Automatic speaker verification using cepstral measurements. J.A.S.A. 1969, pp. 1026-32.
13. Sapv, G. Une application du traitement numérique des signaux au diagnostic vibratoire de panne: La détection des ruptures d'aubes mobiles de turbines. Automatisme - Tome XX, no. 10, October 1975. pp. 392-9.
14. Randall, R. B. Cepstrum Analysis and Gearbox Fault Diagnosis. Brüel \& Kjaer application note no, 233-80.
15. Thrane, N. Discrete fourier transformer and FFT analysers. B \& K Technical Review, no. 1 1979.


Fig. 18. Spectra and cepstra from truck gearboxes in good and bad condition

## Appendix A

Calculation using FFT analyser and calculator.
Even though the analyser basically performs a forward transformation of 1024 real data points, the results can be modified in the calculator so as to obtain the inverse transform of up to 1024 real or complex values thus giving the possibility of calculating both power cepstra and complex cepstra. The actual algorithms used are more generally applicable and so are detailed in Appendix B.
The digital version of eqn 3 for the power cepstrum is

$$
C_{\mathrm{p}}(n)=F^{-1}\left\{\log F_{\mathrm{xx}}(k)\right\}
$$

where $n$ stands for $n \Delta t$ ( $\Delta t$ is the sampling interval) and thus indicates the time. $n$ runs from 0 to 1023. Likewise $k$ represents the frequency $k \Delta f(\Delta f$ is the line spacing in the frequency spectrum) and in principle also runs from 0 to 1023 even though only the values from 0 to 512 are calculated. Because of the implicit periodicity of all functions calculated by the FFT process the values of $k$ from 512 to 1024 also represent the negative frequency components (from -512 to 0 ) and can usually be derived from the positive frequency values. ${ }^{16}$ As $F_{\mathrm{xx}}(k)$ is a real even function, the inverse transformation can be replaced by a forward transformation (Appendix B1). In general only the onesided power spectrum is given, and the simpler calculation method of Appendix B2 will be advantageous. With this method, only the onesided spectrum is transformed, and the real part of the transform gives the desired cepstrum. Another advantage of this method is that the envelope cepstrum (amplitude cepstrum of the one-sided spectrum) of Fig. 4 may be obtained at the same time. In fact the analyser itself automatically calculates this and displays it as the instantaneous spectrum, which can be viewed on a linear amplitude scale. The envelope cepstrum is

$$
C_{\mathrm{e}}(n)=\left|\mathcal{F}^{-1}\{\log G(k)\}\right|
$$

where $G(k)$ is the one-sided power spectrum. The formula for the complex cepstrum is

$$
C_{\mathrm{c}}(n)=\mathcal{F}^{-1}\left\{\log _{\mathrm{e}} A_{\mathrm{x}}(k)+\mathrm{j} \emptyset_{\mathrm{x}}(k)\right\}
$$

Because the logarithmic spectrum is a conjugate even function, the calculation method of Appendix B3 may be used. Note that the phase function $\phi_{\mathrm{x}}(k)$ must be unwrapped to a continuous function of frequency in place of the principal values modulo $2 \pi$ which are calculated from the real and imaginary parts of the complex spectrum. Moreover the log amplitude must be scaled in nepers (natural $\log$ of the amplitude ratio) to correspond to the radians of the phase spectrum.

The analysers in general are a.c. coupled, so the zero frequency value in the power spectrum is not calculated. It is therefore necessary to insert a value before calculating the cepstrum. In practice best results are obtained by setting the zero frequency component equal to the value of the neighbouring line

As the FFT algorithm used in the Analysers types 2033 and 2031 is optimized for signals with no d.c. component, it is advantageous to subtract the mean $\log$ spectrum value before calculating the cepstrum. This optimizes the signal noise conditions in the cepstrum, and is particularly valuable when editing and transformation in both directions is to be performed.
In calculation of the complex cepstrum it is advisable before attempting to unwrap the phase spectrum to remove any simple delay, which gives a linear slope to the phase spectrum. This should be done to the maximum extent possible in the time signal before transformation, and then in the phase spectrum itself by varying the linear component until the number of "jumps" over $2 \pi$ is minimized.

## Appendix B

Calculation of inverse Fourier transform
The forward and inverse discrete Fourier transforms, as calculated by the FFT analysers, are defined as
$X(k)=\frac{1}{N} \sum_{n=0}^{N-1} x(n) \exp -\mathrm{j} 2 \pi k n / N$
and $x(n)=\sum_{k=0}^{N-1} X(k) \operatorname{expj} 2 \pi k n / N$
where $\boldsymbol{X}(k)$ the discrete complex spectrum $x(n)$ the sampled time function and $N$ number of samples in the time record.

The Fourier transform implemented in the analysers types 2033 and 2031 is designed to be used forward transformation of real-valued time signals, but by using some of the properties of the Fourier transform, as listed in the tables, it can also be used for forward and inverse transformation of any complex signals. The inverse transformation of the three types of signals: real-valued, real and even, and conjugate even are described in the following. The

| Algorithm | Conditions |
| :---: | :---: |
| $\mathcal{J}^{-1}\{X(k)\}=\left(N \mathcal{J}\left\{X^{*}(k)\right\}\right)^{*}$ | any $\boldsymbol{X}(k)$ |
| $\mathcal{F}^{-1}\{X(k)\}=N \mathcal{F}\left\{X^{*}(k)\right\}$ | $x(n)$ real |
| $\mathcal{J}^{-1}\{X(k)\}=N \mathcal{J}\{X(k)\}$ | $x(n)$ real, even |
| $\mathcal{J}^{-1}\{X(k)\}=(N \mathcal{J}\{X(k)\})^{*}$ | $X(k)$ real |
| Time signal | Spectrum |
| real and even real and odd imag and even imag and odd real <br> coniugate even | real and even imag and odd imag and even real and odd conjugate even real |

results are sketched where the vertical lines indicate the result of the FFT calculation and the solid lines the desired result. Not that zero is shown in the centre of the diagram: During many of the operations, zero frequency or time will be located at the start of the record, but because of the periodicity of all functions the negative frequencies or times will be located in the second half of the record.

## B1. Real-valued spectrum

From the table it follows that

$$
\mathcal{F}^{-1}\{X(k)\}=N[\mathcal{F}\{X(k)\}]^{*} .
$$

The calculation procedure for positive time is then

- forward transform
- form complex conjugate
- multiply by $N$.

The result for both positive and negative time is seen in Fig. B1. For the special case of even spectra it is possible to omit the second step, but in that case the next procedure will normally be preferable anyway.


## B2. Real and even spectrum

From the original symmetrical spectrum a new one-sided spectrum is formed which has the original spectrum as its even part and is zero for negative frequencies. The real part of the inverse transform of such a spectrum is identical with the inverse transform of the original spectrum. As normally only the positive frequency
components of the original spectrum are given in any case, this saves forming the symmetrical spectrum for negative frequencies. It follows that

$$
\begin{gathered}
\mathcal{F}^{-1}\{X(k)\}=N R_{\mathrm{e}}[\mathcal{F}\{\tilde{X}(k)\}] \\
\text { where } \tilde{X}(k)= \begin{cases}2 X(k), & 0<k<512 \\
X(k), & k=0, k=512 \\
0 \quad, & -512<k<0\end{cases} \\
\tilde{X}_{\mathrm{e}}(k)=X(k) .
\end{gathered}
$$

The calculation procedure, Fig. B2, is thus - form $\bar{X}(k)$

- forward transform
- extract and scale the real part.



## B3. Conjugate even spectrum

Any complex spectrum can be inverse-transformed by transforming the real and imaginary components separately by the procedure B1. However, this requires two Fourier transformations as well as some extra storage capacity for the intermediate results. In the situation where the spectrum is conjugate even, i.e. corresponding to a real time signal, the following procedure can be used. This requires only one transformation and a minimum of storage space.

$$
\begin{gathered}
\mathcal{F}^{-1}\{X(k)\}=\mathcal{F}^{-1}\left\{X_{\mathrm{R}}(k)+\mathrm{i} X_{1}(k)\right\} \\
=N\left[\mathcal{F}\left\{X_{\mathrm{R}}(k)\right\}-\mathrm{i} \mathcal{F}\left\{X_{1}(k)\right\}\right] \\
=N\left[\xi_{\mathrm{R}}(n)+\xi_{1}(n)\right]
\end{gathered}
$$

Also $\mathcal{F}\left\{X_{\mathrm{R}}(k)+X_{1}(k)\right\}=\xi_{\mathrm{R}}(n)+\mathcal{F}_{1}(n)$

$$
\begin{aligned}
\text { where } \xi_{\mathrm{R}}(n) & =\mathcal{F}\left\{X_{\mathrm{R}}(k)\right\} \\
\text { and } \mathrm{j}_{\mathrm{F}}(n) & =\mathcal{F}\left\{X_{\mathrm{F}}(k)\right\}
\end{aligned}
$$

The calculation procedure, illustrated in Fig. B3, is as follows.
Add the real and imaginary parts for positive and negative frequencies. In practice this means adding the imaginary parts to the real parts (of the positive frequency spectrum) for the first half of the record and subtracting the same imaginary parts from the real parts for the second half in reverse order.


Forward transform. Add the real and imaginary parts for positive and negative time. The negative time section will be located in the second half of the record and can be removed to its correct position before the first half. Zero time will then be in the centre of the record.


## SPECTRUM/ NETWORK ANALYSER

Frequencies in the range 50 Hz to 1.8 GHz are covered by Takeda Riken's combined spectrum/network analyser, with which a dynamic range of 100 dB may be displayed. The TR4172 has a built-in tracking generator, a four-channel memory, eight tunable markers and is GPIB compatible. Facilities for measuring phase and group delay, with a simultaneous display of amplitude, are included. This instrument is for use in both production and research and development applications. Chase Electronics Ltd, Church Lane, Teddington, Middx TW11 8PA.
WW301

## BLUE L.E.D.

This is a 490 mm gallium nitride 1.e.d. intended primarily as a colour reference source in chromatography applications. Light output, in a viewing angle of $4^{\circ}$, is typically 2 mcd at 10 mA , which is also the maximum forward-current rating. Forward voltage varies between around 4.5 V at 0.5 mA and 7.5 V at 10 mA . The ESL $50 B 2$ is housed in a standard l.e.d. package. Anglia Components Ltd, Burdett Road, Wisbech, Cambs PE13 2PS.
WW302

## WAVEFORM MONITOR

The V-098, designed for broadcast and professional video applications, is a waveform monitor that can be set to give a flat response, an IRE (Institute of Radio Engineers) response, or display waveforms subjected to a 4.43 MHz bandpass

filter. In addition, two line and field sweeps can be selected and various other adjustments made. This monitor is from Hitachi Instruments, a new division of Hitachi Denshi, and can be obtained for mounting in a 19 in rack or as a portable unit running off batteries. Hitachi Denshi (UK) Ltd, 13-14 Garrick Industial Estate, Garrick Road, Hendon, London NW9 WW303

## PORTABLE VIDEO RECORDER

According to Sulkin (UK) Ltd who import the Technicolor 212E, it is "the world's smallest, lightest and


simplest" video cassette recorder. It uses 6.3 mm tape cassettes not much larger than a standard audio cassette, for either 30 or 45 minutes of play, and weighs around 3.2 kg with rechargeable batteries. Made by Funai and designed by Futec of Osaka, the mechanism is similar to the one used in the Grundig VP100 recorder and mentioned in last December's issue (New Products, page 87 ). But Grundig now say they will not market their recorder in the UK because of supply shortage. The 212E two-head recorder uses an Hitachi-made colour camera, though almost any other can be used via a simple adapter, with an electronic viewfinder, zoom lens, and close-up $\times 6$ "macro" setting. A u.h.f. television tuner will be available shortly. Sulkin (UK) Ltd, 73 Grosvenor Street, London W1X 9DD.
WW304

## TEACH YOURELF

An introduction to digital electronics suitable for beginners is given by a kit from Cambridge Learning covering such subjects as boolean algebra, gating, flip-flops, shift registers, ripple counters and half adders. Problems, with solutions, and an appendix covering basic principles are included in the manual. At $£ 19.90$, the kit comprises logic i.cs, a 'solderless' breadboard, l.e.ds, a handful of other components and, of course the manual all in a pocket-sized wallet (for 14 cm -wide pockets). A power supply or 4.5 V battery is required. Supplementary kits delving further into digital electronics are proposed. Cambridge Learning Ltd, Rivermill Lodge, St Ives, Huntingdon, Cambs PE17 4EP.
WW305

## UNINTERRUPTIBLE

 P.S.U.No-load to full-load voltage and frequency fluctuations of this uninterruptible power supply and regulator's output are $\pm 1 \%$ and $\pm 0.1 \%$ respectively. Maintenance-free batteries, normally under charge, drive the $240 \mathrm{~V} / 50 \mathrm{~Hz}$ output during momentary or total mains failure and large mains fluctuations from 0 to 270 V and from 40 to 70 Hz have little effect on the output. The switch from mains to battery backup is not apparent at the output. Surge currents up to five times the nominal rating are provided for starting inductive motors, etc These units can supply from 250 VA to 2 kVA , handle $100 \%$ overloads for 30 minutes and include comprehensive overload protection. T.h.d. is $2 \%$. Compec Systems Ltd, Welton, Brough, N. Humberside HU15 1PT.

## WW306

## 12-BIT D-TO-A

Linearity error of this 12 -bit microprocessor compatible digital-to-analogue converter is $0.01 \%$. The HS9338 has its input registers organized as three independent 4 bit elements each with its own re-gister-loading enable input. Output voltage is programmable in ranges

from 0 to 5 V to $\pm 10 \mathrm{~V}$ and an internal reference is available; out-put-settling time is quoted as $5 \mu \mathrm{~s}$. A 24 -pin d.i.l. package is used and the device operates on 5 V and $\pm 15 \mathrm{~V}$ supplies. Hybrid Systems UK, 12a Park Street, Camberly, Surrey.
WW307

## FLUX-DENSITY METER

A small meter for checking magnetic fields up to 19.99 kilogauss ( $1 \mathrm{G}=10^{-4} \mathrm{~T}$ ) in three ranges is manufactured by Redcliffe. Readings - down to 0.1G on the most sensitive range - are given on a 3 1/2-digit l.c.d. and the meter has a peak measurement function for checking and locating maximum flux areas in pulse-magnetised coils. Two probes are available, one for transverse fields and the other for axial fields, and a battery charger is supplied. Reference magnets are also available. Redcliffe Magtronics Ltd, 24 Emery Road, Brislington, Bristol BS4 SPQ.
WW308


## ACRYLIC FILTERS

Expansions in Chequers' range of acrylic filters for light-emitting devices have been made. Red, green and grey filters are available in four shades, amber and blue filters in two. There are also yellow and purple filters. In addition, designers can obtain a sample wallet containing four shades or colours of filter. Each sample has a section treated with Glarecheq - a coating for reducing glare and reflection. Chequers (UK) Ltd, 1-4 Christina Street, London EC2A 4PA.
WW309

## CALIBRATABLE STROBOSCOPE

This type of instrument is used in every field of engineering and has medical applications, yet we see surprisingly few new designs. Firnor Misilon has introudced a stroboscope which it claims has, "features usually associated with units costing twice as much." Retailing at $£ 198$ excluding v.a.t., the WM10


## ATOM SOURCE FOR VACUUM DEPOSITION

Researchers at UMIST's chemistry department developed a fast-atom bombardment (f.a.b.) source for mass spectrometry now available from Ion Tech Ltd. The saddlefield gas gun provides an intense neutral beam of fast atoms and does not require the use of a charge exchange cell to neutralize the gas ions produced with an electrostatic saddle field oscillator. The cold cathode ion gun also has application in thin-film vacuum deposition and

in substrate cleaning. Much better adhesion between a surface and, say, copper is obtained if it is first bombarded with the atom gun, the makers say. Known as the FABGG, the gun is available from Ion Tech Ltd, 2 Park Street, Teddington, Middx TW11 0LT.
WW311

Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

## BE A SHARP BUSINESSMAN

The sensational new PC-1500 Pocket Computer approaches the Pers Business Computer System that travels in your briefcase
The sensational recorder and you have a complete, battery powered, Business casette ren and a

SHARP CE-150 4-colour Graphic Printer
£130. 39 + VAT;
Total £149.95


SHARP PC-1500 'Basic' Pocket Computer £147.78 + VAT: Total £169.95

Price includes SECURICOR 24 HOUR DELIVERY*.
Same day despatch, subject to availability.

## BUSINESS APPLICATIONS



Quick and accurate data processing in daily business. Estimates, records and charts of sales, salaries, invoicing and all other data crucial to efficient business operations can be easily programmed, calculated and summoned.

## ENGINEERING APPLICATIONS

Technical calculations in fields such as mathematics, statistics, measurements and mechanics are done superbly and easily. The calculator more than meets the requirements of engineers and scientists.


## MANAGEMENT APPLICATIONS

Balance sheets, so crucial to management analysis, and profit calculations by break-even point analysis are instantly vours with the PC-1500. By using the integral clock, calendar and alarm functions, this computer can also be used as a schedule reminder.

BASIC LANGUAGE
The most simple computer language is used for programming ease. Additional BASIC terms provide variables including two dimensional arrays, variable strings and many other advanced features. LARGE MEMORY
16 K bytes of ROM and 3.5 K bytes of RAM, with 2.6 K bytes in the user area. Adding the optional CE. 151 , 4 K byte memory module, expands the RAM to 7.5 K bytes. An 8 K byte memory module will be available soon. The PC-1500 is battery powered and program and data memories are fully protected, even when switched off MINI-GRAPHIC DISPLAY
The $7 \times 156$ dot matrix allows almost any display, including game symbols. Line width is 26 characters and/or numbers. HIGH SPEED DATA PROCESSING
The C-MOS 8-bit CPU enables swift dara processing. Complicated technical or business calculations require far less time
QWERTY TYPEWRITER KEYBOARD
The first in a pocket computer. Lower case letters are available. With the optional CE- 150 colour graphic printer, the PC- 1500 can serve as a small personal typewriter. Word Processor software will be available soon.
SIX SOFTWARE KEYS
These can serve as reservable keys, or as definable keys to define programs.
CE-150 4-COLOUR GRAPHIC PRINTER/CASSETTE INTERFACE Automatic program, data and calculation printing. It prints virtually any drawing in either red, black, green, or blue. Characters are printed in nine different sizes and in lines ranging from 4 to 36 digits in length. You can control the printer completely and direct the printing either up, down, left, or right. As a cassette interface it will connect up to two cassette recorders, one for data and program storage, the other for their recall. The CE- 150 has a built-in rechargeable battery and is supplied with a mains adaptor, type EA-150. AVAILABLE SOON

- RS-232C interface. "Software board to serve as input keys in graphics, or pictures, previously drawn on a template. "ROM (MASK ROM) module also applicable. *A wide range of business software. DIMENSIONS
PC-1500: $195 \mathrm{~W} \times 25.5 \mathrm{H} \times 86 \mathrm{Dmm}\left(7.11 / 16 \times 1 \times 3-3 / 8^{\prime \prime}\right)$ Wt $375 \mathrm{~g}(0.831 \mathrm{~b})$ CE. 150: $330 \mathrm{~W} \times 50 \mathrm{H} \times 115 \mathrm{Dmm}(13 \times 2 \times 4$ inches). Wi 900 g ( 1.981 bs ). Full 12 MONTHS guaranter, with EQUIPMENT LOAN SERVICE during downtime.
-SAME DAY DESPATCH of orders - Systems by SECURICOR 24 hour service, (to attended premises only) or by first class registered post. AT NO EXTRA COST'
SEND FOR FULL DETAILS to TEMPUS, the Portable Computer Specialists.



## HOBBY APPLICATIONS

Many popular computer games can be played, including Blackjack, utilising the random number function. Use the clock and alarm for speed games. The Computer Graphics will draw virtually any pattern.


TEMPUS
Dept WW, 38 Burleigh Street, Cambridge CB1 1DG Tel: 0223312866

To: Tempus, FREEPOST, 38 Burleigh St, Cambridge CB1 1BR.
INFO. ITEM QTY PRICE TOTAL PC- 1500 Pocket Computer
CE-150 Four Colour Printer CE-151 4K Byte RAM Module

For information only tıck appropriate box
I herewith enclose a cheque or Postal Orders value E $\qquad$ or I wish to pay by Access Bicard Visa. My number is:
Name:
Address: s: $\qquad$

| TEETRONIX PORTAALE OSCILLOSCOPE YYpe 422. Dual Trace - <br>  <br> TEKTRONXX CUVVE TRACER tpee 55 . TEKTRONIX AMPLIER <br> TEKTRONIX SAMPLING PLU <br> TEKTRONIX PLUG-IN yype E Single Trace High Gzin OC Differentual <br>  <br>  <br>  <br>  <br>  <br>  <br> HEWLET PACKARD AUOIO DSCCLLATOR TYPE 2OON <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  |  |  | NIAM/FM SIGNAL GENERATOR type TF 1066B/6S 10.470 MHZ in 5 band $475 . \mathrm{m}^{5}$ band |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  | citance $50 \mathrm{~K} \mu \mathrm{~F}-500 \mathrm{pF}$ |
|  |  |  |  |
|  |  |  | ONLY E40 |
|  |  |  | AVO VALVE TESTER |
|  |  |  |  |
|  |  |  | Copy of Valve Data 55 only available with unit) |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | AVO SIGNAL GENERATOR |
|  |  |  |  |
|  |  |  | E75 |
|  |  |  | NTER//REQU |
|  |  |  |  |
|  |  |  |  |
|  |  |  | WAVE AUDIO GE |
|  |  |  |  |
|  |  |  | MULT |
|  |  |  |  |
|  |  |  | 12.50 asch. |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | TELETYPE PRINT |
|  |  |  |  |
|  |  |  |  |

## BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome

CALLERS VERY WELCOME STRICTLY BETWEEN 9 am -1 pm and $2-5 \mathrm{pm}$ Monday to Saturday inc. All units $£ 6$ carriage. Plus V.A.T. on total NORWOOD ROAD, READING
(2nd turning left past Reading Technical College in King's Road then first right - look on right for door with "Spoked Wheel")

| SWITCHES <br> Gold-plated contact Sealed base. Ideal for pro gramming. 6-position at Iess than $n$ manufacpurers price ONLY | HONEYWELL PROXIMITY DETECTOR integral ampifiter. 8v, OC.E E350 ea,PHOTO CONDUCTIVE CELL f125. High-power Cas cell 600 MW . for control citcuitsResistance 800 ohm to 4 k Max. volts 240. Size $1 / 2 \times$ RIBEON MICROPHONE ${ }^{\text {W. With }}$ pe. |  |  <br>  <br>  <br>  unit luncased requires 1.51. 1.53 .25. FOSTER DYNAMIC mpedance Moving ohm Complete on chassis. $\mathbf{E 1 . 1 5}$ pair: |
| :---: | :---: | :---: | :---: |
| 100 55p в |  | CRYSTALS COLDUR TV <br> $4.433619 \mathrm{mc} / \mathrm{s} 51.25$ Miniarute type seaie |  |
| ideal for with d Size $3 x$ |  | MINIATURE HIGHQUALITY FANS Whisper Model" by Ro. ton. Low-power consump-tionlless than 10 wants). Silent running. 1155. (two in series op $230 v$. .50150 Hz . Size $4 / 2 \times 4 / 2 \times$ \$/2n. ONLYEG. 50 EACH incl. V.A T $50 \%$ less than manutactur. ar's price | STEAEO CASSETE <br> Complete wish 6 or 12 vorh <br> Heads + Erase and Solenoid. 8 randnew ....E5. 50 ro |
| With illumınated dial sca 0-10. F.S.D. 100 microam Size $1 / 2 \times 1 / 2 \times 1 / 2$ dee Only $\mathrm{E1}$. K . |  |  |  |
| Half-inch +1 Display El each set of 4 E3 50 14 Pin Oil Package |  | HEWLETT-PACKARD DISPLAYS <br> 5082.7650 HIGH EFFICIENCY ANO VERY BRIGH Only E 1.00 each <br> Set of 6 for ts Half-inch red common anode with ropl Ditoll-pin oil. | EX-MOTOROLA 5 + 5-WATT CAR STEREO AMPLIFIERS <br> Complete and lested wnits. Medium and Long Wave. Suppliad as two built units $15 \times 2 \times 2 i n$. 1 with circuit and data. Onity pre-amp. |
|  |  |  |  |
| $\underset{\text { PAROOMA }}{ }$ <br>  <br> IN4148 DIDDE <br> Full spec. but no polarity band. Pee 1,000 . elo <br> MINIATURE MP.C. POTENTIOMETEAS. Model M2. High-quality. $5 \%$ tolerance 2.watt with lin spindles. All values, 47 ohms.47k only 60 p each per 10: 50 p each per 100: ${ }_{400}$ рас. |  |  |  |

QUANTITY DISCOUNTS on ALL items (unless stated), $15 \%$ per $10,20 \%$ per $50,25 \%$ per 100. All items BRAND NEW (Unless otherwise stated)

SUPERSEM
PLYMOUTH 075221256
MEMORIES AT UNFORGETTABLE PRICES

|  | 1-24 | 25-99 | 100+ | 1,000+ |
| :---: | :---: | :---: | :---: | :---: |
| 4116 P-3 200ns | . 90 | . 85 | . 80 | . 75 |
| 2114 LP 450ns | 90 | . 87 | . 85 | . 80 |
| 2708 k 450 ns | 2.70 | 2.50 | 2.30 | 2.25 |
| 2716k 450ns | , 2.45 | 2.30 | 2.10 | 2.00 |
| 2732 k 450 ns | 3.85 | 3.65 | 3.60 | 3.25 |
| 8981 P-45 Cmos | 2.25 | 2.15 | 2.05 | 1.85 |
| 8725 S 200ns | 7.05 | 6.55 | 6.05 | 5.55 |
| K4164 200ns | 5.00 | 4.75 | 4.50 | 4.25 |
| 80398-bit. | 3.05 | 2.90 | 2.75 | 2.45 |
| 8080AP CPU | 2.15 | 2.05 | 1.95 | 1.75 |
| 8085A CPU. | 2.80 | 2.65 | 2.50 | 2.20 |
| 8155P + Timer. | 3.10 | 2.95 | 2.80 | 2.50 |
| 8156 P + Timer | 3.45 | 3.25 | 3.05 | 2.65 |
| 8212 P i/o Port. | 1.10 | 1.05 | 1.00 | 85 |
| 8216 Bus Driver | 1.05 | 1.00 | . 95 | 85 |
| 8224P Clock Gen | 1.30 | 1.20 | 1.15 | 1.05 |
| 8226P Bus + B/Drives | . 92 | . 87 | . 82 | . 75 |
| 8228P System Cont | 2.25 | 2.15 | 2.05 | 1.85 |
| 8243P i/o Exp. | 2.00 | 1.95 | 1.90 | 1.80 |
| 8251AP Prog. Int./Face | 2.60 | 2.50 | 2.40 | 2.30 |
| 8253P Prog. Int./Time . | 3.60 | 3.40 | 3.20 | 2.85 |
| 8255AP Perip./Inter. | 2.25 | 2.15 | 2.05 | 1.85 |
| 8257P DMA Cont. | 3.75 | 3.65 | 3.35 | 3.00 |
| 8259 Inter Cont | 3.60 | 3.40 | 3.20 | 2.85 |
| 8279P Kev Disp. | 4.60 | 4.50 | 4.00 | 3.50 |
| 4044 P-3 300ns.. | 1.90 | 1.80 | 1.70 | 1.55 |

Please add V.A.T. to all orders FAST DELIVERY : TOP QUALITY

Phone 075221256
SUPERSEM
Export enquiries welcome Britannic House Drake Circus Plymouth PL4 8 AO


CUNARD HOTEL, LONDON MAY 5-7, 1982
Opening Iimes: $10.00 \mathrm{hrs}-18.00 \mathrm{hrs}$ (closing 17.00 hrs on the last day)

## Specially designed for businessmen who are aware of the need to make their company more efficient!

This three day event, running parallel with the major conference, is designed to show the hardware and software equipment and expertise available in this area of Information Technology.
All aspects relating to the practical issues of purchasing and installing, operating and applying Videotex Systems will be covered.
Exhlbilts will range from large "Turnkey" packages to the smailer, but equally Important perlpheral devices terminals, printers, subscribers and telecommunications Interfaces.
This is the 5th in the highly successful serles of vlewdata and videotex exhibitions sponsored by IPC Business Press, the world's largest business publlshers. In the past these exhlbillons have been successtully used in launching the latest adaptors and complete systems. These systems are the modern tools of the new era in Information Technology.

Don't miss out on this opportunlty to make your company more efficiont|

Fill out and return the form below.


## TELETEXT AND PRESTEL VIEWDATA

Universal single plug-in board

## Combined TELETEXT AND PRESTEL



The Lion Viewdata plug-in board is an inexpensive Teletext, Prestel and Viewdata single board designed for use in televisions and microcomputers. A programmable interface serial and parallel accepts remote controls, keyboards and microcomputer interfaces. The board is directly exchangeable with our Teletext only board (Mullard set), and other teletext boards are simply exchangeable.

An add-on adaptor with full remote control is available with all the features of the board giving, both Teletext and Prestel for £250 and this can connect to any set. Other adaptors using the plug-in board are available for Nordmende, Grundig, Ferguson, provision of our keyboard or with some types of microcomputer. Powerful features provision of our keyboard or with some types of microcomputer. Powerful feature
$\star$ Full adi
option
Viewtout option of Teletext, Prestel or Miewdata pages

- Microcomputer interface

Aurodial local and remote program-

- Teletext, Prestel and Viewdata
* Timed Teletext pages

LION VIEWDATA TV, 18 Harcourt Terrace, London, S.W. 10 - Tel; 01-373.5218

WW - 091 FOR FURTHER DETAILS


* Re-programmable interface
* Cassette recording facility for recording whole books of information
* 8 -page storage option
* RGB video output
*ideo games interfacing
* Replacement of Teletext boards


## U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

## BSR DE LUXE AUTOCHANGER £20

Auto or Manual. A high
quality unit backed by BSR rellabisity. Stereo Ceramic Cartridge. AC 200/250V. Size $131 / 2 \times 111 / 4 \mathrm{in}$. 3 speed .
Above motor board $3 / 4 \mathrm{in}$. Below motor board $21 / 2 \mathrm{in}$.

## Post £2 Board £1 extra



HEAVY METAL PLINTHS Post £2 Cut out for most BSR or Garrard deckss $\begin{aligned} & \text { Silver grey finish, black trim. Size } 16 \times 13 \% \text { in. } \\ & \text { K4 }\end{aligned}$ DECCA TEAK VENEERED PLINTH. Post f1.50 Superior finish with space and panel fo
small amplifier. Board is cut for B.S.R

TINTED PLASTIC COVERS

| TINTED PLASTIC | RS |  | Post $\mathrm{E}_{\mathbf{2} 6}$ |
| :---: | :---: | :---: | :---: |
| $177 / 8 \times 131 / 8 \times 31 / 4 \mathrm{in}$. | £6 | $181 / 4 \times 121 / 2 \times 3 \mathrm{in}$. |  |
| $171 / 2 \times 93 / 6 \times 31 / 2 \mathrm{in}$. | $\underline{5}$ | $14^{3 / 8} \times 12^{1 / 2} \times 2^{7 / 8 i n}$. | E5 |
| $133 / 4 \times 12 \times 21 / 4 i n$. | E5 | $165 / 8 \times 13 \times 4 \mathrm{in}$. | ¢6 |
| $151 / 4 \times 131 / 2 \times 4 \mathrm{in}$. | ¢6 | $141 / 2 \times 131 / 8 \times 2^{3 / 4 i n}$. | E5 |
| $17 \times 12^{7 / 8} \times 3^{1 / 2} \mathrm{in}$. | £6 | $171 / 4 \times 13^{3 / 4} \times 41 / 8 i n$. | £6 |
| Callers Only (not suitable for post) |  |  |  |
| $211 / 2 \times 141 / 4 \times 21 / 2 \mathrm{in}$. | E6 | $21 \times 13^{7 / 8 \times 41 / 8 i n}$. | E6 |
| $23^{3 / 4} \times 14 \times 3$ \%/8in. | $\underline{6}$ | $30^{3 / 4} \times 13^{3 / 8} \times 31 / 4 \mathrm{in}$. | E6 |

## BSR SINGLE PLAYER DECKS

 BSR P232 BELTQUALITY DECK
QUALITY DECK
Manual or automatic pla


Precision ultra slim arm. £24 Cueing device. Bargain price
With stereo ceramic cartridge

Ost $£ 2$
BSR P204 SINGLE PLAYERS SPECIAL OFFERS
Two speed $33 / 45$ r.p.m. hi-fi decks with stereo cartridges, cueing device and snake arm
Ceramic - 240 V AC £ 15 or 9 V DC £ 19.
GARRARD 6-200 SINGLE PLAYER DECK E 22 Post £2 Brushed Aluminium Arm with stereo ceramic cartridge and Diamond Stylus, 3 -speeds. Manual and Auto Stop/Start. Large Metal Turntable. Cueing Device. Ready cut mounting board $£ 1$ extra.
GARRARD 730 SP. $240 \mathrm{~V}, € 27.50$. Magnetic Cartridge -Snake arm, 3-speed_single plaver, p.p. £2

BATTERY ELIMINATOR MAINS to 9 VOLT D.C. Stabilised output, 9 volt $400 \mathrm{~m} . a$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size
$5 \times 31 / 4 \times 21 / 2 i n$. Transformer Rectifier Unit. Suitable $5 \times 31 / 4 \times 21 / 2 \mathrm{in}$. Transformer Rectifier U
Radios, Cassettes, models, £4.50. Post 65 p . DE LUXE SWITCHED MODEL STABILISED. $£ 7.50$. Post E1. 3-6-7 $1 / 2-9$ volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch. ORILL SPEED CONTROLLER/LIGHT DIMMER KTT. Easy to build kit. Controls up to 480 watts AC mains, C3. Post 65p. standard box, $\mathrm{E5}$. Post 65 p .

## EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS

Model 450,10 warts R.M.S. with moving coil tweeter and
crossover; 3 ohm or 8 ohm.

SUITABLE BOOKSHELF CABINET E6.50,
RELAYS. 6 V DC 95p. 12 V DC $£ 1.25$. 18 V E1.25.
BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45$; $8 \times 6-£ 1.80$; ${ }^{10 \times 7-£ 2.30 ;}{ }^{12 \times 8-£ 2.60 ;}{ }^{14 \times 10-£ 3 ;}{ }^{16 \times 6-£ 2.90 ;}$ $16 \times 10-E 3.20$. All $11 / 2 \mathrm{in}$. deep. 18 swg
ANGLEAL. $6 \times 3 / 4 x^{3} / 2 \mathrm{in}$. 18 swg . 30 g .
ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in} .18 \mathrm{swg}$. 30 p .
ALUMINIUM PANELS, 18 swg . $6 \times 4-45 \mathrm{p} ; 8 \times 6-75 \mathrm{p}$;
 $16 \times 6-£ 1.10 ; 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-$
PLASTIC AND ALI BOXES IN STOCK. MANY SIZES
 $6 \times 4 \times 2 \quad £ 1.60$. $7 \times 5 \times 3 \times 2.40$. $8 \times 6 \times 3 ~ £ 2.50$. $10 \times 7 \times 3 £ 3$. $12 \times 5 \times 3$ E2. $7.75 .12 \times 8 \times 3 \varepsilon 3.60$. All with lids. BRIOGERECTFIER $200 V$ PIV $2 a$ A 1 , 4a £1.50, 8 a a 52.50 . TOGGLE SWITCHES SP 30 p. DPST 40 p . DPDT 50p. RESISTORS. 10 N to 10 M . $1 / 1 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{p}: 2 \mathrm{~W}$ 10p HIGH STABILITY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg . 8 pp . 3 p . Ditto $5 \%$. Preferred values, 10 ohms to 10 meg , 3 p .
WIRE-WOUNO RESISTORS 5 watt, 10 watt, 15 watt 20 p WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 20 p
PICK-UP CARTRIDGES SONATONE 9TA $£ 2.50 .9$ TAC $£ 3.80$ PICK-UP CARTRIDGES SONATONE 9TA E2.50. 9TAC $£ 3$ BSR Stereo Ceramic SC7 Medium Output £2. SC12 E3.
PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306:AG3310) $£$ 2.
LOCKTITE SEALING KIT DECCA 118 . Complete $£ 1$.
ANTEX SOLDERING IRON 240 V 15 W E5.25. $25 \mathrm{~W} £ 5.95$. JACK PLUGS Mono Plastic 25p; Metal 30p. JACK PLUGS Stereo Plastic 30p; Metal 35p. JACK SOCKETS Mono Open 20; Closed 25p. JACK SOCKETS Stereo Open 25p; Closed 30p. FREE SOCKETS - Cable end 30p. Motal 45p. 2.5 mm and 3.5 mm JACK SOCKETS 20p. Plugs 20 p . DIN TYPE CONNECTORS
Sockets 3-pin, 5 -pin 10p. Free Sockets 3-pin, 5 -pin 25 p. Plugs 3-pin 20p; 5 -pin 25p; Speaker plugs 20p; Sockets 15p PHONO PLUGS and SOCKETS ea. 15p.
300 ohm TWIN RIBBON FEEDER 10p yd.
U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25 p Yd

COAX PLUGS 30p. COAX SOCKETS 20 p
NEON PANEL INDICATORS 250 V 30 p .

## POTENTIOMETERS Carbon Track

$5 k \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S

$\left|\begin{array}{|c}\frac{1}{c}+\frac{1}{2} \\ \vdots(1\end{array}\right|$MINI-MULTI TESTER
Deluxe pocket size precision moving coil instrument. Impedance + Capacity 11 instant ranges measure: DC volts $10,50,250,1000$.
AC volts $10,50,250,1000$. AC volts $10,50,250$
DC amps 0.100 mA .
Continuity and resistance to 1 meg ohms in two ranges.
De Luxe Range Doubler Model,
$\mathbf{£ 6 . 5 0 \text { Post } 6 5 \text { p } 5 0 , 0 0 0 \text { o.p.v. } 1 8 . 5 0 . 7 \times 5 \times 2 \text { in. Post } £ 1 1}$
NEW PANEL METERS £4.50
50на 100 аа, $500 \mu$ a, $1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$, $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ 25 volt, 50 volt, VU Meter. $21 / 4 \times 2 \times 11 / a i n$.

Post 65p

RCS SOUND TO LIGHT CONTROL KIT | Kit of parts to build a 3 channel sound to light |
| :--- |
| unit. 1,000 watts per channel. Sulitable for home |
| 15 | or disco. Easy to build. Full instructions supplied. Post 95 p Cabinet $£ 4.50$ extra. Operates from 200 MV to 100 W . 200 Watt Rear Reflecting White Light Buliss. Ideal for Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post 65 p. Suitable panel mounting holders 85p.

## RCS "MINOR" 10 watt AMPLIFIER KIT E 14

This kit is suitable for record players, guitars, lape playback, electronic instruments or small PA systems. Two versions available: Mono, E14; Stereo, E20. Specification. Full instructions supplied. 240 V AC. Post $£ 1$.
details. Full

RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp
per channel, with volume control and PC Board $£ 2.95$ per channel, with volume control and PC Board
Can be ganged to make multi-way stereo mixers
Post 65 p MAINS TRANSFORMERS


AUTO 115 V to 240 V 150 W E9. 250W E10. 400 W E11. 500W E12. EQ:

## GENERAL PURPOSE LOW VOLTAGE

| 2 amp. 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 25 and 30V |  |  | . 10 |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$ |  |  | E6.00 £2 |
| 2 amp . 6, 8, 10, 12, 16. | 18, 20, 24,30 | 36, 40, 48, 60 | ¢10.50 $\overbrace{2}$ |
| $3 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$ |  |  | £12.50 £2 |
| 5 amp 6. 8. $10,12,16.18,20,24,30,36,40,48,60$ |  |  | £16.00 £2 |
| 5-8-10-16V. $1 / 2 \mathrm{amp}$. | 2.5080 p | 12.0 .12 V .2 mmps | E3.50 10 |
| $6 \mathrm{~V} .1 / 2 \mathrm{amp}$. | $\underline{20.00} \mathrm{El}$ | 15-0.15V. 2 amps | £3.75 £1 |
| $6-0-6 \mathrm{~V}$. $1 / 2 \mathrm{amp}$. | £3.50 £1 | 20 V 1 amp | ¢3.00 £1 |
| 9V. 250 ma . | £1.50 80p | 20.0-20V 1 amp | E3.50 £ 1 |
| 9 V .3 amp | ¢3,50 £1 | 20.40 .60 V 1 amp | £4.00 ¢2 |
| $9-0.9 \mathrm{~V} .50 \mathrm{ma}$ | f150 80p | 25-0.25V 2 amps | ¢4.50 £1 |
| 10-0.10V. 2 amps | E3.00 £1 | 28 V 1 amp Twice | ¢5.00 $£ 2$ |
| 10-30-40V. 2 amps | £3.50 £1 | $30 \mathrm{~V} 11 / 2 \mathrm{amp}$ | E3.50 El |
| 12V. 100 ma | £1.50 80p | $30 \vee 5 \mathrm{amp}$ and |  |
| 12V. 750 ma | £2.00 80p | 17-0-1728 | £4.50 £2 |
| 12 V 3 amps | E3.50 £1 | 35 V 2 amps | ¢4.00 $£ 1$ |
| TOROIDAL $30-0-30 \mathrm{~V} 4 \mathrm{a}$ and $20-0-20 \mathrm{~V} 1 / 2 \mathrm{a}$ |  |  | ¢10¢2 |
| CHARGER TRANS |  | RECTIFIERS | t |
| $6-12$ volt 3a | ¢4.00+£2 | 6-12 voit 2a | ¢1.10 + 80p |
| ©-12 volt 4a | E8.50 $+\mathrm{E}^{2}$ | 6.12 volt 4a | $82.00+80 \mathrm{p}$ |

## OPUS COMPACT

SPEAKERS £22 pair post $£ 2$ TEAK VENEERED CABI
$11 \times 81 / 2 \times 7 \mathrm{in}, 15$ watts
$11 \times 81 / 2 \times 7 \mathrm{in}, 15$ watts
50 to $14,000 \mathrm{cps} .4 \mathrm{ohm}$ or 8 ohm
OPUS TWO $15 \times 101 / 2 \times 73 / 4 \mathrm{in} 25$ watt 2 -way system $£ 39$ pair. Post $£ 3$

## LOW VOLTAGE ELECTROLYTICS

$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf}, 250 \mathrm{mf}$. All 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 47$ $\begin{array}{ll}\mathrm{mf} / 10 \mathrm{v} ; ~ & 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} \\ 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220 \\ 220\end{array}$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}: 1500 \mathrm{mf} /$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 86 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p}$; $50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p}: 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$; 4500 mF 64 V £2. 4700 mF 63 V £ $1.20 .2700 \mathrm{mF} / 76 \mathrm{~V} \mathrm{E} 1$. HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{lllll}8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} & 75 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}\end{array}$ $2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 8+16 / 450 \mathrm{~V} \quad 75 \mathrm{p} \cdot 100+100 / 275 \mathrm{~V} \quad 65 \mathrm{p}$ $\begin{array}{llllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 500 \mathrm{~V} & \mathrm{Y} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p}\end{array}$ $\begin{array}{lllrlr}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} & 95 \mathrm{p} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{E1.80} & 32+32+32 / 325 \mathrm{~V} & 75 \mathrm{p}\end{array}$ $\begin{array}{lllrl}32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathbf{£ 1 . 8 0} & 32+32+32 / 325 \mathrm{~V} \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}\end{array}$ CAPACITORS WIRE END High Voltage
$001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} .400 \mathrm{~V} 5 p$ $22 \mathrm{MF} 350 \mathrm{~V} 12 \mathrm{p}, 600 \mathrm{~V} 20 \mathrm{p} .1000 \mathrm{~V} 30 \mathrm{p} .1750 \mathrm{~V} 50 \mathrm{p}$ $.47 \mathrm{MF} 150 \mathrm{~V} 10 \mathrm{p}, 400 \mathrm{~V} 20 \mathrm{p}, 630 \mathrm{~V} 30 \mathrm{p}, 1000 \mathrm{~V} 60 \mathrm{p}$.
VALVE OUTPUT Transformers (small) 90 p . TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p}$. $100 \mathrm{pF}, 150 \mathrm{pF}$, 15 p MICRO SWITCH SINGLE POLE CHANGEOVER 30p. TWIN GANG, 120 pF 50 p . 500 plus 200 pF £ 1 .
GEARED TWIN GANGS 25 pF $95 p$.
TRANSISTOR TWIN GANG. Japanese Replacement 50p.

## HEATING ELEMENTS, WAFER THIN

Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Suitable for Heating Pads, Food Warmers, Convector
Heaters, Propagation, etc. Must be clamped between Heaters, Propagation, etc. Must be clamped between two sheets of metal or ceramic, etc

## NEW baker Star sound

high power full range quality loudspeakers produced to give
exceptional
reproduction. Ideal for Hi-Fi, music P.A. or discotheques. The
loudspeakers are ecommended where high power handling is required with quality results. The high flux


## BAKER 150 WATT MIXER/POWER AMPLIFIER $£ 89$ Post

SLAVE VERSION $£ 75$
For Organs, Discotheque, Vocal. Public Address. Three loudspeaker outlets for 4,8 or 16 ohms. Four high gain inputs, each 20 my, 50 K ohm. Individual volume controls "Four channel" mixing. 150 watts into 8 ohms R.M.S. Musle Power. Distortion less than $-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-fi preamp separate Bass \& Treble.
 control. Made in England. 12 months' guarantee. 200/250v A.C. mains or 120 V to order. All transistor and solid state devices. 100 Volt Line $£ 15$ extra.
New Stereo Slave Model $150+150$ watt $£ 125$. Post $£ 4$. BAKER'S NEW PA150 MICROPHONE PA AMPLIFIER £129. PP $£ 3$ 4 channel 8 inputs, dual impedance, 50K-600 ohm 4 channel mixing, volume, trable, bass. Presence controls, Master volume
control, echo/send/return socket. Slave input/output sockets.

BAKER $£ 69$ Post E 2 50 WATT AMPLIFIER
deal for PA systems, Discos and Groups. Two inputs Mixer, Volume, Controls, Master Bass, Treble Gain.
RCS offers MOBILE PA AMPLIFIERS. Dutputs 4-8-16 ohms 20-watt RMS 12 v DC, AC $240 \mathrm{v}, 3$ inputs. 50 K £46 PP £2. 40- watt RMS 12v DC, AC $240 \mathrm{v}, 4$ inputs. 50 K 100 v Line $\mathrm{FT5}$ PP $£ 2$ Mie 1; Mic 2; Phond; aux. outputs 4 or 8 of 16 and 100v line 60 -watt RMS, Mobile 24 volt DC $\& 240$ volt AC mains. inputs 50 K .
3 mics +1 music. Outputs $4-8-16$ ohm +100 volts line $£ 55$ PP $£ 2$
FAMOUS LOUDSPEAKERS "SPECIAL PRICES"

| MAKE | MODEL | SIZE | Watts | OHMS | PRICE | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEAS | TWEETER | 4 in | 50 | 8 | c9.50 | $E 1$ |
| G000MANS | TWEETER | 31/2in | 25 | 8 | \$4.00 | 11 |
| AUDAX | TWEETER | 4 in | 30 | 8 | 56.50 | E1 |
| SEAS | MID-RANGE | 4 in | 50 | 8 | $f 7.50$ | E1 |
| SEAS | MID-RANGE | 5 in | 80 | 8 | \$12.00 | f1 |
| SEAS | MIO-RANGE | 41/2in | 100 | 8 | ¢12.50 | f1 |
| GOODMANS | HIFAX | TMin | 100 | 4\%16 | c22 | 0 |
| AUDAX | WOOFER | 8 in | 40 | 8 | f14.00 | 2 |
| GOODMANS | WOOFER | 8 in | 25 | 4t | C6.50 | E1 |
| GOODMANS | HB | 8 in | 60 | 8 | E1250 | E1 |
| RIGONDA | GENERAL | 10 in | 15 | 8 | 55 | $\square$ |
| AUDAX | WOOFER | 10in | 50 | 8 | E16.00 | 2 |
| GOODMANS | PP12 | 12in | 7 | C15 | E24.50 | 0 |
| G000MANS | GR12 | 12in | 90 | 215 | $\underline{21.50}$ | 0 |
| GOODMANS | HPO | 12in | 120 | 975 | 529 | 0 |
| EMI | HI-fi | 13x8 | 10 | 3/8 | 19.50 | 1 |

SPEAKER COVERING MATERIALS. Samples Large S.A.E.
8.A.F. LOUOSPEAKER CABINET WADDING 18 in wide 35 p it

CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm f1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}$. 20 watt rating. $\mathbf{E 2} 20.3$ way 60 watt E 6. OUOSPEAKER BARGAINS
ohm, $4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathrm{E1} .50 ; 61 / \mathrm{in}, 8 \times 5 \mathrm{in}, \mathrm{E3} ; 8 \mathrm{in}, \mathbf{5 3} .50$.
ohm, $25 / \mathrm{in}, 3 \mathrm{in}, 5 \mathrm{in}, \mathrm{E} 1.50 ; 61 / 2 \mathrm{in}, \mathbf{Z 3} ; 8 \mathrm{in}, \mathrm{EA} .50 ; 12 \mathrm{in}, \mathrm{Eb}$.
5 ohm, 3 in, $5 \times 3$ in $7 \times 4$ in $£ 150,120$
MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 gin . square E5 100 watts. No cross over required. $4-8-16 \mathrm{ohm}, 7 / 4 \times 3^{1} / \mathrm{sin}$. $\quad \mathbf{E 1 0 . 5 0}$ THE "INSTANT" BULK TAPE ERASER


Suitable for cassettes and all sizes of tape reels. and lead ( 120 volt also in stack).
Will also demagnetise small tool
Head Demagnetiser only $£ 5$.
PACKKITS
ED POWER
All parts and instructions with Zener diod $\mathbf{~} 3.95$ Post $65 p$ mains transformer 240 V a.c. Output 6 or $7^{1 / 2}$ or 9 or 12 V d.c. up to 100 mA or less. Please state voltage required.

## TEST INSTRUWENTS THANDAR

Quality British-made Portable Instruments MULTIMETERS:
DM450
OC 10uHV-1200V AC 100 V to 750 V DC $0 . \ln A-10 \mathrm{~A} \quad \mathrm{AC} \ln \mathrm{A}-10 \mathrm{~A}$ $0.01 \Omega$-20M $\Omega \quad 41 / 2$ digit LED

TM351
DC $100 \mu \mathrm{~V}-1000 \mathrm{~V}$ DC 100nA-10A $0.1 \Omega-20 \mathrm{M} \Omega$ AC $100 \mu \mathrm{~V}$ - 750 V $31 / 2$ digit LCD


## FUNCTION GENERATOR:

TG102.
Freg. Range: $0.2 \mathrm{~Hz}-2 \mathrm{MHz}$
. $£ 145$
PORTABLE OSCILLOSCOPE: SC110.

Carriage for all Thandar Orders $£ 1$

## SABTRONICS

$\star$ Available in KITS $\star$
Making Performance Affordable
HANDHELD DMMs
2033................... £36.75

AC/DC $100 \mu \mathrm{~V}-1000 \mathrm{~V}$
AC/DC $10 \mu \mathrm{~A}-2 \mathrm{~A}$
Ohms $1 \Omega-20 \mathrm{M} \Omega$

$$
\begin{array}{ll|l} 
& & \text { Assm } \\
\text { 2035A } & \text { Kit } \\
\text { AC/DC } 100 \mu \mathrm{~V}-1000 \mathrm{~V} & £ 49 \\
\text { AC/DC } 0.1 \mu \mathrm{~A}-2 \mathrm{~A}
\end{array}
$$

Ohm 0.1 $\Omega-20 \mathrm{M} \Omega$

## FREQUENCY METERS: 8 digit LED

$8110 \mathrm{~A} 20 \mathrm{~Hz}-100 \mathrm{MHz} \quad$ Assm $/$ Kit<br>$8610 \mathrm{~A} 20 \mathrm{~Hz}-600 \mathrm{MHz}$

## FREQUENCY METERS: 9 digit LED

$8610 \mathrm{~B} 10 \mathrm{~Hz}-600 \mathrm{MHz}(0.1 \mathrm{~Hz}$ Resolution) $\qquad$ $\ldots . .{ }^{\text {A. }} \mathbf{£ 9 9}$ £84 $8000 \mathrm{~B} 10 \mathrm{~Hz}-1000 \mathrm{MHz}(0.1 \mathrm{~Hz}$ Resolution). £155 -
Carriage for all SABTRONICS orders £1

## SAFGAN BRITISH-MADE SCOPES

## - dual trace

5mV/Div Sensitivity
XY Facility
Z Modulation
4. Calibration Output

* Portable/Lightweight

DT 41010 MHz .
DT 41515 MHz .
DT 42020 MHz ....
XI-REF-X10 probe .................. 1198

## LEADER

## When Quality Counts

## LSG-16

.£55
A compact solid state RF Signal Genera-
tor, most suited for checking the IF circuits and tuners in AM, FM and TV sets.


1- - 000 00 Frequency range up to 100 MHz ( 300 MHz on Harmonics).

Carriage £1


LCR-740 £149 A highly efficient impedance bridge for measuring resistance, capacitance and inductance. The D factor of a capacitor and the $Q$ sector of a coil can also be measured.

Carriage £1
Many more instruments availablo from all these ranges
ADD 15\% VAT ON ALL PRICES All prices corred at 2-2-82 E.OOE Cesh with Order or Credit Card
 CALLERS WELCOME OPEN MONDAY TO FRIDAY gam-5.30pm DAROM SUPPLIES
4 SANDY LANE
STOCKTON HEATH WARRINETON CHESHILE, WA4 2AY (CS25) cu7ch

## Happy Memories

| Part Type |  | 1 off | 25-99 | 100 up |
| :---: | :---: | :---: | :---: | :---: |
| 4116200 ns |  | . 95 | . 85 | . 65 |
| 4116250 ns |  | . 90 | . 80 | 60 |
| 2114 200ns Low power |  | 1.20 | 1.10 | . 95 |
| 2114 450ns Low power |  | 1.10 | 1.00 | . 85 |
| 4118250 ns |  | 3.25 | 2.95 | 2.65 |
| 6116 150ns CMOS |  | 4.95 | 4.45 | 3.65 |
| 2708 450ns |  | 1.95 | 1.85 | 1.65 |
| 2716450 ns 5 volt |  | 2.25 | 2.15 | 1.95 |
| 2716 450ns three rail |  | 6.40 | 6.00 | 4.95 |
| 2732 450ns Intel type |  | 4.25 | 3.95 | 3.35 |
| 2532 450ns Texas type |  | 4.25 | 3.95 | 3.35 |
| Z80A-CPU £4.75 | Z80A-P10£4.25 |  | Z80A-CTC £4.25 |  |
| Low profile IC sockets: | Pins 814 | 1618 | 2022 | 2840 |
|  | Pence 910 | 1114 | 1518 | 2533 |

Soft-sectored floppy discs per 10 in plastic library case: 5 inch SSSD £17.00 5 inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 8 inch SSSD £19.25 8 inch SSDD $£ 23.658$ inch DSDD $£ 25.50$

74LS series TTL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or telephone for list.

Please add 30 p post \& packing to orders under $£ 15$ and VAT to total
Access \& Barclaycard welcome
24-hr. service on ( 054 422) 618
Government \& Educational orders welcome, £15 minimum Trade accounts operated : Telephone or write for details Prices are still tending to drop
Telephone for a quote before you buy
Happy Memories (WW)
Gladestry, Kington
Herefordshire HR5 3NY Telephone:
(054 422) 618 or 628


#  

Telex 291429

## STABILISED POWER SUPPLIES

FARNELL A15: $210 / 240 \mathrm{~V} 1 \mathrm{P}$. Dual Op. $12-17 \mathrm{v}$ per rail at 100 mA . Remote sensing, current limit protection. $(164 \times 130 \times 38 \mathrm{~mm})$, with manual. £12.
COUTANT OA2: Op. amp, psu, 120/240V IP. Dual Op. 12-15v at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm}$.) $£ 12 \mathrm{ea}$. or 2 for $£ 22$.
BRANDENBURG Photomultiplier PSU. 19 in . rack mounting. Metered, current limit protection.
$374300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA
$376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA
$375500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}$ at 6 mA . All models $£ 40$.
PIONEER MAGNETICS POWER SUPPLIES . . 5V 150 amp, output input 115 vac. (Switchmode) Price $\mathbf{£ 1 2 0}$ each.
Various other makes of power supplies in stock.

## D TO A CONVERTERS <br> $15 \mathrm{MHz}, 8$ BIT

By Micro Consultants Ltd. $50 \Omega$ cable drive op. Linearity $0.25 \%$, max. $0.125 \%$ typ. Settling time: 2 V step 70 nS typ. 2 MV step 50 nS colour television transmission standard. Diff. gain $0.5 \%$ diff. phase shift $0.5^{\circ}$ types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE: £20

## NEW IN STOCK

A range of high quality transformers SPECIALLY WOUND for us. By buying direct we can offer these superb SPLIT PRIMARY \& SECONDARY transformers at highly competitive prices.

| 6 VA | 0-12, 0-12 |  | 0-12V, 0-12V ........ 3.80 |
| :---: | :---: | :---: | :---: |
|  | 0-15, 0-15 ............ 2.20 |  | $0-15 \mathrm{~V}, 0-15 \mathrm{~V}$ |
| 12VA | 0-4V5, 0-4V5 |  | 0-20V, 0-20V |
|  | $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ | 50VA | $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ |
|  | $0-9 \mathrm{~V}, 0-9 \mathrm{~V}$ |  | $0-9 \mathrm{~V}, 0-9 \mathrm{~V}$ |
|  | 0-12V, 0-12V ........2.99 |  | 0-12V, 0-12V ........4.75 |
|  | $0-15 \mathrm{~V}, 0.15 \mathrm{~V}$ |  | $0-15 \mathrm{~V}, 0-15 \mathrm{~V}$ |
|  | $0-20 \mathrm{~V}, 0-20 \mathrm{~V}$ |  | $0-20 \mathrm{~V}, 0-20 \mathrm{~V}$ |
| 20VA | $0-4 V 5,0-4 V 5$ | 120VA | $0-30 \mathrm{~V}, 0-30 \mathrm{~V}$ |
|  | $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ |  | $0-40 \mathrm{~V}, 0-40 \mathrm{~V}$........8.90 |
|  | 0-9V, 0-9V |  |  |

## CASED AUTO TRANSFORMERS

240 V Cable input. American outlet socket.

| Rating............................ Price | 750VA.......................... £23.50 |
| :---: | :---: |
| 300VA.............................£13.00 | 1000VA......................... £27.00 |
| 500VA.......................... £18.00 | 1500VA £36.00 |
| Other Transformers | 12VA |
| 1.2VA. 6-0-6, 9-0-9, 12-0-12 | 0-12, 0-12 ....................... 2.96p |
| all 1.14 | 18VA |
| 1.5VA | 9-0-9 ............................... 2.64p |
| 12V................................... 80p | 24VA |
| 15V ................................. 1.00p | 12-0-12 ........................... 3.36p |
| 2.4VA | 12V................................ 4.84p. |
| 12-0-12........................... 1.48p | 30VA |
| 24V(pcb)......................... 1.00p | 15-0-15 ........................... 3.62p |
| 4VA | 36VA |
| 5-0-5................................. 1.25 | 9-0-9 ............................... 4.70p |
| 6VA | 50VA |
| 24V ................................... 1.50 | 0-2-4-6-8-10..................... 6.00p |


| ALUMINIUM BOXES | PLASTIC BOXES |
| :---: | :---: |
|  | $75 \times 50 \times 25 \mathrm{~mm}$ black orwhite..........................6pp |
| AB8 4xax1.5in......................................... 51.06 | 180x110x55mm black ...................................51.05 |
|  | 80x60x40mm black ...................................... ${ }^{\text {22p }}$ |
| AB10 4x5.25x1.5in....................................... 51.23 | 215x130x85mm black or white |
| AB11 4x2.5x2in............................................51.06 |  |
| AB12 3x2xin................................................ 7 mp | 100x75x40mm black....- |
| AB13 6x4x2in..........................................51.43 | 150×100x60mm black .... 01.35 |
|  | BLUE REXINE COVERED |
|  |  |
|  |  |
| AB17 10x4.5x3in..................................952 | RB2 $8 \times 5 \times 3$ in............................................ |
|  |  |
|  |  |
|  | R85 $11 \times 7.5 \times 4.5 \mathrm{in} .$. |



## SPECIAL OFFERS

> Headers Blue Mac 16-pin 50p; 24-pin 80p. Brand new and boxed.
> Speakers: 2 in . 16 ohm 200 mW 60 p ; $7 \times 4 \mathrm{in}$. dual-cone 8 ohm high quality 5 W LS $£ 1.60$. Brand new and boxed
> Multiturn Pots. We have large stocks, all makes, multiturn pots, cermet, etc.
> Bourns type 3299X 1K/50K ...................................................... 30p each
> Bourns type 3386P 5K/trimpot.. 30 p each
> Spectrol $3 / 4 \mathrm{in}$. 220hm/100K..............................................................30p each
> Also large stocks of cermet presets type 62 by Beckman and AB type 81E...
> Discounts available on quantity
> Full range available of Plessey moulded track presets, screwdriver or knob operation........................................................................ 25p each Cassette Decks: With stereo heads, mechanically complete, but with no electronics. Brand new, smart black modern finish
> VU Meters: $40 \times 30 \times 23 \mathrm{~mm}$ deep. White/red scal.................................. VAT + P\&P Brand new.
> Polyester Capacitors by Siemens, Mullard and Rifa.
> $2.2 \mu \mathrm{~F}$ at $100 / 250 \mathrm{v}$ radial block
> $3.3 \mu \mathrm{~F}$ at 100 v radial block.
> $4.7 \mu \mathrm{~F}$ at 100 v radial block
> $10 \mu \mathrm{~F}$ at 63 v radial block...
> $\begin{aligned} & \text { 30p each }\end{aligned}$
> $\begin{aligned} & 10 \mu \text { at } 63 \mathrm{~V} \text { radial block...................................................... } \mathbf{4 0} \text { each } \\ & \text { Mains Flters by Erie/Corcom from }\end{aligned}$

SPRAGUE: Series 36D Computer grade electrolytics 3,300 at 40V Brand new and boxed. 35p ea: SIEMENS: Procond Radial Polyester Film Capacitors. $10 \mu \mathrm{~F}$ at 63 V . Brand new. Only 40p Quantity available

## VIDEO GAME BOARD

FIELD GOAL VIDEO GAME, BY TAITO. A top quality board complete with 6800 CPU system with 2716 eproms with circuit diagram, plus all connections for either colour or black and white monitors (TV sets). Price $£ 20+$ VAT $£ 3$. P/P $£ 2.55$.
POWER SUPPLY KIT TO SUIT + circuit diagram.
Price £15 + VAT £2.25. P/P £3.45.
$2 \times 22$-WAY GOLDPLATED DOUBLE-SIDED $0.156^{\prime \prime}$ EDGE CONNECTORS to suit videoboards.
Price $£ 1.60$ pair + VAT 24p. P/P included.
THE COMPLETE KIT £46 INCLUSIVE. Full details on application.

## WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers; for cash.

We also collect - distance no object. Just call:

## C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275

Telex 291429


## Over 65 Models Available

Class A wide band Linear R.F. Amplifiers or VCO's in the range D.C. to 4 GHz ; with power output up to 100 W and gains to 60 dB ; you can't do better than Nucletude. Modular D.C. powered and mains operated bench units available. Get full details from Telonic Berkeley U.K

卫TELONIC/BERKELEY U.K 2 Castle Hill Terrace Maidenhead, Berks SL6 4JR Telephone: Maidenhead 10628 ) 73933 Telex: 849131 (Telber

WW - 073 FOR FURTHER DETAILS

## TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds, also parallel BCD output for computer or alarm, etc. STOPCLOCK and audio to record and show time on playback, receives Rugby 60 KHz atomic time signals, builtin antenna, 1000 Km range, GET the TIME RIGHT, only f62 80
60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output for computer, etc., decoding details, £17.90

Each fun-to-build kit (ready made to order) includes all parts, printed circuit, case, postage etc., instructions, money-back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (WE), Old School Lane, Milton, Cambridge. Tel: 860150


| INTEGRATED CIRCUITS |  |
| :---: | :---: |
|  | MSM5807 6.75 |
| AA ${ }_{\text {A }}$ |  |
|  |  |
| (ease |  |
|  |  |
|  |  |
|  | SAA5950 SAS600 |
| LA4032P 2.2 .50 |  |
|  |  |
| [10, |  |
| (451513 |  |
|  |  |
|  |  |
|  | SNTE03N 1.65 |
|  | SN75023 1.65 |
|  | SN76110N |
| MC1357 | ¢ |
| MC140118CP | SN |
| M12318 | comen |
| (mLe378 | $\begin{aligned} & \text { SN7544N } 1.30 \\ & \text { SNTF650 N } 1.05 \end{aligned}$ |
|  | ¢NTV50N |
| Mlis20 4.12 <br> M1922 4.28 |  |
|  |  |


\section*{SEMICONDUCTORS <br> |  |  <br>  <br>  |
| :---: | :---: |
|  <br>  <br>  |  <br>  |

## WIREWOUND <br> RESISTORS

PREFERRED VALUES
4 Watt
$\qquad$ $4 R 7.1 \mathrm{K8}$
2 K 2.6 K 8
10 K

7 Wan

$$
\begin{aligned}
& R 47-4 K 7 \\
& 5 K-12 K
\end{aligned}
$$

11 War

17 Watt

## SN7666 SW153 TA7061 TA7063 TA7073

 \begin{tabular}{l} A7061AP 3.9 <br>
A7063P <br>
\hline
\end{tabular} N 0.70

2.74
3.95
0.80
0.80
$\qquad$


 | $8 F 33$ |
| :--- | :--- |
| $8 F 337$ |
| BF33 |



| IN4001 |  |  |
| :--- | :--- | :--- |
| IN 4002 | 0.04 | IN540 |


| N5405 | 0.13 |
| :--- | :--- |
| N5406 | 0.13 |
| N5407 | 0.18 |
| N N5408 | 0.16 |
| $1 T 144$ | 0.04 |
| $1 T 1827$ | 0.48 |
| $1 T 921$ | 0.0 |
| $1 T 1923$ | 0.15 |
| $11 T 2002$ | 0.11 |
| SPECIAL TUE |  |
| M17.151 GV |  |
|  |  |

M17.151 GV/R
198.00

## ZENER DIODES

BZX610.15
6 V 27 V 58 V 2 gV 10 V 11 V 12 V 13 V
15 V 16 V 98 V 20 V 22 V 24 V 27 V 30 V 33 V 36 V 39 V 47 V

## BZY88 0.07


$5 \mathrm{~V} 6 \mathrm{VV2}$ 6V8 7V5 8 V 29 V 110 V 11 V

| THERHISTORS |  | BATEEIES |
| :---: | :---: | :---: |
| VA1040 | 0.23 | TV Power Milike |
| VA1056S | 0.23 | batterles |
| VA1104 | 0.70 | other prices on |
| VA8650 | 0.45 | - |

## PHONE

A SELECTION FROM OUR STOCK OF BRANDED VALVES




| E18 |
| :--- |
| E18 |
| E23 |
| E2 |
| E2 |
| E2 |
| E2 |
| E8 |
| E |
| E |
| E |
|  |

## E180F E186F E235L E236L <br> \section*{}

5.25
8.50
11.00

9.00 $\square$ | EL41 | 2.00 |
| :--- | :--- |
| EL81 | 2.75 |
| EL82 | 0.58 | 8







## HENRY'G

## MICROTAN 65 CONTENTS <br> High quality. plated itru hole printed curcuif board, solder resist and sith screened cumponent identilicalion 6502 microprocessor 1 K nomion TANBUG Now with 'V' Bug ik RAM lor user programme, slack and display memory VOU alphanumeric display of 16 rows by 32 characters MICAOTAN 65 system fite binder 136 page. bound, users hardware sotware manual with constructional detals and saniple programmes logie and distrete components to tully expand MICROTAN 65 <br> KIT FORM $£ 69.00$ + VA I <br> MICROTAN 65 assembled and Iesled <br> Specification as above, but asse mibled and fully bench tested by ourselves $\mathbf{5 7 9 . 0 0}+\mathbb{1} 1185$ V A T. total $〔 9085$ <br> tanbug v2 3 kif $f 21.85$ incl. <br> POWER SUPPLIES <br> Input 240 V AC. Output 5 Volts at 3 Amps Regulated <br> Will power both MICROTAN and TANEX fully expanded. Buith on the same sure primed cricuif board as MICROTAN etc. Avallable as a fully bult and tested unit <br> $\mathbf{£ 2 3 . 0 0}=$ VAT 1345 . total 62645 <br> $X$ MPS2 $+5 \mathrm{~V} 6 \mathrm{~A} .+12 \mathrm{~V} .-5$ and -12 V swich mode systemi PSU $\mathbf{£ 6 9 . 1 3 + V A T}$ <br> 71 KEY ASCII KEYBOARD £56.34+VA.T <br> no Extras neeoen. <br> Uses gold crosspoint keys Includes numeric heypad and nibbon cable. Avalable as fully assembled and tested. SUPER METAL CABINET IN TANGERINE/BLACK <br> $\mathbf{£ 2 0 . 0 0}+$ VAT [3.00. 101al $\{23.00$ <br>  <br> FULL MANUALS: MICROTAN, <br> TANEX, BASHC, X BUG <br> TANRAM <br> avallabe now tanram. 40k Bytes on one board Single boand of bulk meniory offering 7 K Static RAM (21 14). and 32 K Oynamic RAM (4 116) Onboard refiesh is totally transparent to CPU operation and is unaffectéd by nornal DMA's TANRAM fully expands the avalable address space of the <br> 6502 nucroprocessor MICROTAN. TANEX and TANRAM together provide 10K RAM. 48 K RAM. and IK $1 / 0$ - that's a lot of memary and a lot of $1 / 0^{\prime}$ Buill and tesied TANRAM ASSEMBLEO <br> 4DK RAM CARD with $16 K$ DYWAMIC RAM £ 76 -VAT CONIENTS High qualiny plated thru hole printed circuil board. solder resist and sith screened comiponent dentitication Full comiplement of I.C sockets for nazimum expansion 64 way 01 N edge connector iK RAM (2114) Oata bus bultering TANRAM users nianual <br> Extra ram <br> IK STATIC 12114 ) $£ 2.95$ each 16 K QYNamic 14116 ) $\{150$ each <br> MEMORIES EXPANO YOUR SYSTEM WITH OUR TANGE RINE 2102 Ikx 1 Stalic RAM 80p IM 6402 UAAT $\mathbf{f 4 . 5 0}$ $2708 \quad \mathbf{5 3 . 5 0} \quad 21141 \mathrm{~K} \times 4$ Stalic RAN: $\mathbf{5 2 . 9 5}$  f1.50 All including Vat <br> MONITORS (PROFESSIONAL) <br> RECONDITIONED AND NEW. FROM $£ 35.00$ to $£ 129.95$ <br> CENTRONICS Ideal tor Tange erine PRINTERS SHEIKOSHA £199 + VAT Model $730 £ 350$ + V A. I Model $737 £ 395$ + V.AT <br> NEW MICROTANTEL <br> POST OFFICE APPROVED PRESTEL - VIEWDATA - FULL COLOURGRAPHICS - MICROTAN OWNERS CAN COMMUNICATE WITH EACH THER - CAN STORE PRESTEL CAN BE USED AS AN EDITING TERMINAL - CAN BE INTERFACED WITH PET. APPLE AND NASCOM <br> Just connect 10 the aerial socket of any colour or black and white domestic IV receiver and to your Post Olice installed jack socket and youl ate into the exciting woild of PRESTEL Via simple pish thition use you are able to view 170,000 pages of up to the minute information on mary services. order goods troni companies - all this without leaving <br>  <br> TANEX £43.00 <br> Minımum <br> +VAT f6 45, totalf4945 <br> CONTENTS <br> High quality plated thru hole pinted circut board. solder resist and silk screened component identilication IC sockets lor maximumi expansion 64 Way 0 IN edge connector IK RAM, cassette interlace. I6 parallel $1 / 0$ lines. a I IL serial I/0 port. two 16 bit counter lumers, data bus maximum. memory nlapping. logic and discrete components for TANEX (Minımuni conloguratin) manual $\mathbf{f 5 3 . 0 0}+$ VA T f7 95. total $\ell 6095$ <br> TANEX EXPANSION <br> Expanded. TANEX olifers 7K RAM. locations tor 4 K EPROM 12716 ). localions for 10K extended MICROSOFT BASIC. 32 parallell/0 lines. two TTL senal $1 / 0$ ports. a thid serial I/O port with RS $232 / 20 \mathrm{~mA}$ loop. full modem control and 16 programnable baud ates. four 16 bil counter timers bulfering, and memiory mapping EXPANDEO TANEX KIT (Excludes RDM. XBUG and BASIC) $\mathbf{8 8 9 . 7 0}+$ V AT 61346 . total 510316 EXPANDED TANEX ASS EMBLED <br> $\mathbf{5 9 9 . 7 0}$ + VAT 61496 . total 611466 <br> OPTIONS TD FULLY EXPANDED TANEX 1OK Extended MICROSOFT BASIC in EPROM (with manual) £ $49.00+$ VAT 7.35 , total ( 5635 ExtraRAM $1 \mathrm{~K} 12 \times 2114) \mathbf{5 5 . 2 0 + \text { VAT } 7 8 \mathrm { p } \text { . } 1 0 \text { tal } \mathbf { 5 5 } 9 8}$ SERIAL $1 / 0$ KIT f10 $26+$ VA T $f 160$. tolal © 11.80 6522 VIA $\quad 88.00+$ V.AT $\mathbf{f 1} .20$. total $\mathbf{6 9} 20$ XBUG $\mathbf{f 1 7 3 5}+$ VAT $E 260$ total 11995 $\pm 12 \mathrm{v}$ KIT E .20 incl . <br> PROFESSIONAL ASCII KEYBOARDS Ideal for Tangerine $£ 29.95$ 52 key 7 bit ASCH coded Positive strobe $+5 \mathrm{~V} \cdot 12$ Parallel outpul with strobe Power light on control Chip by General Instrumen <br>  <br> \begin{tabular}{|c|c|c|} \hline \multirow[t]{3}{*}{ADD-DM MEYPAD

 \& \multirow[t]{2}{*}{A compact 12 button keypadsuitable for use with} \& LIST PRICE <br>
\hline \& \& \$22.00 <br>
\hline \& keyboard to extend its functions \& OUR PRICE <br>
\hline \& plus four extra keys. Supplied brand new with with data. A \& -unrice <br>
\hline \& $3 \times 4$ non-encoded single mode \& <br>
\hline \& keyboard in sloped format \& <br>
\hline
\end{tabular} <br>  <br> Superbly made <br> Size $13 \times 5.5 \times 15$ ins Black keys with white ledgens Escape shith return \& resel keys Control repeat \& bell}

TANGERINE •TANGERINE •TANGERINE •TANGERINE •TANGERINE •TANGERINE TANGERINE •TANGERINE

FULLY GUARANTEED • BUY WITH CDNIDENCE
BRITISH OESIGN \& MANUFACTURE ANO ON OEMONSTRATION

All orders pre-paid and official advertised here to be
forwarded DIRECTLY to
COMPUTER DEPT., $11 / 12$ PADDINGTON GREEN, LONDON W2

## FOTOLAK

## POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

Enables YิOU to produce perfect printed circuits in minutes
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight. develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work

|  | Pre-coated $1 / 16$ <br> $204 \mathrm{~mm} \times 114 \mathrm{~mm}$ <br> $204 \mathrm{~mm} \times 228 \mathrm{~mm}$ <br> $.408 \mathrm{~mm} \times 228 \mathrm{~mm}$ <br> $467 \mathrm{~mm} \times 305 \mathrm{~mm}$ | bs board $£ 1.50$ $£ 3.00$ $£ 600$ $£ 9.00$ |
| :---: | :---: | :---: |
| Plain Copper-clad Fibre-glass. Approx. 1.00 mm thick ft . sq | Single-sided $£ 2.00$ | Double-sided $\text { £ } 1.75$ |
| Clear Acetate Sheet for making master. | 60mm $\times 260 \mathrm{~mm}$ |  |
| Postage and packing 60 p per order. VAT $15 \%$ on total |  |  |
| G. F. MILLWARD ELECTRONIC COMPONENTS LIMITED |  |  |
| P.O. Box 19, Praa Sands, Penzance, Cornwall TR20 9TF Telophone GERMOE (073-676) 2329 |  |  |
| TRADE ENQUIRIES INVITED |  |  |

## METALFILM RESISTORS <br> 1\% Tolerance, $1 / 4$ Watt



ONLY 3p EACH
Minimum order £ 10 89 Values (E24)

100 R
110 R
120 R
1 110 R
120 R
130 R
150 R
1 30 R
150 R
160 R

## The <br> Professional Choice



Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor
> G.A.S. ELECTRONICS

> 16, ST. ALFEGE PASSAGE, LONDON SE10
> TELEPHONE: 01-853 5295
> TELEX: 923393 LASER G
PRODUCTION
TESTING

DEVELOPMENT

## SERVICING

## POWER UNITS

Now available with 3 OUTPUTS


Type 250VRU/30/25

OUTPUT 1: 0-30v, 25A DC OUTPUT 2 0-70v, 10A AC OUTPUT் 3: 0-250v, 4A AC

## Valradio

VALAADIO LIMITED, BROWELLSLANE, FELTMAM MIDDL ESEX TW13 7EN

WW - 022 FOR FURTHER DETALLS


[^8]Bestseller - comprehensive teaching and reference book on all software aspects of Commodores 2000, 3000,
4000 and 8000
microcomputers and peripherals.

Many programs, charts and diagrams 17 chapters, appendices, and index. iv +504 pages. $19 \times 26 \times 21 / 2 \mathrm{~cm}$. Paperback. ISBN $O 950765007$. Price in UK and Europe $£ 14.90$ each
(incl. post and heavy-dury packing). LEVEL LTO., PO Box 438, Hampstead, London NW3 18H. Tel: 01-794 9848.

> Cut out or copy coupon, or write to:

LEVEL LTD., PO Box 438, Hampstead, London NW3 1BH.
Send ...... copyfies of Programming the PET/CBM at $£ 14.90$ (post free)
enclose cheque/P.O. for $£ \ldots . . . . .$. or official order
NAME
ADDRESS

## LIGHTNING

DO YOU NEED:- Electronic components, Tools, Test Equipment, Cases, Cabinets and Hardware etc. IN A HURRY? THEN YOU NEED:-

WHY?
LIGHTNING Electronic Components.
Because LIGHTNING Strikes out where others fail:-
Express Despatch All Low Prices In Depth Stock All New Guaranteed Goods from Leading Manufacturers
With all that going for us, going to you can you really afford to be without a copy of our brand new exciting CATALOGUE? Many Prices Reduced - Many More Stoch Lines Send for YOUR Copy Now, ONLY 70p Post Paid

## LIGHTNING ELECTRONIC COMPONENTS

## 84 Birchmoor Road, Birchmoor, Tamworth, Staffs. B78 1AB. (NOTE New Address)

in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner Telephone 445 2713/0749
(9461)

WW - 060 FOR FURTHER DETAILS

## reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

## WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Michael Rogers, IPC Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.

To Michael Rogers, Reprints Department Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
1 am interested in
copies of the article /
advertisement headed featured in

## WIRELESS WORLD

on page(s) . . . in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No


## PRICE ON APPLICATION?



We also manufacture servo amplifiers, and can adapt our proven contactless sensing system to new applications.

## FLIGHT LINK CONTROL LTD.

UNIT 12, THE MALTINGS
TURK STREET, ALTON, HANTS GU34 1DL Phone: 042087241 (24 hours). Telex: 858623 TELBUR G

Being engineers, and believing. that "an engineer is anyone who can make for $£ 1$ what any fool can make for $£ 5$," we usually give prices in our advertisements. Recently, however, several customers using our joystick controls with complete success have admitted that they did not send for details as soon as they might have done because they thought the prices too low!

Don't make that mistake - please send for fult details, judge the joysticks on their merit, and only then give yourself a pleasant surprise by reading the prices.

By specialisation, volume production and controlled overheads we are able to offer well-engineered, innovative and reliable joystick controls ranging from $£ 1.50$ each for TV games units in quantity to $£ 2,000$ for a one-off triple axis force-feedback system, including torque-motor amplifiers. Our current ranges cover most combinations of:

1, 2 or 3 axes, or up to 6 degrees of freedom.
Potentiometer, wafer switch, microswitch and contactless sensing.
Sprung, friction or detent positioning, or force feedback systems.

* Press button switches in handles or handgrips.
* Miniature TV game units up to very heavy duty for mobile and heavy engineering environments, including a triple axis contactless unit $14^{\prime \prime}$ high.
* Interfaces for VDU, TV game, microcomputer and hydraulic valve applications.
* In addition we can design and build prototypes or one-offs within $2 / 3$ weeks, and build special requirements into standard units within days.


## DISTRIBUTORS:

Australia: Tecnico Electronics, Lane Cove, Sydney, N.S.W., Australia. Sydney 4273444.
USA/Canada: P.Q. Controls Inc., 71 Dolphin Road, Bristol, Connecticut 06010 USA. (203) 5836994.
Sweden: Svensk Telindustri, Box 5024, S162 05 Vallingby, Sweden 8 380/320.
Singapore: Innovative Design Systems PTE Ltd., 50 Orchard Road, Singapore 09233382922
Holland: Howell International b.v., Postbus 1262170 AC Sassenheim, Holland 02522-1 1509.

## INSTANT ROM TM

## A NEW MICROSYSTEM PROGRAMMING AID

* Plug in replacement for all popular ROMs and EPROMs
* Instantly programmed at normal system speed
* No arasure required before re-programming
* Retains data for up to 10 years
* No limit to number of programming cycles
* 24-pin ROMIEPROM pin-our - fits into standard socket
* Available as $2 \mathrm{~K} \times 8,4 \mathrm{~K} \times 8$, and $8 \mathrm{~K} \times 8$ modules
* Removable - easily copied in an EPROM Copier

Instant Rom' ROMEPROM EMULATORS are new programming aids for Microcomputer development. They contain CMOS RAM, which has a low-current 'standby' mode of operation. A lithium cell retains the data for up to 10 years. No recharging is required.
Data or programs are written to INSTANT ROM (using an additional 'Write' signal) at full system speed in your Development System. You use it like RAM. When the 'Write' signal is removed, the device becomes effectively a ROM. When the power is switched off, data is retained.
INSTANT ROM can save you a lot of time.
Bugs can be corrected immediately. There is no need to erase and re-program EPROMs. INSTANT ROM can be used for long periods; when the program is finally 'bug-free', an EPROM can be programmed
INSTANT ROM is available as a replacement for $2516 / 2716$ ( 2 K devices), 2532/2732 (4K devices), and 2364/68764 (8K devices).
INSTANT ROM is a Trade Mark of the Manufacturers:
GREENWICH INSTRUMENTS LIMITED, 22 BARDSLEY LANE, GREENWICH, LONDON SE10 9RF, UK.
Tel: 01-853 0868. Telex: 896691 TLXIR Attn. GIL.



Scopex Instruments now offer you an unrivalled choice of oscilloscopes at under £300.

The straightforward and successful 14D10 with a sensitivity of $2 \mathrm{mV} / \mathrm{cm}$ at 10 MHz on both channels at $£ 240$ + VAT. The new 14D15 15 MHz dual trace $5 \mathrm{mV} / \mathrm{cm}$ with active TV sync separator at $£ 250$ + VAT and the sophisticated 14D10 10 MHz dual trace $2 \mathrm{mV} / \mathrm{cm}$ active V sync. separator and line selector at $£ 290$ + VAT. All these above prices include two probes, mains plug and carriage U.K. mainland. $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display, add and invert facility, probe compensation, pushbutton $x-y$ and trace rotate are all standard features of this 14D range.

You the customer decide the extras you need to fulfil your specific requirement.
An Independent British Company
Credit Cards and Orders
contact our Sales department at:

Herts SG6 1JJ Tel: (04626) 72771.

Please send me full details of the 14010 range.
Name
Company
Address $\qquad$
Tel:


## COLOMOR <br> (ELECTRONICS LTD.) <br> 170 Goldhawk Rd., London W. 12 <br> Tel. 01-743 0899 or 01-749 3934 Open Monday to Friday 9 a.m. -5.30 p.m.

## PROGRAMME \& DEVIATION CHART RECORDERS

audio to

```
Single and tw
channel
versions chant
``` standards and standards and
true peak deviation

Broadcast Monitor Receiver \(150 \mathrm{kHz}-30 \mathrm{MHz} \star\) Stereo Disc Amplifier 2 and \(3 \star\) Moving Coil Preamplifier \(\star 10\) Outlet Distribution Amplifier \(3 \star\) Stabilizer \(\star\) Fixed Shif Eircuit toards \(\star\) mumntited PPM Boxes \(\star\) PPM2 and PPM3 Drive Circuits and Ernest Turner Movements.

Surrey Electronics Ltd.
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Tel. 048665997

\section*{EV88 - A low-cost evaluation system for the 8088 microprocessor}

EV88 is a single board microcomputer that is ideal for evaluating the 80888 -bit/16-bit microprocessor. EV88 can also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and an EPROM programmer, for low-cost development of 8088 based systems.

EV88 is supplied fully assembled and tested, with comprehensive documentation, and a copy of The 8086 Book, by Rector and Alexy. All you need is a 5V 1A power supply and a terminal or a suitable microcomputer.
\(\star 8088\) microprocessor in minimum mode (software compatible with the 8086 16-bit microprocessor)
\(\star\) Comprehensive monitor in 2K EPROM.
+ 2K CMOS RAM
\& Cassette interface.
* 24 lines of \(1 / 0\).
\(\star\) Eight levels of interrupt.
* RS-232 compatible serial interface (300 baud to-9600 baud).
\(\star\) Three-channel counter/timer
\(\star\) Buffered data, address and control lines.
\(\star\) Double Eurocard.
ћ On-board expansion to 16K EPROM/RAM (sockets provided).
\(\star\) Breadboarding area.
All bus signals available on 64-way DIN 41612 connector
\(\star\) Single 5 V supply.
\(\star\) Price \(£ 300\) plus VAT. Includes delivery.
8088/8086 design service available (software and hardware).
LFH Associates Ltd.
40A High Street
Stony Stratford
Milton Keynes
(0908) 566660

\section*{WW - 077 FOR FURTHER DETAILS}

\section*{CHILTERN ELECTRONICS}

\section*{B.C.M., Box 8085, London WC1N 3XX. Tel: 0494714483}

\section*{THIS MONTH SPECIAL OFFER}

BRANO NEW SURPLUS-DRI32 5 Megabyte DISKS. A top quality exchangeable cartridge disk drive, that will easily interface to a mini/micro. Fully guaranteed - with full manual.

Usual price over \(£ 3,000\). Our price only \(£ 420!\) ( + VAT/carriage)
Controller for S100 bus \(£ 400\). Controllers for PDP11/LSI-11 available
DATAPRODUCTS 2230 LINE PRINTERS. These beautiful 300 line/min printers have a standard Centronics parallel input and usually cost over \(\mathbf{5 7 , 5 0 0}\). They are ideal for really heavy volume printing. Our's have been in use for around a year, and are fully refurbished with 6 months' warranty.

Our price \(£ 950\) ( + VAT/carriage)
MAIL ORDER BARGAINS
All prices below include VAT and delivery. Same day despatch
GOULD SWITCH-MODE POWER SUPPLIES, \(5 v 20 \mathrm{amps}\). (BRAND NEW). These little pocket size modules weigh less than 41 lbs . but deliver full 20 amps at 5 v . Add a pot to make variable \(0-6 \mathrm{v}\), or connect in series for higher voltages. \(0.1 \%\) Regulation and full over V/I protection.

List \(\mathbf{f} 250\) + Our price \(\mathbf{£ 3 4 . 5 0}\)
PROTOTYPE PC CARDS. Over 200 Common IC's (most 7400 series) in wire wrap sockets on useful wire-wrap cards. IC's/Sockets easily removed - no unsoldering.

VIOEO MONITORS 9.INCH. Standard Composite Video in. 240 v PSU. Excellent defini-tion-ideal for micro. Complete with service manual and ready to plug in.......... £34.50 ASCII KEYBOARDS. Top quality 84 Key ASCII with all U/L Case and Control codes in case..
POWER SUPPUES 5v 3 amp. Standard Mains Input - out 5 v 3a fully regulated and
protected. ............................................................................................. £11.50 OODEM PROTECTION BOXES RS232. Complotaty isol
MODEM over voltage - consists of 2 RS232 Cannon Connectors, ons on long lead, and neat connect this between your system and it could save you thousands of pounds. £11.50 FLOPPY DISK CONTROLLERS. Contain NEC Flappy control IC, 8080 Mlero and complete controller for single density 8 -inch floppy into 8 -bit parallel port. New with

\section*{WE STOCK COMPLETE RANGE OF OEC SYSTEMS}

OR MORE DETAILS TELEPHONE NIGEL DUNN ON 0494 714483, ANY TME
For regular copies of our catalogue please send postcerd with address.


\section*{\(\Pi\) ,}

\section*{SERIES 600}

The D\&R SERIES 600 range of professional mixing consoles has found
Its way into hundreds of
(hospital) broadcast studios,
discotheques, clubs, entertain
ment and outdoor Public Address
systems and recording studios.
Available in 6, 12, 18 or 24 channel
configuration with, as standard, separate
balanced mic. and line inputs, insertion points,
gain, three band tone controls, two auxiliar lines,
pan-pot and linear fader, plus pre-fade-listening and overload LED per channel. The output section includes four master faders, echo return and phones controls and two large V.U. meters.
Optional XLR-3 connectors, 48 volt phantom powering, stereo channels with R.I.A.A. correction, talkback, fader controlled start switches, balanced outputs and 24 volt D.C. mains powering are available.

> Visit our stand at Communications 82 - National Exhibition Centre, Birmingham - 20th, 21st, 22nd, 23rd April 1982.
D.S.N. MARKETING LTD, Westmorland Road, London NW9 9RJ

Telephone: 01-204 7246. Telex: 8954243.
Irade, Wholesale, O.E.M. \& Export enquiries welcome.

D\&R Electronica was founded over 10 years ago with the aim of developing and manufacturing high quallity mixing consoles for the studio and entertainment Industry with a special emphasis on value for money design engineering. The result. is a range of flve basic models with a large number of channel conflgurations and options. All models are highly flexible in use and give the best quallity possible at todays state of technology.
SERIES 200 - A small mixer specially designed for four track recording. SERIES 600 - A range of mixers for live amplification, broadcast studios and two track recording.
SERIES 400 - 'In-Line' mixing consoles for budgel 4,8 or 16 track recording. SERIES 1000 - A range of comprehensive 'In-Line' consoles for professional recording studlos.
SERIES 8000 - Top of the range 'In-Line consoles with integral patch bay for top recording studlos. A large number of ancilliary signal processing units complement the D\&R programme.

Please complete thls coupon for futher details:-
\(\square\) D\&R Series \(200 \quad \square\) D\&R Series 600 \(\square\) D\&R Serles \(400 \square D \& R\) Series 1000 \(\square D \& R\) Series \(8000 \square 0 \& R\) Anclliary Equipment
\(\square\) BULLET loudspeaker components
\(\square\) VITA VOX loudspeaker equipment \(\square\) HELIOS mirror balls
NAME
ADDRESS

\section*{SUPERKIT}


Digital Electronic Kit suitable for beginners

\section*{SUITABLE FOR BEGINNERS}

\section*{NO SOLDERING!}

Learn the wonders of digital electronics and see how quickly you are designing your own circuits. The kit contains: seven LS TTL integrated circuits, breadboard, LEDs, and all the DIL switches, resistors, capacitors, and other components to build interesting digital circuits; plus a very clear and thoroughly tested instruction manual (also available separately). All this comes in a pocket size plastic wallet for only f19-90p ine VAT and \(p \& p\). This course is for true beginners:
- needs no soldering iron.
asks plenty of questions, but never leaves you stuck and helpless.
teaches you about fault-finding, improvisation, and subsystem checking.
the only extra you need is a \(4 \frac{1}{2} \mathrm{~V}\) battery (Ever Ready. 1289, or similar), or a stabilised 5 V power supply.
Using the same breadboard you may construct literally millions of different circuits.
This course teaches boolean logic, gating, \(R-S\) and \(J-K\) flipflops, shift registers, ripple counters, and half-adders. Look out for our supplementary kits which will demonstrate advanced arithmetic circuits, opto-electronics, 7-segment displays etc.
It is supported by our theory course
DIGITAL COMPUTER LOGIC AND ELECTRONICS £8.50 £6.00 for beginners, and our latest, more advanced text, DIGITAL DESIGN
£7.00
Please send for full details (see coupon below).
GUARANTEE No risk to you. If you are not completely satisfied. your money will be refunded upon return of the item in good condition within 28 days of receipt.
CAMBRIDGE LEARNING LIMITED, Unit 35, RIVERMILL SITE, FREEPOST, ST IVES, CAMBS, PEI7 \(4 B R\), ENGLAND.
TELEPHONE: ST IVES (0480) 67446. VAT NO 313026022
All prices include worldwide postage. (airmail is extra please ask for prepayment invoice). Giro A/c No 2789159.
Please allow 28 days for delivery in UK

\section*{Please send me: \\ .......SUPERKIT(S) @ £19.90}

.. Free details of your other self-instruction courses.
l enclose a *cheque/PO payable to Cambridge Learning Ltd for C.......... (*delete where applicable)
Please charge my:
*Access / American Express / Barclaycard / Diners Club Eurocard / Visa / Mastercharge / Trusicard
Expiry Date............. Credit Card No
Signature.

Floppy Disc Drive Mechanism.
Teac FD50A \(51 / 4^{\prime \prime}, £ 150+£ 2.50\) P\&P
Oliverti FD501AF \(5^{1 / 4} 4^{\prime \prime}, £ 150+£ 2.50\) P\&P.

Xeltron Diskettes:
S.S.D.D. \(\mathbf{E 2 3}\) for 10 Discs + Library Case.
D.S.D.D. \(£ 27\) for 10 Discs + Library Case.

\section*{UV ERASERS}
\begin{tabular}{ccc} 
UV1B £42 & UV140 £61.50 & UV141 £78 \\
Up to & Up to & As UV140 but \\
6EPROMS & 14EPROMS & with timer
\end{tabular}

Cambridge Learning Limited, Unit 35. Rivermill Site, FREEPOST,
St lves, Huntingdon, Cambs, PE17 \(4 B R\), England. (Reglstered in England No 1328762).

his performance hit compertitive hi!


\section*{MINI-DISK DRIVE TEST BOX}

A simple aid to test and alignment of drives without tying up valuable system time.
Neatly presented in handy case with leads and conriectors for 2 drives. Needs +12 V and +5 V through standard drive connectors (provided). Circle number for further details.

\section*{Price \(£ 135\) + carriage and VAT}

\section*{MELKUIST LTD.}

35A Guildford Street, Luton LU1 2NQ Tel: 0582/416028 Telex: 825828 MELKST G

WW - 057 FOR FURTHER DETAILS
UNIVERSAL BENCH POWER SUPPLY


Output is fused and mains isolated.

2 ranges: \(0-125 v\) @ 4 amps 0-250v (a) 2amps AC or DC Continuously variable.
£198.00
Exc. carriage
and VAT.

Electr quersal L\$d. 32 Portland Road, Luton, Bedfordshire LU4 8 AX WW - 008 FOR FURTHER DETAILS

\section*{FAST FOURIER TRANSFORM}

\section*{for the PET and Apple microcomputers}

Machine code subroutine permitting high-resolution frequency analysis at an unprecedentedly low cost. Suitable for research and O.E.M. use.
\(\star\) Interfaces to BASIC and Pascal
+ Compact fixed-point data storage \& 80 dB dynamic range
* Transforms 256 points in 4 seconds


Further details from:
Structured Software
23 Redcar Drive Eastham, Wirral Merseyside L62 8HE
Please specify PET, Apple Pascal or Apple BASIC
WW - 064 FOR FURTHER DETAILS

\section*{B. BAMBER ELECTRONICS}

Airmec Millivolt Meter Type 301A. Pye UHF Signal Generator Type SG 1 U ... Marcon .......... AN/FM Signal Generator Type TF 1066 B/6 \(£ 300\) Marconi 20 mHz Sweep Generator Type TF 1099........... \(£ 25\) Motors suitable for driving cam switches 120 volt \(A C 1\) Advance Signal Generator Type C2 Servomex AC Vilage Stabiliser 240 v a c 9 amp ............ \(£ 25\) Servomex AC Voltage Stabiliser 240V.a.c. \(9 \mathrm{amp} . . .\). £25
Cathode Ray Tubes Type M38-100LG M M28-233GH Cathode Rexed....................................................... £5 each new \& boxed.............................................. £5 each Modern Telephones 746 style two tone grey, used but good condition ..................................................... \(£ 8\) each Scottish Instruments Microfiche Reader Model M20 £25 Antique Cambridge Portable Electrocardiograph ..... £50 Mains Isolating Transformer 500 VA 240 volt input, 240 volt C.T. output housed in metal box but less lid Volstat Constant Voltage Transformer 190-260 volt inVolstat Constant Voltage Transformer 190-260 volt in-
put, 240 volt RMS output 250 wart put, 240 volt RMS output 250 watt
Gould 25 watt miniature switching power supplies 5 volt \(5 \mathrm{amp} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~\)
Marconi AM/FM Signal Generator Type TF995A/5 250 Belix Power Unit Type TSS \(1560-30\) volt 0.15 amp. Var.

Avo Valve Characteristic Meter MK IV Airmec Modulation Meter Type 210 ...
Schomand Frequency Meter Type FD1 \(30-900\)......... \(£ 75\) EEL Street Lig Marconi HF Spectrum Analyser Type 106/2............. £40 Meguro Signal Generator Type MG6-230E 16 kHz Meguro Signal Generator Type MG6-230E 16 kHz 50 mHz Ype BN4244/2250 Sinclair Digital Multimeter Type DM450......................... \(£ 95\) Telequipment Scope Type S51B ........................ \(\begin{array}{r}295 \\ \hline\end{array}\) PYE WESTMINSTER W15 AMD mid-band multichannel sets onlv. No mikes, speakers, cradles or leads. \(£ 45\)

PYE WESTMINSTER W15 AMD mid-band crystalled and converted to \(129.9 \mathrm{MHz}, 130.1 \mathrm{MHz}\) and 130.4 MHz . ery Good Condition. £140
PYE WESTMINSTER W30 AM Low band sets only. No control gear. Sets complete and in good condition. \(£ 45\) PYE VANGUARD AM 25 T High band, complete w leads, control box, etc. £25
PYE BASE STATION F27. High band. £100
PYE RTC Controller units for remotely controlling VHF and UHF fixed station radio telephones over land-lines. E20
PYE PC1 Radiotelephone controller, good condition, 2 only at 450 each
PYE CAMBRIDGE AM10D dash mount sets complete and in good condition but untested. £40
PVE CAMBRIDGE AM10B Boot mount sets, high band sets only, no control gear, good condition. \(£ 25\)
PYE REPORTER MF6 AM High band sets, complete but less cradles. Few only at \(£ 150\)
PYE EUROPA MF5 FM Low band sets, complete but less nike and cradle. \(£ 90\)
ike mora mile sets complet less PYE R412 UHF Base statlon receiver. £120
PYE F460 UHF Base station complete and In good condition. \(£ 150\)
PYE F9U UHF Base station. \(£ 50\)
PYE F401 Base station, High band AM. \(£ 400\)
PYE BC10A Battery chargers for PF2, with battery adap-
tor. \(£ 25\)
PYE POCKETFONES PF1. Suitable for 70 cm , supplied with service manual. ©25
PYE BC5 (New) Chargers for PF1 Pocketfones. £25 PV VOIT to 12 volt Converters to Wes

PLEASE NOTE all sers are sold less crystals unless otherwise stated. Carriage on RT equipment - Mobiles E2 each. Base stations \(\mathbf{E 1 5}\) each. Red Star available at cost.

IC TEST CLUPS, clip over IC while still soldered to pcb in socket. Gold plated pins, ideal for experimenters r service engineers 28 pin DIL £1.75. 40 pin DIL £2.00 save by bsB XT one
. 7 mpe Carrier and unwanted sldeband width). Low -40 dB (needs 10.69835 and 10.70165 ejection min USB/LSB not supplied). Size aprox \(2^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}\) 10.00 each.

LOW PASS FILTERS (Low imp. type), 2.9 MHz small metal encapsulation. Size \(112^{\prime \prime} \times 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} .75 p\) each. VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base \(£ 3.50\) each. Brand new. SEP SLOTTED HORIZONTAL RAIL available in 9f1 ngths. \(£ 4.00\) each.
RSIN MULTICORE SOLDER 3 core solder wound on a plastic reel, 20 swg . Alloy \(60 / 40\) tin lead. Available in 75 each
CNHT ANGLED PLUGS 75 ohm type GE 37502 C12 SCREWS. Pack 12 for \(£ 5.00\).
tc. Mixed BA of nuts, bolts, washers, tags, self taps kilo.
FERRANTI MICROSPOT CATHODE RAY TUBES Type 3H/1010. Suitable for Photographic Multi-Channel Re order Systems. Fitted with a mounting collar and prism cemented to the faceplate, screen aluminised Phosphor \(P\). The tubes are also fitted with mounting units type MU1053 and deflection coil type SC48A. Few
only at \(£ 55.00\) each.

\footnotetext{
We are open all day Saturday. Hundreds of bargains for callers. Stockist of Switches, Relays, Caps, Resistors, etc. Please remember to add \(15 \%\) VAT to all Mail
} Orders.

\section*{GOOD SECONDHAND EQUIPMENT ALWAYS WANTED FOR CASH} AND VAT UNLESS OTHERWISE STATED

INDUSTRIAL MUSCLE AT A REALISTIC PRICE


POWER BANDWIDTH DC to \(100 \mathrm{KHZ} \pm 1 \mathrm{db}\)
* OUTPUT POWER IN EXCESS OF 500 WATTS PER CHANNEL INTO 2 OHMS
OR IN EXCESS OF 1KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
HARMONIC DISTORTION LESS THAN 0.01\% DC TO 100 KHZ AT 1 KW INTO 6 OHMS
INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
* UNCONDITIONALLY STABLE INTO ANY LOAD
* BASIC PRICE INCLUDING BRIDGE MODE SWITCHING AND HANDLES £455

\section*{\(S\) \& R AMPLIFICATION}

6 Tanners Hill, London S.E. 8
Telephone: 01-692 2009


WW - 020 FOR FURTHER DETAILS
WW - 086 FOR FURTHER DETAILS

\section*{RHODE \& SCHWARZ}

Selective UHF V/Meter. Bands \(4 \& 5\). USVF Selectomat Voltmeter USWV \(£ 450\) UHF Sig. Gen, type SDR \(0.3-1 \mathrm{GHz}\) UHF Signal Generator SCH \(£ 175\). XUD Decade Synthesizer \& Exciter. POLYSKOPS SWOB I and II
Modulator/Cemodulator BN17950/2

\section*{MARCONI}

TF995B/2 AM/FM Signal Generator TF2500 Audio power meter
TF1101 RC oscillators E85.
6551 SAUNDERS. \(1400-1700 \mathrm{MHz}\). FM
TF \(1066 \mathrm{~B} / 1.10-470 \mathrm{MHz}\). AM/FM TF1152A/1. Power meter. 25 W .500 MHz \(\pm 50\).
TF1370A RC Oscillator \(£ 135\).
TF7910 Carrier Deviation Meter

\section*{BECKMAN TURNS COUNTER DIALS}

Miniature type ( 22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only \(£ 2.50\) each.

\section*{\(\star\) VIDEO EQUIPMENT SALE \(\star\)} CONTENTS OF COMPLETE MONOCHROME STUDIO
MARCONI Video/Audio mixing desks. Monochrome Video cameras com plete with on-board monitors.
Video monitors types CONRAC II ( \(9^{\prime}\) tube) PROWEST 13'
To be sold in first-class working condition.
Offers invited for complete lot.

\section*{SEALED LEAD ACID BATTERIES}

Gould GELYTE type PB660. 6V. 6A.H. Measures \(3^{3 / 4} \times 2^{3 / 4} \times 2^{3 / 4}\) inches. Excellent condition. \(£ 4.50\). (75p post).

20-WAY JACK SOCKET STRIPS. 3 pole type \(£ 2.50\) each (t 25 p p.p.). Type 316 three-pole plugs for above-20p ea. (p.p. free)

\section*{P. F. RALFE ELECTRONICS}

10 ChAPEL STREET, LONDON, NW1 TEL: 01-723 8753


RANK KALEE 1742 Wow \& Flutter Meter.
AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V
AIRMEC Wave Analysers types 853 \& 248A.
DERRITRON 1KW Power Amplifier with control equipment for vibration testing, etc.
TELONIC type \(12040-500 \mathrm{MHz}\) sweep generator .......... £150 TELONIC type 121 Display scopes ................................... \(£ 90\) TELONIC type 101 Display scopes WAYNE KERR AF signal generator S121 model ............................... RADIOMETER Distortion Meter BKF6 \(£ 125\).

\section*{SPECIAL PURCHASE OF TEKTRONIX 454 PORTABLE OSCILLOSCOPES}
elektronix 454 DC-150 M1Hz dual-beam oscilloscopes in stock now. \(5 \mathrm{mV} / \mathrm{cm} Y\)-amplifier ( 1 mV cascaded). 2.4 ns risetime. Calibrated sweep delay. We can offer these units in first-class operational condition complete with three months' guarantee, for a once only price of tose.
SFLCIN OFREA FOH TMIS MOUTH REDUCED TO ELSN.C.

\section*{\(\star\) OSCILLOSCOPES}


TEKTRONIX 500 SERIES SCOPES AT BARGAIN PRICES:
All in good working order. Available to callers only

TYPE 543B with 'CA' plug-in 25 MHz DB...............................SOLD OUT TYPE 585A with ' 82 ' unit. 80 MHz . Few left ez250. Reduced to ................. \(£ 200\)

PLEASE NOTE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. it is sold in first-class operational condition and most items. carry a three months guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15\% VAT TO ALL PRICES.

\section*{DC POWER SUPPLIES}
\(\star\) APT 10459/8, 12-14V@ 5 Amps £25 (£2 p.p.) +APT 10459/8, 24 V @ 5 Amps €25 (E2 p.p.) tWe can supply the above power supply at any fixed voltage between 5 V and 36 V at 5A £25. tMullard Dual supplies. Brand new with handbook. Pos \& Neg 12 V at 1 A and 0.4 A respectively. Dimensions \(9 \times 4 \times 5\) ins. \(£ 10+\) ( \(£ 1\) p.p.) * FARNELL Current limited. Dimensions \(7 \times 5 \times 4\) ins Following types available: 13-17 Volts @ \(2 \mathrm{~A} £ 15\) \(27-32\) Volts@1A5V \(15.5 \mathrm{~V} @ 3 A \_15\). (pP £1.50).

\section*{SPECIAL PURCHASE}

\section*{LAMBDA POWER SUPPLIES}

Excellent LXS Series DC power units at less than a tenth of new price. The snag? - they're all 110 V AC Input. Prices as follows: 5 at 24A. LXS D5 OV R. £25. (List £350). Carriage 5 V at 14A. LXS CC 50 V . £20. (£258). E2.50 extra 24 V at 3.1A. LCS C 24. £15. ( (£223). £2.50 extra Special note: The 5 V power supplies may be to give a maximum output voltage of 12.5 DC when co give a maximum output voltage of \(12.5 D C\) when off or more ie 12 V DC at 244 for \(\mathrm{f} 45+\mathrm{Taxl}\) Ver cheapl

VARIABLE VOLTAGE BENCH SUPPLIES
Variable voltage DC power supplies for workshop use. Constant voltage, variable 0-30V output at 1A.
Cased, free standing, volt-metered output. Shor circuit proof. Size \(4 \times 5 \times 7^{\prime \prime}\). Only E 30 -each (pp E1.50).

COMMUNICATIONS TEST EQUIPMENT MARCONI TF1066B/1. AM/FM Signal Generator. \(10-470 \mathrm{MHz}, 0.2 \mathrm{uV}-200 \mathrm{mV}\) output. FM Deviations up to \(\pm 100 \mathrm{KHz}\) from \(30 \mathrm{~Hz}-15 \mathrm{KHz} \quad £ 550\) MARCONI TF995AN5 AM/FM Signal generator. Narrow deviation model 995 covering 1.5220mHz
MARCON
MARCONi TF1064B/5 FM signal generator covering in three ranges 68-108, 118-185 and \(450-470 \mathrm{MHz}\). Modulation FM fixed deviations of 3.5 and 10 KHz . AM fixed \(30 \%\).

\section*{ROTRON INSTRUMENT} COOLING FANS

\section*{Supplied}
\(115 \mathrm{~V}, 4.5 \times 4.5 \times 1.5^{\prime \prime} £ 4.50 .230 \mathrm{~V}\)
£5. \(115 \mathrm{~V}, 3 \times 3 \times 1.5^{\prime \prime} £ 4+\) postage ea. 35 p .
100V DC ELECTROLYTIC CAPACITORS
Sprague 'Powerlytic' type 36 D . \(10,000 \mathrm{uF} .100 \mathrm{~V}\). Brand new at surplus price! Only e4 ea. PP 50p

IORDER YOUR FAVOURITE AUDIO ACCESSORIES BY MAIL

SEND FOR YOUR FREE COPY OF OUR 1982 CATALOGI

\section*{OVER 250 ITEMS}

INCLUDING DIRECT BOXES, MIC-SPLITTERS, SIGNAL PROCESSING, AUDIO MODULES, TRANSFORMERS \& MANY OTHEA ACCESSORIES

WITH TECHNICAL DATA \& USE DIAGRAMS

Wo Ship the festest \& most conveniont way for youl most Shipmanto From Stock


SESCOM, INC
RETAIL SALES DIVISION
1111 Las Vegas Blvd. North
Las Vegas, NV 89101 -1197 U.S.A
(702)384-00.03
(800) \(834-3457\)


\section*{P.\&R. COMPUTER SHOP IBM GOLFBALL PRINTER 3982, £70}

EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT MATRIX PRINTER WITH SPECIAL INTERFACES. VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPERTAPE READERS, PAPERTAPE PUNCHES, SCOPES, TYPEWRITERS, FANS \(4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}\). POWER SUPPLIES, STORE CORES, TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MONDAY TO FRIDAY 9 a.m. 5 p.m., SATURDAY TILL 1 p.m.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
WW - 018 FOR FURTHER DETAILS

WW - 082 FOR FURTHER DETAILS
HYDRAULIC DRIVE ROBOTS FROM \(^{\text {POWERTRAN }}\)

USING SELFCONTAINED
HYDRAULIC POWER PACK
FEEDBACK
CLOSED LOOP CONTROL SYSTEM

MICROPROCESSOR CONTROLLED
USING DEDICATED SYSTEM OR EXTERNAL COMPUTER VIA ON-BOARD RS232C INTERFACE UP TO SIX PROGRAMMABLE AXES READY-BUILT OR KITS FROM £355 CURRENTLY BEING PUBLISHED IN

\section*{PRACTICAL ELECTRONICS}

For further details please contact POWERTRAN CYBERNETICS PORTWAY INDUSTRIAL ESTATE ANDOVER. HANTS SP 10 3MM Tel. Andover (0264) 64455

\section*{BRTTAN'S bangain BETTER STILL IN WORLD-WIDE DEMAND}

WIRELESS WORLD CIRCARDS at 1976 prices \(10 \%\) discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).


Fill gaps in your circuit files with these sets of \(127 \times 204 \mathrm{~mm}\) cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circults 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circults 24 Voltage regulators 25 RC oscillators - \(1 \quad 26\) RC oscillators - 227 Linear cmos - \(1 \quad 28\) Linear cmos - \(2 \quad 29\) Analogue multipliers \(30 \mathrm{Rms} / \mathrm{log} / \mathrm{power}\) laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications-1 35 Analogue gate applications-2.

To IPC Electriral - Electronics Press Ltd.
General Sales Department,
Room 205,
Quadrant House,
Sutton,
Surrey SM2 5AS

Company registration in England Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS
Reg. No 677128
Please send me the following sets ofCircards:£2 each,
£18 for 10 post free.
Remittance enclosedpayable
to IPC BUSINESS PRESS LTD.
Name (Please print)
Address (Please print)


WW - 043 FOR FURTHER DETAILS

\section*{POWER SUPPLIES}

HIGH QUALITY COMBINATION SWITCH MODE AND STATIC POWER SUPPLIES
\begin{tabular}{|c|c|}
\hline Model No. & Price \\
\hline AV81 & 5v 8A.................................................................................. 28 \\
\hline AV82D & 12v 5A. +5 v 1 A . Disc Drive supply .......................... 229 \\
\hline & Teac FD 50 Series \\
\hline AV83 & \begin{tabular}{l}
\(+5 v 8 A .+12 v 800 m A .-12 v 50 m A .-5 v 10 m A\). \\
\(+25 v 30 \mathrm{~mA}\).
\end{tabular} \\
\hline AV84 & \(+5 \mathrm{v} 8 \mathrm{~A} . \pm 12 \mathrm{v} 50 \mathrm{~mA} .+25 \mathrm{v} 30 \mathrm{~mA}\).......................... \(£ 33\) \\
\hline AV86 & Transformer, Rectifier, Mounting Plate and Fuse....f18 \\
\hline AV87 & Power fail detect board 15mS ............................ \(\mathbf{£ 7 . 5 0}\) \\
\hline
\end{tabular}

Please add \(£ 1.20\) p. 8 p . to order. All units are supplied on a satisfaction or money back basis and carry a full guarantee.

Send cheque/P.O. to:
AVALON ELECTRONICS
72 Ship Lane, Farnborough, Hants
Trade an Tel. 0252511098
WW - 068 FOR FURTHER DETAILS

\section*{Multi Direct Drive Cassette Mechanism}


3 Motor Direct Drive • High Reliability • Wide Speed Range, \(1.2-19 \mathrm{~cm} / \mathrm{s} \cdot\) Designed for Full Remote Control Dual Capstan: \(0.16 \%\) WIdeband Wow/Flutter \(0.07 \%\) DIN Pk Wtd. Wow/Flutter Motion Sensors and Tachogenerator:Intelligent Control of Unit
Applications: Studio Quality Recording Equipment * Compact Transportable Equipment • Industrial Recording and Monitoring
Loaic on 00.9R :


PAPST MOTOR: LIMITED. PARNELL COURT. EAST PORTWAY INDUSTRIAL ESTATE. ANDOVER. HAMPSHIRE. TEL: ANDOVER(0264) 53655 TELEX: 477512

WW - 088 FOR FURTHER DETAILS

.

\section*{EDMUND SCIENTIFIC illustrated catalogue} At last this famous range of products is now available in the U.K. and Ireland from RHEINBERGS SCIENCES LIMITED. Over 2000 products for industry, education and the enthusiast.


\section*{Microscopic Accessories} Magnifiers \& Microscopes Llght
Fibre Optics
Molors \& Pumps
Intrared Products
Polarizing Materlal
Tools
Tools
OEM
RHEINBERGS SCIENCES LIMITED, Dept WW
Sovereign Way. Tonbridge. Kent TN9 1RN. Tel: 0732357779
WW - 037 FOR FURTHER DETAILS

\section*{Solar Energy
Optlcs \\ Optlcs
Magnets}

Laboratory Equipment
Lasers
Photography
Educational Kits
Dittractiun Gratings
Holography \begin{tabular}{ll|l} 
Low Ohm Resistance & Decade Resistance Boxes \\
Box 1051 & £98 & Type 1061/1062
\end{tabular} Type 1061/1062
- \(0.01 \Omega\) то 100 K
- IN LINE READ-OUT
- 1 WATT POWER RATING

Microcal 1030
f84
- voltage/Current RANGES
- battery operation
- 0.1\% accuracy

A compact low cost voltage and current source for general use, Outputs are \(10 \mu \mathrm{~V}\) to 1 V and \(10 \mu \mathrm{~A}\) to 100 mA .

- IN LINE READ-OUT - STABLE-(METAL - PRECISE
- MECHANICALLY AND
ELECTRICALLY
ROBUST
The 1061/1062 Decade Resistance boxes are
designed to meet the standard required in both
educational and industrial applications.
Also available through our UK distriburors: ELECTROPLAN, ORCHARD RD, ROYSTON, HERTS.
TEL: 076345145 . TELEX 81337 EC PLAN.

\section*{RECHARGEABLE BATTERIES}

\section*{PRIVATE \& TRADE ENQUIRIES WELCOME}

Full range available to replace 1.5 volt dry cells and 9 voli PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue. * New sealed lead range now available * Write or call at

\section*{SANDWELL PLANT LTD.} 2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764 After Hours 097784093 WW - 047 FOR FURTHER DETAILS

\section*{EPROM PROGRAMMER \\ 2716 OHEXKEYPAD - POWERFUL EDITOR - TV (MONITOR) DISPLAY - SERIAL/PARALLEL IO - CASSETTE BACK-UP - ROMULATOR SOFTY STANDS ALONE E769+VAT, EX-STOCK, BY RETURN} DATAMAN DESIGNS, LOMBARD HOUSE, DÓRCHESTER, DORSET, DTI IRX. (0305) 68066

WW - 013 FOR FURTHER DETAILS

\section*{PRINTED CIRCUITS} FOR WIRELESS WORLD PROJECTS

\author{
Audio compressor / limiter-Dec. 1975-1 s.s. (stereo) \\ Cassette recorder-May 1976-1 s.s. \\ Audio preamplifier-November 1976-2 s.s Additional circuits-October 1977-1 s.s. \\ Stereo coder-April \(1977-1\) d.s. 2 s \\ Low distortion disc amplifier (stereo)-September 1977-1 s.s \\ Low distortion audio oscillator-September 1977-1 s.s. \\ Synthesized f.m. transceiver-November 1977-2 d.s. 1 s.s. \\ Morsemaker-June 1978-1 d.s. \\ Oscilloscope waveform store-October 1978-4 d.s. \\ Regulator for car alternator-August 1978-1 s.s. \\ Wideband noise reducer-November 1978-1 d.s Versatile noise generator-January 1979-1 s.s. 200 MHz frequency meter-January 1979-1 d.s. \\ High performance preamplifier-February 1979-1 Moving coil preamplifier-August 1979-1 s.s. Multi-mode transceiver-October 1979-10 d.s Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 s. Colour graphics systemi-A pril 1980-1 d.s. Audio spectrum analyser-May 1980-3 s.s Multi-section equalizer - June 1980-2 s.s. Floating-bridge power amp- Oct. \(1980-1\) s.s. (12V or 40 V ) \\ M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL
}


MAl
Prio-
\(55-0-5\)
15,
Ref.
07
07
149
150
151
152
153
154
155
156
157
158
159
161
t11
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Pri 0-120; 0-100-120V (120, 220, 240V) Sec 60 \(55-0.5560\) twice to give \(55,60,110,115,120\). 125, 175, 180, 220, 225, 230, 235, 240 V .} \\
\hline Ref. VA & (Wats) & & P4P \\
\hline 07* & 20 & 4.84 & 1.50 \\
\hline 149 & 60 & 8.37 & 1.60 \\
\hline 150 & 100 & 9.38 & 1.84 \\
\hline 151 & 200 & 13.69 & 2.12 \\
\hline 152 & 250 & 16.31 & 2.64 \\
\hline 153 & 350 & 18.07 & 2.12 \\
\hline 154 & 500 & 25.02 & 2.90 \\
\hline . 155 & 750 & 35.91 & OA \\
\hline 156 & 1000 & 45.89 & OA \\
\hline 157 & 1500 & 60.02 & OA \\
\hline 158 & 2000 & 72.43 & OA \\
\hline 159 & 3000 & 101.12 & OA \\
\hline 161 & 6000 & 203.65 & OA \\
\hline \$115 & 240 vec & Stete volv & quired \\
\hline
\end{tabular}

50 VOLT RANGE Sec. Volts availatle \(-5,7,8,10,13,15\),
\(25,30,33,40\) or \(20 \mathrm{~V}-0-20 \mathrm{~V}\) or \(25 \mathrm{~V}-0.25 \mathrm{~V}\) Ref. \(50 \mathrm{v}^{\text {Amps }} 25 \mathrm{v}\)
\begin{tabular}{ccrcc} 
Ref. & 50 v & 25 v & \multicolumn{1}{c}{\(£\)} & P\&\&P \\
102 & .5 & 1 & 4.13 & 1.40 \\
103 & 1 & 2 & 5.03 & 1.40 \\
104 & 2 & 4 & 8.69 & 1.84 \\
105 & 3 & 6 & 10.36 & 1.90 \\
106 & 4 & 8 & 14.10 & 2.12 \\
107 & 6 & 12 & 16.37 & 1.84 \\
118 & 8 & 16 & 24.52 & 2.70 \\
119 & 10 & 20 & 30.23 & OA \\
109 & 12 & 24 & 36.18 & OA
\end{tabular}

12 or 24-VOLTRANGE
\begin{tabular}{rcccc}
\multicolumn{5}{c}{ Separate 12V windinas Pri 220.240V } \\
Ref. & 12v Amps & 24 v & \(£\) & P\&P \\
111 & 0.5 & 0.25 & 2.66 & 1.20 \\
213 & 1.0 & 0.5 & 3.19 & 1.20 \\
71 & 2.0 & 1.0 & 4.25 & 1.20 \\
18 & 4.0 & 2.0 & 4.91 & 1.60 \\
85 & 5.0 & 2.5 & 6.78 & 1.50 \\
70 & 6.0 & 3.0 & 7.69 & 1.40 \\
108 & 8.0 & 4.0 & 8.98 & 1.64 \\
72 & 10.0 & 5.0 & 9.82 & 1.80 \\
116 & 12.0 & 6.0 & 10.89 & 1.90 \\
17 & 16.0 & 8.0 & 12.97 & 2.12 \\
115 & 20.0 & 10.0 & 17.46 & 2.44 \\
187 & 30.0 & 15.0 & 21.69 & 2.64 \\
226 & 60.0 & 30.0 & 44.45 & OA
\end{tabular}

30 VOLT RANGE (Split Sec)
Sec. Volts available \(3,4,5,6,8,9,10,12\),
\(15,18,20,24,30 \mathrm{~V}\) or \(12 \mathrm{~V}, 0.12 \mathrm{~V}\) or \(15 \mathrm{~V}-0\)

\section*{Ret. Amp 30 v}
\begin{tabular}{rcrcr}
\multicolumn{5}{c}{ Amps } \\
Rot. & 30 v & 15 v & E & P\&P \\
112 & 0.5 & 1 & \(\mathbf{3 . 1 9}\) & 1.20 \\
79 & 1 & 2 & 4.32 & 1.40 \\
3 & 2 & 4 & 6.99 & 1.60 \\
20 & 3 & 6 & 8.10 & 1.85 \\
21 & 4 & 8 & 9.67 & 1.90 \\
51 & 5 & 10 & 11.95 & 2.00 \\
117 & 6 & 12 & 13.52 & 2.02 \\
88 & 8 & 16 & 18.10 & 2.26 \\
89 & 10 & 20 & 20.88 & 2.24 \\
90 & 12 & 24 & 23.20 & \(0 A\) \\
91 & 15 & 30 & 26.60 & 3.00 \\
92 & 20 & 40 & 35.64 & 4.83
\end{tabular}

\section*{60 VOLT RANGE}

Voltages availajle \(6,8,10,12,16\), \(24 \mathrm{~V} \cdot 0.24 \mathrm{~V}\) or \(30 \mathrm{~V}-0.30 \mathrm{~V}\) Amps
Ref. 60 v 30 v \begin{tabular}{l} 
Ref. \\
124 \\
126 \\
127 \\
125 \\
123 \\
40 \\
120 \\
121 \\
122 \\
189 \\
\hline
\end{tabular}

SCREENED MINIATURES Pri 240 V \(\begin{array}{ll}\text { Ref. } \mathrm{mA} & \text { Sec Volts } \\ 238 & 200 \\ 3.0-3\end{array}\)

\section*{212 1A, 1A \\ 0-6, 0-6}


P\&P
1.50
1.50
1.90
2.02
2.26
2.24
2.64
\(O A\)
\(O A\)
\(O A\)
13100
235330,
500, 330
0.9, 0-9

1A, 1A
200,200
\(0-8-9,0-8-9\)
\(0-8-9,0-8-9\)
\(0-8-9,0-8-9\)
\(0-15,0-15\)
\(0-15,0-15\)
\(12-0-12\)
\(\begin{array}{lll}214 & 300,300 & 0-20,0-20 \\ 221 & 700(0 C) & 20-12-0-12-20\end{array}\)
\(\begin{array}{lll}221 & 700(\mathrm{OC}) & 00-12-0-12-20 \\ 206 & 1 \mathrm{~A}, 1 \mathrm{~A} & 0-15-20,0-15-20 \\ 203 & 500,500 & 0-15-27,0-15-27\end{array}\)
\(\begin{array}{lll}203 & 500,500 & 0-15-27,0-15-27 \\ 204 & 1 A, 1 A & 0-15-27,0-15-27\end{array}\)
3.11
3.45
2.59
2.41
3.36
4.27
2.41
3.11
3.39
4.13
5.60
4.83
7.30

AUTO TRANSFORMERS
Voltages avallable \(105,115,190,200,210,220\),
230,240 . For step up or 230, 240 . For step up or step down. Ref. VA (Watts) TAPS \(\begin{array}{ccc}113^{*} & 150-10-115-210-240 \mathrm{~V} \\ 64 & 80 & 0-10-115-210-240 \mathrm{~V}\end{array}\)
\(\qquad\) \(4 \quad 1500-10-115-200-220-240 \mathrm{~V}\) \(\begin{array}{lrr}67 & 500 & 0-10-115-200-220-240 \mathrm{~V} \\ 84 & 1000 & 0-10-115-200-220-240 \mathrm{~V}\end{array}\) \(\begin{array}{lll}84 & 1000 & 0-10-115-200-220-240 \mathrm{~V} \\ 93 & 1500 & 0-10-115-200-220-240 \mathrm{~V}\end{array}\) 95 2000 0-10-115-200-220-240V 73 3000 0-10-115-200-220-240V \begin{tabular}{l} 
80s \\
57 s \\
5000 \\
\hline
\end{tabular}
2.39
4.85
6.48
13.30
22.7
28.1
42.1
71.6
93.0
108.30 CONSTANT VOLTAG
TRANSFORMERS For 'clean' mains to computers, peripherals. \(\begin{array}{ll}\text { 250VA } & \text { E127.36 } \\ 500 \text { VA } & \text { E149.43 }\end{array}+\mathrm{ps} \mathrm{p}\)

SPECIALIST TRANSFORMER \(500 \mathrm{VA} \quad\) E149.43 \(\}+\) psp WINDING

\section*{TOROIDALS NOW} available Send stamp for list PLEASE ADD 15\% VAT AFTE

\section*{OTHER PRODUCTS}

AVO TEST METERS
8 Mk. 5 Latest Model \(£ 122.10\)
\(\begin{array}{lll}71 & \text { Electronics \& } & £ 45.80 \\ 73 & \text { TV Service) } & \mathbf{8 3 3} .90\end{array}\)
\(\begin{array}{ll}\text { MM5 Minor } & £ 63.90 \\ & £ 40.50\end{array}\)
DA211 LCD Digital \(\quad \begin{array}{ll} & \text { £58.50 }\end{array}\)
DA212 LCD Digitat \(\mathbf{£ 8 1 . 9 0}\)
DA116 LCD Digital £121.70
Megger 70143500 v £ 97.20
Megger Battery BM7 \(£ 65.30\)
Avo Cases and Accessories
P\&P £1.32 + VAT 15\%
BRIDGE RECTIFIERS
\begin{tabular}{lll} 
& & \\
200 v & 2 A & 45 p \\
400 v & 2 A & 55 p \\
100 V & \(25 \mathrm{~A}+\) & \(£ 2.10\) \\
100 V & 50 A & \(\mathrm{£2.60}\) \\
200 V & 4 A & 65 p \\
400 V & 4 A & 85 p \\
400 V & 6 A & \(£ 1.40\) \\
500 V & 12 A & \(£ 2.85\) \\
& & \\
& &
\end{tabular}

Send 20 p for catalogue.
Prices correct at \(20 / 3 / 81\)
MAINS BATTERY ELIMINATORS No wiring, ready to plug into 13A socket. 6,9 ANTEX SOLDERING IRONS 15 W . CCN 240 or Ce4.


PANEL METERS E 6.70 e \(\mathrm{t}+76 \mathrm{pPP}+\mathrm{VAT}\)
\(43 \times 43 \mathrm{~mm}\) or \(82 \times 78 \mathrm{~mm}\). \(8 \mathrm{FPPP}+\) VAT. Indicator \(50 \mu \mathrm{~A}, 500 \mu \mathrm{~A}, 1 \mathrm{~mA}, 30 \mathrm{~V}\) d.c. \(\quad \mathrm{f} .95+30 \mathrm{p}\) P \(\mathrm{I}_{\mathrm{A}}+\mathrm{VAT}\) Cational Meter 10A8 30V \(£ 4.50\) +VAT

Precision De-Solder Pumps - Spring loaded \begin{tabular}{l} 
quick action button release for one hand \\
working. Large \(£ 5.86 \mathrm{P} \& \mathrm{P} 35 \mathrm{p}+\mathrm{VAT} S \mathrm{ma}\) \\
\hline
\end{tabular} \begin{tabular}{l} 
W\& \\
PR \(P\) ing. Large \(£ 5\). B6 P\&P \(35 p+V A T\). Small \(£ 5.17\) \\
\hline
\end{tabular} \(65 p+\) VAT, Large \(86 p+\) VAT.
ANTEX SOLDERING IRONS 15W CCN 240 or C £4.50 25 W X25 £4.80. 12V 25 W car solder kit

METAL OXIDE RESISTORS E1/100


Barrie Electronics Ltd. 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

\section*{Appointments}

\section*{Advertisements accepted up 12 noon Tuesday, May 4, for June issue, subject to space}

> DISPLAYED APPOINTMENTS VACANT: \(£ 13.50\) per single col. centimetre (min. 3 cm ).
> LINE advertisements (rum on): \(£ 2.50\) per line, minimum 5 lines. (Prepayable.) BOX NUMBERS: £1. 50 extra. (Replies should be addressed to the Box Number in the
> advertisement, co Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS.)
> PHONE: IAN FAUX, \(01-6613033\) (DIRECT LINE)
> Cheques and Postal Orders payable to IPC Business Press Ltd.

At HM Government Communications Centre, £8,589

\section*{Communications R\&D... ...the leading edge} we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, designed to enable and protect the flow of essential information.

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagation studies, applications of Microcircuitry.

\section*{ACOUSTICS}

SIGNAL ANALYSIS
MAGNETICS
SYSTEMS ENGINEERING
Applicants, under 30 years of age, should have a good honours degree or equivalent qualification in a relevant subject, but candidates about to graduate may also apply.

Appointments are as Higher Scientific Officer ( \(£ 6,530-£ 8,589\) ) or Scientific Officer ( \(£ 5,176-£ 6,964\) ) according to qualifications and experience. Promotion prospects.

For an application form, please write to the Recruitment Officer (Dept. WW 5), HM Government Communications Centre, Hanslope Park, Milton Keynes, MK19 7BH.

\section*{ELECTRONIC ENGINEER RESEARCH \& DEVELOPMENT}

We are a medium-sized company employing approximately 200 in the Cambridge Electronic Industries group of companies, specialising in producting television distribution equipment and associated electronic products. An enthusiastic Electronic Engineer is sought to join our existing development team. He/she will work in a modern, wellequipped laboratory and will be responsible for seeing projects through from initial conception to final production. We envisage that the successful candidate will be 23-35 years of Miton Keynes, MK19 7BH age, with a degree in electronics and at least two years' experience in a research and development environment.

\section*{Senior Electronics Engineer}

A Senior Electronics Engineer is required to join a small but expanding team working on a variety of projects in the fields of Robotics, Image Processing, Real time data collection and telemetry.
The successful applicant will be qualified to degree level and will have relevant experience in analogue and digital design techniques.
A thorough knowledge of at least one current microprocessor is required, and a high level of enthusiasm and self motivation is essential.
The company is situated in a pleasant part of Avon, a few minutes drive from Junction 21 of the M5.
Working conditions are excellent and salary is negotiable according to qualifications and experience.

Contact G.S. Chewins, Senior Personnel Officer,
(Recruitment)
BAJ Vickers Limited, Banwell, Avon, BS24 8PD.
Please send full C. V. to:
Mr C. G. Houghton
Personnel Manager
Labgear Limited
Abbey Walk, Cambridge

\section*{ITN}

\section*{SENIOR MAINTENANCE ENGINEERS \\ Commencing salary from \(£ 12,877\) p.a. (under review)}

Independent Television News Ltd. has vacancies for Senior Engineers in the following Maintenance Sections at ITN House, London W1.

\section*{VTR \& Telecine Maintenance}
(Ref 000009)
Responsible for the maintenace of VTR and telecine equipment, including ACR25B, VPR2B, VR1200C, BVU200/800, standard U-Matics and Rank Cintel Mk IIIs and associated editing and control systems.

\section*{ENG/OB Maintenance}
(Ref 000010)
Responsible for the maintenace of all the ENG and OB transportable equipment including BVP330 cameras, BVU50 and 110 recorders, VPR2 and VPR20 C-format machines, TBCs and editing systems.

\section*{Radio Links Maintenance}
(Ref 000011)
Responsible for the maintenance of our radio link equipment and extensive radio telephone network. Equipment includes frequency agile 2.5 GHz video links and numerous UHF and VHF FM R/T systems, both static and mobile.

\section*{Sound Maintenance}
(Ref 000012)
Responsible for the maintenance of a varied range of audio equipment, including sound mixing desks and associated studio sound equipment, film and video sound dubbing suites and a wide variety of audio recorders including \(r\) ., ack machines.

\section*{Central Maintenance}

\section*{(Ref 000013)}

Responsible for the maintenance of not only all our studio equipment, including Marconi Mk 9 cameras, CD480 mixers, Quantel DPE5001, Aston Character generators and the usual ancillaries but also such equipments as DICE and ACE digital converters, Oracle and graphics computer systems.
The above vacancies offer a challenge to experienced engineers wishing to join an extremely active company expanding to meet its Channel 4 commitments.
Applicants should have qualifications to HNC level or equivalent and be experienced in maintaining the relevant broadcast TV equipment.
It would be of considerable advantage to have some practical experience of computer or microprocessor systems.
Good prospects exist in all the above posts for promotion, with experience, to Supervisory Engineer.
Generous pension scheme, free life assurance.

THE MANAGER, ENGINEERING MAINTENANCE
INDEPENDENT TELEVISION NEWS LTD
ITN HOUSE
48 WELLS STREET
LONDON W1P 4DE


\section*{Television International}

Television International is a large television facilities company serving the broadcast industry. It supplies both staff and equipment in the fields of Video Tape, Telecine, Television Studias and Television Outside Broadcasts.

It is at present expanding these facilities and has vacancies for substantive engineers in the following departments:

\section*{VIDEO TAPE OPERATIONS}

Engineers are required with a wide knowledge of broadcast video tape work and who are capable of undertaking simple editing and front-line machine maintenance.

\section*{TELECINE OPERATIONS}

Engineers here should be experienced in the operation and front-line maintenance of Cintel MK III Telecine machines and have a thorough knowledge of auxiliary units such as TOPSY and Digiscan.

\section*{VISION CONTROL AND MAINTENANCE}

Engineers are required with experience of the maintenance and alignment of electronic equipment. They must be prepared to operate as a Vision Control Engineer in both studio and outside broadcast locations.

Salaries and conditions for the above will be in accordance with the ACTT grade plus local supplements. The Company benefits from an attractive contributory Group Pension Scheme, which includes free Life Assurance. Training will be provided to keep staff abreast of current developments within the industry.

Written applications, together with CV should be sent to: Mr. Alan Edwards, Director of Operations,
Television International Operaiions Ltd., 9-11 Windmill Street, London W1P 1 HF . Tel: 01-637 2477. \(\star^{-5}\) A member of the RANK PHICOM VIDEO GROUP (1578)

\section*{Electronics Technician}

An experienced Electronics Technician is required to work within the Microprocessor Section of Computer Science, as a broad-based support and service engineer.
The Section is responsible for providing micro-based equipment throughout the research organisation in laboratory environments.
Candidates should be qualified to Ordinary/Higher TEC level in Electronics, or possess C \& G full certificates for Electronics Technicians and should be capable of working on their own initiative.
Previous professional knowledge of microprocessor-based equipment is essential. Candidates must be able to read and interpret modern digital circuit diagrams for both fault finding and the layout of prototype printed circuit boards and be able to generate such documentation.
As much of the work of the Section is involved with computer peripherals a knowledge of interface standards and techniques would be useful. Candidates must hold a current driving licence.
A competitive salary will be paid commensurate with qualifications and experience and will include London Allowance and quarterly and annual bonuses. There is a non-contributory pension scheme and flexible working hours are in operation. Consideration will also be given to relocation expenses in appropriate cases.
Please write or telephone for an application form to: Miss E. M. Butler, Glaxo Group Research Limited, Greenford Road, Greenford, Middlesex UB6 OHE. Tel: 01-422 3434, ext. 2707. Please quote reference number \(\mathrm{ZH} / 424\).

\title{
Electronics Design Engineers Take your career a step in the right direction \\ Having introduced an extended new product range, many
} of which are microprocessor based, Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of test equipment and measurement systems. Our products are selling throughout the world to all leading users in the Telecommunications and Aerospace industries and we are naturally developing further innovative designs. That is why we are now looking for more Design Engineers with experience in any of the following areas:

RF, Microwave, Analogue, Digital, Software, ATE, Microprocessor Applications.

Whatever your level of experience we would like to hear from you. We offer excellent salaries plus a wide range of large company benefits including relocation expenses where appropriate.
marcon instruments

So take a positive step in the right direction and join us in developing tomorrow's technology today. Cut the coupon and send it to John Prodger, Recruitment Manager, Marconi Instruments Limited FREEPOST, St. Albans, Herts AL4 0BR. Tel: St. Albans ( \(: 727\) ) 59292.

\section*{DD DOLBY SYSTEM \({ }^{\circ}\) \\ Dolby Laboratories Inc.}

\section*{Quality Control Engineer}

\section*{c. \(£ 9000\)}

We manufacture a wide range of professional audio noise reduction systems which are used throughout the world in the broadcasting, recording and film industries. The quality and reliability of our products is of prime importance
An engineer is required who will be responsible to the QA Manager for all aspects of quality control in our manufacturing and test areas and for the development of the quality control function.
The successful applicant will probably be a graduate with experience of quality control in the electronics industry. A background in audio engineering would be an advantage.
The attractive salary is supplemented by competitive benefits including a non-contributory pension scheme and relocation assistance if needed.

For more information and an application form contact:
Kevin Cross
Dolby Laboratories Inc.
346 Clapham Road
London SW9 9AP
Tel: 01-720 1111

\section*{Rediffusion Consumer Manufacturing Limited \\ Group Leader Test Equipment}

Rediffusion Consumer Manufacturing produce a range of advanced colour television receivers at modern factories situated near Bishop Auckland, Co Durham, and Bllinghem, Cleveland. Highly effective product testing is an essential part of manufacturing policy and we wish to appoint an experienced engineer of proven ability, to be responsible to the Engineering Manager for all aspects of a sophisticated range of test console and signa generation equipment.
The successful candidate will control a team of engineers and technicians responsible for the effective and efficient operation of this equipment in a mass production environment. Both analogue and digital techniques are involved with the main test consoles based on the Motorola 6800 microprocessor. Although some test equipment is designed and constructed locally necessary in order to keep abreast of new developments and influence the design of new equipment in the light of production experience.
ane
The appointment is based at the Engineering Laboratory of the Bishop Auckland factory, which is within easy reach of attractive countryside and has at low cost is available and assistance with relocation will be given as appropriate.
An attractive salary will be offered with 23 days' holiday per year and after a qualifying period, free life assurance and the benefit of a big company qualtiong period
Applican
Applicants should be qualified to HNC or equivalent level and previous microprocessor experience would be an advantage, although training will be provided if necessary
If you are interested in this challenging position and would like more details, please write or telephone in complete confidence to:
Mr D. Abbott
Engineering Product Manager
Rediffusion Consumer Manufacturing Ltd
Fullers Way South
Chessington
Surroy KT9 1H
Telephone: 01-3975419

\section*{Appointments}

\section*{ELECTRONIC TECHNICIANS AND ENGINEERS}

Marconi Communication Systems Limited are involved in the installation, CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY Lecturer II in Radio Communications Engineering commissioning. of communication equipment. worldwide. If you have formal

Required for September engineering, electronics and mathematics on TEC Certificate and Higher Certlficate courses.
Candidates should have a degree or equivalent qualifications and preferably corporate membership of IEE or IERE. Industrial experience in the radio communications engineering industry is essential, and teaching experience would be an advantage.

\section*{Lecturer I in Electronics Practice}

Required from January 1983 to teach electronics practice and servicing on CCLI 224 and TEC Certificate/Diploma courses in Electronics
Applicants should hold Electronics Certificate 222/224 Part III and preferably HNC or HTC in Electronic Engineering. Industrial experience with an electronics servicing department is essential and teaching experience would be an advantage.

\section*{Temporary Lecturer I in Electronics}

Required for one year from September 1982 to teach Electronics and Mathematics to TEC Certlificate/ Diploma Courses in Electronics and Telecommunications.
Candidates should have industrial experience in the electronics/telecommunications industry and preferably should have a degree or equivalent qualifications and teaching experience.

Salary scales: L | f5,034-f8,658, L || f6,462-f 10,431 , starting points depending on qualifications and experience.

\section*{TEST ENGINDPRS}

\section*{microprocessor controlled business systems, optical fibre and microwave transmission systems}

Major advances in the telecommunications field have yielded exceptional growth and created additional opportunities for engineers in this expanding technology As a test engineer you will be locating and rectifying faults, to component level, on a range of digital equipments. So you will need qualifications to at least third year City and Guilds in industrial electronics or telecommunications. Salaries will bé in the range \(£ 5.6-8 \mathrm{k}\) according to experience, with overtime and shift work available. We can arrange accommodation and offer a generous relocation package, where appropriate.

To: Mr Z.K. Flizak, GEC Telecommunications Ltd.,
PO Box 53, COVENTRY CV3 1HJ.
Name
Address
Qualifications
Present Employer
Experience

\section*{medical physics tichnician} II (ELECTRONICS)
Salary on scale: \(£ 7600\) - \(£ 9248\) An experienced ana
An experienced engineer is required by the Medical Electronics Department to assist with the
development and maintenance of development and maintenance
electronic circuits and systems. The successful applicant will be The successful applicant will be
seconded to the Roval Free Hospital
School of Medicine, Hunter Street, WC1, until about the end of 1982 before moving io the interdepartmental workshop at Hampstead, London NW3.
Considerable experience in the design of electronic circuits and systems using state-of-the-art techniques is essential.
Applicants should praferably hold a Higher National Certlflcate in appropriate sublects or an equlvalent, or higher, qualification. Application form and iob descrlption available from the Personnel Department, Royal Free Hospital, Pond Street, Hampstead,
London NW3 20G. Tel: 01-794 0500 London NW3 2QG. Tel: 01-7940500 ext. 4286. Please quote ref. 0770. Camden \& Islington Area Health Authority (T)

\section*{Appointments}

\section*{Electronic Engineers for O.A.Department Wembley Middlesex.}

Racal BCC are members of the highly successful Racal Electronics Group and are world leaders in the design and manufacture of tactical radio-communications equipment.

We require two experienced electronic engineers to fill positions at Intermediate grade within the Quality Assurance department. Preference will be given to engineers who are familiar with the requirements of Def - Stan 05-21 and who have experience in a number of Q.A. functions including defect analysis, quality costs, and the
monitoring and control of Company systems.

Applicants aged \(26-50\) must be educated to HNC/HTC level or above in electronics. A working knowledge of communications equipment would be a distinct advantage.

We offer excellent conditions of service including a good basic salary and Group Productivity Scheme, 27 days annual holiday, a contributory pension scheme and a free life assurance.


\section*{Radio Operator Technicians}

\author{
for British Antarctic Survey
}

The British Antarctic Survey requires Radio Operator Technicians to man single handed wireless stations at their permanent Antarctic bases. The appointments will cover two consecutive Antarctic winters which involves an absence from the United Kingdom of about 32 months.
Applicants must be able to maintain SSB transmitting and receiving equipment as well as aerial arrays. Communication between the Antarctic Stations and the United Kingdom is by radio teleprinter through a cable and wireless station. Teleprinter, morse and voice communication is also maintained between foreign Antarctic stations, ships and aircraft.
Qualifications: MRGC or better and a capability of sending and receiving morse at a minimum of 20 wpm .
Experience in maintaining communication equipment is essential. A knowledge of teleprinters and touch typing an advantage. Applications from amateur and armed service trained personnel will be considered provided that the necessary expertise can be demonstrated.
Applicants to work overseas should be single, aged between 2235, physically fit and male.
Salary: From \(£ 5,410\) per annum plus a pay addition and gratuity. Clothing, messing and canteen are provided free on the station and free messing aboard ship. Free accommodation whilst overseas. Low income tax.

Application forms may be obtained from: The Establishment Officer, British Antarctic Survey, High Cross, Madingly Road, Cambridge CB3 OET.
Please quote Ref: BAS 57.
Closing date: 27 April, 1982
Natural Environment Research Council

\section*{HAMMERSMITH AND FULHAM HEALTH AUTHORITY}

\section*{MEDICAL PHYSICS TECHNICIAN GRADE 1}

Salary scale: £8968-£10319 per annum inclusive
An Electronics Technician with considerable experience of maintenance of electronic and biomedical equipment is required to supervise the day-to-day work of nine technicians engaged in the repair, calibration and safety checking of a wide range of medical and laboratory equipment.

Applicants should have previous experience of personnel supervision and an extensive knowledge of the electrical safety aspects of medical equipment.

Opportunities will exist for the development of electronic instrumentation and a knowledge of microprocessors would be desirable. The successful candidate will be expected to participate in the activities of the medical electronics section of the department of medical physics.

Ideally, the successful candidate will have an HNC or HND in electronic engineering.

For an application form and job description, please contact Mrs J. Cordery, District Personnel Department, Charing Cross Hospital, Fulham Palace Road, London W6. Telephone 01-748 2040 ext. 2992.

\section*{Appointments}

\section*{Technical Training Officer}

\section*{Leads Western Health Authority}

THE GENERAL infirimary at Leeds

\section*{SENIOR ELECTRONICS TECHNICIAN (Grade MPT III)}

Marconi Avionics are one of the world's leading companies in the research, development, design and manufacture of advanced avionics systems.

We are now seeking a Training Officer to take responsibility for identifying the changing skill needs throughout our Borehamwood location through close and continuing liaison with development, test and production management, followed by the planning and development of suitable practical courses. This will be particularly important in the areas of test equipment application and wiring and soldering skills.

Applicants should have a good training background, supported by an HNC and practical experience of electronic circuit construction, testing, and fault diagnosis of analogue/digital equipment. On a personal level, tact, diplomacy, and an ability to communicate effectively at all levels are essentials.

This is an excellent opportunity for a man or woman to make a meaningful contribution to the training needs of a world leader. Salary will be competitive and accompanied by first class benefits.

For further information, please write or telephone: Tony Elliott, Marconi Avionics Limited, Elstree Way, Borehamwood, Herts, WD6 1RX. Tel: 01-953 2030.

MARCONI
AVRBONACS

\section*{Kingiom of Lesotho}

\section*{TransmitterEngineer}

Up to \(£ 11,500\) p.a. plus benefits
A challenging post in this beautiful and mountainous kingdom in southern Africa.
Applicants must possess an engineering degree and have at least five years experience in transmitter engineering and maintenance.
Duties will include operation and maintenance of two 100 kw shortwave transmitters, identifying operational needs, and staff supervision and training.
Appointment will be on contract for two years.
Salary includes a substantial tax-free allowance paid under Britain's overseas aid programme.
Benefits include:
* Free passages
* Generous paid leave
* Children's holiday visit passages and education allowances
\(\star\) Subsidised housing
* Appointment grant and interest-free car loan

For full details and application form write quoting YC/202/WW or telephone 01-222 7730 Ext 3639.

\section*{Crown Agents}


The Crown Agents for Oversea Governments \& Administrations, Recruitment Division, 4 Millbank, London SW 1P 3JD.

\section*{ELECTRONIC DEVELOPMENT ENGINEER}

We are seeking to expand our development team by recruiting a young Graduate with two to three years' experience of designing analogue and digital circuitry. Our range of products includes Modulation Meters, SSB Transmitter Drive Units and Spectrum Analysers. Experience in any of these fields would be an advantage but is not strictly essential.
We are offering an excellent working environment plus a really attractive salary to the successful applicant.
Please contact H. M. Evans - M.D. by letter or phone.
SAYROSA ELECTRONICS LTD.
Anstey Mill Lane, Alton Hants GU34 2QQ
Tel: (0420) 84500

\section*{U.S.A.}

British-run company near New York seeks Electronic Engineer (B.Sc. or equivalent) for design of medical and industrial instruments. Could probably represent us later in UK. Starting salary \(\$ 15,000(£ 8,000)\). Please send résumé of training and experience to Bailey Instruments Inc., Saddle Brook, NJ 07662.

\section*{SALES REPRESENTATIVE PUBLIC ADDRESS AND AUDIO EQUIPMENT}

We are the newly-formed marketing arm of a manufacturing company, now established for over 50 years.
We are looking for someone with, preferably, an electro-mechanical background and previous selling experience.
We are offering a salary commensurate with age and experience, as well as commission, four weeks' paid holiday and a company car. Apply, in first Instance, to:

Leading Loudspeaker Company in West Germany is seeking for a

\section*{SOLE DISTRIBUTOR for U.K.}

Our range of products covers loudspeakers and accessories for Hi-Fi, Musician and Car Stereo.

The applicant should have good connections to the electronic shops and manufacturers of cabinets, to whom our products should be offered'with priority.

We are seeking a serious experienced Sales Representative with proven record of success.

Please apply in writing enclosing career details to:


\section*{VISATON-LAUTSPRECHER}

Peter Schukat
Pfalzstr. 5-7
P.O. Box 1652

5657 Haan 1
West Germany

TV-am
ENGINEERING AND OPERATIONS DEPARTMENT
TV-AM, the breakfast television contractor, requires staff to perform engineering and operational duties at all grades, both within the Breakfast
Television Centre and on outside
broadcast including ENG type operations. Previous experience in television broadcasting would be an advantage.

> Applications in writing with curriculum vitae to:
> THE PERSONNEL ADMINISTRATOR, BREAKFAST TELEVISION CENTRE, HAWLEY GRESCENT, LONDON NWI 8EF.
> (1590)

\section*{SALES ENGINEERS}

For 1. West Midlands 2. South East 3. West of England

Required by Townsend-Coates, a leading franchised distributor of electronic components.
The successful applicants will have component knowledge, be already selling to industry or have sales flair.
We offer competitive salaries plus bonus, company car, non-contributory pension and private health schemes.

Please sent C.V. to: Managing Director Townsend-Coates Ltd. Lunsford Road Leicester LE5 0HH

\section*{Appointments}

\section*{GARDLINE SURVEYS ELECTRONICS ENGINEERS}

Due to continued expansion, we need personnel to operate and maintain the following types of equipment aboard our survey vessels:

\section*{DFS IIIV QUANTUM DAS 1 A shallow digital selsmic SIDE SCAN, MAGNETOMETER, SB PROFILER BOOMER/SPARKER ANALOGUE EOUIPMENT}

UNIVERSITY OF ESSEX M.Sc.

\section*{(European} Joint Scheme)
This is a new two-year degree scheme supported by the E.E.C., which co-operating institutions, the Universitat Fridericiana Karlsruhe in West Gertat Fridericiana Karisruhe in West Germany and the Ecole Superieure dingElectronique in Paris. The first year comprises specialist courses and the second year is a project year. A limited number of places are available for highly qualified students. Applicants should hold a first or second class honours degree in Electrical Engineering and have a working The scheme is recognised by S.E.R.C The scheme is recognised by S.E.R.C. for tenure of advanced course
dentships for the two-year period. dentships for the two-year period.
Please write to: Dr. B. G. Evans, Department of Electrical Engineering Science, University of Essex, Colchester CO4 3SQ. Phone: Colchester (0206) 862286 ext. 2269 Telex: 98440 (UNILIB G)

\section*{DATACOMMUNICATION NETWORK TECHNICIAN \\ Up to £8,850}

BACS is a wholly owned associated Company of the major Clearing Banks. The main activity of the Company is to provide an electronic funds transfer service to the banks and their customers.
To complement the current services and assist with the planned expansion of new telecommunications facilities, the Company is seeking personnel who have had previous experience of data communications and can demonstrate a working knowledge of:-
* Network operations
*Circuit installation and acceptance (P.W. and P.S.T.N.)
* Modem and circuit diagnostic routines
*CCITT V24 interlace specifications
*B.S.C. protocol
* Data communications test equipment
in order to support our communication networks. Applicants must be prepared for shift working in due course.
Excellent benefits are offered in addition to a competitive salary, which will include, Profit Sharing, over 4 weeks' annual holiday, non-contributory pension and life assurance scheme. subsidised staff restaurant, Sports \& Social Club, relocation assistance if necessary.

For further delails and an application form please telephone Mrs. R. Sidders on 01-952 2333 or write to her at:-
Bankers Automated Clearing Services Limited,
De Havilland Road,
Edgware HA850A,
Middlesex.


\section*{SCOTTISH OFFICE} \\ \section*{DIRECTORATE OF TELECOMMUNICATIONS \\ \section*{DIRECTORATE OF TELECOMMUNICATIONS \\ WIRELESS TECHNICIANS ( \(£ 5,300-£ 7,060\}\)}

Applications are invited for at least three posts of Wireless Technician in the central services department of the Scottish Office. The posts are expected to be based in Edinburgh, East Kilbride and Montreathmont (near Forfar). Candidates must hold an ordinary national certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute certificate in an appropriate subject or a qualification of a higher or equivalent standard and have three years' appropriate experience. Some assistance may be given with relocation expenses.
A valid UK driving licence and ability to drive private and commercial vehicles are essential
Application forms and further information are obtainable from Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN. Tel. 031-556 8400 ext. 4317 or 5028 . (Quote Ref. PM (PTS).
Closing date for receipt of completed application forms is 14 May, 1982.

\section*{Zehntel Ltd}

\section*{AUTOMATIC TEST EQUIPMENT}

Having experienced rapid expansion since coming here to the UK, Zehntel are now looking for additional

\section*{APPLICATION ENGINEERS}

Zehntel are world leaders in in-circuit test technology, and we need good quality APPLICATION ENGINEERS to assist with our further expansion plans.

If you would like to join a young progressive team of people at our Milton Keynes office, write with your CV to:

PAUL SMITH
Zehntel Ltd
62 Tanners Drive
Blakelands
Milton Keynes
MK14 5BP

\section*{WANTED TELECOMMUNICATION SALES/SERVICE ENGINEER}

For United Arab Emirates
Salary Circa \(£ 11,000\) Tax Free
Must be able to work independently to promote the company products. We are main distributors for Storno UK and need first-class engineer to push sales and attend customers' enquiries. Bachelors only or married no children.

Send CV plus photo to:
Mr George Fee, General Manager
AL MARIAH UNITED CO.
BOX 206
ABU DHABI U.A.E.
Telex 22323
Phone 326017

control systems

Micro Processor Design
Our team of experts offer the complete service from Design to Manulacture
- Artwork Protatype Development Testing
- Board Manufacture Assembly Packaging For more information contact Mlero Control, 1 Cherrywood Drtve, Aspley. Nows. NG8 3 NN. Tolephone 0002288281 ( 24 hour service).

\section*{SALARY RISES DISAPPOINTING?}

AMBITIOUS CIRCUIT DESIGNER
\(26+\) for new generation of data recording and display products based on Motorola, family of mpu. Technological and product snobbery appreciated. To £15,000. South Coast.

CONSULTANT PROGRAMMERS
For SW house with contracts in real-time process control. Experience must include one or more of Nova, PDP11, X16, 8080, 8086, 280. To \(\mathbf{£ 1 6 , 0 0 0}\). London and Manchester.

HW \& SW ENGINEERS
For TV and video products including digital standards convertors and realtime picture manipulators. Products based on PDP11 and several bit-micros. Assembler Pascal \& Fortran. C.E10,500. Berks.

YOUNG DESIGN/DEVELOPMENT ENGINEERS
For communications network control systems based on C.A. mini and 8085 mpus. C. 57,000 . Beds.

Whatever your experience, please send your c.v. to

\section*{Charles Airey Associates}

Tempo House, 15 Falcon Road, Battersea
London SW11 2PJ
Tei: 01-223 7662 or 2286294


CAPITAL HOUSE
29-30 WINDMILL STREET
LONDON W1P 1 HG
TEL: 01-637 5551

\section*{the UK's No. 1 electronics agency}

Design, Development and Test to \(£ 14,000\) Ask for Brian Cornwell

SALES to \(£ 15,000\) plus car Ask for Maurice Wayne

FIELD SERVICE to \(\mathrm{E} 12,000\) plus car Ask for Paul Wallis

We have vacancies in ALL AREAS of the U.K.
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)

\title{
INNER LONDON EDUCATION AUTHORITY LEARNING RESOURCES BRANCH \\ Television Centre, Thackeray Road, SW8 3TB
}

The Television Centre produces a range of educational programmes distributed in the form of videocassettes, sound cassettes and 16 mm film. It has a colour studio equipped to professional broadcasting standards (Link 110 cameras, Neve sound mixer, Ampex VPR2s, etc.) a mobile unit and a battery portable camera.

\section*{TELEVISION CAMERA OPERATOR (ST1/2)}

SALARY RANGE \(£ 4,842\) - \(£ 7,557\) plus \(£ 1,104\) London Weighting Allowance
A vacancy exists for a Television Camera Operator to work principally in the studio but also to assist if required in a monochrome training studio, in location video recording, and in the mobile unit. When not required to work with cameras, the operator would be expected to be attached to other technical sections so a general interest in the technical side of television is highly desirable. Applicants should have had some formal training together with practical experience, though consideration will be given to those who lack the latter

\section*{FILM SOUND RECORDIST (ST2)}

SALARY RANGE £6,663- £7,557 plus £1,104 London Weighting Allowance
The work is largely film recording using the Nagra, but with periods of studio duty (rigging, boom operation, tape and grams, etc), and film transfer work. Working hours are based on a 35 -hour week, though overtime is often necessary, particularly where travel to locations is involved. Occasional overnight stops are required. Although applicants should have thorough knowledge of sound techniques in a film television environment, consideration will be given to those who are willing to learn, have appropriate technical qualifications, and experience elsewhere in the sound recording field.

\section*{MAINTENANCE ENGINEER (ST3)}

SALARY RANGE \(\mathbf{5 7 , 8 5 7 - £ 8 , 5 1 4}\) plus \(£ 1,104\) London Weighting Allowance
The maintenance section has four members and is responsible for all the equipment at the studio centre, both vision and sound. Applicants must have relevant technical qualifications (a knowledge of digital techniques would be an advantage), and should have good experience in the field, though consideration would be given to experience in allied fields. Limitied "on the job" training is available, and the Authority will pay for attendance at specialised manufacturers' courses, where these are considered necessary.

Further information and application forms are available from the Education Officer (EO/Estab 1B) Room 365, County Hall, London, SE1. Please enclose an SAE. Completed forms should be returned 14 days from appearance of advertisement.
(1577)

DIGITAL EXPERIENCE? FIELD SUPPORT R \& D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC.
For free registration ring 0453883264 01-290 0267


ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE, BURLEIGH, STROUD GLOUCESTERSHIRE GL5 2PW
TEL. 0453 883264, 01-290 0267

\section*{TELEVISION SERVICE ENGINEER}

We are an expanding Television Rental and Retail company with a vacancy for an additional Television Service Engineer.

Suitable applicant will preferably hold an R.T.E.B. certificate or be training towards this qualification.
The post is directly responsible to the Service Manager.
A clean driving licence is essential.
A spacious flat is available if required.
Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey, Surrey. KT16 98E. Chertsey 63243.

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant. Sutton, Surrey SM2 5AS
- Rate E2.50 PER LINE. Average six words per line. Minimum f 12.50 (prepayable).
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus \(£ 1\)
- Cheques, etc., payable to "IPC Business Press Lid." and cross "\& Co.
name.
address


PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION NUMBER OF INSERTIONS

\section*{Classified}


IF YOU SEEK DESIGN SOFTWARE TEST PROJECT FIELD SERVICE SYSTEMS applications SALES

COMMISSIONING APPONTMENT towarweits MICROPROCESSOR MEDICAL INSTRUMENT HF/UHFNHF LOCAL AREA NETWORK SONAR
MICROWAVE SATCOM
MINI COMPUTER
PROCESS CONTROL MAINFRAME SIMULATION IMAGE PROCESSING DATACOMMS VIDEO
WEAPON SYSTEMS AUDIO
or AUTOMATIC TEST EQUIPMENT and EARN £7000-£20000
then CONTACT ELECTRONIC COMPUTER

MANAGEMENT
APPOINTMENTS
148/150 High Street
Barkway, Royston Herts
076-384 676/7/8
(till 8pm most evenings)

R \& D OPPORTUNITIES. Senior level vacancies for Communications Hardware and Software
Enginecrs, based in West Sussex. Competitive Engineers, based in West Sussex. Competitive
salaries offered. Please ring David Bird at Rediffusion Radio Systems on 01-8747281. (1162 BOURNEMOUTH: an opportunity exists for a person with a sales/management background. Write with c.v. io Bar No. 1602.

\section*{ARTICLES FOR SALE}

PRINT SYSTEM for screen printing front panels, plastic boxes from easily prepared masters. selial small electronics company or BASLS train operator. Photo a vailable. J. Waller, Lincoln House, Ampthill 0525402279 evenings. \(£ 225\) or nearest offer.

WIRRAL HEALTH AUTHORITY
AREA WORKS DEPARTMENT

\section*{CHEF ELEGTRONICS} TECHHCIAM

Requirad to carry our servicing, ropalk and
Resing of medical eleartonic oquip ment testing of medical electronic cquipment. The successtul applicant will ber raulifed to
 ancen sysiom for filactro-modical ouivo E.B.M.E. servicing units for hospitals within Wirral Heatith Authority. Applicants shall be qualified to H.N.C. or
equivalent standard and shall have a. test equivalent standard and shall have at heas
two years' experience in the M.P.T.I Grade. Salary scale: \(£ 6668\) - £8316 per annum

\section*{SEMIOR ELECTRONICS TECHMICIAN}

Requitrod to carry out semicing, repair snd orting or matica, eloctronic eguipment un
 The successiful applicant will be expected to
work at various hospitals whithin Wirra Health Authority, and the possession of Applicants should be qualified to O.N.C. or equivalent standard and have at least three years' experien
responsibility.
Solary scale: \(£ 5536-E 7155\) per annum. These posts are the first two for what will oe a developing servicing department. Application forms and job descriptions ob tainable from the Area Personnel Depart
ment. Wirral Hoalth Authority, St James Hospital, Tollemache Rord, Birkenhead Merseyside. L43 7SF. Telephone: 051-653
8133 , extension 348. 8133, extension 348.
Closing date: May 7, 1982.

\section*{(1584)}

\section*{APPOINTMENTS} IN ELECTRONICS to \(£ 15,000\)

MESSAGE SWITCH DATA COMMS-TELEMETR TELEGRAPHY-RF COMMS Interesting and varied op portunities, U.K. and over seas. For immediate action on salary and career advancement, contact:

\section*{Technomark}

\section*{11, Westbourne Grove} London W2.01-229 9239 (1296)

\section*{ARTICLES FOR SALE}

MARCONI Marine Atlanta receivers from \(£ 65\), collected or carriage at cost. Other marine radio equipment in stock. Eddystone receivers and some RTT. Marine loudspeakers re-entrant horn 6 in . mouth 9 in long, \(150 h m\), new and boxed, E12.50 P.\&P. Also outdoor hammer finish shallow re-entrant type with bulkhead mount \(£ 6.50\) P.aPs with output splitter, two models, i.e. batmegs with output splitter, two models, i.e. 1250 P.aP. Ex-Navy brass parallel rules suitable paperweights, etc, £15 P.\&P. Thermographs \(£ 40\) P.\&PR. Plessey high voltage ceramic capacitors 50 kv test 10 amps 0.0027 MFD . Low and p.band Westminsters in stock, R/I equipment wanted. Low band 6 -channel and single-channel mid-band Cambridges 515 P.\&P. Ex-Navy brass clocks with large outer second hand and small inner dials for hours and minutes \(£ 85\) P.\&P. Ex-Govt, watches Radio Navy deck watches for callers. G. W.M. Radio Ltd., \(40-42\) Portand Road, Worthing, Sus-
sex. Tel: 090334897 (1606)

EQUIPMENT FOR coils, transformers, compo Quts, degassing silicone rubber, resin, cpoxy Lost wax casting for brass, bronze, silver, etc Impregnating coils, transformers, componenis. Vacuum equipment low cost, used and new. Also for CRT regunning metallising. Research \& Development. Barratts, Mayo Piudd, Croydon CRO 2QP. 01-6849917
PRE-PACKED screws, nuts, washers, solder (WW), studding. PO Box 402 , London SW \(\mathbf{W} 66 \mathrm{LU}\). (WW), PO Box 402, London SW6 6LU.

\section*{QUARTZ CRYSTALS}

HIGH STABILITY GOLD ELECTRODES
- COLD WELD UNITS
- GUARANTEED 7-DAY SERVICE AVAILABLE
- ANY FREQUENCY \(1 \mathrm{MHz}-70 \mathrm{MHz}\)
 McKNIGHT CRYSTAL CO. LTD. HAROLEY INDUSTRIAL ESTATE HKTHE (0703) 848961 TELEX: 47506 - CRYSTL 6

\author{
HYTHE, SOUTHAWPTON: \(\mathbf{S O 4}\) GZY
}

\section*{TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC.}

\section*{LARGE QUANTITIES OF RADIO. TV AND} ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS; SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, eIC

> ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR ALL AT KNOCKOUT PRICES MERS, etc.
\[
\text { TELEPHONE: } 4450749 / 4452713
\]

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12


PRINTED CIRCUITS. Make your own simply, cheaply and quickly. Golden Footolak Light Sensitive Laquer - now greatly improved and very
much faster. Aerosol cans with full instructions, much faster. Aerosol cans with full instructions,
\(£ 2.25\). Developer 35p. Ferric Chloride S5p. Clear
A. A2.25. Developer 35p. Ferric Chloride SSp. Clear
Acetate sheet for master 14p. Copper-clad Fibreglass Board approx 1 mm thick E1.75 sq. f. Pose
Packing 60p. White House Electronics, Castle Elass Board app While House Electronics, Castle
Packing 60p.
Drive, Praa Sands, Penzance, Cornwall.
(714
BRIDGES, Waveform/transistor analysers, CaliBRIDGES, Waveform/iransistor analysers, Cali-
brators. Standards, Millivolumeters, Oscillo
ata scopes. Recorders. Signal Generators. \(\left.\begin{array}{l}\text { O40- } \\ \text { (8250 }\end{array}\right)\)
"WORLD Radio TV Handbook" by return, £10.99. "Broadcasts to Europe", quarterly frequency guide, \(£ 4.50\) yearly (ssemple copy \(£ 1.30\) ). Access 1 isa welcome. Pointsea, 25 Westgate
North Berwick, East Lothian.
\((1600)\)

WORKBENCHES, secondhand. EXITTT TV WORKBENCHES, secondhand. Ex-ITT TV factory. Open or cubicle style. Need space. De
tails: 0424863464 .
(1608)

FARNELL transmitter test set TTS 520 RF signal generator with 100 watt loading, rack mountnan generator with
ing kit, extras, ect. New and unused, cost \(£ 6,000\). Offers. Sharp M2 80 K with printer, 4 Iloppy discs and inierfaces. Also ancillary software. Offers.
and Newbury ( 0635 ) 48809 or 43228 (evenings).
(1611)

ATTENTION television tube rebuilders 2,000 type CME: 2 CH 3 ABI: 120 monochrome TV rubes suitable for rebuilding. All in good strong clean
cartons. Enquiries please to Teletronic (North cartons. Enquinies please to Teletronic (North
Fast Ltd) "See-Vu" works, Strangford Road, Seaham, Co. Durham. Phone (0783) 812142.
MAGAZINE BACK NUMBERS: WW, ETI PW, PE, Elecktor, Everyday Elect., R \& E E ConPW, PE, Eleckkor, Everyday Elect., R \&
structor, Comp Age, Comp Today, PCW, Pract comp, Television, Hobby Elect., etc. Send Comp, Television, Hobby Eiect, etc. Send
S.A.E. +50 p PO for list. Mr Gordon (Bor No.
1599)


OVENS, FURNACES, temperature recorders, XY coordinate table, lie detectors, heavy dury
castors, oscilloscopes, VHF tuners CH21-68, cabcastors, osciloscopes, winess 19 inch, lest equib ment, Tektronix 434 storage scope, \(£ 2,000,567\) \({ }^{5} 250\) pling scope with plug-ins and digital unit £250, 575 transistor curve tracer \(£ 160.524\) TV \({ }_{\text {scope }}\) £100, TEK plus-ins 1 A4 \(£ 60,82\) £45, CA £45 and also mainframe 500 series calibrators. Gestetner duplicator recently reconditioned by power supply \(\mathbf{E 8 0}\). Send S . A E. for lists or phone "Q") services, 29 Lawford Crescent, Yateley Camberley, Surrey. Tel. 871048 (0252). Ask for Mr Q.

PRINTED CIRCUIT DESIGN, arwork, photography, prototypes, low volume production (non p.t.t.), screen printing, self-adhesives. Contact - G. N. Slec, 78 Derry Grove,
Thurnscoe,
Rotherham, South Yorkshire
S 63 Thurnscoc, Rotherham, South Yorkshire S63
OTP. Tel: (0709) 895265.

TELETEXT (Ceefaw Oracle) or Viewdata (Prestel) add-on adaptors for your existing television or microcomputer. Discount prices. Mail order. Trade enquiries welcome. Avon Office Services, FREEPOST, Bristol BS10 6BR. Tel: (0272)
502008 any time 502008 any time.

\section*{Classified}

\section*{IONISER KIT}
(MAINS OPERATED)

This negative ion generator gives you the power to saturate vour home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions
\(£ 12.50\)
A suitable case includng front panel, neon switch, etc. HOURS:
Monday to Friday \(9 \mathrm{am}-5 \mathrm{pm}\).
Price includes post \& VAT
Saturday 9 am-4.30 pm.
Barclay/Access Welcome
Wide range of Japanese integrated circuits and transistors stocked
T. POWELL

Advance Works, P.E., 44 Wallace Road, London N1 1PQ
Tel. 01-226 1489
Please allow 14 days for delivery

\section*{RACAL COMMUNICATIONS RECEIVERS}
\(500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}\) wide. RA17L - \(\mathbf{£ 1 7 5}\). Ra117E - £225. A fow sets available as new at E75 extra. Al receivers are air tested and call-
brated in our workshop, supplied with full manual, dust cover, in fair used condition. New black metal louvred cases for above sets \(£ 25\) Bach. RASBD - ISB - SSB - E75. RAZ18 SSB - ISB and fine tune for RA117- £50. TRANSMATIER DRNE UNIT RAT9. \(1.5 \mathrm{mc} / \mathrm{s}\) \(30 \mathrm{mc} / \mathrm{s}\) - SSB - ISB - DSB - FSW - CW E150. AERLAL TUNING UNIT and protection unit
MA1978 - E25 to \(£ 50\). DECADE FREQUENCY GENERATOR MA 350 B Solid state synthesiser for MA79 or RA117 - RA217 - RA1217 - £150 to \(£ 200\) MA250 - \(1.6 \mathrm{mc} / \mathrm{s}\) to \(31.6 \mathrm{mc} / \mathrm{s}-£ 150\) (New). MAZ59G - precision frequency standard \(-5 \mathrm{mc} / \mathrm{s} \mathrm{mm/s} 100 \mathrm{khz}\) - \(£ 100\) to \(£ 250\). RACAL MA152 - Standing wave ratio indicator. F \(\times 2 \mathrm{mc} / \mathrm{s}-25 \mathrm{me} / \mathrm{s}\) Power up to 1000 watts mains 100 - Auto trip switch - Transistor RACA1 CO-250aC, new and boxed - £40. Resig COUNER 836 (9036) \(32 \mathrm{mc} / \mathrm{s}\) Th circuit design - tested with manual - \(\mathbf{f 5 0}\) to \(\mathrm{f75}\). OSCILOSCOPES COSSOR CDU150 - \(35 \mathrm{mc} / \mathrm{s}\) Twin Beam - Solid State - \(£ 175\) with manual. State - \(50 \mathrm{mc} / \mathrm{s}\) and \(100 \mathrm{mc} / \mathrm{s}\) bandwidth - 5250 and fa50. Tested circuit and instructlons AERUAL MASTS - we have three masts approx. 130 tt high, complete with all fittings. Base - insulators, etc., Mast steel tube \(8^{\prime \prime}\) all parts galvanised, supplied brand new, all items boxed - \(£ 1000\) - or each complete mast \(£ 400\).
All items are bought direct from H.M. Government, being surplus equipment. Price is exworks. SAE for all enquiries. Phone for appointment for demanstration of any item. John's East, Birkenshaw Bradtord BD11 2FR Tol (0274) 684007. Y.A.I. and Carriage extra.

INVERTERS
High quality DC-AC. Also "no break" (2ms) static switch,
19" rack. Auto Charger.


COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, London W11 3BZ Tel: 01-727 7042 or 0225310916 (9101)

THE SCIENTIFIC WIRE COMPANY P.o. Box 30, London, E. ehamelled copper wiat
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{COPPER WIRE} \\
\hline SWG & & 802 & 402. & 202. \\
\hline 81029 & 2.76 & 1.50 & . 80 & . 60 \\
\hline 30 to 34 & 3.20 & 1.80 & . 90 & . 70 \\
\hline 351040 & 3.40 & 2.00 & 1.10 & . 80 \\
\hline 41 to 43 & 4.75 & 2.60 & 2.00 & 1.42 \\
\hline 47 & 8.37 & 5.32 & 3.19 & 2.50 \\
\hline 48 to 49 & 15.96 & 9.58 & 6.38 & 3.69 \\
\hline \multicolumn{5}{|c|}{SIIVER PLITED COPPER WIRE} \\
\hline 14 te 30 & \begin{tabular}{c} 
TINMED COPPER \\
3.38 \\
\hline
\end{tabular} & & 1.34 & 90 \\
\hline \multicolumn{5}{|l|}{Prices include PPp. VIT and Wire 0 ata} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Reg Ottice: 22 Coningsty Gardens.}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{ARTICLES WANTED}

\section*{WANTED}

\section*{Surplus Stock and Offers}

All kinds of Electronic Components, Kits and finished products. We are a leading electronics mail order house in Germany. Please contact us at:
Bühler-Elektronik, PO Box 32
D-75 70 Baden-Baden
Telephone 7221/3486 Telex 781210 belekd.

\section*{WANTED!}

Receiving Valves, Antique types but unused and boxed.

VAN DATA SYSTEM CO., LTD 1-12-8, Kyomachibori, Nishiku Osaka 550, JAPAN.

WANTED: Electronic components and equipment in quantity. Competitive prices paid. Speed, courtesy and cash on collection. Linway Electron8HZ. Tel: \(01-5733677\).

\section*{WANTED}

Test equipment, receivers, valves, uransmitiers, components. cable and electronic scrap, any quantity. Prompt service and

M\&BRADIO
86 Bishopsgate Stree Leeds
\(0532-35649\)

\section*{CIRCOLEC}

\section*{THE COMPLETE ELECTRONIC SERVICE}

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, O.A. Consultancy Prototypes, Final Assembly.
Quality workmanship by professionals at economic prices
Please telephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17
(1391)
. 9063 )
FACILITIES AVAILABLE
- Circuit Coesign \& Development

Oigital and Analogue
Free prototype bd. (nón PTH)
Supplied with orders over \(£ 100\).
直 Board Manufacture
Prototype to semi-production
Wirling \& Assembly
PCB assembly, wiring and cable forming
- Test

Full test facilities available
* Copper Clad Board

D/S fibreglass 1000 Sq inches of assorted Dne or all services avail-
able, no order too small.
Please telephone chelms. Please telephone Chilms.
ford 357935 or write to H.C.R., 1 8ankside. off Ne
Street, Chelmsford, Essex.


\section*{Dayville Services}

Limited
A complete P.C.B. service offered. We will work from your circuit diagram and produce the finished board.
Any type of board manufactured including doubie-sided and P.T.H. Legend and solder resist available if required.
Our rates are very competitive and we offer a FREE collection and delivery service on orders above \(£ 200\). Turnaround vice on orders above \(£ 200\).
can be as little as three days.
Telephone Colchester 10206 \(71000 / 869514\) with your P.C.B. requirements and we will be happy to oblige. 40 Military Road, Colchester COI 2AN.
(1490)

30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE TV Monos \(£ 2\), Transistor Radios \(£ 2\), Tuners £2, Tape Recorders, Record Players and Stereograms 62 . Stamped addressed envelopes with all quotations. Also colours available. Car Radios \(\mathrm{f} 3+\) stamped addressed envelope. All valve radios \(£ 2\). Stamped addressed en-
order. C. CARANNA
71 Beaufort Park, London NW11 68X
\(01-4584882\) (Mall Order) (1325)
DESIGN SERVICES. Electronic design deveiopment and production service available for
digital and analogue instruments. RF Transmit digital and analogue instruments, Rr ransmit systems. 20 years' experience. R.C.S. Electronics Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661 .
DESIGN AND DEVELOPMENT. ANAL. OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small 103 Liscombe, Bracknell, Berks. Tel: Bracknel 52023.
(656

\section*{CAPACIT}

ELECTRONIC DESIGN SERVICE. Inmedi ate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome. - E.P.D.S Lid., IA Eva Road, Gillingham, Kent. Tel: Med way (0634) 577854.

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Ltd, 19b Station Parade, Ealing Common, London W5. Tel: 01-992 8976

> PHONE YOUR CLASSIFIEDS TO IAN FAUX ON 01-661 3033

Design Engineers

\section*{DIGI-TEL} ELECTRONICS
- Video character \& image generation systeins
- Microprocessor-controlled video systems
Prototype \& small batch production capacity

20 Trenches Road. Tel. (08926) 5069

\section*{Buyers and Disposal Officers}

COOKE INTERNATIONAL SERVICES are Wholesalers and Factors of Surplus Tes Equipment and Components. Buying or selling contact:

\section*{COOKE INTERNATIONAL SERVICES \\ \\ Ramalla Housa} \\ \\ Ramalla Housa}

Ancton Lane, Middleton-on-Sea Bognor Regis, Sussex PO22 6N Telephone: 024-369 2849

\section*{BOARDRAVEN LTD.}

PRINTED CIRCUIT BOARDS
Manufactured to your specifications. Single/double sided. Very speedy deliveries on protorypes and quantity. Master layouts if required Comact:
J. K. Harr
J. K. Harrison, Carnaby Industrial Estate. Brid
lington. North Humberside Yois 30v. Te (0262) 78788 .

SMALI BATCH PCB work. Also DIALS, PANELS era work undertaken. FAST TURN AROUND. - Details: Winston Promotions, 3 Hatron Place, London ECIN 9RV. Tel: 019794 SHEET METAL WORK, fine or general front panels chassis, covers, boxes, protorypes, 1 off or
barch work, fast turnround. - \(01-4992695\). M Gear Lid., 179A Victoria Road, New Barnet Herts.
PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes
welcome. Inhouse photography Phen \(0674-573\) for instant quote or write to AKTRONICS LId \(42 / 44\) Ford Sireet, Moretonhampstead, Devon

\section*{TW ELECTRONICS LTD.}

\section*{THE PCB ASSEMBLERS}

More and more companies are investigating the advantages of using a profes sional subcontractor. Such an
TW are able to satisfy all of them quality, competitive pricing, firm delivery, and close co-operation with the customer.
Assembled boards are \(100 \%\) inspected before flow soldering and reinspected very Every batch of completed boards is
issued with a signed certificate of conformity and quality - our final assurance.
For further details, contact us at our new works:

Blenheim Industrial Park
Bury St. Edmunds
Suffolk IP33 3UT
Tel: 02843931


AUDIO
ELECTRONICS
London W2 Tel: 01-724 3565

NORTHERN
INSTRUMENTS
Leeds
Tel: 0532791054
MARSHION
ELECTRONICS
Ipswich
Tel: 047375476

GLEVUM INSTRUMENTS
Gloucester NTS
Tel: 045231620

RT \& I
ELECTRONICS
London E11 Tel: 01-539 4986

\section*{DARWEN}

ELECTRONICS
Darwen, Lancs.
Tel: 0254711497

PIL
London SE15
Tel: 01-639 4461

\title{
INDEX TO ADVERTISERS MAY
}

\section*{Appointments Vacant Advertisements appear on pages 108-119}
\begin{tabular}{|c|c|c|}
\hline PAGE & PAGE & PAGE \\
\hline Acoustical Mfg. Co. Ltd. ................................ 55 & Faircrest Engineering.................................... 16 & Olson Electronics Ltd. ..................................... 4 \\
\hline Adcola Products Ltd. ....................................... 5 & Farnell Instruments Lid. .......cover ii, 27, Reader Card & Olympic Transformers Ltd. \\
\hline Ambit International ....................................... 24 & Flight Link Control Ltd.................................. 96 & Orion Scientific Products Ltd \\
\hline Analogue Associates........................................ 8 & Fylde Electronic Laboratories Ltd...................... 22 & \\
\hline Anglia Components & & Papst Motors............................................. 106 \\
\hline Antex (Electronics) Ltd ............................ cover iii & & PM Components .........................................90,91 \\
\hline Aspen Electronics Ltd ..................................... 6 & Galatrek International Ltd................................ 14 & Powertran Cybernetics ........................................ 104 \\
\hline Audio Electronics....................................... 23 & GAS Electronics......................................... 93 & P. \& R. Computershop ....................................... 104 \\
\hline Avalon Electronics ...................................... 106 & Global Specialities Corp. ( & \\
\hline Avel Lindberg (Cotswold) ............................... 103 & GP Industrial Electronics Lid............................ 56 & Radio Components Specialities .......................... 87 \\
\hline & Greenwich Instruments .................................. 96 & Ralfe, P. F., Electronics................................... 104 \\
\hline & Griftronic Emission Ltd.................................. 12 & Reprints............................................................. 94 \\
\hline Bamber B Electronics 103 & & Rheinbergs Sciences Ltd............................... 106 \\
\hline Barrie Electronics Ltd. ........................................ 107 & Hall Electric Ltd. .......................................... 26 & RST Valves ............................................... 85 \\
\hline Black Star Lid. .............................................. 17 & Happy Memories ......................................... 88 & \\
\hline Broadfield \& Mayco Disposals........................... 94 & Harris Electronics (London) .............................. 7 & Safgan Electronics ........................................ 17 \\
\hline & Harrison Brothers Electronic Distributors ............. 86 & Sagin, M. R. ............................................. 107 \\
\hline & Hart Electronic Kits Lid .................................. 16 & Sandwell Plant Ltd. ...................................... 107 \\
\hline & Henry's Radio .......................................8, 84, 92 & Scopex Instruments ....................................... 97 \\
\hline Cambridge Kits .......................................... 90 & House of Instruments.................................... 102 & Service Trading Co. ...................................... 99 \\
\hline Cambridge Learning ..................................... 100 & & Sescom Inc. .............................................. 104 \\
\hline Carston Electronics Ltd. .............................. 20, 21 & & Shure Electronics Lid. ................................... 28 \\
\hline Chiltern Electronics ....................................... 98 & ILP Electronics Ltd................................... 19, 22 & Sinclair Research Lid. ................................10, 11 \\
\hline Chiltmead Ltd............................................. 84 & Interface Quartz Devices Lid. ............................. 4 & South Midlands Communica \\
\hline CIL Microsystems Ltd. .................................... 6 & Intergrex Ltd. ............................................ 24 & Sowter, E. A., Ltd. ........................................ 6 \\
\hline Circuit Services............................................ 14 & Irvine Business Systems Lid. ............................ 27 & Special Products (Distributors) Ltd. .................... 22 \\
\hline Clark Masts Lid............................................. 9 & & S. \& R. Amplification.................................. 103 \\
\hline Clef Products (Electronics) Ltd.......................... 18 & & Structured Software ..................................... 102 \\
\hline Colomor Electronics Ltd. ................................ 98 & Kelsey Acoustics Lid. ............................................ 12 & Supersem ................................................... 84 \\
\hline Computing Today ....................................... 18 & KEF Electronics Ltd .................................. 25.27 & Surrey Electronics ....................................... 98 \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Crotech Instruments Lid. ...................................... 120 \\
CT Electronics (Acton) Ltd. ................................ 89
\end{tabular}} & & \\
\hline & & Technomatic Lid. ..................................100, 101 \\
\hline & Level Lid & Tektronix UK Ltd. .................................cover iv \\
\hline & LFH Associates Ltd .................................................... 98 & Telemet (Alpha Bridge) Ltd.............................. 25 \\
\hline Danavox (Gt Britain) Ltd. & Lightning Electronic Components ........................... 94 & Teleradio Electronics ..................................... 90 \\
\hline Darom Supplies............................................... 88 & Lion Viewdata ............................................. 86 & Television Magazine \\
\hline Datamars Designs ........................................ 107 & & Tempus -........................................................ 83 \\
\hline \multirow{5}{*}{DSN Marketing Ltd. ..................................... 99} & Melkuist Ltd................................................... 102 & Thurlby Electronics......................................... 18 \\
\hline & Memotech ............................................... 13 & Time Electronics Lid. ....................................12, 106 \\
\hline & Micro Times ........................................... 106 & \\
\hline & Millward, G. F., Electronic Components Lid. .......... 92 & Valradio Ltd. .............................................. 94 \\
\hline & Modem Book Co., The................................... 16 & Videotex '82............................................... 86 \\
\hline Electrovalue Ltd. ............................................... 25 & Monolith Electronics Co. Ltd., The & West Hyde Development ................................ 12 \\
\hline Electroversal Ltd. ...................................... 102 & & Wilmslow Audio ........................................... 4 \\
\hline Essex Electronics ......................................... 96 & Northern Electronics ......................................... 8 & Wireless World Circards ................................ 105 \\
\hline \begin{tabular}{l}
OVERSEAS ADVERTISEMENT \\
AGENTS: \\
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris.
\end{tabular} & Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B.212. Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581. & \multirow[t]{2}{*}{\begin{tabular}{l}
Mr Jack Mentel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 5327301. \\
Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: ( 404 ) 2377432. Mike Loughin, IPC Business Press, 15055, Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.
\end{tabular}} \\
\hline Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22.4525 INTFOIRE & \multirow[t]{2}{*}{\begin{tabular}{l}
United States of America: Ray Barnes, IPC Business Press, 205 East 42 nd Sireet, New York. NY 10017 - Telephone: (212) 867-2080. Telex; 238327. \\
Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, Illinois 60601 - Telephone: (312) 63074. \\
Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821. 8581 - Telex: 18-1059.
\end{tabular}} & \\
\hline \begin{tabular}{l}
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizlo Estero, \\
Via Mantegna 6, 20154 Milan. \\
Telephone: 347051 - Telex: 37342 Kompass.
\end{tabular} & & \begin{tabular}{l}
Canada: Mr Colin H. MacCulloch, International Advertising Consultants Lid., 915 Carlton Tower, 2 Carlton Street, Toronto 2-Telephone (416) 3642269. \\
* Also subscription agents.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Printed in Great Britain by QB Lid., Sheepen Place, Colchester, and Published by the Proprietors 1PC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey
SM2 5AS, telephone 01-661 3500 . Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co, CANADA: Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N.Y. 10011.
}
 fitted plug, ready to switch on.
The new handle in extra-tough material features a detachabie finger-guide for precise control in operation and a hexagonal moulding to prevent the iron rolling on the work bench.

We have retained our well-proven heating element. Efficiency of heat transfer and ease of fitting slide-on, slide-off bits make this the professional's choice of soldering instrument. The iron is also available for \(115,50,24\) or 12 volt.
* fitted with the NEW safety plug.
\(\qquad\)

\title{
The Tektronix 2200 Series. Simply great.
}


Tektronix traditions of excellence in designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths we ourselves have laid down.

With the 2213 priced at \(£ 670^{*}\) and the 2215 at \(£ 850^{*}\), these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.

Their most remarkable characteristic is the way in which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability.

Board construction has been greatly simplified and the number of boards reduced. Board connectors have also been reduced substantially and cabling cut by an amazing \(90 \%\).

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, \(48-62 \mathrm{HZ}\), switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering.
system, automatic focus and intensity. Beam finder - and much more.
Interested? Then why not telephone your nearest Tektronix office or circle the enquiry number for further information.

\section*{Performance Specifications} Bandwidth
Two channels, DC-60 MHz to 20 \(\mathrm{mV} / \mathrm{div}, 50 \mathrm{MHz}\) to \(2 \mathrm{mV} / \mathrm{div}\). Light Weight
\(6: 1 \mathrm{~kg}\left(13 \frac{1}{2} \mathrm{lbs}\right) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})\) with cover and pouch.
Sweep Speeds
Sweeps from 0.5 s to \(0.05 \mu \mathrm{~s}\) (to 5 \(\mathrm{ns} /\) div with \(\times 10\) magnification). Sensitivity
Scale factors from \(100 \mathrm{~V} / \mathrm{div}\) (10x probe) to \(2 \mathrm{mV} / \mathrm{div}\) ( \(1 \times\) probe). Accurate to \(\pm 3 \%\). AC or DC coupling.
Also available from Electroplan.
- Prices subject to change without notice.

\section*{Tektronix UK Limited}

PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
Regional Telephone Numbers: Maidenhead 0628 73211. Manchester 0614280799 Livingston 32766, Dublin \(850685 / 850796\)

PT206```


[^0]:    WIRELESS WORLD MAY 1982

[^1]:    Name:

[^2]:    *Musical Director, State Opera of South Australia

[^3]:    timbre n. Charecteristic quality of sotinds produced by a perticular voice or instersment, depending on the number and cheracter of the overtesics.

[^4]:    $\dagger$ British Telecom say that potentially all users can be information providers so presumably Dr Barker refers to cost limitations. - Ed.

    * Dr Barker is a Principal Lecturer at the Department of Computer Science, Teesside Polytechnic.

[^5]:    * Analog Devices, Limerick, Ireland

[^6]:    *P: M. Hughes B.Eng, and B. M. G. Cheetham Ph.D., M.I.E.E. are lecturers at the University of Liverpool.

[^7]:    *B.Sc., M.Sc., Digital Equipment Co.

[^8]:    Unquestionably the most accurate
    and comprehensive reference I have seen to date. Jim Butterfield

