## wreless

## world

APRIL 1982 70p
Stage lighting

## $30 W$ Dmosfet audio amplifier

## Receivers for optical fibre communication

## THROUGH-LINE POWER METER



For colour brochure contact:
FARNELL INSTRUMENTS LIMITED WETHERBY LS22 4DH TELEPHONE (0937) 61961 TELEX 557294 FARIST G

$x$

- Single detector head covers wide frequency and power band
- 25 MHz to 1 GHz 20 mW to 100 W and VSWR from 1 to 3
- Head can be used 1.5 m from meter (e.g. inside closed car boot)
- Fully portable - works from internal battery or vehicle battery
- Mains adaptor/charger and rechargeable battery available
- Manufactured, tested and inspected to Min. Def. Std. 0524.


Front cover picture illustrates the article on microprocessor stage lighting systems, starting this month.

## NEXT MONTH

Digital filters - a new series giving theory, design techniques and microprocessor implementation.

Program exchange by telephone - design of software systems for loading source-code programs into memory.

Orchestral sqund, halls and timbre - or 'Why does it sound so beautiful?' Denis Vaughan examines the Kingsway Hall and puts forward a theory to account for its excellence.

Current issue price 70 p, back issues (if available) $£ 1$, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.6 p$, back issues (if available) $£ 1.50$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Editorial \& Advertising offices: Quad rant House, The Quadrant, Sutton, Surrey SM2 5ÁS
Telephones: Editorial 01-661 3500. Addvertising 01-661 3130.
Telegrams/Telex: 892084 BISPRS G.
Subscription rates: 1 year £12 UK and £15 outside UK
Student rates: 1 year £8 UK and £10 outside UK.
Distribution: Quadrant House, The Quad rant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 044459188. Please notify a change of address.
USA: $\$ \overline{3} 9$ surface mail, $\$ 98.30$ airmail. US subscriptions from IPC B.P. Subscriptions Office, 205 E.42nd Street, NY 10017.

USĀ malling agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2ndclass postage paid at New York.
(C) IPC Business Press Ltd, 1982 ISSN 00436062

# wireless world 

## 35 <br> ENGIMEERING-OR DOMINOES?

## 36

MICROPROCESSOR-CONTROLLED LIEHTING SYSTEM
by J. D. H. White and N. M. Allinson

## 41

555-TYPE INTEGRATED CIRCUITS
by J. L. Linsley Hood
44
DIGITAL, MULTI-TRACK TAPE RECORDER
by A. J. Ewins
WORLD OF AMATEUR RADIO


EPROM PROGRAMMER
by H. S. Lynes

## 53. NEWS OF THE MONTH

SIMPLE POWER AMPLIFIER
by P. Wilson
59 LETIERS TO THE EDITOR


RECEIVERS FOR OPTICAL-FIBRE COMMUNICATION
by I. Garrett


## HEATING-FUEL SAVER

by D. Ryder


CIRCUIT IDEAS
DESIGNING WITH MICROPROCESSORS by D . Zissos and G . Stone
by J. R. Watkinson

## 81

## 16-CHANNEL DATA ACQUISITION <br> by P. Hickey



## SYMMETRICAL-OUTPUT DIVIDERS

by G. Girolami and P. Bamberger


ASC11 KEYBOARD TESTER
by Waleed Habilt Abdulla

## 89

## NEW PRODUCTS

## EP4000

## EPRUM EMULATOR

PROGRAMMER
$\star$ Programs 2704/2708/2716(3)/2508/2758 2516/2716/2532/2732
$\star$ Emulates same devices with a single keypress

- 300 ns access time in emulation mode
$\star$ Editing facilities - data entry, match, display, shift, move, clear, define, block program, etc.
$\star$ Input/output as standard - RS232 (ASC11-hex), 20 mA , printer, cassette \& DMA
- Video output for memory map display
- Expandable with 2764 adaptor \& Bipolar Prom modules
* Fully buffered cold ZIF socket
$\star$ Price $£ 545+$ VAT $+\mathbf{£ 1 2}$ delivery


## P4000 PRODUCTION PROGRAMMER

$\star$ Program 1-8 devices simultaneously
$\star$ Programs same devices as EP4000
$\star$ No personality cards needed

* Simple operation
$\star$ Blank check \& verify functions
$\star$ Powered down master \& copy sockets
* Individual socket LED indicators
$\star$ Mode indicators for blank check, program verify, and socket power down
$\star$ Price $£ 545+$ VAT $+£ 12$ delivery



## MODEL 14 ERROM <br> ERASERS

* 14 EPROM capacity
$\star$ Safety interlocked
$\star$ Convenient tray loading of devices
$\star$ UV141 (with timer) £78 + VAT
$\star$ UV140 £61.50 + VAT



## Hectronic Brokers

 Second User Teast Pquipment. Nakes engincers smile without
## making accountants cry.

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the
manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All.equipment is fully guaranteed.

## ANALOGUE VOLTMETERS

## Avo

EAll3 Electronic Multumeter $\quad \$ 15.00$
Bruel and Kjaer
2409 TRUE RMS. Average and Peak 2 H
200 kHz 200 kHz

E250.00
Hewlett Packard
3400 A True RMS ImV-300V $10 \mathrm{~Hz}-10 \mathrm{MHz}$
$\$ 600.00$
Marconl.
TF 2603 RF Millivoltmeter $300 \mu \mathrm{~V}$ Sensitivity.
$50 \mathrm{KHz}-1.5 \mathrm{GHz}$. .................... 5525.00 TF 2604 Electror 20 Hz .15 GHz .300 mV . kV AC $0.2 \Omega-500 \mathrm{M} \Omega$ E350.00

## ANALYSERS

Dymar.
1385 AMIFM Modulation meter $30-480 \mathrm{MHz}$ £295.00

## Hewlett Packard

331 A Distortion analysers. $5 \mathrm{~Hz}-600 \mathrm{KHz}$ to
$0.1 \%$ voltmeter $300 \mathrm{~V}-300$ vols 2 c
0.1 \% volimeter $300 \mu \mathrm{~V}-300$ volts at $2 \%$

332A Distortion Meter 5 Hz -600K Kz . $\$ 495.00$ 333A Distortion Merer with Auto null $£ 675.00$ 8407 Al 841 A Network Analyser E1950.00 Racal
Racal
9009 Automatic AM/FM modulation mete § 395.00
Sound Technology
1700 A measures distortion down to $0.002 \%$ AC voltage $30 \mathrm{HV}-300 \mathrm{~V}$. S/N Ratıo 100 dB
Dynamic range power into $8 \Omega .0 .001 \%$ distortion Osciliator
Marcon
TF 2303 AMiFM Modulation meter AM io
225 MHz , FM to 520 MHz ........ $£ 475.00$ TF2370 Spectrum Analyser. $30 \mathrm{~Hz}-11 \mathrm{OMHz}$.
 TK2374 Zero loss probe for TF2370. $£ 375.00$ Tektronix
R491 Spectrum Analyser $10 \mathrm{MHz}-40 \mathrm{GHz}$ 7603 Manr Frame with 7 Li 3 piug in $1 \mathrm{KHz}-1.8 \mathrm{GHz}, 3 \mathrm{HHz}-3 \mathrm{MHz}$ resolution.
-128 dBm sensitivity. ............. 9850.00 BRIDGES
63 H Inductance Bridge. $0-110 \mathrm{mH}$. Brida frequency $5-500 \mathrm{kHz}$......... 1250.00 Marconl
TF1245A + TF1246 O meter..... 1100.00
Rohde 8 Schwarz.
LRT (BN6100) Inductance Meter. $1 \mathrm{pH}=100 \mathrm{HH}$. Wayne Kerr SR268 Source and Detector £875.00

920A with Option 139 Digit IGHz. $£ 750.00$ 1925A Multifunction, EM Proof 9 Oign 125 MHz 953A Counter Timer 0pi 04. 1525.00 $0-1.25 \mathrm{GHz}$ with prescaiers, I.E.E.E. Interface

Hewlett Packard
5340 A 8 Digit $10 \mathrm{~Hz}-18 \mathrm{GHz}$ £3750.00 Marconl.

Hz .80 MHz
F.2430 unused condition. 7 digit 10 TF $243210 \mathrm{~Hz}-560 \mathrm{MHz} 10 \mathrm{Mv}$ sensitivity $\mathbf{3 2 5 . 0 0}$

## DVM's AND DMM's

$8022 \mathrm{~A} 31 / 2$ digit hand held
$\$ 65.00$ Solartron.
7055 Microprocessor DMM. Scale Length

20.000. AC/DC volts, resistance. $1 \mu \mathrm{~V}$. $\mathbf{6 0 0 . 0 0}$ | resolution |
| :--- |
| 7065 Microprocessor DMM. Scale ienqth |
| $\mathbf{8} 500.00$ | 7065 Microprocessor DMM. Scale ienqth

1.400 .000 . ACIDC volts. resistance . . $£ 695.00$

## OSCILLOSCOPES

Marconl.
TF2213/ + TK2214 X-Y Display ans
memory
550.00


PM3212 25MHz Dual Trace Portadle . $\$ 475.00$ SELabs
SELabs
SM121 6 Channet Monitor. 12 crt. internal sweep ........................................ Tektronix.
Tektronix.
465 Duai Trace Portable Oscilloscope. DC 100 MHz .5 mV - $5 \mathrm{~V} / \mathrm{div}$. Full delayed sweep
 475 Dual Trace 200 MHz Portable $\quad 2000.00$ 7603100 MHz Mainframe with 7A18N and 7B53N......................... $₹ 3000.00$ 7704A 250MHz Mainframe c/W 7A22 Diff. Amplifier, 7 A 26 Dual Channel, 7880 Trmebase and 7885 Delaying Timebase. ....E4610.00 SI Sampling Head. As New $£ 450.00$ 7014 Digital Counter plug-in 525 MHz 8850.00
Teiequipment
D66A 25 MHz Dual Trace . .......... $£ 350.00$

## RECORDERS

MC 6416 Channel 250 mm Chart Recorde
$\$ 1495.00$
Yokagawa
§

## SIGNAL SOURCES

## Hewlett Packard.

4204A Decade LF Oscillator $10 \mathrm{~Hz}-1 \mathrm{MHz}$ 1 mV -10V into 600 ת 6068 AM . 565.00 606 B AM signal Generator $50 \mathrm{KHz}-65 \mathrm{MHz}$
AM $0.95 \%$
£850.00 AM 0.95\% $10-455 \mathrm{MHZ}$ AM/PCM MOduation 0.1 V 608F $10-455 \mathrm{MHz}$ AM/PCM Modulation $0.1 \mu \mathrm{~V}$.
IV output $616818-4$
6168 1.8-4.2GHz int or ext PCM/FM
$0.1 \mu \vee 0.224 \mathrm{~V}$. 1000.00 pulse Mod.
E1000.00

Please note: Prices shown do not include VAT or carriage.

PCM-I PCM Test set. POA-64 PCM signaling Analyser. PSM-4 Level Measuring Set Scanner-PDG-I Digital Signal Generator. PDA-I PCM
Digital Sigr:al Analyser ..................... MISCELLANEOUS
2085 AF Power meter $30 \mathrm{~Hz}-30 \mathrm{KHz} 10 \mu \mathrm{w}$ 2085 AF Power meter $30 \mathrm{~Hz}-30 \mathrm{KHz}$ IOw W . Fluke
3010 A Logictester. Self Contained. Portable
3010 Logictester. Self Contained. Portable.
Full spec on Request. . .......... $£ 8500.00$ ull Packue
355 E 120B Programmable Attenuator unused
4329A High Resistance meter $500 \mathrm{~K} \Omega-2 \times 10^{\circ} \mathrm{O}$ test voltages $10-1000 \mathrm{~V} \quad \mathbf{~} 500.00$ 8405A Vector Voltmeter $1-1000 \mathrm{MHz}$ 8403A Modulator Fined With 87328 PIN 00.00 8412 A Phase Magnitude CRT display for network analyser......EI 500.00 8482 H Power Sensor $100 \mathrm{KHz}-4.2 \mathrm{GHz}$. AS 8745A S Parameter Test Ser. Fitted with $£ 250.00$ 11604 A Universal Arms 0.1-2GHz. . $£ 2750.00$ 59308A HP. IE Timing Generator . E 300.00 Marconl.
TF2162 M.F. Attenuator 0 - $111 \mathrm{~dB} \ldots \mathrm{E} 35.00$ TF 21635 UHF Attenuator O 142 dB 5025 IF2331 AF Distortion Meter TF2500 AF . .....erer 7 ran E275.00 TF2807A PCMI Multiplex tester ..... $£ 1500.00$ TF2950/5 mobile Rado Test Set AM/FM TM8339 ACIDC mixer for use with TF2702 Phillps
PM5519 Colour TV Pattern Generator AS NEW ......................... $£ 650.00$ £200.00 MSC Stereo Coder, $30 \mathrm{~Hz} \cdot 15 \mathrm{KHz}$. . . . . $£ 500.00$ Tektronix
141APAL Test Signal Generator ... E1750.00 1481 C PAL TV Waveform Monitor. $\$ 2375.00$ 191 Constant Amplitude Sig. Gen. 350 KHz TM504 manframe with SG503 + PG $506+$
DM501 + TG501

65 IB Test Oscillator. $10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$
 3320A. Frequency Synthesizer 0.01 Hz .13 MHz . 8690 A/86998 RF sweeper system. O. 1.4GHz mwinges Max OIP 10 GHz to 2 GHz and Marconl.
TFI44H/4 AM Signal Generator 10 KHz
$72 \mathrm{MHz} 2 \mu \mathrm{~V}-2 \mathrm{~V} \quad £ 750.00$ TF 20028 AM/FM $10 \mathrm{KHz} \cdot 88 \mathrm{MHz}$, $£ 1200.00$ F21708 Synchronuzer for TF20028 . 850.00 TF 2005 R 2 Tone signal Source. $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$. TF2008 AMFM IOKHZ.510MHz sweeper. Outpul $0.2 \mu \mathrm{~V}-200 \mathrm{mV}$ E 3500.00 6070 Signal Source $400-1200 \mathrm{MHz}$. . . $\$ 695.00$


Phillips.
PM5 715 Puise Generator $1 \mathrm{~Hz} .50 \mathrm{MHz} £ 675.00$ PM6456 Ster
£250.00
Radiometer
§375.00

## TRANSMISSION

## MEASURING EQUIPMENT

D2040 Selective Level Analyser and Voltmeter $10 \mathrm{~Hz}-60 \mathrm{KHz}$. ................... 1200.00 $\mathrm{O} 2072+\mathrm{W} 2072$ Level Meter and Oscillator. $50 \mathrm{KHz}+100 \mathrm{MHz}$. 52200.00 $W 2006+$ D2006 Carrer Level Test Set. $10 \mathrm{KHz}-$
$17 \mathrm{MHz}-10010+10 \mathrm{~dB} \ldots . . \$ 1650.00$ V2007 + D2007 Carrier Level Test Sel. 800.00 $6 \mathrm{KHz} \cdot 18.6 \mathrm{MHz},-12010+2008$ \&1800.00 Wandel and Goiterman.
PF-I Digital Error Rate Measuring Set.
Consisting of PFM-I Digital Error Rate Meter and PFG-1 Pettern Generator, $\mathbf{E 2 4 9 0 . 0 0}$ $6 \mathrm{KHz} \cdot 18.6 \mathrm{MHz}-110 \mathrm{~dB}$ to +20 dB . Manns $/$ battery operation.........2150.00


Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G


# Ameron industrial 

$\star$ POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
$\star$ OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
$\star$ D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.
$\star$ HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS
$\star$ PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS.

- IINIPOLAR AND bipolar digital interfaces, function GENERATORS, AND MANY OTHERS
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
$\star$ FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
$\star$ TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS. $\star 3$-YEAR PARTS AND LABOUR WARRANTY.


Model - M600 For full details on all Amcron Products write or phone Chris Flack Analogue Associates

## Happy Memories

## Part Type

4116 200ns
4116250 ns
2114 200ns Low power
2114 450ns Low power
4118 250ns
6116 150ns CMOS
2708450 ns

| 1 off | $\mathbf{2 5 - 9 9}$ | 100 up |
| ---: | ---: | ---: |
| .95 | .85 | .65 |
| .90 | .80 | .60 |
| 1.20 | 1.10 | .95 |
| 1.10 | 1.00 | .85 |
| 3.25 | 2.95 | 2.65 |
| 4.95 | 4.45 | 3.65 |
| 1.95 | 1.85 | 1.65 |
| 2.25 | 2.15 | 1.95 |
| 6.40 | 6.00 | 4.95 |
| 4.25 | 3.95 | 3.35 |
| 4.25 | 3.95 | 3.35 |

2716450 ns three rail
2732 450ns Intel type
2532 450ns Texas type
Z80A-CPU £4.75
Z80A-P10 £4.25

Soft-sectored floppy discs per 10 in plastic library case:
5 inch SSSD £17.00 5 inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 8 inch SSSD E19.25 8 inch SSDD £23.65 8 inch DSDD £25.50

74LS series TK, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or telephone for list.

Please add 30p post \& packing to orders under $£ 15$ and VAT to total Access \& Barclaycard welcome 24-hr. service on (054 422) 618
Government \& Educational orders welcome, $£ 15$ minimum Trade accounts operated: Telephone or write for detalls Prices are still tending to drop
Telephone for a quote before you buy
Happy Memories (WW) Gladestry, Kington Herefordshire HR5 3NY Telephone:
(054 422) 618 or 628

## Sowter Transformers <br> With 40 years experience in the design and manufacture of several hundred thousand transformers we can supply: <br> AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, LIne transformers, Line ransformers to G.P.O. Isolating Test Specification, Tapped Mpe Dee marching transformers, Gramophone Pickup transiormers, Audio Miformers for transformers (all types), Miniature transformers, Microminiature transformersers Ultra Ifnear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplltransformers to speakers Speaker matching transformers (all powers) Column transformers to speakers, Speaker matching trans
We can desigri for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P. A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.

ASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, ANQ PUBLIC ADDRESS FIRMS. Export is a speciality and we Send for our questionnaire which, when completed, enables us to post quotations by return.

# E. A. Sowter Ltd. 

## Ht HHH HILOMAST SYSTEMS

## PNEUMATIC TELESCOPIC MASTS



HILOMAST LIMITED

THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480 TELEX NO. 995855

WW - 058 FOR FURTHER DETAILS

## We supply FWा: for midustry



* NOW WITH A 2 YEAR WARRANTY
* Fluke 8022B
$31 / 2$ Digit hand held LCD. DMM. ACIDC volts. DCIAC current, resistance, diode test. $0.25 \%$ basic DC accuracy. Overload protection. Vinyl carrying case C90£8.00 885.00
* Fluke 8021B.

Same spec as 8022 B with additional audio tone for continuity. Vinyl case C90 £8.00

## *Fluke 80208

$31 / 2$ digit $0.1 \%$ basic DC accuracy. DC/AC volts. DCIAC current, resistance, diode test and conductance. Continuity beeper. Vinyl case C90 $£ 8.00$

## *Fluke 8024B

$31 / 2$ digit. $0.1 \%$ basic DC accuracy. DCIAC volts DCIAC current, resistance. Diode test
conductance, logic + continuity detect +
temperature. Peak hold on voltage and current unctions, continuity beeper. Vinyl case C90

FLUKE 8050A
41/2 Digit LCD DMM with true RMS on AC volts and current $D C$ volts $200 \mathrm{mV}-1 \mathrm{KV}$. $10 \mu \mathrm{~V}$ resolution AC volts. $200 \mathrm{mV}-750 \mathrm{~V}, 10 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance $200 \Omega-20 \mathrm{M} \Omega .0 .01 \Omega$
esolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2 ms and 200 ns. 5255 mains model $₹ 285$ mains battery.

## FLUKE 8012A

31/2 Digit LCD DMM with true RMS on AC voits and current. DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V} .100 \mu \mathrm{~V}$ resolution. DCIAC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ esolution, Resistance $200 \Omega-20 \mathrm{M} \Omega$. $0.1 \Omega$ resolution Low resistance $2 \Omega$ and $20 \Omega$, $1 \mathrm{~m} \Omega$ resolution Conductance ranges 2 ms -20 $55-200 \mathrm{~ns}$ £229.00 mains model $£ 259.00$ mains battery. FLUKE 8010A
11/2 Digit LCD DMM Same spec as 8012 A plus a IOAmp ACIDC current range, but not low resistance range. 玉175.00 mains model £203.00 mains battery.

## ACCESSORIES

A81-230 Battery eliminator.
C90 Carry case for hand held
801-600 Amp clamp $80 \mathrm{~J} \cdot 10$ Current shunt 10A $80 \mathrm{~K}-40 \mathrm{H} . \mathrm{V}$. probe 40 kV . $80 \mathrm{~K}-6 \mathrm{H} . \mathrm{V}$. probe 6 kV 80T-150 Temperature probe 80T-H Touch hold probe. 83RF R F prone 100 MHz $85 R F$ R.F. probe 500 MHz . Y8102 Thermocouple probe

E14.00
E10.00
E68.00
£22.00
§56.00
540.00
$\mathbf{8} 40.00$
$\mathbf{~} 72.00$
$\Sigma 72.00$
$\varepsilon 36.00$
836.00
540.00
540.00
569.00
$E 41.00$
518.00
. 88.00 E13.00

The above prices do not inciude carriage or VAT [15\%).

Simply Phone or Telex your order for Immedlate dlspatch.
Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN
Telephone: 01-278 3461
Telex: 298694 Elebro G ww - 201 FOR FURTHER DETAILS


WW - 064 FOR FURTHER DETAILS


WW - 007 FOR FURTHER DETAILS

> EPROM PROGRAMMER
> 2716 - HEXKEYPAD
> 2716 - POWERFULEDITOR
> 2732 TV (MONITOR) DISPLAY
> 2532 CASSETTE BACK-UP
> - ROMULATOR

> SOFTY STANDS ALONE
> E769+VAT, EX-STOCK, BY RETURN
> DATAMAN DESIGNS, LOMBARD HOUSE,
> DORCHESTER, DORSET, DTI IRX. (0305) 68066

WW - 032 FOR FURTHER DETAILS


WW - 036 FOR FURTHER DETAILS

## METER PROBLEMS?



137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

## HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$ Telex: 892301 HARTRO G
WW - 013 FOR FURTHER DETAILS

a professional, portable low cost unit

Tramet ABS4 Counter Ifmer


- 3 frequency ranges $D C$ to 180 MHz with 1 Sec gate including phase locked loop $1 \mathrm{~Hz}-1 \mathrm{KHz}$ providing 0.01 Hz resolution within 10 seconds.
- Period/Time ranges to $1 \mu \mathrm{Sec}, 1 \mathrm{mSec}$ and 1 Sec resolution.
- Manual and logic gating on the time and event ranges.
- 13 mm 8 digit display with leading zero suppression.
- Internal charger and NiCad batteries. Price $£ 195.00$ plus VAT (carriage inc!.) from


## Telemet

Unit S17, Europa House, Fraser Road, Erith, Kent DAB 10L. Tel. (03224) 39677.


AP'82 is a specialist exhibition of one of the fastest growing areas of communications today. Organised by The Radio Society of Great Britain, the UK's national amateur radio soclety, this exhibition brings together every aspect of amateur radio in what has been called "Europe's largest tent," Alexandra Pavilion. Exhibitors include leading UK manufacturers and importers, affiliated societies for the pecialist operator, displays of the latest microwave techniques and a comprehensive selection of publications. If you too are interested in the future of amateur radio, a visit to the RSGB stand is a must, where staff and volunteers will be
available to give information on the wide range of services offered by the society.
If you're a newcomer or an ardent radio amateur AP'82 is an exhibition not to miss.
For RSGB membership details, send a post-card to address shown below.


Public Transport. Alexandra Palace is easily reached by road and has free car and coach parking. Bus services 29, $41,102,123,134,212,221$, and 244 are within easy walking distance, and service W3 connects with the Underground at Wood Green (Piccadilly Line) and Finsbury Park (Piccadilly and Victorla Lines).
By. Car. A.P. is near Muswell Hill or Wood Green, off the North Circular Road.
Talk-in: GB2AP. FM S22 or SU8 (initial calls). SSB $144 \cdot 28 \mathrm{MHz}$ (listening watch).

Radio Society of Great Britain, 35 Doughty Street, London WC1N 2AE.

## An entire range of low-cost high- <br> performance instruments <br> sebtronics <br> 'Making Performance Affordable'

[^0]$5020 \mathrm{~A} 1 \mathrm{~Hz}-200 \mathrm{KHz}$ Function Generator 8110 A 100 MHz 8 -Digit Frequency Meter -8610A 600 MHz 8-Digit Frequency Meter 8610 B
8000 B
1 GHz 9 -Digit Frequency Meter $8700 \quad 10 \mathrm{MHz}$ Universal Frequency Counter/Timer
PSC. 65600 MHz Prescaler
00055 MHz Single Trace Oscilloscope Also avaliable in kit form.

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.
Full colour illustrated brochure and price list from: BLACK STAR LTD.,
9a Crown Street,St.Ives, Cambs. PE17 4EB


Tel: (0480) 62440. Telex 32339
WW - 047 FOR FURTHER DETAILS

## RADIOCODE CLOCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.


Applications
> - Automatic master clock and slave controller.
> - Synchronisation of separate equipment and events.
> - Programmable energy management system.
> - Computer clock/calendar with battery backup.
> - Data logging and time recording.
> - Process and equipment control.
> - Broadcasting, Astronomy, Navigation.

> Satellite tracking.

If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

## wiusiow ATODO <br> The firm for Speakers

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

## 1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Lowest prices - Largest stocks *
$\star$ Expert staff — Sound advice *
* Choose your DIY HiFi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)


## * Ample parking *

* Access

Visa
American Express accepted $\star$


35/39 Church Street, Wilmlsow, Cheshire SK9 1AS


Lightning service on telephoned credit card orders!
WW - 050 FOR FURTHER DETAILS


## Electronic Brokers DECSALE

 a selection from our huge stocks

## MA8SEU8

| Console <br> TWU77 Master Tape deck c/w formatter and <br> £57,000.00 control $\qquad$ |  |
| :---: | :---: |
| UNIBUB |  |
| 11/04 101⁄2'32KBMOS | £3,625.00 |
| 11/34A 256KB, KY11. DL1 | E8,500.00 |
| 11/40 64KW, KT11D | E4,250.00 |
| 11/45 96KWCPU | E7,450.00 |
| LP11 M7258 Printer Interfac | E325.00 |
| PC11A Reader Punch and | £1,250.00 |
| RK06 Disk Drive [NEW] | E2,500.00 |
| RK611 RK06 and Ct | ¢4,250.00 |
| RLO1 Disk Drive | C985.00 |
| RL11 RLO1 and Ct | £1,745.00 |
| RLO2 Disk Drive | £2,500,00 |
| RL211 RLO2 and Ct1 | ¢3,250,00 |
| RX11 Dual Foppy and C | c985.00 |
| RX211 Dual Foppy and $\mathrm{Ct} \uparrow$ (NEW | £1,450.00 |
| TU10 Tepe Deck | ع2,250.00 |
| TM11 TU10 and Ct1 | 83,750.00 |
| TS11AB Tape Deck. | E5,850.00 |

11/O3-LJ5 1/4/32K CPU [NEW]..........£1,500.00 BA11-MF $31 / 2{ }^{\prime}$ Expander Box OZV11A4-Line MUX
1025.00 RKV11 Controller for RK05 Disk [NEW].......3855.00 RXV11 Dual Foppy and Ct1 [NEW). .8395 .00
.8995 .00

PDPBA-205 CPU, 32KW MOS [NEW]. £1,750.00 RXBE Dual RXO1 Hoppy and Ct1 NEW.... 8985.00 RX28 Duel RXO2 Foppy and Ct1 (NEW). $1,450.00$ BEBA Omnibus expander.
2395.00

DKCB-AA Option module [NEW] .................295.00 OP8E8 Communications Adaptor .............. 2395.00 KEBE Extended Arithmetic
c895.00
KL8E Asynchronous Interface
.8175 .00
LP8 M8342 Printer Interface
.$£ 225.00$

## VDU\&FRINTER orvelis

51 Arundel Sureet, Mossley, Lancashire Tel: Mossley (04575)4119 WW - 034 FOR FURTHER DETAILS

ORDER YOUR FAVOURITE
AUDIO ACCESSORIES BY MAIL
SEND FOR YOUR FREE COPY OF OUR 1982 CATALOG

## OVER 250 ITEMS

incluoing direct boxes. mic-splitters, sianal processing. auoio modules. TRANSFORMERS \& MANY OTHER ACCESSORIES

WITH TECHNICAL DATA \& USE DIAGRAMS
W. Ship the fastest \& most convenient way for youl Most Shipments From Stock

SESCOM, INC.
RETAIL SALES DIVISION
1111 Las Vegas Blvd. North
(7021384-0083
(800) $\mathbf{6 3 4 - 3 4 5 7}$

Las Vegas, NV 89101-1197 U.S.A
IWX (0) 101307 -8996

## HAZELTINE HZOOO VDU

$27 \times 74$ Display, 64 ASCII. RS232. full half duplex and full editing XY cursor addressing and batch mode, green phosphor CRT, detachable keyboard.
SPECIAL QUANTITY DISCOUNT OFFER
$\begin{array}{llll}1-2 & £ 298.00 & 5-9 & £ 255.00\end{array}$ 3-4 $\quad 2275.00$
 Also a few remaining H1000 $12 \times 80$ display RS232. 1101300 or 300/1200 baud £199.00

## AJB32 DA!BY WHEEL

 PRINTER / HLOTTER Scoop purchase of Andersul? Jacobson AJ832 Daisy Wheel Printers complete with full keyboard integral stand and RS232 interface Utilising the famous QUME Printer Mechanism 1-4 $£ 985.00$ 5-9 £950.00 $10+£ 895.00$

## UNE PRINTERE

OEC LP11-VD 3001 pm Drum Printer upper/lower case, including control module .........................モ2,750.00 DEC LPO4 9001 pm upper/lower case drum printer BRAND NEW SURPLUS, including control module....., $5,750.00$ DATA PRODUCTS B600 band printer including control module.....E3,750.00

## DECLA35/LA3B and

LATBOMATRIX PRINTEPE
A36 30cps keyboard printer with integral stand, 132 column tractorfeed, upper/lower case ASCII A36 with 20 mA interface . . 450.00 A36 with RS232 interface . £495.00 -A35 - Receive only version of A36-AMAZING VALUE: A35 with 20 mA interface
$£ 250.00$
LA35 with RS232 interface . £275.00 LA180 high speed output printer with 180 cps printing, 132 column tractor-feed, upper lower case ASCII. Integral stand (NEW) LA180 printer standard parallel [Centronics type) interface . . $\mathbf{\varepsilon 4 8 8 . 0 0}$ LA180-ED with optional RS232 or 20 mA interface $\qquad$ C670.00

## AJ212 ACOUBTIC COUPLER8

Special Purchase of Andersorr-Jacobson Acoustic Couplers suitable for use with RS232 or 20mA devices, full or half duplex, at speeds up to 300 baud. Attrective wooden case . . . . . . \&125,00 VT5C AND VT52 DECSCOPE VDU8 $V$ T50 DECscope, $12 \times 80$ upper case ASCII, 9 switch selectable baud rates $75-9600$ baud, 20 mA or RS232 interface.
$£ 250.00$ $V T 52$ DECscope, $24 \times 80$ upperflower case ASCll, 9 switch-selectable baud rates 75-9600 baud, 20mA or RS23? intertace.

ع525.00
All items reconditioned unless otherwise stated
ADD 15\% VAT TD ALL PRICES
Carriage and Packing extra
Electronic Brokers Lttd., $61 / 65$ Kings Cross Road, LondonWCIX 9LN. Tel:01-2783461. Telex 298694 WW - 006 FOR FURTHER DETAILS


WW - 054 FOR FURTHER DETAILS

## HOW WOULD YOU LIKE YOUR $7 \times 81$ TO LOOK LIKE THIS?



## IT COULD WITH

 THE CROFTON ZX81 ADAPTAKIT.ONLY £35.00 plus VAT - total £40.25 plus £2.45 P\&P. AND IT ALSO HAS A VIDEO OUTPUT TO DRIVE A STANDARD MONITOR. SEND FOR DETAILS
CRDFTON ELECTRONICS LIMITED


WW - 051 FOR FURTHER DETAILS


## FM/AM 1000s with Spectrum

 Analyser - we call it the SUPER - SA portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests.
The FM/AM 1000 s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter - and up to five service engineers who could be doing something else!

## A PRACTICAL TOP UP! MM-100 MULTI-METER

Simply replaces the protective lid of the FM/AM 1000s. It includes a modified probe. PB-114, and a built in speaker unit with independent volume control for audible response to signal measurement. This practical 'top up' will perform the following functions.
Sinad: Measurements for 1 kHz tone ( $\pm 20 \mathrm{~Hz}$ )
Distortion: To 30\%
DC Volts: Up to 300 volts and up to 800 volts when the $\times 10$ probe is used
 AC Volts: 600 VRMS maximum for frequencies between 25 Hz and 25 kHz
Ohms: Using the modified probe, part number PB-114.
Ohms can be measured on scales X1 to X10 K
\% AM Measured on the RF signal applied to the
FM/AM-1000 unit

## OPTIONAL ACCESSORIES

A choice of R.F. power attenuators and protective carrying cases.

For further information contact Mike Taylor
Fieldtech
Heathrow

## Fieldtech

Heathrow Lid Huntavia House 420 Bath Road West Drayton Middiesex UB7 OLL Tel: 01-8976446 Telex 23734 FLDTEC G

## 50+ CASES FOR SPECIALISTS referred by JENSEN



Designed for the professional electronic technician requiring a complete set of tools in a compact package

50 professional tools. VOM Test meter optional. Also available with metric tools (JTK 16 mm ).

See these cases together with more than 20 other complete specialist tool kits and a complete range of over 30 empty cases in the Jensen catalogue available on

JTK 17
Available in 12 different case modifications.
Specially suited for maintenance of electronic equipment.
communications, radar, computers and office machines
57 top quality tools. VOM Test Meter optional.
Deluxe attache case of hardwood construction. llama grain covering and sotid brass fittings. Metric conversion kit available.


## Special Products Distributors Limited 81 Piecadilly, London W1V OHL

Tel. 01-629 955* Cables: Speciprod, London, W. 1 WW - 059 FOR FURTHER DETAILS


29 Market Street Cirewkerne Somerset TA: 8 7JU

Crewkerne (0460) 74433 Telex 46283 inface g

## The WERSI Concept

## Build your own electronic organ with the WERSI system



VERSI presents their new generation of electronic organs and accessories to you, the do-it-yourselfer. All the tools you need are
illustrated left. The electronics involved is very revolutionary, making it very easy to understand. Every non-specialist who can read is able to do it. Building a WERSI organ from a kit can save you more than half the cost of a similarly equipped readymade instrument and that means with WERSI and your own initiative and involvement you can afford a sophisticated electonic organ. Do you have to be a virtuoso or a music lover to benefit from building a WERSI organ? No . . . this would mean
failure to recognize the sense of the
hobby. Even after your project is completed you will be able to discover new excitement from the world of music.
Whether you play haunting blues, stomping disco, liturgical hymns or classic renditions the new generation of WERSI organs will make your life more enjoyable.

Want to know more? Just fill in the coupon below, enclosing $£ 1.00$, and we'll
send you the big, full colour catalogue. It will anśwer all your questions.

## AURA SOUNDS LTD

 are the first company to successfully market WERSI organs and kits in the U.K. We have three modern showrooms where we pride ourselves you will receive a friendly welcome Why not pop in and see the WERSI range for yourself - we can always arrange a free demonstration. We also offer a free technical telephone support service which is second to none.Alternatively, fill in the coupon below for the full colour catalogue. For immediate action telephone 01-668 9733 24 hour answering service quoting Access/ Barclaycard Number.

## AURA SOUNDS LTD.

14-15 Royal Oak Centre, Brighton Road, Purley, Surrey.
Tel: 01-668 9733
17 Upper Charter Arcade, Barnsley, Yorkshire.
Tel: (0226) 5248
1729 Cóventry Road, Sheldon, Birmingham. Tel: 021-707 8244


## The Arc single-board computer with BASIC



- 28671 MICRO PROCESSOR WITH ON-CHIP BASIC INTERPRETER
- REAL TIME CLOCK/CALENDAR WITH ON-BOARD BATTERY BACKUP
- RS232 INTERFACE WITH 8 BAUD RATES 110-19200
- $4 K$ BYTES OF RAM-PLUS DEMONSTRATION PROGRAMS IN 2K EPROM -CAN BE EXPANDED ON BOARD TO 2OK BYTES OF RAM/EPROM
- CHOICE OF TWO BUS SYSTEMS - 64 WAY EURO CARD - 50 WAY RIBBON CABLE - 19 ÚNCOMMITTED I/O LINES

This microcomputer represents a breakthrough in single-board computer performance. Its BASIC interpreter, real-time clock and calendar, large memory capacity, semial and parallel 1/0, timers, interrupt and expansion capabilitles make it the most cost-effective solution for control problems.

Using Zilog's 28 BASIC/DEBUG interactive BASIC, programs can be entered into RAM and tested with a vdu or other RS232 terminal then transferred to EPROM. The computer includes 4 K bytes of RAM, with provision for another $4 K$ bvtes on board. Some or all of this RAM may be replaced with EPROM for stand-alone applications, and a sample EPROM with demonstration and utility programs is included.

An exciting feature of the ARC is its real-time clock and calendar This greatly extends its usefulness In the fields of real-time control monitoring, timing and security systems.

ALSO AVAILABLE POWER SUPPLY MODULE Outputs 5v 30v (nom) 12v-12v

EPROM PROGRAMMER WITH 1200 BAUD
CASSETTE INTERFACE. Programs may be stored on 2 K or 4 K EPROMS for stand-alone controller applications.

FUTURE PRODUCTS Opto isolated relay board a/d and d/a converters speech synthesiser.

PRICES
ARC 1 computer $\quad £ 135.00$
EPROM programmer $\quad £ 58.00$
Power supply
£ 32.00

Please specify bus connection (euro card or ribbon cable)
Prices include carriage in U.K., but exclude VAT.

## Arcom



We have the UK manufacturing facilities, experience and skills to give you the panel meter you want. With all aspects of panel meter construction under our control it means you can specify and get the sensitivity, movement ballistics and scale you want. It all adds up to greater flexibility and a wider choice. You want them quickly? - of course! Low quantities or large quantities present no problems. Next time why not give us a call - ask for Colin Williams, tell him what you want - you could be surprised at what he may have to tell you!

Trenant Estate, Wadebridge, Cornwall, PL2 27 6HD. Telephone: (020881) 2031 Telex: 45451


OUALITY REEL TO REEL \& CASSETTE TAPE HEADS
FITTING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUR TAPE RECORDER. OUR FULL CATALOGUE (PRICE 50p) ALSO INCLUDES TAPE TRANSPORTS, OISC ORIVES, PRE-AMPLIFIERS AND ACCESSORIES


The Manolith Electranics Co. Lted,
The Manolith Electronics Co.
$\mathbf{5} / 7$ Church Street, Crewkerne.
Somerset TA18 7HR
Tel: 046074321 .
Telex: 46306 MONLTH G.
MONOLITH
electronic products
WW - 039 FOR FURTHER DETAILS

## TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2XX 01-684 1422/01-684 0246

# mardsom =1 

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to'match.
Next came the 131: The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout. The result is an unrivalled selection of handheld meaśuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!


## TEST INSTRUMENTS

## SABTRONICS

NEW 2033 HANDHELD DMM
Housed in a tough ABS case with bench stand. Mains or Battery operated. Large $31 / 2$ digit LCD display.

- BASIC SPECIFICATION

DC Volts<br>AC Volts<br>DC Amps<br>AC Am Ohms<br>$100 \mu \mathrm{~V}-1000 \mathrm{~V}$ $100 \mu \mathrm{~V}-1000 \mathrm{~V}$ $10 \mathrm{~A}-2 \mathrm{~A}$ $10 \mu \mathrm{~A}-2 \mathrm{~A}$<br>Only £36.75<br>P\&\& $£ 1$



2035A Handheld DMM

| Assm. | Kit |
| :---: | ---: |
| $£ 62$ | $£ 49$ |

Similar Basic spec. as 2033 except able to measure down to $0.1 \mu \mathrm{~A} A C / D C$ and $0.1 \Omega$ and with greater accuracy
2015A Bench DMM
$£ 83$ | $£ 73$
Similar Basic spec. as above except able to measure up to $10 A$ AC/DC with more facilities.

P\&P£1

FREQUENCY METERS: 8 digit LED

|  | Assm. | Kit |
| :---: | :---: | :---: |
| $8110 \mathrm{~A} 20 \mathrm{~Hz}-100 \mathrm{MHz}$ | £67 | £56 |
| $8610 \mathrm{~A} 20 \mathrm{~Hz}-600 \mathrm{MHz}$ | ¢82 | £68 |

FGUUCN METERS: 9 digit LED
$8610810 \mathrm{~Hz}-600 \mathrm{MHz}$.
$8000 \mathrm{~B} 10 \mathrm{~Hz}-1000 \mathrm{MHz}$
P\&P£

TOUCH AND HOLD PROBE:
for use with SABTRONICS Multimeters. Enables you to hold a signal on display.
THP20............................................................................................................ 13

## I.C.E. Multitester

Specification
Volts DC
Volts AC
$100 \mathrm{mV}-2000 \mathrm{~V}$
Amps DC
Amps AC
Ohms $2 \mathrm{~V}-2500 \mathrm{~V}$

250uA-5A
Frequency $0-5000 \mathrm{~Hz}$
Capacity $\quad 0-20,000 \mu \mathrm{~F}$ Size with case
$13.7 \mathrm{~cm} \times 10.4 \mathrm{~cm} \times 5.4 \mathrm{~cm}$


## Only £32 <br> P\&PE1

## SAFGAN Brilish-made Scopes

$\star$ DUAL TRACE
KmV/Div sensitivity
XY facility
Z modulation
Calibration output
\& Portable/lightweight

$P \& P £ 2$

$$
\begin{array}{c|c}
\text { DAROW SUPPLIES } & \text { Add } 15 \% \text { VAT on ALL prices } \\
\text { 4Sandy Lane } & \text { All prices correct at 2-2-82 E\&OE } \\
\text { Stockton Heath } & \text { ACCESS or BARCLAYCARD Welcome } \\
\text { WARRINGTON } & \text { Callers welcome Mon.-Fri., } 9 \text { a.m. }-5.30 \text { p.m. } \\
\text { Cheshire WA4 2AY } & \text { Tel. } 092564764
\end{array}
$$



# Data recording and analysis: 



## meet the time shrinker!



If you need to record and analyse data from multiple inputs, consider the advantages of using the Microdata M1600L data logger.

Magnetic tape cartridge Because it records on a standard $1 / 4$ inch magnetic tape cartridge in ECMA/ANSI format, the output can be replayed at high speed into a computer, calculator or other data processing equipment. Alternatively, the internal replay facility of the data logger can be used. No other data logger has this capability.

## Individual conditioning cards

 Individual, plug-in signal conditioning cards are used-one for each of the 20 input channels (expandable up to 100). As a result, each customer receives a bespoke instrument ready to handle mixedanalogue and digital inputs from most transducers. Cards are available at low cost to condition virtually every type of electrical signal, to reconfigure the instrument for different projects. No other data logger offers these facilities.

Exceptional versatility The M1600L is available either as a mains powered, free-standing, laboratory instrument or in the portable weatherproof form operating from its internal batteries. For more permanent installation in existing systems, it can be supplied in chassis form for mounting in a 19 inch rack. No other data logger displays this versatility.

The M1600L is now widely adopted for projects in energy, transportation, agricultural and environmental research. If you would like further details, please
write, telephone, or return this advertisement clipped to your letterheading.

MICRODATA LIMITED, MONITOR HOUSE, STATION ROAD, RADLETT, HERTS. WD7 8JX. ENGLAND. Telephone: RADLETT (09276) 3333.


## M1] CR (D) ( $\Delta \sqrt{\circ}]$ leaders in the field

ww - 055 FOR FURTHER DETAILS
If you are looking for a mplification, take advantage of the same superb quallty Crimson modules that the BBC, IBA, KEF and numerous recording studios have been using for yearsi our expertise in this field of electronic de sign is internasionaliy renowned, our reputation is based on quality, yet devised. The crimson range of audio a mplifier modules is availablewo industry and public alike and is backed by full technical data, freetechnical advisory service, fast delivery and a full range of complimentary components available such as toroidal power supplies and neatsinks, etc.
SPECIFICATIONS

|  | $80 / \mathrm{P}$ * | $0 / P$ |  |
| :---: | :---: | :---: | :---: |
| туpe | 80 hms * | 4 ohms | PSU |
| CE 608 | 38 | - | CP5 80 |
| CE1004 | 44 | 70 | CP5150 |
| CE1008 | 65 | - | CP5150 |
| CE1704 | 85 | 121 | CP5250 |
| CE1708 | 125 | - | CPS250 |
| CE3004 | 170 | 250 | CPS250 |
| CPR1X | output | 775 mV | REG1 |
| MC1X | output | 2 mv | REG1 |
| X02/3 | output | 775.2500 mV | REG1 |


|  | Slew |  |
| :---: | :---: | :---: |
| H/sinks | limit | S/N |
| HS50 | 30vus | 110 dB |
| H550/100 | 30vus | 110 dB |
| HS50/100 | 30vus | 110 dB |
| H5100/150/FM1 | 30Vus | 11008 |
| H5100/150/FM1 | 30vus | 110 dB |
| HS150/FM2 | 30vus | 110 dB |
| - | 3 Vus | 70dB |
| - | 3 Vus | 65dB |
| - | 9Vus | 90 dB |




THD (typ)
$0.0035 \%$
$0.0035 \%$
$0.0035 \%$
$0.0035 \%$
$0.0035 \%$
$0.008 \%$
$0.008 \%$
$0.008 \%$
$F R(-3 d B)$
$1.5 \mathrm{~Hz}-50 \mathrm{KHz}$
$1.5 \mathrm{~Hz}=50 \mathrm{KHz}$
$10 \mathrm{~Hz}-50 \mathrm{KHz}$
$10 \mathrm{~Hz}-50 \mathrm{KHz}$
Preset
Size
80-120-25
$80-120-25$
$80-120-25$ 80-120-25 $80-120-25$ 161-102-35 $138-80-35$ $80-120-35$
$150-50-20$

- Power output is quoted in WRMS and is given for two modules off the same power supply. Higher powers can be obtained lf using our dual power supplies or one module per PSU or if using a stabillsed power supply.

> Crimson modular audio ampllfiers feature
> * Iow values of transient and steadystate
> distortions * envelope distortion fbelow 500 H2) less than $0.05 \%$ * on board electronis protection * PCB pin and edre connector termination * full range of compllmentary components avallable le. PSUs, heatsinks, etc.

NEW: We now have a completely new Hi-Fi Kit package to offer:
CK 1010 contains pre-amp circuitry, all metalwork, connectors, wire, etc., to make a complete pre-amplifier.
CK 1040 contains power amp modules, all metalwork, dual power supply, connectors, heatsinks, wire, etc., to make a complete $40 \mathrm{w} / \mathrm{ch}$ annel power amplifier. CS 1100 as CK 1040 but at $100 \mathrm{w} /$ channel
Unlike other module manufacturers CRIMSON have a major share of the esoteric, specialist Hi-Fi market. Unlike many manufacturers we acknowledge the massive audible differences that small component/circuit changes can produce. However our amplifiers are technically outstanding and have been subjectively 'tuned' to a stunning level of crisp and detailed reproduction.

## PRICES

Power amp modules
CE 608
CE1004
CE1008
CE1704
CE1708
CE3004
Pre amp modules
CPR1X
MC1X
REG1
TR6

Power supply modules

| E21.00 | Power supply mod CPS80 |
| :---: | :---: |
| E24.50 | CPS800 |
| E27.50 | CPS150 |
| E35.00 | CPS150D |
| E35.00 | CPS250 |
| E49.00 | CPS2500 |
| E36.00 | Active crossovers |
| E32.00 | $\times \mathrm{O} 2$ |
| E 9.30 | X03 |
| E 3.30 | MU1 |


|  | Heatsinks |
| :--- | :--- |
| E26.24 | HS 50 |
| E31.77 | HS100 |
| E29.74 | HS 50 |
| E36.40 | FM1 |
| E36.83 | FM2 |
| E45.34 |  |

COMPLETE KITS
PRE.AMP CK1010
POWER AMP CK1040
POWER AMP CK 1100 ....
IMOVING COIL ADD-ON

E 1.84
E 1.84
E 2.99
E 4.20
E 36.95
E41.52
All prices include VAT. Please add $£ 1.10$ for orders up
to $£ 20.00, £ 2.50$ up to $£ 50$ and $£ 2.65$ £50 and over. To $\begin{aligned} & \text { to llow for post and packing (UK only). }\end{aligned}$
Export-No problem. Please write for quotation or quote your Visa/Master. Charge card number.


9 Claymill Road, Leicester LE4 7JJ

# Sinclar ZX81 Personal the hearrt of a system that grows with you. 

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day
Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer.


Every $Z \times 81$ comes with a comprehensive, specially- written manual - a complete course in BASIC programming, from first principles to complex programs.

## Kit: £49.,5

## Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

## New, improved specification

Z80A micro-processor - new faster version of the famous Z80 chip, widely recognised as the best ever made.

- Unique 'one-touch' key word entry: the ZX 81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops. - Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX 80 chips.


## Built: £69.95

## Kit or built - it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder



## 16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database Yet it costs as little as half the price of competitive additional memory

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems for example. Tel: (0276) 66104 \& 21282.

# Available nowthe IX Printer for only £49.95 

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

## How to order your ZX81

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper ( 65 ft long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.


## Higl Cllik MASTS

## Here is the expertise you can depend on

When you choose a mast from the comprehensive Clark range you specialist are assured of a high standard of engineering and operational reliability.
Why compromise?
Extended heights 4 metres- 30 metres, capable of lifting headload $1 \mathrm{~kg}-200 \mathrm{~kg}$. Sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

63/70 Trailer-mounted Mast - The ideal 2 metre mobile communication HQ Mast, at its maximum height of 70 t .



CLARK MASTS LTD, Binstead, Isle of Wight, PO33 3PA, England, Telephone (0983)63691. Telex 86686.


# The Thinking Cap 

## When your Two Way Radio supplier is acting like a monkey, the complete Zycomm range will put him in the background

## ZYCOMM ELECTRONICS LIMITED

 47/51 Pentrich Road, Ripley, Derby DE5 3DS Tel: Ripley (0773) 44281 Telex: 377477

Agencies available throughout the UK and the World

WW - 078 FOR FURTHER DETAILS




SAFGAN PORTABLE OSCILLOSCOPES
Range of low cost Dual Trace Scopes mains operated. Made in UK to exacting standards. Available as $10 \mathrm{MHZ}, 15 \mathrm{MHZ}$ or 20 MHZ . All feature 5 mV sensitivity, 0.5 micro sec. $6.4 \times 8 \mathrm{~cm}$ display (UK c/p $£ 2.50$ ) DT410 Dual 10 MHZ £205.85 $\begin{array}{llll}\text { OT415 } & \text { Dual } 15 \mathrm{MHZ} & £ 217.35 \\ \text { OT420 } & \text { Dual 20 MHZ } & \text { £228.85 }\end{array} \quad$ MADE INUK OPTIOMAL SCOPE PROBES - SEE HAMEG吾 1 301 EDGWARE ROAD.LONDON, W2 1BN, ENGLAND. TEL 01-724 3564 ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD. LONDON W2 WE ARE CPA G ANYA WEEK - CALL IN NDSEE FOR YOVREFF!

cuagcatt LIMITED


Order by Post with CHEQUES ACCESS/VIS or Telephon your order Allow up to10 days for delivery

## Take the trouble out of

 travelling to 'The Show'The All-Electronics/ECIF Show has -moved to the City of London's new exhibition halls at The Barbican-and doubled in size!

That means 460 stands in all. (Grosvenor House had 220 - to give you a comparison of scale.)

And because it's now almost as big as its continental equivalents, it is the one event of the year that will give you a comprehensive analysis of the electronics industry as a whole.

As befits its new authority, the event is s implicity itself to get to.

For the organisers are providing yc)u with first-class coaches to take you to 'The Show' at less cost than the equ ivalent public transport.
(As long as you live within a one-and-a-ha lf hour's journey by road radius from the City of London.)
Jus t complete our coupon and indicate the to wn nearest you from which you'd be hap.py to depart at $9.00 \mathrm{a} . \mathrm{m}$.-ish.

Encliose a cheque or postal order for the indicated sum - and you'll get a remarkeble package in return!
A) Yourticket to take you to the Barbican and b,ack (in comfort - and with full documentation, by the way).
B) A free season pass to the exhibition.
C) A free copy of the 120 -page 'Show' catalogue and yearbook.
D) Full details of all the events, seminars and receptions taking place during The All-Electronics/ECIF Show.
Need we mention that, with this kit, you can prepare for your visit by contacting those exhibitors you must see in advance and arrange a meeting 'on stand. You can also prepare spec/cost/availability queries to put to their competitors .


## Britain's No. 1 electronics event:

 created to take on the best in Europe The All-Electronics/ECIF Show is your big, big one!Four hundred and sixty stands for you to visit, no less.

And we couldn't make it easier for you to see them.

Just use the top coupon if you'd like to travel via our coach parties.

Or, if you'd prefer to make your own way there, use the bottom coupon.

All we need is a 20p stamp-and we'll
send you tickets; catalogue, details - oh, everything! (But we must get your form by April 10th.)

## Remember this: you can't afford to miss The All-Electronics/ECIF Show It's true.

So big is 'The Show's' scale that virtually everyone will be there.

Your next employer, to be opportunistic.

And the manufacturer of components that will significantly alter your circuitry design.

Or the purveyor of products at sig. nificantly cheaper prices than you've been accepting.

Plus your colleagues from way back when.

Plus the chance recognition of an opportunity which, were it not for the product parade, the conflux of competitors, the state of the mart... well, you'd not pass Go, not collect £200!

So take two minutes now to prepare for very special opportunities.

* Honeywell Ciontrol Systems - (Components 518) (Instruments 515/516) * House of Instruments 224 * Howells Radio 556 * Hunting Hivolt 114 * Hybrid $810-813 / 829 \star$ ITT Switches (UK) 490 * Imhof-Bedco Standard Products 149/150 * Intel Group of Companies 122 * International Rectifier 111 *Intersil-Datel 244 * Kemo 8516*Keyswltch Varley 388 * Kingslo Power Supplies 119 * Klippon Electricals $465 / 466$ * Lambda Electronics 133 * FC Lane Electronics 109/110 Manufacturing Co 718 * Littelfuse (GB) 145 *Londex 750 *Longs 522 *Lorlin Electronics 247 * Lucas Electrical 513/514 * 3M United Kingdom $407 / 408$ Instruments 22.7 * Metway Electrical Industries 583 * Micro Circuit Engineering 524 * Microdata 601 * Micro Marketing 213 * Micro Movement 819 * John Minister Au * National Pana sonic (UK) 817 * Neohm (UK) 444 * OK Machine \& Tool Co 551/552 * Oxley Developments Co 320 *PSP Electronics $162 / 163$ *Panduit 171 *Parmeko Products 693/73 4-741 *Portescap (UK) 301 * Powerline Electronics 215 * Powertron 208 * Precious Metal Depositors 543 * Preformations (Magnets) 372 * Pressac 797 , * Quiller Compoinents 823 * RF Components 578 * RS Components $181 / 182$ * Racal Dana Instruments 751 * Radiatron Components $176 *$ Radio Resistor Co 241 * Radi 605 Roadrunne:r Electronics 384 * Rockwell International 706 * Saab Scania 732/733 * Salford Electrical Instruments 560/561*Schroff UK $147 / 148$ *Scopex Instrur

[^1]

# Use this form if you're going to use our coaches 

They depart from the towns listed at 9 a.m.ish. And they leave the Barbican between 5 and 6 p.m.

Please tick the appropriate boxes, return the form enclosing your cheque/ P.O. made out to The All-Electronics/ECIF Show, and we'll send you full information (including the departure points, their nearby car parking facilities, luncheon alternatives, and so on).
If, by any chance, fewer than 30 people wish to journey from the town of your choice on the day of your choice, you'll get your money back a.s.a.p.
The cost includes the postage for a catalogue, a free season ticket. And we'll enclose a receipt.
"I require (insert quantity) $\square$
packages and enclose cheque/P.O.
for: £
Name (please use dear capthal leierers)

## PRICES QUOTED ARE RETURN FARES

AYLESBURY £?
BASLLDON
BASINGSTOKE
BEDFORD
BRRMINGHAM
BRIGHTON
BURY ST. ED.
CAMBRLDGE
CHELMSFORD
COLCHESTER
COVENTRY
CRAWLEY
DARTFORD
DOVER

| FARNBOR'GH | $£ 6.50$ | $\square \square \square$ |
| :--- | :--- | :--- |
| GUIDPFORD | $£ 5.50$ | $\square \square \square$ |
| HARLOW | $£ 4.50$ | $\square \square \square$ |
| HASTINGS | $£ 4.50$ | $\square \square \square$ |
| HEMEL HEMP. | $£ 5.50$ | $\square \square \square$ |
| HIGH WYCOMBE | $£ 4$ | $\square \square \square$ |
| PSWICH | $£ 5.50$ | $\square \square \square$ |
| KETTERING | $£ 9$ | $\square \square \square$ |
| KING'S LYNN | $£ 10$ | $\square \square \square$ |
| LEATHERHEAD | $£ 5$ | $\square \square \square$ |
| LEICESTER | $£ 10$ | $\square \square \square$ |
| LNCOLN | $£ 9$ | $\square \square \square$ |
| LOUGHBOR'GH | $£ 11$ | $\square \square \square$ |
| LUTON | $£ 5.50$ | $\square \square \square$ |
| MAIDENHEAD | $£ 5$ | $\square \square \square$ |

Post to The Show. 34 ' 36 Kigh. Street. Saffron Walden. Essex.

## For the Barbican

Liverpool Street - and a seven-minute walk Or take the Metropolitan or Circle Line tube from any of the rail termini to 'The Barbican' and it's a l-minute walk! Your free ticket gives you all the details. Buses: $4,277,279$ to Barbican underground station. 21, 43, 76 and 141 to Moorgate. Red Arrow 502 from Waterloo to London Wall.

## 2 Making your own way? Use this

Please attach a 20p stamp by its corner to cover postage and packing costs for your free season ticket to 'The Show'. Plus a 120-pp catalogue with full details of the event. And comprehensive details of the activities (seminars, receptions, etc.)

## 3 If you're just going to tum up...

Well, admission is $£ 1$ without a ticket. We're open between $10 \mathrm{a} . \mathrm{m}$. and $6 \mathrm{p} . \mathrm{m}$. on Tuesday and Wednesday. But between 10 a.m. and 5 p.m. on Thursday. (Thisand other-information goes with the ticket, so do ask for one now!)

Complete either our top or our bottom coupon. Now. Please.


WW - 067 FOR FURTHER DETAILS


WW - 048 FOR FURTHER DETAILS


UNIVERSAL BENCH POWER SUPPLY


Output is fused and mains isolated.

2 ranges:
$0-125 \mathrm{v}$ @ 4 amps $0-250 \mathrm{v}$ @ 2 amps AC or DC Continuously variable.

## £198.00

Exc. carriage and VAT.

[^2]
## MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES




OFFICIAL
ORDERS
WELCOME
VISA

PM 6455 Stereo FM Generator
PM 6456 Stereo FM Generator
RESEARCH INSTRUMENTS
Micro manipulator - 4 Probes moveable in all planes. Adjustable test table - Watson Barnet optics. Complete system mounted
in perspex enclosure
ROHDE \& SCHWARZ
BN252 Transistor Y Parameter Test Set S.T.C.

Prices 74600 J Attenuator $0-9 \mathrm{~dB} 50 \Omega$ in 1 dB

GTA. 2 Quantization Distortion Tester
GTA4B Pattern Generator
TEKTRONIX
1502 TDR Cable Tester CRT + Recorder

## COMPUTER EQUIPMENT

 CENTRONICS702 matrix printer
TEKTRONIX
4610-1 Hard copy printer for 4010 series
computer display terminals
741848 Selective Level Measuring Set
74216A Noise Generator
74261 A Psophometer
742628 White Noise Generator \& Receiver
74307C Level Measuring Set
74834 C Distortion Measuring Set
C016 Selective Null Deteror
Prices
from $E$
rome

## DIGITAL TESTING EQUIPMENT

HEWLETT PACKARD
1600A Logic Analy ser 16 ch 20 MHz
1600 S Logic Analyser 32 ch 20 MHz 1602A Logic Analyser 16 ch 10 MHz 1607 Logic Analyser 16 ch 20 MHz TEKTRONIX
832 Datacom Tester R5232/V24 833 As 832 plus BERT/BLERT feature 700IF/DFI Logic Analyser/Formatter 16 ch 50 MHz P/in
7603/7DOIF/DFI As above with display

## MAINS TEST EQUIPMENT

500 COLE
T1007 Volt/Freq'Spike Monitor Rec O/P DATALAB
1800 DL019 Mains Interface for DL905

## SPECIAL OFFER

## PHILIPS PM2454B £180

A.C. Analogue millivoltmeter. Frequency range $10 \mathrm{~Hz}-12 \mathrm{MHz}$.
12 ranges 1 mV - 300 V F.S.D. Voltage and dB scale provided. D.C. output proportional to meter reading.

## COUNTERS \& TIMERS

FLUKE
1910A-1 125 MHz 7 digit Cntr. AC/Batt
1912520 MHz 7 digit Counter
1912A01 As 1912A but inc. re-charging batteries
1920A 520 MHz 9 digit Counter inc. Brst. mode
1920A 141250 MHz otherwise as 1920A
HEWLETT PACKARD
5243 L 20 MHz 8 Digit Counter 5245 L 50 MHz 8 Digit Counter
$5300 \mathrm{~A} / 5304 \mathrm{~A} 10 \mathrm{MHz} 6$ Digit Counter Timer
$5300 \mathrm{~A} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 6$ Digit Counter 5345500 MHz 11 Digit Counter Timer MARCONI
TF 2432560 MHz 8 diglt Counter
RACAL-DANA
37118 GHz 11 digit Counter with Source Locking facility
811050 MHz 8 Diglt Counter Timer.
$9024600 \mathrm{MHz} 71 / 2$ digit Counter
9025 : GHz 8 digit Counter
952010 MHz 4 Digit
9905200 MHz 8 digir Counter Timer
SYSTRON DONNER
60533 GH2 9 digit Counter BCD O/P
51038 Strip Printer for 6053/6054
TEKTRONIX
DC501 7 Digit 100 MHz Counter - TM500
Plug-in

74616
74616A Attenuator 0-100 dB 600s? in 0.1 dB steps
TEKTRONIX
521PAL Vectorscope
528 TV Waveform Monitor
575 Semiconductor Curve Tracer 1485 C TV Waveform Monitor PAL/NTSC
YELLOW SPRINGS
YS 157 Water Pollution Measurement

NETWORK ANALYSERS/
PHASEMETERS
GENERAL RADIO
1710/11/12/14 0.4.500 MHz 115 dB range
HEWLETT PACKARD
8405 A Vector Voltmeter $1-1000 \mathrm{MHz}$
8414 A Polar Display for 8410 N.W.A.
8745A S Parameter Test Set 0.1-2 GHz
11570A Accessory Kit for 8405A
11600A Transistor Test Fixtures
T018/TO-72
11602A Transistor Test Fixtures
TO5/TO-12
11604A Universal extension arm for 8745A 11605A Flexible arm for 8743A

## OSCILLOSCOPES \& <br> ACCESSORIES

## CROTECH

(New CROTECH Oscilloscopes) 303015 MHz 1 Trace 5 mV built-in component tester
303315 MHz 1 Trace 5 mV battery operation 303415 MHz 2 Trace 5 mV battery operation 303510 MHz 1 Trace 5 mV built-in component tester
313115 MHz 2 Trace 5 mV built-in
component tester
333730 MHz 2 Trace 5 mV with signal delay
GOULD ADVANCE
OS 1000 B 20 MHz 5 mV 2 Trace OS 3000 A 40 MHz 5 mV 2 Trace 2 T base HEWLETT PACKARD
182 C 100 MHz Mainframe
182 T 100 MHz Mainframe with digital normaliser interface
1804 A 50 MHz 20 mV 4 Trace Plug-in 1825A Dual Timebase Plug-in
$1805 \mathrm{~A} 100 \mathrm{MHz} 5 \mathrm{~m} V 2$ Trace Plug-in
PHILIPS
PM3207 15 MHz 5 mV 2 Trace TV trig PM3211 15 MHz 2 mV 2 Trace TV trig PM3212 25 MHz 2 mV 2 Trace TV trig

DRANETZ
606 3ch Volts Av/Spike/Time/Printer

FLANN
450 16/11 Rotary Vane Attenuator WG16
HEWLETT PACKARD
$360 \quad 342 A$ Nolse Figure Meter
X382A Rotary Vane Attenuator WG 16
790 MULTIMETRICS
375 AF 120 Dual H/Pass L7 Pass active filter $20 \mathrm{~Hz}-2 \mathrm{MHz}$
PHILIPS
180 PM 5501 Colour TV Pattern Generator
GAY
LDM AC/DC/Spike/Time inc. Printer

## MISCELLANEOUS

TCS General Purpose Gas Leak Detector intrinsically safe
BRADLEY
192 Oscilloscope Calibrator
COMARK
1601 BLS Thermom 10 ch $87+1000^{\circ} \mathrm{C}$ type K
N.B. Thermocouples not included

CROWCON
71P Inflammable Gas Detector/Alarm
DATALAB

7895 Tigle Timebase 400 MHz Trig 7885 Timebase with delay 400 MHz Trig
7403 N 75 MHz 3 slot M/Frame
7603100 MHz CRT r/out 3 slot M/Frame 7704 A 200 MHz CRT r/out 4 slot M/Frame
600
A 1000 12KV probe
TELEQUIPMENT
199 D63/V1/V1 15 MHz 2 Trace 1 mV
PM3233 10 MHz 2 mV 2 Ch fixed delay Dual Beam
M3244 50 MHz 5 mV 4 Trace 2T base PM3260 120 MHz 5 mV 2 Trace 2 T base PM3262 100 MHz 5 mV 2 Trace 2 T base
TEKTRONIX
465100 MHz 5 mV 2 Trace 2T base 465 B 100 MHz 5 mV 2 Trace 2TB, Inc Probes
$290 \quad 475200 \mathrm{MHz} 2 \mathrm{mV} 2$ Trace 2T base 475 A 250 MHz 2 mV 2 Trace 2T base
$325 \quad 485350 \mathrm{MHz} 5 \mathrm{mV} 2$ Trace 2 T base
$58422 \mathrm{~T} /$ base plug-in 50 MHz Trig for 5000
series Mainframe
DD501 Digital Events Delay - P/in for TM500 series
$661 / 4 \mathrm{~S} 3 / 5 \mathrm{~T} 1 \mathrm{~A} 1 \mathrm{GHz}$ Sampling scope
1257 A 12105 MHz 5 mV 2 Trace Plug-in
$7 \mathrm{~A} 1875 \mathrm{MHz}_{2} 5 \mathrm{mV} 2$ Trace Plug-in
7A 19500 MHz 10 mV 1 Trace Plug-in
$10507 \mathrm{~A} 221 \mathrm{MHz} 10 \mu \mathrm{~V}$ Differential Plug-in 7 A 24350 MHz 5 mV 2 Trace Plug-in 7 A 26200 MHz 5 mV 2 Trace Plug-in 7B53A 2 Timebase Plug-in 100 MHz Trig 7853 A 2 Timz Timebase 400 MHz Trig


ull details and specification of equipment listed, available. Because of long copy dates this list is not comprehensive - ring for inventory pdate or tell us your SPECIFIC NEEDS. Hours Monday to Friday 9.30 am -5.00 pm (lunch, $1-2 \mathrm{pm}$ ). Prices exclude delivery and VAT. Ve take Access or Visa.
Carston Electronics Ltd 01-2675311


Before you decide on a test instrument, check the Avo range. Chances are you'll find precisely what you want. And because it carries our name, you can be sure it will perform with consistent accuracy and reliability. Even if a problem does occur, our new
streamlined service department will ensure
that it won't be a problem for long.
So before you test, check with your usual Avo
Appointed Distributor, or contact us for a copy of our Shortform Catalogue.

Telephone: 0304 202620. Telex: 96283


ELECTROVALUE LTO. Dept WW4, 29 St Judes Road, Englofield Green, Egham, Surrey TWzo OHB Phene Egham 33503 (SID 0784, Lendon 87). Telex 264475.
Northern Branch: 680 Burnagé Lane, Burnage, Manchester M19 INA. Phons (061) 4324945.

## The test of ability

# The Profersional Choice 



## Amcron 븞

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on-choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:
$\sqrt[3]{6}$
> G.A.S. ELECTRONICS

> 16, ST. ALFEGE PASSAGE, LONDON SE10 TELEPHONE: 01-853 5295 TELEX: 923393 LASER G


Scopex Instruments now offer you an unrivalled choice of oscillosciopes at under $£ 300$.

The straightforward and successful 14D10 with a sensitivity of $2 \mathrm{mV} / \mathrm{cm}$ at 10 MHz on both channels at $£ 240$ + VAT. The new 14 D 1515 MHz dual trace $5 \mathrm{mV} / \mathrm{cm}$ with active V sync separator at £ 250 + VAT and the sophisticated 14 D 10 V 10 MHz dual trace $2 \mathrm{mV} / \mathrm{cm}$ active TV sync. separator and line selector at $£ 290+$ VAT. All these above prices include two probes, mains plug and carriage U.K. mainland. $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display, add and invent facility, probe compensation, pushbutton $x-y$ and trace rotate are all standard features of this 14D range.

You the customer decide the extras you need to fulfil your specific reauirement.
An Independent British Company
Credit Cards and Orders
contact our Sales department at:

Please send me full details of the 14 D range.
Name
Company
Address_
$\qquad$
$\qquad$ Tel: $\qquad$

## LOW COST VOLTMETERS



> PORTABLE INSTRUMENTS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of our comprehensive range of test and measuring instruments.
These voltmeters give accurate readings over a wide range of frequencies. They are housed in robust steel cases and are powered by long life batteries. Mains power units and leather carrying cases are available as optional extras.

## A.C. MICROVOLTMETERS



WW - 023 FOR FURTHER DETAILS


High voltage, heavy current, delicate instruments or sensitive switching systems. Whatever you need to protect, there's a Sarel enclosure to make sure it stays put, stays protected.

Fumes, fire, water, solvents, dust, impact or unauthorised hands. Whatever you want to keep out, there's a Sarel enclosure to make sure it stays out.

When you want to keep valuable components and vital connections working-come what may-you need more than just a pretty box. You need the total protection and security of a Sarel enclosure.

Steel, plastic,

enclosures, giant monobloc enclosures, control desks, fittings and accessories. You'll find exactly what you're looking for in the new Sarel catalogue. You'll find the price, and the address of a nearby stockist. Getting Sarel enclosures-and peace of mind-is easy, when you know how. Getting your copy of the Sarel catalogue is easy, too.

All you have to do is complete and post the coupon below. We'll mail your catalogue by return, without obligation.


Think big - think Sarel
Sarel Electric Limited
Cosyrove Wey Wown, Beess rel: Luon 20122
$\lceil$ Send me my free copy of the new Sarel $\rceil$ Electric Catalogue, soon!
by


Send the



What brings home the world's best broadcasting system at the touch of a button?

## Simple.

## The OUADFM4

Simply write or phone for more information to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Telephone: (0480) 52561.
for the closest approach to the original sound

## wireless world

## Editor: <br> PHILIP DARRINGTON

Technical Editor: GEOFF SHORTER, B.Sc. 01-661 $3500 \times 3590$

Communications Editor:
MARTIN ECCLES 01-661 $3500 \times 3589$

News Editor:
DAVID SCOBIE
01-6613500 X3587
Design Editor: ALAN KERR

## Drawing Office Manager: <br> ROGER GOODMAN

## Technical Illustrator: BETTY PALMER

Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
DAVID DISLEY
01-661 $3500 \times 3593$
BARBARA MILLER
01-661 $3500 \times 3592$
Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-3564838
Classified Manager:
BRIAN DURRANT 01-661 3106
OPHELIA SMITH 01-661 3033

## Production:

BRIAN BANNISTER
(Make-up and copy)
01-661 $3500 \times 3561$

## Engineering - or dominoes?

During the 1940s, at a grammar school in the north of England, the most wonderful things on display in the glass case outside the science laboratories were a cloud of glass-fibre wool and some coal with a fossil leaf in it. The glass was impossible because everyone knew that glass was hard and brittle and yet here was this soft (though scratchy) stuff made from it, and the coal was just so unimaginably old - older, even, than the physics master who had, some said, discovered fire. Simple things, goodness knows, but worth a couple of lessons in the physics class.
In those days, there was little talk of wireless in the classroom, let alone 'electronics'; classes were taken up with interminable experiments on the latent heat of vaporization and the laborious plotting of magnetic fields. Then, one day, a visiting teacher told the class of his wartime work on radar, speaking of microwaves, 'metallic insulators' and times measured in microseconds. This was a great deal more wonderful than the glass wool and bits of coal and led to rather a lot of daydreaming for some of the class.
Science teaching has advanced greatly in the ensuing 35 years. Microcomputers are becoming commonplace and labs are stocked with oscilloscopes, signal generators and all the other impedimenta of the electronic ' 80 s . Pupils handle circuitry switching at 3ns or oscillators working at several gigahertz or truly compendious i.cs with remarkable nonchalance, if the youngsters seen on television programmes or in the news as competition winners are anything to go by.

It is, it goes almost without saying, necessary for the modern pupil to have the use of advanced, modern equipment. It is right that programming microprocessors should have taken the place of connecting components, in school, as in the world of
work. A micro, given the correct data and program, will do exactly what is expected of it very efficiently, as can be verified by a glance at the storage oscilloscope or logic display, but where is the striving? And, without the striving, where is the learning? Is there a danger of producing a great number of people who call themselves electronic engineers but whose knowledge of electronics stops short at an ability to program and an awareness of the cheapest supplier of interfaces?

The only answer to all these weedy, halfbaked questions is that undoubtedly that is exactly what engineers will be like, and quite soon, too: there is no reason why they should be any different. It has been said for years that the microprocessor is a component, to be used as any other component. There can be little advantage to a user in knowing the precise details of the internal working of a micro - it can be regarded as a machine which will do its job when asked. It is not necessary to know the finer points of oscilloscope design to use one to its fullest extent: neither is it absolutely necessary to know more than the capabilities and characteristics of a micro, or any other i.c., to obtain the maximum performance from it. And when the remaining parts of circuits are also integrated, there will be no pressing need to understand the use of power transistors, or passive components, either, unless one has to design the i.cs. 'Systems engineering' will be supreme:

This is not, of course, to say that all engineers will be satisfied without a detailed knowledge of exactly what happens inside the i.cs. Perhaps these people will be the originators - the ones who, because they know more of the internal operation, will be able to apply i.cs with a greater imagination. But do not decry the simple user of modules: he will know all he needs to know.

# MICROPROCESSORCONTROLLED LIGHTING 

 SYSTEM
#### Abstract

Stage and theatre lighting control is a complex task - yet a task easily handled by a microprocessor. As even the simplest of microprocessors can be programmed to provide and accept data for controlling a lighting system, these articles concentrate on using an existing microprocessor board to process and store complex lighting patterns set by conventional faders, and cover interfacing from digital data, to human input, to light dimmers. Software for the 8085A processor used in the prototype will be discussed in the third and final article.


by John D. H. White and Nigel M. Allinson

This system is designed to simplify the control of complex lighting patterns as used in theatres and studios or at pop concerts. The prototype described in these articles made use of a commercially available 8085A processor board to control up to 256 lighting channels with 8 -bit accur-, acy phase control. Here, we discuss the system's hardware and its ability to linearize the relationship between lamp brightness and fader position.

## Background

Before the introduction of high-power semiconductors the brightness of lamps in lighting systems was controlled by variable resistors or inductors. The cost and size of such inefficient power-control methods meant that systems were kept small and were usually difficult to operate. With high-power thyristors, it was possible to construct very compact dimmers which could be controlled remotely. Initially, this improved power control was used to copy the previous systems; however, the compact nature of the dimmers meant that much larger lighting systems could now be built and controlled. At present, "portable" lighting systems with 80 separate output channels are in common use for popgroup concerts and even larger systems are employed in tv studios and theatres.

All lighting-control systems may be split into two separate sections - the powercontrol section (the dimmers) and the control desk, which is used to control the dimmers. These are usually remote from each other, being connected by multi-core cable. Although the size of lighting systems has increased over the years, the control facilities available have remained rudimentary. A small number of digitally controlled desks are commercially available, though these are expensive and tend to be used in large, fixed installations.

The most common type of circuit used in an analogue control desk is outlined in Fig. 1. Each row of channel faders (presets) is voltage driven by a master fader (master preset). Outputs from each preset for a given channel are then gated together through diodes; thus the final


Fig. 1. This type of matrix is often used in analogue lighting-control desks. In this way, lighting patterns stored at preset fader positions can be recalled using the master faders.


Fig. 2. Using this type of matrix, with plug-in diodes, a great number of lighting patterns can be stored cheaply but the ability to vary lamp brightness continuously is lost.
output from the control desk is the largest preset voltage for each channel. In this way, each master preset can be used to recall a stored lighting pattern (i.e. stored in a row of presets). Because of the cost of faders, the number of master presets is usually fairly small. For pop-group concerts and certain stage applications, the ability to control continuously the brightness of each light is forfeited to allow the storage of a greater number of lighting patterns. The patterns are created and stored by positioning pins, containing diodes, in interchangeable matrix boards, as indicated in Fig. 2.
As the dimmers will use different mains phases (total power requirements may exceed 500 kW for a large system), a standard interface format between the control desk and dimmers is necessary. A direct voltage of $0-10 \mathrm{~V}$ has become the convention in most lighting systems, 0 V corresponding to the lamps being off, and 10 V to full brightness. Figure 3 shows the schematic lay-out of a typical dimmer module. The d.c. control voltage is compared with a ramp synchronized with the line frequency, hence phase-control of the load is pnssible.

Before considering the output hardware, one other question that needs answering; how many control bits are required to give apparently stepless light output variations? For a very wide range of lighting conditions, it was found that seven bits were sufficient for "stepless" light control. Since the microprocessor is an 8 -bit device and most of the integrated circuits used to construct the system are 4-bit devices, it was decided to use 8 -bit codes throughout. This also provides some immunity to the effects of truncation errors in the output code from software calculations.


## Circuit description

Because of the large number of output channels each dimmer unit must be kept simple and economical. Also, since one may wish to increase the number of output channels in the future, a modular design is advantageous. The overall output-control layout is shown in Fig. 5. Each dimmer module is enabled so as to accept data from the microprocessor data bus by a 2 -bit code derived from the 8 low-order bits of the address bus. Hence up to 256 dimmer modules can be given a unique address. Conventional output ports could have been used to enable data transfer to each dimmer module. However, the 8085A processor instruction set contains only one out-put-port instruction (OUT port) and this can only be used in a direct-addressing mode, i.e., the second byte of the instruction must contain the port address. The restriction of direct addressing makes this method unsuitable for use in a lightingcontrol desk because of the large number of outputs required. The solution is to employ mapped-memory output, which uses a section of "memory locations" for

Fig. 3. Outline of a typical circuit. A d.c. control voltage is compared with a ramp synchronized with the line frequency, making phase control at the load possible.


Fig. 4. Measured luminous intensity, as a function of conduction angle, for a 1000 W lamp (see text).



Fig. 6. Address decoding and dimmer enable module.
output. This arrangement allows any instructions which write to memory to be used as output instructions, giving considerable advantages in the software as indirect addressing is permitted. A small amount of extra hardware is, however, required to decode the address lines to enable the outputs.

The digital equivalent to the linearvoltage ramp in an analogue dimmer is an 8 -bit binary code counting from 0 to 255 in each line half-cycle. The 8 -bit synchronous counter is clocked by 51.2 kHz signal derived by multiplying the line frequency. The counter is reset every line half-cycle by a zero-crossing detector.

Each dimmer module compares the latched 8 -bit code from the control desk to the 8 -bit code from the counter. When the counter output is greater than the controldesk code, a 51.2 kHz signal is applied to gate the thyristors, hence accurate phase control of the lamps is possible.

The complete lighting system will contain one address-decoding and dimmerenable module, one frequency-multiplier module, three counter and reset modules (one for each phase used), and one dimmer module per output channel.

## Address decoding and dimmer enable module

The eight high-order bits of the address bus are compared with a bit pattern set by 8 wire-links to determine the location of the 256 output addresses in the memory map. T,wo cascaded 7485 4-bit magnitude comparators, see Fig. 6, generate a highlevel signal when both inputs are equal. This signal, the $M / \overline{I O}$ and $W / \bar{R}$ control signals and the system enable signal, $\bar{E}$, enter a NAND gate to give a signal which is high when valid output

## Subjective brightness control

For full-wave control using a triac or inverse-parallel connection of two thyristors, the $r$.m. . output voltage, $V_{\text {or }}$ is;

$$
V_{\mathrm{O}}=V_{\mathrm{S}}\left(\frac{\pi-\alpha+1 / 2 \sin 2 \alpha}{\pi}\right)^{1+2}
$$

where $V_{S}$ is the r.m.s. supply voltage and $\alpha$ is the conduction angle. This, of course, assumes a purely resistive load. Tungaten lamps have associared with them some inductance and a thermal inertia, which affects their transient behaviour. The perceived brightness of a controlled light source is a complex function of the voltage, and hence the position of the fader on the control desk. A number of factors contribute to this funcrion:

- The resistance of the lamp filament increases over a range of about 20:1 for its enture operating range.
- As the temperature increases, the spectral distribution of the radiant energy changes, approximately in accordance with Planck's distribution law. With increasing temperature, the peak of the radiant energy moves towards shorter wavelengths (i.e, the light is "whiter"), A tungsten-filameat lamp may be considered as a nearperfect universal radiator.*
- Due to the above, the fraction of the total radiant energy visible also changes. Mathematically, the visible output is the convolution of the modified Planck's distribution function and the standard luminosity curve of the human eye.

All these factors can be approximated, with reasonable accuracy, by the simple expression:
luminous intensity, $I=k V_{s}^{c}$
where $k$ and $c$ are constants for a particular type of tungsten lamp. The type of lamp (maximum voltage, wattage, etc.) has a slight effect on $c$. Most references consider $c$ to lie between 3.2 and 3.5 . Our experrence suggests a slightly lower value for a wide range of lamp types. The measured huminous intersity as a function of conduction angle for a 1000 W PAR64 lamp is given in Fig. 4. This general curve holds for all forms of tungsten lamp, and is used to linearize the relationship between lamp brightness and fader position in this system. It is worth noting here, that measured photometric brightness, $L$, of a surface (its luminance) is not generally the same as its subjective brightness, $B$. Subjective brightness is deternined in pan by the luminance of an object, and in part
by the conditions of observation such as the state of adaptation of the eye and the luminance of surrounding areas. The relationship between luminance and subjective brightness is still an area of active psychophysical research. Engineers are often satisfied with approximate relationships, and, from accumulated experimental evidence, a simple though approximate relationship is:

$$
B=a L^{\dagger}
$$

where $y$ is $1 / 3$ or $1 / 4$, for dark or bright surroundings respectively. $\gamma$-correction is most commonly encountered in the design of ty displays. However, our experimental work with slowly increasing the brightness of lamps suggested that the best subjective linear increases in subjective brightness was obtained by ignoring $\gamma$-correction and simply using the relationship for luminous intensity. The inverse of the above function (i.e., the first two equations combined) is calculated for each discrete step in the dimmer control code.
*This term is used in preference to black body because a very hot object or surface radiator will radiate visibly; "universal" applies to both absorption and emission. - Ed.
data is present on the data bus. The 8085A processor system employed in the prototype design was a Quarndon Electronics Ltd. QMS 858085 development system, which produces an overall system-enable strobe. $\overline{\mathrm{E}}$ will be low whenever the WR, RD or INTA of the 8085A is low. For "write" cycles, the data bus is stable while $\bar{E}$ is active.

The valid-data signal is used to strobe the G1 and G2 inputs of two 74154 4-to-16line demultiplexers connected to the eight low-order bits of the address bus. Two dimmer enable signals, E1 and E2, from the 32 outputs of the demultiplexers, give 256 unique addresses for the dimmer modules.

## Frequency multiplier module

A 51.2 kHz clock signal for the 8 -bit counters, shown in Fig. 7, is obtained by multiplying the line frequency by 1024. The phase-locked loop (NE565) has a feedback divider chain consisting of five 7474 dual D-type flip-flops. The capture range is set at $\pm 2 \mathrm{~Hz}$. The t.t.l. input signal to the phase comparator is at half-wave rectified mains frequency. Although t.t.l. compatible, the square-wave output of the v.c.o. will only provide a current of about 1 mA , so the output is buffered to drive the counter and divider chain.

## Synchronous counter and reset module

This circuit, shown in Fig. 8, generates a 8 -bit binary code which counts from 0 to 255 in half a line period. The 51.2 kHz signal from the frequency multiplier is used to clock two cascaded 74161A 4-bit counters. The CLEAR inputs of these counters are used to reset them at the zerocrossing points of the mains. The full-wave rectified a.c. is applied to the voltage comparator (741). The output of the op-amp is inverted and converted to t.t.l. levels by the following common-emitter stage.

## Dimmer module

The 8 -bit code from the control desk, through the data bus, is stored in two 7475, 4 -bit bistable latches, Fig. 9. These latches are enabled, i.e., data on the data bus is transferred to their Q outputs, when the dimmer module is addressed by its own 2-bit dimmer enable signal, El and E2. Data stored in the latches is compared to the output of the counter by two cascaded 7485s. When the count from the counter is greater than the latch data, the 51.2 kHz signal is gated to the thyristors through some buffer stage and pulse transformer. Some interference and transient protection is provided by the inductor and capacitor.

## System performance

Some advantages of feeding data to a large number of channels have already been mentioned. Also, since the access time for each dimmer is less than the 410 ns (the maximum data-bus access time permitted by the processor), no processor WAIT states are involved in trarismitting data. This, of course, maximizes 'the data transference for updating the dimmers and


Fig. 7. This circuit is used to multiply the line frequency by 1024 to provide a 51.2 kHz clock signal for the 8-bit counters.

Fig. 9. A dimmer module. The 8 -bit code from the control desk is stored in two 4-bit bistable latches, and passes to the outputs when the enable signal, derived from E1 and E2, is given. When the counter input to the comparators is greater than the latch output data, the 51.2 kHz signal is passed to the thyristors through a buffer stage and transformer.


helps to produce a highly interactive lighting system.

The effect of linearizing the luminous output of the lamps with the position of the faders is indicated in Fig. 10. The output code FF corresponds to the lamp being off, and the code 00 corresponds to full brightness. The slight delay at the start is due both to truncation errors in forming the inverse function mentioned earlier and to slight measurement difficulties. It could be removed by incorporating a suitable offset in the output coding, but from an operating point of view there are quite
distinct advantages in having a definite "lamps off" position on the faders. In the system, the 256 values of this inverse function are held in a "look-up table" in the operating software. For a non-microprocessor system, there is no reason why these values could not be contained in a p.r.o.m.
The complete operating system not only provides routines for inputting and outputting data, but also various methods for processing the stored lighting patterns. In the next article, the control desk will be discussed.
To be continued

Fig. 8. Synchronous counter and reset module. An 8 -bit binary code counting from 0 to 255 in a half-line period is generated.


Fig. 10. The effect of linearizing the luminous outputs of the lamps in relation to the fader position.

## Fibre optics at ITT

Joining optical fibres, especially in the field, is very difficult. ITT have developed a fibre optic splicing kit, the OFSK-10. Primarily intended for the jointing of $50 / 125 \mu \mathrm{~m}$ telecommunications grade fibres and other fibres of an allsilica construction, the kit uses an electric arc to fuse together the two ends. A $V$-groove jig has been developed to locate the ends accurately so that very high quality splices can be achieved.

Testing fibres in the field can also be a problem; it is very unlikely that the engineer has access to both ends of a cable but needs some method of locating a fault in a cable which can be up to 15 km long, between repeaters. $\mathrm{An}^{\circ}$ answer has been provided by ITT in the OFR-3, an optical fibre reflectometer. If a short pulse of high intensity light is launched into an .optical fibre, a small proportion of the light is reflected back towards the source from every point in the fibre. The reflections are 'backscatter' caused by imperfections in the molecular structure of the silica. The power of the reflected light, measured at the source end, decays exponentially with time, and by inference, with distance of the pulse into the fibre. The OFR-3 uses a laser to launch a pulse into the fibre and can measure and record the response from the reflections. Joins along the cable can cause extra reflections causing a peak in the response. Faults in the cable will cause drops in the response. The OFR- 3 can display that response on an oscilloscope which includes an alpha-numeric display of all the relevant parameters. With the use of a cursor any part of the response can be looked at in more detail and the oscillogram with all the data display can be printed out for permanent record. The 'scope and printer are incorporated into the equipment which all fits into a portable case. All the controls and the laser are incorporated in the lid The laser fits


The OFR-3 can trace faults in an optical fibre to within six metres over a length of 15000 m .
behind a locked hatch and cannot be switched on unless connected to a cable. Any fault can be traced to within six metres resolution over a distance of 15 km . ITT are already working on the OFR-4 which will be able to inspect a cable of even greater length -up to 100 km .
ITT are particularly proud of two new applications for fibre optics. There is a plan to link the British and French electricity grids. One hour's difference between the clocks in the two countries means that peaks occur at different times and an extra boost can be provided across the channel. To avoid the need for frequency matching, the link will be d.c. G.E.C. are building the U.K. end of the link. Rectification will be by stacked thyristors each of which will work
at a different potential and will therefore have to be isolated from the other in the stack. To avoid using a number of isolating transformers, the switching pulses will be carried to the thyristor gates by fibre optics cables. A special cable has been developed to withstand voltage potentials of up to $5 \mathrm{kV} / \mathrm{cm}$. In parallel with the development of the cable has been the design of an 1.e.d. edge connector array for providing the individual pulse firing signals for each thyristor. The link is to be commissioned in 1985/86.
Another new application is a cable television link which is to be given a trial by British Telecom to 18 houses in Milton Keynes. The trial will use optical transmission based on p.f.m. (pulsed frequency modulation) in which the tv signal frequency modulates a square wave carrier which then drives an l.e.d. source. All the transmitter and receiver modules including the modulators and demodulators have been supplied by ITT Leeds.

BT are already running a cable tv service in Milton Keynes. For the trial, the programmes are down-converted into baseband and separated into individual channels ( 0 to 6 MHz PAL, video with sound). In addition a channel is formed consisting of the f.m. radio programmes on carriers in the range 0 to 7 MHz . Each channel is fed to its own transmitter and a ten-fibre cable carries the channels to a distribution point. The cable used for the 3.5 km primary link contains fibre of better than $4 \mathrm{~dB} / \mathrm{km}$ loss and $400 \mathrm{MHz}-\mathrm{km}$ bandwidth-distance product. From the distribution point the secondary link of between 50 and 200 m goes to each customer. Signal information and channel selection are transmitted back from the customer's end to a microprocessor control which provides the channel switching and can monitor information about transmission on both primary and secondary links. In the home the signal is received optically, demodulated to baseband and then up-converted to u.h.f. so that it can be fed into the aerial socket of an ordinary tv.

# 555-TYPE INTEGRATED CIRCUITS 

## The 555 group of i.cs is one of the most popular ever made, with an enormous variety of applications in oscillators and timers. John Linsley Hood explains its internal design and method of operation

If the 1950s were the decade in which linear electronic circuits, previously implemented using thermionic valves as their active components, were progressively taken over by transistors, then the ' 60 s were the decade in which such circuits, built up from an assembly of discrete components and transistors, were increasingly constructed using one or two simple packages of purpose-built circuitry, containing all the necessary active and passive components in a single lump. The term 'integrated circuit' was coined at this time to describe this packaged assembly of components.
While it was the enormous progress in the field of digital computers; which convinced the i.c. manufacturers of the enormous benefits of scale, it was the consumer market which provided the chance of profitable manufacture away from the computer field.

The realization that there was a large potential market set the design departments of many of the larger semiconductor manufacturers exploring the possibilities for useful functional packages. Clearly, an i.c. functional block which could be used with a relay and a timing capacitor to provide time delays or timing cycles, as, for example, in a washing machine or a darkroom enlarger timer, would have a lot of uses, and several such i.cs were evolved at the end of the 1960 s . Of these, by far the most successful was the Signetics 555. A number of manufacturers have copied it in identical form - in the process of what is known as 'second sourcing' - and produced in dual (556), quadruple (558) and c.m.o.s. (ICM7555) versions, along with sundry improved devices having the same pin configurations, such as the LM555C.

With the possible exception of the ubiquitous i.c. operational amplifier, few integrated circuits have had such an appeal

by J. L. Linsley Hood

to the hobby electronics constructor, with several complete books of circuits having been published showing possible applications for this device. Yet, in spite of this, to most of its users, its method of operation remains needlessly obscure, and many attempted applications founder on inadvertent incompatibilities between the internal and external circuitry.

## Circuit description

The 555 is fundamentally intended to give an output voltage waveform, as a 'oneshot' or in a repetitive manner, at a low enough output impedance to operate a reasonably sensitive relay. To simplify calculations for the timing $R C$ chain - in which the time constant $R C$, in seconds, is the time taken for a capacitor $C$ to charge through resistor $R$ to $63.2 \%$ of the applied voltage - the internal voltage switching levels are chosen so that the external timing capacitor charges through about this voltage differential. A simplified block diagram showing the internal arrangement is given in Fig. 1.

In this, the heart of the circuit is a bistable 'flip-flop' with an external overriding reset input $R$. The two normal inputs are the threshold and the trigger connexions, both of which are fed in through relatively high-impedance buffer amplifiers, connected, respectively, to reference voltages of $2 / 3 V_{c c}$ and $1 / 3 V_{c c}$., derived from the 15 k resistor chain'. Two buffered outputs from the flip-flop are provided through amplifiers $A_{1}$ and $A_{2}$, the first of which is a normal 'totem pole' output arrangement, as typically used in t.t.l. logic, to give a fairly low output impedance, and good current-sourcing characteristics. The second output, from $A_{2}$, is derived simply from a single transistor 'open collector' stage.
The way in which the 555 would normally be connected to operate as a 'oneshot' timer driving a relay, is shown in Fig. 2(a). In this the threshold input and the discharge (open-collector amplifier) output are joined together, and taken to the junction of timing resistor $R$ and timing capacitor $C$; the timing cycle is initiated by

Fig. 2. 555 as a one-shot relay timer, with manual start and reset.

a momentary operation of a push-switch connected to the trigger input. This sets the $Q$ output from the bistable, and both of the non-inverted outputs from $A_{1}$ and $A_{2}$, to a high state. In the case of $A_{1}$, this will energize the relay $\mathrm{RL}_{1}$, and in the case of $A_{2}$, the result will be that its output becomes an open circuit, so that the timing capacitor $C$ is free to charge up towards the $+V_{c c}$ line.

Once the Threshold input level has reached $2 / 3 V_{\text {cc }}$, the 'reset' input to the bistable, $R$ in Fig. 1, is taken high, when it reverts to its initial state, with $A_{1}$ output 'low' - so that the relay is de-energized and $A_{2}$ at a low impedance. This holds the


Fig. 3. Connexion for a free-running oscillator, with a frequency determined by the constantcurrent source and the value of $C$..

(a)


Fig. 4. Flip-flop block of Fig. 1 in logical form at (a) and in its practical arrangement at (b).


Fig. 5. Flip-flop $\left(T_{2}\right.$ and $\left.T_{r_{3}}\right)$ shown in relation to threshold, trigger and output circuitry.


Fig. 6. Input amplifier for threshold voltage.
timing capacitor discharged and at a potential close to the 0 volt line level, ready for a further timing cycle to be initiated, by an input at a level less than $1 / 3 V_{\text {ce }}$ being applied to the Trigger. The output waveforms are shown in Fig. 2(b).

Since the Trigger input is also taken to the bistable through a impedance buffer amplifier, it is practicable to connect this to the timing circuit as well, without imposing too much of a static load. This will convert the circuit into a 'freerunning' sawtooth generator, with an output of $1 / 3 V_{\mathrm{cc}}$, as shown in Figs 3(a) and 3 (b). Moreover, if the timing resistor $R$ is replaced by an appropriate constantcurrent source, the output at point A will be a highly linear waveform, suitable for use in a time-base generator, and with a sync. input available at the override reset $R$ of the bistable.

The bistable flip-flop is itself a very simple arrangement, shown schematically in Fig. 4(a) and in its practical form in Fig. 4(b). In this circuit, if the input (1) is taken high, even momentarily, the output will also go high and remain at that state. Similarly, if the input is taken low, the output will also follow, and remain. The fact that the transistor circuit of $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ can be made to behave like this depends on the characteristic that a transistor turned hard on will have a collector-emitter voltage drop of only some 0.1 to 0.4 volts, depending on construction and $I_{\mathrm{b}}$ and $I_{\mathrm{c}}$, whereas the minimum voltage necessary at the base, for conduction, will be at least 0.5 volts in a silicon device.

The way in which this circuit is organized, with respect to its output circuitry, and its threshold, trigger, and reset inputs, is shown in Fig. 5. Because the transistor $\mathrm{Tr}_{8}$, in the reset circuit, acts as a switch directly connected between the positive end of $D_{3}$ and the discharge circuit open-collector amplifier, this will cause $\mathrm{Tr}_{3}$ to be turned off, with $\mathrm{Tr}_{4}$ and $\mathrm{Tr}_{6}$ turned on. This will reset both $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$ outputs to the low level.
While this input, being connected later in the circuit than the trigger input, will over-ride the trigger signal, if the trigger input is held low, the circuit will revert to the operating condition, with $\mathrm{A}_{1}$ high and $\mathrm{A}_{2}$ open circuit, as soon as the reset signal is removed.

The two input amplifiers used in the threshold and trigger circuits, are of similar form, as shown in Figs 6 and 7, using Darlington connected, fourtransistor, long-tailed pairs. However, it should be borne in mind, as explained in the first article of this series on the 741, that the integrated circuit manufacturing process does not normally allow the construction of p-n-p transistors, within the i.c., which have a very high current gain, except in the circumstance that their collectors are directly connected to the substrate, (which is normally the 0 V line). Since the input p-n-p transistors of the trigger circuit do not meet this condition, they must be of the 'lateral' type, which gives : n inferior input impedance to this amplifier to that of the $n-p-n$ input devices


Fig. 7. Trigger input amplifier, using p-n-p transistors.


Fig. 8. Improved trigger amplifier, using higher-gain p-n-p transistors and a current-mirror collector load for Tr $_{18}$.
used on the threshold circuit input. To compensate somewhat for this deficiency, the trigger amplifier input circuit is operated at a very low collector current. Nevertheless, the input impedance for this circuit is still some five times lower than for the threshold input. In the National Semiconductor LM555, this circuit is modified, and improved, as shown in Fig. 8, to use a better type of input p-n-p transistor, together with a current mirror collector load ( $\mathrm{Tr}_{\mathrm{x}}$ and $\mathrm{Tr}_{\mathrm{y}}$ ).

The complete circuit of the 555 is given
in Fig. 9, to show how the separate elements are connected together. Although the circuit is referred to in the data books as linear, because its operation is essentially digital in form, switching rapidly from one stable state to another, there is no need for any of the h.f. compensation of the amplifier elements customary in normal linear devices. This allows very fast rise and fall times at the output, of the order of 100 ns , and
Fig. 9. Complete circuit of Signetics NE555.


Fig. 10. Time delay as a function of R and C in Fig. 1.


Fig. 11. Variation of Fig. 3 oscillator frequency with R and C (constant-1 source replaced by R if sawtooth linearity not important).
repetitive operation at frequencies approaching 1 MHz .

Typical time delay and free-running frequency graphs are shown, for completeness, in Figs. 10 and 11.


# DIGITAL, MULTI-TRACK TAPE RECORDER 

> The final article in this series describes the motor speed control circuitry and the power supplies. The few modifications to the original tape recorder, used as the basis for this design, are also presented, with advice on adjustment of bias, equalization and signal level.

The VLF910 cassette tape-deck used in the Hart version of the Linsley Hood cassette recorder uses only one motor for the capstan drive, take-up spool and rewind spool. In spite of this, and though relatively cheap, its specifications are excellent and the success of the digital recorder design is due in no small part to this excellent deck. The motor used is called a fre-quency-servo type and consists of a motor unit and tachogenerator. Earlier versions of the VLF910 deck used a motor, type R14-7430, 03Y8D, with a built-in tacho generator which produced an a.c. output with amplitude and frequency proportion al to its speed. When running at the normal tape speed of $17 / 8 \mathrm{in} / \mathrm{s}$, the frequency output was approximately 456 Hz . Later versions of the VLF910 deck use a different motor, type MMX-6H2LSB, which, instead of a tachogenerator, has a rotating magnetic disc attached to the motor shaft and an associated Hall-effect i.c. When running at a tape speed of $17 / 8$ $\mathrm{in} / \mathrm{s}$, the output on one of the pins of the Hall-effect i.c. is a pulse train of frequency about 912 Hz . (Although the figure of 912 Hz is claimed as approximate with res-
'Research Department, London Transport.

by A. J. Ewins, B.Tech.

pect to a tape-speed of $17 / 8 \mathrm{in} / \mathrm{s}$, it is exactly double that produced by the tachogenerator of the earlier motor).

Both motor types have additional builtin electronics to produce a closed-loop servo system. Although the motors are said to be frequency-servo types, the speed of the motor is not locked to a reference frequency: the frequency so produced by the 'tachogenerators' is converted to a voltage, using a pulse-width discriminator circuit, and then compared to a reference voltage. The stability of the speed of the motor thus depends upon the stability of the reference voltage.

For accurate speed control of the taperecorder, the motor speed must be locked to a reference frequency. The importance of this speed control is not so great during the recording process, but absolutely vital during playback to ensure that the temporary storage buffers are filled with data at precisely the same rate as they are emptied. Short-term wow and flutter content of the data is not important because the number and length of the tempo-
rary storage buffers are designed to cope with this short-term variation.
The block circuit diagram of the taperecorder speed control circuit was shown in Fig. 11 in part 2 of the series: Fig. 47 shows the circuit of the reference frequency selector, v.c.o. and phase sensitive detector. The v.c.o. and p.s.d. are contained within the c.m.o.s. phase-lockedloop i.c., type 4046. So that the tape-recorder speed control can be self-contained, the v.c.o. is used as the frequency reference source in the absence of any external reference. Using the values for the timing capacitor and resistor as shown, the $5 \mathrm{k} \Omega$ variable resistor is adjusted to give an output frequency of 455 Hz . (This is the same as the tape-clock frequency of $22,755 \mathrm{~Hz}$ divided by 50.) In the absence of an external frequency input, the reset input to the 4017 counter will be at the logic 0 level. The output from the v.c.o. clocks the counter so that evntually the '5' output becomes logic 1 , disabling the counter. In this condition, the carry-out, CO , is at logic 0 . The output from Nand 2 is thus at logic 1 and the output from Nand 3 is the inverted v.c.o. signal. Nand 4 inverts this signal yet again, presenting a non-inverted v.c.o. signal to the input of the Ex-Or


Fig. 47. Motor speed control circuit and 'in-lock' indicator.
p.s.d., whose other input is that from the tachogenerator pulse shaper. When the phase-locked loop of the speed-control system is in lock, the frequency from the tachogenerator pulse shaper is exactly that of the v.c.o., but it leads it in phase by about $90^{\circ}$. Consequently, the D input to the D-type flip-flop is at the logic 1 level when the Ck input goes positive, putting a logic 1 on the $Q$ output of the flip-flop, lighting the I.e.d. and giving a visual 'inlock' indication. With logic 0 on the $\bar{Q}$ output, the audible indicator is silent. In the event of a loss of lock the I.e.d. will flash and the audible indicator will warble at a frequency dependent upon the rate of slippage between the two frequencies.

The output from the p.s.d. is passed to the motor drive circuit of Fig. 48(a) or (b). It is filtered by a lead-lag low-pass filter, consisting of the 100 k input resistor to the 351 op -amp and the 39 k plus $5 \mu \mathrm{~F}$ capacitor ( $11 \mu \mathrm{~F}$ in Fig. 48(b)) feedback loop. The low-frequency gain of the inverting op-amp is limited to unity by the 100 k feedback resistor. The resulting out-
put from the op-amp drives the motor via, the emitter-follower circuit using a Darlington power transistor, TIP121. The 10k resistor and base-collector feedback capacitor of $\operatorname{lnF}$ provide some necessary highfrequency cut-off to the emitter-follower stage. The values of the filter components were found by trial and error to produce a stable and trouble-free p.l.1. servo system under all conditions of Play, Rewind and Fast Forward operation of the deck.

The direct offset voltage produced at the output of the op-amp by the potential divider circuit on the non-inverting input is essential to the self-starting action of the servo system. The 20 k resistor should be adjusted such that the p.1.1. finds lock in one or two seconds after pressing the Play, Rewind or Fast Forward keys. If the voltage on the non-inverting input is too low, the p.1.1. will not find a 'lock', the

Fig. 48. Motor drive circuit and tacho pulse shaper. Version for motor Type R14-7430, 03Y8D is at (a), while that used for motor Type MMX-6H2LSB is shown at (b).
motor speed remaining too low; if it is too high, the loop will find and lose its 'lock', the motor speed ending up too high. When a satisfactory setting for the 20 k resistor has been found it will be observed that the tachogenerator waveform leads the v.c.o. output by a little more than the ideal $90^{\circ}$. This phase difference will change a little under varying load conditions but should not vary so much as to lose lock.
The tachogenerator pulse shaper circuit shown in Fig. 48(a) is that for the motor with the built-in tachogenerator, while that in Fig. 48(b) is for the motor with the mechanically coupled magnetic disc and Hall-effect sensor. Because the output from the speed sensing circuit of Fig. 48(b) is exactly double that of Fig. 48(a), the output from the pulse shaper is divided by 2.
C.m.o.s. circuits of Fig. 47 and the pulse shapers of Figs. 48(a) and (b) are powered from a 15 V supply, which is provided by a $15 \mathrm{~V}, 100 \mathrm{~mA}$ regulator powered by the cassette recorder's 20 V stabilized supply line. The 20 V supply powering the

motor drive circuit is that normally supplied to the positive lead of the motor, switched by the various keys of the cassette deck.

## Motor modifications

Both types of motor may be removed from their outer casings by careful removal of the back-plate. For motor type R14-7430, 03Y8D, the built-in electronics should be completely removed. The tachogenerator output is identified by two yellow leads, whilst the motor contacts are two terminal posts to which the internal p.c.b. is soldered. The two yellow leads should be extended, and two wires, red and black, should be soldered to the two terminal posts of the motor, making certain which is the positive and negative terminal. Reversal of these two motor connections will result in the motor running backwards, but no damage will be done.
With the back off the motor type MMX6 H 2 LSB , the frequency output of the Hall-effect sensor should be identified before any modifications are carried out. This is done by running the motor from a nominal 12 V source and using an oscilloscope to identify the frequency output pin of the i.c. Having done this, remove the power transistor of the built-electronics: this automatically breaks the internal servo loop. A low-value resistor from the positive supply line to the positive pin of the motor drive should then be removed, and a link made from the negative pin of the motor drive to the negative supply line. Connections then need to be made to the positive supply line of the built-in electronics, the positive pin of the motor drive, the negative supply line of the builtin electronics and the frequency output pin of the Hall-effect i.c.

## Use of the reference frequency circuitry

When operated with the rest of the digital electronics of the recorder, the reference frequency for the speed control circuit is supplied by the 'reference frequency circuitry', shown in block form in Fig. 11 of part 2. During the recording process, the
reference frequency is the TC frequency of $22,755.5 \mathrm{~Hz}$ divided by 50 , i.e. 455.1 Hz . When this source is connected to the external frequency input of the motor speed control circuit, the internal v.c.o. source is automatically 'knocked-out'. The 4017 counter of Fig. 47 is continually reset by the presence of the external frequency source with the result that CO remains at the logic 1 level and the 5 output at logic 0 . The external frequency source thus passes through Nands 2 and 4 to the input of the p.s.d., the output of Nand 3 being permanently maintained at logic 1.

On playback, the reference frequency presented to the speed control circuit is that from a v.c.o. whose output frequency is dependent upon the average voltage at its input, which is the filtered output of a p.s.d. comparing the crystal-controlled TC with the recovered TC from the recorded data of one track of the tape-recorder. Thus, on playback, the speed control of the tape is maintained by a p.1.1. servo system within another p.1.1. Some readers may think this a very curious system and wonder why the output from the p.s.d. comparing the crystal and recovered tapeclocks is not simply connected to the motor driver circuit. The answer to this is that the dynamics of the record and playback servo loops are totally different. On record, the tachogenerator is directly coupled to the motor, but on playback the recovered tape clock is mechanically coupled to the motor through the capstan and belt drive. It is not impossible to achieve a p.1.1. by the more obvious method, but it is very unstable and easily disturbed, losing lock, by any vibration of the deck. The solution used here is very much more satisfactory, offering as it does a very convenient method of switching from one reference frequency (on record) to another (on playback). by having a very much lower natural frequency for the p.1.1. of the reference frequency generator than for that of the motor speed control circuit, the instability produced by the belt drive mechanism is removed and there is no instability produced by one p.1.1. upon the other.

## Power supplies

The Hart version of the Linsley-Hood cassette recorder is mains-powered but can very conveniently be made to operate from a 24 volt d.c. source. Because there was a requirements for the recorder to be operable independently of a mains supply it was decided that it, too, should be capable of operating from 24 volts d.c. As a result, the power supply of Fig. 49 was designed and constructed. Since a very large number of c.m.o.s. i.cs are used in the digital circuitry it was decided that they were worth protecting from any overvoltage spikes. Consequently the 'crowbar' circuit was added: in the event of an overvoltage spike, the thyristor is triggered, causing the fuse in the positive supply rail to the 7815 regulator to blow. An overvoltage of approximately 16 volts is needed to trigger the 'crowbar' circuit.
A switching inverter circuit, shown in Fig. 50, is used to generate the negative rail voltage. The heart of the circuit is the $78 S 40$ switching inverter. Using the values indicated, the output voltage from the switching inverter circuit across the $47 \mu \mathrm{~F}$ capacitor should be approximately -18 volts, at a load current of about 120 mA .
This type of switching inverter does not operate very well under varying load conditions, so a shunt regulator is used to drop the -18 volts to -15 volts. Approximately 100 mA is drawn from the -15 volt rail by the various analogue and digital i.cs in the circuitry: there is thus no need for the 2N3053 transistor to be fitted with a heatsink. The 2N2905 transistor of the switching regulator also dissipates little power and needs no heatsink.

## Modifications to tape-recorder

The Miller-coded data recorded onto tape is effectively a series of square-shaped pulses, ranging in frequency from about 5.5 kHz to 11 kHz , which should be modified, or distorted by the recorder as little as possible. The transient response of the

Fig. 49. Power supplies.


tape-recorder is more important, in its present use, than a flat frequency response.

To obtain the desired record/replay characteristics, the signal level, bias level and equalization must be adjusted. Firstly, the frequency response of any tape-recorder is the wider, the lower the signal level recorded. In normal use, the level of the signal to be recorded is a compromise between frequency response, distortion and signal-to-noise ratio: too high a level results in distortion and too low a level results in a poor signal-to-noise ratio. Sig-nal-to-noise ratio is not a problem in the present use of the tape-recorder since the Miller-coded data is recorded at a constant signal level with no amplitude variation. The recording level can thus be reduced, improving the quality of the signal in terms of frequency response and distortion, provided, of course, it is not reduced to a level where noise imposes itself on the signal.

The level of the high-frequency bias can have a considerable effect upon the recorder's frequency response; high levels of bias producing an attenuation to the high frequency signals but some reduction in distortion.

Finally, adjustment of the equalization characteristic has a great effect upon the amount of high-frequency pre-emphasis and modifies considerably the transient response of the recorder.

In addition to all the possible adjustments mentioned, it must not be forgotten that the quality of the tape used is of prime importance. The author formed a considerable liking for Maxell UDXL II cassette tapes, both C 60 s and C 90 s. It is a CrO type tape, requiring a high bias level and a 70 us equalization characteristic and has all the usual advantages of good frequency response, etc. The cassettes are also very sound mechanically. This is not the only suitable tape available - other tapes may perform just as well - but the tape recorder should be set-up using this tape. Having satisfactorily adjusted the tape-recorder to operate with the digital electronics, other brands of tape may be tried to determine their suitability.

When I began recording the Miller-encoded data on to tape to discover how well

Fig. 50. Circuit diagram of switching inverter and regulator block seen in Fig. 49.
the recorder performed, a problem occurred with the transport mechanism that was not immediately appreciated. The replayed signal, having passed through the peak detector and Miller decoder, was found to contain errors in the data stream which were initially thought to be due to the recorder's limited frequency response. Consequently, 1 experimented at length with the various adjustments mentioned earlier. Subsequently, the main reason for the errors in the replayed and decoded data was found to be due to jerkiness in the take-up spool of the tape-recorder, which was caused by incorrect operation of the slipping-clutch mechanism driving the take-up spool. The slipping-clutch was not, in fact, slipping, but the brass bush on the end of the slipping-clutch spindle, in contact with the rubber-tyred pulley of the take-up spool mechanism, was slipping jerkily. The problem was effectively cured by taking the slipping-clutch mechanism apart and 'weakening' its compression spring. The author is pleased to be able to say that a second tape-recorder, bought from Hart electronics at a later date, has a cassette deck with a modified slippingclutch mechanism that gave no such problems. However, as a result of this fault, the author discovered a number of adjustments that should be made to the recorder to improve its record/replay characteristic of the Miller waveform.

- The 0 dB recording level of 2.25 volts r.m.s. at the output of the recording amplifier should be reduced by about 4 dB to 1.42 volts r.m.s., which corresponds, on playback, to an output from the replay amplifier of about 250 mV r.m.s., i.e. 4 dB down on the original 400 mV level. The 'VU' meter circuit sensitivity should be adjusted accordingly for a 0 dB reading when the output from the recording amplifier is 1.42 volts r.m.s.
emphasis should be reduced to a minimum by adjustment of $\mathrm{Vr}_{2}$ to maximum resistance on the recording amplifier board.
- The bias oscillator frequency should be raised from about 55 kHz to nearer 80 kHz by replacing the capacitor, $\mathrm{C}_{23}(10 \mathrm{nF})$, of the bias oscillator circuit with one of 6.8 nF and by changing $R_{50}$ from 150 ohms to about 200 ohms.
- The $70 \mu \mathrm{~s}$ record/playback equalization characteristic should be used and a slight improvement may be obtained by changing the valve of $\mathrm{C}_{6}$, on the replay board, from 27 nF to 18 nF .

The bias level should be high with the 47 k variable resistor adjusted for the highest leve! possible. This should result in a bias voltage, as measured at the junction of the 47 k variable resistor, and the 220 pF capacitor $\mathrm{C}_{20}$ ( L or $R$ ), of about 10 V r.m.s.

The actual bias level does not appear to be very critical, but a high level produces a steadier signal, on replay, with less amplitude flutter. As the recorded signal has no low-frequency content below 5.5 kHz the erasing effect of a high bias is of little consequence and the reduced distortion probably beneficial.

With all the above adjustments carried out, and the cassette deck operating in a mechanically satisfactory manner, little or no errors should be observed in the resulting replayed decoded data. Those errors that do occur should be due only to imperfections in the tape.

This concludes the series of articles. Stripboard layouts prepared by Mr Ewins are available in photocopy form: please write, including a large, stamped and addressed envelope, if you would like copies.

The amount of high-frequency pre-

## 50 MHz stays good

In the February WoAR I suggested rather prematurely that "fewer transatlantic signals have been heard on 50 MHz this winter although some $28 / 50 \mathrm{MHz}$ cross-band working has proved possible". J. R. R. Baker, GW3MHW, near Aberystwyth, Dyfed, a devoted 50 MHz enthusiast, feels my comment does less than justice to what, in his view, has proved to be an even more fascinating period than two years ago at the peak of Sunspot Cycle 21. Then, he admits, there were outstandingly strong 50 MHz signals that enabled a number of British amateurs to work all ten American "call areas". Altogether some 150 British amateurs and more than 20 other Western European stations participated in the transatlantic cross-band working. A few European stations, including about a dozen in Holland, were permitted to transmit on 50 MHz .

Good results were also achieved during the 1980-1 season, with rather more Central American and Caribbean signals. No high hopes were held for the 1981-2 season, yet GM3MHW considers it has proved as good, in its way, as the two previous years: a few openings in late October, daily openings throughout November (except November 7), almost daily in December, and occasional openings in January 1982. On January 27, GW3MHW made his 449th cross-band contact for the season, compared with about 400 in each of the two preceding years, including many Caribbean and South American stations. Ken Ellis, G5KW contacted 48 of the American States. Several British amateurs made $70 / 50 \mathrm{MHz}$ contacts with Canadian VEIASJ.

These results, two years after the peak of Cycle 21, are being regarded as so encouraging that it is proposed to publish a regular newsletter for 50 MHz enthusiasts (from G4JCC or G4JLH for modest payment to cover postages and stationery).

## The GaAs mosfet

The current availability of lower cost gallium arsenide f.e.t. devices, including dual-gate mosfets at around $£ 5$ or less, means that receivers with noise figures of under 1 dB and with good dynamic range can now be achieved by amateurs on 144 and 432 MHz . Devices include the 3 SK 97 and 3SK98 developed in Japan for use in television receiver tuners but it is believed that comparable devices will soon become available from European firms. For example, D. J. Robinson, G4FRE, has measured 0.9 dB noise figure with 18 dB gain (circuit, not total system figures) at 430 MHz . On 144 MHz the French amateur F6CER has described a receiver frontend comprising a 3 SK 97 r.f. amplifier,

MD151 doubly-balanced diode mixer and P8000 impedance-converting groundedgate amplifier, followed immediately by a 9 MHz crystal filter. These GaAs mosfets are roughly one-quarter or less of the cost of most high-performance s.h.f. gasfets.

Further advances in the field of super low-noise GaAs mosfets have been reported recently by Hughes Aircraft who, with laboratory devices, have achieved a noise figure of 1.3 dB with 10.3 dB gain at 12 GHz . The GaAs mosfet seem destined to play an increasingly important role at frequencies from about 100 MHz upwards.

## From all quarters

Following the example of the British teletext services, the Dutch Teletekst service by NOS now includes a page of information for the transmitting amateur.

When last November an incendiary set fire to a key telephone exchange in the Lyons area of France, some 50,000 telephone and telex lines, including trunk lines, were put out of action, local radio amateurs provided a special emergency communications service, handling urgent calls filtered through the police to ensure that all calls were of a non-commercial nature. They used h.f. bands and the FZ8VHF repeater.

Kathy Marsh, VK5NKM, the only amateur in Coober Pedy, an opal-mining town in central South Australia, operates from an unusual "dug-out" home some 20feet underground. Such buried homes fashioned from former mines are popular in the township since they avoid the high summer surface temperatures (almost $50^{\circ} \mathrm{C}$ ) yet remain comfortably warm in winter. Australia has some 15,000 licensed amateurs in a population of about 15 million people.
Shortly after Australian amateur Ray Naughton, VK3ATN, had climbed to the 45 ft level of his 110 -foot mast to make everything secure during a gale, a 100 mph gust collapsed the tower. He escaped with some broken bones and a stay in hospital.
The Reseau des Emetteurs Francais has warned its members that some French c.b. associations are making demands on amateur frequencies in the 28, 144 and 432 MHz bands. The society recommends that amateurs should show that they are making full use of these bands.
IARU Region 1 reports that the Irish Radio Transmitters Society will be 50 years old in June but can trace its beginnings to the Dublin Wireless Club founded in June 1913. First president of IRTS was Colonel J. M. C. Dennis, E12B (formerly DNX) who is widely believed to have been the owner of the world's first non-professional experimental wireless station, established in 1898. During World War II,
those Irish amateurs who were not enlisted in the Forces, offered their services as listening stations.

## Awards knocked

Bill Verrall, VK5WV, writing in Amateur Radio, has strongly attacked many aspects of the emphasis on DXCC and other "award collecting" by amateur radio operators. He feels that country-chasing has led to such abuses as: "dx nets" claiming exclusive occupancy of spot frequencies; an increasing amount of deliberate jamming and interference; use of illegally high power; split-frequency operation by "rare" stations that spreads interference over many channels; blatant soliciting for "dx-pedition" funds and extraction of payment for QSL cards; and the use of QSL cards bearing political or "religious" messages. He also condemns the recognition of uninhabitable rocks and reefs as "countries" and the risks that this involves for those who set up stations at locations which may at times be entirely covered by the sea; "bootleg" QSL cards that may be entirely fake, or sent or sold to stations with which no contact has been made; and the widespread use of a standard RS(T) report of 59(9).
P. A. Wolfenden, VK3KAU, Federal president of the Wireless Institute of Australia, has pointed out that despite the growth in the number of training courses by clubs and educational bodies, newcomers still need more practical assistance from active and competent amateurs of experience: "the newcomer has to learn the ways of amateur radio, the procedures and the standards, and the various gentleman's agreements about such matters as band plans, correct repeater operating, etc only a few clubs provide practical 'hands-on' experience".

## In brief

Gerald Stancey, G3MCK identifies the "Early French Resistance suitcase set" in Toulon museum ("Clandestine Radio the early years" February issue) as an early SOE equipment Type A, Mk II and raws attention to a book published in France "Armement Clandestin" by Pierre Lorain, F2WL which includes details and circuit diagrams of a number of British and German suitcase sets. The photograph by the way was taken by Dick Rollema, PAoSE

The 1982 RSGB VHF Convention is at Sandown Park, Esher, on March 20 . . The Northern Amateur Radio Societies Exhibition is at Belle Vue Leisure Park, Manchester, on April 4 . . . Plymouth Radio Club has its third annual rally at Tamar Secondary School, Paradise Road, Millbridge, on May 30

PAT HAWKER, G3VA

## E.P.R.O.M. PROGRAMMER

> Most commercially available e.p.r.o.m. programmers are expensive as they include software and other facilities to enable them to be used on their own. The cost of a programmer can be significantly reduced if it is designed for use with an existing microprocessor system, as will be shown in these articles. The design presented is for 2708,2716 and 2532 e.p.r.o.ms, but with small modifications other devices may be programmed.
by H. S. Lynes

Sooner or later, probably all serious microcomputer system users in the hobbyist field will consider incorporating a program in e.p.r.o.m. (erasable programmable read-only memory). Unfortunately, commercial e.p.r.o.m. programmers are expensive and include facilities not essential for the enthusiast, who usually only wants to program the occasional device.

Commercial programmers fall into two main categories: those in the first category are expensive, have built-in data/address display and use 'personality' cards for programming different e.p.r.o.m. types: Units in the second category are very expensive. They have all the facilities of programmers in the first category but also include built-in v.d.u., tape interface, printer port, etc. All these programmers use comprehensive software and have large random-access memories to enable e.p.r.o.ms to be copied or modified at will. But if an existing microprocessor system is used to control an e.p.r.o.m. programmer, these facilities are unnecessary.

I therefore explored the possibility of adding e.p.r.o.m. programming hardware to an existing system. The first problem



Notes: The hex. value is the code, or 'pin-profile', used for port C, ignoring the address. When programming 2716 and 2532 e.p.r.o.s, pin 21 is held high during the read cycle. Functions marked with an asterisk indicate that the port is used as a logic, i.e., the port is tied directly to the e.p.r.o.m. pin. Where $\times$ is given, both logic levels are used for addressing. PC7 is used to detect the highimpedance state after reset.


Pins 18,19 are used for the address Pin 20 is LOW during during WRITE. with 25 volts applied to pin 21.

Fig. 1. The three e.p.r.o.ms for which the programmer was designed with tables showing control and programming logic requirements.
encountered was that programming requirements for different types of e.p.r.o.m. can be vary considerably. Also, there is no standardization in pin configurations. So, taking into account the popularity, price and availability of various e.p.r.o.ms, it was decided that the programmer should be designed for 2708 and

The author mounted the address d.i.I. switch and zero-insertion-force e.p.r.o.m socket on a separate board which can be plugged into an edge connector on the programmable peripheral interface unit. The 30 V -supply jack socket can also be seen here.
Table 1: Wiring from the 8255 p.p.i. and supplies to the e.p.r.o.m. programming board. Lines with prefix PA are for addressing and lines with prefix PB are for data. Prefix PC denotes lines used for both address and data.

 2716 ( 5 V supply) e.p.p.r.o.m. types. As the 2532 looked promising at that time it was also included. The latter device is similar to the 2716 both in pin assignments and programming requirements, although its inclusion meant that an additional address line would be needed. Design objectives were thus as follows:
E.p.r.o.m. Organization Requirements
type
2708 (3-rail) $1024 \times 8 \quad 500 \mu \mathrm{~s}$ programming pulse, sequential pro-
$2716(5 \mathrm{~V}) \quad 2048 \times 8 \quad \begin{aligned} & \text { gramming } \\ & 50 \mathrm{~ms} \text { t.t. } .\end{aligned}$ programming pulse, bitselectable programming
2532
$4096 \times 8 \quad 50 \mathrm{~ms}$ t.t.I. programming pulse, bitselectable programming
For the 2708 , I used data published by Intel, which covers the subject of e.p.r.o.ms at length. This data was used to

Fig. 2. Simplified block diagram of the programmer.
define the programming pulse rise-and-fall time limits of $0.5 \mu \mathrm{~s}-2 \mu \mathrm{~s}$. For the 2716, Mostek data was used (which agrees with Fairchild and Hitachi data), and for the 2532, Hitachi data. The latter manufacturer's data was easiest to understand*. Pin configurations and level requirements are given in Fig. 1.

Although these three devices are at present the most popular, readers designing new systems using e.p.r.o.ms might want to omit the 2708 programming facility, since one 2716 can be obtained for less than the price of two $2708^{\prime}$ s. Furthermore, the 2708 must be programmed in small

[^3]stages sequentially - a process often called 'spray-coat' programming. This is inconvenient when developing using $1 \mathrm{~K} \times$ 8 devices but if 2 or 4 K devices are used, the method is intolerable. Fortunately, later devices may be programmed bit-bybit as required. Inclusion of the 2532 programming facility is now justified, since it can be obtained for less than the price of two 2716's. The reasons for not including the 1702 among the chosen e.p.r.o.ms are that in my view, programming of it requires twisted logic, it is relatively expensive and it cannot be used with the software for the chosen devices in read mode.
The programmer was designed for use with a 6800 microprocessor system but is based on an 8255 programmable peri-
pheral interface (Intel or National Semiconductor). Some extra logic is required to drive the 8255 control pins but this p.p.i. provides three 8 -bit ports and programming is relatively simple. If the 6821 had been chosen, two i.cs would have been required and programming would, in my view, have been more difficult: there is no reason why support devices should not be chosen for their ability to fulfil objectives.

The 8255 is used in mode 0 (see manufacturer's data for further information) with the 8 -bit ports A and C as outputs and port $B$ as either input or output depending on the control word stored in one of the device's four memory locations. By changing port B from output to input it is possible to check that data entered into the e.p.r.o.m. has been correctly received. This function corresponds to the verify function of expensive programmers.
Since e.p.r.o.m. bits are all at logic 1 when the memory is empty, it would be possible to check the amount of memory available in partly full $2716 / 2532$ devices. Unfortunately, the 6800 uses instruction FF to store the index register so confusion could result if the end of the existing program used FF as an instruction or address.

It is advisable to finish programs with three 00 's to avoid the risk of placing a new program over the top of an existing one.

Fig. 4. Address decoding for the 8255 and one other device (see text).


Fig. 3. Logic for converting outputs from a 6800 processor for use with an 8255 p.p.i. If an 8080 processor is used to control the programmer, this conversion is not required.


Fig. 5. Circuit for selecting the most significant digit of the p.p.i. address (see Fig. 4).



This photo is an example of the author's display and illustrates the type of prompting that may be used. Because of the differences between microprocessor systems, a full software listing is not given, but a 'scratch-pad' and software outline will be included in the next article.

Also, a careful note of the current program state of each e.p.r.o.m. should be made. Colour coding the i.cs makes it easy to $\log$ their history.

Figure 2 is a block diagram of the programmer, and logic conversion for driving the 8255 s $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ lines from the 6800 is shown in Fig. 3. If an 8080 processor is used to control the programmer, this conversion is not required.

The 8255 address, see Fig. 4, requires four consecutive locations. In my system the address is fully decoded, but the four most significant address lines can be altered using a d.i.l. switch as shown in Fig. 5. The four locations are from X500 to X 503 , where X may be from 0 to F depending on the d.i.l. switch setting. Being able to change the address is useful if the 8255 is to be used as a general purpose port, as opposed to being dedicated to e.p.r.o.m. programming.

Table 1 shows lines from the p.p.i. to
the board on which the programming socket, switching between 2708 and $2716 / 2532$ functions, and a voltage regulator were mounted. In the table, pins 18 to 21 of the programming socket are shown connected for programming the 2708. In practice, pins 18 to 21 are connected to a 4 pole, 2 -way d.i.l. switch so that they may be taken to PC3, PC2, PC6 and PC5 respectively when $2716 / 2532$ e.p.r.o.ms are to be programmed. PC5 is a 25 V signal and PC 4 a 12 V signal, the conditioning circuits of which will be shown later. PC7 is used to check logic but it could be used to detect changes on pins 18 to 21 , or even omitted to reduce the number of lines from the p.p.i. circuit to the programming board. 37 lines were used, as shown in the table but by omitting unwanted lines, combining the 0 V rail and bringing in the 30 V supply separately, the total may be reduced to 30 .
To be continued

## IN OUR NEXT ISSUE

## Digital filter design

Accuracy, versatility and a rapidly declining cost will ensure that digital filters take over from their analogue counterparts. A new series gives their theory, design techniques and microprocessor implementation.

## Program exchange by telephone

There is a growing need to facilitate the easy exchange of programs and data from one person to another. Philip Barker discusses program distribution and the design and implementation of software systems capable of loading source code programs into memory.

## Orchesiral sound, halls and timbre

Taking the Kingsway Hall as a model, Denis Vaughan investigates the effect of concert hall shapes and sizes, and the working of the filtering of the outer ear on timbre and perceived directionality.

## On sale April 21



## Polytechnical computer

The opening of the new computer centre at Coventry Lancester Polytechnic was accompanied by a civic reception and a protest demonstration by some of the students. The centre has been constructed to house two Harris computers which provide impressive processing power with storage capabilities for a high volume of batchwork and can service some 100 terminals distributed over the Polytechnic campus.

The centre incorporates a Harris 800 computer system which has 2 megabytes of memory, with four 300 -megabyte disc drives and one $80-$ megabyte disc drive, a line printer, card reader, a 9-track magnetic tape unit and a CIL plotter.

Also housed in the same building is a Harris H500 computer, a separate system with one megabyte of memory and one 300 -megabyte disc drive with a line printer, a card reader, a magnetic tape unit and a paper-tape reader/punch.

Elsewhere on the campus is a Harris H100 for the polytechnic's Electrical and Electronic Engineering department. Eventually it is planned to connect all three computers together by synchronous links into one processor network.

The system is the biggest Harris system outside the United States and is claimed to be


The Computd Centre at Lanchester Polytechnic, Coventry, specially built to house the computer facilities, including the two Harris Computers and some special terminals.
the largest available to any further educational establishment in the UK.

The student protest was very civil and was not about student grants, despite the presence
of the Parliamentary Under-secretary of State, Department of Education and Science, Mr William Waldegrave; it was about the delay in getting the computer actually working, their work was being delayed by the lack of terminal time as only a few were actually running. Harris assured us that these were teething problems and that they were flying a team of specialists from their factory in Florida to assist in the initialisation of the system.

## Timex to sell Sinclair in the U.S.A.

You may know that the Sinclair ZX81 Microcomputer is manufactured under a subcontracting agreement by the Timex Corporation in their Dundee factory. The current production rate is about 30,000 units each month, which some clever mathematician has
worked out to be one unit every ten seconds. Timex seem to be impressed by the sales and have come to an agreement with Sinclair Research, whereby they can sell a Sinclair/Timex computer in North America. Sinclair are at present selling in the U.S. by mail order at a rate of


15 thousand a month; Timex have about 170,000 retail outlets in North America, and could sell at a phenominal rate.

The agreement is for Sinclair to provide the technical expertise and for Timex to manufacture a computer which will include their own brand name. The name is not to be more prominent than the Sinclair marque which will remain on the equipment.

Timex will pay Sinclair a $5 \%$ royalty on all hardware that is related to the Sinclair microcomputer, even if it is not originated by Sinclair. They will also pay a $5 \%$ royalty on any Sinclair originated software. And they will even pay $21 / 2 \%$ on software from any other source as long as it is intended for use on the Sinclair equipment. There will be a cross-licensing agreement for any hardware that Timex may develop themselves.

Clive Sinclair says that he has been looking for a large marketing outlet for his products for some time. He intends to keep Sinclair Research as a compact research and development team, concentrating on improvements to existing products and development of new ones. The date for the probable launch of the Microvision flat tv is given as the last quarter of 1982. It has already been announced that the tv is being incorporated into a desk-top terminal for ICL, and there may be some clue as to the likely format of the next-generation ZX computer in that. Sinclair's research into electric vehicles is continuing.

The Sinclair $X \times 81$ which is to be manufactured, and marketed in North America, by Timex. The ZX81 is shown together with the add-on 16K RAM pack and the ZX Printer.


Having produced new versions of their pre-and power-amplifiers and their electrostatic loudspeakers, Quad have come up with an f.m. tuner, the Quad FM4. It has been styled to match the Quad 44 preamplifier with which it is shown. It incorporates a microprocessor which can recall the preset stations from memory and also controls inter-station muting and a.f.c. Manual tuning is used to program the seven preset stations and occasionally to tune in to a station not already programmed. A bar graph displays signal strength and centre tuning. The preset buttons and the tuning knob are the only controls: the microprocessor takes care of everything else.

## Teletext, a new campaign

One way to mass market viewdata is believed to be the growth of private viewdata systems which are compatible with Prestel; used by companies for in-house systems. Another way is the development of a more attractive Prestel package for the consumer.

It was decided at the conference that Prestel could be made more attractive to the consumer by:

- working towards a consumer package, providing an overall viewdata service which would include transactional applications, i.e. the ability to order goods by pressing the appropriate buttons;
- including entertainment and communications as well as 'straight' information;
- examining the tariff structure;
- working towards a reduction in the cost of viewdata receivers;
- improving the quality and attractiveness of the information provided;
- promoting new applications of business viewdata;
- working towards the acceptance of viewdata as the principle means of communication between business and industry.
Further analysis of the view expressed at the conference will lead to the publication of another 'action document'. October has been selected as National Teletext Month as was October last year, this will be used for an intensive campaign to promote teletext,
1982 is Information Technology Year, and as part of the Government's commitment to IT, the Department of Industry is promoting further awareness of Teletext and Viewdata.
According to a survey published in Prestel (page 19191), $65 \%$ of the population now know what Ceefax is; for Oracle it's $55 \%$, teletext, $50 \%$ Prestel $30 \%$ and viewdata $15 \%$. There are still $20 \%$ who have no knowledge of any of these. Television viewers with facilities to receive teletext numbered over 300,000 at the end of 1981 .

This is a result, claims the DoI, of the promo-
tion campaign launched at a 'Commitment Conference' in January 1981, which brought together the manufacturers of the equipment with the information providers, with television rental and retail traders, software suppliers, trade associations and with representatives from British Telecom, the DoI and the NEDO. One of the chief aims of the campaign was to familiarize consumers with the process of obtaining information from the tv screen. It is believed that such familiarization could lead to more recognition for Prestel, BT's telephone viewdata system.

In February of this year, another Commitment Conference was held in London to plan a further campaign for 1982. Once again the accent would be on promoting teletext to the general public and Prestel to the business community.

## Free specifications and standards

London Information have started a free consultancy service to help engineers identify and acquire the specs and standards or other documentation they may need for their projects. Enquiries are already running at hundreds of 'phone calls a week. The documents are not confined to the electronics industry and London Information bave told us that they have recently supplied copies of quarantine regulations for Australian wallabies and building regulations for a middle east sports complex. They provided an electronics firm with the relevant US Mil specs and this resulted in a big export order to the US.
London Information claim to be able to get any available document from anywhere in the world. If they cannot supply the information then they will put companies in contact with a source that can. Further details can be obtained from: London Information (Rowse Muir) Ltd, Index House, Ascot, Berks SL5 7EU. Telephone: 099023377 ,

## Arthur C. Clarke honoured

The science writer, Arthur C. Clarke has been chosen to receive the eighth Marconi Fellowship Award by the Marconi Fellowship council.

The $\$ 35,000$ award is given annually in recognition of scientific achievement for the benefit of humanity in the field of communications science and technology.

Clarke predicted the geosynchronous communications satellite as early as 1945 in the Wireless World article "Extra-terrestial relays: can rocket stations give world-wide radio coverage?". We issued a reprint of the article with our October 1981 issue. In it, he addressed very specifically the technical issues involved in such satellites, which have since become such a significant part of the earth's communications.

Clarke's other innovations include the use of satellite platforms for observing the earth in a quantitative manner, the concept of the manoeuverable solar sail for low-acceleration interplanetary flight, and the concept of the 'space elevator' for reaching orbital altitudes using materials of very high strength/weight ratio which are likely to be developed soon.
Recently, Arthur C. Clarke has been strongly supporting proposals for the use of satellites for communicating with remote communities. Many such systems have been installed in villages in Alaska and Canada.

As far as the general public is concerned, Clarke is best known for his science fiction writings, especially for his collaboration with Stanley Kubrick on 2001: A Space Odyssey. Rumour has it that they are to work together again on another s.f. film.

Mr Clarke is now the Chancellor of the University of Moratuwa in Sri Lanka.

- The Marconi International Fellowship was founded in 1974 by Gioia Marconi Braga, daughter of the Italian inventor, Guglielomo Marconi. It is sponsored by companies and instititutions from ten different countries.


## Licence sensation

There is a belief that the Home Office has made another "snafu" and will be forced to rescind part of a new schedule which appears to contain a host of technical errors and misreading of the International Radio Regulations. A four-page Home Office announcement appeared in the London Gazette on February 12 addressed to "all holders of Amateur (Sound) Licence A and Amateur (Sound) Licence B" setting out a new schedule of frequencies, classes of emission and power limitations "as from January 1, 1982." These are regarded as "unacceptable" by the R.S.G.B. which immediately called for urgent discussions with the Home Office. The new schedule, as printed, not only introduces the new international symbols and defines power in terms of output to the aerial in dBW, But also removes 10 kHz from the British 1.8 MHz band, restricts 3.5 MHz transmission to the very low power of 9 dBW (carrier power), compared with 20 dBW for other $\mathrm{h} . \mathrm{f}$. bands, and also introduces an entirely new form of power restriction (30dBW maximum equivalent isotropically radiated power) for all bands above 1.2 GHz . There are also many other apparent technical anomalies that are inexplicable in any rational technical terms.
A Home Office spokesman has told us that it was all a terrible mistake based upon a series of mis-prints. It must be pointed out however that publication in the London Gazette makes it a legal announcement.


The Husky 144 by DVW Microelectronics is a sturdv, waterproof microcomputer for data entry in the field

## Xenix and the supermicro

Xenix is the name of a computer operating system for use on 16-bit microcomputers. It has been developed by Microsoft and is an implementation of Unix, a software system originally developed by Bell Laboratories for use on DEC minicomputers, first on the PDP-7 and later on the PDP-11. Xenix is the 16 -bit operating system which seems likely to become a standard, much as $C P / M$ has become for the 8 -bit processor. One advantage it has is that there are comparatively few codes which are specific to a particular processor; so it can be fairly easily implemented on many 16 -bit processors.

All this is by way of introduction to the Bleasdale 600 Xenix computer which uses the Zilog Z8001 16-bit microprocessor. The Z8001 runs at 4 Mhz and can address up to 8 megabytes of memory through a 23 -bit address bus. The Bleasdale computer is a general-purpose applications for professional system designers and engineers and may be used in simulation, process control, image processing, instrumentation, scientific workstations. It may also be used for office automation equipment, communications networks, banking/financial systems etc. The first customers are the Monotype Corporation, who will use the computer for typesetting, and Precision Software, a financial information services company.

The 600 computer is of modular design, constructed from a range of plug-in p.c.bs which offer a wide range of different configurations. The boards are interconnected using the Multibus system with 24 address lines for up to 16 megabytes of memory.

The computer is manufactured at Bleasdale's factory in Lutterworth, Leicester, and is to be marketed through a network of distributors

## Computers in the field

The computer industry at the moment seems obsessed with 'the man in the field', the roving executive, salesman, engineer or even the journalist. The theory is that these peripatetic representatives can feed in the latest information, deal, sales figures or stories down the line to their parent companies.

One approach to this is illustrated by the new protable terminal by Digital Equipment Corp. The Correspondant is a hard copy printer terminal about the shape and size of an electric typewriter. It can handle plain paper and can have tractor feed as an additional option. It offers 132 -column printing with a range of typefaces and because it is bit-map addressable it offers high resolution graphics ( $132 \times 72$ dots per inch) and can be used in conjunction with Digital's visual display terminals. What makes it portable is the 'universal' power input which will accept any a.c. mains supply of any voltage or frequency. It may be fitted with an acoustic coupler to communicate with the base computer. Digital are eager to point out however that it is also highly suitable as a fixed printer terminal. with an RS232 interface.
The Digital Correspondant is a terminal and must be connected, by whatever means, to a computer to be of any use. An alternative approach is the portable computer. This has the advantage of being able to collect data 'in the
field' and one example, the Husky 144, made by DVW Electronics, has been designed with a tough case and a flat, touch-sensitive keyboard. It can be used literally in the field, out of doors. It has a liquid crystal display of up to 128 characters in four lines. It is battery powered and thus can include an internal memory which does not lose its data and real-time calendar and clock so that entries can be 'tagged' with collection time automatically. The Husky 144 is provided with 144 K -bytes of memory and has 'userfriendly' software. A key marked 'Help' may be pressed at any time during operation and a part of the internal 'manual' is displayed on the screen giving information on what to do next.
To communicate with the outside world the Husky 144 can use an RS232 interface for direct communication with a host computer or a printer. It can use an acoustic coupler for telephone contact. It can also be used as its own base station and may be plugged into an optional disk drive for storage and retrieval of files. With a disk drive it can also be operated under $\mathrm{CP} / \mathrm{M}$ which gives it access to a large library of commercial programs.

Correspondant - Digital's plain paper portable terminal designed 'for executives on the move'

throughour Europe. The majority of the computers are likely to be sold to O.E.Ms. A version of the computer based on the Motorola M68000 processor is being produced and this will also operate on Xenix.
Eddie Bleasdale the managing director of Bleasdale Computer Systems believes that Xenix will be very popular in scientific and educational applications because of the widespread use of Unix in DEC computers. As Bleasdale are in the forefront of users of Xenix, he intends that his company will maintain that position and become a leading centre of expertise in Xenix/ Unix.

- Zilog have given their official blessing to CP/M and Unix have warned that manufacturers should be wary of 'lookalike' systems. Traditionally a new computer system engendered a
new operating system which became 'machinedependent'. So if a computer system was selected the operation system went with it and the user became stuck with it. If, however, the operating system were selected first then a number of manufacturers could offer computers which operated the system. CP/M and Unix are suitable candidates but some systems are being marketed as 'Unix-like', for example, but do not have the universal application or constant development of the original. One has a feeling that the warning may not be entirely altruistic; CP/M and Unix both operate on Zilog equipment.


# SIMPLE POWER AMPLIFIER 

## Complementary Hexfet devices offer improved performance over the equivalent bipolar output stage and allow simplified drive circuitry. This design delivers 60 watts into a four-ohm load, 32 watts into an eight-ohm load, from a simple $\pm 30 \mathrm{~V}$ supply.

The split power supply rails of this design give good rejection of supply voltage ripple allowing both a simple supply circuit to be used and the load to be directly coupled. The output devices operate in the source follower mode, which offers a twofold advantage: the possibility of oscillation in the output stage is reduced as voltage gain is less than unity, and signal feedback through the heatsink is eliminated as the drain terminal, which is electrically connected to the tab on the TO-220 package, is at a direct voltage.

Symmetrical output is achieved by providing a "boot-strapped" drive to the gate of the n -channel device from the output. The use of the bootstrap circuit, $\mathrm{C}_{4}$, $\mathrm{R}_{8}, \mathrm{R}_{9}$, also allows the driver transistor to operate at near constant current, which improves the linearity of the driver stage. The diode clamps the bootstrap circuit, restricting the positive voltage at the gate of $\operatorname{Tr}_{5}$ to $+V_{\mathrm{DD}}$ to maintain symmetry under overload conditions.
Transistor $\mathrm{Tr}_{3}$ and resistors 11, 12 \& 13 provide gate-source offset voltage for the output device with $\mathrm{R}_{12}$ variable to adjust quiescent current for variation in threshold voltage. A degree of temperature compensation is built into the circuit as both the emitter-base voltage of $\mathrm{Tr}_{3}$ and the combined threshold voltages of the f.e.ts have a temperature coefficient of $-0.3 \% / \mathrm{deg} \mathrm{C}$.
The class A driver transistor operating at a nominal bias current of 5 mA set by $\mathbf{R}_{8}$, $\mathrm{R}_{9}$ is driven by the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ differential input pair biased at 2 mA by $\mathrm{R}_{3}$. Components $\mathrm{R}_{7}$, $\mathrm{C}_{2}$ set the closed-loop gain of the amplifier $R_{6} / R_{7}$ and provide low-frequency gain boosting. Additional components $\mathrm{R}_{15}, \mathrm{C}_{7}$ connected between the output and ground suppress the high-frequency response of the output stage, allowing the h.f. performance of the amplifier to be determined by the input circuit. Component $\mathrm{R}_{1}, \mathrm{R}_{2}$, $\mathrm{C}_{1}$ at the input of the amplifier define the input impedance and suppress noise.
To achieve 60 watts into a four-ohm load, the current in the load is 3.9 A r.m.s. or 5.5 A peak. To sustain this source current, the n-channel Hexfet, IRF533, requires a gate-source voltage of 5 V .
As peak load voltage is 22 V , gate bias voltage to achieve peak power in the positive sense is $V_{\mathrm{pk}}+V_{\mathrm{gs}}=27 \mathrm{~V}$. A similar calculation for the negative peak, using the p-channel device IRF9533, shows that a negative gate bias supply of -28 V is required. Consequently, a $\pm 30 \mathrm{~V}$ supply is adequate for a 60 watt output, provided that the supply voltage does not fall below $\pm 28 \mathrm{~V}$ when loaded: a source impedance

by Peter Wilson<br>International Rectifier Co

of one ohm or better. When the supply voltage impedance is high, use a higher voltage supply together with complementary Hexfets of a higher voltage rating IRF532/IRF9532.

When an eight-ohm load is used, 32 watts output power can be achieved from a $\pm 30 \mathrm{~V}$ supply with source impedance better than two ohms.

The curves drawn in Fig 1 show the power consumption of the amplifier, output power and power dissipated in the f.e.ts as a function of r.m.s. output current with $\pm 30 \mathrm{~V}$ supplies and four and eightohm loads. It can be deduced that the maximum power dissipated in the devices is 56 watts and 28 watts with four and eight ohm loads respectively. Limiting the case temperature to $90^{\circ} \mathrm{C}$ and making an allowance for the thermal impedance of insulating washers, heatsink requirements are $0.5^{\circ} \mathrm{C} /$ watt with a four ohm load and $1.67^{\circ} \mathrm{C} / \mathrm{W}$ with eight ohm load. Smaller heatsinks may be tolerated if the amplifier is not operated continuously at rated output power.

Open-loop gain measured with gate and source connections to the f.e.ts broken is $30 \mathrm{~dB},-3 \mathrm{~dB}$ points occuring at 15 Hz and 60 kHz , Fig. 2. Closed-loop curves are shown for amplifier gains of $100\left(R_{7} 470 \Omega\right)$ and $20\left(\mathrm{R}_{7} 2.2 \mathrm{k}\right)$. In ${ }^{\text {b }}$ both cases the curves remain flat to within $\pm 1 \mathrm{~dB}$ between 15 Hz
and 100 kHz with an eight ohm load. The slew rate of the amplifier, measured with a 2 V pk-pk square wave input is $13 \mathrm{~V} / \mu \mathrm{s}$ positive-going and $16 \mathrm{~V} / \mu$ s negative-going. The discrepancy could be balanced out by addition of a series gate resistor for $\mathrm{Tr}_{6}$.

Reduction of the closed-loop gain from 100 to 20 produces a significant improvement in distortion figure, Fig 3. Considering the simplicity, performance is quite acceptable. The output stage quiescent current was adjusted to 100 mA and can influence the distortion measurement significantly if allowed to fall below 50 mA .

The dependence of the quiescent current in the output stage and of the output offset voltage on power supply voltage are illustrated in the Table. Current is set by first adjusting the potentiometer $\mathrm{R}_{12}$ for minimum offset voltage - turned fully anticlockwise if the p.c.b. layout shown is used - and apply the power supply voltage, the positive supply passing through an ammeter with 1A f.s.d. It is then adjusted until the meter reading is 100 mA with a $\pm 30 \mathrm{~V}$ supply. Remove the meter from the circuit before applying an input signal to the amplifier.

When assembling the printed circuit board, mount the passive components first, ensuring the correct polarity of electrolytic capacitors. Then solder in bipolar transistors, checking for correct pin identification. Finally mount the f.e.ts, avoiding static discharge by shorting the pins together to ground and using a grounded soldering iron. Check the assembled board for correct component place-1



Fig. 1. Power curves of the amplifier with four and eight ohm loads and $\pm 30 \mathrm{~V}$ power supplies.


Fig. 2. Frequency/amplitude curves for open-loop, 20 and $100 \times$ gain connections.
ment. Check the copper side of the board for solder bridges between tracks, and remove them. Check for dry solder joints visually and electrically using a resistance meter and rework if necessary.

Now apply power to the amplifier with heat dissipators fitted. Adjust potentiometer $\mathrm{R}_{12}$ for minimum offset (fully anticlockwise on the p.c.b. layout) connect an ammeter in series with the positive supply and adjust $\mathrm{R}_{12}$ for a reading between 50 and 100 mA .

If a loudspeaker load is connected in circuit, protect it from d.c. overload with a fuse.) With the quiescent current set, confirm the output offset voltage is zero $\pm 100$ mV . Excessive and erratic variation in quiescent current as $\mathrm{R}_{12}$ is adjusted indicates circuit oscillation or faulty wiring. Oscillation can only be satisfactorily identified and suppressed using an oscilloscope. Also, supply decoupling capacitors should be mounted close to the amplifier output stage and load ground point.

Additional circuit components have been added to ensure high-frequency stability of the complete amplifier. Placement and values depend to some extent on the printed-circuit board layout. Observe the following points when designing the printed circuit board.

- Adopt a common ground principle, i.e. take power supply decoupling capacitors, load and input stage bias components to ground in close proximity, eliminating the


Fig. 3. Distortion curves for gains of 100 and 20 with loads of four and eight ohms.

Variation in output offset voltage and quiescent current with supply voltage.

| Supply <br> voltage <br> $(\mathrm{V})$ | Output <br> offset <br> $(\mathrm{mV})$ | Quiescent <br> current <br> $(\mathrm{mA})$ |
| :---: | :---: | :---: |
| 35 | -40 | 135 |
| 30 | -20 | 100 |
| 25 | +4 | 75 |
| 20 | +30 | 54 |

effects of common-mode ground current. Similarly use a common output node, the load, feedback resistor and h.f. suppression components being taken from a common point on the board.

- Keep the length of connecting lead to the gate terminals of Hexfets to an absolute minimum to avoid oscillation of the power output stage. Series gate resistor $\mathrm{R}_{10}$ suppresses oscillation, but too high a value limits slew rate. Series resistor $\mathbf{R}_{14}$ suppresses amplifier oscillation caused by capacitive coupling to the base of $\mathrm{Tr}_{4}$.
Phase shift in the amplifier when driving a reactive load can lead to high-frequency instability. With a capacitive load, the addition of a small air-cored choke $3 \mu \mathrm{H}$ with an $8 \Omega, 2 \mu \mathrm{~F}$ load - restores stability. The final value of the choke is defined by experiment.

With the current set, remove the ammeter from the positive supply and apply a signal to the amplifier input. Signal level required for full rated output is 150 160 mV for a gain of 100 , and 770 to 800 mV for a gain of 20 . Clipping of the output waveform when operating at rated power indicates poor supply regulation and is remedied by reducing the input signal amplitude and derating the amplifier. Alternatively use a lower-impedance supply. Amplitude response of the amplifier can be checked over the frequency



Decoupling capacitors reduce the supply frequency ripple to $5.5 \mathrm{~V} p k$-pk at full load, Off load, the supply voltage should not rise significantly above $\pm 35 \mathrm{~V}$.
range $15 \mathrm{~Hz}-100 \mathrm{kHz}$ with the aid of an audio test set or signal generator and pscilloscope. Distortion of the output waveform at high frequency indicates a reactive load: adjust the output choke to restore the waveform. Tailor h.f. frequency response with a compensation capacitor in parallel with R6. The I.f. response is controlled by $\mathrm{R}_{7}, \mathrm{C}_{2}$.

Supply-frequency breakthrough is most discernible in a high-gain circuit. Minimize pick-up at the high-impedance input by a screened cable, grounded at the signal source. Supply-frequency ripple injected through the supply to the input stage of the amplifier can be detected across capacitor $\mathrm{C}_{3}$. This is normally atte-

## R.f. radiation hazards

Last year we püblished a news item ${ }^{1}$ briefly pointing out the controversy surrounding the r.f. radiation-exposure safety limits accepted by most western countries. In America, the ANSI and ACGIH (American Conference of Governmental Industrial Hygenists) have both suggested new frequency-dependent standards based on the same work and both assuming $0.4 \mathrm{~W} / \mathrm{kg}$ as a safe maximum absorbed energy rate, and it is expected that the Americans will revise their existing $10 \mathrm{~mW} / \mathrm{cm}^{2}$ maximum safe level in the near furure.

Although we in the UK originally based our maximum safe level $\left(10 \mathrm{~mW} / \mathrm{cm}^{2}\right)$ on that decided in the US some 20 years ago, whether or not we will again follow suit is not clear. According to Mr S . Allen of the NRPB, one possible point of contention is that the two proposed standards mentioned above are based on results from far-field radiation tests. It is ABSORPTION IN MUSCLE



A glass-fibre printed cir-cuit board for the heating-fuel saver will be available for $£ 4.50$ inclusive of VAT ar ר. UK postage from M. R. Sagin, Nanca!ras Mill, The Level, Constantine, Falmc uuth, Cornwall.
nuated by the common-n ode rejection of $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{2}$ before being amplified but if this is the source of breakithrough, adjust
the values of $C_{3}, R_{5}$ to suppress the signal amplitude.
If the output stage is destroyed either through short-circuit load or h.f. oscillation, replace both Hexfet devices; it is unlikely other circuit components will have been affected. Repeat set-up procedure with the new devices in circuit.
accepted that measurements inl the near field, and hence assessment of protential health hazards, are more complex than in the far field. Taking into account near-field effects when determining maximum safe-level sta ndards would nevertheless be sensible.

An article recently published in Radio Communication ${ }^{2}$ gives a good account of r.f. radiation hazard, as far as the radio amat eur is concerned. The authors state that repor's of "nonthermal" effects of r.f. radiation, mostly emanating from Eastern Europe, should be "regarded with suspicion", and go on to sa:y, "there is no evidence that r.f. radiation produrces long-

The first of these graphs provided by ${ }^{\text {iMr }}$ Harlen of the NRPB shows r.f. radiation penetration and absorption versus frequency for a plane slab. Combined effects of penetration and 'focussing' (ior geometry and high refractive index) in a potato are illustrated in the two other graphs taken from the Journal of Microwave Power.
term damage of the kind associated with ionizing radiation, i.e., cancer or genetic damage." Not a hint is given that the authors feel the accepted maximum level might be too high.

But not everyone is happy with the situation. Mr Herbert Goldwag, for one, summarizes the opposing point of view in an article called 'Microwave hazards' published in the IEEE Spectrum ${ }^{3}$.

## References

1 Small wavelengths - large doubts, Wireless World, October 1981, p42.
2 R.f. hazards and the radio amateur, Blackwell, R. P. and White, I. F., Radio Communication, February 1982, p136.
3 Microwave hazards, IEEE Spectrum, May 1979, p66.

## Further reading

Reference Data for Radio Engineers, Howards w.
Sams and Co., Inc., p27-46.
Handbook for Radio Engineering Managers by J. F. Ross, Butterworths, pp372-387.
Radio hazards in the m.f./h.f. band, Rogers, S. J. and King, S. R., Non-Ionizing Radiation, vol. 1, No. 4, pp178-189.

## SITUATION NORMAL．

In your February issue，Pat Hawker mentions ＂SNAFU＂as a coinage of War II．I think he and your readers may be interested to know its pre－war origin．
During the said war it was my pleasure to work for a time with two clever and humorous American Western Electric telephone engi－ neers，and they told me that their pre－war jobs had been to go to telephone exchanges where there was trouble and rectify it．Upon arrival at the site an engineer would make a brief estimate of how serious was the trouble，establish a tele－ phone link to his headquarters and send back a code word．His home base would therefore know he had arrived where the problems were， have a rough idea of how long it would take to clear them and have a telephone number where he could be contacted if need be．There were three code words：SNAFU－Situation normal， all fouled up＂（or words to that effect）；TARFU －＂Things are really fouled up＂；and FUBAR －＂Fouled up beyond any repair＂．The latter would be sent if，for instance，a telephone ex－ change had been seriously damaged by fire or flood，while SNAFU would be used for a situa－ tion where cables or machinery had been damaged but where repairs or replacement would be relatively straightforward．

SNAFU became widely used in many situa－ tions during the war，but strangely the other code words were rarely used or were unknown． It would be a pity if this bit of folk lore was lost．

## C．H．Banthorpe

Northwood
Middlesex

## WOODPECKER

As a radio amateur，I have often been annoyed by the Russian＂woodpecker＂pulse transmis－ sions which have plagued the h．f．bands for many years ${ }^{1}$ ．There has been no official explana－ tion of the purpose of these transmissions，and various theories have been expounded in the media，ranging from spy communications to death rays．However，as a result of accidentally coming across some of these signals on a laboratory spectrum analyser，and storing the waveforms on a transient recorder，I think I can shed a bit more light on their structure and purpose．

Figure 1 is based on a printout of a typical pulse，plotted as logarithmic amplitude versus time．The overall duration of the pulse is 3.1 ms ． The interesting feature is the presence of ＂glitches＂in the top of the pulse，the pattern of which remains the same from pulse to pulse， and they occur at intervals which are multiples of $100 \mu \mathrm{~s}$ ．This led me to suppose that the glitches formed a binary sequence of length 31 bits．

I also guessed that the glitches arose from phase reversals in the transmitted signal，the finite width of the glitches resulting from the effect of the finite bandwidth of the transmitter and／or spectrum analyser．Thus，arbitrarily as－ signing a zero to the first data bit，the original modulation pattern could be reconstructed， with 0 representing 0 degrees and 1 representing 180 degrees．This gave the pattern 0000011100100010101111011010011.

This sequence turns out to be a maximum－ length，pseudo－random binary sequence ${ }^{2}$ ， which can be generated by a 5 －bit shift register with feedback formed from the parity function of the contents of stages 3 and 5．I subsequently

observed other pulse transmissions with dif－ ferent sequences of the same length，and was able to match these to p．r．b．codes from shift registers with feedback from stages $2,52,3,4,5$ and $1,2,3,5$ ．Four different codes，implying four different transmitters，agreeing with obser－ vations previously reported ${ }^{1}$ ．

The interesting point about this use of p．r．b． codes arises from the shape of their autocorrela－ tion function．If such a sequence is compared bit－for－bit，with a shifted version of itself，at all possible shifts，then，apart from the position where all 31 bits match，at all other shifts no more than 1 bit matches between the two sequ－ ences．Thus，if a woodpecker pulse is fed through a 3.1 ms delay line with 31 equally spaced taps，and the outputs of the taps are vectorially combined with appropriate inver－ sions，so that the inversion pattern itself is the same sequence as the transmitted phase－inver－ sion sequence，then the combined output will be a single pulse of $100 \mu \mathrm{~s}$ duration， 31 times the amplitude of the input signal，with virtually no sidelobes．

The conclusion from all this，it seems to me， is that the woodpecker must be simply a pulse compression radar system，with a resolution of $100 \mu$（ 10 miles），but the sensitivity 31 times that of a $100 \mu$ s radar of the same power．Not only does the p．r．b．sequence cancel out shifted versions of itself in order to achieve its perform－ ance，but it has a high immunity to other codes in the same family，thus reducing cross－interfer－ ence between separately sited radars on the same frequency．The use of four different sites presumably enables the target to be pinpointed in three dimensions in spite of the poor directiv－ ity of h．f．antennas and the variabilities of the ionosphere which is used to extend the range beyond the horizon．

Although this information leads to the pos－ sibility of jamming these signals，or at least puzzling the distant radar operator，whether we
shall ever be rid of these wretched signals is another matter altogether．
J．P．Martinez G3PLX
Gosport

## References

1．Mystery Soviet over－the－horizon tests．Wire－ less World，February 1977 p． 53.
2．Pseudo－random binary sequence generators．
F．Butler，Wireless World，February 1975 p． 87.

## POOR DEAL FOR AMATEUR RADIO

I wish to congratulate you for publishing a letter （February 1980）criticising the RSGB：at last someone has dared to make public the feelings of many RSGB members．I myself have written to the RSGB on several occasions but I have never been privileged with an acknowledge－ ment，not to mention an explanation of their actions．

Whilst the RSGB has been trying desperately to prevent the introduction of c．b．（I，like many， see through their claims of neutrality），radio amateurs have ended up with a very raw deal． Firstly，we have lost 200 kHz of 70 MHz ； secondly，only one of the h．f．bands has been introduced；thirdly，despite the introduction of c．b．on 27 MHz （with no Morse），B licencees still need Morse for 70 MHz to 28 MHz ．Whilst pip／kay tones are not to everyone＇s taste，they are used freely on c．b．but are severely restricted on the amateur bands．Selcal type signals are not permitted on the amateur bands whilst they are on c．b．I must add at this point that I am totally pro－c．b．and I am not some jealous，sour－grapes radio amateur．

Furthermore，whilst expending its energy on anti－c．b．propaganda，the RSGB have totally ignored the decline of amateur radio．Little －mention is even made in Rad－Com of the illegal operation on London repeaters．Why does the

RSGB not close them down or, better still, persuade the Home Office to catch the offenders. The RAE is now a joke. Amateur radio is. meant as a technical hobby; the new RAE has virtually eliminated any serious technical requirements. How many radio amateurs repair, let alone build, their own equipment?
As radio amateurs, we have virtually sold our birth right and the RSGB has stood by and let it happen.
B. Reay

Woolwich
London SE18

## WALK-ABOUT TELEPHONES

The Post Office and its successor British Telecom have in the past been accused of being slow to meet the demand for telephone instruments other than those of the standard type, but this has now been to a large extent corrected by the availability of types ranging from the elegant baroque to the frivolous Mickey Mouse.

One facility which does not appear in the lists is.the hand-held device which allows the user to make and receive calls while at the same to be free to roam about his house and garden. Radio linkage is one way of making this possible and is the means employed in certain instruments which are obtainable by the general public from suppliers other than Telecom.
This may be because of the possibility of the radio signals involved being received by someone who is not a member of the subscriber's household.
It is unlikely that the prospective user of one of these devices will have been warned that his future conversations may be overheard and even if the point is made he may shrug off the matter and say that he does not mind. A more important factor is that even if the user is indifferent to being overheard this may not apply to those with whom he is in communication and who may have objections to what they are saying being broadcast.
It may be argued that the threat to one's privacy is pretty small since suitably equipped listeners may be thin on the ground in the immediate neighbourhood. However, a single eavesdropper of less than good intent could be at least an embarrassing nuisance or there could be legal implications in a situation where a stranger might seek to profit as a result of information received.

Finally, there may very well be a real need for this type of telephone facility but there are pitfalls in the use of unauthorized equipment. One assumes that a Telecom-approved system awaits the provision of suitable safeguards and defences against illicit tapping of the telephone network.
G. Dann

Chipstead
Surrey

## NANOCOMP E.P.R.O.M. PROGRAMMER

I have been experimenting recently with a photographic flash tube and am concerned about inductive flashes and their erosion of the button in Fig. 1. on page 30 of the January 1982 Wireless World.
I think that problem could be reduced by having a low-voltage, high-current winding on the choke core in addition to the 4 H . This would make the choke a transformer as well. A suggested outline for a circuit accompanies this.
letter and a description follows.
On the left the main voltage is rectified by D and charges $C$ through $R$ to mains peak voltage. Mains is also applied permanently to the tube and 4 H winding in series but, since the tube has not stuck, no current flows: the tube is opencircuit.


When the On button is pressed, $\mathbf{C}$ discharges via the low-voltage winding, inducing an inductive voltage of, say, 2 kV in series with the mains across the open-circuit tube. But as soon as the 2 kV causes the tube to strike, it is anticipated that mains current will flow through the tube, using the 4 H winding now as the choke. When the Off button is pressed, the tube should go off. In the event of a thyristor short-circuit or capacitor short-circuit the $10 \mathrm{k} \Omega$ resistor would get warm and only consume a few watts. Normally, when off, only capacitor leakage current should be taken. The operation would depend on a real difference between striking voltage and maintaining voltage in the tube.
J. R. D. Powell

Harlow
Essex

## DATA STORAGE

I would like to comment on two articles in the February 1982 issue: "Data recording on audio cassette" and "Economical Z80 development system". To start with, I would like to introduce myself as the designer of SOFTY, which appears in the latter article, and the inventor of TRANSWIFT, a software modem used in SOFTY to store data on cassette tape. The point that I will try to illustrate is that there are more ways of killing a cat than choking it with cream.

Data storage using audio tape is like a serial transmission in a medium of limited bandwidth (forget that the data stays in the medium for an indefinite time). The low-frequency limitations are the bigger nuisance - so why not use a system which has no low-frequency components? If the data recording is for a microsystem why not do it with software? If you are willing to ignore convention you can use a simplified recording and playback circuit.

Most microsystems have a bit of i/o going spare, either on the microprocessor itself or via an 8255 or similar. You could use a separate port for input and for output. You could add some sort of signal conditioning - but it isn't necessary. This circuit will store data using the cheapest cassette recorder at well over 3000 baud-equivalent.

Transmit a zero by putting the port high for a jiffy, then low for the same jiffy. A 1 is transmitted by using bigger jiffies. All binary transmissions are 0 s and $1 s$ strung together and the low-frequency components have vanished. You can put this transmission through a capacitor, for instance, without degrading it. You can also store it on tape and get it back unchanged. Recovering the succession of 0 s and 1 s is a matter of measuring the intervals between zero
crossings. The resistors suspend the port at the transition point. You might recover the data in one of two ways: either you take a positive transition as a starting point, delay for a step interval and then input the bit, or you measure the time between similar transitions and decide whether it represents 1 or 0 .
Examination of this transmission shows two important properties: turning it upside down makes no difference to reception, and clockspeed errors don't accumulate - each bit contains a clock. $10 \%$ or more difference in speed won't baffle it.
A TRANSWIFT transmission doesn't use start, stop or parity bits. The speed of the transmission is more likely to be restricted by the processor's agility in handling the data than by: the bandwidth of the recording system. It is up. to the processor to make an intelligent decision about whether it has a valid transmission or not, and where that transmission starts. If the input is to an interrupt this process can be automatic.

SOFTY2 uses $500 \mu \mathrm{~s}$ and $1000 \mu$ as the transmission times for a 0 and a 1. To show that a transmission is coming, and to get over the bounce period of the recorder's automatic gain control, a leader of 20 bytes of 'AA' bytes are sent. (AA in hex. is 10101010 ). Then a hex ' 69 ' (which is 01101001 ), and the data, with no extra bits of any kind.
Recovery uses a routine which samples forward from each positive transition by $750 \mu \mathrm{~s}$ and shifts the sample bit into a register. The word in the register is then compared with ' 55 ' and ' $A A^{\prime}$ ' and either are accepted as valid leaders. A leader counter with a starting value of perhaps 40 is decremented for each valid leader byte, but restored to starting value if an invalid leader is received. When the counter reaches zero the program starts looking for the ' 69 '. The ' 69 ' is there for alignment - so that you can chop the succession of bits into bytes in the right places.
To establish the best form of error checking it is necessary to anticipate how the recorder will mess up the data. The usual system of adding a parity bit to each word fails because lateral displacement is common. All error checking systems use redundancy - they transmit extra information to catch errors. SOFTY uses a single byte appended to the transmission which is formed by exclusive-ORing all the data bytes with AA. (I used AA because it happens to be the leader and in the right register at the right time). The reception routine exORs the transmission and shows you the result - if it isn't AA then you have errors. I call this parallel parity.

In case you're wondering how much programming space this takes: A Z 80 device (MENTA), designed later, uses 147 bytes for the cassette interface. SOFTY uses about 300 .

The article "Economical Z80 development system" supports my claim that the combination of any assembler and a SOFTY makes a powerful design tool. However the process of linking a Nascom to SOFTY described is.un-

necessary. Leaving aside the fact that SOFTY2 already has a parallel interface with normal handshake, plus serial routines for 110,300 , 600,1200 and 2400 bauds, all of which ignore all ASCII characters except 0 to 9 and A to F by far the simplest solution is to write a TRANSWIFT routine for the assembler's processor to dump the code into SOFTY using. the cassette jack-socket. This reduces the hardware to a piece of wire and a jack-plug. In fact, I use a similar system from my Sharp MZ80K. The port used is the Sharp's keyboard l.e.d. - mainly because the connector is provided on the p.c.b.

TRANSWIFT is the simplest and most economical method of implementing a serial data transmission system, and is especially useful if the bandwidth of the medium is limited.

## B. Savage

Dataman Designs
Dorchester

## THE DEATH OF ELECTRIC CURRENT

Ivor Catt's latest letter suggests that some progress has been achieved in an uphill struggle, for he seems to acknowledge that we are discussing models of reality and not reality itself. However, there is some way still to go, for he seems to regard models as "true" or otherwise. Models can be bad or good or better in relation to their accord with observation, but never true or false. So it is fatuous to assert that a model shows that electric current does not exist.

Certainly, there is much to be said for keeping models simple, but I think that other correspondents have shown that the "insurmountable difficulties" introduced by $\rho$ and $\mathscr{f}$ exist only in Mr Catt's mind. Further, simple models are not always best: albedo measurements had shown the shortcomings of the green-cheese model of the moon, long before Armstrong arrived to test the flavour!
I was interested by Mr Davidson's achievements with discharging capacitors, but I suspect that those of us not fortunate enough to have a capability for time-domain reflectometry will continue to use the exponential model. This model does have a shortcoming in that it suggests that the discharge current continues for an infinite time, whereas observation shows that it does not. Of course, if we use an electric current model we can account for this by supposing that the discharge current becomes submerged in the noise, currents generated by random motion of the electrons within the conductors. Presumably there is a means of describing the effect using an e.m. wave model?
R. T. Lamb

College of Engineering Studies
British Telecom

## DANGERS OF LOWFREOUENCY SOUND <br> I have just read the letter of S. Frost of Edin-

 burgh, who replies to my earlier letter concerning my invention and operation of a hi-fi speaker system whose response is flat down to four Hz , suggesting that I should be careful. He quotes from the paperback "Supernature" by Dr Lyall Watson and suggests that my speaker could be harmful to certain people, due to its infrasound output.I know that infrasound of very high intensity can give temporary effects which might be termed uncomfortable or disquieting by some people. However, the subject of infrasound in
general is now much better understood that it was in 1974 (the date quoted by Mr Frost which applies to the above publication) and it is now known that even prolonged exposures to infrasound of even very high intensities up to that experienced, say, in a rapidly moving railway carriage with the window open (which I believe in the order of $135-138 \mathrm{~dB}$ ?) do not cause lasting - deleterious effects. My speakers at present have a maximum output on transients of around 15 20 dB less than this, or around the level of v.l.f. caused in a house by a very strong wind blowing outside. There is no risk of permanent harm arising from their use as hi-fi speakers. Infrasound produced by helicopter blades, pneumatic drills, heavy trucks, etc. (from the driver's seat) can be louder that this and are still not harmful. It takes sound loud enough to physically shake one out of one's seat before even temporary damage is caused (note sound pressures, not structure-borne vibrations). Levels such as those of a full sized fog horn (marine, shore-based) at 3 ft are at the danger area.
G. Holliman

Watford
Herts

## MICROCHIPS AND MEGADEATHS

Further to Mr P. C. Smethurst's letter in the December issue, may I suggest that the only way in which the technical society will become a reality is by a major evolutionary development of the human species.

The nearest approach the average homo-erectus makes to the technical society is to buy a digital wrist watch with alarm and graphic display, kidding himself that he will be able to tell the time with it. Such mistakes are inevitable with.our present learning process.

Until our DNA reorganizes itself a little so that accumulated knowledge (only the facts, of course) can be passed directly to offspring, our ability will depend on Mr Smethurst's learning period of $15-20$ years. Few people will reach his 'unusual' standard and buy watches with hands. R. G. Brown

Watnall
Notts
Tim Bierman (October Letters) and Roy C. Whitehead (January Letters) are wrong to imagine that refusal to fighting wars will avert their occurrence. Modern technological warfare, involving nuclear and space-based weapons, does not depend upon the recruitment of willing and gullible warriors. A small, minority elite now possesses the power to destroy the earth and, if competition over markets, trade routes and natural resources necessitates it, will sacrifice millions of human lives to the god of profit. If the threat of war is to be removed, political action must be taken to transfer power away from the possessing minority into the hands of the democratically organized world community. If the weapons are used, there will be no hiding places for conscientious objectors; the time for objecting is now.
Instead of listing names of Wireless World readers who would refuse to fight in the event of a future war, may I suggest that a better course would be to list the names of readers who have taken the step of extending their scientific interest in technology into a scientific analysis of society?
Steve Coleman
Clapham
London SW4

## THE NEW ELECTRONICS

The article by Hugh Jaques in your January edition prompts me to add my own comments on the subject of "The new electronics".

It is all very well to decry falling standards, but I find the tone of that article rather counterproductive. The standard in Germany, if we wish to draw comparisons, is far lower - yet the number of "Diplomingenieure" (dipl Ing) and Doctors of Science is far greater. Previous Wireless World editorials have covered the question of status - and one gets the clear impression that British engineers are developing an inferiority complex with regard to the Germans.

Yet, years ago, I attended a conference in Frankfurt when Cosmos and I.c.ds were introduced. The meeting began with German engineers pounding the table Kruschev-style; everyone was quite unruly. When I pointed out that l.c.ds, with a quoted life-expectancy of fifty thousand hours, could not complete for longevity with l.e.ds (up to one million hours), everyone was on his feet screaming "l.c.ds no good." The meeting broke. up in chaos and I never did find out if one could prolong the life of l.c.ds by interposing ceramic capacitors in the leads to block the d.c. components of the signal, which causes electrolysis of the liquid crystals.

Dipl-Ing colleagues were forever asking me such questions as "What is the difference between a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor", and a doctor of physics never answered any question without his "schlaue Buch" (clever book) which was his real brains.

No - the Germans are dishing out high-level qualifications in every branch of science almost like the free-gifts with chewing-gum. Yet the television programme "Bilder aus der Wissenschaft" (pictures from science) complained that Germany was not winning any Nobel Prizes.

To improve standards one must set an example through excellent work - rather than trying to catch people out. Indeed, there is nothing very wrong in a newly-qualified engineer being a little "green". The real education is the work itself, and if the British withhold their qualifications whilst the Germans mass-produce them, Britain will not be well represented at future international congresses, will lose presence in the world and cease to sell goods.
It would appear that Mr Jaques was not so "word-perfect" as he claims. In his Fig. 2, the gain is only $-R_{2} / R_{1}$ if the source - impedance at point $X$ is zero, which is what one would infer from the "gain between $X$ and $Z$ ", because any generator impedance would be added to $R_{1}$. Secondly, the input-impedance at $Y$ is $R_{2} /(1+A)$ only if the source - impedance at X is infinite. Otherwise $R_{1}$ and the source impedance form a series-string in parallel with $R_{2} /(1+A)$. What source impedance does Mr Jaques have in mind?

Perhaps you can see how destructive such a style of cross-examination can be. We all make mistakes which are not mistakes at all unless we want them to be. "What is the input impedance at Y with X open-circuit" would have been a better question, which would have saved Mr Jaques face. But I am just picking him up on words - as he was doing.

In the final analysis, engineers are paid for engineering - not for passing tests. Given the chance, many will succeed and many will fail. Be over selective and all will fail.
C. Wehner

London, W2

# RECEIVERS FOR OPTICAL FIBRE COMMUNICATION 


#### Abstract

During the next few years optical fibre systems will be used increasingly for long-distance telecommunications with emphasis on achieving greater bandwidth and greater spans between repeaters. In this rapidly developing subject it is essential to be aware not only of the latest published results but also of the underlying principles to fully appreciate the potential of optical communication. With this in mind, Dr Garrett reviews both the best reported performance in detectors and receivers and the areas where there is still room for improvement.


Optical fibre communication systems are beginning to be used extensively for data links and for long-haul systems. The first "generation" of systems operates in the near infrared - a wavelength of about $0.85 \mu \mathrm{~m}$ - where light sources may be made from gallium arsenide and detectors from silicon. At slightly longer wavelengths, 1.3 to $1.6 \mu \mathrm{~m}$, glass fibre is a better transmission medium, having enormous bandwidth and extremely low attenuation $-0.5 \mathrm{~dB} / \mathrm{km}$ or even lower. Fibre systems are being used to carry telephone traffic at $140 \mathrm{Mbit} / \mathrm{s}$ over unrepeatered spans of 10 to 12 km in the UK. Within the next few years it will be possible to operate at ten times that rate over at least five times that distance. As the market for fibre grows and the cost comes down, it will become economic to use fibre systems at lower data-rates as well, and also to transmit video either for entertainment or for teleconferencing.
The three basic functions of an optical receiver are to convert the signal from an optical to an electrical form, to amplify the signal, and to regenerate the transmitted message. The first of these is performed by an optical detector. Amplification is not specific to optical systems except for the special design of the front-end of the receiver, which is inseparable from the detector in determining the sensitivity. Estimation and regeneration of the message involves dealing with the noise and various system impairments; only the


Fig. 1. Silicon p-i-n photodiode is suitable for wavelengths from 0.8 to $1 \mu \mathrm{~m}$ (top), while InGaAs/InP p-i-n diode covers wavelengths from 1 to $1.6 \mu \mathrm{~m}$ (bottom).

by I, Garrett

more basic ideas are covered; for more depth refer to the bibliography. In these functions, an optical receiver seems similar to a radio receiver. However, current optical receivers are quite different in the way in which they perform. Heterodyne detection, universal in radio practice because of its excellent sensitivity and rejection of adjacent channels, is at present impractical in optical receivers. It requires a local oscillator which matches the arriving signal in frequency, phase, and polarization. Today's semiconductor lasers have spectral line-widths of 25 MHz to 1000 GHz , and current fibres do not preserve a predictable polarization at the output end. Although the possible advantages of increased sensitivity and use of frequency and phase-shift keying have stimulated research into overcoming these and other problems, today's systems use incoherent (direct) detection, in which only the variations in optical power are sensed.

## Unity-gain detectors

The device which converts the optical signal to an electrical form must be efficient at the operating wavelength and must respond at a speed appropriate to the message data rate or frequency band. One may also require a linear response, operation at ambient temperature from a convenient voltage supply, and a preference for a small, light, cheap and reliable device. Semiconductor photodiodes fit all these requirements remarkably well, and there is little interest in other types of detector for optical telecommunication, at least in normal terrestial environments. Photoconductive detectors have inferior noise performance except when the incident optical power level is high; pyro-electric detectors can only be made fast at the expense of sensitivity, and photomultipliers offer no advantage in sensitivity when, as is normally the case in fibre optic systems, the optical power level on zero bits is not zero. Phototransistors are convenient devices for low-speed data links, but are

[^4]generally not sufficiently fast and sensitive for telecommunication.
A photodiode is a reverse-biased p-n junction formed in a semiconductor material. Photons are absorbed in the semiconductor and create electron-hole pairs. These carriers can be separated by an electric field, such as exists in the depletion region of a p-n junction, and then give rise to a current in the external circuit. To convert light efficiently, the semiconductor material must have a high absorption coefficient at the wavelength of the light so that different materials are appropriate for different wavelength ranges.
The speed of response is governed by the time taken for the photogenerated electrons and holes to reach the terminals of the device, and by the RC time constant of the measuring circuit, which may be affected or even dominated by the junction capacitance. Photo-generated carriers travel across the device to the terminals from the points at which they are generated by diffusion and by drift in any internal field. The rate of diffusion is generally so slow that except in very thin layers most carriers are lost by recombination and do not contribute to the photocurrent. The device is made fast and efficient by ensuring that the incident photons are absorbed in the high-field depletion region of the junction.

Figure 1 illustrates a photodiode structure used in practice. It is a silicon device designed for the wavelength range 0.8 to $0.9 \mu \mathrm{~m}$, and has a thick depletion region 30 to $100 \mu \mathrm{~m}$ thick formed in lowdoped material. The absorption coefficient of silicon in this wavelength range is 950 to $350 \mathrm{~cm}^{-1}$, so that several tens of microns of material are needed for almost complete absorption. Very little of the incident radiation is absorbed in the undepleted $\mathrm{n}^{+}$layer at the surface, which is only about $1 \mu \mathrm{~m}$ thick. The device is designed so that the field required to deplete it fully is well below the breakdown field strength, but sufficiently high to accelerate the carriers to their scattering-limited velocity (around $10^{7} \mathrm{~cm} \mathrm{~s}^{-1}$ in many semi-conductors at room temperature) resulting in a response time of about 10 ps per micron of depletion region. Depletion region doping is very low so that fast response is obtained with a moderate applied voltage. Such a device is known as a p-i-n photodiode, the i -region


Fig. 2. Silicon p-i-n diode chip, top, is 1 mm square with circle $100 \mu \mathrm{~m}$ diameter and bonding pad beside it. Chip capacitance is below 0,1 pF, and reverse bias leakage current is around 50 pA at -10 V bias. Quantum efficiency at $0.85 \mu \mathrm{~m}$ wavelength, corresponding to gallium arsenide injection lasers, is 0.95 . Active area of $\operatorname{InGaAs} / \operatorname{InP}$ photodiode isolated by mesa etching is $100 \mu \mathrm{~m}$ in diameter in scanned electron micrograph (bottom). A small bonding pad is formed on the top surface as the device was intended for front illumination. Capacitance is 0.3 pF and reverse bias leakage current below 10 nA at -10 V bias. Quantum efficiency is only about 0.4 because many carriers recombine in the undepleted surface layer but this can be overcome by illuminating through the substrate; anti-reflective coatings also increase efficiency.
being nearly intrinsic. The wide depletion layer reduces the junction capacitance too. The device illustrated is $100 \mu \mathrm{~m}$ in diameter and has a capacitance of less than 0.1 pF .

At wavelengths beyond $1 \mu \mathrm{~m}$, silicon becomes increasingly transparent and a different material is required for photodiodes intended for communication systems. An obvious choice is germanium which has a bandgap of 0.66 eV and so should be sensitive out to $1.8 \mu \mathrm{~m}$ or so, well beyond the optimum transmission wavelengths of 1.3 and $1.55 \mu \mathrm{~m}$. The small bandgap of germanium is something of a disadvantage: coupled with the high density of states in the conduction band it means that the reverse bias dark current is large, which degrades the performance of an optical receiver. The other possible materials are the so-called group III-V compounds, binary compounds of elements from groups IIIb and Vb such as gallium arsenide and indium phosphide. To detect light at $1.55 \mu \mathrm{~m}$, a material with a bandgap near 0.8 eV is needed. None of the binary III-V compounds has such a bandgap, but many of the III-V compounds form extensive solid solutions with each other, and the mixed
compounds have properties intermediate between those of the binaries. So it looks as if there ought to be a wide choice of materials. In practice the choice is limited by the techniques available for preparing these materials in sufficiently pure and perfect form. The most usual materials for detectors in this range are the ternary compound ( Ga , In) As and the quaternary ( $\mathrm{Ga}, \mathrm{In}$ )(As, P). In either material, the bandgap can be adjusted over a wide range by selecting a suitable composition. Reverse-bias dark current is smaller than in germanium by one or two orders of magnitude typically because of the much smaller density of states in the conduction band. Recently, the II-VI compounds such as $(\mathrm{Cd}, \mathrm{Hg}) \mathrm{Te}$ have also been studied for use as fast photodiodes in communication systems.

The second device illustrated has an absorbing layer of InGaAs deposited on an $\operatorname{InP}$ substrate, with the $\mathrm{p}-\mathrm{n}$ junction formed by diffusing a dopant such as zinc into the absorbing layer. This device is designed for the wavelength range 1 to 1.6 $\mu \mathrm{m}$, in which the InGaAs layer has a high absorption coefficient, around $10^{4} \mathrm{~cm}^{-1}$, so only a thin absorbing layer is needed, about 3 to $10 \mu \mathrm{~m}$. This makes the response fast, but an important fraction of the incident radiation is absorbed in the undepleted $\mathrm{p}^{+}$region at the surface even if it is only $1 \mu$ m thick. Many of the carrier pairs formed in this region are lost by surface recombination or by recombination within this layer, so that the efficiency is reduced considerably. It is not easy to control the thickness of this layer much below $1 \mu \mathrm{~m}$, but the problem can be surmounted by arranging for the light to be incident through the back of the device, i.e. through the InP substrate, which is transparent at wavelengths beyond 0.95 $\mu \mathrm{m}$.

The quantum efficiency of a photodiode is the number of carrier pairs formed on average for each incident photon. It is less than unity in practical devices for three main reasons: some of the incident light is reflected; some carrier pairs are formed in undepleted material and so do not contribute to the photocurrent at high frequencies; and some carrier pairs recombine before reaching the terminals of the device. To improve the quantum efficiency, the surface of the device is often


Fig. 3. Depletion voltage and junction capacitance as functions of the depletion layer thickness for a $100 \mu \mathrm{~m}$ diameter diode, taking the relative dielectric constant to be 10, typical of many semiconductors.


Fig. 4. Avalanche gain as a function of field strength - the breakdown characteristic. Parameter $k$ is the ratio of ionization rates for electrons and holes.
given an anti-reflecting dielectric coating like the blooming of a camera lens; the surface reflection coefficient may be reduced from around $30 \%$ to almost zero. If the light has to pass through undepleted material, as in the lower diagram, this is kept as thin as possible or made of a semiconductor which is transparent at the wavelength of interest. Recombination of carriers within the depletion region is generally minimized by reducing deeplevel impurities and crystal defects as far as possible.
The depletion layer thickness $d$ is determined by the applied voltage $V$ and the doping level $N_{\mathrm{b}}$ :

$$
V+V_{\mathrm{bi}}=q N_{\mathrm{b}} d^{2} / 2 \epsilon \epsilon_{\mathrm{o}}
$$

where $q$ is the electron charge and $\epsilon$ is the relative dieclectric constant, typically 10 to 15. Junction capacitance is

$$
C_{\mathrm{d}}=A \in \epsilon_{\mathrm{o}} / d
$$

where $A$ is the area of the junction. These relationships are plotted in Fig. 3, assuming a device diameter of $100 \mu \mathrm{~m}$. Doping levels of $10^{12}$ to $10^{13} \mathrm{~cm}^{-3}$ are available in silicon, so that a few tens of microns can be depleted at 5 to 10 volts. In the mixed III-V compounds levels of $10^{15}$ $\mathrm{cm}^{-3}$ are the best normally available, so that 15 to 20 volts are required to deplete a few microns. Junction capitance is typically 0.1 to 0.5 pF for a high-speed device so that the capacitance of a packaged device is usually dominated by the package.
The reverse-bias leakage current (dark current) of a photodiode is important because the shot noise on this current can be the dominant receiver noise in some situations. The dark current is caused by current leakage over the surface of the device as well as through the depletion region (bulk leakage). Surface leakage is minimised by careful processing and by coating the device with a passivating layer: methods vary from one material to another. Bulk leakage is due to diffusion of minority carriers from the undepleted


Fig. 5. Signal-to-noise ratio is improved as a result of avalanche gain. Parameter $x$ is the exponent in the empirical expression for the excess noise factor $F=M^{x}$. Value of 0.3 to 0.5 relates to silicon reach-through diodes while germanium and III-V a.p.ds have a value close to 1.
regions and by generation and recombination of carrier pairs in the depletion region. The diffusion term usually dominates in materials with a large intrinsic carrier concentration, such as germanium. The generationrecombination term is the most important in silicon and in most III-V compounds of interest.

## Detection in the presence of noise

The most important parameter of any receiver is its sensitivity, and there are several factors which prevent arbitrarily weak signals from being handled. The signal will have suffered various impairments during transmission, because of the dispersion and attenuation of the fibre. In addition to being distorted, the signal leaving the optical receiver has wideband random fluctuations produced by the components of the amplifier. Lastly, even with an infinite fibre bandwidth and a noiseless amplifier, the optical signal itself is statistical because of the quantum nature of light. Radio waves are also quantized, of course, but the quantum energy hu is much less than the thermal energy $k T$ of electrons in the amplifier components so that quantum effects do not show up at radio frequencies. At room temperature $k T / h$ is about 6000 GHz , well above the highest frequencies used in radio transmission, and well below the frequency corresponding to a wavelength of $1 \mu \mathrm{~m}$, which is 300 THz . Photons arrive at the detector at random instants with a Poisson probability distribution so that the variance in arrival rate is equal to the mean. If the expected number of photons in some time interval in $m$, then the probability that the number detected will be $n$ is

$$
p(n)=\operatorname{Pos}[n, m]=m^{n} \mathrm{e}^{-m / n}!
$$

Consider a binary digital system in which one needs to decide whether or not a pulse was received during each bit period. The number of detected photens $n$ is counted for each bit period, and if that number exceeds some threshold number $d$ a onepulse is recorded, otherwise a zero is recorded. Errors occur if $n$ is less than $d$ when a one-pulse was transmitted. It is easy to see that fewest errors are made
when the threshold $d$ is set between 0 and 1 photons. The error probability is then $P_{e}=$ $\mathrm{e}^{-m}$, and one cannot have zero error probability with finite $m$. For $P_{\mathrm{e}}=10^{-5}, m$ $=11.5$ and for $P_{\mathrm{e}}=10^{-9}, m=20.7$.

In an analogue system, we are interested in the signal-to-noise ratio (snr) at the receiver output with a post-detection bandwidth $B$ which smooths fluctuations over an integration time $t=1 / 2 B$. If the mean photon arrival rate is $r$, then the number $m$ which arrives, on average, during the time $t$ is $m=r / 2 B$. At the output of the receiver, the signal power is proportional to $m^{2}$, while the noise power is proportional to the variance of $m$, which is just $m$. Thus signal-to-noise ratio is

$$
m^{2} / m=r / 2 B
$$

For example, a 50 dB signal-to-noise ratio and a 1 MHz bandwidth requires, average, $2 \times 10^{11}$ photon/s or 40 nW at a wavelength of $1 \mu \mathrm{~m}$.

That is the best performance one could expect, even with a perfect detector and a noiseless amplifier, limited only by the quantum fluctuations in the incoming optical signal. In real life, amplifiers are not noiseless because electrons in the conductors move with randomized velocities with energy $\sim k T$, and the amplifier has to have non-zero input conductance. Using conventional components, an amplifier with input


Fig. 6. Silicon reach-through avalanche photodiode is made by diffusion and implantation of dopants into a low-doped silicon substrate. Guard ring lowers electric field at the perimeter of the junction, preventing premature breakdown. Commercial silicon reach-through avalanche photodiode in a TO-18 can is the RCA 3090ZE.
capacitance of 10 pF and a bandwidth of 10 MHz would need to have an input resistance of about 10 kohm or less loading the photodiode. The mean square thermal noise voltage in a bandwidth $B$ due to a resistance $R$ is $\left\langle V^{2} \mathrm{~T}\right\rangle=4 k T R B=8.3 \times 10^{-10}$ $V^{2}$ at room temperature for an $R$ of 5 kohm and $B 10 \mathrm{MHz}$. The signal voltage generated across $R$ due to $m$ photons at a wavelength of $1 \mu \mathrm{~m}$ detected in time $t$ is $V_{\mathrm{s}}$, $=m q R / t=1.6 \times 10^{-8} \mathrm{~m}$ volts. The signal-to ${ }^{\circ}$ noise ratio is

$$
'\left(1.6 \times 10^{-8} \mathrm{~m}\right)^{2} / 8.3 \times 10^{-10}=3 \times 10^{-7} \mathrm{~m}^{2}
$$

so that in a digital system of 22 dB ratio, $m$ is about 20,000 photons in a bit period $t$ (taken as $1 / 2 B$ here). This is 1000 times or 30 dB greater than the quantum noise limit, which justifies ignoring quantum noise in this calculation. As 30 dB can be translated into perhaps 100 km of extra fibre at $1.55 \mu \mathrm{~m}$ - by no means a small benefit - one would like to improve this situation. There are four ways of increasing the receiver sensitivity to consider. Reducing amplifier noise is one way, obviously - discussed see later another way is discussed in the next section, and in the last section of this article two other ways are considered: optical amplifiers and coherent detection.

## Avalanche photodiodes

An electron or hole accelerated by an electric field may gain sufficient energy so that when it is scattered by the lattice a lattice atom is ionized, creating an electron-hole pair. The newly created carriers can then cause impact ionization and so lead to an avalanche process with current gain.

If only one type of carrier were capable of causing impact ionization the avalanche process would advance across the high field region, the number of carriers increasing exponentially with distance but remaining finite: avalanche breakdown would be impossible. In real materials, however, both carrier types can cause impact ionization, usually with different efficiencies, providing a regenerative or positive feedback mechanism which can lead to a (theoretically) unbounded number of carriers in the breakdown. The avalanche current gain $M$ is plotted as a function of electric field in Fig. $4 ; k$ is the ratio of ionization rates for electron and holes. The gradient of all the curves in Fig. 4 becomes infinite for some finite field, except for $k=0$. The implication is as follows: to get useful current gain from the diode it must be biased close to breakdown - very close if $k$ is near to unity. But any variation in field due to the diode not being perfectly uniform or the supply voltage being imperfectly regulated causes a change in the current gain, and this change can be large if $k$ is near unity. The current gain becomes variable and also noisy. In silicon $k$ can be as low as 0.01 , and silicon diodes can be operated at gains of a few hundred or even thousands in some cases. In germanium and many III-V compounds, $k$ is $0.3-1$ and it is hard to fabricate and control a device for a gain


Fig. 7. Some published results on receiver sensitivity in experimental optical fibre transmission systems. Circles represent germanium diodes, and the slope of approximately 1.25 is expected for an excess noise factor exponent $x$ close to unity. Filled squares are for p-i-n-f-e-t receivers discussed in part 2.
above 10 to 15 . There are also noise problems associated with a value of $k$ close to unity.

How is this current gain used to improve the sensitivity of an optical receiver? Current gain arising from avalanche gain increases the signal voltage across the amplifier input and so improves the signal-to-noise ratio as the amplifier noise is unaffected. However, the current gain also increases the quantum noise by the same amount as the signal, so that one cannot get beyond the quantum noise limit. In practice one cannot even get near to it because of extra noise introduced by the random impact ionization process. Consider a steady optical power $P$ incident on the detector. The resulting multiplied photocurrent is $\left\langle i_{p}\right\rangle=2 P \eta q M / h v$. The mean square shot noise current on the photocurrent in a bandwidth $B$ is $\left.2 q<i_{p}\right\rangle$ $B M^{x}$, where $M^{x}$ is the excess noise factor from the avalanche gain process $(0<x<$ 1). The mean square thermal noise current is $4 k T B / R$. So the output power signal-tonoise ratio is

$$
\frac{(2 P \eta q M / h v)^{2}}{2 p \eta q^{2} R M^{2+x} / h v+4 k T B / R}
$$

With $M=1$ the thermal noise term dominates. As $M$ is increased from unity the signal power increases as $M^{2}$, but so long as the thermal noise term dominates the total noise power is little affected and the signal-to-noise ratio increases. When $M$ is large, thermal noise is insignificant and the signal-to-noise ratio decreases with increasing $M$ as $M^{x}$. There is an optimum avalanche gain:

$$
M^{2+x}=(4 k T / R)\left(h v / x P \eta q^{2}\right)
$$

so that

$$
\frac{\text { Shot noise }}{\text { Thermal noise power }}=\frac{2}{x}
$$

The empirical parameter $x$ is related to $k$, the ratio of ionization rates for holes and electrons. Both depend on the material, and also on the electric field strength and direction. In silicon, $k$ is about 0.02 and $x$ is 0.3 typically. In germanium, $k$ is between 0.7 and 1 and $x$ is close to 1 . In III-V alloys, $k$ ranges from 0.2 to 1 and $x$ is 0.7 to 1. The equation is plotted in Fig. 5 with different values of $x$. If $x$ is small, as with a silicon diode, the optimum gain is large and the maximum in signal-to-noise ratio is broad. The diode can, in fact, be used to vary the gain of the receiver and so provide a.g.c. When $x$ is near unity, less improvement is possible, the optimum gain is lower and the maximum much sharper. Such diodes may be difficult to control for optimum performance.

The theory of the avalanche process and the statistics of excess avalanche noise are important in the study of optical receivers, but they are beyond the scope of this article - consult the papers by McIntyre and co-workers in the bibliography for further details (part 2).

To make an avalanche photodiode in silicon with a fast response a simple p-n junction will not do because most photons will be absorbed in undepleted material where the field is negligible. It is necessary to use the "reach-through" structure shown in Fig. 6 in which the depletion region consists of a high-doped, high fieldgain region followed by a lower field, lowdoped absorbing region. The problem is to ensure that the absorbing region is fully depleted well before the gain region breaks down, and this demands great control over the fabrication of the device. Nevertheless, good commercial silicon reach-through diodes have been on the market for several years.

Most system work at longer wavelengths has been carried out using germanium avalanche photodiodes. Germanium seems an obvious material, as the photodiodes can be made sensitive out to $1.6 \mu \mathrm{~m}$ and beyond by reducing the thickness of undepleted material near the surface. Germanium is not ideal because the ratio of ionization coefficients $k$ is close to unity (i.e. $x=1$ ) so that the excess noise factor is high. More importantly, the reverse bias leakage current density is high because the high intrinsic carrier concentration results in a large diffusion contribution to the leakage current. The unmultiplied leakage current density is typically $3 \times 10^{-4} \mathrm{~A} \mathrm{~cm}^{-2}$ at room temperature, sufficient to cause a


Fig. 8. Group III-Y heterostructure a.p.d. has the high-field (gain) region within the large band-gap InP layer.
system penalty of a few decibels at a datarate of a few hundred $\mathrm{Mbit} / \mathrm{s}$. The leakage current depends on temperature and at $50^{\circ} \mathrm{C}$ is about an order of magnitude greater than at $20^{\circ} \mathrm{C}$, resulting in a large system penalty and reducing the optimum gain to about 3 to 5 as the dominant noise source may be multiplied bulk leakage. At room temperature, receiver sensitivities of -34 dBm at 400 M baud and -30 dBm at 800 Mbaud have been reported using germanium photodiodes. These figures would be several dB worse at $50^{\circ} \mathrm{C}$. Published receiver sensitivities at 1.3 and $1.55 \mu \mathrm{~m}$ are shown in Fig. 7 for the available range of bitrates, and it can be seen that the bit-rate dependence is approximately the $5 / 4$ power, as one would expect from an a.p.d. with an $x$-factor near unity. Also shown are the results for $\mathrm{p}-\mathrm{i}-\mathrm{n}$ receivers with a $3 / 2$ power dependence, as discussed in part 2 of this article.

In pursuit of the excellent performance achieved with silicon a.p.ds considerable effort has been expended in research on diodes made in III-V compounds. To date no system results have been reported although there is much published material on the devices themselves. As with semiconductor lasers for wavelengths beyond $1 \mu \mathrm{~m}$. The main work has been carried out on the GaInAsP/InP system, and until recently avalanche gains in the region 10 to 20 were typical, limited probably by non-uniformity of the material of the high-field region leading too micro-plasma breakdown. More recently, a structure with the high-field region in InP has been described as shown in Fig. 8, and gains of up to several thousand reported. A different reversebias leakage current mechanism becomes important in the high-field region of III-V diodes: tunnelling of electrons from the valence band to the conduction band. This leakage is very sensitive to field and to band-gap. The implication is that the dark current can be reduced to an acceptable level only by keeping the high field region to low-doped, large band-gap material such as InP. The excess avalanche noise properties of the device then depend on this material.

## Correction

Phase-shifting oscillator, By Roger Roosens. A number of misprints crept into this articlepublished in the February issue, for which we must apologise. Many of the mathematical formulae were affected and we would be happy to provide interested readers with a corrected copy if they send us a stamped-addressed envelope.

The author has asked us to point out that distortion was measured using fixed $1 \%$ resistors for the tuning elements. Such figures could not be achieved with a two-gang potentiometer.

A numerical analysis of the thermistor distortion was made with a computer and the results were compatible with calculated ones. The only significant distortion generated in the n.t.c. is third harmonic.

The measured distortion figures show that the second-harmonic distortion of the circuit increases at low frequencies. This is due to second-order effects in the i.cs due to temperature variation with the oscillator signal. This distortion sets the performance limit of the circuit at low frequencies.

# HEATING-FUEL SAVER 

## Over the season some saving can be made in heating fuel bills by switching on later when the weather is less cold. This feature is usually incorporated in large systems but the unit described, which may be built at low cost, is intended for domestic use. There is an outdoor temperature sensor which is not essential but may be used to monitor the heating system.

The outdoor sensor is a thermistor, of which the resistance $\left(\mathrm{R}_{\mathrm{r}}\right)$ must be known, or measured, at three relevant temperatures, for example $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, which is connected in series with a fixed resistance $\mathrm{R}_{\mathrm{s}}$, across a stabilised voltage. By appropriate choice of $\mathrm{R}_{\mathrm{s}}$ (see appendix), the relationship of the mid-point voltage ( $V_{\mathrm{t}}$ to temperature can be quite well linearised, as shown in the table. The timing circuit uses a slowly-rising voltage $V_{\mathrm{p}}$, and a comparator to close the switching relay when $V_{\mathrm{p}}$ reaches $V_{\mathrm{t}}$. The ramp voltage $V_{\mathrm{p}}$ is generated digitally using a data-a converter in the prototype the popular Ferranti ZN425E, clocked at v.l.f. to give for example a delay of one hour per $10^{\circ} \mathrm{C}$.

The power supply section shown in Fig 2 is suitable for a standard 24 V d.c. octalbased relay, of which the coil resistance is typically 470 ohms. If a different voltage is used, $R_{d}$ should be adjusted to give $8-12 \mathrm{~V}$ input to the regulator.

## Counting-up

In Fig. 3, the 425 internal counter is brought into use by tying pin 2 high. The internal resistance ladder is connected to the internal reference source ( $V_{\text {ref }}$ ) by joining pins 15 and 16 , and the analogue output $V_{\mathrm{p}}$ at pin 14 is then given by:

$$
V_{\mathrm{p}}=V_{\mathrm{ref}} \times N / 256
$$

where $N$ is the count reached. The counter has eight stages, and the maximum count is $(1+2+4+8+16+32+64+128)$ or 255 . The nominal reference is 2.56 V , giving 10 mV per count, but its exact value is unimportant, since the thermistor $R_{\mathrm{t}}$ is also supplied from $V_{\text {ref }}$, and:

$$
V_{\mathrm{t}}=V_{\mathrm{ref}} \times R_{\mathrm{s}} /\left(R_{\mathrm{s}}+R_{\mathrm{t}}\right)
$$

Thus the count required to make $V_{\mathrm{p}} \mathrm{ex}$ ceed $V_{t}$, and so turn on the relay via comparator $\mathrm{IC}_{2 \mathrm{a}}$ is given by:

$$
\begin{gathered}
N=\text { nearest whole number above } \\
\left(256 \frac{V_{\mathrm{t}}}{V_{\text {ref }}}=256 \frac{R_{\mathrm{s}}}{R_{\mathrm{s}}+R_{\mathrm{t}}}\right)
\end{gathered}
$$

The table shows $N$ values for various temperatures, relating to RS code 151-237 thermistor, which is a close-tolerance device ( $\pm 0.2^{\circ} \mathrm{C}$ ). Resistance $\mathrm{R}_{\mathrm{s}}$ should be made up to within $1 \%$ from metal-film

by David Ryder, Ph.D.

resistors. Other thermistors can be used by measuring them and calculating the appropriate $\mathrm{Rs}_{\mathrm{s}}$ (see appendix). Setting-up is easier if test-resistances are made up to substitute for the thermistor at say $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, and in the prototype these were built in using a four-way switch.

## Circuit operation

The 425 is clocked, pin 4 , from a conventional 555 oscillator divided by a c.m.o.s. 4040B. The division ratio to 4040 pin 1 is 4096 , and to pin 3, 64, the latter output being used via $\mathrm{Tr}_{3}$ to flash an l.e.d, and via $\mathrm{S}_{1}$ to give fast clocking of the 425 for test purposes. From the table the number of counts between $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ is 59 , and if this is to occupy 59 minutes, one count per min , the 555 period must be $60 / 4096 \approx 0.0146 \mathrm{sec}$, or $14.6 \mathrm{~ms} . \mathrm{Vr}_{1}$ gives a range of about 1 to 3 hours per $20^{\circ} \mathrm{C}$.

The comparator IC2 ${ }_{\mathrm{a}}$ has an open-collector output, which is pulled up by the $1 k$ resistor, and the relay is switched via $\mathrm{Tr}_{2}$. The positive feedback from the output C to the non-inverting input is needed to latch the comparator, since $V_{\mathrm{t}}$ may subsequently rise above $V_{\mathrm{p}}$, but diode $\mathrm{D}_{4}$ avoids loading on the input, and so on the 425


Fig. 1. In-line connection of delay unit between time-clock and load.


Fig. 2. Power-supply section. The regulator may be 100 mA or 1 A type.

Linearisation of RS code 151-237
thermistor, using calibration points $0^{\circ}, 10^{\circ}$, and $20^{\circ} \mathrm{C}$, resistor $\mathrm{P}_{\mathbf{3}} \mathbf{1 5 , 4 8 5}$ ohms. Thermistor tolerance is ignored.

| ${ }^{\circ} \mathrm{C}$ | -5 | 0 | 5 | 10 | 15 | 20 | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R_{\psi} \Omega$ | 42,295 | 32,650 | 25.377 | 19,900 | 15,701 | 12,490 | 10,000 |
| $V_{\psi} / V_{\text {ref }}$ | 0.2680 | 0.3217 | 0.3790 | 0.4376 | 0.4965 | 0.5535 | 0.6076 |
| Error ${ }^{\circ} \mathrm{C}$ | +0.4 | nil | -0.1 | nil | +0.1 | nil | -0.3 |
| $N$ (counts) | 69 | 83 | 98 | 113 | 178 | 142 | 156 |

output, during the count-up, when C is low. The 'Set' button allows the relay to be closed without waiting for the time delay.
The 'Reset' button resets the 425 counter, pin 3 , resets the comparator via $D_{5}$, and resets the 4040 via the p-n-p inverter $\mathrm{Tr}_{1}$. At switch-on, the same function is performed by the $10 \mu \mathrm{~F}$ capacitor, which delays the rise of point B. The 4040 (alone) is also reset via $D_{6}$ when $C$ eventually goes high, stopping the count at this point, and causing the 1.e.d. to glow continuously.
The op.amp section of $\mathrm{IC}_{2}$ is used to drive a milliameter from $V_{\mathrm{t}}$ to indicate outdoor temperature, and almost any f.s.d. can be used up to say 5 mA . In the prototype an existing $0-100$ scale was used for degrees Fahrenheit, and the biasing shown, $\mathrm{R}_{\mathrm{b}}$ and $\mathrm{R}_{\mathrm{f}}$, gives a reading of approx 32 at $0^{\circ} \mathrm{C}$, which can be trimmed by the mechanical zero adjustment. The resistance of $R_{m}$ was made up to give a swing of 36 divisions between $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ and $68^{\circ} \mathrm{F}$ ). The meter may of course be remotely mounted, perhaps alongside your barometer.

## Checks

The eight counter outputs of the 425 are available at pins 5-7 and 9-13, and in that order have weights $1,2,4 \ldots 128$. A count of 83 for example, or $64+16+2+$ 1 , corresponds to pins $12,10,6,5$ high (and the rest low), and this allows the counting to be checked using the test resistances, and the 'fast' setting of $\mathrm{S}_{1}$. An error of one count is not important. The 555 timing can be checked by a frequency meter, or from the l.e.d, which flashes 64 times per 'normal' 425 count.

## Variations

The basic circuit still has a long delay in cold weather, for example 69 counts at $5^{\circ} \mathrm{C}$, and though this can be compensated by advancing the time-clock, it is more elegant to suppress it by jumping, clocking the 425 directly from the oscillator, point F, until an appropriate count is reached. Figure 4 shows two possible circuits, 4(b) being that used in the prototype. The logic shown may be realised in various ways, but diodes and transistors are cheap, and easy to lay out on Veroboard.

If it is required to use the thermometer when the time-clock is off, the delay unit must be continuously-powered, and reset may then be modified to Fig. 5, in which the time-clock signal is detected by a tran-sistor-type optoisolator. Reverse voltage is limited by D7. Resistor Rr should pass 5 10 mA rms , and may be replaced by a capacitor, say $0.1 \mu \mathrm{~F}$, provided it is a type suitable for continuous mains working. The intermittent output allows the $1 \mu \mathrm{~F}$ capaci-
Fig. 3. Delay and thermometer circuits. Unless otherwise stated, diodes are 1N4148 or equivalent, and transistors general-purpose, such as BC548 (NPN)
$\qquad$ and BC558 (PNP).

## Low-power grid blanking

Electron-beam blanking at the first grid can involve much higher voltages than cathode blanking but is sometimes desirable. This circuit was designed for digitallycontrolled grid blanking of a camera tube used for quantitive light measurements. The grid voltage (equal to $V_{-}$) can be accurately controlled during the active picture line and transitions to and from the blanking potential are short, at 40 ns and 300 ns respectively, with no ringing when a Schottky t.t.l. input is used.

Because grid-leakage current is extremely low, the high voltages required can be achieved by switching the connections of a charged capacitor. When the input-logic signal goes low, $\mathrm{Tr}_{2}$ is turned off and $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{3}$ turned on so that the voltage over capacitor $\mathrm{C}, V_{\mathrm{C}}$, is the difference between the rail voltages, $V_{+}-$ $V_{\text {. }}$. The output to gl is held at the negative rail, which controls the beam current.

When the input goes high, $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{3}$ are turned off and $\mathrm{Tr}_{2}$ turned on, so that the more positive side of C is taken to $V_{-}$ and the negative side consequently to the

blanking potential, $V_{-}-V_{\mathrm{C}}$ which is also $2 V_{-}-V_{+}$. The droop in blanking potential caused by leakage through $\mathrm{Tr}_{3}$ is negligible in normal use. There is no droop in the beam-control voltage as $\mathrm{Tr}_{3}$ remains sufficiently conductive throughout the ac-
tive line. The gl lead must be kept well away from the target connection to avoid interference.
D. J. Thomas

MRC
Cambridge

## Telephone-line interface

Conventional telephone-interface circuits use relays and/or transformers for loop detection and speech coupling. In this circuit, a 5 V positive-voltage regulator is used to feed a constant current to the telephone line. The line current is set by $\mathrm{R}_{1}$ and the regulator output provides a logic signal that will 'follow' dialling pulses from the telephone.
As this circuit provides unbalanced transmission to the telephone, it is only suitable for internal (intercom type) exchanges. A ring circuit could be provided by a third wire to the telephone. Acknowledgement to the Director of Research ${ }^{\star}$ for permission to publish this information.
F. T. Lyne
*British Telecom Research Labs Ipswich



## Z80 memory mapping

R.a.m. area for interrupt restart vectors and e.p.r.o.m. write protection are provided by this automatic memory map and switch for a Z 80 microprocessor system. On power-up, or after a reset, a 2 K -byte e.p.r.o.m. (2716) occupies addresses 0000 to 07 FF and a 2 K -byte r.a.m. is address mapped to F800-FFFF. After a reset, the Z80 will perform an op-code fetch from location 0000 . The e.p.r.o.m. will be selected after MREQ is activated. The instruction at locations 0000 to 0002 is JP F803
and the circuit will automatically switch r.a.m. and e.p.r.o.m. locations after the third memory access. The next op-code fetch will occur at location F803, causing execution to continue from the next contiguous location in e.p.r.o.m. Locations 0000 to 07 FF are now occupied by the 2 K r.a.m. so it is possible to initialize and modify the interrupt restart vectors, hence providing a greater degree of flexibility. C. Jay

Fairchild Camera and Instrument Ltd Bristol

## Testing p.r.b.s. generators

Readers experimenting with p.r.b.s generators may find this circuit useful for evaluating possible feedback configurations. Driven by an external clock at any speed up to a few hundred kHz , it gates clock-pulses to an external counter for exactly the duration of one complete sequence, maximal or otherwise, so that the final counts shows the number of steps in the sequence. The generator is preset so that the count begins almost immediately.

The shift-register shown has $n$ effective stages and is negative-edge triggered (e.g. $4006^{\prime}$ 's); for a positive-edge triggered shiftregister the inverted clock-signal is used.

When the system is at rest, both flipflops are in the reset state and no clockpulses appear at the output. Point A is low,
so the auxiliary counter is held at zero and the input to the shift-register is held high. After a maximum of $n$ clock-cycles all the stages of the shift-register will be in the high state, and the system ready to start.

The start button sets the start flip-flop on the next negative-going transition of the incoming clock-signal; contact-bounce has no effect. Point A goes high. This allows the generator to run normally, with its output (from stage $n$ of the shift-register) controlling the auxiliary counter. When the generator output is high, the counter advances one count on each positive-going transition of the incoming clock-signal; when the generator output is low the counter is held at zero.

Once per complete sequence the generator output remains high for $n$ consecutive clock-cycles; the counter then reaches the count of $n$ causing point $B$ to go high until
the counter is reset (nominally a half clockcycle later).

Because all stages of the shift-register were initially preset to the high state, the first signal at B occurs during the $n$ 'th clock-cycle from the start. This signal sets the gate flip-flop. This in curn allows clock-pulses to appear at the output, and also resets the start flip-flop while maintaining point A high so that the system continues to run. These conditions continue until the next signal appears at B exactly one sequence later, and resets the gate flip-flop; then the clock-pulses cease to appear at the output, point A goes low, the generator ceases to run, and, after a maximum of $n$ clock-cycles, the system is back in the ready state.

Pressing the reset button will return the system to the ready state at any time.
E. L. Jones

Bucknell
Shropshire


# DESIGNING WITH MICROPROCESSORS 13 

## Clear-cut step-by-step procedures for the design and implementation of d.m.a. interfaces are described. Specifically, it is proved that in the case of action/status peripherals the interface reduces to two wires.

The block diagram of a d.m.a. system is shown in Fig. 1. The function and operation of the address decoder, the d.m.a. controller and the cycle-steal logic has been explained in the previous article (February, 1982). Briefly what happens is this. The programmer sends to the d.m.a. controller (by means of i/o instructions) three items of information specifying (i) the starting memory address, (ii) the size of the block, and (iii) the direction of transfer, followed by the 'go' command. On receipt of the 'go' command, the d.m.a. controller activates the peripheral interface by pulling enable signal $E$ in Fig. 1 high ( E $:=1$ ). When activated, the interface monitors the status signals of the peripheral, and requests a cycle steal when the peripheral is ready. When the microprocessor responds, the interface and the d.m.a. controller generate the appropriate command signals needed by the peripheral and the memory chip for the transfer of one item of information (usually a byte) between them. At the end of each cycle steal, the memory address is incremented/decremented, and the word count is decremented ( $n:=n-1$ ). This process continues until the word count reduces to zero ( $n$ $=0$ ), at which time the interface is disabled and the end-of-transfer signal, $\epsilon$, is generated.

## D.m.a. interfaces

The function of d.m.a. interfaces is to request the microprocessor to go on hold when the main memory is to be accessed, and to generate the appropriate signals needed by the peripheral when the memory becomes accessible. In the case of cycle-steal systems, as we have already seen, the hold request is generated each time the memory is to be accessed, and removed after a memory cycle is granted.

The block diagram of a suitable d.m.a. interface, assuming logic signals throughout, is shown in the shaded section of Fig. 2. It operates in the following manner.

When logic block 1 recognizes that the peripheral is ready to be accessed, it sets flip-flop 3 by pulsing its clock terminal. Its output is Anded with the enable signal E to produce the cycle request signal c. (Assume $\overline{\mathrm{e}}=1$ ). When the requested memory cycle is granted, line $\mathbf{h}$ is pulled high and a pulse is generated on line $k$. Signal $h$ being

[^5]
## by D. Zissos* assisted by Glen Stone*

high, and $\mathbf{E}=1$, activates logic block 2, which responds by generating the appropriate command signals needed by the peripheral for accepting or receiving an item of information. Similarly, pulse $k$ activates the d.m.a. controller, which ini-
tiates either a memory read or a memory write cycle. At the end of the memory cycle the microprocessor resumes normal activity, until the peripheral becomes ready, which causes logic block 1 to pulse the clock terminal of FF3. This pulls the cycle-steal line c high and sometime later a link between memory and logic block 1 is established for a memory cycle. The process repeats itself until the last item has


Fig. 1. Block diagram of a d.m.a. system using cycle stealing.


Fig. 2. Block diagram of peripheral interfaces in d.m.a. systems (shaded section).


Fig. 3. D.m.a. interface for action/status peripherals.

Fig. 5. Circuit implementation of d.m.a. systems.
been transferred between the peripheral and memory. At this time the d.m.a. controller generates end-of-transfer signal, $\epsilon$, to inform the system that the requested block transfer has been completed. The system responds by turning signal E off; this disables the interface.

To prevent the word count from wrapping round, that is changing from all 0 s to all 1 s , after the last piece of information in our block has been transferred in or out of the main memory, it is necessary to disable the interface before the peripheral becomes ready. Because software responses invariably involve a time lag, depending on system activity at the time and on the level of priority assigned to the $\in$ flag, it cannot be used for this purpose. The most straightforward method in such a case is to use signal e in Fig. 3 of the previous article to disable the interface. Signal e, the reader will recall, changes to 1 at the end of the block transfer, that is when the word count becomes zero. Otherwise, the design and implementation of peripheral interfaces in d.m.a. systems, as indeed in all digital systems, is uncomplicated and is carried out using well-defined step-by-step procedures.

## The two-wire interface

In the case of action/status devices and no external signals, signal $r_{n}$ is generated directly by the peripheral, thus eliminating the need for logic block 1 and FF3 in Fig. 2. This reduces the peripheral interface to logic block 2, as shown in Fig. 3.



Fig. 4. The two-wirs interface.

Now, to avoid possible problems resulting from peripherals being activated while data transfers take place, a peripheral will be activated when a cycle steal is terminated; that is, when the value of $h$ changes from 1 to 0 . Since action/status peripherals are activated by pulling their action terminal high, it follows that

$$
a=\bar{h}
$$

That is, logic block 2 reduces to a single inverter, as shown in Fig. 4.
The detailed circuit implementation of a d.m.a. system is shown in Fig. 5.

## D.m.a. software

Because in d.m.a. systems transfers of data between a peripheral and the main memory take place autonomously, software is needed only to send initializing information to the d.m.a. controller in Fig. 1, and to clear the end-of-transfer signal, $\epsilon$, if it' is implemented as an in-
terrupt flag. The initializing information, as we have already explained, consists of the following items
-the starting address,
-the block length,
-the direction of transfer, and
-the 'go' command.
It is transferred into the d.m.a. controller in the following manner. The programmer loads the accumulator with the initial memory address and executes an Out instruction with address $\mathrm{A}_{\mathrm{p}}$. This pulses the load terminal of the two counters, which transfers the accumulator contents (the initial memory address) into counter 1. At the same time, because the two counters are connected in cascade, the contents of counter 1 are pushed into counter 2. The programmer then transfers into the accumulator the block length and executes the same Out instruction. This causes the memory address in counter 1 to be pushed into counter 2, and the value of the block length (held in the accumulator) to be loaded into counter 1 .


Fig. 6. D.m.a. software.
Next the programmer executes another Out instruction with $\mathrm{A}_{\mathrm{q}}$ if the block of data is to be read from memory, and with address $\mathrm{A}_{\mathrm{r}}$ if the data is to be written into the memory. In the first instance FFl is set, and in the second is reset. The 'go' command consists also of executing an Out instruction with address $\mathrm{A}_{\mathrm{s}}$. Execution of this instruction sets FF2, turning signal E on which initiates the block transfer. For ease of reference the d.m.a. software is flowcharted in Fig. 6.
In our case acknowledging the end-oftransfer flag ( $\epsilon$ ) consists of resetting FF2, that is of executing an out instruction with address $\mathrm{A}_{\mathrm{r}}$.


SE labs have issued a new shortform catalogue on the company's range of instrumentation tape recorders. There are a large number of recorders for laboratory or field use with a variety of numbers of track and recording speeds up to the SE9000, a 42 track digital recorder. Data Recording Division, SE Labs (EMI) Ltd, Spur Road, Feltham, Middleséx TW140TD.

WW401

The Micro Focus Newsletter has been produced to keep readers up to date with the latest COBOL computer language products and developments. COBOL is in increasing use in microcomputers and Micro Focus have announced a COBOL II which may be used on both mainframes and micros. The Newsletter is available free from Micro Focus, 58 Acacia Road, London NW8.

WW402

The 1981/82 Colorado Video short form catalog describes a series of specialised video instruments designed for slow scan tv telecommunications, computer/video input and output, measurement and analysis. The UK agents are Anaspec Ltd, Pearl House, Bartholomew Street, Newbury, Berks RG14 5LL.

WW403

RS Catalogue. The latest edition of the catalogue from RS Components Ltd has 344 pages and includes a newsheet called Rapid Scan, which is running a competition to find out who is RS's longest standing customer. Anyone who can find an old catalogue, delivery note or invoice from RS (or Radiospares as they were then) could win a magnum of champagne. The catalogue lists as additions to its contents over 75 items including data transmission cables, splashproof connectors, a bubble etch tank for p.c.b.s, a front panel with keyboard and the p.c.bs for a programmable timer, many new displays, a wide selection of tools and accessories and additions to the engineers bookshelf. Details from RS Components Ltd, PO Box 427, 13-17 Epworth Street, London EC2P 2HA.

Racks. The full range of Series 80 instrument racks from Imhof-Bedco Standard Products Ltd, Ashley Works, Ashley Road, Uxbridge, Middlesex, is detailed in a catalogue available from the company. The range includes the new S80/600 racks which meet the latest IEC297 specification. Detailed with the racks is a range of standard accéssories such as tops, doors, mobile bases, etc.

## WW40S

A wide range of TMK testmeters including digital multimeters, clamp ammeters and industrial themometers, is detailed in literature from Hartis Electronics (London), 138 Gray's Inn Road, London WCIX 8AX.

WW406
The French company Radiall offer a short catalogue of microwave components, including transitions, couplers, attenuators, relays and isolators. Write to Microwave Components, Lts, Invincible Road, Farnborough, Hants.

WW407
A forty-page catalogue of panel meters, multimeters and test equipment is available from BachSimpson, who are at Trenant Estate, Wadebridge, Cornwall PL276HD.

## 9 $\mu \mathrm{s}$

## AtoD in $9 \mu$ seconds. And that's only the start.

The fact that the new Ferranti ZN447, ZN448 and ZN449 A to D converters are probably the fastest microprocessor compatible converters on the market is only one reason for choosing them.

They offer a better cost/performance ratio than others.

They have bus compatible, three-state outputs and control inputs for easy microprocessor interfacing.

They come complete with on-chip clock and precision bandgap reference, needing only passive external components to operate with unipolar or bipolar input voltages.

You get a wide choice of error specification and operating temperature ranges.

And simple operation.
Send for data or contact,
Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP Tel: 061-624 0515 Telex: 668038
The full range of Leader Test Equipment, the first choice of engineers around the world, is now available in the U.K.
Leader products, with a long history of high reliability, back by a
1-year warranty, are engineered and built to the most rigid standards, and incorporate the latest technology. A complete technical and service facility is provided in the U.K. by Thandar Electronic Ltd

## OSCILLOSCOPES

4.50 MHz Oscilloscopes with more performance and reliability for less cost. The Leader range of oscilloscopes includes 14 models, single and dual trace, for bench or field use. All models offer comprehensive triggering controls, TTL compatible Z-AXIS modulation and convenient colour-keyed front panel layout. Probes are included with each model.


With 20 MHz
bandwidth and 10 mV input sensitivity on a 5 screen this universal oscilloscope is suitable applicstions

| $\begin{aligned} & \text { LBO } 310 A \\ & \text { LBO } 301 \end{aligned}$ | 4 MHz <br> 8 MHz | $\begin{aligned} & 20 \mathrm{mV} \\ & 10 \mathrm{mV} \end{aligned}$ | Single Trace Single Trace | $\begin{aligned} & 3^{\prime \prime} \\ & 3^{\prime \prime} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L80 3084 | 20 MHz | 2 mV | Dual Trace | 3.5" | Mains/Battery |
| LBO 510A | 4 MHz | 20 mV | Single Trace | 5" |  |
| LBO 512A | 10 MHz | 10 mV | Single Trace | 5 " |  |
| LBO 513 | 10 MHz | $5 \mathrm{mV} / 1 \mathrm{mV}$ | Single Trace | $5^{\prime \prime}$ |  |
| LBO 514 | 10 MHz | $5 \mathrm{mV} / 1 \mathrm{mV}$ | Dual Trace | 5 |  |
| LBO 552A | 10 MHz | 20 mV | Dual Trace | 5 | Stereo Scope |
| LBO 506A | 15 MHz | 10 mV | Dual Trace | 5 " |  |
| LBO 507A | 20 MHz | 10 mV | Single Trace | 5" |  |
| NEW |  |  |  |  |  |
| LBO 5158 | 30 MHz | 5 mV | Dual. Trace | $4.5{ }^{\prime \prime}$ | Sweep Delay |
| LBO 520A | 35 MHz | 5 mV | Dual Trace | 5.5 |  |
| NEW $\text { LBO } 517$ | 50 MHz | $5 \mathrm{mV} / 1 \mathrm{mV}$ | Quad Trace | 6 " | Sweep Delay |
| From $\mathcal{L}$ | $2+V$ |  |  |  |  |

-Sweep mode: chop - ALT, CH1, CH2, X-Y *Synchronisation: Auto. Norm, TV Int., Ext., +, -
Timebase Sweep Speeds: $0.5 \mu \mathrm{~s} / \mathrm{cm}$ $200 \mathrm{~ms} / \mathrm{cm}$

Magnification (max speed $100 \mathrm{~ns} / \mathrm{cm}$ )

## RADIO/CB/TV TEST

CRT Testers - Pattern Generators • Signal Generators Antenna Impedance Meters RF Power Meters. C.B. Signal Generators. Stereo Signal Generators Dip Meters SWR/Watmeters
LSG16 SIGNAL GENERATORS
A compact R.F. generator ideally suited to checking alignment of AM/FM and T.V. receivers.
Frequency Range 100 KHz
Frequency accuracy $\pm 1.5 \%$


Modulation Internal 1 kHz for A.M
Output Voltage 0.1Vrms or higher to $100 \mathrm{MHz} 555+$ VAT
GENERAL TEST
unction Generators - Transistor Checkers • LCR Bridges Power supplies -
LHM 80A H.V. METERED PROBE
Input Impedance $20 \mathrm{~K} \Omega$ per volt - Accuracy $\pm 3 \%$ Full Scale £ $16+$ VAT LDP 076 LOGIC PROBE
Fast servicing and analysis of digital circuits Imput Impedance $>10 \mathrm{M} \Omega$

- Frequency Range DC to 50 MHz

Minimum Pulse Width 10 nsec © 49.50 +VAT


## AUDIO TEST

Audio Generators. Frequency Response Recorders Audio Systems Analyzers Wow E Flutter Meters Speaker Analyzers • Audio Testers. Distortion Meters Attenuators

## LFR5600A FREQUENCY

 RESPONSE RECORDERDesigned to graphically record wow and flutter, drif voltage, temperature and frequency response of Audio equipment.
Frequency Range $20 \mathrm{~Hz}-30 \mathrm{KHz}$

- Variable char speed

Votrage range 0.1V. 10 V
Sweep Oscillator *Pilot Signal *Cartridge pen

- Metered, swept frequency inpuvoutput voltage $£ 1450+\mathrm{VAT}$



# ELECTRONIC ORGAN WITH PIPE ORGAN SOUND 

> Observation of the waveforms emitted from a pipe organ show that many of them are triangular or closely related in shape. This design uses triangle-wave generators in a simplified organ system to reproduce them, and offers more accurate sound than those organs using sine, pulse, saw-tooth or square wave generators.

The signals from the waveform generators can be fed by way of an appropriate stop, directly to the output amplifier without any filter. This simplifies the design and the use of high-level signals reduces noise problems.

If a triangle wave is rectified, an open diapason sound is produced. Full-wave rectification produces a triangle wave of twice the frequency which can be used as a 'four-foot flute' stop.

To reduce the cost and complexity of the organ, a multiphonic system ${ }^{1}$ has been used which required only six generators, however many alternatives are possible.

An on/off detector to drive the attack/ delay modulators has been developed which provides an improved performance.

by J. H. Asbery, Ph.D., M.I.E.R.E.

The detector can also be used with other synthesizer circuits to eliminate one pole of the switching system. An ultrasonic signal is superimposed on the d.c. voltage of the resistor chain of the keyboard. When a key is pressed, this signal appears at the input of $\mathrm{IC}_{2}$ which switches on the modulators at a steady rate and switches them off at a steady rate when the key is released. Collector resistors $\mathrm{R}_{54}$ and $\mathrm{R}_{58}$ of $\mathrm{Tr}_{3}$ and $\mathrm{Tr}_{4}$ can be common to all generators and

Complete circuit showing one generator.
should be positioned close to the amplifier to avoid pick-up from the common earth wiring.

To'produce an 'eight-foot diapason' signal it is not necessary to rectify the original triangle wave. By resistively mixing the original wave with one at half the amplitude of the full-wave rectified signal, the required tone is formed (at $\mathbf{R}_{56}, \mathrm{R}_{57}$ ).
Switching transistor $\mathrm{Tr}_{2}$ is used in the reverse mode to reduce the voltage drop and improve the v.c.o. linearity.
The capacitor across the volume control ( $\mathrm{R}_{63}$ ) compensates for a loss of sensitivity at low frequencies.
The complete organ is powered by a single +15 V supply. The choice of a power amplifier has been left to the constructor.


## Components

## Resistors

1 to 23 a set of music scale resistors from $10 \Omega$ upwards

| 24 | $1651 \%$ |
| :--- | :--- |
| 25 | $1621 \%$ |

26, 27, 28 33k
29, 30, 31 10k
32, $33 \quad 33 \mathrm{k}$
$34 \quad 68$
35,36 $\quad 100 \mathrm{k}$
$38 \quad 20 \mathrm{k} 5 \%$
39, 40 20k 5\%
41 10k
42 1k
$43 \quad 1.2 \mathrm{k} 5 \%$
$44 \quad 470$
$45 \quad 11.5 \mathrm{k}$
$46 \quad 23 \mathrm{k}$ 1\%
47 20k $5 \%$
48 20k 5\%

49 47k
$50 \quad 15 k$
$51 \quad 15 k$
52 15k
53 15k
54 10k
55,56 100k
57 220k
58 10k
59 100k
60 33k
$61 \quad 165$ 1\%
$62 \quad 1621 \%$
63 10k
$64 \quad 3 \mathrm{k}$ preset (tuning)
65 10k

## Capacitors

| 1 | 2.2 n |
| :--- | :--- |
| $2,3,4,5$ | $0.1 \mu$ |
| 6 | $220 \mu$ |
| 7 | $0.18 \mu$ |
| 8 | 15 n |
| 9 | $0.47 \mu$ |
| 10 R | $0.025 \mu$ (right-hand |
|  | generators) |

$10 \mathrm{~L} \quad 0.1 \mu$ (left-hand generators)
(Both $21 / 2 \%$ polystyrene)
$11 \quad 0.1 \mu$
$\mathrm{IC}_{1}, \mathrm{IC}_{2}, \mathrm{IC}_{3} \quad 709$
$\mathrm{IC}_{4}, \mathrm{IC}_{5}, \mathrm{IC}_{6} 741$
$\mathrm{Tr}_{1} \quad$ BC149 or similar
$\mathrm{Tr}_{2}, \mathrm{Tr}_{3}, \mathrm{Tr}_{4} \quad$ BC307 or similar
$\mathrm{D}_{1}, \mathrm{D}_{2}$ 1N4148
$\mathrm{S}_{1}, \mathrm{D}_{2} \quad$ (8ft flute)
$\mathrm{S}_{2} \quad$ (8ft open diapason)
$S_{3} \quad$ (4ft flute)
Component kits are available from the author at 87 Oakington Manor Drive, Wembley, Middlesex.

## Reference

1. Asbery, J. H. Multiphonic Organ, Wireless World, June 1973, p. 303.


Fig. 1. Multiphonic organ system based on six triangle-wave generators.


## COMPUTING

Practical Trouble-shooting Techniques for Microprocessor Systems, by J. W. Coffron. 246 pages, hardback. Prentice-Hall, £13.95. Fault-finding techniques for the hardware of 8 bit systems using 8080, 8085, Z80 and 6800 microprocessors. Final chapter devoted to TRS80 microcomputer.

The S-100 and other Micro Buses, by E. C. Poe and J. C. Goodwin, 206 pages, paperback. Prentice-Hall, £6.95.
The S-100 and 20 other buses, as applied to most of the popular microcomputers. Includes a description of methods of converting signals on other buses to S-100 signals. Provides pin designations of various bus systems.

## Microprocessor and Microcomputer

 Technology, by Noel M. Morris. 255 pages, hardback/paperbakck. Macmillan $£ 15.00 / £ 5.95$. An introduction to the use of logic devices and microcomputers, starting from very simple description and progressing to programming and application.
## Learn Computer Programming with the

Commodore VIC, by L. R. Carter and E.
Huzan. 100 pages, paperback. Hodder and Stoughton, £1. 95 .
A short course in the use of Basic on the VIC microcomputer. A number of applications and programs are given, and there are problems (with answers).

Microelectronics and Microcomputers, by L. R. Carter and E. Huzan. 232 pages, paperback. Hodder and Stoughton, $£ 1.95$.
Rather more general than the previous book, this is intended as an introduction to computing for the business or scientific user, and for those working on industrial control and measurement.

The 68000: Principles and Programming, by L. J. Scanlon. 238 pages, paperback. Prentice Hall; $£ 10.45$.
A full description of the 6800016 -bit microprocessor, its capabilities and operation. Many programs are used as illustration in the text.

## Microprocessors and Microcomputers,

Hardware and Software, by R. J. Tocci and L. P. Laskowski, 404 pages, hardback. PrenticeHall, £ 15.70 .
Micros introduced in a practical manner. First section is on basics of logic and number
systems; second section deals with computer architecture; last part is on programming in machine code and assembly language.

## PROPAGATION

Adaptive Array Principles, by J. E. Hudson. 253 pages, hardback. Peter Peregrinus, $£ 13.00$. The design of adaptive aerial arrays, which automatically present nulls in their polar diagrams to sources of noise. Such aerials are used in radar, sonar, communications and radio monitoring.
Wave Propagation Theory, by J. R. Wait. 348 pages, paperback. Pergamon Press, $£ 22.50$. Primarily on electromagnetic wave propagation in, on or about the earth, but methods described can also be applied to acoustic waveguides.

Aperture Antennas and Diffraction Theory, by E. V. Jull. 173 pages, hardback. Peter Peregrinus, $£ 27.00$.
The analysis of radiating apertures, using two complementary techniques. One is the Fourier relation between aperture field and far-field pattern, giving results for the forward radiation. Second method is based on diffraction at the aperture edge, and can be used for rear and side radiation.
Microstrip Antenna Theory and Design, by J. R. James, P. S. Hall and C. Wood. 290 pages, hardback. Peter Peregrinus, £31.00. Design and fabrication of flat plate, 'printed' microwave aerials, with a resumé of recent advances and a chapter on trends and possible developments in the future. An appendix compares microstrip materials.

## VIDEO

Video Handbook, by R. V. Van Wezel, edited by G. J. King. 403 pages, hardtack. Newnes Technical Books, £19.90.
Television, video recording on tape and disc, audio and tv production, measurements and descriptions of some typical commercial equipment. Written for the video amateur and rechnician, using a practical approach. Includes information on building a monochrome tv camera.

Home Video Yearbook 1982. 323 pages, paperback. Link House, $£ 7.50$.
In three parts. Firstly, hardware concerned with television reception and video recording, prices and suppliers; secondly short descriptions of commercially available video tapes; thirdly, lists of addresses of manufacturers and tape suppliers.


#### Abstract

Read/write head assemblies involve aerodynamic, mechanical and electro-mechanical techniques and are the most critical aspect of disc-drive design. But an equally important aspect of the system is how serial data is stored and recalled on a magnetic medium moving at high speed using a single low-mass head. These subjects form this chapter.


As previously stated, hard discs have a thin coating of magnetizable material and rotate at high speeds. Readers familiar with other magnetic recording systems will realize that ideally, the read/write head will be forced against, or at least touch, the recording medium. But because of the speed at which the disc rotates and the fragility of the medium, a gap is essential. Therefore, the head is designed to float, or 'fly', on the layer of air rotating with the disc. Consequently, the head is of low mass, so the gap between head and disc can be kept constant over the, whole surface of the disc and a small degree of warping can be compensated for. Figure 1 outlines the read/write head's structure.
The magnetic head is carried by the slipper and consists of a permeable core with a coil wound round it. A paramag-- netic barrier on the head core forces the flux out of the head onto the medium. Reluctance of the magnetic circuit depends mainly on the air gap between the head and the disc so the write flux is a function of the flying height. The air gap limits the recording wavelength to about ten times that of the flying height.
Slippers. Current 'state-of-the-art' slippers fly at less than 20 micro-inches ( 0.51 micron) above the disc. It is obvious that the lower the flying height, the more efficient reading and writing becomes, but what isn't perhaps so obvious is that the. major design problem is making the slipper fly low enough. Lift rises rapidly as the separation reduces so to get the head closer to the dise, some of the lift has to be dumped. Early slippers had two small bleed holes, as shown in Fig. 2(a) to dump lift. These slippers had a flying height of around 100 micro-inches. Figure 2(b) shows a second generation slipper, with a large longitudinal bleed groove, designed for flying heights of about 50 microinches. The third example, Fig. 2(c), is designed for use below 20 micro-inches and has substantial bleed grooves and vestigial working surfaces. Although the surface of this slipper appears flat to the naked eye, it is actually formed to a high degree of accuracy in a compound curve.

Suspension. The slipper is mounted at the end of a rigid cantilever sprung toward the medium. The force with which the head is pushed toward the disc by the spring is equal to the lift at the flying height for which the head is designed. Because of the spring, the head may rise and fall over small warps in the disc; it would be virtually impossible to manufacture discs flat enough to allow this feature to be

by J. R. Watkinson

dispensed with. As the slipper negotiates a warp it will pitch and roll, in addition to rising and falling, but it must be prevented from yawing. Downthrust is applied to the slipper at its aerodynamic centre by a spherical thrust button and the required degrees of freedom are provided by a flexural gimbal.

The mass of the head/cantilever and the spring compliance have a natural reso-


Fig. 1. An outline of the read/write head in relation to the disc. The slipper carries the head and is aerodynamically designed so that it flies on the air rotating with the disc.


Fig. 2. Three generations of slipper design. The first generation, shown at (a), had two bleed holes to reduce lift and flew at around 100 micro-inches above the disc. A subsequent design, (b), had a longitudinal bleed groove and flew at around 50 microinches. This was superseded by the current head, (c), with substantial bleed grooves for flying heights of less than 20 microinches. The head shown in (c) has a compound curve on its working surface which aids aerodynamics but is invisible to the naked eye.


Fig. 3. In digital recording the polarity of the medium, either $N-S$ or $S-N$, is controlled by the direction of the write current. Flux reversal, at points marked a, are referred to as transitions and determine the read waveform.
nance which must be set away from expected warp frequencies. Some cantilevers are fitted with synthetic-rubber dampers to control unwanted resonances.

Other essentials of the cantilever are the head separating ramp, which lifts the head clear of the disc as the positioner retracts, and some receptacle for an adjusting tool to align all of the heads to the same distance from the spindle at a given cylinder.

Handling and setting head assemblies requires care and skill; in some cases skin acid from a fingerprint is sufficient to etch the slipper surface and destroy its aerodynamic contour.

## Encoding techniques

With the exception of some non-interchangeable disc drives, only one head is active at any one time. A production tolerance exists between the actual lateral position of the head gap and the ideal, and this dimension may be several wavelengths at the densities used. As a result it is not generally possible to use parallel encoding in disc drives. This constraint largely defines the encoding techniques used.

As in all modern digital recording, the medium has only two states of magnetization, N-S and S-N. Devices have been made using the unmagnetized state, but these must be considered obsolete. The write process consists of supplying sufficient current to almost saturate the medium first in one direction, then the other. No erase process is necessary, as writing to saturation will erase a previous. recording. Some heads do, however, have erase poles, the use of which will be detailed.

The output voltage from a read head is proportional to the rate of change of flux, hence an output pulse will only be obtained at the point where the write current changes direction, i.e. at a transition. Figure 3 shows that the pulses alternate in polarity. The pulse amplitude is a function of the cylinder address, as the relative speed of the outer cylinders is higher.

Data to be written enters the write circuitry as serial binary with a separate clock. Encoding consists of merging these two signals into one channel in such a way that they can be subsequently separated. Perhaps the simplest form of encoding is to reverse the write current every time the data is a binary one. It can be seen from Fig. 4(a) that this approach is of no use in a single channel, as when successive zeros occur, it is not possible to reconstitute the clock.


Figure 4 also introduces the concept of the 'bit cell', i.e. the time taken to record one bit. In a simple encoding system, there must be at least one transition per bit cell to carry the clock. Figure 4 (b) shows a popular encoding technique, where each bit cell begins with a clock transition, and may or may not contain a further transition, depending on whether the data bit is a one or a zero. As the presence of the second transition doubles the recording frequency, the technique is known variously as f.m. or double-frequency recording. Data separation can be very simple, provided the signal-to-noise ratio is adequately high. The signal-to-noise ratio is determined not only by intrinsic medium noise and the electromagnetic environment, but also by the accuracy of the positioner. Consider the example in Fig. 5(a). Originally, data is written along path A, but positioner inaccuracy means that new data is being written along path $\mathbf{B}$. Subsequently a read may take place along path C , where it will be seen that the read signal is degraded by the previous recording. The solution to this problem is to incorporate two erase gaps in the head, which erase a small area either side of the new data after writing. In Fig. 5(b) it can be seen that this process protects the data with a margin of undirectionally magnetized oxide. The process is called 'tunnel erase' or 'side trim', and is generally employed on drives with relatively simple positioners. Such devices usually have low recording densities and accordingly a generous flying height, giving them the advantage that they can be used reliably in environments that would normally be considered unsuitable.
F.m. is easy to decode, but it is also fairly extravagant with transitions. Any encoding method in which the number of transitions per data bit can be reduced has to be an improvement, because for a given flying height, and hence a given minimum wavelength, a greater data density is possible.
In the next generation of read electronics, it is possible to relax constraints on the clock information through phase-lockedloop techniques. With this approach, it is acceptable for a bit cell to contain either clock information or data but both are not necessary. The read clock comes from a p.l.o. which continues in the absence of a transition at clock time, and which corrects its own frequency by continuously comparing its own phase with that of data
or clock transitions. In Fig. 4(c) it can be seen that the write current is reversed at the bit-cell centre for a one, and that the problem of successive zeros is handled by reversing the write current at the bit-cell boundary. It is interesting to compare the number of transitions required with the example of Fig. 4(b). On reading the data,


Fig. 4. Three data-recording methods compared. At (a), n.r.z. 1 (modified non-return-to-zero) information is of little use on single-track recording apparatus as clock information cannot be carried. In 'f.m.' recording, (b), a clock transition is always present at the bit-cell boundary. The presence of a data ' 1 ' causes an extra transition at the bit-cell centre. In m.f.m. recording, shown at (c), a data ' 1 ' causes a transition at the bit-cell centre but the only other transitions are at the bit-cell boundaries between successive zeros. Both types of transition are used to synchronize a p.II. which opens a 'data window' at the bit-cell centre through which only data ' 1 'pulses are read.

Fig. 5. In (a), track B has been written over track A, but through wide tolerances on the positioner repeatability, some of the original data remains at the edge of path $B$. If the new data is read while the head travels the same path it did when the original data was written, remaining original data will be read together with the new data, hence the signal-to-noise ratio will be degraded. At (b), the problem is solved by including two erase heads, one at either side of the write head, so that wherever data is written, any original data at either side of the track will be erased.
the p.l.o. can be used to open a 'time window' at the centre of the bit cell, so that only transitions corresponding to a binary one can pass through. Obviously, the system only works if the p.1.1. is synchronized, so a series of zeros, or preamble, is used before each block to allow the loop to lock. A unique synchronizing pattern delineates where actual data begins. This phase-locked data-recovery technique is used with modified-frequency modulation encoding (or Miller encoding) and allows the arrival time of read pulses to be predicted, and therefore noise pulses to be rejected. This means that a smaller s-to-n ratio can be tolerated than with f.m. encoding, allowing tunnel erase to be dispensed with. In any case, drives employing the m.f.m. technique are likely to have more accurate positioners.

Where f.m. requires signal-to-noise ratio, m.f.m. requires minimum phase errors, if the phase-locked data recovery is not to be upset. In Fig. 6, a head is depicted reading closely packed transitions. Owing to the airgap between the head and the medium, pulses generated tend to run into one another such that the waveform peak positions do not correspond to the actual position of the transitions. The phenomenon is referred to as peak-shift distortion, and is overcome by introducing opposing timing changes during the write process. This technique, precompensa-

tion, artificially advances transitions subject to delay on reading, and delays advanced transitions by taking a running sample of (usually) four data bits, and decoding the patterns to generate different clock times in a tapped delay line. M.f.m. requires a running sample, so the two processes are sometimes combined in one circuit.

Recently, a different approach to high density recording has been developed. Central to this approach is that transitions are not permitted at successive active edges of the write clock. Figure 7(a) shows that the four combinations of any two data bits may be expressed as three-bit codes which do not contain successive 'ones'. There are, however, four combinations of adjacent pairs of bits to violate the rule, Fig. 7(b). In these cases, the six bits are substituted by alternative bit patterns which must follow certain conditions; firstly, that the substitution contains no adjacent ones, secondly that the substitution ends in a zero so that no subsequent data can violate the rule, and thirdly the position of the ones is chosen to generate transitions at sequential integer multiples of the writeclock period. Fig. 7(c) shows that the highest recorded density results from a data stream of 0011 's, and that this requires only six transitions for eight data bits. At maximum density, m.f.m. requires one transition per bit, so the relative efficiency is $8 / 6$ or $33 \%$ greater. Fig. 7(c) also shows that much of the time the recorded density is below the maximum, and that seven even steps exist in the periods between any two transitions. This evenness allows effective phase-locked noise rejection to be employed, as the arrival time of readback pulses can be accurately predicted. In addition, precompensation is only required when changing to and from the highest density, as at all lower densities the transitions are far enough apart to make peak-shift distortion insignificant. This recording technique is known as $2 / 3$ (pronounced "two three") for obvious reasons. It is difficult to imagine a method
which would achieve a significant improvement in efficiency over it. Encoding is performed by a p.r.o.m. which takes in a running sample of data in the same way as m.f.m. Similarly, reading requires phaselocked circuitry, with a further p.r.o.m. containing the reverse truth table to the encoding p.r.o.m.

## Circuits

The same head is used for both reading and writing, and as stated, usually only one head is active at one time. The circuits involved in reading, writing and head selection come together at the read/write matrix where the flexible head cables plug in. It can be seen from Fig. 8 that the centre-tapped heads are isolated by connecting the centre tap to a negative voltage, which reverse-biases the matrix diodes. The centre tap of the selected head is made positive. When reading, a small current flows through both halves of the head coil, as the diodes are forward biased. Opposing currents in the head cancel, but read signals resulting from flux transitions on the disc can pass through the forwardbiased diodes to become differential waveforms on the matrix bus. During a write; the current from the write generator passes alternately through the two halves of the head coil. Further isolation is necessary to prevent write-current voltages destroying the read amplifier inputs.
Write-current programming. The flying height changes as a function of relative velocity which is governed by the track radius. It is possible to program the write current from the current cylinder-address register such that the write flux remains essentially constant, despite changes in flying height. The number of write-current steps is usually between two and eight across the working surface of the disc, although some drives dispense with write current programming altogether. In Fig. 9, the write current is generated by holding the base of a transistor at a tem-perature-compensated reference voltage, and by selecting different emitter resistors
with transistor switches. As the current source is usually at about -40 V , the switches are fed from the drive logic through level shifters. The write current is directed through the head by a pair of transistors in series with the current generator, which are driven in a complementary fashion by a bistable. The purpose of write


Fig. 6. Timing dia;gram showing peak distortion and precompensation. (a) shows the flux pattern of an ideal m.f.m. data track, and (b) shows individual read pulses from each transition, which are spread out because the head is not in contact with the medium. Peaks of the closely packed transitions are moved apart as shown in the summation of the waveforms of (b) at (c). Phase errors in the binary signal from the peak detector are shown at (d). To compensate for these errors, the write waveform is as shown in (e) and the adjusted peak detector output is shown in (f).

A modern head assembly. This type of head is designed to fly at around 50 microinches above the disc.


Fig. 7 (a). Two bits can be expressed as three code bits without successive transitions. In (b), adjacent pairs can break the encoding rule and in these cases, substitutions are made. Write current waveforms for seven different data streams using $2 / 3$ encoding are shown at (c). The time steps between transitions are uniform, allowing phase-locked data recovery in the presence of noise. A maximum of six transitions are required for eight data bits; when compared with m.f.m. encoding, this gives a saving of $33 \%$.

(a) | Data | Code |
| :---: | :---: |
| 00 | 101 |
| 01 | 100 |
| 10 | 001 |
| 11 | 010 |

(b) Data 0000 0001
1000
1001
(c)



Fig. 8. This diagram shows how one of a number of heads is selected electronically for either read or write using diodes.


Fig. 9. A programmable write-current generator. Write current is generated by holding the base of a transistor at a temperature-compensated reference voltage, and by selecting different emitter resistors using transistor switches.


Fig. 10 (a). A simplified delay-line peak detector, and associated waveforms (b). A differential phase-lead peak detector is shown at (c).
encoding is to decide at what time to clock the bistable so that a.transition is written by the current reversal.

Reading. When not actually writing, the write-current generator is turned off and the write-isolation diodes are reverse biased. The read isolation gate is enabled, allowing the differential read signal into the read linear amplifier. This amplifier raises the amplitude of the read signal to a constant level suitable for data recovery, and filters out unwanted signals. To this end the linear amplifier often contains both bandpass filters and an a.g.c. loop. In some cases, the linear amplifier's input and the a.g.c. capacitor are shorted during the address mark to stabilize the gain in the shortest possible time after entering a block. The address mark is a short section of the track preceding a data block and contains no transitions. A.g.c. squelch is released as the block is entered, and the linear-amplifier gain reduces from maximum using the fast attack slope of the forward-biased signal rectifier.

The constant-amplitude read signal now passes to the prak detector, as the position of the signal peaks corresponds to the position of the transitions on the disc. In Fig. 10(a) an analogue waveform is compared with a delayed version of itself. The comparator changes state at the signal peak. A differential version of this type of peak detector is shown in Fig. 10(c). The principle holds equally well if one signal is phase advanced, and thus the delay is sometimes substituted by the RC network shown.

The detected signal is fed to an appropriate data separator, which splits the signal into data and clock information to pass to the deserializer, which recreates data words.
To be continued

# 16-CHANNEL DATA ACOUISITION SYSTEM 


#### Abstract

A 4112-digit, 16-channel data acquisition system (d.a.s.) is described which functions as a talker-listener on the IEEE-488 bus (GPIB). It uses a $41 / 2 / 5^{1 / 2}$-digit a-to-d subsystem, AD7555, with $\pm 1.9999 \mathrm{~V}$ full scale, as an easy interface with the Fairchild 96LS488 GPIB circuit.


Figure 1 shows a block diagram of the GPIB 16-channel data acquisition system. The 96LS488 connects directly to the IEEE bus and controls all the other sections. (For clarity, a number of the control signals have been omitted.) A set of eight transceivers determines the flow of information (talking or listening) and the 'listen decode' circuitry sends the appropriate address to the 16 -channel multiplexer. On selection of a channel, a start conversion signal is sent to the AD7555 a-to-d converter.

When conversion is complete, a service request is transmitted to the 96LS488, which in turn interrupts the IEEE bus: the bus can then interrogate the device for status or data information. Status information includes the last channel selected and the conversion status, while data information consists of a $41 / 2$-digit b.c.d.-encoded representation of the analogue voltage.

## The IEEE bus in brief

A full description and specification of the GPIB system is published in the IEEE document "IEEE Standard Interface for Programmable Instrumentation', IEE Std 488(1978), which should be referred to for a fuller explanation.
GPIB communication lines consist of eight data lines, three hand-shake lines, five control lines and eight ground lines, as shown in Fig. 2 (the IEEE connector). Data lines ( $\overline{\mathrm{D} 1}-\overline{\mathrm{D} 8}$ ) contain the bidirectional data or information and are true low signals.
Handshakes. $\overline{\text { MRFD }}, \overline{\text { DAV }}$ and $\overline{\text { NDAC }}$ are the three bidirectional handshake signals. DAV (Data Valid) is pulled low by a talker when the data has been placed on the bus, which tells the listener that the data is valid. NRFD (Not ready for data) is brought high (or released) by each instrument on the bus: when all the instruments have released it, it acts as an indication to the talker that a data transfer can begin. NDAC (Not Data accepted) is controlled by the device receiving the data, a low indicating that the data has not been captured and a high that this has been done. A simplified data transfer sequence is shown in Fig. 3.

A timing sequence starts when the listener brings NRFD high (1), saying it is ready to receive the data. The talker places the data on the bus (2), allows it to settle and brings $\overline{\text { DAV }}$ low (3), telling the listener that the data is valid. The listener brings $\overline{\text { NRFD }}$ low (4), indicating that it is not ready for another data transfer until

## by Pat Hickey

this transfer is completed. When the data has been processed, the listener brings $\overline{\text { NDAC }}$ high (5), saying that it has received the data. The listener responds by taking $\overline{\text { DAV }}$ high (6) (data is no longer valid) and removing the data from the bus (7). The listener brings $\overline{\text { NDAC }}$ low (8), acknowledging this, and $\overline{\mathrm{NRFD}}$ high (9), indicating that it is ready for the next data byte. The timing of this sequence is not discussed here, since the 96LS488 IEEEinterface circuit takes complete control of the procedure.
Control. The five control lines are $\overline{\text { ATN }_{2}}$ $\overline{\mathrm{IFC}}, \overline{\mathrm{REN}}, \overline{\mathrm{SRQ}}$, and $\overline{\mathrm{EOI}}$. The $\overline{\mathrm{ATN}}$ (Attention) is asserted only by the controller and, when low, indicates that information on the line is address or control information: it is high when data is being transferred. The IFC (Interface Clear) line is asserted low by the controller to reset all GPIB devices.
$\overline{\mathrm{REN}}$ (Remote Enable) allows local (i.e. front panel) control of devices if it is allowed to become high. When low it ensures that the controller is in command. $\overline{S R Q}$ (Service Request) is forced low by a talker/listener when it wishes to indicate to

Analog Devices, Limerick, Ireland
the controller that it needs service. $\overline{\mathrm{EOI}}$ (End or Identify) can be pulled low by a talker to signify the last byte in a multibyte transfer.

All the aforementioned signals are taken care of by the 96LS488.

## 96LS488 GPIB circuit

Figure 4 shows a block diagram for the 96LS488, and the following description should be referred both to that and Fig. 7 (full circuit diagram). $\overline{\mathrm{CP}}$ is a 10 MHz clock which controls all internal timing, and can be generated using a $150 \Omega$ resistor and 150 pF capacitor connected to an internal Schmitt trigger.
TXST (Transmit Status) and TXRDY (Transmit Ready) signals are used in transferring data from the AD7555 a-to-d converter to the 96LS488, as shown in Fig. 5. When the d.a.s. is requested to transfer information to the IEEE bus controller, the 96LS488 checks that TXRDY is high (meaning a byte is waiting). If it is high, the 96LS488 will read the data and bring TXST high (1), indicating that it has the information. TXRDY is then brought low (2), acknowledging this fact and TXST is brought low (3) again. When the next byte is ready (4), the AD7555 brings TXRDY high (5) and the sequence is repeated.

RXST (Receive Status) and RXRDY



Fig. 1. Block diagram of complete system. 96 LS 488 interfaces and controls rest of unit.
(Receive Ready) are used as seen in Fig. 6 for transferring data from the 96LS488 to the 16 -channel d.a.s. When valid data has been placed on the bus (1), RXST is taken high (2), indicating that the data is valid. When the data has been accepted, RXRDY is taken low (3), indicating that the data has been accepted, RXST is taken low (4), acknowledging this fact, and the data becomes non-valid (5). RXRDY is brought high (5), signalling that it is ready for the next byte of information. In Fig. 7, RXST is inverted and connected to RXRDY, in which case data is transferred at a data rate determined by the bus handshake.
The Drive Bus Output ( $\overline{D R B}$ ) signal is low when data is being transferred from the AD7555 a-to-d converter to the IEEE bus, and high when information is being

Fig. 4. Functional block diagram of 96LS488.


Fig. 2. GPIB communication lines shown in relevant positions on IEEE connector.
sent to the data acquisition system. In Fig. 6 , the signal is used to enable (or disable) a set of transceivers.
TAD (Talk-Addressed) and LAD (Lis-ten-Addressed) are active low when the device is addressed to talk or listen.
RSV (Request Service) is brought low by the AD7555 to initiate a service request


Fig. 3. Simplified data transfer sequence.
interrupt. This occurs when a conversion is completed.
$\overline{\mathrm{D}} / \mathrm{S}(\overline{\mathrm{Data}} / \mathrm{Status})$ is held low when data is being transferred to the IEEE bus, or high if status information is being transferred during a serial poll. In this application, it is used to select either data or status information via a data selector ( $2 \times 74$ C157)

The STST (Status Status) and STRDY (Status Ready) signals operate similar to the TXST and TXRDY signals when sending status information during a serial poll. STRDY can be formed from an inversion of STST:
$\overline{\text { RTL }}$ (Return to Local Input) is tied high in this application, since the device is operating only in remote control.
$\overline{\mathrm{CLR}}$ issues a negative pulse when the device feceives a Device Clear command. This will reset all functions within the device.
$\overline{\text { TRIG }}$ (Trigger output) issues a negative pulse when the device receives a DT (Device Trigger) command. It is not used in this application. The IST (Instrument Status Input) is used in parallel poll enable.

For more information on the above signals see the Fairchild 96LS488 data sheet.

## Data acquisition system

Figure 7 shows the complete circuit diagram of the data acquisition system, A brief review of each i.c. should help to understand its operation before the more complex timing of the system is discussed.

Circuits $\mathrm{IC}_{1,2}$ are quad interface



Table 1. Contents of IC ${ }_{6}$ r.o.m. for decoding ASCII information to binary.

| R.o.m. inputs (addresses) |  |  |  |  |  | R.o.m. outputs (data) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A 4 | A 3 | A 2 | A 1 | A 0 |  | 06 | 05 | 04 | 03 | 02 |
| 0 | 0 | 0 | 0 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | " ${ }^{\prime \prime}$ " (0100 0001) | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | "B" (0100 0010) | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | "C" (0100 0011) | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | "D" (0100 0100) | 1 | 1 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | "E" (0100 0101) | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 | "F" (0100 0110) | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | "**"(0010 1010) | 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | CR (0000 1101) | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | "0" (0011 0000) | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | "1" (0011 0001) | 1 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | "2" (0011 0010) | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | "3" (0011 0011) | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | "4" (0011 0100) | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | "5"(0011 0101) | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | "6" (0011 0110) | 1 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 1 | "7" (0011 0111) | 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | "8" (0011 1000) | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 0 | 1 | "9" (0011 1001) | 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 |  | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |

transceivers (MC3441) and are designed to meet the IEEE standard 488-1975. The data direction is controlled by the $\overline{\mathrm{DRB}}$ output of the $96 \mathrm{LS} 488\left(\mathrm{IC}_{3}\right)$ : When it is low, data is transferred to the bus, and transferred from the bus when $\overline{\mathrm{DRB}}$ is high. Switches $S_{1}-S_{5}$ are used to select the address of the device. As an example:- For an address of $16, S_{5}$ is open, while $S_{4}, S_{3}$, $\mathrm{S}_{2}$ and $\mathrm{S}_{1}$ are closed. (Address is $10000=16$ ). Switches $S_{6}-S_{9}$ are used to select the operating mode of the 96LS488 (the Fairchild data sheet gives more information on this). For a talker/listener on low speed, M0 and M1 are high, and M2 and M3 are low (ie, $\mathrm{S}_{6}$ and $\mathrm{S}_{7}$ are open, while $\mathrm{S}_{8}$ and $\mathrm{S}_{9}$ are closed).
Since all information is transmitted in parallel ASCII code, it is necessary to decode this to binary. The $6331\left(\mathrm{IC}_{6}\right)$ is a $32 \times 8$ bit r.o.m. which is used for this purpose, whose contents are outlined in Table 1. The address latch, $\mathrm{IC}_{7}$ (74C175), holds the address of the selected channel, its output being connected to the input of $\mathrm{IC}_{14}$ (AD7506), a 16 channel multiplexer,


Fig. 5. Simplified talking sequence.


Fig. 6. Simplified listening sequence.
which in turn selects the appropriate analogue signal to the a-to-d converter subsystem (AD7555) IC9. On completion of a conversion, the b.c.d. data is held in internal latches, and can be accessed by control of the DMC pin. The IEEE transmit handshake signals are used to access this information during a readhack cycle. A data selector $\mathrm{IC}_{11}$ (756157) send $41 / 2$ digits and a carriage return to the 96LS488: When D5 is high, b.c.d. data from the a-to-d converter is selected, and when $\overline{\mathrm{D} 5}$ is low a CR code is selected.
The hex. c.m.o.s.-t.t.l. inverter ( $\mathrm{IC}_{15}$ ) generates the 4.096 MHZ clock with the crystal, whilst $\mathrm{IC}_{16}$ (7493), a 4-bit binary counter, divides this by four, producing a 1.024 MHz clock for the AD7555.

The two multiplexer/selectors ( $\mathrm{IC}_{23,24}$ ) are used to transfer either data or status information to the 96 LS 488 . When $\overline{\mathrm{D}} / \mathrm{S}$ is low, data information is selected (T0-T5), and when high the status byte is sent.

The concluding article will continue this circuit description and include a program for scanning 16 channels.

EVENTS

## 23/24/25th March

Electro-optics/Laser International '82 UK, at Metropole Convention Centre, Brighton. Details from: Cahners Exposition Group, Carridy House, Ladymead, Guildford, Surrey GU1 $1 B Z$.

## 25th March

Computational Techniques in Image
Processing, at Queen Elizabeth College, London. Details from: The Meetings Officer, The Institure of Physics, 47 Belgrave Square, London, SW1X 8QX.
30th March/1st April
ETM '82 and Sensors \& Systems '82 (Electronic testing and measurement) at Wythenshawe Forum, Manchester. Details from: Trident International Exhibitions Ltd, 21 Plymouth Road, Tavistock, Devon PL9 8AU.

## 30th March/1st April

CAD '82, (Computer-aided design conference and Exhibition) at Brighton Metropole, Sussex. Details from: IPC Exhibitions Ltd, Surrey
House, 1 Throwley Way, Sutton, Surrey SM1 4 QQ .
4th-7th April
National Association of Broadcasters,
Exhibition, at Las Vegas, Nevada USA.
6th April
Current Research in Magnetism, at the
Insitutue of Physics, London. Details from:
The Meetings Officer, The Institute of Physics,
47 Belgrave Square, London SWIX 8QX.
12th-15th April
Electrostatics Conference, at St Catherine's
College, Oxford. Details from: The Meetings
Organiser, Insitute of Physics.
13th-16th April
Basic Electronics for Teachers, at University of Salford. Details from: The Administrative Assistance (Short Courses) Room 110,
Registrar's Department, University of Salford, Salford M5 4WT.
20th April
Satellite Development in Broadcasting: M. W. Harman, at Room SG27, University of Aston, Gosta Green, Birmingham at 6.30 pm . Details from: The IETTE, 2 Savoy Hill, London

## WC2R OBS

## 20th-22nd April

International Conference on Video and Data
Recording (I.E.R.E.) University of
Southampton, Southampton. Details from:
Conference Registrar, IERE, 99 Gower Street, London WCIE 6AZ.
20th-22nd April
All Electronics Show, at the Barbican
Exhibition Centre, London.
20th-23rd April
Communications '82, IEE Conference and Exhibition at the National Exhibition Centre,
Birmingham. Details from: IEE Conference
Department, Savoy Hill, London WC2R OBL. 22nd April
Microprocessor in Building Services: M. W
Harman, at University of Stràthclyde, Glasgow at 6.30 pm . Details from: IEETE, 2 Savoy Hill, London WC2R OBS.

## 23rd-25th April

The Computer Fair, at Earls Court. (Sponsored by Practical Computing and Your Computer) Details from: Exhibition Manager,
IPC Exhibitions Ltd, Surrey House,
1 Throwley Way, Sutton, Surrey.
28th April
Propulsion Research - Impact on Fue/Emergy Conservation, at Hawthorns Hotel, Woodland Road, Pristol at 7.30 pm . Details from: IEETE, 2 Savoy Hill, London WC2R OBS.

# SYMMETRICAL-OUTPUT DIVIDERS 


#### Abstract

Expanding on February's article, the author first shows how further hexadecades may be added to the previously described binary-programmable counter. A basic b.c.d.-programmable counter follows and to conclude, details of how to add further decades. These circuits are designed to accept and provide equal 'mark-to-space ratio digital signals, and are programmable in integer steps. As frequency-dependent components are not used, the speed of each circuit is only limited by the speeds of the logic devices used.


For dividing in the range $16 \leqslant N \leqslant 256$, whether or not $N$ is a prime number is important. If $N$ is not prime then $N=N_{1}$ $N_{2}$ and the divider cañ be made using two programmable divide-by-1-to-16 circuits described in the previous article. These may be connected either asynchronously or synchronously, the latter method being the fastest. To divide synchronously it is necessary to enable the 74 C 163 inputs as shown in Fig. 9. To divide asynchronously, the output of the divide-by- $N_{1}$ circuit has to be connected to the input of the

## by Gerard Girolami and Philippe Bamberger

divide-by- $N_{2}$ circuit. The latter solution is not much simpler than connecting the dividers synchronously so the sacrifice in speed is usually unwarranted.

On the other hand, if $N$ is prime, this solution no longer applies and it is necessary to design a programmable divide-by-1-to-256 counter using a slightly different approach. The procedure is identical to


Fig. 9. Synchronous cascading of programmable divide-by-1-to-16 circuits. $\mathrm{H}_{0}$ is the input and $\mathrm{N}_{1} \mathrm{~N}_{2}$ is the divisor, N . This method only applies where N is not prime.


Fig 10. Connecting binary adders for a programmable 1-to-256 divider, applying equations (5) and (6). $\Sigma_{3}$ of the most significant decade is not used.
that used for the 1 -to- 16 programmable counter except that the relationships in equations (1), (2) and (3) given in the previous article must be changed to force the counter to 'oscillate' around the transition between counts 127 and 128. The new equations are:
$L+D=255=2^{8}-1$
$D-I / 2=127$ if $I$ is even
and
$D-(I+1) / 2=127$ if $I$ is odd.
These relationships can again be implemented using two binary adders as shown if Fig. 10.
As shown previously, it is possible to find the logic relationships between input and load data as follows,

$$
\begin{aligned}
& L_{0}=I_{0} \oplus I_{1} \\
& L_{1}=\left(I_{0}+I_{1}\right) \oplus I_{2}
\end{aligned}
$$

and so forth up to

$$
\begin{aligned}
L_{6}= & \left(I_{0}+I_{1}+I_{2}+I_{3}+\right. \\
& \left.I_{4}+I_{5}+I_{6}\right) \oplus I_{7} \\
L_{7}= & 0 \\
D= & \bar{L}
\end{aligned}
$$

## B.c.d. programmable counters

If division ratios from one to nine only are required, the previously described binaryprogrammable circuit may be used. If, however, a similar circuit is designed using a decade counter, and the maximum divisor range of one to ten is required, the counter will have to 'oscillate' at the $4-5$ transition, rather than at the $7-8$ transition as was the case with the binary-programmable circuit. This means that as $Q_{D}$ is used as the output, the signal obtained will not be square. In fact, if the dividing ratio is from 1 to 6 , there will be no output at all. It is easy to get round this problem by producing a logic 0 for states zero to four and logic 1 for the remainder, but this creates new problems;

- more circuits are required
- even with a synchronous counter, it is difficult to avoid spikes on the output, so the clock will have to latch the output signal
- the maximum operating frequency is lowered.
So, for division ratios from one to nine, it is more practical to use a binary-counter circuit. But the decade counter can be used to advantage if division ratios up to 100 , or


# (2) 

- Fig. 11. Inverters and 9's complementers are used to apply equation (7) when cascading b.c.d.-input programmable dividers. Each additional decade will require the use of another 9's complementer.

Fig. 12. Two b.c.d adders connected to give an output of $1 / 2$ when the divisor (1) is even, or $(1+2) / 2$ when the divisor is odd. The b.c.d. input value is shifted one position toward the least significant bit and a correction made through the adders when the l.s.b. of each decade is logic 1. In the original circuit, MC14560 natural b.c.d. adders were used.


Fig. 13. The two adders, as shown, perform a similar function to those shown in Fig. 12, but by replacing the most significant decade i.c. by a binary type, the maximum possible division ratio is raised to 160 and the m.s.b. may be used to change the input function.

Fig. 14. Sections shown in Figs 11 and 13 combined with comparator and division circuits to form the b.c.d. input
programmable divider for ratios $1 \leqslant 1 \leqslant 100$. Divisors up to 160 may be used with this circuit and further decades may be added.
even greater, are required. The following describes such dividers for ratios $1 \leqslant I \leqslant 100$, and further expansion.

For ratios $1 \leqslant I \leqslant 100$, two dividers are connected synchronously and are made to 'oscillate' around a given transition (at $p$ to $p+1$ ). It should be obvious from the previous paragraph that a binary counter will still have to be used for the most-significant decade (m.s.d.).

If the output obtained is to be square, and one is to be free to choose a division ratio from 1 to 100 , it is necessary to use the transition between counts 79 and 80 (or 799 and 800 if three decades are used) as the starting point.
Table 4 gives values for the following relationships;
$L+D=159$
$D-I / 2=79$ if $I$ is even
$D-(I+1) / 2=79$ if $I$ is odd
To apply the value 159 , a 9 's complementer must be used in the least-significant decade, and four inverters for the next decade, Fig. 11. In the original circuit an


MC14561 9's complementer was used. To implement relationships (8) and (9), $I / 2$ or $(I+1) / 2$ must be in b.c.d., see Fig. 12. The b.c.d. value is shifted one position to the least significant bit, and a correction is made through the b.c.d. adders when the l.s.b. of each decade is 1 .

This method works well, but it is possible to make more use of the MC14560 adders because their design is such that arithmetical operations like $14+P$ $(0 \leqslant P \leqslant 5)$, which are not supposed to be valid in b.c.d., are possible and provide the correct result. Consequently, relationships (8) and (9) can be applied using a binary adder (for the m.s.d.), and a b.c.d. adder, as shown in Fig. 13. This circuit may be expanded to suit the desired number of decades. Figure 14 shows the complete circuit, which consists of the previously mentioned sections with two comparators and the dividers added. As can be seen in Fig. 14, the b.c.d.-input divider differs from the binary-input divider mainly through the inclusion of a b.c.d. adder for processing program-input data and the 9's complementer for the counter-load data.

Two other interesting features are inherent in the circuit;

- if the data m.s.b. is held high, the maximum programmable ratio is 199, whereas the maximum-possible division

Table 4: Divisor, load and detect (I, L and D) values for the b.c.d. programmable counter. This table is not given in full as it is obvious how omitted values are derived from the values given.

| Divisor | Load | Detect |
| :---: | :---: | :---: |
| 1 | 79 | 80 |
| 2 | 79 | 80 |
| 3 | 78 | 81 |
| 4 | 78 | 81 |
| 11 | 74 | 85 |
| 12 | 74 | 85 |
| 19 | 70 | 89 |
| 20 | 70 | 89 |
| 39 | 60 | 99 |
| 40 | 60 | 99 |
| 79 | 40 | 119 |
| 80 | 40 | 119 |
| 99 | 30 | 129 |
| 100 | 30 | 129 |

ratio is 160 . Consequently, if a number higher than 160 is programmed, the actual ratio will be $N-160$. For example if $N=$ 173, the division ratio will be 13 .

- if the data m.s.b. is held low, it is possible to use the full potential of the most significant digit, i.e., the input may be programmed to give ratios from 1 to 15 . This means that the total division range will be from 1 to 160 , the ratio 160 occurring when the value of the two input decades is zero.
If three decades are required, the fol-
lowing additional components are needed; - a decade counter between the binary and b.c.d. counter (take care with the carry and enable-output connections)
- a comparator
- a 9's complementer
- a b.c.d. adder for input data (B inputs of this adder are connected as those of the 1.s.d. adder).
C.m.o.s. i.cs were originally used for the design and worked well up to 1 MHz , depending on the division ratio. Changing the counters, comparators and gates to 74 LS series i.cs will bring the maximum usable frequency up to around 10 MHz .


## Bibliography

C. F. Chen, Design of a divide-by-N asynchronous odd number counter with 50/50 duty cycle. IEEE Proceedings, September 1974, pp.1278-1279.
J. L. Huertas, Square-wave frequency divider provides symmetrical output for odd divisors. Electronic Design, 21 September 1975, pl00.
P. Bamberger, G. Girolami, Méthodes simples pour la division de fréquence symmétrique. Electronique et applications industrielles, No 258, 15 October 1978, pp. 59-61.
A. M. Madni and R. R. Orton, Cross-coupled one shots divide by odd numbers and give a symmetrical output. Electronic Design, 25 October 1979, p. 114.
L. E. Getgen, Divide symmetrical clock pulses by odd numbers, get a symmetrical output. Electronic Design, 1 March 1980, p. 110.

# ASCII KEYBOARD TESTER 


#### Abstract

A time-saving method for detecting faulty keys or data lines. Traditionally keyboards have been tested by using a voltmeter or an oscilloscope in conjunction with a table of ASCII codes. This takes a long time and can be prone to error. The tester described here can detect faults quickly and easily.


by Waleed Habib Abdulla
Fig. 1.The keyboard tester in outline.



Fig. 2. The full circuit of the keyboard tester.

Figure 1 shows a block diagram of the tester. The ASCII code of each key is stored in an e.p.r.o.m. which holds an 'image' of the keyboard. When a key is pressed, the coded output may be compared with the stored code from the memory. Any mismatch will cause l.e.d. indicators to light. A counter is used to address the memory and is incremented by the keystroke strobe from the keyboard. Each time a key is pressed, the counter increments to the next address. Thus the keys must be tested in a set sequence governed by the order that they are programmed into the e.p.r.o.m. The full circuit is shown in Fig. 2. There is an up/down switch to reverse the counter, switches to set a specific address in the memory, a counter disable switch, 'reset' and 'key test' pushbuttons.

With the counter enabled and reset and switched to the 'up' mode, it is possible to press all the keys in sequence to check for errors. If nol.e.d. is lit, then the keyboard has no fault. If a l.e.d. should light then the corresponding bit can be tested inside the keyboard. It is possible to back-track and retest a key by reversing the sequence with the up/down switch. A fault may come from an individual key or from a data line. In the latter case, the same l.e.d. will remain lit when a number of keys are tested. To test a specific key the counter is disabled and the address of the key is entered on the switches. Pushing the key-test button will effect the comparison. Alternatively, one location in the memory (for example address 00 ) could be left vacant. Then with the counter set to that address, and disabled, the pressing of any key will cause the code coming from that key to be displayed on the l.e.ds.


Fig. 3. A suitable power supply. The voltage needed is +5 V at 220 mA . The e.p.r.o.m. requires a negative voltage between -5.5 and -9 V at 20 mA : Resistor value selected to suit current rating of the zener diode.

## Writing for Wireless World

## Notes for authors

Potential authors often ask us for advice on how to present their material; fearing perhaps, that anything of less than a certain grammatical standard may be rejected.
There is no basis for this belief: any article which we think contains information of interest to our readers, or which will add to their store of knowledge, or which presents the design of interesting equipment, is acceptable. We are happy to correct any awkwardnesses of grammar or spelling. All we ask is that articles contain all the relevant information and include any relevant diagrams or illustrations. Articles should be original contributions and not just rehashed chapters from text books or application notes. There is no need to use a formal tone - a simple direct style makes for pleasant reading.

Diagrams need only be clear sketches, as we re-draw them all to our own style, but they must be clear so that the people in our drawing office can follow and reproduce them. Photographs can be sent as slides, negatives or glossy prints and will be returned, if this is requested.

We like to include brief biographical pieces on our authors, preferably with a photograph. If you have no objection to this, please let us have the information with the article, as well as any qualifications or honorifics that you may possess.
We pay for the articles that have been accepted immediately after their publication.

If you would like to talk about a proposed article, you may like to ring us on 01-661 3500, extension 3590 or 3128.


## WAVEFORM RECORDER

Digital waveform recorders are a new venture for Hewlett Packard but with their past experience in test and measuring instruments they have been able to jump in at' the deep end. The HP5180 is a so called 'universal' waveform recorder, that is, it can be used on its own or under the control of a computer. A 10 -bit a.-to-d. converter providing sampling rates up to 20 MHz , and a 16 K -by- 10 -bit memory that can be divided into a maximum of 32 segments form part of the system. Digital triggering is used so trigger times before or after the event, and trigger voltages, may be set and read accurately. One of the functions of two adjustable cursors is to pin-point a section of a waveform for vertical and/or horizontal zoom; these cursors may also be used to set trigger points. The front panel is, of course, designed ergonomically but nevertheless holds some 50 push buttons and one multi-purpose knob. With this in mind, up to four front-panel settings may be stored and recalled at will. All the front panel controls, and data $\mathrm{i} / \mathrm{o}$, are accessible through the HP-interface bus and 16-bit parallel d.m.a. (direct memory access) at transfer rates of up to lM-word/s is possible. HewlettPackard Ltd, 308-314 Kings Road, Reading, Berks RG1 4ES. WW301

## ELECTROMETER

Voltage, current, resistance and charge functions are included on Keithley's model 614 electrometer. On the three measuring ranges for up to 20 V direct, the $41 / 2$-digit meter's input impedance is $5 \times 10^{13} \Omega$ and 20 pF ; resolution on the lowest range is $10 \mu \mathrm{~V}$. The most sensitive of nine direct-current

ranges has a resolution of 10fA and the maximum possible current reading is 2 mA . Less than $200 \mu \mathrm{~V}$ is present over the terminals on all current ranges. Resistances up to $200 \mathrm{G} \Omega$ may be measured, also in nine ranges and resolution on the lowest range is $1 \Omega$. Three other ranges are used for charge measurements down to around 10fC on the lowest range and up to 20 nC on the highest. Outputs are provided for a chart recorder and for guarding when making voltage and current measurements. A rechargeable lead-acid battery is included. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks RG2 0NL.
WW302

## TOOLS

This company has a wide range of tools and has recently introduced two kits, in wallets with zips, for


118 are low-pass filters, the first with a cut-off frequency of 3.4 kHz and the second (suffix A) with a cut-off frequency of 1.8 kHz . Using the latter version, the upper part of the voice-frequency channel is left free to carry data. Lastly is the 119 high-pass filter with a cut-off frequency of 300 Hz and an upper limit of 50 kHz . Supply rails between $\pm 5 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$ are required for these modules. Barr and Stroud, Melrose House, 4-6 Savile Row, London WIX 1 AF.
WW305

## ANTENNAE FOR MOBILE RADIO

A Swedish company, Allgon Antenn $A B$, has produced two antennae, one for the aeronautical and land-mobile distress frequencies of 121.5 and 243 MHz , and the other an omnidirectional broadband type for transmit and receive in the range 225 to 400 MHz . The first, called simply type 4104 (shown in

photo) operates on both distress frequencies simultaneously and can be used in base stations, on mobileradio units and ships, or on helicopters and aircraft travelling at less than $200 \mathrm{mile} / \mathrm{h}$. The second, type 477, is a base-station antenna covering the 225 to 400 MHz frequency range without tuning. In the middle of this range, the antenna's gain is 6 dB . The maximum average transmitting power is 1.5 kW . Allgon Antenn AB, Box 500, S-184 00 Akersberga, Sweden. WW306

## MODULAR ORGAN KIT

A "budget-priced" electronic organ with features only previously available on more expensive instruments is claimed for the Wersi Comet. Imported non-exclusively to the UK from Germany by Aura Sounds in kit form as well as in transport-

able and spinet versions, it can be bought in stages, the basic organ comprising four packs totalling £1293. Further packs include auto-accompaniment, registration memory/piano, and string/guitar facilities, bringing price to about £1900 against a factory built price of $£ 3,600$. Satellite keyboards - up to four can be connected with sections of the organ assigned to them - cost $£ 138$ in kit form. The makers claim numerous "realistic" and interesting tonal colours including synthesizer effects and guitar voices as well as the more traditional drawbar and orchestral sounds. How far the claim to realism is justified is obviously open to question, especially with auto accompaniment, but it seems much the best at simulating pipe organs. In addition to features now common to electronic organs and synthesizers that rely on voltagecontrolled filters and amplifiers, this microprocessor design also has a program memory for 20 registrations; and a key memory can play background chords after notes are released. A digital transposer can pitch the organ in any key so that tuning is not required. Aura Sounds Ltd, 17 Upper Charter Avenue, Barnsley, Yorks.
WW307


WW307

## GENERAL PURPOSE ROBOTS

Hydraulically driven robot arms that can be controlled either manually or by computer are manufactured by Powertran Cybernetics for industrial, educational or home use. Complete systems range in price from around $£ 600$ to $£ 800$. Each unit has its own 6802microprocessor control and hydraulic system, and is capable of handling several pounds. One of these units, the M101, has either four or five axes of arm movement and can be fitted with wheels capable of carrying over 50 kg . Communication with a computer is through an optional RS232 interface. Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 3NN.
WW308

## CABLE SIMULATOR

Cable transmission characteristics are important in digital communciation systems, especially where p.c.m. regenerators are concerned. To reduce the amount of floor space often required for testing such designs, Wandel and-Goltermann have introduced the PKN-1 for simulating cables with conductors between 0.6 and 1.4 mm diameter. Cable attenuation is displayed on a digital readout and adjusted by means of two push buttons in steps of $I \mathrm{~dB}$ at a frequency of 1 MHz . Both balanced and co-axial inputs and outputs are provided and a version of the PKN-1 with a 772 kHz reference frequency can be supplied. A portable 200 Hz to 620 kHz level meter for measurements on voice channels in
local and remote networks has also been recently introduced by the same company. This meter has an analogue dB readout, a digital frequency display and a built-in generator. Wandel \& Goltermann GmbH \& Co., Postbox 45, Mühleweg 5, D-7412 Eningen, F. R. Germany. WW309

> Professional readers are invited to request further details on items featured here by entering the appropriate WW reference number(s) on the mauve reply-paid card.

## CW AND RTTY TERMINAL

A communication terminal for encoding/decoding Morse or Baudot is manufactured by Polemark Ltd with inbuilt display, keyboard and real-time clock. The Microdot is a portable unit, microprocessor controlled, and has a 2 K byte r.a.m. and 4 K r.o.m., part of which contains some frequently used abbreviations and test-text which may be called using single key commands. Both modulator and demodulator are incorporated for c.w., f.s.k. and a.f.s.k. (audio-frequency shift keying). On receive, speed tracking is automatic; three fixed speeds may be set when transmitting and both transmit and receive speeds are displayed on the screen. Receive and transmit may be carried out simultaneously. The terminal's input may be connected directly to the output of a receiver or tape recorder, and the output directly to a transmitter. Self test is carried out by connecting the output to the input and supply requirements are 13.8 V , direct at 2.4 A . A price of £395 including v.a.t. and carriage is quoted. Polemark Ltd, 148-150 High Street, Barkway, Royston, Herts SG8 8EG.
WW310

A machine that offers you functions previously only associated with more powerful,more expensive computers; that gives you versatility to handle a huge range of software and hardware applications in scientific, business and personal use.

The MZ80B opens up a new world of graphic display potential, more flexible data storage and retrieval, and ease of operation.

Here is the computer from the future Available today.

## Stunning Graphic Display.

Seeing is believing. The large-screen, high-focus, green-face display incorporated in the MZ8OB gives you high resolution graphics of $320 \times 200$ dots.

An additional graphic RAM can be added which allows another $320 \times 200$ dot resolution pattern to be displayed.

This dual high-resolution graphic ability is especially useful for simulating and displaying a dynamic picture. It can display 40 characters $\times 25$ lines or 80 characters $\times 25$ lines via software switching.

In addition there are facilities for full, on-screen editing, reverse video, partial scrolling and a full range of graphic symbols.

## Character and Graphic Printer:

This fast, quiet printer will reproduce your graphic displays and, of course, printout upper and lower case letters and symbols. A tractor/friction feed version is also available

## Data 5toruge/retrieual.

The MZ80B has a remarkable memory. 64 K of RAM. And that constitutes all the memory area, giving flexible storage of any computer language and its software The cassette deck is electromagneticallycontrolled, with a data transfer speed of 1800 bits/sec combined with a unique
facility to make data storage and retrieval super-fast.

A typewriter-style keyboard incorporates characters and symbols plus a numeric key-pad and ten user-definable keys for fast and simple operation.

BASIC is, of course, provided with Z-80 Assembler Packages, PASCAL and a BASIC compiler.

## Floppy Disk Drive.

A twin Floppy Disk Drive unit can be added which will give you 560 bytes of storage on double-sided, double-density disks.


## Comprehensive Documentation.

Each MZ80B comes complete with a full set of documentation including an owners' manual giving full circuit diagrams, a monitor reference manual and programming manuals.

RS-232C and IEEE Interfaces are available from January 1982 allowing the MZ80B to communicate with scientific instruments and other peripherals.

## CP/ $11{ }^{2} 2.2$

CP/M* is also available making a wide range of packages immediately available including wordprocessing, financial modelling, data base management to mention but a few. CP/M* also increases the disk capacity to 680 K .
(CP/M:Is a Trade Mark of Digital Research Ltd).


SP ELECTRONICS (UK) LTD., COMPUTER DIVISION
SHARP HOUSE, THORP RD, NEWTON HEATH, MANCHESTER M1098E TELEPHONE 061-205 2333



BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome
CALLERS VERY WELCOME STRICTLY BETWEEN $9 a m-1 \mathrm{pm}$ and $2-5 \mathrm{p}$ n Monday to Saturday inc.
AVO SIGNAL GENERATOR No. 2 AM/FM AM $0.45-225 \mathrm{MHZ}$ FM $20-100 \mathrm{MHZ}$ 775 each

$$
20^{\prime \prime} \text { Black \& White }
$$

Solid state. Video in. int. ext. Sync. E75 each
SINE \& SQUARE WAVE AUDIO GENERATOR TYPE TE-22, 20HZ-200KHZ. Portable, as new ONLY £35 asch. P\&P £4

> MULTIMETER
AC/DC volts; AC/DC current; ohms, etc. Brand new, boxed.
GENERAL PURPOSE OSCILLOSCOPE
Sing beam Size H Tr FE TO2
Single beam. Size approx. $6 \times 7 \times 93 / \mathrm{in}$. Weight 7lbs. Ideal for the beginner or school user. NLY E35 each. P\&P ea
TEKTRONIX PLUGINS
TYPE D Single Trace High Gain DC Differential TYPE E Single Trace Low Level AC Differential TYPE G Single Trace Wide Band DC Differential TYPE LS ingle Trace 30MHZ High Gain........ £25 TYPE M 4 Trace DC-20MHZ.....
TYPE O Operational Amplifier ..................... $£ 95$
TYPE Q Transducer \& Strain Gauge
TYPE TU-2 Testing
TYPE W Differential Comparator
TYPE Z Differential Comparator.
TYPE 1A5 OC -50 MHZ Differential
TYPE IS 1 Sampling
ASA 33 - AEC TELETYPE PRINTERS ASC11 Keyboard with
tape punch $\&$ reader
KSR33 (No punch or reader) $£ 50$ POP 8 In 6 RACK CABINET E100

8 bit paper ASR 33-
$\qquad$

## THE W.W. DISK OFFER

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data
Total U.K. price including VAT at $15 \%$ and carriage, CWO

## ONLY £155 EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$ )
Please make cheques and $P$.Os payable to W.W. Disk Offer and send to:
W.W. DISK OFFER 49 Milford Hill

Batford Herts
Please call. 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non U.K. orders send SAE for quotation

Also a few double sided $8^{\prime \prime}$ drives of the same manufacture. Check for availability, c.w.o. price: $£ 395+£ 5$ carriage + VAT giving a total of c.w.o. price of $£ 460$ each




## FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER
Enables YÖU to produce perfect printed circuits in minutes!
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.

FOTOLAK.
Developer.
Ferric Chloride.
Plain Copper-clad Fibre-glass.

| Pre-coated $1 / 16$ <br> $204 \mathrm{~mm} \times 114 \mathrm{~mm}$ <br> $204 \mathrm{~mm} \times 228 \mathrm{~mm}$ <br> $408 \mathrm{~mm} \times 228 \mathrm{~mm}$ <br> $467 \mathrm{~mm} \times 305 \mathrm{~mm}$ | board <br> E1.50 <br> E3.00 <br> E600 <br> $£ 9.00$ |
| :---: | :---: |
| Single-sided $\mathbf{E} 2.00$ | $£ 1.75$ |

Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$
Postage and packing 60p per order. VAT $15 \%$ on total

## G. F. MILLWARD ELECTRONIC COMPONENTS L MMTED <br> P.O. Box 19, Praa Sands, Penzance, Cornwall TR20 9TF Telephone GERMOE (073-676) 2329 TRADE ENQUIRIES INVITED

## ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - We are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology. Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production A Full Technical Back-up and Advisory Service is available to all customers World-wide.
Please request our current catalogues and Data Information.

## a GRIFTRONIC <br> 2 SWAN STREET <br> ALCESTER WARWICKSHIRE B49 50P ENGLAND.

Telephone: (0789) 764852/764100 Telex: 312354 Grifem G

## U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

## BSR DE LUXE AUTOCHANGER £20

Plays 12", $10^{\prime \prime}$ or 7" records,
Auto or Manual. A high Auto or Mannual. A high
quality unit backed by BSR reliability. Stereo Ceramic
Catridge. AC $200 / 250 \mathrm{~V}$. Size $131 / 2 \times 111 / 4 \mathrm{in}$. 3 speeds. Above motor board $3^{3} / 4 \mathrm{in}$. Best $£ 2 \quad$ Board $\mathbf{f 1} 1$ extra


HEAVY METAL PLINTHS Post E2 cut out for most BRR or Garrard decks.
Silver grey finish, black trim. Size $16 \times 13^{3} / \mathrm{in}$. DECCA TEAK VENEEREO PLINTH. Post $\mathbf{E 1 . 5 0}$ Superior finish with space and panel fo
small amplifier. Board is cut for B.S.R.
boards cut out for Garrard only £3. Plastic cover £6
 BSR P204 SPECIAL SINGLE PLAYER ideal for portable two-speed Hi -Fi system with ADC OLM30 stereo magnetic cartridge and cueing device. £24 post £2 BSR ready cut mounting board. Only £1 extra.
GARRARD 6-200 SINGLE PLAYER DECK
Brushed Aluminium Arm with stereo ceramic cartridge Stop/Start. Large Metal Turntable.
Cueing Device.
Ready cut mounting board £1 extra.
$£ 22$ Post $£ 2$

## BATTERY ELIMINATOR MAINS to 9 VOLT D.C

Stabilised output, 9 volt $400 \mathrm{~m} . \mathrm{a}$. U.K. made in plastic case with screw terminals. Safety overload cut out. Size $5 \times 31 / 4 \times 21 / 2 \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios, Cassettes, models, $£ 4.50$. Post 65 D.
DE LUXE SWITCHED MODEL STABILISED. E7.50. Post f1. 3-6-71/2-9 volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch. DRILL SPEED CONTROLLERLIGHT DIMMER KIT. Easy to build kit. Controls up to 480 Walts AC mains, $\varepsilon 3$. Post 65 p standard box, E5. Post 65p.
Emill 13 $1 / 2 \times 8 \mathrm{ln}$. LOUDSPEAKERS Model 450, 10 watts R.M.S. with moving coil tweeter and
crossover; 3 ohm or 8 ohm.
£ 9.50 post $\mathrm{E1.50}$. "Final Clearance"
SUITABLE BOOKSHELF CABINET £6.50

RELAYS. 12VDC £1.25. 6 V DC 95p. $18 \mathrm{~V} £ 1.25$ $10 \times 7-£ 230 \cdot 12 \times 8-母 20$. $14 \times 9-£ 3 ; \quad 16 \times 6-£ 2.90$ $16 \times 10-£ 3.20$. All $21 / 2 \mathrm{in}$. deep. 18 swg
ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}$. 18 swg . 25 p .
ALUMINIUM PANELS, $18 \mathrm{swg}, 6 \times 4-45 p ; 8 \times 6-75 \mathrm{p}$; $14 \times 3-75 p ; \quad 10 \times 7-95 p ; 12 \times 8-£ 1.10 ; 12 \times 5-75 p$ $16 \times 6-£ 1.10 ; 14 \times 9-£ 1.45 ; 12 \times 12-£ 1.50 ; 16 \times 10-$
PLASTICANO ALIBOXES IN STOCK. MANY SIZES PLASTIC.AND ALIBOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 \mathrm{£1} 4 \times 21 / .2 \times 2 £ 1.3 \times 2 \times 1 \mathrm{f}$
$6 \times 4 \times 2 \mathrm{f} 1.60 .7 \times 5 \times 3 \mathrm{f} 2.40 .8 \times 6 \times 3 \mathrm{f} 2.50 .10 \times 7 \times 3 \mathrm{f}$. $6 \times 4 \times 2 \mathrm{£} 1.60$. $7 \times 5 \times 3 \mathrm{f} 2.40$. $8 \times 6 \times 3 \mathrm{f} 2.50$. $10 \times 7 \times 3 \mathrm{E} \mathbf{3}$. $12 \times 5 \times 3$ £2.75. $12 \times 8 \times 3$ £ 3.60 . Alt with lids. TOGGLE SWITCHES SP 30p. DPST 40 p. DPDT 50.50 RESISTORS. $10 \Omega$ to 10 M . $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$, 1 W , 1 p : 2 W 10 p . HIGH STABILITY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg. 8p. Ditto 5\%. Preferred values, 10 ohms to 10 meg , 3 p . WIRE-WOUNO RESISTORS 5 watt, 10 watt, 15 watt 20 p PICK-UP CARTRIDGES SONATONE 9 TA £2.50. 9TAC $£ 3.80$ BSA Stereo Ceramic SC7 Medium Output £2. SC12 £3. PHILIPS PLUG-IN HEAD. Stereo Ceramic. AU1020 (G306 GP310-GP233-AG3306-AG3310) $E 2$.
LOCKTITE SEALING KIT DECCA 118 . Complete £1. ANTEX SOLDERING IRON Mono Plastic 25p; Metal 30 p . JACK PLUGS Mono Plastic 25p; Metal 30p. JACK SOCKETS Mono Open 20p; Closed 25p JACK SOCKETS Stereo Open 25p; Closed 30p FREE SOCKETS - Cable end 30p. Metal 45 p . 2.5mm and 3.5 mm JACK SOCKETS 20p. Plugs 20p.
DIN TYPE CONNECTORS DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 10p. Free Sockets 3-pin, 5-pin 25p. Plugs 3-pin 20; 5-pin 25p; Speaker plugs 20p; Sockets $15 p$ PHONO PLUGS and SOCKETS sa. 15p
Free Socket for cable end 20p. Screened Phono Plugs 25p. U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25 p yd COAXPLUGS 30p. COAX SOCKETS 20 p
NEON PANEL INDICATORS 250 V 30 p.

## POTENTIOMETERS Carbon Track

$5 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50p. DP 90p. Stereo $1 / \mathrm{S}$
 MINI-MULTI TESTER
Deluxe pocket size precision moving coil instrument. Impedance + Capacity -2000 o.p.v. Battery included
11 instant ranges measure:
DC volts 10,50,250, 1000.
AC volts $10,50,250$,
DC amps 0.100 mA .
Continuity and resistance to 1 meg hms in two ranges.

NEW PANEL METERS $£ 4.50$
50 ua 100ua, $500 \mu a$, $1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$, $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ 25 volt, 50 volt, VU Meter $21 / 4 \times 2 \times 11 / 4 i n$. Post 65p

## RCS SOUND TO LIGHT CONTROL KIT

Kit of parts to build a 3 channel sound to light
unit. 1,000 watts per channel. Suitable for home $£ 15$ or disco. Easy to build. Full instructions supplied. Post 95p
Cabinet $£ 4.50$ extra. Operates from 200MV to 100 W . 200 Watt Rear Reflecting White Light Bulbs. fdeal for Post 65 p. Suitable panel mounting holders 85 p.

RCS "MINOR" 10 watt AMPLIFIER KIT $£ 14$. This kit is suitable for record plavers, guitars, tape playback, electronic instruments or small PA systems.
Two versions available: Mono, $\mathbf{£ 1 4 ;}$; Stereo, $£ 20$. SpeciTwo versions available: Mono, $£ 14$; Stereo, $£ 20$. Speci-
fication 10 W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details. fication 10 W per channel; size $91 / 2 \times 3 \times 2 \mathrm{in}$. SAE details.
:Futl instructions supplied. 240 V AC mains powered. Post E 1.
RCS STEREO PRE-AMP KIT. All parts to build thi pre-amp. Inputs for high, medium or low imp
per channel, with volume control and PC Board
$£ 2.95$ Can be ganged to make multi-way stereo mixers Post 65p MAINS TRANSFORMERS

## 

${ }_{{ }_{8}^{4}}^{54.50}{ }_{5}$

AUTO 115 V to 240 V 150 W £9. 250 W £10. $400 \mathrm{~W} £ 11.500 \mathrm{~W} £ 12 . £ 2$.

## GENERAL PURPOSE LOW VOLTAGE

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 3,15.15 . \\ & 18,20,24 . \end{aligned}$ |  | E6.00 |
|  |  |  |  |
|  | \%, | 36.40,48,60 |  |
|  | ${ }_{\text {ci } 2.50}{ }^{\text {c }}$ | 12-0.12V.2 | E3.5 |
|  |  |  | E3. 75 f 1 |
| 6-0.6. $1 / 2 \mathrm{map}$ |  |  |  |
| 250m |  |  |  |
|  | E1.50 80 |  | $\mathrm{EA} 450^{6} 1$ |
| 0-10V |  | 28 V 1 amp Tw |  |
| $30-40 \mathrm{~V} .2$ |  |  |  |
|  | E2.00 80 |  |  |
|  | ¢. 50 ¢1 | - | 4.00 |
| CHARGER TRANS $6-12$ volt 3 a | $\mathrm{E}_{4} .00+\mathrm{E}_{2}$ | RECTIFIERS | 1.10 |
| 6.12 volt 4 a | 66.50+ 22 | $6-12$ volt $4{ }^{\text {a }}$ | 2.0 |

## OPUS COMPACT

SPEAKERS $£ 22$ pair post $\mathrm{E}_{2}$ TEAK VENEERED CABINE
$11 \times 81 / 2 \times 7$ in, 15 watts
竍
OPUS TWO $15 \times 101 / 2 \times 73 / 4$ in 25 watt
2-way system £39 pair. Post $£ 3$.


LOW VOLTAGE ELECTROLYTICS
$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf} ; 50 \mathrm{mf}, 100$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{~m} / / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} /$ $25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mf/2.5v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf} /$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$. $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$ $2000 \mathrm{mF} 6 \mathrm{~V} \mathrm{25p;} 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 2000 \mathrm{mF} 100 \mathrm{~V} £ 1.20$.
 HIGH VOLTAGE ELECTROLYTICS

$3 / 450 \mathrm{~V} \quad 45 \mathrm{p} 8+8 / 450 \mathrm{~V} \quad 75 \mathrm{p} 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}$ $8 / 800 \mathrm{~V} \quad \mathrm{E} 1.208+16 / 450 \mathrm{~V} \quad 75 \mathrm{p} 100+100 / 275 \mathrm{~V} \quad 65 \mathrm{p}$ $\begin{array}{lllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} 20+20 / 450 \mathrm{~V} & 75 \mathrm{p} 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} \\ 32 / 1500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} 220 / 450 \mathrm{~V} & 95 \mathrm{p}\end{array}$ $\begin{array}{lllll}32 / 500 \mathrm{~V} & 75 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 220 / 450 \mathrm{~V} \\ 32 / 350 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \mathrm{E} 1.80 & 32+32+32 / 325 \mathrm{~V}\end{array} \mathbf{9 5 \mathrm { p }}$ | $32 / 350 \mathrm{~V}$ | 50 p | $32+32 / 500 \mathrm{~V}$ |
| :--- | ---: | ---: |
| $50 / 500 \mathrm{~V}$ | $£ 1.20$ | $50+50 / 300 \mathrm{~V}$ |
| 1.80 p | $50+32+32 / 325 \mathrm{~V} 75 \mathrm{p}$ |  | CAPACITORS Various 10 pf to $100,000 \mathrm{pf} 5 \mathrm{p}$. APER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.520 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ VALVE OUTPUT Transformers (small) 90p. RIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}$, 5p. 100pF, 150pF, 15p MICROSWITCH SINGLE POLE CHANGEOVER 30p. SUB-MIN MICRO SWITCH, 30p. Single pole changeove TWIN GANG, $120 \mathrm{pF} 50 \mathrm{p} ; 500+200 \mathrm{pF} \mathrm{E1}$. GEARED TWIN GANGS 25 pF $95 p$.

TRANSISTOR TNIN GANG $£ 1$
RANSISTOR TWIN GANG. Japanese Replacement 50p.

## HEATING ELEMENTS, WAFER THIN

Size $11 \times 9 \times 1 /$ sin. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between Wo sheets of metal ceramic, et
ONL Y GOP EACH (FOUR FOR E2) ALL POSTPAID

## NEW baker Star sound

high power fult range quality loudspeaker produced to give exceptional
reproduction. Ideal for Hi-Fi, music P.A. or discotheques. These loudspeakers are recommended where high power handling is required with quality results. The high flux

| MODEL | INCHES | OHMS | WATTS | TYPE | PRICE | POS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAJOR | 12 | 4-8-16 | 30 | HI-FI | f14 | E2 |
| DELUXE MK II | 12 | $B$ | 15 | HI-FI | ¢14 | $\underline{52}$ |
| SUPERB | 12 | 8-16 | 30 | HI-FI | 524 | 12 |
| AUDITORIUM | 12 | 8-16 | 45 | HI-FI | 57 | $\underline{2}$ |
| AUDITORIUM | 15 | $8-16$ | 80 | HI-FI | E34 | E2 |
| GROUP 45 | 12 | 4-8-16 | 45 | PA | ¢14 | $\underline{1}$ |
| GROUP 75 | 12 | 4-8.16 | 75. | PA | 118 | $\underline{6}$ |



BAKER 150 WATT MIXER/POWER
AMPLIFIER $£ 89$ Post $\mathrm{E}_{2}$ SLAVE VERSION $£ 75$
For Organs, Discotheque, Vocal, Public Address. Three loudpeaker outlets for 4,8 or 16 ohms. Four high gain inputs, each 20 50 watts into 8 ohms M . \%. Slave output 500 M.V. 25 K. ohm. Frequency Response 25 Hz $20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-Fi preamp separate 8ass \& Treble Compact - $16^{\prime \prime} \times 8^{\prime \prime} \times 51 / 2^{\prime \prime}$. Lightweight -141 b : Master volume control. Made in England. 12 months' guarantee. 200/250v A.C mains or 120 V to order. All transistor and solid state devices. 00 Voit Linge f 15 extra
New Stereo Slave Model $150+150$ watt f125. Post $f 4$
BAKERS NEW PA150 MICROPHONE PA AMPLIFIER £129. Post $£ 3$ 4 channel 8 inputs, dual impedance, 50 K 600 ohm 4 channel mixing, volume, treble, bass. Presence controls, Master volume
control, echo/send/return socket. Slave input + output sockets.

## BAKER

50 WATT AMPLIFIER

$£ 69$ Post $£ 2$
Ideal for PA systems, Discos and Groups. Two inputs, Mixer, Volume Controls, Master Bass, Treble Gain. RCS offers MOBILE PA AMPLIFIERS. Outputs 4-18-16 ohms 20 -watt RMS 12v DC, AC 240v, 3 inputs. 50 K E46 (PP £2). 40 -watt RMS 12v DC, AC $240 \mathrm{v}, 4$ inputs. 50K 100v Line 175 (PP £2) Mic 1; Mic 2; Phono; aux. outputs 4 or 8 or 16 and 100 v line
60 -watt RMS. Mobile 24 volt DC \& 240 -volt AC mains. inputs 50 K . 60 -watt RMS, Mobile 24 volt DC \& 240 -volt AC mains. inputs
3 mics + 1 music. Outputs $4-8-16 \mathrm{ohm}+100$ volts line $£ 95$

## FAMOUS LOUDSPEAKERS

 "SPECIAL PRICES'| MAKE | MODEL | SIZE | Walts | OHMS | PRICE POST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEAS | TWEETER | 4 in | 50 | 8 | $\underline{83.50}$ | f1 |
| GOODMANS | TWEETER | 31/2in | 25 | 8 | E4.00 | £1 |
| AUDAX | TWEETER | 4 in | 30 | 8 | 56.50 | $f 1$ |
| SEAS | MID-RANGE | 4in | 50 | 8 | $\underline{7.50}$ | ¢1 |
| SEAS | MID-RANGE | 5 in | 80 | 8 | ¢12.00 | $f 1$ |
| SEAS | MID-RANGE | 41/2in | 100 | 8 | $\underline{12.50}$ | £1 |
| GOODMANS | HIFAX | 17/2x $4^{1 / 4}$ | 100 | 4/116 | f22 | $\underline{\square}$ |
| AUDAX | WOOFER | 8 in | 40 | 8 | f14.00 | $\underline{\square}$ |
| GOODMANS | WODFER | 8 in | 25 | 4/8 | f6.50 | f1 |
| GOODMANS | H8 | Bin | 60 | 8 | f12.50 | 81 |
| CELESTION | DISCO/P.A | 10 in | 20 | 8116 | £11.50 | E |
| Celestion | DISCO/P.A. | 10 in | 60 | /16 | $\underline{21.50}$ | $\underline{\square}$ |
| RIGONDA | GENERAL | 10in | 15 | 8 | 85.50 | $\underline{2}$ |
| AUDAX | WOOFER | 10in | 50 | 8 | £16.00 | $\underline{8}$ |
| GOODMANS | PP12 | 12in | 75 | 115 | ¢24.50 | 22 |
| GOODMANS | GR12 | 12in | 90 | 8/15 | $\underline{27.50}$ | $\underline{2}$ |
| GOODMANS | HPD | 12 in | 120 | 815 | $\underline{27.50}$ | E2 |
| EMI | HI-FI | $13 \times 8$ | 10 | $3 / 8$ | £9.50 | ¢1 |

## SPEAKER COVERING MATERIALS. Samples Large S.A.E. B.A.F. LOUOSPEAKER CABINET WADDING 18 in wide 35 p t

 CASSETTE MONO REPLAY. Complete working f12.50 ASSETTE MOTOR. 6 volt $\mathbf{~} 1$CASSETTE MECHANISM. 6 or 12V STereo Heads 55
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm $£ 1.30$. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps} .20$ watt rating. $\mathbf{£ 2 . 2 0 . 3} \mathbf{\text { way }} 60$ watt $£ 6$. OUDSPEAKER BARGAINS
$3 \mathrm{hm}, 5 \mathrm{Fin}, 7 \times 4 \mathrm{in}, £ 2.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, \mathrm{E} \% 3 \mathrm{in}, \mathrm{E3} .50$.
ohm, $25 / 3 \mathrm{in}, 3 \mathrm{in}, \mathfrak{L Z}^{2} ; 5 \mathrm{in}, £ 2.50 ; 61 \mathrm{hin}, \mathcal{E S}^{2} ; 8 \mathrm{in}, \mathbf{£ 4} .50 ; 12 \mathrm{in}, \mathrm{C} 6$
5 ohm, $31 / 2 \mathrm{in}, 5 \times 3$ in, $6 \times 4 \mathrm{~m}, 2.50$.
× 12 in 50.120 ohm, $3^{1 / 4 i n ~ d i a . ~ f 1 ~}$

## MOTOROLA PIEZO ELECTRIC HORN TWEETER, 3 3/4 square $\begin{aligned} & \text { £5 } \\ & \text { ! } 00 \text { watts. No crossover required. } 4-8-16 \text { ohm, } 73 / 8 \times 31 / \mathrm{g} \\ & \text { f10.50 }\end{aligned}$

THE "INSTANT" BULK TAPE ERASER
of tape reel
Sutable for cassettes and all sizes of tape reels. and lead ( 120 volt al so in stock).
led Dempanetiser only 55
netiser only 55 .

## PACKKITS

f9.50 Post 95p

PACKKITS
instructions with
1 POWVER All parts and instructions with Zener diode printed circuit, up to 100 mA or less. Please state voltage required


## PHONE <br> P. M. COMPONENTS LTD <br> SELECTRON HOUSE, WROTHAM ROAD 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DA13OQY

A SELECTION FROM OUR
STOCK OF BRANDED VALVES

## 

## RETAIL SALES <br> 404 EDGWARE RD. LONDON, W2 1ED TEL: 01-402 6822 <br> TANGERINE•TANGERINE•TANGERINE•TANGERINE•TANGERINE

MICROTAN 65
Microtan 65 is the most advanced. powerful, expandable mic also happens to be the most cost etfectivel

FULL MANUALS: MICROTAN, TANEX, BASIC, X BUG

## TANRAM

availabie now tanram. 4ok bytes on one board ' Single board of bulk miemiory olfering 7 K Static RAM (21 14). and 32K Oynanic RAM (4) 161 Onhoard re lesh is rotally Irans parent to CPU operation and is


Electronic Today
International hatd a mammoth survev of kits. The resull: Microtan 65 WINS COMPUTER CLASS!

## MICROTAN 65 CONTENTS

High quality. plated thru hole prinied circuit boarid. solder resisi and sille screened component idenilication 6502 nucroprocessol 1 K noontor TANBUG Now with $V$ Bug IK RAM for ISer programmie, stack and display memory VOU aphanumeric display of 16 rows by 32 character MICROTAN 65 system file binder 136 page. bound. users hardware! sotiware manuial with consiructional detais and saminple programmes Logic and discrete components to fully expand MICROTAN 65
KIT FORM £69.00 + VAT.
MICROTAN 65 assembled and tesied.
Spectication as above, but assembled and fully bench tested by ourselves $£ 79.00+f 1185$ VAT T toral $£ 9085$
tanBug v2.3 kn $£ 21.85$ incl.

## POWER SUPPLIES

Input 240 V AC. Output 5 Volts at 3 Amps Regulated. Will power both MICROTAN and TANEX fully expanded. Builh on the same size printed cucurl board as MICROTAN etc Avallable as a fully buill and tested unit
£23.00 = VAT f3.45. total $£ 26$ a 5
X MPSZ $+5 \mathrm{~V} 6 A .+12 \mathrm{~V} .-5$ and -12 V switch niode system PSU £69.13 +VAT

71 KEY ASCII KEYBOARD £56.34+VAT
NO EXTRAS NEEDED
Uses gold ciosspoint keys includes numeric keypad and nitbon cable. Avalable as lully assembled and tested SUPER METAL CABINET in tangerine/black $\mathbf{£} \mathbf{2 0 . 0 0}+$ VAT 1300 . total f 2300

NEW PRODUCTS (allyAT. hacl.


## SEND FOR <br> FREE BROCHURE

unatlected by normal OMA's TANRAM tully expands the avalable address space of the expands the avaliable address space of the
6502 mucroorocessor MICROTAN. TANEX 502 nimeroprocesssor MICROTAN. TANEX and TANFAM logethe! rovide 16 K RAM. 48 K RAM. and $1 \mathrm{~K} 1 / \mathrm{O}$ - that's a lot of memary ad a lot ol 1/01 Buill and tested TANRAM ASSEMBIEO

40K RAM CARD with 16K DYMAMIC RAM $£ 76$-VAT CONTENTS High qualiry plated thru hole pinted circuil board, solder esisf and silk screened coniponent idenuitication Fill coniplement of C sockets tor maximunil expansion 64 way O N edge connector IK RAM (2114) Oara bus buflering TANRAM users manual.

EXTRARAM
IK STATIC (2114) ©2.95 each 16K DYNAMC (4116) © 50 each
MEMORIES expano yoursystem with dur tangerine Discounts $10 \%$ lot $4.15 \%$ for $8.20 \% 101$ I6 APPROVEO CHIPS $2102 \mathrm{iK} \times 1$ SIAIC RAM 80j IM 6402 UART $\mathbf{C 4 . 5 0}$ $2708 \quad 13.50$ 2716 f6.50 MK $411616 \mathrm{~K} \times 1$ Oynamic RAM $4118 \mathrm{kK} \times 8$ Static RAM $\mathbf{5 7 . 5 0}$ $f 1.50$

All Including VAT
MONITORS (PROFESSIONAL) RECONDIIIONED AND NEW - FROM $£ 35.00$ to $£ 129.95$

## CENTRONICS Ideal for Tangerine

 PRINTERSSHEIKOSHA £ 199 + VA
Model $730 £ 350$
Model $737 £ 395$

## NEW MICROTANTEL

POST OFFICE APPROVED PRESTEL - VIEWDATA - FULL COLOURGRAPHICS - MICROTAN OTHER - CAN STORE PRESTEL CAN BE USED AS AN EDITING TERMINAL -CAN BE INTERFACED WITH PET. APPLE AND NASCOM
Just connect to the aetial socket of any colori or hlack and whire nomestic $\dagger V$ receever and to youl Post Office installed lack socket and you are into the exculing woitd of PRESTEI Via sumple push hutton use you are able to view 170.000 pages of up to the numute information on thany services, ordel goods froni companies - all this withour leaving

## TANEX £43.00

Minimum
CONTENTS +VAT 6645 . total $¢ 4945$
High quality plated thru hole printed circuit hoard, soldes resist and silk screened component dentification IC sockets for maximuni expansion 64 Way DIN edge connector IK RAM, cassette intertace. 16 parallel 1/O lines. a Thi seliati/a port. two 16 bin counter liniets, data bus biffering. memory mapping. logic and discrete components tornraximum expansion TANEX users manual TANEX (Mininum confiquration) Assembled £53.00 +VAT $E 795.10$ tal f 6095

## TANEX EXPANSION

Expanded. TANEX offers 7KRAM locations for AK EPROM (2716). locations for 10 K extended MICROSOFT BASIC. 32 paallel I/O lines. two Tit senal $1 / 0$ ports. a thind sertal $1 / 0$ port with RS232/20mA loop. full moden) control and 16 programmable bau rates. Dour 16 bil counter limes
cassetle interface, data bus butfering, and memory mapoing


EXPANOED TANEX KIT IExCludes ROM. XBUG and BASIC) $\mathbf{£ 8 9 . 7 0}+$ VAT fi3 46, total flo3 16 expanoed tanex assembled
£99.70 + VAT f14 96, total f11466 OPTIONS TO FULLY EXPANDED TANEX 10K Extended MICCROSOFT BASIC in EPROM (with manual) ¢ $49.00+$ VAT $\lceil 7$ 35. toral 55635 Extra RAM $1 \times(2 \times 2114)$ f5.20 + V AT 78 p . total 55.98 SERIAL I/O KIT f10.26 +VAT $\boldsymbol{\text { I }} 60$. Toral $f 1180$ 6522 VIA $88.00+$ VAT $f 120$. total 9920 xBUG $\{1735+$ VA.T $\{260$. total $£ 1995$ $\pm 12 \mathrm{~V}$ KIT 93.20 incl .

ADD-0N A compact 12 button keypad KEYPAD $\begin{aligned} & \text { selaboard to extend its functions } \\ & \text { kelus four extra keys Supplied }\end{aligned}$

LIST PRICE plus four extra keys. Supplied $3 \times 4$ nen- with with dara. A keyboard in sloped format
27.95

PROFESSIONAL ASCII KEYBOARDS Ideal for Tangerine $£ 29.95$
52 kev 7 br ASCll coded Full ASCli characters Parallel output with strobe Power light on control Chip by General Instrument G G I ITL output


Superbly made
Size $13 \times 55 \times 15$ ns. Black keys with white ledgens Escape shitr return \& resel keys
Control fepeat \& bell Complele with OATA

TAMGERINE TANGERINE -TANGERINE TANGERINE •TANGERINE TANGERINE TANGERINE TANGERINE

FULLY GUARANTEED * BUY WITH CONFIDENCE
BRITISH OESIGN \& MANUFACTURE ANO ON OEMONSTRATION

All orders pre-paid and official advertised here to be
forwarded DIRECTLY to
COMPUTER DEPT., 11/12 PADDINGTON GREEN, LONDON W2

## HYDRAULIC DRIVE ROBOTS From POWERTRAN

USING SELF. CONTAINED
HYDRAULIC POWER PACK
FEEDBACK CLOSED LOOP CONTROL SYSTEM

MICROPROCESSOR CONTROLLED

USING DEDICATED SYSTEM OR EXTERNAL COMPUTER VIA ON-BOARD RS232C INTERFACE UPTO SIX PROGRAMMABLE AXES READY-BUILT OR KITS FROM £355 CURRENTLY BEING PUBLISHED IN

PRACTICAL ELECTRONICS
For further details please contact: POWERTRAN CYBERNETICS PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3MM Tel. Andover (0264) 64455

# Digital Accuracy, Effortless Convenience: 



Calorimetric MODULOAD ${ }^{\circ}$ System from 1 kV to 50 kV RF Power up to 50,000 watts from AM and FM Three models cover $1-10 \mathrm{~kW}, 1-25 \mathrm{~kW}$ and $1-50 \mathrm{~kW}$ ranges with calorimetric accuracy of $\pm 21 / 2 \%$ of indication (above 5 kW ). Self-cooled MODULOAD Termination assures low SWR in 50 -ohm lines, can be permanently mounted - or wheeled in place on dolly.
To measure power, push a button, wait briefly to stabilize, zero the display and apply RF !
Can be used to calibrate or check other meters. Detailed specs in CaIMOD Bulletin. Ask for it


Aspen Electronics Limited your exclusiveu.k.representative

2/3 Kildare Close, Eastcote, Ruislip, Middlesex HA4 9UR Telephone: 01-868 1188
Telex: 8812727
FAX: 01-866 6596

# PRINTED CIRCUITS 

## FOR WIRELESS WORLD PROJECTS

## Stripline r.t. power amp-S̄ept. 1975-1 d.s. <br> Audio compressor /limiter-Dec. 1975-1 s.s. (stereo) <br> F.m. tuner (advanced)-April 1976-1 s.s.

 4.25 5.25Cassette recorder-May 1976-1 s.s. $\begin{array}{r}55.00 \\ \hline\end{array}$
Audio compander-July 1976-1 s.s. 65.00
$\varepsilon 4.25$

Time code clock-August 1976-2 s.s. 3 d.s. $£ 4.25$
$\boxed{5} 5.00$
Date, alarm, b.s.t. switch-June 1977-2 d.s. 1 s.s. 15.00 $\varepsilon 9.50$
Audio preamplifier-November 1976-2 $\mathrm{s} . \mathrm{s}$.
Additional circuits-October $1977-1$ £8.50
Additional circuits-October 1977-1 s.
Morse keyboard and memory-January 1977-2 d.s
(logic board $101 / 4 \mathrm{in} . \times 5 \mathrm{in}$.) (keyboard and matrix $13 \mathrm{in} . \times 10 \mathrm{in}$.
Low distortion disc amplifier (stereo)-September 1977-1 s.s.
Low distortion audio oscillator-September 1977-1 s.s.
Synthesized f.m. transceiver-November 1977-2 d.s. 1 s. 9. £ 12.00
Morsemaker-June 1978-1 d.s.
£4.50
Metal detector-July 1978-1 d.s.
Oscilloscope wa veform store-October 1978-4 d.s.
Regulator for car alternator-August 1978-1 s.s.
$£ 3.75$
$£ 18.00$
Versatile noise generator-January 1979-1 s.s.
200 MHz frequency meter-January 1979-1 d.s.
High performance preamplifier-February 1979-1 s.s.
High pertormance preamplifier-February 1979-
Distortion meter and oscillator-July 1979-2 s.s.
Distortion meter and oscillator-July 1979-2 s.s.
Moving coil preamplifier-August $1979-1$ s.s.
$£ 2.00$
$£ 5.00$
£5.00
£7.00
65.50
$£ 5.50$
£3.50
Multi-mode transceiver-October 1979-10 d.s.
Amplification system-Oct. 1979-3 preamp 1 poweramp
£35.00
Digital capacitance moter-April 1980-2 s.s.
£4.20 each
£7.50
Colour graphics system-April 1980-1 d.s:
18.50

Audio spectrum analyser-May $1980-3$ s.s
Multi-section equalizer-June $1980-2 \mathrm{~s} . \mathrm{s}$.
10.50

Floating-bridge power amp:- Oct. $1980-1$ s.s. ( 12 V or 40 V )
Nanocomp - Jañ. 1981 - 1 d.s. 1 s.s.
Logic probe - Fob. 1981 - 2 d.s.
$\varepsilon 8.00$
¢4.00
69.00

E6.00
Modular frequency counters-March 1981-8 s.s
Opto-electronic contaci breaker (Delco)-April 1981-2 s.s:
$\$ 20.00$
Boards are glassfibre, roller-tinned and drilled. Prices include V.A.T. and U.K. postage

Airmail add $20 \%$, Europe add $10 \%$, Insurance $10 \%$ Remittance with order to
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

|  |  |
| :---: | :---: |
|  | RF POWER VMOS LOW-NOISE GASFET <br> POS AND PACKING £1.50 PER UNI <br> RESEARCH COMMUNICATIONS LIMITED |
|  | FINAL RADIO AND ELECTRONICS EXHIBITION AT BELLE VUE <br> by the NORTHERN RADIO SOCIETIES ASSOCIATION in the |
|  | LANCASTER HALL <br> BELLE VUE, MANCHESTER <br>  Features: Inter-club quiz; grand raffle; construction contest; amateur computer stands; RSCB book stall; Radio Society stands and Trophy Belle Vue has ample car parks <br> Home Office and Raynet stands <br> FM talk-in on GB3NRS and G8NRS/A on 145 MHz Chs22 R2 R6 and on |
|  |  |

## Immediate Availability!



## Exceptional Value! Hitachi V-550B high performance 50MHz Oscilloscope

The Hitachi V-550B combines a host of professional features with unrivalled quality, reliability and cost-effectiveness.

Features include full dynamic-range band width to over 50 MHz , dual timebases with B trigger and calibrated multiplier, variable hold-off, $1 \mathrm{mV} / \mathrm{cm}$ sensitivity, $5 \mathrm{nsec} / \mathrm{cm}$ sweep, trigger view and an internal graticule C.R.T. At around $£ 700$ it offers the best value available.

Equally important, the whole Hitachi range including the V - 550 is available from stock now!

The range covers bandwidths from 15 MHz to 100 MHz and includes battery miniportables. All models carry a two year warranty and are supplied with probes. Prices start at around £230 ex VAT.

For full colour brochures giving detailed specifications and prices ring (0480) Reltech Instruments Coach Mews, St. Ives, Cambs. PE174BN
63570.


## OTHER PRODUCTS

\section*{MAINS BATTERY ELIMINATORS} 8 Mk. 5 Latest Model $£ 122.10$ 71 (Electronics \& $£ 45.80$ 73 TV Service) $£ 63.90$ MM5 Minor $£ 40.50$ DA211 LCD Digital DA 212 LCO Digital DA116 LCD Digital Mugger 70143500 v | Megger 70143500 V | $£ 121.70$ |
| :--- | ---: |
| Megger Batten | $£ 97.20$ | Megger Battery BM7 $£ 65.30$ P\&P fl $32+$ VAT $15 \%$

## BRIDGE RECTIFIERS



No wiring, ready to plug into $\cdot 13 A$ socket. 6,9 12V DC 301mA $25.10+$ AT ANTE SOLDERING IRONS 15 W . CON 240 or CE 4.50 Safety stand ............... $11.7525 \mathrm{~W} \times 25 \ldots \ldots . . . . . . . . \mathrm{EA}^{2} .80$ 12 V 25 W car soldering kit.. P\& $50 \mathrm{p}+$ VAT

PANEL METERS $£ 6.70$ ea $+76 p$ PIP + VAT $3 \times 43 \mathrm{~mm}$ or $82 \times 78 \mathrm{~mm} \quad$ V.U. Indicator
Educational Meter 10 A 830 V E4.50+VAT
Precision De-Solder Pumps - Spring loaded quick action button release for one hand working. Large $£ 5.86$ P\&P $35 p+$ VAT. Small $£ 5.17$ P\&P 30p+VAT. Replacement tips: Smalt $65 p+V A T$. Large $86 p+V A T$.
ANTE SOLDERING IRONS 15W CEN 240 or C £4.50 $25 \mathrm{~W} \times 25$ £4.80, 12 V 25 W car solder kit
$\mathbf{E 5 . 3 0}$. Safety stand $\mathbf{£ 1 . 7 5}$. P\&P $55 \mathrm{p}+\mathrm{VAT}$

METAL OXIDE RESISTORS E1/100 Special Offer TR 4 $5 \%$ Electrosil (100s only). Use in place
of c.film. $47 \Omega-75 \Omega-180 \Omega-360 \Omega-390 \Omega-40 \Omega-470 \Omega$ $510 \Omega-560 \Omega-820 \cap$ - $1 \mathrm{~K} \cdot 1 \mathrm{~K} 2 \cdot 1 \mathrm{~K} 3-1 \mathrm{~K} 6-1 \mathrm{~KB}-2 \mathrm{~K} \cdot 2 \mathrm{~K} 4$. $3 \mathrm{~K}-16 \mathrm{~K}-20 \mathrm{~K}-22 \mathrm{~K} \cdot 24 \mathrm{~K}-27 \mathrm{~K}-47 \mathrm{~K}-82 \mathrm{~K}-100 \mathrm{~K}-110 \mathrm{~K}$.

## YOU C. NT BEAT ILPBPOLAR POM ER AMPS 0 R <br> pow: rad pact <br> Get maximum power at minimum price. yet still with hi-fi specifications and a wide choice of outputs. ILP Bipolar power amps. now with or without heatsinks are unbeatable value for domestic hi-fi - but for disco. guitar amplifiers and PA choose the new range of heavy duty power amps. again with or without heatsinks. with protection against permanent short circuit added safety for the disco or group user. Connection in all cases s simple - via 5 pins <br> Every item has a 5 year no quibble guarantee and <br> includes full connection data. So send your order FREEPOST today!

Load impedance, all models, 4 ohm - infinity. Input impedance, all models 100 K ohm. Input sensitivity, all models. 500 mV . Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$. BIPOLAR Standard, with heatsinks


BIPOLAR Standard, without heatsinks

| WY 120P | $60 \mathrm{w} / 4.8 \Omega$ | $0.01 \%$ | $<0006 \%$ | $\pm 35 \pm 40$ | $120 \times 26 \times 40$ | 215 | $\varepsilon 17.83$ | $£ 15.50$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 | HP 400 P | $240 \mathrm{w} / 4 \Omega$ | $001 \%$ | $<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 70$ | 375 | $£ 32.58$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2833 |  |  |  |  |  |  |  |

Protection: Load line momentary short circuit (typically 10 sec ). Slew rate $15 \mathrm{~V} / \mu$ s Rise time: $5 \mu \mathrm{~s}$. S/N ratio 100 db . Frequency response $(-3 \mathrm{~dB}): 15 \mathrm{~Hz}-50 \mathrm{kHz}$. Input sensitivity 500 mV rms. Input impedance $100 k \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$.

HEAVY DUTY with heatsinks
 HEAVY DUTY without heatsinks

| HO T20P | $60 \mathrm{w} / 4.8 \Omega$ | $0.01 \%$ | $<0.006 \%$ | $\pm 35 \pm 40$ | $120 \times 26 \times 50$ | 265 | $£ 22.82$ | $£ 19.84^{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HO 209P | $120 \mathrm{w} / 4.89!$ | $0.01 \%$ | $<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 50$ | 265 | $£ 27.17$ | $£ 23.63$ |
| HO 400P | $240 \mathrm{w} / 4 \Omega$ | $0.01 \%$ | $<0006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 70$ | 375 | $£ 39.42$ | $£ 34.28$ |



Protection: Load line. PERMANENT SHORT CIRCUIT (ideal for disco/group use should evidence of short circuit not be immediately apparent). The Heavy Duty range can claim additional output power devices and complementary protection circuitry with performance specs as for standard types.
How to order Freepost: Use this coupon, or a separate sheet of paper. to order these products. or any products from other IL.P Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Lid: cash must be registered. C.0.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order

Please send me the following LP modules

Total purchase price
IencloseCheque $\square$ Postal Orders $\square$ Int. Money Order $\square$ Please debit my Access/Baiclaycard No. Name

Address


## RHODE \& SCHWARZ

Selective UHF V/Meter. Bands 4 \& 5. USVF Selectomat Voltmeter USWV $£ 450$
UHF Sig. Gen. type SDR 0.3-1 GHz
UHF Signal Generator SCH £175.
XUD Decade Synthesizer \& Exciter.
POLYSKOPS SWOB I and II
Modulator/Cemodulator BN17950/2

## MARCONI

TF995B/2 AM/FM Signal Generator.
TF2500 Audio power meter
TF1 101 RC oscillators $£ 65$.
6551 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM
TF1066B \& 1. $10.470 \mathrm{MHz} . \mathrm{AM} / \mathrm{FM}$.
TF $1152 \mathrm{~A} / 1$. Power meter. $25 \mathrm{~W} .500 \mathrm{MH}_{2}$ f 50.
TF1370A RC Oscillator $£ 135$.
TF7910 Carrier Deviation Meter

## BECKMAN TURNS COUNTER DIALS

Miniature type ( 22 mm diam.). Counting up to 15 turn "Helipots". Brand new with. mounting instructions. Only $\mathbf{£ 2 . 5 0}$ each.

## $\star$ VIDEO EQUIPMENT SALE $\star$ CONTENTS OF COAPLETE MONOCHROME STUDIO

MARCONI Video/Audio mixing desks. Monochrome Video cameras complete with on-board monitors.
Video monitors types CONRAC II (9" tube) PROWEST $13^{\prime \prime}$.
To be sold in first-class working condition.
Offers invited for complete lot.

## SEALED LEAD ACID BATTERIES

Gould GELYTE type PB660. 6V. 6A.H. Measures $3^{3 / 4 / 4 \times 2^{3 / 4} \times 2^{3 / 4}}$ inches. Excellent condition. $£ 4.50$. (75p post).

20-WAY JACK SOCKET STRIPS. 3 pole type $\boldsymbol{£ 2 . 5 0}$ each (+ 25 p p.p.). Type 316 three-pole plugs for above-20p ea. (p.p. free).

## P. F. RALFE ELECTRONICS

10 CHAPEL STREET, LONDON, NWI TEL: 01-723 8753


RANK KALEE 1742 Wow \& Flutter Meter
AIRMEC 314A Voltmeter. 300 mV (FSD)-300 V.
AIRMEC Wave Analysers types 853 \& 248A.
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing, etc.
TELONIC type $12040-500 \mathrm{MHz}$ sweep generator .......... $£ 150$ TELONIC type 121 Display scopes ................................... $£ 90$
TELONIC type 101 Display scopes .................................. $£ 75$
WAYNE KERR AF signal generator S121 model ............. £85
RADIOMETER Distortion Meter BKF6 $£ 125$.

## SPECIAL PURCHASE OF TEKTRONIX 454 PORTABLE OSCILLOSCOPES

Tektronix $454 \mathrm{DC}-150 \mathrm{MHz}$ dual-beam oscilloscopes in stock now. $5 \mathrm{mV} / \mathrm{cm} Y$-amplifier $(1 \mathrm{mV}$ cascaded). 2.4 ns risetime. Calibrated sweep delay. We can offir these units in first-class operational condiion complete with three months' guarantee, for a once only price of E 850 .

## TEKTRONIX 500 SERIES SCOPES AT BARGAIN PRICES:

All in good working order. Available to callers only
TYPE 5438 with ' CA ' plug•in 25 MHz DB. SOLD OUT
TYPE 5458 with ' CA ' plug-in 25 MHz DB. SOLD OUT TYPE 585A with ' 82 ' unit. 80 MHz . Few left $£ 250$. Reduced to .......................

PLEASE NOTE. All the pre:owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. it is sold in first-class operational condition and most itemshave a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15\% VAT TO ALL PRICES.

DC POWER SUPPLIES
tAPT 10459/8, 12-14V @ 5 Amps £25 (£2 p.p.) tAPT 10459/8, 12-14V@5Amps £25 (£2 p.p. *We can supply the above power supply at any fixed voltage between 5 V and 36 V at 5 A ens. handbook. Pos \& Neg 12 V at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10+$ ( $£ 1$ p.p.) - FARNELL Current limited. Dimensions $7 \times 5 \times 4 \mathrm{ins}$. Following types available: 13-17 Volts@2A E15. 27-32 Volts@1A 5V £15. 5V @3A £15. (pp £1.50).

## SPECIAL PURCHASE

## LAMBDA POWER SUPPLIES

Excellent LXS Series DC power units at less than a tenth of new price. The snag? - thay're all 110 V AC nput. Prices as follows:
5 V at 24A. LXS D5 OVR. $\mathbf{2 5}$. (List £350). Carriage $5 V$ at 14A. LXS CC 5 OV. E20. ( $£ 258$ ). 24 V at 3.1A. LCS C 24. £15, (£223). $\mathbf{~} 2.50$ extra Special note: The 5 V power supplies may be. operated (both primary from 230 V ) and DC outpui to give a maximum output voltage of 12.50 C when connected in series. Deduct $10 \%$ from price for two off or more, i.e., 12 V DC at 24 A for $\mathbf{~} \mathbf{4 5}+$ Taxl Very
cheap! cheap!

VARIABLE VOLTAGE BENCH SUPPLIES Variable voltage DC power supplies for warkshop use. Constant voltage, variable 0-30V output at 1 A . Cased, free standing, volt-metered output. Short circuit proof. Size $4 \times 5 \times 7^{\prime \prime}$. Oniy $\mathbf{£ 3 0}$-each (pp COMMUNICATIONS TEST EQUIPMENT MARCONI TF4066B/4. AM/FM Signal Genera tor, $10-470 \mathrm{MHz}, 0.2 \mathrm{uV}-200 \mathrm{mV}$ output. FM Deviations up to $\pm 100 \mathrm{Kz}$ from 30 Hz - 15 KHz e5so Narrow deviation model 995 covering 15 Narrow deviation model 995 covering 1.5 -- MARCONI TF1064B/5 FM signal generator covering in three ranges 68-108, 118-185 and $450-470 \mathrm{MHz}$. Modulation FM fixed deviations of 3.5 and 10 KHz . AM fixed $30 \%$.................. $£ 225$ MARCON TF791D FM Deviation meter ..... $£ 185$

## ROTRON INSTRUMENT

 COOLING FANSSupplied in excellent condition, fully

## tested:

$115 \mathrm{~V}, 4.5 \times 4.5 \times 1.5^{\prime \prime} \mathrm{£4.50}$. 230 V £5. $115 \mathrm{~V}, 3 \times 3 \times 1.5^{\prime \prime} \mathrm{c}^{+}+$postage ea. 35 .

## 100V DC ELECTROLYTIC

 CAPACITORSSprague 'Powerlytic' type 36D. $10,000 \mathrm{WF}$. 100 V . Brand new at surplus pricel Only $£ 4$ ea. PP 50 p .

## mapurarapilics

What's going on in Computer Aided Design - and how will it develop? Ever wondered about the maths behind interactive 3-D graphics? Want to know about the graphics capabilities of the powerful Hewlett Packard HP-83?
Our April issue examines three aspects of graphics in computing. We review Grandstand, a game for gamblers with a Pet computer; show how microprocessor control has come to the farm That's just a sample of Practical Computing, together with advice for users of Pet, Apple, Tandy and Sinclair ZX 80/81 computers. Buy Britain's leading personal computer magazine.

## CHILTERN ELECTRONICS <br> B.C.M. Box 8085, LONDON, WCIN 3XX BRAND NEW SURPLUS DISK DRIVES

Due to bulk purchase of bankrupt stock, we are able to offer these Floppy and Hard Disk drives at a fraction of their usual cost. Both are brand new in original boxes dated 1979/80. They are both manufactured by the famous Data Recording Equipment Co. who are known worldwide for their high engineering standards.

* DRI SERIES 325 -MEGABYTE CARTRIDGE DRIVE

Successor to the famous Series 30 , these are similar in design but double the density on the same type of cartridge. It will either operate as a single 5.6 Megabyte drive or as RK05, Partec, Wangco, etc.
as RK05, Pertec, Wangco, etc.' Jist price is over $£ 3,000$. Our price $£ 4201$
Controllers available for S-100 Bus Systems for $£ 400$, complete with all documentation and software. This gives you a beautiful hard disk system for less than the cost of many floppies. Controllers also available for PDP11 and LS $\mathfrak{l}$ - 1 .
\& DRI SERIES 7200 FLOPPY DISK DRIVES
These are new 8 -inch double-sided single or double density units, giving up to 1.6 Megabytes unformatted capacity on a single disk. Interface is the same as Shugart, die cast alloy construction, top quality

Our price only $£ 250$ or two for $£ 450$ !

## OTHER COMPUTER BARGAINS

MINLATURE 5 VOLT 20-AMP POWER MODULES
These beautiful little pocket-sized power supplies weigh less than 4 lbs , and yet deliver amassive 22 amps at 4 to 6 volts with $0.1 \%$ regulation and full overvolts and overcurrent protection. Standard 230 v mains input. Usually these units cost over $£ 250$ each - manufactured by Farnell/Gould. Our price $£ \mathbf{£} 4.50$ brand new, INCLUDING VAT AND POSTAGE

PERTEC 9-Track Magtapes. (Model 6840)
For callers only we have some of these beautiful tape drives avallable for only $£ 130$ each. Originally these cost over $£ 2,500$ each-and they are only a few years old. They are sold without guarantee and need a good clean-up, but we have spares available cheaply and they are very easy to Interface to a micro.
ASCII 84 Key Professional Keyboards in case.
Video Monitors, Ball Inc, 14 inch

| .... $£ 30$ |
| :--- |
| 27 |

Video Monitors, Ball Inc. 14 inch..................... PSU for $£ 25$ or $£ 30$ inc. VAT/Postage.
Please add $15 \%$ VAT and carriage to above.
We stock wide range of DEC Systems from PDPBE to PDP11/70 and have lots of one off bargains. Why not visit our office near High Wycombe sometime.

Please telephone Nigel Dunn on 0494714483 any time

WW - 065 FOR FURTHER DETAILS

## WRONG TIME?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, SELF SETTING at switch-on, 8 digits show. Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, can expand to Years, Months, Weekdays and Milliseconds, also parallel BCD output for computer or alarm, etc., receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, GET the RIGHT TIME f62.80.
V.L.F.? EXPLORE with a $10-150 \mathrm{KHz}$ Receiver, $£ 16.50$.

60 KHz RUGBY RECEIVER, as in MSF Clock, serial data output for computer, etc., decoding details, £17.90.
Each fun-to-build kit (ready made to order) includes all parts; printed circuit, case, postage, etc., instructions, money back assurance so GET yours NOW.

CAMBRIDGE KITS
45 (WD) Old School-Lane, Milton, Cambridge. Tel: 860150

## STEPPING MOTOR ROTARY TABLE <br> MICRO-PROCESSOR. CONTROLLED



Stepping motor driven rotary table machined from cast aluminium parts, table diameter 130 mm , gear ratio $120: 1$, motor 200 steps per revolution, 24,000 motor pulses per table revolution, max. speed in start/stop mode 10 degrees per second. Easily stackable to produce a pan and tilt mechanism, $£ 192$ each. Motor drive pcb type 440 to interface to microprocessor port, $£ 32$ each. Other machines made to order. Complete 8085 based
computer systems with software available.

## F.H. PRECISION ENGINEERS

24 Belvoir Avenue, Trentham, Stoke-on-Trent ST4 8SY Tel. 0782-643278 (Ansaphone)

## WITATIIP OS: POW:RATP?

Because ILP MOSFET power amps give you ultra-fi performance without costing big money. Performance you thought you couldn't afford at a price you know you can.

All ILP modules are compatible with each other - you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the fastest possible slew rate, low distortion at high irequencies, better thermal stability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple - via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

ILP MOSFET power amps are now available with integral heatsink (no extra heatsink required), or ready tor
mounting on to your own heatsink or chassis. Full dissipation detail on data sheet. availabie on request. Each carries a 5 year no quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the foot of this ad.

|  | Load impedance, all models. 40 hm - infinity Input impedance, all models 100 Kohm Input sensitivity, all models, 500 mV Frequency response, all modeis $15 \mathrm{~Hz} \cdot 50 \mathrm{kHz}$-3db |
| :---: | :---: |

MOSFET Ulira-FI, with heatsinks

| Model No . | Output power Watts rms | $\begin{aligned} & \text { DISTO } \\ & \text { T.H.D. } \\ & \text { Typ } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$ | RIION I.M.D. $50 \mathrm{~Hz} / 7 \mathrm{kHz}$ 4.1 | Supply voliage Typ/Max | Size mm | $\left\|\begin{array}{c} \mathrm{Wt} \\ \mathrm{gms} \end{array}\right\|$ | $\begin{aligned} & \text { Price } \\ & \text { nc. VAT } \end{aligned}$ | $\begin{aligned} & \text { Price } \\ & \text { ex. VAT } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOS 120 | 60w/4.89 | <0.005\% | <0.006\% | $\pm 45 \pm 50$ | $120 \times 78 \times 40$ | 420 | ¢29.76 | . 88 |
| MOS 200 | 120w/4-897 | <0.005\% | <0.006\% | $\pm 55 \pm 60$ | $120 \times 78 \times 80$ | 850 | £38 48 | £33.46 |
| MOS 400 | 240w/4 | <0.005\% | $<0.006 \%$ | $\pm 55 \pm 60$ | $120 \times 78 \times 100$ | 1025 | £52.20 | §45.39 |

MOSFET Ultra-FI without heatsinks

| MOS 12OP | $60 \mathrm{w} / 4-88$ | $<0.005 \%<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 26 \times 40$ | 215 | $£ 2682$ | $£ 2332$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MOS 200P | $120 \mathrm{w} / 4-882$ | $<0.005 \%<0.006 \%$ | $\pm 55 \pm 60$ | $120 \times 26 \times 80$ | 420 | $£ 3281$ | $£ 2853$ |
| MOS 400P | $240 \mathrm{w} / 488$ | $<0.005 \%<0.006 \%$ | $\pm 55 \pm 60$ | $120 \times 26 \times 100$ | 525 | $£ 4475$ | $£ 38.91$ | Protection:

Able to cope with complex loads. without the need for very special protection circuitry (fuses will suffice).
Ulira-fi specifications:
Slew rate $20 \mathrm{~V} \mu \mathrm{~s}$. Rise time $3 \mu \mathrm{~s}$. S/N ratio 100wb. Frequency response ( -3 dB ) $15 \mathrm{~Hz}-100 \mathrm{kHz}$. Input sensitivity 500 mv rms. Input impedance 100 k . Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$.
How to order Freepost:
Use this coupon, or a separate sheet of paper. to order these products. or any products trom other LLP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must becrossed and payable to ILP Electronics Lid: cash must be registered, C.O.D. - add $\varepsilon 1$ to total order value Access and Barclaycard weicome. All UK orders sent post free within 7 days of receipt ol order

Please send me the following
ILP modules
Total purchase price
lenclose Cheque $\square$ PostalOrders $\square$ Int. MoneyOrder $\square$
Please debit my Access/Barclaycard No.
Name
Address

Signature
WW3/4
Posi tor ilP Electronics Lid. Freeposi 2. Graham Bell House. Roper Close Canlerbury CT2 7EP. Ken!. England
Teiephone (0227) 54778 Technical (0227) 64723 : Teiex 965780 ,
Etictranics tro
STAYAHEAD.STAY WITHUS
WW - 081 FOR FURTHER DETAILS

LINSLEY-HOOD 300 SERIES AMPLIFIERS


These latest designs from the drawing board of John Linsley-Hood, engineered to the ver and transparency of the tone quality enable these amplifiers the kutperform an a side-by-sid comparison, the bulk of amplifiers in the commerclal market-place and even exceed the high standard set by his earlier 75 -watt design.
both with $M$ ve are offered, a 30 -watt with Darlington output transistors, and a 35 - and 45 -watt match and sosfet output devices. All are of identical outside appearance which is designed to As with all Hack with our Linsley-Hood cassette recorder 2 . the conventional (and boringl wirlng almost to the point of extinction
Any of these kits represents a most cost-affective route to the very highest so 30 -watt Darlington amplifier fully integrated with tone controls Total $\mathbf{3 5}$-watt Mosfet amplifier. Total cost of parts $\mathbf{£ 9 8 . 4 1}$. Special offer for complete kits, $\mathbf{£ 8 7 . 4 0}$. 35-watt Moset amplifer. Total cost of parts $£ 98.41$. Special offer for complete kits, $£ 87.40$.
45 -watt Mosfer amplifier. Total cost of parts $£ 104.95$. Special offer price for complete kits $£ 94.80$. iReprints of original Articles from Hi-Fi News 50p. Post free. No VAT. Reprints of MOSFET article 25p. No V.A.T. Post free.

FEED YOUR MICRO BYTES WITH OUR SOLENOID CONTROLLED CASSETTE DECK


Front loading deck with full solenoid control of all functions including optional read in fast wind modes. 12 volt operation. Fitted 3-digit memory counter and Mall IC Motion Sensor. Standard erase and stereo R/P Heads. Che
technical specification included.

HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpenslve test cassette enables you to set up VU level, hoad azimuth and tape speed.
We are the Designer Approved suppliers of kits for this excellent design, The Author's reputation
tells all you need to know about the circuitry and Mart expentise and experience guarantees the tolis all you need to know about the circuitry and Mart expertise and experience guarantees the
engineering design of the kit. Advanced features include: High-quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to ellminate difficult wirith Proper moulded escutcheon for casserte aperture improves appearance and removes the need
for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust for the cassette transpor to be set back behind a narrow finger trapping slot. Easy to use, robust
Lenco mechanism. Switched blas and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy as sembly and test. Sophisticated modular PCB system gives a spacious, basily-buitt and tested layout. All these features added to the high-quallity 16 Setalwork make this a most satistying kit to build. Also included at no extra cost is our latest HS at E75 plus VAT.
Reprints of the 3 original articles describing this design 45 p. No VAT.
Reprint of the subsequent postscript anticle 30p. No VAT.

## PRACTICAL WIRELESS 'WINTON' TUNER



Brilliant new Ted Rule designed Tuner with everythingl Gives you fantastic stereo $\mathrm{f} / \mathrm{m}$ reception with pilot cancelling decoder i.c., fluorescent display, digital frequency readout along with clock
and timer functions. In addition to f.m. covers I.w., m.w., s.w. and even TV sound. Further details, are in our lists; send for your copy.
order up to $£ 10-500$
Diders $£ 10$ to $£ 49-£ 1$
P\&P Export Orders - Postage or shipping at cost plus
$£ 2$ Documentation and Handling
Please send $9 \times 4$ S.A.E, or telephone for lists giving fuller details and price breakdowns.

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

CASSETTE HEADS
HS16 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalloy. Higher output than

 H561 Special Erase Head for METAL tape......
H524 Standard Ferrite Erase Head.............
T524 Standard Ferrite Erase Head.
 ME151 $2 / 2$ Ferrite Erase. Large Mtg....
CCE/8M $2 / 2$ Erase. Std. Mig.............

# AMATEUR RADIO HANDBOOK 1982 <br> $\mathbf{£ 8 . 5 0}$ <br> by A.R.R.L. 

30-hour Basic by Prigmore
CSD Pascal Handbook by Clark $£ 13.00$ E7.50 Electronic Equipment Reliability by Cluley Micros in Amateur Radio by Kasser

$\qquad$

How to Design, Build Remote Control Devices by Stearne $£ 8.00$ Modern Communication Switching Systems by Hobbs Art of Electronics by Horowitz
$\star$ PRICES INCLUDE POSTAGE AND PACKING $\star$ THE MODERN BOOK CO.

Specialist in Scientific and Technical Books
15/21 Praed Street, London, W2 1NP PHONE: 01-402 9176 : Closed SATURDAY 1 p.m. Please allow 14 days for reply or delivery

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

## BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N. 125 mins, from Tally Ho corner Telephone 445 2713/0749
(9461)

WW - 066 FOR FURTHER DETAILS


## MiCROL PROCOS for PROFESSIONAL USERS

Now you can create powerful, reliable programs in just minutes, even if you have never programmed a computer before! MiCROL PROCOS is an advanced integrated operating system that cuts programming time by $80-90 \%$ in most applications areas, saving many hours of valuable time. PROCOS A and PROCOS B are supplied together on a ready-to-run cassette, with a fully detailed User Manual offering features to suit every application. PROCOS A is ideal for complex multivariable calculations, while PROCOS 8 provides many of the features of a 'Visicalc' type modelling system - answers 'what if' questions and analyses trends. Both systems feature easy-to-use commands and support FP-10 print options. Brochure on request

MiCROL PROCOS (A+B) Price $£ 24.95$

## SENSATION

of the Japanese Music Fair CASIOTONE 701 COMPUTERISED ORGAN

Fully Programmable, 5 Octave, Polyphonic Keyboard
"THE instrument of 1982 . . . probably the best instructive keyboard I have come across. But it is also a top line musjical instrument capable of satisfying even the most proficient musician." Keyboards \& Music Player.
----

## CT-701

## (RRP 5555 )

ONLY £495
Program the 345 melody steps and the 201 chord steps (max.) with music specially scored in bar code and read by a light pen, or enter your own chords and melody via the keyboard, with full editing and repeat facilities.
3-way replay: Automatic; One Key Play; Melody Guide (lights above the keyboard indicate the next note to play). Split keyboard; 20 superb instrument voices; 16 rhythm accompaniments; fingered or auto chords with walking bass and arpeggio; fill-in and effect buttons. $373 / 4 \times 137 / 16 \times 5$ inches. Weight: 12.5 kg (27.6lbs).
CT-601. As 701 but without programming functions $£ 395$
CATALOGUE of latest CASIO calculators, watches and keyboards available on request. $151 / 2$ p stamp appreciated.

PRICE includes VAT, P\&P. Delivery normally by return of post
Send your Company Order, cheque, postal order or phone your Access, Visa or Barclaycard number to the UK's leading CASIO Specialists:

## TEMPUS

Dept. WW
38 Burleigh Street, Cambridge. CB1 1DG. Tel: 0223312866

## LOLSOFNEWILP 2icapsenma PREAMPS compidiawh <br> Suddenly. instead of two ILP encapsulated pre-amps. there are eight - everything from the simple mono pre-amp (HY6), through mixing mono pre- amps (HY12 and HY69), to a dual stereo pre. amp, (HY71). Plus a new guitar pre-amp (HY73). <br> Each gives the very Dest reproduction from your equipment that your money can buy. and all are protected against short circuit and wrong polarity. <br> All ILP modules are compatible with <br> each other - combine them to create almost any audio <br> system. Every item carries a 5 year no quibble guarantee and <br> includes full connection data. <br> So send your order today - the Freepost coupon needs no stamp

PRE-AMPS

| Model No. | Module | What it does | Current required | $\begin{array}{\|c\|} \hline P_{\text {PICE }} \\ \text { inc. VAT } \end{array}$ | $\begin{gathered} \text { Price } \\ \text { ex. VAT } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HY 6 | Mono pre amp | Provides inputs for mic/mag. cartridge/tuner/ tape/auxiliary, with volume/bass/treble controls. | 10 mA | ¢7.41 | ¢6.44 |
| HY 9 | Stereo pre-amp | Two channels. mag. carrridge. mic + volume control | 10 mA | £7.71 | $£ 6.70$ |
| HY 12 | Mono pre-amp | Mixes two signals into one, with bass/midrange/treble controis. | 10 mA | £7 71 | £6.70 |
| HY 66 | Stereo pre amp | Two channels. with inputs for mic/mag. cartsidge/tape/tuner/auxiliary. with volume/, bass/trebie/balance | 20 mA | §14.02 | \$12.19 |
| HY 69 | Mono pre-amp | Two input channels: mag. cartridge mic. with mixing and voiume/treble / oass controls. | 20 mA | £12. 02 | £10.45 |
| HY 71 | Oual stereo pre-amp | Provides four channels for mag. cantridge/mic with volume control. | 20 mA | £12.36 | £10.75 |
| HY 73 | Guitar pre-amp | Provides for two guilars (bass + lead) and mic with separate volume/ oass/treble and mixing. | 20 mA | §14.09 | £12.25 |
| HY 75 | Stereo pre-amp | Two channels, each mixing two signals into one with bass/mid-range/treble controls | 20 mA | £12.36 | £10.75 |

For easy mounting we recommend: 86 mounting baard lor modules HY6-HY13 20.90 inc. VAT. ( 0.78 ex. VAT.) 666 mounting board tor modules HY66-HY77 $£ 1.12$ inc. VAT. 0. 99 ex. Vat.) All modules are encapsulated and include clip on edge connectors. All operate from +15 V minimum
$10+30 \mathrm{~V}$ naxmum. neecing drooper resislors for nigner voltages. Modules HY6 to $4 Y 13$ meas rure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 10 HY 77 measure $90 \times 20 \times 40 \mathrm{~mm}$

How to order Freepost: Use this coupon, or a separate sheet of paper, to order these products. or any products from other ILP Electronics advertisements. No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payabie to ILP Electronics Lid: cash must be registered.
C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within

7 days of receipt of order.
Please send me the following
ILP modules
Total purchase price
lenclose Cheque $\square$
Postal Orders $\square$
int. Money Order
Please debit my Access/Barclaycard No.
Name
$\qquad$

Address

WW/4/4


Post to: ILP Electronics Lid. Freepost 2. Granam Bell House, Roper Close. Canterbury CT2 7EP. Kent. Engtanc. Teiephone (0227) 54778 Technical (0227) 64723: Telex 965780.

ELECTRONICS LTD
STAYAMEAD.STAY WITHUS
WW - 082 FOR FURTHER DETAILS

## CX80 coloun MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.


Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.

Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.

The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.
Interrek limited
Portwood Industrial Estate, Church Gresley Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432. Telex: 377106


Metal cased 9" PM101 CROFTON
MONITOR

10 MHZ Bandwidth P4 Standard

Also available with P31

Price on application

## NEMOR Plastic cased $12^{\prime \prime} \quad$ NOR



High resolution 24 MHZ Bandwidth

P31 (green) Standard P4 high resolution standard

Price on application

## POWER SUPPLIES

HIGH QUALITY COMBINATION SWITCH MODE AND STATIC POWER SUPPLIES

| Model No. AV81 | 5V8s............................................................ E ¢ 28 |
| :---: | :---: |
| AV82D | $12 \mathrm{~V} 5 \mathrm{~A}+1 \mathrm{~A}$ disc drive supply .......................... $£ 29$ |
| AV83 | $+5 \mathrm{~V} 8 \mathrm{~A}+12 \mathrm{~V} 800 \mathrm{~mA}-1250 \mathrm{~mA} .-5 \mathrm{~V} 10 \mathrm{~mA} .+$ 25 V 30 mA . $\qquad$ £33 |
| AV84 | $+5 \mathrm{~V} 8 \mathrm{~A} .+12 \mathrm{~V} 50 \mathrm{~mA} .+25 \mathrm{~V} 30 \mathrm{~mA} . . . . \ldots . . . . . . . . . . . . . ~ £ 33$ |
| AV86 | Transformer/Rectifier and Mounting Plate, Fuses |
|  | Prices inc. VAT |

Please add $£ 1.20$ p.\&p. to order. All units are supplied on a satisfaction or money back basis and carry a full guarantee.

Send cheque/P.O. to:
AVALON ELECTRONICS
Ship Lane, Farnborough, Hants
Tel. 0252511098
Trade and other enquiries welcome
WW - 072 FOR FURTHER DETAILS

## ANY MAKE-UP OR COPY QUERIES CONTACT BRIAN BANNISTER 01-661 3500 extension 3561

## Audio power meter <br> 

## Wide range:

* 30Hz to 30k Hz *10رW to 50W
* 1-2 to $1000 \Omega \quad *$ mains/battery
* decibel scale -18 dBm to +47 dBm


## Fumell <br> FARNELL INSTRUWENTS LIMITED SANDBECK WAY-WETHERBY WEST YORKSHIAE LS22 4DH TELEPHONE (0937) 61961 <br> WW - 077 FOR FURTHER DETAILS

## SUPERSEM

PLYMOUTH 075221256
MEMORIES AT UNFORGETTABLE PRICES

|  | 1-24 | 25-99 | $100+$ | 1,000+ |
| :---: | :---: | :---: | :---: | :---: |
| 4116 P-3 200ns | . 90 | . 85 | . 80 | 75 |
| 2114 LP 450ns .................................... | . 90 | . 87 | 85 | . 80 |
| 2708k 450ns | 2.70 | 2.50 | 2.30 | 2.25 |
| 2716k 450ns | 2.45 | 2.30 | 2.10 | 2.00 |
| 2732k 450ns | 3.85 | 3.65 | 3.60 | 3.25 |
| 8981 P-45 Cmos. | 2.25 | 2.15 | 2.05 | 1.85 |
| 8725 S 200ns | 7.05 | 6.55 | 6.05 | 5.55 |
| K4164 200ns | 5.00 | 4.75 | 4.50 | 4.25 |
| 80398 -bit... | 3.05 | 2.90 | 2.75 | 2.45 |
| 8080AP CPU | 2.15 | 2.05 | 1.95 | 1.75 |
| 8085A CPU.. | 2.80 | 2.65 | 2.50 | 2.20 |
| 8155P + Timer. | 3.10 | 2.95 | 2.80 | 2.50 |
| 8156P + Timer. | 3.45 | 3.25 | 3.05 | 2.65 |
| 8212P i/o Port. | 1.10 | 1.05 | 1.00 | . 85 |
| 8216 Bus Driver | 1.05 | 1.00 | . 95 | . 85 |
| 8224P Clock Gen | 1.30 | 1.20 | 1.15 | 1.05 |
| 8226P Bus + B/Drives | . 92 | . 87 | . 82 | . 75 |
| 8228P System Cont. | 2.25 | 2.15 | 2.05 | 1.85 |
| 8243P i/o Exp........... | 2.00 | 1.95 | 1.90 | 1.80 |
| 8251AP Prog. Int./Face. | 2.60 | 2.50 | 2.40 | 2.30 |
| 8253P Prog. Int./Time . | 3.60 | 3.40 | 3.20 | 2.85 |
| 8255AP Perip./Inter. | 2.25 | 2.15 | 2.05 | 1.85 |
| 8257P DMA Cont.. | 3.75 | 3.65 | 3.35 | 3.00 |
| 8259 Inter Cont. | 3.60 | 3.40 | 3.20 | 2.85 |
| 8279P Key Disp. | 4.60 | 4.50 | 4.00 | 3.50 |
| 4044 P-3 300ns............................... | 1.90 | 1.80 | 1.70 | 1.55 |

Please add V.A.T. to all orders FAST DELIVERY : TOP QUALITY

## Phone 075221256

## SUPERSEM

Export enquiries welcome

## MXXESADERS VMAIER DRNERS ATDMORE ALNEW FROM ILP

Just some of the 28 new amazingly compact.modules from ILP Electronics. Britain's leader in electronics modules - you'll find more new products in the amps and pre-amps advertisements

All ILP modules are compatible with each other- you can combine them to create almost any audiosystem. Together they form the most exciting and versatile modular assembly system for constructors of all ages and experience.

Every item from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon Delow today! MIXERS

| $\begin{array}{\|c\|} \hline \text { Model } \\ \text { No. } \end{array}$ | Module | Whatit does | Current requred | Price Inc. VAT | $\begin{gathered} \text { Price } \\ \text { ex VAT } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HY7 | Mono mixer | Mixes eight signals into one. | 10 mA | $£ 5.92$ | £5. 15 |
| HY 8 | Stereo mixer | Two channels. each mixing five signals into one. | 10 mA | £7.19 | £6.25 |
| HY 11 | Mono mixer | Nixes tive signals into one - with base/trebie controls. | 10 mA | E8.11 | £7.50 |
| HY 68 | Stereo mixer | Two channels. each mixing ten signals into one. | 20 mA | £9. 14 | £7.95 |
| HY 74 | Stereo mixer | iwo channels. each mixing live signals into one - with treble and bass controls | 20 mA | £13.17 | £11. 45 |

ANO OTHER EXCITING NEW MODULES

| Model No. | Module | What it does | Current required | Price inc. VAT | $\begin{array}{\|c\|} \hline \text { PIICE } \\ \text { ex. VAT } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HY 13 | Mono VU meter | Programmable gain/LED overload driver. | 10 mA | £6 84 | 55.95 |
| HY $67^{\circ}$ | Stereo headphone driver | Will drive stereo headphones in the 4 ohm 2 K ohm range. | 80 mA | ¢14 20 | $\underline{12.35}$ |
| HY 72 | Voice operated stereo lader | Provides depth/delay eflects. | 20 mA | £15.07 | £13.10 |
| HY 73 | Gutar pre-amp | Handles iwo guitars (bass and lead) and mic with separate volume / oass/treble and mix. | 20 mA | £14 09 | £12. 25 |
| HY 76 | Stereo switch matrix | Provides two channels, each switching one of lour signals into one. | 20 mA | To be announced |  |
| HY 77 | Stereo VU meter diver | Programmable gain/LED over oad driver. | 20 mA | ¢10 64 | §9 25 |

For easy mounting we recommend:
86 mountung board for modules HY6. HY13 $£ 0.90$ inc. VAT. ( 0.78 ex VAT.)

- Ail modules are encapsulated and include clip-on edge connectors. All operate from $\ddagger 5 \mathrm{~V}$ minimum to $\pm 30 \mathrm{~V}$ maximum. needing dropper resistors tor higher vollages. HY67 can be used only with the PSU 30 power supply unit. Mocutes HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 10 HY77 measure $90 \times 20 \times 40 \mathrm{~mm}$.
FP 480 BRIDGING UNIT FOR DOUBLING POWER
Designed specially by ILP for use with any two power amplifiers of the same type to double the power output obtained and will function with any ILP power supply. In totally sealed case, size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector. It thus becomes possible to obtain 480 watts rms (single channel) into $8 \Omega$. Contributory distontion less than $0.005 \%$. Price: $£ 5.51$ inc. VAT. (Ex. VAT \&4.79.)
How to order Freepost:
Use this coupon. or a separate sheet of paper. 10 order these products. or any products from other ILP Electronics advertisements. No stamp is needed it you address to Freepost. Cheques and postal orders must becrossed and payable to ILPElectronics Lid: cash must be registered. C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free with in 7 days of receipt of order.

Please send me the following
ILP modules.
Total purchase price
lencloseCheque $\qquad$ PostalOrders $\square$

Int. MoneyOrder $\square$
Please debitmy Access/Barclaycard No.
Name
Address


Signature $\longrightarrow \quad$ WW5/4 Posit io ILP Electronics Lid. Freepost 2 Graham Bell House. Roper Close Canterbury CT2 7EP. Kent. England
Teiephone (0227) 54778 Technical (0227) 64723 Telex 965780

ELECTRONICS LTD
StAYAHEAD.STAY WITHUS


# April 23-25, 1982 Earls Court, London 

Friday \& Saturday: 10am-6pm Sunday:
$10 \mathrm{am}-5 \mathrm{pm}$
Admission $£ 2.00$ adults
£1.00 children under 16 .

At The Computer Fair you can see and compare an enormous range of personal and home computers. Find out what they can do and which one would suit you best. Talk to the experts and discover for yourself how much - or how little - you need to spend. Choose from an amazing abundance of software programs and packages, cassette units, VDU terminals and scores of computer games.

Swap your views and know-how with. hundreds of other home computer enthusiasts - and find out a whole lot more from


## RF POWER TRANSISTORS-EX-STOCK

| TYPE | f | TYPE | £ | TYPE | $£$ | TYPE | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2N3137 | 1.88 | 2N4933 | 7.80 | BLX13C | 15.05 | BLY53A | 7.33 |
| 2N3375 | 5.27 | 2N5070 | 10.09 | BLX14 | 25.70 | BLY53AP | 7.33 |
| 2N3553 | 1.09 | 2N5071 | 12.10 | BLX65 | 1.67 | BLY55 | 9.40 |
| 2N3632 | 6.03 | 2N5090 | 8.44 | BLX66 | 4.91 | BLY83 | 7.45 |
| 2N3733 | 6.13 | 2N5102 | 9.44 | BLX67 | 5.41 | BLY84 | 7.25 |
| 2N3866 | 0.92 | 2N5590 | 7.85 | BLX68 | 7.29 | BLY85 | 6.02 |
| 2N3924 | 1.66 | 2N5591 | 10.21 | BLX69X | 21.15 | BLY87A | 6.43 |
| 2N4040 | 9.29 | 2N5641 | 4.68 | BLX91A | 8.84 | BLY87C | 6.43 |
| 2N4041 | 10.97 | 2N5642 | 8.11 | BLX92A | 13.06 | BLY88A | 8.66 |
| 2N4127 | 9.18 | 2N5643 | 12.44 | BLX93A | 19.19 | BLY89C | 9.10 |
| 2N4128 | 11.03 | 2N5913 | 2.34 | BLX94A | 35.79 | BLY89A | 12.65 |
| 2N4129 | 12.08 | 2N6080 | 5.94 | BLX95 | 44.59 | BLY69C | 11.90 |
| 2N4427 | 1.15 | 2N6081 | 9.87 | BLX98 | 84.95 | BLY91A | 6.95 |
| 2N4429 | 9.89 | 2N6082 | 10.17 | BLY33 | 1.87 | BLY91C | 6.90 |
| 2N4430 | 11.30 | 2N6083 | 11.08 | BLY34 | 1.07 | BLY92A | 9.25 |
| 2N4431 | 12.50 | 2N6084 | 12.27 | BLY35 | 7.50 | BLY92C | 9.06 |
| 2N4932 | 5.50 |  |  | BLY36 | 6.60 | BLY93A | 13.40 |
|  |  |  |  |  |  | BLY93C | 11.40 |

COMMUNICATION TUBES-EX-STOCK

| TYPE | £ | TYPE | £ |
| :---: | :---: | :---: | :---: |
| 4-65A | 35.10 | 6155/QY3-125 | 47.30 |
| 4-125A | 42.90 | 6155/QY3-125(A | EL) |
| 4.250A | 50.70 |  | 22.40 |
| 4.400 A | 58.20 | 6156/QY4-250 | 45.30 |
| 4-1000A | 331.00 | 68838 | 4.30 |
| 4 CX 250 B | 38.00 | .7527/QY4-400 | 42.00 |
| 4 CX 350 A | 55.00 | 7854/YL1060 | 53.80 |
| 4CX1500A | 498.00 | 8042 | 16.50 |
| $4 \mathrm{C} \times 1500 \mathrm{~B}$ | 319.00 | A2426 | 19.25 |
| $4 \times 150 \mathrm{~A}$ | 36.00 | QQVo3-10 | 5.60 |
| $4 \times 500 \mathrm{~A}$ | 175.00 | QQV03-10(AEL) | 2.54 |
| 58254M | 23.40 | Qov03-20A | 39.00 |
| 58255M | 23.40 | QQV03(AEL) | 17.20 |
| 6F33(AEL) | 15.62 | QQV06-40A | 43.60 |
| 12E1 | 16.94 | QQV06-40A(AEL) | 11.70 |
| 13E1 | 141.00 | QQVo7-50 | 68.00 |
| 5763 | 3.25 | QV08-100 | 125.00 |
| 6080 | 5.40 | QY5-3000A | 234.00 |
| 6146A | 3.80 | TBL2-300 | 286.00 |
| 6146B | 4.07 | TT21 | 19.76 |

SEND NOW FOR PRICE LISTS SHOWING QUANTITY DISCOUNTS


EXPORT SPECIALIST

SEND FOR DETAILS TO
AERO ELECTRONICS (AEL) LTD GATWICK HOUSE HORLEY, SURREY, ENGLAND
 CABLES AERO G TELEX HORLEY

WW - 026 FOR FURTHER DETAILS


## TEMPERATURE MEASUREMENT

6-way thermocouple temperature to voltage conversion unit. Output $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ suitable for connecting to DMM.
Range -30 to $400^{\circ} \mathrm{C}$.

TEMPMATE I PRICE £49.50 ( $+\mathbf{5 0 p}$ carriage + VAT) MAPLE INSTRUMENTS
C/O VISTRA INSTRUMENTATION LTD. Phone 093-67 4223 465/7 CREWE ROAD, SANDBACH, CHESHIRE CW11 007

WW - 089 FOR FURTHER DETAILS

## 64K EPROM PROGRAMMER

$\star$ Copy/Program/Verify 2758/2716/2732/2732A/2532/2764/ 2564/68764 + 128 K and 256K EPROMS.

* Program up to 8 EPROMS simultaneously from internal RAM or master socket.
* Stand-alone or remote operation.
* Download code directly via RS232 interface.
$\star$ Price $£ 560$ + $£ 9$ Delivery.
Available through:
Sunrise Software Ltd.
Ropamida House, Launton Road, Bicester, Oxon (08692) 45187


All models incorporate ILP toroidal transformers except PSU 30 and PSU 36 which include our own laminated transtormers.
How to order Freepost:
Use this coupon, or a separate sheet of paper, to order these modules, or any products from other LLP Electronics advertisements. No slamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd: cash must be registered. C.O.D. - add $£ 1$ to total order value. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order

Please send me the following
ILP modules
Total purchase price
Ienclose ChequePostalorders $\square$

```
                                    Int. MoneyOrder
```

Please debitmy Access/Barclaycard No.
Name
Address


# CBA TEXAS INSTRUMENTS TECHNICAL PUBLICATIONS <br> FROM BA ELECTRONICS LIMITED 



WW - 091 FOR FURTHER DETAILS

## reprints



## TECHNOMATIC TECHNOMATIC TECHMOMATIC

## $\star$ SPECIAL OFFER $\star$

See our prices on opposite page for updated list for popular RAMS, ROMS \& CPUs.

## UNIVERSAL INTERFACE FOR PETS

Self-contained all-purpose interface unit for new or old PETs providing a range of parallel input/output ports, 16 -bit timers, ultrafast multichannel Analogue to Digital Converters, Digital to Analogue Converters and Programmable Sound Generators. Internal Motherboard System allows easy upgrading. Built-in PSU.
$£ 149+£ 2.50$ P\&P
SEND FOR DETAILS

Basic 8K + 2K
Kit $\mathbf{£ 1 2 0}$


Fully Expanded $12 \mathrm{~K}+12 \mathrm{~K} £ 185$
(P\&P E2.50/Unit)
F.P. ROM £20 1K RAM $(2 \times 2114 \mathrm{~L})$ f2

Full range of Hardware and Software available.
Send for the Atom List
BBC Microcomputer Memories, Expansion Sockets and Connectors now available.

## TELETEXT DECODER <br> (As described in Elektor Oct./Nov./Dec., '81)

Kit for complete decoding board and keyboard $£ 85+£ 1$ P\&P
Reprint of articles $£ 1.25$

If you are interested in a particular article/ special Feature or advertisement published in this issue of

## WIRELESS WORLD

why not take advantage of our reprint service.
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Michael Rogers, IPC Electrical-Electronic Press Ltd. Phone 01-661 3036 or simply complete and return the form below.

To Michael Rogers, Reprints Department Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested in
copies of the article/
advertisement headed featured in

## WIRELESS WORLD

on page(s) . . . . in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel. No

## SOFTY II



An ideal software development tool. A program can be developed, debugged and verified and then can either be com mitted to an EPROM or the program can be used in any host computer by plugging the OFTY into its EPROM socket.
See the review in Sept. ' 81 PE for the SOFTY complete with PSU, ROMULATOR SOFTY complete with PSU

New $Z 80$ Development System. Plugs into TV and cassette recorder 40-key direct ASSEMBLEA/EDITOR, 24 bits of I/O. Ideal for study, microcontrol and robotics. Power supply and TV lead incl.
$\mathbf{£ 1 1 5}+\mathbf{£ 1 . 5 0}$ P\&P

## UV ERASERS

UV1B £42

UV140 £61.50
Up to
14 EPROMS

UV141 $£ 78$ As UV140 but with timer

All above ERASERS fitted with the safety interlocks to avoid accidental exposure to UV rays.
Remember, UV rays are very dang erous to human eyes and skin.



WW - 093 FOR FURTHER DETAILS

# ATTENTION ZX81 Owners! <br> The April issue of Your Computer is full of good things: 

- How to write your own adventure game for the ZX81
- Review of the growing range of ZX81 boards and control ports
- How to adapt the ZX81 to use Atari joysticks

Also in this issue:

- Expanding your VIC20. Tim Hartnell looks at peripherals and add-ons
- BBC graphics. A further look at the colour and graphics facilities of the BBC micro.

All this, PLUS our regular features and pages of program
listings and games for YOUR micro.
Why not place a regular order to avoid disappointment?
Or take out a subscription by completing the coupon.


#  <br> Registered in Enyland 1179820 <br> 9.30 a.m. 6 p.m. MON. SAT. continuous <br> 267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone 

## STABILISED POWER SUPPLIES

FARNELL A15: $210 / 240 \mathrm{~V}$ 1P. Dual Op. $12-17 \mathrm{~V}$ per rail at 100 mA . Remote sensing, current limit protection. $(164 \times 130 \times 38 \mathrm{~mm})$, with manual. £12.
FARNELL 7/3SC: $120 / 240 \mathrm{~V}$ 1P. Adjustable current limit. Remote sensing. ( $188 \times 96 \times 93 \mathrm{~mm}$.) Two versions available: 15 V at 2 A or 30 V at 1A. $£ 15$ ea.
COUTANT OA2: Op. amp, psu, 120/240V IP. Dual Op. 12-15v at 100 mA . ( $138 \times 80 \times 45 \mathrm{~mm}$.) E 12 ea . or 2 for $£ 22$.
BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection.
$374300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA
$376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA
$375500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}$ at 6 mA .
All models $£ 40$.
PIONEER MAGNETICS POWER SUPPLIES ...5V 150 amp , output 'input 115 vac . ( Switchmode) Price $£ 120$ each.
Various other makes of power supplies in stock. Please send for lists. S.A.E. please.

## D TO A CONVERTERS <br> $15 \mathrm{MHz}, 8$ BIT

By Micro Consultants Ltd. $50 \Omega$ cable drive op. Linearity $0.25 \%$, max. $0.125 \%$ typ. Settling time: 2 V step 70 nS typ. 2 MV step 50 nS colour television transmission standard. Diff. gain $0.5 \%$ diff. phase shift $0.5^{\circ}$ types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE: £20
NEW IN STOCK
A range of high quality transformers SPECIALLY WOUND for us. By buying direct we can offer these superb SPLIT PRIMARY \& SECONDARY transformers at highly competitive prices.


## VERO PRODUCTS

| Veroboard 0.1 Copper | Apple proto boards.......... 4.00p |
| :---: | :---: |
| 21/2x33/4 ............................. 70p | Vero boxes - 2 tone grey/white |
| 21/2x5............................... 80p | plastic boxes |
|  | 4x2x1............................. 1.99p |
| $33 / 4 \times 5$................................ 90p |  |
| 21/2x17 ........................... 2.40p | 41/2x21/2x11/2................... 2.51p |
| 33/4x17 ............................ 3.15p | $71 / 2 \times 41 / 4 \times 21 / 2 \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . .355 p$ |
| 4.7x17............................. 4.20p | $7 \times 41 / 2 \times 21 / 4$ (alinfront)........ 3.51p |
| 0.1 plain | Vero ABS Black Plastic Boxes |
| 21/2x33/4 ............................ 50p | 41/2x ${ }^{1 / 4 \times 11 / 2 \ldots . . . . . . . . . . . . . . . . . . . . ~} 78 p$. |
|  | $7 \times 41 / 2 \times 21 / 4 \ldots . . . . . . . . . . . . . . . . . .1 .42 p ~$ |
| V-Q Board ...................... 1.30p | Veropins 45p/100. Stand off $45 \mathrm{p} / 100$ Track cutters $£ 1.18 \mathrm{p}$. |
| DIP Board ( $113 \times 156 \mathrm{~mm}$ ) ... 3.26p | 45p/100. Track cutters £1:18p. |

## 4 MILLION I.T.T. ELECTROLYTICS NEW AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL

The whole range available at unbeatable prices. Send for list.

## 5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy cased. Send for lists or please phone for details.

MULLARD: Series 106 Computer grade electrolytics $10,000 \mu \mathrm{~F}$ at 16V. Brand new and boxed ......................................................39p ea. SPRAGUE: Series 36D Computer grade electrolytics 3,300 at 40 V .
 SIEMENS: Procond Radial Polyester Film Capacitors. $10 \mu \mathrm{~F}$ at 63 V .
Brand new..............................................................................Only 40p
Quantity available

## VIDEO GAME BOARD <br> FIELD GOAL VIDEO GAME, BY TAITO. A top quality board complete with 6800 CPU system with 2716 eproms with circuit diagram, plus all connections for either colour or black and white monitors (TV sets). Price $£ 20+$ VAT $£ 3$. P/P $£ 2.55$. <br> POWER SUPPLY KIT TO SUIT + circuit diagram. <br> Price $£ 15$ + VAT $£ 2.25$. P/P $£ 3.45$. <br> $2 \times 22$-WAY GOLDPLATED DOUBLE-SIDED 0.156" EDGE CONNECTORS to suit videoboards. <br> Price $£ 1.60$ pair + VAT 24 p . P/P included. <br> THE COMPLETE KIT $£ 46$ INCLUSIVE. Full details on application.

## WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers, for cash.
We also collect - distance no object. Just call:

## C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275

Telex 291429

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables, etc., etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P). Minimum Mail Order $£ 5$ + P\&P + VAT. Government departments, schools, colleges, trade and export welcome.


HEWLETT PACKARD
9830A PROGRAMMABLE CALCULATOR with 8 K memory extended I/O ROM, string, varlables ROM, 1 serial interface and 3 parallel interfaces.
. $£ 750.00$

MONITORS
BALL MIRATEL TLI50 15" green phospher
CRT (NEW)
BALL MIRATEL TVX90 $9^{\prime \prime}$ white phospher
CRT (NEW)
RAL MRATE g., Mo....... $£ 40.00$
BALL MIRATEL $9^{\prime \prime \prime}$ Monitor installed in plastic case with spoce for keyboard (used, tested). . . $\$ 55.00$ All above include power supplies and require separate vertical, horizontal and sync input. PRINTERS
DATA DYNAMICS KSR390 (refurbished). $£ 225.00$ ELECTROSENSITIVE (Aluminised) Paper
rolls $300^{\prime} \times 81 / 2^{\prime \prime}$ ( (NEW) . . . . . . . . . . . . $£ 2.50$ IBM 735 I/O WRITER (as seen) ......... 999.00 SCOPE DATA SERIES 200 Electrostatic RO
Printer, RS232, 120 cps (AS SEEN) . .... $£ 99.00$ SEIKOSHA GP8O PRINTER (NEW) . . . . . $£ 175.00$ SEIKOSHA INTERFACES \&
ACCESSORIES (NEW)
Apple Interface.
£47.50
IEEE (Pet) Interface
RS232 Interíace.

| TRS8O Interface (for expanded version) | ¢15.00 |
| :---: | :---: |
| TL Interface. . . . . . . . . . . . . . . . . | £20.00 |
| Friction Feed Adaptor | 50 |
| TELETYPE 33 PRINTER MECHANISM |  |
| (refurbished) | 875.00 |
| TEXAS 725 PORTABLE (Spares only) | \&125.00 |
| TEXAS 733 KSR (as seen) | £225.00 |

## CLARE-PENDAR KB3 (tested)

§25.00 EDGE CONNECTOR KB15P (NEW) ....... \&1.50 GEORGE RISK 56 -SIATION KEYBOARD in steel enclosure incl. power supply (NEW) . . . . $£ 55.00$ NUMERIC KEYPAD KB710 (NEW) . . . . . . . $£ 5.00$ TMS 5000 ENCODER (as used in KB6) (NEW)

CLARE REED KEYSWITCHES - Brand new
surplus (per 100)
. $£ 5.00$
(Offers invited for lot - approx 16,000 )
CALCOMP 12" DRUM PLOTER model 565 (As Seen) . $\$ 250.00$
FACIT 4060 P/T PUNCH C/W 5106 Control Unit (As Seen)
£375.00
HOUSTON DP3-1/5 FLAT BED PLOTTER
(incomplete as seen) ................ $£ 325.00$
NOVAMETRIC MICROSYSTEM EVK300 (As Seen)
£47.50 RACAL MODEM model 26 (As Seen) ... $\varepsilon 199.00$

## SHUGART SA450 Double-sided mini-floppy

## (NEW) <br> IEST EQUIPMENT

£250.00
AV0 7 Refurbished . . . . . . . . . . . . . . . . . $£ 60.00$

ADVANCE Switching Power Supply MG5-20AN

## (115V).

. $£ 30.00$
BOONTON 280 AP VHF Q meter ......... $£ 50.00$
BRUEL \& KJAER 2105 Freq meter ..... $\$ 225.00$
BRUEL \& K JAER
COSSOR 4000 Oscilloscope 50 MHz . . . . $\$ 200.00$
COSSOR 4100 Oscilloscope 75 MHz ... $£ 400.00$
GENRAD Sound Level meter 1981 . . . . . $£ 200.00$ GENRAD Sound Level meter 1983 . . . . . $£ 75.00$ HEWLET PACKARD 741B AC/DC Diff Voltmeter.
§300.00
HEWLETT PACKARD 1402A Scope Plug in $£ 25.00$ HEWLET PACKARD 1404A Scope Plug in $\$ 50.00$ HEWLET PACKARD 1416A Scope Plug in $£ 25.00$ HEWLET PACKARD 34702A + $34740 \mathrm{~A} 41 / 2$
digit DMM
£125.00
WAYNE KERR Testomatic TM30 ....... $\mathbf{\$ 1 2 5 . 0 0}$
OSCILLOSCOPE CRT D13-57G/26 Brand New
Surplus. . ............................ $£ 17.50$
TEKTRONIX CRTS 500 Series Brand New
Boxed . ......................................
All items are sold in 'AS IS' condition
All prices subject to carriage (unless collected) and VAT.
Cash with order only
Inspection is invited at our address Mon/Fri 9-1, 2-5
Electronic Brokers 1 Iti,, $611 / 55$ Kings Cross Road, LondonWC1X SIN. Tel:01-2783461. Telex 298694

WW - 204 FOR FURTHER DETAILS

## MARKETING Ltd.



HIGH QUALITY LOUDSPEAKERS
D.S.N. Marketing is a newly established subsidiary company, part of a group of companies centred around one of the U.K. market leaders in electroacoustic equipment, established for over 50 years. We make use of the extensive research facilitles on our premises, which include a large anechoic chamber and $B \& K$ measuring equipment, to ensure the highest quality of our products.

Our System 191 has won 'State of the Art' awards in the discerning world of Japanese audiophiles.
Our music loudspeakers endure and excel in the nomadic extremes of a rock band on tour.

Our robust B60 and B80 microphones meet the tough intrinsically safe requirements of the offshore oil industry.
Our blast-proof, water-tight loudspeakers meet the stringent needs of the Armed Services.
We are approved to DEF. STAN 05-21.
' $\mathrm{Hi}-\mathrm{Fi}^{\prime}$, high power, high seas, high ambient noise whatever the demand - Vitavox have something to offer.

For further details on the entire Vitavox range of cone loudspeakers, pressure drivers, horns, dividing networks and complete speaker systems, please complete this coupon.

Please send further details of: $\square$ VITAVOX loudspeaker equipment
$\square$ BULLET loudspeaker components $\square$ D\&R mixing consoles

HELIOS mirror balls

NAME .
ADDRESS


RAM SCDOP 4116200 NS 8 for $£ 12.95$ 2164200 NS E8.50 each INC VAT
 25 WAY " ${ }^{2}$ "
CONNECTORS

## TELETYPE ASR33

I/O TERMINALS
"OLIVETTI TE300"
PRINTER/TERMINALS

WIRE WRAP SKTS 24 Pin Vero 28p
14 Pin Gold 22p
16 Pin Gold 24 $\rho$
100 PCS Min Ord. $50 \Omega$ BNC P!G 50p $75 \Omega$ BNC PLG $50 p$ PL259 PLG 40p S0239 SKT $35 p$ 100 PCS MIN ORD


From $\mathrm{f195}$ + CAR Fully lledged industry standard ASR33 data zer-
minal. Many features including: ASCII keyboard and printer for data $1 / 0$, auro data detect circuirry.
RS232 serial interface, 110 baud, 8 bit paper tape RS232 serial interface, 110 baud, 8 bit paper tape punch and reader for off line data preparation and plied in good condition and in working order Options: Floor stand $E 12.50$ + VAT

KSR33 With 20 ma loop interface $£ 125.00+$ VAT.

## DIABLO S30 DISK DRIVES

Another shipment allows us to offer you even greater savings on this superb 2.5 MB (formatted) hard disk drive. Two typ available both fully refurbished and electronically identical, the only difference is the convenience of changing the disk packs.
S30 front loader, pack change via front door $£ 550$ + vat
530 fixed, pack change via removal of top cover $\mathbf{£ 2 9 5}$ + vat
$+\&-15 v$ PSU for 2 drives $\mathbf{£ 1 2 5 + v a t}$ Carriage 8 insurancé on drives $£ 15.00$ + vat fully DEC RKO

## MAINEFILTERS

Protessional type mains filters as used by "Main Frame Manufacturers' ideal for curing those unnerving hang up and data giltches. fit one now and cure your pros
Suppression Devices SD5 A10 5 amp $\mathbf{6} .95$

## DC SYSTEM SUPPLY

## Protessional ruily cased fan cooled system supply.

 Standard 240 V ac input with the following DCoutputs 5V@ $11 \mathrm{amps}+15-17 \mathrm{v} @$ amps, $-15-17 \mathrm{v} @ 8 \mathrm{amps}$and $+24 \mathrm{v} @ 4 \mathrm{amps}$ All outputs are fully crowhar protected and the 5 volt output is fully regulated. Sold protected and the 5 vor outpur is fully regulated. Sold rested and in a new or litte used condition complete

## NATIONAL MA1012LED <br> CLOCK MODULE

## $\star 12$ HOUR

## $\star$ ALARN

## * $50 / 60 \mathrm{HZ}$

The same module as used in most ALARM/CLOCK radios today, the only difference is our pricel All electronics are mounted on a PCB measuring oily $3^{\prime \prime} \times 1 z^{\prime \prime}$ and by addition of a few switches and $5 / 16$ volts AC you have a multi function alarm clock at a
fraction of cost. Other features include snooze timer am pm, alarm set power fail indicator, flashinger, am pm, alarm sel, power fal idicalor, hash Supplied brand new with full data only Suitable transformer $\mathbf{E 1 . 7 5}$
$£ 5.25$

## ELECTRONIC COMPONENTS \& EQUIPMENT

Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of.C. s. Transistors, Relays. Cap s.. P.C.B. s, Sub-assemt etc. etc. surplus to our requirements. Because don't have sufficient stocks of any one item to include in our ads., We are packing all these items
into the "BARGAIN PARCEL OF LIFETIME"
 Thousands of components at giveaway prices!
Guaranteed to be worth at least 3 times what you Guaranted to be ws rhe welws include something from our ads. pay plus we always inliude something
for unbeatable valuell Sold by weight
$2.5 \mathrm{kk} £ 4.75+\mathrm{pp} £ 1.25 \quad 5 \mathrm{kks} £ 6.75+\mathrm{pp} £ 1.80$
10hls $\mathbf{£ 1 1 . 7 5}+\mathrm{pp} \mathbf{£ 2 . 2 5} \quad$ 20ks $\mathbf{£ 1 9 . 9 9}+\mathrm{pp} £ 4.75$

A complete I/O terminal with integral 8 hole paper tape punch and reader, full ASCII keybcard, 120 column printer, and control unit The printer is capable of 150 baud with a serial TIL or balanced input-output sold in good overall condition but untested. Complete with circuit unguaranteed. Connect direct to your micro at ONLY $£ 99.00+£ 11.50$ carr +

## EXPEAMMENTORE 5ư2v-12v+24

## HAGH SPEED

## Once again we ore very pleased to ofter this surgeth Powei

 Supply Unit and hope to satisty most of our previous customers who were disappoanted when we sode out duv to Jemand las time they were advertsod!!! These uniss mar iust have well been mada for your lab, they consist of a semienclosed chassis measuing $160 \mathrm{~mm} \times 120 \mathrm{~mm} \times 350 \mathrm{~mm}$ comtaining all silicon electorics to give the following fully equlated and short circuit proof outputs of.$+5 v$ @ 2 amps DC
12 v @ 800 ma DC
12v@800ma OC
and it that's notenough a fulk floasing $5 v$ outpon @ 50 ma mC which may be senesed to give a hoss of other whtheges. Ah autputs are trought out to the foont panel via miniature jack sockets and are also duplecated at the rear on short fimmo leads. Units accept standard 240y mains innut They are GPO and may have minor scratches on the trot panels they are sold untested but in good imtemal condition $£ 16.50$ each $+£ 2.50 p+p$ complete with circuit and componemt list Transtormer guaranteed. HURRY WHILE STOCKS LASTI!
 no cost spend" spec for the GPO, the Madem 12 is anchronous Modem for use on OAFE1 2412 semices. a ather data haks Mary faatures nclude switheble V26 modutaton. 2400 baud hill dudlex 600/1200 standby, ato answer, 4 wie or 2 wive operation Seff rest LED status huication, CMOS bactrnalgy, modular constructoon, arignal cost ovel $£ 700$ each
$£ 185.00+£ 9.50$ cariage + VAT Pemmir in may be required for cornection to PO lines

## DISTEL ©

'Dial our Database! Get information on 1000 s of stock baud on 01-689 6800 18.30 to 0906800 day Sundays IT'S FREE!

THE PRINTER SCOOP OF THE YEAR THE LOGABAX 280 MICROPROCESSOR CONTROLLED LX180L MATRIX PRINTER

massive bulk purchase enables us to offer you this supert professional printer at a fraction of its recent
cost of over $£ 2000$. Utilising the very latest in ost of over $£ 2000$. Utilising the very latest in microprocessor technology, it features a host of tacilitias with all electronics on one plug in P.C.B. Just
study the specification and you will linstantly realise it tudy the specification and you will instantly reals
meets all the requirements of the most exacting otessional or hobbvist user.
STANDARD FUNCTIONS + FUHASCII character set ink ribbon $\star$ RS232 N24 serial interface -7 xtal controlled baud rates up
\% 9600 \& 194 characters per line \# Parallill interface $\star$ Handshakes on serial and parallel ports \$ 4 Type fonts, italic script, double width, italic large, standard Internal buffer construction All software in 2708 eproms easily reconfigured for custom fonts ste All this and more, not refurbished but BRAND NEW At Only $£ 525$ +VAT
OPTIONALEXTRAS* lowercase option $£ 25.00$ * 16 k buffer E 30.00 *Secondtractor fo simultaeous dual forms $£ 85.00$ * Floor stand $£ 45.00$ * specialist carriage $£ 19.00$ Al

8" FLOPPY DISK DRIVES

Unbelievable value the DRE 7100 \& 72008 gi disk
drives utilise the finest technology to give you $100 \%$ bus compatability with mosidrives available todav, the only difference being Our PRICE and the superb
manufacturing quality. The 7100 single sided E 7200 double sided drive accepthardor soft sectorin 18M or ANSI standard giving a massive 0.8 MB
$(7100)$ \& $1.6 \mathrm{MB}(7200)$ of storage. Absolutely SHUGART, BASF, SIEMENS etc compatable. 7100 single sided.
7200 double sided

NEW with user manual and 90 day warranme
 Data sheet on request
SPECIAL new. KODE PSU, drives 2 DRE drives $£ 39.99$


## COOLING FAN SPECIAL

## Keep your equioment cooi and reiliable wint our range of professionai tan

ETRI $99 \times$ U01 Miniature equipment fan 240 vac working DIM 92
complete with finger guard. Makers price $£ 16$ our price $£ 10.25 \times 2 \times 25 \mathrm{mmBRANO}$ NEW BUHLER 69.1122 micro miniature 8 - 16 VDC reversible fan Measures only $62 \times 62 \times 22 \mathrm{~mm}$. Uses a brushtess DC Serve motor, almostsilent runningideal porable equipme.
10,000 hours. BRAND NEW manufacturers price $£ 32.00$ our price $£ 13.95$ MUFFIN CENTAUR Cooling fans, tested ex equipment $240 \mathrm{v} £ 6.50,115 v £ 5.50+$ pft
KOOOL TRONICS Powerful snail type blower gives massive air movement with centinfugal rotor DIM as a cube $8^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ air aperture $2.5^{\prime \prime} \times 2.5^{\prime \prime}$ with flange fixing. BRAND NEW 110 v 50 Hz ac working ONLY $£ 9.95+£ 1.90$ p 5 p.


Oept. W.W. . 64-66 Melfort Rd, Thornton Heath. MAIL ORDER Croydon, Surrey. Tel: 01-689 7702 or 01-689 6800 INFORMATION Unless otherwise stated all prices inclusive of VAT. Cash with order. Minimum order value $£ 2.00$ Prices and Postage quoted for UK only. Where post and pecking not indicated please add 60 p per order. Bona Fida account orders
minimum $£ 20.00$. Export and trade enquiries wetcome Orders despatched minimum ent.00. Expor and trare enguiries wetcome Orders desparched

SOFTY 1 \& 2
EPROM BLOWER
Software development system invaluabie toof for designers, hobbyists. etc. Enables open heart surgery on 2716,2708 etc. Blows, copies, reads EPROMS or emulates EPROM/ROM/RAM ther features. $£ 115$ + carr. + VAT. Optional 2716, 271 Softy 2 for $2716 / 2132 £ 169$ +VAT

## G:M Y D $\mathrm{D}=$ <br> MONITORS

Ex-equipment $9^{\prime \prime}$ Motorola Video Monitors $75 \Omega$ composite input, tested but unguaranted. $£ 39.99+£ 7.50$ carriage + VAT. Complere with circuit.

## SEMICONDUCTOR GRAB BAGS

| rriecs, dlodes, bridge recs, ett, otc. All devices guaranteed brand new full spec wth manufac turer's markings, fully guaranteed, $50+$ bag $£ 2.95 \mathbf{1 0 0}+$ bag $\mathrm{ES}, 15$ TTL 74 Serves <br> A gigantic purchase of an "across the board" range of 74 TTL series I.C. is entblas us to offer $100+$ mixed "mostly TTL" grab bags at a price which two oo three chips in the bag would normally cost to buy. <br> Fully guarantaed at I.C.'s tull spec. $100+\mathrm{E} 5.90200+\mathrm{E} 12.30300+\mathbb{E} 19.50$ |
| :---: |
|  |

## RH RMay exin KEYBOARDS

IDEAL -
TANGERINE,
OHIO ETC,
$5 V$ D.C. POWER SUPPLIES
Following the recent "SELL OUT" demand for our 5 v $3 \mathrm{amp} P$.S. U. We have managed to secure a large quantity of ex-computer systems P.S. U.'s with the following spec .; 240 or 110 v A.C. input. Outputs of $5 \mathrm{v} @ 3-4$
amps, 72 v @ 3 amps and 6.5 v @ 1 amp. The 5 v and amps, $7.2 \mathrm{v} @ 3 \mathrm{amps}$ and $6.5 \mathrm{v} @ 1$ amp. The 5 v and
7.2 v outputs are fully requlated and adjustable with variable current limiting on the 5 v supoly. Unit is self contained on a P.C.B. measuring only $12^{-} \times 5^{+} \times 3^{+}$. The 7.2 v output is ideal for feeding "on board" regulators or a further 3 amp LM 323 K regulator to give an effective $5 v$ @ 7 amp supply.

Believed working but untested, unguaranteed.

## Appointments

Advertisements accepted up to 12 noon Monday, 5th April, for May issue, subject to space being availabe.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre ( min .3 cm ). LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable.)
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in the advertisement, clo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Lid.

# ALWAYS AHEAD WITH THE BEST! <br> £5,000-£15,000 <br> COMMUNICATIONS: VHF - UHF - MICROWAVE - TROPO SATCOM <br> COMPUTERS: MINI - MICRO - ATE - PROCESS CONTROL - <br> SIMULATION: Hardware \& Software <br> DATACOMMS: MODEM - MUX - TELEGRAPHY - MESSAGE <br> SWITCH - PACKET SWITCH 

Where does your skill and interest lie -
Design? Test? Service? Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry:
* There are opportunities for Managers, Project Managers, Engineers and Technicians.
* Most UK locations and some Overseas.
* Make your first call count - Contact MIKE GERNAT on $076384676 / 7$ (usually until 8 p.m.)

ELECTRONIC EDMPUTER AND MAMAGEMENT APPDINTMENTS LIMITED
148-150 High St., Barkway, Royston. Herts SG8 8EG.

## BBC TRANSMITTER DEPARTMENT MOTSPUR PARK, SURREY

## ENGINEER, VACUUM DEVICES

£8,950-£10,924 p.a.
(according to qualifications and experience)
We require an Electronic Engineer, with C.Eng/degree/HNC qualification, plus a minimum of three years' post-qualification experience in the design, manufacture or application of vacuum devices used in broadcast transmission.
Specific areas of involvement and responsibility include the application, acquisition, testing and distribution throughout the BBC of all types of vacuum devices and in particular the valves and klystrons, etc., used at transmitting stations, computerised stock control and in staff management.

Relocation expenses will be considered and benefits include 5 weeks' annual holiday. Men and women are equally eligible to apply.
Requests for application forms to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1 AA, quoting reference 82.E.1140/WW and enclosing an addressed envelope at least $9^{\prime \prime} \times 4^{\prime \prime}$

## BBG



APPOINTMENTS LTD CAPITAL HOUSE 29-30 WINDMILL STREET LONDON W1P 1 HG
TEL: 01-6375551

## the uk's No. 1 ELECTRONICS AGENCY

Design, Development and Test to $£ 14,000$ Ask for Brian Cornwell

SALES to $\mathbf{£ 1 5 , 0 0 0}$ plus car
Ask for Maurice Wayne
FIELD SERVICE to 12,000 plus car Ask for Paul Wallis

We have vacancies in ALL AREAS of the U.K
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)

## Sound Attenuators Limited require an

## Electronics Engineer <br> to work on the active control of sound in ducts. We require a

 graduate in electronics with at least two years' practical experience and an interest in acoustics. The project involves the implementation of basic research already undertaken at the University of Essex. The successful candidate must demonstrate self-reliance, practical ability and a keen interest in seeing. the project through to a successful conclusion.Write in the first instance, enclosing a full c.v. to:
Mr. A. T. Fry
Sound Attenuators Ltd. Eastgates, Colchester, Essex

Tel: 0206866911

## Appointments

## Systems_Design Team

## Satellite Communications Ground Terminals

Marconi Space and Défence Systems are Europe's acknowledged leaders in the development of advanced systems for aerospace and satellite communications.

To meet the growing interest in satellite communications we are strengthening the specialist teams working on sophisticated satellite ground terminals - offering total involvement from initial design and development through to implementation.

We need ambitious and enthusiastic men and women with several years post-graduate experience in the design, development or operation of ground terminals or in other communications systems drawing on similar RF techniques. A knowledge of military satellite communications would be a distinct advantage.

## SYSTEMS MANAGER

Aged $30+$ must be able to combine high level technical expertise with the man-management skills necessary to weld a group of systems professionals into a closely knit team. At least 4 years' experience in a similar role is essential.

## SENIOR SYSTEMS ENGINEERS

Applicants should be in their late 20's to early 30's and have had relevant in-depth experience.

## SYSTEMS ENGINEERING

We have a number of openings for graduates in their mid-20's with an Honours degree in Engineering, Physics or Mathematics and 1-2 years' post-graduate experience.

These are key career positions carrying salaries that fully reflect their importance, as well as an attractive range of benefits, including relocation assistance where necessary

To discuss any of these posts with one of our senior specialists or project managers, telephone Bill Seton, Ext. 18, or Liz Kahn, Ext. 22, on (01) 9542311 or write to them at Marconi Space and Defence Systems Ltd., The Grove, Warren Lane, Stanmore, Middlesex, HA7 4LY.


## CAMBRIDGE HEALTH DISTRICT

(TEACHING)
PHYSICS DEPT.
ADDENBROOKE'S HOSPITAL
HILLS ROAD, CAMBRIDGE

## Medical Physics Technician Grade II

## ( $\mathbf{~ 6 , 6 6 8 - £ 8 , 3 1 6 ~ p . a . ) ~}$

An electronics technician is required to provide maintenance and support services to the CT Head Scanner at Addenbrooke's Hospital and to electro-medical equipment in the thoracic surgical unit, Papworth Hospital.
Applicants should hold an appropriate HNC or equivalent qualifica tion end have several years' experience in the field of electronics. (Mini-computer experience advantageous).

## For further details contact

 MrP. E. Ward,Principal Physics Technician Addenbrooke's Hospital Hills Road, Cambridge CB2 200

Tel: (0223) 245151 ext. 471
Application form and job description from the Personnel Dept. Ext. 7350.

## INSTITUTE OF PSYCHIATRY

## AUDIO-VISUAL TECHNICIAN

A vacancy exists for an Audio-Visual Technician et this postgraduate medical school and associated teaching hospital. Applicants should be experienced in maintenance of television equipment and preferably hold $\&$ Guilds Course qualifications: eg City 222 or 224.

Salary according 10 experience and qualifications on Whitley Council Medical Laboratory Scientilic Officer scale currently $£ 4,958$ p.a. to $£ 6,993$ p.a. plus London Weighting £932 p.a.
For application form with job description please write to the Assistant Seoretary, Institute of Psychiatry, De Crespigny Park, ference MJCNM.
(1547)

## LEADING LONDON ADVERTISING AGENCY Requires

## YOUNG ENGINEER

to take charge of all in-house audio and video equipment including Rank Cintel, Sony ${ }^{\prime \prime}$ and studio cameras. Applicants should send details of experience to Box 1552, c/o Quadrant House, The Quadrant, Sutton, Surrey
SM2 5AS.
SM2 5AS.

## HIGH-LEVEL VACANCIES FOR HIGH-FLYING ENGINEERS!

GRADUATE SENIOR SYSTEMS ENGINEER to take charge of design and development of microwave frequency synthesizers, navigation transponders and other sub-systems. Must have strong rechnical background, have experience, and be over 30 . Salary at least $£ 10,000$. Bedfordshire.
TECHNICAL SUPPORT ENGINEER. OCR systems. Large peripheral experience essential including CDC/Pertec/Data Products range. National and international travel. To $\mathbf{\Sigma 9}, 500$. S.W. London.

SENIOR DIGITAL DESIGNER. Applied research in radar signal processing. Experience high speed real-time HW/SW. Knowledge of bitslice processors, array multipliers useful. To 1,
SENIOR ENGINEER to establish feasibility of LSI or VLSI chíp sets for signature verification products and carry through the design up to production, whilst also assisting in design of discrete version. Salary up to $£ 10,000$. Surrey.

## Charles Airey Associates

13/16 Jacob's Well Mews, Gearge Street, London WIH 5PD Tel. 01-4869250
Probably the best kíown supplien dF electronic engineeqs in the countay" Finahciat times (1357)

## THE THOMSON FOUNDATION TELEVISION COLLEGE

ENGINEERING LECTURER

## and an

ASSISTANT ENGINEERING LECTURER
are required at the College to join a team of staff training engineers from developing countries, in Television and Radio. The successful candidates will have had a minimum of 5 years' or 3 years' experience respectively and broadcasting technology, and will hold an appropriate degree, HND or equivalent.
Salaries: Lecturer - $£ 9,251$ by 5 increments to $£ 11,504$; Asst. Lecturer - $£ 7,284 \times 5$ to $£ 9,052$.
The posts are pensionable, based at Glasgow where the residential training is conducted, but involve also short assignments abroad each year for in-country training.
Please write or phone for application form to Principal,
Thomson Foundation TV College, Kirkhill House, Newton Mearns, Glasgow G77 5RH (041-639 1021).

# Electronics - up to $£ 7,500$ Have you an Electronics Qualification? Could you apply it to Scientific Instruments? 


then this could be just the job you're looking for. It offers variety and real opportunity to apply both skill and design initiative to the solution of a whole range of technical problems of a one-off nature.

## We are:

* a leading pharmaceutical company with world-wide interests.

You will:
\% help to design, modify and where necessary repair advanced scientific instruments and computers in the Physical Chemistry Department.

Probably in your 20's, male or female, you should ideally have:

* formal training up to HNC or equivalent
* an interest in scientific measurement techniques
* sound practical experience of electronics.

We offer:

* a competitive salary dependent upon experience and ability
* day release opportunities for further study
* Flextime working
* very modern facilities in a newly opened building.

Interested? For an application form please ring our automatic telephone answering service on 01-650 6541, giving your name, address and quoting reference no. WRL/176.
Alternatively write to A. G. Murdoch, Personnel Officer, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS.


Theatre Projects Special Projects Group is a manufacturing company specialising in audio and lighting control equipment for the broadcast, film and theatre industries. We are currently seeking the following additional staff to provide a firm foundation for expansion.

## PRODUCTION MANAGER

Must be capable of planning and controlling all aspects of a mixed batch production/ custom manufacturing environments often working to tight schedules. Will be required to plan and set up own manufacturing facility when we shortly move to new premises. The applicant should have 2.3 years in a related area of responsibility and be educated to HNC or degree standard. He/She will be part of the core of management of this part of the company.

## PROJECT ENGINEER BROADCAST AUDIO SYSTEMS

The candidate must have prior engineering design experience and a broad understanding of the design/manufacturing environment. He/She will be required to oversee projects from concept/quotation through to Installation. Specialist skills in either circult or mechanical design are required along with familiarity of the broadcast environment.
Both posts command a salary from $£ 7,500$, which is negotiable according to the skills and experience of the applicants.

Theatre Projects, 11 Marshalsea Road, London SE1. Tel: 01-4033838
19562

## REPORTER/STAFF WRITER mIDDLE EAST ELECTRONICS

An enthusiastic journalist, ideally with technical qualifications (Degree or HND) and experience, to work on Middle East Electronics.

This magazine, which is going monthly in May, is read by senior electronic engineers in the Middle East and the Editor is looking for a responsible number two to develop the journal's potential.
Writing and subbing skills essential plus knowledge of the industry and, preferably, experience of developing countries and their technology problems. Computer science background an advantage.
Our UK office is located in Morden, Surrey, but we offer opportunities for travel. Salary $£ 7,613$ p.a. (subject to NUJ consultation).

For an application, please write to, or telephone Ray Ashmore, Editor, Middle East Electronics, Crown House, London Road, Morden, Surrey. Tel: 01-543 3051.
Salary and conditions is accordance with the IPC/NUJ agreement.
We are an equal opportunity employer.

## Appointments

## Research \& Development Engineers YOUR OPPORTUNITY TO ADVANCE BROADCAST TELEVISION TECHNOLOGY

Tremendous growth and success has resulted in career opportunities at Sony Broadcast Ltd., a company established four years ago to specialise in the high technology field of broadcast television equipment. The Advanced Developments group is part of an international R\&D team committed to pioneering new technology. Applications are invited from experienced engineers capable of contributing to one or more of the following activities:

> Digital Video Systems
> Digital Audio Systems Audio/Video Digital Recording Mathematical Modelling

- Computer Control Systems
- Microprocessor Applications
- Analogue Video Development

The successful candidates will join one of the following sections

Research \& Development
Established as a world leader pioneering digital recording, we are currently extending our range of activities. The R/D team is responsible for studying the development and application of digital video and audio processing techniques. In addition increasing support is required from theoretical studies and computer simulation.

## Special Design Projects

 Increasing use is being made of computer and microprocessor based equipment for signal routing and control in studio centres.Hardware/Software engineers are required for the development of automated broadcasting and remote control systems. This can include "one off" developments designed to customer requirements.

Appointments will be made at all levels and applicants should have an honours degree or equivalent qualification. Attractive salaries are offered together with first class conditions of employment and relocation assistance will be given where appropriate.

If you are interested contact:- Mike Jones,
Senior Personnel Officer
Sony Broadcast Ltd.
City Wall House
Basing View, Basingstoke Hampshire RG21 2LA United Kingdom Telephone (0256) 55011

## An Electronics Engineer

Is needed to make original contributions within a lively internationally collaborative space sciences programme. The
post will be concerned initially with a magnetospheric soundin satellite and will include some travel to Germany and the U.S.A

Applicants, holding a degree or equivalent chartered institution status, should be able to offer two or three years of proven practical design experience, preferably with VHF/UHF systems, digital and analogue circuits or micro processor application.

The appointment, at Professional and Technical Officer Grade II level, attracts a starting salary between $£ 6,557$ and $£ 7,520$, with increments to $£ 8,697$.
excellent working conditions. Benefits include an extensive bus system, generous holidays and sickness leave and a non-contributory superannuation scheme. Some assistance with the expenses ncurred in house sales/ purchase may be
available.

Science and Engineering Research Council

## Rutherford Appleton Laboratory

Chilton, Didcot, OXON, OX11 0QX. Telephone Abingdon 21900.

## SW OUALITY ENGINEERS

with PDP $11 / 34$ and RSX experience to work on Software to 0521 standards: To

## SERVICE ENGINEER

To carry out fleld maintenance on Business Computer Systems. To $£ 10,000+$ car - London.

## PROJECT MANAGER

To control the development of Industrial Process Control Systems. To $£ 11,500$ Bucks.

## DEVELOPMENT ENGINEER

Systems. To £12,000 - London SM.

## R.F. DESIGN ENGINEER

to lead the development of a new Low

## design engineers

with R.F. Micro Wave, Analogue, Dighal or Software experience to work on new instrumentation Systems. To $£ 11,000$ Herts.

CLIVEDEN CONSULTANTS
87 St. Leonard's Road Windsor Berts
Windsor (07535) 57818/58022


## CHARING CROSS <br> HOSPITAL MEDICAL SCHOOL <br> (University of London) <br> MEDICAL PHYSICS TECHNICIAN

An enthusiastic person is required in the Cross Hospital Medical School. Work involves a full range of physiological measurements on patients in the operating theatres and intensive Care Unit, and maintenance of equipment Assistance will also be required in the development of instrumentation for cardiovascular aspiratory and electro physiological fields.

The successful
quallied in at least candidate should be and show an interest and these fields learn about the others.
An aptitude for meeting the many demands that working in a small team places on the individual will also be sought.
Salary will be within the range of £4,958-£6,993 per annum plus $£ 859$ London Weighting Allowance, according to
pplications on forms ob
Applications on forms obtalnable from The Secretary, Charing Cross Building, St. Dunstan's Road, London W6 8RP (tel: 01-748 2040 ext 2067) within three weeks of the appearance of this advertisement.
(1533)

## DIGITAL EXPERIENCE?

FIELD SUPPORT
R \& DAND SA: ES
VACANCIES IN COMPUTERS
NC, COMMS., MEDICAL
VIDEO, ETC
For free registration ring 0453883264 01-290 0267


ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE BURLEIGH STROUD GLOUCESTERSHHE GL5 PPW TEL. 0453 883264, 01-290 0267

## Electronics Engineers

Glaxo have the following opportunities at their Research Central Services Unit at Greenford, which is involved in the design and maintenance of electronic equipment needed for experimental work:

## ELECTRONICS DES/GN ENGINEER f6705 pa to £9475 pa

to carry out design work on a wide range of laboratory equipment employing analogue, digital and microprocessor techniques. Candidates, aged $25+$, should be qualified to degree level or equivalent with several years general design experience.

## SERVICE TECHNICAL OFFICER/ENGINEER £5874 pa to $£ 9210$ pa

to be responsible for general servicing work. Candidates, qualified to Higher National Certificate or City \& Guilds Full Technical standard should have several years experience of analogue and digital equipment, preferably in a laboratory environment.

Starting salaries will be between the figures quoted which include London Allowance and will reflect qualifications and experience.
In addition the Company operates a bonus scheme and non-contributory pension scheme. Assistance with relocation expenses will be available in appropriate cases.
Please write or telephone for an application form to: Miss E. M. Butler, Personnel Department, Glaxo Group Research Limited, Greenford Road, Greenford, Middlesex UB6 OHE. Tel: 01-422 3434, ext. 2707 quoting reference number ZH/418.

## GWENT HEALTH AUTHORITY

ELECTRONIC AND BIO-MEDICAL EQUIPMENT MAINTENANCE TECHNICIAN GRADE II

This is an established post offering wide scope and opportunity in the development of electronic and bio-medical services. The successful candidate will be responsible to the Area Engineer for the testing and maintenance of a variety of electronic and bio-medical equipment throughout the area, and will also be responsible for the development of policy regarding maintenance contracts.

The technician will be based at a purpose-built workshop at Allt-Yr-Yn Hospital, Newport, and will be responsible for an establishment of two junior grade technicians, but authority has been given for the further development of this service.

Applicants should be in possession of ONC/HNC (or equivalent qualifications) in Electrical/Electronic Engineering, and should have wide experience of Health Service electronic equipment and safety aspects involved. In addition to these requirements, the applicant should be capable of preparing reports and be able to develop and operate a planned preventive maintenance scheme.

Hours: Normally 38 per week.
Salary: £6,668-£8,316
Application form and job description are available from:
The Area Personnel Department
Mamhilad, Pontypool, Gwent
Closing date: 31.3.82

## TRAINEE BROADCAST ENGINEERS

ITN needs more engineers to support its expanding programme of news coverage - expansion which is expected to continue through the 80 s with the development of the Channel Four news service.
We have a number of vacancies for Engineering Trainees, vacancies which could give you the opportunity to start a career in Broadcasting Television Engineering with ITV.
First, we need you to have a firm interest in pursuing a career in the technical branch of broadcasting.
Then you should have completed, or expect this year to complete, theoretical training in Electronic Engineering with a bias towards Television or Audio applications. Qualifications most suitable are T.E.C. Higher Technical Diploma, T.E.C. Higher Technical Certificate or the HND/HNC equivalent.
Initially, you would be involved in a 9-12 month familiarisation period by a rotational attachment to our four maintenance areas and the Projects Department.
After successful training you would be employed on the maintenance or operation of a wide range of broadcast equipment in our Central London Studios near Oxford Circus, from which the ITN national news programmes are networked.
Successful applicants will join ITN in early September, 1982. Starting salaries would lie within the range of $£ 5,120$ (at 18) rising to $£ 6,472$ at age 20.
If you have the qualifications and the drive to work with us in a busy, lively environment then call us on 01-637 8644 ext 275 or write to

The Manager, Technical Training
ITN House
48 Wells Street
London W1P 4DE
for an application form quoting reference 476099

# Mectronics R\&D £8,589 <br> Join us in the forefront of technology 

# Senior Engineer <br> - Broadcast Video Equipment 

A challenging role in high technology Quality Assurance

Due to significant continued expansion, an excellent opportunity has arisen at the international headquarters of Sony Broadcast, a world leader in professional broadcast television equipment. The Company has an expanding range of high technology products which includes video cameras, VTRs, editing control systems, digital time base correctors and monitors.

An experienced engineer is required to join the Quality Assurance team and assume responsibility for the throughput of cameras and other products. Activities will include close liaison with other engineering departments and will necessitate working to stringent specifications. A knowledge of current camera measurement practices would be advantageous.

Age $25+$ applicants should be educated to at least HNC Electronics and have several years engineering experience. The position would suit a self starter who also has the ability to lead and motivate a small team. Prospects for career development are considerable.

We offer a first class working environment in our new prestigious engineering complex, together with an attractive salary and excellent conditions of employment. which include Company pension/life assurance schemes, private medical cover and staff restaurant.

If you are interested please write, giving details of experience and present salary. to Mike Jones, Senior Personnel Officer.

## Communications Proposals Engineer to $£ 10,500$

Join the UK's leading Communications System House specialising in oil field locations.
Palmer EAE require a Proposals. Engineer with a broad experience of Multi-Channel Microwave links, P.A. and entertainments systems, standby power supplies, SOLAS and telephone plant.
Applicants should be educated to HNC/DEGREE standard and be familiar with recognised international standards, i.e., C.C.I.R., C.C.I.T.T., etc. Duties will include preparing technical proposals, procurement specifications and procedures relating to installation/commissioning.
This post is based in Great Yarmouth and occasional overseas travel will be required. Excellent terms and conditions are offered including pension scheme, BUPA, relocation expenses, etc.
There are also a number of vacancies for suitably qualified COMMUNICATIONS ENGINEERS and TECHNICIANS to work both in the UK and overseas.
For further information regarding these opportunities on an application form for the post of Communication Proposals Engineer, please telephone:
Mike Futter on Great Yarmouth (0493) 58541
Palmer EAE Limited. Offshore House, Gt. Yarmouth, Norfolk
PALMER多EスE

## TECHNICAL/SERVICE MANAGER

Due to the expansion of our business we are urgently seeking a person. capable of setting up and running a pager service department, of maintaining transmitters and of evaluating and commissioning both paper and mobile

City Wall House the future. A high salary, car and other benefits are available for the right person.

Send CV to: P. Sinnot, Managing Director
Pageboy Services (UK') Ltd., Westley House
Trinity Avenue, Bush Hill Park, Enfield
EN1 1HP. Tel. 01-3674545

## CAPE WARWICK LTD.

require

## Electronics, Control \& Instrumentation Engineers

As an expanding independent testing laboratory we require suitably qualified/experienced engineers to design, arrange, manufacture, commission and maintain test equipments.

Send c.v. or telephone for application forms to: Mrs. E. Archer Cape Warwick Ltd.
Cape Road, Warwick
Warks CV34 5DL
Tel: Warwick (0926) 496421
(1535)

UNIVERSITY COLLEGE CARDIFF FACULTY OF SCIENCE

## ASSISTANT EXPERIMENTAL OFFICER

Applications are invited for the post of Assistant Experimental Officer in the fac Assistant Experimental Officer in the fac-
ulty of science electronics workshop. Duties will include the design velopment and maintenance of electronic equipment, particularly microprocessors for both research and teaching.
Applicants should have a degree in electronics or related subject or an equi Valent qualirication. Experience in microprocessor interfacing techniques be an advantage.
Salary scale O.R. $18 £ 5,285-£ 8,925$
Applications to the Vice Principal (Administration) and Registrar, University College Cardiff, P.O. Box 78, Cardiff, from whom further particulars may be obtained.
Closing dase 2nd April. Ref. No. 2348a
(1556)


HARROW COLLEGE OF HIGHER EDUCATION. Audio-visual Aids Technician. Salary to maximum of $£ 6,009$ p.a. To supervise the closedcircuit television studio in the Educational Revisual services Ability to provide first-line maintenance of video equipment essential. Applicatenance of video equipment essential. Applicaform obtainable from the Administration Office, returnable by 15 April, Harrow College of Higher Education, Northwick Park, Harrow, Middlesex HA1 3TP. Telephonc 01-864 S422, extn 232

R \& D OPPORTUNITIES. Senior level vacancies for Communications Hardware and Software cies for Communications Hardware and Software Engineers, based in West Sussex. Competitive salaries ofrered. Please ring David Bird at Redif-
fusion Radio Systems on $01-8747281$. 1162

Marconi Space and Defence Systems, Europe's acknowledged No 1 in the development of advanced satellite systems, are seeking the following specialists to play key roles in new communications satellite projects at their Stanmore location. We would like to hear from suitably qualified and experienced men or women who want the chance to work in a high technology environment that offers total involvement and lots of excitement.

## MICROWAVE EQUIPMENT MANAGERS

Will be responsible for an Equipment forming part of the Communication Payload programme. This will involve original design, manufacture and test of breadboards: engineering; qualification and flight model hardware; and will entail baison with European prime contractors on all aspects of the programme The programmes are usually of an intemational nature, requinng high technology designs, coupled with demanding timescales.

## MICROWAVE DEVELOPMENT ENGINEERS

Will report to the Equipment Mana'ger and will be responsible for development work on the payload equipments. Tasks will include the design of microwave circuits with the emphasis being on lightweight, high rehability designs including extensive use of MIC technology

Applicants for both positions should hold a degree or equivalent qualification and have had at least 2 years' relevant experience.

Salaries will be negotiable and accompanied by an excellent range of benefits.
To find out more details, write or telephone Bill Seton; Personnel Manager with brief details of your career to date.

Marconi Space and Defence Systems, The Grove, Warren Lane, Stanmore, Middx. HA7 4LY. Tel:01-954 2311 Extn. 18

## Marconi Space \& Defence Systems

ELECTRONICS DEVELOPMENT AND SERVICING:

SPITAL AND INSTITUTE

An

## ELECTRONICS TECHNICIAN

is requlred to join an established group working on development and maintenance of medical and cancer research equipment. The job will entail a fair degree of responsibility and calls for someone able and willing to work as a member of a team. Interest and ability in computing and/or r.f. work would be an advantage. The work will be located at our institute/Hospital site at Sutton, Surrey, which is well provided with staff amenities. Salary on either Research ( $£ 4,958-£ 6,993$ p.a.) scale plus London (£4,958-£6,993 p.a.) scale plus London
Allowance of $£ 557$ p.a. Starting point will depend on qualifications and experlence, and opportunities for later promotion to higher scales. Candidates should hold City \& Guilds Final Certificate, HNC, BSc or an equivalent qualification in electronics or telecommunications. Further Information may be obtained from Mr. John Phelps (01-643 8901).
Applications in duplicate with the names and addresses of two referees should be
sent to the Secretary, Institute of Cancer Research. 34 Sumner Place, London SW7 3NU, quoting ref. 301/E/44.
(1549)

## WILTSHIRE COUNTY COUNCIL <br> Department of Architectural Services <br> Appointment of <br> CHIEF SERVICES ENGINEER

(Salary £11,220-£12,408)
Applications are invited for this post, the duties of which concern the design and provision of electrical and mechanical services for building projects and for the associated maintenance and energy conservation work in buildings throughout the county.
The successful candidate should be a Member of the Chartered Institution of Building Services with sound experience of Mechanical Services and should also be a Member of the Institution of Electrical Engineers.
Application forms and full details may be obtained from the County Architect, County Hall, Trowbridge (Tel. 3641 ext. 2115) quoting reference AR.82.35 and should be returned to him by 19th March, 1982.

## Appointments

## Develop your

 potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced communications test equipment and A.T.E

To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well.

If you would like to develop your potential in the exciting future of Europe's leading test equipment specialist, complete the coupon and send marconi it to us at the address below:
Return this coupon to John Prodger, Marconi Instruments Limited,
Freeposi, Si. Albans, Hertfordshire, AL4 OBR. Telephone: St. Albans 59292
A GEC-Marconi Electronics Company


# Technicians in Communications 

GCHO We are the Government Communications Headquarters, based at Cheltenham. Our interest is $R$ \& $D$ in all types of modern radio communications - HF to satellite - and their security.
THE JOB All aspects of technician support to an unparalleled range of communications equipment, much of it at the forefront of current technology.
LOCATION Sites at Cheltenham in the very attractive Cotswolds and elsewhere in the UK; opportunities for service abroad.
PAY Competitive rates, reviewed regularly. Relevant experience may count towards increased starting pay. Promotion prospects.
TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have a TEC Certificate in Telecommunications, or acceptable equivalent, plus practical experience.
HOW TO APPLY For full details on this and information on our special scheme for those lacking practical experience, write now to
Recruitment Office
Recruitment
GCHO, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ

## - or ring <br> 024221491

ext 2269


## ELECTRONICS RESEARCH AT THE UNIVERSITY OF ESSEX

Graduates who have (or final year students who expect to obtain) a first or upper second class honours degree are invited to apply for research leading to a higher degree (M.Sc., M.Phil. or Ph.D) in the following areas:

Acoustic Noise and Vibration Cancellation (adaptive microprocessor-controlled systems); Audio Engineering (amplifier design, digital signal processing, stereo); Circuit Design Studies (circuit theory, sensitivity effects, CAD, filter realisations); Digital Transmission for Telecommunications (filters, line codes); Interactive Systems (handwriting analysis, computer graphics, personal databases), Microcomputer Systems (embedded microcomputer applications, microprogramming, architectures); Microwave and Millimetre Wave Propagation (scattering from precipitation particles, space frame radomes); Optical Communications (detectors, noise processes, signal design, switching); Picture Coding and Processing (data reduction, adaptive filtering and coding, feature extraction); Satellite Communication Systems (business systems, protocols, data and video services, intermodulation studies); Telecommunication Switching Systems and Software (computer control, software production, teletex and viewdata); Visual Displays and Television Engineering (computer graphic input systems, stereo and colour displays).

Further information and application form available from: Dr. J. K. Fidler, Chairman, Department of Electrical Engineering Science (Ref. Jan/2), University of Essex, Wivenhoe Park, Colchester CO4 3SQ.
(1542)

## Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388


Please send me a TJB Appointments Registration form
Name
Address

## BROACAST FIELD SERVICE ENGINEERS

## MIDDLE EAST

To join highly professional team based in Reading, Berkshire, responsible for installation and service of television studio equipment at customer sites throughout the Middle East.

Key requirements are:
$\star$ Degree/HNC in Electronics or equivalent qualification demonstrating a sound theoretical knowledge.

* Three years' experience in Broadcast Television servicing VTRs, Cameras, Vision Mixers, etc.
* Ability to work on own initiative while travelling away from base.

Successful applicants will receive product training, excellent basic salary with generous overseas allowance as appropriate.


Please contact Maureen Brake on: Reading (0734) 85200, Ampex Great Britain Limited, Acre Road, Reading, Berks.

## ARTICLES FOR SALE

WORLD RADIO TV HANDBOOK 1982, write for details. "Broadcasts to Europe," quarterly frequeacy guide, £1.30, full year £4.30. Trade/club en* quiries welcome. Pointsea, 25 Westgate North Berwick, East Lothian
(1534)

TRANŚFORMERS, line adjustment type, 2.5 KVA , tapped at $0 \mathrm{~V}, 200 \mathrm{~V}, 220 \mathrm{~V}$, $230 \mathrm{~V}, 240 \mathrm{~V} 58$ each. Also mains tranaient suppressors, 11 amp , boxed, 4 in $\times 4 \ln x$ 3 in $\varepsilon 5$ each. Both plus VAT and poin $x$ Electroversal Ltd, Luton 54309 . (1534)

EQUIPMENT FOR colls, transformers, compo nents, degassing sillicone rubber, resin, epuxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment low cost, used and new. Also for CRT regunning metallising. Rescarch \& Development. Barratts, Mayo P.idd, Croydon CRO
v9P78
2Q1.684 9917.

## P) Southampton THE UNIVERSITY

INSTITUTE OF SOUND AND VIBRATION RESEARCH VOICE COMMUNICATIONS SYSTEMS SAMPY T1 12,511
Electronic and Electroacoustic Eng ineers are required to join a small team working on inno ndustry.
cancellation systems and microproces cancellation systems and microproces-
sor-controlled adaptive filters. Duties sor-controlied adaptive filters. Duties
may involve equipment development, production of prototypes, testing and field trials.
Further details from D. A. S. Copland, The University, Southampton SO9 5 NH to whom applications (in duplicate) should be sent quoting reference No. $320 / \mathrm{A} / \mathrm{WW}$.


ELECTRONIC AND COMPUTER SERVICES

Tel. 0486267918

## HARD DISC BARGAINS

$\star$ Diablo series 3025 megabyte exchangeable disc drive. Industry changeable disc drive. Industry
standard. Easily interfaced to most micros, etc. Complete with power micros, etc. Complete with power
supply unit.......................... $£ 300$
$\mathbf{£ 6 0}$ - Teletype ASR 33. Deckwriter LA36. * Fast papertape punch. All prices inclusive VAT - Carriage extra
(1557)

## FOR SALE

2 Pye Cambridge radio telephone mobile transceivers Low band AM boot and dash mounted. Forms of tender which should be returned by 5 th April,
1982, are available from the Divisional. Manager, Sussex River and Water Division, Southern Water Authority, Falmer, Brighton BH1 9PY. Tel: (0273) 606766.
(1551)

PRINTED CIRCUITS. Make your own simply cheaply and quickly. Golden Fotolak Light Sensi, cheaply and quickly. Golden Forolak Light Sensimuch faster. Aerosol cans with full instructions E2.25. Developer 35p. Ferric Chloridé 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibreglass Board approx. 1 mm thick $£ 1.75$ sq. ft . Post Packing 60p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall. ( 714
\&15,000 PLUS VAT buys 100 TV rentals releasing $£ 10,000$ p.a. gross income. Scope for expansion. South Bristol area. Box No 1527
${ }_{15}$ expansion. South Bristol area. Box No.
(1527)

## SITUATIONS VACANT.

## SYSTEMS ENGINEER <br> £NEG. + BUPA + 4 WEEKS + CAR

To assist the Sales Manager with design and specification of television systems, particularly pulse and routing systems. The position will involve, interface with both customers and factory with overall responsibility for smooth flow of large projects. The successful candidate will probably be a broadcast technician or have gained experience in the systems division of a major manufacturer.

## SALES ENGINEER

£NEG. + BUPA + 4 WEEKS + CAR
To assist the Sales Manager in selling to the major TV Network in the U.K. and possibly assisting our European distributors. The successful candidate will be experienced in selling broadcasting equipment and will know the structure of the U.K. and European Networks.

## Apply to:

J. Prigmore, Sales Manager

## SELTECH

## Seltech International Limited,

 Rose Industrial Estate, Cores End Road,Bourne End, Bucks. SL 8 5AT Tel. Bourne End (062 85) 29131

## TELECOMMUNICATIONS ENGINEER - st.000 oa.

A vacancy exists in the Communication Department of the company for an Engineer of HNC/City \& Guilds standard. Responsibilities would mainly lie in the installation and maintenance fields of the company's Financial/Commodities Retrieval Service, necessitating involvement with in-house computers and client located terminals.

Apply in the first instance to:

> Miss J. T. Cowell The Associated Press 83-86 Farringdon Street LONDON EC4A 4BR

## ARTICLES FOR SALE

## TO MANUFACTURERS, WHOLESALERS \&

 BULK BUYERS ONLYLarge quantities of Radio, T.V. and Electronic Compinents.
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3.1$ Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nưts, transistors, ICs Diodes etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713. 4450749.

BROADFIELDS \& MAYCO DISPÓSALS
21 Ladge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner ${ }^{1}{ }^{(9461)}$


PRE-PACKED screws, nuts, washers, solder tags, studding. Send for price list. A1 Sales
(WW), PO Box 402, London SW6 6LU. (1253 BRIDGES, Waveform/transistor analysers, Calibrators. Standards, Millivolimeters, Oscilloscopes. Recorders. Signal Generators.
$\mathbf{3 7 6 2 3 6}$ TELEQUIPMENT D54 dual beam 10 MHz oscilloscope, vge, $£ 150$ ono. Large quantity of WW from 1954 to 1979 for sale. Ipswich 210903.


## IONISER KIT

(MAINS OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing.
All parts, PCB and full instructions.
£12.50-
A suitable case includng front panel, neon switch, etc. HOURS:
Monday to Friday $9 \mathrm{am}-5 \mathrm{pm}$.
Price includes post \& VAT
Saturday 9 am -4.30 pm . Barclay/Access Welcome Wide range of Japanese integrated circuits and transistors stocked
T. POWELL

Advance Works, P.E., 44 Wallace Road, London N1 1PQ
Tel. 01-226 1489
Please allow 14 days for delivery

## LARGE PURCHASE OF RACAL EQUIPMENT COMMUNICATIONS RECEIVERS

 S00kdz-30mels 1 mhz wide. RA172 - $£ 175$.RA117E - $£ 225$. A fow sets available as new at E75 extra. All receivers ase air tested and calit brated in our workstop, supplied with full
manual, dust cover, in fair used condition. New manual, dust cover, in fair used condition. Now
biack metal loured coses for bove sits 25
each. RA980 - ISB - SSB - 775 . RAZ 18 SSB

 TUNING UNIT and protection unt MA 1978 -
E25 to E50. DECADE PREOUENCY GENEAATO MA508 solid state synthesiser for MAT9 or
 $\mathrm{MA} 250-1 . \mathrm{Bmc} / \mathrm{s}$ to $31.6 \mathrm{mc} / \mathrm{s}-\mathrm{E} 150$ (New).
MA259G - precision frequency standard).
 PV78 - frequency shit convertor - E50. UN1-
VERSTY UNT MA 168 - new and boxed, contains product detector for SSB \& BFO-E25. Li.
CONVERTOR RA137 - 550 to 775 . Most above
 supplied with full manuals, RACAL SPARES,
new \& boored - RA17L Chassis $-\mathbb{E} 20-1, F$,
 Standing wave ratio indicator. FX $2 \mathrm{mc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}$.
Power up to $1000 \mathrm{warts}-50 \mathrm{hms}$. Power up to 1000 warts - 500 hms - Auto trip
switeh - Transistor mains $100-250 \mathrm{AC}$ new switch - Transistor mains 100-250AC, new \&
boxed - £40. RACAL COUNTER 836
(9036) $32 \mathrm{mc} / \mathrm{s} \mathrm{TL}$ circuir desigg - rested with manual,
350 to $£ 75$ RACAL 9010 FREOUENY E50 to 575 . RACAL 9010 FREOUENCY DIVIDER
for above oxtands range 600 mC Yor above, extends range to $600 \mathrm{mc} / \mathrm{s} 10 \mathrm{mv}$ sensi-
tivity
E50 tested. OSClLLOSCOPES COSSOR CDU150-35mc/s - Twin Beam - Solid State - E175 with manual. AIRNEC Racal DIsplay
Oscilloscope 383 - E100. TEKTRONIX OSCHIO


 $\stackrel{\text { Pr }}{1 \text { IA }}$ up to 300 bauds. supplied ser to, 50 and 75 beuds
 MOTOROLA frequency standard $1011-1 \mathrm{mc} / \mathrm{s}$.
$100 \mathrm{kc} / \mathrm{s}-\mathrm{f} 250$. TFBOTD/BS $-10 \mathrm{mc} / \mathrm{s}$ to $485 \mathrm{mc} / \mathrm{s}$
 TRACOR VLF Tracking receiver Model 599
 SIG GEN TF995A2 - AM \& FM $1.5 \mathrm{mc} / \mathrm{s}-22 \mathrm{mc} / \mathrm{s}$ s
covered in 5 beuds - crystal check fecilities, covered in in condition, tested circuit and in:
supplied in $A$.
sit stuction - E100 TEKRTONIC OSCLILOSCOPE
s47 and 647 A Solid State - $50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ 647 and 647 A Solid State $-50 \mathrm{mc} / \mathrm{s}$ and $100 \mathrm{mc} / \mathrm{s}$ s
bandwidth $-£ 250$ and $£ 350$. Tested, circuit and
 masts approx 130 ft high, complete with all fti: tiangs. Base - Insulators, etc., Mast stael lube $8^{\prime \prime}$
all parts gavenised. suplied brand now, all all parts galvenised, supplied brand now, oll
items boxed - $£ 1000$ - or each complote mest - - $£ 400$.

All items are bought direct from H.M. Government. being surplus equipment. Price is ex-
works. SAE for all enquiries. Phone for appointwonk for demonstration of any item. John's
ment
Aladio whitehell Aadio, Whitehall Works, 84 Whitehall Road East.
Birkenshaw, Bradford BD11 2ER. Tel. (0274) Birkenshaw, Bradford BD11 2ER. Tel. (0274)
BEA 884007.

SURPLUS ITEMS: LP1186 £3.25. LP1175 £1.15, MS4A Ferranti Photo Trans. 50 p . Electrolytics 2200 mfd . 63 v $75 \mathrm{p}, 2500 \mathrm{mfd}$. Mullard $£ 1$. 4 -pole 2 -way push switches $50 \mathrm{p} . \mathrm{P} .8 \mathrm{P}$. 40p. Transformers $170-0-170 \mathrm{v} \quad 30 \mathrm{ma}, 6.3 \mathrm{v}, 1.75 \mathrm{a}$ £1.15 (P.\&P. £1). Linsley Hood 75-watt amp. Kit £65. (P.\&P. £3).-TELERADIO, 325 Fore Street, London N9 0PE.

## INVERTERS

High quality DC-AC. Also "no break" ( 2 ms ) static switch,
19" rack. Auto Charger.


COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, London WII 382 Tél: 01-727 7042 or 0225310916
$(9101$

## WRONG TIME?

MSF CLOCK is ALWAYS CORRECT-never gains or loses, SELF-SETTING at switch-on, digits show Date, Hours, Minutes and Seconds, auto GMT/BST and leap year, also etc, STOPCLOCK, receives Rugby 60 KHz atomic time signals, buith-in antenna, 1000 Km range, RIGHT TIME, £62.e0
60KHZ RUGBY RECEIVER, as in MSF Clock audio and serial data outputs, decoding details, £17.50.
Each fun-to-build kit includes all parts, printed circuit, case, postage, otc, monay back assurance so GET vours NÓW.

CAMBMIDGE KITS
Milten, Cambridga
(1539)

## CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly
Quality workmanship by professionals at economic prices.
Please telephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

## Dayville Services Limited

A complete P.C.B. service offered. We will work from your circuit diagram and produce the finished board.
Any type of board manufactured including double-sided and P.T.H. Legend and older resist available if required
Our rates are very competitive and we offer a FREE collection and delivery service on orders above £200. Turnaround can be as little as three days.
Telephone Colchester (0206) $71000 / 869514$ with your P.C.B. requirements and we will be happy to obilge.
40 Military Road, Colchester CO1 2AN.
(1490)

## Buyers and Disposal Officers

(please note)
COOKEINTERNATIONALSERVICES are Wholesalers and Factors of Surplus Test Equipment and Components. Buying or selling contact:

## COOKE INTERNATIONAL SERVICES

## Ramalla House

Ancton Lane, Middleton-on-Ser Bognor Regis, Sussex PO22 6NJ Telephone: 024-369 2849

## BOARDRAVEN LTD.

PRINTED CIRCUIT BOARDS Manufactured to your specifications. Single/doubie slded. Very speedy deliverles on prototypes
and quantity. Master layouts if required. Comact: J. K. Harrlson, Carnaby Industrial Estate, Brid-
lington, North Humberside YO15 30 V . Tel. (0262) 78788.
(1168)

SMALL BATCH PCBs produced from your art work. Also DIALS, PANELS, LABELS. Cam era work undertaken. FAST TURN
AROUND. - Derails: Winston Promotions, AROUND. - Derails: Winston Promotions, 3 Hatton Place, London ECIN 9RV. Tel: 01 -405
$4127 / 0960$. CAPACITY AVAILABLE

PCB ASSEMBLY CAPACITY AVAILABLE
Low or high volume, single or double sided, we speclalise in flow line assembly of printed circult boards.
Using the Zevatron flow soldering system and on line lead cutting, we are on time, and competitively priced. Test facilitles available.
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and discuss your requirements.
TW ELECTRONICS LTD.
120 NEWMARKET ROAD
BURY ST. EDMUNDS, SUFFOLK
TEL: 02843931
Sub-contract assemblers and wirers to
the Electronics Industry
ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch Lid., 1A Eva Road, Gillingham, Kent. Tel: Med way (0634) 577854 ( 966 BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals Lifl, 19b Station Parade, Ealing Common, London
W5. Tela $01-9928976$.

FACILITIES AVAILABLE + Circuit Design \& Developmont Digital and Analogue

+ Artwork Layout
Free protorype bd. (non PTH)
Supplied with orders over $£ 100$.
- Board Manufacture

Protoivpe to semi-prod
$\star$ Wiring $\mathrm{B}_{4}$ Assembly
W. Wirlng $\mathbb{B}_{2}$ Assembly
PCB assembly, wiring and cable forming.
*Test
Full test facilities available.

* Copper Clad Board

D/S fibreglass 1000 Sa inches of assorted useful sizes. $f 6.00$ inc. post. One or all services avail
able, no order too small. Please telephone Cheims ford 357935 or write to Street, Chelmsford, Essex.


30,000 SERVICE SHEETS IN STOCK OLOUR MANUALS ALSO AVAILABLE TV Monos, Transistor Radios £1.25; Tuners £1.25; Tape Recorders, Record Players and
Stereograms $22+$ stamped addressed envelope. Sterөograms $£ 2+$ stamped addressed ervelope.
All colours available. Car radios $£ 2+$ stamped addressed envelope. All colours available. Car radios $\mathbb{C 2}+$ stamped addressed envelope. State valve radios $\sum_{2}+$ s. a.e.
Mail order only. Stamped addressed envelope
please, quote advert. number with order.
C. CARANNA

71 Beaulort Park, London; NW11 6BX Tot 01-4584882 (1325)

DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmitters and receivers, telemetery and control systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashord, Middlesex. Phone M Falkner 53661.

DESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SY'STEM DESIGN, Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell 52023.

SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes, 1 off or batch work, fast turnround. - 01-449 2695. M. Gear Lid., 179A Victoria Road, New Barnet,
Herts. Herts.
PCB ASSEMBLY/WIRING from drawings sample. Fast turnaround. J. Forsyth. Tel. (0604) (1517)

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

## COURSES IN ELECTRONICS

## CNAA BSC in Electrical Engineering

A four-year part-time degree for mature students, includes study of Digital, Telecommunications and Control Systems. Entry qualifications: HNC or equivalent in Electrical and Electronic Engineering or Applied Physics. This degree is considered by the Council of Engineering Institutions as meeting their C.Eng. academic requirements.

## CEI PART II

A one-year full-time or two-year part-time course, which is the present academic qualification for Chartered Engineers. Subjects offered include Electronics, Communication, Control and Computer Engineering. Entrants should have passed CEl Part 1 or have been exempted; holders of HNC and endorsements or HND are so qualified.

## HND in Electrical and Electronic Engineering

A $21 / 2$-year sandwich course, including study of Electrical, Electronic and Communication Engineering, combined with Control Engineering and Digital Techniques. Entry qualifications: 1 A level in Mathematics or Physics.

Further details and application forms are available from the Information Office, Room 1305, Cambridgeshire College of Arts and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271.

## ARTICLES WANTED

## WANTED!

Receiving Valves, Antique types bút unused and boxed.

VAN DATA SYSTEM CO., LTD. 1-12-8, Kyomachibori, Nishiku Osaka 550, JAPAN.
(1487)

## WANTED

Supplier of lead sulphide photo cells. Alternatively, will purchase information on manufacture and
pant.
, Williams, Oak Tree arm, Pound Green, Arley, Bewdley, Worcs
(1553)

WANTED: Electronic components and equipment in quantily. Competitive prices paid. Speed, courtesy and cash on collection. Linway Electron8HZ. Tel: 01-573 3677. (1558)

ARTICLES FOR SALE
THE SCIENTIFIC WIRE COMPANY
P.o. Box 30 London, E 4

| ENAMELLED COPPER WIRE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| SWG | lb | - 802 | 402. | 202. |
| 81029 | 2.76 | 1.50 | . 80 | . 60 |
| 30 to 34 | 3.20 | 1.80 | . 90 | . 70 |
| 351040 | 3.40 | 2.00 | 1.10 | . 80 |
| 41 to 43 | 4.75 | 2.60 | 2.00 | 1.42 |
| 47 | 8.37 | 5.32 | 3.19 | 2.50 |
| 481049 | 15.96 | 9.58 | 6.38 | 3.69 |
| SILVER PLATED COPPER WIRE |  |  |  |  |
| 14 In 30 | 6.50 | 3.75 | 2.20 | 1.40 |
| TINNED COPPER WTHE |  |  |  |  |
| 14 is 30 | 3.38 | 2.36 | 1.34 | . 90 |
| Prices include P\&P. VAT and Wire Data |  |  |  |  |
| SAE lor list. Dealer enquiries welcome. |  |  |  |  |
| Reg Office: 22 Coningsty Gardens. |  |  |  |  | Sat lor list. Dealer enquiries welcome. Reg Office: $\mathbf{2 2}$ Coningsby Gardens.

## CLASSIFIED ADVERTISEMENTS

## Use this Form for your Sales and Wants

## PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate $£ 2.50$ PER LINE. Average six words per line. Minimum f12.50 (prepayable).
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus $£ 1$.
- Cheques, etc., payable to "IPC Business

Press Lid." and cross "\& Co.

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

PLEASE WRITEIN BLOCK LETTERS, CLASSIFICATION
NUMBER OF INSERTIONS

## COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221



MOSELY ANALOGUE X.Y PLOTTER. A4 size. Without pens .............................................. 55 TEKTRONIX Med 1483 DUAL BEAM PORTABLE OSCILLOSCOPE. 75 MHz version of 465 . Almost as now LASER ASSOCIA TES NO GLASS LASER. 1.06 micron wavelength. 1-2 J per puise. A single pulse from this laser burns a hole through steel rule. Complete with colling system and output monitor. FULIY HOUSTON INSTRUMENTS Model EDP-1 high resolution digital plotter using fan-fold paper. With Model ETC-5A intelligent microprocessor-based controller with character generation. atc. and interfacing to a sarial V24) line. Software to drive this plotter from POP 11 machines is available from DECUS. Current list price in excess of $£ 3,500$.......................................................................... TREND Model HSA 500 optical paper tape reader........................... EMS SYNTHESIZER Model SYNTHI A Complete with AKS keyboard and OK2 keyboard. Current (Jan., 81 ) new price $\mathrm{f} 1,921$.............................................
MULTIDYNE synthesized communications receiver complete with FSK demodulator and EXTEL. Model AF bsudot coded printer.

Plaase note:
Visitors walcome but by appointment please
We are keen to bid competitively for aligood used equipment

# INDEX TO ADVERTISERS APRIL 

## Appointments Vacant Advertisements appear on pages 117-127



[^6]

TEK OSCILLOSCOPES

# The Tektronix 2200 Series. Simply great. 

 designing and manufacturing oscilloscopes are recognised all over the world. But rather than rest on past laurels, we have veered dramatically from the well established design paths we ourselves. have laid down.

With the 2213 priced at $£ 670^{*}$ and the 2215 at $£ 850^{*}$, these 60 MHz dual trace oscilloscopes are an entirely new form of instrument.

Their most remarkable characteristic is the way in which major design advances have provided full-range capabilities at prices significantly below what you would expect to pay. How has this been accomplished? To begin with, we have reduced the number of mechanical parts by more than half. This not only saves manufacturing time, it lowers costs and improves reliability.

Board construction has been greatly simplified and the number of boards reduced. Board connectors have also been reduced substantially and cabling cut by an amazing $90 \%$.

The 2213 and 2215 have a high efficiency regulated power supply which does away with the need for a heavy power transformer. There are no linevoltage adjustments. Just plug the instrument into a power socket supplying anything from 90 to 250 volts, $48-62 \mathrm{HZ}$, switch on and you are ready to measure. Power saving circuitry has eliminated the cooling fan, resulting in further economies in size and weight.

These scopes have it all. Dual trace. Delayed sweep for fast, accurate timing measurements. Single time base in the 2213, dual time bases in the 2215. An advanced triggering
system, automatic focus and intensity. Beam finder - and much more.
Interested? Then why not telephone your nearest Tektronix office or circle the enquiry number for further information.

## Performance Specifications

## Bandwidth

Two channels, DC-60 MHz to 20 $\mathrm{mV} / \mathrm{div}, 50 \mathrm{MHz}$ to $2 \mathrm{mV} / \mathrm{div}$. Light Weight
$6.1 \mathrm{~kg}(131 / 2 \mathrm{lbs}) .6 .8 \mathrm{~kg}(15,0 \mathrm{lbs})$ with cover and pouch.

## Sweep Speeds

Sweeps from 0.5 s to $0.05 \mu \mathrm{~s}$ (to 5 ns / div with $\times 10$ magnification). Sensitivity
Scale factors from $100 \mathrm{~V} /$ div (10x probe) to $2 \mathrm{mV} / \mathrm{div}$ ( $1 \times$ probe) Accurate to $\pm 3 \%$. AC or DC coupling.
Also available from Electroplan.

* Prices subject to change without notice.


## Tektronix UK Limited

PO Box 69, Harpenden, Herts. AL5 4UP
Tel: Harpenden 63141 Telex: 25559
Regional Telephone Numbers: Maidenhead 062873211 , Manchester 0614280799. Livingston 32766, Dublin 850685/850796

COMMIT TED TO EXCEUENCE


[^0]:    -2010A 31/2-Digit L.E.D. Bench DMM
    -2015A 31/2-Digil L.C.D. Bench DMM
    2020 31/2-Digit L.E.D. Bench DMM 2033 3\%-Digit L.C.D. Hand DMM -2035A 3 $3 / 2$-Digit L.C.D. Hand DMM -2037A 3\%-Digit LC.D. Hand DMM with Temp.
    LR 10 10MHz Logic Probe

[^1]:    人

[^2]:    

[^3]:    *This could be a useful tip for aspiring technical writers - Ed.

[^4]:    Ian Garrett, MA, Ph.D, MIEE, is with British Telecommunications Research Laboratories, Martlesham Heath, Ipswich.

[^5]:    * Department of Computer Science, University of Calgary, Canada

[^6]:    Printed in Great Britain by QB Led., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS, telephone 01-661 3500. Wireless world can be obtained abroad from the following: AUSTRALIA and NE ZEALAND: Gordon \& Gotch LId. INDIA: A. H. Wheeler \& CO, CANADA: Distribution Inc., 14 th floor, 111 Eighth Avenue, New York, N.Y. 10011.

