

PROFESSIONAL TOOLCASES for Service Engineers,

 this issue, superimposed on on
a photographic montage a photographic montage
punched tape symbolising
the diaital the digital techniques in
other artices. Photographer
Paul Briellay. other articles.
Paul Brierley.
in our next issue Radio and the birth of the Universe. A review of th
significance of the $3 k$ significance of the 3 Kr cos
mic microwave background in the Big Bang cosmolog arthery. Electronics on the road.
Broadly surveys electranic Broadily survees electronic
ignition, anti-1ock brakes,
cruise control cruise control, active suss
pension and other electronic pension and other electron
systems; also social in fluences on design.
Correlator for angles. Mea suring technique suitable for
testing timing scatter in automobiliming ignition syater and other rotary mechan
people with more important things to do. isms.

wireless world

JULY 1981 Vol 87 No 1546
29 Decline of the philosophical spirit
30 New development in h.f. coaxial cable
by S. C. Carter and H. M . Barlow
336809 evaluation system for $\mathbf{f 1 0 0}$
by R. Coates
38 World of amateur radio
$\left.\begin{array}{cc}\begin{array}{c}39 \text { Leap seconds } \\ \text { by L. Essen }\end{array} \\ \hline 41 \text { Parallel tracking pickup arm modifications } \\ \text { by R. Cooper }\end{array}\right]$
$\left.\begin{array}{c|}\substack{57 \text { Wafer-scale integration } \\ \text { by I. Catt }} \\ \hline 60 \text { Sound synthesis using Walsh functions } \\ \text { by A. A. Thomas }\end{array}\right]$

Frequency hopping radio/Broadcasting satellites report
73 The twins paradox of relativity
75 Circuit ideas
Low-noise m.c. pre-amp/Plotting c.r.o. waveforms
77 Designing with microprocessors - 9

81 Electrical and mechanical units
by D. A. Bell

The Professionals

> VALVES,SEMICONDUCTORS \& COMPONENTS for:-
> Communications, Displays, Radar, Computer,
> Audio etc.
> $\begin{aligned} & \text { Electron House, } \\ & \text { Cray Avenue. Si. Mary Cray. }\end{aligned}$
> Orpington, Kent BR5 30J.
> $\begin{aligned} & \text { Telephone: Orpington } 27099 \\ & \text { Telex: } 896141\end{aligned}$
> MIN DEF APPROVAL 0529/0531

Electronic Brokers-Europe's Premier Used Computer Company offer sUPER RATIVE UG:D COM PUIER EOUPMENTAS NEW CONDION

WIRELESS WORLD JULY 198

PA GROUP \&
DISCO UNITS
 WILMS
AUDIO
kits for magazime designs
 Carimge ef3.95

IL PRICES INCLUDE VAT @ 15%

> SEND 50p FOR 56-PAGE CATALOGUE 'CHOOSING A SPEAKER' (or price list only free of charge)

Tel. 0625529599 for speaker drive units, kits, PA equip ment, mail order enquiris
Tel: 0625526213 for Hi-Fi equipment and complete Lightning service ontelephoned credit card orders!

 $35 / 39$ Church Street
Wilmslow, Cheshire

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc

Colour printout is quickly assimilated, makes graphics more understandable tation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC

Compleie kit, including licence fee $557.70+$ VAT or ready built and lested $\mathrm{E} 76.95+$ VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

 Complete kit $\mathbf{£ 5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

 Aso wailable reacy built and tested.

All kits are carriage free

ITTEGREK LIMITED Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

(1) 0 A TRANSFORMERS FROM TITAI
 NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

			TH FIRST ORDER) FOR CATALOGUE S AND COMPONENTS LCHAMBERS, GRIMSBY CESINCLUDE

WW - 022 FOR FURTHER DĖTAILS

IMO can now offer you the high quality and reliability that vou have come to expect in omron rearss in their new series of fow pro
printed circuit mounting subminiatures. printed circuit mountitng subminiatures. interface, communication and output application
suitable for mounting with sockets or directly suitable for mount ting with sockets or directly onto orintec circuit boards. There are low co
types like the CCl-NE where price is amjor onsideration, and high reiliabiilty types like ontacts and card lilitt.off poperation crossbar nd down to $10 \mu \mathrm{~A}$, all in in a variety of housing styles and sizes, and up to four changeover
contacts per relay, this range from imo offers
you real design flexibility. Al Usual $A C$ and $D C$ you real design flexibility. Al usual $A C$ and
coil voltages are availabile from stock.

complete reliabiility in electronic circuiltr
youill need relays at the right price and youlin need relays at the right price and
the highest quality. in a word, omron-from IMO

ImO

Much more
thanyou may Mo Precision Controls tta.

New! Sinclair 2X81 Personal Computer.

 Kit: $£ 49 .{ }^{2}$ scompeleReach advanced
computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the Sinclair ZX80, world's first complete personal computer for under £100. At
£99.95, the XX80 offered a specification unchallenged at the price
Over 50,000 were sold, and the ZX80 won virtually universal praise from omputer professionals. Now the Sinclair lead is increased offers even more advanced comput facilities at an even lower price. And the ZX81 kit means an even bigger saving. At £49.95 it costs almo
40% less than the ZX 80 kit!
ower price: higher capability With the ZX81, it's just as simple to ZX81 packs even greater working capability than the ZX 80 .
It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intellige of the computer. This chip works in
decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.
And the ZX81 incorporates other operation refinements-the facility to
load and save named programs on cassette, for example, or to select a program off a cassette through the eyboard.
Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 duced the chips in a working computer from 40 or
the 21 to $4!$

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip

Proven micro-processor, new 8KBASIC ROM, RAM-and unique new masterchip.

If you own a Sincim 74:0.0.

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 (Complete with new keyboard template and operating manual.)
With the exception of animated graphics, all the advanced features
the $\mathrm{ZX81}$ are now available on your ZX80-including the ability to drive the Sinclair ZX Printer.

Coming soonthe IX Printer.

Designed exclusively for use with the
ZX81 (and ZX80 with 8 K BASIC ROM), the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include
COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The $Z X$ Printer will be available in Summer 198 at around £50-watch this space!

I6K-BYTE RAM pack for massive add-on memory.
Designed as a complete module to fit your Sinclair $\mathbf{X X} 80$ or ZX 81 , the RAM expansion port at the rear of the com puter to multiply your data/program storage by $16!$
Use it for ion
Use it for long and complex pro-
grams or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81 BYPHONE - Access or Barclaycard attention 24 hours a day, every day BYFREEPOST-use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or Barclaycard.
EITHER WAY
days for delivery. And there's a 14 -da money-back option, of course. We wan you to be satisfied beyond doubt-and
we have no doubt that you will be.

WIRELESS WORLD JULY 1981

OFFICAL ORDERS WELCOME OUANTTY DISCOUNTS AVAILABLE

The EP4000 is not just an EPROM Programmer . . .

Not only does the
EP4000 copy, store, program and duplicate the 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video output for memory map display to make the powerful editing facilities really useful and this is in addition to the in-built LED display or stand-alone use), but it also comes as standard
 with comprehensive
input/output - RS232, 20 mA loop, TTL parallel handshake, cassette, printer and direct memory access. Now the programming power can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator . . .

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program evelopment - the EP4000 can be configured to look like any EPROM it is capable of programming. The press of a button isolates
the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

. . . with real technical back-up and service.

The EP4000 comes with a technical manual escribing every aspect of the machine - its purpose, its use, and how to use it. It also has a ection describing the whole process of program development
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 63380.

Finally, a full range of accessories in now
available - these include Bipolar programming
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors 2764/2564 programming satellite, printer and production programmers. The EP4000 is exstock. Price - £545 + VAT (+£12 for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

OR: UPOMII: Con:allon.

Introducing the first $41 / 2$ digit handheld DMM in a market that's been the exclusive domain of $31 / 2$ digit models. Until now
The new Keithley 135.
ombining outstanding specification with
impeccable performance. And confirming Keithley's
position as a major innovator in D.M.M. technology:
0.05% DCV accuracy
Five functions
Low battery indicator
Full overload protection: $1000 \mathrm{~V} \max$ DCV 1000 V peak ACV, 300 V max Ohms 10 amp range
ACV bandwidth to 20 kHz
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$ DCV accuracy, and full function annunciators. Built up to a standard - not down to a price. Yet the 176 gives quality, $4 \frac{1}{2}$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match.
To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

3 1 -35 DIGITAL MULTIMETER 1.2345

KEITHLEY

Keithley Instruments Lid
1 Boulton Road Reading Berkshire RG2 ONL 1 Boution Road
Telephone (073
Telex 847047

20 Cut costs and speed trouble shooting

AFIT 1500 Automatic Fault Isolation Tester A low cost complete PCB tester designed for quality control or service/repair work. Its powerful selfcontained microprocessor provides rapid in-circuit fault solation on complex digital PCBs.

MTL's comprehensive Programming Service will provide all the expertise required. 98% confidence Solves 'wired or' problems.

MTL Microtesting Limited 1-15 Butts Road, Alton, Hampshin
Telephone: Alton (0420) 88022 M1 WW - 019 FOR FURTHER dETALLS sonimagl9 XIX INTERNATIONAL MAGE, SOUND AND ELECTRONICS SHOW

TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH

BARCELONA (SPAIN) 28th SEPTEMBER - 4th OCTOBER 1981

fivenewsenses

FOR YOUR MIGRO

IEBE STANDARD A-D CONVERTERS
D-A CONVERTERS D-A CONVERTER RELAY UNITS APPLEINTERFACES

CIL

WW - -051 FOR FURTHER DETAILS

Marshall's

SIEMENS \& THOMSON CSF WITH FULL INDUSTRIAL GHISES AND CONSUMER FRANCHISES FOR MULLARD, NATIONAL AND TEXAS.
WE ARE ESPECIALLY STRONG ON ITEMS LISTED AND INVITE YOUR ENQUIRIES. PLEASE SEND
FOR STOCK LIST AND CLEARANCE LIST OF FOR STOCK LIST AND CLEARAN
SEMICONDUCTORS.
COME TO US FOR YOUR REQUIREMENTS OF SIEMENS CAPACITORS • SWITCHES \& OPTO COMPONENTS.
T.T.L. - C.M.O.S. • BAHCO TOOLS SINCLAIR TESTGEAR LEADER INSTRUMENTS PRESENSITISED LIGHT SENSITIVE PRINTED CIRCUIT BOARDS 4 SIZES BOTH DOUBLE \& SINGLE

METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for 10.14 sizes and stylings available for $10-14$
days delivery. Other Ranges and special scales can be inade to order.

Full information from:

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD. W.C. 1 Phone: 01/837/7937
ww - 033 FOR FURTHER DETAILS

WW - 041 FOR FURTHER DETALL

${ }^{23}$

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave include board mounted stampings and flat sided extrusions.
 Solderable Stud Heat sinks allow heat sink/device to be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the P.C. Board and wave soldered with other components. Extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature
contact MCP Electronics.

WW - 026 FOR FURTHER DETAILS

CIII:ST intermational 210

Volitstab: The simple answer to your current problem.

If you are experiencing random faults and failures in your
microprocessor-based equipment, they are probably cause microprocessor-based equipment, they are probably caused
by voltage irregularities. Even dedicated supplies may not be by voltage irregularities. Even dedicated supplies may not
the answer - they will still suffer from momentary voltage transients and power supply breaks. Gian Constant Voltage Transformer. Reliable, efficient and
economical, the Galatrek VOLTSTAB offers you:

- Output stabilisation to $\pm 1 \%$ from mains input fluctuations
- Transient attentuation
- Momentary power back-up

Available ex-stock from regional stockists in a choice of power
ratings from 250VA to 5 kVA , the Galatrek VOLTSTAB will ratings from 250 VA to 5 KVA , the Galatrek VOLTSTAB will
keep your sensitive electronic equioment running smoothly koth the factory and the regional stockists throughout the UK will assist you technically to ensure you match the VOLTSTAB unit exactly to your requirements.
Mr R Koftler, Galatrek International, Scotland Street, Llanrwst,
nr Colwyn Bay, Gwynedd LL 260 AL, , North Wales, Great Britai nr Colwyn Bay, Gwynedd LL26 OAL, North Wales, Great Br
Tel No: $0492-640311 / 641298$ Night Service: $0492-30592$
Telex: 617114 A/B Galahu

IV Please send me the 18 page Galatrek VOLTSTAB
catalogue, which includes details of your Mains Filters and Standby Power Supplies.
Name:
Position:
Company:
Address:
$\overline{\text { Trade } \square \text { OEM } \square \text { (please tick where appropriate) }{ }^{\mathrm{ww}}}$

Look wisc s.

 MULTI-LED ARRAYS

OUR
OFF THE SHELF RANGE OFFERS
any combination and sequence of Red (GaP), Green(GaP) or Yellow (GaAsP/GaP) colours incorporated in one array.
. fully end-stackable, $2,3,4$ or 5 segment options thereby enabling displays encompassing any number of segments to be created,
...black bezels as standard with white bezels to special order,
....push-fit mounting into correctly dimensioned panel cut-out,
. wide operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.

So if you are into TREND INDICATORS

BAR GRAPHS
EVENT DISPLAYS
Look at our

MULTI-LED ARRAYS

Our prices won't make your eyes water Zaerix Electronics Limited 46 Westbourne Grove, London W2 5SF, England
ww - 014 FOR FURTHER details

For personal service visit one of our stores.
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circuiar Roads. Hammersmith Underground Station is nearby. Call in and see us soon

* Very large percentage of our stock lines in stock * All prices include VAT
* Large range of all the most useful components * First class reply paid envelope with every order * Quality components-no rejects-no re-marks * Competitive prices
* Your money is safe with a reputable company On price, service, stock, quality and security it makes sense now more than ever to make ninfoplun your first choice for components every time!

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911 ww - 017 FOR FURTHER details

wW - 008 FOR FURTHER DETALLS

Preciselyontime.
 Two short-circuit protected
 Giving you an exceptionally accu-

The Model 4401 Frequency Standard and value, it's a source whose time has come. Standard is a unique 10 MHz precision temperature controlled crystal oven oschlator (1) CXO). Boasting an accu from 0 to $40^{\circ} \mathrm{C}$, it offers exceptiona long term stability-aging 1 ppm per year. And it's directly traceable to the National Bureau of Standards
via factory calibration to WWVB.
via factory calibration to WWVB.

50-ohm BNC outputs are capable of
driving 10 TTL loads into matched driving 10 TTL loads into matched
50Ω lines, providing square waves from 0.1 Hz to 10 MHz in 9 decade steps, with LED indication of the decade in use. And a frequency you to select fractional frequencies in each decade. ard sets a new value standard.
timebase calibration, frequency counter calibration, laboratory timekeeping and other high-precision timing applications... so whatever your application, the Gobal £118.

8

G.S.C. (UK) Limited, Dept. 7R Unit 1, Shire Hill Industrial Estate Saffon Walden, Essex CB11 3AQ.
Telephone: Saffron Walden (0799) 21682. Telex: 817477.

WW - 045 FOR FURTHER DETAILS

The Sound of the Professionals
अंडHURE
Shure Electronics Limited Eccleston Road Maidstone ME 156 AU Telephone: Maidstone (0622) 59881

new
 5 SM 85
 Dr (0) [FCMT $5(0) \sqrt{N}$

brings a new dimension to a hand-held condenser microphone

Tis new high technology Shure microphone will change the way people think of condenser microphones. The
SM85 is designed especially for on-stage, hand-held use Its sound is unique-far more tailored to the special needs of the vocalist: sizzling highs and a shaped mid-range for
superb vocal reproduction, and a gentle bass rolloft that superb vocal reproduction, and a gentle bass roiloff that
minimizes handling noise and "boominess" associated with close-up use. Ulitra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dual-
density foam windscreen provides bult-in pop protection
density foam windscreen provides bull-in pop protection
Whats more. the SM85 Condenser Microphone mu
pass the same ruggedness and dependability tests pass the same ruggedness and dependability tests
required of Shure dynamic microphones. As a result, SM85 sets a new standard of rellability for hand-held ondenser microphones.
The SM85 is extremely lightweight, beautifully balanced -it teels good, looks good on-stage. on-camera. on-tour.
Ask your dealer for a demonstration of the new SM85 PRO TECH Sound, or write to us (ask for AL664) for full details.

SM85

Cardioid Condenser Hand-Held
Professional Microphone

Editor:
TOMIVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON ${ }_{0} 01-6613039$
Tochnical Editor: GEOFF SHORTER, B.SC
$01-6613500 \times 3590$
Projects Editor: Proiects Editor:
MIKE SAGG MIKE SAGIN
$01-6613500 \times 3588$ Communications Editor: MARTIN ECCLES
$01-6613500 \times 3589$ Nows Editor:
DAVID SCOBIE DAVID SCOBIE
$01-35003587$
Drawing Office Manager
ROGER GOODMAN
ROGER GOODMAN
Technical Illustra
BETTY PALMER
Advertisement Manager
${ }_{01}$ BOB NIBBS 3130 A.
david disley
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILLER
$01-6613500 \times 3592$
Northern Sales
HARRY AIKEN
$061-8728861$
Midtand Sales
BASIL McGOWA
$021-3564838$
Classified Manager:
BRIAN DURRANT
$01-6613106$
JAYNE PALMER
$01-6613033$
BRIAN BANNISTER (Make-up and cooy)
$01-6613500 \times 356$
Publishing Diractor:

wireless world

Decline of the philosophical spirit

Ampère's Théorie mathématique des phénomènes électro-dynamiques (1826) is still worth reading. It is known as the
principal founding source of principal founding source of ust as instructive. It begins with an extensive homage to 'Newtonian philosophy', and continues with a long mixture of physical theory, mathematic
analyses and reports of experimental analyses and reports of experimental procedures. Ampere sought not merely effects; he wanted to find out how the phenomena actually occurred. Indeed, in the naive tradition sometimes followed at the time, he thought of his theory as
truth, 'uniquement déduite de l'experience', to complete the title of his book.
Ampère is remembered now only for this work, but in fact it was a small part of his output. He was a polymath, whose
activities were unified by his philosophical activities were unified by his philosophical
spirit. This spirit informed all his writings and came to its zenith in his Essai sur $l a$ philosophie des sciences (1834). But he was an outsider in philosophical thought, fo
the 1830 s also saw the rise of positisism the 1830 salso saw the rise of positivism in
the hands of some of his former students at the Ecole Polytechnique: Auguste Comte, and engineer-scientists such as Dupin and Poncelet. Associated closely at that tim with educational and social causes, positivism became one of the dominant
philosophies of the 19th century and has maintained its influence, directly and maintained its influence, directly and without metaphysics; rejection of abstract inteilectual objects; even a lack of attention physics. It is a strange contrast to read Àmpère's Essai, with its Kantian concern with phenomena and their causes, with man's knowledge and his cognitive power to know.
power to know.
It was through movements such as positivism that philosophy and science became separated. Positivism and it cousins (mechanism, materialism, instrumentalism, behaviourism, and so on) do not solve philosophical problems so
much as ignore them. Yet scientists accep
posiuvist tenets without much thought acts are facts are facts; theories are useful only for predicting new facts; mathematics
is iust a fiction which in principle has nothing to do with physical reality; the aim of science is consensus (as a noted FRS contentedly put it on television recently); the history of science is bunk - and, above all, philosophising about science im
time-wasting nonsense. At the same time philosophy itself has become an enclosed profession, largely concerned with footling 'puzzles' in ordinary language; its practitioners rarely know anything beyond colleagues. There are exceptional figures con eagues. There are exceptional figure philosophy; but they stand out as such, often nervously.
Meanwhile the real world seems to have the same as it was in Ampère's day, especially with regard to the phenomena studied in physics. Thus the objects of scientific study remain basically unchanged, and so does the need for philosophical as well as technical skill. We now know far more about the technica Amperre and his contemporaries; but w no longer bring to our theoretical studies the sensitivity to philosophical question which Ampère, and others of his time,
could show. He and his contemporaries were not really scientists in the way that we understand the term; they often called themselves 'natural philosophers', enquirers into the nature around them and into the powers of man to think up theorie optimistic naiveties such as the allegedly immediate deduction of theories from facts; but they did not succumb to our reflex dismissals of the non-experimental and our inattention to the place of mathematics in scientific knowledge. Amperere but also his contemporaries such as Faraday and Ohm, and successors like Kelvin and Maxwell, have faded; the been broken; reflection has given way to 'research'.

New development in h.f. coaxial cable

Structure offers lower losses and improved power handling
by S. G. Carter, M.Sc., Cable and Wireless and H. M. Barlow, F.R.S., University College, London

Recently it has become possible to make a high-frequency cable which is coaxial design and waveguides, a type of structure that exhibits much ower losses than is usual when based on attenuation per unit of crosssectional area. This cable transmits in application in optical fibres, and consists of an outer screen, as in the ordinary coaxial cable, with a group of paraliel wires forming a concentric place of the more usual solid metal wire or tube.
At very low frequencies the guided transmission of telecommunication signals over ingle wire, using an earth return, or by pairs of parallel wires in space. However as the frequency is increased the lack of electrical balance of the wires and the unbegins to present interference problems and a change has to be made to a screened ransmission system. Up to the present, this has almost invariably taken the form of either TEM transmission in a coaxial waveguide. Both of these arrangements have their own advantages and disadvantages but, as expected, signal attenuation has always been a major factor influencing system design. Any reduction of attenuasmall cables, an improved system noise performance and increased repeater spacing, either separately or in combination, ccording to design.
In the structure shown in Fig. 1, the currents set up the inner multi-wire

structure are such as to provide for electric | $\begin{array}{l}\text { Contiruous } \\ \text { netal screen }\end{array}$ | $\begin{array}{l}\text { Inner structure } \\ \text { consisting of }\end{array}$ |
| :--- | :--- |

Fig. 1. Cross-sectional view of basic form of dipole-mode cable.
field across a diameter as well as a circumferential field: thus the arrangement supports a wave in the dipole mode. As a isle, a large part of the transmitted power while, outside the grid, the field decays rapidly. In these circumstances the outer and normally only produces a small perturbation of the field, even when its radius is reduced to about double that of the inner wire grid. Consideration of the operating conditions show that the inner multi-wire
structure at u.h.f. behaves very much like structure al u.h.f. behaves very much like where transmission is in the same HE_{11} mode with the power largely confined to he core and a rapid decay of field in the cladding. Further, like the large core-
diameter optical fibre, the dipole mode cable can in principle support many different modes of propagation (as many as there are separate conductors) but, in practice, provision is made to ensure that only the lowest order dipole mode is car-
ied. There is, however, one significant distinction between the behaviour of multi-conductor coaxial cable and optical fibre. Any attempt to screen a dielectric od transmitting in the dipole mode in the a.h.f. region results in destruction of the mode. This is because the boundary condiions on the inside of the screen cannot be satisfied at such frequencies. The wiregrid coaxial cable suffers no such limision in conventional coaxial cables (and unlike tubular metal waveguides), the di-pole-mode cable does not exhibit frequency cut-off and, in principle, can herefore be operated at any part of the the high u.h.f. and s.h.f. regions that the losses are so much lower than those obtainable with current-day coaxial cables.

Cable structure

While Fig. 1 shows the basic structure of the dipole-mode cable, comprising a number of parallel wires to form a cylindrical grid, coaxial with an outer metal screen, it is of course necessary to support
the inner conductors and separate them from the outer. Although regularly spaced disc insulators or beads may, when the cable is straight, keep the wires of the he amount of dielectric employed, the
need for a flexible cable tends to demand a continuous dielectric tube to support the structure have been developed experimentally and these are illustrated in Fig. 2. The polythene tube is extruded to include the group of parallel wires attached either
to the outside or the inside of the tube and to the outside or the inside of the tube and
this inner structure is then, as a whole, located within the outer screen by one of the methods employed in the construction of ordinary low-loss coaxial cables; for example, a dielectric membrane helixed around the inner or, alternatively, a cart-
wheel-type dielectric spacer. For experimental purposes the method chosen was to support the inner structure by thin p.t.f.e. discs with a hole in the centre through which the inner cable structure was in-
serted. These supports were spaced approximately every 8 cm .
The cable attenuation is dependent not only on the number of wires included in the inner structure but also on their diameter. In general, the loss decreases as the
number of wires increases and as more of number of wires increases and as more of by metal. However, capacitive circumferencial current is necessary for HE_{11} mode propagation and consequently the wires must always be spaced far enough apart to power level. Clearly, there are practical problems in fabricating a cable with a large number of very thin wires or strips of metal and therefore the experimental work was limited to structures having not more han 16 wires.

Cable terminations

Instruments and components available today for measurements all employ conven-
tional, coaxial connectors and cables, so that the introduction of this new form of multi-conductor, dipole-mode cable requires special arrangements. Not only is a connector required to maintain the conti-
nuity of the multi-wire system, but ransducers are necessary to convert the TEM waves of the supply to dipole-mode configuration prior to launching the wave on the cable. This operation has to be carried out with minimum loss and over
wide a band of frequencies as possible. One method of launching into a dip mode cable is to take the output from a conventional coaxial supply and, using a power divider, split it into as many parts as
structure of the dipole-mode cable. At the same time the amplitude and phase of each
input is adjusted so that when superimposed they comprise the required dipole mode field distribution. This has been tried experimentally but it was found to be difficult to establish and maintain the A more practical method of launching the required dipole mode from a TEM source is to use either electric or magnetic coupling into the multi-conductor cable. In general, transverse electric field coupling as shown in Fig. 3 gives more effective
transfer of power but this tends to be at the expense of bandwidth when compared with the corresponding magnetic coupling shown in Fig. 4. In the electric field coupler (Fig. 3) a transverse wire fed from the cooxial input is located at approxifrom a short-circuit termination formed by connecting together all the inner wires and the outer screen. Matching from the char-
acteristic impedance of the coaxial feed to the dipole mode cable is obtained by tons shown in the diagram. The magnetic launcher (Fig. 4) is typified by a small loop of wire inserted into the end of the dipole mode cable and extending a short distance tion matching unit is used to transform the impedance of the coaxial input down to the very low impedance of the loop. Table 1 shows the loss and bandwidths achieved in practice
launcher

Cable attenuation
Particular interest in dipole mode cables centres on the fact that their attenuation has been shown to be considerably lower coaxial cable. furthermore, the dipolemode cable has no cut-off frequency and, unlike a hollow metal waveguide, can be used satisfactorily at quite low frequencies.

Fig. 2. Two different forms of dipole-mode cable.

Fig. 3. TEM-to-dipole-mode transducer, using transverse-electric field coupling.

Fig. 4. Cross-section of dipole-mode launcher using magnetic coupling.
tenution measurements having been made at various frequencies on two difmade at various frequencies on two dif-
ferent dipole mode cable structures, both mounted inside a a 2.22 cm -diameter copper tube. A simple substitution method was employed, consisting of a direct comparison between the loss of a known length of
the cable with that of a back-to-back the cable with that of a back-to-back launchers. Joints were made in the cable by employing short, thin, brass tubes to interconnect the individual wires and a sleeve was placed over the break in the outer.
The measured losses are shown in Fig. 5 and, while these display the very low attesult is a direct comparison interesting result is a direct comparison between dipole
mode and TEM losses in the same cable. mode and TEM losses in the same cable.
The dipole-mode cable can be made to operate in the TEM mode, simply by joining them together, at each end, all the inner structure wires and then feeding between them jointly and the outer, as in a TEM transmission of an inner structure, comprising parallel wires rather than a solid metal conductor, only causes between 7% and 10% increase in attenuation. The results of such a comparison made at

freauency (GHz)

- Cable type I in dipole -mode propogation
- Cable type 1 in $T E M$ mode propagation - Cable type I in TEM mode propagation

Fig. 5. Measured losses of multi-conductor Fig. 5. Measured losses of multi-condu
cable in dipole-mode and TEM-mode transmission.
table Table 1. Comparison of available
bandwidth and losses for dipole-mo launchers shown in Figs. 3 and 4 .

Launcher type	Bandwidth (betwetw 3dB points) MHzNominal toss (TEM to dipole mode) dB	
Magnetic coupling (see Fig. 4)	500	3.5
Electric coupling (see Fig. 3)	150	0.26

frequency of 3.3 GHz on five different these results it is clearly seen that when using an inner structure with a radius of about half that of the outer the losses are
reduced to about 50% of those of the same reduced to about 50% of those of the
cable operated in the TEM mode.

Practical applications
Optical-fibre transmission seems destined
to take a large share of lon-distance tel to take a large share of long-distance tele-
communications and in due course to communications and in due course to
displace many of the coaxial line systems. displace many of the coaxial line systems.
However, there will always be a large number of circumstances in which conventional coaxial cable remains applicable and
it is in these areas that the dipole-mode cable could find a useful place. The reduced attentuation characteristics of this cable reflects the more uniform energydensity distribution over the cross-section
and the effective use made of the area and the effective use made of the area
occupied by the inner structure. Since the occupied by the inner structure. Since the
breakdown voltage of a cable is directly related to the uniformity of energy-density distribution within the cable, the expectation is that the power-handling capacity of dipole-mode cable wil prove superior to cable.
A typical example where this factor, together with the lower attenuation behaviour, could be particularly important is in
application to high-power u.h.f. aerial application to high-power u.h.f. aerial
feeders, such as those carrying the output from a television transmitter to the point of radiation. Here the size and weight of the ransmitter equipment requires that it be ocated at ground level while the aerial has coverage required. The interconnecting cable has therefore to be both of considerable length and capable of handling high Vower.
Various structures have been considered over the development period for a practical emerges as likely to be of particular success is shown in Fig. 6. This has 12 parallel wires spiralled around an inner polythene ube and supported centrally within a concentric texible outer screen using a 'cart-
wheel' type dielectric spacer. This cable can be expected to exhibit the required low-loss characteristics while remaining flexible enough for all normal purposes. Jointing the cable can be performed in a echnique of soldering the individual wires together with small metal sleeves to the construction of a connector arrangement similar to that employed in conventional coaxial cables but with plug-in joints for ointing technique has been used in which the separate wires are laid in metallized grooves cut longitudinally in a small length of dielectric tube.
In this new form of coaxial cable, transmitting in a wave mode not important development is foreseen, offering much lower losses, coupled with and including the bottom end of the

Fig. 6. Dipole-mode cable.

$0)(\Omega)$

Handbook of Fiber Optics, Edited by Helmut T. Wolf. 558 pp , hardback. Granada, $£ 25.00$. Ten authors from Germany, Japan and America
collaborated to produce this book, which is on he use of optical fiberes in communications: applisations for fibres conducting unmodulated
light are largely ignored endoscopy
endoscopy. a a concentration of a large body of
The book is
widely scattered ind widely scattered information, and is thus a convenient survey of the subject, with a lange
number of references. Each author undertakes eview of a nications (the book was first publiscal commuand there are reviews of research activities in Europe, the USA and Japan. The writing is at a
level which would be suith level which would bes esuitable for engineers and scientists in other disciplines who need to use
optical fibres, and could be used by stal optical fibres, and could be used by students.
For the worker already involved, it is a useful eference source and guide to further reading.
microwave band. The opportunities for future application are considered to be
clearly distinguishable from optical-fibre competition.

Acknowledgements. The authors are indebted to Professors A. L. Cullen and E. A. Ash of University College, London, for the facilities made available in the pursuit
of this work. They also acknowledge with gratitude the most valuable collaboration provided by Cable \& Wireless Ltd., in seconding for a year one of us (S.G.C.) to work full-time in the University on the project.

References

Barlow, H. M. \& Nouri, M., 'New forms of
waveguide', Wireless World, February, 1976, p.p. 38-40.
Barlow, H. M., 'Multi-conductor coaxial cables Barlow, H. M., 'Multi-conductor coaxial cables
operated in the dipole-mode and their possible operated in the dipole-mode and their possible
appliciations', Jour. Phys. D: Appl. Phys., Vol.
12, 1979, p.p. 321 -333.
editor, four chapters describe the components
of a system -waveguides, sources, detectors, editor, four chapters describe the components,
of a system -waveguides, soources detectors,
connectors and switches. These are followed by sections on economics, applications in commu-
nication systems and a piece on medical endoscopes.
Ferromagnetic Core Design and Application
 hardback. Prentice-Hall International, 12 .9.95.
The emphasis in the title of this The emphasis in the title of this book ought,
perhaps, to have been on the applications of cores rather than on their design, since the majority of the text is devoted to very practical information on the specification and use of
ductors which employ iron or ferrite cores Properties of materials and the' physics of cores are covered in the first chapter, the suc-
ceeding three being concerned with the use ceeding three being concerned with the use of
cores in the forms of rods and bars, toroids, beads, sleeves and pots. Chapter 5 deals with permanent magnetic c materials. A good bibliog-
raphy, a list of references and a number of raphy, a list of references and a number of
appendices complete a most helpful book. The circuit diagrams used a thost helphout bout the book the
illustrate the use of cores, and reference to mustrate the use of cores, and reference to com-
mercial cores by type number arc especially
isfiul, thoush mercial cores by type number are especially
useful, though the references are to American
components.

6809 evaluation system for $£ 100$

Uprated Nanocomp and cassette interface
by R. Coates

\section*{The 6809 is a recent 8 -bit
 microprocessor which uses a 16 -bit architecture to considerably improv the performance available from an 8 bit device. Because development of accelerating, many designers think accelerating, many designers thactical limit for an 8 -bit device.
 Unfortunately, few potential us have been able to evaluate this processor because there is very litt

hardware available at present and information is still scarce. This design is based on the well-tried and tested Nanocomp (Jan. 81) and provides a the 6809 .
 The 6809 is the most recent addition to the M6800 family of microprocessors, and provides a much more advanced architecture than the 6802. Internally the device is a 16 -bit processor, which can perform 16 -
bit operations, with several extra registers and other improvements. However, because the device retains an 8 -bit external data bus, the hardware is very similar to
 the 6802 and can therefore be The improved performance of the 6809 is attributable to several factors besides the potential of 16 -bit operations. An important advantage is the addition of extra and more powerful addressing modes which ferent variations of instructions and addressing modes from a basic instruction set of 59 . Despite this large number of instructions, the improved architecture makes the device easier to program.
To preserve software compatibility earlier Motorola microprocessors, the 6809 is compatible at source-code level with the 6800 so all but a few of the existing mnemonics are included. Exceptions such as rigidly as possible the regularity of the architecture. Extra addressing modes have been provided for the existing instructions and new instructions, unique to the 6809 , have been added. Therefore, source programs written for the 6800 can be re-
assembled using the 6809 op-codes, (not all are the same as the 6800) and existing software can be transferred. All mnemonics excluded from the 6809 can be performed by new instructions. Although it may seem pointless to transfer existing
software to a more powerful processor, it allows users to upgrade their systems with-
out having to re-learn completely.
out having to re-learn completely.
Branch instructions have been improved by adding 16 -bit 2's complement offsets as well as 8 -bit. This permits a branch to be made from anywhere to anywhere in the writing of position independent programs much easier.

Circuit modifications
The block diagram of this design is iden tical to the original version except that th
6809 does not have an on-chip r.a.m. and the 128 bytes at address 0000 to 007 F are not available. The circuit diagram in Fig 1 is almost identical to the original and apart from the obvious change of c.p.u 74LS 00 , which difference is that the nal, is omitted. This i.c. is not required because there is no valid memory address signal on the 6809 , and invalid memor addresses are forced to FFFF. The E out put can be used directly in place of sion of an extra interrupt input, the fas interrupt request FIRQ. This input is no used in the present design, but is brough out to a pin for possible future use. Rese on the 6809 has a Schmitt-trigger input
which, with capacitor C_{9}, provides automatic power-on reset. Because the c.p.u. on-chip r.a.m. is not available, the
memory map has been revised and is shown in Table 1. The monitor workspace is now positioned at the top of the 1 K
memory and therefore about 40 bytes are lost for user programs. All other aspects of the circuit and testing are as described for the 6802 version.

Operation

Operation is more or less the same as the 6802 version. As the monitor software listroutines, the full 1 K allocated to the monitor program, $7 \mathrm{C} 00-7 \mathrm{FFF}$, is now used These routines use the L and P keys and are described later. The main diteraion onthe monitor is the register display con
mand \mathbf{R} which has been revised to take account of the increased number of c.p.u. registers. This command is automatically entered after a SWI, but may be re-entered with the R key. The condition-code regis-
ter contents are first displayed with the right-hand digit denoting the register be-
ing displayed as shown,
$\begin{aligned}-= & \text { condition-code register } \\ = & \text { acc } \mathrm{A}\end{aligned}$

$1=\operatorname{acc} A$ $-=\operatorname{acc} B$

= direct page register
$=\mathrm{X}$ register (index)
$\zeta=\mathrm{Y}$ register
U = user stack pointe
$=$ program counter
$=$ hardware stack
The I key will increment through the various registers, and their contents will be shown on the left four digits. Afte displaying 5 , the unit automatically returns to the monitor start. The two new
software interrupt instructions, SW12 and SW13, are not used by the monitor but with the hardware interrupts, the program can jump to and continue from a specified address in certain memory location These are listed in Table 2 .
When an interrupt occurs, the continua tion address is fetched, which is usually
the interrupt service routine, and proces-

Table 2. Interrupt jump locations

When an interrupt occurs, an address is fetched from the memory shown and
processing continues from that address.

Addres $135 / 6$ $1357 / 8$ 15

interrupt
SW13
SW12
NMI
IRO

WIRELESS WORLD JULY 1981
sing continues from that point. The NMI input, however, is used for the abort key and its jump address is set automatically when a reset occurs, but it may be mod ified for other purposes by a users program. The monirer that monitor subroutines, listed in Table 2 of the original article, function identically and have the same entry address points. The re-entry point to which also applies to the 6802 version The four original programs can be in cluded if a 2 or 4 K e.p.r. o.m. is used. The start address for hex-decimal/decimal-hex converter is 7800, duckshoot - 7940 ${ }_{-7 \text { branch }}$ Falculator duckshoot, the speed is set at location 1000 and 1 because there is no memory at 0000 in the 6809 version. Two's complement offsets used by the branch instructions of the 6802 are limited to 8 bits but the 6809 also uses 16 -bit offsets,
with the PC relative addressing mode therefore the branch calculator program now caters for these. In addition to requesting the start and destination addresses, the program requests the number re-band display, which must be en tered. If an instruction has only two bytes, it must be an 8 -bit offset so an 8 -bit value is given or two dashes if it is out of range. An instruction which requires a 16 -bit bit answer is displayed if a byte value of three or greater is given
Programming
Because programming information for the 6809 is not widely available yet, a brief description of the architecture is given to gether with the instruction set and programming details. However, for serious liminary Programming Manual is essenlial.
A programming model of the 6809 is shown in Table 3, and details of the regis ters are given below.
The A and B registers are general purpose 8 -bit accumulators for arithmetic calculations and data manipulation. Some in structions link the registers to form

Table 3. Programming model of the 6809

single 16 -bit accumulator (D) with A as the most significant byte.
Direct page register
The direct addressing mode in the 6800 used for accessing the bottom 256 bytes of memory. This facility has been enhanced in the 6809 so that the 8 -bit direct page register is used as the most significant byte direct mode to be used under program control at any place in memory. Index registers (X, Y)
These are the same as the single 6800 regis ter. The 16 -bit address in the register takes part in the calculation of effectiv
addresses and can be used to point to data directly. The address can also be modified by an optional constant or register offset The 8 -bit constant offsets are supplemented with 5 and 16 -bit offsets. All fou poiner regisers $(X, Y$, Stack pointers (U, S)
The hardware stack pointer, S, is used by the processor'during subroutine calls and interrupts, and points to the top of th stack instead of the next free location as is the 6800 .
ments to be passed to and from subrou tines. Both stack pointers can also be used as index registers, and have additional Push and Pull instructions which can operate on any or all of the registers (ex
ept thelver
Program counter
Used by the processor to point to the address of the next instruction to be executed.
Condition code register
This register, also known as the flag registime. The register comprises
C (bit 0) CARRY. Indicates that a carry occurred on the last ALU operation, or borrow from subtraction instructions. V (bit 1) OVERFLOW. Set by an operaarithmetic overflow. Z (bit 2) ZERO. Set if the result of the previous operation was zero.
N (bit 3) NEGATIVE. Contains the
m.s.b. from the result of the preceeding

Table 4. Indexed addressing modes									
Type	Forms	Non indirect				Indirect			
		Assembler form	Postbyte op-code	+	$+$	Assembler	Postbyte op-code	+	$+$
Constant offset from R (signed offsets)	no offset 5-bit offset 8-bit offset 16-bit offse	$\begin{gathered} R \\ n, R \\ n, R \\ n, R \\ n, R \end{gathered}$	1RR00100 ORRnnnnn 1RR01001	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$[\mathrm{R}]$ default $[\mathrm{n}, \mathrm{R}]$ [n, R] [n, R]	1RR10100 8-bit 1RR11000 1RR11001	3 4 7	
Accumulator offset from R (signed offsets)	$\begin{aligned} & \text { A - register } \\ & \text { offset } \\ & \text { B - register } \\ & \text { offset } \\ & \text { D - register } \\ & \text { offfset } \end{aligned}$	$\begin{aligned} & A, R \\ & B, R \\ & D, R \end{aligned}$		1 1 4	0	[A, R] [B, R] [D, R]		4	0 0 0
Auto increment decrement R	increment by 1 increment by 2 decrement by 1 decrement by 2	$\begin{gathered} , R+ \\ . R++ \\ ,-R \\ ,--R \end{gathered}$	1RR00000 1RR00001 1RR00010 1RR00011	$\begin{aligned} & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		1RR10001 wed 1RR10011	6 6	0 0
Constant offiset from PC	8-bit offset 16-bit offset	$\begin{aligned} & \mathrm{n}, \mathrm{PCR} \\ & \mathrm{n}, \mathrm{PCR} \end{aligned}$	$\begin{aligned} & 1 \times \times 01100 \\ & 1 \times \times 01101 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	1	$\begin{aligned} & \text { [n, PCR] } \\ & {[\mathrm{n}, \mathrm{PCR}]} \end{aligned}$	$\begin{aligned} & 1 \times \times 11100 \\ & 1 \times \times 11101 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Extended indirect	16-bit address	-	-	-	-	[n]	10011111	5	2
$R=X, Y, U \text { or } S \quad X=00 \quad Y=01 \quad X=\text { don't care } \quad U \in 10 \quad S=11$ + and $+\xi$ indicate the number of additional cycles and bytes for the particular variation									

or 2 bytes respectively after the postbyte
for the offset. for the offset. offset indexed except imilar to constan plement value in one of the accumulators (A, B or D) is used as the offset, the postbyte specifies which. Neither registe is altered by the operation. zero offset, but with auto increment. After the pointer register is used it is incre mented by 1 or 2 and then used. Indexed Indirect. All indexing modes, ex
cept auto increment/decrement-by-on cept auto increment/decrement-by-one
and 5 -bit offset, can have an additional level of indirection. This means that the effective address is contained at the location specified by the content of the index register plus any offset.
relative addressing mode, i.e. the byte(s) following the branch opcode is a signed offser which is added to the program counter. If the branch condition is true, the
calculated address ($\mathrm{PC}+$ signed offset) is calculated address (PC + signed offset) is
loaded into the program counter. Execution then continues from the new address. Short branches require a 1-byte offset and long branches require 2 bytes.
PROGRAM COUNTER RELATIVE Another type of indexed addressing where with an 8 or 16 -bit offset. This is very useful for pointing to blocks of data in a program which must be relocatable, i.e runs anywhere in memory. The Load
Effective Address instruction makes use of this mode. For example, to point the X register to a block of data by specifying an offset, relative to the current PC position,
where the data block resides. This offset
will remain constant wherever the program is run, whereas with a LDX instruction
the absolute address must be specified An additional level of indirection is available with this mode.

New instructions

PSH/PUL. These instructions allow an combination of registers to be pushed ont or pulled off the hardware (S) or user (U)
stack. Which registers are pushed or pulled is defined by an immediate byte

Fig.2. Cassette interface. This circuit is
powered from the Nanocomp via the p.i.a. powered frer
connector

after the opcode. Each bit in the byte
specifies a register.

CC	$=$ bit 0
$\mathrm{~A}, \mathrm{D}$	$=$ bit 1
$\mathrm{~B}, \mathrm{D}$	$=$ bit 2
DP	$=$ bit 3
X	$=$ bit 4
Y	$=$ bit 5
U, S	$=$ bit 6
PC	$=$ bit 7

TFR/EXG. Any register may be trans ferred or exchanged with any other register of the same size, i.e. 8 -bit to 8 -bit or 16 -bi to 16 -bit. Also, a 16 -bit register can be

Fig.3. Layout and component placement
transferred are specified in an immediate byte. A code contained in the most signifi-
cant four bits specifies the first register and the least significant four bits specify the second.
The register codes are

$$
\begin{aligned}
& 0000=\mathrm{D} \\
& 0001=\mathrm{X} \\
& 0010=\mathrm{Y} \\
& 0011=\mathrm{U} \\
& 0100=\mathrm{S} \\
& 0101=\mathrm{PC} \\
& 1000=\mathrm{A} \\
& 1001=\mathrm{B} \\
& 1010=\mathrm{CC} \\
& 1011=\mathrm{DP}
\end{aligned}
$$

MUL. Multiplies the unsigned binary numbers in the A and B accumulators and places the un
accumulator
Although his is by no means short account of the 6809 the constructor to start programming this very powerful processor.
Cassette tape interface One facility which is more or less essential with any computer system is a means of
storing programs. The cheapest conve storing programs. The cheapest conve-
nient method of storage is a cassette tape and, as most users will have access to a cassette recorder, all that is required is the appropriate interface and software. This simple interface can be used with either 1 K memory in about 15 s . An important part of the tape storage system is a set of routines, so readers using the original mo nitor will need to reprogram thei e.p.r.o.m.
Data to
recorder from a p.ia. output line to the usual asynchronous serial format of a start

bit, eight data bits and two stop bits for each data byte. Data bytes are transmitted in blocks of up to 16 bytes and each block starts with a 2-byte code, which idenuifies
the start of a block on playback, followed by 2 bytes which give the start address of the block. The data bytes are then sent, followed by a checksum byte which is calculated by adding all the bytes in the by an end-of-file code. Each bit is encoded onto the tape as one cycle of a square wave and the period of $500 \mu \mathrm{~s}$ or 2 ms determines whether it is a 1 or 0 respectively. When loading a program, the period of each cycle greater or less than the average period which makes the system reasonably tolerant of tape speed changes between different machines
The interface plugs into the p.i.a.
connector and is powered by the Nano comp. Spare lines PB6 and PB7 are used for data transmission and reception so the interface can be permanently connected The data to be recorded is transmitted from PB6 and reduced in amplirude by the playback, the output from the recorder is limited and squared for driving the logic input of the p.i.a. A CA3140 is used fo IC_{1} because it operates sain
single 5 V supply single 5 V supply.
on a small p.c.b. as shown be assembled four connections are required to the Nano comp and the connector numbers are
$\begin{array}{cc}+5 \mathrm{~V} & 7 \mathrm{a} \\ 0 \mathrm{~V} & 2 \mathrm{a} \\ \text { PB6 } & 12 \mathrm{a} \\ \text { PB7 } & 12 \mathrm{~b}\end{array}$
If a ribbon cable is not available, ordinar
comp and
ordinary
it , , π . 1
 ,
 1
stranded wire can be used and soldered connector.
Operation
The L and P keys are used to load and dump data respectively: To save a program, key P and the display will re-
quest the start address of the memory quest the start address of the memory
block to be saved 5 , followed by the finish address F. Transmission will start im mediately the last key is released, so the recorder should be started before this
When the recording is finished, F will appear in the left of the display which indicates that the recorder can be stopped Abort or Reset will return the monito
prompt. To load a program, key L and start the recorder just before the beginning of the program. To provide a form of feedback, the top and bottom segments of the lefthand display are turned on as data is
received. When a 1 is received, the top segment is on and when a 0 is received, the bottom segment is on. If the program is loaded correctly, when the end-of-file code is received $=$ is displayed. Abort or Reset
returns the prompt. If a checksum error is encountered in one of the data blocks, a :is displayed and loading is stopped. If this occurs the tape must be rewound and restarted.
With some experimentation the record and playback levels can be optimised although, with a reasonable recorder, they
are not critical. It should be noted that the requirements for recording data on a cas sette tape are high so only high quality audio cassettes or, preferably, certified
data quality should be used. Also, a worn recorder which does not give an acceptabl performance with speech or music is unlikely to produce reliable data recordings Auto record-level machines may also cause problems because their circuits are not peak ratio square wave.
Although the Nanocomp was originally intended as a microprocessor trainer many constructors may want to uprate th other systems. We intend to support this design with a further article describing extra peripheral devices such as a-to-d and d-to-a converters and a simple e.p.r.o.m programmer.
The original monitor/uxility program in the master mind program, and to im prove the performance if poor quality keys are used. A hex list of the new monitor which also contains the cassette interface
software, can be obtained from the edisoftware, can be obtained frem .a.e. clearly
torial office by sending a large s.a. marked 6802 or 6809.
A set of p.c.b.s for the 6809 Nanocomp (power supply and logic board) will be
available for E9.00 and a cassette interface board for $£ 1.50$, inclusive of $v . a$. .t. and UK board for Ef .50 , inclusive of v.a.t. and UK
postage, from M. R. Sagin, 23 Keyes Road postage, from M
Technomatic Ltd, 17 Burnley Road, London N.W. 10, 01-452 1500, and Magenta Electronics Ltd, 135 Hunter Street, Burton
on-Trent Staffs, 0283-65435, offering a kit of components. Both com panies will also reprogram e.p.p.r.o.m.s fo

7

-

WORLD OF RMMATEUR RADTO

CB - so close to 28 MHz One factor arising from the Home Office draft 'performance specification' for 27 MHz .m. equipment, for what is now officially termed the "Citizens Band Radio
Service", will be viewed with some dismay by many radio amateurs: the minimal frequency gap between "Channel 40" (27.99125MHz nominal carrier frequency) and the 28.000 MHz Iow-frequency end of
the 28 MHz amateur band. This represents an unexpectedly savage turn-down of the RSGB request that any such service should not be located close to an amateur band. It can be argued of course that if c.b.ers stick to the proposed conditions - for
example that all equipment must be covered by a licence of which it will be a condition that "the apparatus fulfils, and is maintained to, certain minimum technical standards" - then there may be few problems. But there seem certain to be "social
problems" when licensed c.b.ers find, as almost certainly they will, that their lowpower, low-cost rigs cannot be expected to function satisfactorily when one of their neighbours is legally running a 28 MHz or 400 watts p.e.p. output only a few kHz way from the c.b. channel!
Although the latest Home Office plans have received a good deal of criticism one cannot help feeling that if the same propowould have been warmly welcomed by almost all those interested in the development of c.b. What remains to be seen is whether the proposed regulations will be beyed or enforced.
For example, it is difficult to imagine operator actually taking care to insert a 0 dB attenuator when using a high aerial! ${ }^{\text {a }}$

Amateur television

The latest issue of $C Q-T V$, iournal of the British Amateur Television Club, reports with Continental amateurs. Andrew Emmerson, G8PTH, of Canterbury mentions his successful reception of lockable SECAM colour transmissions from FIEDM at Le Havre. Several British amateurs are experimenting with video transmissions on Australia a television repeater accepts signals on 440 MHz and retransmits them on 579 MHz and can thus be received on un-
modified domestic television receivers. In modified domestic television receivers. In handful of amateurs to experiment with "medium scan television" on 29.150 MHz with a maximum bandwidth of 36 kHz . This concession is resulting in the exploitation of a number of novel techniques, including frame grabbing at an eighth of the
60 fields per second of standard American television. It has been found that at least
7.5 fields per second are needed to give a reasonable illusion of movement. One of
the amateurs concerned in this work the amateurs concerned in this work
(W3EFG) was the originator, several years ago, of the General Electric (USA) "Sampledot" narrow-band system and plans are now being made to use some of the original Sampledot equipment in conjunction with digital scan converter and frame grabbing to
field rate.
Slow-scan land and sea image data with a format of 256 by 256 pixels and 16 grey levels with digital transmission on the beacon signal at 145.825 MHz are among the
facilities that will be provided by the facilities that will be provided by the
British amateur satellite UOSAT (University of Surrey) due to be launched in a few months time. UOSAT will carry an earthpointing c.c.d. two-dimensional imaging array.
Amat
Amateurs at British Telecom's research centre at Martlesham are planning tv
transmissions both for local "news" and for regular contacts with Holland. BATC deserves congratulations on the new "Amateur-Television Handbook" edited by John Wood, G3YQC and Trevor booklet is packed with eminently practical information and designs provided by some 20 amateurs and covering principles, aerials, receivers, transmission, vision
sources, video processing and colour elevision (non-members $£ 2$ plus 35 p postage from I. Pawson, 14 Lilac Avenue,

eicester LE5 (FN).

ARU Region 1

Conference

The many sessions of the IARU Region 1 Conference at Brighton, at which the national amateur radio societies of some 36 or so delegates, resulted in many recommendations that in the coming years should help to make as effective as possible both operating and technical investigaalso be remembered for the deaths of two of the delegates: Peter Balestrini, G3BPT and the Dutch amateur PAoOK. Peter Balestrini was the 1980 President of the RSGB and was attending the conference in
his capacity of RSGB Emergency Commuhis capacity of RSGB Emergency Commu-
nications Manager. Professionally engaged with Port of London Authority telecommunications, he was for many years one of the leading enthusiasts who built up the
"Raynet" emergency system. Raynet" emergency system
Although there can be few amateurs
who did not wish the Conference well, some criticism has been expressed of the Home Office decision to permit the use of a special callsign, GBIIARU, since the use of "four-letter" callsigns is not specified in the international Radio Regulations.
However the Home Office clearly regarded
this as a very special "special event" and even gave blanket permission for the station to be operated by foreign delegates not
April solar storms
Highly disturbed h.f. propagation conditions were experienced during April, particularly during the periods April 7 to 13 and April 21 to 27 , following intense solar
flares. On some days F2 critical frequen cies remained abnormally low and on April 13 between 0600 and 1700 hours the F2 layer was not detectable at The Appleton Laboratory, and the amateur h.f. bands remained virtually unusable during much
of the day. A considerable number of of the day. A considerable number of
severe h.f. blackouts and auroral conditions were experienced during the month. Such ionospheric disturbances tend to take place most frequently during the early decreasing phase of a standard.
Observations made on 3.5 MHz by G3XRJ and VK7AE in Tasmania, Australia during an eclipse of the sun on February 4 around 2030 hours showed a very
marked enhancement of this low h.f. path between England and Australia during the total eclipse period. The effect, during the Australian "dawn", was to keep the path open almost an hour longer than normal, ignals after the sun re-emerged fadeout of

In brief

A weekend 'Hamfest' from Friday to Sunday, $26-28$ June, is being organized by the
Leeds \& District Amateur Radio Society Leeds \& District Amateur Radio Society, arrangements for overnight camping and caravan facilities. A demonstration station, GB2WYR, will operate ... The RSGB's v.h.f. national field day, probably now the
biggest UK contest event of the year, is on July 4 to 5 . . . Mobile rallies include three on June 28: Longleat Park, Warminster, Wilts; Rolls Royce Sports and Social Club, Barnoldswick; and Crawfordsburn Scout Camp, Crawfordsburn County Park, near
Bangor, Co. Down; July 12 Droitwich Bigh School, Droitwich; July 19 Brighton Raceground, Brighton and Cornwall Technical College, Pool, Camborne. . . Abuse
of the South London 144 MHz repeater of the South London 144 MHz repeater continues, including the weekend of the
Brixton disturbances .. J.T. Dolan of Seattle, USA, was fined $\$ 750$ for operating the pirate broadcast station "RX4M Voice of Clipperton" after FCC engineers traced him using sophisticated mobile direction
finders. In California, David Lee Grimm inders. In California, David Lee Grimm
was fined $\$ 1500$ for illegal c.b. operation after repeated warnings and equipment valued at about $\$ \$ 000$ seized, including
four linear amplifiers our linear amplifiers, two amateur radio transceivers and one c.b. radio transceiver.
PAT HAWKER, G3VA

Leap seconds

Most people now know that all tim measurements and time signals throughout the world are based on
atomic clocks but the need to adjust them by one second at the end of the year is not well understood. It follows from the fact that the signals m not only give precise uniform
intervals of time but must also the time of day which is determined by the non-uniform rotation of the earth. The transfer from astronomical to atomic time and the co-ordination step in the advance of science and it is surprising that the full story has never been told. The requirements of radio engineers were always prominent in the discussions.

The time of day is not required very accurately for civil purposes - it is changed by an hour, twice a year - but for navigation scale based on the position of the stars, known as UTI. Time intervals, on the other hand, are required to be as precis and uniform as possible, particularly fo air navigation and the control of the freapplications the actual time or epoch of the signals is irrelevent.
These two requirements are so different that it might be asked why two separate sets of signals are not used, giving astropurposes and atomic time for everything else. This was indeed suggested by D_{r} G.M.Clemence of the US Naval Observatory who proposed that two units of time should be defined, adding, probably not very seriously, that the atomic unit should
be called the Essen. The fundamental objection to this is that it would constitute a duplication of one of the basic units of measurement; and a practical objection is that the use of two time scales would unience with standard frequency transmis sions had shown. It was therefore wort while to make an effort to construct a single time scale, which would give the ful accuracy of the atomic clock and the time ciple was accepted but it took 16 years to get international agreement on the details. The first caesium atomic clock was pu into operation at the National Physica and it was immediately obvious to us that

The original caesium resonator, designed at the NPL by the author and J. V. L. Parry
which led to the development of the atomic standard of time.
the necessary checks on its performance under different conditions could not be made in terms of astronomical time. A provisional atomic unit was defined and an atomic scale maintained by quartz clocks checked by the atomic clock, under stan-
dard conditions, as often as necessary. dard conditions, as often as necessary: tronomical Union was meeting in Dublin that summer and through the courtesy of the Astronomer Royal, Sir H. Spence Jones, I was able to attend this meeting to
describe the clock and the initial results. One of the main topics of discussion at the meeting was a proposal to redefine the unit of time, making it in effect a fraction of the time of revolution of the earth round the sun instead of a fraction of the time of
rotation on its axis. It was believed tha this unit, the second of ephemeris time (ET) would be more constant than the second of universal time (UT1). It is diffi cult to measure it and the value being

The next leap second will be on 30th June 1981 in the last minute of the day. The minute before midnight will contain

 6 secos.seconds.
recommended was in effect the averag value of the second of UT1 over a period of astronomical work but it is not of the slight astronomical work but it is not of the slight-
est use to the physicist and radio engineer I suggested that it might be wise to delay
decision until agreement was obtained on decision until agreement was obtained on
the definition of an atomic unit which the definition of an atomic unit whic
would certainly be required in the future. However, the proposal to change to ET was adopted and was confirmed at the General Conference of Weights and Mea
sures in 1956. It was a strange decision and it meant that from 1956 until 1967, when an atomic unit was defined, the definitive unit of time existed only on paper. Th unit used in practice was the second o
UTI; and at the NPL UT1; and at the NPL this was defined in
terms of the provisional atomic unit, which terms of the provisional atomic unit, which
was made available throughout the worl by our standard frequency transmissions and their 1 s timing pulses derived from th standard. These were used at the Interna irregularities of the astronomical signals. irregularities of the astronomical signals.
Although the atomic clock had a luke warm reception at the Dublin meeting an important resolution was passed with th advocacy of Dr W . Markowitz. It wa agreed that when the relationship between
the atomic frequency and the second of ET had been established the atomic clock
${ }^{40}$ would
would be used to make ET available. We planned together a programme of mea-
surements to obtain this relationship the surements to obtain this relationship: the
time interval berween certain agreed signals about a month apart was to be measured at the NPL in terms of the atomic clock and at the USNO in terms of ET. Markowitz had developed a method of obobservations of the sun; but even so the measurements were continued for three years before it was decided that further averaging was not likely to improve the announced. The result expressed as the announced. The result expressed as the
frequency of the caesium atomic transition in terms of the second of ET was:
9192631770 ± 20 cycles
9192631770 ± 20 cycles
The second of atomic time was therefore The second of atomic time was therefore
the time occupied by 9192631770 cycles of the time occupied by 1926 caesium line, the limits of error being omitted since they were due almost entirely to the astronomical measurements.
This value was used at the NPL in place of This value was used at the NPL in place of
the provisional value, from 1958, in accordance with the Dublin resolution.
There was still strong opposition fro astronomers to the formal adoption of the tomic unit. They regarded the atomic clock as a kind of superior quartz clock which could be used to smooth astronomi-
cal time, and ignored the fundamental difcal time, and ignored the fundamental dif-
ference between them. The quartz clock is simply a stable oscillator which can be adjusted to have any frequency by altering its dimensions, whereas the atomic clock has a frequency determined with great precision by, natural constants. Id is repro-
ducible anywhere in the world and provides a unit of time which is immediately and readily available. It is ideally suited to be a definitive standard of measurement. It must be admitted, as was often pointed out, that unlike the earth, it does
sometimes stop, but this is an academic point of no practical significance. When one clock stops it can be reset by reference oo one that has not, with a precision enormously greater than any astronomical mea-
Louis Essen was born in 1908 and
educated at High Pavement School in educated at High Pavement School in
Nottingham and Nottingham Univer-
sity College, gaining a London exterNottingham and Nottingham Univer-
sity College, gaining a London exter-
nal degree. Joining the NPL in 1929 , nal degree. Joining the NPL in 1929,
he worked with D. W. Dye on tuningfork and quartz oscillators and has
continued to investigate frequency standards throughout his career.
Working with A. C. Gordon-Smith Working with A. C. Gordon-Smith
from 1946 to 1950 , he was able to from 1946 to 1950 , he was able to
establish, using a cavity resonator, a estabish, using a cavity resonator, a
new value for the velocity of light,
which is still accented which is still accepted. Taking up a proposal by 1. I. Rabi in
the United' States, Dr Essen collabo. rated with J. V. L. Parry at the NPL to
produce in 1955 . he first produce, in 1955, the first atomic cae-
sium frequency standard: a later desium frequency standard: a later de-
sign now serves as the Britith national
standard. Work in this fietd brought an standard. Work in this field brought an
involvement with relativity, which led involvement with relativity, which led
to a belief that Einstein was wrong in
one important respect and to a difor a importat Einstein was wrong in
one to a to a dif-
ferent interpretation of the Michelsonferent interpretation of the Michelson-
Morley experiment.
Dr Essen gained a Ph.D in 1941, a
surement. And even if they all stop they can be reser by recerc that one is no worse off.
major observatories, including the Royal Greenwich Observatory, were founded with the specific object of providing the navy and merchant ships with time. Their responsibility was later extended to
providing a uniform time scale for scientific purposes. The determination of astronomical time became a complex operation, the measurement made at many observatories being correlated at the Bureau de
l'Heure which published the definitive l'Heure which published the definitive
corrections to time signals about 12 months in arrears. There was a considerable vested interest in retaining astronomical time as the definitive system. As several of those concerned jokingly said, there was
no doubt that we must change to atomic time, but not before we retire, please.
Another question to be settled was the
type of atomic clock to choose. In spite of the known performance of the caesium standard at the NRL and then at laborato-
ries in Canada, the USA, and Switzerland, ries in Canada, the USA, and Switzerland,
clocks based on the same spectral line of hydrogen and thallium were possible contenders. A lot of attention was also devoted to the study of a spectral line of
ammonia; and although this was never a ammonia; and although this was never a
serious contender as a time standard it led to the development of the maser and the laser. The advantages of the caesium clock prevailed and in 1967 it was accepted for defining the unit of time, with the value given above.
fied on standard fref the is pulses carwith astronomical time signals presented some awkward problems. The first step was . taken when they were made to
coincide on 1st January 1958. It was coincide on 1st January 1958. It was
realised that they would diverge because of the variations in the rate of rotation of the earth, and the question to be resolved was the amount of divergence that could be olerated. The first figure suggested was

D.Sc. in 1948 and was elected FRS in 1960. He was awarded the Popov Gold
Medal of the USSR Academy of Sciences in 1959 and, in the same
year, the OBE.

WIRELESS WORLD JULY 1981 0.1 s and to keep within this tolerance the actual frequency of the transmissions was offset from its nominal value by a stated amount each year, and in addition oc-
casional step adjustments of 0.1 s had to be made to the timing pulses. A further move towards co-ordination was made in 1960 when it was agreed with the RGO that all time signals transmitted from the UK
would have the same epoch would have the same epoch.
It was of course rather ill
the constant unit in order to accommodate the variations of the astronomical unit and strong efforts were made to end this situaScientific Radio through the International Scientific Radio Union. A satisfactory so-
lution became possible when astronomers agreed that the signals could diverge by as much as 0.7 s from astronomical time UT1. The frequency offset was eliminated, standard frequency transmissions operated on
their true nominal values and the timing pulses on them gave true atomic time intervals. The divergence of the pulses from UT1 was compensated by a step adjustment of precisely 1 s , when necessary on
30 th June or 31 st December. This enabled 30th June or 31st December. This enabled
the pulses to continue undisturbed but the the pulses to continue undisturbed but the
marker distinguishing the 1 minute pulse was moved along by 1 s . The use of these leap seconds enables the time signals to be maintained within 0.7 s of UT1, and for those who need it, the difference from
UT1 is given more accurately by a code or Morse announcement. The only inconvenience caused to those measuring time interval is the need to check whether there have been any leap seconds if the interval extends through June or December. The
astronomer no longer had to struggle to derive a uniform time scale from the complex and non-uniform periodicities of the solar system, but could measure these periodicities in terms of the atomic clock.
If I may finish on a personal If I may finish on a personal note, I
often think how lucky I was to work in a branch of science which was advancing rapidly, which exploited many different techniques and in which there was full international co-operation. The problem
being tackled at the NPL when I joined in being tackled at the NPL when I joined in
1929 was the measurement of radio frequencies. The first solution was to measure them in terms of a tuning fork maintained in continuous oscillation. The accuracy achieved was 1 part in 10^{7} which
was considered by the Radio Research was considered by the Radio Research
Board to be adequate for the foreseable future, making further financial support unnecessary. The next advance was the quartz clock, which proved to be much more stable than the observatory pendulum clocks and gradually replaced them. of 1 part in 10^{8} in the rate of rotation of the earth. It was clear that any further improvement was prevented by the uncer-
tainty in the value of the astronomical tainty in the value of the astronomical
second. In 1945 I.I.Rabi, at Columbia Socond. In sugersity, sugested that the atomic beam magnetic technique might be adapted to form the basis of an atomic unit of time. The atomic clock has not only quency far easier but has increased its accuracy by about one million times.

Parallel-tracking pickup arm modifications and improvements

Construction is not as difficult as you might think: "precision assembly is simply not required"

By Rod Cooper

A working model of the paralleltracking pick-up arm, first described in the December 1979 and January 1980 issues, drew widespread interest at a recent exhibition as well as
several constructive proposals for several constructive proposals for detailed in this article.

Two curious facts emerged from a showing of the parallel-tracking arm at the last readboard exhibition. Firstly, many people expressed doubts about their ability construct an arm with sufficient accurparts. This problem seems to have magniparts. This problem seems to have magni-
fied out of all proportion. The parallelfied out of all proportion. The paralle-
tracking arm is far more tolerant of mechanical shortcomings in construction because of the "cleaning-up" effect of the servo system, and because of this particular design of gimbals, the inherent advanoriginal article.
In addition, as the basic accuracy of the servo system is ± 0.2 degrees which represents about 1 mm at the stylus, precision assembly is simply not required. The human eye is very good at detecting
parallelism and it is therefore not at all difficult to set up the reference arm and darallel track to well within this limit using an ordinary set-square and a straight rule. Moreover, the parts have specifically
been designed to be adjusted - they are
not pre-set - and so any error in assembly can be adjusted out. The wear points such as bearings and pivots have been given particular attention in design so that any
slack introduced by wear can also be adjusted out. It is salutary to compare this to the lack of serviceability and the built-in obsolescence of much of the equipment on the market today. The second emergent fact was that the principle of parallel tracking had been
dismissed out-of-hand, even by those who had read the original article and the had read the original arthe grounds that "it only saves 0.7% distortion, which isn't
audible anyway". Nothing could be audible anyway". Nothing could be
further from the truth! There is in fact not one isolated advantage to this technique but a package of benefits as listed below. -Reduction of tracking distortion, as already mentioned.
Reduction of stereo delay-distortion with elliptical styli.
Capability for re-centering eccentric records. This deserves some comment as the design is the only one, as far as I know, which permits rapid and accurate correc-
tion of eccentricity. There are two importion of eccentricity. There are two impor-
tant effects of eccentricity. On some types of music, the "wow". introduced by this defect is audible. That re-centering makes an audible difference I know to be true, from results obtained from my record collection. Also, the eccentric record is con-
stantly levering the arm to the left and right every revolution, working against the
inertia of the arm and the friction of the pivots. Unfortunately the audible effects wear from this source cannot yet be quan-
ified, but the loading on the record surface can be calculated in a similar manner to that given later in this artucle for record warp, and is not negligible.
Low inertia of the arm means that seriously warped records, eg 6 mm warp,
can be tracked. The benefits gained by low can be tracked.
inertia are similar to those achieved from re-centering the record - reduced wow and record wear. Again, the audible effects of wear are not quantifiable, but an
analysis of the loading due to inertia is analysis of the loading due
given at the end of this article.
While the reduction in tracking distortion is probably not audible on its own to most people, when it is added to the audible effects of the other three points, the
result is noticeable. Add to this the inresult is noticeable. Add to this the in-
creased "trackability" and reduction" in record wear, and the parallel tracking technique can be justified on all grounds except that of cost. And the cost factor can be reduced to a minimum by building your own!

Improvements

Pivot system. On the original design, the cup-type horizontal pivot tended to be a natural collector of dust. By inverting the cup and placing the pivot pin underneath,
this problem can be avoided. However it is then no longer possible to use the pivo height adjustment to help correct for neu-
tral equilibrium as suggested in the January 1980 article because the effective zontal pivot cannot now be altered. This is not so important as it might seem because he majority of modern cartridges can be set up for neutral equilibrium without havng to resort to adjusting the horizontal
pivots. With heavier-than-usual cartridges which cannot be set up by adjusting the ertical pivot, filing away some metal from he underside of the counterweight will help.

Light slit. The light slit is also the cue rest, but it can also be adapted to perform a hird function as dust bug. It is in the perfect position to do this as a brush atust in advance of the stylus. It can be aised for cleaning simply by cue-ing the arm, and as it is earthed can be used to
 ibres in the brush.
ead-out wiring. Litz wire can be used to greater effect than first realised. Becaus ividual strands of litz wire are insulated it is possible to conduct most of the signals in just a couple of wires. The soldering technique for such fine wire is more de-
'manding, but the unwanted forces introduced by the lead-out wires at the point where they exit from the tracking arm are reduced, considerably.
Tracking arm. The diameter of the duralumin tube used for the tracking arm has been increased to 9.5 mm . The origina smaller-diameter tubing performed well with most types of cartridge, but with the increased use of moving-coil cartridges I comparison of the new arm with a conventional arm is given at the end of this article.
Slider (part 19). The material now recommended for this part is Nylon 66 , which is
a high-tensile grade of nylon and has far superior low-friction and low-wear properties compared with the original brass/steel
rrangement. It is also very easy to cut to

Drive cords. A superior material has been found in the form of round-section exlient cord which has excellent vibration bsorbing properties excellent vibration signed to be joined with cyanoacrylat "super-glue" to form a fitted drive band.
coustic isolation of the servo motor and earbox was neatily solved by the introduc visco-elastic cribed by the manufacturer as "a signifi cant advance in polymer technology which can recover from deformations of
 bsorption. The texture is somewhere be ween that of plasticene and soft rubber Used as mounting pads for the servo assembly in place of the rubber grommets irst specified, it gives superior results. I he counterweight.

Gimbals. On the original model, if the horizontal pivot of the gimbals was knocked off the support pillars, there wa nothing to stop them from going completely adift. The design of the suppor corporate the pivot pins in a U-shaped recess so that this cannot happen. Th improved design is shown on page 43.
Fast traverse. The criticism most often voiced concerned the two-minute return time, which was found by many to b inconveniently long, even for transcriptio purposes. This simple modification ha few secoldsed it an be retro itime of just ing machines.
The modification consists of a second motor which drives the lead screw at speed without the assistance of the servo motor Several constructors appear to have tried

oifications and shown on page 43 include simplified arm, and fast traverse action and siliping clutch, as well as a suggested Itternative parallel track (bottom). he track, which uses two steel rod
instead of a long slot in a strip of aluminium alloy, is easier to make if You have a drilling stand for an electric
drill. Accuracy of the asser drill. Accuracy of the assembled track depends on the straightness of the
steel rods and not so much on the accuracy of drilling drill both plates
togetherl this simplifies the task of producing a well-trued track. Precision-ground steel rod of $1 /$ /in diameter is readily available from engineers merchants and is not
expensive. The rods are fixed into the end plates with Loctite, which is
allowed to set with the assembly allowed to set with the assembly resting on a a flat surface such as a
piece of plate glass.
screw direct and simply slipping the drive band from the servo motor - not good practice because of the stretching and gen rally increased wear of the drive band. also puts an unfair strain on the miniature
gears in the worm gear transmission. much more acceptable method is to drive he lead screw indirectly as on page 43 .
By using a double-groove pulley whee with a slipping clutch on the output shaf of the servo gearbox, the drive bands are ping clutch relieves the gear wheels inside the gearbox of excessive strain. Such a slipping clutch is easy to construct from a ouple of wavy-type spring wars and s collars, as shown on page 43.

The servo motor now has to overcom the magnetic drag of the second moto during normal operation, if this secon motor is a permanent-magnet type. This is
avoided by applying a small bias curren to the second motor of a value that will overcome the drag but not make the motor revolve. This can be done by a suitable resistor via the switching network. Alter used, avoiding this requirement alto gether. But whichever type of motor is used, it needs to be sufficiently powerful to overcome the slipping clutch and drive the lead screw, without the advantage of the
reduction gearbox that the servo reduction gearbox that the servo moto
employs. There is no requirement for it to be vibration-free or quiet running like the servo motor, so a relatively robust and inexpensive motor can be used
The new arm is of the same aluminium
alloy as the Mk 1, HT30TF alloy as the Mk 1, HT30TF, which is a
hard alloy fully heat-treated and cannot be manipulated (eg drawn, bent or compressed) in the usual way withou cracking. The diameter of the 9.5 mm tube was chosen to give an increase in overall

Iternative to original parallel track comprising tow steel Irods sis edsisier to make
fyou have an electric drill and stand.

WIRELESS WORLD JULY 1981
rass or phoshioc broie $3 / 16$ dia 2 of

-and
$\longrightarrow \quad$ Aluminium 3 3/8
NEW REFERENCE ARM HOLDER (replaces 16)

NEW SIDE SUPPORT(rejlaces 7,8812)

TRACKING ARM

new end plate for rod type parallel track

thickness remains the same at 22s.w.g.
The cartridge holder design has been modified to fit directly onto the end of the tracking arm instead of sliding along it. is a mere 55 gm .
nertia of arm
without cartridge
The inertia of the arm from pivot to stylus position can be assumed as that of a uniorm circular cylinder 18 cm long, ignoring holder and tubing. This is

$$
I_{\mathrm{arm}}=M\left(\frac{a^{2}}{4}+\frac{l^{2}}{3}\right)
$$

where a is the cylinder radius, l the length and M the total mass, and $I_{\text {arm }}$ the inerti 10 gm for $M, 18 \mathrm{~cm}$ for l and ignoring a (which is small) then $I_{\text {arm }}$ is $1080 \mathrm{gm} \mathrm{cm}^{2}$. To this must be added the inertia of the counterweight, $I_{\text {cw }}$, about the pivot. Using the same formula and substituting the
values 80 gm for $M, 2.5 \mathrm{~cm}$ for l and 1.2 cm values 80 gm for $M, 2.5 \mathrm{sm}$ for l and 1.2 cm
for $a \cdot$ then I_{cw} is 185 gm cm . These measurements for a and l are taken with the arm in the equilibrium position without the cartridge. Thus the total
inertia is $1080+185 \mathrm{gm} \mathrm{cm}^{2}=1265 \mathrm{gm} \mathrm{cm}^{2}$ inertia is $1080+185 \mathrm{gm} \mathrm{cm}^{2}=1265 \mathrm{gm} \mathrm{cm}^{2}$
Now $M_{\mathrm{e}}=I_{\text {to }}+R^{2}$, where M_{e} is the mass Neferred to the stylus point, $I_{\text {tot }}$ is the total
ret inertia of the arm about the pivot and R is the pivot to stylus distance. Substituting the values $1265 \mathrm{gm} \mathrm{cm}^{2}$ for $I_{\text {too }}$ and 18 cm or R, then M_{c} is 3.9 gm

Comparison of new arm with conventional arm
As R and l are roughly equal in any arm, Ase arms in R^{2} cancel out in the equation the erms in R^{2} cancel out in the equation
for M_{c} which becomes $M_{\mathrm{e}} \propto M$. Thus if the same tubing is used for both an 18 cm arm and a 23 cm arm, then the overall mass
will clearly be less for the 18 cm arm. The will clearly be less for the 18 cm arm. The
actual figure is 22% less; but is meaningful for the reasons given below.
More important is the large reduction in inertia for the 18 cm arm. As $I_{\text {arm }} \propto R^{2}$ a
small reduction in R rill led small reduction in R will lead to a large reduction in $I_{\text {arm. }}$ A simple calculation
shows that an 18 cm arm will have 39% less inertia than a 23 cm arm made from the same material.
This effect is exaggerated by the cartridge being mounted at the very end of mass M_{c} at ther end of an arm length R is mass M_{c} at ther end of an arm length R is
$M_{\mathrm{c}} R^{2}$. A typical cartridge of mass 5 gm mounted at the end of an arm of 18 cm has therefore an I_{c} value of $1620 \mathrm{gm} \mathrm{cm}^{2}$ due solely to its own mass. The same cartridge value of $2645 \mathrm{gm} \mathrm{cm}^{2}$!
Because the manufacturers of convenional arms cannot influence the mass of the cartridges as made by the specialist
firms, or even reduce the length of their arm designs without running into other problems, most of them attempt to reduce inertia by using exotic materials for con-

Dne way of achie ving faster traverse is to use seconding
sling clutch.
struction, or by using ultra-thin walled tube. As has been shown above, this is the least effective method of reducing inertia because it only reduces M. The most effective method is to shorten the arm because of the presence of R^{2} in the inertia Making
Making use of exotic materials has good marketing appeal because of the aura sur-
rounding titanium, carbon fibre etc. but it does not make good economic sense as it costs a lot for little gain. Using thinner
sections is not sections is not good practice because the
arm becomes less able to withstand the arm becomes less able to withstand the
knocks and bumps of everyday use. Also, the thinner the material, the more likely it is to flex
In the design of the new arm, the design principle has been quite different. A relati-
vely robust straight stiff vely robust straight stiff tube has been
specified to give good rigidity. A light-
weight but inexpensive material has be chosen to get the economics right, and give reasonable overall mass. But more important, the arm length has been specified to give a large reduction in overall inertia
without running into the problems assowithout running into the problems asso
ciated with arms that are too short (e.g. stability, and the need for fail-safe tracking in case of servo failure).
This approach provides all the potential
Thise fare or a radical improvement in performanc of the conventional arm.
Firstly it influences the resonant frequency of the pickup arm and cartridge combina tion, according to the equation $f_{0} 1 / 2 \pi \sqrt{M_{c} C}$ where C is the complianch
of the stylus. With modern compliance cartridges a low value of M_{c} is a prime requirement for avoidance of esonance problems. (See page 64 of Apri 1978 Wireless World for an analysis of thes problems.)
Secondly,
Secondly, M_{e} influences record wear a
mentioned earlier. Take the case of mecord with a 1 mm warp, which is not an
rear uncommon amount even on a new record. This is taken to mean 1 mm up and 1 mm down from the mean recor
in the following calculation.
For every revolution the record surfac has to work against M_{c}, the work done against g by moving distance d being $M_{\mathrm{e}} d$ ergs. In this case d will be 0.2 cm . Now,
one state-of-the-art conventional tracking one state-of-the-art conventional tracking
arm that has just appeared on the marke has an M_{e} of just 9 gm . If a typical disc of 650 grooves is played say once a week for five years with this arm then the work done against M_{c} will be 315,900 ergs. Thi is equivalent to lifting a 63 kg man approxi-
mately 5 cm into the air. Remember, this work is being done by the delicate playin surfaces of the record! If the same disc is played with a parallel-tracking arm of M_{c} only 4 gm , then the work done will be only 140,400 ergs, or 56
speak for themselves.
Carbon fibre, neoprene cord, Nylon 66, and other components are acailable from J. . Biiles
Enginering, 120 Castle Lane, Solihull, West
Midand 1922 .

Digital storage and analysis of speech

1 - Storing waveforms digitally
by lan H. Witten, M.A., M.Sc., Ph.D., M.I.E.E. University of Calgary

One of the difficulties with digital speech storage and analysis is that new signa-processing techniques signals. Since these only appeared recently, and are rather mathematical, they are not understood very widely. Concepts like the z-transform, the discrete Fourier transform, and digital
filters are quite infamiliar to many practising electronic engineers. Although there are several textbooks on the subject, nearly all of them treat it in a frighteningly theoretical and abstract way. The aim of this article is down-to-earth manner by putting them in the practical context of the speech waveform.
Computer-generated speech is still a rather esoteric subject, despite the explosive growth in practical applications that we are witnessing. Texas Instrument's Speak 'n Spell toy - now about three years old - is probably the best example of a consumer device that uses speech output. But ther
are orhers. Cheap speech synthesizers intended for hobby computers have been on the market for several years now, as has a talking calculator. Digital transmission of speech is used in X .ephone and the new System X exchange developed digital form to guide the user and tell him what is happening to his call. Note that analogue storage of speech has been used in the telephone service for many years, for even bedtime stories.

Analogue storage of speech. The mos familiar device that produces speech out put is the ordinary tape recorder.
However, this is unsuitable for speech output from computers. One reason is that is difficult to access different utterance quickly: although random-access tape re corders do exist, they are expensive and of the stresses associated with frequent starting and stopping.
Storing speech on a rotating drum in stead of tape offers the possibility of access to any track within one revolution time For example, the IBM 7770 Audio Resa second which are able to store up to thirty-two 500 ms words. These can be
accessed randomly, within half a second at
most. Although one can arrange to store adjacent track at the end of the rotation period, the discrete time-slots provided by this system make it virtually impossible for it to generate connected utterances by as sembling appropriate words from the store.
Thilar Cognitronics Speechmaker has a similar structure, but with the analogue speech waveform recorded on photo-
graphic film. Storing audio waveforms op tically is not an unusual technique, for this is how soundtracks are recorded on ordinary films. The original version of the
"speaking clock" of the British Post Office used optical storage in concentric tracks on flat glass discs. This was developed in the mid 1930s, and synchronization of utterances with real time was achieved in
an intriguing manner. A 4 Hz signal from a pendulum clock was used to supply current to an electric motor, which drove shaft equipped with cams and gears that rotated the glass discs containing utterances for seconds,
A second reason for avoiding analogue storage is price. It is difficult to see how a random-access tape recorder could be in corporated into a talking pocket calculato ing te cost Solid-ste ectronics is much cheaper than mechanics.
But the best reason is that, in many applications of speech storage, it is necessary to form utterances by linking togethe feasible, for example, to store every pos sible telephone number as an individual recording! And utterances that are formed by linking individual words which were recorded in isolation, or in a different
context, do not sound completely natural For example, in an experiment performed in 1960 , individual words were recorded on acoustic tape, which was spliced with the words in a different order to mak sentences. The result was played to key words which they identified correctly. The overall conclusion was that while em bedding a word in normally spoken sentences increases the probability of recognition (because the extra contex gives clues about the word), embedding a
word in a constructed sentence, where in tonation and rhythm are not properly ren dered, decreases the probability recognition. When the speech was uttered
slowly, however, a considerable improvement was noticed, indicating that if th
listener has more processing time he can overcome the lack of proper intonation and rhythm. rhythm.
Nevertheless, many present-day voice response systems do store what amounts to a direct recording of the acoustic wave.
However, the storage medium is digital rather than analogue. This means that standard computer storage devices can be used, providing rapid access to any seg ment of the speech at relatively low cost for the economics of mass-production en sures a low price for random-access digital
devices compared with random-access analogue ones. Furthermore, it reduces the amount of special equipment needed for speech output. One can buy very cheap
speech input/output interfaces for home computers which connect to standard hobby buses. Another advantage of digita over analogue recording is that solid-stat r.o.ms can be used for hand-held device which need small quantities of speech Hence this article begins by showing how
waveforms are stored digitally, and then describes some techniques for reducing th data needed for a given stretch of speech.
Digital storage. When an analogue signal is converted to digital form, it is made discrete both in time (sampling) and in amplitude (quantizing). Much of the theory of digital signal processing investigates signals which are sampled but no
quantized (or quantized into sufficiently quantized (or quantized into sufficiently
many levels to avoid inaccuracies). The operation of quantization, being non linear, is not very amenable to theoretical analysis, since it introduces issues such a accumulation of round-off noise in arith
metic operations, which, although they are very important in practical implementa tions, can only be treated theoretically un der certain somewhat unrealistic assump quantization error from sample to sample)

Sampling

A fundamental theorem of telecommun cations states that a signal can only b reconstructed accurately from a sampled version if its highest component frequency
is less than half the frequency at which the is less than half the frequency at which the
sampling takes place. Figure 1(a) show how a component of slightly greater than half the sampling frequency can masque rade, as far as an observer with access only

46
$\xrightarrow{\text { Slighty less than } 2 T} \quad \begin{aligned} & \text { Figure } 3 \text { shows how the linear frequency } \\ & \text { axis for continuous systems maps on to a }\end{aligned}$

$\stackrel{\rightharpoonup}{\text { Slightily greater than } 2 T} \underset{ }{\longrightarrow}$
(a)

(b)

Fig. 1 Different sine waves which appear
he same when sampled the same when sampled
al components near half
frequency (b) a component at just under the sampling
requency and its low-frequency
nent at slightly less than half the samplins frequency. Call the sampling interval T seconds, so that the sampling frequency is
$1 / T \mathrm{~Hz}$. Then components at $1 / 2 T+f$, $3 / 2 T-f, 3 / 2 T+f$ and so on all masque rade as a component at $1 / 2 T$ - under the sampling frequency masquerade as very low-frequency components, as shown in Fig: 1(b). This phenomenon is
often called "aliasing". oftencalled aliasing
Thus the continu
quency axis for the unsampled e, frewhere two components at different frequencies can always be distinguished maps into a repetitive frequency axis when the signal is sampled. As depicted in Fig.
2 , the frequency interval $[1 / T, 2 / T)^{\star}$ is mapped back into the band $[0,1 / T)$, as are the intervals $[2 / T, 3 / T),[3 / T, 4 / T)$, and so on. Furthermore, the interval $[1 / 2 T, 1 / T)$ between half the sampling frequency and
the sampling frequency, is mapped back the sampling frequency, is mapped back frequency; but this time the mapping is backwards, with frequencies at just under $1 / T$ being mapped to frequencies slightly greater than zero, and frequencies just over $1 / 2 T$ being mapped to ones just under
$1 / 2 T$. The best way to represent a repeating frequency axis like this is as a circle.

* Intervals are specified in brackers, with a
square bracket representing a closed end of the square bracket representing a closed end of the
interval and a round one representing an open interval and a round one representing an open
one. Thus the interval $[1 / T, 2 / T)$ specifies the
range $1 / T<$ frequency $<2 / T$.
circular axis for sampled systems. For present purposes it is easiest to imagine the
bottom half of the circle as being reflected into the top half, so that traversing the upper semicircle in the anticlockwise direction corresponds to frequencies increasing from 0 to $1 / 2 T$ (half the sample
frequency), and returning along the lower frequency), and returning along the lower
semicircle is actually the same as coming back round the upper one, and corresponds to frequencies from $1 / 2 T$ to $1 / T$ being mapped into the range $1 / 2 T$ to 0 . As far as speech is concerned, then, we no significant components at greater than half the sample frequency are present. Furthermore, the sampled signal will only contain information about frequency components less than this, so the sample fre est frequency of interest. The telephone network aims to transmit only frequencies lower than 3.4 kHz . This region will con tain the information-bearing formants, and spiration energy* - Transmitring tive and through the telephone system degrades its quality very significantly, probably more han you realize since everyone is so accus tomed to telephone speech - try the dial-a-disc service and compare it with high
fidelity music for a striking example of the kind of degradation suffered
Since speech contains significan amounts of energy above 3.4 kHz , it hould be filtered before sampling to re nents would be mapped back into the baseband and distort the low-frequency information. Because it is difficult to make filters that cut off very sharply, the sam pling frequency is chosen to be rathe interest; for example, the digital telephon network samples at 8 kHz . The pre-sam pling filter should have a cutoff frequency of 4 kHz ; aim for negligible distortion below 3.4 kHz ; and transmit negligible
components above 4.6 kHz - for these are reflected back into the band of interest, namely 0 to 3.4 kHz . Figure 4 shows block diagram for the input hardware.

Quantization

Before considering specifications for the pre-sampling filter, let us turn from sam
pling in time to amplitude quantizaion This is performed by an a-to-d converter
*See "The Chatterbox," Wireless World 84 and 85 (December 1978 and January 1979), for a
simple explanation of formants, frication, simple expla
aspiration. sampler) and generates (produced by the bampler) and generates a corresponding
binary value as output. The simplest correspondence is uniform quantization, where the amplitude range is split into equal regions by points termed "quantization
levels", and the output is a binary representation of the nearest quantization level to the input voltage. Typically, 11-bit
conversion is used for speech, giving 2048 quantization levels, and the signal is adjusted to have zero mean so that half the levels correspond to negative input voltages and the other half to positive ones. It is, at first sight, surprising that as representation of speech signals. Research on the digital telephone network, for

Fig. 2 How sampling "folds" the frequency
spectrum

Fig. 3 The circular frequency axis of
sampled systems

WIRELESS WORLD JULY 1981
example, has concluded that a signal-tonoise ratio of some 30 dB is enough to
avoid poor speech quality, loss of intelligibility, and listener fatigue for speech at a normal level. But ll-bit quantization noise ratio than this figure. To estimate its magnitude, note that for N -bit quantization the error for each sample will lie between $\quad-1 / 2.2^{-N}$ and $+1 / 2.2^{-N}$
Assuming that it is uniformly distributed in this range - an assumption which is in this range - an assumption which is is sufficiently large - leads to a meansquared error of

$$
\int_{-2}^{2-N-1} e_{-2}^{2-p(e) d e}
$$

where $\mathrm{p}(e)$, the probability density function of the error e, is a constant which tion constraint, namely tion constraint, namely

$$
\int_{-2^{N-1}}^{2-N(e) d e}=1 .
$$

Fig. 6 Piecewise linear approximation to
the A-law input/output relationship
where x is the original signal and y is the
amplitude is only $1 / 32$ of the full-scale value would be digitized with a signal-tonoise ratio of around 36 dB , which is not
much greater than the figure mentioned much greater than the figure mentioned
above for adequate quality. Even then it is useful if the speaker is provided with an indication of the amplitude of his speech: a traffic-light indicator with red signifying clipping overload, orange a suitable level, nient for this.
Logarithmic quantization For the purposes of speech processing, it is formly. This is because all of the theory applies to linear systems, and nonlinearities introduce complexities which are not amenable to analysis. Uniform quantization, although a nonlinear operation, is linear in the limiting case as the number of poses its effect can be modelled by assuming that the quantized signal is obtained from the original analogue one by the addition of a small amount of uniformly-distributed quantizing noise, as in fact was done disregarded in subsequent analysis. However, the peakiness of the speech signal illustrated in Fig. 5 leads one to suspect that a non-liner representation, for example a logale a better signal-to-noise ratio over a wider range of input amplitudes, and hence be more useful than linear quantization - at least for speech storage (and transmission). And inded the is case. effect that the absolute noise level is independent of the signal level, so that an excessive number of bits must be used if a reasonable ratio is to be achieved for peaky representation like
value which is to be quantized, gives a signal-to-noise ratio which is independen
of the input signal level. This relationship cannot be realized physically, for it is undefined when the signal is negative and diverges when it is zero. However, realiza ble approximations to it can be made which retain the advantages of constan
signal-to-noise ratio within a useful range of signal amplitudes, one widely used ap proximation being called called the A-law The idea of non-linearly quantizing a sig nal to achieve adequate signal-to-noise ratios for a wide variety of amplitudes is called "companding", a contraction of
"compressing-expanding". The original signal can be retrieved from its A-law compression by antilogarithmic expansion.
Figure 6 shows one common 8-bit coding scheme which is a piecewise linea approximation to the A-law. This provides
an 8 -bit code, and gives the equivalent of an 8 -bit code, and gives the equivalent of
12-bit linear quantization for small signal levels. It approximates the A-law in 16 linear segments, 8 for positive and 8 for negative inputs. Consider the positive part of the curve. The first two segments exactly to 12 -bit linear conversion. Thu the output codes 0 to 31 correspond to inputs from 0 to $31 / 2048$, in equal steps (Remember that both positive and negative signals must be converted, so a 12 -b
linear converter will allocate 2048 levels fo positive signals and 2048 for negative ones.) The next segment provides 11 -bit linear quantization, output codes 32 to 47 corresponding to inputs from $16 / 1024$ to
$31 / 1024$. Similarly, the next segment $31 / 1024$. Similarly, the next segment corinputs from 16/512 to 31/512. And so on, the last section giving 6 -bit quantization of inputs from $16 / 32$ to $31 / 32$, the full-scale positive value, Negative inputs are
converted similarly.. For signal levels of
less than $32 / 2048$, that is 2^{-8}, this imple-
mentation of the A-law provides full 12 -bit mentation of the A-law provides full 12 -bit precision. As the signal level increases, the maximum amplitudes.
Logarithmic encoding provides what is in effect a floating-point representation of he input. The conventional floating-point ormat, however, is not used because many
different codes can represent the same value. For example, with a 4-bit exponent preceding a 4 -bit mantissa, the words 0000:1000, 0001:0100, 0010:0010, and $0011: 0001$ represent the numbers $0.1 \times$ respectively, which are the same. (Some floating-point conventions assume that an unwritten "1" bit precedes the mantissa, except when the whole word is zero; but his gives decreased resolution around zero which is exactly where we want the
resolution to be greatest.) Table 1 shows the 8 -bit A-law codes, according to the piecewise linear approximation of Fig. 6, written in a notation which suggests floating point. Each linear segment has a difments, which as explained above are collinear.
Logarithmic encoders and decoders are available as single-chip devices called "codecs" (for "coder/decoder"). Intended fo generally provide a serial output bit stream, which should be converted to arallel by a shift register if the data is tended for a computer. Because of the potentially vast market for codecs in telequantities and are consequently very cheap. Estimates of the speech quality necessary for telephone applications indicate that somewhat less than this accuracy is needed - 7 -bit logarithmic encoding links, and it may be that even 6 bits are adequate. However, during the transition period when digital networks must coexist with the present analogue one, it is anticihave to pass through several links, some using analogue technology and some being digital. The possibility of several succes sive encodings and decodings has led telecommunications engineers to standardize margin before additional degradation of signal quality becomes unduly distracting. Unfortunately, world telecommuni cations authorities cannot agree on a single law, which we have described, is the European standard, but there is another system, called the μ-law, which is used universally in North America. It also is available in single-chip form with an 8 -bit characteristics to the A-law, and would be indistinguishable from it on the scale of Fig. 6.
The pre-sampling filter
Now that we have some idea of the accuracy requirements for quantization, let u discuss quantitative specifications for the pre-sampling filter. Figure 7 sketches the
characteristics of this filter. Assume a san interest from 0 to 3.4 kHz a range components at frequencies above 4 kHz will fold back into the $0-4 \mathrm{kHz}$ baseband, those below 4.6 kHz fold back above 3.4 kHz and are therefore outside the range of interest. This gives a "guard band" be-
tween 3.4 and 4.6 kHz which separates the passband from the stopband. The filter should transmit negligible components in the stopband above 4.6 kHz . To reduce he harmonic distortion caused by aliasing to the same level as the quantization noise attenuation should be around -68 dB (the signal-to-noise ratio for a full-scale sine wave). Passband ripple is not so critical, for two reasons. Whilst the presence of aliased components means that information has been lost about the frequency
components within the range of interest, passband ripple does not actually cause a loss of information but only a distortion and could, if necessary, be compensate by a suitable filter acting on the digitized passband spectrum is not nearly so audible as the frequency images caused by aliasing Hence one usually aims for a passband ripple of around 0.5 dB .

Fig. 7 General ctal sampling fitter

The pass and stopband targets we have mentioned above can be achieved with 9 th order elliptic filter. While such a filter is often used in high-quality signal-processing systems, for telephone-quality speech much less stringent specifications seem to a template which has been recommended by telecommunications authorities. A 5 th order elliptic filter can easily meet this specification. Such filters, implemented by switched-capacitor means, are available in
single-chip form. Integrated which meet the same specification are also marketed. Indeed, some codecs provid input filtering on the same chip as the a-tod converter.
Instead of implementing a filter by anal
ogue means to meet the aliasing specific ogue means to meet the aliasing specifica-
tions, digital filtering can be used. A hig sample-rate a-to-d converter, operating at,

Fig. 8 Specifications of the pre-sampling
filter for telephone-quality speech
say, 32 kHz , and preceded by a very simple low-pass pre-sampling filter, is followed by a digital filter which meets the
desired specification, and its output is desired specification, and its output is rate. While such implementations may be economic where a multichannel digitizing capability is required, as in local telephone exchanges where the subscriber connecto prove cost-effective for a single channel
continued on page 59

Table 1. 8-bit A-law codes, with their float

8 -bit codeword

Negative numbers treated as above, with a Negative nu

Long distance television reception

1 - An introduction
by Keith Hamer and Garry Smith

In these occasional articles, the authors will introduce readers to the hobby of long-distance television reception, or DX-tv as it is often called, and pass on their experiences as dedicated amateurs. This first part
discusses how tv signals are affected by weather and atmospheric conditions, basic tv set requirements, simple aerials and signa
identification.

There are many factors, such as transmitter powers and terrain, which will influence the range over which a television signal can be reliably received, but in gen-
eral, the strength of the signal becomes weaker as the distance between the transmitter and receiver increases. Reliable reception is normally limited to approximately 70 miles from the transmitter. Readers have probably noticed that the transmitters vary during certain weather conditions. Distant signals, which are normally very weak, may become comparable in strength to that of the local transmitter for a matter of hours, or even days. ceived on the same channel as the local transmitter. This is termed 'co-channel reception' (or interference, depending on whether you are an enthusiast or a viewer).
These temporary extensions in the range of disant signals are connected with variations in the troposphere, which extends from the earth's surface to about $20,000 \mathrm{ft}$ above. For example, when an anticyclonic weather condition exists, together with a and the UK, a temperature inversion in the troposphere usually takes place. Temperature inversions enhance long-distance television reception.
Fortunately for the average viewer, but not for the DX-tv enthusiast, widespread
interference on u.h.f. television caused by tropospheric conditions of the type described above is relatively rare. Enhanced reception on Bands I and III is also associated with these conditions.
Ionized patches in the E layer of the atmosphere often cause interference on September. The E layer is between about 60 and 80 miles above the earth's surface. Before BBC 1 transmissions were
duplicated on u.h.f., viewers had to rely on 405-line UK Band I transmissions, on which sporadic E signals would cause quite
a lot of interference. This interference often manifested itself as a herringbone patern superimposed on the picture which could last for up to several hours. At times, the BBC 1 picture was totally obliterated. Viewers relying on channel 2 might also
have experienced a loud buzz on the sound channel from the video signal of foreign transmissions on the same frequency. Unfortunately, there was little the viewer could do apart from switch over to ITV or
turn off the set! Later, in some areas, the BBC duplicated their BBC 1 transmissions on higher frequencies in Band III to help overcome the problem.
If the viewer was curious enough to tune through the Band I frequencies while spo-
radic E signals were present, he/she would obtain video information resembling a mass of unlocked white lines without the sound channel. At other frequencies, a distorted sound signal may have been pre-
sent. The reason for the unlocked video is sent. The reason for the unlocked video is
fairly simple: The 405 -line system, as used on the v.h.f. channels in the UK, employs positive video modulation whilst most Continental countries employ a 625 -iine system with negative video modulation.
This is in some ways similar to our own This is in some ways similar to our own and vision spacings and channel bandwidths. Also, most Continental countries employ the 625 -line system on both v.h.f. and u.h.f. channels, unlike our own system which is only used on the u.h.f.
channels. We will cover the difference in transmission standards in greater detail in a subsequent article.
Some readers will have already realised that, as the European 625 -line system is
similar to our own we should at certain similar to our own, we should, at certain
times, be able to resolve u.h.f. television signals from the Continent on a standard u.h.f. receiver designed for use in the UK. This is precisely the case and if your existing u.h.f. receiving aerial is already
directed towards the Continent, you directed towards the Continent, you
should be able to receive Continental transmissions when the right atmospheric conditions exist. It is unlikely that the sound channel will be received because of the different sound and vision spacings in be received. It is possible to re-tune the sound stages of the receiver but, unless you are well versed in foreign languages, there is little point.*
Resolving signals enhanced by sporadic
On Dutch television many programmes are in English
with Dutch subtiles.-- Ed.

Fig. 1. A simple dipole for frequencies

E in Band I is slightly more difficult due to the greater differences in transmission standards. We have already said that a 625 line signal received under sporadic E conditions will show up as a mass of unlocked
white lines when displayed on the screen of a British receiver operating on 405 -lines v.h.f. To resolve these signals the receiver will need to operate on the 625 -line system but with the tuner covering v.h.f. frequencies. Fortunately the problem can be
overcome in several ways. Certain portables are available which were originally intended for the European market. These sets have 625 -line coverage on Bands I and III and this is probably the easiest way round the problem
If an old dual-standard receiver is on
hand it may be modified so that band selection, that is u.h.f. to v.h.f., is independent of the system switch setting. The system switch is left permanently in the
625 -line position. 625 -line position.
it is possible to fit an addition is available, sive tuner and incorporate a change-over switch at the i.f. input to select the output from the existing u.h.f. tuner or the addi-
tional v.h.f. tuner. The latter two suggestional v.h.f. tuner. The latter two sugges-
tions will of course depend on the competence of the individual to carry out such modifications.
Another way is to employ a frequency
converter converter which is connected directly to
the aerial input of a single-standard receiver. Such converters are sometimes used in conjunction with communal aerial distribution systems, in which translated u.h.f. signals are distributed at v.h.f. fre-
quencies, to minimise cable losses, and a quencies, to minimise cable losses, and
converter at the receiver converts the sig converter at the receiver converts the sig
nals back to u.h.f. Hence, if we feed the input of the converter with a DX signal in Bands I or III, the unit will translate the signals to a u.h.f. frequency to enable a single-standard receiver to be used for
both systems. Suitable converters may be obtained from aerial suppliers currently advertising in various magazines.

LETMNEDS TOTMUE EDTACOD

Aerials

the minds of most people, the very mention of receiving television signal fom other countries conjures up an elabo ice mast. This need not be the case. Spo radic E enhanced signals can attain ver igh signal strengths, especially during a implest of aerials will suffice
It should be noted that for serious DX ork and the reception of weak signals, an considered. Use can be made of the direcional properties of the aerial if some method of rotation is used. As the majority of Continental transmissions are horizon ally polarized, the receiving aerial should elements horizontal.
A simple aerial system for the beginner can consist merely of a half-wave dipole, as shown in Fig. 1, mounted outside for bes uency in the centre of Band I, i.e. around quency in the centre of Band 1, $1 . \mathrm{e}$. around
5 MHz . As a horizontal dipole will be directional to some degree, best results will be obtained if the aerial can be rotated.

Signal identification

After a distant signal has been received,
one will automatically want to identify its ne will automatically want to identify it source. This can be difficult if the source pattern is received the chances of identifiation are greatly improved.
Until fairly recently there were many fferent test patterns in use throughou e world and almost every country had it own design. introduced similar electronically generated test patterns and at present there are two rain types; the Philips PM5544 and the FuBK-type as shown in Figures 2 and
respectively. But most services now incor porate some form of station identification and so during sustained reception it is relatively easy to identify the country of origin

Books
Until recently there was very little in ormation available for the would b changed. One publication which should b of interest to both the beginner and the Televisision Reception For The Enthusiast' by Roger Bunney, published by Babani Other books and publications which may be of interest to television DXers will be mentioned in due course.
The authors will be pleased to hear from readers with experiences of long-distanc able to assist with any identification probems. Reception reports and any photo raphic examples of DX reception will b

Readers wishing to respond to the authors' rrial dent. torial dept.

Literature received

Application note 757-4, from Ailtech, describes Unit in conjunction with their 757 spectrum nalyser. Copies are available from Eaton Ltd EID, Sherwood House, High Street, Crow
WW40
horne, Berkshire. Refference guide to HBM strain gauges, which
lists hundreds of types and presents information on mounting adhesives and accessories, can be
had from Carl Schenck (UK) Ltd, Stonefield Way, Ruislip, Middlesex HA4 OIT. WW40

A great many housings and accessories from the ments and small components are described in he new West Hyde catalogue, which is obtaina-
le from West Hyde Developments Ltd Unit 9 Park Street Industrial Estate, Buckinghamshire HP20 IET.

CB PIRATES - OR
PROTESTERS?
In your editorial in the May issue you were request is unreasonably refused it is unreasonable to expect the applicant to accept the deci-
sion. The applicant therefore has a moral right sion. The applicant therefore has a moral right to ignore the decision and the blame for the
consequences lies with the person who made the wrong decision.
You admit that the request for a citizens' You admit that the request for a citizens,
band service was reasonable and that the initial refusal of the Home Office was unreasonable. The blame for the effects on the community therefore rests with the negligent robots in the
Home Office and the pirates have every reason to grumble at the expense of changing to the new system. Indeed, if logic ruled the world the officials in the Home Office would be made to
pay for the new equipment out of their own pockets. That would teach them to be reasonable in the future.
S. Frost
Edinburgh 2

JAMES CLERK
MAXWELL
MAXWELL
James Clerk Maxwell published in your Mare and May issues was rather forceful in depreciating the work of Albert Einstein. Undoubtedly it
will evoke reaction from the disciples of Relativwill evoke reaction from the disciples of Relativ-
iy but, in my view, Wellard is to be applauded ity but, in my view, Wellard is to be applauded
for his forthright contribution. It was indeed deplorable that the 1979 celebration of the centenary of Einstein's birth did not take into ac-
count the memory of Maxwell who died in the ount the memory of Maxwell who died in the
ame year. More to the point, however, it is same year. More to the point, however, it is
fitting to note that in 1980 experimental proof showing that the ether can assert a force was
reported in Nature (G. M. Graham and D.. G. reported in Nature (G. M. Graham and D. G.
Lahoz, Nature, 285, 154 (1980) and it was Maxwell and not Einstein that was supported. I hope we will see further acceptance of Maxregard to the third of the four alternative empir:ical laws of electrodynamics presented in Maxwell's treatise. This particular law is an inversesquare law of attraction with force acting
directly between like charged bodies when moving at the same velocity. It can, therefore give physical basis to Newton's law of gravita with the equations, but not the underlying phi losophy, of General Relativity (H. Aspden, \mathcal{I} Phys, $A, 13,3649$ (1980)).

H. Aspden Chilworth

Chilworth
Southampton
It pains me to find two glaring fallacies in M. G Wellard's discussion in the March issue of the Michelson-Morley aether-drift "experiment", as it is generally termed. The ably peculiar to Mr Wellardy alonge; the second, that the Doppler effect may be produced by the movement of the medium ach
With respect, I would merely comment on
Winst fill
the first fallacy by saying that a fortune awaits
the inventor of so simple a means of providing
the inventor of so simple a means of providing
superheterodyne radio reception; for the second
allacy, may I perhaps be granted a slightly more comprehensive comment? For our argyment we require confidence in one assumption, however: that energy manifested in a simple
coherent wave train may be represented by a set of uniform material objects, which may be aranged in a regular pattern in space and in partiular in a line representing the line of advance of ero-crossing or other phase-state. We could construct a mechanical model, then, with a antervals onto a straight level track, along which hey would propel 'themselves at a steady velocity to a reception device with a counting mechanism, which would be matched by a similar
counter on the launcher. We could then say what is the frequency of dispatch, and of arrival at the receiver, and how many balls are in transit. Now suppose that the track is the sur-
face of a continuous transporter-belt, and that this is set to run steadily towards the launcher to match Mr Wellard's example); what would tate of dispatch or arrival at the end of the track. The balls would be more closely spaced along he track, in accordance with its speed, but they more slowily in a compensating measure. Would we expect to detect the equivalence of the Doppler-effect in this model?
Now suppose the belt to be halted, but either he launcher or receiver to be moving along it.
What would be changing in this case? Not ecessarily the rate of dispatch. But the rate of reception would have to change, because the
number of balls in transit would be constantly changing in proportion to the speed with which he effective track-length was either increasing or decreasing. Now could we be said to recog-
ise the change of frequency at the receiver of his model as the equivalent of the Doppler Sur?
Wellard's discuspication of this, and of Mr be in some details) is that the though it may aether-drift "experiment" were suspending so, the members of the scientific faculties have been somewhat slow in offering criticism of this hpse. Perhaps it is pertinent to mention hers should be subjected to closer inspection; the use of a "control" beam of light propagated in static water, to be compared with its "twin" in water
owing in either one or the other direction rel ve to the ligh's direction would, I rather suspect, provide indications against the drag yypothesis.
To conclud
To conclude, could I suggest, with all due needed if the scientific ideal is to be upheld, but
that criticism should be more critically hat criticism should be more critically exa-
mined before publication? And that applies to his, if it is considered worthy of print!
If by trial and error we may learn, then let us
errors - and then learn to
C. B. V. Francksen

Farmboroug
Hants
The author replies
n C. B. V. Francksen's working model of the
Michelson and Morley experiment the ball Michelson and Morley experiment the balls
represent the energy of consecutive cycles of a
light wave, the launcher the source of light and the semi-transparent mirror, the 1eceiver represents the reflecting mirror, and the stationary or moving track represents the stationary or
moving ether. The model can be improved by allowing the launcher and receiver to change positions when the light beam is reflected in the experiment the recive's changed rate of nalogous with the frequency changing effect of the moving reflecting mirror.
Mr Francksen
Mr Francksen need have no fear that his
letter is unworthy of print. In the fift paragraph he has pinpointed the basic flaw in The reasoning that gave rise to the experiment. The history of his "Fields of Force", 261 onwards. Fresnel had explained the phenomenon of stellar aberration by assuming the Arago discovered that t Arago discovered that this phenomenon
occur when light passed through a prism, Fresnel said that the ether was trapped within the volume of the prism and dragged along the
light. Fressnel calculated his dragging coefficient', and by passing light through a moving column of water Fizeau proved Fresnel's
dragging coefficient'? The moving volume of water dragged along the light wave. Stokes had already proposed an alternative theory to explain stellar aberration - the ether was dragged long by the moving Earth' and
theory cannot explain Fresnel's dragging coesficient'.
Michelson and Morley ignored Fresnel and Earth created an ether wind. If the MichelsonMorley experiment is repeated, effectively immersed in a flowing volume of water, their in-
erferometer will show signs of interference. M. G. Weellard

TELEVISION FOR

NO-SIGNAL AREAS Mr Osborne's case history of a practical applica-
ion of an 'active deflector's system (May issue) was read with great interest but with some appression that such schemes are very simple and pression that such schemes are very
demand little more than redundant aerials, sal-
vaged vaged coaxial cables and modified standard
television distribution amplifiers employed with ingenuity by an experienced amateur.
My company has become very involved with self help' schemes and supplies standard, and specialised equipment together with engi-
neering advice and assistance where necessary, As a result of our in volvement and experience, I would like to make the following points: 1. Communities forced to consider 'self help’
systems, usually of populations less than 200, are entitled to the best possible television reception, with a target of standards comparable to well-engineered cable systems.
2. Cable systems should be used whenever possible with the advantages of multi television channels, v.h.f./f.m. radio, 'teletext operation and provision for future channel services.
3. Active deflector systems should be engineered to the same standard as cable systems, where we comply with BS 5603 and CTVR1/1.
Due regard must be paid to filtering of received Due regard must be paid to filtering of received
channels, minimum transmitter power, and cal-

WIRELESS WORLD JULY 1981
culation of s / x and s / n ratios, for broadband amplifiers, relative to all known variations of
signal levels due to 'off air' and cable/equipmen
temerater 4. As advised under "Licences", full use should be made of the BBCIBA transmitting authori-
ties, who share the difficult task of assisting then ties, who share the difficult task of assisting the
remaining unserved 0.1% population no remaining unserved for under Phase 3 of the UK U television coverage plan which is proiected to 1986 .
Please be assured that this is not a criticism of Please be assured that this is not a criticism of V. Levis Wolsey Electronic
Porth, Rhondda
Mid Glamorgan
SCIENCE AND SOCIETY The quotation from the policy statement by the
British Society for Social Responsibility in Science (BSSRS) in May letters contains serious ambiguities, if not explicit errors, which d
great harm to the Society's good cause, and which must therefore not pass unchallenged
The policy statement declares "SScience is no The policy statement declares: "Science is no
neutral. It cannot be separated from politics. I neutral. It cannot be separated from politics. It
both reflects and helps to determine the values of sociery." Now if the term "science" is used to denote the activities of the members of a social
group known as the "scientific community" group known as the "scientific community",
then these assertions are essentially true. Fo the activities in question are inextricably linked to the society within which they take place.
Unfortunately, the definition of science "the set of all activities by scientists" is rather problematic, because one will then have to
specify what this peculiar bred hat specify what ctis peccliar breed of scoial
species, the scientist, is. And if one naturaly says that the scientist is a person who practise science, then the circle becomes obvious. It fact, there has taken place inside BSSRS a de-
bate on whether "Science is a labour process") "Science is not just social relations" process" Science
for People for People No 43/44, 1979). Sadly, it is now evident that the
ingly prevailed.
I would argue that the BSSRS in particular,
and a wide spectrum of political and philosoand a wide spectrum of political and philoso phical opinion in general, in going out of their
way to stress the social influences on scientific research and the impact of scientific discoveries upon society, have been carried away by thei
bubbling enthusiasm for radical or revol bubbling enthusiasm for radical or revolu
tionary policies, have thus missed the more fundamental content of the meaning of science, have therefore fallen inevitably in serious errors, and so have generated a great deal of dangerous
confusion. Science is best defined as, in the first place,
objective knowledge, plus, in the second place, the activity to enlarge, and make use of, this
permanent and universal knowledge. Scientific permanent and universal knowledge. Scientuific
obiectivity stubbornly and irrefutably exists and
refers to the perma nent and universal refers to the permanent and universal
knowledge of facts and phenomena of nature knowledge of facts and phenomena of nature
which are independent of any individual's
whim: political affiliations, ideologicical persua sions, moral convictions, religious beliefs, and so on. Facts and phenomena of nature are al-
ways the same for every member of the human race.
If one disregards, as so often is the case, the
. existence of objective knowedge (upon which
all scientific activity, of any political orientation must securely rest) one will unhappily be forced
matitict to say that science is siust another ideology, a
mere branch of politics, not better and not worse than religion, ethics, and the like. It is true that scientific facts are discovered usually
as a result of the activities of scientists, which as a result of the activities of scientists, which,
we agree, are prone to (good or bad) political we agree, are prone to (good or bad) political
influences. It is also true that there are certain
ficulies in one's atempt abiectively - free, that is, of experimen ertainties, and independently of any political context. For these reasons, many people, no being competent enough to surmount these dif ficulties, and having gone out of their way to lay ceat emphasis on the political influences o hat objective facts do not exist, and they hav declared that one cannot separate the sup
posedly) certain facts from uncertain theories or from political prejudices. I have very stron feelings about these issues, and suggest that those who are incapable of distinguishing fact
from theory or from context should admit their from theory or from context should admit their
incompetence, rather than cynically persist with these preposterous assertions.
The mix-up between science and ideology is
confounded by the fact that all sorts of dubious science (e.g. race and IQ studies, astrology, cosmology) or faulty science (e.g. relativity, duality) are frequently mistaken as authentic
science. This badly misuide philosonhers creating dismally erroneous theories of science. Conversely, the realization of the full extent of the confusion between science and ideology is
necessary if one wishes to understand why im possible hypotheses have been foolishly accepted as tenable and even as true ones (especially in he sphere of theoretical physics).
Twe most striking instance of the mix-up between science and ideology, and that which gen-
erated the greatest harm is the following: Many
elementsof so elements of so-called "modern physics" (relativ ity, quantum) were rejected by the Nazis be-
cause many (but by no means all) of their
crears hapsed cause many but by no means and of thei
crearors happened to be Jews or socialists o both. In this way, the military defeat of Hitle physics. As Hitler was (morally) wrong, thos who criticise modern physics must be (scientifically) wrong, too. This is one reason why so
much scientific criticism of relativity went into deaf ears. The sooner these and other facts are recognised, the earlier the vagaries of relativity
will be retired to their well-deserved resing will be retired to their well-deserved resting
place in the history of science, next to epicycles, place in the history of s.
phlogiston and the like.
By speaking out in this way, I run the risk of beinth I do take the risk and I the sake BSSRS should correctly understand first the ful and exact meaning of science, if they really wan to ensure, as I do, that science serves the peopl
as a whole. And I earnestly appeal to the com rades of the BSSRS to re-examine the issues have raised with their brexins, not with their
hearts; otherwise they will continue to alienate hearts; otherwise they will continue to alienate
the rank and file scientist, and allow the political establishment to strengthen its position. T. Theocharis
LondonSW18

ENGINEERING
 EDUCATION

The article by Professor D. A. Bell in the Jan uary issue reviews the technologist vs theoreti-
cian question. In the USA we have recently taken a different path, with separate schools and degrees for technologists and engineers
Whether this is better or worse than the dr Whether this is better or worse than the drop
down to "pass" level of the UK is yet to be down to pas
The question is so old that it should have
been solved This is your near-relative publication, The Electrician, in volume 21, page 579 , September 14, 1888: "Lord Armstrong, like most captains of industry,
knows exactly what he wants and how we getit; bur he
is rather arraid of getting more than he wants, which he
probably would do if Sir Lyon Playfair had his ow
way . . . Lord Armstring approves os technical ant
 needed, sir Lyon Playfair would scaiter these accom-
plishments broadcast in case they may be needed. "We suspect that the chief value of tec chnicald training hetter his condinition - to arisise above his fell how workers The case of 39,000 worken en being thrown out of
employment by the invention of a new method of making steel does not help the argument, unless we a obelieve that those men would have been kepp in
work had they understood the process as well as Beswork had
semer
U. "The learned coctor hopes to create an unlimited
suply of Wats, ,Stephensons, Arkwrights, Cart
wibhs and Wesel wrights, and Bessemeersh, by giving, Arkwrights, Cat enultiude tect nical education, whilst his practical opponent
hend eppre
hand that there would be nobody left to work thei inventions if we wucceceded, and evererybody lefft discon

Somehow, I feel that a definition of inertia, musty old volume, applies. This is attributed to
Prof Ayrton: must Ayrton:
"There are two possible definitions of inertia: in this
country (England) it it defined as resistance to motion, nd in America as resistance to standing still."
It appears that the motion on this question time that we selected a re-entry point!
time that we
O.D. Ryder
Ocala
Florida, USA
The writer was formerly Dcan of EE,
chigan Sate University USA - Ed.
The author replies:
century, and yet such a leading figure as Joh D. Ryder cannot give an authoritative answer ore's first reaction is that the problem is insoluble. However, I think it is worth while pointin
out that my remarks were made within the context of the British university system. Firstly, it appears that as the comparison betwee "technologis" "and "engineer" in American ter
minology is set against our honours/pass discri minology is set against our honours/pass discri-
mination, it must distinguish between "techni cian" and "professional engineer", rather "han between "technologist-enginer"" and "eng
neer-scientist". (In Britain the term "technolo gist" is of top ranking and covers both profes sional engineers and their equivalents in other types of technology, in contrast to "technician"
which implies lower academic standing, what ever the value to industry and to society Secondly, all British universities have in theory. the same academic standards: this is supposed
to be ensured by the general use of the system of to be ensured by the general use of the system of
external examiners, i.e. every degree examin external examiners, i.e. every degree examina
tion is monitored by a senior member of some other university. None the less, special prestige
ataches to some universities: one might perhaps attaches to some universities: one might perhap
compare Oxford, Cambridge and Imperial Col compare Oxford, Cambridge and Imperial Col-
lege with Harvard, Yale and MIT. The inhibition here of any, further discriminatory classi-
fication is part of a very deep-rooted reluctance fication is part of a very deep-rooted reluctance
in Britain to declare openly that anyone is in
ferior to ferior to others or is finally and irrevocabl.
judged incapable of reaching the highest level. judged incapable of reaching the highest level.
A personal view is that the British university pass degree is too often no more than a safery
net for those who for net for those who (for one reason or another) fail
to reach honours standards. It is responsible for the comparatively slaw low drop-out rate fron British universities. (The system of financia
grants to students must also influence drop-out grants to students must also influence drop-ou
rates.) There is
little doubt that separate institutions could produce beuter that secpricians, instituquestion is how meeter human unnapapines
would be created by the forcible separation of question is how much human unhappines
would be created by the forcible separation of
school leavers high-school graduates in US ter
minology) into two streams, professional engi-
neers versus technicians. It would depend partly on the opportunities for exchange between the wo streams, which would seem to be minimised
f separate institutions are involved. In any case, I separate instiucuions are involved. In any case,
do not believe that the vocational content of
education is such an important factor in national education is such an important factor in national
prosperity. as is sometimes assumed, for prosperity as is sometimes assumed, for
example in the Finniston Report on engineering education
$D . A$. Bell

RADIO AMATEURS'
EXAMINATION
was glad to see the validity of the Radio Amateurs' Examination queried at last (May issue,
p.54). Since the Nuffield foundation introduced many changes - even corrections - in the way Physics is taught, many examiners have wrong, and marking it so. Traditional" and "modern" answers to a lake place when a capacitor is discharged through an inductor" may be quite different at first glance, whilst both could be right. Unfor-
tunately there are too many in authority who lunately there are too many in authority who
would dismiss the latter. W. H. Jarris, G8APX Preston
Lancs
I agree with Pat Hawker (May 1981 issue) that
the two errors in the December 1980 Radio he two errors in the December 1980 Radio able, but that is about the only point with which I can agree. Even his comment about the proposed c.b. arrangements permitting radiotele-
phony on 27 MHz whilst Amateur Licence \mathbf{B} holders may only operate on frequencies above holders may only operate on frequencies above
30 MHz has no relevance since the amateur service is an international service while c.b. is a
national one and completely different considerations apply. However, this is no concern of the City of Guilds of London Institute.
I would very much like to see RAE question
papers published but the City and Guilds of papers published but the City and Guilds of
London Institute has its difficulties here which are entirely connected with the integrity of the examination and are not due to a desire for
secrecy in the way the examination is secrecy in the way the examination is
conducted. One is tempted to ask whether what Mr Hawker calls his good fortune did not, in fact, arise from someone breaking faith with
undertakings given to the Institute. undertakings given to the lnsitute.
As for the charge of a lotery, what of the old
witren written type examinations where only a very few
topics from the syllabus could be tested at each topics from the syllabus could be tested at each
examination? In spite of being reasonably well
prepared a candidate could find that the quesexamination? In spite of being reasonably well
prepared a candidate could find that the ques-
tions were all on his weakest topics and he or she tions were all on his weakest topics and he or she
had no opportunity to demonstrate their strong had no opportunity to demonstrate their strong
points.
The present multiple choice scheme tests The present multiple choice scheme tests
every topic in each section of the syllabus at every examination and candidates know they
will have a chance of demonstrating their will have a chance of demonstrating their
strongest topics as well as being tested in the strongest topics as well as being tested in the
weakest. As long as they have as many strong
topics as weak ones they have so passing. Multiple choice questions were not dreamed
up for the RAE; they have been widely used for many years and the principles are well estab
lished. The setting up of a bank of question tems is a long process and each item is tested and edited at several stages and finially pre-
tested by volunteers in a mock examination before being accepted for the bank
fore being accepted for the bank.
The question items are so constructed that
the correct answer cannot be selected simply
The question items are so constructed that
the correct answer cannot be selected simply
beccause the alternatives are obviously wrong.

Each option offering an incorrect answer must
have some credibility so that the candidate must use knowledge of the topic to select which of the options is correct in all respects and fully an-
swers the stem of the question. Errors and omissions typical of those expressed by candidates in the pre--1979 written answers are used in the incorrect options to give them credibility.
Multiple choice is not an easy way out and the candidate needs as much knowledge of the syllacandidate needs as much knowledge of the sylia-
bus as he or she did when writing essay type answers. If all this is thought to be unfair to
candidates, what is the explanation for the candidates, what is the explanation for the
number of candidates having increased from
about 1850 in May 1978 and 900 in December number of candidates having increased from
about 1850 in May 1978 and 900 in December
1978 to some 3000 in May 1900 and 2800 in 1978 to some 3000 in May 1980 and 2800 in December 1980 and that the percentage
successful candidates has increased slighty? As regards syllabus content, there has always
been a section on electrical theory and it has been a section on electrical theory and it has always been supported by lecturers and other
interested bodies, in particular the RSGB, as being valuable groundwork. The volume of
such theory has been reduced such theory has been reduced over the years as
technical considerations have changed and the units now involved consist of volt, coulomb, ampere, ohm, watt, hertz, farad and henry and
this does not seem excessive. Neither does there his does not seem excessive. Neither does there
seem any reason why knowledge of licence conditions should be less under multiple choice conditions than it was under written answer As regards valves, the alternative would have As regards valves, the alternative would have
been a massive increase in training time, and II
for one see no need to ask would-be tadioner for one see no need to ask would-be radio amaWilfred Dunell, G3BYW City and Guilds Radio A mateurs
Examination
Cambridge
The views expressed are cthose of Mr Dunell and not
necessarily those of the Subject Committee. - Ed. Pat Hazker, G3VA, comments: the point of my mertitisms of the RAE held in December. I am all in favour of the multiplechoice form of examination, although, às in the equivalent American exam, it might be worth a few very simple diagrams. But there are good
multiple-choice papers and bad multiple-choice papers. Too many of the questions seem irrelevant to deciding whether somebody should be entrusted with operating an amateur transmit-
err; and unless one knows the "pass") marks ter, and unless one knows the pats matrs in would have been almost as useful as careful preparation.
So I remain ions were either fair or relevant; that it is ridi ulous to include coulombs but omit valves; and with safety. Far from wishing that would-be mateurs should have to take a two-year training ourse, it would seem better to scrap the RAE factory papers. As to anyone "breaking faith" to show me the papers, surely such a charge would
be better levelled at those in any way responsbe better levelled at those in any way respons. Dunell does not comment on the question I

SCIENTIFIC COMPUTER in the eighteen months since If first wrote to yo December 1979 issue) considerable evolution
Df John Adams' scientific computer design has occurred.
At the time of my first letter, the high level At the time of my first letter, the high level
language available (BAIIC using Reverse Polish

- "BUR") was very restricted in its facilities
and therefore attracted my criticism. Subse-
quenty, Mr Adams has made available a Mark quenty, Mr Adams has made available a Mark
II and then a Mark III version of BuRP and I understand that Mark IV is about to appear. A
floppy disc interface has been described (Octofloppy disc interface has been described (Ccto-
ber and December 1980) and a 32K memory expansion board is about to become available.
The presently available high level languge The presently available high level language
(Mk III BURP) represents a vast improvement on the original and has answered virtually all the
criticiss I and
In criticisms I made. It now offers a full range of
variables, multi-dimensional arrays and vit variables, multi-dimensional arrays and vir-
tually all of the statements that one would ex-
 of memory. It is certainly more than adequate
for all "scientific" purposes and one imagines for all "scientific" purposes and one imagines
hat the Mk IV will be even better. Much of the evolution of the design has been facilitated by the creation of a users' group asso-
ciated with a monthly newsletter. Through this nedium, many advances in hardware firmware and software have been made available to users of the computer; the updated BURP interpreter
is available via the users' is avaiable via the users' group.
Anyone still using the original, or even the Mk II, monitor is struggling under unnecessary difficulties. Those wishing to remedy this and or ensure that they keep abreast of future ad-
vances would be strongly advised to contact the users' group c/o Mr Phillip Probetts, 50 Crom-
well Road, London SW 19. What was originally a very sound basis for What was originally a very sound basis for
development has now blossomed into a very sacisfactory and useful machine and, as a final
comment, I would like to comment, I would like to express the gratitude of aid concerned for the tremendou
made Mr Adams and Mr Probetts. made by Mr Adams
John Whitington
North Harrow North Harro
Middlesex

MICROCHIPS AND

MEGADEATHS
was absolutely delighted to read your on the matter and because you have raised the issue in the technical press. It seems particularly sad that such high levels
of effort and incellect must he employed the mutually assured destruction of mankind. Those of us who have bothered to inform our-
selves and are astride the technology of nuclear warfare can do nought but agree that a halt must be called.
fonh B. Gib
Winchester
Winchesser
Hants
am absolutely appalled by the sentiments exdeaths" (November 1980 issue), the article in Sidebands (May issue) and a great many of the published letters.
Can any of these Can any of these people put together a viable
programme of action which would be programme of action which would be com-
pletely successful in persuading the world's engineers to stop working on ""defencee" "rojects?
Obviously no less than one hundred percent Sbviously no less than one hundred percent is not possible.
Lately we engineers have been attempting to improve the status of our profession; e.g.g.the
Finniston Report. If we do not wake up and stop behaving like naive children, we will
neither get nor deserve any respect at all. True engineers have to operate in the real world, not
in the rarefied atmosphere of the ideal one. The only way to preserve world peace is to
maintain a balance of power. The West has
already fallen dangerously behind; therefore en-
use without envisaging catastrophe.
Could Wireless World take matter cublishing one or more detailed articles listing publishing one or more detailed articles listing or employment? The Campaign Against Arms Trade (5 Caledonian Road, Kings Cross, Lon-
don N1 9DX, tel: 01-278 1976) would be only oo happy to supply information to any other intersted readers.
David Bailey
Manchester 16
OPTO-ELECTRONIC CONTACT BREAKER Your article on opto-clectronic contact breakers
April issue) suggests that they can be fitted to (April issue) suggests that they can be fitted to
any make of distributor. My own Hillman any make of distributor. My own Hillman
Hunter uses a distributor in which vacuum adHunter uses a distributor in which vacuum ad-
vance moves one of the contacts of the contact breaker and, as you can see from the enclosed
pages of the maintenance manual, all vacuum ages of the maintenance manual, all vacuum were changed as the author suggests.
M.D. Samain

The author replies:
Mr Samain is, of course, correct in saying that the opto-electronic contact breaker is not suit-
able for sliding contact type distributors. This able for sliding contact type distributors. This type of contact breaker is designed to exten erosion, but must be regarded as a palliative rather than a cure for the well known problem of conventional ignition systems. It is particu-
larly unfortunate that no proprietary devices are larly unfortunate that no proprietary devices are
available to replace such a contact breaker, for the same reasons which rule out my own device.
On re-reading the article as published I could not, howeverer, see where it was suggested that not, however, see where it was suggested that
any make of distributor was suitable for conversion. W. Wathinson
$\neq 1$

DIVIDING BY
FRACTIONS
Referring to the article by Gilbert Pearson in your April 1981 issue, which described
method of division from PAL sub-arrier quency to line frequency by digital counters, ound like to suggest a simpler way to accomp
lish this. lish this.
By using the dual pulse synchronizer SN74120 together with a pulse synchal Dhronizer
SN74S74 you can SN74S74, you can easily "remove" a sing
period of the 4.43 MHz signal 25 times period of the 4.43 MHz signal 25 times pe
sccond. After counting down by 1.135 you hav a frequency of 3906.25 Hz with very low iitter.
Using a simple phase locked lop, either a

MHz master clock or a 31250 Hz double line requency is easily produced Looking at the signal diagram and the 74120's uth table, you can see how the circuit works Knuu A. Lyster,
Lyster Elekronikk
Royken
Norway With reference to the article "Dividing by frac-
tions" in your April 1981 issue, I would like to ions in your Aprii 1981 issue, would like to generating a sequence of p pulses, as regularly-
spaced as possible in q clock periods. The echnique is described in a paper 'The use of igital techniques in television waveform genertion' presented at 'the 1974 Internationa Broadcasting Convention and it is the subject of A particular feature of this method is that 1 enerates a 'residue' function, which represen pulse and its ideal position. This residue can be added with appropriate polarity, amplitude and timing to the control loop of a voltage-controlled osciliator in such a way as to eliminate the need
of filter any of the systematic iitter components in the phase-locked loop.
This technique is used in commercial equipenerator described in February 1981 Hewlet Packard Journal) and the associated counting methods are used frequently in digital elelevisio rocessing when a line harmonic clock rate rier, whether or not it is 'mathematically' locked.
BBC Research Departmeni
Cadzorth
Surrey

ETHICS IN ACTION There is no escaping the moral responsibility laced on all of us to examine our role and ncion in society (June letters). We should sec rectly to the design and manufacture of armanents, or other socially unacceptable products,
and then reconcile this role with our conscience, and then reconcile this role with our conscience,
thics, religious beliefs, or whatever standards we live by, and then act upon the outcome. All life I have refused to work on anythin and any price I may have paid has been trifling comparison to the degree of sympathy and
nexpected quarters.
Western civilisation and technology cannot continue much longer without facing the facts nd reaisising that there will be consequences arising directly from its actions - mostly, I
fear, very unpleasant ones - but faced they must be, and your courageous editorials will do much to start electronic engineers thinkin
Robin H. Ma
Barnet
PICKABACK SPARKS Regarding Mr A.R. Churchley's remarks in Regarding Mr A.R. Churchley's remarks the paper in the Joutnal of the Institution of Electrical Engineers, vol. 93, part IIIA, no. 5, 1946, "The development of triggered spark gaps for high power modulators" by J.D. Craggs, M.E.
Haine and J.M. Meek. This paper describes the development of triggered spark gaps, during the war years, for use in short pulse modulators for magnetrons for radar applications.
The pulses The pulses generated by the discharge of artiincresendsin lines were one or two watts power. Repetition frequencies up to watts power. Repeution frequencies up to
$2,500 \mathrm{~Hz}$ were achieved. Early work was on hrrec clectrode spark gaps in air. Later this was
extended to simila ontaining a pressure of up to three atmospheres of a mixture of argon with a $6-7 \%$ oxygent the
of atter to suppress the long lived metastable state In argon which inhibited deionisation. The ratio
of the trigger pulse energy to that of the main the was $10^{3}-10^{4}$ to 1 . The transmission lines were charged from a d.c. source through a choke. At first this was
done at the resonant frequency of the choke and the transmission line capacitance, so that the he ransmission line capaciiance, so that the
line charged to wice the direct voltage. To achieve a variable frequency system a series
diode allowed the line to charge to twice the irect voltage and then await the occurrence of he triggar pulse. However, it was later found hhat, without the diode, the frequency could be
increased to any value above the resonant frequency and still give the doubling of voltage. The charging wen tends to a line
It may be interest that patents were applied
Iis. Ir may be interest that patents were applied pen air gaps system was reiected by the Patent ffice because of a similar system patented M.E. Haine

Amcron INDUSTRIAL MUSCLE

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUTPUT POWER IN EXCESS OF 1.5 KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.) D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA.
PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \star UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHER FULL OPEN AND SHORT CIRCUITPROTECTION GUARANTEED STABLE INTO ANY LOAD. TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW ,
INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
3-YEAR PARTS AND LABOUR WARRANTY

For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P.O. BOX 3

ATTLEBOROUGH
NORFOLK NR172PF
Tel: 0953-452477

Wafer-scale integration

Reducing costs by using i.c. chips on the wafer
by lvor Catt
Microprocessor Applications Project, Watford College

Much of the cost of manufacturing electronic equipment with integrated circuits lies in making connections to the chips and interconnecting them.
Considerable reduction in this cost is claimed for the method proposed here in which memory chips are used while they are still on the
semiconductor wafer, the whole of which is permanently built into good chips is formed under external control to produce a long serial memory. Any bad chips are automatically by-passed without metallization that interconnec or advance knowledge of the distribution of the bad chips on the wafer.

The traditional method of manufacture of " "ilicon chip" microcircuit is as follows inches in diameter is sent through a series of furnaces where hot gases are diffused into selected areas of the surface, creating some 500 identical two-dimensional of them perfect and half of them faulty this stage, a minute fraction, perhaps 1%, of the total manufacturing cost of a complete computer system has been spent. The microcircuits are tested using a arer frobe and marked to distinguish a up into individual microcircuits measurin perhaps one tenth of an inch square, and each good one individually packaged in ne inch long black box with about ourteen contacts. The black boxes at boards. Then the boards are tested and assembled into systems which are also ested (see Fig. 1)
What is being called "the microelectronics revolution" is the successful attempt to squeezing more and more circuitry int each microcircuit (or black box) so that a omplete deliverable system can be mad with fewer of them. However, more cir cuitry on a chip means that each chip must result of its including a faulty spot on the wafer. This leads to lower yield and in creased cost, and the practical limit to the size of a chip is in the region of one or two plexity of a microcircuit increases, the cost

Fig. 1. Main steps in the construction of lectronic equipment from the
f
of testing escalates in geometric propor tion, so that even today's conventional r.a,ms are expensive because of appallin a.ms are expens

Wafer scale integration is an alternative approach to the above. Although
nominally divided up into "chips", the
wafer is never dissected, and there are uilt-in interconnections between chips The full wafer, including faulty chips, installed in the final electronic system. Al the costly conventional manufacturing tages -testing the wafer, dicing, packa mitted.
The wafer is conventional except that metallization overlaps between chips sive the inter-chip connections mentione he wafer distribute voltage supplies and locks. Crossovers between grids are achieved by two layer metallization. An array of fusible links on the grids localizes he effect of any shorts between voltage for voltage supplies and clock inputs, but only a small number of these pads are connected to the outside.
There are four classes of w.s.i. as shown in the chart in Fig.2. Of these, two were One is a possible dream for the future. That leaves the fourth, "fault tolerant w.s.i.'" Now that everyone realizes that the nore complex microcircuits already on the market are untestable, it is coming to the ance in microelectronic technology. The "fault tolerant" interconnection a proach is based on the fact that today's "chip" contains a massive quantity of cir cuitry - more than 5,000 transistors in a complete general purpose computer in he 1960s. The process of getting rid of bad chips and linking up good chips into erfect machine is delayed until after wafer has been installed in a working been switched on for use in the morning Further, the interconnections betwee good chips are "broken" when the machine is switched off, so that every time it is switched back on the machine is re-
uuilt from virgin circuitry during the first five minutes of operation. A very smal proportion (some 5\%) of the circuitry in each chip is devoted to this reconstruction rocess after switch on. The reconstruc ontaining logic of conventional desig 100 packages which could of course be integrated into a single microcircuit). This control board is called "chip Z". The res of this article describes the author's ap The aim is to build up on the wafer a
spiral of interconnected good chips which avoids the bad chips. This is achieved by a
gradual growth process, shown in Fig.3, gradual growth process, shown in $\mathbf{F i g} .3$,
where additional chips (for example \bar{F}) are added to the growing spiral, one by one;
the latest chip being tested and discarded if the latest chip being tested and discarded if
found by chip Z to be faulty. Chip $\mathrm{Z} \mathrm{com}-$ found by chip Z to be faulty. Chip Z com-
municates with it via the good chips ABCDE already in the spiral.
We end up with one or more spirals of perfect tested chips (Fig.4), which for architectural purposes might just as well
lie on a straight line. lie on a straight line.
In the simplest m
working model has already been built under Russell C. Aubusson at the Middleses Polytechnic, the wafer accommodates one (or more) shift registers which can usefully
replace computer disc memory and get rid of the inconvenience of rotating parts.
The next machine in the family has the addition of a fast (or control) line to the previous slow (or matically in Fig 5 . matically in Fig. 5 . Serial commands travel
rapidly down the spiral along the fast line, checking the address field in each chip they pass and completing a read or write with the appropriate word. The addition of the fast line speeds up memory access from speed approaching that of conventional random access memory. Although some what slower than r.a.m. of conventiona design it is attractive because of its extre mely low cost, between 10 and 100 times cheaper than what conventional fabrica-
tion can achieve, and also because it is selfrepairing. If a fault develops, it is only necessary to switch off the machine and the memory will be repaired on switch-on, the newly failed chip being avoided when
the new spiral is formed. Because of cost the new spiral is formed. Because of cost
reduction and reliability improvement, computers could be expected to incorporate r.a.ms using w.s.i. as a matter of course when the memory size is 256,000 words or more
The rest of this article outlines the opportunities open. to us via w.s.i. once we
break out of the stranglehold of the Von Neumann computer architecture, an archaic design more than a third of a century old which has set the pattern for all computers up to the present time (see editorial, February 1981 issue, p. 31).
Over the years the idea has become entrenched that electronic computers are 'information processing' devices, a phrase
which implies sequential processing in the same way as a doctor sees his patients sequentially, forgetting all about one patient when he turns to the next. To develop the analogy further, it has become
accepted that the doctor should have no accepted that the doctor should have no
recollection of what the patient's third finger looked like when he examines the fourth, and so on. Before moving on to examine the fourth finger, the doctor notes down in the record the state of the third Iinger, and then forgets all about it. fortunate, that the conventional, schizoid computer is regarded as able to make a reasonable showing at performing quite complex tasks in spite of its being virtually

Fig. 4 . Schematic of a spiral built up on a
wafer.
completely split down the middle, between memory and processing. However, m book "Computer Worship"" lists a number of applications in which such machine will not perform satisfactorily.
These are generally applications where it is required to operate on data according to its content rather than merely according to it address location.
Wafer scale, fault tolerant hardware leads us to the possibility of a very cheap,
reliable machine of a different kind. It is clear that more sophisticated operation than "read" and "write" could easily be performed in a processing node. For inst ance, the data field on the fast line in Fig. 5 could be added to the data field on the slow we could have an "add" command instead of a "write" command. This is the first step towards operating on more than one
word in the store at the same time - that

Fig. 5. Schematic of a more advanced
system in which a fast, or control, line is added to the slow, or data, line. This fast
line carries commands to the data allows more rapid memory access than with the simple memory system.
is, towards distributed processing (a much is, towards distributed processing (a much
misused phrase). A number coming down the fast line can be added to more than one word in memory at the same time.
A major break with tradition should be noted. Whereas a word in memory has
traditionally been addressed (accessed) by its physical location, words in this kind of memory are addressed by one field within the word. That is, each word carries its address around with it. We actually have a content addressable memory (=associativ We can consider gas a r.a.m wards even more powerful, more comple machines. Basic principles are sketched in

WIRELESS WORLD JULY 1981
mand down the fast line, with the result that all words get trapped in tiny loops leader", barrelling mode. Further, "mixed mode", or "precess" command can be sent down the fast line, causing words of one class to loop while words no of that class barrel.
The "mixed mode" makes it possible for
any word in memory to have rapid access to all other words in the memory. For example, in the case of a machine used to monitor aircraft circling above an airport, one word, containing the co-ordinates of
one aircraft, could be caused to barrel past one aircraft, could be caused to barrel past waiting to land, so that co-ordinates could be compared and a collision risk by that aircraft foreseen.
The next step
The next step in sophistication comes when we realise that when a barrelling
word passes by a looping word, the situation is similar to a word on the fast line passing a word on the slow ine. It is pos sible to cause barrelling words to act as commands and operate on looping data
words so that the overhead on the fast line is reduced.
Methods have been worked out whereby segments of the slow line behave as auto-

Fig. 6. The idea of a processing node, involving both the slow line (left) and fast
line (right) and allowing more advanced operations than simply"read" and "write",

Fig. 7. Different modes of processing: (left)
"follow-my-l-adder" or barrelling mode;
(middle) mode in which words are trapped
in tiny loops; (right) mixed mod in which
some words loop and others barrell.
nomous subroutines, the relevant words
leapfrogging past each other like a line of leapfrogging past each other like a line of
children, and flagging when a computatio nal task is completed. We can get an extremely powerful machine which performs many processes at the same time although the hardware is very cheap and self repair ing. The first project based on the principles described here proved the feasibility of the microelectronics aspects of the subject. With E.A. Newman as its technical head, ACTP (Advanced Computer Technology Proiect, a section of the Department of
Industry) financed the proiect in the Microelectronics Centre at the Middlesex Polytechnic, where it was led by Dr R.C Aubusson. ACTP then funded projects to develop a computer architecture. These Lea, and at Prestwick Circuits Ltd. The Royal Signals and Radar Estab lishment, Malvern, has funded two pro jects on the airborne digital signal proces sing implications of the computer
architecture. This work, at Prestwick Cirarchitecture. This work, at Prestwick Cir
cuits Ltd, is led by Ken Wood. Burroughs

Digital storage and

 analysis of speechcontinued from page 48
Reconstructing the analogue waveform
Having digitized and stored a signal, i Having digitized and stored a signal, i-a
needs to be passed through a d-to-a converter (digital-to-analogue) and low pass filter when replayed. D-to-a converters are cheaper than a-to-d ones, and the
characteristics of the low-pass filter for output can be the same as those for input. However, the desampling operation introduces an additional distortion, which has an effect on the component at frequency
of

$$
\frac{\sin \left(\pi f f f_{\mathrm{s}}\right)}{\pi f f f_{\mathrm{s}}},
$$

where f_{s} is the sampling frequency. An "aperture correction" filter is needed to compensate for this, although man systems simply do without it. Such a filter is sometimes incorporated into the code
chip chip.
For telephone-quality speech, existing codec chips, coupled if necessary with in tegrated pre-sampling filters, can be used at a remarkably low cost. For higher-quality speech storage the analogue interface
can become quite complex. Comprehensive studies of the problems as they relate to digitization of audio, which demand much greater fidelity than speech, have identified the following sources of error: - slew-rate distortion in the pre-sampling
filter for signals at the upper end of the audio band;

- insufficient filtering of high-frequency input signals;
- noise generated by the smmt amplifier or pre-sampling filter;
- acquisition errors because of the finit - acquisition errors because of the finite
settling time of the sample-and-hold cir-
cuit;
- insufficient settling time in the a-to-d - insufficient
conversion;
- errors in the quantization levels of the a-
to-d and d-to-a converters;
- jitter on the clock used for timing inpu
or output samples;
- aperture distortion in the outpu
- aperture distortion in the outpu
sampler;
- noise in the output filter as a result of circuits;
- power-supply noise injection or ground coupling;
- changes in characteristics as a result or temperature or ageing.
temperature or ageing.
Care must be taken with the analogue in terface to ensure that the precision implied by the resolution of the a-to-d and d-to-a converters is not compromised by inade-
quate analogue circuitry. It is especially quate analogue circuitry. Itis especially
important to eliminate high-frequency noise caused by fast edges on nearby comnoise caused
puter buses.

Corporation, Cumbernauld and San Diego, is now investing in the development of both the microelectronics and of the computer architecture. This,
work is led by Dr Malcolm Wilkinson Wafers designed at Cumbernauld, processed in San Diego and then tested in
Cumbernauld have successfully generated Cumbernauld have successfully generated
spirals of more than 200 chips on an imperspirals of more than 200 chips on an imper fect wafer. Thists about the overall feasibility of the invention.

References

Aubusson, R. C. and Catt, I. "Wafer-scale integration - a fault-tolerant procedure",'
IEEE fournal Solid-State Circuits, vol. SC13, no. 3, June 1978.
Catt, II German Patent Application no. P 23
39 089.8-53. US Patent no. 9913072 . British 39tent no. 1377859. British Patent no.
Pot Patent
1525048 n.
Sucherland, I. E. and Mead, C. A. "Microe-
lectronics and computer cience" Scier lectronics and computer science", Scientific
American, September 1977, pp. 210-228. American, September 1971, pp. $210-228$.
Maning, F. B. "An approach to highly integrated, computer-maintained cellular ar-
rays",
IEEE Trans. Comput., vol. C-26, pp. $536-552$, June 1977. 5. Catt, I. "Computer Worship," Pitman, London 197

 . 2 S 8 \because ? . 1

Sound synthesis using Walsh functions

Simple introduction to the synthesis of complex vibration modes by Alan A. Thomas

An experimental approach to additive synthesis employing digita techniques is described. The system enables an infinite number of waveshapes to be generated by a
basic fixed Walsh function generator eeding a set of digitally programmed attenuators. By mathematical analysis of known waveshapes the
system may be used as a source of sound for music usyn as a source of Shar music synthesis, provided and filter are added to the basic and filter are added to the basi time-dependent spectrum changes are possible.
A sound may be represented by a series of sinusoidal components of particular frequency, amplitude and phase. The lowest requency component is referred to as the fundamental, first mode, or first partial.
Remaining components are then related to Remaining components are then related to ratios. Such a relationship is termed harmonic. Not all musical sounds are entirely composed of harmonically related partials; non-harmonic components, that is partials which do not bear simple direct integral present. This is the reason that simple present. This is the reason that simple sized sound which lacks some of the character of the original, even though care is aken to mimic all other basic properties. In harmonic analysis, each partial is harmonic series; the fundamental is the first harmonic. For a sound composed of requencies in the ratios 1: $3: 5$ for example, the second and fourth harmonics have zero amplitude, and it follows that
the frequencies three and five may be referred to as the non-zero coefficients in the harmonic series of the sound under analysis.
Consider now a further sound composed this series be termed harmonic? It is always possible to find a fundamental frequency of which a given series are harmonics; in this example the ratios are all multiples of three and can therefore be
regarded as the second, fourth and fifth regarded as the second, fourth and fifth
harmonics. respectively of a fundamental frequency, three. In this case both the fundamental and third harmonic are said to have zero coefficients. The fundamental of a harmonic series need not necessarily be
present; if the fundamental is present it
shouid be considered as a non-zero coefficient in the normal manner. An interesting 15 Hz were comined, the resulting complex function would repeat exactly three times per second although the fundamen-
tal has zero amplitude. In general tal has ze ro amplitude. In general
therefore, any collection of frequencies can be arranged to fit into a harmonic series, although the fundamental may not be present.
A se
A second important point which must now be made is that there is only one ach harmonic which will result in the desired waveshape being realised. How therefore can a harmonic series be set down such that both phase and amplitude
information is given for all non-zero coefficient harmonics? A wave of arbitrary phase can be represented as the sum of a sine and cosine wave both of zero phase with ampliudes given by the phase relationship of periodic function may be represented by a series of sine and cosine functions whose amplitude and period are dependant variables. All that remains is to derive some method whereby the relevant amplitudes
may be located. This is Fourier analysis and was first formalized from the basic ideas of other workers by Fourier in 1822 during his work on heat flow. The series of terms derived by Fourier analysis for a particular function is terms the Fourier
series and indicates the magnitude of the sinusoidal components. In short, a complex periodic function such as a musical sound may be represented by a series of sine and cosine functions. But first it is necessary to perform harmonic analysis of
the waveform to locate the non-zero coefficient sinusoidal components and then apply the Fourier analysis to determine the amplitude of the individual sine and cosine erms.

Fourier sound synthesis By using a bank of quadrature oscillators -the frequency of which is set by harmonic analysis and amplitude set by the Fourier series of the waveform to be synthesized - a reasonably accurate
synthetic sound corresponding to the synthetic sound corresponding to the
mode of vibration may be produced. To maintain the same characteristic sound when fundamental frequency is changed the frequency of the generated harmonics practice this requirement has been the
death knell of Fourier synthesis in commercial electronic instruments. For accurate synthesis, a large number of oscillators are required and the task for the electronic engineer, while not impossible, is complex since it is necessary to arrange that all
oscillators remain in quadrature and track each other accurately in frequency while maintaining constant amplitudes.
Clearly some method is desirable whereby the attributes of Fourier analysis as applied to sound synthesis may be main-
tained but the method of waveform generation altered to remove the inherent practical limitations. The method discussed removes these limitations by transformation of the sine and cosine functions associated with the Fourier series to the
rectangular functions of the Walsh closed normal orthogonal set.
The transformation from Fourier series to Walsh/Fourier series for a given function is purely mathematical, and has been detailed by K. Simens and R. Kitai, see
reference 1. The principal advantage in transforming to the Walsh/Fourier series as far as sound synthesis is concerned is that the bank of quadrature oscillators employed in direct Fourier synthesis is replaced by a single master osclilator controlgenerator. Thus by using a single voltagecontrolled oscillator the facility to play tunes is realised and the analogous Walsh harmonics, derived within the function
generator, automatically track the master generator, automatically track the master
oscillator maintaining the characteristic sound of the synthesized mode of vibration, independent of pitch.
Properties of Walsh functions Walsh functions were first investigated by J. L. Walsh in 1923 and are of purely
mathematical origin ${ }^{2}$. Collectively, they form a closed set of orthonormal functions. The functions are defined on a basic interval, in this case time. The sequence may then be repeated to form a set of periodic
functions. During each interval the functions may only take on the values of ± 1 and are thus rectangular in form. If the basic interval is subdivided into 2^{n} equal segments where n is an interger, then the
corresponding number of Wals, functions corresponding number of Walsh functions
which may be incorporated within the basic interval is $2^{n}-1$. The recursion relationship governing
the form of individual functions has been the form of individual functions has been
translated to the appropriate digital form translated to the appropriate digital form
by H. F. Harmuth

IRELESS WORLD JULY 1981
that once Walsh functions have bee onverted to zero and one logic levels; th recursion relationship reduces to modulotwo ad
tion.
Cert
Certain Walsh functions are analogous a further set of mathematical functions ademacher functions. Rademacher funcions are a set of square waves in simple geometrical progression, the recursion
relationship for Rademacher functions and hence the analogous Walsh functions, nce translated in a similar manner to the appropriate digital form reduces to mod ulo-two counting, the logical binary funcuion. It follows that a digital representation of the complete Walsh orthonormal set for a given value of n may be produced by a
logic system comprising of exclusive-or gates and binary counters driven from a master oscillator.
Before producing a suitable function generator it is necessary to decide on suitable value of n. If harmonic followed the appropriate Fourier series for a given function, the resulting series tends toward infinity; that is, the number of sine and cosine functions should ideally be infinit for perfect harmonic representation.
It is no surprise that when the It is no surprise that when the parallel tain the Walsh/Fourier series the number of Walsh functions required for perfect representation also tends toward infinity This implies that the greater the value
chosen for n, the more accurate the final waveform synthesis. In practice n must be limited to a value which is a compromise between acceptable accuracy of synthesis and the amount of hardware involved in limiting n to a finite value will be consid ered in more detail later.

Basic Walsh

function generato
Given $n=5$ a generator will produce $2^{5}-1$ Walsh functions and the number of Rade macher functions will be equal to n, that is five Rademacher functions. This is five Rademacher functions. This is
achieved by a simple five-bit synchronous binary down counter driven by the master oscillator. The analogous Walsh function thus produced are wal31, wal15, wal7, the binary counter. The remaining Walsh the binary counter. The remaining Walsh
functions are formed by performing mod-ulo-two addition of the functions so fa derived in the appropriate order. Wal2 for example is formed by modulo-two addition of wall and wal3. The three functions ly-
ing between wal7 and wal3 are formed as follows: wal6 is formed by modulo-tw addition of wal7 and wall; wal5 is formed by modulo-two addition of wal7 and wal2 and wal4 is formed by modulo-two addition of wal7 and wal3. The sequence is
straightforward from the examples given The table lists the complete arrangement for all 31 Walsh functions when $n=5$. The system may be extended for higher orders of n if desired by simply increasing the
eneration of first 32 Walsh functions (wal0 excluded) using binary counters and exclusive-or gates.

Function	Modulo-2 Division	Modulo -2 Addition	Function	$\text { Modulo - } 2$ Division	Modulo - 2 Addition
wal31	Oscillator		wal15	wal31	
wal30		wal31, wal1	wal14		wal15, wal1
wal29		wal31, wal2	wal13		wal15, wal2
wal28		wal31, wal3	wal12	,	wal15, wal3
wal27		wal31, wal4	wal11		wal15, wal4
wal26		wal31, wal5	wal10		wal15, wal5
wal25		wal31, wal6	wal9		wal15, wal6
wal24		wal31, wal7	wal8		wal15, wal7
wal23		wal31, wal8	wal7	wal15	
wal22		wal31, wal9	wal6		wal7, wal1
wal21		wal31, wal10	wal5		wal7, wal2
wal20		wal31, wal11	wal4		wal7, wal3
wal18		wal31, wal12 wal31, wal13	wal2		wal3, wal1
wal17		wal31, wal14	wal1	wal3	
wal16		wal31, wal15			

quency

Synthesis of functions
sing Walsh harmonic bank o synthesize a function it is necessary to
 ero coefficient functions of the series hich lie within the range of the generato e then selected and mixed in the propo ions indicated by the series.
For example, the non-zero coefficient functions in the range 0 to 31 for th riangular wave given by the Walsh Fourier series are wal2, wal6, wall 4 and wal30. Their relative amplitudes are +0.5 hus, by selecting these four function from the Walsh harmonic bank and sum ming them in the relevant proportions, iangular wave is synthesized
The frequency of the waveform depends functions which is in turn determined by he frequency of the master oscillator. I he waveform is to have a frequency f, the the master oscillator frequency must be 2 where n is as previously defined. Perfect harmonic synthesis is only pos-
sible when an infinite number of Walsh functions are employed. When a finit number is used the synthesized waveform appears in a sampled form, the sample rat wave having 2^{n} discrete levels within each waved. To remove this appearance, it is necessary to integrate the function; in practice this can usually be achieved by imple low-pass filtering. Fig. 1 shows th appearance of the triangular wave iust
discussed before low-pass filtering. Naturally the number of samples and
 Fig. 1. Triangular wave is synthesized by
selecting four functions, wal2, wal6, wal14 and wal30, and summing in relevan
proportions
herefore the accuracy of the waveform can be increased by employing a higher ord Summing of the various Walsh func tions may be performed by a standar irtual-earth operational amplifier arrange ent, the proportions of mix b
If the master oscillator is made voltage controlled the frequency of synthesized waveform may be adjusted in the trad uency are required, the low-pass filter must also be voltage-controlled.
Digitally programmable ttenuators
If each of the Walsh functions are fed to puts of which are then mixed an entirely flexible system is produced which ca produce virtually any desired waveshap his, coupled with a voltage-controlle master oscillator and filter, enables a musi cal device with infinite tonal qualities to b of the attenuators during the life of the wave, the spectrum may be made time dependent, enabling wave shapes such hat of the piano to be synthesized. An experimental system is shown in Fig, ontrolled oscillator generates a rectanguar waveform at a frequency 2^{n} time higher than the frequency desired for the nthesized waveform. A Walsh function enerator comprising binary counters an control of the v.c.o., $2^{n}-1$ Walsh fun tions. Each Walsh function is then fed to digitally programmable attenuato d.p.a.); only one path is shown in Fig. 2
The d.p.a. is controlled by a read-only emory (r.o.m.) which stores up to eight-bit digital words. This enables up to 256 levels of attenuation to be pro grammed, any 32 of which may then b selected by addressing the appropriate
digital word. The order in which the digi tal words are selected is controlled by sequencer which comprises of JK flip lops and logic gates; the sequencer maa also be made programmable if desired
feeds the Walsh function generator also eeds a divide-by- n counter. In this manner the period over which the coefficient of
the particular Walsh function is varied is controllable. Once again, the counter cycle is made programmable.
The output of each d.p.a. is then ming amplifier, the output of which is fed to a voltage-controlled filter (v.c.f.), this being controlled by the same control voltage which controls the v.c.o. Thus, the
v.c.o. and v.c.f. track together. The total system results in a waveform being synthesized in which the spectrum may be altered in a programmable manner, both in terms of type and rate of spectrum change. In practice the sequence is initiated by the
keyboard controller.

Polyphonic waveform

 synthesisBy the application of appropriate Walsh/ Fourier series both triangular and sawmanner compatible with existing organ divider techniques. The principle by which polyphonic
operation is achieved in electronic organs operation is achieved in electronic organs
is well known. Briefly, pitches ratioed in is well known. Briefly, pitches ratioed in perament are generated for the highest
octave; either 12 independent oscillators octave; either 12 independent oscillators
are employed or a single master oscillator working in conjunction with a digital function generator. Lower octaves of each scale
member may then be generated by the use
of binary dividers, as tones spaced at ocave intervals have a $2: 1$ frequency ratio. may be generated any number of pitches the number of oscillators required need not exceed 12. Being of digital form the method has the disadvantage that only one waveshape is directly available at the divider outputs, namely a squarewave. For
reasonable additive sound synthesis a minimum of two additional waveshapes should also be simultaneously available: triangular and sawtooth waves. If the organ dividers are arranged to be of the form shown in Fig. 3, the signals
present at the various outputs become not only octave-related but also take the form of useful Walsh functions and may be employed in direct Walsh/Fourier synthesis,
enabling a practical circuit for the simultaneous generation of square, triangular and sawtooth waveforms to be constructed.
Referring to Fig. 3 , given that the index
$n=5$, five Walsh functions are directly $n=5$, five Walsh functions are directly
available from the divider chain wal31,

Fig. 2. If each of the Walsh functions are fed to a digitally programmable attenuator and the outputs mixed virtually any waveshape can be produced

Fig. 3. Binary divider chain providing wal31, wal15, wal7, wal3 and wal1 at consecutive outputs.

Fig. 4. By adding inverters and four excusive- or gates triangle and sawtooth waveforms can be synthesized

WIRELESS WORLD JULY 198
wal15, wal7, wal3 and wall at consecutive outputs of the divider. The Walsh/Fourie series of a sawooin wavelorm, wited t. 5 is as follows
-1 wall, -0.5 wal3,, 0.25 wal 7,
-0.125 wal15, -0.0625 wal31.
The negative signs in the series are in terpreted as function inversion for practical purposes. All the necessary functions for sawtooth waveform synthesis are directly available from the divider outputs provided function inversion is taken into account.
Now of a triangular waveform
$+0.5 \mathrm{wal2},+0.25 \mathrm{wal} 6,+0.125 \mathrm{wall} 4$
+0.0625 wal30.
None of these four functions are directly None of these four functions are directly
available at the divider outputs. But the table shows that these four functions may be derived by the use of only four exclu-sive-or gates. The complete arrangement for deriving all the necessary function for
synthesis of both triangular and sawtooth waveforms is detailed in Fig. 4.
To sum these functions accurately in the relevant proportions they are rewritten in more familiar binary-weighted form:
$+2^{4}$ wal2, $+2^{3}$ wal6, $+2^{2}$ wall 4,
$+2^{1}$ wal30.
and for the sawtooth wave:
-2^{4} wall, -2^{3} wal3, -2^{2} wal7,
-2^{1} wall $5,-2^{0}$ wal31.

By applying the functions to the appropriate inputs of two d-to-a converters, ac realised. Although of higher cost, d-to-a converters have two distinct advantage over operational amplifier summators. Firstly, as the output of a converter is in binary-weighted proportion to a single resummation becomes independent of any variations in the logical 1 or 0 levels pre sent at the outputs of the dividers or exclu sive-or gates. Secondly, high accuracy summatio
ricated.
Fig. 5 shows a practical circuit de veloped for evaluation of the system using readily available integrated circuits. For economy, the facility for simultaneous waveform generation has been dropped converter is employed together with some additional data selection logic.

Digital-to-analogue

conversion

The d-to-a converter is the six-bi Motorola MCI406L, whose digital inputs are compatible but inverting which mus propriate outputs from the dividers. The device requires an external reference for its operation and, as the output is in the form of a current ratio, current-to-voltage lar application. The reference for the ${ }_{M C 1} 1406 \mathrm{~L}$ device, IC , consists of the tem-
perature-compensated zener diode with current of 7.5 mA supplied through R_{1},
with C_{1} providing a.c. decoupling. Be cause the negative reference input (pin 13) ${ }^{\circ} \mathrm{IC}_{8}$ is the high impedance node of the internal reference amplifier, buffering is not necessary. The device requires its remined by resistors to pin 12 and the refer ence voltage. With the potentiometer set to mid-position, the values are selected to produce a reference current of -2 mA The value of R_{3} is selected so that both reference input points have the sam
source impedance, to reduce reference cur rent error and temperature drift. The in ternal reference amplifier also requires compensation to mantain stability; with the values selected for the input resis tances, the compensaiion capacitor
must have a minimum value of 180 pF to maintain an acceptable phase margin.
The output of IC_{8} (pin 4) provides a current which is a linear product of a six bit digital word and an analogue reference voltage. The output current is negativ
$-I_{0}=I_{\text {ref }}\left(\frac{A_{1}}{2}+\frac{A_{2}}{2^{2}}+\frac{A_{3}}{2^{3}}+\frac{A_{4}}{2^{4}}+\frac{A_{5}}{2^{5}}+\frac{A_{6}}{2^{6}}\right)$
where $I_{\text {ref }}$ is the reference current and A_{1}
through to A_{6} are the digital inputs, m.s.b through to A_{6} are the digital inputs, m.s.b
through l.s.b. respectively, $A_{\mathrm{n}}=0$ if the input is at logical 1 , and $A_{\mathrm{n}}=1$ if the input is at logical 0 . As the voltage at the

Fig. 5. Practical circuit for system evaluation omits simultaneous waveform generation for economy
output must not rise above $\pm 0.4 \mathrm{~V}$ for accurate conversion, simple resistive cur
rent-to-voltage conversion is not practical and an op-amp converter IC C_{9} is used. The virtual-earth effect of the amplifier maintains the voltage at pin 4 of IC_{8} within the permitted value, while the output voltage $\left(-I_{0} R_{\mathrm{o}}\right)$ may be set to any reasonable
value by the suitable selection of R_{0}. With R_{0} set at $2.7 \mathrm{k} \Omega$, the output voltage may be set to a peak value of +5 V by adjustment of the reference current control. Capacitor C_{o} provides low-pass filtering of the outpu waveform; the operational
741 general-purpose device.
Digital function generation and selection logic
Although the MC1406L device is a six-bi d-to-a converter, only five-bit conversion is required in this application. To maintain
maximum accuracy during conversion, the input corresponding to the least-signifi-cant-bit is dropped and disabled by connecting to +5 V through R_{7}. The remaining most-significant-bits are supplied through data selection gates. The four
most-significant-bits are supplied with an SN74157N, quadruple 2 -to-1-line data selector, IC. Hence either of two func tions may be presented to each of these inputs as required. The least-significant required during triangular waveform synthesis if the desired sample-rate is defined on the time axis. This bit is therefore supplied through a simpler nand-gate arrangement IC $_{1}$

The data selectors and nand-gate are controlled by the switch. With it open-cir
cuit, the B-inputs of the data selectors cuit, the B -inputs of the data selectors are
allowed to their respective d-to-a conver sion points, namely:
wall to A_{1}, wal3 to A_{2}, wal7 to A_{3}, and wall 5 to A_{4}
In the case of the least-significant fifth-bit, the nand-gate is allowed and the function -wal31 is inverted and transferred to th respective d-to-a conversion point As.
After taking into account the inversion provided by the d-to-a inputs, all the func tions necessary for sawtooth waveform synthesis are presented, namely -wal1, - wal7, -wal15, and -wal31. With the switch closed, as shown in Fig. 5, the A-
inputs of the data selectors are allowed to their respective d-to-a conversion points, namely:
wal2 to A_{1}, -wal6 to A_{2}, -wal14 to A_{3}, and -wal30 to A_{4}.
In the case of the least-significant fifth-bit, the nand-gate is now disablet and a logical 1 is applied to disable the respective d-to-a conversion point A_{5}. Hence, after taking into account the inversion provided by the d-to-a inputs, all the functions necessary
for traingular waveform synthesis are presented, namely wal2, wal6, wal14, and wal30. Dropping the least-significant fifth bit during triangular waveform synthesi must result in this wave having a lowe wave. The amplitude variation is only around 3%, and is sufficient to warrant the

ELESS WORLD JULY 1981

Fig. 6. Clock generator frequency is set to 2^{5} ffor testing dynamic operation of Fig. 5
otherwise necessary switching of the cur rent reference.
The divider, comprising $\mathrm{IC}_{3}, \mathrm{IC}_{4}$ and master/slave flip-flops controlled appro priately at their JK inputs via and-gates IC_{2}. Collectively they constitute a five-bit synchronous ripple-through gated binary
down-counter which generates the control down-counter which generates the contro
of a clock-generator, five basic Walsh functions. Four true functions ar supplied to the appropriate B-inputs of the data selectors, while a fifth and inverse function is supplied to the nand-gate as
required. Four true functions are also fed required. Four true functions are also fed
to the exclusive-or gating where, in con junction with a common function -wall the necessary four additional inverse func tions are generated. These four inverse functions are then supplied to the appro

Setting-up procedure
Setting up the generator is straighforward and only requires the adjustment of the reference potentiometer. The procedure is

- set switch to open position as in saw-
tooth waveform synthes
- fit temporary link shown
- monitor positive d.c. output of the
generator
adjust potentiometer to set d.c. out
put to +5 V
remove tem
remove temporary link.
The generator may now be tested for correct dynamic operation using a suitabl clock generator, Fig. 6. For an output quency is set to $2^{5} f_{0}$. Using the values suggested in Fig. 6, the output frequency is approximately 440 Hz . Maximum operating frequency of the divider is aperating frequency of the d-to-a conver sion section is predominantly limited by the slew-rate of the operational amplifie current-to-voltage converter. The value of C_{o} depends on the output frequency f_{o}. It is suggested that initially the -3 dB point
of the operational amplifier is set to $2^{5} f_{0}$. Thus $C_{0}=1 / 2 \pi 2^{5} f_{0} R_{0}$. This gives a value of
4.7 nF .

Practical extension for full polyphonics
By applying appropriate Walsh functions to separate summators any number of dif ferent waveshapes may be synthesized simultaneously at a given frequency. Bu for full polyphonics, simultaneous multi-
frequency generation of these waveshapes must also be arranged. As an aid to locating functions which form a useful geometrical progression in sequency, an analogy with sine and cosine notation is again usefunctions sal and cal respectively, one obtains

$$
\operatorname{sal}\left(a^{\prime}\right)=\operatorname{sal}(2 a+1)
$$

where the sal function of index a^{\prime} has twice the sequency of the sal function of index a the sec
and

$$
\operatorname{cal}\left(b^{\prime}\right)=\operatorname{cal}(2 b)
$$

where the cal function of index b^{\prime} has twice the sequency of the cal function of index b.
From this it may be deduced that the funcFrom this it may be deduced that the func-
tions at consecutive outputs of the divide are octavely related and form a geometrical progression in sequency. For multi-octave generation of the functions -wal31, -wal15, -wal7, -wal3, and -wal1 therefore, it is only necessary to select the
correct extended-divider outputs. -wall for synthesis purposes at pitch $\mathrm{A}_{2}(880 \mathrm{~Hz})$ for example, is the identical function -wal3, for synthesis purposes at pitch $\mathrm{A}_{1}(440 \mathrm{~Hz})$, and so forth.
To extend the generator scheme for
multi-octave generation of the functions multi-octave generation of the functions
wal30, wal14, wal6, and wal2 however requires separate groups of exclusive-or gates. For correct sequency, wal2 at pitch $\mathrm{A}_{2}(880 \mathrm{~Hz})$ for example should be formed
by modulo-two addition of the function wall and wal3 at pitch A_{2}, giving frequen cies of 880 Hz and 1760 Hz for wall and wal3 respectively.
Thus extension of the basic generator scheme to full polyphonic capability, while
viable, requires a formidable amount of hardware in m.s.i. form. With a view to continued on page 82

With a vast number of shortwav receiver sets around the world,
estimated as being over 100 million sets in regular use, and with a majority of listeners with little or no technical knowledge, using their sets in a wide variety of environments, it is worth taking a look at methods for use of digital tuning techniques and the incorporation of microprocessors are discussed.
According to conservative estimation, According to conservative estimation,
there exist in the world today between 200 and 300 million radio sets capable of shortwave broadcast reception. A regular audience approaching 100 million is also
estimated. The figure must surely encourage shortwave broadcasters, but also indicates how important is the function of shortwave broadcasting. It is also estimated that there are one million amateur radio enthusiasts (class A) around the
world, but as this is only 1% of the suggested audience clearly the majority of shortwave broadcast listeners have relatively little technical interest or perhaps background and accept comparatively inexpensive recirs. ment with a high level of man-made noise or have a very inefficient aerial. On the other hand, they are usually hampered by difficult tuning operation, undefined sig nal reception, and poor receiver stability,
yet form the maiority of shortwave boradcast listeners. This article therefore sets out to discuss which way a shortwave broadcast receiver designer might go with regard to alternative design approaches and the discussion is supported by practiplying microprocessors in popular shortwave broadcast receiver designs must also be considered and views on this ap-
proach are also included.

What is required?
In this section, difficulties of both manufacturers and users of shortwave broadcast receivers are mentioned, but firstly re quirements of users and recommendation of broadcast unions are also set down.
In order to bring out the difficulties facing the shortwave service, it is reason-
able to know the distribution of shortwave broadcast frequencies in the radio spec trum. It seems that the arrangement of radio spectrum has never been able to

(1) Frequencies are in MHz
totally satisfy any shareholder of the spectrum. "How to best share the radio spec-
trum for each different service?" will always be a difficult technical and political exercise. Shortwave broadcasting in particular is briefly considered here.
In the past twenty years, the tota in-band and out-of-band) has grown up from 11,000 to 27,000 daily frequenc hours ${ }^{1}$, and the problem of congestion is well understood. Re-allocation and expan-
sion suggestions of the boradcast bands on
shortwave trom the Asian Broadcasting ion (ABU), the European Broadcasting Union (EBU) and the United Kingdom before the 1979 World Administration Radio Conference (WARC) are listed on Table 1. At WARC 1979, the frequency allocations in Table 2 were agreed and these will be available for allocation from
January 1982 . Table 2 also lists the pre sent band planning. A glance at Table 2, and Table I for that matter, shows that the broadcast bands are scattered between and 27 MHz , with no simple arithmetic

Design difficulties
Despite the general difficulties faced by radio receiver designers, there are som shortwave receiver design.
In 1959, there were only a few transmit ters with transmitting powers of over number has increased to about 400 . The generate tens, in some cases hundreds, of millivolts at the antenna terminals whe received. The trouble caused in the receiver is that strong signals generate a large number of intermodulation products,
strong enough to give the appearance of liveliness, yet masking weak wanted sig nals. How to distinguish the wanted weal signal from massive strong unwanted sig
nals is always a maior technical task.

Which way h.f. broadcast receivers?

Proposals for the development of s.w. sets
by Y.-C. Heng and R. C. V. Macario, University College of Swansea

TABLE 1. Current proposals of h.f. broadcasting service			
PRESENT	PROPOSAL	PROPOSAL	PROPOSAL
FREQUENCY	FROM	FROM	FROM
allocation	E.B.U. (1)	${ }^{(2)}$	A.B.U.
		2300 to 2495	3900 to 3950
3900 to $3950{ }_{(2)}$	3900 to 4060	3200 to 3400	3950 to 4000
3950 to $4000{ }^{(2)}$	4750 to $4995{ }_{(2)}$	3900 to 4000	4750 to 49995 (2)
4750 to 4995 (2)	5005 to 5060 (2)	4750 to 5060	5005 to 506
5005 to $50600^{\text {(2) }}$	5740 to 6200	5830 to 6200	5950 to 6200
5950 to 6200	7100 to 7500	7100 to 7500	7100 to 7300
7100 to $7300{ }_{(2)}$	9400 to 9900	9400 to 9800	9500 to 9775
9500 to 9775	11500 to 12025	11600 to 12000	11700 to 11975
11700 to 11975	13600 to 14000	13360 to 13560	13600 to 14000
15100 to 15450	15100 to 15700	15.100 to 15600	15100 to 15450
17700 to 17900	17500 to 17900	17500 to 17900	17700 to 17900
21450 to 21750	21450 to 21850	21450 to 21850	21450 to 21750
25600 to 26100	25600 to 26100	25600 to 26100	25600 to 26100

(7) E.B.U.: European Broadcast Union

U.K.: United Kingdom
A.B.U.: Asian-Pacific Broadcast Union
(2) Shared with other service

Frequency in kHz

Fig. 7. First approach for a functional system.

A free-running local oscillator in a superher receiver is always troublesome, especially when the first intermediate frequency is set to a high frequency to imrove, image rejection ratio mechanical tuning dial design, a resolution of 10 Hz at 30 MHz can really never be chieved. One can therefore imagine the utcome of the accuracy of a norma popular shortwave broadcast receiver.
Good shaping of the selectivity curv he r.f. and i.f. stages offer a direct way of rejecting unwanted signals, but cost is a factor when seeking good selectivity Due to
Due to skywave transmission, a fading henomenon is inherent with shortwave
broadcast reception; a way to conquer this problem should always be considered.

User's difficulties and

 requirementsNo need to say, as often as pot the designer's difficulties mentioned above are overcome in a popular-model shortwave broadcast receiver design by being transficulties.
Difficulties to tune to a desired station, and maintain that listening station from rifting, unavoidable interference and spurious signals due to poor linearity and fading effects, are some of the major difficulties facing users. What do the users want? The users simply want easy operation, good performance and low cost. re-
ceivers, requirements of course, in almost direct conflict with manufacturers.
After a joint meeting between representacives of national receiver and transmitter mady group conceriations and an EBU casting ${ }^{2}$, a brief and pertinent description was suggested for a popular shortwave broadcast receiver design: it should be reasonably-priced, stable with product demodulator and easy-tuned.
Following this suggestion, the design
philosophy is divided into four easy operation, high stability, low cost and good performance.
One way and better way to relieve the difficult task of mechanical tuning is to tuning can make it possible to tune quickly and accurately over a large number of shortwave broadcast stations. Incorporation by means of frequency synthesizer Tircuits is discussed below.
eying in frequency information ength information, or a pre-assigned code. Before the idea of programme-labelling ${ }^{3,4,5}$ can be widely implemented, listeners still need to look up from a handbook or simply memorize the identity information of a
station. It is tiresome to find out station dentity information from a handbook each time, but it is also impractical to memorize uch things as 5.339 MHz or 56.19 meters of more than a few stations. Therefore a
station assignment plan similar to the m.f. could be considered ${ }^{10,11}$. For instance, one plan is to divide the whole shortwave broadcast spectrum into several "fre-
quency bands". Then in each band, stations with agreed channel spacing. are given unique channel numbers. For example, the above-mentioned station could now have a pre-assigned code such as Band 3, Channel 79. With a station
identity information simpler than a telephone number and using a keyboard entry technique, the user could tune to a favourite programme station easily and accurately
After tuning to a given frequency, an stay tuned to that frequency without read justment over an extended period. By ap plying the frequency synthesis technique the ideal condition can be approached. A frequency synthesiser can generate a
very large number of local oscillator frequencies by programming and have the stability and accuracy equal to that of a single master crystal oscillator. Today, crystal ocsillator stability of 1 part in 10^{6} is easily achieved in a non-ovened but roomwithin $\pm 5 \mathrm{~Hz}$ when tuned to 10 MHz . Many interesting synthesiser devices are now appearing on the open market, no necessarily originally developed for
shortwave receivers but which shortwave receivers, but which can be
readily adapted for such purposes. In this readily adapted for such purposes. In this
article the Philips LN 123 and Plessey N J 8811 synthesisers are used in two different design approaches.
To keep receiver cost down is almost mandatory. In general, manufacturing cost
can be subdivided into material cost, testing cost and assembly cost. By using cheäper components, such as integrated

ircuits, ceramic filters, etc., not only the material cost, but also the testing and assembly costs can be reduced. A suggested frequency allocation proposal which can design is given in design approach 2 .
Good performance and low cost are not easy to reach at the same time by a designer, sometimes the two requirements are in direct conflict, but this does not mean a low cost receiver neexent, the art is how to distribute the expense over the design. Nevertheless, some specifications which should be considered as a "must be good" are listed here:

1) Linearity
(2) Sensitivity
2) Image rejection ratio
(5) Frequency stability

H.f. Receiver Design

Approaches

Having just specified the design requirements, we now describe two designs which achieve the requirements, but which are based on quite different approaches.
Fig. 1 shows a system block diagram. In this first system design approach, frequency allocation is based on the WARC
1979 new agreement, listed in Table 2. The whole frequency spectrum is arranged o have 12 frequency bands and a channel spacing of 5 kHz is assumed. Under this
scheme, a broadcast station with a transmitting frequency at 9.645 MHz would now have an identity code: Band 6;

Channel 30. To tune to this station, the operator presses the key ' B ' first, opening he gate to the band memory unit and at he same time closing the gate to channel memory unit. The number 6 is then hows this band number. The user then presses key 'C' reversing the above gate switch functions and then the number ' 30 '. The channel display unit should then show this channel number. The actual digits stored in the band and channel memory numbers are then used as address codes to fetch the correspondent set of words from the eprom to progam the programmable divider. The vco (voltage-controlled oscillator) output, via a buffer and pres-
caler stages, is divided down in the programmable divider and then sent to the phase comparator unit to compare with the reference frequency signal. If a different of requency or phase exists, an error voltage is generated through the loop filter to corway. With the correct v.c.o. frequency, the receiver is tuned to the wanted station frequency.
The antenina r.f: signal is selectable by converting to the i.f. frequency. An up-
conversion superhet system with a first i.f. of 45 MHz and second i.f. of 455 kHz has been adopted so as to ensure a high image rejection ratio. Double-balanced modulaors are used istics such as intermodulation products, spurious noise, etc. New low-voltage highlevel balanced modulators, with which the
manufacturers claim a third-order inermodulation of -60 dB and a 1 dB comaression Although at the forthcoming WARC HF conference in 1983, any possible planning of the shortwave broadcasting
bands will be based on a double-side band (d.s.b.) sound broadcasting system, the introduction of single-side band (s.s.b.) transmissions has to be taken into ac$6 \mathrm{count} \mathrm{t}^{2}$. A carrier reduction in excess of is also likely. A residual carrier is necessary for the operation of automatic-gain-control circuits in the receiver and for frequencylocking or carrier acquisition purposes. On for a sensible reduction of transmitter power consumption and running costs The upper-side band (u:s.b.) transmiting mode is likely to be used in the future shortwave broadcast s.s.b. transmission, ered in the s.s.b. detector design. As indicated a regenerated carrier signal from the carrier acquisition circuit mixes with the received carrier signal in the product deector stage. The audio information is then quired level through audio amplifiers. The nature of possible carrier acquisition circuits is not discussed here for two reasons. Firstly such circuits are not easy to devise and secondly they deserve a long separat discussion.

THE W.W. DISK OFFER RE-OPENS AT LAST

We have obtained a limited stock of European single sided drives so please get orders in soon Circle the enquiry number for data
Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE (Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$)

Please make cheques and P.O.s payable to W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability before ordering

Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non
U.K. orders send SAE for quotation

FLOPPY DISK DRIVES NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE: READON!

SIEMENS FDD - 100-8/FDD - 200-8 Fully Shugart Compatible Siemens 8 " single and double sided disk drives are
avalabie now with unbeatabie price a at single unit pricing.

 OTHER PRODUCTS CWO CP/M 2.2
$\begin{array}{lll}\text { BASIC COMPILER } & 156.75 & 165.00 \\ & 175.75 & 185.00\end{array}$ WORD STAR $\quad 218.50 \quad 230.00$ MAIL MERGE
MAILMERGE 66.50
$\mathbf{9 4 . 0 5}$ 70.00

Full range of SD SYSTEMS S-100 CARDS \& KITS ALSO AVAILABLE Send S.A.E. for furnher details
IRVINE BUSINESS SYSTEMS

All models available for OEM as complete units or modules; also floppy disc drives.
wW - 007 FOR FURTHER DETALLS

Frequency-hopping military radio produced

A British firm, Racal-Tacticom Ltd, claims to with a frequency-hopping military radio. Some of the first models, which operate at v.h.f.t, have been ordered by the Ministry of Defence f
evaluation by the British Army. Some are going to other NATO member countries and, accord ing to the company, will be in service in Europe within the next few months. The purpose of frequency-hopping (an "lecetronic counter-
countermeasure" in military jargon) is to avoid he unwelcome attention of iamming or in terception of messages (known as "electronic
countermeasures". Instead of operating contin uously in one channel, the radio communicatio system is designed so that the frequency, of both transmitter and receiver, automatically
umps about from channel to channel in a ran dom sequence. The equipment developed by Racal- Tacticom is a speculative commercia nly three years. Gerry Whent, chairman and managing director of the company, says conf dently that sales of the product, which includes vehicle and manpack versions, "throughout the
1980 are likely to run into hundreds of millions f pounds from our traditional markets alone' Parts of the v.h.f. band from 30 to 88 MHz

Long distance digital music

Casually switching on my tuner to Radio 3
around llunctime on the 17 th May, I heard a aperb performance of a Vaughan William vered that the music was coming live from hanghai as part of a tour made by the BBC mphony Orchestra. The second half of the Symphony, and as an encore, the orchestra played a rip-roaring bravura Chinese piece
called 'How the good news was brought from called 'How the good news was brought from
Peking to the villages'. All through the concer one was aware that the quality of the transmis sion was superb and it astonished,me to realise
hat it was coming from the other side of the orld.
On On checking with the BBC, I learned that
 ich converts the stereo signals to digital form nereo compressses them so that up to three stereo pairs may be sent over conventional was encoded at Shanghai, sent through a radi ink to Peking, transmitted again via the geostathe British Telecom station at Madley, se hrough 'conventional' circuits to the BBC where it was decoded and retransmitted to us. It ook about a quarter of a second for sound made
ithin this range nine 6.4 MHz bands have been selected by Racal for frequency hopping,
and within a chosen 6.4 MHz "hop band" the frequency hops among 256 channels, each 5 kHz wide. The method of achieving this, and
he necessary synchronization between the necessary synchronization between
transmitter and receiver, were outlined in our earlier report on the prototype (Decemember 1979
issue, p.85). The hopping rate is described by ssue, p.85). The hopping rate is described by
he maker as "medium", which means somehe maker as "medium", which means someidea of the spread-spectrum character of the transmission can be egained from the spectrum
analy'ser display here. The horizontal, frequency axis represents the extent of one "ho band" of 6.4 MHz . The small peaks are signal
spectra and are a record of the successive freuencra positions of the signal in about 35 of the 256 channels over a fraction of a second. The arge-amplitude peak in the middle of the screen the spectrum of a strong jamming signal, and
can be seen how this is avoided by most of the positions of the frequency-hopped communica ion signal.
Up to 50 Up to 50 "hopping nets", each using a dif erent hopping code, can be operated in
ame hop band simultaneously - and possibly to about 200 if they are not all working at th me time. Fixed frequency nets can also operated in a hop band. The system can fanc
ion with one third of the available channel
and ccupied by other signals, such as fixed fre quency, oher hopping transmissions or ian
mers. Transceivers are controlled by a keyboary (see photo) and three rotary switches. The key ooard is used for changing the mode of opera tion, for entering codes and for checking. Day
to-day operation requires the use of only two o the rotary swirches. Transmission modes are F3 simplex, voice, analogue information, and digital data at rates up to $16 \mathrm{kbbit/}$. To protect
certain frequencies in the hop band, or to avoid strong signals, up to 16 frequencies may be
barred from the hopping sequence in any hop and. Racal say that the price of their frequen f a conventional military transceiver

Spectrum analyser display shows a sequen cy hopping signal (small peaks)
spread out over a 6.4 MHz hop band. The large amplitude signal in the middle is

A 50 -watt vehicle station. The central unit with the keyboard, is the transceiver output the vehicle station and the manpack version.

It seems that we are going to need to learn another set of initials to denote yet another
medium for telecommunications. This one is DBS, for direct broadcasting by satellite. The DBS, for direct broaccasting by sateliite. The
Home Office has issued a report on the options vailable and a possible strategy for instituting a system. Celecommunications Un Union (ITU) in 1977, the UK has been allocated five DBS channels which could be beamed towards the UK from nel would be capable of providing one tv service ra number of radio services with national covehouseholds, in which case an antenna and the appropriate converter would cost around $£ 150$ oo $£ 200$; alternatively there could be a community receiving statio
by cable.
Various satellite Various satellite systems are discussed in the document and their likely cost. For instance, a two channel system using ESA's European
Communications Satellite would cost about 15 m per channel per year over a ten-year eeriod; a five-channel system broadcast via the -Sat, ESA's large satellite would cost about
10.5 m per channel. Cost could be reduced by starting with a pre-operational system with a pare satellite held for launching, though if

Component supplies

and not to be able to find a supplier. We have received two catalogues from new suppliers and ponents originally started as a supplier of spare parts to retail radio and tv repair shops they have now expanded into a general component
and tools supplier and still have some emphas (a and tools supplier and still have some emphas (a
whole separate section) on tv replacement parts. hhole separate section on tv replacement parts. deliver all catalogued items by return of first
class post. They can cater for low and high volume orders and can offer regular deliveries to high volume users. The newest issue of the
catalogue describes in its 110 pages resistors, catalogue describes in its 110 pages resistors,
capacitors, semiconductors and industrial integrated circuits, opto-electronics, electromechanical components, tools, test equipment and
hinear i.cs. The catalogue is available from Anginear i.cs. The catalogue is available from Ang-
tia Components, Burdett Road, Wisbech, lia Components,
Another catalogue, from M.S. Components, also emphasises that all catalogued parts are
dispatched on the day that the order is received. The catalogue is of a similar size to that from Anglia; it contains some 2,500 separate items
and it is promised that there will be a new and it is promised that there will be a new
dition soon which will be increased to over 3 ,000 items. Among the many products one parti-

cular service worthy of note is a transformer | cular service worthy of note is a transformer |
| :--- |
| rototyoing service. M.S. .an supply, within 48 | prototyping service. M.S. can supply, within 48

hours, transformers within the range 3 to 50 VA with the secondary voltage and current specified by the customer, with a set price for each trans-
former of $£ 5.99$. Another notable point is that M.S. encourage the amateur constructor. You do not need to be an account holder and can buy
components over the counter on a Saruday components over the counter on a Saturday
morning, if you can get to M.S. Components, morning, if you can get to M.S. Components,
Zephyr House, Waring Street, West Norwood,
London SE27 9LH.
nent was launched
Also disused. Also discussed at length is the content and
quality of any proposed DBS service. WXith worldwide reputation or the high quality of our domestic tv services and any new service should maintain that standard. Competition for the
sake of audience figures can lead to a reduction sake of audience figures can lead to a reduction
in the range and quality of programmes availble to the public. With the introduction of the
fourth ty channel in the UK and the pilo cable ourth tv channel in the UK and the pilot cable
services recently announced, there could be services recently announced, there could be
nany channels avaiable to the public. Another possibility is the extension of cable tv to a
national service to provide broadcast pronational service to provide broadcast programmes and other telecommunications services suggests that a modest start would be preferaThe report goes on to discuss some of the programme options. The BBC has proposed
hhat it should provide television programme serhat it should provide television programme ser-
vices on two channels, one would be a subvices on two channels, one would be a sub-
scription films, and other BBC special producions, opera, drama, music and extended coverage of sporting events; all these would be
to run in the normal schedules. This service would not be financed from the net revenue of the tv licence fees. The second BBC DBS chan-
nel would be used for nel would be used for a service of retransmis-
ions of 'the best of BBC-1 and BBC-2' ions of 'the best of $\mathrm{BBC}-1$ and $\mathrm{BBC}-$ ' ' espe- $^{\text {e }}$
cially for those who are unable to view the programmes at the time of the original transmis-
sion. Another proposal for a subscription chin-

EBU proposes a world digital television standard

nel has come from the Granada group to consist
principally of recent feature films. The Urincipally of recent feature films. The Open given to an educational channel and this idea has been supported by a number of other organisations. Teletext and information services are also mentioned.
As regards the kinds of DBS serves that
might be provided, the general consensus seems ${ }^{0} 0$ be for a 625 -line standard tv signal with the possibility of adding additional sound channe separate radio services.
Financing such a service poses major problems and it is suggested that it may be operated by a separate body acting as a common carrier
which leased the individual channels to the broadcasting bodies. The establishment of the system would require considerable initial capital outlay, and there is the continuing running cost.
Licensing and subscription and adverising Licensing and subscription and adve
evenues are some of the possible sources.
Finally there are environmental aspects of DBS to be discussed. The receiving antennae are likely to have some visual impact on our
skylines although a dish as small as 40 to 50 cm in diameter might be possible under favourable conditions. A community reception centre with
cable distribution to the individual household able distribution to the individual household satellite only one transmission station would be needed compared with the 1,000 or so, cur-
rently in use for the terrestial service.

Should we buy Dutch radar?

Although the value of the defence industry may
be questioned in its ability to actually defend us against any potetnial enemies, one thing in its favour is that it provides work for the manufaclurers of defence equipment. All the more puzzling then is the proposal by the MoD to pur-
chase missile tracking radar from the Netherlands. The radar would be used in place of the Marconi GWSS25 Seawolf tracker. The
MoD seems to be willing to accept a degraded performance and a lower environmental standard in exchange for lighter weight.
Marconi Radar Systems are, understandably,
pset about thiss the Seawolf has been in use
with the Royal Navy and is in full-scale produc
tion. Over the past 35 years they have built up ion. Over the past 35 years they have built up
an expertise in tracking systems and have bee working to enhance the performance of the system against low level missiles.
Marconi have proposed a series of modificaMarconi have proposed a series of modifica-
ions to make the Seawolf lighter while retaining ions to make the Seawoif lighter while retaining
the performance improvements at a comparable

price. They price. They point out that such equaipment but if the Navy's decision goes against them here would follow the destruction of the desig | team |
| :--- |
| tories. |

Technologists detained in USSR

Two professional workers in the field of
lectronics have been arrested in the USSR after unsuccessful attempts to obtain exit visas to
enable them to emigrate from the country Both enable them to emigrate from the country. Bot
are Jews. Kim Fridman, an electronics engineer, was head of the test department in the
Kiev Radio Works. Viktor Brailovsky a comKiev Radio Works. Viktor Brailovsky, a computer scientist, was a senior research fellow in
the Insiute of Electronic Control Machines,
Moscow.
Both men appear to have run foul of the tific seminars in their homes, in spite of the fact hat these meetings were conducted on strict legal lines and had no political content. Kin
Fridman's wife Henrietta, who visited thes offices recently, told us it is common practice for "Refuseniks"* to hold such seminars mainly to continue their scientific education and
keep their professional knowledge up to date. keep their professional knowledge up to date,
The charge against Fridman is "parasitism";

```
"Refiseniks", are Soviet Jews who, having been con
istently refused permission to emigrate to Isral), are istently refused permission to emimgrate to II Irrael, are
harassed by the KGB usually disnissed from thei
work, and live in fear of arrest and rumped-wp charese ork, and live in fear of a arrest and trumped-up charge
```

tate and public orde
Ki Fridm order ber 1969 in anticipation of a three-year wai efore he would be allowed to submit his application to emigrate. The official reason for refuing him permission to leave the USSR is
"secrecy" - presumably it was considered he "secrecy" - presumably it was considered h
had knowledge of Soviet radio technology which might be useful to an enemy of the state. Conidering the date he left his iob, Wi ireless World reason, which seems more like an excuse; and on the strength of our view the UK Forecign
Office is arranging to have the Fridman case Office is arranging to have the Fridman case
heard at the Madrid conference. Up to the time of his arrest in March 1981, Kim Fridman had been doing temporary, unskilled work but had
been finding it more and more difficult to obtain Viktor Brailovsky asked for an exit visa in
1972. This was refused in 1973 and shortly fterwards he was dismissed from his post at the nstitute of Electronic Control Machines. It is
hought that his arrest, in December 1980, resulted from his editing of a cultural journal
"Jews in the USSR", but the charge of defam"Jews in the USSR", but the charge of defam-
ing the Soviet state appears to be contrived

because the journal, which ceased publication in
une 1979 was not political. After his arrest,
und other scientists tried to go to his home for
further seminars, at the invitation of his wife rina, also a computer scientist, but were turned way by KGB officers. Some time in 1981 th EEE expects to publish a paper by Brailovsky
in their Transactions on Pattern Analysis and Machine Intelligence.
All professional workers in electronics will be
istressed to hear of the way these colleaves in distressed to hear of the way these colleagues in
the USSR are being treated by the authorities and will hope for success in the efforts currently being made to help them

New satellite earth station

British Telecom are to build a new satellite communications earth station in wiitshire. An
87 -acre site at Stert, near Devizes, has been urchased, and the first dish aerial is expected to be operating by early 1986. About six aerials BT's third satellite tracking by 1990. This is become necessary because capacity of Goonhilly ev further Intelsat satellites placed into geo stationary orbits. Apart from these, Inmmarsat,
te international maritime satellite communicahe international maritime satelitite communica
tion system, which the new station will also serve, is expected to grow rapidly in the next few years, becoming operationalin early 1982 .
At the time of writing Intelsat V-B, the At the time of writing Intelsat. V-B, the
second of a new series of nine international communications satellites, was scheduled to be
aunched on May 21 from Cape Canaveral. Like aunched on May 21 from Cape Canaveral. Like its predecessor, Intelsat $\mathrm{V}-\mathrm{B}$ weighs $1,928 \mathrm{~kg}$
and has almost double the communications capability of early satellites in the Intelsat series 12,000 voice circuits and two colour televisio
channels. It will be positioned in geosynchro nous orbit over the Atlantic Ocean as the main satellite to provide communications services be
ween the Americas, Europe, the Middle Eas and Africa.

Dennis Baker has been awarded the British Telecom to present or former members of its staff, the medal is awarded for 'outstanding achievement in ngineering. Mr Baker was responsible for introducing silicon transistors into submarine cable repeaters. He developed a system for bonding the extremely thin
wires used in transistors onto the silico chip. The repeater amplifiers used may be t depths of three miles with pressures of up to three tonnes per square inch. They
need to have a guaranteed life of 25 years. The transistors developed by Mr Baker and his team have been in use in cables all en years. Mr Baker is also involved with integrated circuits and computer logic. He eads the team which is credited with coining the word 'microprocessor, and
currently working on small geometry circuits for the System X telephone exchanges, and on computer-aided design
for large-scale integrated circuits. He is hown here holding microphotographs of the metal-to-silicon bonds used in the

The twins paradox of relativity
A composite reply to correspondence arising from Professor Dingle's October article
from Professor lan McCausland
Department of Electrial Engineering, University of Toronto

Iam prefeful for the opporunity to relly to

 sion with him that the raticice came to be
wituen $\underset{\substack{\text { wiriten } \\ \text { Iam } \\ \text { an }}}{ }$

 Dingle that I can reply to him; but I would like to make some comments about his letter which
may say something to others who may view the question as being still open.
In reply to Wilkie's commen
question as being still open.
In reply to Wilkie's comment that "most aca-
demic iournals have for demic journals have for some years rightly
viewed the matter as settled and regarded more viewed the matter as settiled and regarded more
disussion of it as a waste of paper", and his final plea to "let it rest", I would simply observe
that he was the one who published the item that he was the one who published the item
entitled "The Twin Paradox revisited" in Nature in 1977, which led directly to the writing of Dingle's paper
One of the interesting, features of the res-
ponses to Herbert Dingle's criticisms of special ponses to Herbert Dingle's criticisms of special
relativity has been the variety of attempts to answer Dingle's question about the relative
rates of the equatrial and polar clocks rates of the equatorial and polar clocks
mentioned by Einstein in his original paper. mentioned by Einstein in his original paper there is an error or ambiguity in this example in Eanstern's paper, and he later stares tas "sectina thoughts may change the author's mind". It is interesting to note that, in the very example
mentioned, we do have Einstein's second thoughts available to us. If one studies that example in the generally. Iacepted English version of Einstein's first paper ${ }^{2}$ (translated from
the text in a German collection published in the text in a German collection published in
1922), one finds a footnote which excludes the case of pendulum clocks, but that footrote does not appear in the originally published version of the
paper. The later addition of the footnote seems paper. The later adhition of the did mean exactly
to me to confirm that Einstein did what he said, and also confirms that the statement about the slowing of the equatorial clock was intended to refer to a real slowing, no
merely something that depended on the point of
view view of the observer. According to Wiikic, Max Born answered in
technical terms whose meanings were precis technical terms whose meanings were precise
and well-defined. As an example of Born's precision, consider the following statement, ferring to the special theory": "The simple fact
that all relations between space co-ordinates and time expressed by the Lorentz transformation
can be represented geometrically by Minkowski diagrams should suffice to show that there can
b no logical contradiction in the theory." Since the Lorentz transformation is contained in the special theory, but is not the whole theory, it is
illogical to claim that any property of the, Lo-
rentz transformation is a sufficient condition for
the whole theory to be free of logical contradic-
tion.
With reference to Wilkie's statement that the language of relativity is geometry, not English or German, Dingle did not question the impec-
cability of the mathematics of special relativity. But the theory is based on postulates expressed in words, and the mathematics is not the whole
theory; it was the theory as a whole that Dingle theory; it was the theory as a whole that Dingl
criticized, not its geometry.
I arree with Dr Wilkie that some of Dingle's critics have tripped themselves up by their use of words. However, this is not always because of
the difficulty of expressing abstruse technica he difficulty of expressing abstruse techinica that I have documented elsewhere ${ }^{4}$, in which, in The Listener in 1971, one scientist stated that the
results of the Hafele-Keating experiment supresults of the Hafele-Keating experiment sup
ported special relativity, and another stated that ported special relativity, and ano ter stated that
the experiment had no releance whatever the
special theory. Now, a statement that the results special theory. Now, a statement dat ertain theory
of a certain experiment support a cert of a certaine experiment support a certain theory
is a perfectly simple factual statement (however abstruse and techinical may be the reasening tha
led to that conclusion), and the same applies to led to that conclusion), and the same applies to
the contrary statement. The fact that the two statements are contraries of one another (they cannot both be true, though they might both b
false) shows that one or other of the scientists false) shows that one or other of the scientists
(or both) misunderstood either the theory or the experiment (or both). Or it might mean that there is a contradiction in the theory.
In the note mentioned above ${ }^{4}$, I documented several other unsatisfactory statements that hav been published by defenders of the theory. These cannot be dismissed as being merel
poorly worded, since most of them were uttere poorly worded, since most of them were uttered
by scientists who are prolific authors of book and who may therefore be reasonably expected to be able to write what they mean. I think w
should keep in mind the words of the anonyshould keep in mind the words of the anony-
mous diplomat (quoted by Sir Bruce Fraser in his revision of Sir Ernest Gowers' The Complete
Ploin Words) who said "wWhat appears to be Plain Words) who said: "What appears to be sloppy or meaningless use of words may well be
a completely correct use of words to express sloppy or meaningless ide
Wilkie's paragraph about all the scientists who did not choose to seek fame by dethroning
Einstein is very interesting, but totally devoid Enintein is very interesting, but totaly devoid of
scientific basis. The pursuit of scientific truth
not aided by not aided by statements such as: "That no
young student over the last 20 years has seen the young student over the last 20 years has seen the
chance to make his name by developing Profes sor Dingle's ideas is eloquent testimony to the erroneousness of these ideas.'
Seditoral with varying degrees ef recived by the problem at hand. Before dealing with individua letters, examine the nature of the problem
According to Dingle ${ }^{5}$ a paradox arises when According to Dingle a paradox arises when
from the same premises P, two (or mor apparently contradictory conclusions X and Y seem inescapably to follow. It can be resolved
only if one of the following four things can b only if one of the following four things can b
shown: (1) the conclusions are not in fact (3) conclusion Y (2) conclusion X does not follow
not follow; (4) the premises P contain an internal contradiction.

How does this apply to our problem? Suppose that we have a set of premises P, and suppose
that one scientist (D) deduces from those premises a conclusion X, and that another (E) deduces from the same premises a conclusion Y which is directly contradictory to X. Each
scientist may believe that he has shown by h i oun deduction that the other's deduction is
faulty, but in fact both deductions might be perfectly valid deductions from premises Furthermore, even if hundreds of supporters of E come forth, each with a different argument
showing that Y does in fact follow from P, these do nothing whatever to show that D's deduction of X from P is faulty. To refute D 's argument it is necessary to examine that argument itself and
show that there is an error in it -in othe show that there is an error in it - in other
words, to show that conclusion X does not follow from the premises P
In reading the literature on the twin paradox one finds many articles showing ingenuity, with varying degrees of originality, and picturesque
detail, that asymmetrical ageing can be deduced from Einstein's theory. Many of these articled
present the arguments in such a way as to imply present the arguments in such a way as to imply
that they refute the deduction of the opposite conclusion (symmetrical ageing), when in fac their results merely contradict the opposite resuil
and, for the reasons discussed above, contradic tion does not imply refustation unless it is first proved that the theory from which the contra-
dictory results have been derived is istself free from contradiction.
For example, one of the correspondents, T de Limelette, writes: "But I agree that the solu-
tions to the paradox found in some texts are all one could wish. I propose here my own. It i all one could wish. I propose here my own. In." think it is clear from the foregoing that ye
another presentation of the derivation of asym another presentation of the derivation of asym-
metrical ageing, without showing what is wron with the other argument, is not a solution to the with the other argument, is not a solution to the
problem that Dingle raised. T. de Limelette also comments on Dingle's article as follows: " wonder where Professor Dingle picked up the
strange idea that two different observable des criptions of the same events are not permissible. A description requires observers, apparatus and
measurement procedures before it can be ob measurement procedures before it can be ob
served. These are not left unchanged by change in the reference coordinate system. So why should the results of the measurement have to remain the same?" I am not quite sure
that is the point of this comment, unless it is to suggest that the rather bizarre set of observations envisaged by Dingle are in fact feasible Dingle's argument. The relevant paragraph of Dingle's argument. The
his letter is as follows:

The situation according to Special Relativity is as follows (for instance, see Introduction 968). According to Paul the outward and return journeys take $1 / 1 / 2$ days each, whilst according to Peter they take 15 years each Thus Peter iudges Paul's clock to be running According to Paul, Peeter's clock runs slow by the same factor, and at the end of his outward journey Paul says that $351 / 2$ seconds
have elapsed on Peter's clock whilst $11 / 2$ days have lapsed on Peter's clock clock. Now supposse have Peapsed on had previously placed a stationary clock synchronized with his own at the point
where Paul reverses his oourny. Both Peter where Paul reverses his journey. Both Peter
and Paul will say that this clock reads 15
and eears at the end of the outward journey, and
his is how Peter assigns a duration of 15 his is how Peter assigns a duration of
years to the outward journey. However, be-
cause he is moving relative to Peter, Pa
says that this additional clock is not synchro saized with Peter's own clock but rather lead it by 15 years minus $35 \frac{1}{2}$ seconds: this is a example of the relativity of simultaneity. A
soon as Paul reverses direction he soon as Paul reverses direction he pudges
that Peter's clock now leads the local clock (which reads 15 years) by 15 years minus $351 / 2$ seconds. Paul measures $11 / 2$ days on his
own clock for the return iourney (making a own clock for the return journey (making
total of 3 days) whilst he judges that only further $35^{1 / 2}$ seconds elapse on Peter's clock (making a total for the trip of 30 years),
According to Paul, Peter's clock therefore races forward by 30 years minus 71 seconds during the reversal; as discussed by Einstein this can be explained using General Relativ-
ity. (Alternatively, since Paul changes iner ity. (Alternatively, since Paul changes iner
tial frames it can be atrributed within Special Relativity to a change in his definition o simultaneity). Special Relativity does no the beginning of the return journey, and Dingle's refutation of the theory on this ba sis is not valid.
It seems to me that his is not a satisfactory
answer to Dingle's article. It should be recalled that Dingle was discussing Einstein's own reso tion required the use of general relativity. tion required the use of general relativity
(Einstein's article' takes the form of a discussion between a relativist and a critic; the discussion of the paradox starts from special relativity but
the critic asks for a resolution that satisfied the general theory, and it was that resolution that Dingle discussed in his article ${ }^{1}$.) This seems to me to suggest that Dingle's argument must be
met in terms of the general theory, not the special theory.
The other point to be noted about Einstein's resolution is that he agreed that it is perfectly
valid to consider Paul to be fixed throughout the whole course of events, provided that the appro priate fields of force are invoked. This mean that we could rephrase a passage in N
Thomas's letter as follows: "Now suppose tha Paul had previously placed a stationary clock synchronized with his own at the point where
Peler reverses his journey. Both Peter and Paul will say that this clock reads 15 years at the end of the outward journey, and this is how Paul assigns a duration of 15 years to the outward
iourney." (In case it may be argued that the fields of force associated with the initial parting of Peter and Paul might upset the synchroniza tion of that clock, one can assume that Peter an Paul are moving uniformly relative to one
another at the start of the process, so that no fields of force are needed at the original parting.)
W. James writes that "Dingle gives a wholly spurious symmetry to the problem by assuming
that the Universe is empty but for the tw clocks in his analysis although in the statement of the probem he also refers to the earth.)"' Dingle talks about the earth and a distan planet, whereas Einstein's statement of the same problem defines it wholly in terngs of referenc
frames. Einstein's article does not use $a n y$ othe objects except the travelling twins to resolve the paradox, except that later in his paper, when his supposed critic suggests that the graviationa
fields are fictitious, he states that "all the star in the firmament can be conceived as participat ing in the creation of the gravitation fields'". I do not think that Dingle would have objected to
this statement, and the fact that Dingle did not happen to mention all the stars in the firmament can scarcely be taken as equivalent to an as-
sumption on his part that the universe is sumept for the two clocks.
enivers is W. James also states: "The clock paradox of
special relativity is stated in McCausland's
article 'if there are two clocks in uniform relativ each clock to run faster than the other'. .", fact my article ${ }^{8}$ does not even mention the clock paradox, much less state it. In the relevant
context I quoted a passage from Davies then suggested that passage provided stron then suggested that passage provided strong
support for Dingle's claim that "fif there are two clocks in uniform relative motion, the special
theory requires each clock to run (not merell theory requires each clock to run. (not merely
seem to run) faster than the other." If the pass age I quoted from Davies does not support tha claim of Dingle's, then I think that someo
should state clearly what it does mean. should state clearty what it does mean.
I. M. Crann states that Dingle tacitly assume some form of universal time, and that this as sumption of "absolute" time guarantees tha
contradictory results will be obtained. I do no contradictory results will be obtained. I do on any more than Einstein did. Einstein stated quite clearly, in the passage Dingle quoted, that
retardation of a clock during one phase of the retardation of a clock during one phase of the
experiment was over-compensated by faste working during another phase, and that a clock
works faster if located at a point of higher gravi works faster if located at a point of higher gravi-
tational potential. I think that Dingle merely tational potential. I think that Dingle merely
followed Einstein's argument to its inevitable conclusion.
K: Burnet
K. Burnett (May letters) asks "Am I the only reader of Wireless World with an interest in phy sics who finds the long series of articles on special relativity somewhat boring?" After mak
ing some interesting comments about theories modern physics, he ends his letter by writing "When a new more inclusive theory arises, which will enbrace quantum mechanics an
general relativity I suspect that few santi-rel general relativity, I suspect that few 'anti-relat
tivists' will like the result. But boring it won't be." I do not know the grounds on which Burnett
bases his suspicion that few anti-relativists bases his suspicion that few anti-relativist
would like such a result. There seems to me to be a suggestion here that those who criticiz relativity are like Luddites longing for a retreat
to pre-Einstein physics, whereas in fact they ar trying to suggest that it is time for the scientific world to consider the possibility of moving on to post-Einstein physics
Some correspondents, such as W. James,
M.H. de la Rica, R. V. Harvey, and A. B Starks-Field, present alternative resolutions, o partial resolutions, of the clock paradox. For the
reasons siven in my earlier comments, I believe that they do not meet Dingle's argument, because they do not identify a fault in his reasoning. M.M. Albahari (February letters)
suggests a new experiment to test the validity of relativity by a test of the constancy of the velocity of light, using time intervals four orders of magnitude greater han hose in the Michelsonthat Dingle is wrong in believing that the mathematics of special relativity is impeccable; he wrong, and refers to his recently-published book "Einstein's Error". Other correspondents, such as C.L. Thomson, W.T. Morris, J. de-
Pière, F. Allen and J A. MacHang uted interesting comments and suggestions, and V. Halsall contributed a discussion relating to Dr Essen's article in Wireless World dated OctoThere There is another letter which I think requires
comment, namely a letter by which appeared a letter by J.H. Fremlin Some of the comments bciewnist last year ${ }^{10}$. letter that I sent to the editor of New Scientist in letter that I sent to the editor of New Scientist in
October 1980 , but to the best of my knowledge my letter has not been published. very much to refute the suggestion that "like very much to refute the suggestion that oppo
nents of the theory of relativity find it difficult to get a proper hearing". He might like to refute the suggestion, but his letter certainly does not
do so. The only evidence he presents in support claims to refute is related to the fact that paper have been denied publication. There is no have been published and the fact that others have been published and the fact that other
have been denied publication. Unfortunately few people, except those who have directe exper naper published if it is critical of relativity. Part paper published if it is critical of relativity. Par
of the problem is that almost all the evidence bout papers that have been rejected is hidde from public view.
To take a specific
le's paper a was rejected by another journal be fore his death. I have in my possession a copy of the relevant correspondence (which spanned
period of several months) between Dingle and period of several months) between Dingle and request for permission to publish its part of th Professor Frea
own personal correspondence with Dingle, and his (Fremlin's) demonstration of the difference
to be expected between the ages of the pair to be expected between the ages of the pair of
twins in the twin paradox. Although it is difficult to comment on this without seeing all of th relevant correspondence, I I suspect that Dingle
considered the finding of an error in Fremlin's analysis to be a non-existent problem. He wa convinced that the special theory contained an internal contradiction, and he knew that meant that it was possible, using valid rules of in
ference, to deduce from the theory any conclusion that one wished
'Dr Wilkie didn not think it was wise to publish Professor Dingle's article, because Dingle
unable to defend himself. As I pointed out my note accompanying the article, Professo Dingle sent the article to me in the hope that it
would eventually be published. I am conscious of the inferiority of my qualifications as a de. fender of Herbert Dingle, but perhaps I amy excuse my attempts by quoting a sentence from
his last book, The Mind of Emily Brone: "T disinter from a mass of diverse writing a com mon substratum demands penetration of a far higher order, and the only ground on which 1
claim iustification for attempting the task is the absence of competitors."
In fact there is a significant number of scientists dissatisiied with the special theory of relativ-
ity. Anyone who doubts this should read the August 1979 and October 1980 issues of th journal Speculations in Science and Technology. happen to believe that Herbert Dingle was right
in his thesis that the special theory is untenable, in his thesis that the special theory is untenable,
but I would not be so rash as to claim that I have an ""nshakable conviction" on this. I I am,
however, firmly however, firmly convinced that the problems
raised by Professor Dingle have not been satisfactorily solved.

References

1. Dingle, H. The ""wins" paradox of relativity,
Wireless World, vol. 86 , October 1980, pp. 54-6
 bodies, in The Principle of Relativity by H. A. Loren!
etal, Methuen, 1923 . 3. Born, M. S. Secial theory of relativity. Nature,
vol. 1971963 , p. 1287 . 4. McCausland, I., Science on the defensive.
Cannadian Electrical Engineering Sournal, vol.S, April 5. Dingle, H. Science at the Crossroads. Martin

 7. Einstein, A. Dialog uber Einwande gegen die
Relativitastheorie. Naturuwissenchaften, vol.6, 1918, pp. $697-7020$.
2. . Wocusland, I. Why not discuss relativity. Wire-

Low noise moving-coil preamp

Noise performance of this design is about 3 AB below many similar commercial units, and the high-frequency response is -1 dB at 150 kHz without the 3 n 3 output capacitor. The output clips at about 500 mV and
below 150 mV , distrrtion is caused solely by the push-pull input stage. Cartridges with high impedances will give lower distortion. High quality components must be used throughout and the circuit layout should be neat with no long connections,
The circuir shown has been optimised for an Ortofon moving-coil cartridge, but other types should also be suitable.

Performance		
Voltage gain	35 dB	
Input impedance 20Ω		
Output harmonic distortion (mainly 3rd)		
400 mV		0.32\%
150 mV	0.13\%	0.1\%
100 mV	0.1\%	0.056\%
50 mV	0.05\%	

Noise (unweighted 10 Hz to
ferred to input (includes hum)
$0 . c \quad 74 \mathrm{nV}$
2 nV 4 transistors as shown
Frequency response
Frequency res
-1 dB at 15 Hz
-3 dB at 50 kHz (see text)
R. Lee
Bradford

Video summing

amplifier

A simple video summing amplifier and modest c.c.tv applications can be built us ing one LM318 op-amp. Because a shar cut-off is required, to avoid overloading the monitor, the emitter-base junction of transistor is used as a limit sensing ele-
ment. Emitter current is $(\beta+1) \times$ base curment. Emitter current is $(\beta+1) \times$ base cur-
rent provided by the clip-level potentiome ter, which reduces the limiting slope by the factor β.
The circuit can be assembled on Vero board provided that tracks to the op-amp $10 \mathrm{k} \Omega$ feedback resistor is mounted acros the top of the i.c. and the 5 pF capacito mounted underneath the board. Th L.M318 can drive directly into a 75Ω load. G. Newm
 iilter, as described by Dr Pykett, there is a noticeable change in tone when a singlenote step is made from one filter to the
next. This can be overcome very effectinext. This can be overcome very effecti-
vely by grading the change. In the dia gram, note B drives filter no. 1, note C drives 66% filter 1 and 33% filter 2, note C sharp drives 66% filter 2 and 33% filter 1 ,

from one filter to the next is therefor shange between four notes and the abrup the notes driving one filter should be at a low impedance input to avoid signals being fed back:
J. H. Asbery

Plotting oscilloscope

waveforms

This system enables a display to be plotted from an oscilloscope which has a delayed sweep facility. The oscilloscope is set in
the A -intensified-by-B mode so an unknown signal is displayed with a bright portion showing the extent of the delayed sweep. The delayed sweep gate, a pulse which corresponds to the intensified portion of the waveform, is used to operate
a sample and hold circuit whose output voltage is equal to the waveform voltage at the end of the delayed sweep interval. The output is measured by a digital voltmeter X drive for the plotter is derived from the X drive for the plotter is derived from the
wiper of the delay-time multiplier potentiometer in the oscilloscope. To plot a waveform, the potentiometer is rotated through its full range, which drives the pen horizontally while the sample and hold
circuit drives the pen vertically. The circuit drives the pen vertically. The
sample and hold circuit can be fed from the oscilloscope ChI out terminal, which provides the plotter with vertical deflection features such as adjustable scale factor, ac/0/dc cole
tioning. To cope input, position the trace vertically at an appropriate reference point and scan horizontally using the delay-time The plotter is then adjusted for full deflection, i.e. one inch for one c.r.t. horizontal division. As with any sampling system, the waveform must be repetitive, and trigger jitter on the oscilloscope will blur the ploter waveform.
powerful computer can form the basis of a acquisition system. In this case, the position of the B gate pulse is set by a control voltage from the computer.
As the waveform samples are digitized
by the computer, the control voltage is increased and the sampling position is scanned across the waveform. Although his is a slow data acquisition system, the progress of digitization is visible. The

voltage which controls the position of the B sweep gate pulse must be derived from needs to be slightly modified.
The computer can determine many waveform parameters such as peak, mean, r.m.s. and harmonic content via the
Fourier transform, but the bandwidth of the system is limited by the sample and hold circuit. A prototype system has been constructed using two ports in a PET computer to control the converters, and the digitization process was programmed in
Basic.
P. Hiscocks
$\underset{\text { Toronto }}{\text { Canada }}$

Variable output regulator

A small modification to the normal three terminal regulator circuit will provide a number of output voltages and retain the short-circuit protection of the regulator. increase the output voltage by returning the common terminal to a positive pedestal but, if the common terminal is returned to a negative pedestal, the output is reduced
This circuit uses Zener
vide switched outputs below 15 V , however, the diodes could be replaced by an adjustable low power regulator. A 1N4002 protects the regulator from re-
verse voltage if the output is shorted. Dual verse voltage if the output is shorted. Dual amp and transistor shown, but the negative rail is not protected. J. McDonald Hants.

Designing with microprocessors

9 - More on interrupt-driven circuits

by D. Zissos and G. Stone

Department of Computer Science, University of Calgary, Canada

Procedures for the step-by-step design and implementation of microprocessor-based systems are described in this article. The authors show that the interface hardware is
the same for both vectored and nonvectored interrupts, and that it is almost independent of the microprocessor chip used. Fullyworked out examples, using the Intel䢂 ments.

As explained in the first article on this subject (June issue), interrupt-driven circuits are used when sensitivity to the environment is needed. This would be the case when they malfunction, require fast corrective action to avoid catastrophies that may result in damaging equipment, shutting down systems and so on The concepts we used to develop such sically the equipment or the process signaling the micro-processor when it wishes to communicate with it, and waiting for the microprocessor to respond. This resulted in the development of an uncomplicated gram is shown in Fig. 7 in the June article. For ease of reference this diagram is reproduced here as Fig. 1.
The function of the interrupt controller in Fig. 1 is to generate the interrupt re-
quest signal, IRQ, when one or more flags are present, and to provide the microprocessor, when it responds to the interrupt request, with some meaningful information which allows it to vector to the appropriate service routine. The meaningtul in-
formation is denoted variable i. The design and implementation of interrupt controllers and a review of support chips implementing their function will be considered in a later article.

Interface hardware

Although at first sight the design and im plementation of the interface hardware might appear complex (particularly to the
uninitiated), in practice it turns out to be straightforward process, as we shall demonstrate next. Our starting point is Fig. 1, which clearly indicates that the interface hardware is a logic circuit whose
function is to monitor the status signals of the peripheral (which may be either equip-
ment or a process) and generate flag f_{n} when the status signals indicate to it that the peripheral wishes to communicate with he microprocessor. The interface then pond electronically.
Note that the flag simply requests a response from the microprocessor, which may well be ignored, if masked by the programmer. To avoid blocking microprocessor responses to emergencies, an in-
terrupt pin, which cannot be disabled by software, is also provided in most cases. The interrupt signal using this pin is referred to as a non-maskable interrupt, to discriminate it from maskable interrupts, which represent requests for microprocessor responses.
When the microprocessor responds, it generates the electronic 'go ahead' signal which, as explained in the June article, consists of i/o signal(s) associated with
predetermined i / o address(es) - see Fig. 1. The nature of the 'go ahead' signal is described in detail in article 5, published in the October 1980 issue. On receipt of the i/o signal(s), the interface generates the command signals that drive the peripheral.
In order to prevent the flag from continuously interrupting the microprocessor, the interface must clear the flag.
Since the interrupt controller does not send a signal back to the interface, it fol-
lows that interrupt interfaces are indepenlows that interrupt interfaces are indepenlers. That is, the interface hardware in
interrupt systems depends only on the peripheral and not on whether vectored or nonvectored interrupts are being used.
Furthermore, because the microprocessor response consiss of ilo signals whose nature does ponse vary greatly from microprocessor to microprocessor, the interface hardware is almost identical for all types of microprocessors.
Inte

.
Interrupt interfaces, in common with all other interfaces, are designed and imple-
mented using well-established procedures that always work ${ }^{1}$. We shall demonstrate the simplicity of the design procedures and lack of complexity of their implementation by means of a design problem, after we
describe the nature of the interrupt software.

Interface software

As in the case of the interface hardware As in interrupt software is relatively uncomplicated and should present no difficulty to the reader who possesses some knowledge of programming. In the author's experience, the primary cause of misopialization procedures, which results in unwanted signal spikes (glitches) that are generated on interrupt lines during hardware and/or software initialization of interrupt in
Fig. 1. Basic configuration of an interrup syste.
sue).

We will implement the design using an action/status printer, and either the Intel 8080 or the Motorola 6800 .

Solution

Step 1: aim of the design. To demonstrate he steps used in designing and implementing interrupt interfaces.
Step 2: resources. A microprocessorbased system and an action/status character printer.
Step 3: our solution. Our solution consists of evoking a COUNT routine when an

shown in Fig. 6(a). Switch m is connected
directly to the clock terminal of flip-flop 6 , allowing it to be set each time switch m is pushed and released. Similarly the output of the sensor is connected directly to the clock terminal of flip-flop 7, which also allows it to
ates a pulse.
We can allow the programmer to rese the two flip-flops by simply routing soft-ware-generated i/o pulses to their clear terminal. For this purpose, we can use two The io addresses 63 and 62 are used for this purpose. That is, flip-flop 6 is reset by executing an OUT instruction with address 63 and flip-flop 7 by executing also an OUT instruction with address 62 . disable the interface, we can introduce a third JK flip-flop which is set by executin an OUT instruction with address 60 , and reset by executing an OUT instruction
with address 61 , as shown in Fig 6(a) We with address 61, as shown in Fig. 6(a). We flags f_{6} and f_{7}.
The final function of the interface is to activate the printer. We can either use separate OUT instruction for this purpose or simply connect the output of gate 4 to causes execution of OUT 63 both to clear f_{6} and activate the printer at the same time. This, in addition to saving an extra gate, also avoids using an extra i/o instruction. Step 5: software design. The COUNT
and PRINT routines are shown in Table 1.

6800 implementation
Step 4: hardware design. We use the same procedures to derive the interface er's attention is drawn to the fact that the two interfaces are almost identical. Step 5: software design. The PRINT and COUNT routines are shown in Table 1 . Well-defined steps for the design and
implementation of interrupt interfaces implementation of interrupt interfaces has been shown that the interface hardware is the same for both vectored and non-vectored interrupts and that it is al-
most independent of most independent of the microprocesso

References

References

1. Zissos, , "Problems and Solutions in Logic
Design," Edition 2, Oxford University Press, 2. Duncan, F. G. "Microprocessor Program2. Duncan, F. G. "Microprocessor Program-
ming and Software Development", Pentice-
Hall,

The next article in the series will deal with interrup
controllers.

Correction note

Data store by running average, May 1981 contained three incorrect hex bytes in the machine-code list. The correct values are Address. Addres
02 E 4 02E4
036D
03D0

$\frac{B 5}{B 0}$
$\underline{A 6}$

Which way h.f. broadcast receivers

continued from page 67

The prescaler and prom devices used uite expensive at present. A 'direct entry without calculation' method could be use replace the prom devices, but the cot dind ing twelve different crystal oscillators du
to the fact that no simple arithmetic rela ion exists among the shortwave broadcasting bands. An alternative approach is however, to ask whether a rearranged fre quency allocation plan could end up with a system functional block diagram. The sug sested frequency allocation proposal is isted in Table 3. The amount of spectrum allocated is the same; but the band edge larting frequences ares WHRC freq ARC frequen

TABLE 3. Suggested proposal

 20.700 to 21.19065 .700 to $66.19048 .895+16.80$
24.900 to 25.390 69.900 to $70.39048 .895+21.000$

Prior to the programmable divider, the v.c.o. output is converted down twice,
first by a fixed 48.895 MHz frequency sig nal, then by a correspondent band offset frequency signal generated from a one sig nal source and selected through multiplie or dividers. After these conversions, th v.c.o. frequency is equal to the chann quency; therefore the programmable divider can be programmed directly by th b.c.d. number in the channel memory at the input of the low v.c.o. frequenc vider, no prescaler is required After com parison with the reference signal in the phase comparator unit, an error voltage is generated through the loop filter to correct the v.c.o. frequency. The fact that the
prescaler and PROM devices are not required, the whole system cost is greatly reduced because of the frequency allocation The r.f., i.f. signal amplification and selection, sideband detection and audio amplification are the same as the firs

Microprocessors
Microprocessors have invaded almost every branch of electronic technology which includes radio communications as well. There is no doubt about some advan tages of using microprocessors in product design, such as: "intelligent" products, easy design modification and reduced as
sembly and testing cost, is a long-term prospect. To see whether a popula prospect. To see whether a popular
shortwave broadcast receiver could benefit
from this new technology or not, we check
the necessity of using microprocessors against the basic requirement of the (1) Easy operating: microprocessors could be used to replace Ch/Band witching unit, memory unit and prom (2) Go
(2) Good performance: no improvement after using microprocessors unless a
sophisticated self-adaptive receiver ${ }^{6}$ design sophisticated sed
is implemented
(3) Low cost: one of the disadvantages of
using microprocessors is the requirement of reinvestment for new tools and resources and possible re-training in production engineering. Although the unit cost of the microprocessor is low, the overall unit eceeiver cost could be the same as when specially developed 1.s.i. device is pro-
duced for a large number receiver market Today, due to the advanced integratio technique, most parts of the system block diagram could be integrated as a few i.s.i. modules, and consequently the assembly Therefore, unless a multi-functional reeiver is demanded ${ }^{\text {, }}$; we do not see a desire to use microprocessors in popular

Conclusion

Two system approaches have been desribed for a popular shortwave broadcas simple "tuning by channel" operating philosophy. They also bring out realization of an easy-operating, good performance a
low-cost shortwave broadcast receiver.

References

. E.B.U. Document SPB 108, "Statistics on he present occupancy of
broadcasting", Sept. 1979.
2. E.B.U. Document SPB 130, "joint meeting berween representatives of national receiver and ansmitter manufacturers' associations an
BU sub-group R1", Feb. 1980. . PEEK, J. B. H. and SCHMIDT, J. M., "A station programme identification (s.p.i. systen
for $f . m$. sound bractacting Cor f.m. sound broadcasting)", Internation
323. The P.I. System, leaflet issued by the Swed WHYTHE D J and EIY S P " on signalling for future radio re ceivers", IEEEIBC Conf. No. 166, Sept. 1978 W. 324.326 . ion", Wireless World, Jan. 1980, pp.54-58. FUKUK, et all, "Portable all-band rad eceiver using microcomputer controlled PLL Electronics, Vol. CE-26, Aug. 1980 . E.B.U. Document SPB. 66, Appendix 2,
Economic aspects of s.s.b. Transmitters", June 1978.
SYED, I. A., "Simplified I.s.s. Design", Sune SYED, I. A., "Simplified 1.s
New Electronics, Jan. 27 th, 1981.
10. Long-a and medium-wave Broadcasting Conference, Geneva 1975-w, EBU Document 140 F , Annex 1. 11. Macario, R. C. V., "An all digitally 1. Macario, R. C. C ., An all digitali,
operated receiver for the ,"
IEW medium fre quency broadcasting plan", IEE/IBC
ence No 166, Sept 1978, pp $330-332$.

Electrical and mechanical units - are they the same?

by D. A. Bell, F.Inst.P., F.I.E.E.

Sl units, with L,M,T, O dimensions, provide a single consistent set for applications. The and electrice of the 0 dimension distinguishes electrical from purely mechanical phenomena
"Units of the world unite: you have nothing to lose but your dimensions!" If scientists used slogans as politicians do, this might have been the call for the introduction of SI (Système International) units which unify electrical and mechanical
units. As far as electrical units are concerned, they appear to involve little change from MKS units, though there is a change in the status of those odd but essential constants, ϵ_{0} and μ_{0}. The change is more drastic in mechanical units, which might electrical practice. In particular, it is now recognised that heat and mechanical energy are within limits interchangeable, something which was demonstrated by Joule in 1842. The result is that heat energy is in future to be measured in ioules ${ }^{\star}$ instead of in calories. The equivalence is 'within limits' because the experi ments of Rumford and Joule were con-
cerned with the transformation of mechanical energy into heat; but the converse transformation is subject to Carnot's law, that the proportion of heat which can be transformed to mechanical energy cannot exceed ($\left.T_{1}-T_{2}\right) / T_{1}$ where peratures, e.g. temperatures of boiler and condenser of steam plant. It is this limitation which gives rise to the allegation that electric power stations have an "efficiency" of only about one-third. have only one set of units instead of three: for example current is now measured only in amperes, discarding the c.g.s. electromagnetic unit of current which was equal to en amperes and the c.g.s. electrostatic nanoampere. (The reason for the ratio between electromagnetic and electrostatic c.g.s. units being numerically equal to the velocity of light will appear later.) A MKS into the SI system is that of rational

* For large quantities of -heat energy, which
have often been expressed in tonnes of coal equivalent or ton of oir equivalent, the uni much bigger than a mes
(EJ) which is 10^{18} joules.
ised units. This idea is that a factor involving π can reasonably be expected in circumstances involving spherical or circular geometry, e.g. the electric field around a charged sphere or the capacitance between
concentric cylinders, but not where the geometry is planar, e.g. the capacitance between two parallel plane electrodes. (C.g.s. formulae are exactly the reverse of this.) The simplest electrical formula is that for the potential V at distance r from a point charge q
$V=\frac{q}{4 \pi \epsilon_{0} r}$
(1)
4π is the rationalising factor, since the system has spherical symmetry; and if q is in coulombs and r in metres, then V is in volts. How does this happy coincidence of units come about?
Through choice of a suitable value of ϵ_{0} of
course! So the first function of ϵ_{0} is to be of the right size as a unit-forming constant. Mechanical units also are brought in through the formula
tween two charges:

$$
\begin{equation*}
F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} \tag{2}
\end{equation*}
$$

The force F will be in Newtons. It is convenient also to introduce the idea of an
electric field E such that $F=q E$ and E in volts per metre is given by
$E=\frac{q}{4 \pi \epsilon_{0} r^{2}}$
So far it has been assumed that nothing else is present apart from the charges represented in the formulae, i.e. that the very nearly the same if they are in air.) Now suppose the charges are immersed in a fluid having a property described as relative permittivity ϵ_{r} (relative to a vacuum) which is none other than what we have
long known as "dielectric constant": its value is usually dependent on frequency and temperature, but is around 2.3 for benzene, 7 for porcelain and 80 for water at low frequency and room temperature. is an experimental fact that equation (2) now becomes
$F=\frac{q_{1} q_{2}}{4 \pi \epsilon_{\mathrm{r}} \epsilon_{0} r^{2}}$
and so (3) is changed to
$E=\mathrm{q} / 4 \pi \epsilon_{\mathrm{r}} \mathrm{E}_{0}{ }^{2}$

In order to obtain a quantity which de pends only on q and r, not on the surrounding medium, (3a) is transposed into the form
$\epsilon_{\mathrm{r}} \epsilon_{0} E=q / 4 \pi r^{2}=D$
The new quantity D was originally called the flux of electric induction. It has the any closed surface is equal to the charge enclosed (Gauss's theorem in rationalised units): this is obvious in (3b) if the charge is imagined to be surrounded by a sphere
of radius r and therefore surface $4 \pi r^{2} . D$ is measured in coulombs per square metre in SI units. Note that ϵ_{0}, as well as ϵ_{r}, has been transferred to the left-hand side of (3b); and ϵ_{0}, which we originally introduced as a constant serving to give the
right size of unit, is commonly called "the permittivity of free space", which is where the controversy begins. Some physicists argue that permittivity is a property of matter, and therefore free space canno have a permittivity. Accordingly, they
claim that the c.g.s. system of units is inherently correct in putting $\epsilon_{0}=1$, be cause in free space D must then be the same as E, not merely numerically equa to it. Engineers find it convenient distinguish between D and E because engimaterial objects. ${ }^{\dagger}$ (It is also a link with displacement current, but that is anothe story.) However, there is also a conceptua argument that D is a causal property of charge and that E is an effect which ma
be modified by the interposition of material medium having the property described by the constant $\epsilon_{\mathrm{r}} ;$ and ϵ_{0} is not necessarily a pure number but is the constant factor relating effect E to cause D
This makes D appear to be more fundamental than E, though in practice it may be difficult to say which is the hen and
It is now known that magnetic pheno mena are manifestations of currents, whic
can usually be identified with charges motion. The relevant formulae look more complicated because a current, unlike static charge, has direction as well as mag nitude; and the equations therefore have to be in vector form. Most of them, however,
can be obtained from the analogous

+ Perhaps one should, qualify this as "old-
nce there is now talk
(3a) which is the egg! fashioned engineering",
of "software engineering",
of "software engineering"

82
electrostatic equations by the rule-ofhar operations by vectors and vector operalar operations by vectors and vector opera-
tions and replace $1 / \epsilon_{0}$ by μ_{0}." Thus the magnetic equation analogous to (3) is
$d \mathbf{B}=\mu_{0} \mathrm{idl} \times \mathbf{a}_{\mathrm{r}} / 4 \pi r^{2}$
and the analogue of (2) is
$\mathrm{dF}=\mu_{0} \mathbf{i d l} \times \mathbf{i}^{\prime} \mathrm{dl}^{\prime} \times \mathbf{a}_{\mathrm{r}^{\prime}} / 4 \pi r^{2}$
Because the different parts of the current (circuit) may be at different distances from
the point of observation, equation (4) gives only the contribution $\mathbf{d B}$ to the total mag netic effect \mathbf{B} at a given point, the contri bution being that due to a short element id f the current, which is at distance r from ectors, the symbol \times here represents vec or multiplication and a_{r} is a unit vector in he direction of r. Equation (4) means that he direction of $\mathbf{d B}$ is at right-angles to both the direction of current flow and the of 'vector multiplication'.) Note that an equation for \mathbf{B} has been offered as analagous to the one for \mathbf{E}, a consequence of placing $1 / \epsilon_{0}$ by μ_{0}. In fact H is the property of current which is independen Gauss's theorem for \mathbf{D} is that the line interal of \mathbf{H} round a closed circuit is equal to the current enclosed) and therefore anal gous to \mathbf{D}. This time we are accustomed ffect. Initially μ_{0} also can be regarded as a unit-forming constant, the function of which is to ensure that the force between wo currents comes out in Newtons.
So much for units; but what of "dimenunits can be related back to the fundamen tals of length, mass and time: for example, orce $=$ mass \times acceleration leads to relation $[F]=\left[M L T^{-2}\right]$ Some quantity additional to L, M and and in the c.g.s. system this was taken a ither ϵ or μ so that every quantity had two ets of dimensions as well as two sizes of nit. What can be demonstrated experimentally, by giving a capacitor a charge units and discharging it through a meter which measures the current in c.g.s. lectromagnetic units, is that the ratio of numerical values in the two sets of units is equal to the numerical value of the speed
of light. It is, moreover, implicit in Maxwell's equations that the velocity of propa ation of electromagnetic radiation is $/(\mu \epsilon)^{1 / 2}$ from which it is deduced that the inverse of the product of μ and ϵ has the
dimensions of the square of velocity. There is no certain method of dividin the dimensions $L^{-2} T^{2}$ between μ and ϵ. But it seemed a plausible conjecture (no more) that since magnetic effects are due charges in motion the dimensions of equation (5). Since current $=$ charge/time the current-length product idl is equivahas dimensions which differ from those of
E_{0} by $L^{-2} T^{2}$ then μ_{0} will cancel out the velocities in idl and i^{\prime} di ${ }^{2}$ and we shall have
force related to charge $^{2} /{ }^{2}$ distance ${ }^{2}$ in both 5) and (2). It is tempting to suggest that if μ_{0} has only the dimensions of velocity ${ }^{-2}$ and ϵ_{0} is purely numeric, then the dimensions of charge can be expressed in terms this could be a trap for the unwary. It is equally possible that there is an electrical dimension which appears equally in μ_{0} and $1 / \epsilon_{0}$ and therefore cancels out in the product $\mu \epsilon$. It is equally plausible, however, he electrical phenomena must involve more than the purely mechanical dimen-
sions of length, mass and time. In SI units, therefore, one takes the reasonable step of taking Q as a further dimension to add to L, M, T. On ${ }^{(5)}$ that ϵ_{0} and μ_{0} have dimensions M and Q cancel out in the product $\mu_{0} \epsilon_{0}$ leaving the dimensions $L^{-2} T^{2}$ of veloc try ${ }^{-2}$. One might wonder how this squares of farads per metre and henries per metre respectively. The fact is that both farads and henries involve all four L, M, T, Q dimensions (as can be seen from the fact that specifications are still valid in so that these sistent system of SI units. The important difference between the MKS and SI ystems is the SI postulate that Q should e taken as the electrical 'dimension', in contrast to both the c.g.s. and MKSu mpere) was half-way there. But incidenally, ϵ_{0} and μ_{0} now have dimensions which is contrary to the c.g.s.s.based argument that D and E are identical in free pace. I wonder how long the matter will
be allowed to rest there.

Literature

received

ngineering Bulletin 3539A from Sprague describes a range of Tanite chip capacitors with onformal plated terminations. The capacitors are of the solid-electrolyte type, for use in hy-
brid circuits. The bulletin can be obtained from he UK distributor, Hy-Comp Ltd, 7 Shield Road, Assford Industrial Estate, Ashifrd,
Middlesex TW15 IAV.
WW401
Catalogue of components and instruments is Brasshouse Passage, Birmingham B1 2HR

Short catalogue describing a range of plastic film capacitors wisth values in the range 100 pF 20 HF can be obtained from Ashcroft electronTWW.
WW403 Leaflet on the 3 M Videodata communication system for installation in buildings is available.
This is nothing to do with a videotext system, This is nothing to do with a videotext system,
but is concerned with the use of coaxial cables but is concerned with the use of coaxial cables distead of multicore types to carry vide and
dato
anghout a building. The system is broadband, which allows the connexion of new quipment relatively cheaply. Copies from Mike td., 3M House, PO Box 1, Bracknell, Berkhire RGI2 1JU.
WW404

NIEW PTRODUCTIS

Sound synthesis using Walsh functions

continued from page 64
1.s.i. implementation, interested readers may like to consider the application of Clearly a microprocessor-based system could be realised enabling the software implementation of fully polyphonic musical sounds.
Effects of relative phase of harmonics
If a sinewave oscillator is set to a frequency
of 220 Hz and its passing through a variable phase shift net work with that of a second sinewave oscilator of frequency 440 Hz , the resulting
waveshape, displayed on an oscilloscope alters as the relative phase of the two components is varied. If the waveform is also istened to however no apparent change in sound is perceived by the ear, regardless of steady-state sounds are concerned, the relative phase of the individual partials in direct Fourier synthesis is irrelevant. With regard to Walsh harmonics, B. A. Hutchins, whose work first prompted my synthesis experiments using different Walsh/Fourier series for the same waveform and has demonstrated differences in tone colour which are directly attributable to the use of different phase relationships. The effect is connected with the problem
of monaural phase ${ }^{4}$ Interested readers may like to generate the triangular wave mentioned earlier using the Walsh/Fourier series than quoted, and compare the sound perceived when the alternative Walsh -0.125 wall $3,-0.063 \mathrm{wal29}$ is used

Acknowledgment. The concept of using Walsh functions for musical synthesis was first suggested by Dr C. Frederick of the search, Cornell University

References

K. Siemens and R. Kitai, Digital Walsh Fourier analysis of periodic waveforms, IEEE
rans, vol. IM-18, December 1969, p. 316. J. L. Walsh, Closed set of normal orthogona 45, 1925, p. 5 .
3H. F. Harm
by Orthogonal Functions 2nd Edition Springer-Verlag FDR 1972 pre 90 Id Editio 4 V. Lozhkin, Monaural phase effects, Soviet
Physics Acoustics, vol. 17, no. 1, July-Sept 1971.

LCR bridge

Combined inductance/capacitance, bridge 410 's three manually selecta
ble function ranges ble function ranges. On the LC
range the bridge distinguishes be tween inductors and capacitors and
gives the value and the appropriate gives the value and the appropriate
units automatically. All four functions have overridable auto-ranging through eight decades. Measuring
frequencies of 100 Hz and 1 kHz zar frequencies of 100 Hz and 1 kHz are
selected manually, but an indication is given when the component tion is tiven can be measured more
under
accurately using the frequency not accurately using the frequency not
selected. A similar indication is given for series and parallel measurement modes when the best
mode for a given component is not mode for a aiven component is not
selected. Range limits are $\operatorname{lm} \Omega$ to seccted. Range limits are 0.1 pF to
$10 \mathrm{M} \Omega, 0.1 \mu \mathrm{H}$ to 999 H,
999 F and 0.1 to 99 for Q measurements, all with a basic accuracy

Video editing interface Trigger Happy is designed to help
organisations who have a U U-matic edit pair of video recorders but who
want to use material shot on lowgauge cassette or open-reel format.
Built to a Fantasy Factory spec fication, it "bridged the editing gap between, consumer and U-matic
formats", allowing fast editing
from ${ }^{1 / 3 i n}$ feed decks (VHS from $1 / 2$ in feed decks (VHS, Beta,
Sony 3670, National 3150) direct Sony 3670 , National 3150 , direct normal edit controller.
Trigger Happy obviates the need
for a transfer first onto U -matic for a transter first onto L-matic
with a resulting loss of quality, or for tedious stop-watch editing. It
contains two counter-displays. contains two counter-displays, one
which counts control track pulses
from the feed deck the other which is preset to a number specific to the
edit controller being used. A start edit controller being used. A stan
pulse causes the U-matic edit deck recisely the right time.
of $0.25 \%, \pm 1$ digit. Six push-butcons are the only controls and the
reading, obtained within second of insertion of the component, is given on a 4 -digit 1 .e.d.
display. The unit of
is indi. is indicated by one of nine l.e.ds,
except in the case of the Q rng when all range $1 . e . d$ dis are exting
uished. Input protetion uished. Input protection, a switcha
ble polarizing voltage for electroly
tics and a socket for tics and a socket for external test
leads or fixtures are also provided. Internally, a Z80 microprocesso carries out the control functions.
An option is available with digital outputs for use with limits compa ators, and the standard version
costs £495. AIM Cambridge Ld Burrel Rd, Indust. Est., St Ives,
Huntingdon, Cambs PE17 4LF.
ww301

SALE BY AUCTION Due to a shift in concentration and production, the
machines, assembly lines and also the entire plant and business equipment of a works are available. On behalf of
the management of the firms $G T E /$ Sylvania and Schwarzwälder Electronik Werk I am selling by auction the plant of the firm.

$$
\begin{aligned}
& \text { Aussere Ailinger Strasse }
\end{aligned}
$$ Aussere Ailinger Strasse

Tisermany Tuesday, 7th July, 1981, 10 a.m. For auction:
Flow soldering plant with immersion bath, armament ines, ceiling circuiar conveyor, paint spray stations, dry
ing kills,
ultrasonic degreasing plant, assembly lines, modern electroplating equipmer, winding machines, me-insulating presses, bending and cutting automatic and pneumatic punches and presses, (Lifetestwagen) spot welding machines, rotary heat kiln, aerosol recovery
plant, freon degreasing plant, mixer, Wolfram welding equipment, continuous heating kiln, hydrogen hatch kin, 110° colour tubes as well as shelves, canteen equipment. machine tools. fork lifit truck and over 1,000 items mea Viewing: Monday, 6th July, 1981, from 10.00 to 17.00 hours; Tuesday, th July, 1981 , from 8.00 to 9.45 Wednew can be arranged by telephone call. Catalogue with over 3,000 items on request.

HORST F. G. ANGERMANN HAMBURG verigigrioberilich IMMOBILIEN, MASCHINEN UND INDUSTRIEANLAGEN 2000 Hamburg 11 . Matieniwiete 5 . 13 . 13 .

10 OUT OF 10.
 IT'S ELEKTRIK!

O Whose amplifiers sound audibly superior?
Who supplies the BBC, IBA, top loudspeaker
manufacturers international recording studios etc? - Which power amplifier modules feature high speed,
electronic protection, virtually zero TIM, negligible electronic protection, virtually zero TIM, negligible from $60-300$ WRMS?

- which amplifiers are guaranteed unconditionally
stable thermally, electrically and mechanically?
- whose reputation for back-up, service and friendly
advice is second to none?
Who makes amplifiers OEM capable of. driving motors magnets, vibrators etc?
Who offers a complete hi-fi kit amplifier at half the Who also specialisable units?
Who offers a complementary ranification?
quipment sumplementary range of ancillary

toroidal power supplies etc? amplification?
- Crimson Flektrik

If you would like further details on our complete range send a $7^{\prime \prime} \times 10^{\prime \prime}$ sae +50 p cheque or PO for our omprehensive users/application manual to: RIMSON ELEKTRIK, (WW), 9 CLAYMILL ROAD, LEICESTER Telex 34694 CRIMLEK

N specially developsed comptechnique within fully adequate heatsinks has been taken a stage further with I.L.PMOSFETS ARE MDENTICAL and PEe easier tomount Connection isvia fve pinsontheunderside. XCTTINGNEW CATEGORYBUT AREONLY AFRACTIONOF PRICESCHARGEDELSEWHERE

(Standard O-P Transistors)
CHOOSE AN I.L.P BIPOLAR POWER AMP

Model	$\begin{aligned} & \text { Output } \\ & \text { Power } \\ & \text { RMS } \end{aligned}$	Distortion Typical at 1 KHz	Slew Rate	Rise Time	Signal/Noise Ratio DIN AUDIO	Price \& VAT
HY30	$\begin{aligned} & 15 \mathrm{~W} \text { into } \\ & 4.8 \Omega \end{aligned}$	0.015\%	15V/rs	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & \mathrm{E7.29} \\ & +£ 1.09 \\ & \hline \end{aligned}$
H*60	$\begin{aligned} & 30 \mathrm{~W} \text { into } \\ & 4-8 \Omega \end{aligned}$	0.015\%	15V/4s	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 8.33 \\ & +£ 1.25 \end{aligned}$
HY 120	60W into $4-8 \Omega$	0.01\%	15V/4s	$5 \mu \mathrm{~s}$	100 dB	$\begin{aligned} & £ 17.48 \\ & +£ 2.62 \end{aligned}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \text { into } \\ & 4-8 \Omega \\ & \hline \end{aligned}$	0.01\%	15V/4s	-5,5	100dB	$\begin{aligned} & £ 21.21 \\ & +£ 3.18 \end{aligned}$
HY400	$240 \mathrm{~W} \text { into }$ 4Ω	0.01\%	15V/4s	$5 \mu \mathrm{~s}$	100dB	$\begin{aligned} & £ 31.83 \\ & +£ 4.77 \end{aligned}$

New Profile Amplifiers- Two New Series
 \title{
New Profile Amplifiers- Two New Series
 The range grows bigger...better...
}

TEST INSTRUMENTS

THANDAR-

 PRE-SCALER: TP600......... $\mathbf{4 3 3 . 1 3}$

OSCILLOSCOPE: SC 110. 159.85 | OSCILLOSCOPE: SC 110. £195.85 |
| :--- |
| PULSE GEN.: TG105....... 997.75 |

DM235, DM 350, TF040 55.69
 SC110..........................88.63 40 KV Probe $\mathbf{E 3 4 . 4 4}$ Probe (For SC 1 10, TF040, TF200)

 No V.A.T. on manuals All prices include V.A.T. For
 All. prices correct at 1-4-81. E
\& OE.
\qquad
be in the LEADER and TMK ague 30 including
Cash with order

DAROM SUPPLIES

Open. Monday to friday 9 a.m.-5.30 pom. WARRINGTON WA RAY CHESHIRE

Telephone: (0925) 64764

B. AMBER ELECTRONICS ${ }_{5}$ COMMUNICATIONS HOUSE

RADIO TELEPHONES

 Pye Westminster W30M low band, stats only no
control sear, complete and in in ord condition Pye Bases Station F30AM lOw and high band, with and
without remote and TTT. Priciest from
e220.00

 Pye Olympic M201 Multi Channel AM sets complete t but
less mike, speaker and cradle.
chem Pye Reporter MF6AM High band mobile, very good
condition,
Fils. 00 ea. Pye Motoohones MF5AM high band and low band
available. Sets complete and in good condition .. $E 55.00$ Pye Cambridge AMMO Dash Mount sets complete and
in good condition but untested
E40.00

CB ACCESSORIES
MOBILE ANTENNAS

[^0]

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equipment for processing all types of picture tubes, range of equipment for processing all types of picture tubes,
colour and mono. Standard or custom buith units for estab--i
lished or lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Full training courses are individuälly tailorea to customers. Full ruining
requirements. For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
 01-684 1422/01-684 0246

THE COMPLETE SOLUTION TO STRAIN GAUGE AMPLIFICATION

- COMPLETE WTH BRIDGE SUPPL
- COMPLETE WITH ALL ADJUSTMENTS (SPAN

ZERO BRIDGE (NO EXTAGE

- COMPLETE (NO EXTERNAL COMPONENTS NEEDED

The series SGA 700 provides the complete solution to Strain Gauge Amplification. Simply connect the bridge,
conneet the power supplies and the SGA 700 does the est. It also offers high stability. Miniature size, good
supply rejection -in fact aspecification as good as many instruments many times the price and size.
CIL. CIL EELectronics Litd
14

wW - 052 FOR FURTHER DETAILS

WW-069 FOR FURTHER DETAILS

New KONTAKT Sprays

for the Electronics 8 Electrical Industries

KALTRON 60

 It is chenicaly
nontitammable

Also NEW

PRINTER 66
Spray cleaner for type wheel printers, matrix primers and chain printers. Can
also be used for cleaning no
SCREEN 99
SCREEALI
T.V. Screens.
T.
VASELINE SPRAY 701
For use in communications engineering and construction of antennae.
Proved successful as corrosion inhibitor for cable clamps, connecting screw Proved successtul as corrosion inhibitior for cable clamps, connecting screeve
oints etc. Application from spray can with capillary tuee is clean and simple.
Distrite

Special $_{81}$ Products Distridily, London, wiv oHL
Tel: $01-629$ 9556: Cables: Spaciprod, Lonston, w. 1.
Telex: 265200 (answarback RACEM)
WW - 059 FOR FURTHER DETALLS
whish

Digitel Video Noise Measurement System

 The Digitel D4060 Noise Measurement System offors an accurateand oconomical mathor of measurning video signal to noise ratio on
broadcaat or industrial TV TVysems.

£700+VAT

- Measures signal to noise ratio down to 65 d ds SN
- Field interval SNR measurements are possible with the
- SNR measurement is possible in the presence of sync pulses, some
- Visul disiar on oscilosco
- Visual display on oscilloscope ensures measurement confidence

WW - 030 FOR FURTHER DETAIL

Sowter Transformers
 With 40 years' experience in the design and manufacture of several hundred thousand tranformers

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAMEIT! WEMAKEIT! OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone
Splitter/Combiner transformers, Input and Output transformers, Direct Injection transformers for Gui-
tars. Multi-Secondary output transformers, Bridging
transformers transformers, Line transformers, Line transtormers to
G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transfor-
mers, Audio Mixing Desk transformers (all types) mers, Audio Mixing Desk transformers (all types),
Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transsormers for Transistor and Valve Amplifiers up to
500 watts . Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifier to to 100 volt line transformers (from a few watts up to 1,000 watts), 100

E. A. Sowter Ltd.

The Boat Yard, Culfingham Road, lpswich IP1 2EG, Suffolk, P.O. Box 36 , Ipswich IP1 2EL, England
ww-010 FOR FURTHER DETAILS

WIRELESS WORLD JULY 198

WIRELESS WORLD JULY 1981

For only $£ 89$ +

TO ALL ORDERS O. ALL ORT WHEER
ETEMS MAREE
ITES CALLERS WELCOLDED

ELECTRO-TECH COMPONENTS LTD. 64 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

Happy Memories

4116	200 ns	$\mathbf{£ 1 . 7 0}$
2114	200 ns	$\mathbf{£ 2 . 9 5}$
2708	450 ns	$\mathbf{£ 3 . 3 5}$
2114	450 ns	$\mathbf{£ 1 . 9 5}$
$\mathbf{2 7 1 6}$	5 volt	$\mathbf{£ 3 . 7 0}$

Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, £19.95 per 10

Low Profile I.C. Sockets by "Texas" $\underset{\substack{\text { Pins } \\ \text { Pence }}}{ }$ Sockets by
81416182022242840
101112161720212837 Memory Upgrade Kits for Apple, 2020, TRS-80, etc., from $£ 13.60$, please phone. Quantity prices available on re-
quest. Government and Educational Orders welcome. Trade accounts opened
All prices include VAT. Postage FREE on orders over $£ 15$, otherwise add 30 p
Access and Barclaycard welcome
HÄPPY MEMORIES, DEPT. W.W.
GLADESTRY, KINGTON
HEREFORDSHIRE HR5 3NY
Tel. (054422) 618

P.\&R. COMPUTER SHOP

EPSON MX-80 80.GPs DOT MATRIX PRINTER WITH SPECIAL INTEM KEYBOARDS, ASR, KSR, TELETYPES VAPER ASCP KEYBOARDS, ASR, KEADERS, PAPER TAPE PUNCHES, SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime \prime} 6^{\prime \prime \prime}$ POWER
SUPPLIES, STORE CORES, TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: 1pm.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD PHONE MALDON
wW - 024 FOR FURTHER DETAILS

CLEF electronic MUSIC

GOODS DESPATCHED WITHIN 7 DAYS OF
RECEIPT OF ORDER
FOR SINGLE AND SMALL OUANTITY ORDERS.

* Customer design ennouiries invited. quantity price list avallable.

* TO ORDER Enclose cheque Postal Order/Money Order payable tol.L.P. Electronics Ldd or
. mitrovalut marshall.

जAME...
$\Psi_{\text {p.C. } \mathrm{B} \text { MOUNTING }}$ LAMINATED TYPES

ABOUT THE NEW LAMINATES

 To:IL. P. ELECTRONICS LTD. CANTERBURY CT2 7EP Please supply Transformer(s)..................(s)....
encloseCheque \square Postal Orders \square International Money Order \square Debit my Access/Barclaycard Account No

BULK EPROM PROGRAMMING

 2716／2532／2732（sing．eral！）EPRoMs may be selected without
hardware or personality card changes． hardvare or personality carad changes．
PRICE $5545+$ VAT．Postage paid
BULK EPROM＂Fsiocont
ERASING

MODEL UV141 EPROM ERASER
14 EPROM capacity
Fast erase time
Fast erase time
Buit－in $5-50$ minute tim

Satety interlocked to pre
Rugged construction
MiNS
MINS \＆ERASE indicators
Price $£ 78+$ VAT postage paid
MODEL UV140 EPROM ERASER
MODEL UV140 EPROM ERASER
Similar to MOdel UV141 but without timer．Price $\mathbf{£ 6 1 . 5 0}+$ VAT
post paid

BULK EPROMS

 $\begin{array}{llllll} & £ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$ Postage and Packing is included in all prices．ADD VAT at 15% ．
All our EPROMS are manufactured by leading companies and are
Iilly guaranteed，branded and to full specification． WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEN
OFFICIAL COMPANY ORDERS／CHEQUES TO： Overseas customers，please telex or write for quotation and

GP INDUSTRIAL ELECTRONICS LTD． Unit 6，Burke Road，Tornes Industrial Estate，Totnes，Devon
Telaphone：Totnes（ 0803 ） 863360 sales， 863380 technical DISTRIBUTORS REQUIRED－EXPORT ENOUIRIES WELCOME WW－ 039 FOR FURTHER DETAILS

The new name in power operational amplifiers

Apex Microtechnology of Tuscon Arizono，whose products are avallable

High voltage－up to 280 volts output swing PA 08 PA 08A－Fet input PA 83 PA 83A－High accuracy Applications Features
－High volitage instrumentation owide supply range $- \pm 15 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$ －Programmable power supplies OProgrammable output current limit
Test equipment \quad Low bias current －Protected output stage－Thermal shutoff －Fully protected input－Up to $\pm 150 \mathrm{~V}$
PEX
山tech
Send for full Senduct listings of
Apex Microtect＇s Apex Mi
exciting exciting
product range

If you are interested in a particular article／
special Feature or advertisement published in
special Featur
this issue of

WIRELESS WORLD

why not take advantage of our reprint service．
Reprints can be secured at reasonable cost to
your own specifications providing an attractive
your own specifications providing an attractive
and valuable addition to your promotional
material．（Minimum order 250．）

For further details contact
Martin Bloomfield，IPC Electrical－Electronic Press
Ltd．Phone 01－661 3036 or simply complete
and return the form below

To Martin Bloomfield，Reprints Department
Quadrant House，The Quadrant

interested in

copies of the article／

advertisement headed
WIRELESS WORLD

un page（s）
in the issue dated ．．．．．．．．．
Please send me
return of post．

Name

Company

Address

WIRELESS WORLD JULY 1981

HEAVY METAL PLINTHS Post E2 siver gor nish．Size 16×13 3adin
 PIONEER and J．V．C．atc．TEAK VENEERED PLINTH
$19 \times 14 / \mathrm{zin}$ ．with Pastic Cover $173 / 4 \times 1$ in $£ 10.50$
 BSR SINGLE PLAYER DECKS

 £20 Post E_{2}
 BSF raady cut mounting board．Only E1 extra． E^{17} Post E2

 ELAC HI－FI SPEAKER Bin．TWIN CONE E5．95

10 in．TWIN CONE $£ 7.95$ Poat 99 P POTENTIOMETERS Carbon Track
 EMI $131 / 2 \times$ xin．LOUDSPEAKERS

$$
\begin{array}{ll}
\begin{array}{l}
\text { 3or8 ofm. } \\
\text { Poat } 9.50
\end{array} & £_{\text {Post } 199 p}^{10.95}
\end{array}
$$

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

 SEND/PHONE FOR EXTENSIVE Special offer

74LS, 6800, 6502, Z80, 6809
CONNECTORS, CRYSTALS, SWITCHES, DISK DRIVES, MEMORIES
"LOW PRICES"

WW - 058 FOR FURTHER DETALLS

Toroidal Power Thansformers

WIRELESS WORLD JULY. 1981

LOW VOLTAGE POWER DRILLS AND ACCESSORIES
 One of the combinations stage which b Sf Dillse and Accessories.
Prices from E8.34 (Reiliant Drill oniy) inc. VAT and Postage.
Send 25 for Coratogue.
A. D. BAYLISS \& SON LTD. A. PFERA WORKS, REDMARLEY Toll. Bromesberrow (053 181) 273 Stockists: Richards Elletric, Gloucester

WW - 073 FOR FURTHER DETAIL

CHILTERN ELECTRONICS
VIDEO MONITOR BARGAIN

monitiors brand new in original boxes ata arraction of their orige pronifes cost:

ASCII KEYBOARDS
 TELETYPES
 KSR Model 33 E65. ASR Model 33 f 120 with pedestal.

DEC PDP8 COMPUTERS
 ICL TERMIPRINTERS
 CENTRONICS LINE PRINTERS DISKS \& MAGTAPES

 WW -066 FOR FURTHER DETAILS

Children know more about computers than their parents. True or False?

Well, true enough for Practical Computing to propose a twinning scheme for schools and businesses, bringing pupil brainpower to bear on business problems. Read all about it in the July issue:

Also in this issue of Practical Computing:
Reviews of Explorer 85, a modular system which can configuration. And Gemini - a large capaciy
large capacity business
Prokit - a package of subroutines to ease data entry on the Pet.

How a freight forwarding company started with an Apple but ended up with an IBM mini.
Business software - first of a four-part series on how o write your own.
ducation. How to write a Pet program to provide a framework for multiple choice tests.

All this plus the usual Apple, Tandy, Pet and ZX8O advice pages in the July issue of Practical Computing.
Price 80 p. At your newsagent or complete the coupon

WIRELESS WORLD JULY 1981

STABILISED POWER SUPPLIES
 D TO A CONVERTERS

FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing. current limit protection. 1164×130 $\times 38 \mathrm{~mm})$, with manual. $\mathbf{E 1 2}$.
 COUTANT OAR: Op. amp, pus, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{~V}$
at 100 mA . $138 \times 80 \times 45 \mathrm{~mm}$). 12 ea. or 2 for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection.
$374,374 \mathrm{R}$
$300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
$375500 \mathrm{~V}-1 \mathrm{KV}$ at 6 mA .
37666 V .
$375660 \mathrm{~V}-1 \mathrm{KKV}$ at 10 mA .
Model 374 R has reversible polarity op. All others have nega-
alt tive polarity op.
All models $£ 40$.
Sout inoto multiplier tubes available
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{~V}$ IP. Four separate ops:
5 V at 3 A stabilised with current limit, overvoltage crowbar protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ a 500 mA stabilised
12 or 24 V

SPECIAL OFFER. 10 MFD 500 V ECC 20p ea., $10,000 \mathrm{MFD} 16 \mathrm{~V}$
Mullard 35 p ea. 3300 MFD 40 v Muliard 35 p ea. $10 \mathrm{uF} / 63 \mathrm{v}$ Mullard 35 p ea., $3,300 \mathrm{MFD} 40 \mathrm{v}$ Muliard 35p ea. 10山
MIMA polyester $10 \% 50 \mathrm{p}$ ea. Large quantities available.
ELECTROLYTIC CAPACITORS. Very large stock holding
Mostly IT EN1212m EN1235 types. Please send for our electrolytic list, e.g.: $220 / 50 \mathrm{VA}, 2200 / 25 \mathrm{R}$,
$470 / 25 \mathrm{R}, 4700 / 25 \mathrm{~A}, 470 / 50 \mathrm{~A}, 2200 / 100 \mathrm{CAN}$.
CAPACITORS-DISC CERAMIC
, mostly ITT. Many high-voltage 210s de.g. in $1 \mathrm{KV}, 2 \mathrm{n} 22 \mathrm{KV}, 10 \mathrm{OL} 2 \mathrm{KV}$.
$220 \mathrm{KV} 1 \mathrm{KV}, 1 \mathrm{n} 53 \mathrm{KV}, 4 \mathrm{n} 71 \mathrm{~K} 5 \mathrm{~V}$.
Please send for our ceramic capacitor lists.

 gain 0.5% diff. phase shift 0.5° types rad 802
Unused. Ex-maker's. Dack.
SPECIAL OFFER PRICE: $£ 20$
SPECIAL OFFER PRICE: £20
TRANSFORMERS:

5-0-5VA00mA		
$6-0-6 \mathrm{~V} 100 \mathrm{~mA}$	${ }_{\text {f1.25 }}$	${ }^{\text {AB }}$
$8.0-8 \mathrm{~V} 400 \mathrm{~m}$	£1.25	A
$9-0.9 \mathrm{~V} 3 \mathrm{~A}$	£3.00	AB
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}^{\circ}$	£2.00	AB1
12 V 130 mA	80 p	AB1
12 V 1 A 5	£1.25	A
$0-12,0-1296 \mathrm{VA}$	£8.00	A
15 V 100 mA	£1.00	A
17 V 300 mA	£1.50	
20-0-20 400mA	£1.80	A
$22-0.2250 \mathrm{~mA}$	£1.00	
24 V 100 mA	¢1.00	
24 V 250 mA	¢1.50	
30V 250mA		

AUTO TRANSFORMER by Gardners. Part No. SA207,
2 K watt. New and boxed. $£ 25$ ea.
RESISTORS: Over 2 million
in stock at last count. CARBON FILM $1 / 4 \mathrm{~W} 5 \%$ E12 range 1RO-12M.
2 p ea. $£ 1 / 100, \mathrm{E} 6.50 / 1,000$. METAL OXIDE/FILM: Most values in E24 range, $1 /(\alpha-2 W 5$,
2 or $1 \% A$ few values in 0.1%
to olerance available.
WIRE WOUND: ORI-100K 3-
200W. A selection of mains 200W. A selection of mains
droppers available. Good dropers available, Good
selection of metal clad high
powertypes selection of
powertypes.
ROTARY SWITCHES
Over 30 different types avail-
able.
able.
MINIATURE LATCHIGG
(A division) of Honeywell
Ltd. 3 amp 250 v a Part No.
LId., 3 amp 250 a.c. Part No.
8 N 3011, f1 ea.Miniature momentary 1 Pc $/ \mathrm{O}$ switch mo
mi
Micro. 3 amp 250V A.C. Part
Micro, 3 amp 250v A.C. Part
No. 8 N 1021 .
FND 500, 7 segment $\begin{aligned} & \text { LED } \\ & \text { display. }\end{aligned}$ ea
SPECIAL
SC65 $1 \mathrm{M} \Omega$
OFFER: Fillet
0.1% metal filim
resistors
CERMETPRESETS 15 p ea. MINATURE AB16 POTS
PCB mounting 16 mm 6
100 K LOG DG
220 KOGDG
100 KINSG
10A 250 V AC ILLUMINATED
Red, RPCKER SWITCH $26 \times 30 \mathrm{~mm}$ rect.
Snap-in type 75p
16A 250 V AC ILLUMINATED
ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p

AB7 $134 \times 64 \times 38 \mathrm{~mm}$
AB8 $102 \times 102 \times 38 \mathrm{~mm}$
AB9 $102 \times 57 \times 38 \mathrm{~mm}$ ABB $102 \times 50 \times 3 \times 38 \mathrm{~mm}$
ABE
AB10 $102 \times 133 \times 3 \times 3 \mathrm{~mm}$
AB $102 \times 64 \times 51 \mathrm{~mm}$ B1276x51x25mm 70 p
70 p
70 p
70 p
85 p
70 p

$\mathrm{f1.00}$ | AB16 $254 \times 179 \times 76 \mathrm{~mm}$ |
| :--- |
| $A B 17$ |

 BLUE REXINE COVERED
ALUMINIUM BOXES

 RLACK PLASTIC BOXES | $75 \times 50 \times 25 \mathrm{~mm}$ |
| :--- |
| $80 \times 60 \times 40 \mathrm{~mm}$ |

$80 \times 60 \times 40 \mathrm{~mm}$ $9 \times 70 \times 40 \mathrm{~mm}$

$30 \times 70 \times 40 \mathrm{~mm}$ $115 \times 75 \times 30 \mathrm{~mm}$ $110 \times 90 \times 45 \mathrm{~mm}$

$110 \times 90 \times 45 \mathrm{~mm}$
$170 \times 10 \times 5 \mathrm{~mm}$
$200 \times 120 \times 80 \mathrm{~mm}$
£1.18
$\mathbf{£ 1 . 6 5}$
$\mathbf{£ 3 . 5 5}$
LICON ILLUMINATED SWITCHES
$01-800$
Rectangular Snap-in $\begin{array}{ll}\text { Series. } & \\ \text { 2PCO Latching } & \mathbf{£ 1 . 5 0} \\ \text { 2PCO Momentary } & \mathbf{£ 1 . 5 0}\end{array}$
 Lenses available in red or
White only.
MINIATURE PUSH-BUTTON SWITCHES
PTM 20p, PTB 25p, PT M/B 40D.
HEAVY DUTY ROTARY
 STEREO RECORD/REPLAY
CASSETTE HEADS
f1.00 WIREWOUND POTS
10R-10K by A.B., Colvern,
etc. $11 / 2 \mathrm{~W}$ 40p, $3 W$. $60 \mathrm{p}, 5 \mathrm{~W}$ 80p. TRIMPOTS TRIMPOTS
10R-500 $10 / 20$ turn. $11 / \mathrm{in}$.
or $3 / 4 \mathrm{in}$. rectangular 60 p ea. or $3 / 4 \mathrm{in}$. rectangular 60 p ea.
JEAN RENAULD Many types available, e.g
4×2 PCO $\begin{aligned} & 4 \times 2 \mathrm{PCO} \\ & 6 \times 2 \mathrm{PCO} \\ & 5 \times 2 \mathrm{PCO}\end{aligned}+2 \times 4 \mathrm{PCO}$ $40 \times 30 \times 23 \mathrm{~mm} \mathrm{~m}_{\mathrm{d}}$ White/red scale on black
background. Brand new.
60 ea.

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of
(and P\&P). Minimum Mail Order $£ 5+P \& P+$ VAT. Government departments, schools, colleges, trade and export welcome.

It's easy to complain about advertisements.

MiEASURE URTO YOUR NEEDS WITH GROTEGRI

DC-10MHz
Bandwidth

$5 \mathrm{mV} / \mathrm{div}$ sensitivity 200 ns/div sensitivivity to 0.2 s div timebase to 0.2s/div Triggering to 201
5" Bright CRT

Triggered and
automatic sweop
Regulated internal
supplies
10×8 div display COMPONENT TESTER £ $£ 65^{*}$

If your need falls between 10 MHz and 30 MHz then we can measure up to it, including battery operated models Every scope in the range is designed to meet our basic 3035 has a full 10 MHz building in that extra benefit. The 3035 has a full 10 MHz scope specification, plus a Com-
ponent Tester which displays the characteristics of both ponent Tester which displays the characteristics of both
active and passive components. While the 3337 is a complete 30 MHz instrument with signal delay, plus a 10KV CRT for a bright display normally reserved for much wider bandwidth scopes.

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s) entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Pléase Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription AGENTS

 cisisicion bers

 IIIII Ind: Raumakitio or,

 A msterditam 1004
 ansin Ext, Modomo

\section*{| $\begin{array}{l}\text { Postage } \\ \text { will be }\end{array}$ | $\begin{array}{l}\text { Do not affix Postage Stamps i f posted in } \\ \text { Gt Britain. Channel Istands. N Ireland }\end{array}$ |
| :--- | :--- |} paid by Licensee

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD Reader Enquiry Service
429 Brighton Road
Surrey CR2 9PS

Enquiry Service for Professional Readers	WIRELESS WORLD Wireless World, July 1981 WW 167		
WW WW.... WW...	Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.		
ww.... ww.... ww			
ww.... ww.... ww	Name		
WW:... WW.... Ww	Name of Company		
WW.... WW.... WW	Address		
WW WW.... ww			
WW WW... Ww			
WW.... WW.... WW	Telephone Number		
Ww.... Ww.... Ww			
www.... ww... ww	PUBLISHERS USE ONLY	A/E	
WW.... ww.... ww	Position in Company		
ww.... ww.... ww			
ww.... ww.... ww	Nature of Company/Business		
ww. ... ww. ... ww	No. of emnloyees at this establishment		
ww.... Ww.... ww	I wish to subscribe to Wireless World \square		
WW. ... WW WW	VALID FOR SIX MONTHS ONLY		

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

> WIRELESS WORLD
> Reader Enquiry Service
> 429 Brighton Road
> Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, July 1981 wW 167

UK subscription rates

 USA \& Canada subscription rates1 year: $£ 10.00$
Overseas 1 year: £13.00
Please enter my subscription to Wireless World for 1 year

Name.

Address.

BEFORE

AFTER!
PUT A SMILE BACK ON YOUR OLD AVOMETER!

Send it now for estimate, repair or recalibration

Quick turn round on estimates/repairs

Large stocks of new AVOMETERS

Avo Sales and Service

Farnell International

Farnell International Instruments Ltd., Sandbeck Way, Wetherby West Yorkshire LS22 4DH
Tel 093763541 Telex 557294 Farist G

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 240.00+$ VAT.
incorporating all the latest high technology Ensures British leadership in the low cost high developments to bring you all these 'outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- $2 m \vee$ sensiivity on both channels.
- Add and invert facility
- Probe compensation.
- Push button X-Y.
- Trace locate
- $10 \mathrm{MHZ}(-3 \mathrm{~dB})$ over full display.
- Complete with probes.
performance oscilloscope market.
Distributors required in certain countries
 wW - 028 FOR FURTHER DETALLS

AMATTER OF LIFE OR DEATH

When an accident occurs involving severe electric shock, people on the spot may be suffering from a kind of shock themselves. The realisation that one has literally only seconds to
save a life can itself be momentarily paralysing. save a That's why Electrical Review has completely re-styled its Electrical Shock Chart. The new chart, prepared in consultation with St. John's
in red, and explains and illustrates the actions to be taken so clearly that they can be grasped instantaneously even in a crisis. It also includes vital instruction on what to do if the casualty
does not respond to artificial respiration-with section on external heart compression. Action this second could save a life. Post this coupon NOW

WIRELESS WORLD JULY 1981

PRINTED CIRCUIT MOTORS

 AUDIO 8 RF SGMAL GENERATORS TAYLOR 62 A A AM /FM). AVO HF134.
 LABMZRATORY OVENS. - Gallenkamp 3 Cu.

P. F. RALFE ELECTRONICS

TEL: 01-7238753

RANK KALEE 1742 Wow 8 flutter Meter.
AIRMEC 314 A Voltmeter. 300 mV (FSDD)-3OOV

 HEWLETT-PACKARD tuned amp \& null detector.
HEWLTT-PACKARD 331 D Distortion Meter RADIO METER Distortion Meter BKF6 $\mathbf{E 1 2 5}$.
TEXSCAN VS-6EEVISION TEST EQUIPMENT

EEEEUPMENTDM64 Storage scope.
OYNACO D7TOO.
HEWLETT-PACKARD 122A SB. Audio.
AIIMEC 79.4 Beam Display Scope.
AIRMEC 279.4 Beam Display Scope.
TKTTONIX $5814.545 \& \& \&, 544,661,515 \mathrm{~A}$.

DCP POWER SUPPLIES

sPECLAL PURCHASE

LAMBDA POWER SUPPLIES

 MODULATION METER

85 pence each in 1,000 lots! While stocks last

HI FI YEARBOOK AND HOME ENTERTAINMENT 1981	
	S
	-
ORDER FORM	

267 \& 270 ACTON LANE, LONDON W4 5DG.
$01-7471555$
$01-9946275$

STABILISED POWER SUPPLIES
FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing, current limit protection. 1164×130 FARNELL $7 / 3$ SC: $120 / 240 \mathrm{~V}$ IP. Adjustable current limit. Remote sensing. (188 $\times 96 \times 93$
15 V at 2 A or 30 V at $1 \mathrm{~A} . \mathrm{E} 15 \mathrm{ea}$.
COUTANT OA2: Op. amp, psu, 120/240V IP. Dual Op. 12-15v COUTANT OA2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual
at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm})$. $£ 12$ ea. or 2 for $£ 22$.
BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current
$374,374 \mathrm{R}$
$300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
375500 V - 1 K 5 V at 6 mA .
$376660 \mathrm{~V}-1 \mathrm{KV}$ at 10 mA .
Model 374 R has reversible polarity op. All others have negative polarity op.
All models $£ 40$.
Al models $£ 40$.
Some photo multiplier tubes available.
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{VIP}$. Four separate ops:
5 V at 3 A stabilised with current limit, overvoltage crowbar protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ at 500 mA stabilised
12 or 24 V Unstabilised. $(125 \times 80 \times 275 \mathrm{~mm})$) $£ 30$.
SPECIAL OFFER. 10MFD 500 V ECC 20p ea., 10.000 MFD 16 v
Mullard 35 p ea., $3,300 \mathrm{MFD} 40 \mathrm{v}$ Mullard 35p ea. $10 \mu \mathrm{FF} / 63 \mathrm{v}$ Mullard 35 p ea., $3,300 \mathrm{MFD}$. 40 v Muliard 35 p ea. $10 \mathrm{\mu F} / 63 \mathrm{v}$
MIMA polyester $10 \% 50$ p ea. Large quantities available.
ELECTROLYTIC CAPACITORS. Very large stock holding.

CAPACITORS-DISC CERAMIC
ITI. ITT. Many high-voltage

Please send for our ceramic capacitor lists.

PYE HEAD CLEANING CAS-
SETES. Brand new or boxed, 50p ea.
CASSETTE DECKS: With stereo heads, mechanically complete, but with no
electronics. Smart black
modern finish.
E5.00 modern finish. $£ 5.00$
We have VERY LARGE

 Brand new and boxed. ery large stocks, PT10, PT15 enclosed types. Pleasé
send for send for our prese
values $100 \mathrm{~S}-5 \mathrm{M}$

HEAVY DUTY
KEYSWITCHES
2P $12 \mathrm{KE60VAC}$
8 P 10 A 380 VAC
8P 10 A 12 A 800 V AC
19 A
ROTARY POTS Good range stocked. Please phone your requirements.
Large stocks of the following:
100 K Lin $\begin{array}{ll}100 \mathrm{~K} \text { LiN + push switch } & \begin{array}{ll}\text { 30p } \\ 22 \mathrm{~K} & \mathrm{LOG}+\text { switch }\end{array} \\ 30 \mathrm{p}\end{array}$ ${ }_{2}^{2 K 2} 2 \mathrm{LIN}$ CANNON 15 w sockets, ${ }^{30 \mathrm{p}}$ Daiss 60 p ea. Also Cannon

WELWYN STRAIN GAUGE WELWYN STRAIN GAUG
(Precision micro-mea
surements). Romulus Mich surements). Romulus Miche-
gan tye MA-09-500B4-350. Our price $£ 1.25$ ea. List price able.
$3 / 1 \mathrm{~S}$ Turn Ceremet Trimpot
$100 \mathrm{~K} \pi .1$ off price, 20p... B\rangle Beckman \& A.B. TEDPONT HEATS off, price,
TViscoup ea. 1 .
Disc Discount on quantity.
We have the following Wel
wn. 1% Resistors available, wyn $.1 \%$ Resistors available,
$2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Meg}$. Price 25p ea. Type 4802 . BURROWS CONNECTO (LH) 1701, 41 c, , 20p; Burrows
Connector (R) $1201,4 \mathrm{LC}$ 25p. Large quantities avai METWAY P.C. CONNECTOR, M-way type P95/3DS, 10 p ea.
ITT TMPKIElectronic ther
TMEM ITW TEMPKIIT Electronic the
mostat ZBI. 5669 . Brand new. ${ }^{\text {£4 ea. }} 4$-WAY DPDT AND 5 -WAY 4-WAY DPDT AND 5-WAY
DPDT DLI SWITCHES bY
ERG Components and CTS ERG Components and CTS.
Gold contacts $£ 1$ ea. Brand new and boxed.
BUZZERS, 6 v and $12 \mathrm{v}, 50$ p WiRE ENDED NEONS W2OFE1,000.
SPECALOFFE
Switch by C.
SPECALAL OFFER. Mini-toggl
switch by C. \& K.3 Pc/o. switch by C. \& K., 3 Pc/
Long dolly or shot, 50 p ea.

D TO A CONVERTERS

By Micro Consultants Ltd. 50Ω cable drive op. Linearity
 gain step 50 dift. phase shift 0.5° types rad 802 and MC2208/8.
ghat
Unused. Ex-maker's pack Unused. Ex-maker's pack.

JUST IN!

SEMICONDUCTORS, BRAND NEW AND BOXED..TEXAS, ANTI, SG'S, MULLARD , YU'VE NEVER SEEN BEFȮRE

INTEGRATED CIRCUITS

Type	Stock	Each	Type	Stack	ach
1	400		7415138	7,000	${ }^{20}$
7402 7405	4,400 5	. 10	74LS157	13,800	. 34
7420	1,200	10	74LS175	4,800	. 68
7425	4,500	20	74LS192	29,200	. 50
7473	1,500	20	74LS193	6,650	. 65
7475	10,000	. 25	74LS221	30,800	. 65
7486	6,200	25	74LS251	600	. 65
	7,200	1.55	74LS273	10,000	. 75
74123	15,150	45	74LS290	40,300	45
25	2,000	26	74LS293	35,000	45
74154	1,900	. 60	74L-5390	2,100	65
75452	19,700	40	UA709	25,400	. 25
74LS00	39,600	10	*TMS1000	18,655	1.00
744501	11,200	10	TMS4036	3.400	00
74LS02	2,650	. 10	- 5883	12,100	00
74LS10	14,500	. 10	MC3491	6,000	. 00
74LS11	53,300	20 12	40085BPC	23,000	POA
74LS73	18,600	20			
74LS75	4,750	25	* 4-bit Com	parator	
TRANSISTORS					
Type	Stock	Each	Type BC184L	Stock 248.000	Each
2N1306	+10,400	POA	${ }^{\text {BFR86 }}$	248,400	OA
	12,500		BD240C	16,200	22
FRB876	7,400	POA	BCY70	51,800	POA
FRB877	17,600	POA	2T3	149,000	88
R1076	7,350	POA	ZTX542K	128,000	. 08

YES, IT'S TRUE! . . AND with do-it-yourself DISCOUNTS
PER ITEM: 100 up, $10 \% ; 1000$ up, $25 \% ; 10,000$ or more, LEASEMiNG... note: AT THESE PRICES, M
£10... plus p. \& p. and V.A.T.

$\begin{array}{ll}\text { resistors } \\ \text { CERMET PRESETS } \\ & \\ \text { 20p ea. } \\ \text { 15p ea. }\end{array}$ MINATURE AB16 POTS
PCB mounting
100 KLOG DG
220 K LOG DG
220 K LOG DG
10A 250V AC ILLUMINATED
Red, DP ST $26 \times 30 \mathrm{~mm}$ rect.
Rnap-in type Snap-in type
16A 250 V AC ILLUMINAT
ROCKER SWITCH (Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30p

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further details send for our ists and retail price catalogue, phone or visit our shop. All prices are exclusive of
(and P\&P). Minimum Mail Order $£ 5+$ P\&P + VAT. Government departments, schools, colleges, trade and export welcome.

Appointments

Advertisements accepted up to 12 noon Monday, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre (min .3 cm) BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.) PHONE: JAYNE PALMER, $01-6613033$ (DIRECT LINE)
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim
Tunbridge Wells,
Kent. TN4 8AS.
Kent. TN4 8AS.
Tel. 089239388
TJB
Name
Address
Tel: 089239388
\qquad ….

Service \& Installation Engineers

An Electronic Defence Systems company in the South of England is seeking Service \& medical electronic equipment, both at home and abroad.
They are looking for adaptable self-reliant engineers who are prepared to spend periods
of up to approximately four months overseas. The successful candidates will have a good of up to approximately four months overseas. The successful candidates will have a good
knowledge of smi-conductor circuitry, be qualificd to H.N.C. or equivalent standard and "ill preferably have worked on such equipment as modern high- power radar systems. Please write quoting ref. WW/386 giving full details of career to date, listing any
companies to whom you do not wish your application forwarded, to: John Maines, Riley Advertising (Southern) Limited, Old Court House, Old Court Place, ensington, London, W8 4PD.
A member of the Rex Stewart Group
ONDON BIMMINGHAM BRIITOL EDINUUGH GLASGO
LONOON BIRMINGHAM BRIITOL EDINBUGGH GGASGOW
LVERPOL MANCHESTER NEWCASTLE NOTTINGAM PERTH

COLOUR VIDEO SERVICES

have a vacancy for an enthusiastic

BROADCAST VIDEO ENGINEER

 WR is essential. Knowedge of in. "c ormate to
would be verr useful. There would be opportunities to gain experience on flying spot telecine and other equip-
ment on the station. Salary bewvenn 6,427 and $£ 8,246$ ment on the station. Sa
Applicantsp please telephone:
Mr. F. H. Weine
$\begin{aligned} & \text { on } 01-486 \text { 2881. or frite toin } \\ & \text { OLOUR VIDE }\end{aligned}$
22 2.25 Coorman Ciose, Baker Street, London, w. 1 telephone fief ins andallation with and servirucdicwarkes qualifified by candidam. . dhould be prepared to travel widely in the course of
these duties, a mobile workshon peing
life assurancence plus generous roludecation antributory

GERRARDS
10 Argyll Street, London WIV 2BQ. Tel: Ol-437 6816

HUMPHRIES VIDEO SERVICES
SENIOR ENGINEER
ENGINEERS
TECHNICAL OPERATORS

The Technical Manager
HUMPHRIIS VIDEO SERVICES LTD.
32 Eveline Road, Mitcham, Surrey CR4 3LE (1155)

ELECTRONICS TECHNICIAN

URGENT

ELECTRONICS ENGINEERS FOR HUNDREDS OF VACANCIES INCLUDING.

Charles Airey Associates

Blectronics

 R\&D£7,999

Join us in the forefront of technology

GOVERNMENT OF DUBAI DUBAI RADIO AND COLOUR TELEVISION TELEVISION ENGINEERING DEPARTMENT

Applications are invited from suitably qualified Engineers with several
years'
'proven experience in the field of television Engineering to fill the

1. TELEVISION STUDIO

 ENGINEER

2. V.T.R. ENGINEER

To be responsible to the Chief Engineer for the maintenance of all $V T R$
Equipments within the Studio Complex and Outside Broadcast Unit.
 Candidates should preferably have experience in AMPEX 12008 ,
VPR2 and VPR20 machines.
Salary shall be sterling 113,000 - $£ 14,000$ depending on experience.

3. LIGHTING DIRECTOR

To be responsible to the Chief Engineer for the lighting of all drama and
light entertainment productions and shall act in the capacity of Technical Salary shall be sterling $£ 17,000-\mathrm{E} 18,000$ depending on experience.

Salaries quoted are annual and are tax-free. The initial contract shall be
tor a period of 2 years and further details regarding conditions of sevice
 Applications, which shall be treated with the strictest confidence, should
be sent, accompanied with full c.v. and U.K. telephone contact, to: Chief Engineer - Television
DUBAI RADIO AND CoLUR TV Dubai, PUnited Arab Emirates (1179)

Take your pick

HF-VHF-UHF
Microwave Optics \& Acoustics A challenging and full career in Government Service Candidates, normally aged under 30 , should have a good honours degree or equivalent in a relevant subject, but any candidates about to graduate may be considered. Appointments as Higher Scientific
Officer ($6,075-£ 7,999)$ or Scientific Office (£4,805-£6,480) according to qualifications and experience. Promotion prospects. Please apply for an application form to
the Recruitment Officer (Dept I. 1) the Recruitment Officer (Dept I.E.1), Hanslope Park, Milton Keynes MK19 7BH.

Technicians in
 Communications

GCHO We are the Government Communications

- Headquarters, based at Codetenham.
communications - HF to satellite - and their
security.
- THE JOB All aspects of technician support to an - unparalleled range of communications
- $\begin{aligned} & \text { equipment, much of it at the forefront of current } \\ & \text { technology. }\end{aligned}$
attractive Cotswolds and elsewhere in the UK:
opportunities for service abroad.
- PAY Competitive rates, reviewed regularly.

Relevant experience may count towards TRAINING We encourage you to acquire new

- skills and experience
- QUALIFICATIONS You should have a TEC
acceptable equivalent, plus practical experienc HOW TO APPLY For full details on this and
- information on our special scheme for those
- Robby Robinson, Recruitment Office
. GCHO, Oakley, Priors Road, Cheltenham
- Glos. GL52 5AJ

024221491
ext 2269

Appointments

DESIGN AND DEVELOPMENT ENGINEER - VIDEO
Experienced engineers, to be involved in the design of TV studio products, including a new range of colour cameras, using the very latest analogue
and digigal techniques. You will have the opportunity to see your designs made in volume production, fulfililing the high technology requirements of the 8 We are looking for engineers, minimum age 25 , who are qualified to degree level and who have at least four years' experience of electronic
equipment. A knowledge of microprocessor techniques and video engineering would be added advantages. Salaries offered are extremely competitive and are backed by free life and health insurance plus a contributory pension scheme. Generous financial
assitance with relocation will be iven where appropriate et help successful candidates move to this pleasant fural part of Hampshire which offers
essy access to assistance with relocation will be given where appropriate to hel
easy access to London and major iowns in the South of England.

$$
\begin{aligned}
& \text { easy access to London and major iowns in the South of England. } \\
& \text { Please phone Jacqui Cornall at Andover (0264) } 61345 \text { and ask her to send you an application form or, alternatively, let us have full details of you } \\
& \text { background and experience. }
\end{aligned}
$$

Walworth Industrial Estate
ELECTRONICS

PRODUCTION ENGINEER
We have a vacancy for an Engineer with experience of quartz crystal
production. The successful applicant will be responsible for manufacturing methods and the maintenance of top standards in our Southampton
factory. Education to H.N.C. standard is desirable, ap p.
ability to work without supervision is essential.
Abiove-average salary for the right applicant, plus relocation allowance if
necessany and normal company benefits.

The Personnel Director
LOC CRYSTAL LLECTRONICS
29 Market Stret, Crew
Somerset, TA187JU

I, D

THE UK'S No. 1 ELEC
Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
SALES
ALES to $£ 12,000$ plus car
Ask for Maurice Wayne
FIEECD SERVICE To E E10,000 plus c
Ask for Paul Wallis
We have vacancies in ALL AREAS of the UK Telephone: 01-6375551 (3 lines)

Telephone: Andover (0264) 61345

Gresham Executive Appointments D.E.C, EXPERIENCE? nein instria Micier Ropicaitons. Experience esnd your persenonility create progression SALES ENGINEER SENIOR SOFTWARE ENGINEER APPLICATIONS ENGINEER DEVELOPMENT ENGINEER

Contact Keitb 5th Floor, New Street Chambers
67 N New Street Birmingham

The Middlesex Hospital, London W1N 8AA JUNIOR MEDICAL PHYSICS TECHNICIAN Applications are invited for the above post in the Department of Clinical

 art in patient-monitoring activities in the Intensive Care Unit and the day infease may
Lalifications.

8333 Ext. 7462 .

DEVELOPMENT OPPORTUNITIES

COMMUNICATIONS

WEST SUSSEX

Our Research \& Development Laboratories in Crawley, West Sussex, are actively involved in
developing the Communications technology and equipment of the future.
To meet the demands of our expanding
programme, we are currently seeking additional
$R \& D$ personnel with proven expertise in any of
the following areas:
HF Transmitters and Linear
VHF/Mobile Radio System
Signal Processing \& Control
Signal Processing \& Control
Communications Hardware/Software
All positions are at Senior/Principal
Engineer level and we offer highly competitive
salaries together with attractive benefits.
salaries together with attractive benefits.
Development opportunity, make this your next
move. For further details and application forms please telephone or write to

David Bird, Personnel Department,
Rediffusion Radio Systems Limited
Rediffusion Radio Systems Limited,
Broomhill Road, London, SW18 4JQ.
W
3
REDIFFUSION
Rロロ! (O) Systenns
great to communicate with

RESEARCH ASSISTANT/

 DEMONSTRATORSDEPARTMENT OF ELECTRICAL AND
ELECTRONIC ENGINEERING Good honours graduates desirous of working for a higher
degree are invited to apply for research posts in the following
areas: areas

1) Three-dimensional television.
2) Photovoltaic cells using organic semiconductors

3) Low frequency noise in instrumentation systems. Salary Currently: £4683-f4884-£5085 rising to $£ 5034$ - $5250-$
£5466 from 1 September, 1981 . Further details of project and form of application available fro Further details of project and form of application available
The Assistant Director (Admmistration Tr Trent Polvatechnic,
Buton Street, Nottingham NG1 4BU. Applications to be The Assistant Director Admin
Buron Stret, Nottingham N
returned as soon as possible.

187427

Air Traffic Engineers

The Civil Aviation Authority has vacancies for men and women as Air Traffic Engineers Grade 2 in its Telecommunications

 Division offering a variety of work on a wide range of electronic yir Traffic specialised equipments.maintenance of ratio, radar, air navigational and landing aids. nd data processing systems. Staff are employed landing aids, Airports, Air Traffic Control Centres and Radar Stations and vacancies ane likely to be in the South of England with a few e in the UK.

Qualifications and Experience
You should be at least 20 years of age and have obtained either
the O.N.C. (Eng.) with an electronic bias or C \& G Telecommunications Technician T3 Certificates or other similar

Skilied working experience in radio, radar or data processing is
Salary
Salaries are on an incremental scale $£ 5,683-£ 8,783$. Posts in the 11,082- Outer London $£ 452$). Grade 1 posts (maximum salary 10,610) are normally filled by promotion from Grade 2 .
For full details and an application form complete and send the coupon to: CAA, Personnel (TTels), , $\mathbf{C o o m}$ T 12
CAA House, 45 -59 Kingsway, London, WC2B 6TE. CAA House, 45-59 Kingsway, London, WC2B 6TE.
Namë

Civil Aviation Authority

MIVERSITY OF OXFORD. ELEC

£25,000? 1. REAL TIME SOFTWARE
ENGINEERS. Avionic applica-
tions tions. E11,000. Herts. AGER, working with micro-processor-based detectio
sistems Systems. $\mathcal{L 1 2 0 0 0 . M i d d i e s e x . ~}$
3. SALES ENGINEERS, selling range of microprocesso
based test equipment based test equipment. $£ 10,000$
plus car. Various. 4. SENIOR DESIGN ENGI-
NEERS, to work on Z80-based systems, for entertainment in dustry, f10.000. Middlesex.
5. DESIGN ENGINER to work on Digital/Analogue Systems. Surrey.
6. PRODUCT SUPPORT ENG NEER microcomputers. Exper ience of 280 or 8080 Softw
f9,000 plus car. London.
 ANHONY GILES, M.Sc, C. Eng.,M.I.E CLIVEDEN CON SUAMTS

CLTVEDEN

TOP JOBS IN ELECTRONICS Posis in Computers, Medical,
Comms, etc. ONC to Ph.D. Free

Phone: 01-906 0251
including: MANUFACTURING PLANT
 BENDEH COIL WINDEAS by Ko-lectric, Avo \& Douglas, ARTOS WIRE
CUTTEES AND STRIPPERS 1980 ZEVATRON TL3 DIP SOLDER MACHINE, FLOW SOLDER MACHINES GENERALENGINEERS VACUUMIMPREGNATON PLANTS BARLOW WHITNE ELECTRIC CURING OVENS WAX IMPREGNATIONPLANTS
 LETOORCLIEANING EQUIPMENT, BENCHES, STORAGE BINS \& FACTORY EXUNITURE
EXTENSE
EOUPMENT

DAY TWO

WEDNESDAY, 1 JULY, 1981
TELEVISION MANUFACTURING PLANT
MACHINE TOOLS OFFICE FURNITURE
FORK LIFT TRUCKS \& MOTOR VEHICLES
Acluatin:
BLALELPALETISER with SIGNODE STRAPPING EQUIPMENT
NKON PROFLLE PROJECTOR, KURTZ RT25 CABINET FOILING MACHINE
 OWN BER BELT, GRAVITY ROLLER AND GLIDEWHEEL CONVEYOR COWLEVE CAROUSEL CHAIN CONVEYORS
 BENCH \& PILLAR DRILLS by Arboga, Kerry, Meddings, Progress and dWARDS SHEET METALWORKING MACHINERY, gUYSON SAND LLAST CABINET TRENJAEGR COLD SAW, VIRAX GO4 PIPE THREADER, CHAIN HOISTS MACHINE AVERY WEIGHING MACHINES SOR 330 KVA DIESEL GENERATOR, BROOMWADE VS00 AIR COMPRES ERMUTIT CTP WATER TREATMENT PLANT, DEXION SPEEDLOCK PAL SAFES AIR CONDITIONER, KITCHEN EQUIPMENT \& EXTENSIVE RANGE
AFOFFILE FURNITURE ROVER 3.5 AND JAGUA 3.4 AUTOMATIC SALOON CARS
ORAD GRANADA 2.3 AL AD CITROEN CX2000 \& GLS PALLAS SALOON CARS
FORD CORTINA 1.6820 .0 GL ESTATE CARS
FORD 2817 ARTIC UNTTS, D1311 RIGID AND TRANSIT COMMERCIAL VELILLES
ELELTEIC \& LPG FORK LIFT TRUCKS \& PALLET CONVEYORS by BT
Rolatruc, Coventry Climax, Lansing Bagnall, Linde and Montgomerie

10 WANUFACTURERS, WHOLESALERS BULK BUYERS ONLY Large quantities of Hadio, V. and Electronic Compinents RESISTORS CARBON \& $C / F / 1 /, 1 / 4,1 / 2,1 / 1$ Watt from 1 ohm to 10 meg. RESISTORS WIREWOUNDD $1 / 2,2,3,5,10,14,25$ Watt CAPACITTRAS. Silver mica, Polystyrene, Polyester, Disc Ceramics. Metalamite, C280, etc Metalamite, C280, etc. Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Convergence Pot. Axial, Radial, etc.
 4450749 EROADFIELDS \& MAYCO DISPOSALS

MACHINE TOOLS, PLASTICS \& SHEET METALWORKING MACHINERY MACHINE EOUIPMENT, ENGINEERS' STORES \& INSPECTION EQUIPMENT PCB PHOTOGRAPHIC AND FACTORY EQUIPMENT VElCRTICALL, UNIVERSAL \& TURRETMILLS by Adcock \& Shiplev, Shizuoka
 ALEXANDER $3 A$ DIESINKING MACHINES, MIKRON GEAR CUTTER
BEENH \& PILAR ORILLS, BENCH SAWS, STARTRITE 316 VERTCAL
BNNS BANDSAW
WEDEMAN BR 2 TURRET PREESES. INTERWOOD OFL ROUTER
WICKMN EDM1 SPARK RROSION MACHINE
 MACHINES
SHEWIEY 48/28 VACUU M FORMING MACHINE
EWWROS TREADLE \& POWER GUILOTINES, FLY PRESSES, BOX \& PAN DULDERS COLLECTORS, BALLARD DEGREASING PLANT, AEW
DTOVINGOVEN Micrometers, Vernier Calipers \& Height Gauges, Bench Vices, Surface
Platos, Angle Plates, Rotary Tables, Machine Vices, Electric \& Pneumatic
Hend HTOCKOFMILING CUTTERS, TWIST DRILLS, REAMERS, TAPS \& DIES
SARROOOM CAMERAS by HPL Littlejohn and Pictorial, SILK SCREN
PRINTER PRINTER PCB DRYER, LABORATORY BENCHING, DEXION SPEEDLOCK
HEEINAIIR RACKING
PALET

DAY FOUR
 $$
\begin{aligned} & \text { DAY FIDAY, } 3 \text { JULY, } 1981 \end{aligned}
$$

MODERN OFFICE FURNITURE \& EQUIPMENT
including
ELTENSE RANGE OF EXECUTIVE \& SECRETARIAL DESKS \& CHAIRS
PLAN FILES, REFERENGE TABLES, DRAFTNG UNITS by Admel, Biefte \& HILING CABINETS, LIBRARY SHELVING, CUPBOARDS, OFFICE ADLERELECTRIC TYPEWRITERS, OLIVETTIADD-LISTERS
OZALID OZAPAINTER 4BA and ONE-STEP 75DYELNE PRINTERS

EARLE EV50 AIRT CONDITIONING UNITS
RADIO \& TV ELECTRONIC INSTRUMENTATION By Brandenberg, Bruel \& Kiaer, General Radio, Hewlett-Packard, insley, Wavetek and Wayne-Kerr

 est Meters, Variable Resistors, Isolating Transformers, Cathode Ray
ubist
ITEFERENCE BOOTHS LYONS TS4 AUTO VOLTAGE STABIIISERS RF NTERFERENCE BOOTHS, LYONS TS4 AUTO VOLTAGE STABLIISERS
VISON ENGINERING COMARASCPE AXON MCRO WEDERS RANK BUSH MURPHY INSULATION \& PULSED FLASH TESTERS

케N
 Weatherall Green \& Smith

WIRELESS WORLD JULY 1981

buSINESS FOR SALE	SERVICES
FOR SALE Long Established FULLY EOUUPPED TV TUBE REBUILDING PLANT Own Freehold Factory Building. Customs delivery van, land for expansion. Would suit group buyers,	

PRINTED CIRCUIT MANUFACTURE
Very fast
prices

EQUIPMENT WANTED

Phone your
Clasşifieds
to
JAYNE
PALMER

Classified

CLASSIFIED ADVERTISEMIENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f2 PER LINE, Average six words per line.
Minimum $£ 10$ (prepayabele).
- Name and address to be included in charge if
- Box No. Allow two words plus $£ 1$.
- Cheques, etc., payable to "IPC Business
Press Ltd." and cross " $\&$ Co."

PLEASE WRITE IN BLOCK LETTERS. CLÄŚSIFICATION
NUMBER OF INSERTIONS

WW - 050 FOR FURTHER DETAILS

INDEX TO ADVERTISERS JULY

Appointments Vacant Advertisements appear on page 119-127

Page	page	PĀGE
Ambit Internat	Galarek International 24	PRRALd
Amplivox Ltd. Anali.................................... 109		PM Components Ltd. .. 95
${ }_{\text {Anglo }}^{\text {Angia Components }}$.. 12	Guide to $\mathrm{Braadcasting} \mathrm{Stations} \mathrm{............................}$.	n Electronics 85
Antex Electronics		al Computing 107
Ld		
Avel Lindberg It \qquad 106	Harris Electronics (London) Litd. 22	Racal Recorders...................................Coverii
Bach-Simpson (U.K.) Lid. 116	Harrion Broter	
,	ok Trading	
	y's Radio	
LStd.		
${ }_{\text {B B S M Mirrossstem Designs }}$	Yearbook	fgan Electronics
	ILPElectronics Lid................................88, 89	Welil Plant
	ILP Transf	Scopex Instrum
errn Electron	Interface Ouartz Devices	Shure Electronics Lid. 28
CIL Electronics Lid..20, ${ }^{\text {a }}$, ${ }^{\text {a }}$		Siemens Led.anc.i............................68,69
Masts Ltd	Irvine Business Sys	lair Res
Clef Products (Electronics) Ltd....................... 101	Instruments Ltd. 19	Southern E
mor Lectronics Lta.	coustics Lid.	Sowter, E. A. Ltd....i.u............................. 94
Crimson Blektrik		Special
CT Electronics (Acton) Ltd.111, 117	Leanell	Strutt Ltd.
Diti- Tel Electronics94 ${ }^{94}$	Maplin Electronic Supplies	Technomat
	MCP Electronics.. 23	
Display Electro 110	Micro Times .. 105	Tempus..110
ctronic Brokers........................ 4, 5, 6, 7, 9, 11		Thurliby Electronics Ltd...............................106
Electronic Equipment Co.		
vovat Ltd..........		... 8
Electiciris Supply Hand Book 1981 115	Newbear .ixi.e.....................................04	
Electrical Review Shock Charts....................... 114		irect Supplies..
$\begin{aligned} & 92 \\ & \text { rd } \end{aligned}$	OK Machine and Tool UK Ltd \qquad	Wilmslow Audio \qquad
Fylde Electronic Laboratories Lid.	Orid	Zaerix Electronics Ltd................................ 24

OVERSEAS ADVERTISEMEN

Hungery: Mrs Editit, Bajusz, Hungexpo Advertising

为
㫦

[^1]

[^0]: WW - 036 FOR FURTHER DETAIL

[^1]: Please send the ANTEX New Range full colour brochure to: NAME

