DECEMBER 1981 70p

Millimetre-wave lens aerial

Direct frequency synthesizer

Guide to light units

Autoranging rf. millivoltmeter

(2, $2+2$

The Profersional Choice

Amcron

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout amplification. For power you can depend on - choose AMCRON, the professional choice.
For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

ELECTRONIC KITS

packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill packaged in clear plastic boxes, ideal for component storage.
REMEMBER - We offer a free soldering iron with your first order over $£ 10$
Difficulły Grade: 1
K607 2.2W Mini Amplifie K611 7W Amplifier
K613 Dimmer 1000W
(Deparasite).
K1716 20W Amplifier
K1771 FM Oscillat
K1803 Universal Pre-Amplifier
K1823 1A Power Supply
K1861 Power Supply for
K2542 Single Stereo...
K2542
K2544
Complex digit counter
2544 Complex Sound
22566 CB Power Supply
K2565 Tape/Slide
$\times 2566$ Synchronizer
K2566 Coloured Light
K2569 Three-tone Bell
K2572
Kower Supply,
S-14V DC 1A
Universal Stereo
2573 Pre-amplifier
K2573 Stereo RIAA
K2575 Microprocessor Doorbell with
2579 Universal 26 tunes Timer

Difficulty Grade: 2
K610 MonoVUusingLED's using LED's K1804 60W Amplifier K1874 Running Lifight Uni 2549 Transistor Ignition

System
System
(Transmitter)
K 2550 Infra-red Detection \quad (T. $\mathbf{1 0 . 6 3}$
K2553 FM Stereo (Receiver) 12.42
K2557 $\begin{aligned} & \text { Figital Precision }\end{aligned}$
2571 Thermometer ... 26.57
K2574 Four-digit up/down counter with
\qquad 34.16
ier 12.80
34.16
12.80

Universal AC Motor
Speed Control

K2551

Difficulty Grade: 3 K615 High Precision K1682 Microprocesso K1682. Microprocessor K2545 50 Hz Crystal 48.3 time Base K2547 Four-channel Infra-red Remote Control K2548 Four-channel Infra-red 17.32 K2548 $\begin{aligned} & \text { Four-channel Infra-re } \\ & \text { Remote Control }\end{aligned}$ Remote Cont K2551 Infra-red Central 62554 High-quality .. 2554
High-quality
FM Tuner K2555 Digital Frequency 2558 Counter for Receiver 37.74 $K 2559$ with housing 120.23

K2559 Two-channel IR Remote | Controlled Light Dimmer |
| :--- |
| (Transmitter) |
| 17.32 | K2560 Two-channel IR Remote Controlled Light Dimmer (Receiver) 38.64 K2562 Infra-red Receiver $\begin{gathered}\text { Ind } \\ \text { for } 2558\end{gathered}$ K2563 Infra-red Transmitter 18.11 K2567 20CM Display (Common Anode) 21.05

20CM Display (Commen 2568 20CM Display (Common K2578 Microprocessor Controlled EPROM
$5 \square \square$ Soldering iron
2VELLEMAN UK. P.O. Box 30. St. Leonards-on-Sea, East Sussex TN37 TNL Tel: Hastings 104241753246 Name

Address

The Profersional Choice

Amcron

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power professional choice.
professional choice.

For further details contact the UK Industrial distributor

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
ELEPHONE: 01-853 5295
TELEX: 923393 LASER G
wW - 034 FOR FURTHER DETALLS

ELECTRONIC KITS

Velleman U.K. present their list of electronic kits together with prices which include V.A.T. and postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill packaged in clear plastic boxes, ideal for component storage packaged in clear plastic boxes, ideal for component storage.
REMEMBER - We offer a free soldering iron with your first order over $£ 10$
Send today for the free Velleman Kit Journal
Difficulty Grade: 1
K607 2.2W Mini Amplifier K611 7W Amplifier
K613 Dimmer 1000W
(Deparasite).
K1716 20W Amplifier.
K1771 FM Oscillator
1803 Universal
K1823 1A Power Supply
K1861 Power Supply for
60 W Stereo...
2542 Single digit counte
K2544 Complex Sound
K2566 CB Power Supply K2565 Tape/Slide
2566 Synchronizer
K2566 Coloured Light
2569 Three-tone Bell
Power Supply,
$5-14 \mathrm{~V}$ DC 1 A
$K 2572$ Universal Stereo
K2573 Stereo RIAA
2575 Corrector Amplifie
Microprocessor
Doorbell with
26 tunes $\ldots \ldots$
Timer

Difficulty Grade: 2
K610 MonoVUusingLED's K1798 Stereo VU K1804 60W Amplifier K1874 Running Ligh K2543 Transistor Ignition 2549 Infra-red Detection System 2550 Infra-red Detection
253 SMstem (Receiver) 12.42
2553 FM Stereo Decoder 11.49
K2557 Digital Precision
$K 2571$ Light Computer
K2574 Four-digit up/down counter with
comparator
40W Audio Amplifie
2576 40W Audio Amplifier
Speed Control

D
Difficulty Grade: 3 K615 High Precision

CD C Soldering iron
$\xrightarrow{2}$
16.91
15.15

6.91
15.15

 K1682 Microprocessor k1682. Microprocessor $K 2545$: 50 Hz Crystal K2547 time Base 11 K2547 Four-channel Infra-red Remote Control K2548 Four-channel Infra-.red 17.32
K2548 $\begin{aligned} & \text { Four-channel Infra-red } \\ & \text { Remote Control }\end{aligned}$ (Receiver)
K2551 Infra-red Central
$\kappa 2554$ Alarm Unit..
K2554 High-quality
$K 2555$ Digital Frequency
K 2558 FM Counter for Receiver 37.74
$K 2559$ with housing $\quad 120.23$
2559 Two-channel IR Remote

Controlled Light Dimmer | Controlled Light Dimmer |
| :--- |
| (Transmitter) |
| ... |
| 17.32 |

K2560 Two-channel IR Remote Controlled Light
K2562 Infra-red Receiver) 38.64
62563 for K2558 30.02
$\begin{array}{llll}\text { for K2558 } & \text {... } & \text {.. } \\ 18.11\end{array}$
K2567 20CM Display
K2568 20CM Display Anode) 21.05
2568 20CM Display (Common
K2578 Microprocesso..
Controled EPROM
Programmer... ... 241.50

K2551

2VELLEMAN UK.
26.57 P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Tel: Hastings . 04241753246

$\begin{array}{ll}34.16 & \text { Name } \\ \text { 12.80 }\end{array}$
Address
7.59

CURRENT USED
 Everything as new.

Tektronlx
432 Tektronix Oscilloscope Imv

eld
e495.00

Calibration equipment

freouency counters

DVM's Andomm's

 5

MULTIMETERS

OSCILLOSCOPES

Brokers TEST EOUIPMENT except the price!

Radiometer SMGIC Stereo Generator. Internal or external modulator. 100 MHz carrier at 10 mv -100mv £ $\mathbf{3 7 5} .00$	Philips PM3212 Dual Trace Portable DC-25MHz 2 mV - $10 \mathrm{~V} / \mathrm{div}$. $\$ 495.00$	Marconl TF2603 R.F. Electronic Millivoltmeter 1 mV - 3 V r.m.s. in 8 ranges 50 KHz case	Marconl F995BR unused condition. AM/FM Signal Generator $200 \mathrm{KHz}-220 \mathrm{MHz}$ $\begin{array}{r}1 \mu \mathrm{~V}-200 \mathrm{mV} .75 \mathrm{KHz} \text { deviation on } \mathrm{FM} \\ \mathbf{y y 5 0} \\ \hline\end{array}$
Yatenabe Joov. 250 man scan with	TH20028 AMIFM Signal Generator, 10KH2 88 HHz . $\mathrm{H} \mathrm{V}, \mathrm{V}$ 20Hz-20KHzMod frequency	52 A A PAL Vectorscope Measures Lurminance Amputude. Differential Prase ard Gain As arcontio	Ferrograph. RTS2 Recorder Test Set Measures Wow \& Fuiter. Distorton. Gain................... 500
SIGNAL SOURCES HFO: 36 AMMM Signat Generator $4.0-120 \mathrm{MHz}$ 		TRANSMISSION MEASURING EOUIPMENT	Fluke 3010 A Logictester Self-contained portable equest
Hewaitet Packard raV. 10 V into 6002 $\$ 695: 00$ 		Hizza3 Ouanizatac Distomion resee 	
	PMb456 stereo Generator. Separate Land RF 	Slemens. 2040 selective Level Analyser and Voltmeree Lin and log indicaton, 5 dignt frequency	
 	*adiometer MGI Stereo Gencratort are Cnanelinternal 	 $17 \mathrm{MHz}-10000+10088$ $W 2007+02007$ Carrer Level Teers Set 4t	
	SOUND LEVEL METERS Bruel 8 kjaer 		
 	General Radio. nid 3ouna tevemeter 7o-120dB. Difla . 	 	H3o insulation texter ministry version CT5873/mint 880.00
lomina. Sne wave square wave wpto 5275.00 	T.V.TEST EOUIP 	MISCELLANEOUS 	

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

 1500 MHz Suppied with accessories
case................. .525 .0.

New test equipment
catalogue jus catalogue just
out. Send for
your free copy your

TRANSMISSION

Marront

twilet Pekkard.

${ }_{P}^{\text {Phutlige }}$
 WARRANTY on test ONMOST COMPUTER well stand behind it all
the way.
\qquad FAST
DELIVERY
When you used you buy Electronic
Erokers. it can be yours In a matter of only days. manufacturers lengthy
production schedules.

-1STATE-OF-
THE-ART. TECH-
NOLOGY At Electronic
Brokers. we
carry large stocks of modern test and
computer equipmen computer equipment.
and our strong buying power means we are able to purchase the
very latest state-of-the

NEW FROM THE ONE-OFF SHOP

12/24 L.C.D. CLOCK MODULE Features a $0.5^{\prime \prime}$ L.C.D
Display, user selectable Display, user selectable 12 or 24 hour operation, stop watch, sleep and timer control functions. The display shows A, P and alarm annunciations. An incandescent lamp back bulb is also fitted. It is supplied complete with bezel at £13.95
HEAT SINKS
An extensive range of heat sinks manufactured by Redpoint is now available in the "one off" prices plus discounts. The range covers every type of popular semiconductor package including TO5, TO3, TO220, TO126, TV1500, TO18 and a special sink for dual-inine devices up to 16 pin which does no equire adhesive. All types are black anodised.

DIODES
Diodes complement the already extensive range of semiconducting devices supplied by Verospeed. Manufactured by Diodes Inc. the comprehensive range includes $\operatorname{IN} 4000$ and IN5400 series, 1 amp and 3 amp fast recovery diodes, 1A, 2A, 3A, 6A, 15A, and 35A silicone bridge rectifiers. All types have an extremely high reputation for reliability and are very and for the published discount catalogue prices. ook for these - and lots more in THE ONE-OFF SHOP Send for your copy. Test our service by phoning 0703618525 before $3.00 \mathrm{p} . \mathrm{m}$. - and your catalogue will be in the
post tonight

Britain's fastest growing distributor of branded electronic component
Britain's Tastest growing distribur of branded electronic components.
ww - 029 FOR FURTHER DETAILS

Britains No.I magazine for the radioenthusiast
From the June issue, Practical Wireless becomes an "all radio" magazine, covering all the techniques and apporications of radio,
short-wave listening, DX (llong-distance) broadcast listening and viewing, radio control, etc., plus the latest developments on the CB scene.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for
days delivery. Other Ranges and special scales can be made to order.

Sinclair 2X81 Personal Computerthe heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair $Z \times 80$, world's first com plete personal computer for under £100. Not surprisingly, over 50,000 in Mar increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers eve more advanced facilities at an even ower price. Initially, even we were 50,000 in the first 3 months Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZXP Printer offers an unbeatable combination of Software library is growing every day Lower price: higher capability With the $Z \times 81$, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.
It uses the same micro-processor, but incorporates a new, more pow
ful 8 K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.
And the ZX81 incorporates other operation refinements - the facility
to load and save named prograns on cassette, for example, and to drive the new ZXPrinter.

New
BASIC manua
Manal - commes with a comorehensive. speciality- witt

Kit: 849.95

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 computer from 40 or so to 21 Th ZX81 reduces the 21 to 41 The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX8
New, improved specification Z80A micro-processor - new chip, widely recognised as the bes ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words
(RUN, LIST, PRINT etc.) have their own single-key entry have their - Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eigh
decimal places. - Graph-drawing
display facilities.
- Multi-dimensional string and
numerical arrays.
- Up to 26 FOR/NEXT loops. games as well as serious - useful for - Cassette LOAD and SAVE with
named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
Able to drive the new Sinclair
Adva
processor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built - it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other work with a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).
Kit and built versions come complete with all leads to connect to and cassette recorder and white)

16K-byte RAM

pack for massive add-on memory.
Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply yo
data/ program storage by $16!$ data/program storage by 16 !
Use it for long and comple programs or as a personal database Yet it costs as little as half the price of competitive additional memory. With the RAM pack, you can cated ZX Software - the Business \& Household management systems for example.

Gir 디룬 ZX8I
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: 0276) $66104 \& 21282$.

Available now-

 the IX Printer for only £49.95Designed exclusively for use with the ZX81 (and ZX80 with 8K BASI numerics and highly sophisticated graphics.
A special feature is COPY, which prints out exactly what is on the whole TV screen without the need or further intructions.
At last you can have a hard cop of your program listings - particularly
How to order your $\mathbf{7 \times 8 1}$ BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day.
useful when writing or editing programs. And of course you can print out our results for permanent records

Printing speed is 50 characters per second, with 32 characters per ne and 9 lines per vertical inch. o ye ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. 28 days for delivery And there's 14-day money-back option. We want BY FREEPOST - use the no-stampneeded coupon below. You can pay you to be satisfied beyond doubt -

To: Sinclair Research Lid, FREEPOST 7, Cambridge, CB2 1 YY.				
aty	Item	Code	$\underset{\Sigma}{\text { Hemprice }}$	$\begin{gathered} \text { Total } \\ \boldsymbol{\varepsilon} \end{gathered}$
	Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.	12	49.95	
	Ready-assembled Sinclair ZX81 Personal Computer(s) Price includes $\mathrm{ZX81}$ BASIC manual and mains adaptor	11	69.95	
	Mains Adaptor(s) (600 mA at 9 VDC nominal unreguiated).	10	8.95	
	16 K -BYTE RAM pack.	18	49.95	
	Sinclair CXPr Priter.	27	49.9	
	8K BASIC ROM to fitzX80.	17	19.95	
	Post and Packing.			2.95
\square Please tick if you require a VAT receipt				
*l enclose a cheque/postal order payable to Sinclair Respara Ltd, for $£$ *Please charge to my Access/Barclaycard/Trustcard ad when				
*Please delete/complete as applicable. \qquad 1.d.F \qquad				
Name: Mr/Mrs/Miss Li'l				
Address:				
FREEPOST - no stamp needed. Offer applies to UK only. ___ WRW				

Data recording and analysis:

If everything were perfect...

It is rarely necessary to have to boost the bass response of a top quality high fidelity system, (although the Quad 44 tilt control does enable subtle changes to be made to the overall balance of the programme), but there are a number of high quality loudspeakers on the market, which because of their Lilliputian dimensions, necessarily have attenuated low frequency response and the Quad 44 is fitted with a bass control which in the lift position provides optimum equalisation.

Considerations of domestic harmony frequently dictate oudspeaker placement that is less than ideal. The almost inevitable result is the excitation of the fundamental eigentones of the room and music
reproduction
with a
characteristic and unpleasant honk.

The step side of the Quad 44 bass control switch eliminates this problem without rolling off the low putting a information, simply by response reproducing frequency response, reproducing domestic original sound! approach to the original sound

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561.

OUAD漛
 for the closest approach

 to the original sound

meet the time shrinker!

If you need to record and analyse data from multiple inputs, consider the advantages of using the Microdat

600L data logger.
Magnetic tape cartridge Because
cords on a standard $~_{4} /$ inch records on a standard $1 / 4$ inch magnetic
tape cartridge in ECMA/ANSI format, the output can be replayed a thigh speed into computer, calculator or other data processing equipment. Alternatively, the can be used. No other data logger has thi capability.

Individual conditioning cards cards are used -one for each of the 20 cards are used - one for each of the 20 in
channels (expandable up to 100). As result, each customer receives a bespok
instrument ready to handle mixed

MICR(D)ATA
analogue and digital inputs from most ransducers. Cards are available at low cost to condition virtually every type of
electrical signal, to reconfigure the electrical signal, to reconfigure the data logger offers these facilities.
Exceptional versatility The M1600L is available either as a mains powered,
free-standing, laboratory instrument or in free-standing, laboratory instrument or in
the portable weatherproof form operating the portable weatherproof form oper
from its internal batteries. For more permanent installation in existing systems, it can be supplied in chassis form for mounting in a 19 inch rack. No other
data logger displays this versatility. The M1600L is now widely adopt for projects in energy, transportation, agricultural and environmental research
If you would like further details, please

Write, telephone, or return this advertisement clipped to your hcrodig.
MICRODATALIMITED, MONTTOR HOUSE, STATIONROAD, RADLETT, MERTS. WD7 8JX,

WW - 022 FOR FURTHER DETAILS

WIRELESS WORLD DECEMBER 1981

* UNPDOAAR AND BIPOLAA DIIITAL INTERFACES, FUNCTION GENERAđ TOUS AND MANYOTHERS

WW - 008 FOR FURTHER DETAILS

Quartz Oscillators

DIL compatible configurations
CMOS and TrLoutputs
Hide temperature ranges
Frequencies one pulse per day to 60 MHz
Many standard frcquencies from stock
More details of specifications from

Interface Quartz

 $7(0)$> 29 Markel Street Criewkeric

WIRELESS WORLD DECEMBER 1981

WW - 006 FOR FURTHER DETAILS

HOW TO SUCGEED IN THE ELECTRONICS BUSINESS:

INVEST GOP AND MAKE 32.40 net profit

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low. prices, fast service and technical support facility second to none. Here are some examples from the current issue:

WW - 060 FOR FURTHER DETAILS

EP4000
 - $4 \mathrm{~K} \times 8$ Static Ram

- Video 0/P and 8 digitit LED display
- Emulates simply at he pu

- 2764 adaptor now avallabl
- EP4000 ex-stock at E545 + VAT + E12 delivery

GP INDUSTRIAL ELECTRONICS LTD UNT G, TOTNES INDUSTRIAL ESTATE

PHILIPS SCOOPS THE HONOURS WITH A NEW CONCEPT IN DIGITAL INSTRUMENTS

VERSATILE TV GENERATOR

Circle the inquiry card numbers listed below, to receive information about relevan product groups.

Philips PM 5519 Colour Pattem
Generator can be used with
CTV, TV, VCR or VLP, operating with practically all international TV broadcasting systems and standards.

* Over 20 combinations of test patterns (colour and black/ white)
* Adjustable (0-1.5V video output available for CCTV systems
* All signals to TV standard All Colour PAL (RTMA-NTSC version available)
* Full RF coverage: TV IF Bands I, III, IV and V
* Electronic tuning with six preset channels
Reader inquiry number 221

521 Digital Measurement Centre 220 PM 5519 Colour pattern
PM 6667 High resolution 221
counter High resolution 22
Alternatively, 'phone Cambridge (0223) 358866 and speak to our Commercial Office on extensions 145 or 148.

Pye Unicam Ltd,
Philips Electronic Instruments Dep York Street, Cambridge CB1 2PX Tel (0223) 358866 Tex 817331
As advertised
$£ 67.50$ + case
MODEL 6220
As 6110 but without range hold and continuity buzzer.
Only two $\mathrm{AC} / D \mathrm{C} 200 \mathrm{~mA} / 10$ amp ranges i.e. 22 ranges.
PROFESSIONAL
MULTIME
100,000
ohms/volt

- Exclusive offer for limited period
of this versatile, rrofessional,
top quality mut
top quality multimeter.
- 30 Ranges • 15 AMP AC/DC
- Size $7^{\prime \prime} \times 5^{\text {¹ }} \times 2^{11}$
Model M1200
cluding VA

MODEL M1200 SPECIFICATIONS As us at $£ 67.50+$ vertised

\qquad
Plus many other features including mirror scale, polarity reverse switch electronic overload protection and torit band suspension.
ORDER BY POST (OR PHONE) OR CALL IN Openg days
 Cu 301 Edgware Ad. Lontion W2 1 BN
Thim Tal: 01.7243564
ww - 028 FOR FURTHER DETAILS

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big catalogue is available, price 50 p , which features a wide range of heads for cassette and reel to reel machines, as
well as replacement motors ta well as replacement motors, tape transports, etc. Universal cassette heads to EIAJ standard, hole centres 17 mm apart, 12 mm from head face:
B12.02 Mono recordiplayback
 $\varepsilon 4.62$
$\varepsilon 4.62$
$\varepsilon 7.66$
 $\varepsilon 4.62$
$\varepsilon 7.66$
$\varepsilon 9.05$
Stereo rip sendust head, suitable for chirome \&
metal tapes
C42RPH04
$\begin{aligned} & \text { Stereor/I plass ferite, the ultimate long life } \\ & \text { high performance head }\end{aligned}$
C42RPS18 $\begin{aligned} & \text { Stereet twin gap rip long life head for record } \\ & \text { monitoring }\end{aligned}$
C21ES18 MonolStereo erase head
 £10.67
\&13.34 £28.99
$\varepsilon .1 .13$
$\varepsilon .15 .15$
ε

MONOLITH
electronic products

46306 MONLTH G.

WIRELESS WORLD DECEMBER 1981
Hand Tools \& Production Aids for the Electronics Industry

TELE-PRODUCTION TOOLS LIMITED Dept.ww-1
Stiron House, Electric Avenue, Westcliff-on-Sea, Essex, SS0 9NW . Telephone: Southend (0702) 352719

J(1) NTHIBPROBESYOMALS...

If you are looking for amplification, take advantage of the same superb quality crimson modules that the ser, IBA, KEF and numerous recoraing
stuaios have been
 Yet devised. The Crimson range of aucio amplifier modules is avaliable to industry and pubic aliike and is backedby fult tecnical data, free tec.
advisory service,

Carhon Film Resistors Cable Steeves and Markers from 1.1 .52

DISCOUNITS

,

 Hif Fit Prasastre Compace Monition

 T Tweaters

Building speakers is easy
WILMLOMA MDOF FLAT
ALL PRICES INCLUDE VAT at 15\% and are correct at $1 / 11 / 81$

Tel: 0625529599 for speaker drive units, kits, PA equipment, mail Tel: 0625526213 for ri.fi equioment and complete
Lightring service on telephoned credit card orders!

\qquad

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable nd is an ideal medium tation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, aliong with improved
 Complete kit $£ 52.50$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories inc.

 Dynamic range >90dB

IITEGREK LIMITED Burton-on-Trent (0283) 215432

E. A. Sowter Ltd.
E. A. SOWTER LTT. (EEtablilihed 1991): Re9. No. England 303990

wW - Oa1 FOR FURTHER DETAILS

fact: Shure brings intelligibility \& reliability to professional communications microphones

Experienced operators recognize that the audio quality of the transmitter is limited by the quality of the input from the
microphone. On the air, there's no mistaking the crisp, intelligible messages from Shure microphones.
Shure microphones have been the
Shure microphones have been the overwhelming choice of
professional communications users all over the world for over professional communications users all over the world for over 30
years. Many milestone improvements developed for demanding professionals are found on Shure microphones:
ARMO-DUR® Case: Lightweight, immune to oil, grease, fumes,
salt spray, sun, rust, and corrosion. Prevents RF burn! "Million Cycle" leaf switch: Just one of the crucial Milimon Cycle" leaf switch: Just one of the crucial wear points
Shure-tested to ensure reliability and extraordinary durability TRIPLE-FLEX Cable: Provides three or four times longer flex life than previously available cords on hand-held microphones CONTROLLED MAGNETIC® or Dynamic Transducer: The
exclusive Shure-designed super-rugged transducers that exclusive Shure-designed super-rugged transducers that
give excellent voice intelligibility and super reliability. To improve your on-air intelligibility we suggest
the following Shure Microphones:

MobileApplication		Fixed Station Application
SSB	$\begin{aligned} & 414 \mathrm{~A}^{*} \\ & 407 \mathrm{~A}^{*} \\ & 577 \mathrm{~A}^{*} \end{aligned}$	444D 526T Series II
FM	$\begin{aligned} & 414 \mathrm{~B}^{*} \\ & 507 \mathrm{~B}^{*} \\ & 577 \mathrm{~B}^{* *} \end{aligned}$	$\begin{gathered} 450 \\ 526 T \text { Series II } \end{gathered}$

General recommendation: Consult equipme
manual or correct microphone inpedance.
*Noise-cancelling.

SHURE Hand-Held Mobile Mics

Communications Microphones by . . .
${ }^{(8)} \leq \square \square \square$
Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

wireless world

Editor: TOM IVALL, M.I.E.R.E.
Deputy Editor: PHILIP DARRINGTON 01-661 3039
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 3500×3590
Projects Editor MIKE SAGIN MIKE SAGIN
$01-6613500 \times 3588$ Communications Editor: MARTIN ECCLES 01-661 3500×3589

News Editor: | NewS Editor: |
| :--- |
| DAVI SCOB |
| $1-6613500 \times 3587$ | 01-661 3500×358

Design Editor: RICHARD NEWPORT

Drawing Office Manager: ROGER GOODMAN
Technical Illustrato
BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILLER 01-661 3500×3592
Northern Sales HARRY AIKEN
Midland Sales BASIL McGO

Classified Manager: BRIAN DURRANT 01-661 3106
OPHELIA SMITH
Production
Production:
BRIAN BANNISTER BRIAN BAN Nand copy)
(Make-up
$01-6613500 \times 3561$ 01-661 3500×3561 GORDON HENDERSON

A charter for isolation

One small indication of the nature of the UK's new Engineering Council is the fact and unpaid. The high abilities of Sir Kenneth Corfield, who will be the first to occupy the seat, are beside the point. Apparently the duties are not considered important enough to require full-tim rewarded. Of much greater significance, though, is the fact that this creation of the Department of Industry is being incorporated by Royal Charter, rather than by statute as recommended by the approval of the monarch, and hence of the government, with all the social cachet this implies; it is guaranteed continuance and the monopoly power to do its hing; and there are the financial no real power to make changes: unlike a statutory body it has neither the authority of Parliament behind it nor the esponsibility of having to be
The indiament for its actions
be forgiven for wondering what this cosy group of big-wigs can actually do for him - or, indeed, for the country as a whole, in the sense that Finniston had in mind (see his famous report. At the dime of
writing the emergent Council does not even possess the powers of that other chartered and ineffectual council, the CEI, which at least has its own national egister of engineers and But it is only fair to w
an only judge by the results. What is, however, immediately obvious from the government's decision not to allow a statutory Engineering Authority is that firmly isolated from public affairs. Engineering is changing the world, and it is in politics whether one likes it or not. (If you doubt this, think of weapons systems for a start.) Yet in the UK
engineers are not considered good enough to be involved in the decision making which determines the uses of their work in the wider world. Or is it, perhaps, that they are considered too dangerous - because they are often the
first to know what is really going on? The Oxbridge arts men who are still the most influential members of Britain's
breaucracy do not like to admit that hey are really running a technocracy. T this too explicit. They prefer to keep engineers in a bin and take them out to perform like puppets when required hen put them back and close the lid firmly, before they start asking awkward
questions about the purpose of the act. It would not do to let engineers become too ware of their real power.
Fortunately for the bureaucrats, and heir political bosses, engineers as a body roused, they will proudly unfurl a banne with the strange device Nihil aliud nisi officium (I'm only doing my job). Thi attitude, according to one contributor to his issue, Dr Peter Hartley, is a result of system of engineering education whic world - a system rooted in the $18 \mathrm{th}-19 \mathrm{~h}$ century ethos of humanism and the "conquest of nature". It leaves us, say Hartley, with a "conception of the engineer as no more than a high-grade professional - that is, with no responsibility for his actions beyond thei technical adequacy." Of course, most engineers like to think of themselves as way; but where do they get this idea? More often than not it is a delusion, arising because their education is ifferent from that of technicians and probably longer, because their work is
often more difficult as a result of having to consider options and decide among them, and because these decisions are ikely to have wider effects. But if with all this the engineer still really does no must accept as given, he is not being fully professional, says Dr Hartey, since he is not taking into account the ultimate meaning and consequences of his rofessional actions.
A new body like the Engineering initiate a system for educating engineers to become fully professional in the above sense. But while this organization emains virtually a cocoon, isolated from through the market for engineering products, there is not much chance of this happening

Millimetre-wave lens aerials

New method for constructing metal plate refractors is simpler

by K. L. Smith Ph.D.

University of Kent at Canterbury

Advantages over a reflector

 Because both the incident and the reflected waves are distorted or scattered by anyirregularity on the surface of a mirror, the figure or accuracy of the surface of a reflector has to be held quite rigorously in terms of fractions of a wavelength. But a wave passing the surface of a lens is only affected
once, so that the figure of that surface can once, so that the figure of that surface can
be relaxed to half the accuracy for the same
performance. A reflector operated off the axis of symmetry introduces a rapid deterioration of gain, beamwidth and performance generally. The lens aerial described is
relatively insensitive to this offeris relatively insensitive to this off-axis opera-
tion - so much so that two (or more) feeds can be used for simultaneous communication with more than one station, yet with only a small reduction in aerial gain over a considerable solid angle around the axis.
The lens performance is also insensitive to The lens performance is also insensitive to reflector is very sensitive to this twisting.) These properties correspond to performance with respect to 'coma' and 'astigmatism' in optics.
Another advantage of the lens is that the lens and only a fraction of the through the percentage reflected back is able to reenter the feed horn. At first sight, the required thickness of the lens would reflector, but an aerial of this type can be 'stepped' and this reduces the thickness and therefore the amount of material used. One small disadvantage of stepping is the slight shadowing that occurs, as it reduces up for this, one should consider the absence of feed horn or secondary mirror Slightly more sophisticated ad
Slightly more sophisticated advantages accrue from the strongly polarising effect
of the grid of plates making up the entire aperture. This yields an aerial with a remarkably low cross polar response. Frequency re-use systems might find this of considerable value. One disadvantage of a lens aerial over others is that it is band-
width limited (equivalent to chromatic aberration in optics), although some people may consider this an advantage. Stepping the lens profile has the interest-
ing effect of broadening the bandwidth.

Theoretical operation

From the simple derivations in the appenellipse on one side, for a plane surface on ellipse on one side, for a plane surface on
the other. Readers might think it strange that a concave lens is required to give the plane wave from a point source. The explanation is that the phase velocities of the
wave are greater than the velocity of light wave are greater than the velocity of light
inside the plates, which yields a refractive index less than one - hence the concave shape for a converging system. At every point where the phase of the wave increases by 360° as one moves out over the lens from its centre, that much of the metal
plate may be removed without affecting the final plane wave phase front. This is he explanation of the stepping.
The spaces between the plates form a waveguide and for this reason the spacing
cannot be less than half a wavelength, or
the 'waveguide' would be below cut-off
and no propagation would result. The ac-
tual thickness io terms of the wavelencth tual thickness in terms of the wavelength sets the value of the refractive index. Of course, wavelength changes with frequency - so therefore does the refractive
index, as can be seen from equation A_{3} This is what makes the lens frequency-sen sitive.
Because the refractive index is determined by the separation of the plates, then careful spacing for constancy over the sur-
face is required. This was achieved by ace is required. This was achieved by tensile wires, as shown in Fig. 2.

Construction

To make the project a little more challenging, the design frequency was increased to
30 GHz (wavelength $=1 \mathrm{~cm}$. The very 30 GHz (wavelength $=1 \mathrm{~cm}$). The very complex problem of developing stepped
curves gradually changing plate by plate, curves gradually changing plate by plate,
which when assembled make up the lens, which when assembled make up the lens,
was obviously one of the 'acute manufacturing problems' reported in the earlier literature. It was while working out how to make this surface of revolution in one
operation that the original idea in this operation that the original idea in this
work occurred. The material chosen was thin aluminium sheet - which, of course, had an intrinsic thickness according to its gauge. By choosing the appropriate gauge and stacking twelve of these strips, one
obtains the precise design spacing, a, by obtains the precise design spacing, a, by
taking strip one, thirteen, twenty-five and so on. Eleven other lenses are obtained by taking the corresponding strips in the series.
The im
The important advantage of this procedure is that once the strips are assembled
and the template made, then by turning the whole stack on a large lathe (and engineers have mentioned that vertical axis lathes are available to turn everything up to four metres diameter!) all the strips are practice this process was fairly simple, once the strips were bolted together and bedded in wax against the faceplate. Fig. 3 shows this work in progress. No mention has been found in the litera-
ture indicating that this method has employed before. Most of the difficulties of making these lens aerials are overcome by employing it.

Design example

The wavelength at 30 GHz is just 1 cm . When the refractive index has been decided on, the spacing of the plates is calculated from equation A_{3}. If the refractive
index is too small, reflection losses at the surface increase. On the other hand if it is surace increase. On the other hand if it is
too large, the lens thickness tends to become unmanageable. Gaining experience

WIRELESS WORLD DECEMBER 1981

Fig. 2. Assembling the aluminium strips on
high tensile wires, with spacers threaded high tensile wires, with spacers thre
on the wires to form the waveguide
between
promise choice to be made.
0.583 and using equation A_{3}

$a=\frac{\lambda}{2 \sqrt{1-n^{2}}}=0.62 \mathrm{~cm}$

Now the size of the lens aperture requires a decision. This depends on the gain G you are looking for, which, as shown in the appendix, is closely linked with the beam
width obtained. An important relation between the maximum gain of an aperture aerial over
that of an isotropic radiator, and the area A that of an isotropic radiator,
of its aperture, is given by
$G=\frac{4 \pi A \eta}{\lambda^{2}}$
or in dBs ,

$$
G_{\mathrm{dB}}=10 \log \frac{4 \pi A \eta}{\lambda^{2}}
$$

Here η is called the efficiency and is a fraction of how close the effective electrical area approaches the geometrical area.
The other variable yet to be decided The other variable yet to be decided on
is the focal length, f. We decided to work
to a chosen gain, to see how closely we
could achieve it. The choice was 45 dB over could achieve it. The
an isotrope. This gave

Fig. 3. Aluminium strips bolted together
and bedded in wax are turned on a large and bedder in wax are turned on a arge
lathe to produce the required figure. A verticilat-axis lathe could be used for larg
diameters.
ing the horn to meet the dish or lens illumination requirements. The power density pattern from a feed radiator drops off gradually from its maximum along the axis, so
it is not possible to illuminate aperture aerials uniformly up to their edges, then have the feed power drop off instantly to zero. The compromise chosen is often
based on the ' 0 dB down' rule, that is based on the ' 10 dB down' rule, that is,
when the 10 dB down circle in the (hopewhen the 10 dB down circle in the (niform primary feed pattern falls on the perimeter of the dish or lens, 'optimum' illumination is said to be achieved The wasted 'spillover' is ignored, but contributes to the inefficiency. This was the
criterion chosen here and a diagonal horn was designed to feed the lens from a focal Fig. 4. Set-up for measuring the
performanceof the lens arial. Calibrated
pertor attenuator is set to equalize r.f. power at
detector, then attenuator readings give gain of aerial over standard horn.
oint 64 cm behind it. ${ }^{2}$
With the focal length settled, and a llipses were carefully alipsses were carefully plotted to scale,
according to the equations given on Fig. \mathbf{A}_{2}. A metal template was worked to thes
curves, and this enabled the final figure be achieved while turning the curves on he lathe. The focal length and diamete hosen resulted in six steps across the len
eriormance measurements horizontal test range has to be long orials to enable the sending and receiving minimum distance for this condition is
Range $\geqslant \frac{2 d^{2}}{\lambda}=58$ metres for this aerial
We measured the gain and beam pattern ver a 60 -metre range. There are stanand the measurements on any test aerial can be relative to one of these. The system used to do this is shown in Fig. 4. By using calibrated attenuator the received r.f power reaching the detector can be
equalised in both cases. The difference in attenuator readings indicates directly how much higher the gain of the test aerial is over the standard horn. The synchronous, or phase sensitive detection ${ }^{3}$ system yield measurement and greatly increases the sig nal-to-noise sensitivity. ${ }^{4}$ The result ob tained was a gain of 39.3 dB for one sample lens and 38.2 dB for another. This shows For agreement in performance. For the best sample, the efficienty is $\eta=$
30%. This means that the 54 cm 30%. This means that the 54 cm physica
diameter of the lens is equivalent to perfect one 32 cm in diameter, although rigorous discussion of this point brings is onsideration of what is called the aeria directivity, D, as well as the gain, G. This
performance is quite good, when it is re membered that the theoretical uniform power distribution across the aperture is ever obtained in practice and that some power is wasted chro
tering and reflection.

Beamwidth and Sideholes

The same test range enables the beam power pattern to be plotted by turning the lens about a vertical axis through small known angles. The drop-off in received
power as the system is turned off-axis made up by reducing the calibrated axis uator value, thus gaining a direct dB reading for each point. Plotting on polar paper gives the beam pattern. We cheated a bit on this measurement in
that a direct X-Y ploter merrent that a direct X-Y plotter arrangement was
used, but this luxury is not necessary for less well-equipped experimenters.
Fig. 5 shows the pattern obtained for the 39.3 dB gain aerial. The 3 dB beamwidth is
1.4° and directly from 1.4° and directly from equation A_{9} the effective diameter is

$$
d_{\mathrm{eff}}=\frac{57.3 \times 1}{1.4}=41 \mathrm{~cm}
$$

This is larger than the predicted size from

Fig. 5. Polar diagram of fiens aerial. Slight
asymmetry suggests astigmatism in lens.
the efficiency calculated from the gain measurement. This is explained by the ck of consideration of "spillover", scat rering and reflection in the calculation Thus the aerial is more directive than th gain calculation suggests and further illus gain and directivity of an aerial.
From Fig. 5 the slight asymmetry on the polar diagram shows that in all likelihood here is a small amount of astigmatism in this lens. The unequal sidelobe trengthen this assertion. The worst case
sidelobe is approximately 25 dB down on the main beam peak.

Concluding remarks

Building aerials is interesting work and the leasure of obtaining such a good resul
and $\begin{aligned} & \text { receeviving aerials sindicated by arrow } \\ & \text { around dishes in (a). }\end{aligned}$
ens aerials have arisen from this work and he author would be pleased to see somemateurs could certainly design a system from the data and example given
But a number of other applications come 0 mind and there could be considerable projects or professional applications. We attempted to measure the off-axis cross polarisation peaks, but no respons might yield some cross polar performance figures, but these appear to be many tens of dB down on the co-polar levels. Futur work is planned to find these cross pola levels
One advantage of lenses for repeater inks is the reduction of cross-talk between ften plagues reflector systems in that the thinsmitting horn por systems in that the iving horn and spoillover is likely to cross couple. This is absent in double tens re peater stations, as shown in Fig. 6 witched beam repeater stations can be designed easily, by erecting two or more enses in the surface of the 'bin' on the horn to the appropriate focal point. An outstanding possibility exists for an experimenter to develop a 'venetian blind' recting system for the plates of this lens ystem. Although this would be awkward and unstable on Earth with gravity and with whom we had a discussion got quite xcited about the possibility. Once in o - Usoftens arias in repeterstion 9. 6 . Use of lens aerials in repeater station
reduces cross-talk between transmitting
on fine cords and would remain fixed and rigid at highly accurate spacings.
The project has been interesting and I
would like to thank Mr U. E. Ekaette, who would like to thank Mr U. E. Ekaette, who
carried out experiments on this project carried out experiments on this project,
and the staff of the Electronics Laboratoies, UKC, who undertook constructional work.

Appendix

The phase velocity of the e.m. wave betwee
$p=\frac{c}{\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}}$
where c is the velocity of light, a is the plate spacing and λ is the free space wavelength. If a
is set at $\lambda 2 v$ goes to infinity; in other words o propagation is possible. The waveguide is aid to be "cut-off' for a larger than $N 2, v$ is greater than c.

g.

From definitions in optics, the refractive in dex n is
media,
$n=\frac{c}{v}$
for this work, n is less than 1. From A

$$
\begin{equation*}
n=\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}} \tag{3}
\end{equation*}
$$

Again from optics, optical paths (that is, paths alon
as
$\frac{\text { geometrical path }}{\text { wave velocity }}$
=optical path
Consider Figure A_{1}. If the curve is such that all optical paths from P to the axis OY are equal, it F will end up sending out a plane wave to the left from OY onwards. Clearly for all parts of the incident spherical wave to end up producing plane wavefront in phase along OY, the veloc-
ity between the plates must be greater than c. Therefore, equating the optical paths OF and P Therefore, equating the optical paths OF and
will give an equation for the required curve.
$\frac{\sqrt{(f-x)^{2}+y^{2}}}{c}+\frac{x}{v}=\frac{f}{c}$
Tidying up and writing in n for c / v,
$\left(1-n^{2}\right) x^{2}-2(1-n) f x+y^{2}=0$
A_{5} Co-ordinate geomeiry buffs will inimediately
reccognise this as the equation of an ellipse. If we cut this curve as a concave ellipsoid surface on the stack of metal plates, it should act as a
precision aperture aerial of focal length f :

ig. A_{2}

tepping
In a distance $\lambda(1-n)$, the phase of the wave
hanges by 2π radians inside the plates. So changes by 2, racians inside $h(1-n$ as a run-
whole fanily of ellipses with N,
ning parameter enables metal to be removed as ing parameter enal
These curves can be plotted accurately in order to construct a template, which can be used
during manufacture to yield a surface figure whonse r.m...s. rrorre are much less than a wave
length $\sim N / 16$ ar 30 GHz with care).

Approximate beamwidth of aperture aerial In microwave communication (and at many
other frequencies for that matter) the ability to ther frequencies for that matter) the ability to is a great help in keeping the required transmitter power down; making the system more in erference frees, making the communication rela-
ively private; and in some cases avoiding tively private; and in some cases avoiding
problems with 'multipath' effects - which is a
version of freedom from interference. All this is version of freedom from interference. All this is
especially true in satellite communication especially true in satellite communication
systems. The contour diagram of the aerial beam intersecting the Earth in that application is termed the 'footprint'.
Consider the aperture aerial in Figure A_{3}. If the aperture is illuminated uniformly right
across the dimension d, then any small element across the e dimension d, then any small element
of the wavefront $d A$, will radiate in phase along he forward direction. It will also radiate nearly equally in other directions (somte readers will
recognise that this is what Huygens said in his comments on 'secondary wavelets'). Ho whever, commen
the phass
dififer.
In Fig

In Figure A_{3} conisider waves along direction
direction $\theta / 2$ then that will be true also for all $d A$ separated by $d / 2$. But this amount on phase
difference means that the power density in the difference means that the power density in the wave is now half that going along the forward
direction. This is called the '3dB down' direction. To get 90° phase difference in the contri-
butions from the $d A_{1}$ and $d A_{2}$, $x_{1}+x_{2}$ must equal fuarter of a wavelength.
\therefore from the right angled triangle:

$$
\sin \frac{\theta}{2}=\frac{\lambda}{8}+\frac{d}{4}=\frac{\lambda}{2 d}
$$

Now for any reasonably high gain aerial, the
3 dB down' beamwidh θ will be SdB down' beamwidth θ will be small. This
means that $\sin \theta / 2 \simeq \theta / 2$ for the angle in
adians.

$$
\begin{aligned}
\begin{aligned}
\text { radians }=\frac{\lambda}{d} & \mathrm{~A}_{8} \\
\text { or } \theta^{\circ}=\frac{57.3 \lambda}{d} & \mathrm{~A}_{9}{ }^{\circ}
\end{aligned},
\end{aligned}
$$

This is approximate, but quite good in practice. his optimistic estimate.
References

1. Winston E. Kock, "Metal-Lens Antennas". Proc.
R.R. and Waves and Electrons, Nov. 1946 , pp. A. W. 28. A. W. Love "The Diagonal Horn Antenna";
Microwave Journal, March 1962, pp. 117-122.
K. L.Smith 3. K.L.L.Smith, "The Ubiquitous Phase Sensitivy
Detector": Wireless World, Vol. 78, No. 1442, Detector". Wire
August 1972 2he,
2. K. L. Smith,
3. L. Smith, "Noise, Confusion in More Ways
than OOie" Wireless World, Vol 81, Nos. 14771 ,

${ }_{d / 2} d A_{1}$ to the $d A_{2}$ vibrate 90° out of phase along

Ťhe function of functions

An approach to Walsh functions from telecommunications history
by Thomas Roddam

Named after their originator, an American mathematician, Walsh applications in electronics. This article first discusses the use of telecommunications then goes on to illustrate the nature of Walsh functions through a practical technique for avoiding crosstalk technique for avoiding crosstalk between overhead telephone wires Generation of Walsh functions and some of their applications will be dealt with in the concluding part of

At somewhat irregular intervals readers of Wireless World find themselves confronted tion. It may be, indeed it often is, our old friend the exponential, or it may be, say, Muratori's function. Why does this happen, why do we write these things, why d
you read them?
It is not just
op pay the ink bill, which makes the author produce this stuff. There is a real satisfaction in attempting to make poor old exp x) fresh and interesting: there is a real
challenge in explaining Muratori's funcchallenge in explaining Muratori's func
tion clearly without boring the reader stiff. The reader is more of a problem. Many years ago the editor, not this one or his predecessor, told me how he had actually seen a reader, reading the latest issue. In
the Underground. However, little is the Underground. However, little is
known about the great mass who live a no doubt quiet and industrious life, and never write letters or complete questionnaires. The problem is quite simply this. Either they know all about the Binomial Theorem, let us say, or they don't. If they
don't, either they need to, or they don't. The last group have lived happily in ignorance, while the ignorant who need to know must surely need to know more than can
be packed into a few pages. The packed into a few pages.
The answ, I have decid
ort of people we are. In most organisations there are two sets of people. There are the hard-headed men committed to getting stuff out of the factory gate and the
long-haired boys messing about with sliderules. If you prefer it there are the fossils who spend a week getting it wrong with a soldering iron rather than a morning on the computer finding an optimum solution. Muratori's function is a weapon used
by the theorist to defend himself against the pragmatist, especially if the pragmatist is his boss. Know your enemy.
With this in mind I began to peer back into the early days of our trade. It turns
out that we have been in busins out that we have been in business longer
than I thought. The electric telegraph is, of course, the starting point, but it is sur-
prising to find that the proposal for an electric telegraph actually preceded the work of Volta and Galvani. The first proposal, in the Scots Magazine, was in
1753 , and the scheme was to use 26 wires, each with a hanging pith ball which would strike a bell, using a Leyden jar as source. Once the cell had been invented, and Oersted had found that a current would influence a magnet, the way was open and the contrasts, the tunnel vision, all the factors of our modern technology were showing themselves in all their glory. The submarine cable, and especially the Atlantic cable, bring out all that is finest in
pragmatism, theory, and the use of theory for analysis but not for synthesis. Fig. 1

Pratt from Notes on Telegraphy, A. G. Pratt and G. Magg, which my mother the stranded conductor was the idea of Professor William Thomson, later Lord Kelvin, in 1854. Clearly he was a sound practical man. In 1855, however, he was considering the partial differential equaion
$L C \frac{\partial^{2} n}{\partial t^{2}}+(C R+L G) \frac{\partial n}{\partial t}+R G n=\frac{\partial^{2} n}{\partial x^{2}}$
The rrouble is that he decided to neglect full equation, called the telegrapher's equation, was published by Kirchhoff in 1857, and forgotten, by Heaviside in 1876, but Heaviside never had any luck, and by Poincaré in 1893. Thomson comes up with a solution for the line current at time t, I_{t}, tery can produce, I_{0}, of:

$I_{\mathrm{t}}=I_{\mathrm{o}}\left(1-2\left(\epsilon^{-\pi 2 Z k c l 2}\right.\right.$

$\left.\left.-\epsilon^{-4 \pi 2 \nu k c l 2}+\epsilon^{\varepsilon^{5 \pi} 2 t k c l 2} ..\right)\right)$

where $\epsilon=(3 / 4)^{t / a}$ and $a=k c l^{2} \log _{e}(4 / 3) / \pi^{2}$

There's glory for you. At the end of the cular type of line the speed of for a partiinversely proportional to the square of the length.
At this point there are three ways to go. The first, Thomson again, is the purely
instrumental one. When the battery is ap plied at one end of the great distributed $R C$ circuit the current starts to grow, very slowly, at the far end. Invent a very sensitive detector and it will only be necessary to hold the key down for a relatively short time to get a signal, and the reduced
charge in the system will soon die away ready for the next mark.
The next step is to use what politicians call a U-turn: at the end of a positive mark the battery is reversed, to send a curbing
current down the line. The duration of the curbing current was changed according to the speed of working but was typically about four-fifths of the mark pulse. After the curb came an inter-pulse interval, with
the line earthed he line earthed.
This is nothing but something we tend signal characteristics have been tailored, coded, to suit the characteristics of the medium. Indeed, the telegraphers did quite a lot of this. Morse produced a code in which the commonest letters used the
shortest groups, and on the long cables, shortest groups, and on the long cables,
with the sensitive receivers, input and output capacitors were used to eliminate the effects of earth currents. Then they went to multuplexing by using three-value logic,
and to some quite sophisticated time division multiplex systems for short lines, with synchronisation between the two ends. All this ingenuiry, all this tedious calculation of the rise and fall of current in long lines, but no-one really looking at the elegrapher's equation. At least, memory
suggests that Heaviside did, but his sad cry even Cambridge mathematicians deserve justice' summarizes his influence. In Europe the invention of the loading coil is attributed to Pupin, but really it is sitting,
there, just waiting for someone to ask' "what value of L do we need?"
If there is a moral, and I think there is one, it is that it is a waste of time to use mathematics to find out why it works. Use the mathematics to find out if
or how to make it work better.
Under certain conditions the telegrapher's equation brings up the Bessel functions in its solutions. The Bessel functions weave in and out of the history of telecom-
munications. They became very trendy

WIRELESS WORLD DECEMBER 1981

just after someone had the idea of sticking a paper cone to the centre of an ear-piece,
instead of fastening the ear-piece to the instead of a large horn. Looking back we can ask why there was such interest in calculating how the cone would break up into spatial harmonics when the real problem
was to prevent this happening at all. More was to prevent this happening at al. More
recently the Bessel functions have appeared in filter design, although I found them in a pulse response problem quite a long time ago.
Then, of co
Then, of course, there was frequency modulation. The idea, that by keeping the
carrier going at full power all the time the carrier going at fuil power at be kept down, seems a fair one to use for examining a reticians began to study the characteristics retici
of
$e=E_{0} \sin \left(\omega t+m_{\mathrm{f}} \sin p t\right)$, where
$\omega=2 \pi f_{c}$, with f_{c} the centre frequency
$p=2 \pi f_{\mathrm{s}}$, with f_{s} the signal frequency
and m_{f}, the modulation index, is the ratio $\delta f_{d} / f_{s}$
When this expression is expanded it becomes
$e=E_{\mathrm{o}}\left[\mathcal{F}_{0}\left(m_{\mathrm{t}}\right) \sin \omega t\right.$
$+\mathscr{y}_{1}\left(m_{\mathfrak{f}}\right)[\sin (\omega+p) t-\sin (\omega-p) t]$
$+\mathfrak{f}_{2}\left(m_{)}\right)[\ldots(\omega+2 p) \ldots(\omega-2 p)$
$+f_{3}\left(m_{\mathrm{f}}\right)$.
At this point the interpreters did the wrong thing. If the spectrum is to be kept
into the same bandwidth as we need for into the same bandwidth as we need for
amplitude modulation we must have $\mathcal{J}_{2}\left(m_{\mathrm{i}}\right)$ amplitude modulation we must have $\mathcal{f}_{2}\left(m_{\mathrm{f}}\right)$
and the higher Bessel functions small, so that the ($\omega+2 p$), ($\omega+3 \mathrm{p}$) etc. terms can be
neglected. This leads to a modulation index of about one half, for which the \mathscr{f}_{2} term becomes about 3%. If you go on to calculate the noise advantage you find that the whole thing is just a lot of nonsense. point in taking it seriously. Every point in taking it seriously. Every
schoolboy knows now that the two keys to f.m. operation are hard limiting and a high modulation index.
Here we have
Here we have the theoreticians saying something would not work, and the practi-
cal man showing that it did. A rather bizarre phase was the 'sidebands don't exist' period. The expansion of
$A\left(1+m \sin 2 \pi f_{s} t\right) \sin 2 \pi f_{c} t$ to give a carrier, $A \sin 2 \pi f_{c} t$, and two
sidebands at $\left(f_{\mathrm{c}} \pm f_{\mathrm{s}}\right)$, is not the most difficult mathematics we expect to meet. It was, however, too much for a school of thought, still alive around 1930, which
held that the signal was there, in the car held that the signal was and could be received with a very
rier, narrow band receiver. Circuits were pub narrow seds were made. We shall never know just why they seemed to work, but there are two obvious possibilities. The
narrow bandwidth was produced by narrow bandwdicwas, which would not
string of tuned circuis, if they were tuned
be all that narrow even if string of tuned narrewene if they were tuned
be all that
to the same frequency. The detectors used

Sir George Jefferson, chairman of British Telecom, waves cheerily from an elevated position at Bratraining school, where
engineers practise climbing on these short enginee
poles.
then behaved much better at low modulation, so that the carrier enhancement
would have improved the detector. The audio amplifier, with $C R$ interstage coupling, could easily have boosted up the lost treble. Alternatively, or additionally, we must not forget one of the great design
problems of the time, the feedback from anode to grid through the valve capacitance. Strong coupling, both capacitive tance. Strong couping, both capaciive must have been present. Immediately we have a bandpass structure, not a single narrow slit.
I referred to this as a bizarre event, because it took place when multi-channel carrier systems were already in use on telephone lines. The distance-limit of
speaking by telephone depends on the prospeaking by telephone depends on the pro-
duct of the resistance of the circuit, (in ohms) R, and the capacitance of the circuit (in microfarads) K - or $K R$. The following figures show approximately the $K R$ which limits easy and practical speech, and
indicate the telephonic value of the indicate the
conductors:
copper wire (open) \qquad $K R 10,000$
lines $\begin{array}{r}8,000\end{array}$ iron wire (open)
iron wire (open)
The low value of iron is due to the pres
ence of electromagnetic inertia, which is absent in copper. So the next step was to put in more
electromagnetic inertia, in the form of the loading coil. The great influence which the loading coil was to have on the communications
industry arose from the simple fact that the industry arose from the simple fact In the $6,000 \mathrm{ft}$, and heavy loading a coil every $3,000 \mathrm{ft}$. At $3,000 \mathrm{~Hz}$ loading brought the attenuation per loop mile down from about 2 dB to about 0.5 dB . Longer circuits, bet
ter circuits, more traffic, and so more cir ter circuits, more traffic, and so more cir
cuits and more loading coils. The size and the spacing demanded close study. This study, of a long ladder of series inductors and shunt capacitors, brought the func tions $\cosh \theta$ and $\sinh \theta$ into the commu
nication engineer's life. The development of the low-pass filter, followed by the other classic filters, from the long line analysis explains the awkwardness of early filter theory. In the long line the problems of end effects were relatively trivial, but the
ends could wag the filter if only a couple of sections sufficed. Clever systems of high class bodging, like m -derivation, mm ' derivation, α-matching, and tedious calcu lations of mis-match and interaction los made filter disign an art. Then we found
Tchebycheff. If my memory is correct, his interest, in St Petersbourg (he wrote in French) in 1875, was steam engines. All those shiny bits that move to and fro, while the wheels go round, should move in a
straight line. Like the pass-band respons
of a filter. The Tchebycheff functions were of a filter. The Tchebyct
a step in linkage design. a step in linkage design.
Not very much relevant to our theme can be found in the history of modern filter design. Once it was seen that the problem
was, quite simply, to design a finite netwas, quite simply, to design a finite net-
work of defined properties, it became a matter of using well-known techniques. The vital step was the realisation that the idea was to find the best value to use in the structures which had grown up from the
long line. long line
Softly Softly the functions come and go, or, if
your taste is more demotic, I go, I come back. The Laguerre polynomials have cropped up again, though I haven't seen them around since I dealt with a chain of The story began with telegraphy, with signals which were either marks or spaces, and moved on to telephony, with the signals a mixture of sine waves. In the 1930 s , however, Alec Reevés was building one
pulse modulation system after another. Before any of them came into service the digital computer was on the way. The Boolean algebra, which we had come to associate with the use of mathematics in cleaning up classical logic,
Although Boole's logic, and the techniques based on it, like the Karnaugh map, were central to the signal processing operation, the signal frequently needed to
be transmitted from place to place. The be transmitted from place to place. The
available telephone channels, and the general thinking of the radio circuit designers, were based on bandwidth, on the available chunk of frequency spectrum. Information theory, which started well before it really
mattered, defined what could be done. Fourier analysis could be used to discover just what the circuits did to the pulses. There is a faint memory of Heaviside here. The pulse gives an infinite series, and then the bandwidth limitations just chops off
most of the terms. In pulse modulation systems, indeed, the sine wave really needs an infinite number of pulses, and the pulses need an infinite Fourier series. The pulse-makers clearly need a new kind of series, to do for them what the
Fourier series had done for sinusoidal waveforms. It is to the favourite in this field that we now turn our attention. The biggest advance since sliced bread, we are
told, is the Walsh functions, althoug I told, is the Walsh functions, although I regard sliced bread as a cruel and unwritten:
"We may well come to the point of view that if Walsh functions had been with us from the start and someone had then come
up with the idea of sinusoids we would all want to know what use they were."* A fund is being started to buy ocarinas for supporters of this view. We have already seen how important it is to keep one's feet firmly planted on the \star R. Barrett, J. A. Gordon, D. Brammer.
Theory and applications of Walsh furcTheory and applications of Walsh func-
tions. Hatfield Polytechnic Symposium 1971.
$\dagger 1 \mathrm{am}$ indebted to Mr A. Emmerson of British Telecom for locating Fig. 2 in the
book referred to.

Fig. 2. Transposition of telephone wires for
avoiding crosstalk caused by mutual
inductance On the let is th pattern inductance. On the left is the pattern
employed and on the right the method employed and on the right the method of
wiring at a transposition point. (Adapted
from Railway wiring at a transposition point
from Railway Signalling and Communications, Tattersall et al, 1946.)
ground when considering the use of mathematics. It is therefore appropriate to look at Fig. 2. When telegraph poles began to be used for telephone circuits it was soon found that if the two wires of one pair
simply ran parallel to the two wires of simply ran parallel to the two wires of
another, the mutual inductance produced cross-talk from one to another. A simple answer is to split the run in half, and cross one pair at the mid point. We can write this symbolically as:

$$
\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}
$$

When there are more than two pairs we can start by taking two pairs as a quad, and
use the same symbolic solution, which can bracket up to be a matrix:

$$
\left(\begin{array}{rr}
Q & Q \\
Q & -Q
\end{array}\right)
$$

where \otimes is the Kronecker product, that

$\mathrm{H}_{8}=\mathrm{H}_{4} \otimes \mathrm{H}_{2}$

The working of Fourier analysis depends on the fact that the sine and cosine wave
$\int_{0}^{2 \pi}$
$\cos m \theta \cos n \theta d \theta=\theta$ if $m \neq n$
The rows, and the columns, of the Hadamard matrix have this orthogonality characteristic, which is why row 1 transposi-
tion does not couple to any other row. And tion does not couple to any other row. And
the rows are, quite simply, the Walsh functions. There is another way of producing them, which gives a different order.

Four pairs can be transposed according to

 this pattern, with the total run split intofour sections. If we call this (G), we can transpose eight pairs according to the scheme
We can go on expanding in this way, and what we are doing is working with
mard matrices. Using the definition
$H_{2}=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
we have
$\mathrm{H}_{\mathrm{N}}=\mathrm{H}_{\mathrm{N} / 2} \otimes \mathrm{H}_{2}$ The Rademacher functions are defined as
$r_{n}(\theta)=\operatorname{sign}$ of $\left(\sin \left(2^{n-1} \pi \theta\right)\right), 0 \leqslant \theta \leqslant 1$ and some of the Walsh functions are
wal $(1, \theta)=\mathrm{r}_{0}(\theta)$
wal $(3, \theta)=\mathrm{r}_{1}(\theta)$
wal $(3, \theta)=\mathrm{r}_{1}(\theta)$
wal $(7, \theta)=\mathrm{r}_{2}(\theta)$

$$
\text { wal }\left(2^{k}-1, \theta\right)=r_{k-1}(\theta)
$$

The way in which the rest of the family is derived depends on an equation which

$$
\text { wal }(\mathrm{i}, \theta) \cdot \text { wal }(\mathrm{j}, \boldsymbol{\theta})=\text { wal }(\mathrm{i} \oplus \mathrm{i}, \theta)
$$

The symbol \oplus stands for modulo-2 addicarry sign. If we take

$$
\begin{array}{r}
\begin{array}{l}
1 \rightarrow 0001 \\
\oplus 3 \rightarrow 0011
\end{array} \\
2 \leftarrow 0010
\end{array}
$$

so that wal $(1, \theta)$. wal $(3, \theta)=$ wal $(2, \theta)$

A set of wal functions is shown as Fig. 3

\section*{$+1 \longrightarrow$ wal 0,0

 ${ }_{-1}^{+1} \square \square \square \square \square=1 \mathrm{mal}(7, \mathrm{\theta})$

Fig. 3. A set of Walsh functions, wal($n, \theta)$. Fig. 3. A set of Walsh functions, wal(n,).
Note that θ is a time base and that, as the unctions have the values ± 1, they are ectangular in form
which goes from $-1 / 2$ to $+1 / 2$ in the time interval T. Another important feature is hat the functions can be sorted out into wo groups. If you imagine a sine wave and right down, a technique used, with 20 dB of clipping, for some transmission systems on noisy circuits, you will see that wal (1, ө) looks very much like a clipped sine
wave, and wal $(2, \theta)$ like a cosine wave The odd Walsh functions, which are antisymmetric, are written as sal (i, θ), while the symmetric properties of the even functions give them the form cal (i, θ). The sine wave we assumed to be clipped
ight down to give sal $(1, \theta)$ possessed the right down to give sal $(1, \theta)$ possessed the
property of having a frequency. sal $(1, \theta)$, a single cycle in the sine wave, has two crossings of the zero axis in each unit of me. (As shown the end zeros are shared with the next cycle.) The sequency of a
Walsh function is similarly defined as: Walsh function is similarly defined as: $1 / 2$ (average number of zero crossings per unit time)
What have we now got? A set of orthogonal functions, and the concept of se-
quency. It is the switching man's equivalent of the sinusoids and the concept of frequency.

To be concluded :n the next article, which wuil show how Walsh functions ean be produced by hardware and discuss their use.
 \section*{POIBR BOMIMUMIBATOMS ISA
 \section*{POIBR BOMIMUMIBATOMS ISA
 computerised switching}
 computerised switching}

When Leicestershire police planned to move
their headquarters from the cente their Leicester to a new site 5 miles out at Enderby they decided to modernize their communications system at the same time. The up-to-date
communications centre is now working communications centre is now working, though
the rest of the headquarters had to be left bethe rest of the headquarters had to be lef.
hind because of government spending cuts. The essence of the new system, designed and
built by Burndept Electronics, is that it is based built by burndept Electronics, is that it is based
on a computer. This provides, first, real-time on a computer. This provides, first, real-time
switching between audio channels in a nerwork-
ing system which deals with radio ing ssstem which deals with radio and telephone
messages and interconnects the police officers messages and interconnects the police officers
concerned in any required pattern _ for concerned in any required pattern - for
example, a policeman on his beat, a patrol car example, a policeman on his bear, a patrol car
and a monitoring operator at the headquarters.
Secondly the computer receives, stores, displays Secondly the computer receives, stores, displays
and prints out digital information from a data transmission system which gives the locations and availability of 236 police vehicles in Leicestershire. Thirdy, it provides a means of trans-
ferring textual information over private police ferring textual information over private police stations. (Actually three computers are spare.).
For the networking system there are six consoles in the main control room (see picture):
Each console has a v.d.u. and keybard connested to the main computer and also two swirching control positions based on local microcomputers. At each of these switching positions an operplay unit to control up to 10 audio channels.
Wind With each channel the operator can order paterrns of switching for a variety of functions. For
example a "talk-through" function allows intercommunication between mobile radio sets, such as between a patrol car and policeman on foot with a hanc-portable set. Link-ups can be
made between radio and radio (v.h.f. or u.h.f.), between telephone and telephone, and between radio and telephone. Six functions are available or each channel, and whichever is operating is
shown by a l.e.d. lighting alongside an appropriate label. The control positions also allow the operators at the consoles to communicate with system. And, of course, they allow the LABX ershire police to communicate with police

is indicals are answered, any unanswered cal is indicated at all the control positions until it is For dealing with unusual incidents there is also available a special remote control console
which which can be operated, for example, from inside
a van. This is connected to the rest of the system a van. This is
by modems.
The actual electronic switching of channels
under computer control is done by a under computer control is done by a solid-stat space matrix, using a
channel.
The vehicle monitoring system mentioned above weas developed by burrndept Cyfas. It uses to the mobile radio in each car and, at the communications centre, a decoding unit connected to the main computer. In the vehicle a smal
control box fitted under the dashboard carries rectangular grid pattern corresponding to the grid on a map of the area. Against the rows and columns of this grid are press-burtons. At regu-
lar intervals a policeman in the vehicle presses a lar intervals a policeman in the vehicle presses a
row-button and a column-button, which together indicate the vehicle's position on the grid
at the intersection of the row and column. He at the intersection of the row and column. He
presses further buttons to signify. whether the
vehicle is avilate versses further buttons to signify whether the
vehicle is avalaboe for duty or not. As a result
binary digital aodes are binary digital codes are generated at a data rate
of 100 bits and these modulate the vehide's of 100 bit/s and these modulate the vehicle's
radio transmitter on one of its voice channels by two-tone frequency shift keying. The codes are avaiable to the police officers as pairs of decimal digits (for example $5 / 8$ means the car is at the
police station and the crew is coming off duty) and these automatically indicate the type of vehicle (e.g. 5 for Panda cars, 6 for Range Rovers).
At the communications centre, the data is
demodulated from the radio voice channel, decoded and fed into the computer system, where a complete list of vehicl locations and states of
availiability can be displayed on the v.d.us and printed out.
Leicesters
Leicestershire police say that the new system
has not only has not only improved their communications
but also made administration easier and more efficient. At the same time as adopting this new
technology the technology they do recognize the increasing
need of communities for the need of conticmas for the friendly, neigh bourhood policeman"
"bobby on the beat",

D́irect digital frequency synthesizer'

Ion spectrometer application needs all-digital technique
by J. H. J. Dawson, Ph.D.

WIRELESS WORLD DECEMBER 1981
proximating the value of the sine of 90° to hat of its adjacent angle in the r.o.m. because the logic which generates the sine values for the third and fourth quadrants does so simply by supplying a sign bit to g with the magnitude generated as for the first two quadrants. Alas, sign/magnitude vailable d-to-a converters and so code onversion to straight binary has to be adopted; this is not diffficult, but requires nother six i.cs. Finally, since this synuth ible, commensurate with a reasonable safety margin, extra edge-triggered latches re needed to achieve synchronous opera ion at 8 MHz

Circuit description

The input frequency number in true 16 -bit binary code is fed, as in Fig. 1, to the 16 put, but the carry output passes to an exclusive-OR gate IC_{10} which functions as a partial adder and thence with the other adder outputs to the D inputs of 17 edge-
triggered latches, IC IC_{5}. The clear line for hese three latch chips is shown as held high, but if you want to add a clear facility to the synthesizer then this is the place to do it The latch outputs go back to the
ther set of adder input ports so that th ways be incremented by the input fre quency number at the next positive-going lock edge. If the input number is simply a 1 in the most significant bit (m.s.b.) then tate after four clock pulses. In other words, the m.s.b. input corresponds to an output frequency of one quarter of the locking frequency, which in this case means 2 MHz . The 1.s.b. input must 61 Hz) and so the output frequency is defined as $N \times 2^{-14} \mathrm{MHz}$, where N is the input number.
Reflection (looking backwards through he r.o.m.) in the second and fourth quagates IC I_{8-10} which invert when the m.s.b. output from IC_{6} is high. Except at 90° and 270° (conditions detected by the gates in C_{11-12}) the reflected angle is incremented by $99^{\circ} / 1024$ so that the reflection does actualy occur about 99° even though it isn't
present in the r.o.m. At 90° and 270° this addition is not performed, with the result that the memory is addressed at the maximum angle which it does actually contain, viz $90^{\circ} \times 1023 / 1024$. With the Schottky and
low-power Schotrky chips specified, the latch propogation delays, gate delays,
pical add times and latch set-up times in his section of the circuit amount to about
36 ns less than the 125 ns interval between lock pulses.
The read-only memory IC_{18} is rather low (maximum address access time lones) of latches $\mathrm{IC}_{16,17,19}$. The sign bit, derived from the carry output of IC_{4}, is also passed through the latches to equalize delays and his must now be combined with the sine magnitude information derived from the put. This is done by the standard method of complementing the magnitude in IC_{20-22} and adding 1 in IC_{23-25} when the sign bit is high. The inverted form of the sign bit
must be added to the carry output of the must be added to the carry output of the
complementing operation if disaster is not to occur at 180°. The resultant binary number is latched again before the d-to-a converter so that when a fast converter is The de-gitput code swings symmetrically The output code swings symmersut the
from 0000000001 to 111111111 abou zero level 1000000000
To squeeze the last bit of frequency range out of the synthesizer a sharp multisection elliptic low-pass filter is used
in the circuit shown, after the d-to-a converter. It is designed to be 1 dB down at 3.3 MHz and with a minimum stop-band

Ionic chemistry without solvents

The circuit described in this article, together with scanning, timing and contro-
logic, made up the programmable frelogic, made up the proged for a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The heart of this instrument is a 1 -inch cubed "trapped uously pumped vacuum chamber and situated between the pole pieces of a large electromagnet. Chemicals are leaked into the vacuum so as to give a sample pressure Gas molecules are ionized by passing a Gas molecules are ionized by passing a
20 eV electron beam current of 50 nA through the cell for 5ms, and trapped inside by the combined effects of the magnetic field and a potential well created by a small potential (1V) on the plates parallel to the
magnet pole caps. The remaining four cell plates are d.c. grounded, one opposing pair being connected to the differential outputs of the synthesizer, and the other pair through a preampilifer to a small computer, being digitized at Just prior to "detection" motions of the ions present in the cell ar excited by a swept frequency burst from the synthesizer, say se pass have the same cade. Ions of the san
cyclotron frequency
$F(\mathrm{kHz})=\frac{1537 B(\mathrm{~kg})}{m(\mathrm{~m})}$
so that at 15 kG a mass range of 10 to 100 atomic mass units requires a frequenc atomic mass units requires a frequency
range from 2.3 MHz to 230 kHz . Each group of coherently-excited similar-mass

Listening plates
To oreamplifie
ons makes its contribution in the form of a decaying sine wave to the total transient signal which the preamplifier picks up. To instrument it is then usual to quench the ions in the cell by reversing the polarity of the side plates, repeat the whole sequence of events, and to accumulate successive transients within the computer's main
memory. It is so that this may proceed memorthly that the rapid sweep from the synthesizer must be absolutely reproducible with respect to phase, as must all timing operations concerned with the defection process. As in a spectrum analyser,
Fourier transform program will then separate the individual frequency components from the transient and allow ion concentration versus mass to be plotted.

The technique is insensitive by compari son with conventional mass spectrometers mechanically it is very simple and yet can provide exceptionally high mass resolution. The real use of the technique comes from delaying the detection process until second or so after the electron beam pulse During that time ion-moect produce new chemical species the mass spectra will change accordingly - ionic chemistry without solvents. The chemistry of complex mixtures can always be unravelled by
studying the effect of running the synthesizer at a fixed frequency shortly after the electron beam pulse so as to over-excite and hence expell one by one each possible
reactant ion.

News of the Month

Prize-winning computer

Sixth-formers Alistair Melville, william Morel
and Chris Thomas won the first prize in the group entries for 18 to to year old age group in Their entry was a microcomputer system an heir prize was a North Sea trip and $£ 200$. Their real prize, however, was one that they had orga-
nized for themselves. At a computer exhibition they established contact with a firm specializing in microcomputer interfaces, 3D Digital Design
and Development, and managed to negotiate a and Development, and managed to negotiate a
deal for 3 D to manufacture the computer and for them to take a royalty and to continue to develop the ssystem. They seem to have traded completing their A-levels, they are all employed at 3D.

Messts Thomas, Morel and Meville with a production model of the 3 DO9 computer
which they designed while still at school, and which won them a prize in the Young
Engineer for Britain Awards.
counter/imer, a 1 Mbyte addressing range with an optional cassette interface. Random access memory is expanded by the addition of memory cards with 64 K on each card.
There is a controller for up There is a controller for up to four floppy disc
drives which are available in a number of nations of size and density. The video controlle provides 40 or 80 characters wid th with 24 lines, and graphics with 640×240 pixels. There is clude high resolution and colour graphics; Uniflex operating system which will allow the computer to operate exacly like a PDP11; and
multi-user capabilities.

The computer has been designed for maxi
num flexibility with a wide its designers are expecting the majority of ase its designers are expecting the majority of user linked up to monitor and control processes anc may also be used for business applications, such
as administration and records, accounting, data and word processing.
Concentrating on their computer design, th Concentrating on their computer design, the
designers did not get very good results in their A-sevels. However, the success of the design
and the winning of the award has assured them and the winning of the award has assured them of universirity ylaces and they will return to Aca-
demia in September 1982.

C.b. campaigner into designer

James Bryant, well known as a camppigner for
citizens' band radio through the Citizens' Band
Ansocian work as an electronics engineer to his normal work as an electronics engineer and designed a
c.b. set for the new British market. Under the The British designed and made Tenvox c.b. transceiver

trade name Tenvox, the 40 -channel f.m. transceiver is being manufactured by Voxson
Audio Ltd, of Abingdon, with whom Mr Bryant Audio Ltd, of Abingdon, with whom Mr Bryant
now works full time. The set conforms to the
tecent Home Office specification MPT 1320

Junc issue, p .5 s$)$ and, as wellas being desiged semiconducucoros, from Plesese, for ther r.f. and

 selection '('up' and 'down'), slicter conic chantrols for
volume and squelch, selectors for high or tow volume and s aunelch, selectors for high or low
power transmission and l.e.d. indicators of sig. power transmission and l.e.d. indicators for sig-
nal strength,
transmit nel selection. The set will be on sale in early
1982 through appointed dealers.

Do-it-yourself integrated circuits

Integrated circuits make commercial sense even
or the smaller manufacturer of electronics goods, according to Marconi Electronics De-
vices (MEDL), who recently launched their ices (MEDEm 85 - gate array design system. Gate array is another name for uncommitted logic array; a matrix of pre-processed cells which ions to form an integrated circuit for a specific purpose. This allows a large number of wafers o be manufactured in advance which can then time to a customer's specification. Marconi have called the system 'gate array - plus' and the
plus refers to the ability of any competent plus refers to the ability of any competent out a printed circuit board, to lay out the metal tracks for the integrated circuit.
To do this the engineer requires a 'design
pack' which consists of an instruction manual, pack' which consists of an instruction manual,
with a step-by-step procedure for manually interconecting the gete arrays; a printed copy of
the library of cells is available and the cells are the library of cells is available and the cells are
also printed on to decals', self-adhesive block also printed on to 'decals', self-adhesive block
schematic representations of the gates which may be stuck down onto a layout sheet,
preprinted with the basic logic array. The depreprinted with the basic logic array. The de-
sign is then sent in to Marconi who will code it sign is then sent in to Marconi who wir code
into their computer which can simulate the de-
sign sign and run a series of checks to ensure that the
circuit conforms to a number of design rules. circuir conforms to a number of design rules.
The design for the interconnect mask will then The design for uhe intercly. This process can be
be produced automatichly used for comparatively small production runs of
a device. If subsequently larger numbers are required the same computer information can be
used to produce an Iso-Cellmos device (see Weireless World, News of the Month, April 1981). The same computer can also produce a
series of test patrerns to test the device automatically. If the designer knows how to use a computer, he can hire time at the Marconi Design Centre, input the data himself and verify his
design. MEDL will also offer the CAD facility as a software package to be run on the designer's own computer.
System 85 is available in a family of four devices. The MA8505 has up to 560 gates, the
MA85 10 has 960 gates, the MA8515 has up to 1440 gates and the MA8520 has 2014 gates fitting into a 2 2-pin package.
All the manufacturing
place in a brand new processing plant recently place in a brand new processing plant recently
opened in Lincoln. The plant represents an
initial investment approaching $£ 5$ million and is part of MEDL's ten-year expansion plan, is part of MEDE 100,000 sq. feet, the plant has twice that amount assigned for future expan-
sion. sion. The company is recruiting staff at all levels
and the from senior engineers to factory operators. The Iso-cmos process used in the manufac ture of the devices is also used by Plessey
Semiconductors and the two companies have Semiconductors and the two companies have
agreed to second-source each other's products. - The Department of Industry has announced
the UK 5000 gate array proiect which is a venthe UK5000 gate array proiect which is a ven-
ture to produce a suite of design software for use ture to produce a suite of
with c.m.o.s. gate arrays. The e gate arrays will
have to to 5 ,000 usable gates using oxide iso hated c.m.o.s. technology and a double layer of metal interconnections. The software will simu late
ically convert a proven design into pattern gen erator tapes from which the masks for committing the arrays can be made, and automatically produce a test phips.
used to test the resulting chips
The organisations involved in the project are British Telecommunications, the Science and
will be meeting their own pand TMC Ltd. They industrial members may qualify for support unSupport Scheme. An outline specification has been drawn up at the Rutherford Appleton Laboratory and proect teams. have been appointed by all the parti-
cipants. The SERC hopes to encourage the involvement in the project by the academic community. The Dol is providing an indepen-
dent chairman for the management committee and British Telecom has provided the project manager.

Channel 4 transmitters are ready

 The first pair of television transmitters for theIndependent Broadcasting Authority's Channel 4 service have been connected to their channel combiners and handed over ready for use when 1982. The two transmitters, Marconi 15 kW Type B7445 u.h.f. equipments, have been installed and commissioned at Winterhill, Lancashire, by
Marconi Communication Systems Limited. Marconi is equipping a further eleven LBA sites
throughout the United Kingdom with similar throughout the United Kingdom with similar
transmitter suites, as well as installing a onetransmitter suites, as well as installing a one-
B7445/one-B7442 (4kW) u.h.f. combination at a further thirtreen sites, all for the Fourth Channel network. All these, as well as some twenty five
further sites throughout the United Kingdom further sites throughout the United Kingdom
are being equiped with Marconi-designed channel combining units which will enable all
four television channels to be transmited from four television channels to be transmitted from

Mike Aldrich, managing director of
Redifusion Computers, with a Teleputer system, one of a range of videotex
terminals that his firm believes will be at the centre of the home information system'towards the end of the 1980 s . The
terminals combine broadcast tv, videotex, video tape recorder, video disc and
telecommunications with personal video tape re
telecommunit
computers.

Ruth Everard, 19 months old, suffers from spinal I usccular atrophy. She is seen here
driving the wheelchair designed for her by driving the wheelchair designed for her by
her father, Dan Everard, who is perched
behind The her father, Dan design departs from standard
behind
practice by using shunt-wound motors practice by using shunt-wound mo
controlled by c.m.o.s. to give free movement in throe dimensions. The seat
design is modular and can be made to fit
any child ; it cun ever design is modular and can be made to fit
any hild, it can even be replaced with a standing platform. Its controls require very
little strength to operate atthough the chair is capable of corrying an adult passenger,
as shown. Ruth is learning to drive it as shown. Ruth is learning to drive it about
as quickly as most children learn to walk. as quickly as most children earn to walk
The charir has been built in the labs of
Cambridg Consulants Ltd. Dan once Cambridge Consultaints Ltdd. Dan once
worked for CCL and the company have worked for CCL and the company have
contributed laboratory space and
engineering effort conginereding effort. In 1974 CCL developed
en ansel
a sensitive electronic wheelchair controller a seter working on a prototype wheelchair aler working on a prototype wheelch ins
desined bits stather for Terry Wiles, a
thalidomide victim. That experience has thalidomide victim. That experience has
now found another use in helping Dan with
Ruth's chair.

High-speed

Ceefax

Waiting time for BBC Ceefax pages to a ppear on Whiting time for BBC Ceefax pages to appear on
the screen has been halved - and now averages seven seconds. The improvement has been
brought about by using two extra data lines. brought about by using two extra deat anes. has been selected will be up to 14 seconds, hasencening upon whether or not the chosen page
deps iust been transmitted. Timed to coincide with National Teletext Month, October, the improved system overcomes, the problem of lengthy waiting be-
tween pages, previously considered to be a tween pages
drawback.
drawback.
Clin
McIntyre, editor of Ceefax, said, "We decided to use the extra lines to cut the waiting
time for the next page to appear to make the service even more attractive to the viewer There is a grear deal of enthusiasm in thewer.
for Teletext and the furure looks assured". for Teletext and the furure looks assured",
Since the start of the service in 1974 the BBC Since the start of the service in 1974 the BBC
has used two blank television lines, 17 and 18 to carry data for each of the BBC 1 and BBC 2 magazines. Now, four lines are being used for
each magazine - $15,16,17$ and 18 . The digital pulses for the Ceefax and Oracle systems are carried on the normal television signals as the
receiver scanning spot returns to the top of the reciever scanning spor returns to the top of the
screen between pictures.

Three bands to

open
The first new amateur h.f. bands to open since 21 MHz in 1952 will become availaule from January 1, 1982. These are 10,100 to $0,150 \mathrm{kHz} ; 18,068$ to $18,168 \mathrm{kHz}$; and agreed at the World Administrative Radio agreed at the World Administrative Radio
Conference in 1979 . The 18 and 24 MHz bands remain allocated to the fixed and and mobile services until existing assignments have been transferred to new fre"uencies, after which the bands become being made available in the UK to the amateur" and "amateur satellite" services on a non-interference basis.
Under voluntary band-planning propo-
sals it is being recommended that operasals it is being recommended that opera-
tion in the narrow (50 kHz wide) 10 MHz band should be restricted to c.w./r.t.t.y. operation. Since the Home Office is one of he first administrations to permit amateur se of 18 and 24 MHz the initial activity eurs will need to modify their equipment or operation on these bands.
Considerable interest is being shown by mateurs in wideband aerials that could be used effectively on the $14,18,21,24$ and poles fed from open-wire (or 300 -ohm) balanced line and brought to resonance by means of aerial tuning units, also the assic W8JK bi-directional array and arious forms of log-periodic array.

Here and there

Long sea-path ducting has brought about another 144 MHz contact between the British isles afd the Canary Islands off the
coast of Africa. On September 4, a lateevening (2240 GMT) opening enabled Man to make two-way contact Isle distance of about 3025 km with EA8XS. Attempts were also made to use the duct on 432 MHz and while no two-way contact resulted, EA8XS reported hearing signals
from GD8EXI on that band. The year has thus seen 144 MHz from the UK with both Africa and Asia (G3VYF and 4X4IX, a 3540 km contact in June).
A distance of just over 1000 km has been
achieved by European stations on 23 GHz with a two-way contact between DL $70 Y$ Germany and SM6HYG, Sweden. Weak signal reception on the microwave bands is clearly benefiting from the availability of low-noise GaAs f.e.t. devices ""gasfets").
AMSAT-UK, the radio amateur satellite organisation of the United Kingdom, ha published an A5-sized technical handbook
covering the University of Surrey amateur radio scientific satellite. The 22 -page booklet provides technical data and operatsystem, the h.f. propagation beacons and the other experiments. Non-members of AMSAT-UK can obtain copies from R. Broadbent, G3AAJ, 94 Herongate Road, Wanstead Park, London E12 SEQ ($£ 1.16$ Although it is
he peak of solar cycle 21 , the 1981 autumn season has again seen very high maximum usable frequencies, including north/south penings on 50 MHz . Several South September 20 and ZS3E on September 27 Conditions have been good on 28 MHz .

Death of "Steve"

Roy Stevens, MBE, G2BVN who over the past two decades has played a leading and influential role in many of the national and international amateur radio activities died (1966) of the RSGB, A for many years chair man of its technical and publications committee, telecommunications liaison officer and secretary and editor for the IARU UK delegation to the was a member of the 1979. He received the MBE in the Queen's Birthday Honours List 1980 in recognition of his work for amateur radio.
Roy Stevens was licensed in 1937 and became one of 37 amateurs in the first ists to reach France on September 5, 1939 only two days after the outbreak of World War II - a draft that became known as "The Early Birds"
The deaths have also occurred of Edgar Wagner, G3BID, one of the pioneers of H. Watson, G2YD, a former honorary treasurer of the RSGB.

Interference to

home equipment

A new "Information' Sheet" has been pro ee concerning the problem of interferenc to domestic entertainment equipmen caused by local transmissions. This surveys the problems that can arise, explains the radio interference service operated by the Post Office on behalf of the Home Office, outlines the basic differences between interference to radio receivers and television receivers compared with other forms of domestic equipment in which
unwanted detection of local transmissions is "wholly due to deficiencies in the equip-
ment suffering the breakthrough," and provides some facts about the regulation of amateur radio. The information sheet, enitted "Domestic entertainment equipment and the radio amateur" is available from
RSGB, 35 Doughty Street, London WCIN 2AE on receipt of a s.a.e.

Transatlantic
 anniversaries

December 1981 marks two notable anniversaries in the history of transatlantic communication: Marconi's classic, but still controversial reception at St John's,
Newfoundland on December 11, 1901 of the " $\$$ " signals from Poldhu, Cornwall, a feat that many considered impossible; and the reception by Paul Godley, 2ZE, a noted American receiver designer, at Ar-
drossan, Scotland, of the firss message to drossan, Scotland, of the first message to
be transmitted by amateur radio across the Atlantic. This came from the special station, 1BCG, set up by the Radio Club of America for the transatlantic tests orgaized in the UK by Wireless World. One of the signatories to that message was
Howard Armstrong, whose long string of inventions included the development of frequency modulation and the superhet.

In brief

The 1982 president of the RSGB will be Jack Anthony, G3KQF, of Derby, cur ommittee and also of its membership and representation committee . . . GB2VER a special event station operating on h.f. ands and 144 MHz during November of the Verulam Amateur Radio Club of St Albans . . . Membership of the British Amateur Radio Teleprinter Group is now approaching 900 and continues to bridge he gap between mechanical and electronic fuel on remote Pitcairn Island has limited ocal power supplies to about two hours a day but Tom Christian, VR6TC, is able to perate using a bank of three solar panels ontaining 36 photovoltaic cells to kee try chasers" China remains the most elusive country to work as it is now many years since regular amateur activity wa permitted there, although hopes are bein . Efforts to increase amateur activity in Third World countries continue with the American ARRL "Goodwill Project" and the German DARC worldwide amateur training activities in Sri-Lanka, Sudan, India, Iran, Egypt, Libya and Kenya

Current mirrors, amplifiers and dumpers

Improving the performance and application of the basic circuit
by B. Wilson, B.Sc., Ph.D., Department of Instrumentation and Analytical Science, UMIST.

The accuracy of a two-transistor current mirror circuit can be greatly

 improved by the addition of a further two transistors. The resulting fo design simple low-distortion operational-amplifier circuits that produce an output current proportional to either input voltage (V.c.c.c.s.) or input current (c.c.c.s.).addition, they make possible the design of "current-dumping" amplifiers where the output current is controlled by a pair of unbiased transistors, operating entirely in Class B with the crossover distortion
eliminated by a feedforward amplifier using current mirrors.

The simple two-transistor current mirro in Figure 1 attempts to produce at its out put B an identical copy of the input cur rent at A, whilst minimizing unwanted current-volage inderactions. consily understood by considering he input transistor as a collector-base connected diode, driving an output transisto ith a matched V_{BE} to produce an iden ical collector output current. The basi mathematics of its operation were deshere ${ }^{1}$. Figure 2 shows the symbol ofte used to signify a current mirror, indicating by an arrow both the polarity of the cur rent and the input side of the mirror. I should be remembered that, due to the
circuit topology, the input terminal will always remain at a fixed voltage, in contrast to the output terminal which will ake up a voltage determined by the loa nditions.
The current transfer ratio I_{0} / I_{in}, usually parameder when using current mirrors. It is obviously desirable that λ should be onstant, irrespective of changes in current nd output voltage. (Whilst most curren unity value of λ they can be designed for other integral values by duplicating tran istors accordingly.)
Unfortunately, the performance of the rgely due to the high dependence of λ on the values of the transisistor parameters in such a simple, uncompensated circuit. It can be shown ${ }^{3}$, by considering basic transistor operacion, , har he departure from
sistor mirror can be represented by
$\lambda_{2}=1 \pm(2 / \beta) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)-V_{\Delta \mathrm{C}} /\left(V_{\mathrm{I}}\right) \mathrm{Q}$
where β is the common-emitter curren where
gain, $V_{O S}$ is the difference in base-emitter voltage required to produce identical col ${ }^{2}$ currents, V_{T} is the thermal voltag $25 \mathrm{~m} V, V_{Q Q}$ is the difference in coand $\left(V_{\mathrm{I}}\right) \mathrm{O}$ is the Early intercept voltage at he operating point Q^{\star}

Fig. 1. Basic, two-transistor, n-p-n current

iig. 3. Accuracy of current transfer between input and output depends on
output voltage and output current. Ratio
o/lin is plotted here for currents up to $10 \mathrm{~m} A$ o $/ /_{\text {in }}$ is plotted
at up to 10 V .

The β term arises due to the effects of with the $V_{0 \text { s }}$ term being due to the mismatch in the transistors' base-emitter oltages. The contribution of the Early intercept voltage is best described as being ue to the slope in the transistor I_{C} vs. . $_{\mathrm{C}}$ haracteristics. Of course all these term making a general analytical evaluation quite difficult! Figure 3 illustrates the reoults obtained when using an RCA A3096AE transistor array, connected as two-transistor mirror and operating at
currents of $100 \mu \mathrm{~A}, \operatorname{lmA}$ and 10 mA . Typical values for the $n-p-n$ transistors in the RCA array are: $\beta=200, V_{O S}=0.3 \mathrm{mV}$ and $\left(V_{\mathrm{I}}\right)_{\mathrm{O}}=100 \mathrm{~V}$, producing error components of around $1 \%, 1 \%$ and $1-5 \%$ r pectively for the three contributions. or action for a two-transistor mirror is not very good, degenerating progressively

The Early intercept voltage is the in Trept of the tangent to the $I_{C} v s$ v. $V_{C C}$ curve
projected backwards to the $-V_{C B} a x i s$. It is herefore dependent on the operating poin fthe transistor

Fig. 4. Addition of Tr_{3} helps to isolate Tr_{2} from output voltage changes.

above a miliamp. For p-n-p transistors the
situation is even worse, because β is very sensitive to collector current for $\mathrm{p} \mathrm{p}-\mathrm{p}$
planar transistors, falling to extremely planar transistors, falling to extremely low
values (≈ 10) at currents above several milliamps. The uncertainty due to V os however, is slightly reduced, since in gen eral p-n-p transistors have tighter V_{BE} matching.
The performance of a two-transistor
mirror can be greatly improved mirror can be greatly improved by the
addition of a third transistor, as in Figure 4, resulting in the standard Wilson current mirror. The third transistor Tr_{3} fulfils two roles; the first of which is to buffer Tr_{2}
from changes in collector voltage from changes in collector voltage and re-
move to a large extent the voltage sensitive component in the current transfer ratio λ. Changes of collector voltage have much less effect on Tr_{3} because it is effectively current driven from its emitter. The
second improvement arises from the redistribution of base currents within the circuit, bringing the current-transfer ratio much nearer to unity. Figure 4 shows that, oa second-order approximation, the input and output currents are now equal. In a
similar fashion to Equation 1, the currenttransfer ratio for a three-transistor mirror can be represented by:
$\lambda_{3}=1 \pm 2\left(\Delta \beta / \bar{\beta}^{2}\right) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)-V_{\mathrm{BE}} /\left(V_{\mathrm{I}}\right)_{0.7}$ where β is the mean of the transistor cu values for the three transistors and $\left(V_{1}\right)_{0.7}$ $V_{C B}$ is Early intercept voltage evaluated at a V_{CB} operating point of approximately
0.7 V , as this is the difference between the collector voltages of Tr_{1} and Tr_{2} in a thre帾sistor mirror circuit. The improveent in the current-transfer ratio in this endence largely due to a reduced deifference ($\sim V_{\mathrm{BE}}$) between $\mathrm{Tr}_{\mathrm{r}_{1}}$ and Tr_{2}. spread of $\pm 20 \%$ in current gains for the transistors in the mirror would produce error components of $\pm 0.2 \%$ to 2% or, overall, approximately ave recently introduced monolithic thre ansistor Wilson current mirrors exhibit a current transfer ratio accurate to voltage capability of to a milliamp, with a by paralleling transistors (rs they have produced circuits displaying halving, doubling and quadrupling func Further in T1012 and TL 014). rmance can be obtained by mirror per on of a fourth transiso the intoducillector voltages of Tr_{1} and Tr_{2} as show Fig. 5. Note that the same symbol can ed to represent current mirrors, irres-
解 β and base-emitter voltage dif ences, giving:

$$
\lambda_{4}=1 \pm 2\left(\Delta \beta / \bar{\beta}^{2}\right) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)
$$

roducing typically, for the CA3096AE array:
$\lambda^{2}, 1$ A comparison between the three- and
four-transistor mirrors is given in Fig. 6 .

WIRELESS WORLD DECEMBER 198

The two sets of results were taken from the circuit of Fig. 5 , with the current
measured directly by $41 / 2$ digit digita meters. Transistor Tr_{4} was then shorted out to obtain the results for a three-tran-
sistor mirror. In booth sistor mirror. In both cases it can be seen
that the current-transfer ratios are held very constant against output voltage changes. The removal of the Early intercept voltage error component (approximately -1%) from the four-transistor circuit is evident. In addition, the current
transfer ratio is maintained to higher current levels because of the increased β buffering action with the four-transistor mirror. At 10 mA it is still within 1% of unity, whereas the three-transistor version has
fallen to approximately 90%. fallen to approximately 90%. These factors
make the four-transistor modified Wilson mirror the best choice for circuit designs, both discrete and monolithic. For precision circuits MAT 01 AH matched transistor pairs (Precision Monolithics) can be
used for $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3} \mathrm{Tr}_{4}$. used for $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3} \mathrm{Tr}_{4}$ to give a
current-transfer ratio of unity to within 0.4%, due mainly to their very close V_{BE}

matching.

Current mirror applications

In many applications it is desirable to control the output current rather than the output voltage of a circuit, especially when driving reactive loads or current-activated
transducers. For example, a controlled transducers. For example, a controlled
current is required to produce a defined current is required to produce a defined not always feasible to voltage drive the load through a high-values series resistor, particularly if a significant back e.m.f. is generted. (An appropriate example could be and cassettes,) Und cassertes.)
book circuits for producing controlled bipolar output currents from ordinary operational amplifiers using grounded sources and loads suffer from serious practical tight matching required for the resistors controlling the balance of negative and positive feedback ${ }^{3}$. Circuits requiring non-critical resistor matching that produce superior results can be designed using
four-transistor current mirrors. Both ransconductance and current amplifier configurations are possible, normally ermed voltage-controlled current source v.c.c..s.) and current controlled current Fises (c.c.c.s.) respectively ransconductance amplifier (v.c.c.s.) using both $n-p-n$ and $p-n-p$ current mirrors where the output will be proportional to he input voltage. The RCA CA 3096 AE wo $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors, which $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and wo arrays are required to construct a posilive and negative four-transistor curren nirror pair. The current mirrors are used urrents whiceraional amplifier's supply currents which, apart from the nearly conoutput current ${ }^{4}$. A copy of the output current, whether positive or negative, is thus fed back to the inverting input termi-
nal to be compared with the input voltage

WIRELESS WORLD DECEMBER 1981

Fig. 10. Transconductance amplifie
feedback and error feedforward.

Fig. 11. Practical 1A Class B current
dumping v.c.c.s.
dumping v.c.c.s.
whatsoever at the virtual earth connexion ${ }^{5}$ nity for the design of a current amplifier (c.c.c.s.) simply by removing the input resistor, leaving an amplifier with 100% negative shunt feedback derived from the output current. Gain can be introduced
into the circuit by attenuating the feedback current before it is summed at the op. amp. input. The circuit of the bipolar cur rent amplifier in Fig. 9 uses two resis nuation in a manner analogous to nuation in a manner analogous to a defined simply by

$$
G_{\mathrm{i}}=-\left(R_{1}+R_{2} / R_{1}\right)
$$

Measurement of the input impedance of the circuit of Fig. 9 with a gain of 20 10 kHz . The output impedance varies in the opposite manner, being $150 \mathrm{k} \Omega$ at 100 Hz dropping to $25 \mathrm{k} \Omega$ at 10 kHz . The output impedance figures could be im proved if manufacturers provided a range place of the voltage output stages presently used.
In contrast to voltage-controlled cir cuits, current amplifiers are required to into low load impedances, It is still sirable to null the op-amp. inpur offse voltage for critical work to maintain a low output offset current for lower values of source impedance. The Fig. 9 circuit pro $10 \mu \mathrm{~A}$ with the input current of around op-amp. input nulled to better than ailli volt This offset current, caused largely by the affects of op.-amp. bias currents being reflected through the current mirrors, can equivalunt bleed current by connecting an the current mirrors, point X in Figs 8 and 9. A single resistor to whichever supply rail is indicated will perform the task ade quately. The most convenient method of using a digital voltmeter to monitor the output voltage across a temporary high valued load resistor. An output offset of less than 50 nA can be easily obtained after adjustment. In this respect, current output voltage amplifiers more accurate than tions, their output offset signal represents a smaller fraction of their maximum output.

Current amp

The three previous designs, whilst being extremely useful at low currents, canno readily be extended to high currents because of the restricted current handling the mirrors. Class AB current booster could be used but their well known ther mal limitations make it desirable to operate a high-current output stage completely in adjustments. Unfortunately the crossove distortion produced by Class B output stages has traditionally made them unsuitable for applications requiring precision
low-distortion waveform reproduction.

However, the rechnique of error feedfor ward around a Class B output stage, often previously employed for a voltage powe amplifier ${ }^{6}$, can be applied to current output amplifiers with very good results ${ }^{7}$. An outline of the proposed method is hown if Fig. 1.. A Red-back voltage derived directly from the Class B dumper oltage of the system. The resulting erro oltage drives both the dumper pre-amp and the error feedforward amplifier. By choosing a suitable gain for the error am-
plifier any non-linearities in the gain of the umper and its pre-amp can be compensated by the amplified error signal added at he output connexion. The relevant equa tions for the sub-units are:

$$
\begin{aligned}
I_{\mathrm{o}} & =I_{\mathrm{d}}+I_{\mathrm{e}} \\
V_{\mathrm{f}} & =\gamma \cdot I_{\mathrm{d}} \\
V_{\mathrm{e}} & =V_{\mathrm{in}}-V_{\mathrm{f}} \\
I_{\mathrm{e}} & =T_{\mathrm{e}} \cdot V_{\mathrm{e}} \\
I_{\mathrm{d}} & =V_{\mathrm{e}} \cdot D
\end{aligned}
$$

From these equations it can be shown that:
$I_{\mathrm{o}}=V_{\mathrm{in}} \cdot T_{\mathrm{e}}\left(1+D / T_{\mathrm{e}}\right) /(1+\gamma \cdot D)$
This equation can be made insensitive to D and its variations (non-linearities) by set-

$$
\gamma \cdot T_{c}=1
$$

The balance equation indicates that if the ansconductance of the feedback networ γ^{1} is made equal to the transconductance ain T_{c} of the forward error loop, then the ain of the system becomes insensitive on-linearities within the Class B output ontributions from the Class B dumper nd the error amplifier is determined by he ratio of their transconductance gains By a suitable choice of open-loop gain and
feedback factors it can be arranged that the ror amplifier normally supplies only a mall proportion of the output current except during the crossover period of the dumper transistors when there is no feedback signal, and the error amplifier ransconductance of the system at balance given by the transconductance of the error feedforward amplifier alone. The overall result of this is ideally zero distorpactice, the error amplifier and the floatng current monitor A_{4} contribute thei own distortion, but this is quite small, ince they only operate at low currents. One possible circuit for the combined Fig. 11. The error feedforward ampli fier A_{3} and the dumper pre-amplifier A_{2} intended for 25 mA pk -pk maximum out put, use four-transistor mirrors a previously described. The non-linea dumper consists simply of a pair of un-
biased power transistors. A fractional copy of the dumper output current is obtained by A_{4} and returned to the input summing

g. 12. Triangular wave at 2 kHz with and
without feedforward.
mplifier A_{1}. The feedback factor R_{4} / R_{5} is set equal to the forward error gain ($R_{2}+$ he balance condition.
of Fig. 12 shows a 2 k riangular voltage waveform across the 10Ω load resistor when the feedforward is disconnected, whilst the middle trace ward error at the output connexion. The rror-cancelling affects of the balance condition can be clearly seen, there being no discernible disturbance in the linear wave form. The bottom trace shows the error eesistor for comparison. Output currents up to 1 Apk-pk. can be obtained with this ircuit, although the photographs were aken at a low current (15mApk-pk.) here the effects of crosser distortio Distortion measurements indicate tha he second harmonic is 70 dB below the output at 100 mA pk-pk., rising by approxmately 10 dB at 10 mApk -pk. and 1 Apk pk. The third harmonic is also lowest at he output, rising to 75 dB at 10 mApk -pk and 80 dB at 1 Apk -pk. Second-harmonic distortion is generated by the current mircors in the error feedforward amplifier and hird harmonic is produced by the cross ver behaviour of the dumper. Higher har nonics are also present, but are signifi

Reference

Widgey, F. J.: "Looking into current mirrors",
Wireless World, October 1979 , Vol. 55 , pp. $57-58$. 2. Hart, i. L., and Barker, R. W. J.: "DC matching Letters, 1976 , Vol. 12 2, purrent 389-390. . Graeme, J. G.: "'Operational amplifiers: design
 amp converter technique using supply curren
sensing
Electronics Letters, 1979, Vol. 15, pp. 496-4i97.
5. Wison, B.: "A
low-distortion feedback voltage 5. Wison, B.: "A low-distortion feeddack voltage
to current tonversion tecthique", Electronics Let

 B current converter using error feedforward
Electronics Letters, 1981, Vol. 17, pp. 461-463.
cantly below the level of the second and third under similar conditions. Disconnecting the error feedforward loop inmonic distortion by around 30 dB in the critical low-level output region. The relative improvement in distortion perform-
ance due to the feedforward connexion is naintained at higher frequencies where maintained at higher frequencies where
the effects of uncompensated crossover the effects of uncompensated crossover
distortion become more significant. A further reduction in distortion would re-
quire a specially optimized feedforward amplifier and current monitor using discrete components. design tool that can be employed in applications where a controlled current is required. In conjunction with op.-amp upply current sensing they facilitate the transconductance and current amplifiers.

Literature Received

ives an oulline of the company's activities in in the field of broadcast television engineerings of a single monitor to the design, construction swiching centres. Brochure can be had from Crow at PO Box 36 , Reading, Berks, RGI 2NB

Important characteristics and application indevices from a a nange, of p.r.o....s and simimar bited from Mincrissystem Services, Duke Stre High Wycombe Bucks.

Small tools for use in the production of
electronic equipment - wire strippers and cutters, board assembly tcols and p.c.b.b. cleaniag brushes - are featured in a leaffet published by Eraser International Ltd. Unit M.
Industrial Estate, Andover SPlo 3 L .

An extremely wide range of microwave serilits
cables and waveguides is fully covered in weighty catalugue (around 200 pages) which can
be had from Andrew Antennas, Locheclly
WW405 A range of silicon controlled rectifiers and triac ade by. TAG Semiconductors is listed in cross reference to other makes. The guide is
obtainable from TAG Semiconductors Ltd obtainable from TAG Semiconductors Ltd
$73 / 79$ Rochesser Row, London SWIP 2NX ublication HCG 1 from Highland describes the pes of multiway comnector currenty available.
Heavy and light-duty yypes are made, with from 2 to 128 poles and in ratings froun 8 A 250 V to A 440 V . Highland Electronics Ltd, Highlan
House, 8 Old Steine, Brighton, BN1 IGI

Large colour catalogue from Ross illustrates ery wide range of audio equipment and acces
ories, including headphones, test gear, in tercom, audio and video leads and adapters and
microphones. Ross Electronics, 49153 Pancras
Ricod

Letters to the Editor

EMP protection

Your news report in the September issue
highlights the EMP (electromagnecic pulse) threat to solid state communications equipment.
However, both Mr Tucker's article of July 2nd in The Guardian and your report tend to give misleading impression of the steps which ar
being taken to counteract the threat Mr Tucker stated that the pulse is "far too rapid for any currently available protection systems". My company has available a gas-filled
protection device which will protection device which will operate in less than
one nanosecond. It has been shown that this device will protect solid state receivers and telephone equipment in a simulated EM
environment. We find that suppliers of communications equipment are well aware of the threat and have taken steps so counteract it A text book on the subject "EMP Raciation John Wiley and Sons in 1976.
Kenneth Cook The M-O Valve Co. Ltd
Hammersmith
London W6
Television
subtitling
I was very pleased to see your report on "TV
subtitles for the deaf" in Seprember" W Treless subrites for the deaf" in September's Wireless
WWorld in which you review my "Guidelines for the subtitling of television programmes".
would, however, like to clarify one or two points.
poins.
First, it is is important to stress the distinction
between Royal Wedding) and subriting the general run of recorded programmes. The pubbished
"Guidelines" from Southampton University do not go into live subtiting in in any depth since this particular area is still under investigation. The "Guidelines" are geared primarily towards teletext subtitling of recorded television programmes, and they have been in use at IT
Oracle for several months. The coverage of the Royal Wedding, on the other hand, reflected the state of the art of $l i v$ on BBC 2 were generated by means of the Palantype semi-phonetic machine shorthand system, capable of producing a word for word
transcription of speech in real time, but with transcription of speech in real time, but wid
some words spelt unconventionally. ITV Oracle's coverage represented a radically different approach to live subtiting. In this
case, subtitles were transmitted in the form of a case, subtitles were transmitted in the form of a
summary of the programme commentary, typed on a standard keyboard in standard English spelling. The pros and cons of these two aiternative methods are currently under review.
I would also like to expand on your editorial comment on lipreading. This is an important point and it has received considerable attention
during the research project at Southampton during the researcch project at Southampton
University. It has become clear that lipreading University. It has become clear that ipread
of a two-dimensional television picture is extremely difficicult, especially when speakers are
frequently in half-profile, facing away from the frequently in half-profile, facing away from the
camera, too distant, or out of shot altogether. In spite of this we de give consideration to the
exectional viewer who attempts, where
 by anarying out scripiteditining in in lose coniunction with the original script and the
videotape, especially when the speaker is presented in full-face head and shoulders close up or middle distance shot. Nevertheless we place a far higher premium on providing
subtitles in familiar language with adequate reading time, without which the viewer will have no opportunity to attempt to lipread the speaker in any case
Robert G. Baker
Department of Electronics
Southampton University

Decline of the philosophica. spirit

How refreshing to see your July editorial on the dearth of true philosophical thinking in science.
It is because science and technology have come It is because science and technology have come
to be motivated by pragmatic materialism that we have become too cynical as a species to aspire to civilisation. The spirit of enquiry has been
replaced by militarism and social ustification. Money no longer serves as a token of currency alone, it has become the primary structure upon
which our society is organised. Economics is no which our society is organised. Economics is
longer a means to an end. It is a barrier to
to longer a means to an end. It is a barrier to
significant human progress and could be for decades, if not centuries, to come.
This kind of outlook has narrowed the thrust
of pure research into unimasiva of pure research into unimaginative and abs
analysis. The quest to reduce the known universe into an elegant set of mathematical relationships, while commendable in its own
right, is imporent if no philosophical right, is impotent if no philosophical
conclusions are drawn from the end resu conclusions are e drawn from the end results.
Pure eresearch should not be confused by the layman with an attempt to 'explain' anything. In
obtaining a degree in physics I came to realise obtaining a degree in physics I came to realise
that this most fundamental of disciplines seeks only to describe and not to explain. We are no closer to understanding what a magnetic field is
today than we were a hundred years today than we were a hundred years ago. W
simply in a better position to describe and exploit its propertie
Terry Edwards
Terry
Ongar
Essex
Television for no-signal areas A great deal of 'doubffu' technical and commercial advice is now being offered through introduction to the latter which, in my opinion, is completely out of place in this excellent technical journal. Perhaps the following points
should be read in conjunction with the letter from M. J. Rutty (September letters) to further assist the lay persons normally expected to consider these schemes.

1. Theorerically a doubli
2. Theoretically a doubling of aerial size in
necessary to achiveve a maximum 3 dB gain
Thus necessary to achieve a maximum 3dB gain.
Thus, to increase the gain of a 10 -element 4. h.f.
Yagt aerial hy a maximum of 9 dB would
demand eight such aerials (eighty elements)
efficiently harnessed - practically 9 dB woul not be achieved. However, aerials with "clamed ${ }^{\text {en }}$ gains of plus 9 dB relative to the 10
elements listed in J. M. Osborne's article (May 1981) are manufactured by certain companies. Unfortunately, the basic choice of aerial is
normally determined by all the parameters practice and not merely the gain.
Additionally, if minimising the possibility of
interfering with other viewr den interfering with other viewers depends on the
choice of different commercial aerials, serious consideration should be given to this problem before proceeding.
3. The use of a.c. line powering does not eliminate voltage drops but does overcome the
electrolytic problems associated with d.c. line electrolyuic problems associated with d.c. line
powering. Wolsey line powered equipment
employs 55 V a.c. (nominal) employs 55 V a.c. (nominal) which, for a given
power consumption mina power consumption, minimises the cable
voltage drops calculated for each system. Voltage drops calculated for each system.
Powering of some systems demands long cable
runs which should be considered runs which should be considered carefully, especially if coaxial cable carrying r.f. signals in
addition to line power feeding is employed. 3. Ferrite splitter/combiner units can be used in place of cable matching sections, for multiple transmitter a aerial asystems but impedance
problems associated with certain cheap problems associated with certain cheap
imported units can result in unsatisfactory end results. 4. For active deflector systems the Home Office 4. For active deflector systems the Home Off
has stipulated a maximum e.r.p. of 1 watt,
which in practice means 53 mW transmitter has stipulated a maximum e.r.p.
which in practice means s $53 \mathrm{~m} W$ transmitter
power fed to an aerial of 12 dB gain. To make power fed to an aerial of 12 dB gain. To make
full use of the dynamic range of such an full use of the dynamic range of such an
amppifier demands accurate signal level setting
after all derating and other allowances have been after
made.
With
With the variations of portable television receiver sensitivities, viewing error and the
unpredictable additive error of the common (B/L type) v.h.f. attenuators used in practic 'eyeballing' tests are really not on
to drive anount of pro-amplification employed its gain and output capability, for a specified level of measured distortion. This pre-
amplification will derate the specified output amplification will derate the specified outpu
and, depending on the equipment employed can be the limiting factor. Use of an antenuator
between the eerial between the aerial output and pre--amplifier
input stage will usually degrade the signal-toinput stage will usually degrade the signal
noise ratio of the system. If attenuation is necessary its position must be carefully chosen.
4. Solar or wind generator powering can be 6. Solar or wind generator powering ca conditions. Howerver, the use of such schemes is
fraught with difficulties if te fraught with difficultries if the ' 'ritithentic' is not
carefully carried out and, if wrong, can result in carefully carried out and, if wrong, can result in
frequent trips to the site with freshly charged frequent t
5. A maximum usable line of sight range u.h.f. frequencies can en
reference to maximum reference to maximum e.r.p.,., propagation loss,
receiving site aerial gain and noise performance specifications etct. In practice this can vary from $1 / 4$ mile to 3 mile
6. Finally, may I say that the most importan
consider backing and nof self-help schemes is technica doubsful specification and performance. In doubtul specification and performance.
television distribution systems se have television distribution systems we have
experienced the result of a low level of
engineering expertise. It would be sad to see
self-help pchemes perpetuating this state of
affairs. Communities considering these affairs. Communuities considering these schemes
would be well advised to seek the professional and free advice of the BBC/IBA engineering $\stackrel{V}{V}$ Wewis Wolsey Electron
Porth, Rhonnda
Mid Glamorgan

Phase locked
detector
I thought that detectors such as the one described in the September issue under the title
Phase Locked Detector could no more be of interest to professional engineers.
Even here, in Syria, double-sideband
suppressed carier (d.s.b suppressed carrier (d.s.b.s.c..) detection is
performed by a simple low cost circuit whit has a large capture (and lock) bandwidth and no transient delays (i.e. no missed syllables at the start of transmission).
Also we are experimenting with an improved
design to detect, with equal ease, two d.s.b.s.c. signals in quadrature. Therefore d.s.b.s.s.c.
transmissions will have the transmissions will have the same power and
channel density as s.s.b., with the advantage of using simpler systems.
A. P. Moubayed
Autoligh
Aleppo

Evidence for neutrons

Before Mr Burrows (October Letters) uses the success of nuclear reactors to "prove" the
existence of the neutron, he should remember that every piece of iron that rusts "proves" in the same way th
C. W. Hobbs
ern

Unified circuit theory

In his interestung article in the March issue, E .
H. Pollard makes the statement that Millman's theorem deserves to be better known than it is. Indeed this is true because the theorem is often a rearything-s Pollard and says, and more. An extension of the paper into dependent sources
would would have been most welcome. In today's
transistor and i.c. world, dependent sources show up everywhere, and it is necessary that we know whether a certain theorem holds fo dependent sources or breaks down. As an
example, the theorem in Corollary 3 , the Superposition Theorem, does not hold if dependent sources are manipulated, and must be replaced by a much more recent theorem, the
Funnction-Source Superposition Theorem.2 Using this theorem, we open and close dependent sources, however objectionable this Corollary 5 , the Reciprocity Theorem, does not hold for dependent sources. The textbook version in Pollard's paper is only half of the
complete reciprocity theorem, the other half complete reciprocity theorem, the other hal
pertaining to current-source drive. And Thevenin's and Mayer's's(Norton's) Theorems
only hold if we avoid manipulating dependent Only hold if we avoid manipulating dependent
sources. While Millman's theorem is highly useful,
only represents one side of the story, since the theorem also can be written in a sort of dual
form, doubling its field of applications. Called
the Parallel-form Generator Multiple-source theorem, the additional theorem was published
by this author in 1977. 'Practically every by this author in $1977 .{ }^{2}$ Practically every
statement in Pollard's article can be repeated in appropriate form and be applied to the second theorem, pertain.
shown in Fig. 1.

Fig. 1.
Pollard's equation (1) now takes the form

$$
I_{\mathrm{AB}}=\sum_{k=1}^{n} Z_{\mathrm{k}} I_{\mathrm{k}} / \sum_{k=1}^{n} Z_{\mathrm{k}}
$$

One of the most important characteristics of the two theorems is that they hold for dependent sources, thus providing highly useful
tools in today's network analysis and synthesis. The dependent sources we have in mind are of the simple form $\mathrm{k} V$ or $\mathrm{k} I$, and either theore handles any mixture of dependent and
independent sources, with their associat independent sources, with their associated
immittances forming generators, such as ${ }^{\circ} 1$, " 2 " and " n " in Fig. 1 .
The Parallel-form Generator Multiple-Source
 although a proof can be provided, similar to that presented by Pollard. W/e may in shis
connection note the existence of the fundamental and very important Source transformation Theorem, hte one we use when
turning a Thevenin generator into a Myer turning a Thévenin generator into a Mayer
(Norton) generator, or vice versa. By means of (Norton) generator, or vice versa. By means of
this theorem we can turn any generator in Fig. in to Series-generator form and then independently sum up all voltages and all impedances. The proof the degenerates into Millman's theorem.
When we begin to
When we begin to derive one theorem from
another, the philosophy of another, the philosophy of doing this forces us
to think of the old slogan: "which comes first, the chicken or the egg". Surely, in the vein of Pollard's paper one can proceed and even derive
Tellegen's theorem from Millman's theorem, Tellegen's theorem from Millman's theorem,
however absurd the thought may appear. ${ }^{3}$. Tellegen's sheorem is one of the cornerstones in analytically another corner-stone theorem, the Source-transformation Theorem mentioned above. In the simplest case, and starting from Tellegen,

$$
\begin{aligned}
P_{\text {source }}+P_{R}+P_{\text {load }} & =0 \\
-E I+R I^{2}+R_{L} I^{2} & =0 \\
E-R I-V & =0
\end{aligned}
$$

$E-R I-V=0$
where $V=R_{L} I$. This is the same equation a $E R-I-V / R=0$ surce theorems, and should not be used to derive them. But when we encounter many Sources, and as a minimum two sources,
Millman's heorem, as well as the Paralle-FForm
Generator Multiple-Source theorem, provide Generator Multiple-Source theorem, provide highly useful network tools.
Harry. S. Stockman
Sercolab, Arlington, Mass. USA

References
E. H. Pollard "UUnified Circuit Theory" Pp. 71-76,
Wireless World, March 1981.

Wire recorder

Would it be possible to enquire through your readership for any information concerrning the
Wirek wire recording machine? This machine was manufactured under licence by Boosey and
Hawkes but unfortunately a fire destroyed most Hawkes but unfortunately a fire destroyed
of the records concerning the instrument. As very little appears to have been written about the machine I would be most grateful to particularly in regard to numbers partricularly in regard to numbers
manufactured, technical data and details of its se. Of course I should also be pleased to obtai sample of the machine if this is possible.
All information will be passed to the Scien Auseum at Kensington, London. As I was once oncerned in the manufacture of the machine
1948 it seems a pity that a small piece of ecording history should be allowed to pass into oblivion.
R. R. Rid ley G3UTX
23.
Woriesbury
Weston-S-Mare Weston-S-Mare
Avon

The dream of
 objectivity

was very interested to read your March be somewhat false.
Whilst we may all readily agree to your Whilst we may all readily agree to your
statement that "The observer would not exist ii statement that "The observer would not exist if
it were not for the phenomena of the world", it it were not for the phenomena of the world", it
is by no means so obvious that "the phenomena of the world would not exist if it were not for th observer". In fact, and to the contrary, I an
sure that a lot of them would. The human observer (as simply, a data receiving, processing
and transmitting system) is a fairly latecomer on the scene, and is the result of a fairly short the scene, and is the e enalir of a fairly short ovolution, on a cosmic time scale. On can suppose the existence of coloured rainbows and roaring sounds from the breakers on the
seashore long before there existed any form of seashore long before there existed any yorm of
living creatures (i.e. how far is it really true to say that the sound of the breakers on the seashore is dependent on their being heard, or
the colours of a rainbow on its being seen? whom, or what, for example?)
Professor Gilbert Ryle continually stressed in his very important book that we do not, in fact,
"mentally observe our own experiences" (as you suggest in your editorial) and that sensations (such as sounds and colours) are not really
subiective at all. He says, for example, "The subjective at all. He says, for example, "The
procedure of describing sensations by referring procedure of describing sensations by ref hayctacks, whings that tum, and pepper is of
great theoretical importance." and again, "We Thus we have derived analytically, without pening or closing any sources, the Series-form
Generator, eq. (2), known as the Thevenin Generator, and the Parallel-form Generator, eq. 3), known as the Mayer (or Norton $)$ Generate
We do not need either Thevenin's or Mayer's heorem, although they are invaluable timesavers. (And by the way, by invoking the energy
principle (Tellegen's theocrem) we eliminate the principle ((exilegen's theorem) we elimin heorem.) Now, where does Millman's theorem come in? It is simply an additional theorem
the specific area of multi-source inear

WIRELESS WORLD DECEMBER 1981
do not employ a ' 'eat' sensation vocabulary. We describe particular sensations by referring to how common objects regularly look, sound and
feel to any normal person." (pp. 202-203, "The Concent of Mind"). I would conclude therefore, that so olong as there are plenty of fairly norrmal
persons about we can still have a considerable persons about we can still have a considerable
amount of objectivity in our dealings with each amount of objectivity in our dealings with each
other. Hence objectivity certainly need not be only a dream, though it may be a matter of
understanding, and therefore criticising and discussing each other's suse of language. discussing each our
Peter G. M. Daw
Oxford

From discussions with Mr Dawe it emerges that his understanding of the word "phenomenon" is different
from ours. In our March editiorial it was used as de.
fined in the O.E.D. - something that appears or is meded in the O.E.D. - something that appears or
percived. - Ed.

'Unpublished' D/F beacons

Having coaxed my ageing faculties to restore a rather sophisticated marine e adio. oreceiver
Derritron D F 70 with ferite " (Derritron D/F 70 with ferrite "loop") to on the beacon band. Dungeness (310.3 kHz)
yields the strongest signal here and is one of a ieldd the strongest signal here and is one of a hain of beacons operating on the same
requency in succession. It came in loud and clear, followed by the others at acceptable, weaker levels. However, during the whole of the
chain cycle a weaker DU signal persisted and the loop indicated it was co-sited with Dungeness proper. I telephoned North Foreland Radio, hatham, BBC, Trinity House Gravesend and nally Trinity House "Lights", London. The last named, after some delay,
It appears that an experimental transmitter is now operating ar Dungeness on " 311.5 kHz ," using same call sign DU. It is "unpublished"
whatever that means - and "will not go on for long". I pointed out to my informant that the two frequencies were only separated by less than 0.4% and that most D / F receivers would not
discriminate to that extent. In any case, it is conceivable that the requisite filters would not be switched in if the operator was not alerted to
the danger. He said he took my ponn" the danger. He said he "took my poin"".
The situation seems potentially dangerou a yachtsman at certain points in the Channel, taking a bearing on, say, Cap Gris Nez,
310.3 kHz , could have it "bent" by the "unpublished" Dungeness on 311.5 kHz radiating at the same time.
On what authority can one start up these to have two transmitters on differing frequencies sharing the same call sign? Is there not a central authority monitoring all UK trying to identify their origins? frying Henry,
Fratham,
Chat
Chatham
Kent.

Wien bridge
 improvement Linsley Hood's article on an improved Wien bridge oscillator (May issue) soon had me digging out my 1974 design notes on simila work. One of the disadvantages of the basic Wien

Fig. B.

$a=\frac{1}{2-\frac{R_{2}}{R_{1}}} \quad R_{2}<2 R$, for stable operation
crimintion ars it emed sensible to use the Q multiplyin onfiguration of Fig. A where distortion ntroduced by the stabilising amplifier is ejected by the relatively narrow band-pass educes to Fig. 4 of the article if $R_{2} / R_{1}=0$ $Q=1 / 2$) with the important difference that the utput is taken from A_{1}. With a Q of 4 , ove distortion was obtained, this being the prime esign objective. For satisfactory operation th obviously be well matched. Of course, the main design feature of Mr insley Hood's article is the elimination of the chieve this thougha discrete component mplifier was used $\dagger 0$ minimise common mode
effects.
Fig. B offers the possibility of Q multiplication with no common mode problem and might lead to an optimum distortion perrormally, I assume the gremlins have crept into Fig. 5 of the article. A_{2} should in fact be inverting.
Bill Young
Cobham
Cobham
Surrey

The author replies:

have read Mr Young's contributions with interest, and note his suggestion that the harmoniin distortion introduced by the stabilising circuit may be reduced if the output
is taken from the tuned amplifier rather than is taken from the tuned amplifier rather than
from the output of the stabilising amplifier. May I apologise, in this context, for the two
from
erros in the arricle As Mr errors in the article. As Mr Young indicates, A_{2}
should be shown as an inverting amplifier, in
both cases, and the illustrations shown as Fig. and Fiis. s should be interchanged.
J. L. Linsley Hood

The death of

electric current

In his September 1981 letter, R. T. Lamb seem discussing a model rather than a theory or a fact, he has also established that a bad model is no
worse than a better model. When he writes, worse than a better model. When he writes, is not needed in that model," "I would reply tha he successful removal of primitives such as ρ
and f from a model is a maior advance. It is mportant that unnecessary accretions be important that unnecessary accreuions be
cleared away from a model (cf. Occam's Razor) his is particularly true if these accretions
reate insurmountable difficulties - see my rist two paragraphs, August 1981 issue, page 0 Why hold on grimly to redundant imitives, ρ and y, if they create the insoluble nlike me) that a mere model is in dispute, why e tenacity?
In the first paragraph of his letter in the model for a charged capacitor as true. This model, when used in the discharge of a capacito xponential, as Lamb suggested on page 46 exponential, as Lamb suggested on page 46 of
the September issue. Using time domain eflectometry, my colleague Malcolm Davidso has experimentally established that when a
resistor is switched across a charged capacitor he result is a series of steps (similar to the ppendix to our article "Displacement Current" in the Decemb.
exponential.
exponential
lvor Catt
Stalbans
Herts Mr_{I} Ivor Catt's assertion (August Letters) that
conventional electromagnetic theory cannot cope with transientrs for which it was specifically
developed is, to say the least, a trifle rich. developed is, to say the least, a trifice rich.
Tilting at the giants of our great heritage o scientific understanding is a useful pastime, scientific understanding is a useful pastime,
even if it only serves to stimulatet the thinking of
others. Ithink the others. I think that Mr Catt has some fundamental misunderstandings of conventional
theory which is giving rise to some difficulty in theory which is giving rise
having his own accepted.
A conductor cannot have an electric field in
it; the wires of a transmission line it; the wires of a transmission line cannot have
an electric field along their length but Mr Catt's August letter shows a deficiency of charre tot the
right of his wavefront, a situation which would right of his wavefront, a situation which would
result in a field along the axis of the wire, the

- advancing down a wire like pear down a tube. A
conductor is a region with a large number of free conductor is a region with a large number of free
carriers in charge equilibrium with fixed carriers; a metal wire has a large number of free electrons in charge equilibrium with the
positively charged nuclei. These electron positively charged nuclei. These electrons
interact with electric potentials external to interact with lecertic potentuals external to the
wire in a manner described by the equations of Maxwell. This can be verified experimentally, Mr Catt's crude model is thus fundamentials
wrong. The model of a wire full of free carriers is also quite crude but a t least it is fundamentally correct. In this model it is
reasonable to describe the wavefront as the reasonable to describe the wavefront as the
dividing line between that region where carriers have started to move and that where they are not yet disturbed by the anproaching wave. It is, of course, fairly common knowledge that the
approaching wave is external to the conductor (it cannot be inside, see above) and it influences the surface charges first (skin effect). Mr Cart's contributions on e.m. theory are
shot through with misunderstandings of the same sort. In March 1979 he quotes
conventional theory (using displace conventional theory (using displacement
current) as requiring two components for current) as requiring two components for
charging a transmission line, $i+d D / d t($ p. 68$)$ where is the line charging current and d dD/dt is the Maxwellian displacement current. But the line charging current is the displacement
current according to Maxwell's laws; it is nonsense double them up.
In July 1979 ("The Heaver In July 1979 ("The Heaviside Signal") he
defines:

$$
\sqrt{\text { dexere }} \frac{\pi}{H}
$$

and then goes on to derive:
$\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}, \frac{E \mu}{B}=\sqrt{\frac{\mu}{\epsilon}}$ and $E=B C$
all nonsense. Why? Because E, H and B are all that the and μ and ϵ are scalars. Surely he knowis that they cannot be equated? Maxwell's laws are concerned with electric
and magnetic fields. In Mr Catt's, charge and magnetic fields. In Mr Catt's, charge
appears to give rise to neither. Will he be announcing the death of electric charge next?
Dermod . O'Reilly Dermod J. O'Reilly
Antwerp
Belgium

The big c.b. con

The proponents of citizen's band'radio, including the suppliers of a.m. equipment, are really leading our fellow countrymen into the
largest confidence trick imainale largest confidence trick imaginable by playing
on the fact that litte is known technically about types of modulation, propagation, sun-spot cycles etc. and on the desire to do as others are doing - including their mistakes.
Having monitored the 27 MHz Heaving monitored the 27 MHz band in my
area, I have yet to hear any UK operator talking to anyone outside his local (groundwave)
territory, although no doubt a mall number territory, although no doubt a small number do. Language is still a major barrier and Great
Britain does not have many neighbours who have English as their native language, whereas the USA is large enough on its own to receive its
own generated transmissions on sky-wave I sthink that, apart from the above deceptio the final con. will be evident when sales of a.m.
equipment level off due to saturation in this equipment level off due to saturation in this
country and, as may well be explained, "a ne range of equipment giving less interference and with more efficent transmitter stages" will
tempt UK operators into spending yet more empt UK operators into spending yet more
money on "improved" equipment - yes f.m. come on all you c.b. associations, importers
and marketing organisations, play the game and Office have been far seeing enough to get it
right. Wheeler, G 8 EMU
T.Getbury, Glos.

Thyristor

interference

Many thanks to John Flewitt for his very interesting article in the September issue on the BBC sound broadcasting and recording at
Paul's for the Royal Wedding. I was very Paur s for the Royal wedding. Wwas very experienced from thyristor interference in the microphone cables.
In 1964, when I
In 1964, when I was in the BBC Designs rearing their hyistor dimmers were just Centre, and I was asked to see what could be done to prevent the interference that had already become a serious problem with standard twisted-pair microphone cables.
To shorten a long story, Ideveloped a tighttwist star-quad microphone cable which reduced interference, in the worst conditions when crossing a cable feeding a 10 kW spot, to below first became known as "blue quad" has been manufactured by the mile and has become mandatory in all television studios, both in the BBC and later in ITV.
True, the blue quad has become grey,
following the use of chroma key or colou separation; and it has alsom become colour
lighter thaner and lighter than its ancestor. But you can still see it
on any television picture where a microphone is on any tel Of course these problems do not normally would have supposed that someone, somehow, would have passed the word. Virtually all thyristor interference is coupled to microphone pair (or quad) ordinary braid or spiral screening
is adequate.
PhilijD. R. Marks
Burne
Bucks

Ethics in action

Your correspondent Jock Hall (June letters)
should he asked "Where are these employers shoudd be asked "Where are these employers
producing electronic equipment of real use to society, and how many can they employ?" After the war I returned to radio servicing. It early thiries and with wheng to get sets fir components were available to reproduce a good standard of performance. Then came the new sets and disappointment; the only apparent lesson learnt from war-time developments was how to cut material to the bone, One turned a
set upside down on the bench at the risk of i.f. cans breaking away from their moorings. Then came television, and after a while real concern. People with tears in their eyes
pleading, "Please repair it here, don't take it away, we don't know what we would do without
it'. Family quarrels to get children to bed or to it". Family quarrels to get children to bed or to
do their homework. Visiting friends or relations and not being able to talk because the telly was
${ }^{\text {on }}$ By the early fifties the novelty had not worn By the early fifties the novelty had not wor
off; the position was worse as so many more people had television. I felt I was halping to create morons, to drive people mad, so, at a Ministry of Defence inspectorate,
The work was interesting, there could be
pride in a product well made and built to last, first use. To begin with there was reasonable hope that these devices would never be used. If that hope has now gone then the distraction of the phantasy world of television, drawing
attention away from events in the real world must take a large share of the blame. The advent of ITV led tof fierce comperition
with the BBC for if one side cantes the with the BBC for if one side captures the mass
audience the other goes out of business. The audience the other goes out of business. The
direction this fight took was that of more violence, more sex, more trite, easily assimilated
material of appeal to the less discerning. Less material of appeal to the less discerning. Le discernment seems to breed even less
discernment, for how often does one observe an audience around a colour television apparently unaware that there is something odd about characters with green or purple hair.
I remember a time when BBC news g a I remerber a time when BBC news gave
minimal reporting of murder trials. What a change! Half a news bulletin followed by a half hour substituted programme on a mass
murderer. I remember when dance music had murderer. remember when dance musi
lyrics of more than four words and was
melodious, and its merit melodious, and its merit was not judged on
kilowatts out, or electronic gimmickry. I kilowatts out, or electronic gimmickry. I
remember when children played energetic remember when children piayed energetic
games and did not rob people to get money to play Star Wars.
industry and has built thin a gimmicks inerstry and has built things not meant to last
very le most common faults in televisions now are cracked tracks on flimsy
circuit boards and overrun resistors that chang circuit boards and overrun resistors that change
value or go oocc. This is poor design. The real developments are held \mathbf{y} p untill sale of older systems reach saturation. Baird demonstrated
3D colour television in the forties - remember? I suspect this last condemnation may apply to 1suspect this last condemnation may apply to
even such things as medical electronic devices.
One can One can hardly expect such a journal as
Wireless World to take up the matter of a general Wirreless Wo ord to take up the matter of a general
decline in levels of discernment, but where it affects ine evhics of engineers, ,please, give it full
publicity. [See November editorial - Ed.] publicity. [See
E.V. Hurran
.

Margate

Radio amateurs

licence

Your correspondent M. Jackson (October Letters) has made a useful suggestion regarding
the use of c .w. by class ' B^{\prime} radio amateurs on v.h.f.t. but I do not think that any y responsible
anateur can agree with the following of his amateur can
proposals:
(a) The use of non type-approved equipment on
c.b. Most amateur h.f. equipment tas a power c.b. Most amateur h.f. equipment has a power
output far greater than 4 watts and so would not output far greater than 4 watts and so would no
meet the Home Office requirements. Also, amateur h.f. equipment is not suitable fo channelized operation.
(b) Amateurs to use c.b. at no extra licence fee
This is a dangerous suggestion because it may well result in counter proposals from c.b'ers t use the amateur bands at no extra fee. (c) 10 -metre band to be used by class ' B ' radio amateurs. Cass
access to the 10 -metre band by taking the Morse test like everyone else. It is a fallacy to think
that 10 metres will be taken ourby that 10 metres will be taken over by the c.ber
Far from being a threat to amateur radio in this country, c.b. should result in the swelling of amateur ranks in the coming years. Alread December Radio Amateurs Examination. December Radio Ama Spalding
Lincs
Lin

What would you give an Engineer interested in learning about microprocessors?

Our microprocessor course...

gives you this fully assembled microprocessor development system. It is just one component in our new, practical, home-study course for engineers.

The course
uses on product focuses on product esign to give you a horough grounding in the use of microprocessors
by taking you step-by-step
from customer specification final production design. etailed knowledge of detailed knowledge of on your part, the course shows you how to approach ystem design, hardware and
software development, prototype evaluation and final production.
As well as working through five
specially prepared books, and familiarising and brochures, you will carry out experiments and brochures, you will carry out experiments
designed to give you valuable practical experienc with your microcomputer.

Complete with user. manual and experiment books it interfaces with your own TV set and cassette recorder.
You also get a prototype development board with such peripherals as a small DC motor, temperature sensor, optodetector and loud-
The Open University
The OpenUniversity
The Open Universitv, FReod House, Milton Keynes, MK 36 HH

The course is completely self-contained, and not linked to The course is completely self-contained, and not linked to
any broadcasts, correspondence tuition, seminars or residential
courses. You work at home in your own courses. You work at home in your own time and at your own pace
to complete the course. At $£ 395$ the course offers you the perfect opportunity to gain practical microprocessor experience. Send the coupon for further details-
no stamp needed. Or phone 090879058
 (24 hour an (24 hour ans
service) (24 hour a
service)

The EP4000 is not just an EPROM Programmer . .

Not only does the
EP4000 copy, store, program 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video output for memory map display to make the powerful editing facilities really usefu. (and this is in addition to the in-built LED display for stand-alone use), but it also comes as standard
with comprehensive
input/output - RS232, 20 mA loop, TTL parallel handshake, cassette, printer and direct memory access. Now the programming power can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator
Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program development - the EP4000 can be configured to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development.
And if you ever need technical help or advice, you can now dial direct to our technical you can now dial direct to our technical
department for instant attention - Tel. (0803)
863380 .
Finally, a full range of accessories in now available - these include Bipolar programming
the external system so that data changes entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors, 2764/2564 programming satellite, printer and production programmers. The EP4000 is exstock. Price - $£ 545+$ VAT $(+£ 12$ for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.

New BBC/OU production centre opens
by Donald Aldous

In late September production started a Europe's biggest purpose-built educational broadcasting complex, on the campus of the Open University at Milton Keynes,
Buckinghamshire. Robert Rowland, head Buckinghamshire. Robert Rowland, head
of the new centre, describes the OU as 'the largest university in the kingdom'.
The start of production at the centre is the culmination of some ten years' efforts to create and manage the physical de-
velopment of the university's 70 acre campus and 13 regional properties, since the OU was established in 1969. The original production facility was a. Alexandra Palace, London, and the new site will offer a more convenient working
relationship for OU and BBC colleagues on the course teams that compile and produce all OU study material.
This project has cost over $£ 8$ million, funded by the Department of Education and Science, and is not extracted in any
way from the BBC television licence fee, as has been bruited around by some critics. In fact, the OU's yearly fee to the BBC for production and transmission of programmes is currently around $£ 8.3$ million. Total floor area of the building is $11,100 \mathrm{~m}$
gross, $8.500 \mathrm{~m}^{2}$ net. (The difference is gross, up of corridors, plant rooms, toilets etc.). The building is supported by 504 reinforced concrete piles, each individually driven into the ground over a period of The reactions of the OU staff working on the campus at that time can be imagined! The technical areas are interconnected by 40,000 metres of cable. The power distribution cables add up to a similar the distance between London and Milton Keynes. Electric power reaches the building's own substation at $11 \mathrm{kV}, 3$-phase, where it is transformed down to 415 V fo The centre at Walton Hall, as it known, consists of an office block and a technical block, joined together at a main reception area. The technical block contains two tv studios: Studio 1 has a floor space of 336 square metres and Studio 2
has 102 square metres. Studio 1 is a small has 102 square metres. Studio 1 is a small
production studio with four Link 110 colour cameras, and the production suite is at ground floor level to permit easy access. This arrangement is in contrast to the usual high
windows.
The production control suite has separate control, vision and lighting control, and sound control rooms. The desks and monitor stacks are positioned so
as to allow direct line-of-sight between the as to allow direct line-of-sight between the
director and staff seated at the desk in the production control room and the personnel in the other two rooms.

The vision control room has a Grass

Valley 16 -channel, 4-bank vision mixer with multiple re-entry, chroma-key and with multiple re-entry, chroma-key and
comprehensive wipe pattern generators The chroma-key incorporates the BBC fringe suppression system. Lighting is controlled by means of a Thornlite 500 microprocessor based system with 200 dimmer channels and 200 memory files.
The sound control room has a 20 -chan nel/4-group control desk built to a standard BBC specification, two Studer A80 $1 / 4$-in tape recorders and two BBC designed disc reproducers. There is also recorder and other equipment for postproduction editing.
production ediuing, 2 has been equipped for operation on a 'drive-in' basis with a colour mobile control room. The instalation has
been confined to production lighting and cabling to a connection point in the nearby outside broadcast base, where the vehicle will be parked when used in this mode.

Sound suite

There are two studios in the sound suite, one of 104 square metres and the other a
small talks studio of 20 square metres. The larger studio is equipped for drama and music with a Calrec Mk. 2 19-channel general purpose stereo desk, the Studer tape equipment, and BBC disc reproducers.
The adiacent talks studio, which also The adjacent talks studio, which also
serves as a quality check room, houses two serves as a quality check room, houses two
tape machines and one disc player. Control tape machines andone disc player. Control
is from a Glensound desk fitted for seven stereo and four mono channels.

This suite also contains three editing transfer rooms, each with three tap disc room' a linking console; a 'ry-over rather than the technical quality of th material; a tape store; an office and a main tenance room

Central technical area

This area is divided into a number of rostrum camera or episcope room telecine, a tv quality check room, mainten ance and tv apparatus rooms. Four of the six videotape cubicles will be equipped with broadcast quality machines (Ampex) recorders for producing copies of programmes for distribution to OU study centres and libraries.
The video rostur able help to OU's camera is an invalu graphic material. After five years' use at AP, the video rostrum - with its computer controlled camera recording direct on to video tape - remains unique to the production centre. This rostrum enables
animation and caption sequences to be checked during recording.
It is noteworthy that equipment to the value of about $£ 1.5 \mathrm{~m}$ has been transferred from Alexandra Palace. This was originally
bought and installed in 1974/5, when it bought and installed in 1974/5, when it
was decided that OU tv programmes should be made in colour. Without this equipment, the total cost of the new centre would have been around $£ 10 \mathrm{~m}$.

Circuit Ideas

Micropower

 voltage regulator In battery powered systems which require a constant voltage supply, a regulator is tery decays. Unfortunately, most i.c. voltage regulators require several milliamps of quiescent current, which makes them impractical for micropower applica-tions. Zener diodes may also be impractical because of short term peak current requirements.
Instead of the traditional bipolar approach, this regulator uses a i.f.e.t. as the
series pass element which does not require pre-regulation because the drive comes from the regulated output. Also, the gate source is isolated from the line by the drain, which provides high line regulation. This is not the case with p.n.p. pass ele-
ments where the emitter is the input. Finally, and most important for low power regulation, the f.e.t. requires no current drive.
The
The emitter-base breakdown voltage of Tr_{3} is used as a reference ($\approx 7.2 \mathrm{~V}$) in con-
junction with Tr_{2} to form a shunt regulator. Shunt current drives a current mirror, $\mathrm{Tr}_{4}-\mathrm{Tr}_{5}$, which produces the gate drive voltage for the f.e.t. The value of the shunt current is determined by R_{3} and V_{GS} of the
f.e.t. ($I_{\text {R }} \approx I_{\text {shunt }}$). High load currents wil reduce the shunt current because $V_{G S}$ is
lower. Temperature stability is achieved by cancelling the V_{BE} drift of Tr_{2} and Tr_{3} with the $B V_{\text {EB }}$ drift of Tr_{3}, which results in a negative drift at the base of Tr_{2} and the output of $1 \mathrm{mV} / \mathrm{deg}$. C. than the load current at all temperatures $\stackrel{I_{D S S}}{ }$ has a temperature coefficient of $\approx-0.7 \% /$ deg.C) and the breakdow voltage should be greater than the maximum input voltage. Linear operation re-
quires the f.e.t. drain-to-gate voltage to be greater than the pinch-off voltage V_{P} By operating the f.e.t. at currents much less than $I_{\text {DSS }}$ the gate-to-source voltag will be close to V_{P} which allows smal drain-to-source voltages. Therefore, for linear operation

$$
\begin{aligned}
& \left|V_{\mathrm{DG}}\right|>\left|V_{\mathrm{P}}\right| \\
& V_{\mathrm{DG}}=V_{\mathrm{DS}}-V_{\mathrm{GS}}
\end{aligned}
$$

For higher loads several f.e.ts can be With without matching typically $\pm 0.05 \%$. Load tine regulation is from $10 \mu \mathrm{~A}$ to 10 mA . 2 regulation is 0.2% perature stabiliy $\left(Z_{0} \approx 10 \Omega\right)$ and tem perature stability is $-1 \mathrm{mV} / \mathrm{deg}$.C. The
output voltage is given by $V_{\mathrm{BE}}\left(2+R_{1} / R_{2}\right)$
$+B V_{\mathrm{EB}}\left(1+R_{1} / R_{2}\right)$ and can be trimme by adding a potentiometer at the $\mathbf{R}_{1}, \mathrm{R}_{2}$ tions or to make the output variable over limited range. Temperature stability can be improved by replacing Tr_{3} with an 8.2 V Zener diode, whose temperature drift of about $+4 \mathrm{mV} / \mathrm{deg}$.C will nearly match the cent current with the values shown is
about $4 \mu \mathrm{~A}$
J. Maxwell
J. Maxwell

Santa Clar
U.S.A.

The mains transformer can be used in its original form, but a higher output current can be obtained if the low voltage winding
is rewound with 80 turns of 20 s.w.g. ena melled copper wire. The number of turns on the higher voltage winding can be reduced to lower the output voltage and indetails are shown in the table.
Simple voltage control can be achieved by connecting a suitable high value resistor between the rectifier negative and negative rail.
R. C. T. Stead

Hampto
Midd.

Improving
converter

efficiency

The efficiency of a simple converter can be improved by using a rectified output derived from the input winding. This simple given output current and increases the output voltage. Also, the output short-circuit current approaches the input current. This form of converter is well suited for variable voltage inputs such as solar-cell panels,
especially as no reverse-current input diode is required when the cells are in darkness.

Fusible-link p.r.o.m. programmer

Fusible-link p.r.o.ms such as the
SN74S288 and SN74S188 can be proSN74S288 and SN74S188 can be programmed directly and, by adding up to
three more address lines from the counter and using a larger socket, the following devices can also be programmed.
74S287
8 inputs 4 outputs
745387)
745470
74S471 $\}$
8 inputs 8 outputs
$745472\}$
9 inputs 8 outputs
745473
system power by replacing several pack ages. p.r.out +12 V , the circuit reads p.r.o.m. powered through D_{1}, and eigh ers. The device is addressed by a 4040 inary counter which is incremented by ush button. The address is monitore, i.e.ds and inverters and, in -bit address range, a reset button is not necessary. For larger p.r.o.ms, a reset button can be added across C_{4}. Switch S hould be set to 0 or 9 during the reading. be set and the bit to be programmed high the 74 S 288 is supplied with all locations low) is selected by \S_{3}. This saturates one of the eight transistors and clamps the data outputs low. S_{2} is then pressed to trigger a the 4017 counter. The counter outputs sequentially set and reset two flip-flops to give outputs Q_{1}, Q_{2} as shown in the timing diagram. Chip select on the p.r.o.m.
aken high, a +10.5 V program pulse is the second and third clock cycles $\overline{\mathrm{CS}}$ is taken low to program the bit
Flip-flop 3 is reset on the ninth clock cycle and stops the program cycle. Capacior C_{4} and R_{1} set the counters and 3 k 9 resistors apply the correct loads to the unprogrammed outputs during the programming cycle. Diode D_{1} disconnects the +5 V supply to the p gramming. and the only importy should be rated at 1 A is to ensure that a low resistance path exist between the emitters of the eight transound, so that the programmed bit is held low and a 750 mA current pulse flows through it.
. Kirby
N. Yorkshire roms can be used to replace logic elements by programming the desired truth table into the device. Although they are not low-power memories, they can reduce

More light on obscure units

Are you in a muddle over light units?
by J. C. A. Chaimowicz Dipl. Ing. E.S.E., M.I.E.E., M.I.E.R.E., M.O.S.A.

This covers the basic concepts deliberately cutting out the dull listing of units and tabulation of conversion factors, relating to four physic quantities: flux, intensity luminance/radiance and
 illuminance/irradiance. The treatment emphasizes this physical character of light units, to make them tangible to engineers.

If you are not in a muddle over light units, switch over to another article now. If you basic concepts with a physical meaning. But first, a glance at the jungle.
One of the units of photometry is called he nit. Page 578 of the Concise Advanced Learner's Oxford Dictionary defines the
nit $^{1} / \mathrm{n}$

Neither nice nor helpful. Another, more urement is the candle. Romantic perhaps, but not very practical. We also have noxes, stibs and apostilbs, sea-mile candles, footamberts, carcels, lumens, luxes, heffners and other tal bots, without mentioning the metre square per nanometre used by c.r.t specialists. How then do we get out of this jungle? Simple. By going straight to the asic concepts of light measurements. These concepts are but four, relating to irradiance, intensity and luminance/radiance. Equipped with these you will be able to put into the right place every single one of the two dozen or so existing units. Articles dealing with stage illumination, with
camera sensitivity, with the light performance of l.e.ds, c.r.ts, incandescent and other light sources, with photodiodes, phototransistors and other light receivers will become clear, catalogues will become nents from different sources possible.

Luminous flux

The first and truly fundamental concept is that of luminous flux; the remaining three associated with that of flow: think of the flow and you "feel" the flux. For example the flow of people in Oxford Street. How many per hour? Think of the water flow of a mountain stream. How many gallons per
minute? Think of your Company's cash flow. Try to remember now the shaft of light you once saw pouring through a stained glass window. Finally, imagine a torch shining on a pitch-dark night - this is light flow - and you will have grasped the notion of light flux.

Light is a form of energy. The luminou
lux is the time-rate of the flow of this energy through a certain area or out of a certain solid angle. For instance, in the case of the shaft of light, this will be the
"energy" time-rate of the light beam tra"energy" time-rate of the light beam tra-
versing a particular fragment of the stained glass window or the whole of it; in the case of the torch, the total flux is the "power" radiated into the light cone of the torch, out of its apex.
Photometric units are designed to
convey a sense of strength of human res convey a sense of strength of human res-
ponses to light and NOT to give an objective measure of the power carried by a beam of light. Whence " "' in the previous paragraph. Being physiologically de-colour-related. Radiometric units are not. They alone represent genuine power without inverted commas! They alone have licence to use the watt as a unit of flux. The practical consequences of the unequal sensitivity of the human eye to
various colours is that even though two fragments of stained glass, one green, the other red, may be transmitting equal amounts of true power (such as would be measured in absolute terms and hence exsessed fluxes will be different, the human eye being more sensitive to green than to red light. The photometric unit of luminous flux is the lumen. For pure colorimetric green light 1 lumen corresponds to
1.47 milliwatts. For red light some ten times more is required to produce the same physiological sensation and so, here, 1 lu men corresponds to 15 milliwatts. Green and red colours as used above correspond 650 nm wavelength respectively. An inter nationally agreed lumen/watt relationship called the visibility curve for the whole range of colours was established many years ago based on an "average eye", the
result of numerous measurements made on large sample of humans, Fig. 1. This curve gives an immediate answer to a common question of the type: "My gallium arsenide diode emits 0.7 mW . How many lumens is that?" As GaAs l.e.ds emit at a
wavelength of 900 nm , the answer is zero This is how it should be, as the infra-red adiation produces no visual effects.

Iluminance - Irradiance

The magazine you are reading is illuminated. So is the theatre stage (though sometimes dimly), the shop window
display and the road. What they all have in display and the road. What they all have in
common is the fact that they all receive common is the fact that they all receive
light shed onto them. To the contrary of, for example, a television screen which is self-luminous. This distinction must be mind for the remaining three of the basic
four to be understood.
Illuminance is the area-density of light falling from an external source onto a surface. Hence it is represented by lumens per square metre. The unit used in photometry is lux, with one lux representing an metre: $1 \mathrm{lux}=1$ lumen $/ \mathrm{lm}^{2}$
When light from more than one source falls onto an area, the individual fluxes are added.*
The radiometric conceptual (not numerical!) equivalent of the lux is the watt per
square metre $\left(\mathbb{W} / \mathrm{m}^{2}\right)$. Here, the area density of incident flux is called irradiance. You will have noticed the identity of the basic concept linking illuminance and irradiance. It is obvious from Fig. 2, right,
that the more the surface is tilted with regard to the incident rays, the larger the area lit by the same flux and the smaller the illuminance/irradiance. This is what is expressed by saying the sun is hotter midday than morning and evening.
Beifre going onto the next item of the
basic four it is of utmost importance to emphasize that neither illuminance (lux) nor irradiance ($\mathrm{W} / \mathrm{m}^{2}$) gives the slightest Consider the example of Fig 2 The illuminance of a black matt table top will be exactly the same whether or not it is covered with a snow-white table cloth. This fits the definition of illuminance which, like irradiance, is concerned with the area
density of the on-coming and not the outgoing radiation.
Just how strong a lux is and what practical magnitude a watt $/ \mathrm{m}^{2}$ is can be judged om these few examples
moonlit landscape receives 0.01lux
comfortably lit desk is ill
comfortably lit desk is illuminated
by 300 lux
St Tropez sunbather receives $1.5 \times$
10^{5} lux
-2 mW helium-neon laser (red) prosand lux, or an irradiance of sand lux
$200 \mathrm{~W} / \mathrm{m}^{2}$.

Intensity

Few real light sources radiate with the same vigour in all directions. Some, such ional by design. Some, meant to be omnidirectional, fail in this respect through unavoidable manufacturing or exploitational onstraints. Such is the case of a spherical
light bulb, Fig. 3, in which the unavoidable contact-bearing base impedes the light preparation into a part of the surrounding space. Clearly, to characterize the strength of the radiation in a certain direction, a nous intensity. The luminous intensity * Laser light requires a specialized treat-

(

Fig. 1. "My gallium arsenide diode emits
o.7mW. How many lumens is that?" As GaAs l.e.ds mit at loonm is that? answer, from the internationally agreed curve, is
zero. Which is how thshould be as the infra-
red radiation produces no visible effect.
represents the flux flowing out of a source
represents the flux flowing out of a source
in a given direction per unit angle. a given direction per unit angle. radiation
Because light source beam three-dimensionally a flat angle unit such as the degree will not do here. A space
angle unit must be used instead: the steraangle unit must be used instead. Amen the dian. As the unit of flux is a lumen, the
uminous intensiry will be measured in lumen/steradian. For brevity a single word has been internationally agreed, the candela, to stand for one lumen/steradian. The choice of a steradian for a unit of very large chunk of space and as such it does not impart well the sense of directionality. Steradians are seldom used in other fields and it will certainly help to describe an easy way of visualizing their
size. To form a steradian, take an organe or an apple and cut it into six as if sharing it equirably between six people. Then make a fourth, horizontal cut through the middle, Figs 4 \& 5. You have 12 equal portions. Each one of them contains at its a 4% error). A corner of a room contains approximately 1.5 steradians.
Within the context of light intensity Within the context of light intensity
measurments it might be even more measurments it might be even more
helpful to visualize the spatial angle not as helpful to visualize the spatia structure, but
the hollow of a three-sided as the interior of the tip of a cone. A hypothetical cornet with a rounded off "filler" surface having an area just equal to r^{2} would make exactly one steradian at its
tip. tip.
In radiometry, the third basic concept
corresponds to the power radiated into a unit solid angle. This is named radiant intensity and is measured in watt/steradian. The intensity concept is valid only for ing space, aptly called point sources. As ing space, aptly callem poin of the radiating element is some ten times smaller than the distances of interest around them, one can call them point sources and use the
intensity concept. This is mostly the case intensity concept. This is mostly the case
with bulbs, candles, l.e.ds or c.r... spots but not with large panels.
Finally, the value of both luminous intensity and radiant intensity in a given
direction is independant of the distance

Fig. 2. The area-density of light falling onto a surface is represented by lluminance, i.e.
limens per square metre for both divergent light and parallel light.
Fig. 3. As few real light sources radiate equally in all directions a directional quantity is

from the source at which it is meas as seen the skerch of Fig. 6

Luminance

The last of the basic four concepts of photometry is that of luminance. Imagine you
are viewing a tiny, compact filament shining through its bulb of clear glass. The bulb, in fact the filament, it is bright that it hurts your eyes. Then imagine that the
glass is opalescent. The device emit now very nearly the same amount of light as before but the eye perceives it unhurt. The total flux is constant to a first approximation, but the opal glass envelope spreads
the radiation over a much larger surface
which re-diffuses it. Luminance expresses the brightness of the source in a given direction.
The surface area of the source has a large part to play, now. Imagine that the milky
spherical bulb broke and got replaced by another, twice its diameter, Fig. 7. The new bulb will appear four times less bright, despite the To convey these effects of source brightness, the luminance expresses luminous intensity per unit surface area of the source. This is of course the same as the
luminous flux per steradian per unit area.

WIRELESS WORLD DECEMBER 1981

We thus have a unit of luminance Candela/metre ${ }^{2}$ or lumen/steradian x It is a unit that characterizes out-going radiation, to be used with objects which emit or re-emit light; a filament, a bulb, an or an illuminated table top. An idea of its size: the UK standard for screen luminance in film viewing rooms is 37.5 cande las $/ \mathrm{m}^{2}$ at full illumination.
Luminance is a directional quantity, as
is intensity, one of its two constituents. The surface area, the second constituent must be taken as the projection of the physical radiation area on the plan perpendicular to the direction in case. With certain emitting or re-emitting devices the
intensity versus viewing angle variation is such that luminance remains constant. This is so because as the observer looks more obliquely at such a source, the projected unit area reduces in the same proportion as the intensity does. Such by the moon, flashed opal glass, chalk, good Bristol board. But this directional independence must not be taken for granted, as most devices and materials are with direction.
Finally, the radiometric sister of lumi nance is radiance and I think that nobody will show puzzlement any longer at the fact that it is usually measured in
$\mathrm{w} / \mathrm{sr} \times \mathrm{m}^{2}$

Fig. 5. Spatial angles may be alternatively visualized as that conical fraction of a the
sphere whose surface area is equal to the square of its radius.
nd sometimes (I am sure you will know where and why) in

$$
\mathrm{W} / \mathrm{sr} \times \mathrm{m}^{2} \times \mathrm{nn}
$$

And yet "watts per steradian per metre square per nanometre" must have sounded puzzling when first met in the openin paragraph of this article. cross an unknown exotic unit try to estab lish, first of all, to which of the basic four denominations it belongs and whether it is working out of numerical conversion fac tors should come easily

$\frac{a}{r^{2}}=\frac{A}{R^{2}}$
iig. 6. Values of both radiant and luminous Intensity are independant of source

Fig. 7. Luminance expresses brightness of source Large bulb appears four times
bright than smaller bulb for the same power and flux. Luminance is luminous
itensity per unit surface area (which is the intensity per unit surface area (which is the
same as flux per steradian per unit area).
C.b. legal - but . . . The fact that citizens', band radio is now legal gives little relief to those who are suffering from
interference because of the illegal use of a.m. sets on unauthorized channels. Paging Committee, a group representing the Pagnufacturers of radio paging equipment, have pointed out the interference to paging systems. They have conducted tests which have shown
that the use of illegal c.b. sets can interfere severely with the paging systems which operate on the 27 MHz band.
The chief problem is that the effect of the
interference is very terference is very insidious. When affected, a eeper just refuses to bleep and, if detected, the fault is put down to the receiver and not to the
interference. When one considers that interference. When one considers that paging
systems are used in hospitals, on industria systemses for maintenance and security per-
premises sonnel, then it becomes apparent that if an
urgent call is not received, then there culd be urgent call is not received, then there could be
very serious consequences. A report by Tom very serious consequences. A report by Tom
Davies in The Observer says that a patient has died because a doctor could not be paged.
What the Selective Paging Committee What the Selective Paging Committee pro-
poses is that radio paging should be shifted to a different frequency band with a width of 500 kHz , between 30 and 41 MHz . This band
was allocated an $W A R C$ to fixed and mobile was allocated at WARC to fixed and mobile
services. 31.735 to 31.775 MHz is already allocerved in the UK to on-site radio paging. The majority of the band, however, is allocated for military use.

British Telecom have said that they' are get uing more than 1,000 complaints each week about c.b. interference. These refer to interfer
ence on tv and radio, breakthrough interference on emergency services and hi-th mobile services, such as taxis. Model aircraft, missiles

missiles. We cont

get their view the Civil Aviation Authority to get their view. So far there have been no are worried by the possibility of harce, but the tion. Apparently the 4 th harmonic of 27 MH which could affect the i.1.s. localiser/v.o.r. band (landing and navigation systems) and the sth harmonic, which could affect the v.h.f. rlt (air
traffic control) band. Spurious radiation can, of traffic control) band. Spurious radiation can, of
course, fall anywhere. The CAA pointed out that in North America there is a recorded case of interference with the i.l.s.; ;interference with r , is widespread. A large number of the cases,
when investigated, proved to be due to the use of booster transmitter amplifiers; "burners" Such amplifiers are illegal here but are available, and are in use.
Legal c.b.
does not preses specified by the Home Office mated one million illegal broadcasters are likely to abandon their current equipment in order to change it for the approved types. The Selective Paging Committee believes that it is
only a matter of time before the illegal sets will
be accepted as an internationally recognised andard and that the current specification

News in Brief

Powertran specialize in selling kits from magazine desisns, including some from Wireless
World. Unfortunately, they have had difficulty in maintaining a construction and servicing faility. They were relieved when they heard of
Circolec, an electronic company in Tooting, Couth London, who were willing to undertake he work, and have now appointed them official owertran service and manufacturing agents. Powertran kits from the simple amplififiers to the nost complex synthesizers. This is of special aterest to those who have built a kit but cannot may have failed some time after assembly. They can also assemble Powerruan kits and ensure
that they are working properly before dispatch. that they are working properly before dispatch.
Many people wish to purchase these kits but are not totally confident of their ability to assemble
and set up such kits as the Transcendent and set up such kits as the Transcendent
Polysynth. Kits purchased from Powertran may be forwarded to Circolec, or the complete order may be sent to circreolec, 1 Franciscan Road,
London SW178EA.

Multichannel digital tape recorder

Design of the digital additions to the audio cassette recorder
by A. J. Ewins, B.Tech. Research Laboratories, London Transport

Overall design aims of the digital recorder were set out in the first two
parts of this article, which continues with a description of the additions to the audio cassette deck for multichannel digital recording.

All the logic used in the design of the digital circuitry is c.m.o.s. and is supplied with a nominal +15 V . he analogue cir
cuits use the same +15 V suply and one of -15 V .
Many of the logic circuit diagrams are complicated and, to keep them as simple as possible, not all the pin connexions to a
particular logic device are shown: only those necessary to define the function of the device are indicated - for example;
the supply connexions are not normally the supply connexions are not normally
show. Again, a divide-by-10 counter (i. shown. Again, a divide-by- 10 counter (i.c.
type 4017) may only be shown with its clock input, carry output and reset connexion, it being left to the reader to appreciate that other inputs may need to be connected to $+V$ or ground, or lefi unconnected as appropriate. Another
example is the use of a D-type flip-flop (i.c. type 4013) as a divide-by-2 counter; it
is assumed that the reader knows that the device to function correctly. However, whenever it is thought that a particular device may be unfamiliar to readers, a more detailed description of the pi
emporary storane huffers,
control circuitry
Figure 2 in part 1 of the article showed the two 72 -bit temporary data storage buffers, the 8 -bit sync. word buffer, a 2 -bit shif register, the Miller encoder and associated control circuitry. Figure 12 shows three and their interconnexion via logic switches. The two 72 -bit storage buffers are made up from two shift-register i.cs, types 4014 and 4031 , the 4014 type being an 8 -bit serial or parallel-in/serial-out de-
vice. Since it is used only in its serial-in/se-rial-out mode, all eight parallel inputs go to ground, as does its parallel/serial mode input, PS. Serial data advances through the shift-register on the positive edge of bit, serial-in/serial-out shift register with
he facility to recirculate its internal data, To function correctly as a serial-in/serialout device the 'recirculate' input goes to $+V$ and the 'mode' input to ground. As for he 4014 device, the serial data advances through the shift regis
The sync. word buffer is an 8 -bit shift The sync. word buffer is an 8 -bit shift parallel-in/serial-out mode, into which the -bit sync. word, permanently present at the parallel inputs, is entered on the posinout is high. It is shifted serially out on he positive edge of the clock pulse when PS is low. To produce a sync. word sequence of $1,0,1,0,1,0,0,1$, the parallel pputs go to $+V$ or ground as shown. Filling and emptying of the two 72-bit buffer is under the control of the circuitry detailed in Fig. 13(a), interconnexions beween the two circuits being made as ind cated. The logic sequence of the control time-expanded picture of the B and sync word PS '\& 2', control pulses shown in

Fi. 12 Temporary Storage and svnc, word

Fig. 15. Divide-by-9 circuit of Fig. 13.
tion and are drawn separately purely for detail. The divide-by-12 circuit, Fig.
14(a), is a little 14(a), is a little more complicated and
needs some explanation. Firsty; it was not only required that the divide-by-12 circuit should produce an output pulse every twelve clock pulses, but that its duration
should be for exactly one DC cycle and should be for exactly one DC cycle and
occur at the eleventh DC pulse. The pulse so produced is referred to as PS and controls the paralle//serial mode of the 12 -bit shift register used in the analogue-digital
conversion of the inpur stages (see Fig 4 of conversion of the input stages (see Fig. 4 of
Part 1). Secondly, it was required to Part 1. Secondy, it was required to
produce another similar pulse, referred to as B4, to control the sample/hold circuit of the input stages and to initiate the a.-d conversion. Divide-by- 10 counters, i.c. type 4017, produce ten sequential output
pulses every ten clock pulses that each last pulses every ten clock pulses that each last
for exactly one clock cycle. By combining or exactly one clock cycle. By combining
two of these counters under the control of a flip-flop, each is made to divide by 6, producing an overall divide-by-12 counter with twelve sequential outputs that last for exactly one clock pulse. The addition of
three 2 -input, diode OR gates was found essential to determine the correct sequencing of the two-counters with relation to each other and the reset pulse.
The exact logic sequence of the two Upon examining the circuit of Fig. 14(a). it may seem a little odd that output 7 of both counters is used to clock the flip-flop and not, what might more reasonably be expected, output 6 . This is done because a
negative transition of the clock - enable input, CE, clocks a counter in the same way as a positive transition of the clock input. (A fact that has caught many a de-
Fig. 17. Miller encoder circuit. Capacitor
and foilowing inverter 4 increases and
transitiowing inverter 4 increases transition times and help to eliminate
spurious pulses caused by propagation spurious pulses ca
delays (gitches).

Reset 1

Fig. 14 . Divide-by-2 block of Fig. 13 shown in greater detail. Sequence of operation and
production of pulses PS and B4 are shown at (b).

Fig. 16. Clock oscillator and divide-by-8 circuit block of Fig. 1

signer out at one time or another!) Thus as $\mathrm{B7}$ goes high, resetting the flip-flop, the CE input of A goes low, clocking it to
produce a high on output Al. The first produce a high on output A1. The first
clock pulse received by A thus advances it to produce a high on output A2 and not A1 as might have been expected.
Apart from the Miller encoder circuit, all the circuit blocks of the block diagram
of Fig. 2 (see Part 1) have now been described. All these circuit blocks, excluding cribed. All these circuit blocks, excluding
the 8 -bit sync. word buffer and the Miller encoder, are constructed on one standard 43 -way circuit board of 0.1 in pitch, 114 $\mathrm{mm} \times 203 \mathrm{~mm}$.

Miller encoder

The last circuit block of Fig. 2 (see Part 1) The last circuit block of Fig. 2 (see Part 1)
is the Miller encoder, which is shown in is the Miller encoder, which is shown in
detail in Fig. 17. Two inverters, 1 and 2, and three NAND gates, 1,2 and 3 , form a bi-phase encoder with the output from
NAND 3. This output is NANDed with NAND 3. This output is NANDed with
an inverted blanking pulse (from the an inverted blanking pulse (rom the
control circuitry) to produce a modified, inverted, bi-phase-encoded data stream at the output of NAND 4 . The outputs from both NAND 3 and NAND 4 contain
glitches due to the combination of the two giltputs from NANDs 1 and 2 and the inverted blanking pulse. To remove these glitches, a 2200 pF capacitor is connected from the output of NAND 4 to ground to
remove the glitches by increasing the rise remove the glitches by increasing the rise
time of the encoded waveform. A further inversion of the signal by inverter 4 re

M

 Fig. 18. Sequence of operation of Miller encoder shown in Fig. 17.shapes the encoded data and increases the rise time to give a true bi-phase-encoded output, modified by the presence of the by-2 flip-flop to produce a Miller-encoded data stream at its output. Finally, the Miller encoded data output from the flip-flop is attenuated and slightly shaped by the two resistors and capacitor as shown. The logic sequence of the pulses produced by
the various stages of the Miller encoder whilst encoding an example of the serial
data stream (including the sync. word) is shown in Fig. 18. The glitches produced by the encoding process at the outputs of indicate where they occur in the encoding sequence. The influence of the blanking pulse, in suppressing the transition that would normally take place at the centre of he $1,0,0,1$ sequence of the sync. word, is also shown.

To be continued

Transmitter powered by nature
We have received rival reports of naturally
powered tv transmitters, both claiming to be the first. The first that we had notice of is the IBA equipment at Bossiney in Cornwall. It will pro-
vide programmes to just under 300 people and vide programmes to just under 300 people and
marks a development in the design of low-cost elay stations capable of serving communities of less than 500 people. The experimental use of
combined wind and solar generators is designed to last for several years during which data will be taken daily for computer analysis. Results
will be compared with the predicted performance obtained from a study of the Meteorological Office's daily sun and wind records over the past ten years. All power for the Bossiney sta-
ion will normally come from the wind or sol generators, or from a bank of 36 large lead-acid batteries that will be kept charged by power from the generators.
The other report was of the BBC transmitter bring pictures to 620 people in Dalmally and Lochawe in the Strath of Orchy. It does not
broadcast direct but receives the signals from Torosay on the Isle of Mull and retransmits them to the relay station at Dalmally. This also has both wind and sun generators with back-up
storage batteries and, as at Bossiney, there is monitoring apparatus to record the performance
of each penerating system. Analysis will help of each generating system. Analysis will help wind and/or solar powered stations. The BBC points out that as the consumption of the transmitter is very low, there is little saving in
nergy; but it has saved considerably by ayoid ing the cost of bringing mains power to this remote Scottish site.

The wind and sun powered transmitter
installed by the IBA in Bossinev, Cornwall.

News in Brief
Colour codes for miniature fuses. There has sees; a variety of colour dots or single colou bands have been used with no recognised coding, each manufacturer deciding arbitrarily how Board had recommended a three band system which met with some success. The International
Electrotechnical Commission's members have Electrotechnical Commission's members have
now come to an agreement that a four band nowtern should be used, with the recognised
systours as used for resistors and capacitors,
coll where the first two bands represent the first two digits of the current rating of the fuse, the third
and indicates a decimal multiplier and the fourth, wider than the others, would be the me-current characteristic, such as fast blow or time delay fuses.
Publication 127A.

Testing of components, especially environmen tal testing, can now be undertaken by Ashcroft ated an Approval Certificate as a B 000/CECC independent test house. A wid blies may be tested under controlled conditions. The test equipment includes that for the simuation and testing for shock, vibration, bump,
extremes of temperature, solderability and so xtremes of temperature, solderability and so
on. Ashcroft Electronics are at Somerford Road, Cirencester, Glos. GL7 ITW.

Telequipment 1000 Series The choice is yours

Tried, Tested and now even better Since their introduction a few years ago, Telequipment's D1000 series of high performance low-cos
oscilloscopes have established oscilloscopes have established
themselves at the forefront of the themselves at the forefront of the they are the result of intensive research and design efforts by one of the world's leading electronic
instrument manufacturers, and low instrument manufacturers, and low in a modern automatic production plant.
Performance to spare
With the D1000 series, Telequipmen
regard specifications as lower
limits, not maxima. For example the D1016A bandwidth is specified as 20 MHz . The typical
figure is actually in the region of figure is actually in the region of
23 to 25 MHz and the usable bandwidth nearer 35 MHz . Input attenuator tolerances are now specified at $\pm 3 \%$ for all D1000. series oscilloscopes, a considerable
improvement over the previous mprovement over the previous $\pm 5 \%$. But again, the user may well More Accurate Time Bases The time bases, too, have bee upgraded. All new D1000 instruments have been equipped
with thermal compensation which

[^0]tightens time measurement accuracy to $\pm 3 \%$, with improved tability as a bonus. o match these improved time bandwidths and performance haracteristics have been substantially enhanced. etter Display he D1016A also has a new CRT. he size is just the same easy-tointernal graticule and a quickeat cathode. It has a "GY" hosphor which is a near equivalent othe P31 but is more efficient actinically at low beam currents
and high writing speeds. A Choice of Bandwidth 10 MHz or 20 MHz with 5 mV division sensitivity at full bandwidth and 1 mV division at
5 MHz in the D1016A 4MHz in he D1011, and a choice of display modes; Algebraic Add rue $X-Y$, Channel 1 and 2 Chopped or Alternated, Channel 2 only, and Channel 2 Inverted or further details send reply coupon today.
「 ——————— | D1016A \square D1010/D1011 \square |
I Name
| Position
Company
| Address
|
Tektronix U.K. Ltd. ${ }^{w W}$
P.O. Box 69

Harpenden, Herts AL5 4UP
Telephone: Harpenden 63141
Telex: 25559
TELEQUIPMENT < 缕 >

thandar's

COMPLETE PORTABLE TEST BENCH

LCD HAND HELD MULTIMETERS

TM354 31/2 Digit

TM 352 3 $1 / 2$ Digit

LCD BENCH MULTIMETERS

TM351 3½ Digit TM353 31⁄2 Digit

LED MULTIMETERS
DM235 31/2 Digit DM350 31/2 Digit

TG105 5MHz Pulse Generator

PULSE \&
FUNCTION GENERATORS TG 100 100kHz Function Generators

FREQUENCY
METERS
TFO40 8-Digit LCD

TP600 600MH2 Prescaler

pment without prior notice. ALL THANDAR Probucts CARAY A FULL 1 YEAR WARRANT

Displacement current
A field theory approach
by Lawrence A. Jones, M.Sc. (Eng.)

A study of a capacitor as a
transmission line by Catt, Davidson and Walton in the December 1978 issue contains, in the author's the subject being treated as a circuit theory. This article presents an analysis from a field theory viewpoint
and shows the importance of the and shows the importance of the

Displacement current is perhaps one of the most difficult field theory concepts and it has been suggested ${ }^{1}$ that Maxwell developed it by direct analogy with his equation

$$
\nabla \times E=-\frac{\partial \bar{B}}{\partial t}
$$

It must be borne in mind, however, that this analogy fails when the forces on moving charges are considered. Displacement current is a necessary consequence of
Coulomb's law when charges change with time, and the electric field becomes nonconservative.
The fundamental point of Coulomb' law is that this force is transmitted through any medium, i.e., space is just as real medium as a metal. Consider Coulomb's law:

$$
F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} a_{r}
$$

In Fig. 1 we have two conducting spheres. Sphere A has a fixed charge while as both spheres are stationary there will be a constant force exerted by A on B and vice-versa. Let us now start moving sphere A towards sphere B. For simplicity we will consider changes of force in the y -direction

Fig. 1. Two conducting spheres. As long as both spheres are stationary there will bea constant force exerted by A on B and vice-
versa. ?
only, using the following formulae:

$$
\begin{gathered}
\frac{\partial E_{y}}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} \frac{\partial i}{\partial t}\left(\frac{q_{2}}{y^{2}}\right) \\
=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{\partial q_{2}}{\partial t} y^{-2}-q_{2} 2 y^{-3} \frac{\ni y}{\partial t}\right)
\end{gathered}
$$

therefore:

$$
\frac{\partial D_{y}}{\partial t}=\frac{1}{4 \pi}\left(\frac{\partial q_{2}}{\partial t} y^{-2}-q_{2} 2 y^{-3} \frac{\partial y}{\partial t}\right)
$$

Thus, if the electrostatic energy in the electric field changes, the energy change
has to manifest itself in some way. It does so by producing an external flow of current in the conductor connected to sphere B. It is important to realize that this displacement current does not have the significance of a current in the sense of
being the motion of charges. After all, free charge cannot exist in free space, and hence, there cannot be a force proportiona

$$
\epsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t} \times \boldsymbol{B}
$$

on the displacement current in empty space. In order to examine the effects examples will be considered. For the first example it is required that the charge on a conducting sphere be mea sured by discharging it on to a large scope. The resulting voltage pulse is mea sured and; since the input capacitance of the oscilloscope is known, the charge on the sphere can be calculated. When the calculated a serious discrepancy is found calculated, a serious discrepancy is found
to exist between the actual charge on the sphere, which may be found by direct measurement in a Faraday cage, and the charge measured on the oscilloscope; the explanation is interesting.
The energy stored in the electric field given by

$$
W=\frac{1}{2} \iiint_{v o l} \boldsymbol{D} \cdot E \mathrm{~d} v
$$

As the sphere approaches the plate, th volume of the field is decreasing, so th energy stored in the field has been re-
duced; but where has the energy gone? the sphere approaches the plate more nega
ive charge is induced on to the plate an hus more positive charge will flow to round. At the instant of discharge a This pulse is simply the charge that has not been neutralized by the induced charge on he large conducting plate, i.e., if there was originally +10 nC on the sphere and
only -8 nC induced on the plate then +2 nC would flow into the oscilloscope, hence the discrepancy.

Fig. 2. The set-up used for explaining the discrepancy between calculated and
measured electrostatic charges.

The method illustrated in Fig. 2 was used to confirm this theory. In this set-up scope's second channel is inserted through a hole in the conducting plate. A protective sleeve insulates this electrode from the plate. Once again the sphere is brought discharge the plate but is now allowed to discharge onto the needle. In this case,
only $-\ln C$ has been induced on the needle so consequently, +9 nC will flow into the oscilloscope. The positive pulse measured on the oscilloscope will be almost equal to the charge on the sphere. Similarly, when
the discharge occurs, the -8 nC induced on the plate will be released since the electric field has collapsed. A pulse of -8 nC will be measured on the second channel of the oscilloscope
The consideration of a capacitor as a
transmission line the proposal that displacement current is erroneous. Consider the capacitor in Fig 3(a): at time $t=0$ the switch is closed and the capacitor starts to charge. A capacitor
cannot charge up instantaneously: it will cannot charge up instantaneously: it will
start to charge with the formation of field line ab, then cd, ef, etc. Hence, the initial

$$
i_{1}=\epsilon_{0} \iint \frac{\partial E_{1}}{\partial t} \mathrm{~d} s
$$

This current flows until field line $a b$ is formed. At a time t seconds later, a current i_{2} will flow shown by

$$
i_{2}=\epsilon_{o} \iint \frac{\partial E_{2}}{\partial t} \mathrm{ds}
$$

Fig. 3. As a capacitor does not charge up
instantaneously, it can be considered to charge up beginning with the formation of
field ab then cd etc. field ab, then cd, etc.
Fig. 4. After switch S of 4(a) is closed, 4(b) 4(c) and 4(d) show the charge distribution for charged/uncharged capacitor rairs of various values. Simplified circuits for measuring cap).
in $4(e)$ and $4(f)$.

establishing field line cd and so on. Figure 3(b) shows this diagrammatically.
From the above explanation it may be deduced that the transmission line capacideduced that ine transmission in effect an infinite number of small capacitors. I would suggest that this is the
reason why it has never been possible to measure inductance in a capacitor, because each capacitor will acquire an infinitely small charge. Obviously this very small amount of moving charge will have an
associated magnetic field, but this field will be so weak that it will be undetectable, hence the absence of inductance in a capacitor. It is important to realize that this situation can only arise in a capacitor, be-
cuase all the applied electrical energy is cause all the applied electrical energy is
used in establishing an electric field. In a standard transmission line with a resistive load the situation is somewhat different. The conductors are spaced well apart from each other so the electric field
will be negligible and all the electrical will be negligible and all the electrical
energy will be transferred into the load. In this case electrical energy is transported from one point to another, whereas in the case of the capacitor the energy is distributed over a large area. Inductance now
becomes important as a constant timechanging current will produce a changing magnetic field, i.e.

$$
\nabla \times E=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

or in circuit terms,

$$
v=\frac{L \mathrm{~d} i}{\mathrm{~d} t}+i r
$$

Finally, in considering the effects of displacement current, it is worth discusdisplacement current, it is worth discus-
sing the problem of a charged capacitor being connected to an uncharged capacitor (see Fig, 4) and the mystery of where the 'missing' charge goes ${ }^{3}$. The usual explanaion is that the closure of the switch ini-

acillaion of charge between the two capacitors which finally decays to a steady state. Consider these two equations for the charge and energy in a capacitor;

$$
Q=C V \text { and } E=\frac{1}{2} \frac{q^{2}}{C}
$$

It is accepted that the charge remains the same before and after the discharge, as can be proved by experiment, but

$$
E_{1}=\frac{1}{2} \frac{q^{2}}{C}
$$

and

$$
E_{2}=\frac{1}{2} \cdot \frac{1}{2} \frac{q^{2}}{C}
$$

which would imply an energy loss.
A more thorough study of the equation for the energy stored in a capacitor prototal energy stored in an electric field is

$$
\frac{1}{2} \iint_{\text {vol }} \int_{D} D \cdot E \mathrm{~d} v
$$

A parallel plate capacitor is an approximation of a true field, which is represented by two infinite spheres. There are two ways of increasing the capacitance value. One is to move the two spheres closer

Interfacing microprocessors

Further programming examples
by J, D. Ferguson, B.Sc., M.Sc., M.Inst.P., J. Stewart, and P. Williams, B.Sc., Ph.D., M.Inst.P
Microelectronics Educational Development Centre, Paisley College of Technology

WIRELESS WORLD DECEMBER 1981

0522 V.i.a.

The first routines concern the port and timer function of the v.i.a. Port B is monitored by the eight l.e.ds, and port A is controlled by the switches. This is not obligatory but is a convenient arrangement for demonstration.
Starting with the ports, the routines in
Table 1 show two programs which begin by using the data-direction registers to define port A as an input and port B as an define port A a a an input and port B as an
output. The first program runs in a continuous loop which repeatedly reads port A
(switches) and copies it to port B (le. ds) (switches) and copies it to port B (1.e.ds).
In the second example the program goes stage further so the computer evaluates and displays the decimal and hexadecimal values of port A before outputting its bi

Table 4

nary value to port B. These programs though limited, include the essential ele ments for general monitoring and contro condition, take data from an input, process the data and send the results to an output. The next feature of the v.i.a. to consider is the pair of umers, Thand 12. These can to monitor or drive specific port pins and override other functions. Table 2 shows how timer T2 can count a defined number of pulses on pin 7 of port B , and how Tl can operate as a pulse generator to produce
a square wave on pin 6 of port B. Used a square wave on pin 6 of port B. Used
independently, each timer offers time de lays up to around 65 ms . However, Table 3 shows how they can be used together to produce longer time intervals. Timer Tl produces pulses on pB 7 and T 2 counts
mes on pB6 via a short wire link. Time tervals of one minute can be achieved by aking 71 measure 50 ms intervals and T2 perate in an interrupt that the timers can microprocessor for other tasks while wait ing for a time-out signal.
Other 6522 functions include a shift re gister and control lines, but this article can only introduce the main features. Th examples.

D-to-a converter

This device is simple to drive because, for any binary data provided, a corresponding analogue output is obtained, in this case

Table 5
illustrates the generation of synthesized waveforms using Basic and assembly language where the highest frequency is produced by the low-level language.

A-fo-d converter

The power of this section of the interface
precedes it. For example, it can be used directly as a 16 -channel data-logger proided the input signals are in the range 0 to maller signals which may not have a common point to ground. For laboratory applications the signal conditioning can be simple, e.g. temperature and light intensemiconductor devices which deliver cur-
rents proportional to the measured parameter. Such an output only requires a shunt resistor to convert the signal into a voltage. A-to-d channel selection is achieved and the programs in Table 5 show routines that assume a conversion has been The first before the next one is called for. system where an analogue input is contin-

uously monitored and a message is displayed if the inpund a message is displayed if the input voltage rises above a
danger threshold. Two versions of a datalogging program are also shown which have been designed specifically for the AIM 65. The first program is written ccos pletely in Basic while the second uses a machine-code subroutine for fast data colof displaying the results. Table 6 shows a demonstration program which exercises all of the i.cs. The d-to-a converter is driven from a progressively increasing binary value and its analogue output is applied to one input of the a-to-d converter. The signal is then reconverted to binary and the
result is used to switch on the l.e.ds con nected to port B
programs illustrate several ways in which the interface board and a typical microprocessor can interact. Part four will discuss ways of extending the boards' functions, and modification for operation with other microprocesso

families

References

1. R. Zäks, 6502 Applications Book, pub. Sybex.
2. R. Zaks, 6502 Applications Book, pub. SYbex.
3. M. L. Jo Jong. . .rogramming and linterfacing
4. the 5502 , withg Experoriments, pub. Sams.
 sors", pub. Microprocessor Training Systems
Kilsyyth.

Table 6
Modification to the
conversion circuit

High-resolution weather satellite pictures

Data decoding and processing
by M. L. Christieson

lator. The v.c.o., a type of relaxation oscil-
lator, is essentially a variabe lator, is essentially a variable constant-cur-
rent source charging a small capacitor When the voltage reaches a preset value, a comparator causes the capacitor to be discharged. The output of this oscillator takes the form of narrow pulses ranging from 100 kHz to 25 MHz
the clock oscillator, counts the pulses from successive cycles. The outputs are compared by a four-bit digital comparator. This forms the output-data stream. Automatic clock phasing is achieved as des-
cribed, an error signal resetting the two dividers that produce the data rate clock. Two clock phases are provided for use in the sync. sequence detector described later. A.c. coupling is used to simplify the

Serial-to-paraliel conversion
The output from the s.p.l. decoder is a serial stream of n.r.z. data with a twophase clock. The next step is to convert the signify the presence of a new word. A further useful signal generated at this point is a data-valid level, indicating that the available data is true h.r.p.t. It is easy to divide the serial-bit stream into ten-bit
words using a counter, but the problem is to divide the stream at the correct point so that the bits are correctly located in the word. The h.r.p.t. (high-resolution picture transmission) format contains a synch ronizing sequence, consisting of six words,
which divides the data up into blocks of 11090 words long. These blocks are called frames and Table 1 shows the structure of one data frame. Six are transmitted every second, each containing the information from one line scan of the radiometer and
different rate, but this may be ignored bands is multiplexed sequentially so further processing is required later to isolate one spectral-band image. The spacecraft at present in orbit carry a four channel radiometer so the data in channel 5 is a repear of channel . Future spacecraft wil

Sync. detection and wor

Iraming

In order to locate the sync. sequence whrough a shift register, clocked at the data rate. After each new bit is entered, the outputs are checked for the sequence. Ideally the register should be sixty bits
long and each bit should be correct before long and each bit should be correct before
the sync. flag is raised. However, this requirement can be reduced to say 24 -bits but with an increased chance of picking up a false sync. signal. Because there are also errors in the data, the chance of picking up 24 out of 24 correct is better than 60 out of
60 . Although other solutions are possible 24-bit shift registers are easily constructed and the detection circuit is simplified. Suppose the detector is set to find the last 24 -bits of the sequence. When the flag is raised it means that the contents of word
six are located in the ten bits of the register nearest the input. This frame-sync. flag can be used to reset a decade divider which, when in its zero state, indicates the presence of a new 10 -bit word. When the
next complete word is available the counter will again have reached zero, thus dividing up the bit stream. The counter should stay synchronized but if through clock loss it does not, it will be corrected by the next sync. flag 11090 words later. the data-handling computer to indicate the
start of a new image line. If the data is very noisy, some sync. sequences will be missed fied by regular sync. If the computer also uses this flag to avoid a software word search, its presence must be guaranteed, so a second signal is generated called g sync.,
synchronized to the frame sync. (f sync.) by a similar reset counter method.
Fig. 15 shows a practical serial-toparallel converter. Some of the circuit uses t.t.1. and some c.m.m.o.s. This change midway through the circuit was made so that
an existing computer interface could be used but t.t.l. may be used throughout if convenient. The 10 -bit words at the shif register output are only valid during the word-clock pulse; if there is a possibility of delay beuld be used
This completes the data decoding part or the system. The outputs comprise.

- 10 parallel-data lines
-1 word clock at word rate $(66.54 \mathrm{kHz})$ - 1 data-valid signal

Digital data must line rate (6 Hz) turned into images and the method used will depend to a great extent on the r

References
11. VHF Han
Refernces
11. VHF Handbook, ARRL
12. VFF-UHF Hand AROK
12. VHF-UHF Handbook, RSGB
13. Analowue and digitai Communications, W.D. 13. Analogue and digita
Gregg, Wiley and Sons.

The address from which references 1 and 2
of last month's article were obtained will be given in the next article together with a further reference from the same source. Reference 15, which should have been
added to last month's list, Was Antenn and Receiving-System Noise-Temperature
Calculation, L. V. Slake, US Naval Research

Displacement current

continued from page 70
together, causing the charge to move (via the displacement current) as shown in Fig. 5. This method uses much electrostatic energy as the masses of the electrodes are very large compared with the mass of the $1.13 \times 10^{-13} \mathrm{~kg}$.
The second method for increasing capacitance is to transport the charges by a conduction current. This method is much more 'energy efficient' as the only losses the charges with ions. Resulting ohmic losses are negligible in short capacito leads.
The author disagrees with the previously mentioned oscillation explana-
tion, despite the fact that the differential equation for a discharge can be very complex ${ }^{4}$, and asks why the same charge is
measured before and after the switch is measured before and after the switch is closed? If the circuit did oscillate, the os-
cillation would obviously decay and the charge would be neutralized by recombination with an equal and opposite charge,
with the liberation of heat. Secondly, since the capacitors are in parallel, the charg density will be the same. Consequently, system will be static.
Finally, it is worth considering the mag nitude of current that would have to b present if energy was to be temporarily stored in the inductor. For example, consider a capacitor of $5000 \mu \mathrm{~F}$ connected to
another of a similar value. Let the voltage be 10 V . The energy stored in the capacitor, E, can be found by

$$
E=\frac{1}{2} C V^{2}=0.25 \text { joules }
$$

If half this energy were to be stored in an inductor with very short leads of $1 \mu \mathrm{H}$ then

$$
0.125 \mathrm{~J}=\frac{1}{2} \times 10^{-6} \times I^{2}
$$

so I is 500 A .

Conclusion

The energy equation for a capacitor as sumes that any change is brought about by letting the field do the work. Charge can not be created or destroyed, although equal amounts of positive and negative tained by separation and lost by recombination.

References

1. Engineering Electromagnetics, W. H. Hay 2cGraw-Hill 1974 , pagas 340 . 2. The history of displacement current', I. Catt,
M. F. Davididson, D. S. Walton, Wireless World March 1979 .
2. 'Did you 3. 'Did You know?', Epsilon, Wireless World, De
cember 1978. 4. High Voltage Engineering, E. Kuffel, M. Abdul-
lah, Perganon Press Ltd, 1st edition (1970),
pages 109-148.

Said to be the first aircraft in the world to fly solely yuder the direction of all-digital, quadruplex, fly-by-wire controls, the Se-
pecat Jaguar made its first flight in this form at British Aerospace's Warton aerodrome on October 20, 1981.
One of the goals of an aircraft designer
has always been stability, so that dis-

Fly-by-wire Jaguar taking off on its first
flightfrom Warton.
turbances from the desired flying attiude are damped and corrected by the aerodynamiss of an aeroplane, without excessive movement of the control surfaces. The
kept within reason, but the more stable an aeroplane, the less manoeuvrable it beattitude. Clearly, an unstable design would be more inclined to depart from the straight and narrow flight path on demand, but would also present the pilot with an impos-
sible task simply to keep it in the air. Stability and agility are uneasy partners. Military aviation, as is so often the case, is the stimulus for a technique which has been developed over the last ten years and
which reaches a new level in the BAe which reach for the Sepecat Jaguar. The jargon term in common use is "Fly-bywire", which means that the control surfaces are moved not by control rods and linkages but by actuators driven by the pilot's controls and by computers, which
are capable of rapid response to disturbances to keep the aeroplane stable, and to the pilot's demands. Four computers and optical data links operate with considerable redundancy to maintain operation
even when two of the computers or the even when two of the computers or the
gyro sensors that provide their inputs fail: the computers are programmed to prevent the aeroplane being forced into evolutions which would take it outside its designed capabilities. BAe have not thought it necessary to provide for manual control in
emergency.
Jaguar will shortly be tested with wing. oot forward extensions, which will move he centre of pressure forward of the centre of gravity and de-stabilize the aeroplane.

More letters

Microchips and megadeaths

Surely Tim Bierman (October Letters) is expecting too much from human beings. Nothing that is mass-produced by unskilled
labour, as humanity is, can be expected to have outstanding quality.
Moreover, the desi
Moreover, the design of human brains is so program them properly, and in so long a proc it is inevitable that mistakes of a number of kinds are made. On top of this, evolutionary orces have produced human beings designed t it is to be expected that they will flounder and make mistakes in a highly technical society.
Today's ultimate problem, in fact, is that this technical society has been created by the unusual members of the human race, while the nable to understand how to control it. C. Con to
Pishop's Stortford
P.

Bishop
Herts
Mr Scroggie, in your September letters column,
Mr Scroggie, in your September letters colum
seems to assume that bectuse unilateral nuclea disatmament will nit necessarily stave off the
ultimate bonfire it must therefore be a bad iltimate bonfire it must therefore be a
hing. I have torn up a two-page reply, hing. I have torn up a two-page reply;
preferring to address a single point. My respect or his intellect and his practicality lef surprised at his apparent paranoia.

The question is, even supposing his predictions to be true, would he really prefer to orse survier conflagration (or, possibly overnment?
It appears that the prospect of Soviet world domination fills us both h with dismay, but I must emind him that it is the USA which currently reatens to escalate the arms race beyond its resent already insane level.
Thornbury
I have been reading with great interest the have been reading with great interest the
letters you have been publishing under the heading "Microchips and megadeath"". While here are parts of letters with which I agree, I missed the point.
I refer primarily to the writer who suggests hat students following a sandwich type degree
ourse should be actively discouraged fom aining their industrial experience in the defence industry. I am such a student, working Cor a major defence company, and would like t
point out that the many sudens in my positio point out that the many students in my positio electronics engineers, not because they want to alking about the defence industry is the fact alkeng obout the defence industry is the fact
that weapotis are not the sole output. Certainly hey are important, but an equally important y-product is technologicall advancement. This capable of better things ds we develop new
skills. It is someihing wie caintiot do without

The massive pocket calculator revolution did not start tecause someanene decided it would be nice for school children to have them, but I am assuming the writer proposes that anyone involved in building weapons should
give up his work and concentrate on a more socially useful activity. Doestrate on a a more
ninclude all the people who work in the canteens and on the sites, or even those who print the stationery?
The list is endless, and yet they are all involved in warfare.
Tim Bierm
Tim Bierman pointed out in his letter in the October issue that the Americans are spending
large sumbof money on "weapons of death".
WWe need of We need a deterrent. Does $M \mathrm{Mr}$ Bierman really
believe that if the United State elieve that if the United States decided not to pend that money their
disappear? I think not.
Instead, let us stand up for what we believe ins and not be intimidated by those who look 0 us as their enemy. If the worst were to happen, must prepare now for what we will need. T.C. Alle
Ash Vaie
Hants

Correction

Figure 4 of "C.b. frequency synthesis", Nodid of L_{1} is shown conniected to the antode of a aticap diode. This coinextion should be re-
laced by a ln F capacitor so that the anode is n laced by a \ln capaciitor sò that the anode is no
onger direcily conneited to earth. Apologies for
his omissiont. onger directly.
his omissiont.

Educating engineers
An ecological viewpoint
by Peter Hartley, Ph. D Colorado School of Mines, USA

This article argues that engineering sducation is on the wrong track
should be changed. Because it is rooted in the tradition of humanism and "the conquest of nature" it is having disastrous results in the world around us. Its aim of technical says Dr Hartley, is for engineering education to use systems analysis a method it already possesses - to examine critically the humanist assumptions that have dominated engineering so far.

The development of modern technolog has been a great adventure that many people have justy regarded as the conquest of nawre. Unemselves on mak ing this conquest possible. Many, perhap most, still do. What other attitude is pos sible for them? Can engineering be any hing else but the conquest of nature? find the conquest of nature questionable at best. Yet I must immediately make clear hat I am not speaking from across supposed gap between the so-called "two cultures '; 1 an not opposed to engneer or them.
If I were a humanist, my problem would be immensely complicated and probably hopeless. Fortunately, I am not a humanist. I am a cultural ecologist with o one side the "two cultures" approach which completely blocks any resolution of he question. I can point out with no discomfort that the past attitude of engi bulary or preoccupations of those who con sider themselves humanists, but to th dominant conception in our society abou the supreme importance of strictly huma interests in the gencral sche of life essence of that ignorantly anthropocentric utlook
The pressure of history allows us no choice but to use the term "humanism" for that ever increasing tendency dency which inevitably becomes indis tinguishable from the assumption that life has no value apart from human purpose.
This humanist view displays and indeed This humanist view displays and indeed constitutes human
"Progress" promises a general ameliorition of human life, making possible fo everyone good education, cultuvated sensi-
bility, and not only the provision of bodily
necessities but the addition of eve sit has been attainable, has of course bee humanist education singing the praises of uman achievement through the power of human intellect, and defining the world as omething for that intellect to exercise itubsumed under the purposes which humanism in its more self-conscious moods likes to dwell upon; I have heard people maintain that material progress is ecessary to provide us with energy slaves ime exercising our more purely human (i.e. mental) faculties.

Humanism is the dominant ideology of oodern times, comprehending both cap aism and socialism, and being not merdy of every society that is modern or trying to become so. Its main practical effect is to increase without limit the per capita mounts of resource use, pollution, and basically its commitment to human selfmportance - a generalized egoism that ncourages socially and environmentally corrosive egoism in every human indiidual. In practice, this means that engioutlook that at its foundation is humanistic. Modern engineering, in fact, has had no other purpose. ${ }^{3}$

The world as a manipulable object

Engineers follow notions of improvement set forth originally by poets and felicity for man. In its engineering manifestation, then, humanism contrives to manipulate the environment in ways that its philosophical and literary manifestations deem beneficial - to make improvements that accord with human purposes. In those
terms we can even regard modern science as a creation of humanism. Operationally, modern science has been humanism's technique for defining the world as a manipulaoffective procedures of manipulation. Engineers have simply applied those procedures in carrying out projects determined by humanistic notions of improvement.
The question of professional respons

this article is a shortened verslon of one hat originally appeared in the December 980 issue of The Ecologist and is reprinted y kind permission of the editor of that

bility boils down to whether we can define full professional adequacy in engineering This amounts to asking whether we should try to establish a radical eparation between engineering and humanism to replace the fantasy separamaintained. I started out by asking whether we had to identify engineering with the conquest of nature. In fact, humanism is the conquest of nature. This is humanism's fundamental arrogance and themselves as being committed to responsibility. Can engineering turn away from he conquest of nature? Can engineering behave with full responsibility? Can there a non-humanist engneering project to conquer nature is its effect on human nature - its deleterious effect on society, and the concomitant diminution of human personality which results from the loss of sustaining interpersonal fabric. o know society as anything but an aggregate of separate egos, or the earth as anyhing but an aggregate of mere non-human bits and pieces. But notwithstanding the vaunted importance of those isolated egos,
they become objects of manipulation just as surely as the bits and pieces of estranged nature do - and by means of the same process. The industrial system is impossible unless most people in the industrial Aachine obey orders like robots. "Man's power over Nature turns out to be a power exerted by some men over other men with Nature as its instrument." ${ }^{4}$ That, and not he environmental problem as usually condilemma of the engineer.
The exaggeration of separate human importance has created a general social estrangement such that the individual can have no real signicance. There are no longer any transcendent interpersonal
bonds that can confer fully differentiated individual significance. ${ }^{5}$ Engineering has contributed to this situation not only because it has created the technological basis or industrial production as such, but also means whereby the isolation of individuals in socially irrelevant modules has become possible. Survival - even comfort - has become possible without reference thers.
People's material needs are provided for not through binding human contact, but
through mere distribution of standardized goods and services, which can be routed in ariy combination and at aniy speed to any
main relationship then is to the general productive mechanism rather than to othe that human behaviour must be compatible with the requirements of mass production insofar as possible, individuals must be replaceable and interchangeable parts Their relationship with each other be
comes as exterior and standardised as thei relationship to the mass system. Differen ated, unique personalities become a mpossible as the differentiated socia works that once sustained them. Quite simply, the energy that once oes; energy now flows in wires and pipes. The effort to satisfy basic material needs that once gave urgency in socia lationships and filled them with sustaineen engineered out of existence in an attempt to fulfil the humanist fantasy o beration from mundane concerns deeme unworthy of the human intellect, or to effortless accommodation.

Engineering must b social science

The poin is chat engineers do no merely design hardware; they design the
material framework of society, and thus they design social relations as well. Its effect on social ecology is the greatest ecological impact of engineering. If engineers are to be fully professional, they must take full professional responsibility for their ac tions. Engineering must recognise and
address its social science dimension; the address its social science dimension; the
engineer must be a social scientist as well as a designer of equipment and material processes.
The alternative view, still probably typical of most engineers, is that an engirequirements that he must accept as given he should not presume to make judgments except in terms of his technical expertise which should be as narrowly specialized as possible so that he can be maximally exper
at what he does. Social responsibility tend to be regarded in terms of adherence to government regulations. In practice, an engineer who is educated to react will tend
to criticize those regulations to criticize those regulations only on the
basis of whether they make his job difficult. He will feel little professional obligation to evaluate and criticise policy on broader grounds, and certainly he will not feel obligated to take a public stand $a s$ a professional on questions of resource use
and general ecological impact (including social impact) that go beyond the purview of the regulations
To be sure, technical competence is a
sine qua non of adequacy in any profession. sine qua non of adequacy in any profession.
But if technical competence is all we mean when we say an engineer is professional, then we cannot regard engineering as a profession on the same footing as other
learned professions, which are ultimately
based on standards of ethics and respons bility that go far beyond merely technica the engineer as no more than a high-grade the enineer as no more than a high-grade sional - that is with no responsibility for
his actions beyond their technical ade his actions beyond their technical ade quacy. A glorified mechanic. But someone
who is professional in the fullest sense is who is professional in the fullest sense is
responsible for taking into account the ultimate meaning of his professional actions, and is expected to have the background fo doing so. We must assume that a real proown professional acts - -then he can't pas the buck, can't define himself as someone who merely reacts to given situation.
In the past we have taken the unwarranted liberty of making radical changes in an environmental system that we did no understand; yet we have long known that
random changes in any orderly system are raikely to do harm. We are not dealing in vague sentiment here - from a strictly engineering point of view, it should appear most reasonable to hold suspect any pro-
posed radical departure from conditions posed radical departure from condition
which prevailed at the time when the human species developed its present phylogenetic constitution.
Such practical questions of systemic in-
tegrity can show us how to tegrity can show us how to establish a real separation between engineering and
humanism. Unlike humanism, engineering can assimilate ecological thinking To the extent that it does, we will have the non-humanist, responsible engineering w so badly need. At present, many engineer
advocate a "broader" curriculum for engi advocate a broader curriculum for eng
neering students. Naively, they suppos this would require a better grounding in the humanist tradition, which panders to their desire for cultural approval. Those of us in engineering education who have bee
immunized against the self-adulating rhe toric of humanism must disabuse our engineering colleagues before they overload the curriculum with humanist propaganda
Grounding in traditional humanism will Grounding in traditional humanism wil merely deceive the students into feeling
well-educated, while making them better able to rationalise their acts and fend of real systemic analysis.
To develop an adequate philosophy, engineering does not have to borrow from design should provide an adequate basis, as long as engineering develops a broader perspective regarding the systems it deals with. Engineers must begin to apply good engineering analysis to issues that in the past they have pretended to ignore. Engi-
neers have produced many unanticipated and undesirable effects not because they have failed to be humanists but because they have failed to be thoroughgoing as science will make obvious the fact that even a concern for medical effects as such is not good enough for good engineering the social organization which brought about those effects is also part of the prob lem. This is why I emphasise the social gineering must pay attention.
In the long run, there is litte point in
erely designing ways to mitigate the bad effects of productive operations when such ciples constituting the organizations iples constituting the organizations ostered without understanding the impli-
ond cations of what they were doing.
The activities of giant corporations dothe principles on which they operate, we the principles on which they operate, we
shall be helpless before them. Engineers are the ones who have done most to help the development of industrial giantism, with its attendant transformations of comnunity life, family life, and behavioural
values generally, not to mention its virtual destruction of competitive free enterprise. ronically enough, most engineers tend to view themselves as social conservatives. Yet their activities have made and continue social change, all because they refused to xamine the implications of what they were doing.
Even if engineers as a group would pre-
fer to avoid the responsibility of full pro fer to avoid the responsibility of full prosuch a luxury any longer. What engineers do is too important; the effects of their ctivities are too profound. The advice of a physician affects one life at a time; the advice of an engineer may determine er ten or twenty years later. We can no onger afford the kind of ignorant special ation that hampered understanding in the past. We must insist on the most rigorous
fully developed, and comprehensive kind f professional standards in engineering and we must give engineers an education hat makes them capable of living up to standards of that kind.

Fundamental changes to curriculum needed

This involves some fundamental re hinking about the very nature of an engineering curriculum. The education I mean tion; it cannot be a mere addition to the technical curriculum. Courses aimed at giving "breadth" tend to be superficial, and to be regarded as extraneous by the students. If we cannot make the change an shall continue to graduate engineers who have only the technical skill to perform as narrowly based, irresponsible function aries having no conception of the large ties. ties.
Systems analysis is a basis of ecological
study, which the ecologist tries to make as study, which the ecologist tries to make as rigorous, as exact, as quantitative as it can
be. Energetics is an essential topic for systems analysis in ecology, and along with the study of material and information flow it should be a basic topic for an approach to non-humanist engineering. Properly understood, chis approach provides a tool for social analysis organized in a way clearly
relevant to the technical considerations of enginering, couched in a language easily assimilable to the language that engineer

New Products

Communications test set
The latest addition to GADC's communications test equipment is the 3702 portable test unit with
synthesized generator for level syntesized generator for level,
noise, signal-to-noise ratio and frequency measurements to the rele er alphanumeric display shows control settings and measurements and gives indications from the instrument's self-test circuit. Plug-in
cards are available for the following measurements, 3 -level impulse oise, group delay, phasefampliude jitter, sudden alterations in
phase or level, i.m. distorion peak/average ratio, 4 -wire return loss and volts, ohms and capaciance. G.A.D.C. Ltd, 70182 Ake WW301

Hygrometer

This instrument gives a readout of
absolute humidity or water vapour
content in air and other gases independent of temperature or ressure. A detector head, compris-

versions of the HL 7801 are available, differing only in mounting
flange, and the price is under 1100 for small quantities. Hitach
que and Electrical Components (UK) Ltd $221 / 225$ Station Rd, Harrow
Middx HA1 2XL.

WW303

Temperatur controller Digital-readout temperatur controllers from Controls and Automation Ltd are available in 12 $160^{\circ}{ }^{\circ}$. The CAL Cover has a $1 / 8$
DIN size front bezel (48 by 96 mm and is said to be capable

sor; cold junction compensation ic
incorporated. Input drift is $3 \mu V / \mathrm{C}$ incorporated. Input driff is $33 \mathrm{~V}{ }^{\circ} \mathrm{C}$
and readout accuracy is $\pm 0.15 \%$ and readout accuracy is ± 0.15
f.s. The unit can operate in proportional or derivative mode with
manual reset or in four termin mode. On the standard version a
relay rated at $10 \mathrm{~A}, 250 \mathrm{~V}(50 \mathrm{~Hz})$ is relay rated at $10 \mathrm{~A}, \mathrm{ting}$ bu Hz)
used for load switching but opion are available with opto-isolated and
triacthyyristor switching outputs. riac/thyristor switching outputs
Both actual and set temperatures can be read from the display. Controls and Automation Ltd, Regal
House 55 Bancroft, House, 55 Bancroft Hitchi, SG5 1LL
WW304

20MHz

 oscilloscope Sensitivity of Hitachi's V-202 dualchannel 20 MHz oscilloscope is$1 \mathrm{mV} / \mathrm{div}$. This relatively low-cost instrument (£266 exc. v.a.t.). has
20nstdiv maximum sweep speed 20ns/div maximum sweep speed
and channel adddition and subrracand channel addition and subtrac-
tion facilities. Triggering modes include auto and 'tv', in which an
active circuit is used for vide sigactive circuit is used for video sig
nal sync. separation. The $51 / 2 \mathrm{i}$ rectangular c.r.t. has a graticule
(with variable illumination) printed (with variable illumination) printed
directly on it to give, it is claimed
parallax-free readings ${ }^{\text {paranation for }}$ peains Focus con pensation for brightness changes is
automatic. Reltech, Office Suite Coach Mews, The Broadway,
Ives, Huntingdon, Cambs PE1? WBN.

Coaxial cabl

 assembliesFlexible p.t.f.e.-dielectric coaxial
cables and cable assembies con cables and cable assemblies can be
supplied by Pascall for use in phas array systems, computer networks microwave links and other such ap-
plications. Astro-super-flex 32022 cable, designed by Astrolab Inc has a loss figure of $13 \mathrm{~dB} / 10$ oft
1 GHz and an outside diameter 1 GHz and an outside diameter
0.163 in . Loss of the 0.108 in diam ter 32013 type cable is $22 \mathrm{~dB} / 100$ at 1 GHz . V.s.w.r.r. depends on the
type of connectors used but type of connectors used but is
typically 1.25 at 12.4 GHz using
SMA and TNC terminations. Both SMA and TNC terminations. Both
cables have fused p.t.f.e. outer cables have fused p.t.f.e. outer
sleeves and can be bent to an inside s.eeves and can be bent to an insid
radius of 1 mm . R.f. leakage is radius of 1 mim. R.f. leakage
given as -110 dB minimum. As
semblies can be supplied. with semblies can be supplied with
SMA, TNC, or BNC terminations Alternatively, cable can be supplied unterminated. Pascall Electronics
Ltd, Hawke House, Green St . Ltd, Hawke House, Green St, Sun-
bury-on-Thames, Middx TW16 6RA ${ }^{\text {WW06 }}$

16-bit d-to-a A self-calibrating 16 -bit digital-to analogue converter known as
$\mathrm{DAC7}$
is available from Bur Brown. Output can be either 0
10V or -10 V to +10 V and 10 V or -10 V to +10 V and erro
specifications are $\pm 0.51 . \mathrm{s} . \mathrm{b}$. maxi specifications are ± 0.5 1.s.b. maxi
mum non-linearity, ± 1 1.s.b. maxi

WIRELESS WORLDDECEMBER 1981

achieved. For tv distribution systems where 55 dB is acrecptable
the equivalent ranges for the two cases are 3 and 10 km and for sur-
villance, where 45 d will do veillance, where 45 dB will do, the
figures are 4 and 12 km . A p-i-n figures are 4 and 12 km . A p-i-n
diode receiver option with laser can increase dynamic range as well as
giving a range berween the two giving a range berween the two ex-
tremes. Without h.f. emphasis,
, tremes. Without h.f. emphasis,
harmonic distortion of the sund
circuits is less than 0.5%; video circuits is less than 0.5%; video
signal frame and line time distorsignal frame and line time distor-
tion, intermodulation, luminance
non-linearity, and differential gain are alit below 1% with differential phase below 1 . It is a 19 inch rack-
mounting transmitter and receiver with interconnenecting cable of
w. $5 \mathrm{~dB} / \mathrm{km}$ attenuation. Standard 3.5dB/km attenuation. Standard
Telephon und Radio AG, CH-8055 Telephon und Radio AG, CH-801s ww3io

Lightweight video recorder
Seen at last September's Berlin
radio show, Grundi's
radio show, Gepundig's VP100
portable video recorder uses a portable vide recorder uses a cas-
sette only slightly larger than an audio cassette. Made by Futec
(Future Techn
to Grundig specifications, the
system. The E series of data con-
centrators combines the necessary centrators combines the necessary
modules in a single case so that two units will allow a remote group:of erminals to be connected to aseen
tral computer or procesor via a
Serial data link. A standard data iral computer or processor via
serial data link. A standard data
concentrator consists of concentrator consists of a statistical
multiplexer for between 4 and multiplexer for between 4 and 16
programmable asynchronous chan-
nels programmable asynchronous chan-
nels and one synchronous channel
using a ny using any protocol. Th
multiplexer output is fed to an int nuluplexer output is fod to an inte
gral high-speed modem whic gral high-speed modem whic
offers data rates up to $9,600 \mathrm{~b} . \mathrm{p} . \mathrm{s}$.
The unit also features a 16 K buf The unit also features a 16 K buffer
to cope with peak data transmis to cope with peak data transmis-
sion, together with a flow control to
halt data from sion, together with a flow control to
halt data from a computer or intelli-
gent terminal if the buffer is neart gent terminal if the buffer is nearl
full. Data transmission is continull. Data transmission is contin-
uously monitored and if an error is uously monitored and if an error is
detected the transmission is re
peated peated, which provides automatic
correction for errors introduced by, correction for errors introduced by,
for example, noisy telephone lines.
Because all of the fund or example, noisy telephone lines
Because all of the functional blocks
necessary for data concentration necessary for data concentration ar
housed in a single case, expansio housed in a single case, expansio
and programming are straightifor-
ward. Timeplex Ltd, Timeple ward. Trogrammeplex Ltd, Timeplex
House, 77 Boston Manor Road, House, 77 Boston M
wW312

ww311
 recording time. The head-totape
speed of $4.7 \mathrm{~m} / \mathrm{s}$ is achieved with inear speed of $22.5 \mathrm{~mm} / \mathrm{s}$ in conunction with a 60 mm dia. rotating
head. A variable speed facility, both fast and slow, is provided as well as a freeze frame mode. At
$25 \times 6 \times 18 \mathrm{~cm}$ and weighing 23 kg $25 \times l \times 18 \mathrm{~cm}$ and weighing 2.3 kg
including batteries, Grundig expect it to be the smallest and lightest'
video recorder when it is marketed video recorder when it is marketed
in the UK in the second half of next year (January in Germany). Grundig Ltd, New
SE22 SNQ.
WW311
WW311
Data concentrator The technique of data multiplexing to mprove he efertienly on at new;
data link is cerangle data link is certainly not new,
however, many systems comprise
two or three units at each end of the
nuo alarms from the American nalert range will emit a condinuo
or pulsating tone at 2.9 kHz . SBM $616 \mathrm{PC} / \mathrm{JCC}$ is a 16 mm deep, 42.7 mm
diameter device for board mount diameter device for board moun
ing, which produces a $68-78 \mathrm{~dB}(\mathrm{~A})$ sound. A supply voltage of $6-16$)
d.c. at $1-4 \mathrm{~mA}$ will drive the units ${ }_{0}$ which pulse at $2.9 \mathrm{~Hz}(\mathrm{PC})$ conzected to the posotitive rins rail
Cighland Electronics Ltd, 8 Old Highland Electronics Ldd,
Steine, Brighton BN1 1EJ
WW313 Steine, Br
WW313
I.c sockets with integral supphy decoupling capacitors as described
in September's New Product section are onow available in the UKK
through Dage Eurosen Rabas through Dage Eurosem, Rabans
Lane, Aylesbury, Bucks HP19 Lane,
$3 R 9$.

Adding up to a

matter of time

The other day I was looking at a 1978 number of Reader's Digest. It would have been a more recent issue, but my suppliers - the church jumble sales that abound in our neck of the woods - tend to lag a bit I had just finished
I had just finished a captivating piece on
he courtship ritual of the pink-eyed okapi when it struck me that $R D$ must be all hings to all men. It offers tales of adventure on land, sea and air, stories of people
triumphing over adversity, word-power triumphing over adversity, word-power
tests, jokes, philosophical titbits . . you name it. What's more, it doesn't take up a lot of room.
Additionally, it carries some of the best ads in the business. One in particular briefcase for executives wishing to aspire to company chairman.' Now just you show me the chap with fires of ambition in his belly who could resist such a come-on. I almost succumbed myself.
Certainly it seems that manufacturers of an advertising medium. The digital watchmen, for instance, were there in strength, each trying to cap the rest. One was rapturizing about a timepiece (which
looked a trifle too wrist-spraining for my delicate structure) which embodied no less than six main functions, including an audibe signal to mark the passing of every hour on the hour. You could, if you felt the urge, convert it into a stopwatch. But
the most confidence-building claim of all was that it was water-tested to 30 metres. This made me wonder who the advertiser was aiming it. Obviously it wasn't just ny old lad on the street who only wants to pubs open. So just how many people are pubs open. So just how many people are
there around who really need such a detailed monitoring of time? And how many more spend any appreciable time fully or artuallyermersed in all hat $\mathrm{H}_{2} \mathrm{O}$? distinctly bananas over his up-market combined digital watch and ballpoint pen. The watch half offered all the usual horoogical information and was - I was rehieved to learn - accurate to within 60
seconds a year. But the pen half was a bit of a let-down: nowhere was there any mention of being able to write with it 30 metres down.
Pocket calculators were, of course, there in profusion, all offering a range of mindthe whole it was a rather wonderful afternoon) how widely they're actually sed. All-in-all I reckon that this mania for personal electronic aids has got a little out
f hand. Before the cult developed, the first thing young executives did when settling down to a meeting was to get out their fags and lighters. Now they plonk their calculators down on the deck instead.
The fad, moreover, has not remained The fad, moreover, has not remained congned to the business sector. I've seen round the supermarket.
I suppose there must have been a similar reaction back in the 6th century when the abacus as an alternative to taking off their socks when they wanted to count up to 20 . Or when clocks first gave sundials the big elbow. Nevertheless, I can't help feeling there's an urgent need for sweet reasonthings are going to get worse. We may things are going to get worse. We may
even reach the stage when you're out of date unless you're sporting a combined bath thermometer/pollen counter with a v.d.u. readout - worn on the wrist.
So let's not lose the capability of calcu So let's not lose the capability of calcu-
lating with the most sophisticated device of all - the human brain. Nor let an obsession with hyper-accurate timing grab us oo firmly by the forelock. Neither above the water nor under it.

Credit where credit is due

Can someone please tell me - and there must be a reason - why we have to endure nearly everybody who has had some part in its making? Hardly a soul is left out. From the man who wrote the script based on an daptation of the book of the film, to the irl who dabbed powder on the leadin ady's damask cheek
Given that these sycophantic reference prehensive. One glaring omission is British Telecom. The contribution made by thei ngineers is basic to every programme heither it's the late night news or the most ar-spangled spectacular
was the coverage of the Royal Weddin his for BT was a landmark. As well a supporting BBC and ITV, British Telecom rovided facilities for 100 foreign tv com Around 750 miles of cable, 15 microway links, 80 vision circuits, 168 commentary inks and 331 control circuits for tv production staff were provided. In fact, a BT sented about four months normal working or an o.b. team. Now then, BBC and ITV, with this
splendid example in mind, isn't there the
strongest of strong reasons for giving BT an automatic place in your post-proramme Hall of Fame? And if you can get the credit in before
he producer's - or at least before the the producer's - or at least before the
assistant hairdresser's - so much the betassista
ter.

Tv all around

Sit down for a minute and ponder on how far along the road in tv techniques we've come since the days of Baird's first flickering images.
Thanks to amazingly swift advances in component technology we have sets that
are smaller, lighter, simpler to produce, need substantially fewer bits and pieces and virtually no routine adjustments. We have fast warm-up and touch tuning or remote control. Transmitted programmes an be recorded for deferred enjoyment
and we can buy tapes (soon discs as well) for reproduction. The news and information services, Ceefax and Oracle, are but a button-push away. We can even link our sets to the telephone and interrogate the Direct broadcas is, so to speak, very much in the air. And to complete the all-encirclement there appears to be a new and growing interest inIn the June issue of $W T$ In the June issue of $W W$ I drew attenadopt in order to savour the delights of
and d.b.s. to the full, I also pointed out some of the initial inconveniences involved, like nounting a dish aerial on the roof or inding room for it indoors. The postcard
received from 'Relieved, Bath' convinces me my remarks were worth the making. So far I haven't made such an in-depth nalysis of cable tv, but I can well believe hat here, too, there are practical points to Personally I've always had a mistrust mounting to plain fear - of things underground. (It probably dates from the days of acting as a burial object for the kids respect the competence of those on the technical side of cable distribution, I must point out that there are a lot of other people at it as well. The telephone, gas, water and electricity boys, for example. Now, one of the disadvantages of this what's going on once you've replaced the earth. So if someone on an offday has done something silly with the various cables, you don't know about it until funny things begin to happen in the house. It would be a on the bath tap and got the soundtrack of Bonanza instead of hot water.

WIRELESS WORLD DECEMBER 1981

UNIQARD range
 WESSEX MICROCOMPUTERS

Ground pianes to improve
screening in uncommited area Power distribution, data and
Chip selest tracks. Power planes connected to
distritution tracks.
 Phone: (0963)' $22402 / 32248$

CASIO
 WORLD BEATERS

702P RRPf134.95 ONLYf119.95

Flattens the Sharp PC1211
Alpha/ numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26
memories, to 80 steps, 226 memories, all retained when swithed off Up to 10

FREE MICROL PROFESSIONAL PROGRAMMING PACK Tplied free of charge with every FX-702P or EX-602P purchased from equest, at time of ordering. RRP $£ 9.95$

	e?
	FX-602P
	*LCDalpha/ numeric (dotmatrix)s
	ebie input from 32 program steps
	10 pais uncondition
	${ }^{\text {a }}$, Condititional jumps
	addressing.
	${ }^{*} 50$ builtiotin scientifics functions, all usable in
- $=$.programm
-0	${ }^{11}$ levels.
보트ํ	*Progarm
	*Campatible with FX -501
BE B_{3}	- 2 lithium batteries. Approx 680 hours use with
Ex ${ }^{\text {c }}$	
	ONLY $£ 74.95$ (RRP £84.95)

Price includes VAT, PfP. Delivery normally by return of post.
TEMPUS
Dept WW/12 FREEPOST, 164-167 East Road, Cambridge CB1 10B Tel: 0223312866
WW - 032 FOR FURTHER DETAIL

HF ANTENNA

\star MODE; Full half wave
\star Bendo
frequencices.
POWER Receive to
800W (PEP) Receive to
$\rightarrow A$
on channel.
THE SMC TRAPPED DIPOLE ANTENNA

Antenna
SMCTDA/2 2 free f 125, SMCTDAA 33 freq $£ 170$, SMETDA/4 PD
Complete Installation

SOUTH MIDLANDS COMMUNICATIONS LTD.

TELEVISION SOUND TUNER

Get the best from television programmes by connecting the MiNIM TELEVISION SOUND TUNER through your hi-fi system or listening directly on headphones. Suddenly music, wildilife and even the news comes to life.	
Particularly useful for the HARD-OF-HEARING enabling them to listen at a high volume without disturbing. others.	Minim
Please send me further information on Minim Audio Ltd., Ambisonic Decoders/Weekly Programmable/Daily Timers	- ${ }^{\text {ch }}$
Name...	make a note
Address..	of our name!
WW12	Minim Audio Limited, Lent Rise Road, Burnham Slough SL1 7NY. Tel: Burnham 63724

WIRELESS WORLD DECEMBER 1981

TEST INSTRUMENTS

SAFGAN DUAL TRACE SCOPES

 Probe ($\times 1$ 1-REF-X10)-£1155 DT-420£188 service $£ 6.50(+V A T)$

WW-025 FOR FURTHER DETAILSLookout or
LEADERAROM SUPP
DAROM SUPPLIES
WARA잉y Lane, Stockton Heath

RF POWER TRANSISTORS-EX-STOCK

COMMUNICATION TUBES-EX-STOCK

	f	
${ }^{55 A}$		
200A	${ }_{50.70}^{50}$	${ }_{6156 / 094-250} \quad 25.350$
${ }_{\substack{4.10000 \\ 4 C \times 2508}}$	${ }_{31.50}^{298.00}$	
${ }_{\substack{4 C \times 3500}}^{4}$	${ }^{555.00}$	
(15000	${ }_{\text {319,00 }}$	${ }^{\text {a }}$
1500 A	- 36.00	${ }^{\text {ORVV33 }}$
	-23.40	avo ${ }^{\text {ajo }}$
	${ }_{\text {15.62 }}$	
12E1	16.94	
${ }_{5763}$	${ }^{3} .25$	ovob-100 ${ }^{125.00}$
6080	5.40	$\bigcirc{ }^{\text {OY5 30000 }}$ - 23.400
S146A		TBL2-300 ${ }^{286.00}$

SEND NOW FOR PRICE LISTS SHOWING QUANTITY ©ISCOUNTS

YOU CATT BE:T LPBlPOLAR POHER AMDOOB POHVRANPRICE

specifications and a wide choice of outpouts. ILP Bipolar power amps. now with or withouth heatsinks are unbeatable value for the new range of heavy duty power amps. ggain with or without heatsinks. with protection against permanent short circuit added satety for the disco or group user. Connection in all cases is simple - via 5 pins. Every tem has a 5 year no quibble guarantee and							
Mode No	$\begin{gathered} \text { oupput } \\ \text { wiunser } \\ \text { wais me } \end{gathered}$	DISTORTION $\begin{array}{cc}\text { TH.D. } & \text { IM.D. } \\ \text { Typ } & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ \text { at } 1 \mathrm{kHz} & 4.1\end{array}$		Size mm	gns		${ }_{\text {en }}^{\text {Price }}$ exat
HY30	15w/4	0.015\% <0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	88.28	-
HY 60	30w/488	0.0.5\% <0.000	± 2530	$76 \times 66 \times 40$	240	¢9.58	${ }^{88.33}$
HY 120	60W/4.82	0.0\% <0.006\%	${ }_{\text {¢ }}+35 \pm 10$	$120 \times 78 \times 40$	410	520.10	E17.48
HY200	120W/4.80	0.01\% <0006\%	± 95550	$120 \times 78 \times 50$	515		
H4400	200w/48	0.01\% <0.006\%	${ }^{ \pm} \pm 9550$	120 $\times 78 \times 100$	1025	[23.60	¢31.83
BIPOLAA Standar, without heatsinks							
HY 1208	60w/488	0.01\% <0006\%	± 3540	120 268×80	215	¢1, 8.81 [[15.50
HY 200 P	120W/4882	0.01\% <0.006\%	± 45550	$120 \times 26 \times 40$	215	E21.23	118
HY 400P	200w/48	0.01\% <0.006\%	-45550	$120 \times 26 \times 70$	375	83.58	

- Please send me the fown

Address
Signature
ww 212

(Min)

wW - 012 FÓR FURTHERZ DETAALS

LINSLEY-HOOD CASSETTE RECORDER 1

 PRACTICAL WIRELESS 'WINTON' TUNER
 are in lisisisnd tor yourcopy.
requirements and credit, card number to us on
Oswestry (0691) Oswestry (0691) 2894

FEED YOUR MICRO BYTES WITH OUR
SOLENOID CONTROLLED CASSETTE DEC

HÀRT TRIPLE-PURPOSE TEST CASSETTE TC1
 HS16 SENDUST ALLOY SUPEA HEAS SSEETTE HEAD
 Al prices plus VAT

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70 EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT
MATRIX PRINTER WITH SPECIAL INTERFACES MATRIX PRINTER WITH SPECIAL INTERFACES. VDUS, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPER TAPE READERS, PAPER TAPE PUNCHES,
SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER SUPPLES, STORE CORES, TESTEQUIPMENTAND MISCELLANEOUS COMPUTER EQUIPMENT.
OPEN: MONDAY TO FRIDAY 9 a.m. -5 p.m., SATURDAY TILL 1 p.m.

COME AND LOOK AROUND
SALCOTTMILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
WW - 063 FOR FURTHER DETALS

wW - 021 FOR FURTHER DETALLS

WTICIILP os:a POW:RAMP?

Because ILP MOSFET power amps ive you ultra-i you can. modules are compatible with each other - youlll lind many more in other ILP ads in this magazine. Chosese ILP MOSFET Power amos when y you ned ine tastest possible slew rate, low distortion at high frequencies, better thermal stability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple create almost any audio system, whatever your age or experience. ILP MOSFET Dower amps are now avaiable with integra heatsinkk (no extra heatsisink required). or reacy yor mounting on to your own heatsink or chassisis. Full disisipation delail on data sheet. available on request. Each carries a 5 year no o quibble guarantee and conres with full connecion Send your order FREEPOST today on the coupon at the foot of this ad.	
	Load impedance, ail models, 40 ohm -infinity models 100 K ohm input sensitivity, Frequency response all models $15 \mathrm{~Hz}-50 \mathrm{kHz}$-3db

\begin{tabular}{|c|c|c|c|}
\hline \[
\text { (5, 9H 50 } 5
\] \& \& Cond \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
STABILISED POWER SUPPLIES \\
FARNELL A15: \(210 / 240 \mathrm{~V}\) I'P. Dual Op. 12-17v per rail at
\end{tabular}}} \& A \& \multirow[t]{6}{*}{\begin{tabular}{l}
10,000uF/100V Electrolytic Capacitor type 36D by Sprague \(£ 3.50\) each. Brand new and boxed. \\
Switchcraft XLR Connectors always in stock. Discounts on quantity.
\end{tabular}} \\
\hline \& \& 100m \& \\
\hline \& \& \(6-0-6 \mathrm{~V} 100 \mathrm{~mA}\) \& \\
\hline 恠 \& deb \& 6-0.6V 250 mA \& \\
\hline at 2 A or 300 at \& \& \(0 / 6-0 / 6280 \mathrm{~mA}\)
\(8-0.8 \mathrm{~V}\)
400 mA \& \\
\hline 100 mA . \(1338 \times 80 \times 4\) \& \& \& \\
\hline \multicolumn{2}{|l|}{100mA. (\(138 \times 80 \times 45 \mathrm{~mm}\)). \(£ 12\) eal or 2 for \(£ 22\).} \& \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MRANENBURG Photomultiplier PSU. 19in. rack mounting.}} \& \(12-0.1250 \mathrm{~mA}\) E1. \& \\
\hline \& \& \({ }^{12-0.12 V} 100 \mathrm{~m}\) \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(335.500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}\) at 6 mA .
Photo multiplier tubes available.}} \& \({ }_{12-0.12 \mathrm{~V}} \mathbf{2 5 0 m A}\) \& \\
\hline \& \& 12 V 145 \& \\
\hline \multicolumn{2}{|l|}{PIONEER MAGNETICS POWER SUPPLIES \(\quad \therefore 5 \mathrm{~V} 150 \mathrm{amp}\),} \& \(13 \mathrm{~V}+6.5 \mathrm{~V}\) Sec 2 Amp ¢2 \& \\
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Various other makes of power supplies in stock. Please send for lists. S.A.E. please.}} \& \({ }_{\substack{0-120-1296 V A}}^{15 V} 100 \mathrm{fl}\) \& \\
\hline \& \& \({ }_{0}^{1512-0 / 12} 500+500 \mathrm{~mA}\) ¢1 \& m) \\
\hline \& \& \& \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPECIAL OFFER. 10MFD 500v ECC 20p ea., 10,000 MFD 16 v Mullard 35p ea., 3,300 MFD 40 V Mullard 35p ea. 10uF/63v WIMA polyester \(10 \% 40\) oa Large quantities available.}} \& \& \\
\hline \& \& 15 \& blue rexine covered \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy cased. Send for lists or please phone for details.}} \& \multirow[t]{2}{*}{} \& \multirow[t]{4}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \& \& \& \\
\hline \& \& \multirow[t]{2}{*}{} \& \\
\hline \& \& \& \\
\hline \& \& \& \multirow[t]{2}{*}{BLACK PLASTIC BOXES

$75550 \times 25 \mathrm{~mm}$
80}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{4 MILLION}} \& 24 V 250 mA \&

\hline \& \& $25 \mathrm{~V}+6.2 \mathrm{~V}$ Sec $1.6 \mathrm{Amp}_{ \pm 1.90}$ \& $90 \times 70 \times 40 \mathrm{~mm}$

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I.T.T. ELECTROLYTICS NEW}} \& \multirow[t]{2}{*}{30, 24, 20, 15, 122 Amp ${ }_{\text {E7 }}$} \& ¢ $0 \times 90 \times 45 \mathrm{~mm}$

\hline \& \& \& \multirow[t]{2}{*}{	$170 \times 100 \times 50 \mathrm{~mm}$
$200 \times 120 \times 80 \mathrm{~mm}$	
---:	
$£ 3.55$	}

\hline \multicolumn{2}{|l|}{AND BOXED NOW IN STOCK} \& $\begin{array}{ll}\text { 9-0-9V } 2 \mathrm{Amp} \\ 12 \mathrm{~V} 2 \mathrm{Amp} & \mathrm{E4} 4.70 \\ \text { ¢4.84 }\end{array}$ \&

\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{| EN 1212 AXIAL EN 1235 RADIAL |
| :--- |
| The whole range available at unbeatable prices. Send for List |}} \& \multirow[t]{5}{*}{} \& \multirow[t]{2}{*}{$50 / 60 \mathrm{HZ}$ Phase to Phase 250 V AC $50 / 60 \mathrm{HZ}$ Phase to}

\hline \& \& \&

\hline \& \& \&

\hline \& \& \& 兂

\hline \& discount on quantity. One \& \& \multirow[t]{2}{*}{Spraque Filter $2 \times 30 \mathrm{Amp}$}

\hline xed, 5 \& \% N-9p. 18 \& ERG Components and CTS Gold contacts 80p ea. Brand \&

\hline heads, mechanic \& PIN-11p; 18 PiN-16p; 20 \& Gold contacts 80p ea. Brand \& Erie Mains Filters 3 and 5

\hline mplete, but with no \& PIN-22p; 28 PIN-26p; 40 \& BUZZERS, 6 v and 12v, 50p \& \multirow[t]{2}{*}{| Amp 250 V AC 50 HZ £ 4 |
| :--- |
| All the above mentioned Filters are brand new. Carriage |}

\hline electronics. Smart black
modernfinish.
$\mathbf{f 5 . 0 0}$ \& PIN-300. \& WIREENDED NEONS \&

\hline \& Can \& \multirow[t]{2}{*}{SPECIAL OFFER. Mini-toggle} \& \multirow[t]{2}{*}{SPECIAL OFFER: 0.1% TOL}

\hline ties of Disc Ceramics Hi \& DA15S 60p ea. Also Canno \& \&

\hline Voitage, Plate, etc. ${ }^{\text {Special }}$ offer $0.1 / 16 \mathrm{v}$ \& $9 w$ plug, brand new, 60p ea.
WELWY STRAIN GAUGE. \& Long dolly or short, 50 p ea. \& alues available: $2 \mathrm{~K}, 3 \mathrm{~K}$

\hline 15/1000. Prease send \& \& RESISTORS: Over 2 million \& Filmet. Price 30p each

\hline Disc Ceramic Stock \& surements). Romulus Mic \& CARBON FILM $11 / 4 \mathrm{~W}$ 5\% E12 \& \multirow[t]{2}{*}{CERMETPRESETS 15 p ea. 10A 250V AC ILLUMINATED}

\hline \& \& range 1RO-12M. \&

\hline enc \& ${ }_{\text {able }} \mathrm{f3} 85$. Large quantities avail- \& METAL OXIDEFFILM: \&

\hline \& \& \& Snap-in type

\hline TY \& okr. \& (${ }^{\text {2or }}$ (1\%. A tew values in 0.1% \& 16A 250V AC ILLuminated

\hline A \& Beckman available \& \&

\hline A 600 V AC \& \& \& nap-in type. SPST 30p

\hline mm \square Fascia. \& Discount on quantity \& on of metal clad hig \& CON ILLUMINAT

\hline e have the following quan-
es of low profile GOLD \& We have the following \& types. \& 01-800 Rectang

\hline LATED I.C. sockets manu- \& wyn. 1% Resistors available,
$2 \mathrm{~K} .3 \mathrm{~K}, 0 \mathrm{~K} 20 \mathrm{~K} 30 \mathrm{~K} 1 \mathrm{Meg}$. \& \&

\hline \& \& \& 2PCO Latching $\mathbf{1 1 . 5 0}^{\text {a }}$

\hline \multicolumn{3}{|l|}{D TO A CONVERTERS} \& dicatoronly ${ }^{\text {dinses available in red }}$ (${ }^{\text {or }}$

\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{By Micro Consultants Ltd. 50 n cable drive op. Linearity 0.25%, max. 0.125% typ. Settling time: $2 V$ step 70 ns typ. 2 MV step 50 n .}} \& \& \multirow[t]{2}{*}{white only. WIREWOUND PÓTS}

\hline \& \& \multirow[t]{2}{*}{A3F 3-pin Socket. Free hanging with lock $£ 1.32$ D3F 3-pin Socket. Female} \&

\hline \& \& \& $$
\begin{array}{ll}
2 W & \text { by } A \text {. B. Colver } \\
\hline
\end{array}
$$

\hline \& \& \&

\hline \multicolumn{2}{|l|}{Unused. Ex-m aker's pack.
SPECIAL
OFFER PRICE:
¢ 20} \& D3M 3-pin Socket. Male. Chassis mounting $£ 1.10$ \& OR-500K 10/20 turn. 11/4in.

\hline \multicolumn{4}{|l|}{This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P), Minimum Mail Order E5 + P\&P + VAT. Government departments, schools, colleges, trade and export welcome. (7479)}

\hline
\end{tabular}

THE W.W. DISK OFFER

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data
Total U.K. price including VAT at 15% and
carriage, CWO

ONLY £155 EACH INCLUSIVE

(Drive $£ 132, \mathrm{P}$ and $\mathrm{P} £ 2.78, \mathrm{VAT} £ 20.22$)
Please make cheques and P.O.s payable to
W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability. before ordering
Allow 21 days for delivery. This offer applies to
U.K. only and is subject to availability For non O.K. orders send SAE for quotation

Also a few double sided $8^{\prime \prime}$ drives of the same $£ 395+£ 5$ carriage + VAT giving a total of cwice: price of $£ 460$ each
WW - 085 FOR FURTHER DETAILS

G. F. MILLWARD ELECTRONIC COMPONENTS LIMITED
P.O. Box 19 , Praa Sands, Penzance, Cornwall
Telephone GERMOE ($073-676$) 2329

1 Please send me the tolowing
Toal purchase prica

WIRELESS WORLD DECEMBER 1981

MXXeis. ADPER VUMEIER DRIVERS ADDMORE AL NEWFROMILP

WW - 015 FOR FURTHER DETAILS

ww - 082 FOR FURTHER DETAILS

WIRELESS WORLD DECEMBER 1981

WW-076 FOR FURTHER DETAILS

IP POWER SDPDHE most WHillp (1) i(1) 1,1 traisobimizs

ELECTRON\|CS
PRINTER BARGAINS ICL Terminet Letter Printers. These are high quality impact printers, not matrix, that cost over $£ 1,500$. \star Micro-controlled intelligent printers \star ACSIIU Upper and lower case, 1030 or $60 \mathrm{ch} / \mathrm{sec}$ selectable Whisper quiet band mechanism Attractive aluminium case. Sold in good condition fully tested for the ridiculous price of $£ 170$! CENTRONICS 101A MATRIX PRINTERS Now available at a fraction of original cost - these heavy duty printers are the industry standard and will print at 165 cps for 24 hours a day. Standard parallel intertace. Fully overhauled ...250 DATAPRODUCTS 2230 LINE PRINTERS For the professional user who wants the very best and fastest - printing at 300 lines/minute these world-famous line printers are used by nearly all the large OUME SPRINT 55 DAISY WHEEL us. Offered at only. MAGTAPES, DISKS, ETC. . . . PERTEC 9-TRACK MAGTAPE SYSTEMS A complete Magnetic Tape system, with all electronics and paraliel TTL in/out - easy to interface to a micro-system. Original cost over $£ 4,000$, these units are about DRE Series 302.5 Megabyte Cartridge drives...... Century Data 10 Megabyte in cabinet (Model 111) DCS 3000 Data Cartridge system 2.5 Mb 3 M Cartri PROTOTYPE IC CARDS A Real Bargain! Two cards containing at least 350 ICs in DIL sockets. ICs all identiwrap and easily removable. Hundreds of pounds worth of components for only wren £34.50, including VAT and postage. PLEASE NOTE: Except where stated prices exclude VAT and carriage, please phone for transport costs on heavy items. All equipment may be viewed at our office near High Wycombe. Callers very welcome. We stock a huge amount of DEC Systems and spares, and offer complete PDP8 and PDP11 computer systems from f200 upwards. We have losts of one-off bargains. Talephone Nigel Dunn on 0494714483 for details

Telephone Nigel Dunn on 0444714883 for details

WIRELESS WORLD DECEMBER 1981

WE PURCHASE

Surplus component stocks, redundant materials, Surplus component stocks,
obsolete computers, for cash.

We also collect - distance no object. Just cal :

C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275. Telex 291429

WW-091 FOR FURTHER DETAILS

WIRELESS WORLD DECEMBER 1981

RST
 Tel: 01-677 2424 Telex: 946708

RHODE \& SCHWARZ Selective UHF V/Meter. Bands $4 \& 5$. USVF Selectomat Voltmeter USWV £450 UHF Sig. Gen. type SDR O. 3 -1GHz UHF Signal Generator SCH E175. POLYSKOPS SWOBI and II. Modulator/ Cemodulator BN 17950/2	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TFL: 01-723 8753	DC POWER SUPPLIES *W can supply the ebove power s.ppily at ony
		SPECIAL PURCHASE LAMBDA POWER SUPPLIES
5B/2 AM/FN		
6551 SAUNOERS $1400-1700 \mathrm{MHz}$. FM. TFF 10668 \& 1 . 10.470 MHz . AM /FM 		
	RÁNK KALEE 1742 Wow \& Flutter Meter. AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V AIRMEC Wave Analysers types 853 \& 248 A .	
TF1370A RC Oscillator $£ 135$. TF7910 Carrier Deviation Meter	DERRITRON 1KW Power for vibration testing, etc. 10Mhz-40GHz. HEWLET-PACKARD tuned amp \& null detector. HEWLETT-PACKARD 331A Distortion Mete: RADIOMETER Distortion Meter BKF6 $£ 125$.	DEAC NI-CAD BATTERIES
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting upto 15 turn to 15 turn "Helipots". Brand new withmounting instructions. Only ± 2.50 each.		
\star COOLING FANS \& BLOWERS 		 * \quad es. $115 \mathrm{~V} .3 \times 3 \times 1.5^{\prime \prime} £ 4+$ pos
		100 V
	 BARGAIN PRICES: All in good working order. Available to callers only TYPE 543 B with 'CA' plug-in. 25 MHz . DB TYPE 545 B with 'CA' plug-in 25 MHz .DB. TYPE 585A with ' 82 ' plug-in. 80 MHz .DB	BELL \& HOWELL MICROFICHE
SEALED LEAD ACID BATTERIES Gould GEETYTE type PBG60. gV. GA.H. Measures -		 DIGITAL MULTI-METERS
20-WAY JACK SOCKET STRIPS. 3 pole type with two normaly closed contacts 22.50 each (+25 p pp). Type 316 three pole plugs tor above - 200 eas. (pp free)		ach in 4 ranges. Resistance 0-19.99 Mohr anges. LED Display 1999.0 . AND NEW. SPECIAL REDUCED PRICE £39. INCLUDING VAT \& P.P.

B

michobute lit.
A RAPID WAY TO CONVERT SOURCE PROGRAMS TO EPROMS

$\star \star \star \star \star \star 832$ EPROM PROGRAMMER $\star \star \star \star \star t$

Programs 2708/2716 (TMS and Intel|/2516/2532/2732/2732A Pre-and post-programming checks
RS232 connection to host computer or terminal Download. HEX Xile strom processor to 832 odio program EPROM
Simple ecmmand structure to inspect modif, verify, find partiSimple command structure to inspect, modify,
cular bytes, program and compare EPROMS

$\star \star \star \star \star \star$ DEVELOPMENT SOFTWARE FOR USE

WITH PROGRAMMER $\star \star \star \star \star \star \star$
8048/9 Cross Assembler and Simulator (under CP/M)
M6800 Cross Assembler and Simulator (under CP/M)
EXPAND YOUR PROCESSOR'S CAPABILTY
$\star \star \star \star \star$ MICROBYTE 421 MULTIPLEXER $\star \star \star \star \star$
Link up to 4 perip
Simple protocol
Empl
Each peripheral independently configurab
Automatic baud rate detect for keyboard devices
Software options for non-standard requirements
All prices exclusive of V.A.T.
One-year guarantee on all products

solvesthe'mystery' of micro-processors.

TECHNICAL SPECIFICATION

CPU
SOFTWARE COMPATIBILITY
RAM
ROM
INPUT/OUTPUT
MONITOR

DISPLAY

COUNTER TIMER CIRCUITS
PARALLEL I/O CIRCUITS
SPEAKER AND SPEAKER
DRIVER CIRCUITS
USER AREA
POWER REQUIREMENT
USER'S AND EXPERIMENT
MANUAL
options
KEYBOARD

Use the unique MICRO-PROFESSOR to truely understand the inside workings of microprocessors Open up a whole new spectrum of projects in home electronics, or simply use the MICROPROFESSOR as a practical learning/teaching aid.

Flight Electronics Ltd.
Tel: (0703) 31323/34003

AUDIO CASSETTE INTERFACE 165 bit per second average rate for data transfer between memory and cassette tape.
EXTENSION CONNECTORS Provides all buses of CPU, channel signals of CTC and $1 / \mathrm{O}$ port bus of
Z80 CPU high performance microprocessor with 158 instructions Capable of executing Z80/8080/8085 machine language program. 2 K bytes expandable to 4 K bytes.
2 K bytes of sophisticated monitor expandable to 8 K bytes 24 system I/O lines.
2 K bytes of sophisticated monitor. It scans the keyboard and executes the command entered immediately after the power is turned on The monitor includes: system initialization, keyboard scan, display scan tape write and tape read. 6 digit $0.5^{\prime \prime}$ red LED display. Circuits are provided
Circuits are provided
A $2.25^{\prime \prime}$ - diameter speaker is provided for user's applications.
Provides a $3.5^{\prime \prime} \times 1.36^{\prime \prime}$ wire wrapping area for user's expansion. Single +5V DC.
Complete self-learning text with experiments and applications.
Z80-CTC EPROM programmer board Prototyping board Z80 - PIO Breadboard Audio Cassette 36 keys including 19 function keys, 16 hex-digit keys and 1 user defined key

MICRO-PROFESSOR is a low-cost 280 based microcomputer which provides you with an interesting and inexpensive way to get into the microprocessor world. microprocessor learning tool for microprocessor learning tool for It is also an ideal microprocessor educational tool for teaching in schools and universities. Besides, MICRO-PROFESSOR is more than a learning tool. It provides a wide range of applications such that you will be surprised at its amazing power.
The main object of MICROPROFESSOR is for the user to understand the software and easily and conveniently. Besides
he complete hardware/software system, you have the User's experiment manual available to you. It includes self-learning text with 20 experiments which range onign software program game.

2 K bytes of monitor source program with documentation is also provided in the manual. It shows how to write system programs including system initialization, keyboard scan, display scan, tape write and tape read.

APPLICATIONS:
Learning and teaching tool ow cost prototyping tool ow cost development tool Tester

Process controller Electronic game Electronic music box Master mind Timer
Noise generator Home appliance contro System control and many more

Low Price, High Capability

 experimental tool for only Q POWER SUPPLY A 9V, 0.5A Adaptor is provided. Z80 is a trade mark of Zilog inc

SPECIAL INTRODUCTORY OFFER The manufacturers will send 2 PACKS, post free, $£ 25+$ VAT The single development pack costs only $£ 15+$ VAT, p\&p. To aceeper this offers simply Circle No. 78 on reader service card. For 4.pege
Tolder only ciricle No. 19.

Kit Case System

Invaluable for prototype, pre-proauction, experimental and
design projects in the electronics electrical, instrumentation design projects in the electronics, electrical, instrumentation,
control, general engineering and other industries.

This KIT CASE SYSTEM, is a new concept offering modular This KIT CASE SYSTEM, is a new concept offering modular
design flexibility, self assembly, extreme versatility, providing a design flexibility, self assembly, extreme versatility, providing a
wide variety of shapes and sizes of cases to be built. The basic
and system builds 12 sizes of cases in 36 combinations. Two packs
(see special offer) - over 30 sizes - 1000 combinations.

The high quality kits are produced in high impact, flame retar-

Special features incluje nylon insulating pillars, precision moulded long tracking mating faces, P.C.B. mounting grooves
and many more to facilitate and many more to facilitate ease of fitting P.C.B.s, facias,
dummy front panels, rigidity and rapid assembly.

Cobb-Slater Instrument Company are specialists in precision

COBB-SLATER INSTRUMENT CO. LTD Cosim Works, Darley Dale, MATLOCK. Cosim Works, Dartey
Derbyshre, DE4 2 GG .
Tel: Darley Dale 2344 .

o obtain further details of any of he coded items mentioned in the Editorial or Advertisement pages f this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and ou can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription AGENTS

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, December 1981 WW 172
Readers ONLY.
WW.... WW.... WW.... Please arrange for me to reccive further details of the products listed,

BUSINESS REPLY SERVICE
,
WIRELESS WORLD
Reader Enquiry Service
South Croydon
Surrey CR2 9PS

Wireless World Subscription Order Form Wircless World, December 1981 wW 172
UK subscription rates USA \& Canada subscription rates
1 year: $£ 12.00$
1 year: $\$ 39.00$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value.
made payable to IPC BUSINESS PRESS Ltd

Name.

Address
overseas advertisement AGENTS

Hungary Mrs. Edit Bajusz. Hungexpo Advertising Agency, Budapest XIV, Varosiget-Telephone. 225 NOB-
taly Sig. C. Epis Etas-Kompass, s.p.a Servizio Estero, Via Mantegna 6 , Telex: 37342 Kompass

Japar' Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minaro-Ku, Tokyo

United States of America Ray Barnes *IPC Business Press 205 East 42 nd Street New York, NY 10017 - Telephone Mr. Jack Farley Jnr., The Farley Co. Suite 1548,35 East Wacker Drive, Chicago, Illinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch,
Etmatex International,
P.O. Box 34607

Los Angeles Calif. 90034 U.S.A. felephone: (213) 8218581 Mr.
Mr. Jack Mentel. The Farley Co., Suite 605 , Telephone: (216) Cleveland, Ohio 4415 Mr. Ray Rickles, Ray Rickles \& P.O. Box 2008, Miami Beach, Florida 33140 - Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co 3116 Maple Drive N.E., Atlanta, Georgi 30305. Telephone: (404) 2377432 Mike Loughlin, IPC Business Press, 77079 -Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Lid 915 Carlton Tower, 2 Carlion Streel, Toronto 2 - Telephone (416) 3642269

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 240.00+$ VAT.
incorporating all the latest high technology Ensures British leadership in the low cost high
developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.
- Add and invert facility.
- Probe compensatior.
- Push button $X-Y$.
- Trace locate.
$10 \mathrm{MHZ}(-3 \mathrm{~dB})$ over full display.
Complete with probes.
performance oscilloscope market.

ww - 072 FOR FURTHER DETAILS

FROM A NEW COMPANY WITH NEWIDEAS SOMETHING SPECIAL	PRMTED GIRGUMTS
AIRWAVES ELECTRONICS INVITE YOUTO OPEN YOUR OWN PERSONAL ACCOUNT	FOR WIRELESS WORLD PROJECTS
THERE COULDN'T PE ANEASIER WAY TO	
BUY COMPONENTS, ONCE YOU HAVE OPENED YOUR ACCOUNT. JUST PHONE	
OR WRITE YOUR ORDER THROUGH,	(timer
STATING YOUR ACCOUNT NUMBER TO- GETHER WITH YOUR OWN SECURITY	Audiole
CODE NUMBER AND GOODS WILL BE	
SSPATCHED SAME DAY AND YOUR	Lemer
MAYBE YOU'RE THINKING - YOU'LL	
VETOPAY OVER THE ODDS FOR THIS,	Moremater-June $9978-1$ dis
CUSTOMERS WILL RECEIVE OUR PRO-	
DUCT-PACKED CATALOGUE SHOWING	
LIEVE TO BE VERY COMPETITIVE. AFTER	coill
ALL YOU'RE THE BEST JUDGE AND WE DO OFFER SOMETHING SPECIAL	
	Noutheoriol
OU WOULD LIKE TO OPEN YOUR AC-	
APLICATTONDETASESENELOLSING JUST ASTAMP TO COVER POSTAGE.	
	(e)
AND, OF COURSE, CALLERS ARE ALWAYY WELCOME AT OUR CAMBERLEY ADDRESS.	
WAVES ELECTRONICS	de
ON ROAD, CAMBERLEY, SURREY GU15 3JY TELEPHONE: (0276) 62949	M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

wW - 039 FOR FURTHER DETAILS
 AIRWAVES ELECTRONICS
 WW-075 FOR FURTHER DETAI

FOR WIRELESS WORLD PROJECTS

WW - 095 FOR FURTHER DETAILS

CBWorld DIARY

By arrangement with Charles Letts, the famous diary people, we are to sell through CB World a limited number of CB Diaries. These diaries would normally be sold through bookshops and main newsagents but to introduce them for 1982, Letts have agreed that we should market them through the publication. Contents include:

How c.b. works

- SWR your c.b. radio

Setting up a Home Based c.b. unit

- Setting up a mobile c.b. unit
-c.b. fault finder guide
- 10-code
- Q-code
- Phonetic alphabet

Plus section for your Good Buddies, their handles, their home 20 s and their land lines.
£2.45 (inclusive

T

Appointments

Advertisements
accepted up to 12 noon Monday, November 30 to space being available.

DISPLAYED APPOINTMENTS VACANT: £13.50 per single col. centimetre (min .3 cm) BOX NUMBERS: 11.50 extra. (Replies should be addressed to the Box Number in th PHONE: OPHELIA SMITH, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

£5,000-£15,000 p.a.

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD 148-150 High St. Barkway oyston Herts SG8 8EG

Appointments potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development production and marketing of its advanced communications test equipment and A.T.E.
to meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And need production and service personnel as well If you would like to develop your potential in exciting future of Europe's leading test equipment specialist, complete the coupon and send it to us at the address marcons below:instruments Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost, St. Albans, Hertfordshire. ALA OBR Teleohone: St Albans 59292

We've Made a Name for Ourselves and you could do the same As EaE , we earned a reputation for the quality of
our work in oilfield communications. And now that we are part of the Palmer EaE
Group, our activities are expanding faster than ever

Radio Technicians and Communications Engineers We are looking for seasoned professionals -
Technicians with experience of HF, MF, VHF and UHF, and Engineers familiar with Microwave (and with HNC qualifications under their belt). In the North Sea, earnings are up to $£ 14,000$, while overseas posts could be worth up to $£ 20,000$ If you'd like to make a name tor yourself, in one of the best jobs in the business, please write to Mike Futter, Palmer EaE Limited, Offshore House, $284-285$ Southtown Road
Gt. Yarmouth, Norfolk, NR31 OJB.

PALMER峟EAE
 1400

Television International

Due to its continuing expansion programme, Television International has openings for Broadcast Telecine Engineers in both operational and maintenance departments.

The selected engineers will be operating or maintaining Rank Cintel MKIIls with Topsy and Digiscan, and consequently only people with the necessary experience and
skills need apply skills need apply

Salaries within the range $£ 10,511-£ 11,793$, according to experience, plus the opportunity for a considerable an attractive contributory Group Pension Scheme which includes free Life Assurance.

Please write or 'phone for an application form to: Alan Edwards, Director of Operations Television International Operations Limited 9-11 Windmill Street
Tel: (01) 6372477

Test Engineers and Technicians -Wembley,Middlesex

Racal-BCC are members of the qutomatic testing and faull finding of highly successful Racal Electronics the Company's equipments at various Group and are world leaders in the stages of manufacture. design and manufacture of tactical Applicants should he qualified to dio communications equipmen. We require a number of test of radio communications equipment. variety of grades within the Test service including yood hasic pay and a Department. The department is service including grood hasic pay and a responsible for the manual and Group Productivity scheme.

Racal-BCC
IBACAL
World leaders in electronics

DODolby

ELECTRONICS PRODUCTION
 ENGINEERS

South London

c. $£ 7000$

Dolby Laboratorises, the successful and progressive manufactur-
ers of of professional ers of professional audiono.se reacuction equipment require
Production Engineering staft. Those apoointea will ioin a small
 int production, tiaison witht he e. \& D . team, product mprove .
ment and component specification.
Ideal applicants will have several years' experience in electron-
ics manufacturing. However, less-experienced electronics gradics manufacturing. However, less-experienced electronics grad-
uates will be considered who would tind this an excellent oppor-
tunity to eern the details of electerronic design from a production tunity to tearn the details of electronic design from a production
viewooint. The ability to work proiects through to successful viewpoint. The ability to work propects sthroght
conclusions without close supervision is essential.
Competitive salaries and excellent employment conditions are For applica
DO
dOLBY LABO
DOLBY LABORATORIES INC.
346 Clapham Road 340
London, S.W.
01.7201111

PRODUCTION MANAGER

killaloe countyclare
IR. $£ 12,500$
Peak Electronics Limited is a private Irish Company with international subsidiaries which manufactures intruder detector and traffic control equipment using Infra-Red
and Microwave technology. and Microwave technology. About 60 people are em-
ployed in total 50 of whom are engaged directly in proployed in total 50 of whom are engaged directly
duction. The workforce is predominantly female.
Due to an expanding range of products and increasing sales, the company now wishes to appoint an exper-
ienced Production Manager. ienced Production Manager
Reporting to the Operations Director the Production put requirements to required quality and cost standards; will be expected to contribute substantially in such areas as production engineering, industrial engineering and quality monitoring procedures, and will be capable of
instituting and developing the necessary systems for the instituting and develop of the department.
effective management
Candidates will ideally have had a number of years' experience in electronic and light mechanical assembly. This experience having been gained in production line
management or through production engineering/quality managem
control.
Salary is likely to be in the region quoted but would not
be a limiting factor for the right candidate and normal be a limiting factor
benefits will apply.
Aplicaions in Applications in writing, giving personal and career de-
tails, should be sent to the Managing Director, Peak technologies Limited, Sunley House, 57 High Street, echnologies Limited, Sunley
Edgware, Middlesex, HA 7XA.

${ }^{2}$ Appointments

Broadcasting in Cambridge

TELECOMMUHICATIONS ENGINEERS

multipex microwave ENGINEERS
RADIO SYSTEMS ENGINEERS
Saudi Arabia - Nigeria • Malta • Aberdeen
Experienced in either HF/VHF/UHF or Troposcatter/
TELEPHONE SWITCHING ENGINEERS Saudi Arabia - Nigeria
Preferably with electronic exchange experience. TECHNICIAN INSTRUCTORS and PLANNING ENGINEERS With a minimum of 5 years' experience in any of the above disciplines.

Applicants for all positions should hold a minimum of a final City and Guilds. Salaries are experience.

For further information and to arrange mmediate interview, telephone Windsor (07535) Windsor, Berks.

CㅏㅌMSULT

B8W

 monufacturers of monitor loudspeakers $==$
Transducer Designer

Experience in design and construction of prototype
moving-coil direct-radiator loudspeaker drivers and a horough understanding of their operating principles
are a major requirement.
The successful candidate will be largely responsible
for the dievelopment of loudspeaker driver designs for the cevelopment of loudspeaker driver designs
and their transfer to production, within guidelines laid nown by the department Director. Dedicated flair and
dow the initiative are also an important requirement, along programme. Training and guidance in the use of the Laser Vibration Interferometer system and Computer-
Aided design facilities available, will be given as Aided desig
necessary.
Salary is negotiable. Please apply in writing to Dr G.
J. Adams.
B\&W LOUDSPEAKERS LTD

OpportunitiesinOil -Libya tixAdvantages

Oasis Oil Company, one of the world's maior producers of oil, is expanding and updating its
communications facilities. To this end the company is now seeking to recruit suitably qualified

SYSTEMS SUPERVISOR (MAINTENANCE) (Tripoli Based) c. $£ 20,000$

Applicants should have a bachelor degree in Electrical/Communication Enginering and at least
ten years experience in operation and maintenance of communications systems. The person appointed will be required toplan and maintenance of communications systems. The perise the activities of the communications
maintenance organisation maintenance organisation. This will invopve adiusting, testing and modifying the coastal
troposcatter system, multi-hop microwave, VHF, UHF twoway radio, S. B outside telephone .

SENIOR ENGINEFR

(TELECOMMUNCATIONS)
(TripoliBased) c. $£ 20,000$

SENIOR ENGINEER (TELEPHONE)
(Tripoli Based)
c. $£ 20,000$

Engineering Experience must include at least ten years in the design and maintennation BAXs and related channel network equipment, inside and

COMMUNICATION

MAINTENANCE SUPERVISOR
c. $£ 16,000$

The post demands a qualification from a recognised technical training establishment and fifteen
years experience in the maintenante of communications systems. The successful applicant will supervise communication maintenance technicians who will be required to perform preventative
maintenance and repair of many types of equipment These will include microwave, two way

COMMUNICATIONS TECHNICIANS (Tripolis Based)
You must possess a You must possess a qualification from a recognised tec hnical institute and hàve had at teast five
vears experience in the maintenance of communications equipment such as microwave, base and

TELEPHONE TECHNICIANS

OASIS BENE THACKAG
Free furnished married/single housing in Tripoli town.
Free meals and housing
Vacation: Tripoli-based - 30 dart allowance for field-based personnel.
Field-based - ${ }_{30}$ origin.
.
Field-based - $30 / 20$ commuting schedule with 7 round-trip
B. B.U.P.A cover.

Attractive provident fund plan.
Low cost accident insurance plan
School facilities and children's education assistance for
Tripoli based families.
OASH Floor, 33, Cavendish Square, London, W1M 9HF Tel: $01-4997255$

Appointments ${ }^{\text {w }}$

MICRO - R \& D LEISURE PRODUCT ELECTRONICS LTD

This new company, formed within a well-known products, will command strong group financial and managerial support.

A senior hardware and software engineer is required with background, experience and qualica tions in micro technology to speed the progress systems and dedicated microprocessor and communication devices.

This is an opportunity to join a powerfully backed new company with excellent prospects. The salany will recognise the creative nature of the work and will be negotiable.

Apply (in confidence) to:
eisure Product Electronics Ltd
Leen Gate
Nottingham NG7 2ND

OUR AUTUMN COLLECTION
EQ9500 - BERRS. DESIGN ENGIMEEES
 Eg,000 LONDON SOFTWARE ENGINEER
 E7,500 KENT GRADUATE ENGINEERS

E7,000 BERKS. RECRUITER

Charles Airey Associates
13/16 Jacob's Well Mews, George Street, London W1

ELECTRONICS

 SERVICE ENGINEERAudio Visual and Video well-known company require Bench Engineer to repair and maintain a wide range of professional TV and Video Equipment. Applicants preterably shoula be trained to city and Guild Salary negotiable according to qualifications For interview please contact:

SAMUELSON. Gary Davis Tel: 01-452 8090, Ext. 262

Medical Physics Technician (ELECTRONICS)

ATechnician is required to work in a small but busy departmen which provides a comprehensive medical olectronics/ Physical Within the department, the technician will be engaged mainly in lectronics work but other scientific or engineering skills would b
an advantage. In addition the technician will be required to work an advantage. In addition the technician will be required to work
in clinical areas, trouble shooting and advising staft in the use of equipment.
Salary will be according to experience within the range $£ 5,527$ -
f8,014 inclusive.

Hospitals
Group
$\begin{aligned} & \text { Informal enquiries to Mr.P. Butle } \\ & \text { Chief Technician, Medical }\end{aligned}$
$\begin{aligned} & \text { Chief Technician, Medical } \\ & \text { Electronics department, tel: 01--352 } \\ & \text { B121, Ext. } 4524 \text {. Futrther details and }\end{aligned}$
$\begin{aligned} & \text { Electronics Department, tel: } 01-352 \\ & \text { 8121. Ext. } 4524 \text {. Further details and } \\ & \text { application forms available from }\end{aligned}$
$\begin{aligned} & \text { application forms availabie from } \\ & \text { Miss } J \text {. A. Jenks, Personnel }\end{aligned}$
$\begin{aligned} & \text { Manager, Erompton Hospital, } \\ & \text { Fulham Road, London SW } 3 \text { GHP. }\end{aligned}$
$\begin{aligned} & \text { Fultam Road, London SW3 6HP } \\ & \text { Tel: as above, Ext. 4357. Application } \\ & \text { forms to be ereturned immediately. }\end{aligned}$
$N A D C$
Medical Research Council
ELECTRONICS TECHNICIAN

 Salary on a scalif from $£ 4,958$ p.a. deppending upon background and experience.

The Administrator
Hniventry Modical School
Hils Road, Combridgo $\mathrm{CB2}$
Han

EAST HAM COLLEGE OF TECHNOLOGY High St South, London E6 4ER
Principal: K. R. BISHOP, B.Sc. (Econ.) FRSA DEPARTMENT OF LECTURER I IN
LECTURER I \mathbb{N} -
ELECTRONICS/ELECTRICAL ENGINEERNG
The person appointed to this post should be able to teach in one
or more of the following areas at both Craft and Technician levels:
a) Electrical Installation, Electrical Power

The minimum qualification acceptable for this post is a City and
Guuild Full Technological Certificate in Electrical or Electronic
Engineering. Engineering.
Salary: 55,034 - $£ 8,658$ plus $£ 759$ p.a. London Allowance. Sulary: 5 details and an application form may be obtained by
Further dit
writing to the Vice-Principal enclosing a self-addressed envewriting to the Vice-Principal enciosing a seli-addressed enve
lope. Completed forms should be returned within 14 days of the lope. Completed forms should be
appearance of this advertisement.

Classified

If you are qualified with a UK degree in Electronic Engineering or Applied Physics, an HNC/HND, a TEC Higher Certificat or Diploma in Electronics or Telecommunications or a 271) and your colour vision and hearing are normal why no send off the attached coupon for further details and an application form? Starting salaries are in the range $£ 6823$ to £7365 p.a.depending on experience. Shift allowances are also paid where appropriate.Attractive social facilities and taff restaurants are also available. All positions are open to male and female applicants.

The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A1AA.
Name__ (Mr/Mrs/Miss) Address
-:
Tel No

Qualificatio $81 . \mathrm{E4036} / \mathrm{WW} \square \square$

 43 Dual Baam Oscilloscopen IGeal Ior Xmas fresent

MARTIN ACCOCITL

tel: Avebury (006 2321219

SANGTRONIC LTD
SUB-CONTRACT ENGINEERS
We specialise in PCB Assy,
Unit Assy, Cable harnessing,
esting etc.
ALSO
We supply B.I.C.C. Equipmen
Cable, Plain or Colour Coded customers requiremen Murther details please ring M
Avtar on: $02812-2851 / 2$

CAL-ARABIAN U.K. LTD
STAFF FOR TELEVISION STUDIOS AND TRANSMITTING
STATIONS

We have been requested to locate the following personnel for a European manufacturing company

CHIEF ENGINEER

EXPERIENCE: Seven to 12 years' post-qualification experience on the following: TV Transmitting
Equipment, Microwave Equipment and Studio Operation.

VIDEOTAPE ENGINEER

EXPERIENCE: Seven to nine years' post-qualification exp

STUDIO ENGINEER

TRANSMITTER ENGINEER

GENERATOR ENGINEER

EXPERIENCE: Five to nine years' post-qualification experience in TV Transmitter Equipment,

 QUALIFICATIONS Engineering degree,H.N.C., H.N.D. or equivalent.CONDITIONS Excellent salary commensurate with experience. Free air-conditioned accomscheme, full insurance and medical care.
CONTRACT DURATION These contracts are offered for a period of three years on a bachelor basis only initially.
suitable qualified candidates should request an application form for or send full c.v. to
4 Kinnoull Strees, Parth, Tayside - Telephone (0738) 25364

Mullard Blackburn
Philips LaserVision
VTR Engineer Five figure salary, negotiable according to experience Mullard Blackburn is producing the video disc for the Philips Laser-
Vision system and requires a VTR Engineer to work in the mastering area. This area transfers video programmes from tapes to master You will be responsible for the Vidideo Reproducing Equipment and
its performance. You should be familiar with the operation of its performance. You should be familiar with the operation o
VPR2 and/or AVR2 machines, and have several years' relevan
experience.
As part of Philips Industries, Mullard Blackburn offers usual large company facilities and a generous $\begin{gathered}\text { applicable. }\end{gathered}$
Blackburn is an industrial town in rural Lancashire within 7 miles of the $M 6$ and easy travelling distance to the Coast, Lake District,
Yorkshire and Derbyshire Daies. The larger centre of Manchester Please telephone or write to by. Please telephone or write to Linley Murdock, Personnel
Officer. Mullard Blackburn. Philips Road, Blackburn Lancashire, BB1 5RZ. Tel: (0254) 55241. Ext. 209

Mulard manuacturue and marke: electomic components
Mullard

THE
 ART OF ELECTRONICS
 by Horowitz \& Hill Price $£ 13.50$ THE PPL SYCTHESIER COOK. BOOK, Pry Hice: Kinley E5.25 THE SHELF ${ }^{\text {SNTMEGAA }}$ CUITS, by Z. H. Meiksin CUTS, by Z. H. Meiksin Price f6. 25 EXPERIMENTER'S SOLID STATELELCTRONICS PRO. EXPLD STATE ELECTRONIC JECTS, by A. W. Barber COMPLETE GUIDE Price: 55.50 SCHEMATIC DIAGRAMS RED BING. PRAITTCAL SOLD STATE CIR- SI CUITDESIGN, J. E. Oleksy Price: $£ 6.50$
 $$
\begin{aligned} & \text { ALL PRICES } \\ & \text { INCLUDE POSTAGE } \end{aligned}
$$

THE MODERN BOOK CO. Sp Technical Books 19-21 PRAED STREET LONDON W2 1NP Phone 402 2.9176
Closed Star 1 ?.m.,

YOUR NEXT ELECTRONIC PROJECT LOOK D.I.Y.
 ferent printed front pangels, sub-
frame, or a complete mixer
console frame onsole frame.
For full details s.a.e. to.
The Mixer People PARTRIDGE ELECTRONICS

Electronics Technicians

 ing MEDICAL PHYSICS ECHNICIAN IV

1.

 To join a team of physicists and
technicians engaged in many as-

RADIO OPERATOR

 TECHNICIANThe British Antarctic Survey requires a Radio Operator Techni-
cian to man a single-handed radio station at its permane cian to man a single-handed radio station at its permanent
Antarctic base on Signy Island, South Orkneys for a period
appointment of 34 months commencing as soon as possible. appointment of 34 months commencing as soon as possible. Applicants must be able to maintain SSB transmitting and re--
ceiving equipment and aerial systems. Communication between ceiving equipment and aerial slystems. Communication between
the Falkland Islands (ultimately the United Kingdom. other BAS
base bases, foreign Antarc
teleprinter and voice.
Qualifications: MRGC (or better) capable of sending and ceiving morse at at least 20 wpm, experience in maintenance of
communication equipment is essential. A Anowledge of communication equipment is essential. A knowledge of
teleprinters and touch typing an advantage. Applications from
amateur and armed service trained amateur and armed service trained personnel will be consid-
ered, provided that the necessary expertise can be demonsered, provided that the necessary expertise can be demons-
trated.
Applicants to work overseas, should be single, aged between Applicants to work overseas,
$22-35$, physically fit and male.
Salary: from $£ 5,410$ per annum plus an Antarctic technical
allowance of $£ 586$ per annum, clothing allowance of f586 per annum, clothing, messing and canteen
are provided free on base and free messing on voyage. Low
Income Tax. Income Tax
The Establishm and an application form please write to The Establishment Officer, British Antarctic Survey, High Cross,
Madingley Road, Cambridge, CB3 OETT. Please quote ref: BAS 52 CLOSING DATE: 24th November 198

SENIOR TEST ENGINEER

METAL CASES
20 SWG Mild Stel Case, painted
brown textur,
non-scrated
vitch feet.
non-slip.

Price $£ 12.80$ inc. V.A.T
Freep. \& p. in U.k.
M. GEAR LTD. 179a Victoria Road
New Barnet, Herts.

SURPLUS STOCK
Omron Relays, Crouze Timing Motors, Croczet Micro
Switches, Bulgin Lep and Switches, Bulgin Lep and
Panel Lampholders, Transfor-

$$
\begin{aligned}
& \text { printeE clicuits. Make y } \\
& \text { own simply, cheaply and quick }
\end{aligned}
$$

Classified

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICA PERSONNEL SERVICES,
12 Mount Ephraim Tunbridge Wells,
Kent. TN4 8AS. Kent. TN4 8AS. TJB

Please send me a TJB Appointments Registration form: Name
Address.
Tel: 089239388

The Hatfield Polytechnic
School of Humanities

Senior Technician/ Chief Technician

Grade Technical $3 / 4$ (E5,811- $\mathbf{4 7 , 2 9 6) \text { or Technical } 5}$
$(£ 7,530-£ 8,034)$ dependent upon qualifications and experience.
Duties are mainly connected with three Language Luties aratores. Applicants should be experienced and
well qualified in Electronics and be capable of servicing well qualified in Electronics and be capable of sevvicicing
and repair of a wide variety of electrical and electronic
 include full responsibility for recording, cataloguing and
storing materials. This is a supervisory position, and close liaison with academic staffis renusired
Application forms and forther ditails from the Staffing
Officer, The Hatfield Polytechnic, PO Box 109, College Application forms and
Officer, The Hatfield P
Lane, Hattield, Herts.
Lane, Hatfield. Herts.
Please quotereference 444.
Closing date: 27 th November, 1981.
CAP
PCB ASSEMBL

 TW ELECTRONICS LTD.

WIRELESS WORLD DECEMBER 198
Classified

1

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

INDEX TO ADVERTISERS DECEMBER

Appointments Vacant Advertisements appear on pages 117-127
and
and

YOU'RE LOOKING AT 31 ANTEX SOLDERING IRONS!
 The secret is in the range of bits for each model, from 19 mm down to 0.5 mm ! No

 cover the - push-on bits whichThe new range of Antex irons come
the new range of Antex irons come with or without safety plugs fitted. They are tougher than ever, and about twice as
Specify low wattage, low leakage

[^0]: Also available from Electroplan

