

world

JANUARY 1981 60p

Microprocessot(aing)

Off-air freguctos affernse

Multiple saan eyins

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

JANUARY, 1981 Vọl 8 i No 1540
Front cover shows (inset)
microprocessor trainer desmicroprocessor trianer des
cribed in this issue with
backren background of a Burr Brown
thick film hybrid a-to-d converter photographed by
in our next issue
Wind speed and direction indicator for the
yachtsman digitally
displays wind diretion displays wind direction at
the masthead to within the masthead to within
2° and speed from 1 to 100 knots.

Morse codo decoding computer programme for
the Wireless World scien
tificic computer decodes titic computer decodes
Morse signals into normal
text. Will identify and text. Will identify and re-
ject interference pulses.

```
'Just dotectable' distor
tion. Signal characteris
tics which control the de-
to the ear and attempts
made to dotermine
```

 nd Trade Counter. Units 1 \&
Bankside Industrial Centre on street, Luntdon SEl. Avail
able on microfilm; please
 and payments to EEP General
Sales $\begin{aligned} & \text { Dept, } \\ & \text { Thuadrant } \\ & \text { The ouse } \\ & \text { Thadrant, } \\ & \text { Sutton, Surrey }\end{aligned}$ SMI 5 AS.
Edditorial $\&$ Advertising offices
Outadian Suadrant House, The ouadran
 Subscrition rates: 1 year $£ 10.00$ Student rates: 1 vear E .00 UK Distribution: 0 Bowling Green
Lane, London
ECIR ONE. Tele hubse $01-837$.
 achange of address.
USA mailing gents: Expediter
USt York, NY 10022 . 2nd cclas ork, NY 10022.2 nd-
postage paid at New York.
®|PC Business Press Ltd, 1981
SSN 00460062

31 A testing time if electronics

32 Nanocomp microprocessor trainer

37 World of amateur radio

38 The first thousand transmitters
42 Electronic combination lock
by Jan Hruska
$\left.\begin{array}{ccc}\hline & \text { 44 Low speed differentiator } \\ \text { by L. Hayward }\end{array}\right]$

53 Multiplex keying system for organs

57 Technology versus fundamentals in education by D. A. Bell
59 Multiphase low distortion oscillator by A. D. Ryder
Microchips and megadeaths $\begin{gathered}61 \text { Letters to the editor } \\ \text { Audio kits }\end{gathered}$ The floating bridge
67 Artificial intelligence by Malcolm Peltu
72 Off-air reference frequency by D.I. Stansfield
77 F.m. detectors by S. W. Amos
81 Improved parity checker by N. Darwood

83 New products

LSVELD ELECTRONICS LTD. MOXON STREET, BARNET, HERTS., EN5 5SD.

AND THERE'S MORE WHERE THIS CAME FROM It's a long time since one of our adverts was presented in 'list' form . but simply because we do not try to squeeze this lot in every time

, manam ccisest ${ }^{\text {encrlay }}$

\qquad

 CATALOGUES
$2 \& 3 . . .600_{\text {ea }}$

4 | $475 p$ |
| :--- |
| (4 inc. rev. of |

200 Marth Fervire Rand, Brentuond, EsGer

TELEPHONE (STD 0277) 230909 TELEX 995194 AMBITG POSTCODE CM144SG
ALL PARTS :
A...E1.75.....

The world overYou get the best service from Haltron For high quality electronic valves,
semiconductors and integrated
circuits a and the speediest service-
specify Haltron. It's the first choice of
Governments and many other users
throughout the world. Haltron product
quality and reliabilitit are clearly
confirmed. The product range is very;
very wide. And Haltron export
expertise will surely meet your
requirements. Wherever you are, get
the best service. From Haltron.

Hall Electric Limited,
Hall Electric Lim
Electron House,
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 30J.
Telephone: Orpington 2709s
Telex: 896141

ZN433．The world＇s first 10－bit trackingADC．
 10－bit tracking ADC with on

 chip 2.5 volt precision reference chip 2.5 volt precision refere and is ideal for continuous tracking of analogue signals．

Using Ferranti monolithic reliable performance but reduce your costs．

Send for data or contact IC Marketing， Ferranti Electronics Limited， Fields New Road，Chadderton Oldham，OL9 8NP． Telephone：061－624 0515 Telex： 668038

Axff

FERRANTI Semiconductors

25．29日明

TOMORROW＇S TOOLS TODAY

C．s．C．（UK）Limited Dept．7D Unit 1，Shire Hill Industrial Estate Saiffron Walden，Essex．CB11 3AO Telephone：Saffron Walden（0799） 21682 Telex： 817477

Instant frequency indication from 5 Hz to 100 MHz ；no range selection problems；a
brilliant 8 －digit brillith 8 －digit LED display：mains or battery operation；an accuracy of 4 parts per
mill ± 1 and CSC＇s new Max－100 freqency counter
Just take a took at our spec．Where else could you find anything similar at the price？
＊Frequency range $5 \mathrm{~Hz}-100 \mathrm{MHz}$＊

 rechargeable cells，an external 7.5 to 10 VDC supply，or a car battery（via an adaptor）
＊Dimensions： $45 \times 187 \times 143 \mathrm{~mm}$＊Options： 12 V adaptor；battery eliminator；r．f． ＊Dimensions： $45 \times 187 \times 143 \mathrm{~mm}$
antenna，low－loss r．f．tap，carrying case．
Fill in the coupon for further details．
『c．S．c．（UK）Limited，Dept． 7 DD, Unit 1，Shire Hill Industrial Estate，Saffron Walden，Esee CB1 1 3AQ． 7

｜Name

Exaress number and vour order will be in the poost immediaelv，Amperican

ron the Proessionals...

믈 Crimsonflektrik
 9 CLAYMILL. ROAD, LEICESTER LE4.7JJ, ENGLAND. TeI 0533761920 Teléx 34694 Chanco G CRIMLEK

Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM / AM Field Service Monitor CE-50A-1: FM / AM Field ServiceSpectrum Monitor

Exc/usive representative:

Aspen Electronics Limited

Aspen Electron
2 Kildare Close, Eastcoto, Ruislip, Middlesex HA4 9UR
Telex: 8812727

ALL PRIGES INCLUDE VAT @ 15\%
PAGROUP\&
DISCOUNITS

nin 12/150

end 50p for 56 page catalogue ${ }^{\text {'Choosing a Speaker }}$
\qquad
 UNITS, KITS, ETC. PLETE SPEAKER SYSTEMS.

A) SWIFT

OF WILMSLOW
The firm for Hi-Fi
5swan Street.
Wimslow Cheshire
Wilmslow, Cheshire.

2- Bu[D]
L. The firm for Speakers $35 / 39$ Church Street

Amcran INDUSTRIAL MUSCLE

Model - M600
POWER RESPONSEDC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
\star OUTPUT POWER

* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa .
* HAUG-IN MODUIES CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS * UNIPOLAR AND

BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.

* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
$\star ~ F U L L ~ O P E N ~ A N D ~ S H O R T ~ C I R C U I T ~ P R O T E C T V N ~ G U ~$ IRANT.
\star
\star
INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
\star INTERLOCK CAPABILITY FOR UP TO EIGHT
\star 3-YEAR PARTS AND LABOUR WARRANTY.
For full details on all Amcron Products write or phone Chris Flack

MARTMINASSOCIATMOS for the reliable Hire Service

LOGIC AMALYSER
Tektronix 308 Logic Analyser
BRIDGES
batides
Wayne Kerr B. 224 Universal Bridge. Resistance
Range $1 \mu \Omega-100 \mathrm{G} \Omega$.
Wayne kerr B .601 Bridge Freq. Range $15 \mathrm{KHz}-5 \mathrm{MHz}$ COUNTERS
Hewlett-Packard 5340A Counter 8 Digit $10 \mathrm{~Hz}-18 \mathrm{GHz}$ Fluke 1910A Counter 7 Digit $5 \mathrm{~Hz}-125 \mathrm{MHz}$.
DIGITAL VOLTMETERS
Fluke 81010 A 3.5 Digits. DCV, ACV, Ohms
Solanton $704041 / 2 \mathrm{Digit}$ DCV, ACV, DCI, ACI.Ohms. SOUMD LEVEL METER
Bruel \& Kiaer 2209 Sound Level Meter.
meters
METERS
Hewlett-Packar
$10 \mathrm{~Hz}-10 \mathrm{MHz}$.
oscilloscopes
Telequipment D. .33 DC -50MHZ
Tektronix D 34 DC. 15 M
Tektronix $\mathrm{D} .34 \mathrm{DC}-15 \mathrm{MHz}$
Tektronix 465 DC .100 MHz
Tektronix 465 BDC .100 MHz
Tektronix T. 935 ADC -35MHz
RECORDERS
Data Labs Transient Recorder DL905
J.J. Lloyd X.Y Plotters.
J.J. Lloyd CR. 6002 Pen Recorder.

Telephone Reading (0734) 595853/51074

Carston Electronics

 ${ }^{1} 1$ MRM/509

Bigger stock investment greater equipment range means wider choice

BRYANS SOUTHERN BS314 channel I IMV-IOV 16 Spoeds HEWLETT PACKARD EDM FSSD. 3.bebom imin and and hour YOKOGAWA Generators BOONTON 10284.3520

20

WIRELESS WORLD. JANUARY 198
METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for $10-14$
days delivery. Other Ranges and
Other special scales
HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. $1 \quad$ Phone: 01-837/7937 wW - 056 FOR FURTHER DETAILS

DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very Merry Christmas and Prosperous New Year

 WW - 020 FOR FURTHER DETAILS

VERY SPECIAL OFFER OF FULLY
 GUARANTEED BRAND NEW SINGLE SIDE EUROPEAN MINIDISK DRIVES EXCLUSIVELY TO WIRELESS WORLD READERS

Now really is the time to buy. New 5
cheap.
Ring the enquiry number for further details This offer is exclusive to WW Readers and represents

SPECIAL C.W.O. PRICE: £120 $+£ 2$ CARRIAGE

+ 15% VAT Toal CWO Price:
Cheques and postal orders made payable to WWW DISK OFFER
49 Milford Hill, Batfor Harpenden, Herts. Tel: 0582429122 WW - O50 FOR FURTHER DETALLS

20
Wireless world january 198
METER PROBLEMS?

137 Standard Ranges in a variety of
sizes and stylings available for 10.14 slzes and stylings avaliable
days delivery. Other Ranges and special scales can be made to order

Full information from:
HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. $1 \quad \begin{aligned} & \text { Phone: } 01-837 / 7937 \\ & \text { Tolex: } 892301\end{aligned}$ WW - 056 FOR FURTHER DETALS

DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very Merry Christmas and Prosperous

New Year

Now really is the time to buy.
New $51 / 4^{\prime \prime}$ drives will probably never again be so New
cheap.
Ring the enquiry number for further details. This offer is exclusive to WW Readers and represents a saving of about C 75 each on the normal RRP.

SPECIAL C.W.O. PRICE: £120

+ £2CARRIAGE
$+15 \%$ VAT Total CWO Price:
140.30 per Drive
Cheques and postal orders made payable to WW DISK OFFER
49 Milford Hill, Batford Harpenden, Herts. Tel: 0582429122

FAST ERECTING
 GARK MASTS

For World-wide Telecommunications in the 1980's
Clark Masts Ltd. are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civi specificatio
Extended heights $4 \mathrm{~m}-30$ metres capable of lifting headload $1 \mathrm{Kg}-200 \mathrm{Kgs}$, sectional or telescopic air phone us for details today

TelequipmenT S61
SINGLE TRACE LIGHTWEIGHT 5 MHz OSCILLOSCOPE

MAECTHACCME SEODP PURGHISE

NEW!

Unused, Ex-stock, 5 ONLY 2 to manufacturer's $\sum 122+$ full specification
full specification so dav
This offer cannot be repeated.
Available only whilst stocks last. GUARANTEE
BANDWIDTH DC to 5 MHz (-3dB
DEFLECTION $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$
SWEEP SPEEDS $500 \mathrm{~ms} /$ div to $1 \mu \mathrm{~s} / \mathrm{div}$
TRIGGERING Variable control or Aut
C.R.T. $5^{\prime \prime}$ tube 8×10 divisions (each division
nominally 1 cm)
DIMENSIONS 280 mm High, 160 mm Wide, 370 mm Deep, Weight 6.0 kg ,
For complete spec. of the Telequipment S61, or to order direct - complete and post coupon today. Personal callers welcome. Only 5 mins from Camden Town underground. Come and see
our complete range of 'Blue Chip' Used Test \& Measuring Eur complete range of 'Blue Chip Used Test \& Measuring
Equipment. $\mathrm{F}_{\text {how to order }}$ - to carston eLectronics ltd. $\rightarrow \frac{0}{\circ}-$ Fill in coupon and reutro $\left\lvert\, \begin{aligned} & \text { Fillin coupon and reurn } \\ & \text { with vour chencue made } \\ & \text { payable to }\end{aligned}\right.$

$\left\lvert\, \begin{aligned} & \text { U.K. Mminlatids onty.). } \\ & \text { Or we can debit yout }\end{aligned}\right.$

Or we can debil your
Barciay Cardio fucoss
Account - tick box as

$\left\lvert\, \begin{aligned} & \text { approprate } \\ & \text { datis for } \\ & \text { your foor }\end{aligned}\right.$
 Shirley House, 27 Camden Road.
London NW1 9NR Teliephone $01-2675311$

 accounino. $\left.\begin{aligned} & \text { Please send me turnter intormation on the Shich and detalis } \\ & \text { of your completer range of 'second user 'equipment }\end{aligned} \right\rvert\,$ Signature
 $\xlongequal{\text { Address for delivery } \longrightarrow 1}$
Registered No. 890082 England - 070 FOR FURTHER DETAII

This unit provides simple, reliable programming of up to 8 EPROMS simultaneously. It has been designed for ease of operator
use -a single program key starts the self check - blank check

Independent blank check \& verify controls are provided along with
mode, pass/fail indicators for each copy socket and a sounder to mode, pas/ fail indicators tor each copy socket and a sounder to
signal a correct key command \& the end of a programming run.
Any of the $27042708 / 2716$ t3 rail \& $2508 / 2758 / 2516 ;$ Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516 /$
$271 / 253 / 2732$ (single rail) EPROMS may be selected without hardware or personanaity carr changes.
PRICE $£ 45+$ VAT. Postage paid

BULK EPROM ERASING

ODEL UV141 EPROM ERAS

14 EPROM capacity
Fast erase time

- Built-in 5.50 minute timer

Conevenient tlide-tray loading of devices
Safery interlocked toprevent eye and skin damag
Rugged construction
Rugged construction
MINS $\&$ ERASE indicator
MINS \& ERASE indicators
Price $£ 78+$ VAT postage paid
MODEL UV140 EPROM ERASER
Similar to
post paid

BULK EPROMS

 THESE EPROM PRICES.
Postage and Packing is included in all prices. ADD VAT at 15%. Postage and Packing is included in all prices. ADD VAT at 15%.
All our EPROMS are manufactured by leading companies and are All our EPROMS are manufactured by leading com:
fully guaranteed, branded and to full specification.
WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND WRITE OR TELEPHON EOR FURTHER DETALLS OR SEND
OFFICIAL COMPANY ORDERS/CHEQUES TO: PLEASE NOTE NEW ADDRESS \& TELEPHONE NUMBER

GP INDUSTRIAL

ELECTRONICS LTD.

Tolophnin. Totnes (0803) 863360 sales, 863380 technical
WW - 029 FOR FURTHER DETALLS

HERE'S HOW TO TALK TO

ALL OF THE PEOPLE ALL OF THE TIME

with a communications system built up from the all-embracing, constantly expanding range of

粦 REDITRONICS EQUIPMENT

The latest addition to that range -

'SERIES TWO'

MESSAGE REPEATER

with 4-TRACK CAPABILITY
for four-message or four-language simultaneous or selective tape playback through external amplifiers, plus one selected track through an internal ampier. 'Addus multi-channel amplifiers.

When it comes to SOUND communications, REDITRONICS EQUIPMENT does MORE FOR LESS. REDITRONICS is the one name that says it all.

Send for details of any item, and our full brochure, of a range of equipment that can provide every integrated link in the chain of a tailor-made sound communications system.

REDIFFUSION REDITRONICS LTD.,
La Pouquelaye, St Helier, Jersey, Channels Islands Tel: Jersey (0534) 30321 Telex: 4192341 U.K. DEPOT: River View Road, Bitt
Tel: Southampton (0703) 555566

DISTRIBUTORS FOR GREATER LONDON G HOME COUNTIES:
MUSITUNE LTD., 388 Green Lanes, London N4 1DW Tel: 01 1-802 1163

NEED ENCLOSING?
Now, CSC are really in the hardware business, with a series of plastic
cases ideally suited to applications ranging from hand hell probes to cases ideally suited to applications ranging from hand-held probes to
hi-fi equipment. CCS cases are moulded in robust pastic and come
with all the necessary screws, covers and, where apporopriate, battery with all the necessary screws, covers and, where appropriate, battery
compartments, connectors and transparent panels for displays. And compartments, connectors and transparent panels for displays.
CSC can provide customer-specified ariations for largequantity orders. Fill in the coupon for more details,
csc (UK) Ltd, Unit 1, Shire Hill Industrial Estate

- 010 FOR FURTHER DETAIL

You Need

Integrated Circuits? WE HAVE THEM!
(Even the "Difficult" ones!)
Silicon Solar Cells? Solar Cell Arrays?
Photovoltaic Solar Cell Panels? Solar powered Toys \& Novelties?
Just Phone or Telex Bob Owen TELEX 181-758 Answbk. "Calconsdg" PHONE (714) 5658303
CALCON LIMITED
9235 CHESAPEAKE DR. STE. F, S.D., CA 92123. USA

WW - 023 FOR FURTHER DETALLS

TRUE AS AN Arrow

Professional Wire and Cable Fasteners for all installation requirements.
TELEPHONE - ELECTRONICS
COMMUNICATIONS
ALARM SYSTEMS, ETC.
4 Precision made models.
12 different staple sizes.
Rugged all steel constric
tion in chrome If
Grooved driving blade.
Tapered striking edge.
Jam-proof mechanism (patented).
Short span easy compres-

sion handile.
Some of the features that make an Arrow cable fastener Some of the features that make an Alion engineers.
the outstanding tool for all installation

Illustrated literature and details of staple sizes available from:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 PICCADILLY, LONDON W1V OHL
TEL. 01-629 9554. Telex 265200 (A/B RACEN)
Cables: Speciprod London W1
WW - O69 FOR FURTHER DETAILS

CAMBRIDGE
LeARNING

Instruction

 CoursesMicrocomputers are coming - ride the wave! Learn to program.
Millions of fobs are threatened but millions will be created. Learn
BASIC - the language of the small com puter and the most easy-to-learn computer language in widespread use. Teach
yourself with a course which takes you yourself win a course which takes yo real proficiency, with a unique style graded hints. In 60 straightforward programming: problem definition, flowcharting, coding the program
debugging, and clear documentation

 Also THE BASIC HANDBOOK (BHB) E11.50 An encyclopaedic
guide to the major BASIC dialects. A must if you use other peoples' programs
and: ALGORITHM WRITER'S GUIDE (AWG) £4.00 Communicate
by flow chart! Learn to use Yes/No questions for: procedures, system by flow chartt Learn to use Yes/ N questions for: procedures, system
design, safety, legislation etc. Electronics
Written for the student or enthusiast, this Digital Sytiems
 diagrams, and questions designed to lead
you step-by-step through number systems and Boolean algebra to memories, counters, and simple arithmetic circuits; and finally to an
understanding of the design and operaunderstanding of the design and opera \qquad

 A course covering the material in italics above but at a slower pac 14 vols)
GUARANTEE

Abstract

will be refunded without tuestion, on return of the books in good condition.

 PLEESE SEND ME:-CPB (10.00)
CPB (10.00)
BHB (111.50)
AWG ($£ 4.00$)
DDS ($£ 13.50$)
DCL $(£ 7.50)$
FOUR WAYS

Eur N.
ond
and

Name.
Addross

You coulddo with a Helper on your test bench.

The Sinadder 3..
Ideal for bench or mobile service van use, with 3 functions
in one. Automatic SINAD meter with audio monitoring plus a 1000 Hz tone generator. Sensitive AC voltmeter, $1 \mathrm{M} \Omega$ input impedance, with audio monitor
for tracking down distortion and locating defective stages. These are just two of our Helper range. Write now for a product guide and free copy of the mobile
radio desk reference.

 LYONS INSTRUMENTS

WIRELESS WORLD JANUARY 1981
DON'T HANGABOUT!

IOX0-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS
 - Hermetically sened
package
-
DIL Dack
Dill
compatib compation \times
$1820.70 \mathrm{~L} \times 5 \mathrm{H}$
$1 \mathrm{~mm})$

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available. Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g ww - O54 FOR FURTHER DETAILS

C1. Resistors
 carr. and V.A.T. Following

6E8 33E 100 E 120E 360 E $670 \mathrm{~F} 560 \mathrm{E} 2 \mathrm{K4} 2 \mathrm{K7} 7 \mathrm{KK7}$
$\mathrm{4K6} 7 \mathrm{~K} 58 \mathrm{~K} 2100 \mathrm{~K} 120 \mathrm{~K}$ $5 K 67758 \mathrm{~K}$
150 K 20 K 300 K 390 K 820 K
PBRA LTD.
Golden Green, Tonbri

Hopfield (0732274) 345
Member Grystalate Group

LOW VOLTAGE

 POWER DRILLS AND ACCESSORIE Illustration shows Titan Drill and Stand(Price $£ 27$ inc. VAT and Postage) which
 Prices from $£ 8.34$ (R
VAT and Postage.
A. D. BAYLISS \& SON LTD. PFERA WORKS. REDMARLEY

GLOUCESTER GL19 $3 J U$ | CLOUCESTER GL19 3JU |
| :--- | Latch on to binding posts with CSC. Designed to provide a firm foundation for a variety of electronic interconnections complete with insulating shoulder washers and mounting

nuts. Versatile, too - they accept bare wires, banana plugs
and hook connectors. There ar
and hook connectors. There a
five red, five black posts, 20 insulating shoulder washers and 20 hex mounting nuts. And for large quantity orders, CSC can supply other colours. You won't find it a bind to post off the CSC coupon for more details - do it today!

or
will be
NAME
ADDR

CONINENAAL SPECCIAIIIES CORPORAAION
I Cond

Sid
Unity

ARA AUSTERFELD-CLARK RESEARCH. Tel. O484 48010 ww - 051 FOR FURTHER DETAILS

ORION SCIENTIFIC PRODUCTS LTD.
10 Wardour St., London WI

SPECIAL PURCHASE

OF TOP QUALITY LCD MULTIMETERS

CHOOSE FROM FOUR MODELS
$3^{1 / 2}$ digit autoranging (volts / Ohms
200 hours battery life (2 pencells)
10 amp AC/DC (6220 \& 6110) \star) 1000 v DC 600 V AC

+ $200 \mathrm{~mA} \mathrm{AC/DC}(6200$ \& 6100)
\star Range hold facility $(6100 \& 6110)$
\star Unit and range sign $(6110 \& 6220)$
- Continuity buzzer (6100 \& 6110)

Reo

OTHER FEATURES

OTHER FEAT (ALL MODELS)

$\underset{8100 / 5110}{ }$ ACCURACY
.

\qquad

Zero Adjust key Battery Warning in circuit resistance test	

6200	$£ 39.95$	6100
6220	$£ 49.95$	6110

$£ 74.95$
\star All prices include batteries/leads and UK VAT (UK c/p 65p)
O Oder By Post or TTelephone with Barclay or Access.
\# OR CALL IN AND SEE FOR YOURSELF

Cubegate Limited OPEN 9-6 SIX DAYS A WEEK AUDIOELECTRONICS	
301 EDGWARE ROAD, LONDON, W2 IBN	
TELEPHONE 01.724 3564 ¢	
(Block caps please) From: Mr./Mrs./Miss	REF (mu)
Adoress	
\| Please supply aty	Model (s)
I/We enclose (finc. 65p post) Cha/Povalue	
Or debir Barclay/	

WW -016 FOR FURTHER DETAILS

WW - 013 FOR FURTHER DETAILS

FREE PROJECT BOOK WITH APS NEW EBBO BREADBOARDS
WITH EACH EBBO IC-1 OR DC-1 STARTER PACK A FREE STEP BY STEP 10 PROJECT BOOKLET ANYBODY CAN BUILD ELECTRONIC PROJECTS WITH EBBO MONEY BACK GUARANTEE IF YOU CAN'T

POWERACE THE MOST

EXPENSIVE
BREADBOARD

SUPERSTRIP SS2 THE BIGGEST SELLING

 BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for you money ... With 840 contact points SUPERSTRIP accepts all
DIP's and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time. You should only buy abreadboard once so buy the biggest seller with a lifetime
guarantee.
SUPERSTRIP SS2 923252 PRICE INCL VAT $£ 9.78$

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

- EX-STOCK DELIVERY
- 5 STANDARD LENGTHS

6, 12,18, 24, 36"

- WITH 14, 16, 24, 40 CONTACTS
- FULLY ASSEMBLED AND TESTED

INTEGRAL MOULDED ON STRAIN RELIEF
LINE BY LINE PROBEABILITY

SINGLE-ENDED

CONTACTS

TEST-CLIP TEST-CLIP

Clip an APTEST-CLIPover an IC and you immediately bring up all the eads from the crowded board into an easy working level.
22 NEW AP TEST-CLIPS TO PICK 22 NEW
FROM
$\begin{array}{llll}\text { examples: } & \text { TC } 14 & 923695 & £ 2.76 \\ \text { TC } 16 & 923700 & £ 2.91 \\ & \text { TC } 24 & \mathbf{~} 223714 & \mathbf{~} .1208\end{array}$ $\begin{array}{lll}\text { TC } 16 & 923700 & £ 2.91 \\ \text { TC } 24 & 923714 & £ 8.50\end{array}$ TC $40 \quad 923722 \quad £ 12.88$

Editor:
TOM IVALL, M.I.E.R.E.
Deputy Editor: PHILIP DARRINGTON
$01-6613500 \times 3586$ Technical Editor:
GEOFF SHORTER, B.SC $01-6613500 \times 3590$

Projocts Editor:
MIKE SAGIN
$01-6613500 \times 3588$
Communications Editor
CDPARRATT, B.A.
Nows Editor:
NARTIN ECCLES
$1-6613500 \times 3589$
Drawing Office Manager:
ROGER GOODMAN
Technical Illustrato
BETTY PALMER
Production \& Design:
Production $8{ }^{\text {ALAN KERR }}$
Advertisement Controller
G. BENTON ROWELL

Advertisement Manager:
BOB NIBBS, A.C.I.
$01-6613130$
DAVID DISLEY
$01-6613500 \times 3593$
arbara millen
BARBARA MILLER
$01-6613500 \times 3592$
Classifiod Manager
RIAN DURR
JOHN GIBBON (Make-up and copy)
01-661 3500×3561
Publishing Director:
GORDON HENDERSO

wireless
 world

A testing time for electronics

Why would a British nationalized industry
ot wish to associate itself publicly with microprocessors, quite properly, to mprove its industrial performance? This is what happened with an article we pubished recently. The engineer was mployer, the nationalized industry, specifically asked for their name not to be revealed in the article. You would think they would be proud to show their owners, ou and me, what they were doing in this up-and-coming technology. Could it conomic recession and high
unemployment, they felt it was not exactly he right time to admit responsibility for new technology" which might mean a
A few years ago the argument that the se of electronics in new products and manufacturing processes would create ccepted because of the confidence engendered by the rapid expansion of the re--market economies in the 1950s and 0s and the resulting high level of employment. Today, although the
argument could still be valid - because we can point to actual new jobs that have been reated - it is beginning to look somewha eeble against the scale of current events. In Britain we now have over two million people as a sudden shock. Even so they dismiss it as a temporary, though severe, effect of yet another of those swings in the ecurring trade cycles we have known for century or more. It must end, they say
But other, perhaps more discerning, observers see the present figure of two million unemployed as not merely a emporary freak but as part of a longer erm structural change, as at 1967
nemployment in the UK , running at out 300,000 , was roughly matched by enumber of $j 0 b$ vacancies available. But fter 1967 this situation no longer btained. The unemployment curve began "o "take off" upwards, leaving the efore. This trend has continued unmistakably for over a decade. If these analysts are right and there is indeed a long-term structural increase in nemployment, then electronics and any ther technologies being used to improve ested as hever before in the full glare of he public arena. If the higher labour productivity indicates a loss of jobs, rather han an increase of output with the existi echnology will be opposed far more trongly than if we were living in an xpanding economy. Those who introduc will have to prove, under the most bringing social disruption in its wake by adding even more people to that sad grou which always bears the brunt of industria hange - the poor, the unemployed, the nskilled, the handicapped, the
One can only be glad that these new conditions are clearly understood by the central economic organization of the Western capitalist countries, the OECD. a recent report "Technical change and ncluding two men with an electronics background) this influential body states firmly that technical change can never be goal in itself. It must be politically supported by the populations of these forthcoming only if there is a satisfactory balance between the generation of new employment and the loss of old jobs and if echnical change is perceived to improve the quality of life." niys 8 other i.cs, this microcomputer
design provides up to 4 K of e.p.r.o.m., 1 K of r.a.m., p.i.a., six digit display and up to eight monitor commands. Although ideal as a trainer, the
Nanocomp is also a useful tool for general microprocessor applications. The unit can be built on one printed circuit board and housed with a power supply in a small case.

Two problems which prevent many
electronic engineers from learning to use microprocessors are the complexity and cost of taking the first step. Constructing a unit can reduce the cost but may require simple unit that can be built easily may have limitations which restrict its use. With these points in mind, a microprocessor trainer has been designed which is suitble for a novice but provides sufficient A block diagram of th
in Fig. 1. Only 9 i.cs are used, which makes construction quite easy for anyone with the minimum of experience. The cen-
tral processing unit is a Motorola 6802 . tral processing unit is a Motorola 6802 .
Although not a particularly well known microprocessor, it is based on the popular 6800 device and includes clock generation and 128 bytes of r.a.m. This reduces the cost and simplifies construccomplete the clock generation circuit. For programming, the 6802 is identical to the 6800 and is therefore well supported with software. Apart from the c.p.u. r.a.m., there are two other blocks of memory stores the monitor program, which takes care of the general "housekeeping" duties such as scanning the keypad, refreshing the display and providing debugging facili-
ties to help with program development. ties to help with program development.
The monitor occupies about 850 bytes of the e.p.r.o.m. To improve flexibility, the unit has been designed to accept $1 \mathrm{~K}, 2 \mathrm{~K}$ and 4 K e.p.r.o.ms so that the user can write programs and have them permanently stored for an application such as a
dedicated controller. The second memory block is a 1 K r.a.m. for developing and running programmes.

The final section of the block diagram contains the input/output (i/o) circuit
which drives the keypad and display, and allows interfacing to other circuits. The complete circuit is shown in Fig.2. A clock reference is provided by the 3.2786 MHz crystal and C_{1}. However, other crystals between 400 kHz and 4 MHz
can be used with an adjustment to C_{1} for reliable oscillation. The 6802 clock circuit divides the oscillator frequency by 4 to provide an 819 kHz system clock signal ($\varnothing 2$ of the 6800) at \mathbf{E}. This frequency leaves a small safety margin for the de-
vices, which have a maximum operating frequency of 1 MHz . A 74 LS 00 gates the E signal with VMA (valid memory address) to provide VMA.E which is used by the address decoder IC_{9} to ensure that other
devices on the bus are only accessed when devices on the bus are only accessed when
a valid address is present on the address bus. The address decoder generates select lines for the memories and i/o chips by
decoding the three most significant 4 K address blocks, of which Y1, Y4 and Y 7 are used. Note that the most significant address line, A15, from the c.p.u. is not used because sufficient address space is available without it.
Data pins D0 to D7 of the c.p.u. are connected to the data bus. The control bus (connected by a push switch and used to start the monitor program at switch-on, and to initialise the $\frac{1 / O \text { chip for program- }}{\overline{\text { IRO}}}$ ming), IRQ and NMI interrupt lines
which allow program execution to be interrupted or, in the case of $\overline{\mathrm{NMI}}$ (non-maskable interrupt), termination of a monitor command with the Abort key which returns the processor to the monitor switch
on point. Both interrupts are connected to on point. Both interrupts are conneled circuit if required. As mentioned previously, three sizes of As mentioned previously, three sizes of
e.p.r.o.m. can be used. Although the 2708 e.p.r.o.m. can be used. Athough the 27108
is the cheapest device it will provide only a is the cheapest device it will provide only a small amount of spare memory space, and rails. The 2516 and 2532 only require +5 V and leave just over 1 K and 3 K respectively for expansion.
The main r.a.m. is provided by two 4 -
bit 2114 i.cs. With the 819 kHz clock, slow

Fig. 1. Block diagram. The 6802 is similar to the 6800 but contains a clock generator and 128bytes of r.a.m.
Fig. 2. Complete logic diagram. Although the circuit can use a 1 K 2708 e.p.r.o.m., 2 or 4 K devices are recommended because
they provide spare memory space and they provide spare memory space

34
(450 ns) devices will work without trouble An input/output device, IC_{4}, the MC6821 peripheral interface adaptor (p.i.a.), pro-
vides two sets of 8 data lines for communicating with external circuits. One set of lines (PA) is t.t.1. compatible, and the ther (PB) is m.o.s. compatible. The lines can be individually programmed as inputs or outputs and can for example, were suitering, drive relays or read the states of microswitches. Also available are four control lines, two for each set of data lines, which can be used to control transfers of data between the p.i.a. and external
devices. Two are inputs only, and two are devices. Two are inputs only, and two are
inputs or outputs. The inputs can drive the IRQ line so that the c.p.u. can service them immediately if required. All of these lines, together with ground and +5 V , vailable at a multiway connector. used to drive the display and keypad. The display comprises six common-cathode 1.e.d. numerals which can show a 4 -digit address and 2 -digit data. The display data is not latched but multiplexed, so a con-
stant refresh is required. This is achieved by the monitor which has a sub-routine that can be used to display data in a program. Data lines PB $0-$ PB3 select
which digit is to be refreshed, the binary which digit is to be refreshed, the binary
numbers are decoded by IC_{7} which sinks numbers are decoded by IC_{7} which sinks
one of its outputs low. Six of the 7442 outputs are connected to the cathodes of the displays, thus the appropriate digit is selected. Segment drive information is provided by PA0-PA6. Resistors R_{4} to R_{10} Fig. 3. Single rall power supply. The p.c.b. Fig. 3. Single rail power
measures $160 \times 60 \mathrm{~mm}$.

WIRELESS WORLD JANUARY 1981 are turned off by a logic 1 on the p.i.a. line transistors in IC_{8}. Although this arrangement is a little wasteful on power, the consumption is highest with the display off) it provides a simple drive circuit which The p.i.a. lines are also used to read the keypad switches, but for this operation they are programmed as inputs. With no keys pressed, no loads are presented on the t.t.1. compatible inputs which are The keys are arranged in a matrix and IC_{7} selects one of four rows in the same way that display digits are selected. If a key is pressed in that row, the appropriate PAOPA6 input is pulled low. To read the key-
pad, each row is selected in turn and the pad, each row is selected in turn and the
nputs monitored for a low on one line. By identifying the row selected and the column pulled low, the pressed key can be determined
Although the p.i.a. lines are available external device while servicing the keypad or display. This is a small penalty for a simple design, and does not normally present a problem
Construction is straightforward because all components, except for the power
supply, can be mounted on one p.c.b. supply, can be mounted on one p.c.b.
Sockets are recommended for the m.o.s. devices and pins for all external connections. The switches are a tight fit, but if
the holes are drilled a little oversize they the holes are drilled an place. If the circuit
can be manoeuvred in plater is to be housed in a box, the switches should be raised as much as possible. The legends on the switch caps are transfers such as Letraset. All components are
mounted on the top side of the board together with four wire links to select the e.p.r.o.m. For a 2708 no links are used, for the 2516 and $2532, \mathrm{C}_{3}$ and C_{4} are omitted and the two links from their positions inserted along with the link by the e.p.r.o.m. socket.

SV design intended for use with the singlerail e.p.r.o.ms. The complete unit can be housed in a case, see component notes, or

Testing

For initial testing, the r.a.ms need not be inserted. Connect the power supplies to their respective pins (notereth a 2708 supplies, the -5 V should be switched on first and off last). After switch on, press Reset (RST) and a dash should light up on the far left display. This symbol is a prompt and indicates that the unit is waita correctly programmed e.p.r.o.m., check a correctly programmed e.p.r.o..m., check an oscilloscope connected to pin 38 of IC_{1} check that the crystal is oscillating. If the check C_{1} and experiment with different values, particularly if the frequency is not as specified. If the oscillator is operating, test the E output of IC C_{1} which should be a
square wave at one quarter of the crystal

WIRELESS WORLD JANUARY 1981 frequency. This waveform will contain able, a high-impedance voltmeter connec ted to pin 37 should read between 24 and 25 V . If the fault still persists, it is likely to be a dry joint or a board fault. Because many of the tracks on the top side of the advisable to carefully examine the board before the components are mounted.

Operation

The memory map for the unit is shown in Table 1. Note that the e.p.r.o.m. occupies 7000 - 7 FFF , although the monitor program only occupies 7C00 - 7FFF Adauresses 7 E 63 to 7 FE 7 are unused be cause, in the original unit, routines for a paper-tape punch and load were stored dump routines to suit the users storage medium.
The reset button is used at switch-on, or if control of a program is lost, to run the keys enter data, and the remaining eigh keys enter monitor commands. L and P are spare keys,, used in the original for load and punch with the paper-tape unit, which can be used for extra facilitie
These do not need to be storage rouwrite and include in the monitor. Locaions 7DC4/5 should contain the 16 -bit start address of the routine to be run on pressing the I key, and foring the unit these keys can be ignored
The memory (M) command allows memory location to be examined and al ered if required. This key is acknow edged by 1, in the far nghe dsp on the left four digits, and the data in that ocation appears on the right two digits. To alter the contents of the location, enter two hex digits, which will be shined into made, keep entering appropriate digits unil the correct data appears in the display). Next press the Increment (I) key, which stores the displayed data in the memory location and advances the display to the next memory location. Itering, press I to advance or Abort to terminate command and return to monitor start.
Register display (R) displays the contents of the various c.p.u. registers rolowing a SWI iristruction in a program. after a SWI, but may be re-entered with the R key. The condition code register contents are first displayed, the right two digits denote the register being displayed
 $F_{1}=$ program counter, $S_{1}^{1-1}=$ stack pointer position) and the left four digits show the register contents. The I key will increment through the various SP, the unit will automatically return to monitor start.
Go (G) is used to go to a user program
and A will acknowledge command. When

the 4 -digit hex start address of the program is entered the program will run. If a program is interrupted by a SWI instruction, the continue (CN) key will run the program from the instruction following abort key, CN will make it continue from the interruption provided the abort key (NMI) has not been modified by the user program for a different purpose
program for
Abort AB) stops the current com-
mand/program by operating the non-masmable interrupt line. The program then jumps to the location specified by memory location 0072/0073. These are set, during
Reset operation, to the monitor start Reset operation, to the monitor $\frac{\text { start }}{\text { address but may be altered to use the }}$ NMI facility.

Programs

If one of the larger e.p.r.o.ms is used, the programs at $7800-7 \mathrm{BFF}$ can be run im-

7C7B DISPRESH Refreshes display with contents of display buffer (six locations of r.a.m.,. one for each display digit) which contains the seven segment
information for the display. For a program to use the multiplexed information for the display. For a program to use the mult) to 007 F
display, the data must be written in locations 007 A (left digit) to (right digit) and DISPRESH continually accessed. Each segment of a digit is allocated to a bit in the data word, to turn a segment on set
that bit to 1 . The bit/segment allocation is $\stackrel{b_{5} b_{0}}{b_{0}} b_{b_{0}}^{b_{1}}$

7C2O GETKEY
Alternately scans keyboard and refreshes display until a key is key code in accumulator A.

7CE7 HEXCON Converts a key code in Acc A into the hex equivalent for that key and the routine defaults back to the monitor start.
CE4 KEYHEX Combines GETKEY and HEXCON.
Builds a 4-digit hex address entered from keyboard, refreshing
display whilst doing so, and returns with that address in index register.
register.
Converts the left hex digit of a byte in $A c c A$ to the seven segment
code required by the display, and returns with it in $A c c A$. As above but for right hex digit of byte.
Converts a seven segment hex code in Acc A to that hex digit and returns with it in Acc A. Defaults to monitor start if code is not hex.
Uses KEYHEX to accept tox key entries, and combines the two Uses KEYHEX to accept two hex
hex digits into one byte in Acc A.
are useful programming aids. To run program, press Reset to obtain a prompt in
the display, press G and then enter the the display, press G and then enter the converts hexadecimal numbers to decimal and vice-versa. After pressing G 7800, the display will be blank. For a decimal to hex, press L and then enter a decimal number from valent will be displayed. Press I again and enter L for another decimal to hex, or P for a hex to decimal conversion. After each conversion press I to prepare for another.
A tedious aspect of machine code programming is calculation of the two's comThis task is simplified by the branch calculator program at 7A00. When the program is entered S appears on the far righ
display, which indicates that the program is waiting for the 4-digit start address of the branch instruction.
Enter this followed by I, and d will appear on the display to request the 4 -digit he two's complement offset appears on the two far right displays. If two dashes appear, the branch is outside the range of a branch instruction. Press I to prepare for another calculation
The two games programs are at 7A80
and 7930. The first is "Mastermind" and after entering, I will appear on the display. After a few seconds, required for generation of the secret code, press I and try to
solve the 4 -digit code using numbers 0 to
7. After entering the first 4 -digit guess, a -dight number will appear on the two number of correct digits in the correct positions (called bulls). The second indicates the correct numbers in the wrong places (called cows). Press I and enter four bulls have been deduced, and pressing I will indicate the number of tries. Pressing I again starts a new game. The second game is called duckshoot and locations 0000 and 1 have to be set wime. With 0020 as a starting point run the program and two ducks will traverse the display. To shoot the ducks the display number (1 to 6 from left to right) must be entered when the duck is present. When hit, the duck disappears and the game
finishes when no ducks are left. To terminate the demonstration programs, press AB or RST and the monitor program will be re-entered.
Although this unit was originally designed as a versatile training aid, it can be
used as a desktop computer and as a softused as a desktop computer and as a soft-
ware development tool. The spare e.p.r.o.m. space allows it to be used as a form of calculator or a controller. Useful programming information is available in
the M6800 Microprocessor Instruction Set Summary from Motorola distributors, and an ideal book is the 6800 Programming Reference Manual which gives details of the c.p.u. and p.i.a. devices together with a

[^0]

A direct-conversion

breakthrough

'About two years ago, the Plessey Company demonstrated a novel "on-channel" form
of low-power v.h.f. "repeater", developed of low-power v.h.l. "repeacter, developed
primarily for military tactical radio networks. This attracted considerable interest among amateurs as offering a system
which could extend the range of simple which could extend the range of simplor
hand-held transceivers not equipped for 600 kHz off-set operation through the conventional amateur repeaters, and also offering the possibility of single-channel duplex operation on narrow-band-fre-quency-modulation if two such units wer of commercial security, were unwilling to disclose even the principle on which this system worked.
At the I.E.E. recently, Chris key feature lies in the use of a direct conversion receiver in which the transmitted signal acts also as the local oscillator for the two-phase balanced mixe used to recover the signals in a form suit deep rejection notch to accurately track the instantaneous outgoing frequency. Directconversion ("zero i.f.") receivers have been popularized and used by many amateurs during the past decade, and it is clea creasingly seriously by professional designers. Work at STL, Harlow, by Ian Vance, G3WMS, has shown that it is pos sible virtually to design a mobile v.h.f radio on a single microchip by using direct-conversion techniques (1ectronic Engineer, April 1980). This de
Ela sign again uses two-phase (quadrature) techniques to facilitate demodulation n.b.f.m. signals and allows "a measure o integration previously unobtainable
radio equipments", though further de

velopment is envisaged.

Here and there

Extensive tropospheric ducting during early October resulted in many contact
between amateurs in the south of Englan and Eastern Europe on the 144, 432 and 1296 MHz bands. The first-ever contact between the U.K. and Czechoslavakia by means of $2300 \mathrm{MHz}(13 \mathrm{~cm})$ ducting were cluding G4BYV and G3LQR
The weekly "World Radio Club" programmes for short-wave listeners, radi amateurs and anyone interested in th adio sciences does not appear in the pro vice for January 1981, though it is still not clear whether this will prove to be a temporary or permanent closure of the "club",
Started in 1967, this programme has run
without breaks for more than 700 editions and more than 40,000 listeners in all part of the wos as members Producers have included John Pitman, Joy Boatman and currently Reg Kennedy, while Henry Hatch, $\mathrm{G}_{2} \mathrm{CBB}$, a retired BBC engineer, has been taking part in the programm since the start.
Richard Thurlow, G3WW, is currently installing in his Robot 400 slow-scan television equipment additional memory boards to convert his equipment into th form of colour s.s.t.v. developed by Don Miller, W9NTP. He reports that A.H.G
Waton, G3GGJ (19 New Road, Barton Cambridge CB3 7AY, tel. Comberton (0220-26) 2129) is undertaking to supply amateurs on a non-profit basis with commercially printed boards, complete with from the original W9NTP artwork, to gether with associated circuit data relatin to the W9NTP and ZL1BLV designs.

Science Museum

GB8SM

The Science Museum amateur radio station, GB2SM, has recently been using the
callsign GB8SM to mark its 25 th anniver sary. The station, since 1955, has pro gressed from a simple table-top layout into one of the most elaborate amateur stations in regular operation anywhere in the world. The present equipment include and Trio units arranged to permit three separate operating positions to be manned simultaneously. Staff operator since 195 has been Geoff Voller, G3JUL, assisted b volunteers. Over the years the station has had thousands of contacts world-wide and has been visited by many of the
who come to the Science Museum.

RSGB's record year

The annual report of the Radio Society of Great Britain (to June 30, 1980) shows tha the membership has reached an all-time
high of 25,658 , while total income of the Society from all sources for the first time exceeds $£ 0.5$ million, resulting in a surplus for the year (after tax) of over $£ 24,000$ The 1979 World Administrative Radi Conference is seen as "successful from an "welcomes" the Home Office "Open Channel" proposals as "being in line with its own view" and feels that a 928 MHz frequency "should satisfy the large majority of users, while at he same problems."
Though the report does not mention it, 1981 also promises to provide a specia
the 1981 President, Mrs E. O'Brien, holds O'Brien, G2AMV is an amateur enthusias of many years standing. He comes from outside the "electronics" field, being a retired bank manager.
An additional GB2RS news bulletin is now being transmitted on Sunday
mornings at $9 \mathrm{a} . \mathrm{m}$. local time on 7047.5 kHz from stations in Northern Ireland. These amplitude-modulated signals can be received on conventional "all-band" domestic receivers in many parts of the a, mansmissions from the West Mid a.m tra.

In brief

Doug Finlay, D.F.C., G3BZG, a former R.S.G.B. president (1957) and later (197074) general manager of the society died
during September ... About 50 Dutch amateurs are now licensed to use c.w. be tween 1720 to 1740 kHz and 1830 to 185 kHz with power limited to 10 watts d.c.
input The A.R.R.L. are preparing a input The A.R.R.L. are preparing a
proposal to be submited to F.C.C. advocating an amateur band at about 900 MHz . The League have recommended that the 10 MHz band, due to be released when the WARC 1979 Radio Regulations become
established, should be used only for c.w./r.t.t.y. operation with a maximum power of 250 watts, but are advocating extra phone segments above $14,150 \mathrm{kH}$ and a new phone segment from 7075 to $7100 \mathrm{kHz} .$. The amateur radio club of the callsign G4LWT ... Class B licences in the sequence G6AAA etc are due to be issued soon The F.C.C. have "deregulated" much of the American 50 MHz
amateur band which extends from 50 to amateur band which extends from 50 to
50.4 MHz , retaining as compulsory bandplanning only the segment 50 to 50.1 MHz allocated to $\mathrm{c} . \mathrm{w}$. and confining repeaters to the segment above 52 MHz A new proposal has been submitted to the
R.S.G.B. Repeater Working Group for an experimental 145 MHz repeater capable of handling s.s.b. signals, initially to be lo cated at the University of Sheffield. A previous proposal for a linear repeater ran into considerable opposition and was not
implemented ... The Lincoln ShortWave Club has now been allotted the callsign G5FZ, thecall sign originally issued to the Lincoln Wireless Society in $1922 \ldots$. The most northerly beacon is a new 28.225 MHz station West Territories on an island in Lake Contwoyto at latitude 65.5° North, longitude 102° West. It has been heard in the U.K. and should provide a valuable guid to propagation studies.

PAT HAWKER, G3VA

The first thousand transmitters

Britain's u.h.f. colour television reaches 98.7% coverage
by Edward Trickett B.Sc., Ph.D
BBC Engineering Information Department

On the seventh of November, 1980, Mike Neville, star of 'Look North', opened a
small television transmitting station at Hedleyhope in the Deerness Valley, County Durham. The Hedleyhope relay contains the one thousandth u.h.f. television transmitte.
vice by the BBC.
In less than 17 years, 51 main stations nd more than 450 relay stations have two stations which do not carry BBC2 Sandale provides BBC1 Scotland for Dumfries and Galloway, and WrexhamRhos offers BBC Cymru/Wales) all the BBCl (or BBC Cymru/Wales)
Hedleyhope is a long way from Crystal alace, where the United Kingdom carrying the brand-new service, BBC2 ike its predecessors (the original BBC elevision service in 1936 and IV in 1955. BBC2 was pioneering a new broadcastin before in the UK. But it was also using new line standard destined to be the ehicle for colour transmissions.
The BBC's u.h.f. transmitter network major engineering achievement which stretches the length and breadth of th country, from Baltasound to St Helier, Scillies to Peterhead. The problem com pared with v.h.f. is that more than 500 stations have been needed to reach the resent 98.7 per cent coverage of the 5 million people in the UK. By comparison, only 110 stations to give 99 per cent coverage.
The u.h.f. network represents a grea eal of co-operation between BBC and IBA engineers. The service has been planned sing the computer at he BC sesearch the transmitting parameters of all the u.h.f. stations in the UK plus those of the main stations in nearby countries in urope, are held in memory. Th tocknolm plan of ind allocated all main station channels and maximum powers
but the detailed planning of the relays is done with the computer. The proposed parameters are fed in to check for possible nterference. Even though u.h.f. transmis sions do not normally propagate over grea
distances, some 500 stations, each using 4 channels out of a possible 44 , mean that
finding useful channels for new relays is fetting difficult.
Where possible, existing v.h.f. site doubled as u.h.f. transmitting stations alnough more main stations were needed esponsible for site acquisition the BBC sites and the IBA responsible for the other half. At each station one organisation is the tenant of the other. The landlord is responsible for the building, tower or mast, erials and transmitters for its own serices: the tenant orga
The relay network also used existing

Hedleyhope, the BBC's 500 th u.h.f. station, with modular, 3 -legged tower, log-periodic aerials and p
$B B C$ design.

v.h.f. sites where possible but many more sites have been obtained on the same landlord/tenant relationship. The obstruction caused by terrain is much greater at u.h.f. than at v.h.f. and the relay stations fill in the gaps left by the main stations. The flat lands of eastern England need valleys of South Wales and industrial Yorkshire and Lancashire need very many. On the whole the relays serving larger populations have been built, and the number of people served by each new relay
has fallen from half-a-million (Sheffield) down to between 500 and 1000 for most

The Crystal Palace tower where the country's u.h.f. services began in 1964. The
u.h.f. aerials are in the white cylinder at the top.

WIRELESS WORLD JANUARY 1981 people. \qquad Deficiencies in coverage are measured during detailed sureys the service planning section of the research depars
ment. Possible transmitting sites are investigated using the computer and ground profiles drawn from ordnance surve maps. Site tests are carried out with mobil test transmitters and aerials and to check ensure that optimum coverage can be achieved in any area where deficiencies exist.
At this stage, either the BBC's site acquisition section or its IBA counterpar available within a convenient distance, and reasonable access. Then the landlord has to purchase the freehold or negotiate lease on the site and obtain planning permission and air navigation obstruction jections to even a small pole on environmental grounds but the broadcasters are at pains to erect the most discrete structur consistent with performing the necessary service. They hand planing consent has to be obtained in the usual way.

Totley Rise, Sheffield. One of the BBC's iny, unobtrusive installations with wooden pole, log-pe

Providing the stations
The BBC's transmitter capital projects and ments are responsible for turning the research department's specification for each station into reality. The specification in cludes transmitted power, channels, aerial radiation patterns and height. The mos appropriate equipment, aerial support selected to fulfil these requirements.
Most components are ordered in quan dity and parts are allocated to each statio while it awaits its turn to be built. A present the broadcasters are opening
maintain a steady flow of materials to meet this target. On many small BBC sites the concrete tower base (which includes the building
base) is laid by BBC staff. A BBC-designed pre-fabricated building is equipped at the Brookmans Park workshops. Building, tower components and aerials are taken by lorry to the site, where the rigging team puts the pieces together. The aerial engi-
neer pays a brief visit to check that the transmitting aerial (which he assembled at the workshops) is a good impedance match when installed with its feeders. He checks the received signal and installs the combin installs the transposers to complete the installation. The tenant's representative install their transposer(s) and finally the manager of the transmitter maintenance team accepts the BBC equipment on behal
of the transmitter group, who will operate it. The station is now ready for switch-on and appropriate publicity is arranged through local papers, the 'Service Information' programme and the trade, a week ahead of the opening date. An enginee
from the BBC's engineering information from the BBC's engineering information
department visits the service area with survey vehicle in the first week or two of
operation to check the performance of th station. He advises both dealers and members of the public on the spot about r
ception conditions as he finds them. the stations have been considered, but the expansion of the networks has made huge demands on the ingenuity of our engineers. At several stages in the programm device, the equipment has been designed within the BBC. The Hedleyhope relay for instance, has aerials, tower, transpos ers, amplifiers and channel-selection and combining equipment all of BBC design. story of smaller and smaller stations serv ing fewer and fewer people. Inevitably the cost per person served increased and the BBC has made considerable efforts to reduce complexity and expense. The Hed-
leyhope station has cost some 550 per leyhope station has cost some a
viewer whereas a high-power station for a densely-populated area would cost 30 or 40 p .
Transmitters
Crystal Palace was a test-bed for u.h.f equipment for several years before it wen into programme service in 1964 and the

e n of
 e g

[^1]

1

 .
.

40
BBC also benefited from the experience of
the West Germans who had already begun a u.h.f. service. We aimed to make all u.h.f. stations unattended, requiring maintenance rather than operational staff.
So klystrons were used for the main station So klystrons were used for the main station
power amplifiers because of their reliability and long life. Recently the amplifier drives at these stations have been replaced and klystron amplifier efficiency has been improved by 50 per cent although we are
still experimenting to obtain even higher still experimenting to obtain even higher
efficiencies. Initially, parallel transmitters were used, with separate sound and vision amplifiers (i.e. four amplifiers) so that one half of the system could fail or be main-
tained whilst the other continued in sertained whilst the other continued in ser-
vice. Later, we used one klystron each for vision and sound with a 'cut-back' condition whereby one could carry both signals with a loss of 7 dB in power output.
Transposers at the early relays used valves with klystron or travelling-wave-
tube final amplifiers. Solid-state transposers came in early and were used initially with output valves or travelling-wave tubes but the most powerful amplifiers using. solid-state techniques were 50W units. For
most of the smaller stations, 2 W and the most of the smaller stations, $2 W$ and the
occasional 10 W amplifiers have been adequate. For that, out of the BBC designs
department was rolled the 'Blue Streak' department was rolled the 'Blue Streak' not a rocket as the name suggests, but a transposer/amplifier unit with a very good
specification and designed for ease of specification and designed for ease of
maintenance. Interconnections are the most likely source of problems in r.f. equipment, so all of the Blue Streak's
interconnecting leads are visible and interconnecting leads are
replaceable from the front.
replaceable from the front.
Although this makes it an ugly duckling, the equipment has proved extremely reliable in service. For the future, the de-

Inside Hedleyhope. Gordon Bowhay, of the Inside Hedleyhope. Gordon Bowhay,
BBC's transmitter capital projects department, is putting the finishing
touches to his Blue Streak' installation touches to his 'Blue Streak' installation
The instruments at bottom left are test gear, in sot statation equipment.

Shatton Edge. The 'slimline' tower was originally developed for use in the Pea
District National Park The 'trough' receiving aerials are just above the special stone building. The cantilevered cylinder contains a 'cardioid' transmitting aerial.
signs department has developed a new ransposer, already nicknamed silver at lower cost. In a very small space, four 2watt units can be installed side-by-side and only one spare is necessary because the perating frequencies are determined in a separate unit.

Aerials

The most obvious feature of a u.h.f. main
station is the white glass-reinforced plastic radome which appears as a cigarette-like
rete cantilever on the masts and towers. The transmitting aerials consist mostly of panels, normally four wavelengths high, he central spine. The aerials are in two halves, fed by independent feeders and phasing is arranged to give an overall downward tilt to the main beam. At most stations one aerial carries all four services
but there are a few where one is used for but there are a few where one ir ses Most early relay stations used cardioidpattern transmitting aerials built to a BBC specification. Enclosed in a structural gap cylinder, they consisted of a pole with di-
poles on one side. Later aerial systems were built using components designed by a team at the BBC's research department. The trough aerial (resembling a pigtrough) was used occasionally for transmitting and more often for receiving. The panel aerial, essentially two slots etched
into a printed circuit board and panel and protected by a plastic cover, became the common building block of the Phase 1
stations serving populations down to 1000 . stations serving populations down to 1000 .
The log-periodic aerial has since taken The log-periodic aerial has since taken
over and is the common component for
both reception and transmission at Phase II relays serving groups of people down to 500.
The

The early heary-duty towers were not acceptable to the environment conscious
planners for the Peak District National planners for the Peak District National
Park. A new, more elegant, tower was commissioned. Named the 'slimline', it appeared in the Peak Park and in every other part of the country from St Just in this was too big for the smaller stations which use either simple poles or a lightweight, modular tower designed by the BBC's architectural and civil engineering department at a fifth of its predecessor's
price. The tower was designed to be put up by the BBC teams who previously had only erected the aerial systems after contractors had erected the actual tower.

Distributing the signals
A number of main transmitters receive
their feed by Post Office (British Telecom) their feed by Post Office (British Telecom) each region as there are regional opt-outs on BBC1. The remaining main stations take their picture by off-air reception using BBC-designed rebroadcast-quality receivers. Relay stations almost all use ransposers to avoid the need for demodu
lation to baseband. In a number of cases the Post Office was unable to provide the necessary links and the BBC planned its own link systems to do the job. The three most obvious examples are in Scotland where the feeds to the Inner and Outer
Hebrides and to the Shetland Islands are all carried by microwave links installed by the broadcasters. The relay at Torosay (Mull) receives its signal by link from the relay station at South Knapdale, above
Loch Fyne in Argyllshire. The main station at Eitshal (Lewis) is fed by a 6 -hop link from Rosemarkie on the Black Isle near Inverness. This network, which
straddles northern Scotland was straddles northern Scotland, was planned
and installed by staff in the communications and links unit of the BBC's transmit-

St Just. Another 'slimline' tower but with
'panel' transmitting aerials.
ter capital projects department. The country that the route crosses is so rugged that two sites without electrical power are used
for passive deflectors. The chain of links
carries the v.h.f. radio, as well as the television channels, to the Melvaig transmitter on the Wester Ross coast. The feasibility of a link to Shetland via Fair Isle
was investigated by the BBC and the evenwas investigated by the BBC and the even-
tual installation was the responsibility of tual installation was the responsibility of (Shetland) are classed as relays but actually use klystron amplifiers for the BBC services and, of course, cannot employ
transposers.

The way ahead

The current phase of the relay pro-
gramme is taking in stations for as few as gramme is taking in stations for as few as
500 people and last May the Home Secre500 people and last May the Home Secretary authorised a third phase for popula-
tions as low as 200 , where practicable. The tions as low as 200 , where practicable. The
broadcasters are now looking towards even simpler and cheaper equipment, 'Silver Streak' being the first of this.
The Home Secretary has also given permission for people in communities of
less than 200 to install their own cable systems or transmitters but, of necessity in
collaboration with the broadcasters. Alcollaboration with the broadcasters. Already more than 60 applications have been
received by the BBC . received by the BBC.
The 405 -line transmissions in Bands
and III are to be phased out between the beginning of 1982 and the end of 1986 . Not all of Band I will be available for

The author

Dr Trickett was educated at King Ed-
ward VII School Sheffield and University College Durham, gaining his docsity College Durham, gaining his doc
torate under a. BBC research
scholarship. He began working for the scholarship. He began working for the
Corporation in 1968. After a short time Corporation in 1968. After a short timed
in the research department he joined the transmitter capital projects department. Three years ago he joined the
engineering information department and is currently employed as a public
ity engineer.
broadcasting after that, but the remainder and Band III are under consideration for 625 -line area television or another nearnational network.
So it would see
So it would seem that we have exploited
all the possibilities for all the possibilities for terrestrial television
broadcasting in the United Kingdom. It remains now to use the next group of broadcasting bands with satellites as discussed by my colleague Dr G. J. Phillips in his articles in this journal of
and November 1980
I am indebted to the BBC's Director of Engineering for permission to publish this article.

Smaller television cameras

There is a continuing pressure from broad-
casters and industrial/commercial users to re casters
duce the size and weight of television cameras duce the size and weight of television cameras.
The broaccasters need them small for ENG (electronic news gathering) while the industria
users need them small to mount on machinery or to be unobtrusive for surveillance purposes. Soon, home video will be adding to this pressure
(see News, December). Two recent responses (see News, December). Two recent responses
from the electronics industry have been the f.c.d. (charge coupled device) image sensor and the single-gun photoconductive tube for
producing colour pictures. New examples of producing colour pictures. New examples of
these were presented at the International Broad casting Convention, Brighton, in September,
and also by Howard Steele, managing directo and also by Howard Steele, managing director
of Sony Broadcast, in his October inaugural of Sony Broadcast, in his October inaugural
address as chairman of the IEE's Electronics address
Division.
The .c.c. image sensor is claimed to be "the first commercia " Hirst Research Centre, Wembley, it takes th form of a $14 \mathrm{~mm} \times 10 \mathrm{~mm}$ polycrystalline silicon Mhip mounted in a 30-pin package (type number from a pattern of photons to a corresponding
pattern of electric charge by an $8.5 \mathrm{~mm} \times 6.4 \mathrm{~mm}$ partern of electric charge by an $8.5 \mathrm{~mm} \times 6.4 \mathrm{~mm}$
image section on the chip which contains 864 image section on the chip, which contains 864
horizontal electrodes and 385 vertical charge transfer columns. This charge pattern is trans-
ferred, by a thre--phase pulsing applied to the ferred, by a three-phase pulsing applied to the
horizontal electrodes, line by line downwards horizontal electrodes, line by line downwards
into a storage section on the chip. The charge
collection plus transfer time is equal to one field period (20ms in the 625 -line standard) and the
transfer takes place in the blanking interval.

At the bottom of the storage section each line
transferred in parallel into a line read-out is transierred in paralel into a ime read-out section, from which it is read out sequentialy in
the time of an active tv line, $52 \mu \mathrm{~s}$. While each line is being read out a second pattern of charge
is being collected in the image section. Although charge is collected from the whole image area in each field, the three-phase pulsing system
causes the centres of charge collection to be causes the centres of charge collection to be
shifted up and down between fields to give in effect a $2: 1$ interlace in the vertical direction. Thus the c.c.d. dedice is compatible with the 625 -line tv standard, where 575 lines are
displayed and the remaining 50 lines are used displayed and the remains.
for field blanking periods.
Picture quality from the GEC device is not yet
good enough for television broadcasting, but the good enough for television broadcasting, but the
present performance is claimed to be adequate for "a wide variety of industrial, professional
and military applications" and military applications." The new single-gun colour tube, intended for
ENG cameras and developed by, ENG cameras and developed by the Sony Cor-
poration, is only $2 / 3$ inch in diameter.. It is called the Trinicon because of its similarity to the well-known vertical-stripe Trinitron ca-
thode-ray thode-ray tv display tube made by the same
company. The light image, in fact, is focused onto a colour filter array consisting of red, green
and blue vertical stripes, and bluc
wide, w
the tub

wide, whic the tube. colour reference

 colour coding principle,reference carrise use reference carrier onto which the red, green and
blue signals blue signals are modulated. This phase refer-
ence carrier is generate electron beam scanning an inter-dyigital electrode structure (rather like two combs) be-
hind the target, and is subsequently used in synchronous demodulators to obtain two quad rature modulated colour-difference signals.
In this system the incident light image is In this system the incident light image is
modulated by the striped colour filters to modulated by the striped colour
produce a three-channel pulse amplitude modulated signal containing the three colour compo-
nents $E_{\mathrm{R}}, E_{\mathrm{G}}$ and E_{B}. The base band and first nents $E_{\mathrm{R}}, E_{\mathrm{G}}$ and E_{B}. The base band and firs
harmonicic are expressed as $E^{\prime}=a_{\mathrm{o}}\left(E_{\mathrm{E}}+E_{\mathrm{G}}+\right.$
$\left.E_{\mathrm{B}}\right)+\left(E_{\mathrm{B}}-\left(E_{\mathrm{G}}+E_{\mathrm{B}} / 2\right) a_{1} \cos (\omega t+\phi)+V(3 / 2)\right.$ harmonics are expresed as $E^{\prime}=a_{0}\left(E_{\mathrm{R}}+\mathrm{E}_{\mathrm{G}}+\right.$
$\left.E_{\mathrm{B}}\right)+\left(E_{\mathrm{R}}-\left(E_{\mathrm{G}}+E_{\mathrm{B}}\right) / 2\right) a_{1} \cos (\omega t+\phi)+V(3 / 2)$ ${ }^{\left(E_{\mathrm{G}}-E_{\mathrm{B}}\right) a_{1} \cos (\omega t+\phi-\pi / 2) \text {. }}$
In this equation the first term is the luminance
signal while the remaining two are the quadrasignal while the remaining two are the quadra-
ture modulated colour-difference signals which ture modulated colour-difference signals which
are subsequently recovered in the synchronous demodulators.
The inter-digital electrode structure which
produces the phase reference carrier is produces the phase reference carrier is related to
the spatial pattern or che spatial pattern of the red, green, blue colour
filter ssripes in that a pair of the interleaved filter stripes in that a pair of the interleaved
"fingers" or digits occupies the same horizontal distance $(27 \mu \mathrm{~m})$ as one red-green-blue triad of filter stripes (each 9pm). A small offset voltage is applied between the two comb-shaped ele-
ments forming this sructure and is aternated the television line rate, so producing the phas reference carrier onto which the red, green ani
bue signals are modulated. Outside the tub blue signals are modulated. Outside the tub
these phase-reference and colour-signal compo nents are separatede by a correlation system.
An ENG colour camera using this single new nents are separated by a correlation system.
An ENG colour camera using this single new
ne tube weighs 200 g and occupies a volume of 80 c
compared with the 1200 g and 600 cc of corresponding three-tube ENG camera. The
power consumption of the tube supplies $(1.5 \mathrm{~W})$ is, as might be expected, about
three-tube camera consumption.

[^2] -

H

Electronic combination lock

Mains independent, with four digit code via keyboard
by Jan Hruska B.A.

This article describes how a keyoperated mechanical lock can combination lock by the addition o commercially available solenoid operated lock, a keyboard and some c.m.o.s. logic. In design, this lock is similar to the one published in the it has the following advantages: it is totally independent of the mains: it uses fewer integrated circuits. Although the author specifies solenoid lock for use with the
electronic system, the keyboard and accompanying circuit can be used for activation of a number of devices for various applications.

The system consists of three parts, a keyboard, a processing unit with batteries and a solenoid operated lock. When the correct 4 -digit code is entered via the keyboard outside the protected area the solenoid of mately two seconds by the timer section of the processing unit. The 4 -digit code required for activation is predetermined in binary form by the settings on two 16 pin the same p.c.b. as the rest of the logic and timing circuit. Binary code setting provides security against easy reading by a ayman.
If a mortise type solenoid lock is used in coniunction with a standard Yale type using a key can be opened either by processing unit inside the protected area requires connection to the keyboard outside via an eight core cable and connec4×4 matrix encoded hexadecimal keyboard is used. Vandalizing of the keyboard or cutting of the wires leading to it do not cause activation of the lock.
The processing unit contains the logic
necessary to identify the correct sequence of the four digits and operate the lock, the switches for setting the code and the 6 V power source. A total standby current of 200 u is required for the c.m.o.s logic i.cs and a short-burst current of 700 mA while lock activation time of two seconds is small compared with the standby time, four HP2 ype batteries connected together will give peration for up to one year. If required,
piece of Veroboard measuring $107 \times 54 \mathrm{~mm}$ and housed, along with the batteries, in a plastic box measuring about $110 \times 190 \mathrm{~mm}$. One type of solenoid operated lock which can be used in the system is the 11 K model from Baron Security Group (Ref. This lock was used in the prototype and although the manufacturers specify 8 V a.c. as the operating voltage, it worked reliably on 6 V d.

System operation

The 4 digits are entered sequentially via the 4×4 matrix hexadecimal keyboard as shown in Fig. 1. Each digit is debounced
and encoded by a 74 C 922 encoder. The and encoded by a 74 C 922 encoder. The four-stage shift registers for which two 4015 dual shift registers are used. Comparison between the four digits in the shift registers and the code set in binary in the
16 d.i.1 switches is then carried out by the 16 d.i.l. switches is then carried out by the
four 4 -bit comparators. If both sets of 16 bits correspond the $\mathrm{A}=\mathrm{B}$ outputs of the cascaded 4063 comparators will go "high" and trigger the c.m.o.s. 555 timer which will in turn energize the lock through the
buffer circuit for about two seconds. When choosing a code, it is advisa not to use four identical digits as, due to the shift register logic, an intruder would only have to enter one correct digit to
activate the lock if a correct code had been activate the lock if a correct code had been
used previously. The system described has been in operation in the Medical Engineering Laboratory, Oxford, for more than six months and everybody found it
convenient not having to fuss with keys in convenient not having to fuss with keys in
order to gain access to a busy room with order to gain access to a busy room with
restricted access.

Fig. 2. If the Yale and solenoid locks are mounted as shown here, the door can bo opened either by using the ke

Fig. 1. Complete circuir diagram. The
settings of the di.I. switches have bee drawn so that a code of $3,6,97$ wound required to activate the solenoid. -

Components list

1×4 makix encoded hexadeoimal key
174 C922 keyboard encoder (c.m.o.s.)
24015 dual shift register
1 4011 quad 2-input NAND gate
1455 c.m.o.s. timer
${ }_{2}$ d.i.l. switch, 8 -pole single-throw
1 ZTX 300 or similar n-p-n transistor
ilar p-n-p power transistor
1 1A diode
115Ω resistor
$210 \mathrm{k} \Omega \mathrm{M}$
16 1.5M Ω,.,
$\begin{array}{ll}1 & 1 \mathrm{nF} \text { capa } \\ 2 & 1 \mathrm{OFF} \\ 1 & \\ 1 & 33\end{array}$
210 nF
1
100 nF
1
1
1
1
1 4.7. 4 kF F tantalum capacitor

Low-speed differentiator

Monitoring slow changes in long-term experiments

by L. Hayward, Department of Geology and Mineralogy, University of Queensland

With certain electro-chemical experithe derivative of the output voltage/time curve in order that changes in the rate of change of amplitude become more easily observed. Such experiments often last
minutes or even days, and consequently the classic type of RC differentiator seen in Fig. 1 is likely to be of little use, as the changes are so slow that great amplification is necessary, resulug in excessiv noise masking the output.
This article describes form of differentiator, the block diagram of which is shown in Fig. 2. When read in conjunction with the timing diagram of Fig. 3, the operation is as follows. A buffer presents the input signal to a
pair of c.m.o.s. transmission gates. These are alternatively switched on for short periods, as determined by the clock generator and the sampling period monostable. The sampled voltages at t_{1} and t_{2} are stored ${ }_{\text {in }} C_{1}$, and C_{2} respectively. The voltages followers, and applied to a differential amplifier. After t_{1} and t_{2}, the resultant output from the differential amplifier is proportional to the difference of the charges on C_{1} t_{1} to t_{2}. In other words $V_{\text {(out) }}=\Delta v / \Delta t$. The timing diagram shows that, whilst the samples t_{1} to t_{2} and t_{3} to t_{4}, etc., are of the same polarity, i.e. A-B,the periods t_{2} to ${ }^{t_{3}}$ and t_{4} to t_{5}, etc., give a reversal of .

Fig. 1. Ordinary type of RC differentiator useless for very long time intervals.

Fig. 4. Complete circuit diagram. 4013 is a dual, D-type flip-flop.

Fig. 5. Thes effect of adjusting $R V_{2}$ for dif ferential thalance. Triangular-wave input at (a) shoulid produce square-wave output, a
at (c).
sampling gate is required to eliminate the unwanted period. An output storage capavice, the output buffer complete the deFig. 4.
In operation, maximum sensitivity will be obtained when the clock frequency apbe obtained when the clock frequency ap-
proaches the fastest rate of change of the signal. Clearly, the clock frequency should not be equal to, or less than this. The clock frequency is roughly adjusted by selection
of carpacitor, and fine tuned by the potenis byy RV_{2} (differential balance). This is mosit easily set by observing the result of th.e: triangle wave input (in Fig. 5). The output from the differentiator under these conditions should be a square wave, since
we have a constant positive rate of change (gradient) followed by a negative gradient and the amplitude of this square wave will be related to the input frequency. Set up
RV_{2} for maximum flatness of the square wave output.
uit described is useful where rend, rather than absolute results, are re quired. Clearly, this simple design could rather than eliminate the alternative us pling period, by more complex switching Considering these limitations, the differentiator performs well and produces consis tent results.

Wideband amplifier
 For low signal level applications, this amplifier offers low noise and a 9.8 MHz bandwidth with a minimum amount of frequency selective peaking. As a result, the output signal has an almost constant phase relationship with the input signal, phase relationship with the input signal, which improves stability The circuit is basically
 The circuit is basically a cascode ar- rangement with the output buffered by an rangement with the output buffered by an emitter follower. Input impedance at 2 MHz is $18.5 \mathrm{k} \Omega$ and the voltage gain is 32 dB . The -3 dB bandwidth points are 6 Hz and 9.8 MHz . Output amplitude ripple is less than 1.2 dB over the passripple is less than 1.2 dB over the pass- band, and the maximum output voltage is 3 V pk-to-pk. D. R. Wightman

$\underset{\text { Waihi }}{ }$
New Zealand

Dynamic noise reducer

This circuit was developed for use with a good quality cassette recorder, such as the Linsley Hood design, where the cost and
complexity of a Dolby B or similar system complexity of a Dolby B or similar system
was not justified. Noise from a replayed tape is most noticeable at low recorded in the 5 to 10 kHz region. Reduction of the
in ne background noise is achieved by applying a progressive treble cut to signals which
fall below about -35 dB (relative to the fall below about -35 dB (relative to the
nominal 0VU replay level), to roughly match the falling treble response of the match
ear.
A
A voltage controlled filter uses a diode as a variable resistance element which is modulated by the detected signal level. At high
signal levels the gain is unity over the audio spectrum, but falls to -10 dB at frequendies above 5 kHz as the h.f. content of the input signal is reduced. The level-detector delay time and sensitivity are determined

by Rd and Rf respectively. A stereo noise reducer can be built using one LM 324 or similar quad op-amp. For recording, a complementary characteristic can be obtained by connecting D_{1} in series with | $\mathrm{C}_{1} \mathrm{R}_{2}$ instead of C_{2}. Hammond |
| :--- |

Nuneaton
Warwickshire

Phase synchronised

 monostable oscillatorTwo monostables form an oscillator whose phase can be synchronised with an incoming pulse. The circuit was originally used clock regenerating circuit in a data recording system. Analogue data from the signal processing system was peak detected, and the write data was encoded to have a maximum of four clock The oscillator is s
pulse which occurs at the start of each data steam. Successive peak pulses update the phase of the oscillator and keep the clock in phase with the analogue data. If a peak reset, which effectively resets the phase to zero. If the peak pulse is late, M_{1} is retriggere which extends its period by the amount the pulse is overdue
E. M. Davies

Norcestants

Visual fire effect

A realistic fire effect, suitable for amateur dramatics, can be achieved with the circuit shown. A wooden base carries three $60 W$
bulbs, the two outer lamps are red and are permanently on to produce the effect of glowing coals. The middle bulb is yellow and flashes randomly to give the effect of flickering flames. The unit is covered by a \log effect moulding taken from an electric fire. - OR gates form a maximum length pseudo-random sequence generator. This is clocked at 10 Hz by the oscillator using Schmidt trigger A. The pseudo-random
pattern of ones and zeros at point X repats every 25 s, and gate E prevents the generator from locking up in the all-zeros state. Diodes D_{1}, D_{2} and D_{3} provide a + 10 V supply for the circuit, and $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ generate a positue-going pulse at point Y each time the mains voltage passes through
zero. These pulses are gated with the pseudo-random sequence by gate B. Gates C and D generate a negative-going pulse at point Z, whose width is determined by R_{2} C_{1}, to trigger the triac just after the zero J. A. H. Edwards Leicester

Simple s.c.r. oscillator

 Fig. (a) shows a basic s.c.r. oscillator with a frequency of 7 kHz . The voltage across the s.c.r. rises until there is sufficient gatecurrent to switch it on. The anode resistor is chosen so that when the s.c.r. conducts, the current is below the minimum sustain current and the device switches off. A new cycle then starts. Supply voltage and temperature are critical and not every s.c.r.
will oscillate. An improved circuit is show in Fig. (b) where an inductor, such as a speaker coil, is connected in series with the capacitor to provide an output frequency from 100 Hz to 10 kHz . The components are not critical and the circuit will work
with a wide range of supply voltages. Because the back e.m.f. of the inductor helps to switch the s.c.r. off, this principle can be used to control a d.c. load as shown in Fig. (c). Current through the load can be controlied betw D. Di. Mario

Rome
Italy

Tachometer indicates

rotation sense

Rotation speed and sense can be detected by two phototransistors as shown. One
monostable is triggered by the phototransistor which turns on first, depending on the direction of rotation. Tr_{3} inhibits the remaining monostable and a RC combinaion produces a delay to permit triggering of the first monostable. The light sources Tr_{2}, and Schmitt triggers are recommended to produce fast trigger edges, especially at slow rotational speeds. S. Ion
Romania

The Broadcasting Act 1980

One of the main effects of the Broadcasting Act,
which received the Royal Assent in which received the Royal Assent in November,
is to extend the life of the IBA by fifteen years. Under previous legislation the life of the IBA. was due to expire at the end of 1981. Now, as
recommended by the Annan Committe on recoadcasting, the Authority will go on until the
bree end of 1996 - and this may be extended by statutory instrument for up to five years.
Another important effect of the Act is Another inportanteffect of the Act is to hand
over the fourth television channel to the IBA to provide a new service (other than in Wales).
Here the IBA has to ensure that the fourth channel programmes contain a suitable proportion of matter calculated to appeal to tastes and interests not generaily catered for on ITV; to
ensure that a suitable proportion of programmes
are of an educational nature; to encourage innoare of an educational nature; to encourage innovation and experiment in programming and character of its own.
Programmes will be obtained and assembled into schedules by a subsidiary formed by the
IBA for that purpose. Finance for engineering transmitting and supervising the fourth channel, and for the purchase by the subsidiary of
programmes for the service, will come from the programmes for the service, will come from the
ITV programme companies, who will have the right to sell advertising time among fourth channel programmes broadcast in their regions. The
IBA will be required to include in its annual report information about the way the fourth
channel service e 俍 vice, both in content and sources of programmes, and how innovation and experiment
has been encouraged. Information will also be has been encouraged. Information will also be
required about compaints received concerning the sale of advertising of either channel.
The Act provides for Welsh Language pro-
grammes to be concentrated on the fourth channel in Wales, with the possibility of changing to a two-channel solution after a period. A Welsh
Fourth Channel Fourth Channel Authority, consisting of a
chairman and four members appointed by the Home Secretary, will have overall responsibility. A substantial proportion of programmes must be in Welsh. Wen Welsh programmes
are not being broadcast programmes shown on the channel will normally be those being transmitted on the main fourth channel service at that time. The BBC will have to supply the
Welsh Authority with Welsh language proWrams Authority with Welsh language pro-
grammes of charge and the IBA's Welsh contractor has to do so in return for payment. tising time on the fourth channel in Wales.
The Welsh Authority's expenses will be
by payments agreed between it and the IBA (or
in default of agreement, fixed by the Secretary in default of agreement, fixed by the Secretary
of State) which the IBA will raise from the ITV programme contractors.
A selection of the Act provides for new finan-
cial arrangements for inderedent leal cial arrangements for independent local radio.
Rental payments will be made to the IBA by the Rental payments wirl
ILR mantractors in respect of the Authority's cost in supervising and expanding the system,
and there will be a levy payable to the Exchequer on their profits. The rate of levy is set at 40
per cent, but this (like the 66.7 per cent levy on per cent, but this (like the 66.7 per cent levy on
the profits of ITV contractors) could be varied by order. Also, the IBA will be able to make grants to local radio contractors. This will enable the Authority to help the expansion of inde-
pendent local radio and to improve the quality of its service. Under the Act, ITV and ILR contracts will
run for a maximum of eight years (subject to a
run for a maximum of eight years (subject to a
transitional provision for independent local radio in existence before the introduction of the
legislation) But a first ILR contract in an area legislation). But a first ILR contract in an area
previously unserved by ILR may run for a maxipreviously unserved by 1 RR may run fora maxi
mum of ten years. In addition, the IBA is required to re-advertise both ITV and ILR contracts when the contract periods comes to an end. The ILR will have to publish a notice of its which the contract will run run and invite applications for that contract.

Ptarmigan
 takes off

Plessey, the prime contractor for the battlefield communication system, Ptarmigan, say that its
otal value will be "several hundred million otal value will be "several hundred million
pounds", and that it will provide over 400 new obs. Sub-contractors include STC, Marconis
Airtech, BICC, Marshall of Cambridge and Airtech, BICC, Marshall of Cambriage and Membrain. Ples.
$£ 1,200$ million.
Ptarmign Ptarmigan is designed for the British Army
and RAF in Germany, although it is meant to be and RAF in Germany, although it is meant to be
compatible with older equipment such as Bruin, compatible with older equipment such as Bruin,
which it replaces, and other systems being developed in Europe. II is a trunk didigian radio
network with access for 'subscribers' and is desnetwork with access for subscribers' and is des-
cribed by General Sir Hugh Beach as "like cribed by General Sir Hugh Beach as "like
System X with car radiophone, only more so".

A full range of facilities, such as abbreviated dialing, call transter, hold, conference and system can handle telegraph, data and facsimile. Development of Ptarmigan started in 1973,
De first deliveries of and first deliveries of equipment are expected
around 1982, although there appears to be an element of uncertainty about this. The army seems to think that the second half of the decade has also been mentioned. Both Plessey and General Beach (Master General of the Ordnance) find themselves unable to comment on the award of the production
contract vis-a-vis the moratorium on new defence contracts introduced on August 8. It seems likely that the production contract is con-
sidered a continuation of the development sidered a continuation of the development
contract and consequently immune to cancella-

Two-year trial period for subscriptions tv
Following his consideration of a report
submitted to the House of Commons in February, the Home Secretary, William Whitelaw,
has decided to allow 12 pilot schemes in subhas decided to allow 12 pilot schemes in sub-
scripion tv (using cable systems) to begin
operation in the UK, initially for a two-year period.
In a written answer to a question from Colin
Shepherd (the MP for Hereford) since it "would not be practical nor appropriat for the Home Office practical nor approprial rammes shown nor to exercise the functions a Licenses may not seek exclusive rights tims Licensees may not seek exclusive rights to sho
sporting and entertainment events of nation importance. Advertising will not be permitted As well as being required to conduct research ito public reactions to such a service, ea icensee will be expected to monitor progres
and submit reports to the Home Office from ime to time.
The Home Secretary also said that he is con-
idering a levy "for the benefit of the film indus try, and \ldots any additional safeguards needed tion protect the cinema and television broadcasting crvices." Applications for licences will only b
considered from existing licensees of broad casting relay systems. The schemes will be conducted at the commercial risk of the operator who will also be required to provide
details of the technical characteristics of the ystem and to comply with any licence condi ons calling for the suppression of interference

News in brief

More than 700 Japanese government officials,
businessmen and technical personnel attede, businessmen and technical personnel attended
the second British Overseas Trade seminar on industrial energy saving and efficiency, held in Tokyo late in September. The building and was the first such meeting in Japan sponsored by a foreign government organizaion.

Digital Communications Corporation, a member of the M/A-Com group of companies (US)
has formed DDC Ltd, a British subsidiary The new company's product range will include satellite ground station, terrestrial p.c.m. and data ransmission equipment for private and national organizations. The company's head office will
be located at Humphrys Rd, Dunstable, LUS 4SX.
Communications 82 will be held at the National Exhibition Centre, Birmingham, from Tuesday
20 until Friday 23 April 1982 (inclusive). This will be the sixth in a series of biennial internaquipment and systems.
The British Standards Institution has published a six-part delineation of High Fidelity Audio Equipment and Systems; Minimum Performance
Requirements. For further information, contact the BSI, 2, Park St, London W1A 2BS or telephone 01-6299000
A ten-year collaboration project, aimed at
producing a new generation of computers based on the use of Josephson junctions (superconduc-
ment of Trade will not charge a levy in respect
of the showing of films in the pilot schemes, athough a licence fee will be charged to cover he administrative costs incurred by the Home

Licences have been granted for broadcast relay since the late 1920 , first to relay sound and
then tv programmes. In 1965 an experiment was set up as a reaction to suggestions by several companies, resulting in three companies being issued with, licences for an experimentals service.
However, two of these companies decided that However, two of these companies decided that
the restrictive conditions imposed by the Post Office (which was the licensing authority in
1965) and the lack of 1965) and the lack of commercial assurance for
the future, were not acceptable, and surrenhe future, were not acceptable, and surren-
dered their licences.
The third company, Pay-TV Ltd, mounted experiments in London and Sheffield and operated technically successful services from
1966 to 1968. The company was satisfied that the results showed the acceptibility of the ser-
vice and that commercial viability could be achieved if coverage could be extended from the
experimental 12,500 to 250,000 homes. Permission to increase the coverage was refused, however, and the service closed down.
In contrast, many cable tv networks are in In contrast, many cable tv networks are in
operation in the US and by 1976 there were 633,000 homes so equipped, most of the stations providing feature film and general sport pro-
grammes, in fact much like the system currently grammes, in fact much like the system currently
envisaged by William Whitelaw. Many of these US networks now receive their signals via satel-
Uites. tors) or similar high speed logic elements, is to
ee embarked on by the US, France, Germany the UK and Japan. A major target of the scheme
will be to produce coner will be to produce a computer which accepts not
nily the spoken word but pictures in various only the spoken word but pictures in various
orms as well as designing its own (simple) programs and diagnosing its own fault

Studios 7 and 8 at $B B C$ Television Centre are now being lit by a microprocessorjectro Department. The unit can control up to 500 studio lights and use nine Motorola 68000 microprocessors.

Hundreds of low-power local television stations may be set up in the USA as a result of a recent
recommendation. With a power of abour $I k W$ W recommendation. With a power of about 1 kW
and covering areas with a radius of about 25 km , and covering areas with a radius of about 2 km ,
they are intended for specialized services such as dealing with local community events. They have
been planned not to interfere with the broadbeen planned not to interfere with the broad-
casting of normal, high power commercial casiug on hormal, high power commercial
television stations, but the National Association
of Broadcasters in the US is worried becuse of Broadcasters in the US is worried because
they think the FCC may not have studied the they think the FCC may not have studied the
problems thoroughly enough. Obviously, the problems thoroughly enough. Obviously, the
proprietors of existing commercial TV stations
will see the new service as a possible threat to proprietors on exising conmerciasibl stacions
will see he new servicas a possibe threat to
their present advertising revenues.

On 7 Nov the BBC's 1000 th colour tv transmitOn 7 Nov the BBC's 1000 th colour tv transmit-
ter was put into service (see Dr Trickett's article
this is this issue). The transmitter is located at Hedleyhope in Co. Durham and will serve about 1000
homes in Waterhouses, Esh Winning and East homes in Waterhouses, Esh Winning and East
Hedleyhope. The services and channels relayed. Hedeyhope. The services and channels relayed
are BBC1 (North-East)
ch. 46 , CTV 40, BBC2 are BBCI (North-East) - ch.40,
ch.46, TTV (Tyne-Tees) - ch. 43 and the 4th
channel (when operational) - ch. 50 . Polarizachannel (when ol
tion is horizontal.

A short course entitled Thermal Design of
Electronic Systems will be presented Electronic Systems will be presented at Cran-
field Institute of Technology during the week field Institute of Technology during the week
$26-30$ Jan 1981. It will consist of two three-day $26-30$ an 1981. It will consist of two three-day
tuition blocks covering (l) fundamentals and
applications of conduction, convection and applications of conduction, convection and
radiation to temperature control (2) liquid pool radiation to temperature control (2) liquid pool
boiling, heat pipes, phase change materials, fluid-
ized beds and thermester ized beds and thermoelectric cooling. This sec-
tion of the course will also deal with thermal imaging and laser Doppler anemometry. Apply to the Short Course Officer, Cranfield Institute
of Technology, Cranfield, Bedford MK3 0AL.

US local TV stations recommended

SRC, inflation, Einstein and quasi stellar mirages
The continuing success of the Science Research Council in discharging its commitment to the
social, technical and economic ramifications of indusstry and academia, in spite of hhe rigours of
inflation, is given detailed supoort in its report inflation, is given detailed support in its report
for $1979-80$, published early in November for $19799-80$, published early in November.
Alongside comparisons of expenditure of
grants ($£ 19$ million in grants ($£ 19$ million in 1979 compared with $£ 31 / 2$ million in 1970) the report records some "stri-
king discoveries." The most notable of these is king discoveries. The most notable of these is
probably te confirmation of Einstein's predic-
tion, made fifty years ago, that gravitational probably ue conirmation of Einstein's predic-
iton, made fifty years ago, that gravitational
fields could act as ""lenses". During a uniform theld could act as "lenses". During a uniform
survey of quasi-stellar objects (q.s.os) at the survey of quasi-stelliar objectst (q.s.os) at the
Nuffield Radio Astronomy Laborarory, Jodrell
Bank, a radio source was idenified with Bank, a radio source was identified with a close pair of q.s.os on a photograph. They were found
in collaborative studies at Kitt Peak Observatory to have identical spectra and nearly equal
brighness, coupled with identical large redbrighntess, coupled with identical large red-
shifts. This is in fact only one q.s.o. and the most
plausible explanation is that the light from this biect is reaching us by alternative paths. distorted by a strong gravitational field. Re-
cently, workers at the Mount Palomar Observatory have derected a massive galaxy on a line
of sight to this object and substantially nearer to of sight to this obiect and substantially nearer to
us. The mass and position of the galaxy account
for the observed effect and although the shift of

A JOB FOR LIFE

What British company is characterized by the following phrases, quoted from a recent speech?
"When an individual joins a company operating "When an individual joins a company operating a life-long employment system he does so with a
tacit understanding that, in normal circumstances, he will remain an employee of the company until retirement. The company will not ment age unless an exceptional situation arises". "It provides strong employment stability which the employees appreciate and rigidity in the workforce size which constrains the com-
panies in times of business recession. For the company it also serves as a guarantee against "ture labour shortages"
"There is a very str
"There is a very strong emphasis on group
effort towards achieving a specific business target which is hardly present in the USA wher "The system allows the employee to feel the
". he can place his trust in the company, he can rely on it and thereby obtains a deeper interest
in its affairs than he might otherwise acquire in its affairs than he might otherwise acquire.
The company is encouraged to place its trust in he continuing co-operation and service of its regular employees. The result is collective dedication to achieving the company's objectives." echnical change and innovation even though it may mean assignment to other jobs because they
recognize that such changes are unlikely to recognize that such changes are unlikely to
affect adversely either security of employment or income. Nevertheless, it would be wrong to assume that employeses are servile. The em-
phasis is on a reasonable approach being made phasis is on a reasonable approach being made
by both company and employees to issues of
a stellar image seen near the Sun was an early conime occaion on which pre selarar hibist he been seen as two. In another area of its activity, the SRC reports on its involvement with the University of Essex
and the Mullard Space Science Laboratory of University College in obtaining data from the GOES-2 satellite. This information provides confirmation of tee linear instability theory of
plasma physics and is especially significant because of the importance of plasma techniques in power generation by nuclear fusion.
During the conference to introduce the reDuring the conference to introduce the re-
port, Sir Geoffrey Allen, Chairman of the SRC, said, that the cut-backs in funding caused by the
present government's policies had not been as present government's policies had not been as
serious as was expected when he gave last year's serious as was expected when he gave last year's
report. However, there is a "ashllow" problem, introduced by contractors (presumably worried about the chances of payment if left too
late) putting in bills immediately. late) putting in bills immediately.
year, the electron beam lithography units at Rutherford and Appleton Laboratories carry
important implications for engineering in important implications for engineering in that service, supplementing the device fabrication facilities already established at Edinburgh, Sourhampton, Surrey and Sheffield universi-
ties.
Also in this context, Sir Geoffrey hinted at the strong possibility that the name of the Council might soon be changed to read "Science and Engineering Research Council.
The report of the Science Research Council for the
year $1979-80$ is available from HMSO, price
£7.10.

ommon concern which allows the company to naintain a high level of productivity so that the "tatus quo continues"
 "Under the seniority wage system the income of an employee is directly related to length of service with the company. Such factors as indi- vidual ability responsibily vidual ability, responsibility and the demands of the job isself play a smaller part in the determination of an employee's income within a group having similar tasks. II follows that there are no comprehensive company salary or wage structures. Job evaluation, as we know it, is also missing".
 "Such a system ensures that income increases on it inc increse much the same way as the demands family man's career". "Strikes are viewed generally as being more "Strikes are viewed generally as being more The speech was in fact the inaugural address of the new president of the IERE, John Powell, The subject was "Resource management: a key immediate improvement in productivity" an Cable and Wireless has had in the management of its work force. The quotations above were from Mr Powell's admiring description of Japanese industry, and it was clear he felt his own irm's success in management was because its methods had an "affinity to the employment methods had an "affinity to the employment patrern found in the large Japanese companies". Mr Powell concluded "I believe that employment practices in British manufacturing indus- try tend towards those generally found in the try tend towards those generally found in the USA and therefore differ considerably from those developed in Cable and Wireless. Would here be value in rethinking this whole issue of resource management? My answer is an unqua resource m lified yes."

A prayer modem in its assembly stage by assembled in hexadecimal form before being modulated and passed into a "loop circuit where it is converted to analogue
form and fed to the output stage at the orm and fed to the output stage at the
standard monotone voice frequency.
Photo by courtasy of Advanced Prayer - Wheel Designs
Inc. (and STCCI)

Final testing of the SBS communications satellite at the Hughes Aircraft facility at EI
Segundo, California. This satellite, the first three to be put into orbit so as to provid
secure" voice, video, data and facsimile traffic for US business, was launched on ov 15 and is owned jointly by IBM, Comsat General Co
Life and Casualty.

Faulty vision caused by
 brewer's products

In view of the heavy fines imposed upon 27 MHz c.b. users and the claims made by the Home Office that such illegal activity seriously in-
terferes with established authorized services, Roger Bunney's reception experiences in the Romsey area force some interesting comparisons.
He works as a television technician and journalist, contributing articles on long-distance tv reception to the magazine Television (IPC Magazines) and a considerable part of his profes-
sional activity involves monitoring the broadcast sional activity $\operatorname{involves}$ monitoring the broadcast
bands 1 to . Arriving in Romsey, Hampshire in 1972 , he set aboung building a 50 ft latitice mast
to carry the necessary aerials. One of the most to carry the necessary aerials. One of the most
successful and active bands for DX is Band 1 successful and active bands for DX is $(48-6 \mathrm{MHz})$, where sporadic E combines with the favourable conditions of the F_{2} layer to
make reception up to 50 miles possible make reception up to 500 miles possible.
In September 1976 the entire Band 1 specIn September 1976 the entire Band 1 spec-
trum was disrupted by high level interference, which was eventually traced to a nearby indust-
rial site. The Whitread-Wessex brewing rial site. The Whitbread-Wessex brewing
concern had established a distribution office about 60 yards away, equipped with six v.d.u.s and related equipment for receiving information
by cable (Post Office) from the main brewery in by cable (Post Office) from the main brewery in
Porsmouth. The disruption produced a whining "motor" effect, peaking at intervals of about 1.5 MHz from 30 MHz up to 100 MHz .
the equipment with a view to suppression but a solicitor was eventually engaged (after a severe

An example oftv "hash" on channel B3 An example or by hager Bunney during
photographed business hours (0800 to 1700).
lack of response!') and the v.d.u. manufacturer However, this had little effect and the Home Office subsequently made measurements using. Mr Bunney's array and Post Office arrays sults were never provided, the Home Office eventually wrote pointing out that action would not be taken nor public funds used to terminate the nuisance.
The atitud
The a atitude of the Home Office seems unfor-
tunate, to put it mildy. A source of interference which is producing a public nuisance has been
allowed to continue for several allowed to continue for several years, despite
acknowledgement that the problem exists and whenowlegement that
within a domestic broadcast band. This was andso
noted by ant noted by another citizen, who laid a similar
complaint based on interference to local f.m. radio reception, but who has since teft the area. One criticism that could be levelled at the com-
plainant is that he is necessarily seeking remote plainant is that he is necessarily seeking remote
and weak signals and can therefore expect probnems, but this seems to imply that domestic users and enthusiasts are relegated to a position where they must suffer interference from vested
interests and commercial organizations. Perhaps it's time for the statutory limits to interfering radiation to be reconsidered.

Bus for a bus

Lucas and Leyland have iointly developed a
multiplexed bus system to relace most of the multiplexed bus system to replace most of the
complicated electrical wiring ih a passenger bus or other vehicle.
Although "critical loads" such as headlamps and stop lights will still be wired conventionally,
all the control wires for door solenoids, internal lighting, horn, etc., can be replaced by the bus. Thiting, horn, elt., can a three-or four-wire
"rine system comprises main", a microprocessor-based controller "ring main", a microprocessor-based controller vides a common power rail, a single wire for the transmitted data and one wire for a synchronising clock. An optional fourth wire can be added
to provide a noise-free reurn. The controller reads the stat operated switches, sends sync pulses at 32 kHz to set the receivers to stand-by and then
transmits the 5 -bit address of the first receiver in the sequence. Clock pulses synchronise the loading of this address into a memory in each receiver and, to overcome false addressing
caused by noise, the same address is transmitted caused by noise, the same asdress is transminted
again and loaded into a second memory. Each receiver compares the two stored addresses which, if identical, are compared with the fixed
address of the receiver. Consequently, only one
receiver responds and opens an input gate to lecr then transmits inverted command data as a check for false instructions. When the receiver has verified the command, the output stages are
switched accordingly and switched accordingly and a reply is sent to the
controller, which indicates the state of the outputs and hence the effectiveness of the command. This procedure is then repeated for the
next receiver in the sequence. When all the next receiver in the sequence. When all the
receivers have been addressed, the cycle repeats with the controller re-reading the states of the driver-operated switches.
Each receiver incorporates a fail-safe circuit
which switches the affected loads to a safe state if a failure occurs.
Leyland have also deved a system which, via the bus, can quickly check the electrical circuits on the vehicle and provide a print-out. Although the multiplexed bus
technique is by no means original this appears technique is by no means original, this appears
to be the first instance of its use in a vehicle. to be the first instance of its use in a vehicle.
Some ubs operators have been sceptical about the reliability of parts that do not move, but the
designers stress the more positive points of the designers stress the more positive points of the
system which include the claim that it will be no system which include the claim that it will be no
more expensive than an equivalent conventional more expensive than an equivalent conventional
wiring harness, will be far more flexible and,
with the addition of vehicle condition with the addition of vehicle condition monitor-
ing and diagnostic systems, far more useful.

Shuttle will assist in closer look at Venus

One of Jimmy Carter's last official acts as President of the United States was to approve NASA's request for funding of a mission to map the
surface of Venus, to begin in 1986. surface or launch by the space shuttle, the Venus
After Orbiting Imaging Radar (VOIR) spacecraft
would circle the planet for seven months aking would circle the planet for seven months taking
pictures as well as making measurements of the surface and atmosphere. Dr Robert Frosch, NASA's chief administra-
tor, says that this scientific project will "reveal tor, says that this scientific project will "reveal
the true nature and geological history tie true nature and geological history of our
sister in the same way that Mariner 9 enabled us to see Mars." Venus is completely
veiled in clouds. No veiled in clouds. No permanent feature has ever,
been identified by telescope. The current plans provide for arrival of the vehicle in December 1986, at which point the spacecraft would be inserted in
180 miles.
The mapping activity would result in nearThe mapping activity would result in near-
global coverage of the planet with moderate
resolution imagery (corresponding to resolution imagery (corresponding to 2000 feet)
and a smaller section in higher resolution (about 150 m - 500 ft).

News in brief

The first telecommunications equipment show and feminar ever held in China is to be staged at
the Beiijng (Peking) Exhibit centre from Nov 3 the Beijing (Peking) Exhibit centre from Nov 3 ,
to 13 1981 by the Fle to 131981 by the Electronic Industries Associa-
tion (US) and the National Council for USChina Trade. Approximately 100 American manufacturers are
ment at the shgow.

The International Association of Broadcasters (IABM) has moved to new headquarters at
Triumph House, 1096 Uxbridge Rd, Hayes, Middlesex. The telephone number is now 01 5738333

A bureau approach to viewdata, enabling smallscale users to exploit Prestel-like hardware in a
private system, is to be set up by GEC Viewdata private system, is to be set up by GEC Vewdata
Systems. Pages of internal information are held on the organization's viewdata computer, which
can be called up, modified and new pages incan be called up, modified, and new pages in-
serted by users of various departments of the organization. A typical system, holding about 30,000 pages, would cost about $£ 50,000$, ex cluding the cost of terminals.

Public payphones which use plastic cards in-
stead of coins will be tried stead of coins will be tried out by British
Telecom next year in London, Birmingham and Telecom next year in London, Birmingham and
Manchester. They will be sited near conventional payphones, giving users a choice, al-
though it will be necesary to thouigh it will be necessary to buy the cards,
which are erased automatically when inserted into the mechasism. Each card unit is priceded at
5 and there will be wo basic card 5 p and there will be two basic cards on sale -
one of 40 units costing $£ 2$ and a 200 unit card at one of 40 units costing $£ 2$ and a 200 unit card at
£10.

Multiplex keying system for organs

TDM system reduces complexity and cost, allows mixture stops, transposition and pizzicato effects

Home organ projects suffer from a high mortality rate perhaps inflexibility and the time taken to ge acceptable results; it is common to be vertaken by technology! This articl presents the basis for a system cost of building an organ, whether pipe, electronic or hybrid. It shows that the resulting system is flexible enough to permit a wide range of organ features, many hitherto which can result in them being able to simulate pipe organs more closely at fraction of the cost.
The principles can easily be adapted or microprocessor control at a much
ower hardware cost and complexity. But for the experimenter or technician without microprocessor capability who likes to know how things are done and who wants to be able to change it around without too much takes away a lot of the fun and relegates everything to a mystery black box:

The method of controlling the keying to be described is offered as a practical solution whether the organ is a pipe or electronic, church or entertainment type. It has advantages over conventional wiring, not east being the cost, which can be paid for
-
Cable size from the console is
significantly reduced Circuitry is inexpe
andard c.m.o.s. devices and use Single-pole contacts throughout of light current capacity - a milliamp or so just okeep the contacts clean
eyboard wiring is simple and can b standardised
simply a matter of incorporating delays. nter-manual coupling is identically done using longer delays.
Any required pitch can be selected with Mutatio
roblem and mixture stops are no Any kind of organ can be controlled -
pipe or electronic.
No limit to the size of organ.

Extra consoles may be added Second-touch keying is easily catered

All other switch information can be included if desired. Only a handful of printed-circu is flexible
to permit custom Coupler switches are not used, avoiding high-current supplies.
Disadvantages include complex circuitry in which a single failure could evel of servicing competence bein necessary.

Key matrixing
he system basically comprises a matrix for the pedals and keys to minimise the
number of wires that have to be connected number of wires that have to be connected o the keys. The contact information is hen turned into a series of pulses by sequential scanning of the matrix, see Fig.

1. Data is passed over a single wire . Data is passed over a single wire
hrough various delay systems to demultiplexers which recover the keyed information to switch on and off the

Fig 7. Sequential scanning of keyboard matrix in electronic or pipe organs reduces wiring by sending data over single wire.
appropriate musical notes in various
pitches and tones. These may be made by pipes, oscillators. or any other means; this
article does not discuss this part of the article does not discuss this part of the
organ. The delays consist of shift registers organ. The delays consist of shift registers and coupling.
It is convenient to arrange the keyboard
matrix in the form of manuals and in one direction and notes in the other, although for a matrix with the minimum number of wires an 8×8 format would be optimum, and would lend itself to
microprocessor control more readily. Each microprocessor control more readily. Each . . . A\#,B. All identical notes are wired together resulting in twelve wires on one side of the matrix. On the other side of the key contacts each manual has all 12 notes
in each octave wired together and every in each octave wired together and every
key has a series diode to prevent backcircuits (Fig. 2) resulting in six wires per manual plus three for the pedals (32 notes max.). For a four-manual organ, then only 39 wires are necessary. The whole organ is scanned sequentially note-by-note and
octave-by-octave from the lowest pedal to the highest manual key such that the serial data output represents a series of rising pitches. Pulses occur only when the keys are pressed. The repetition rate of this scan
has to be fast in order to permit fast has to be fast in order to permit fast
playing such as trills and glissandos. A one-hundredth of a second is reasonable for this resulting in a pulse repetition rate of less than two hundred kilohertz for a four-manual organ
Octave and manual coupling As the serial keyboard data is in the form of one pulse per note it is clear that 12 pulses separate keys an octave apart in pitch. Therefore to couple an octave is
simply a matter of delaying the data by 12 pulses and adding it to the data stream when whichever keys were played will also sound their octaves.
Sub-octave coupling is almost as simple.
The data itself are delayed by 12 pulses The data itself are delayed by 12 pulses
and the undelayed data added instead. The and the undelayed data added instead. The but this is easily taken care of in the demultiplexers by delaying the decoding signals to match.
Fig. 3 shows the system for swell octave unison-off coupler which merely removes the normal pitch. Also shown is a choir octave coupler. This is possible with the same circuit by time-sharing as the data for
this manual comes at a different time than that for the swell. Gating of the data has to be done in any case as we do not want to octave-couple all manuals at once. The gating pulse lasts only as long as that particular manual is being scanned and may be applied at the input, output or via
the stops as shown. As the data are delayed by up to 24 pulses the scanning time per manual has to be increased by two octaves to prevent this data from intruding into the
data for the next manual data for the next manual
Coupling between manuals is simply a
matter of lengthening the delays involved so that the delayed data turns up in the right place in the scan of the next manual.

The problem

One of the biggest problems in electronic or pipe but an organ, electronic, is in the wiring of the key contacts and coupler stops. These affect which notes are played when keys are pressed on traditional approach in the pipe organ is to wire one contact per key to the magnet (solenoid airvalve) which allows one pipe to customary to be able to couple keyboards together in a variety of ways, so that for instance when he great-manual keys are played they perform the functions of the vell-manual keys as well, but not have to go down although in olden days they used to with mechanical actions.
Each coupling requires an extra contact on every key as well as a This last is operated by a solenoid action as 61 poles are required, ne for each key per manual. Several hundreds of milliamps solenoid and almost as much to operate each pipe magnet. On larger organs similar couplings can be selected so that the coupled manual can be played ctave higher and/or lower. This coupling can be on the same manual too. If the swell manual is coupled to the great manual so higher, swell plays an octave called swell-to-great octave or swell-to-great 4 ft . The majority of rgans can also couple the manuals to the footpedals, which re simply a large set of keys, but
mally performed in the reverse Each key can therefore have Each key can therefore have for more than perhaps eight without resorting to multi-pole relays. Consequently the number.
of wires involved with a large organ is colossal. Not only is it tedious to wire up, but it is also bulky and expensive as well as being inflexible in its requirements. wrong; especially where contacts are involved at high currents: Electronic organs usually require even more contacts per
key but for different key but for different reasons. It is
common to switch actual signals with the key contacts which are then arranged in isolated pairs. Each key requires, say, five pairs to control five harmonicallyrelated frequencies such as the
sub-harmonic, the fundamental, second, third and fourth harmonics. This means that intermanual coupling must also have five pairs of contacts per key. This electronic organs that do have couplers couple either in another way altogether or else couple only the fundamental pitches. The classical organist generally does
not like electronic organs and this lack of adequate coupling may be one reason why.
The system described in the article is capable of controlling any kind of organ in which the
various pitches are turned on and off by remote means. This can be solenoid-operated pipes or electronic oscillators with transistor switches, etc., in any how the switching is performed.

fig. 2. Identical notes are wired together on one side of matrix, with all 12 notes in each octave wired together via diodes on the other side.

WIRELESS WORLD JANUARY 1981

Fig. 3. As scanning is sequential note-by-note and octave-by-octave, 12 pulses separate keys
an octave apart, and octave coupling is achieved using

Fig. 4. Coupling between manuals is achieved by lengthening delays so that delayed data
ccurs at the right place in the scan
This may also be done plus or minus an Any method of coupling nvolve the use of notes beyond the range of the keyboards. These are no normally coupled in a pipe organ becaus he pipes for them are not there. Thi and can be a nuisance. On unit or
and extension organs the pipes are there for that reason among others, but it is not bad idea to omit the lowest octave of an inter-manual sub-octave coupler in any ranks of pipes stop at Tenor C anyway. The omission of the lowest octave in th ystem described is easily done by including the first octave gating pulse from he timing system - as shown.
There is a convention regarding whic arge organ. The swell manual may be played from the choir or the great but no he other way around. Similarly, the choir may be played from the great. The solo ther manuals whilst the pedals may only be coupled to manuals. Taking this into
ccount, the arrangement of the delay systems for inter-manual coupling may be staggered manner. For matrix in a organ this would be pedal, great and swell whilst a four-manual organ might be pedal, great, choir, swell and solo. Addition of extra manual delay periods for coupling means that extra manual process to avoid intrusion of pulses into the next pedal scan period. A two-manual organ therefore requires five such periods in the scan.
Fig. 5 Fig. 5 shows the complete coupling

Multiple pitches

Even the simplest organ should have the bility to play notes at different pitche rgans do single key is pressed; electron per key into separate busbars where the re filtered to form five pitches of tones separate ranks of pipes for each type of sound so that, for instance, an 8 ft flute
would have 61 pipes (one per key) and a 4 flute would have another 61 and sound an octave higher. This is the brute force approach and a typical small church organ
with, say, eight swell ranks four with, say, eight swell ranks, four great
ranks and two pedal ranks would have 796 pipes. Clearly, a large pipe organ is to have a colossal number of pipes and be cumbersome and difficult to keep in tune as well as having a lot of wire from the keys.
In 1891 Robert Hope-Jones devised the unit organ in which only a small number of ranks could be played at any pitch from any manual. Ranks were not duplicated in tone and six or eight could provide the that the ranks were extended and the voicing was altered to boost up the middle volume to compensate for the extra nonunison pitches. There was one drawback: it was no longer possible to have
independent control of the volume levels of the different manuals. Hope-Jones alsö devised the electric action with which to control the unit system which is nowadays known as the extension system. Later manufacturers, notably the Wurlitzer
company, improved on his ideas to make company, improved on his ideas to make
the giant cinema organs of yesteryear. Even some of the biggest of these had no more pipes in them than a small church organ but what sounds they could make. Of course, they had special effects such as
xylophones, principally for the xylophones, principally for the
accompaniment of silent films and, incidentally, are marvellous examples of ergonomics in the layout of their console acilities; something from which church The extension prit
The extension principle requires each rank to be extended so as to provide extra
upper and lower octaves; 97 pipes would be required to cover the range from 16 to 2 ft . Nevertheless, fewer pipes are required than for a conventional organ. The
availability of these extra pitches enables octave coupling to be properly carried out. In electronic organs the extension principle is carried to the extreme in that a single rank of frequency generators is different voices obtained by filtering. The problem of lack of volume independence between manuals is overcome by ontrolling the volume of the entire organ one control pedal. It is, however by a second pedal after the manner of cinema organ. By this means the resultan voicing may be varied without releasing any keys by cross-fading the two pedals, ot an easy task with one foo Couplers were not often found o
cinema organs becaise of the great variet f sounds that could be obtained without hem due to the extended ranks. They are ot often found on electronic organs but because they are difficult to incorporate. Now that the circuirry within electronic organs is becoming cheaper and simpler the extension principle is being rediscovered. A single rank of generators is
still used but separate keying for different oices (ranks) is begin for differen

Fig. 5. Extra manual delays are required during scanning to avoid intrusion of pulses into next pedal scan period. Diagram shows
coupling system for two-manual church organ.
employed. This enables more realistic sounds to be obtained as the voices can be balanced in level at different pitches by Also tricks like 'chiff can be incorporated into a flute rank without affecting other ranks.
Extra ranks of generators are becoming popular, too; for instance, the celeste voice ffect (not to be confused with tremolo or vibrato) and the unda maris is a flute tuned slightly flat. The same principle also provides the chorus effect by using two parallel generators with a slight frequency difference between them. The second The keying system described provid the ability to obtain keying for all pitches required in the extension principle - or

A conventional manner
A long delay in the data stream is equivalent to inter-manual coupling and a The same principle holds good for multipitch keying by using delays of less than one octave.
The selection of a shift register output only a few sections away from the normal
8 ft output is equivalent to changing the 8 ft output is equivalent to changing the
pitch of the entire organ. For example, if the delay is made seven sections then an 8 ft note C would result in a $51 / 3 \mathrm{ft}$ note G which is musically higher by a fifth in the diatonic scale. Logically then, one can tap
the shift register at every necessary pitch increment and through simple gating by the stops can control the appropriate frequencies from the generators (or pipes). For a large organ many pitches are
required from 32 ft for the pedals to 1 ft or
less, with various odd less, with various odd ones in between to cater for mutations or mixtures. Fig. 6
shows how this is achieved whilst Fig. 7 (part 2) shows a control system in which similarly-voiced stops are collected together. Each keyboard has its own gating pulses so that only one such shift register is necessary for the entire organ. Again, the
length of the delay involved necessitates extra time in the scanning process. At this point the traditional and extension organ principles diverge. The traditional one would use all the outputs to drive independent demultiplexers (one for
each rank) whereas the extension type would further collect together all outputs of identical voicing to drive one demultiplexer per voice only. In Fig. 7 this results in three demultiplexers instead of
six. To be continued

Fig. 6. Shift register can be tapped at necessary increments and simple gating controls appropriate frequencies from generators or
pipes. (See part 2, Fig. 7, for simplified control system.)

Technology versus fundamentals in the education of electronic engineers

by D. A. Bell, F.Inst.P., F.I.E.E.

It has long been customary to speak of the ducation-and-training of engineers. The two aspects are combined in the French word formation and there is now a move to anglicize this French word to dessibe the process of turning a school boy/girl into an
engineer. But in Britain there is an argument whether academic institutions (universities and polytechnics) should be responsible for training as well as education, ince the 2 -year graduate apprenticeship has been in decline since the outbreak of
the second world war. There was a Greek legend that instead of being born in the usual way the goddess Athene sprang from
the head of Zeus fully grown and fully the head of Zeus fully grown and fully armed. To expect an engineer to arise fully
developed from the ceremony of conferring his degree may be just as irrational as the Greek legend: a degree course cannot include all the "know-how" of every firm by whom a graduate might be employed, provide some technical training, either formally or informally. But the employer can rightly expect the graduate to know basic matters and the problem in designing a degree course is to decide whur is basic nology.

Which kind of engineer? It has always been a major problem to cater adequately for those students whose uni-
versity performance, whatever their Aversity performance, whatever their Acapable of the standard which universities describe as 'honours' and the professional institutions are now describing as and of that the latter distinction arises because the institutions are now according professional status to technician engineers. Ai one time professional engineers and (follow-the-beaten-path) technicians; but technicians now make such an important contribution
to the progress and conduct of all branches to the progress and conduct of all branches
of engineering that it seems only right that of engineering that of them should be accorded professional status.
There is also a suggestion that innovative engineers should be produced only hrough enhanced engineering courses. Apart from the certain objections of the
majority of universities which will not have 'enhanced' courses^ and which would therefore be condemned to producing only

* Hull has an enhanced course.
rechnician engineers, this raises the quesion of whether students can be classified as 'innovative' or 'technician' types before
entry to a university course. If university departments ran their own entrance examinations, with interviews, they could probably pick the few 'high fliers' (although psychologists maintain that interviews conducted by amateurs are useless); but
when on average the number of applicants is at least ten times the number of places $\times 5$ for UCCA choice and $\times 2$ for examination failures) individual examination is impracticable. Such statistical evidence as there is suggests that the correlation beween A-level grade and degree class is positive but very weak; and since the apabout 20% of the age group, with complex selection criteria, further selection within his group is difficult. (Apart from intellecual ability, the selection of the 20% dependes, parental attitudes, parental income, and the consequent ambitions of the individual.) Therefore a number of universities have adopted the policy that no students are admitted direct to the 'pass but admissions are to the honours course with relegation to pass for those who prove unable to sustain the standard of the honours course. The discussion in this paper will this policy.

Educating the innovative engineer Engineer Even within the 'innovative engineer' aptitudes, interests and consequent careers. But although the British system provides more individual care of students have as many distinct courses as there are students. Some compromise in course content is inevitable. (This is ruling out the unit course or 'cafeteria' system.) A major problem is that of keeping the course reasonably up-to-date. From a fundamentalist view point this is not very mportant: the education which a student receives will have to set him up for a vorking lifetime of some forty years. Acadevelopments of the next forty years, so to a large extent they must teach fundamentals and leave it to graduates to continue
their education, by reading and perhaps
refresher' courses, and to re-interpret fun damentals in terms of the later developments in technology. An example of re-interpretation is that the developmen of waveguides, with longitudinal compo-
nents of field, required the replacement of the over-simplified idea that "electromag netic waves have fields transverse to the direction of propagation" by the more precise statement that "electromagnetic waves in free space are transverse, but in
the neighbourhood of conductors the the neighbourhood of conductors
disposition of fields is governed by boundary conditions". Naturally courses should be kept reasonably up-to-date in technology. But apart from the general effort involved -e.g., the transition from therused a particular piece of technology to illustrate a particular principle and new technology will mean a search for a new illustration.
The technology is important to the echnician engineer, but does it matter to
the innovative engineer? The writer once complained to a former industrial colleague that an otherwise good book on communication did not contain any des-
criptions of hardware. He replied "Does it criptions of hardware. He replied "Does it
matter? We find we can design systems without reference to the hardware". Yet one must know the limits of the hardware: one could not design a satellite communication link without knowing what noise
figures were attainable in the receivers and figures were attainable in the receivers and
what radiated power to expect from the satellite. The ${ }^{\text {p }}$ low-noise capabilities of parametric amplifiers can either be introduced as part of a fundamental study using the Manley-Rowe relationship, o merely stated as a fact.
Johnson noise and noise figures, should one emphasise equipartition or the noise igures of current devices? A typical problem is how far one should teach solid-state
physics. Most current devices can be explained in terms of band theory and Fermi evel; but the Gunn diode requires an appreciation of effective mass, and who knows what the future will bring? On the all the detailed technology of mo.s. c.m.o.s., n.m.o.s., v.m.o.s. as well as of s.o.s. ${ }^{\star}$ which introduces an important new angle? He ought at least to appreciate that
s.o.os. stands for "silicon on suptr"; and the sapphire substrate is schosen for sist thermal conductivity,
oof for any lececrical propery
slower than bipolar devices and that the access time of r.a.ms is now to be meashort time is as out of date as the $60 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. express train!

Mathematics

Mathematics often forms a practical barrier between the two types of courses. It is an interesting question whether British ics forms an intellectual sieve of great discriminating power; but it is a fact that the mathematical content of honours degree courses in electrical/electronic engi-
neering courses has tended to increase. neering courses has tended to increase.
Forty to fifty years ago the use of Heaviside's operational calculus was avant garde; today, the student is expected to use Laplace transforms at a fairly early stage. The digital computer is of course ubiquitous, sometimes in microprocessor form,
and the trend towards digital handling of all data has made the z transform and the Fast Fourier transform essential tools. Autocorrelation (and cross correlation) are now familiar operations, and for some with Hadamard/Walsh functions and transform, a corner of group and field theory and now Fermations and Carmichael numbers (pseudo-primes). The engineer may need a nodding acquaintance
with a far wider range of mathematics than is covered by any one academic mathematician. From the mathematician's point of view this 'nodding acquaintance' is nearer to technology than to a fundamental study;
but from the engineer's point of view it is but from the engineer's point of view it is
only the honours student (or graduate) who can be expected to take on so many new ideas. After all, mathematics is supposed to be the epitome of fundamental
study, of universal application

The 'tool kit'

But as far as engineering rechnology is concerned, the graduate should include in the 'tool kit' which he takes to his first iob some up-to-date knowledge. (Without it, he would take a long time to earn the depend.) Most engineering honours courses now include a project, the successful completion of which requires a student to design and either construct or
have constructed a specific piece have corsware. This requires some expertise in hardware. The handling of currently available devices and so contributes to the practical side of the 'tool kit'.

Educating the technician engineer
So much for the education of the honours about the pass graduate or technician eng neer? Clearly the one policy which is un satisfactory is to allow the pass student to pass degree for a very por perforan a pass degree for a very poor performance
in the honours examinations. The general principle is to take him out of the more mathematical and abstract courses and
substitute partially with more practical
ourses based on current technology Partially' because the pass degree studen fast as the honours student can.) The lecturer who gives an honours course may be able to provide a 'mugs' guide' to the same subject: for example, one can give the aerial is proportional to $(h / \lambda)^{2}$ whereas for an honours course one would derive this from electromagnetic theory. One would need to supplement this with more des iptive material about current types aerial.

Non engineering studies The problem of fundamentals versus business studies and management which we are nowadays urged to include in the undergraduate curriculum. (There are really two branches, the one being finance and the other being largely personnel man-
agement.) There is no doubt that lack of either type of expertise can be disastrous Rolls Royce is the best known example of ack of financial expertise, and it is probale that a significant number of strikes But in the larger firms these functions hould be controlled by specialists; and if one takes the traditional I.E.E. view that he professional engineer starts on 90% technology and 10% administration, but in hen any graduate of honours or innovaive' pretensions should be able to acquire he appropriate skills when they are needed. It may be desirable to give undergraduates some exposure to these
subjects by way of 'opening windows', but is not necessary to treat them in depth. An exceptional case could be made out for the entrepreneur who founds his own busihess on some technological innovation, but ne should not distort the main curric must either learn fast or find a partner to look after the non-technical side of the business. The summary is that business topics hould be taught on a technological rather than fundamental basis. (The meaning of
'fundamental' in this context was illusrated once by the sarcastic remark of a Professor of Economics to a Professor of Accounting: "You should not be teaching ndergraduates the rules of accouning you should be
The question of written (and spoken) communication has been left until last. I has recently been unfashionable to study anguage, particularly one's own language, fundamentally. The lack of inflections in use a reasonable word order in order to stablish the relationships between different parts of a sentence. (Though in the interest of emphasis, the present writer is prone to inverting the natural order of
phrases on occasion.) Perhaps this should be regarded as the technological aspect of language, the fundamental aspects being inguistics and literature.
To summarize, the ancillary subjects

Professor Bell founded the Department of Electronic Engineering of the University of Hull in
1966 but retired in 1978. This article therefore presents his percle therefore views, but in no way commits that Department. The importance of the subject has
been enhanced by the publication of the report of the Finniston Committee on the Engineering Profession.
such as mathematics, language and business and management studies should certainly be taught as technology, but in proundamentals, if only as an insurance against the effects of technological change during the following 40 years. I believe that "engineering" is primarily an atutuude of mind which may be hinted at by the phrase "enthusiasm for getting
things done properly". This attitude of mind is not dependent on the academic and technical content of a course, enhanced or not, but it can be influenced by he way in which material is presented
Since this was written, an article on "Training of Engineers in Japan" by H.A.J. Prentice has appeared in Electronic and Power (the Journal of the I.E:E.), April 1980, vol. 26 , pp. 327-329. The att tude of Japanese industry appears to be an
extreme case of the policy on industrial raining which has been suggested above.
This article is based on a paper presented at Degree Courses - Teaching for the 80's', Hull, 31st March to 3rd April 1980. Copies of the conference proceedings, covering all 43 papers, can be obtained from Mr K. A. Welsh, Department of Electronic Engi-
neering, University of Hull, Hull HU6 $7 R X$, price £12, plus post and packing £1.25 in U.K.).

Professor David Bell, who joined the Unment of Electronic Engineering, retired in September 1978. From 1949 to 1961 he was Reader in Electromagnetism in the mingham University, and thereafter til 1965 he was the director of AMF British
Research Laboratory. He has contributed Research Laboratory. He has contributed
widely to the learned journals and has been writing for Wireless World

Multiphase low distortion oscillator

Sine wave generation with frequency independent amplitude control
by A. D. Ryder, M.A., Ph.D., F.I.E.E.

Linear oscillators, such as the well known Wien bridge, are easily inherently low distortion provided the amplitude is kept within the linear range of the devices. The outputs a normally free from high-order
harmonics, which can complicate the se of wave-shaping oscillators such
fixed or spot-frequency requirements will generate low-distortion signals of m phases where $m=3,5,7$, etc. $\mathbf{m}=\mathbf{2 n}+1$) and, by adding inverters to $6,10,14$, etc. The frequency range extends from zero to thelimit of the opamp characteristics.

The original application required a modulation source for multiple path f.m of tone signals from an electronic organ, a technique used to enrich the sound by This requires frequencies down to 0.3 Hz or below, ideally with some choice of fre quency and modulation depth, i.e oscillator amplitude. At such low frequencies a conventional thermal intolerably long thermal time-constant to operate linearly. Unfortunately, the control-loop should introduce as little delay as possible because even a few extra scillator cycles of settling time
nconvenient. This circuit is not requency-dependent and, because it is repeatable, is preferable to thermal control even at high frequencies. The circuit in Fig. 1 comprises m stages, all identical Each output phase P1 to Pm has the same op-amp source resistance and voltag capability, and the phase balance depends primarily on the matching of $R, R x$, and is. The simplest way to change frequency diagram for the second stage, see Fig. 2, is typical. Feedback current p is the vector sum of $r=P 2 / R$ and $c=P 2 / X$, where X is the reactance of C, and the inverting the input current q, where $q=P 1 / R \mathbf{x}$. The stage gain is unity when

$\sqrt{\frac{\mathrm{I}}{R^{2}}+\frac{1}{X^{2}}}=\frac{1}{R_{\mathrm{x}}}$ or $X=\frac{X}{\sqrt{R^{2}+X^{2}}}$

where tan ϕ is equal to $R / X(1)$, and the
condition for unity gain is $x=\cos \phi$ (2). $f=\tan \phi / 2 \pi R C$. (3). In a three-phase oscillator, each stage is required to produce unity gain at 120° phase-shift, $\phi=60^{\circ}$, therefore $x=\cos 60^{\circ}=1 / 2$. From (3), the corresponding requency is $\sqrt{3 / 2} \pi R C$ or $0.276 / R C$. Because ϕ lies between 0 and 90°, the
attainable shift per stage lies between 90° and 180°. To use five or more stages, the otal loop phase-shift must be a multiple of 60°. The spoke diagram in Fig. 3 shows how this works for a 5 -phase oscillator $\mathrm{m}=5 \mathrm{n}=2$, where the phases ar eparated by $72^{\circ}\left(360^{\circ} / 5\right)$ but each stag $x=\cos 36^{\circ}=0.809$ and $f=0.116 / R C$. As $\mathrm{m}=2 \mathrm{n}+1$, two steps of n phases will always produce an $(m-1)$ shift around he diagram, and m such steps will visit all more than one possible shift per stage, eometrically, within the 90 to 180° limits. or example, when $m=7$, phase separa on 51.4°, it is possible to visit eithe hree. However, it is necessary to desig for the highest usable phase-shift, i.e. the mode for which the loop gain is highest $360 \mathrm{n} / \mathrm{m}^{\circ}$ per stage. The angle ϕ is then equal to half the phase separation. In eneral, the capacitive feedbac far as d.c. is concerned, the loop feedback is negative because m is odd, which tend o stabilize the working point.
The oscillator loop is given 50% exces ain by making R_{3} two-thirds of the basic feedback via A_{2} and R_{4}. Amplifier A_{2} is a multiplier, or a variable-mu device such as
he 3080, and its gain is controlled by the full-wave rectifier of is detected by phase and differential amplifier A_{1}. In the steady state, the balancing output of A has $\frac{1}{3}$ of Pm amplitude and just offsets the excess gain. The level at which the

Fig. 2. Vector diagram for second
oscillator stage.

Fig. 3. Spoke diagramfor a 5 -phase oscillator, $m=5, n=2$. Phase separation
is 72° and the sequence is $P 5-P 3-P 1-P 4-P 2$

Fig. 1. Oscillatorofmphases.

ig. 4. Three-phase oscillator. $f=0.3 \mathrm{~Hz}$ with $C=0.47 \mu F$
scillator stabilizes is set by R_{1}. Because the control loop is not frequencydependent, it does not introduce a delay or
overshoot. However, it does introduce harmonics due to the rectifier ripple. With ree phases, assuming they are balanced nly the 6th harmonic is significant which has a peak level of 6% of the mean d.c. Therefore, the gain of A_{2} is 6% amplitude nodulated at $6 f$ and its output contains idebands at $5 f$ and $7 f$, each of 3%. The harmonic because the total fundamental urrent is twice that contributed by A_{2}. A 1, however, the harmonics are reduced by feedback, $4.4 \times$ for $5 f$ and $6.1 \times$ for $7 f$,
which then become 0.34% and 0.25%, .m.s. total of 0.42%. At P2 and P3 th ectifier distortion is below 0.1%.
Smoothing may be added if required ${ }_{1}$ output. A reduction in the $6 f$ compo ion at all outputs is below 0.1%, require smoothing time-constant of only 0.13 o he oscillation period and therefore has no ignificant effect on the control-loop desponse. Some switching of the smoothing used, so that the time-constant does not exceed about two periods.
With more phases, the distortion at \mathbf{P} alls rapidly because the rectifier ripple is her, eg, for $m=5$ the distortion higher, e.g., for $m=5$ the distortion is
elow 0.1% without smoothing. If inver ers are used, for example to derive six hases from three, additional diodes to the erter outputs can also be used to reduc pple. In a delay-line type of frequencyifferentiating ${ }^{1}$ and, unless compensating regrating circuits are included, the har onics of the modulating waveform ar aggerated in the modulation envelope To avoid the integrators, it is advanwith a distortion content of around 0.1%. A practical three-phase oscillator is hown in Fig. 4 where $x=\frac{1}{2}$ and $R=2 \mathrm{~m}$, which gives 0.3 Hz for $\mathrm{C}=0.47 \mu \mathrm{~F}$. The adding 741 stages and diodes, and adjust-
ing the resistor ratio in accordance with 2) above. If an adjustment is made to the
 3080 circuits need not be altered. The utput, and a current rather than volage purposes only. Resistor R_{2} defines the source resistance for the optional moothing capacitor C_{1} because the input esistance at pin 5 is low, and the time$0.3 \mathrm{~Hz} \quad \mathrm{R}_{2} \mathrm{C}_{1}$ is about 0.2 of the period a With a 12 V regulated supply and germanium (OA47) diodes in the rectifier, the maximum usable amplitude per phase is about 3 r r.m.s. with R_{1} at 390Ω, and less. and R_{6} allow the bias B1 to be adjusted for
optimum balance, i.e. minimum fundamental at C_{1}. At switch-on, C_{2} provides a negative pulse to N1, which considerably and the isolating diode can be omitted for high-frequency use. With 2% components for R and C , the frequencies of oscillators having 5,7 , and 11 phases were within he measured calculated from the mean of numbers of phases, diode V_{f} variations become more significant and eventually set can be achieved at the rectifier output.

Reference

1. Ryder, A. D., Electronic organ tone system, Wireless World, March 1979, p54.

The most apt and concise description of this
book is probably that given by the authors in th sTh sentence of the preface where they write,
Th obout communication -commu Tication between man and machines, and be ween machines themselves". Codes for Comand Q. L. M. Laarhoven is written as an aid to oth students and designers alike and biase oward the practical side of computer relate Beging Aeginning with an explanation of the theory nary, octal and decimal codes, the text grad ually leads up to a full listing and comparison on set of tables is included at the end of the book or conversion between decimal and hexadecimal codes. The price of the book in floppy back Press, 4 Little Essex Street, London WC2R

Far too many authors who set out to write sim ply on electronics evidently imagine that a lac of knowledge of the subject in a reader automati
ally qualifies him as a retarded, innumerate it literate, to be addressed accordingly. It is refeshing, therefore, to find that Peter Lauri
es Explained ($£ 6.50$, Faber and Faber) is no only rather more successful at making a fairly complicated subject simple than the average
sample of its kind, of which there are many but it manages to convey the information withou battering the reader with his own inadequacy Mr Laurie makes no bones of the fact that hot was, not long ago, in the same position as the
reader and is still finding out himself. He can also write.
The boo
The book is in three, fairly arbitrary section -audio, radio and digital electronics - the ircuits used throughout electronics. The level d discussion is, of necessity, elementary, but
onetheless of high quality Logic is trate nonetheless of high quality. Logic is treate ncludes a useful section on Boolean algebra t unctions to hardware. (Printers find this notor ously difficult to set because of the negating bars, and the only two errors discovered in a quick canter through the book were in this sec
tion, apart from a fairly sweeping statement on negative feedback on p.6). A final section provides some practical information on the realitites
of componenst and hardware in general, with of components and hardware in general, with
dvice on making circuits for For anyone seeking a relatively simple 'wa in' to electronics and the beginnings of compu
ing, this is an excellent introduct

LENTNEDS TTOTHOEEDTMOD

NEXPLICABLE EFFECTS N AUDIO
Many readers will have met inexplicable effects electronic circuits and systems, but will have
hrugged their shoulders and not pursued the matter: time is money and engineers are no
paid to investigate supposed paranormal pheno mena. Ivor Catt reminds us that many elaborate electronic systems end up in ''Bin 13^{\prime} ', and another WW author reminded me in private electronics for designing things that work and harder still to keep it"
Of course, it's comforting to think that inengineering or inadequate application of fund mental theory but, with apologies to Yorkshire folks, 'There's nowt so queer as transistors' larly prone to bizarre effects, many of then distinctly reminiscent of classic poltergeist phe nomena. This is hardly surprising, considerin
the very powerful emotions that music can gen rate. Although a common scapegoat is "r.f." equipment suffering from or causing disturbin recacity on its journey to the test bench. It lso an unwritten law that when paranorm effects occur, electronics engineers and 'scopes an tempered and the 'scope will develop fault!
Space does not allow me to elaborate on the
vents I have experienced and heard about est assured that the symptoms have bet widely circulated amongst experienced audio engineers before being gassed onto the list of the
'inexplicabee' I should be ver inexplicable'. I should be very happy to hea
from readers who have 'Gremlin tales' to relate, or interesting opinions on the subject. I feel that with sufficient data, a tentative 'wrapping up' ${ }^{\prime}$ Murphy, Sod, hi-fi mysticism (including phase
funnies and other colourful aberrations of pragmatic (i.e. Newtonian) physics could be on its maxic
way
Ben.
Ben f. Dunca
Tattershall
Tattershall
Lincoln.
MICROCHIPS AND MEGADEATHS
believe your November leader on atomic holo-
causts is entirely proper to the magzine causts is entirely proper to the magazine, since affected by having lived with the atomic threat for as long as 35 years. However, more impor-
tant than the physical dangers is surely the nt than the physical dangers is surely th The current level of arms might be useful if were used to bargain for reduction of arms but istead we have atomic proliferation over mo hat we should all be blown up in 1984 following a slighting remark by Bernard Levin speaking ow tv about Patagonia. Patagonia is not a sta

We are constantly told Russia is the enemy cally increase our arms. In fact President Ken nedy used an entirely mythical "missile gap" to
help his election in 1960 and this was exposed by I.F. Stone, who used the technique of collat ing government reports; he was recently joined
by Lord Zuckerman in testimony to the West misleading itself; the Pentagon Papers also testihied to falsification, this time by the armed The late Berrand
The late Bertrand Russell, the finest mind of never reach 1980 with the current level of arms. This seems reasonable even in relation to false
alarms triggering a final holocaust. I have heard Sir Robert Watson-Watt explain that radar gives false alarms, for example from a flight of geese. A tape of data relating to a mock atomic attack
has been played into the system as real data. A dropped spanner in a Titan missile silo recently led to a 6 -megaton warhead, 300 times as power yards. Perhaps the Russians who devastated 5000 square miles in the late 'fiftues by piling up critical mass of atomic waste are even more rone to accidents of this sor
Defence programmes are in practice extre-
mely inefficient in terms of expenditure, relative to other products, which adds to the drain on national budgets. One argument against current
levels of armament is that they ruin the times of peace. Anyone who would prefer to spend nothing on arms but use the $£ 150$ p.a. per head to his views.
Much as I hate the Russian system I am not convinced that it constitutes a credible threat to he West. Do they really do advanced research
with those Russian oscilloscopes? Are the none-oo-sophisticated articles you print from Russia just a blind? Why does the US prop the USSR This country may at ?
This country may at present be in the middle
of a fall in its standard of living to about half because industry faces financial burdens unknown anywhere else in the world in their total aloact. These include defence expendioued
ald paying for 2 million unemployed Looking back people may feel they have been bamboozled by the US into defence expenditure up Russia to frighten the Western world. I wonder.
Bernard fones
London WI
have just read your November editorial and was refreshing to find an electronics magazine industry.
Whilst totally agreeing with you, I think it mportant to point out that, because the defence
industry is so well funded, there are many in eresting job opportunities within it. As anyon who has talked to a recruitment agency knows, have an almost permanent requirement for mor electronics engineers and are, up to a point,
preared to pay for them. Electronics anginer want interesting, well paid work on state-of-theart technology in well equipped laboratories -
work which many defence orientated companies ork which many defence orientated companies can provide more readily than medical, con-
sumer or industrial electronic organisations.

1ot one decides, as an engineer, to whether defence electronics, one should towe work in nany brig either choice. The sad fact is that many bright electronics engineers are working that the job is intereresting and/or well paid than After all, as professionals, we surely want be socially responsible.
G. Dodgson

Department of Medical Physics and Chemical Engineering
wish to object most strongly to the contentious leading article in the November 1980 issue of piece of rubbish think engineers are stupid? The whole point of modern guidance technology is o improve missile placement accuracy to that
missile silos may be destroyed. The exisence of he cruise missile means that centres of population are less-likely to be attacked. Again, is a bayonet in the kidneys a better way to die than
being frizzled in an A-bomb blast? Basically I object to a technical journal like Wireless World being used as a vehicle by nameless writers whose output is best fitted for
the Morming Star or the dussbin. Please, please do not inflict us with articles of Yhis kind. There are other platforms for authors like yours. Let us have something worthy of the .. F. Cherwood
Tewkes
Glos. How encouraging it is to see the technical press
lifting its eyes from its bench to look at the
world outside (November editorial). Does this veflect a move among engineers at large? reflect a move among engineers at large?
We should be among the leaders of dissent, ou say. So we should, if only in atonement for hat engineers East and West have done, plac
ing in the hands of maniacs playing power games the means to anninilate the race or, at est, to inflict suffering on a scale past imagi
Those among us who respond to the propa-
ganda of ideological hatred and righteousness ganda of ideological hatred and righteousness
which is the score for a macabre dance with estiny and believe that making, directing and have, at least, the excuse of conviction. Not so the Im Only Doing My Job Club, whose con-
siderable membership calls in question the derable membership calls in question the
ontention that we are of an intelligent, onourable profession concerned with the advancement of mankind.
Mrs Thatcher has a vision of a British indust-
tial revival resting on the shoulders of the "d rial revival resting on the shoulders of the "de-
ence" budget. Presumably no-one has explained to the lady that the bankruptcy of the British consumer electronics industry is, in
arge measure, due to the diversion of finance and skills to militarism. Be that as in tmay, could
one find a more sterile philosophy than the one find a more sterile philosophy than the
notion that a nation's economic well-being should go hand-in-hand with its production and sale of engines of death?
As I write, 800 million
As I write, 800 million people are starving and the wealthy squander the world's resources
on armaments. It is surely time that engineers

62

 planet a more congenial place. If they do not,
they have at least the consolation that, unlike
the they physicists of Los Alamos, they will have
scant opportunity for regret after their last great scant opportunity for regret after their last grea
work has reached functional expression. John G. McKenzie
Monifeeth Monifieth
Dundee

Congratulations on your editorial in the November issue. It is gratifying to see that some
people connected with electronic engineering peope connected with electronic engineering
are willing to make known their opinions on the matter of "defence". I only hope that your good
example is contagious and that it spreads to example is contagious and that it spreads to
others. Perhaps your editorial will help to make responsible people employed on "defence pro-
jects" reflect on the possible consequences of jects" reflect on
their endeavours.
their endeavours.
It sems to the that governments are largely to
blame for the excesses of the Hame for the excesses of the armaments indus-
try in encouraging this trade In fact the trade is try in encouraging this trade. In fact the trade is
referred to as one of Britain's successes in im. referred to as one of Britain's successes in im-
proving her balance of payments, GNP etc. Unfortunately the alternatives to the armaments industry do not appear to be so remunerative:
witness medical electronics, medical research witness medical electronics, medical research-
it's a matter of demand presumably. Many other countries are guilty of the same crime. I feel that
ind comments such as yours can only help here.
Incidentally, I am not a pacifist or keen on Incidentally, I am not a pacifist or keen on
unilateral disarmament. I have been employed as an electronics technician since being trained
by the Royal Air Force in the 1950s. Most of the by the Royal Air Force in the 1950s. Most of the work I have been connected with has been of a
peaceful nature. I also usually vote Conservaive, the concept of free enterprise being attractive.
B. Morton
Berkhamsted
Bertham
Hers.
Please accept my warmest congratulations on a
most courageous editorial most courageous editorial in your November
issue. I agree with every word; without the compliance and connivance of engineers the arms race would greatly diminish.
While reading about the While reading about the candidates for re-
election to the Council of the IERE in the latest journal I was interested to see how many worked for the military in one way or another and I wondered how much this is true of the
whole Council and if the Institution is in the grip of the military-industrial complex. If this is sol see little hope of the Institution freeing itself
from the self-perperuating system you spoke of from the self-perpetuating system you spoke of.
Wilfred Layycock Abingdon

Comment from the IERE First, I would like to assure you that we are well engineers who work in the military sphere of activiry: we published one of his letters on this
theme in the November 1979 issue of The Radio and Electronic Engineer. And second, concerning his thoughts on the occupations of the members
of the IERE Council, I would suggest that he writes to me direct with some congtructive com-
ment when he has finished the 'wondering' he The present 41-member Council of the IERE includes
a retired air vice-marshal (the secretary), a brigdier, a Colonel, a reired lieutenant-commander, a maior-gen-
erall a Ministrof of Defence idiector, a professor of the
Roval Militry Collene

mentions in his second paragraph. No doubt by
then he will be able to explain to me how he justifies his conclusion that the IERE is at pre-
sent tied to "the self-perpetuating system you spoke of" in your editorial. S.M. Davidson
Secretary, IERE

Secreatary, IERE
London WCI

THE "TWINS"
PARADOX

OF RELATIVITY

The late Professor Dingle's simple question to the scientists (October issue) has never been
answered because Special Relativity Theory answered because special eatauviry Theory
(S.R.T.) is defended by the astute deployment of the proverbial red herrings.
S.R.T. speaks only of S.R.T. speaks only of relative uniform
straight line motion but the defenders of that faith invoke acceleration and gravity to account for the slower ageing of one of the twins. Please
note that I am careful to avoid commitment as to note that 1 am careful to avoid commitment as to
which t twin suffers what and for which reason; I have learned some lessons from the relativists.
It surely must be obvious to alt It surely must be obvious to all that if the
relative variation in the rate of clocks is to be justified by acceleration or gravity then that justification is tantamount to the admission that the clocks in pure S.R.T. (as taught in undergra-
duate texts) do not in fact run, physically, at duate texts) do not in fact run, physically, at
different rates; they only appear to do so. That which applies to clocks musta also stand true for measuring rods and mass, or so S.R.T. avers. though it may be, that all of the alleged experimental confirmations of S.R.T.are a result of the theory at all. Since Prof. Dingle did not himself provide an
alternative explanation I now ask to be
allowed to clean up the mess, an activity that is allowed to clean up the mess, an activity that is
not without precedent in science. et us start with mass,
In a letter in the November 1979 issue responding to Prof. Jennison's June 19799 articte
"What is an Electron", I postulated that mechanical force was radiation pressure and provided a completely new derivation of the
Newtonian kinetic enery Newtonian kinetic energy equation. As far as 1
am aware that derivation has been neither chalam aware that derivation has been neither chalalso used the radiation pressure of light as a mechanical force and I have not seen that factor
of his argument questioned. Any refuation of either of these ideas must first, obviously, deny
the experimental facts of radiation pressure. he experimental facts of radiation pressure.
In my derivation I allowed the effect of In my derivation I allowed the effect of a with the velocity of the affected mass between the limits zero and infinity. This accounted for
the Newtonian view but in the real world the the Newtonian view but in the real world the
diminution occurs linearly between the limits zero and c.
We have two velocity contexts to contend
with, that of real physical behaviour and with, that of real physical behaviour and that of
our calculations. It is an unfortunate fact that our only method of measuring velocity happens to coincide with our calculations. Using a a rigid
measuring rod we can only measure velocities measuring rod we can only measure elocicites
that are a fraction of the velocity scale zero to infinity because the measuring rod cannot of iself f limit the distance that it might measure in
unit time. It is linked firmly to the infinite scale unit time. It is linked firmly to the infinite scale
of positive whole numbers and hence to our
calculations. Knowing this we calculations. Knowing this we must say:
$V . k=V$
where on the left-hand side is behaviour, V as
we measure and k the nowe experimentaly deter
mined Lorenz transform. This transform ap-
plies to the numerical ratio which we call veloc pies but not to its components. We see just why M, L and T seem to be a
variance with our velocity measurements and calculations. Using the equation it is possible to account for all of our experimental resuits Leav
ing M, L and T invariant. It is interesting to
note that Prof. Dingle himself expressed a note that Prof. Dingle himself expressed a
fleeting doubt concerning the measurement of velocity in "Science at the Crossroads",
Finally, iust to round things off, it is to be noted that if any of the jussifications for the
alleged null result of the Michelsond noted that if any of the jusiications for the
alleged null result of the Michelson and Morley
experiment is true, then it must be concluded experiment is true, then it must be concluded
on grounds of pure logic that the experiment on grounds of pure logic that the experiment
was a decisive demonstration of the existence of absolute space.
Alex fones
Alex Yones
Alderney

Alderney
Channel Islands

DOSIMETERS ADVERT
Your October issue included an advertisement Your October issue included an advertisement
by Dondene Ltd for dosimeters. The general information, principle and construction details
are a word for word copy of our standard sales
leaflet (copy enclosed). Furthermore, the sectioleal drawing has also been reproduced without our permission. One of our staff purchased a dosimeter from
Dondene. Briefly, it is of a different construc Dondene. Briefly, it is of a different construc
tion to that shown on the advertised drawing. The company that produced the purchased dosimeter ceased trading in this business some
$15-20$ years ago. The unit is not hermetically 15-2 y years ago. The unit is not hermetically
sealed and the charging mechanism is not compatible with available charging units.
R. A. Stephen is and has been for many years
the UK's only designer and producer of dosithe UK's only designer and producer of dosi-
meters and we should like to make it clear that we are not in any way associated with this flippant advertisement
R. W. Hawley
R. W. Hawley
R.A. Stephen and
R.A. Stephen and Company Ltd

Mitcham
Surrey

DISPLACEMEN

CURRENT
Dozens of people in this country, professors and
Nobel Laureates, have gained financially from the subject of electromagnetic theory. Some-
thing is expected from them in rewurn. thing is expected from them in return. It would
be a great shame if Professor D. A. Bell, the only man among them who has bothered to
contribute to the discussion in Wireless World contribute to the discussion in Wireless World,
should suffer thereby. We should congratulate him for standing up to be counted. Ivor Catt
St Albans
Hers.

AUDIO KITS

 It is a long time since I have read such libellouspiffle as that contained in the November letter
from M. J. Evans on the subject of kits. It would appear twhat, through not having taken
sufficient care when chosing his purchase, he is now publicly venting his spleen on all kit manu-
facturers and the kit huidine facturers and the kit-building public as well.
Mr Evans complains that the amplifier kit he bought was four taimes more powerful than he necded: it really is too mad of these wicked kit
suppliest to let Mr Evans have the amlifir he suppliest to let Mr Evans have the amplifier he
ordered! He also complains that the kit took ordered! He also complains that the kit took
100 per cent longer to build than he estimated: who got his estimate wrong then? Certainly, the kit of which Mr Evans com-

WIRELESS WORLD JANUARY 198
plains was a bit of a rat's nest to build, but
photograph is included in that manufacturer' literature and it is up to the buyer to judge
whether he wants to indulge in that kind of work. Should Mr Evans feel that any error of description was made, then his remedy is at law error, then the four must lie squarely on M Evans' shoulders.
Either way, the argument is a private one
between an individual and a company betwen an individual and a company and
should not involve Wireless World or Hi Fi News
heder readers, or other kit companies who give the
public, first-class products and designs. If Mr with whom his argument lies little tardy, since the offending kit became obsolete over a year ago, advertisisng was withdrawn
from Hi Fi News before that, and he would now appear to be about to cease offering any hi-fi amplifie kits.
The further suggestion is made that the pub-
ic should refrain from building anything so lic should refrain from building anything so
complex as a stereo amplifier. As a general priniiple, a good kit makes construction easier, provides a better standard of finish and design and
has the additional benefit of a second group of engineers looking at the design in production erms after the circuit designer has finished with In the case of my company's products,
careful design and attention to detail produces stereo amplifier kits that wouldn't cause a teadrinking chimpanzee much trouble provided
that he could read and hold a soldering iron! that he could read and hold a soldering iron!
Stereo amplifiers are easy, Mr Evans, if you buy propery in the first place.
But is this public, of which Mr Evans is so But is this public, of which Mr Evans is so
dismissive, as incomperent as he suggests?
Men Magazine readers have been buil the turn of the
dectronic projects almost from century. After the last war, people built televi-
sion receivers from kits without the benefit of sion receivers from kits without the benefit of
printed circuits: nowadays they build teletext decoders and microcomputers.
So please, Mr Evans, do not allow your silly
vendetta to knock magazine readers and the trade which serves them they are our engineers, our customers and our friends and we do not like it. Without them, no magazine
could exist and the world would be a poorer place.
A.H.Milligan
Hart Electronic Kiss Ltd.

Having just given up, yet again, the construc
an of a disastrously bad "kii", I would like to dd one or two observations to Mr Evans's letter the November issue
lt would appear from the pages of the
electronics press that there are kits available for almost any piece of apparatus you can imagine, Pplied by an army or different manufacturers, if manufacturer is the right word. My own ex-
perience of kits has varied from the idiot-proof masterpiece of planning and instruction to the would disagree with Mr Evans's inclusion in his total costs of $£ 300$ plus for labour (surely he enioys his hobby?), I object to the amount of subject us to work that some kit supplier
The cassette deck kit which I am at present
engaged upon should be held up to prospective engaged upon should be held up to prospective manufacturers as an example of how not to. go
about it. The problems started before the kit even arrived, since I had sent my money with
the order before I found out that no kits had the order before I found out that no kits had
actually been made at that time, and therefore, actually been madd at that time, and therefore,
had a four month wait, at the end of which there appeared a half set of electronics with one p.c.b.b.
missing. They still hadn't been made. Then the
case arrived. The advert in $W . W$. had painted
glowing aluminium case with teakentiful satin anodised
arrived what actually arrived were two pieces of pressed steel, stove
enamelled batteship grey, with two pieces Melamine covered chipboard, and no means of
holding any of it together, holding any of ittogether.
After a few irats, the shop assistant as the manager was never available, the remainder of the bits and the
second second p.c.b. arrived along with what can only
be described as a few assembly procedure. I like to think of myself as resourceful, so on I went. The p.c.b. assemblies
went together went together quite well, although some of the
components were fiendishly difficult to identify, but the pile of spare resistors and capacitors left over at the end was a bit disconcerting. "What
was missing?" I asked myself, and spent another hour deciding that they really were
There.
The hard part is still in progress. None of the
mounting holes in the tion, the cassette trancsort has a record butibut no switch mechanism, and the battleship grey is looking quite scarred by the attempts to nake things fit. I now seem to be faced with worked properly because it is too deeply recessed, or one that works but which won't allow the lid to fit.
The whole
The whole thing, excluding Mr Evans's $£ 2$ an
hour labour charge, has so far cost me about c65. I noticed the other day in our local hi-fi hop a beautiful front-looding satin anodise My message is simple: if you are thinking of buying a kit (1) don't buy from anyone who is not well know for kits; (2) if a kit is advertised as
being suitable for the experienced constructor it is either too difficult for you or you could design a bettrer one anyway; (3) wait a few arriving whole and with all the latest updates will be much higher, and (4) make sure you can't buy better and cheaper ready made.

$\underset{\substack{\text { Grantham } \\ \text { Lincs. }}}{\text {. }}$

I think your correspondent M. J. Evans in the November issue is a little hard on kit supplier
and totally wrong in his opinion of and totally wrong in his opinion of those wh
buy them. In recent years I have bought several kits
from firms who advertise in this magazine. from firms who advertise in this magazine.
They have been at the least adquate mechani cally, acceptable in appearance and used good quality components. I cannot say they have all been trouble-free initially but once commis-
sioned have given reliable service and excellent performance. I I have been buvildien and audio equip
ment since ment since about 1947. In those days I used to
muy all the components separaty buy all the components sepparately but today
that is a very tedious task conveniently overcome by the kit.
People build their
People build their own equipment, I would
have thought have thought, largely out of the innterest it gives
them. To cost the time involved as if one would otherwise have been doing a paid job is, as with
any other any other hobby, ludicrous. Does it matter if it
takes 40 hours 80 . takes 4 hours or 80 hours or as long as you
enioy taking? These people also, incidentally unsually finish up with a machine costing about half the price of a commercial unit of similar performance.
I do not thin Ido not think there are many people who will
spend $£ 100$ or more on a kit if they do not either have confidence in their own ability or her have
ready access to competent assistan ready access to competent assistance. Despite
how some kits may be advertised it is extremely how some kits may be advertised it is extremely
naive to think a sophisticated instrument can be

MULTISEETION TONE EQUALISER

I was interested to note that the authors of Multisection Tone EEual iser""claimed that the room resonas "primarily designed to cancel room resonances and equalise loudspeaker res-
ponses" (June/July 1980 issue). However, a claim is rather a myth as an equaliser of the type described in the article is quite incapable of cancelling room modes even though many commercial units
similar claims
The
The problem stems from a basic lack of understanding of the acoustics of listening rooms nances. Standing waves/room resonances are in act occurrences in the time domain which also anifest themselves as irregularities in the fre quency domain, particularly when measured
under the steady state conditions the electronics

Traces illustrating loudspeaker.room interaction with or with out an equaliser. The middlie trace is
the input tone burst. At the bottom is the room
tesponse withen response without an equaliser;; at the top the
response with an equaliser. Note how the
 tion and hence timbre and character. (Timebase
20 ms (div.).
and audio industries usually rely on. But when and audio industries usually rely on. But when
trying to equalise such frequency aberrations
one is looking at the effect rather than the cause -and it is the cause, occurring in the time than the symptom shown up in the frequenc than the symptom shown up in the frequency
domain. Some recent investigations, reported elsewhere, clearly showed this. The investiga-
tions, using a number of commercially available units, showed that subjectively resonances units, showed that subbectively resonances
could only be partially tamed - they certainly
were ond were not cancelled,
clearly testified.
clearly testified. "loudness"
Although the
" Arthough the "loudness" of a resonance could
be reduced with an equaliser, this is only half the story, as a resonance also affects the "at tack" and "decay" of a note as well as its steady
state response, and thus completely alters
perceived timbre and character (ser
equaliser, because of irs mode of operation, just could not cope with such waveform distortions,
which the ear clearly detected. The basic room resonance is sill excited but at a lower level rather than true cancellation taking place. Furthermore, the bandwidth of the equaliser
filter circuits, unless very narrow, can also fiter circuirs, unless very narrow, can also
produce quite audible changes in the response at other frequencies. It was also noted that not all programme material excited room modes - but
the equaliser filter is always in circuit, removing the equaliser filter is always in circuit, removing
a "chunk" of the signal when not required to do ${ }^{\text {so }}$ One One possible solution to the problem might
be to use a series of extremely narrow-band filters precisely tuned to the frequencies of the worst room resonances-apart from requiring a
number of high 0 tunable filters with their number of high Q tunable filters with their
attendant phase shift problems in a stereo set up, this method still does not attack the problem in the right way. Compensation must take place in the time domain (3 dimensional) if
room resonances are to be successfully "canroom res
celled".
Peter Mapp
Department of Electrical Engineering Science

Reference

1. Mapp, P.A., Graphic Equalisers Myth or Magic?
Hi-fif or Pleasirue, October 1980 .

THE FLOATING BRIDGE In his two articles on bridge amplifiers (Sep-
tember and October issues) Mr Brady presents many stimulating circuit ideas and practical suggestions. His analysis of the circuits is, however, presented mainly in the form of a plausibility
argument and he leaves the potential designer without the necessary analytical tools. It is evident from the article that Mr Brady has carried
out a mall signal analysis of the circuits; out a small signal analysis of the circuits;
perhaps this is not reproduced because of the obscurity lent by his choice of circuit representation. I believe I can improve on this.
The diagrams repeatedly include
The diagrams repeatedly include an amplifier
symbol with its output connected to signal earth (Fig. 1). By this Mr Brady means that, since the power supply is left floating with respect to signal earth, chis amplifier causes the signal
which would have appeared at its output to whpear inverted at the power supply lines A, A, B,
C Iet us draw this explicitly C. Let us draw this explicitly (Fig. 2). In Fig 2
the amplifier behaves the way one is normally the amplifier behaves the way one is normally
entitled to expect from this symbol. Its output voltage with respect to signal earth is proportional to the differential input voltage. Two impor-
tant features of Fig. 2 are: (1) the inverting and tant features of Fig. 2 are: (1) the inverting and
non-inverting inputs have (apparently) been ex-non-inverting inputs have (apparently) been ex-
changed; (2) the relationship of the power supply to ground is explicit.
Terminals A, B, and C are equivalent in a
small signal analysis where we may properly small signal analysis where we may properly
expect
swings ignore power supplies. The voltage swings available at the final output terminals
can be determined later from the practical circan be determined later from the practical cir-
cuit diagram of the bridge output stages without the compliction of including signal paths. Finally, to demonstrate the utility of this
transformation, I have re-drawn Fig 1 of the first article as my Fig 3. This circuit is amenable to the kind of annalysis we all know and love. For he first amplifier we have:
$\frac{V_{i}-\Delta V_{1}}{\mathrm{R}_{1}+1 / j \omega \mathrm{C}_{1}}+\frac{y-\Delta V_{1}}{\mathrm{R}_{2}}=0$
(1)
$V_{A} \neq G_{1} \Delta V_{1}$
If we assume that the loop gain through both

LACEMENT CURRENT
In order to avoid any suggestion of 'increasing he noise level' in this seemingly interminable
correspondence (November letters) I will limit correspondence (November letions s) one comment.
(1) The fact. My reference to Hobbes' Leviathan was correct. I noticed it in 1943 and verified it in was correc
1978.
(2) The qu (2) The question. A body continues in motion or at rest unless disturbed by some force. Electro-
magnetic radiation has momentum, so once maunched it appears to behave according to
lowtonan mechaniss. If there be cenergy
Newr Newtonian mechanics. If there be 'energy cur-
fent' what force accelerates it (instantaneously?) to the velocity of light?
to the velocity of light? Higins says in No-
(3) The comment. L.H. Her
vember letters that Catt, Davidson and Waalton "omber letters that Catt, Davidson and to define what they mean by energy current". But so far they have not done so and I do not believe they can. D.A. Bell
Beverley, Yorkshire

PARALLEL TRACKING PICKUP ARM
I have just completed Rod Cooper's paralleltracking arm system, as described in your De-
cember 1979 and January 1980 issues. It works cember
beautifully and it is quite fascinating To the drive system adjusting the tracking speed of the arm. I used a Swiss made micro-motor with
a $54: 1$ reduction gearbox in place of the suggested drive system as I was not very enthusiastic over the cross drive and dual belts, which
would need rather careful assembly. would need rather careful assemb
Id no not know whether any of your readers
actually managed to assemble the whole thing in
the suggested 40 hours actualiy managed oassemble the whole ehing in
the suggested 40 hours! I used the components already machined by the supplier (J. Biles), but
found that a lathe and milling machine in my home workshop were needed for some operations, such as the forming of the nylon sliding block, motor pulley, cartridge clamp, etc.
Now that it is hardly worth attempting o struction of home radio and hi-fi equipment it is very helpful to find designs such as this, and the ments adds greatly to the interest of the project. Frank Guntiteridge
Corsier,
Suiterland
P.R.B.S. GENERATORS Further to my letter (September) and the replies
(November) concerning p.r.b.s. generators, (November) concerning p.r.b.s.s. generators,
may I thank Mr Mall and Dr Thackeray for
their comments? The rencer their comments? The reference to Golomb is
particularly useful. partucuariy useful.
The details I originally described were side products of some unrelated programming I was investigating on a $Z 80$ system, and I must admit I did not delve deeply int ho mositive analysis, so performed the negative one presented.
I have satisfied myself that generators a multiple of eight elements long do not produce
the full sequence when simple feedback is used, but I have not found a reason for it y yet).
Accordingly I have altered my Z80 routine, Accordingly I have altered my Z Z 80 routine,
which I do not present here as it forms an inwhich I do not present here as it forms an in-
teresting machine code exercise. The sequence teresting machine code exercise. The sequence
previously produced was so long that I never noticed that it was shorter than expected. Incidentally, a number of degenerate values
for \mathfrak{a}^{2} 'slipped into my table. Readers may find it instructive to locate them. ${ }_{\text {Ipswich, }}^{\text {K. Wuffolk }}$
ulifiers $y \rightarrow A \rightarrow y$ is negative so as to maintain stability and that G_{1} is very large so that $\Delta V_{1} \rightarrow 0$ (by equation (2)), we have:
$\frac{V_{\mathrm{i}}}{\mathrm{R}_{1}+1 / j \omega \mathrm{C}_{1}}+\frac{y}{\mathrm{R}_{2}}=0$
and hence the gain of the total amplifier, which second amplifier. This justifies Mr Brady's comments about the relative quality of A_{1} and A_{2} at the top of page 42 of the first article C. Allen Glos.
The author replies:
The reason for the inclusion of an earth in the position shown in the article (e.g. my Fig. 1) is respect to earth, which has great convenience. If a 'change-of-origin' is included this is of course not necessary,)
I think Mr Allen's two reasons. First, where is the power supply? poins. If this in intended for r ig. 3 , then when
G i is driving current, the closed path is from the G_{1} is driving current, the closed path is from the
supply, through G_{1}, into A, through the batery supply, through G_{1}, into A, A, through the battery
and back into the amplifier - which path does not drive current through the output at all.
Perbaps Mr Allen intends some other power Perrhap Mr Allen
supply arrangement
supply arrangement.
Ignoring this problem, then the feedback Ioon controlling probe G_{1} in his sig. .3 includes the
characteristics of G_{2}. Though there is negative characteristics of G_{2}. Though there is negative
feedback, the open-loop gain will be some horfeedback, the open-loop gain will be some hor-
rendous problem to calculate unless the G_{2} is of good-quality design. The two amplifiers are
coupled together in this way - which the coupled together in this way - which the
original design hoped to avoid. R. M. Brady

Trinty Colleg
Cambridge

fact:
 the SM63 looks (and sounds) great in front of people... and cameras!
 -

SPECIFICATIONS

Freauency Response: 50 to $20,000 \mathrm{~Hz}$
Polar Pattern: Omnidirectiona
Impedance: 150 oms
Output Level (at
Output Level (at 1.000 Hz): Open Circuit Voltage (Oath $=1$ volt per microbar) -76.0 db
(0.16 mV Power Level (odo $=1$ milliwalt

Shock Mount: Patented internal vibration isolator
Case: Champagne finish aluminium with VERALEX© grille
Case: Champagne finish aluminium with VERAFLEX grile
Dimensions and weight: $51 / 1 /$ gin. long, $11 / 4$ in. in diameter; 2.8 ounces
professional microphones...by

If everything were perfect...

Tilt, nothing to do with pinball wizardry, has a great deal to do with programme balance.

The recording or broadcast engineer attempts to capture the ambience of the studio or concert hall but what the listener perceives is the aggregate of this and the reverberation characteristics of his listening room.

If all listening rooms were equal the engineer could make due allowance, but since some listening rooms are more equal than others, the engineer has to assume some arbitrary norm, and the chances are that further correction and compensation will give improved results. Thus a reverberant recording reproduced in a 'live' listening room will sound overbright and a dry recording reproduced in an overdamped or 'dead' room will sound dull and bass heavy.

The tilt control on the Quad 44 cannot alter the reverberation characteristics of your room but by gently sloping the frequency response of your
system about a centre point, chosen to maintain a constant overall subjective level, it can produce a more natural programme balance, without introducing unwanted colouration.

If you are in any doubt that the listening room characteristics have a fundamental effect upon the final results try listening to the same record played on the same equipment in two different rooms.

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561.

QUAD

for the closest approach to the original sound
QUAD is a registered trade mark.

Artificial intelligence

Computing techniques adapted for use in intelligent machines

One British pioneer thinks that the most important use of artificial most important use of artificial the havoc likely to be caused by too much reliance on computers. Be that as it may, there is already a growing body of Al work on more specific problems such as in robotics, speech automating reasoning procedures, understanding natural languages and man-machine communication. This article first takes a look at the history and politics of the subject in Britain computational vision, speech understanding and man-machine communication, gives an insight into the general nature of this developing ousin of computer science.

Computers were an essential aid to putting men on the moon; yet a small step for a man, like crossing a busy road, is still a giant and unbridged step for a computer.
Computers can store vast libraries of information and play a pretty good game of chess; but no machine can match the ability of a child to learn a language or read a picture book. The ability of computers to they have immense difficulty in doing what comes naturally to humans, raises important and intriguing questions about the nature of human intelligence and the limits of machine or 'artificial' intelligence. The techniques of computer science
which underpin modern applications of computing power are based on mathematical and logical methods of analysing system functions and translating them into sequences of detailed instructions which pre-defined task. In the 1950s a new breed of computer scientist began to emerge the) artificial intelligentsia. Whereas con ventional computer science was primarily concerned with tackling information
processing tasks that could be analysed into clearly defined and unambiguous programs, the new subject of artificial inelligence (AI) was starting to explore the ambiguities and uncertainties involved in ${ }^{8}$ trying to understand the principles, and
building working models, of intelligent behaviour
For the past 25 years or so there has been a running battle between computer raditional computer specialists often com
laining that AI is too vague a subject to be regarded as a coherent discipline and that regarded as a coherent discipline and that
the artificial intelligentsia are a rather dilettante lot, drawing off valuable research resources from mainstream computing. There is, however, a growing and impressive body of AI work covering such diverse areas as robotics, speech understanding, reasoning procedures, understanding natural human languages, improving the methods used for communicating between people and machines - and for playing intelligent' games like chess. pioneers believes that the most important contribution from AI will eventually be to help save mankind from the havoc that could be caused by increased reliance on tion, the digital computer. Professor Donald Michie, head of the Machine Intelligence Unit at Edinburgh University, hinks that AI can open a "human window" onto the way computers reach
decisions which have a direct impact on human safety and prosperity. The Three

hrobotics Al systems are needed for recognising objects. This mobile robot developed at Warwick University has
sensory equipment enabling it to avoid obstacles and to seek out, approach and grasp an object such as the plastic bin

Mile Island nuclear incident in 1979, for example, nearly became a horrifying disas-
ter because the operator could not "understand" the myriad of warning messages provided by the computer-controlled monitoring system. And last year the world was twice brought to the brink of a nuclear war because of computer failures in the
defence network defence network.
If that nuclear
as reaching the President, how could he have interrogated the computer to find out the validity of its warning? asks Professor
Michie. Computer science Michie. Computer science, he says, has
produced complex information processing machines which perform calculations and search through information at such speeds that it is often difficult, if not impossible, for humans to trace back the 'thought' particular conclusion
As AI is concerned as much with human intelligence and understanding as with computer processes Professor Michie believes that its development of what are
known as expert systems will make computer systems more understandable by forctef systems more understandable by forc-
ing designers of automation equipment to fit the machine procedures into "the human mental mould." When you remember that computers are already relied diagnosing faults in tasks such as air traffic control, factory automation, medical analysis and building environment control, as well as nuclear power stations and of opening such a human window should not be underestimated.
Yet, in the UK at least, computer scientists continue to cast doubt on the validity of Ar's right to exist as a research area in its own right and even on the integrity of an international seminar of computer scientists at Newcastle University sponsored by the computer manufacturer IBM, the scepticism of British and some evident, despite the presentation by peaker after speaker of an impressive ody of research work in this field. It appeared that each concrete advance in AI, such as speech understanding by compu-
ters or automatic recognition of visual cenes, was regarded by the sceptics as an example of computer science, rather than AI. The scepticism culminated in an acid erence by Professor Eue Pa of the con-
ellor of Reading University and former head of the Newcastle computing
laboratory. Although he accepted that some specific progress had been made,
Professor Page still chose to turn to RoProfessor Page still chose to turn to Ro-
get's Thesaurus to point out that 'artificial' get's Thesaurus to point out that artificial
is a synonym for words such as "bogus, is a synonym for words such as "bogus,
phoney, pseudo, meretricious and flash." He also blamed AI for creating the public fear of Big Brother computers and scare stories about incorrect computer gas bills given birth to the notion of super--intelli-
gent machines that will control the world. gent machines that will control the world.
This kind of petty bickering would be of This kind of petty bickering would be of
only passing interest in the cloistered halls of academia if it did not reflect an attitude
which has contributed significantly to Britain's low level of advanced industrial automation. In 1972; applied mathematician and now vice-chancellor of University
College, London, Sir James Lighthill was College, London, Sir James Lighthill was
called in by the Science Research Council called in by the Science Research Council
to look at AI, primarily because many to look at AI, primarily because many
computer scientists were worried that this dubious new subject was siphoning off
funds that they should have been receiving. According to one computer scient-
ist who was on the Council at the time, the real aim of the Lighthill report was "to do a hatchet job on AI.
Although his report said there was some
signs of progress in aspects of what has signs of progress in aspects of what has
been called AI (such as advanced automation), Sir James was generally dismissive of
ted tion), jir James was generally dismissive of
AI claims. As a result, AI funding - and in its wake robotics research which had been tarred with the AI brush - was drastically cut back, although in the early
1970 Britis research workers, such as 1970s British research workers, such as
Professor Wilf Hegginbotham at Nottingham University and Professor Michie at Edinburgh were in the forefront of de-
velopments. For almost a decade, accordvelopments. For almost a decade, accord-
ing to Dr Mike Larcombe of Warwick ing to Dr Mike Larcombe of Warwick
University, a leading member of the University, a leading member of the
British Robot Association, this "neglect and persecution" of AI and robotics work
almost threw Britain out of the advanced almost threw Britain out of the advanced
automation race, the flag being carried by automation race, the flag being carried by
a few individuals and groups operating in a a fragmented, unco-ordinated way. Earlier fragmented, uever, the Science Research
this year however
Council decided to invest $£ 2.5$ million over three years in industrial robotics research. According to Dr Larcombe this money came at the eleventh hour for the hardy
band of research workers, like himself, band of research workers, like himself,
who had struggled on in the 1970s. Otherwise the temptations of the more enthusiastic and plentiful environment of
the US would have drawn the last life the US would have drawn the last life
blood out of robotics research in Britain. blood out of robotics research in Britain. important aspect of computer-related developments.
Dr Larcombe pointed out that in Britain it was the robot research academics who have lead the way in creating an awareness
of and involvement in advanced industrial automation whereas there was, until recently, "a general level of ignorance in British industry" about the importance of automation. Although grateful for the new
research funds for robots, he is cautious about the way the funds have been tied to

Fig. 1. A noisy visual scene, which can be interpreted by the human eye and brain with the
aid of a large stored set of patterns. Iff you can't see what the picture shows, refer to the Fig. 1. A loisy
aid of a large
main text.)
creating partnerships for research projects with industry. As British industry starts from such a backward international posi-
tion, he fears that the aims of the projects funded in this way will be to catch up with past neglect rather than to forge ahead into
new areas, such as mobile robots, which is his main interest.
Computational vision The cold AI climate that set in after the Lighthill report did drive many researchDr Harry Barrow who worked on the Freddy project at Edinburgh University in the early 1970s. This was one of the first
attempts to produce a robot that could see attempts to produce a robot that could see
and intelligently manipulate objects. It had started to show inklings of success when the Lighthill blight fell. Now, robots that can see are recognised as one of the most significant advances in automation.
Dr Barrow went to the US and is cur-
rently working at the AI Centre at SRI rently working at the AI Centre at SRI
International on computational vision. The attempt to give computers 'eyess', 'ears' and 'voices' has typified one stream
of AI research which mixes analyses of of AI research which mixes analyses of tempts to understand how people make sense out of a host of stimuli. The other main strain of AI work is concerned with purely 'intellectual' questions, such as natural language communications and the
process of human reasoning. Dr Barrow described at Newcastle one of the most advanced artificial vision systems, called Hawkeye. US Defence and Highways De-
partments are thinking of using it to draw partments are thinking of using it to draw
maps automatically and to monitor traffic flows. Using a television camera and a
video processing system which translates images into a digitial code that can be fed
imers, into computers, Hawkeye is capable, for
example, of recognising and counting example, of recognising and counting
ships going into and out of a harbour or ships going into
vehicles on a road.
To a human being this is not a difficult task. For a computer, however, there are two main problems. First, it has to analyse a scene into quantifiable factors that could
subsequently be used in interpreting the subsequently be used in interpreting the
nature of the images, such as the length and position of boundaries between objects, illumination, reflectance and surface orientation of areas within the scene. And then it has to make sense out of that scene. There is an enormous amount of informa-
tion in a given scene. A typical colour tv picture, for example, requires about 1 Mbit of information to be transmitted in digital form. With computational vision, a scene is broken down into pixels' (picture elements), with values being assigned at each
point for a predetermined set of qualities, such as luminance and reflectance. A typical picture analysed by Hawkeye has about 2,000 to 4,000 pixels.
The problems that could be encountered in interpreting a picture are indicated in
Fig. 1, which is a noisy visual scene in which it is difficult to pick out any meaningful shapes or objects. Somehow, however, the human eye and brain can
detect that it is a spotted dog drinking detect that it is a spotted dog drinking
water in a stone-strewn street (provided the picture is presented the right way up). To a computer, of course, it would be a meaningless jumble of black and white splodges. The aim of AI is to crack the
mystery of how intelligent people can extract sense from such an apparently

WIRELESS WORLD JANUARY 1981

Fig. 2. A line drawing correctly interpreted by David Waltz's program for computer vision.
meaningless visual 'noise'.
According to Professor Michie, "The higher centres visual information to the enough to do more than give hints and enough to do more than give hints and
prompts." From these partial stimuli, the prompts." From these partial stimuli, the
brain constructs meaning, he says, from a large repertoire of stored 'models' of the real world held in the brain's memory. The earliest AI experiments in vision, such as the Freddy robot at Edinburgh,
reduced noise by being limited to simple reduced noise by being limited to simple
'block worlds' in which the only objects had simple, straight-line edges. The main task in the low level (noise reducing) analysis was to find, trace and segment boundaries defining homogeneous areas -
in other words, to find the edges of blocks. in other words, to find the edges of blocks.
Even in a simple block world with a limited number of objects and specially lit to avoid shadows, this was a difficult task; for example, when blocks partially obscure each other so that the computer has to try
to build up images of whole three dimensional objects from two-dimensional line drawings in which the edges of one block might be obscured in many places by other difkes. Any one object also obviously has ferent angles. David Waltz of the University of Illinois developed a sophisticated computer vision system which could use lines (see Fig.2) to represent not only the and other physical attributes.
A great deal was learnt fr
the block world, although it was clearly too restricted to be of much use in a real world of irregularly-shaped objects which can be of view-points. Yet Hawkeye, which of view-points. Yet Hawkeye, which
'looks' into just such a variable real world, still employs similar basic principles in abstracting information from the noisy picture, although the interpretation is far nore complex and subtle than just prodac
 end of sensory analysis is the speed with which information can be processed. many thousands of picture elements with
many different measurements needed at each element, it is clear that the computer
should be able to perform calculations on should be able to perform calculations on
all elements very quickly. Traditionally, however, computers have been able to process information serially, i.e. only one
calculation can be performed This has been satisfactory for most commercial and industrial data processing needs because the speeds of the processors (performing hundreds of thousands or
even millions of instructions per second) have been satisfactory. Recently, however, new types of array processors have been developed. These consist of a network of many little processors which can operate independently of each other but within a
co-ordinated plan. This technique is ideal co-ordinated plan. This technique is ideal
for computational vision tasks which require the parallel processing of a variety of information.
Michael
Michael Duff at University College, language for the Clip-2 parallel array anguage for the Clip-- parallel array
processor which is capable of carrying out ow-level image analysis far more efficiently than by other means.
The professor of electronics at Brunel University, Igor Aleksander, is developing
a pattern-recognition machine which exploits the recent availability of low cost microelectronics memory chips to store information. His machine will have a network of such memory chips, each of which will be used to identify, say, an object in a scene. It will accept tv quality pictures as input; as the picture comes in, it will be analysed and compared with the 'keys' in
the memory chips. The chips commuthe memory chips. The chips commu-
nicate with each other to indicate whether or not they have identified the object or an aspect of the object. Professor Aleksander believes that such a system is similar to the neural structures in the brain, wher inked by association in order to identify people, images, letters of the alphabet, etc. The Hawkeye 'system, however, does not rely on any new types of computer
processor. It also does not attempt to be processor. It also does not attempt to be
totally automated and is designed to operate in interaction with people who can
help to supplement its intelligence help to supplement its intelligence of images relating to geometric and topo-
logical data found in the environment belogical data found in the environment be-
ing viewed. It also contains 'intelligence' ing viewed. It also contains 'intelligence'
information needed to make sense out of information needed to make sense out of
the images, such as the fact that roads and the images, such as the fact that roads and
rivers run under bridges, that buildings rivers run under bridges, that buildings
stand vertically or that, say, in a view of a dock area, ships move on the sea area and
different types of ship have particular different types of ship have particular characteristics. Like most current AI de-
velopments, Hawkeye does not attempt to be a general purpose intelligence capable of instantaneous adaptation to any environment. For each task it is doing, it has to be given information about that particular
slice of the world and it is intelligent with that slice of life.
Much of the criticism levelled at AI in the past was aimed at some rather silly claims made by pioneer artificial intelligentsia, such as a statement by Herbert
Simon and Allen Newell of the CarnegieMellon University in Pittsburgh in 1958
Mend that: "There are now, in the world, machines that think, that learn and that create. Moreover, their ability to do things
is going to increase rapidly until - in the is going to increase rapidly until - in the
visible future - the range of problems thay can handle will be co-extensive with the range to which the human mind has been applied." This idea of the universal robot is still a long, long way over the domains is the AI jargon word - machine intelligence is indeed flourishing. Given its library of background information and a simple language with which to commuready able to automatically produce primitive maps, provided it is given guidelines, such as indications of landmarks near a road. It is also beginning to be able to monitor chip movements in the San Francisco Bay docks and motor traffic on a tions like "What is this building?" and "How high is it?" when the user points to particular part of an image with a special pointer.
Future
Future work in computational vision is likely to develop the themes started in developed in systems like Hawkeye. On
dorld and now ber the one hand, there is a lot of work going into low level analysis of sensory input to array processors could play a signeificant role in this. At the other end there is work into psychological understanding of human perception. In the middle, the AI expert engineer is trying to produce
working models of machines that can 'see'. In industry, the most obvious need is for robots that can recognise objects but, as Hawkeye has shown, computational vision
has many other potential benefits.

Speech understanding
Speech understanding - computer 'ears' - poses a similar type of problem as com-- poses a similar type of problem as com-
putational vision. Brian Pay of the mard computer research team at the National aid "People are extrely ingfficient
spech
unders
n
understanding but brilliant at speech Speech recognition is concerned with tion into sounds, words and sentences This is equivalent to the low level visual analysis and is often literally a noisy jumle. At a party, for example, a person will be bombarded with a jumble of voices and anderstanding particular voices and conversations. Computer speech under tanding started with low level speech recognition. There have been systems o he market for about a decade which can spoken in isolation by the person who rained the machine. When the computer being trained, the operator repeats a ser words to the machine. The voice pat erns of the operator for each word are peaks them in a working situation, the nput pattern is matched against those in the computer memory and, if found, the ppropriate word is undersoly
The more difficult task wh ust beginning to be overcome is continuous speech understanding, where the computer can understand a stream of words spoken naturaly. This is extremely
difficult. At the physical level it is a com plex task to identify particular words be cause people do not enunciate word learly and crisply, words merge into each ther, people swallow the ends of word and sentences, miss out words, etc. Bu processes of making sense out of them is till insufficiently understood, as with finding meaning in visual images.

AI research has tackled the problem by analysing linguistic components, such as speech characteristics. In addition, the machine needs to be given information about the nature of the world in which it is functioning to help it understand speech, ust as a cenice forw ic a a " "thot"" would interpret the command shoot! in range.
Those continuous speech understanding omputers that have begun to emerge from clearly defined domains but they show suf ficient progress to indicate that there is no insuperable barrier, although at present they are limited and slow. IBM, for xample, has developed an automatic equipment which can understand words most used words taken from words and sentences used by lawyers in submitting US patent applications in laser technology. Although it can recognise words with a 91 per cent accuracy and type them out auto-
matically, a 30 second burst of takes about 100 minutes before it is typed out.

Computer controlled speech synthesizers
Although computers find it difficult to see or hear no evil (or anything at all), they ind it relatively easy to speak. Ironically, which sems to make com main capability yet automatic speech requires relatively little intelligence compared with other AI tasks. Electronic sound synthesizers have
been around for a long time and it is now

ortable "turtle" drawing device built by the Department of Artificial Inteligence at obot. The microprocessom runs a sub-sest of the LOGO Do programming language. Each button hoves the turtie forward when given a numerical input for distance, the "right" button furns it on the spot clockwise when given a numerical input in degrees of rotation. The Untle carries a drawing pen and can leave a trace of its movement path - that is, it can novices, using drawing as the context. With the device they can write programs for drawing simple regular shapes.

WIRELESS WORLD JANUARY 1981 easy to generate an artificial voice. It is also ossible to store record human speech in computerised form. A data base of words
and phrases recorded by a person can therefore be stored in a computer and can then be joined together to respond to a particular enquiry under the control of a computer program
Many companies already use computer matically answer enquiries and requests from dealers, salesmen and customers. The computer-based System X telephone
exchanges being introduced by the Post exchanges being introduced by the Post
Office (see News, November 1980 issue, p.52) will also use automatic voice response based on human speech recording to provide a variety of new automated services. There is also a growing range of consumer products that can 'speak', from educational aid and an automatic language translator to cookers and ovens. From a computer programming point of view,
however, voice output is no more difficult han putting out information in any other
The main problem with speech reproduction is making the artificial response ound natural. With synthesized speech this is difficult because voice quality is dependent on the physiological character-
istics of the throat and breathing. When recorded voices are used, the problem is overcoming artificial pauses between words or phrases when they are 'spliced' oge her tow torm a particuard response and ferent emphasis or inflexion depending on its context in a sentence. This is being tackled more through patient study of tacked more psychology and perception than by
huny technical breakthrough.
Man-machine
communication
One of the important reasons for wanting computers to see, speak and listen is to assist in communicauion between communication typically takes place through a visual display unit. The information is keyed in and responses are presented on the screen. Although the words used in such a dialogue may be
English, the 'language' available for the communication is usually extremely limited and inflexible - an error can be caused if a full stop is missed out in some cases or if a word is even sigh mis-spelt. natural language communication which allows all the flexibility and natural dialogue characteristics of ordinary human interaction. This is essentially a subset of the task being tackled with speech understanding systems except that there is no
problem about recognising the words being put in. The question is how to understand the meanirig of a sentence. Once again, AI work in this field is taking place within an acceptance of the need for dedialogue systems assume a basic 'script' or scenario'. This typifies the particular interaction taking place in which there is a

Wireless world january 198 discussed and of objects and ideas being discussion, such acticular pattern to the relationship.
A milestone in natural language systems was a doctoral thesis in 1971 by Terry Winograd at the Massachusetts Institute of Technology. It was rooted in the block world that was then an intrinsic part of AI,
robotics and compurational vision work The Winograd program displayed a block world scene on a screen containing a variety of blocks each with its colour printed on it as a word, ogether with a ask the 'robot' to carry out a variety of tasks in a natural language dialogue (see Fig.3). Here are some excerpts from a
dialogue between a person and a simulated dialogue between a person and a simulated obot operating on such a set of toy blocks:
erson: How many blocks are not in the Computer: Four of them.
Person: Is at least one of them narrower than the one which I told you to pick up? omputer: Yes, the red cube
a pyramid be supported by a Computer: I don't know.
Person: Will you please stack up both of he red blocks and either a green cube or omputer: O.K. (carries out the action on the display screen)
Person: Had you touched any pyramid be fore you put the green one on the little cube? Computer: Yes, the green one Computer: While I was stacking up the red ube, a large red block and a large green cube.
Person: Why?
Computer: To get rid of it.

Xerox Corporation has developed a system called GUS, as part of its work on new, more naturally human information public information services that might

Fig. 3. Winograd's simple world for understanding natural language. A screen display
these blocks, each of which has a word printed on it indicating a colour.

xample, a business executive specifies hat hishes to interact with a GUS computerised travel consultant. The dialogue -

Client: I want to go to San Diego on May
GUS: What time do you want to leave? Client: I must be in San Diego before 10 GUS: Would you like P.S.A. flight 102 that arrives at $9: 15$ a.m.? Client: What is the next flight? GUS: Air California flight 310 that leaves at $8.30 \mathrm{a} . \mathrm{m}$. and arrives at $10.00 \mathrm{a} . \mathrm{m}$. Client: Ill take the first one.
GUS: In what name should I make a rese
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego whic

These kinds of dialogues are an impor tant aspect of the AI development which comes closest to the core of real human starting point - expert systems. The expert, called a ‘domain specialist'. Exper This robot arm, for light,
assembly tasks, is a successo to the "Freddy" robot useed by the Department of Artificial
Intelligence at Edinburgh University for experiments in computer control of robots. The
arm has ioints, each actuated by arm has joints, each actuated by
an electric motor. Torque is transmitted between motor and joint by a gear train and in two of joints are measured by incremental shaft encoders. These are interrogated by a 16
bit microprocessor which computes the difference between where the joint is and
where it ought to be and where it ought to be and,
allowing for the speed of joint, issues a command signal to the corresponding motor.
ystems exist in domains as varied as geolgy, biochemistry medical diagnosis and applied mathematics.
The expert computer system holds the distilled knowledge of the domain expert, programming language using statements that are easy to interpret. The form of hese statements might typically be: "IF ondition x AND condition y BUT NOT ondition z THEN there is a reasonable poor/good chance that condition A is true is over 80 degrees AND door 53 is locked HEN there is a reasonable (0.6) probabiity that a fire will break out.
Expert systems perform as well as sometimes better than-the doma ence formed their basis. What is more, th xpert system program is written in under andable human reasoning terms so that nyone can understand the process used by computer to reach a decision and the ing accurate. The expert system progran an even be used as a tutor.
Expert systems are of practical use B.P., for example, is currently workin expert system for an oil rig which will be able to help identify any faults and explain the most appropriate course of action with out having to immediately send for a Red Adair. And the multinational group help find new oilfields! The image created by science fiction riters of mankind being superseded by race of superintelligent robots has been th image most associated in the popular mind
with AI. The reality, however, could be that AI helps to turn the computer into genuine workhorse and intellectual friend of people by removing the mystique of automation, simplifying and humanising the interaction between man and machine
and providing a window into the "mind" of the computer. So when a computer is trying to warn us of something dangerous about to occur, we can question it and necessary, heed its warning

Off-air frequency reference

Seven outputs from 1 Hz to 10 MHz , phase locked to the Driotwitch transmission

by D. I. Stansfield

Although I.s.i. techniques have simplified the construction of a on the stability and adjustment of the reference oscillator. Unless this oscillator is temperature controlled and adjusted in conjunction with a standard frequency source, even a than 1 part in 10^{5} accuracy.
This unit provides a 10 MHz signal, phase-locked to the BBC 200kHz
Radio 4 transmission from Droitwitch The long term accuracy is that of the BBC standard and the error due to over an ambient temperature range of 0 to $30^{\circ} \mathrm{C}$.
The heart of the frequency reference con tains a quartz crystal oscillating at 10 MHz Logic divides this output to produce a 200 kHz signal which is compared in phase with the transmission as shown in Fig. 1 . active-loop filter and used to fine-tune the quartz crystal with a varicap diode. The active-loop filter enables the loop-lock conditions to be accurately specified, the static phase-error to be kept small and, in the oscillator frequency to be kept close to its locked frequency due to the memory action of the filter time constants. The 200 kHz signal is received with a tuned ferrite-rod aerial, see Fig. 2, followed by a
two-stage tuned amplifier and a two-stage limiter. A buffered 200 kHz output from provide outputs down to 1 Hz .
The main problem associated with using Radio 4 as a frequency standard is the removal of amplitude modulation. Even after full limiting, residual modulation
appears as jitter on the phase detector out-

Fig. 1. Block diagram
Fig. 2. 200kHz receiver and limiter.

WIRELESS WORLD JANUARY 1981

crystal stability is about 20 p.p.m. above
crystal stability is about 20 p.p.m. above
$90^{\circ} \mathrm{C}$, the control range required is

$$
20 \times \frac{30}{90} \times \frac{10^{7}}{10^{6}}
$$

i.e. 66 Hz at 10 MHz .

This can be adjusted by C_{23}. For high-gain loops, the lock-up range is $2 \sqrt{ } \omega_{\mathrm{n}} K_{\mathrm{v}}(1)$
where $K_{\mathrm{v}}=K_{\mathrm{p}} K_{0}$ N. For the 4046 in this configuration, K_{p} is $10 \mathrm{~V} / \mathrm{rad}, K_{\mathrm{o}}$ by measurement is $93 \times 2 \pi / 10 \mathrm{rad} / \mathrm{V}$ at 10 MHz , and the division ratio N is 50 . Therefore, K_{v} is $10 \times 932 \pi / 50=11.68$
factor ζ of 0.707 is satisfactory from (1)

$$
\begin{gathered}
\frac{66 \times 2 \pi}{50}=2 \vee 0.707 \omega_{\mathrm{n}} 11.68 \\
\therefore \omega_{\mathrm{n}}=2.08
\end{gathered}
$$

Considering the loop filter components in Fig. 4

$$
\begin{aligned}
& \mathrm{T}_{1}=C_{1} R_{1} \mathrm{~T}_{2}=C_{1} R_{2} \\
&=\frac{K_{\mathrm{v}}}{\omega_{\mathrm{n}}^{2}}=\frac{2 \zeta}{\omega_{\mathrm{n}}} \\
&=\frac{11.68}{(2.08)^{2}} \\
& \mathrm{~T}_{1}=2.69 \therefore \mathrm{~T}_{2}=0.0 .679 \\
& 2.08
\end{aligned}
$$

Because $\mathrm{C}_{1}=1 \mu \mathrm{~F}, \mathrm{R}_{12}=1.3 \mathrm{M} \Omega$ and $\mathrm{R}_{2}=670 \mathrm{k} \Omega$. To increase the loop filtration, C_{2} can be included, but to avoid affecting loop performance $10\left(\mathrm{C}_{2} \mathrm{R}_{1 / 2}\right)<$ time is roughly $5 / \omega$,
ime is roughly $5 / \omega_{n} \omega 2 \mathrm{~s}$.
Measurements of across the tuning diode show less than 10 mV pk-to-pk noise; which is equivalent o $93 / 10 \times 0.01=0.09 \mathrm{~Hz}$ at 10 MHz .

Fig. 3. Phase locked 10 MHz oscillato

Fig. 4. Active-loop filter.
Fig. 5. Divider chain with $\times 2$ switching.

74
from the receiver. To minimize signal frequency and counter noise, buffers are in-
cluded before and after the divider chain in Fig. 5, and separate earth and power supplies are provided. Double-sided printed circuit board is also important with
one side used as an earth plane. The power one side used as an earth plane. The power
supply in Fig. 6 uses 1A voltage regulators. and smoothing capacitors to provide the low noise level necessary for a clean output signal.
Adjustment of the receiver should be carried out using an oscilloscope to observe the waveform before the limiting stages. The aerial trimmer and each tuned stage is is at a maximum. If the envelope amplitude is unstable and does not exhibit normal modulation variations, the receiver is probably oscillating and the feedback source should be investigated. The gain
control is adjusted to give 10 V pk-to-pk free from amplitude variations;
Adjustment of the loop is carried out by with no input signal - 1.e.d. extinguished, with input signal connected and loop close to lock - l.e.d. pulses at the beat frequency, with input signal connected and oop locked -1 .e.d. on.
To adjust the loop set point, disconnect the input signal and apply +10 V to pin 2
of IC
6 $>10 \mathrm{~V}$. Apply 0 V to pin 2 of IC_{6} and check output voltage to diode is $<0.5 \mathrm{~V}$. Resiştor R_{34} can be adjusted if required. Next, adjust R_{32} for 5 V to the diode with no drift. Reconnect the input signal and set measure the ambient temperature and adjust the varicap voltage with C_{25} as shown in Fig. 7.
Because indication of lock is provided, if the unit is connected to an 8 -digit 10 MHz counter, count rates up to 10^{7} per second or 10^{8} in ten seconds can be accurately
The current system used by the BBC employs satelite transmitters at esterg-
len and Aberdeen which are phase locked to the main Droitwitch transmitter. In locations where a subsidiary transmitter signal is comparable in magnitude to the nal may be obtained with the aerial rod in line with the second transmitter
If greater short-term signal purity is required, the crystal oscillator can be temperature stabilized to allow a narrower lock ively, a narrow band crystal filter centred 200 kHz can be included before the limiter to reduce the energy of the a.m. however, increase the cost of the unit.
Within the next five years Radio 4 will be changed to 198 kHz , although it will maintain the present accuracy. To lock onto 198 kHz , the receiver must be modfied to include a mixer and narrow-band crystal filter to pick out the required sideband as shown in Fig. 8.

TOP QUALITY REBUILT TV TUBES

Rebuilt on the most modern equipment to original manufacturers' specifications


```
NRDC-AMBISONIC
UHJ SURROUND SOUND DECODER
```


S5050A STEREO AMP $\begin{gathered}\text { verf high } \\ \text { performanco }\end{gathered}$

Complete kit only $\mathbf{E} \mathbf{6 9 . 9 5}$ + vat

INTRUDER 1 Mk. 2 RADAR ALARM
 With Home Office Type approval

 Complete kit $\mathbf{£ 5 2 . 5 0}$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

Complete Kit PRICE: $£ 49.95$ $95+$ VAT (3 head model aviatale) Alsoavalable readt buit and tested

 Dyramic range $>90 \mathrm{~dB}$
30 mV sensitivity ${ }^{19008}$

Please send SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley Burton-on-Trent (0283) 215432 Telex 377106

F.m. detectors

An earlier article, in the April 1980 issue, was devoted to a survey and a classification of a.m. detectors. In this article the author similarly examines f.m. detectors.

The purpose of a detector is, of course, to abstract information from a modulated sig. nal. Often the wanted information is copy of the waveform of the modulation content but it is not always so. For example an f.m. detector may be required to give an output for a.f.c. purposes and
here a filter is incorporated to eliminate modulation-frequency components from the output.
F.m. detectors are sometimes called discriminators or frequency discriminators
but a discriminator differs from in that it is required to produce an outpu substantially proportional to the deviation of the frequency (or phase) of an alternating input from some predetermined value (BS 301 5013). This suggests that the func-
tion of a discriminator is similar to that of a demodulator and is more specialised than that of a detector which is therefore a more general term. This distinction is not perfectly observed in the terminology of substantially the same performance and purpose are the Seeley-Foster discriminator and the ratio detector.
Frequency discriminators are sometimes called phase discriminators. The tion and phase modulation is simple: in frequency modulation, for a constant-amplitude modulating signal, the phase shift of the carrier is swept between limits which are inversely proportional to the
modulating frequency: in phase modulation the limits are fixed. Similarly in phase modulation, for a constant-amplitude modulating signal, the frequency of the carrier is swept between limits directly
proportional to the modulating frequency: proportional to the modulating frequenc are fixed. In practice this means that one form of modulation can be converted to the other by including a 6 dB per octave filter in the modulating-signal path and, by use
of such a filter, the same circuit can be used for the detection of f.m. or p.m. signals. For simplicity all the circuits mentioned in this article are referred to as f.m. detectors or discriminators. An examination of the various types of
f.m. detector suggests that they all belong to one of the following four categories: (a) those consisting essentially of an f.m.

Fig. 1. Block diagram illustrating the form of a number of types of f.m. detector.

Fig. 2. Simple f.m. slope detector

Fig. 3. Round-Travis f.m. detector

to-a.m.

 cuits in which the output is dependent on the degree of overlap of two sets of carrier frequency pulses(c) those using a counter circuit as a discri minato ciple.

This classcation will now be examined in detail.
F.m. detectors incorporating an f.m.-to-a.m. converter Perhaps the most obvious way of detecting
an f.m. signal is to convert the frequency an f.m. signal is to convert the frequency
variations into corresponding amplitude variations of the carrier which is then ap plied to an a.m. detector. A number of
types of f.m. detector operate on this prin-
ciple which is illustrated in Fig.
Slope detector. A simple way of achieving f.m.-to-a.m. conversion is to make use of the slope of the skirts of the amplitude/frequency characteristic for a tuned circuit. If the resonance frequency of the tuned cir-
cuit is so chosen that the centre frequency of the signal falls on a suitable part of the characteristic, as shown in Fig. 2, then the output is a signal which is amplitude-modsame modulating signal If this by the applied to an a.m. detector, the frequency modulation will be ignored but the amplitude modulation will give an output at the modulation frequency. The curvature of he skirts of the resonance curve causes minimised by choice of Q value and resonance frequency for the tuned circuit but the distortion is still serious.
Round-Travis detector. In this form of detector the distortion caused by curvature of the tuned-circuit characteristic is reTwo similar tuned push-pull principle. $\mathrm{L}_{1} \mathrm{C}_{1}$, resonant at a frequency f_{1} above the entre frequency and the other above the onant at f_{2} an equal amount below the centre frequency. The signals developed across $\mathrm{L}_{1} \mathrm{C}_{1}$ and $\mathrm{L}_{2} \mathrm{C}_{2}$ are detected by eparate a.m. detectors, their outputs beng connected in series opposition. One possible circuit diagram for a Round-Tra-
vis detector is shown in Fig. 3 in which simple sampling-type detectors are shown. The operation of the detector is illustrated in Fig. 4. At the centre frequency equal outputs are received from the two diodes so that the net output is zero. At
frequencies above the centre frequency D_{1} gives a larger output than D_{2} and the combined output is positive: at frequencies elow the centre frequency D_{2} gives brger output than D_{1} and the combined ndicates by its polarity whether the in stantaneous frequency of the input is above or below the centre value and by its magnitude the extent of the deviation. Fig. 4 shows that the complementary and $\mathrm{L}_{2} \mathrm{C}_{2}$ yields a straighter overall ampliude/frequency relationship than is possible from a single tuned circuit. The verall relationship shown in Fig, 4 has the -shaped form charac The Round-Travis
ime used in f.m. receivers but has lon since been abandoned in favour of some of he alternative types described later. It has o main disadvantages
$\mathrm{L}_{1} \mathrm{C}_{1}$ and $\mathrm{L}_{2} \mathrm{C}_{2}$ must be so adjusted that symmetrically disposed about the centre requency. Thus alignment of the detector circuit is more complicated than for umber of the alternative types which requency. It responds to any amplitude modula-
of the input signal. To obtain maxi-

WIRELESS WORLD JANUARY 1981 mum signal-to-noise ratio, an f.m. receiver should respond only to frequency modulation amplitude modulation which may be present. Some f.m. detectors can be designed to have inherent a.m. rejection and these are naturally preferred. Seeley-Foster discriminator. This f.m. detector uses an arrangement of diodes
similar to that of the Round-Travis circuit but the method of providing the diode input signals is different. The method makes use of the phase relationship between the voltage across the tuned
secondary winding of a transformer and that across the primary winding. Whether the primary winding is tuned or not, these two voltages are in quadrature when the applied signal is at the resonance frequency of the secondary winding. At fre-
quencies above resonance the secondary voltage lags the quadrature condition to an extent dependent on the frequency deviation and at frequencies below resonance he secondary voltage leads on the quadrature condition to an extent depending on
the deviation.
If therefore the secondary winding is centre-tapped and if a sample of the primary voltage is injected into the centre tap, as shown in Fig. 5, the voltages V_{1} and V_{2}
at the two ends of the secondary winding vary with frequency in the same way as those from the two tuned circuits in the Round-Travis circuit. This is shown in the vector diagram of Fig. 6 which illustrates the relative magnitudes of V_{1} and V_{2} at These diagrams apply when the primary voltage is equal to half the secondary Thus
Thus a Seeley-Foster circuit could be made up from the circuit shown in Fig. shown in Fig. 7. An alternative circuit which simplifies the design of the transformer is to use a capacitive link between primary winding and secondary centre tap as shown in Fig. 8. By this means the
whole of the primary voltage is injected into the secondary circuit.
The introduction of the capacitor C_{p} interrupts the diode circuit. Normally when a diode detector is fed via a series both shunt-connected to ensure that the capacitor can be charged once per cycle when the diode conducts and can discharge through the load resistor when. the diode is cut off by the input signal. In can certainly charge when the diodes are driven into conduction by the input signal

Fig. 7. One circuit for a Seeley-Foster
Fig. 7. One cir
discriminator.

Fig. 8. Two forms of Seelëy-Foster circuit using a capacitive link between primary and secondary windings.

Fig. 9. Simplified circuits for (a) balanced and (b) unbalanced forms of ratio detector with no provision for a.m. rejection.

but, for the periods when the diodes are cut off by the input signal, a discharge path must be provided between the righthand plate of C_{p} and the junction between $R_{1} C_{1}$ and $R_{2} C_{2}$. Moreover this path must
not introduce significant damping of the primary circuit. There are two techniques which are commonly adopted to achieve his end:
As shown in Fig. 8(a) an inductor can be introduced between the secondary have an inductance such that its reactance is large compared with that of C_{1} and C_{2} at he operating frequency.

- If the link between $R_{1} R_{2}$ and $C_{1} C_{2}$ is tween the coupling capacitor and $\mathrm{R}_{1} \mathrm{R}_{2}$ junction as shown in Fig. 8(b). Damping of the primary circuit can be minimised by using sufficiently large values for R_{1} and
R_{2}. As shown C_{1} and C_{2} can be replaced by ${ }_{a}$ single equivalent capacitor, C_{3}. The Seeley-Foster discriminator was extensively employed in early f.m. receivers. Alignment is straightforward, needing only a signal source at the centre
frequency and linearity can be made frequency and linearity can be made
acceptable. Its chief disadvantage, shared with the Round-Travis circuit, is that it responds to any amplitude modulation of
the input signal. Thus to obtain the high signal-to-noise ratio of which an f.m. rethe Seeley-Foster circuit by one precede amplitude-limiring stages to minimise any a.m. content in the received signal.

Ratio detector. By a simple modification the Seeley-Foster discriminator can be made capable of a useful degree of a.m.
suppression. The detector circuit so produced is known as the ratio detector and it is not surprising that it rapidly displaced the Seeley-Foster discriminator. The way in which the ratio detector operates can be approached in the following way.
If one of the diodes in the circuit of Fiss 7 or 8 (a) is reversed, the net output is the sum of the voltages across the individual diode loads (not the difference as in the Seeley-Foster circuit). Thus for an input to the circuit at the centre frequency there is mately equal to the sum of the peak input voltages to the diodes: this compares with If the frequency of theeley-Foster circuit. If the frequency of the input is displaced diode load increases whilst that across the other decreases as shown for V_{1} and V_{2} in Fig. 6 and the combined voltage output
ends to be independent of frequency and thus of frequency modulation. This combined output is proportional to input signal amplitude uning indicator.
Even though th
is constant (for a given input amplitude) is constant (for a given input amplitude)
the voltages across the individual reservoir capacitors C_{1} and C_{2} vary with the frecitor can be used as the source of modula-tion-frequency output from the detector. In a balanced ratio detector circuit the unction of C_{1} and C_{2} is earthed and the detector output is taken from the non-earthy terminal of C_{1} (as shown in Fig. 9 (a))
or C_{2}. In an unbalanced ratio detector one end of the combined diode load is earthed as shown in Fig. 9(b) and the detector output is taken from $\mathrm{C}_{1} \mathrm{C}_{2}$ iunction. In both types of circuit the constant voltage across the series-connected reservoir capa-
citors C_{1} and C_{2} is divided in a ratio determined by the peak inputs to D_{1} and D_{2} : this is the origin of the name of the circuit. To make the circuit capable of a useful degree of a.m. rejection the diode load tuned circuit feeding the detector is heavily damped. A large value capacitor is then connected across the load resistors to give a
time constant approaching one second
Fig． 10 illustrates these modifications ap Fig． 10 illustrates these modifications ap－
plied to an unbalanced circuit．The voltage across the long－time－constant network is in practice approximately equal to the peak value of the input signal to the diodes and adjusts itself to any permanent change in mentioned this voltage can be used to operate a tuning indicator．
Suppose there is a momentary increase in the peak amplitude of the signal input to the ratio detector．The voltage across the adjust itself to equal the peak value of the spike and as a result the diodes are driven heavily into conduction and their forward resistance increases the already－heavy damping on the tuned circuit thus momen－
tarily reducing the voltage gain of the previous stage，minimising the effect of the spike．
spike． tion in the peak value of the input signal to work again cannot register the change and the diodes are cut off so removing the damping imposed by the diode load on the tuned circuit．Thus the gain of the previous stage is momentarily increased signal．In fact the removal of the diode load damping can result in overcompensa－ tion and a common technique is to include

Fig．12．Equivalent circuit of Fig． 11.
low－value resistors in series with the diode as shown in Fig 11 series with the diode as shown in Fig．11，the resistance being rejection．Thus the inclusion of the long time－constant circuit enables very shor term changes in input signal amplitude to be minimised：in fact the ratio detecto operates as a dynamic limiter． unbalanced ratio detector which differ from that described earlier in that it con－ tains only a single reservoir capacitor C_{3} in place of the two shown in earlier circuits． quency output is developed across C_{3} can be explained as follows．
If we replace the secondary and tertiary windings of the transformer by equivalen of Fig． 11 take the form shown in Fig． 12 ． Both diodes conduct together once pe carrier cycle and，because of the long tim constant $R_{3} C_{4}$ ，the period of conduction is very brief and occurs as the combined diode input signal $\left(V_{1}+V_{2}\right)$ reaches its peal charged to the peak value of $\left(V_{1}+V_{2}\right)$ During this brief conduction period D_{D} and D_{2} can be regarded as short circuit and D_{2} effectively connects C_{3} across the value of V_{2} ．For an input signal at the value of V_{2} ．For an input signal at the C_{3} is charged to a voltage equal to one half that across C_{4} ．For the remainder of each carrier cycle when D_{1} and D_{2} are non cept for a small leak through any resistor in parallel with it．
One cycle later，during the next period of conduction of D_{1} and D_{2} ，the voltage across C_{3} is adjusted by charge or
discharge to agree with any change in the peak value of V_{2} ．Thus a copy of the changing value of V_{2} is built up across C and this is，of course，a representation of the changing phase relationship between primary and secondary voltages which，in
turn，represents the frequency－modulated waveform of the input signal．
To be continued

Literature received

 Switching diodes from Unitrode are listed anddescribed in brochure（SSD－600D），which con－ tains details of both commercial and JAN－
JANTX devices．Unitrode（UK）Ld，Deep－ JANTX devices．Unitrode（UK）Ltd，Deep－
dene House，Bellegrove Road，Welling，Kent dene House，Bellegrove Road，Welling，Kent
DA16 3PY． Serck Controls have expanded the range of series of leaflets，covering various types witl delays of 1 ns to 1000 ns ．Leaflets available from Serck Controls，Rowley Drive，Coventry CV3
4 WW．

Colour brochure from SE Labs contains brief information on the company＇s range of
multichannel oscillographs，signal conditioners and transducers．Frequency response equip－ ment is also mentioned．Obtainable from The Instrumentation Division，SE Labs（EMI）Ltd，
Spur Road，Feltham，Middx TW14 OTD．

Application notes on the use of Exar dever Application notes on the use of Exar devices as
ine－wave converters，modems，and carrier de－ tectors，with some general information on the use of op－amps is available from Rastra Elec
tronics Ltd，275－281 King Street，Hammer tronics Ltd， $275-281$ King Street，Hammer－
smith，London W6 9 NF ．
Radio Link is a radiotelephone message－hand－ ling system from Blick which is described，to gether with a radio pager，in a leaflet available
from Blick International Systems Ltd，Blick House，Techno Trading Estate，Bramble Road，
Swindon，Wilrs．SN2 6 ER．

IN OUR NEXT ISSUE

Wind speed and direction indicator

Constructional design for the yachtsman displays digi－ tally the wind direction at the masthead to within 2° and its speed from around 1 knot to 100 knots．There＇s also an analogue direction indicator．Powered by a 12 V source， the instrument takes 290 mA d．c．

Morse code decoding

A computer programme for the Wireless World scientific computer that will decode Morse code signals picked up on a radio receiver into normal language text．It will iden－ tify and reject interference pulses and will also cope with differences in senders＇characteristics．

＇Just detectable＇distortion

This article examines signal characteristics which control the detectability of distortion to the ear and reviews at tempts made to determine＇just－detectable＇distortion Also some actual examples of what the author considers to be＇just－detectable＇distortion levels in audio equip－ ment．
On sale 21 January

Improved parity checker

Moving check detects double errors

by N．Darwood

An improved method of parity checking is described，which avoid errors．
Before proceeding with the suggested innovation，it may be helpful first to see ity－checking systems work．
In the particular sense of error detection in a group of digits，the parity of a number is the sum of its digits．For example，the parity of 142 is odd，because the sum of its even parity．Numbers in the binary nota tion are similarly assigned even or odd parity if the sum of the constituent 1 s is even or odd：1000100，for example，ex hibits even parity，while 0110100 has odd parity．
Parit
pallel parallel data channels，in which they are often called horizontal and vertical parity ither case an y，as indicated by Fig．1．In either case an extra bit（the parity bit）is
added to the number．It is made either a or a 0 such that the total number of 1 s overall（i．e．in the number plus the parity bit）is even．Some examples are show below：

Data	P
1000100	0
1110111	0
0110100	1
1101101	1
0110011	0
0100000	1

Data plus the parity bit is called a word in Fig． 1
． 0 in pronsmisiod a word 0 An error in transmission changes a 1 to each word（a horizontal row in the firs method of Fig．1；a vertical column in the second method）is checked by counting the number of 1 sin each word．If odd，then an error has occurred．If two errors occur in a pass undetected，but three can be detected as an error．The fact that two errors are not detected is a disadvantage of conventiona parity checkers dvantag
The new coding method came into being following a requirement for a check on a serial digital data channel，as in Fig． 1 （a）， Having reviewed the two methods of how a parity bit can be employed the obvious end of each word．Unfortunately，the data

stream could not be interrupted to insert the parity bit，which meant that an extra channel，acting as a vertical parity bit，
would have to be used．A first attempt at a would have to be used．A first attempt at a
solution is shown below，where each co－ lumn is of even parity．

```
Parity -.. 11001010
Data \(\ldots 11001010\)
``` will detect one error，two errors will pass undetected．But what is worse is that here there is \(100 \%\) redundancy．
Figure 2（a）emphasizes that the＇check ing a vertical column，so that，for a serial data channel，the checking area can be rotated through a rightangle as shown in Fig．2（b）．This forms a vertucal parity bi which checks horizontal data bits．Any single error within the checking area will
be detected because it will make the parity odd but，what is more，now two errors will be detected，as will any number of errors in a block of 12 （with one exception）．To understand why this is so，assume only a
two serial data bit checking area．The checking area is then depicted thus，

\section*{：四搨品}

A typical sequence would be as show below，with the checking area at one posi－

At the receiver，the parity－checking circuit will check for even parity over the 3－bit area．For this illustrative case，all single， tion）will be detected，as will a block of four errors．
How the multiple errors are detected can be shown by passing the error pattern through the checking area，as in Fig．3（a），
where any odd number of errors in the checking area indicates an error．
The only pattern not detected is

\section*{\({ }_{\mathrm{E}}^{\mathrm{E}} \mathrm{E}\)}

As this pattern passes through the check ing area，an even number of errors is
\({ }^{82}\)

Fig. 4. Logic diagram of parity generation and checking.
indicated. Fig. 3(b) shows why this is so. In a working parity checker, it is conve nient to use eight channels because 8 -bit
i.cs are readily available. At the transmit ter, the parity-generating logic consists of shift register, which forms the eight fictitious channels from which the parity bit is generated by an 8 -bit-input parity-generat ment.
At the receiver, shown in Fig. 4(b), the same circuit is used to form an 'assumed
parity \({ }^{\prime}\) which is compared with the actual received parity bit. The comparison shown below

This logic function is the final exclusive-
Or in Fig. 4 (b). Finally, the checking area

\section*{for the 8 -channel system is}
\[
x \times x \times x \times x \times \underset{x}{x}
\]

The one combination of errors not de tected is shown below
\[
\underset{x}{x} \times x \times x \times x \times x
\]

Note that this error pattern is the checking area, rotated through \(180^{\circ}\). Why it is not thectecking area
The principle of moving parity, can be extended to embrace the parallel system shown in Fig. 1 (b). Fig. 5 shows a check
ing area which is easy to implement in hardware. Even so, it is difficult to find an error pattern in a block of 36 that can pass undetected, other than the checking area rotempt is shown in Fig 6 to der or how the checker works. 6 to demonstrat

Further reading
Electroonic Engineering, April 1979, 'A Moving Mathod

Multi-colour display reading meters are still used extensively in control and inspection
"go, no-go" applications is that "go, no-go" applications is that
they are less tiresome to read than they are less tiresome to read than
their digital counterparts. Ho ir
Hower, Eurcka Electronics Ltd
have announced the availability of have announced the availability of
the MCDPM digital the MCDPM digital panel meter
which could provide an answer to which could provide an answer to
the aforementioned drawback in digital meters as the colour of its
display indicates the range into display indicates the range into
which the input voltage falls. The levels at which the displayed digits change colour are adjusted by trim-
mer potentiometers. mer potentiometers. In the stan-
dard version three ranges are indicated by green, yellow and red digit colours and three c.m.o.s.s. compatible outputs are provided, one of
which goes "high" when the relevant colour is displayed to allow
such devices as audible warning such devices as audible warning
units, etc., to be driven with the aid
of a suitable buffer Colouring of units, etc.,. to be driven Colouring of
of a suitable butfer Col
the digitits is achieved by using filthe digits is achieved by using fil-
tered backlighting. The 0.5 in high, tered backlighting. The 0.5 in hingh,
\(31 /\) digit \(1 . c\). d. display has a viewing
angle of 150 angle of \(110^{\circ}\), a contrast ratio of
better than \(20: 1\), and its decimal better than \(20: 1\), and its decimal
point position is selectable at the point position is selectable at the
input connector. An input iminput connector. An input im-
pedance of greater than \(100 \mathrm{M} \Omega\) is quoted for both the N311 and N111 rypes wiich orer electrical specifica-
acy and other acy and other cectso have f.s. reso-
tions. Both type
lutions of \(\pm 199.9 \mathrm{mV}\) or \(\pm 1.999 \mathrm{~V}\) lutions of \(\pm 1999.9 \mathrm{mV}\) or \(\pm 1.999 \mathrm{~V}\)
as standard as standard, with two other ranges
as options. Many variations on the as options. Many variacions on the
standard versions can be provided on request, including up to five digit colours in one unit. Standard
models are priced at around \(£ 68\) each. Eureka Electronics Ltd, Castle House, 27 Castle Street,
Brighton, East Sussex BN1 2HD. Brighton
ww305

Instrument cases A manufacturing service for small batches of custom-made equipment
cases can now be provided by I cases can now be provided by Ley
Clair Precision, who claim that they can produce cases quickly, and to any design in most materials and
finishes from a simple sketch. This service is expected to be of particular interest to companies manufacturing specialized equipment in
small quantities and to research and small quantities and to research and
development departments requiring prototype equipment cases.
Costs are said to be generally comCosts are said to be generally com-
petitive with those for adapted stanpeatitive with those for adapted stan-
dard equipment cases, and will depend upon size and features
required Le Clair Precision, The required. Le Clair Precision, The
Green, Theale, Reading, Berks. WW306

WW305

Power supplies Recently introduced to the market
is a range of 13.5 V d.c. stabilized is a range of 13.5 V d.c. stabilized
power supplies power supplies specifically de-
signed for use with amateur radio signed for use with amateur radio
equipment. The DRAE range from Davtrend. Ltd consists of 3, 6,12
and 24 A output current versions all and 24A output current versions all
with fuse-protected outputs cur with fuse-protected outputs, cur-
rent limiting, current foldback, thermal overload shutdown and
crowar crowbar overvoltage protection.
Surge current ratings are typically Surge current ratings are typically
twice as high as the continuous current ratings given above. Davtrend
Ltd, \(89 \mathrm{Kimbolton} \mathrm{Road}\), Portsmouth, Hants.
wW307
Keyboard encoder Up to 144 keys can be interfaced with a c.r.t. terminal using the n.m.o.s. MM57499 keyboard en-
coder from National Semiconduccoder from National Semiconduc-
tor, and a \(4-12\) line decoder. If interfacing of only 96 keys is
required, no external required, no external components
are needed, as this 28 pin i.c. proare needed, as this 28 pin i.c. pro-
vides direct interfacing, with serial transmit and receive, ,to a \(12 \times 8\)
matrix keyboard. The MM57499 matrix keyboard. The MM57499
also features a 400 word per minute also features a 400 wort per minge
burst rate and phrase storage, burst rate and phrase storage,
which allows the user to program in
and store up to 11 tey.stoks of and store up to 14 key-stokes of
data which can be recalled using a data, whing this be recalan be either a
single key. This series of characters or control func-
tions. Full upper and lower case tions. Full upper and lower case
ASCII, numeric and function encoding are "on-chip" and a "lockout", feature is also provided to
prevent wo or more keys frem be \begin{tabular}{l}
prevent two or more keys from be- \\
ing activated at the same time. \\
\hline
\end{tabular} ing a ativated at the same time.
National Semiconductor (UK) Ltd, National Hemiconductor
301 Harpur Centre, Horne Lane,
Bedford. Bedford.
WW308

Chopper op-amp An input offset voltage of \(1 \mu \mathrm{~V}\) and an input bias current of of 10 pA maxi-
mum at \(25^{\circ} \mathrm{C}\) are features of the mum at \(25^{\circ} \mathrm{C}\) are features of the
ICL 7650 chopper-stabilized opICL7 750 chopper-stabilized op-
amp from Intersildatel. Only two amp from Intersildatel. Only two
external capacitors are required for
soring the storing the correcting potetntials on
the chopper amplifier nulling inthe chopper amplifier nulling in-
puts. Chopper drive and other control circuits are included on the
chip, although the 14-pin package chip, although the 14-pin package
version also has provision for an
external clock if required. Chopping spikes at the input and output
are said to be minimized due to a unique design approach. The to gain bandwidth product is. 2 MHz z, the
slew-rate is \(2.5 \mathrm{~V} / \mu \mathrm{s}\) and the com-lew-rate is \(2.5 \mathrm{~V} / \mu \mathrm{s}\) and the com-
mon-mode and power supply reiec-Hon-mode and power supply reiec-
tion is 120 dB The 7650 is available in both T099 and 14 -pin plastic or
ceramic d.i.p. versions and is inceramic d.i.p. versions and is in-
ternally compensated for unity gain fernally compensated for unity gain
operation. In addition, the output clamp circuit reduces overload re-
covery problems so that the device covery problems so that the device
may be used a a precision compar-
atoor. Intersildatel (UK) (Utd, Spamprogetti House, Basing View,
Basingstoke, Hants RG21 2YS, WW309
P.c.b. buzzers

Sound output levels of between 70 and 83 HBput levels of between 22 cm can be ob-
and tained from these miniature p.c.b.b.-
mounting buzzers from Highland mounting buzzers from Highland
Electronics Ltd. Four types are available, in a range from 1.75 to 30 V d.c., and the current consump-
tion is 25 mA maximum. The frequency of the tone produced is quency of the tone procuced is
400 Hz . Both flat and right-angle-
mounting versions can be obtained mounting versions can be obtained,
all with dimensions of \(22 \times 15 \times\) with dimensions of \(22 \times 15 \times\)
10 mm and weighing 7 gm each. Highland House, 8 Old Steine,
Brighton, EastSussex Brighton, East Sussex. BN1 1EJ. ww310

\section*{Prototype wiring} system
An interesting alternative to wire wrap point-to-point wiring has re-
cently been launched in the UK. The system, known as Vuick Connect, uses an insulation
displacement technique originally displacement technique originally
developed by Bell Laboratories, developed by Bell Laboratories,
and provides sockets or terminals
and which are compatible with standard
p.c.b. holes. Each socketterminal p.c.b. holes. Each sockettrerminal
has an insulation displacement connection tine on the underside of he board, which can accept two 30
gauge solid wires to provide four gauge solid wires to provide four
connections. To make a connection conmections. To make a connection
the wire is simply pushed, with the
pencil provided into the pencil provided, into the tine which penetrates the insulation and forms
a gas tight contact with a typical
tese resistance of \(10 \mathrm{~m} \Omega\). Because no
nire strinping is necesery wire stripping is necessary the
system is very quick, especially system is very quick, especially
when "daisy chain" connections are required. An inmortant advantage
of Quick Connect is the re-usable of Quick Connect is the re-usable
ine, which allows wired boards to tine which allows wired boards to again. Another advantage is the low
profile, 6.35 mm compared with rofile, 6.35 mm compared with
16.64 mm for wire wrap. At present 16.64mm for wire wrap. At present
Quick Connect can be used in three ways. Sockets and terminals can be
supplied in andoler strips for in spplied in bandoleer strips for in
sertion by the user, customers setion ban be factory fitted with
boards contacts, or standard socket
the the contacts, or standard socket
boards can be purchased for general prototyping work. Astralux Dynromics Ltd, Red Barn Road,
nrightlingsea, Cochester, Essea. WW31

\begin{abstract}
14-bit d-to-a
signal to noise artio of typically
5dB in the audio band is one of the A signal to noise ratio of rypically
85 dB in the audio band is one of the
features of the TDA1540 14-bit reatures of the TDA 1540 14-bit digital to analogue converter from
Mullard Ltd. This converter is deMulard Ltd. This converter is de-
signed for use as a digital signal
processor in sound recording and processor in sound recording and
reproduction systems and includes
"on-chip" dat latches which elimireproduction systems and includes
"on-chip" data latches which elimi-
nate the need for a deglitching cir-on-chipp data latches which elimi-
nate the need for a deglithing cir-
cuit at the output. Other specificanate che ned output. Other specifica-
cuit at the or
tions for the TDA1540 are a nontions for the TDA1540 are a non-
linearity error of less than 3. \(30^{-5}\), a linearity error of less tha \(1 \mu\) to \(1 / 2\)
current setting time
1.s.bof the 4 mA full scale output,
, I.s.b. of the 4 mA full scale output,
300 mWV power dissipation and t.t.
. 300 mW power dissipation and.
compatible outputs. Mullard Ltd, Mullard House, Torrington Place, London WCIE 7HD ww311
\end{abstract} equipment is backed by the resources of a specialist company with a formidable
reputation. To find out more, fust fill in the eputation. To find out more, just fill in the coupon, and get your free literature today.

\section*{KEITHLEY}

1 Boulton Road Renis Lta Telephone (0734) 861287
Telex 847047 Quality. With machines like the 169 shown above. \(31 / 2\) digits; \(.25 \%\) accuracy. A no-no-nonsense price.

\section*{From \(£ 79\) + V A.T. Keithley D.M.M test \\ LOWCOST \\ Cost. And at a price even fewer can match.} From \(£ 79\) + V.A.T.; Kelliey D. M. . test

\section*{HCHOUAIIT Eremer WDECIOTO \\ Keithley D.M.M. Test Equipment: \\ Choice. The Keithley range spans Pocket,}
\(31 / 2,4^{1 / 2,} 5^{1 / 2}\) digit D.M.M.'s; many with I.E.E.E.
options. So we can be sure of havin exctlo options. So we can be sure of having exactly Built to a standard that very few people can

 The range grows
bigger...better... The range grows
bigger...better... \\ \section*{\title{
New Profile Amplifiers- Two New Series
}} \\ \section*{\title{
New Profile Amplifiers- Two New Series
}}

N
N
N
N
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & Output Power RMS & Distortion Typical at 1 KHz & Slaw Rato & Rise Time & Signal/Noise Ratio DIN AUDIO & Price \& VAT & \\
\hline m0S120 & \[
\begin{aligned}
& \text { 60W } \\
& \text { into } 4-88
\end{aligned}
\] & 0.005\% & 20V/us & 3, \({ }^{3}\) & 100dB & \[
\begin{aligned}
& \mathbf{£ 2 5 . 8 8} \\
& +£ 3.88 \\
& \hline
\end{aligned}
\] & \\
\hline mos200 & \[
\begin{aligned}
& 120 \mathrm{~W} \\
& \text { into } 4-8 \Omega
\end{aligned}
\] & 0.005\% & 20V/43 & 3,4 & 100d8 & \[
\begin{aligned}
& \text { f33.46 } \\
& +〔 5.02 \\
& \hline
\end{aligned}
\] & \\
\hline
\end{tabular}

ELECTRO-TECH COMPONENTS LTD.
64 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

\section*{S 100}

Do You Have All These Facilities On Your S 100 System, With Just Two Boards?

\section*{SEMEL}

MICROCOMPUTER - HARDWARE - SOFTWARE
3c Barley Market Street, Tavistock, Devon PL19 0JF
Tel. Tavistock (0822) 5247. Telex: 45263

\section*{Happy Memories}
\begin{tabular}{lll}
4116 & 200 ns & \(\mathbf{£ 2 . 9 5}\) \\
2114 & 200 ns & \(\mathbf{£ 3 . 4 5}\) \\
2708 & 450 ns & \(\mathbf{£ 4 . 7 5}\) \\
2114 & 450 ns & \(\mathbf{£ 2 . 9 5}\) \\
2716 & 5 volt & \(\mathbf{£ 7 . 9 5}\)
\end{tabular}

Memorex Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, £19.95 per 100

Low Profile I.C. Sockets by 'Texas' Pins
Pence
Memor 81416182022242840
101112161720212837 Memory Upgrade Kits for Apple, 2020 , TRS 80 etc
from \(£ 30\), please phone 1 . request. Government and Educational Orders welcome

All prices include VAT. Postage FREE on orders
\[
\begin{aligned}
& \text { over } £ 10 \text {, otherwise aad } 30 \mathrm{p} \text {. } \\
& \text { Access \& Barclaycard welcome }
\end{aligned}
\]

HAPPY MEMORIES, DEPT. W.W GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY Tel. (054422) 618

\section*{WIRELESS WORLD JANUARY 1981}

\section*{eleldtor PRINTTED CIRCUIT DOARDS}

Did you know that Elektor is the only monthly electronics magazine to sumply printed circuit boards for featured projects? At present over 300 different boards are available with designs covering many aspects of the hobby, ranging from microcomputers to electronics
in the car Disco and live music is the theme for the January in the car. Disco and live music is the theme for the January
issue and constructional articles include a versatile multichanne mixer, a 200 Watt power amplifier, a sound level meter and a very unusual VU meter

Place an order with your newsagent or order direct from Elektor Publishers Ltd., 10 Longport, Canterbury, Kent.
Price. 60 p (+20 p postage and packing)

\section*{CHILTERN ELECTRONICS}

\section*{B.C.M. BOX 8085, LONDON WC1N 3XX}

TEL: 0494714483

\section*{DEC PDP8/PDP11 COMPUTERS}

PDP LSI- 11 System running RT-11: LSI-11 Processor + 32K Memory + Diablo 30 Disk Drive, takes RK05 Compatible 2.5 MByte disks. Disk Controller. Two DLV11 Serial Interface cards. Complete system \(£ 2500\) DP8E Processor, teletype and DMA Interface cards. As new DP8F Computer, 16K Core, programme eletype interface . . : \(\mathbf{£ 6 5 0}\) DP8L Processors, with memory expansion unit, total 12 K core, and teletype interface
All above are compact table-top computers, working and ready to use. Software available includes all the major languages.

\section*{TERMINALS}
G.E. Terminet 300: Modern micro-controlled 30 cps terminal, RS232 ASCII with correspondence quality processors. With electronic keyboard Brand new \(£ 400\) Second-hand working
£400 CENTRONICS \(10 . . . \mathbf{E P O}^{2}\) working order with stand \(\quad \mathbf{£ 3 5 0}\) LEAR SIEGLER 200 Series Ballistic printers, brand new. Cost over \(£ 1200\) A.C.T. 165 cps Matrix Printers
\(£ 625\)

\section*{DISKS}

Diablo Series 302.5 MByte exchangeable disk drives IBM 3470 Floppy Disk Drives, new Above prices exclude VAT

The above items are only a small selection of our second-user equipment; please telephone for a complete list. We hold a full range of spares for most DEC PDP8 and PDP 11 computers.

91

\section*{HI FI YEARBOOK AND HOME ENTERTAINMENT 1981}

Published again in November, this new 1981 edition in larger magazine size means more comprehensive coverage of the whole range of home intertainment equipment, from aerials to headphones, from microphone video recorders and from radios to electronic organs.
 lus details of stockists, Hi Fi Yearbook and Home Entertainment 1981 is essential reading for enthusiasts and buffs.
Available from leading newsagents and bookshops from 1st November 1980. Price \(£ 3.00\).
you have difficulty in obtaining your copy order direct from the
publishers @ \(£ 3.50\) inclusive

\section*{ORDER FORM}

To: General Sales Manager, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Please send me
copy/copies of the Hi Fi Yearbook and Home Entertainment 1981 @ E3.50 including postage and packing. Cheque/postal order
should be made payable to IPC Business Press Itd

\section*{सninf \\ L.E.D.s 125 and 2}
\(\begin{array}{llll} \\ \text { RED } \\ \text { YELLOW } & 1+100+ & 1000 \\ & 08 & .069 & .058\end{array}\) or \(\begin{gathered}\text { or } \\ \text { REEN }\end{gathered}\) CARBON FILN
RESISTORS E12 SERIES

Ham Bands with \(1.5-30 \mathrm{MHz}\) receive with built-in 150 MHz
frequency counter plus option of \(0-1,5 \mathrm{MHz}\) receive and /orany transceiving application \(1.8-30 \mathrm{MHz}\)
RADIO SHACK LTD For Commun
Trio testgear

 O. 9 -2.30 onty Word wide exp RADIO SHACK LTD
188 BROADHURST GARDENS, LONDON NWG 3 AY
Cabloe: Redio Shack, Lonidon, NWE. Tolex: 23719
WW-n35 FOR FURTHER DETAIS

\section*{RADIO SHACK LTD for DPAKE}

T.I. LOW PROFIL I.C. SOCKETS \(\qquad\)
Please add \(£ 1.50\) handling charge and \(15 \%\) V.A. We also stock rransistors, diodes. TTL, CMOS, capacitors,
switches, connectors etc. Free catalogue available to trade
customers only, Enquiris welce
Elarrison Bros.
Electronic Distributors
22 Milton Road, Westcliff-on-Saa
Tol. Southond-on-Sea (0702) 32338
WW-044 FOR FURTHER DETAILS

ज口■■■

 pramandung

弗 \# \# \# \# EXHIBITION \&
 March 11-13, 09.3018.00 daily Wembley Conference Centre
Exhibition admission \(£ 1.00\) A complete study of microprocessors in use. Microsystems ' 81 consists of a wide ranging exhibition, together with a three day conference and three oneday microprocessor awareness courses. Together they comprise an invaluable opportunity for those interested in microprocessor applications and the latest develop ments in microelectronics technology Take advantage of this unique event to examine and discuss a comprehensive range of microprocessors, peripherals, memory products and personal computers together with the software which accompanies them. For Conference details write to: The Conference Administrator IPC Conferences Ltd, Surrey House 1 Throwley Way, Sutton, Surrey SM1 4QQ
For *advance exhibition tickets at \(£\) each, write to: Microsystems Tickets IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4QQ
*Please note applications for tickets cannot be accepted after February 23, although tickets will be available at the door price \(£ 1\). Cheques should be made payable in UK sterling to IPC Business Press Limited.

\section*{untrown}

Get ready for cu want to spread on custars caps and singon ever got aflll rid weate we ve on CBWor ok or creat modeller? use us Trucks and the air Getinvo amateur whatyou feel. Ge firs of Tell us what very first issue and getthis CB WOrld -the worlds 121 .
pubuisned by lipctionic

\section*{RECHARGEABLE BATTERIES}

\section*{trade enquiries welcome}

Full range available to replace 1.5 volt dry cells and 9 volt PP type
batteries, SAE for lists and prices. \(£ 1.45\) for booklet, "Nickel Cadmium Power," plus catalogue.
\(\star\) New sealed lead range now available * 'Write or call at
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands. \(021-3549764\)

\section*{TV TUBE REBUILDING}

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes colour and mono. Standard or custom tyilt units for tubes,
lisher lished or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. Full training courses are individually tallored to customers'
requirements.

For.full details of our sérvice contact Neil Jupp FAIRCREST ENGINEERING LTD. Willis Road, Croydon, CRO2XX
\(01-6841422,01-6898741\)
ww-043 FOR FURTHER DETAILS

Anyway yau look at it, -15.83 . it's small. Except in performance
Ancers' new OEM-1 iigital
panel meter module is ultra Daner meter module is ultra-
compact size. In EM Qrice and ites, it is also litra-low in
prow consumption
- thanks to the lat - thanks to the latest micro-OEM-1 s.stion techniquats. So
makes it especially smince new designs of hand hateld, fit
low-power multimeters, digital thermometers, pH meters,
moisture meters, resistance
 also means it can revtalal display
many panel-mounting digital or anany panel-mounting digital or
analogue meoters at it anspay price. OEM-1
and andiogue display price. OEM-1
is ijstone of Anders' modern
range of digita
pand

7

WW - a76 FOP FUPTHER DETAILS

TOP LOADING HI FIL CASSETTE DECK. Very Ininied quantity of fritish made Thorn

LINSLEY HOOD CASSETTE RECORDER 1

\section*{}

(ern
lease send \(9 \times 4\) SAE for lists giving fuller details and price break
Instan easy ordering, telephone your Oswestry (0691) 2894

EMUKTAFABE XLR CONNECTORS

 BELCLERE AUDIO TRANSFORMERS

 NO-727 1046

\section*{ELECTRONIC VALVES} WANTED
All Types Receiving, Transmitting, Industrial
PL504 - PL802 - PCL805 - CV131-CV136 -
807-813-2K25, Etc.
Phone/write to:
PYPE HAYES RADIO LTD 606 Kingsbury Road 021-373 4942
ww - 026 FOR FURTHER DETAILS

\section*{PRINTED CIRCUITS}

FOR WIRELESS WORLD PROJECTS
\begin{tabular}{|c|c|}
\hline & \({ }^{88.50}\) \\
\hline Audio compressor /limiter-Dec. 1975-1 s.s. (stereo) & ¢4.25 \\
\hline F.m. tuner (ad & E5.00 \\
\hline Cassette recorde & E5.00 \\
\hline Audio co & \\
\hline Time cod & \\
\hline alarm & \\
\hline iopreamplifier-November 19 & \\
\hline Stereo coder -A Aril \(1977-1\) di.s. 2 - & \% \\
\hline keyboa & \\
\hline & \\
\hline Sortion & \\
\hline & \\
\hline Morsemaker-June & E4.50 \\
\hline Metal detector-July 1978 -1 d.s. & E3.75 \\
\hline Oscilloscope waveform store-October 1978-4 & \\
\hline Hator for car aliernator-A & 00 \\
\hline & \\
\hline 200 MHz 2 frequency y meter \(-J\) anuary \(1979-1 \mathrm{~s}\) s.s. & ¢7500 \\
\hline h peftrormance preamplifier-February 19 & E5.50 \\
\hline Distorion meter and ossillator-July 1979 & \\
\hline ving coil preamplifier-August 1979 & \\
\hline timode franseiver-October 1999-10 d.s. & \\
\hline Digital capacitance meter-April 198 & \\
\hline & \({ }_{\text {E18.50 }}\) \\
\hline spectrum analyser-May \(1980-3 \mathrm{~s} \mathrm{~s}\). & \({ }_{\text {E10.50 }}\) \\
\hline litisection equalizer-June 1980-2 s.s. & c8.00 \\
\hline Floating-bridge power amp-Oct. \(1980=1\) s.s. (12V or 40 V & \\
\hline Boards are glassfibre, roller-tinned and drilled. Prices V.A.T. and U.K. postage. & inclüde \\
\hline Airmail add \(20 \%\), Europe add 10\%, Insurance 10\%. & \\
\hline Remittance with order to: M. R. SAGIN 23 KE & \\
\hline
\end{tabular}
ww-033 FOR FURTHER DETALS

\section*{Memories}

2114-300ns 1k \(\times 4\) SRAM £2.25 4116-200ns \(\quad 16 \mathrm{k} \times 1\) DRAM \(£ 2.61\) \(2708-450 \mathrm{~ns} \quad 1 \mathrm{k} \times 8\) EPROM \(\quad \mathrm{E3.60}\) \(\begin{array}{lll}2516-450 n s & 2 k \times 8 \text { EPROM } & £ 7.92 \\ 2716-450 \mathrm{~ns} & 2 \mathrm{k} \times 8 \text { EPROM } & £ 7.92\end{array}\) \(2532-450 \mathrm{~ns} \quad 4 \mathrm{k} \times 8\) EPROM £23.40

Please add 50p for postage and VAT Send SAE for price list

\section*{STRUTT LTD.}

ELECTRONIC COMPONENT DISTRIBUTORS MANUFACTURERS \& SUB-CONTRACTORS to the ELECTRONIC INDUSTRY

3c Barley Market Stree
Tavistock
Devon, England PL19 OJF
Tel. Tavistock (0822) 5439/5548 Telex: 45263
Telever

\section*{TRANSCENDENT 2000 \\ SINGLE BOARD SYNTHESIZER}

COMPLETE KIT ONLY
\(£ 168.50\) + VAT!

\section*{NEW! TRANSCENDENT POLYSYNTH}

Cabinet size \(31.1^{\prime \prime} \times 19.6^{\prime \prime} \times 7.6^{\prime \prime}\) (rear) 3.4" (front)

AS FEATURED IN Electronics Today International COMPLETE KIT From \(£ 320\) + VAT

 MULTI-VOICE SYNTHESIZER

Another superb design by
synthexizer expert Tim Orr synthecizer expert Tim
published in
Electronics Today International
COMPLETE KIT
ONLY
\(\mathbf{£ 2 9 9}+\) VAT!

\section*{}

Cabinet size \(36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}\) (rear) \(3.3^{\prime \prime}\) (front)

A PROGRAMMABLE THAT THINKS IT'S A COMPUTER
For the price of a good scientific

MPA 200100 WATT (rms into \(8 \Omega\)) MIXER / AMPLIFIER

COMPLETE KIT

SYNTHESIZER KITS ON PAGE 97; MORE KITS AND ORDERING
INFORMATION ON PAGE 95 INFORMATION ON PAGE 95

de luxe easy to build linsley hood 75W STEREO AMPLIFIER £85.00 + VAT

 contros sond tope monitorng while istortion is is eess than 0 o. \(01 \%\).

BLACK NOLS
MUSIC EFFECTS DEVICE - AS FEATURED IN ELECTRONICS TODAY INTE R NATIONAL!

 COMPLETE KIT ONLY \(£ 49.80\) +VAT (single delay line Ce Luxe version (dual delay ine system) al
 SEIKO Alam Cnomorotom
coll
 Many orher modelili including solar powered
and 1 Oom water

SEND 25p for our illustrated
PRICES

SAFGAN presents DT-400 series from \(\mathbf{£ 1 5 9}+\) V.A.T HIGH-QUALITY DUAL TRACE OSCILLOSCOPES A BRITISH PRODUCT Model DT-410 DUALTRACE \(5 \mathrm{mv} /\) div \(10 \mathrm{MHz} @ \mathbf{£ 1 5 9 + \text { VAT }}\)
 SPECIFICATION FOR ALL MODELS

Hz (DT-415)

\(-200 \mathrm{~ms} / \mathrm{div}\) in 18 cal steps
* TRIGGER: Level Co
NORMAL TV Trige

\section*{Momut}

XY AClITV. Mat or 15 div \(X=C H Y\)
* Graticule blue ruled \(8 \times 10\) div \(6.4 \times 8 \mathrm{~cm}\)

 WW - 057 FOR FURTHER DETAILS

\begin{tabular}{|c|c|c|c|c|}
\hline Memories & \multicolumn{3}{|r|}{8085 Series} & \\
\hline 1-24 & 25-99 & & \(1-24\) & 25.99 \\
\hline 2716 & 4.73 & 8085A & 6.80 & 4.10 \\
\hline 2732 * 15.65 & 13.65 & 8085A-2 & 8.50 & 6.50 \\
\hline 2114L-3* 2.99 & 2.75 & 8155 & 9.45 & 8.96 \\
\hline 4116-3* 2.62 & 2.50 & 8155-2 & 11.81 & 11.20 \\
\hline *200 ns & & 8251A & 5.60 & 5.40 \\
\hline All components & & 8253-5 & 5.99 & 5.60 \\
\hline guaranteed new & & 8255A-5 & 4.99 & 4.80 \\
\hline full specification & & 8257-5 & 10.40 & 9.99 \\
\hline devices. & & 8279-5 & 8.30 & 7.50 \\
\hline
\end{tabular}

BDS Microsystem Designs Ltd 28 Pinewood Close, St Albans. Herts AL4 0DS
Telephone St Albans (0727) 31831

\section*{ELECTROVALUE \\ CATALOCUE \({ }^{1} 81\)}
as included FREE with December issue of PRACTICAL ELECTRONICS
It's work-bench size for keeping alongside your favourite journal for instant reference to stock and technical data.

With more to choose from than ever - all the
NEN
FARME items you hâve learned to depend on being Obtainable from Electrovalue PLUS MANY date. The V.A.T. inclusive price list that goes with it will hold for at least 4 months before the next one is issued.
Electrovalue - prices are ke with

 \(100 \mu \mathrm{~V}\) resolution. \(\mathrm{DC} / \mathrm{AC}\) current \(200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}\) resolution.
Resistance \(200 \Omega\). \(20 \mathrm{M} \Omega, 0.1 \Omega\) resolution Low resistance 28.2 and Resistance \(200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega\) resolution Low resistance \(2 \Omega\) and \(20 \Omega\),
\(1 \mathrm{~m} \Omega\) resolution Conductance ranges \(2 \mathrm{~ms}-20 \mu \mathrm{~S}-200 \mathrm{nS}\) £199.00 mains model
\(\mathbb{2 1 9 . 0 0}\) mains battery
8010 A \(31 / 2\) Digit LCD
8010A \(1 / 2\) Digit LCD
0MM Same spec as
8012 S
DMM Same spec as
8012A plus a 10 Amp
AC
AC/DC current range,
but no low resistance
f1199.00 mains model
\(\mathbf{f 1 7 9 . 0 0}\) mains battery,
\(8024 \mathrm{~A} 31 / 2\) Digit hand
held LCD DMM with peak
held LCD DMM with peak
hold Level Detector
and continuity tector.
DC volts 200 mV - 1 KV .
\(100 \mu \mathrm{~V}\) resolution.
AC volts \(200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}\) resolution. \(\mathrm{DC} / \mathrm{AC}\) current \(2 \mathrm{~mA}-2 \mathrm{~A}\) Conductance 200 ns. Peakhold of \(A C\) or 0 DC volts and curren. Level detector operates around +0.8 V reference. Audio tone o \(8020 \mathrm{~A} 31 / 2\) Digit hand held LCD DMM. spec as per
8024 A with extra conductance range of 2 mS but no peak hold, level or continuitit ranges.
Complete with carrying tase. \(£ 112.00\) 8022A \(31 / 2\) Digit hand held LCD DMM. Spec
Fs per 8020 A but no conductance ranges and slight reduction on accuracy. Was
£89.00 now reduced to 775.00 carrying case \(£ 7.00\) extra.

\section*{Also avalable a range of
accessories including}
accessories incluadig
current shunts, EHT
probe f
Tomperature probe and
touch and hold probe.
Full details on request.
Thie warranty period on
all items shown is y year
other than the 8020
Electronic Brokers
\(1 \quad\) 61-65 King's Cross Road
\(\square \begin{aligned} & \text { London, WCC1X 9LN } \\ & \text { Tel: } 01-2783461 \text {-Telex } 298694 \\ & \text { Pices sonot include carrage o r VAT. }\end{aligned}\) wW - 062 FOR FURTHER DETAIIS

\section*{CS1830 from TRIO}

WIRELESS WORLD JANUARY 1989
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

 Increrible Price!!!

World-beating Oscilloscope Offers
Electronic Brokers \(\square \begin{aligned} & 6165 \text { Kings Cross Ro } \\ & \text { LondonWC1X SLN. }\end{aligned}\) \(\rightarrow \begin{aligned} & \text { LondonWC1X SLN. } \\ & \text { Tel:01-278 3461. Telex } 298694\end{aligned}\) \(\mathrm{WW}-063\) FOR FURTHER DETAILS

CHOICE OF 3 PRIMARY INPUTS

 FREEPOST facility.(U.K. only). TO ORDER \(\qquad\)

TRANSFORMERS

\section*{TELEVISION SOUND IS GOOD!}

Yes it's true - but you'll need to listen through a Minim even the news suddenly comes to life when you can hear al the detail that you expect from High Fidelity equipment. Connect the Minim Television Sound Tuner to the amplifier disturb others.
Further information will only cost you 12 p - stamp out
Name
Address

Minim Audio Limited, Lent Rise Road, Burnham MINIM AUDIO

\section*{Marshall's}

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.

Lots of old friends, but also many new products including Leader test gear, Crimson Hi Fi Modules, Rechargeable NI Cad batteries and chargers (very competitive). More omponents including SN74ALS series, new tools etc
for Arrow Hart switches; Giaquariond liane Mulard; National; Siemens Thiair (Thandor); Texas, Thomson; CSF etc. Send for our latest catalogue. ree to industrial customers: individuals.
A. Marshatl (London) Ltd. Kingsgate House,
Kingsgate Place,
Industrial Sales: 01-328 1009 Mail Order: 01-624 858224 hr service Retail branches: London: Glasgow: Bristol

WIRELESS WORLD JANUARY 1981

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC 3N 1BJ TELEPHONE: 01-488 \(3316 / 8\)

\section*{SPECIAL WINTER VALUES! TELETEXT Kits, Components \& Ready-Builts}
 cTi715-now onlv \(£ 135+\) VAT \(=\varepsilon 155.25\)
\[
\begin{aligned}
& \text { V.G.E. Professional Decoder and other W.W. } \\
& \text { versions also available }
\end{aligned}
\]

COMPONENTS ALSOD AVAAABLE SEPARATELY
CHARACTER GENERATOR AND MEMORY I.C.S. Catronics

 Walling ToN, SURERY.
Telehone: \(01-6696700\).
wW - OO9 FOR FURTHER DETAILS

Wireless world january 198
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORIDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS \({ }^{33}\) whitehors foid crovo

WIRELESS WORLD JANUARY 198
To ohtain further details of any of To obtain further details of any of
the coded items mentioned in the Editorial or Advertisement pages Editorial or Advertisement pages
of this issue, please complete one of this issue, please complete
or more of the attached cards or more of the attached cards entering the reference number(s).
Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why no have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Australia: Gordon \(\&\) \\
 Malbourne socoo, Vicitio
\end{tabular} & Japan: Westeen Publications Distribution Agenc
170 Nishi-4.-chome, Shinjuku-Ku
Tokyo 160 okyo 160 \\
\hline Balgilum: Agence 1 Rue dela. Petite 8russels 7 & Lebanon: Levant DistriMakdesi Sireet Halim Hanna Bldg. Beirut \\
\hline Avenue West, Toronto 195 Ontario & \\
\hline dromou Street, P
4528 , Nicosia & \\
\hline & New Zealand: Gordon 8 Gotch (New Zealand) Wellington 2 \\
\hline Finland: Rautakirja OY, Koivuvaarankuje 2,
01640 Vantaa 64, Finland & \\
\hline France: Dawson-F Palaisegu & \\
\hline Follerstrasse? & Portugal : Livaria
Bertrand s.a.r.l
Apartado 37, Amadora \\
\hline P.O. Box 315,245 Syngrou Avenue,
Nea Smyini, Greece. & Central News Agency Ltd, P. \(O\) Box 1033, Johannesburg \\
\hline Halländ: Van Ditmar N.V., Amsterdam 1004 & Spaln: Comercial
Atheneum s.a. Consejo de Ciento, \(130-136\) Barcelona
15 \\
\hline Mansion Ext, Madame
Cama Road, Bombay 1 & Swaden: Wenne
Williams A B. Fack 25 Stockholm 30 \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland

\section*{Postage will
be paid by
bicer \\ Postage win
be paid by
Licensee}
business reply service
Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY

CR2 9PS

Wireless World Subscription Order Form Wireless Worid, January 1981 ww 161
UK subscription rates
USA \& Canada subscription rate 1 year: \(\$ 33.80\)
1 year: £10.00
13.00

Pleasé enter my subscription to Wireless World for 1 year IPC BUSINESS PRESS Ltd.

\section*{Name.}

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a Servizio Estero, Via Mantegna 6 . 20154 Milan - Telephone 347051 Tèlex: 37342 Kompass

Japan Mr. Inatsuki. Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Telephone : (03) 585-0581

United States of America Ray Barnes, \({ }_{*}\) United BC Business Press 205 East 42nd Street, New York, NY 10017 - Telephone : (212) 6895961 -Telex:421710 Mr. Jack Farley Jnr., The Farley Co., Suite 1548, 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch.
Elmatex Internation
P.O. Box 34607 ,
Los Angeles Calif.
Los Angeles Calif. 90034 U.S.A. Telephone : (213)
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605 , Ranna Building, Cleveland, Ohio 4415 Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co P.O. Box 2008, Miami Beach, Florida 33140 - Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia
30305. Telephone: (404) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Tex 77079 - Telephone : : (713) 7838673

Canada Mr. Colin H. MacCulloch International Advertising Consultants Ltd 915 Carton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269

\section*{The New Scopex \(14 \mathrm{D}-10\)}

A dual trace 10 MHz high sensitivity oscilloscope At a price of £230.00 + VAT.
incorporating all the latest high technology Ensures British leadership in the low cost high developments to bring you all these outstanding features as standard.
- \(10 \mathrm{~cm} \times 8 \mathrm{~cm}\) display.

2 mV sensitivity on both channels.
- Add and invert facility.

Probe compensation.
- Push button X-Y.

Trace locate
10MHZ (-3dB) over full display.
Complete with probes.
performance oscilloscope market. Distributors required in certain countries

ww - ol1 for further details

\section*{Electronic Brokers Ltd., 61-65 King's Cross Road, London WC1X 9LN. Tel: 01-278 3461. Telex: 298694}

 HEF. SETE PACKARD AM/FM Signal Generator 8640B \(£ 1500\) Variable Phase, Sine and Signal Generator \({ }^{2033}\)
Oscillator 10 Hz - 10 MHz Hz
V.H.F. Oscillator 3200 B
 U.H.F. Signal Genérator 612A
V.H.F. Signal Generator 6807 F
 8601 A,
frequencies.
KORTING
KO
KORTING
TV Colour Pattern Generator 82515
£325.00
Electronic Brokers Ltd, 61-65 King's Cross Poad, London WC1X 9LN Tel. 01-278 3461 Telex.' 29869

\section*{12-MONTH WARRANTY}

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.
ww - o60 for further detalls

MISCELLANEOUS
DIGITRON.
35 cps . Solenoid device with \(27 V \mathrm{VCC}\) coil
E95.00 ARE COVERED BY FULL 9O-DAY PARTS AND STATED. ARRANTY UNLESS OTHERWISE

Electronic Brokers Ltd., 61-65 King's Cross Road, London WC1X 9LN. Tel.: 01-278 3461. Telex: 298694 Hours of Business: 9 a.m. 5 p.m. Mon - Fri. Closed lunch 1.2 p.m.
Add 15 I VAT to All. PRIICES
w Carriage and Pac

SuRVIČ TRADING CO

\section*{FT3 NEON FLASH TUBE}

 SMiTHE ELOWEE

 CENTRIFUGAL BLOWER UNIT Aifflow Deve-
LOpment Lt. powered by G.E.C. \(230 / 250 \mathrm{~V} .2,850\)

 MICRO SWVITCHES ex. new equip
Sub. Min Honeywell Lever \(m=s\) type \(3115 m\)

\begin{tabular}{l}
E1.50 PRP 50 p ((E2.30 inc. VAT P P). \\
(Min. 10) N. S . \\
\hline
\end{tabular}
All Mail Orders - Callers
Ample parking space
Ample parking space
SERVICETRADING CO
SRVICE TRADNG CO
ACCOUNT CUUSTOMERS MIN. ORDEA EIO

\section*{Appointments}
```

Advertisements
accepted up to 12 noon
Monday,}22nd De-
cember, for February is
ing available.

``` LINE advertisements (run on): \(£ 2.00\) per line, minimum three lines BOX NUMBERS: \(£ 1\) extra. (Replies should be addressed to the Box Number in th PHONE: Eddie Farrell, \(01-661\) 3500, Ext. 8158.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

\section*{Chec
yourr
value \\ S5K (fir starters) to s15K + (high flyers)} consultancy, you will almost certainly miss the sor of opportunities you ought to go for.
Are you in design/senior test/RF/micros/ Qualified to

Ring in confidence Barry Barnett Engineering People London W1Y 4NL

Knight

ONE IN A MILLION?
Among the mor so leaving school or university this year there is a
hance that one - perhaps two - is destined to make a significant development in audio:
That person's first decision might well be to ioin QUAD in Huntingdon That person's sirst decision might well be to join QUAD in Hunting don,
At school, eo orshe will have erealised that amplifier design is not ust a
matter of havina a listen or a fiddle with stander At school, he or she will have realised that amplifiter design is not Just a
matter of taving a liston or a iddle with standard circuits and thei
variations. Later lill have come an adolescent stage of greaa variations. Later will have come an adolescent. stage of great
liscoveries..Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging
Following on from such childish distinguish between the characteristic impedance of the medium and the third row of the d ress circle and between peake of flux density and the
rather gooey substance fed by spoon to small rather gooey substance fed by spoon to small children. He or she will,
nevertheless, be sufficiently down to earth to know that one newton is bout the weight of the average apple.
in \(10^{6}\).
Well, drop
THE ACOUSTICAL MANUFACTURING COMPANY LIMITED

Road, Huntingdon, Cambs. PE 1870 \(\qquad\)

ELECTRONIC SERVICE ENGINEERS

\section*{Age 23-40}

Our Company specialises in both sales and servicing of Professional Sound and Lighting equipment.
We are te UK s leading Company in this specialised field
and and due to contin
the above raes.
Ap Applications are are invited from Electronic Service Engineers
who have had at least 3 years experience working with who have had at least 3 years experience working with
either Hi-fi. Studio \(P\) A. or s similar equipment.
Good salary either 1 Hi-fl, Studir
Good salar pus
and experience).

\section*{Roger Squire's}

Roger Squire Limited
Barnet Trading Estate Park Road Barnet Herts EN5 5SA Telephone:

\section*{AUDIO SYSTEMS DESIGN ENGINEERS}

Circa£8,000 ...join our Project Teams designing Professional Audio Équipment

Neve are leading designers and manu-
facturers of Professional Sound Control and Distribution Systems used throurol the world in Television, Film, Broadcasting and Recording Studios. We have immediate vacancies for Audio Engineers owork on the Design and Development exciting New Products for the Professional
We are looking for Senior Design
Engineers with several years experience of audio system design.
Qualifications are Degree or HNC but nay be acceptable instead of a formal qualification.
Neve employ over 400 people in the
U.K. alone and are able to offer very good
career prospects in a growing and successful company. Engineers appointed could expect the following benefits wher
appropriate:-
* Generous relocation package * Contributory Pension Scheme * Subsidised canteen
* Company Transportto/from
* Four weeks paid holida
* Overtime paid

Telephone, call or write for application
orm to: Valerie
form to: Valerie Chapman
Personnel Manager Personnel Manager,
Neve Electronic Lab
Cambridge House, Melbourn Royston, Herts. Tel: Royston (0763) 60776.

\section*{AgRICULTURAL
RESEARCH COUNCIL RESEARCH COUNCIL
LETCOMBE LABORATORY ELECTRONICS ENGINEER
}

\section*{Electronics} R\&D

Join us in the forefront of technology
MEDICAL PHYSIC TECHNICIAN III

\section*{Electronics Engineers}

\section*{Consumer Products}

Large American, multi-national company with extensive
Far-East manufacturing and engineering facilities opening Far-East manufacturing and engineering facilities opening,
European headquarters office in London - Spring of 1981 . Excellent opportunity offered to dynamic, well experienced
electronics engineer wift flair for customer-relations and excelient opportunity
electronics engineer w
international business. international business.
Will be required to coordinate technical requirements and
specifications and liaise between OEM and private label specificictions and liaise between OEM and private l.
customers and the company's Far East engineering. A degree or C\&G Full Certificate in Electronics/Radio Engineering and a number of years experience in designing
Audio/Video consumer products -essential. Previous Audiovesideo consumer products -essential. Previous
businsss administrative experience and knowled ge of an
addition asditional European lane xuagerience and and knowledgeo of an
age group \(35-50\). Excellent salary and proferespects for age group 35-50. Excel
successful candidate.
Write - enclosing photograph and details of qualifications
and experience to: Vice-President, Electronics, Amerex Group orience to: Vivic-President, Electronics, A merex
Kowloon, Hong Kong B.C.C. Gowloon, Hong Kong, B.C.C.

\section*{(AC) AMEREX}

GROUP OF COMPANIES
(EUROPE)

Royal Liverpool Hospital Prescot Street, Liverpool L7 8XP
Electronics Technician
To assist with the maintenance/ development of equipment used in
the Department of Nuclear Medicine at the above hospita/ the Department of Nuclear Medicine at the above hospital.
Applicants should ideally possess an appropriate 0 . Applicants should ideally possess an appropriate O.N.C./. H.N.C. or
equivalent qualficication or should have considerable experience in
electronics servicing. electronics senicing.
Salar Scale. \(£ 40505\) to \(£ 5952\) (pay award pending w.e.f. 1.4 .80).
Application form and further dotails available from the

Appointments \(_{n o}\)
WIRELESS WORLD JANUARY 1981

LinesTransmission Engineer
We are looking for a young engineer qualified to HNC performance of vision and sound networks rented from the Post Officic for Television and Local Radio uses.
This post involves liaison with the saff of the ITV and This post involves liaison with the staff of the ITV and
ILR Programme Companies and visiting their studios and IBA Transmitting Sites to undertake investigations. At least two years experience in the communications
field is necessary together with a good knowledge of field is necessary together with a good knowledge o
transmission systems. A current driving licence is transmission systems. A curren driving licence is
essential in view of the travelling involved. Sesential in view or the traveling involved. per annum. Generous relocation expenses will be paid

INDEPENDENT broadcasting AUTHORITY
Applicants (male or female) should write or telephone
for an application form quoting Ref: WW/512CC to: for an application form quoting Ref: WW/512CC to:
Glynis powell Personnel Officer IBA Crawley Court, Winchester, Hampshire SO212QA. Telephone: Winchester 822270.

DIGITAL EXPERIENCE? FIELD, SUPPORT AND
PRODUCTON. VACAN.
CRES COMMS MPUTERS, NC,
CODICAL, Fore free reg. ETC. Fore free registration ring
\(01-4647714\) ext. 502
24 HoURS
LOGEX

ROYAL MILITARY COLLEGE OF SCIENCE \(\qquad\) SHRIVENHAM, SWINDON, WILTSHIRE department of electrical \& electronic

\section*{NEW CONCEPTS IN INTEGRATED MILLIMETRE WAVE COMPONENTS}

Applications are invited for two research posts concerned with
interesting innovative work on millimetre wave integrated . circuit
 degree in Physics, Mathematics or Engineering, or have equivalent
qualifications and experience. For'younger graduates the posts offer a good opportunity to ooin an active research group.
For Post 1 (sponsored by the US Army) the appointment will be for a
period of two years with a possibility of extension to a third year, at period of two years with a possibility of extension to a third year, at
Research Scientist//Higher Research Scientist according to qualfica-
Reser tions and experience. Ability to carry out measurements is a require-
ment. An opporunity to tsudy for a higher degree could be made
ayailable Referenty ment. An opportunity to study for
available. Reference HO \(120 / 1 / 81\).
For Post 2 (sponsored by SRC) the appointment will be for a period of
three years at Higher Research Scientist/Senior Research Scientist hree years at Higher Research Scientist/Senior Research Scientiss
level according to qualifications and experience. Possession of a higher degree could be an advantage but ability to carry out mathematical
work is essential. Reference HQ 120/1/97. Salary scales: Research Scientist £4809-£6480; Higher Research cientist (minimum of 2 years' postgraduate experience) \(£ 6075\)
7999; Senior Research Scientist (minimum of 4 years' postgraduate
Accommodation for a single person may be available in a Hall of
Residence and there is a possibility of housing for a married candidate. Application forms and further information may be obtained from the
Civilian Administration Office, Royal Military College of Science. Civilian Administration Office, Royal Military College of Science,
Srivenham, Swindon, Wilts SN6 8LA, telephone (0793) 782551 Shrivenham, Swindon, wilts SN 8 LA , telephone
Ext. 421 . Pl .ease quote relevant reference number(s).

\section*{BRISTOL POLTTECHNIC
DEFAFTMENT OF ENGINEERING
}

\section*{LECTURER II/SENIOR} LECTURER IN DIGITAL SYSTEMS Ref. No. L52/56

 an advanage.

The appointment will be made on the

 Froenchay, Bistó B5 16
Plosen quote Roforonce
in all communicatione.
Wai communicarione.

KINGSTON AND
RICHMOND AREA HEALTH RICHMOND AREA HEALTH
AUTHORITY CHIEF electronics TECHNICIAN For the maintenance of complex
electronic equipment mostly of a electronic equipment, mostly of a
medical nature, also managee-
ment of subordinate staft. H.N.C. medical nature, also marage-
ment of subordinate staff. H.N.C.
(Electronics) or equivalien req-
 perience advantageous. Salary
\(£ 629--7845\) p.a. plus \(£ 527\)
Ra. 1 Rndon Weighting. p.a. London Weighting.
Application form de-
scription from: Aloa Porsonnel scription from: Area Peorsonne
Department, South Wing Nopmansfield, Kingzino Rooad,
Teddington, Middisex Toil Teddington, Midd \(1080 \times\).
\(01-9778833\) Ext. 312 . Clasing date: 15 th January
1981.

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Freee
service. Phone or write: SUREAUTECH, AGY, 46 SELVAGE LANE,
LONDON, NW7. \(01-906\) LOND
0251.

Appointments

\section*{Technicians in}

\section*{Communications}

GCHO We are the Government
Communications Headquarters, based a
Cheltenham. Our interest is \(R\) \& \(D\) in all types of modern radio communications - HF to
satellite - and their security. THE JOB Al
THE JOB All aspects of technician support to - an unparalleled range of communications equipment, much of
current technology
LOCATION Sites at LOCATION Sites at Cheltenham in the very - attractive Cotswolds and elsewh

PAY Competitive rates, reviewed regularly. PAY Competitive rates, reviewed regula
Relevant experience may count towards Relevant experience may count
increased starting pay. Promotion prospects. TRAINING We encourage you to acquire new skills and experience.
QUALIFICATIONS You should have à T Certificate in Telecommunications, or acce
- able equivalent, plus practical experience
information on our special scheme for those information on our special scheme for thos Robby Robinson, Recruitment Office.
- GCHQ, Oakley, Priors Road, Cheltenham Glos. GL52 5AJ,
or ring
\(0242-21491\)
0242-2149
ext 2269.
(6010

\section*{Professional Careers in Electronics}

All the others are measured by us.. At Marconi Instruments we ensure that the very best of innovative design is used on our range of number of interesting opportunities in our Design. Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the If you are interested to hear more, please fill in the

\section*{Appointments}
electronic COMPUTER \& MANAGEMENT APPOINTMENTS

\section*{£5,000-乏15.000}

Use Your
Mini-Micro-Digital
Hardware/Software Ability
100 s of interestin 100s of interesting and
progressive opportunities at all
levels in Ievels in
Design -Test - Sales
Sarvice - Support Ring MIKE GERNAT ELECTRONIC COMPUTER AND MANAGEMENT \(148 / 150 \mathrm{High}\) Stree Barkway. Roysto
Herts SG8 \(8 E G\)

DEPARTMENT OF PHYSICS, ELECTRONICS AND ELECTRICAL ENGIMEERING MSc/DIPLOMA COURSE IN ELECTRONICS Applications are invited for
places in the full-time one-year
MSc Places in the fuil-iime one-yer
MSc/fDiploma curse in Elec
tronics, commencing 30 Septronics, comm
tember 1981.
Funtrer details and application
forms (returnable as soon as posfoms (returnable as soon as pos-
sible) may be obtained from the \begin{tabular}{l}
siberay \\
Academegistrar, UWIST, \\
Cardift CF1 1 3NU. \\
\hline\((886)\)
\end{tabular}

\section*{Electronic Engineers What you want, where you want!}

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around \(£ 4000\) to \(£ 8000\) p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application

TJB. ELECTROTECHNICAL
PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388
TJB
Please send me a TJB Appointments Registration form
Name.
Address.

CENTRAL SERVICES DEPARTMEN OF THE SCOTTISH OFFICE WIRELESS TECHNICIANS (\(55,300-67,060\))
Applications are invited for three posts of Wireless Technician in the
Central Services Department of the Scottish Office. The posts are Central Services Deparment of ter Scotish Hice.
based in Inverness. Edinburgh and Montreathmont, Forfar. Can-
didates must hold an Ordinary National Certificate in Electronic or didates must hold an Ordinary National Certificate in Electronic or
dientrical Enginering ora City and Guilds of Londoo Institute
Cerificate in an appropriate subject or a qualification of a higher or equivalent standard and have three years' appropriate experience.
ent A clean curren driving licence and ability to drive private and commercial vehicles are essential
Application forms and funher information are obtainable from
Scottish Office Personnel Division, Room 110,16 Waterloo
 Closing date
1981 . ing date for receipt of completed application forms is 11 February,

\section*{Radio Communications Electronics Engineers and Software Designers}

Mid-Sussex-S.W. London Salaries up to \(\mathbf{£ 8 , 0 0 0}\)

 Atractive salaries are complemented by excellent prospects and
generous benefits generous benefits.
Contact: David Bird, Redifon Telecommunications Limited,
Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874
7281 (reverse charges) 7281 (reverse charges):

Increased home and export orders for our broadcast TV products mean that we are looking widely to recruit staff to fill new vacancies and others created by promotion of engineers who have been with us some time.

\section*{SYSTEMS ENGINEERS - TELEVISION}

Experienced engineers are needed to work on design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept, through manufacturing to delivery and installation
Our custom built systems require a high degree of customer contact at engineering level, from the initial design stage to the necessary training of operational staff on completion of the contract, both within the UK and overseas.
You should have a knowledge of TV studio engineering gained from experience in this type of work or from experience in the operational side of television

DESIGN AND DEVELOPMENT ENGINEERS - VIDEO cameras, using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the ' 80 s .
We are looking for engineers who are qualified to degree or HND level and who have at least four years experience in the design of electronic equipment, with some knowledge of video engineering and microprocessor techniques.

\section*{TEST ENGINEERS}

We require engineers at intermediate level to assist in the manufacture of our new range of products for the Broadcast studio television market.
You need to have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on broadcast television, or similar sophisticated products, and be capable of faultfinding down to component level.
We are a young, successful Company, well known in international television circles, operating from our modern purpose-built factory in Andover. Salaries offered are very competitive, and supplemented free life and health insurance, pension scheme, subsidised meals and relocation expenses
please write giving full details or phone jean smith at the address below for an APPLICATION FORM

\section*{Communications Engineers} and Technicians. Have you considered a career in Technical Publicity?

\author{
 opportunites for Communications Engineers \(\&\)
Technicians \(M\) Male or Female who wish tomove into
technical publiciry by ioining a team involved in the roduction of writen copy for awide range of sales iterature and technical aricles. \\ Eareer, providing you have have experience in ommunications. either dara or radio. and an abiityy oexpesss vourself flearly, we would very much like Those people currenly employed in
telecommunicaions services or the electronics telecommunications services or the electronics
industry or those abourtoleave the \(H M\) forceswould
find the work varied stimulaing and creative. A
}
cerrain amount of travelling will be involved tor
which a which a generous mileage allowance'is payable.
Excellent prospectis exist for promotion to more Excellent prospects exisf for prom otion to more
senior positions.
We can offer staff excellent salaries. Group pension scheme. free iffe assurance. five weeks' annual holiday and relocation expenses wher
applicable This is sour chance o oioin the most siuccessful
elecronics Company in the L.K. Apply in writing. or
electronics Companyin the L.K. Apply in witing. or
telephone. giving brief deails of age. experience and
telephone. giving
qualifications to:

Racal Group Serices Led...
Western Road Bracknell. Berk
Tel: Brackell
Western Road. Bracknell. Berks
Tel: Bracknell 1034413244 Ext. 149

\section*{ENGINEERING OPPORTUNITIES}

Samuelson Sight \& Sound Ltd. is a well established firm, which in the past few months need to take on both Video and Audio engineers.

VIDEO ENGINEERS
Well proven service background in all aspects of video, including television, television camera, video tape recorder both VHS and U-Matic formats.

Salary negotiable dependent on experience.
AUDIO ENGINEERS
Experience in all forms of audio equipment including sound mixing consoles, amplifiers, talk back systems etc. However if you have a good electronics background this would be considered.

Salary negotiable dependent on experience.
Please apply in writing, giving details of previous experience and training to:-
Mr. R.T.Morgan (Service Manager) Samuelson Sight \& Sound Ltd. London NW2 6PO

SALARIES UP TO
£13,000
can be obtained des
CURRENT VACANCIES INCLUDE:
OESIGN ENGINEERS to work on counter measures for secure computers i.e. E13.0000
VERSATIL Y YOUNG ENGIMEERS to ioin high flying design team engaged on
 and display products. Exp. Low frequency instrumentation and mpu controls
essental south Coast to \(\& 10,000\). DESIGN ENGINEERS Digital video systems for security and document
transmission over satellite and viewphone. Experience in digital signal
procesion ocessing essential. Berks to \(\mathrm{El}, \mathrm{O}\) O. RF ENG INERS \& DIGITAL ENGINEERS for very advanced emergency
Serices communication system. Berks to E10,000. \begin{tabular}{l}
DEVELOPMENT ENGINERS \\
Dch's for control of mechanieal peripheral \\
\hline
\end{tabular} DEVELOPMENT ENGINERS to work on a wide range of video cameras,
video processing equipment - and sonar. South West Coast to 88,000 . dieo processing equipment - and sonar South West Coast of 88.000 . PROUECT ENGINEER with drive and enthusiasm 10 develop analogue and
digital modules for automotive industry. Rural Gloucs. CE9.000. OMPUTER ENGINEERS Vacancies. shroughout U.... in tech, support, field senvice, permanent site and systems test. Salaries range friom execeptionally goood
od diabolical - but according to location and iype of equipment. \begin{tabular}{l}
WANTED URGENTYY- ANY HARDWARE OR SOFTWARE ENGINEERS, TEST \\
ENG \\
\hline
\end{tabular} For further details, please contact:
Charles Airey Associates
8 Hammersmith Grove, London W6 OHA. Tel: \(01-7414011\)

ELECTRONIC ENGINEERS

looking for a different image?

Competitive Salary + Car In the field of Electronics, few areas offer such growth oppor-
tunities as that of Computing. Philips Data Systems is a division of Philips Business Systems, the pacesetting group that manufactures and maisent. We are looking throughout the UK for Customer
and equipment Engineers, male or temale, who wish to be part of that growth.
If you are experienced in dealing with customer' If you are experienced in dealing with customers' problems,
skilled in electronics/electro-mechanics, then Philips will provide Skilled in electronics/electro-mechanics, then Philips will provide
you with the training necessary to enter this technically
exciting and challenging field exciting and challenging field.
We offer excellent conditions of employment, a competitive
initial salary, which will be reviewed on completion of your first 6 months training period. Naturally, a company vehicle will be
If you believe you have the ability/experience needed to take on
this image, then why this image, then why not telephone Alan Bowden. Senior Personnel
Officer, on 02065115 or write to him at Philips Data Systems, Elektra House, 2 Bergholt Road, Colchester, Essex CO4 5BE.

PHILIPS

Appointments

\section*{JUNIOR DEVELOPMENT ENGINEERS}
electronics

John Player and Sons, a leading manufacturer of tobacco products, offer the opportunity to young electronics en
practical experience in ind ustrial electronics.
Vacancies exist for work in the Machinery Evaluation Section where new generation cigarette making and packing machines are under-
poing pre-production trials. These machines are equipped with going pre-production trials. These machines are equipped with
increasing numbers of modern electronic control circuits using the increasing numbers of modern electronic control circuit
latest technological advances including microprocessors.
The successtul applicants will undergo a period of familiarisation, look atter specesticic machines during the evaluation period, be involved in the development of special features as well as devising, evaluation aids and
ultimately in the training of others in the maintenance of these ultimately in the training of oth
machines on the production floor.
We are looking for men or women who are qualified to HNC or equivalent, and
following areas:
a) electronic control and logic circuits
b) process control systems
c)
microprocessors

A knowledge of the tobacco industry is not essential.
We offer a starting salary of \(£ 6,500\) per annum together with other
benefits associated with a large progressive company including eenefits associated with a large progressive company including
relocation assistance where applicable.
Application forms cab be obtained by telephoning Nottingham (STD
O602) 787711 . Extension 345 or writing to:
Lorna Blayney
JOHN PLAYER \& SONS
NOTTINGHAM NG7 5PY

\section*{ELECTRONICS ENGINEER}

CENTRAL SCOTLAND
 Apply for application form to:

\section*{When the ship comes home, why not settle down?}

Classified

\section*{ELECETOSONIC}

\section*{}(889)

TEST ANOD COMMISSIONIIG EN

ARTICLES FOR SALE \begin{tabular}{|c|}
\hline THINKING OF RENTING \\
ATELPHONE \\
ANSWERING MACHINE? \\
THEN STOPI
\end{tabular}

 \(\left\{\begin{array}{l}\text { MUNICATION SYSTEMS by } \\ \text { C. P. Sandbank Price: } 18.60 \\ \text { THE ACTIVE FILTER H } / 8 \text { by }\end{array}\right.\) THE ACTIVE FILTER H/8Bby
F.P. Tedeschi Price: \(E 4.85\)
INFO

\[
\left\{\begin{array}{l}
\text { CIRCUITS WITH EXPERI } \\
\text { MENTS by Dr. K. A. Pullen } \\
\text { DIGITAL FIFPrice E9.15 }
\end{array}\right.
\]
\[
\begin{aligned}
& \text { SERVICING } 197980 \\
& \text { MODELS by R. N. Wannuright } \\
& \text { Price: } 1616.50
\end{aligned}
\]
\[
\begin{aligned}
& \star \text { PRICES INCLUDE } \\
& \text { POSTAGE }
\end{aligned}
\]

THE MODERN BOOK CO. Speeialisin in sienificic 19-21 Prate STREET
LONDON W2 1 NP P

\begin{tabular}{|c|c|}
\hline 889) & \multirow[t]{3}{*}{\begin{tabular}{l}
the cost of a commercially pro
duced device. \\
 Prestwich, Manchester M25 8RL Also
for literature.
\end{tabular}} \\
\hline ARTICLES FOR SALE & \\
\hline TOWERS' & \\
\hline \begin{tabular}{l}
INTERNATIONAL \\
MICROPROCESSOR SELECTOR
\end{tabular} & \\
\hline by T. D. Towers Price: \(£ 15.70\) & \\
\hline
\end{tabular}

WIRELESS WORLD JANUARY 1981

ARTICLES FOR SALE BULK BUYERS ONLY

 Allat Knock
4450749

\section*{ \\ TIME EXACT?}

\section*{}
F

\section*{> PRII prind owold quar yervy PR1
own
Gou
que
que} PR1
own
Gou
que
que}

WIRELESS WORLD JANUARY 1981
ARTICLES FOR SALE

\section*{}

Classified

\section*{CIRCOLEC}
the Complete electronic manufacturing service Let us realise all or any part of your project from prototypes to
production, from arwork design and component sourcing through production, from artwork design and component sourcing, through
assembly and test to final quality assurance, packing and delivery. We also provide a test, repair and modification service to suit your,
individual requirement. For competitive prices and fast turnaround contact:

CIRCOLEC, 1 Franciscan Road, Tooting. S.W. 17

Telephone: 01-767 1233

EITD MIRCIITS

BROADFIELDS \& wiil pay you top preves sor any brase suuvis of

DEEIGN SERVIGE. Electronic D D
sign Development
and Productlo

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{WANTED}

Classified

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

PLEASE INSËRT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept,, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
- Rate \(£ 2\) PER LINE. Average six words per
- Name and address to be included in charge - Name and address to be
- Box No. Allow two words plus \(£ 1\).
- Cheques etc., payable to "Wireless World"
and cross " \(\&\) Co."
-

ADDRESS
.. ..
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{tabular}

\section*{The perfect enclosure system for your equipment}

From AKA MAYR + PARSONS LTD. \(4 / \boxed{4}\)

\(19^{\prime \prime}\) racks, housings and chassis precision made to a very high standard
- Available ex-stock in over 100 sizes - Easy to order
- Simple component mounting

Special variations no problem
When it comes to \(19^{\prime \prime}\) equipment AKA has the experience and know-how-and West Hyde offer rapid delivery coupled with personal service. Why not contact us for more information.

\section*{Secondhand Terminals Stock Clearance}

compact desk-top unit with RS232 serial interface. EBCDIC coded. Reduced from £375 to \(£ 295\).
Also available a limited number only of machines untested, except for typewriter operation, at \(£ 195\).

INDEX TO ADVERTISERS JANUARY
Appointments Vacant Advertisements appear on pages 122-134

\section*{oversien advertisement}

 Hone: 347051 - Telex: 37342 Kompass.

\footnotetext{

}

\section*{}

The biggest name in solder world wide

Economy pack for general non-electrical use. Replaces solid wire and stick solder. (B.S.219GradeL). Econopak 200 g reel of 3 mm dia. Size 16 A . £4.14 per reel.

Toolbox Reels.
Multicore 5-core solder for general use. Suitable for electrical joints (B.S. 219 Grade C)
\(40 / 60 \mathrm{tin}\) /lead 1.6 mm dia. Size 3. £3.91 per reel. Savbit
Multicore 5-core solder for radio, T.V. and similar work. Reduces copper erosion. Suitablefor service engineers and manufacturers using small quantities of solder 1.2 mm dia. Size 12 . \(£ 3.91\) per reel.

Bib Hi-Fi Accessories Ltd, (Solder Division), Kelsey House, Wood Lane End, Hemel Hempstead, Hertfordshire HP24RQ. Telephone: (0442) 61291.

\section*{Products that help you make a better iob of it.}

Soldering Flux Pastes.
Multicore soldering flux paste. Extra fast, non-
corrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F. 10.35 g net. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non-electrical.
Arax A.F.14.35g.69p per pack.

Ersin Multicore 5-core solder, Contains non-corrosive flux for electrical applications.
1.2 mm dia. 200 g Econopak. Size 13 A . \(£ 4.14\) per reel.

Metal Soldering
Arax Multicore 4 -acid-coresolder formetal fabrication (not aluminium) and repairs.
40/60 tin/lead. 1.6mm dia. Size 11. £3.91 per reel.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.```

[^0]: Component kit
 We understand that Technomatic, 17 Burnley Road, London N.W.10, will be offering a kit of

[^1]: r

[^2]:

