

Community broaccasting

 Multi-section equalirer Off-resonance metal detector Analogue computersAlmost everyone agrees that digital multimeters more accurately meet the market's needs.

And, we're proud to say that Gould have more to offer than most, all with LCDs.
Take the Alpha IV, with its 25 measurement ranges; and the Gamma with true R.M.S.

Shown is the Beta, with its $31 / 2$ digit display, plus the DMM12 offering $10 \mu \mathrm{~V}$ resolution, $41 / 2$ digit display and true R.M.S.
If your readings are still giving you the needle, ask for our comprehensive data.
Or, if you're already a committed digital man, ask Gould to demonstrate the way in which we've stretched MOS technology to bring you a finer product at a practical price.

Model	Display	DC Res.	DC Accy.
Alpha IV	1999	$100 \mu \mathrm{~V}$	$\pm 0.25 \%$
Beta	1999	$100 \mu \mathrm{~V}$	$\pm 0.25 \%$
Gamma	1999	$100 \mu \mathrm{~V}$	$\pm 0.2 \%$
DMM12	19999	$10 \mu \mathrm{~V}$	$\pm 0.06 \%$

Gould Instruments Division, Roebuck Road, Hainault, Essex 1G6 3UE. Telex: 263785. Tel: 01-500 1000. (24-hr service).

DISTRIBUTORS: Scotland Fenwick Electronics Lid

 Tel: 041-4297155. N. Ireland IMEX Instruments Lid Tel: Lisburn 2033. Sire IMEX Instruments Lid. Tel: Dundalk 72300.
Remote control is seeing red. Infra red with Ferranti BPW 41. oo (200

BPW41 is the newinfra red detection response photodiode, from Ferranti. The important news is that we've built in a narrow band infra red transmissive filter that eliminates the need for separate filters and gives a very selective spectral response. Take a look at the curve, you'll see it peaking at 925 nm .

BPW 41 offers a narrow spectral band width combined with broad
directional response, low junction capacitance for fast response, voltage variable response times, a $7.5 \mathrm{~mm}^{2}$ active area for increased sensitivity and virtual immunity to extraneous visible radiation.

With the kind of improved performance BPW 41 gives you, you could do more with your remote control system. Whatever you're into -
cordless telephones, TV channel selectors, toys, remote keyboards for VDU's, security or alarm systems - BPW 41 could solve a lot of your problems.

Pick up the phone (cordless or not) and ring 061-624 0515 or write to Opto-electronic Marketing, Ferranti Electronics Limited, Fields New Road, Chadderton, Oldham OL9 8NP.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited.
Electron House,
Cray Avenue, St. Mary Cray.
Orpington, Kent 8R5 30J.
Telephone : Orpington 27099
Telex: 896141

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{\text {I CBO }}{ }^{\&} \mathrm{I}_{\text {EBO }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$\mathrm{BV}_{\text {С во }}: \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{\text {FE }}$ readings.
$\mathrm{V}_{\mathrm{BE}}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on h fetest.
$V_{C E(s a t):} \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$I_{D R}: \quad A s I_{E B O}$ transistor ranges.
V_{Z} : Breakdown ranges as $\mathrm{B} \mathrm{V}_{\mathrm{C} \text { B }}$ for transistors.
$V_{D F}: \quad 1 \mathrm{~V} . \mathrm{s.d}$. acc. $\pm 20 \mathrm{mV}$ at IF of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

type TM1 2

DON'T GAMBLE

 WITH PERFORMANCE BUY LEVELL TESTERS

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $\cdot 1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale. Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zerò output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.
"See us at LEETRONEX 1 st-3rd July, 1980 ."

For twenty years, Erie RFI filters have been collecting qualifications - like being chosen for every major satellite, missile, aircraft and communications programme in the U.S. and Europe. The wide range includes HF broadband and multi-section filters with soldered or bush mountings as well as rectangular and circular filter connectors and filter pins.

Erie technical supremacy extends right from the ceramic powder to the MIL-approved test house, but at ITT Mercator we do not accept Erie filters on their reputation and MIL-certificate alone. Each batch is tested in our own laboratory to permit DQAB release.

We make doubly sure that you can be sure of the quality of Erie filters.
ITT Mercator, South Denes, Great Yarmouth, Norfolk,

PRIME COMPONENTS LOW PRICES

Carston Electronics

specialists in second user test and measuring instruments

NEW

EXSOCK DENER

Oscilloscopes TEKTRONIX 465
DC-100MHz Dual Trace 5 mV -5V / Div MMHz f 1250 $0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XY DC 4 MHz

TEKTRONIX 475A

DC-250MHz Dual Trace 5 mV -5V/ Div 3 MHz f 1950 $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/B XV DC

THESEINSTRUMENTS SOLD WITH ONE YEARFULL GUARANTEE

7704 A DC. 200 MHz . CRT Readout Mainframe for 4 Plug-in

TELEQUIPMENT

53. DC. 15 MHz . dual trace
$10 \mathrm{~m} V$ sensitivity
053A. DC- 25 MHz . dual trace.
10 mV sensitivity with C - 2 plug-in C. 15 MHz with JD plug-in

Batt/Mains Portable
D63/V1/V3 DC-35 MHz. Depending
on sensitivity. $50 \mu \mathrm{~V}$ or 1 mV Sensitivity

Oscilloscope Plug-ins

TEKTRONIX

Type R. Transistor R. T. tester. Pulse rate 120 pulses $/ \mathrm{sec}$. R.T. Less than $5 \mathrm{~m} \mu \mathrm{~s}$
Type L. DC. 20 MHz .5 mV sensitivity fast rise time amplifier
Type G. Differential amplifier. 100:1 CMR OC-20 MHz. 50 mV sensitivity Plug-ins for 500 series
A1 dual wace Plug-in DC- 50 MHz 1 A2 dual trace Plug-in DC -50 MHz 1 A 4 four trace Plug-in DC. 50 MHz 1A5 Differential Plug-in
2 Differential Plug-in
81 Adaptor Plug-in 1A Series to 580 Series

TELEQUIPMENT

DM64 Storage 250 Divs/ms
DC. 10 MHz Dual trace

D67 DC. 25 MHz . Dual trace. Dual
Time Base. TV sync
D75 DC-50 MHz. Dual trace. Dual D75 DC-50
D83 DC-50 MHz. Dual rrace. Larg $61 / 2^{\prime \prime}$ CRT. Dual Time Base
Oscillosciopes (storage)

OYNAMCO

7110. DC-30MHz. Dual trace

Writing speed 20μ s / Div
TEKTRONIX
$549 / 1$ A $1 . D C=30 \mathrm{MHz} .5 \mathrm{mv}$
sensitivity. Dual trace. Storage scope, Writing speed: $5 \mathrm{~cm} \mu \mathrm{~s}$ with $564 / 3 \mathrm{~A} 74 / 384, \mathrm{DC}-2 \mathrm{MHz}$, channel. 20 mV sensitivity. Writing speed up to $500 \mathrm{~cm} / \mathrm{ms}$
$564 B / 3 A 6 / 2867$. DC-10 MHz. Dual trace 10 mV sensitivito, split screen storage oscilloscope

Phase Meter

DRANETZ

301 A 5 Hz .500 kHz . Z in $100 \mathrm{k} \Omega$ Accuracy $\pm 1^{\circ}$ to $\pm 2^{\circ}$. Analogue O/P

Power Meters

MARCONI SAUNDERS $646010 \mathrm{MHz}-40 \mathrm{GHz}$ (Depending on Head)
$642010 \mathrm{MMz}-12.4 \mathrm{GHz} 10 \mathrm{mw}$ $6421 \mathrm{D} 0 \mathrm{MHz}-18.4 \mathrm{GHz} 100 \mathrm{mw}$ $642210 \mathrm{MHz}-12.4 \mathrm{GHz} 1 \mathrm{mw}$
$642826.5 \cdot 40 \mathrm{GHz} 10 \mathrm{mw}$
Power Supplies
OLTRONIX
A $2.5 \mathrm{KV}, 10-2500 \mathrm{~V}$ up to 10 mA Current limit 2.12 mA . either $\#$
ROBAND
T101. 50V. 1A. Variable
SOLARTRON
50. C Dulse generat

EH RESEARCH
120D. $100 \mathrm{~Hz}-10 \mathrm{MHz} 20 \mathrm{~V} / 50 \Omega$
RT 1 ns
122. $1 \mathrm{KHz}-200 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$

RT 12 ns
$139(\mathrm{LL} .10 \mathrm{Mz} .50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$
RT Ins
1221. Timing Unir 6 Channel
$0-10 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 8 ns
G710. $5 \mathrm{~V} / 50 \Omega 30 \mathrm{~Hz} .50 \mathrm{MHz}$ RT 5 ns
$132 \mathrm{AL} .50 \mathrm{~V} / 50 \Omega 5 \mathrm{~Hz}-3 \mathrm{MHz}$ RT 12 ns
HEWLETT PACKARD
214A 100V/50s?. Double pulse O/P W50ns-10ms. $10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$. 15 ns RT

PHILIPS

PM5705. 0.1 Hz. 10 MHz Typical RT 6ns Outpur 1-15V
PM5776 3V/50 . $1 \mathrm{~Hz}-100 \mathrm{Mz}$ Rise/fall Times less than 1 ns .
Recorders and Signal
Conditioning Equipment AMPEX
PR2200 Instrumentation Recorder up to 16 channels. FM/DR. Record replay all soeeds. 1. ape FM/DR I.R.I.G $D C-40 \mathrm{kHz}$ FM. 100 Hz . 300 kHz DR
BRUNO WOELKE
ME102B. Wow and flutter meter ME1028. Wow and flutter meter BRUEL \& KJAER
23058 Bench type. Mains operated
Log recording of AC: $2 \mathrm{Mz}-200 \mathrm{kHz}$

Prices
from C

CHESSEL

30183 Pen Potentiom etric. $1 \mathrm{~cm} / \mathrm{s}$ $1 \mathrm{~cm} / 6 \mathrm{~min}$. Ranges $25 \mathrm{mV} / 10 \mathrm{mV}$ 12 V DC power supply required. FERROGRAPH
RTS2. Recorder test set, Wow and flutter eic.
HEWLETT PACKARD
680M. 5 inch. Stripchant Single Pen $5 \mathrm{mV}-120 \mathrm{~V}$ I/P $20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Hr}$ RACAL
Store 4. Uses D/4 inch magnetic tape. Will record 4 F.M. channels. Operates at 7 different speeds. SMITHS INDUSTRIES RE501.20 Single Pen 10 mv -10V FSD. Battery Operated XY and Strip Chan
PE541.20 Single Pen. $0.5 \mathrm{mV} \cdot 100 \mathrm{~V}$ FSD. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour RE571.20 2 Pen. 200μ-100V FSD. $8^{\prime \prime}$ Chart. $3-60 \mathrm{~cm} / \mathrm{min}$ and hour

100
220

50
100

ROHDE \& SCHWARZ
Prices SWOB 11, 0.5.1200 MHz 50:3
SCHAFFNER
NSG101 Mains Interference
Simulator. Superimposes Pulses on
mains for testing immunity of
equipment 10 interference. Puise
amplitude: $\pm 800 \mathrm{~V}$ Rise Time $0.25 \mu \mathrm{~s}$
Widin 30 200 h
NSG330 Ignition Interference
Atlachrnent
9900. 10-300 MHz. Sweep generato
with CRT display
Spectrum Analysers
NELSON ROSS
$011 . \mathrm{DC} \cdot 20 \mathrm{kHz} .80 \mathrm{~dB}$ dynamic range. Dispersion. $100 \mathrm{~Hz}-6 \mathrm{kHz}$ 022. OC- 100 kHz . Dynamic range 60 dB tiss into varous 500 series CRO's
TEKTRONIX
3L5. Plug-in unit fits into various 500 B series CRO's. $50 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$. Greater than 60 dB dynamic range 1L20. Plug-in fits various 500 series CRO's 10 MHz .4 .2 GHz . 40 dB dynamic range
Sweep Generators
HEWLETT PACKARD
8690B Maintrame Im/Exi AM. Ext
$86938,1003.7-8.3 \mathrm{GHz} .5 \mathrm{~mW}$. PIN
$8699 \mathrm{~g} / 1000.1-4 \mathrm{GHz} .6 \mathrm{~mW}$. 120 mW
to 2 GHz). PIN levelled. ' N '
connectors
T.V. Test Equipment

PHILIPS
PM5508B Pattern Generator. 625
lines PAL. UK Sysiems
Vibration
DAWE
1461. CV(M) Portable Vibration

Analyser Kit
Voltmeters-Analogue
BRADLEY
CT471C. ACIDC/S2f:current
multrneter and RF
HEWLETT PACKARD
427A. AC/DC/12 multimeter
$3406 A .10 \mathrm{kHz}-1,2 \mathrm{GHz}$
LINSTEAD
M2B. DC AC $10 \mathrm{~Hz}-500 \mathrm{kHz} \quad 25$
MARCONI
TF2603 AC valmeter 101.5 GH
PHILIPS
PM2454B $1 \mathrm{mV} 300 \mathrm{~V} .10 \mathrm{~Hz} 12 \cdot \mathrm{MHz}$
Z in 19Mss. DC $5 ~ P ~$
Voltmeters-Digital
FARNELL
FARNELL
DM131B. 1999 FSD AC DCCS2
Current. Temperature
FLUKE
8000A 1999 FSD
AC/DC/OHMS/Current
HEWLETT PACKARD
34740A 34702A 9999
FSD.AC DC,OHMS
SOLARTRON
LM 1420.2. 2300 FSD DC only 0.05% LM1420.2BA. 2300 FSD AC
True RMSIDC
A200. 19999 FSD DC only
A200.19999 FSD DC only 110
A203. 19999 FSD AC DC/ Ω.
$100 \mathrm{ml} /$ resistance)
A205.19999 FSD AC/DC/52
A243. 119999 FSD ACIDC 18
A243. Tiven. IluV DC $10 \mu \vee A C$
Sensifivity: ${ }^{1}, \mu \vee D C, 10 \mu \vee A C$
10 msl resistancel
7045. 19999 Auto AC/DCISl
7050.99999 Auto AC DC/s2

Wave Analysers
HEWLETT PACKARD
302 A .20 Hz 50 kHz 75 dB range
MARCONI
TF2330 20 Hz .50 kHz . Selective
Range $\pm 3.510 \mathrm{BOHz}$ Omamic
range 75 dB .
WAYNE KERR
A $32120 \mathrm{~Hz}-20 \mathrm{KHz}$ Sens 75 dB

Redundant

Test Equipment
Why not turn your under-utilized test equipment into cash? Ring us and we'll make you an offer.

Whatever it is, the $\mathrm{H} \| \mid \mathrm{H}$ s' range of power amplifiers will handle it The 'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 5000
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel goow r.m.s. in bridge mode DC-20 KHZ at full power 0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high 500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics

MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED TELEPHONE (037976)639/594

Get 24DMMs off the shelf.

Turn to page 3 of your ITT Instrument Services catalogue for a list of top names Thandar (Sinclair), Fluke, Avo, Keithley and Norma. Compare performance and specification then phone or telex Harlow or any local ITT office and we'll deliver off the shelf.

The ITT Instrument Services catalogue is your key to fast delivery and technical back-up for a vast range of quality instruments. Get it off the shelf.

ITT Instrument
Services Edinburgh Way, Harlow, Essex CM20 2DF Tel: (0279) 29522.

Telex: 81525.

ITM instrument services
the only way to buy.

WW - 056 FOR FURTHER DETALLS

Geta Grip The Logic Monitor 2 by CSC provides greater The LM2 just clips over the I.C. and displays

versatility and precision in testing all types of digital circuits.
It incorporates a fully isolated power supply which means that there is no loading of a circuit under test; avoids logic level shifts, false triggering and power supply loading. The self contained power supply in conjunction with I.C. comparators provides constant current drive to LEDS and ensures a uniformly bright display. A togic family selection switch enables the precise selection of logic thresholds and provides more accurate measurement of I.C.'s under test.

CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) Limited,

Dept. 7 DD Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477
instantly and automatically the logic state of the
I.C. elements.

If you want to hear more of this gripping story then just send the coupon off or better still place an immediate order

WW - 014 FOR FURTHER DETAILS

We mean it
The new 30AX colour tube system from Mullard doesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one has been 'designed out'.

Every tube that leaves our factory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.
As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide the best picture shape yet.

And rest assured it'll stay that way. In a slim 110° package that trims about $3^{\prime \prime}$ off conventional $22^{\prime \prime} 90^{\circ} \mathrm{TV}$ cabinet depths.

Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

For more information just write your name and address on this page and send it to Dept MCG2, Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD.

Mullard
30AX. The perfect slimline.

BREMI ELETTRONICA
Via Pasubio 3/C
43100 Parma - Italy
Tel. 0521/72209-771533

DC POWER SUPPLIES a vast range suited to meeting both amateur and professional requirements
MEASURING INSTRUMENTS Digital frequency meter, digital capacity meter

PSICHEDELIC LIGHTS EQUIPMENT METALDETECTOR various models of light modulators, with/without microphone, stroboscope, spot lights etc.
EQUIPMENT FOR CB linear amplifiers, Our articles, which are of top quality, S.W.R. meter, wattmeters

AUTOMATIC BATTERY CHARGER are known and exported worldwide.

Input odvertisements the customers. Test and the display are designed to mefessional custo phillps Test a chonging the you hou it to needs of our prop window for
They ore o shop will be chans to show you.
The coupon and ader inquiry service. They as ang Instruments. ave a lot of pr bout o produre. use the joumar specific requirement Mrequently because ire full information or or, of caurse. reflecting you
Where you requir

The PM 25 I7 has set the standard and the pace in Europe for hand-held digital multimeters - and still it remains in a class of its own.
Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240 , which a $31 / 2$ digit meter would read.

Some other PM 2517 plus points: LED or LCD display

- True RMS readings of AC voltage and current
Autoranging with manual override - Optional accessories include temperature and data hold probes

Reader inquiry number $\mathbf{2 2 0}$

NO WAITING FOR THESE T. TOP PRODUCTS

3207 - Super Scope - is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring tnstruments. - 15 MHz dual trace

GREAT COUNTERS MYSTERY

Philips engineers have encountered the same reaction from customers and competitors alike when showing off the new microcomputer controlled PM 6667 (120 MHz) and PM 6668 (IGHz) frequency counters: "How do they do it for the price?" . Here's a brief summary of what the counters offer.

- Reciprocal frequency counting (for higher resolution without \pm | cycle error)
- Auto-triggering on all waveforms

Reader inquiry number 222

PHILIPS

 AF A Instruments- High contrast liquid crystal display - Self diagnostic routine
- High stability TCXD: 10.7/month

- Auto triggering from either channel with adjustable level between peaks and TV triggering
$5 \mathrm{~m} / \sqrt{ }$ sensitivity, Y and X (via A input)
- B invert facility

Reader inquiry number 221
Both these instruments are avalable off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors. British Tungsram, West Road, Tottenham, London NI7 ORN. Tel: 01-808-4884. Philips Service Centres (25 throughout the country). Tel: $01-686-0505$ for the address of your nearest branch. Wessex Electronics Led, 114.116 North Street. Downend, Bristol BS16 5SE. Tel: (0272) 571404.
inquiry no
PM 2517 multimeter 220 PM 3207 oscilloscope $221 \square$ PM 6667/8 counter

PHILIPS

The 2001 sweeps the board at only \&75

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs.
An applied DC. Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 withian AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board. For immediate action - The C.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard
*price excluding P\&P and 15% VAT

WW - 016 FOR FURTHER DETAILS

HILOMAST LIMITED

THE STREET HEYBRIDGE - MALDON
ESSEX CM9 7NB ENGLAND
Tel. MALDON (0621) 56480
TELEX NO. 995855

SOFTY Sotware Development System ${ }^{\text {EX S STOCK }}$

MICROSYSTEM DEVELOPMENT USING SOFTY

SOFTY is intended for the development of programs which will eventually become software residing in ROM and forming part of a microsystem. During the development stage of a microsystem. SOFTY will be connected in place of the tirmware ROM via a ribbon cable. terminated in a 24 pin DIL plug.
Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the keypad, and manipulated using the assemblerkev-functions. When the program has been entered, the internal microprocessor can be 'turned off', and program in SOFTY's RAM and or programing socke In this way modification can be made until the required program is complete - the contents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available. 2 of the Data RAM an 20 the programming socket.
In the end, when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails - we supply with each SOFTY details of a simple moditication which allows SOFTY to program the single rail 2716/2732, etc
If you want to program EPROMs/PROMs other than the 2704/2708/2716 family, we may be able to help you - our range of add-on Programming Modules is currently under development.)
To help in the process of program development SOFTY has various assembler key-functions, which include - block shift without overwriting, block store, cursor casserte interface is also provided for storing working programps, etc.) A high speed Soltware is supplied for serial data transfers - which means that you can write an assembler for your favourite MPU in BASIC on your Superboard UK 101 NASCOM eicand transfer the hex code directly to EPROM via SOFTY. The serial transier program runs in the scratchpad and can be easily loaded from cassette, or the programming socket
Besides software development and EPROM programming. SOFTY has other uses - as a
training aid, or as a control computer in its own right, whit up to $2 K$ bytes firmware, IK of RAM, $221 / 0$ ports and Direct Mernory Access.

SOFTY Kit-of-pans (including zero insertion force socket for EPROM programmer). Price £ 115 (inc. VAT, P\&P). SOFTY Built and tested - $£ 138$ (inc. VAT, P\&P). Buit conversion card for programming single rail EPROMs (with ZIF) - $£ 66$ (inc. VAT P\&P).
Buit S OFTY power supply - $\varepsilon 23$ (inc. VAT , P\&P).
Write or telephone for full details
MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fast erase times (typically 20 minutes for 2708 EPROM)
- 14 EPROM capacity
- Built-in 5 to 50 minute timer to cater for all EPROMS
- Safety interlocked to prevent eye and skin damage

Convenient slide-tray loading of device

- Rugged construction
- Priced at only $\mathbb{8 9} 9.70$ (inc VAT, p\&p)

MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer
iowiprice at only E 90.73 (inc. VAT, $\mathrm{O} \$ \mathrm{ol}$).
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES/OFFICIAL COMPANY ORDERS TO

GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth PL4 8HA. Telephone: Plymouth (0752) 28627

Front cover shows interior of an English Electric Valve Co. magnetron (cutaway model) for use in radar systems. Photographer: Paul Brierley.

IN OUR NEXT ISSUE

Graphical communication with computers introduces the technology of interactive computer graphics and describes input and output methods for information in this form.

Transient recorder.'Constructing an instrument which captures one-shot events for later display on an oscilloscope or chart recorder. Memory contents can be examined word-by-word.

Solid-state level meter. This solid-state indicator, using 20 l.e.ds of any colour mix, offers a.c. or d.c. and dot or bar operation.

Current issue price 50 p, back issue (if available) $£ 1.00$, at Retail and Trade Counter, Paris Garden, Lon don SE1. Available on microfilm please contact editor
By post, current issue 86 p, back By post, current issue 86 p, back
issues (if available) $£ 1.00$, order issues (of available) $£ 1.00$, order
and payments to Room CP 34 , Dorand payments to Room CP 3
set House, London SE 1 gLU
set House, London SE 1 9LU.
Editorial \& Advertising offices:
Editorial \& Advertising offices:
Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-2618339. Telegrams/Telez: Wiworld Bis nespres 25137 BISPRS G. Cables Ethaworld, London SE 1
Subscription rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Student rates: 1 year, £4.00 UK Student rates: 1 year,
and $\$ 15.50$ outside UK. Distribution: 40 Bowling Green Distribution: 40 Bowling Green
Lane. London ECIR ONE. Lane, London EC1R
Telephone 01-837 3636 . Telephone 01-837 3636
Subscriptions: Oakfield House Perfymounit Road. Haywards Heath, Sussex RH 16 3DH Telephone 044459188 . Please notify a change of address. USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217 . New York, NY Avenue, Suite 1217 . New York, NY
10022. 2 nd-class postage paid at 10022. 2
New York.

4 IPC Business Press Lid, 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO

JUNE / JULY 1980 Vol 86 No 1534

37 Producers before products

38 Community radio by Norman McLeod
42 World of amateur radio
43 Multi-section tone equalizer
by C. Walker and W. Clinch

47 Off-resonance metal detector

by G. Wareham

50 News of the month

Electronics in Defence 405 -lines to close
Set makers grapple with technology

53 Wideband audio power amplifiers
 by Y. Miloslavskij

55 Analogue computing techniques
 by David F. Dawe

61 Letters to the Editor
 Interference with MSF Scientific computer
 Wet aerial insulators at sea

67 Designing with microprocessors - 2
by D. Zissos and L. Valen

70 Programmable audio attenuator - 2

by J. M. Didden

75 I.E.E.E. bus standard

by P. R. Ellefsen

79 Extending mobile radio coverage
by W. M. Pannell

85 Colour tv receiver design - 1
by R. Wilkinson

90 New products

Quantum Electronics

NEW PRODUCTS - NEW PRODUCTS
Our product range for the 80 s is oullined but it is impossible to cover evervithing in such a small space. For detailed information and a price list send a large SAE or a dollar bill.

PRE-AMP 8. POWER AMP KITS

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the Module C2 (below) and the hardware kit HKi. No soldering is involved and assembly takeabout 20 mins. There are six power amp kits, four mono and two stereo. from 45 to 260 hev to satissy virually every requirement. a . supply kits to enable independent use of the pre-amp. which is normally powered via our power amp. Similar equipment is also available ready-built from us or via our dealers.
$\mathrm{C} 2+\mathrm{HK} 1 \quad$ £70.95
$\begin{array}{ll}\text { P2 (stereo 45W per channel) } \text { kit } & \begin{array}{l}\text { ¢87.28 } \\ \text { P4 (stereo } 110 \mathrm{~W} \\ \text { per channell) kit }\end{array} \\ £ 109.42\end{array}$

MOVING-COIL \& PRE-AMP MODULES

C2 (C2mc)
MC1
Previously restricted to trade and export, the C2 pre-amp module is now available separately in versions to match any cartridge. It has unbeatable specifications, caters for disc. d.c. The new moving coil pre-pre-amp achieves low thd, high overload, good r.f., rejection and good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be pawered either via the C2 or by a battery. Hardware kits are available to build both types and they are also available ready-buili

MC1 Module: $£ 22.25$
C2mc £51.75

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also available to retail customers in a variety of powers and formats up to $260 \mathrm{~W} . \mathrm{rm}$ s. They use the same high periormance circuitry as the kits above, giving t.h.d. below $.01 \%$ at 1 kHz , but are capable of sustained high leveluse win excellen which use toroidal transtormers, also available separately. The module illustrated is a medium duty 150 W r.m.s. type, the M1508 which requires the MS3 supply.

M1508: $£ 35.79$ MS3 $£ 26.28$
Exports: We can deal efficiently with orders to any country Please write with your specitic
requirements for a quote by return All equipment can be wired lor 110 V mains
PLEASE NOTE: OUR NEW ADDRESS FROM 1st MAY
8 ALBION STREET, LEICESTER. Tel: 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel. 1-302-798-7932 MINIC TELEPRODUCTOR, BOX $12035, \$ 750$ 12, UPPSALA 12, SWEDEN

plus all the accessories

DRILLS SPADE \& TWIST up to 2.5 mm 40p each	GRINDING STONES Fine Grade for Metal, Whod, Plastic. Glass
BURRS 3 sizes. Also tungsten ${ }^{+}$	WIRE BRUSHES
POLISHERS	CARBORUNDUM DISC Cl 50p ea. WHEEL

Post and packing, any quantity 30 p.

Above are illustrated just a few of the many accessories available in the range to fit these let. All items are subject to availability from manufacturer.

Write for full details of range to

Sole UK Distributors
 PRECISION PETITE LTD

119a HIGH STREET TEDDINGTON MIOOLESEX TWII BHG TEL:01-9770878

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messagessometimes several at a time. In such instances a positive need for communications
recording arises - a need for a system with instant message trace and replay-at the touch of a button-and at any speed to assist intelligibility.

All these facilities, and more, are available in the Racal Recorders 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to:
Racal Recorders Limited Hardley Industrial Estate Hythe, Southampton, Hampshire, SO4 6ZH England.
Telephone: 0703843265 Telex: 47600 .

RACAL
 full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done : connect it to your TV ... link it to an appropriate power source *... and you're ready to go

Your 2×80 kit contains

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touch sensitive, wipe-clean.
- Ready-moulded case
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon)
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available - see coupon)

[^0]
The unique and

valuable components of the

 Sinclair ZX80.The Sinclair $\mathbb{Z X 8 0}$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach yourself BASIC manual.
The unique Sinclair BASIC interpreter offers remarkable programming advantages: - Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them
Excellent string-handllng capability -takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
Up to 26 single dimension arrays.

- FOR/NEXT loops nested up 26
- Variable names of any length.

BASIC language also handles full Boolean arithmetic, conditional expressions, etc.

- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine
- High-resolution graphıcs with 22 standard graphic symbols.
- All characters printable in reverse under program control
- Lines of unlimited length

Fewer chips, compact

 design, volume production more power per pound!The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC in terpreter, the character set, operating system, and monitor. And the $Z \times 80$ ' 1 K byte RAM is roughly equivalent to $4 K$ bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.) The display shows 32 characters by 24 lines. And Benchmark tests show that the $\mathrm{ZX80}$ is faster than all other personal computers No other personal computer offers this unique combination of high capability and low price

ZX80 software now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July).

New dedicated software - developed independently of Science of Cambridge reflects the enormous interest in the ZX80. More software available soon - from leading consultancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean liftle to you - don't worry. They're all explained in the specially-written 128 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere $£ 79.95$. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled. for only £99.95.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your 2×80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your $Z \times 80$ as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be

Science of Cambridge Ltd

ORDER FORM	To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown include VAT, postage and packing. No hidden extras Please sendme:		
Quantity	Item	Item price £	Total £
	Sinclair ZX80 Personal Computer kit(s). Price includes ZX80 BASIC manual, excludes mains adaptor.	£79.95	
	Ready-assembled Sinclair ZX80 Personal Computer(s). Price includes ZXBOBASIC manual, excludes mains adaptor.	$£ 99.95$	
	Mains Adaptor(s) (600 mA at 9 VDC nominal unregulated).	8.95	
	Memory Expansion Board(s) (each one takes up to 3K bytes).	12.00	
	RAM Me mory chips - standard 1K bytes capacity.	16.00	
	Sinclair $\mathrm{ZX80}$ Manual(s) (manual free with every ZX 80 kit or ready-made computer)	5.00	
NB. Your Sinclair 2×80 may qualify as abusiness expense.		total	
I enclose a cheque/postal order payable to Science of Cambridge Ltd for $£$			
Please print			
Name: Mr/Mrs/Miss			
Address			
			WW

6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: 0223311488.

Recognise me?

If you do
you should know
your
authorised

Avo Sales and Service Centre

Quick turn round on estimates/repairs
Large stocks of new AVOMETERS

Farnell International

Farnell International Instruments Ltd., Sandbeck Way, Wetherby West Yorkshire LS22 4DH

Tel 093763541 Telex 557294 Farist G

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

" NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell \& Howell or one of our Video Centres and get the current facts.

The fact,for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera.

And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as £1,300 plus VAT. For playback, a standard TV receiver is

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has been achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm ; TL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or, if you feel inclined to make even fuller use of the camera's capabilities, couple it to a JVC $3 / 4$-inch U-format recorder.

The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines.

On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT. Alternatively, at very attractive rates, it can be leased.

TALK FIRST, PAY LATER

You can, of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn't be out of place in a national network.

But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide. Whatever your decision, two things are certain.
Orie, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use).

Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell,

Under Supershieid, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped supershield video workshop.

Convert to (or start) with colour. With JVC video equipment. And the Bell \& Howell Supershield guarantee.

Let Bell \& Howell show you the answer.

[^1]

Advertisement produced co-operatively by: Akai, Ferguson

Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recorders there are now triple standard VHS machines which accept PAL, SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.
VHS is the No. 1 system in the UK, Europe, the US and Japan.
Make sure you've got it. UK, Europe, the US and Japan.
Make sure you've got it. Right?

Theworld's No. 1 system.

The Thandar 10MHz Portable Oscilloscope

A low weight, low power Oscilloscope that provides workshop facilities but with true portability $\quad £ 139.00+$ VAT

The Thandar Portable Oscilloscope is a breakthrough in development. Now, for the first time, every engineer, service-man and technician can carry with him this piece of electronic test gear weighing less than 2 pounds, yet having the performance of most standard bench oscilloscopes. The Thandar Portable Oscilloscope is less than 2" thick. It is based around a $2^{\prime \prime}$ diagonal CRT and has a 10 MHz bandwidth with sensitivity down to 10 mV per division. Full trigger facilities are provided, including Bright Line Auto with TV Line and Frame positions. The superb ergonomic design of the Thandar Portable Oscilloscope enables it to be carried in a briefcase or toolkit. It can be held in one hand or operated whilst hung around the neck.
Send now for further details or call at your local

Sinclair Electronics Ltd.
London Road, St. Ives. Huntingdon, Cambs., PE17 4HJ. Tel: 048064646 . Telex: 32250
Sinclair Electronics Lid. reserve the right to alter prices and specifications on Thandar equipment without prior notice.

To To
Sinclair Electronics Ltd, London Road, St.Ives, Huntingdon, Cambs, PE17 4HJ
Please send me further technical information, price list and stockist list of the Thandar Portable Oscilloscope. I am also interested in
Digital Multimeters
Pocket Multimeters Pocket Frequency Meters
Name:
Address

4ดO O
 SINCLAIR ELECTRONICS LTD

 WW - 026 FOR FURTHER DETAILSLascar's new rance of LIN-Cased Digital Display Products are low-cost, compact alternatives to electro-mechanical produrts. They give high levels of accuracy and enhance the appearance of any instrument or panel. The range

UNIT 1, THOMASIN ROAD, BURNT MILLS INDUSTRIAL ESTATE BASILDON, ESSEX SS13 1LH TEL: BASILDON (0268) 727383

TYPE 631LF - $\mathbf{f 1 1 8 . 1 3 \& 2 . 5 0 \text { carriage, ins. etc. }}$ Low frequency version 0.01 Hz to 10 KHz

OMB ELECTRONICS, RIVERSIDE, EYNSFORD, KENT DA4 OAE Tel. Farningham (0322) 863567

Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice.

COMBIWRAP
 A high precision, low cost hand tool which performs three functions

The Vero Systems' Combiwrap is designed to strip the insulation from 30AWG wire wrapping wire and make a 'modified wrap' joint onto a miniwrap terminal.

To remove a wrapped jolnt, simply use the tool in an anti-clockwise direction and the wire will be unwrapped with ease and without damage to the terminal

SPECIFICATION
Wire Size: 30AWG
(0.25 mm)
Post Size: Any Mini-
wrap terminat eg:
$0.025=0.025:$
0.6
$0,6 \mathrm{~mm}$)
Strip length: $1.0^{\prime \prime}(25,4 \mathrm{~mm})$
Modified wrap - a wrap having 1-11/2
turns of insulation wrapped around the termina
for additional mechanical stability
Order Code: 163-28300A
Price: $£ 5.60$ including post and packing and VAT
ACCESS AND BARCLAYCARD WELCOME

VEROSYSTEMS

VERO SYSTEMS (ELECTRONIC) LIMITED
362. SPRING ROAD. SOUTHAMPTON, HANTS. SO9 5QJ Telephone: (0703) 440611 Telex: 477164

WW - 010 FOR FURTHER DETAILS

Valves • Tubes • Germanium and Silicon semi-conductors •TV tube guns

ww-070 For further details

WW - 048 FOR FURTHER DETAILS
WW - 090 FOR FURTHER DETAILS

Thurlby PLSeries

Now the bench power supply takes a major step forward!

- Simultaneous digital metering of voltage and current:
- Twin 3% digit (4000 count) meters with $1 / 2^{\prime \prime}$ LED displays 0.1% accuracy. Resolution of 0.01 voles and 0.001 amps .
- True constani voltage or constant current operation.
- Current Limit can be set precisely without shorting the output.

Remore sense facility for maintained precision at high currents.
Designed to rigorous quality and safety standards.

Electronic Components

FAST
Fluke (G.B.) Limited,
Colonial Way, Watford, Herts. WD2 4TT Telephone: (0923) 40511. Telex: 934583

WW - 031 FOR FURTHER DETAILS

The New FM/AM 1000swith
Spectrum Analyser-we call it the SUPER=S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For fúrther information contact Mike Taylor
2 Fieldrech
FieldTech Ltd Heathrow AirportLondon Hounslow TW6 3AF Tel: 01-759 2811 Telex: 23734 FLDTEC G

Fast, accurate, reliable.

The B605

 Automatic Component Bridge.With this Wayne Kerr automatic component bridge L, C, R, D and Q are measured automatically to a guaranteed accuracy of 0.1% over a wide dynamic range. The B 605 is microprocessorbased for reliability and superb resolution. Moreover, the standard features of Auto-Range \& Hold and Auto-Trim eliminate individual adjustments: just push the lead wires of an 'unknown' component into the special adaptor, press a button and read the answer! It takes less than 5 seconds.
The Wayne Kerr range includes the B905 Automatic Precision Bridge (accuracy 0.05% and with many advanced features and options such as sorting, binning and ATE compatibility) and thie B424 Component Meter for easy LCR measurements (accuracy 0.25\%). A growing family of test equipment for the 1980's.

Write or phone today for details.

Wayne Kerr

WILMOT BREEDEN ELECTRONICS LIMITED DURBAN ROAD BOGNOR REGIS WEST SUSSEX PO22 9RL ENGLAND
TELEPHONE BOGNOR (0243) 825811

TELEX 86120

AUSTRIA PEERLESS \& HANDELS TEL O222 832224 BEL GIMM REGULATION -MESURE GERMANY KETHMLEV INSTRUMAENTS TEL (OB9) T144065 METMERLANOS CN POOOD TEL (070) 996360 SPAH UNITRONKS TEL (MACAID) 242 S204 SWEDEN SCANDU METRIC

Toptechnology fromWayne Kerr

Businesses havebeen built onour ferrites.

 Oursincluded.

 Oursincluded.

 If you're a manufacturer, even the most inexpensive

 If you're a manufacturer, even the most inexpensive}

components must be checked out - or they'll let your product down. And it's particularly true of ferrites. Apex are the sole UK agents for one of Ámerica's largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from torroidal and pot cores to E cores, shield beads and baluns.

Full data is available on request.
The most useful kit in the business.
We've put together a kit of assorted ferrites that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just $£ 10.00$ (cheque or company order).
It's really too good to miss.

Apex. Big enough to look after you. Properly. Apex Inductive Devices, 27 Abbey Industrial Estate, Mount Pleasant, Alperton, Middx. Tel: 01-903 2944.

WW - 068 FOR FURTHER DETAILS

COMPUTER KITS FROM NEWTRONICS

ELF II
BOARD WITH VIDEO OUTPUT

Hobbiests! Engineers! Technicians! Students!

 Computer Kit STARTS AT £59.95plus V.A.T.
FEATURINGTHE
RCA COSMAC 1802 cpu
STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute, and the short course speedily instructs you how to use them.

ELF II was designed to be both a trainer and the heart of a powerful computer system. The $£ 59.95$ ELF II gives you all components and everything you need to write and run your own programs immediately, even if you've never used a computer before. Then, once you've mastered computer fundamentals, ELF II can be expanded to give you tremendous computing power.

Plus the greatest range of Expansion Kits and Software:
GIANT I/O 8d : $4 K$ RAMS : ASCI KEYBOARD : LIGHT PEN : VIDEO DISPLAY BD : PROTOTYPE BD : PSU : CABINETS : FULL BASIC WITH RPN : TINY BASIC ELF-BUG : TEXT EDITOR : ASSEMBLER : DISASSEMBLER : MANUALS AND LOTS MORE.

Explorer/85

Professional Computer Kit

FEATURES INTEL 8085 cpu
£299

+ VAT

Microsoft BASIC in ROM WITH ONBOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER / 85 features the Intel $8085 \mathrm{cpu} .100 \%$ compatible with all 8080A and 8085 software. Runs at 3 MHz , Mother Board (Level A) with $2 \mathrm{~S}-100$ pads expandable to 6 (Level C). 2K Monitor ROM - 1 K Video RAM - 4 K WORKSPACE/USER RAM Expandable to 64 K - 8 K Microsoft BASIC in ROM - STANDALONE FULL ASC 11 Keyboard Terra - RS 232 /20Ma Loop - Direct interface for any S. 100 Board - p.s.u. requirements $8 v, 6.3 v A C-$ Runs with North Star controller and Floppies - EXPLORER/85 can be purchased in individual levels, kit form or wired and tested OR as a package deal as above.

64k S 100 DYNAMIC RAM BOARD
$16 k$ expandable to $64 k$ on one board, Intel $64 k$ RAM controller: Hidden refesh: fast performance low power consumption: Latched data outpuls: 200ns 4116 RAM's: On board crystal: fully socketed. Designed for 8080, 8085 and Z80 bus signals.
16 k RAM Bd in Kit form
Assembled, tested and burned in
16 k expansion kits

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add VAT to all prices (except manuals). P\&P £2. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number We are now open for demonstrations and Sales. Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground on main A1 into London.

Manutronias
255 ARCHWAY ROAD, LONDON N. 6
TEL: 01-348 3325

WW - 019 FOR FURTHER DETAILS

Sonic Sound. the premier home entertainment store have now added yet another big name in the field of sound equipment to further enhance their prestige in London's centre of the audio/visual and Hi -Fi field in Tottenham Court Road.

Eddystone, at the top of the tree since short wave began, have now appointed Sonic Sound Audio as sole retail distributors in the United Kingdom Anyone even contemplating purchasing short wave equipment. be they looking for the best possible available for their Embassy, press department or home use should visit or contact Sonic where they will be able to view and listen to the most comprehensive range of the latest short wave equipment on the market today.

Listen and choose in comfort at Britain's most up-to-date air conditioned sound demonstration studios. Full ranges of Hi-Fi, Video equipment. In-car and portábles, etc from all leading manufacturers; B \& O. Sanyo. Sony. Hitachi. Pioneer, J.V.C

ContactsCLEAN

BY USING A

DIACROM SPATULA

Manufactured in France British Parents applied for

No other cleaner has all these advantages:-

1. Only 100% pure, natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. Alf diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise abovo the surface. This eliminates all excessive scratching during use.
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200. 300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon hande is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200, thickness $55 / 100 \mathrm{~mm}$.. both faces diamonded. For quick cleaning of industria relays and switching equlpment. eic.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smatler equipments, like telephone relays, computer relays, etc.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny contacts. Two close contacts facing each other can be individually cleaned. because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom
SPECIAL PRODUCTS (DISTRIBUTORS) LTD
. 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplid to the MO.D U.KAEA. C.E.G. 8.8 ritish Rail and other Public Authoritise also major industrial and electronic usors throughoun tho United Kingdom.

WW-117 FOR FURTHER DETAILS

CRYSTAL ELECTRONICS CC ELECTRONICS

XTAL BASIC 2.2

 NOW ON SHARP MZ 80KAll the features of SHARP BASIC and more-occupies 5K less RAM MZ 80K RAM £520 + VAT (with XTAL BASIC leaves 11 K for programs) XTAL BASIC for Sharp only £40.00 + VAT The Sharp MZ80K \& XTAL BASIC Guaranteed for 12 months NASCOM OWNERS
have you got your XTAL BASIC yet, a lot already have NASCOM VERSION
only £35 + VAT
AT GOING TO PRESS, WE HAVE THE
FOLLOWING ICS SURPLUS TO OUR REQUIREMENTS Terms Cash with.Order, Min Order £5.00, please add VAT Please phone to confirm availability before ordering.

74	$\begin{aligned} & 193 \quad 90 p \\ & 393 £ 1.00 \end{aligned}$		S74	35p	S175	970	191	85p
Serles			S86	400	S180	900	192	90p
$0012{ }^{\circ}$			S112	55p	S194	£1.00		90p
02 12p			S124	£1.80	S257	£1.20	248	1.85
15 25p		les	S132	86p	S280	£2.00	279	64p
74 20p	S02	12p	S133	600	S283	£1.80	395	2.10
85 60p	S03	120	S135	570				
8630 D	S04	80p	S139	70p		Ls	Un	
9030 p	S10	17p	S140	750		les	IC	
93 25p	S11	24 p	S151	80p	85	£1.00	NE556	Op
$13655 p$	S15	300	S153	76p	151	900	LM3900	500
155 450	S28	410	S157	76p	161	90 p	741	20p
161850	S37	40p	S158	96p	173	£1.00	280P10	£7.00
165900	S40	20p	S174	£1.05	175	800	Z80CTC	£7.00

[^2]Shop open 0930-1730 except Saturday \& Sunday 40 Magdalene Road. Torquay. Devon, England. Tel: 080322699

Every week, millions of advertisements appear in the press, on posters and in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice and are legal, decent, honest and truthful.

But if you find one that, in your opinion, is wrong in some way, please write to us at the address below.

We would like you to help us keep advertising up to standard.

The Advertising Standards Authority. If an advertisement is wrong, we're here to put it right. ASA. Lid. Brook House.Tornggton Place, London WCIE THN.

Give for those who Gave

Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them or their dependants are now in need of help.
Please assist by giving all you can for an emblem during WINGS WEEK or please send us a donation

PLEASE
WEAR THIS EMBLEM

DURING
Wings Appeal
in September

Royal Air Forces Association, 43, Grove Park Road, London. W43RU.
(Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charities Act 1960).

Space donated by:

go digital with the TRW Video A/D Converter

We've done today what everyone thought was years away. We've developed a Monolithic Video A/D Converter to sell for less than $£ 350$ - and best of all, it's ready for delivery now.

TRW's new 8 bit TDC 1007 J costs only $£ 320$ (in 100 's), features up to a 10 to 1 power reduction over existing converters, is less than $\frac{1}{3}$ the size, and converts with unmatched accuracy up to 30 MHz (33 ns conversion time).

The TDC 1007J exceeds the standards that are required for TV studio equipment, yet it is economical enough for field and/or industrial use. If you have a product that is now using one of those expensive Video A/D Converters you can mount the TDC 1007J (and about $£ 25$ worth of other components) on a card and start saving immediately. (Incidentally - we are making available, in small quantities, an evaluation board. It's a

MCP Electronics Ltd.
Station Wharf
Alperton, Wembley, Middx.
Tel: 01-902 5941
fully tested drop-in unit containing everything you need to go digital - just ask for TDC 1007 PCB). Let us show you how you can go digital ... economically.

Now also available in 4 and 6 bit versions and

 MIL TEMP RANGE TRM LSI PRODUCTS . for Digital Signal Processing
fact: the PRO MASTER"'sound system is not an evolution... it's a full-blown REVOLUTION!

The PRO MASTER modular sound system ushers in a new generation of sound system versatility, reliability, and quality for today's entertainers, musicians, and speakers-for use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and schools. Its multitude of performance-proven features is the result of sophisticated computer design techniques, advanced materials, and countless hours of personal consultation with performers and sound technicians.

Revolutionary New Console

Finally! The best of both worlds. A console so easy to use that it won't overwhelm the beginning group, yet with the advanced features and capabilities required by experienced professional performers-such as pre-fader monitor mixing, effects and/or built-in reverb, with their own tone controls, LED clipping indicators with attenuators on each input, and full patching facilities for every system component. Super power: twin 200-watt solid-state power amplifiers! Doubles as a stereo recording console for groups that want to "lay down a few tracks" without paying for studio time, or can be used as an ultrasophisticated keyboard mixer with power. Unitized ARMO-DUR" structural foam combination case and chassis makes it more durable than steel. Ultra-light: only 47 pounds.

Revolutionary: Variable Dispersion Sound System

Advanced new variable dispersion high-frequency horn system projects your sound-everywhere in the house, giving you a choice of 60° long-throw, or 120° wide-angle dispersion with the twist of a knob. Tailors the sound to the room-even L-shaped rooms.

Revolutionary New Loudspeaker

Every extra ounce-every unnecessary cubic inch-has been computer designed OUT of the PRO MASTER loudspeaker. Modern materials and moulding techniques accommodate a highperformance 15 -inch woofer and high-frequency horn and compression driver in a startlingly small, efficient enclosure. Less than 28 inches high, 23 inches wide, 16 inches deep. Weighs an easy-to-handle 58 pounds. Yet, the power handling capacity is a remarkable 150 watts, and the frequency response is 50 to 15 kHz .

PLUS . . . Revolutionary: FEEDBACK FINDER ${ }^{\text {Tw }} /$ /Equalizer PATCH BLOCK ${ }^{\text {TM }}$ Patch Panel LED Status Indicators

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU-Telephone: Maidstone (0622) 59881

wireless world

Editor:

TOM IVALL. M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone.01-261 8443
Projects Editor:
MIKE SAGIN
Phone: 01-2618429
Communications Editor:
TED PARRATT, B.A.
Phone 01-261 8620
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design:
ALAN KERR

Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager:
BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037

BARRY LEARY
Phone 01-2618515

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
MIKE THRAVES
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Producers before products

It may be a coincidence that markets for office automation equipment and military electronics equipment are both growing at nearly 30 percent per year. But both trades are obviously doing well in the business of helping to get rid of people - in their different arenas and different ways, of course.

Whenever one deplores the fact that parts of our industry are thriving on activities which are fundamentally hostile to life and its environment one gets the sweetly reasonable answer that such expansion is increasing our prosperity, providing more jobs (in different kinds of work), improving the country's balance of payments and so on. And indeed it is this rise in the material standard of living which anaesthetizes us to accept the extraordinary contradictions of our industrialized society, to live docilely with what an observer from another planet might well consider insane. Planned obsolescence means that the ultimate purpose of production is waste. Peacefully we manufacture equipment for warfare; skilfully we design machines to abolish skill; high intellects are turned to the creation of trash; and great bodies of technical knowledge, built up over centuries, to bringing forth mere ephemera. We develop products to satisfy demands which don't yet exist, and sell these products to rich minorities in the midst of the poverty-stricken majority. Workers suffer intense boredom to produce goods the images of which are used to excite and stimulate other workers. Worst of all, in pursuing endless consumption we behave as if we did not know that the Earth's mineráls and sources of energy cannot be renewed. One doesn't have to look far in electronics and communications to see examples of all these processes.

Some psychiatrists think that unavoidable contradictions in society (called "double-binds") are what lead to mental breakdown. Nevertheless our
leaders treat them as inevitable, to be endured as the price we have to pay for what is called progress. Lord Zuckerman, for example, well known as a scientific adviser to the UK government, assured us last year in a lecture entitled "Look forward to the electronic future" that we must accept the fact that "the Garden of Eden has already been ploughed up".
For Lord Zuckerman and his contemporaries it probably doesn't matter too much. But thankfully there are some young people who do very much care about the world we are making for ourselves. They ha've decided they do not see life entirely in terms of manufacturing and acquiring products but that it is equally important to become fully awake, to widen and deepen one's experience and try to find more humane ways of living without the aggression and ambition which a competitive system encourages. In our own field of electronics, this optimistic aim formulates itself in the question of why a powerful technology such as this cannot be used directly for the benefit of human beings, instead of through the absurdly indirect process of first turning it into products of sometimes dubious utility and thence into money from which incomes and taxation are used to pay for the things and services we really need. Naive? Certainly, in the light of the conventional wisdom. Electronics as used in medicine, agriculture, education, the arts and all life-sustaining application is still entirely dependent on large-scale, high-technology, competitive industry for its basic components. But we shouldn't be confused into thinking that because the present industrial system is the reality of the world it is therefore rational. We must leave our minds open to the possibility of an alternative way, a rational way in which the producers are put before the products.

Community radio

A case for more accessible local radio broadcasting

by Norman McLeod

Abstract

The effectiveness of radio broadcasting in satisfying the needs of small communities is examined. A case is made for smaller, more directly concerned stations, using either medium-wave or v.h.f. transmitters and costing less to install and run than existing local broadcasting stations which, the author feels, do not concern themselves with local interests. He makes a plea for more experimentation with a view to providing impetus and evidence for a public debate on the whole subject of UK radio broadcasting.

The community radio lobby in the UK wants to see the emergence of a "third force" in British broadcasting. This desire stems from a deep-seated discontent with radio broadcasting controlled by the BBC and the IBA, and can be seen as part of a general longing for more homely and decentralized forms of communication. Existing community activity, such as the production of small-scale and largely non-profitmaking newspapers, has sprung up mostly in cities and larger towns, where many people feel more lonely and isolated than in rural areas.

It has occurred to a number of people that radio could be used to promote community feeling, debate and culture much more effectively than any printed medium. Not only does it offer a unique immediacy, and the ability to reproduce music and drama, but as the cost of newsprint, printing and paper distribution has risen dramatically in the past decade, so the cost of modest broadcasting equipment has fallen by comparison. The Government, however, remains committed to the policy that "responsibility for broadcasting services should be vested only in public authorities appointed as trustees for the public interest", ${ }^{1}$ and has yet to be convinced that the BBC and the IBA are not the best organizations to control all future sound radio broadcasting in the UK. Supporters of community radio feel, on the other hand, that to put the present broadcasting superpowers in charge of a community radio station is about as thoughtful and sensitive as having a village corner shop at the mercy of a multinational food conglomerate.

The present "local" broadcasting operations of the BBC and the IBA are seen as having very little to do with community radio proper; the BBC is too hamstrung by bureaucracy and careerism, and ILR is overly preoccupied with making money. Both forms of station. are much too large and formal to allow ordinary people much more in the way of access to the airwaves than the now statutory 'phone-in. As the Danish pioneers ${ }^{2}$ put it: "Community radio is first and foremost . . . public access to the medium of radio on as fair conditions as possible. The need to express an opinion often arises from a desire to influence the political, social or cultural situation in the local district ... one must build up community radio and a structure which makes it possible for the public to use it."

Apart from the lack of community involvement in decision-making, the present local services have been widely condemned for the great similarity between stations up and down the country. The BBC stations have a "divide and rule" attitude to community involvement. Local "experts" are permitted to enter BBC stations in order to prepare specialist programmes on fishing, motoring, folk music, student activity, etc., but the programmes are brief, prerecorded, and go on air at very odd times, sometimes fortnightly or even less frequently. The success of this sort of programme relies on potential listeners scanning the "Radio Times" a week previously, to mark off those programmes which look interesting. Subsequently they are expected to remember to switch on their receivers at the appointed time and listen carefully. In practice this simply does not happen. Most people are too busy with other things to plan their listening so religiously, and most community programmes are heard either by the few who listen almost continuously to the station every day, or by the odd soul who discovers one by accident rather than design. As a result, much of BBC local radio's "community" output has an audience so small as to be derisory.

The IBA's community record is even worse. Practically all commercial radio stations can be geared to play exactly the same pop records and commercials, interspersed by bland mid-Atlantic voices, up and down the country. Local information and news are fed unob-
trusively into the general stream of pop and prattle: individual access is limited to the 'phone-in, and minority programmes are safely relegated to offpeak hours, when the loss of advertising revenue can be minimized.

By contrast,the word which best sums up the ideal state of a community radio development is "diversity". Instead of being united by common factors inimical to the development of a distinctive character, community stations would be free to go their own ways, being managed by and answerable to the local people in the area which they serve, and to no-one else. The only justification for a central authority would be for the management of frequencies, and the representation of community radio interests at national level. Stations would use low-power transmitters connected to much less expensive studios and equipment than are in use at present, and the central authority may be able to assist with engineering advice, but would not be in the business of laying down rigid standards.

Current experiments

There are a few exceptions to the current rigid and unappealing framework of local sound radio broadcasting - in Cardiff, a community-based group applied for and got the franchise for the forthcoming ILR station due to open this year. Half the shares were offered at $£ 1$ each to financial investors, and the other half were sold for 3 p to the Cardiff Broadcasting Trust. This trust guarantees listeners the opportunity of influencing the type of programmes which are broadcast.

Universities have been running their own radio stations since 1968 . They are permitted to do so provided they transmit using an inductive loop radiating system which does not permit reception outside the university campus. The University stations are compelled by the Home Office to operate under much stricter technical conditions than any other form of broadcasting. For example, the Home Office technical specification ${ }^{3}$ requires that the medium-frequency transmitters used by student stations have their audio input filtered to reduce frequencies of 4.5 kHz or above by 34 dB . There is no need to protect the non-UK channels. adjacent to university transmissions in
this manner from slight sideband splatter, since university stations cannot, by definition, be heard in the local town, far less abroad. The National Association of Student Broadcasters has protested, unsuccessfully, to the effect that all BBC and IBA transmitters currently in use would fail this particular requirement ${ }^{4}$. Since much of the output of the stations is music, the dull and lifeless sound quality produced by the sharp cut-off filter needed to meet the specification is far from welcome.

The Home Office has also shown itself to be extremely sensitive about the possibility of non-university residents hearing student transmissions, even to the point of insisting that public highways passing alongside university grounds must not receive an audible signal, presumably in case a motorist jut happens to tune to the right frequency while passing in a car! In fairness it ought to be said that the Home Office is far too preoccupied to pay much attention to a university station once it is on the air, that the engineers who visit are invariably courteous and helpful, and that provided a station does not acquire any local notoriety it is generally left alone. Nevertheless, many university station managers look wistfully across the Atlantic, where their counterparts are permitted to broadcast freely, on stereo u.h.f. transmitters, to the whole of the local town or city.
The other form of community broadcasting licensed directly by the Home Office takes place on closed-circuit cable systems, such as the one operated by Rediffusion in Basildon. Radio Basildon has been operating since September 1978 to 24,000 homes, and proudly claims 60,000 listeners a week. It raises most of its revenue through the sale of advertising, and employs two full-time staff - a manager/ programme editor and a sales manager. The rest of the work involved in producing a full spectrum of daily broadcasts is carried out by three part-time workers and about 40 volunteers.
Radio Basildon is formed as a company limited by guarantee, with each member having a limited liability of $£ 1$, and no share capital. It is governed by a board of twelve persons, who may not be serving local politicians and must be approved by the Home Office. The Home Office requires that programmes must be specifically designed for the local community and have a small proportion of commercially recorded music. It requires advance logs of programme output, and that the station's broadcasts be recorded on tape and held
for three months, in a similar manner to the logging requirements imposed by the IBA on their operating companies. So far, the impression is that the Home Office is well satisfied with the success of the experiment, and Radio Basildon's major complaint is that it is not allowed to broadcast to those parts of Basildon not covered by the cable system, or to people with portable radios in kitchens or cars. It has formed a "Transmitter Campaign Committee", which has collected thousands of signatures on a petition to the local Member of Parliament, and an all-party motion was passed at a Basildon District Council meeting, pressing for a radio transmitter for the station.

Radio Basildon serves a potential audience of around 90,000 people from a studio which cost $£ 16,500$ to set up and $£ 28,000$ to run per year. University stations serve between 1000 and 5000 students, and at today's prices would cost between $£ 4,000$ and $£ 7,000$ to set up and about half those figures for annual running costs, depending on the scope of activity. The new BBC local radio station at Lincoln will service half-amillion people for half-a-million pounds, and a figure of the same order annually.

Com-Com

The umbrella organization attempting to contain and reconcile the various parties is the Community Communications Group, known as Com-Com. ${ }^{5}$ Com-Com supported the Annan committee's proposal for a Local Broadcasting Authority, which was put forward as a solution to the untidy growth of the present local broadcasting services. Annan recognized that "a different animal needs a different keeper", but the present government, like its predecessor, declined to implement this proposal, and does not appear to have any desire to break the hold on broadcasting maintained by the BBC, the IBA and the Home Office.

Many members of Com-Com sense a dark conspiracy amongst these three organizations to deny them their rights. On the other hand, officials privately denounce Com-Com as "a bureaucracy looking for a niche", while publicly explaining those technical facts which

Fig. 1. The Wise plan for community stations on v.h.f. in London. Similar plans could be drawn up for all major cities, with similar or possibly more favourable conclusions, due to the smaller number of existing local services.

can be marshalled in support of the status quo. Com-Com has also suffered considerable internal agonizing over its structure, and has admitted that it has been less than influential in determining broadcasting policy in the UK.

Technical factors

Com-Com recently commissioned a report by the former IBA engineer Fred Wise on the possibility of v.h.f. spectrum use, in the existing band, by lowpower stations in the London area. This takes an ad hoc approach to the problem, looking for gaps in the present v.h.f. broadcast band of $88.1-97.5 \mathrm{MHz}$, assuming that the present development of local and national services on these frequencies is complete and, for the time being at least, immutable.

London's principal v.h.f. services come from the BBC transmitter at Wrotham and the IBA site at Croydon, on $89.1,91.3,93.5,94.9,95.8$ and 97.3 MHz . There are also weaker network and local services appearing on various other frequencies. In essence, the Fred Wise report regards the bands $\pm 600 \mathrm{kHz}$ from the local high-power transmissions as sterilized for re-use, and then chooses those frequencies which are relatively 'quiet' among the remainder. Figure 1 shows that the channels which emerge for possible community use are $88.1 / 2,90.2 / 3 / 4$, $92.1,92.5 / 6$ and $96.4 / 5 \mathrm{MHz}$.

The report envisages three types of community station: Category A stations, being the smallest with a coverage area radius of 3 or 4 km ; Category B stations, medium-sized stations covering a sector of the city, and Category C stations, aimed at specialist interests and covering the whole city. The result of the frequency survey was that either one Category B station and "about a dozen" Category A stations would be practicable, or that the Category B station could be traded for two more Category A stations.

The great attraction of this scheme is that the frequencies proposed for community radio stations in London could never be used for anything else, and their use for this purpose would not be to the detriment of existing services. Unfortunately, interference in the reverse direction is accepted as likely:
it should not be a condition that a community service should be developed only if good reception is possible in the whole of the target area for at least 95% of the time. The choice will frequently be not between a near-perfect coverage and a less good coverage, but between a less good coverage and no coverage at all. Thus planning should be approached in this light."
The Home Office takes a dim view of the prospect of very low-power community stations sharing channels used by high-power transmissions. The official line is that "... a small lowpowered station can have a significant effect on frequency planning, partly because it can cause interference over a
wider area than it is intended to serve, but principally because its presence inhibits the re-use of the same frequency over a wide area by more powerful stations serving larger communities, because they can cause unacceptable interference to the small station." ${ }^{1}$ As far as it goes, this argument is perfectly sound. But it assumes that the community station will be established first, and the high-power services will come along later.

Medium frequency use

It is also worth looking at whether the medium-frequency broadcast band could similarly be exploited on an ad hoc basis for community broadcasting. In effect, this band is really two distinct animals: during the day, a number of channels have no discernible signals on them, while during the hours of darkness, every frequency has strong signals from European transmitters produced by sky-wave propagation. So a service planned for daytime use will have much more restricted coverage at night. This need be less of a handicap to community radio stations than it is for any other form of broadcasting, in that community stations are expected to be on the air for a few hours a day only, and most of them during daylight.
The current state of the mediumfrequency band in London is such that there are a number of frequencies, well spaced from present services, which could be exploited under Article 8 of the Copenhagen convention. This states that a country may use a channel assigned to another for low-power transmissions, provided that no interference is caused to the foreign service. Since the power of the community transmitters is likely to be less than a hundred watts, compared to the hundreds of kilowatts used elsewhere, the amount of interference by ground or sky-wave caused to non-UK services by community stations is likely to be completely negligible.
Medium-frequency broadcasting of local services in the UK already makes use of a very large number of channels assigned in this manner; including lowpower BBC network relays and univer-

Fig. 2. Idealized lattice structure made up of equilaterial triangles. In practice, the shape is distorted by geographical and environmental factors, but the diagram enables general conclusions to be drawn about the separation of stations and the service radius of each.

sity stations, the frequencies used are $603,720,756,774,801,855,945,963,990$, $999,1026,1035,1170,1197,1278,1359$, $1368,1431,1449,1503$ and 1521 kHz . Not all these channels are occupied throughout the UK; some are used once only. As far as the prevention of foreign
interference is concerned, it is of no consequence whether the 1 or 2 kW of power radiated by the UK on these channels comes from one or two transmitters serving large communities, or from dozens of stations serving smaller ones.

Fig. 3. Mean m.f. propagation curve,
normalized at 5 km from transmitter.

Fig. 4. Three transmitters, one as in Fig.
3, and two others, one 50 km and the
other 100 km from the first.

Fig. 5. As Fig. 4, but on a smaller scale.
Basic curve is normalized for 1.5 km .

The possibility emerges of building up a lattice structure, as shown in Fig. 2, across the UK on certain medium frequencies, for the use of community stations. Taking the average of five CCIR recommendations ${ }^{6}$ for mediumfrequency propagation at frequencies between 700 and 1500 kHz and for ground conductivities between 1 and $30 \mathrm{mS} / \mathrm{m}$, produces the propagation curve shown in Fig. 3. Figs. 4 and 5 show how this curve may be applied to lattices of sides $22.5,30,50$ and 100 km , assuming that an inter-station protection ratio of 30 dB is deemed the minimum necessary to provide an acceptable service.

For a service area boundary limit of $70 \mathrm{~dB} / \mathrm{uV} / \mathrm{m}$, which is the IBA planning norm, the effective monopole radiated power required by stations on $22.5,30$, 50 and 100 km lattices would be approximately $500 \mathrm{~mW}, 850 \mathrm{~mW}, 5 \mathrm{~W}$ and 45 W for service radii of $2,2.6,5.5$ and 12 km respectively. In practice, the transmitter powers required would be a good deal higher due to aerial losses: even so, except for the last example, the transmitting equipment needed would not be particularly costly.

Studio standards

Both the BBC and the IBA insist on very high technical standards for the studio equipment used in local broadcasting: frequency response, noise, wow and flutter, sound insulation, acoustics and so on are rigidly specified. ${ }^{7}$ Experience at hospital, university and other small-scale operations has shown that a much cheaper and less technically exacting studio can be constructed without regard for these strict requirements, which offers a performance to which no listeners have taken exception. It would appear that the technical standards insisted on for present-day professional broadcasting can be very substantially relaxed in the community radio context without giving rise to complaints from the general public. This would particularly be the case if amplitude-modulated, m.f. broadcasting were the norm for what the Fred Wise report describes as "category A" stations. However, even on v.h.f., the number of ordinary listeners who could tell the difference between a wellengineered $£ 4,000$ studio, and a professional outfit costing ten or even a hundred times as much is likely to be negligibly small.
This is not to say that the high performance standards insisted on by the BBC and the IBA are themselves unnecessary. Large-scale broadcasters are investing in equipment on behalf of a public who have in total invested far more in their receiving apparatus - no listener investing heavily on goodquality receiving apparatus should be let down by penny-pinching on the part of national and large-scale "local" broadcasters. However, the inherently low-cost nature of community operations will be destroyed, for co compen-
satory benefit, if the professional standards of technical excellence are insisted on as divine absolutes. In addition, audio technology is advancing so quickly that the performance of quite modestly-priced equipment of today is frequently superior to the professional standards of only a few years ago.

Conclusions

I believe that as many experiments in community broadcasting as are technically feasible should be allowed to take place with the minimum of delay, because the time is ripe for a public debate on the whole structure of radio broadcasting in this country, and this debate will be better-informed if a number of people have been able to experience and compare various forms of national, regional, local and community broadcasting, as a prelude to determining the best balance between these services in the years to come.
Technically, sound broadcasting in this country, although competently engineered, is in a mess. The v.h.f. band II is sadly neglected by the public, and rarely promoted by the broadcasters. It is ineffectually used by the BBC for an ugly hotch-potch of services on the national networks; the local radio stations, given the choice between f.m. and a.m., would choose the latter any day. Radio 2 is wastefully duplicated on literally dozens of unnecessary frequencies for long periods of time, while other services, or would-be services, are denied any frequencies at all.

It would be premature to say whether or not community radio is a good idea, because the idea has not been fully tried. But while the experiments are going on, consideration should also be given to the following questions. Is it not time that there was a clear general policy to encourage the use of v.h.f. by providing an attractive choice of programmes on that band? A.m. radio is better suited to speech than to music; it is likely to become increasingly unusable after dark; what, therefore, are the most appropriate services to use medium and low frequencies? What of the balance between large and smallscale operations - what do people want from these services? What is to become of the BBC: ill-funded it certainly is, but is it also crippled by its own sheer size and bureaucracy?

These questions have been considered by the Annan committee and similar bodies in the past. Governments of both parties, however, have shied away from major decisions about broadcasting and have frequently disregarded the recommendations of their own select committees. It is time to bring the future of sound radio broadcasting back under a spotlight in the public arena. \square

References

1. Letter from Lord Belstead, Home Office, to Archie Hamilton, MP, 10 July 1979.
2. The first experiment with community
radio in Denmark, Radio Svendborg, on the Danish island of Funen, took place from the 8th to the 14th October 1977. More information can be acquired from: Baandvaerkstedet, Jac. Dannefaerdsvej 15, DK 1973 Copenhagen V, Denmark.
3. Specifically the requirement is for "any sideband component displaced from the carrier by more than 4.5 kHz (to be) attenuated below that of the carrier by more than 40 dB ". Since 100% modulation produces two sidebands each -6 db relative to the carrier, the audio-frequency implications of this requirement are as stated.
4. See, for instance, IBA Technical Review No 5, p39, Fig. 5.
5. Com-Com's registered address is 8 Millfield Close, Farndon, Cheshire.
6. CCIR recommendation $368-2$, XIIIth Plenary Assembly, Geneva, 1974. The curves used to obtain the mean value of Figs. 3-5 were 700 kHz at 10^{-3} and $3 \times 10^{-2} \mathrm{mS} / \mathrm{m}$, 1 MHz at $10^{-2} \mathrm{mS} / \mathrm{m}$, and 1.5 MHz at 10^{-3} and $3 \times 10^{-2} \mathrm{mS} / \mathrm{m}$. Frequency has a more important bearing on propogation than ground conductivity, in the UK at least.
7. The IBA Code of Practice for sound radio broadcasting is set out in the IBA Technical Review No 2.

Expectations from community radio

John Thompson, the IBA's director of radio, warned recently of the danger of expecting too much from community radio as an instrument for dealing with social problems. Writing in Independent Broadcasting for April 1980, he said "I would raise some questions about the extent to which radio can claim to provide solutions to social or human problems. Radio can act as a channel between the social service agencies, the experts in social and human problems, and the general listening public. Local radio in particular can often mobilise the loyalty and affection of the audience to offer help or funds at times of emergency or with individual distress. Radio has stimulated much valuable aid and valid response, and long may it continue to do so. But hazards exist too, don't they? If the broadcasters stray too often or too heavily into the social field such worthy broadcasting can become unconvincing and tedious, rather quickly.
"Also radio stations have to be careful not to become confused in the public mind, especially among those listeners who are in personal trouble or difficulty, with the specialists whose job it is to try and provide first-hand social or specialist help. The utility of radio is mainly, isn't it, to act as a channel for information for referral? Some listeners can be very impressionable. Building up hopes of help and advice that probably cannot consistently be met by a radio channel on anything resembling a regular basis, any more than a popular disc jockey can become a real rather than a fantasy friend for his fans, is likely to be of dubious utility. Our radio services can, I suggest, continue during the next decade to offer much authentic help in social and human problems, possibly increasingly so, provided this aspect of radio's activity does not make exaggerated claims and cannot be accused of seeming to offer more than can be delivered in relation to that central triad of providing information, entertainment and education."

Exposure to r.f.

Both amateurs and professionals have been watching with some anxiety the growing public controversy over the "safe level" of continuous exposure to non-ionizing radiation from communication, broadcast and radar transmitters, microwave ovens and highvoltage electricity cables. Although for many years the figure adopted in the UK, the USA and many other countries has been $10 \mathrm{~mW} / \mathrm{cm}^{2}$, based many years ago on a very conservative estimate of the known thermal effects of radiated r.f. energy, a number of countries, including the USSR, have for a long time put the level much lower, down to $0.01 \mathrm{~mW} / \mathrm{cm}^{2}$. This extremely low figure was apparently based on a number of experiments that suggested that exposure to non-ionizing radiation can result in biological effects of an athermal nature. Attempts over 20 years ago to repeat such experiments in the West failed to produce any really positive results; and since the alleged symptoms included headaches, inability to make decisions, general tension, sense of anxiety, lack of sex drive, etc., these were not easy to "measure" with any degree of accuracy.

Recently, as a result of the concern in the United States that the public was being "zapped" by microwaves, including the leakage from microwave ovens, a whole new series of experiments have been taking place. While full reports are still awaited, it would appear that this time biological effects are being observed in small mammals subjected to microwave radiation at power densities rather less than $10 \mathrm{~mW} / \mathrm{cm}^{2}$, at least in the sense that there appears to be some interference with body mechanisms regulating internal temperatures etc.

Experiments at the John B. Pierce Foundation, New Haven, Connecticut on squirrel-monkeys with 2.45 GHz radiation at power densities of 6-8 $\mathrm{mW} / \mathrm{cm}^{2}$ are reported in "Electronics" as having proved positive, though of course this does not prove that there would be similar effects on humans, of very different physical size.

At the US Naval Medical Research Institute in Bethesda, Maryland it has been shown that radiation can greatly increase the stimulating effects on rats of dexadrine amphetamine with power densities down to about $1 \mathrm{~mW} / \mathrm{cm}^{2}$. This follows the discovery a year or two ago of unexplained behavioural effects when rats are given Librium while exposed to microwave radiation.

While this recent work in no way invalidates the belief that there is no danger to the public or to prudent
operators from the levels of r.f. radiation at normal distances from amateur radio aerials, it does raise again the question of handheld equipments of more than a very few watts output, since these normally have the aerial held close to the head of the user. Similarly those of us who use "long wire" h.f. aerials coming right in to the "shack", or indoor v.h.f. aerials, may need to take rather more precautions than has been thought necessary in the past.

H.f. broadcasting and WARC

There is increasing evidence that some of the frequency allocations to radio amateurs in the low h.f. bands came very near to being lost at WARC 1979. They were saved by determined opposition from "non-aligned" and "Third World" countries to the extensions to the h.f. broadcast bands so eagerly sought by many of the "developed" countries (including the UK). An article in the "EBU Review" commenting rather sourly on the lack of success of European broadcasters to secure any new frequencies below 9 MHz states: "In fact Latin American countries were opposed to any extensions of the h.f. bands for broadcasting; they claimed they needed the h.f. spectrum primarily for their fixed services, together with other services such as the amateur service." European h.f. broadcasters consider their bands are "overloaded by a factor of three or four" but seem reluctant to ascribe the blame to the practice of using many channels directed simultaneously at the same target areas; the current power race; and the continued practice by some countries of "illegal" jamming. Their claims of "many millions" of listeners often fail to distinguish between those listening to overseas m.f. relays and those struggling to listen on h.f.

Despite their lack of success at WARC, the European broadcasters are continuing to press for the introduction of s.s.b. transmissions; while this would provide more channels (and in theory make possible a reduction in power) it would call for transmitter stabilities of about 0.1 Hz and a receiver stability of about 2 Hz to avoid distortion on music.

One topic not discussed at WARC was the Russian Woodpecker which makes a nonsense of the Radio Regulations. Although less troublesome than in its early days, the Pecker still causes a great deal of interference and this will become worse as the sunspot cycle advances and the diurnal span of m.u.f. contracts. For this reason considerable
interest is being shown in a design by Ulrich Rohde, DJ2LR/W2, in "Electronic Design" of a noise blanker for pulse interference claimed to be effective against the Pecker over a dynamic range of 80 dB . This uses two CP643 power f.e.ts in the signal path in order not to degrade the signal handling capabilities of high-performance receivers.

Scanning the bands

During March, 50 MHz signals from South Africa were received in the south of England around noon, and a number of crossband $50 / 28 \mathrm{MHz}$ contacts were made. A 50 MHz Hawaiian beacon station, KH6EQ1, was reported heard in Athens, Greece by SV1DH. Nevertheless it is becoming increasingly clear that November 1979 represented the peak of the present sunspot cycle.

British amateurs have been reminded of Air Navigation Order 1980 which prohibits the flying of captive balloons or kites higher than 60 m above ground level or within 60 m of any vessel, vehicle or structure, and the flying of kites within 5 km of an aerodrome. A number of amateurs have discovered that kites can form very effective "skyhooks" for long-wire h.f. aerials.

Home computers can be "abominable polluters of the r.f. spectrum" according to Paul Cooper, N6EY, as they frequently emit "hash" covering the entire spectrum. Where a computer is installed in an amateur station, some alleviation of the interference is usually possible using mains filters etc., but he claims that to achieve anything like a complete solution may involve complete re-packaging of the computer, the installation of copper-foil screens beneath the keyboard, better-shielded monitors, improved isolation, etc. "an approach beyond the scope of the average amateur".

In brief

A world record for 1.3 GHz is being claimed for a $2290-\mathrm{km}$ s.s.b. contact across the Great Australian Bight between VK6KZ/P at Cape Leeuwin, Western Australia and VK5MC at Haterleigh, South Australia An illegal broadcasting station in Miami, Florida - long a centre of much antiCastro activity by Cuban exiles - has been closed down by US Marshals and FCC agents. High-power amateur radio equipment was being used on the 7 MHz band to make broadcasts of a political nature directed at Cuba, resulting in interference complaints.

PAT HAWKER G3 VA

Multisection tone equalizer

Low-cost unit uses pre-set controls, quad op-amps

by C. Walker and W. Clinch, Plessey Semiconductors Ltd

Abstract

As a preset unit, this stereo equalizer has been designed primarily to cancel room resonances and equalize loudspeaker responses. Circuit fits standard diecast box and uses preset potentiometers to control the gain of eleven overlapping active filters in each audio-channel. Second-order active filters require one op-amp, two resistors and two capacitors; outputs are combined in a summing amplifier.

Unless you live in an anechoic chamber your rooms are bound to have resonances at certain frequencies. A rectangular room $4.2 \times 3.4 \times 2.5 \mathrm{~m}$ has damped resonances at 40,50 and 70 Hz to begin with and alcoves and chimney breasts give rise to much higher frequencies. The Baxandall type of tone control normally used provides a smooth bass or treble lift or cut by allowing the movement of a single, pole-zero pair. The peak of the bass response is normally at about 30 Hz with still some effect at 600 Hz . The treble peak is at about 20 kHz with still about 10% of the boost or cut as low as 1 kHz . Clearly such a tone control is of little use to compensate for a room resonance at 500 Hz due to the gap between a chimney breast and a near wall.
The tone equalizer, Fig. 1, has been designed with enough filter sections to allow flexibility of amplitude -

Fig. 1. Tone equalizer with eleven sections gives flexibility of amplitude response. Gain range of each filter is $\pm 12 d B$.
frequency response. Filter sections are second order and require only two capacitors and two resistors and one operational amplifier. Fig. 2.
With a high gain operational amplifier assume that the inverting input is a virtual earth, and also that a negligible current flows into the amplifier. The signal currents will be as shown in Fig. 2. Equating the currents at node A gives

$$
\frac{V_{\text {in }}+\frac{V_{\text {out }}}{R_{2} S C}}{R_{1}}+\frac{V_{\text {out }}}{R_{2} s C}+V_{\text {out }} s C=-\frac{V_{\text {out }}}{R_{2}}
$$

Rearranging

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-\frac{s}{C R_{1}}}{s^{2}+\frac{2 s}{C R_{2}}+\frac{1}{C^{2} R_{1} R_{2}}}
$$

The general form of a second-order bandpass filter is

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{k s}{s^{2}+\frac{\omega_{n} s}{Q}+\omega_{n}^{2}}
$$

Equating the coefficients of s gives

$$
\begin{aligned}
k & =-\frac{1}{C R_{1}} \\
\omega_{\mathrm{n}} & =\frac{1}{C R_{1} R_{2}} \\
\text { and } Q & =1 / 2 \sqrt{\frac{R_{2}}{R_{1}}}
\end{aligned}
$$

at the resonant frequency when $s=j \omega_{n}$.

Substituting for $k, \mathbf{Q}, \omega_{\mathrm{n}}$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1}{C R_{1}} \times 1 / 2 \sqrt{\frac{R_{2}}{R_{1}}} \times C \sqrt{R_{1} R_{2}}=\frac{R_{2}}{2 R_{1}}
$$

Centre frequencies of the filters are spaced logarithmically in the audio band with a multiplication factor of 1.866. This gives the centre frequencies shown in the components table.
Filter sections are deliberately overlapping to maintain a smooth charac teristic and although the phase response of individual filters changes from

Fig. 2. Second-order filter sections use two capacitors, two resistors and $1 / 4$ of a quad op-amp.

Fig. 3. Overlapping filter sections produce flattest response with O value of 1.25. Diagram shows $1,249 \mathrm{~Hz}$ filter response.
+90 to -90°, filter crossover points will have roughly zero phase change. This is because the phase lead of one filter cancels with the phase lag of the next.
The equalizer is not intended for continual adjustment but rather as a "fit and forget" unit and preset potentiometers are perfectly adequate for this application and represent a considerable saving over the slider types normally provided on this type of unit.

The Q value of the filters to give the flattest response is 1.25 and this gives the 3 dB cut-off frequencies at 18 Hz and 21 kHz . The overall flat-position amplitude response is shown in Fig. 3 together with the basic second-order filter response of the 1249 Hz filter. The Q value of 1.25 gives a filter gain of $R_{2} / 2 R_{1}=3$ or approximately 10 dB at resonance, and this is compensated for in the summing amplifier feedback resistor to give an overall equalizer gain of 0 dB .
The low Q value used makes the filters very tolerant to component values, and with filter spacings of nearly an octave a 14% total frequency variation (made up of 5% on capacitors and 2% on resistors) is acceptable.

Fig. 4. Good supply rejection of the programmable op-amps allows use of simple power supply.

Fig. 5. Lower printed circuit layout carrying presets can be conveniently situated above main board.

Fig. 6. Both boards can be housed in an earthed die-cast box, $12 \times 17 \times 5.5 \mathrm{~cm}$.

Gain range of each filter is designed to be $\pm 12 \mathrm{~dB}$ and $R_{3} A \rightarrow k$ prevents the gain going higher than this. The value of $R_{3}+R_{4}$ defines the signal current flowing into the virtual earth of the summing amplifier and this current will flow through R_{5} giving a gain of $R_{5} /$ $\left(R_{3}+R_{4}\right)$.

A supply voltage of $\pm 9 \mathrm{~V}$ allows signal handling of more than 0 dBm (approximately 800 mV) even with 12 dB boost, i.e. 9.3 V peak-to-peak at the output.
The TAB1042, made by Plessey Semiconductors, is particularly suitable for this application. It is an advanced bipolar integrated circuit containing four separate programmable operational amplifiers. The four amplifiers are programmed by current into a common

Mike Sagin plans to produce two single-sided printed circuit boards for the multi-section tone control for E8 including v.a.t. and UK postage. Write to 23 Keyes Road, London NW2.
bias pin which determines amplitude response, slew rate and supply current. For example, with a bias current of $75 \mu \mathrm{~A}$ the TAB 1042 will perform in a similar manner to four amplifiers of the 741 type but with improved frequency response and input characteristics.
The high supply rejection of the TABI042 means that a rudimentary stabilized power supply can be used with the transistors simply buffering the zener diode. High loop gain of the operational amplifier means any nonlinearities it may introduce are proportionally reduced by the feedback and the harmonic distortion of the unit is negligible. The circuit diagram of the complete unit is shown in Fig. 4.

Construction and use

Filters and power supply fit on a single board $10.2 \times 16.5 \mathrm{~cm}$ and the 22 presets on a second board normally mounted on pillars above the main board. This allows the filters to be adjusted through holes in the lid of the box. The filter output impedance is low and normal spindle or slider potentiometers could be mounted separately in a remote box without fear of degradation of response due to filter crosstalk.
Masks for the printed circuit boards are shown in Fig. 5 and the component layouts shown in Fig. 6. If the boards are spaced using one-inch spacers with the preset potentiometer board attached to the lid of a diecast box using suitable spacers, it is easy to access the copper track of the main board for test:1.1g.
Connect the earth of the mains to the box itself and not to the earth on the printed circuit board as this may cause earth loops with other equipment. Take care that the solder joints connecting

Component values and centre frequencies

Filter		R_{1}	\mathbf{R}_{2}	$C_{1}=C_{2}$	Preferred value	Capacitor type
A	30 Hz	12k	75k	$180 n$	180n	1
B	56 Hz	12k	75k	$94 n$	$100 n$	1
C	104 Hz	12k	75k	50n	$47 n$	1
D	194 Hz	12k	75k	$27 n$	$27 n$	1
E	360 Hz	12k	75k	$15 n$	$15 n$	1
F	671 Hz	12k	75k	$7.8 n$	$2 \times 15 n$ in series	1
G	1.249 Hz	12k	75k	$4.2 n$	3900p	2
H	$2,325 \mathrm{~Hz}$	12k	75k	$2.3 n$	2200p	2
1	$4,328 \mathrm{~Hz}$	12k	75k	$1.2 n$	1000p//220p	2
J	8.057 Hz	12 k	75k	$0.65 n$	560p	2
K	15.000 Hz	12k	75k	$0.35 n$	330p	2

Resistors are 2% tolerance. Mains transformer is RS Components 3VA p.c.b.-mounting type. Die-cast box $12 \times 1.7 \times 5.5 \mathrm{~cm}$ from RS Components.

1. Polyester or polycarbonate 5% with 10 mm lead spacing.
2. Polystyrene 5%.
the mains to the transformer are clear of the bottom of the box.

The equalizer is best fitted between the preamplifier and the power amplifier. The 0 dB gain position is with the presets set to about $10 \mathrm{k} \Omega$. There is no simple way to accurately position the presets by measurements for a flat equalized room and loudspeaker response but quite satisfactory setting can be done by ear by adjusting for the quality of individual instruments. Several different records, or preferably live broadcasts on v.h.f.should be used as source material, and overall sound
balance judged. Listen particularly for lack of deep bass, bass resonance, "boxiness" caused by low output in the middle frequencies, and overemphasized "tiz" or lack of transients. Constant reference to the un-equalized sound will prevent confusion during this operation which may take some time to complete.

References

1. Baxandall, P. J. Negative feedback tone control Wireless World vol. 58, 1952 pp. 402-5, 444.
2. Lancaster, P. Active filter cookbook. (Howard Sams).

Schools computer competition

A hundred microcomputers are prizes in a competition for schools, arranged by the Department of Industry, which is intended "to encourage awareness and widespread development of the basic skills in computing and microelectronics in schools".

The competition is directed at the 7000 or so secondary scnools which have no computer - there are around 8000 secondary schools in all - and requires pupils to submit details of a proposal for the use of a microcomputer in their school, preferably not in science or mathematics. No computing experience is needed to enter the competition. Prizes are a hundred 380 Z microcomputers in either of two versions - for data handling or
graphics - each worth around $£ 2000$. The Dol hope that additional prizes will be forthcoming from industrialists with an eye to the future.
The department cannot be faulted on its patriotism, on this occasion at least. The 380 Z is designed and made by Research Machines Ltd, of Oxford, and is currently used by schools and colleges and in a dataprocessing role.

The competition closes on July 31, 1980; schools should contact The Department of Industry, Electronic Applications Division, Room 526, Dean Bradley House, 52 Horseferry Road, London SW 1P 2AG.

Research Machines 3802 microcomputer, one of hundred offered as prizes in Dol schools competition.

Off-resonance metal detector

Gives finer distinctions than simple ferrous/non-ferrous discrimination

by G. Wareham

Off-resonance detectors are insensitive compared with induction balance and pulse induction types, but they work well in the field. They are less sensitive to the ground than balanced types and score over pulse induction types in discrimination.
From the amateur point of view they are easy to make and will accept a variety of coil shapes to suit different uses. As the precise search frequency is unimportant, coils of unmatched inductance may be interchanged without redesigning the circuit.

The off-resonance metal detector is a comparative newcomer to "treasure hunting". But its basic principle is familiar enough. Like the old-fashioned b.f.o. mine detector, the off-resonance detector senses the change in the inductance of the search coil produced by the presence of a conducting or magnetically permeable object. The difference lies in the way this change is sensed and in the exploitation of the properties of a parallel-tuned circuit to enable more information to be obtained about the physical nature of the object. This article gives a simple explanation of the principles, with more elaborate notes on recent developments which may be of interest to those who wish to experiment.

When metal detectors are used for "treasure hunting" - which frequently means beachcombing for lost coins the user soon learns that for every object of interest there are dozens of objects of no interest. These are bits of "silver" paper and other kinds of aluminium foil, bottle caps, ring-pulls from drinks cans, the cans themselves, and so on. It is desirable to distinguish this junk from coins, rings and other objects of value. Another need which soon becomes apparent is to prevent the conductivity and permeability of the ground itself from upsetting the operation of the detector.

No detector yet produced performs these functions perfectly and simultaneously, but the off-resonance detector goes a long way in the desired direction. The essentials of the simplest form of off-resonance detector are shown in Fig. 1. A variable frequency oscillator drives an LC circuit through a high resistance (R). The L of the $L C$ is the search coil. The voltage across the LC circuit is rectified and the resulting
d.c. applied to a comparator where it may be offset by a reference voltage. Deviations from the reference voltage, caused by the effect of the target object on L, give an indication on a meter or, more usefully, modulate the amplitude or frequency of a tone.

The effect of the target object on L depends on its size, distance, orientation and its electric and magnetic properties. Size, distance and orientation affect the strength of the detector's response. The other properties produce a variety of effects and it is these which give the detector its power to discriminate between types of target object.

A target which was purely lossy would merely damp the LC circuit and reduce the amplitude. A target with appreciable magnetic permeability detunes it low, by increasing L. A highly conductive target acts like a loosely. coupled short-circuited turn or metal tuning slug: L is reduced and the circuit is tuned high. So in principle a distinction can be made between permeable objects such as pieces of iron and nonmagnetic metals such as copper, gold and silver. As we shall see in a moment, finer distinctions can also be made.

If the frequency is set to the peak of the resonance curve all targets produce the same general effect - a reduction in amplitude. There is no way of telling whether this reduction is the result of damping or detuning or a mixture of the two. No distinction between types of target is possible.

To achieve the desired discrimination, the frequency is set off-resonance, Fig. 2. A target which alters L must now either move the operating point further from the peak, causing a fall in output, or closer to the peak, causing a rise. Permeable targets and conductive targets will produce opposite effects, making possible discrimination bet-

Fig. 2. With a working point set at P1, lossy and conductive metals reduce $L C$ voltage, low-loss permeable metals increase voltage. With working point at P5, lossy and permeable metals reduce voltage, whilst low-loss conductive ones increase voltage. Finer discrimination is 'possible by choosing a working point where damping and detuning effects cancel.

Fig. 1. In the off-resonance detector, deviations from the reference voltage caused by the effect of a target object on the search coil L give an audible or visual indication.

ween "ferrous" (permeable) and "nonferrous" metal. If, for example, the frequency is set to place the working point at P1, the appearance of a ferrous target moves the point to P2, say, giving an increased output. A conductive target (non-ferrous) moves the point to P3 where the output falls. A lossy target also produces a fall (P4), so the detector now discriminates in favour of low-loss ferrous targets and against everything else. Evidently, by setting the working point to the high side of resonance (P5) the detector can be set to accept nonferrous targets and reject others (P6).

Because real-life targets are never lossless the response they produce is a mixture of damping and detuning. This is fortunate because it makes possible finer distinctions than a simple ferrous/non-ferrous discrimination. Aluminium foil ("silver" paper, cake cups), though fabricated from a highconductivity material is so thin that the resistive losses cause a marked damping effect. If the operating frequency is set high to discriminate in favour of nonferrous targets, the damping effect and the detuning effect oppose one another. But when the working point is set at the resonance peak they act in unison. It follows that there must be some point where the damping and detuning effects exactly cancel. When set to this point the detector does not see targets of this particular combination of damping and detuning; i.e. this particular Q .

In practice, the user sets the working point using a discrimination control so that foil is either ignored or rejected, i.e. output reduced. Thicker metal of higher Q is still detected, and this includes coins, precious-metal rings and similar objects.

Ground-effect cancellation

The conductivity or permeability of the ground below the search coil can produce a detuning effect. At first sight, this may seem small as the electric and magnetic properties of the ground are weak compared with those of the likely target objects. Unfortunately, this is not

Fig. 3. In this design,
frequency-determining network is that of the search-head LC circuit, so a phase shifter is used to give off-resonance operation. Read-out is obtained by mixing a harmonic of the search frequency with a crystal oscillator.
true in practice because the surface of the ground is so much closer to the search coil than a buried object. The response of a metal detector falls off rapidly with distance (the law contains something like a sixth power) so a small coin 10 cm deep may produce a change in L of only one part in a million. The ground, being closer and larger, has a much greater effect and some means of nulling it is desirable. Although lossiness is the dominant characteristic of most soils, it is always accompanied by ferrous or non-ferrous effects so it can be nulled, usually by setting the working point just off resonance. The detector then loses its power to make fine discriminations, but simple ferrous/ non-ferrous distinctions are usually still possible. Ground effect balance, as it is often called by detector makers, is particularly useful on brine-saturated beaches and iron-ore-laden or "mineralized" soils.

Choice of search frequency

Old-fashioned detectors of the b.f.o. mine-detector type generally used fairly high search frequencies, around 150 kHz . This is much too high for good discrimination. Above about 100 kHz , the skin effect limits current penetration to virtually the surface layer of an object. Thus all objects tend to look alike, irrespective of their real thickness, and coin/foil discrimination becomes difficult. Even ferrous objects are likely to appear non-ferrous because their conductivity prevails over their permeability.
For this reason the off-resonance metal detector, though it uses the same basic effect as the b.f.o., is operated at a much lower frequency, to reduce skin effect and facilitate thick/thin target distinctions. Practical search frequencies range from 30 kHz down to audio frequencies of around a few kilohertz or even less. If the skin depth exceeds the thickness of commercial aluminium foils a measure of discrimination against these is automatically obtained. Unfortunately, the level of discrimination cannot in practice be raised to the point where all junk is rejected, because there is an overlap between the responses to junk and wanted objects. A highly conductive target such as a British two-pence piece, which is almost all copper, can readily be distinguished from even a large, thick aluminium foil cake cup. But the resistivity of metals is

increased significantly when substantial amounts of alloy are incorporated. Cupro-nickel ("silver") coins have a much lower Q than copper ones. Similarly, a nine-carat gold ring is a relatively poor conductor compared with pure gold. Consequently, cupronickel coins and nine-carat gold rings may be rejected as junk by a detector set to reject thick foil.

A particularnuisance is caused by the ring-pulls from drinks cans. These are aluminium and good conductors, and a detector set to reject them will certainly reject some coins and rings as well. Detector designers usually provide a wide range of discrimination settings, which covers ring-pulls, but experienced treasure hunters prefer to use only a little discrimination in the interest of not missing objects of importance.

The tracking problem

When the frequency is changed the rectifier output level is also changed. The rectified output from the tuned LC circuit no longer matches the reference voltage to the comparator so this too must be adjusted. It would be good to arrange the controls so as to keep the two in step automatically but so far nobody seems to have cracked this tracking problem. The result is that every time the discrimination (search frequency) is adjusted the detector is thrown off balance and a separate readjustment of the reference voltage is needed. This is tedious. It would be desirable to gang the reference voltage control with the frequency adjustment control, or in detector makers' parlance, gang the tuning and the discrimination.

Self-oscillating detector

A way of side-stepping this tracking problem is to use a variant form of off-resonance detector which reverts to something like the old b.f.o. technique. In Fig. 3 the v.f.o. is dispensed with and the LC circuit of the search head is used as the frequency-determining network of the search oscillator. Off-resonance operation is obtained by inserting a variable phase-shift network into the oscillator feedback loop; adjustment of the phase sets the working point.

Appearance of a target object now alters the frequency. To obtain a readout a high harmonic of the search frequency is heterodyned against an h.f. local oscillator, usually a fixed crystal oscillator. Target information is preserved in the beat tone. If, for example, the detector is set to accept coins but reject foil the beat frequency moves one way for coins and the opposite way for foil.

Heterodyne frequency selection

To obtain a useful range of discrimination, the search frequency has to be adjustable over a range which is about the same as the 3 dB bandwidth of the
search LC circuit. As the search. frequency is varied by adjusting the phase shift, successive harmonics come into zero-beat with the fixed heterodyne oscillation. It is important to select a heterodyne frequency high enough to permit an adequate number of harmonics to be tuned. Each beat point is associated with a different degree of discrimination, so discrimination is in effect adjustable in as many steps as there are zero-beat settings. In practice, to give a useful selection of discrimination settings, at least five steps are necessary. An estimate of the required h.f. heterodyne frequency is obtained from the empirical formula

$$
f_{\mathrm{h}}=(n-1) f_{\mathrm{s}} Q_{\mathrm{s}}
$$

where f_{h} is the heterodyne frequency, f_{s} the search frequency, Q_{s} is the Q of the search LC circuit, and n the number of zero-beat tuning points. For example, if the search frequency is 10 kHz , the LC circuit has a Q of 20 and eleven tuning points are required, the heterodyne frequency must be 2 MHz minimum. (Extra tuning points may be provided by harmonics but these are disregarded in the calculation.) In this example, search frequency harmonics around the 200 th are required. In general they have to be generated deliberately.

Perhaps the easiest method is to square the search oscillator output in a circuit with a rise time at least as short as the reciprocal of f_{h} (e.g. $1 \mu \mathrm{~s}$ for f_{h} of 1 MHz), differentiate, and use the resulting pulses to shock-excite an LC circuit tuned to f_{h}. The higher the heterodyne frequency the greater the sensitivity of the detector but the more vulnerable the system to drift in search frequency.

Search oscillator design

The frequency change produced by a target depends on the relative change of inductance of the search coil, not the absolute change. The sensitivity is therefore the same for any value of L , and the designer is left free to use whatever inductance he finds suitable. It is convenient to use coils with inductance of the order of 1 mH . These require relatively few turns and can be made with fairly thick wire. The associated tuning capacitance for search frequencies in the region of 10 kHz is an appreciable fraction of a microfarad, and this is big enough to swamp the effects of search head to earth capacitance, so the search coil need not be fitted with a Faraday shield. The precise frequency is unimportant so tuning capacitors of close tolerance are not needed. Stability is what counts, and of the cheaper types of capacitor polycarbonate film is the best, with terylene next best and polyester a poor third.

Two convenient search oscillator circuits are shown in Fig. 4. In the top circuit, a single-ended LC circuit is used, with no taps. The necessary phasing is accomplished by R_{5} and C_{4}. At one end

Fig. 4. In the search oscillator circuit (top) phasing is accomplished by R_{5}, C_{4} and R_{1} controls amplitude. For c.m.o.s. circuits bottom circuit is more convenient with R_{1}, C_{1} altering phase and R_{2} amplitude.
of R_{5} slider's travel C_{4} is effectively across R_{3}, giving a voltage lag which the tuned circuit has to make up with a lead. The frequency is pulled low. At the other end C_{4} is across R_{4}. This gives a lead, and frequency goes high. Resistor R_{1} sets the amplitude.
For use with c.m.o.s. inverters and gates the lower circuit is more convenient. Resistor R_{2} controls amplitude and R_{1}, C_{1} do the phasing.

Search coils

Greatest sensitivity is obtained with large coils. Pinpointing the position of a buried object is easiest with small coils. Most commercial detectors use a compromise coil size of about 18 cm diameter, but a slightly smaller coil, of $13-15 \mathrm{~cm}$ diameter may be preferable. Square coils are permissible, and rectangular ones if not too elongated. In any case it is easiest to begin by winding a circular coil on some suitable cylindrical former, such as a saucepan, then sliding it off and forming it to whatever shape is needed. Enamelled wire of around $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. is convenient, and 50 to 100 turns give a suitable inductance.
The finished coil should be waterproofed and fixed in some rigid, thermally insulating support. Sandwiching between sheets of Formica and filling the gap with resin is one possible construction. More convenient, but more difficult, is an open-centre form which enables the position of the buried object to be marked through the coil. The leads to the oscillator circuitry need not be screened; a twisted pair is good enough.

N OUR NEXT ISSUE

Graphical communication with computers

Pictorial input and output is an alternative to the more common alpha-numerical communication using keyboards. An article introduces the technology of interactive computer graphics and explains methods for putting in information and generating the displays in this form.

Constructing a transient recorder

This instrument captures one-shot events for later continuous display on an oscilloscope or chart recorder. Contents of the digital memory can be examined word-by-word to allow accurate measurement of the test signal. Interfacing to a computer is possible.

Solid state level meter

Using 20 l.e.ds of any colour mix, this solid-state level indicator offers a.c. or d.c. and dot or bar operation. Design options include 60dB dynamic range by cascading i.cs and a tape recording version for the range -20 to +3 dB .

the displays in this form.

Military electronics-the Defence Estimates
 The arms race, spurred by international
 maritime weapons now under development
 employed by the various contractors. The

tension, continues to provide a substantial and growing source of income for the electronics industry. According to the UK government's 1980 Defence Estimates, presented to Parliament in April, over 20% of the output of the UK electronics industry in 1978/79 was taken by the Ministry of De-- fence. This does not include the considerable exports of electronics and communications - equipment to foreign military forces from the various companies in the industry. In 1979 these exports amounted to $£ 41.9$ million for radio and radar equipment and $£ 23.6 \mathrm{~m}$ for guided weapons and missiles. For example Decca Radar, now part of the Racal group, in the first quarter of 1980 received orders for radars from ten foreign navies - Argentina, Bahrain, Brazil, France, Germany, Greece, India, Malaysia, Portugal and Quatar. In 1978/79 the UK's military defence expenditure on radio, radar and electronic capital goods was $£ 429.4 \mathrm{~m}$ and on radio and electronic components was $£ 56.5 \mathrm{~m}$.

Of the total 1980/81 estimated Defence expenditure of $£ 10,785$ million, the portion devoted to military equipment is $£ 4,336 \mathrm{~m}$ (the remainder being mainly pay for military and civilian personnel). Of this, the estimates identify $£ 272.8 \mathrm{~m}$ to be spent on electronic equipment, guided weapons and instruments. for land weapon systems, and $£ 370 \mathrm{~m}$ on electronic equipment and guided weapons for air systems. Electronics for sea systems is not listed separately, but $£ 361.1 \mathrm{~m}$ will be spent on "weapon systems, etc." One of the,
is the Sea Eagle missile, intended to be launched from Navy and Air Force aircraft against ships. Described with callous cheerfulness as a "fire-and-forget weapon," it has an active radar homing system (developed by Marconi) and a computer using microprocessor technology. Before being fired the computer is supplied from the aircraft with information about the target's position. The computer then controls the flight path of the missile until the radar homing system locks on to the target during the final part of the attack, in which the missile skims the surface of the sea. This weapon, being developed by British Aerospace Dynamics Group, is claimed to have a greater range and resistance to electronic countermeasures than the earlier Martel missile of a similar type.

Microprocessor technology is also being incorporated as a technical improvement in the Rapier missile system, with which the Army and Air Force are equipped as a defence against low flying aircraft. This improvement programme, during the mid 1980s, will cost $£ 320 \mathrm{~m}$. Similar technical updating is being considered for the Blowpipe man-portable missile.

Research and development in fact accounts for a considerable part - actually $£ 1,479 \mathrm{~m}$ - of the total $1980 / 81$ estimated military expenditure. Of this, $£ 231 \mathrm{~m}$ will be spent on electronics and $£ 183 \mathrm{~m}$ on guided weapons. Ministry of Defence R \& D staff in these two fields amounts to 7,600 but of course there are also many such workers

Estimates state that, as a whole, the "defence equipment programme sustains about 200,000 job opportunities within the major defence industries and about the same number again are sustained indirectly elsewhere in industry."

What is known as "electronic warfare" is basically information processing for military purposes. "Electronic warfare support measures" provide information for the tracking and target-acquisition parts of guided weapons and communication systems. These are vulnerable to "electronic countermeasures" such as radio jamming, but "electronic counter-countermeasures" can reduce this vulnerability. The Estimates state that "electronic self-protection equipment" will be fitted to the Jaguar, Harrier and Tornado GR1 aircraft. The Nimrod MR MK2 and AEW aircraft will be fitted with support measures, and a new system of this kind for passive surveillance is being installed in the Navy's Lynx helicopters. A new radar jammer and improved support systems are due in service this year on some frigates. Britain will be taking part in NATO electronic warfare projects and particularly the Sea Gnat anti-missile decoy system with a view to deploying it later in the 1980s. Satellite. communications terminals used by the Navy are to be improved, and the Army will be introducing the Ptarmigan tactical trunk communications system in the next few years.

A current development of military electronics, this "Electronic Warfare Engagement Simulator," made by Plessey Electronics Systems Research at Romsey, was a Ministry of Defence contract worth 5750,000 . The simulator is intended to aid development of "electronic countermeasures. which are used to protect aircraft against fire control radars. The simulator is to be used at the RAE, Farnborough, Hants.

Indian scientist wins Marconi award

Dr Yash Pal, Director of the Space Applications Centre of the Indian Space Research Organisation, has won the sixth Marconi International Fellowship, which takes the form of a 25,000 dollar grant; the recipient is expected to use the grant to undertake or complete a project of his own choice.

Dr Pal was honoured for his work on the Satellite Instructional Television Experiment (SITE) in India, a project run in conjunction with NASA, using the US ATS-6 satellite.

The object of SITE was to bring instructional tv to the rural villagers of India and Dr Pal's contribution included the development of hardware as well as the development of the screened material. The initial target of the project was to reach 3,000 isolated villages and eventually all 500,000 of India's villages.

Dr Vikram Sarabhai had proposed the project at the UN conference on exploration and peaceful uses of outer space in Vienna in 1968. Dr Pal took over the leadership of the project following Dr Sarabhai's death.

The award will be presented on October 12 1980 in Sydney, Australia, which was the receiving end of the first radio remote control experiment by Guglielmo Marconi fifty years ago in 1930.

405-line television to close

The BBC and IBA will start to close down their 405 -line v.h.f. television services in 1982 and the closure will be phased over a period of about four years. This follows the international decision about the future of Bands I and III made at the World Administrative Radio Conference, Geneva, last year (see February issue, p.48, for details). As far as possible the two broadcasting organisations plan to close down their 405 -line services in Bands I and III at the same time in particular areas, although this will not be possible everywhere since the BBC have 110 transmitters on 405 -lines while the IBA have 47.
Stations to be closed earlier in the programme will be those in areas where there is good coverage from the u.h.f. 625 -line services. The last stations to be closed will be some of the high-power main stations in areas where 625 -line coverage is less complete. At least two years' notice will be given in any area before closedown, with wide publicity. The BBC and IBA engineering information services will advise those affected on alternative means of reception.

A further relay station building programme will extend u.h.f. coverage to groups of less than 500 wherever it proves reasonably practical for this to be done. In practice the broadcasters will try to provide stations for groups of 200 or more people and the first of these stations is expected to be built in 1984.

The Home Secretary has agreed that small groups who will not benefit from further

Piston-type device trocks warped records

A new technique for reducing effects of record warp excitation on pick-up masscompliance resonance is used on the " Z Track." Though a UK invention, the damper has been selling for about two years in the USA and has only recently been announced in the UK. The device is a $1 / 2$ gram piston-type oil damper that attaches to a pick-up head and rests on the record surface. This technique was first described by Alec Rargabe, applied physics consultant at the 1975 London AES Convention, and about a year ago he assigned his patent rights to Zerostat Components. The problems with warps are not only with the obvious difficulties of groove-tracking and cantilever warp wow but also the more subtle effects of intermodulation of recorded signals, with consequent sideband production. In reducing such effects the Z Track applies critical damping through a pad that spans 10 or 12 groove turns and contacts only "land" between, so largely avoiding "needle talk". According to its designer, over 50 different materials were tried for the skid pad; p.t.f.e. was chosen as it gave "by far the lowest coefficient of friction" and measured about 0.05 to 0.1 against average record material. Besides low friction, undoubtedly contributing to its 1000 -side lifetime, the device has minimal "needle talk". With its mechanical resistance of 2000 the amplitude of pick-up excursions for a cartridge Q of 3 is reduced by 12 to 15 dB . Price is $£ 9.95$ from Zerostat Components Ltd., Edison Road, Industrial Estate, St. Ives, Huntingdon, Cambridgeshire PE17 4LF.
relay stations will be able to set up small transmitters at their own expense. The broadcasters will give assistance to such groups to plan the small transmitting stations and will check that they will not cause interference to existing or planned stations. Those schemes which receive approval will be licensed by the Home Office. To help such groups the BBC and IBA are jointly preparing a booklet "Self-help television for small communities" which will be available in July (contact BBC Engineering Information Department, Broadcasting House, London W1A 1AA or IBA Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA).

Government approves CB in principle

As we go to press a UK Government discussion paper on citizens' band radio is expected at any moment. Many readers will already know that the Government have announced that they are in favour of c.b. in principle. But they intend to call it Open Channel and the scheme they are at present considering will differ in some respects from that advocated by the c.b. campaigners in the UK. One thing is certain: any c.b. service introduced by the Government will not operate on 27 MHz , the frequency at present used by most of the illegal operators.

Dame Nellie and Winifred share broadcasting anniversary

A couple in their 80s visited Marconi Communications Systems in Chelmsford in February as part of activities to commemorate the first wireless telephony transmissions, which took place there in 1920 .
Mrs Winifred Collins, then Winifred Sayer, was the first woman to make such a broadcast. She sang on three separate occasions and was paid ten shillings (50 p) for each performance.

In 1920 Captain H. J. Round of Marconi's Wireless Telegraph Co. was granted a licence to experiment with wireless telephony. Wireless telegraphy had been in use for some years, notably at sea where ship to shore morse transmission was commonplace. The war of 1914-1918 increased the tempo of experiments and telephony had been shown as feasible.

Captain Round's transmissions were made on 2.800 metres for half-hourly periods, mornings and afternoons, beginning on February 23. 1920. Mrs Collins was certainly the first woman to make voice transmissions, although the significance of the event was somewhat overshadowed by transmissions in June, July and August of that year by stars such as Dame Nellie Melba, Lauritz Melchior. Jenny Lind and other well-known singers. Mrs Collins was present at one of the Melba broadcasts and recalls seeing Dame Nellie kick away the carpet because she feared the acoustic might be impaired by it.

Mrs Winifred Collins at the time when, as Miss Winifred Sayer. she made the world's first telephony broadcasts by a woman, from the Marconi Works in Chelmsford during February and March 1920.

Office market super-group formed

Four companies within the Philips group have been integrated to produce a single company, Philips Business Systems, which is aimed at the electronic office market.
The four companies brought together are Pye TMC Ltd, which has specialised in telephone equipment, Philips Data Systems, Pye Business Communications Ltd, and Philips Business Systems. According to Brian Manley, the new super-group's managing director, it has been formed to exploit Philips' "unique position in the electronic business equipment market of today ... we have drawn together our strengths in manufacturing, marketing, systems engineering and support in order to make a unified attack on a
market which is both expanding and converging."

Philips see the rapidly-growing market developing in two distinct phases. For several years there will be an increase in the volume of stand-alone equipment installed, which more and more will possess its own "intelligent" communications capability. Phase two will see the integration of equipment forms until, in the 1990s, complete intercommunication facilities are achieved amongst terminals handling word and data processing, audio and message transmission, data and text storage and a wide variety of personal computing functions.

Set makers grapple with technology

The uses and abuses of technology seem to be of particular concern at the moment to the UK manufacturers of consumer electronics equipment. At the annual general meeting of BREMA in April, Lord Thorneycroft, the president of this trade association, said that the growth of new electronic information techniques such as teletext, viewdata and home computers presented many new problems and opportunities to the industry. Britain had shown great skill in design and technical development in these fields but in the past we had sometimes failed in manufacturing and marketing. "If we are going to make a success of this business we have got to match the manufacturing efficiency and standards of our competitors in the rest of the world... I am confident that the companies represented in this room can do this". Lord Thorneycroft added that, in recognition of these new electronic techniques coming into domestic equipment, the name of the association had been extended to The British Radio and Electronic Equipment Manufacturers' Association

One abuse of technology, according to BREMA, is the exploitation of technical legislation as a barrier to free trade. The association's 1979 annual report says: "There are of course subjects, such as safety, where legislation is appropriate and valuable to industry as well as to the general public. However. it does appear that legislation which emerges in some countries is devised to introduce, or at least results in, barriers to trade. This is particularly regrettable when it occurs in member states of the EEC and when the response of the EEC, in general, is to propose similar legislation throughout the Community, rather than to question the justification for mandatory requirements being introduced in the first place. BREMA has and will continue strongly to oppose technical liegislation which is not justified on its own merits.

One example of this activity, according to a

BREMA official, was some proposed French legislation to make compulsory the fitting on colour tv sets of a 21 -pin socket for connecting peripheral equipment such as tv games, video recorders and teletext terminals. The annual report says " . . . no sooner had BREMA made known its objections than a draft EEC Directive was received which embodied the French specified connector and forbade the use of any other interconnection device. BREMA informed the Department of Industry that whilst the very short notice did not allow for a detailed response, BREMA was totally opposed to the imposition of mandatory technical requirements in this area, pointing out that the only justification for mandatory technical requirements is where protection of the individual is concerned, for instance safety, or where matters of general environmental concern arise such as radio interference. From a technical point of view BREMA raised a number of criticisms of the connector. It is agreed that standardisation in this area is highly desirable but this must be through the relevant international standards bodies."

On the possibility of a citizen's band service in Britain, the annual report says that BREMA maintains its view that c.b. radlo "would provide a valuable service and could be administratively self-financing. The recent World Administrative Radio Conference did not make any specific frequency allocations for this service. Instead, it considered that it was part of the terrestrial mobile radio service and subject to allocation by national administrations. In expectation of a favourable government announcement, the BREMA Citizens Band Radio SubCommittee is to investigate the expected performance of the range of products that could be associated with the various possible frequencies that might be authorized. This will permit a prompt response to technical sand manufacturing questions and aid commercial planning"

Another home computer

During April. Texas Instruments held a press. conference to promote their new home computer, first shown at TV-Mex last January. Originally planned to have a 4 K random access memory, the 99/4 computer r.a.m. was extended to 16 K when plans for a "professional" computer - requiring more than 4 K of r.a.m. - were shelved some time back. Total memory of the computer is 72 K bytes, with an internal 26 K r.o.m. and up to 30 K in plug-in "solid-state software" modules. It is sold with a Skantic 14in colour tv monitor/ receiver for a price of $£ 990$, and programmed modules cost $£ 17$ to $£ 45$. Those available now include pre-school early learning fun, beginning grammar. number magic, household money management, personal record keeping, statistics, video games, video chess, video graphics, ph; sical fitness, American football, plus two others. Alternative programming uses TI basic. For connections to other computer peripheral equipment an RS-232 serial interface adapter is needed ($£ 150$). Also available is a 32 -column thermal printer (£269), a speech synthesizer ($£ 95$ for 373 words) based on the Speak \& Spell chips with floppy disc storage to follow.

You can buy the $99 / 4$ without the Skantic monitor/receiver for $£ 655$ but you'll need
either an NTSC set or a dual standard set with mains isolation. According to their home computer manager, Mike Lunch, TI were unable to find a UK maker that offered a mains isolated set suitable for conversion to the NTSC standard, so they looked to European makers Luxor (Skantic in the UK), Barco and Grundig. Portatel Conversions Ltd of Sunbury-on-Thames - who do the Skantic conversion for about $£ 85$ - say they are unable to guarantee the convertibility of other sets. So if you want to use your own colour set you'll need to contact them first.

The need for mains isolation appears to be because an r.f. output of the 9918 chip didn't meet FCC radiation limits, which meant using an NTSC composite video output - in effect it had to feed a monitor, rather than an un-isolated domestic set with its "live" chassis. Texas say they will have a PAL version of the 9918 graphics chip, which wouldn't be subject to the same restrictions, by the "end of 1981." Could this be a planned time for introduction of another home computer? TI were unable to comment. What then was the market expectancy of the product-the $99 / 4$ brochure calls a home computer a long-term investment? "That's a forbidden subject," answered Mike Lunch.

Coastal radio extended

With the opening of a Post Office v.h.f. radio station on the Isle of Islay at the end of March, another stage has been completed in the POs five-year programme to improve communications for coastal shipping and pleasure craft.
Islay Radio, controlled from Portpatrick, is the second remotely-controlled station the PO has opened this year, the first being on the Isle of Skye in February. At present, there are 23 v.h.f. maritime radio stations, 15 of them remotely-controlled, around Britain's coastline.

In the last ten years the demand for v.h.f. maritime radio services has increased from an estimated 20,000 calls annually, to more than 250,000 . Much of the rising demand has come from an increasing awareness in yachtsmen etc. that such a service not only maintains contact with the shore but offers an important safety aid.

News in brief

The North London Hobby Computer Club has joined up with several other London computer clubs, to form the Association of London Computer Clubs. The first major meeting of the new club, to be called the London Computer Fair, will be held at the Polytechnic of North London on July 11th and 12th. Interested parties should contact the Chairman, Robin Bradbeer, either at the Polytechnic or through his home telephone number, 048335711

An American company specialising in analogue signal processing devices, as well as image sensors and microcomputer-based. image processing systems, EG and G Reticon, has now opened a UK office at Doncastle House, Bracknell, Berks. Cameras, systems and technical data will be available from the Bracknell office, as will an "off the shelf" component supply service.

A Japanese company, Nippon Electric of Tokyo, has been given a 25,000 million yen contract by the national telecommunications agency of Argentina (ENTEL) for the construction of a digital telephone network in Buenos Aires. Digital switching and optical fibre transmission systems will link more than 60 telephone offices in the city. making it comparable to networks being planned by the American Telephone and Telegraph Co.

One of the best-known companies supplying components in the South of England, Ambit International of Brentwood, wishes it to be made known that it is no longer operating from Gresham Rd., Brentwood, Essex, and is now established at 200 North Service Rd., Brentwood. Ambit International is the official distributor for the product ranges of Toko. Alps Electric, Hung Chang Meter Co., Micrometals and Faital Loudspeakers.

The annual meeting of the British Association for the Advancement of Science is to be held at the University of Salford from lst to 5th September 1980. Registration forms and details of cost are available from the British Association for the Advancement of Science. Fortress House, 23 Savile Row, London W1X 1 AB or telephone 01-7346010.

Wideband audio power amplifiers

Ideas for class A designs with no overall feedback

by Y. Miloslavskij, Dipl. Ing. Institute of Constructional Physics, Moscow

Author suggests ideas for a wideband class A power amplifier (2-10 watts) without overall feedback using single-ended and / or push-pull circuits for his efficient loudspeakers and passive linear-phase filters with 6 dB / octave slope. Input transistor is carefully selected for good linearity and Darlington pairs selected using a curve tracer. $\mathbf{1 0 - 2 0 \%}$ instability in operating current can either be tolerated or reduced using thermistor biasing.

Nowadays it is not enough to possess only a good frequency response within an audio band; it is necessary to achieve more accurate reproduction of transients for which one needs extremely broad-band systems. In many cases, the importance of accurate reproduction of transients in music reproduction can be explained by considering the sound reproduction process and the specific characteristics of individual musical instruments, as pointed out and explained, for example, in "The Physics of Musical Sounds" by C. A. Taylor. There are many serious problems, which can hardly be solved in complete form in audio monitors because of the presence of several loudspeakers and accompanying filters.

Use of one radiator within the audio band is out of the question because of intense intermodulation, because of an increase in radiation directivity with increase in frequency, and because of conflicting design requirements of the radiator within the low and high frequency ranges. Direct-cut recordings can eliminate the imperfections of tape recordings, provided great attention is paid to the quality of other units. But such recordings are not often possible.

But it is a more unpleasant thing if serious problems arise within preamplifiers and power amplifiers. And so we face the problem: what if we use broadband amplifiers both as audio preamplifiers ${ }^{1}$ and as audio power amplifiers? This article suggests single-cycle and push-pull versions of a broad-band power amplifier with a maximum power output of 10 W . Such output power is quite enol, ${ }_{5}$ h to create a sound pressure level within the peaks of 100 to 108 dB inside a room with the volume of 30 to $120 \mathrm{~m}^{3}$ with high-output loudspeakers. Studies made in different countries show that such a level of sound pressure
is plenty even for prolonged listening. This level of sound pressure is about the same as the peak levels in concert halls while listening to symphonic music somewhere in the centre of the pits at the fortissimo. Upper frequency limit of amplification of such amplifiers may be . 20 MHz and more 2,

Low frequency limit of amplification in the amplifiers depends only on the value of isolating capacitors. The output stages operate as emitter followers in class A. This helps to get low nonlinear distortion, low output resistance and acceptable efficiency without negative feedback. Non-linear distortion of the emitter follower depends primarily on the ratio between resistor R_{3} and the input resistance of the emitter follower, as well as on transistor linearity. The smaller the ratio, the lower the distortion. Also, the smaller the ratio, the lesser is the shunting effect of R_{3} and the efficiency becomes greater, especially in the push-pull version. In the push-pull version of Fig. 1, to reach the best linearity it is necessary to achieve maximum symmetry of arms.

Fig. 1. Example of push-pull class A amplifier without external feedback used in author's I.f. loudspeaker channel. Output transistors have a $V_{\text {celmax) }}$ of 120 to 400 V . $I_{\text {c(max })}$ of 8 to $12 \mathrm{~A}, P_{\text {c(maxi }}^{\text {cefmax }}$ of 50 to $120 \mathrm{~W}, f_{T}$ of 3 to 20 MHz and an heat dissipator of 1200 to $1800 \mathrm{~cm}^{2}$. Darlington pair: current gain 5000 to 10,000 , output device 60 to 90 .

Maximum value of non-linear distortion is 0.1 to 0.2%. Non-linear distorof the amplifiers is also determined by linearity of transistor Tr_{1} and the local negative feedback of this stage. It is a good idea to choose the transistors, especially the complementary pairs, with an accurate curve tracer. At the same time, it is possible to estimate the value of current gain (β), $V_{\text {min }}, I_{\text {min }}$, linearity, and the important dependence $\beta=\beta\left(I, V, T^{0}\right)$. Output resistance in these cases is determined mainly by the following ratios:

$$
R_{3} / \beta_{\mathrm{T} \mathrm{r} 2} \times \beta_{\mathrm{Tr} 3} \text { and } R_{3} / \beta_{\mathrm{Tr} 4} \times \beta_{\mathrm{Tr} 5}
$$

For horn loudspeakers with high outputs exceeding 105 to 108 dB ($1 \mathrm{~m}, 1 \mathrm{~W}$) one may use the single-cycle circuit of the power amplifier, Fig. 2, for outputs of 0.5 to 2 W (and even for an I.f. power amplification channel up to 4 to 5 W). Efficiency of such a circuit is 4 to 5%. Maximum efficiency for the circuit on a sinusoidal signal is approximately 8.7% (reference 2) at $R_{6}=1.41 R_{\mathrm{L}}$. The basic formulae are

$$
I_{\mathrm{C}(\text { out })} \approx 2.41 \sqrt{P_{\text {oul (max) }} / R_{\mathrm{L}}}+I_{\text {min }}
$$

$V \approx 4.83 \sqrt{\mathrm{P}_{\text {out(max) }} \cdot R_{\mathrm{L}}}+V_{\text {min }}+I_{\text {min }} R_{6}+V_{\text {BE (Tr3) }}$
In the given circuit the resistor $R_{6}=$ 3 to $6 R_{\mathrm{L}}\left(R_{\mathrm{L}}=15-20 \mathrm{ohm}\right)$ which leads to decreasing the power dissipated in Tr_{3} and allows the amplifier to be fed from the voltage source for the l.f. power channel.

Temperature of the transistor junctions must not exceed $70-80^{\circ} \mathrm{C}$. Ignoring

this condition may lead to the increase of the coefficient α_{2} to α_{n} of the transfer characteristics and will worsen the stability of the operating current of the transistors. The instability of operating current (with a sufficiently high current running through the R_{4} / R_{5} bias chain) is approximately 1 mA . The circuit needs no adjustment, except for preliminary circuit calculations and selection of components with the required parameters. Subjectively, such a singleended amplifier sounds no worse than the push-pull one.
The required operating current is obtained automatically. Calculation of the operating current value and of R_{6} depends on the maximum output power and power supply voltage, and is not given here. Rearranging the formulae

$V_{\text {cE(Tr3) }} \geqslant N 2 \sqrt{R_{\mathrm{L}} \cdot P_{\text {out(max) }}}+V_{\min (\mathrm{Tr} 2,3)}+0.8 \mathrm{~V}$
For good symmetry of arms of the push-pull stage, $R_{9} \approx R_{8}$ and

$$
\begin{gathered}
\beta_{\mathrm{Tr} 3} \times \beta_{\mathrm{Tr} 2} \approx \beta_{\mathrm{Tr} 4} \times \beta_{\mathrm{Tr} 5} \\
\text { and preferably } \beta_{\mathrm{Tr} 3} \approx \beta_{\mathrm{Tr} 5} .
\end{gathered}
$$

Instability of the output current has the same quality as the current in the power amplifier by J. L. Linsley-Hood ${ }^{3}$. It is desirable that the Tr_{1} to Tr_{5} transistors should be high-voltage ($V_{c(\max)} 100$ to 400 V) and with optimum current margins. As a rule, this improves linearity.

Generally from the point of view of quality, total cost and total efficiency the combination of a 1 W power amplifier plus high-output horn loudspeaker seems more rational than the choice of almost kilowatt power amplifier plus loudspeakers with 80 to $88 \mathrm{~dB}(1 \mathrm{~m}, 1 \mathrm{~W})$ output. For the lastmentioned case it is essentially more difficult to build a high quality power amplifier. Moreover, the problem of heat drainage from the loudspeaker voice coil arises as well as the problem of steady and stable loudspeaker performance, not to mention distortion. Let R_{6} be heated, for its heating influences absolutely nothing!

For an l.f. power amplifying channel with a loudspeaker output of $94-97 \mathrm{~dB}$

Fig. 2. Single-ended version of m.f. and h.f. horn loudspeaker channels uses 2 to 5A output transistors with $V_{\text {ce(max) }}$ of 300 to 500 V and $P_{c(\max)}$ of 25 to 50 W . Heat sink 150 to $300 \mathrm{~cm}^{2}$. Darlington pair gain 3,000 to 5,000. Input transistors have $V_{\text {ce(max })}$ of 120 to $300 \mathrm{~V}, I_{c(\max)} 0.5$ to 1 A , $f_{T} 20$ to $50 \mathrm{MHz}, P_{\text {c(max) }} 0.6$ to 1.5 W and current gain 70 to 140. Capacitors C_{2}, C_{3} have been chosen to attenuate l.f. gain.
(lm, 1W) it is possible to employ the push-pull version for an output of 4 to 10 W . The maximum coefficient of performance of such a circuit is somewhat less than 50%. Basic formulae for calculation are

$$
\begin{gathered}
I_{\mathrm{C}(\mathrm{out})}=\sqrt{\mathrm{P}_{\text {out (max) }} / 2 R_{\mathrm{L}}}+I_{\min } \\
V=2\left(\sqrt{2 P_{\text {out(max) })} R_{\mathrm{L}}}+V_{\min }+V_{\mathrm{BE}(\mathrm{Tr} 5)}\right) \\
\text { if } V_{\mathrm{BE}(\mathrm{~T} 55)}=V_{\mathrm{BE}(\mathrm{~T} 3)}, V_{\min (\mathrm{T} 2,3)}=V_{\min (\mathrm{T} T 4,5)} .
\end{gathered}
$$

The instability of $I_{C \text { (out) }}$ can be reduced if necessary with the help of thermistors, used instead of R_{8} and R_{9}. Values should be calculated or experimentally chosen, and the thermistors must have a positive temperature coefficient.

Each arm of the amplifier is "trimmed" separately. Choose R_{2} so that symmetrical clipping of the sinusoid is reached after applying voltage to the circuit for 15 to 20 minutes. Further, using half the value of the calculated supply voltage, the value of current $I \approx 0.9 I_{c(0 u t)}$ is set (using the initial ammeter reading) in the complementary Darlington pairs by adjustment of resistors R_{8} and R_{9}; then the arms are connected.

This circuitry is adopted as the basis for a three-way power amplifier (0.5 to 10 W) with passive (phase-linear) filters having 6dB/octave steepness at the power amplifier input. Capacitors $\mathrm{C}_{2}, \mathrm{C}_{3}$ serve also to attenuate low frequencies in the m.f. and $h . f$. power channels.

References

1. Miloslavskij, Y. Audio preamplifier with no t.i.d. Wireless World, vol. 85, August 1979, pp. 58-60.
2. Cykin, G. S. Sherokopslassiy Kaskaly Moshnogo Usilenja (Broad-band stages of powerful amplification) Radiotechnica, no. 5, 1968.
3. Linsley-Hood, J. L. Simple class A amplifier, Wireless World, vol. 75, 1969, p. 148 (see also correction \& correspondence).

Literature Received

"How to become a radio amateur" is, as its title suggests, a set of regulations and licensing conditions for those wishing to take up the hobby. It contains information on frequency bands, types of transmission and a syllabus of the examination, with all necessary addresses. The booklet can be obtained free from the Home Office, Radio Regulatory Department, Radio Regulatory Division, Licensing Branch (Amateur), Waterloo Bridge House, Waterloo Road, SEI 7UA.

WW 401
Data sheets on the Telrex range (900 models) of aerials, aerial arrays, masts and rotators can be obtained from Telrex Laboratories, Asbury Park, 07712 New Jersey, USA.

WW 402
An application note dealing with theoretical and practical aspects of charging high-voltage capacitors (resistive, constant-current and constant-power) forms one of a series, available from Hartley Measurements Ltd, Kenwood House, Hartley Wintney, Basingstoke, Hampshire. WW 403
Fibre-optic cables, connectors, receivers and transmitters made by Suhner are described in a brochure entitled 'Fibreoptic', which is obtainable from Suhner Electronics Ltd, Telford Road, Bicester, Oxon, OX6 OLA.

WW 404
A catalogue of home computers, peripherals and accessories is produced by Microdigital, 25 Brunswick Street, Liverpool L2 OP1. The company runs a hiring system in addition to its sales operation.

WW 405
IMS is the Industrial Microcomputer System developed by Mullard. It uses Signetics 2650 microprocessors and is associated with Modest, a development system. The whole system is modular in form, avoiding too-complex or too-simple solutions to specific problems. A booklet on IMS can be obtained from Central Enquiry Handling Unit, Tech. Publications Dept, Mullard Mitcham, New Road, Mitcham, Surrey CR4 4XY.

WW 406
A booklet on the range of r.f. power meters and dummy loads, working in the frequency range $2-1000-\mathrm{MHz}$, manufactured by Dielectric Communications, is obtainable from the UK representative, Tony Chapman Electronics Ltd, 80a, High Street, Epping, Essex CM16 4AE.

WW 407
The first of a range of digital transit recorders, Model VK-22, which has a $2 \mathrm{~K} \times 8$-bit memory, has been announced by Prosser, who can supply a descriptive leaflet. Prosser Scientific Instruments Ltd, Lane Lane Industrial Estate, Hadleigh, Ipswich, 1 P7 5DQ. WW 408
Power supply modules for X-ray image intensifiers are described in a leaflet, available from Brandenburg Ltd, 939 London Road, Thornton Heath, Surrey CR 4 6JE. WW 409 Switches of various types for printed-board mounting are marketed by Waycom, who have a brochure "EECO PCB Switches". which can be had from Waycom Ltd, Wokingham Road, Bracknell, Berks RG12 IND.

WW 410
Guides to the selection and use of Scotchcast liquid resin (potting resins) and Scotch electrical tapes are obtainable from $3 \mathrm{M}, \mathrm{PO}$ Box 38, Yeoman House, 57-63 Croydon Road, London S.E. 20 7TR.

WW 411

Analogue computing techniques

Introduction to the electronic solution of differential equations

by David F. Dawe, B.Sc. Cornwall Technical College

This article fills a gap in the literature on analogue computing: there is little that is not too advaniced or too elementary. Originally written for HND students, the article covers both modes of operation and programming techniques, as well as including an introductory section on basic modules.

Basically the digital computer does arithmetic, arithmetic that most people could do by the age of ten or so. It takes two or three simple types of decision, has an enormous memory, and works at high speed. It simply does arithmetic in a series of predetermined steps, but quickly. As someone has rightly said, "The digital computer is a high speed idiot!"

The analogue computer is any arrangement of equipment coupled together so that it models or analogues a real system. Early analogue computers were developed using mechanical computing devices such as differentials, cams, shafts and gears. (For example see Electronic Computers Made Simple, chapter 3, by Jacobowitz). These mechanical computers were built specifically for single-purpose operation such as the early gunnery control systems developed for use by the armed forces.

Large-scale analogue computers, which are capable of rebuilding to model many different systems and thus ,perform varied computations, have only come into use due to the introduction of the electronic operational amplifier. With this equipment models of proposed systems can be made at a fraction of the cost of the real system. Evaluation of system response for varying system parameters can be obtained and optimized before a real system is constructed. It is also possible to incorporate some real parts and some mode! parts into a prototype mock-up system. for evaluation.
The accuracy of an analogue machine is seldom better than one part in 1000 . This is better than the physical data for most problems. If this accuracy is not good enough then a digital solution becomes essential.

A fairly detailed comparative costing of the computation of some integrals involving Bessel functions has been performed (see Analogue Computing

Methods by D. Welbourne). The analogue solution, accurate to two figures, took two hours to programme, 50 minutes to compute and was costed at $\$ 53$. A digital solution of the same problem took two weeks to programme, 50 minutes to run and was costed at $\$ 1377$.
With many analogue computers a large problem can tie up its use for weeks or even months until the final results have been obtained. On a digital computer the programme can easily be removed and other work done whilst the first programme is dormant. Generally the analogue computer has its application only in the solution of differential-type equations. It has limited storage facilities, if any, unless it is coupled to a digital computer, the: overall installation then being called a. hybrid computer.

Basic analogue computing modules
Operational amplifier. The op-amp is the basic building block of the electronic analogue computer. It can sum, multiply, integrate, differentiate and drive voltmeters, oscilloscopes, chart recorders and other such measuring devices. It is a high-gain, highbandwidth amplifier with high input impedance and low output impedance. Typical values for the 741 series are

gain	20,000, nom. ∞
unity gain-bandwidth	1 MHz
input resistance	$2 \mathrm{M} \Omega$, nominally ∞
output resistance	75Ω nom. zero

The following sections indicate how an op-amp is connected to produce the basic circuits used in an analogue computer. The circuit analysis used is deliberately simplified; a more rigorous. analysis may be found in most standard textbooks on the subject.

Inverting and summing amplifiers. The inverting amplifier consists of an opamp plus two resistors R_{1} the input resistor and R_{f} the feedback resistor

Resistors R_{1} and R_{f} have precision values. $\mathrm{I}_{\text {in }}$ is zero because of the high input impedance, $\mathrm{e}_{\text {in }}$ is zero because $\mathrm{V}_{\text {out }}$ will be finite and the gain is virtually infinite. Apply Kirchhoff's first law to SJ, the summing junction,

$$
\begin{aligned}
& \frac{V_{\text {in }}}{R_{1}}+\frac{V_{\text {out }}}{R_{\mathrm{f}}}=I_{\text {in }}=0 \\
& \text { hence } \frac{V_{\text {out }}}{V_{\text {in }}}=\frac{-R_{\mathrm{f}}}{\dot{R}_{\text {in }}}
\end{aligned}
$$

The amplifier now has a gain completely dependant on the choice of R_{f} and $R_{\text {in }}$ and is always phase reversing (negative sign). A typical inverting amplifier would have a single feedback resistor of say $1 \mathrm{M} \Omega$ and a choice of input resistors that can be used, say $10 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$

Thus input V_{1} has a gain of $-100, V_{2}$ has a gain of $-10, V_{3}$ has a gain of -1 . If some other gain is required a potentiometer is used before the amplifier. For a gain of -75 .

which would normally be drawn

If more than one input is used simultaneously the superposition theorem applies and the stage becomes a summing amplifier.

Summing integrator. To obtain an integrator a capacitor is connected in the feedback path.

Sum the currents at the input to the op-amp to zero, $I_{1}+I_{2}=0$, and as a virtual earth exists at summing junction

$$
\begin{gathered}
\frac{V}{R}+\frac{C d V_{0}}{d t}=0 \\
\text { hence } V_{0}=\frac{-1}{C R} \int V d t
\end{gathered}
$$

in words, the arrangement integrates and also scales by the factor $1 / C R$
The integral as given is an indefinite one. In practice the integration must commence from some value and this is the initial condition or boundary value in a mathematical solution. An integrator circuit for use on an analogue computer is arranged so that an initial condition can be introduced. This initial voltage is sensed and the output of the integrator at the start of the computation becomes -1 times this value Immediately computation has commenced it is then ignored and the rate of integration depends on the input signal and the scale factor $1 / C R$. Thus the integrator produces

$$
V_{0}=\frac{-1}{C R} \int_{0}^{t} V_{1} d t
$$

A typical value for \mathbf{C} is $\mathbf{l} \mu \mathrm{F}$, thus choice of R of $1 M \Omega$ gives unity gain; other gains are possible in similar fashion to that used for the summing amplifier. A diagrammatic representation of a typical integrator is

$$
v_{0}=-\int_{0}^{t}\left(v_{1}+10 v_{2}+10 V_{3}\right) d t-v_{1 C}
$$

Generalised circuit for integrator or amplifier.

The capacitors and resistors are anno-, tated not in their absolute values but in their relative values as these are less cumbersome to handle. To use the circuit as an amplifier link by external patching the summing junction to the feedback resistor. The op-amp can now be used as a summing amplifier with four inputs of gain 10, 1, 1, 1 by making the link A. Linking the summing junction to the 0.1 capacitor with link B gives four integrating inputs with gains of $100,10,10,10$. Using the 1.0 capacitor and link C gives integration with gains of $10,1,1,1$.
The initial condition voltage is applied to the input marked IC either directly from the machine voltage supply or via a potentiometer as required. When the initial condition required is zero the IC socket may be left unconnected, but it is preferable to connect the socket to earth: this ensures slightly quicker resetting times. The remainder of this section may be omitted on first reading.
Differentiator. To obtain a differentiator replace the input resistor of the amplifier circuit with a capacitor.

Summing currents at the junction

$$
\begin{array}{r}
\frac{\mathrm{Cd} V_{\mathrm{in}}}{\mathrm{dt}}+\frac{V_{0}}{R}=0 \\
\text { hence } \quad V_{0}=-R \mathrm{C} \frac{\mathrm{~d} V_{\mathrm{in}}}{\mathrm{~d} t .}
\end{array}
$$

the arrangement differentiates and has a multiplying factor of RC. The differentiating circuit is rarely used and is to be avoided if at all possible. (This is usually possible by re-writing the equations in integral form). The differentiator introduces unwanted noise into the solution. Any noise present at say, mains frequency at the input of a differentiator will be amplified far more than any wanted signal at a lower frequency because its gain increases with frequency. Thus it is possible to have a differentiator output which has more noise than signal.

Multiplier. A four-quadrant multiplier will multiply together the instantaneous values of two inputs of either sign and produce the product at the output which is of the correct sign.

Analogue computers operate within certain prescribed voltage ranges, usually $\pm 10 \mathrm{~V}$ or $\pm 100 \mathrm{~V}$ depending on the type of the machine. As both of the inputs to the multiplier can lie within this range, to restrict the output to the same range the multiplier function is normally

$$
V_{0}=\frac{V_{1} V_{2}}{10} \text { for a } 10 \mathrm{~V} \text { computer }
$$

or $V_{0}=\frac{V_{1} V_{2}}{100}$ for a 100 V computer
where V_{1} and V_{2} are the instantaneous values of the two inputs and V_{0} the instantaneous value of the output. (Use of a $\pm 10 \mathrm{~V}$ computer is assumed.) The symbol normally adopted for a multiplier is

The multiplier may be used for other functions, for example to obtain A / B

At the summing junction

$$
\begin{gathered}
\frac{A}{R_{1}}+\frac{B V_{0}}{10 R_{2}}=0 \\
V_{0}=-\frac{A}{B} \cdot \frac{10 R_{2}}{R_{1}}
\end{gathered}
$$

and if $10 R_{2}=R_{1}$ then $V_{0}=-A / B$.
For correct operation as a divider the circuit must remain stable and hence the loop gain must be negative. This means that A and B must have the same sign. In addition B must not approach zero otherwise V_{0} can easily become outside the $\pm 10 \mathrm{~V}$ computing range.

For squaring the inputs to the multiplier are connected together

The square root uses an operational amplifier as well

The negative of the number to be rooted is required as input, then at the summing junction

$$
\begin{gathered}
\frac{v_{1}}{R_{1}}+\frac{\nu_{0}^{2}}{10 R_{2}}=0 \\
v_{0}=\sqrt{\frac{10 R_{2} v_{1}}{R_{1}}} \\
\text { and if } 10 R_{2}=R_{1} \text { then } v_{0}=\sqrt{v_{1}} .
\end{gathered}
$$

Operational modes

There are various modes of operation the computer can be put through to obtain a solution to a previously obtained interconnection diagram.
Potset. In this mode all the potentiometers are set up to the values allocated in the patching diagram. The
output of the potentiometer is $y=a x$ for $a<1$, assuming zero loading on the potentiometer by the next stage. (The potentiometers are set electrically, not mechanically.)

Reset or initial conditions mode. Initial condition circuits can take various forms but the principle may be illustrated thus

At $t<\hat{0} S_{1}$ is closed and S_{2} open. R_{x} and R_{y} of equal value establish the voltage $-V_{\text {IC }}$ at the output of the op-amp and hence integration will start from this.
Compute, operate or normal mode. For this S_{1} is opened, S_{2} is closed and computation commences and continues until stopped by the operator.
Hold. The computation can be stopped 'at any time by switching to hold. This opens S_{2} and the charge stored at the moment of switching is held on all capacitors. All points in the circuit remain at the voltage at the moment of switching. The hold may be sustained for some tens of seconds with most computers.
Repop or repetitive operation. With many problems the integration leads to a steady-state value after a few seconds of computing and there is no virtue in sustaining the computation. It is useful to be able to re-sense the initial conditions and repeat the solution. This can be done many times per second (variable control) by electronic operation of S_{1} and S_{2}. The multi-computation may then be fast enough to display on an ordinary oscilloscope using the external triggering facility.

PROGRAMMING
 TECHNIQUES

An analogue computer programme consists of a drawing of the blocks required and the interconnections necessary between them to solve an equation. This diagram is often called the problem patching diagram as it gives details of the interconnecting patching links which are used on the actual machine. To illustrate its application firstly consider the first-order differential equation.

First-order equations

A parallel mechanical system which links together a spring and a dashpot
consists of a bar B of negligible mass attached to a spring and a damper. The other ends of spring and damper are held fixed. The spring is initially unextended. If a steady force F is applied to the bar B, what will happen to the bar B as a function of time?

Plainly the restraining forces F_{1} and F_{2} balance the applied force F, so $F=F_{1}+F_{2} . F_{1}$ is the stiffness force $k x$ newtons and F_{2} the damping force $a \mathrm{~d} x / \mathrm{d} t$ newtons, where a and k are constants and x is the displacement of the bar. Hence

$$
F=a \frac{d x}{d t}+k x
$$

normally written

$$
F=a \dot{x}+k x
$$

Initial displacement is $x=0$, usually written $(x)_{0}=0$. For analogue solution this equation is re-written with the highest differential on the left-hand side

$$
\dot{x}=\frac{F}{a}-\frac{k}{a} x
$$

Integrating \dot{x} to obtain x also introduces a sign change.

Multiply the output of this integrator by k / a and add F / a to obtain its own input.

Note the addition of the IC $x=0$ at $t=0$. This is the problem patching diagram. When implemented in hardware on the computer x may be obtained as a function of time by monitoring the output of the integrator with an oscilloscope or pen recorder.

Second-order equations with zero damping

Consider a mass m on a frictionless plane which is attached by a spring, stiffness k to a wall. This illustrates the solution of the simple harmonic motion equation.

The equation of motion using Newtons second law is $m \ddot{x}+k x=0$. Assume that $k / m=1$ to make things a little easier thus $\ddot{x}+x=0$.

The solution to this equation is

$$
x=A \cos t+B \sin t
$$

the values of A and B depending on the initial conditions of the problem. If $(x)_{0}=0$ and $(\dot{x})_{0}=10 \mathrm{~m} / \mathrm{s}$, i.e. initial displacement zero, initial velocity $10 \mathrm{~m} / \mathrm{s}$, then $x=10 \sin t$. If the initial conditions were $(x)_{0}=10_{\mathrm{m}}$ and $(\dot{x})_{0}=0$, then $x=10$ cost. We should be able to obtain these solutions by the analogue method.

Firstly, re-write the equation with the highest derivative on the left-hand side,

$$
\ddot{x}=-x
$$

Two successive integrations gives x from \ddot{x}

The circuit is completed to fulfil the requirements of the equation at the input to the first integrator. By addition of the initial conditions either the sine or cosine solution can be obtained; $x=10 \sin t$ for $P=10 \mathrm{~V}, Q=0$ and $y=$ $10 \operatorname{cost}-$ for $P=0, Q=-10 \mathrm{~V}$.
By assuming $\mathrm{k} / \mathrm{m}=1$ the angular frequency has been set at unity i.e. $f=1 / 2 \pi \mathrm{~Hz}$.

Amplitude scaling

The arbitrary choice of scale factors in the previous problem ($1 \mathrm{~V} \equiv 1 \mathrm{~m}$ and $1 \mathrm{~V} \equiv 1 \mathrm{~m} / \mathrm{s}$) must normally be avoided; it may lead either to the solution being outside the voltage range of operation or alternatively being so small as to be lost among the inherent noise.

Two main types of analogue computer in use have the voltage ranges $\pm 100 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. Assuming the lastmentioned value, an amplifier modelling velocity cannot cope with a maximum output of $20 \mathrm{~m} / \mathrm{s}$ if the scale for velocity is $1 \mathrm{~m} / \mathrm{s}=1 \mathrm{~V}$. In such circumstances we are compelled not to compute v but $v /{ }_{2}$ and then the amplifier output will not exceed the specified limits. This restriction also applies to initial condition voltages. It may also be necessary to re-scale a problem to ensure that the initial conditions can be handled by the amplifiers.

Generally, scale factors $1,2,5,10$ are used, plus multiples and sub-multiples of these by a factor of 10 . The factors are always chosen to make the maximum values of the problem lie within the operating range with maximum ease in interpreting results. For example if in a dynamics problem the expected maximum values were $x_{\mathrm{m}} 0.1 \mathrm{~m}, \dot{x}_{\mathrm{m}} 5 \mathrm{~m} / \mathrm{s}$ and $\ddot{x} 100 \mathrm{~m} / \mathrm{s}^{2}$ one would not compute x_{m}, \dot{x}_{m} and \ddot{x}_{m} but $10 x, 2 \dot{x}$ and $\ddot{x} / 10$. These values are bracketed and called the computed variables $(10 x),(2 \dot{x}),\left(\ddot{x} /{ }_{10}\right)$.

The task of obtaining the maximum values can be a difficult one. A first approach is to re-examine the original physical problem and see if there are any constraints which would lead to a choice in maximum values. If there are none, try mathematical analysis of the problem equation on one of the following lines.

Equations with r.h.s. zero

There are two types, the first of the form $\ddot{x}+9 x=0$, i.e. second order but zero damping and the second, $\ddot{x}+5 \dot{x}+9 x=0$, with damping. The first case has a sinusoidal solution of the form

$$
x=A \sin 3 t+B \cos 3 t
$$

The initial conditions given for the problem lead to the values of A and B. The substitution and differentiation values for $x_{m}, \dot{x}_{\mathrm{m}}, \ddot{x}_{\mathrm{m}}$ are obtained. So it appears one needs to know the solution before sensible values of scale factors can be chosen. This is true for the simple case, but it is necessary to compute the solution even though the answer is known, should x or its derivatives be required as inputs elsewhere.

In the second case, the maximum values will be no higher than those for the undamped version of this equation and would be taken for a first estimate, the problem run and re-scaled if necessary.

Equations with r.h.s. constant

If the constants in $A \ddot{x}+B \dot{x}+C x=F$ form a monotonic series, i.e. gradually increase or decrease in amplitude from left to right, then the "equal coefficient rule" applies which states that the maximum value of x is no greater than 2F/C, of \dot{x} is no greater than F / B, of \ddot{x} is no greater than F / A; higher coefficients follow the same pattern. If the coefficients do not form a monotonic series this is still the best starting place, but it may be necessary to re-scale the problem after the first computing run.

Equations with r.h.s. $=f(t)$
Estimate the maximum value of $f(t)$ and apply the equal coefficient rule. Rescale if necessary. If the right-hand side is to be generated on the computer, rather than supplied as an external forcing function, then treat $A \ddot{x}+B \dot{x}+C x=F$ and $f(t)=F$ as separate circuits to be patched, taking F in each case as the estimated maximum value of the opposite side of the equation, and then making the interconnection. Rescaling may be necessary.

Second-order equations

 with viscous dampingConsider the mass-spring system with viscous damping indicated
The free end of the spring is moved according to $f(t)$ whilst x is the displacement of the mass m. The equation of motion is $m \ddot{x}=-k(x-f(t))-a \dot{x}$

$$
\text { or } m \ddot{x}+a \dot{x}+k x=k f(t)
$$

Assume that the mass is initially at rest and measure x from this datum, hence $(x)_{0}=0$ and $(\dot{x})_{0}=0$. Taking the values $\mathrm{m}=10 \mathrm{~kg}, a=30 \mathrm{Ns} / \mathrm{m}$ and $\mathrm{k}=100 \mathrm{~N} / \mathrm{m}$ gives

$$
10 \ddot{x}+30 \ddot{x}+100 x=100 f(t)
$$

Assume that $\mathrm{f}(\mathrm{t})$ is a step displacement of 0.1 m . Thus $\ddot{x}+3 \dot{x}+10 x=1$ is the equation of motion for this particular problem. Using the equal coefficient rule $x_{\text {max }}=0.2$, so compute ($50 x$), $\dot{x}_{\text {max }}=0.33$, so compute ($20 \dot{x}$), and $\ddot{x}_{\text {max }}=1$, so compute ($10 \ddot{x}$). The initial conditions are now $(20 \dot{x})_{0}=0$ and $(50 \ddot{x})_{0}=0$. Substitution of these variables into the problem equation, taking care to re-balance the equation, leads to

$$
\frac{(10 \ddot{x})}{10}+\frac{3(20 \dot{x})}{20}+\frac{10(50 x)}{50}=1
$$

Re-writing to obtain the patching or machine equation

$$
(10 \ddot{x})=10-1.5(20 \dot{x})-2(50 x)
$$

which is implemented by first drawing the forward computing path without interconnections and labelling the outputs of the amplifiers and integrators according to the computing variables

Next choose the interconnecting potentiometers and integrator gains to suit, i.e. $P_{1}=0.2$, with gain of amplifier 2 as 10 , and $P_{2}=0.25$ with gain of amplifier 3 as 10. This completes the forward path.
The machine equation is now satisfied using feedback loops to the input of amplifier 1 and the initial conditions added.

Outputs for $50 x, 20 \dot{x}$, and $10 \ddot{x}$ can be obtained simultaneously. The machine equation summing could be performed at the input to integrator 2, thus dispensing with amplifier 1 and transferring the position of amplifier 4 to the other feedback loop. This would be the method usually adopted, but it does add an additional complication to the scaling procedure.

Two further worked examples follow which illustrate variations to the basic design procedure shown here.

Time scaling

The time occupied by the physical problem and the time over which it is convenient to look at it on the computer may differ enormously. One may require to compute in say 30 seconds a problem which in real life occupies only micro-seconds (a chemical reaction) or years (a biological or astronomical problem). It is then necessary to compute the equations not in real or problem time but in a scaled version of it, called computer time.
In addition it may be necessary to apply time scaling because of one's choice of ancillary equipment. Many of these, which are used to obtain a hard copy of the computation, cannot respond outside the frequency range 0 to 20 Hz . Thus the solution may have to be slowed down to suit. the equipment.
Let problem time be t_{p} and computer time be t_{c}, then to scale up a solution to take place in a shorter time, and taking a scale factor of ten as an example, $10 t_{\mathrm{c}}=\mathrm{t}_{\mathrm{p}}$.

$$
\text { Then } \frac{\mathrm{d} t_{\mathrm{p}}}{\mathrm{~d} t_{\mathrm{c}}}=10 \text { and } \frac{\mathrm{d} x}{\mathrm{~d} t_{\mathrm{c}}}=10 \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t_{\mathrm{p}}}
$$

More generally, it can be shown that for the derivatives of x

$$
\frac{\mathrm{d}^{\mathrm{n}} x}{\mathrm{~d} t_{\mathrm{c}}{ }^{n}}=10^{\mathrm{n}} \frac{\mathrm{~d}^{\mathrm{n} x}}{\mathrm{dt}_{\mathrm{p}}{ }^{n}}
$$

There are two ways to implement time scaling, one could introduce the equations given above during the mathematical formulation of the machine equation. More simply, one could alternatively ignore time scaling initially and produce the machine equation as in previous work. Then to change the time scale alter the gains of all the integrators by the same amount.

Application of time scaling

Produce a solution of the problem shown in Fig. A, in one tenth of the real-time solution.
Machine equations is

$$
\left(\frac{\ddot{x}}{10}\right)=10-(\dot{x})-0.5(\dot{x})
$$

When $t_{\mathrm{p}}=t_{\mathrm{c}},(\dot{x})_{0}=(x)_{0}=0$. To speed up the solution by ten times, make $t_{c}=t_{p}$ / 10 and change integrator gains by the same factor.

$$
\ddot{x}=\frac{\mathrm{d}^{2} x}{\mathrm{~d} t_{\mathrm{c}}{ }^{2}}=100 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t_{\mathrm{p}}{ }^{2}} \text { and } \dot{x}=\frac{\mathrm{d} x}{\mathrm{~d} t_{\mathrm{c}}}=10 \frac{\mathrm{~d} x}{\mathrm{~d} t_{\mathrm{p}}}
$$

So the new machine equation is

$$
\left(\frac{\ddot{x}}{1000}\right)=10-0.5\left(\frac{\dot{x}}{10}\right)-(x)
$$

a

b

WORKED EXAMPLES

1: Initial conditions too high. Produce a the choice must be amended. For (ï), suitably-scaled patching diagram to solve
$0.5 \ddot{y}+2 \dot{y}+15 y=4$ with $(\vec{y})_{0}=-3$,

$$
(y)_{0}=1.5
$$

Estimate maximum values: $\ddot{y}_{\mathrm{m}}<8$, use (ï) for computation, $\dot{y}_{\mathrm{m}}<2$, use (5 \dot{y}), and $y_{m}<8 / 15$, use (10_{v}).

The initial condition inputs are $(5 \dot{y})_{0}=-15$ and $(10 y)_{0}=15$ but both of these are too high for a 10 V computer so ($2 \dot{y}$) and (5y) the initial conditions will be $(2 \dot{y})_{0}=-6$ and $(5 y)_{0}=7.5$, well within the limits of the computer.
The scaled equation becomes

$$
0.5(\ddot{y})+\frac{2}{2}(2 \dot{y})+\frac{15}{5}(5 y)=4
$$

giving the machine or patching equations as

$$
\ddot{y}=8-2(2 \dot{y})-6(5 y) .
$$

2: Second-order equation with r.h.s. zero. The equation of motion of a mass which starts from rest at a distance 5 cm from a datum is

$$
\ddot{x}+9 \dot{x}+64 x=0
$$

Construct an analogue computer solution to obtain x as a function of time.
Estimate maximum values by assuming no damping; i.e. $\ddot{x}+64 x=0$. This has a solution of the form $x=A \sin 8 t+B \cos 8 t$. Initial conditions are $(\dot{x})_{0}=0$ and $(x)_{0}=5$ so, by substitution at $t=0, B=5$ and
$A=0$, and the undamped solution is 5 $\cos 8 t$. Hence make $x_{\mathrm{m}} \leqslant 5, \dot{x}_{\mathrm{m}} \leqslant 40$ and $\ddot{x}_{\mathrm{m}} \leqslant 320$ and compute $(2 x),(\dot{x} / 5)$ and $(\dot{x} / 50)$ with initial conditions $(\dot{x} / 5)_{0}=0$, $(2 x)_{0}=10$. The scaled equation becomes

$$
50 \cdot\left(\frac{\ddot{x}}{50}\right)+45\left(\frac{\dot{x}}{5}\right)+32(2 x)=0
$$

and the machine or patching equation is

$$
\left(\frac{\ddot{x}}{50}\right)=-0.9\left(\frac{\dot{x}}{5}\right)-0.64(2 x)
$$

$$
\text { with }\left(\frac{\dot{x}}{10}\right)_{0}=(x)_{0}=0
$$

Hence the equations are identical in magnitudes but the solution, Fig. B, is ten times as fast.

Ancillary equipment

The variation of voltages in an analogue computer circuit cannot be seen except by using them to drive some ancilliary equipment. Very often, especially with electromechanical output devices, the operating speeds of this equipment severely limits the maximum frequency which can be present in the analogue solution. Thus time scaling becomes unavoidable.
An oscilloscope is useful because it can provide a visual presentation of computing variables with comparatively simple setting up procedures. A double-beam oscilloscope will display two analogue variables simultaneously in correct time relationship with each other. If the computation is slow then.a storage oscilloscope with slow sweep speed is used with the computer in the compute mode. Faster computations can be displayed with increased sweep speed on an ordinary oscilloscope using the Repop mode and synchronizing the computations to the oscilloscope timebase sweep.

David Dawe studied for higher national certificate in electrical and electronic engineering at Devonport Dockyard Technical College. He then won a Ministry of Defence sponsorship at Southampton University to read electronic engineering and subsequently spent two years as design authority for new audio and recreational iv systems for the Navy at Ministry of Defence headquarters in Bath. He now lectures in electronics and computing at Cornwal! Technical College.

RCA says "Video disc system has enormous potential"

Speaking at the 4th International Videodisc and Videogram Conference in New York city. Herbert S. Schlosser, RCA's executive vice-president, claimed that the company's "SelectaVision" video disc system will be "world-wide in scope and its potential for entertainment and education is enormous."

Although he did not diclose specific marketing plans for the system overseas, Mr Schlosser said RCA is committed to the development of its system for Europe and that technical development work has been under way for many months. He said "RCA intends to take a leadership role in developing the market for the video disc in Europe, both by direct participation and through licensing arrangements for both discs and players with other participants.
Development of the RCA system in Europe will be supported by a variety of program ming and Mr Schlosser said that programmes produced in Europe will also find their way back to the USA. RCA has already obtained licenses to market in the US much European-produced material including Sir Laurence Olivier in "Henry V", "Hamlet" and "The Merchant of Venice."
One reason there will be a big demand for the video disc in Europe, he said, is that European viewers cannot receive the same number of tv channels as their American counterparts. In the US, about 50% of
households can receive nine or more stations with those in New York and Los Angeles capable of receiving 15 different broadcast stations and many more over cable systems.
In contrast, a household in the middle of London can choose from only three channels and this is also the case in Paris and Hamburg. Furthermore, in Britain and France there is virtually no programme activity on weekdays until noon, while Germany has only limited morning programme activity
"Thus", Mr Schlosser said, "the video disc has great potential in Europe. It is a way for consumers to choose programmes they want and to play them when they want, day or night". RCA's catalogue will offer feature length films, popular and serious music, children's programmes, television feature material, d.i.y. and highlights of sporting events.

The RCA VideoDisc employs a "capacitance" technique in which a grooved disc is tracked by a diamond stylus and has been in development for 15 years. The re-play unit is attached to a colour or moadchrome tv receiver and will carry a suggested retail price under $\$ 500$ in the US. Market introduction of the system in the US will take place in the first quarter of 1981 and first units will be delivered to distributors for demonstration in December 1980.

Construction of third satellite aerial begins

Work has started on another aerial to supplement the two already in use at the Post Office's satellite earth station at Madley in Herefordshire. The new aerial will work to a satellite in geo-stationary orbit 23,000 miles above the Indian Ocean. The first Madley aerial, in operation for more than a year, also works to a satellite over the Indian Ocean and the second, which went into operation earlier this year, beams telephone calls to a satellite positioned over the Atlantic

Increasing telephone traffic has made the new aerial essential, with more than a million calls a month being made between Britain and 40 other countries. Call density to some countries is growing at a rate of 30% per year and this is matched by increases in telex and data traffic. Intercontinental phone calls have reached 4 million a month with 60% going by satellite either through Madley or the Goonhilly earth station in Cornwall.

The aerial project, which will cost $£ 7.5$ million, is due for completion by the contractors in mid-1981. $£ 3$ million worth will be completed by Marconi Communication Systems, the remainder being in the hands of Mitsubishi Electric Corporation via a British subcontractor, IDC Construction

There are now eight satellites operating in the Intelsat (International Telecommunications Satellite Organisation) global system and, in addition to transmitting telephone and telex calls, live iv programmes are carried. So far, the PO has spent $£ 17$ million at Madley under its $£ 1,000$ million a year programme of investment.

The "Madley Three" aerial will have a dish diameter of $105 \mathrm{ft}(32 \mathrm{~m})$ and will be capable of transmitting 2,000 telephone calls and two tv programmes simultaneously. A feature of the
design is that the structure has been modified to withstand higher wind pressures than the previous two. Tubular steel is to be used instead of angle steel, making it resistant to winds gusting up to 45 m a second.

Working will take place initially to an Intelsat IV A, moving later to an Intelsat V, capable of carrying 12,000 calls simultaneously.

- A co-operation agreement was recently announced by Thorn EMI and JVC, the Japanese Victor Company, to manufacture and distribute JVC's video discs and the machines which will use them.

The JVC VHD/AHD (video high density/ audio high density) system is expected to be introduced into Europe and the US by late 1981 and the UK could well become a manufacturing base, with automation in Thorn-EMI being left to "standard" products and skilled labour being shifted to the video disc side.

Philips, whose system is scheduled for launch in mid 1981, plans to use a factory in Lancashire for the pressing of discs.

Computer watches the factory

Both temperature and ventilation in the petrol engine workshop of the Scania division of the Swedish Saab-Scania group in Stockholm, are now under the control of a minicomputer.
Drawing on real-time data supplied by a network of sensors, temperature and air flow are continuously monitored and compared with outside levels; the computer continuously adjusts the working of fans and air heaters in order to maintain optimum working conditions at minimum power consumption, with a claimed 10% reduction in heating oil consumption.
During the winter months indoor temperature can be held down when work is not in progress as well as during the night, at weekends and on public holidays, ready to be started up at just the right moment to ensure that premises are at a suitable temperature for human habitation.
In summer, the computer makes sure that cold night air is fed in to reduce the temper ature, thereby postponing the switch-on of cooling systems in the daytime.

Guglielmo Marconi, with his personal radio operator Adelmo Landini, aboard the Elettra in Genoa Harbour, about to activate the switch which, by radio remote control, turned on the lights at the Electrical and Wireless Exhibition in Sydney City Hall. The event took place on 26th March 1930, and Marconi had designed the selector device himself. (See "Indian scientist wins Marconi award".) Photo, courtesy of GEC-Marconi Electronics Ltd.

UHF CITIZENS' BANDS

Mr Hooper's account (February letters) of the success of the u.h.f. citizens' band in Australia (not the world's first by the way that honour probably belongs to the United States, which had Citizens Radio Class A at 462.55 to 462.725 MHz from well before 1973) is interesting in that once again it shows there are several sides to a story and some silver clouds have dark linings.
In Canada we have recently been discussing the possibility of a new citizens' band at 900 MHz . In commenting on this, our Council made a suggestion that if such an allocation is made, the modulation system should be different from that used on other services on adjacent frequency bands.
Our reason for this was that we understand there is a problem in Australia in that cheap equipment produced for the citizens' band is often used illegally on other nearby bands, instead of equipment meeting the proper type-approval specification applicable to those bands. Mr Hooper's comment about the u.h.f. c.b. equipment being used on the amateur bands reminded us of this.

This is not to say u.h.f. c.b. is a bad thing; it certainly is a better bet than 27 MHz , if a frequency slot can be found which does not disrupt other services, and if something is done to prevent the c.b. equipment from becoming the standard equipment for commercial services nearby
Bob Eldridge
Western Canada
Telecommunications Council
Bumaby
B.C., Canado

CITIZENS' BAND RADIO GROUP

I represent a group of people in North Lon don keen on the establishment of citizens band radio in this country. We see recent events (the favourable attitude of the new government, the statement made by way of ministerial reply to the Adjournment Debate on 6th December last, the establishment of national committees inside and outside par liament) as giving realistic hope that legali sation is imminent and we see the time as ripe for a new emphasis, which our group will express.
Some of us are licensed amateurs - others are technologically untutored - and most are already members of existing groups, with whose activities we do not see ourselves as competing. We will wish to co-operate fully, in word and deed, with other local organisations and with the National Committee for Legalisation in the present campaign for early government action

Our main aims, however, will be forwardlooking in anticipation of the early days of the new service after it is established. Technically, we will fight no rearguard action for 27 MHz a.m., for which we see no justification on technical or other grounds; sure that the British service will be at higher frequencies and with f.m. and/or s.s.b. only, we shall be informing ourselves by reference to Australian experience and USA research. Socially, we shall be studying the safety, utility and
community aspects of existing services in other countries and considering similarities and differences in what is likely to be appropriate here; and we shall give particular attention to the less obvious applications besides those concerned with motoring use especially applications for the benefit of such groups as the elderly, the disabled and the housebound. We shall be in touch with REACT International, make contact with local RSGB groups, study the available material on US Federal volunteer pro grammes such as NEAR (National Emer gency Aid by Radio) and look at the European c.b. scene.
Would anyone interested in joining the group and able to reach meetings in the Barnet area once or twice a month please write to BM/NSCJ, c/o British Monomarks Ltd, London WCl
(Name and address supplied)

WET AERIAL INSULATORS AT SEA

It is not uncommon to find in text books of the spark transmitter era some reference to "salt and soot shorting out the insulators of ships' aerials". Designers of the day took heed, usually making the aerial an "L" or "T" slung between high masts with strain insula tors at either end and the down lead terminating at a feed-through insulator located at the highest point on the bridge, shielded from spray by a large brass bell. There were three points of possible leakage only, placed at maximum distance from the source of contamination.
Later text books ceased to dwell on "what everybody already knew" and gave the space to other aspects of a rapidly developing technology. As long as ships had the bridge amidships and two masts, this style of aeria was traditional, but about 1960 the shape of ships began to change; accommodation began to move aft, masts were abolished or merged with funnels. Aerials had to be hung wherever they would fit, with insulators at each zig and zag. Optimum placement of feed-through insulators was abandoned.

There is evidence that some such aerials, when wet with spray, undergo such a large shift in characteristics that they will no longer match the transmitter pi-coupler, or to put it in plain language, transmitters are rendered useless in bad weather. I refer readers to my article in the September 1979 issue of Nautical Review and my letter in your June 1979 issue.

Since modern 'sophisticated' manuals on radio technique fail to even recognise the existence of the "wet insulator" problem, it is necessary, in seeking an explanation of the nature of the "leakage", to turn to the fundamental literature on the physics of elec trolytes. Most of these books have long since been removed from library stacks as "obsolete", but can still occasionally be found in back street second-hand bookshops. One of the most important of these books is "Electrolytes", published in 1932 by Prof. Hans Falkenhagen of the University of Cologne, dealing with the work of a number of German researchers into the conductivities
of a wide range of electrolytes at radio frequencies, up to about 60 MHz . Falkenhagen found that above about 1 MHz , conductivity increases with frequency by up to 50% and Wien, whose work is also described found a similar increase of conductivity with increased field strength. The methods used to determine conductivity were indirect, depending either on heat generated in a cell containing the electrolyte placed in an r.f. field, or on the damping of the amplitude of resonance peaks. Falkenhagen notes that " most of the earlier methods used for determining conductivities with direct currents are inapplicable at high frequencies . .'. (May government radio inspectors remember that when attempting to measure the quality of insulation of ships' aerials.)

In 1907 the Carnegie Institute of Washington published a report by Arthur A. Noyes on measurement of the conductivities of a vast number of aqueous solutions over a wide range of concentrations and temperatures. Noyes tells us that "The conductance was measured by the ordinary KohlrauschWheatstone Bridge method, using the induction coil and telephone", and this leads us to "Electrochemistry and Electromechanical Analysis" by Dr Henry Sand, who tells us that ". . . a difficulty inherent in the measurement of electrolytic resistances and conductivities is due to polarization of the electrodes. This difficulty was overcome by Kohlrausch in 1879 by the introduction of alternating current in which equal and opposite pulses neutralise each other, expressed in greater detail, each pulse may be assumed to produce a polarization proportional to the amount of current that has passed through the electrode, the latter thus acting as a condenser. The whole cell therefore behaves to alternating current as a resistance in series with a large capacity..."

In his "Text-Book of Practical Physics", 1919, Lt.-Col. W. Watson. goes further:
"The difference of potential between the electrodes of an electrolytic cell through which a current i is passing, when the resistance of the electrolyte is R is given by:-

$$
E=R i+P j i d t
$$

where P is a constant which depends on the area of the electrodes . . . and the electrolyte. Suppose that alternating e.m.f. of frequency $p / 2 \pi$ applied to the terminals of the cell if applied e.m.f. follows simple harmonic law it may be represented by $E_{o} \sin p t$
$R i+P j i d t=E_{0} \sin p t$
Differentiating with respect to time
$R \frac{\mathrm{di}}{\mathrm{dt}}+P \mathrm{i}=E_{\mathrm{o}} p \cos p \mathrm{t}$
The integral of this equation is $i=\frac{E_{0}}{R\left|1+\frac{P^{2}}{R^{2} p^{2}}\right|^{1 / 2}} \sin (p t+0)$

Where $\tan \theta=\frac{P}{R p}$
p corresponds to ω and P could be rewritten k / c. The equation can then be written

A frequency of 1 kHz was considered adequate for the measurement of conductivities of cells of a few hundred ohms between electrodes. If the capacitive reactance of the cell at that frequency introduces negligible error, then that implies a large capacitance The ability of an electrolytic cell to behave as a capacitance might be called "The Kohlrausch Effect". An aerial insulator coated with a film of sea-water constitutes such a cell; the actual area of its electrodes is probably quite small due to the customary heavy corrosion of copper at sea. (P is larger.) The presence of one or more such 'cells' on a ship's aerial may well alter the capacitance of that aerial to the extent that the pi-coupler of the transmitter connected to it, operating at about 500 kHz , can no longer be dipped to resonance
Sea water is certainly an excellent electrolyte. In every 1000 grams of the water of the Atlantic Ocean there is dissolved 27.37 grams of sodium chloride, 3.36 grams of magnesium chloride, 2.24 grams of magnesium sulphate, and significant amounts of 8 or 9 other salts. The concentration on the insulator surface will possibly be greater due to evaporation by action of the wind.
John Wiseman
London E3

Further reading

"Electrolytes," Hans Falkenhagen, OUP, 1934 (English edition).
"The Electrical Conductivity of Aqueous Solutions." Arthur A Noyes, Carnegie Inst. 1907. "Electrochemistry \& Electro-Chemical Analysis", Henry J Sand, London 1941
"A Text Book of Practical Physics," Lt-Col. W Watson, London 1919.
"La Concentration En Ions Hydrogene De L'Eau De Mer - Le pH", R. Legendre, Paris 1925.

EDUCATION FOR

INTEGRATION

Your leader in the March issue, "Education for Integration", left me wondering whether Wireless World is positive, neutral or negative about the "chip", and its manifestations. I don't expect you to be totally polarised, but I did expect a more direct lead on the subject than this piece appears to offer. It is a great pity that its rhetorical force was not backed up by a coherent set of ideas rather than the tango which emerged from "doom-laden prophecies" (the chip is O.K.) through "its lineage and capabilities do not warrant . .." (the chip is unimportant) to "the microprocessor is not a work of the Devil" (a negative proposition, presumably from Kant?)

You accuse those "non-engineering persons" who dare to venture an opinion of failing to appreciate that their technical ignorance renders them incapable of forming valid opinions on the subject of the chip in general and its eventual impact on employment in particular. This sentiment is enlarged upon in a piece of expert nit-picking which points out that these n.e. persons have not yet (silly people), sorted out the difference between decade counters, op-amps and microprocessors. It seems that one needs to be told which is which and when to jump or stand at ease by the informed engineering club member.

The most glaring assumption is that which claims that a system cannot be recognised or: its movement predicted unless the entire device structure is intimately understood. I don't need an engineer's intimacy with a London bus to know that unless I make the right moves when crossing the road I'm going to get flattened. In a similar fashion, it is becoming increasingly clear that those who can see the wood for the trees (without necessarily knowing how to measure the height of each pine), such as some of those who "walk out on strike whenever new technology is in the offing," are quite capable of foreseeing accurately the shape of the juggernaut which might lumber its way across their jobs, if the decisions of the professional and business manipulator are allowed to forge ahead unchallenged.

It's now pretty certain that, unlike the sentiment you have expressed, the next decade will see the retention of a smaller workforce, especially in the clerical trades, whether such workers are technically informed or not. The waving of IEE flags won't save a single job! Your claim that those who know are better able to see that things will be O.K. and, if they aren't, everyone will simply have to change, qualifies as both red herring and "inevitable march of science" dictum, but doesn't really help in the debate.

The Conservative Party's working report of April 1979, "Proposals for Information Policy", suggests in a section on trades unions that "certain computer operations, all telecommunications and some government publications and information services would be included among the limited category of vital services from which withdrawal of labour would be illegal." This indicates the importance of the issue and supports my main point because those whom you accuse of rampant ignorance - cabinet ministers, trade union leaders etc - although prone to ineffective or naive utterances on the subject, nevertheless do clearly appreciate the wider nature of the new systems even if they think Boolean Algebra is an odd modern language.

All the while you continue to carp about ill-informed comment in the media, i.e. that which concentrates on the "wonders of science" type of reporting, and fail to convince anyone that you have a betterconsidered view of what will probably be one of western industrial society's most farreaching professional and social upheavals. I. B. Hawk

Farnham
Surrey

SCIENTIFIC COMPUTER

Like Mr Freeman (February letters) I too built the Adams scientific computer to gain experience in micro-computing, but I came to it from a programming background, wishing to become more acquainted with hardware and also programming at machine code level. I was attracted by the concept of two microprocessors interacting and in my view this works well.

However, the machine has had scant, if any, mention in the micro-computing magazines. Why not? I venture to suggest that this is because (apart from only being available in kit form) there is almost no relevant software available. Effective software takes time and money to develop and most manufacturers adopt existing systems and programs, and encourage others to jump on the bandwagon. Although Mr Adams's

BURP works well, with only 26 variables and primitive control statements the machine is no more powerful than a programmable calculator with video display. The monitor is totally non-standard and existing machine code software would require extensive alteration to run under its operating system. Unless and until considerable effort is made modifying other microcomputer operating systems and interpreters to utilise the number cruncher (which ought to be perfectly feasible), Mr Freeman and others like him who want better computing facilities would be well advised to buy one of the more popular machines.

For my part, the machine has certainly fulfilled its original purpose, since the monir tor is not at all difficult to understand analyse or use. My main criticism was the automatic reset within the NMI routine, which I am pleased to see has been removed in the new version. Perhaps one can now program some dynamic video games.

Machine code programming is, however, laborious; you have to write your program on paper, assemble it on paper into machine code, then enter it. All screen listing is in machine code. So you can see what is there, but it is impossible to follow through the steps by looking at the screen because you actually think and program in the assembler mnemonics, not in the derived machine code. Furthermore if you used Mr Adams's boxed coding sheets there is no room for insertion of code during debugging. Here you have to physically move memory contents and check all jumps for altered addresses.

To overcome these difficulties I have written a disassembler/editor. This produces 31 lines on screen, each showing memory address, up to 4 bytes of machine code comprising one instruction, the standard $Z 80$ assembler mnemonics and also, for relative jumps, the destination address. You can amend sections of code whilst looking at the listing on screen and immediately see the new disassembled mnemonics produced. An extremely useful feature for modifying programs is the facility to insert or delete blocks of NOPs (No Operation instruction) anywhere as chosen, automatically expanding (or contracting) the program and altering relative and absolute jump and call parameters as appropriate. In this way you can alter, insert and delete code extremely easily, effectively working in assembler language, instead of unintelligible machine code.

The program occupies just over 2 K , which could be placed in r.o.m., and needs only a few bytes of 'scratchpad' r.a.m. and some 'stack' r.a.m. At the moment I load it from tape into r.a.m. but I have over $21 / 2 \mathrm{~K}$ left which has so far proved enough for my machine code programs under development.

In my view this method of development is ideally suited to this machine as it does not need the extensive ra.m. storage that an assembler/editor would use in storing the assembler mnemonics and labels. I would be pleased to make it available to any of your readers who might be interested for, say, $£ 5.00$ to cover the cost of magnetic tape, photocopying and postage

Regarding hardware, I am considering expanding the capabilities to include RS.232c communication as an intelligent terminal, by adding u.a.r.ts and using vectored interrupts. I also intend to add a further 1 K r.a.m. as alternative development monitor with software select (by gating the enable lines controlled by an output port latch); to extend the v.d.u. memory to 8 bits and adding read-back
facility; and possibly also to add a single step facility for debugging machine code programs.
Russell A. Gadd
2la St Ronans Road
Southsea
Hants PO4 OPW

TRICKLE, TRICKLE LITTLE CHIP

The first page of Wireless World plays an important part in setting the status of the magazine and it is this which has made me a regular reader of the journal. As I write, the editorial page of your November 1979 issue lies in front of me. In the first paragraph of this piece ("Trickle, trickle little chip") your aim, if I am not mistaken, is to illustrate the large reduction in the cost of microprocessors by giving the example of an Indian peasant as a possible but unlikely possessor of one of these devices. As a first class electronics engineer of state level in India, I feel it is my responsibility to remove this type of misunderstanding.

1 should explain that 1 am 20 years old and work as a junior engineer in a computer manufacturing company called Operational Research Group System. I am at present engaged in testing a microprocessor system using an 8080 device.

I-have to agree that Europe is leading us in technology by one or two decades, but it doesn't mean you can write this kind of thing. It's a question of the credit of our country and, even more, your knowledge of India and its technical development. At present about a dozen organizations here are manufacturing products using microprocessors.
Mehta Subhash Vrajlal
Baroda
India

INTERFERENCE WITH MSF RECEPTION

With reference to MSF reception in the North-West (March letters), the following comments based on tests near Manchester over the past four years may encourage your correspondents.

Using a ferrite rod aerial assembly as the sole tuning element and a r.f. amplifier, both derived from a design by Bateman ${ }^{1}$, followed by a detector designed by Cross ${ }^{2}$, reliable reception of the MSF signal has been achieved in the presence of strong signals centred on 61.835 kHz . The measured loaded Q of the experimental receiver is 156 , with a bandwidth of 385 kHz and a rejection of 20 dB at 61.8 kHz . The signal level presented to the detector is set at 6 dB above the trigger threshold, high enough to avoid output jitter yet not so high as to seriously degrade selectivity. Constant input to the detector also minimises complications arising from unequal switching delays at the detector output, an aspect of performance which must be considered when designing the decoders. Interference at 61.8 kHz is some 5 dB above the 60 kHz Rugby signal in this area so the net rejection is about 9 dB . Perhaps surprisingly, this has proved adequate for driving fast and slow format decoders, but I would not recommend such a limited margin for a permanent clock.

Further selectivity has been obtained by adding a single tuned stage $(Q=94)$ after the aerial (Q now raised to 168 because of
improved loading), this reducing the bandwidth to 290 Hz , giving 35 dB rejection at 61.8 kHz . This bandwidth is lower than that adopted by Helsby ${ }^{3}$ but a c.r.o. display of the incoming code shows the 5 ms pulse - the shortest in the MSF signal - to be clearly delineated. Decoder function has been consistently reliable with this more selective circuit. If only the slow code is required, an even narrower bandwidth might be practicable but 1 have not tested this possibility.

The 61.8 kHz signal from the $100 \mathrm{~kW}^{4}$ transmitter in Fylde is certainly an interference hazard in this district since its reception direction is only 8° from that of the Rugby signal, so little is gained from the directional properties of the typical ferrite rod aerial. Moreover, the hazard will increase if the whole of the transmitter's assigned bandwidth, centred on 61.75 kHz , is brought into service ${ }^{4}$. However, as a receiver with a 290 Hz bandwidth can deliver the MSF data, reception in difficult areas such as Salford and even Preston seems a possibility. Like Messrs Izattt and Samain, I also wonder if commercial designs, which seem to originate in the South, work successfully in the North-West, especially along the line joining the 60 and 61.8 kHz transmitters.

D. J. Jeffers

Cheadle Hulme

Cheshire

References

1. D. A. Bateman, Wireless World, Jan 1976.
2. A. F. Cross, Wireless World, Feb 1976.
3. N. C. Helsby, Wireless World, Aug 1976.
4. Private communication.

I was interested to read the letter from Messrs Izatt and Samain in your March issue. We suffer a similar problem in the area of East Sussex, and have never achieved 100% reception of MSF fast code signals despite repeated attempts during the last four years, using various receiver designs.
As in the Manchester area, we are plagued by another transmitter using an adjacent frequency. This operates irregularly, and is at its most troublesome in the pre-dawn period. Could you or your readers help in identifying this transmitter?
Your correspondents may be interested to know that the most effective method found here for achieving usable MSF reception with the Mullard design is to add a second ferrite rod. In my case this is oriented on Rugby, overlaps the original rod by about $11 / 2 i n$ and is bound to it with string.
I imagine that NPL must now possess a considerable fund of information on MSF reception and the various problems encountered. A contribution from them would be of interest to many of your readers.
P. J. Thomas

Seaford
East Sussex

TELETYPE COMPATIBLE TRANSMISSION PROTOCOLS

I am working on a project that involves using v.d.u. terminals in a page transmission mode and 1 am concerned at the lack of standardisation in Teletype compatible transmission protocols.

There appear to be two main methods of sending the information displayed on the screen. The first is to send literally everything stored in the display memory, a blank
line being represented as the number of spaces (ASCII 32) in a full line (usually 80). The second is to compress the data by suppressing trailing spaces; they are represented by either space, carriage return, line feed or just carriage return, line feed. Using the first method, carriage return, line feed may or may not be inserted at the end of a line; this is generally controlled by a switch on the terminal. However, if carriage return, line feed is typed in, it is always sent.
A problem arises at the end of a transmission as there is no easy way of determining when the last character has been sent. Some v.d.u. manufacturers overcome this problem by arranging for the terminal to send an ETX character (ASCII 03), which can easily be decoded in software by the receiver. This is the solution I favour as it provides a positive indication of the end of page. Further, 1 favour sending an STX character (ASCH 02) hefore the actual information is transmitted. The reason for this is that, in framing the transmission, substantial immunity to random characters caused by noise is obtained.
These characters must be sent automatically rather than relying on operator insertion as some manufacturers do. The reason for this is that if the operator forgets to insert characters, as will always happen eventually, the system will either lose all the data or will be hung up awaiting an ETX character. To recover from this state the receiver would need to be reset. This presents severe problems if the receiver is remote from the transmitter.

Alternatively a timeout could be used but this again presents problems, especially in terminals that compress the data, as there are often long pauses between characters. Delays of up to 42 characters have been measured. This leads to inordinately long timeouts which are inconvenient and not very easy to implement.
The simplest and most satisfactory solution to these problems is to send an STX character before page transmission and ETX after. These characters are ignored by devices not requiring them, at the most being printed as a space.

I would be grateful for reaction from readers to the above suggestion.
S. A. Jackson

Plessey Communications
\& Data Systems Ltd
Beeston
Nottingham

JAMMING AMATEUR REPEATERS

Many amateurs claim that "citizens' band" operators are mainly responsible for the jamming and abuse which takes place on GB3SL and other repeaters. The c.b.ers 1 have met show equal contempt for jamming, both on the two-metre and their own illegal 27 MHz band.

On Sunday February 17th, GB3SL was being jammed by a 'bug'. Other amateurs and myself were on the 'parade' trying to locate the device. Although we tracked the bug down to within a few yards, it took the chairman of the Citizen's Band Radio Action Group to finally spot it.

While all the excitement was taking place a few amateurs who could still access the repeater gave graphic descriptions of their direction finding gear. With such equipment why were these amateurs not on the 'parade' - they must have been within easy travelling
distance of GB3SL to be able to access it! Where was the FM Group?

So many amateurs use the illegal c.b. operators as a scapegoat for every irregularity that occur on repeaters. We need less bickering and more action. Only by ignoring the squeakies and the grandads, using effectively your d.f. gear, will things improve. The authorities will not do it: it is up to us all.
R. C. Kennedy, G8UMB

Orpington
Kent

PICOBELS AND
 MILLIBELS

Peter Moncrieff's letter (March 1980, p 64) can be interpreted so as to unintentionally associate my name with a number of statements with which I disagree. I do agree that broadband frequency response differences of the order of $0.1 d B$ (i.e. 10 millibel) can be audible under suitable conditions. My experience, however, does not confirm Mr Moncrieff's subsequent statements, and his use of the word "we" in the remainder of his letter should not be construed to imply my agreement therewith. For example, 1 picobel represents a voltage difference of approximately one part in 10^{12}, which is well below the noise level in any meaningful bandwidth. We doubt his ability to measure differences this small, even assuming they were audible!
Stanley P. Lipshitz
University of Waterloo
Ontario, Canada

C-D IGNITION PROBLEMS Your correspondent D. J. Bruyns raised some interesting points (March letters) on c.d ignition problems. If indeed the intermittent misfire in some engines is caused by nonignitable mixtures at the spark gap, at the time of the spark, then surely the way to solve the problem is to improve the carburation, gas swirl and flow, to provide ignitable mixtures. The c.d. ignition derives many of its advantages by producing a short, sharp spark, and to prolong this would detract from these advantages, as the spark energy (area under the curve) would remain constant. It is significant that this has shown up in car engines as these have some of the worst gas-flow and porting arrangements of all internal combustion engines. It may well not be found on 4 -stroke motorcycle engines as these have generally far greater volumetric efficiencies and b.h.p./litre figures, achieved by careful design and tuning.

However, this may not in fact be the cause of these problems. The r.p.m. at which the misfire occurs (2000) is curiously close to the usual regulator cut-in and -out speed, when the supply line may be expected to show peculiar transients. This would explain why this does not occur with conventional ignition, or on Mr Bruyns's lathe-driven test, as he presumably used a battery to power the system with no charging circuit. More modern vehicle regulators, of the solid-state variety, sometimes exhibit deliberately or accidentally oscillatory tendencies, and this could also cause problems.
My motorcycles have monotonic regulator characteristics, and alternators, and have never shown any such effects with c.d. ignitions.
On a different tack, I am surprised at the
catastrophic demise of s.c.rs and u.j.ts when the h.t. lead falls out of the coil. My favourite demonstration is to run the engine (a singlecylinder motorcycle 4 -stroke) at various r.p.ms and carefully to pull the h.t. lead out of the coil, to show its ability to generate sparks up to one inch long in series with the sparking plug. In the limit, the spark will track down the outside of the h.t. coil and the engine will stop. Admittedly this will tax the coil h.t. winding insulation, but no failures of any components or h.t. coils have ever been sustained as a result of this practice. Maybe insufficiently conservatively-rated components are being used. (I now use $8 \mathrm{~A}, 800 \mathrm{~V}$ s.c.rs or triacs and a pre-trigger potential of 400 V). I consider that this over-rating is essential in c.d.i. units as a failure may cause an accident, e.g. during overtaking.
Graham McLeod, G8PHA
Old Headington
Oxford

COLOUR-GRAPHICS VISUAL DISPLAY

I was greatly distressed when reading the article by Mr S. J. Marchant in your April 1980 issue to find that he claims development of an opto-isolator interface for a 14 -in Sony portable television set.

This interface was developed last July by myself while working in the same department as Mr Marchant and has subsequently been marketed by Keen Computers of Nottingham.
Clive Loughlin
Hull
Yorkshire

Mr Marchant replies:
I sincerely regret my omission to acknowledge Mr Loughlin for his part in the development of the tv interface circuit, which formed a small part of my recent article. This omission was a genuine oversight on my part and I am now happy to acknowledge Mr Loughlin as the originator of the idea to use opto-isolators in this application.

The particular circuit in question was included only for the incidental reason of illustrating a suitable tv interface, and therefore did not form an integral part of the v.d.u. design.
S. J. Marchant

Beeston
Nottingham

3D TELEVIS!ON

I disagree with Mr Lott (March letters) when he says that the relationship between convergence and focus of the eyes is the same for a stereoscopic presentation as for perspective. In a 'normal' perspective illustration there is only one picture and the two eyes always converge on the same point in that picture. There is only one tree in the distant background and both eyes look at it.
In a stereoscopic presentation there are two pictures, and they only coincide at points in the plane of the screen. There are now two trees side by side in the distant background, each eye looks at one of them but both eyes must remain focused on the screen. This is an anomalous situation and to an unpractised viewer must cause some feeling of strain.

However, as Mr Lott points out, in practice this is small in comparison with the strain
induced by inappropriate camera or projec tor geometry, or, worse, by vertical disparity or a relative twist between the two pictures caused by misaligned projectors

It is important, if stereo television is to be acceptable, that the system be designed so that conditions for comfortable viewing are easily attained and, once attained, are held.
J. M. Adams

Guildford
Surrey

TRANSISTOR MUTUAL CONDUCTANCE

Mr Beasley ("Circuit analysis by small computer - 2" April issue) is almost, but not quite, correct in stating that the mutual conductance of a bipolar junction transistor is given by

$$
g_{m}(\mathrm{~A} / \mathrm{V})=35 \times 10^{-3} I_{E}(\mathrm{~A})
$$

The correct form, for the assumed conditions of operation, is

$$
\mathrm{g}_{m}=I_{c} \times(q / K T)
$$

where q is the magnitude of the electronic charge, K is Boltzmann's constant, and T is absolute temperature. This reduces to $\mathrm{g}_{\mathrm{m}} \approx 38.7 \mathrm{mS}$ per mA of collector current at $\mathrm{T}=300^{\circ} \mathrm{K}$. At very low collector currents Mr Beasley's formula, which involves the emitter current, will give appreciable error. It is proposed to consider some fundamental aspects of g_{m} in a future article.
B. L. Hart

School of Electrical and
Electronic Engineering
North East London Polytechnic

CB RADIO AND POPULATION DENSITY

In reply to W. C. Ritson's letter in your April issue I would like to make the following comments. The c.b. system described by Mr Hooper is u.h.f./f.m. and therefore essentially limited in range. I cannot see the relevance of population density figures which are averages for areas far in excess of the range of the system. Mr Ritson's only other argument seems to be the vague and highly questionable statement that "In most of the UK one is within easy reach of a telephone". It is surely obvious that the telephone and c.b. radio would provide complementary and not alternative services

Personally, I doubt if the familiar chaos/ abuse/impossible-to-police argument is the real reason for Home Office opposition. This argument, if valid, must apply with equal or greater force to an illegal 27 MHz system, but no serious attempt seems to be made to stop the sale of such equipment. 27 MHz equipment of all types is widely and quite openly advertised. One would have to be naive indeed not to believe that there is already an extensive c.b. network in this country.

By refusing to consider the allocation of the relatively small amount of spectrum space needed for a system similar to that used in Australia while turning a blind eye to the sale of 27 MHz equipment, the Home Office seems to have achieved the worst of both worlds, a situation where c.b. is denied only to the more responsible, law abiding section of the community.
W. J. Williamson, GM8MMA

Yell
Shetland

Model TCSU1

Accurate pin point temperature control between 65° and $400^{\circ} \mathrm{C}$. Heating elemen and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from
$4.7 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ down to 0.5 mm . Zero voltage switching, no spikes. No magnetic field. no leakage. Supplied with miniature CTC (35-40watt) iron or XTC (50 watt). TCSU1 solderino station with XTC or CTC iron $£ 38$ (7.71). Nett to industry

Model CTC- 24 volts. Priced at $\mathbf{£ 9 . 7 5}(1.98)$

* VAT + P\&P as shown in brackets C 3 Stocked by many wholesalers
and retailers or direct from us
if you are desperate.

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only $71 /{ }^{\prime \prime}$ "long Fitted with a $3 / 32$ " bit. E4.40 (1.12).
Range of 5 other bits available from $1 /{ }^{\prime \prime}$ down to 3/64
Also available for 24 volts.

Model CX 17 watts -230 volts

Model X25 25 watts -230 volts

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation Fitted with $1 / 8^{\prime \prime}$ bit and priced at $£ 4.40$ (1.12) Range of 4 other bits available
Also available in 24 volts

Spare element Model CX230E

Spare element Model X25/240E
Model SK1 Model MLX 12 volts ST3 Stand.

Bach-Simpson Quality test equipment now available at new LOWER PRICES!

And how have we managed this good news?
Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include, Securicor delivery to your address and our product guarantee for one year. The only extra is VAT at the current rate. Existing customers need only send their purchase order direct to us. New customers - cash with order please. But first, why not write now for our multi-page catalogue and detailed price list. Remember you are looking at only a few of our instruments - there are many more plus a comprehensive range of accessories.

Designing with microprocessors

2 - Step-by-step operation of the microprocessor chip

by D. Zissos and Laurelle Valen Department of Computer Science, University of Calgary, Canada

This is the second article in a series which aims to help the electronics engineer understand and use the microprocessor as a down-to-earth component in the design of electronic systems. Last month's article deals with the basic components of the microprocessor chip. The authors now go on to describe the chip's internal functioning from the designer's point of view, using the example of a character printing operation and the sequence of states needed to achieve it.

Although the circuit complexity and range of functions of microprocessors vary widely from chip to chip, their basic operation is essentially the same. It consists of repeating cycles during which instructions are fetched from memory and executed, as shown in Fig. 1. Some instructions contain only one byte, whereas others contain two or more bytes - see Fig. 2.

This description of microprocessor operation, although it may prove adequate for the user, is inadequate for the designer who, in addition, must treat the microprocessor chip as a circuit element which can perform a multitude of functions. Although at first sight treating the microprocessor chip as a circuit element may appear to be a formidable task, when viewed as a multi-state device, its step-by-step operation can be seen in fairly simple terms, as we illustrate next by means of an example.

In our example we shall trace the step-by-step activity required to print a character which has been previously loaded into the accumulator in Fig. 3 (which is a repeat of Fig. 7 in the previous article). The peripheral in Fig. 3 is assumed to be a printer. The software required for this purpose is stored in memory and consists of three eight-bit bytes, the op code followed by two bytes defining the address of the printer (An). To print the character, the microprocessor chip in our case goes through nine states as shown in Fig. 4 (a repeat of last month's Fig. 8). If we assume for the sake of convenience a 1 MHz clock, our circuit will change states every $1 \mu \mathrm{~s}$. The action taken in each state is explained below.

State M1. T1. The microprocessorend of the 16 -bit address bus is con-
nected to the program counter, which contains the address in memory where byte 1 is stored - see Fig. 3. At the same time a read (R / \bar{W}) pulse is generated on the control bus by the timing and control unit, which causes the first byte (op code) to be released from memory and be made available on its output terminals. Note that during this state the data bus, d, is not being used.
State M1.T2. Let us assume that the memory takes less than $1 \mu \mathrm{~s}$ to respond. This means that when our circuit enters state M1.T2, the first byte (op code) is available on the memory's data terminals. In this state the data bus is connected internally to the instruction register (i.r.) in Fig. 3. At this point the system designer also connects the memory chip to the data bus. This clearly establishes a direct link between the memory and the instruction register (i.r.). A suitably-timed pulse, generated
during this state, causes the op code to be copied into i.r. Note that the address bus is not being used in this state.
State M1.T3. During this state the op code is decoded. The output of the instruction decoder in Fig. 3 determines the correct sequence of states the timing and control unit is to go through for the correct execution of the instruction. In our case M2.T1, M2.T2, M3.T1, M4.T1 and M4.T2 are the relevant states. Note that in this state the address and data buses are not being used.
State M2.T1. The action taken in this state is identical to the action taken in M1.T1, with the exception that the program counter (p.c.) has been incremented. Note again that during this state the data bus d, is not being used.
State M2.T2. In this state the second byte of the instruction (defining the high component of the address) is available at the data terminals of the

Repeat with next instruction.

Fig. 1. The basic cycle of operation of all microprocessors, in which an instruction is fetched, executed and succeeded.

Fig. 2. Fetch-and-execute cycles for (a) a one-byte instruction, (b) a two-byte instruction, and (c) a three-byte instruction.

(a)

(b)

(c)

Fig. 3. Components and internal
organization of an eight-bit
microprocessor (repeat of Fig. 7 in last month's article).

Fig. 4. Internal operation of a microprocessor chip (repeat of Fig. 8 in last month's article).

Fig. 5. Components and internal organization of a sixteen-bit microprocessor. Note that it is similar to the eight-bit microprocessor in Fig. 3 except that the address and data buses are now put onto one set of conductors.
labelled here a/d.

memory. It is copied into the 'high' section of the addressing register r in Fig. 3 by connecting the data bus to it (which takes place within the m.p.u. chip) and to the memory. This condition is indicated in our diagram by the closure of the two switches, labelled M2.T2 in Fig. 3, and application of a pulse to the high section of addressing register r . Note that, as in the case of MI.T2, the address bus is not being used in this state.
State M3.T1. The action taken in this state is identical to the action taken in state M1.T1 and M2.T1, except that the program counter is pointing to the memory location holding byte 3 , the 'low' component of the printer address. Note once more that, data bus, d, as in the case of states M1.T1 and M2.T1, is not being used.

State M3.T2. When the microprocessor chip assumes this state, the low component of the printer address is available from memory. The timing and control unit, as in the case of state M2.T2, generates appropriate routing signals that connect the data bus, d, to the low section of the addressing register and a timing pulse, which allows the signals on the data bus to be copied into it. The system designer must therefore ensure that the memory is connected to the data bus during this state, by closing the external switch

M3.T2 in Fig. 3. 'External' in this context means not in the microprocessor chip. Note again that, as in states T2 of machine cycles 1 and 2 , the address bus is not being used.

Going through the sequence of states M1.T1 to M3.T2 constitutes the instruction fetch cycle in Fig. 1. At this point the microprocessor chip contains the op code defining the print operation, and the printer's address.

State M4.T1. The address bus is connected to the address register, allowing the printer's address to appear on it. This address is decoded by the printer's address decoder in Fig. 3, generating signal An. Note again that the data bus has not been used in this state.

State M4.T2. In this state M4.T2, the data bus is connected to the accumulator and the printer, as shown in Fig. 3, establishing a direct link between them. Simultaneously, the interface monitors the microprocessor's status signals on the control bus, which it uses to generate the appropriate command signals needed to activate the printer, allowing the character in the accumulator to be printed. Note again that the address bus has not been used in this state.

16-bit microprocessors

Reference to Fig. 3 shows that the address lines carry signals only in state

Tl of each machine cycle, and that the data lines carry signals only in state T2 of each machine cycle. No signals are carried by either set of lines in state. M1.T3. It therefore follows that the same set of lines can be used for both the data and the address bus, as shown in Fig. 5. This is the basic configuration of 16 -bit microprocessors.
In these first two articles we have shown that the microprocessor chip contains no special circuit, architectural or operational features that do not exist in conventional digital computers. The main difference is that in recent years the rapid development in technology has allowed more and more circuits to be accommodated in less and less space. This has created an access problem, which in practice is solved by time-sharing the microprocessor pins. A more efficient use of the time-sharing mechananism results in 16 -bit microprocessors.

It follows that the design and implementation of microprocessor systems involves injecting and capturing data from the system lines at the correct time, that is, during the appropriate time slots.

The next article will deal with the need for different addressing modes. A concise description of the most commonlyused modes will be given.

It is comparatively rare to see an author taking seriously the subject of testing and fault finding of electronic equipment at technician level. G. C. Loveday, in his book Electronic Testing and Fault Diagnosis, is an exception, having written a worthwhile introduction to the art which covers the theory of operation, possible malfunctioning and fault diagnosis of a wide variety of circuits.
The first two chapters are extremely thorough examinations of specification and reliability. The first covers the raising of a specification, standard forms and testing to a specification, while the second chapter goes more deeply into the subject of reliability and failure than many, more advanced texts. There follows a chapter on active and passive components, which includes details of the construction of many types and their failure modes, and three chapters on circuitry, both analogue and digital, with a practical bias towards fault finding. A final chapter is devoted to system maintenance and fault location. Exercises in construction and written tests are provided throughout. The book is a valuable contribution to the education of technician engineers. It contains 212 pages, costs $£ 5.00$ and is published by Pitman Publishing Ltd, 39 Parker Street, London WC2B 5PB.

Electronic Devices, by F. R. Connor; is concerned solely with semiconductors and ther-
mionic valves - devices using the properties of electronic motion - rather than with electronic equipment, as a loose interpretation of the title might imply.

The book is small, having only 121 pages, and though the treatment is concise, it is not possible to go into much detail on the large number of devices described. For example, junction transistors are allotted only five pages, one of which is taken up with a specimen problem and its solution. Again, although the author points out in his preface that a knowledge of vacuum devices is still essential, thermionic valves are given five and a half pages, in which diodes, triodes and pentodes are described. The sub-title of the book indicates that it is an introductory text, which may account for the summary treatment of some devices.

It is wide-ranging and begins with a better-than-average look at atomic and semi-conductor theory. The rest of the text is devoted to solid-state and vacuum devices, finishing with descriptions of c.r.ts, photocells, l.e.ds and microwave tubes. The book is in paperback, costs $£ 3.95$ and is published by Edward Arnold (publishers) Ltd, 41 Bedford Square, London WCIB 3DQ.

Two paperbacks in the Macmillan Electronic Projects series are on projects around the home (No. 1) and for the car and garage (No. 2). The projects described are fairly elementary and are clearly intended for beginners,
although in No. 1 there is a complete model radio control system and the second volume includes an electronic ignition design. The books are produced with a very welcome thoroughness which is of particular importance to the newcomer to the art. The components for each project are listed at the end of each book, with type numbers where necessary, and a list of suppliers is given. Printed-circuit layouts are given for the 'home' designs (those for the car' are on Veroboard) and the boards are also obtainable ready made. As an introduction to practical electronics, these two books can be highly recommended. They are published in paperback by Macmillan Press, 4 Little Essex Street, London WC2R 3LF at $£ 3.95 \cdot$ (No. 1) and $£ 3.50$ (No. 2).

ECIF Buyers' Guide, published by the Electronic Components Industry Federation of $7 / 8$ Savile Row, London WIX 1AF, is in two distinct sections. The first part lists components alphabetically, with the relevant manufacturers and precise kinds of component in the broad type class, while the second part provides much information on manufacturers, including factory and sales office addresses, associate companies, distributors, type-approvals held, trade names and company contacts, together with crossreferencing to the product section. The Guide costs $£ 1$.

Programmable attenuator - 2

Logic control for remote operation

by J. M. Didden

Part 1 of this series covered the design of a programmable attenuator/line amplifier with gain switching. This concluding article describes a digital control which will drive two attenuators in a remote volume/balance system.

Because the gain of the programmable attenuator is set by a 6 -bit word in steps of 1 dB , a control word which increases or decreases linearly can be used to make a volume control with the desired log. slope. A simple way to achieve this is with a 6 -bit binary up/down counter but, because conventional pótentiometers have endstops, the counter must not overrun. An important feature of a potentiometer is the preset capability, and this can be implemented in the attenuator by using a presettable counter and preset-pulses at switch-on.

For balance control, the most straightforward system has one channel counting up and the other down. This method is not satisfactory because for every count the volume difference changes by 2 dB , and in this design the problem is overcome by clocking each channel alternately.

Counter and preset circuit

To limit power consumption and to simplify connections to the 4007 switches, c.m.o.s. is used throughout. The counter and preset circuit in Fig. 19 uses two 4029 i.cs, and signals $\mathrm{TC}_{1}, \mathrm{TC}_{2}$, B 4 and B 5 detect the terminal counts. Signals B6 and B7 are always preset to 1, and the all-ones terminal count at maximum attenuation is detected by $\overline{\mathrm{TC}_{2}}$ going to 0 . When all zeros are present at minimum attenuation, B0 to B5 are 0 but B6 and 7 are still at 1 . This setting is detected by $\overline{\mathrm{TC}}_{1}$ for the least significant counter, and by B4, B5 and the Up/Down signals for the most significant counter. Signals B2 to B7 were not used to drive the attenuator because there are problems in keeping the two channels synchronized when going from volume to balance changes and vice versa.

Counter drive circuit

The counter drive circuit in Fig. 20. comprises a 4047 clock generator which also provides a signal at half the clock frequency for balance control. Four signals control the enabling and direc-

Fig. 19. Counter circuit for one channel. Switches S_{1} to S_{6} preset the attenuator.

Components for one channel

Resistors 1/4 W	Semiconductors	
1. 5 56k	D, - D_{3}	1N4148
2 220k	$\mathrm{D}_{4}-\mathrm{D}_{7}$	1 N4002
31 M (see text)	$\mathrm{D}_{8}-\mathrm{D}_{9}$	8.2 V 400 mW
$11.16 \quad 1 \mathrm{M}$	$\mathrm{Tr}_{1}{ }^{8}$	2N1613
4, $19 \quad 4 \mathrm{k} 7$	Tr_{2}	2N2905
6-10 10k	Gate 1, 2	4072
17 100k	Gate 3-5	4073
18 1k5	Gate 6-9	4030
20, 24a 15k	$\mathrm{IC}_{1}, \mathrm{IC}_{2}$	4029
21a 12k	IC_{3}	4047
21 b 330k	IC_{4}	UA 78GU
22, 27, 28 5k6		UA 79GU
$\begin{array}{ll}23 & 2 k 7 \\ 24 \mathrm{a} & 82 \mathrm{k}\end{array}$	A1-A4	TL084C

Capacitors

1.4	33 nF		
2	150 pF	Miscellaneous	
3	100 nF (see text)	$\mathrm{S}_{1}-\mathrm{S}_{6}$	6 way d.i.t.
$5,6,9-13$	470 nF tant. 35 V	$\mathrm{~S}_{7}-\mathrm{S}_{10}$	push button, momentary make
7.8	$2000 \mu \mathrm{~F} \mathrm{35V}$	Iranstormer	$2 \times 15 \mathrm{~V}, 100 \mathrm{~mA}, \mathrm{c} . \mathrm{t}$.

tion of the counters. Signal Pl enables the clock-generator and $R_{1} C_{1}$ delay this command to ensure that the other control signals have settled before the first clock pulse occurs. Diode D_{1} ensures that the clock pulse immediately returns to 0 if Pl goes low, so that changes in the other control signals then have no effect. This precaution is necessary because the count-enable signal can act as a clock pulse if the clock input to the counters is a 1.

Gates 1 and 2 provide an AND function for the logic 0 signals that provide all-zeros terminal count detection, while $\overline{T_{2}}$ detects the all-ones end count. These signals inhibit the clock pulses through gates 3 and 4. A half clock-frequency signal from the Q output enables the counters if necessary. If P2 and P4 are 0, CE-L and CE-R are low and both counters are enabled. This is the volume control mode and P3 determines whether the volume goes up ($\mathrm{P} 3=0$), or down $(\mathrm{P} 3=1)$. Gates 6 to 8 are used as programmable inverters where, if one input is 0 the other input is not changed, and if one input is 1 the other input is inverted. If P 2 becomes 1 and P4 remains $0, \overline{\mathrm{CE}}-\mathrm{L}$ follows Q and the left-channel counters are enabled every other clock-pulse. The rightchannel counters are enabled when the left-channel counters are not, which provides the balance mode, and P3 determines whether the volume will increase in the left channel $(P 3=1)$ or the right channel $(P 3=0)$. Signal P3 is inverted by gate 7 so that the counters count in opposite directions. Again, a delay network $\mathrm{R}_{2} \mathrm{C}_{2}$ is used to prevent the enable and clock signals from

Fig. 20. Counter control circuit generates enable and up / down pulses for left and right channels.

Fig. 21. Window-comparator interface provides four control signals from a two-wire remote control.
changing state simultaneously. The count-inhibit signals differ in the two modes because the $\overline{T C}$ signals only respond to the terminal count if $\overline{\mathrm{CE}}$ is low. In the volume mode, when one channel reaches a terminal count, both channels stop counting. In the balance mode however, if one channel reaches the terminal count, clock-pulses for that channel only are inhibited and if the other channel is enabled it will continue to its terminal count. The count rate is determined by $\mathrm{R}_{3} \mathrm{C}_{3}$ and with the values shown it is about $5 \mathrm{~dB} / \mathrm{s}$. Maximum counting rate is limited by the switch response, but 100 dB per second can be achieved.

A remote control unit can be interfaced to the circuit with a modified window comparator as shown in Fig. 21. Outputs P1 to P4 are normally at 0 , but if $V_{a b}$ is lowered to below the junction voltages of the divider R_{6} to R_{10}, one comparator output after the other goes high and control signals are generated as shown in table 3. The voltage is varied simply by connecting a resistor across ab as shown in Fig. 22. With this circuit the remote control facility only requires two wires.

A power supply for the complete system is shown in Fig. 23. The logic supplies are derived from the op-amp supplies and the total current consumption is about 50 mA . To ensure maximum switching accuracy, the component values shown must not be altered.

Fig. 22. Remote control connections.

Gayous chisona

The pocket Digital Multimeter by which others are judged.

10 units; 5\%.

Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:

OOnly one calibration adjustment.One year guarantee on spec.25 ranges and five functions: ohms, DC and AC volts and amps.10 amp range.$100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.1 \Omega$ sensitivity.
20,000 hour M.T.B.F.
All this is backed by the immense knowhow of a specialist company with an enviable reputation for test equipment spanning almost all requirements from $31 / 2$ to $51 / 2$ digits.

How do you get one? Simple. Just send off the coupon enclosing cheque or postal order. And see for yourself how the 130 measures up.
The Keithley 130 - the D.M.M. that won't stretch your pocket!

The 935

HANDY - easy to hold, to carry, to use, to read. Always at hand to make difficult measurements easy.

VERSATILE - all the functions and ranges you need ... 29 in all: volts and amps, a.c. and d.c., switchable Hi and Lo ohms.

TOUGH - built to take the rough and tumble of field service and survive normally disasterous overloads the 935 will stay in cal.
PRECISE - basic 0.1% d.c. accuracy - better than many bench models!

VISIBLE - big, clear, high contrast $31 / 2$ digit LCD display, readable anywhere. $1 / 2^{\prime \prime}$ characters.

EXPANDABLE-accessories extend measurements to $1000 \mathrm{~A}, 40 \mathrm{kV}$, r.f. at 700 MHz or temperature from -60 to $+150^{\circ} \mathrm{C}$.
INEXPENSIVE - the 935 has the lowest price tag of any high performance hand-held DMM at $£ 85$ U.K. mainland delivered exc. VAT It uses a low cost PP9 battery which can give up to 200 hours use.

Get the leaflet now
and see why your next multimeter should be a Data Precision 935!
sole U.K. agent
Contact:

I.E.E.E. bus standard

Controlling measuring instruments with minicomputers

by P. R. Ellefsen B.Sc.(Hons), M.I.E.E, Hendry Electronics

The variety of so-called "standard" bus systems in existence nowadays may at first seem confusing, but it is possible to categorize them in a number of ways. The most tangible division is to be made between what may be called "internal" and "external" buses. Internal buses tend to be "fixed" in nature, often taking the form of a system backplane. Examples of mini and microcomputer buses conforming to this description are Intel's "Multibus," Zilog's
"Z-Bus," National's "Microbus,"
Altair's "S-100," and the recently proposed "Modbus." External buses, by contrast, tend to be temporary or movable, the hardware normally taking the form of a flexible cable with a plug fitted to one or both ends. The bus described by the I.E.E.E. 488 standard is such a system. This article will attempt to acquaint readers with the fundamental philosophy and nature of the I.E.E.E. 488 interface bus standard, together with some of its physical attributes.

The first question to be answered must be: why do we need an interface bus standard? The answer lies in the rapid development during the last ten years of cheap and powerful mini-computers and microprocessors, together with versatile and accurate programmable measuring instruments. This development has led to the possibility of building "automatic" (i.e. programcontrolled) measurement and test systems from separate instruments as in the example of Fig. 1. The benefits obtainable from such automatic systems are manifold and result largely from the ability of the system to perform repetitive measurement tasks swiftly and accurately without getting bored, or needing holidays. To realize this sort of system, a communication network is required and, to achieve uniformity in various programmable instruments from various manufacturers, the I.E.E.E. 488 standard was created and now has almost universal acceptance.
The interface standard is defined in the publication "I.E.E.E. 488-1975"" which has also been adopted by the American National Standards Institute (A.N.S.I.) as "A.N.S.I. MC1.1.-1975." The International Electrotechnical Com-

mission (I.E.C.) also intends to publish the standard, with a few minor differences, but it is still in draft form at the moment ${ }^{2}$. Recently, the I.E.E.E. published a revision, I.E.E.E. 488-1978, which contains a few clarifying additions to the 1975 standard. The interface system is commonly known by many names: I.E.E.E. bus, I.E.C. bus, GPIB (General Purpose Interface Bus) ASCII bus (misleading), and HP-IB (Hewlett Packard Interface Bus, a trade mark). This last title refers to the fact that Hewlett Packard Limited developed the interface system, and hold a patent on the three-wire handshake protocol.

Of the five essential elements of a complete interface system, four are fully defined in the I.E.E.E. standard: the mechanical features, e.g. connectors, cables; the electrical aspects, e.g. logic levels, loading; the device capabilities (called functions); and the communications protocol, i.e. the way in which information is transmitted and received. The fifth element, which is undefined in the standard, is the coding and interpretation of the data transmitted on the bus. To explain this omission, an analogy is possible with human communications, in that we communicate vocally by setting up air vibrations, and we do not all speak at once (protocol) but the meaning of the air vibrations is defined by language (or
even sometimes by dialect). Thus data representing for example "R3" may be interpreted by a programmable meter as "set range $3(2.000 \mathrm{~V})$ " and by a printer as "print the letter ' R ' followed by the digit '3'." Clearly, not all possible interpretations can be dealt with by this standard. An important concept to note is that the bus-to-device interface system may be divided into four functional elements, shown in Fig. 2; the device itself, the device interface, the bus interface, and the bus itself. The standard

Fig. 2. Four elements of the bus-to-device interface.
covers only the latter two sections. In practice, the division between the bus interface and the device interface may be difficult to discern, but the important functional distinction to be made is between the device which performs its normal functions of measurement etc., and the bus interface whose job it is to connect the device to the bus.

Bus description

The tangible elements of the interface bus are the cable and the characteristic "piggy-back" connectors. The cable is a screened and sheathed cable containing 24 (or more) conductors terminated at each end in a standard connector, which comprises two elements, a plug and a

Fig. 3. Typical instrument rear panel, with piggy-back connexion of several plug-and-socket combinations.
socket, both 24 -way, arranged so that the open (mating) ends of both point away from each other, as in Fig. 3. This enables the cables to be connected to instrument rear panel sockets, and attached using jack-screws integral to the piggy-back connector, and further cables to be connected in parallel ("piggy-backed"). This system ensures that all pins 12 (for example) are automatically connected together, to ensure that, using standard, readily available leads, the system builder can assemble a working set of equipment without having to do any soldering, or worry about which wire goes where.

The typical rear panel in Fig. 3. shows a miniature switch, which allows the instrument to be uniquely identified to the bus system by means of an "address" settable by the user. Occasionally, the address switches may be inside the instrument, and may even be wire links on a p.c.b.

Sixteen wires (lines) carry t.t.l. signals, the remaining eight ways of the 24 -way connector being used for earths. The sixteen signal lines are all low active true (i.e. logic ' 1 ' is $<0.8 \mathrm{~V}$), and can conveniently be divided into three groups; data, management, and databyte transfer control (handshake), each being assigned a mnemonic, as shown in Fig. 4.

Since all the devices connected to the bus are in parallel, some means of allowing one device to control the state

Fig. 4. I.E.E.E. bus lines.

Fig. 5. Instrument interface to reduce effects of stray capacitance.
of a bus line has to be provided. The available options are twofold: three state logic, and wired-OR. The more universal, and cheaper, wired-OR system is used. To reduce the delaying effects of distributed line capacitances, every instrument connected to the bus has a resistive terminating network at its terminals, together with a receiver, or a driver, or both, depending on whether the instrument has to receive or transmit data, or both. Figure 5 shows the arrangement.

Boundary specifications

At this stage, one can now appreciate the boundary specifications set out in Table 1. The cable length restriction,

Maximum cable length: $2 \mathrm{~m} /$ device or 20 m , whichever is least.
Maximum data $\quad 1$ Mbyte/sec (1 transfer rate: byte $=8$ bits) (practically limited to <250 kbytes/sec.)
Maximum number of devices on standard bus: 15

Table 1

imposed by cable capacitances, is not normally a problem but can be overcome, if necessary, by the use of a 'bus extender,' a device which converts the bus traffic into serial form for transmission over, for example, telephone lines, and re-converts at the remote end of the telephone lines. The timings imposed by the standard ensure that data will be satisfactorily transferred at 1 Mbyte/ sec, although very few instruments will handle data at this rate, and careful layout of interconnecting leads is needed. A tacitly agreed limit of 250 kbytes/sec is therefore normally accepted. The limitation of 15 devices is imposed by fan-out considerations of the drivers but, again, this can be overcome by a bus buffer or bus extender.

Device functions

A device connected to the bus can be in one of three distinct states - inactive, receiving or transmitting. To enable the last two states to occur, two functions are defined in the standard; acceptor handshake (AH), and source handshake (SH) respectively. These functions, when active, ensure that data is successfully taken from or put on, the bus. The details of the actual data transfer process (handshake) are described later on.

The transition from, for example, an inactive state to a receiving state is achieved by commanding the device (using its address as set up on the switches on the device) to "listen:" if the device can be addressed in this manner, it is said to be fitted with the listener (L) function. The transmitting counterpart is called, logically enough, the talker (T) function. Normally, a computer or desk-top calculator has overall control of the bus. and alone is able to address (assign) talkers and listeners. To enable
it to do this, it is fitted with the controller (C) function. Only one controller may be active at any time in a system. Note that the controller function does not imply any ability to make decisions, nor has it any intelligence: the sequential functioning of the system is executed by a software program which is in communication with the controller function, a difficult but important concept. These five functions are the main five described in the standard, a further five being shown in Table 2: remote/ local - means of setting a device to be controlled by bus commands (remote) or by its own front panel controls (local); device trigger - devices fitted with this function can all be triggered (e.g. to start a measurement) simultaneously by the bus; device clear - a function to allow a device to be reset to a known condition (normally the power-on or idle state); service request and parallel poll, which are described later on in the section on polling. Various subsets of these functions are defined in the appendix to the standard, the number of subsets being shown at the right of Table 2 for each function. Note that "not fitted" is a valid subset, so that for example, T0 describes the absence of any talk capability.

Addressing

If it is required to make a particular device become a talker, its 5-bit address is put onto the data lines (in the least significant five bits) by the controller, which also sets DIO7 and DIO6 to logic 1 and logic 0 respectively to indicate that it is a talk address. While transmitting this address, the controller also sets ATN, one of the management lines, true to indicate that a command (as opposed to data) is present on the data lines. As soon as the controller sets the ATN line false, the addressed device will start to put data on the bus. If a device has both talker and listener functions, it still only needs one address, and the distinction between addressing it as a talker and addressing it as a listener is provided by the controller, which sets DIO7 and DIO6 to 0 and 1 for a listen address. The address "l1111" is reserved for use by the controller as an "unaddress" command. Hence " 1011111 " sent with ATN true means "unlisten," and sets all existing listeners to their unaddressed state (i.e. not receiving data). Talker unaddressing has another aspect to it; obviously only one talker can exist on the bus at any one time, otherwise chaos would result, and two ways of unaddressing a talker therefore exist the "untalk" command "0111111," and also any talk address except that of the present talker. Thus if device A is currently a talker, and device B is addressed to talk, device A automatically unaddresses itself. Provision is also made in the standard for minimal systems to be constructed. To this end, devices may have 'talk only' and 'listen only', and a possible system comprises a

DIO	5	4	3	2	1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1
		0	0	0	0	NUL	DLE	S P	0	@	P		P
		0	0	0	1	SOH	DC1	!	1	A	a	0	a
		0	0	1	0	STX	DC2	"	2	日	R	b	r
		0	0	1.	1	ETX	DC3	\#	3	C	S	c	s
		0	1	0	0	EOT	DC4	\$	4	D	T	d	\pm
		0	1	0	1	ENO	NAK	\%	5	E	U	e	u
		0	. 1	1	0.	ACK	SYN	8.	6	F	v	1	v
		0	1	1	- 1	EEL	ETB	-	7	G	W	9	w
		1	0	0	0	BS	CAN	1	8	H	X	n	\times
		1	0	0	1	HT	EM)	9	1	Y	i	y
		i	0	1	0	LF	SUB	*	:	J	z	J	2
		1	0	1	1	$V T$	ESC	$+$;	K	[k	\{
		1	1	0	0	FF	FS	-	$<$	L	,	L	,
		1	1	0	1	$C R$	GS	-	$=$	M]	m	!
		1	1	1	0	So	RTS	-	>	N	\wedge	ת	\sim
		1	1	1	1	SI	VS	/	$?$	\bigcirc	-	0	DEL

Fig. 6. ASCII 7-bit code.

Fig. 7. Sequence of events during the handshake process.
'talk only' instrument, one or more 'listen only' instruments and no controller.

Description of individual lines

Data lines. The data lines (DIOl to DIO7) carry all the variable information on the bus; data, addresses, and commands. As mentioned earlier, the coding and interpretation of the data on these lines is not defined, and is left to the user, and the instrument manufacturer. Normally, the ASC11 7-bit code shown in Fig: 6 is used, the last (most significant) bit, DIO8, being unused, or occasionally, at the user's discretion, used as a parity bit. The 128 characters definable with this code include lower and upper case characters, digits, punctuation marks and symbols, and about 30 control characters (e.g. line feed).
Management lines. The five management lines allow the controller to perform all the management operations on the bus. The attention line (ATN) is used to inform the system that an interface message (e.g. address, or other command) is present on the DIO lines. Data transfer does not and indeed cannot take place while ATN is true. End or identify (EOI) is used, optionally, by a

Table 2

Table 2		
Mne-	Description	No
monic		of sub-
		sets

talker to indicate the end of a multi-byte transfer (e.g. at the end of a voltmeter reading), and is set during the transfer of the last byte. It is also used during parallel polling, described later. Service request (SRQ) is set by any device. assuming that it is fitted with the SR function, to indicate that it requires service. It is effectively a flag, analogous to a pupil raising his hand to attract the attention of the teacher (controller). It may be set for a number of reasons defined by the instrument designer; for example it may indicate the end of a long measurement period on a timercounter, or over-range on a meter, or out-of-paper for a printer. Interface
clear (IFC) is used, by the controller only, to reset the interface to a known state, normally the idle state. Note that it has no effect on the device status, and so is distinct from and complementary to the device clear function. Remote enable (REN), when set true by the controller, sets all devices fitted with the RL function into a state where their information is derived from the bus rather than from their front panel controls. The instruments are returned to local operation by the controller sending the "go to local" message (0000001) with ATN set true.

Handshake lines. The set of three lines called data byte transfer control lines, more familiarly known as the handshake lines, operate in an interlocked manner according to a protocol which ensures accurate and successful transfer of data bytes: The three lines are designated "data valid" (DAV), "not ready for data" (NRFD), and "not data accepted" (NDAC). Data is transferred on the bus in a bit-parallel, byte-serial manner, that is, all eight bits of an eight-bit byte are transferred at the same time, followed by the next eightbit byte. The bytes are transferred asynchronously; in other words, there is no system clock to determine transfer speed and timing, transfer occurring at a speed determined by the slowest (addressed) device on the bus. How this happens can be seen with the help of Fig. 7.

1. The addressed listeners set NRFD false (i.e. ready) as soon as they are ready to accept a data byte.
2. As soon as the slowest listener has set NRFD false, the NRFD line acquires a value of false (open collector drives used as wired-or). When NRFD is false, and the talker has valid data, the talker sets DAV true to indicate the authenticity of the data byte present on the DIO lines.
3. On seeing DAV go true, all listeners reset their NRFD line to true.
4. The listeners now accept, and probably latch, the data byte.
5. One by one, the listeners indicate their acceptance of data by setting NDAC false, but as with NRFD, the NDAC line only acquires a value of false when all the listeners have accepted.
6. The talker, on seeing NDAC false, resets DAV to false.
7. The listeners reset NDAC to true immediately DAV goes false, and the talker can now place another data byte on the DIO lines. The cycle can now recommence.

Polling

Polling is the name given to a systematic invitation to instruments to inform the controller of their status. Two types of poll are provided for in the standard: serial poll and parallel poll. Serial poll. Serial polling is a one-by-one interrogation of the devices on the bus by the controller, usually as a result of
one or more devices having set SRQ true. The sequence of events constituting a typical serial poll is as follows.

- The control program (the software providing the sequencing information) notices SRQ is set true, and decides whether or not to take any action. The criteria for this decision are built into the control program by the program writer.
- If it decides to respond, it commences a serial poll by terminating, normally in an orderly manner, the current bus transactions, and unaddressing the current listeners and talker.
- The controller then transmits the "SPE" (serial poll enable command), by setting DIO7 to DIO1 to 0011000 .
- The first device in the list of devices to be polled (the list being contained in the software program) is addressed as a talker by the controller.
- On removal of the ATN signal by the controller, the addressed device, instead of putting data on the DIO lines as it would normally, puts onto the DIO lines a word containing its status information. In particular, DIO7 is set true if the device had set SRQ true. The other DIO lines may be used to signify other messages, but this is left to the instrument designer.
- If the addressed device was the one which had set SRQ, it now resets it, and the control program will normally exit the serial poll mode by sending the serial poll disable (SPD) message (0011001) on DIO7 to DIO1. Otherwise, it continues its search for the device which set SRQ by addressing the next device on the list.
Parallel poll. The parallel poll differs from serial poll in four major respects: it is not a function of, nor does it reset, the SRQ line; it is fast; it requires a commitment on the part of the control program to conduct the poll on a regular basis; and it can only ascertain uniquely the status of eight devices.
The speed advantage of the parallel poll derives from the fact that up to eight devices can simultaneously declare their status without the need for any of them being addressed.

At the beginning of the software control program is a configuration section whose purpose is to define, in the devices to be parallel polled, the manner in which they are to respond to the poll. This configuration comprises three steps.

* The first device is addressed as a listener by the controller.

6. The controller then sends the parallel poll configure (PPC) message (0000101) on DIO7 to DIO1.The device is now prepared to receive its configuration information.
3: The controller then transmits the parallel poll enable (PPE) message which contains the information on how the device is required to respond in the event of a parallel poll: DIO7, 6 and 5 are set to " 110 ," DIO4 is
set to 1 or 0 according to whether a 1 or a 0 is required as an indication that the device wishes to request service, and DIO3, 2 and 1 are set to the binary representation of the DIO line number on which the device is to place that indication. Thus "1101011" will configure the device to set DIO3to logic 1 during parallel poll if it has requested service.

The controller unaddresses the device, and addresses and configures the next until all required devices have been configured. The parallel poll system is now ready for use.
To conduct a parallel poll, the controller simply sets ATN and EOI true, and all the configured devices respond within 200 ns with their status. The restriction of eight instruments is imposed by the fact that there are only eight DIO lines. However, due to the open-collector drivers, more than one device can be assigned to a particular DIO line, and wired-OR or wired-AND configurations can be set up by configuring the devices to set a 1 (low, true) or a 0 respectively in response to parallel poll.

I.E.E.E. 488 realization

The simpler, basic functions, (AH, SH, L , and T), can be fairly simply realized using a few t.t.l. packages, but the package count increases rather swiftly as other functions are included. However, a number of devices are available, or will be shortly, which achieve the interface functions using a single chip with external bus transceivers. Among these are the HEF4738 from Mullard, and the Motorola MC68488 and Intel 8291 , both of which are very suitable for use with microprocessors. All three provide talker and listener functions. The Intel 8291 will shortly have a companion, the 8292, the pair together providing talker, listener, and controller functions.

Apart from dedicated integrated circuits, modular bus interfaces are available in card form from Ziatech (USA) and Micrologic (Germany), and in cased, self-powered form from such manufacturers as Fairchild and Micrologic.
Another machine which is useful is the CBM "PET" which is fitted with the I.E.E.E. interface as standard, except that an edge connector, rather than the standard connector, is used. The PET enables the user to operate the controller function through a high-level language (Basic) or, with more flexibility, from assembler language.

References

1. "I.E.E.E. Standard 488-1975, I.E.E.E. Standard Digital Interface for Programmable Instrumentation:" Institute of Electrical and Electronics Engineers Inc., 345 East 47 Street, New York, NY.10017. (obtainable through B.S.I.)
2. "Système D'Interface pour Appareils de Mesure Programmables Bits Paralleles/Mot Serie:" 66 CO 22 International Electrotechnical Commission.

Extending mobile radio coverage

Quasi-synchronous operation of two or more transmitters at u.h.f.

by W. M. Pannell, M.I.E.R.E. Pye Telecommunications Ltd

To get good coverage for land mobile radio in areas with difficult topography, several transmitters on the same frequency can be used in quasi-synchronous operation. The author explains, however, that certain parameters in this method are rather critical, and that to achieve successful operation careful attention must be paid to site selection, signal level, oscillator stability, frequency response, phasing and group delay. However, although the method is more expensive than simple systems in some respects, two- or
three-station quasi-sync systems are worth considering if only to simplify control.

In areas where coverage for land mobile radio systems is restricted by topographical features it is often necessary to install more than one base station to enable adequate signals to be received at all points. These additional base stations can, however, cause operational problems requiring the use of separate radio frequency channels, or additional control facilities, or specialised techniques involving quasi-synchronous operation. The third method of operation has been developed as a means of providing satisfactory coverage when two or more transmitters radiate simultaneously in the same radio frequency channel. The transmitters carry identical modulation intelligence and, by adhering to certain rules, satisfactory operation is possible in standard mobile equipment located anywhere in the areas covered by at least one of the transmitters.

Both amplitude modulation and frequency modulation have been studied at length and decisions reached as to the possibilities and/or shortcomings of these modes for operation using quasi-synchronous techniques. In general a.m. has been found to be much more tolerant insofar as phase errors are concerned, while the carrier beats are less objectionable than on f.m. 25 kHz f.m. systems are easier to engineer than those on $12 \frac{1}{2} \mathrm{kHz}$.

At u.h.f. -450 MHz - it is possible to overcome some of the problems which arise at v.h.f. and thus systems using f.m. quasi-sync are easier to engineer. A.m., even at 450 HHz , would possibly be

Fig. 1. Simplest quasi-synchronous arrangement, using two transmitters, A and B.
even better for the purpose. However, the exclusive use of f.m..at these frequencies for land mobile operation precludes the use of a.m. systems.

Whether or not other modes of .modulation - s.s.b. for example would prove to be even more suitable must await the completion of any development of such techniques. Indications are that s.s.b. could show much greater tolerance and that quasi-synchronous systems using single sideband could prove to be appreciably easier to engineer. Until such work has been undertaken however, quasi-synchronous operation must be confined to existing modulation methods. The rest of this article is devoted to the main aspects of f.m. quasi-sync in the u.h.f. 450 MHz band.

Advantages and disadvantages

Before examining the requirements for successful quasi-sync operation, let us consider firstly the advantages of using such a technique.
Instead of individual control of each transmitter, as would be the case with a conventional system, the total complement of transmitters can be modulated and switched from a single point if required. This ability, coupled with the use of voting techniques for the receivers, enables an extremely com-
plex system to be operated from a simple single channel remote control unit.

As a direct result of using one channel instead of a number of channels to cover an area, the mobile unit channel switching requirement is simplified. Only the channels needed to enable a number of separate systems to be accessed are needed, while with each individual system the need for the mobile operator to. switch channels as he or she moves between various parts of the area is eliminated. Thus loss of the vital message by failing to change channel at a critical point in the coverage area is eliminated.

Talkthrough operation becomes extremely simple. By merely feeding the received signal into the transmit pair at the control point, a mobile in any part of the area (assuming receiver voting is employed) automatically is heard throughout the total system area.

The result of using quasi-sync is a marked saving in channel requirement in the areas employing the technique. Channel re-use is not excessively affected by the use of quasi-sync, provided the coverage of each transmitter site is not abnormally extended. A more solid cover of an area can be achieved by virtue of the reception of signals in the mobile from different transmitter sites.

As well as the advantages, we must of course, consider the disadvantages. Quasi-synchronous techniques are used mainly for area cover systems where consistent, reliable communication is required. The engineering of such systems must allow sufficient signal strength over the area to take into account adverse factors normally encountered in area coverage systems plus an amount necessary to reduce "chopping" effects to an acceptable level.

Correct audio levels, frequency responses and phasing requirements are essential to the satisfactory operation of quasi-sync.

A more accurate and stable frequency source is required for each of the transmitters than with conventional systems. The order of frequency stability must be under $\pm 1 \times 10^{-9}$ per ${ }^{\circ} \mathrm{C}$ over a temperature range of -10 to $+55^{\circ} \mathrm{C}$, while, more importantly, the ageing source should certainly not exceed the frequency stability figure over any period of 24 hours if frequent and costly adjustments are to be avoided.

Where overlap occurs between two areas, "chopping" and distortion of the signal can occur in quasi-sync areas, especially with stationary mobiles and where adequate signal levels are not available. Short sector multi-path fading will tend to modify this effect. With moving vehicles at frequencies in the u.h.f. bands, however, the fluctuations associated with multipath short sector fading will be quite rapid and thus the overall "chopping" may not be as marked as at the lower frequencies.

Indications are that the overlap achieved by three sites is optimum for f.m. systems and more overlapping sites should be avoided.

Site considerations

Fig. 1 shows the simplest quasi-sync transmitter configuration employing two sites. Typical overlaps of the operational areas are shown, based on the use of plane earth propagation. It can be seen that the signal received by the mobile can be predominantly from Station A, predominantly from Station B, through all intermediate signal ratios until a point is reached - shown by the broken line - where the signals received are exactly equal in amplitude.

It is at this point that one of the main disadvantages of f.m. compared with a.m. is highlighted. With a.m. two signals of equal strength, but with a small frequency offset, should - provided the general precautions outlined later in this article are observed - be completely intelligible. Two f.m. signals of equal level, on the other hand could, unless the deviations of all transmitters are held to a close tolerance, result in distortion becoming excessive. If this occurs, not until the difference between signals exceeds 4 to 5 dB will the stronger signal start to exhibit capture and improved intelligibility results.

This problem, together with the noise bursts which occur when the carriers arrive in phase opposition, contribute to the fact that f.m. systems are much more difficult to engineer than their a.m. counterparts. These difficulties however, are eased considerably at u.h.f. by the faster multipath fading rate associated with an urban environment and the differing degrees of random coincidence of equi-signal areas.

The use of more than two overlapping areas can help further in producing an area of random and non-coherent signal levels.

Quasi-sync frequency

To ensure correct operation of a quasisync system there must be finite and controllable small differences in frequency between all the carriers concerned in an area of overlap. The difference must be based on several fundamental requirements. First, beat notes must be outside the range of audibility. Secondly, too low a separation will cause excessively long nulls produced by cancellation in equal signal areas between two stations. These nulls will cause the receiver squelch to "chop," or alternatively produce bursts of noise if the squelch is rendered inoperative. Excessively long periods of distortion can also appear. Thirdly, too high a separation could start to produce audible effects, for example, speech break-up.
The optimum separation for a twostation system appears to be around 3 Hz , while for a three station system the separations can, with advantage, be a little lower.
In order to maintain the offset 'requirements over the longest possible time period, the stability of the frequency source in each of the transmitters must be of certain minimum
standard. By using proprietary high stability sources, these requirements can be met.

One has to consider first the ageing of the reference crystal in the frequency source and secondly the effects of temperature on the derived frequency. The first can be reduced by time and adjustment while the second is a function of the environmental changes, which in turn can be further controlled by temperature control if so desired. Fortunately fixed equipments tend to be less subjected to violent excursions of temperature compared with mobile units and, therefore, with care, the effects of temperature changes can be minimised.

Let us examine the likely effects resulting from the use of a proprietary. high stability source. Typically the ageing will be $\pm 5 \times 10^{-10}$ per day (averaged over a period of ten days) three months after the start of operation. The monthly ageing rate will therefore be $\pm 1.5 \times 10^{-8}$. This is equal to $\pm 0.225 \mathrm{~Hz}$ per day at 450 MHz $(\pm 6.75 \mathrm{~Hz}$ per month). The high quality 5 MHz source used in the unit will tend to be reasonably well aged by the time it is incorporated in the equipment. Furthermore, this type of high grade crystal can be selected to show an ageing characteristic in the same direction for all units. On this basis the frequency offset variation in any one system installed and adjusted at the same time should be considerably less than the above figures indicate.
Nevertheless, it is essential that, at least in the initial months of use, monthly checks should be made to establish the rates of ageing and to make adjustments correcting the frequencies to maintain the desired offsets. As the ageing rate improves, the check periods can be less frequent.
Let us now look at the shorter term changes caused by temperature. It is here that the importance of minimising

Fig. 2. Duration of a complete null is reduced, from t_{1} in (b) to t_{2} in (c), as the individual carrier levels of the transmitters increase. When two signals are approaching anti-phase, weak carriers are below the required threshold for longer than when two signals each with a higher individual level are present.
ambient temperature changes is emphasised. With a frequency stability of the order of $\pm 0.6 \times 10^{-9}$ per ${ }^{\circ} \mathrm{C}$, the high stability oscillator should be located in as constant a temperature as practical to take advantage of high stability. In an area system it is to be expected that changes in the ambient temperature of the outside atmosphere will follow a cycle having a similar "phase" relationship throughout the area although not necessarily having identical absolute values.

It can be seen that suitable offsets must always exist if the nulls and therefore the noise bursts and any quasi-signal distortion are to remain acceptable. It therefore follows that the frequency sources must have had approximately the same degree of ageing if the offsets are to remain within acceptable limits between test periods. This particularly applies if, in the unlikely event of failure of a 5 MHz crystal in the frequency source, a replacement unit is required. Such a unit should not be of recent manufacture but should be taken from a small stock of units which have been aged for reasonable periods. By so doing, the need for frequency adjustment at abnormally short intervals is avoided.

Signal levels

The direct result of chopping which can occur when equi-signal areas exist, in particular in the two carrier condition, is to introduce noise bursts as the individual signals arrive out of phase with each other. This tends to cause the squelch to switch on and off as well as contribute to a reduction in audio quality which is trying to the operator. The effective intelligibility reduction is worsened by excessive modulation levels and it is essential not to exceed. the rated deviation.

Most important, the deviation of all transmitters must agree, by as close a degree as possible, to avoid excessive distortion in equi-signal areas.

The duration of a complete null is reduced as the individual carrier levels of the transmitters increase. This is explained by the fact that when two signals are approaching an anti-phase condition, weak carriers are below the required threshold for a longer period than when two signals each having a higher individual level are present. Fig. 2 shows how this occurs.

Tests have been made to ascertain the level of the signals necessary for the nulls between carriers to be acceptable, and the figure finally chosen as a compromise between performance and site economy is approximately $5 \mu \mathrm{~V}$ p.d. The variations at this order of carrier level can be markedly improved upon if further signals are also received at the same time from other areas (systems with more than two sites) with these additional carriers at a level of around $1-2 \mu \mathrm{~V}$. The action of these extra lower
level signals is to reduce the nulls by ensuring that signals other than those from equi-signal areas are available in the areas affected normally by chopping. For example, two out-of-phase signals of $5 \mu \mathrm{~V}$ and one or more of $1.2 \mu \mathrm{~V}$ will not produce such a pronounced null pattern as would two signals only of equal amplitude.
At u.h.f., as the multipath reinforcement and cancellation occurs at much faster rates owing to the use of a shorter wavelength, the probability of being in an exact location of two equal signals is much less, particularly at the higher carrier levels suggested. The nulls and distortion periods will therefore be much shorter in duration. In all quasisynchronous systems, the coverage of urban areas is much improved if the sites for transmitters are chosen to illuminate the likely blank areas from markedly different angles, avoiding whenever possible, however, the conditions where two or more transmitters have a direct line of sight and, consequently, possible free space propagation to the mobile. It is in these situations that extended areas and periods of equisignal are likely to occur.

Audio requirements

Reception of satisfactory speech at the mobile receiver over a quasi-sync sys. tem depends on the intelligence from all transmitters arriving at the mobile receiver in phase and at approximately the same amplitude at all frequencies within the speech pass band.

The first requirement, phase relationship, is a function of the design of the equipment and the group delay performance of the various media bearing the intelligence to the different transmitters, e.g. the delay characteristics of the path of the radio links and, to a lesser degree, of the paths between the different transmitters and the undefined positions of all or any of the mobiles. The second requirement mentioned above has relatively fixed characteristics and, once adjusted, should remain constant.

As some of the phase considerations are to a certain extent dependent upon certain aspects of the frequency response characteristics, it is as well to start with the latter. Normal speech is of adequate and acceptable intelligibility if the overall response over any pair of transmitter and receiver (fixed to mobile) equipments is reasonably flat from 300 to not less than 2500 Hz . The response characteristic of the quasisync transmitters should avoid resonances wherever possible and any filters used to obtain the desired cut-off should not cause any marked phase changes at the points immediately prior to cut off.

Now let us consider the bearer circuits. The major problem with landlines is that they are not normally under the control of the radio system
user or supplier. Consequently, any rerouting or line reversal can cause a sudden change in operating conditions and the appearance of distortion in equi-signal areas as a result of modifications to the delay, equalisation and/ or frequency response. Although preferably avoided, therefore, they can however be used under certain controlled circumstances.

Where radio links are used, it is essential that the frequency response is corrected for maximum flatness without sharp cut-offs at low and high frequencies. This proviso greatly simplifies the delay setting and equalisation as both frequency response and phase change are inter-related

Derived circuits should not be used unless suitable equipment is employed to ensure that both phase and frequency are locked over the circuit at all times.

In the multi-transmitter quasi-sync system the individual frequency response characteristics of each path should be checked to see if they conform generally with the foregoing. Taking the frequency response of the worst link as the base limit, each other path should be adjusted•by the addition of relevant constants to approximately the same response characteristics.

Phase and group delay

Probably of even more importance to adequate intelligibility than frequency response is the need to maintain correct phase relationships throughout the total system. As these can be of a variable nature and caused in part by variable propagation paths within the system - in particular those affecting the fixed to mobile paths - it can be seen that some compromise is necessary. The acceptable delays are a function of the audio bandwidth accepted.

Group delay is the period of time by which a band of audio frequencies is retarded during its passage through a network or medium. A given delay will affect the phase of different frequencies over the audio band at a constant increasing rate as the frequency is raised and it is essential that there should be substantially similar delays between the audio source and each quasi-sync transmitter output. Fig. 3 shows how various audio frequencies are affected by different values of group delay.

The individual equipments must have identical phase parameters, starting with the essential need that no conflicting phase reversals should exist in any of the units. At the same time delays existing through each of the equipments must agree if at all possible. Equipment interconnections must also be such as to ensure overall phasing compatibility. Errors can be considerably reduced if the broadcast method of linking is used. Here a single transmitter broadcasts to all link receivers thus minimising equipment differences.
Having ensured that all equipments

Fig. 3. How various audio frequencies are affected by different values of group delay.
have similar characteristics, we now have to equalise the group delay caused by the differing path lengths between the link transmitter(s) and their associated receivers. Path delay can be taken as equal to $5.4 \mu \mathrm{~s} / \mathrm{mile}$ or $3.34 \mu \mathrm{~s} /$ km . Thus, if the delays associated with the link paths are calculated, it is easy to appreciate that additional delays must be added to all but the longest path to equalise the path delay throughout.

Systems using multi-hop radio links, although feasible, introduce many more problems associated with delays than single hop systems and, therefore, if possible should be avoided unless common elements can be included. If landlines fulfilling the essential requirements are available then systems can be engineered taking into account the group delay charactenstics of the landlines used.

The delay produced by the path between any of the transmitters and the mobile receivers will obviously be of an appreciable and varying amount. Unfortunately, the position of any mobile is random and therefore it is extremely difficult to introduce delays which can compensate for this ever-changing situation. However, provided the coverage areas of the individual quasisync transmitters are similar, the areas of quasi-sync will tend to follow a common pattern throughout and therefore path delays will be approximately equal under the majority of circumstances.

In the isolated case where one station is situated on a high site and has a large coverage area, there will, however. be a different path delay between that station and others at the equi-signal points. Thus in this particular case it may be
necessary to increase the delay at all the stations where the coverage is considerably less than that of the single high site. Generally, all sites should have a similar area of coverage in order to avoid these difficulties.

Work has indicated that usually, if group delay compensation is adjusted to less than 10% of the delay at the highest audio frequency, then performance will be adequate. Assuming 2.5 kHz as the top audio frequency duration of a single cycle equalling $400 \mu \mathrm{~s}$ - then if the individual quasisync transmitters radiate in phase within 40μ s intelligibility will be acceptable. However, u.h.f. systems are likely to be used in urban areas where there is a likelihood of weak signals in certain locations (within buildings, etc) and it has been ascertained that it is preferable to improve the delay tolerance at u.h.f. to better than 5%. This means a maximum delay at 2.5 kHz of $20 \mu \mathrm{~s}$.

Deviation levels

Over deviation and excessive limiting can cause a marked reduction in intelligibility in quasi-sync systems. In addition care should be taken during adjustment to ensure all transmitters have a similar level of deviation held to close tolerances to avoid an unnecessary high level of distortion in equi-signal areas.

Talk-through

One type of system which benefits from the use of quasi-synchronous operation is that employing talk-through. Whereas with conventional systems
talk-through is fairly simply applied to discrete sectons of a wide area system, the application where total wide-area talk-through is required introduces many more difficulties, some of which can prove insuperable in certain configurations.
With quasi-sync operation, however, the system layout is such that, provided the receiver path problems are solved by the use of voting, the application of talk-through exhibits no major difficulty. The talk-through switching path, together with the audio feeds, are routed by the control operator via the control unit and any incoming signal on the receive path is fed to all transmitters for total area coverage.

One difficulty with any twofrequency system is to prevent mobiles calling simultaneously, particularly during a message sequence. In a wide area system using receiver voting this effect can be particularly frustrating and a method to reduce the problem has been devised. Where a calling mobile is routed by the voting equipment to the control, it at the same time switches on the transmitter chain modulated by an interrupted audio tone. This signal warns all other mobiles that the circuit is in use.

Test equipment

An essential requirement when operating a quasi-sync system is that adequate and suitable test equipment should be available. First, we must be able to measure accurately and quickly the exact frequency being radiated from each transmitter. For this purpose a digital counter type of frequency measuring equipment is needed, capable of determining the output frequency to within 0.1 Hz . The use of Droitwich 200 kHz, MSF 60 kHz , WWV 5, 10 and 15 MHz as "off air" standards is considered essential to enable the counter to be checked and adjusted.
The critical system parameter is the frequency difference between stations. A method of checking this is to make use of a continuously powered (by batteries) high stability oscillator which can be transported between sites. This unit can be used as a main reference with which to adjust the local oscillator. Taking the "standard" source as the nominal frequency and assuming a transmitter has a frequency multiplication factor of 32 times, then a 1 Hz carrier offset will show up as a beat between the two oscillators of $1 / 32 \mathrm{~Hz}$. Seen on the oscilloscope, the oscillations will coincide once every 32 seconds.
To enable the various phasing adjustments to be made, it helps to use a special tone generator with a gated output. This output consists of 4 Hz on, alternating with 4 Hz off, capable of being swept over the audio band. The device can consist of an external unit in association with a conventional oscillator/t.m.s.

The first low cost copier to give you reliability and performance to professional standards. No other copier can match its precision engineering, and it is the only budget copier suitable for music programmes.

* One master, 2 slaves.
* Add on units available up to $\$ 1$ slaves.
* Automatic rewind
* Ferrite heads.
* 16:1 duplicating ratio
* Modular slave decks with DC servo motors.

Also available: Reel to cassette version with 6 slaves
OTARI from ITA
1.7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879.

WW - 080 FOR FURTHER DETAILS

How's this for size?

THE SOUNDEX 'AUDIO MULTIMETER' Is actionpacked to measure audio signal levels right down to -72 dB using Peak Programme Meter measurement technique (as BS 5428)
\square Rechargeable-battery powered
\square Mains adapter built-in
\square Tough plastic
case
\square Broadcast-quality meter movement
Alternative Scales:
-12 dB to +12 dB (E.B.U.)
1 to 7 (BS 5428 type 2A)
Hi/Lo impedance balanced input
Headphone monitor output
Convenient size and weight for hand-held use
Low drift. high reliability
\square Calibrated to 0.1 dB accuracy \square Individually tested and certified Input
Impedance: 100 K ohms balanced switchable to 600 ohms
Protection: Zener
Max. Irput: 400 V pk cont

Connector: Miniature telephone jack, 3-pole Ranges
Calibrated range: -72 to +22 dB
Variable: A further 0 to -10 dB in Uncal mode

Output

Impedance: Approx. 50 ohms
Protection: Short-circuit protected
Level: \quad Zero-level when meter reads "4" varlable to -10 dB at same reading
Connector: $1 / 4 "$ Jack, 3 -pole wired mono Power Requirements
240 V A. C. nominal at 5 VA operates meter and recharges batteries. 3 hours continuous use on full-charged batteries.

Switch on. Connect Component. Read Answer

The Sullivan AC5555 Automatic component analyser is a mains operated, fourteen range digital capacitance, resistänce and inductance measuring system.It is capable of automatically choosing the correct range and function for any two-terminal component and measure the parallel capacitance and conductance or the series inductance and resistance over a wide range at atestfrequency of 1 khz .
The Sullivan AC5555 can be used by unskilled operators for quality control of goods inward or during production processes. There are no adjustments required and no special knowledge about the component
capabilities is needed. The instrument does itallfor you.
The unit is competitively priced and backed by the unbeatable reputation of Sullivan.
Get in touch with us today for the full facts.

Sullivan

HWSullivanLtd
Archcliffe Road,Dover, Kent, CT17 9EN.
Tel:(0304)202620. Telex:96283.
nt Thorn Measurement \& Components Division

Colour tv receiver design

Circuit and construction techniques for a single-panel chassis

by R, Wilkinson, B.Sc. (Hons), M.I.E.E. Decca Radio \& Television Ltd

After outlining the general criteria which have to be considered in producing tv sets for today's mass market, the author starts in this article to describe the circuit and
construction features of a PAL colour chassis introduced by his company last year, for initial use in a 14 -inch portable. It includes a surface acoustic wave filter for the i.f., a fully isolated switched-mode power supply, an adaptive sync separator and field sync count-down. Most of the circuitry is on a single printed circuit panel.

The design of a complex piece of electronic equipment for mass production, and subsequent sale to the consumer, involves the skills and decisions of many people. In the particular case of a television receiver the end product is affected by numerous requirements at every stage of its history from initial conception to operation in the customer's home. Some of the more important factors which affect the design are (not in any particular order of preference):

Overall performance
External appearance
Cost
Advances in technology
The customer
Serviceability
Manufacturing methods
A chassis recently introduced by the author's company in a 14 in portable receiver is the basis of a new range of sets and, as such, has been designed to be as adaptable as possible. Before going on to describe some of the innovations in this chassis in detail, and to show how the above factors have influenced its design, I shall consider each factor in a more general way.

Overall performance

Most customers seem to buy a television set because it gives a pleasing picture; or because the cabinet looks nice; or because the price is reasonable; or, perhaps, because the set has a good record of reliability; or possibly a combination of all these.

The more controls there are which affect the displayed picture and sound, the greater the likelihood that something could be adjusted wrongly or knocked out of adjustment. So for good,
consistent performance there should be a minimum number of adjustments. Cathode-ray tube developments in recent years have helped this trend and modern tubes with in-line guns and fixed yokes do away with the need for factory or dealer adjustment of purity and convergence
Recent developments in the r.f. section, notably the surface acoustic wave filter, have helped to achieve great stability and repeatability of the r.f. and video performance. Channel tuning for the customer can be helped by careful

Fig. 1. The 70 series receiver chassis.
use of a.f.c., and improved tuner design together with the well-established techniques of a.g.c. and a.c.c. ensure acceptable pictures with a wide range of aerial signals.

Increasingly advanced timebase circuitry, particularly in the line and field synchronising areas, is ensuring more stable pictures and a greater tolerance of poor signals.
Higher efficiency scan coils and careful power supply design (as well as careful consideration of the power consumption of each section of the receiver) have dramatically reduced the overall power consumption of the latest tv sets.

The external appearance
It may be thought by the layman that the electronic design department of a tv manufacturer presents a working prototype chassis to a stylist with the instruction, "There, put a box around that!" Alternatively, that the stylist presents an attractive cabinet to the electronics engineer, saying "Put your chassis in there!" Of course, the truth lies between the two extremes and there is a good deal of adaptation and modification to both chassis and cabinet size and shape before the result is agreed to be satisfactory.

The objective is usually a compact, slim, pleasing cabinet and unobtrusive back with a clean arrangement of controls, a reasonable size of loudspeaker and a well ventilated chassis. Although the power consumption in modern sets is low, some heat is still produced. In this respect care must be taken in placing potentially warm components well away from heat-sensitive com: ponents: for example, it is good practice to keep a "watty" resistor away from, say, a power transistor or an electrolytic capacitor.
The requirement to combine compactness with good ventilation can cause some headaches to the designers. This problem is particularly acute in the case of a portable set. The principles established with and previous designs of chassis have been incorporated in the present chassis, whose normal vertical position in the set aids convection.

Cost

The final works cost is principally made up of components, labour and overheads. All three elements can be reduced by cutting down the number of components and this can also improve the reliability. However, indiscriminately reducing the number of supposedly inessential components or using apparently equivalent but cheaper components without adequate testing or appraisal can lead to a reduction in reliability.

The keyword for this aspect of design is that jargon phrase - costeffectiveness. Each section of the receiver must be designed to be as inexpensive as possible, but performance, quality and long-term reliability must not be sacrificed to achieve this.

Integrated circuits have helped this aim by providing improved or equivalent performance with a greatly reduced component count. However, the partitioning of the circuitry, i.e. which sections of the circuitry are incorporated in which i.cs, has to be done with careful consideration of the whole receiver to avoid duplication.

Apart from the effect of reducing the number of components, labour costs can also be reduced by careful design of the chassis itself. For example, the way the printed panels are arranged or connected; the way various wires and cableforms are arranged; the way components are fitted; the way the chassis
fits in the cabinet; the way the tube and the control assemblies fit in the cabinet; the number and complexity of test and adjustments required.

Advances in technology

Every time a new range of products is planned the question inevitably arises: which sections of circuitry should be retained and which sections should be considered for the introduction of new technologies.

If a particular section of the receiver had proved to be reliable and to perform well over a number of years, there would be little point in changing it if the components continued to be readily available. If the older technology becomes unavailable or expensive or if the new technologies can be shown to give improvements in performance, reliability or cost then the time is right for a change. In fact, Decca continued manufacturing a hybrid chassis (i.e. semiconductors and valves remember them?!) for some time after many setmakers had gone over to full "solid-state" sets, for the simple reason that the 30 series chassis had proved to perform well and reliably (by the standards of the day) and was popular with the trade and public alike.

The solid-state 80 and 100 series chassis were introduced when improved c.r.ts were becoming available - the s.s.i. or p.i.l. and 20AX tubes have simpler tube adjustments and more efficient scan coils - and by that time, of course, valves and valve-bases were becoming increasingly more difficult to obtain. In addition, i.cs were becoming more standardised and the partitioning of their functions more clearly defined; and, most important, the critical area where valves had retained their superiority, the line output stage, could now be transistorised with reliable components.

After $3^{1 / 2}$ years of production of the $80 / 100$ series sets, the present chassis, known as the 70 series, was introduced last year. The first model, as already mentioned, is a $14 \mathrm{in} 90^{\circ}$ portable (Fig. 1) but the chassis has been designed to drive all sizes of tube up to -26in 110° with a minimum number of changes. As will be seen, new circuitry and techniques have been used alongside well-established ones. The chassis is much more compact than its predecessors and the latest manufacturing techniques have been provided for in its design.

Random flashover in the c.r.t. has had destructive effects, in the past, on semiconductors. In recent years extensive studies have been made into the mechanism of flashover and into ways of simulating and monitoring it reliably and ways of designing the circuitry to prevent destruction of semiconductors. The results of work along these lines using advanced equipment became apparent in the reduction of failures during the production of 80 to 100 series receivers. This work has continued during the development of the 70 series.

The techniques used seek to contain the high currents (hundreds of amps), generated during a flashover, within a closed loop around the c.r.t.; and to ensure current paths around i.cs are kept very short. In some cases resistors or small chokes are used to buffer off potentially vulnerable points. Recent developments in c.r.ts have produced "soft-flash" tubes in which the flashover current is considerably less. However, it is felt preferable to use this development as extra protection rather than relax any of the above circuit techniques.

The customer

The general public's opinions on good performance are not always predictable; indeed it is remarkable how poor a picture some people will tolerate. On the other hand, it is almost as remarkable how critical other people are regarding (to others) insignificant details of performance or operation. All that the poor design engineer can do is to provide the best picture, reliably, at a reasonable cost (cost effectiveness again).

However, there is one aspect of operation in the customer's home which is of paramount importance, and this is safety. Fortunately the catastrophic fires which beset some early colour sets are now a thing of the past. In a modern receiver every component which can be so specified is flameproof or flame retardent. The reduction of power consumption helps considerably too, since hardly any components get more than appreciably warm. (The 70 series takes about 60 W from the mains with an average picture, compared with the 80 series' 130 W and 100 series' 200 W .)

The requirements of BS415 and IEC 65 and the various test houses (BEAB, SEMKO, VDE etc.) discipline the designer to achieve a very high standard of safety. The designer must consider numerous potential faults such as short-circuit or open-circuit capacitors and resistors; faulty semiconductors; open or short-circuit coils and transformers; voltage breakdown between components or across copper tracks on printed panels; the temperature of all components at the highest ambient temperature in which the set is expected to operate. These are just some of the conditions which must be analysed during the design to ensure that no fault will cause a hazard of any sort to the customer. Combinations of worst-case tolerance components have to be considered when calculating for maximum voltage or power conditions in any part of the set. The use of fusible resistors helps in cases where a fault could leave a component overdissipating permanently without the customer being aware of it.

Serviceability

We all hope the receiver will never go wrong. But we live in an imperfect world and no matter how carefully a set

Fig. 2. Identifying the various sections of the 70 series chassis and control unit.
is designed, built and tested faults will occur from time to time. Service calls are costly, so it is worth while designing the set for ease of servicing. Too many service aids, however, can make the cost of the set prohibitive and a careful balance has to be maintained considering the greatly increased long term reliability of modern receivers.

Some servicing features are relatively easy to provide; for example, the fixing of the cabinet back. This is normally the first thing a service engineer will need to remove if something has gone wrong with the set. It is such a simple thing and yet there are sets which need as many as eleven screws removing before the back comes off.

The 70 series receivers retain the feature introduced nearly four years ago with the 80 series: the cabinet back is retained by two fasteners which are disengaged by the use of a coin. The chassis, too, is retained by two similar fasteners and, when released, hinges up to lock in a convenient position which gives access to both sides of the printed panel (Fig. 1).

The 70 series chassis has most of its circuitry on a single printed panel (Fig. 2) with the i.f. and decoder circuitry on two sub-panels. This means that servicing by substitution of printed panels is only possible with faults in the i.f. or decoder area. However, the remainder of the chassis is sectioned into blocks of circuitry which can be isolated by means of pluggable test links.

Most of the i.cs and the tuner(s) are fitted in sockets to ease servicing and aid testing and fault-finding in the factory.

Manufacturing methods

If a set is designed to be easy to make and straightforward to test and set up, the factory will take a greater pleasure and pride in producing it. Their greater concern will be reflected in the quality and reliability of the finished product. The introduction of automatic component insertion and automatic test equipment in certain areas also aids consistency and reliability. These methods have to be considered during the design. Automatic component insertion demands greater accuracy of printed panels and the physical characteristics of the machine puts certain constraints on the positioning and size of components.

Automatic testing can ensure that many more tests, both component checking and functional measurement, can be done on each chassis in a shorter time. Reliability is improved and faultfinding and inspection are made much easier.

The 70 series chassis

Fig. 3 shows how the various blocks of circuitry interconnect while Fig. 2 shows their relative positions on the chassis. As can be seen, in block form much of the circuitry appears straightforward and conventional. For example, the progress of the signal from aerial to tube follows the same course (at least in block form) as in most receivers although, as will be seen, some details are far from conventional.

The way the timebases and their by-products such as e.h.t. $;$ and focus supplies and pincushion correction circuitry, cluster around the tube will be
recognised by all familiar with tv receivers. However, the way the power supply is intimately connected with the line timebase is somewhat unconventional.

The major part of the chassis is isolated from the mains and the stabilised power supply is a switched mode type with its operating frequency locked to that of the line timebase. Since the chassis is intended for use in a variety of models, this isolation helps with features such as sockets for headphones or video or audio recorders; video monitors; and certain markets which require isolated chassis.

A switching power supply is, of course, much more efficient than a linear stabiliser and a high operating frequency enables the output electrolytics to be reduced in value. Also, the presence of a transformer increases the flexibility of the various supply voltages required. The main disadvantages with this system are the more stringent requirements on the insulation of all the transformers which bridge the isolation barrier; the need to have at least a 6 mm gap on the printed panel all round the 'live' area of the chassis; and the greater care needed in the choice and parameter specification of the power supply output device. The fact that the supply is locked to line frequency means that any interference spikes are locked to the picture and will not cause variable beat patterns all over the screen. It also means that the supply. must be within the phase control loop of the line timebase. As can be seen from Fig. 3 a line sync signal from the line oscillator and a reference flyback signal

Fig. 3. Block diagram of the complete television receiver.
from the line output transformer are fed into the supply and the base drive for the line output transistor is taken from it. This removes the need for a separate line driver trahsistor and transformer.
The switched mode power supply (s.m.p.s.) provides three stabilised supply lines, of $121 \mathrm{~V}, 195 \mathrm{~V}$ and 18 V . The 121 V supply to the line output stage must be stabilised because the scan current, and hence picture width, is directly proportional to this supply; moreover, the derived voltages of e.h.t., focus, and field timebase h.t. are also dependent on this supply and so the whole picture size and focus will depend on its stability.
The 18 V supply voltage was chosen to provide an adequate level of a udio output power and yet maintain a low dissipation in the i.c. stabiliser which provides 12 V for most of the signal processing circuitry.

The audio output stage uses the 18 V supply directly from the s.m.p.s. to give approximately 3.5 W r.m.s. into 8Ω.
The extra stabilisation down to 12 V helps to buffer off any disturbances on the 18 V line caused by large current pulses drawn by the audio stage during bass transients. Also, the tolerance on the output of the 12 V stabilser i.c. is closely specified by the manufacturer under all conditions (11.4 to 12.6 V) and ensures that the circuitry driven from the 12 V line is always operating within its design limits. One of the major problems of circuit design for mass production is to ensure that for all combinations of tolerances the circuitry will work within specification and safely (i.e. will not over-dissipate nor produce too high a voltage). With thousands of receivers leaving the factory every week the chance of any combination of adverse tolerances occurring is fairly high. It's probably exaggerated by a well-known law ('Finnagle's Law', W.W. Sept.'59) which ensures that a batch of, say, resistors at the top end of their tolerances will be delivered at the same time as a batch of, say, i.cs at the bottom end of their tolerances.
In cases such as this the laws of chance fly out of the window and the tolerances add arithmetically instead of statistically. It is thus important to investigate, at the design stage, as many combinations of tolerance extremes as possible.

In the smaller models the chassis drives a 14 in or 16 in c.r.t. with an e.h.t. of 22.5 kV which is sufficiently high to give good focus performance whilst maintaining a safety margin from the tube's maximum limit of 25 kV . In the larger models the e.h.t. is 25 kV and slightly different line output and power supply transformers are fitted.

For the British market a u.h.f.-only tuner is required but for CCIR or Eire standards both u.h.f. and v.h.f. tuners are needed and a modified i.f.'sub-panel (which includes the luminance delay line - also different for these transmission standards) is fitted. Both tuners
and i.f. sub-panel are pluggable, so a stock of standard chassis can easily be changed in the factory from one version to another.

The basic 14 in portable has four push-buttons for channel selection. Three positions are tuned by multi-turn presets and are intended for setting to the normal channels viewed in the home. The fourth button selects a multi-turn control (called Varitune) available on the front panel which can be easily set to another channel if, for example, the set is taken to another part of the country during a holiday. There is then no need to disturb the "home" settings.

Since the tuning is effected on the chassis by a variable direct voltage applied to the appropriate pin on the tuner it is easy to provide a range of tuning methods at the control panel and thus cater for a wide range of models.

The customer controls are also d.c. operated and are applied, like the tuning voltage, to a plug on the main panel. Thus the addition of features such as remote control, touch tuning and memory tuning is easily catered for without the need to alter the main panel.

The next article will look at new features of the circuitry in more detail.

Ray Wilkinson, the author, is Decca's assistant head of television receiver design, working in the development laboratory at Bradford. He got his degree at Northampton College of Advanced Technology (now City University) and his first job was with Siemens Ediswan, which later became Thorn-AEI Radio Valves and Tubes. In the Thorn-AEI applications laboratory at Brimsdown he worked on colour tv circuitry and colour demonstrations, then in 1969 joined Rank-Cintel to work on studio slide scanners and telecine machines. He moved to Decca in 1972. Among Ray's other interests are music and model railways.

SIXTY YEARS AGO

The first London newspaper to receive news by wireless was the Daily Mail, taking a message from Marconi's at Chelmsford, on May 28, 1920. The June issue of Wireless World carried an article on the Mail's station and took the opportunity to do a bit of crystal-gazing.
"The Daily Mail installation consists chiefly of a six-foot frame aerial of the solenoid type, wound with 48 turns of wire, used in conjunction with Marconi 7 -valve high frequency amplifiers and detectors, Types 55A and 55D, which have been previously described in our pages and are familiar to most of our readers. Type 55 is one of the most sensitive receivers in existence and is particularly suitable for use with a loop aerial. The tuning arrangements permit of reception on wavelengths of from 600 metres to 18,000 metres. Damped and undamped waves and wireless speech can be equally well received on this apparatus, which is no amateur set but an instrument which has been thoroughly proven both in war and commerce, and is capable of detecting signals from any high-power station within a radius of 3,000 miles. In a vision of the future one sees the inside of a newspaper office, where reporters are busy receiving "copy" from their colleagues in provincial towns, whilst automatic receivers click out tape records of news messages sent at 100 words a minute from the world's high-power newsdistributing stations. From this to direct type-setting by wireless is, maybe, not so far a cry as from Marconi's early experiments to his first great achievement, transatlantic |wireless telegraphy!
"If, in addition, this future newspaper draws its electrical power from some huge

Wireless Power Station, why then - then we shall have really begun in earnest to use that incomparable, universal medium, the aether
"A visit to Carmelite House and a conversation with Daily Mail officials revealed that the latter intend to lose no time in assisting wireless and journalism to join hands. They look forward to the time when a reporter shall start for the scene of his "story" in an aeroplane - "and arrive," one of them humorously interpolates - and deliver his "copy" to headquarters by a system of linked wired and wireless telephony, the message being received at the paper's own wireless station. They intend to make as much use of wireless as possible and entertain no doubt but that present day apparatus can fulfil all the demands likely to be laid upon it by Fleet Street in general. The idea of an "exclusive" message being flung out on an indiscriminating, generous aether, and intercepted by rival papers, created a disturbing ripple in the flow of conversation. Knowing that a similar objection has been levelled at wireless telegraphy for twenty years we do not view this question in quite such a serious light. There is this point, too, which must be taken into account - directive wireless is probably not far distant."

Acoustics conference

The tenth International Congress on Acous tics runs in Sydney, Australia from 9 July to 16 July 1980. Advance programmes and registration forms are available from the Congress secretariat, GPO Box 2609, Sydney, NSW, Australia 2001.

Educational micro kit

Although there are several microcomputers and kits available, most are offered as "useful" computers which can be expanded to form a complete system. Edukit, however, is aimed at beginners who want to learn the basics of computing as cheaply as possible and do not want to be left with a redundant piece of expensive hardware.

The kit is supplied with a comprehensive manual which describes construction, basic theory, initial use, machine code programming, hardware and troubleshooting. An appendix covers soldering and provides a bibliography and a list of opcodes. Edukit, which is based on the 1802 and has 256 bytes of addressable r.a.m., is priced at £29.95 plus v.a.t. Modus Systems Ltd., 29A Eastcheap, Letchworth, Herts SG6 3DA.
WW301

Speech synthesizer

All the computation required to synthesize speech is performed by its own dedicated microprocessor in the Microspeech 2, manufactured by Costronics Electronics. This is a stand-alone speech synthesizing unit which converts phonetic code or any text (which is fed in via a standard RS232 connection) into a speech output, and "loopthrough" connections permit the unit to be plugged "in line" to any v.d.u. with RS232 capabilities. It is possible to run the unit solely from an ASCII keyboard and up to 1,000 phonetic characters, representing about one minute of speech, may be assembled in the unit's internal buffer before it is commanded to speak. The controlling microprocessor has a spare r.o.m. capability of 4 K bytes which can be used to store an optional text-to-phonetics translator program, the phonetic equivalents of standard symbols allowing operation directly from English text. Additional musical phonems and an exponential frequency control on the glottal pulse generator allow the unit to add musical sequences to speech. The complete unit, which contains loudspeaker and power supply, costs $£ 875$ for the phonetic model and $£ 950$ for the

WW301

WW302

WW303

English-to-phonetics model. Costronics Electronics, 13 Pield Heath Avenue, Hillingdon, Middlesex.
WW302

Micro-based oscilloscope

Fast, automatic signal processing is the result of adding a TMS 9900 microprocessor to Tektronix' latest 7000 Series oscilloscope. Many measurements, such as rise and fall time, pulse width r.m.s. peak-to-peak values, energy, are all reduced to single-button operation. The instrument can be programmed to calculate specific answers and check for errors; keystroke programs of 1000 lines can be written for repetitive testing and long series of measurements automated. Digital storage allows signal averaging and recovery, integration and differentiation, while more complicated routines - correlation, Fourier transformation, convolution high resolution graphics are possible by adding 300 K byte model 4052 graphics computing system. A separate keyboard prevents overcrowding of the front panel which in its program mode displays on the c.r.t. instruction mnemonics and results of computations. A general purpose interface bus is provided for the additional processing, data storage, co-ordination and program transfer. At a cost of £19,000 with four plug-in units and keyboard, the market for this kind of instrument is limited to "high technology R \& D". Tektronix UK Ltd., Beaverton House, PO Box 69, Harpenden, Hertfordshire.
WW303

Static charge locator

Noise generated by dust on the surface of a record is a perennial problem, much of the dust being attracted to the surface by a static electrical charge. The Technotrend Stati-Control is designed to operate as a simplified charge locator, using an l.e.d. as an indicator rather than the more common meter. The locator indicates electrostatic charges down to a field strength of $50 \mathrm{~V} / \mathrm{cm}$ and measures $150 \times 35 \times 20 \mathrm{~mm}$ battery life is claimed to be 150 hours in normal operation. The makers quote many other uses such as the detection and elimination of charges affecting

invoicing machines, data terminals and printers and c.m.os. devices. The Stati-Control costs £33.85 plus v.a.t. and a full list of application instructions is available from the makers. Technotrend Ltd, 15 South St. Farnham, Surrey.
WW304

Versatile data interface

An input device in the form of a "tablet" which will accept data in several forms and is claimed by the manufacturer, Image Data Products Ltd, to be the first of its kind, functions in concert with a microcomputer. The tablet recognises hand-printed material, accepts drawings and sketches and produces solutions. to hand-printed mathematical problems. It also accepts inputs from Teletype-compatible touch tables or conventional calculator

touch tables. The unit takes either A4 or quarto size paper and, with a special pen, shapes and characters may be drawn, digitized and stored in a computer. Characters entered on the tablet are converted to ASCII code for transmission to a host computer via an RS-232-C/V24 interface, at rates up to 9600 baud. The tablet may be put online to most microprocessors, minicomputers and mainframes, either directly or through a telephone line. The complete Image Data system, including writing surface, screen, pen, microprocessor, power supply and associated operating software, is available for $£ 1,700$ plus v.a.t. or for $£ 1,560$ with out screen. Image Data Products Ltd, 1-4 Portland Square, Bristol BS2 8RR.
WW305

Digital flow and speed sensors

A range of flow and speed sensors which provide an output signal suitable for digital processing can be fitted to most standard speedometer cables for indication of fuel flow or speed. The sensors are manufactured from a plastics material, give a 5 V square wave output dependent upon speed and flow and are intended for use in automotive applications. The flow sensor provides a linear output in the range 0.3 to $22 \mathrm{~g} / \mathrm{h}$ and can be used with liquids of viscosity in the range $1-10 c S T$. Connections are made to hoses with an internal diameter of 4 to 8 mm and each sensor is supplied with 2 m of co-axial cable. The

speed sensor is an optoelectronic device and can be fitted to standard speedometer cables with an inner core diameter up to 3.2 mm and is claimed to be independent of cable fittings. Speed sensors for an inner core diameter of 4 mm can be supplied on request; speed sensors provide an output of 10 pulses per revolution. Flow sensors are available ex stock at $£ 12.65$ and speed sensors at $£ 9.95$, both prices including v.a.t. Envirosystems Ltd, Hampsfell Rd, Grange-over-Sands, Cumbria LA11 6BE.

WW306

Signal generator frequency doubler

When used with a suitable signal generator, the HP 117.21 A . doubles the output frequency. The makers, Hewlett-Packard. say that the doubler has low

phrases, translation of entered words, vocabularly scan in 16 categories, and selection of words for both pronunciation and translation. With the French module Spanish, English and German words can be translated into French, but only French is spoken. With this module price is £180 including v.a.t. "Vowel power" module at $£ I 5$ is now available through W. H. Smith \& Sons. Texas Instruments Ltd., European Consumer Division, Manton Lane, Bedford.
WW308

High voltage
 Hexfets

Further devices have been added to the International Rectifier range of high voltage m.o.s.f.e.ts, extending the range to include 200 V and 500 V devices. In addition to the well known perfor-

mance features of f.e.ts such as high input impedance, fast switching, low drive current requirements and absence of secondary breakdown features, the makers also quote specific applications; for the 200 V family these include power amplifiers, converters, fractional horsepower motor controllers, r.f. amplifiers and audio amplifiers, operating from a 48 V supply. The 500 V family is quoted as suitable for switching mode power supplies, motor speed controllers and inverters, among other applications. The 200 V family comprises 4 devices in TO-3 packages featuring 200 V and 150 V selections at 0.4Ω and $0.6!$ on-state resistance respectively. Type numbers are IRF230 to 233 and IRF630 to 633 and the same devices are offered to TO-220AB packages. Similar packaging is used for the 500 V family but with on-state resistances of 1.5 ? and 2.0Ω with type numbers IRF430 to 433 and IRF830 to 833 applicable. Typical input capacitance of both device families is approximately 700 pF and typical output capacitance between 100 and 250 pF , making rise and fall times of about 100 ns possible. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ with junction to case thermal impedance standing at 1.67 kW . Typical prices are: IRF230 range $£ 12.80$ each or $£ 9.76$ in batches of 100 . International Rectifier. Hurst 'Green. Oxted. Surrev.
WW309

"Bethumped with words..."

There is no doubt about it, buzz words are useful little devils. Faced with a pressing need to say something bright and not having too much time for thought, a marketing man (for example) has great long list of beautifully turned words and phrases, polished by use, from which to draw. If someone came up to me and asked my opinion of the Budget, I would probably utter some such penetrating, masterly exposition as "Well, er, it, er, depends, dunnit?" Not so your practical purveyor of froth. No, he would instantly summon to mind page 26 of "Speech without Thought" and make a random selection of useful phrases, stitching them together as he went on. "In today's economic climate, an on-going liquidity situation is the only fiscal scenario that can be validated, in a global context, particularly in a recessional period. And as for the Green Pound, well, need I say more?". Collapse of questioner, who was only wondering about the price of a pint, anyway.

You can do this sort of thing, with technical articles, of course, very successfully, the reasons for using them being (a) to make the article look longer, (b) because the writer thinks you have to write in a peculiar, stilted manner to make an article look respectable, and (c) to impress you with his brain power

We've all suffered. All the way from the relatively innocuous "It can be shown that . ..", without reference to who has shown it and where, to the really humiliating "Clearly ...", preceding a clump of impenetrable verbiage which is anything but clear

From the above, it will be clear that it can be shown to be self-evident that I'm all for the direct way of writing. The only excuse for going into print at all is because you have something to say: to prevent readers understanding your message is perverse, to put it mildly. If there really is something to write about it doesn't make a lot of sense to camouflage it in an imitation of Civil Service jargon. I thought I might start a movement called CLEAR (Council for Lucidity, Elucidation And Readability) but I decided the words were too long.

Take a note

I have no idea how composers think of a tune - or rather, thought of one, because modern composers don't seem to bother much about tunes. Did Beethoven wander about muttering "di
di di di dah, no; di di dah, damn!", getting peculiar looks from passers by? It seems unlikely. All right for 'On Ilkla Moor B'aht 'At' maybe, but not really on for the Fifth.
We know how it's done in films, of course. The chap writing the music sits sideways-on to the piano, a pencil between his teeth, tie loosened and a cigarette burning the varnish off the piano top, and churns out a masterpiece while waiting for his bath to run.

All this is a thing of the past, because of Alf. That isn't Alf Oakroyd, the nipsy champion and trombone blower with the Pogmoor and Gawber brass band, but Alf the synthesizer - a new gadget for the Apple computer. The circular doesn't say why it's called Alf, but the device lets you enter notes on v.d.u. staves, adjusting envelope, sustain, volume, etc. through eight octaves. It will then play your creation through the hi-fi. It says it will do very well for musicians and educators, which may be true, for all I know, but it also claims that businessmen can have it as a "bonus" for their Apples.

So! It's all coming out now. I can easily see how playing with those little steel balls can get a bit boring and I suppose after a morning of 7 -iron chip shots into the w.p.b. a chap needs a change, but I do honestly feel that this is going just a teeny bit far. Perhaps it could be reserved as a prize for sales reps who exceed their targets.
"Congratulations, Golightly, you've done it again! I need hardly stress that we're all absolutely delighted with your performance and we have decided that instead of a boring old wodge of money as a reward we'd go one better this time. Here it is, the new type of bonus for businessmen - Alf. You can play with it just as long as you like, so long as it's free when the Chairman comes in after lunch; say around 4 o'clock."

Damn clever, these Chinese

I am reliably, if unexpectedly, informed by the people responsible for telling us all about Hong Kong and its capabilities that a firm in HK have produced "a uniquely-design electronic musical toy". Turns out to be an electronic organ in the shape of a guitar
I suppose there's no reason why electronic versions of established instruments should look anything like them, since they don't work in the same way, but I can't make out why they should look like any other instrument either. I mean, why a guitar? I should think that an organ keyboard is pretty well un-
beatable for playing the organ, and you don't have to sling it around your neck.

Having made this giant leap forward, though, there doesn't seem to be any point in stopping there. If you can make an organ look like a guitar, it ought not be too difficult to make a grand piano resemble a mouth organ and to do something about those monstrous tubas, which would be a lot more convenient to cart about if they were slightly remodelled into Jew's harps. The whole thing is wide open.

Far and wide

From the correspondence we get in these offices you might assume that radio and electronics is carried on almost exclusively by youngish men inhabiting the south east corner of England. Occasionally we hear from middle-aged persons in Manchester, a Finn or two, Americans who write extremely long letters as if atoning for the break with the old country, and of course our Russian contributor in Moscow. But on the whole what seems to be shaping up very much as the British equivalent of Silicon Valley is the sleepy old Thames Valley, the only difference being that ours has rather more water and less silicon in it. So it's quite refreshing to discover that we do actually have a reader who lives south of Guildford and another to the east of Clacton-on-Sea - in fact even further than Yuri Miloslavskij in Moscow.

The one beyond Guildford is a gentleman who resides at King Edward Point, South Georgia, Antarctica. He wrote to enquire about an article we published in 1928 on wireless telephony in whale fishing in that area. As I have not yet been as far south as Antarctica for my summer hols and my engineering activities in 1928 were still confined to the possibilities of coloured wooden bricks, I found this particular conjunction of time and place exceedingly difficult to take in. It might just as well have been something out of J. R. R. Tolkien.
Equally beyond my horizons was the letter from the easterly direction. This was an application for a vacancy on Wireless World's editorial staff. It came from a young man in Canton who wrote in a flowing copper-plate hand and thoughtfully enclosed a snapshot of himself smiling and waving from the middle of a public park. Fraternal as the message was, I gather from the editor that our accountants took a rather dim view of the idea that we should invite the Chinese applicant here for an interview and pay his return fare from Canton out of the petty cash.

Electronic Brokers give you a lof more scope with the Hameg range

HM 307-3
£149.00
Single Trace, Display Area $6 \times 7 \mathrm{~cm}$, Built-in Component Tester, Bandwidth DC-10MHz, Risetime (approx.) 35 ns , Defl. Coefficients $5 \mathrm{mV}-20 \mathrm{Vicm}$, Timebase, Time Coefficients $0.5 \mu \mathrm{~s}-0.2 \mathrm{~s} / \mathrm{cm}$.
HM 412-4
£350.00
Dual Trace, Display Area $8 \times 10 \mathrm{~cm}$, Sweep Delay Overscanning, Bandwidth DC-20MHz, Risetime (approx.) 17.5 ns , Defl. Coefficients $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ down to $2 \mathrm{mV} / \mathrm{cm}$. Timebase, Time Coefficients $0.5 \mu \mathrm{~s}-2 \mathrm{~s} / \mathrm{cm}$.

HM 312-8
Dual Trace, Display Area $8 \times 10 \mathrm{~cm}$, Full X-Y Op., Magnifier $\times 5$, Bandwidth DC-20MHz, Risetime (approx.) 17.5 ns , Defl. Coefficients $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$, Timebase, Time Coefficients $0.5 \mu \mathrm{~s}-0.2 \mathrm{~s} / \mathrm{cm}$.
HM 512-8
£580.00
Dual Trace, Display Area $8 \times 10 \mathrm{~cm}$, After Delay Trig. Single-Shot, Bandwidth DC-50MHz, Risetime (approx.) 7 ns , Defl. Coefficients $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ up to $50 \mathrm{~V} / \mathrm{cm}$, Timebase, Time Coefficients $0.1 \mu \mathrm{~s}-2 \mathrm{~s} / \mathrm{cm}$.

Sarel have THOUSANDS of boxes!

To serve your needs

 EX-STOCK!Sizes $98 \times 98 \times 54 \mathrm{~mm}$. to $267 \times 207 \times 150 \mathrm{~mm}$. with clear lids, high lids, chassis and sealing facilities and in a wide variety of materialsP.V.C., Polycarbonate Noryl, Makrolon and Glass Fibre Reinforced Polyester.

Telephone or write for a catalogue to:-

SAREL ELECTRIC LIMITED,
 COSGROVE WAY, LUTON, BEDS. TELEX 826551 SAREL G.

TELEPHONE (0582) 20122.

S-2020TA STEREO TUNER / AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button

FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo

Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input. Tape In/Out facility (for noise reduction unit, etc.) THO less than 0.1% at 20 W into 8 ohms. High Slew Rate. Low noise op. amps used throughout. Power on/ off FET tansient protection. All sockets. fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment. ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder, LED luning and stereo indicators. Tuning range 88-104MHz, 30dB mono S / N @ 1.2 pV . THD 0.3%. Pre-coder birdy filter.

PRICE: $£ 59.95$ + vat

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: $£ 69.95$ + VAT

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NROC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July. Aug.. 77 The unit is designed to decode not only UHJ but virtually all other "quadrophonic' systems (Not CD 4), including the new BBC HJ. 10 input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output signals are provided in this most versatile unit Complete with mains power supply, wooden cabinet. panel, knobs. etc.

S5050A STEREO AMP
 Very high performance kit

50 watts rms-channel. 0.015% THD $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$. Mags $/ \mathrm{n} 80 \mathrm{~dB}$. Output device ating 360 w por channe
Tone cancel switch. 2 tape monitor switches. Metal case - comprehensive heatsinks.
Complete kit only $£ \mathbf{6 3 . 9 0}+$ VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.
Complete kit $£ 49.50$ plus VAT, or ready built and tested $£ \mathbf{£ 4 . 5 0}$ plus VAT

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories Inc.
 Typical performance

Complete Kit PRICE: $\mathbf{£ 4 3 . 9 0}$ + VAT (3 head model available)
Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby (TM) PROCESSOR BOAROS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components

Noise reduction better than 9dB weighted. Clipping level $16.5 d B$ above Oolby level '(measured at 1% third harmonic content)
Harmonic distorion 0.1\% at Dolby level tyvically 0.05% over most of band. rising to a maximum of 0.12%
Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz} 1020 \mathrm{kHz}$, signal at Dolby tevel)' at Monitor output

Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity

Price $£ 59.40$ + VAT
Price $£ 2.40+$ VAT Price E9.00 + VAT

All kits are carriage free
IITEERES LIMITED
Please send SAE for complete lists and specifications
Portwood Ïndustrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

LIṄSLEY HOOD CASSETTE RECORDER 1

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know abour the circuitry and Hart expertise and experience reputation tells all you need to know abour the circuitry and Hart expertise and experience guarantees
separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy aseembly and test. Sophisticated modular PCB system gives a spacious, easily buit and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS15 Sendust Alloy record / play head, available separately at $£ 7.60$ plus VAT, bu
 REPRINT of Posteript article 30 p No VAT.

VFL 910. Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hood Cassette Recorder 2. $\mathbf{£ 3 1 . 9 9 + \text { VAT. Set of knobs } £ 1 . 4 6 + \text { VAT }}$

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer lite than Permalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data 4.25 HM 90 Stereo R/P head for METAL fape. Complete with data 1.20 H561 Special Erase Head for METAL rape
H524 Standard Ferrita Erase Head
4-Track R/P Head. Standard Mounting
R484 2/2 (Double Mono)R/P Head. Std. Mig.
ME1512/2 Ferrite Erase. Large Mig

CCE/8M $2 / 2$ Erase. Sid. Mig.
We are the acrual importers of these heads and invite Trade/quantity enquiries.
All prices plus VAT

等We regret that due to the latest increase in postal costs we must now charge for carriage. Please add as follows
Order up to $£ 10-50 p$
Over E 50 ¢ 49 -
P\&P
Export Orders - Postage or shipping at cost plus £2 Documentation and Handling
Please send 9×4 SAE for lists giving fuller details and price breakdowns Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is a portamento, pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control. a noise generator and an ADSR envelope shaper. There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all complete - right down to the last nut and bolt and last piece of wirel There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great musicl Virtually all the components are on the one professional quality fibreglass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be buitt easily in a few evenings by Imost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in permormance and quality with eady-built units selling for between $£ 500$ and $£ 700$

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesiz

COMPLETE KIT ONLY $£ 168.50+$ VAT!

WE'VE MOVED! NEW FACTORY UP! PRICES DOWN!

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (raar) $3.4^{\prime \prime}$ (front)

INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHER FROZEN!

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
ANOTHER SUPERB DESIGN BY SYNTHESIZER EXPERT TIM ORR! AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL AUGUST, SEPTEMBER, OCTOBER 1979 ISSUES

The Transcendent DPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord o reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be straightforward piano or a honky tonk piano or even a mixture of the twol Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the keyboard or should you prefer - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first two octaves) or vice versa or even a combination of strings and brass sounds simurane There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuir with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}(\mathrm{rear}) 3.3^{\prime \prime}$ (from)

To add interest to the sounds and make them more natural there is a chorus/ ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay ines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects.
As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing, etc., etc.) and an interface socket (25 way D type) is provided for this purpose
Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellemt access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.

The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc., even a 13 A plug - you need buy absolutely no more parts before plugging in and making great musicl When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over $£ 1$, $200!$

THE COMPLETE SOLUTION

TO
 STRAIN GAUGE AMPLIFICATION

COMPLETE WITH BRIDGE SUPPLY

- COMPLETE WITH ALL ADJUSTMENTS (SPAN ZERO BRIDGE VOLTAGE)
- COMPLETE (NO EXTERNAL COMPONENTS NEEDED)

The series SGA 700 (based on our well-proven SGA 300*) provides the complete solution to Strain Gauge Amplification. Simply connect the bridge, connect the power supplies ($\pm 11 \mathrm{v}$ to $\pm 15 \mathrm{v}$) and the SGA 700 does the rest. It also offers high stability fup to $1 \mu \vee /{ }^{\circ} \mathrm{C}$). Miniature size (above is actual size), good supply rejection - in fact a specification as good as many instruments many times the price and size.

CIL Electronics Ltd 14 Willowbrook Road,
Worthing, Sussex BN148NA. Tel: Worthing (0903) 204646 Telex: 87515 WISCO G ATT CIL

NEW FROM BARMECO

Introducing a new 3 -element H.F. Tribanda with proven performance and reliability

THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use of high quality materials ensures high electrical stability under all weather conditions with exceptional mechanical rigidity and strength. All traps are high grade P.T.F.E. formers with insulated windings.

SPECIFICATION:

Frequency Impedance R.F. Power (max.)

VSWR (at resonance) Forward gain Front-to-back ratio Mast diameter Wind survival Turning radius Longest element Boom length Net weight

10, 15 \& 20 metres
52 ohms
1 kW (AM)
2 kW (PEP)
Less than 2.0:1
Up to 8.0 dB
25 dB
31.75 mm to 41.30 mm

80 mph
$14^{\prime} 10^{\prime \prime}$
$26^{\prime} 0^{\prime \prime}$
$12^{\prime} 0^{\prime \prime}$
21 lbs.

Price: $£ 135.00$ complete with Balun, plus carriage @ £3.50. High quality 50 ohm coaxial cable available @ 50 p per metre. Balun available separately@ $£ 12.50$ each. All items subject to current VAT

COMING SOON: A range of HF Monobanders and a 2 metre base station vertical

Orders to:
BARNET METAL \& CAR CO. LTD.
Tewin Road, Welwyn Garden City, Herts.
Telephone: Welwyn Garden 24327. Telex: 28125 . Cable: BARMECO

CHROMATHEQUE 5000
 EFFECTS SYSTEM COMPLETE KIT ONLY $£ 49.50$ +VAT!
 .". Depth 7.3"

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the ights is comprehensive to say the least. You can run the unit as a straighiforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel contro or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minima

Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and Record Review and features include rumble filter, variable scratch filter, versatile tone Record Review and controls and tape monitoring while distortion is less than 0.01%.

All'kits also available as separate packs (e.g. PCB, component sets, hardware sets, etc.). Prices in our FREE CATALOGUE.

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT
This kit, based upon a design published in Practical Wireless, uses a single printed circuir board and offers at very low cost, ease of construction and all the normal faciilites found $\mathbf{~} 38.40+$ VAT.

Above 2 kits are supplifed with fully finished metalwork, ready assembled high quality teak veneer cabinet. cable, nuts, bolts, etc. and full instructions - in fact everythingl

BLACK HOLS

MUSIC EFFECTS DEVICE - AS FEATURED

IN ELECTRONICS TODAY INTERNATIONAL!

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a spacey feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches
(HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added The device is floor standing with foot switch controls, LED effect selection indicators, has variable sensitivity has high signal/noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure.
Complete kit only £49.80 + VAT (single delay line system) De Luxe version (dual delay line system) also available for $\mathbf{£ 5 9 . 8 0}+$ VAT

MPA 200100 WATT (rms into 8 Ω) MIXER / AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier. It features adaptable input mixer which accepts a wider range of sources such as microphone, guitar. eic. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself mixer which accepts a wider range of sources such as microphone, guitar
with minimal wiring needed making construction very straightforward
with minimal wiring needed making construction very straightforward.

COMPLETE KIT ONLY

PRICE STABILITY: Order with confidence Irrespective of any price changes we will honour all prices in this advertisement until Sept. 30th, 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes are excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation
U.K. ORDERS: Subject to 15% ' surcharge for VAT. No charge is made for carriage or at current fate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland oniy) add $£ 2.50$ (VAT inclusive) per kit.
SALES COUNTER: If you prefor to collect kit from the factory, call at Sales Counter. Open 9 a.m. 12 noon, 1.4.30 p.Im. Monday-Thursday.

NEW FACTORY ON SAME INDUSTRIALESTATE ADDRESS AND PHONE NUMBER UNCHANGED
oUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

(STD 0264) 64455

© TRIO

 TEST

 TEST INSTRUMENTS

 INSTRUMENTS}

THE RANGE HAS INCREASED THE PRICES ARE DOWN

The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S} .100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS 1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.
Brief specification
Rectangular PDA tube $120 \times 96 \mathrm{~mm}$. P31 phosphor.
Bandwid th DC -30 MHz
Sensitivity $\quad 5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MHz})$
$2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz})$
Input R.C. $1 \mathrm{M} / 23 \mathrm{pF}$
Risetime 11.7 nS

CS $\mathbf{1 8 3 0}$ only $\mathbf{£ 4 5 5 + \text { VAT includes } 2 \text { probes }}$

THE C51572 30 MHz for the VTR Lab
If you are in Video, you need the CS 1572
The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a small advertisement so why not call us and ask for the full story on the CS 1572.

Brief Specification

As for CS 1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS1572 only $£ 425+$ VAT, includes 2 probes

THE CS 157730 MHz at 2 mV + Signal Delay
The most popular scope in the range.
The CS 1577 is, without doubt, our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth DC- 30 MHz performance with extremely wide trigger bandwidth ($\mathrm{OC}-40 \mathrm{MHz}$) and 2 mV sensitivity over the full bandwidth.
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds ($20 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece. CS 1577
CS 1577 only $£ 410$ + VAT, includes 2 probes

THE CS1575, unique dual trace 4 function Audio Scope
The CS 1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.
Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.
CS1575 only $£ 235$ + VAT.
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER
FC756 500 MHz COUNTER

DC to 1000 V
AC to 1000 V
Ω to $20 \mathrm{M} \Omega$

- 1 to .2A

Semi Auto Ranging

$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb instrument

$£ 225$ + VAT
For further details and ex stock delivery contact

LOWE

ELEETrGNHES
CHESTERFIELD ROAD, MATLOCK, DERBYS. 0629-2430 - TELEX 377482

8K ON BOARD MEMORY!
$5 K$ RAM, 3K ROM or $4 K$ RAM, $4 K$ ROM (link selectable). Kit supplied with 3 K RAM, 3 K ROM. System expandable for up to 32 K memory.

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS

64 character graphics option - includes transistor symbols! Onty $£ 18.20$ extra!

MEMORY MAPPED
High resolution VDU circuitry using discrete TIL for extra flexibility. Has its own $2 K$ memory to give 32 lines for 64 cha. racters.

KANSAS CITY
Low error rate tape intertace

NEW FACTORY UP!
 PRICES DOWN!

INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHERS FROZEN!

280 the powertul CPU with 158 instruction including all 78 of the 8080, controls the MM57109 number cruncher. Functions include + ,,\ldots, squares, roots, logs exponentials. triq functions. inverses, etc Range $10-99$ to $9 \times 19-99$ to 8 figures plus 2 exponent digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC

With extended mathemarical capability. Only 2 K memory used but more powerful han most BK Basicsi

1K MONITOR
Resident in EPROM
SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the supert quality
plated through-hole PCB.

COMPLETE KIT
NOW ONLY
£225 +var!

Cabinet size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}$
Television not included in price

POWERTRAM

PSI Comp 80. Z80 Based powerful scientific computer Design as published in Wireless World.

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc

Value Added Tax not included in prices
PRICE STABILITY: Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement until Sept. 30th, 1980. If this month's advertisement is mentioned with your order. Errors and VAT rate change excluded
EXPORT ORI इRs: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT: NO charge is made for carriage. Or current rate if changed
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ (VAT inclusive) per kin
SALES COUNTER: II you preter to coltect your computer from the factory. call at Sales Counter. Open 9 a.m, -12 noon, $1-4.30$ p.m. Monday-

KIT ALSO AVAILABLE AS SEPARATE PACKS
For those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs e.g. PCB $\left(1^{\prime \prime} \times 12.5^{\prime \prime}\right) € 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS 530 . 00 Toroidal ransformer and power supply components $£ 17.60$. Cabinet (very ruged. made from steel. really beautiuly finished) Cer including OHIO SUPERBOARD ior other single board chity moditied. Other packs listed in our FREE which it can be readily modified. Other packs listed in our FREE

PSI COMP 80 Memory Expansion System Expansion up to 32 K all inside the computer's own cabinetl
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to 3 BK RAM or BK Rom boards to be fited nealy inside the computer cabket is made via a socket is made via a ribbon cable.
Mother Board: Fibre glass double sided plated through hole PCB $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all to connect to expansion plug cable wir socket
8K Static
RAM board Fibre glass double sided plated through hole PCB
$5.6^{\prime \prime} \times 4.8^{\text {"4 }} \quad £ 12.50$
Set of components including ic sockets, plug and
socket but excluding RAMs
2114 LRAM (16 required)
Complete set of board, components, 16 RAMS
$8 k$
ROM board
Fibre glass double sided plated through hole PCB $5.6^{\circ \prime} \times 4.8^{\prime \prime} \quad £ 12.40$ Set of components including ic sockets, plug and 2708 ROM (8 required) Complete set of board, components, 8 ROMs

NEWV FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND TELEPHONE NUMBER UNCHANGED
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

Simply ahead...

POWER AMPLIFIERS

ILP Power Amplifiers are encapsulated within heatsinks designed to meet total heat dissipation reeds. They are rugged and made ta last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pickups, tuners, etc. using digital or analogue sound
 sources.

Model	Output Power R.M.S.	Dis. tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-20-0. +20	$105 \times 50 \times 25$	155	$\begin{gathered} \mathrm{E} 6.34 \\ +95 n \\ \hline \end{gathered}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-25-0. +25	$105 \times 50 \times 25$	155	$\left\|\begin{array}{l} £ 7.24 \\ +£ 1 \\ \hline \end{array}\right\|$
HY120	$\begin{aligned} & \hline 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	. $35 \cdot 0 \cdot+35$	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 15.20 \\ -\quad 5228 \end{array}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45 0- +45	$114 \times 50 \times 85$	575	$\begin{array}{r} £ 18.44 \\ +\quad[277 \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	-45-0.+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{array}{r} 627.68 \\ \hdashline: 15 \end{array}$

Load impedance - all models $4 \Omega-\infty$
Input sensitivity - all models 500 mV
input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response- all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in iwo basic forms - one with circuit panel mounted on conventionally styled laminated transformer, for smaller PSU's - in the other, for larger PSU's, ILPIoroidal transformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.
PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 \times HY6.6

THE FOLIOWING WIIL AISO ORIVE PSU 36 for 1 or 2 HY 30 's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU60 with toroidal transformer for 1 HY $120 \quad £ 9.75+£ 1.46$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $\quad \mathbf{1 3 . 6 1 + £ 2 . 0 4 V A T}$
PSU 90 with toroidal transformer for
1 HY200 £ $13.61+$ £2.04 VAT PSU 180 with toroidal transformer for

1 HY 400 or $2 \times$ HY $200 £ 23.02+£ 3.45$ VAT

this time with two new pre-amps

Mhmpharamazar
$19++++1++1+44^{4}$

HY6 mono HY6-6 stereo

When IL.P add a new design to their audio-module range, there have to be very special reasons for doing so. You expect even better results. We have achieved this with two new pre-amplifiers - HY6 for mono operation, HY6-6 for stereo. We have simplified connections, and improved performance figures all round. Our new pre-amps are short-circuit and polarity protected; mounting boards are available to simplify construction.
Sizes - HY6 - $45 \times 20 \times 40 \mathrm{~mm}$. HY6-6 $90 \times 20 \times 40 \mathrm{~mm}$. Active Tone Control circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag. PU. -3 mV Mic - selectable 1.12 mV : Allothers 100 mV : Tape O/P -100 mV Main O/P - 500mV: Frequency response - D.C. to $100 \mathrm{KHz}-3 \mathrm{~dB}$

NO QUIBBLE 5 YEAR GUARANTEE
 7.DAY DESPATCH ON ALL ORDERS
 BRITISH DESIGN ANO
 MANUFACTURE
 FREEPOST SERVICE
 - see below:

* ALL U.K. ORDERS DESPATCHED POST PAID

HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stampenvelope - wepay postage onallletters sent tousby readers of this journal.

ELECTRONICS LTD.

FREEPOST 5 GrahamBell House. Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227)54778. Telex 965780

Ienclose Cheque \square Postal Orders \square International Money Order \square
Please debitmy Access/Barclaycard Account No.

NAME..
ADORESS

Signature.

The Mod-1 type U series, an addition to the AKA Mod-1 range, is a free-standing instrument case with one very important feature. In each side of the case there is a unique handle profile, making it easy to grip, lift and carry, however heavy the contents.

These distinctive cases are made of anodised aluminium extrusions with attractive blue top and base plates, and side panels. Type U cases are manufactured in three widths, two depths, and heights of 3,4 and 6 U . Front handles, folding feet and a rear panel are provided; the front panels, card guides, edge connectors and other accessories are ordered separately. Send for free catalogue and price list.

THE BIGGEST SELECTION OF CASES IN EUROPE

WEST HYDE DEVELOPMENTS LIMITED. UNIT 9. PARK STREET IndUSTRIAL ESTATE. AYLESBURY. BUCKS. TEL: 0296. 20441
WW - 085 FOR FURTHER DETAILS

[^3]
N.M. 2 NewBear SBooks

BOOKS

The S100 and other Micro-buses Software Development Computers \& Commonsense Architecture of Small Computer Systems Principles of Data-base Management 16-bit Microprocessor Architecture 6502 Assembly Language Programming Introductory Experiments with Digita Electronics and 8080A Book 1 Electron
Micromputers for Business Applications Handbook of Microprocessors, Microcom puters and Minicomputers
Introduction to Microprocessors
The VNR Concise Encyclopedia of Math matics
Micro Program Software Development

GAMES

32 Basic Programs for the PET
Game Playing with Computers
Game Playing with Basic
Star Ship Simulation
SARGON
BASIC
The Basic Handbook
Learning Level II
Basic with Business Applications
Illustrated Basic

280 BOOKS

Introduction to TRS80 Graphics Z80 Instant Programs (book) for Nascom Z80 Instant Programs (Cassette) fo Nascom Assembly Language Programming

AUTHOR
Poe Poe Jones Hunt Lippiatt
Martin
Dolhaff Osbourne Rony Rony Barden Lenk Levanthal
Gellert Duncan

Rugg Spencer
Spencer
$\begin{array}{ll}\text { ¢5.15 } & \text { INTRODUCTION BOOKS } \\ \text { £14.45 } & \text { Introduction to Microcomputers. Vol. } 0\end{array}$ $€ 14.45$ E3.95 $\mathbf{E 4 . 5 0}$ $£ 12.99$ £16.70 E 6.96
$£ 8.40$
$£ 8.40$
£5.80
£11.65 , $£ 9.45$

£15.35

£13.45
£8.90
£ 10.20
$£ 10.20$
£4. 20
£5. 10
£9,50
Lien $£ 11.00$

Lien
$£ 11.00$
£11.00
$£ 8.40$
£2.50
Alcock
inman
Hopton
Hopton
Osbourne

Introduction to Microcomputers. Vol. 1 Introduction to Microcomputers. Vol. 2 Introduction to Microcomputers. Vol. 3 Introduction to Computers in Business 8080
8080/8085 Assembly Language Programming 8080/8085 Software Design PASCAL
Pascal User Manual \& Report Springer/Verlag Problem Solving Using Pascal Springer/Verlag
An Intro. to Programming \& Problem
An intro.t Pascal
Structured Programming \& Problem Solving with Pascal
Introduction to Pascal 6502
Programming the 6502 6502 Applications Handbook
6502 Assembly Lang uage Programming
Handbook of Electronic Analysis Using Handbook of Electronic
Programmable Calculators Osbourne
Osbourne Osbourne Osbourne Awad

SOFTWARE TAPES FOR PET \& TRS 80

Applications Program

Game Program
Graphics Display \& Misc Program All at $\mathbf{£ 6 . 6 5}$ each $+15 \%$ V.A.T.

£5.75

$€ 7.50$
BARCLAYCARD WELCOME
£8.15 PEND FOR COMPLETE

M. ALL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

MANCLIESTER: 220-222 Stockport Road, Cheadle Ileath, Stockport. Tel: 0614912290
BIRMINGHAM: 1st Floor Offices, 'Livoli Centre, Coventry Road, Birmingham. 'Tel: 0217077170

The Polytechnic of Central London
School of Engineering and Science

MSc in

Communication Systems

A wo-year, part-lime, day release course, starting Ocrober 1480, specially prepared for engineers in industry keen to extend their design skills in the communications field. Emphasis is on both fundamental theoretical topics and practical implementation of traditional and new digital techniques.

During the second year, students undertake a project applying to some aspect of modern communications study, which is usually allied to the student's place of work.
Applicants should have a degree in Electrical/Electronic Engineering. or membership of a professional institute. plus relevant experience: or equivalent qualifications

Further deteils and application forms from: The Registry, School of Engineering and Science PCL, 115 New Cavendish Street, London W1M 8J Tel. 014865811 , ext. 8234

WW - 074 FOR FURTHER DETAILS

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER
Enables YOU to produce perfect printed circuits in minutesi
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely. used in industry for prototype work.
FOTOLAK £2.00

Developer 30p
Ferric Chloride 50p
Pre-coated $1 / 16$ Fibre-glass board

Plain Copper-clad Fibre-glass Approx. 3.18 mm thick sq. ft Approx. 2.00 mm thick sq. it . Approx. 1.00 mm thick sq. ft.
Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$
Postage and packing $65 p$ per order. VAT 15% on total
G. F. MILWARD ELECTRONIC COMPONENTS LIMITED

369 Alum Rock Road, Birmingham B8 30R. Telephone: 021-3272339

ALUMINIUM BOX CASES

(for the professionals)

ARO aluminium box cases now have a new design to enable simple fitting of your circuit boards without the complexity of drilling the case

Although a low-cost case, it is exceptionally well finished and is enhanced by the proportion of anodised aluminium to leather textured aluminium top and bottom plates. The design of these cases enable them to be unassembled and assembled with speed and ease. All cases are supplied unassembled and shrink-wrapped for your convenience.

Example of the competitive prices of Aro Box Cases

L	W H		L	W H		L	W	H	
$81 / z^{\prime \prime}$	$\times 5^{\prime \prime} \times 21 / 2^{\prime \prime}$	¢7.25	81/2"	$\times 9^{\prime \prime} \times 31 / 2^{\prime \prime}$	$¢ 9.75$		$\times 9^{\prime \prime}$	$12^{\prime \prime}$	¢14.25
$12^{\prime \prime}$	$\times 5^{\prime \prime} \times 21 / 2^{\prime \prime}$	¢8.75	$12^{\prime \prime}$	$\times 9^{\prime \prime \prime} \times 31 / 2^{\prime \prime}$	E11.00	$12^{\prime \prime} \times$	$\times 9^{\prime \prime}$	51/2"	¢ 13.80
$17^{\prime \prime}$	$\times 5^{\prime \prime} \times 21 / 2^{\prime \prime}$	11.00	$17^{\prime \prime}$	$\times 9^{\prime \prime} \times 312^{\prime \prime}$	E11.75	$81 / 2^{\prime \prime}$			'

Quantily discounts available. Overseas enquiries welcome. Prices exclusive of VAT but include postage within UK. Terms Cash with Order. S A.E. for further details
ARO DYNAMICS LIMITED, Westmorland Road, Kingsbury, London NW9 9RR. Telephone: 01-204 7277. Telex: 923547

Z \& I AERO SERVICES LTD.
Head Office: 42-44A-46 WESTBOURNE GROVE, LONDON W2 5SF
Tel. 7275641 Telex 261306

RETAIL SHOP
85 TOTTENHAM COURT ROAD, W. 1
Tel. 580.8403

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity Voltage ranges Current ranges. Resistance Accuracy Oscillator output
20.0000 /V
$2.5-1000 \mathrm{~V}$ A.C. 1 D.C. ©. $05-500 \mathrm{~mA}$ D.C. only $5 \Omega-1 \mathrm{MQ}$
5% F.S.D
$1 \mathrm{kHz} 50 / 50$ squarewave 465 KHz sinewave modulated by 1 KHz squarewave

PRICE, in carrying case, complete with leads and manual $£ 8.00$
Packing and postage (U.K.) £1.00

D.C. Curren A.C. Current D.C. Vollage A.C. Voltage Resistance Accuracy

TYPE U4324

$0.06-0.6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
$0.3-3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
$0.6-1.2-3-12-30-60-120-600-1200 \mathrm{~V}$
$3-6-15-60-150-300-600-900 \mathrm{~V}$
$500 \Omega-5-50-500 \mathrm{~K} \Omega$
D.C. 2.5% A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreboard storage case £9.50'

Packing and postage (U.K.) £1.20

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

Sensitivity Current	$\begin{aligned} & 16.700 \cap / V \text { D.C. } 3.300 \Omega / V A . C . \\ & 0.06-0.6-6-60-600 \mathrm{~mA} \text { D.C. . } 0.3-3.0-3 \\ & 300 \mathrm{~mA} \text { A.C. } \end{aligned}$
Voltage	$\begin{aligned} & 0.3-1.5-6-30-60-150-300-900 \text { V D.C. } \\ & \text { 1.5-7.5-30-150-300-750V A.C. } \end{aligned}$
Resistance	2-20-200k 2 -2M
Transistors	Collector cut-off current $60 \mu \mathrm{~A}$ max

0.06-0.6-6-60-600mA D.C., O. 3-3.0-30300 mA A. C
5-7.5-30-60-150-300-900V D.C
2-20-200k $\Omega-2 \mathrm{M} \Omega$
D.C. current gain 10.350 in two ranges

PRICE, complete with steel carrying case, test lead, battery and instruction manual $£ \mathbf{9 . 5 0}$
Packing and Postage (U.K.) £1.50
OUR 1980 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS AND PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. for £O. 60 FOR YOUR COPY

THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL

Toroidal

mpreiar more restricted. Having our own manufacturing division, we are able to offer 25 types in a useful range of outputs at competitive prices. A strong mounting kit is supplied with each transformer.

TYPE	VA	SECONBAMY hams volts	SECDNDARY RMS CUARENT	dIMENSIONS DIA -HT	$\begin{aligned} & \text { WEIGHT } \\ & \text { KG } \end{aligned}$	PAICE
2×010 2×011 2×012 2×013 2×014 2×015 2×016	50	$\begin{aligned} & 6+6 \\ & 9+9 \\ & 12+12 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 25+25 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 2.17 \\ & 2.08 \\ & 1.66 \\ & 1.38 \\ & 1.13 \\ & 1.00 \end{aligned}$	$70 \times 40 \mathrm{~mm}$	0.9	EACH E5.40 + E1.10 P\&P +98p Vat
3×010 3×011 3×012 3×013 3×014 3×015 3X016	80	$\begin{aligned} & 6+6 \\ & 9+9 \\ & 12+12 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 25+25 \end{aligned}$	$\begin{aligned} & 6.64 \\ & 4.44 \\ & 3.33 \\ & 2.66 \\ & 2.22 \\ & 1.81 \\ & 1.60 \end{aligned}$	$90 \times 30 \mathrm{~mm}$	1.0	EACH $£ 5.76$ $+£ 1.20 \mathrm{P} \mathrm{\& P}$ + £1.04 VAT
4×010 4×011 4×012 4×013 4×014 4×015 4×016	120	$\begin{aligned} & 6+6 \\ & 9+9 \\ & 12+12 \\ & 15+15 \\ & 18+18 \\ & 22+22 \\ & 25+25 \end{aligned}$	$\begin{array}{r} 10.00 \\ 6.66 \\ 5.00 \\ 4.00 \\ 3.33 \\ 2.72 \\ 2.40 \end{array}$	$90 \times 40 \mathrm{~mm}$	1.2	$\begin{aligned} & \text { EACH } \\ & \text { £ } 6.72 \\ & +£ 1.30 \text { P\&P } \\ & +£ 1.20 \text { YAT } \end{aligned}$
$\begin{aligned} & 5 \times 015 \\ & 5 \times 017 \end{aligned}$	160	$\begin{aligned} & 25+25 \\ & 30+30 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 2.66 \end{aligned}$	$110 \times 40 \mathrm{~mm}$	1.8	$\begin{aligned} & \mathrm{EACH}+£ 1.40 \text { P\&P } \\ & \mathrm{E} 8.88+£ 1.54 \text { YAT } \end{aligned}$
$\begin{aligned} & 6 \times 016 \\ & 6 \times 017 \end{aligned}$	300	$\begin{aligned} & 25+25 \\ & 30+30 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 5.00 \end{aligned}$	$110 \times 50 \mathrm{~mm}$	2.6	f 12.27 + £2.50 P\&P $+£ 2.07$ YAT

Notes: For 110 V Primary please insert O in place of $\mathrm{C} \cdot \mathrm{X}$ ' in type number For 220 V Primary please insert 1 in place of $\cdot X$ in type number
For 240 V Primary please insert 2 in place of $\cdot x$ In type number
Yetanother new development from I.L.P

$$
\text { Example } 120 \mathrm{VA} 240 \mathrm{~V} 15+15 \mathrm{~V}, 4 \mathrm{~A}=42013
$$

Types to customer specification can be supplied to order in quantity. Enquiries invited.
FREEPOST - ILPELECTRONICS, ROPERS CLOSE, CANTERBURY CT2 7EP enquiries and Please supply

your envelopes: I enclose Cheque \square Postal Orders \square International Money Order \square Access/ | YRLE |
| :--- |
| FREPOST, TS |

ILP ELEC. Barclaycard Accouns No

| Graham Bell | Name |
| :---: | :---: | :---: |
| House. Roper | |

House. Roper

WW - 072 FOR FURTHER DETAILS

RADIO SHACK LTD for \circlearrowright DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of 0-1.5 MHz receive and / or any transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes walk away is West Hampstead Midland Region Hours on the Broad 9.5 Monday to Friday. Giused for Lunch 1-2. Saturday we are open 9-12.30 only. World wide exports.

DRAKE \& SALES \& SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY

MAIL ORDER PROTECTION SCHEME
 (Limited Liability)

It you order trom mall order advertisers in this magazine. arcept lor classifised advertisements, and pay by post in advance of detivery. Wireless World witl consider you for compensation it the advertiser ahould become insolvem or bankrupt. provided

1. You have nol received the goods or had your money relurned: and
2. You write to the publisher al wiretess Worth explaining the position not earlier than 28 days tram the day you semt your order and not fater than 2 months from thal day.
Please do not wait until the lasi moment to inform us. When you write. we will tall you how to make your claim and what evidence of payment is raquired.
We quatantae to mate claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been declared bankrupt or insoivent up to $=$ limit ol $£ 3.550$ per annum tor any ona advertisar so aliectod and up to 20.000 per annum in respect of all in solvent advertisers. Claims may be paid for higher amounts. or when Ihe above procedure has nol been complied with. at line discretion of Wireless World; but we do not guarantee to do so in viow ol the need to sel some mil to this commitment and to learn quickly of readers difticulties.
This guaranter covers onty advance payments sent in divect response to an adverlisement in this magazine fnet tor example. payments made in response to catalogues. Etc.. recerved as a result of answering such advertisements Personal advertisements are excluded.

SHARP MZ80K

\star Z-80 based CPU * 4 K bytes monitor ROM

* Internal memory expansion up to 48 K bytes of RAM
\star 14K extended BASIC (occupies 14 K bytes of RAM)
$\star 10^{\prime \prime}$ video display unit - 40 characters $x 25$ lines
$\star 80 \times 50$ high resolution graphics
* 78 key ASCll keyboard alphabet (capital and small) plus graphics \star Built-in music function.
* Fast, reliable cassette with tape counter1200bits/sec.
* 50 pin universal BUS connector for system expansion-printers, floppy discs, etc.

$$
£ 520
$$

Sharp monitor Listing (fully commented) ... $£ 15.00$
Sharp basic manual $£ 7.00$

8300 RM PRINTER

$\star 80 / 132$ ch. per line (switchable)

* 125 c.p.s.
* 2 K Buffer
\star V24 RS232/Current Loop interface
\star Speed switchable between $110-9600$ baud
\star Double width char. available under software control
\star Sprocket feed
* 7 x 9 dot matrix
* Paper width: From $4.5^{\prime \prime}$ to $9.5^{\prime \prime}$

Price $£ 525$

MAIL ORDER \& CALLERS: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505 CALLERS ONLY: Mersey House, 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 061-491 2290. CALLERS ONLY: 1st Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 021-707 7170. TERMS: Official Orders (min. £10) Access \& Barclaycard welcome. Please add 15% VAT. Send for book list \& components/kits catalogue.

Industrial Heavy Duty Heat Guns

FOR SHRINK TUBING - SURFACE DRYING - SOLDERING ETC.

Three snap-in inter-changeable nozzles to give different temperatures $500-650-800^{\circ} \mathrm{F}$.

Silent in operation. Will free-stand on bench.

Fast convenient heat source - Continuously rated - Meshed nozzles to prevent entry of debris into element - Elements easily replaced All spare parts available

Snap-on deflectors for shrink tubing up to $2^{\prime \prime} O D$

TELEPHONE FOR A FREE DEMONSTRATION

Eraser International Ltd. Unit M, Portway Industrial Estate, Andover, Hants, SP10 3LU
Tel: Andover (0264) 51347/8
Telex 477291

DREAM PLANT ELECTRONICS

-.- Phisfili Th filmu nilirl wis silitisiler

FEATURES INCLUDE:-
TOUCH SENSITIVE DIGITAL KEYBOARD 2 OSCILLATORS CONTROL OSC. WITH RANDON SAMPL
HHITE NOISE WITH FREQUENCY \& ' O ' CONTROLS FOR LOW/BAND/HIGH FASS.
2 ENUELOPE GENERATORS WITH REPEAT \& DELAY CONTROLS. OUTPUT JACNS TO CONNECT TO OTHER WASPS USING A SIMPLE TO
FOLLOW CODE FOR CONNECTION TO

- ANY INTERFACED MICROPGOCESSOR. BUILT IN SPEANE LINE BEADFHONE QUTFUTS

 IN A TOUGH PLASIIC CASE COMFL, SIZE BATTERIES.

TO:- LIEEAM FLANT ELECTRONICS
REU GABLES,
STONESFIELEI ROAD,
COMBE, OXFOFII OX7 2ER.
PLEASE SEND ME WASP SYNTHESISER KITS
AT 149.50P EACH INCLUDING U.A.T. \& P. \& P.
[t 5 EACH FOR ORDERS DUTSIDE G.B. \& NORTHERN IRL.]
PLEASE SEND ME...... FREE INFORMATION BROCHURE(S) [PLEASE ENCLOSE S.A.E.]

nAME

Andress

access/ariclaycard no:

F'LEASE MaKE Cheques payable to 'liream plant electronics'
and allow 28 diys for postage.

The finest amplification kits from Crimson Electric

POWER AMPLIFIER KIT, The kit includes all metalwork, heatsinks and hardware to house any two of our amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours.

PREAMP KIT

This includes all metalwork, pots, knobs, etc., to make a complete preamp with the CPR 1 (S) module if required.

POWER AMPLIFIER MODULES CE 608 CE 1008
CE 1704
CE 1704
$\begin{array}{lr}\text { CE } 1708 & \text { E35.50 }\end{array}$
Light duty, 50 mm . $2 \mathrm{C} / \mathrm{W}$ E 1.70
Medium power, $100 \mathrm{~mm}, 1.4 \mathrm{C} / \mathrm{W}$
Disco/group. $150 \mathrm{~mm} .1 .1 \mathrm{c/W}$
Fan mounted on two drilled 100 mm heatsinks
2×4 C/W 65 max. when used with two modules
modules E36.00 THERMAl\& CUT-OFF, 70 C E1.90

POWER SUPPLY
REGI £9.30 TR 6 £2.50
BRIDGE DRIVER, BD I
Obtain up to 350W using. $2 \times 170 \mathrm{~W}$ amps and this
module
BD 1

problems please

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britain leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.

Resistance Boxes. D.C. Null Detectors Resistance Bridges Digital Temperature Indicators Resistance Standards Electronic Standard Cell D.C. Potentiometers Electronic Standard Cell
Multimeters, Digital or A Thermocouple Reference Watmeters, Digital or Analogue Junctions Insulation Test Sets Thermocouple Switches Earth Resistance Meters Pt 100 Switches Fluxmeter Pt 100 Simulators \quad And many more

Cropico - Britains leading manufacturer, exporter and importer of precision electrical measuring equipment.
Request full details - Visitors Welcome
CROPICO LTD., Hampton Road.
Croydon CR 9 2RU
Telephone: 01-684 4025 and 4094
Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

Danavox

DANAVOX (GT. BRITAIN) LTD.
1 CHEYNE WALK
NORTHAMPTON NN15PT
TEL. NORTHAMPTON (0604) 36351
0) TASE8TChire"on components and accessories for dictating machines, tele-communications, hearing aıds and electroacoustic equipment etc."

$2,5 \mathrm{~mm}$ and $3,5 \mathrm{~mm}$ JACK PLUGS \& SOCKETS

DANASGUND HEADSET
 INDUCTION ALIDIO LOOP RECEIVER

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER.

Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance
Reading to ± 1999. Scales:
Readigo \quad DC volts: ImV10 1000 V $11^{\circ} \circ \pm 1$ digit accuracte). AC volts:
1 mV o 500 V $\operatorname{lm} V t o 500 \mathrm{~V}$
$\left(1^{\circ} 0 \pm 2\right.$ dig t
accurate $)$ DC current: 1μ A 10200 mA
$(1 \% \pm 1$ digit accurate) $11 \% \pm 1$ digil accurate
Resistance:
10 hm to 20 mohms 10 hm to 20 MOMms
$(1.5 \% \pm 1$ digt accurate) Power source: 9 V battery or AC
wuh optional adaptor
Size:
${ }_{22-198}^{155 \times 75 \times 30 \mathrm{~mm}}$

PRICE
 53.

LOW-COST LCD MULTIMETER COMPONENTS AND PARTS
| A portable, compact sized multimeter with a full $3^{1 / 2}$ digit LCD display. Auto polarity operation, low

CAT. No	DESCRIPTION	PRICE
276-032	LED	4 for 69p
276-033	LED	2 for 48p
276-034	LED	2 for 59p
276-142	Infra•Red Emitter Detector Pair	£1.37
277-1003	12V DC Automintive Digital Clock Module	£17.52
276-9110	6 pur edge cominector for 2771003	40p
276-1373	Power Transisior Mounting Hardware	50p
276-1363	T0 220Heat Sink	60p
276-1364	TO 3 Heat Smk	81p

AC/DC 8 MHz OSCILLOSCOPE
A new approved 8 MHz version of last Specifications: years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in Herrizontal axis: Deflection senstivity better than $250 \mathrm{mV} V \mathrm{DiV}$ Vertical axis: : 08 MHz Input impedance. 10 hm parallet capacitance 35pF. Time base: Sweep range capacitance 35 pf . Time base: Sweep range laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and नealerships worldwide. Over 2,500 products are made
specifically for or by fandyat 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

The largest electronics retailer in the world.
offers subject to availability. Instant credit avallable in most cases
OVER 170 STORES AND DEALERSHIPS NATIONWIDE

ELECTRONIC TESTAND MEASURING EQUIPMENT

OUR NEW 1980 CATALOGUE GIVES YOU 3 TIMES MORE CHOICE OF EQUIPMENT THAN ANY OTHER RENTAL COMPANY IN EUROPE. Livingston Hire 01-2673262

No. 1 in Europe-by any measure

Is your name last on the Electrical Times circuit?

Isn't it time you had your own copy of Electrical Times

Every week Electrical Times gives you NEWS on: people, prices, contracts, financial deals, international events \& new products.

Regular features are included on: contracting \& installation, repair \& maintenance, distribution plant \& operation, and motor applications and control.

Electrical Times also carries top quality job opportunities for people at all levels in the electrical industry in its appointments pages.

An anhual subscription costs £10.00 - not much to pay to ENSURE that you're the first to be plugged in to the power of the Electrical Times circuit.

To: Subscription Dept., IPC Business Press (SD) Ltd., Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH, England.

Please send me ELECTRICAL TIMES every week for a year. I enclose cheque/P.O. for $£ 10.00$ (inc. postage) payable to IPC Business Press Ltd.

Name

Address

Position
Company

World-wide conversation piece

. . . for local, national, international and intercontinental systems.

Transtel's ASR teleprinter and data terminals are fitted with the proven memory package, providing easy editing and storage facilities. Transtel's printers are small, reliable and quiet, and are built to withstand heavy-duty operation.
Many thousands are in service with PTT's and major international carriers, as well as in many large private-wire systems.
Manufactured in the UK, technical support and service facilities are available nationwide.

- Microprocessor control.
- High quality dot matrix printout.

Ofull message editing, up to 8 k memory. Speeds up to 30 cps.

- 5000 hr MTBF, 300 million characters.
- Telex or Private Circuit operation.

Freepost Birmingham B19 1BR 021-233.2400
 FREEPOST ON ORDERS • ACCESS VAT INCLUSIVE PRICES
 ADD 30p P\&P - VISA - CASH - CHEQUE

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

IDEAS＋IDEALS

The extent

Uo！sijand lll se！̣のS ayt fo sseu

 sn！peı．． 6
A pick－up arm has physique but not personality． Gu！now e se ！！oગ 6u！＾ou e 4ł！M Nddey se s！ 7
 are another matter．
With a high mass arm you are permanently

 pue \｜əys aył u！aכejd of Njddns ueว am чכ！чм 10 小！Gu！nowas রq parisəp uəчм u！ebe pəょəmol

 this as progress，anticipate it with

the best pick－up arm in the world Write to Dept 0659 SME Limited，Steyning

Youll never meet a better meter

WW-120 FOR FURTHER DETALLS

The AVO RM290 is a bench type megohmmeter with a resistance range that goes up to $10^{14} \Omega$:making it ideal for those applications where there is a need to measure the electrical resistance of non- conducting materials... accurately! You can use the RM290 for tests on insulating components in electronic assemblies or on capacitor dielectrics Resistance measurements can be made at test voltages of $100,250,500$ or 1000 V . Readout from the single resistance scale on the meter is direct, irrespective of the test voltage selected.
You'll find the AVO RM290 a great asset. Cet in touch with us today and we'll let you have the full facts.

(10)
AVOLimitèd, Archcliffe Road, Dover, Kent, CT17 9EN Tel:0304 202620 Telex: 96283
L Thorn Measurement \& Components Division

Peace and quiet

The quietest sound the ear can hear moves the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random themal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*

But the distortion contribution from a QUAD 405 amplifier in normal use (say 85dBa) moves the eardrum less than this amount:

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the full range of QUAD products write to:

The Acoustical Manufacturing Co. Ltd. Huntingdon, PEl8 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds

QUAD

for the closest approach to the original sound
QUAD is a Registered Trade Mark

WW-121 FOR FURTHER DETAILS

IOXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g

() elcomatic
 DISTRIBUTION DIVISION RADIO \& T.V. SERVICE COMPONENTS

Ex-stock items despatched same day

TERMS OF BUSINESS
C.W.O. Postage \& packing 50 p per order All prices inclusive of V.A.T.

Elcomatic Limited
Kirktonfield Road, Neilston, Glasgow, G78 3PL Telephone 041-881-5825 Telex 77241

The 'System One' series of micro computers is probably the most flexible series of micro computers available today.
Flexibility of hardware coupled with a wide range of software, allows the user to choose the most cost effective hardware/software configuration to solve his/her problem.
HARDWARE CONFIGURATION
Internal storage from 32 to 64 K .
1 or 2 single-sided $51 / /^{\prime \prime}$ or $\mathrm{B}^{\prime \prime}$ Hoppy disks.
1 or 2 double-sided $5 \frac{1}{4 \prime \prime}$ or B" $^{\prime \prime}$ floppy disks.
Support for most popular makes of printers. 1 or 2 terminals.
SOFTWARE FROM
FORTRAN Com piler
BASIC Compile
STRUBAL Compiler
LABEL BASIC
Text Editor
Text Processor
Assemblers
Basic interpreter both sequential and Random Access Versions. Plus füll development and debugging software.
You even have a choice of two Operating Systems. SSBDOS or FLEX.
With all this to choose from you might begin to think you could not afford it - well a 32 K storage system one with dual-single sided $51 / 4$ " floppy disks, SSBDOS and a basic interperter would cost you $£ 1,650$.
If you require a terminal as well, the above system together with the ACT-1 keyboard and $9^{\prime \prime}$ video monitor would cost you £1,970.
Call SEED at our Brownhills office for further details of demonstration

STRUMECH ENGINEERING ELECTRONIC DEVELOPMENTS LTD.
Portland House, Coppice Side, Brownhills, Walsall
West Midlands. Telex 335243 SEL. Tel. No. 054-33 78151
WW - 111 FOR FURTHER DETAILS

Panels and cases punched to customer's requirements at very lost cost. Please write for details:

OLSON ELECTRONICS LTD.
Factory No. 8, 5-7 Long St., London E2 8HJ Tel. 01-739 2343

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0

Fylde Electronic Laboratories Limited.

Telephone 077257560

TYPE 80 SERIES UNITS

RF PREAMPLIFIERS, FREQUENCY CONVERTERS SIGNAL SOURCES, ETC. . . .

TYPE 8025 STRIPLINE RF PREAMPLIFIER

TYPE 8025
TYPE 8026

TYPE 8027
TYPE 8028
TYPE 8029

TYPE 8030

TYPE 8031

TYPE 8032
STRIPLINE PREAMPLIFIER
$200 \mathrm{MHz} .-1500 \mathrm{MHz}$. Noise factor 1.2 dB STRIPLINE RF CONVERTER
Input $200 \mathrm{MHz} .-1500 \mathrm{MHz}$.
Output $1 \mathrm{MHz} .-1000 \mathrm{MHz}$. Noise factor 1.2 dB RF PREAMPLIFIER
$1 \mathrm{MHz} .-250 \mathrm{MHz}$. Noise factor 1.0 dB RF CONVERTER
Input $1 \mathrm{MHz},-250 \mathrm{MHz}$. Noise factor 1.0 dB WIDEBAND RF PREAMPLIFIER $10 \mathrm{kHz} .-150 \mathrm{MHz}$. without tuning Gain $40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$. Noise factor 3.0 dB . VMOS LINEAR POWER AMPLIFIER $40 \mathrm{MHz} .-250 \mathrm{MHz}$. without tuning 4 watts maximum RF output. VMOS LINEAR POWER AMPLIFIER $30 \mathrm{kHz} .-40 \mathrm{MHz}$, without tuning 4 watts maximum RF output. HIGH STABILITY PHASE-LOCKED SIGNAL SOURCE $20 \mathrm{MHz} .-1000 \mathrm{MHz} .1 \mathrm{~V}$. output at 50 ohms max.
UHF TELEVISION PREAMPLIFIER
Channel group 'A' 21-34, 'B' 39-51, or 'CD 49-68.
Gain 20 dB . Noise factor 1.2 dB . Weatherproof unit.
$100 \mathrm{kHz},-500 \mathrm{MHz}$. WIDEBAND MIXER $10 \mathrm{MHz}-1500 \mathrm{MHz}$. WIDEBAND MIXER MASTHEAD WEATHERPROOF UNIT Designed to completely enclose our standard units.
TYPE 8035
TYPE 8036

TYPE 8037
POWER SUPPLY/OUTPUT SPLITTER UNIT

Stabilized mains power supply.
Provides 4 outputs from one amplifier UNITS ARE AVAILABLE FROM STOCK CONTACT

(-) TefliPH

RESEARCH COMMUNICATIONS LTD.
43 Court Street, Faversham, Kent, ME13 7AL ENGLAND
RESEARCH COMMUNICATIONS EUROPE
Germeville, Oradour, 16140 Aigre FRANCE

VIDEO TAPE RECORDERS, Philips type LDL1000. We have a small stock of these items, standards mains, //P approx. ext size with cover $20 \times 14 \times 8^{\prime \prime}$ reel-to-reel type supplied with one reel of tape, copy of service h/bk. Good cond. complete, untested, $£ 185$.
RECEIVER ASS, small UHF guard chan. Rx on $243 \mathrm{Mc} / \mathrm{s}$, dual conversion with crystals, IFs 20.5 and $2 \mathrm{Mc} / \mathrm{s} 11 \mathrm{~min}$. valves with o/p stage reqs. ext. HT and LT, £16.50.
AUDIO TEST SET CT373, bench test set, 3-function Audio Osc 17 c to 170 Kc AF VTM and Dist. meter. Fuller spec. on request, $240 \mathrm{v} 1 / \mathrm{P}$, new condition, $£ 65$.
SELECTIVE CALLING UNITS Rx and Tx, preset 4 digit codes, Will only respond to code set on front of unit by 3 rot swts, $2401 / \mathrm{P}$ transis. New condition with circs and notes, £22.
MOTOR \& VARIAC 115 c 15 -amp variac driven by 115 v motor, $50 / 60 \mathrm{c}$. Good condition. £35.
H.D. ROT SWT SP 250 v AC/DC, $100 \mathrm{amp}, \mathrm{E} 15$.

HELIPOT DIALS, two type Beckman $15 \mathrm{Tr}, \mathbf{£ 2 . 5 0}$, and Colvern 10 Tr £1.50. Also 30 or 100 K pots, 50 p ea.
H.F. TRANS /RX small Army unit Rx tunes 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ in 3 bands 7 min . valves inc. RF stage and BFO o/p for phones. Tx section crystal controlled $2.5 / 20 \mathrm{Mc} / \mathrm{s}$, two valves, $15 / 25$ watts, CW only, built-in morse key, RF O/P meter and Ae loading swt., size inc. mains P.U. $30 \times 9 \times 14 \mathrm{Cm}$ also supplied $12 v$ DC P.U. Invertor, connecting cables, H/PHs, handbook, tested, £54. Also for these Hand Gen. sets with accs. $110 \mathrm{v} 40 / 80 \mathrm{w} \cdot 100 \mathrm{c} / \mathrm{s}, ~ £ 25$.
HIGH RESISTANCE Test Set, mains operated, will measure up to 300 million megs with 10 v test voltage or 3000 with 10 v , works by measuring time taken to charge conds of known value, stopwatch readout min. ind. 100 K , in/transit cases, $£ 35$.
SMALL Rx and TX ass. battery-operated Rx iunes 2 to $8 \mathrm{Mc} / \mathrm{s}$ with 5 min . valves inc. BFO Tx $2 / 8 \mathrm{Mc} / \mathrm{s}$ crystal cont. about 1 watt, power req. 135 v and 1.5 v with circs $\mathrm{Rx}, \mathrm{E} 13$. Tx £5.50.
POWER UNITS CT397 var O/P to 500v DC 100 Ma up to 350 v to 6.3 v AC ct 3 amp with Volt/Ma meter, tested with circ., $\mathbf{£ 2 0}$. Also 0 to 500 v 150 Ma stab 6.35 amp . $19^{\prime \prime}$ rack mounting with meter, £35. Also small stab $135 \mathrm{v} 20 \mathrm{Ma} 6.3 \mathrm{v} 1 \mathrm{amp} 240 \mathrm{v} \mathrm{I} / \mathrm{P}$. Neat unit made for BC221 range of freq. meters, $£ 15$.
UPM-6 IFF Test Sets, multi-function $115 v 50 \mathrm{c}$ I/P; comprises W.M. Sig. Gen., demod, unit, peak reading voltmeter nom. operating freq. 960 to $1150 \mathrm{Mc} / \mathrm{s}$ with circs., H/bk, sample cal charts, leads, etc. Fuller disc. on list, £45. We can supply from these Sig. Gen. ass. with var. atten. and valve, $£ 12.50$. Wavemeter Ass. will go to $1.35 \mathrm{Gz}, \mathbf{\varepsilon 8} \mathbf{5 0}$. Demod. Ass. with det and 50 ohm 5 w load, £4.50.
Rx Preselector 4 -section tunes, $1080 / 1130 \mathrm{Mc} / \mathrm{s}$ with 1 N 21 New, £4.50.
DEVIATION METER, Army No. 22.5 to $100 \mathrm{Mc} / \mathrm{s}$ in 8 bands, Dev. ranges $5 / 25 / 75 \mathrm{Kc}$ FSD mains I/P with conn. In transit case, £35.
POWER SIGN. GEN. 240v I/P VFO osc. 1.5 to $12 \mathrm{Mc} / \mathrm{s}$ in 3 bands RF O/P nom. 20 watts into 70 ohms. This can be varied over wide range by variac control of PA plate voltage, anode current and $0 / P$ voltmeters fitted. Good cond., £45.
MORGANITE NON IND. carbon res. 150 ohm 20% est. 40 watts, size $6 \times 1^{\prime \prime}$ with mt . clips. 3 for $£ 4.50$.
RF meters, $3^{\prime \prime}$ dia., 6 amps, $£ 5.50$.
METERS, matching pair, 0 to 35 v and=0 to 35 amps , DC, $4^{\prime \prime}$ dia. £10 pair.
MONITOR UNIT metering unit for Tx power amp, comprises 7 MC meters, all $4^{\prime \prime}$ dia. with FSDs as follows all DC, $35 \mathrm{v}, 5 \mathrm{amps}$, $25 \mathrm{Ma}, 100 \mathrm{Ma}, 600 \mathrm{v}, 250 \mathrm{Ma}$ and 2.5 Kv . All on $19^{\prime \prime}$ panel. New cond., £25.
TRANSFORMER AUTO 200/250v, 3 taps, nom. 115 v 560 watts, fully enclosed with term conn., size $8 \times 5 \cdot \times 4^{\prime \prime}$. New American Kenyon, £13.50.
AMP MODULE, size $14 \times 5 \times 2^{\prime \prime}$., with mains trans. with two secs giving $+8-20 \mathrm{v}$ DC stab 100 Ma ea. Good selection of 1% res., trim pots, etc. DC coupled with swt. gain to 500, £5.50.
RECORDING TAPE, Ampex $1 / 4^{\prime \prime}$ Audio type 3600 ft . on $101 / 2^{\prime \prime}$ grey plastic spools, Mil spec., new, $£ 7.50$.
H.D. BLOWERS, 240 v , single ended outlet $21 / 2^{\prime \prime} \times 312^{\prime \prime}$., new, unused, £11.50.
X BAND NOISE SOURCE with noise tube, W.G. 15 WG reqs 115 v DC 500 Ma int. rated, in fitted case, £5.50.

The following available as one lot for callers. Four assorted 16 mm Proj, some sound by RCA B.H. seven ass. slide proj $2 x$ loop proj. Fair cond. Price $\mathbf{£ 2 3 0}$ the lot.

One only PHILIPS CCTV system transis. with high-grade lens, c. U. $19^{\prime \prime}$ mon. cables, etc., $£ 144$. Collect.

Above goods are ex. equip unless stated new. S.A.E. for enquiry or $2 \times 10 p$ stamps for list $24 / 1$. Price includes carriage and V.A.T

A.H. SUPPLIES

 122 HANDSWORTH ROAD, SHEFFIELD, S9 4AE TEL: 444278 (0742)Accurate tape tension.

Tentelometer

Tape Tension Meters for all audio and video tape recorders and players

Stocked and distributed for Europe by

The Experts

CROW OF READING LIMITED

PO Box 36, Reading, RGI 2NB. Telephone: (0734) 595025
wW- 127 FOR FURTHER DETAILS

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material.' ${ }^{\prime}$ Minimum order 250.)
For further details contact:
Brian Bannister, IPC Electrical-Electronic Press Ltd. Phone: 01-261 8046 or simply complete and return the form below.

To: Brian Bannister, Reprints Department Dorset House, Stamford Street London SE1 9LU
1 am interested in
copies of the article/
advertisement headed featured in

WIRELESS WORLD

on page(s) in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No.

PA GROUP \& DISCO UNITS

Audax HD12.9D25	¢8. 25
Audax HD11P25EBC	E7.50
Audax HD 20825H4	c14.95
Audax HD13034H	E12.95
Audax HD24S45C	£21.85
Baker Supert	E25.00
Castle Super 8 RS /DD	c14.85
Chartwell CEA205 pairs onty	pairs only E81.25
Coles 4001	¢7.85
Coles 3000	¢7.88
Celestion HF1300 II	ع10.85:
Celestion HF2000	£10.85
Dalesford A8R 10"	¢10.25
Dalestord D30/110	£11.25
Dalesford D50/153	¢12.25
Dalesford D50/200	E12.25
Dalesford D70/250	E25.50
Dalestord D100/310	E38.75
Dalestord D10 tweeter	E8.45:
Decca London Horn	c 61.95
Decca CO/1000/8	C10.25
Elac 6 NC.204 61/2"	E7.50'
Elac 8NC2988"	c7.95
EMI type 350, $13^{\prime \prime} \times 8^{\prime \prime}, 4 \mathrm{chm}$, 4 chm 69.45
EMI 14A/770.14" $\times 9^{\prime \prime} .8 \mathrm{chm}$	9'. 8 ohm $\mathrm{C19.50}$
Isophon KK8/8	E8.15
Isophon KK10/8	¢8.45
Jordan Watts Module	¢23.50.
Jordan Watts HF kit	$\underline{C 9.15}$
Jordan 50 mm unit	¢24.50
Jordan C8 crossover E24	£24.50 pair
Jordan Mono crossover	E24.50 pair
Kef T27	E9.45
Ket 8110	E12.25.
Kef 8200	E13.50.
Kef 81.39	¢27.75
Kef DN 13	86.75
Kef DN12	ce. 40
Kef DN22 pair	pair £42.00
Lownher PM6	¢59.00
Lowther PM6 Mk I	¢62.00
Lowther PM 7	¢94.50
Peertess K0100t	¢10.75.
Peerless DT10HFC	E10.50
Peerless KO40MRF	¢12.95
Radford 8025 Mk III	E36.95
Radiord MD9	$¢ 14.85$
Radford MD6	¢19.95
Radford FN8 / FN831	¢21.40
Richard Alan CG8T	¢13.50
Richard Allan CG12T Super	per \quad E29.50
Richard Alan HP88	E20.75
Richard Alan LP88.	£14.50
Richard Allan HPY 28	833.50
Richard Allan DF20	¢9.95
Richard Allan DT30	¢10.75
SEAS H107	¢8.95
Shackman Electrostatic with polar.	with polar. network
\& crossover $¢ 130$	c130.00 pair
Tannoy DC296 10'	¢107.35
Tannoy DC316 12',	E148.50
Tannoy DC386 $15^{\prime \prime}$	£178.80

```
Colestion G12/50TC Celestion G \(12 /\) B0CE Celestion G \(12 / 125 \mathrm{CE}\) Celestion G \(15 / 100 \mathrm{CE}\) Celestion G \(15 / 100 \mathrm{TC}\) Celestion G18/200 Celestion Powercell 12/150 Celestion Powercell 15/250 Celestion MH1000 Fane Classic 4512 Fane Classic \(5512^{\prime \prime}\)
Fane Classic 80 12""
Fane Classic \(8515^{\prime \prime}\)
Fane Classic \(15015^{\circ \prime}\)
Fane Classic \(1258^{\prime \prime}\)
Fane Classic 12518
Fane Classic \(17518{ }^{\prime \prime}\)
Fane Guitar 808/2 12
Fane Disco \(10012^{\prime \prime}\)
Fane PA85 12"
Fane Bass 100 15"
Fane Crescendo 12E
Fane Crescendo 15 E
Fane Crescendo 18E
Fane Colossus \(15 E\)
Fane Colossus 18E
Fane J 44
Fane J 104
Fane 173
Fane MPX1 / HP
Fane MPX3A
Fane HPX38
Goodmans PPA
Goodmans DI1 2
Goodmans GR12
Goodmans 18 P
Goodmans Mifax 50HX
McKenzie C1280GP
McKenzie C1 280 TC
McKenzie C1 280 bass
McKenzie GP 15
McKenzie TC15v
McKentie C15 bass
Motorola Piezo hom \(31 / 2^{\prime \prime} \mathrm{c}\)
Motorola Piezo \(2^{\prime \prime} \times 6^{\prime \prime}\)
Motorola Piezo \(2^{\prime \prime} \times\) Richard Allan HD8f Rechard Alan HD10T
Richard Allan HD1 \(2 T\) Richard Allan HD15 Richard Allan HD 15 P Richard Allan Atlas \(15^{\prime \prime}\) Richard Allan Atlas \(18^{\prime \prime}\)
```

KITS FOR MAGAZINE DESIGNS. etc.
KITS INCLUDE DRIVE UNITS.
CROSSOVERS BAFILONG FIBRE WOOL, etc.
FOR A PAIR OF SPEAKERS Carriage £ 3.75
unless otherwise stated
Practical Mi Fi \& Audio PRO9-TL (Rogers)
As above int E 48.00
£152.75 + £5 carriage Hi Fi Answers Monitor (Rogers) $£ 148.00$ Hi Fi News State of the Art (Atkinson) $£ 185.00$ Hi Fi News Miniline (Alkinson)
 loms) \quad E118.00 + E5 carriage Popular Hi Fi Mini Monitor (Colloms) $£ 74.00$ Popular Hi Fi Round Sound (Stephens) including complete cabinet kir
Popular Hif Jordan Sysiem $£ £ 6.00+£$ carriage Practical Hi Fi and Audio 8SC3 (Rogers) Pracrical Hi fi and Audio Monitor (Giles) Prame $£ 180.00$ Practical Hi Fi and Audio Triangle (Giles) $\begin{aligned} & \mathrm{£} 120.00\end{aligned}$ Mi Fi Nows Tabor (Jones) with J4 bass units Hif News Tabor (Jones) with H4 $\mathrm{E68.00}$ $\begin{array}{r}\text { © } \\ \hline 70.00\end{array}$ Wireless World Transmission Line KEF (Bailey)
Wireless World Transmission Line RADFORD (Bailey) Everyday Electron ics EE70 (Stephens) Everyday Electronics EE20 (Stephens) EE20 (Stephens)
$E 29.50+£ 3$ ca

SMART BAOGES FREE WITH ABOVE KITS TO GIVE THAT PROFE SSIONAL TOUCH TO YOUR DIY SPEAKERS॥

REPRINTS/CONSTRUCTION DETAILS OFABOVE DESIGNS $10 p$ EACH

CARRIAGE B INSURANCE	
SPEAKERS $4^{\prime \prime}$ to $61 / 2$	s0p ench
$8^{\prime \prime}$ to $10^{\prime \prime}$	E1 each
$12^{\prime \prime}, 13^{\prime \prime} \times 8^{\prime \prime}$,	
$14^{\prime \prime} \times 9^{\prime \prime}$	£1.05 each
15"	¢2.05 eech
$18^{\prime \prime}$	54.80 eech
SPEAKER KITS	$\begin{aligned} & £ 1.95 \text { esch } \\ & \text { £3.95 pair } \end{aligned}$
MAG. DESIGN KITS £3.75 pelr unless otherwise stated	
ALL PRICES CORRECT AT 1.2.8	

Prices per pair Carriage $£ 3.95$ pair

Dalesford System 1

£54.00
Dalesford System $2 \quad £ 57.00$ Dalesford System $3 \quad £ 104.00$ Dalesford System 4 Dalesford System 6 E85.00 Goodmans DIN 204 ohm (special offer)

KEF Reference 104 a8 $\mathrm{kir} .00+£ 5$ carriage KEF Cantata kin $\quad \mathbf{2 1 3 . 5 0}+\mathbf{5 5}$ carriage LS3 Micro Monito c $71.00+£ 3.75$ carriage Cowther PM6 kit owther PM6 Mk I kit owther PM7 kit
eorless 1070
Peerless 1120
Peerless 2050
Peerless 2050
Radford Studio 90 kit
Radford Studio 270 kit Radford Monitor 180 kit Radford Studio 360 kit RAM 50 kit (makes RAM 100) fichard Allan Tango Twin kir Aichard Allan Maramba kit Richard Allan Charisma kit Richard Allan Super Sarabia Richard Allan Super Saraband II Richard Allan RA82 kit Richard Allan RA82L kh
SEAS 223
SEAS 253
SEAS 403
Whartedale Denton XP2 kit Whartedale Shelton XP2 ki
Wharfedale Linton XP2 kit
Wharfedale Glendale XP2 kit

WILMSLOW AUDIO 8A1 sub bass
amphiter/crossover kit
$£ 34.50+£ 1$ carriage

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTORI
gAF, LONG FIBRE WOOL; FOAM, CROSSOVERS, FELT PAREE SELECTION OF GRILLE FABRICS.
(Send $22 p$ in stamps for grille fabric samples).

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS, ETC

Tel: 0625526213 (SWIFT OF WILMSLOW FOR HI-FI \& COM PLETE SPEAKER SYSTEMS

[^4]

Swan Works, Bank Square,
Wilmslow, Cheshire.

The SBC-100 Board is additionally suited for industrial and process control as its all-in-one design reduces secondary board requirements. The eight thousand bytes of PROM/ROM sockets (2716) provided on-board allow the SBC-100 to perform most complex control functions. The $2-80 \mathrm{CTC}$ can function as a vectored interrupt controller to prioritize the interrupts when necessary. When desirable, the internal CTC interrupts may be prioritized with the external interrupts in order to create an interrupt daisy chain between various boards within the system. The SBC-100 is jumper-selectable to begin execution after reset at any 4 K boundary.

> - No Front Panel Required for Operation

$£ 159.00$ + VAT (Kit Form) $£ 208.00$ + VAT (Built + Tested)

For further information on th is board, or any other boards in our comprehensive range. ie:- Expandoram II, Versafloppy I + II, VDB 3024, Z80 Starter Kit etc. Please write or telephone.

UK Distributor:

AIRAMCO LTD.
Unit A2, 9 Longford Avenue, Kilwinning Industrial Est, Kilwinning, Ayrshire KA13 6EX
Tel: 029457755 Telex: 779808

WW - 109 FOR FURTHER DETALS

REALISM 4096 STAGE DELAY

New model SAD-4096 Buckef Brigade Delay Line offers:

- Delays of 250 mS to 1 mS
- Wide Dynamic Range 70 dB
- Full wave oulput
- No insertion Loss
- Up to 200 KHz Bandwidth

Typical Applications:

- Reverberation/Echo effects
- Time Base Conversion
- Voice Scrambling/Pitch correction

For complete detaits on this broad tine of standard delay tines and how they can improve your product and reduce costs, call your nearest RETICON field office now.

EAEG\&G RETICON

 5 THE COURTYARD, DENMARK STREET, WOKING HAM, BERKS.Tel. WOKINGHAM (0734) 788666. Telex: 847510

WW - 106 FOR FURTHER DETAILS

NEW VALVES

BRANDED \&
INDIVIDUALLY BOXED

- AVAILABLE FROM:

PM COMPONENTS LTD.
VALVE \& COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD, MEOPHAM. KENT

11834	8.00	ECC36	1.40	ELP4	. 60
42037	10.00	$\mathrm{Eccczs}^{\text {d }}$. 75	${ }^{\text {ELB6 }}$	96
02179	9.00	ECC189	90	EL90	90
42293	8.00	ECC804	54	EL91	4.50
OM160	2.50	ECCB07	1.50	El9s	80
Dr86/47	. 60	ECFBO	. 69	¢1360	5.50
Or802	. 65	ECFP82	. 69	${ }^{12504}$	1.80
E551	15.00	ECH4?	1.15	EL509	3.00
Esoce	5.50	EC881	65	f1821	950
Emact	3.50	ECH23	90	${ }^{11822}$	9.50
Esaf	6.25	ECHS	1.10	cmal	. 70
EBICC	4.50	ECL180	. 76	${ }^{\text {cma }}$. 70
Eall	6.50	ECL. ${ }^{\text {d }}$	85	.ma7	1.10
eserc	2.25	ECLI. ${ }^{2}$	64	Ell32	11.00
E835	3.00	EC183	1.30	E\#91	1.95
E83\%	2.00	${ }^{\text {chib4 }}$	80	Emg	3.00
E88CC	3.00	${ }^{\text {ccis }} 5$	80	EY51	40
Esscce 01	3.60	E¢286	80	โү\%6/87	60
E91F	4.50	E537h	2.75	EY500A	1.55
E95\%	4.50	E 53	2.20	[za0	. 52
E1301	15.50	6f80	. 55	1281	. 70
E180CC	4.00	E85	. 55	E790	. 25
E100	5.85	EF86	. 75	6xUI	14.50
E18¢C	4.50	EF89	. 75	${ }_{\text {ciusa }}$	9.50
E188CL	3.35	Ef91	1.40	Grsal	1.45
E610]	9.50	Ef93	. 75	6732	. 75
tabcso	60	${ }^{\text {EfP4 }}$. 75	6233	1.45
Eest	. 60	[f95	90	kT61	4.00
EBC41	. 5	${ }^{\text {EFP }} 183$	60	KTE6	400
E8C81	. 55	E184	. 60	kT7	4.00
EbC91	. 95	EnSO	. 75	${ }_{1} 180$	6.90
Ecas	. 95	Ekgo	. 75	178	10.50
ECCA 1	50	¢ 633	3.50	(0)	80
${ }_{6} 6082$. 60	El34	1.70	043	2.50
[CCRE	50	E137	3.45	${ }^{082}$. 80
tecem	. 50	ยเม1	1.25	003	1.50
ecces	60	E183	1.25	063	1.50

 9.00
9.00

MANY OTHER TYPES AVAILABLE, INCLUDING SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

Post \& Package 50 p on all orders PRICES INCLUDE VAT Prices subject to change without notice.

EXPORT\& TRADE enquiries welcome.
Phone our sales desk 0474813225

Happy Memories
 4116200 ns 2114 200ns 2708 450ns 21 L02 450ns
 £3.95
 £3.95
 £4.95
 £1.00
 4116 150ns
 $£ 5.50$
 2114 450ns
 £3.45
 $£ 13.50$

MEMOREX mini discs soft sectored - with FREE library case £19.95 per ten.

SALE

We're moving shortly to new premises and don't want to carry much.

Bargains for all
All prices include VAT
30p postage on orders below $£ 10$
Access \& Barclaycard
All orders to:
Dept. WW
19 Bevois Valley Road
Southampton, Hants, SO2 OJP
Telephone (0703) 39267

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Auto or Manual. A high quality unit backed by BSR reliability Stereo Ceramic Cartridge. AC 200/250V. Size $131 / 2-111 / 2 \mathrm{in}$. 3 speeds. Above motor board 33 in . Below motor board $21 / 2 \mathrm{in}$
with Ceramic Stereo cartidge.

GARRARD AUTOCHANGER CC10A.
3 speed stereo cartridge. Plays all s
HEAVY METAL PLINTHS
Cut out for most BS
Silver grey finish.
Size $16 \times 14 \times 3$ in.
Post E2.00.

Tinted Cover for above
TINTED PLASTIC COVERS £4.50
$£ 6.00$
Sizes: $141 / 2 \times 121 / 2 \times 41 /$ in. of $141 / 2 \times 121 / 2 \times$
$151 / 4 \times 131 / 2 \times 4$ in. $£ 4.18 \times 131 / 4 \times 4 \mathrm{in}.$.
186.

 $18 \times 13^{1 / 4} \times 31 / 2$ in with standup hinges $£ 7$

BSR SINGLE PLAYER DECKS

BSR P163 BELT DRIVE QUALITY DECK
Manual or automatic play. Two speeds.
Precision balanced arm
£30
Cueing device. Bargain price
Suitable magnetic carridge $£ 6.50$
BSR P207 BUOGET SINGLE PLAYER ideal for disco or small two-speed Mi-Fi system with stereo cartridge $£ 15$
cartridge and cueing device.
GARRARD 6-200 SINGLE PLAYER DECK
Brushed Aluminium Arm with stereo ceramic carridge and
Diamond Stylus, 3 -speeds. Manual and Auto Stop/Start.
Diamond Stylus, 3 -speeds. Manual and Auto Stop/Star Large Metal Turntable. Cueing Device and Pause Conrol
Ready cut mounting board $£ 1$ extra.
$\mathbf{Y 2 2}$

POTENTIOMETERS

$5 \mathrm{k} \cap$ to $2 \mathrm{M} \Omega$. LOG or LIN. L/S 50 p. OP 90 p. Stereo L/S $£ 1.10$ OP $\mathbb{1} 1.30$. Edge Por 5 K . SP 45p. Sliders Mono 65 p . Stereo 85 p .

EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS
With tweeter and
With tweeter and crossover.
crossover. 10 watt
$£_{\text {Pos } 99_{0}} 105$
$£ 9.95$
Post 99

Post 99p
THE "INSTANT" BULK TAPE ERASER
Suitable for cassettes, and all sizes of ta reels. AC mains 200/250V
Will also demagnetise small tools $£ 7.50$
RELAYS. 12VDC 95p. 6 V DC 85p
BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$ £1.40; 10×7-£ $1.55 ; 12 \times 8$ - $£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times$ 6-E1.85; $16 \times 10-$ E2.20. ANGLE ALL. $6 \times 3 / 3 \times 3 / / 2$ in 20 p
ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6-38 \mathrm{p}$; ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6-38 \mathrm{p}$; $14 \times 3-40 p ; 10 \times 7-54 \mathrm{p} ; 12 \times 8-70 \mathrm{p} ; 12 \times 5-44 \mathrm{p} ;$ PLASTIC AND ALI BOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 1 / 1 / 29.4 \times 2 \times 2 € 1.3 \times 2 \times 1$ 70 p. $6 \times 4 \times 2 £ 1.20 .7 \times 5 \times 21 / 2$ £1.45. $3 \times 6 \times 3 £ 2.20 .10 \times$ 7×3 £2.50. $12 \times 5 \times 3$ £2.30. $12 \times 8 \times 3$ 3
BRIOGE RECTIFIER 200 V PIV 4 amp E1.50. 8 amp e 2.50 TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p. PICK-UP CARTRIDGES ACOS, GP91 £2.00. GP94 £2.50 SONOTONE 9TAMC Diamond $£ 3.75$. V100 Magnetic $£ 6.50$
 HIGH STABILITV. $1 / 2 W 2 \% 10$ ohms to 1 meg. 8p.

$£ 6.50$

MINI-MULTI TESTER
Deluze pocket size precision moving
coil instrument, jewelled bearings 2000 opu
1 instant ranges measure: OC volts 10, 50, 250, 1000 AC volts 10.50. 250
Comtinuity and resistance $0-1$ meg ohms in two ranges.
Complete with Test Prods and in struction book showing how

J.V.C. BELT DRIVE STEREO DECK

Detachable head, adjustable counter balance weight. hydraulic damped cueing plantorm, automatic pick-up arm return, 2 speeds.
33 and 45 rmm suppression circuit to sarn stop swirch, 240 V AC motor, dynamic pendulous bias compensator. Teak veneered base, 19 in. $\times 141 /$ in $£ 9$. Post $£ 2$, plastic cover $£ 6$, post $£ 2$. Stereo magnetic carridge $\mathbf{E 6 . 5 0}$.
RCS SOUND TO LIGHT KIT MK. 2
Kin of parts to build a 3 channel sound to light unit $£ 18$ 1.000 watrs per channel. Suitable for home or di
Easy to build. Full instructions supplied. Cabinet £18 Easy to build. Full instructions supplied. Cabinet Post 50 E4.50 extra. Will operate from 200 MV to 100 watt signal. 200 Wart Rear Reflecting White Light Bulbs. Ideal for
Lights, Edison Screw. 6 for $\mathbb{E 4}$, or 12 for $\mathbb{E 7} .50$. Post 50 p.
"MINOR" 10 watt AMPLIFIER KIT £12.50 This kit is suitable tor record players, guitars, lape playback, electronic Mstrumerts or small $£$ available: Mono. $£ 12.50$; Stereo. $£ 20$. Post 45 . Specification 10 W per channel input 100 mV , size $91 / 2 \times 3 \times 2$ in : approx. SAE details. Full instructions supplied. AC mains powered. Input can be modified to suit guitar
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp per channel, with volume
control and PC Board
$£ 2.95$
Can be ganged lo make mutt-way stereo mixers Post 35p
 330.0 .330 V
300.0300
 12.00
62.50 GENERAL PUAPOSE LOW VOLTAGE. Tapped outputs $\begin{array}{r}10.00 \\ 62.50 \\ \hline\end{array}$

\section*{OPUSCOMPACT \square

\section*{SPEAKERS

SPEAKERS
 TEAK VENEERED
 CABINET $11 \times 81 / 2 \times 7$ in 20 pair
 50 to 14.000 cp 15 watts 8 ohm

LOW VOLTAGE ELECTROLYTICS
$\mathrm{m} / \mathrm{d}, 2 \mathrm{mfd}, 4 \mathrm{mid}, 8 \mathrm{mfd}, 10 \mathrm{mfd}, 16 \mathrm{mfd}, 25 \mathrm{mfd}, 30 \mathrm{mfd}, 50$ mid, $100 \mathrm{mid}, 250 \mathrm{mfd}$. All 15 volts. $22 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 25$ $6 \mathrm{v} / 25 \mathrm{v}$. $100 \mathrm{mt} / 10 \mathrm{v} / 150 \mathrm{mfd} / 6 \mathrm{v} ; 68 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} /$ $16 \mathrm{v}: 220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mfd} / 6 \mathrm{v}$ $6 \mathrm{v}: 220 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mfd} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mfd} / 6 \mathrm{v}$; $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 3330 \mathrm{mfd} / 6 \mathrm{v} ; 4700$ $\mathrm{nfd} / 4 \mathrm{v}$..
500 mF 12V 15p; 25 V 20 p ; 50 V 30 p .
$000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} \mathrm{60p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 4500 mF 64 V £2. $4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20,2700 \mathrm{mF} / 76 \mathrm{~V}$ £1
$5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V} £ 1.75$
high Voltage electaolytics
$8 / 350 \mathrm{~V} 22 \mathrm{p} \quad 8+8 / 450 \mathrm{~V} 50 \mathrm{p} \quad 50+50 / 300 \mathrm{~V} 50 \mathrm{p}$ $\begin{array}{llll}8 / 350 \vee ~ 22 p & 8+8 / 450 \mathrm{~V} & 50 \mathrm{p} & 50+50 / 300 \mathrm{~V} 50 \mathrm{p} \\ 6 / 350 \mathrm{~V} \text { 30p } & 8+16 / 450 \mathrm{~V} 50 \mathrm{p} & 32+32 / 450 \mathrm{~V} 75 \mathrm{p}\end{array}$ $32 / 500 \vee 75 p \quad 16+16 / 450 \vee$ 50p $100+100 / 275 \mathrm{~V} 65 p$ $50 / 500 \mathrm{~V}$ £1.20 $32+32 / 350 \mathrm{~V} \quad 50 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ $8 / 800 \mathrm{~V}$ £1.20 $50+50 / 500 £ 1.80 \quad 220 / 450 \mathrm{~V} 95 \mathrm{p}$ 16/500Y 65p

[^5]

Microprocessor board' (Nascom 2)
4 MHz Z80 CPU; TV or Video +1200 baud Kansas City + Serial RS 232 printer
Interfaces; Keyboard; 128 character ASCII plus 128 Graphics in $2 \times 2 \mathrm{~K}$ ROM; free 16 -way parallel port: 8 K BASIC; NAS SYS operating monitor. £280 built and tested.

Firmware \& MOS ICs
Zeap Assembler ($4,1 \mathrm{~K} \times 8$ EPROMS) $£ 50$ Nas Pen text editor ($2,1 \mathrm{~K} \times 8$ EPROMS) $£ 30$

Floppy disc system
Double sided, double density $51 / 4$ in disc giving 280K bytes formatted, including controller board/PSU / Housing and interconnects. $£ 480$ Controlier board $£ 127.50$. Second Disc £240. CP/M £80

System 80 housing
High strength GRP mould ing
Accepts 12×8 Nascom 2 CPU board, four 8×8 expansion boards. $£ 85$ incl frame racking, interconnects and motherboard
Expansion Boards* (in kits)
16K RAM £ 127.50 -32K RAM £ 175
48 K RAM $£ 220$
High Resolution Programmable Graphics $£ 90$ High Resolution Colour add on $£ 37.50$
Colour Board Kit £140
All prices subject to VAT

COMPUTER KEYBOARDS

 TASA 56 key touch sensitive keyboard. All ASCII
characters including control keys. Paraliel output with strobe. Shift lock. Keys coded in 3 colours to indicate
function. 18 VDC at $35 \mathrm{~mA} .15^{\prime \prime} \times 6.25^{\prime \prime} \times 0.385^{\prime \prime}$ function. 18 VDC at 35 mA . 1
thick. Black resin encapsulated. thick. Black resin
$£ 49.50+$ VAT
Star Devices Mk III 71 key touch sensitive keyboard. With numeric pad. All ASCII characters including control keys. Auto key repeat. Parallel output with with level control. 5 V DC at $300 \mathrm{~mA} 15^{\prime \prime} \times 7^{\prime \prime} \times$ $1.25^{\prime \prime}$. Grey case with white keys on blue $\mathrm{E} 48.50+$ VAT
Carter 57 key ASCII keyboard. Conventional keyboard
128 ASCII characters including 128 ASCII characters including control keys. Parallel outpur with strobe, Shift lock. +5 V and -12 VDC . E39.34 + VAT.
E39.34 + VAT.
FERRANTI $-\cdots$ SIZE $14 \times 6 \times 3$ '" SLOPING FRRRAN
55 Key ASClI Coded in steel case. Complete with Plug and Cable with circuit to convert to T.T.L. levels.

No more slaving over a
is now supplied BUILT! 1 Britains biggest small system is available fully constructed for you to slot into your own housing for the

NASCOM PRODUCT LIST
1/Oboard kit less $1 / 0$ chips 45.00
CTC MK3882 multiple interrup diven
clock generator for $1 / 0$ poard driven
clock generator for $1 / 0$ board
board 1 + interconnect for $1 / 0$
$P / 10$ interconnect only (for $1 / 0$ board)
Econographics kit for additional 128 cha
acters (N 1 only)
$2708 / 2716$ Programmer for Nascom 1 and NAS-SYS
for N1 and N2
Nas-DA disassembler 3 EPROM for Nas-sys
MK 36271 8K BASIC in $8 \mathrm{~K} \times 8$ ROM
Naspen VS in 2 EPROM
Nas-sys monitor in 2 EPROM
Nasbug T2 $1 \times$ EPROM
Nasbug T4 $2 \times$ EPROM
Nasbug T4 $2 \times$ EPROM
Tiny Basic $2 \times$ EPROM
Tiny Basic $2 \times$ EPROM
Super Tiny Basic $3 \times$ EPROM
Super Tiny Basic upgrade $1 \times$ EPROM
Tape Software
ZEAP 1.2 tape and documentation for N
ZEAP 2 tape and documentation for
Nas-sys
8K BASIC tape and documentation for N 1
MEMORIES Discounts 10% for $4,15 \%$ for 8 ,
20% for 16.
MK3880 (280) for NI
MK3880-N4 (Z80A) for N2
MK4116 $16 K \times 1$ dynamic RAM
MK4027 $4 K \times 1$ dynamic RAM
MK $40274 \mathrm{~K} \times 1$ dynamic RAM
$21021 \mathrm{~K} \times 1$ static RAM
$41181 \mathrm{~K} \times 8$ static RAM
Unprogrammed 2708
Unprogrammed 2708
IM6402 UART
$21141 \mathrm{~K}, \times 4$ Static RAM
8080A

EXCLUSIVE TO HENRY'S
$\mathbf{5 0 \%}$ OFF MAKER'S PRICE
for: Soltware selectable 20,40 and 80
TANDY column using 120 mm aluminiumised PET 150 lines per minute.
NASCOM Eentronics parallel data interface for - 240 volt mains input, ASCII character

- Paper feed, and on/off select switches, 'BELL' signal Weight 1 Olbs. Size: $13^{\prime \prime} \times 101 / 2^{\prime \prime} \times 41 / 4$. list price $£ 400$.
New boxed and fully guaranteed

POST PAID Price $£ 195.00$ + VAT
See COMPUTING TODAY Recommendations

Lower case pack, incl. VAT £10.90 Chunky Graphics Pack, incl. VAT $£ 7.50$ 20 Way Keypad, incl. VAT $£ 11.50$ Mini-mother board, incl. VAT $£ 9.95$ Complete Tangerine range available

PLEASE ADD VAT
 ADD VAT 15%
 EXCEPT

WHERE STATED

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.
EXP 325 f 1.60 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars

EXP 350 £3.15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars.

EXP 300 f5. 75 The most widely bought bread-board in the UK With 550 contact
 points, two 40 point bus-bars, the EXP 300 will accept any size IC and up 106×14 pin DIPS. Use this breadboard with
Adventures in Microelectronics
EXP $\mathbf{6 0 0} \mathbf{f 6 . 3 0} \mathrm{Most}$ MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP 650 E3. 60 Has $\cdot 6^{\prime \prime}$ centre
spacing so is perfect for
MICROPROCESSOR applications

EXP 48 © 2.30 Four
more bus-bars in
"snap-on" unit.

The above prices are exclusive of P\&P and 15% VAT.

THE CSC 24 HOUR SERVICE

 TELEPHONE (0799) 21682With your Access, American Express, Barclaycard number and your order will be in the post immediately

CONTINENTAL SPECIALTIES CORPORATION

C.S.C. (UK) LTD.

Dept. 7EE2, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477

You need never be caught out by the weather again The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere. The current drawn from the battery is negligable so it can be left switched on for up to a year!

WOBBLY WIRE GAME

All the fun of the fair, in your own home! Test your skill at building and playing this version of the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY

TESTER

An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.
Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects.
Look at the diagram, select RI, plug it in to the letter numbered holes on the EXPERIMENTOR BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project

YOU WILL NEED

e.g. LED Bar Graph (a previous project) components EXP300 or EXP350
D1 to D15 - Silicon Diodes
R1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes
For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply
take the coupon to your nearest CSC stockist or send direct to us and you will receive "THREE FREE PROJECTS FROM CSC'"
If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT £9. 20

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy
PROTO-BOARD 100 KIT $£ 11.80$

TO RECEIVE YOUR FREE COPY OFPROJECTS 4,5 and 6 .

Just clip the coupon
Give us your name and full postal address (in block capitais). Enclose cheque, postal order or credir card number and expiry date, indicating in the appropriate box(es) the breadboard('s) you require.

For immediate action
The C.S.C. 24 hour, 5 day a week service.

Tolephone 079921882 and give us your Access, American Express or Barclaycard number and your EXPERIMENTOR | EXPERIMENTOR |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BREADBOARDS | CONTACT \(\begin{gathered}IC CAPACITY

14PIN.DIP.\end{gathered} $$
\begin{aligned} & \text { UNIT PRICE INC } \\
& \text { PEPE } 15 \% \text { VAT }\end{aligned}
$$\) OIY

PROTO BOARDS

P86	630	6	$£ 97.73$	
P8100	760	10	$£ 14.72$	

ADDRESS

I enclose chequa/P.O. for £ Debit my Barclaycard. Access American Express card No. . If you missed project No's 1, 2 and 3.
Project 1: Two-Transistor Radio. Project 2: Fish'n'Clicks. Project 3: Led Bar ject 2: Fish'n Clicks. Project 3: Led Bar
Graph tick box For Free catalogue tick box
\square
C.S.C. (UK) Lid. Dept. TEE2 Unit 1 Shire Hill Industrial Estate Saffron Walden Essex CB11 3AQ

WW - 147 FOR FURTHER DETAILS

FT3 NEON FLASH TUBE

High intensity, multi turn. high voltage neon glow discharge flash tube. Designed for ignition tuning, etc. $\mathcal{E 1} .50$ P\&P 25 p
($£ 2.01$ inc. VAT). 3 for $£ 3$. $P \& P 50$ ($£ 4.03$ inc. VAT \& P).

WHY PAY MORE?!

MULTI RANGE METERS TYPQ MF15A. AC/DCC volts 10.50 .250 .500
1000 . Ma. 0-5. 0-10. 0-100. Sensitivity 2000 V . 24 ranges, dimensions $133 \times 93 \times 46 \mathrm{~mm}$. Price $£ 7.00$ plus 50 p $P \& P(£ 8.63$ inc. VAT \& P)

MERCURY SWITCH

Size $27 \mathrm{~m} \times 5 \mathrm{~mm}, 10$ for $£ 5.00$ P\&P
cluding VAT £6.10. Min. quantity 10 .
Heavy dury type $36 \times 15 \times 10 \mathrm{~mm}$.
Minimum quantity $10 . £ 7.50$ post paid
Minimum quantity $10 . £ 7.50$ post paid
$(E 8.83$ inc. VAT \& P). N.M.S.
230 VOLT AC FAN ASSEMBLY powerful continuously rated AC motor complete with 5 blade $61 / 2^{\prime \prime}$ or 4 blade $3^{\prime \prime}$ luminium fan. New reduced price $£ 3.00$ P\&P 65p ($£ 4.20$ inc. VAT \& P). N.M.S.

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230/240V a.c. 50/60 OUTPUT VARIABLE 0-260V

200W 1 amp inc a.c. vol

 1 KVA (5 amp MAX) 2 KVA (10 amp MAX) 3 KVA (15 amp MAX) 5 KVA (25 amp MAX) 10 KVA (50 amp MAX) 7 KVA (75 amp MAX)$£ 14.50$

$$
17.00
$$

$£ 22.50$
$£ 37.00$
$£ 45.50$
$£ 74.00$
$£ 168.00$
$£ 260.00$

3-PHASE VARIABLE VOLTAGE
TRANSFORMERS

3 KVA $($ max. 15 amp$)$
$6 \mathrm{KVA}($ max. 30 amp$)$$\ldots £ 106.43$
$6 \mathrm{KVA}(\max .30 \mathrm{amp}) \ldots .{ }^{1} \mathrm{KVA}(\max , 50 \mathrm{amp}) \ldots .37$
CARRIAGE PACKING \& VAT EXTRA

LT TRANSFORMERS

$13-0-13 \mathrm{~V}$ at 1 amp £2.50 P\&P 50 p ($£ 3.45$ inc VAT)
$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} £ 18.50 \mathrm{P} \& \mathrm{P} \mathrm{E} 1.90$ (£23.46 inc. VAT \& P) $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P} \mathrm{\& P} £ 1.50$ (inc. VAT £18.63) $0-12 \mathrm{~V}$ at 20 amp or $0-24 \mathrm{~V}$ at $10 \mathrm{amp} £ 12.00$ P\&P $£ 1.50$ ($\mathbf{E} 15.53$ inc. VAT \& P)
$0-6 \mathrm{~V} / 12 \mathrm{~V}$ st $10 \mathrm{amp} £ 8.25 \mathrm{P} \& \mathrm{P} £ 1.25$ (inc. VAT $£ 10.93$)
$0-6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at 20 $0.6 \mathrm{~V} / 12 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V} / 20 \mathrm{~V}$ at $20 \mathrm{amp} £ 19.00 \mathrm{P}$ \& P £ $1 . \overline{5} 0$ (E23.58 inc. VAT \& P)
E13.80)

(8)
 New ceramic construction, vitreous enbrush assembly, continuously rated 25 WATT 10, 25, 100, 150, 250, 500, $1 \mathrm{k}, 1.5 \mathrm{k}$ ohm £2.40 Post 20 p ($£ 2.99 \mathrm{inc}$ VAT \& P). 50 WAT 250 ohm 1/5/10/25/50/100/250/300/500/1k/1.5k $2.5 \mathrm{k} / 5 \mathrm{k}$ ohm $£ 5.90$ Post 35 p ($£ 7.90 \mathrm{inc}$ VAT \& P Black Silver Skinted Knob calibrated in Nos $1-9$
 dia brass bush. Ideal for above Rheostats 24p an.

STROBE! STROBE! STROBE!

BLÓWER/VACUUM PUMP
3 phase AC motor, 220/250V or $380 / 440 \mathrm{~V}, 1.425 \mathrm{rpm} / 4$. hp cont. Direct coupled to Willia m Allday Alcosa carbon vane
blower/vacuum pump. 0.9 cfm 8 hg . Price $£ 22.00$ P\&P blower / vacuum pump. 0.9 cfm 8 h
© 2.00 ($£ 27.60$ inc. VAT \& P). N.M.S

MINIATURE UNISELECTOR
12V 11 way 4 bank (3 non-bridging,
homing). $£ 3.00$ P\& 35 p ($£ 3.85$ inc VAT \& P).

MICRO SWITCHES

Sub. Min. Honeywell Lever m / s type 3115 m
These V3 types.
Button Type (Pye) 10 for $\mathbf{£ 3 . 0 0 \text { (} \mathbf { ~ } \mathbf { 3 . 4 5 } \text { incl. } . ~ . ~}$ VAT)
Short Lever type. 16 mp , rating (Grouzet)
$\mathbf{5 4 . 0 0}$ ($£ 4.60$ ind. VAT)
E4.00 (E4.60 incl. VAT).
Roller Type (Bonnella). 10 for $£ 3.50$ ($£ 4.37$

HEAVY DUTY SOLENOID
Mfg by Magnetic Devices. 240V AC
intermittent operation. approx. 2016. pull at 1.25 in Exequip. Tested. Price £4.
75 p P\&P (6.33 inc. VAT \& P) R\& T

12V DC SOLENOID

12 V DC heavy duty Solenoid 4 Kp pull. Easily removable irom plate. Ali, chassis containing $4 \times 24 \mathrm{~V}$ DC Push Solenoids ($11 / 2$ ib approx). 5 -fig Counter. 6 min photo cells Sub-mi!' Microswitches etc. etc. Ex-equip London ranspor
Printer. Price: $£ 9.00+£ 1.00$ p. $\&$ p. (1otal incl. VAT Printer.
E11.50).

TYPE AG/TG

18-24V DC 70 ohm Coil Solenoid. Push or Pull Adjustable travel to $3 / 16 \mathrm{in}$. Fitted with mounting brackets and spark suppressor. Size $100 \times 65 \times 25 \mathrm{~mm}$. Price 3 for $\mathbf{£ 2 . 4 0 +}$ 30 p P\&P (min 3 off) (£3.10 inc. VAT \& P). Westool Series D6 Model A3 24 V D.C. Price £1.50 +50 p P\&P ($£ 2.30$ incl. VAT). Westool Series D4 Model A 24 V D.C Price $£ 1.00+30$ p P\&P ($£ 1.50$ incl. VAT)
INSULATION TESTERS (NEW) Test to IEE spec. Rugged metal construc tion, suitable for bench or field work,
constant speed elutch. Size L. Bin. W. 4 in constant speed clut
H. 6 in , weight 6 lb .
500 VOLTS 500 megohms
£49.00 Post $80 \mathrm{p}(£ 57.27$ inc. VAT \& P)
$\mathbf{1}, 000$ VOLTS 1,000 megohms E55.0
Post 80 p ($£ 64.17 \mathrm{inc}$. VAT \& P). SAE
YET ANOTHER OUTSTANDING OFFER
E1.50 P\&P 50 p . ($£ 2.30$ inc. VAT + P\&P).
Arrow $2 \mathrm{c} / 015 \mathrm{amp}$ £1. 50 ($£ 1.96$ inc. VAT \& P). T.E.C open type $3 \mathrm{c} / 010 \mathrm{amp} £ 1.10$ ($£ 1.50$ inc. VAT \& P).
$3 \mathrm{c} / \mathrm{osealed} 11$ pin base $£ 1.25 \mathrm{P} \& \mathrm{P} 25 \mathrm{p}$ (£1.73 incl. VAT) KMK 1 Relay. $230 \mathrm{VAC} 1 \mathrm{c} /$.o . Open type 10 amp contact

All Mail Orders - Callers Ample parking
Showroom open Monday-Friday

\qquad ballet. ER SERVICE TRADING CO

57 BRIDGMAN ROAD CHISWICK LONDON W4 5BB 01-995 1560 ACCOUNT CUSTOMERS MIN. OROER $£ 10$ N.M.S.
(-2) for $£ 3.75$ post paid ($£ 4.32$ inc. VAT).
DC Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o}$
DC Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} £ 1.00$ ($£ 1.38$
inc VAT \& P). 11 .pin $£ 1.35$ (1.78 inc. VAT $\&$ P) 24 V . inc VAT \& P). 11 -pin $£ 1.35$ ($£ 1.78$ inc. VAT \& P) 24 V Sealed $3 \mathrm{c} / 07 \mathrm{amp} 11 \mathrm{pin} \mathrm{E} .38$ ($£ 1.78 \mathrm{inc}$
(a mps = contact rating) P\&P on any relay 20 p.

Diamond H heavy duty AC relay $230 / 240 \mathrm{~V}$ AC, two c/o
contacts 25 amps res at 250 V AC $£ 2.50$ P \&P 50 p ($£ 3.45$ inc. VAT + P\&P) Special base 50p.
HELLERMAN DÉUTSCH. Hermetically sealed sub.-min. Relay. 12.24 V . D.C. $2 \mathrm{c} / 0850 \mathrm{ohm}$ coil. 0.2 pitch. P.C mounting. L. 20 mm . W. 10 mm . H.' 12 mm . Fraction o
maker's price: $£ 2.50$ post paid ($£ 2.88$ incl. VAT). N.M.S.

METERS (New) - 90 mm DIAMETER AC Amp. TYpe 62T2. O.1A. O-5A, 0.20A. AC
Vote 0.15V 0.300V DC A Votr. 0.15 V . $0-300 \mathrm{~V}$ DC Amp. Type $65 \mathrm{C5}$,
$0-2 \mathrm{~A}, \mathrm{O-10A}$,
$0-20 \mathrm{~A} .0-50 \mathrm{~A}$. DC Volt. 0.15 V , $0-30 \mathrm{~V}$. All types $£ 3.50$ ea + P\&PP 50 p ($£ 4.60$ incl. VAT) $0-50 A D C, 0-100 A D C$. Price $£ 5.00+50 \mathrm{P}$ P\& ($£ 5.94$ inc. VAT).

GEARED MOTORS

 71 DPm WrNSCALE motors approx. 101 b inch.
Above for mors are designed for 110 AC suplied with auto eransformer for 240 V AC operation $£ 7.7 \mathrm{E}$ (P\&P 75 P). Toual incl. VAT \& P
E9.78, N.M.S. E9.78, N.M.S.
19 pm FHP 14.5kg. Gear ratuo $144-1$. Piand new, including capacitors. mf. CITENCO. Price E14.25 $+£ 1.25$
$3 \& P(E 17.83$ inc. VAT. N.M.S.
30 rpm 2301240 V AC 5016 in 30 rpan $230 / 240 \mathrm{VAC} 501 \mathrm{~b}$. in. mf. PARVA
LUX. Price $£ 15.00+£ 1.50$ P $\&$ P ($£ 18.98$ inc.
24V D.C. Reversible Motor
Parvalux type SD12L, 24 D.C. shunt wound Motor. 133 rpm .651 be . in.
Gearbox ratio 30.1 . Current $6-8$ amp. Rating continuous. Will opersie
 VAT N. M.S.
60 ppm 1001 in in rating. Price as above.
100 W Rheostar 1 .
 Single phase split capictiol. 1 mmanse es power.
Totally enclosed. Length 250 mm . Dia. 135 mm . Spindie dia. 15.5 mm . length 145 mm . Tested
Price $E 12.00+E 1.50$ Ps P ($£ 15.53$ inc.VAT). . \& T. Suitabie Translormer for 230.240 V op. Price
ce. $00+750$ P\& (10.05 inc. YAT

 Suitable Transformer for $\mathbf{2 3 0 - 2 4 0 V}$ AC. Price $58.00+£ 1.00$ Psip 12V DC type SD2 Shunt $1 / 30$ th ph continuously rated (12.35 inc . VAT) MAR VA
1 rpm 230/240V AC synchronous geared Motor. Mf. HAYDON. 2 rpm $230 / 240 \mathrm{~V}$ AC Synchronous geared
Motor. M\&. CROUZET. Either type $\mathbf{£ 2 . 9 0}+30 \mathrm{p}$ P\&P Motor. Mf. CROUZET.
(E3.68 inc. VAT). N.M.S.
1.400 rpm 115 V AC Motor. HP $1 / 30$ th continuously rated Fitted with anti-vibration cradle mounting. M1. FRACMO. Complete with Transformer for $230 / 240 \mathrm{~V}$ AC operation 24V DC GEARED MOTOR
24 V DC $200 \mathrm{rpm} 10 \mathrm{lbs} / \mathrm{ins}$ continuously rated geared Motor mfg by either Parvalux or Carter. Easily removable From heavy ali chassis containing $9 \times 24 \mathrm{~V}$ DC Solenoids, nicroswitches, friction clutch, precision gearing, etc, etc Ex-equipment $11.00+£ 2.00$ p. \& p. (total incl. VAT £14.95).

ROTARY CARBON VANE VACUUM

 COMPRESSOR| Oirect coupled to $1 / 3$ h.p. $110 / 115 \mathrm{~V}$ A.C. Motor 4.2 amp .1380 pm |
| :--- |
| Motor manuf. by A.E.I. Pump by Williams. Max. Vac. 25° |
| H.G. |

 Sulable transformer for 240 V op. E10.00 P. \& P. EZ.00 (E13.80 incl
REDUCTION DRIVE GEARBOX
Ratio 72.1 input spindle $\cdot 1 / 4 \times 1 / 2 \mathrm{in}$. Ouput spindle $3 / 6 \times 3 \mathrm{in}$ long. Overall size approx $120 \times 98 \times 68 \mathrm{~mm}$. All metal construction. Ex-equip rested. Price $\mathbf{£ 2 . 0 0}+50 \mathrm{p}$ P\&P
(2.88 inc VAT $\& P$). (2.28 inc VAT \& P).
AC Wkg TUBUULAR CAPACITÖRS

1.5 mid.	440 V AC	60 p	10	mid.	400V AC	
2 mid .	250 VaC	60p	14	mfd.	. 400 V AC	c3.00
2 mfd .	450 VaC	75p	15	mid.	250 V AC	
2.2 mdd .	440 V AC	75p	(b)oc			
3 mid .	440 V AC	£1.00	19	mfd.	280 VaC	E2.00
4.1 mid	440 V AC	E1.00	20	mfd.	250 VAC	c2.25
5 mid.	$\triangle 00 \mathrm{~V}$ AC	61.25	50	mfd.	370 V (block)	
5.3 mid.	160 V AC	60 p				c5.00
5.4 mid.	280 VAC	75p				
6.5 mid.	280 V AC	E1.00			5 mld .25 p	3 mfd .
10.5 mid.	200 V AC	ع1.06				E1.50.
10 mfd .	250 VAC	E1.00	All	us VA		

SPECIAL DISCOUNT FOR BULK ORDERS
VENNER TYPE' ERD TIME SWITĊH $200 / 250 \mathrm{~V}$ AC 30 amp 2 on $/ 2$ off every 24 hrs at any manually pre-set time. 36 -hour spring Electricity Board Specification. Price £9.00. P\&P 75 p (E11.21 inc. VAT). R\&T.
SANGAMO WESTON TIME SWITCH

Type S $251200 / 250$ V AC 2 on 2 off every 24 hours. 20 amps contacts with override switch, diameter $4^{\prime \prime} \times 3^{\prime \prime}$ ", price
$£ 8.00 \mathrm{P} \mathrm{\& P} 50$ p ($£ 9.78$ inc. VAT \& P). Also available with solar dial. R \& T.

PROGRAMME TIMERS

12 Cam Programmer Timers. 240v. A.C. op. Each Cam individually adjustable. Price $£ 7.50$ plus 75 p p\&p. (£9.49 inc. V.A.T.). R\&T
Ditto, 6 adjustable 6 fixed cams. Price $£ 6.00$ plus $75 p$ p\&p (E7.76 inc. V.A.T.) R\&T

MINIATURE PROGRAMMER

Crouzet 1 rm , 115 V AC Motor operating 2 Roller Micr switches (4 amp). Can be used on 240 VAC with either 0.25 mid 250 V Condenser or 5.6 K wirewound Resistor 7 watt
supplied. Frice $£ 2.50+50 \mathrm{p}$. P . $(£ 3.45$ inc supplied. Price $£ 2.50+50$ p P\&P. ($£ 3.45$ inc. VAT P \& P)
N.M.S.

800 WATT DIMMER SWITCH
except fluorescent at mains voliage
$\mathbf{8 3 . 9 0}+50 p \mathrm{P}$ \& P ($\mathbf{\Sigma 5 . 0 6}$ incl. VAT).
M.M.S.- Mow M Mnưtacurara' surplu'

Personal callers oniv
9 Little Newport Street
London WC2H 7JJ
Phone 01-4370576

TELEPRINTER TYPE 7B: Pageprinter 24 v d.c. power supply. Speed 50 bauds per min. S/hand good cond. (no parts broken) C23 or GPO model, as above except motor $110 / 230 \mathrm{v}$ a.c. $£ 28.75$. GPO model also available in 'as new' unused condition $£ 40,25$. GPO model with 5 -hole perforator attachment 'as new' cond. E65. Carriage all types E9. Send S.A.E. for list of Teleprinter spares available. PLUG-IN for TEKTRONIC OSCILLOSCOPE: Type 3B3 Time Base 495. Type 3A6 Dual Trace £95. Carriage extra. AUTO TRANSFORMER: $230 / 155 \mathrm{v} 50 \mathrm{c} / \mathrm{s} 1000$ watts, Mounted in strong steel case $5^{\prime \prime}$ $\times 6^{612^{\prime \prime}} \times 7^{\prime \prime}$. Bitumen impregnated. $\mathbf{c 1 7 . 2 5}+$ carriage. TRANSISTORISED 3 cm RADAR AMPLIFIER SWITCH: with 24 v waveguide switch. $9 \times 4 \mathrm{~cm}$ ins. with crystal CV. 2355 and spark gap VX. 1046. £17.25 $+€ 1$ post. INSULATION TEST SET 0 to 10 KV , negative earth, with lonisation Amplifier, 100/230 Volts AC. $£ 48.87$ + carr. BC-221 FRECUENCY METER: $125-20,000 \mathrm{kc} / \mathrm{s}$ complete with original calibration charts $£ 24.15$ + carr. ROTARY INVERTER TYPE PE-218E: Input 24-28v. DC $80 \mathrm{amps}, 4,800 \mathrm{rpm}$. Output $11 \mathrm{v} . \mathrm{AC} 13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}$. IPh. P.F.9. £23 + carr. RECTIFIER UNIT: 200-250v AC input, 24 v . DC at 26 amps output continuous rating. e40. 25 + cart. MARCONI PLUG-IN TIME BASE UNIT TM6967 E54. RESONATOR PERFORMANCE CTC 4248.5 to $9.0 \mathrm{kmc} / \mathrm{s} 3 \mathrm{~cm}$ € 80.50 + post C 2. INVERTER 24v. DC input 400 cycles 1 pH 6600 r.p.m. 200 v . peak. $£ 8.05+£ 2$ post. OXYGEN BOTTLE 18001b. w.p. E11.50 + carr. NOISE SOURCE UNIT with CV. 1881 noise source mount. Produces thermal poise $15.5 \mathrm{~dB} 200 / 250 \mathrm{v}$. AC 880.50. HS 33 HEADSET. Low imp. $£ 5.35+75$ p post. MUIRHEAD DECADE OSCILLATOR TYPE 890D: $£ 92$ + carr. $£ 5$. SIEMENS POWER METER REL3U/84/Alb: $0-12 \mathrm{kmHz} 1 \mathrm{mw} 500 \mathrm{mw} 6$ ranges, 0.17 dB 50 ohms. $\mathbf{E 9 2}$ + carr. CV. 1596 CATHODE RAY TUBE: (09D, 09G). $4^{\prime \prime}$ screen, green electrostatic base B12B. HT 1200 volts, heater 4 volts $£ 11.50$. RADAR RECEIVING ANTENNA TYPE X443 Mk.D: Sultable for detecting signals on $\mathrm{X}, \mathrm{K}, \mathrm{J}$ and Q bands. $9 \mathrm{~g} \mathrm{~Hz}-60 \mathrm{~g} \mathrm{~Hz}$. Complete with waveguide horns, associated crystals. Transistorised amplifier and geared motor, etc. £143,75. VACUUM \& PRESSURE DEAL TEST EQUIPMENT: complete with 2×4 " gauges -indicating 0.201 lbs p.s.i. $\mathbf{0}$ - 30 lbs vacuum. With stand, hand pump, etc. $\mathbf{e} 34.50+$ carr. BARGAIN MAPS Large stocks of unused U.S.A.F. surplus maps, weather charts, etc. including: ONC-E1 - U.K. in full and part N.W. Europe. Scale 1:1,000,000. JNC-9N - N. Europe, U.K., Scandina vla. Scale 1:2,000,000. JN.2IN - Europe (Mediterranean). Scale 1:2,000,000. SIZE $58^{\prime \prime} \times 42^{\prime \prime}$. colour. Many others. Please send S A.E. for Ilst. Price each 75p (inc. P\&P) $25 \times$ Maps (either same type OR assorted), $\mathbf{C 1 0}+£ 160$ P\&P. $10 \times$ Maps (either same type OR assorted), 66.50 (in. P\&P). All prices include VAT at 15% Carrlage quotes given are for 50 -mile radius of Merts. W. MILLS The Maltings, Station Road SAWBRIDGEWORTH, Herts. Tel: Bishop's Stortford (0279) 725872				

OMIO SCIEMTIFIC Superband 2. Assembled 50 Hz_{2} model $\varepsilon 159.05$ + VAT. post froo. Colourboard 2 (the naw colour version of Supertoard 2) $\mathrm{E} 205+$ $15 \times$ VAT, \square SiNCLAIR PRODUCT: Now 10MHz scope E145. pfm 200 ES1.05, case E2.07, adaptor £4.20. dm 350 € 76.70 , dm4 50 € 102.17. dm235 EE5.B6, rechargeable batts CE . adaptor $\mathrm{C4} 4.20$, case C 9. COMPUTER GAMES. Chess champion 6 E49.es. Chess challenger 7 ces. Phillips G 7000 home computer $\mathrm{E133}$. Vidoopoks £12.05. Atari video. computer $\mathbb{C 1 2 9}$. Carridges $£ 14.85$. 5.5p. resistors $1 / 1 \mathrm{~W} 5 \%$ E 1210 to 10 M ip. 0.8 s for $50+$ of one value. 16 V electrolvtics. 5 . 1, 2.5 1022 mf Ep. 100 mt ep. 750 mf 10p. 1 ib feci E1.80. Dalo pen 44 p .40 sq ins pcb 45 p . Poly- Zeners 400 mW E24 2 v 7 to 33 v 7 p .	TV GAMES.AY- $3.8500+$ kit £10.21. AY-3.3800 + kht ©17.24. Stunt eycle chip +kit £18.68. AY. $3-8603$ chip $E 13.63$. TRANSFONMERS $5-0-6 \mathrm{~V} 100 \mathrm{me}$ 80p. 1 ha C2.e0. $9-0.9 \mathrm{~V} 75 \mathrm{ma}$ sop, Le $\mathrm{E2.40}$, 2a E 3.94 . IC ALDDIO AMPS with pcto. JC12 6W E2.08. JC20 fow E3.54. BATEERY ELIMINATORS 3 -way type $6 / 7 / 9 \mathrm{v}$ 300 ma c2.e4. 100 ma radio type with pross siuds 9v E1.77. 9+9v CA. ©s. Car convertor 12v input. outpul $41 / 2 / 6 / 71 / 2 / 9 v 800 \mathrm{maz}$ c3.75. BATERY EUMINATON KITE 100 ma IRdio TYPO: Stablized 8 -way types $3 / 4 / 1 / 6 / 7 / 1 / 9 / 12 / 15 /$ 18v 100 me C2.e0, IAmp E.E.EO. Stabilized power kite 2.18 v 100 ma E2.60, $1.30 \mathrm{v} 1 \mathrm{~A} E 8.75,1.30 \mathrm{v}$ $2 \mathrm{~A} £ 12.10$. 12 v carconvertor $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 \mathrm{~A} £ 1.35$. T-DEC AND CSC BREADBOARDS S-dec E3.78. c2.e4, exp 300 £6.61. exp 350 £3.e2, exp 325 c1.84. EI-PAK AUDIO MODULEE 3450 E27.e0. AL 60 CE. ©2. pa 100 E18.24, spm80 E6.25, bmi80 ce.04. Storeo c23.04. AL30A E4.53. SWANLEY ELECTRONICS Dept. WNW, 32 Gokdeel Red. Swenter, Kene Post 35 p astra. Prices include VAT unless stated. Othcul and overseas orders welcome. Lists 27 p post free. Manl order only.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt $P P$ type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadium Power," plus catalogue.
'Write or call at:
SANDWELL PLANT LT'D
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, London WC2

> Barrie Electronics Ltd.
> 3,THE MINORIES,LONDON EC $3 N$ 1BJ
> TELEPHONE: 01-488 3316/8
> NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED

South Green Works Kennel Lane Billericay Essex CMIl 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360.00*

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

new, gUABANTEED, FULL SPEC. COMPONENTS

L.E.D.S. 125 and . 2 1N4148 Diodes

RED YELLOW or GREEN
$\begin{array}{cc}1+.08 \\ 100+ & .069\end{array}$
$100+$
$1000+$
.02
.016
$1000+.058$
.10
.09

CARBON FILM RESISTORS E12 SERIES
T.I. LOW PROFILE

I.C. SOCKETS

Prices per 100 Larger and Mixed Quantity prices available

25W			
100	off one	type	.70p
500	off one	type	.64p
1000	off one	type	.58p
	off one	type	.90p
500	off one	type	.80p
1000	off one	type	.72p
	$1+$	$100+$	$500+$
8 pin	.075p	.068p	.06p
14 pin	. 09	. 082	. 073
16 pin	. 10	. 096	. 085
18 pin	. 125	. 113	. 10
20 pin	. 14	. 126	. 113
22 pin	. 15	. 135	. 12
24 pin	. 15	. 135	. 12
28 pin	. 16	145	. 125
40pin	24	215	. 19

Please add $£ 1.50$ handling charge and 15% V.A.T
We also stock transistors, diodes. TTL. CMOS, capacitors, instrument cases, switches, connectors etc. Free trade catalogue available. Al enquiries welcome.

MABilSON BBOS.
ELECTAONICIDISTAISUTORS
22 Mitton Road, Westcliff-on-Sea, Essex
Telephone: Southend 32338

Marshall's

We are old established specialist electronic component distributors carrying a very wide range of quality stock. We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Texas; Thomson; CSF etc.

Send for our latest 60 page catalogue.
Free to industrial customers: 65p post paid to private individuals.

New lines not yet in catalogue are new range Sinclair (Thandor) meters; Crimson Elektrik High F Modules; Rechargeable Nickel/ Cadmium Batteries; Send S.A.E for details.
A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London N.W. 64 TA.

Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

ROHDE \& SCHWARZ
 TV Demodulator. AMF. $55-90 \mathrm{MHz}$
 Selective UHF V/Meter. Bands A \& 5. USVF Selectomat Voltmeter USWV. £450.
 UHF Sig. Gen type SDR O.3-1 GHz. £750.
 UHF Signal Generator SCH. E175.
 XUD Decade Synthesizer \& Exciter. Videoskop SWOF with sideband adapter
 Modulator/Demodulator BN 17950 /2.
 Video Test Signal Generator type SPF.
 UHF Sig. Gen. type SCR. $1 \cdot 1.9 \mathrm{GHz}$.

MARCONI

TF2360R TV Transmitter Sideband Analyser.
TF2360R TV Transmitter Sideband
TM6936R UHF Converter to
TF1101 RC oscillators $\mathbf{E 6 5}$.
TF 109920 MHz sweep generator
TF 10418 Valve Voltmeter $£ 65$.
TF1152A/1. Power meter. 25W: $500 \mathrm{MHz}, ~ £ 75$.
TF 1020A Power Meter. $100 \mathrm{~W} .250 \mathrm{MHz} . £ 85$.
TF890A/1 RF Test Set. $£ 395$
TF 1400 Pulse Generator $£ 65$.
TF675F Pulse Generator
TF1066 AM/FM Signal Generator. $£ 550$.
BECKMAN TURNS COUNTER DIALS
Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.
KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. 5.16000Hz Spectrum Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosions etc. Supplied in excellent condition with handbooks.

ADVANCE CONSTANT VOLTAGE TRANSFORMERS
 Input 190-260V AC. Output constant

 220 Volts. $250 \mathrm{~W} . £ 25$. ($£ 2$ carriage)
PYE RESISTANCE BOXES

5 decade resistance boxes measuring from
11.111 ohm to 0.001 ohm
£20

LABORATORY OVENS. - Gallenkamp. 3 cu

 f. £145. Also Morgan Grundy 1 cu. ft . $£ 55$. 20-WAY JACK SOCKET STR'IPS. 3 pole type with two normally closed contacts. $£ \mathbf{2} .50$ each ($+25 p$ pp). Type 316 three pole plugs for above $-20 p$ ea. (pp free)
P. F. RALFE ELECTRONICS

10 Chapel street, London, nw1
TEL: 01-723 8753

AIRMEC Display oscilloscope 4 beam
AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V
LEVELL TG66A- 1 Decade oscillato
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc
vjbration testing etc.
SOLARTRON CD 1740 Dual-Beam Oscilloscope. $£ 475$.
SOLARTRON CD 1740 Dual-Beam Oscilloscope. £475.
GERTSCH Frequency Meter and Dev. Meter. $20-1000 \mathrm{MHz}$ £ 350.
HEWLETT PACKARD 302A Wave Analyser.
HEWLETT PACKARD 695A Sweep Oscillator $£ 350$.
BOONTON 202H AM / FM Signal Generator
SE Labs Dual-Beam oscilloscope type EM 102 c/w EM 515 plug-in unit. DC- 15 MHz . Mains or 12 V Battery operated Solid-state. $8 \times 14 \times 18$ ins. $£ 250+$ VAT

SOLARTRON LM 1420.2 . DVM. 6 ranges to 1 KV .
MUIRHEAD type K-134-A Wave Analyser. Portable
RADIOMETER AFM / 1. Dev/Mod Meter. $3.5-320 \mathrm{M} H z . £ 185$. HEWLETT PACKÄRD 608 C Signal generator. $10-480 \mathrm{MHz}$
WEINSHEL Power supply Modulator type MO3
BRUEL \& KJOER type 1504 Deviation Bridge
BRUEL \& KJOER Vibration equipment 1018
BRUEL \& KJOER Frequency analyser 2105
BRUEL \& KJOER Microphone amplifier 2603 £195.
BRUEL \& KJOER Type 3301 Automatic frequency response recorder 200 Hz . 1750.
recorder 200 Hz . 750 .
MUIRHEAD.PAMETRADA D489EM Wave Analyser
TEKTRONIX 555 scope with plug-ins types CA (2 off), 21, 22 TEKTRONIX 515 A Oscilloscope
TEKTRONIX 545 main frames. E210. Choice of plug-in units extra
TEKTRONIX 585A oscilloscope with ' 82 ' P.I. DC-80MHz
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' quarantee. Calibration and items carry our three months guarantee. Calibration and certificates can be arranged at cosi. Overseas enquiries welcome PLEASE ADD 15% VAT TO ALL PRICES.

DC POWER SUPPLIES

*APT10459/8.12-14V.@5Amps. £25. (£2 p.p.) $10459 / 8.24 \mathrm{~V}$. @ 5 Amps.- €25. (£2 APT
p.)

We can supply the above power supply at any
fixed voltage between 5 V and 36 V at 5 A . $£ 25$.
*Mullard Dual supplies. Brand new with handbook. Pos $\&$ Neg 12 V . at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00+(£ .1$ p.p.)
*FARNELL Current limited. Dimensions $7 \times 5 \times 4$ ins. Following types available. 5 Volts@ 3A. £15.13-17 Volts@2A. £15.27-32 Volts @1A £15. Plus £1.50 each postage.
All the above power supply units are 230 V . AC input and are stabilised and regulated and fused. All are fully tested before despatch and guaranteed in first-class order throughout: As with all our equipment there is a money-back guarantee if not completely satisfied

MODULATION METERS

AIRMEC $2103-300 \mathrm{MHz}$. AM/FM
RADIOMETER AFM/1 3.5-320MHz. AM / FM RACAL 4093.600 MHz . AM / FM

'CENTAUR' INSTRUMENT COOLING FANS

Made by Rotron Holland. These are very high quality. quiet running fans, specially designed for the cooling of all types of electronic equipment. Measures $4.5 \times 4.5 \times 1.5 \mathrm{in}$.
Airflow $90 \mathrm{cu} / \mathrm{ft} / \mathrm{minute}$. These are exequipment fans supplied in excellent condition fully tested before despatch. Prices as follows: $115 \mathrm{~V} . \mathrm{AC}: £ 4.50$. $230 \mathrm{~V} . \mathrm{AV}$. : $£ 5.00$. Small type fans as above but measures $8 \times 8 \times 3.8 \mathrm{~cm}$. $26 \mathrm{cu} / \mathrm{ft} /$ minute. 115 V.AC $£ 4.00$. Carriage on any of the above fans is 35 p ea. Finger guards available for the larger type at 50p each. (RS price for these fans is $£ 12.50$ each!!).

QUANTITY PRICES - SAVE - SAVE - IMMEDIATE DELIVERY INCL. VAT
nEW STOCKS EELOW MANUFACTURERS Fhices. Postuge b packing sdd 50p per order.

-3. 100 tor 40 Deconer. Mullard Driver 10 to 44 Displays by Hemionperac 3 pm . Di 707 (5002 by Heviert-Packerd. Sevon negment ach red diaplay brand now in moter'is corions. TVESOUND Ho

 ducioy 7 segment $0.25^{\text {" }}$ digitis Neon mpe
 100 bor 6140 .

 10 tor $\mathbf{6 8 , 1 0 0 \text { to } \mathrm { C } 7 \mathrm { FO } , 5 0 0 \text { for } 8 3 0 0 \text { . }}$

 E1205 TEXAB, E1.50 ©0, 10 for E12, 100 for 5100.
${ }^{20} 3005580 \mathrm{~V}$ version TO3 power, 10 tor $\mathbf{E 3} .60$
 W. 10 boc 5 Hexis TV power transimors $\mathbf{E 1 . 7 8}$ MC 3 310
 peir 80 p. 10 paine ce, 100 parze EEO. Cantonsor 600 pairs E250 Ex-STock MADIATNOM DETECTORES In Now condition Dow meter 0.150 A . Pon ty with clio with snd scole. Originolty over $£ 25$. OUR PRICE

for E1, 10 for $\varepsilon 4,100$, TV TUMERE by Mullead UHF. 38 mcs size
 E175. 500 tor E750. 1,000 for $\mathrm{C} 1,25$ LP1171 combinod AM/FM IF strip $\mathbb{E 3 . 5 0 \text { . LI }}$ wrt LP1171 Es.50. LP1171 sni 19 gang. 10 pairz lor CEO .100 peirin for celo 5 volr 100 m omp varibbio $1.8-24 \mathrm{~V}$ S5P eo. 10 to CE, 100 for ε e3s, 1,000 for $\mathbf{C 3 0 0}$ MULLARO LP 1157 AM Lunes modules, with LUSTRAPHONE RIBBOW MIKE E1.50, + pre amp on ctresssis $3 \times 2 \times \operatorname{lin}$, 1 Ufor $E 12.80$.
 amplitedow complote with davis and connections ather parts Complete with dass and connections.
0.10 for $\mathrm{CB}, 100$ for $40 \mathrm{p}=5,500$ for 3 Ep ea .

AEvious LINES IM STOCK Type TAFE HEADS Quarrer track, XRPS 18 Record/Reploy XRPS 36 Record/Replay
 GAINS TRAMSFORMERS Gill 200/250V IN $\begin{array}{llll}\text { Type } & \text { Current } & \text { Size } & \\ 12 \mathrm{~V} & 100 \mathrm{~m} / \mathrm{s} & 11 / 2 \times 11 / 2 \times 1 / 2 & \text { Price } \\ 120.95\end{array}$
 6-0.6V $300 \mathrm{~m} / \mathrm{s}$, 10 lise 10% PE HOTO COMDUCTIVE CELL E1.25. High power Cds cell 600 mw for control circulis. Resistance soonm to 4K. Max vole 240. Sire $\mathrm{Z} \times \mathrm{y}$ in. 10 for $\mathrm{E11}, 100$ for E 100 . Sen E1 A5, 10 Ior E11, 100 for E100. Foater Uning. Sing $5 \times 3 \times 2$ in $£ 3$ ce. 10 for $£ 25$. OOP AN MIN AN VABICAP TUMER E9.25 \%. 10 for E10, 100 for EsE. TIE UTAEE 2 AUDIO IC AMPLIFIER TA PIN II. 300 m warts 55 p .en, 10 for $\mathrm{E4.50}$. 100 for ENIFAL ELECTMIC ? Chips with circuit and data E1. 1 It en ca cogozsae 16 pín dil. presotroge up dow ountor 45 p ecth, 25 for E15, 100 for ESO, HELICAL EO TUMN POTS BY M.P.C. 2.5 5% tolerance. Hypa MM 10 S. British made. 47 atms $/ 100 / 220 / 470.1 \mathrm{k} / 2.2 \mathrm{k} / 4.7 \mathrm{k} / 47 \mathrm{k}$. All E3.80. Cuantries: Por $10 \quad \$ 1.60$ os. WIRE WOUND Por 1,000 E1.00 0 . WIRE WOUND MINIATUAE M.P.C. COntrols. 7 ohms $2.2 \mathrm{k} \quad$ Per 10 Goch
 1k 47 k . 4 .
 $12 v$ pp over 200 ohm E .1 .20 .10 for E 1 me . EAE25 ATE 8 volrage regulators $85 p$ em, 5 volts $00 \mathrm{~m} /$ ampe (rog9) per $10 \varepsilon 4.50$, per 100 \& 38 E PIN low DIL sockets 12 p in also. 8, 1.000 for $\mathrm{Eppon}_{\mathrm{p}}$. 12p, 10 for E1, 100 for HY 由istors Motorola 2N506, 0.8 woh 13p. 10 for 15 Ep en, 100 for 13 p ec, 1,000 UITRASONIC TRANSOUCERS 40 KC s. Pzir E2.05, 10 pairs at E .50 peir, 100 pairs at 20 pebr.

All mail to: 404 Edgware Road London W2 England Phone 01-723 1008 TELEX 262284 TRAMSONICS. AEF, 1400
EXPDRT OADERS add 10% for carriage

It's easy to complain about advertisements.

The Advertising Standards Authority If an advertisement is wrong, we're here to put it right.
A.S.A. Ltel. Brook House. Tormynton Place. London WCIE THN.

Dutchgate

The Hitachi range of Low Cost Portable Oscilloscopes

Dutchgate offer the full range of Hitachi innovative Oscilloscopes each with a two year warranty. These easy to operate oscilloscopes featuring wider width band and integrated circuity offer increased stability, improved reliability and excellent pefformance.
The vast experience gained by Dutchgate as specialists in servicing and maintaining test and measurement instrumentation will be used to effect a fully reliable and efficient after sales service.
Test Dutchgate today - by asking for details of the Hitachi Low Cost Portable Oscilloscopes and then measure the result.

Dutchgate Ltd

Authxiserd iquanls for (9.) Hitachi Denshi (UK) Ltd.
TIMEBASE 94, ALFRISTON GARDENS SHOLING, SOUTHAMPTON Telephone: (0703) 431323

WW 146-FOR FURTHER DETAILS

- AAMESON's

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-723 7851 01-262 5125
ADJACENT TO EDGWARE ROAD MET. LINE STATION

LOW POWER LTTTAANSFORMERS
Clamped, open frame ANSFOR MER
All primaries 26

Type	Sec Taps
1	$15 v$
2	6 wich wice
	6 wisc

$200 \mathrm{~m} / \mathrm{a}$ ea
$50 \mathrm{~m} / \mathrm{a}$ ea
4 amps ea
4 amps ea
$1 y_{2}$ amps ea
$1 y_{s}$ amps ea
1 ampea
Yampea
Ympea
$250 \mathrm{~m} / \mathrm{a}$ ea
$1 / 2 \mathrm{amp}$ ea
1 ampea
1 ampea
$\mathrm{y}_{2} \mathrm{amp}$
2 amps
 pp §

HEAVY DUTY ISOLATIOM TRANSFORMERS

 TRANSFORMERS$240-240 \mathrm{~V}$ UP TO 15 Ampe Large selection available by tamous makers.
Fraction of list price. Please tele fraction of ist price . Patease telephone for
furher dealils. 700 watt type PRI $200-240 \mathrm{v}$ sec 240 O . ODen trame, csble and connec toons E12.50. Carr. £2.50. $240-110$ ov 7.5
amps. Shrouded. Tod panel connections. amps. Shrouded. Top panel connections.
PRI tapped $200-210-220-230-240-250 \mathrm{v}$. Sec trapped $90.100 .110-120 \mathrm{v}$ E19.50 Carr. E4.
AC input $200-220.240 \mathrm{v}$ OC output 112 v or
125 v 3 amps . plus or minus 3% choke! AC
125 v 3 amps. plus or minus 3% choke/
capaction smoothed. FW Selienum rectifica
 masssis 15×9 yins.
RIPLEY TRANS FORMERS
$\begin{aligned} & \text { PRI } 115-230 \mathrm{v} \text { Sec } 24 \mathrm{v} 5 \text { amps twice. Will } \\ & \text { give } 24.0-24 \mathrm{v} .24 \mathrm{v} 10 \mathrm{MBv} 5 \mathrm{a} \text {. Open frame }\end{aligned}$
gype. Designed for drop-thru mounting
$\begin{aligned} & \text { Easily adapled for normal mounting. ©8.60 } \\ & \text { PPE1.50. }\end{aligned}$

AMOS C CORE TRANSFORMERS PRI 220.240v SEC 140 v centre taped 10
amps $(70-0.70 \mathrm{v} 10 \mathrm{~A})$ size $7 \mathrm{x} 7 \times 7 \mathrm{7ins}$ £ 35
 220.240 v sec tapped $29.30-33.34 \mathrm{v} 15$ amps $\mathbf{C 2 0} \mathrm{pp} \mathrm{E}$.

B R MEAVY DUTY RELAYS TYPE of
New and boxed traction of maker's price Now and boxed fraction of gnaker's price coll
volts 24 V oC 2240 V 26 amp makes. 2 240 V 10 amp makes $\mathbf{E 1 . 5 0} \mathrm{pp} 30 \mathrm{p}$.

AEI 20 AMP CONTACTORS BRAND NEW EOXED FRACTION OF MAKER'S PRICE

AUTO STEPDOWN TRANSFORMERS
FOR AMERICAN EQUIPMENT $240 / 110$ volts 80.2250 watts. Regula stock line. Wully shrouded. titted with American wo or three pin socket outlets, .nd
onree core 240 m mains load. Send S A.E. Tor price fist and further details. American plugs sockets. adaprọts also available. VARIABLE TRANSFDRMERS input 240 v output 0.250 v 5 amp ype
E27.50 carr. £ $2.21 / 2$ amp type $£ 18.75$ carr. $£ 27.50$ carr. $£ 2.21 / 2$ amp type $£ 18.75$
$£ 1.50$. Brand new regular stock line. LOW TENSION.HIGH VOLTAGE Pii $220.240 \mathrm{vec} 2-0.2 \mathrm{v} 11$ amps. 25 KV WKG 68.50 carr . 2200 . Pri 220.240 v sec $7 v 25$ gmps 25 KVOC WKG. £ 20.00 carr.
£4 Pri $220-240 \mathrm{v}$ sec $1.15-0.1 .25 \mathrm{v} 30$ mmps and 6.3 V 5.2 amps 5 KV OC WKG
E 6.00 carr EB .00 carr. £2. Phi 220.240 vsec 2.5 V 35
amps and $0.4-5.6 .3 \mathrm{~V} 12 \mathrm{amps} 10 \mathrm{KV} \mathrm{AC}$ amps and 0.4.5-6.3V 12 amps 10 KV AC WKG e25 cerr ${ }^{\text {EA. Migh tension type PR }}$
$230-240-250 \psi+5 \% \sec 120-0.12$ 1 KVA 15 KV OC KG $£ 65.00$. Cark 55 . AC240V BLOWERS Ex computer equipment perfoct condition. robusily housed in metal frame, overall size
$11 \times 7 \mathrm{x} 7 \mathrm{Ins}$. troutiet size 4×3 ins. Motor specc. 1300 rpm cont, rated, cap start, cap in whh motor, quiet running $£ 4.95$ carr. $£ 2$. HEAVY DUTYISOLATION TRANSFORMERS
240-240V UP TO 15 AMPS
Large selection available by famous makers.
Fiaction of list price. Please tolephone for Fraction of list
turher details.
HIGH CAPACITY ELECTROLYTIC COMPUTER TYPE WITH CLIPS 100 V DC WKG. 10000 MFD 83 V DC WKG £1.35 each pp 35 p each. 5600 MFD 200 V DC WKG E2 pp 50 D .4500 MFD 64 V DC WKG 75 p pp 25 p .3150 MFD 40 V DC WKG
special
TRANSFORMERS BYFAMOUS MALIPRIMARERS
No 1 Gresham sec $43 v 3$-240v No 1 Gresham sec 43 v 3 omps. Fully
tropicalised open type wire connections No 2 Permanks E .95 pD £1.25 No 2 Parmonks sec 30 s 5 emps shrouded No 3 Pri 220.240 v ser 36 v 6 a © open . No 3 Pri 220.240 v sec 36 v 6 a open type lag
board connections $£ 7,50$ carr $£ 1,50$. These transformers are ideal tor amplifier power supplies. Two will give $36.0-36 \mathrm{v} 6$ amps. Special offer for wo 115 inc. cart 12 v twice
8 Cgv twice 10 c twice LOW CURRENT L.T.TRANSFORMERS No 1 sect 65 v 2.2 A and $30-0.30 \mathrm{v} 100 \mathrm{~m} / \mathrm{o}$
tag connections $£ 4 \mathrm{pp} £ 1.25$. No 2 sec 27 v

 No 4 soc tapped 3 3-9-12-27-30-36v 1.8
amps $£ 3.95$ pp $£ 1$. No $5 \sec$ tapped $18-22$.

MEAVY DUTY 'C' CORE
LT. TRANSFORMERS BRAND NEW Fraction of makers price
Primaties $110-220-240 \mathrm{v}$ cont ratin Primaries $110-220-240 \mathrm{cont}$ rating No 1
$\mathrm{sec} 12 v 40 \mathrm{amps} £ 22.50$ carf $\}$. No 2 sec $14 \mathrm{v}+3+11 / 2 \mathrm{v} 40$ amps. Cont rating limited number $£ 25.00$ carr $£ 3$. POTTED TYPE TRANSFORMERS. PRI ¢4.50 pp £ 1.50 .
PRI $22-240 \mathrm{v}$. sec tappod $24-30-32 \mathrm{v} .2$
 volts 10 amps conservatively rated, size 9×7 $x 6$ in 15.00 carr ES^{2}
L.T.SMOOTHING CHOKES Weawy duty open trame type $24 \mathrm{~m} / \mathrm{h} 45$
amps. Terminal block connections. Size amps. Terminal black connetlions. Size
$8 \times 8 \times 8 £ 19.50$ carr. $£ 4$. ' C ' core types 10 amps $£ 3.75 \mathrm{pp}$ E1.25. $15 \mathrm{~m} / \mathrm{h} 3.8$ amps E3.50 pp $\mathrm{f1} 1.25$. Potted lypes $13 \mathrm{~m} / \mathrm{h} 1.15$

 $\mathrm{m} / \mathrm{h} 4 \mathrm{amps} .100 \mathrm{~m} / \mathrm{h} / 4, \mathrm{cmp}$ to c 3.95 cart £1.50. HT chokes $4 \mathrm{H} 250 \mathrm{~m} / \mathrm{a} £ 3 \mathrm{pp} \mathrm{E} 1.5$
$\mathrm{H} 150 \mathrm{~m} / \mathrm{s} £ 2 \mathrm{po} 75 \mathrm{p} .15 \mathrm{H} 75 \mathrm{~m} / \mathrm{a} £ 1.50$

AC WKG BLOCK CAPACITORS BY FAMOUS MANUFACTURERS		
MFD	Volts	Price
075	440 vaC	50 p
1	470 vaC	60p
1.25	360vac	65p
2	400vac	75p
2.4	360 vaC	75p
2.5	360 VAC	75p
2.7+0.1	700 vaC	E1.2
3	440 AC	¢1.00
4	250vAC	¢1.00
5	360vac	61.25
6	440 VaC	¢1.50
7.2	$440 v a C$	¢1.56
8.4	250vac	¢1.00

PP up to 2.5 A
$+8 \%$ on total.

OIL FILLED PAPER BLOCK CAPACITORS
MFD 350V OC WKG $70{ }^{\circ} \mathrm{C} 75$ - 4 MFD 1000 V DC WKG $60^{\circ} \mathrm{C}$ E1 6 MFD 350 V DC WKG $70^{\circ} \mathrm{C} 75 \mathrm{P} 2 \mathrm{MFD} 1500 \mathrm{~V}$ DC WKG $70^{\circ} \mathrm{C} 7502 \mathrm{MFD} 750 \mathrm{~V}$ OC WKG 60 C .
Please add 20 o
each postage 2 MFO 200 V Piease add 20 p each postage. 2 MFO 200 V
OC WKG $70^{\circ} \mathrm{C}$ three tor $£ 1.00 \mathrm{pp} 25 \mathrm{p}$. MFD 600 V OC WKG $70^{\circ} \mathrm{C}$ three for $£ 1.00$ pD 25p O. 1 MFD 3000V OC WKG 75p pp

Getting-orgot-yourown personal computer? Then for your own personal satisfaction, get Practical Computing.

Month after month, it helps you cut the costs and yet get the utmost out of personal computing. Choosing hardware; buying software; writing programmes; getting to know microcomputer terminology - here are the essential basics, crisp and clear. But that's only the start. Going deeper Practical Computing gives you exhaustive test This Month:
A review of bulk storage devices. How to finance a micro business. Basic languages available for Nascom. Reviews: Nascom 2, Commodore Database, Superbrain. As part of a continuous programme we show you how to write the assembly language for the 6502 and 8080 and much, much more.
June issue out now, 50p.
From your newsagent - or post this coupon now.
To: Subscription Servicing, IPC Business Press Ltd., Oakfield House, Perrymount
Road, Haywards Heath, West Sussex, RH16 2HD
Please post me a copy of Practical Computing every month for a year. lenclose cheque/p.o. for $£ 6$ (inclusive) payable to IPC Business Press Lid.
Name.
Address

TV gamens loading microcomputers; programmes for computer using Apple, Commodore Pet and Tandy; and valuable overall

LIKE TO GET STUCK IN?

Joining HORIZON EXPLORATION LIMITED - the wholly British and rapidly expanding oil exploration com-pany-in the electronics field, will let you do just that!

Do you have plenty of drive, a preference for the less conventional work routine and common sense to add to your B.Sc. H.N.C. or equivalent qualifications?

If so we can offer plenty of job satisfaction in the U.K. and Overseas with our Land Crews who work as șmall units enjoying considerable independence. Good starting salaries based on experience and qualifications, (with promotion graded to performance) are offered to engineers wishing to apply their knowledge in a highly practical environment. Land Crew vacancies would possibly be móre suitable to the single person in view of the mobile and sometimes unpredictable nature of the work.

If you have a current driving licence, are young, healthy and enthusiastic and don't want a $9-5$ job, why not apply for an application form to the Personnel Supervisor, Horizon Exploration Limited, Horizon House, Azalea Drive, Swanley, Kent. Telephone: Swanley 68011.

CHILTERN ELECTRONICS B.C.M. BOX 8085 LONDON WC1V 6XX TEL: 0494714483

PDP8 COMPUTERS

Latest version PDP8E with 16 K Core memory and teletype card
£700
PDP8L Processors with $4 K$ Memory and teletype cards
£250
PDP8L Processors with 12 K Memory and teletype cards
£400
All above are complete computers ready to use, software includes BASIC. FORTRAN and other languages. All use standard TTL logic, and are compact table-top machines We hold a full range of spare modules for all DEC PDP8 computers, please telephone your requirements.
TERMINALS
G.E. Terminet - Identical to ICL Termiprinter - modern miçro controlled $30 \mathrm{ch} / \mathrm{sec}$ silent terminals printing high quality upper and lower case ASCII. Use standard paper, RS232 / V24 interface
KSR £300

Receive only 200
ASR33 Teletypes in excellent condition £320
Card readers - Brand new 600 cards / min £350
Qume model Q-30 Daisy wheel printer £425
Elliott $250 \mathrm{ch} / \mathrm{sec}$ tape readers, 5-6-7-8 Level £40 INCOTERM SPD 10/25 Intelligent Terminals ... £650 Magnetic Tape Data Logger - records datà from RS232 port onto Computer Standard 7-track tape £200 INCOTERM.Terminal processors - These are in superb instrument case and have 5 and two 12 volt power supplies and are ideal for putting your micro system in. Hundreds of useful parts - cost over $£ 700$. Brand new
£65 Prices exclude VAT

- Available with 14, 16, 24 and 40 contacts.
- Mate with standard IC sockets.
- Fully assembled and tested.
- Integral molded-on strain relief.
- Line-by-line probeability.

Faster and Easier is what we're all about.

* Ex stock-delivery

* Ask for free catalogue

All prices for 1 off. Huge discounts for quantity

AP PRODUCTS INCORPORATED
PO Box 19
SAFFRON WALDEN ESSEX
Tel: (0799) 22036

Compare These Prices!

FLAT RIBBON CABLE ASSEMBLIES WITH DIP CONNECTORS

AP DIP Jumpers are the low-cost, high quality solution for jumpering within a PC board; interconnecting between PC boards, backplanes and motherboards; interfacing Inout/Output signals; and more.
All assemblies use ribbon cable. Standard lengths are 6, 12, 18 , 24 and 36 inches

SINGLE.ENDED DIP JUMPERS
DOUBLEEENDED DIP JUMPERS
Arrow Denotes Pin No. 1

single ended

PINS	$36^{\prime \prime}$
14	$£ 1.75$
16	$£ 1.94$
24	$£ 3.00$
40	$£ 5.03$

PINS	$6^{\prime \prime}$	$12^{\prime \prime}$	$18^{\prime \prime}$	$24^{\prime \prime}$	$36^{\prime \prime}$
14	$£ 1.81$	$£ 1.96$	$£ 2.12$	$£ 2.27$	$£ 2.57$
16	$£ 1.99$	$£ 2.16$	$£ 2.33$	$£ 2.50$	$£ 2.85$
24	$£ 3.11^{\prime}$	$£ 3.38$	$£ 3.64$	$£ 3.90$	$£ 4.43$
40	$£ 5.20$	$£ 5.64$	$£ 6.08$	$£ 6.53$	$£ 7.41$

\section*{ELECTROVALUE GOMPONENTS THAT GOUNT
 | SIEMENS
 SEMI-CONDUCTOR CAPACITORS FERRITES | | NASCOM
 MICRO COMPUTERS AND
 ANCILLARIES | | $\begin{aligned} & \text { VERO } \\ & \text { BOARDS } \\ & \text { CASES \& } \\ & \text { KITS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| ISKRA
 RESISTORS | RADIOHM POTENTIOMETERS | | BREADBOARDS | |
| | | | SOLDER TOOLS | |
| | OP TO, ELECTRONICS | | SWITCHES | catalocue in |

GOOD DISCOUNTS AND FREE POSTAGE ON U.K. ORDERS DVER. E5.75 CDMPUTER-CONTROLLED SERVICE AIDS PRDMPT DELIVERY 128-PAGE CATALDGUE FREE FOAI THE ASKIMG
ELECTROVALUE LTD., 28 (W5). Si. Jude's Road, Englefield Green. Egham, Surrey TW20 OHB. Phone: 33603 (London 87) STD 0784. Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only): 680 Burnage Lane Burnage, Manchester M19 1NA. Phone (061) 4324945

Battle of Britain Wings Appeal
 DURING SEPTEMBER

Please help us maintain our Home for the Permanently and Severely Disabled and our convalescem homes for those Ex R.A.F. men and women who are in need by giving all you can for an emblem during WINGS WEEK or please send us a donation.

Give for those who Gave

Roval Air Forces Association, 43, Grove Park Road, London, W4 3RU (Incorporated by Royal Charter and registered under the War Charities Act 1940 and Charitles Act 1960).

Space donated by.

STEPPING MOTOR XYZ \&

 ROTARY POSITION MACHINES

Mass sampling, PCB drilling, engraving, etc. Under microcomputer control. Software available.
STEPPING MOTOR DRIVES: MPU Interface, with direction control, start/stop and V.F.O
£18.80
F.H. PRECISION ENGIWEERS, 0782643278

WW - 077 FOR FURTHER DETAILS

FUSES Quck acting, Anti surge. Ceramic, from $\mathbf{£ 2 . 8 0}$ per 100. WIREWOUND POWER RESISTORS $5 \mathrm{w}-17 \mathrm{w}$, OR5-39K from £8.50 per 100 .
PCB Guides, self-fixing from $£ 4.86$ per 100.
C.f. RESISTORS, AEL \& Iskra $1 / 8 \mathrm{w}-2 \mathrm{w}$, from $£ 4$ per 1.000

ELMA knobs \& accessories. Crimp (solderless) TERMINALS CABLE SLEEVES \& Markets from $£ 1$ per 1.000
SLEEVING, Neoprene, PVC, Silicone rubber-all colours.
SPECIALLY REDUCED PRICES for C.f. resistors, Polystyrene Capacitors etc, for valves on which we are overstocked. Special list available

Write, phone or call for lists required.

Golden Green, Tonbridge, Kent TN11 OLH Member Crystatate Group.

Will you begetting a Data Converter Kit on September 17th?

Data Conversion Seminar '80

This one day seminar is for Engineers, Managers and Technicians and will convey the important aspects of designing data acquisition systems.

Roy Wells, Head of Data Acquisition at Ferranti Electronics Limited, leads a team of experienced engineers who will present a programme of six papers each giving detailed applications information for a variety of data converter systems.

There will be plenty of opportunity to talk to the team of experts and examine the working demonstrations on display.

In addition, each delegate will receive a Data Converter Kit worth more than $£ 30$ plus a copy of the papers and accompanying slides.

Complete the booking form below or if you require further details ring 061-624 0515, Extension 320.

Venue: The World Trade Centre,
Europe House, East Smithfield, London E1
Date: September 17th 1980.
Lectures include:

- The Principles of Data Conversion
- Applications of a Single-chip,

Charge-balancing DVM

- High Speed 10 -bit Monolithic Data

Conversion Systems

- Analogue Interfacing to Microprocessor Systems
- Testing Data Converters
- A Multi-purpose Data Conversion System

Data Conversion Seminar

The Data Conversion Seminar, including coffee/tea, lunch and your Data Converter Kit costs just $£ 55.00$ plus VAT per person.

Please send me ticket(s)
for your Data Conversion Seminar at
$£ 55.00$ each $+£ 8.25$ VAT ($£ 63.25$ total).

Position
Company
Address

FERRANTI Semiconductors

Telephone

GENERAL AUTOMATION SPC-16/65 system comprising 16 bit 960 nS processor with 32 K words. Twin CAELUS Model 3035 megabyte disc drives, twin WANGCO M odel 109 -track read-after-write tape drives. GENERAL INSTRUMENT Model 500FR fixed disc, REMEX paper tape reader (400 cps) and punch (75 cDs), DOCUMATION M400L 400 cpm card reader, DATA PRINTER CORP. Model V-132 600 lpm line printer, DATA DYNAMICS Model ASR 390 teletype. Equipment is 5 years old and has been used for evaluation purposes only $£ 6,750.00$ APPLE Micro computer system comprising APPLE II + processor with colour graphics facility, single floppy disc drive, CENTRONICS Model colour graphics facility, single floppy disc drive, CENTRONICS Model 101A 165 cps matrix printer, and black and white monitor £1,500.00 TELETYPE Model ASR 33 with 20 mA current loop interface. 110
Baud, remote reader control (which may be disabled by insertion of a jumper), paper tape reader/punch and stand (when available).
TELETYPE Model KSR 33. As above, but without paper tape facility
£175.00
DATA DYNAMICS Model ASR 390. Mechanically identical to ASR 33 but with addition of $240 v$ operation, motor cut-out feature, reader single stop. stand and silencing cover. RS 232 interface. With low hours and in immaculate condition. § $£ 375.00$ DATA DYNAMICS Model ASR 390. As above but BRAND NEW in original cartons, etc. One only DATA DYNAMICS Model KSR 390. As above, but without tape reader and punch. RS 232/V24. 110 Baud. $£ 175.00$ DI/AN Model 9030. Desk-top terminal similar to DEC writer LA36. Upper/lower case matrix printer, up to 300 Baud. Features switchable Baud rate, parity, keyboard and duplex options. $£ 375.00$ G.E. TERMINET terminal. Compact KSR unit operating at 10,20 and 30 cps and with correspondence quality upper/lower case. All ASCII control etc. RS 232. (RO version also available at £275.00). £350.00 TEXAS SILENT 700 terminal. 30 cps dot matrix terminal using thermal paper. With 20 mA current loop interface. £395.00 IBM 735 SELECTRIC terminal. IBM 'Golfball' typewriter fitted with contacts and solenoids for remote operation. (Also available refurbished at $£ 225.00$).
$£ 175.00$
ODHNER accounting machines. These include a standard office SELECTRIC typewriter and are BRAND NEW. Ideal for conversion to terminal use.
£175.00
ITEL Model 841 word processor. Compact table top machine operating with paper tape and using the ${ }^{\circ}$ IBM Selectric (Golfball) typewriter. With full editing facilities, margin control, etc. $£ 350.00$ ITEL Model 1051 serminal. Similar to Model 841 but with addition of RS 232 interface. Available in either SELECTRIC or EBCDIC code

OLIVETII Model 328. ASCII coded terminal with tape reader/punch. Producing correspondence quality print-out. Interface is timed for standard 110 Baud operation, but construction of a simple'circuit (1 transistor and 3 resistors) is required for 20 mA operation. $£ 235.00$ DIABLO SERIES 30 DISC DRIVES. These are offered fully refurbished and may be viewed operating on-line at our premises prior to purchase. 2.5 megabyte removable cartridge version is directly compatible with the DEC RK05 drive for PDP/LSI 11. ... £650.00 As above, but with cartridge removable by engineer rather than operator.
£495.00
VERMONT Model 1004-SE memory drum.
$£ 75.00$
CALCOMP Model T80 Disc Drive. 80 megabyte capacity with all documentation and 3 disc packs. Used for evaluation only. $\quad \$ 750.00$ CDC Disc Drive. Further information awaited, but probably 30 megabytes. BRAND NEW and with trolley if required but WITHOUT heads. $£ 275.00$ PERTEC Model 6840-9-25 9 track PE and NRZI tape drives usually available from stock. $£ 475.00$
CYPHER 7 track NRZI tape drive. £225.00
R:D.L. Model MTD 10.510 tape drive. 7-track, NRZI, 4 to 50 ips . BRAND NEW in original carton, etc. £375.00
PERTEC Model 4311 Key to 9 -rack magtape encoder. 800 bpi.
Portable unit
£195.00
TREND Model PTS incorporating TREND MOdel HSR350 350 cps optical reader and GNT Model 34 punch. Compact unit complete with all power supplies suitable for desk top use or rack mounting. $£ 375.00$ TREND Model HSR350. 350 cps optical reader with TTL interface
£225.00
CDC Model CP CL 892300 lpm line printer $£ 250.00$
POTTER Model LP-3000 High Speed ($\mathbf{3 0 0} \mathrm{lpm}$) line printer
$£ 400.00$
BCL Matrix printer. 120 cps with dual tractors and long platen (in excess of 300 col.). Unused. $£ 550.00$
RENA Model 431 matrix printer.
STELLAVOX Model SP-7 portable stereo tape recorder. With accessories incl. power supply. NiCd batteries and ABR large reels adapter.
£1,200.00

Please note:

- VAT and carriage extra all items.
* Visitors welcome, but by appointment please
* We are keen to bid competitively for all good used equipment.

NEW PRICES ON MEMORIES

2102L-450ns 1 K X 1 SRAM
.55
$2114-300 \mathrm{~ns} 1 \mathrm{~K} \times 4$ SRAM
3.51
2114 -200ns $1 K \times 4$ SRAM
3.86
$4116-200$ ns $16 K \times 1$ DRAM \quad.
2708-450ns $1 \mathrm{~K} \times 8$ EPROM
4.39
2716-450ns $2 \mathrm{~K} \times 8$ EPROM
11.50
Carter ASCII Keyboard
$£ 39.50$
AY-5-1013 UART
2.60
$2102 \mathrm{~L} \times 8450 \mathrm{~ns}$ SRAM
3.85
2114×8 300ns SRAM
24.45
$2114 \times 8200 n s$ SRAM
26.89
$4116 \times 8200 n s$ DRAM
31.35

Please add 50p Postage and 15% VAT to all orders.

[^6]TELECOMMUNICATIONS
$\&$ PROCESS CONTROL
$+$ MICROPROCESSORS NICOMTECH

Microprocessor Consultants and System designers.

We'd like to solve your problems - however small or large they might be.

NICOMTECH
Tel: (07555) 2066
212 St. Stephen's Road, Saltash
Cornwall PL12 4NL

SOME HASF PRICE! ITEMS

TELETEXT DECODERS DRASTICALLY REDUCEDi
Ready-built decoders (based on 'Wireless World' design) from £130.00 + VAT. Other decoders Ready-built decoders (based on Wireless World design
available at $£ 145.00+$ VAT. Kits from $£ 108.95+$ VAT
MANY, MANY PRICE REDUCTIONS including 15% off CSC Breadboarding Equipment. 10% off all Jaybeam Antennas, 10% to 20\% off selected Trio Equipment, 25% off Vero Boards eic 50%. off some discontinued items!

A FEW EXAMPLE BARGAINS

Swan 500 Rx / Tx	¢243.00	40W 2m PA kit		¢20.00
TR 76002 m	¢199.50	TR2200GX 2 m		¢110.00
TR $7200 \mathrm{2m}$	E180.00	FT1012D $\mathrm{R}_{\mathrm{x}} / \mathrm{T} \mathrm{x}$		$¢ 550.00$
DL304 7 seg LED	C4 for 4	2N4440 Transistor		$75 p$
Dipole Centre Insulators	c2.00	Matrix H Decoder		¢48.00
SG402 R.F. Sig. Gen.	£61.50	FT227RB 2 m		¢220.00
CSC PB 100	£10.03	TBA120		70p
CSC PB103	¢29.30	$\mu \mathrm{L} 914$		¢1.40
Snooper Radar Detector	¢66.50	2N6084		£11.20
Trio R300	¢149.50	74S262		¢12.50
6BA6/EF93, 6GK6	75p each	1/4 wave window clip aerial R512 Airband Rx		$¢ 5.00$
2513/CM3021	E7.35			¢143.50
LM3900 73p	BC143	28pea:	BF224	25 pea.
SL6640 ¢4.50	BCY7 1	20p ea.	LM380	92p
ZTX500 13p	CA3130E	80p	MLED500	10p
2N3904 17p	2N2906	21p	CFT455C	69p
2N3906 17p	710	42p	IN4148	3 p

All prices inctude VAT except whert stated but add carriage: $\mathbf{E 4} 50$ Securicor, min 500 post DONT DELAY - ALL ITEMS ARE OFFERED SUBJECY TO AVAILABILITY ANO WHILE STOCRS LASY ONLY
Phone or write for complete list. Pay by Barclaycard. Trustcard, Visacard. Access, Eurocard, Master Charge etc: Cash; Cheque; H.P.; or the New Catronics Creditcharge Card.

BATBDNBS LT. (Dapt. 24) COMMUNICATIONS HOUSE WALLINGTON, SURREY SMG8RG PhONO: O1 SQUARE

Mon.-Fri. 9 a.m.-5.30 p.m. Sats. 1 p.m. Closed lunch 12.45-1.45 p.m.
WW - 24 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers' requirements.

For.full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon. CRO2XX
01-684 1422, 01-6898741

WW - 054 FOR FURTHER DETAILS

PPM3

A FULL SPECIFICATION PEAK PROGRAMME METER DRIVE CIRCUIT FOR UNBALANCED INPUTS

* Meets IEC268-10A. BS5428-9. Accurate law at and between all PPM marks - Attack and decay matching allows use with TWIN movements without pairing - Provides significant economies on mixers, with PPM3s used for the channel meters and PPM2s for the main balanced outputs, as both types will provide identical readings
- Aligned and soak tested seven days on the same equipment as PPM2
- Gold plated edge connector compatible with PPM2
- 24 Volt supply reverse polarity protected
- Two movernents may be driven and slugged operation can be added
- Buils 20 turn presers for zero, f.s.d. and gain

Buil and aligned or as a kit
High quality Emest Tumer movements 640, 642. 643 and TWIN with flush mounting adaptors and illumination kits from stock, photograph in April advertisement PPM2 drive boerds for belanced lines; manufactured under licence from the BBC and approved by the IBA, EBU, BPO and broadcasting organisations overseas for critical programm
available.
Exhibiting at INTERNATIONAL BROADCASTING CONVENTION, Brighton, Sept. 20-23 SURREY ELECTRONICS. The Forge, Luck: Green, Crenleigh, Surrey GUs 7 BG SURREY ELECTR
Tel. 048665997.

Who makes what? And where can you find them? The Trader Year Book tells you. It's the essential guide to buying and selling for busy retailers as well as an invaluable reference work for everyone in the audio/TV/domestic electrical business. Separate sections cover Products, Trade Addresses, Proprietary Names, Wholesalers, Service Agents and Depots, Trade Organisations and Electricity Board Offices. There's lots of technical and legal information too. In short, a book that's good for trade.
ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1980/1

MAIL THIS COUPON NOW

To IPC Electrical-Electronic Press Limited. General Sales Department, Room CP34. Dorset House, Stamford Street. London SE1 glu.
Please send me..........coples of the Electrical and Electronic Trader Year Book 1980/81. I enclose cheque/p.o number to the value of..........((6.50 per copy inclusive) Cheques made payable to IPC Business Press Lid. Name
Address

				Minimum Order E1．00			VALVES VAT IS INCLUDED		
${ }^{41065}$	1．40	Ez80	0.70	UF85	0．05	6 F	1．30	3 OfL 12	1.25
A2293	8.80	E8\％	0．70		． 50		1.15		
	${ }^{9.75}$	G732	${ }^{1.305}$	UM80	－ 0.85	6f23	${ }_{1.75}^{1.75}$	3017	i．10
	0.70	6733	4． 20	UM8 4	0.70	653	10.50	30 P 12	1.15
	0.60		2.30	UY82	0.70	6 GAB	0.90	30 P	1.25
${ }^{812 H}$		${ }_{\text {K776 }}$	3.90 $\mathbf{6 . 3 0}$ $\mathbf{3}$	VR105			0．95		
${ }_{\text {DaF96 }}$	${ }^{1.40}$		－ 6.30°	VR105／30		${ }_{604} 6$	${ }_{1.35}$	351667 $35 W 4$	${ }^{\text {P．80 }}$
DET22	21.95	\％88	${ }^{8.295}$	VR150／3		6 J 4 V	2.00	3524GT	0.80
DF96	0.70		13.80			615	2.30	40 KD 6	15
－${ }^{\text {Ok96 }} \mathrm{DH76}$		${ }_{\text {MLI }}{ }^{\text {M }}$		${ }^{\mathbf{x} 66}$			0.85		
OL92	0．60	N78	9．90	$\times \times 81.6400$		${ }_{6} 6.6$	0.80	75	1.25
Or86／87	0.65	OA2	0.70			6	1.20	75	． 70
oyboz			0.80		3.0		2.9		
E551		PABC80							
E日88CC 101		${ }_{\text {PC86 }}$	0.75 0.98	888014	3.45 3.75	${ }_{6 \times 8 G}^{6 K 7 G}$	0．50	85	＇
			0.95	28	3.9	616 m	280		2.55
E92CC	1.20	900	1．15	29	2.4	6166	2.50	723 A	
	2.80	${ }_{P}^{\text {PCCC88 }}$	－ 0.50	143	0．85	$666 C \mathrm{C}$ 6669	2．10		25
E182CC	4.95	PCC189	1.05	$1 \mathrm{R5}$	0．60	6176	0.85	813	13.30
EA76	2.25	PCFEO	0.80	154	0.45	6118	0.70	82	14.00
EABCB	0.60	PCFE	0.70		0.4		2.95	． 83	
E891	0.60		0.7		0.45	6102	0.7		
	1.15		1.50	104	0.80	607	1．30	${ }^{866 E}$	25
	0.90	PCF87			1.40		1.15		13．80
E6F83	${ }_{0}^{0.60}$	PCFF200	1.60	${ }_{2 \times 25}$	0．e0	${ }^{6567}$	1．15	954	
¢8\％89	0.80	PCFboo	0.50	2×2	1.15	6Sk7	0.05	956	0，60
EC52	0.65	PCF801	1.75		0.70	6SL79	0.8		． 05
Ec91	3.40				0.5			1625	
EC92	． 8	PCF805	2.45	3022	23.00	GSR	10		1.35
ECCB1	0.65	PCFF86	1．20		10.00	${ }^{6507}$	0.95		2．30
－	${ }_{0.65}^{0.60}$	${ }_{\text {PCH200 }}$	2.05 1.35	${ }_{58 / 254 \mathrm{M}}$		${ }_{\text {6VGGT }}$	${ }^{1.50}$	5763	
ECC84	0.60	PCL81	0.75		14.0	6×4	0.75	5933	8．90
ECC85	0.60	PCL		25		6×4	2.10	6057	2.20
	1.40				1，50	6×5			
ECC88	0．80			$58 / 25$		${ }^{6760}$			
ECC189	0.95	L805／			1.30	${ }_{787} 68$	${ }^{0.70}$	6065	3．20
ECF80	0.85	PḊ5016／5		5V4G	0.75 0.75	$7{ }^{7}$	1.15	60	
ECFB2	0.65	硣	4.30	5 536T	0.80	902	0.70	8146	4.95
ECFB01	1.05	PFL200	1.10	523	1.50	906	2.8	6146	
ECH34	2.25		2.80	5246	0.75	$10{ }^{2} 2$	0.85		
${ }_{\text {ECH35 }}$	1.70	PL36	1.25	524 G	． 05	10818	70		80
ECCH	1.20	${ }_{\text {PL81 }}$	0.85 0.70	${ }_{6 \text { 6AB7 }}^{6 / 3012}$	0．90	1110	1．20	68.	14.00
ECH84	－80	PL83	0.80	6aC7	${ }_{\text {－}}^{1.15}$	12 AB	0.70	6973	3．20
ECL	0.70	PL84	0.95	6ag5	0．60	12at6	0.70	71	
	0.75	PL504	1.45	6AH6	1.15	12 T	0.65		
	1.40	PL509	1.95	6AK5	0.65	$12 \mathrm{~A}, 7$	0.60		． 50
EC	0.80	${ }_{\text {PLL519 }}$	2．90	6AK8	0．60	${ }_{12}^{12} 2 \times 6 \times 7$	${ }_{0}^{0.95}$	${ }^{38 P 1}$	11．00
${ }_{\text {ECL36 }}$	1.50	${ }_{\text {PLPO2 }}$	3.20 3.20	${ }_{6 \text { 6AL5 }}^{6}$	－8．85				
Ef	1.25	PY33	0.70	GAM5	4.20	12856	1.25	88.	． 00
	1.25	PY80	0.70	Am6	1.50	12847			
Ef	1.30	PY81／		GANE		$12 \mathrm{C8}$			
	0.65	Pre	0.65		3.40	12 El	8.95		
EF	1.75	PY83	080 0.85 0,85	6405 $6 A 05$	1.00 1.80	12 L 5 GT 12 K 7 GT	0.55	D67．32	
EF866	－． 0.75	Prs50	1．70	6AS6	1.15	12 KBGT	${ }_{0} 0.80$	OG7M9	
EF91	1.50	PY809	6.45	6AT6	0.90	120767	0.80	013.33	
EF	2.90	Pr801		gaub	0.60	$125 \mathrm{SC7}$	0.65		41.80
EF96	－0．65	Qovoz／10			0.85 1.30	125125 1251	0.85 0.70		
EF183	080	aovo3－20	0 A	6 Cax 5	1.3	12507	1．45	\therefore sper a	
EF184	0.80		14.40	6886	0.4	$125076 T$		sper．	
${ }_{\text {EFF804 }}$	4.95	Qav03－25		6Bab	0.55	12 Y 4	0.60		
${ }_{\text {EFF }}^{\text {EFL200 }}$	0.75 1.85 1	Qavor／4	21.20	${ }_{6}^{68666} 6$	0.60 1.80	$\underset{1457}{1306}$	0.80 1.15		
	0.85	a			1.6	19 AO 5	0.85	dcx soom	
	1．10	avo3．12	4．20	6807 A	0.85	1963	11.50	${ }^{8 m} \mathrm{~m}$ Si	
	1．80			6 B	5．20	19	3．50	\％153	
El37	4.40	${ }_{\text {SP61 }}$	i．80	68	5.20 0.90	2004	39.55 0.80	M1400	
EL38	4.60		16.50		0.50		0.85	n1400	
EL41	1.40		1.15	${ }^{6} 66$	0.55	20 EP 1	1.30	nol40	
Et92	0.95 0.70	426 427	1．15	${ }_{6}^{6 \mathrm{CHCL} 6}$	8.20 1.70	${ }_{20 \mathrm{P}}^{20 \mathrm{P}}$	0.65 0.75	CV1597	
EL84	0.80	U191	0.85	${ }_{6 \text { CY5 }}$		20 P 4	1.25		
EL86	0.85	4281	0.70	${ }_{606}$	0.70	$20{ }^{2} 5$	1.35	4 CK 1500	
EL90	1.00	4301	0.65	6EAB	3.20	25669	0.75	日日 189	
EL95		U80\％	11.50	$6 F 6$ 6666	1．80		0.75 0.50		
${ }^{\text {ELL554 }}$	1．70	UBC4	1.20		1.80	30017	0.50	${ }^{6} \mathbf{m m} 2^{2}$	
${ }_{\text {EL509 }}$	1．7．70		－ $\begin{aligned} & \text { 0．75 } \\ & 1.20 \\ & 0\end{aligned}$	${ }_{668 G}^{685}$	0.85	30C18	2．15		
£1821	${ }_{8}^{1.20}$	UBFP60	1．20	－6F12	1.50 1.15	${ }_{3}^{3055}$	1．15		
EL822	9.50 1.60	Ubr89	0．70						
EM	${ }_{0}^{1.85}$	UBL21	1.75						
EM81	0．85	UCC88	－ 0.85			TELEP	HONE	TYPE＂	
EM87	－	\cup ¢ F 80	－ 1.70			al，in met	tal case		
EY51	0.95	${ }_{4}^{4} \mathrm{CHB18}$	0.75			NE MAG	GNETO	SWITC	
EYY81／87	0.65 0.60		0.95 $i .25$			D．Can w	work wi	every t	
EY8887	${ }_{0}^{0.65}$	UF80	0．85			neto tele	phones		
VALVES AND TRANSISTORS					manufa housing				
Telephone enquilies lor valves wansis 7493934 made and export 7430899					INTEGRATED CIRCUITS				
PRICES MAY VARY									
					SN5402	0．28 5N747	74 N	MC6800	8.20
TELUROMETER MRA3 distance measurers					SN5410	－ 32 SN748	505	MC68800	P 9.80
						（e．48 SN74L	185N 1.	MCl 1451 B17024L	$8 A 12.95$ 4.30
					SN707	0．29 SN74	123 N 0	MM6300	133.80
					SN7408	0.18 DM74	123 N 0.	MCM681	DAP 3.40
4 P patape VaI 15\％					SN7445	0.85 SN158	836N0．	6340－1J	${ }^{3.60}$
high vacuum variable capacitors－cer－ TEST SET FT2 for tosting Transceivers A40，A4I，A42 and CPEC26． UNIVERSAL WIRELESS TRAINING SET No 1 Mk 2 YA 8316 to rain 32 operators simulaneousty on key and phone．Complete installatatic packed in 3 spetial transit cases． harness＂a＂a＂e conthol units＂A＂．R＂ ＂J1．＂2，Mrrer mectopho DRUM CABLE COntinuous connection YC 00433					SN7445	（10 SN760	0.13 N 1.	M MC345－5	
					SN7453N 0.18 SN76003N 1.6° AEMAL MASTS Consisting ol 6 sections $6^{\prime} B^{\prime \prime} \times$ $21 / a^{-\cdots}$ dia．Complete with all accessories to arect and				
					$21 / 4$ dia．Complete with all accessories to erect and mstal． Mullard C11．High power installation				
					Mullerd C11．High power installation． 1000W．Technical details and prices available				
					For export only．				
					POSTAGE：£1－£3 30p：£3－£5 40p；				

Tel．01－743 0899 Open Monday to Friday 9－12．30，1．30－5．30 p．m． and on Saturday 9－12．45

NO BATHERIES，NO WIRES．Madi la high Sifety and Teiscommanications standaro．The modern way ，instant 2．way commalcallors．Jusi pluy into power sacko．heady to use．Crysial clear cam－ munications irom roon to room．hange $1 /$ mila on the same mains phasa winh call buzzer and light iarar－aties intercal la surgary and in homet trwe house and parate Also useted as burplor whrm 6 mothe servic
 ＋P\＆P 81.75 －VAT 6.95

Hew improved battery aperaled Telephone Amplifier with delached plug－in speaker．Placiag the receiver inmatian crente activates on／ofl swisch for hand－sil．Many people carsation without hisioing tio miciency in ottice．shop．warkshap．Perlect for conterence calls．lezves the user＇s hands tree to make nolus．consull files．Ho＂holding on＂，save maney and long－datance calis．Volume control． model with conversation recording lacilities．Price E20．95＋VAT C3．15，post and packing for sither
model EI .15 ．

10 days price refund guarantee．Barclaycard and Access welcome
WEST LONDON DIRECT SUPPLIES（WW）
169 KENSINGTON HIGH STREET，LONDON W8 GSN

Z80
 MICROPROCESSORS AT UNBEATABLE PRICES

2．5 MHz	$\mathbf{5 0 +}$
Z80 CPU	3.60
Z80 CTC	2.27
Z80 P10	2.27
Z80 S10	11.51
$\mathbf{4 . 0 ~ M H z}$	
Z80 CPU	4.34
Z80 CTC	2.81
Z80 P10	2.81
Z80 S10	16.94

Prices exclude V．A．T
Delivery 6 weeks from order

Midwich Computer Co．Ltd．
Hillsborough House
9 Churchgate Street，Old Harlow
Essex CM17 0JS
Tel：（0279） 412605

Electronic Brokers No. 1 in Second User Minis \& Peripherals

ASR 33 Teletype
Input/ Outpui terminal incorporating paper tape punch and reader. 64 ASCII upper case character set, 110 baud operation, even party keyboard, chorce of RS 232 or 20 mA mefoce. NOW ONLY L5S5. 5 Options: ICL-type keyboard E 50.00 , 8 th level marking £20.00, Auto reader $£ 25.00$, pedestal $£ 30.00$

HARD COPY

HAZELTINE THERMAL

PRINTER

80 column 30 cps Receive-only printer with parallel TTL input tdeal hard copy atachment for Hazeltine 2000 VDU users. E395.00

DEC EQUIPMENT

KW11P Programmable Clock. £345.00 LA 11-PD Matrix Printer complete with Unibus Controller
£1500.00
MF11L 8KW Parity Core including 9-slot system unit.
£975.00
MM11DP 16KW core - brand new surplus - only
£875.00
MM11LP 8KW Parity Core. . . $£ 750.00$
PDP $11 / 40$ Processor with 48 KW parity core, KT 11 D Memory Management, DL 11 Asynchronous Interface and 6 ft cabinet.
£5250.00.
PDP $11 / 04-M D 9$-slot $51 / 4^{\prime \prime}$ Processor with 28KW Core and DL1 1 W Interface. BRAND NEW SURPLUS.
£4500.00
PDP8E Series Modules - large stocks of option modules, add-on core, CPU boards, etc. all at reduced prices.

HEWLETT PACKARD

983QA Programmable Calculator 8K memory, extended I/O Rom, string variables ROM, 4 peripheral interfaces (1 serial, 3 parallel).
PRICE £2750.00

CENTRONICS 101 A

Heavy dury Matrix Printer with 64 ASCII upper case character set, 165 cps operation, 132 print positions with adjustable tractor feed, 7×9 dot matrix, parallet input E750.00.

TOP QUALITY . . . LOW COST

TERMIPRINTER 7075 RO

Typewriter quality output printer providing full upper and tower case character set. Switch-selectable print speeds of pinfeed platen. RS 232 intertace NOW ONIY $£ 395$ (optional Extra .ntertace cable \& connecior 15.00).

NEW ASCII KEYBOARDS NEW LOW PRICES

KB 771 Superb 71 -station ASCII Keyboard incorporating separate numeric / cursor control pad and installed in custom-built steel enclosure with textured blue enamel finish. Ideal for the VDU builder. Case dimensions $171^{\prime \prime} 4^{\prime \prime} \times 71_{2}^{\prime \prime} \times 35 / 8^{\prime \prime}$. Total weight 4 kg . PRICE
(mail order total £108.10).
£89.50

Mail
Order Tota KB756 56-station ASCII Keyboard mounted on P.C.B. £45.00 £53.48 KB756MF As above, fitted with metal mounting frame for extra rigidity ... £49.50 £58.65 KB710 10-key numeric pad supplied with connecting cable $£ 8.00$ with KB701 Plastic enclosure for KG756.78 KB701 Plastic enclosure for KG756 or KB702 Steel enclosure for KB756 or KB756MF
£18.00 £23.00 K82376 Spare ROM Encoder£12.50 £15.24 KB1.5P Edge connector for KB 756 or KB 756 MF £3.25 £4.31 DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.) £ $£ .50$ DB25S Mating connector for KB771
£4.25 £5.46 PERK 56-station ASCII Keyboard for PET Complete with PET interface, built-in power supply and ste⿻ enclosure f14500 f172 50 Discounts available for quantities

GE TERMINET 1200 RO

High-Speed typewfiter-quality Impact Printer with wich selectable print speeds of 30,60 and 120 cps .80 print positions with adjustable pin-feed paper tractor Fult upper and lower case ASCII character set. Current loop (20 mA) Interface. NOW ONLY $£ 495.00$. (optional extra parity card £50.00)
 high-speed transmission. Silent operation at $10,15 \& 30$ cos. 64 upper case ASCII character set. RS 232 interiace. ع1375.00
Also available Texas 725 KSR Portable Terminal with integral acoustic coupler $\mathbf{E 6 2 5 . 0 0}$

PRINTERS \& TERMINALS

BALL MIRATEL $9^{\prime \prime}$ Monitor with case including space for keyboard £95.00 EMI PM 15/3A $15^{\prime \prime}$ Monitor. BRAND NEW SURPLUS £100.00 HAZELTINE MODULAR ONE SERIES VDUs
Basic Model $£ 425.00$ Edit Model £695.00 Lower Case Option £35.00 Printer Por Option $£ 70.00$
(Other options available on request)
NOW AVAILABLE further large stocks of the popular Hazeltine H1000 and H2000 VDUs.
H1000 (from)
£225.00
H2OOO (from)
$£ 395.00$

MISCELLANEOUS

AMPEX $1^{\prime \prime} \times 3000$ Video Tape $£ 15.00$ data general nova 12104 K CPU
£795.00
DIGITRONICS P135 Paper Tape Punches
£95.00
SHUGART SA400 Minifloppy . £195.00
SHUGART SA800 $8^{\prime \prime}$ Floppy . $£ 395.00$ CLARE KEYBOARD SWITCHES. Special Purchase of top quality Clare SF-Type Reed Switches.

25p.each

Electronic

 Noll 1

 Noll 1}

A.C. VOLTMETERS

 BOONTONTrue R.M.S. Voltmeter 93A £375 BRUEL AND KJAER
Electronic Voltmeter 2409 £225 FLUKE
AC/DC Differential Voltmeter 883AB
True R.M.S. Voltmeter 3400A £415
MARCONI INSTRUMENTS
Log Voltmeter/Amplifier 7563A
A.C. Voltmeter 400 E

8445
A.C. Voltmeter 400 F
A.C. Voltmeter 400 EL

Valve Voltmeter TF 2600
Valve Voltmeter TF 2604
R.F. Millivoltmeter TF 2603

PHILIPS
A.C. Millivoltmeter PM2454B

ANALYSERS

BIOMATION
Logic Analyser 1650D
£3600
GENERAL RADIO
Vibration Analyser 1911 A $£ 1750$
HEWLETT PACKARD
Spectrum Analyser 141T $£ 4350$ c/w 8552A \& 8554L
Logic Analyser 1600A $£ 1350$
MARCONI INSTRUMENTS
Wave Analyser TF 2330A £ 725
SOLARTRON
Frequency Response Analyser $1172 \quad £ 3900$

BRIDGES
A.V.O./B.P.L.

Capacitance Bridge CZ154/5
$£ 995$
BOONTON
VHF 'Q' Meter. 280AP
(210-610 MHz) £650
Inductance Bridge 63H $£ 2750$
GENERAL RADIO
Immitance Bridge 1607 A
LCR Bridge (0.05%) 1608A
MARCONI INSTRUMENTS
Universal Bridge TF 1313
' O ' meter TF1 $245 \mathrm{c} / \mathrm{w}$ TF 1
ROHDE AND SCHWARZ
Inductance Meter LRT
E750
$£ 1195$

Capacitance Meter KRT
WAYNE KERR
£395
A.C. Testamatic A60

Universal Bridge B22 1 (0.1\%)
£1500
£275

D.V.M.SAND D.M.M.S DATRON

$51 / 2$ digit D.V.M. 1051
$£ 995$
FLUKE
$31 / 2$ digit D.M.M. 8022A (New)
$31 / 2$ digit D.M.M. 8020A
$41 / 2$ digit D.M.M. 8600A
$51 / 2$ digit D.M.M. 8800A
51/2 digit D.M.M. 8800A-01
$51 / 2$ digit D.V.M. 8300A
HEWLETT PACKARD
$51 / 2$ digit D.M.M. 3490 A

LEVEL METER D2007
SIEMENS
Carrier-Frequency Level Test Set.
$6 \mathrm{KHz}-18.6 \mathrm{MHz}$.
W2007 + D2007
£1750

PHILIPS

Autoranging D.M.M. PM 2514 $31 / 2$ digit D.M.M.PM 2522 4 digit D.M.M. PM 2524 Autoranging D.M.M. PM 2527 SCHLUMBERGER
SCHLUMBERGER
$51 / 2$ digit D.M.M. A243 Microprocessor D.M.M. 7065 As above with processor option Microprocessor D.M.M. 7055 As above with processor option

Store 4 FM Tape recorder.
4 Track. DC to $20 \mathrm{KHz}, 7$ Speeds,
4 or 14 Channels
$£ 1950^{\circ}$

HEWVLETT PACKARD

Network Analyser System.
$8407 \mathrm{~A}+8412 \mathrm{~A}(110 \mathrm{MHz})$
£2500

OSCILLOSCOPES

COSSOR

35 MHz Dual Trace CDU 150 £395.

HEWLETT PACKARD
75 MHz Dual Trace 1707 A
725

$\begin{array}{ll}75 \mathrm{MHz} \text { Dual Trace 1707A } & £ 725 \\ \text { High Sensitivity Single Trace 130C } & £ 250\end{array}$ 75 MHz Dual Trace 1707B

MARCONI INSTRUMENTS

X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214
£790 PHILIPS
25MHz Dual Trace PM 3212
£625
25 MHz Dual Trace PM 3214
$£ 700$

S.E. LABS

6 Channel Monitor SM1 21
£395

TEKTRONIX
200 MHz D. Trace Portable $475 \quad$ £1790
35 MHz Dual Trace T932 £550
W. Diff. Plug In £295

1A6 Plug in
$£ 295$
$£ 199$

RECORDERS

PHILIPS
Single Channel Recorder PM 8110

49/53 Pancras Road London NW12QB Tel: 01~837 7781. Telex 298694
Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for $\mathbf{1 2 \text { months; computer peripherals for } 3 \text { months. }}$

12-Month Warranty

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

HEWLETT PACKARD
1707B Scope. 75 MHz , Dual Trace and Sweep Delay
$£ 925$

SHANDON SOUTHERN

6 Channel U/V Recorder 10-650
WATANABE
6 Channel Chart Recorder MC 641
YOKOGAWA
Chart Recorder 3047

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator $203 A$
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$
V.H.F. Oscillator 3200B

Decade Oscillator 4204A
U.H.F. Signal Generator 612A
V.H.F. Signal Generator 608F £495
R.F. Sweeper 8620A c/w. 86220 A
R.F. Sweeper 8690 c c/w. 8698 B

8699B and 8694B
S.H.F. Signal Generator 618 C (Mint cond.)

MARCONI INSTRUMENTS
A.F. Oscillator TF 2000
A.F. Oscillator TF 2100
£150
£550
E195
L.F. Oscillator TF 2102/1M1
U.H.F. Signal Generator TF1060/3

Two Tone Source TF 2005R
H.F. Generator TF 144H/4

COSSOR

4100 Scope. 75 MHz Dual Trace Sweep Delay. With new C.R.T. Invariably) £695

HEWLETT PACKARD
 R.F. Sweeper 8601A

$100 \mathrm{KHz}-110 \mathrm{MHz}$. Supplied with Marker Generator 8600A
$€ 1500$ (Pair)

PHILIPS

Function Generator PM 5108
£250
Function Generator PM 5127 Function Generator PM 5167$£ 725$

TELONIC

R.F. Sweeper 2003 c/w 3302, 3331 ,
$3341,3351,3360,3370(1-300 \mathrm{MHz}) £ 1150$

MISCELLANEOUS

ADVANCE

Pulse Generator PG 59 (CT 600) £595 Off Air Frequency Standard OFS 2B £150 AVO
Valve Tester VCM 163
£475

BRADLEY

AC Calibrator 125 B £475
DC Calibrator 126B
$£ 475$
$£ 250$
BRUEL KJAER
Sound Level Meter 2203 \& Microphone 4145
DATALABS
£ 395
Power Line Disturbance Monitor DL019 £300 FLUKE
DC Differential Voltmeter 895A £950 Meter Calibrator 760A / AF £2150 GENERAL RADIO
Sound Level Meter 1933
$£ 1500$

HEWLETT PACKARD

Power Meter 432A \& 478A £450
C Microvolt-ammeter 425A
AC/DC Differential Voltmeter 741B £695
Vector Impedance Meter 4815A £1950
S Parameter Test Set. 8745A £2750
Insulation Resistance Meter 4329A £500
LYONS
Pulse Generator PG 22
£225
MARCONI
M.F. Attenuator TF 2162
£135
A.F. Power Meter TF 893A £185

Transmission Test Set TF 2332 £425
Transmission Test Set TF 2333 £600
P.C.M. Regenerator Test Set OA 2805A £2700
P.C.M. Multiplex Tester TF 2807A £1500

ROHDE AND SCHWARZ
Stereocoder MSC
$£ 850$
SIEMENS
Carrier-Freq. L.M.S. D2021/W2021/G2021
$10 \mathrm{KHz}-25 \mathrm{MHz} \quad £ 1700$
Level Measuring System. D2074/W2074/
G2006
$£ 2600$
TEKTRONIX
Pulse Generator 2101 £420
Time Mark Generator $184 \quad £ 275$
Time Mark Generator 2901 £395
TEXSCAN
Sweep Generator VS 40
$£ 650$
WANDEL \& GOLTERMAN
Level Measuring Set-up. PSM 5. $10 \mathrm{KHz}-36 \mathrm{MHz}$
£1850
PCM Test Set PCM-1 (PCMG-1 \& PCME-1)
£1500
Level Measuring Set-up PSM-4 (OD-4/PM-4/
PS-4) $200 \mathrm{~Hz}-2 \mathrm{MHz}$
$£ 2200$
WAVETEK
Sweep Generator 135
£275
Programmable Phase Meter $755 \quad £ 550$

POWER SUPPLIES

ADVANCE

PMA47.0.15V @ 3A (Presetable). £37
PMA 50.0-15V @ 5A (Presetable). £.45
PMA 53.0-15V @ 10A (Presetable). £65
MG 5-605V @ 60A (Switching). £160
MG5-205V @ 20A (Switching). £120
MG5-105V@10A (Switching). £95
MG24-1224V@12A (Switching). £130 MG24-5 24V @ 5A. (Switching). £95

ONLY SMALL SELECTION

OF OUR VAST STOCKS SHOWN HERE

BRAND NEW!
 TEKTRONIX SCOPES

Model 465B
100 MHz Dual Trace Portable
Quick Delivery
OUR PRICE: £1395

BRAND NEW!
FLUKE D.M.M.s
We now stock all the
8000 Series D.M.M.s
Specs. \& Prices on request

OLIVETTI PRINTER \& KEYBOARD type Te 300

with PUNCH \& READER. Upper case ASCII with V24 Interface 240 volt operation. £125 each INFRA RED IMAGE CONVERTER type 9606 (CV 144)
$13 / 4^{\prime \prime}$ diameter. Requires single low current 3 KV to 6 KV supply. Individually boxed. With data £ 12.50 each P\&P 75p Infra Red Lamps also advertised

STEPPING MOTORS

```
200 Steps - 20.02/ in. torque, 12/24 volt
```


B2S

STEPPING MOTORS

200 operating 3 .wire.

e4 each. P\&P E1.50

BC172 5p	BC2128	5p	74 C 20	25p	2N5449	5p	BC251	5p
BZYB84V7 10p	SN76550	5p	74 COP	25p	2N3053	15p	BC171A	5p
BZY8813V 10p	IC7451	10p	74 C 10	20p	-TIS92	10p	BFT60.	5p
2N3006 5p	MC4001	15p	MC4049	35p	TIS93	10p	4013	30p
1N4305 5p	MC4012	15p	2N3704	8 p	BC337	8p		
BZX79C12 10p	MC4020	75p	2N5447	5p	BC327	8p		
REGULATORS-sll at 45p each. MC7805: 7812; 7815; 7912; 7915. MC1496L - 70p								
16 pin OIL Socket 10p. 14 pin SIL Socket 8p. LED type TIL 209 fed with holder 10p each. SLOTTED OPT SWITCH supplied with data - normally over £2. OUR PRICE 75p each. ROCKER SWITCHES 2 pole c/o-15p each. Spring Action TERMINALS - normally over 30p ea. OUR PRICE $15 p$ each.								
TOROIDAL TRAN each. P\&P 75p. Sub-min TRANS 50p. L.E.D.s Standard	SFORMER ORMER O- White 12p:		$\text { - } 230 \mathrm{~V} \text { Inp }$ input. 1 Yellow	$\text { tit } 13 \text {. }$ $\text { v-0. } 1$	$\mathrm{V}-0-13.5 \mathrm{~V}$ \checkmark rated $4 V$ II White 8	rated 8 Outp	A output $175 p$ each	1.70

MUST CLEAA

We still have a large quantity of TEST GEAR We sili have a arge quantiry of TEST GEAR
OSCILOSCOPES, SIGNAL GENERATORS, ETC., and they are priced to move.
CAILEAS WELCOME, or write, or still, PHONE for details.

MUST CLEAA LARGE QUAMTITY OF PHOTO MULTIPLIERS all with information. British. Approx. 2" window $£ 2$ each. British. Approx. $5^{\prime \prime}$ window $£ 3.50$ each. Amerlcan. Approx. 2" by RCA $£ 6$ each. P\&P all photomultipliers	

709 DIL 14-PIN OPERATIONAL
AMPLIFIERS

MINIATURE

KEYBOARD
Push contacts, marked 0.9 and $A-F$ and 3 Pustional function keys. E1.75 each. P\&PP
op 65p.

MAGNETOS

- Brand New, Boxed

Ex-Ministry
Originally for Ministry aircraft, therefore
finest quality - very reliable.
Ridiculous E4. 75 each

STEPPING MOTORS

North American Phillips, 5 volt 3.3 Amp operation. 2 wire PPS $0-200$ revs per min
$0-250$ used. Tested 16 owh. P\&P. 1.50 . $0-250$ used. Tested $\& 16$ ench. P\&P, £1.50.

mUST CLEAR

POLARAD SPECTRUM

 ANALYSER5° Display. These are supplied with STU- 2
plug: in. 1 to 45 GH

E85 each

TRANSISTOR INVERTOR

115 V AC 1.7 Amp input. Switching is at
20 khz : Output windings from Pot Core. Can be rewound to suit own purpose or unit can be broken for host of components. Circuits
supplied. $£ 1.25$ ench. P\&P $£ 2$.

Convert this unit to a

SUPER BATTERY CHARGER
Attractive green ministry quality case with removable top and bottom plates - heavy dury power swhiches - high powered resistors to control currem1 - good quality centre mounted amp meter - strip of wing nut for connecting leads. ALL THIS FOR £3.50, P\&P $£ 2$. Four Units $£ 12$. Carriage $£ 5$.

STEPPING MOTORS

$6 / 12$ position with additional where the rotor is coils. Device can be used as a tacho. Diagram supplied. Will actualiy
volts, $12 / 24$ recommended.
E 1.50 each P\&P $75 p$ or 5
£ 1.50 each P\&P 75p or 5 for E5 P\&P

4 DIGIT 7 SEGMENT per digit plus a figure one to the leff plus a centre minus sign to the left of the figure one with decimal places between digits. Good brilliance at Miniature 4.7 K PRESE 100 for $£ 2$.
$74100 \mathrm{~N}-75 \mathrm{p}$ each.
TIS 50-10p each MC 4016 - 25 pasch MONSANTO OISPLAY TYP日 MAN 101 A $0.3^{\prime \prime}$ display E 1 oech.

KEYBOARD PAD

Size $3 \times 2^{1 / 2 \times 2^{\prime \prime}}$ high with 12 Alma Reed Switches. Blue keys marked in green 0-9 and a star with one blank. £4 each, P\&P £1, or 5 for £15 P\&P £2.

RXs ${ }_{940}^{770 \mathrm{Mk}} \mathrm{il}$
24 V invertor version SPECIAL GOVT. QUALITY

VERY FEW
OF THESE
PRICE ON APPLICATION

TANTALUM BEAD CAPACITORS. 4.7uf 25 V . 10 off £1; 100 off $£ 7.50$.
TEXAS LOW Profile 4Opin IC Sockets 45 p an.
SMALL TRANSFORMER. 240 V Input. Output 2 windings 12 V and 24 V 1 amp . E 2 each. SO SIMPLE SO SAFE.
Fit a push button CIRCUIT BREAKER Small, compact, 3 ratings $0.8 ; 1: B$ and 10Amp. State which one when ordering. 75p each.
AMP METER $21 / 2^{\prime \prime}$ dia. Scaled $0-60$. Basic 75 MV FSD. Complete with external 60 Amp
Shunt. $£ 2.50$ ea. P . P . 50 . Shunt. £2.50 ea. P\&P £1.50.

DIODES

All new full spec. devices. IN 3063 . BAX 13 IN4148; IS 44.100 off $£ 1.50-1,000$ off $£ 10$.

BLUE THERMAL PAPER
430 ft roll $81 / 2^{\prime \prime}$ wide
£2 per roll. P\&P £ 1.75
VARIACS Ex-Equiprrent Good condtion 8 Amps
20 AMPS

20 AmPS
Some 3 ph
CRYSTALS
19.2 KHZ FLAT METAL CASE - 50 p each. $10 \mathrm{MHZ} \mathrm{87G} \mathrm{50p} \mathrm{each}$.

LOUD HAILERS.

22.5 KV 110 MA E 50 :o

MULTI PURPOSE MAISS TRANSFORMER 4 mndings each
winding 0.1110 .125 al $4 A A$ E15

run on 240 V at $\%$ rating $£ 15 \mathrm{on}$. 2.55 KVA . Could be
 SOHz Qutipul 115 V 1.8 KVA
conservativy reted E 20 oos.
capacion
Cabld 5 kV .

on.

CARRIAGE on Inese unirs will be charged at cost.
INFRA RED
BRIOGERECTIFIER. 2 Amp 50 OE O.

nnectors 0.1

 Sua $1 / 1 / \times 1 /{ }^{1 / 2}$ dia. New 30 an an
MOTOR 12 V OC with pullay and integral semiconductor. Speed COntrol New 1 ET
LEDEX ROTARY SOLENOIDS. 115 V OC. No swich assembly.
DIAPMOND-H CONTROLS ROTARY SWITCM. Singie pole 10 way. Primed Circuit Mount Now 10 p .
DELLY LIME. 50 Onanosecs. 3 connections, groundain-oul. Size 2

Secondary centro topped. New 20p os.
 Usable torque a $5 V$. Max volape $24 V$ High Torque. Reve . OONTT TAKEC CMANCES. Use The Proper EHT CABIE, IOp par motro $\mathbf{E 7 . 5 0}$ Der 100 motre/drum. P8P $£ 2$.
 PMOTOGRAPHIC MAMPs. Peart 230 V 500 wavil Scrow cap

 dovices. 25 ICa for Ct . Pap 50 p . You
we mill buy the intormation trom yout.

OECOUPLING CAPACITORS
0.05 mbd
$10 \mathrm{~V}: 0.01 \mathrm{mld}: ~$
0.1 mma
$50 \mathrm{~V}: 0.047 \mathrm{mla} 250 \mathrm{~V}$. All values E. ...T. CAPACITOR 600 D BKV 20 p anch.
 mecto 10 metras for $\mathbf{C 3}$.

CENTAUR $115 V$ FANS $41 / 2 \times 4 \times 1$ 1h
 duty. 7 pole c / s with 2 second delay. Charge R \& C tor differen
 CONTACTORS. Heavy Outy $24 V$ DC 5 make E1 oach. GEC UHF NHF G-butron Nuner 12 oach.
DIGITAL 24-MOU CLOCK with buit
DIGITAL 24 HOUA Clock with buith In alorm as used in Braun

wndow and builh in resistor network. \&2 each. P\&P $\mathbb{1} 1$. SLIOEA CONTROL SOOW. Log Single track. Complete with
 calibatiod $50-200$ degree $\mathrm{C} E 2.50$ ouch.

5 in solio mubber rings ($1^{\prime \prime}$ dia. rubber). Keep the kids for dog) happy. 4 for $\mathbb{C 1}$ T: P\&P Et .50 . TAANSFORMERS
AUTO 240V inpur 115 V . 1 Amp outpul E1.25 each. P\&P $£ 1.25$. 240 V input. Soc 6 V . 1.68 A Sizi $21 / 2 \times 2 \times 2^{\prime \prime}$. Good quality 240 V input. Boc. i 2 V 0.92 . Size $24 \times 2 \times 2^{\mathrm{L}}$. good quality. C1.50 aech. PRP 1.1 .
240 V inpur 1 240 V inpur 12 V 100 MA . Size $60 \times 40 \times 42 \mathrm{~mm} .50 \mathrm{p}$ wech.
 50 p .
SEMICONDUCTORS
1N4005-5p; 1N4003-3p.
AR 5p
BC14. BC15\%, 8C158, BC237, BF197, OA90. OAB1, 8C148B BA154. ba 243.
Ai 25p eath:

 PD. AE 50p ech. 50p eoch BF $256 \mathrm{C} 20{ }^{2} \mathrm{p}$.
TV AMPLIFR TBA 202

Integrated Circuite	$74 H 74$	$12 p$	75325		
7453	$5 p$	$74 H 51$	$7 p$	$S N 15862$	$4 p$
7451	$5 p$	74538	$10 p$	$M C 4028$	$89 p$
7402	$12 p$	74502	$12 p$	7417	$14 p$
7476	$20 p$	74154	$70 p$	7441	$40 p$
7495	$35 p$	$74 C 02$	$16 p$	$74 C 86$	$50 p$
74122	$12 p$	$74 C 04$	$18 p$	$74 C 161$	$24 p$
$74 C 00$	$17 p$	$74 C 74$	$18 p$		

MOTOROLA DUAL in Line 6 pin Opro Coupler 30p each. Gold plate toster version 50 p aech.
EPROMS 2708 \& 5.50 osch.
TELEPHONES 706 style black or groy E5,50 each. 746 style black or grey $\mathbf{£ 7 . 5 0}$ eech. Older style black $£ 2.50$ emch. P\&P E1. 50 per telephone.
HONE YWELL humid
TMYRISTOR TIMER. Solid State. 5 secs adiustable (reset) in plastic relay casa. Standard 7 -pin base. Series deloy 50 p erch MINIATURE PC MOUNT SLIDE SWITCM. Singie pole 3 -way 10 p each.
VARIACS. 2 amp Siandard 240 Volts e10 each. P\&P C 2. ELECTROSTATIC VILITMETER 8.7 .5 KV ES ench. P\&P E 1.50 . Other ranges avallabie. Please enquire.
ThIMMERS. Sub min. 0.25 to 1.25 pt. 1 to 4.5 pt . 7 to 45 pt . All at $5 p$ aech.
CROWN replacement MOTOR for IGM GOLFBALL TYPEWRITER 115 VoH 50 Hz 1350 rpm . $£ 4.50$ es. P\& $\mathrm{P} £ 2$.
SMITHS Encspsulated transisiorised AUOIBLE WARNING
OEVICES 4 V -12V. Can be driven from TiL 65 .

MINIMUM ORDER £ 3 VALUE OF GOODS. MINIMUM P\&P £1 - where P\&P not stared please use own discretion - excess refunded. CARRIAGE ALL UNITS. £5 P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS.
CALLERS VERY WELCOME STRICTLY BETWEEN 9 am-1pm and $2-5 \mathrm{pm}$ Monday to Saturday inc.
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

The cheapest way to 110 to your computer, 80 column high quality printer, friction feed, serial ASCII in and out, RS232, feather light keyboard, and inbuilt 8 bit paper lape punch and reader. Supplied in good condition with interface data and accessories but untested, unquaranteed What more could you ask for.
1" Paper tape 75p per roll + pp 40 p.
HURRY WHILE STOCKS LAST

DYNAMIC RAM SCOOP!

INTEL $1103 A 18$ pin DIL 150 ns IK Rams
8 for $£ 2.9916$ for $£ 4.99$ 32 for $£ 8.5064$ for $£ 13.99$ 18 pin DIL sockets 8 for $£ 1.60$

VENTEKWORD PROCESSOR

 VDU TERMINALSStill a few available. The VDU with the GREEN screen. Made by the VENTEK Co. with the following spec: $12^{\prime \prime}$ monitor, 24 lines $\times 80$ characters, upper and lower case with descenders, $85+$ keyboard, auto repeat, ASCH. RS232 interface, adjustable baud rates, full cursor control, edit function, characterls) flash eic.,
etc. Latest technology used, mostly 74 LS with etc. Latest
dynamic rams
Supplied in 2 grades
Grade 1 Complete tested and working $\mathbf{\$ 2 7 5 . 0 0}+$ VAT Grade 1 Cornplete tested and working 275.00 + VAT Carriaga Extra
Carriaga Exira
guarantee offered Ansted and working no guarantee offered. Anyone with circuits/

HY GRADE SMOOTHING CAPS
MULLARO-PLESSEY. MALLORY -SPRAGUE
 $10,000 \mathrm{mf} \quad 63 \mathrm{v} 70 \mathrm{p}^{\circ} \mid 1 \mathrm{mf}$ 600v VYLAR 28p
$\begin{array}{llll}100 \mathrm{mf} & 250 \mathrm{v} 45 \mathrm{p} & 2100 \mathrm{mf} & 200 \mathrm{v} \mathrm{C2} .50 \dagger\end{array}$

- Ex equipment tested

SEMICONDUCTOR GRAB BAGS

Amazing value mixed semiconductors, includ

 transistors, digital, linear I.C.'s, triacs, diodes, bridge recs. etc. etc. All devices guaranteed brand new, full $50+$ BAGE2.95 $100+$ BAGS 55.15
MDFFIN Fans

Keep Your equipment Cool and Relibble with our tested ex equipment
"Muthn Fans" almast silent rumning and easily mounted Avalable in wo voltages. 110 V.A.C. $\mathbf{5 5} .05+$ pp 65 p O 240 y A.C. $\mathrm{f6} .15+$ pp 65p Dimensions ${ }^{5}$ F 84 X

ELECTRONIC
 COMPONENTS
 \& EQUIPMENT

ส 6
 DISCOUNT

 which enables us to bring you the best possible Relavs, Cao's., P C.B 's. Sub-assemblies. Switches etc. eic. surplus to our requirernents because we don thave sufficient stocks of any one item 10include in our ads.. We are packing all these tem into the "BARGAINPARCEL OF A LIFETIME Thousands of componetis at give away pricest Gay plus we always include something from our ad for unbearable valuell Sold by weight
2.5 k Is $£ 4.75+p p £ 1.25 \quad 5 \mathrm{k} / \mathrm{f} £ 6.75+p p \mathrm{£} 1.80$ $10 \mathrm{kls} \mathrm{£} 11.75+\rho p \mathrm{£} 2.25 \quad 20 \mathrm{k} / \mathrm{s} £ 19.99+p p £ 4.75$

ISOLATED 240 V 4 AMP $\& 10$ AMP SOLID STATE RELAYS

Interface your MPU etc, with the outside word made by the famous Astralux Co . They consist of a
miniature platic module with mounting hotes conminiature pletic module with mounting hos con-$12-20$ vortas D.C. at a tow milliampe anable on/oH control of A.C. loads up to 10 ampal The 10 amp version shoull be mounted on a heatsink. 100's of tese including power control, lighting, etc, stc.
 4 amp E1.45 10 amp E2.10 complete with circuir

IBM SELECTRIC I//O GOLFBALL TYPEWRITERS
Ideal for word processor applications, will accept a host of different typefaces for a cersion advertised at over fgen. 00 we must De mad asking only $£ 295.00+$ carr. $\&$ VAT
ver Why pay a fortune? Even if your computer fails you still have a tirst class typewrites at your disposall

In stock now test equipment, microprocessors,
transformers, power supplies, scopes, sig. gen's, motors, ransformers, power supplies, scopes, variacs, keyboards, transistors, microswitches, V.D.U's sub-assemblies trange, other stock lines. Just a mere fraction of our displayed below 100's

SUPER 77 KEY KEYBOARD KIT

IL 302/MAN 77 sagment LED common anode direct drive (via
resistors) from 7447 fl 1.10 each TIL 119/OC72 Darlington opto isolator 3 for $£ 1.00$. TIL305 0.3 7 45 matrix LED alphanumeric readouts $£ 3.75$ each. PHOTO TRANSISTOR
Fairchild FPF-100 NPN silicon $30 v$ 25 ma .4 tor $£ 1.00$ AND

DISPLAYIC. ANRGAINS

TRANSIS CHEAPER NEVER CHII

All I.C. $\$$ and Transistors
well known manufacturers and fully
guaranteed. No fall outs. Comprehensive
data on l. C. s ' $15 p$ per rype.
2N4351 N channel MOS FET
60p each f1 00 per pas
60p each C1.00 per pair.
HIGH VOLTAGE NPN POWER
SWITCHING transistors BVcbo 600 V BVceo 500 V BVebo 15 V 1 c 5 amps BVceo 500 v BVebo $15 v / \mathrm{c} 5 \mathrm{amps}$
Pc 125 watts HFE 60 ivp ft 2.5 mhz ideal invertors, etc. TO3 £1. 60 each ideal invertors, etc.
4 for $\mathbb{} 5.40$.
BF258 NPN $250 v @ 200 \mathrm{ma} 45 \mathrm{peac}$ 3 for $\mathrm{E1} 1.08$.
I.R. BSB0i 2.5 amp 100 v bridge rec.
P.C. mount long leads 35 p each 4 for〔1. 08.
iN4998 4 amp 100v P.C. mount diodes long leads 14 p each 10 for C 1.10 .
LM309K +5 v 1.2 amp regulator $£ 1.10$
each 6 for f 5.35 .
plete with library cases 68 peach, 10 for 65.50 plete with ibrary cases 68 peach, 10 for $\mathrm{E5}$.
IN4004 SD4 1 amp 400 v diodes 7 p each 18 for C 1.00
each 18 for 11.00 .
I.R. 12 mmp BRIDGE RECS. 400 voll
f1. 25 each.
POWE OARLINGTON SCOOP!
MU1000 MPN 60 y 30 w 8 amps T03 95 p each
2 W6385 NPN BRy 100 w 10 amps T03 $£ 1.25$ each
M4030 NPN 60v 150 w 16 amps 103 f 2.25 each
DECADE 0.9 THUMBWHEEL SWITCHE
dim. $33 \times 43 \times 8 \mathrm{~mm}$. 90 p each, 10 for $£ 5.50$
Miniature Continental Serles 12 VDC $4 \mathrm{c} / 0$
Miniature Continental Serles $12 \mathrm{VDC} 4 \mathrm{c} /$ o plug in relays E 1.30 each.
Greenpar 50Ω BNC Chass. socket single hole fixing 65 p
Greenpar 50Ω BNC Chass. socket single hole fixing 65p
C90 Audio Cassettes screw iype construction $45 p$
C90 Audio Cassettes screw iype construction 45 p each 3 for f1.00.
Bulbs 24 v 14 watt white frosted S.B.C. 8 for $£ 1.00$.
Bulbs 12 v 100 watt clear, base similar S.B.C. 45 p each
S.B.C. Bulb Holders All steel cad. plated panel mount easily fixed via nut and
round hole, ideal disco displays. scoreboards, etc. 4 for $£ \uparrow .10$.
VMOS VMPI Siliconix T03 power FET 0-60v, DC-200 mhz will drive direc
from CMOS etc, $£ 1.50$ each, full date 30 p
Heavy Duty Flat Insulated Earth Braid 100.200 amp braided tinned copper in heaw clear PVC sheath 50 p per metre. f6 for 15 metres + PP fl per 15 metres. BULGIN miniature 6 way male chassis mount socket and natching free plug 60 p each, 2 for f 1.10
Red L.E.D.'s full spec. 0.214 p each. 10 for E 1.25
Red L.E.D.'s $0^{0.125} 10$ p each 10 for 80 p
min jack plug f1 15 each 10 for 510.00
TOS HEATSINKS "Therm

BURROUGHS SELF SCAN DISPLAYS

A masterpiece of electronic engineering. This unit could be described as a miniature character generator and decoder driver circuitry, all measuring only $8.5^{\circ} \times 2.25^{\circ} \times 1.34^{*}$ By inputing a 6 bit ASCII T.T.L. code 18 GIANT 0.4* full alpha numeric characters may be displayed simultaneously, addition of external logic enables the unit to scroll along just like a newscaster. Internal 64 character
repertoire, or external inputs for special characters repertoire, or external inputs for special characters
 2W5061 60v 800 ma T018 27 g each 4 for $\mathbf{f 1 . 0 0}$ $2 \mathrm{mach1} 50 \mathrm{y} 8$ amps PO 22045 p each 10 tor 54.00 C10501400v 5 amps TO202 55p each 10 lor 55.00 G.E. 12 amp 600w TO220AB 95 p each 10 for f0. 7 E.C.C. I. 6 amp 400w TOS 38p each 3 for $£ 100$ A E.I. 10 amp 400 v ready mounted on $2 \psi^{\prime \prime} \times 24^{-}$ LOW PROFILEIC. SOCKETS $80.1 . \mathrm{L}$. IOp each 12 for fl.00 14 D.I.L. 14 p each 8 for f 100 I6 0.1.L. Gold Plared mil grade 22 peach 6 lor $f 1.0$ 24 DI.L. 35 p each 3 lor f f 1.00
OTHER GOODIES
2N3055 (R.C.C.I 65 peach
2R5093 R.F. output 40 vol T.0.5 550 each 10 for $\$ 5.00$
 LM3somsL6051 14 D.I.L. 2 watt A F. amp 80p each 8 for f6.00
CA30288 OC. 120 MHZ differ enlialicascode amp CA.00 each 3 tor $£ 2.50$
CA3011 20 MHZ wideband amp ro99 case 65p each 2 for f 1.00
TMS3114 OUAL
ThS MHZ OUAL MOS 128 bit static shift reg OC ME555 10 for $£ 2.55$
GE555 10 for f 2.55
T05 can $\mathrm{fl}, 10$ each 7 for f 6.50
FSA2719 8 independent dades IN4148, ING14 trpe in 160 ILL . pack 38 p each 3 for £ 1.00 POU125 \& NPN 50 v 500 ma transistors in
L. pack 70p each 2 for $\{1$ If 100
are provid
and 250 v .

In our walk round Warehouse
NOW open Monday to Saturday $9.30-5.30$

Dept. WW, 6466 Melfort Rd, Thornton Heath, Surrey. MAIL ORDER Telephone 01-689 7702 or 01-689 6800 INFORMATION
Unless other Nise stated all prices inclusive of VAT. Cash with order. Minimu order value $£ 2.00$. Prices and Postage quoted for UK only. Where post and packing not indicated please add 40p per order. Bona Fide account orders minimum £ 10.00 . Export and trade enquiries welcome. Orders despatched same day where possible. Access and Barclaycard Visa welcome.

Supplied brand now, $£ 55.00+$ £1.25pp
BARGAINS GALOREI
 with our high efficiency radial snall type blowers. Made by Smiths, designed for continuous use in expensive
massive air
reliability.
reliabilitv. E
2 + $^{+}$. 3^{+}. Ideal line mounted compo
Plase stare 240 y or 110 y .
Plasse stase 240 v or 1
openation. 50 hz only.
pention. 50 hz ont
v

BRAND
1.55
$P P$

Victoria, London Bridge or Holbor Viaduct to Thornton Heath 1 minute from Thornton Heath Station

MONEY SAVING BARGAIN EX-STOCK FROM US

J.V.C. | BEIT DRVEN |
| :---: |
| TUNATREBE |

with stereo magnetic AUDIŌ TECCHNICA CARTRIDGE

LIST PRICE OVER £50

J.V.C. turntable supplied complete with an Audio Technica AT10 stereo magnetic cartridge.

* 'S' shaped tone arm. Belt driven. * Full-size $12^{\prime \prime}$ platter.
* Calibrated counter balance
weight (0.3 grms .)
- Anti-skate (bias) device
- Size $12^{3 / 8^{\prime \prime}} \times 15^{3 / 4}$
* Modern design.

GEC quallity Stereo

$10+10$ watt AMPLIFIER WITH AM/FM STEREO TUNER IDEAL FOR THE HOME A cancelled export order brings you this offer from the worldfamous firm of G.E.C.
AM/FM stereo Tuner Amplifier
Ready buill. Tuner/pro-amp. board and separale power supply/power amp. board
Rotary Controls: Tuning. on/oH valume, balance. Ireble. bass. Sterao Beacon indicaior.
Push-button Controls. Push-button Controls. Mono. Tape. Dist. A.F.C - F.M. ((HFF). LW. MW. SW. WIRING DAAGAAM SUPPLIED
Power Dutput: 1 watts RMS per channel, al beller than 2% THD into 8 ohms. 10 watts speach and music.
Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{KHz}$ wilhis ± 308. Tape Sensitivity: 0 utput - typically 150 mv . In put 300 mm lor raled cutput. Disc Sensitivity: 100 miv [ceramic cartridge] Radio: FM (VHF) $87.5 \mathrm{MHz} \cdot 108 \mathrm{MHz}$
Long Wave 145 KHz .265 kHz
 Short wave 5 KKHz-15M Short Wave 5.8KHz-16M Mz Size: Tuner -2 , in in . $\times 15 \mathrm{in}$. $\times 7 \mathrm{him}$. Power Amp -2 in ,

CAR STEREO CASSETTE MECHANISM made for MOTOROLA

\star Front loading 12 -volt transistorised	\star Limited stocks	ONLY 57.50
\star Speed and voltage control \star Uses standard C60 cassettes Ex-equipment tested - guaranteed INC. VAT POST 80p		

Limited stocks Superb Value Don't delay order one today

WW 144-FOR FURTHER DETAILS

HIGH PERFORMANCE BUT LOW COSTAUDIO SIGNAL GENERATORS SINE/SQUARE WAVE

[^7]
moder anll3
Distortion . 02% (I Khz) otherwise as 145.8. Bettery wrion ©29.50 $1+$ UK Tax $£ 4.40$
 P/P 11.50 .

TELERADIO ELECTRONICS

 325 Fore Street, Edmonton, London, N9 OPE Tel! 8073719

UNITED NATIONS

Invites applications for the following positions at
 New York Headquarters

1. CHIEF, TECHNICAL SERVICES SECTION (P-5)

Supervises and specifies arrangements for the installation, operation and maintenance of equipment associated with the United Nations conference servicing and radio and television programming operations. This includes a wide range of broadcast standard audio and video equipment, simultaneous interpretation installations and electronic voting equipment.
Responsibilities include directing the work of some 100 personnel, design of and supervision of construction of equipment, advising other divisions on technical matters and preparation of budgets.
Should have advanced univerșity degree in relevant engineering discipline, good electronic knowledge, computer experience and management skills particularly in the fields of budgeting projection and cost control, with 13 years' professional experience.
Level P-5 carries net base salary per annum from US $\$ 24^{\prime} 298$ (single) and US $\$ 26,298$ (with dependants) plus post adjustment from US \$11'627 (single) and US \$12'584 (with dependants) per annum.
VA. 80-D-DAM-109-NY.

2. CHIEF, TELEVISION AND
 FILM UNIT (P-4)

Controls the technical aspects of the United Nations television and film unit which works to full professional broadcast standards.
Is responsible for system development and specifying operational and maintenance techniques and for assessing needs and making recommendations for purchase of equipment.
Supervises the operations in the technical areas and maintains contact with outside TV networks and operators.
Should have advanced university degree in electrical engineering with eight years' professional experience in the operation and maintenance of television and film equipment.
Level P-4 carries net base salary per annum from US $\$.20^{\circ} 209$ (single) and US $\$ 21^{\prime} 755$ (with dependants) plus post adjustment from US $\$ 9,779$ (single) and US $\$ 10.527$ (with dependants) per annum.
VA. 80-D-DAM-108-NY.

3. ENGINEER (TELECOMMUNICATIONS) (P-4)

Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment.
Responsible for system development and design and for the installation of these facilities both at Headquarter's and for conferences away from headquarters.
Should have advanced university degree in an engineering discipline, with eight years' professional experience. VA. 79-D-DAM-357-NY.

APPLICATIONS: Please complete two copies of United Nations Personal History Form (P. 11) or send detailed curriculum vitae to: Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number.

Appointments

Advertisements accepted up to 12 noon Monday, June 30th, for August issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Mike Thraves 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Provide BROADCASTING and TELECOMMUNICATIONS staff on contract to work worldwide.

WE REQUIRE

Qualified and experienced Engineeis and Technicians for installation and/or operations and maintenance of Radio and Television Studios and Transmitters and Telecommunications Projects.

Programme and Administration Staff for Radio and Television Services.
The positions are interesting and varied and usually require Bachelor Status working.

For further particulars contact:
PERSONNEL \& ELECTRONICS LIMITED, TRIUMPH HOUSE 1096 UXBRIDGE ROAD, HAYES, MIDDLESEX UB4 8QH ENGLAND

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London
Salaries up to $\mathbf{\varepsilon 8 , 0 0 0}$
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.

Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

LOMA ENGINEERING

A young and dynamic Company specialising in the field of metal detection and checkweighing equipment, seeks to recruit an

ELECTRONICS DESIGN ENGINEER

to work on interesting microcomputer projects.
Applicants should preferably be recently qualified in electronics engineering to H.N.D./B.Sc. standard. The opportunity exists in an expanding environment for the successful applicant to take part in the initial development of new products, and also to become involved in their application to suit particular customer requirements.
An appropriate remuneration package will be negotiated.
Please phone or write for application form or send c.v. to:
The General Manager
LOMA ENGINEERING LTD.
Invincible Road
Famborough, GU147SX
Tel: 0252-40346

Appointments

ACAREERIN ELECTRONICS?

Electronics can offer a career with a great future. And this is your chance to train for work as an Electrical/Electronics Technician for the Electronics Industry.

HOW DOITRAIN? By taking one of our special oneyear, full-time courses which start in September 1980.

They are run throughout England and Wales under TOPS, the Training Opportunities Scheme.

WHAT WILL I LEARN? A wide range of essential subjects including electrical/electronic principles and practices, microelectronics and communication studies. With the possibility of six to eight weeks spent in an industrial attachment. And additional subjects will be included to meet the needs of local industry.

On successful completion of the course, you'll be awarded the Technician Education Council's Certificate in Electrical/Electronic Engineering.

AM I ELIGIBLE FOR TRAINING? You should be at least 19* and ideally passed the City and Guilds Electronic Technician Intermediate Certificate, or the City and Guilds Part II Certificate in electrical or
electronic craft subjects or their equivalent. If you have a knowledge of maths or physics to 'O' level or CSE grade I standard you will also be considered. HOW AMI PAID? During training you'll receive a weekly tax-free TOPS allowance, and travelling and/or lodging allowances may also be paid. All tuition fees are met by TOPS.

WANT TO KNOW MORE ABOUT A COURSE IN ELECTRONICS? All you need to do is contact the Manpower Services Commission, Training Services, District Office that is nearest to your home, quoting (wwl).

SUNDERLAND. Mr. D.Pilter, Lynas House, Frederick Street. 078342811 CROYDON. Mrs.S. Gazeley, 17 Lansdowne Road, 01 -680 1411 MANCHESTER. Mr. N. Ward, Boulton House, 17-21 Chorlton Street. 061-2286581 BOURNEMOUTH. Ms. L. Sydenham, Bracken House, 14 -16 Christchurch Road. 020222055 been out of full-time education for two years, and not have been on a TOPS course in the last three years.

An expanding challenge in Test Engineering

At our new manufaçturing centre located in pleasant surroundings at Dunstable, Bedfordshire, we're producing some of the world's most advanced real-time computers for major commercial and ind ustrial customers.
It's a fast growing, high technology environment in which we now need additional men and women to join us as -

Test and Commissioning Engineers

To carry out fault diagnosis, repair, test, installation and commissioning of processors, peripherals and microprocessor-based controllers. Experience of digital electronics is essential.

Quality Test Engineers

For test and quality control on peripherals from initial receipt to final test of systems prior to delivery to customer. A sound electronics background is essential preferably including quality test work.

Test Development Engineers

To develop test programmes for PCB assemblies using the latest GEN-RAD ATE. Good test programming experience, especially on modern ATE is essential preferably coupled with a good general electronios or logic engineering background.
Starting salaries are competitive and relocation assistance will be given where necessary. So to find out more contact Keith Halliday, Personnel Officer at GEC Computers Limited, Eyncourt Rcad, Dunstable, Beds. Telephone: Dunstable (0582) 600122.

Experimental Officer required for duties in the above laboratory, offering calibration of a wide range of electrical equipments. This laboratory has British Calibration Service approval and provides 1 raceability to defence standards 05 for local industries. The Expermental Officer is responsible to the Head of Laboratory (a senior member of the
academic staff) for the daily functioning of academic staff) for the daily functioning of
the laboratory. The ability to work unsuperthe laboratory. The
vised is essential.
Salary Scale: T5 up £6.381 for 37.hour week.
Application form and further details are available from Staff Office, Portsmouth available from Staff Office, Portsmouth Road, Portsmouth or by telephoning Portsmouth 27681 , ext. 31.7 and to be returnod as soon as possible. (431)

Sony Broadcast continues to expand its Basingstoke H.Q.

> During the last year we have sold professional broadcast television equipment and systems to more than 90 organisations in 20 countries. Now further planned expansion of both our domestic and international markets has created the following vacancies:-

Regional Sales Managers

Although we have now recruited Regional Sales Managers for Africa, the Middle East and Eastern Europe, we still have vacancies for similar posts in other parts of our market area, in particular North and South Europe.

The successful applicants for these positions will be qualified television engineers with several years' experience in sales, marketing and other relevant commercial activities.

Extensive travel will be necessary and a knowledge of at least one European language apart from English is desirable. These positions offer the opportunity for substantial career development as part of a talented and highly motivated team.

Manager Audio Department

Reporting to the General Manager, Sales, the successful applicant will be responsible for giving product planning advice to the various international design groups. Qualifications to degree level or equivalent in electronics or a related discipline and several years' experience in the development of prolessional audio products are desirable. Experience in digltal audio processing would be a great advantage.

Travel to Japan and Europe for product briefing and technical support would be necessary.

Lecturer

The successful candidate would conduct Theoretical and practical training courses on our major products, be able to write circuit descriptions and produce training manuals with lucid block diagrams.

Ideally, candidates should have in-depth experience of video tape recording, digital circuitry and a practical up-to-date knowledge of the broadcast industry, especially measurement techniques, plus an ability to present ideas clearly and answer the most difficult and unexpected technical questions. Knowledge, or an ability to master the techniques of video cameras, digital audio equipment and the application of microprocessors to broadcast equipment will be an advantage, although we are prepared to provide the necessary additional training. Promising young graduates will be considered.

Assistant Product Managers

 and Product EngineersWe have vacancies for Assistant Product Managers and Product Engineers in each of our four equipment groups; TBC and Editing Systems, Cameras, 1 inch VTR's and U-matic VTR's.

Candidates for the Assistant Manager posts will ideally be Graduate engineers with some years of experience in video technology, whereas as applicants for the Product Engineers vacancies will probably be less experienced. However, at both levels, we are willing to consider the right kind of experience in lieu of formal qualifications.

Successful candidates will receive suitable in-house training to enable them to provide technical product support both within Sony Broadcast and externally to customers.

Marketing Promotions Manager

The successful candidate will be responsible for formulating and implementing all aspects of corporate and product image. In particular, this will include mounting effective product advertising campaigns, organising Sony Broadcast's presence at major international exhibitions, preparing product literature and press liaison.

The post will also involve collaboration with other Sony companies in jointly promoting broadcast equipment products throughout the market area.

Candidates will need to demonstrate a' sound knowledge of the broadcast industry, a keen organisational ability, initiative and a degree of artistic flair.

Sales Engineers

We require competent engineers who are experienced in video cameras and/or VTR's to supplement our sales force. A considerable amount of travel overseas and in the UK will be involved. Experience in selling would be an advantage, but the main requirements are a pleasant personality, dedication and ability.

Senior Proposals Engineer

 Reporting to the General Manager, Marketing, the successful applicant will have a technical background, preferably in the broadcast industry, and be able to demonstrate an overall systems capability. He /she will enjoy working with the minimum of supervision and will function happily under pressure.The work will include the making and assessment of technical proposals to meet specific customer requirements, and will hence require an understanding of Contract Law. A knowledge of foreign languages would prove useful, though not essential.

Service Engineers

Two openings exist, one at a more senior level, for engineers with broadcast television engineering experience in operations and maintenance.

The positions will entail responsibility for the repair and test of sophisticated broadcast television equipment, together with minor development work. Some travel will be necessary.

Candidates for the senior appointment should preferably be qualified to HNC, or equivalent in a related discipline, and be conversant with modern digital techniques.

The second position should appeal to engineers with limited appropriate experience now seeking a progressive environment in which to broaden their knowledge.

Q.A. Engineers

Candidates should be experienced in the repair of modern television equipment and also be familiar with digital circuitry.

Activities will include the testing and commissioning of advanced broadcast television equipment for which occasional travel may be required. A relevant HNC level qualification is desirabie.

All these posts carry excellent salaries and fringe benefits normally associated with a large international company, in some cases a motor car and relocation expenses where appropriate. The above appointments are open to both male and female applicants.

Write in strict confidence to Barry White, Personnel Manager giving full details of qualifications, experience and present salary.

Sony Broadcast Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Radio Telecommunications Engineers

£6,500 TO £8,500

An international company, involved in the provision of sophisticated communications systems, is able to offer stimulating careers to engineers in the United Kingdom in our Telecommunications Division. Are you experienced in the installation and testing of broadband radio link and associated equipment, and/or have you spent time in a planning/ estimating office? We are looking for:

INSTALLATION PLANNING ENGINEERS

To translate systems design concepts into detailed practical terms, to produce drawings, charts and schedules of equipment installation and testing instructions to brief the field engineer.

INSTALLATION ENGINEERS

UK-based field engineers to manage the installation and commissioning of telecommunications systems overseas or in UK. You would be working as a member, or take charge of, a team translating the efforts of the planning engineer into working systems.
Applications are invited from engineers with several years' relevant experience, three of which have been in a supervisory capacity.
Academic qualifications are an advantage.
Salaries are negotiable and dependent upon experience and qualifications. Overseas travel is necessary, and excellent allowances are paid for such duties.
Benefits include 4 weeks' holiday plus bonus, relocation expenses where appropriate and a pension and life assurance scheme, restaurant, social club and free car park being some of the amenities.
To apply phone or write quoting ref. K/174 to Sue Dillon, IAL,
Aeradio House, Hayes Road, Southall, Middx. Tel: 01-574 5134.

IALTHE HIGH TECHNOLOGY TASK FORCE

COMMUNICATIONS SYSTEMS COMPUTER SYSTEMS AND SERVICES AVIATION SYSTEMS AND SERVICES-WORLDWIDE

UNIVERSITY OF LIVERPOOL
INSTITUTE OF CHILD HEALTH ALDER HEY CHILDREN'S hOSPITAL

TECHNICIAN

(Grade 5)
To assist with research. Work includes assistance with design and development of medical electronics instruments and operating the Institute's digital computer. Applicants must possess ONC or equivalent as minimum qualification and be experienced in fault diagnosis and use of digital and analogue integrated circuits. Knowledge of programming an advantage. Salary in a range $£ 4.257$. £4.974 p.a.
Application forms may be obtained from The Registrar, The University. P.O. Box 147, Liverpool, L69 3BX. Quote Ref: RV/446/WW.

NATIONAL HEART AND CHEST

 HOSPITALS, Brompton Hospital. Medical Electronics Technician re quired to undertake work involving maintalning, installing and developing medical electronics equip ment. Applicants should have a good general knowledge of electronics. Previous hospital experience not essentlal. Salary, which will depend on experience, will be with in the range $£ 4,280-£ 6,350$ incluslve, with a pay rise pending. Further information available P B the Physicist in Charge, Mr R. B. Logan-Sinclair, tel 01-352-8121, ex from Miss J. A. Jenks, Personnel from Miss J. A. Jenks, Personnel Manager, Brompton Hospital, Ful ham Robod, ext 4357. SW 6HP. (421LONDON BOROUGH OF NEWHAM. East Ham College of Technology, High Street South, London E6 4ER. High Street South, London E6
Principal: K.
R. (Econ.) FRSA, Department of Electrical \& Electronic Engineering. Techniclan Grade T2 required to be responsible for both the Elementary and Advanced Eleotronic laboratories. Relevant theoretical and practical experience in electronics essential. Ability to service tast gear an advantage. Salary: £4,380£4,620 p.a. inclusive. Application forms may be obtained by writing to the College Administrative Officer enclosing an addressed envelope. Completed forms should be returned within 14 days of the appearance of this advertisement.
(440)

ONE IN A MILLION?

Among the million or so leaving school or university this year there is a chance that one - perhaps two - is destined to make a significant development in audio.
That person's first decision might well be to join QUAD in Huntingdon. At school, he or she will have realised that amplifier design is not just a matter of having a listen or a fiddle with standard circuits and their variations. Later will have come an adolescent stage of great discoveries. "Increase the rise time to eliminate TIM". "Regulate the power supply for better imaging
Following on from such childish things will have come an ability to distinguish between the characteristic impedance of the medium and the third row of the dress circle and between peak flux density and the rather gooey substance fed by spoon to small children. He or she will, nevertheless, be sufficiently down to earth to know that one newton is about the weight of the average apple.
1 in 10^{6} ?
Well, drop us a line anyway.
Mr. P. J. Walker
THE ACOUSTICAL MANUFACTURING COMPANY
LIMITED.
30 St. Peters Roapd, Huntingdon, Cambs. PE187DB

ELECTRONIC NEWS GATHERING

A Major Overseas Television News Organisation based in London has a vacancy for a Suitably Qualified Assistant to work with a Senior Cameraman covering Worldwide News Events.

ESSENTIAL QUALIFICATIONS

A good understanding of the principles involved in Electronic Picture Generation and Recording, together with a proven background in "NEWS" or similar operations. The ability to work with a small team under pressure.

CONDITIONS OF SERVICE

GOOD SALARY with excellent employee benefits including noncontributory pension scheme. London-based with a considerable element of foreign travel.

Please reply to Box No. WW380

Important new projects in the defence field have created a number of interesting vacancies for engineers in our laboratories at Bracknell.
You could work at the forefront of new technology on equipment for combat aircraft, helicopters, tanks and other applications if you have experience in:-

* Digital and/or analogue circuit design
* Real-Time microcomputer control
* Microwave techniques in the short centimetric wavelengths
* Flight control

We would particularly like to hear from engineers with a working knowledge of MSI, LSI and CMOS circuits design.
Vacancies are open to male or female applicants at all levels, some to form the nucleus groups being set up to meet the challenge of developing, entirely new equipment.

We also have vacancies for graduate engineers seeking their first appointment this year.
We believe that we can offer exceptional opportunities for you to exercise your technical skills in an unusually attractive working environment. The laboratories are situated within Lily Hill Park in surroundings well suited to research and development.
Bracknell is in rural Berkshire and offers an extensive range of housing and facilities in and around the new town. Relocation assistance will be provided where appropriate.
Please write giving brief details, or asking for an application form, to Mrs Josie Hunt, Ferranti Instrumentation Limited, Aircraft Equipment Department, Lily Hill House, Bracknell, Berkshire. Telephone: Bracknell 24001. Please quote reference number A/236NW.

RADAR DISPTAYS जXPMRIMNCN? There's at least £16,500 tax free on the screen for you

Sophisticated modern radar systems form one part of Lockheed's involvement in Saudi Arabia and one of Lockheed's most important maintenance functions is to make sure that all the displays and associated interface equipment is working at peak efficiency all the time.

If you're formally qualified in radar displays, that experience could earn you a key place in one of Lockheed's maintenance teams - and at least £16,500 tax-free over the next two years.

In addition, you'd enjoy the full Lockheed benefits package free food, laundry and bachelor accommodation, free medical care and life insurance, excellent recreational facilities, three paid leave periods a year with free flights home together with local leave.

To join Lockheed, you'll need at least three years' experience. in radar display systems which use both CRT digital, and scanning displays. If you have some knowledge of radar transmitter/receiver and signal processing equipment, that's a big advantage.

If you'd like more information on working in Saudi Arabia with Lockheed, drop a line, giving brief career details, to the Senior Recruitment Executive (Lockheed), IAL, Personnel Consultancy, Aeradio House, Hayes Road, Middlesex. Or phone him on 01-574 5000. Please quote ref. L164.

TRENT POLYTECHNIC

LECTURER GRADE II/SENIOR LECTURER IN ELECTRICAL/ ELECTRONIC ENGINEERING

Candidates should preferably possess teaching and/or industrial experience. Research experience and a continuing interest in research work are preferable requirements for the post. Some knowledge of the application of computing to electrical engineering desirable.
Salary: £5229-£9822 (salary award pending).
Further details and form of application from The Assistant Director (Administration), Trent Polytechnic, Burton Street, Nottingham, NG 1 4 BU . Forms to be returned as soon as possible

CAMBRIDGE AREA HEALTH AUTHORITY (TEACHING)
 AUDIO VISUAL ENGINEERING TECHNICIAN

(Medical Physics Technician III)
An experienced technician is required to provide engineering and technical support to a wide range of audio-visual equipment in the Cambridge Health District and the Cambridge University School of Clinical Medicine.
The successful applicant will have experience in the service of colour and black and white CCTV systems. including cameras, and VCRs and be competent to support a wide range of AV equipment. Applicants must be able to work without supervision and should, for preference, have an appropriate HNC or equivalent qualification.
Salary scale $£ 4605-£ 5952$
Further information, application forms and job description available from
P. E. Ward

Medical Physics Department
ADDENBROOKE'S HOSPITAL
Hills Road, Cambridge, CB2 200
Telephorte: 0223-45151, Ext. 606

INNER LONDON EDUCATION AUTHORITY

Learning Materials Service, Television Centre, Thachery Road, London Sws 3TB The Television Centre produces a range of educational programmes distributed in the form of 16 mm film, videocassettes and sound cassettes. The sound section of five members works with protessional
equipment (Neve. Studer. Sandor, ITC, etc.) to provide an audio component of high standard. acanctes exist for:

(1) HEAD OF SOUND (ST4)

To lead the section and also to mix and process many of the programmes. He she will be responsibte
for training new staff, and with the chief engineer and others will also undertake responsibility for the for training new staff, and with the chief engineer and Applicants should have suitable theoretical quabifications, with at least 10 vears of relevant experience at senior level. A good working knowledge of all sound operations associated with television and film
(2) SOUND ASSISTANT (ST2)

The work is largely film recording using the Nagra, but with perioas of studio dury frigging, boom
operation, tape and grams, etc). Working hours are based on a flexible 35 -hour week eiclusive of meat
 times. Travel to locations is involved. Occasional overnight stops are required. Although applicants should have a thorough knowledge of sound tectniques in aflim and television qualifications, and experience elsewhere in the sound recording field.
Salary is within the scale $£ 6,170,64$ to $£ 6,896.64$ (this is under review from July 1980) Further information and application forms from EO Estab.1C. Room 365 The County Hall. London
SE1 7PB. Teiephone 01.63374568848 .
-Closing date: 14 days after the appearance of this advert

VIDEO ENGINEERS DUPLICATE SHOWBIZ FOR TOP MONEY

Europe's largest distributor of pre-recorded video entertainment programmes require top-class operators for our multi-format video cassette duplicator facility located in West London. Must have experience with $1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}$ and $1^{\prime \prime} \mathrm{C}$ format systems. Front line maintenance experience an advantage.
Shift working
Please write or telephone Richard Lees, Technical Manager, Intervision Video Limited, 102 Holland Park Avenue, London, W.11. Telephone (01) 7271453.

AMPEX SYSTEM MAINTENANCE ENGINEER

to join a resident team at a site of EXCEPTIONAL INTEREST situated in the St. James's Park area of London. The team is responsible for round the clock maintenance of a large INFORMATION STORAGE AND RETRIEVAL SYSTEM WHICH COMBINES both VIDEO AND COMPUTER TECHNOLOGY.
Ampex requires an Engineer with:

- Sound knowledge of Electronics/HNC or equivalent
- At least 3 years' experience of maintaining ANALOGUE and/or DIGITAL electronic equipment
- Preferably, specific experience with:

VIDEO equipment, such as cameras, VTRs, etc,
and/or
DIGITAL equipment such as disk/tape drives, mini computers.
Good salary plus generous shift allowance.
Company car plus travel allowance.
Pension and Life Assurance and Permanent Health Schemes.
Please write or phone for an application form from Clive Legg or Maureen Brake, Reading (0734) 85200, Ampex Great Britain Limited, Acre Road, Reading, Berkshire

The Department of Electronic and Communications Engineering is planning some new full-time and part-time courses, commencing October 1980. These have been designed to take account of recent advances in digital and software techniques, and emphasis is placed on these during all the courses.

BSC(Hons) in Electronic and Communications Engineering
A novel degree course designed to prepare engineers for the demands of the eighties and nineties. Entrance qualifications - two good ' A ' level passes in Maths and Physics, or equivalents.

Higher Diploma (TEC) in Electronics and Communications Engineering
A full-time two-year course stressing the practical applications of electronic engineering, especially microprocessor technology. Entrance qualifications - a good 'A' level pass or TEC Diploma or Certificate in appropriate subjects.

Higher Certificate (TEC)

Is a part-time course following similar lines to the HD (TEC). Entrance qualification - TEC Certificate in appropriate subjects. Both TEC courses are of a unit structure, and all three courses aim to produce engineers for industry. Some industrial training is included in the HO (TEC).

Details from Secretary
Department of Electronic and Communications Engineering Polytechnic of London Holloway Road, London N) 8DB. Tel. 01-6072789 Ext. 2161

The Polytechnic of North London

TEST ENGINEER
 To $£ 6,500$ p.a. Middlesex

We make an extensive range of environmental test systems, covering every application from strain measurement to the vibration of vehicles and buildings.
If you are:

- self-motivated and self-reliant;
- qualified to HNC or equivalent in electronics/Radio and TV, and also interested in mechanics;
- experienced in analogue and/or digital work;
then we can offer you a wide variety of testing experience, working with newlydeveloped modular control systems.
Please call or write to the Personnel Manager

> SERVOTEST LIMITED 14 Aintree Road Greenford, Middx. UB6 7AA Telephone: 01-998 1552

UNIVERSITY OF LIVERPOOL DEPARTMENT OF
MECHANICAL ENGINEERING

SENIOR EXPERIMENTAL OFFICER

Newly created post concerned with meas urement and instrumentation problems in broad area of Stress - Analysis and Vibra tions of engineering structures and com ponents. Applicants should possess degree or equivalent qualification (e.g. Chartered Engineer Status) in Engineering or Physics and minimum five years' relevant experience with reasonable vareity of recording instru ments, transducers, etc. Candidates with for appointment as Experimental Officer. for appointment as Experimental Office
Salary in the range S.E.O. (£5052-£8769) or E.O. ($\mathbf{~ 4 4 0 2 - 5 7 4 1 0 \text {), depending on }}$ qualifications and experience.
Application forms available from the: Registrap, The University, P.O. Box 147, Liverpool L69 3BX. Quote Ref. RV/414; WW.

DIGITAL EXPERIENCE?
FIELD, SUPPORT AND PRODUCTION. VACAN. CIES IN COMPUTERS, NC. COMMS, MEDICAL, VIDEO, ETC.
For free registration ring
$01-4647714$, ext. 502

ELECTAOMICS RECAUITMENT SEAVICE
309 HIGH ROAO. LOUGKTOM. ESSEX, IG1O 1 TO
01-502 1589/0937 $01-4547714$ EXT. 402 [321।

Broadcast Transmission Engineers

Through our network of Transmitting Stations, the IBA is responsible for the transmission of all Independent Television and Local Radio services throughout the United Kingdom. Vacancies now exist for Shift Engineers to be employed in the operation and maintenance of high power UHF television transmitters, transposers and MF, VHF radio transmitters.
The successful applicants will be required to carry out monitoring duties, performance test measurements and preventive and corrective maintenance on all transmitting station equipment. This will include scheduled and emergency mobile maintenance work at unattended stations. Some weekend and evening work will be required. Candidates should be qualified to HNC (or equivalent) level in Electrical or Electronic Engineering and have at least three years experience with broadcasting equipment. A valid, full driving licence is essential. Starting salary will be within the range $£ 5,880-£ 7,280$ with provision for movement, subject to qualifications and experience, onto a higher range rising to $£ 8,202$. Salaries will be reviewed on 1st July 1980.
Employment benefts include free Life Assurance and Personal Accident Scheme, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.

IBA

INDEPENDENT
BROADCASTING
AUTHORITY
If you are interested in the above, please write or telephone for an application form to: Personnel Officer - Engineering Regions, IBA, Crawley Court, Winchester, Hants. SO21 2QA. Tel: Winchester 822273.

Sales

Engineer

For the industry of the future

Few would deny that semiconductor technology is the industry of the future. And now your mixture of technical knowledge and commercial flair could put you firmly in that future as Internal Sales Engineer with RCA's talented sales and marketing team
Based at Sunbury, you will be advising our many customers on the varied uses of RCA integrated circuits and power devices. You will also provide assistance to field sales engineers in maintaining important commercial customer contact.
The salary will reflect the status which we attach to our salesmen and women, and there will be good early promotion prospects plus all the benefits of an internationally successful corporation.
If you're ready for the industry of the future, call Nick Blake, our Sales Manager, on
Sunbury-on-Thames 85511 . Or write to the
Personnel Department, RCA Limited, Lincoln Way. Windmill Road. Sunbury-on-Thames. 1449

ELECTRONIC MARINE SYSTEMS FIELD ENGINEERS

Hunting Surveys \& Consultants Limited requires Electronic Engineers to work on both theoretical and practical aspects of a variety of instrumentation systems associated with Marine Surveys.

They must be qualified to at least HNC with emphasis on modern digital circuitry, but having also a broader electronics background. Some software experience would be advantageous.

Applicants will need to be physically fit and must be prepared to undertake periods of operational work in the North Sea and Overseas.

Applications to:

The Personnel Manager, Hunting Surveys \& Consultants Limited, Elstree Way, Borehamwood, Herts, WD6 1SB.

PROTOTYPE WIREPERSON

to build analogue and digital automatic test equipment and prototype PCBs. We design and make intrinsically safe instrumentation for the petrochemical and allied industries and need someone with a good knowledge of electrical electronic and mechanical engineering practice plus the ability to work from engineering drawings and sketches.

Salary range $£ 5,000-\mathbf{E}, \mathbf{7 0 0}$, depending on age and experience
Apply to Janet Hutcheon

Radio Technicians Work in Communications R\&D and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, like Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits There will also be some opportunities for short trips abroad, or for longer periods of service overseas.
You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications
Registered disabled people may be considered
Pay scales for Radio technicians start at $£ 4640$ per annum, rising to $£ 6525$, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.

Get full details from our Recruitment
Officer, 'Robby Robinson, on
Cheltenham (0242) 21491, Ext 2269, or write to him at GCHO, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.
 and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

Recrutanent ()ffice
Government Communications Headequarters
Oakley. Priors Road. Cheltenham CiL.52 5AJ

ELECTRONIC SERVICE ENGINEER

ATTRACTIVE SALARY EARNINGS RELATED BONUS

VEHICLE
In order to maintain our current growth rate we urgently need an additional Service Engineer.
Lee Engineering market high technology equipment employing digital and analogue technique and for the vacancy a Service Engineer with broadbased practical experience and initiative is required. The positions will be primarily based at Walton-on-Thames but periodic service visits to customers is envisaged.
Please apply, by phone or in writing, to:

C. E. Welsh

LEE ENGINEERING LIMITED
Napier House, Bridge Street
Walton-on-Thames, Surrey KT12 1 AP
Tel: Walton-on-Thames $43124 / 5$ / 6

Appointments

SENIOR R.F. DEVEIOPMENT ENGINEER

UP TO $£ 9000$ P.A.

NORTH KSNT

Our client, a well-known electronics manufacturer, requires a Senior Development Engineer to participate in, and to co-ordinate, the development of a new generation of two-way radio equipment right through from specification to production stage.
Age is not important and some 'trade-off' between qualifications and experience is acceptable but, for guidance, the ideal candidate will have:

A degree, or equivalent, in electronic engineering or a related discipline
A minimum of 5 years experience in R.F. design
A thorough working knowledge of contemporary techniques in circuit design from audio through to U.H.F . plus an understanding of digital techniques.
Sufficient familiarity with manufacturing methods to appreciate the effects of design philosophy on ease of production, test and service.
The company, which was established nearly sixty years ago, is situated in North Kent and is within easy reach of London, the countryside and the coast. Career prospects are excellent. Additional benefits include a first class pension scheme and, where necessary, assistance with relocation.
All applications will be treated in the strictest confidence and will be acknowledged immediately
Apply in writing or telephone for an application form (you are welcome to reverse the charge) to:

SOUTHERN ELECTRICITY

Littlewick Green, Maidenhead

SECOND ENGINEER (TELECOMMUNICATIONS)

CHIEF ENGINEER'S DEPARTMENT HEAD OFFICE

Salary within the range $£ 8,231-£ 10,846$ per annum
Applications are invited for the above post in the Technical. Services Section of the Chief Engineer's Department.

The successful applicant will be part of a team engaged in the design, commissioning, and subsequent maintenance of telecommunications systems throughout the Southern Electricity Board, and must be able to spend periods away from Head Office when carrying out these duties.

Schemes in progress include telecontrol, data communications, medium capacity microwave links, multi-channel line circuits and radio and line telephony systems. Applicants should have had experience in some of this work and preferably be in possession of suitable technical qualifications
The successful candidate will be required to drive a motor vehicle which may be either a private car or a Board owned car. Relocation assistance will be provided in appropriate circumstances.

> Applications on forms obtainable from the Secretary, Southern Electricity, Southern Electricity House, Littlewick Green, Maidenhead, Berkshire SL6 30B and returned to him quoting 31 / 80 by not later than July 4, 1980.
> (436)

AMPEX
World leader in Magnetic Recording, seeks

ENGINEERS

to join small teams responsible for designing and producing Mobile and Studio Broadcasting Television Systems in an expanding international market.

The key requirement is to demonstrate experience and achievement in the design of Television Systems. A valuable additional qualification would be a degree or HNC in electronics or a related discipline.

Good Salary, Pension, Life Assurance and Permanent Health Schemes. Staff Restaurant.

Please write or phone for an application form from Clive Legg or Maureen Brake, Reading (0734) 85200, Ampex Great Britain Limited, Acre Road, Reading.

Test Engineers \& Test Gear Engineers Move intonew areas of Electronics Developmentand anassured qualityof life...

EMI Electronics Ltd. builds quality and reliability into every product. Our reputation for excellence is long established and is a major factor in generating new orders.

The growth of our business here in historic Wells creates the need for more Test Engineers to take us through the 1980's.

As one of the world's leaders in specialised defence electronic systems - particularly the fields of radar, proximity fusing, telemetry and radio modelling we maintain stringent quality standards. You will join one of our professional teams responsible for ensuring that our wide range of "State of the Art" electronic systems on test equipment meet our exacting standards.

We are looking for people with either ONC or HNC Electronics and varying levels of experience of testing or servicing modern detection systems in the electronics industry or armed forces.

We offer competitive salaries, comprehensive

A Member of the THORN EMI Group
benefits and assistance with your relocation to this beautiful part of Somerset.

For further information fill in the coupon and send it to F. M. Taylor, Assistant Personnel Manager, EMI Electronics Ltd., Penleigh Works, Wookey Hole Road, Wells, Somerset, BA5 1AA or phone him for more information on Wells (0749) 7.2081.

Appointments

Sultanate of Oman TELEVISION ENGINEERING VAGANCIES

Due to expansion of the service, several vacancies have arisen and applications are invited from suitably qualified persons.

Those applying for the Engineering vacancies should have full C and G certificates, dip. Tech. or HNC and not less than six years' relevant experience. In most cases a knowledge of Arabic - although not essential - would be useful

Contracts of employment will be for two years in the first instance and renewable for one year at a time by mutual agreement.
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.
Applicants should state age, nationality, qualifications and full: details of experience.

TRANSMITTER ENGINEERS

For maintenance of high power VHF TV transmitters and low power UHF transposers. The work will involve travel and in some cases overnight stops away from base. The Transmitters operated within the Sultanate are manufactured by Siemens and Philips.

VTR ENGINEERS

For maintenance on Ampex VR 1200 B and Bosch Fernseh BCM 40 machines. There will also be some operational work. In addition some planning and installation work is likely as during the forthcoming year it is intended that $1^{\prime \prime}$ VTR machines will be installed.

STUDIO ENGINEERS

For maintenance on cameras vision mixers, S.P.G.S., vision distribution systems, telecine machines and video monitors etc. There will also be operational work, particularly on outside broadcasts and some occasional planning and instaliation work during the course of the year.
The equipment employed are Philips LDK 15 Cameras, Bosch Fernseh, Telecine by rank Cintel and Bosch Fernseh

MAINTENANCE ENGINEERS

To maintain a wide range of high quality sound broadcasting equipment. Some planning and installation work will arise as new equipment is installed

LIGHTING ELECTRICIAN

To carry our maintenance on TV studio and film lighting equipment including Dimmers, Luminaries, Batteries, etc. Some lighting work might be involved.

FILM CAMERA MECHANIC

To carry out maintenance on eclair and ARRI 16 MM cameras and other film equipment including Synchronisers, Steenbeck Editing Tables, Tripods, etc. Applications should be sent to:

Director General of Radio and Television
Ministry of Information and Youth Affairs
P.O. Box 600 , Muscat, Sultanate of 0 man

REQUIRED: SENIOR AND JUNIOR SERVICE ENGINEERS

The senior engineer should have at least five years' experience of audio equipment and knowledge of A / V systems would be an advantage.

Excellent salary for the right person.
Please contact.
Mr. Roger Brown
Fraser-Peacock Associates Limited
94 High Street, Wimbledon Village
London SW19 5EG
Telephone: 01-9477551

Customer Engineers Electronics

Register now - and let us help you in your search for a suitable job.

Computer Maintenance Engineers

The Job covers the installation and maintenance of a wide range of computer equipment which includes:

* 3 large scale (B6800) computer systems and peripherals
* 4 medium scale (B1800) computer systems and peripherals
* 24 small scale (B90) computer systems and peripherals
* over 150 terminal's linked to the above.

Qualifications should ideally be to Degree level but emphasis will be on ability.

Salary will not be a limiting factor in the selection of suitable candidates.
Burroughs is an international computer company with world-wide activities. The high technology of its products designed and manufactured at Cumbernauld demands the extensive use of computers as shown below.

All necessary training on mainframes and peripherals will form part of the successful candidates personal development.

For Further Information:
Write or phone
Recruitment Manager, Ref WW2
Burroughs,
Cumbernauld G68 OBN.
Telephone 023-67-35457.
Men or women may apply

Burroughs

Electronic Field Service

 To $£ 10,000+$ carIf you have worked with Mini Computers (D.E.C., Data Gencral. Hewlett Packard etc. I or Similar Complex Logic Circuitry and are prenared to travel to advance your carecr, we have a variety of Highly Attractive Service Opportunities available in the UK and Overseas.

For an interesting and remunerative new appointment contact Grant Wilson Ref. GW 578.

TECHNOMARK, 11 Westbourne Grove, London W2 4UA. Tel: 01-229 9239 (01-229 4218-24 hrs.) Engineering Recruitment Consultants.

VIDEO AREA MANAGERS U.K. or Overseas

 c. $£ 10,000$ p.a. incl. Bonus + carBase: N.W. London

Our Video business is growing - both at home and abroad. To meet further demand we need ENGINEERS, with qualifications and/or experience in electronics who have a flair for selling and who want to develop their careers in sales.
U.K.: Due to internal promotion we are looking for a capable man or woman to manage our rapidly expanding video business in the London area. Sales are promoted through a network of Video Centres and Video Dealers.
motivation of distributors and sales negotiations with major customers. Previous experience of overseas selling would be an advantage.

In addition to salary, a company car will be provided and there are excellent fringe benefits.

Please send full career details to: Jeremy Forty, Personnel Manager, Bell \& Howell Ltd., Alperton House, Bridgevater Road, Wembley, Middx. 01-902 8812 Extn: 231.

INTERNATIONAL: This appointment involves the planning, development and control of sales, in assigned overseas territories including the
(465)

ELECTRONIC SERVICE ENGINEERS
 LONDON - BRISTOL - MANCHESTER - GLASGOW

Our Company specialises in both sales and servicing of Discotheque Sound and Lighting equipment. We currently have vacancies for engineers who have had previous experience of either Hifi, Studio PA or similar equipment. Excellent salary plus quarterly bonus and P.P.P.
Please telephone or write to Andree Mead, Personnel Director for further details

Barnet Trading Estate Park Road. Barnet. Herts EN5 5SA Telephone 01.441 191

TECHTEST LTD., a small but rapidly expanding company engaged in the design and production of R.F. TEST INSTRUMENTATION has vacancies for:

SENIOR DESIGN ENGINEERS JUNIOR DESIGN ENGINEERS TEST ENGINEERS

We are at present situated near Oxford but will be moving to new premises in the Hereford area within the next few months. Attractive salaries and relocation expenses will be available to suitable applicants.
Please phone: (0993) 73601, or write to:

TECHTEST LTD.

NEW MILL, CRAWLEY ROAD
WITNEY, OXFORDSHIRE OX8 5TS
(408)

KINGSTON POLYTECHNIC

SENIOR TECHNICIAN
 \section*{School of Chamical and Physical Sciences}

A senior electronics technician is required to be responsible for the building and maintenance of electrical/electronic equipment. The complexity of the equipment requires the person to be familiar with high level analytical instrument and should have the ability to diagnose faults accordingly. The post offers the possibiility of designing and building equipment and of bringing new ideas and technology into the department.
Salary range T3/4 £4971-£6174 inclusive
Further details and application forms from Assistant Registrar (Personnel), Kingston Polytechnic, Penryhn Road, Kingston-upon-Thames. 01-549 1366

INDEPENDENT TELEVISION TECHNICAL AUTHOR

The Independent Television Companies Association, the trade association of the ITV Programme Companies, is looking for a Technical Author experienced in electronics or communications, whose work will include writing reports in conjunction with research and development engineers, originating material for publication in broadcasting journals and the occasional preparation of minutes of technical meetings. Although based in London, some short business visits within the U.K. will be necessary.

The successful candidate, preferably educated to H.N.C. standard and aged $35-50$, will have a good understanding of analogue and digital video and sound broadcasting techniques, be familiar with logic and microprocessor circuitry and be able to give clear expression in both speech and writing to complex technical subject matter.

Salary according to age and experience, but not less than $£ 8,750$; contributory pension scheme; $4^{1 / 2}$ weeks' holiday.

Applications marked "Strictly Confidential" with full c.v. should be sent to:

The General Secretary (TA)
Independent Television Companies Association Knighton House, 52-66 Mortimer Street, W1N 8AN
(362)

ELECTRONIC TEST ENGINEER

New position in a rapidly expanding Company. Analogue and some digital experience essential. The work includes testing, calibration and occasionally some final assembly on a new range of cardiac monitoring equipment
Applicants will be expected to show responsibility, practical ability in addition to being able to design and construct special items of test equipment. Current driving licence an advantage.
Salary negotiable dependant upon experience. Company Bonus Scheme in
operation. Write or telephone 01-8744441.

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design,
Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 0BR. Tel: St Albans 59292

Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a range of studio products from colour cameras to simple D.A.s. We are also one of the largest suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in Andover for a worldwide market.

Due to continuing Company growth the following vacancies have been created

> PRODUCT DESIGN AND DEVELOPMENT ENGINEERS

Experienced and recently qualified graduates are required to join our research and development team. You will be involved in the design of new studio products including a new range of colour cameras using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the $80^{\prime} \mathrm{s}$. Applications are invited from engineers who are qualified to degree or HND level and who preferably have some knowledge of video engineering and/or microprocessor techniques

TEST/QUALITY ASSURANCE ENGINEERS

We require engineers at senior and intermediate level to assist in the manufacture of our new range of products for the Broadcast studio television market.

Applications are invited from engineers with on up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment, or similar sophisticated products, and qualified to HNC, HND, or TEC level. Opportunities also exist for recently qualified engineers who are interested in developing skills in the studio broadcast engineering field.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside Broadcast vehicles and television studies This is an opportunity for engineers to become involved in prnjects from their initial design concept through manufacture to delivery and installation
Our custom-built systems require a high degree of customer contact at engıneering level from the initial design, to customer training after completion of the contract, both within the UK and overseas.
Applications are invited from engineers with a knowledge of TV studio engineering gained from experience in this type of work or from experience on the operational side of television.
Employment benefits include excellent salary, generous holidays. free life and health insurance, pension scheme, subsidised meals and relocation expenses.
Please apply for further details and application forms to Jean Smith -at the address given below

Link Electronics Limited, North Way, Andover, Hants, SP10 5AJ.

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE; LONDON, NW7. 01-906 0251.

[^8]
Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form
Name
Address

ALCAN LABORATORIES LIMITED ATLANTIC REGION RESEARCH CENTRE

INSTRUMENT TECHNICIAN

Alcan Laboratories Limited require an Instrument Technician at their Research Centre in Banbury. Oxfordshire. The work will be concerned mainly with the development of electronic measurement and control equipment which will be used in the Laboratory and in Alcan factories.

The Research Centre, which is one of Europe's leading metallurgical laboratories, carries out Research and Development work for associated Group companies in the U.K., Europe, Africa and South America; it is part of the Canadian-based Alcan Aluminium Limited Group, which is one of the world's major aluminium producers.

Candidates will be required to work largely on their own initiative; they should have an HNC in Electronic Engineering followed by several years' experience in the developinent of prototype electronic equipment.

The Company offers excellent working conditions, progressive salary scales, flexible working hours and a contributory pension scheme. Assistance with the cost of moving house will be given where appropriate.
Application forms can be obtained from: Miss G. Rogers, ALCAN LABORATORIES LIMITED, Southam Road, 8 anbury, Oxon. OX16 7 SP. Tel. Banbury (0295) 2821.

[^9]

BRIGHTON POLYTECHNIC

learning resources

VIDEO RECORDING \& STUDIO ENGINEER

£6636-£7722
To be responsible for a newly established production centre equipped with state of the art facilities, including Plumbicon studio and telecine cameras, a wide range of video recorders and a video editing area based on Ampex one-inch broadcast VTRs. The two sludios cover straight production, multi-track audio and advanced video postproduction facilities. Active participation in related engineering developments is required. Operational experience of sound and colour video systems (preferably in a broadcasting or educational institution) and a degree or equivalent educational qualification are desirable.

ELECTRONIC ENGINEER

£5268-£6381

To work with a team of experienced engineers and technicians developing colour television and other audio visual facilities throughout the Polytechnic. The systems developments range from simple sound and T.V. production equipment to video recording and editing to near broadcast standards.
The Electronics Engineer will apply digital and analogue techniques to develop and install new equipment, up-grade existing facilities, and assist with its maintenance. Formal training to degree or equivalent standard will be expected but proven ability and experience in electronic design and construction (preferably including television) will be rated even more highly.
Further details and application forms from the Personnel Officer, Brighton Polytechnic, Moulsecoomb, Brighton BN2 4AT. Telephone: Brighton 693655 Ext. 2536. Closing date: June 27 th.

BROADCAST ENGINEERS / TECHNICIANS M/F. We have a number of vacancles for experienced personnel to maintain these National Broadcasting Stations. These are permanent positions, accommodation and conditions are first class. with excellent salaries itax free) and regular U.K. leave. Apply SPS
Executives. (Ref. 1740), RecruitExecutives. (Ref. 1740), Recruit-
ment Consultants. Delme Court, ment Consultants. Delme Court, ${ }_{2}$ or better still telephone (0329) 235611/236857. 1457

BOOKS

FREE 1980 AMTRON CATALOGUE with new range of kits and equip. ment cabinets. Send S.A.E. Amtron UK Ltd., 7 Hughenden Road,
Hastings.
Russex TV64 3TG. Hastings, Sussex TN64 3TG. Tel. Hastings 436004.

With Plessey Semiconductors

Discover the difference between doing alright and doing really well

Design/Product/Test/QA Applications/Development

Are your talents fully utilised? Is your job really holding your interest? And are you properly rewarded?
Consider a job with Plessey Semiconductors at Swindon now. Currently we are manufacturing and developing products for telecommunications, radio communications, radar systems, television and power control.
To expand this activity, we seek electronic engineers with ONC through to BSc (Hons) qualifications for a variety of opportunities. We have openings for both junior and senior engineers. You don't need specialist IC experience, a good general electronics background or interest is sufficient.
We are as keen as you are to ensure that your ability is not only utilised to the full but properly rewarded.
We are the largest British semiconductor company by a wide margin. Disregard anything you may have been led to believe about IC manufacture being exclusively an American operation. We have invested heavily in our future. We are growing rapidly. Over 50% of production is exported. Our product and market spread offers very considerable scope for individual men and women.

Opportunities also exist for surface acoustic wave engineers, particularly those with previous experience.
Salary parameters are 5 k and 10 k .
Design Engineers analogue or digital experience for bipolar, MOS and surface acoustic wave technologies.
Product Engineers. analogue or digital experience in design or test engineering, with an interest in production.
Test Development Engineers broad knowledge of electronics, with a real interest in test method concepts - hardware and/or software.

Applications Engineers

Development Engineers
experience in IC applications, radar IF's, use of ECL or high speed A-D conversion.
MOS IC design or digital design, including CMOS and TTL logic design experience.

QA Engineers to work on approval of devices to BS9000 specifications.

Apply to Shirley Cave, Ressourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon SN2 2QW. Swindon (0793) 36251.

SMALL BATCH productions wiring assembly to sample or drawings. Spechalist in printed clrcuits as-
sembly Rock Electronics, 42 Bissembly Rock Electronics, 42 Bis-
hopsfield, Harlow, Essex 027933018 . hopsfield, Harlow, Essex 027933018.

CAPACITY AVAILABLE

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Ltd, 01-850 6516, 45 Southwood Road, New Eltham SEg. assembly to sample or drawings. McDeane Electricals 19b Station W5. Tel 01-992 8976 . London

ARTICLES FOR SALE

INVERTERS

High quality DC-AC. Also "no break" (2 ms) static switch, $19^{\prime \prime}$ rack. Auto Charger.

COMPUTER POWER SYSTEMS interport Mains-Store Ltd. POB 51, London W11 3BZ Tél: 01-727 7042 or 0225310916

IBM SELECTRIC 735 TYPEWRITER, suitable for microprocessor $1 / 0$ terminal, with manual and plug, £240 ono. - Tel. Painswick (0452) 813699.
(353)

FREQUENCY COUNTER $50 \mathrm{Mhz}, 6$ digits, start/start facility RCS Type 401 TM. Absolutely brand new, surplus to requirements, £135. - Tel. 01-898 0678 after 7 p.m. (354) LAB CLEARANCE; Signal Gener.
ators;
Bridges;
Waveform, $\begin{array}{ll}\text { ators; } & \text { Bridges; } \\ \text { transistor } & \text { analysers; } \\ \text { calibratorm: }\end{array}$ transistor analysers; calibrators:
standards; millivoltmeters; dymastandards; milivoltmeters; dymamometers; KW meters; oscilloscopes; recorders; Thermal, sweep, devlation. Tel. 040-376236. (8250

CAPACITY AVAILABLE

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to undertake assembly and testing of circuit ${ }^{\prime}$ boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital enalogue and RF equipment in batches of tens to - thousands.

Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a. prompt quotation.

TEL. 01-253 4562
or reply to Box No. WW 8237
(8237)"

PCBs Production

runs or prototypes
Assembly to sample or drawings * Design Service if required

* Quick response to demand
* Expert hand soldering
* Nothing too large or too small

Telephone or write:
SEAHORSE ELECTRONICS LTD.
Unir 2, Plicow Fierm Roed
Service Incustry Eetate
Rencom, Chestire
Tel. Runcom (09285) 75950
PROTOTYPE SERVICE capacity avallable to produce your prototypes or small batch quantities from samples or drawings, also PCB artwork design and manufacture. - Lintek Electronics, 14 Adam Close, Coxheath, Kent. Tel. 0622679584.

PRINTED CIRCUIT BOARDS. Quick deliveries, competitive prices, Quick deliveries, competitive prices. Quotation on request, roller tinning, drilling, etc. Speciality small batches. Larger quantities availRoad, Carnaby Industrial Lancaster Road, Carnaby Industrial Estate, Yois 3QY. For the attention of Mr J . Harrison. Tel: (0262) 78788 .

ELECTRONIC DESIGN SERVICE. Immediate capacity avallable for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome. - E.P.D.S. Ltd., 93b King Street, MAIDSTONE, Kent. 0622-677916.

NEW OFFER！！ MICROPHONE TRANSFORMERS

2×300 ohms input for 200 balanced microphone 47 K output－7：1 ratio
Mumetal can with fixing bush and $6^{\prime \prime}$ flying leads．
Maximum input level 700 mv RMS（ 200 ohm ）．Response 10 Hz $20 \mathrm{KHz} \pm 1 / 2 \mathrm{db}$ ．

PRICE $£ 3.40$ inc．VAT

DIRECT INJECT BOXES ．．．

Jack input XLR output isolate switch and level control PRICE E19．00 inc．VAT．

XLR CONNECTORS

High quantity connectors most popular models at very low，prices． QUANTITY DISCOUNTS GIVEN
TRADE AND EXPORT ENQUIRIES WELCOMED．

MWM Co．

159 Park Road，Kingston，Surrey KT2 6BX
01－549 9130
Please add $£ 1.00$ postage

NEW 1980 Ed． WORLD RADIO

T．V．HANDBOOK

COMPLETE DIRECTORY OF IN－
TERNATIONAL RADIO \＆T．V
Price： 59.50
1980 THE RADIO AMATEUR＇S H／B
by ARRL Price：$£ 8.00$
UNDERSTANDING MICRO． PROCESSORS
by Texas Ins．
Price： $\mathbb{£ 4 . 0 0}$
HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS
by J．W．Streater Price $£ 4.50$ HIGH PERFORMANCE LOUD． SPEAKERS
by M．Colloms Price：$£ 5.70$ VIDEOCASSETTE RECORDERS
THEORY \＆SERVICING
by G．P．McGinty Price： $\mathbf{8 8 . 9 5}$ RADIO \＆ELECTRONIC LABORATORY H／B
by M．G．Scroggie Price：$£ 18.95$ A PRACTICAL INTRO TO ELECTRONIC CIRCUITS
by M．H．Jones Price：$£ 5.25$ PRINTED CIRCUITS H／B
by C．F．Coombs Price：$£ 25.35$ INTRODUCTION TO VLSI SYS TEMS
by C．Mead
Price： $\mathbf{£ 1 2 . 0 0}$
＊ALL PRICES INCLUDÉ POSTAGE

THE MODERN BOOK CO．
Specialist in Scientific
\＆Technical Books

19－21 PRAED STREET

 LONDON W2 1 NPPhone 402－9176
Closed Sat． 1 o．m
（8974）

THE SCIENTIFIC WIRE COMPANY

P．o．Box 30，London，E．

勻部答示 UNN＝－ い N－ －家家洛琞点

.60
.70
.80
1.42
2.50
3.6 SILVER PUTED COPPER WIRE $\begin{array}{llll}6.50 & 3.75 & 2.20 & 1.40\end{array}$ TINNED COPPER WIRE

| 14 | 10 | 30 | 3.38 | 2.36 | 1.34 |
| :--- | :--- | :--- | :--- | :--- | :--- | Prices include Pop．vat and wirs dan Reg Ontice： 22 Coningsty Gardens．

ENCAPSULATING，coils，transform ers，components，degassing，sili cone rubber，resin，epoxy．Los wax casting for brass，bronze，sil ver，etc．Impregnating colls，trans formers，components．Vacuum equipment low cost，used and new Also for cri regunning me Mrag．Meseareh Road Croydon CR0 2QP 01－684 9917，Cry（9678

GWM RADIO LTD．，40／42 Portland Road，Worthing，Sussex．Tel： 0903 34897 for surplus supplies．Avo ［43．Model 7 MK II $£ 32$ inclusive p i p recelvers．Eddystone 730＇s Allanta Marine，B40 ex－Govt． 40 ft pneumatic masts by Scam Clark Type 76 telephones．S．a．e．for delais．Avol movemens．All typal quantiles ne off ttems in stock No lists，we re worth wist，wholesale and retall．

TEST EQUIPMENT．Audio \＆RF Signal Generators Grip Dip and S．W．R．Meters．Transistor Testers Reg．P．S．U．Send S．a．e．，stating re urements，to

TRANSDUCER

 （Murata），$£ 2.85$ palr plus 25p p\＆p． Dataplus Developments，Berk hireTEKTRONIX Type 535／545 Oscillo cope for sale Excellent condition Includes extra Type D plug－in unit， £170 ono．－Ring 01－946 3464．（343）

W．W．SCIENTIFIC COMPUTER． $4 K$ user RAM． 6 k ROM cold and new firmwave）cassette recorder，Son TV monitor．First－class condition， 275．－Phone Walton－on 44110

EQUIPMENT WANTED

TO ALL MANUFAGTURERS ANB WHOLESALERS
 IN THE ELEGTRONIG RADIO AND TV FIELD

BROADFIELDS $\&$

MAYCO DISPOSALS

will pay you top prices for any large stocks of
surplus or redundant components which you
may wish to clear．We will call anywhere
he United Kingdom
21 LODGE LANE
NORTHFINCHLEY，LONDON N12 8JC
Telephone Nos， $01-4450749 / 4452713$ After office hours 9587624
（9123）

With 38 years＇experience in the dexign and manufacturing of geveral sundred thousand transformore we can aupply： AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT！WE MAKE IT！

OUR RANGE INCLUDES

Microphone transformers（all types）．Microphone Splitter／Combiner ransformers．Input and Output transformers．Direct Iniection transformers foritars，Multi－Secondary output transformers，Bridging transformers ne transtormers，Line uansformers to G．P O．Isolating Test Specitication Tapped impedance matching transformers，Gramophone Pickup trans formers，Audio Mixing Desk transformers（all types）．Miniature transformers Microminiature transformers for PCB mounting．Experimental transformers Ulira low frequency transformers．Uhra linear and other transformers fo Valve Amplifiers up to 500 watts．Inductive Loop Transformers．Smoothing Chokes，filier inductors．Amplifier to 100 volt ine vranstormers from a few wats up to 1000 watts）． 100 volt line transformers to speakers Speake matching transformers（all powers）．Column Loudspeaker transformers up to 300 watts or more．

We can design for RECORDING QUALITY，STUDIO QUALITY，HI－F UALITY．OR P．A QUALITY OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS．Many standard types are in stock and normal dispatch times are short and sensible．

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES MIXING DESK MANUFACTURERS．RECORDING STUDIOS．HI－FI ENTHUSIASTS．BANO GROUPS，AND PUBLIC ADDRESS IRMS．Export is a speciality and we have overseas clients in the COMMONWEALTH E．E．C．，USA，MIODLE EAST EIC．

Send for our questionnaire which，when completed，enables us to post quotation by return

SOWTER TRANSFORMERS

E．A．SOWTER LTD．（Established 1941），Reg．No．England 303990 The Boat Yard，Cullingham Road，Ipswich IP1 2EG Suffolk．P．O．Box 36 Ipswich IP 1 2EL，England Phone： $047352794 \& 0473219390$

ALFAC ELECTRONIC TRANSFERS． Stockists of full range x1 and x2 size（etch－resist）transfers for P．C．B．layouts．Return service． Send 17p stamp for catalogue， sample etc．PKG Electronics，
Lcdge，Tansley，Derbyshire．

A POWERFUL WORD PROCESSOR reduction word processor；IBM Golf Ball typewriter linked to twin magnetic tape cassette（or twin magnetic card）memory module． Full edit／search／formatting capa－ bilities．$£ 595$ plus VAT．Autotype． Abingdon（0235） 831245

6 SINGLE TV TUBE PUMPING STATIONS，complete with bake－out oven and automatic controls．These units will process all types of TV tubes and can be seen in oper－ ation．For sale in single unit as required．Michael Handley Lid．． Lonsdale Street Works，Nelson， 692836．

TEKTRONIX OSCIL．585A 82 plug－1n ${ }^{82}$ MHZ．Calibrated by Plessey． ${ }^{731391}$ ．

BEARCAT 220 VHF UHF RE－ CEIVERS，Synthesized coverage of 66 to $88 \mathrm{MHz}, 18$ to 136 MHz ， 144 66
to
$174 \mathrm{MHz}, 420$ to 512 MHz ，Digital Led frequency readout，Mains or 12VDC operation．$£ 239$ inclusive． PLH Electronics． 20 Vallis Road． Frome，Somerset．Tel． 10373 ） 61831． 1428

[^10]

DO YOUR OWN SHEET－METAL WORK

For Shearing，Notching，Aper－ ture cutting，Punching，Box－ folding etc．You need the con－ centrated versatility of only 3 Gabro Machines．

For well illustrated literature： GALE BROS．（ENGINEERS）LTO． HATHERSHAM CLOSE，
SMALLFIELD，SY．RH6 9JE
Tel：（0342－84） 2157

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \&
 BULK BUYERS ONLY

Large quantities of Radio, T.V. and Electronic Compinents
RESISTORS CARBON \& C/F $1 / 8,1 / 1 / 1 / 2,1 / 3$. 1 Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics. Metalamite, C280, etc.
Convergence Pots. Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc.
All at Knockout prices. Come and pay us a visit. Telephone 4452713 4450749

BROADFFIELDS 8 MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

WRONG TIME?

MSF CLOCK is ALWAYS CORRECT never gains or loses, 8 digits show Date, Hours, Minutes and Seconds, Auto GMT/ BST and Leap Year, also second-in-a-month STOP CLOCK and parallel.
BCD output, ideal for navigation, synchronising events, astronomy, etc, receives Rugby time signals, 1000 Km range, ABSOLUTE
TIME, £48.80. TMME, E48.80.
60KHZ RUGBY RECEIVER, as in MSF lock, built-in an
 Each fun-to-build kit includes all parts. printed circuit, case, posfage etc, money back assurance so SEND off NOW
Cambridge Kite, 45 (WF) Old School Lane, Milton, Cambridge

[^11]
THINKING OF RENTING A TELEPHONE ANSWERING MACHINE? THEN STOP!

Did you know that for the equivalent of just one year's rental you could actually buy one outright?

For details write to:
Javal Supplies Lid. (Dept. 2C), 120 Alexandra Road, Burton-onTrent, Staffs DE16 OJB or telephone (0283) 47427 any time.

OPERATIONAL 625 line PAL colour system for sale. Three studio cameras, zoom lenses/cables.
Vision mixer. Monochrome/colour monitors, sync pulse generator. £15,000. Lincolnshire ETV. Tel: (0522) 27347.

ASR33 TELETYPE with pedistal, good condition, 1350 , NOVA 820 Minicomputer with 32 K word RAM. spare boards. £450. Phone 01-965 7383
"VERO 19" CARD FRAMES (aS new). Height 5u. With case plus conns. £1.25. Phone (04895) 5355.

BURGLARS

Safeguard your home, shop, etc., from burglars and vandals with the best D.I.Y. equipment available.
Send S.A.E. for comprehensive price list. e.g. $£ 6$ for one of our fully weather-proofed steel Bell-Boxes the professionals use.

Lawrence, $42 / 45$ New Broad Street, London, EC2M 1 QY.

> Don't buy in Kits
> buy in Bits"
(277)

THE VINTAGE ${ }^{\circ}$ WIRELESS COIMPANY $\%$ 1920 to 1950
Receivers, valves, components, service data, historical research, books, magazines,
repairs and restorations. A complete service repairs and restorations. A complete service
for the collector and enthusiast of vintage radio.
S.a.e. with enquiry and for monthly news sheet 1980 catalogue E1
Closed Monday (Ansaphone) THE VIWTAGE WIRELESS COMP ANY 64 groad Street. Staple thu, Bristod BS 16 5ML Tei: Bristol 565472 (177)

ARTICLES WANTED

WANTED

ANGLIAN INDUSTRIAL

 AUCTIONSWe sell by auction, all radio and electronic components and equipment. Why not let us sell your surplus and end of production materials. All entries must be received at least 21 days prior to sale.
For entry forms or catalogue of next auction contact:
B. BAMBER ELECTRONICS 5 STATION ROAD LITTLEPORT
CAMBS. CB6 TOE
TEL: (0353) 860.185

DEAD OR ALIVE

SPOT CASH

paid for all forms of electronics equip ment and components.
F.R.G. General Supplies

550 Kingston Road, London Tel: 01-4045011
Telex: 24224 Quote Ref 3165

WANTED

Test equipment, receivers, valves, transmitters, components, cable and eloctronic cash. Member of A.R.R.A.

M B B RADIO
86 Bishopsgate Street Leeds LS 4 BB
Leeds LS14B6
0532-35649

TURN YOUR SURPLUS Capacitors, transistors etc, Into cash. Contact Brink Wisbech Cambs, 0945-418४ Immediate settlement. We also welimmediate settlement. We also wel| come the opportunity to quote for |
| :--- |
| complete factory clearance. |
| 9509 |

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and effclent supplies, PC boards, components, etc., regardless of condition or quantities. Call 01-771 9413. (8209

WANTED: Recording equipment of all ages and varieties. (Callfornia, U.S.A.). Tel. (415) 232-7933. (9814

WANTED, SEMICONDUCTORS and clean new surplus components. Hewitts, 52 Barkby Road, Syston,
Lelcester.

WANTED!

all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS with precious metal content
TRANSISTORS $\&$ PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL SMELTING \& REFINING Co. Lid. 171 FARRINGDON ROAD LONDON EC1R 3AL Tel: 01-8371475 Cables: $\mathbf{C O M S M E L T}$, EC1
Works: RECKNEY, Nr. LEICSTEA Works: ReCKNEY. Mr. LIICESTEA

We will purchase your surplus and obsolete Telephone Equipment and Electronic Components. Anything considered, from Relays to Complete Exchanges.
TELECOMM. SPARES
Lea Valley (0992) 716945

TELETEXT, TV SPARES \& TEST EUUIPMENT. TELETEXT. Latest MK2 external unit kit incl. Mullard Decoder 6101 VML and infra-red remote control $£ 258, \mathbf{p} / \mathbf{p}$ £2.50 (furexternal unit kit incl. Texas XM11 decoder, special offer price $£ 168$, p / p \&2.50. Both kits incl. UHF modulator, and plug into TV set derial socket. SPECIAL OFFER LEXAS XM11 Decoder, new and tested, limited quantity at price, £65, p/p £1.40. Stab. power supply (5v) for Teletext decoders, $£ 5.80$, p/p \&1. Thorn design XM11 interface unit, $£ 1.80, p / p 80 p$. NEW SAW FILTER IF AMH PLUS TUNER (complete \& tested for. sound \& vlsion), £28.50, p/p £1. COLOUR BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type, 8 vertical colour bars,
H.Y. B.Y. grey scale, etc. P/B con-K-Y, B-Y, grey scale, etc. P/B controls $£ 35$. Batt holders $£ 1.50$ or stab.
mains power supply kit $£ 4.80$, Demains power supply kit $£ 4.80$, De-
luxe case $£ 5.20$ or alum. case $£ 2.90$, luxe case $£ 5.20$ or alum, case $£ 2.90$,
p / p £1.40. Built \& tested in De-luxe p/p $£ 1.40$. Built \& tested in
case (battery)
\& case (battery) KIT UHF aerlal in-
CROSS HATCH KT put type also gives peak white \& black levels, batt. op. £11, p/p $45 p$. Add-on GREY SCALE KIT $£ 2.90$.
$\mathrm{p} / \mathrm{p} 35 \mathrm{p}$. De-luxe case $£ 5.20$ UHF p/p 35p. De-luxe case \&eter KHE £17.50. Alum. case £1.80. De-luxe case $£ 5.20, \mathrm{p} / \mathrm{p}$ £1.40. CRT TEST \& case £5.20, p/p £1.40. CRT TEST \& mono $£ 22.80$, p/p $£ 1.70$. THORN 9000 Touch Tune Remote control receiver unit plus transmitter handset £16, p/p £1.40, THORN 9000 Fascia incl. channel select. indicator, set controls, speaker, £5.80, p/p $£ 1.60$. TV SOUND IF TRANSTD. Tested, 86.80 , p/p $85 p$.
BUSH SURPLUS IF PANELS. A816 BUSH SURPLUS IF PANELS. A816
$£ 1.80$, TV312 (Single I.C.) $£ 5, \mathrm{z718/}$ 11.80, TV312 (single I.C.) $£ 5,2718 / \mathrm{p}$
8 C 6100 £5, A823 (Exp) $£ 2.80, \mathrm{p} / \mathrm{p}$ 85p. BUSH Z718/BC6100 Line Time Base Panel Z904, incl. LOPT, EHT stick. Focus, etc., 18 in or 22 in, 115. p/p $£ 1.60$ BUSH 161 series TB panel A634 $£ 3.80$, p/p $£ 1.20$, DECCA colour TV Thyristor Power supply £3.80, p/p $£ 1,40$. GEC 2010 series TB panel $£ 1$, p/p 90p. GEC 2040 CDA pane 6 $G 6$ S/S conv, panel $£ 2.50, \mathrm{p} / \mathrm{p}$ f1.20. p/p 1.20 G9 Signal panels for
 small spares $£ 3.80, \mathrm{p} / \mathrm{p}$ £1.20. THORN 3500 Line TB panel f5, p/p £1. 3000 ex-rental panels IF, VIDEO,
DECODER DECODER, $15, \mathrm{p} / \mathrm{p}$ £1.20, $8000 / 8500$
TB salv/spares $£ 4.80, \mathrm{p} / \mathrm{p}$ £1. 8000 Line TB (Incl. LOPT) salv/spares Line TB (incl. LOPT) salv/spares
$£ 7.50$ p/p $£ 1.60$. COLOUR SCAN £7.50, p/p £1.60. COLOUR SCAN
COILS 1 Mullard or Plessey) $£ 6, \mathrm{p} / \mathrm{p}$ £1.80. Yoke $£ 2.50$, p/p $£ 1$. Blue Lat
75 p . p/p 35 p . Mono Scan Coils (Thorn, Philips, Pye) $£ 2.80$, p/p $£ 1$. VARICAP UHF TUNERS. Mullard U321 £7.80, ELC1043/05 f5.50. G.I. £3.50. Salv. (asstd) $£ 1.50$, p/p 45 p. Varicap UHF/VHF ELC2000S $£ 8.50$, Bush (dual) $£ 7.50, \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. TOUCH TUNE CONTROL units, Bush 16
pos)
4.50, p/p 80 p. VARICAP CON pos) $£ 4.50$. $p / \mathrm{p} 80 \mathrm{p}$. VARICAP CONTROL UNITS 3 pos. $£ 1.20,4$ pos.
$£ 1.50$, 5 pos. $£ 1.80$, 6 pos. $£ 1.80 .6$ d1.50, 5 pos. $£ 1.80,6$ pos. $£ 1.80$. ${ }^{6}{ }^{6}$ pos. spectal offer $£ 1, \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. UHF pos. speclal offer $11, \mathrm{p} / \mathrm{p}$
transtd. Tuners (rotary) incl. SHF
s/m ranstd. Tuners (rotary) incl. s / m drive $£ 2,50,4$ pos. P/B \&2.50, 6 pos.
P/B 4.20 . p / p £1.20. (Special types available, details on DL50 Delay Line $£ 2.50$, p/p 50 p Large selection of LOPTS, Triplers, Malns Droppers, and other spares for popular makes of colour \& mono receivers. PLEASE ADD 15% VAT TO ALL PRICES. - MANOR SUPPLIES, 172 WEST END LANE. WEST HAMPSTEAD, LONDON, N.W.6. SHOP PREMISES. Tel. 01794 8751. Easily accessible W. Hampstead Jubilee Tube \& Brit Rall N. London Richmond-Broaa St.) and St. Pancras-Bedford. Buses 28. 159. 2. 13. Callers welcome. Thousands of additionat items not normally advertised available at shop premises. Open dally all week incl. Saturday (Thursday half day). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT. PLEASE ADD 15\% VAT to all
\qquad

SPECIAL PURPOSE and high power valves of Eimac and Varian wanted: $304 \mathrm{TL}, 4-125 \mathrm{~A}, 4 \mathrm{CX1000A}$, etc. 53 , 6L6, 7N7, 7F7 valves also desired. - Ted, W2KUW. 10 Schuyler Avenue, North Arlington. New Jersey 07032 (USA).

8- srauctures for RADIO - Mr WE SUPPLY AND ERECT TOWERS, MASTS, ETC., THROUGHOUT THE U.K.

- Installations of antennas
- Surveys, inspections and maintenance

48-hour emergency service (0604-63735)

- 12 months guarantee on all installations If you like to plan well ahead phone us NOW for information on our Inflation-proof fixed-price ordering. Ask for Steve Faulkner on 0604-21930
T.R.S. (NORTHAMPTON), Unit 3, Rolhersthorpe Trading Est., Northampton

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for instant quote or write to AKTRONICS Lid., 42/44 Ford Street, More-
tonhampstead, Devon.

REPETITION SHEET METALVIORK on Wiedemann turret press, Long/ short runs. Highly competitive. Quick deliveries commission for introductions. - EES Lid., Clifford Rd., Monks Rd., Exeter. 36489. (8060

DESIGN SERVICE. Electronic Design Development and Production Service available in Digital and Analogue Instruments, kw Transmitters and Receivers for control of any function at any range, Tele-
metery, Video Transmitters and metery, Video Transmitters and Monitors, Motortsed Pan and Tilt Heads etc, Suppliers to the Industry
for 16 years. Phone or write Mr. Falkner, R.C.S. Electronles, 6 Wolsey Road, Ashford, Middlesex. Phone Ashford 53661 .
$(8341$
SMALL BATCH PCB's produced PANEIS LABELS Camera work PANELS, LABELS, CUREAROUND. - Details: Winston Promotions, \dot{g} Hatton Place, London EC1N 8RV. Hatton Place, London EC1N 8RV
Tel. $01-405$ 4127/0960.

A COMPLETE SERVICE to manufacturers. Assembly, cable forming and testing. Also a prototype PCB service and component scheduling at competitive prices. Small or
large runs with quick turn-round to high standards. Contact the proto high standards. Contronic Services, Staincliffe Mills, Dewsbury, W. Yorks. Tel (0924) 409040 TX 556267,

ELECTRONIC DESIGN SERVICES. MICROPROCESSOR HARDWARE and SOFTWARE design facilities have now been added to our established expertise and comprehensive test facilities previously available to you for ANALOGUE and COMMUNICATIONS designs. - For fastest results please phone Mr. Anderson, Andertronics Lid, Ridgeway, Hog's Back, Seale inr. Farnham), Surrey,
$\mathbf{0 2 5 1 8 - 2 6 3 9 .}$
P.C.B. PROTOTYPE and small batch production. Design layout, assembly and testing. Fast, relible ser-
vlce. Wye Valley Electronics, 15 vlce. Wye Valley Electronics, 15
High St, Lydney, Glos. Tel: Dean
 MCRO ENGINEERS with years of hardware and software experience, seek independent design and development projects. No task too small. Please write in the strictest confidence to Box No. W.W. 438.

TEST EQUIPMENT CALIBRATION AND REPAIR

Quick turn round, atractive rates. ring for
DUTCHGATE LTD.
94 Alfriston Gardens, Sholing
Southampion (9385)

SMALL BATCH FLOW SOLDERING Up to 500 per week. PC boards flow suldered and inspected. Maximum size 8 in x $12 i n$. Send sample PCBs for quotation or phone Musicaid, 176 Hatfield Road, St Albans, Herts Tel: St Albans (0727) 34321/33868.
(396)

COLOURED FLUORESCENTS, al

 applications of fluorescent lighting effects. Reduçe your costs, use our custom-design service, assemble your own units. Box No. WW427 (427)'ONE OFFS' A SPECIALITY. Smal batch PCB assembly. Quality hand soldering and wire-wrapping. Col lection/delivery service available (0234) 215826 or reply to Box No W.W. 424

PRINTED CIRCUIT BOARDS. Single/ double sided from circuit diagrams to assembled and tested boards. Any intermediate stages at manufacture undertaken. Quick turnround on prototypes. Phone Maldon (0621) 741560 or write to Mayland lectronics, 4 the Drive, Mayland sea, Chelmsford, Essex CM3 6AB

DESIGN DEVELOPMENT MANU

 FACTURE. We can nffer a high quality, professional service, cover ing all aspects from original design o small batch production. Digital/ Analogue prototypes welcome. For competitive pricing and quick delivery phone Mr. Flower, Digitalis Ltd., 9 Milldown Road, Goring-onThames, Oxfordshire. Tel: 049143162.

TENDERS

WEST MIDLANDS
PASSENGER TRANSPORT EXECUTIVE UHF/FM
HAND-PORTABLE RADIO TRANSMITTER/ RECEIVER SETS
The Executive invite applications from manufacturers who wish to be included upon the Executives list of ienderers who may be invited totenderfor
Specificetion ana tender details can be obtained from. S. Evans, Purchasing Transport Executive, 16 Summer Lane, Birminghani B19 3SD.
Closing date for tenders: 12 noon, July 7 Closing
1980.
The Executive does not bind itself to accept the lowest or any other tende

CCAT Cambinceshure courger OF RRTS RND TECHNOLOGY

 Courses in Electronics
BSc IN ELECTRONIC ENGINEERING

A four-year part-time degree course for mature students Of particular interest to those engaged in Digital, Telecommunications or Central Systems. Entry qualification required is an HNC or equivalent in electrical and Electronic Engineering or Applied Physics. This CNAA degree is considered by the Council of Engineering Institutions as meeting their C.Eng. academic requirements

CEI PART II

One year full-time or two years' part-time course in preparation for the CEI Part II examination which is the present academic qualification for Chartered Engineers. Subjects offered include Electronics, Communication, Central and Computer Engineering. Entrants should have passed CEI Part I or have been exempted; holders of HNC and endorsement or HND are so qualified. Further details and application forms are available from the Information Office, Cambridgeshire College of Arts and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271

INTERESTED IN A TECHNICAL CAREER IN

TV/RADIO/ RECORDING?

The best way 10 achieve this is to take a concentrated industry-recognised 2 -year course with Ravensbourne College and Bramiey College of available and the course leads to the TEC Higher Diploma in Communications Engineering. Supported by a number of TV companies. the course is a mixture of academic and practical work
o find out more about this unique oppor unity to secure a worthwhile absorbing career in a well-paid, expanding industry 300 of our ex-students now have responstelephone The Secretary. Department of ielevision. Ravensbourne College Wharton Relevision, Ravensbourne College, Wharton
Road. Bromley. Kent BR 1 3LE (fet: 01.464 3090).
(388)

CAPACITY AVAILABLE

CIRCOLEC

Ior Electronic/Electro-Mechanical Assembly. We otter the lollowing versalile and quality service for small to large balches.
PCB and Final Assembly, Repairs and Servicing, Inspection and Functional Test, Prototypes and Associated Services, and modifications.

For compelilive prices and lasl turmaround. contact Circolec. Tel: 01.7671233 : 1 Franciscan Road. Tooting.

K.A.I. ShBCTRONCS BTD.

CONSULTANTS - DESIGNERS ASSEMBLERS

SPECIALISTS IN MICRO-BASED SYSTEMS 50 Flixton Road Unmston, Mancheste Tel: 061-7483878 199191

PCB ASSEMBLY

CAPACITY AVAILABLE
Low or high volume. single or double sided, we specialise in flow line assembly.
Using the Zevatron flow soldering system and on line cutting. we
are able to deliver high quality assemblies on time, and competitively priced.
Find out how we can help you with your production. Phone or write. We will be pleased 10 call on you and discuss your requirements.

TW ELECTRONICS LTD.

120 NEWMARKET ROAD
BURYST. EDMUNDS, SUFFOLK
TEL: 02843931
Sub-contract assemblers and wirers to the Electronics Industry (9068)

Here's why you should buy an I.C.E. instead of just any multimeter

WIRELESS WORLD. JUNE / JULY 1980

* Best Value for money.
* Used by professional engineers, D.I.Y enthusiasts, hobbyists, service engineers.
* World-wide proven reliability
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload
* Large range of inexpensive accessories. * 12 month warranty, bracked by a full after sales service at E.B.Sole U.K.Distributors
Prices from $\mathbf{£ 1 6 . 6 0 - \mathbf { £ } 3 2 . 0 0 + V A T}$ Send for full colour leaflet and prices on whole range including accessories.

1 걱 ELECTRONIC BROKERS LIMITED

49.53 Pancras Road, London NW1 2QB. Tel: 01-837 7781. Telex: 298694.

INDEX TO ADVERTISERS JUNE/JULY Appointments Vacant Advertisements appear on pages 157-175

[^12]
تmempuisum

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Send the coupon for your copy

and STEP UP $T 0$

 MAPLIN SERVICE NOWPost this coupon now for your copy of our 1979-80 catalogue price 70p. Please send me a copy of your 280 page catalogue. I enclose 70 p (plus $46 \mathrm{p} \mathrm{p} \& \mathrm{p}$). If lam not completely satisfied I may return the catalogue to you and have my money refunded If you live outside the U.K. send $£ 1.35$ or ten International Reply Coupons. Ienclose $£ 1.16$.

NAME
ADDRESS
\qquad

Catalogue now available in all branches of WHSMITH 绝 Price $£ 1.00$

[^0]: *Use a 600 mA at 9 V DC nominal unregulated mains adaptor. Available fromSinclair if desired (see coupon)

[^1]: To Pieter Glas. Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HAO IBR
 Please send me more information about video equipment and a list of your Video Centres. Name
 Organisation
 Address

[^2]: Members of Comouter Retallers Association \& Apple Dealers Association

[^3]: Terms of business: CWO. Pos
 In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press.
 Over 10 facilies available to approved companies with minion orter or listed. S.A.E.

[^4]: Le- Lightning service on telephoned credit card orders!

[^5]: SHORT WAVE 100 pf air spaced gangable tuner. 95p.
 TRIMMERS 10 pF . 30 pF , 50 pF , 5 p . 100 pF . 150 pF , 15 p . CERAMIC, 1 pF to 0.01 mF . 5 p . Silver Mica 2 to 5000 pF . 5 p . PAPER 350V-0. $17 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 20p; 500v-0.001 10 0.0512 p ; 0.115 p ; 0.2525 p ; 0.4735 p . MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change over $365+365+25+2585$ p 80 p ; 500 pF slow motion 75p. RANSISTOR TO +25 pF . Slow motion drive 85p. 120pF 50 p . RANSISTOR TWIN GANG. Japanese Replacement 50p. HEON PANEL INDICATORS 250 V 30p.
 LLLUMINATED ROCKER SWITCH. single pole. Red 65p. CASSETTE MOTOR. 6 VOIt £1.00

[^6]: STRUTT LTD.
 (ELECTRONIC COMPONENTS DISTRIBUTORS)
 3C Barley Markot Street
 Tavistock, Devon PL19 0JF
 Tel. Tavistock 0822-5439
 Telex 45263

[^7]:

 Prices:

 UK P/P £2. Overseas Irom e5.50.

[^8]: ELECTRONICS TECHNICIAN Grade 6 required by Department of Physiology, UCL, to work in the Electronics Workshop. Duties would include the design, construction and maintenance of a wide range of sophisticated equipment used in teaching and research laboratories. Candidates should hold HNC or equivalent and have a good know ledge of electronics, including digital circuitry. Experience in a University or similar institution
 would be an advantage. Salary in would be an advantage. Salary in
 London Weighting. Application form from Personnel Officer (Technical Staff FF29), University ColWCiE 6BT.

 TESTERS, TEST TECHNICIANS, TEST ENGINEERS, Earn what you're really worth in London working for a World Leader in Radio \& Telecommunications. Phone Len Porter on 01-874 7281 , or Write: REDIFON TELECOMMUNICATIONG London, SW18. Road. Wandsworth,

[^9]: UNIVERSITY OF OXFORD
 ELECTRONICS TECHNICIAN An electronics technician is required for work on mass spectrometers and other equipment in the Department of Geology and Minera. logy, under the technical direction of the Electronics Group in the Physics Department. Applicants fault-finding and building of modern electronic equipment.
 Appointment is for five years Appointment 1980. Salary range from 1884 to $\$ 5832$, under review. Applications with full personal and professional detatls as soon as possible, to The Adminstrator, Department of Geology and Mineralogy, Parks Road, Oxford 0X1 3PR. (373)

[^10]: CLEARANCE PARCELS：Transistors resistors，boards，hardware， 101 lbs only 55.80 ！ 1.000 Resistors ${ }^{〔 4.25}$ ，

 S．a．e．IIsts：W．V．E．${ }^{10}$（3）．${ }^{\text {for }} 15 \mathrm{High}$ | Street，Lydney，Glos． |
 | :--- |
 | 1444 |

[^11]: STC 4001 TWEETERS bargain clear ance offer, 2 for $£ 6,4$ for $£ 10, ~ £ 1.50$ p\&p. - Seasim Ltd., The Paddocks, MICROWAVE EQUIPMENT, wave guides, attenuators, all used but in good condition. Barretts, 1 Mayo Road. Croydon, CRO 2QP. 01-684
 9917. HEWLETT-PACKARO 130 C . Oscilloscope. New manual, new valves. V.g.c. Bargain. £250,
 Framingham Earl 2612. Framingham Earl 2612.

[^12]: Printed in Great Britain by QB Lid., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL.ELECTRONIC PRESS LTD.. Dorset House, Stamford Street,
 London, SEI 9LU, telephone $01-2618000$. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co. CANADA: The Wm, Dawson Subscription Service Lid, Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Ltd: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Fastern News Distribution Inc., 14 th floor, 111 Eighth Avenue, New York, N.Y. 10011.

