$\operatorname{lem}_{-\infty}^{\infty}$

Autoranging nf. millwoltmeter

[^0]
wireless
 world

ELECTRONICS/TELEVISION/
RADIO/AUUDIO
NOVEMBER 1981 Vol 87 No 1550

	Front cover shows the aerial of Mr Christieson's satellite receiver, with some images produced by the system.
	IN OUR NEXT ISSUE Millimetre-wave lens aerials. Design and construction details for metal-plate refractor aerials for 20-30 GHz working.
	Light units. A guide to the understanding of the various units used for measuring light.
	Direct digital frequency synthesizer generates sine waves in numerical steps, a d-to-a converter providing the output in the $0-3 \mathrm{MHz}$ range.
	Current issue price 70p, back issues (if available) f1, at Retail and Trade CounCentre. Hopton Street, London SE1. Available on microfilm; please contact editor. By post, current issue 96p, back issues (if available) f1.50, order and payments to EEP General Sales Dept. Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial \& Advertising offices: Quad rant House, The Quadrant, Sutton, Surrey SM2 5AS. Tolephones, Editorial 01-661 3500. Advertising 01-661 3129 Teiegrams/Telex: 892084 BISPRS G Subscription rates: 1 year $£ 12$ UK and E15 outside UK. Student rates: 1 year £8 UK and £10 Distribution: Distribution: Quadrant House, The Quad phone 01-661 3500 . Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 044459188. Please notify a change of address. USA mailing agents: Expediters of the Suite 1217, New York, NY 10022. 2ndclass postage paid at New York. IPC Business Press Ltd, 1981 ISSN 00436062

CONTENTS

33 ELECTRONICS AND THE MUSE

34 HIGH-RESOLUTION WEATHER SATELLITE PICTURES
by M. L. Christieson
WORLD OF AMATEUR RADIO

41 FUNKAUSTELLUNG 33

44 DIGITAL STORAGE AND ANALYSIS OF SPEECH - 4
by lan H. Witten
49 CARTRIDGE ALIGNMENT GAUGE by R. J. Gilson
50 SUBSCRIPTION TELEVISION EXPERIMENTAL STATION
50 by A. M. Peverett
53 LETTERS TO THE EDITOR
Multipath distortion Training medical tectmicians Electronic organ sound
57 CIRCUIT IDEAS
Regulating L.E. D. outpuls Accurate op-amp bridge
59 INTERFACING MICROPROCESSORS by J. D. Ferguson, J. Stewart and P. Williams
63 ACCURATE SINE WAVES by N. M. Follett
57 NEWS OF THE MONTH Subscrintion television hy cable
BBC graphics Laservision delayed
71 DISPLAY AID FOR MICROPROCESSORS by K. Padmanabhan and A. P. Senthilnathan
73 ELECTRONIC DISPLAYS ' 81
74 C.B. FREQUENCY SYNTHESIS by R. F. da Silva
79 DIODE FUNCTION GENERATOR by M. T. Abuelma ' atti
81 MULTICHANNEL DIGITAL TAPE RECORDER by A. J. Ewins
85 NEW PRODUCTS

The EP4000 is not just an EPROM Programmer . . .

Not only does the
EP4000 copy, store,
program and duplicate
the 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs
without personality
cards or modules, but
also includes a video
output for memory map display to make the powerful editing facilities really useful (and this is in addition to he in-built LED displa or stand-alone use), bu it also comes as standard
with comprehensive
input/output - RS232, 20mA loop, TTL, parallel handshake, cassette, printer and direct memory access. Now the programming powe can be expanded with our range of add-on accessories listed below

. . . but also a Real Time EPROM Emulator . . .

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program development - the EP4000 can be configured to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380.

Finally, a full range of accessories in now available - these include Bipolar programming
the external system so that data changes, entries, editing and downloading can be mplemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL Tel. Sales (0803) 863360. Technical (0803) 863380

Telex: 42596 GPELEC

SEE USAT TESTMEX'81 STAND J8 WEMBLEY-OCTOBER 27.28.29

ANALOGUE VOLTMETERS ND MULTIMETERS

 ANALYSERS

 BRIDGES \& COMPONENT TESTERS

Everything as new-

Marconi ${ }_{\text {TF2O2B AMIFM Signal Generator. }}$

CALIBRATION EOUIPMENT

FREOUENCY COUNTERS

DVM's AND DMM's

Yokagawa
30472 Chanel Chart Recorder
.mV-100V. 2 cminh . $60 \mathrm{~cm} / \mathrm{mimin}_{E 435.00}$
 RECORDERS

Brokers TEST EOUIPMENT

 except the price!SEE USAT TESTMEX'81 STAND J8 WEMBLEY~OCTOBER 27.28.29

Tektronlx
455 Dual Trace Portable Oscilloscope

Thammers $\operatorname{sMelectronics~} D C-2$	 frequency
\% E.bups	
Hov 25 ammsan with	
(eater	
OURCE	gep ro measure S .
	456 Sterea. Generatar. Separare Landr
trav 10 V into 60008 60bA AM Signal Generator. $50 \mathrm{KH}+$-65M	flometer vo lomak
	SOUND LEVEL METERS
	Reral Radio
70 A Wide Range RC Oscllathr. 10 Hz Hz Sime wave seutre wave-upto 160	

W/andel and Goltermann
PSO-5 and PSM-5 Level meas
Marconl
Signal/ 2 unused condition. AM/FM AZD-1 Scale expander. $£ 2050.00 \quad 1, \mu \mathrm{~V}-200 \mathrm{mV}$. 75 KHz deviation on FM

ATAPAi vectorxoppe weasure cumprance MISCELLANEOUS

TRANSMISSION
MEASURING EQUIPMENT

\qquad

TFF7900

TW

150.00
 FAST
DELIVERY When you bu used
equipment from Brokeis, it can be yours in a matter of only days No waiting for
manufacturers production schedules.

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

New test catalogue just out. Send for your free copy now.

Electronic Brokers CURRENT USED DEC Computer equipment and periphals

* BRAND NEW JUST RELEASED
NOW 2 YEAR WUARANTY. * Fluke 8222B (lllustrated)

 ${ }^{8}$ Fluke 8024 B
 FLUKE 8050A

 FLUKK 8010 A

 request. prices do not include carriage or
The above
VAT $15 \% \%$. Please send for Technical Literatur

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

From HAMEG

- All prices: U. K. List, excluding V.A.T.

For further information on HAMEG's fuil range HAMEG ITD. oscilioscopes, contract:
 ww - 039 FOR FURTHER DETAILS Standard or Special
LED INDICATORS

WELL WE'VE GOT Big ones, small ones, red ones, long ones short ones, green ones, square ones, dot ones, round ones, yèllow ones, rectangular ones, triangular ones, parallel ones, arrow ones, stepped ones, stackable ones, domed ones, tapered ones and bi-colour ones, multi-LED and 10 segment bar array ones alternatively want slightly sophisticated Panel Mounted Ones
take a long, close look at our rather nice $3 \mathrm{~mm} \& 5 \mathrm{~mm}$, matt black, nickel plated or anodised aluminium bodied, front mounting indicator ones

Of course we wilt do Special ones, Although to us it will probably be an Ex-Stock Standard One And don't forget
Our LED prices won't make your eyes water
Zaerix Electronics Limited ourne Grove, London W2 5SF, Engla WW - 034 FOR FURTHER DETAILS

Sinclair 2X81 Personal Computerthe heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first com plete personal computer for under were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair $Z \times 81$ offers even more advanced facilities at an even lower price. Initially, even we were 50,000 in the first 3 months! Today, the Sinclair ZX81 is the heart of a computer system. You ca add 16 -times more memory with th ZX an pack. The ZXPrinter offer performance and price. And the Software library is growing every day Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the $\mathrm{ZX80}$.
t uses the same micro-processor ful BK BASIC ROM - the more pow intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays. And the ZX81 incorporates other to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Kit: £49.95

Higher specification, lower price how's it done?
Quite simply, by design The ZX80 reduced the chips in a working computer from 40 or so, to 21. The The secret lies in a totally new master chip. Designed by Sinclai and custom-built in Britain this unique chip replaces 18 chips from the ZX 80 !
New, improved specification
Z 280 A micro-processor - new aster version of the famous $Z 80$ ever made.

- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
Unique syntax-check and report codes identify programming errors Full range
scientific functions decimal places. - Graph-drawing and animateddisplay facilities. Multi-dimensional string and numerical arrays.
Randomise fu games as well as serious applicatio - Cassette LOAD and SAVE with named programs. 1K-byte RAM expandable to 16 K - Able to drive the new Saincla Able to drive the new Sinclai Advanced 4-chip design: micr processor, ROM, RAM, plus master chip - unique, custom-built chip eplacing 18 ZX80 chips.

Builf: \&69.95

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable nominal unregulated (supplied with nominal unreg
built version).
Kit and buit
lete with all leads vions come com Mour TV (all leads to connect to your TV (colour or black and white) and cassette recorde

16K-byte RAM

 pack for massive addmon menory.Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by $16!$
programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.
With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business
Household management systems for example.

ZX8
 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: (0278) $86104 \& 21282$.

Available now-

 the IX Printer for only £49.95Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC Rumerics and highly sophisticated graphics.
A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions

At last you can have a hard copy of your program listings - particularly How to order your ZX81
BY PHONE - Access, Barclaycard or Trustcard holders can call 24 hours a day every day attention BY FREEPOST - use the no-stamp y-day money-back option. We want Γ,

a control unit would consist of a volume control and a programme selector switch

In practice, correctly designed tone controls can make a significant contribution.

For a constant sound level, replay from a gramophone record produces distortion which increases produces distortion which increase very rapidly at high frequencies third increase in pitch.

There comes a point when the contribution of this distortion is increasing at a greater

musical content and this is what decides the optimum setting of the comprehensive Quad filter system an essential and integral part of every Quad pre-amplifier.

The rate of attenuation can be set anywhere between 0 and 25 dB per octave starting at one of three frequencies $5 \mathrm{k}, 7 \mathrm{k}$, or 10 kHz and an appropriate setting can be found for each record to provide more of the music and less of the distortion.

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical
Manufacturing Co. Ltd.
Manufacturing Co. LDB. Telephone: (0480) 52561 to the original sound
\qquad
WW - 050 For further detais

Model 3009-R

This new arm is a 9" version of the Model 3012-R and is suitable for standard decks.
Special features include

- Thin-walled stainless steel tone arm.
- New design lateral balance system with longitudinal and lateral fine adjustment for cartridges weighing from $11 / 2-26$ grams, or plug-in heads up to $331 / 2$ grams
- Extra-rigid low mass shell with
double draw-in pins.
- Geometry optimised for 12
records.
The 3009-R has a typical effective mass of 12.7 grams and is intended for cartridges requiring a vertical tracking force of 15 grams and upwards. It is therereparticulary suitable for the many MC's in this category.
Easily adjustable and an excellent Easily adjustable and an excellent
choice where the rapid interchange of choice where the rapid inter

Full details will be sent on request.

54亿号

Write to Dept 0667, SME Limited Steyning, Sussex, BN4 3 GY, England Steyning (0903) 814321 Telex 877808 SME G

SIEMENS

Siemens-Printer terminals are our business

WIRELESS WORLD NOVEMBER 198

FAST ERECTING
GHRTK MASTS Here is the expertise you can depend on ~

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of Hifi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits.

1000 items for the constructor
CROSSOVER NETWORKS AND COMPONENTS, GRILLES, GRILL FABRICS AND FOAM. PA, GROUP AMPLIFIERS - MIXERS - COMBOS - EFFECTSSPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

Lowest prices - Largest stocks

* Choose your DIY Hifi Speakers' in the comfort * (Customer operated demonstratio
\star Ample parking \star
\star Access - Visa American Express accepted \star

T11M
When you choose a mast lark re comprehensiv assured of a high standard of Engineering and

Why compromise?
Extended heights 4 metres-30 metres, capable 200 kgs . Sectional or

Amcron

 INDUSTRIAL MUSCLE

Model - M600

\star POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$.
\star OUTPUTPOWERIN EXCESS OF 1.5 KWW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.).
D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVA

HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW NINT 6 OHMS.
AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
OUTPUTMATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .

- INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS

3-YEAR PARTS AND LABOUR WARRANTY
UNITS AVAILABLE FROM $100 V A-12 K V A$.
For full details on all Amcron Products write or phone Chris Flack

The portable professional

A frequency counter that fits in the palm of your hand. That's the MAX- 550 from G.S.C. An accurate, easy-to-use instrument with a guaranteed measuring range
from 1 kHz to 550 MHz , the MAX- 550 measures only $2 \times 6 \times 1.5$ inches and weighs less than half a pound. Yet its bright 6 -digit LED display and its internal crystal controlled timebase combine to give readings with an accuracy of 3 parts per million on signals down to 250 mV Simple to operate? It has to be, with no need for switching or adjustment of
polarity, slope, trigger or input level, and with built-in automatic polarity, slope, trigger or input level, and with built-in automatic lead-zero
blanking. It runs from internal rechargeable batteries or an external d.c. supply. comes with a whole range of accessories, and costs - believe it or not - only $£ 85$ To find out more, fill in the coupon right away.

GLOBAL SPECIALIIES CORPORATION G.S.C. (UK) Limited, Dept. 78
$\longrightarrow \begin{aligned} & \text { G.S.C. (UK) Limited, Dept. 7B } \\ & \text { Unit i. Shire Hillidndustrial Estate, Saffron Waiden, Essex CB1 } \\ & \text { Telephone: Saffron Walden (0799) } 21682 \text {. Telex: } 817477\end{aligned}$

G.S.C. (UKK) Limited, Dept. 7B, Unit 1, Shire Hill Industrial Estat, Saffron Walden, Essex CB11 3AQ	MODEL.MAX-550	FREO COUNTERR	Unit price inc. P.\&P. 15°. VA.T. E. F9.48	Onty Read

WW - 023 FOR FURTHER DETAI

Allstitions EOT:

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit
 FEATURES
 - no moving parts
 - no magnetic effect
 - no tip voltage
 - no real maintenance costs (bit/tip changes only)
 - variable lockable temperature $120^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$
 - total 50 watt electronic control ($\pm 2 \%$) - simple plug-in bits/tips
 - electrical safety approved 240 V 24 V
 electrical safety approved 240 V 24 V easy tool interchangeability from one Unit to another

-orcomplete $\mathbf{2 0 0 1}$ Soldering Station
Soldering tool and control unit as Unit 101 but with the additional features
filtered two speed fume extraction

- built in bench lighting
- solder reel dispenser
- clear bench area

Adiron ${ }^{\text {® }}$ Iong life bits/tips the same range
as that for Unit 101

GLOBAL SPECIALISTS EQUIPMENT

SABTRONIGS EQU

 8610810 HZ -600 MHZ in 3 ranges,

KEITHLEY PROFESSIONAL DIGITAL MULTIMETER

PROF FESIIOULL TRMSISTTOR CHECKERES UK CPP $£ 1.50$

LASCAR BENCH MULTIMETER TV COLOUR BAR
LASCAR BENCH MULTIMETER TV COLOUR BAR
$3 \% / 2$ Digit LCD Made in UK:25 ranges with basic $0.1 \%^{\circ}$
PATERN GENERATORS

LEADER AUDIO RF FM TV GENERATORS

High quality mains operater
equipment (UK c/ pf. 50)

PROFESSIONAL MULTIMETERS THURLBY

$\square \sqrt{\square}$

TOTIME
PRICCCORECCCT ATTMMEOF PREPARATION E \& OE
CHOOSE FROM UK'S LARGEST PAMG

1有
 '

No one's built a better DNM . . . until now.

wW - 062 FOR FURTHER DETAIL

cavern micro modules Designed for 280 based systems, these modules are suitable for
Microcomputer expansion and the development of Micro systems.
Thes. The module are based on a 55 -way bus, this being a compromise be
ween flexibility
and economy. TTerminations are wire-wrap pins which first in the range are:

Each RAM driver will drive up to four RAM modules to give 16 K - 64 K of
femory.
Good quantity More will follow shortly
CAVERN ELECTRONICS
94 Strattord Road, Wolverton. Milton Keynes MK 125
WW - 032 FOR FURTHER DETAIS

Our 8020 Series of handhel didn't become the world's most popular DMM's on specifications alone.

It took superior accuracy and reliability. More value for the money. Advanced technology. and a commitment to continual performance of our DMM's. performance of our DMM s.
Those are just a few reasons why Fluke is leader. A title we'll keep with our four new 8020BSeries Multimeters.

Outside, we redesigned the front panel for greater ease of peration. We added non-skid rubber feet and improved our hock-resistant case. We also put in a new tilt bail with a locking detent

Inside, even better news ouble-fuse protection on the urrent inputs for maximum fety in case of an accidental verload. And now there are thre models incorporating high-speed continuity beepers with 50 microsecond response times to relch even closures.
rest

All models are backed by wo-year parts and labor warrant with a guaranteed two-yea calibration cycle.

You get the same
unsurpassed durability. The superior functions and features. The same great DMM's at a now ow price.

FLபKE

Fluke (G.B.) Ltd., Colonial Way Tel.: Watford 40511 Telex 934583

The Professionals

VALVES,SEMICONDUCTORS \&COMPONENTS for:-
Communications, Displays, Radar, Computer. Audio etc.

Hall Flectric Limited

Cray Avenue, St. Mary Cray
Orpington. Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141
Telex: 896141
MIN DEF APPROVAI 0529/0531

ELECTRONIC KITS . . .

for beginners and experienced kit-builders

Velleman electronic kits are now readily available in the UK. The range offers over 50 kits with varying degrees of difficulty. These levels of skill are clearly indicated in our catalogue and kits can be selected accordingly.
Why not work your way through our whole range!
We want you to be pleased with your finished kit, so if you have difficulty, we will, for a nominal charge, complete the assembly and return it to you with a full report indicating where you went wrong.
Send for our full catalogue and price list

Infra-red central alarm

Digital precision
thermometer - C thermome 2557 Kit 2557
Degree of difficulty 2
$£ 20.53+V A$ A £20.53 + V.A.
and carriage
 and carriage

515 Soldering iron with your first
order of $£ 10$
or over wher your first
order of $\mathrm{E1O}$
or over

1 digit counter
Kit 2542

VELLEMAN UK.

P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Telephone: Hastings (0424) 753246 .

Please send me the VELLEMAN UK. kit catalogue with full prices.
Name
Address

VELLEMAN UK.
P. O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL. Telephone: Hastings (0424) 753246.

Stocks of standard items
tock
Individual units to the tightest
specification made to order.
This technology is available now from

wW - 045 FOR FURTHER dETALLS

Amncron

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and
reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power
amplification. For power you can depend on - choose AMCRON, the
professional choice.
For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS

16. ST. ALFEGE PASSAGE, LONDON SE10

TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

PLUS!

- RENOVATION - the Luxor 110 hybrid
- Foreign TV standards - and lots more TEIEVGOM

official orders welcome MIDWICH COMPUTER CO. LTD. Al picas ercunts AVAILABLE

WW - 006 FOR FURTHER DETAILS
COMPUTERS $\bullet A U D I O \bullet$ RADIO $\bullet M U S I C \bullet L O G I C \bullet T E S T ~ G E A R \bullet C B \bullet G A M E S ~ \& ~ K I T S$

Wednesday 11 th November 10 a.m. 6 p.m Thursday 12 th November 10 a.m. -8 p.m Friday $\quad 13$ th November 10 a.m.- 6 p.m Sunday 15th November 10 a.m. 6 p.m.

COMPONENTS • DEMONSTRATIONS • SPECIAL OFFERS \& MAGAZINES • BOOKS ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET,

17,000 PEOPLE CAN'T BE WRONG

For 5 days last year they packed the RHS halls or Breadboard ' 80 . All the leading companies were there
BREAD .and they're back again this year for
'81.....with larger stands and wider gangways.
Whether you're buying or just browsing, BREADBOARD ' 81 has something to offer you If you're interested in kits computing, BREADBOARD ' 81 covers it all books, bargains and demonstrations. It's all happening at BREADBOARD '81.

INSIST ON

 VERSATOWERBY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of elescopic and tilt-over towers cover range of 25 ft 36M)

Designed for Wind Speeds from CP3 Chapter V mph con 11

Functional design, rugged construction and total versatitity make it first hoice for telecommunications.

Trailer mounted or static, the VER SATOWER solves those difficult probl ground level maintenance.

A programme of continuous produc development has led to a range o over 50 models, all available a highly competitive prices. This coupled with our quality assurance scheme er position we enjoy today

VERSATOWER

THE PROFESSIONALS' CHOICE

PORTLLAND HOUSE, COPPICE SIDE BROWNHILLS, WEST MIDLANDS (b)

LCD DICITAL MU5 G - IG

WHILE STOCKS LAST! MODEL 6110 31/2 Digit LCD featuring 23 ranges
with volts/ohms autorange, unit and sign indicators, 10 amp $A C / D C$ battery warning, low powerohms buzzer. Fuse protected. Resolution 0.1 mV DC, $1 \mathrm{mV} \mathrm{AC}, 10$ microamp,
0.1 ohms . Supplied with battery and
0.
leads.
Fitted top
Was $£ 85.95$ a s advertised by us
Now $£ 59.95$ post paid
LIMITED OFFERS WHILSTSTOCKS LAS Now plus ORDER BY POST O BARCLAY - VISA ACCESS - TRUST ACCESS.
CARDS. RANGES $\mathrm{AC} / \mathrm{DC}$ Current $-20 \mathrm{~mA} / 200 \mathrm{~mA} / 10 \mathrm{amp}$.
DC Voltage (auto) $-200 \mathrm{mV} / 2 \mathrm{~V} /$ DC Voltage (auto) $-200 \mathrm{mV} / 2 \mathrm{~V} /$
$20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$. $-200 \mathrm{~K} / 2000 \mathrm{~K} \circ \mathrm{hm}$.

ALSO AVAILABLE MODEL 6220 As 6110 but without range hold and continuity buzzer.
Only two AC/DC $200 \mathrm{~mA} / 10$ amp Was $£ 55.95$. Now $£ 42.95$ post paid. AUDIOELECTRONICS famed
OPEN SIX DAAS A WEEK • CALL IN AND SEE FOR YOURSEL
3O1 EDGOWARE ROAD, LONDON. WZ IBN. ENELAND. TEL 01.724 3564
WW - 061 FOR FURTHER DETALLS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$
days delivery Other Rances and days delivery. Other Ranges and special scales can be made to order

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. 1 Thone: $01-83717937$

When you're ready to "face" the music we have a tip for reduced distortion
The hyperelliptical stylus tip, acclaimed for its low distortion and high trackability, is now available in a whole
series of Shure pickups. Whether you're seeking to reproduce the full dyunamic range of today's new
superdiscs or simply superdiscs, or simply to obtain maximum listening
pleasuure trom treasured records in your collection, you'l
ind an find an HE pickup with the combination of features and
ferformance that best meets your needs trom the list performance that best meets your needs from the list
below:
V15 Type IV
Perfectionist's
Pertrectionist's Choice! With unprecedented trackability,
ultra-flat response, Dynamic Stabilizer, low effective stylus
mass. mass.
V15 III-HE
One of the best-seling pickups ever! Performance second
only to the V15 Typelv - but at a more modest price.
only to the V15 TypelV - but at a more modest price.
M97HE
Top-of-th
Top-of-the-line features and excellent performance at an
intermediate price. Features Dynamic Stabilizer and SIDE-
GUARD stylus protector. intermediate price. Featur
GUARD stylus protector.
M97HE-AH The Headliner ${ }^{\text {TM }}$
M97HE-AH The Headliner ${ }^{\text {TM }}$
All the design and performance of the M97HE plus the
Al the design and performance of the M97HE plus the
simplicity of pug i- connection Allows instant attachment
to the tone arm of most turntables.
M95HE
Features high trackability, flat frequency response, low-
loss/high output magnetic pole piece, at a modest price. M75HE Type 2
NEW!
The first time HE stylus offered in such a low price range!
High trackability and excellent pertormance
M75HE-J Type 2
NEW!
Designed to deliver the best performance from heavier
tracking tone arms. Exceptionally modest price.
V15LT \& M97LT (Linear Tracking Models)
NEW Get the most from advanced
Get the most from advanced technology linear tracking
turnables! Performance comparable to V15 Type IV and
M97HE (respectively) M97rnt (respectively).
M.
MV30HE
MV3OHE
Sleek. integral pickup/carrie arm combination for use with
SME Seriesill and SME Series IIIS tone arms. Performance similar to V15 Type IV.
For more information about Shure pickup Cetting the Write to us at the address below eting world Standard in Sound 3 SHURE

Shure Electronics Limited
Eccleston Road
Eccleston Road
Maidstone ME156AU
Telephone: Maidstione (0622) 59881

wireless
 world

Editor:
TOM IVALL, M.I.E.R.E
Deputy Editor:
PHILIP DARRINGTON
01-661 3039
Technical Editor:
GEOFF SHORTER, B.Sc.
$01-6613500 \times 3590$
01-661 3500×359
Projects Editor:
MIKE SAGIN MIKE SAGIN
$01-6613500 \times 3588$
Communications Editor: MARTIN ECCLES
$01-6613500 \times 3589$
News Editor: DAVID SCOBIE
Design Editor: RICHARD NEWPORT

Drawing Office Manager: ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS,
$01-6613130$
DAVID DISLEY
DAVID DISLEY 3500 X 3593
BARBARA MILLER 01-661 3500×3592

Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN BASIL
$021-3564838$
Classified Manager: BRIAN DURRA
$01-6613106$

JAYNE PALMER 01-661 3033
BRIAN BANNISTER (Make-up and copy)
$01-6613500 \times 3561$
Publishing Director:

Electronics and the muse

An arricle in this issue describes electronic equipment for disseminating images and equipment for disseminating images and
sound in a way that is new to British citizens - subscription television. The technical novelty of the system makes it worthy of note, but on looking at the feature film programme material being put
out one has difficulty in suppressing a big out one has difficulty in suppressing a big,
yawn - all good, middle-of-the-road stuff, undemanding, commercially well proved, with the obligatory sprinkling of ' X ' Certificates and with all the calculated appeal of the completely predictable. relatively new electronic entertainment reutlets, the video cassette and the video disc, and no doubt will again be said when satellite broadcasting arrives. What a failure of the imagination, what an opportog for recording and conv information, in sound and images with movement and colour, offering a capacity and versatility far exceeding anythin
previously known in its power to previously known in its power to
communicate the finest expressions of the human spirit, in art, intellect and the whole range of human endeavour - and what do we do with it? We deliver it into the itching palms of software merchan whose only concern is to maximize
audiences and whose criteria are based on what will enable them to survive commercially in the competitive world of the entertainment business. We do this not so much by default but because we have to our paymasters. Technical achievement notwithstanding, the bulk of our work in this area seems to be devoted to the modernization of cultural poverty. We are in the business of engineering the pollutio of public taste and standardizing the
shoddy to make it seem the norm. It will be unfortunate if, on the present showing, these are the kind of alternative programme outlets that the pundits predict will be replacing to a great extent the output of the conventional
broadcasters. It has been freque claimed that the latest technology, in promising greater freedom of choice in electronic entertainment, heralds the end
of the dominance of such organizations as of the dominance of such organiza
the BBC and the IBA. The latest
commentator here is Mr Peter Jay (economist, ambassador, breakfast tv
mogul) who has just discovered in optical fibres the technology that will liberate u from the restrictions of the r.f. spectrum with its need for regulation. Every man according to Mr Jay. Speaking at the Edinburgh International Television Festival, he declared "We are well and truly in sight of a world in which electronic publishing can both legally and practically take place without coming within tation There is no question that optical fibres and other new technical developments are going to alter the overall pattern of electronic entertainment, but Mr Jay
underestimates the two great advantages of dvantages of organization, the resources it has to mount elaborate, high quality productions (e.g. "The voyage of Charles Darwin"); and in technology, the cleverness of the all-
pervading electromagnetic wave in unobtrusively getting to your receiver aerial wherever it may be. And it is through the broadcasting organizations that we have the best means of raising programme standards, because of
accountability to the public. But whatever happens in the
development and exploitation of the new technology, responsible engineers will want to feel proud of the results of their work. It may be naive to expect better
technology to bring higher standards, but it is worse - a cop-out - not to expect it.

${ }^{34}$ ²
 High-resolution weather satellite pictures

Receiver design

by M. L. Christieson

TiRoS. N series satellites send high-
resolution weather pictures in real Tros-N series satelifites send hig
resolution weather pictures in re
time and it is possible for the enthusiastic amateur - as well as the professional - to receive, display and store image transmissions direct from the design philosophy and some practical details of a station for receiving and demodulating these digital transmissions. Data processing and storage by computer are outlined
in the article but interfacing is left to the constructor due to the large variations in computer systems. This. part of the article discusses
transmission characteristic transmission characteristics,
antennas and receiver design.
antennas and receiver design.
Facsimile weather pictures sent in analogue form by a variery of scanning radio-
meter satellites are familiar to many people meter satelintes are familiar to many people
from either television weather bulletins or direct reception by enthusiastic amateurs. Some pictures come in real time from satellites in polar orbit such as TIROS and
METEOR, while some are preprocessed and retransmitted from geostationary platforms such as GOES, Meteosat, and GMS. Although the image scanning

Fig.2. Graph of effective antenna noise
temperature against frequency.
higher line rate. With the launch of TIROS-N, the first in a new series of a new breed of pictures became available in Europe. These are sent in digital form, consisting of a stream of ones and zeros containing numerical information about

The equipment to be described is for use with h.r.p.t., and was
signal from NOAA-6.

A.v.h.r.r. transmission

characteristics
The advanced very-high resolution
radiometer has a rotating mirror like many of its predecessors and scans successive lines as the spacecraft passes over the ground below at a rate of 360 lines per
minute. The incoming radiation is split into five spectral bands, each having its own detector.

The five bands are:

Channel 1	0.58	$-0.68 \mu \mathrm{~m}$
Channel 2	0.725	$-1.10 \mu \mathrm{~m}$
Channel 3	3.55	$-3.93 \mu \mathrm{~m}$
Channel 4	10.3	$-11.3 \mu \mathrm{~m}$
Channel 5	11.5	$-12.5 \mu \mathrm{~m}$

$\begin{array}{lll}\text { Channel } & 11.5 & -12.5 \mu \mathrm{~m}\end{array}$
A full description of the radiometer is be-
yond the scope of this article but has been yond the scope of this article but has been
published ${ }^{1}$. The spacecraft also carries several other instruments used for atmospheric measurements. These generate low data rate t.o.v.s. (TIROS operational vertical sounder) data, the content of which is described elsewhere ${ }^{2}$. The outputs from
the radiometer detectors are digitized and processed on board to provide two signals, one linearized, of low resolution for anal-

WIRELESS WORLD NOVEMBER 1981
Transmission $\quad 1698.0 \mathrm{MHz}$) either ma
right-hand, circular
(1702.5MHz is $1 . \mathrm{h}$. circular)
5.25 watts
40.4 dBm (nominal) digital split-phase-L
$\pm 67.3^{\circ}$
0.6654 M-bit/s
5.7 MHz
10

10
11090
6 per second
first 6 words of
frame

Fig.3. Graph of required G / T (antenna gain minus system noise tomperature) against
antemna elevation for an error rate of 1 in
promise must therefore be reached bepromise must therefore be reached be-
tween cost and performance. The overall receiver parameters depend to a great extent on the antenna, front end and mixer, so it is there that the first design decision must be made.
Referring to the trans
stics, it is the use of 1700 MHz that dete mines several factors. The first intermediate frequency should be in the region of
front end, the smaller the antenna can be, and with the necessity to track the satellite this is an important factor. Most of these performance' factor called G / T, and a full understanding of the use of this is the key to successful design.
G / T is antenna gain minus system-noise dB / K. Antenna gain is a familiar concept but system-noise temperature may need some explanation. Figure 1 shows a typical receiving front end. The output signal-tonoise ratio is directly proportional to antenna gain because the latter does not
affect the contribution of noise by the amplifiers. Also, an increase of gain reduces the beam width which maintains constant the contribution due to external noise which is normally omnidirectional. An increase in noise of any type wion therefore the
output signal-to-noise ratio, the output signal-to-noise ratio is directly proportional to G / T. The main sources of noise in the system are.

- Receiver generated noise: this is noise

Fig.4. Combiner and signal amplifier figure, a gallium-arsenide f.e.t. is used in tigure a a gallium-arsenid
the first signal amplifier.

S-band receiver

The first step towards receiving the data is to make a combination of antenna, front
end and mixer capable of down-converting end and mixer capable of down-converting
the signal to a suitable intermediate frequency with a sufficiently high signal-tonoise ratio. This could be achieved by using a very large antenna together with a high performance front end, but at a cost
far exceeding most users' budgets. A com-
$100-200 \mathrm{MHz}$ because this enables the use of standard v.h.f. techniques but is high enough to reject most of the image noise with simple filters. As the transmitted quite high, good performance at this stage is essential for any degree of success; so at least one stage of signal frequency amplification must be used. At this high frewith modest size, but clearly the better the
produced by the amplifiers themselves and is determined by the noise figure of the
amplifiers. Above 2000 MHz this type of noise is usually the most important. - External noise caused by galactic noise and ground noise: ground noise is gener ated by charge movement in everything around the antenna, such as electrons
shuffling about in the bushes nearby, and is produced by everything above absolute zero in temperature. Other sources of

parameters differ, they are all sent as an f.m. subcarrier, and can therefore be described as 'analogue' transmissions. They all come under the generic term of 'automatic picture transmissions', or a.p.t. tures with higher spatial resolution on S band $(1700 \mathrm{MHz})$ at the same time as the a.p.t. on v.h.f. $(137 \mathrm{MHz})$ in analogue orm, using the same system but at a
the radiance value of the ground below. p.d.u.s. (primary data user station) from ensat and h r p.t. (high resolution picprovides the) from the TIROS series, pictures to date. Unfortunately Meteosat-1 is no longer operational, but succeeding good images throughout the world, and they will be replaced as a matter of routine.
gue transmission with limited telemetry 'ther.f. at 120 lines per minute, and the band. The t.o.v.s. instruments minute on S ransmitted on v h f but in digital form. All spacecraft data, a.v.h.r.r. t.o.v.s., multiplexed try are combined into one mains signal on S band forming sent as the The characteristics of the h.r.p.t. are summarized below

ternal noise include unwanted signal nd electrical interference. These two In order to calculate G / T, the way which each part of the system contributes to the total noise output must be quantified, starting with the amplifier noise and
how it is related to noise figure. The familiar definition of a noise figure is the amount by which the signal-to-noise ratio is degraded by passing it through an amplifier. This is, however, only true for one the input noise power in terms of that produced by a hot resistor. For a resistor at $T K$, noise power $=T \mathrm{k} B$, where $B=$ bandwidth, $k=$ Boltzmann's Constant and $\mathrm{K}=$ temperature in Kelvins.
Using this relationship the noise input
power can be expressed alternatively as the 'noise temperature' of the source, and for standard noise figure measurements it is 290K. Clearly, the output-noise power is the amplified version of the source plus
that generated in the amplifier. This addithat generated in the amplifier. This addi-
tional noise could be represented by an apparent increase in the source tempera-
ture which would give the same noise out-
emperature of the first amplifier input hich is now called the reference point. ubject to the gain of the first amplifier. The total system noise is simply;

$$
T_{\mathrm{sys}}=T_{\mathrm{AMP1}}+\frac{T_{\mathrm{AMP} 2}}{G N_{\mathrm{AMP1}}}
$$

where $G N_{\text {AMP }}$ is the numerical gain. There are many possible reference points
that could be used, but the only one that can be used here is the antenna input terminals (it is interesting to work out why). A further factor which takes account of external noise, the equivalent antenna temreference point. Lossy cables have an equivalent noise temperature and negative gain, thus completing the picture. For the system shown: in Fig. 1
$T_{\text {sys }}=T_{\mathrm{A}}+T_{1}+\frac{T_{\mathrm{CAB}}}{G N_{1}}+\frac{T_{2}}{G N_{1} \cdot G_{\mathrm{CAB}}}+$ T_{M} $\overline{G N_{1}} \cdot G_{\mathrm{CAB}} \cdot G N_{2}$
by Fig. 2 as a function of frequency. quickly T_{A} decreases with frequency. Working through the equation for $T_{\text {sys }}$ for various rrequencies shows how amplifiers below 200 MHz . This type of analysis may also be used in ground based calculation; for example to find how much benefit might be realized by reducing feeder los The requirement for h.r.p.t. rece with an error rate better than 1 in 10^{6} is shown in Fig. 3. Note that due to the gain profile on the spacecraft the signal reaches a maximum at an elevacion in order to copy overhead passes with zero margins is 4. $5 \mathrm{~dB} / \mathrm{K}$.
.
assing a value for T_{A} of 70 K and the best possible amplifier combination yielding about 1.5 dB , inserting these into the equation for $T_{s y}$ gives
$T_{\text {sys }}=70+119=190 \mathrm{~K}$
This must now be converted to dB in order to conform with the units of G_{A} 48A. tapped holes for securing $\begin{gathered}\text { brass lid }\end{gathered}$

put if the amplifier were noiseless. This is called the 'effective' noise temperature of he amplifier and is related to noise figure, $N F$, by
$T_{\mathrm{c}}=290(N F N-1)$
where $N F N=$ the numerical noise figure (antilog $N F / 10$). This represents the addipendent on input level. If a further amplifier is added on at the end, its noise
mperature.
Using this type of analysis it is easy to prove that if T_{A} is less than 290 K (as well may be the case), the signal-to-noise ratio improvement resulting from a reduction in first amplifier noise figure is greater than the noise figure
All the amplifier noise figures may be estimated from the device data sheets, bu T_{A}, which has a large effect on $T_{\text {sys }}$, unfortunately difficult to detine for ind

rearranging:

$$
G_{\mathrm{A}}=G / T+T_{\mathrm{dB}}
$$

The exact value of G / T is of course equally meaningless burs in the values calculated, the

required antenna gives

$G_{\mathrm{A}}=4.5+22.8 \mathrm{~dB}=27.3 \mathrm{~dB}$
This could be achieved using a parabolic ish several metres in diameter (4 metres is ecommended commercially), but together with the difficulty of tracking accurately
with such a massive object, it would be very expensive to buy or to build. In order to reduce the antenna equipment some acrifice must be made in error rate.

Practical antennas

The prototype antenna is a set of four 28 ment loop yagis phased been developed by am antenn perators interested in light-weight equip ent for 1296 MHz . They have been desirably he design for 1296 MHz and mounted, shown on the front cover, in a square with des of 51 centimetres. The two mounted n their sides are set 4.5 cm in front of the other two to give r.h.c. polarization whe -phase combiner. The antennas are at tached to wooden supports which detun the array less than an all metal arrange

Combiner and signal amplifiers

 In order to obtain the required low-nois performance, the first signal amplifer use f.e.t., the NEC NE21889. This device has a noise figure of less than 1 dB and represents the best available performance at thisfrequency. The amplifier is constructed using microstrip, as is the combiner tha feeds the input-matching circuit. The an tenna is located some 6 metres away from the main receiver, so a second amplifier is included. This uses a bi-polar transistor
the NE64535, and is also fabricated in the NE64335, and is also fabricated in
microstrip. Figure 4 shows the circuit diagram of the completed unit. The part containing the combiner and NE21889 is etched on p.t.f.e. microwave substrate which has better characteristics than ordi-
nary glass fibre. The physical size of the nary glass fibre. The physical size of the
lines is dependent on dielectric constant and so depends on the type of board used. Figure $5 t$ is a full-size microstrip layout of both parts, and Fig 6 shows the mechanical construction. Special components are indicated on the circuit diagram. A full
description of the design techniques used for this type of amplifier would be out of place here and the reader is recommended to consult references 6,7 and 8 .
Care must be taken when designing a an over-voltage spike reaching the GaA f.e.t. as they are rather delicate. Some

The p.l.f.e. board used was type GX-0600.55 from the $3 M$ Company.
 †Every effort has been made to ensure that the dimen- sions of Fig. 5 are as near life size as possible but due to he printing process, the accuracy required for repro. duction of such oards cannor be guaranted. We are locking into he feasibibily of providing photographic looking into the feasibility of providing photographic negatives for these boards and will inform readers of negatives for these boards and will inforn price and availability if and when possible.

nethod should be provided for the adjus current to about 10 mA .
The amplifier at the antenna is connecdo the down-converter inside by

ngth of UR67 coaxial cable.

ilxer/local-oscillator

This is based on a previous design used for me reception of Meteosat ${ }^{9}$. However he more stringent performance requir ments. The original design comprised a microstrip balanced mixer using Schottky microstrip balanced mixer using Schottky connected directly to the output of a arther signal-frequency amplifier using an NE64535. The main change is the insermplifier and the mixer input Theen this fer design remains similar but the micro strip dimensions were changed to be iden tical with those in the NE64535 section of e antenna amplifier. The glass-fibr oard is extended to include the filter
igure 7 shows the mechanical details to ether with the tuning screws. This type of filter has a high Q and it has been used in nicrowave converters for a number of years ${ }^{10}$. The local oscillator crystal fre quencies to use are as follows
$\begin{array}{ll}\text { Receiver frequency } & \text { Crystal frequency } \\ 1698.0 \mathrm{MHz} & 86.69444 \mathrm{MHz}\end{array}$
$\begin{array}{ll}1707.0 \mathrm{MHz} & 86.69444 \mathrm{MHz} \\ & 87.19444 \mathrm{MHz}\end{array}$
$\begin{array}{ll}1702.5 \mathrm{MHz} & 87.19444 \mathrm{MHz} \\ & 86.94444 \mathrm{MHz}\end{array}$
These are for use with an i.f. of
137.500 MHz which was used to fit in with existing equipment.

To be continued

References
1 The TIROS-N/NOAA A-G Satellite Series, NOAA technical memorandum NESS 95.
Data Extraction and Calibration of
TIROS-N/NOAA Radiometers NOAA-N/NOAA Radiometers NESS 107
${ }^{1975}$, Mammunication, January Radio 'Microwaves 1978 ' Microwunication, January 5 F.e.t. Application Note, Plessey Optoeilectronic and Microwave. Calculator Notes Electronics, February 10th 1981.
Low-noise GaA Low-noise GaAs f.et. amplifiers,
NEC technical note $T N 77902$ 8 Cu-tips 2, 3M Electronic Products 9 Division. Earth Station, M. L. Meteosat Earth Station, M. L.
Christieson, Wireless Word, June/Christieso
July 1979 . 10 Interdigital Converters, J. Dahms,
VHF Communications, Autumn
1978.

Personal hi-fi

It all started with the Sony Stowaway (rapidly
re-named the Walkman). This was a cassette player which was easily portable and had no loudspeakers. It played pre-recorded stereo
musicassettes through headphones. This meant
that power ampliers musicassettes through headphones. This meant
that tower amplifier were not neded and the
whole unit was very compact. One of the advanwhole unit was very compact. One of the advan-
tages was the very lighweight headphones
which used cobalt-samarium magnets, giving which used cobalt-samarium magnets,
high-quality sound with very low power. Of course it was inevitable that many other
companies, especially the Japanese, would jump on the band-waggon, and there was a prolifer ing sterea f.m. tuners, some with the ability ing stereo f .m. tuners, son
record as well as play back.

Some of the next generation of 'personal' en
tertainment products are now available. he first is the Sony Walkman 2 which wa released almost exactly one year after the
original model. It is even smaller so that the player unit is about the same size as a cassette tape plastic case and only about twice as thick
Our experience with the set is that it need Our experience with the set is that it need not be
considered only for pop music or for out-of
doors activities. considered only for pop music or for out-of-
doors activities. One can escape from the confines of the 'listening room' and continue to
enioy the music while moving about the house. enjoy the music while moving about the house.
The provision of the two output sockets The provision of the two output sockets on
the Waikman 2 gave us she opportunity to give
an an Waikman 2 gave us the opportunity to give
an $A /$ test to a pair of Koss S Sound Partue
headphones. headphones. These are subminiature, light
weight headphones with a 3.5 mm plug (and
adaptors for a standard jack, or for equipment with a mono s.5mm socket). Corparing thes
with the Sony MDR 4 , which are supplies with with the Sony MDR4, which are supplied with
the Walkman, both sets gave a very sinil the Walkman, both sets gave a very simila
response, with the Koss set extending a little
further into the bass. further into the bass.

The Koss Sound Partner stereo headphone has
hinges so that it may be folded into the neat carrying bag provider with it it It is sold with with the
Koss Music Box Radio and

At the Harrogate Hi-Fi Show, Koss were also displaying a shirt-pocket sized am/fm radio fo use winh headphones only. Like the Walkman,
this also has provision for two sets of
headphones. There headphones. There are separatet right sets of left
slider volume controls which dispense with the slider volume controls whic
need for a balance control.

woid Amateur Radio

No Class B on

 70 MHzClass B licence holders (phone operation on 144 MHz and above) are disappointed at he Home Office decision not to allow hem to operate on the 70 MHz band when the new Radio Regulations come into force
next year. They appreciate that 70 MHz is ot an international amateur band but was instituted in the UK to help bridge the very wide gap between 28 MHz and 144 MHz bands. Such a gap does not exist in Regions 2 and 3 where the band 54 MHz is used by amateurs. At WAR 979, the Radio Regulations relating to administrations to issue licences without a Morse test for frequencies above 30 MHz instead of above 144 MHz) and it was widely assumed that the Home Office lude the 70 MHz band.
Even those of us who are keenest to encourage Class B amateurs to learn Morse, and so qualify for the Class A Class B conditions have helped to concentrate so much operation in the UK into $144-146 \mathrm{MHz}$, leaving 70 MHz and (in sunspot minimum years) 28 MHz relatively under-populated. So while the Home Office is clearly acting withing
seems a puzzling decision.
Similarly one wonders why Class B operators should be forbidden to learn Morse by using it from their own station, although permitted to use it "under superrestriction that has also been proposed should the Home Office ever get round to issuing any form of "novice" licence in the UK. It all seems in direct contrast to the encouragement given to newcomers in many countres. In Japan, the internapower operation is permitted without Morse test even on bands below 30 MHz on the grounds that the signals are unlikely to

Guide to repeaters

The UK FM Group (London) has recently published a revised and extended edition of "A newcomer's guide to FM simplex and repeater operation on two metres" by by Douglas Davis, G3PAQ. This point out that whereas in the early days of re peaters most amateurs had experience of two-way working without their aid, nowa days quite a few newcomers owe their firs
introduction to amateur operating by using a low-power handheld or mobile transceiver in conjunction with a 144 MHz repeater. The 16 -page booklet contains
lot of good advice, although unfortunately no information on price or address. (Membership secretary, Pat Spenceley, 67
Downs Wood, Tattenham Corner, Epsom Downs, Epsom, Surrey KT18 SUJ, may hose unfamiliar with current operating echniques.
Unhappily repeater operation, particuarly in the London area, is not without its section on "jamming." This advises operators never to acknowledge or be provoked by any deliberate jamming or abuse of the repeater by what the booklet calls "a motey collection of hooligans give up and go away"
Unfortunately it is taking a very long time for this to happen.
it is taki
pen.
at delibe
It also seems that deliberate jamming is increasing on h.f. bands, with various "dx lem, although certainly no excuse for jamming, is the tendency for some net operators to lay claim to exclusive use of certain specific frequencies, even when not actually transmitug. On c.w. there is still is still unusual to come across deliberately bad-mannered operators except in "dx pile-ups", which is one reason why some

Here and there
Transatlantic working on 1.8 MHz should be easier this winter with the Loran-A marine radionavigation system already in some countries until late 1982. In America, the FCC has already lifted the ransmitter power restrictions on the band (1800 to 2000 kHz) although retaining a number of geographic restrictions and
warning the Americans that it may be unwise to invest in new equipment for the band until the new International Frequency Table has been fully sorted out. WARC 1979 restored 1810 to 1850 kHz as an exclusive amateur band but in the UK retain use of the full 200 kHz on a shared basis (through presumably UK amateurs will be permitted to use 150 watts in the 1810 to 1850 kHz section).
According to Electronics Australia a Parof all the c.b. equipment in use in Australia is unlicensed and the chances of illegal operators being caught are "fairly remote" since several large Australian states have only a single officer charged with tracking
down offenders, equipped only with down offenders, equipped only with detection equipment. The Australian Fed eral Government, after considering the
matter for five years, has finally turned
down a proposal of the Wireless Institute of Australia that old age pensioners should pay a reduced amateur radio licence fee. Reason given is that this would give rise to
similar requests in respect of other types of radio equipment including c . b CQ-TV reports the setting up of another mateur television repeater in South Ausralia, located north of Adelaide and powered by means of a wind generator.
The Adelaide group are seeking permission to link the new repeater with the VK5RTV ty repeater in Adelaide, to give a range for amateur television transmissions of over 100 miles. The considerable derlined by sales of the BATC handbook exceeding 1500 in just a few months. BATC, however, has expressed some concern at the IARU Region 1 proposal that tv should gradually move out of the clearly feel that it is possible for satellites and amateur tv to co-exist in the band and seem to feel that some tv enthusiasts are aising a storm in a teacup.
It is now being assumed that the loss of ransmissions from OSCAR 7, since early linely to prove permanent. Since its launch in November 1974 several million amateur radio contacts have been made through this very successful spacecraft.
Investigation of auroral propagation,
which has long attracted keen amateur interest, should be improved by the opening of the EISCAT 234 MHz and 933 MHz £13-million radar facility with transmitter/receiver at Tromso, Norway, and reFinland, after several years of delay. It is only the second incoherent radar facility to be set up in auroral latitudes.
Successful reception of reformed slow-
scan television pictures from scan television pictures from Voyager Two
by Jeremy Royle, G3NOX was followed by Jeremy Royle, G3NOX was followed
by his appearance on ITN's. "News a Ten". During the late-August approach of the interplanetary spacecraft to Saturn, the Jet Propulsion Laboratory amateur radi station W6VIO reformed and retrans mitted images of Saturn's rings and satel
lites as the pictures came in from Voyage Two on the large JPL dish aerial. The s.s. tv pictures were transmitted in the 14,2 and 28 MHz bands, together with s.s.b and c.w. on all bands from 3.5 to 28 MHz .
The Guernsey Amateur Radio Society The Guernsey Amateur Radio Society The Bristol Trophy goes to the Great Western Contest Group; the Gravesend Trophy to the Gravesend society; the Frank Hoosen Memorial Trophy to South-
gate Radio Club; and the Scottish NFD gate Radio Club; and the Scotuish NFD
Trophy to Glenrothes and District Amateur Radio Club.

Funkausstellung 33
 tv goes stereo

International audio and video fair, Berlin

by Geoffrey Shorter

Massive support from broadcas

 organisations, the Bundespost and almost the entire entertainmentelectronics industry, combine to this the biggest show of its kind.
As if by way of commemorating Clémen Ader's 30 August two-channel sound ago - almost to the day - the Zweiten Deutsches Fernsehen tv authority commenced regular stereo tv broadcasting at the Berlin show. Not only does transmission of a second sound channel give a ste-
reo sound option for discussions and ing events as well as the usual musical programmes (to say nothing of trials using a dummy head planned by WDR), but it also provides a second language option for foreign films and Eurovision programmes
etc. Transmission standards were fixed jointly with industry, the Bundespost and the two broadcast organisations last year, when ZDF commissioned the Bundespost to equip the second tv network for stereo convertible to stereo operation).
The other broadcasting organization, Arbeitsgemeinschaft der öffentlich-rechtlichen Rundfunkanstalten der Bundesreis not in a position to up-date its older is not in a position to up-date its older
equipment until revenue from an increase in licence fee becomes available. (A star distribution point at Frankfurt, for instance, is not stereo-equipped.) This will mean a difference of a few years in providpresent ZDF coverage is only 29 transmitters out of a total of 89 , it represents a population coverage of 60%) a "thoroughly regrettable" state of affairs, according to Dipl. Ing. Müller-Römer, who is unk, one of the 12 ARD stations. As he is also chairperson of the joint ARD/ZDF echnical commission, one wonders why he scheme is going ahead at this time. The reason is tied up with the state of many. With the tv set production curve alling off as market saturation is approached, many companies in the red and many suffering from the effects of compedition from abroad, the industry likes to ic into buying its products. Even though he start of stereo tv will be gradual it is estimated that sales of stereo sets will be as of the added price of 13 to 18%.

But it is with the gradual expiry of the tv ndustry's PAL patent portfolio, which has been its main prom the Far East in the large screenbusiness, that the industry is seeking patentable innovations whose licensing they can control. Patents have been assigned to the industry patent-holding group, and they do not intend giving
licenses to overseas makers until 1983 at least. This was borne out by Finnish set maker Salora who were cautioned about their new "three channel" stereo tv sets, not having been granted a licence. (They don't mean three channels of course, they
mean three speakers, one with a sum signal feed for the front and antiphase difference signals for the sides, an idea which goes back more than a decade ago to David Hafier and Duane Cooper, arguably even
to Blumlein.) o Blumlein.
And it isn't only tv sets that won't be licensed: Japanese video recorders with tuners will have to receive mono sound will receive stere/Grundig 2000 recorder will receive stereo.
Japanese studies started as far back as
the early sixties and led to NHK, the early sixties and led to NHK's adop-
tion of a frequency-division multiplex ton of a frequency-division multiplex
system whose sound channel uses an f.m. subcarrier for the stereo difference signal of 31.5 kHz , twice the line frequency. Comparison with the alternative tech-
nique of using twin carriers for sound has shown that both methods offer adequate crosstalk and noise performance under normal conditions, but that in mounainous regions a tw
shows least degradation.
The German idea, which also originated in the sixties from the ARD/ZDF Institut ür Rundfunktechnik in München, is to use two separate sound carriers, one for a
compatible signal at 5.5 MHz from the compatible signal at 5.5 MHz from the
vision carrier (standard in CCIR systems B \& G) and the other separated by 242.1875 kHz , which is an odd multiple of half the horizontal scan frequency f_{H} to minimise Moiré interference. Both carriers are frequency modulated to a deviation of
30 kHz , but the second carrier is addiionally modulated with a 54.6875 kHz pilot sub-carrier $\left(31 / 2 \times f_{\mathrm{H}}\right)$ up to 2.5 kHz deviation for signal identification. For nono transmissions it is unmodulated, for tereo signals it is 50% amplitude mod-
latated at $117.5 \mathrm{~Hz}\left(f_{\mathrm{H}} \div 133\right)$, and for dual channel use at $274 \mathrm{~Hz}\left(f_{\mathrm{H}} \div 53\right)$. As the second channel carries an R signal, As the matrixing retrieves an L signal from the
compatible $(L+R) / 2$ signal. Demodulated
identification signals when converted into a two-bit binary code activate audio route switches and panel indicators, which also take account of the viewer's selection for
mono, stereo, language 1 or language 2 . The cheapest way of using the transmissions would be to build in a second intercarrier-type demodulator using the standard TBA120S. Using a mono output stage and a new i.c. that provides matrixing and idenuication de
coding, selection of either channel is possible as well as mono sound; but we didn' see such a simple scheme. The least i.c. count way to do the job is with a quasi-split

Modulation scheme for two television
sound Modulation scheme for two television
sound channels prevents foreign
competitors from selling stereo tv sets in competitors
Germany.
sound system that claims better signal-tonoise ratio, where the vision signal is separately processed and the sound section ercarrier demodulation. Two new i.cs are needed for this, TDA2546 dual i.f. amplifier and democulator and TDA3800 conlaining a second demodulator together
with matrix and identification decoder But the posh way to do the job is with i.cs that allow separation of a.f. and i.f. sections for the modular-chassis approach
(TDA2545, $2 \times$ TBA120S, plus matrix
and decoder i.c. Some months ago, before the new i.cs using available components. Starting with he two audio-frequency signals, the basic idea was to dematrix with an op-amp and emitter followers, then to pass de-em-
phasized signals through the routing switches TDA1029 controlled by standard t.t.1. circuits. These took their feed from TDA2795 identification decoder which en velope-demodulated the 54 kHz carrier, fil
tered the 117 or 274 Hz tones if presen tered the 117 or 274 Hz tones if present
with second-order active filters and then processed them to produce logic controls to decide whether two speakers will have he same or different feeds. As Loew Opta were first on the market with two-
channel tv sets back in March, this may well be the way they did it.
Metz, who this year take the prize for he largest tv display with a wall of 200 set doing silly things, have fitted a: novel
before 1985 in Germany, and that perma-
nent broadcasts are unlikely before the end of the 80 's, there was a surprising amoun of involvement in evidence. Not only from organisations directly involved such as the Bundespost, the Aerospace Research
Establishment (DFVLR), ARD and West German commercial interests (Siemens AEG-Telefunken, TE KA DE and others), but also from Finland's Salora company, who aim to sell individual re ceivers, and Japan's Sony. Since the last
Funkausstellung Sony has added sound radio to its satellite receiver for home use This time their prototype receives the ful WARC agreement five tv channels, one of which can be converted to 12 p.c.m. stereo channels. In the demonstration, in which Sony-built, 12 GHz signals were reflected back within the confines of the stand and converted to 113 MHz p.c.m. using a icrowave i.c. The digital audio processo

CLBAX PIGI BAC Experimenta

Their circuit, due to RCA Labs, feeds hig and low frequencies preferentially to on speaker and middle tones to the other. Bu two carefully chosen frequencies of 320 and 1700 Hz , said to be the dominant ones
in speech, both speakers have equal feeds intended to give a central image. The idea seemed to work for the voice chosen. Metz appear to be the only tv maker with a separate tv stereo decoder to offer. Mo able for sets up to two years old. Blaupunkt, who this year claim to have increased their tv market share by between one and two per cent to nearly 10%, say decoders won't be available from them for pre-1980 sets, which presumably goes for
Siemens tv sets as they are made by Blaupunkt.
Considering that direct broadcasting
from satellites will not start on a trial basis

Etsumi Fuiita of Sony's Tokyo audio technology centre says this will be changed to he more common 44.1 kHz , and at the same time quantization increased from 14 bit d / a converter that Sony will shortly sell. The error correction code applied is one in which b.c.h. and parity are combined to yield what is claimed to be an extremely low error rate allowing receiver operation give word error probability as $10^{-9} \mathrm{word} / \mathrm{s}$ for a bit error rate of 1 in 10^{-3}, which at 4 bits a word for each stereo channel of 12 doesn't seem to agree with their claim of a The major display of capability, if one was needed at all, was put on by the Bundespost, DFVLR and ARD, to give direct reception from the ESA's orbital test satel-
lite (OTS). On-site television programmes
produced by Saarländischer Rundfunk ere relayed to the DFVLR satellit could be received on prototypical equip ment at the exhibition (except for the an er because of the low power of OTS). As before-and-after pictures were displayed next to each other, visitors could assess picture quality, including the effect of the ischer Rundfunk did a similar thing bayer OTS with radio transmissions but digitally so that the very wide dynamic range of heir. digital tape recordings was preserved p to the stage of conversion, just befor he headphones.
Since France and Germany opted out of resulting "Euro-satellite" consortium aims o sell satellites or perhaps rent tv channels two national launchings have been athorized, France's TDF-1 in 1985 and

Compatible multilevel teletext, first shown
in Europe at the Berlin Show, includes h high efinition graphics (level 3), specific
 quality" "olour pictures (llevel 5). Picture
qelow, taken at show, was stored on flopp disc and built up gradually for teletext display.

cost of over DM 500 million.
There is some uncertainty about the use of TV-Sat. Five tv channels have been allocated to Germany and with the high to be provided from the start. But the Federal Government's announcement about this refers only to three channels in "preoperational service" and the satellite is being called "experimental" by the Go rnment Moreover, in the two year test phase the purposes and only the two tv programmes may be transmitted in unaltered form. The broadcasters want to transmit non-regionnal for digital radio, and ultimately to use terrestrial transmitters for an improved
regional service.
The Bundespost has also told the broad-

Another response to the coming tran formation in the record business has bee it will appear as noiseless as its digital rival. This is the way dux is currently promoting itself. But there's a snag, even before
thinking about dynamic ones: dux enthinking about dynamic ones: dix en-
coded discs need a decoder. If you can devise a technique that matches the noise level of digital tape recordings, with little or no audible pumping, good transient response, intolerant of level mismatches,
and that is compatible, ie. acceptable without a decoder, then one might have someout a decoder, then one might have some-
thing. Such is the CBS scheme, called CX, currently being demonstrated to manufactourers.
It is a It is a wideband compander with a $2: 1$
law from 0 dB reference level to -40 dB , law from 0 dB reference level to -40 dB ,
below which it is linear. In operation, control signals are derived by taking the largest full-wave rectified value of left and right inputs. If this then controlled varia-
ble-gain stages in the signal paths directly, ble-gain stages in the signal paths directly,
with a 1 ms attack and 10 ms deray time, noise level pumping would be unacceptnoble and distortion would occur. Four parallel filter paths are designed to overcome this and allow it to operate with
signals signals that are "difficult for other
systems", according to Louis Abbagnaro of CBS Technology Center, who claims the benefits are "without any distortion or pumping". pumping. filter path is optimized for low-level
On d steady-state signals to ensure "minimum"
audible noise and signal modulation but not for rapidly changing signals. Another filter path allows the circuit to track a rapid decay for 200 ms ; after that noise
pumping becomes obvious, CBS say, and pumping becomes obvious, CBS say, and
control is passed over to the previouslymentioned filter path which keeps the noise level steady (zs time constant). Fast attacks are passed by a third filter with a 30 ms time constant. The effect of ripple
can't be heard, according to CBS tests, in can't be heard, according to CBS tests, in
this time. If the signal lasts longer, a highpass filter comes into play to remove the pasple from comes into play to remove the
ripple from the so these last two filter paths respond with a 1 ms attack time and no ripple after 30 ms . (The four filter outputs are summed to control the two
variable-gain circuits.) Mr Abbagnaro told us that within a year, output from RCA us that within a year, output from RCA
Records, WEA, Teldec and CBS would be CX-encoded. In addition, RCA, MCA and Universal-Pioneer will be using it for their
video discs and players. Decoder licensing video discs and players. Decoder licensing
dues are 15 cents a unit with nine brand dues are 15 cents a unit with nine brand
names so far behind CX including Telefunken, Marantz, Phase Linear, Sound Concepts, MXR and Audionics, with a Japanese brand name to be added.
High Com now has 40 licensees, plus 10 High Com now has 40 licensees, plus 10
partners buying from Japan; this year 30 of partners buying from Japan; this year 30 of
the hi-fi cassette recorders on sale in Germany will have High Com fitted. But what is its future now with the emergence of
Dolby C? It offers typically $73-75 \mathrm{~dB}$ as Dolby C? It offers typically $73-7 \mathrm{SdB}$ as
against 68 dB signal-to-noise ratio, and against 68 dB signal-to-noise ratio, and
there are situations where as much as 83 dB can be obtained in commercial equipment
by careful design. This is largely because by careful design. This is largely because
Dolby C gives 20 dB improvement only
between about 2 and 8 kHz ; in terms of the Din

EC A-weighted r.m.s. curve, points out Hans-Joachim Thy, Special Products 15 dB as against 20 dB over the audio band. mo in signal sources used with noise educmain signal sources used with noise reduc-
ton systems - records and stereo broad-
casts - both offer signal casts - both offer signal-to-noise ratios of around 60 dB . A noise reduction system
that provides, say, $65 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, will that provides, say, $65 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio, will degrade that figure to 57 dB , whereas a
75 dB system would degrade the source to only 59.5 dB . High Com's advantage, 2.5dB in this example, is likely to be greater the better the source signal. Hence
Telefunken's interest in improving signalTelefunken's interest in improving sig
to-noise ratio of records with CX. To try to improve radio channel signal-to-noise ratio a compatible circuit was designed to provide 9 dB improvement.
Broadcast tests earlier this year by IRT Broadcast tests earlier this year by IRT
showed this to be undetected. Unfortunashowed this to be undetected. U little too
tely aiming for 15 dB proved a a 12 dB circuit
Some quick work on decoders for the
new internationally-agreed standard for new internationally-agreed standard for
viewdata (Bildschirmtext) resulted in some fine displays of graphics from almost-comfeted "prototype" decoders on the Tiemens and Bundespost stands. The new CEPT standard includes more characters (320), improved characters and graphics, a private character set possibility, smooth
graphics (lines, curves), dynamically redefinable characters with 10×12 matrix format, double height and width facility, twospeed blinking, and half brightness colours.
Extensive
Extensive high resolution capability, such as that also given by Teledon and
demonstrated on the Canadian government stand, requires expensive memory and isn't needed for most purposes, according to Eric Danke, Postdirektor for
Bildschirmtext. High resolution would Bildschirmtext. High resolution would
probably only be required in 100,000 to probably only be required in 100,000 to
150,000 decoders, out of a forecast million users. For this minority of users a decoder with full alpha-geometric capability might cost as much as DM1000 ($£ 250$), Herr Danke estimated, whereas a bare-essen-
tials decoder could cost as little as DM200 in volume, DM 500 initially. A whole range of decoders is likely to be available for the start of the service in 1983, when the current trials end. The field trials started last year and have been deliberately limited to
around 6,000 users (2,000 private and 1,000 business users in Berlin and Düsseldoff) with introduction of a new standard in mind.
With the main impetus for development in television receivers coming from mana facturers aiming for lower production cost
rather than broadcasters looking for en rather than broadcasters looking for en
handed performance the current route to lower cost is still through greater integra ton, to take advantage of v.l.s.i.i. densities
of up to 50,000 gate-equivalents. To do of up to 50,000 gate-equivalents. To do
this for more functions than just channel selection and remote control, ITT have digitized those processes with a frequency low enough to make digital conversion eco-
nomic. In practice this means the stages
after the video demodulator: while eight-
bit a-to-d converters can digitize up to
40 MHz , they're still not cheap enough, The digitized sections comprise keyboard, audio stages, matrixing, delay line, lumi-
nance and chrominance filters, sync pulse nance and chrominance filters, sync pulse
separation, and both horizontal and vertiseparation, and both horizontal and vertu-
cal amplifiers working in class D. But equally important is the facility to enter alignment data by programmable memory, governed from a central control unit. Not only does this cut down factory time by,
avoiding the customary "tweaking" processes but it also provides the means for making adjustments in sound and picture processing to compensate for ageing. ITT say a design will be available next year
using just five integrated circuits, later to using just five integrated circuits, later to
be reduced to three, ultimately one. Bebe reduced to three, ultimately one. Be-
sides cost benefits, the potential improvements in picture performance are substancal -pictures noise-free, echoes cancelled, flicker eliminated by increasing frame rate, freeze-frame presentation, easy pictures
terracing.
Such local improvements to picture
quality will undoubtedly quality will undoubtedly highlight relative ready direct RGB input to receivers from computers and digital video equipment in general can lead to higher resolution
displays displays than the h.f. section of current picture quality by digital coding and by separation of chrominance and luminance information may become a feasible provosition with the availability of satellite channell. For direct reception the problem is
one of decoder cost; but when plans for one of decoder cost; but when plans for
wide-band optical fibre networks are wide-band optical fibre networks are
realised nationally the market for such decoders would be increased to an economic size, assuming digital standards were
congruent.
Given these wider channels and a genaral desire for better pictures, especially
for projection to large audiences, some for projection to large audiences, some
countries will surely be looking at highdefinition tv pictures in the not-too-distant future. Japanese broadcasters have been
studying the possibilities for at least 15 studying the possibilities for at least 15
years now and two or three years ago expeyears now and two or three years ago expe-
rimented with an fem. system over Japan's 12 GHz satellite. Though no high definiion equipment was on display at the exhibition it is known that prototype digital apparatus is under construction in Japan.
Recently, US broadcast companies have been active in this area and now Germany has made a proposal they hope others will adopt.
A ne
adopt.
A new television standard, the Germans say, should have between 1150 and 1250
lines arranged in such a way that following programme production two signals are programme production two signals ane
available, one high definition and the other containing alternate lines to provide a compatible 625 -line signal for terrestrial distri bution. But picture improvement is un-
come through other avenues. Work is un der way that may demonstrate feasibility of using "offset dot raster" scanning, scheme which subjectively improves verti-
cal and horizontal resolution and that would be compatible with existing stan
dads. n- ? T . .
 mom

of speech
 4 - Fourier transforms and estimating formant position

by lan H. Witten, M.A.,M.Sc., Ph.D., M.I.E.E., University of Calgary

Dr Witten continues his discussion of spectral analysis with of spectral analysis with an

explanation of the discrete Fourier
and fast Fourier transforms, and and fast Fourier transforms, a
shows how to estimate the positions of formants.

Discrete Fourier transform

Let us return from the brief digression into techniques of digital signal analysis to the problem of determining the frequency spectrum of speech. Although a bank of
bandpass filters such as is used in the channel vocoder is perhaps the most straightforward way to obtain a frequency spectrum, there are other techniques which are in fact more commonly used in It is ital speech processing. transform of a discrete sequence of points. To motivate the definition, consider first the ordinary Fourier transform (FT), which is

$$
\begin{aligned}
& \mathrm{g}(t)=\int_{-\infty}^{\infty} \mathrm{G}(f) e^{+\mathrm{i} 2 \pi f \mathrm{~d}} \mathrm{~d} f \\
& \mathrm{G}(f)=\int_{-\infty}^{\infty} \mathrm{g}(t) e^{-\mathrm{i} 2 \pi \tau \mathrm{~d}} \mathrm{~d} t
\end{aligned}
$$

This takes a continuous time domain into a continuous frequency domain. Sometimes
you see a normalizing factor $1 / 2 \pi$ multiplying the integral in either the forward or the reverse transform. This is only needed when the frequency variable is expressed in radians/s, and we will find it more co The Fourier series (FS), which should also be familiar to you, operates on a periodic time waveform (or, equivalently, one that only exists for a finite period of time, which is notionally extended ranges $[0, b)$, then the transform is

$$
\begin{aligned}
& \mathrm{g}(t)={ }_{r=-\infty}^{\infty} \mathrm{G}(r) e^{+i 2 \pi r / b} \\
& \mathrm{G}(r)=\frac{1}{b} \int_{0}^{h} \mathrm{~g}(t) e^{-\mathrm{i} 2 \pi r r l b} \mathrm{~d} t .
\end{aligned}
$$

The Fourier series takes a periodic time domain function into a discrete frequencydomain one. Because of the basic duality between the time and frequency domain in the Fourier transforms, it is not surpris ing that another version of the transform
can be defined which takes a periodic frequency domain function into a discrete time-domain one.
Fourier transforms can only deal with a finite stretch of a time signal by assuming

that the signal is periodic, for if $\mathrm{g}(t)$ is evaluated from its transform $\mathrm{G}(r)$ accordng to the formula above, and t is chosen extension of the function $g(t)$ is pebtained automatically. Furthermore, periodicity in one domain implies discreteness in the other. Hence if we transform a finite fretch of a discrete time waveform, we get is also finite (or, equivalently, periodic) and discrete. This is the discrete Fourier transform (DFT), and takes a discrete periodic time-domain function into a discrete periodic frequency-domain on

$$
\begin{aligned}
& \mathrm{g}(n)=\frac{1}{N} \sum_{r=0}^{N-1} \mathrm{G}(r) \mathrm{e}^{\mathrm{j} 2 \pi m / N} \\
& -\mathrm{G}(r)=\sum_{n=0}^{N-1} \mathrm{~g}(n) e^{-\mathrm{i} 2 \pi m N},
\end{aligned}
$$

or, writing $W=e^{-i 2 \pi / N}$,

$$
g(n)=\frac{1}{\tilde{N}} \sum_{r=0}^{N-1} \mathrm{G}(r) W^{-m}
$$

$$
G(r)=\sum_{n=0}^{N-1} g(n) W^{n n} .
$$

The $1 / N$ in the first equation is the same
normalizing factor as the $1 / b$ in the Fourier series, for the finite time domain is $[0, N)$ in the discrete case and $[0, b)$ in the Fourier series case. It does not matter whether it is writen into the forward or the reverse
transform, but it is usually placed as shown above as a matter of convention. As illustrated by Fig. 15, discrete Fourier transforms take an input of N real values, representing equally spaced time
samples in the interval $[0, b)$, and produce samples in the interval $[0, b)$, and produce
as output N complex values, representing equally spaced frequency samples in the interval $[0, N / b)$. Note that the end-point of this frequency interval is the sampling frequency. It seems odd that the input is complex quantities: we seem to be getting some numbers for nothing! However, this isn't so, for it is easy to show that if the nput sequence is real, the output frequency spectrum has a symmetry about its This can be expressed as
DFT symmetry: $\mathrm{G}\left(\frac{N}{2}+r\right)=\mathrm{G}\left(\frac{N}{2}-r\right)^{\star}$
if g is real-valued, where ${ }^{*}$ denotes the tonjugate of a complex quantity (that is, $(a+j b)^{\star}=(a-j b)$.
It was argued above that the frequency sectrum in the DFT is periodic, with the pectrum from 0 to the sampling fr

Fig. 15. Time and frequency domains for discrete Fourier transform (DFT).

Fig. 16. Symmetry and periodicity in DFT.
quency being repeated regularly up and seen from the DFT equation that this is so It can be written
DFT periodicity: $\mathrm{G}(N+r)=\mathrm{G}(r)$ always.
Figure 16 illustrates the properties of symmetry and periodicity

Estimating the frequency spectrum of speech
 using the DFT

Speech signals are not exactly periodic. Although the waveform in a particular
period will usually resemble those in the period will usually resemble those in the will certaing and following pe pitch periods, will certainly not be identical to them. As the articulation of the speech changes, the
formant positions will alter. Furthermore the pitch itself is certainly not constant, because the intonation of speech varie continually. Hence the fundamental assumption of the DFT, that the waveorm
is periodic, is not really justified. However, the signal is quasi-periodic, for changes from period to period will no usually be very great. One way of computing the short-term frequency spectrum of speech is to use pitch-synchronous Fourier are isolated from the waveform and processed with the DFT. This gives a rather accurate estimate of the spectrum. Unfortunately, it is difficult to determine the beginning and end of each pitch cycle,
as we shall see later in this article when discussing pitch extraction techniques.
If a finite stretch of a speech waveform is
solated and Fourier transformed, withou
regard to pitch of the speech, then the periodicity assumption will be grossly viored. Figure 17 illustrates that the effect is the same as multiplying the signal by rectangular window function, which is except during the period to be analysed, where it is 1 . The windowed sequence wil edges, and these will effect the resulting spectrum. The effect can be analysed quite easily, but we will not do so here. It is enough to say that the high frequencie cause considerable distortion of the spec trum. The effect can be alleviated by using a smoother window than a rectangular one, and several have been investigated extensively. The commonly-used windows of illustrated in Fig. 18 .
Because the DFT produces the same number of frequency samples, equally spaced, as there were points in the time waveform, there is a tradeoff berween frequency resolution and time resolution (fo 256-point transform with sampling rate of 8 kHz gives the 256 equally-spaced fre quency components between 0 and 8 kHz that are shown in Table 4. The nop half because it contains the complex conjugates of the bottom half (in reverse order), corresponding to frequencies greater than half the sampling frequency. Thus for a 30 Hz time samples, or a 32 ms stretch of speech, needs to be transformed. A common technique is to take overlapping periods in the time domain to give a new frequency spectrum every 16 ms . Fro

Fig. 18. Three window shapes to reduce end of window period.
able rate to recompute the spectrum, for as noted above when discussing channel vocoders the rate of change in the spectrum is limited by the speed that the speaker can move his vocal organs, and anything be for transmitring or storing the spectrum.

time domain sample $\begin{aligned} & \text { frequency domain } \\ & \text { time } \\ & \text { sample }\end{aligned}$ frequency

sample number	time	sample number	frequency
0	0	usec	0
1	125	0 Hz	

0 Hz
31
62
94
125
$\begin{array}{lllll} & 254 & 31750 & 254 & \\ 255 & 31875 & 255 & 7969\end{array}$
Table 4 Time domain and frepoint DFT with 8 kHz sampling figure for transmitting or storing the spectrum.
The DFT is a complex transform, and speech is a real signal. It is possible to do two DFTs at once by putting one time
waveform into the real parts of the input and another into the imaginary parts. This destroys the DFT symmetry property, for it only holds for real inputs. But given the DFT of a complex sequence formed in this way, it is easy to separate out the DFTs of
the two real time sequences. If the two time sequences are $x(n)$ and $y(n)$, then the transform of the complex sequence
$g(n)=x(n)+j y(n)$
is $\quad G(r)=\sum_{n=0}^{N-1}\left[x(n) W^{m m}+y(n) W^{m}\right]$

WIRELESS WORLD NOVEMBER 1981
It follows that the complex conjugate of he aliased parts of the spe
upper frequency region, are
discrete Fourier transforms, and they are FFT.
To gain insight into the working of the FFT, imagine the sequence $g(n)$ split into respectively.
even half $e(n)$ is $g(0) g(2) \ldots g(N-2)$
odd half $o(n)$ is $g(1) g(3) \ldots g(N-1)$.
Then is is easy to show that if G is the transtorm of g,
that of o, then
$\mathrm{G}(r)=\mathrm{E}(r)+W^{\prime} \mathrm{O}(r)$ for $r=0,1, \ldots, \frac{N}{2}-1$, and
$\mathrm{G}\left(\frac{N_{2}}{2}+r\right)=\mathrm{E}(r)+W^{2^{+}+\mathrm{O}}(r)$ for $0,1, \ldots, \frac{N}{2}-1$ Calculation of the E and O transforms.
involves $(N / 2)^{2}$ operations each, while combining them together according to the bove relationship occupies N operations. Thus the total is $N+N^{2} / 2$ operations, But don't stop there! The even half can tself be broken down into even and odd parts to expedite its calculation, and the same with the odd half. The only conthe sequences splits exactly into two each stage. Providing N is a power of 2, hen, we are left at the end with some 1 point transforms to do. But transforming a ingle point leaves it unaffected! (Chec he definition of the DFT.) A quick calcuneeded is not $N+N^{2} / 2$, but $N \log _{2} N$. Figure 19 compares this with N^{2}, the number of operations for straightforward DT calculation, and it can be seen that FT is very much faster.
FT is that N must be a powe use of the that N must be a power of $t w o$. If it not, alternative, more complicated, algo rithms can be used which give comparable computational advantages. However, for that are transformed is usually arranged to be a power of two. If a pitch synchronous analysis is undertaken, the time stretch that is to be transformed is dictated by the ength of the pitch period, and will vary out the time waveform with zeros to bring the number of samples up to a power of two; otherwise, if different-length time retches were transformed the scale of th esulting frequency components would

The FFT provides very worthwhile cost savings over the use of a bank of bandpas ilters for spectral analysis. Take the example of a 256 -point transform with kHz sampling, giving 128 frequency comalmost 4 kHz . This can be computed on overlapping 32 ms stretches of the time waveform, giving a new spectrum every 16 ms, by a single FFT calculation every 32 stretches in the real and imaginary parts of
he complex input sequence, as described $\log _{2} N$. The FFT algorithm requires N 256. An additional 512 operations are required for the windowing calculation. Repeated every 32 ms , this gives a rate of
80,000 operations per second. To achieve much lower frions per second. To achieve a bandpass filters, each of which are fourthorder, will need a great many more operations. Each filter needs between four and
eight multiplications per sample, depending on its exact digital implementation. But new samples appear every 125 microseconds, and so somewhere around a million operations are required every
second. If we increased the frequency resosecond. If we increased the frequency reso-
lution to that obtained by the FFT, 128 filters would be needed, requiring between 4 and 8 million operations!

Formant estimation

Once the frequency spectum of a speech signal has been calculated, it may seem a simple matter to estimate the positions of the formants. But it is not! One reason for this is that, unless the analysis is pitch-
synchronous, the frequency spectrum of the excitation source is mixed in with that of the vocal tract filter. There are other easons, which will be discussed later in his section. But first, let us consider how to extract the vocal tract filter characteris-
tics from the combined spectrum of source and filter. To do so we must begin to explore the theory of linear systems. Discrete linear systems. Figure 20 shows an input signal exciting a filter to produce magine the input to be a glottal waveform, the filter a vocal tract one, and the output a peech signal (which is then subjected to high-frequency de-emphasis by radiation rom the lips). We will consider here discrete systems, so that the input $x(n)$ and
output $y(n)$ are sampled signals, defined only when n is integral. The theory is quit imilar for continuous systems.
Assume that the system is linear; that is, f input $x_{1}(n)$ produces output $y_{1}(n)$ and um of $x_{1}(n)$ and $x_{2}(n)$ will produce the m of $y_{1}(n)$ and $y_{2}(n)$. It is easy to sho from this that, for any constant multiplie a, the input $a x(n)$ will produce outpu $a y(n)$ - it is pretty obvious when $a=2$, or andeed any positive integer; for then $a x(n)$ further that the system is time-invariant; hat is, if input $x(n)$ produces output $y(n)$ hen a time-shifted version of x, say

Fig. 20. Linear system with input and out ut, with impulsive input and correspond ing output.

WIRELESS WORLD NOVEMBER 198

$\left(n+n_{0}\right)$ for some constant n_{0}, will produce the same output, only time-shifted; Now consider the discrete delta function (n, which is 0 except at $n=0$ when it is the system, the output is called th impulse response, and will be denoted by $h(n)$. The fact that the system is time-inva riant guarantees that the response does not
depend upon the particular time at which depend upon the particular time at which he impulsive input $\delta(n+n)$ will produce output $h\left(n+n_{0}\right)$. A delta-function input and corresponding impulse response ar shown in Fig. 20
The impulse response of a linear, time thing to know, for it can be used to calcu late the output of the system for any input at all! Specifically, an input signal $x(n)$ can be written

$$
x(n)={ }_{k=} \sum_{-\infty}^{\infty} x(k) \delta(n-k),
$$

because $\delta(n-k)$ is non-zero only when $k=n$ and so for any particular value of n, the erm $-x(n)$. The action of the system on each term of the sum is to produce an output $x(k) h(n-k)$, because $x(k)$ is just onstant, and the system is linear Furthermore, the complete input $x(n)$ system is linear, the output is the sum of $x(k) h(n-k)$. Hence the response of the system to an arbitrary input is

$$
y(n)={ }_{k=} \sum_{-\infty}^{\infty} x(k) h(n-k) .
$$

This is called a convolution sum, and is ometimes written
$y(n)=x(n) \star k(n)$
Let's write this in terms of z-transform The (two-sided) z-transform of $y(n)$ is
$\mathrm{Y}(z)={ }_{n=} \sum_{\infty}^{\infty} y(n) z^{-n}=\sum_{n k} x(k) h(n-k) z^{-n}$
Writing z^{-n} as $z^{-(n-k)} z^{-k}$, and inter hanging the order of summation, this be me
$\mathrm{Y}(z)=\sum_{k}\left[\sum_{n} h(n-k) z^{-(n-k}\right] x(k) z^{-k}$
$=\sum_{k} \mathrm{H}(\mathrm{z}) z^{-k}=\mathrm{H}(z) \sum_{k} x(k) z^{-k}=\mathrm{H}(z) \mathrm{X}(z)$
Thus convolution in the time domain is th same as multiplication in the z-transform ot the linear system of Fig. 20, this mean that the output z-transform is the input z ransform multiplied by the z-transform of the system's impulse response.
What we really want to do is to relate th frequency spectrum of the output to th
response of the system and the spectrum of the input. In fact, frequency spectra are very closely connected with z-transforms. A periodic signal $x(n)$ which repeats ever
N samples has DFT N samples has DFT
$\underset{\mathrm{n}=0}{\mathrm{~N}} \mathrm{~N}_{0}^{1} x(n) \mathrm{e}^{-\mathrm{i} 2 \pi m / N}$ and its z -transform is

$$
n=\sum_{\infty}^{\infty} x(n) z^{-n} .
$$

Hence the DFT is the same as the transform of a single cycle of the signal ${ }_{r=0,1}{ }^{2} N-1$. In other words, the for quency components are samples of the z ransform at N equally-spaced points around the unit circle. Hence the frequency spectrum at the output of a linea system is the product of the input spec yym and the frequency response of the pulse-response function). It should be ad mitted that this statement is somewha questionable, because to get from z ansforms to DFTs we have assumed tha a single cycle only is transformed - and
the impulse response function of a system is not necessarily periodic. The real action of the system is to multiply z-transforms, not DFTs. However, it is useful in imagining the behaviour of the system to think in is always these rather than z-transform which äre computed because of the existnce of the FFT algorithm.
The DFT frequency spectrum of a ypical voiced speech signal shows hump superimposed on this is an "However (in the frequency domain!) at the pitch requency. This occurs because the ransform of the vocal tract filter has been multiplied by that of the pitch pulse, the he pitch frequency. The oscillation mus be suppressed before the formants can be estimated to any degree of accuracy.
One way of eliminating the oscillation is o perform pitch-synchronous analysis the frequency domain by dealing with it in he time domain! The snag is, of that it is not easy to estimate the pitch frequency: some techniques for doing so are discussed in the next main section. Another method is to remove the pitch ripple from the
frequency spectrum directly. This will be discussed next, in an intuitive rather than a heoretical way.
Cepstral processing of speech. Suppose he rippled frequency spectrum were acturequency pitch ripple is easy: just filter it out! However, filtering removes additive ripples, whereas this is a multiplicative pple. To turn muphicuion into add on, take logarithms. Then the procedu would be - compute the DFT of the spee take (windowed, overlapped);
filter out the high-frequency part, orresponding to pitch ripple Filtering is often best done using the DFT. If the rippled waveform is trans-
formed, a strong component could be ex pected at the ripple frequency, with
weaker ones at its harmonics.
ponents can be simply removed by setting them to zero, and inverse-transforming the riginal frequency spectrum. A spectrum the logarimm often called a cepstrum - a sort of back-
wards spectrum. The horizontal axis of the cepstrum, having the dimension of time, is called "quefrency"! Note that high-frequency signals have low quefrencies and vice versa. In practice, because the pitch
ripple is usually well above the quefrency of interest for formants, the upper end of he cepstrum is often simply cut off from a ixed quefrency which corresponds to the maximum pitch expected. However, idenhe useful byproduct of giving the pitch period of the original speech
To summarize, then, the procedure for spectral smoothing by the cepstral method spectral
is

- com
- compute the DFT of the speech wavetake the logarithm of the trans - take the DFT of this log-transfor calling it the cepstrum,
- identify the lowest-quefrency peak in the spectrum as the pitch, confirming it by
examining its harmonics, which should be equally spaced at the pitch quefrency; - remove pitch effects from the cepstrum by cutting off its high-quefrency part bove either the pitch frequency or some onstant representing the maximum ex pected pich (i.e. minimum expected pitch inverse DFT the resulting cepstrum to give a smoothed spectrum
Estimating formants from smoothed pectra. The difficulties of formant extracion are not over even when a smooth frequency spectrum has been obtained. ifies a peak at the k 'th frequency component whenever
$X(k-1)<X(k)$ and $X(k)<X(k+1)$
will quite often identify formants incorrectly. It helps to specify in advánce ces - say 100 Hz and 3 kHz for three cies - say 100 Hz and 3 kHz for three-
formant identification, and ignore peaks ying outside these limits. It helps to estimate the bandwidth of the peaks and reject hose with bandwidths greater than 500 Hz - for real formants are never this wide. then they may appear as a single, wide, peak and be rejected by this criterion. It is usual to take account of formant position dentified in previous frames under thes onditions.
There are several estimation algorithm The simplest uses the number of peaks
dentified in the raw spectrum (under kHz , and with bandwidths greater than 00 Hz , to determine what to do. If exactly three peaks are found, they in hat this happens about 85% to 90% of the ime. If only one peak is found, the present fame is ignored and the previously-iden
pens less than 1% of the time). The remaining cases are two peaks
corresponding to omission of one formant - and four peaks - corresponding to an extra formant being included. (More than four peaks do not normally occur.) Under these conditions, a nearest-neighbour mea-
sure can be used for identification. A suitable measure is

$$
v_{\mathrm{ij}}=\left|F_{\mathrm{t}}(k)-F_{\mathrm{j}}(k-1)\right|,
$$

where $F_{i}(k-1)$ is the j 'th formant frequency defined in the previous frame $k-1$ and $F_{i}^{\kappa_{i}(k) \text { is the } i^{\prime} \text { th raw data frequency }}$ estimate for frame k. If two peaks only are
found, this measure is used to identify the closest peaks in the previous frame; and to be the third peak of that frame is taken peaks are found, the measure is used to determine which of them is furthest from the previous formant values, and this one
is discarded. is discarded.
This procedure works forwards, using the previous frame to distinguish peaks given in the current one. More sophis-
ticated algorithms work backwards as well, identifying anchor points in the data which have clearly defined formant posithese to identify neighbouring frame of data. Finally, absolute limits can be imposed upon the magnitude of formant movements between frames to give an overall smoothing to the formant tracks.
Very often, people will refine the result of such automatic formant estimation procedures by hand, looking at the tracks, knowing what was said, and making adjustments in the light of their experience of
how formants move in speech. Unfortuna tely, it is difficult to obtain high-qualit formant tracks by completely a matic One of the most difficult cases in for mant estimation is where two formants are so close together that the individual peak this problem is to employ "analysis-by synthesis", whereby once a formant is identified, a standard formant shape at this position is synthesized and subtracted from the logarithmic spectrum. Then, eve if two formants are right on top of each
other, the second is not missed because it remains after the first one has been subtracted.
Unfortun
Unfortunately, however, the single peak which appears when two formants are
close together usually does not correspond exactly with the position of either one There is one rather advanced signalprocessing technique that can help in this

Fig. 21. Evaluating 2 -transform outside
outer pole but inside unit circle.

WIRELESS WORLD NOVEMBER 1981
case. The frequency spectrum of speech is plex z-plane inside the unit circle. (They must be inside the unit circle if the sytem is stable. Those familiar with Laplace analysis of analogue systems may like to note that the left half of the s-plane correthe z-plane.) As shown earlier, computing a DFT is tantamount to evaluating the z transform at equally-spaced points around the unit circle. However, better resolution is obtained by evaluating around a circle:
which lies inside the unit circle, but: outside the outermost pole position. Such a circle is sketched in Fip. 21.
Recall that the FFT is a fast way of calculating the DFT of a sequence. Is z -transform inside the unit circle? The answer is yes, and the technique is known as the "chirp z-transform", because it involves considering a signal whose frequency increases linearly - just like a allows the z-transform to be computed quickly at equally-spaced points along spi-rally-shaped contours around the origin of the z-plane - corresponding to signals of spiral nature of these curves is not of particular interest in speech processing. What is of interest, though, is that the spiral can begin at any point on the $z=0$ axis, and its pitch can be set arbitrarily, If we begin spiralling at $z=0.9$, say, and set the pitch the unit one, with radius 0.9 . Such a circle is exactly what is needed to refine formant resolution
To be continued

Literature Received

Catalogue of passive and active electronic com-
ponents, hardware and tools, which includes a greater, number of optoelectronic devices than usual, can be obaineed by wrinc devices than
Electronics, Norfolk House, Wellesley Road, Electronics, Norfolk House, Wellesley R
Croydon CR0 OYF on company notepaper.
A variery of noise sources, from basic diodes to A variety of noise sources, from basic diodes to
programmable generators is produced by Micronetics, who offer a catalogue through
distributors March Microwave Ltd, 112 South distributors March Microwave Ltd, 112 South
Street, Braintree, Essex. Crow of Reading's capabilities in the design and from single instruments to large stations, is briefly described in a colour brochure which can be obtained from Crow of Reading Ltd, PO Box
WW, Reading, Berks. 402

A range of seven microterminals made by Burr-
Brown are illustrated and shortly specified in Brown are illustrated and shortly specified in a
brochure, available from Burr-Brown International Ltd, Cassiobury House, 11-19 Station Ww403 Catalogue of small tools and a selection of
hardware is produced by Electroware who describe their range in a new catalogue, which is obtainable from Dutton Lane, Eastleigh SOS
WSW 404

Voltage regulator i.cs to provide current up to
8 A positive and 1.5 A negative, and a range of 8A positive and 1.5 A negative, and a range of
switching power supplies for up to 50 A are made by Lambda. Brochures can be had on application to Lambda Electronics Co., Abbey
Barn Road, High Wycombe, Bucks. WWW Production equipment for the electronics indus Production equipment for the electronics indus-
try (cutting, stripping, bending and cleaning) is try (cutting, stripping, bending and cleaning) is
described in leaflet produced by Eraser International Ltd, Unit M, Portway Industrial Es-
tate, Andoer SP10 3LU tate, Andover SP10 3LU.
P.r.o.ms and programmable logic devices from
many makers are detailed in a new wall-chart from Microsystem Services, Duke Street, High Wycombe, Bucks. HP13 6EE. WW407
Booklet from the Electric Cable Makers' Conand by product, and includes a short resumé of and by product, and includes a short resume of
each company's activices. The confederation's address is 56 Palace Road, East Molesey, Surrey
KT8 9 DW. Catalogue of general electronic components and and the well-known audio modules, can be oband the well-known audio modules, can be ob-
tained from Bi-Pak, the Maltings, 63 a High Street, Ware, Herts. SG12 9AD. WW409
Link Electronics have produced a guide to their
closed-circuit television equipment and
systems, including cameras, studio equipment complete studios and mobie units. It is avail
able from Link Electronics Ltd, North Way Andover SP10 5AJ. WWW410 The Acron 505 Sync. pulse generator, for PAL,
NTSC and PAL-M is described in a colour leaflet from Acron Video, Unit 3, Lovelace
Road, Bracknell RG12 4YT.
WW411 Road, Bracknell RGI2 4 YT.
Communications, logic and memory devices in
ISO-CMOS technology speed at low power, will shorthy be infrroduced high by GTE, who haves sent us a short description of
the new devices. Copies can be obtained from the new devices. Copies can be obtained from
GTE Microcircuits, 2000 W . 14th Street GTempe, Ariz., 85281. Zilog's newsletrer Z-Bits is now in its second
issue, the latest one including details of the ZLat development system for sixteen users, new peripheral devices, Z8003 and 8000 c.p.p.us, a
cross-assembler for Intel dev. systems and a new cross-assembler for Intel dev. systems and a new
4 K by 8 -bit quasi-static r.a.m. Copies can be 4K by 8 -bit quasi-static r.a.m. Copies can be
had from Zilog (UK) Ldt, Babbage House,
King Street, Maidenhea, King Street, Maidenhead, Berks. SL6 1DU. WW413
A vast range of test and measuring instruments is fully described in the 1981/82 catalogue of
instruments from Electroplan Ltd PO Box 19
Orchard Road Poys

Cartridge alignment gauge

Simple device offers accuracy with convenience
by R. J. Gilson, M.I.Mech.E.

Subscription television experimental station

One company's equipment in the pilot cable schemes just starting
by A. M. Peverett, M.I.E.E., Rediffusion Engineering Ltd
In the early 'sixties Rediffusion, in con-
junction with the Rank Organisation, dejunction with the Rank Organisation, de--
veloped a coin box pay-tv system designed' for a payment-per-programme service. A monitoring system was also included to assess the popularity of each item. Although this cable television experiment was scheduled to start in Leicester in 1965,
for various reasons it never went into operation. Indeed, British Relay was the only one of several companies preparing experiments to put a system into public service, successfully operating one pro-
gramme in London and Sheffield for a year or so. The experiment was ended when the then government refused permission for it to be expanded to an economic size.
Rediffusion is now making a contribu-
tion to the new pilot cable subscription television schemes in the UK, this company being one of several licensed to take part in the experiment. Called Starview, this service will operate in Burnley, Pontypridd, Tunbridge wells, Reading and parts of Hull, showing recent films - that
is, about a year old - well before they appear on broadcast television. About fifteen movies are to be shown in any one month, in a schedule comprising two transmissions each evening with a late
night film on Fridays and Saturdays, and a Sunday matinee.
The first screening is at $7.00 \mathrm{p} . \mathrm{m}$., and no films with \mathbf{X} certificates are transmitted before $10.00 \mathrm{p} . \mathrm{m}$. by government regula-
tion. This basic schedule is likely to be expanded as the experiment gets under way. During the morning and afternoon the networks will become a "community notice board" which may include messages from the Citizens' Advice Bureau, the Job Exchange \& Mart, and possibly even a weather forecast, accompanied by background music.
The economic charge for the channel is
$£ 12$ a month, but in some $£ 12$ a month, but in some areas this will be
reduced to $£ 8$ or $£ 10$. This is in addition to reduced to $£ 8$ or $£ 10$. This is in addition to
the normal cable service input charge. The movies can be viewed as many times as the subscriber wishes.

Experimental pilot equipment

A typical Starview control room (at Hull) is shown in Fig. I and its block diagram in
Fig. 2. The bay on the left of the photo houses most of the electronic equipment apart from the standby video cassette re-

with the caption generator, which can be seen on the desk.
Three editing U-Matic v.c.rs are housed at the bottom of the bay. The maximum U-Matic cassette playing time currently available is 80 minutes so that movies,
previously transferred on to U-Matic caspreviously transferred on to U-Matic cas-
settes, can be made to run for up to 4 hours. The v.c.rs are automatically controlled by a programmer, which can be seen directly above them. This also switches over to captions at the end of a
movie or in the event of a v.c.r movie or in the event of a v.c.r.
breakdown. (A much fuller description of the programmer is given later.)
As Rediffusion networks also carry offair tv programmes, it is important to minimize interference between them and the Starview system by ensuring that the
last-mentioned is transmitted on an appropriate carrier frequency, and that synchronizing waveforms are to broadcast standards. For this reason a broadcast standard
sync pulse generator is provided together sync pulse generator is provided, together
with a timebase corrector/encoder - all these items being above the programmer. After correction the signal is taken to an 8.9 MHz vision modulator mounted in the rack at the top of the bay. The associared sound channel goes to a 2.9 MHz f.m.
sound modulator, also mounted in the rack, the two modulator outputs being combined prior to being transmitted down the network. As older Rediffusion tv re-

Fig. 1 Control room of the station at Hull. The major part of the electronic equipment
is in the bay on the left, but the stand-by v.c.r. is on the desk.
ceivers require an audio signal for the sound rather than an f.m. carrier, this amplifier also being provided.
A standby v.c..r. is also supplied, loaded with a duplicate tape, to deal with equipment or cassette failure. This v.c.r. is
locked to the sync pulse generator, but in order to bypass as much equipment as possible its output is not routed through the timebase corrector but straight to the vision modulator
Provision has also been made for a camera wever the associated sound channel. However, the purpose of the service is
primarily to show new films and not to compete with the broadcasting authorities.

Video casselte recorders

The reason for using editing U-Matic The reason for using editing U-Matic
v.c.rs is that they have speed control of both the video drum (which contains the video scanning heads) and the capstan. This allows the scanning heads to be
synchronized with the recorded signal and synchronized with the recorded signal and
at the same time permits the video signal to at the same time permits the video signal to
be locked to the broadcast standard sync pulse generator. However, a timebase cor-

WIRELESS WORLD NOVEMBER 1981

Fig. 2 Block diagram of the equipment shown in Fig. T, with the U-Matic video S_{1}, S_{2} and S_{3} are coaxial types.
rector is also required to adjust any frequency variations that occur between the tape drive system and the tape itself. In order to feed the programmer with
the correct v.c.r. start and changeover information, audio cue tones are recorded on channel 1 audio sound track of the video tape, channel 2 being used for the film sound track. The "start" tone consists of a
.300 Hz signal correctly positioned at the "start". point of each tape. The "changeover" or "finish" tone is a 450 Hz signal, each one lasting for approximately 10 seconds. These tones "cue" the pro-
grammer, which in turn sends back the grammer, which in turn sends back the
necessary "start", "stop" or "rewind" sig. nals to the remote control sockets of the v.c.rs, as described below.

Programmer

The programmer serves four basic func-
tions: - To start the v.c..rs at pre-selected times. and vision signal to the next (when more than one v.c.r. is in use), by means of cue ${ }^{\text {tones. }}$

- To stop the last v.c.r. at the end of the
film programme and change back to captions. (It will also do this if the v.c.r video output disappears due to a fault.)
- To transmit a 6 -minute tone at the end of the last programme warning viewers to
switch off their tv sets. (This is in accordswitch off their tv sets. (This is in accord-
ance with broadcast practice and will probably be accompanied by a suitably worded caption.)
Fig. 3 shows the programmer's front panel. The starting times for each programme are set up on thumbwheels, the controlled es in use per day being controlled by switches below them apart from the sixth thumbwheel which has no switch and controls the last (or
only) programme, at the end of which the warning tone sounds.
"To load the v.c.rs, the programmer "load" button is pressed, removing the automatic control of the programme which otherwise overrides the v.c.r. controls.
The number of v.c.rs to be used for the The number of v.c.rs to be used for the
first programme is now selected (e.g. "all v.c.rs") which puts them back to the automatic control of the programmer. It will first rewind the tapes and then play them forward until the 300 Hz "start" tones are
reached on each v.c.r., at which point they will stop. The status light next to the pushbuttons, which flashes during setting up, will now stay on permanently, indicating that the v.c.rs are ready to start the first
programme. When that time comes the
programmer will start up v.c.r. 1 and, after a few seconds, switch the video over from captions to the movie, continuing until the 450 Hz "changeover" tone is up. The changeover actually takes place a few seconds later when v.c.r. 2 has reached its correct running speed, so ensuring a smooth change. V.c.r. 1 will now rewind, setting itself back to its original starting
point, as will v.c.rs 2 and 3 when they reach the cue tones on their cassettes. When the movie has finished (and dur ing loading and setting up) the programmer will automatically switch back to
caption announcements. This will caption announcements. This will als happen if there is a v.c..r. failure, an apol-
ogy caption having been pre-selected on ogy caption having been pre-selected on
the caption generator. However, just before the end of the last programme this caption would be changed to one announc-
ing the end of the day's viewing ing the end of the day's viewing, and pos-
sibly also advertising the next day's films. sibly also advertising the next day's films.
If more than six programmes a day are required, it is possible to operate v.c.r. 1 manually be means of the manual button on the programmer. This allows a short item, such as a cartoon, to be shown be-
tween automatic programmes, although sufficient time must be allowed in the automatic schedule to fit it in.
In addition to these facilities, the programmer contains a sync pulse distribution
amplifier, which feeds the broadcast stan

Caption colour background. By feeding the mixed blanking signial from the synci pulse generator to the Red, Green and
Blue sockets of the PAL encoder, two

Fig. 3 Front panel of the programmer
shown in fig. 2. The six thumbwheels for setting starting times of programmes are in
a bank on the left. On the right is a digital
clock display.
Fig. 4 Block diagram of the caption genera-
tor, basically a keyboard and a if, basically a keyboard and a memory formation.
dard sync pulse to the v.c.rs, and an electronic circuit to bypass the timebase se, as this is not required for non-v.c. se, as this is not required for non-v.c.

ime base corrector

The v.c.r. video from the programmer and he broadcast standard sync pulses both g to the timebase corrector, where the video signal is decoded into its luminance and ference between the video and the syn pulses, due to speed variations between th ape and the tape drive, is converted to an rror voltage inside the unit and used to le delay lines until the two signals are ynchronized. The unit is capable of ealing with errors of up to two horizonta lines. As the output signal is in an RGB forack to its previous (PAL encoded) form. The decoding-recording process also re duces the chroma noise.

Emergency switching

The three (coaxial) switches shown in Fig perform the following emergency func ions: changes from the main v.c.rs to the assette) breakdown in case of a v.c.r. (or 52 bypasses the timebase corrector, the ncoder and the sync pulse generator in case any of the
3 switches between the standby v.c.r. and the camera, should the latter be used. The audio signal selected by the programmer (or by switch S1A under standby sound modulator and them combined with the 8.9 MHz vision signal prior to transmission down the network. As mentioned above, an audio signal is also transmitted rearlier Rediffusion cable receivers. Standard off air receivers are connec-
ed to the network via a frequency inverter which converts the h.f. vision and intercarrier sound signals to u.h.f.

Back-up battery power supplies are provided in order to keep the programmer, ync pulse generaor cystal oven and the power failure. This ensures that as soon as the mains supply returns (or a standby mains supply is switched in) the proramme will is sur

Caption generator

A block diagram of the caption generator equipment is shown in Fig. 4. The basic and a memory unit which is capable of storing eight pages of information, each of which can be previewed on the video monitor. However, by using a cassette cassette recorder, it is possible to store approximately 150 different captions on a C90 cassette. In addition, by using a cassette recorder which has an auto reverse
facility when it reaches the end of the cassectile, with a total of five complete cycles,
sen 10 hours' playing time can be achieved. Each taped caption appears on the monitor as a "print-out", the page being completed in approximately 15 seconds. It is efore the next page begins. The caption will be accompanied by background music, utilizing an identical cassette recorder/player.
One of the
One of the eight pages of the basic
memory unit has to be memory unit has to be kept free for the
aped captions, the remaining seven pages being used to store apology captions,
hings are achieved: the caption generator is locked to the badcast standard syncs, the hue and saturation depending on the signal levels fed to the RGB sockets of the encoder.
In fact, orange has been found to be quite a resful colour when using white lettering, and is obtained by using the red for unit controlling the exact colour and saturation. However, for purity reasons, range is not always so desirable for a
tart of programme
The new service has just begun (Sepcheduled to an for two years. The are chemes will enable all the participants to gain valuable first-hand experiences of and nformation on the future potential for this new service. A successful outcome to the proval for full subscription tv services, would almost certainly lead to the introuction of subscription tv in other areas, although a full extended service would not necessarily use the same equipment config-
uration described above for the pilot schemes. Finally, I would like to thank Les Brown, the assistant chief engineer of the Yorkshire region of Rediffusion, for use of is photograph of the Starview control
room at Hull, and the directors of Redifusion Engineering Ltd. for permission to publish this article

Letters to the Editor

News on teletext
I was delighted to reat about teletext in
"Ariel's. September columns. I feel, however, I must point out one slight misconception about
the lack of change in the news between early the lack of change in the news between early
morning and miday.
As "Ariel" says, on
Acefriel says, one of the prime advantages it is made. The essential point is that we are concerned with the transmission and not the
making of news. If anyone shoots a prince, making of niews. If anyone shoots a prince,
prime minister, pope, or president between early morning and lunchtime, then clearly we can report it.
On second
systems becoming more though, with computer more sophisticated, perhaps we should be
Graham Clayton
Grahan Clayton
OLty ditor, Ceefax
BBC Television Centre
London W12

Making
ploughshares
I would like to congratulate Mr Adrien Belcourt
for his letter in the August issue. I do not think I for his ever heard a more eloquent or at think have ever heard a more eloquent, or a more
elegant exposition of the 'double standard' argument anywhere before.
Confess that my own opinion is rathe
different, but perhaps that reflects my different, but perhaps that reflects my
evviroment. For example, my son is one of environent. For example, my son is one of
those (the doctors say because of some accident
at birth of unknown nature) classified as e.s.n. at birth of unknown nature) classified as e.s. Timplified world, with many of the inhibition and taboos used by the rest of us diluted or
absent. It is therefore sometimes possible to absent. It is therefore sometimes possible to
grasp his motivation without having to push aside the mass of curtains that most of us surround ourselves with
A couple of years ago, he developed a
fascination for toy guns. With other children, this could have been reaction against parents, but I am convinced that this was not. What
seemed to be happening was that he was seemed to be happening was that he was
standing behind the toy gun, in order to obtain
the extra boost for his personal status which he the extra boost for his personal status which he
felt that felt that otherwise he was lacking. might point out that at least some of us have had the guts to try. Those of us who have tried (and I have been involved in the founding of two
companies booth of which are beginning to find companies, both of which are beginning to fin electronics is strictly for the boys of this world. Agricultural electronics, which 1 am more and
more convinced must be classified as a discipline in its own right, has been described as mil. spec. equipment at automobile prices, and hat makes it an order of magnitude more
difficult. It also makes it one order of magnitude more satisfying in its achievement, and yet nother because it is constructive. Finally, I would like to ask why anyone than an invitation to the military in Moscow, unless it is a lovely excuse to extend their own
has clearly made such things irrelevant by the time they go into service. On the other hand channels carrying televised reports from the Western parliaments would have on the Poles for a start. We may think the Commons is corny, but the sight of genuine elected grou trying to come to terms with everyday
problems, and being voted out by the mass of the people, would surely be more effective tha of we wern (or Easter?) militry might.
H.M. H. M. Butterworth Reading

Television

 subtitlingYour recent review of the IBA guidelines for September) might give the impression that the BBC2 subtutiting of the Royal Wedding is the
norm for "the current art of subtitiog" norm for "the current art of subtiting".
We at Oracle and our colleagues at Ceefax would be very unhappy if this were so. Subitiling of recorded programmes using a teletext system provides a much more
sophisticated version of subtitling than sophisticated version or subtiting than that
which appeared for portions of the Royal Wedding on BBCL . The latter was utilising a phonetic system in an attempt to subritle live
events. At the same time Oracle was also subtiting live using normal English with a fas typist and front end software to ensure rapid formating and insertion.
Any teletext owner can judge for himself the
present state of the art by watching "Coronation Street" conjunction with page 199 of Oracle.
Guy Rowston
Geoputy Editor O Independent Titerevision
London SE1

Electrical and

mechanical units

Mayy draw your atencion Ionan eroncous statement in the article by Professor D. A. Bell
in the July issue "Electrical and Mechanical in the July issue "Electrical and Mechan"cal property of a current which is independent of
the surrounding medium". From this and the the surrounding medium". From this and th
following comments it is clear that Professor Bell is suggesting that there are two separate contributions to $\mathbf{B}: \mu_{0} \mathbf{H}$ due to free currents and $\mu_{0} M$ due to magnetisation of any materials. In fact H in general consists of two components
one due to the free currents, and the other arising from any magnetized body in the vicinity. One need only consider the case of a
permanent magnet to realize that an \mathbf{H} field can exist even though there are no free currents in the region.
If one wis
If one wishes to separate e the \mathbf{B} field into the
component arising from free currents, and other components arising from any magnetization components arising from any magnetization
which occurs,
M) must be rewritten equation $\mathbf{B}=\mu_{0}(\mathbf{H}+$

+ he form
$\mathbf{B}=\mu_{0}\left(\mathbf{H}_{0}+\mathbf{M}\right)$
$\underset{\text { where }}{\mathbf{H}=\mathbf{H}_{0}+\mathbf{H}_{m} \text {. It is } \mathbf{H}_{0} \text { which describes }}$ H. \mathbf{H}_{m} arises from any magnetized bodies that may be in the vicinity, and is usually referred to as the demagnetizing field. Only in the case of a \quad unifrmly wound toroid
$=\mathbf{H}$. The fallacious statement that \mathbf{H} depends only
on the spatial distribution of the applied on the spatial distribution of the applied
currents, with the implication that H can calculated from the free current only, seems to be widely believed. The misunderstanding seems to arise from the facts that in the equation
$\nabla \times \mathbf{H}=\mathbf{J}$ the \mathbf{H}_{m} component of \mathbf{H} has zero $\nabla \times \mathbf{H}=\mathbf{J}$ the \mathbf{H}_{m} component of \mathbf{H} has zero $\begin{aligned} & \nabla \times \mathbf{H}=\nabla \times\left(\mathbf{H}_{0}+\mathbf{H}_{m}\right)=\mathbf{J} ; \\ & \text { but } \\ & \nabla \times \mathbf{H}_{m}=0 \text {, so that } \nabla \times \mathbf{H}=\nabla \times \mathbf{H}_{0} .\end{aligned}$ Since the \mathbf{H}_{0} component is solenoidal
everywhere, $\nabla . \mathbf{H}_{0}=0$. However in everywhere, $._{0}=0$. However, in general
$\nabla . \mathbf{H}_{m}$ is not zero everywhere, hence $\nabla . \mathbf{H}=$

0. Similar remarks apply to the \mathbf{D} vector:

$$
\nabla \cdot \mathrm{D}=\rho,
$$

$\underset{\mathbf{D}_{\mathrm{p}} \neq 0,}{\text { where }} \mathbf{D}=\mathbf{D}_{0}+\mathbf{D}_{\mathrm{p}}$ and therefore $\nabla \times . \mathbf{D}_{\mathrm{p}}=0$ but $\nabla \times$ $\mathbf{D}_{\mathrm{p}} \neq 0$, and
W. James

The author replies

The author replies:
I don't agree with the analysis proposed by W. James, but let us start with what I take to be agreed propositions: (1) Curl H equals J. (2)
Complete specification of any vector, such as H Complete specification of any vector, such a
requires a statement of both its curl and its Iivergence.
The distin
The distinction between "free" currents and magnetization effects is surely spurious, since
current belief in physics is that magnetic effects current beilef in physics is that magnetic effects
in materials are due to currents in the form of orbital motion of electrons (diamagnetism) or
electron spin (paramagnetism, ferromagnetism, electron spin (paramagnetism, ferromagnetism,
antiferromangetism). Given this, I do not see how magnetization of materials can produce a
divergence of H any more than "free" currents divergence of H any more than "free" currents
can. Moreover the existence of a divergence can. Moreover the existence of a didvergent
would imply the existence of a "magnetic charge"" which I can only interpret as a free
magnetic pole. This follows from the relation magnetic pole. This follows from the relatio
div $X=\rho$ where X is any vector and ρ a div $\mathrm{X}=\rho$ where X is any vector and ρ a
corresponding charge densiry. This is commonly applied in electrostatics, where free charge is obviously available, but it is a
mathematical theorem which is independent mathematical theorem which is independent of
the physical nature of the quantities involved, provided only that ρ is the density of some "charge" which acts as a source" of X. $\mathrm{H}=\mathrm{J}$ is a sufficient definition of H . D. A. Bell

Multipath distortion

 I have read the correspondence concerningmultipath distortion with avid interest, having been in d in the design of car radios fo many years.
When I i ined a particular company I was asked to investigate complaints of noise and
distortion on an f . . car radio which was
currently in production. These complaints
originated in the Johannesburg/Pretoria area andinated in the Johannesburg/Pretoria area,
and since the terrain is hilly and there are many
tall buildings the possibilities for tall buildings the possibilititiss for multipath
distortion were seemingly endless. distortion were seemingly endless.
An investigation of the problem on my part with a preconceived idea that the problem was indeed a multipath distortio
problem aggravaed by the horizontal problem aggravated by the horizontal
polarization/vertical car aerial combination, and thaf little would be able to be done on my part to effect any improvement. A car was fitted with
various car radios available at the time and a various car radios availabe at the time and a
switching console was used to switch the aerial, speaker and power supply to each radio such hat a comparison could be made. apparently as a fluturering signal combined with apparently as a furtering signal combined wis
sharp increases in distortion and noise as the
vehicl was in vehicle was in motion. The relative performance
of the sets was difficult to quantify because of the transient nature of the distortion and driving over the same stretch of road evinced different degrees of the effect on the same car radio. A
the radios tested showed some degree of the effect. Surprisingly, though, some showed that they were less susceptible than others. At firs differences in sensitivity and a.m. suppression
were suspected, though no correlation could be determined when these parameters were Checked on the bench. I then realized that Pretoria and
Johannesburg had about six stron transmissions each and, being in close proximity, the areas of transmissions overlap.
Therefore in many areas between the two citi Therefore in many areas between the two citie
twelve stations of reasonable strength could be received across she 88 to 108 MHz band.
The possibility of intermodulation pro The possibility of intermodulation product of some of the transmissions falling on oth
stations was therefore investigated and, surprisingly, on all stations it was possible to
receive intermodulation products of perhaps receive intermodulation products of perhaps
two or three other pairs of transmissions (frequency planners please note). It hen set about modifying the front end of
our set. Firstly, looking an the f s stage output ur set. Firstly, looking at the r.f. stage output with a spectrum analyser and feeding in t two
100 mV signals, the intermodulation products
could clearly be sen could clearly be seen at about $45 d B$ down on the
incoming signals. I changed the r incoming signals. I changed the r.f. transistor to from about 1.5 mA to 5 mA . The intermodulation products fell to 70 dB down. The listening tests
disappointing results.
disappointing results. mplemented configuration of the tuner was one tuned circuit prior to the thef.f stage and ong uned circuit in the collector circuit each with mloaded Q of 70 . However, when a swept found that the effective total Q of the r.f. stage
was $7!$ As far as could be determined this was due to feedback effects around the r.f. stage and spurious coupling between the rather close and
large coils in the permeability tuner The mixd stage was therefore receiving high level unwanted signals. The circuit was again modified to a broad band input to the r.f. stage
(which now had good dynamic range) and the (which now had good dynamic range) and the
two available tuned circuits were inserted as critically coupled bandpass pair between the r.f. stage and the mixer.
The listening test was repeated and the results
were a revelation. The newly were a revelation. The newly modified receive
out-performed all the others to a remarkable out-performed all the others to a remarkable
degree. No distortion effects were discerned and
the signal remained clear from the signal remained clear from the centre of own to the fringe areas.
A reliable test for cro in two signal generarorors via a splititer. Firstly tune one signal generator to 98 MHz , 25 kHz
deviation and adjust to - $3 d \mathrm{~dB}$ limiting level.

Note the a.f. output level of the set, leaving it tuned to 98 MHz , tune the signal generator to
100 MHz modulated to 12.5 kHz deviation and set the second signal generator to 102 MHz with 12.5 kHz deviation results in 25 kHz deviation at the intermodulation product.) Increase the level of the two signal generators in
unison until the previous level of a.f. is restored. unison until the previous levee of a.f. is restor limiting sensitively and the level of one of the signal generators can be taken as the In conclusion one wonders if multipath distortion is such a serious problem, and is not
cross modulation often mistaken for distortion, for it is very difficult to make meaningful measurements of these effects in the field. I certainly have gained the impression that nearly so often as would be expected and that a car radio with a vertically polarized aerial on a horizontally polarized f.m. environment can design. Wes
J.D. K. We
Mont Montclair
South Africa

Callsign coyness

Over the past year or so I have observed in the technical press, including your own magazine, articles written by radio amateurs, often
professional engineers, relating to the subject of professional engineers, relating to the subiect of
citizens' band. The authors of these articles, on receiver converters, frequency synthesis
systems etc. invariably do not systems etc. invaria
allocated callsigns.
Is this, I wonder, because they do not wish their fellow anaterurs to know that they have some technical or financial interest in c.b., or is
it that they do not wish the c.b. fraternity to know that they are licensed radio amateurs? A this point I should say that I have no particular axe to grind relating to c.b. I am just curious to ind out why these people are apparently so articles, but not on others. A.E. Green, G8NF Dunsta
Beds

Training medical technicians

read deal" in your May iscical technicians get new deal "n your May issue with grave
concern. There are already in existence fo MPPM technicians, the majority of whom are employed in the NHS, nationally recogn
examinations. These are O TEC and examinations. These are O TEC and
HNC/TEC, which are recognised as establishe links in the gradings and career structure of the technicians concernied.
O your that there are many pitfalls not apparent hours of harder: work to testablish an examination, but once he qualification is gained this must be acceptable to the employer. I would suggest that
it should first be established wheth it should irst be established whether the further examination
For a number of years the Federated tal Technology have been working in close liaison with the Technician
Education Council and the DHSS for a Diploma

WIRELESS WORLD NOVEMBER 1981 Course at O TEC level and this is now in the represented in discussion with TEC at HNC/TEC through the Federated Associations of Medical Tectnology.
As to the statement "The Interest Group hopes to keep open good channels of communication with other institutes and bodies relevant to the MPPMs" - as far as am aware
as SScretary of the Federated Assciations of Medical Technology and Executive Member of
Mas the Association of Respiratory Tecchicians and Physiologists, no approach has been made to
either organisation with reference to the education requirements of the technicians they represent. S. E. Gough
Federated Associations of Medica Technology
Papworth Hospital
Cambridge

Concepts in physics

Although 1 work in the field ot electroncs, I am
by both rraining and inclination a physicist, and by both training and inclination a physicist, and
it is in this field that I have earned my living for the past thirty years. It is in this context, the pasfore, that I h have watched winth growing
dismay and dissaisfaction the trend of dismay and dissatisfaction the trend of
theoretical and academic physics towards progressively more weird and seemingly irrational concepts.
As a physicist, one could look back with an
amused tolerance at the absurd notions of amused tolerance at the absurd notions of
phlogiston and caloric and essential spirits having negative weight, summoned up by our
brothers in the field of chemistry at the end of brothers in the field or chemistry at the end
the eighteenth century, in their struggles to explain the phenomena of combustive
oxidation Hower, explanion. However, there is a growing feeling
omong physicists that we ourselves, may be among physicists that we, ourselves, may be
climbing up an equally absurd gum tree in our climbing up an equally absurd gum tree in our constancy of the speed of light. Unfortunately, one of the consequences of the
acceptance by the academic establishment in the acarly 1920 s. of the general concepts expressed by Einstein in his special and general theories of relatively, has been that there is an effective
academic censorship of any ideas which have academic censorship of any ideas which have
tended to cast doubt on the validity of these
theories.
throughout my own professional clareer, and its
effect has been such that any public expression effect has been such that any publice expression
of doubts on the Fizzerald-Lorentz-Poincaréof doubts on the Fitzzerald--Lorentz-Poincarí-
Einstein sequence of theories has resulted in a Einstein sequence of theories has resulted in a
minor avalanche of privately published papers,
from authors who have found no way of from authors who have found no way of
expressing their views apart from this expressing their views aparr from this.
I have therefore noted with very grea approval the opportunity provided by Wireles World, as a respected iournal on the fringes of
physics, to authors such Essen ${ }^{1}$, ${ }^{2}$ ant physics, to authorss such a Esssen ${ }^{1}$, Catut $^{2}{ }^{2}$
Dingle
and Wellard ${ }^{4}$, and your other contributors Aspden ${ }^{6}$, Franclisen ${ }^{7}$, Diamond ${ }^{8}$,
Theocharis, ${ }^{\text {, }}$, ${ }^{\text {and }}$ and Morris 11 to contributors Aspden ${ }^{6}$, Francksen , Diam
Theocharis, ${ }^{\text {,h10 }}$ and M Morris
alternative to express which alternative views which would certainly not
have been permitted publication in any of those have been permitted pubication in any
journals more specifically dedicated to theoretical physics.
In particular, I think that the stress laid upon
the conservation of energy, by Wellard ${ }^{5}$ is he conservation of energy, by Wellard ${ }^{5}$, is one
which should be taken seriously, along with the implications of Maxwell's equations, as
discussed by him - chief among which is the discussed by him - chief among
need for some medium in which electromagnetic waves may be propagated.
Even Einstein, who was not noted for doffing his cap to his predecessors, in his own book
admitted that the concept of a completely empty

WIRELESS WORLD NOVEMBER 198
space was incomprehensible to him
If, theref medium forere.... pro assume thatat there is some rder to satisfy the findings of the MichelsonMorley experiment it was, at least locally,
geocentric, it would seem strange that we had not observed it.
Any good det
not observed it.
Any good detective story writer would allow
his readers to discover, in due course, that the hing for which they sought had been under hhirg for which they the sime, but thad been under recognised it for what it was. May I suggest tha
his function can be filled, in the case of e m propagation, by the gravitational field wishin propagation, by the gravitational field within
which we all must work. Surely it is too weak to carry any but the most feeble modulation as a symmetrical excursion in its value, but perhaps
is capable of being modulated, upwards, in an nsymmetrical manner.
This would account for the otherwise
inexplicable duality of
photon propagation, would give the results
photon propagaion, would give the results
found by Michelson and Morley, as well as that
found by Fizeau, which people now ound by Fizeau, which people now conveniently ygnore. Moreover, it would satisfy ince e.m. radiation could not go where it would
be lost.
be lost.
If I may attempt a similar debunking of the conceptof 'flack holes', ,o that offered by
Morris' ${ }^{\text {in }}$ in the case of the twins paradox, I ould argue that if a 'black hole' can form at all, xisted at the centre of the universe at the time the 'big bang', in which case we are all inside
Incidentally, if anyone, not a physicist, would
one right
In ike to read a lucid and analytical account of the cevolution of the relativity theories, I would
ecommend that by Cullwick in the $\begin{aligned} & \text { ournal of }\end{aligned}$ the IEE (March 1979, pp. 172-178). J. L. Linsley Hood
aunton

Wireless World letters

 Morris, W. T. Nov. 1979, p. 79

Amateur radio
 licences

Pat Hawker (World of Amateur Radio, September) makes a valid comment on the lack
of activity on the 28 MHz band and the danger of activity on the 28MHz band and the danger
of intrusion by other users. However, I find it
difficult diffficult to understand how class B licencees are
making it difficult for class A licencees to use making it difficult for class A licencees to use
28 MHz for mobile and local working. Surely, the opposite question should be posed; why not
allow class B licencess onto the 10 metre band? The answer is usually given as 'international operators on frequencies below 100 MHz operators in frequencies below 100 NHz
30 MHz from 1.1 .82) must pass a satutory
Morse est The test Morse test. The test standard is set by the
individual country. In the case of the UK the requirement is 12 words per minute, requirement is 12 words per minute,
transmitted and recieved with n uncorrected
errors. The cost of the test is high ((12) and if
one lives some distance from the very few available test centres the cost per attempt can
easily exceed $£ 52$. How do other countries nterpret these regulations? In Spain, no Morse
test. In the USSR and W. Germany, no test for rest. In the USSR and W. Germany, no test for
10 metres. In the USA, incentive licensing, starting at 5 w.p.m., with more power and frequencies available to more qualified people;
but M orse tests are receiving, comprehension tests only - far easier than a full, transmit and
receive, no-errors test.
Alarge pool of active and experienced radio
amateurs is sherefore readily available to take up the 10 metre band; surely a more desirable solution than the complete loss of a valuable and interesting part of the spectrum to other users.
If operation just below 28 MHz is to be allowed If operation just below 28 MHz is to be allowed
on production of a licence fee to c.. .ers, why not production of a licence fee to c.b.ers, why
not
$28 \mathrm{MHz}-29.7 \mathrm{MHz}$ to qualified ladio amateurs, who are unable or unwilling to
learse? earn Morse? not a fully integrated incentive licensing schem or the UK? In recent years the Radio Amateurs of questions; it has even been suggested that oradom chance may be quite an effective response solution technique. Why not introduce
evels of difficulty, with at least the lower levels dministered voluntarily by qualified amateurs, on the lines of the US incentive licensing
scheme?

sheme? As anoth

As another refinement, award 'points' for Morse test difficulty levels, thus affording two parallel, but linked, routes to class A type
icences. A secondary, but important, advanter f this scheme would be a very significant improvement in the technical knowledge of the 'average amateur', i.e. a fulfiliment of the self-
training clause of the licensing conditions. eter H. Saul, G8EUX Peter $\mathrm{H} . \mathrm{Sa}$
Towcester
Northants

The death of electric current

 Mr Catt attempts to argue in his reply to myletter in the August issue that the conventional heory of the electron current cannot cope with He instances a voltage-current step advancing long a transmission line at the velocity of light This fact, however, does not in the least requir be equal to the velocity of light as Mr Catr argues for in his para. 3. Indeed, as Mr Catt agres, and as we can calculate quite simply, the drit velocity of the electrons along a conducto mm/s for a 10 -ampere current in a copper wire f 1 mm diameter).
The point is, surely, that a conducting wire .g. for copper, $8.5 \times 10^{8 /} / \mathrm{cu}$. metre) hyssically closes to each other from end to end
Hence, firstly the electrons transmiting the Hence, firstly the electrons transmitting the ince they are already present everywhere alon he wires. Secondly, a voltage-current step can therocire be transmitted at a very much higher
veline at the velocity of light for the dielectric) for the
reason that each individual electron needs only move quite slowly for a very short distance, in order that the voltage-current step can be transmitted very rapidly over a much larger
distance. A cause travelling much slower than
the speed of light thus creates an effec ravelling at the speed of light.

A simple analogy often given in explanation is
that of the transmission of a forward movement along a line of trucks, each hin contact withent next, along a railway, linc. In a pontach wish the the
each truck moves quite slowly and only a short distance, ,ut the 'step' of movement, or push, is
very rapidy transmitted from one end of the
line to the other. I am therefore still somewhat at a loss to understand what discovery Mr Catt has made, or what experiments support his ideas; I
continue to find the 'billiard-ball electron' a continue to find the 'billiard-ball electron'
valid and useful concept in dealing with everyday electronics or telecommunications, of the standing wave electron is of little use, and herefore meaning, in solving normal electroni problems. Even in waveguide transmission, the
movement of electrons needs to be invoked, e. oo explain the attenuation of the voltage vector of a TEM wave in a padding attenuato Peter G. M. Dawe
Botley Botley
Oxford

Frequency hopping radio

read with interest in your July issue of the Read with interest in your July issue of the
Racal frequency hopping transciever and the
claim that this is the first such radio in production.
The attached data sheet shows that the securecom SC -16, which has been available for tilises the same technique of operation B. Stockton
tockton Partners Grimsby
South Humberside
Mr Stockoo alo provided hef following description: "Th

 pius codes capabiity, user changeable frequencies and
code sequences for orompanion or grou working allo
otal flexibibity. Selective calling, 128 channel widh interchangeable linear or pseudo orandom series vailable options. R.f. outputs of 50 -100 watts are
vailable." - Ed.

Engineering
 education

There is one point which your recent . ot encompassed. Until about ten years ago con encompassed. Until about ten years ago engineers was recruited, nof from university graduates, but from apprentices taken on as
school leavers and trained at night-school and on day release. The less able apprentices on day released. To be (technsician) engrineers in
devel
production test installotion production, test, installation, etč the me more able
pook the positions of junior engineers in took the positions of junior engineers in
designodevelopment, with similar prospects of promotion to the graduates recruited to fill of professional engineer" positions at a simil
Fe.
For reasons which should be obvious (a
partial list is given below*) the ex-apprenti
For reasons which should be obvious (a
partial list is given below ${ }^{\star}$ the ex-apprentices
were of more value in the design laboratories
 .

more

than the graduates; and it is perhaps nfortunate that the increased availability of earned societies to restrict membership to engineers.Noble
Canvey Island
Essex

* Familiarity with company procedures. Familiarity with technical concepts peculiar to the
company's area of interest. (Example: how many Faduates can explain $\mathrm{dB}, \mathrm{dBm}, \mathrm{dBmod} 0 \mathrm{dBm} 0 \mathrm{p}$
Familiarity with circui techniques and Familiarity with circuit techniques and components
Common to company's product range. Example: aduates who do not know what a quasi"omplementary class-B output stage isis. .ho confuse
"proceted" and "uffered" in c.m.o.s. terminology
deppite having used s. despite having used c.m....s. in in anuiviseritimy yroiect.)
Experience in rrouble-shooting. (Example: how Experience in crouble-shoo ing. (Example how

 The properily,
for production".
omment from Prof. D. A. Bell he bright graduate will very quickly pick up ea of incerest, if he he is notuliar to his employer's hem. The problem is with the not-so-bright raduate and the question is whecher he would ave been more use as a not-so-bright prentice. This raises three questions, all of
What should be the criteria for admission to a niversity course?
Can, should and do universities provide 3. Is the value of a university course limited to its vocational content?
But in any case I do
But in any case I do not think Mr Noble's complaints apply to $a l l$ university graduates:
much depends on the individual and the niversity from which he or she graduated.
d. Bell

NiCad batteries

 recharging/reactivating dry batteries and also iCad rechargeables, the increases in battery prices have been exacerbated by the wider raof goods requiring them and also by stereo cassette portable radios of up to 30 W outpu Nobody seems to know whether their $1 / 3-$ a good sound" or whether we should all be building 15 -foot horns, but I want to shortcircuit that topic by suggesting that
fundamental in the low bass region is a rare phenomenon.)
I want to make two suggestions about the variety of suff from NiCads. One is that we can pay for a few interchangeable NiCad packs by unning an electric razor off them and thus voiding the expense of shaver point in the may well have washbasins in bedrooms with wall sockets adjacent which it would now b ilegal to fir since they expose the user of a
defective shaver to electrocution through the the vailability of a wet earth connection in the asin.) And the other is that manufacturers between different devices. The risk of explosion is also threatened with person wrecking a large and heard of onc
with the heating effect of rapid charging robably carried past the end point. However, his means of charging in 20 minutes from flat condition is obviously here to stay at model
rallies and I merely suggest that cells should not be boxed in and also relay a rumour that new cells should be cycled twice before rapid harging is carried out.
he shorting wacks accicenentally shorted can make nstitute a fire risk hot indeed and hence terchangeable packs or battery boxes should developed with contacts below the pack race, as for instance in the socket used on cassettes etc. for 6 V power input; thus
diminating the fire risk Finally it is hard moment to get chargers for 2 or 3 small cells and hope large, versatile chargers will be roduced.
Bernard. Jones
London

Gag on authors

think I can help Mixer. In the August issue he ondered why Wireless W'orld does not get more contributions from Russia. Part of the answer
may lie in the following extract from a book by Jhn Barron
cience is controlled more closely than ientists. Iussia). The party needs and fears biective scientific enquiry if the nation is to progress, yet it dare not let them apply scientific enquiry to political, economic, and social subjects. It must grant access to Western Western ideas. It must grant enough freedom and status and incentive to do creative work but not enough to cause them to speak out publicly,
dilemma.",
("KGB", 1974, p. 102 .) S. Frost

Electronic organ

sound

Mr F. E. Norrington asks in May Letters why o many electronic organ stops sound unrealistic in spite of the presence of many of the upper he stop filters. One important factor in this natter must be the presence of out-of-tune styles of organ pipe as mentioned in "The
 Jane's, London, 1973) and in "Dictionary of
Pipe Organ Stops" by Stevens Irwin (Schirme Pipe Organ Stops" by Stevens Irwin (Schirmer
Books, New York, 1965). Specifically, many of the flue pipes are tuned by rolling down strips
metal between cuts at the top of the pipe and netal between cuts at the top of the pipe and
many reed pipes are regulated in a similar many reed pipes are regulated in a similar
manner (although with reeds the main tuning is performed by adjusting the reed). The effect o uch slots is to make the pipe appear to be a ill cause the harmonics to be out of tune which sharper in this case) relative to the undamental. In fact certain of the string stops have a slot cut at the top quite deliberately, distinctive sound by this means. In addition
narrow pipes, as used in string.toned stops, will which is hard to imitatate electronically. Additional effects must also contribute, including the addition of noise of various kinds. organ arises from the slight clashing of pipes which are inevitably slightly out of tune, in individual pipes. This effect is termed the "chorus effect".
Most electronic organs use the expedient ethod of forming sawtooth waves and using
ome form of octave division to generate the entire range of octaves siveded. This prevents he occurrence of chorus effects as all the unisons of a note are generated together and any
ctaves are phase locked to this. In addition, many electronic organs generate the mutation stops (sounding intervals such as fifths with th
unison) by taking them from the appropriate generator (e.g. using the G generator to produce fifith with C. This sounds srong because the
intervals of the scale are tempered whereas intervals of the scale are tempered whereas
intervals.
The lack of chorus effect with many designs electronic organ can be improved if more particularly if mutations are generated by their wn oscillators. Imitation of the out-of-tun armonics is more difficult but may be ing-modulation of the tone. This has the iifficulty that different stops may require different degrees of modification in this way,
and there would also be changes necessary withina rank. It would be difficult to do this ype of modififcation cheaply 1 herely harmonnce betwe rich a and onh which is "brassy" is the presence of some kind of resonance in the latter. The most effective
imitations of pipe organ reeds that I have heard imitations of pipe organ reeds that I have heard or gyrator) with a fairly high Q to produce a strong exaggeration of some part of the requency spectrum. This is not the same as
armonically rich sound such as a sawtooth where the intensity of harmonics decreases wi ncreasing frequency from the fundamental. I Would also take issue over Mr Norrington's
aggestion that an electronic organ need not mitate a pipe organ. This may well be true for pop organs with rhythm synthesizers and the ike, but organs for the serious performer of the
lassical organ repertoire, or for ecclesiastical se, iustify attempts to approach the sound of he pipe organ.
Peter Stockwell
Dunedin, New Zealand

The Nuvistor

The chreat of damage to semiconductors by EMP (electromagnetic pulse)) oould stimulate a revival for valves, particularly in military equipment (News, September). I expected this
when the Nuvistor was introduced by RCA. when the Nuvistor was introduced by RCA.
Whatever became of this device? The only equipment in which I have seen them is
oscillosgopes. One would have thought ccilloşopes. One would have thought good use of Nuvistors.
K. J. Treeby

WIRELESS WORLD NOVEMBER 1981

Circuit Ideas

Regulating l.e.d.

 outputssing a simple compensation circuit based n an opto-coupler, the power output 5% in series can be 25 deined to with $\pm 5 \%$ of the value at 25 deg . C over thei pensation is required to overcome the negative temperature coefficient of near frared l.e.ds which decreases the powe utput by 0.9% per deg. C increase. Fig. maintains the output power by varying the string. The 1.e.d. in the opto-coupler is used as a reference device and the col ector-base photodiode is used as an outpu onitor. A CA3140 op-amp regulates I_{f} by sensor. In addition, the 1.e.d. output power can be controlled by the potentiometer. The supply must provide adequate oitage for the 1.e.ds, i.e. $2.4 \mathrm{~V}+1.4$ time the number of l.e.ds in the string. Tem

erature performance will be improved he 1.e.ds are matched. Resistor R_{L} limits mined by calculating the maximum cur ent required and the value of Vcc above
If dumum value required.
If, due to a low Vcc, the le. ds cannot be

sed in a single string, several groups can be controlled as shown in Fig. 2. The equal I_{f} regulation in each string Norbain Electro-Optics Reading

C.m.o.s. to mains interface

Mains control by c.m.o.s. logic can be enable input and can drive extra switching safely achieved using this isolation circuit. a.c. voltages, and higher currents for al switched by using larger triacs. The 555 oscillator provides a master
at

Piezoelectric-crystal

driver

ecause piezoelectric sounders are most ficient at their reasonant frequency rive circuits should be adjusted to su,

$$
v i
$$ rystal and does not need to be adjusted ith a pre-set control. The circuit is a non nverting a.c. amplifier whose gain ap roaches the open-loop gain of the op ne piezoelectric device. The ceramic ele ment acts as a stable mechanical vibrato which determines the frequency of oscilla ion so the circuit automatically oscillates the sounder's resonant frequency. Th 10 V supply.

M. L. Ford orcester

Simple C.m.o.s. switch

A single c.m.o.s. transmission gate can be used as a touch switch which requires pracuically no current when off. The gate is 50 Hz signal to change the state of the switch. Resistors R should be 4 M7 for supplies between 5 and 8 V , but can be increased for higher supply voltages. Capacitor C smoothes the 50 Hz signal and
prevents the transmission gate from P. Record Glasgow

Accurate op-amp
 bridge

When measurements are made using resistive transducers, the sensors are often in-
cluded in the arms of a balanced bridge. An improved circuit can be achieved by using an op-amp in each arm of the bridge and positive going transducers $(+\Delta R)$ in arms 1 and 2 or negative going types in
arms 3 and 4. The bridge can be built around a single quad op-amp such as the LM324, and four matched sensors, and can be powered by d.c. or floating a.c. Output voltage is

$$
e_{\text {out }}=\frac{4 e_{\text {in }} \Delta R}{R}
$$

This shows that the output is linear over a wide range and has a four-fold sensitivity The circuit can also provide high output voltage, low output impedance and high noise immunity
N. Balakrish

India

Output amplifier with offset and selectable polarity

This circuit was developed as an output stage for a function generator. Output
waveforms of either polarity can be selected and added to an offset voltage which is variable and unaffected by the polarity
witch. Input impedance is $13 \mathrm{k} \Omega$ with the switch in either position M. P. Hadley

Interfacing microprocessors

Input and output functions
by J. D. Ferguson, B.Sc., M.Sc., M.Inst.P., J. Stewart, and P. Williams, B.Sc., Ph.D., M.Inst.P. Microelectronics Educational Development Centre, Paisley College of Technology

Part one of this series outlined a
universal interface for 6502 universal interface for 6502 microcomputers. Part two describes the operation and functions of the main i.es and gives simple example of driving the devices using machin code or Basic.

The 6522 v.i.a. is a very powerful device which can perform several functions simultaneously. It consists of several independent sections controlled by 168 -bit registers which occupy 16 sequential loca-
tions in memory, the base address being selected by decoding on the microprocessor board. Some registers are directly accessible via the pins of the i.c., while others are set and monitored by the data Fig. 2. Block diagram of the 6522.
bus. Each register is selected by the four least-significant address bits, A0 to A3 with the i.c. activated by chip-select pins. bytes and two registers, called ports A and B, are reserved for this purpose. In hardware oriented system the designer would specify one port as an input and the
other as an output, but this would take no other as an output, but this would take no
account of a common requirement for unequal numbers of pins. For example, if a dozen sensors are scanned and two or three warning indicators are driven, it would be costly to design a range of boards to cope
with the large number of possible variations. An alternative scheme has a controlling register associated with each port called the data-direction register. For every bit set to 1 in the d.d.r., the corre-
sponding pin of the port behaves as an
output, while a 0 sets the pin to behave as d.d.r. can, in one step, alter the status of any or all eight pins of the corresponding port. Similar control can be achieved ove the functions, and Fig. 1 shows the format of the auxiliary control register. This is the eleventh register out of sixteen on the chip,
and is itself selected by the address decod ing at A 000 to A 00 F . Therefore, the address of this register is A00B. Bits 0 and 1 determine whether the latches associated with the ports are latched, allowing data to
be held during sections of a program. be held during sections of a program.
Bits 2 to 4 control the shifr register, mining whether it is used for serial to parallel or parallel to serial conversion, and also the source of the timing pulses. One of the two internal timers can be used to generate single time delays in a so-called

monostable mode or to count the number monostable mode or to count the number
of transitions on a particular pin of a port. The last facility is useful for event counting or as the basis of a frequency -meter, while the monostable mode has wide applications in controlled time de-
lays. The timer has an internal 16 -bit register which can be reset to a prescribed value under program control, with interrupts being automatically generated at time-out. The
under the control of bits 6 and 7, but can also be used as a free-running generator or from 0 to 1 , with each half-cycle set by the value larched into the corresponding regis ter. This allows the value of a given half
cycle to be continually modified until the cycle to be continually modified until the
end of the previous half-cycle is reached because the timers run independently of. the microprocessor once a sequence has commenced. However, the microprocessor can always interrupt and contro the sequ-
ence.
The complete range of functions is large and a summary is shown in Table 1, which should be considered in conjunction with Fig. 2. Selected functions will be covered
in future articles but full details are avail in future articles but full
able in references 1 and 2 .

A-to-d converte

Most a-to-d converters take a single ana logue input signal and produce a binary coded output after an interval of typically
tens or hundreds of microseconds In tens or hundreds of microseconds. In engineering systems it is more often necessary the data for further processing. This is possible by combining an a-to-d converter with suitable analogue switching, and a suitable circuit is now available in a single
low-cost i.c. The ADC 0817 covers 16 channels automatically with an expansion capability for larger systems and, although the problem of signal conditioning re mains, for applications with signals abov
0.5 V a self-contained system is possible. 0.5 V . a self-contained system is possible.
The block diagram in Fig. 3 shows the main features of the system. An address decoder, normally driven from the four least-significant bits of the address bus,
selects the analogue channel in use. The decoder can be enabled and the conversion started by the rising and falling edges of single pulise. The appropriate analogue sen
nal is switched through, with an interven ing common stage of signal processing or filtering if required, and a chain of resiswith a successive until a match is found between its output and the signal being measured. The mostsignificant bit is tested first and accepted
or rejected after comparison with the unknown. Each further bit of the eight is similarly tested so that the cumulation voltage becomes closer and closer to the
unknown voltage. Each conversion take unknown voltage. Each conversion take
exactly eight test cycles regardless of the value of the unknown, which provides fas and precise timing relationships suitable for multi-channel systems.

On completion of the conversion,
Fig. 4. Internal ladder network of a ZN425E: The ladder can be powered by an internal
or external reference.

Fig. 1. Auxiliary control register of the 6522.
This is the eleventh register and has the

This is the eleven address AOOB.

Fig. 3. Block diagram of the ADC 0817

Some simplification is possible with
Basic programs which Basic programs which run sufficiently naturally before the start of the next in truction.

-to-a converter

he ZN425 is a well established device which lacks the sophistication of some
more recent devices, but is still worth using in general applications. Additiona gating and latching is required for use wit a microprocessor and at present only the $d-1$
to-a capability is used. The data bus latched to the converter and an internal R 2R ladder network provides a proportional output as shown in Fig. 4. An internal or ladder, but the internal counter provided for a-to-d applications is not used. Th reference may be a variable voltage if re quired, normally in the 0 to 5 V range, and a small negative reference voltage ($<0.5 \mathrm{~V}$) my the specification. Further details of the ZN425 can be found in reference 4 .

Processor interface

The 6522 was designed to interfac directly with the 6500 series of microproculties when used with the system mentioned in part one. Fig. 5 shows th ines used by the v.i.a., namely,

[^1]

Register select					Adrassed register	$\underline{R} \bar{W}=1$	$\mathrm{RW}=\mathrm{H}$	Notes
RS3	RS2	RS1	Aso	Address				
L	L	1	1	0	17B//RRB	Write ORB clear CB2 and CB1 interrup lags (IFRB3 and IFA4)	Read IRB clear CB2 and CB1 interrupt flags (IFR3 and IFR4)	1=high, 0=1ow
1	1	1	H	1	tra/ora	Write ORA clear CA2 and CA1 interrup lags (IFRO and IFR1)	Read IRA clear CA2 and CA1 interrup flags (IFRO and IFRI)	$\begin{aligned} & 1=\text { high, } 0=\text { low } \\ & \text { it ontrols } \mathrm{CAR} \\ & \text { handshake } \end{aligned}$
t	1	H	1	2	dorb	Write DDRB	Read DDAB	$0=$ input, $1=$ output
t	1	H	H	3	dDRA	Write dina	Read DDRA	$0=$ input, $1=$ output
t	H	1	t	4	${ }_{1}$	Write TIL-L	Read TIC-L clear $T 1$ interrupt flag (IFR6)	
1	H	1	H	5	${ }^{11}$	Write TLL-H\& TIC-H transser $71 .-$ L to claar T1 interupt intitate T 1 counting	Read TIC-H	
L	H	H	L	6	Ti	Write TIL-L	Read TILL	
L	H	H	H	7	T1	$\begin{aligned} & \text { Write T1L-H } \\ & \text { clitar T1 interrupt } \\ & \text { flag (IFRG) } \end{aligned}$	Read TIL-H	
H	L	\llcorner	1	8	T2	Write T2L-L	$\begin{aligned} & \text { Read T2C-L } \\ & \text { claar T2 interrupt } \\ & \text { fliag (IFR.5) } \end{aligned}$	
H	L	L	H	9	T2	Write T2C-H transter T2L-L to T2C-L clear T2 interrupt flag (IFRE) initiate T2 counting	Read T22-H	
H	L	H	L	A	SR	Write SR clear SR interrupt flag (IFR2)	$\left.\right\|_{\text {clear SA interrupt }} ^{n}$ flag (IFR2)	
H	L	H	H	B	ACR	Write ACR	Read ACR	
H	H	1	L	c	PCR	Write PCR	Read PCR	
H	H	1	H	0	Ifr	Write IFR	Read IFR	$1=$ detected, $0=$ not detected
H	H	H	1	E	IER	Write IER	Read IER	$1=$ enable, $0=$ disable
H	H	H	н	F	iraora	Write OBA clear CA2 and $¢$ CA1 interrupt flags (IFR0 and IFR1)	Read IRA clear CA2 and CA1 interrupt flags (IFRO and IFR1)	$1=$ high, $0=$ low no effect on CA handshake

Table 2. Driving the interface ics in machine code and Basic. In these examples the addres decode circuit has been adjusted so that each i.c. occupies the location shown.

Table 2(a) illustrates how the v.i.a. can be used to output a byte in parallel form on port B. The v.i.a. registers are treated as memory locations by the programmer and guage using LDA or STA instructions, or in Basic using Peek and Poke instructions. The ADC 0817 has been designed to be compatible with a wide range of microprocessors and Fig. 6 shows that most of the directly from the 6502
Data bus
${ }_{2}{ }_{2}$ Channel select The four least-significant ddress lines can be used ole sect each of the sixtee The R/W line is not used dir
 Read Data Strobe, NRDS, and the Not

Fig. 5. V.i.a. connections to the 6502
Fig. 6 . A-to-dinput/output connections and
timing diagrams.

Write Data Strobe, NWDS. NRDS and NWDS only go to zero during the positive vely as shown in Fig. 7. Fig. 6 shows how a Write operation to the i.c. activates the NWDS and creates the necessary transiions on the address-latch enable pin and
initiate-conversion pin to perform the following tasks. Select the input channel from the address currently on the four least-significant address lines. Initiate an analogue-to-digital conversion. After a
100 us delay, a Read operation activates the 100us delay, a Read operation activates the
NRDS, enabling the tri-state output and placing the digital signal on the data bus. Table 2 (b) shows the programming instructions used to drive the i.c. A Write
nstruction, STA or Poke, is used to define he input channel and initiate the converLDA or Peek, obtains the digital informa-
tion. The 425 E is not directly compatible with a microprocessor and must be used with from the processor and provides the 425 E converter with a continuous digital input. The latch is memory mapped and nabled by a chip-select signal from the ensures that the latch captures stable data on the bus during the positive part of the O_{2} clock. Table 2(c) shows how the 425E is used in Basic and assembly language.

Accurate sine-waves

Analogue implementation of the Darwood accurate sine-wave oscillator algorithm
by D. H. Follett

In response to Mr Darwood's 'Accurate sine-wave oscillator' article in the June'81 issue of Wireless World, the author shows here that the digital implementation used to generate accurate sine and cosine functions can be replaced by simple analogue circuits. A prototype circuit operated over three decades with $\pm 1 \mathrm{~dB}$ amplitude variation, less than 1° error between the quadrature outputs and around 1\% or less distortion.

The algorithm recently described by \mathbf{N} Darwood ${ }^{1}$ for generating sine and cosine functions with digital implementation may also be produced by analogue means, as
will be shown. The circuit is really a form of recursive digital filter but I am unrepentant in calling it an analogue implementaion since no dgization in the proper sense occurs.
The prototype operated over three de equency with amplitude varia ions of $\pm 1 \mathrm{~dB}$, distortion about 1% or less, and phase error between outputs less than 1°. Only four cheap quad i.cs are required, although Fig. 2 shows six i.cs, since the quad op-amps such as the LF347.

Principle

Referring to the original article for fuller explanation, each new value of $\sin n$ is com puted from the previous value by adding fraction ω of $\cos n$;
$\sin (n+\omega)=\sin n+\omega \cos n$
Note that ω does not have its usual signifiance. If we write $\sin (n+\omega)$ as $\sin n(t)$, the $(t-\tau)$, the value at time τ earlier, then

$$
\sin n(t)=\sin n(t-\tau)+\omega \cos n(t-\tau)
$$

Similarly

$\cos n(t)=\cos n(t-\tau)-\omega \sin n(t-\tau)$
These equations are applied as shown in the block diagram, Fig.1. The value put of the sample and hold circuit is effectively delayed by the sampling in terval τ and represents the value of $\sin n(t-\tau)$. To this is added the fraction ω of the cos function to generate the new similar process is used for cos n.

Referring again to Mr Darwood's article, the sine and cosine outputs are synthesized with $2 \pi / \omega$ steps per cycle so that the he sample clock frequency.

mplementation

The circuit was designed to operate in the udio-frequency range with values as each clock cycle (Q high) the values of sin and cos are transferred to the first pair of old capacitors while the previous values are held on the second pair. In the second second pair of capacitors. This avoids having to use very short sample times and ensures that loops are never closed while settling. The $100 \mathrm{k} \Omega$ resistors determine o be about one-tenth, giving about 60 teps per cycle. Although the circuit will run with 400 steps per cycle, distortion occurs because circuit errors become comparable with the step size. More accurate resistors will decrease circuit errors.
The diode-resistor networks around A_{2} and A_{6} provide a small degree of noninearity sufficient to stabilize the oscillation amplitude. If only one output is reunimportant, one network and the associated preset can be omitted, leaving only he $10 \mathrm{k} \Omega$ feedback resistor.

Setting up

nitially, the $1 \mathrm{k} \Omega$ presets should be set to ero to prevent oscillation and the null ffsets adjusted. The presets should then be advanced until oscillation occurs and then adjusted for phase quadrature. The
output amplitudes should be about 4 to 5 V

Fig.1. Block diagram illustrating application of the equations for values of $\sin \mathrm{n}(\mathrm{t})$ and
$\cos \mathrm{n}(\mathrm{t})$.
peak-to-peak. Finally, the null offsets may need readiusting. The output frequency is not critical during the adjustments, but hould be between 50 and $5,000 \mathrm{~Hz}$

Results

Figure 3 shows oscillograms for frequencies between 5 Hz and 16 kHz obtained by varying only the clock frequency. Single
time-base sweeps were used for all but the 16 kHz frequency as the steps are not, in general, synchronized with the output. In Fig. 4(a), the 500 Hz signal is expanded to show the steps more clearly, while Figs
4 (b) and (c) show Lissaious figures result ing from x - y display of the two outputs to illustrate the quadrature accuracy obtainable between 5 Hz (b) and 5 kHz (c).
The upper frequency for constant amplitude is about 16 kHz but frequencies creasing the 1 nF hold capacitors proportionally. These capacitors must of course be polystyrene types, or similar, to minimize dielectric soaking effects. If the clock is replaced by a voltage
controlled oscillator the circuir can also be used as a sweep oscillator.

Comparison

ut of interest, two other oscillators based n recursive filters were compared to the building blocks.
The first used direct implementation of the second-order differential for a seriesle filter in band-pass mode) This circuit

Minimum frequency
sin outt (sin out)
50 Hz with $C=10 \mathrm{n}$
A_{1} to $A_{8}, L F 353 N$
used two op-amps fewer but was limited to about 30 steps per cycle, as second order terms make circuit errors more critical. Phase-shift oscillators using three or
four cascaded single-pole filters were also tried. These oscillators were more docile than those previously described, but four sections were required to obtain quadrature outputs and almost twice the compo nent count of the circuit described here
gave an inferior performance. D.c. stability was, however, better as feedback at

Fig.3. Oscillograms for oscillator frequencies between 5 Hz and 16 kHz . A single sweep time-base was used for ah
Dut the 16 kHz wave-form in order to show the steps (the steps are not necessarily synchronous with the output frequency).

 d.c. is negative and thus reduces offsest.
The circuit described here is sensitive to offsets because of positive feedback at d.c. so offset null adjustment is included.

Reference

1 N. Darwood, Accurate sing-viaka, osp 69.78.

5kHz

Fig.2. Circuit diagram of the oscillator and clock. Op-amps $A_{,}$to A_{8} were four LF 353 N i.cs in the prototype but they can be
replaced by, say, two LF347 quad ics if replaced by, say, two LF347 quad i.cs if
required. These op-amps have j.f.e.t. required
inputs.

Fig.4. (a) is the 500 Hz sweep expanded to show the steps more clearly. (b) shows a Lissaious figure resulting from the two oscillator outputs at 5 Hz , and (c) is as (b)
but at a frequency of 5 kHz

thandar

 BRINGS LOW COST TO TEMPERATURE MEASUREMENTThe TH301 is a hand-held LCD digital thermometer designed to accept any standard type K (NiCr-NiAl) 30 a a offering a measurement range of $-50^{\circ} \mathrm{C}$ to $750^{\circ} \mathrm{C}$ with $1^{\circ} \mathrm{C}$ resolution.
Accuracy is better than 0.5% and precision automatic cold junction compensation maintains pecification over a wide ambient range.

Battery life from the 9 V alkaline battery supplied is in excess of 1000 hours and display indicators are provided for low battery condition and open circuit thermocouple.
The TH301 is fitted with a standard type K socket which will accept a wide variety of standard probes. A general purpose fast response naked-bead
 which makes it completely ready for use at a price of only $£ 59.50+\mathrm{VAT}$.
technical specification

thandar
Thandar Elecironics Lto.,
London Road, St. Ives.
Huntingdon, Cambs PE17

1000 SERIES OSCOPES

Telequipment 1000 Series The choice is yours

Tried, Tested and now even better! since their introduction a few series of high performance low-cost oscilloscopes have established themselves at the forefront of the
market. High performance because they are the result of intensive research and design efforts by one of the world's leading electronic instrument manufacturers, and low ost because of volume production plant.
Performance to spare.
With the D1000 series, Telequipme regard specifications as lower
limits, not maxima. For example he D1016A bandwidth is figure is actually in the region of 23 to 25 MHz and the usable bandwidth nearer 35 MHz . Input attenuator tolerances are
now specified at $\pm 3 \%$ for all D1000 series oscilloscopes, a considerable improvement over the previous $\pm 5 \%$. But again, the user may well find the true figure closer to \pm
More Accurate Time Bases The time bases, too, have be upgraded. All new D1000 instruments have been equipped with thermal compensation which

tightens time measurement curacy to $\pm 3 \%$, with improved stability as a bonus. o match these improved time base specifications, trigger
bandwidths and performance bandwidths and performance
characteristics have been substantially enhanced. Better Display
he D1016A also has a new CRT The size is just the same easy-toiew $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a "ulickphosphor which is a near equivalent to the P31 but is more efficient ctinically at low beam currents Choice of Bandwidth 0 MHz or 20 MHz with 5 mV division sensitivity at full bandwidth and 1 mV division at MHz in the DA, 4MHz in display modes; Algebraic Add True X-Y, Channel 1 and 2 Chopped or Alternated, Channel 2 only, and Channel 2 Inverted. For further details send reply coupon today.
Please - - - Please send details of the | D1016A \square D1010/D1011 \square |
Name
Position
I Company
I Address
1

Telephon
| Tektronix U.K. L
P.O. Box 69 .

Harpenden, Herts AL5 4UP Telephone: Harpenden 63141 Telex: 25559

WIRELESS WORLD NOVEMBER 1981
 News of the Month

Subscription tv by cable
in the 1920's and were extended and updated to include television, two and then three channel
tv. The cables could get the broadcasts to areas tv. The cables could er the broadcasts to areas
where the reception was poor or non-existent Since then, improvements and additions to the
broadcasting network have made the need for broadcasting network have made the need for
cable distribution redundant and the subscribers to the cable services were reducing in numbers. However the cable networks exist, and Rediffusion, amongst others, have been
pressing the Government to be allowed to instipressing tube Goven television services. Wirereless
tute substion
World reported the eraning of licences by World reported the granting of licences by the Home Office to a number of pilot schemes in
the May issue, and the first to commence trans the May issue, and the first to commence trans-
mission, on Wednesday the 9 th September, was the Rediffusion 'Starview'. Starview is being
transmited in five areas; Burneley Hull, Pontyransmitted in five areas; Burnley,
pridd, Reading and Tunbridge Wells. At the time of the launch, there were some 3,000 subscribers to Starview in the selected areas. Another 19,000 were subscribers to the
public broadcast network and there was a poten tial audience of 56,000 houses which could be easily connected to the cables.
Rediffusion research has indicated that what
the public really wanted was recent feature the public really wanted was recent feature
films. Sixteen films had been selected for broadcasting in September, with a further ten for
October. Two films are shown each evening October. Two films are shown each evening
with an extra late-night film on Friday and Saturday and an afternoon 'matinee' performance on Sunday.
Rediffusion were surprised by the high
distribution fees demanded by the Motion Pic ture Exporter Association of America. To break even, it is estimated that a subscription fee
could be as much $£ 12$ each month. Redifucould be as much as $£ 12$ each month. Rediffu-
sion have decided to charge the full rate, $£ 11.95$, only in Reading; in Burnley and Hull they are
charging only $£ 795$. charging only $£ 7.95$. described elsewhere in this issue.

S.s.b. mobile

 radio still promisingThe claim made two years ago by Pye Telecom-
munications Ltd that, to create more channels munications Ltd that, to create more channem-l at v.h.f. is the most promising technique (June 1979 issue p. 95) has now been given qualified support by some recent Home Office trials. The
narrow-band system actually tested, in compari-narrow-band system actually tested, in compari-
son with others, was s.s.b. with a channel spacing of only 5 kHz . The testing was a subiective evaluation of the quality of calls and it was done
by operators of a typical user of private mobile by operators of a typical user of private mobile
redio, Bell Fruit (UK) Ltd. The other two systems compared with the 5 kHz s.s. b . were
25 kHz and 12.5 kHz channel spacing using f.m. 25 kHz and 12.5 kHz channel spacing using f.m.
It was intended to use 12.5 kHz a.m. for comparison as well, but this in fact will be done
later.

When Racal Decca bought some digital displays from Hew Lett-Packard for use in radar equipment, the

According to D. M. Barnes of the Home
Office's Directorate of Radion Ofesults have shown that from a user's assessment results have shown that from a user's assessment
5 kHzs s.s.b. equipment could be used to provide akHz s.s.b. equipment coula be used to provide quality or intelligibility when compared with 12.5 kHz f.m. equipment. Furnhermore, in
many situations the quality of the s.s.b. equip. many situations the quality of the s.s.b. equip-
ment would be better than that of existing ment would be better than that of existing
12.5 kHz . m . equipment. However, it has also been shown that in general 25 kHz f.m. equip ment would provide a higher quality service
The use of 5 kHz s.s.b. could theoretically pro The use of kHz s.s.b. could theoretically protimes as many channels in a given block of
spectrum than 25 or 12.5 kHz fm equipment spectrum than 25 or 12.5 kHz f.m. equipmen
respectively. However, further work is required on the frequency re-use characteristics of th different systems before a final conclusion can
be reached". This rep This report comes from a paper de-
livered by Mr Barnes at the IERE's Clerk Maxwell Commemorative Conference on "Radio Re-
ceivers and Associated Systems" at Leeds in July. The tests were conducted over a six-week period on 21 mobiles - seven of each type with a base station of three transmitters in Cen-
tral London. Peak envelope powers of the three tral London. Peak envelope powers of the three
different systems were made equal: 10 watts p.e.p. for the mobiles and 25 watts e.r.p. for the transmitters. Frequencies were in the region of
160 MHz for the mobiles and 165 MHz for the transmitters. The f.m. transceivers were standard commercial land mobile radio equipments. The s.s.b. sets, produced by Pye Telecommuni-
cations, were of the single-sideband plus pilot cations, were of the single-sideband plus pilot
carrier type (see June 1979 issue). The pilot carrier level was set at -12 dB wisthe). The pect to the peak envelope power. Details of these sets were
presented by R. Wells of Pye in a companion presented by R. Wells of Pye in a companion
paper at the above IERE conference. Results were recorded for both stationary and
moving vehicles and also using moving vehicles and also using three areas of
different field strengths between about $3 \mathrm{JV} / \mathrm{m}$ different field strengths between about $3 \mu \mathrm{~V} / \mathrm{m}$
and $100 \mathrm{HV} / \mathrm{m}$. Altogether nearly 3000 results
were obtained, divided moe
between the three systems. Subiective rating of call quality by the operators was given in ternh
of CCIR ivepopint sale ranging from 5 (xecel of a CCIR five-point scale ranging from 5 (excellent) down to 1 (unusable). In the results the
.25 kHz f.m. equipment achieved a higher percentage of grade 5 ratings than the other two systems, but the s.s.b. equipment obtained
higher percentage of grade 5 ratings than then higher percentage of grade 5 ratings than the
12.5 kzz f.m. equipment. However, when grade 4 and grade 5 ratings were combined the
s.s.b. and 12.5 kHz f.m. had the same s.s.b. and 12.5 kHz f.m. had the same percen-
tage ratings. The paper commens: "This rend tage ratings. The paper comments: "This tend
to imply that on an overall basis $25 \mathrm{kHz} \mathrm{f.m}$. would provide the best quality service but s.s.b equipment would provide a similar or bette
quality than 12.5 kHz .m." Results obrained fo stationary and moving vehicles in a given area were similar.
When the results were considered on an area
basis "in the high field strenth equipment achieved a greater percentage of grade 5 ratings than either of the two f.m
systems. Howeyer in the systems. However, in the medium and low fiel
strength areas the 25 kHz f.m. achieved the strength areas the 25 kHz f.m. achieved the
highest percentage of grade 5 results with the s.s.b. achieving more than the 12.5 kHz f.m." Further work, according to the paper, wil
aim to discover the distance at which a give aim to discover the distance at which a give
s.s.b. channel frequency could be re-used with out causing interference. There will also be test
to establish the adjacent channel performance of to establish the adijacent channel performance of Pye Telecommun equipmen
with adapting one of their v.h.f/a.m. hand portable (walkie-talkie) sets, the P5001, for
s.s.b. operation with a 5 kHz thannel s.s.b. operation with a 5 kHz channel spacing.
For this a temperature-compensated crystal oscillator and i.f.cratystal fompers had tod ob spespecially
made. According to a further paper by R. made. According to a further paper by R. W.
Weills at the IERE conference, the results did Wells at the IERE conference, the results did
not fully meet operational requirements but not fully meet operational requirements but
they did show that "v.h.f. s.s.b. is indeed feasible with hand-portable equipment". There was
a larae cost penalty with the circuits used and
this in a large cost penalty with the circuits used and
this indicated a need for much more work be-
fore such a hand portable is a saleable reality.

WIRELESS WORLD NOVEMBER 1981

BBC graphics

Viewers will have noticed the change to the
tirles for BBC news. What they wonnt realise is that the striped patterns and figures are gene ated electronicaclly. ANT (animated news tites)
came into service on the 7 th September, only came into service on the 7th September, only
one month after it had been suggested that it one month after it had been suggested that it
may be possible. Priority was given to the may be possible. Priority was given to the
graphic design for the main 9 occlock news.
BBC engineers were able to demonstrate this BBC engineers were able to demonstrate this
sequence
within a week of statting the proiect. sequence within a week of starting the proiect.
After the details of the other sequences had been
produced it took a further three weeks to impleproduced it to
ment them.
The hardware for the system was based on The hardware for the system was based on
that used for the BBC2 electronic clock and the animated Open University logo. The equip.
ment needed modification to cater for multiple ment needed modification to cater for multiple
captions, the generation of 'key' signals so captions, the generation of 'key' signals so
that pictures may be incorporated into th sequences, and for the definition of certain
reas in the displays reas in the displays.
The software, which controls the command
nd the sequences of the animations, uses only kbyte of memory for the programme. It re uires another 6kbytes for the data. The data look-up table to arrange the actual sequence Each data table defines only those parts which eed to be changed, assuming a current state. his avoids the need to define the whole scree
or each step. The microprocessor control iggered 25 times a second by the display ontomatically
In a programme ot work, supported by the
Department of Industry, BBC research department has produced equipment to be used to
study enhancements to the British teletex stem.

Computers may Dial to each other

The British Standards Institution has publishe tation of data for interchange et the application
level (DIAL), a maior Draft for Develofment describing a new system of data interchange tha could lead to massive economies for users in titled Part 1 Recommendations for symatax and basic principles, the Draft is designed to achieve direct camputer-to-computer intercommunica-
tion and provides the basis for the firss 'Ianguage' in the world for general applications regardless of differences in the equipment used. At present, communuications such as invoice and purchase orders start off on one compute
and certainly end up on another in a differen organization. It's the bit in between that causes problems. Take, for example, a company whic
uses a computer to control stocks and orde uses a computer to control stocks and orde
their replenishment. Normally, the order printed out, put into an envelope and mailed
(via a postal service now much mere and slower than in pre-computer days), sorte in the recipient's mail room, part processed
clerically and then, ultimately, keyed into the clerically and then, ultimately,
'organization's computer system.
Note tre need for clerical pre-processing and
key-entry operations! These happen to be two o Key-entry operations! These happen to be two o the most expensive and errror-prone tasks asso
ciated with computer systems. And at every ciated with computer systems. And at every
stage of this drawn-out programme of events the order sits suaiting for attention. In the cir cumstances it is hardly surprising that a process
ing period of three days is considered to b nemarrably fast, three weeks is probably typica and three months not unknown. In other words a slow, tedious and remarkably inefficient
probess which stems largely from the lack of the
effective communication.
The maior obstacle to direct in The major obstacle to direct inter-compute data language and, hence, incompatibility in the software used by the sesder and the receiver,
not to mention anomalies in the equipment (e flexible discs at one end of the line - magnetic ape at the other). Where only one partner volved, of course, it it not difficult to writ oogrammes that will effect the necessay only one customer, or beyers with a single upplier. Nor is it feasible to accommodate
ddditional organizations by writing suites of in dividual programmes. Quite apart from the pro hibitive cost, there are just not enough analyst and programmers ava
terchange on this basis.
Obviously, the long-term solution is to adop standard messages using standard software ome industries with particularly urgent need
ave, in fact, already developed their own stan dards, notably those now employed in banking and airline computer systems. Currently, some
16 per cent of all clearing bank transactions and per cent of all clearing bank transactions and
probably well over 90 per cent of airline comunications are dealt with in this way. No very group of interests, however, has th ecessary expertise to devise independent stancross sector boundaries.
BSI's new DIAL system aims to provide commerce and administration having access computer services. Part lo of the Draft describes a general-purpose language for the interchange
of machine-readable data with a minnimum of
negotiation or agreement. It contains: A basic grammar, suitably precise for com puter processing, with extensions to me
specific applications. (2) General recommendations for the represendata.
(3) Administrative arrangements for data in terchange.
DIAL is intended for use with any ina) Telecommunication n
simultaneous transmission
(b) Telecommunications networks using a
(c) The transffer of physical media such as magnetic tape The language is independent of the applica-: ions and equipment used and has a structure
that permits the necessary degree of manual processing to ensure operational integrity and flexibility. In the interests of compatibility it
uses a set of characters (letter, digits and uses a set of characters (letter, digits and
ymbols) which are restricted to those available on virtually every computer, so that messages can be sent to anyone regardless of the type and make of the equipment at the receiving end.
Another important asset is that DIAL is con patible (most of it identical) with the standards produced for international I rade p procecudres by
SITPRO (the Board for the Simplification of SITPRO (the Board for the Simplification of
International Trade Procedures) which are approved by the United Nationss. Thus, although
DIAL will become a British Standard for inDIAL will become a British Standard for in-
ternal UK use it is compatible with international equiventse it an important wonsideration for organizations operating both at home and over
seas

Broadcasting "radio data"

Details of the BBC's experimental broadcasting
of digital signals for programme labelling, called of digital signals for programme labelling, called
"radio data"(News, September issue); were "radio data" (News, September issue), were
revealed by Dr S. R. Ely, BBC Research Department, at a recent IIRE conference, on
"Radio receivers and associated systems" ait
Leeds. (And further information became available in a BBC Research Department report, RD $1981 / 4$ "V.h.f. radio-data: experimental BBC
transmissions" June 1981.) The system; developed jointly by the BBC anh eleverket of
Sweden, has been used on three BBC v.h.f. sound transmitters in the London area, Radio 2 , Radio 4 and Radio Lonc
running since April this year
running since April this year.
The digital data is conveyed on a 57 kHz subcarrier which is phase-locked on a the third harmonic of the 199 KHz pilot tone of the stereo
transmission. Frequency tolerance of this transmission. Frequency tolerance of this
subcarrier during stereo broadcasts is $\pm 6 \mathrm{~Hz}$. It is added to the stereo multiplex signal (or a monophonic signal) at the input to the main carrier due to the 57 kHz subcarrier is about +2.25 kHz . This subcar rier is double -side band suppressed-carrier, amplitude modulated by the
digital data, which has the form of a bi-phase data signal with a bit rate of 1187.5 bit/s. (The method of modulation may be considered as a
form of two-phase p.s.k. with a phase deviation form of two-phase p.s.s. with a phase deviation
of $\pm 90^{\circ}$.) The bit rate is in fact, derived by dividing the transmitted subcarrier frequency by 48 . But this division ratio may occasionally
be altered to 50 or 46 , to facilitate phasing of the be altered to so ore 46 , trds, in such a way as to
transmitted cole one
insert or delete one 57 kHz cycle in each half of insert or delete e one 57 kHz cycle in each half of the bi-phase symbol corresponding to a data 6 . blocks per minute.
About 35% of the available data channel capa-
city is being used at resent to likely types of message required, including the likely types of message required, including
network name (e.g. BBC R4- see September News picture) in ASCII code for display pur poses. The remaining 65% of the capacity is dom binary sequence generator.
Currently these radio data transmissions are
being received by special BBC v.h.f. receivers being received by special BBC v.h.f. receivers
containing circuitry for demodulating the containing circuitry for demodulating the
57 kHz d.s.b.s.c. a.m.
signal and decoding the bi-phase digital symbols. The first operation is to recover the 57 kHz subcarrier from the
suppressed carrier d.s.b. radio data signal. This suppressed carrier r.s.b. . radio data signal. This
is then used locally in a synchronous demodula tor to recover the digital modulation at 1187. . bit/s. Before the synchronous demodulator,
though, a 57 kHz bandpass filter is inserted to
C.b. legalized

November 2 is the date set by the Home Office for the start of legal c.b. operation in the UK on the 27MHz and 934 Mitz bands, using fre-
quency modulation. Licences costing $£ 10$ will allow operators to use up to three sets.
The relevant specifications The relevant specifications are set out in Home MPire
and MTI3
HMSO at 1 .
Within a day of he Home Office announce
ment, Wireless Whord has already received ment, Wireless World has already received
protest from the Citizens' Band Association pointing out that the choice of frequencies means that the UK and European systems are
incompatible, and claiming that the new stan-
dard will render aircraft more vulnerable to interference than the illegal syyten.
sound signal comparats in large ampluad nal. recovered by a symbol decoder deccribed as an purposes the 1187.5 bits rate must be available locally as a clocksignal. This is obtained by
diving dividing down the recovered 57 kHz subcarrie
by the 48 divisor mentioned above and correct by the 48 divisor mentioned above and correctl|
phasing the resulting 1187.5 bit/s clock relative to the zero-crossings of the recovered bi-phase coded data stream.
Last year this BBC/Televerket system, to
gether with three other similar ones, from grance, Holland and Finland, were field tested in the Bern region of Switzerlsnd, using a Swis
PTT broadcast transmitter in the mountains. In these conditions, all four systems were found to shese conditions, alf four systems were found
suffer high mean bit-error-rate of 10 to 20%. The principal source of errors was though signals to intrude into the data channels.
However However, with two of the systems using a hig frequen cy subcarrier ((BBC/Televerket o
57 KHz and TTF (France) on 58.3314 kHz), 70% of data blocks were received without error as against two systems using lower subcarrier
(NOS (Holland on 16.625 kHz and YLE (Fin (NOS (Holland) on 16.625 kHz and YLE (Fin
land) on 19.6 kHz which gave only 10% land) on 19.6 kHz) which gave only 10% an
27% respectively of data blocks received error
free. firm specification for a Western European standarided by the EBU.

 Manchester-data decoder", Electronic Design, 27, 15,
pp. 110-116, 1979.

Two-way wrist radio by year 2000

A two-way wrist radio will become a reality
by the year 2000 as a result of communication by the year 2000 as a result of communications
satllite developments, according to the Lock-
heed Missiles \& Space heed Missiles \& Space Company. Lockheed engineers in California are de-
veloping a 180 -foot demonstration version of communications satellite antenna suitable fo transport on the Space Shuttle. Once in space,
such an antenna would be unfurled and look such an antenna would be unfurled and look
much like a huge umbrella. It would act as highly sensitive receiver of low-power signals
from Earth which it would re-broadcast at high Ievels to designated areas. Thus, a small, low-
power radio - even worn on the wrist - using a simple antenna, could transmit voice using the satellite as a signal booster and switchboard that
would beam transmissions to selected parts of would beam transmissions to selected parts of
the earth, such as remote areas without telethe earth,
phone lines.
Other porential uses for the advanced antenna are radiometry - the measuring of temper
tures, snowpack, moisture content on Earth observations of great value to agriculture; radio astronomy, and radio telescope applications.
The antenna with its communication satellit The antenna with its communication satellite
could be launched by the Space Shutrte into could be launched by the Space shurtule into
geosychronous orbit 22,300 miles above the
Earth's equator On site Earth's equator. On site, the antenna would be
deployed automatically. deployed automatically.
Present communications satellites used in

Engineers study social implications of technology

Electrical and electronics engineers in the USA society, including both pastivive technology on society, including both positive and negative
effects, the impact of sociecty on the engineering profession, the history of the societal aspects o economic responsibility in the practice of engi neering and itsselated technology These are the stated interests of a new group the Society on the Social Implications of Tech York. It will publish a journal, the IEEE Tech noboue and Sociey Magazine, the first issue o
which will appear in early 1982 The Socity? ve committce will consist of repre cal divisions togeter with its own officers an elected representatives. Although it will be in subject, the new society will not have sole responsibility for developing ethical standard Robert I Bogum 530 w can b St., New York, N. Y. 10025 , USA.
Two UR organizations recently set up to Rewsarch April issue) and the New Technology Research Group
(May issue, p. 53).
commercial communications, including televi-
sion, sion, require elaborate anitena systems on
Earth. The antenna/saetlinte system envisaged by Lockheed - because of its great sensitivit
and beam-aiming ability - would enable users to communicate nationwide using simpl

Simulator aids reactor safety

An Advanced Gas-cooled Reactor (AGR)
training simulator has been ordered from Martraining simulator has been ordered from Mar-
coni Space and Defence ystems MSDS) to assist in training operators at Hunterston ' B nuclear power station in Scotland.
The order, which comes from the South of mately $£ 3$ million and results from feasibilit studies carried out by MSDS since 1973 for
both the SSEB and the Central Electricity Gen erating Board. The simulator, which will be the first in the
world to provide total realism in terms of accur acy and speed in a nuclear power station contro
room, is to be installed at the Hunterston " B ' room, is to be in
site by mid-1983.
The principles used in the design of the AGR
simulator can be used equally for a pressurize simulator can be used equally for a pressurize
water reactor (PWR). The PWR is based on American technology and is similar to that
involved in the accident at the Three Mile Isinvolved in the accident at the Three Mile Is-
land power station, Harrisburg, Pennsylvania two years ago. Marconi hopes to gain significant
export orders as well as further orders from th export orders as well as further orders from the
UK in support of the universal drive to maintain high training standards for operators in nuclear
power plants.

High street battle of personal computers

Two items of news which affect the microcom-
puter came out at about the same time. One was that the mainframe compurer manufacturer, IBM, is to market a micro. There have been
many analyses of the impact this will have. The many analyses of the impact this will have. The
Venture Development Corporation in America, who produce many market analyses, have pub-
lished a sudy which indicates that by "placing lished a study which indicates that by "placing
is seal of approval on low end computers, IBM its seal of approval on low end computers, IBM
will spark growth in the market for both personal and small business computers. It will be some time, though, before IBM captures a sig-
nificant share of the personal computer market. IBM will have to strengthen its position with regard to distribution channels and applications
software before Radio Shack [Tandy. and software before Radio Shack [Tandy] and
Apple will have anyhing to worry about". VDC
also points out that the [American] home user
thinks that games are of the first importance and
that users would not tuy a home computer that that users would not buy a home computer that
didn't have Space Invaders. IBM are selling
their computer through the Sears Rebuct their computer through the Sears Roebuck mail
order catalogue and through the US Compu order catalogue and thround
terland chain of reail stores.
Another analysis from Gnostics Concept gives Another analysis from Gnostics Concept gives
a different answer. They suggest that the basic
version of the IBM personal compter has version of the IBM personal computer has
higher specification and a lower price than the higher specification and d lower price than the
Apple II and the full system is also better and Appaper and the full system is also better and
cheaper than the Apple III. So the battle has
started but started but at present IBM have no plans to
market outside North America. utside North America
The UK domestic market is also hotting up,
however, with the news that the Sinclair ZX8
is to te wid however, with the news that the Sinclair ZX8
is to be sold in selected High Street branches of
W. H. Smith \& Son. Boots, Argos and Rumbe W. H. Smith \& Son. Boots, Argos and Rumbe-
lows are all planning to test-market the Texas
Instruments Instruments' ' 1 9914. Boots and Smiths are also
planning to sell the Commod planning to sell the Commodore VIC 20 compu-
ter, but at present there are enough to ter, but at present there are enough to go
round and Commodore will be selling only through computer shops. The VIC 20 has been besest by delays in production and by a lack of
software packages software packages to go with it. It is thought
that the machine will be launched towards the that the machine
end of the year.
Anoter '
Another 'dark horse' waiting on the sidelines
is the BBC microcer is the BBC microcomputer which has not been
released at the time released at the time of futer which has not been
specification at a low price The offers a high specification at a low price. The BBC plans are
to sell through mail order only, but the to sell through mail order only, but the prolifer-
ation of high street outlets might get them to ation of high street outlets might get them to
change their minds.

Display aid for microprocessors

Oscilloscope interface for alphanumeric information
by Dr K. Padmanabhan, Ph.D., M.I.E.E., and A. P. Senthilnathan

When developing, testing or repairing complex digital circuits, particulari'
microprocessor based systems, a means of displaying information is helpful and often essential. A convenient method of displaying data is on an oscilloscope, and this information to be displayed simultaneously.

The circuit is connected to the address and data lines of a microprocessor system and provides \mathbf{X} and \mathbf{Y} inputs suitable for a
5 MHz oscilloscope. The design is based on a simple ASCII character generator which uses a dot matrix display. A surplus
MK2002 is shown in Fig. 1, but any char acter generator which gives column outputs can be used. The display comprises
four rows of 16 characters, each formed four rows of 16 characters, each formed from a 5×7 dot matrix. Three dot spaces are used between characters and three line use Z -modulation to produce the characters, instead character information is achieved by switching the Y -axis for each dot on a line. This by the simulated display produces a positive and negative image as viewed by adjusting the Y -shift control. The circuit uses a 555 clock running at 100 kHz for the dot timing, and a 4011 time-base generator operating at around
600 Hz for the X -axis line generation. The 600 Hz for the X-axis line generation. The
character generator is provided with AS CII data from a 128×8 static r.a.m. and, as the MK2002 is a m.o.s. device, a t.t.I. to m.o.s. interface is provided by two 7426 high-voltage NAND gate i.
one-of-ten decoder-driver.
one-of-ten decoder-driver.
Clock pulses are gated to a 40247 -stage column counter which drives the column decoder through eight steps and change the column selected for each character. At the end of every 8th count, the r.a.m selector to present the next character on the same row. After accessing and display ing 16 characters on the first line of the first row, the clock gate is disabled by flip-flop which detects the 128th coun On the nex On the next line the clock gate is
enabled by the rising edge of the time-base signal and the row counter advances b one. In this way the 4158 advances for ten successive lines, out of which seven pro-
vide the display and three provide line spacing. After line 10 , the remaining three
 Fig. 2. Dot matrix display format. Because
the γ-axis is switched to produce dots on line, positive and negative displays are
shown simultaneously.
rows (10 lines each) follow in the sam manner except that the memory addres count continues from 16 to 64 enected to address lines A4 and AS are conected stage of the 4518 . This stag counts up to five because only four rows of characters are used.
Column output information from the MK 2002 is selected during each of the seven lines by a 74151 1-out-of-8 switch hich is addressed by the 4518 . The line are shifted below each other by addin ing the Y-amplifier of the oscilloscope Video shift information from the 74151 output is also combined by the CA3130. Data from a microprocessor is fed to the memory by a 74365 unidirectional buffer.
Six data lines are used as only six lines are needed for the capital letters in ASCII code. The 64 characters stored in r.a.m. are continuously displayed on the c.r. until the data is changed by switching the r.a.m. address to the microprocessor via
the 74157 address selector, and enabling the 74365 with the latch output. For storing data, the 7475 is loaded with a 1 and software instructions load the r.a.m. Software then resets the latch by loading a 0 addresses back to the counters.
The address decoder selects the display r.a.m., which here is given the addresse 0800 to 087 F . However, in many coding is not necessary. Fig 3 gives an example of the software necessary fo
displaying data and a legend on four lines
in locations 0180 to 01 C 0 using an 8085 processor.
Part two describes hardware modifications for 8 -line operation and programming details for a 276 character generator. Fig. 3. Software example for an 8085
processor.

Electronic Displays '81
 With the continued success of Electronic

Displays, this year's show was held in the more spacious Kensington Exhibition Centre, and attracted 55 exhibitors. Unlike some other areas of electronics, the display market does not seem to be seriously
affected by the economic troubles. Several exhibitors were showing new products xhibitors were showing new products
which had just been "unpacked" and they could not yet give prices or delivery.

L.c.ds - the fastest

 growing technologyBecause the traditional weaknesses of overcome, they are now receiving being overcome, they are now receiving a great
deal of attention from many equipment makers. This trend was reflected by the large number of exhibitors, nearly a third, who were offering custom or ready-made displays. Most development effort at pre-
sent is aimed at increasing the step-response and temperature range of the fluids and increasing the size of displays which is

A 235 mm square plasma panel from
Thomson-CSF which offers a resolution of Thomson-CSF which
512 lines $x 512$ points.
limited by the sealing process on the glas plates.
Most manufacturers are improving the ermetic sealing technique and conse quently are offering much larger display
sizes. Several exhibitors were demonstrating 7 -segment and dot-matrix displays ith character heights above 80 mm . Luci displays announced a new range of devices -30 to +85 deg . C .

More distributors want a piece of the action

New names in the l.c.d. business include Bulgin, ITT and Racal. Bulgin are now marketing the Data Images (a splinter ompany from LXD) range of display
which includes two and four-inch charac-
ter sizes. These displays are supported with electroluminescent backlights and Bulgin's own range of bezel assemblies. ITT Meridian have recently signed an agreement with the Japanese manufacturer Epson who claim to have produced the
first range of long-life l.c.ds. These devices offer an expected lifetime. of $100,000 \mathrm{hrs}$ instead of the usual $50,000 \mathrm{hrs}$. Racal's stand generated a lot of interest following sion which can offer a custom design and manufacturing service for colour and large area displays.
Two innovations from this division are a display electronic module (d.e.m.) and a
reconfiguring display/keyboard. D.e.m.
new set of prompts in a similar way to the "menu" on a computer v.d.u.

Flat-panel displays are

 replacing c.r.IsFlat-panel displays using liquid crystal, ecectroluminescent and plasma technology were all demonstrated as alternatives to the newcomer to the show, claim to mani, facture over 50% of the world 1 manufacture over 50% of the world 1.c.d. out-
put, including flat-panel types. One disappointment, however, was the "nonarrival" of Hitachi's prototype 1.c.d. colour television. Exhibits which did ar

Flat screen electroluminescent displays Δ An example of Racal's reconfigurable key-

combines a l.c.d. and thick-film tech nology to produce a single display driv module. The 1.c.d. backplane forms a
thick-film substrate which carries the necessary circuits to produce, for example complete frequency counter and display module. This system allows the display to e used in the transmissive mode withou guring display/keyboard combines a l.c.d. with a touch-sensitive switch, when pressed, reconfigures the display to show
board aisplay.
ment displays and a 64×200 dot-matrix display for larger characters. To support heir range of displays, Hitachi have also developed a 4-bit c.m.o.s. microprocessor which will directly drive I.c.ds.
G.E.C. have produced an 80 -character d.c. electroluminescent display panel
which only requires 8 and +60 V supplies. Each of the 80 characters is formed by a 5×7 dot matrix and they are arranged in four rows. The display panel is supplied with two circuit boards which provide
supply regulation, data organization, character generation and display drive. A 128 character set is standard, but special charcter sets can be provided.
A 235 mm square a.c. plasma panel from points. This panel can be used for displaying graphics where each point is individually addressed. Alternatively, for alphanumeric operation, 64 lines of 855×7 haracters or 32 lines of 647×9 characters The three-day
by a conference which presented 24 papers covering display device technology, eletext, display systems, and display applications. Reprints from these sessions
and those presented at the 78,79 and 80 exhibitions are available from Network, Printers Mews, Market Hill, Buckingham,

C.b. frequency synthesis

Generating 40 channels for 27 MHz
by E. F. da Silva, M.Sc., Ph.D.

This article reviews the digital

 requency synthesizer systems which controlled frequencies required for 40 channel British citizens' band operating at 27 MHz . A practica design is also described whichprovides 40 channel operation.

The lower and upper frequency limits of c.b. are 27.601250 and 27.991250 MHz ,
with a channel spacing of 10 kHz and a frequency tolerance of 1.5 kHz per chan nel. The carrier is frequency modulated with voice transmission and the maximum frequency deviation is 2.5 kHz . In addition to the frequencies shown in Table 1,
another set of forty frequencies (transmit frequencies and receiver intermediate frequency) must be supplied for the local oscillation in the superheterodyne re ceiver. In view of the requirements for
frequency stability, manually frequency stability, manually controlled
variable-tuning oscillators are not practical and, if direct crystal-controlled oscillators are used, frequency multiplication and/or mixing will generally be necessary to produce the required frequency deviation.
Unfortunately, frequency multiplication and mixing produce harmonics and increase the cost, so a cheaper and more practical method is desirable. The availability of high-frequency low-power c.m.o.s. i.cs now makes frequency synthe-
sis a practical alternative. An ideal synthesizer for c.b. would comprise one or two i.cs but, as there are no dedicated devices available at present, standard components must be used.
The basic frequency synthesizer as controlled oscillator operating at frequency f_{0}. This frequency is divided by a programmable divider-counter N , to produce a frequency f_{n} which is compared with a reference frequency f_{r}. The dif-
ference between these two frequencies is translated into a d.c. voltage which controls the v.c.o. so that $f_{\mathrm{n}}=f_{\mathrm{r}}$. Because $f_{0}=$ $N f_{\mathrm{n}}=N f_{\mathrm{r}}, f_{0}$ is locked to the reference requency by the programmabie divider. frequency channel step or spacing i.e. 10 kHz for 27 MHz c.b., or a sub-multiple of the channel spacing so that integer changes in N will step the output frequency to the required operating fre-

Jirect synthesls for c.b.
The block diagram of a direct synthesis
system, shown in Fig. 2., is similar to Fig.
between the programmable divider and

Table 1. Allocated frequencies for the 27MHz citizens' band			
27.601250	27.701250	27.801250	27.901250
27.611250	27.711250	27.811250	27.911250
27.621250	27.721250	27.821250	27.921250
27.631250	27.731250	27.831250	27.931250
27.641250	27.741250	27.841250	27.941250
27.651250	27.751250	27.851250	27.951250
27.6611250	27.761250	27.861250	27.961250
27.671250	27.771250	27.871250	
27.681250	27.781250	27.881250	27.981250
27.691250	27.791250	27.891250	27.991250

g. 1. Basic frequency synthesizer system

Fig. 2. Direct frequency synthesizer which uses a prescaler between the programmable divider and v.c...O.
Fig. 3. Mixing type of frequency synthesizer. The output frequency is mixed with a crystal oscillator signal to produce an intermediate frequency.

WIRELESS WORLD NOVEMBER 198 readily available for direct operation at 27 MHz . Also, crystal oscillators operating erally bulky and expensive, so it is more

Fig. 4. Practical design for a mixing synthesizer. L_{1} is 13 turns of 0.25 mm wire on a Neosid
convenient to use a higher crystal frequency
As mentioned earlier, the channel spacing is 10 kHz , the lowest transmit frequency is 27.601250 MHz and the highest
transmit frequency is 27.991250 MHz . The factors of these frequencies are $2 \times 5 \times 5$ $\times 5 \times 5 \times 22081 \mathrm{~Hz}$, and $2 \times 5 \times 5 \times 5 \times$ $5 \times 2239 \mathrm{~Hz}$ respectively. With c.m.o.s programmable counters restricted to would give programmable-counter ratios
ering and also cause a large change in N
 quired for each channel change. A similar system has been described by RCA fo American citizens' band transceivers.

Synthesizer mixing methods
 A block diagram of a frequency synthe output frequency f_{0} high, 27.991250 MHz ,

 mable divider-counter. The advantages of such a system are, the reference frequency can be made equal to the channel spacing, a prescaler need not be used for c.m.o.s. factor is greatly reduced which increases the loop bandwidth, more easily divisible frequencies can be chosen and the frequencies are lower, which eases production techniques. A disadvantage is the additional cost of a mixer and crystal oscillator. However, this cost is greatly offset by thesaving in logic circuits which would normally be needed to generate the local oscilator signal.

Local oscillator irequencies

The set of forty local-oscillator frequencies for the transceiver when receiving can be obtained in several ways. The programma ble counter can be made to perform an
additional count when the transceiver is aditional count when the transceiver is operating in the receive mode. For 10 kHz , a division ratio of 140 , and a receiver i.f. of 460 kHz , the local-oscillator frequency must be $27.991250+0.460$, i.e. 28.451250 MHz .

This frequency can be generated by let-
ting N count initially to 140 (the figure set ting N count initalily to 140 (the figure set then setting N to count an additional 46 steps $(460 \mathrm{kHz} \div 10 \mathrm{kHz})$, i.e. a total of 140 +46 . At the end of this count an output pulse is fed to the phase comparator. The
additional 46 steps can be produced automatically by using multiplexing devices such as the 4019. This system produces local-oscillator frequencies greater than the transmit frequency by the chosen i.f., bu i.cs. detection where, instead of letting the programmable counter reach its full coun of 140 , the count is stopped at $140-46$, i.e.
the 94 th step. Therefore, the frequency f_{n} will initially be greater than the reference frequency and it will cause the phase comparator to decreases the v.c.o. frequency
until it is 460 kHz below its initial freuntil it is 460 kHz below
quency of 27.991250 MHz
quency of 27.991250 MHz .
A third scheme, only applicable to frequency mixing systems, is simply to switch in an alternative crystal which is offset from the transmit frequency by the receiver i.f. This method permits either high tor and is relatively easy to implement.

Practical circuit

A frequency synthesizer using the mixing A frequency synthesizer using the mixing
method described above is shown in Fig. 4. The crystal reference-oscillator fre quency f_{y} is produced by a 1 MHz crystal. No tuning controls are needed, and the
frequency divider chain $\div R$ is incorporated frequency divider chain $\div \mathrm{R}$ is incorporated
within the 14568 phase comparator i.c.

The division ratio has been programmed to therefore 10 kHz . The programmable di-vider-counter divides over the range 101 to 140. The units and tenth part of the divi-
sion ratio is incorporated in the 14569 and is controlled externally by binary switches connected to the DpA and DpB inputs respectively. The hundredth part of the progammable counter in incorporated in
the 14568 in conjunction with the phase comparator. This part of the counter is comparator. This part of the counter is
hard-wired to divide by 1 , so no switch is necessary. The local oscillator frequencies are obtained by switching in the 27.051250 Mrzcrystal in place
26.591250 MHz transmit crystal.

Fig. 5. Typical spectrum around the carrier
To adjust the synthesizer, set the thumbwheel switches to 20 , i.e. a frequency-division ratio of 120 and check that the transmit crystal is being used. Adjust L_{1} in the v.c.o. until the i.e.d. turns of and then set the voltage at
point A to 2.6 V . If a counter is available, check that the output frequency is 27.791250 MHz . Set the programmable counter switches through positions 1 to 40 and check that the frequencies agree with Table 1 .
Switch in the receive crystal, programmable counter switches from 1 to 40 and check that the output frequencies are 460 kHz above the corresponding values in Table 1. The synthesizer is now adiusted and should produce
shown in Fig. 5.

Further reading

1. Home Office Publications, "Open Chan-
nel Radio",
Juty, 19itizens' band radio, HMSO, 2. Dance, B. "Digital Tuning Systems",
Electronic Industry, p.41-46, June, 1981 . 3. RCA application note ICAN 6374 , "Appli-
cations of the COS/MOS CD4 059 programmable divide by N counter", Digital frequency synthesis for $F M$ tuners and $C B$
transceivers.
2. RCA application note ICAN 6716, "Low
Power Digital Frequency Synthesizer utilizPower Digital Frequ
ing COS/MOS ICs

Books

Semiconductor Data Book, | compier A. M. Bal |
| :---: |
| 184 |

184 pp., paperback
Newnes Technical Books, 55.50
 Semiconductor Data Book, last published in
1975, will be pleased to know that a new edition - the eleventh - is now published. valves
 open for a full range of discrete semiconductor
devices.
II format
In format, the book is very similiar to its
predecessors, kiving a number of the most impredecesors, giving a number of the moss impor rant char acteristics against each typa
number, the main listing being followed by a section on pinout details and list of devices comparable to each type - though this is not cross

Electric Circuit Theory, by 1 . Yorke
331 pp ., hard
331.p., hard and paper backs

Pergamen Press | Pergamon Press Let |
| :--- |
| Dr Yorke's intention was 13.00 (66.50) | Uriverses intention was to provide first-year circuit, theory "of modest complexity and

length". The mathemaics ne cem for length". The mathematics needed for an appre
ciation of the text do not, therefore, extend beyond A-level. Chapters on a.c. and d.c. circuits by the
steady-state and transient analysis of inear cir steady-state and transient analysis of linear cir
cuits in the time and frequency domains by means of exponential and Lupplace trananforms. Chapters on network analysis include introduc
tions $t o$ Kirchhoff, Theverin and tion to Kirchhoff, Thevenin and Norton, topo
logy, the superposition theorem and the fre quency responsenpof of etworks with attention to poles and zeros and the Bode plot. The final
chapter deals with the ransmission of power in chapter deals with
polyphase lines.
Throughout the book, the author is careful to include a arare number of problems (answer
given and a short bibiography is provided

Radio and Television Servicing,
E15pp..hardback
Macdonald, $£ 17.50$
This is the latest in a long series of books well known to those engaged in repairing domestic
receivers. It oonsists of manufacurers semen information - circuit mangracturers servicicin
deaisis alignment details at least and, in some cases, a more de de
tailed description - of several hundred 19808 models of radio and television receiver, clocks, tape recorders and music centres from mosto
the manufacurers, with a surlement the manufacturers, with a supplement con-
taining informaion which has appeared since the data steets were published.
Computer
Consciousness
by H. D. Covvey and N. H. Mcalister
Addison-Wesley, $\$ 4.95$
 are eielous of status. The two together have
established a new social class of compurer punt estabished anew sociat cass of computer pun-
diti, in whose interest it is to baffe ehe public
with
 appearance of a great number of books which
set out to dispel the fog and explain computers
simple terms. This is one such book. complicated, it it is barely possible to explain whimsical headings will make the subbiect tasier ounderstand. This is a tenative book: in com. non with fara too many of its kind, it spend distance without ever coming info contact with them, and gives the feeling of listening to a operat ot begin. Faced winh a computer, most lay people (to
Fit
Find whom this book is directly addressed) will ask wer here e there is much vague generalizatiol
and background, but not much to help a businessman decide whecher a computer would as
sist him or not. There is a need for a text which sist him or not. There is a need for a text which
will debunk the subiect in a helpulu and will debunk the subject in
concrete manner. This is sot it.
Linear Integrated Circuits
by Sol D. Prensky and Arthur H.
Seidman 336 Prentice/Hall International, $£ 14.95$ This. is a practical book on the applications of linear $i . c$ sor the engineer or tecchician writeen
at about the same level as Wireless World at abou the same lever as
covers op-amps, incluelus
Worrad. board work, power amplifiers, consumer and
communications circuits, regulators, digital incommunications circuits, regulators, digital in-
terfacing, phase-locked loops, and a add and d de
 vices by type nuppendix insts commercial de
cripions and
cives on-tine des cripions. and cross-references with the text.
Much of the material apears Much of the material appears to have been ob-
tained from manufacuruers application notes. Seidman is a professor of electrical engineering and the book is an expansion of an earlier
Analog I/O Design Prentice/Hall International., 16 hardback With the increasing use of digitial compurers to process information in iececronic sompunsters there is a new field of technology growing up onn
cerned with making analogue devices and cir
 is on the desigig of andologe systems priminail
for computer input and output applications. It for computer input ando oupput applacitions. II
is writen to provide both o one-term cours O

 design for pracisisig enginerrs. Most chapters
end with a set of problems. The book covers end with a set of problems. The book covers
instrumentation amplifiers, cative filter design,
 conversion devices including a ad and d-a, and
reconstructing the oribinal signal from dipital outputs. Three experiments are given in appen-

High-frequency Application of Semiconductor Devices by Ferenc Kovacs. 391 pp., hardback Written by a Hungarian author from a research insiturut in Budapast, this expensive book is a
fairly deep and rather academic treatment of the fairly deep and rather academict treatment of the
operation of discrete and interated semiconoperation of discrete and integrated semicon-
ductor devices at high frequencies. Basic design prinipless of many practical circuits are discussed in the 24 chapiers. The bulk of the
space is siven to amplification, and the re.

OTEUPONTHE con:
 Introducing the first $41 / 2$ digit handheld DMM in a

 market that's been the exclusive domain of $31 / 2$ digit models. Until now.Combining outstanding specification with
impeccable performance. And confirming Keithley's position as a major innovator in D.M.M. technology:
0.05% DCV accuracy
Five functions
Low battery indicator
Full overload protection: 1000 V max DCV 1000 V peak ACV, 300 V max Ohms
10 amp range
ACV bandwidth to 20 kHz
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$ DCV accuracy, and full function annunciators. Built up to a standard - not down to a price. Yet the 176 gives quality, $41 / 2$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match.
To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

1.2345

KEITHLEY

Keithley Instruments Ltd

CX80 colour

MATRIX PRINTER
At last a low－cost Colour Matrix Printer for Text，Graphics，Histograms，Colour VDU Dumps，etc．

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors，prints in 7 colours－sophisticated internal programme makes the CX80 easy to use．
Dot Addressable +15 user programmable characters， 96 ASCII and 64 graphics characters in rom．Centronics interface with RS232 and IEEE488 options．

The CX80 is a product of our own design and development laboratories．It repre－ sents a British breakthrough in colour printer technology．Colour brochure on request．OEM pricing available．

NRDC－AMBISONIC SURROUND SOUND DECODER

 OKん。

INTRUDER 1 Mk． 2 RADAR ALARM
 With Home Office Type approval

 ${ }_{\text {Complete kit }}^{\text {etc }} £ 52.50$ plus VAT．or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT．

Wireless World Dolb | ${ }^{3} \overline{3}$ 高 |
| :--- |

Complere kit PRICE：£49．95 Also available ready buill and tested ．．．Price E67．50＋VAT

All kits are carriage free
InTEGREK LIMITED Ce $66.50+$ VAT

Dyramic range >90 dB
30mV Sensitivity

Diode function generation

Simple strategy for choosing break－points
by Muhammad Taher Abuelma＇atti，B．Sc．，Ph．D．，University of Riyadh
 solution ，which is both accurate and
general ${ }^{1,2}$ ，the choice of break－points becomes a problem where the input is limited ${ }^{1}\left(V_{\text {in }} \leqslant 10 \mathrm{~V}\right.$ ），especially for highly non－linear functions．Contrary to the ideal diode model ${ }^{3}$ where any two points on a curve such as Fig． 1 can be connected by a
straight line，it becomes obvious using the straigh equation that if two points are
diode equmer chosen too close together they cannot be realised．If two points are realised close together this sets up a condition whereby
the next points cannot be realised ${ }^{1}$ This is the next points cannot be realised ${ }^{1}$ ．This is
mainly due to the need for negative mainly due to the need for negative
resistance values which are not practically feasible．To avoid this difficulty a simple strategy for picking the break－points is
Convex non－linearities
The non－linear input－output characteristic of Fig．（a）can be met by the diode－resis－
tor network shown in Fig．2（a）．Design equations，rewritten from Bello ${ }^{1}$ ，are
$R_{2 \mathrm{i}}=R_{\mathrm{li}}\left[\frac{V_{\mathrm{DC}}}{V_{2 \mathrm{i}}}-1\right], i=1 \rightarrow N$
$I_{\mathrm{Di}}=I_{0}\left[\exp \left(V_{\mathrm{Di}} / \eta V_{\mathrm{T}}\right)-1\right], i=1 \rightarrow N$
$\frac{V_{1 i+1}-V_{2 i+1}}{R_{\mathrm{A}}}=\sum_{j=1}^{i} I_{\mathrm{Di}}+\frac{V_{2 i+1}}{R_{\mathrm{B}}}, \quad i=1 \rightarrow N$
$\frac{V_{2 i+1}-V_{\mathrm{DC}}-V_{\mathrm{Dj}}}{R_{2 \mathrm{j}}}+\frac{V_{2 \mathrm{i}+1}-V_{\mathrm{Dj}}}{R_{1 \mathrm{j}}}=I_{\mathrm{Dj}}$

$$
\begin{equation*}
R_{2 j} \underset{j=1 \rightarrow i, i=1 \rightarrow N .}{ } \tag{2}
\end{equation*}
$$

For the i th diode initial conditions in equa－
tion are taken from the $(i-1$ th $(i>2)$ ．Combining equation（2）written for $j=l$ and with equation（1）solving for R_{li} in terms of known quantities gives
$R_{1 \mathrm{ii}}=\frac{V_{\mathrm{DC}}}{I_{\mathrm{Di}}} \frac{V_{2 \mathrm{i}+1}-V_{2 \mathrm{i}}-V_{\mathrm{Di}}}{V_{\mathrm{DC}}-V_{2 \mathrm{i}}}, i=1 \rightarrow N$ ．（3）
For $R_{1 \mathrm{i}}$ and $R_{2 \mathrm{i}}$ to be positive，equations （1）and（3）show that the following two conditions must be satisfied
$V_{\mathrm{DC}}>V_{2 \mathrm{i}}$ and $V_{2 \mathrm{i}+1}-V_{2 \mathrm{i}}>V_{\mathrm{Di}}, i=1 \rightarrow N$ ．

This means that the supply voltage must be greater than the maximum outpu volage．Also the break points meen be put voltages at two successive break－points will be greater than the voltage drop across the conducting diode（about 0.2 V for Ge and 0.6 V for Si diodes）
This strategy was extensively used to design diode－resistor networks to meet
given monotonically increasing convex given monotonically increasing convix
characteristics．Fig． 3 （a）shows a typical example for meeting the non－linear func tion

$$
V_{0}=V_{\mathrm{i}}-0.04 V_{\mathrm{i}}^{3}+0.001 \bar{V}_{\mathrm{i}}^{\xi}
$$

with maximum input voltage of 4 V ．
Concave non－linearities
The non－linear input－output characteristic of Fig． 1 （b）can be met by the diode－resis－
tor network of Fig． 2 （b）．Design equa－ tions，rewritten in a generalized form from Abuelma＇atti ${ }^{2}$ ，are
$R_{2 \mathrm{i}}=R_{1 i} \frac{V_{2 \mathrm{i}}+V_{\mathrm{DC}}}{V_{1 \mathrm{i}}-V_{2 \mathrm{i}}}, \quad i=1 \rightarrow N$
$\frac{V_{2 i+1}}{R_{\mathrm{B}}}=\frac{V_{\mathrm{li}+1}-V_{2 \mathrm{i}+1}}{R_{\mathrm{A}}}+\sum_{j=1}^{i} I_{\mathrm{Dj} \mathrm{j}}, i=1 \rightarrow N$
$I_{\mathrm{Di}}=I_{0}\left[\exp \left(V_{\mathrm{Di}} / \eta V_{\mathrm{T}}\right)-1\right], \quad i=1 \rightarrow N$
$=\frac{V_{1 i+1}-V_{2 \mathrm{i}+1}-V_{\mathrm{Di}}}{R_{\mathrm{li}}}$,
$j=1 \rightarrow i, i=1 \rightarrow N$.
$\frac{V_{2 i+1}+V_{\mathrm{Dj}}+V_{\mathrm{DC}}}{R_{2 \mathrm{j}}}+I_{\mathrm{Dj}}$
For the i th diode，initial conditions in equation（5）are taken from the（ $i-1$ ）th calculation．Combining equation $R_{1 \mathrm{i}}$ in written for $j=i$ with equation（4）
terms of known quantities gives
$\dot{R}_{1 i} I_{\mathrm{Di}}=V_{1 \mathrm{i}+1}-V_{2 \mathrm{i}+1}-V_{\mathrm{Di}}-$
$\left.\frac{\left(V_{2 i}+1\right.}{}+V_{\mathrm{Di}}+V_{\mathrm{DC}}\right)\left(V_{1 \mathrm{i}}-V_{2 \mathrm{i}}\right)$.
If the supply voltage V_{DC} is chosen so that $V_{\mathrm{DC}}>V_{2 \mathrm{i}+1}+V_{\mathrm{Di}}$
then
$R_{1 \mathrm{i}} I_{\mathrm{Di}} \approx V_{\mathrm{li}+1}-V_{2 \mathrm{i}+1}-V_{\mathrm{Di}}-V_{\mathrm{li}}+V_{2 \mathrm{i}} \cdot(7)$
For $R_{1 \mathrm{i}}$ and $R_{2 \mathrm{i}}$ to be positive equations voltage must be sufficiently larger shan the

Figg 3(a) Diode-resistor network for
realising function with maximum in realising function with maximum input
voltage of 4V. (b) Diode-resistor network
for realising the function for realising the function $V{ }_{o}=V_{i}-0.04 V_{i}$
+0.001 Viwith maximum ingut 3.5 V . +0.001 Viwith maximum
Diodes are type 1 N 5404.
between the corresponding output voltages by an amount at least equal to the voltage drop across the conducting diode.
This strategy was extensively used to
design diode-resistor networks to meet given monotonically increasing concav characteristics. Fig. 3(b) shows a typical example where the non-linear characteris-
tic was expressed by tic was expressed by
$V_{0}=0.001 V_{1}^{5}$
with maximum input voltage of 3.5 V The means of selecting break points for diode-resistor networks presented here is intended to simplify the design of function generators. Networks for monotonically
increasing concave and convex functions illustrate the validity of the selection procedure.

References

1. V. G. Bello. Design of a diode function generator using the diode
equation and Transactions on Cinteration, IEEE CT-19. March 1972, pp. 213/4. 2. M. T. Abuelma'atti. Synthesis of a
concave monotonically increasing function using the diode equation Electronics, In press. 3. A. E. Crump. Diode function December 1967, po. 594-8.

IN OUR NEXT ISSUE

Millimetre-wave lens aerials.

fand An easier way of constructing metal plate refractor aerials, which hitherto have not been popular because of manufacturing difficulties. Dr Ken Smith gives design and construction details for aerials in the $20-30 \mathrm{GHz}$ region.

Undirstanding Iylit units. Electronics engineers are having to use optical devices and techniques more and more but have difficulty in understanding the various units for measuring light. This interpretive guide is written specially to help them.

Direct digital frequency synthesizer

generates sine waves in numerical steps, a 1 MHz output, for example, being produced by stepping through the sine table at a rate of 45° every 125 ns and feeding the result into a d-a converter. Range: $0-3 \mathrm{MHz}$.

On sale

November 18

continued from page 49

Having first set the overhang, the cartridge is then twisted round slightly until radii both align with the centre of the turntable spindle as the arm is swuing inwards. Due to the offset of the overhangsetting slot, this twisting round of the cartridge may slightly alter the overhang, but a second shot if necessary.
The amount of overhang provided by the dimensions shown is in accordance with the rule proposed in the above arti-
cle: $h=2600 / \mathrm{C}$ where C is from arm pivor cle: $h=2600 / C$ where C is from arm pivot
to turntable axis, in mm . Needless to say, the basic design can be used for any required overhang rule, the position of the slotted hole and setting marks being changed accordingly. The 2 mm holes are only intended to act as settung marks, and
could be omitted in favour of short cross lines.
The author has made up a gauge in accordance with Fig. 2, and finds it a
tain, for the first time, that the required cartridge position and offset angle are cor-
rect to something within 1° of error rect to something within 1° of error,
whereas previously an error of several degrees would have been possible.

- Cartridge aligement problem A mis understanding over whether author's cor rections had been incorporated into proof led to errors which must have made under standing R. J. Gilson's October article dif-
ficult. Figure numbers were ficult. Figure numbers were omitted and
although the diagrams were in the right although the diagrams were in the righ
order some of the text references were incorrect. On page 60 column 1, read Fig. 2 in line 5 for Fig, 1 , Fig. 2 for Fig. 3 , and in column 3, Fig. 2 for the lower reference to Fig. 3. Take the multiplication signs for addition signs in the Appen
dix on page 61 , formulae $4 \mathrm{a}, \mathrm{b}$ and c , and dix on page 61 , formulae $4 \mathrm{a}, \mathrm{b}$ and c , and
also prior to $2 \& 2.5^{\circ}$ on page 60 , column 1. Also in the Appendix, for the upper
formula 1, read $\left(L^{2}+R^{2}-C^{2}\right) / 2 L R$, whisst formula 1, read ($\left.L^{2}+R^{2}-C^{2}\right) / 2 L R$, whilst in formula $4 \mathrm{c} \beta_{\text {in }}$ should have been β_{i}. Just
below the Appendix in column 3, insert a stop after 13 mm to end that sentence. Apologies to Mr Gilson for this marring of Apologies to Mr Gilson for this marring of
his constructive review of the tracking
problem.

Multichannel digital tape recorder

Design requirements of the digital circuitry
by A. J. Ewins, B.Tech., Research Laboratories, London Transport

In the first part of this article, the author described the aims and design concept of this economical instrumentation recorder, which
employs a modified audio cassette deck with added digital electronics. In this second part, the additional circuitry is outlined.

Having determined the number of chanHels per track of the tape-recorder, the nels per track of the tape-recorder, n nember of bits per data word, the length of the sync. word, and the data and tape clock frequencies, the digital circuitry could now be designed. Figure 2 shows the
main body of the recording circuiry in block form, the heart of which is the block marked 'control circuitry'. Starting with a crystal -controlled oscillator of 3.2768 MHz , this circuitry generates the two
clock frequencies, DC and TC, which are clock frequencies, DC and TC, which are
divided down and operated on by various logic elements to generate the numerous pulse trains that control the flow and direction of the serial data. The inverse clocks outputs, $\overline{\mathrm{DC}}$ and TC , clock the serial data through the various shift registers.
way, all gates and switches are opened or way, all gates and switches are opened or
closed on negative transitions of $\overline{\mathrm{DC}}$ or TC , whilst the serial data advances on positive transitions. A reset pulse is generated every 72 cycles of DC (or 80 cycles o TC) and serves to synchronize the vari
logic elements of the control circuitry.
An example of some of the pulse sequences produced by the control circuitry shown in Fig 3. This illustrates the contro of the clock pulses as seen by the two 72 stage temporary buffers (stofer 1 and the sync. word buffer. Store 1 is shown being filled with serial data under the control of $\overline{\mathrm{DC}}$, up to the moment of reset, and then being emptied under the control of TC. Store 2 is shown being moment of the 72 nd pulse. Having emptied store 2 , the remaining eight pulses of TC, up to the moment of reset, are used to empty the sync. word buffer. After reset, store 2 is $\overline{\overline{\mathrm{C}} \text {. In this way, the sync. }}$ word is inserted into the data stream every 72 bits or six data words. A frame of data thus consists of one sync. word followed by six data words, one for each channer are permanently present at the parallel inputs of the 8 bit shift register, and the control circuitry controls the re-entry of these 8 bits into the register once the sync.

Fig. 2. Main part of recording circuitry, which controls data flow to recorder. i

scan

fig. 3. Pulse trains generated by system in Fig. 2, showing sync. word being inserted into
ig. 3. Pulse trains generated
ord has been serially inserted into the data stream. The control circuitry also generates four sequences of logic pulses, DC, PS, 'B4' and RESET, which go to the preceding tage (Fig 4) to control the multiplexing of the six analogue channels, the its conversion
of the selected channel and from parallel to serial form. Figure 5 shows the logical sequence of control pulses, RESET, PS, 'B4' and DC, ro-
$\overline{\mathrm{DR}}$, generated by the analogue-to-digital converter. The RESET pulse is the same ix data words to earlier and occurs ized the analogue multiplexer, its continuing presence checks that the multiplexer always in its original state at the sazerial control pulse to the 12 bit shift register. When at the logic 1 level, a positive transipresent on the parallel inputs into the re-

Fig. 4. Four outputs trom 'control circuitry
block in Fig. 2 are used to multiplex,

gister. When at the logic 0 level, positive transitions of $\overline{\mathrm{DC}}$ transfer the data serially
through and out of the shift register Th control pulse B4 is derived from the control circuitry in a similar fashion to PS and occurs, as PS does, once every data
word. When B4 goes to logic 1 , the sample/hold circuit is put into its 'hold' mode via the OR gate. At the same time, it initiates the conversion process of the a-to-d converter and blanks its output. At the start of the conversion and until it is com-
plete the $\overline{\mathrm{DR}}$ pulse of the a-to-d converter goes to logic ' 1 ' to keep the sample/hold circuit in the 'hold' mode via the OR gate. Only when the data is ready and $\overline{\mathrm{DR}}$ goes negative to logic ' 0 ' does the sample/hold does so, the analogue multiplexer is clocked to sample the next analogue chanclock.
nel.
Be
nel.
Because of the sequencing of the RESET and PS pulses, the data that is being ter immediately after a RESET pulse (and during the conversion of the analogue data from channel 1) is the last data word, from channel six, of the previous data frame. The resulting sequence of data words be-
tween RESET pulses is thus in the order of channels $6,1,2,3,4$ and 5 . This may be resequenced to the desired arrangement of channels $1,2,3,4,5$ and 6 by connecting the analogue output from channel 1 to input 6 of the multiplexer, channel 2 to input 1 ,
channel 3 to input 2 , and so on Referring back to Fig 2 , it will be seen that a small 2 -stage shift register is placed immediately after the switch gating the output from the two storage buffers and
the sync. word buffer. This register is inthe sync. word buffer. This register is in-
cluded to remove the undesirable changes in logic level that might otherwise occur as the outputs from these buffers are switched. Remember, the serial data is
clocked out of the buffers on the clocked out of the buffers on the positive
transitions of TC and therefore changes in the logic level should only occur at these instances. The switch selects the appropriate buffer on the negative transition of TC, producing possible logic level changes at the wrong moment. Without the 2 -stage
shift register in between the gate and the

Reseapin

Sync. pulse \qquad Γ

Fig. 6. Sequence 1001 must be used in
sync. sync. Word to generate sync. pulse on
replay. Blanking pulse suppresses a transition, causing a 'gap which is used to
generate pulse. Rest of wave forms are used by Miller decoder, which produces
rech recovered data, recoler
sync. pulse at its output.

Miller encoder, the Miller encoder would incorrectly interpret these logic level changes.
As m
As mentioned earlier, it was decided that the sync. word should be 8 bits long
and include the sequence $1,0,1$. In order that the sync. word may be recognized on playback and decoding of the serial stream (it is quite possible for the sync. word sequence to occur within the normal data
stream) it is also essential that it includes the sequence $1,0,0,1$. The need for the
$1,0,1$ and $1,0,0,1$ sequences could be satisfied by a six-bit sync. word consisting of $1,0,1,0,0,1$. However, since it was necessary for it to be 8 bits long it was chosen to be $1,0,1,0,1,0,0,1$.
The need for the sequence $1,0,0,1 \mathrm{can}$ be best explained by examination of the
various pulse trains shown in Fig. 6. These are generated during the encoding and decoding of the NRZ serial data and are
shown in their correct shown in their correct time sequence. The
first row is an example of the NRZ serial first row is an example of the NRZ serial
data that emerges from the 2 -stage shift register of Fig. 2 immediately before encoding. The third row shows a blanking pulse that is generated once every com-
plete data frame (i.e. 80 cycles of TC) and

WRELESS WORLD NOVEMBER 1981

incides with the centre of the $1,0,0$ sequence in the sync. word. The blankin pulse is fed to the Miller encoder and suppresses the transition that would nor mally take place at the centre of the two zero bir cells of the $1,0,0,1$ sequence. The unique gap in the Miller coded transitions as shown in row four, and is used on replay to generate a synchronizing pulse. This sync. pulse is shown in correct relation to the decoded data stream in the last row of
Fig. 6 . Fig. 6.
The
sociated with the block-circuit diagram of Fig. 7, which shows the tape-recorde interface circuit (the peak detector), a dif ferentiator, resettable oscillator and Mille decoder. During recording, the Miller
coded data stream is presented to the recording electronics of the tape-recorder without any attempt at reshaping However, upon replay the Miller-coded data looks like a series of positive and negative peaks (associated with the origina
positive and negative transitions) due to the frequency-response characteristics of the tape-recorder circuits. The peak detec tor detects these peaks and reconstructs the data to look exactly like the origina Miller-coded data. The recovered Miller-
coded data is then differentiated to produce a series of short-duration, positive pulses, associated with every positive or negative transition (see row 5, Fig. 6), These pulses synchronize a resettable os cillator running at four times the fre-
quency of the recovered tape clock. The outputs from both the differentiator and the resettable oscillator are fed to the Miller decoder. Apart from the decoded serial data, the outputs from the Miller decoder are the reco.
The three pulse trains, shown in the last three rows of Fig. 6, together with the crystal-controlled data clock, DC and DC from the recording stages, are fed to the
circuit shown in Fig. 8, which is the block diagram of the four temporary storage buffers (72 -stage shift registers), an 8 -stage shift register and the associated contro circuitry. As directed by the control circuitry, the temporary storage buffers re-
ceive the serial data under the control of the recovered tape clock. Both the serial data and RTC contain wow and flutter from the tape recorder, but will remain in sync. with each other provided the wow about 6%. The serial data first posses through the 8 -stage shift register, which has parallel outputs so that as the 8 bit sync. word passes through it may be recog nised by the control circuitry. Providing this recognition coincides with the re-
covered sync. pulse produced by the Miller decoder, an overall sync. pulse is pro duced that aligns the logic elements of the control circuitry in their correct sequence of operation.
Tilled with data in sequence buffers ar clock pulses clock a complete data frame into a buffer, and as each buffer is only 72 bits long, the leading sync. word passes all

the way through and out and is thus removed. When the first two storage buffer are full of data, the control circuitry allows control of DC A time difference of $(2 \times 72) / 20,480$, or about 7 ms , is thus created between the filling and emptying of the buffers. This time gap has proved to be more than sufficient to absorb the small timing errors produced by the
fluter of the tape cassette deck.
Three control pulses, $\overline{\mathrm{DC}}$, LATCH and (DC) 72 , are passed from the control circuitry of Fig. 8 to the succeeding circuit of Fig. 9, which controls the reconversion of the serial data stream into the 12 bit data analogue form and their final demultiplexing via sample/hold circuits. The serial data first passes through a 12 bit serial-in, parallel-out shift regiter. At the correct outputs are clocked across to a 12 bit latch A 10 bit parity checker recalculates the two parity bits, compares them with the tw recorded parity bits and passes the two resultant GONO-GO answers to the DEthe 10 bit data word is converted to an analogue output, via the digital-to-analogue converter, which is presented to the inputs of the six sample/hold circuits.
Synchronized by the (DC)/72 pulse and
locked by the LATCH pulse MUX control circuit switches the correct sample/hold circuit into its sample mode. If, however, the parity checker gives
the sample/hold circuit is inhibited and remains in its hold mode. Figure 10 show controlling the operation of the circuit of Fig. 9. The synchronizing pulse is pro duced by a monostable triggered by the positive transition of the (DC)/72 pulse. Sample/hold pulse, SH, is produced by another monostable triggered by the nega-
tive transition of the LATCH pulse. Both monostables have pulse lengths of approxi mately five DC pulses.
Because the 12 bit serial-in/parallel-out shift register introduces a delay of exactly nizing pulse, the data from channel six appears at the expected output of channel 1 ; channel 1 appears at the expected output of channel 2 ; channel 2 appears at the expected output of channel 3; and so on This is of no consequence whatsoever and channels accordingly.

Speed control circuitry

The principle of operation of the speed control circuitry is shown in the block ment, the input to the reference frequency selector from the record/playback electronics of the digital circuitry, it will be seen that accurate speed control is achieved by means of a phase-locked loop. The fre compared with a reference frequency from the voltage-controlled oscillator (v.c.o.) of a p.I.1. integrated circuit, using the phase-
sensitive detector
 duced by the tachogenerator when the recorder is running at a tape speed of $17 / 8 \mathrm{in} / \mathrm{s}$
is around 456 Hz , which is very close to the 455.1 Hz produced by dividing the tape clock of $22,755.5 \mathrm{~Hz}$ by 50 . During the recording process this crystal-derived frequency of 455 Hz is therefore used as the reference frequency for the motor speed
control. To obtain perfect long-term speed stability on playback, it is necessary to lock the recovered tape clock, from the recorded data, to the crystal-controlled tape clock. It might be thought that all that
is necessary to achieve this is to substiute is hecessary to achieve this is to substitute
the output from the tachogenerator with that of the recovered tape clock divided by 50 . However, this proved not to be the case: due to an increased amount of wow and flutter in the actual transport of the
tape, with a slightly different frequency tape, with a slightly different frequency
content, a satisfactory lock of the p.l.i. could not be obtained, except by altering its natural frequency (i.e. by changing the filter components). Even when this was tried, the p.1.1. was n
the recording process.
A very satisfactory solution was found, even if it was a little unorthodox, by creating a second p.1.1. with a very much lower natural frequency. In this second
p.1.1., the crystal-controlled tepe p.1.1., the crystal-controlled tape clock is
compared with the recovered tape clock, compared with the recovered tape clock,
after dividing both clocks by 50 , via a

Fig. 10. Pulse train in Fig. 9.

Fig. 11. Speed control circuitry.
p.s.d. The output from the p.s.d. is fil tered (determining the loop's natural frequency) and used to control a v.c.o., the frequency output from which is used to provide the required reference for the motor speed control circuit. The lower pletely removes the influence of wow and
flutter from the recovered tape clock whilst the higher natural frequency of the first p.1.1. allows the motor speed control circuit to operate under optimum condivided by both p.l.ls to inform thats are prothat they are 'in-lock'.

WIRELESS WORLD NOVEMBER 1981
New Products
Single-board computer
Not so long ago, electronics engineers strove to design systems with rinted-circuir boards to speed printed-circuir boards to speed up
repairs. But according to Dicoll Electronics there has been a trend rowards single-board computers
and they have responded by and they have responded by
producing the DE530SBC 16-bit computer board, using Western
Digital's WD900 i.c. set. Th Digital's WD9000 i.c. set. The
board, costing around $£ 2,600$, inboard, costing around $£ 2,60$, in-
cludes colour graphics, analogue
 ler and p.r.o.m. programming fa-
cility, and runs Pascal 'P' code. Up to 128 K -bytes of memory can be accommodated (64 K r.a.m. and 64 K r.o.m.). and a a 24 -row $\times 80$-co-
umn display produced using up to
cight colours. Power supply reumn display produced using up to
eight colours. Power supply re-
俍 quirements are $5 \mathrm{~V}, \pm 15 \mathrm{~V}$ and 25 V . Dicoll claim that a system incorpo imes faster than a DEC LSI-11/2 Dicoll Electronics Ltd, Bond Basingstoke, Hants RG2400B. wW301

Two-channel waveform store An addition to Datalab's 900 series, 20 MHz sampling rate a-to-d converter for recording signal frequencies up to 5 MHz. Each chanproviding a resolution of 1 in 250 vertical and 1 in 4000 horizontal. Soth channels can be loaded simulseparate sources through two input mplifiers and stored information sope or chart recorder oscillo waveforms can be presented alternately with d.c. offset, so only a
single-channel oscilloscope is required. The two memories can be ombined for long waveforms or
divided for short waveforms and the time-base frequency may be altered at a predetermined point on
the sweep. Delay and pre-trigger recording are among other facilities f this unit. A digital interface standard but may be replaced by

U.h.f. transistors

 output power and 1 GHz are available from Hewlet- Packard at around Vad devices are supplied in HPAC-

 RG11 5AA
WW304

Optical/electrical signal converter A unit for converting signals from fibre-optic cables, li.e.ds or lasers into electrical signals for displaying
on an oscilloscope, spectrum anaon an oscilloscope, spectrum ana-
lyser, etc. is manufactured by Pho-
todyne Inc and todyne Inc. and distributed in the
UK by Lambda Photometrics Ltd The 1500XP has a frequency response of 0 to hao a mhz with 2ns resse and fall time, and is calibrated in

four push-button-selectable range lications 100 and $1000 \mathrm{mV} / \mathrm{wW}$. Ap liss analyses in optical form and I.e.d. output rise and fall-time mea surement. The distributors also an nounce availability of a calibrated lat response in the range 800 nm to at response in the range 800 nm 10
300 mm from the same manufacurer. Lambda Photometrics Ltd
ambda House, Batford Mill Harpenden, Herts AL5 5BZ. WW305

Housings for

 terminals Injection-moulded keyboard andv.d.u. housings with panels for mounting disc-drives can be ob-
tained from West Hyde Developments Ltd. The distributors
of these German manuactured velopments Ltd. The distributors
of these German manufactured
foam-plastic enclosures have op-foam-plastic enclosures have op-
tions availabel for mounting 12in tions avalable for mounding 12.
c.r.ts with panels for floppy-disc
drives and with plain front drives and with plain front
mouldings for hard-discs, power supplies, etc. Keyboard enclosures
have the same widths and styling as the terminal housings. West Hyde
Developments Ltd, Unit 9 Park Developments Litd, Unit 9 , Park
Street Industrial Estate, Ayles-
Sury street industrial
burv, Bucks HP20
WET.

Disc-data

 separatorPulses from a floppy-disc consist of
clock and data information which clock and data information which
must be separated before it enters the controller. Thame Components now market an i.c. from SMC
which carries out this function and replaces they say, up to 10 t.t.1. replaces they say, up to 10 t.t.1.
i.cs. The 8 -pin di.i.l. FDC9216 operates from a 5 V supply and is
t.t.1. \mathbf{l} compatible and programma-t.t.1.-compatible and programma-
ble for use with either 8 in or $51 / 4$ in drives with single or double den-
sity. An 8 MHz crystal clock is resity. An 8 MHz crystal clock is re-
quired by the i.c.Ttame Compo-
nents Ltd, Thame Park Rd, nents Ltd, Thame Pat
Thame, Oxon OX9 3XD.
WW307

Accelerometer

The A-23SI accelerometer from D.
J. Birchall Lrd is a case-isolated version of the $A-3$ sase-siolated transducers originally designed for
use on aircraft engines Low base use on aircraft engines. Low base-
strain/cross-axial sensitivities and straincrosss-axial sensitivitites and to be inherent features of the patented Konic element used in the
device and specifications include $7 \mathrm{pC/g}$ charge sensitivity, 4.5 g
weight, 50 kHz resonant frequency weight, 50 kHz resonant requency
and -55 to $+300^{C}$ temperature
range. The stainless-steel housing is welded and stud-mounting (10-32 UNF stud), and the price is \&190.
D. Sirchall Ltd, 102 Bath Rd Cheitenham, Gloucestershire
GL537JX. GL537JX.
WW308

Cable assemblies

 Various lenght of cable withU.H.F. or B.N. .C. connector termi-
 ievers (10 colours) are avalable
trom Greenpar Connectors Lidd in
in 50 and 70 ohm versions. All compo.
 are also available as separate items.
Greenpar Connectors tId ,
P.O.
 WWion
Small generator for colour tv
A patelen generator for servicing
PAL-ssisem colour sers is avaibe through House of Instruments. The sadella MCI11 generates colour-bar, , reye-ccale, red-raster, tral-cross, central-spot and vericicalline patierns on any carrier between gene rator mean meres around
$131 \times 81 \times 23 \mathrm{~mm}$, weighs 250 g and

is supplied with rechargeable bat--
is tery, charger, connecting lead and
carrying case for 149.50
inclusive of packaging and delivery, but ex-
cluding v.a.t. (quannity discouns

 ww310

Encoder discs

 Rotation-encoding discs from theelectro-forming and photoetching
 orf-the-shelf for protorypes, etc.
Four versions - one of 30 m. Four versions - one of 30 mm
diameter with 120 slotos and three of diamm ter wimh 120 slots and three o
360 slotis s are inth 120,240 or
and 360 slots - are immediately avail
able and the range is

 ± 20 on on the 10 mm cenrre hole, slot width and ± 20 seconds an mular
 Electroforming/photo-etching
Id 36 Essendene Rd, CaterLitan Surssencone
WW3.

High-speed

Schottky t.t.l.
A further six 74 F series devices
have been added to Fairchild's Advanced Schotrky t.t.l. range ayail able from Cellids. Amongs the sixix are
 125 MHz operation and the F 189
64 b bit ra...m with 2 2ns access time.
.
 claimed to have on average around
75% betrer frequency response and

 E30. Celdis, 37 Loverock Rd,
Read ing, Berkshire RG3 1ED. heading,
WW312
P.c.b. measuring aids
Folding lens/graticule assemblics Ior measurng p.c.b. rrack dimen.
sions, hole diameters, etc, can be
obtained from Opsec Ltd. Versions for $\times 5, \times 8$ and $\times 10$ magnification and either Imperial or metric grat-
icule scales are available. These units, with glass lenses, cost under
$£ 10$. Opsec Ltd, Holywell Hill, St £10. Opsec Ltd, Holywel
Albans, Herts AL1 1BR.
Ww313 ${ }^{\text {Albans, }}$ WW313
A magnifier for examining the in-
sides of plated-through holes (see sides of plated-through holes (see
photo) is manufactured by Gratiphoto) is manuactured by Grati-
cules Ltd. The Borescope gives a complete. Ticture of the insidid of the
hole with adjustable magnifiction hole with adjustable magnification
from $\times 40$ to $\times 80$. Hunter Equip-
ment from $\times 40$ to $\times 80$. Hunter Equip-
ment Ltd, High St. Bordon,
Hants GU35 0 . ment Ldd, High
Hants GU35 0AY.

Frequencymeasurement module
An 1.c.d. frequency meter module
is available from Thurlby is available from Thurlby for
$£ 19.95$ excluding v.at 19.95 excluding v.a.t. The
FM77T, with five, 9 mm-high digits, can be used to measure fre-
quencies up to 3999.9 kHz direct quencies up to 3999.9 kHz directly:
external pre-scalers can be used to external pre-scalers can be used to
extend the range. A crystal time-
base is used base is used and drift is saiad to be
less than ± 1 digit from 10° t $30^{\circ} \mathrm{C}$ less than ± 1 digit from 10° to3 $30^{\circ} \mathrm{C}$
Decimal point position, $\mathrm{kHz} / \mathrm{MH}$ legends and 23 pre-programmed
lon i.f. offset frequencies (for use in
radio-receever applications) radio-receiver applications) ar
selectable. Supply requiremens arc selectable. Supply requirements are
4.5 to $7 \mathrm{~V}, 1 \mathrm{~mA}$ and overall dimensions, 70 by 38 by 11 mm . Thurlby
Electronics Ltd Office Electronics Ltd, Office suite
Coach Mews, The Broadway, lvach Mews, The Broadway,
Ives, Huntingdon, Cambs PE17
4BN. Ives,
4BN.
WW315

World's most powerful

BASIC pocket computer

CASIO FX-702P

FX-602P $165 \times 82 \mathrm{~mm}\left(15 / 6 \times 6 / 2 \times 3^{1 / 4} \mathrm{~A}^{\prime \prime}\right)$. Weight $180 \mathrm{~g}(6.302)$. $\mathbf{C 7 4} 95$
$\begin{array}{ll}\text { FX-602P Advanced programmable. Up to } 512 \text { steps } & \mathbf{£ 7 4 . 9 5} \\ \star \star \star N E W \star \star \star \text { FX-3600P } 38 \text { program steps } & \mathbf{£ 2 2 . 9 5}\end{array}$

World's most versatile

alarm
chronograph watch CASIO AX-210

 Stoowarch mode
AANALOGUE 5 ountup, with digital timing of net, lap an

THE LEADING U.K. SPECIALISTS Dept. W.W. Telephone: 0223312866 WW - 081 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Amplification rinssteme

Floating-bridge power amp-Oct. $1980-1$ s s. 112 V or 40 V

 A.T. and U. K. postage

Airmail add 20%, Europe add 10%, Insurance 10%.
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

ww - 040 FOR FURTHER DETAILS

Happy Memories

Part type 4116200

4116 200ns
4116250 ns
2114200 ns 2114 200ns Low powe 4118 250ns
6116 150ns CMOS...... 6116150 ns CM
2708 450ns.... 278 450ns 5 v................................
2716 450ns three rail. 2732 450ns intel type
2532 450ns Texas typ $\begin{array}{lllll}2532 \text { 450ns Texas type..................... } & 4.50 & 4.15 & 3.95 \\ & 4.95 & 4.60 & 4.40\end{array}$ $\begin{array}{lll}\text { Z80A-CPU } £ 5.25 & \text { Z80A-PIO } £ 4.75 \text { Z80A-CTC } £ 4.75\end{array}$ $\begin{array}{ccccccccc}\text { Pins } 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40 \\ \text { Pence. } & 10 & 11 & 14 & 15 & 18 & 19 & 25 & 33\end{array}$ $\begin{array}{ll}\text { Soft-sectored floppy discs per } \\ 5-\text { inch } \\ \text { SSDD } £ 17 & \text { in plastic library case: } \\ 5 \text {-inch DSDD } £ 21\end{array}$ 8 -inch SSSD $£ 218$-inch SSDD $£ 26.25$ 8-inch DSDD $£ 31.75$ $74 L S$ series TLL: Large stocks at low prices with DIY
discounts starting at a mix of just 25 pieces. Write or phone discounts starting at a mix of just 25 pieces. Write or phone
for list. Please add 30 p post and packing to orders under $£ 15$ and
V.A.T. to total Access and Barclycard
24-hour service on (054-422) 618
Government and Educational orders welcome
Trade accounts operated; phone
phone for a quote before you buy
Happy Memories (CT) Gladestry, Kington Herefordshire HR5 3NY Tel: (054-422) 618 or 628

SOUND INVESTMENT

Replacement tape heads from. Monolith could mean a big mprovement in sound quality from your tape recorder.
catalogue is available, price 50 , which features a wide range of heads for cassette and reel to reel machines, a well as replacement motors, tape transports, etc.
Universal cassette heads to EIAJ standard, hole centres 17 mm apart, 12 mm from head face.

MONOLITH
 electronic products

w - 066 FOR FURTHER DETAILS

SUNITA'S FAMILY OF MONITORS HAS GROWN

Our Professional Monitors are of British Manufacture
MPMI (VIDEO RESPONSE 16 MHZ COMPOSITE VVDEO OR gin., 12in.
 gin.. 12in.

 15 in.
These are avaiable in wire frame topen chassis), fully cased or
VDU DESK Kype Versions. ype versions.
For further information please note our
phone number:
SUNITA ELECTRONICS LTD.
Unit 3, Trident Industrial Estate
Blackthorne Road
Poyle, Colnbrook
Telephone: 02812 2340/2349

The simple answer to all your power supply problems.

Uninterruptible Power Supplies - UPS 250va to 2000 va . 50 or 60 hz z
STANDBY POWER. Invaluable for winding down a computer programme on mains failure and wherever continuous power is essential. fluctuations and ensure the operation tains peak efficieincy. \square TRANSIENT ATTENUATION. Provides suppression of An unbeatable power package from $£ 395$ ex works including maintenance free lead acid batteries. At Galatrek International, UPS are DOWN to unbeatable prices. direct. Mr R K Koftler, Galatrek International, Scotland Street, Llarrwst, rn Colwyn Bay, Gwynedd LL26 OAL, North Wales, Great Britain, Tel No: 0492-640311/6412
Night Service: 0492-30592 Telex: 617114 A/B Galahu

Which amplifier?
1.L.P. Amplifiers now come in three basic types, each of which is avaiiable with
or without heatsink. Having decided the system you wht (models HY 30.60 or 12 O for example), super quality hi-fi wi home hi-fi
MOS
 amplifiers for bolting to a a metal her hasseds with will sutit. With own heatsinks or plate

AMPLIFIER
$\underset{\text { HEAT SINK }}{\text { WITH }}$

HEAVY DUTY with heatsinks

Without heatsinks.

MOSFET Ultra-Fi, with heatsinks

Without heatsinks

 Protection:

POWER SUPPLY UNITS

Mobek ${ }_{\text {PSU }}$	foruse with	PRICE	vat	FP480 BRIDGING UNIT FOR
	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series to			
		£4.50	${ }^{00.68}$	DOUBLING POWER Designed specially by I.L.P. for use
	series except HY67 which requires the PSU30.			
${ }_{\text {PSU36 }}$	${ }^{1} \mathrm{or} 2 \mathrm{HY} 2 \mathrm{HO}$	${ }^{\text {¢ }} 8.10$	61:22	
PSU60				Onimed and will turction with iny
PSU65	$1 \times$ MOS $12011 \times$ MOS 120 P		${ }_{\text {f200 }}$	
	1 Or 2 HY 120/HY 120P/HD $120 / \mathrm{HD} 120 \mathrm{P}$	¢	¢ ${ }_{\text {¢2. } 2.39}$	taseme
PSU75	1 Or 2 MOS 120/MOS 120 P	¢16.20	${ }_{\text {f2.43 }}$	
PSSU90	$1 \times$ HY 200,HY 200P/HD200,HD 200P $1 \times$ MOS $200 /$ MOS 2000	$\underset{\substack{\text { ¢ } 16.20 \\ \text { f16.32 }}}{ }$	${ }^{\text {f2 } 2.43}$	
PSU180	$1 \times 1 \times \mathrm{HY} 200 \mathrm{HY} 200 \mathrm{P}$			Price: $4.7 .9+72 \mathrm{P}$. V.a.t.
		f21.34	£3.20	
	1 or 2 MOS $200 / \mathrm{MOS} 200 \mathrm{P} / 1 \times$ MOS400	f21.46	5322	

Which modules?
In launching eighteen different units all within amazingly compact cases to help make
complete audio systems using I.L.P. power amplifiers, we bring the most exciting, the most versatile modulalar assembly scheme ever for constructors of all ages and
experience. Study the list - see how these modules will combine to almost aniy

 measure $90 \times 20 \times 4$

MODEL NO.	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	Price	VAT	
HY6	MONO PREAMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	¢6.44	£0.97	
HY7	MONOMIXER	To mix eight signals into one	10 mA	¢5.15	£0.77	The modules are encapsulated and include latest design high quality clip-on edge connectors.
HY8	STEREO MIXER	Two channels, each mixing five signals into one	10 mA	¢6.25	£0.94	
HY9	Stereo pre amp	Two channels mag. Cartridge/ Mic + Volume	10 mA	¢6.70	£1.01	
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	¢7.05	£1.06	
*HY12	MONO PRE AMP	To mix four signals into one + Bass/Mid-range/Treble	10 mA	¢6.70	£1.01	For easy mounting we recommend B6 Mounting board for modules HY6 - HY 13$78 p+12$ p. V.A.T
*HY13	MONO VUMETER	Programmable gain/LED overload driver	10 mA	¢5.95	£0. 89	
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83	
HY67	Stereo headphone	Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	£12.35	£1.85	B66 Mounting board for HY66-HY77
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	¢7.95	£1.19	งsp+1 [丂. V.A.T.
HY69	MONO PREAMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£ 10.45	£1.57	All I.L.P. modules include full connection data.
HY71	dUAL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£ 10.75	£1.61	
*HY72	voice operated STEREO FADER	Depth/Delay	20 mA	£13.10	£1.97	
* HY73	GUITAR PRE Amp	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	¢12.25	£1.84	
+HY74	Stereo mixer	Two channels, each mixing five signals into ${ }^{\text {nene }}+$ Treble/Bass	20 mA	¢11.45	£1.72	
+HY75	Stereo pre amp	Two channels, each mixing four signals into one + Bass/Mid-range/Treble	20 mA	£ 10.75	£1.61	
+HY76	STEREO SWITCH SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	To oe announced		I.L.P. Products are of British
+HY77	stereo vu METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9.25	£1.39	Design and Manufacture.

[^2]TO ORDER USING OUR
FREEPOST FACILITY

 WW - 084 FOR FURTHER DETAILS
OF RECELITILG YOUTB OBIDER

ALL WITH ILP'S 5 YEAR NO OUIBBLE GUBANTIEE

To: LL. P. ELECTRONICS LTD. ROPER CLOSE CANTERBURY CT2 7EP

Lenclose Cheque QPostal 1 Oders \square Intermational M
Please debit my Access/ Barclaycard Account No.
Please debit my Access/Barclaycard Accounn No....
NAME......
ADDRESS...

DANAVOX ARE ALWAYS COMING UP WITH SOUND IDEAS.

precision.
And all carry the Danavox guarantee. wW -076 FOR FURTHER DETALLS

GPINDUSTRIAL ELECTRONICS LTD UNIT G, TOTNES INDUSTRIALESTATE TOTNES, DEVON TO9 5XL. TEL: (0803) 863360. TELEX: 42596
 WW O92 FOR FURTHEX: 42

FIVENEWSEMSES
FOR YOUR MCRO

THĖ COMPLETE SOLUTION TO STRAIN GAUGE AMPLIFICATION

- COMPLETE WITH BRIDGE SUPPL
- COMPLETE WITH ALL ADJUSTMENTS (SPAN
- COMPLETE (NO EXTERNAL COMPONENTS

NEEDED)

The series SGA 700 provides the complete solution to Strain Gauge Amplification. Simply connect the bridge, connect the power supplies and the SGA 700 does the
rest. It also offers high stability. Miniaiture size, good supply rejection - in fact a specification as good as many instruments many times the price and size.

WW - 091 FOR FURTHER DETAILS

WW - 107 FOR FURTHER DETAILS

Wireless world november 1981
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS

WHAAT RRIGRERFORMANGE

DC-15MHz
Bandwidth
 Triggered and
automatic sweep 200ns $\begin{array}{ll}\text { 200ns }-200 \mathrm{~ms} / \text { div } & \begin{array}{l}\text { Fully regulated } \text { high } \\ \text { swoep spoeds }\end{array} \\ \text { and low voltage }\end{array}$ Rectangular CRT supplies Compact and $\quad 200 \mathrm{mV}$ Calibration lightwoight
BUILT-IN COMPONENT TESTER

TYPE 3131

DC-15MHz Bandwidth	$200 \mathrm{~ns} / \mathrm{div}$ timebase
mV/div sensitivity	5 "
	Triggering to 35
itio	2 M
X-Yoperation	10×8 div displa
	TV Frame trigger

3030 and 3131 just two models in the range, reflect the Crotech philosophy of building-
in extra performance. Both scopes offer the full specification you expect and demand. But now the extra: both feature a Component Tester which displays the characteristics of active and passive components either in extends both instruments bey ond the limits of a normal scope. The price? well that speaks for itself. (0734) 866945 and ask for our full catalogue.

\author{

* u.k. LIST EXC VAT
}

Crotech instruments Limited
5 Nimrod Way, Elgar Road, Reading, Berks. RG2 0EB.
wW - 045 FOR FURTHER DETALLS

New KONTAKT Sprays

```
for the Electronics 8 Electrical Industries
```


KALTRON 601

```
A new cleaner for Magnetic Recording Units. Kaltron 601
```



``` cleaning of magnetic sound heads leaving no deposit or
other rraces
It is chemically pure \((99.8 \%)\) - non conductive It is chemically pure ( \(99.8 \%\) ) - non conductive -
nontflammable.
1 t
```



``` data processing systems etc.
```

Also New

PRINTER 66
Spray cleaner for type hheel printers, matrix printers and chain printers. Can
also be used tor cleaning normal typewriters.
SCREEN 99
V. Screens.
or sue in communications engineering and construction of antennae.

Special Products Distributors Lt
ell: $01-$-629 9556: Cables: Speciprod, Landon, w,
Telea: 265200 (answerback RACEN)
WW - 059 FOR FURTHER DETAIL

CHILTERN ELECTRONICS
 B.C.M. Box 8085 London WCiN $3 \times x$ Tel: 0494714483

VIDEO MONITORS

```
We sill have afew of these professional Video Monitiors
    M,
```


magtape bargain

WW - 038 FOR FURTHER DETAILS

NOVAPRODUCTS $\underset{\substack{\text { Golden Gren, Tonbridge } \\ \text { Kent TNi1 OLH }}}{\substack{\text { and }}}$ WW - I13 FOR FURTHER DETAILS

WIRELESS WORLD NOVEMBER 1981
101
 DE LUXE LINSLEY HOOD 75 wattschehannel Amplifier

TRANSCENDENT DPX MuITIVOICE SYwiHESIER Complete Kit $£ 295$

 variable depth control together with ${ }^{\text {a }}$ variable delay control sot that the vibrato comes in ony anter waiting a short time after the note is struck for even more Toaisticstring sounds. them more natural here is is chorustsen- sembe unitwhich is o compere phasing system using ccit charge coupled dai Vicel analogue delay lines. The overail effect of thistis siefilial trethat of teveral acoustic instuments p paying the same piecect of can be m				
	uded in prices Exporit onders N N vat 		SECURICOR RELVEEYY: For his opional serice U.K. maininand 	

102

- Receives an
code set
- 30-character memory
- Clear 8-character, 16-segment display

- Cursor-contro
Built-in RS23
20mA loop

ww - oos FOR FURTHER DETAILS

WIRELESS WORLD NOVEMBER 1981

WIRELESS WORLD NOVEMBER 1981

WW - 087 FOR FURTHER DETAII

Thurlby 1503 multimeter -outstanding performance 9149 +vat

- $43 / 4$ digits ($\pm 32,768$ counts)
- $10 \mu \mathrm{~V}, 10 \mathrm{~m} \Omega, 1 \mathrm{nA}$ resolution
- $0.03 \% \mathrm{dcV}$ accuracy (1503 - HA)
- Current measurement to 25A
- Lunctions including frequency
LCD, fully field portable
- Outstanding price/performance ratio $\|$ Thurlby sex

EPROM PROGRAMMER with master to slave copying facilities PKW-5000

\author{

CPU	$2-80$
RAM	160 byt

}

RAM	16k brte			
Programmable EPROMs	2704, 2708, 2758, 25i6, 2716, 2732, 2532.		PROM Selection	By combination of switching 2 slide switches Display $\begin{aligned} 16 \text { digit } 7 \text { segment LEDs. }\end{aligned}$
---:	:---	The PKW-5000 is covered by a full 1 year warranty, backed by the skilled		

U.K. service staff of Sinclair Electronics Ltd. thandar

SINCLAIR ELECTRONICS LTD | London Road, St. Ives, Huntingdon, Cambs. PE17 17 HJ , England. |
| :--- |
| Telel: St. Ives (0480) 64646 . |

INSTRUMENT FANS: 4.5 inch square Rotron Papst. etc., used but
cleaned, testad and boxed. 115V. 44.50 P . and P. 90p. 240 V . E 5 . and P .
Tom. 9OP.
O.C. SERVO MOTORS, 12,
for specs.; prices E5--z20
SWITCHING POWER SUPPLIES:

TEMPERATURE CONTROLLERS made by Eurotherm. Range $0-200^{\circ} \mathrm{C}$ for
use with thermocouple input. Relay contact rating 2 A . $250^{2} \mathrm{~V}$. C . use with termocouple
new. 2525 each. P. andP. E3.
TIETYPE TELETYPES ASR $33+$ KSR33, as is, in various conditions, from $£ 25$,
ASR33, reconditioned from $£ 150$. ASR33, new, unused from $\mathrm{E}_{2} 50$. Large quantity of spare parts for Cosser V.D.U., D.R.I. Disc Heads, Tape
Heads, ICL $1900+2900$. Phone for details. $\underset{28 \text { PEROWNE STREET,CAMBAIDGE }}{\text { VES }}$

Tolephone: 022368990 Tellex: 817672 VESCOL WW - 080 FOR FURTHER DETAILS

HOW TO SUCCEED IN THE ELECTRONICS BUSINES

INVEST 60p AND MAKE 32.40 net profit

Buy Ambit's new concise component catalogue and get El vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even without this, you will still find WR\&E offers the low prices,
fast service and technical support facility second to none.
Here are some examples from the current issue:

1IID:JT international 2010 North Service Raad, Arentuondi, Gssek

You don't need to look too 3 cosely at the GSC Proto-Clip range of IC test clips to see that they provide instant connection to dual-inline packaged components. Use them on ICs, networks or relays to provide a highintegrity interface for 'hands-off' sources, logic analysers and other instruments. Contact spacings designed

to suit all standard IC spacings designed moulded webhinge construction, non-corroding nickel-silver contacts, and clip notches to prevent slippage during testing. Make contact with GSC Proto-Clips right away by

GLobal Speciaities corporation ___
\longrightarrow FREE catalogue tick box

TOMORROW'S TOOLSTODAY
ELECTRONIC POWER UNITS FOR XENON ARC AND MERCURY ARC LAMPS
Lamp housings and lens systems manufactured as stan sard of of the shelf models or to
specific design.
 WW - 110 FOR FURTHER DETAILS

GRAMPIAN REPRODUCER LTD.

All made-up Amplifiers, Column Speakers, Mucrophones, P.A. Horns, Drive Units, heavy and equipment from the above company are in stock in our warehouse. Companies requir ing spares or replacement equipment contact:
Electronic Equipment Co., Springfield House, Tyssen Street, London E8 2ND. Tel: 01-249 Tyssen Street, Londo
5217 : Telex: 8953906.

WIRELESS WORLD NOVEMBER 198

P.\&R. COMPUTER SHOP IBM GOLFBALL PRINTER 3982, £70
 MATRIXPRINER WMH SPECAL NTREACES.

 MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MONDAY TO
SATURDAY TILL 1 p.m

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
WW - 101 FOR FURTHER DETAILS

ELECTRONIC COMPONENTS
600 MHz Digital Frequency Counter

Ranga 1 Izzi. 60

Protection			$£ 108$ inc. VAT
Gors			
Power			

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages f this issue, please complete one or more of the attached cards or more of the attached cards entering the reference number(s). Your enquiries will be passed on to he manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below

OVERSEAS SUBSCRIPTION AGENTS

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Wireless World Subscription Order Form Wireless World, November 1981 ww 171

UK subscription rates

1 year: £12.00
USA \& Canada subscription rates 1 year: $\$ 39.00$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value..
IPC BUSINESS PRESS Ltd.

Name.

Address.

ScOPEX 14D-10V Vital for Video

OVERSEA AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Hungary Mrs. Edit Bajusz, Hungexpo
Advertising Agency, Budapest XIV, Varosliget - Telephone: 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6 , 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku, Tokyo 106 Telephone : (03) 585-0581

United States of America Ray Barnes, *IPC Business Press 205 East 42 nd Street, New York, NY 10017 - Telephone (212) 6895961 - Telex : 421710 Mr. Jack Farley Jnr., The Farley Co., Suite 1548,35 East Wacker Drive, Chicago, llinois 60601 - Telephone (312) 63074

Elmatex International
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) $821-8581$
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605 Ranna Building̀, Cleveland, Ohio 4415 Telephone: (216) 621 '1919 Mr. Ray Rickles, Ray Rickles \& Co P. O. Box 2008, Miami Beach, Florida
 3116 Maple Drive N. E., Atlanta, Georgia 30305. Telephone: (404) 2377432 Mike Loughlin, IPC Business Press 15055 Memorials, Ste 119 , Houston, Texas 77079 - Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch International Advertising Consultants Ltd. 915 Carton Tower, 2 Carton Street Toronto 2 - Telephone (416) 3642269

The $74 \mathrm{D}-70 \mathrm{~V}$ is a dual trace 70 MHz oscilloscope with active TV sync separator and line selector specifically designed for the servicing and aignment of video cassette and disc recorders, colour television and video games.

- Active TV sync separator
- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display
- Add ond invert facility
- Probe compensation

Line selector
2 mV sensitivity on both channels
Push button X-Y

- Complete with probes

At a price of $£ 290.00+$ VAT.
Carriage paid UK mainland.
Ensures continued British leadership
in the low cost high performance
oscilloscope market.

 प11111111]

粦 An Independent British Company 米

WIRELESS WORLD NOVEMBER 1981

WIRELESS WORLDNOVEMBER 1981

TANTALUM CAPACITORS

 ELECTROLYTIC CAPS

FULL SPECIAL OFFER LIST AVAILABLE

Flarrison Bros.

TEST INSTRUMENTS

REGHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists, and prices. $£ 1.45$ for PP type batteries, SAE for lists and prices. ${ }^{\text {E. }}$
booklet, "'Nickel Cadmium Power,' plus catalogue.
\star New sealed lead range now
Write or call at:
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764

$$
\text { WW - } 067 \text { FOR FURTHER DETALS }
$$

WW - 112 FOR FURTHER DETAILS

WRELESS WORLD NOVEMBER 198

सैद30
 1 NATONAL
 SPECIAL OFFERS

TANTALUM CAPACITORS

ELECTROLYTIC CAPS

FULL SPECIAL OFFER LIST AVAILABLE

Harrison Bros.
22 Electronic Distributors
Milton Road, Westcliff-on-
Essex SSO 7JX, England
Tel: Southend-on-Sea (0702) 32338

TEST INSTRUMENTS

SAFGAN DUAL TRACE SCOPES
 LEADER

WW - 048 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries. SAE for lists, and prices. $£ 1.45$ for PP tye bateries, SAE for lists and prices.
booklet, "Nickel Cadmium Power," plus catalogue.

$$
\begin{aligned}
& \text { Write or call at: } \\
& \text { Whil PI ANT }
\end{aligned}
$$

SANDWELL PLANT LTD
Sutton Coldfield, West Midlands, 021-354 9764
WW - 067 FOR FURTHER DETALLS

WW - 112 FOR FURTHER DETAILS

267 \& 270 ACTON LANE, LONDON W4 5DG Telene 01-747 1555 STABLIISED POWER SUPPLIES FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing, current limit protection. 1164×130
 mote sensing. (188 $\times 96 \times 93 \mathrm{~mm}$). Two versions available
15 V at 2 A or 30 V at $1 \mathrm{~A} £ 15$ ea. COUTANT OA2: Op, amp, psu, $120 / 240 \mathrm{VIP}$. Dual Op. 12-15v
at 100 mA . $138 \times 80 \times 45 \mathrm{~mm}$). $£ 12$ ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting Metered, current limit protection
374300 V 1 KV at 5 mA . 375 500VV1KKV at 6 mA .
Photo multiplier tubes available. 376 660V-1K6V
All models $£ 40$. PIONEER MAGNETICS POWER SUPPLES $\quad 5 \mathrm{~V} 150 \mathrm{amp}$,
output input 115 vac. (Switchmode). Price 120 each Various other makes of power supplies in stock. Please send or lists. S.A.E. please.
SPECIAL OFFER. 10 MFD 500 V ECC 20 p ea., $10,000 \mathrm{MFD} 16 \mathrm{~V}$
Mullard 35 p ea., $3,300 \mathrm{MFD} 40 \mathrm{v}$ Mullard 35 p e ea. 10uF/63v MIMA polyester., $10 \% 40 \mathrm{p}$ ea. Large quantities available. 5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy ca
lists or please phone for details.

4 MILLION

I.T.T. ELECTROLYTICS NEW AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL The whole range available at unbeatable prices. Send for List

SETTES. BLand new or boxed, 50pea.
CASSETTE DECKS: With ste reo heads, mechanically-
complete, complete, but with no
electronics. Smart black electronics. Smart black
modern finish.
Whe have very We have very large quanti-
ties of Disc Ceramics High
 £15 Disc. Ceramic Stock Lists.
our Dis.
PIHEP PIHER PRESETS
Very large stocks, PT10, Very large stocks,
PT15 enclosed types. Please,
send for our preset list. Most send for our preset list. Mo
values $100 \mathrm{R}-5 \mathrm{M}$ HEAVY DUTY
KEYSWITCHES
 10 P 12 A 60 VAC
$49 \mathrm{~mm} \square$ Fascia. We have the following quan-
tities of low profile GLD tities of low porifile Gold
PLATED I.C. sockets manu-
factured by Winslow

DTO A CONVERTERS

By Micro Consultants Ltd. 50Ω cable drive op. Linearity
0.25%, max. $0.12 \% \%$ typ. Setting time: $2 V$ step 70 St
2 y . 2 MV step 5 nS colour television transmission standard. Diff.
gain $0.55^{\circ} \%$ diff. phase shift 0.5° types rad 802 and MC2208/8. Unused. Ex-makers's pack.
SPEIAL OFFER PRICE: $£ 20$

SPECIAL OFFER PRICE: £20
on is mainly of our ouros

Telex 291429
ANSFORMERS
1
1
1
2
2
2
2
2
2
2
1
2
3
3
3
0
4
 WW - 097 FOR FURTHER DETALS

ELEGTROVILUE CATALOGUE 82 Ready now! Improved. . . updated. . . and a real money saver

 You're going to like Catalogue 82 better than anything we have ever produced before. Of course it has masses of the everyday things you simply must have, whatever project you start on. But it also has much that is new - and right inline with today's most electronics and the requirements they bring with them. This is particularly true of our enlarged computer section. If you want the best at the best prices, Catalogue 82 is for you - use the coupon to
promptly.

SEND 70p for ELECTROVALU pages (A4) plus covers. WITH WE GIVE A RECLAIM VOUCHER WORTH 70p VALID FOR SPEND NG ON ORDERS FOR £10 OR
HARDWARE - COMPONENTS SEMI-CONDUCTORS COMPUTING
DISCOUNTS
5% on C.W.O. orders $£ 10$ or more 10% on C.W.O. orders $£ 20$ or more

FREE POSTAGE ELECTROVALUE LTD.

Shoppers only $G 88$ Burnal
Lane, Manchester M19 MA

TO ELECTROVALUELTD. 28 ST. JUDES ROAD
ENGLEFIELD GREEN. EGHAM TW20 OHB
Please send.... Copylies) ot Catalo
@ 70p each for which l enclose E
Name....
Address....

Standard products by Reticon.*

RETICON offers the world's largest selection of standard switched capacitor filters for your variocus active filter re-
quirements. These fully integrated MOS filters feature.

- Low cost
- Small size

Continuous adjustability Excellent

- Simple implementation

Excellent temperature stability
Easily converted to custom - Multiple filters in one
spec's
spec's package

BY ORDER OF B. BAMBER ELECTRONICS \& OTHERS

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY

LOTS INCLUDE

Resistors, capacitors, pots, connectors, switches, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares.

Over 900 lots
Catalogues available
TO BE HELD ON WEDNESDAY, 25th NOVEMBER, 1981
ON THE PREMISES OF
B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT
CAMBS. CB6 1QE
TEL: ELY (0353) 860185
WW - 096 FOR FURTHER DETAILS

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min .3 cm) BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box . Number in the dvertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5 AS SMF, 1-661 3033 (DIRECT LIN

ALWAYS AHEAD WITH

 THE BEST!£5,000-£15,000
PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL: ECL: RADAR: SONAR: SATCOM: Phototypesetters: Wordprocessors: Flight Simulators: ATE: Elec
Where does your skill and interest lie -
Design? Test? Service? Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry
* Most UK opportunities for Managers, Project Managers, Engineers and Techinicians. * Make your first call count - Contact MIKE GERNAT or PETER BROWN on $076384676 / 7$ ELECTRDMIC COMPUTER AMD MAMAGEMENT APPDINTMEMTS LIMITEO

DODolby ELECTRONIC TEST ENGINEERS

We manufacture and market audio noise reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
We need experienced Test Engineers to join a dedicated team who are proud to be world leaders in the manufacture of professional noise reduction equipment.
Those with practical knowledge of electronic testing and have rapid troubleshooting ability can enjoy varied and interesting work and high rates of pay Telephone Jan Proos, 01-720 1111 DOLBY LABORATORIES INC 346 Clapham Road, London, SW9 9AP

THolinare VISION ENGINEER

required. Major television facilities company situated in Central London needs motivated vision engineer to help with the further development and
operation of studio and OB facilities. The work is with state of the art equipment. Opportunity for operations, maintenance, systems engineering and for furtherance of technical knowledge. The posiion requires experience in a broadcast production he responsibilities of the position and experience. Applications in writing to:

Nell Corrales, Molinaire Ltd
44 Great Marlborough Street, London W
PHONE YOUR
CLASSIFIEDS TO OPHELIA SMITH

ON 01-661 3033

HAMPSHIRE
HF, VHF \& UHF DESIGN ENGINEERS
ANTENNA DESICN
ENGINEERS
navigation
PECIALISTS
(Avionics)
Salaries 57 K to $£ 13 \mathrm{~K}$

24 hours answering service (Aqq1 ${ }^{13411}$
(BKAp)Kintmkents ELEETROTILS PERSDTIEL
ELECTRONIC ENGINEERS Ref wh100 Good digital knowledge, test, design or program. Dynamic company. QUALITY CONTROL Ref: ww101 ELECTRONIC MANUFACTURING MANAGER Ref: ww 102 SALES ENGINEERS AND EXECUTIVES Ref: wwion

ALSO: Engineers for service, test, calibration
For salaries and details telephone today
30 High Street Eton Windsor SL4 6AR Windsor 59252

SENIOR LECTURER AND PRINCIPAL SENIOR TECHNICAL INSTRUCTOR

Salary:
Serariver
Principaturectical Instructor
Senior Technical Instructor
$\mathrm{K} 11,895$
K17,895
$\mathrm{K} 14,195$
Appointment level will depend upon qualifications and experience.

 Detailed applications tiwv copiest with curriculum vitae eogether with
 Applicants resident in the United Kingdom should also send a copy othe Association of Commonwoalth Universitios (Appts.) 36 Gor
don square.
dondon obtined.
M.R.C. CLINICAL RESEARCH CENTRE (NORTHWICK PARK HOSPITAL WATFORD ROAD, HAA
MIDDLESEXHA1 3 U

Technician

There is a vacancy in our division of bioengineering for both digital and analogue circuit design and construction, to work initially on an alarm system for the elderly application of advanced technology to the everyday problems of the elderly, as well as clinical instrumentation, monitoring equipment and signal analysis. The applicaject to the point phared to take hisher share of the project to the point where adequate information can
transferred to a manufacturer. Desirable qualifications would be a degree in electronic/electrical engineering, or an HNC or HND in an appropriate subject. Extensiv Salary within the range $£ 4,677-£ 66597$ (pay award
pending) plus $£ 527$ p.a. London weighting. Write to Miss B. A. Shaw for application form quoting ref.
103/2/3907. Closing date 11th November, 1981.

Sales Management West Africa - UK based Reporting to the Sales Manager Africa the successfiu Reporing to the Sales Manager Africa a he successiul
candidate will be responsible tor the sales of a wordi
leading range of rofessional ITR's. TBC's and editity Yeading range of professional 1 TR's, TBC's and editing
systems and cameras. Candidates should possess a
knowledge systems and cameras. Candidates should possess a
knowledge t broadcast engineering/communications
electronics and be preaperedto undertake extensive trave electionics and be prepared to underitake extiensive travel
in the West African territor, A working knowledge of the
West Atrican region andlor the Frenchlanguage would be an advantage and the high. deagree of in intititive and selt motivation required fir
above average salan

Technical Support Engineer - Cairo based A competent broadcast engineer experienced in video
cameras and/or protessional VTR's is sought to assist the cameras and/or protessional TR 's is sought to assist the
Cairo Branct Manager. The position will ntait travel the
throughout the Midde East and the successtul candidate throughout the Middie East and the successtul candidate our UK Technical Training Centre. An antractive emuneration package will be offered which will include

Applications for these challenging appointments should $\frac{\text { be addressed to Barry White, Personnel Manager, and }}{\text { please don't forget to enclose a comprehensive } C V}$ A
301 T Ciry Wall Heuse

Instrumentation Engineer

Some Overseas Travel from £9,000
NL Information Services, one of the largest and longest established oilfield service companies requires an instrumentation engineer for its The jomisphere operations.
The job holder will be responsible for the maintenance and repair of electronic monitoring
systems and equipment at a number of drilling systems and equipment at a number Middle and
sites throughout Europe, Africa, the Midd Near East.

Candidates should be under 35 years of age with BSC or HND in Electronics/Electrical Engineering
together with practical experience together with practical experienc
of monitoring systems and/or sophisticated instrumentation. Experience of microprocessorbased systems advantageous.

The job is based at the Hayes, Middlesex headquarters but exten-
sive overseas travel will be involved.
This is an opportunity to
develop a long term career in a progressive international oil field For further
For further details and an application form, contact Employee
Relations Dept. quoting Ref. ILS-1.

NL Petroleum Services
35/36 Grosvenor Street London W1X 9FG
 word-wide interests in hydrographic and geophysical survey-
ing, operating from locations in Great Britain, reland, Holland,
U.S.A. and the Far East.

$$
\begin{aligned}
& \text { With and the Far Eash, } \\
& \text { continuing exn }
\end{aligned}
$$

With continuing expansion Gardline is now seeking more
Marine Digital Seismic
 Company's sange of TII. DFS HII and Quantum DAS 1A shallow
seismit digital accuuisition systems for surveys oftshore Europe
and overseas. Successful candidates will have proven fir seismic digital acquisition systems for surveys offshore Europe
and overseas. Sucessful candidates will have proven field ex.
perience with these or siminar systems, and it is desirable that perience with these or similar systems, and it is desirable that
they will be qualified to H.N.D. or Degree level in electronics. they will be qualified to H.N.D. or Degree level in electronics.
Candidates must also be self-motivated and be able to work alone or as part of a small team.
Engineers will spend at
Engineers will spend at least 150 days a vear at sea working on
dedicated seismic vessels or from air transportable laboratories
Good besic saling Good basic salary, plus high daily sear-going allowance. Excel-
lent working conditions and career prospects. Usual company lent worki
benefits.
Opportunities also exist for suitable applicants to enter as
Trainee Operators for above or ther types of geophysical Trainee Operators for above or other types of geophysical
equipment for navigational positioning systems. Write to Technical Manager, Gardline Surveys, Oilmar House,
Admiralty Road, GREAT YARMOUTH, Norfolk, for an application
form,
telecommunications ENGINEERS AND TECHNICIANS Expansion of Granger Associates
support tacilities is creating a
 nose faults and make repariag to
our UHF communication systems.
. Vacancies exist for base workshop

SULTANATE OF OMAN VTR MAINTENANCE EnGIIEER VACANCIES

Oman TV has a number of vacancies for experienced VTR maintenance engineers to work on Ampex videotape recording machines.
Applicants should be qualified to HNC level or equivalent and have not less than six years' maintenance experience on Ampex videotape recording machines with particular reference to the VR 1200B. Experience on 1 " " C " format would be advantageous
Salaries, which are paid in rials Omani, are fully remittable and tax-free and range from $£ 1,100$ to $£ 1,300$ sterling per month upwards.
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.

Applicants should write stating age, nationality, qualifications and full details of experience to:
Ministry of Information and Youth Affairs, Post Box 600, Muscat, Sultanate of Oman, marking the envelope "Technical Office" in top left-hand corner.

TRAINEE RADIO OFFICERS

- Fistctass, sevure craer opopotimities

A number of vacancies will be available in $1981 / 82$ fo
siutable qualified candidates to be appointed as
Trainee Radi Officers

- Trainee Radio Officers.

If your trade or training involves Radio Operating, you qualify to be considered for a Radio
Candidates must have had at least 2 years' radio
operating experience or hold a PMG, MPT or MRGC Candidates must have had at least 2 years radio
operating experience or hold a PMG, MPT or MRGC
certificate, or expect to obtain this shortly. weeks
Radio
On successful completion of between 36 and 42 weeks
specialist training, promotion will occur to the Radio

- Officer grade.

Registered disabled peot
TRAINEE RADIO OFFICER: £3859 at 19 to $£ 4549$ at 25
and over. On promotion to RADIO OFFICER: E55288 at
19 to E 884 at 25 and over. Then by 4 annual
incrent
increments to f 9339 inclusive of shift working and
Saturday and Sunday elements. Salaries reviewed
annually
For full details please contact Dinah Shobrook, our
Recruitment Officer or Cheltenham (0242) 21491 Ext.
For full details please c
Recruitment Officer or C
2269 or write to her at:

- Recruitment officer, Government Communication Headquarters,
Gloucestershire

Communications Manager Sudan

ELECTRONICS to $£ 15,000$ MICROPROCESSORS COMPUTERS - MEDICAL DATA COMMS - RADIO Design, test, field and support engineers - for immediate action on vancement, please contact.

Radio ๕ Telecommunications

KENANA SUGAR COMPANY LIMITED, in which the Sudan Government is a major shareholder, is developing Africa's largest sugar estate, including a sugar company has recently installed a VHF radio system (RCA) with over 300 mobile sets, 18 base stations and 10 channels. Other equipment includes UHF systems nd HF with FSK for teleprinter communications. A contract for a microwave and
multiplex estate system (1,000 line exchange and 8 PABXs) will be let shortly. The Communications Manager will work closely with the company's consultants The Communications Manager will work closely with the company's consultan company. Thereafter he will be responsible for running the Communications Department (about 20 people) and for maintaining all radio and telecom munications electrica An electrical/electronic engineering qualification to at least HNC level, management competence and a minimum of five years' experience servicing radio/
elecommunications equipment as specified are essential.
A highly competitive salary will be negotiated plus 15% end of contract gratuity, discretionary bonus, free life assurance and education allowances (where
applicable). 60 days' annual leave, passages paid. Free air conditioned applicable). 60 days' annual leave, passages paid. Free air conditioned
accommodation and medical attention. Sports and club facilities and school for accommodation an.
Please send relevant details - in confidence - to R. M. Cooper ref. ZH. 60691.
MEL United Kingdom Australasia Benelux
Canada France Germany Ireland Canada France Germany Ireand
Italy Scandinavia South Affica
Switzerland Lis Management Selection Limited International Management Consultants 474 Royal Exchange Manchester M2 7EJ

MARKETING MANAGER with
dititat design background to
suip
 2 SUPPORT ENGINEER to provide Technce Support and de-
velopment expertise for on-line
pDP 11 system £0,800 Kent. 3 O.A. ENGINEER work on MicroOi.A. ENGINEER work on Micro-
Elictronic Commercial and Mili-
Iar equme
Northants.
S SENIOR ELECTRONC TECHNI. CIAN running laboratory de-
veloping spe.alist rand die
equipment $£ 10,000$ Berks. SENIOR ENGINEERS to design compunterised display systems
forivititary applications. $E 10,000$
Middlesex. Middlesex.
6 DEVELOPMENT ENGINEER experience of microbased control
systems $£ 10,000$ London.
Phone or write, Anthony Giles,

M.Sc. Eng., M.I.E.E.E. CLIVEDEN CONSULTANTS | 87 St. Leonard's Road |
| :--- |
| W. | Windsor (075355) 57818 -58022

CLIVEDEN
DIGITAL EXPERIENCE? FIELD SÜPPORT
R\&D AND SALES R\&D AND SALES
VACANCIEANCALNTERS
NC, COMMS.,MEDICAL Vor free registration ring ee ergistration
04535833264
$01-2300267$ LO © EX

TELEVISION ENGINEER We are a rapidly expanding television company with an established
ket place and have the need of a full time engineeer. In addition to a practical knowledge of normal broadcast procecdurese and requirements,
 Barious supporitequipr controlled editing systems, Cintel telecine and
Duties will include the planning and implementation of regular Duties will include the planning and implementation of regular
maintenance schedules plus maintaining the technical standard of maintenance schedules plus maintaining the technical standard of
in-house faicilities.
A sense of responsibility and the ability to work unsupervised is essential. It will also be necessary to work flexible hours. require
Initial application
res Initial application to Sheila Clare.
Television Automation Limited, $16-18$ Grape Street, London WC2 $01-2405515$

ARTICLES FOR SALE

BUYERS \& DISPOSAL OFFICERS COOKE ITTERNATIONAL SERVICES Test Equirment \& Components COOKE INTERNATIONAL SERVICES

DEVELOPMENT ENGINEER

ELECTRONICS £8k-£9k

Young successful company based in the development of
specialist instrumentation in the field of forensic science spect to appoint an electronics engineer to progress curren
wish tole
projects in Apolicants should be qualified to
Applicans should be qualified to degree level with at least
three years' design/devel having a sound knowledge of experience. In addition to techniques, a specialist background in video and micropro
cessor-based systems would be and This is an opportunity to join a small company committed to Written applications with full CV to

FOSTER \& FREEMAN LTD.
UNNEL INDUSTRIAL ESTATE LONDON ROAD
For more information phone Purfleet (04026) 7692 (1348)

OVERSEAS DEVELOPMENT
 KNOW-HOW-vital to developing countries

Senior Technical Officer

(Line Planning)

Kiribati
DUTIES: Planning for the upgrading of the urban Tarawa, outer islands and international telecommunications service
POSTING: Betio, Tarawa with visits within the Kiribati island group. Appli-
cants should have City and Guilds Telecommunications The tificate or equivalent with specialisation in local line and echnician's CerExperience of HF or VHF radio links and telex networks is desirable.
APPOINTMENT: Two years. Salary (UK taxable) in accordance with qualifi cations and experience plus a variable tax free overseas allowance, currently in range of $£ 1,365$ pa to $£ 3,590$ pa according to marital status.
The post is wholly financed by the British Government under Britain's programme of aid to the developing countries. In addition to basic salary and overseas allowances other benefits normally include paid leave, free accommodation and medical attention. Applicants should be visits, free the United Kingdom.

For full details and application form please apply, quoting ref AH qualifications and experience to:Recruitment Executive,
GAED $\begin{aligned} & \text { OVERSEAS DEVELOPMENT A } \\ & \text { Room 351, Abercrombie House, } \\ & \text { Eaglesham Road, East Kilbride, }\end{aligned}$ Glasgow G75 8EA
HELPING NATIONS HELP THEMSELVES

 Engineer

 SNH. to whom appicatains siving a bief crerr

ARTICLES FOR SALE SURPLUS STOCK
mron Relays. Crouz Omron Relays, Crouzet
Timing Motors, Crouzet Micro
Switches. Bula Switches, Bulgin Lep and
Panel Lampholders, Transfor-

INVERTERS High quality DC-AC. Also "no
break (2ms) static switch, break (2ms) static sw
i9" rack. Auto Charger.

Computen pawer sistiems Interport Mains-Store Lto
POB 51, London W11 3BZ Tél: 01-727 7042 or 0225 310916

THE MODERN BOOK CO.
\& Technical Books
19-21 PRAEDSTREET STR
LONDON W2 1NP
Phone 402-9176

OUR NEXT ELECTRONIC PROJEGT NeED NOT LOOK D.I.Y.
Choice of over 130
metalwork, ett... including 45 diff metalwork, etc. including 45 diff
ffrent printed front panes.s, sub
frames. or a complete mixes
console frame.

For full details s.a.e. to:	
The Mixer People	
PARTRIDGE ELECTRONICS	
56 Fleet Road	
$\underset{\substack{\text { Benfleet } \\ \text { Essex SS7 } 5 . J N}}{ }$	(1336)

Modata DSC 2
Z80 DEV system
 E2,000 including V.A.T.
U.K. delivery
Tel: (0272) 571404
cras-Be
yeicom
hena
avallab
and
half

METAL CASES 20 SWG Mild Steel Case, painted
brown textur. $\begin{aligned} & \text {.ited } \\ & \text { non-scratch feet. } \\ & \text { vet. }\end{aligned}$ non-siip,
 Price $£ 12.80$ inc. V.A.T. Free p. \& p. in U.k. M. GEAR LTD. 179a Victoria Road
New
ournet, Herts.

c
tii
sic
si

PCB ASSEMBLY CAPACITY AVALLABLE Low or high volume, single or double sided, we specialise in flow bly of printed circuit boards.	ELECTRONIC DESIGN SERVICE. circuit design and development wark, PC artwork, etc. Small batch - E.P.D.S. Ltd., 1 A Eva Road,
Using the Zevatron flow soldoving system and on ine lead curting, we are abbe to deliver high quality assemblies on time, and competitively priced. Test faciities avai abile. Find out how we	
Find out how we can helpyou with your corouction. hhone or writa We wir be flased to call on you and discuss your requirements.	
TW ELECTRONICS LTD.	Limited. $0,1,8506518$ or $01-8505740$ London. SIEs 2BJ.
Sub-contract assemblers and wirers to the Electronics Industry the Electronics Industry (13179)	

Laboratory Manual

 for the Art of ElectronicsPAUL HOROWITZ and IAN ROBINSON

Large quantities of Radio T. T. and Electronic Compinents.
RESSISTORS CARBN $\& \mathbf{C} / \mathbf{F} / 8,1 / 4,1 /, 1 / 1$ Watt from 1 hm to
10 meg
RESISTOR
CAPACITORS. Silver mica Polystyrene, Polvester, Disc Ceramics Metalamite, C280 Silver Convergence Pots, Slider Pots, Electrolytic condensors, Can Types
 All at Knockout prices. Come and pay us a visit. Telephone 4452713
4450749 BROADFIELDS \& MÂYCO DISPOSALS

HAVE YOU SEEN THE GREEN CAT?

$\underset{\text { Dept. WW, } 12 \text { Harper Street, LEEDS, LS2 4EA }}{\text { Teleptone }}$

SEVERN-TRENT WATER AUTHORITY DERWENT DIVISION Tenders are invited for the purchase of redundant radio equipment
incluurig five VHF base stations, five base station controliers, two
OHF
 Ureen Pry Vanguard
of the equipment.
The equip
The equipment which will be sold without the operating crystals is
storec
tat Raynossway, Derby and may be inspected by arrangement
 The Authority does not bind itself to Tender forms are obtainabbe from to tee Divisional Marager, Seveern-
Trent Water Authority, Derwent Division, Raynesway, Derby DE2
(1350)

SANGTRONIC LTD
 SUB-CONTRACT ENGNEERS

(e)	
- Copose chas	

We specialise in P.CB Assy,
Unit Assy, Cable harnessing,
ALSO
We supply B.I.C.C. Equipment
Cable, Plain or Colour Coded on customers requiremen
and Passive Components. For
further deatis pease ring Mr
Avtar Avtar on: 02812-2851/2. (1353)

WW - 086 FOR FURTHER DETAILS

INDEX TO ADVERTISERS NOVEMBER

Appointments Vacant Advertisements appear on pages 121-127

ANTEX LIMITED, Mayflower House, Plymouth, Devon PL1 1BR. Telephone: (0752) 667377

[^0]:

[^1]: Data bus
 Eight bidirectional wires used to transfer data be tween the v.i.a. and c.p.u. A control line used by the tion of data transfer. If the R / W is low, data is trans ferred from the c.p.u. to the v.1.a., i.e. a write oper atan. is read by the is high, data is read by the c.p.u. internal registers except T1, T2 and the shift regis ter.
 O_{2} acts as a time base for gisters etc. in the i.cs. The four Register selec lines are normally connec ted to the four least-significant address-bus lines to the 16 registers.
 Chip select The selected register can chip select chip select pin, $\overline{\text { CS2 }}$, is usually derived from the address decode circuit which places the i.c. in the memory map.
 Interrupt This output can be used
 request (IRQ) to interrupt the c p.u

[^2]: Ready August - may beor refordan now

