70 years of publication Active वress\%ol hutw ork. Lownige amplificotion

- pto-elestronic contact break

Soldering blind just burns up profit.

G iven that some metallic substances are more easily soldered than others
and that there are significant differences both in the speed with which they adhesion of the solder to their surface it is clearly necessary to make absolutely, sure that the procedure used to solder components is correct. Testing for solderability greatly reduces the risk of failed joints and that can mean appreciable savings on rejects.
Multicore the world's leadin Multicore, the woring, has developed authonity on soldering, has develope a simple-to-use piece of equipment
designed to assess solderability. It is called a MUST-Multicore Universal Solderability Tester-and it really is a must if you want to avoid the costly problems of inefficient soldering. The built-in microprocessor takes the complex force/time curve and reduces it to just two values, making th application of the sophisticated test

printed circuit boards and plated printed circuit
through holes
It can be used for the Edge Dip Test that appears in IPC-S-801, EIA RS 178 and EIA RS-319 Method 2 for
evaluating quality of wetting, and for the Globule Test as described in many national and international standards including IEC 68-2-20 $4.2 T$ and DIN 40046 to measure wetting speed.
This speed, together with the wetting force, mayalso be, measured by the quick and a wetting balance The MulticoreUniversal Solderability Tester could make a big difference to your soldering operations and to your profits. For the eye-opening the coupon or contact Multicore direct.

The bigges in solder worldwid
Pleasesendmefull details on the MUSTD Pleasesend mefull details Plea
Plea

Sales Department Multicore Solders Limited Maylands Avenue Hemel Hempstead
Hertfordshire HP2 7EP. Telephone (0442) 3636. Telex 82363

UESTIW M MOSTL A RADIORT

. . . catch this bus with Farnell

and arrive economically at an efficient ATE workstation. Comprehensive testing under low cost desk computer control.

Manual systems too.

Fumell

Front cover shows (inset) de-
tails of the opto-electronic contact treaker describibed in
this issue on the background this issue on the background
of a Marconi Space and De fence Systems hyb
fencroelectronic circuit
in our Next issue
Digital capacitance meter Digital capacitance meter
uses the timed charge-injecsion method of mea
surement, with an input pro surement, with an input pro
tection circuit, optimized to tection circuit,
reduce errors.
Wien oscillator is a new desisn by Linsley Hood, using a
different connexion of the different connexion
standard
Wien bridge standard wien bridge to tion of 0.001%.
Active television deflector
receives tv signal, amplifies receives tiv signal, ampirites
and re-transmits it to view ers in no-signal re ception areas.

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

APRIL 1981 Vol 87 No 1543

37 The next seventy years
38 Opto-electronic contact breaker

41 More on active cross-over networks by David Read	
	44 News of the month
Flat c.r.t. from Sínclair.	Custom-built l.s.i. Microcomputers in space
Pre-amp and m	$\begin{aligned} & 48 \text { Circuit ideas } \\ & \text { nulti-section control. Divide by }(2 n-1) \end{aligned}$

51 Radio observation of the 'active' sun
51 Radio observation of the 'active' sun
by R. A. Ham

62 Phase measurements with an oscilloscope

65 Wireless World, 1911-1981
66 Designing with microprocessors - 7

70 World of amateur radio
71 Introduction to low-noise amplifier design

74 Magnetic recording review - 2
79 Surface acoustic wave devices - 2
83 Multipath distortion
by Pat Hawker
86 Novatexts: amplitude sensing and control
88 New products
90 Sidebands

Hectronic Brokers-aurope's Prem ier text Equipment Company ofier

The
 CIAR NTE

Unless otherwise stated all test equipment sold by us carries a 12 month warranty; For VDUs, and Teletypes we offer a 90 days warranty, and computers are offered with on site acceptance and diagnostic tests (which may qualify them for independent ongoing maintenance). When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

A copy of our Trading Conditions is available on request.

. .		
(e)		
	B6410.1\% LCR Bridge. 0.002pF. 50,000 1 F. .00M12, 20pu-500u	
	CALIBRATION EOUIPMENT	
	CALIBRATIONAdvance.OFS2B Off Air Frequency Standard. O/P 1 andIOMHz... 95.00	
		MULTIMETERS
	Fluke	
	Fluke.$332 A D C$ Voltage Catibrator 0 to 111.1110 V .0 .1 ppm resolution. $0.003 \%$$\mathbf{c a f i b r a t i o n ~ a c c u r a c y ~}$$\mathbf{1 4 9 5 . 0 0}$ 760 Meter Calibrator. DCIAC Volts and currient	
		OSCILIOSCOPES
	760 Meter Calibrator. DCIAC Volts and current Hewlett Packard.$741 B$ DC Voltage Source and $A C / D C$	
	Datron. $10515 / 2$ DigitDMM. ACIDC Volts. Resistance. True RMS. O. $1 \mu V$ resolution	
	Aratin 	
	Soituot.	
	1 Pill	
	1.400.000. ACDC volts. resistance. $£ 950.00$ 705 plus processor control dnd RS232 intefface............................. $\mathbf{1 2 5 0 . 0 0}$	
	Weston. \qquad FREOUENCY COUNTERS	

. April 1981..... Latest Test Equipment......

WW-200 for further

Electronic Brovers is Europe's largest

 spectialis in quadilys, secono user lestequipment rompulers and associated peripherats, Establisned 14 years 3q0 we have pioneeled the seconc user concept in Britain, arid niany oversea To suppor: our growth we have a skitle team this indudes tranned
sales staff, whose. role is not only 10 sell, but provide a heipfut information
service to.0ur many customers. Backing service to.0ur many customers Backing
inis team is our own service labonalory where technicians monitor each itentio Where rechnicians monitor each ite seivice ond those wisp have dea afwoys live up to our reputation Wherevel your business s- Uk
Europe, min fact anywhire in ine wortd
ine Electronic Brokers O Iust a terephone or relex call away!

Electronic Brokers Limited 61/65 Kings Cross Road
London WCIX 9LN Englana
Telephone: 01-278 3461
Telex: 298694 Elebro G

DON'T GAMBLE

 WITH PERFORMANCE BUY
LEVELL OSCILLATORS

frequency accuracy SIne output distortion
sQuare output
SYNC OUTPUT
 MCO CO SGALES SIZE \& MEIGT

1 Hz to 1 MHz in 12 ranges.
0 to 1% fine control on TG200DMP 0 to 1% fine control on TG 200 D
$\pm 1.5 \% \pm 0.01 \mathrm{~Hz}$ up to 100 kHz .
$\pm 2 \%$ up to 1 MHz $+2 \%$ up to 1 MHz .
$7 V$ r.m.s. down to $<200 \mu \mathrm{~V}$ with Rs
 $<0.1 \%$ from 10 Hz to $50 \mathrm{kHz},<0.2 \%$
from. Hzz to $150 \mathrm{kHz},<1 \%$ at 1 Hz and
1 Mz . TG200D, DM \& DMP only, TV peak down to
$<150 \mathrm{n}$ S $<1 V \mathrm{r}$ m.s. sine in phase with output
$\$ 1 \%$ fre TG\% freq. lock range per volt t.m...s. $0 / 70 \&-141 /+6 \mathrm{dBm}$.
$260 \times 130 \times 180 \mathrm{~mm} .4 .3 \mathrm{~kg}$ with
batteries batteries $£ 99$ £108 £125 £130 £135

FREQUENCY ACCURACY	3 Hz to 300 kHz in 5 decade ranges $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ to 100 kHz .
	Increasing to $\pm 3 \%$ at 300 kHz .
SINEOUTPUT DISTORTION	2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$ $<0.2 \%$ from 50 Hz to 50 kHz
souareolitput	
SYNC OUTPUT	2.58 r.m.s. sine
METER SCALES	O/2.5V8-10/+10dB on
SIZE \& WEEGHT	$260 \times 130 \times 180$
	batteries.

TG1520

FREQUENCY $\quad 0.2 \mathrm{~Hz}$ to 1.22 MHz on four decad ACCURACY $\quad+0.02 \mathrm{~Hz}$ below 6 Hz
$\pm+1 \%$ from 100 kHz to 300 kHz
SINE OUTPETT
Distortion
METER SCAES
SIZE \& WEIGHT
MIVE \& WEIGHT
$+3 \%$ above, 300 kHz . V with
$5 \mathrm{~V}=$
600 m .s. down to $30 \mu \mathrm{~V}$ with
$<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 kHz
2 Expanded voltage and $-2 /+4 \mathrm{dBm}$
$260 \times 180 \times 180 \mathrm{~mm} .5 \mathrm{~kg}$.
TGB6B TG66A

with batteries Car packing and VAT
Exictar exional extras are leather cases and mains power units.

Hew! Sinclair ZX8ı Personal Computer. Kit: £49. ${ }^{95}$ complete

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the
Sinclair ZX80 world's first comple sinclair $\operatorname{\text {personalcomp}}$ world's first complete £99.95, the ZX80 offered a specification unchallenged at the price. Over 50,000 were sold, and the ZX80 won virtually universal praise from Now professionals. for just £69.95, the new Sinclair 7×81 offers even more advanced compute aciilities at an even lower price. And saving At £49.95 it costs almost 40% less than the $\mathrm{ZX} 80 \mathrm{kit!}$
Lower price: higher capability Weach yo 2×81, it's just as simple to ZX81 packs even greater working capability than the ZX80.
It uses the same micro-processo but incorporates a new, more powerful
$8 K$ 'BASIC ROM - the 'trained intelligence of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.
peration refinements-the facility to operation refinements-the facility to
oad save named programs on cassette, for example, or to select a program off a cassette through the keyboard.
Higher specification, lower pricehow's it done?
uite simply, by design The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !
The secret lies in a totally new master chip. Designed by Sinclair and replaces 18 chips from the $Z \times 80$!

Proven micro-processor, new 8 KBASIC ROM, RAM-and unique new master chip.

New, improved specification - Z80A micro-processor-new faster version of the famous $Z 80$ chip, widely - recognised as the best ever made key word entry: the ZX81 eliminates a grea typing. Key words (RUN, LIST, PRINT etc.) have their own
single-key entr
heck and report codes identify programming

- Full range of mathematica and scientific functions accurate to eight decimal places.
Graph-drawing and animated display facilities.
numerical arrays
- Up to 26 FOR/NEXT loop

Kit or built it's up to you!

The picture shows dramatically how easy the 2×81 kit is to build: just four ther discrete components) -a few hours' work with a fine-tipped soldering ron. And you may already have a C nominal unregulated (supplied with built version).
Kit and built versions come complete with all leads to connect to your TV cassette recorder.

- Randomise function-useful for games as well as serious applications - Cassette LOAD and SAVE with Camsedte LOAD
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack - Able to drive the new Sinclair printer (notavailable yot coming soon) - Advanced 4-chip design: micro-- unique custom-built chip master chip -unique, custom-built chip replacing 18ZX80 chips.

Sir드리파

 ZX8ISinclair Research Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 027666104

If you own a

 Sinclair ZX80...The new $8 K$ BASIC ROM used in the Sinclair ZX81 is available to $Z \times 80$ (Complete with new keyboard templ and operating manual.)
With the exception of animated graphics, all the advanced features 0
the $Z \times 81$ are now available Z×80-including the ability to drive the Sinclair ZX Printer.

Coming soon-

the IX Printer.

Designed exclusively for use with the
$Z \times 81$ (and $Z \times 80$ with 8 K BASIC ZX81 (and ZX80 with 8K BASIC ROM) the printer offers full alphanumerics across 32 columns, and highly sophisticated graphics. Special features include on the whole TV screen without the is need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$ - watch this space!

16K-BYTE RAM pack for massive add-on memory.
Designed as a complete module to fit
your Sinclair $Z \times 80$ or 7×81, the your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing
expansion port at the rear of the expansion port at the rear of the com storage by 16 !
Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of com-
petitive additional memory.

How to order your ZX8
BYPHONE-Access or Barclaycard holders can call $01-2000200$ for personal attention 24 hours a day, every day needed coupon below. You can pay by cheque, postal order, Access or arclaycard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day
money-back option, of course We want you to be satisfied beyond doubt-and we have no doubt that you will be.

Make it for a Song!

The New Maplin Matinée $\underset{\substack{\text { Amacing Volue } \\ \text { For Only }}}{£ 299.95}$
 $+£ 99.50$ for cabinet if required.

HAMEG
 OSCILLOSCOPES

The new name inLineari/Cs

Anolog Systems, the fast growing linear $1 / \mathrm{C}$ compony
of Arizona whose produt ana whose products are avavilable from Pascalli, ofier a
range of high performance linear integrated circuits.

Hi-Speed Amplifiers

New KONTAKT Sprays

	for the Electronics \& Electrical Industries
(NTAK	KALTRON 601
	A new cleaner for Magnetic Recording Units. Kalton 601
	cleaning of magnetic sound heads leaving no deposit other traces.
	It is chemically pure (99.8\%) - non conductive - non-flammable.
601	It can be used on energised electrical installations and lectronic equipment, e.g. video units, tape recorders,
-	Also NEW

PRINTER 66
Spray cleanen for type wheel printers, matrix
also be used for cleaning normal typewriters
SCREEN 99
VASELINE SPRAY 701
FAOE use in communications engineering and construction of antennae.
Proved succeosful as corrosion inhibitio: for cable clamps connecting

Special Products Distributors Ltd 81 Piccadilly, London, WIV OHL

Tel: 01.629 9556: Cablos: Speciprod. London, w.
Teleax: 265200 (answorback RACEN)
wW - 025 FOR FURTHER DETAILS

WE CUT THE PRICE.

 WE CUT THE SIZE WE LEFTTHE OMRON QUALITY.IMO can now offer you the high quality
and rellability that you have come to expect in and rellabilitity that vou have come to expect in
Onror relars in their new series of low profile.
printed circuit mu Omron reiavs, in their new series of fow wro
printed circuit mounting subminiatures.
There's a tremendous range for ever Interface, communication and outpot epporication,
sultable for mounting sultable for mounting with sockets or directly
 consideration, and high rereiabiility types ilike
he LZN's with gold clad bifur he L2N's with gold-Clad, blifurcated crossbar
Contacts and card lift-off operation. With contact rating up to to 10 A and 240 VAC tyles and sizes, and up to four changeover contacts per relay, this range from ivo offer

Your realdesign flexibility.All usual $A C$ and $D C$
Coil voitages are availiable from stock.

DUAL TRAGE

frequency
COUNTERS

CSC \bullet SINCLAIR - OPTOELECTRONICS - NEWTRONICS

MAX5地 BENCH PORTABLES

 cs
\qquad
2 HAND HELD

\qquad

$\square \square$

 AT1020 20K/Vot 19 range de luxe plus hte test

 The

 CHOOSE FROM UK'S LARGEST SELECTION TV GENERATORS

-	
\square	Somatese
=	eon

a special 2e-page supplement in Elchtor Tile lib-ill Provesin

The new generation of 16 -bit microprocessor systems can equal or even better the performance of present day minicomputers. This means that a 'real' computer is now within the reach of any enthusiast. do you choose
The April issue of Elektor contains a special 24 page supplement giving a brief survey of the field, con
Manufacturer
Manufactur
Intel
Intel
Motorol
National Semiconductor
Type
8086
8086
$\begin{array}{lr}\text { Zilog } & 9900 \\ & 8001\end{array}$
Second sources

AMD, SGS.ATES
Comparisons are given of the basic capabilities, register sets, addressing modes, instručtion sets, memory maps and support chips. The article has been checked for technical accuracy by specialists from the respective manufacturers.
elelstor
Or direct from address below, price 80p (inc. 20p P\&P)
Elektor Publishers Ltd, 10 Longport, Canterbury, Kent CT1 1PE.
el. (0227) 54439/0
WW - 029 FOR FURTHER DETAILS

Carson Electronics

Bigger stock investment greater equipment range means wider choice

Tempera
Equipmer
 Equipment
NB Therme
COMARK

Carton Electronics
Contact: Noil Jennings
CARSTO ELECTRONICS LTD.
SHRIEK HOUSE. 27 CAMDEN ROAD
LONDON NW 1 9 NR. Telex 23920
01.26753112
TUE RMS

Voltmeter
DRANETI
305

PLEASE NOTE:

 LISTED HERE IS ONLY A SELECTION OF OUR WIDE STOCK OF EQUIPMENTFOR SPECIALIST NEEDS ORFOR DETAILS OF OUR FULL STANDARD RANGE OF EQUIPMENTS RING US TODAY Redundant Test Equipment Why not turn your under.-utiized
test equipment into cast?? Ring
us and weill make you

Exclusive representative:
Aspen Electronics Limited
2 Kildare Close, Eastcote, Ruislip. Middlesex HA4 9UR
Telephone $01-8681188$ Telephone: $127-86812727$
Telex: 8810
ww - 034 FOR FURTHER DETAILS

DOUGLAS transformers from TITAN NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

 we guarantee these prices to be unbeatable ANYWHERE !!

con:3mon.
 Introducing the first $41 / 2$ digit handheld DMM in a

 market that's been the exclusive domain of $31 / 2$ digit models. Until now.The new Keithley 135
Combining outstanding specification with impeccable performance. And confirming Keithley's position as a major innovator in D.M.M. technology:
0.05% DCV accuracy
F
Five functions
Low battery indicator
Full overload protection:
1000 V max DCV
1000 V peak ACV
300 V max Ohms
ISTMIT - 35 DIGITAL MULTIMETER

CE-50A: FM / AM Field Service Monitor CE-50A-1: FM/AM Field ServiceSpectrum Monitor
Compact, versatile field service monitors for two-way radio maintenance

10 amp range
ACV دandwidth to 20 kHz
The price - only £139 + VAT
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$,
DCV accuracy, and full function annunciators.
Built up to a standard - not down to a price.
Yet at only $£ 179$ + VAT, the 176 gives quality, $41 / 2$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match. To find out more, fill in the coupon. And see what

KEITHLEY
Keithley Instruments Lto
1 Boultion Road Reading Berkshire RG2. ONL
Telephone (0734) 861287

$1+\frac{10}{2}$ getyour hanitis on astinal success.

320 pages worth of the latest \& best in signal processing components.
Write to Pascall for this new M80 catalogue which covers the complete Merrimac range of signal processing components and
integrated networks from DC 1 to 4 GHz . 1 also provides elichbility data in integgated networks from DC to 4 GHz . If also provices
the form of MTBF calculations for each product area. Merrimac is one of the World's most technically advanced companies specialising in low frequency lumped element components and integrated networks; microwave stripline components,
subsystems, high power ferite isolators and circulators subsystems, high power feritite isiatiors and circulators.
So write e Pascall today for your copy of the MBO on your company's notepaperer (or phone
if you prefer) indicating
your area of interest - we
yuarantee you'll find

Pascan Electronics Limited
Hawke House. Green Stre

WW - 042 FOR FURTHER DETALLS

PRODUGTION
TESTING

POWVER UNITS
Now available with
3 OUTPUTS

SERELOPIENT

OUTPUT 1: 0-30v, 25A DC OUTPUT 2: $0-70 \mathrm{v}, 10 \mathrm{~A} A C$

ww - 016 FOR FURTHER DETAILS

100,000,000,000,000 Ohms

The AVO RM290 is a bench type megohmmeter with a resistance range that goes up to $10^{14} \Omega$ making it ideal for those applications where there is a need to measure the electrical resistance of
non- conducting materials...accurately! You can use the RM290 for tests on insulating components in electronic assemblies or on capacitor dielectrics. Resistance measurements can be made at test voltages of $100,250,500$ or 1000 V . Readout from the single resistance scale on the meter is direct, irrespective of the test
You"l find the Avo
You'll find the AVO RM290 a great asset. Cet in touch with us today and we'll let you have the full facts.

You'll never meet a better meter

AVOLimited, Archcliffe Road over, Kent, CT179EN
WW - 060 FOR FURTHER DETALS

FASTER THAN A SCOPESAFER THAN A VOLTMETER

LOGIC MONITOR

ONLY £31
plus 15% VAT, plus post and packing
Total f37. 37 including box and instruction manual.

Europe, Africa, Mid-East: GSC UK LTD. Dept. 75

Instant - simultaneous monitoring of the logic state of all IC nodes
LM-1 Instantly and accurately shows both static and dynamic logic states on a bright 16 LED display.
LM-1 finds its own power.
LM-1 cuts out guesswork, saves time, and eliminates the risk of short circuits.
LM-1 is suitable for all dual-in-line logic ICs. 0 (low), and each state 1 (high), LED off = logic state in the conventional IC is clearly numbered 1 to 16 in the conventional IC pattern.
GLOBAL SPCILTISS CORPRATION, DEPT. 75 Name.

SEvo for detalis to AERD ELECTRONICS (AEL) LTD
GATWICK HO GATWICK HOUSE
HORLEY, SURREY, TEL: (02934) 5353
TELEX 87116 (AERO TELEX 87116 (AERO G)
CABLES AERO G TELEX HORLEY
 $100 \mu \mathrm{~V}$ resolution. $D C / 1 A C$ current $1200 \mathrm{~A} A-2 \mathrm{~A}, 0,1,1 \mathrm{~A}$ r resolution. $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.14 \mathrm{~A}$ resolution.
Resistance $200 \Omega-20 \mathrm{M}, .0 .1 \Omega$ resolution Low resistance 2Ω and 20Ω,
$1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{~m} \mathrm{~S}-20 \mu \mathrm{~S}$, 200 O S

Electronic Brokers $61-65$ King's Cross Roa London, WC1X 9LN Lendon, WC1X 9LN $\begin{aligned} & \text { Lond: } 01-2783461 \text { - Telex } 298694 \\ & \text { Pirices do onot nclude cartrage or VAT. }\end{aligned}$ wW 037 For further detalls

PM 3207 dual trace oscilloscope

* Ideal for service and general-purpose
${ }^{*}$ applications $15 \mathrm{MHz} / 5 \mathrm{mV}$
* Triggering from either channel or
* Auto TV triggering
* Auto TV triggering
$*$ Same sensitivity on X and Y channels
* B-invert facility
* Full $8 \times 10 \mathrm{~cm}$
screen
Reader inquiry
Reader inquiry
number 222

PM 2505 electronic analogue multimeter * 62 measuring ranges * $10 \mathrm{M} \Omega$ input impedance * Continuity check by sound signal * Linear resistance ranges to $30 \mathrm{M} \Omega$ * Automatic polarity indication * Unique movement for high accuracy Reader inquiry number 223
PM 2502 passive analogue multimeter

* Accuracy at a low price
* Comprehensive measuring ranges
* Highly shock-resistant meter system * Continuity check by sound signal * 250 V overload protection on all Reader inquiry number 223

ANDTHREE COUNTERS

PM 666I 80 MHz automatic frequency counter * One control - ON/OFF * Automatic triggering, noise
suppression and leading zero blanking suppression and eading zeritivity
$*$ High 20 mV RMS sentin
$* 8$-digit LED display $\underset{\substack{\text { * 8-digit LED display } \\ \text { Reader inquiry } \\ \text { number } 224}}{\substack{\text { 22 } \\ \hline}}$

SOMEOTHER STARS

 FROM THERANGE
PM 5501 col

generator

* Ideal for mobile mainter
* 5 test patterns for colour and
* 5 test patterns for colour and b / w Band III, and UHF Band IV. * I kHz tone for sound checks
Reader inquiry number 226 PM 5107 low distortion LF generator
* Frequency range $10 \mathrm{~Hz}-100 \mathrm{kHz}$ * Distortion 0.02\%
* Sine and square wave signals Reader inquiry number 227 PM 6307 wow and flutter meter * X-tal controlled oscillator * High accuracy and frequency stability * 3150 Hz or 3000 Hz switchable * Separate 'drift' and 'flutter' indication Reader inquiry number 22 PM 6456 stereo generator
* Complete stereo signal with low * Complete stereo signal wit
* Separate L and R signals
* External modulation facility
* X-tal controlled pilot
* Adiustable multiplex signal and tunable
* Adjustable multiplex signal and
100 MHz RF signal
Reader inquiry number 229 Reader inquiry number 229 WHER TO BUY YOUR PHILIPS AUDIO WHERE TO BUY YOUR PHILIPS AUDIO The entire range is available from the Philips

INPLT
Use the inquir service to obtain in formation obout the generator * Over 20 colour and b/w test patterns carefully selected fo maximum versatility

* RF signals available in bands, I, III, IV and V
* Variable video output (with I volt fixed position) * External video and sound modulation facility
* Composite sync output for triggering - includes the line frame and blanking pulses to the local TV standard
* Versions available for non

British TV systems
Reader inquiry number 220

Test \& Measuring Instruments

SIGNALSUCCESS

PM 5326 RF signal generator $*$
overlapping ranges with 5 digit display * Built-in 5 digit counter displays external frequencies. ${ }_{\text {Two versions available: }} 100 \mathrm{MHz}$ (1 kHz resolution) - PM 5326X or
$1 \mathrm{MHz}(10 \mathrm{~Hz}$ resolution) - PM 5326 * 50 mVRF output at 75Ω can be attenuated to over 100 dB * Electronically stabilized output level

* Wobbulator facility for IF amplifiers AM/FM radio and TV receivers Reader inquiry number 221

CHOOSE FROM THREE METERS

PM 2517 digital multimeter

* Full four digits (Choice of LED or LCD display
* Choice of LED or LCD display
* True RMS AC readings (AC coupled)
* Autoranging with manual override
* Current up to 10 A
hold probes
Reader inquiry number 223

PM 6667 and PM 6668 high resolution counters

* 1 GHz (PM 6668) or 120 MHz
* Reciprocal technique giving fast h
resolution measurements down to 10 Hz
$*$ Auto triggering on all waveforms and
duty cycies
$* 15 \mathrm{mV}$ RMS sensitivity
* 15 mV RMS sensitivity
* High stability X-tal oscillators:
10^{-3} 2/month
$*$ Microprocessor control
Reader inquiry number 225
 $\begin{array}{lll}\text { PM } 5519 \text { CTV pattern generator } & 220 \\ \text { PM } 5326 \text { RF signal generator } & 221 \\ \text { PM } & 222\end{array}$ PM 3207 oscilloscope
PM $2517,2505,2502$ multimeters 223 PM 666180 MHz frequency counter
PM $6667 / 6668$ high resolution PM 550 I colour bar pattern generator
generator
PM 6307 wow and flutter meter PM 6456 stereo generator Pye Unicam Ltd
Philips Electronic Instruments Dept York Street, Cambridge CB1 2PX, England
Tel. Cambridge (0223) 358866 . Telex 817331

PHILIPS

Jin the Protessionals...

 heatsinks etc. availiable from Crimson.

- Crimsonflektrik

It's true. Our new. diminutive frequency counter, the *Max 50 costs a mere $£ 49.00$. Which, when you consider its totally automatic performance, is quite outstanding.
Well, what would you normally expect to pay for a guaranteed frequency range of 100 Hz to $50 \mathrm{MHz} ; 6$-digit LED display auto-ranging, polarity, slope trigger and input level; and built-
in overvoltage protection?
And there's even more. The high reliability of LSI circuitry; sensitivity of 30MV trigger threshold; 3ppm accuracy; choice of battery or a.c. mains operation, and optional antenna.

True value, and yours for the asking.
Just call us on Saffron Walden (0799) 21682 right away. Your own *Max 50 could be hand-held tomorrow! Dealer enquiries also welcomed. *For a while, supplies will be labelled 'Mini-max'
global specialties corporation G.s.c. (UK) Ltd.i. Dept 7 IF
 nit 1, Shire Hill Industrial Estate, Telephone: Saffron Walden (0799) 21682 Telex: 817477
we've put a NEW plus into the Super-Track Plus family of V15 Type III Cartridges

Hyperelliptical tip for audibly greater freedom from distortion
already own a
V15 Type III
you can upgrade it!
It you are one of the thousands of audiophiles who already own a V15 Type III, you too can benefit from the the Hypereliiptical stylus. Simply replace
your present stylus with the new VN35HE mprovement stylus. It will give your type 1 cartridge the same specitications as heconds to install (see illustration) requires no tools whatsoever

V15 TYPE III-HE IMPROVEMENT STYLUS

- 3 SमURE

wireless world

Editor:
Editor:
Doputy Editor: PHILIP DARRINGTON
01.6613500×3586
-
Tochnical Editor: GEOFF SHORTER, B.S
$01-6613500 \times 3590$

Projects Editor: MIKE SAGIN
$01-6613500 \times 358$
News Editor:
MARTINECCLES
$01-6613500 \times 3589$
Drawing Office Manager:
ROGER GOODMAN
echnical Illustrat
辟
Production \& Dosig
ALAN KERR
Advertisement Mana
Bos NibsB, A.C.II
DAVID DISLEY
01.6613500×3593
BARBARA MILLER
$01-6613500 \times 3592$
Classified Manager:
BRIAN DURRAN
$01-6613106$
JAYNE PALMER
OHN GIBBON (Make-up and copy)

Publishing Director:
GORDON HENDERSON

The next seventy years

The artist Pablo Picasso once said: ' only matters when one is ageing. Now that have arrived at a great age, I might just as he same. Being the oldest radio journal in he world and having reached this month he Biblical age of three score years and en, we can justly consider ourselves - in arrived at a great age. And we might just a well be twenty because it is in the nature of a periodical publication to renew itself with each issue. It doesn't matter whethe ne has produced 1,500 or only 15 mpletely new book - ed new. is always belonging uniquely to its own moment in history and reflecting its own world at that oment. We did our reminiscing about he past on our 50 th and 60 th birthdays. Now, already 15 years into the era of the he future and what it holds for us as any young person just starting to look a lectronics as a possible career.
If we survive the next 70 years, what could we be looking back on in 2 If
Here a little humility is called for. If the periodical survives (and not necessarily o paper) it may well be a very different. nimal from what it is now. Electronics nay no longer exist as a definable area of spawned electronics, which then proceeded to absorb its parent, the same hing may happen again - several times ver. On this principle one might look at other branches of science and technology and speculate if they are capable of such bsorption. Optics, perhaps, chemistry, biology .. . ? Or one might even consid he complete fragmentation of electronids no a variety of other technologies and don't yet exist.
Extrapolation from present trends does ake us a little way - greater complexity ad higher performance in electronic products, more devices on a silicon chip, nd so on. This is the gadgeteering pproach which envisages a world ncreasingly full of clever robots, wris
watch radios, flat tv screens and information centres in thê home. But it doesn't allow for the possibility that a
completely new, seminal device will be invented that will transform the rechnology - just as the valve transformed radio communication and the transisto pened the way to integrated circuits. Several laboratories are now exploring the ransducers and energy converters. Could this lead perhaps to a stochastic, rather han deterministic, principle of information processing and transmission, analogous to that
nervous system?
But it is unrealistic to consider a technology in isolation from the society which produces it. You can say with truth hat scientists and engineers discover and nvent things which change our lives. society and subject to its pressures. You can say with equal truth that the technology we have is a symptom of the kind of society we are: it develops in particular directions in response to our Broadcasting, hi-fi and other electronic diversions are technological responses to he needs of the "nuclear family" for ntertainment and even "company" in homes that are becoming socially iso technology will continue to be both cause nd effect.
191 , he fateful year when Rutherford did the historic experiments that led him to
postulate the atomic nucleus and the picture of the atom we have now. Since then our physicists have been discovering ver more fundamental particles and our view of matter and energy has been greatly
elaborated. During the next 70 years there could be a discovery or insight that would unify our observations and even depart from the traditional line of thinking started by Democritus. Such an event would not mmediately alter the practice of electron profoundly the work of the applied cientists who research into physical processes to create new devices.

Opto-electronic contact breaker

Compact and maintenance free switching for electronic ignition systems
by J. R. Watkinson, B.Sc., M.Sc.

The conventional automotive contact breaker is still widely used in modern petrol engines despite its shortcomavailable for several years, but car manufacturers have been slow to remove the weak link in the ignition system. This design is simple, cheap, reasonably easy to install, and prowill drive almost all electronic ignition systems which operate with mechanical contacts.
Although many electronic ignition units are available, and several well designed
constructional circuits have appeared constructional circuits have appeared,
most of them are triggered by the existing contacts and use either inductive or capacitive discharge to improve the spark and
extend contact life. Some designs claim to extend contact life. Some designs claim to the effects of contact heel wear and timing scatter still remain.
The circuit in Fig. 1 provides an output which, for low currents, simulates the
contact breaker and can triger an contact breaker and can trigger an
electronic ignition unit without modification. The existing centrifugal and vacuum advance mechanisms are retained, and the only mechanical part which must be constructed with any precision is a choppe
disc. disc.
The with a lens to give is an infra-red 1.e.d. which is received by a spectrally and physically matched phototransistor. Light passing between the two devices is interrupted
by a chopper disc which produces a rough square wave. This waveform is cleaned up before it is used for timing because electronic ignition circuits generally require a sharp edge to trigger an s.c.r. A conventional two transistor Schmitt-trig.
ger was not used because the regenerative

Fig. 2. Printed circuit board mounted on the action plate of a distributor. In the
prototype $T r$, was mounted underneath the board. action only occurs if the input has a low source inpedance and, in antransistor is a current source. In stead, an open collector t.t.I. i.c. with two gates connected as a set - reset bistable is used. The inputs are driven in a comple-
mentary mode by using a third gate as an mentary mode by using a third gate as an
inverter, and the remaining gate is used as a buffer. The regenerative action of this circuit gives fast switching, and a conser vatively rated series regulator provides reliable operation. Tlassfibre p.c.e.b. and mounted inside on a
distributor as shown in Fig. 2. The prototype fits a Delco distributor as fitted to
many G.M. vehicles, but the layout can be modified to fit most other types. Some foreign vehicles use very small distribu tors, and for these it is best to house the circuit in a small metal box beside the
distributor. Installation is much distributor. Installation is much easier if
replacement distributor is used. Also, the second unit is useful to carry as a spare. The phototransistor is mounted directly on the p.c.b. and the l.e.d. is mounted about 2.5 mm away on a smail board sup-
ported by 3 mm tapped pillars which also ported by 3 mm tapped pillars which also
carry the l.e.d. current. The main p.c.b. is mounted with spacers on the action plate in the distributor with 3 mm screws which must have holes drilled and tapped. As the action plate is rotated by the vacuum ad-
vance mechanism, it must not be ob-

Fig. 1. Switching circuit and regulator. Tr, and $7 r_{2}$ do not r require heatsinks, but should be secured with the screws that
hold the p.c.b. in place. Note that $\mid C_{1}$ must be a ceramic type to ensure reliable
operation during large temperature operation during large temperature changes.

Fig. 4. Phototransistor and l.e.d. mounting. The two pillars must be metal types to

Why replace the contact breaker?
A conventional contact breaker cunsists of a cam, rotated by the engine, which opens and closes a moving
contact held in place by a stiff soring As the contacts are forced open by the cam and closed by the spring, the cam has an alternating torque acting upon it. The cam is turned about the mainshaft by centrifugally operated
weighs which reach equilibrium with restoring springs to give different spark advance angles for different speeds. Therefore, there are two mass compliance systems which cause wide distribution of timing. Th turing tolerances in the cam and gen eral wear in the contact breakers. A though a new distributor win correctly adiusted contacts operate fairly well, this peak performailes
rarely lasis for more than 2000 miles and most petrol engines spend a signticant proportion of their working life with a sub-standard ignition system

The two most common replacements for the contact breaker are a magnetic pickup, where a lobed roror
varies the flux through a coil, and an varies the flux through a coil, and an
optical system, where a light beam is interrupted by a chopper disc. The magnetic system is attractive to a mass producer because magnetic compoents and coils are familiar, but the conversion of an existing unit because fewer mechanical parts ake required.
Both rypes use the existing centrifugal and vacuum advance systems and, as te amount of energe extracted from the shaft is small in either case, the orsional excitation of the advance echanism is negligible. Buth ystems do, however, exnibit a sligh deceleration as the rotor advances to ake up any backlash when the engine slows. This is a small penalty and is normatly of little consequence.
structed by the board or swarf, and the manufacturer's recommended lubrican
should be restored. If the existing contact pivots on a pillar rivetted to the action plate, the pillar must be removed before the p.c.b. can be installed. Care must be taken to ensure that the small board does not foul the rotor arm or the inside of the is connected to the ignition unit by a is connected to the ignition unit by a
length of good quality miniature three core stranded cable. The cable should be supported by a small P clip fixed by one of the mounting screws, and by the existing
grommet in the distributor body. Regrommet in the distributor body.
member to leave enough cable loose so that the action plate can revolve.
The circuit can be tested by connecting +12 V to the supply lead, and a low power bulb from +12 V to the output lead. The lamp should remain on until the light
beam is interrupted. Note that the specified device does not emit visible light. If the circuit switches the lamp correctly, connect it to the electronic ignition unit and take the h.t. lead from the coil directly breakdown if the rotor arm is not pointing at a segment of the distributor cap. Check that a spark is generated every time the light beam is interrupted and not when it is e-established
When the
When the circuit has been tested, a chopper disc should be constructed to suit the distributor. The accuracy of this dis affects the overall performance of the system, and the most important paramete-
is the angle between the leading edge of the blade and the line joining the mainshaf axis with the centre of the rotor arm sector It is imperative that this angle causes the leading edge of a blade to just obscure the
of the rotor arm is directly opposite a seg ment inside the distributor cap, with the vacuum advance at mid-travel. If this con-
dition is not achieved the engine may no dition is not achieved the engine may not
run. Another important requirement is that the chopper blades are evenly spaced to avoid scatter. The angle between the blades is found by dividing 360° by the number of cylinders. Although this unit is suitable for any number of cylinders, th
greatest improvement will be noticed engines with six cylinders and above, where multi-lobed cams cause more timing scatter.
The dis
The dise does not need great strength, and the prototype was cut from tinplate.
The centre hole has tabs which are alternately bent up and down to grip the cam as shown in Fig. 5. To construct the disc make a centre punch mark and scribe a ing a large transparent circular protractor with 0 and 180° marks on the line, mark the position of the blade edges and scribe lines to the centre. If an inductive discharge system is used, the anğle between the chopper blades becomes the
dwell angle, the angle through which the points remain closed, and must be the same for all cylinders. With a conventional contact breaker the dwell angle has to be short so that the points can open a reasonable distance. Une time available for primary

IN OUR NEXT ISSUE

Digital capacitance meter

This is a charge-injection capacitance meter, which is provided with a well thought out input-protection circuit to guard any initial charge on the capacitor to be measured. Sources of error in the protection circuit and elsewhere are analysed.

New Wien-bridge oscillator

John Linsley Hood describes an alternative way of using the Wien network to design low-frequency oscillators. The typical total harmonic distortion of a simple oscillator of this type is about 0.001%, instead an optoelectronic amplitude stabilizer.

Active television deflector

Constructing a device to help people who live in deep valleys or other places where u.h.l. television broadcasts cant be received northol Paced on a vantage point nearby, it picks up the tv signal, amplifie it and re-transmits it to the viewer's house on the same frequency.

On sale 18March

 this design, the dwell angle can be inreased from the manufacturers specifica tion to increase spark energy at high revolutions. If the unit is used with a c.d. ignition system, the angle between the blades is not important because the spark scontrolled only by the leading edges o Cuting the disc.
Cutuing the disc shape is made easier if e inplate is clamped to a thin sheet of uminium or plywood. After drilling the centre hole and filing it to shape, cut the disc to the correct diameter, cut the blades o shape and finish with a fine file on the cam. The disc is then fixed to the cam with epoxy resin after checking that all the parameters are correct and that the disc revolves freely. When installation is complete, the distributor can be mounte the engine and adjusted for correct Although this unit will not produce dramatic increase in performance from correctly tuned engine, the firing at hig evolutions should be smoother and tickcold, which permits sparing use of the choke. However, the main benefit is maintenance free ignition system. The prototype has now been in use for five years and the distributor cap is only re moved to show disbelieyer

BOOKS

Beginner's Guide to Digital Electronics by lan R. Sinclair.
146pp., paperback.
Newnes Technical Books, £3.25.
Only a limited knowledge of electronics is as sumed here. The author's intention is to explain no training in electronics, but who may hav accumulated information on the active and passive components used in and around integrated
circuits. He deals briefly w ith digita circuits. He deals briefly with digital elements
from switching devices, through small-scal systems such as counters, to microprocessor though the chapter on micros, which occupies
only fifteen pages, is rather too cursory to be of only tifteen pages, is
much practical value.
much practical value.
A complete beginner may find the lack of
information information on application a little worryin elements are well described, but with little ex planation of what their role in a system might as a device whose program is capable of carrying out the action of a truth table as an alternative to a set of gates and registers, with no explanation e advantages gained thereby

The Prestel Business,

by Roger Nicholson and Guy Consterdine. 104pp., hardback.
Northwood Books,
This is not a technical approach to Prestel, bu This is not a technical approach to Prestel, but
an explanation, primarily for business people, of what a viewdata system is, how information is provided and used, some costings and some o the background. This would be a good intro-
duction to the service for those who know little more than the name and who suspect that it could be of assistance in their work. There is no

More on active crossover networks

Using electrostatic loudspeakers with a common bass unit

by D. C. Read, B.Sc.Hons (Elec. Eng.)

Modifications to David Read's 1974 active filter crossover design provide for Quad electrostatic loudspeakers or
Isophon tweeters, with appropriate alterations in crossover frequencies.

An article in the November 1974 issue of Wireless World showed how some economies could be achieved in a stereo system
using active cross-over networks. One using active cross-over networks. One
such economy was. to have a mixed mono/stereo arrangement using a single bass unit working in that part of the audio band where sounds are non-directional. Sounds in the mid and upper ranges were, in the system suggested, produced by
smaller speakers fed via the amplifier/ac-tive-filter crossover units as described earlier (Wireless World, December 1973). This economy arrangement worked well, with the added flexibility of the active filters
enabling best use to be made of the five conventional cone units - one bass, two
mid-range, two upper-frequency speakers

- variously selected for best operation in the chosen ranges.
Given greater financial freedom in the choice of the output units, it seemed an attractive idea to apply such a mixed speaker system, using a single cone bass

Fig. 1. Basis of modified design is this on
axis speaker response curve axis speaker response curve
unit working between a pair of Quad electrostatic radiators. An obvious benefit of band-sharing in this way was that the
use of the single bass speaker relieved the use of the single bass speaker relieved the
electrostatic units of having to produce possibly loud sounds in that part of the audio spectrum where they are at their lowest efficiency and where, especially at

Fig. 2. New crossover frequency of 100 Hz is
chosen for dual electrostatic + common chosen for dual electrostatic + common bass combination.
+20 to 24 V
 $<100 \mathrm{~Hz}$

the very lowest end of the range, they cant
generate considerable distortion generate considerable distortion.
I therefore set about making I therefore set about making the neces
sary modifications to the active filter cir sary modifications to the active filter cir-
cuit, given as Fig. 2 in the November 1974 article, page 444 or, December 1977, page 575. The basis for the modified arrangement is the on-axis response (sine-wave ${ }_{\mathrm{Hi}}^{\mathrm{i}} \mathrm{i}$-i Chi Choice, repeated here for reference as Fig. 1.
The part of the audio band of particular interest is that between 80 Hz and aboutt 850 Hz . This range of frequencies cen be
divided into two regions: $80-170 \mathrm{~Hz}$ and divided into two regions: $80-170 \mathrm{~Hz}$ and
$170-850 \mathrm{~Hz}$. Considering the lower resion first, the Quad electrostatic speaker response curve here shows a fall in output which has an average slope of about 7 dB per octave. It has been suggested that the
optimum rate of change of loudspeaker response in a crossover region is 18 to 20 $\mathrm{dB} /$ octave. I therefore decided that a designed filter slope of about $15 \mathrm{~dB} /$ octave would be required so that, over this part of the band, the combined effect of filter and
on the high side of optimum, because I.f energy below 150 Hz produces high secon and third harmonic
The upper part

The upper part of the response curv section being considered, from 170 Hz up to 850 Hz in Fig. 1 , shows a slope in the same sense as before but at a more gentle rate of about 2 dBoctave. This slope does not contribute usefully to the desired effect
as in the previous instance and has to be compensated by an opposing active filter characteristic to maintain the loudspeaker output reasonably constant down to the
cut-off cut-off point of 170 Hz . general form of the required filter response curve. In addition, I decided to move the stereo/mono change-over point furthe down the band, to 100 Hz instead of 160 Hz in the original system, which used twin
KEF B110 cone units for the mid-range with a single B139 bass speaker. The reason for the change is that in larger living rooms having floor dimensions in excess of six metres square the stereo effect is ex-
tended to lower frequencies. As the output to this lower point in the band but crossowesponse shape which helps in the crossover arrangement, it seemed reason The filter response The three requirements detailed to above is the full-line curve in Fig. 2. This shows the variation of voltage with frequency of the output labelled m.f. amp in the filter
circuit diagram of Fig. 3. This output pro circuit diagram of Fig. 3. This output prospeaker: an identical circuit serves the other channel. The mono bass speaker - a KEF B139 is suggested but any comparable unit with suitable power-handling
capacity would do - is fed via a power amplifier from the channel combining and filter circuit drawn at the bottom of Fig. 3. The response of the output from this circuit is shown as the broken curve in Fig. 2 curve at the new whe the high-pass filter point of 100 Hz .
The active filter itself is a cut-down and modified version of the circuit as originally published in the 1974 article and needs

WIRELESS WORLD APAIL 1981
little further description. Op-amp IC_{3} provides the high-pass output with the bridged-T section between Tr_{2} and Tr_{4} berween 1 kHz and 100 Hz (with slope controlled by the choice of value for R_{6} Op-amp IC_{4} provides a mixing point and suitable low-pass response for feeding the common bass unit.
For people with the room space and the pocket money to suit, an improvement in having four such units stacked in pairs. rames specially designed for this purpos re now available* The resulting increased radiation "frontage" and power-handling enthusiast. But you might need to make peace with the neighbours first!
At the other end of the scale, with cost an important factor, the Quad units could be replaced, using the original 0.33 or cu. Isophon KK10/8 tweeters, instead of T27s. For those interested in such a variation in the arrangement, the circuit of Fig. 4 gives the alternative component values slightly different filter response curve, as shown in Fig. 5, suitable for feeding the sophon units. The applied volts curve for the KK10/8 and cross-over point to the B110 was adjusted to obtain the flat overal response similar to the curve the 1974 arti-
cle. pink noise (i.e. constant energy per octave) nd sweeping through the audio spectrum have become aware that room acoustics used an anechoic chamber during the speaker development I realised that a wedge shape filled with sound absorbent material would be available to me by
*From Audio-T, West End Lane, London NW6

Fig. 5. Applies voltage curve for 0.33 cu.ft shows response with low-pass filter only.
dertaking an attic conversion. The sloping oof to the now-boarded floor provided the This wedge is now filled with sacks of old lothes from a once-too-full wardrobe (all the family have been equally deprived). 1 have now achieved an excellent listening oom where I can p. ladder up afte me.
The power amplifiers, Fig. 6, use the 2SJ48 and I obtained a kit from Ambit International the details of which are in heir second calalogue. The kit for each oard, data sheet and component location heat sink $£ 6.32$). After many tests on this amplifier, and accepting the no secondary Fig. 6. In recommending this power amplifier circuit, David Read points out that power m.o.s.f.e.tss can suffer from h.f.
instability between 100 and 1000 MHz . which won't be visible on a scope but which will heat the resistor in the RC suggests keeping to the Ambit-proven suggests keeping to the Ambit-prover
layout, with fe.ts mounted on the board. (Further details in Ambit catalogue, no. 3 page 61/2, no. 4 page 87/6, available fro
200 North Service Road, Brentwood, Essex.) Inductor is 12 turns at 12 gauge wire wound on a 10Ω resistor. Reverse the
two diodes in the 25 J 48 gate circuit.
reakdown and self-limiting with nega tive thermal coefficient properties, the nly criticism was that the quiescent curent fell markedly after a long period at sured a few per cent. I considered adding positive temperature coefficient thermistors at the variable resistor position but as hese appear to be highly non-linear deices I felt the best solution was to use
large heat sinks on the m.o.s.f.e.ts to minimize the temperature fise. A word of warning - lath and plaster ceiling and loose tiles don't get along with large bass peakers driv A fini
A final point on overload margins. The power amps approaching clipping at 80 V The worst-case active filter networks is 13 V pk-pk-clipping in the bandpass or high pass, mid-frequency section, so to obtain
smilar headroom in each the active filter output pots are at about a third up from the earth end, this being correct for the m.o.s.f.e.t. power amplifiers.

Having listened to Quad pairs and stacked pairs it does seem that the slope
between 200 Hz and 1 kHz should be lessened, so I suggest halving the $120 \mathrm{k} \Omega$ resistor at Tr_{4} base. It would seem that as you go down the audio spectrum phase coherence increased and this gives an This is undoubtedly related to the large radiating area from stacked Quads and the large sound absorbing area of an attic coniversion.
If you are aware of sound level peaks in your listening room then some pre-fab-

$$
\text { Continued on page } 54
$$

Microcomputers in space

British Aerospace. Space and Communica-
tions Division is developing a spacecraft microcomputer module (SMM) as a standard unit suitable for general application in satellite systems. In addition to the hardware, the Divi sion is also developing the necessary computer
programs which includes all the basic executive routines needed to control an SMM system. Eash SMM is a totally self-contained microcomputer. One of the design aspects of
particular note is that of flexibility in choice of microprocessor used. The SMM development system at the Space and Communications Divi-
sion currently sion currently comprises a Ferranti F100-L,
three Texas Instrument 9900 's and a DEC thre Texas Instrument 990 's and a DEC
PDP11/34 mini computer, all running with compatible software and common hardware in-
terfaces.
The F100-L which has been selected for use with SMM in the immediate future, is a bipolar microprocessor with low-power dissipation,
manufactured by Ferranti as an LSI circuit on single chip encapsulated in a 40 -pin dual-in-line package. Military standard F100-L L micropro-
per package. Military standard F100-L micropro-
cessors are subjected to additional special
testing and screening before being nominated

A method of interconnecting up to 64 SMMs has been developed such that not only can their
processing capabilities be shared for processing capabilities be shared for compiex
computations, but tasks may be transferred to other units should faults arise in individual devices. Inputoutput functions are performed by
non-intelligent modules which are linked in an non-intelligent modules which are linked in an
SMM system by a two-wire serial data bus designed by the Space and Communications Division.
An addressable serial bus interface circuit connecting a module to the bus.
Data and control instructions are transferred
as 3 -bit per second. The ASBIC performs all data synchronisation, module address detection and the serial-to-parallel and parallel-t-to-serial
conversions necessary when transferring inconversions necessary when transferrs.
formation between a module and the bus. An ASBIC comprises a single 40-pin ceramic
dual-in-line package It is an ISI circuit manu-dual-in-line package. It is an LSI circuit manu-
factured by Ferranti using collector diffusion isolation and the uncommitted logic array tech-
indile nology developed by that company. It is TTL compatible, and importantly, operates at very
low power levels from a single 5 v source, an low power levels from a single sy source, an
advance over similar circuits using hybrid and
discrete discrete tecchnologies. It contains a 16 -bit
parallel data highway ideally suited to microprparallel data highway ideally suited to micropro-
cessor applications and is manufactured to full military sppecifications. Utilising ASBIC, nonintelligent terminals can be adapted for connec-
tion to the data bus with the minimum of addition to the data bus with the minimum of addi-
tional circuitry. ional circuitry.
The configur
election configuration of the SMM and the
silitary version of the Ferranti F1000 microprocessor is the outcome of an engineering study carried out over the last 18
months by the Space and Communications Division to assess the operational characteristicics
required of microprocessors required of microprocessors for prolonged ser-
vice in space, aboard satellites. The F100-L was vice in space, aboard satelites. The F100-L was
selected because its bipolar technology renders
it inherently more resistant to radiation damage,
with the added merit that it is the only 16 -bit
microprocessor wholly designed, developed and microprocessor wholly designed, developed and
manufactured within Europe. Throughout the study, liaison was maintained with the European Space Agency (EEA) to ensure the
technical solutions proposed were comptibe technical solutions proposed were compatible
with data handling requirements for satellites with data handing
specified by ESA.
Before the study began, British Aerospace
Dynamics Group had already acquired Dynamics Group had arready acquired consid-
erable knowledge of the factors likely to in fluence computer operations in space as a result of previous privately-funded technical evalua-
tions. The Group is continuing to invest money tions. The Group is continuing to invest money
in the current research and development work, the cost of which is being shared by the Department of Industry as part of the UK Space Tech-
nology Programme. nology Programme.
The Space and C
be incorporating SMMS in the next generation be incorporating SMMS in the next generation
of satellite systems they build and have begun
evaluating the device evaluating the device with its supporting com-
ponents to qualify it for use in the space environment. In addition to space, it is envisaged
that SMMs will be eminently sulted for a wide that SMMs will be eminently suited for
variety of data handling applications.

Computer in case

intended for the 'globe troting' reporter,
salesman, engineer, programmer, auditor etc model 8400 computer is fitted into a briefcase,

Produced by Microdata Computers Ltd, in
Hayes, Middlesen Hayes, Middlesex, the computer incorporates also of practical use: it may be connected to a wide range of power supplies' voltages and fre-
quencies and so may be

China standardizes in Industry

From a previous policy of self-reliance, China
has embarked on a comprehensive programm has moderked on a comprehensive programme
of modion including a number of product standards and a building and civil engineererin
code. Details are included in a report Exporing code. Details are included in a report, Exporting
to China, prepared by the Standards Association of New Zealand and available from the British porters service. porters service.
Chinese sta grades - national, ministerial and enterprise and the policy for each grade is explained. De-
tiils are given of the tails are given of the types of products covered
by the mandatory National Standards. There are two Chinese standards covering labelling
aequirements for requirements for shipped goods and the labels
are clearly illustrated. The report includes full are clearly illustrated. The report includes full
addresses of all relevant organisations, cor porations and embassies.
As if to underline that such trade is not
necessarily one-way, Hitachi have necessarily one-way, Hitachi have announced
the signing of a contract for the establishment of a ioint venture company in Fujian Province,
China for the production of television sets. In China for the production of television sets. In
tended for domestic sales and for export, the tended for domestic sales and for export, the
company expects to be producing 200,000 company expects to be producing 200,000
colour and 180,000 black-and-white tv sets per
year.
in the world it incorporates a real time clock
which can display GMT and local time which can display GMT and local time; it in-
cludes acoustic couplers for transmission and cleception of programmes or data through the
telephone network. There is a full ASCII telephone network. There is a full AsCII key-
board, a fold-away dot matrix gas plasma scree board, a fold-away dor matrix gas plasma screen
with a capacity of 480 characters; there is full text processing capability and the magnetic bub-
ble memory does not lose data when the power

WIRELESS WORLD APAIL 1981

Integrated circuits to your own design

Isolated oxide CMOS, or ISO-CMOS, can be
used to produce integrated circuit devices of used to produce integrated circuit devices of
higher speed, lower power consumption, lower
propagation delays, higher densities and lower propagation delays, higher densities and lower
cost per function, according to the new GEC cost per function, according to the new GEC
company, Marconi Electronic Devices Ltd company, Marconi Electronic Devices LId
which has been set up to combine ISO-CMOS
俍 with the established Cellmos computer-aided
integrated circuit design service, the combined integrated circuit design service, the combined
service to be known as ISO-Cellmos. By the addition of bigger and better computers and
improvements in software, the service can now improvements in software, the service can now
take a logic design, feed it into the computer take a logic design, feed it into the computer
which can analyse the circuit and can demonstrate the output response to any given input
waveform. It can then select the appropriate waverorm. It can then select the appropriate
gates from its own library and place them automatically in relation to each other to produce an optimal layout. The interconnect tracking is
also laid out automatically. The layout is then aiso laid out automatically. The layout is then ahecking for the effectits of possible transients. It also checked against the design rule book. All this has taken place within seconds of
entering the original design into the computer. Two plots are produced; one of the proposed
layout with pad positions etc. The other is a layout with pad positions ett. The other is a
diagram of the chip in logic diagram form, allowing of the customer to to check it agamainst his ircuit may be made to correct any errors or to

Keyboard research

It has long been known that the 'qwerty' key--
board is not the most efficient way of arranging board in on the most efficient way of arranging
the leters. In fact it was originally designed to slow down the typist so that the primitive
mechanics of early typwriters could cope with the task and not suffer from entanglements. The European Commission is inviting tenders for a
unified keyboard layout suitable for the many languages based on the Latin alphabet. The keyboard layout will be used within the Commission and other European or international organisations who need to deal with many lan-
guages. Whether the reseach will lead to a major re-design of keyboard layout or just a tidy-up xercise of the comparatively minor differences be seen.

Authors recognise

 technical writersThe Society of Authors (a professional society representing over 3000 writers) has under con-
sideration a plan to form a Technical Writers' ideration a plan to form a Technical 'Writers' Group within the Society, to cater for the needs
of technical and scientific authors. Those who write about technology are themselves much
affected by the introduction of new technology affected by the introduction of new technology
in publishing and printing, and by rapid in publishing and printing, and by ra
changes occurring in this field of writing. Thanges occurring in this fielel of writiting. vide technical writers, in addition to the normal services of the Society, with the benefit of a core
of expertise in this expanding area of writing and the opportunity to do discuss problems com-
mon to technical and scientific writers. mon te technical and scientific writers.
These maters were discussed by These matters were discussed by Stanley
Lyons in a special article in The Author reLyons in a special article in The Author re-
cently. Copies of this - and further details bout the Sociery - may be obtained gratis

This cross section illustrates the basic prin ciple of ISO-CMOS
add modifications.
Once the layouts are accepted by the cusnetic they can be simply translated into magof production masks. At the same time test of production masks. At the same time est
tapes are generated for the automatic testing of the finished integrated circuits.
A simpler and even more rapid approach is
suitable for those circuits which suitable for those circuits which can be adapted The Cellmos system can generate a layout for

Centre to study effects of technology on society

The interaction of electronic systems such as computers and data processing equipment with to be studied by a new research centre now 10 be studied by a new research centre now
being set up in the UK. Called the Technical Change Centre, it is mainly concerned with the relationship of technology to economic well-be-
ing in the UK: it will develop "a major proing in the UK: it will develop "a major pro-
gramme of research on the choice, management and acceptability of technical change relevant to the advancement of the national economy" in
the words of its official statement. But it will also study changes in society and the economy which act as pressures influencing the course of rechnical innovation. A related area of research
will be "trade-offs" between economic advance and social loss (in such matters as pollution and conservation) and the way technical change could be planned so as to reduce the inevitable
disruption it causes in people's social and occupational lives.
The economics bias of the TUC is reflected in the choice of its director, who is an economist,
Professor Sir Bruce Williams. Among many ther appointments he was economic adviser to the Minister of Technology in 1967. Electronics mittee havirfg as one of its members Philip Hughes, who is managing director of Logica, the well-known software and electronics company. Funding comes from the Leverhulme first five years, and from the Science Research Council and the Social Science Research Council, each of which will provide
same period. Eventually the Centre is expected
to to have an annual budget of $£ 750,000$, with some of it
research.

To some extent the TCC resembles the Office
of Technology Assessment (OTA) which was established in the USA in 1972 - but by law. It
is intended to be of practical help to those echnocrats in government, industry and elsewhere who have the task of shaping public policies to respond to technological development
and the changing position of the UK in the

Gallium arsenide invades

Silicon Valley
The Harris Corporation is moving ahead on irs
first semiconductor operation in San Franciso's first semiconductor operation in San Franciso's
famed 'Silicon Valley' arae by approving construction of a $\$ 4$ million facility in Milpitas, near San José.
The company is making the investment on
behalf of an 80 -per-cent-owned new company, behalf of an 80-per-cent-owned new company,
Harris Microwave Semiconductor, Imc. The firm was established last June by Harris and a group of local semiconductor executive,
specialising in the new field of gallium arsenide specialising
technology.
Gallium arsenide is a compound of two elements, gallium and arsenic, As a base material
for integrated circuits, it offers significant adfantages over silicon in applications requiring vantages over silicon in applications requiring
very good speed, high frequencies and extreme miniaturisation. Harris will use this technology
to produce gallium arsenide transistors, oo produce gallium arsenide transistorss
microwave components and integrated circuits to support their communications and informa-
ion processing equipment to support their communications and informa.
tion processing equipment now under de
velopment.

Flat c.r.t from Sinclair
Clive Sinclair of Sinclair Research Ltd has re-
cently announced the successful development of a flat cathode ray tube which will be incorpo rated into a miniature $t . v$. set. The set wil
include v.h.f. /f.m. radio and may be switched to most international t.v. standards, making it of niversal us
The Sinclair tube measures about $4 \times 2 \times 3 / 4$
in. and is three times brighter one quarter and a tenth of the power and is hal ne quarter and a tenth of the power and is hal
he volume of a conventional c.r.t. with the same size screen. II is assembled from just two formed backing plate. The phosphor screen is Coated on the inside of the backing plate and viewed through the front face from the same

side that the electrons strike. This gives brightness of more than double that of a conven tional c.r.t. with the same beam energy.
addition to the horizontal and vertical deflectio plates there is a third set between the phospho screen and the front face to bend the electro beam on to the screen.
To correct for distortion the screen height is
reduced by as much as half while the width is kept constant. This narrows the subtended by the electron beam and the pictur eight is restored optically by using a horizontal 3 in. diagonal. Other distortion is eliminated y careful attention to the modulation applied to e deflection plates.
The tube has been produced in Sinclair's pilo
production plant at St Ives, Cambridge but it production plant at St Ives, Cambridge but plant is to be commissioned in Dundee by the Timex Corporation. Timex were awarded th
contract by Sinclair because of their expertise in automatic production. It is expected that at th end of the first phase the capacity will exist to der The Microvision t.v. set which will incorpo-
rate the tube is also to be produced by Time and should be on the market by mid-1982. Al though the exterior design of the set has not
been completed, some design models have been been completed, some design models have bee

$\times 1$ in. or about the size of a paperback book. Furcher developments for the tube depen pon the extremely high brightness 'which may be achieved. This leads to its suitability for us
n projection systems. A monitor for the Sincla ersonal computer is high on the application st, as is a colour projection t.v. which woul
corporate three of the tubes and the associate cectronics in a projector about the size of a shoe bx to produce a picture on a wall screen with 50 in. diagonal.

Electronics bosses disagree on industry's priorities

Opposing yiews on the future of the Brius
electroniss industry were expressed fecently by electronics industry were expressed recendy by
two of its prominent figures, Mr Ernest Harri son, chairman and chief executive of Racal, and Mr Frank Chorley, deputy chairman and man aging director of Plessey Electronic Systems
Mr Harrison believes hat rationalistion will ber neecsarsy in the UK industry to meet foreign competition effectively. In a speech to to
stockbrokers indursialst Stockbrokers, industrialists and financial jour-
nalists he said " "f we are to surrive asa natio in professional electronics, or inded in any of Lhe electironics industicis, we have got to do something about our resources and getting to-
gether. We are going to face in the ecighices the might of Japan and America and these two countries are determined to dominate the world
They spend huye They spend huge sums on research and de
velopment the like of which we canno imagine. . . The competition is going to be intense and it cannot be avoided" ${ }^{\text {² }}$ Refering to
the raionalisaion that had already atakn place - Racal taking over Decca and Thorn taking over EMI - Mr Harison claimed that "many more people now agree with what I have been
saying for l long time. One exception, how
"I certainly dont tagree wirh Errie on thart," he
 a good idea to scrap it out, becuse it makes us
all more efficient." Companies in the UK industry were well able to took after themselves. Ra-
cal
 successful, though they were perthps not good
in all areas. There was no benefit to be gained by bringing them together.
A further difference of atitude emerged on
the two companies' involvement in militry the two companies' involvement in military
electronics. Despite the fact that alarge propor-
then
 field (about 38% recently), and is sikely to con-
tinue so with the accuisition of Decea tinue so with the acquisition of Deca, Mr Har-
rison declared " "We are too much in Defence.

This is much too large a proportion of our total electronics in the old manufacturing industries electronics in the old manufacturing industries
in the UK? Who's going to do them?" He gave one example of a civil application which was
fairly new to fairly new to Racal - electronic funds transfer
A new company was doing a loot of develonemen A new company was doing a lot of developmen were moving slowly because "the banks canno. make their minds up"
Mr Chorleys antitut
Mr Chorle's atitude about his own company, however, was that "The Defence industry
is sery successfull in the UK. From time to time

Socialist MPs have complained to me that

 ought to make calculators and other such pro-ducts, but we have got to do what we are goo
at Wee have got to exploit teady exists for for to. The UK has sasignificant ready exists for us. The UK has a signific
eead in this fied - so why not exploit ite? One matter on which both men were agreed
 supporteo by the goverrnment. Referring to the
kilions of pounds that the present administra ion is now pouring into steel and motor car Mr Harrison commented enviously. "Just magine what you could do in this business if
you were given a billion pounds to invest in
electronic proiects"

Fourth TV channel signal monitoring

The quality of the transmitred signal of the new
fourth telvevision network due to
goint servic in the autumn of 1982 (News, January issue) will be monitored by automatic cquipment. Instruments will be provided for the completet
network of main staions Fach of these is inter the supervision of station controlles which in in turn is insed back too computer at at aregional
to operations cernte. The e automatit ominioring
equipment, based on a Marconi Instruments

Alternatives for society

 Appropriate technology, community communelations, alternatives to nuclear energy andself-regulating education are among the alterna tives to exisining centralized instituions to ob
discussed in
so smal discussed di 30 small forums at the First Assem.
 "Human survival now deperds on the swifness with which our political, social and economic to be manameable and dmore adequately respon-

insertion signal analyser, operates under soft ware control. All parameters important in th maintenance of picture quality can be moni-
tored and the results compared with limit stored in the equipment. Warnings can then be given and executive action taken if any param ${ }^{\text {ter falls }}$ outside its defined limits.
The monitoring equipment is being provide
for the IBA by Marconi Instruments under Contract worth over 5500,000 .

Electronics Laboratories, University of Kent a Canterbury. Details from Fourth World, 24
Abercorn Place, London NW8 (tel: $01-286$ 4366).

More news from Sinclair To be launched at the Microsystems '81 exhib tion is a new Sinclair personal computer. It will incorporate a new, British, custom-built maste
chip, chip, have a significantly higher specification
than the successful ZX80 and yet will be marketed at a 'subsstantially reduced price'. Details
are also to be and are also to be announced of a low cost printer
and supporting software libraries.

Detecting drivers'
 behaviour

An electronic indicator which can be lade simply
and quickly on a road surface to spot faulty and quickly on a road surface to spot faulty
driving has been developed by engineers and
 nology. Although its most obvious use is to alert
police to drivers who are drink-impaired, the police to drivers who are drink-impaired, the
Speed and Aligmentit Indicator can also be used to monitror speed alone. It could play a partin in
 which here are many opinions, much specu-
lation but few certain ways of finding out precisely how drivers drive their cars.
When lidid on the road the indicator looks sike the rubber tubing used to count passing
vehicles. Two tubes are laid parallel to one venicles. Two tubes are laid paralle to one
anoher across the carriageway and six feet apart. Beyond hem is anoweres set of tubes ar-
ranged like an arrowhead poin ing in the same ranged like an arrowhead pointing in the same
direction as the traffic flow. Each tube has a direction as the traficic flow. Each thbe has a
randsucer which converts the pressure of
 electronic signal to a micro-computer by the
roadside. The micro converts the signals into roadside. The micro converts she signals into
the pseed of the vehicle end its alignment on the read.

$2,+1+=$ Vehicle speed is computed from the interval
in time berween the wheels passing over each of in time berween the wheels passing over each of
the two parallel tubes. Alignment is computed by the paralilel tubes. Alignment in computed
by tirst of all driving along a straight
line laid up the centre of the carriageway. This line ends at the arrow's tip, from which rwo
rubber arms slope away arrowhead. II the dirier has aligned the two
arms of the arrowhead simultancously If arms of the arrowhead simultancousy. If one
wheel strikes its arm ahead of the other, the vehicle must be off the centre line. The mirc-ocomputeren is boct 'Inelligent' and Versaitle, making a decision in nilliseconds on
whecher a driver has passed or faile each of the two tests set by the operator. Helshe can pre.
programme the device with the speed limit of
. programme the device with the speed limit of
the road and can also decide on the margin of error allowed to a driver on the alignment test. British or merric units can be chosen and the
indicator indicator and and sparate decisions on speed
and aligmment. The micro's decisions are and aigment. The micro's decsisions are
flashed 0 an a screen in front of the operator as "pass' or 'firit together winth the figures for speed
and and the number of inches or cenimetres by
which the car is veering from the centre line. which the car is veering from the centre line

The decisions are also printed out, and | warning buzzer sounds when the error linits are |
| :--- |
| exceeded | exceeded. The indicator can be set to record

every vehicle passin or
and every vehicle passing, or it can print out for
failures only - whichever mode the operator chooses.
The
qu The equipment is compact and easy to use. It can be carried round in the smallest of cars. The
Speed and Alignment Indicator is a prototype Speed and Airgnment indicator is a prototype
only at he moment, but it can be made and
marketed easily if there is police forces were interested in using it, the police forces were interested in using it, the
indicator could be set up on a road with a warning sign telling motorists that they were
about to be tested. Drivers would then about to be tested. Drivers would then align
with the guide line to the arrowhead and drive
along it: if the indicator showed a driver to be
out of alignment he could be stopped further
down he roodd and asked to toke a breath test. At the moment policice can stop a mototrist and
test $h i m i f$ if hey have treason to believe' he might test him if they have 'reason tobelieve' he nigh
have drunk too much alcohol, but therc is n obiective test of this and motorisss have always opposed random tesing.
The indicator could
The indicator could also be used to study driver behaviour by being set up to show, for
example, bow people take corners, road posi tion, etc. There is no obiective, accurate and
ter easy, way of obtaining this information at the
moment.
C.b. to become legal with f.m.

Mr William Whitelaw, the Home Secretary, has announced that Cititzen's Band, officially still
knownas Open Channel, radio is likely to beknowmas Open Channel, radio is likely to be-
come legal in the autumn of 1981. Two wavecome legal in the autumn of 1981 . Two wave-
bands are to be allocated, 27 MHz and 930 MHz both to be frequency modulated. Amplitud modulation is to remain illegal and f.m. oopera tors will require a licence. No details are avail-
able as to the maximum permissible signal abtrength or the number of channels but a draf
sit specification will be issued to potential manu facturers.
The Eur The European Communities Commission is nical regulations ce a harmonised sit of tech nical regulations covering c.b. sets and are
studying French proposals for a 27 MHz service with a maximum strength of two watts and fewer than 22 channels. Wireless World will be publishing a series of
constructional articles for those wishing to build
a c.b. set.

Approval and dis-approval for telephones

Although, under the policies of the present Gov-
ernment, British Telecom is to lose its monoernment, broitish Telecom is to lose its mono-
pents proving telephones and other attachments for use on telephone lines, it is very much
concerned that there will not be a free-for-all. At present the only equipment permitted is that certified by British Telecom as suitable for use as an attachment. This ensures that the equip-
network; it presents a minimal risk of injuring people or damaging the system; it does not in-
terfere with other customers' use of the net work; and it is correctly connected, to help in
diagnosing faults. Even when British Telecom dagnosing fants. Even when Britith Telecom
lose the monopoly, they will still be the sole
supplier of the first telog supplier of the first telephone connected to the
exchange line entering a person's bome exchange line entering a person's home o
office, under new arrangements proposed by th

Government. Certification of the suitability of attachments will continue but will be no longer
carried out by British Telecom but by an inde pendent Government approved body which will establish and publish standards for privatelf
supplied attachments and then test and cerifify that the attachments conform to the standards. British Telecom warns that most telephone
equipment now on sale in shops and departmen equipment now on sale in shops and deparmen
stores is not specially designed or modified for use on the British network, despite varioun
claims that it 'meets British Post Office stan claims that it 'meèts British Post Office stan-
dards'. It is nearly all made and designed for use abroad. If connected to the British network, it may not work properly. Phones designed for overseas use ere rrequently insufficiently sen-
sitive for satisfactory operation on all ines in the U.K. Mains-powered equipment can be electri-
cally unsafe. Not only do the owners of such equipment suffer, but also the callers whose
calls are made inneffective if the apparatus does not respond correctly, or gives poor quality reception. British Telecom are threatening, regreffully, to disconnect the telephone lines of
customers who persist in using uncertified equipment.
To counter the sales of such lillicit phones, gramme of offering a wider range of telephones to be supplied direct to the customer. Two additions to the range are illustrated. On the left is
Dawn. Intended for the boudoir, it has a low, sculptured profile on a circular base and is avail able in pale yellow, avocado green and white The one-piece Eiger telephone, with a press-
button keypad, includes a memory to store the last number called. It can call again automat ically, if required to. The colours are more

Divide by $(2 n-1)$

Fig. 1(a) shows a divide-by-($2 \mathrm{n}-1$) circuit which generates an equal mark-to-space
ratio output if a divide-by-2 circuit is used in the final stage as shown in Fig. $1(\mathrm{~b})$. With this arrangement, a divide-by-$(\mathrm{n}-1 / 2)$ output is available from the di-
vide-by-n counter, but not with an equal mark-to-space ratio. Fig. 2 shows a divide-by-3 circuit, based on Fig. 1, where the divide-by-4 counter is clocked by a posi ive edge of the input waveform and ther by a negative edge. During one complete
output cycle the divide-by- 4 counter receives four clocking pulses for three cycles of the input waveform. A divide-by($n-1 / 2$), i.e. divide-by- $1 \frac{1}{2}$, output is avail able from Q_{A}.
easy to build other odd value counters by inserting the desired divide-by-2n circuit. Also, by combining divide-by-($2 \mathrm{n}-1$) and divide-by-2n circuits, a counter can be designed to divide by any value of $(2 n-1)$. that inputs and outputs between the various exclusive-OR gates must be separated by a counter.
A. J. Ewins

Harrow
Middx
 $\mathrm{CK}_{A} \square \perp \square \square \square \square \square \square$ $a_{A} L \square \square \square \square$ $a_{B} \longrightarrow \square \longrightarrow$

Fig 2 (b) Waveforms of divide-by- 3 circuit

Fig 2 (a) divide-by-3circuit

Divide-by-17

Divide-by-3

Divide-by-5

Divide $-6 y-7$

Divide-by-13

Pre-amp with multisection tone

 controlThe input stage of this preamp, which originates from a studio mixer, will handle signal levels from $500 \mu \mathrm{~V}$ to 5 V r.m.s. For optimum performance the preset control hould feed 5 mV to Tr_{2} which, with A_{1}, amplifies the signal to 3 V r.m.s. The filters pedance paths to ground for five frequency bands, and attenuation or gain for these bands is achieved by controlling the lowmpedance paths towards the voltage dividers around A_{2}. Balancing the filter pothe input and feedback voltage-dividing networks cancel each other. The open-loop gain of the op-amps determines the maximum number of gyrators that can be used. At 15 kHz the paralleled gyrator series re-
sistors, 180Ω and 330Ω, which are boot trapped by the open-loop gain, should still be greater than the divider source impedances, 2 k 7 , and prevent unexpected dips or peaks a high frequencies.
H. Riegstra
Amsterdam

Holland

One-shot control of immersion heaters

A conventional immersion heater requires
two operations, switching on and later gizes the coil. Water temperature, and two operations, switching on and later switching off. Although simple, the second This inconvenient and costly if forgotten. This simple circuit is easy to install and the heater. A relay forms ally switch of nostable which is thermally rather than electrically controlled. A trigger is pro vided by the start button which energizes
the relay coil, and the heater is powered
until the thermostat cuts out and de-enercan be adjusted via the thermostat setting Apart from the relay connections, only on extra low-current wire is required betwee the start button and the thermostat. This circuit can also be used to isolat from the mains after a powe S. Ho and
D. Wibberley

Manchester

One problem with power supply current limits, which use the $V_{\text {BE }}$ drop of a transistor, is their drift with temperature varia-
tion. A simple solution is to use a programtion. A simple solution is to use a program-
mable Zener diode for current sensing, which offers less than $50 \mathrm{p} . \mathrm{p} . \mathrm{m} .{ }^{\circ}{ }^{\circ} \mathrm{C}$ variation in $V_{\text {ref. }}$. In the circuit shown

$$
I_{\text {limit }}=\frac{V_{\text {ref }}-a V_{\text {ref }}}{R_{\mathrm{sc}}}
$$

When the voltage at the \mathbf{R} terminal of When the voltage at the R terminal of
TL431 switches it on, base drive for the output transistors is removed and the output current is limited. However, if the output terminals are shorted, the TL431 is urned on but the voltage across it is 2.5 V . zero, V_{z} is required which can be any low voltage Zener diode above 2 V .
M. S. Suresh

Bangalor
India

"Test your knowledge""

Answers to the December issue multiple-choice quiz

None of the entries received for Test You None of the entries received for Test You the best entries had at least three of the answers wrong. That was one result of the quiz compiled by R. W. Ellingham and B, L. Hart and published in last December's tions, each with multiple answers, given to electronics students at the North East London Polytechnic. We offered prizes of Circuit Designs 3 or a subscription to Wireless World for ten correct entries 2 March for overseas.
The answers provided by the authors are given in the panel. As almost all entrants gave the incorrect answers to questions 3 are their solutions.
Question 3. The assertion is not true. A bipolar junction transistor comprises two p -n junctions both of which are forwar biased when the device is saturated. By the two junction drops to be equal in mag nitude.
The reason is a true statement. Opera tion of the b.i.t. depends on the existenc of holes. Therefore is the correct answer. Most thought (b)

Question 24. See diagram. For neutraliza tion $I_{1}=0$ when $v_{1}=0$.

$$
\begin{aligned}
y_{12} v_{0} & =-\frac{n_{1}}{n_{2}} v_{0} Y \\
Y & =-\frac{n_{2}}{n_{1}} \cdot y_{12}
\end{aligned}
$$

$$
=-2(-\mathrm{j} 0.2)=\mathrm{j} 0.4 \mathrm{mS}
$$

Question 34. Upper trip level corresponds to the level at which the comparato suming $V_{0}=-12 \mathrm{~V}$. the p.d. across the $8 \mathrm{k} \Omega$ resistor keeps the + input of the comparator below +4 V , hence the output stays at -12 V , until i_{g} increases to $i_{\mathrm{g}}=(+4-(-8) \mathrm{V} / 8 \mathrm{k} \Omega$ which is 1.5 mA
so (b) is correct, but everyone gave (c) About half the entrants gave incor choices for questions $8,9,18,36$ and 37 . In Q8, I_{e} is $\left(\left(I_{\mathrm{c}} / I_{\mathrm{b}}\right)+1\right) I_{\mathrm{b}}=110 \mathrm{~mA}$ and in Q9 zener current varies between 1 mA $\left(I_{\mathrm{b}}=9 \mathrm{~mA}\right)$ and 10 mA so the mean dissi is found by equating the increase and decrease in charge first across the input C , to give $v=-E / 3$ then across the output C give $E_{0}=M v / 3$. Those who got Q36 wrong gave (e) as the answer but the cor obtained from $2 \times(C \Delta V / I)$, due to curren mirror action, giving 50 kHz . Most entrants realised that the 150 kHz printed fo (d) was intended to read 50 kHz . The minimum frequency, Q37, is one tenth of Other answers were less frequently wrong, but more consistently so. In the answers to question 11 , emitter current
was invariably given where collector current wasn't. For question 23, it appear that the transformation ratio was taken to be the square of $X c_{1} / X \mathrm{c}_{2}$ rather than ($X \mathrm{Cc}$ $\left.+X \mathrm{c}_{2}\right) / X \mathrm{c}_{2}$. As the amplifier of question 27 is matched to the source, actual noise
power is twice the ideal noise power. That power is twice the ideal noise power.
makes the noise figure 3 dB , not 0 dB . The Thé venin equivalent circuit is needed for question 33. For V_{0} o to be high the + input at the comparator must b more positive than -1 V . This means

$$
\frac{R_{2}((10 / 3)+2)}{R_{2}+\left(R_{1} / 3\right)}>1,
$$

from which the answer follows.
from which the answer follows.
Only a few got question 22 wrong, but Only a few got question 22 wrong, but
one that did, Jeffrey Borish of Santa Clara, California, wrote to correct his answer saying the question could be a "deliciousiy
wicked trick," depending on whether wicked trick," depending on whether c.m.r.r. was taken
single-ended output At the time of going to press the cut-off date for overseas readers hadn't been reached but prizes for the best UK entries Answers to

Test Your Knowledge

1	C	11	D	21	B	31	B
1	22	32	D				
2	B	12	E	22	B	33	B
3	D	13	A	23	B	33	B
4	B	14	B	24	D	34	B
5	B	15	D	25	C	35	B
6	C	16	E	26	B	36	$\mathrm{D}(50 \mathrm{kHz})$
7	C	17	D	27	D	37	A
8	C	18	B	28	A	38	C
9	C	19	E	29	B	39	C
10	E	20	A	30	C	40	D

Radio observation of the 'active' sun

Solar effects on propagation recorded on home-made apparatus by R. A. Ham

Since 1968 the author has used a simple radio telescope constantly to monitor the effects of solar activity on radio frequencies. This article is a brief history of sunspotters followed by a chronicle of solar events and outlines recordings.

Until the advent of radio it was not realized that the sun, and indeed other stars, emitted radio waves. However, suspicions were aroused very early in radio's history as Sir Oliver Lodge tried to detect radio coherer detector, and the editor of the Scientific American called upon radio enhusiasts to listen carefully during the total eclipse of the sun on 24 January 1925 and eport any strange happenings to radio ignals.

Short-wave bands
Throughout the pioneering days of the mateurs and professionals were trying to explain why the propagation of radio signals varied between day and night and was often subject to echoing, fading and sudden blackouts.
Scientists such as Oliver Heaviside, Edward Appleton and Professor (later Sir) ence and structure of the how the exisfected short-wave of the ionosphere reflected short-wave signals around the
world. But as more evidence was gathered by astronomers, physicists and radio engineers it was soon realized that streams of particles from a solar event, Fig. 1, could disrupt the prevaling stae ore the ionosphere and consequently upset
paths of terrestrial radio signals.

Solar radio astronomy

 Signs of radio being used as an astronomer's tool date back at least to 1935when Karl Jansky first detected radio waves coming from the suns in the Milky Way. Later in the same year Denis Heightman heard a hissing noise in the 10 m band which was later confirmed as being caused by radio waves coming from a solar event. Between 1936 and 1939 this same noise was reported by no less than 24 amateurs Barbara Dunn while using a frequency of 56 MHz .
Early in 1942 British wartime operators

extraordinarily high level of noise whic was also found to be the result of a large sunspot group and soon after the war research into solar radio waves
effects on radio was stepped up.

Simple radio telescope Having heard the effects of solar noise, the author decided to build a simple radio 'active' sun and its effects on terrestrial radio communications. The radio waves from the sun at 143 MHz are collected by four 4-element yagis mounted on a wire mesh reflector, Fig. 2, which has a head plified signal passes along a coaxial cable to a 2 m converter, where the observational frequency, having being changed to ications receiver which in

The author's radio eresescope was featured in 'Tomor-
row's World' by the BBC and in a scientific fit by Yorkshire Television and networked by the IBA.

Fig. 7. The spectrohelioscope. A mirror (top centre) follows the sun and reflects light
towards the second unit (bottom right) which in turn passes through the garden room towards the second unit (bottom right) which in turn
door off to the left via the lens housing (bottom left).
d.c. amplifier and pen recorder. This instrument, although originally receiver, was brought into operatio and 1968 and has operated for three hours daily ever since. Using a chart recording speed of $7 \mathrm{~cm} / \mathrm{h}$, short-lived solar bursts are easily identifiable.

Sunspots - briefly

When a long-life sunspot, or group of sunspots, appears on the east-limb of the sun it can be visible for about 13 days before leaving on the western limb. The cause the sun revolves once every 27 days, they appear to move across the surface. Constant observations have shown that when sunspots are present there are two
main features of the associated solar r.f. main features of the associated solar r.f.
noise, the individual burst, Fig. 3, which may last for several minutes, and the con tinuous noise storm which may last fo days, Fig. 4. These radio waves are often generated by solar flares or prominences Fig. 1, but the nuclear waste ejected by the
event can take up to 50 hours before it reaches the earth and causes some form of atmospheric disturbance.

Sunspot cycle No. 20

 The author's observations began on the rising side of sunspor cycle No. 20 (1965 to 1976 approx.) in June 1968. After a quie start, a large burst of activity from a groupof sunspots on 13 August and a noise storm of sunspots on 13 August and a noise storm
from the 18th to 21st were recorded Another period of quiet ended on 17 Octo ber with a 5 -minute burst from a period of solar activity which lasted until 4 No
vember. The main feature of this event was a noise storm which began on the 29th and ended on 1 November: shortly after its termination an aurora borealis manifested and deflected v.h.f. signals from
and, Northern Ireland and Scotland to ards the south of England, proving to the uthor the connection between the 'activ The number of days on which solar oise was recorded increased towards pak in 1971 and then decreased until noise storms recorded began on 11 November 1970 and raged until the 22nd, during which time the solar-noise level was fixed azimuth aerial increased daily as a large sunspot group approached central meridian and gradually decreased thereafter.
This was an example of following the otation of the sun using radio. The tele hroughout the observations on the 15th and 16th, which was not surprising because the Daily Telegraph newspaper reported on 7 November that there were four separa passed throuph the central meridian on the 16th. This solar event upset h.f. communications and one unusual feature was the high atmospheric noise level that was heard on the h.f. bands after sunset large sunspot group between 3 and 13 March 1972 was the subject of a special report to the British Astronomical Associa ion (BAAJ June '72) with a special emphasis on the lares by radio on the 5 th
uring the past decade at around 08.35 hr on 3 July 1974 was th most memorable. The telescope had bee recording the radio waves from a sever he author decided to check the rising sun by using a 2 m beam and some auxiliar equipment. Suddenly the noise increased 10 MHz and other receivers in use

At this point a communications receiver Ad a long-wire aerial were used to follow the noise and for six minutes it over8 MHz before it slowly faded away back to 136 MHz , Fig.6. Solar noise was also heard at 28.5 and 70 MHz on 3,6 and 28 July. At 07.45 hr on 22 August 1976 strong and later at 11.58 hr while the author was using a low-band mobile radiotelephone another big burst occurred and blotted out the channel for 16 minutes. This burst was also recorded by the author's radio-tele
scope at 136 MHz . scope at 136 MHz .
and having been quiet, apart from two tin bursts, for 18 days it suddenly emitted a 28 minute burst which covered 50 MHz of the v.h.f. spectrum at 13.16 hr on 29 July August at 11.46 hr and for eight minutes the solar noise was strong enough to

Fig. 8. The yagi used in conjunction with
Fig. 8. The yagi used in
the spectrohelioscope.

Recorded noise storms of 1971
7 to 14 and 19 to 23 Jan
10 to 17 Apr.
9 to 12 May.
4 to 19 and 24 to 28 Jul .
18 to 26 Aug.
6 to 19 Nov.
6 to 9 Dec.
verpower static from a local thunde

Auroral observations Briefly, an aurora manifests when a stream particles from the sun collides with the gases of the earth's polar atmosphere causterrestrial radio signals An auroral flected signal can be identified by the following characteristics: an s.s.b. transmission sounds like a ghostly whisper, a c.w. main image bes a low-pitched rasp and the panied by many distorted images, all frequently changing as the aurora ebbs and flows. Throughout the past decade Mr C. Newton, Auroral Co-ordinator for the RSGB, has organized a large network of dio amateurs who monts Following a period of large solar bursts aurora manifested in two phases on

Fig. 9. Sunspots photographed at 14.50hr

ig. 11. Solar activity near sunspots

March 1970. During the first ${ }^{53}$ 16.47 hr , auroral signals were heard in southern England from amateur stations ocated in parts of Ireland, Scotland, Wales and Holland in the 2 m band. The second phase, 18.15 hr to 23.30 hr , was more intense and auroral signals from many east-European broadcast stations received in addition to the amateur stations heard during the first phase.
A large sunspot group was responsible for the noise storm which began on 2 August 1972 and became very intense on
the 3rd. At sunrise on the 4th the solar noise was heard at several radio frequencies and by mid-day it had reached large proportions. It was not surprising that from midnight on the 4th until about 03.00 hr on the 5 th a spectacular aurora
manifested which not only had an umbrella effect on v.h.f. radio signals, but its full glory was visible from southern-Eng-

Fig 10. Clouds of gas from an active region of the sun.

Fig. 12. Sunspots and solar activity
land. Although less intense, the prevailing
solar storm continued through the 5 th, 6 th and 7 th . At 15.00 hr on the 5 th another aurora manifested but this time it could only be 'seen' by radio. Without radio both these events may have gone by unre-
corded, the first could have been screened by cloudy skies and the second was obscured by daylight.
A special watch
A special watch was kept on the 4 m band during the solar activity from 28
March to 2 April 1973. At 16.0 1st observers in southern England were rewarded with auroral reflected signals from the Polish broadcast station at Gdansk, 70.31 MHz , and during the following hour auroral signals from 14 between 49 and 71 MHz .
The auroral events on 15 September and 13 October 1974 were expected because of the prevailing solar activity around these two dates. The September event lasted although the October aurora was much shorter, 14.00 hr to 17.15 hr , the first warning came earlier as signals from the OSCAR-6 satellite crossing the north-pole were affected by the aurora.
Alar burst was also recorded by the radio solescope which Cmdr Henry Hatfield uses
tele at his home in Kent in conjunction with a spectrohelioscope. At noon, Cmdr Hatfield noted that one of the legs of an arched
prominence on the east-limb of the sun was very bright, indicating the presence of a new sunspot. This spot later proved to be very active because from 24 March to 1 April a solar noise storm was recorded and the afternoons of 26 March, 1 and 3 April.

The spectrohelioscope

 By the beginning of sunspot cycle 21 Cmdr Hatfield, with his spectrohelioscopet, hadintroduced another tool for the study of solar activity. This instrument consists of two wave collectors, one a mirror, Fig. 7,
and the other a 4 -element yagi aerial, Fig. and the other a 4-element yagi aerial, Fig. 8 , which both follow the path of the sun.
The sunlight is passed through a series of mirrors and lenses to an observatory in the garden room below the house. At the same ime radio waves collected by the yagi are fed to a radio telescope in the same room. The output stage of the radio telescope when solar bursts are detected.

Sunspot cycle No. 21
It is understood that cycle 21 began in seen along the tail enders of cycle 20 . From the author's observation cycle 21 got off to a slow start because solar radio noise was
only recorded on 47 days out of 304 beonly recorded on 47 days out of 304 be1977. A marked increase in the daily rate of noise began in September 1977 and was still high at the end of July 1978. Out of

the 212 days from 1 January to 31 Jul solar noise was recorded on 108 days com35 days in 1976, 34 days in 1975 and around 124 days for the same period in the peak year, 1971. From present record 1978 appears to be the peak year, Fig. 5 ,
of cycle 21 therefore it is worth taking a more detailed look at some of the special events which took place.
On 11 February 1978
On 11 February 1978 the first clear sky for several days enabled Cmdr Hatfield to the high level of radio noise which had been coming from the sun on previous days he was not surprised to see some large sunspots. At 14.25 hr he watched an explo-
sion take place near the upper sunspot sion take place near the upper sunspot in
Fig. 9 and soon after recorded a massive six minute long burst of radio noise at 136 MHz . On 6 March at 12.3 hr Cmdr Hatfield managed to photograph the sola activity, Fig. 10 , responsible for the noise
storm which was in progress using the spectrohelioscope.
Around 12.00 hr on 9 April a burst of radio noise lasting six minutes was heard sweeping across the spectrum from 1.8 on 144 MHz and during the severe noise storm
from the 14th to the 17 th, solar bursts were frequently heard at 28.5 and 136 MHz . The sun was relatively quiet from the 19th to 27 th when suddenly at 13.29 hr on the 28 th an enormous burst of noise lasting 32 minutes occurred which
almost instantaneously blacked out the h.f. bands for a couple of hours. Some 50 hours later during the afternoon of the 30th an aurora took place which, with the help of another noise storm on 1 May, rolled around until the early hours of the 4th,
Fig. 11. On 25 May Cmdr Hatfield again Fhotographed solar activity around a group of sunspots, Fig. 12, which was causing a radio noise storm and it is possible that these spots were responsible for the solar flare at 10.45 hr on 31 May and went with it. Records show that aurora and/or inonospheric disturbance occurred during solar noise storms which manifested on six day cember 1977, seven in January, 19 in February, six in March, five in April, six in May, five in June, six in July 1978, two in April, five in August 1979 and nine in April 1980. After 12 years of consisten conclusion that the 'active' sun is very unpredictable.

Transient intermodulation

 distortionWe are sorry that the tutorial article on transient intermodulation distortion intended fron this
issue (see note in March issue p. 1) has had to be postponed. We hope to be able to go ahead with
it late this year.

WIRELESS WORLD APRIL 1981
Literature received

Mallory alkaline and mercury batteries, and Multiplex NiCaad rechargeable types are des cribed in a leaflet from Intel Electronic Compo-
nents Ltd, Henlow Trading Estate, Henlow,

Brochure on Controlox, a multi-plane, plug board programming system can be obtained
from Oxley Developments Company Ld from Oxley Developments Company Ltd,
Priory Park, Ulverston, Cumbria LA12 9QG.
Controlox is individually designed to undertake Controlox is individually designed to undertake
multi-programme circuit switching or sequenc-
ing.
Data recorders SR-30 and SR-50 by TEAC are
sold and serviced in the UR by Interna sold and serviced in the UK by International
Recorders Ltd, 92 High Street, Berkhamsted Recorders
Herts. HP4 2BL, who can provide a brochure on these 7 - and 14 -channel instruments. ${ }^{\text {WWW }} 403$

Toroidal transformers in the OT series ar based on stack core sizes to reduce manufactur-
ing time and reduce costs. ing time and reduce costs. These custom-buit
units are described in a leaflet by Avel-Lindber units are described in a leaflet by Avel-Lindber
Ltd, South Ockenden, Essex RM15 5TD.

The use of the input I.e.ds of an optical isolato to protect the inputs of an operational amplifie is described in a design note from Norbain
Electro-Optics Ltd Norbain House, Arkright Electro-Optics Ltd, Norbain House, Arkwright
Road, Reading, Berks. RG2 OLT. WW405

Ancom's range of temperature measuring sen-
sors and assemblies are illustrated and charac sors and assemblies are illustrated and charac
terized in a leaflet, which can be obtained from Ancom Ltd, Devonshire Street, Cheltenham
GL503LT.

Unilab, makers of science teaching equipment produce a set of booklets on the use of the
equipment which can also be used in their equipment which can also be used in their own
right as experimenter's guides. A variery of
subjects in physiss is subjects in physics is coveres. miricowy of
microelectronics, geophysics, for example, the microelectronics, geophysics, for example, the
booklets costing, on the average, around $£ 1.50$. A list of 'Notes for Use' Uan be had from Unilab Ltd, Clarendon Road, Blackburn BB1 9TA WW407

More on active

cross-over networks

continued from page 43
ricated absorber boxes may provide an im provement. These involve membranes of in hardboard paoing felt with mineral wool in hardboard panels 15 cm deep, the sound mm holes on a 4 cm grid, and approximately 1 m square for the overall panel. The panels, of which several could be needed, are normally mounted on batten attached to the wall and ceiling. This is
however a specialized subject involving however a specialized subject involving
reverberation time measurements and is a separate topic, discussed for example in BBC engineering division repor RD1958/88, available in most university

WIRELESS WORLD APRIL 1981

ARTIFICIAL
INTELLIGENCE
In your January issue Malcolm Peltu presents a
spirited and cogent defence of artificial intlligence as an important area of study. His al-read-strong case can be strengthened even
further by the observaion that a great deal of further by the observaion that a arreat deal of
what is now resennece as as omputer scienchas has its origins in work carried out under the banner of artificial intelligence.
The contribution of AI to computer science is perhly work. The programming language LISP
eat was devised by McCarthy and his group to aid their work in AI, and this has had a profound
influence on computer science. The value of recursion in programming was clearly shown by McCarthy's work as well as by that of Newell, Shaw and Simon on their General Proble
Solver. The LISP language is also a paradigm for all the other languages (including PASCAL and ALGOL 68) which allow the constructio of trees and other special data structures
Chomsky's pioneering work on the formal re presentation of syntax was undoubtedly stimu lated by the attempts to make computer programs which would manipulate natural lan
guage, whether for mechanical translation or question-answering systems.
In more recent iimes, interest in distributed array processors has stemmed, at least in part,
from the development of pattern recognition lechniques and their potential application to pecific tasks such as the automatic analysis of cramming languages developed at MIT and reerred to as "LISP extensions" certainly embody features which will find their way into with applications I am surprised that there now seems to be a tendency for computer scientists to dissociate
themselves from AI This is surely short-sighted themselves from AI. This is surely short-sighted Comes tomorrow's computer science.
A. M. Andrew A. M. Andrew
Department of C

Department of Cybernetic

MULTIPLEX KEYING
FOR ORGANS
With reference to the article "Multiplex keying
system for organs" by A. W. Critchley in the January and February issues, may I draw your attention to the fact that this company has marketed a multiplexing system for pipe organs for The system is a
transmitting all the organ facilities over a single
the transmitting all the organ facilities over a single
coaxial pair between console and organ. The system includes the necessary correlation be
tween stops, keyboards and pipes of all ranks at any pitch and between keyboards and coupler at any pitch, thus avoiding the need for multicontact relays and playing keys or the equivalen
multiple gates. The customers' are programmed into r.os.m., which controls the standardised modules. A solid-state piston capture system is also available.
We also have a solid-state recording system

Hnrestricted organ plenying in 32 Kbytes of ra.m. - a full performance of the well-known
Widor Toccata uses just over the capaciry. Tape back-up allows permanent retention of an unmited library, with a C60 cassette holding sevral hours' playing ime.
The transmission system has been installed his country ans, harge and small, throughout and South Africa.
L. W. Ellen
Christie Music Transmission Systems Ltd
Colchester
Essex

THE DEATH OF
ELECTRIC CURRENT
My thanks to Ivor Catt for giving me a good bis article "The death of electric current" (De cember 1980 issue) carefully, and then came the analogies. Memorable things analogies (wit-
ness that damned mutual impedance somewhere in the hot water system), but so dangerous. The theory C analogy succeeded in giving me a vivid picture of Catt's rravelling wave packets think were insulators, but which I now see are he very opposite. But just a minute, isn't tha he philosophical point from which I started, something travelling along the easiest path? It' in different places, thar's all. I honestly don't know which to call correct and I should like to particle. The trouble with theoreticians is that a particle. The trouble with theoreticians is that nathematics were the fact. OK Catt, you
naths may be right, and I don't doubt that it is more helpful in your field of practical endeavor, but for me the AVO meter theory of electrical current has more deductive and
predictive power. My money goes on Sprague,
but when I need you, Catt, Ill gladly acknowedge it. In the meantime please don't put me down as a fool because I tend to live my life
close to one side of the duality only. (I never got a shock from an insulator yet.) The reference to the phlogiston theory was a
red herring; that was proved by experiment to red herring; that
be untenable.
f.H. F. Dawson
Amsterdam
Netherlands
The author replies:
The duality (Theories N and H) inherent in as wave-particle duality. (See for instance D. Bell, Wireless World Sept. 1980, page 50, firs para.) As to "They're in different places, that all," my reply is that the location of a thing is
one of its most important characteristics. As to ".... nothing that existst is a particle," it depends what you mean by 'particle'. I have no sympathy for the billiard ball idea, and no sym-
pathy for the notion of wave-particle duality
The idea of wave-paticle duality could prob pathy for the notion of wave-piarticle duairity-
The idea of wave-particle eduality could prob-
ably only have been concocted by people who ably only have been concocted by people who
did not know Heaviside's concept of a slab of
energy current, now called the Heaviside signal
(see Wireless World, July 1979). In these particu har matters my view coincides with Einstein's; ". . WWe all of us have some idea of what the
basic axioms in physics will turn out to be. The basic axioms in physics will turn out to be. The
quanumor or the particle will
thems the fiely not te a anongst
 could possibly be, butitis sot certain."
"Quantum Mechanics and Reaity In what fol-
low I shall explain trielly and lows Is hall explain brieffy and in an elementary
way why I consider the methods of quantum way why consider the methods of quantur
mechanics fundamentally unsatisfactory." (Max Born, "The Born-Eizstein letters", pub.
Macmillan 1971, pp. 1644 , 168.)
The most prominent feature of the maths of
"OK Cat"" is its virtual non-existence. E-m "OK Catt" is its virtual non-existence. E-m theory was buried in nonsensical, complex
maths a long time ago, and I am extricating it.
(See "Maxwell's equations revisited", Wireess (See "Maxwell's equations revisited", Wireless
World, March 1980, pp 77-78.) (I would get a real shock if I (I would get a
a conductor.)
Inor a conduct
Ivor Catt
St Albans

COMMERCIAL

 BROADCASTINGIt is silly to speak of freedom of choice where revenue. It is equally silly to pretend that the best of anything is that which is desired by the majority, who clearly desire pools, dirt as repre-
sented by the News of the World etc, and popune after pop-tune regardless of quality; good, bad or indifferent. This morning's paper says hat peak viewing is soap-opera. And pre-
sumably the finest wartime musical work was sumably the finest wartime musical work was
"Roll out the Barrel" if popularity is the criteIt was as long ago as Hume or J. S. Mill that it
was first pointed out that rigid democracy led as
tion surely as any other system to suppression of minority interests. Certainly if longer hours mean more dreary episodes of Coronation Street and the like, more samey westerns and Ameriailms, then they can have my licence back. And what is it all for? To try to dupe more
people into buying, at ridiculously inflated people into buying, at ridiculously inflated
prices, cosmetics, cancer-sticks, and beer which tastes, as Lawrence Durrell so admirably put it, like a urine sample from a mule. To make mat-
ters worse you would think from their attitudes that the advertisers were transmitting the word f God. In fact we weuld all be much better off they were all strangled
Maidenhead, Berks
With reference to your leader of the December number of salient points. First, you state that the BBC has already started a course of competing for large
audiences on terms set by the commercial broadcasting networks. It is not - it is competing on the same terms as always, but using
material which is supposedly more suited to the changing tastes and poinions of the present day. onsequence of the more depressed financial trate of the country as a whole, not just of the
BBC itself. There may not exist a desirable level

vember 1980 issue prompts me to write and congratulate you on your courage and foresight in printing these. Having travelled broadly, I know your magazine is read in many countries, so I hope engineers in the industry will take inspiration from you and stop supporting the industrial and political maniacs around the globe in their blind drive to destroy so much of the work of the Creator. Please carry on the good work. Ken Evans Shaftesbury Dorset	cance of this method is that although a high voltage spark is used to ignite the discharge, the energy in the high voltage spark can be minute by comparison with that in the capacitor bank. This discharge starts at a very predictable voltage (that of the capacitor bank itself) and a negligible disturbance is caused by the third electrode. This idea worked very well in practice. I do not know whether Unilever has used this work or published it since I left. However, I would certainly like to lay claim to the invention; al- though I would be very surprised if no-one realised that this effect could happen before I discovered it for myself as a child.	method aimed at recent graduates with a formal training in logic design may be completely inappropriate for a practising designer with many years of experience, and now faced with usingthis new device. Similarly, a programmer with a background in mini-computers is likely to need a quite different approach. I hope that Wireless World will cover these aspects too in due course. O'Connor makes the point that what the de-
ELECTRONIC COMBINATION LOCK I have read with interest the article describing an electronic combination lock (January issue), but what I feel Jan Hruska ought to have developed is a lock that opens to a pre-determined rhythmic operation of a conventional door bell press button. This would save any need for a keypad, and would be of use in situations already equipped with an electric striker, such as buildings with controlled access by "entryphone" type systems, for example blocks of flats. H. T. Wynne Glasgow		
		tem capacity hard
	OPPORTUNITY LOST? While in course of conducting research in the technological history of disc sound recording I browsed through a volume of the defunct German scientific journal Akustische Zeitschrift. On the last page of the July 1941 issue there is a	
The author replies: I would like to make the following points in favour of my original design:	was the "new Magnetophon" which boasted noiseless playback. The paragraph which is of	
	the greatest interest, historically, is the following (translated by me into English):	
1. The hexadecimal code used in my design is equivalent to a combination of 16 dots and dashes, which would be a considerably greater burden of information for a non-user of Morse tolearn.	lowing (translated by me into English): "In recent research H. J. von Braunmuhl and W. Weber (RRG) succeeded in improving the quality considerably, particularly the dynamic range, because they used high frequency magnetization in the recording head instead of d.c. magnetization. Thereby practically all noises originating from the tape disappear."	
2. Input of code in this form would take longer. However, I had already considered constructing such an alternative device and have built a		
	Now what does this prove? It proves to me that a fact which was not discovered by the	
ing such an alternative device and have built a battery operated prototype using an Intel standalone microcomputer. Jan Hruska University of Oxford		
	Allied powers until 1945 and which explained certain feats of radio transmission during the	hardware is likely to be the deciding factor.
	1939-45 war, was in fact publicly disclosed in Germany as early as 1941. The technical des-	A $\$ 1.00$ microprocessor is going to face stiff
PICKABACK SPARKS	cription was adequate, i.e. a person skilled in the art would have been able to fathom the advantages, had he read that particular review.	guage is used - so long as the final code w
John T. Lloyd, writing in November 1980 letters, mentions the phenomenon where a third electrode at high voltage initiates a discharge in air between two electrodes connected to a charged capacitor. I can confirm his observation and would add that a high frequency Tesla coil source may not be necessary. I first observed the effect as a child, when I	The war was a great obstacle, but surely there	
built an electronic flash gun. Having no xenon	carly pubicauion (e.g. Basil Lane's extre	
	mely thorough " 75 years of magnetic recording" in Wireless World in 1975). It also	
tube at the time, I decided to attempt an air discharge. The capacitor was about $200 \mu \mathrm{~F}$ charged to 350 volts, and a miniature ignition		
	proves that research into the history of technology (as any other historical discipline) cannot	
was only able to obtain the weak high voltage spark, but by moving the electrodes progressively closer, I was rewarded by the bang and	do without access to every page of an originalpublication and cannot be done by means of	
sively closer, I was rewarded by the bang and blue flash which discharged the capacitor. I found that a bare copper wire, freshly cut on a		
	who may know about previous publication of the above reference.	
Much later in life, I suggested the idea of a third electrode to Unilever Research in connec-		
third electrode to Unilever Research in connec- tion with an explosibility test apparatus.	Denma	what is available to keep the costs down. A1-
Originally two pointed electrodes were connected to a bank of capacitors which were gradually		though the system may well turn out to be much more powerful than really necessary, does this matter if the costs are reduced?
	DESIGNING WITH MICROPROCESSORS R. M. O'Connor, writing in Octbber 1980 letters, raises a number of important matters which deserve further discussion. Firstly, there is no one "best" way of learning about microprocessors and their application. A	
determined voltage. Unfortunately, the voltage at which breakdown occurred was not accurately reproducible. Some of the reasons will be apparent from "Sparks gaps" by J Dearden in your November 1980 issue. Using a third electrode allowed "ignition" of the discharge which then almost completely emptied the main capacitor bank. The signifi-		For small production runs, it is probably better to design the system around a range of "off-the-shelf" modules. In this case, the particular microprocessor used is not as important as the range of modules available, and whether the hardware modules each have any necessary driver software supplied with them. Each module should be supplied with its own service

manual, so that the system documentation can
be prepared by assembling the manual for each module, and adding a section on the complete ${ }^{\text {system. }} \mathrm{O}$. pearing micro. Now although it is true that many microprocessors have appeared, then
disappeared just as rapidly, there are three fami disappeared just as rapidly, there are three fami-
lies that have been with us for many years, and look like being around for a long time to come. These are the 6502, the 6800/6809 and the
8080/8085. Not only have the manufacturers taken care to see that it is a simple matter to taken care to see that in is a simple matter to
change the software for new members of each
fenily Camily, but there is considerable support in the
form of hardware and software, both from the semiconductor manufacturer and also from a
large number of indenden supliers. I have large number of independent suppliers. I have
deliberately left out the $Z 80$ for two reasons deliberately left out the $Z 80$ for two reasons-
there is litule software available specifically for the Z80 and in most applications they run 8080 code and so do not make use of all the extra
facilities, and their future is likely to depend faciuties, and their future is likely to depend
very much on how fast the $Z 8000$ is accepted. very much on how fast the $Z 8000$ is accepted.
The $Z 80$ might simply be phased out and re-
placed by the 40 -pin version placed by the 40 -pin version of the $Z 8000$.
The moral from this would seem to be you are going to make your product in me millions
then do what then do what you would do for any other product, i.e. specify an interface that is indepen-
dent of the type of microprocessor used place an order for the cheapest components from one or two reliable suppliers, and make sure you
buy enough for future spares. If the product buy enough for future spares. If the product
sells so well that you have to make another 10 sells so well that you' have to make another 10
million, then it won't matter if new software is needed. After all, a black box is a black box is a fou can't get inside it to repair or change it, does it matter whether it is a micporoprocessor, a state machine or random logic? What is is importhe replacement unit cost.
On the other hand, if you are only going to produce small quantities you had better stick to
one of the above three families, and design one of the above three families, and design
around the one which has the best overall hardware and software support available to you locally, and which has a range of readily avail-
able modules which meet your needs. Although able modules which meer your needs. Although
these modules look expensive at first they turn out to be far cheaper than rolling your own. You have to make a large quantity to recover the
development and proving costs, even if you follow the recommended practices and get it right the first time. Designing a unit which
works correctly is straightford works correctly is straightforward - designing a unit which works correctly and can be produced
economically requires considerable extra skill and experience.
This leads me to comment on the design steps
used by Zissos and Valan in part 5 (October, Ised by Zissos and Valan in part 5 (October,
1980). They advocate designing the hardware first then the software, then repeating these steps until a satisfactory design is obtained. In
each of the failed designs that I have investi-
 I cannot stress too strongly that these two steps must be carried out concurrently, and in fact
that there are four separate but strongly interwoven areas that must be considered in parallel. These are: 1. Hardware design. 2. Soffware design.
production.
The last two areas are often left till the prototype is completed, and then it's back to the
drawing board for some very expensive changes Wrawing board for some very expensive changes.
We should follow the Smallpiece philosophy of "Get it right the first time." Test points, both for production testing and field servicing must
be built into the hardware and software during the original design. There is a lot to be said for making a commitment to including signature
analysis in every product. Similary, what is the point of designing a system that can't be pro
duced economically without redesing and the duced economically without redesign and the
consequent delays in getting your product into consequent delays in getting your product into
the market place? After all, one of the big incentives to using microprocessors is that their use can substantially
for the product.
As O'Connor said "Microprocessors are only
cheap if they are cheap to use; if the way in cheap if they are cheap to use, if the way in
which they are used brings crippling costs, they which they are used brings crippling costs, they
are extraordinarily expensive." Alan M. Fowler
North Baluyn
North Baluym
Victoria, Australia
DESIGNING WITH
MICROPROCESSORS
I would like et thank D. .. V. Vidyy for his letter in the March issue (p.62) poinining out the error
in our Table 3 (. .13$)$ of Part 6 of our series "Designing with micropprocessors". our the De- De-
cember 1980 issue. WWe understand that the edicember 1980 issue. We understand that the edi-
tor hopes to pulise tor hopes to publish a corrected version in the
next available issue. Regarding the sec on this. We have written numerous programs using different microprocessors which show the
generality of the approach generality of the approach that can be achieved
with these different devices. This will be demonstrated in detail in an article which will follow later in our current series. Meanwhile,
any readers who would like to have this information in advance are welcome to write to us at the address below.
D. Zissos and L Valan
Department of Computer Science
University of Calgary
Calgary, Alberta T2N IN4
THE TWINS PARADOX OF RELATIVITY
Alex Jones's letter (January) contains a funda-
mental flaw which I feel should be corrected. menta flaw which I reel should be corrected.
The relative ageing in The relative ageing in the Twins Paradox is
not dependent on the accelerations at the start not dependent on the accelerations at the start
and finish of the iourney, because the theory has
it that, with the same

difference at the end (with short acceleration This is certainly the total impression Eination). wished to impose on the world, and it is backe
up by the whole series of text-books since. The effect is quite clearly one of Special Relativity
not of Geneal Relativity not of General Relativity.
"If, as he suggests, the results of SRT are only apparent, but the Twins Paradox experimen-text-book writers would have us believe then Jones's "coincidence" is not only remarkable,
but miraculu but miraculous.
L. . H. Higgins
Suvindon Wilus

WIRELESS WORLD'S 70th ANNIVERSARY If I give a brief record of my association with it has given me to be invited by cheasur it has given me to be invited by the present
editor to say a few words on the 70th anniver-
sary.
Looki
Looking for a career in journalism I answered an advertisement by the Marconi Company for
an editorial assistant which stated "some an editorial assistant which stated "some
knowledge of knowledge of wireless would be an advantage",
As I already had a Post Office Experimenta Licence and had read all I could on the subiect had no difficulty in securing the job. I found myself on the editorial staff of the Wireless World
with the launching on with the launching of the first number. With a
commission in the Royal Engineers, the 1914-18 war took me to Mesopotamia and Persia engaged on interception and direction finding The Marconi Company kindly kept open the
editorship of Wireless World for me on my return editorship of Wi ireless World for me on my return
after demobilisation and I continued with the iournal as editor and then as director and man-
aging editor until my retirement in 1962 . aging editor until my retirement in 1962 . With a career which has been so incimately
wrapped up with the story of the Wireless World wrapped up with the story of the Wireless World
I welcome with enthusiasm its achicevement of 70 years and, under the control of our present editor, we can look forward with every conil-
dence to the future. I am proud to have been dence
associated with a staff which has created Wireless
Wor World over the years.
Congratulations and every good wish for the future.
Hugh Pocock

Dividing by fractions

Digital frequency synthesis using non-integral frequency division
by Gilbert Pearson, Australian Broadcasting Commission

This circuit allows a direct division from PAL/625 sub-carrier frequency to twice-line frequency, or a direct multiplication from twice-line to subcarrier frequency. This is achieved in and a single, phase-locked loop.
Present methods require additions or subtractions in the frequency domain which in turn require linear stages. frequency from line frequency has been built and found to work satisfactorily. The greatest use for the circuit may well be found in synchronizing pulse generators, where its low cost and reliability
should prove an advantage. But the principles described are applicable to any frequency synthesis problems where fractional divisions or The colour sub-carrier frequency as used
in the $625 /$ PAL colour television system is $4,433,618.75 \mathrm{~Hz}$. It is derived from the relationship -
$2833 / 4 \times$ line frequency +25 Hz
i.e. $2833 / 4 \times 15,625+25 \mathrm{~Hz}$
The addition of the 25 Hz makes synthe sis of one frequency from the other difficult. While straight divisions or multiplications can be done simply, with
integrated-circuit dividers and phaselocked loops, the addition or subtraction o frequencies, such as 25 Hz , requires precision phase shifters and tuned stages. A common technique used in the gener sub-carrier (SC) in a sync. pulse generom is shown in Fig. 1.

New method
The two frequencies can be broken into

$$
\mathrm{SC}-
$$

SC $=4,433,618.75 \mathrm{~Hz}$
$\begin{aligned} & =4,43,618.75 \mathrm{~Hz} \\ & =11 \times 25 \times 25 \times 644.89 \mathrm{~Hz}\end{aligned}$ $2 \mathrm{LF}=31,250 \mathrm{~Hz}=2 \times 25 \times 25 \times 25 \mathrm{~Hz}$
$\begin{array}{ll}\text { Thus, } & \frac{\mathrm{SC}}{11 \times 25 \times 25 \times 644.89} \\ = & \frac{2 \mathrm{LF}}{2 \times 25 \times 25 \times 25}=1 \mathrm{~Hz} \\ \text { i.e. } & 2 \mathrm{LF}=\mathrm{SC}_{11 \times 644.89} \frac{25 \times 2}{10}\end{array}$

Fig. 1. Typical synthesizing technique.

Fig. 2. Twice-line frequency (2LF) derived from sub-carrier fréquency.

$$
=\operatorname{SC} \frac{5}{11} \times \frac{1000}{64,489}
$$

It must be pointed out at this stage that 64,489 is prime number and thus cannot be broken up further. From the above, it would seem that we could divide by 64,489 , multiply by 1,000 , divide by 11 , multiply by 5 to generate twice line fre quency. The problem with this, however, and it is extremely difficult to stabilize a phase-locked loop (p.1.1. hereafter) with an nput frequency which is so low. An ideal wolution would be a divider wh
somehow achieved a fractional division.
i.e. $\quad 2 L F=\frac{S C}{2.2 \times 64.489}$

A reasonable first reaction is that this is impossible, and strictly this is correct. le counters, to achieve on average a frac ional division by dividing by two or more numbers in an appropriate ratio. Fo xample a division of 4.5 could be per A division of 4.333 could be performed b A division of 4.333 could be performed
dividing by 4 and 5 in the ratio of 2 : respectively. Of course, the problem with such an arrangement is that the output exhibits a large amount of jitter. This can hase-locked loop and will be dealt with later.
If we assume for the moment that both If we assume for the moment that bot
64.489 and 2.2 dividers are possible, ar 64.489 and 2.2 dividers are possible, ar-
rangements as shown in Fig. 2 and 3 can
be used to generate 2LF from SC and vice-
versa. In the schematic in Fig. 2, 2LF is derived directly from the two dividers in cascade. However, this output has large amounts of jiiter, so the p.l.1. and divide-
by-64 is included to remove this. This circuit would seem particularly useful in a sync. pulse generator where a suitable p.1.1. is often included anyway for the purpose of genlocking. Firstly, in conjunction wish functions cuitry, it provides the means of multiplication. Secondly, by selecting the time constants of the p.1.1., it serves to prevent the ter of the dividers being reflected on the
64.489 divider

As described in the previous section, fractional divisions are obtained by dividing by two numbers in a suitable ratio. In the case 65 in the a rotio of $511: 489$. 65 in the ratio of $511: 489$. There are many
ways in which such a ratio can be achieved, but the best one is that which gives the least low frequency jitter. To do this the divisions by 64 and 65 must as near as possible be evenly distributed. of the divider, background on the programmable counters is necessary. The 9310 is such a counter, in which it is possible to arrange a division of any number from 1-10 by programming on pins 3 to 6
It is further possible to cascade the coun-

Fig. 3. Sub-carrier frequency (SC) derived from twice line frequency.
ters and so arrange a division of any number. For our particular purpose a diviFig 4 and 65 can be achieved as shown sion is shown at the bottom as well as the lon is shown at the bottom as well as the divisions. When point A is high a division of 64 is performed and a division of 65 when low.
If, as in Fig. 4, the output of the divider is divided by 2 and fed to A , the result will tely divide by 64 and 65 , giving, on average, 'a division by 64.5. The output is also shown to be fed back, through a gate, to the PE terminal of the counters, This is
requirement for this particular counter. The circuit of Fig. 5 is an extension that in Fig. 4. There are five 9310 s designated XI-X5, integrated circuits X1 and X2 performing the same function as those in Fig. 4. As in Fig. 4, when point A goes high a division of 64 occurs. Instead of
there being a separate division by 2 , this is performed by X3, itself a programmable divider. X3 and X4 are programmed to even numbers, the Q_{0} output of X3 will, ralways alternate between 0 and 1 . As stated previously a division of 64.5 is This is close to the required division of 64.489. If 11 of the divide-by- 65 s (" $\div 655 \mathrm{~s}$ ") in 1,000 are changed into " -64 s " the correct ratio of $511: 489$ is obtained. This occurs in the circuit of Fig. 5 .
X 3 and X 4 divide by 90 and 92 in the ratio of $6: 5$. This means that they divide by 90.9090 . . or $1,000 / 11$, and point C will thus have eleven pulses for 1,000 occurring at the clock of X3. Furthermore, these pulses derive from the terminal count of
X 4 , and thus at a time when Q_{0} of X 3 is high and when B would be low, normally giving a $\div 65$ instruction. The 'high' on C thus overrides this through the OR gate and forces a " $\div 64$ " instead. The correct $\div 90, \div 92$ ratio is obtained from X5. A
9310 is not usually used to divide by 11 , but it was used in this case to make all the types standard. When X5 is programmed

Fig. 4. Alternate divisions of 64 and 65 .
Fig. 5. Complete 64.489 divider

WiRELESS WORLD APRIL 1981
as shown, it will divide by 11 and its Q_{0} cept at the maximum count, when it will give two consecutive 1s. Q_{0} will thus be high and low in the ratio of $6: 5$. It is this point, point D , that is used to command
the $\div 90 / 92$ counter. To summarize, X 1 or 65 , depending upon the command appearing at point A . This point will go high (" $\div 64$ ") when either B or C are high. B alternates between low and high and
thus, taken in isolation, would alternately. command division by 64,65 . Point C goes high for just 11 of 1,000 pulses appearing at the output and it does this when B is low, instructing a " $\div 65$ ". On these 11
occasions in 11,000 , then, " $\div 65$ " is occasions in 1,000 then, a " $\div 65$ " is
converted to a " $\div 64$ " making the ratio of the two divisions $489: 511$ instead of the two divis.
$500: 500$ or $1: 1$.
.
Jitter. If the divider is given an input of sub-carrier frequency it has the following
fitter components:

Frequency	Jitter (ns-pp)
34.375 kHz	226
756.25 Hz	111
378 Hz	1.24
68.75 Hz	1.13

The first can be easily understood, since the divider for most of the time divides output phase oscillates about a true mean with a period of two output cycles. Since with a SC input the output will be 68.75 kHz , this first jiitter frequency must be half this, 34.375 kHz . Its peak to peak xcursions are 226 ns , one p
input frequency (T hereafter).
The remaining components are best des-

Fig. 6. $756.25 \mathrm{~Hz}, 378 \mathrm{~Hz}$, and 68.75 Hz jitter Fig. 6. 756.25
components.
cribed with reference to Fig. 6(a). The horizontal axis is calibrated in periods of the output of the divider ($1-1,000$) and the vertical in its output phase, such that a
mean line would be horizontal. The mean line would be horizontal. The 34.375 kHz component has been ignored.
Beginning at point A, the divider divides alternately by 64 and 65 and since this is hot quite the required division the output phase steadily deviates from the mean as seen by the slope of line A X. Referring to the previous section, instead of the 89 and
90 th divisions being 64 and 65 as before, they are both " $\div 64 \mathrm{~s}$ " resulting in an abrupt correction in the output phase (X B). The count sequence from B-C is imilar, except that the 91 st and 92 nd divi-A-B and B-C give slightly different average divisions. The counts from C-D, E-F, G$\mathrm{H}, \mathrm{I}-\mathrm{J}$, and $\mathrm{K}-\mathrm{L}$ are identical with $\mathrm{A}-\mathrm{B}$, while the alternate ones, D-E, F-G, H-I and J-K are identical to B-C. It must be noted that there are six of the former sequ-
ences and five of the latter, as described in the previous section. After point L, the entire sequence A-L repeats itself. By a quantitive examination of the plot of Fig. (a) it is possible to calculate the various peak to peak values. Alternate divisions of 64 and 65 clearly give an average of 64.5 . This differs from
he final required average by $64.5-64.489$. he final required average by $64.5-64.489$.
That is 0.011 of an input period (T). This
error repeats itself for every pair of divi error repeats itself for every pair of divi-
sions and is accumulative. After 88 divisions, or 44 pairs of divisions, from point A, the accumulated error will be $44 \times .011=484 T$ at point X . When the cor-sion-by-64 a step of 64.0 -$64.489=-0.489 \mathrm{~T}$ is made.
It is clear that the sawtooth plot AXBYC \ldots represents the next most significant jitter frequency. Eleven cycles of this jitter appear within 1,000 divider outpu

$$
\frac{68,750 \times 11}{1,000}=756.25 \mathrm{~Hz}
$$

Its peak to peak excursions will be 0.489 T , i. e. . with a SC input-
$0.489 \times 226 n s=111 n s$ An error of +0.48 point X and a correction is made ($\mathrm{X}-\mathrm{B}$) of -0.484 T when a double division by 64 takes place. The correction therefore "overshoots" by an amount of 0.005 T . As of $45 \times 0.011=0.495 \mathrm{~T}$ accumulates. A double division of 64 occurs from Y to C bringing a correction of -0.489 T . In this case, the correction is insufficient and "undershoots" by an amount of 0.0061 . Since tical with B-C, the process of "overshoot" "undershoot" continues, the jitter wave form of Fig. 6(b) being the result. It is
continued on page 76

Fig. 7. Phase-locked loop used for synthesis of sub-carrier from twice line frequency.

Fig. 8. Complete 2.2 divider.

Phase measurement with an oscilloscope

Avoiding the difficulties of Lissajou figures and time estimation by I. D. MacArthur

A method of measuring phase angle between two sine waves of the same frequency is described, using a double-beam oscilloscope, which is
easy to use up to the full vertical easy to use up to the full vertica
bandwidth of the oscilloscope.

The classical method of measuring phase is by Lissajou figures, as in the example o Fig. 1, a method which suffers from ellipse must be accurately aligned with the cross wires of the graticule and then meaurements made against the graduations, hich are usually on the centre lines themelves. This is tricky and prone to error near 90° or 270°, and the gain of the hori zontal amplifier is usually limited, making it impossible to "open out" the ellipse with mall signals. The maximum frequency a which measurements can be made is als even a very good modern oscilloscope may be limited to about 200 kHz before the elative phase shifts in the vertical and orizontal channels become unacceptable. It must be stated though, that the Lissa-
jou figure has one big advantage in that it is very useful for checking zero (or 180° phase shift when the ellipse is closed and ny small departures are easily visible. Another method, shown in Fig. 2, is to waveforms. This method is still probabl the best for "a quick look" but has the disadvantages that the two waveform must be aligned with the centre of the graticule, and that the oscilloscope time
base must be accurately triggered. One must also choose between the chopped and alternate modes, which both have disadantages. On some oscilloscopes it necessary to provide an external trigger.

Sum-and-difference method Here the two signals are displayed as in the zero-crossing time-interval method, but it is unnecessary to have the timebase accusome cases. Measurements can sometimes be made in the presence of significant amounts of noise.
The procedure is as follows
Adjust the gain of the two channels to give equal-amplitude signals approxi-
mately half the screen height (to allow for dispiaying a $2 \times$ signal). The exact amplitude and gain settings are unimportant and the time base need not be synchronized. - Switch the channel selector to $\mathrm{A}+\mathrm{B}$ (al

Fig. 1. Phase measurement by the Lissajou figure method. This is difficult, since the
graduations on the cursor are usually graduations on
the centre line.
 Fig. 2. The zero-crossing method, which
can be tricky to set up symmetrically on the screen

Fig. 3. Graph of diff./sum plotted against phase.

amplitude of the resulting sine wave (the

 sum voltage).Switch the chat a vert one channel) and record the peak peak amplitude of the resulting sine wave (the difference voltage).

- Calculate the phase angle from

$$
\Phi=2 \tan ^{-1} \text { difference }
$$

or use the graph in Fig. 3
When using this method one must understand its limitations. When making that probes measurements in is vila

best done by connecting both probes ne signal and adjusting for equal amplides. The accuracy of the method deteriates as Φ approaches 0° or 180°. If the oltage measurement accuracy is $\pm 5 \%$ $\Phi=90^{\circ}$, reducing to about 10.5% at $9=12^{\circ}$ or 168°. Accuracy will also be im paired if significant distortion of eithe ine wave exists: it is useful to synchroniz he time base and check the waveforms. of phase measurement will never replac an accurate phase meter or vector volt meter in the eyes of those who can affor hem, it does offer a useful techniqu instruments, particularly when the signals are noisy. I have used the technique on witching regulator to measure 10 mV sig

"Tektronix Value understands" for míhney. We sell the finest lowtcost oscilloscopes in the world.

The complete range of low-cost oscilloscopes avail able from Tektronix offers for money.

Because everyone needs a slightly different performance in either band-width sensitivity or extra control unctions, we offer a range with different specifications.
There are 4 dual-trace oscillos-

the high standards that go Telequipmente from in the Telequipment D1000 Series family, with 10 or 15 MHz and and there
And there are 5 different copes ranging from a 15 MHz single trace oscilloscope to a 35 MHz dual-trace oscillos-
with our name. The result is ofidy built oscilloscopes orifate and maintain but also reqresent the most reliable buys on the market.

The T900 Series is supported by a full range of accessories including battery power packs,

/ा1" $1 /$

Int oscilloscopes are sold \&
4. \quad Yrldwide by Tektronix. Please send me more information on amuigment Oscilloscopes T-smo Series Oscilloscopes
Name Position Company Address

emoghone

Tetranix International Inc. Uurapean Marketing Centre
Posthus 827,1180 AV Amstelveen Themetherlands

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications

In 1911, the name of Marconi was almos synonymous with 'wireless': marine wire ferred to as 'Marconi operators'. The growing profession of operating Marcon stations on board ship demanded a magazine, and the Marconi company responded in April 1911 with The Marconigraph operators scattered worldwide and of developments in wireless technique. Two years later, for reasons which have been aired before by writers more directly con cerned with the event, The Marconigraph
became The Wireless World and embarked on its declared life's work of being "of use and interest" to a rather wider fraternity than had been the case in its previous exis tence. Sticklers for detail may, with some justification, point out that wo is not 7 the two larval years should count towards the total for, while laying no claim to be roseate, we think WW quite as sweet a The Marconigraph.
whas at first new science and technology was at first naturally associated with ships communications, there is a remarkably close parallel to be drawn between th development of radio (and later electron ics) and aviation. Both technologies were
emergent in 1911 (Bleriot had landed at Dover only two years earlier and Fleming's two-electrode valve was only seven years old), both were to advance rapidily in the two wars and have each, over the years, called for specific development in the was all, but even in the early days, direction finding and even radio landing aids were seen. The emergence of radar techniques and navigation systems changed the ways in which both civil and military airsome of them. Looking at it the other way round, the demands imposed on radio and electronics by military aviation in two wars and by an enormous expansion in civil air avionics to a degree where only marginally-
stable aircraft become docile, but agile and where landing aids are capable, in craft in zero visibility, but getting it to th terminal building as well. Electronics and aviation are now so inextricably interwo ven that airliners could hardly be operated aircraft would be unrecognizably different.

Wireless World,

 1911-1981
From crystal detectors to microcomputers in 70 years

Wireless World has always reflected this use of electronics, beginning with the wire eporting Lorenz instrument landin systems in 1935, gathering a whole mass of newly released radar information immediately post-war and continuing to report o air communication and navigation whe readers. Our two enduring interests over th years have been radio and television broad casting and reception, and the high-quali reproduction of sound. A great many of written in WW, and continue to do so, on theory and practice - an aspect perhap best demonstrated by the publication of designs for D. T. N. Williamson's valv amplifier just after World War II, which still write in to ask for reprints of these articles.
The Williamson standard was and is upheld by writers such as Jack Dinsdale, Linsley Hood and many others on the
practical side of our content, and contrib ors of the calibre of Peter Baxandal nd the immortal Marcus Scroggie (C hode Ray) have educated thousands of readers in the art of electronics. Coverage of television began with Caird's first crude experiments, although the tone of some of our reports was a little
bemused. It reached peaks in 1947 and 1968 with the publication of one of the first designs for a home-constructed monohrome television receiver (deflection yok and line-output transformer both being Walter Cocking, who made an enormous contribution to the standard of our practial articles over many years. The two re eiver designs illustrated some of the easoning behind WWW projects, in that of acquiring the receiver, or whatever was eing built. One of the reasons for pub lishing them was that such a series of articles is undeniably the best way of explain ne does not undertake the construction, he text is valuable in its own right.
In those days, of course, there were no tegrated circuits. Circuit design was no cost-efrecuive deployment of the va ge of modules one can now select from ind closed doors, its outcome being en apsulated in plastic. Integrated circuit ave brought with them enormous oppo tunities for technical progress, but an un fortunate effect from a journa's point of
view is that an article describing a piece of digital equipment often reads a little like knitting pattern. It is not as easy as it used to be to read such articles in isolation. Nevertheless, we have no intention of years ago, that Wireless World should en tertain, educate and be of use to the new generation, as well as their elders. It oubtful that G. Marconi would recogniz his grown-up brainchild, but we do hop

Previous articles have described the
synchronization problem and the most widely used solution involving software wait loops. In this article the wait/go concept is explained and design and implementation of wait/go systems are described. The design teps are illustrated by means of a ully worked out example.

The synchronization problem of microprocessors and the most widely used solution nvolving software wait loops have been described in previous articles. In this artiwhich involves keeping the microprocessor in animated suspension while the periheral is responding. Systems using this olution are easy to design, program, implement and maintain.

The wait/go concept

Let us assume that we have a microprocessor which automatically enters the wait state when an i / o instruction is being executed. Let us further assume that when in the wait state it generates a logic 1 on wait
terminal w, and that it exits the wait state when the signal on go terminal is pulled high $(g:=1)$. The block diagram and state diagram of such a microprocessor are hown in Figs. 1 and 2. If we were to activate the peripheral with ane transition of the wait signal w and keep the microprocessor in the wait state until the peripheral had fully responded, we would clearly have no synchronization problems. Furthermore, if the peripheral is an actiontwo wires, as we show next.

The two-wire interface
Our starting point is the block diagram of a waitgo system shown in Fig. 3. The sigmeaning:
Signal w: A ' 1 ' on this terminal (the wait line) indicates that the microprocessor has entered the wait state
Signal g: A signal transition from 0 to 1 on this terminal (the go line) puts the
microprocessor out of the wait state. Signal a: A signal transition from 0 to 1 on his line triggers the peripheral into action. Signal r : While the peripheral is respond-
ing $r=0$. When the peripheral has fully ing $r=0$. When the peripheral has fully
responded r changes to 1 . No activation is possible when $r=0$.

Designing with microprocessors

7 - Wait/go systems
by D. Zissos, Department of Computer Science, University of Calgary, Canada

67

WIRELESS WORLD APRIL 1981

- Fig. 6. The two-wire wait/go interface.

- Fig. 7. Block diagram of the wait/go logic.
${ }_{9} I^{Q_{1}}$

A suitable internal-state diagram of circuit to implement the above interface is steps to its equi. Applying the reduction (a) allows its three rows to merge into one, as shown in Fig. 5 (b).
By direct reference to the reduced state $a=w r+w \bar{r}+(\bar{w} \bar{r})=w$
$g=\bar{w} r+w r+(\bar{w})=r$
The corresponding circuit implementaThe corresp of two wires is shown Fig. 6.

Advantages

Waitgo systems ar
Easy to understan
Easy to understand. The 'wait' and 'go' are everyday concepts, not requirin specialist knowledge.
straighto design. The hardware is straightforward and presents no difficulty. Specifically, in the case of action/status devices it consists of two wires.
Easy to implement - because of uncom
Easy to program. Software overheads are minimal.
Easy to maintain - because of their reliability.

Wait/go logic

Although present-day microprocessors are not designed to operate in the wait/g of a relatively simple logic circuit, the waitgo logic, the block diagram of which is shown in Fig. 7. Its function is to look for i / o instructions with waitgo addresses, denoted by A_{w}, and to put the micropro-
cessor automatically into a wait state when such an instruction is detected. At this point it passes exit control to the go terminal, that is to the outside world.
Δ Fig. 8. State diagram of the wait/go logic
for the Intel 8080 .

Fig. 9. Circuit implementation of the
waitigo logic for the
The design and implementation of
wait/go logic is straightforward, as we demonstrate by means of the following example.

Wait/go logic for the Intel 8080
The m.p.u. signals of the Intel 8080 were described in the first article (May 1980 issue). Reference to these signals shows into the m.p.u. registers in timeslots into the m.p.u. registers in timeslots
M1.DBIN and the following DBIN respectively. It follows that we can identify an i/o instruction by simply determining whether the signals on the data bus in time slot M1.DBIN are 11010011 or not -
11011011 and 1101011 are the op codes for IN and OUT ${ }^{2}$. Similarly, the wait/go addresses are identified by looking at the data bus with the following DBIN signal. A suitable state diagram is shown in Fig. 8.

By direct reference to it, we obtain
$\begin{aligned} S_{A} & =S 1 \cdot A_{w} \\ & =A \cdot B \cdot A_{w} \quad \text { therefore, } \mathcal{I}_{A}=B \cdot A^{2}\end{aligned}$
$\begin{aligned} R_{A} & =S 3 \cdot g \cdot \\ & =A \cdot \bar{B} \cdot g \quad \text { therefore, } K_{A}=\bar{B} \cdot g\end{aligned}$
$\begin{aligned} S_{B} & =S 0 \cdot M 1 \cdot 1 / 0 \\ & =\bar{A} \cdot \bar{B} \cdot M 1 \cdot I / 0\end{aligned}$
$R_{B}=S 1 \cdot \bar{A}^{\text {therefore, } \mathscr{F}_{B}=\bar{A} \cdot M 1 \cdot I / 0}$
$\begin{aligned} R_{B} & =S 1 \cdot \bar{A}_{w}+S 2 \cdot \text { WAIT } \cdot g \\ & =A \cdot B \cdot \bar{A}_{w}+A \cdot B \cdot \text { WAIT } .\end{aligned}$
$=A \cdot B \cdot A_{w}+A \cdot B \cdot{ }^{B}$ WAIT $\cdot g$
therefore, $K_{B}=\bar{A} \cdot \bar{A}_{w}+A \cdot$ WAIT
Clock $=(S 0+S 1) \cdot D B I N+(S 2+S 3) \cdot \phi 1$

$$
\begin{aligned}
& =(A \cdot B+A \cdot B) \cdot \text { DBIN }+ \\
& B+A \cdot \bar{B}) \phi 1=\bar{A} \cdot \text { DBIN }
\end{aligned}
$$

Ready | $+A \cdot \phi 1$ | |
| ---: | :--- |
| $=$ | $=+S$ |

$\begin{aligned} \text { Ready } & =\bar{A} \bar{B}+\bar{A} B=\bar{A} \\ & =S \text { 信 }\end{aligned}$
$\begin{aligned} w & =S 2+S 3 \\ & =A B+A \bar{B}\end{aligned}$
$\begin{aligned} & =A B+ \\ & =A\end{aligned}$
The corresponding circuit implementation
is shown in Fig. 9 .

A design problem: PRINT The problem is to design and implement a
waitgo system that would allow the prowait/go system that would allow the pro-
grammer to produce a hard copy of data, grammer to produce a hard copy of data,
which is stored in consecutive memory which ions
locations.

Solution

As explained in the previous article the first three design steps are independent of the microprocessor and therefore common to both solutions.
Step 1: aim of the
Step 1: aim of the design. The aim of the
design is to expose the reader to wait/go ystems. Step 2: device characteristics. As
specified. specified.
Step 3: system design. The block diagram of our solution is shown in Fig. 10. Its
step-by-step operation is flowcharted in Fig. 11. As in the case of the test-and-skip solution described in the previous article, we shall use index addressing. Addressing modes were described in Part 3 in the
August issue.

Table 1: Hex listing of the PRINT problem when implemented using the wait/go
mode and the Motorola 6800.

Fig. 10. Block diagram of the PRINT problem.

Fig. 12. Programming model for the PRINT
problem using the M6800.

Fig. 14. Programming model for the PRINT
problem using the Intel 8080 .
Table 2: Hex listing of the PRINT problem when implemented using the wait/go mode and the intel 8080 .

Hex address	Hex listing	Mnemonics	Comments
$\begin{array}{r} 1000 \\ 01 \\ 02 \end{array}$	$\begin{aligned} & 21 \\ & 40 \\ & 20 \end{aligned}$	LX1 HL	Set memory pointer to line 40 on page 20 - location of the first byte to be printed
$\begin{aligned} & 03 \\ & 04 \\ & 04 \end{aligned}$	$0 \mathrm{O}$	MV1C	Load register C with block length (n)
05	OC	INRC	Increment C-sets flags
L2: 06	OD	DCRC	Decrement C
$\begin{aligned} & 07 \\ & 08 \\ & 09 \end{aligned}$	$\begin{gathered} \text { CA } \\ 11 \\ 10 \end{gathered}$	Jz	Jump to L , if $\mathrm{n}=0$ - that is if the zero flag is set
OA	7 E	mova, M	Move into A next byte to be printed
$\begin{aligned} & 0 \mathrm{~B} \\ & { }_{\mathrm{OC}} \end{aligned}$	$\begin{aligned} & \text { D3 } \\ & 06 \end{aligned}$	OUT	PRINT
OD	23	INXH	Point to next byte in the block
$\begin{aligned} & \text { OE } \\ & \text { OF } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & 06 \\ & 10 \end{aligned}$	JMP	Go to L2
L1:11	76	HLT	Stop

Demetrius Zissos is Professor of Computer Science and Adjunct Professo sity of Calgary, Canada. Educated in Britain, he has been associated with
industry on both industry on both sides of the Atlantic
for the past twenty years. He has written five books and numerous art Cles, including a series (with Brian
Holdsworth) on logic design in Wireless World. He is currently writing two further books, one on logic design and the other on distributed systems.

6800 Solution
Step 4: hardware design. No interface hardware is required.
Step 5: software design. ming model and design. Our program are shown in Figs. 12 and 13. Memory location 10 on page 20 is used as a counter and the first byte is stored in line 40 of the same page. Note that the programmin model is the same as nd-skip systems.
By direct refere
model and to the M6800 instruction set ${ }^{\text {b }}$, reproduced in Part 4 (September issue) we obtain the hex listing of our waitg oftware - see Table 1.

8080 Solution
Step 4: hardware design. As in the case of the 6800 , no hardware is required.
Step 5: software design. Our program ning model in the case of the Intel 808 Figs. 14 and 15. An m.p.u. register is assumed to be available for use as a counter. The first byte is stored in line 40 of page 20 in memory.
By direct reference to our programmin instruction set reproduced in the previous article, we derive the hex listing of ou wait/go sofftware. It is shown in Table 2.

References
. Zissos, D., "System Design with Micropro cessors", Academsic Press, , 980.
2. Intel 8080 Microprocessor User's Manual, eptember 1975. Motorola, 1976.

The earth-less vertical

 In one of his series of classic papers on transmitting aerials, Dr George Brown ofRCA (Proc IRE, June 1937) analysed the efficiency of monopole radiators in terms showing that typically an efficiency of up to 88 per cent can be áchieved with 113 radials, reducing to only 12.4 per cent with just two radials. It is on this work that amateur use of the popular "ground plane" and "vertical" aerials has largely
been based for over 40 years, while the been based for over 40 years, while the
standard medium-wave broadcast aeria still tends to use 72,120 or even 144 radials buried a couple of feet below the surface of the earth by means of mole ploughs, reof 75 to 90 per cent. More and more, in recent years, amateurs using verticals on 7 MHz and below have been persuaded that an extensive earthing system or "mat" is a vital essential. Since such an earthing
system cannot be fitted into the average garden, the h.f. monopole is generally accepted as not providing the sort of perormance at long-distances of which it hould be theoretically capable.
Recently, Leslie Moxon, G6XN, who has built up a considerable reputation for the "aerial lore" of many amateurs (and professionals), has been investigating what one could call the "cult of the radial" to see
if effective h. f directional arrays can be based on quarter-wave radiators at ground level without the use of any physical connection to earth. In doing so he has paralleled a similar investigation by the Australian amateur VK3AM who has been developing compact but efficient h.f.
aerials for use in confined spaces, including small boats.
This work is tending to show that, in fact, good efficiency is possible by using he once-popular "counterpoise" arrangement, but that this can be sur. In one form, G6XN is using with a base-insulated quarter-wave radiator, a 14 MHz counterpoise a few inches above ground, consisting of a 7 ft length of dural tubing parallel tance of about 11 fft of wire. Such monopole (or dipole?) elements can be readily used as driven elements or as reflectors or directors (a two-element array however should be based on a reflector rather than a direcused effectively to increase capacitive coupling between the array elements. Such elements can be easily moved to prepared positions to change the direction of fire of
the array and taken down when not in use. The performance of an array formed from such elements would appear to be equiva-
lent to those of a similar array using an extensive earth mat, although, as might be expected, a little inferior to an equivalent horizontal array at moderate height. The tages of cost and convenience since it requires no tower, no rotating mechanisms and is not a permanent structure and so presumably falls outside the scope of local uthority planning, while at the same time gation and development.

Amateurs and c.b.

More and more it looks as though British More and more it looks as though British
amateurs will soon have to learn to live with, even if some of them may find it difficult to love, c.b. or Open Channel on requencies additional to the proposed appear the die may well have been cast, appear the die may well have been cast,
although the package is likely to be so wrapped as to absolve the Home Office from any suggestion that they have been forced into making a "U-turn". But it is much to be hoped that amateurs will not
allow themselves to be provoked into open hostility. Some of the common complaints made by some amateurs against c.b. could easily be represented as "sour grapes". For example, that amateurs always have to pay ight regulations, keep accurate logs etc, etc, so why should so many people have been allowed to "get away" with 27 MHz peration? . . . and that sort of thing. But there are other, more seriously abrasive,
causes of friction. Amateurs fear they will have to take the blame for interference and abuses since the media often fail to distinguish between c.b. operators and "hams" But perhaps the most serious problem of all is that many of the thousands of 27 MHz
c.b. units now being used in the UK will perate - and indeed often are operated - within the internationally "exclusive" amateur band 28 to 29.7 MHz . Since most c.b. units are channelised it is possible that some of this intrusion is accidental, though
in other cases it appears to be quite deliberate. Since the c.b. operators make no attempt to abide by "band-planning" or similar conventions, amateurs in many countries are seeing a virtual take-over of ontrol modellers they are not being contered madternative frequencies! C.b. en-
offer thusiasts would be well advised to play it cool and not stray above 28 MHz .

Here and there

Australian amateurs are now permitted to three main exceptions. International traffic
must be only with countries that themselves permit such message handling; there must be no question of payment or intangible, direct or indirect; and no business traffic must be involved.
The problems of electromagnetic compatibility become ever more complex as more and more interference-producing or into use: interference from and to home computers and microprocessor-based appliances; automobile electronics; switchedmode power units (even the common or garden diode rectifier can emit hash); vir-
ually all forms of electronics for entertaintually all forms of electronics for entertain-
ment or business. American amateurs are reporting yet another growing problem: transmitters causing false triggering of smoke detector" alarms The r.f. can be mains-borne and gets into the detector
units unless protected by suitable r.f. bypassing. This requires care if the capaci-tors are not to interfere with the operation of the units.
An increasing problem for mobile operators, particularly since the public in-
terest in c.b., has been the widespread theft of radio equipment from unattended vehicles. Most weeks, amateurs report the loss of several expensive transceivers (presumably when 27 MHz units are stolen the iilegal operators are reluctant to report the
loss to the police). Recently, the West London 144 MHz repeater equipment of the UK FM Group was stolen and the Group has since taken out insurance on its ther repeaters.

In brief

The G-QRP club, founded in 1975 to encourage interest in low-power operation, now has more than 1000 members in 24
countries, including over 200 in the USA the traditional home of the "Californian lid and Blind Club now has a membership of over 600 , including more than 300 licensed amateurs. ...PY2AA is the callsign of a new 50.055 MHz beacon transmitter, with 25 watts power, located
at Sao Paulo, Brazil. A South African multi-band beacon, ZS5VHF transmits on $28.2025,50.005$ and 144.925 MHz , the 28 MHz signals have been received well in the U.K. .. . The British Amateur Television teur Television Handbook" with over 100 pages devoted to practical and up-to-date designs of amateur television equipment (Non-members 11.50 plus 35 p postage rom BATC Publications, nue, Leicester LES IFN.)

Introduction to low-noise amplifier design

How to optimize collector current and calculate noise figure
by A. Foord
Many constructors still settle for more noise in their amplifiers than
necessary because of the complexity of a full mathematical treatment and because manufacturers often fail to specify their transistor parameters in a convenient form. This article shows how to calculate the optimum resistance and the minimum noise figure at that current, and gives practical circuits for instrumentation use and sound reproduction.

Once the basic design requirement of optimum collector current has been satisfied determined from the normal design relationships. For example, as the noise figure is independent of the transistor configuration and overall feedback, the usual
feedback pair arrangements are practicable. Therefore the transistor and its operating point can be selected to meet the circuit noise requirements and the configuration or feedback can be determined to meet gain, bandwidth and impedance renoise and other circuit constraints to be optimized independently.
The selection of a suitable input device depends mainly on the source resistance
and bandwidth requirements. At the lowest values of source resistance it is necessary to use transformer coupling at the input to match the source resistance to the optimum for the amplifier, Fig. 1. Unfortunately transformers introduce
extra losses and degrade the basic noise figure of the amplifier. For example, an amplifier designed for a 5 kohm source might have a noise figure of less than 1 dB . When matched with a transformer to a 30 ohms dynamic microphone this
figure could be degraded to 2.7 dB .
If integrated circuits are used their parameters are well specified by the manufacturer, but their noise levels are in general about two to five times that of a
discrete transistor circuit This discrete transistor circuit. This makes
them more suitable as second and succeeding stages. Fortunately bipolar transistors can be used for most audio front-end applications and this article is restricted to their use.
There is a slight difference between p -np and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors. A $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor
can have a lower base spreading resistance due to a higher carrier mobility in its base

SOURCE RESSTSANCE (OHMS)
Fig. 1. Choice of input amplifying device
region, while an n-p-n transistor often has a slightly larger current gain and banduseful with low source resistances, with the $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor useful at the higher reason, and also for direct coupled circuits, it is desirable to have information on a range of $p-n-p$ and $n-p-n$ devices.
A table of suitable low-noise transistors and their parameters is shown in Table 1
These are measured values and may not agree with those obtained from the manu facturers' specification sheets. Details of manufacturers data
some low-noise i.cs are included for com parison.
Some noise mechanisms are process-de surface defects, surface contamination, de fective contacts, impurities, dislocations and irregularities at the base-emitter junc tion. For this reason transistors with th same type number may vary from maker to
maker. This is particularly true for low frequency noise below 1 kHz where poo processing techniques become mor ${ }^{\text {apparent. }}$ Any source unavoidably generates a amount of thermal noise power which deconstant, and the system's noise band width. Noise factor, as a ratio, is defined as
$F=\quad$ total available output noise power

Noise figure is simply this noise factor expressed in decibels. $\mathbf{N F}=$
$10 \log \frac{\text { total avaliable output noise power }}{\text { portion of of output power caused by source only }}$
or $N F=10 \log F$. The noise figure is a attributed to the amplifier. For a perfect

Table 1. Measured values of low-noise device parameters may not agree with

		$\begin{gathered} \beta \text { at } \mathrm{l}_{\mathrm{c}} \mathrm{of} \\ 1 \mathrm{~mA} 10 \mathrm{~m}^{2} \mathrm{~A} \\ \hline \end{gathered}$				Application
2 N 930	$n-p-n$	300	200	130	700	High source resistance
2N4124	$n-p-n$	300	200	110	100	Low source resistance
BC109	$n-p-n$	350	300	200	400	General purpose
2N3707	$n-p-n$	350	250	200	200	General purpose
2N4403	$\mathrm{p}-\mathrm{n}$-p	200	140	80	40	Low source resistance
2N4125	$\mathrm{p}-\mathrm{n}-\mathrm{p}$	150	120	90	50	Low source resistance
2N3964	$\mathrm{p}-\mathrm{n}-\mathrm{p}$	350	310	260	150	Low broadband noise
2N4250	$\mathrm{p}-\mathrm{n}$-p	350	310	260	150	Low broadband noise

IC type	$\begin{gathered} V_{n} \\ \left(\mathrm{nV} / \mathrm{Hz}^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \left.\mathrm{P}_{\mathrm{n}} / \mathrm{Hz}^{1 / 2}\right) \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{s}} \\ (\mathrm{k} \Omega) \end{gathered}$	$\stackrel{f}{f}(\mathrm{~Hz})$	NF at R_{s} (dB)
TDA1034N	9.0	3.0	3.00	10	6.41
	3.5	0.4	8.75	1 k	0.70
RM4739	20.0	4.0	5.00	10	10.41
	10.0	0.5	20.00	1k	2.11
LM201A	22.0	0.74	29.73	10	4.82
	16.0	0.20	80.00	1 k	1.46
OP10EY	10.3	0.32	32.19	10	1.50
	9.6	0.12	80.00	1k	0.58
AD517	35.0	0.05	700	10	0.86
	20.0	0.03	667	1k	0.31
ZN460	0.8	1.0	0.800	5 k	0.41

amplifier, one which adds no extra noise to the thermal noise of the source, the noise
factor is unity, and the noise figure zero. Usually there is not a great deal of value in reducing the noise figure much below 3 dB . A noise figure of 3 dB is equivalent to saying that the amplifier and source are con-
tributing an equal amount of noise to the wanted signal. Even if the amplifier noise could be reduced to 0.1 of the source noise, the total system noise is now about be remembered that an amplifier with a be remembered that an amplifier with a
noise figure of 0.5 dB at kHz with a source resistance of $5 \mathrm{k} \Omega$ will have a higher figure at low frequencies and at source esistances away from the optimum. The normal procedure is to design the desired source resistance. The optimum collector current for the transistor depends on the driving source resistance R_{s} and the direct current gain β.
Optimum collector curren

$$
I_{c}=\frac{(\beta)^{1 / 2}}{40 R_{s}}
$$

For example, determine the optimum current for a 2 N 4403 transistor with a source
resistance of 400 ohms. Initially β can be taken as 200 .

$$
I_{c}=\frac{(200)^{1 / 2}}{40 \times 400}=0.88 \mathrm{~mA}
$$

As shown in Table 1a β of 200 at 0.88 mA is possible. If the formula had given a much lower optimum collector current, say $50 \mu \mathrm{~A}$, then the β would have about 100 and the optimum collector current recalculated. This proceure is repeated if necessary until the β is rent. The of the wide variations in β, between one transistor and the next and because the oo the square root of β.
The minimum noise factor F at the optimum collector current can be calcuated from the source resistance R_{5}, the arrent gain β, and the intrinsic preading resistance r_{b}

$$
F=1+\frac{r_{\mathrm{bb}}}{R_{\mathrm{s}}}+\left(\frac{1}{\beta}\right)^{1 / 2}
$$

For the conditions previously discussed for the 2N4403 transistor

$$
F=1+\frac{40}{400}+\left(\frac{1}{200}\right)^{1 / 2}=1.17 \text { times }
$$

Then the minimum noise figure is $N F=10 \log F=10 \log 1.17=0.68 \mathrm{~dB}$

Microph

Many dynamic microphones have impedMany dynamic microphones have imped examples suggest that a 2 N 4403 transistor run at a collector current of about 1 mA could be used for this application, and suitable circuit is shown in Fig . 2

SOURCE RESISTANCE

A common-emitter amplifier is followed by an emitter follower. The dc conditions are determined by the bias chain from Tr_{2} emitter to Tr_{1} base, but this does not pro-
vide negative feedback at signal frequencies because of C_{2}. The low frequency response is determined mainly by the input and output coupling capacitors at 10 Hz , while the high frequency response is determined by C_{3} at 26 kHz . If C_{3} is not in-
cluded the high frequency response would extend to 1 MHz , which is undesirable.
The first transistor is essentially an unloaded common-emitter stage, and its gain
V_{0}
$\frac{V_{0}}{V_{\mathrm{i}}} \approx 40 R_{1} I_{\mathrm{c}}=204$ times or 46 dB.
Measured results on two amplifiers gave gains within 1 dB of the calculated value.
The input resistance was 2.7 k ohms. As

Table 2. Comparison of several tranistors for a 6 kohm source

	β	$\int_{(\mu \mathrm{A})}^{\mathrm{I}_{\mathrm{c}}}$	$\begin{gathered} \text { rob } \\ (\Omega) \end{gathered}$		NF
2N930	150	51	700	1.198	0.79
2N4124	150	51	100	1.098	0.41
BC109	250	65.9	400	1.130	0.53
2N3707	220	61.8	200	1.101	0.42
2N4403	100	41.7	40	1.107	0.44
2N4125	100	41.7	50	1.108	0.45
2N3964	280	69.7	150	1.085	0.35
2N					

Fig. 2. Instrumentation preamplifier is suitable for microphone use.

Fig. 3. Noise figure plotted against source resistance for the microphone preamplifi
(topl, and against frequency (bottom).
Tr_{1} has a high gain the noise contribution by Tr_{2} is negligible. Fig. 3 shows the noise figure plotted against the source resis-
tance, while Fig 4 shows the noise figure plotted against frequency for a fixed source resistance; in this case the non-optimum value of 50 ohms.
These results. confirm the theory, and show that the 2 N 4403 transistor is particu-
larly suitable for both low source resislarly suitable for both low source resis-
tances and low frequency applications where noise is important.
Measurements on several 2N4403 transistors suggested that about one quarter of them had excess noise at low frequencies,
but mid-frequency results were consistently low. For critical applications the amplifier input should be terminated with 390 -ohm wirewound resistor and Tr_{1} selected for a minimum amount of noise. This noise can be measured at the output
of the amplifier chain with an oscilloscope or a.c. voltmeter. An oscilloscope is particularly valuable because any low frequency or burst noise can be observed. If the preamp does not dominate the noise generated from succeeding stages (with the gain
control at a maximum) then these stages need to be examined!
The full design of a general-purpose audio preamplifier can be quite a problem, and a magnetic pickup may be the most rises with frequency, the amplifier has an equalization curve which gives 20 dB boost equaikation curve which gives 50 Hz and 20 dB cut at 20 kHz , and the basic amplifier noise may be increasing at low frequencies.
The theoretically correct approach is to allow for all these factors and design for he lowest total noise over the complete audio bandwidth. This really demands an exact model for the circuit and a good computer program. In practice a reasonfor a source impedance of about 6 k ohm . In Table 2 several transistors are compared for this source impedance. All of pared for this source impedance. Alt of

apart from the 2 N 930 . The 2 N 4403 transistor has been chosen for the practical ircuit, and the examples.

$$
\begin{aligned}
& I_{\mathrm{c}}=\frac{(\beta)^{1 / 2}}{40 R_{\mathrm{s}}}=\frac{(100)^{1 / 2}}{40 \times 6 \times 10^{3}}=41.7 \mu \mathrm{~A} \\
& F=1+\frac{40}{6000}+\left(\frac{1^{1 / 2}}{100}\right)=1.107 \\
& N F=10 \log 1.107=0.44 \mathrm{~dB}
\end{aligned}
$$

One practical circuit might be similar to that shown in Fig. 5, where two commonemitter stages are followed by a common work and the next stage. When Tr_{1} is biased from a potential divider as shown, he only bias component which contributes noise is R_{3}. The actual voltage drop across R_{3} is s mall and therefore any excess noise rent flowing through it, is also small. The amount of thermal noise it generates is attenuated by the source. The value shown will provide the load resistance required for most magnetic cartridges, and can The approximate open-loop gain for this type of circuit is

$$
\frac{\beta_{2} R_{8}}{R_{5}+\frac{1}{40 I_{\mathrm{c} 1}}}=\frac{320 \times 47 \times 10^{3}}{470+\frac{1}{40 \times 44.7 \times 10^{-6}}}
$$

$$
=14,600 \text { times }=83 \mathrm{~dB} .
$$

practical measurement of this circui gave an open-loop gain of 80 dB , which is
perhaps more realistic.
Unlike the first circuit, where the gain was well defined by the collector curren he second transistor. Overall negativ feedback is therefore essential to accu rately define the closed-loop gain. In Fig. 5 he clased lop es is 3 dB d and 8 Hz uency response is 3 dB down at 8 Hz and

Fig. 4. Preamplifier as shown has flat frequency response; for use with magnetic
pick-up replace feedback network with pick-up replace feedback network with
appropriate equalization network. Autho recommends metal film or metal oxide esistors, as wirewound ones are bulky and
expensive. Tantalum electrolytics are expensive. Tantalum electrolytics are
preferred over aluminium because of their lower leakage.
 (bottom).

${ }^{100 \mathrm{~Hz}} \mathrm{FREQUENCY}^{\text {ikHz }}$
Fig. 5. Noise figure plotted against requentiar general-purpos

The closed-loop gain is defined at

$$
G=1+\frac{R_{10}}{R_{5}} \text { times. }
$$

Resistor 5 is required so that the closedloop gain can be defined by overall negaeedback for Tr_{1} and reduces the openloop gain by about 7 dB . However the pen-loop gain of 80 dB which was meaared is adequate to provide a reasonabies even though the equalization curve demands a 20 dB gain boost (below 50 Hz) above the mid-band gain. The value of R_{5} cannot be made too low as this will force a ducing the available output voltage swing at high frequencies where the equalization curve falls at 6 dB per octave.
Although negative feedback does not alter the amplifier's noise figure, R_{5} is
effectively in series with the source and can contribute an amount of thermal noise, the ffect of which depends on the source resistance. It should be made much smaller than the source resistance. Noise factor with R_{5} is

$$
F_{\mathrm{r}}=F+\frac{R_{5}}{R_{\mathrm{s}}} .
$$

In the example
$F_{\mathrm{r}}=1.107+\frac{470}{6000}=1.185$ times
thus $N F_{\mathrm{r}}=10 \log 1.185=0.74 \mathrm{~dB}$.
Although this appears to be a significant degradation the resultant noise figure is a reasonable value. It does indicate why an approach like Fig. 2 is valuable for critical applications, because the gain can parameters without using emitter degradation.

Further reading

Low-noise Electronic Design, by C. D. Motives many practical examples which are fully pecified in terms of gain, bandwidth, and noise for up to four different values of passive compo-
nents.

Magnetic recording review

2 - Performance of modern cassette tapes

by J. Moir, F.I.E.E., James Moir and Associates

Mr Moir continues his survey of magnetic recording technology and materials with an examination of
modern cassette tapes. A brief look modern cassette tapes. A brief look ar concludes the article.
Equalization
The limited frequency response of the early ferric coated tapes led to the exten-
sive use of electronic equalization, a shaping of the frequency response of the record and replay amplifiers to improve both the frequency response and the s / n ratio. The correction required to achieve a flat overall
record/replay response was divided berecord/replay response was divided be-
tween the record and replay system in a way that eliminated the need for variable. equalization in the user's equipment. Standard replay calibration tapes were pro-
duced, having a closely specified response duced, having a closely specified response
curve, and the recording engineer, having equalized his replay equipment to ensure that these standard tapes played with a flat frequency response, was required to vary the equalization of his recording system until the overall record/replay system res-
ponse gave the same flat overall response. ponse gave the same flat overal response. ings and our knowledge of record and replay head design has so far improved that the equalization originally specified is not only unnecessary but actually degrades the cent types of tape.
The equalization to be applied to the system was specified indirectly as the relation between the signal voltage at the input surface induction (now the short-circuit flux) on the tape. It was defined as the combination of two curves, one being the response of an RC circuit with a time constant of 1590 microseconds, defining the RC circuit with a time constant of 120 microseconds defining the performance at frequencies above about 800 Hz . The combined frequency response can be read from Table 1: Standard time constants

Tape Speeds	Time Constant	
$76.2 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} / \mathrm{sec})$ and	35	Infinity
$38.1 \mathrm{~cm} / \mathrm{s}(15 \mathrm{in} / \mathrm{sec})$		
$19.05 \mathrm{~cm} / \mathrm{s}(71 / 2 \mathrm{in} / \mathrm{sec})$	70	Infini
$9.53 \mathrm{~cm} / \mathrm{s}(33 / 4 \mathrm{in} / \mathrm{sec})$	90	318
$4.76 \mathrm{~cm} / \mathrm{s}(17 / \mathrm{sin} / \mathrm{sec})$	120	1590

Fig. 9, using the appropriate curves. The low-frequency signal is boosted and the high-frequency signal attenuated in the recording process to minimize distortion
arising from the limited signal handling capacity of magnetic tape at high frequencapacity of magnetic tape at high frequen- 1 provides data on the agreed
cies correction curves for all the current standard tape speeds.
To obtain a flat overall record/replay
response, the replay chain must have the esponse, the replay chain must have the
inverse response, but to achieve this some additional high-frequency equalization must be included to compensate for the high-frequency losses in the replay head.
The standard replay calibration tapes are recorded with a carefully calibrated, surface short-circuit flux/frequency relation that follows the specified recording curve. When these tapes are used to obtain a flat replay system frequency response the
losses in the replay system are automatlosses in the replay system are automat-
ically corrected and the desired flat response is obtained for the whole record/replay chain.
During the few years following the standardizing of the 120 us equalization, the

Fig. 9. Recording characteristics (BS1568)
tapes has been greatly improved and designers have taken advantage of this by changing the recommended recording
equalization time from 120 s to $70 \mu \mathrm{~s}$. This equailization time from 120μ s to $70 \mu \mathrm{~s}$. This
necessitates an equivalent change in the replay system frequency response, usually achieved by providing two or three alternative switch-selected frequency response
curves. The 120 us equalization curves. The $120 \mu \mathrm{~s}$ equalization curve is used for all the ferric tapes and some of the
early chromium and cobalt modified tapes, the 70 us equalization curve being employed with the later chromium and pure metal tapes.
Current semi-professional machines and the better domestic units now provide both bias and equalization adjustment, gener-
ally using ally using separate controls. Used with performanding, this ensures near-optimum performance with most tapes. Professional and semi-professional machines usually
provide a step-less control of bias

Current tapes
At this point it appears appropriate to change from outlining simple theory to looking at some examples of current practice in tape production. About 100
samples of current cassetre tapes from 25 samples of current cassette tapes from 25
suppliers were examined, using a Nakami-
 which is capable of handling metal tapes
without saturating the recording head cores.
The bias settings were chosen using the Nakamichi facilities for equalizing the sig-
nal outputs at frequencies of 400 Hz and 15 kHz and with the equalization set to $120 \mu \mathrm{~s}$ for the ferric tapes and $70 \mu \mathrm{~s}$ for the arichrome, chromium dioxide and metal tapes. The bias settings are quoted in dB
with respect to the appropriate DIN reference tape, but since there are as yet no metal reference tapes, the bias setting employed for these tests are quoted with re The to the Nakamichi metal tape. pe of tape coating are averaged and these are the values in Table 2. The limits given in the Frequency Response' colum hould only be taken as being generally indicative of the results, the complete omparison.
The advantage possessed by the metal particle tape of high saturation values at high frequencies is not immediately ob vious from the data in the Table, being
masked by the reduction of the high-frequency replay pre-emphasis from $120 \mu \mathrm{~s}$ to $0 \mu \mathrm{~s}$. The higher levels of high-frequency ignals that the metal tapes accept allows eduction in the high-frequency attenua and this in turn necessitates a reduction in the replay-amplifier high-frequency boost, with a corresponding improvement in the overall signal/noise ratio.
Typical response curves are provided for each type of tape in Fig. 10. Five separat performance from every type of tape However, the person who buys budget and special offer' tapes is unlikely to be in erested in paying for a wide range of bia of bias are probably adequate for th majority. Few of the cheap machines provide bias adjustments so the best performance is likely to be secured from the simple ferric tape.
The penalty for buying 'special offer' and 'advertisement-by-postal circular' types of tape is illustrated by the frequenc
response of Fig. 11. This is measured fre

Table 2: Typical performance characteristics of cassette tapes

	Bias level	333 Hz MOL	Sensit.	10kHz sat.	Noise (CCIR/ARM)	Print through	Freq. Resp. 10kHz-10dB (n.b. see also Fig. 10)
Budget quality Ferrictape	+0.39	+1.98	-1.38	-5.86	-50.65	-55.1	$-1.65 \mathrm{~dB}$
Good quality	+1.26	+5.14	+0.03	-4.14	-50.76	-53	$-1.34 \mathrm{~dB}$
Ferric tape	+3.13	+7.3	-0.7	-6.38	-54.75	-49.5	$-3.53 \mathrm{~dB}$
${ }_{\text {Cro }}^{\text {pseudo-chromes }}$	+6.33	+5.09	+0.67	-6.12	-54.32	-47.85	-0.83dB
Metal tapes*	+11.3	+6.82	+0.6	-3.56.	-54.48	-56.56	$-0.2 \mathrm{~dB}$

$\mathrm{FeCr}, \mathrm{CrO}_{2}$ and metal tapes all tested with $70 \mu \mathrm{~s}$ equalization. Ferric tapes tested with 120 us equalization.

Notes
CrO_{2} sensitivity
$(+6 \mathrm{~dB})$ $\stackrel{(+6 \mathrm{Cl})}{{ }_{\text {FeCr }}}$
2. FeCr sensitivity quoted with respect to DIN Fe sensitivity.
4. @ Equalization problem on Nakamichi with FeCr tapes.
5. All figures
Nuoted with respect
5. All figures quoted with respect to Dolby level unless otherwise stated

From an initial inspection of the Table it would appear that the high-frequency saturation level of metal tapes is little better than that of good-quality ferric tapes. However, the tests carried out on the metal tapes were with 70 us equalization whilst those in the ferric tapes were done using $120 \mu s$ equalization. In absolute terms, the
performance of the metal tape in this respect is at least $4 d 8$ better than the ferric tapes performance of the metal tape in this respect is a teast differentequalization
but, because the manufacturers have chosen to use a d arrangement, the benefits of improved high-frequency saturation are not realized by the user. As far as the average user is concerned, the main advantage of using a meta
tape would be an improvement of 4dB in background noise level.
quency response of a tape widely adverised under the name of, but having no connexion with, a very well known company. Not all such budget tapes are equally bad, however, and some of the very cheap factory in a machine bought for youngster. At an intermediate price level, many own-name tapes from Boots and ther well known multuple stores are excelent value for money.
The ferrichrome, two-layer tapes proa 'step' of about 4 dB at frequencies in the region of 2 kHz , presumably due to the magnetic discontinuity at the boundary between the chromium dioxide and ferric special equalization curve to achieve the With the bias optimized as described for
each type of tape, the metal tapes are seen oo have the highest m.0.1. at 330 Hz , the highest saturation level at 10 kHz , the price, but note the qualification about opimizing the bias. A less well appreciated imitation to the use of metal tapes and even some of the CrO_{2} tapes is the inability of many machines to fully modulate the circuit limitations being the apparent cause.
The performance of metal tapes used in machines incapable of providing the optimum bias is generally much worse than that of an intrinsically inferior ferric or ferric-chrome tape.
Some comment about the material emteresting. The original tapes were al「 pvicbased, but in recent years tensilized poly-

Fig. 10. Typical frequency response curve

Fig. 11. Cheap tape performance

ester has captured the market because of its superior mechanical properties and its
relative freedom from the effects of humidrelative freedom from the effects of humid-
ity. Polyester has only a slightly greater ity. Polyester has only a slightly greater
tensile strength than pvc tapes, but is tensile strength than pvc tapes, but is
some eight times less susceptible to the some eight times less susceptible to the
effects of moisture, a great advantage in ensuring good spooling with a freedom from 'cupping' and variation in the ightness of wind. The puc base is rathe noother than the polyester base but not geous in reducing noise modulation effects due to the variation in coating thickness hat results from changes in the thicknes f the backing tape
The nominal thickness of the tapes varies somewhat between suppliers but
bases about $18 \mu \mathrm{~m}, 12 \mu \mathrm{~m}$ and $6 \mu \mathrm{~m}$ thick are usually used for the three common lengths of tape, the C60, C90 and C120 ypes, the coating thickness being around tape is probably the best compromise between playing time and tape strength, the C120 type requiring more care in handling and gentler treatment in machines than is usual.
The use of a thick tape base has the obvious disadvantage of reducing the
amount of tape that can be stored in cassette or on an open spool, but it has advantages in reducing 'print through', the transfer of signals from one layer of tape to
adjacent layers. These result in pre and post echoes that are obvious when they occur in the middle of quiet passages. The transfer is accelerated by storage of the tape in a warm environment and by longcoatings are more susceptible to the trouble than others, probably because of their increased temperature dependence.

The future

It is interesting to consider possible further It is interesting to consider possible further
improvements. The cassette format is here improvements. The cassette format is here
to stay, for its convenience clearly outweighs the residual deficiencies in performance. Its mechanical performance is not perfect, but is probably commercially adequate. Tape jamming is rare but sull in this respect. . Tape saturation at high frequencies produces amplitude compression and har-monic-type distortions that do not occur in reel-to-reel recorders running at higher
speeds. There is, therefore, some opportunity for improvement, but in most other respects the performance of the existing coatings is more than adequate for the commercial market. This suggests that achieving the present performance or at ance at half the present tape speed is likely to be the next step.
Development in
Development in tape coatings that have contributed so greatly to improvements in performance of the cassette format do not
appear to be applicable to $1 / 4$ in tape, or at least do not have the same advantages. Most of the limitations in coating performance are wavelength-dependent and not frequency-dependent effects. An adequate
frequency response for all professional re-
quirements can be secured from 1/4 in tap running at the present standard speeds and, in consequence, there appears to b no applicatio
field.
This situation does not hold for tapes used for $t v$ and data recording, so the half inch and wider tapes used for these applications are likely to benefit from coating that permit lower tap peeds.

Further reading

Ranie and Axon, The Reproduction Of Signal Recorded on Magnetic Tape, Part 3, May 1953,
Axon, Overall Frequency Characteristic in Axon, Overall Frequency Characteristic in
Magnetic Recording, B.B.C. Quarterly, No. 5, ${ }_{\text {Wp }}^{\text {Wp }}$. 46, 1950. 19 .

\section*{Dividing by fractions

d from page 61

d from page 61

triangular in form, has a frequency of hal the last component, that is 378 Hz , and peak-to-peak amplitude of 0.0055 of a
input period or, for a s.c. input,

$$
226 \mathrm{~ns} \times 0.0055=1.24 \mathrm{~ns}
$$

The final component is sketched in Fig (c). The sequence A-B results in a phas $+0.006 T$. B-C has thus over-corrected for A - B by an amount o $0.006-0.005=0.001 \mathrm{~T}$. The sequence $A-C$ is repeated by C-E, ... etc and each time an additional error of $0.001 T$ accumulates This is repeated five times to point K $0.005 T$. Since the sequence K-L is iden tical to that of $\mathrm{A}-\mathrm{B}$, a correction o $-0.005 T$ occurs, exactly eliminating th error. The steady accumulation of this er ror and its final elimination gives the jitte sawponent in form, has a frequency of 68.75 Hz and a peak to peak amplitude of

$$
226 \times 0.005=1.13 \mathrm{~ns}
$$

It has already been mentioned that removal of these jitter components is don with a phase-locked loop. The count of the divider has been so arranged that the low frequency components of jitter are smalles cult to remove. If we set a specification of 1 ns on the jitter , then both the final two components require little attenuation. The 756.25 Hz component is the most difficult asits frequency is relatively low and amplitude high. At this frequency, we require
41 dB attenuation, and this can be readily achieved in the phase-locked loop shown in Fig. 7.
The 111ns of jitter in a period of $65 \mu \mathrm{~s}$ would give a p-p voltage perturbation of tor. For the moment ignoring any attenua tion in the low pass filter, after the d.c. amplifier, 70 mV jitter will appear at the a sawtooth variation at the input of a v.c.o

Pa Philips Reseact Laboratories eeprint R213-R214-R217-R222. (Originally in hilips Research Reports, Vol. 8, pp. 148-157 Daniel, E., A Preliminary Analysis of SurfaceInduced Tape Noise, IEEE Trans. on Comm, and Electr., V. 83 , No. 72, May 1964.
Daniel, Eric \mathbf{D}., and P. E. Axon, Acciden Paniel, Eric D., and P. E. Axon, Accidental
Printing in Magnetic Recording, B.B.C. Quarerty, Vol. 5n, pp. 241-253, 1950. Wallace, R. R.L., Repproduction of Magnetically
Recorded Signals, Bell System Techrical Recorded Signals, Bell System Techn
fournal, Vol. 30, Pt. 2, Oct 1951. Review of Progress in Recording Materials,
IEEE Trans. on Magnetics, September 1978. IEEE Trans. on Magnetics, September 1978 .
Bate, G., Survey of Recent Advances in
Magnetic Recording Materials, IEE Trans. on Magnetics, July 1978.
Recording Equipment. Recording Equipment.

a control unit would consist o selector switch.

In practice, correctly designed one controls can make a significant contribution.

For a constant sound level, replay from a gramophone record produces distortion which increases very rapidly at high frequencies oubling in fact for every major hird increase in pitch.

There comes a point when the contribution of this distortion is increasing at a greater

musical content and this is what decides the optimum setting of the an essential and integral part of every Quad pre-amplifier.

The rate of attenuation can be set anywhere between 0 and 25 dB per octave starting at one of three frequencies $5 \mathrm{k}, 7 \mathrm{k}$, or 10 kHz and an appropriate setting can be found for each record to provide more of the music and less of the distortion.

To learn all about the Quad 44 write or telephone for a leaflet

The Acoustical
Manufacturing Co. Ltd.
Huntingdon PE18 7DB.
Telephone: (0480) 52561.
QUAD费
to the original sound
QUAD is a registered trade mark.
ww - OOS FOR FURTHER DETAIL

wW - 035 FOR FURTHER DETAILS

Backed by many years of research and development at Philips Research Laboratories, surface acoustic wave devices are now available as production components.

* RF front end and IF fiters
* Oscillators * Delay lines * TV IF filters

Choose from a range of standard devices or let us make a customised design to your requirements.

For further details contact: Brian Buckingham ext 2679 or Jack Mcllravey ext 27%.

Surface acoustic wave devices

2 - More on bandpass filters, delay lines and oscillators by R. J. Murray and P. D. White Philips Research Laboratories

This second part gives fuller information on the specification, operation pass filters, delay lines and oscillators.

Bandpass filters
There are two types of s.a.w. bandpass filters. The first is the transversal filter, which consists of two or more interdigital
transducers (see "principles") and is a transducers (see "principles") and is a
travelling wave structure. These filters are wideband, with bandwidths of 0.2% to 100% of centre frequency. Centre frequencies in the range $10 \mathrm{MHz}-500 \mathrm{MHz}$ are readily achievable with a projected upper limit in excess of 1.5 GHz . Design proce-
dures are similar to those used for digital filters. The second type of bandpass filter is the resonator kind, which consists of one or more i.d.t.s in a cavity formed by two surface wave reflectors. This structure supports a standing wave. Bandwidths of
0.01% to 1% of centre frequency are feasi0.01% to 1% of centre frequency are feasi-
ble, with centre frequencies currently in the range $50-500 \mathrm{MHz}$ and ultimately greater than 1.5 GHz . Design procedures are similar to those of conventional LC filters

Transversal filters. Fig. 7 (a) shows a s.a.w. transversal bandpass filter, which consists of two i.d.ts on a piezoelectric substrate. An electrical signal is fed into one transducer, converted to a surface
acoustic wave, reconverted to electrical energy at the other i.d.t. and emerges as a filtered signal. An alternative structure is shown in Fig. 7 (b) which incorporates in the s.a.w. propagation path a multistrip
coupler consisting of a series of parallel unconnected metal strips. This acts to transfer the surface wave from one track to another, providing discrimination against unwanted bulk waves which are also launched by i.d.ts.
is have individual frequency responses $H_{1}(\mathrm{f})$ and $H_{2}(f)$, where f is the function $H(f)$ is given by
$H(f)=H_{1}(f) . H_{2}(f) \mathrm{e}^{-\mathrm{i} 2 \pi \mathrm{t}}$
(1)
where $\tau=L / v_{0}, L$ is the geometric centre-to-centre separation of the i.d.ts, v is the s.a.w. velocity and * denotes complex conjugate

The filter amplitude response $A(f)$ is given
-
$A(f)=\left|H_{1}(f)\right| \cdot\left|H_{2}(f)\right|$
and the phase $\theta(f)$ by
$\theta(f)=-2 \pi f \tau+\tan ^{-1}$
$\left\{\frac{\operatorname{Lin}\left\{H_{1}(f) \cdot H_{2}^{*}(f)\right\}}{\operatorname{Re}\left\{H_{1}(f) \cdot H_{2}^{*}(f)\right\}}\right\}(3)$
If $\left(H_{1}(f) H_{2^{*}}(f)\right.$ is wholly real or wholly If (\boldsymbol{H} ($)$ 位 equation (3) becomes a linear function of frequency. This generally desirable property may be accisved by making each of the i.d. ts symmetrical or antisymmetri-
cal about its geometric centre. S.a.w. ransversal filters are usually nonminimum phase fiters. This means that the amplitude and phase responses may be other. In particular a very precisely defined amplituide response (e.g. with steep sides, a flat or even equi-ripple passband and good stopband level) can be achieved whilst maintaining a linear phase response are in the range 1 to $5 \mu \mathrm{~s}$.
In general, spurious signals will arrive at the output transducer with a different time delay from that of the main signal. These

Fig. 7. (a) S.a.w. transversal filter geometry; (b) s.a.w. transversal fitter corporating multistrip coupler to suppress unwanted bulk waves.

Fig. 8. Trïle transit mechanism in s.a.w. devices. The triple transit signal results from successive
before detection.
group delay responses of the filter. These spurious signals can cause quite large de-
viations from the ideal response and appropriate steps are usually taken to minimize them.
The most serious unwanted response is usually the triple transit signal which is illustrated in Fig. 8. This is caused by successive reflections from the output
and input transducers before detection. If the main signal delay is τ, then the triple transit signal is delayed by 3τ i.e. 2τ more than the main signal. The period of ripples in the frequency response is thus $1 / 2 \tau$. The maior contribution to the reflec-
ions which cause the triple transit signal is electrical and is a consequence of the three port structure of the i.d.t. The i.d.t. has wo acoustic ports and one electrical port as shown in Fig. 9. When used for

Fig. 9. Three-port nature of the interdigital

Acoust
(b)
Fig. 10. (a) Spurious s.a.w. reflections from substrate end
(b) suppression of reflections from substrate end. These reflections cause distortion of the filter amplitude and reflections cause
phase responses.
of the filter amplitude and
signal causes acoustic signals to be the electrical port is acoustic ports. If then half of the available power is delivered to each acoustic port. Conversely, if surface waves are incident on one acoustic port with the electrical port perfectly matched then half of the energy is delivered at the electrical port and one quarfor a filter consisting of two perfectly matched (electrically) conventional i.d.ts, the minimum theoretical insertion loss is 6 dB (never quite achievable in practice)
and the triple transit signal is only 12 dB and the triple transit signal is only 12 dB
below this level, which would result in an amplitude ripple of approximately 4 dB peak-to-peak and a phase deviation from linear of approximately 25° peak-to-peak. For most applications ripples of this magnitude are totally unacceptable. The
simplest technique for reducing the triple transit signal, and the most widely used in practice, is to operate the filter with a mismatched source and/or load impedance. This increases the insertion loss but drastically reduces the level of the re-
flected signals. Using this technique a typical insertion loss is 20 dB with peak-topeak ripples of less than 0.3 dB in amplitude and less than 2° from linear in phase. Therefore, when a filter has been designed to operate with mismatched terminations it
is important to remember that any attempt to improve the match and thereby reduce the filter insertion loss will cause increased amplitude and phase ripple. Other, more complicated, methods of suppressing triple
transit responses are available for use in transit responses are available for use in
filters with particularly difficult specifications.

There are several other spurious signal in s.a.w. devices which can be substan tially reduced by suitable design of the
i.d.ts and substrate. Reflections from substrate ends are reduced by bevelling and applying acoustic absorber behind the i.d.ts as shown in Fig. 10. Reflections within i.d.ts are reduced by replacing each single electrode (a quarter of a wavelength
wide) by a pair of like polarity 'double wide) by a pair of like polarity 'double'
electrodes (each an eighth of a wavelength wide) as in Fig. 11. Spurious bulk wave responses can be attenuated by the use of a track changing multistrip coupler on high coupling materials and/or by treatme
the lower surface of the substrate.

Resonator filters. A surface wave resonator consists of one or more i.d.ts suitably
positioned in a cavity between two efficient positioned in a cavity between two efficient
reflectors of surface waves as shown in Fig 12. Unlike the more familiar bulk acoustic waves employed in bulk wave resonators, surface waves cannot be efficiently reflected by an abrupt discontinuity (e.g. a significant proportion of the energy to be mode converted into bulk waves. S.a.w. reflectors consist of a large number of small impedance discontinuities in the form of metal strips or grooves spaced by hafflectors with peak amplitude reflection coefficients of typically 99% or higher. The resonant cavity will generally be capable of supporting several standing waves, and the required mode is selected by
careful design of the reflectors and the careful design of the reflectors and the
The electrical equivalent circuit of a

(b)

Fig. 11. (a) Conventional 'single electrode' interdigital transducer: (b) equivalent 'doubla f inger' interdigital transducer used to suppress
mechanical reflections.

13(a). This is similar to that of the in Fig. 'quartz crystal' bulk wave resonator, con sisting of an LCR resonant section (the cavity) and a shunt capacitance due to the
I.d.t. Two or more of these elements may be connected together to produce a coupled resonator. The equivalent circuit of a two port resonator is shown in Fig. 13(b). The capacitor C_{c} is defined by the
coupling transducer and is given by:

$$
\begin{equation*}
C_{c}=2 C_{\sigma} \frac{N_{T}}{N_{c}} \tag{4}
\end{equation*}
$$

where N_{T} is the length of the input/output i.d.ts and N_{C} is the length of the coupling i.d.ts.

Normal coupled resonator behaviour is Fig. 14. By appropriate choice of structure, including in some cases inductive tuning, various standard filter types may be realised (Butterworth, Chebyshev, etc). In general, any number of resonators
may be coupled together to form a multipole filter. A third-order filter is shown in Fig. 15.
S.a.w. resonator filters are low loss narowband filters and are temperature stable quency range of application $(50-1500 \mathrm{MHz})$ there are very few suitable alternative filtering techniques and so the s.a.w. resonaor allows narrowband filtering to be implemented at frequencies at which it has many implications in the design of modern systems where the filters may be included at the front end of communication systems and in the high frequency section.
Design procedures for s.a.w. resonator
filters are similar to those for LC fiters and the filters are minimum phase. Unlike transversal filters, the phase response achieved for a given amplitude response is uniquely defined.

Further details
 of delay lines

S.a.w. delay lines consist of two i.d.ts suitably placed on a piezo-electric sub strate. If each i.d.t. is geometrically
symmetric or antisymmetric (about its geo metric centre) then the delay line frequency response is band-pass with a linear
phase characteristic. Identical uniform transducers are usually used and the amplitude response is, therefore, $(\sin x / x)^{2}$ (see section on "Principles"). Alternatively, with a suitable asymmetric design be dispersive (i.e. the delay varying as a controlled function of frequency).
Linear phase delay lines can be made with bandwidths of up to 100% of centre frequency over the frequency range of $10 \mathrm{MHz}-1.5 \mathrm{GHz}$. Delays ranging from more can be achieved. Relative delays of less than 400 ns can be achieved directly if electromagnetic breakthrough is not a problem, or as the differential delay befeature of s.a.w. delay lines is that rela-

Fig. 12. One-port s.a. w. resonator geometry showing the transducer located
between two reflectors.

(a)

Fig. 13(a) Equivalent circuit of one-port s.a.w. resonator; (b) equivalent circuit o s.a.w. resonator; (b) equiv,
two-port s.a.w. resonator.

Fig. 14. The effect of varying coupling s.a.w. resonator response Note that s.a.w. resonator response. Note that decreasing the value of the capacitance C increases the coupling and results in a broader band

 broader bandwidth and lower loss as with conventional filters.ively large delays can be achieved in a lume. For an ST-X (temperature I s can be obtained with an acoustic path length of 3.2 mm .
Applications include radar systems, lectronic countermeasure systems and also be used in discriminator circuits such as that shown in Fig. 16 where a signal is fed to a double balanced mixer via two paths, one direct and he other hrough a has a linear phase response the d.c. voltage output from the mixer is a cosine function of the input frequency and is approximately linear over a reasonable bandwidth. Linearity can be achieved over a wider mixer inputs to square waves.

Further details o

s.a.w. oscillators

There are two distinct types of low noise, stable s.a.w. oscillators. The delay line oscillator employs a conventional s.a.w. delay line in the feedback loop of an ampliulated by typically 0.1%. The one-port s.a.w. resonator can be used in essentially the same oscillator circuits as conventional bulk wave resonators, or two port resonaors can be used in an amplifier feedback vide very narrowband linear frequency
(b)

Fig. 15. A third order s.a.w. resonator filter ig. 15. A third order s.a.w. Tesonator fiter
(package size $28 \mathrm{~mm} \times 20 \mathrm{~mm}$). The central transducers and end absorber are clearly
visible.
modulation but can provide better noise performance. Both types of oscillator can work at fundamental frequencies in the range $10 \mathrm{MHz}-1.5 \mathrm{GHz}$ 'without additional multuplying circuitry. The devices are conconventional ocillar techiqus.

Delay line oscillators. Fig. 17 is a schematic representation of a s.a.w. delay line
oscillator. The delay line consists of two id ts separted by a distance L of two i.d.ts separated by a distance L, with a
delay of L / v corresponding to a phase shift at a frequency of $\phi_{D L}$, where:

$$
\phi_{D L}=\frac{2 \pi L f}{v} \text { radians }
$$

Oscillation will occur when the total phase shift around the loop is equal to an integer (n) multiple of 2π, i.e.

$$
\phi_{E}+\phi_{S}+2 \pi \frac{L f}{v}=n 2 \pi
$$

where ϕ_{E} is the electrical phase shift around the loop (excluding delay line and
phase shifter but including the amplifier) and ϕ_{S} is the phase change due to the and ϕs is the phase change due to the
phase shifter. The loop would thus support a comb of frequencies separated
by Δf, where: by Δf, where:

$$
\Delta f=\frac{v}{L}
$$

The required mode (at f_{o}) is selected by suitable design of the i.d.ts so that fre-
quency f_{o} is passed but frequencie $f_{o} \pm n v / L$, where n is a non-zero integer, ar located at nulls of the response of the delay line. One simple way to achieve this is for one i.d.t. to be a uniform transducer with N periods where $N=(L / v) f_{0}$; this makes
the centre frequency f_{o} with traps of the the centre frequency f_{o} with traps of the
$\sin x / x$ response at frequencies $f_{o} \pm n v / L$. This technique is illustrated in Fig. 18 . Transducers with a proportion of electrodes removed (thinned i.d.ts) are of-
ten used to increase frequency reproduciten used to increase frequency reproduc
bility and to reduce internal reflections. The frequency of the oscillator loop may be modulated by variation of the phase in the phase shift circuit which usually incor-
porates one or more varicap diodes. The porates one or more varicap diodes. The output signal can be taken at any point
around the loop (but not usually immedi-

Fig. 16. Delay line discriminator using the fig. good linear phase characteristics of the delay line.

Fig. 17. Delay line oscillator. The circuit will phase shift around the loop is an integral multiple of 2π

fig. 18. Loop frequencies and transducer response of s.a.w. delay line oscillator, which (f_{0}) is selected by the transducer response.
ely after the modulator). For maximum power this would normally be immediately ter the amplifier; for minimum noise, The gain of the amplifier used must greater than the loss around the loop and it is common to operate the loop with the amplifier saturated. The delay line loss will ypically be $10-20 \mathrm{~dB}$, depending on the lectrical matching

Resonator oscillators. S.a.w. resonators see earlier) are high Q components operat ing at frequencies of 50 MHz and above nloaded Qs in excess of $20,000 \mathrm{can}$ b achieved at 250 MHz . This makes it poscontrol elements to provide stable sources fundamental frequencies in the range 50 MHz to 1.5 GHz

A s.a.w. resonator may be used in an scillator as either a one-port or two-por hen the circuit becomes sinilar to th used for delay line oscillators, i.e. an amplifier and a s.a.w. device in a feedback
loop. The advantage of a resonator over a delay line in this case is that the amplifier need only provide 4 to 5 dB of gain since he resonator has a lower insertion loss than the delay line. However, because the frequency response of a resonator is no range (approximately 0.02%), there is les potential for linear frequency modulation. If the resonator is used as a one-por device then the circuit would be similar to (e.g. Colpitts, Pierce), and because of the higher frequency (at u.h.f.) the construc tion could be based on a cavity or resonato stabilized microwave oscillator. A single transistor can be used soses, givin à very compact oscillator.

Multipath distortion

- does polarization matter?
by Pat Hawker, Independent Broadcasting Authority

Many broadcasting authorities have introduced, or are planning to polarisation in the transmitted signal to help reception on vertical aerials in cars or on domestic receivers.
However, there is some correlation in distortion caused by receiving the signal from more than one source. Research in Japan and Germany has helped to analyse the problem. A recent survey article - "How serious is
multipath distortion?" (Ref 1) - drew attention to the lack of recognition in the UK that multipath propagation is probably the most serious cause of the degrada-
tion of quality when v.h.f/f.m stereo tion of quality when v.h.fff.m stereo
broadcasts are reproduced in the home through good quality equipment, even when reasonably careful regard has been paid to aerial installation.
The article stressed that over 25 years after the start of regular v.h.f/f.m mono
broadcasting in the UK (May 2, 1955) and about 15 years after the gradual introduc tion of pilot-tone stereo, there was still widespread lack of knowledge about the extent, and methods of mitigating by the reluctance of broadcasters, long concerned with the problem of encourag ing more listeners to use v.h.f/f.m rather than m.f/a.m, to draw attention, except in the most simplistic terms, to this problem. developments have taken place that deserve serious consideration by those interested in high-quality reproduction of broadcasting.
(1) While the original article drew attenJapan, the information then available was limited to a short English-text summary. Full details of this valuable investigation have since been published by Mitsuo casting (Ref 2) This paper makes it clear that multipath distortion is "far greater" on stereo than on mono transmissions and also reduces stereo separation (although the early investigations in the US and UK between 1940-1960 were of course that multipath can be the cause of serious crosstalk into the broadcast programme of information carried on additional sub-car riers, including the SCA (subsidiary in the USA and, by implication, the
ultrasonic tone signalling systems used in the UK, and the experimental 'programme labelling' systems, etc.
(2) Investigations carried out in the Cologne area of West Germany, including 212 site tests carried out from five specially equipped vehicles, and reported in EBU the addition of a vertical component to horizontally polarized transmissions, that is any form of mixed polarization, significantly increases rather than decreases the listeners with good, outdoor horizontally polarized aerials. This report emphasises that from both the economic and purely technical points of view, the adoption of circular polarization in West Germany would be undesirable. This report has
been published shortly after the BBC announced its intention (Ref 4) of adding a vertical component to the main BBC national v.h.f/f.m networks of Radio 1-4 (with Wrotham to be modified in 1981), on the grounds of providing a better service
for listeners using car radios, although the German investigators question even this
assumption.
(3) The vulnerability of digital systems (including teletext) to short as well as long term echoes was noted in the earier arti-
cle. Since then it has become clear that British Telecom are experiencing more problems than they anticipated in the planning of high-speed digital networks ($140 \mathrm{Mbit} / \mathrm{etc}$) even on strictly line-ofsight microwave links. The Post Office Re-
search Review 1979 (Ref 5) notes that: "Analogue f.m (link) systems are relatively tolerant of the signal distortions produced by multipath propagation which will cause an increase in intermodulation noise . . . in
digital systems, the signal components arriving by alternative paths cause intersymbol interference . . . errors in the phase of the recovered carrier and timing signal which result in a more severe degradation in system performance". To overcome
multipath propagation and deteriorations in cross-polar discrimination, both phenomena which in this context vary rapidly with time, British Telecom are considering such remedies as aerial height diversity adaptive spectrum shape equalization
adaptive decision feedback, etc -all systems of some complexity, particularly when, as appears likely, it was initially expected that the 'ruggedness' of digital transmission w
It is now clear that even well-planned

Fig. 1. The procedure used by Mitsuo
Ohara (NHK) for computing multipath distortion of monophonic or stereophonic
broadcasting.

WIRELESS WORLD APRIL 1981
ropagated as well as horizontally polarzed signals: but in addition it strongly many more (typically three times as many) g more (typically three times as many) zed signals than with purely horizontally polarized signals. Unlike most previous sudies, the German work was no onfined to the sole criterion of receive field-strength, but also the quality of re ception. The results are a surprisingly polarization applied to broadcasting.
The tests appear to have been conducted with typical German thoroughness. If one ssumes that the methodology contains ls would seem sufficiently convincing o suggest that the BBC should reconside its decision to adopt mixed polarization for is main networks. It is not my purpose, a member of the 'other' broadcasting orgathe German work cannot be 'shot down hen there would appear to be every reaso why both IBA and the BBC should at leas reconsider future policy on local radio hough (as noted later) on lower-pow p can be made on behalf of the v.h.f./f.m ar radio listeners. For the qualityonscious domestic listener, the key inding in the German experiment is that it has been seen -an the veflections which re so intense as to affect even receptio with a horizontally-polarized aerial. I should be noted that this effect is apparen ven with a very directional transmitting aerial. If the transmission is omnibe even more severe".
The German study also points out that hen a vertical component is introduced here will be problems of compatibility with existring domestic reception. listeners may be gained "a the expense of others who will lose thei service". Existing gaps will not be filled to any great extent.
While the Germ
While the German study indicates that a slightly inclined plane of polarizatio polarized receiving aerials, it does not even wholeheartedly support such a compromise. But did the German trials 'prove nly what those concerned wished rove?
he performance of the early ILR circu larly polarized transmissions ($\operatorname{Ref} 7$) noted hat "the effects of multipath propagation on stereo broadcasts are well-known but ar more often than is generally realised During the off-air loop tests we have found on occasions that the system performance measured at the studio was severely he case thar to aerials on the same building, often very close together, hav had very different multipath perform ance". It was also noted that although multipath distortion is caused by the funthe reflected signals, the actual amount of
istortion above this figure is likely to vary ending mainly on the amount of limitin oplied to the sub-carrier Several years ago EBU Working Party dividual broadcasters on choice of opt mum polarization for v.h.f./f.m sound oadcasting. Their report (Ref 8) summ ised by F. Wise (formerly IBA) differen arily for high-quality receivin installations, probably with stereo, with no mprovement to reception conditions for portable or car sets envisaged"; and (b) primarily to reach the largest audience, Account to be taken of those installation quipped to receive any existing transmis ions". For (a) the report came out firmly in favour of retaining horizontal polarizaon for existing and new services in al orizontal polarization. For (b) the corre ponding choice was 'mixed' polarizatio or 'flat or rolling terrain', but 'horizontal or 'rugged' terrain. The report noted that nal path where the reflecting object may be man-made structure, trees, hills o mountains will generally be of significantly reater magnitude for vertically-polarize ansmissions, and that such transmission more likely to be affected by flections from behind the receiving poin was then considered less convincing and he EBU Panel considered polarizatio unimportant, though noting that in Ger many some evidence existed that building signals more than those which are horizon ally polarized". The decision to conver BC network transmissions to mixe polarization would appear to run contrary oo the 1976 EBU report.

To conclude, it is necessary to stress th hese comments "are not intended a riticism of the BBC for playing down the multipath issue or even for their decisio work transmissions. Rather it is a ple hat, as listeners or as broadcasters, we should be more aware of the effects multipath radio propagation and polariza ion have on the transmission of high-qual Only if we recognise the problem are we ikely to overcome the worst effects, or at least minimise them. We are still all in the learning stage, but it is important for qualthe results of the German tests can be accepted as correct.

References

Pat Hawker, "How serious is multipath
stortion?" Wireless World, April 1980, pp 46
2. Mitsuo Ohara, "Distortion and crosstalk cused by multipath propagation in frequenc modulation sound broadcasting", IEE Transactions on Broadcasting, Vol BC-26, No eptember 1980, pp $70-81$. Hoff, "Comparison between horizontal and ci Hiar polarization for v.h.f.f/f.m r.m reception in the home and in motor vehicles" EBU Review -
Techhical Part, No 182, August 1980, pp 175-
187.
P. P. E. Lonsdale, Letter to Electronics $\&$
Power, October 1980, 7995 . 5. . James (Ed), "Microwave Radio Digital
Links", The Post Office Research Review 1979, R. Camp, Letter to Wireless World with 6. R. Camp, Letter to Wireless World, with con
nents by D. P. Leggatt, October 1980 , p49. Rents by D. P. Leggatt, October 1980, p44.
D. S. Chambers and J. R. Edwards, "The pecification and performance of ILR, v.h.f.
ransmitting systems". IBA internal report ansmitting systems". IBA internal report
$\mathrm{D} \& \mathrm{C}$ No R3/75, pp8-10. 8. F. Wise, "Chioce of polarization for new
Band II services" EBU Review T Technical
Part, No 155, February 1976, pp 21-24.

Literature received
 Literature

A leaflet on the Japanese Izumi range of motor-
driven timers, which can switch up to 7 A , is available from Appliance Components Ltd
Cordwallis Street, Maidenhead, Berks. SL, 78Q.
.
Devices has produced a brochure to and d-to-a convertors, sample-and-hold amplifiers and v-to-f converters. It can be obtained
from AD at Central Avenue, East Molesey, Surrey KT8 OSN

The FCC 180 series of D-subminiature connecspy of the that cables. copy of their leaflet can be had from Alpha
Wire, Ltd, Alpha House, Central Way, North Feltham Trading Estate, Feltham, Middx. Ww 409

Engineering Recommendation G2221, pubwith the use of devices which use the mains wiring to conduct siginals. A copy can be ob-
wined from the Disribution Engineerin ained from the Distribution Engineering
ranch, the Electricity Council, 30 Millbank,

Prolog is a portable, multi-channel data acquis trolog is a portabe, malu-channel data acquisi-
tion and repay sytsem, with dual micropoces-
sor control over all operational functions. It is sor control over all operational functions. It is
described by Microdata, the manufacturers, in a described by Microdata, the manufacturers, in a
colour brochure, which can be obtained from
the company at Monitor House, Station Road,

Verospeed's new catalogue is now available, ontaning 2500 items of hardware, componens off orders. Copies of the catalogue are available from Verospeed Ltd, Stansted Road, Boyatt
Wood, Eastleigh, Hants. SO5 4ZY. WW411

The IEC have issued an international standard to achieve compatibility in the sub-systems and combination of sub-systems used in satel-
lite earth receiving stations. The publication sets conditions for the meassurement of return
loss, input and output levels, amplitude and loss, input and output levels, amplitude and
frequency characteristics, static a.g.c. characrequency characteristics, static a.g.c. charac
teristics, dynamic a.g.c. characteristics, and the group-delay/frequency characteristic. Interna-
ional Electrotechnical Commission. tional Electrotechnical Commission, 1 Rue
Varembe, 1211 Geneva 20 Swizerland.
Varembe, 1211 Geneva 20 Switzerland.
, No 155, February 1976, pp 21-24.

.

Amplitude sensing and control

by Peter Williams, Ph.D. Paisley College of Technology

There are two reasons for controlling the amplitude of a sinusoidal generator The
obvious one is or where its value ine that amplitude affects the behaviour of some associated circuit in amplitude changes the waveform beceause calculations. Less obviousiy any increase linear range of the active devices. The harmonics resulting are returned to the input
where intermodulation due to the non-linearitites produces new components at the Fundamental freauencc. These are equivalent toa a phase-shift in the fundamental and have the same eiffect in shifiting the frequency of osciliation as would any other phase
shift. The amplitude control mechanism is essentially a negative feedodback system in shich some property of the output amplitude is sensed, used to modify the feeedback and hence to tese the emplitude to a desired level. Thie first two networks contain elements whose resistance is temperature- and hence dissipation-sensitive. Their time
constant is made long compared with the oscillation fresuency Amplitude then settles to a value at which the heating effect (r.m.s. dependent) brings the element resistance
to to a level at which the oscillation is self-sustaining.
The r.m.s. methods involve elements that consume power and have of necessity a
slow response. When to these factors the relatively high cost and possible temperature slowrespnse . added, alternative solutions become increasingly atrsactive The cent dependence are addod, alternative solutions become increasingly attractive. The con
dition for sustained oscillation at constant amplitude is that the loop gain be identically unity. When a non-linear network is included in the feedback loop then the loop gai
can exceed the critical ralue can exceed the critical value at low amplitude ensuring that oscillation build up. As
amplitude increases the signal forces the non-linear elements into regions of their characteristics where the loop gain falls to toss than unity. The anplitude stabilizes such that the mean value of the loop gain is at the ciritial IVvel. Stabilizing gation is
instantaneous in that there are no time-constants involved other than strays Disadiv is tage of the method is that it achieves its affect by deliberately distorting the feedback signal, though the remainder of the circuit may attenuate the harmonics as they pass through the frequency dependent network. The most common technique places a
symmetrical pair of diodes lor series connected back-to-back zener diodes symmetrical pair of diodes lor series connected back-t-o-back zener diodes) so as to
increase the feedbock at higher amplitudes. A field-effect transistor having a low dynamic impedance at low voltages and then going into current limit would have the same effect placed in the other limb
A hird methol combines someo of the advantages of the previous two. It uses only
electronic devicos, consumes nealigible It has the disadvantage that a deliberate time constant has to be introduced into the sensing action, though this time constant can be varied to suit the ossillation frequency
(a property not shared by thermistors of lamps whose thermal time constants must b la property ned with the period of the lowest desiried oscillation fre constants must o long comparee with the period or the owwest dosirird oscillation frequency. The outp
is peakerectified and the direct voltage is applied to the gate of a fielddeffect transistor The on-resistance of the drain-source path is varied and can form part of a potential diverse biases the p-channel f.et. The . positue of f ins generate a positive voltage tha Because the f.e.t. characteristic is nun-linear it can only be used directly with very smal voitage swings - preferabaly $<V_{p} / 10$ where V_{p} is the pinch-off votage. With additional direct feedback across the f.e.t. as shown is found that the linearity is marked
improved. The resistance across the capacitor is a compromise beetwe response and distortion; increased ripple worsens the second and is caused by at tempting to improve the first.
The methods above have the amplitude sensing mechanism in the passive network,
the assumption being that the amplifier is perfectly linear It is the assumption being tiar the ampififer is perfectiy inear. It is equally feasibe to
incorporate the non-linearities in the forward path i.e. in the amplifie. The disady tage is that the harmonics are then fuly present at the output, the filtering due to the RC network only being effecective in reducing the distorion present at the input. In both
cases the canly slightly greater than that required to sustain osciilation. This reduces the non linear excusions needed to bring the overall gain back to unity and hence reduces the distortion. II the non-linearrizs are symmetrical about the quiescent point then even harmonics are supprossed
None of the above examples demand high-Q passive networks as the distortion methods are thus acceptable for simple RC oscillators even though the attenuation of harmonics offered by these networks is relatively small. With LC oscillators or certain
RC oscillators based on high-o active filters ths mins. RC osciliators based on high-0 active fiters the constraint is removed. If a high-o
 sine-wave results. It is difificult to maintion the drive frequency at the filter centre
frequency since each is subiect o the usial toleraces Ifinsted at frequency since eachis subbecio the usual iofrances. In intead the filter output is
passed through a suaring circuit the its in out is passed through a squaring ciricuit then its input is sa square-wave of the approprial is
frequency and constant amplitude. Provided the filter gain at the centro-frequency is constant then the constant mplitude square wave ensures an equally stable sinusoi dal output. The square wave can be obtained either by a simple diode limiter or with
greater accuracy using a comparator with precision clipoing. Antiphase feedback with greater accuracy using a comparator with precision clip
diodes in the forward path of an amplifier are also found

THEORY

- Networks are used as
amplitude-controlled negative feedback. At low amplitudes the steady-
state
resistance
is $>2 R$ state resistance is $>2 R$
for the thermistor or $<R / 2$ for the lamp. Hencoe feedback $<1 / 3$ and for stan-
dard Wian type oscilladard Wien type oscilla-
tors the amplitude increases. Conversely at high amplitudes the feed-
back $>1 / 3$ and amplitude decays, stabiizing at the steady state level where the negative feedback feedback.
- These methods are mostly used where only approximate air their action while
analysis difiticult.
- The f.e.t. drain current $\mathrm{I}_{\mathrm{g}}=k\left[V_{G s}-V_{\mathrm{D}} \mathrm{V} V_{\mathrm{Ds}}-V_{o s}{ }^{2} / 2\right]$

$$
\frac{l_{0}}{v_{0 S}}-k\left(V_{G S}-V_{p}\right)
$$

and is a linear function of the gate-source voltage. Hence var--
ing the gate-source bias varies the conductance and hence the For the second circuit

$$
v_{G S}=\frac{v_{D S}+v_{G}}{2}
$$

Substituting for $V_{G S}$ in the expression for I_{0} above

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{D}}=k\left[\left(\frac{v_{D S}+v_{C}}{2}-v_{\mathrm{D}}\right) v_{D S}-\frac{v_{D S}^{2}}{2}\right] \\
& =k \frac{v_{\mathrm{C}}}{2}-\left.v_{\mathrm{p}}\right|_{V_{D S}} .
\end{aligned}
$$

Hence the conductance

$$
\frac{I_{D}}{V_{D S}}=k\left|\frac{v_{C}}{2}-v_{p}\right|
$$

and is linear for all values of $V_{D S}$ while being a linear function of and is inear for alvalues $\mathrm{V}_{\text {DS }}$ while being a inear function or
the new control voltage V_{r}. This modification allows contro of
the feedback without introducing any additional distortion into the new control voitage V_{V}. This modification allows control of
the feedhout introducing any additional distortion into
the system.

- For a second-order transfer function $\mathrm{v}_{\mathrm{o}}=\mathrm{k}_{0}+\mathrm{k}_{1} \mathrm{v}_{\mathrm{i}}+\mathrm{k}_{2} v_{\mathrm{i}}^{2}$ and a

$$
\begin{aligned}
v_{0} & =k_{0}+k_{1} v \sin \omega t+k_{2} v^{2} \sin ^{2} \omega t \\
& =k_{0}+k_{1} v \sin \omega t+\frac{k_{2} v^{2}}{2}(1-\cos 2 \omega t)
\end{aligned}
$$

Hence there is a second harmonic term in the output which nal to the amplitude of the latter. Similarly higher-order terms result in higher harmonics, the absence of the nth harmonic in the output indicating the absence of the nth order term in the in that the even-order harmonic terms are thereby cancellied so that the lowest harmonic is the third harmonic.

EXAMPLES

1. A thermistor has a maximum permitted dissipation of 3 mW and sets the output of a Wien bridge oscillator to 1 Vr .
Choose a suitable value of resistor to complete the bridge.

With 1 V r.m.s. total voltage, thermistor has p.d. of $\approx 2 / 3 \mathrm{~V}$ r.m.s. assuming a high gain amplifier.
$1=\frac{3.10^{-3}}{2 / 3}=\frac{9.10^{-3}}{2}=4.5 \mathrm{~mA}$ r:m.s.
Series resistor $\mathrm{R}=\frac{1 / 3}{4.5 \cdot 10}=\frac{10^{3}}{13.5}=74 \Omega$
A suitable resistor might be 100Ω, to keep the thermistor well
2. At what output voltage does diode conduction commence in diode amplitude control circuit?
Diode voltage at which current flow commences $\sim 0.5 \mathrm{~V}$. But
Output voltage $\sim \frac{3}{2} \times 0.5 \mathrm{~V}$
R.m.s. output voltage $=\sqrt{ } 2 \cdot \frac{3}{4}=1.08 \mathrm{~V}$ r.m.s.

In practice higher values are required since this level corresponds to only slight conduction, barely modifying the
tude response and requiring critical resistor adjustments.
3. The peak sensing circuit has $R=1 \mathrm{M} \Omega$. If the frequency of exceed 2% peak-peak, choose the corresponding capacitance.
For small ripple, then as in simple recifier theory linear

$$
\begin{aligned}
& \frac{\Delta V}{\Delta t}=\frac{1}{C} \quad \text { and } l \approx \frac{V}{R} \\
& \frac{\Delta V}{V}=0.02=\frac{\mathrm{t}}{\mathrm{C}}=\frac{10^{3}}{\mathrm{G.10}} \\
& \mathrm{C}=\frac{10^{-9}}{0.02}=50 \mathrm{nF} .
\end{aligned}
$$

4. The ringing resonant circurit uses a filter with $\mathrm{Q}=10$ a centrerequency gain of 20 and an approximate square-wave of 1.2 V

For square-wave of amplitude 1.2 V peak-peak, the fundamental

$$
\frac{4}{\pi} \times 0.6 \text { and } \frac{4}{3 \pi} \times 0.6
$$

Fundamental output $20 \times \frac{4}{\pi} \times 0.6$

$$
T_{v}=\frac{H s}{s^{2}+\frac{\omega_{n}}{Q} s+\omega_{n}^{2}}
$$

$$
\text { with } \mathrm{Q}=10 \text { and } \frac{\mathrm{HQ}}{\omega_{\mathrm{n}}}=20 \text {, i.e. } \mathrm{H}=20 \omega_{\mathrm{n}}
$$

At $\omega=3 \omega_{n}$

$$
\begin{aligned}
& T=\frac{2 \omega_{n} \cdot j \cdot 3 \omega_{n}}{-9 \omega_{n}{ }^{2}+\frac{3 j \omega_{n}{ }^{2}}{10}+\omega_{n}^{2}} \\
&=\frac{6 j}{-8+0.3 j} \approx 0.75 j \\
&\left|\begin{array}{l}
T_{\omega}=\omega_{n} \\
T_{\omega}=3 \omega_{n}
\end{array}\right|=\frac{20}{0.75} \approx 27
\end{aligned}
$$

\% 3rd harmonic $=\frac{1}{27} \times \frac{1}{3} \times 100 \approx 1.2 \%$

NIEW PIRODUCTIS

Cassette deck

Parrs subject to wear have been kept to 2 minimum by eliminating
belt drives belt drives, pulleys, friction
clutches and mechanical rrakes in

 parts are avoided by using four
direct-drive motors, two Hall com-direct-dirive motors, two hal com-
mutated magnetic - di isc drive morors with inductive tacho gener-
ators for the capstans and tome ators for the capstans and two pri-
cal tacho-controlled tape-pub cal tacho-control.ed tape-hub
motors. Separate p.l.1. circuits with a common, crystal-based reference are used to control the capstan
motor speeds. Damped solenoids
engage the Sendustferrite heads mongage speeds. Sendumpedfersite heheads
and lock the cassette in position, and the whole drive mechanism is
co-ordinated by a microprocessor to afford maximum protection to the tape. A four-digit display doubles
as time-clock timer read aspe-position indicator, and has
as ape-position indicator, and has
provision for electronic set, cancel
and recall of values for booth functions. Bar-type i.e.d. indicators
display the peak recording level. This recorder is designed for professional use and switching for
equalization, changiover, bias equalization, changeover, bias,
muting and Dolby is electronic to
avoid noise. F.W.O. Bauch Ltd, avoid noise. F.W.O. Bauch Ltd, 49
Theobold St, Borehamwood, Herts.

Data conversion kit Angineers wishing to assess anal ogue-to-digital and digitalt-to-analogue converters for a certain appli-
carion is offered by cation is fereranti, costs $£ 28$ and
designed by Ferr comprises two 10 -bit a -to-ds, six 8 bit d-to-as, two 8 -bit a-to-ds and relevant data in folder form. The latter devices require only a comparator and a gate and clock signal to change their operation from d-to-
a to a-to-d. Celdis, 37 Loverock
Rd, Reading, Berks RG3 1ED. WW302

Colour printer
Printouts in seven colours can be
produced using the CX80 matrix produced using the CX80 matrix
printer from Integrex. Each of printer from Integrex. Each of
these colours, four of which are these colours,
produced by mixing ore three prim-
ary colours of the ribbon, is selec ary colours of the ribbon, is selec-
ted by one of seven control codes. In adaphits characters in r.o.m. there are 15 characters which can be pro-
grammed by grammed by the user and facilities
for producing elongated and refor producing elongated and re-
versed characters. Line and form feed are also programmable. Nee-

WIRELESS WORLD APRIL 1981

Cycling stille hertz

My hear--rending experience with the bike (Feb. issue) did not go unnoticed. Keith
Matthews, of the Wessex District Cyclists) Touring Association, writes to tell me not to be so lily-livered and to have another go (although he is much too polite to put in those words). It's all my fault, it seems something to do with my not being "bike
fiti" and not having anything better to ide than a Moulton. Well, I'm quite ready to agree with him about my not being in shape for this sort of thing, but I always thought Moultons were nice little bikes. Maybe chat's the trouble: I ought to have
one of those spidery contraptions with saddle like an emaciated razor blade and handlebars bent down to somewhere near the front hub.
I am considerably encouraged, however, by Mr Matthews' assertion that most car
drivers will give way to a bikie (I am informed that I cannot be a cyclist until I graduate - maybe by riding the three miles wiihout my feet touching the ground or being provoked to personal abuse) be-
cause they realise that if they hit you you cause they realise that if they hit you, you
will probably bleed all over the paintwork, which will mean a visit to the car wash, a matter of some inconvenience and expense.
The re
The real point of his letter was not, in the last sentence. He assumes that I shall take up my cycling career again after its disastrous start, and will want to try the bike computer this all started with in the
February issue When February issue. When I do, he says, , shall
discover that it is unreliable, above 30m.p.h. (my italics). That, I think, adequately demonstrates the gulf that separates us bikies from real cyclists. Thirty miles an hour! Come now, Mr Marthews, fad in that. Thather more sedate people would suffocate and die at speeds over $20 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., and fof all I know, they could be right. No, as long as 1 go fast nough to avoid the danger of ralling off one. I have no mbition to achieve the yellow jersey to go with the plaster and bandages that would be the certain result of my travelling at 30 m .p.h.

Thing-um-a-jig

O frabjous day! Calloo! Callay! The dual snubberless Schottky is with us I do beg your pardon - I was so overcome by the arrival of a bit of paper announcing the availability of the d.s.S. that I felt a little outgrabing of the old
momerath was permissible. But it's all right - I'll stop now, or Ed. will vorpal the page right here.

Isn't it lovely, though? Anyone whose
magination is untouched by a chance to use a dual snubberless Schottky must be a cold fish indeed, I should think. Not just one, mark you, but a dual package of the
frumious little beasts. Now that they're here, and not before time, if you ask me, we've got to find something really beamish to do with them, before some dreadful old square writes in to say they're intended as It doesn't a dual snubberless Schottky is not a device you can tie down to anything too specific. It needs a free rein - to be allowed to breathe and develop in an atmosphere of (Oh, look, is th
this?
Yed.)
job can have no idea how frustrating this job can be sometimes. I was only going to one of those electronic games, maybe Hunting the Snark, each player being armed with a paddle-controlled vorpal nack' the d.s.S. would light up, or something.
Well, it's only a thought. You can't give a device a name like dual snubberless anything too serious.

Spoilt by choice

ve been watching the domestic television recording scene for some time now (video, it appears to be called, for some reason) with the kind of feelings I would expect Neanderthal Man to have experienced
when confronted by an array of arrow heads down at the stonemonger's. All he wanted was a couple of dozen plain, ordinary arrowheads for the start of the bronto-shooting season and here was this character offering him umpteen models to
fit different shaft sizes: all equally well chipped, mind you, but totally incompatible. Manners were fairly elementary then, of course, and for such an act of thoughtlessness, Neanderthal was quite likely to and use his skin for trousers, appeals to and use his skin for trousers, appeals to strong, they were, in those times, and direct to the point of rudeness. Time has had its effect on Homo sapiens wouldn't be a bad thing, particularely when dealing with all these clever people who keep on inventing video tape recorders and video disc players that do more or less the same job but are just different enough to
prevent you using the software from one machine on another. I don't for a moment hink that they are deliberately contemptu-
ous of the public's needs and wishes: in ous of the public's needs and wishes: in
act, I don't even think they give much thought to the public's needs and wishes, apart from the need to 'create' a market and persuade people to buy their wares. If equivalent to the arrow shaft should be $1 / 4$ in in diameter, they'll go ahead and make millions of arrows to fit, regardless of the fact that someone else is making hem $5 / 8 \mathrm{sin}$ in diameter, and has been for years. he buyer to make his ming that it's up to people who simply want to record the Nalevision Shakespeare canon or transfer Nationwide to a more convenient time are in a position to make a difficult technical
choice between the different v.c.rs? And how many will be able to decide between the three methods of reading a video disc, or realise that you can't play Philips discs on a
ering the claims of several firms to have the best disc library?

Quiet, please! It's breakfast time

When I was a bit younger, I used to have a finely tuned timetable in the morning. Everything was worked out to the nearest couple of microseconds, and a few seconds
spent in putting a new blade in the spent in putting a new blade in the razor,
or a serious lapse in concentration resulting in the soap getting itself lost in the bathwater could cause havoc. Many's the time I've been ejected from the house
without a second cup of coffee. without a second cup of coffee. don't have to drive my wife to school since she gave up teaching and, for another, I've learned more sense. The move to Sutton has helped, too. I now take my mornings very gently, luxuriating over a leisurely
bath, savouring a proper breakfast and invariably having a second cup of coffee. Even so, taking all this gracious living into account and making due allowance for the need to keep abreast of world affairs, I can see no possibility of television getting a
look in at that time in the morning. There are many things I want from life, but television with my crispy bacon and scrambled eggs is not one of them. As far as I am concerned, thanks, but no thanks,
particularly if there are to be any of those particularly if there are to be any of those
indecently vivacious commercials for orange juice, or Snappaflakes, or whatever. And what of the news itself? Most of it is quite bad enough when printed in a
newspaper, but spoken right out loud, iust newspaper, but spoken right out loud, just
like that, by a television person - well, lit's enough to curdle the milk.

SWIFT
OF WIM MSLOW
5. Swan Street
Wilmslow, Cheshire

PA GROUP \& DISCOUNITS WILMS
AUDIO

 Practicilatifif A Audio Prog.TI

SEND 50p FOR 56-PAGE CATALOGU 'CHOOSING A SPEAKER' (or price list only free of charge)

Tel. 0625529599 for speaker drive units, kits, PA equip-
ment, mail order enquiries, and all export enquirie
enquiries.
Tel: 0625526213 for Hi-Fi equipment and complete peaker enquiries

5/39 Church Stree

TRANSCENDENT 2000

SINGLE BOARD SYNTHESIZER

COMPLETE KIT ONLY
$£ 168.50$ + VAT!

NEW! TRANSCENDENT POLYSYNTH

Cabinet size 31.1" $\times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ (rear) 3.4" (front)

EXPANDABLE POLYPHONIC SYNTHESIZER
AS FEA

 COMPLETE KIT ONLY $£ 320$ xtra woicee, E52 + VAl or EXPANDER, COMPLETE KIT £ $£ 295$

TRANSCENDENT DPX
MULTI-VOICE SYNTHESIZER

Another superb design by
synthosizer expert Tim Orr
published in
Eleatronics
COMPLETE KIT
ONLY
£299 + VAT!

POWFEFTRAM
MANY MORE KITS AND ORDERING INFORMATION ON PAGE 93

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit

FEATURES

- no moving parts
- no tip voltage
- no mains interference
- no real maintenance costs (bit/tip
changes only) changes only)
- variable lockable temperature $120^{\circ} \mathrm{C}-42 \mathbf{0}^{\circ} \mathrm{C}$ - total 50 watt electronic control $(\pm 2 \%)$ - simple plug-in bits/tips
- electrical safety approved 240 V 24 V
- easy tool interchangeability from one Unit to another
-orcomplete $\mathbf{2 0 0}$ I Soldering Station
Soldering tool and control unit as Unit 101 but with the additional features
- filtered two speed fume extraction
- built in bench lighting
- solder reel dispenser
- clear bench area
- Adiron ${ }^{\text {® }}$ Iong life bits/tips the same range
as that for Unit 101 as that for Unit 101

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £85.00 + VAT
This easy to build version of our world.wide acclaimed 75 W amplifier kit based uon
circuit boand
 thove 2 kits re supolied wien filt in ted

T20 + 2020 W STEREO AMPLIFIER $£ 33.10$ + VAT

1024 COMPOSER READ ALI ABOUT ITI READ ALL ABOUT IT! in electronics today

BLACK HOLE сhobalzer

COMPLETE KIT ONLY $\mathbf{£ 4 9 . 8 0}+$ VAT! (single delay line-system)
CHROMATHEQUE 5000
5 CHANNEL LIGHTING EFFECTS SYSTEM

> 100 WATT (rms into 8 8) MIXER / AMPLIFIER CTI, the MPA 200 is on exceptionally low priced - but professionaly finished - general purpose

SP2-200 2 2.CHANNEL 1 Oow AMPLFER - NEW KIT!

MANY MORE KITS ON NEXT PAGE! OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

Value Added Tax not included in prices

 \title{
The range grows
 \title{
The range grows bigger...better...
}

New Profile Amplifiers- Two New Series

NO QUIBBLE 5 YEAR GUARANTEE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE

NEW PRE-AMPS
 HY6 (mono) and HY66 (stereo) are new to I.L.P's range of advanced audio modules. Their improved characteristics and stying ensure their being compatible with all I.L.P to get the best possible reproduction from your equipment HY6 and HY66 pre-amps are protected against short circuit and wrong polarity. Full assembly instructions are provided. Mounting boards are available as below. Sizes - HY6 $-45 \times 20 \times 40 \mathrm{~mm}$. HY66 Sizes - HY6 $-45 \times 20 \times 40 \mathrm{~mm}$. HY66 $-90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost Inputs Sensitvity 100 Mag . PV. -3 mV . Mic - selectable 500 mV : Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$. HY6 mono $£ 6.44+97$ p VAT Connectors included HY66 stereo $£ 12.19+£ 1.83$ VAT Connectors included B6 Mounting Board for one HY6 78p + 12p VAT B66 Mounting Board for one HY66 99p+15p VAT

- DISTORTION TYPICELI - hTTEST DESICN RIGR
- S/NRETIO-90dB (Mag. OUNHTY CONNXCTORS
P.0.-68 (aB) PLUCS/SOCKITS AEED ADDINE
- 38 dB overload margin on - NREDS ONHI UNREGULATED
mag. P.U. POWER SUPPLI ± 15 to $\pm 60 \mathrm{v}$

1971-1980

TEN YEARS OF PLANNED

PROGRESS

When, in 1971 , lan L. Potts founded his now world-famous company explowiting to need for at difleterent and more rational apporoach to
potential that lay in modular construction exploiting to the full, the potential that lay in modular construction. revolutionary inconcept. The rightressof fhisnew thinglang modshown by the size of the company today, its new factory, its vast exports, its grops bigger and better. Exxititne nodules lines (in no wowh. The range
with existing ones) are well past drawing board stage. This is why with existing ones) are well past drawing board stage. This is why
I.L.P are simply ahead and staying there. PSU90 fr use with 1 or 2 MOS120 PSU95 for use with 1 MOS200 PSUU180 for use with 1 HY400 or 2 HY200
\star Freepost facility
When ordering or writing aboulI.L. Pproducts, you do not need to stamp
the envelope. Mark it FREFOST plus the code shown in the address
below. We pay the postage for you.

* TOORDER indandicrossed. Orpay by ACCESTe
value of ordenvelope if C.O.D. payment is wanted, please add $£ 1.00$ to TOTAL

[^0] Please debit my Access/Barclaycard AccountNo

GMT ELECTRONICS PROJECTS

 teletext Compatible pal encoder + Modulator $£ 22-90 \quad ₹ 35-00$.E.T. OUTPUT IOOW MONO POWER AMPLIFER MODULE $£ 27-50$ £35-00
 SIMULATE INERTA MODEL TRAIN CONTROULER SIMUATED INERTA MODEL TRAIN CONTROLLIR MODEL TRAIN STEAM SOUND SIMULATOR MODULE

S 100

Do You Have All These Facilities on Your S 100 System, With Just Two Boards?

SEMEL

MICROCOMPUTER - HARDWARE - SOFTWARE 3c Barley Market Street; Tavistock, Devon PL19 0.JF
Tel. Tavistock (0822) 5247. Telex: 45263

CLEF electronic MUSIC

HIGH PERFORMANCE BUT LOW COSTUDIO SIGNAL GENERATORS

TELERADIO ELECTRONICS
325 Fore Stroen, Edmonton, London, NYO OPE Tal: 8073719

WIRELESS WORLD APRIL 1981

J.BULL(Eiectrical) Ltd. (Dept. WW), 34-36 AMERICA LANE,
J. BULL (Electrical) Ltd - Established 25 years. MAIL ORDER TERMS:
Cash with Cash with order - -please add 60 D to all orders under $£ 10$, to offset packing,
etc. ACCESS \& BARCLACARD WELCOMED. Our shop is open to callers.
BULK ENOUIRIES INVITED. Telephone: Haywards Heath

World Leader in Duplicating \& Tape-Ioading Equipment

ww - 077 FOR FURTHER DETALLS

Happy Memories

4116	200 ns	$\mathbf{£ 2 . 2 5}$
2114	200 ns	$£ 2.95$
2708	450 ns	$\mathbf{£ 3 . 9 5}$
2114	450 n '	$\mathbf{£ 2 . 2 0}$
2716	5 volt	$\mathbf{£ 5 . 2 5}$

Memorex Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, $£ 19.95$ per 10

Low Profile I.C. Sockets by '"Texas' Pins
Pence 81416182022242840
101112161720212837
Pence 101112161720212837 Memory Upgrade Kits for Apple, 2020, TRS-80, etc.:
from E18, please phone. Quantity prices available on from E18, please phone. Quantity prices available on
request. Government and Educational Orders welcome. Trade accounts opened.
All prices include VAT. Postage FREE on orders over £15, otherwise add 30p
Access and Berclaycard welcome
HÄPPY MEMORIES, DEPT. W.W. GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY Tel. (054422) 618

Memories
$2114 \mathrm{~L}-300 \mathrm{~ns}$
$4116-200 \mathrm{~ns}$
$4116-200 \mathrm{~ns}$
$2708-450 \mathrm{~ns}$ $2716-450 \mathrm{~ns}$
74LS series
74LS240....
74LS243 .. 74LS244..
Bridge Rectifiers
25 Amp 50 volt
25 Amp 100 volt... $\mathbf{£ 0}$ 25 Amp 200 volt ... $£ 1.26$ 25 Amp 600 volt 25 Amp 800 volt .. $£ 10$

Please add 50 pence for carriage. All prices EXCLUDE VAT

STRUTT LTD.

ELECTRONIC COMPONENT DISTRIBUTORS
3c BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL19 0JF
Tel. Tavistock (0822) 5439/5548. Telex: 45263

the only magazine in Britain that gives the amateur enthusiast and professional engineer alike a comprehensive up-to-date coverage of TV technology. Coverage includes the latest developments in circuitry, video and long distance television . . . with a special emphasis on servicing and fault finding.

Regular construction articles have included test equipment, monochrome/colour receivers, monitors and video cameras

THIS MONTH

Construction
An 'Arrow' Generator
A special joystick control unit for inclusion between camera and monitor... drawing attention to points on a TV display by use of a moveable arrow.
Servicing
Greatly increased reliability of modern TV sets means intermittent fauts are accounting for a muchlarger proportion of the servicing workload. We offer guidance on tracking down these, otten difificult to locate, faults. Review
THORN TX10 Chassis
Wereview the latest Thorn chassis probably the equal of anyin the world.

TEIEUSSIOI magazine that keeps you in the picture!
$60 p$

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKE IT OUR RANGE INCLUDES

E. A. Sowter Ltd.

 WW - 050 FOR FURTHER DETAILS

FTMLTY:NAEA XLR CONNECTORS

BELCLERE AUDIO TRANSFORMERS

KELSEY ACOUSTICS LTD. 28 POWIS TERRAGE, LONDON W11 1JH
WW-066 FOR FURTHER DETAILS

Cable Sleeves and Markers from
f1.38 per 1,000 . f1.38
Crimp Terminals from 99.60 per
1.000. ${ }^{1,0000}$ Audible Audible Warning Devices. Buzz-
tone, lleespone, Banshee, Bed-
lam
 e5.04 per 100 .

WW-074 FOR

\star VIDEO
 MONITOR BARGAIN \star

We believe these are the finest monitors svailable at any price
Trade enguiriss invited.
Trade enguirins invied.
Only $\mathrm{E77}$ each + VAT. Carriage 87.50 .

KEYBOARDS

OTHER BARGAINS

Many other hems lus full range of PD
for 1 titest list VAT
and carriage
CHILTERN ELECTRONICS
B.C.M., Box 8085, London WC1N 3XX. Tel. 0494714483

COME TO SPILTH ELECTRONICS FOR ALL YOUR CB NEEDS

ANTENNAS
COAX
CONNECTORS MIKES SWR METERS BOOKS 40 \& 80 CH RECEIVERS

SPILTH

 ELECTRONICS3D Barley Market Street
Tavistock, Devon
Phone 08225865 Telex 45236

WIRELESS WORLDAPRALL 1981
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

HEAVY METAL PLINTH
 PIoneer and J.v.c. Teak venererd plint

 BSR SINGLE PLAYER DECKS

 £20 Post 52
 GARRARD 6 -200 SINGLE PLAYER DECK

ELAC HI-FI SPEAKER

10in. TWIN CONE

POTENTIOMETERS Carbon Track

 EMI $131 / 2 \times 8$ 8in. LOUDSPEAKERS

$\sum_{\text {Post } 99_{p}} \sum_{\text {Post } 99_{0}}^{105}$

£6.50 Pos PANEL METERS ©4 50 ua 100ua $500 \mu \mathrm{a}$, $1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}$ a 25 vilt, 50 volt, vu Meter Facia $23 / 8 \times 13 / 4 \times 11 / 2$
Fixing hole $11 / 2$ in. $^{\text {dia. }}$ Lighting kit 6 or 12v 90p ex $\frac{1 \mathrm{ma}\left(240^{\circ} \text { scale) } 21 / 4 \mathrm{in} \text {. sq. } £ 5 \text { Post } 65\right.}{\text { RCS SOUND TO LIGHT CONTROL }}$

Can be gang $\substack{\text { malins } \\ 250.02300 \\ 7}$

GENERA LUPDOSE LOW VOLTAGE

踟"

womma

тEL

 \qquad

 $\mathbf{X Y P L O T T E R , 5 7 4 . 7 5 + 5 7}$ cariage.

ELECTRONIC VALVES

WANTED

All Types Receiving, Transmitting, Industrial PL504-PL802-PCL805-CV131-CV136 -
CV138-CV329-807-813-CV345-CV450-8525- $805-$ Phone/write to: PYPE HAYES RADIO LTD 606 Kingsbury Road irmingham B24 9P 021-373 4942

WW - 070 FOR FURTHER DETALLS

LOW VOLTAGE POWER DRILLS AND ACCESSORIES

 is unn of he combinations which can he
por Orhasd form our comprehensive range
of rils and Acceessories.
 VAT and Postage.
Send 25 p for Catalogue
A. D. BAYLISS \& SON LTD. PV PFERA WORKS, REDMARLEY Barcaverard. Acesss Weccome
Tel. Bromesberrow (053 181) 27

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

WW - 040 FOR FURTHER DETAILS

Digitel
Video Noise Measurement System
The Digitel D 0060 Noiso Moasurement Systom offors an accurate
and oconomical mithod of measuring video signal to noise ratio on

$\mathbf{5 5 8 0}+\mathbf{v a t}$

- Mesasial
- Measures signal to noise ratio down to 65 dBs SNR
- SNR measurement is possible in the presence of sync pulses, some
test signals or free rumning
- Visual display on oscilloscope ensures measurement contidence

WIRELESS WORLD APRIL 1981

Communications
\bigcirc National Exhibition Centre Birmingham, England 20-23 April 1982

Your Opportunity to Sell Communications Equipment and Systems

Communications 82 will be the sixth in a biennial series of expositions - now recognised as the World's leading international events for selling communications equipment and systems. It comprises a major international exhibition and integral conference plus a programme of social events with guest speakers of international stature.
Communications 82 will be a total communications exposition, covering all systems, equipment and omponents used in communications, including ransmission, switching and terminal equipment as well as associated products and services for recording, testing

Communications 82 will be total also in user appeal, spanning the boundaries between civil and military, public and private, industry and commerce, fixed and mobile, in the same way as do the technologies involved.
Communications 82, therefore, offers a unique opportunity for you to sell your products to potential opportunity for you to sell your products to potential
customers from all over the world - at Communications 80 there were well over 16,000 visitors from 70 countries.

If you manufacture or sell communications equipment and systems nationally or internationally, you cannot afford not to participate in Communications 82 - the tota communications exposition.
I am interested in exhibiting at Communications 82. Please send me the full Data Pack Solihull, West Midlandś B91 2BG England
Tel: 021-7056707 Telex: 337073

Communications 82 is organised by ndustrial and Trade Fairs Limited for Tony Davies Communications

Name

Position
Company
Address

erry Brandon, Sales Manage industrial and Trade Fairs Limited Radcliffe House, Blenheim Court

The 'SERIES TWO' MESSAGE REPEATER

with 4-track capability, using all four tracks to provide separate or simultaneous playback

Send for details of any item, and our full brochure of the comprehensive Reditronics range of sound communications equipment.

REDIFFUSION REDITRONICS LTD., La Pouquelaye, St Helier, Jersey, Channel Islands
Tel: Jersey (0534) 30321 Telex: 4192341
U.K. DEPOT: River View Road, Bitterne, Southampton, Hampshire, U.K. Tel: Southampton (0703) 555566

Distributors for Greater London and Home Counties:
Musitune Ltd., 388 Green Lanes, London N4 1DW Tel: 01-802 1163

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.	
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?	
To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below. overseas subscription AGENTS	
Australia: Gordon \& Gotch (Austratasia) Ltd Melbourne 3000, Victoria	Japan: Western Publica tions Distribution Agenc 170 Nishi-Okubo 4-chome, Shinjuku-Ku Tokyo 160
Belgium: Agencéet. Messageries de la Presse Brussels 7	Lebanon: Levant Distributors Co., P.O. Box 1181 Hanna Bldg,' Beirut
	Malavsia: : Times Distributors Sdn. Bhd . Times House, Singapore 9 , Malaysia
$\begin{aligned} & \text { Agency Lid, } 131 \text { Pro- } \\ & \text { dromou Street, P.O. Box } \\ & \text { 4528, Nicosia } \end{aligned}$	$\begin{aligned} & \text { Malta; W. H. Smith } \\ & \text { Continental Lid, } \\ & 18 \text { Scots Street, Vallefa } \end{aligned}$
Hovedvagtsaede Dk. 1103 Kobenhavn	Now Zealand: Gordon 8 102 Adelaido Road. Wellington 2
Finland: Rautakiija OY, Koivuraarankuia, 2 2, 01640 Vantand 64 , Finland. France: Dawson-France	Nigerla : Daily Times of Nigeria Lıd, 3 Kakawa Lagos
S.A., B. P. 40, F. F-91121 Palaiseau	Norway: A/S Naivesens Kioskompani, Bertrand Narvesens vei 2, Oslo 6
	Portugal : Livarie Bertrand s.a.r.1. Apartado 37. Amadóra
	South Africa: Central News Agency Ltd, P.O. annesburg
Holland : Van Ditmar N.V Oostelijke Handelskade 11 Amsterdam 1004	Spain: Comercial Ciento 130-136 Bario de $15 \mathrm{Ciento,130-136} \mathrm{Barcelon}$ 15
Mansion Exi, Madame Cama Road, Bombay 1	Swoden: Wennearion 25 Stocknolm 30
Italy: Intercontinenta s.a.s. Via Veracini 9 20124 Milano	U.S.A. : John Bariós 205 East 42 nd Street New Yoik, N.Y. 10017

Do not affix Postage Stamps if posted in
Gt Britain. Channel Islands. N Ireland or the Isle of Man

BUSINESS REPLY SERVICE

Licence No 12045
WIRELESS WORLD
429 Brighton Road
429 Brighton Road
Surrey CR2 9PS

To become a subscriber to Wireless World
please complete the reverse side of
this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH,
England

Enquiry Service for Professional
Readers ONLY.

Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, April 1981 WW 164
UK subscription rates USA \& Canada subscription rates
1 year: £10.00 1 year: $\$ 33.80$ 1 year: $\$ 33.80$
Overseas 1 year: $£ 13.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value...

Name.

Address \qquad
\qquad
WIRELESS WORLD
Wireless World, April 1981 WW 164 Prease arrange for me.io roceive further details of the products listed, the appropriate reference numbers of which have been entered in the

Position in Company
Name of Company

Telephone Number

LOOK!

ANALOGUE

OR DIGITAL

MULTIMETERS
ex stock from:

Farnell

 International

for brochures and price lists use the Wireless World Product Reply Service number below:

The New Scopex 14D-10

A dual trace 10 MHz high sensitivity oscilloscope Ata price of $£ 240.00+\mathrm{VAT}$. incorporating all the latest high technology Ensures British leadership in the low cost high developments to bring you all these outstanding features as standard. - $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.

- 2 mV sensitivity on both channels.

Add and invert facility.
Probe compensation.

- Push butlon X-Y.

Trace locate.
$10 \mathrm{MHZ}(-3 \mathrm{~dB})$ over full display.

- Complete with probes.

WW 003 for further details

Professional ASCII Kevboards

1904U0:7 puccocicco:

THE 'APPLE' COMPUTER KEYBOARD
\because
\vdots
\vdots
\vdots
52 key 7 bit ASCII Coded
ositive Strobe, $+5 v-12 v$.
ond

Paralle outpur with Stoob
Power
Cight on Control

Escape, shitur reurn and deset keys
Complete with Circuit nod Data
Ideal for use with TANGERINE, TRITON,'TUSCAN, APPLE and
Ex-stock from Henry's
This is definitely the BEST BUY. Supplied BRAND NEW in manufacturer's original packing. (ANTI-S. AATC).
Just post remitance, toal $\mathbf{E} 35.95$ (incl. VAT \& Post)

Henryis

FACTORY CLEARANCE SERVICES CO.

a grand clearance sale of new compuTER SPARES WILL BE HELD AT OUR CODICOTE SATURDAY, 4th APRIL AND SATURDAY, 11th APRIL

COMPRISING OF:
Keyboards nters Type..........
Teletype Printers Type 35 ,
Power Supply units, $8 \mathrm{vv}, 10 \mathrm{v}$,
10-Tonne of Electric Motors Fans and Blowers
5 -Tonne of Transformers Fans and Blowers
5 -Tonne of Transformers.
 from $£ 10$ from 50p ea. Pus: Resistors, Capacitors, Semiconductors, Rectifiers, Solenoids, Relays and thousands of electrical and mechanical assemblies. Jumbo bags of mixed components

Come along and browse, bring your own sandwiches!

A. R. DAVIES (FACTORY CLEARANCE)

28 ST ALEANS ROAD. CODICOTE
NR. OLD WELWYN. HERTS
TEL: STEVENACE (O438) 833417-82068

B. BAMBER ELECTRONICS Dept. WW, 5 STATION ROAD, LITTLEPORT, GANBS, GBG 1 QE Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday											
										CAMPORE LONG TERM DISPOSABLE ELECTRODES \qquad MONITOR CATHODE RAY TUBES MAINS ISOLATING TRANSFORMERS \qquad MAINS TRANSFORMERS COLOUR T.V. MAINS INPUT FILTER CHOKES hellerman heat shrink SLEEVING \qquad \qquad LARGE QUANTITY OF USED LINBINS All ses.\qquad FERRANTI MICROSPOT CATHODE RAY TUBES \qquad \qquad AVO 8 MOVEMENTS COMPLETE WITH SCALE	RIBBON CABLE 10 way decimal coded, 5 metros for E 1.25 TELESCOPIC RADIO AERIALS VIDICON SCAN COILS (Transistor type, but no data) PYE WESTMINSTER W30AM, low band. sets only, no cotra PYE WESTMINSTER WY5AM Iow bands. sers complete and in good ETrads (Sest only) pYE BASE STATION A.C. ADAPTOR (Battery Charger) Amins plug to 3.5 mm jack plug, brand new and boxed 1.25 anch A.C. ADAPTOR (Battery Charger) ISEP SLOTTED HORIZONTAL RAIL Watch straps Black stainless steel, 50 p each. Black plastic 25p each, watch spring bars 10 p each. Discount for quamit. 390 \qquad CB ACCESSORIES
TERMS OF BUSINESS: Cheques or P. O. with order, made payable to B. Bamber Electronics, or phone your Access or Barclaycard No. Please add 15% VAT on all goods advertised atter adding postage as applicable CARRIAGE: Orders under $£ 5$ nett invoice add 75 p. Orders over $£ 5$ but less than $£ 20$ add 50 p. Orders over $£ 20$ at cost Callers welcome. Tues -Sat. 9.30 a m. 5.30 p.m.											

WW-063 FOR FURTHER DETALLS

READ ALL ABOUT IT - all the latest on home entertainment equipment and ideas in . .

HI FI YEARBOOK AND HOME ENTERTAINMENT 1981

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home entertainment equipment, from aerials to headphones, from microphone video recorders and from radios to electronic organs. Backed by authoritative articles on developments in the world of Hi Fi , plus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1 st November 980. Price $£ 3.00$.

If you have difficulty in obtaining your copy order direct from the
publishers @ £3.50 inclusive.

ORDER FORM

To: General Sales Manager, Room 205, Quadrant
House, The Quadrant, Sutton, Surrey, SM2 2 AAS.

Name
Comememp

$\longrightarrow-1$

Please send me........opy/copies of the Hi Fi
Yearbook and Home Entertainment 1981 @ $£ 3.50$ (including postage and packing. Cheque/postal order

. Registered in England No. 67712 l .

Visual monitoring of anything, anywhere, by phone, in seconds, with Robot Phoneline TV.

 end descripitive Iiteratare.
Cast Midiands Airoort ${ }^{2}$ S3,
ROBDT

Semi-Conductors • I.C.s • Optodevices \bullet Rs and Cs in great variety - Pots • Switches • Knobs Accessories • Tools • Materials • Connectors
electronalue lid.

(WW2), 28 St. Juche: Rosd. Englefiold Groen. Eghem, Surrey (London 87) STo O784

WW- 083 FOR FURTHER DETAILS

Belle Vue Radio and Electronics Exhibition on Suncoar MARCH29, 198 Doors open at 11 a.m.
The North's Premier Amateur Radio and Electronics Event
 Home Office and Raynet Stand
Belle Yue has ample car rarks

\qquad

FIELD TELEPHONES TYPE "J".
 SWiTCHBARD. Can work with
every type of magneto tele-
phones.
 (Tel. $01-7430899$
or $01-7493934$ Or $01-7493934$
Open Monday to Friday
9

SURREY ELECTRonics

Advertisements accepted up to 12 noon Monday, 23 March, for May issue, subject to space being avail-
able.
\rightarrow

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre (min. 3 cm)
LINE advertisements (run on): $£ 2$ per line BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in th advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.) PHONE: JAYNE PALMER, 01-661 3033
Plassified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONIC OPPORTUNITIES
 £5,000-£15,000

Microprocessors - Minicomputers - Digital Analogue - HF - VHF - UHF - Microwave Where does your skill and interest lie?
Design? Test? Sales? Service? Systems? or perhaps Software?

* Our clients are drawn from all sectors of industry:
* Most UK locations and some Overseas
* Make your first cail count - Contact MIKE GERNAT on 076-384-676/7 (24 hours) ELECTRIMIL COMPUTER AND MANACEMENTAPPOINTMENTS LIMITED

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY LECTRICAL AND
ENGINERRING

PRINCIPAL OR SENIOR

TECHNICAL OFFICER
(DIGITAL/MICROPROCESSOR)
Applications are invited for the above-mentioned position in the
Department of Electrical and Communications Engineering. Applicants will be required to have appropriate qualifications
and to be experienced in the fields of digital electronic equipand . Preference may be given to applicants with particular
ment.
experience in microprocessor develoopment. experience in microprocessor development.
Salary: $\mathrm{K} 12450-\mathrm{K} 15275 .(\mathrm{K}=\mathrm{EStg}$. 0.6636). Appointment level
will depend upon qualifications and experience. The initial contract will be for three years; other benefits include,
a gratuity of 24% taxed at 2%, appointment, repatriation fares, a gratuity of 24% taxed at 2%, appointment, repatriation fares,
leave fares for the staff member and family after 18 months of service, settling-in and out allowance, six weeks ' paid leave per year, education fares and assistance towards school fees, free
housing. Salary continuation and medical benefit schemes are housing.
available.
Detailed applications (two copies) with curriculum vitae, to-
gether with the names and addresses of three referees, should gether with the names and addresses of three referees, should
 March, 1981. Applicants resident in the United Kingdom should
also send an additional copy to the Association of Com-
monwealth Universities (Appts). 36 Gordon Square, London also send an additional copy to the Association of Com-
monwealth Universities (Appts), 36 Gordon Square, London
WC1HOP.

A division of SOS Bureau Ltd

The SOS Group
Trading as:
SOS Staff Bureau
SOS Industrial Staff
SOS Senior Appointments
The following are a selection of the many vacancies currently on
FIELD SERVICE TECHNICIAN! £6,000! CAR! COMPUTER
 CMOS EXPERIENCE USEFUL! COMMISSION PROTOTYPE!
TEST EOUIPMENT! TEST TECHNICIAN! £6,000! VHF, UHF EXPERIENCEI MICRO COMMUNICATIONS! EOUIPMENT AND
TRACKING CONTROLS SERVICE SUPPORT ENGINEER! E9,000! TRACKING CONTROLS SERVICE SUPPORT ENGINEER! E9,000!
ORGANISE MAINFRAME AND PERIPHERAL! INSTALATION! ORGANISE MAINFRAME AND PERIPHERAL
SALES ENGINEEII E9OOO CARI NORH ENGLAND! RELOCA
TION PACKAGE! TELECOMMUNICATIONS!

For information on these and other vacancies nationwide-
please contact: Lee Wood, 71 The Mall, Ealing, London W5 5 Ls. please contact:
Tel. 5677466 .

Company Communications Controller
 c. $£ 10,000$

As a major name in aviation and communication services for the world, maintaining and upgrading our own lines of communication is tha
customers and suppliers, for instance, are constantly in contact through telex, telephone, data transmissions and post. The task of our Company Communications Controller is to supervise both the technical and human aspects of the existing network and to advise on the introduction of new
computer based information handling systems throughout the group. He or she will work from Southall, liaising with suppliers and with He or she will work from Southall, liaising with suppliers and with
service staff on maintaining equipment. There is also a large amount of advisory and analytical work involved, in order that existing systems may be improved.
Candidates should possess an HNC in telecommunications engineering and should have worked for at least five years with a manufacture,
major telecomm. user, or in Post Office telecommunications. They major telecomm. user, or in Post Office telecommunications. They
should understand business communication problems, and ought to be capable of expressing technical solutions clearly to nontechnical managemen Benefits include a staff restaurant, a pension and life assurance scheme, relocation expenses where applicable and 5 weeks' holiday plus bonus. Prease apply, in writing, to John Callow, IAL,
Aeradio House, Hayes Road, Southall, Middx quoting Ref.K/024. Tel: 01-843 2411.

IAL
THE HIGH TECHNOLOGY TASK FORCE COMMUNICATIONS SYSTEMS AVIATION SYSTEMS AND SEPVICES-WOR DW

Sony Broadcast story means opportunities! Tremendous growth and success
has created the need for even more first class staff at the Basingstoke International Headquarters broadcast equipment.

UK Sales Manager/ess-
Eneg + car
This is a new position created as part
of our planned expansion programme ofour plannedexpansion programme
The successful candidate should possess experience of either
Production or Engineering Production or Engineering
Operations within a broadcast tepevision environment A A knowledge
of professional VTR's editing of protessional VTR's, editing
systems and cameras is neessary syhist srevious salese experience it
wesirable, though not essential. desirable, though not essential Sales Engineers/Tec
Support
tonineers
for Westem Europe for Westem Europe Competent engineers experienced in
video cameras and/or VTR's are sought to join our sales team. Successtul candidates are likely to be
in the age range $25-35$ and should be in the age range $25-35$ and should be
highly
hotivaled and able 1 wo work on
their own inititative. Experience in their own initiative. Experience in
dealing with customers would be an advantage as would knowledge of a second European language. Trave
within the western European area will within the weste
be necessary.
Engineers -
Commercial/Sales Applications Openings exist, a t varoux lerelis
engineers
with a wide experience of the TV Broadcact Industrr, to utilize
their knowledge in a dynamic heir knowledge in a dynami
commercial environment.
The selected cendididate will be sell
motivated, capable of working with a motivated, capable of working with a
minimum of supenvision, and will be appointed to our Proposals!
Quotations section He Quotations section. He or she will
have the ability 10 prepare detailed have concise customer r resestitations quotations complete with pricing
information. informaious. experience desirable, however not
considered essential

Systems Proiect Engineers
For our young and enithusiastic
For our young and enthusiastic
Special rojects Team. They we will be
involved in the design, manutacture
and commissioning of static and
and commissioning of static and
mobilif television systems, and in
moditications and accesssories. The modifications and accessories. The
successiul applicants will have a
 televevision princiiples. Ideally, he or she
should have experinceln
operational televevision or its allied operational televevision
manufacturing industry
Product Specialists
Opportunities exist for Opportunities exist for young
enginers trom abroadcast television
background to be involved in engineers trom ab iradcastielevisin
background to be involved ill
aspects of development marketing aspects of development, marketing
and support of our entire product
range. range.
We would
and to hear from you particularly interested are currently
working with
VOR working with professional VTR's sty
VCR's, cameras or microprocessor VCR's, cameras or microprocessor
controled post production systens
and would like to further develoo you and would like to further develop your
technical and commercial skills ina. challenging environment. Field Service Engineers
Currenly Currently, openings exist at Engineer
and Senior Engineer levels for personnel with experience of working
on rofessional VTR's and cameras
orobain probably in a Broadcasanting came
organisation or TV Broadcast organisation or TV Broadcast
Equipent Manufacture. The
Engineer level position should Engineer level losisition should appea
to applicants with iimited relevant experience who are now seeking a
progresive environmentin which to broaden their careers. Both positions
offer the opportunity forsome UKand offer the opportunity
overseas travel.
R\& D Engineers
Sony is now established as the world Sony is now established as the world
leader in digital video recording
technolog. Development is still in the
formative stages but rapidly
 Digital Studio'. The R \& D Section is
involved in Iong term investigations
into the applicalion of involved in long term investigations
into the application of high speed
digital techniques to video digitial tectniquues to video
processing, ind in conventional
product design. Being part of an processing. and in ocingentional
produt desion. Being part of an
international \& o Deam, the
successsiul applicant may expect successtul applicant may expect
occasional opportunities for oversea
travel. Applications are invited diom travel. Applications are invited from
engineers offering experience in high engineers ofiering experience in hi
speed ligita processing orvideo
engineering. Allernatively, a well engineering. Allernatively, awell
quallified recent graduale could be
considered. quallited rec
considered.
Lecturer
Lecturer and atter a suitable familiarisation
period will be equires to conducl period wiir be required to conduct
theoretica and practical training
courses on our major products, and courses on our major products, and
or wite circuid tecsipios and
produce training manuls with or write circuird descripions and
product traing manual with lucid
biock diagrams. Ideally, candidates biock diagrams. Ideally, candidates
should nave had experinenco video
tape recorders, digital circuits and a tape recorders, digital circuils and a
practica up to-dale knowledge of the
broadcast industry. Knowledge, or an broadcast industry. Knowledge, or an
ability to master the tenniqes of
video cameras, digita laudio video cameras digital audio
equipment and the application of microprocessorst to broadcast
equipment will be an advantage equipment will be an advantage
atlhough we areprepared orovide
thenecessan additenal athough we are prepared tranrovid
the necessary adititonal tianing.
Promising young graduates may als the necessary adatitonal raining.
Promisin young graduates may also
appli for consideration as a Trainee
Lecturer.

If you like the thought of enjoying the success of world leadership then write in strict confidence to Barry White, Personnel Manager, Sony Broadcast, now! And please don't forget a CV.

> B CAPITAL
> CAPITAL HOUS
29-30 WINDMIL STBEET STREET W1P 1HG
LONDON WEM
TEL:01-6375551 THE UK's No. 1 ELECTRONICS AGENCY Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
> SALES to $£ 12.000$. plus car
Ask for Ken Sykes FIELD SERVICE to $£ 10,000$ plus car
Ask for Maurice Wayne
> We have vacancies in ALL AREAS of the UK Telephone: 01-6375551 (3 lines)

Sony Broadcast Ltd.

City Wall House
Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Challenging positions at home and abroad RADIO TECHNICIANS COMMUNICATIONS ENGINEERS

and abroad.

Due to rapid and continuing expansion in our activities, we constantly require Radio Technicians, with experience of HF , MF, VHF and UHF, and Engineers (preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter. In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings
ould be up to $£ 20,000$ - plus tax concessions and generous home leave. The work is demanding, but rewarding, offering you the chance to us
your initiative to the full.
The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick- but where relocation is necessary, we will give generous assistance with removal, legal and ary accommodation expenses
Please apply, with details of your career to date, to: Personnel Manager, EAE Limited, Dept WW, Offshore House, 284/28
Norfolk NR31 OJB Telephone 049358541

EAELimited

INNER LONDON EDUCATION AUTHORITY
Televisision Cenntre, Thackereray Hoood, London, SW8 MOBILL SECTION ENGINEER ST3

The engineer wiff ioin a team of thire other enginers who are iontly
responsibibe ofor the operation and maintenance of the section's equip.

Hours of work will be in accordance with the
the normal working week being 35 hours).
Further detais available from the Mobile Videorecorring Section, tele-
phone 62299866.
Salary wivitit the scale $\mathrm{e} 8,115 \cdot \mathrm{e} 8,709$ (plus an ir iregular hours allowance
of f156 per annum).

ITN

SENIOR ENGINEER
ENG/OB Maintenance
Salary: $£ 11,406$ p.a.
Independent Television News Limited has vacancies for two
Senior Enginears in their expanding ENG/OB Maintenance Sec-
tion

 BVP3 30 cameras, TBCS and associated portable equipment,
The section is also ressonsible for the long-term maintenace of

 Previous maintenance expenenco
or lightweight cameras is essentil
G

Please telephone the Personnel Office on 01-637 3144, quoting
reference number 30301 for an application form.

SULTANATE OF OMAN

radio and tv broadcast engineering VACANCIES

The Sultanate of Oman operates a modern colour television and radio broadcasting service with studio centres situated in the North and South of the country, the two centres being linked by satellite. High power VHF and low power UHF transmitters are employed to provide a 625 PAL TV service to vopulated areas of the Sultanate. The radio broadcasting service uses HF, MF and VHF transmitters of Dur powers. Both services are managed by the Ministry of Information and Youth Affairs. Due to expansion of the service vacancies for a variety of posts have arisen and applications are invited
from suitable qualified persons.

TRANSMITTER ENGINEERS

for maintenance of high power VHF TV transmitters and low power UHF transposers, high
power MF, HF and VHF FM sound transmitters The work will involve travel and in some cases overnight stops away from base. The transmitters operated within the Sultanate are manufac tured by Siemens, Philips, Marconi and Conti-

STUDIO ENGINEERS

For maintenance on cameras, vision mixers, S.P.G.S., vision distribution systems, telecine machines and video monitors, etc. There will
also be operational work, particularly on outside broadcasts.
The equipments employed are Philips LDK15 cameras, Bosch Fernseh KCU40 and KCP cameras, vision mixer units by C.D.L. and Bosch
Fernseh, telecine by Rank Cintel seh.

SOUND MAINTENANCE

ENGINEERS

To maintain a wide range of high quality sound

Applicants should be qualified to degree or HND level and have not less than six years' relevant experience. The senior positions require considerably more years of varied but relevant experience. In most cases a knowledge of Arabic - although not essential - would be useful.
Salaries, which are paid in Rials Omani, are fully remittable and tax-free and range from pounds
sterling 1100 to 1300 per month upwards month (depending upon current rate of exchange) positions start at pounds sterling 1500 to 1700 per ,
Married accommodation is provided together with free air passage at beginning and end of contract
for family. Air tickets are also provided for for family. Air tickets are also provided for leave after the first year of service.
Applicants should write stating age, nationality, qualifications and full details of experience to:
Ministry of Information and Youth Affairs, Post Box 600, Muscat, Sultanate of Oman, marking the

VTR ENGINEERS

Fornseh BCM40 on Ampex VR1200B and Bosch Fornseh BCM40 machines. There will also be year it is intended that 1 in. " C " Format VTR machines will be installed.

PLANNING AND

PROJECT ENGINEERS

To carry out planning for a wide range of transmitter installations for both TV and radio. Planning and Systems Engineers are also restructed over the next few years. Successful applicants will be
directly involved with the nuts and bolts of the installation work, in some cases in remote areas. Applications are also invited for a number of and electro-mechanical services, grodio groups feel you can apply your knowledge and expertise to the efficient running of these groups we will
be pleased to hear from you. envelope "Technical Office" in top left-hand corner.
${ }^{126}$

Development Engineers
 in Digital Electronics

We have an important client in the Cambridge area who is about to embark apon a major development programme incorporating proje
valued at several million pounds. Over the last few years they have
 cations, and to complete the highly specialist and skilled teams which
are involved in breaking new ground in di itiol development, two experienced Engineers are needed immediately.
They will ideally have experience of both hardware and software
gained in a development environment where high stan dards and gained in a devilopment environment where high standards and mportant than experience on design and development and they will have the oppo.
manufacture.
Our client offers in return the opportunity to become involved in a hriving organisation which offers excellent terms and conditions of employment, good career prospects and, most tmportant,
opportunity to take digital electronics to new frontiers.

Please apply in confidence quoting Ref. KR77, to:
Andrew Millhouse Ketchum Recruitment Limited

T5 REF: 83 EBa reaured to control and superise
technicicians work
workg
within the

 progress and financial reports, and

libourator. Candidates shoult
hold a full technological certificate

 according to age,

and experience. | and experience |
| :--- |
| For further details and application |

 $\sqrt{\nabla}$ 01-405 1260

THE LEADING TELEVISION FACILITIES

 COMPANY
REQUIRES

DIRECTOR OF OPERATIONS

EXCELLENT SALARY
 + CAR + PENSION + BUPA + PROFIT SHARE

The position of DIRECTOR OF OPERATIONS requires a person with drive, initiative and clear thinking, to be able to deal with the day-to-day demands of this high technology Television Facilities Company providing Studio, VTR and O.B. services to its Clientele
Loyalty, hard work and the ability to lead, will be rewarded by a career in the fast-moving TELEVISION SERVICE and the Operations Director and his/her colleague Directors will have the opportunity of long-term future career development. The Company will be looking forward to one of the senior Directors becoming the next Managing Director
The applicant must have Engineering ability and have worked or be working in a Broadcasting organisation and have high level Management experience plus that special "something" of being able to lead and drive for the achievement of the Company's policies.
The position of Director of Operations will be a Company Board appoint ment.
Please apply to the Sole Recruitment Agents in the strictest confidence quoting "OPS DIR 1981":

DEPARTMENT OF NUCLEAR PHYSICS
ELECTRONICS TECHNCLIAN
(Crade 5)
Salary £5249-£6129 rising wef July, 1981, to £5695-£6650 Applications are invited for the post of electronics technician in
the Department of Nuclear Physics for interesting and challengthe Department of Nuclear Physics for interesting and challeng-
ing work. The post involves assisting in the development and
maintenance of maintenance of a variety of equipment incorporating firene-optic
data links, 8 and 16 -bit and bit-slice microprocessors, as well as data links, 8 and 16 -bit and bit-Slice microprocessors, ta well as
some analogue circuitry. Some experience is essential, as are willingness and ability to learn quickly.
Applications in writing together with the names of two referees should be sent as soon as possible to the General Administrator,
Department of Nuclear Physics, Keble Road, Oxford OX1 3 RH.

PERSONNEL \& ELECTRONICS LTD.

Appointments

Can you develop our potential?

Ultra manufacture highly sophisticated communications equipment and are Europe's leading suppliers of Sonobuoys. Our Test Equipment department thas been extensively reshaped with new la boratories being built with a view to expansion. We can now offer Test Equipment
and

Test equipment development engineer $£ 6500-£ 7500$ Working closely with our Senior Engineers and outside companies you will primarily ssist the Design Engineers in developing
Test Equupment Desim. In addition, you will develop systems and units rom outine specifications through to building prototype units. As the department is still in its early stages you will have the
opportunity tomake a positive. contribution toits formation and you will
also be expected to attend comprehenive training seminars and also be expe
exhibitions.

Test equipment technicians $\mathbf{E F 5 0 0}^{5} \mathbf{E 6 0 0 0}$ With a minimum of 2 years practical experience in a repair
nment and an HNC or $\mathrm{C} \mathrm{\& G}$ in $\mathrm{Electronics}$,you will undertake the nepronmentand an HNCor C\&G in Electronics, you will undertake
repair and dalibration of Proprietary and Purpose--Built Test Equipment In addition to 5 years practical experience in repair and calibration,
Engineers.

For both positions we offer outstanding career prospects with a company hat sistive
looking to the future. Apart from competive
salaries we offera sports $\&$ social club, 23 salaries, we offer a sports \& social club, 23 days holiday contributory pension scheme
and a subsidised restarant.For further information, please tele tephone e tulie Forema
on 578 oobi or write to her at. insbone orume ourer DOWTTY 1二匚 Ultra Electronic Commu 419 Bridport Road Greenford Trading Estate
Greenford, Middlesex.

Technicians/Junior Engineers

(Broadcasting Coverage)
If you like an outdoor life with plenty of travel all over the UK and are qualified to If you like an outdoor life with plenty of travel all over the UKt, we may have jus
ONC/TEC level in electrical engineering (or a related subject,
the career opportunity for you. the career opport unity for you.
Working as a member of a sma
Working as a member of a small team, you would be involved in carrying ou
tests and surveys for our future television and local radio transmitter sites. tests and surveys for our future television and local radio transmiter sites.
A current driving licence is essential. Previous working experience should have involved testing or taking measurements.
Starting salary will be within the range $£ 4,280-£ 5,980$ per annum, according to
experience. Further progression to a maximum of $£ 7,360$ per annum is possible experience. Further progres
after a period of experience.
IBA
INDEPENDENT
BROADCASTING
AUTHORITY
Please write or telephone for an application form quoting Ref. WW/575cc to
Clynis Powell, IBA, Crawley Court, Winchester, Hampshire, SO21 2QA. Please write or telephone for an application form quoting Ret. WW/575cc
Glynis Powell, , CBA Crawley Court, Winchester, Hampshire, SO21 2QA. Telephone: 822270 .
These posts are open

UNIVERSITY OF SURREY
Television Engineers
ONCE IN A DECADE CHANCE! Join a small and lively team providing television services for teaching and research. Now converting to high quality video 80
colour system, studio based but versatile and mobile. Photocolour system, studio based but versatile and mobie. Photo-
graphy, film, graphics and instrument workshop services avail.
able within the Unit Salaries according o grape within the Units Salarines according to experience and qual-
ifications on scales between $£ 4,870$ and $£ 7,873$. Further training avations on scales between
availeable where appropriate. Write or telenhone now: Staft
Dfficer. University of Surey Guiddord GU2 $5 \times \mathrm{H}$. Telephone Officer, University of Surrey, Guildford GU2 5XH. Telephone
Guidford 71281 , ext. 776 for full information, quoting reference Guildford
(16) WW.

ELECTRONICS RESEARCH AT THE UNIVERSITY OF ESSEX
Graduates who have (or final year students who expect to ob-
tain) a first or upper second-class honours degre aply for research leading to a higher degree (M.SC., M.Phil. or
Ph.D.) in the following areas: Ph.D. In the following areas.
Audio (high quality audio systems, music synthesis), Circuit
Design (computer-aided design, filters), Computer Systems larchitectures, languages, man-computer interaction, microprocessor systems), Optical Communications, ACousitc Noise and Microwave and Millimetre Wave Prommunication Systems, cations Transmission (data transmission, filter, PCM, DPCM),
Telecommunications Switching Systems and Software (computer control, traffic studies, network configurations), Visual
Displays and Television Engineering (computer Displays and' Television Engineering (computer graphics, 3 .
and colour TV), Picture Coding and Processing (feature extracand colour TV), Picture Coding
ion, digital filtering, perception)

Further information and application form available from neering Science (Reft. JA
Park, Colchester CO4 3SQ.

Appointmerns

Professional Careers

 in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of nnovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. fyou are interested to hear more, please fill in the

National Heart and Chest Hospitals Brompton Hospital

Medical Physics Technician Grade IV or III (ELECTRONICS)

We require a technician to work in a small but busy
department which provides a comprehensive medical departmen
electronic
hospital.
hospital.
Within the department the technician will be engaged mainly in electronics work but other scientific or engineering skills
would be an advantage. In addition the technician will be required to work in clinical areas trouble shooting and advising staft in the use of equipment.
Salary within the range of $£ 4931$ - $\mathrm{Cl7} 277$ inclusive depending on experience. For further information contact Chief
Technician, Mr.P. Butler, ext. 4252 . Technician, Mr.P. Butler, ext. 4252.
For application forms and job description contact Person
Manager, Miss J. A. Jenks, Manager, Miss J. A. Jenks, Brompton Hospital,
Road, London, SW3. Tel. $01-352$ 8121 ext. 4357 .

(1004)

MANCHESTER POLYTECHNIC
Department of
and OMmuniction Art

 Sution

EKTRONIX a45 oscilloscope, min

\section*{| ci |
| :---: |
| ci |
| co |
| a |
| w |}

t

药

NEW 1981

MODERN ELECTRONIC CIRCUITS REFERENC MANUAL

Markus

Price: $£ 32.50$
RADDO AMATEUR HANDBOOK by
ARLL 1981 ed.
Price: E E THE ART OF ELECTRONICS by P.
 ELLCTRONIC PRINCIPLES 2nd ed.
byA. P.Malvino
Price: $£ 4.35$ DYA.
MANUL OF ELECTRONIC SER-
VINGTETS AND MEA.
SUREMENTS BYR. Genn INTRO. TO DIGITAL FILTERS: $£ 101$
Price: $\mathbf{f 6} .95$
Terreil Terrell
MICROPROCESSORSA AND
MICROCOMPTERS ASOR ANG. STUUENTS AND TECHNICIANS By
B. WOllard
Price ± 5.65 B. Wollard
USTice: $:$ E5.65
USIN CP/M A SELF-TEACHING USING CP/M A SELL-TEACHING
GUIDE by J.Fernandez Price: $\mathbf{f 6 . 7 5}$
*ALL PRICES INCLUDE
POSTAGE *
THE MODERN BOOK CO.

Specilist in in Sciennific
R Technical Books

LONDON W2 1 NP

Phone $402-9776$
Cosed Sat. 1 p.m.
C.W.M. RADIO (8974)

\qquad

seysia

WIRELESS WORLD APRIL 1981

Classified

 comoctr navumat PCB ASSEMBLY capacity avallable

 TW ELECTRONICS LTD.
 Sub-contract assembiers and wires to
the Eilectronics industryy
(9068)
I.H.S. SYSTEMS

 anigh stand
art equimer
thousands.
Telephone to arrange for one of our equiremen to call and discuss your
TEL. 01-253 4562

Classified

с.B. MANUFACTURE AND ASSEMBLY
cammaides

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f2 PER LINE. Average sis
Minimum E10 (prepayable).
- Name and address to be included in charge if
- Box No. Allow two words plus $£ 1$
- Coxeques, etc., payable to "IPC Business
Press Ltd." and cross " $\&$ Co."

NAME..
ADDRESS
...

pLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION.

WRELESSS WORLD APRIL 1981

D.H.F. SIGNAL GENERATORS TF $1066 \mathrm{~B} / 2400.555 \mathrm{M} \mathrm{Hz}$. Deviation to 300 KHz . TF1058 $16-1.250 \mathrm{MHz}$. . $6-4000 \mathrm{MHz}$
PRINTED CIRCUIT MOTORS 'Printed Motors Ltd' type G16M4. 60V DC. 5.5 amps. Continuous torque 1400 z . in. 2350 rpm . Diameter $7.5^{\prime \prime}$. Depth $2.5^{\prime \prime}$. Shaft diam. $1 / 2 \& 8$ $3 / 4^{\prime \prime}$. Price from Printed Motors is now over tested \& guaranteed $£ 25$ each (postage $£ 3$).
LABORATORY OVENS. - Gallenkamp 3 c ft. £145. Also Morgan Grundy 1 cu. ft. $£ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts $£ 2.50$ och $(+25 \mathrm{p}$ pp). Type 316 three pole plugs for above $\mathbf{- 2 0 p}$ oa. (pp free).

$9 \& 10$ CHAPEL ST., LONDON, NW1 $01-7237851$
ADJACENT TO EDGWARE ROAD MET. LiNE STATATON

P. F. RALFE ELECTRONICS

 p.)

SPECIAL PUACHASE

RANK KALEE 1742 Wow \& Fluter Meter. AIRMEC 314 A Voltmeter. 300 mV ((SDD)-300

 HEWLETT-PACKARD tunedamp \& null detector
TF2600 VOImeter $1 \mathrm{mV}-30 \mathrm{~V}$.sd
TAD

 TELONIC $121 X$-Y Display Lnits $f 95$. ${ }^{\text {and }}$ OSCILLOSCOPE SALE

 PYNAMCOD 7100.04 Storage scope
HEWLETT-PACKARO 122A SB Audio IIRMEC 27A. 4 Beam isplay Scoud

MODULATION METERS

ROTRON INSTRUMENT COOLING FANS Supplied in excellent condition, fully tested: \qquad 5. $115 \mathrm{~V}, 3 \times 3 \times 1.5^{\prime \prime} \mathbf{£ 4}+$ postage ea. 35 p
CT212 RF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$ E55.
*. BELL \& HOWELL MICROFICHE VIEWERS * Type SR5. Screen size $9 \times 5^{\prime \prime}$ New
DIGITAL MULTI-METERS DE FOREST ELECTRONICS TYPE MM200. OC O-1KV. AC V O-700. DC 1.0-1A. AC 1.0-1A 5 ranges. LED Display 1999 BRAND NEW. SPECIAL REDUCED PRICE OF E39, INCLUDING VAT \& P. P

 HEATVOHTHACOCOEF

PR

The AIRAMCO Mikro IOOO

-The Scottish Solution.

The Mikro 1000 is a Scottish built micro-computer which combin State of Art technology with simplicity and durability to give
powerful small business system at a very competitive price. Driven by a 2.5 MHz or 4 MHz a very competitive price. around Industry Standard S100 Bus, the Mikro 1000 is designed to provide the ease of expansion necessary in a modern
growing business or industry - memory is expandable from 32 K to 256 K , with up to 4 Megabytes of on-line disk storage.
The integral VDU has an 80 cols. $\times 24$ lines screen, and incorporates a green phosphor CRT, while the 117 key machine, and may be programmed for user functions such as word processing commands.

- As well

As well as supporting all CP/M based languages, the Mikro 1000 has a full range of business software, including Sales, Purchase and Nominal Ledger, Inventory Contron, and Payroll, as well as Word Processing (which is available at even lower cost as a separate system on the Mikro 1000 WP).

For further information on either Mikro 1000 system, please contact:
Unit A2, Longford Avenue, Kilwinning Ind. Est., Kilwinning, Ayrshire, KA22 8NP. Tel: 029457755 Telex: 779808
ww-076 FOR FURTHER DETAILS

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

 Hichen

INDEX TO ADVERTISERS APRIL

The biggest name in solder worldwide

Economy pack for general non-electrical use. Replaces solid wire and stick solder. (B.S. 219 GradeL) Econopak 200 g reel of 3 mm dia. Size 16A. £4.14 per reel.

ToolboxReels.
Multicore 5 -core solder for general use. Suitable for electrical joints (B.S. 219 GradeG).
$40 / 60$ tin/lead. 1.6 mm dia. Size $3 . £ 3.91$ per reel. Savbit
Multicore 5-core solder for radio, T.V. and similar work. Reduces copper erosion. Suitable for service engineers and manufacturers using small quantities of solder. 1.2 mm dia. Size 12 . $£ 3.91$ per reel.

Multicore Wick.
Multicore solder-wick for removing solder from virtuallyany joint.
1.7 mm dia. Size $\mathrm{AB} 10 . £ 1.38$ per reel.

Bib Hi-Fi Accessories Ltd., (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire HP2 4RQ. Telephone: (0442) 61291.

Products that help you make a better iob of it.

Soldering Flux Pástes.
Multicore soldering flux paste. Extra fast, non-
corrosive, rosin-flux for electrical and general purpose soldering.
Rosin RF10.35qnet. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical. Arax A.F14.35g. 69p per pack.

Econopak.
Ersin Multicore 5-core solder. Contains non-corrosive flux for electrical applications.
1.2 mm dia. 200 g Econopak. Size 13A. $£ 4.14$ per reel.

Metal Soldering.
Arax Multicore 4-acid-coresolderformetal fabrication
(not aluminium) and repairs.
$40 / 60 \mathrm{tin}$ /lead. 1.6 mm dia. Size 11 . $£ 3.91$ per reel

Wire Stripper and cutter.
Wire stripper and cutter with precision ground and hardened steel jaws. Adjustable to most wiresizes With handle locking-catch and easy-grip plastic covered handles.
Ref: $9 . £ 2.69$ per pair.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.

[^0]: To: IL.P ELECTRONICS LTD. CANTERBURY CT2 7EP
 Please supply
 .. purchase price ε International Money Order \square

