

The only limitation is your imagination

The TM500 series

First select a mainframe, there are five basic models from which to choose, providing $1,3,4,5$ or 6 compartments, suitable for benchtop, portable or rackmountable applications. Each mainframe has its own integral power supply and that means just one mains lead irrespective of the nurnber of compartments used. Now you can start to build.
Simply select from the 40 plus instrument modules available performing a wide range of functions from Power Supplies to Function Generators, Digital Counters, Digital Multimeters, Pulse Generators and Calibrators the instrument of your choice. Your chosen module is then simply slotted into the selected mainframe, it takes only seconds and they can be changed just as quickly.
Tailor your selection to suit your application

To find out more clip the coupon, ask your field engineer, circle the enquiry number, write or simply phone, we'll be pleased to help.

Tektronix UK Ltd., PO Box 69, Coldharbour Lane, Harpenden, Herts. AL5 4UP. Tel: Harpenden 63141

Regional Telephone Numbers: Livingston: 32766,
Maidenhead: 73211, Manchester: 428 0799, Dublin: 508132.

> Please send me full information on the TM500.

Name
Position
Company
Address

Front cover shows aerials of Bantiger television station operated by Swiss PTT. Photo: the Hamer-Smith Swiss collection.

IN OUR NEXT ISSUE
Wideband audio amplifier design by Yuri Miloslavskij aims at good transient response using class A circuitry and no overall feed. back.

Constructional design for multisection tone equalizer is made inexpensive by use of quad opamps and preset controls.

A/so articles on community broadcasting, an unusual technique for metal detecting and analogue computing methods. For details of these see panel on page 85.

Current issue price 50 p, back issue (if available) $£ 1.00$, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: don SE1. Available on
please contact editor.
By post, current issue 86 p . back By post, current issue 86 p , back
issues (if available) $£ 1.00$, order and payments to Room CP34, Dorset House, London SE 1 9LU.
Editorial \& Advertising offices: Dorset House, Stamford Street. London SE1 9LU
Telephones: Editorial 01-261 8620. Advertising 01-2618339. Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE1
Subscription rates: 1 year $£ 9.00$ Subscription rates: 1 y
UK and $\$ 31$ outside UK.
Student rares: 1 vear, $£ 4.00$ UK Student rates: 1 year,
and $\$ 15.50$ outside UK.
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636 .
Subscripions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone 044459188 . Please notify a change of address. USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue, Suite 1217 . New York, NY Avenue, Suite 1217 . New York, NY
10022. 2nd-class postage paid at New York.
e IPC Business Press Ltd. 1980 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION /RADIO / AUDIO

MAY 1980 Vol 86 No 1533

37 Current affairs
36 Designing with microprocessors - 1 by D. Zissos and L Valen
41 Weather satellite picture processor by G. R. Kennedy
47 News of the month UNESCO report on spectrum "Challenge of the chip" GLC call for citizens' band
50 Periphonic sound at AES convention
51 Letters to the editor The intelligent plug Push-pull amplifiers Pre-amplifier with no t.i.d.
55 Audio spectrum analyser by P. D. Hiscocks
61 Land mobile radio and spectrum utilization by P. A. Matthews
64 Digital capacitance meter p.c. layouts by A. Ryan
65 Programmable audio attenuator by J. M. Didden
71 Binary codes for error protection by D. A. Bell
76 Circuit ideas C.m.o.s. 60 kHz receiver Variable phase all-pass filter Simple manual-reset latch
81 Why does an electron have inertia? by T . B. Tang
83 World of amateur radio
84 Outlook for short-wave broadcasting by J. Vastenhoud
86 Novatexts: LC oscillators by P. Williams
88 New products
90 Sidebands by Mixer
13,4 Careers in the electronics industry by R. C. Slater

Hall Electric Limited International

Semiconductor Distributor

DON'T GAMBLE WITH PERFORMANCE BUY

 LEVELL VOLTMETERS
Ă.C. MICROVOLTMETERS

VOLTAGE \& dB RANGES	$\begin{aligned} & 15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} \ldots 500 \mathrm{~V} \text { fsd. } \\ & \text { Acc. } \pm 1 \% \pm 1 \% \mathrm{fsd} \pm 1 \mu \mathrm{~V} \text { at } 1 \mathrm{kHz} . \\ & -100,-90 \ldots 50 \mathrm{~dB} . \\ & \text { Scale }-20 \mathrm{~dB} /+6 \mathrm{~dB} \text { ref. } 1 \mathrm{~mW} / 600 \Omega . \end{aligned}$
RESPONSE	$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz , $\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$. TM 38 filter switch: LF cut 10 Hz , HF cut $100 \mathrm{KHz}, 10 \mathrm{KHz}$ or 350 Hz .
INPUT IMPEDANCE	Above 50 mV : $10 \mathrm{M} \Omega<20 \mathrm{pF}$. On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$.
AMPLIFIER OUTPUT	150 mV at fsd.
type TM3A	type TM3B £145

BROADBAND VOLTMETERS

H.F. VOLTAGE \&
dB RANGES
H.F. RESPONSE
L.F. RANGES

AMPLIFIER OUTPUT
$1 . \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} . .3 \mathrm{~V}$ fsd. Acc. $\pm 4 \% \pm 1 \%$ fsd at 30 MHz . $-50,-40 \ldots+20 \mathrm{~dB}$. Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 50 \Omega$.
$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz .
As TM3
Square wave at 20 Hz on H.F. with amplitude proportional to square of input As TM3 on L.F.

| type | |
| :--- | :--- | :--- |
| TM6A | type |
| тM6B | 2215 |

D.C. MICROVOLTMETERS

VOLTAGE RANGES

CURRENT RANGES

LOG: RANGE
RECORDER OUTPUT
+500 mV at fsd
$\pm 1 \mathrm{~V}$ at fsd into $>1 \mathrm{k} \Omega$

HITACHI PORTABLE OSCILLOSCOPES

WITH A TWO YEARS WARRENTY Satisfying a wide variety of needs

V-151 15mhz single trace

V-301 30 mhz single trace

V-152 15 mhz dual trace

V-302 30mhz dual trace

The Hitachi-Denshi Oscilloscopes have been researched and produced by Hitachi Electronics specialists and has resulted in a range of modern Oscilloscopes which feature wider band width, a compact design and light weight.
The circuitry in these new Oscilloscopes combines linear IC's and logic IC's plus modern manufacturing techniques, including automatic component insertion machines, thus ensuring increased stability, improved reliability, excellent performance and an enhanced operating ease.
Just look at these outstanding features
Trace rotation system for easily adjusting bright-line iriclination caused by terrestrial magnetism. X-Y operation, which is very convenient for measuring phase difference of two wave forms. TV sync separator circuit facilitates rapid video signal measurements.
Extra high sensitivity : vertical sensitivity of 1 mV div now available.

* Built in signal delay line for leading edge observation of quick rising wave forms.

Sweep time magnifier effective for precise measurement :
Sweep time magnifying ten times with one touch operation.
In addition these Oscilloscopes will ensure that very feeble analogue signals can also be measured and any of the line voltages 100,120, 220 and 240 can be selected by tap changing.

Hitachi-Denshi have a very informative illustrated brochure available on this new range, fill in the coupon and a copy will be mailed to you by return.

Broadcast \& CCTV Equipment Manufacturers
Lodge House, Lodge Road, Hendon, London NW4 4DQ Telephone: 01-2034242

MIGROCHIPS AT MIGRO PRICES	
Compare our prices before you buy elsewhere. All brand new, prime.	
memories	
2102 Static RAM	$8{ }^{80}$
2114 Low power high speed 300NS 4.00	
IERROMS	
1702 A	3.75
27082716 Single 5 V supply \quad Special offer 5.50$\mathbf{1 7 . 9 5}$	
MART	
AY-5-1013A	2.98
AY-3-1015	3.98
CHARACTER GENIRATOR	
R0-3-2513 UC	4.50
TLOperioskicowthomitin	
FD 1771 Single Density IBM Compatible	Sy 19.95
FD 1791 Dual Density	
IBM Compatible	39.95
SUP-0.t oEVICES	
MC14412VL	7.97
EEYBOARO ENCODER	
AY-5-2376	7.95

INTERSIL CHIPS ARE DOWN

Due to bulk purchase we are able 10 offer unbeatable prices on INTERSIL CHIPS. | Compare our prices below distributors! 5.95 |
| :--- |
| CL 7106 CPL | ICL7106CPL

ICL. 7107 CPL
ICL8038CCPD
ICM7216AIJI
ICM7216BIP
ICM $75551 P A$
8.75
$80 p$

ICM7555			$80 p$
LNEARICS			
709	30 p	NE555	18 p
723	33 p	NE556	50 p
741	17 p	RC4136	90p
747	40 p	SN76477N	N 1.95
748	25p	TL071	40p
LM301AN	25 p	TLO74	1.30
LM311	42p	TLO81	$35 p$
LM318	70p	TLO82	$80 p$
LM324	35p	TLO84	1.10
LM339	35 p	TL490. Ne	w 1.75
LM 380	60p	XR2206	3.00
LM 1496	6 0p	XR2207	3.75
LM 3900	$45 p$		

VOLTABE REGULATORS
$\begin{array}{ll}7805 / 781255 p & 78 H 05 S C \\ 79.75 \\ 7905 / 791265 p & 78 H G K C \\ 6.25\end{array}$

UNIVERSAL SCR
C1060 400V5a 35p

NEW! AY.3.8910 Ban $2_{\text {Ang }}$ Qang Iwee

AY3.8910 PROGRAMMABLE SOUND GENERATOR
The AY3-8910 is a 40 pin LSI chip with three oscillitors, three amplitude controls. programmable noise generator, three mixers, an envelope generator, and three DIT WORDS. No external pots or caps required. This chip hooked to an 8 bit required. This chip hooked to an 8 bi
microprocessor chip or Buss (8080,280 6800 etc.) can be solfiware controlled to produce almost any sound. it will play three note chords, make bangs, whistles, sirens, gunshots, explosions. bleets. whines, or grunts. In addition. it has provisions to control its own memory chips with two 10 ports. The chip requires +5 V @ 75 ma and a standard TTL clock ©8.95 + VAT W/Basic Spec Sheet (4 pages).
60 page manual with S-100 interface instructions and several programming examples $£ 1.95$ extra.

Texas Instruments

 Low Profile SocketsContacts
8 PIN 14 PIN 16 PIN 18 PIN 20 PIN 22 PIN
 24. PIN 28 PIN 40 PIN

Price
 07 09 10 10 15 18 20 22 25

THE MOST VERSATILE LIOUID CIYSTAL DISPLAY

9.1.8:8. 8

CODOB 1.24 25 + $100+$ $\begin{array}{llll}\text { LCD106 } & 6.45 & 5.50 & 5.25\end{array}$ $5^{\prime \prime}$ Field effect LCD dis play featuring $31 / 2$ digits, colon, plus/minus sign 3 decimal points and 'LO BAT" indicator Ideal for DMMs, DPMs, digital thermometers AM/FM radio readouts Just look at the features Ultra low power consumption, high contrast ratio, wide viewing angle, rapid response. proven sealing techniques, superior MTBF reflective aluminium foil Over 300,000 already sold! Perfect interface for Intersil 7106 and 7116

SE 01 Sound Effects Kit NEW

Vco. Noise

and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable Pulse Generator. Level Comparator and Multiplex Oscillator for even more versatility. The $3 / 4 \times 3$ allow for user added prototype area to allow for user added Crcuitry. Easily programmed to duplicate Explosion, Phaser Guns, Staam of raths, or almost an intinte number of applications. The low price includes all parts, assembly manual, programming chans. and detailed 76477 chip specifications. It runs on a 9 V battery (not included). On board 100 MW amp will drive a small speaker directly. or the unit can be con nected to your stereo with incredible resulis! (Speaker not included.)

COMPLETE KIT ONLY £ 12.50 P\&P 50p + VAT

DISPLAY LEDS	
OL 704/0L 707	
FNO $500 /$ FNO 510	

From T.1: TL490 BAR / DOT DRIVER IC. Drives 10 LEOs with adjustable analog steps. Units are cascadable up to 10 (100 voltage, current or audio displays. Similar in features to LM 3914 with specs and circuit notes. ONLY E1.75 NEN! NAMn円ी?

Ordening imformebon: For orders under ¢50 add $50 \mathrm{p} p$ \& p Add 15% VAT 10 total All items are subject to prior sale and therefore subject to avallability. Prices are subject to change without notice

MICRO CIRCUITS

4 Meeting Street
Appledors, Nr. Bideford
North Dovon B391R
79507
Telex 8953084

Measure Resistance to 0.01Ω

 At a Price that has no resistance at all New Elenco peectisin Digital Multimeter M1200B
ONLY E55

YOUR OPPORTUNITY TO BUY THIS SUPERB DMM AT THIS PRICE FOR A LIMITED PERIOD ONLY

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE! FEATURES

- $3 \frac{1}{2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes
MODEL 7010 FREQUENCY COUNTER

To. Maclin-Zand Elecironics Lid
1 st Floor. Unit 10 . East Block
38 Mount Pleasant, London WC $1 \times$ OAP
Please send me DMM M1200B (£66.70 incl)
Frequency Counter 7010 (E .138 inc)
I enclose cheque / PO / Bank Draft for ¢
| Name
| Address

Also available from retail shop: Audio Electronics. 301 Edgware Road London, W. 2 Telephone: 01-7243564
(C) N Zand

ELENCD - PREASIOW Sole UK Distributor ME

Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC 1XOAP Tel. 01-8371165/01-2787369 Telex. 8953084 MACLING

Topvalue
 testequipment fromTANDY

AC/DC 8 MHz OSCILLOSCOPE

A new approved 8 MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Specifications:
HCrizontal axis: Deflection sensitivity better than 250mVIDIV Vertical axis: Oeflection sensitivity 0.8 MHz . Input impedance. 1 mmmm . Bandwid capactance 35 pF . Time base: Sweep range. capacitance 35 pF . rime base: Sweep range
10 Hz 100 kHz 14 ranges) Synhronztion Internal() Size: $200 \times 155 \times 300 \mathrm{~mm}$. Supply $220.240 \circ 50 \mathrm{~Hz} .22-9501$.

You save because we design, manufacture; sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

A portable, compact sized multimeter with a full
$31 / 2$ digit LCD display. Auto polarity operation, low battery indicator. 10 MOhm input impedance.

CAT. No.	DESCRIPTION	PRICE
276-032	LED	4 for 69p
276-033	LED	2 for 48p
276-034	LED	2 for 59p
276-142	Infra-Red Enitter Detector Pair	$£ 1.37$
277-1003	I2VDC Automative Digtai Clock Module	£17.52
276-9110	6 pin edge connector for 2771003	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	TO 220 Heat Sink	60p
276-1364	TO 3 Heat Smk	81p

The PM 2517 has set the

 standard and the pace in Europe for hand-held digital multimeters and still it remains in a class of its own.Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240 , which a $31 / 2$

The PM 3207 - Super
Scope-is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expect from Philips Test and Measuring Instruments.
digit meter would read.
digit meter would read.
other PM 2517 plus points:
Some other PM 2517 plus points:
OLED or LCD display
True RMS readings of AC voltage and current Autoranging with manual override
Optional accessories include temperature and data hold probes Reader inquiry number 220

- 15 MHz dual trace
- Auto triggering from either channel with adjustable level between peaks and TV triggering
5 mV sensitivity, Y and X (via A input)
- B invert facility

Reader inquiry number 221

Both these instruments are available off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors. British Tungsram, West Road, Tottenham. London N17 ORN. Tel: 01 -808-4884. Philips Service Centres (25 throughout the country). Tel: 01.686 .0505 for the address of your nearest branch. Wessex Electronics Ltd, 114.116 North Street. Downend. Bristol BSI6 5SE. Tel: (0272) 571404.

PATTERN FOR THE FUTURE

The PM 5519 colour TV pattern generator is already a widely used instrument. As a major manufacturer of Video cassette recorders, and colour television receivers - and the company which has developed the world's most advanced video disc system - Philips have carefully selected the best patterns for aligning and testing these products. With over 20 colour and b/w test patterns to choose from it is the most versatile pattern generator on the market.

- PM 5519 I for British system • versions available for other TV systems
- RF signals available in bands I, III, IV and V - Variable Video Output (with I volt fixed position)
- External video and sound modulation facility - Composite sync output for triggering . includes the line frame and blanking pulses to the local TV standard
Reader inquiry number 222

Some other Philips audio and video

 service instruments:PM 5326 RF SIGNAL GENERATOR

- $100 \mathrm{kHz}-125 \mathrm{MHz}$ in 9 overlapping ranges
- Built-in 5 digit counter
- 50 mV RF output at 75Ω can be attenuated to over 100 dB
- Electronically stabilised output level - Wobbulator facility

Reader inquiry number 223

PM 6307 WOW AND FLUTTER METER

- X-tal controlled oscillator
- High accuracy and frequency stability

All Philips audio and video service instruments are also available from Phlips Service Centres (for details see end of PM 3207 section).
input advertisements are designed to meet the needs of our professional customers. They are a shop window for Philips Test and Measuring instruments - and we will be changing the display frequently because we have a lot of products to show you.
Where you require full information obout a product, tukk the coupon and attach it to your name and address. or letterhead - or, of course, use the journal's reader inquiry service. You will receive in return a detailed information pock reflecting your specific requirements.

PM 2517 multimeter	Inquiry no
PM	220
PM 3207 oscilloscope	221
PM 5519 colour TV pattern generator	222
PM 5326 RF signal generator	223
PM 6307 wow and flutter meter	224

[白
Pye Unicam Ltd
Philips Electionic Insiruments Dept
York Street. Cambridoe. Englanc CB Tel Cambridge (0223) 358866 Telex 817331 PHILIPS

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britains leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.

Resistance Boxes
Resistance Bridges
Resistance Standards
D.C. Potentiometers Thermocouple Refere Junctions
Thermocouple Switche Pt 100 Switches Pt 100 Simulators
D.C. Null Detectors

Digital Temperature Indicators Electronic Standard Cell
Multimeters. Digital or Analogue Wattmeters, Digital or Analogue Insulation Test Sets Earth Resistance Meters Fluxmeters And many more
Cropico - Britains leading manufacturer, exporter and importer of precision electrical measuring equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road.
Croydon CR9 2RU
Telephone: 01-684 4025 and 4094 Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

We wouldn't knock our rivals.
After all, it was they who inspired us to design and manufacture our own power loudspeakers . . . because of the frustration we experienced when trying to obtain power loudspeaker components for our enclosures. Nobody could consistently supply components to the exacting HH standards of quality, power and performance - at any price.

So, our designers started from a clean drawing board and were prepared to defy convention in the construction of a superiorpower loudspeaker. Our powerful computer calculated optimum cone

profiles, whilst our scientists pushed back the frontiers of adhesives technology to develop new construction methods. Then we tested them relentlessly and did our best to destroy these new products (that was the hardest part.) Now this range of superiorpower loudspeakers, crossover networks, "bullet" radiators, compression drivers and horns can be purchased at sensible prices from HH dealers. In their new and convenient packs you will also find an applications book, full of useful hints.

Send for our brochure, so you can convince yourself why our components are superior, by following our logical scientific arguments. Then you'll realise why we never need to knock our "rivals".

Power to the Performer.
HH Acoustics.

SOFM Software Development System Ed-stogh

MICROSYSTEM DEVELOPMENT USING SOFTY

SOFTY is intended for the development of programs which will eventually become software residing in ROM and forming part of a microsystem. During the developmen stage of a microsystem, SOFTY will be connected in place of the firmware ROM via ribbon cable, terminated in a 24 pin DIL plug.
Data may be entered into the SOFTY RAM via the serial port, parallel port, direct memory access, or the ke ypad, and manipulated using the assembler kev-functions. the external microsystem and its resident microprocessor allowed to access and run the program in SOFTY's RAM and/or programming socket. In this way modification can be made until the required program is complete - the contents of the RAM being clearly visible as a 'page' on TV or monitor. 4 pages are available, 2 of the Data RAM an 2 of the programming socket
In the end. when the program is complete and working, the DIL plug is removed and replaced by an EPROM device programmed by SOFTY. SOFTY is able to program the 2704/2708/2716 family which have 3 voltage rails - we supply with each SOFTY details of a simple modification which allows SOFTY to program the single rail 2716/2732. etc
(If you want to program EPROMs/PROMs other than the 2704/2708/2716 family, we may be able to help you - our range of add-on Programming Modules is currently under development.)
To help in the process of program development SOFTY has various assembler control, match byte and displacement calculations (for jumps, etc.) A high speed cassette interface is also provided for storing wo-king programs and useful subroutines. Software is supplied for serial data transiers - which means that you can write an assembler for your favourite MPU in BASIC on your Superboard, UK 101, NASCOM, etc. and transfer the hex code directly to EPROM via SOFTY. The serial transfer program runs in the scratchpad and can be easily loaded from cassette. or the programming socket. Besides software development and EPROM programming, SOFTY has other uses - as a training aid, or as a control computer in its own right, with up to 2 K bytes firmware, 1K of RAM, 22 1/0 ports and Direct Memory Access.
SOFTY Kit-ot-parts (including zero insertion force socket for EPROM programmer; ribbon cable and 24 pin D.I.L. header plug for connection to the system under development Price £1 15 (inc. VAT, p\&p).
SOFTY power supply kit $£ 23$ (inc. VAT, p\&p)
Write or telephone for full details
MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

Fast erase times (typically 20 minutes for 2708 EPROM)
14 EPROM capacity
Built-in 5 to 50 minute timer to cater for all EPROMs
Safety interlocked to prevent eye and skin damage

- Convenient slide-tray loading of devices

MAINS and ERASE indicators
Rugged construction

- Priced at only $£ 89.70$ (inc VAT, p\&p)

MODEL UV140 EPROM ERASER
Low price at only $£ 7073$ (inc. VAT, p\&p)
WRITE OR TELEPHONE FOR FULL DETAILS OR SEND CHEQUES / OFFIC\AL COMPANY ORDERS TO

GP Industrial Electronics Limited

(Retail Sales), Skardon Place, North Hill, Plymouth PL4 8HA. Telephone: Plymouth (0752) 28627

TRADE AND EXPORT ENQUIRIES WELCOME

LOW COST SCOPES AND FUNCTION GENERATORS

RADAT 2301

OV sine, rectangular, triangle outputs, with or without offset, up 10 3MHz into 50 n. Stability $\geq 1 \%$ over 24 h . THi outpur. Rise and fall mes Ho Sol Ao rocomE 148 + VAT.

ELMAC 4810 CRT 5MHz scope E 120 + VAT. As recommended by ETI. The best selling $5 \mathrm{MHz}{ }^{4}$ CRT scope in the UK. Timebase include sweep range-
$100 \mathrm{msec} / \mathrm{div}$ to $1 \mu \mathrm{sec} / \mathrm{div}$ in 5 steps $100 \mathrm{msec} / \mathrm{div}$ to $1 \mu \mathrm{sec} / \mathrm{div}$ in 5 steps $3^{\prime \prime}$ also available. $£ 96$ + VAT

FEATURES: Large $5^{\prime \prime}$ flat CRT, DC to 10 MHz bandwidth -3 db 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps 0.5 HS to $0.01 \mathrm{sec} / \mathrm{cm}$ sweep Magnifier $x 5$. Fully automatic trigger. DC to 2 MHz horizontal bandwidth. As recommended by Practical Wirelese $£ 148$ + VAT.

Elex $58105^{\prime \prime}$ CRT (12.5 MHz) E181.71 + VAT. Vertical axis.
deflection sensitivity - $10 \mathrm{mV} /$ div Bandwidth - DC: DC 12.5 MHz (be tween 3 dB points). $A C$: 2 Hz 12.5 MHz (between 3 dB points). Rise tume 20 n sec . Input Attenuator - 12 step $-10 \mathrm{mV} /$ div to $50 \mathrm{~V} /$ div in $1-2-5$ sequence calibrated. Time Base Sweep range $-0.5 \mu \mathrm{sec} /$ div to 0.1 $\mathrm{sec} /$ div in 12 steps, calibrated with X5 expansion. Fine control - Variable be tween steps - includes T.B. cali-
bration position.

KRAMER \& CO., 9 October Place, London NW4 Tel: 2032473 Telex: 888941 Attn. K7 Open: Mon.-Fri. S.A.E. for further details

TRUE AS AN Arrow

Professional Wire and Cable Fasteners for all installation requirements

TELEPHONE - ELECTRONICS COMMUNICATIONS ALARM SYSTEMS, ETC.

4 Precision made models. 12 different staple sizes. Rugged all steel construction in chrome finish. Grooved guide. Grooved driving blade. Tapered striking edge.
Jam-proof mechanism (patented).
Short span easy compres-
 sion handle.

Some of the features that make an Arrow cable fastener the outstanding tool for all installation engineers.

Illustrated literature and details of staple sizes available from:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 PICCADILLY, LONDON W 1V OHL
TEL. 01-629 9554. Telex 265200 (A / B RACEN)
Cables: Speciprod London W1

Cover thewhole band with onedevice.

This device.

TheTPM 4100. From 100 MHz to 400 MHz .

Designed specifically for military applications the new TRW TPM push-pull RF power transistor offers some very worthwhile advantages.

It has been specially designed for multi-octave bandwidth high power applications and its internal matching and package configuration provide high input and output impedances. Power gain $7.5 \mathrm{~dB} \mathrm{~min} @ 400 \mathrm{MHz}$.

Maximum heat dissipation and operating efficiency are acheved by the use of multicell die design and ultra thin beryllium oxide header.

Diffused silicon ballast resistors and TRW gold metallisation process give long term reliability and ruggedness.

The versatility of the TPM 4100 enables it to be used in a wide variety of applications, saving setting up and engineering time as well as reducing inventory.

TRW Rr semiconouctors

MCP Electronics Ltd., Alperton, Wembley, Middx. Tel: 01-902 5941.

ELF II
BOARD WITH VIDEO OUTPUT

Hobbiests! Engineers! Technicians! Students! Computer Kit STARTS AT £59.95
plus V.A.T.

FEATURINGTHE RCA COSMAC 1802 cpi

STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's short course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute, and the short course speedily instructs you how to use them.

ELF II was designed to be both a trainer and the heart of a powerful computer system. The $£ 59.95$ ELF II gives you all components and everything you need to write and run your own programs immediately, even if you ve never used a computer before. Then, once you ve mastered computer fundamentals, ELF II can be expanded to give you tremendous computing power.

Plus the greatest range of Expansion Kits and Software:
GIANT I/O Bd : 4K RAMS: ASCI KEYBOARD : LIGHT PEN : VIDEO DISPLAY BD : PROTOTYPE BD : PSU : CABINETS : FULL BASIC WITH RPN: TINY BASIC : ELF-BUG : TEXT EDITOR : ASSEMBLER : DISASSEMBLER : MANUALS AND LOTS MORE.

Explorer/85

Professional Computer Kit

FEATURES INTEL 8085 cpu
£299

+ VAT

Microsoft BASIC in ROM
WITH ONBOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER/85 features the Intel $8085 \mathrm{cpu} .100 \%$ compatible with all 8080 A and 8085 software. Runs at 3 MHz , Mother Board (Level A) with $2 \mathrm{~S}-100$ pads expandable to 6 (Level C). 2K Monitor ROM - 1 K Video RAM - 4 K WORKSPACE/USER RAM Expandable to 64 K - 8 K Microsoft BASIC in ROM - STANDALONE FULL ASC11 Keyboard Terra - RS $232 / 20 \mathrm{Ma}$ Loop - Direct interface for any S-100 Board - p.s.u. requirements $8 \mathrm{v}, 6.3 \mathrm{vAC}$ - Runs with North Star controller and Floppies - EXPLORER/85 can be purchased in individual levels, kit form or wired and tested $O R$ as a package deal as above.

16k Dynamic RAM Kit - S100 CARD

Expandable 10 64 k on one $\mathrm{S}-100$ board in 16 k increments, designed for NO wait state operation utilizing the most advanced RAM controller.
16k RAM Kit
£139 + VAT
16k RAM Expansion Kit
$£ 89.95$ + VAT

SEND SAE FOR COMPREHENSIVE BROCHURE

Please add V.A.T. to all prices (except manuals). P\&P £2. Please make cheques and postal orders payable to NEWTRONICS or phone your order quoting BARCLAYCARD, ACCESS number. We are now open for demonstrations and Sales. Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground on main A1 into London

255 ARCHWAY ROAD, LONDON N. 6 TEL: 01-3483325

The finest amplification

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. CPR 1 - THE ADVANGED PRE-AMPLIFIER. The best pre-ampliter in the U.K. superb 40 BB . this together with the high slewing rate ensures clean top. even with high output cartndges racking heavily modulated records Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to idB; signal to norse ratio is 70 dB relative to 35 mV . distortion $<005 \%$ at 30 dB overload 20 kHz .
Following the stage is the flat gain/balance stage to bring tape, tuner. etc. up to power amp. Signal to noise ratio 86 dB , slew-rate $3 \mathrm{~V} / \mathrm{uS}$: T.H.O. 20 Hz $20 \mathrm{kHz}<008 \%$ at any level. F.E.T. muting. No controls are litted. There is no
provision for tone controls CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 provisio
volts.

MC 1 - PRE-AMP-AMPLIFIER. Suitable for nearly all moving-coll cartridges. Send for details.

X02: X03 - ACTIVECROSSOVERS. XO2 - two way. XO3 - three way. Slope 24 dB /octave. Crossover points set to order within 10%.

REG 1 - POWER SUPPIY. The regulator module. REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1 . He can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it.

* NEWISSUE 5 *

POWER AMPLIFIERS. Our new issue 5 power amplifier modules have automatic shut-down that will not allow serious overloads for more than $0.1 \mathrm{sec}-$ thus vastly shut-down that will not allow serious overloads for more than $0.1 \mathrm{sec}-$ thus vastly
increasing reliability at elevated temperatures. Other improvements to the circuitry have improved the subjective qualities which keeps CRIMSON even further ahead of the field.

POWER SUPPLIES. We produce suitable power supplies which use our superb TOROIOAL transformers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capacitors/bridge sectifier).

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours. PRE-AMP KIT
module if required.

POWER AMPLIFIER MODULES CE 608 CE 1004 CE 1008 CE 1704 MEATSINKS Light duty, $50 \mathrm{~mm} .2 \mathrm{C} / \mathrm{W}$ Medium power. 100 mm E1.70 Disco/group. 150 mm , 1 CLW .70 Disco/group. $150 \mathrm{~mm} .1 .1 \mathrm{C} / \mathrm{W}$ Fan mounted on iwo drilled 100 mm heatsinks
2×4 C/W 65 max. when used with modules $£ 36.00$ Tnodules
THERMAL CUT-OFF, 70 C
E 36.00
$\mathrm{E1.90}$
All
HERMAL CUT-OFF, 7OC E1.90
638.80
639.80
one uses These are available in two versions - one uses MO resistors where necessary and tantalum

CPR 1	$£ 34.00$
MC1	$£ 26.00$
CPR IS	$£ 44.50$
MC IS	$£ 37.50$

ع44.50
$\varepsilon 19.00$
£28.35
 Obtain up to 350W using, $2 \times 170 \mathrm{~W}$ amps and this module
BD 1
¢ 2.50
etc. to make a complete pre-amp with the CPR 1 (S)
27.25

Keithley D.M.M. Test Equipment:
Quality. With machines like the 169 shown above. $31 / 2$ digits; $.25 \%$ accuracy. A nononsense five function D.M.M. at a no-nonsense price. Only $£ 99+$ V.A.T.

Choice. The Keithley range spans Pocket,
$31 / 2,41 / 2,51 / 2$ digit D.M.M.'s.'many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Built to a standard that very few people can equal.

Cost. And at a price even fewer can match:
From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

KEITHLEY

Keithley Instruments Ltd 1 Boulton Road Reading Berkshire RG2 ONL Telephone (0734) 861287

Advertisement produced co-operatively by:Akai, Fer

Believe it or not, 2 out of every 3 home video recorders sold or rented in this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction, reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recorders there are now triple standard VHS machines which accept PAL, SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too.

VHS is the No. 1 system in the UK, Europe, the US and Japan.

Make sure you've got it. Right?

Theworld's No. 1 system.

Quantum Electronics

NEW PRODUCTS - NEW PRODUCTS Our product range for the 80 s is outlined but it is impossible to cover everything in such a small space. For detailed information and a price list send a large SAE or a dollar bill.

PRE-AMP \& POWER AMP KITS

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the Module C2 (below) and the hardware kit HK 1. No soldering is involved and assembly take about 20 mins . There are six power amp kits, four mono and two stereo, from 4510260 W to satisfy virtually every requirement. They use ready-built and tested p.c. boards to achieve an ease of construction similar to module based kits at lower cost. There are also mains supply kits to enable independent use of the pre-smp, which is normally powered via ou power amp. Similar equipment is also available ready-buih from us or via our dealers
$\mathrm{C}_{2}+\mathrm{HK}_{1}$
£ 70.95
P2 (stereo 45W per channel) kit c87.28 P4 (stereo 110 per channel) kit e109.42

MOVING-COIL \& PRE-AMP MODULES

C2 (C2mc)

MC1
Previously restricted to trade and export, the C2 pre-amp module is now available separately in 3 versions to match any cartridge. It has unbeatable specifications, caters for disc. auxitary and 2 or 3 head tape machines and requires only a rough supply of ± 18 to 35 V $d \mathrm{c}$ The new moving coil pre-pre-amp achieves low thd. high overload, good r.f., rejection and good noise pertormance without resonting to the expensive multiple transistor design powered either via the C2 or by a battery. Hardware kits are available to build both types and they are also available ready-built.

POWER AMP MODULES AND SUPPLIES
The power amp modules are now also available to retarl customers in a variety of powers and ormats up $10260 \mathrm{Wr.m.s}$. They use the same high performance circuitry as the kits above, giving th.d below. 01% at 1 kHz , but are capable of sustained high level use with excellen eliability There are power supplies for use with any one or two of these modules. all of which use torondal transtormers. also available separately. The module illustrated is a medium duty 150 W r.m.s. type, the M1508, which requires the MS3 supply
M1508. £35.79 MS3. $£ 26.28$

Exports: We can deat efficiently with orders to any country. Please write with your specific requirements for a quote by return. All equipment can be wired for 110 V mains

PLEASE NOTE: OUR NEW ADDRESS FROM 1 ER MAY
8 ALBION STREET, LEICESTER. Tel: 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel. 1-302-798-7932 MINIC TELEPRODUCTOR, BOX 12035, S. 750 12, UPPSALA 12, SWEDEN

इ느믈

TRANSDUCER and RECORDER AMPLIIIERS and SYSTEMS

reliable high performance \& practical controls individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2XQ

Fylde
Electronic Laboratories Limited.

Telephone 077257560

WW-032 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Other Ranges and special scales can be inade to order

Full Information from:

HARRIS ELECTRONICS (London)

138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten.
But it's fundamental to the very existence of communications recording to be able to replay a selected portion of tape to find out what was said by who, to whom ... and when And 'when' can be vital.
Equally vital, particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty - and without time-consuming multiple krob-twiddling aided by guesswork.
Racal Recorders has recognized this need and produced TIMESEARCH - designed specifically for its ICR range of multi-channel communications recorders - and providing just these facilities.
TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time.

In communications recording, the future becomes the present; the present becomes the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.

We mean it.

The new 30AX colour tube system from Mullard doesn't need innumerable twists and turns of a screwdriver to set it up.

It needs no adjustments at all. Because every one has been 'designed out.

Every tube that leaves our factory is completely pre-adjusted by us. Leaving only the turn of one screw to affix or remove the coil.

No dynamic convergence adjustments.
No colour purity adjustments.
And no raster orientation adjustment.
As for what it has to offer, the 30AX's focus is sharper and its definition greatly improved.

Its in-line guns and specially built coil provide the best picture shape yet.

And rest assured it'll stay that way. In a slim 110° package that trims about $3^{\prime \prime}$ off conventional $22^{\prime \prime} 90^{\circ} \mathrm{TV}$ cabinet depths.

Some features of the 30AX however, are a little more established.

Like its excellent colour registration. High brightness. Soft flash protection. Fast warm-up. And of course, greater overall reliability. This is the new 30AX colour tube system.

For more information just write your name and address on this page and send it to Dept. MCG, Mullard Ltd., Mullard House, Torrington Place, London WC1E 7HD.

Mullard
 30AX. The perfect slimline.

Peace and quiet

The quietest sound the ear can hear moves the eardrum about $10^{-9} \mathrm{~cm}$, one tenth the diameter of a hydrogen molecule. Movement due to random thermal bombardment of the eardrum by air molecules is around this same level and largely accounts for this limit of sensitivity.*

But the distortion contribution from a QUAD 405 amplifier in normal use (say 85dBa) moves the eardrum less than this amount:

Perhaps sitting in a very quiet room at $-100^{\circ} \mathrm{C}$ and without the music we might nearly hear thembut "'tis bitter cold."

For further details on the full range of $Q U A D$ products write to:

The Acoustical Manufacturing Co. Ltd. Huntingdon, PE18 7DB. Tel: (0480) 52561.
*Sensitivity is never made more acute by the presence of other sounds.

QUAD

for the closest approach to the original sound

QUAD is a Registered Trade Mark
earliest days of reproducing machines with their massive sound boxes and tone arms.
 measure of unwanted mechanical energy reacted

 under a force of less than 20 milligrams applied at $9^{\prime \prime}$ radius.
-Kl!ןeuosjad ıou inq anbiskyd sey wae dn-yว!d \forall It is as happy with a moving coil as a moving
 are another matter.
With a high mass arm you are permanently committed to a low compliance cartridge, with a Series III you always have freedom of choice. Its mass can be raised by the addition of a neat weight which we can supply to place in the shell and lowered again when desired by removing it or using another interchangeable CA-1 carrying arm. Low compliance cartridges can be thought of as high compliance cartridges in an earlier stage of development. History and design logic establishes this as progress, anticipate it with

the best pick-up arm in the world
Write to Dept 0659 SME Limited, Steyning Sussex, BN4 3 GY
England
IDEAS + IDEALS An ideal cartridge would weigh nothing. Its stylus
would have zero effective tip mass and infinite compliance
An ideal arm would have zero effective mass and infinite compliance.
These are properties of a ray of light and move-
ment towards this goal has continued since the

\checkmark

B424 LCR Meter
Accuracy $\pm 0.25 \%$. Fast connection of components with immediate direct reading; pass/fail indicator; high efficiency at low cost. Easily used by non-technical staff, especially at goods in, on the production line or at final Quality Control.

B605 LCRD and Q Automatic Component Bridge Accuracy $\pm 0.1 \%$, with microprocessor and memory. Automatic trim and ranging; 2,3 or 4 -terminal measurements. Select from 3 test frequencies: $100 \mathrm{~Hz}, 10 \mathrm{kHz}$ and 1 kHz . A versatile instrument for Quality Control or R \& D.

B905 LCRGD and Q Automatic Precision Bridge
Accuracy $\pm 0.05 \%$ Microprocessor, memory and many sophisticated options including automatic sorting, binning and remote control. Can form the nucleus of a fully automated test system. Write or ring today for details.

Thermalloy dissipates heat not money.

First, take the Slip-Clip range of heat sinks (top three products). They save time, board space and costs need no mounting hardware, PC Board drilling or adhesive.

Simply clamp them to the device for moximum heat transfer. Slip-Clips are available for TO-202, TO-220, TO-126, Motorola case 90 and most other popular case styles.

The Timesaver Solderable range cut assembly time in half. They eliminate hand soldering of transistor leads and all work is done from one side of the board. An anti-rotation feature stops the device from turning during assembly.

Find out more about Thermalloy's time and money saving ranges.

CAMBRIDGE LEARNing ENTERPRISES

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC. the
 language of the small computer and the most easi-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation.
Booki Computers and what they do well; READ, DATA, PRINT, powers, brackets variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; floweharting; functions; REM and documentation; INPUT. IF ... THEN. GO TO: limitations of computers, problem definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, REST ORE; debugging; arrays; bubble sorting; TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming;

examples; glossary.
 Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and
 computers.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventyons; karnaugh mapping; three state and wired logic. Book 3 Hall adders and full adders; subtractors; serial and parallel adders; processors and ALU's; multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring Johnson and exclusive - OR feedback counters: ROMS and RAMS
Book 5 Structure of catculators; keyboard encoding; decoding display data; registér systems; control unit; program ROM; address decoding.
Book 6 CPU; memory organisation; character representation; program storage; address modes; inpul/output systems; program interrupts; interrupt priorities; programming assemblers; computers; executive programs; operating systems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded without question, on return of the books in good condition.

Please send me:-

Computer Programming in BASIC (4 books) @ £7.50
Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £18, DEDUCT £2
I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$.
or please charge my Access/Barclaycard/Diners Club etc account no
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.
Name
Address

Cambridge Learning Enterprises, Unit 30, Rivermill Site; FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR England.

MCP Electronics Ltd., Alperton, Wembley, Middx. Tel: 01-902 5941. wW - 035 FOR FURTHER DETAILS

WW - 021 FOR FURTHER DETALLS

Now you can get on-card dual output power supplies from Vero Systerns in five versions:

- DUAL 5 Volts
- DUAL 12 Volt
- MIXED 5 and 12 Volts
- MIXED 5 and 15 Volts

The cards are designed to Eurocard standard size ($100 \times 160 \mathrm{~mm}$) to fit straight into your card or case frame.

ORDERCODE	FUNCTION	PRICE
$89-2665 \mathrm{G}$	DUAL 5 V	$£ 32.43$
89.2671 K	DUAL 12 V	$£ 38.50$
89.2703 B	DUAL 15 V	$£ 38.50$
89.9017 B	DUAL 5.12 V	$£ 38.50$

VEROSYSTEMS

VERO SYSTEMS (ELECTRONIC) LTD
362 Spring Rd. Southampton Hants. SO9 5QJ Tel (07()3) 44()611 Telex: 477164 WW-045 FOR FURTHER DETAILS
\square POWER UNITS Now available with
3 OUTPUTS

Type 250VRU130/25
OUTPUT 1: 0-30v, 25A DC
OUTPUT 2: 0-70v, 10A AC
OUTPUT 3: 0-250v, 4A AC
VALRADIO LIMITED, BROWELLS LANE, FELTHAM
MIDDLESEX TW13 TEN
Telephone: 01-890 $4242 / 4837$

The

Proto-Board

Now circuit designing is as easy as pushing a lead into a hole ...
No soldering No de-soldering No heat-spoilt components No manual labour No wasted time

For quick signal tracing and circuit modification For quick circuit analysis and diagramming
With or without built-in regulated power supplies Use with virtually all parts - most plug in directly, in seconds.
Ideal for design, prototype and hobby

No	$\begin{aligned} & \text { MODE } \\ & \text { NO } \end{aligned}$	No or Til Ponts TiE PON:		UNOT PRME	Park INC Pg is va	OTMER teatumes
1	PB6	630	6	9.20	1173	Kı
2	PB 100	760	10	11.80	1472	kn
3	PB 101	940	10	17.20	2121	
4	P8 102	1240	12	2295	27.83	
5	PB 103	2250	24	3445	41.34	
6	PB 104	3060	32	4595	54.56	
7	PE 203	2250	24	5515	65.14	5V@1A
8	P8 203A	2250	24	74.70	87.63	$5 \mathrm{~V}=15 \mathrm{~V}$
9	PB 203AK	2250	24	5900	69.57	$\begin{aligned} & 5 V \pm 15 \mathrm{~V} \\ & 8 \mathrm{KIf} . \end{aligned}$

Tomorrows tools for todays problems
CONTINENTAL SPECIALTIES CORPORATIONT c.S.C. (UK) Lod. Depi 7U Shire Hill Industrial Estate, Unit 1 , Sattion Walden Essex. CB11 $\overline{3 A O} 7$

\qquad or debit my Barclaycard. Access, American Express card no

Carston Electronics

specialists in second user test and measuring instruments

EXTOCK
 Oscilloscopes
 TEKTRONIX 465

DC-100MHz Dual Trace 5 mV - $5 \mathrm{~V} /$ Div 4 MHz f 1250 $0.05 \mu s-0.55 /$ Div Delayed
TEKTRONIX $475 A$
DC-250MHz Dual Trace 5 mV -5V/ Div $3 \mathrm{MHz} \mathbf{f} \mathbf{1 9 5 0}$ $0.01 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div Delayed T/BXY DC

> THESEINSTRUMENTSSOLD WTTH ONE YEARFULL GUARANTEE

Prices
from
Acoustic
BRUEL \& KJAER
2203 Precision sound level meter 400 1613 Ocrave filter set couples directly to 2203 \& 2204
CEL
112 LEQ meter digital readout
Attenuators
MARCONI SANDERS
6593 VSWR Indicator. Batt/Mains
Bridges
CINTEL
277 Measures iron core inductances
$0,01 \mathrm{H} \cdot 1000 \mathrm{H}$ (with a C value not
less than 21
DAWE
210 B Decade Capacitance box
$0.1 \mu \mathrm{~F} \cdot 1 \mathrm{mF} 0.1 \mu \mathrm{ftep}$
MARCONI
TF1245 'O' meter. Freq. range 1 kHz .

300 MHz using external osc.

WAYNE KERR
B221. Plus low impedance adaptor Q221. Measures L/C/R B641. Measures L/C/R/G Accuracy of 0.1%
Q801. Y parameter test set. Plus transistor adaptor unit
Cable Test Equipment MARCONI
TF2333 Transmission Test set
HEWLETT PACKARD
3556A. For psophometric
measurements from $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$ $0.1 \mathrm{mV} \cdot 30 \mathrm{~V}$ input level
NEC
TTS-37B. Noise, level and VU measurement. Sensitivity ${ }^{\prime} 80 \mathrm{dBm}$ up to +20 dBm
STC
74216A Noise Generator CCITT 74261A Psophometer CCITT WANDEL U. GOLTERMANN
DLM-1, Send/receive system for measuring phase jitter random roise and frequency shift on data transmission lines
LDS $-2.200 \mathrm{~Hz}-600 \mathrm{kHz}$ sender for measuring group delay and
attenuation variations LDEF-2. Filters for DLM unit Counter Timers
HEWLETT PACKARD
$5300 \mathrm{~A} / 5303 \mathrm{~B}$ DC. 520 MHz 6 digits
5300 A Display Module. 6 Digits. 3×10^{7}
53008 Display Module. 8 Digits. 2×10^{8}
5303 A DC. 50 MHz .100 mV sens.
Time interval. Period. Ratio Totalise
$5303 \mathrm{BC}-520 \mathrm{MHz}$. (Plug-on) 125 mV sens. 50Ω
120

Prices

75 322\%. Power Supply 40 (ASC 11)
 3213 Push Button Display for Time or mieasured Value of Selected
Channel
330510 Channel I/P C ard IQuañtit as required) Price per 10 ChannelsFACIT
4070 Tape punch (ASC 11)
CLARY
$35 / 3220 / 326410$ columns. $21 /{ }^{1 / 2}$
wide paper. 0.55 print cycle
Interface for 3240 only
Distortion Systems
RADFORD
DMS2 10 Hz .100 KHz meter
LD02 $10 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ Oscillator
Function Generators
ADVANCE
J4. $10 \mathrm{~Hz}-100 \mathrm{kHz} .10 \mathrm{~V}$ f.m.s.
output Sine/Square Wave
HEWLETT PACKARD
$3310000005 \mathrm{~Hz}-5 \mathrm{MHz}$. Multi-Mode $10 \mathrm{~V} / 50 \Omega$ sine, square, triangular INTER-STATE
ELECTRONICS
F51A Multi-Mode, + and - offset
0.0005 Hz to $10 \mathrm{MHz} .10 / 15 \mathrm{~V} / 50 \mathrm{~S}$

F55A Mglit-Mode, 0.0025 Hz - 10
MHz . $10 \mathrm{~V} / 50 \Omega$. Ext. VGC. Burst
O/P up to 100 k bursts/sec
PHILIPS
PM5127. 0.1 Hz-1 MHz. Sine/
Square/Triangular/Pulse outputs.
External sweep facility 30 Vp . p max
output
325
Logic Analysers
HEWLETT PACKARD
1601L Logic state analyser
12 channel displa
Modulation Meters
AIRMEC
210 1-300 MHz. AM/FM 4093.1500 MHz . AM/FM

MARCONI
TF2300A 1-1000 MHz. AM/FM Multimeters-

Analogue

AVO
8VKIII AC DC V.AC/DC Amps OHMS
Oscilloscopes
ADVANCE
OS $1000 \mathrm{~A} D \mathrm{DC}-20 \mathrm{MHz}$. dual trace
DYNAMCO
7200. DC- 15 MHz . Dual Trace 1 mV sensitivity
7210. DC- 15 MHz . Dual Trace 1 mV
sensitivity on CHI. Delayed
Timebase
HEWLETT PACKARD
1703A Storage $9000 \mathrm{Div} / \mathrm{ms}$.
DC- 35 MHz . Dual trace Mains/Ext
DC
$1707 \mathrm{~B} / 020 \mathrm{DC} .75 \mathrm{MHz}$. Dual trace. Dual Time Base.
$1707 \mathrm{~B} / 012$ As 1707B/020 with
$1707 B / 012$ As 1707 B/020 with
Internal Battery fitted
181A Storage $1000 \mathrm{Div} / \mathrm{ms}$
DC- 100 MHz Main frame only
PHILIPS
PM3410. DC-1GHz. Sampling
oscilloscope
TEKTRONIX
$535 \mathrm{~A} / 1 \mathrm{AI}$. DC. 15 MHz , dual trace
5 mV sensitivity. Delayed timebase
$56 / 1$ A1. True dual beam
DC. 50 MHz . Can display 2 separate
signals at different sweep rates.
Includes trolley
$545 B / 1 \mathrm{~A} 1$. DC. 30 MHz . dual trace
$5458 / 1 \mathrm{~A} 1$. DC. 30 MHz . dual trace
Delayed timebase
$561 \mathrm{~A} / 3 \mathrm{~A} / 3 \mathrm{~B} 1 . \mathrm{DC} \cdot 10 \mathrm{MHz}$. Dual
Trace. High persistence tube.
Oelayed Timebase
$585 \mathrm{~A} / 82$. DC $\cdot 80 \mathrm{MHz}$. dual trace
10 mV sensitivity
$547 / 1 \mathrm{~A} 1$. DC. 50 MHz . dual trace
DTB
$547 / 1 \mathrm{A4}, \mathrm{DC} \cdot 50 \mathrm{MHz}$. four trace
DTB

frome
$004 \mathrm{DC}-200 \mathrm{MHz}$. CRT Readout Mainframe for 4 Plug-in
TELEQUIPMENT
D53. DC-15 MHz. dual trace
$10 \mathrm{~m} V$ sensitivity
D53A. DC- 25 MHz . dual trace.
10 mV sensitivity with $\mathrm{C}-2$ plug in DC- 15 MHz with JD plug in D34 DC- 15 MHz dual trace Batt/Mains Portable D63/V1/V3 DC. 35 MHz . Depending on sensitivity. $50 \mu \mathrm{~V}$ or 1 mV Sensitivity
Oscílloscope Plug-ins TEKTRONIX
Type R. Transistor R.T. tester. Pulse Type R. Transistor R.T. tester. Pulse
tate 120 oulses/sec. R.T. Less than rate 120
$5 \mathrm{~m} \mu \mathrm{~s}$
Type L. DC. 20 MHz .5 mV sensitivity ast rise time amplifier
Type G. Differential amplifier. 100 : CMR DC $-20 \mathrm{MHz}, 50 \mathrm{mV}$ sensitivity Plug-ins for 500 series
Ai dual trace Plug-in DC- 50 MHz
A2 dual trace Plug-in DC- 50 MHz
IA4 four trace Plug-in DC- 50 MHz
A5 Differential Plug-in
Differential Plug-in
81 Adaptor Plug-in IA Series to 580 Series
TELEQUIPMENT
DM64 Storage 250 Divs/ms.
DC. 10 MHz Dual trace

D67 DC- 25 MHz . Dual trace. Dual Time Base. TV sync
D75 DC. 50 MHz . Dual \&race. Dual Time Base.
D83 DC. 50 MHz . Dual trace. Large $61 /{ }^{\prime \prime}$ CRT. Dual Time Base
Oscilloscopes (storage) DYNAMCO
7110. DC. 30 MHz . Dual trace

Writing speed $20 \mu \mathrm{~s} / \mathrm{Div}$.

TEKTRONIX

$549 / 1$ A1. DC: 30 MHz .5 mV
sensitivity. Dual trace. Storage scope, Writing speed: $5 \mathrm{~cm} / \mathrm{ms}$ with enhancement. Inctudes trolley $564 / 3 A 74 / 3 B 4$. DC-2MHz, four channel. 20 mV sensitivity. Writing speed up $10500 \mathrm{~cm} / \mathrm{ms}$
$564 B / 3 A 6 / 2 B 67$. DC-10 MHz. Dual race 10 mV sensitivito, split screen storage oscilloscope
Phase Meter
DRANETZ
301 A 5 Hz .500 kHz . Z in $100 \mathrm{k} \Omega^{\circ}$. Accuracy $\pm 1^{\circ}$ to $\pm 2^{\circ}$. Analogue O/P

Power Meters

MARCONI SAUNDERS
$646010 \mathrm{MHz} \sim 40 \mathrm{GHz}$ (Depending on Head)
$642010 \mathrm{MHz} \cdot 12.4 \mathrm{GHz} 10 \mathrm{mw}$
$6421 \mathrm{DO} \mathrm{MHz}-1 \mathrm{~B} .4 \mathrm{GHz} 100 \mathrm{mw}$
$642210 \mathrm{MHz}-12.4 \mathrm{GHz} 1 \mathrm{mw}$
42826.540 GHz lomw

Power Supplies
OLTRONIX
A2.5 KV. $10-2500 \mathrm{~V}$ up to 10 mA .
Current limit 2-12 mA. either \pm outputs:
IOBAND
T101. 50 V . 1A. Variable
SOLARTRON
As 751. 50V. 1A. Variable
STARTRONIC
117. 20V. O.5A. Variable twin

Prices,
from E
from E
CHESSEL
30183 Pen Potentiometric. $1 \mathrm{~cm} / \mathrm{s}$ $\mathrm{cm} / 6 \mathrm{~min}$. Ranges $25 \mathrm{mV} / 10 \mathrm{mV}$ 12V DC power supply required. FERROGRAPH
RTS2. Recorder test ser Wow and flutier etc
HEWLETT PACKARD
680M. 5 inch. Stripchar Single Pen 5 mV -120V I/P $20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Hr}$ RACAL
Store 4. Uses D/4 inch magnetic tape. Will record 4 F.M. channels. Operates at 7 different speeds. SMITHS INDUSTRIES
RE501.20 Single Pen $10 \mathrm{mV} \cdot 10 \mathrm{~V}$
FSD: Battery Operated XY and Strip Chart
RE541.20 Single Pen. $0.5 \mathrm{mV}-100 \mathrm{~V}$ FSD. $3-60 \mathrm{~cm} / \mathrm{min}$ and hour RE571.20 2 Pen. 200 - $\cdot 100 \mathrm{~V}$ FSD "Chart. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour
50 SOUTHERN INSTRUMENTS
10-100. 6 channel U.V. 5-1000 $\mathrm{mm} / \mathrm{sec}$
M1330. 10 channeI U.V. 5-2500
$\mathrm{mm} / \mathrm{sec}$
Selection of Galvonometers
available at $£ 15.00$ each.
YOKOGAWA
3046. 10 inch Chart Single Pen, 0.5 $\mathrm{mV} .100 \mathrm{~V} 1 / \mathrm{P} 2.60 \mathrm{~cm} / \mathrm{min}$ and $/ \mathrm{hr}$
3047. 2 Pen Version of 3046

Signal Sources and

Generators

ADVANCE
63B. FM/AM 5-200 MHz

HEWLETT PACKARD

$200 \mathrm{CD} .5 \mathrm{~Hz}-600 \mathrm{kHz}$ O/P 10 V RMS $204 \mathrm{D} 5 \mathrm{~Hz}-1.2 \mathrm{MHz} .600 \Omega$. 80 dB ant. O/P 5V RMS
204D/001 As for 204D (Battery operated)

TF801/D1. 10-470 MHz AM. FM TF995A /2. $1.5 \cdot 220 \mathrm{MHz}$ AM. FM. TF995B/5. 2-220 MHz AM. FM. TF2005A. Two tone $20 \mathrm{~Hz}-20 \mathrm{KHz}$

PHILIPS

PM5326. $100 \mathrm{kHz} \cdot 125 \mathrm{MHz}$. Digital isplay of frequency. AM. FM Sweep facility for I.F. measurements PM6456. FM Stereo generator. RF output 100 MHz

ROHDE \& SCHWARZ SWOB 11. $0.5 \cdot 1200 \mathrm{MHz}$. 501 SCHAFFNER
NSG101 Mains Interference Simulator. Superimposes Pulses on
mains for testing immunity of
equipment to interference. Pulse
amplitude: $\pm 800 \mathrm{~V}$. Rise Time $0.25 \mu \mathrm{~s}$,
Width 50 \& $200 \mu \mathrm{~s}$
NSG330 Ignition Interterence Altachment
TEXSCAN
9900. $10-300 \mathrm{MHz}$. Sweep generator with CRT display
Spectrum Analysers NELSON ROSS
11. DC. 20 kHz .80 dB dyñamic range. Dispersion: $100 \mathrm{~Hz}-6 \mathrm{kHz}$ 22. DC- 100 kHz . Dynamic range 60 dB fits into various 500 series CRO's
TEKTRONIX
3L5. Plug-in unit fits into various 500 B series CRD's. $50 \mathrm{~Hz}-1 \mathrm{MHz}$. Greater than 60 dB dynamic range 1L20. Plug-in fits various 500 series CRO's $10 \mathrm{MHz}-4.2 \mathrm{GHz} .40 \mathrm{~dB}$
dynamic range
Sweep Generators
HEWLETT PACKARD
8690B Mainframe. Int/Ext AM. Ext FM
8693

600
$8693 \mathrm{~B}, 1003.78 .3 \mathrm{GHz} .5 \mathrm{~mW}$. PIN evelled ' N ' connectors 8699B/ 100 0.1-4 GHz. 6 mW . 120 mW 02 GHz). PIN leveiled. ' N ' connectors
T.V. Test Equipment

PHILIPS
M5508B Pattern Generator. 625
lines PAL. UK Systems

Vibration

DAWE
1461. CV(M) Portable Vibration

Analyser Kit
Voltmeters-Analogue
BRADLEY
T471C ACIDCIOICurren
multimeter and RF
[2/Curren
HEWLETT PACKARD
27A. AC/DC/ת multimete
$3406 \mathrm{~A} .10 \mathrm{kHz}-1.2 \mathrm{GHz}$
LINSTEAD
M2B. DC/AC $10 \mathrm{~Hz}-500 \mathrm{kHz}$
MARCONI
TF2603. AC voltmeter to $1.5 \mathrm{GHz} \quad 300$
PHIIIPS
PM $2454 \mathrm{~B} 1 \mathrm{mV} \cdot 300 \mathrm{~V} .10 \mathrm{~Hz} \cdot 12 \mathrm{MHz}$
Z in 19Ms2. DCO P
300

igita

FARNELL
DM 131B. 1999 FSD AC/DC/s2/
Current, Temperature
FLUKE
8000A 1999 FSD.
AC/DC/OHMS/Current
HEWLETT PACKARD
34740 A 34702 A 9999
FSD. ACIDC/OHMS
M1420.2. 2300 FSD DC only 0.05%
LM1420.2BA. 2300 FSD AC
True RMSIDC
A200. 19999 FSD DC only
A203.19999 FSD AC/DC/』.
Sensitivily: $11 \mu \vee D C, 10 \mu \vee A C$
100 ms 2 resistancel
4205. 19999 FSD AC/DC/ Ω

A243. 119999 FSD AC/DC/ Ω
Sensitivity: $11 \mu \vee D C, 10 \mu \vee A C$
$10 \mathrm{~m} \Omega$ resistance
7045.19999 Auto AC/DC/S
050.99999 Auto AC/DC/8

Wave Analysers
HEWLETT PACKARD
302 A .20 Hz .50 kHz 75 dB range
MARCONI
TF2330 $20 \mathrm{~Hz}-50 \mathrm{kHz}$. Selective
Range ± 3.5 to 80 Hz . Dynamic
range 75 dB .
WAYNE KERR
A $22120 \mathrm{~Hz}-20 \mathrm{KHz}$ Sens 75 dB

Carston

Carston Electronics Limited
Shirley House. 27 Camden Road, London NW1 9NR. Telex:23920

Redundant

Test Equipment
Why not turn your under-utilized test equipment into cash? Ring
us and we'll make you an offer.

the crême de la crême of electronic organs FOR YOU TO BUILD . . .

Yes, any one of these superior instruments can be built by yourself in the comfort of you own home. The unique WERSI Kit-pack system is designed around modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully illustrated instructions and preformed harnesses lead you to the final product which is now becoming accepted as the world's most advanced instrument. All cabinets come fully assembled in a wide range of veneers. Home construction enables you to build one of these fabulous organs at 40% below factory price. All Electro-Voice showrooms have resident demonstrators so why not come along and hear for yourself the wonder of WERSI. Alternatively send £1 for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth. Herts RD3 6PF).

HEAD OFFICE
Maple Cross Industrial Estate
Denham Way, Rickmansworth, Herts (Tel: Rickmansworth 75381)

NOTTINGHAM
389 Aspley Lane Nottingham
(Tel: Nottingham 296311)

MANCHESTER
Paramount Organ Studios Smith Road, Great Lever, Farnworth, Bolton (Tel: Bolton 29939)

WW - 079 FOR FURTHER DETAILS

carbon film RESISTORS
PRICES REDUCED. SEND FOR DETAILS NOW

Tel. 01-7275641 Telex 261306

Space/Satellite/Military spec. background guarantees

Merrimac reliability.

Since 1967, Merrimac has developed sixty seven different items designed for more than twenty five space and missile applications.

Many other Merrimac signal processing devices are flying in all kinds of military aircraft - high reliability has been a common denominator.

As UK agent for Merrimac, Pascall can offer the most comprehensive standard product line of signal processing components in the industry - over seven hundred and fifty catalogue items from DC to 18 GHz
incorporating lumped element, stripline or ferrite technology. And if this isn't sufficient to meet your requirements Merrimac offers custom designed derivatives of all these products which surely will.

Pascall in-depth service and advice

The success of Pascall is based on prompt deliveries, an efficient technical and advisory back-up plus expertise on application problems.

Get the facts on Merrimac

today from:

Pascall Electronics Limited

 Hawke House, Green Street,Sunbury-on-Thames,
Middlesex TW16 6RA
Telephone: (09327) 87418 Telex: 8814536

BALANCED MIXERS POWER DIVIDERS

 PHASE SHIFTERS ATTENUATORS. DIRECTIONAL COUPLEERS hybrid tees HIGH POWER CIRCULATORS IF/MICROWAVE SUB SYSTEMS PHASE COMPARATORS IMAGE REJECT MIXERS SSB MODULATORS QUADRATURE COUPLERS AMPLIFIERS SWITCHESQUADRAPHASE MODULATORS

Krohn-Hite Function Generators

But not only sweep!
Tone-burst, sine, square, triangle and ramp pulse outputs are all embodied in the new 1600 , which includes buill-in pause marker, and a frequency range of 0.2 Hz to 3 MHz . The 1600 is one of the many Function Generators available from Krohn-Hite, with frequency ranges of between .003 Hz to 30 MHz . Prices start at around $£ 245$.

Together with our Filters, Oscillators, Amplifiers,
Phasemeters and Distortion Analyzers they form the basis of a superb range of equipment for general purpose, audio and communications areas.

To find out more fill in the coupon.
And see why Krohn-Hite are sweeping the board!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734)861287

I would like to know more about Krohn-Hite instruments.
I am particularly interested in:
$\left[\begin{array}{l}\text { Filters } \\ \text { Oscillators } \\ \text { Amplifiers }\end{array}\right.$
\square Phasemeters \quad Function Generators

Name
Position
Company
Address

Britain's first com

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for £9995

The Sinclair ZX80.

Until now, building your own computer could easily cost around $\mathcal{C} 300$ - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just L79.95 you get crerving you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and black and white or colour telecision: everything! And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good iob you've done. Connect it to your IV set... link it 10 an appropriate power source* and you're ready to go.

Your 2×80 kit contains.

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs - all manufactured by selected worldleading supplicrs.
- New rugged Sinclair keyhoard, touch sensitive, wipe-clean
- Ready-moulded case.
- L.eads and plugs for connection to domestic 1 l'and cassette recorder. Programs can be S.Altid and I.OADed on to any portable cassette recorder
- IFRI:F course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at $9 \mathrm{~V}^{\prime} \mathrm{IX}$ nominal unregulated availahle separately - sce coupon
- Additional memory expansion boards allowing up to 16 K bytes Rtil. Extra RLll chipsalso available-see coupon.
*Use a 600 mA al 9 y' DC: nominal untegulated mains. adaptor. Available from Sinclatir if desired see coupon

Two unique and

valuable components of the Sinclair ZX80.

The Sinclair $\%$ N0 is not just anot her personal computer. Quite apart from its exceptionally low price, the $\% \times 80$ has iwo uniquely ad vanced components: the Sinclair BASIC interpreter; and the Sinclair teach-vourself BASIC manual
The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Enique 'one-toueh' key word entry: the ZX80 eliminates a greal deal of tiresome typing. Key words (RLN, PRINT, I.IST. ete.) have the ir own single-key entry.
- Unique sutan check ()nly lines with correet syntax are accepicd into programs. A cursor identities errors immediately. This prewents entry of long and complicated programs with fauls only diseovered when you try to run them
- lixesllent string-handling capahility - takes up to 26 string variathes of any length. All strings can undergo all relational tests e.g. comparison. The $/ \mathbb{X} 80$ also has string inputto request a line of text when necessary Strings do mol need to he dimensioned
- Un to 26 single dimension arrays
- l'()R/N: NO loops nested up 26 .
- lariable namen of any length.
- 13.ASIC: language also handles full Boolcan arithmetic, conditional expressons. etc.
- IExceptionally powerful edit facilities, allows modification of existing program lines
- Randomisc function, usetul for games ans seret codes. as well as more serious applications
- limer under progranz control.
- PIIKK and P()Kle enable entry of machine code instructions. L'SR causes jump to a uscr's machine language sub-routine
- Iligh-resolution graphies with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Liner ol unlimited length.
and the Sinclair teach-yourself BASIC manual.
If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 128 -page book frec with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately - purchase
price refunded if you buy a ZX80 later.)
Ahardware manual is also included with every kit or huilt machine

Fewerchips，
compact design， volume production－ more power per pound！

wes pree tolis remarkable
devign：the whole ぜぃtem is patcked on to
ewer，newer，mure powerful and adranced I．SI
hips．A single stoplek R（）Wh．for instance．comtains he B．ASIC interpreter，the sharater set，operating whem and meniter And the \％NOO：IK hete RWII －roughly equivalent to th hytes in a conventional omputer－ypisally storing toolines of B，LSIC．．Key ardocrapyonle a single hote．

Ihe display show 32 charactern of $2+$ lines．
And Benchmark tents hen that the $\% 880$ is fanter hat all other personal computers．
Xoother personal conaputer offers this ynique natuon of high capability and low prise
The Sinclair $\mathbf{Z X 8 0}$ ．Kit：$£ \mathbf{7 9 . 9 5}$ ． Assembled：$£ 99.95$ ．Complete！
l he K 80 kit costs a mere L．19．45．Cam 1 wan to hase a $/$ N80 up and rumning：． 0 prohlem Is also arailable ready assembled．for only 499.95

Demand for the \％xso in wery high：use the enupon to order today for the carliest pussible delsers：All orders will he despathed in stried otation．We＂ll acknowledge each urder by Feturn，and tell you exactly when your $\%$ 处 will oe delisered．If you choose not to wait，you cian cancel your order immediately，and your money will be refunded at once．Adain，of course，you hate a refund option for $1+$ daw atter your amputer is despitched．W゙e want you tobe mastied hevond all doubt－and we have no doubl that you will he．

2×80

Science of Cambridge Ltd
6Kings l＇arade，C．ambridge，C：ambs．．C． $13215 \mathrm{~K}^{\circ}$ ． ｜ C ： 0223311488 ．

Order Form

To：Science of Cambridge Lid， 6 Kings Parade，Cambridge，Cambs．，CB2 1SN． Remember：all prices shown includi val＇，possage and packing No hidden extras．
Please send me：
Quantity Item Itemprice Total

Sinclair $\% 80$ l＇crsonal Computer kit s．Price includes $\%$ 大80 BASIC：manual，excludes mains
adaptor．
Computer Price includes $\%$ ． 80 BASIC．manual，
excludes mains adapior．
99.45

Muins Adaptor s 600 mA at 9 V I） C nominal unregulated
Memory lixpansion Boards ciath onctakes up to
3K hyles
12.00

RAll Demory chips－standard IK hytes capacits．
Sinclar $\%$ ． 80 danual s manual fre with every $\%$ ． 80 kit or ready－made computer
5.00

I encluxe a cheque／postal order payable to seience of Cambridec I．ad for f．
Name：Mir／Mrs／Miss
Address

Complete Audio/Tuner Kits

Mk III FM Tuner series
Carriage for Mk 111 tuner $\mathbf{£ 3}$ in
The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience - a preview copy may be purchased for $£ 1.00$. Mark III A series 'Reference series' tuner modules Mark III B series 'Hyperfi' modules, with switched IF BW, pilot cancel decoder f198.95 inc.
A matching synthesiser unit will be made available later this year, and can be retrofitted to either version. All versions include digital frequency readout/clock. VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSUU, output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

Power Amplifier $\begin{aligned} & \text { Style and performance - with a real } \\ & \text { belt and braces }\end{aligned}$

After a couple of preview comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mk 111 tuner. Well, it's out at last - complete with twin toroidal PSUs for co.nfortable 80W RMS per channel, over 100 W peak, but limited by thermal shutdown of the HMOS. $10 \mathrm{~W}-100 \mathrm{~W} \log$ LED output peak indicator, DC offset protection and switch-on pause relay. AC or DC input coupling, direct or relay protected output terminals. The works. Only one version of this item: Complete kit£178.25 inc. Carr. £5.

Radio/Audio/Communications Modules

LW-MW-SW-SW DC tuned and switched

91072- All switching of bands by a single pin to gnd. Varicap tuned, with LO out MWU/LW plus 1 or 2 SW bands MW/LW: $£ 15.58+1$ SW $£ 16.73$ VHF Tunerheads
Europes largest stock range for broadcast and communications. Probably also the world's details in the catalogues and PL. Specials are also supplied in the region $30-220 \mathrm{MHz}$.
Pilot Cancel PLL Stereo decoders
944378.2
526.45

Again, Europe's widest range of stereo decoders
including pilot cancel PLL types. The pic shows the 944378 . pilot cancel including post decoder $26 / 38 \mathrm{kHz}$ filtering and muting preamp output

Switched bandwidth FM IF strips

Switched bandwidth EM IE Strips Tren Broadcast FM IF strips for all occasions, including the new 911225 - with diode switched narrow filter option, ultra linear phase ceramic filters, $84 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and meter drive. $£ 23.95$ (supplied in screen can with 0.1 edge connection system) Also the 7230 hyperfi series . as the 911225 , but with slope controlled AFC th operates in conjunction with signal level - and an extra IF amp stage for DXing

Various digital frequency displays

The World's largest range of receiver DFMs is now joined by the DFM7 (shown) - and L shaped version of the DFM3 with remote display mount connecto possibility. 1 kHz SW resolution with 455 kHz or 10.7 MHz offsets, 100 Hz res up to 3.9999 MHz ,
VHF to 299.99 MHz in 10 kHz steps $: £ 41.75$

Components

POWER MOSFETS

100W PA's made simple

ance pioneerng tive :nOW compiementary MOSFET rechnique. Hitacki have developed a range of output devices and drivers that ought to revolutionise opinions and atritudes towards the complete sets of parts. niodules and now the new complete PA system (see above). 2SK133 120v N.ch 100W MOSFET E6.33 2SJ48 Pch complement 2SK135 160v N-ch 100W MOSFET E7.29 2SJ50 Pch complenent
£7.39 PA1018 Kit for 100w MOSFET PA less Heatsink E16.10, (f23 inc heatsink/bky) ULTRA LOW NOISE PU PREAMPLINIER
The HA12017 is the last word in PU preamps, and general low noise audio design. It is an SIL IC, with 86 dB S/N in RIAA configuration, 10 v RMS output capablitity, 0.002% typ THD at 10 v RMS output (imagine the overload margin ! 1). It comfort-
ably supercedes discrete circuit designs in terms of price/performance and takes ably supercedes discrete circuit designs in terms of price/performance, and takes
the art beyond the TDA1042's capabilities. (Replaces HA1457) $£ 1.80$ each - or the art beyond the TDA1042's capabilities. (Replaces HA1457) £1.80 each-or
an R1AA applications PCB with two ICs for $£ 5.75$. Complete with Rs\&Cs $£ 9.95$.

Radio Control CS We have various RC ICs, including NE544
KB4445-4 channel dig.prop. FM TX IC. 30 mW out (amplifyable) - $\mathbf{£ 2} .30$ inc KB4446 - 4/5 ch. dig. prop FM RX IC. Suits KB4445 or RCME syst. £2.65. KB4445/6 pair: $£ 4.75$. New 8 page data sheet $35 p+$ SAE. More RC ICs in list
CMOS, LPSNTTL, TTL, MPU: Most CMOS is available in low
volume also LPSN. Standard Listings in the new pricelist. Things like ICM7216B, ICL8038, 8080A, 6800P, 2708, NE555, NE556, etc Coming Soon........... Contain vourselves, RF fans ! Not yet ready for SSB transceiver system : 10 KHz to 1000 MHz !! A modular VLF to UHF SSB TX/RX system at lass. With the correct first mixer, the basic PCB
cover 10 kHz to 1000 MHz . Using LO Yed from oxt source 10 OH 2 IC Mullard synte for and RF PA for TX OP. O. ZuV basic sensitiviey in HF, TyP cost for HF synth SSB RX will be less than £200. Add an RF PA for full TRX for another 550 . See one in our foyer, and marvel.

Crystal Filters Most popular types are available-

$10.7 \mathrm{MHz} \quad 25 \mathrm{kHz}$ Channel spacing 8pole $£ 16.67$

 $121 / 2 \mathrm{kHz}$2.4 KHz SSB

Monolithic dual roofing filter
1.3 dB loss, 80 dB stopband HF first filter in synth. RX

RC XTALS FM pairs (no spilts)

USB/LSB Xtals for 10.7SSB filter

Piezo Sounders

The most efficient warning sounders yet
The latest thing in electro-acoustic efficiency. 1 mA of drive from CMOS will give an SPL of 83 dB . 10v RMS drive from CMOS uses 3 mA for 100 dB SPL at 4.8 kHz (88 dB at 1.65 kHz)
The data sheets shows various drive circuits, and give full specifucations with regard to broad band responses and power
consumption etc. 1 off 44 p inc. 100 off 28.75 p (25p ex vat)

Keyboard switches and caps

From the world's most widely used switch
manufacturers - ALPS - come the biggest and manufacturers - ALPS. come the biggest and
best range of keyswitches, and data entry keybest range of keyswitches, and data entry key-
board switches. The SCM8 1101 is shown here with the KT5 2 -part cap (with clear top, to enable easy fitting of vour chosen legend. Other types are easy
avallable with built in LED, 90° mounting etc. SCM81101: 17p. KT5: 16 p - or 29p/pair

LCD CLOCKS
 LCD DVM
 Clocks use 1.5 v
 DVM $9 \mathrm{~V} / \mathrm{TmA}$

CM161: 7 mm LCD $12 / 24 \mathrm{hr}$, alarms etc $£ 11.44$ each CM172: $13 \mathrm{~mm}, 12 \mathrm{hr}$, alarms, timer etc $£ 14.32$ each
DVM 176: ICM7 106 based LCD $31 / 2$ digit $£ 22.36$ each

WHAT's NEW at AMBIT

NEW PRICELIST/SHORTFORM:28 pages, FOC with A5 SAE pse

If you still need convincing to invest $£ 1.60$ in the cats, b

 HANDBOOK by HITACHIBigger print than our recent one page list and vastly extended mean and get this fir
51.50 each or free with pairs of HMOS and the PA 1018

Please send an SAE with a
enquiries.
Phone orders by
minimum $\mathbf{E 5}$
Callers welcome

MORE SPEC. FOR YOUR MONEY

TYPE 643 FUNCTION GENERATOR
0.01 Hz to 999 KHz

SINE, SQUARE and TRIANGLE digital setting DC DFFSET

PROGRAMMABLE
SIMULTANEOUS OUTPUTS
50Ω MAIN OUTPUT

[lov. attenuabie]

TYPE 643A FUNCTION GENERATOR

\& 2.50 carriage, ins, etc. 0.01 Hz to 1.1 MHz

SINE, SQuare and triangle dial SEtting

DC OFFSET
programmable
SIMULTANEOUS OUTPUTS
600Ω MAIN OUTPUT
[10V. attenuabie]

OMB ELECTRONICS, RIVERSIOE, EYNSFORD, KENT DA4 OAE Te1. Farningham (0322) 863567

Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice

FROM OMB ELECTRONICS

WW - 00.5 FOR FURTHER DETAILS

Electronic

 componentsFAST...When you need electronic components in a hurry, call Verospeed. Our service is designed to get them to you without delay. We hold over 1300 product lines in stock for immediate same day despatch to solve your R \& D problem or production hold-up.
The range covers active components, meters and modules, packaging and assembly and production tools - so when you need components fast, in

VEROSPETD
Verospeed, Stansted Road, Boyatt Wood EASTLEIGH, Hampshire SO5 4ZY

WW-080 FOR FURTHER DETAILS

ADCOLA PRODUCTS LIMITED GAUDEN ROAD, LONDON SW4 6LH

THE FOR 1004 ANEW WIDEBAND GRAPHICAL RECORDER

9 Recording Modes

The FOR-1004 is the first of a new generation from Medelec. A highly versatile graphical recorder, it has been specially developed for wide ranging applications in research and industry. In both performance and economy it has many advantages over conventional instrumentation. There are nine recording modes all push button controlled, which permit the optimum presentation of most graphical data. Triggering is fully automatic and displayed signals can be monitored via an internal loudspeaker. The fast response time and wide range timebase allows the detailed examination of transients and trends.

Attractive new styling and ease of operation combine to make the FOR-1004 an important new instrument.

Simultaneous View and Record

Four High Input Signal Channels

High Resolution, Inexpensive Records For further information please contact:
Medelec Limited Manor Way Old Woking Surrey GU22 9UU England Tel: Woking (04862) 70331 Telex: 859141 Medlec G A Vickers Limited Company

IOX0-100 SERIES LOW

 PROFILE CRYSTAL CLOCK OSCILLATORS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD

29 Market Street, Crewkerne, Somerset TA18 7JU
Crewkerne (0460) 74433 Telex 46283 inface g WW-052 FOR FURTHER DETAILS

SOUTHERN ELECTRONICS

6 WESTCLIFF ARCADE, RAMSGATE, KENT TEL. THANET (0843) 57888

The stiffest opposition we find against making a sale for a bench power supply is your old friend alongside. There are thousands of them still working perfectly after more than 10 years in service:

Around $40,000 \mathrm{~L}$ series bench power supplies have been sold and the latest units are' still uncompromising in performance and reliability. They provide constant voltage or constant current, feature large recessed meters, overload and shortcircuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available

L50-05	$0-50 \mathrm{~V}, 0.5 \mathrm{~A}$	L12-10C $\quad 0-12 \mathrm{~V}, 10 \mathrm{~A}$	
L30-1	$0-30 \mathrm{~V}, 1 \mathrm{~A}$	LT50-05 win output unit $2 \times 0-50 \mathrm{~V}, 0.5 \mathrm{~A}$	For full specification and prices contact:
L10-3C*	0-10V.3A	LT30-1 iwin output unit $2 \times 0<30 \mathrm{~V}, 1 \mathrm{~A}$	000
L30-2	$0.30 \mathrm{~V}, 2 \mathrm{~A}$	LT30-2 iwin output unit $2 \times 0-30 \mathrm{~V}, 2 \mathrm{~A}$	(0) 1
L30-5	$0.30 \mathrm{~V}, 5 \mathrm{~A}$	-with adjustable overvoltage protection	

fact: there's aShure cartridge that's correct for your system - and your cheque-book:

V15 Type IV - The perfectionist's pickupovercomes such ever-present problems as warp. static electricity, and dust. Ultra-flat response. Reduced distortion. Unprecedented trackability. $3 / 4$ to $1 / 4$ grams tracking. Premium-priced

M97HE - The top model from an entire new line of Shure pickup cartridges, each with the exclusive Dynamic Stabilizer and the unique SIDE-GUARD stylus protection system, and available in a range of stylus tips, tracking forces, and prices. The M97HE features the distortion-reducing Hypereliptical stylus. $3 / 4$ to $11 / 4$ grams tracking.

M95HE - New mid-priced cartridge with distortion-reducing Hyperelliptical stylus. Flat response. $3 / 4$ to $11 / 2$ grams tracking

M75ED Type 2-Deluxe cartridge with a nude-mounted Biradial (Elliptical) siylus for outstanding high frequency trackability. $3 / 4$ to $\dagger 1 / 2$ grams tracking. Overall performance previously unavailable at this price level.

M70 Series-Modestly priced cartridges with truly noteworthy performance. $11 / 2$ to 3 grams tracking. Biradial or Spherical styli

wireless world

Current affairs

Editor:

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443
'Projects Editor:
MIKE SAGIN
Phone: 01-261 8429
Communications Editor:
TED PARRATT, B.A.
Phone 01-261 8620.
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production \& Design: ALAN KERR

Advertisement Controller:

G. BENTON ROWELL

Àvertisement Manager:
BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
Phone 01-261 8515

Classified Manager:

BRIAN DURRANT
Phone 01-2618508 or 01-2618423

MIKE THRAVES

(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Publishing Director:

GORDON HENDERSON

If the recent correspondence on displacement current has done nothing else it has drawn our attention to the pitfall that awaits us if we take a mental model as the whole truth about a phenomenon. Under examination is a model in the form of a set of equations and the extent to which it represents a reality. We see immediately that equations are like architects' drawings -precise, quantitative, stating relationships between quantitites but stopping somewhere short of a convincing description of an actual building. Like all mental models they lack body. The pitfall that awaits us is what A. N. Whitehead called "the fallacy of misplaced concreteness " the mistake of attributing reality to what is no more than a construct of the mind. Because there is a word (or symbols) for it, and a corresponding mental picture, we assume it exists as a concrete entity.

As for displacement current, our readers may be forgiven if they feel confused by the various statements made about it by contributors. One author says the fact that the solution of Maxwell's equations is a propagating wave is a result that "is only obtained through the existence of displacement current" and issues the rallying cry "no radio waves without displacement current." A correspondent then asks (presumably thinking of propagation in outer space) "what is displaced in a vacuum?" to which there is no direct answer. And later another correspondent remarks "presumably no one is insisting that everyone must believe that there is any physical reality in a current which is said to flow in empty space when there is nothing to carry it .

The puzzling question is: how are we justified in describing as an electric current something which has no physical reality as a motion of charge? Perhaps the answer is because displacement current exists in one respect anyway as a rational construct
of the mind. We can consider this in the light of Kant's "mind contribution" to science - the notion that the mind supplies a priori concepts, in dependent of all experience (e.g. the truths of formal logic), to which we make our empirical observations conform. (See Kant's Critique of Pure Reason.)

When we consider any current intuitively, as a movement of charge in a conductor, its concreteness seems beyond question, especially when we are able to feel the heat or see the light or sparks it produces. But as soon as we try to define it quantitatively, in the way we do as a rate of flow of charge, Q/t, we move into an abstract world; for a rate is not an empirical fact but an a priori concept, independent of all experience, belonging to the realm of logic and mathematics. Current may flow but current strength doesn't: it exists, as a correspondent has pointed out. It is a pure concept, isolated from those realities of practical circuits in which, for example, you also need electrical potential and energy to push round the needle of your ammeter. Similar considerations apply to the rate of change of electric displacement, $\mathrm{d} D / \mathrm{d} t$. When a current is shown in the mathematical form of a term in an equation we are not seeing a full representation of a real current but merely a symbol or symbols for one of the properties of a current, its strength, defined as a rate.
Writers often refer to the "necessity" for displacement current in Maxwell's equations, as if this necessity were in itself a compelling proof of concrete existence. But, of course, necessity is not an empirical fact. As Hume showed in his famous analysis of cause and effect, "necessity is something that exists in the mind, not in objects . . " (e.g. logical necessity).

To confuse a priori concepts such as necessity and rate with physical realities is to be caught in the fallacy of misplaced concreteness.

Designing with microprocessors

1 - Basic components of the microprocessor chip

by D. Zissos and Laurelle Valen Department of Computer Science, University of Calgary, Canada

'This series of articles responds to the need "to demonstrate the respectability of the microprocessor as a down-to-earth, extremely useful, but entirely non-occult electronic component" (our March editorial) and is intended for electronics engineers who want to learn how this component can be used in the design of systems. The authors therefore use formal, step-by-step procedures in their explanations of how the device operates. This first article deals with the basic components of eight- and sixteen-bit microprocessor chips and the second will continue with their internal operation from the designer's point of view.

The starting point in the design of microprocessor-based systems, and in'deed of all programmable systems, is a working knowledge of hardware, software and of their interaction. This view, although not generally accepted, is becoming more widespread. The roots of this attitude can be traced back to the early 1960s, when computers were becoming widely used. Because of the lack, at that time, of formalized hardware design procedures, much of the research effort was directed towards the development of machineindependent languages. This resulted in thick layers of software administered by bureaucrats being erected around the machines. In the 1970s formal methods for the design and implementation of hardware were developed ${ }^{1}$, but largely were, and still are, being ignored by main-frame users. The evolution of $\mathrm{m} . \mathrm{s} .1$. and 1.s.i. (medium and large scale integration) chips in general, and of microprocessors specifically, has made such an attitude progressively more difficult to sustain and justify, as the software/hardware barriers erected in the 1960s are not easily tolerated today. We shall therefore start the series by finding out how microprocessor chips work.

The newcomer to this area will be relieved to learn that basically there is no difference between various microprocessor chips, in spite of attempts to classify them into various categories, or, for example, into three generations. Their difference (as with cars) is one of
refinement rather than substance. The reader should be aware that, in general, superior performance calls for expertise, and that one may experience fewer problems with a less sophisticated microprocessor chip than with the 'latest' and 'fastest.' As we shall see later, fast system response (if desired) with present-day knowledge, becomes a management rather than a technical problem.

The microprocessor chip

From the user's point of view, the microprocessor chip is a device which accepts control data and problem data and produces processed data, as shown in Fig. 1. The control data is commonly referred to as op codes, and the problem data as operands*.

From the designer's point of view, the
*Operand is defined as the entity on which operations are performed.

Fig. 1. The microprocessor from the user's point of view.

Fig. 2. The microprocessor from the designer's point of view.

Note: Signal HLDA goes high within specified delay of the leading edge of $\phi 1$. The address and data buses are floated high within a brief delay atter the rising edge of the next $\phi 2$ clock pulse.
Fig. 3. Status and comtrol signals of the Intel 8080 microprocessor chip
microprocessor, in addition to performing arithmetic and logic operations on given data, can respond to external signals, the control signals in Fig. 2. Such signals are used to interrupt the execution of a program, to initiate a direct memory access cycle, and so on. In common with all digital circuits, microprocessor chips generate status signals, indicating their internal state. The wires carrying the control and status signals of a microprocessor. chip are collectively referred to as the control bus, denoted by letter c. Similarly, the set of wires carrying the data in and out of a microprocessor chip is referred to as the data bus and is denoted by d. The address bus is the set of wires that carries address signals and is commonly denoted by a. Note that in the case of 16-bit machines, as we shall see later, the same set of wires carries the data and address signals on a time-sharing basis.

The status and control signals of the Intel 8080 , Motorola 6800 and the Intel $8085^{2,3,4}$ are shown in Figures 3, 4 and 5, respectively.
In Fig. 6 we show the basic configuration for single-processor systems. The functions of the interface blocks are to monitor the status of signals of the microprocessor chip and of the corresponding peripheral, and to generate the correct sequence of command (control) signals that will allow them to communicate with each other.

The basic components of a typical microprocessor chip from the designer's point of view are

The accumulator(s) (acc.)
Addressing registers (r)
The arithmetic and logic unit (a.l.u.)
Condition flags
The instruction register (i.r.)
The program counter (p.c.)
The timing and control unit ${ }^{5.6}$
Their basic functions are as follows

Accumulator (acc.). This is a register which is used to hold incoming and outgoing data, as well as the outcome of specified arithmetic and logic operations. Some microprocessor chips have more than one accumulator; for example, the Motorola 6800 has two accumulators, A and B.

Addressing registers (r). Any internal register that can be connected to the address bus will be referred to as an addressing register. Examples of addressing registers are: register r in Fig. 7, program counters (p.cs), stack pointers (s.ps), index registers (ixs) and so on.

Arithmetic and logic unit (a.l.u.). This is a logic circuit which performs various arithmetic and logic operations.

Condition flags. These are one-bit flip-flops whose set/reset states are determined by the result of the execution of certain instructions. They typically indicate if the outcome of an a.l.u. operation is negative, zero, or

A ' 0 ' puts M6800 in the wait state at the end of the current instruction and a ' 9 ' gets it out of the wait state. When in wait state, a, d and R / \bar{W} lines are tristated. Line sampled on leading edge of $\phi 2$. When in wait state $B A=T S C$
A 0 ' interrupts program. Contents of locations FFF8 and FFF9. (16 -bit vectoring address) copied into p.c. - See Fig. 7. No timing constraints.
Same as IRQ, but cannot be disabled. Contents of locations FFFC and FFFD (16 -bit vectoring address) copied into p.c. see Fig. 7. No timing constraints.
A' 1 ' tristates the and R / W lines and forces VMA and BA low A ' 0 tristates the d bus.
Pulling this terminal low causes the contents of locations FFFE and FFFF (16 -bit vectoring address) to be copied into p.c. Minimum duration.
$A \cdot 1$ indicates that the a and R / \bar{W} lines are tristated.
A 1 indicates to memory and peripherals that the address signals can be read. VMA means valid memory address. $R / W=1$ during a read operation

Fig. 4. Status and control signals of the Motorola 6800 microprocessor chip.
R
*Tristated during software halt
Fig. 5. Status and control signals of the Intel 8085 microprocessor chip.

Fig. 6. Basic configuration for single-prócessor systems.

whether there is a carry after an 'add' operation and so on. They are mainly used to modify the sequence of program execution. Sometimes the condition flags are collectively referred to as condition codes or status word.

Instruction decoder. This is a combinational circuit used to decode the opcode, held in the instruction register (i.r.), into a set of signals that can be interpreted directly by the timing and control unit. See Fig. 7.

Instruction register (i.r.). This is a register which receives the op code of each instruction in turn and holds it during execution. In our case the op code is loaded into the instruction register (i.r.) during state M1.T2 in Fig. 8.

Program counter (p.c.). This is an addressing register which holds the address of the next byte in the program to be fetched from memory, with the exception of such instructions as jump, branch and so on. It is connected to the address bus, a, during state Tl in a fetch cycle. See Fig. 7.

Timing and control unit. This is a sequential circuit which samples the decoded output of the instruction decoder and the external control signals, and specifies the appropriate machine cycles that are needed for the correct execution of the current instruction. It does so by generating control and timing signals which are routed to the appropriate components of the microprocessor chip. The machine cycles required to execute a three-byte (input/output) instruction are shown in Fig. 8.

Microprocessor chips contain no special circuits that do not exist in conventional digital computers. This

Fig. 7. Components and internal organization of an eight-bit microprocessor chip.

Fig. 8. Internal operation of a microprocessor chip.
raises the question of the necessity for special treatment. The answer is the connection problem imposed by the relatively small number of pins (typically 40) that are attached to a microprocessor chip containing the equivalent of several thousands of discrete logic components. This access problem is solved in practice by timesharing the address and data pins, as will be described in the next article.

To be continued

References

1. Zissos, D. "Problems and solutions in logic design," second edition, Oxford University Press, 1979.
2. Intel 8080 microprocessor user's manual, September 1975.
3. M6800 microprocessor system design data, Motorola, 1976.
4. MCS85 user's manual (preliminary), Intel Corporation, 1977.
5. Zissos, D. "System design with microprocessors," Academic Press, 1978.
6. Duncan, F. G. "Microprocessor programmiong and software development," Prentice Hall, 1979.

Scientific computer club

Following the publication of a two-microprocessor scientific computer design (April to September 1979 and January to February 1980) we have received a large number of requests for more information and details of clubs linked to this design. We are therefore pleased to note the formation of a computer users' club for the Adams machine, which we hope will stimulate interest in this design and encourage correspondence between readers.

To start the ball rolling a monthly newsletter, starting in May, will be circulated by Phillip Probetts to members for an annual subscription of $£ 5.00$ including postage. John Adams, the designer, will contribute a series of articles describing the computer in greater depth, and he will also help to answer members' queries. The early issues will contain short editorials and include programming information and examples, while later issues will reflect members' interests by publishing their programmes, letters and comments.

Feedback is important, so send subscriptions, suggestions, contributions and queries to Phillip Probetts, 50 Cromwell Road, Wimbledon, London, SW 19, 8LZ, England.

Weather satellite picture processor

Visible and infra-red pictures from the TIROS-N series

by G. R. Kennedy

Abstract

This signal processor produces real-time visible and infra-red weather pictures side-by-side and correctly exposed. Up to four satellites may be preset on the unit, which has been designed for high quality pictures from the 137 MHz transimissions. For a description of a facsimile machine suitable for use with this processor, and for background information on weather satellite reception, readers should refer to previous articles by the author, listed in the references.

A prototype of the latest American polar orbiting weather satellites, TIROS-N (TIROS X1, 1978-96A), was launched on October 13, 1978. One of the main differences between the TIROS-N series and the ITOS (NOAA) predecessors is the improved picture definition. This is due to improved scanning radiometers and a faster scanning rate, 120 r.p.m. compared with 48 r.p.m. for the NOAA- 1 to 5 series. Two channels of picture information are sent on the v.h.f. transmission and in normal use one channel is infra-red while the other is in the visible spectrum. The choice is made at ground control and later satellites will be capable of sending, on v.h.f., two of five available spectral range pictures from the S-band repertoire. Images received on one of the two frequencies used for the TIROS-N series, 137.50 and 137.62 MHz , have a ground definition of 4 km and have image-distortion correction so that the received pictures are flat, and do not suffer from "bottle distortion" as with earlier satellites. The receive antenna needs to be right-hand circularly polarized and the receiver must cope with a peak 2.4 kHz deviation of $\pm 17 \mathrm{kHz}$. The TIROS-N series v.h.f. video format is shown in Fig. 1 and a block diagram of the signal processor is shown in Fig. 2.

The clock channel produces various timing signals, locked to the satellite subcarrier signal, for use within the processor and externally for fax machine or oscilloscope synchronization. A phase-lock-loop is used, preceded by two limiter stages to render the clock circuits immune to signal amplitude variations. The p.1.1. output is buffered by a Schmitt trigger and divided to produce the timing and synchronizing signals.

A linear channel handles the video signal without stretching or cramping. It normally amplifies the visiblespectrum satellite channel which has a high dynamic range and is fairly constant in mean level throughout the year all within a reasonable range of geographical latitude. The linear channel comprises four parallel linear amplifiers, one selected at a time, and is used as a reference against which the third channel is adjusted. After inversion, the amplified signal is applied to an analogue switch common to both video channels.
A log.channel is used to process the infra-red video signals. However, there are several problems in producing good pictures, such as the small f.m. subcarrier deviation for a large dynamic pic-ture-content change. This is due to. temperature variations, for example, the coldest cloud tops can be at $-60^{\circ} \mathrm{C}$. and the warmest land at about $40^{\circ} \mathrm{C}^{3}$. If a coastline is to be depicted, which aids location of the weather system and is generally more interesting, only small

Fig. 1. Video format for the TIROS-N series.
differences of a few degrees can be expected. Because these changes are in the warm part of the infra-red range, advantage can be taken of the logarithmic amplifying process where the gain is maximum at low (i.e. warm) signal levels and reduces with an increase in 'amplitude. Therefore, the coastline can be enhanced and the cold cloud systems, with their large temperature variations, can be shown quite clearly. Two problems with this technique are the level at which log. amplification starts, and the changes in mean temperature with season and latitude. In this design a variable control with a dial is used which allows resetting for different orbits. The approximate mean picture level for the i.r. channel is roughly matched to that of the sunny portion of the visible channel. The sunny part of the visible channel is used because it is normal to see the daylight terminator on a polar orbiter, especially in winter. Also, interest is heighten ed by producing the i.r. and visible pictures side-by-side and observing, from the i.r. scene, the weather in the darkened visible section.
After the input level potentiometer, a switch allows either direct log. amplification of the signal, or expansion

before amplification. For TIROS X1, expansion is not essential, but the facility is available for other or later satellites. The logging stage is followed by four separately switched amplifiers in parallel as in the visible channel. The output of the selected amplifier is fed to the common analogue-switch and, because the log. amplifier inverts the signal, both scenes have the same sense.

The analogue-switch multiplexes a number of analogue signals together in a serial mode. With timing from the clock channel, the switch adds the lin-! ear and log. signals in time sequence and produces a picture scan-line of each, correctly processed and in sync.: with the transmitted satellite signal. This is followed by a linear output amplifier which produces a signal suitable for a fax machine or an oscilloscope.

Circuit description

The clock channel is shown in Fig. 3. The 2.4 kHz demodulated subcarrier signal from the receiver output, which is amplitude modulated with the picture information, is amplified by IC_{1}. Signals are a.c. coupled in and out of the amplifier so that the mean 2.4 kHz signal is amplified. This stage is not necessary for printing TIROS-Xl transmissions, but it is required with some Russian Meteor signals which may be required to produce weather pictures. Some of these signals, which also use the 2.4 kHz subcarrier, have almost 100% amplitude modulation. The amplifier stage at the
beginning of the clock chain ensures that the final pictures stay in lock by providing, under all usable signal levels, sufficient 2.4 kHz to lock the following p.1.1. The input amplifier is followed by two limiter stages around Tr_{1} and Tr_{2}, which comprise ladder-feedback tuned amplifiers with a.c. coupled back-toback diodes at their inputs. Only the forward voltage drop of the diodes is amplified and the working point is around the zero-crossing of the subcarrier signal. In this way, amplitude modulation is ignored and the 2.4 kHz is selectively amplified. The output of the second limiter feeds the p.1.1. whose v.c.o. frequency is set to 2.4 kHz by R_{18}, R_{131} and C_{18}. The loop bandwidth can be selected by S_{2}, and the values of C_{21} and C_{22} give a good compromise for weak and strong signals. For a strong signal, a wide bandwidth gives solid lock and sharp pictures. A narrow bandwidth may be necessary in the presence of noise, but if noise impulses exceed the tracking range of the loop, a cumulative. phase error can occur along the picture line to give locked and noisy pictures with vertical ripples at the right-hand side, for a left to right picture. The loop' can be unlocked by S_{1}, which is best effected using a toggle switch biassed to the locked-loop condition. The rate of locking is set by R_{132} and by this means, the edge of the picture and the order of

Fig. 2. Block diagram of the facsimile-machine driver.
the i.r. and visible channels across the final image can be set. Automatic phasing can be added by replacing S_{1} with a pair of transistors fed by two frequency-selective amplifiers tuned to 1040 Hz and 832 Hz . Seven cycles of either frequency preceed each of the channels. Normally for TIROS-X1, the i.r. channel is preceded by the higher frequency with a 50% duty cycle, and the visible by the lower frequency with a 60% duty cycle.

The 2.4 kHz output of the p.1.1. is a.c. coupled to Schmitt trigger IC_{13} which squares the signal at t.t.l. level. This is buffered by $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ and Tr_{5} to an external socket for fax and oscilloscope use, and also fed to a series of dividers. IC $_{4}$ divides by 12 to give 200 Hz , part of IC_{5} divides by 5 to give 40 Hz and IC_{6} divides by 10 to give 4 Hz with an equal mark-to-space ratio.

The 4 Hz is distributed to Schmitt trigger IC_{3} which buffers the signal to an external socket, to part of IC_{5} which divides by 2 and provides a t.t.1. 2 Hz sync. signal at an output socket, and also to flip-flop IC_{7} where it is again divided by two with an equal mark-tospace ratio to provide a TIROS strobe signal. The division state can be inverted by reset-switch S_{8} which sets the flip-flop preset to low. The strobe signal is used for printing just the i.r. or visible satellite channel. When using a facsimile recorder, printing only one image gives a print twice the size. The drum speed is 240 instead of 120 r.p.m. for the pair, and the strobe pulse, which is high for exactly half of the satellite video

line, keys the fax light-souce off for the unwanted half line. By switching S_{8}, the channel being printed can be changed. This is a useful feature in winter when the southerly portion of a. northern hemisphere pass can be printed in visible, and the northern portion, which may be in darkness, printed in i.r. without losing picture lock. The strobe pulse is taken from the flip-flop Q output, and the \bar{Q} output passes via S_{3} to a pair of op-amps in IC ${ }_{12}$. These amplifiers control the analogue switch, and drive l.e.d. indicators which show log. or lin. status. With S_{3} in the TIROS position, IC_{12} is driven at 2 Hz and, because no. feedback resistor is used, the output latches from -12 to +12 V at 2 Hz . Opamp IC ${ }_{12 c}$ operates in the same way but at 180° out of phase, and this pair of outputs switch the lin. and log. channels on and off once per video line. With S_{3} in the normal position, S_{7} (log./lin.) sets the Q and \bar{Q} lines of the analogue switch by selecting +12 or -12 V .

The linear channel and analogue switch are shown in Fig. 4. The 2.4 kHz video signal is taken via S_{6} to one opamp in IC_{11}. Each amplifier has a gain control and a level setting potentiometer which can be adjusted for a given satellite without affecting the other amplifiers. If four satellites are not required, optimisation for a particular satellite can be tried without losing the previous settings. The output of the selected amplifier goes to $\mathrm{IC}_{12 \mathrm{a}}$, a unity gain inverter, which feeds part of analogue switch IC_{13}. The circuit has been designed so that only positive going signals are accepted. Both video channels pass through an inverted L arrangement of two analogue switches where the series arm has a $47 \mathrm{k} \Omega$ resistor in series and a further $56 \mathrm{k} \Omega$ resistor to the next stage. At the junction of these resistors the shunt switch connects directly to ground. By keeping the output impedance high, turning on the shunt switch effectively stops any signal leakage. The on resistance varies with load conditions and supply rails, in this circuit it is around 600Ω. Again, raising the path impedance makes the switch resistance insignificant compared with the two resistors. also, when the shunt switch is on, its resistance is minute compared with the series-switch off resistance and board leakage, so the overall signal leakage is very low. The output of $\mathrm{IC}_{12 \mathrm{~d}}$ controls the series switch, and IC ${ }_{12 \mathrm{c}}$ controls the shunt switch. The output of each part of the dual switch circuit is summed by $\mathrm{IC}_{12 \mathrm{~b}}$ whose gain is selected by R_{73}. A typical value for this resistor is $680 \mathrm{k} \Omega$ which gives a gain of 12 and is suitable for the facsimile machine published. from Dec. 1976 to July 1977.

The logarithmic channel is shown in Fig. 5. The input video signal is passed through a potentiometer to set the amplitude and the scaled signal then passes to an expander ${ }^{4}$ with resistors. altered to suit standard values. With \mathbf{S}_{4} in position 1, the expander is bypassed

Components list

Resistors 1/4 W	
31	47
30, 33	100
19, 20	$1801 / 2 \mathrm{~W}$
34, 88, 89	220
15, 16	330
23, 24, 32	470
12, 18, 22, 27, 45, 112	1 k
7, 26, 107	1 k 5
$21,35,113$	2k2
36, 93, 94	2k7
67, 69, 108	3 k 3
25, 28, 37, 38, 39, 40;	4k7
55, 57, 59, 61, 95,	
124, 126, 128, 130	
96	6k8
41, 44, 97	8 k 2
1, 2, 4, 5, 8, 9, 13,	10k
14, 62, 63, 65, 74.	
92, 98, 104, 106, 110	
. 99	12k
10, 29, 46, 47, 48, 49	15k
$50,51,52,53,54,56$,	
58, 60, 100, 111, 115 ,	
116, 117, 118, 119, 120,	
121, 122, 123, 125, 127, 129	
42, 43, 86, 87, 90, 91.	22k
101, 109	
84, 85, 102	27k
82, 83, 103	33k
$17,66,68,81$	47k
70, 71, 80	56k
79	68k
77,78	82k
3, 72, 114	100k
6	390k
11	470k
73	680k

Capacitors 20\%	
1, 3, 8, 9, 14	$47 n$
2	50n
4, 10	$470 p$
5,6, 7, 11, 12, 13	1 n8
16	1 n
$17,18,27,30,33$	$22 n$
19,20	25μ, 10V
21,35	100n
22, 34	2.2μ, Mylar
23	47p
24	220~, 6.3V
25	15 n
26, 32	$100 \mu, 16 \mathrm{~V}$
28	47н.6.3V
29	$33 n$
31	$2200 \mu .6 .3 V$
36	10 n
37	680p
38	$330 p$
Semiconductors	
IC ${ }_{1}$	741
$\mathrm{lC}_{1} \mathrm{IC}_{3}$	$\begin{array}{r} 565 \\ 7413 \end{array}$
IC_{4}	7492
$\mathrm{IC}_{5,6}$	7490
IC ${ }_{7}$	7474
${ }^{1} \mathrm{C}_{8,9}$	747
$\mathrm{IC}_{10,11,12}$	348
IC_{13}	4016
IC_{14}	LM309K
$\mathrm{Tr}_{1,2.3 .4 .5}$	2N3704
Tr_{6}	2N2223A
$\mathrm{D}_{1,2,3,4}$	OA47
$\mathrm{D}_{5.6}$	00 mW Zener
$\mathrm{D}_{8,9}$	red l.e.d.
$\mathrm{D}_{7}, 10.11,12.13$	1 N914
Variable resistors (see text)	
R_{131}	5k
R_{133}	10k, 10 turn
$\mathrm{R}_{134,135}$	1 k
R_{136}	500, 10 turn.
$\begin{aligned} & R_{137 .: 39,141,143 .} \\ & 145,147,149,151 \end{aligned}$	10k
$\mathrm{R}_{138,140,142,144}$	100k
$R_{132}^{146,148,150,152}$	1 M

and a resistor is placed in the op-amp feedback paths to prevent spurious oscillation. The video signal is then a.c. coupled to a rectifier. The logarithmic amplifier ${ }^{5}$, which comprises IC $_{9 \text { gab }}$ and Tr_{6}, generates a logarithmic output voltage from a linear input current. Transistor $\mathrm{Tr}_{6 \mathrm{a}}$ is the non-linear feedback element for $\mathrm{IC}_{19 \mathrm{a}}$ whose output current is fed around R_{111} and Tr_{6} to the summing input. Therefore, the loop current is directly proportional to the input voltage at $\mathrm{R}_{110} . \mathrm{IC}_{9 b}$ and $\mathrm{Tr}_{6 \mathrm{~b}}$ form a constant current circuit where the current through R_{114} is equalled by the feedback current through the collector of $\mathrm{Tr}_{6 \mathrm{~b}}$. Therefore, the emitter-base voltage of $\mathrm{Tr}_{6 b}$ is constant and, with the base of $\mathrm{Tr}_{6 \mathrm{a}}$ grounded, the base of $\mathrm{Tr}_{6 \mathrm{~b}}$ must rise or fall by a voltage logarithmically related to the input voltage at R_{110}. Due to the temperature dependence of the circuit ${ }^{5}, R_{112}$ should be $1 \mathrm{k} \Omega$ and have a positive temperature coefficient of $+0.3 \% / \mathrm{degC}$. For normal room conditions a standard high stability resistor is adequate. Resistor
R_{136} sets the offset voltage for $\mathrm{IC}_{9 \mathrm{a}}$ and provides some control over the lower threshold at which logging starts. Diode D_{12} prevents damage to the dual transistor if the +12 V rail momentarily goes negative at switch-on. Capacitors C_{37} and C_{38} prevent the op-amps from oscillating, and C_{36} decouples the supply.

The logarithmically amplified and inverted signal is switched by S_{5} to one of the linear amplifiers in IC_{10}, and the selected signal is fed directly to $\mathbf{I C}_{13}$ which switches in the same way as the linear channel.

Construction

The linear and log. channels should be separated to avoid crosstalk and to enable adjustments to be made without confusion. The gain controls, which are seldom altered after their initial adjustment, can be ordinary carbon presets mounted on the circuit board. The level controls, which are often adjusted, should be 10 or 15 turn

'Fig. 3. (top) Clock channel.

Fig. 5. (bottom left) Logarithmic channel.

Fig. 4. (bottom right) Linear channel.

cermet types and have screwdriver access through the instrument case. If the processor is to be used with a drum fax in a darkroom, it is worth building the instrument either inside the fax machine, or in a shallow case underneath. Also, any l.e.ds or lamps should be red if bromide type paper is used. It is helpful to use large white lettering for dim-light operation, and to mount the slip/lock switch S_{1} at a comfortable position away from the other controls. R_{132} can be a screwdriver slot preset, but R_{133} must be noise-free, smooth to operate, well positioned for easy adjustment and fitted with a turnscounting dial if high quality prints are to be obtained. For darkroom use, a digital mechanical dial is better than an engraved analogue type. The outputamplifier gain resistor may need to be changed if a different readout device is used, and solder pins on the circuit board make the removal of R_{73} easier.
The power supplies are not critical, but they should be well smoothed. A suitable circuit for the $1 / 2 \mathrm{~A}+5 \mathrm{~V}$ supply is shown in Fig. 6. The $\pm 12 \mathrm{~V}$ supplies should be stabilized and rated at 100 mA . If the dual transistor Tr_{6} cannot easily be obtained, two 2 N 3704 devices can be epoxy cemented together.

To ensure that the circuits, particularly the log. amplifier, are temperature stable, the unit can be permanently on.

After satellite acquisition, slip S_{1} to establish the picture edge position on the fax or oscilloscope, and select either the side-by-side order of the visible and i.r. channels or, by using S_{3} and S_{7}, select one picture or the pair. At the extreme ends of the pass it may be necessary to narrow the p.1.1. bandwidth with S_{2}, but normally this can be left in the wide position.

Fig. 6. Power supply.

References

1. Kennedy, G. R. "Weather satellites ground station," Wireless World, Nov., Dec. 1974, Jan. 1975.
2. Kennedy, G. R. "Weather satelite picture facsimile machine," Wireless World, Dec. 1976, Jan., Feb., March and July 1977.
3. Anderson, R. K. et al "Application of meteorological satellite data in analysis and forecasting," ESSA Technical Report NESC 51, March 1974, National Oceanic and

Atmospheric Administration, Washington, D.C. 20233, USA.
4. Baylis, P. E., Brush, R. J. H. "Contrast expansion processor," Wireless World, Dec. 1973.
5. Dobkin, R. C. "Logarithmic Converters," application note 30, Linear Applications volume 1, third edition, 1973, National Semiconductor Corporation, Santa Clara, California 95051, USA.

Fig. 7. Satellite pictures of the Mediterranean received on the 11 th March, 1979. The visible image is on the left.

Spectrum is "common property of mankind"

The electromagnetic spectrum and the geostationary orbit for satellites, both of which are natural resources, should be more equitably shared as the common property of mankind. This is one of the conclusions of the final report of the International Commission for the Study of Communication Problems which was recently presented to the director-general of UNESCO. The 16 member commission has welcomed the decisions taken at WARC 79 to convene a series of conferences over the next few years on specific aspects of the utilization of these resources (February issue p. 46, March issue p. 72).

The repurt deals comprehensively with the right to receive, seek and impart information as a fundamental human right, and its main message is the need for a greater democratization of communications (as discussed in our December 1979 leader). It takes the view that fundamental communication problems transcend mere media questions and recommends that communication "be no longer regarded merely as an incidental service and its development left to chance". In setting up new systems "preference should be given to non-commercial forms of mass communication" and, while obviously the media need their revenues, "ways and means should be considered to reduce the negative effects that the influence of market and commercial considerations have in the organization and content of national and international communication flows". The report points out that "the freedom of the citizen to have access to communication, both as recipient and contributor, is not the same as the freedom of an investor to derive profit from the media while remaining indifferent to quality and content."

On broadcasting, the "development of comprehensive national radio networks, capable of reaching remote areas, should take priority over the development of television..." and "national capacity for producing broadcast material is necessary to obviate dependence on external sources ..." For communities in developing countries "local radio, low-cost, small-format television and radio systems and other appropriate technologies would facilitate production of programmes relevant to community development efforts, stimulate participation and provide opportunity for diversified expression".

Tariffs for telecommunications, the report says, "are one of the main obstacles to a free and balanced flow of information. This situation must be corrected, especially in the case of developing countries, through a variety of national and international initiatives. Governments should in particular examine the policies and practices of their post and telegraph authorities. Profits or revenues should not be the primary aim of such agencies. They are instruments for policy-making and planned development in the field of information and culture . . . International action is also necessary to alter telecommunication tariffs that militate heavily against small and peripheral
users . . UNESCO might, in co-operation with ITU, also sponsor an overall study of international telecommunication services by means of satellite transmission in collaboration with Intelsat, Intersputnik and user country representatives to make proposals for international and regional co-ordination of geostationary satellite development.'

The new technologies coming into communication have both great potential and great danger, says the report. Countries should evaluate their social implications and should promote "participation and discus-
sion of social priorities in the acquisition or extension" of these new technologies. Decisions on "the orientation given to research and development should come under closer public scrutiny". Concentration of communications technology in a few developed countries and multi-national corporations "has led to virtual monoply situations in this field. To counteract these tendencies national and international measures are required, among them reform of existing patent laws and conventions, appropriate legislation and international agreements."

Australian Air Force up-dates its technology

William Scholes, a contact in Sydney, reports that the first trials of laser-guided bombs (LGBs) in Australia, using a Mirage fighter of the RAAF, were held recently at the Woomera Rocket range in South Australia.

The trials, conducted by Texas Instruments (USA) in collaboration with the Defence Science Research Centre and the Aircraft Research and Development Unit, are a direct result of Prime Minister Fraser's response to the American call for "increased surveillance of the Indian Ocean area by America's allies," although why better killing devices are needed to improve surveillance has not been explained. LGBs use semi-active homing devices in that they contain passive detectors which collect and process laser energy which has been reflected or scattered from a target, previously illuminated by a separate laser source. The angular displacement between the bomb's central axis and the direction of the laser radiation is measured by the LGB's guidance system and

Engineers checking operation of the LGB guidance head using a flight line test kit.

correction signals are sent by means of a servo system during flight, causing deflection of the bomb's strap-on wings. The flight path is corrected accordingly and the bomb steered towards its target
During the Vietnam conflict, both the USAF and US Navy employed LGBs as well as electro-optical guided bombs. These bombs used a similar form of visual target identification but were equipped with a different guidance system which offered greater flexibility than the LGB method.

Microprocessor applications for the disabled

The Bias ' 80 exhibition, to be held in conjunction with Microelletronica in Milan from June 4 th to 8 th 1980, includes a competition for projects aimed at helping handicapped persons. Total prize money is $\$ 7000$ in addition to prizes in the form of systems, instruments and other items of electronic equipment. Engineers and designers interested in competing should bear in mind that the projects should be useful as aids to disabled persons such as those who are blind, deaf mutes and persons with difficulties in communication, expression and/or movement. Consideration will also be given to other unconventional applications of microprocessors not strictly tied to the subject of the competition provided they are of real interest in the bioengineering or medical electronics field.
Special prizes will be presented in this section. Projects should be presented with block diagrams and circuits, hardware complement, software, cost, weight and dimensions. Presentation of a prototype is desirable but not essential. Entries should reach the competition secretariat no later than May 20th 1980. Phone or write to Studio Barbieri, Viale Premuda 2, 20129 Milano, Italy, tel. 796096421635

"Challenge of the Chip" exhibition

There can't be many western industrialized persons to whom the "chip" is a total mystery, but the few to whom it is would do themselves a favour if they were to go along to the Science Musuem's "Challenge of the Chip" exhibition, which opened in late February and continues until sometime in December 1980.
In spite of a variety of adjectives used to describe the exhibition, and a spate of journal reports which did little more than précis the official booklet, it is one of the most effective displays the museum has staged; as a history of the development of modern microelectronics it is highly successful, dodging about from basic materials and fabrication methods to applications in a surprisingly unstrictured fashion. Some of the conceptual illustrations are particularly sharp, such as, in an early exhibit, where the seemingly paradoxical nature of semiconducting materials is outlined, i.e. that heating causes an improvement in conduction in semiconductors, the diametrically opposite effect to that observed in a conventional conductor.

The major area of concentration is of course that of computing in its many forms, from sophisticated medical equipment and military radar applications to the multitude of toys and games based on the chip.

All the exhibits do not flash lights or count or converse with human beings, although those that do have been the best occupied. The Dept. of Industry's exhibit, a small hall set aside for posters of MAP - initials not explained - was totally empty for over 20 minutes while hordes of children gleefully punched buttons and re-programmed things alongside.

Kiddies, it seems, are one of the major hazards of the exhibition business if the opinions of one or two of the "keepers" are anything to go by. "Too many of the little demons all at once, that's the worst of the school holidays," said one of them. Visiting the exhibition during term time might be the quieter answer therefore, although this presumes that coach-loads will not occasionally arrive, press-ganged into the trip by avid science teachers.

It's all great fun though, and very informative, leading right through from the development of the first point-contact transistor
to the "latest" on the information retrieval systems.

Some elements were a little silly (but forgivable) such as that showing applications of the chip for "sensing" processes in rather trivial areas on the family car-oil and petrol level sensing, o.k., but sidelight checking by photoelectric means? More sensors needed to check the checking l.e.d. which in turn checks on the state of another checking device, always assuming that your l.e.ds are reliable and you don't come to the conclusion that a length of optical fibre, carried from sidelights etc. to the dashboard is all that's needed for instant feedback to the human optical system.

The relatively "perfect" actions of microcomputers were thrown into sharp relief by the apparent incapacity of the technicians who must surely have set the exhibits up to ensure good results from the video monitors dotted around the showcases. In one batch of six, two were suffering from ballooning (presumably low e.h.t.) and two from line pulling at the top of the screen.

At $£ 1.65$, the official booklet is good value, being crammed with excellent illustrations and only really falling short in the rather wooden style in which it is written and the single hole in its claim, common to the handbook and the exhibition, to show how "microelectronics will affect your future." There is no direct information or comment on either the more intense social changes or possible shifts in employment in the future as a result of "chip activity".

However, if one of its more staggering "facts" is any sort of indicator, that the pocket calculator gives us as much computing power as would have cost $£ 50,000$ only twenty years ago, then maybe the author's sharp intake of breath at this self-revelation prevented further literary effort on the subject.

Microprocessor competition

To be fair, he couldn't really have known about, for example, the results of the recent British Microprocessor Competition, which was organized by the National Research Development Council (NRDC) in collaboration with the National Computing Centre

(NCC). The first prize in category 1 (working models) of $£ 10,000$ was won by Sinar Agritec Ltd, of Egham, Surrey, for their design for a portable grain moisture meter (see photo). This is adaptable for other commodities such as rice or seeds and features calibration data for several varieties of crop, located in a single e.p.r.o.m., using a computer language called FORTH.

Operation is by means of only two pushbuttons and an l.c.d. unit, and the complete program routine can be stepped through by an untrained operator. The judges considered this design to be of value for agricultural purposes for both developing and advanced economies.
The second prize of $£ 5,000$ was won by a team from the University of Manchester Institute of Science and Technology (UMIST) Department of Mechanical Engineering. The interactive programming system for lathes permits the operator to "converse" with the machine and the judges felt that the market potential for small machine shops is substantial, if the right company can be found to complete development of the design.

The Truestock stock control system won for Grundy Terminals of Teddington, Middlesex, the third prize of $£ 2,000$. Once again, this offers sophisticated techniques for use by untrained operators enabling, for example, a component or sub-assembly to be instantly identified by pointing to it on an overlay drawing with a light pen.

In the second category (ideas on paper), MDB Electronics of Deptford, London, won the first prize of $£ 2,000$ for their design for a portable electrocardiograph machine. This offers battery operation and facilities for on-the-spot print-out and analysis of heart activity. Once developed, there could be a significant market for this type of instrument in surgeries, ambulances and first aid posts.

Second prize of $£ 1,000$ in this category was won by a private individual, Mr . C. Goss of St. Margaret's, Twickenham, for his electronic aid for the speech-impaired. This is based on comparatively cheap speech synthesis chips with limited, but nevertheless useful, vocabularies. A hand-held device is used to enter abbreviated words into a microprocessor, which employs "ingenious" algorithms to produce complete sentences. The judges foresaw the development of a device which is unobtrusive and portable, at a price which people with speech handicaps will be able to afford.

A special prize of $£ 500$ was awarded to the Royal Grammar School, Newcastle-uponTyne, for its microprocessor-controlled theatre lighting system.

The moisture meter designed by Sinar Agritec which won first prize in the British Microprocessor Competition. Using an RCA 1802 m.p.u., it provides calibration programs for 30 types of cereal or 64 commodities in all, and has built-in electronic weight balance and automatic temperature correction. The commodity being tested acts as a dielectric in a capacitance method of moisture measurement. The makers founded their company in 1978 on the principle that microprocessors should be applied not only to fast-profit consumer products but also to ultra-practical devices to help increase the quality and consistency of food produce. (Sinar is an Indonesian word meaning radiant light.)

Richard Kirby at conference
 on spectrum conservation

The keynote address at a conference organized by the IEE on the subject of "Radio Spectrum Conservation Techniques", to be held at the IEE headquarters from 7 to 9 July 1980, will be given by Richard Kirby, Director of the International Radio Consultative Committee (CCIR), to which body the ITU looks for technical guidance on radio.

His main subject will be the role of technology in coping with the more intensive frequency sharing arrangements resulting from WARC 79. General IEE interest in the subject dates from 1976, when the Electronics Divisional Board set up a special committee to investigate the many aspects of radio spectrum conservation. The idea for this year's conference arose from the committee's discussions.

Response to the call for papers has been good and topics for discussion include alternatives to the use of radio, modulation techniques for reducing the bandwidth of transmitted signals, methods of processing of information, aerial designs to limit wasteful radiation, techniques for reducing interference, computer-aided techniques for spectrum planning and management and methods of confirming the radio energy level required for a particular region or application.

For further information contact the IEE, Savoy Place, London WC2R 0BL.

Andrew Corbyn, designer of the pulse induction metal detector described in our March and April issues, explains a point about the prototype to Marie Tracey, chairman of Pulse Induction Ltd of Yateley, Surrey, which has an interest in the patent application. Andrew, 35, is a chartered engineer with degrees in mining engineering and geophysics from Imperial College. Apart from his research in rock mechanics, potential field theory and statistical evaluation of mineral deposits, he has worked as a teacher, mining engineer, computer programmer and plumber. He has designed large metal detectors for searching for gold in Western Australia. Marie, together with her husband, electronics engineer Lee Tracy, formed Pulse Induction Ltd in 1972. She has done business in metal detecting with military forces in various parts of the world and her visits to remote spots have included travel on a camel across deserts in Libya and Egypt. She is an expert shot with "cowboy" type hand guns, with which she has given demonstrations, and has also worked as an artist's model. Her company is now part of the Kay Organisation, which includes Lansing Bagnall fork lift trucks.

GLC document, largely favourable to c.b., seeks public response

A consultative document, recently issued by the GLC, outlines the main details of the citizens' band debate and urges a strong public response to support the council's "belief in the freedom of individuals to take advantage of modern technology in their work and recreation, subject only to this freedom not interfering in an unacceptable way with the freedom and rights of others."
The document points out the potential social and commercial benefits of c.b. by reference to the USA, where it is possible to use the facility to book hotel rooms, order meals in advance, give warning of traffic jams or accidents or to provide back-up facilities for the emergency services. It emphasises the advantages for those who are disabled and refers to cases such as the elderly, who may be vulnerable to sudden illness or physical assaults while in their homes, or the invaluable nature of c.b. to a disabled driver whose car may have broken down and who may be incapable of walking to a telephone.

Possible disadvantages of c.b. are also considered in the document, such as its use by the criminal fraternity in co-ordinating criminal enterprise (which could well be outweighed by virtue of the fact that anyone tuned to the transmission frequency would
be warned of the plan) or obscene language broadcasts. Furthermore, the point is made' that illegal c.b. activity is fairly widespread and criminal acts may be planned whether or not the service is legalized. The "pro-c.b." lobby argues that criminal activities would be rendered more difficult by official policing of the system, especially if legislation on c.b. sets included a compulsory identification code signal. Balancing this would be the problem that manpower would be required to regulate the service, which does not fit with current "trimming down" of public service departments through cuts in government funds. A decision on the issue was postponed by the government after an official statement on 6 December 1979 that the really strong argument was one based upon personal freedom, although the major problem was that of the selection of a suitable frequency band. Another important feature of the frequencies which could be used for c.b. is their relationship with sets already manufactured in the USA and Japan and, according to this document, stockpiled in this country ready for sale if c.b. is legalized. Most of these sets (about 100,000) are for operation in the 27 MHz band, and there is common ground between the advocates of c.b. and the government that this frequency
band is unsuitable and undesirable for the purpose.
"This band . . directly threatens the users of hospital and other paging systems and the activities of model control enthusiasts. In addition, it is understood that harmonics of transmissions on this band can interfere with broadcasting, the emergency services, old people's alarm systems and aircraft communications. Signals at this frequency also have a longer range than required.
"Estimates have been made that there could be a requirement of between 6 and 8 million sets if $c . b$. were to be legalized in this country. A potentially large new market could thus be created for British firms, particularly if the controls imposed on band, modulation and set specification were such that all manufacturers, overseas as well as at home, were starting from a new base in the design of the product. This would include type-approved equipment having to perform accurately to the frequency chosen and the system capable of extension to accommodate (possibly) data transmission and station coding to identify the transmitter.
"The government's clear intention to allocate a frequency other than the 27 MHz band would remove an advantage currently held by the USA and Japan since they permit c.b. activity in that band and their sets are produced accordingly."

Comments and views on the issue in general should be sent before June 4th 1980 to The Director-General (DG/PR), Greater London Council, The County Hall, London SE1 7PB.

Periphonic sound

First public demonstration of periphony at AES convention

Back in 1970 Michael Gerzon, a mathematical researcher at the University of Oxford, was experimenting with tetrahedral* recording. Four almostcoincident microphones were angled for spherical sound pickup, with playback over four loudspeakers in a tetrahedral array. Microphone angles were determined, matrix co-efficients calculated and the discovery made that there was redundancy in the four channels and the minimum number of non-redundant channels was three. And it worked. Not perfectly, but well enough for him to remark two years later: "Those who have had the opportunity of hearing periphony at its best can have no doubt that the height effect is important in the reproduction of sound and in the enjoyment of music ..."
Now, a decade later, the first public demonstrations have taken place using a recently-developed periphonic decoder. Until now only ambisonic equipment for horizontal surround sound has been available but the general theory is just as applicable to the third dimensionof height.
There were not many who had heard periphony then; there can't be that many more now, though the NRDCsponsored Ambisonic partnership did a sterling job at the recent London Audio Engineering Society Convention with frequent six-at-a-time demonstrations
*A theory of spin spherical harmonics, a three-dimensional equivalent of circular harmonics with analogy to quantum theory, showed that the early tetrahedral array was only one member of an hierarchial family, which Michael Gerzon termed periphonic.
for three and a half days. But even if one couldn't prove the pudding one wonders why it wasn't intuitively obvious to many whom one thought it should have been that as sounds in nature arrive from all directions, a system which sets out to create a good illusion of reality should take account of this fact.
Whilst the market place may not yet be ready for six or eight loudspeaker sound systems interest in periphony is steadily increasing. The development of the periphonic or soundfield microphone (see "British lead in sur: round sound microphone' W W, August 1978, page 75) was a necessary condition for this, and many recording engineers are now aware that together with its signal processing circuitry it offers mono, stereo and two and threechannel horizontal surround, as well as periphonic options, at the touch of a few control knobs, to say nothing of the extraordinary post-recording flexibility for effective alteration of microphone position and polar response. And this at a time when digital systems are promising the audio world access to a greater number of high quality audio channels.
Progress, in periphony and in periphonic decoder design in particular became possible due to the development of a fairly comprehensive theory of the psychoacoustics of directional reproduction which helped to unravel just why periphony didn't work perfectly the first time. Equipment design is greatly simplified and subjective results readily optimized using the results of

this work, some aspects of which were summarized in a lecture by Michael Gerzon at the convention.

To oversimplify this, imagine vectors drawn from the centre of a four-speaker array with directions pointing toward each speaker and whose length is proportional to the amount of sound emitted from each speaker. At low frequencies, below 700 Hz , where localization depends on inter-aural phase differencies, make the length of each vector proportional to the amplitude of sound emitted and add their magnitudes to give a total amplitude. Also add vectorially, which gives a localization according to the Makita theory (which is that direction to which the head turns to give zero phase difference). Now when the head points in another direction the perceived direction generally differs, and to stabilize the image position requires that the magnitude of the resultant vector is the same as the total amplitude of sound from the loudspeakers. This ratio is called the vector magnitude r_{v} (r comes from real, v from velocity) and should ideally be unity in reproduced sound, as it is with a live sound source.

At high frequencies, where localization is by inter-aural intensity differences, make the length of each vector proportional to the energy of sound emitted, and again add the magnitudes to give a total energy. Adding vectorially gives a localization according to the energy-vector theory (which is that direction to which the head turns to give zero intensity difference). Then, it is argued, to give good image stability the vector magnitude r_{E}, i.e. the ratio of, resultant vector length to total energy, should be as close to unity as possible. (This ratio would be unity for a real sound source, but it has been shown that this value cannot be attained when reproducing multiple sounds.)

As well as meeting these two criteria good decoder design must get both localizations correct for all frequencies and in all directions. Though it wasn't obvious at the time the trouble with the
continued on page 75
First periphonic decoder built by the NRDC-sponsored Ambisonic partnership has controls that allow a variety of loudspeaker arrays to be used.

THE INTELLIGENT PLUG

Having been involved in power line carrier design for some time I particularly enjoyed the article "The Intelligent Plug" in the December 1979 issue. The techniques described for the remote control of domestic appliances are straightforward and practical.
Some time ago I entered into a development programme for a full duplex power line carrier intercom in conjunction with Semiconductor Circuits Inc. of Haverhill, Massachusetts. This work culminated recently with the production of a number of prototype systems, working in pairs so that a person in one room could simultaneously talk and listen to another in a separate room without having to operate any controls. We even went exotic with the addition of telephone adapters to convert the intercoms into loudspeaking telephones and demonstrated operation with both impulse and touch tone dials.
From extensive tests on these units by engineers and enthusiastic marketing personnel, we have been forced to acknowledge that power lines provide less than ideal transmission and have a decidedly unpre-' dictable nature. On this side of the Atlantic our lines are 115 volt but have similar impedance characteristics to the one shown in Fig. 2 of your article. However, these characteristics vary from circuit to circuit, house to house, office to office. The average impedance falls from approximately 20 ohms at 30 kHz to 10 ohms at 200 kHz and then rises, depending on the circuit, to 20 or 50 ohms at 400 kHz . We have stayed clear of higher frequencies (even though they are permitted by the FCC) because of the large number of powerful medium-wave radio stations around each city. Superimposed on these impedance trends are troughs down to two or three ohms and peaks of 70 to 120 ohms. Such resonances are accompanied by zeros in transmission spectra that wreaked havoc with our frequency selection plans. These transmission 'holes' are produced by reactances in appliances connected to the circuit and to resonances in local voltage dropping transformers. We found that an 'instant on' tv set completely wiped out a channel centred on 300 kHz . Incidentally, the line loss here is greater than you show, while a good circuit will have 20 dB loss; a more common figure is between 30 and 40 dB and in offices this rises to over 50 dB . Noise is just as unpredictable, being either non-existent or spikes of a few volts. It is worse at lower frequencies and appears to fall off exponentially as frequency rises.

Commercial manufacturers of power line carrier intercoms such as Fanon avoid transmission band irregularity problems by providing alternative working frequencies; if one doesn't work well, the other one should. This is easy in a simplex system but difficult when working full duplex since shifting frequencies necessitates switching transmitreceive filters and can be very expensive. I would imagine that working simplex or half duplex with 'The Intelligent Plut' is no less hazardous since the absence of signal due to a transmission hole is not obvious to an unskilled operator.

One major problem not mentioned in the article is that once satisfactory transmission
has been established throughout the required house there is also a fair size signal heading other nearby houses, an effect that is commercially exploited by intercom manufacturers; you can put one in your baby's room while you go out on the town and the.other in your neighbour's house. Transmission is generally good enough for this 'baby alarm' mode of operation. When voice transmissions are carried over the power line the 'effect is to automatically 'bug' your house! Even worse, the installation of a number of similar systems within a neighbourhood ensures that each will interfere with the others and nobody can reliably transmit or receive anything.
Experience with our own full duplex systems forced us to conclude that unless the power line circuits themselves are modified in some way they do not provide a sufficiently predictable link. All of the problems can be simply overcome by installing blocking filters, either in the form of adapter plugs and sockets in series with troublesome appliances or to block out-of-house transmission and reception by clipping filters around the cables entering the house.
The challenge now is to evolve acceptable line conditioning adapters and educate the general public so that this most economical signal transmission medium can come into its own for all kinds of application.
Lewis Illingworth
Beaconsfield
Quebec, Canada

As an electrical engineer employed by the ${ }^{7}$ supply industry, I read, with interest, the article by Messrs McArthur, Wingfield and Witten on the use of household wiring for data transmission (December 1979). However, the details of electricity distribution given in the article are not entirely correct and this may have an effect on the operation of such a data transmitting system.

In urban situations, it is true that all three phases are used for distribution, but not that every third house is connected on the same phase. It has been common for many years to loop two houses together on the same phase which could lead to severe house to house interference. More importantly, the diagram of a distribution substation is incorrect. It should show the neutral and earth solidly connected as in the accompanying diagram.

The importance of the neutral to earth connection to the Intelligent Plug cannot be under-estimated. This situation is further confused by the use of p.m.e. (protective multiple earthing - not phase multiple earthing mentioned by yourself). The introduction of p.m.e. has led to the neutral and earth being joined together at many places 'on the distribution system to give a number of parallel current paths, ensuring low neutral-earth impedance. The use of p.m.e. had led to the use of combined neautral-earth cables where the neutral and earth currents share the same conductor. In this case, I do not see how the Intelligent Plug, as described, could function.
Signalling, using the live/neutral pair, would be feasible, but because of the dangers involved and possible damage to faulty equipment, I do not recommend it. I would be interested to know what the 20 metre section of mains wire, that the authors investigated, was connected to and what effect the many junctions and branches common to household wiring have on the impedance of it at frequencies in excess of 30 kHz . Before the system could be used commercially, some more detailed experiments on the characteristics of household wiring, and the effects on the distribution network that such a communication system may have, would be essential.
A. J. Skinner

Edmonton
London N9

MICROOELECTRONICS AND THE THIRD WORLD

With reference to "Trickle, trickle little, chip", your leader in the November 1979 issue, I would have liked to commend you for pointing out the deficiencies of the now widely discredited 'trickle-down' theory of world economic development had you not, when talking about "accelerating capital accumulation" using high technology, been advocating the very same thing, albeit in a watered down version. Unfortunately the arithmetic simply does not work. The cost of the high technology workplace, and the market for the goods produced in a world saturated by them, mean that world poverty would take hundreds of years to diminish, if ever, by these means.

In the battle against poverty, i.e. in meeting the basic needs of the poor, we must swallow some ideological pride and realize that the real 'capital' in the development equation lies in the vast waste of human potential that poverty implies. Generations of poverty bring about fatalism and stagnation, but let a poor people realise the things that can be done if they work together towards a common goal, and are free of those who are doing very nicely out of the status quo, and this vast human potential will be unlocked. Basic needs will be met in tens, not :hundreds of years. The 'money' capital needed, e.g. irrigation pipes, cement, to fuel this process is surprisingly small but obviously the political problems are correspondingly large.
Once this process is under way, to con-
solidate the gains made microprocessor based production is highly relevant and should be used. Alternative technology, of course, is by its nature primarily for meeting local basic needs and was never really intended for developing export markets.

I see a two-way education process as being necessary. The Third World may not know. much of the possibilities of microelectronics and people in the West may not know muchof the Third World. As its role in the first part I would encourage Wireless World, with its world-wide readership, to give special attention to the use of microelectronics in the Third World, and for the second part I can only refer readers to magazines such as the New Internationalist.
N. W. P. Payne

Danbury

Connecticut
USA

PUSH-PULL AMPLIFIERS

On page 74 of your January 1980 issue is a circuit diagram for a push-pull class-A a mplifier.

When two generators feed a single load the question of load sharing is liable to arise. As is well known, when the generators are in parallel it is necessary for them to have a not too low internal resistance (or regulation) to cope with inevitable differences in e.m.f., the effect of which is easily shown by a diagram,

here. If the internal resistance is too low the output characteristics of the two generators are almost horizontal and the distance between points A and B can become large. Indeed it is quite possible for one of the points to be to the left of the vertical axis, which means that one generator is supplying current not only to the load but also into the other generator. Clearly there is magnification of inequalities.

In an electronic amplifier we can give to the two generators (the two halves of the output stage) any internal resistance, and the ideal arrangement for good load sharing is two generators with infinite internal resistance (i.e. current generators). There is then no magnification of inequalities in the transconductances or inputs of the two sides of the amplifier; and the combination can be given the required low output resistance in the usual way by feedback.

A good basis for such an arrangement, it seems to me, is the Peter Blomley amplifier (February, March 1971 issues). This is a class-B design; but the current-splitting stage can easily be changed to class A by putting resistance between the emitters and introducing extra bias between the bases. And, of course, other changes will be needed - to resistances and to sizes of heat sinks - to cope with the changed working conditions.

The two sides of Mr Pollock's amplifier have low output resistance, partly because of the emitter-follower connection and partly
because of the overall feedback on each side (the parallel feedback chains); and that there is a serious load-sharing problem is shown by the call for resistors matched to 0.1%. An experienced engineer would, I think, have seen this unusually tight requirement as a sign that he was not on the right path.

I find it Interesting to recall that one of the first published feedback-amplifier designs (the Wireless World p -a amplifier, if my memory serves me correctly) had similar parallel feedback paths. But in those days the moderate amount of feedback used reduced the output resistance to about only a half or a third of the load resistance. Moreover there is nothing in electrical engineering as accurate as the ratios of the e.m.fs in the secondaries

of a well-designed transformer. So there would not in this amplifier be a serious load-sharing problem. The arrangement of the output stage was, as far as I can remember, as shown above: unfortunately my pre-war Wireless Worlds are not to hand. E. F. Good

Darlington
Co. Durham

TOWNSMAN AERIAL

Since the publication of my article the "Townsman $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial" in the February issue, a few queries have arisen, mainly as a result of conversations over the air on the 2 -metre and 70 centimetre amateur bands. Further experience with the aerial since the article was written enables me to answer most of these, although the obvious one, "Where can I obtain flat metal strip 1 cm wide?" must remain open at present.

The first question concerns a certain confusion about the tabular data. Column No. 1 is the data for the two-band $2 \mathrm{~m} / 70 \mathrm{~cm}$ aerial. Columns $2,3,4,5$ and 6 give details of single band "simple" models for 70 cm , and for indoor television reception.

In the two-band model, I can now be very precise about the positioning of the cookingfoil suppression sleeve as a result of on-air tests carried out recently since the commissioning of more 70 cm repeater stations near my home. The centre of the sleeve should be 3 inches ($71 / 2 \mathrm{~cm}$) below the centre of the dipole element, and not exactly as shown in the drawing, level with it. This makes its manner of operation rather obscure, but results show that this is the best position.

Tests using a variety of different hook-up wire for the hair-pin matching loop disclose the fact (originally overlooked!) that thin wire with thin insulation bends into a tighter hair-pin than thick wire with thick insulation, and that the influence of the metal of the transformer strip is far greater with the thin wire than with the thick wire. The length shown is for thin wire with thin insulation; a possible minimum length for wire extracted from ten-amp mains flex would be in the region of 3 inches ($71 / 2 \mathrm{~cm}$), rather than the five inches (12.7 cm) shown.

The conductor wire is taped lightly along the metal of the transformer until it flares away for $7 \frac{1}{2}$ inches (19 cm). The shape of the flare adjusts the matching rather critically, particularly on 2 m . It is helpful, to permit accurate adjustment and to maintain longterm stability, to brace this free section of the conductor wire with a strip of thin Formica and fit a grub-screw through the metal about 2 cm above the last strapping, for the purpose of fine-adjusting the rate of flare. With such a screw adjustment, v.s.w.r. can be brought to unity with almost 'factory-test' rapidity.

The aerial is necessarily a compromise. It is recommended that adjustment be made to be correct on 2 m , and some v.s.w.r.accepted on 70 cm . This need not be worse than $1.5: 1$.

I used plastic tubing coloured white. I suspect that black coloured tubing may include a carbon content which would make it unsuitable for these purposes.
B. J. P. Howlett, G3JA M

Woodford Green
Essex

IS 500 kHz A GOOD DISTRESS FREQUENCY?

It is quite common when using marine m.f. transmitters under certain circumstances to experience considerable loss of radiated r.f. power on medium frequency $405-525 \mathrm{kHz}$. The effect is most pronounced with very rough sea conditions in gales or storms, the radiated power dropping off on the main transmitter from its normal 7 amps r.f. down to approximately 2 amps , or under certain conditions less. In extreme cases it has been known for the radio operator to be unable to power the transmitter on m.f. due to the transmitter tripping off. H.F. is not affected to the same extent.
Similar loss of r.f. radiated power was also recently experienced when using the emergency transmitter during calm conditions but with a high temperature and high humidity present. Radiated power on m.f. dropped from its normal 4.1 amps down to 1.8 amps r.f.
In gales or storms or when humidity is high, all the aerial insulators become saturated with wet salt spray; this alone causes considerable loss of radiated power on m.f. Probably, though, a greater loss of radiated power is also caused by the fact that in such conditions the atmosphere surrounding the vessel and its antenna is saturated with salt water droplets and spray which can extend to a considerable height above sea level (well above the antenna height). This presents an extremely poor dielectric constant and means that one is attempting to operate an m.f. transmitter into a load (antenna) which is almost immersed in a saline solution existing between the aerial and sea level. It is difficult or impossible to load the transmitter into the aerial under such conditions

This is at a time when there is always the possibility that a vessel could get into difficulties in heavy weather and it may be
necessary to transmit a distress call on 500 kHz . Under these conditions it may not be possible to do so, or, if possible, it would be at much reduced power output. Should a vessel in these circumstances be any distance from another station it could result in the call going unheard on m.f. Perhaps this explains why vessels have disappeared in heavy weather without a distress call being heard.
Does not this raise the question: is 500 kHz a suitable frequency for distress traffic working under these conditions?
A. K. Tunnah

Ardrossan
South Australia

PRE-AMPLIFIER WITH
 NO T.I.D.

We all read very attentively the June 1979 Journal of the Audio Engineering Society in which Mr Lipshitz has given so many examples of the errors in commercial preamplifiers (even in "very expensive models") and his letter in your January 1980 issue is one more reminder. In 1978 we could not have known, unfortunately, about his article of 1979. Further, the specification of the equalization network will be considered according to the circumstances. Unfortunately, the question of the equalization network is not the main point of my article "Audio pre-amplifier with no t.i.d." in the August 1979 issue.
Firstly, the term "grossly in error" should be put in context. Let's take into account the fact that the pre-amplifier is always followed by volume and tone controls, filters, loudspeakers and a listening room. As far as is known, these units distort the signals to a greater extent (in amplitude and phase). By the way, in my August 1979 article I pointed out a discrepancy of the frequency response at the edges of the audio band, and I mentioned the possibility of modifying or completely replacing the equalization network And for sure there is nothing in the article, using Stravinsky's words, that has "finally arrived". Taking all this into account it doesn't seem reasonable to complain of the RIAA network being "grossly in error".
Postscript: Employing the classical equivalent network of the output circuit Tr_{1} we have:

After the usual simplifications we have the equivalent network with a current generator:

For a long time we have had the original and accurate method of calculation for such an equalization network; here, for example, is one of many possible versions:

It is clear from Lipshitz's letter and article that de-emphasis is passive, and in this case $\mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{C}_{5}, \mathrm{C}_{6}$ are the components "grossly in error". (It is just $\mathbf{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{C}_{5}, \mathrm{C}_{6}$ that are replaced in measurements by the 240-ohm resistor.)
If we take into account that R_{5} of the following stage has some effect on the equalization network and there is a possible reduction of high frequencies by the input filter of the pre-amplifier (moving coil), as well as attentuation of low frequencies by all other following isolating capacitors (without putting on additional stages, etc.) we inevitably have to come to some compromise. And that has been achieved.
The circuit may also be used this way:

The resistor R_{7} is used only for "equalizing" the loading of Tr_{1}.
Y. Miloslavskij

Institute of Constructional Physics
Moscow, USSR

"TRIVIAL" AMPLIFIER DESIGNS

I was slightly perturbed by Mr B. J. Duncan's letter in the January 1980 issue. Since he has radically altered the design of my preamplifier by removing the discrete semiconductors and introducing i.c. circuitry, I hardly think it is fair to carry on referring to it as my design, and do not feel impelled to take any responsibility for its performance or lack thereof.

I do agree that an unacceptable aura of mysticism still seems to surround the performance of audio equipment. A great deal of nonsense is still being talked about "musical" capacitors, metal oxide resistors, and so on, although as far as I can tell the field is still wide open for the first brave man to stand up and explain how ears can register differences that not only escape the best test gear, but are also unknown to electrical science. Presumably, given time and a complete lack of supporting evidence, such silliness will once more become unfashionable.

However, I do differ with Mr Duncan in his assessment of the worth of increasing amplifier refinement based on actual engineering principles. If someone finds a way to reduce distortion in a given case from 0.005% to 0.004%, then surely the design
approach involved is worth reporting, even if the current state of art in analogue magnetic recording renders such an improvement largely academic. Also, I suggest that there is much satisfaction to be gathered in constructing a piece of equipment that will degrade the signals passing through it as little as humanly possible, even if the signals available are of variable quality.

I see no reason why amplifier designers should shut up shop just because other parts of the audio chain have a lot of catching up to do.
Douglas Self
London E17

M.F. RECEPTION

I am pleased to note that Mr Schemel's recent article on loop aerials (July 1979), and my own letter on m.f. broadcast reception (November 1978), are giving rise to some interest in this area.

I should like to take up a point in Mr Hill's letter (February 1980) concerning the use of long-wire aerials. I agree that the image rejection of domestic receivers, typically no better than $30-40 \mathrm{~dB}$ even after careful alignment, makes the untuned connection of a long-wire aerial of doubtful value. I also agree that in the majority of cases, loop aerials represent a much more effective way of increasing signal pickup. But I ought to have made it clear that my original method of coupling the aerial to the receiver was not as Mr Hill assumed.

Where practical considerations make the erection of a long-wire aerial an attractive prospect, I found that the most satisfactory method of coupling such an aerial to a ferrite-rod receiver was to use à surplus ferrite rod aerial with a standard m.f. winding, earth one end, and connect the other to the long-wire via a 500 pF variable. Mounting this assembly in a small plastic box enables the amount of coupling, and the phase of the additional signal; to be varied by physically moving the plastic enclosure with respect to the receiver. Depending on the length of the aerial used, some adjustment to the number of turns on the coupling rod may be necessary to achieve the desired tuning range.

Not only does this offer similar discrimination against second-channel interference to that obtained with a resonant loop, but the substantially omnidirectional pickup of a long-wire aerial (or even better, a loaded vertical whip) means that careful juxtaposition of receiver and coupler can produce a cardioid-type pickup pattern, which can be particularly useful at night, where absolute field strergths are quite high, and gain is not as important as directivity. During daylight hours, the omnidirectional pickup of a longwire aerial can have advantages during a general band-scan.

I also note that Mr Hill uses a low-pass filter in the audio circuitry of his receiver. I agree that a sharp cut-off above 5 kHz is extremely advantageous for reception of similarly band-limited transmissions, but surely the notch should be at 9 kHz , not eight. I would also favour a faster roll-off: both the BBC and the IBA transmit a response which is substantially flat up to 5 kHz , and then rolls off to -40 dB at around 7.5 kHz , and at least -50 dB at 9 kHz . A good filter for reception should be at least as steep.

I note that recent trends in consumer design do not appear to include much, if anything, in the way of audio treatment after the detector. Instead, the latest designs rely
on a narrow block filter as the major part of the i.f. selectivity, relying on accurate (and usually manual) tuning to provide the necessary h.f. attenuation. The block filters popularly used have a nose bandwidth of little more than $6 \mathbf{k H z}$, presumably a sacrifice willingly yielded in order to improve adjacent-channel rejection within the necessary budget. This means, however, that the recovered audio response falls sharply, and to my mind undesirably, above 3 kHz or so, and that receiver tuning has to be very precise.

Given that the brief of consumer audio equipment is generally to provide the best possible reception of local transmissions, where even at night the wanted signal may be presumed to be at least as strong if not stronger than anything on the adjacent channels, I would suggest that a better approach would be to employ a much wider block filter, with a -3 dB bandwidth of around 10 kHz , and then to eliminate adjacent-channel whistles and 'monkey chatter' by means of a steep, and preferably switchable, low-pass filter with a cut-off frequency between 4.5 and 5 kHz . The use of such a filter also has the advantage of eliminating high-frequency distortion products arising from the detection process.

Finally, I should like to point out that there are at least two transmitters with a groundwave signal of usable strength in some parts of the country, which radiate a much wider audio bandwidth than the 5 kHz now standard within the UK and much of Europe. They are, are the time of writing, RTE Radio 2 on 612 kHz , which can be received quite well in Wales, West and North-West England, Southern Scotland and Northern Ireland, and the pirate station Radio Caroline on 963 kHz , which can be heard in South-East England. It is, strictly speaking, illegal to listen to the latter, and I mention it only out of technical curiosity.
Norman McLeod
Hove
East Sussex

MILLIBEL IS RUBBISH

I have a little sympathy for Mr Duncan's cri de coeur (January letters) over yet another super hi-fi amplifier project (October 1979). Too often designers are carried away by maternal enthusiasm for their brainchild and the high accuracy of a modern calculator. Consistently overlooked are the realities of the situation - that the amplifier is but one element in a very long chain of accumulating nperfections and, in a domestic system particularly, the ultimate fidelity overall will be limited by the programme source.

However, my spleen feels distended by a letter in the March issue with a suggestion of such idiocy that I had to check the cover to make sure that it wasn't an issue a month early. But no, the writer was deadly serious and dangerously literate with it. Can it really be suggested that again, for one small element in the recording/reproducing chain it is imperative that any amplitude/frequency deviations be maintained within an accuracy of 0.05 dB ? (I assume that this is the total spread). Frankly, I just do not believe it and regard the proposition as rubbish, pure and simple - and I say it as an engineer of 30 years' experience and accustomed to working to tolerances far tighter than those ing to tolerances in practised in the hi-fi industry.

For a start, how in heaven's name can one
guarantee a consistency considerably better than this outside the pre-amplifier - in the programme sources, for example, which will be used for the subjective tests? Once before, when challenging a myth being propagated by hi-fi commentators of questionable ability, I offered a sum of money to any charity if the spurious arguments being put forward could be proved. My bait was never taken and it remained for others subsequently to demolish the false gods. I will make the same of fer yet again, and raise the ante this time.

Prove this ludicrous proposition with an independent listening panel under a scientifically controlled set of conditions. If the panel are able to detect with statistically significant accuracy a frequency/amplitude deviation at some agreed point in the spectrum of 0.05 dB on a variety of programme material, I will donate $£ 100$ to any charity named by whoever takes up my challenge. I have my charity ready if the test fails, to receive the same amount from the proposition's supporter.

Meanwhile, may I conclude by expressing my disappointment that a magazine of Wireless World's stature should continue to provide a platform for cranky views. These are more proper to the hi-fi comics.
Reg Williamson
Norwich

NATIONAL MUSEUM OF BROADCASTING

As a BBC Engineer at Washford, I was interested to read about the demise of the Brookmans Park transmitters. The Washford, Somerset, regional transmitter was in fact taken out of service at the end of October, after 46 years of service. Both on grounds of electrical efficiency and maintenance effort, it had to go, but its destruction breaks another link with the early days of broadcasting.
For the present, however, the transmitter itself remains intact. Since the prime movers and rotating machinery have gone, it can never be used again, but it would provide a unique centrepiece for any museum. The main transmitter hall and office block will shortly become surplus to the BBC's requirements what an ideal opportunity to provide a showcase for the Corporation's achievements! The IBA already have a broadcasting gallery in London (displaying BBC history!): once a central museum can be established at Washford, it would be relatively easy to mount smaller exhibitions at major BBC centres in London and elsewhere. Public interest abounds, as various"open days" over the years will verify.

The BBC are not museum curators, so it would be necessary to set up some form of trust, financially independent, but liaising closely with all departments of the Corporation to provide an interesting and financially viable museum. Historic items abound, hidden, within the BBC. Here is the opportunity to allow everyone to see them. During last summer, the Corporation were advertising two "Doctor Who" exhibitions on non-BBC sites. Surely this was not necessary.
Housed in an historic and impressive building, in a major holiday area, the possibility of free advertising on television, such an enterprise cannot fail. This is a golden opportunity, probably the final opportunity, to create a national museum of broadcasting. J. E. Butterworth

Blue Anchor
Somerset

A POOR JOKE

In your January issue J. Greenwood lodged an objection to a marked tendency in Wire-: less World to include controversial political matters. Though I suspect I may have a little more sympathy with some of the views expressed (though not in Feb. 1980) I equally consider that W.W. is the wrong place to express them. One is subjected to so much political discussion in so many places, and looks to W.W. as a unique source of technical information within certain ill defined but well understo od limits.
Having stood up to be counted at this end of W.W. I now turn to the other to express the hope that a certain five words by Mixer are no more than a slip and not signs of a trend. A second point of my agreement with Mr Greenwood is that humour is a fitting ingredient of W.W. Even though myself of Aberdonian grandparents, I was able to pass over Mixer's inevitable linkage of Scotland with northern mists and haggis with no more than a slight wince, but I did seriously deplore his gratuitous addition 'of BL cars disintegrating' as one of the noises over which a certain Klaxon horn could be heard. For one thing, it is a cheap and in this context meaningless jibe of the same order as the perennial mother-in-law jokes - hardly up to W.W. standard. But the serious aspect is that it is one more example of the British disease of self-denigration, which ultimately deters people from buying cars that have been made to look a joke. Does Mixer know that BL vehicles are used exclusively for their fleets of cars and lorries by Rolls-Royce, who testified in The Times that they find them very satisfactory?

In the same way we have a national problem because our children are preconditioned by silly jokers to find maths incomprehensible.

If I look like becoming political myself, it just shows what happens when such matters are brought into W.W.!
M. G. Scroggie

Bexhill
Sussex

Mixer replies:

Having been at the receiving end of many shafts of 'humour' concerning my own northern origins, I am familiar with the "slight wince" that Mr Scroggie feels impelled to exhibit at the mention of haggis, cabers and northern mists. I see no reason why he should be spared.

On the subject of the precarious cohesion of BL cars and Mr Scroggie's own inevitable cliché, the "British disease", the jibe was most certainly not meaningless. I am unable to comment on the use of BL vehicles by Rolls Royce, but I can say that if I had not persistently and recklessly chosen to drive a succession of unreliable BL cars myself, I would now be a good deal richer than I am.

Maxwell's equations revisited

We have received a large number of letters commenting on "Maxwell's equations revisited" by Ivor Catt in the March issue. There are too many to be published individuully, so the main points will be selected and presented collectively, accompanied by a joint reply from the author.

Audio spectrum analyser

Narrow bandwidth without expensive filters

by Peter Hiscocks, Ryerson. Polytechnical Institute, Toronto

Abstract

This instrument is used with an oscilloscope to form an audio analyser at a cost more in keeping with an amateur experimenter's budget than a commercial design. The synchrodyne technique is used to avoid the need for expensive, narrow-band filters. Dynamic range is about 60 dB .

The conventional mode of operation of commercial spectrum analysers entails the use of an extremely narrow-band filter, a circuit which is too complex and expensive to be attractive to the home constructor or to schools. Consequently, the design described in this article uses an unusual technique of frequency changing which neatly avoids the difficulty. This type of analyser is intended to investigate unvarying signals, which means that it is not suitable for analysing music or speech waveforms.

Figures 1 and 2 show examples of displays obtained with the instrument. The trace in Fig. 1 is the spectrum of a 1 kHz square wave, while that in Fig. 2 is of a 1 kHz sine wave, showing 3 rd and 5th harmonics. The small responses at a lower frequency than the fundamental in each photograph are spurious products resulting from the method of analysis chosen: they do not normally cause trouble, since they are lower in frequency than the area of interest. Display axes are linear.
Since the instrument is fairly complicated to make, it cannot be recommended for a first attempt: constructors will need a digital voltmeter, a dual, regulated power supply and an audio signal generator.

Basic principle

The block diagram of a conventional spectrum analyser is shown in Fig. 3. The local oscillator might be tunable between 100 and 150 kHz , when the sum of the I.o. and input frequencies will be translated into the passband of the analysis filter. However, the construction of a filter which will separate harmonics some 60 dB apart in amplitude, a few Hertz apart at 150 kHz , poses enormous problems for the home constructor. For example, the Hewlett-Packard 3580A spectrum analyser ${ }^{1}$ uses five crystal resonators', the crystals being matched for temperature drift.

Fig. 1. and 2, show typical responses obtained with the analyser. Fig. 1 shows the spectrum of a 1 kHz square wave, showing odd harmonics up to the 11 th, while in Fig. 2 is the analysis of a sine wave at the same frequency, with small 3rd and 5 th harmonics. Bandwidth was 200 Hz .

Fig. 3. Block diagram of a conventional spectrum analyser. The 150 kHz bandpass filter must be very narrow: one commercial design uses five crystal resonators to achieve the required performance.

Fig. 4. Method used in this design, in which the filter takes the form of a low-pass circuit in the audio range.

Fortunately, M. G. Scroggie ${ }^{2}$ has suggested an alternative technique based on the synchrodyne radio receiver. Figure 4 shows a block diagram of this analyser. The tunable local oscillator sweeps over the range to be analysed, and the low-pass filter passes signals that are close to a zero beat between the input signal and the analysis signal. This process may be regarded as a translation of the lowpass filter to the frequency of the local oscillator, together with a mirroring of the low-pass filter characteristics around the local oscillator frequency as shown in Fig. 5(a). The result is effec-
tively a band-pass filter, with its centre frequency at the setting of the local oscillator and a bandwidth equal to twice the cutoff frequency of the lowpass filter. The design of the analysis filter thus becomes an exercise in lowpass filter design. In the prototype, a four pole Sallen and Key filter was used, with cutoff frequencies between 5 and 250 Hertz.

For those familiar with the techniques of correlation analysis, the analyser may be regarded as a type of cross correlator ${ }^{3}$. The local oscillator sine wave is cross correlated against the input signal; the low-pass filter is an

Fig. 5. Frequency response of the analyser. At (a) is shown the low-pass characteristic 'translated' in frequency to that of the local oscillator, while retaining the same bandwidth. The notches shown in the response at (b) are the result of capacitance coupling.

Fig. 6. A typical analysis. The fundamental is at 2.98 kHz , its second harmonic being clearly shown at 5.96 kHz . The spurious products are all below the frequency of the fundamental.
averaging device which produces a signal whenever a match is found between the input sine wave and that of the local oscillator.
The local oscillator must tune over a much wider range in proportion to its centre frequency than in a conventional spectrum analyser. In this design, a sweep range between 100 Hz and 16 kHz was achieved without undue difficulty. The range may be moved by switching a local oscillator capacitor.
A particular advantage of this system is its ease in identifying the frequency of any particular harmonic: the analysis frequency is equal to the local-oscillator frequency. In this design, a simple digital readout of analysis frequency is provided.

Changes in analysis bandwidth in the low-pass filter have the effect of changing the quiescent output voltage of the filter. The simplest solution to this problem is to capacitively couple the filter to the output of the mixer, even though this results in the narrow notch in the centre of the analyser's filter pass band shown in Fig. 5(b). This is a slight inconvenience in use, since the local oscillator must be slightly detuned from the harmonic frequency when reading amplitude. However, the notch does help in determining the exact frequency of a signal.

The major problem with the synchrodyne analyser is that harmonics of the local oscillator fall within the pass band of the analysis filter and show up on the display as false readings below the fundamental frequency of the input. There are two approaches to this problem. One, obviously, is to keep the distortion of the local oscillator as low as possible. The easiest approach to the design of a swept oscillator, however, is to use a function generator, and the output of a function generator must be shaped in a diode network to produce a sine wave. It is difficult to reduce the distortion of such a sine wave below one percent, particularly when this waveform is to be varied in frequency over a wide range.

The other approach is to learn to recognize and identify the spurious harmonics. An example of this is shown in Fig. 6, the analysis of a 2.98 kHz sine wave from a commercial function generator. The vertical axis has been converted to a logarithmic scale by the Hewlett Packard Log Converter, thereby emphasizing low level distortion products.

The spurious distortion products due to the analyser are labelled A, B, C and D on this graph. Notice that these all fall below the fundamental of the input signal and that they are not harmonically related to the input signal.
Spurious product A is created when the fifth harmonic of the spectrum analyser local oscillator beats with the fundamental of the input signal. Products B, C and D are similarily caiused by the fourth, third and second harmonics of the local oscillator.

Fig. 7. Prototype analyser.

Fig. 8. Detailed block diagram of the instrument. Horizontal and vertical outputs are taken to the oscilloscope, and the local oscillator output is for use with an external counter or other test gear.

Fig. 9. Multiplier circuit.

The 5.95 kHz harmonic is the second harmonic of the input signal. Spurious products do not appear below this harmonic because both it and the spurious products of the local oscillator are small in magnitude.

The spectrum analyser is shown in Fig. 7 and its detailed block diagram in Fig. 8.

Detailed circuit description

Multiplier. A Motorola MC1495 is used as the signal multiplier, shown in Fig. 9. Its maximum input signal should be limited to 8 V peak to peak to limit distortion in the multiplier. The RC networks on the inputs (910Ω in series with 10 pF) lower the Q of the input leads and damp out any tendency to high frequency oscillation since the MC1495 is capable of operation up to 10 MHz .
The $10 \mathrm{k} \Omega$ potentiometers are adjusted to minimize feedthrough of the v.c.o. signal when the other signal is absent.

Low-pass filters. The low-pass filter in Fig. 10 consists of a differential amplifier, followed by a four-pole, Sallen and Key, low-pass filter to achieve a slope of $24 \mathrm{~dB} /$ octave above the cutoff frequency.
The variation of the low-pass resistors causes some d.c. shift in the voltage at the vertical output connector. This is not usually a problem, since the detector is usually a.c. coupled.

Local oscillator. The Intersil 8038 used for this purpose generates sine, square and triangle waveforms. Unfortunately, the since wave is very distorted since, although the 8038 requires a full $+1-$ 15 V , in this case it is being operated from -15 V only. The distortion is reduced to an acceptable level by the germanium diode $/ 2 \mathrm{k} \Omega$ resistor network connected at pin 2 of the i.c. The $2 k \Omega$ resistor should be adjusted while observing the spurious harmonics on a display as in Fig. 6. The square wave output from the 8038 is used by the frequency counter display circuit.

Voltage control of frequency is accomplished by the op. amp. network ${ }^{4}$ connected to pin 8. Since this is a linear v.c.o. circuit, the voltage range must be equal to the frequency range. Although $1000: 1$ is possible, improved stability and lower distortion are obtained by selecting the v.c.o. capacitor by the h.f./I.f. range switch. An exponential v.c.o. is described later.

A transistor network ${ }^{5}$ connected to pin 10 of the 8038 generates a compensation current of about $1 \mu \mathrm{~A}$ to improve the symmetry of the waveforms at very low frequencies. If operation at very low frequency is not a requirement, it may be omitted.

The sine wave is buffered by a 741 op . amp. and passed to the local oscillator output connector. This signal may be used in frequency-response tests of
equipment. A second op. amp. increases the sine-wave amplitude by a factor of 6.7 to provide sufficient signal for the multiplier circuit.

Sweep-control. Maximum and minimum frequency are set by the two tenturn potentiometers, $F_{\text {max }}$ and $F_{\text {min }}$ shown in Fig. 12. Unity-gain amplifiers A_{1} and A_{2} buffer these voltages, and set them up at opposite ends of the ten-turn tuning control. In 'manual' mode, operating the tuning control will vary the v.c.o. control voltage between the voltages set up on the $\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{\text {min }}$ pots. (Some care must be taken in operation that the $F_{\text {max }}$ voltage is always greater than the $\mathrm{F}_{\text {min }}$ voltage.)
Amplifier A_{6} reverses the sense of the sweep voltage so that an increase in frequency is caused by a positive-going "Horizontal Output" voltage. The rest
of the sweep-control section generates a triangular wave that sweeps between the voltages set by the $\mathrm{F}_{\text {max }}$ and $\mathrm{F}_{\text {min }}$ controls. Amplifier A_{3} is the integrator for the sweep oscillator, and A_{4} and A_{5} act as comparators to toggle the 7400 flip-flop whenever the sweep voltage reaches $V_{\text {max }}$ and $V_{\text {min }}$.
The discrete-component amplifier driven by the 7400 flip-flop amplifies the t.t.l. signal to $\pm 12 \mathrm{~V}$ to drive the sweep direction indicator l.e.d. and the integrator.

Frequency counter. The heart of the frequency counter in Fig. 13 is the National 74C925, which contains four decade counters, latches, a display multiplexer, and a seven-segment decoder. Transistors Tr_{1} to Tr_{4} are the digit drivers for the common-cathode display which, in the author's instrument, was a

Fig. 10. Low-pass filter. The resistors shown as R are switched, and for bandwidths of $10,20,50,100,200,500 \mathrm{~Hz}$ should be $72 k, 36 k, 15 k, 7.2 k, 3.6 k$ and $1.3 k$.
surplus nine-digit integrated type, only four digits being used.

The gate for the frequency counter is provided by a 555 timer, which, although possessing a time accuracy of only about 1%, is satisfactory for this circuit as a replacement for a dial indicator.

Signetics 8162 monostables provide the proper timing signals to latch and clear the counter in the manher shown in the timing diagram of Fig. 14. The 'gate time' switch sets the period of counting to 1.0 or 0.1 seconds. A second contact on this switch causes Tr_{5} to select the proper decimal point for the display.

Power supply. The power supply is conventional. Integrated circuit regulators - National LM326 and Fairchild 7805 - generate the required voltages. To avoid noise and oscillation problems the sections of the spectrum analyser should be wired separately, as in Fig. 16.

Logarithmic sweep

The frequency scale in the instrument was chosen to be linear to show more clearly the relationship between harmonics of a periodic waveform. In practice, a logarithmic scale of frequency may be more useful. Fig. 17 shows how the local oscillator may be modified for a logarithmic frequency scale. Transistors Tr_{1} and $\mathrm{Tr} \mathrm{r}_{2}$ are the 8038 current sources which charge and discharge the timing capacitor. The

Fig. 11. Local oscillator circuit diagram.

Fig. 12. Sweep control section. Components marked with asterisk are mounted on connector.

Fig. 13. Frequency counter and display. Author used a surplus National Semiconductor display module in his prototype. A multiplexed, common-cathode type is needed. An error: pins 6,7,9, 10 are transposed; pin 10 should be "units".

Fig. 14. Timing diagram for counter operation.
exponential relationship between base voltage and collector current in these transistors will provide the desired relationship between control voltage and oscillator frequency. The 741 operational amplifier reduces the control voltage swing at pin 8 to the desired amount.
In practice, the base-emitter diodes of Tr_{1} and Tr_{2} are not perfectly matched and the output waveform becomes asymmetrical at low frequencies. The $10 \mathrm{k} \Omega / 2 \Omega$ network at pin 4 provides suitable compensation voltage. Depending on the mismatch of the transistors, it may be necessary to ground pin 4 and

Fig. 15. Power supply circuit.

Fig. 16. Wiring should be arranged in this way to avoid common impedances and consequent ins tability.

Fig. 17. Modified in this way, the local oscillator of Fig. 11 will provide a logarithmic frequency sweep.
connect the compensation network to pin 5.

References

1. 'A Low Frequency Spectrum Analyser', W. L. Hale \& G. E. Weibel, Hewlett Packard Journal, September 1973.
2. 'Inexpensive Wave Analyser', M. G. Scroggie, Wireless World, August 1955 p. 360-365.
3. 'Separate the Signals from the Noise', T. Cate, Electronic Design 25, December 6, 1970. 4. 'Modified Function Generator Yields Linear VCO', A. Tagliavini, Electronics, October 30, 1975 pp. 96, 97.
4. Compensation of 8038 , Polyphony, November 1977, p. 28.

Printed circuit boards

A set of single sided p.c.b.s for the audio spectrum analyzer will be available for $£ 10.50$ including v.a.t. and UK postage from M. R. Sagin at 23 Keyes Road, London N.W. 2.

Sixty years ago

There are several reasons for printing a monthly piece entitled 'Sixty Years Ago'. One can pick out the first mention of a wellknown effect or piece of equipment; sometimes the writing itself can be funny, as in some of the replies to queries ("We advise you to take up some other pastime'"); occasionally a historical event is mentioned - the outbreak of war perhaps. But the most interesting are the prophecies, most of which are wildly inaccurate. Every so often, though, one sees someone having a 'blinding flash', and just such a one appeared in the issue for May 15,1920 , in an article on research for the amateur, by W. T. Ditcham.
" the query as to whether a simple rectifying contact can be made to generate oscillations of suitable characteristics, and there are good grounds for thinking that such is probably the case. Dr W. H. Eccles some years ago demonstrated the production of oscillations by a galena contact, though at what frequency and amplitude, or what constancy, I am not aware, and quite recently G. W. Pickard, the American experimenter, has stated that he has received signals in the United States from European continuous wave stations on an oscillating crystal heterodyne. There seem to be difficulties in the way of a practical application, probably due to lack of continuity of the oscillations, but such results having been obtained, we are encouraged to hope that a practical solution is within the bounds of possibility. If a crystal or crystal combination can be used to oscillate, it can probably also be made to amplify, and one gets a futuristic glimpse of cascade crystal amplifiers, which, if they ever materialise, will quickly relegate valve receivers to the background for all ordinary purposes. I can think of no line of research more suitable for the average amateur than this one, as the apparatus requisite for the experiments need be of the simplest, and the phenomena met with would probably fall within the comprehension of the scientific novice. The investigator who first achieves success in this particular field may feel assured of an enduring niche in the wireless Hall of Fame, and the acquirement of a fair quantity of less enduring, but nevertheless perfectly good, lucre."

Land mobile radio and spectrum utilisation

Introduction to the possible use of wideband modulation techniques

by P. A. Matthews B.Sc.(Eng.), Ph.D., F.I.E.E., M.I.E.E.E
Department of Electrical and Electronic Engineering, University of Leeds

With conventional modulation methods the spectrum available for land mobile radio is insufficient to meet the demand. In this article the author first outlines the propagation problems in communicating with moving vehicles then discusses the number of users possible in a given area; and finally goes on to consider the possibility of using
wideband modulation such as in the various spread spectrum techniques.

The conventional method of providing radio communication to vehicles on land is to use either a.m. or f.m. radio operating at v.h.f. or u.h.f. In general the number of channels available is insufficient to meet the demand from users or potential users of these systems.
Most signals for communicating to vehicles use a base station with antennas at a high point to cover the area to be served. The antennas on the vehicles are, however, close to the ground and it is unusual for there to be a clear line of sight between the base station and the vehicle antennas. The signal suffers from reflection at the ground, reflection from buildings, diffraction over hills and diffraction around buildings. As a vehicle drives along the road, the variation in signal strength can be divided into three parts. Firstly, as the radial distance between transmitter and receiver increases there is an increase in spatial attenuation. For this type of path, the median received power falls approximately as the fourth power of the distance between transmitter and receiver. This variation in median power level can be compared with the square law variation expected in free space.

The median power level falls much more rapidly on a mobile radio path than, for example, in a line-of-sight radio relay system. The variation in power with distance is illustrated in Fig. 1. This is drawn for a transmitter power of 10 W , a half wavelength dipole antenna at the transmitter, a transmitter height of 100 metres, a receiver height of 2 metres and a quarter wavelength monopole at the receiver. It is assumed that the antennas have the gains expected of ideal antennas of these lengths and that there are no circuit losses in the system. The fourth power law is independent of frequency, but the
free space variation depends on frequency when the antenna gains are constant. To provide reference level the ideal noise power in a bandwidth of 10 kHz is shown.

These curves show that, as the distance increases from 1 km to 10 km , there will be a 40 dB decrease in received power. It also appears that using a 10 W transmitter there is a good margin between the received power and the noise level which may be expected in the receiver. If we assume a receiver i.f. bandwidth of 10 kHz and a noise figure of 6 dB , then at a range of 20 km the margin is 45 db . However, we have not yet taken into account the fluctuations in received power due to diffraction and reflection.

Because vehicles have to follow the roads the path between transmitter and receiver will be obscured by hills and buildings. When the vehicle is in the shadow areas, a signal may be received by diffraction over the hills or around the buildings. Such diffraction effects are relatively insensitive to frequency and over any one of the bands allocated for mobile radio the attenuation of the signal due to shadowing is relatively

Fig. 1. Variation in mean received power in a mobile radio system with fourth power law dependence on distance compared with square law variation in free space. Transmitter power is 10 W ; antenna gains 2-15dB; antenna heights, transmitter 100 m , receiver 2 m .
constant for any one path. For a particular path the effect of shadowing may be calculated. However, when designing a mobile radio system we want to know the fluctuations which may occur due to shadowing as a vehicle moves from one point to another and these fluctuations are best described by a probability distribution which shows the probability of a certain shadow attenuation occurring. Measurements taken over a large number of sites ${ }^{1}$ show that the distribution of shadow fading follows a log-normal distribution. This is shown in Fig. 2. The lognormal distribution is characterised by the standard deviation σ in dB and for different areas and frequencies the value of o may change. However, typical values for σ seem to lie between 6 and 12 dB . Taking the curve for $\sigma=6 \mathrm{~dB}$, we can see that an attenuation of more than 14 dB can be expected at 1% of sites, or for a vehicle travelling along a road for 1% of the time.

Besides the attenuation due to shadowing, there is also fading caused by the phase interference of signals arriving by different paths. This occurs because signals can be reflected from buildings giving a signal at the receiving antenna which is the phasor sum of a number of signals. As the vehicle moves along the road the path lengths between transmitter and receiver for the various reflected components of the signals vary in a random manner. The vehicle has only to move a short distance in

terms of the wavelength for the phasor sum to vary completely. This combination of random phasors leads to a Rayleigh distribution for the probability distribution of the amplitude of the received signal. Because the signal amplitude depends on variations in distance of a fraction of a wavelength this kind of fading is frequency sensitive and the fading pattern measured for two adjacent frequencies can be completely different. Asa vehicle moves along a road this phase interference gives a rapid fading which is superimposed on the shadow fading. For the Rayleigh distribution an attenuation of 28 dB can be expected for 1% of sites or 1% of the time.

Because of the combined effects of shadowing and the rapid fading due to reflection, the probability distribution for the received signal depends on the combination of the two individual distributions. The derivation of the expressions for the probability distributions has been given by French ${ }^{2}$. The result is shown in Fig. 2 for two different values for the standard deviation σ of the shadow fading. These curves show that at 1% of sites and with $\sigma=6 \mathrm{~dB}$, ani attenuation of 24 dB or more may be expected. Thus the median margin above noise of 45 dB is reduced to only 21 dB for 1% of sites. The actual margin required depends on the type of modulation used and the output

Fig. 2. Fading levels for log-normal shadow fading and long-normal.plus Rayleigh fading. Area mean given by fourth power law variation.

Fig. 3. Estimation of range for s.s.b. system taking into account fading.
signal/noise ratio required. For example for a s.s.b. transmission the output s.n.r. is the same as the input s.n.r. Assuming a 5 kHz i.f. bandwidth, a required output s.n.r. of 10 dB and a 99% próbability of reception Fig. 3 shows a range of 36 km . For f.m. with a 10 kHz i.f. bandwidth and assuming no noise improvement the corresponding range is 25 km .

Area cover and number

 of usersIf an isolated area is served by one base: station the problem of fading can in principle be overcome by increasing the transmitter powers. However, there are practical limits to the power of mobile transmitters and problems caused by intermodulation of signals. In the isolated area, the number of users is limited by the number of channels available.
In practice the radio transmissions are not confined to an isolated area and interference is likely between users of the same channel in adjacent areas. To limit the effect of interference there must be sufficient distance between transmitters using the same frequency for the probability of interference to be below some low limit. If the radius. served by a given transmitter is r_{1}, and the distance between transmitters using the same frequency is r_{2}, then over a large area that frequency can only be used for a fraction of the total area. The total area can be divided into cells and the total number of channels divided into groups shared between the cells. If the ratio of the distances $\left(r_{2} / r_{1}\right)$ is called the re-use distance D then the number of groups of frequencies, C, is given by $C=D^{2} / 3$. To find the re-use distance the probability of interference occurring must take into account the probability of fading of the wanted transmission, whilst the interfering signal may not have faded. The result is that the re-use distances may be large, and hence the number of groups large. Because the re-use distance is a ratio of distances, the number of groups is independent of the actual area, provided all the cells are within the same radio horizon distance.

Calculations of re-use distance presented in (2) show that taking into account both shadow fading and phase interference fading, the available channels may have to be divided into large numbers of groups. For example, for a probability of interference of not more than 3%, f.m. with 25 kHz spacing may require 57 groups and s.s.b. 133 groups. Considering a 10 MHz bandwidth, the f.m. system with a channel spacing of 5 kHz would give 15 channels per group. Thus, in any one particular area the number of channels which can be used is severely limited when the problem of mutual interference is taken into account.

Because the number of groups and cells is independent of their area, the number of users in a given physical area
can be increased if the area covered by each cell is limited. This implies using a large number of cells with low power transmitters in each cell. However, such a system produces problems when a call has to be made over a distance spanning several cells. Direct communication is not possible and a relay system must be set up to transfer calls from one cell to another.

Wideband modulation

So far this discussion has considered f.m. or s.s.b. transmission, and it has shown that when interference between transmissions on the same frequency is taken into account the number of users $/ \mathrm{MHz}$ in a given area is limited to a small number. We need to consider whether other modulation techniques can accommodate more users. A class of modulation techniques which should be considered are the various spread spectrum techniques ${ }^{(3)}$.

The use of wideband spread spectrum techniques has generally been ruled out for mobile radio systems because of its apparently extravagant use of the r.f. bandwidth. In a spread spectrum system the available power may be spread over a bandwidth of possibly tens of megahertz, either by modulating a conventional transmission by a noiselike wideband signal or by hopping the carrier frequency over the band. At the receiver, the original transmission is recovered by taking advantage of known properties of the wideband noise-like signal or of the hopping pattern. In both cases the s.n.r. for the wanted signal is raised relative to that of unwanted signals by the ratio: the bandwidth of the wideband signal to that of the narrow band signal. This so-called processing gain G_{p} improves the s.n.r. for the wanted signal, and at the same time gives the interfering. signals a noise-like property. The processing gain also depends on the crosscorrelation between the wanted and unwanted signals. Ideally, there should be no cross-correlation.

If a given band is to be shared by a number of users then the information from each user must be spread in a manner which is unique to that user, and in a way which produces a wideband signal which is uncorrelated with the signals from other users. The methods by which the spreading process can be carried are described by Dixon. ${ }^{3}$ So far as a particular wanted signal is concerned, the signals from other users are noise. As the number of users increases the noise level in the band rises. If each of the transmissions produces the same power at a receiver then the s.n.r. after recovering a particular signal can be estimated. Suppose there are N transmissions, all covering the same band. Then there is 1 wanted transmission and ($N-1$) unwanted transmissions. At the receiver antenna the s.n.r. is $1 /(N-1)$, but after proces-

R = required outpu signal to noise rotio

Fig. 4. Number of users in a spread spectrum system as a function of processing gain and required output signal-to-noise ratio
sing with a processing gain G_{p}, the s.n.r. becomes $R=G_{p} /(N-1)$. This gives $N=1+\left(G_{p} / R\right)$, which is plotted in Fig. 4 for various values of processing gain and output s.n.r. For example, if the required value of $R=16 \mathrm{~dB}$ in a 5 kHz bandwidth and the spread bandwidth is 10 MHz , then $G_{p}=33 \mathrm{~dB}$ and $N=50$. It appears that 50 users could be accommodated in the 10 MHz bandwidth. However, this is on the assumption that each transmission produces the same power at the receiver.

Clearly this requirement for equal power levels cannot be achieved if all the transmitters on the vehicle radiate the same power because the vehicles will be at different distances from any given receiver. However, for transmission to a common base station it may be possible to control the power transmitted from the mobiles to give equal powers at the base station receiver. Because of the variability in the path loss between transmitter and receiver. due to distance and shadowing, control of power must be carried out by measuring the path loss in some way. This may be possible by using the signal received at the mobile from the base station to control the level of transmission back to the base station.

With a wideband signal the effects of fading will be different from the effect on a narrow band signal. The effect of shadow fading which is relatively insensitive to frequency may be expected to be the same in both cases. The effect of phase interference fading will be different because this kind of fading depends strongly on the frequency or wavelength used. A narrow band signal suffers from deep fading because of the cancellation of the signal due to the phasor sum of the signals arriving by different paths summing to zero, On an adjacent frequency the phasor sum may reach a maximum. The effect on a
wideband sighal will be to distort the signal spectrum in amplitude and phase. The problem then is whether the wanted signal can be recovered from the energy in the distorted spectrum.

For transmission from mobiles to a common base station it seems that it may be possible to use wideband transmissions. Power control of the transmissions is necessary and must be based on the measured path loss. The measured path loss will compensate for the attenuation due to both distance and shadow fading provided the dynamic range of the system is great enough. The effects of phase interference fading have to be worked out in detail, but provided the signal can be recovered from the energy available it appears that wideband modulation techniques may provide at least as much system capacity as narrow band schemes.
This problem of recovery of the signal will differ depending on whether a noise-like wideband signal or a frequency hopping scheme is used. In a frequency hopping scheme the signal at any one time is a narrow band signal on a particular frequency. Even if the effect of shadow fading is removed by controlling the mean power level the particular frequency component at any one time may be reduced due to phase interference fading. This may be overcome by using several frequencies simultaneously, but this will reduce the number of users in inverse proportion to the number of frequencies used for a particular user. For noise-like signals the effect of distortion of the signal spectrum is to reduce the output s.n.r. To maintain a given output s.n.r. the number of users must be reduced. The reduction in number of users has yet to be calculated or measured.

References

1. W, C. Jakes, Ed. Microwave Mobile Communication, Wiley, 1974, pp. 79-131
2. R. C. French. "The effect of fading and shadowing on channel reuse in mobile radio," IEE Trans. VT-28, 1979, pp. 171-181. 3, R. C. Dixon. Spread Spectrum Systems, Wiley, 1978,

Digital capacitance meter

The printed-board pattern reproduced here is for the digital capacitance meter described in our April issue. There was no space to publish the layout with the article and, regrettably,
we neglected to say it was held over. The drawings are full size.

Copper side

Board B

Component sides;
Latch Overfiow
enable clear

Programmable audio attenuator

Gain controlled line amplifier offers a 60 dB range in 1 dB steps

by J. M. Didden

After experimenting with various linear gain control systems, the author chose a combination of linear and logic circuits to provide a high quality audio attenuator. The final design uses a 6-bit word to program the gain. and can be used for remote control applications or, with the aid of a microprocessor, for automatic level control.

This circuit was originally designed to remotely control the volume and balance in a stereo system. Several methods were tried, such as the twoquadrant multiplier in Fig.1. However, this circuit suffered from high distortion for input levels of more than 100 mV . and tracking between units was poor. Attempts to improve the performance with current-source loading did not significantly improve the performance. A f.e.t. used as a voltage controlled resistor produced similar problems, so a 1.d.r. design was tried as shown in Fig.2.

Fig. 1 Basic two-quadrant multiplier.

Fig. 2 Closed-loop light dependent resistor attenuator.

Fig. 3 Basic gain switching circuit.

Fig. 4 Extended circuit with two independent switches.

This circuit had a good signal level capability, and tracking between units was made almost perfect by using a compound audio plus d.c. input. The attenuated d.c. was fed back to the control circuit. Unfortunately, the 1.d.r. produced high noise levels at medium to high attenuation, and control-loop stability was difficult to achieve. Because these analogue approaches did not produce the performance required, I investigated gain switching with f.e.ts. Although f.e.ts are nonlinear, this is not a problem if the signal voltage across a closed switch is very small. A basic circuit is shown in Fig.3. When f.e.t. S_{1} is closed, the signal across it equals the input voltage times the ratio of the f.e.t. on resistance to R_{2}. In practice, ratios of $1 / 1000$ are easily obtained, so a signal level of several volts, which is not uncommon in a line amplifier, produces only a few millivolts across the switch. At these levels the f.e.t. is almost perfectly linear. Two independent gain settings can be achieved by switching R_{3} and keeping I_{3} constant. With S_{2} closed and S_{3} open in Fig.4, $R_{3 a}$ and $R_{3 b}$ are connected from R_{1} to the virtual
earth of the op-amp. With S_{2} open and S_{3} closed, $R_{3 b}$ is connected to the real earth. Therefore, by using a s.p.d.t. switch for $S_{2} S_{3}$, and a s.p.s.t. for S_{1}, four gain settings are possible.
An extension of this circuit is shown in Fig. 5 where, with S_{5} closed and S_{4} open, gain is determined by the ratio of R_{5} to R_{1}. With S_{5} open and S_{4} closed, the gain is determined by the ratio of R_{5} to R_{1} and R_{3} to R_{4}. Combining the circuits in Fig. 4 and Fig. 5 gives eight gain settings. For all of these configurations the switches have only a small signal across their on resistance and carry very little current when opened. The values of the series resistors are high compared with the off resistance.

Selection of a suitable f.e.t. presented some problems. Switch arrays for analogue applications are available, but are generally expensive. Analogue multiplexers, such as the 4051, contain eight c.m.o.s. switches with a common input and integral one-of-eight decoder for control by a 3 -bit word. However, the switching produces spikes on the audio output due to an internal capacitive coupling of the control signal to the switch terminals. This can be minimised by loading the switch, but smaller resistors must then be used which consequently produces higher distortion levels. Although "soft" switching with a RC network is one solution, see Fig. 6,

Fig. 5 Alternative two-switch circuit.

Fig. 6 Soft switching to overcome spikes.

Fig. 7 Internal capacitance effect and compensation low-pass filter.
the gate of the f.e.t. must be accessible. I finally decided to use the low cost 4007 which contains two s.p.d.t. switches and an inverter.

In practice, 1 dB steps in gain produce a gradual change and a range of about 60 dB is sufficient for most applications. Because high value series resistors are required, high attenuation can only be achieved with the circuit in Fig. 5. However, as shown in Fig. 7, if $S_{1 b}$ is closed and $\mathrm{S}_{1 \mathrm{a}}$ is open, a small current flows through the internal switch capacitance. At high attenuation and high signal frequencies, this current may not be insignificant and can cause an output that rises with frequency.

Fig. 8 Complete attenuator circuit for one channel. The switches are grouped in five i.cs as follows; $S_{5}+S_{6^{\prime}} S_{7}+S_{8,0 \sigma_{i}}$ $S_{2 a b}+S_{3 a b^{\prime}} S_{4 s b}+S_{\text {, and }} S_{9}+S_{10}$. All resistors should be 1%.

Fig. 9 Control-word decoder and soft switching for one channel. All resistors are $1 \mathrm{M} \Omega$ and all capacitors are 1.8 nF .

This problem can be overcome by grounding the left terminal of S_{1} when it is open, and this is easily achieved with the 4007 s.p.d.t. switches. Because there is an on resistance, R_{s}, a small signal voltage remains across the open switch. The low-pass filter $\mathrm{R}_{5} \mathrm{C}_{2}$ compensates for this with S_{2} closed when $S_{1 b}$ is closed and $S_{1 a}$ is open. The frequency response is flat within 0.3 dB up to 25 kHz and at high attenuation. Fig. 8 shows the final circuit for one channel and table 1 shows the range of attenuation levels. Ten mixed s.p.s.t. and s.p.d.t. switches are required and these can be produced with five 4007 i.cs. It is important that the signal amplitudes across $\mathrm{S}_{1}, \mathrm{~S}_{8}, \mathrm{~S}_{5}, \mathrm{~S}_{6}$ and S_{7} do not exceed the positive or negative supply voltages because an internal protection diode will conduct and cause distortion. As audio signals are bipolar, the supply voltage should be centered around ground because one side of the open switches is always connected to either a signal ground or virtual earth. To balance the on resistances of the p and n-channel m.o.s.f.e.ts, a positive supply of 7.6 V and a negative supply of 8.2 V is used. In Fig. 8, S_{1} and $S_{8 a, b}$ can be controlled by a single bit. Switches $S_{2 \mathrm{a}}$ to $\mathrm{S}_{4 \mathrm{~b}}$ and S_{5} to S_{7} require the four decoded values of a 2 -bit control word. This is carried out by a 4556 , which containes two one-of-four decoders, see Fig. 9.
Selection of the switch-network resistors is a compromise as already explained. The typical on resistance of a switch is about 300Ω and the maximum variation is about 200Ω. With a series resistor of $22 \mathrm{k} \Omega 1 \%$, this is comparable with the switch tolerance. Calculations for the resistor values are given in the appendix. Fig. 8 also shows that some switches are capacitorcoupled to the circuit by C_{8} and C_{11}. These remove a small output offsetvoltage change with gain which can be

Fig. 10 Inverting input buffer.

Fig. 11 Alternative compensation networks for other op-amps.

Table 1. Gain and switch settings

Attenuation steps dB	S_{1}	$\mathrm{S}_{2} \mathrm{a}$	$\mathrm{S}_{2 \mathrm{~b}}$	$\mathrm{S}_{3 \mathrm{a}}$	$S_{3 b}$	$\mathrm{S}_{4 \mathrm{a}}$	$\mathrm{S}_{4 \mathrm{~b}}$	S_{5}	S_{6}	S_{7}	$\mathrm{S}_{8}{ }_{\text {a }}$	S_{9}
0								C	0	0		
1								0	C	0		
2								0	0	C		
3								0	0	O		
0											0	C
4											C	0
0	C											
8	0											
0		C	0	0	C	0	C					
16		O	C	C	0	0	C					
32		0	C	0	C	C	0					
48		0	C	0	C	0	C					

Table 2. Performance details of the attenuator

Max. r.m.s. output level	8.5 V across 600Ω.
Max. input level	3.8 V or 9 V depending on S_{1}, provided max. output level is not
	exceeded.
Max. capacitive load	10 nF.
Frequency response	better than 10 Hz to 25 kHz within 1 dB.
Output noise level	at least 86 dB below $1 \mathrm{Vr.m.s.at} \mathrm{all} \mathrm{gain} \mathrm{settings} \mathrm{(unweighted)}$.
T.h.d. and i.m.	less than 0.03% and 0.02% respectively.
Gain	variable in 1 dB steps from 16.8 dB to -46.2 dB.

'heard as clicks at low input signal levels.
The capacitor values have been chosen to give a low-frequency response to below 10 Hz . A f.e.t. input opamp, LF 356, is used to provide a high input impedance, wide bandwidth, high slew-rate and low distortion. A NE 5534 is used at the output because it can deliver a high output level into a 600Ω load with little distortion. With R_{21} and C_{10} to stabilize the op-amp, a 10 nF load will not produce ringing or overshoot of a square-wave signal. The 5534 is also a low noise device, which is important, because most of the attenuation takes place at its input and this reduces the
signal-to-noise ratio of the last stage. Performance parameters of the complete amplifier are shown in table 2. If a f.e.t. input selector switch is required, the LF 350 can be used in the inverting mode as shown in Fig. 10. The compensation capacitors, which may be necessary with other op-amps, are shown in Fig. 11.
If a visual indication of the attenuation is required, the control word can be converted to a two-digit b.c.d. output for driving a seven segment display.

To be continued

Appendix

Calculation of resistor values.
For these calculations a dB table or calculator with \log. and inverse log. functions is required.
For the 1, 2 and 3 dB attenuators in Fig. 12, with S open,

$$
\begin{equation*}
i=\frac{U_{\mathrm{u} 1}}{R_{1}+R_{\mathrm{f}}} \tag{1}
\end{equation*}
$$

for an output of $\mathrm{U}_{\mathrm{u} 1}$ volts. With S closed and an output of $U_{\mathrm{u} 2}$ volts, the equivalent voltage source U_{1} is

$$
\begin{equation*}
U_{\mathrm{u} 2} \frac{R_{\mathrm{x}}}{R_{1}+R_{\mathrm{x}}} \tag{2}
\end{equation*}
$$

and the equivalent source resistor is

$$
R_{l} R_{\mathrm{x}}
$$

$$
\overline{R_{1}+R_{x}}
$$

therefore,

$$
\begin{equation*}
i=U_{\mathrm{u} 2} \frac{R_{\mathrm{x}}\left(R_{1}+R_{\mathrm{t}}\right)}{R_{1} R_{\mathrm{x}}+R_{\mathrm{f}}\left(R_{\mathrm{I}}+R_{\mathrm{x}}\right)} \tag{4}
\end{equation*}
$$

Because i always equals i_{s}, equations (1) and (4) are equal. Substituting G for $U_{u 2} / U_{u 1}$ gives

$$
\begin{equation*}
R_{\mathrm{x}}=\frac{R_{1} R_{\mathrm{f}}}{(G-1) R_{1}+R_{\mathrm{f}}} \tag{5}
\end{equation*}
$$

The minimum resistor values for R_{1} and R_{f}, for a given G and R_{x}, are obtained if $R_{1}=R_{\mathrm{f}}$. The minimum R_{K} is found for $G=3 \mathrm{~dB}$ and, taking $R_{\mathrm{x}}=20 \mathrm{k} \Omega$ as a design value, R_{1} and R_{x} are about $18 \mathrm{k} \Omega$. However, R_{f} is also part of the 4 dB network, so this is calculated first using a R_{f} of $18 \mathrm{k} \Omega$.

The circuit is given in Fig. 13. If S_{1} is closed and S_{2} is open,

$$
\begin{equation*}
i=\frac{U_{1}}{R_{1}}+\frac{U_{1}}{R_{2}} \tag{6}
\end{equation*}
$$

With S_{1} open and S_{2} closed,

Fig. 13
As already mentioned, i_{1}, i_{2} and U_{1} are equal in both cases. In the first case, gain is the ratio of i_{s} to $i_{1}+i_{2}$, and in the second case, the ratio of i_{s} to i_{1}. The change in gain is therefore

$$
\begin{equation*}
G=\frac{i_{1}+i_{2}}{i_{1}} \tag{8}
\end{equation*}
$$

and equations (6), (7) and (8) give

$$
\begin{equation*}
R_{1}=R_{2}(G-1) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\frac{R_{1}}{G-1} \tag{10}
\end{equation*}
$$

Substituting $R_{1} / / R_{2}=18 \mathrm{k} \Omega$ in (10) gives

$$
\begin{equation*}
R_{2}=\frac{G .18 \mathrm{k} \Omega}{G-1} \tag{11}
\end{equation*}
$$

For $G=4 \mathrm{~dB}, R_{2}$ is about $48 \mathrm{k} \Omega$. Using the standard value of $47 \mathrm{k} \Omega$ and adding the nominal on resistance of the switch gives $47.3 \mathrm{k} \Omega$ and R_{1} becomes $27.6 \mathrm{k} \Omega$. With the nearest preferred values, R_{15} is $47 \mathrm{k} \Omega$ and R_{17} is $28 \mathrm{k} \Omega$ in Fig. 8.

The value of R_{r} in (5) now becomes $17.46 \mathrm{k} \Omega$, i.e. $R_{1} / / R_{2}$. The R_{x} values are calculated next.

For $G=1 \mathrm{~dB}, R_{\mathrm{x}}$ is $72.64 \mathrm{k} \Omega$, which is the on resistance in Fig. 8. For $G=2 \mathrm{~dB}, R_{\mathrm{x}}$ is $34.23 \mathrm{k} \Omega$ which is $R_{18}+R_{19}+$ on resistance. For $G=3 \mathrm{~dB}$, $R_{\text {r }}$ is $21.48 \mathrm{k} \Omega$, i.e. $R_{18}+$ on resistance. With the nearest preferred value, R_{18} is $21 \mathrm{k} \Omega, R_{19}^{*}$ is 12.4 $\mathrm{k} \Omega$ and R_{20} is $37.4 \mathrm{k} \Omega$.

For the 8 dB switch refer to Fig. 14. With S open the gain is 0 dB , and with S closed the gain is $R_{1}+R_{\mathrm{x}} / R_{\mathrm{x}}$ which gives

Fig. 14

$$
\begin{equation*}
R_{\mathrm{x}}=\frac{R_{1}}{\mathrm{G}-1} \tag{12}
\end{equation*}
$$

Choosing $33 \mathrm{k} \Omega$ for R_{1} gives $21.83 \mathrm{k} \Omega$ for R_{x}. Subtracting the 300Ω on resistance gives a standard value for R_{4} in F ig. 8 of $21.5 \mathrm{k} \Omega$ and 33 $\mathrm{k} \boldsymbol{\Omega}$ for R_{5}.

Calculations for the remaining switch network are more difficult because the series resistors are either connected to ground or to virtual earth, see the equivalent circuit in Fig. 15. To save a switch, R_{14} in Fig. 8 always

Fig. 15
delivers current to the summing node. Therefore; for the various gain settings, the following input currents flow;
No attenuation, $i_{1}+i_{4}$
$-16 \mathrm{~dB}, i_{2}+i_{4}$
$-32 \mathrm{~dB}, i_{3}+i_{4}$
$-48 \mathrm{~dB}, i_{4}$
For a gain step A, the current ratios are

$$
\begin{align*}
& A=\frac{i_{2}+i_{y}}{i_{1}+i_{y}} \tag{13}\\
& A=\frac{i_{3}+i_{y}}{i_{2}+i_{y}} \tag{14}\\
& A=\frac{i_{y}}{i_{3}+i_{y}} \tag{15}
\end{align*}
$$

If all series resistors are equal, gain changes only depend on voltages $G_{1} U_{1}, G_{2} U_{i}$ and $G_{3} U_{i}$. Therefore,

$$
\begin{align*}
& G_{1}=\frac{i_{2}}{i_{1}} \tag{16}\\
& G_{2}=\frac{i_{3}}{i_{2}} \tag{17}\\
& G_{3}=\frac{i_{4}}{i_{3}} \tag{18}
\end{align*}
$$

If A is -16 dB ,

$$
\begin{align*}
G_{3} & =\frac{A}{1-A}(0.188-14.5 \mathrm{~dB}) \tag{19}\\
G_{2} & =\frac{A}{1+A}(0.137-17.3 \mathrm{~dB}) \tag{20}\\
G_{1} & =\frac{A}{1}(0.155-16.2 \mathrm{~dB}) \tag{21}\\
& 1+A
\end{align*}
$$

Note that A is the input-current gain step and G_{n} is the gain step of the voltage across the series resistor relative to $G_{n}-1$.

In the simplified circuit of Fig. 16, because ${ }^{\prime} Z_{1}{ }^{1}=Z_{1} / / R$,

$$
\begin{equation*}
Z_{i}=\frac{Z_{i}^{1} R}{R-Z_{i}{ }^{1}} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{l}=Z_{i}-\frac{R \cdot R_{\mathrm{a}}}{R+R_{\mathrm{a}}} \tag{23}
\end{equation*}
$$

also, because

$$
\begin{aligned}
& G_{1}=\frac{\frac{R \cdot R_{\mathrm{a}}}{R+R_{\mathrm{a}}}}{Z_{\mathrm{i}}} \\
& \mathrm{G}_{1} Z_{\mathrm{i}}=\frac{R \cdot R_{\mathrm{a}}}{R+\overline{R_{\mathrm{a}}}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
R_{1}=Z_{i}\left(1-G_{1}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\mathrm{a}}=\frac{R \cdot G_{1} \cdot Z_{i}}{R-G_{1} \cdot Z_{i}} \tag{25}
\end{equation*}
$$

Again, using a design value of $22 \mathrm{k} \Omega$ for the series resistors, and adding 300Ω on resistance gives $22.3 \mathrm{k} \Omega$ for each resistor. As R_{14} in F ig. 8 has no series switch, R in formula (30) and on will be $22 \mathrm{k} \Omega$. After a little trial-and-error to find a standard value for R_{1}, the value of Z_{i}^{1} was set to $15.04 \mathrm{k} \Omega$, which is the constant load presented to the buffer amplifier. From (22), (23) and (24), Z_{i} is $41.2 \mathrm{k} \Omega$ and R_{1} is $39 \mathrm{k} \Omega$. From (25), $\boldsymbol{R}_{\mathrm{a}}$ is $10.55 \mathrm{k} \Omega$. By repeating this procedure Fig. 17 is achieved where

Fig. 17

$$
\begin{equation*}
R_{2}=R_{\mathrm{a}}-\frac{R \cdot R_{\mathrm{b}}}{R+R_{\mathrm{b}}} \tag{26}
\end{equation*}
$$

$$
G_{2}=\frac{\frac{R \cdot R_{\mathrm{b}}}{R+R_{\mathrm{b}}}}{R_{\mathrm{a}}}
$$

All mail to PO Box 3. Rayleigh. Essex SS6 8LR. Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westclift on Sea, Essex (closed on Monday). Telephone: Southend (0702) 554000.

Bach-Simpson Quality test equipment now available at new LOWER PRICES!

And how have we managed this good news?
Through direct marketing we can now offer these test instruments and many many more at very competitive prices, which include Securicor delivery to your address and our product guarantee for one year. The only extra is VAT at the current rate. Existing customers need only send their purchase order direct to us. New customers - cash with order please. But first, why not write now for our multi-page catalogue and detailed price list. Remember you are looking at only a few of our instruments - there are many more plus a comprehensive range of accessories.

Trenant Estate, Wadebridge, Cornwall PL27 6HD Tel: (020881) 2031 Telex: 45451

Binary codes for error protection

Detection and correction of errors in transmitted binary data

by D. A. Bell, F.Inst.P., F.I.E.E

So far as is possible without recourse to far more mathematics than would be appropriate in Wireless World, Prof. Bell expounds the theory underlying the use of protection bits, which enable errors in data transmission to be detected and corrected. An example of the technique is the Hamming code used to protect the header row in teletext and viowdata transmissions

The term "error-protection" covers both "error-detection" and "errorcorrection". The latter is prima facie more desirable but is always more complex (much more complex for multiple errors) so that it is sometimes better in practice to use only error detection and to re-process erroneous items either by repetition or by taking them out of the system. Communication systems have to rely on repetition, but in bank clearing operations an occasional cheque on which the account number cannot be correctly read by machine can be diverted from the machine for human attention. (This is particularly relevant: because error-correcting codes are less well developed in decimal than in binary notation.)

Check digits

Most of the codes in common use are binary codes, and most readers must be familiar with the use of a single (binary) check digit to detect a single error, or more exactly any odd number of errors. For example, in the ASCII code for input to a computer or for the text of teletext, each character (number, letter, punctuation mark, etc.) is represented by a particular pattern of 7 binary digits. One then adds an eighth digit which is made 1 or 0 according as the number of ones in the original 7 digits is odd or even: the total count of ones over the 8 digits is then always even, i.e. it is equal to zero modulo 2^{*}. In order to correct an error in a binary group, one need only find which digit is in error and interchange 0 and 1 in that place. If we start with one information digit and add one check digit, we shall not know whether a failure of the parity check on

[^0]reception is due to an error in the information digit or in the check digit, so another check digit has to be added to resolve this ambiguity. In fact a single-error-correcting code for a group n digits long requires to include enough check digits to distinguish between no error and an error in any one of n places, i.e. $n+1$ possibilities. But r binary digits can distinguish between 2^{r} possibilities (see "Communication Theory", Wireless World, April 1976) so code construction is simplified if $n=2^{r}-1$. The number of information digits, $n-r$, is denoted by k, the number of errors which can be corrected is t, and the complete characteristics of the errorcorrecting code are denoted in the form (n, k, t). The single information digit with the two check digits is then a $(3,1,1)$ code which fits into the standard pattern of single-error-correcting codes with $r=2, n=2^{2}-1=3, k=n-r=1$.
Let us now try to construct the $(7,4,1)$ code which has $r=3$. In order to show which digit places are checked by each check digit, an array is constructed with a line for each check digit containing a weight (either 0 or 1 in binary) for each of the n digits of the code. (Remember that the check digits are included in the n places.) In the following example every digit place is covered by at least one check digit, so any single error will be discovered: put another way, the no-error condition is indicated by the success of all three parity checks.

Digit no.	1	2	3	4	5	6	7
Check no. 1	0	0	0	1	1	1	1
Check no. 2	0	1	1	0	0	1	1
Check no. 3	1	0	1	0	1	0	1

Then proceeding by successive binary divisions, the first check digit indicates whether there is an error in the second half; the second check digit covers the second and fourth quarters; and the last covers the odd numbered places (odd eighths, approximately). Hamming ${ }^{1}$ offered a special feature: if the check digits are in places 1,2 and 4 (and successive powers of two for longer codes), the combined result of the check sums (known as the "syndrome") would represent in binary the number of the erroneous digit. For example, if check number 1 produced an even sum but numbers 2 and 3 produced odd sums,
giving a syndrome 011 , the error must be in digit number 3 .
The addition of one overall check digit to any t-error-correcting code will allow it to detect $t+1$ errors. (See below for explanation in terms of "distance".) Thus the $(7,4,1)$ code can be extended to length 8 digits, 4 information and 4 check digits, which will correct all single errors and detect all double errors. There are then 10 possibilities to consider (no error, 8 distinct single errors, or any double error) so that 4 check digits are ample: the modified code is not perfectly packed. This is the code which is used for the address elements in teletext.
It was remarked above that a single-error-detecting code using a simple parity check will actually detect any odd number of errors; but this is usually ignored on the ground that the occurrence of three errors is of negligible probability compared with the occurrence of one error. If errors occur at random, affecting only one digit at a time, with probability p per digit, then the probability of one error in a block of n digits is $n p$ and the probabilities of 2,3 , \ldots errors are $n(n-1) p^{2}, n(n-1)(n-2) p^{3}$ etc. One commonly takes the approximation that if the chance of one error in a block is P the probability of t errors is P^{t}. So if a single parity check is used for error detection when the probability of one error in a block is 10^{-3} one can ignore the detection of a triple error which occurs with probability about 10^{-9} : one is more concerned about the undetected double error which in this case would have probability about 10^{-6}.

Codes for
 multiple-error-correction

For codes with the capability of correcting multiple (random) errors, the method of allocating a particular task to each check digit is impracticable and one has to turn to the idea of distance between code members. The idea in principle is that one allocates to each message* a cluster of signals surrounding the corresponding code-member

[^1]signal. Then as long as errors shift the signal from the code member only to another point in its cluster, the receiver can still identify the signal as originating from that code member (provided the clusters do not overlap). The distance between two binary signals (properly called Hamming distance to distinguish it from geometric distance) is defined as simply the number of digits in which they differ and the points in the cluster around the code member are known as guard points. A code to correct t errors must have a distance of at least $2 t+1$ between any pair of code points, since each must be surrounded by a cluster of extent t, and to avoid overlapping the two clusters must be separated by a further unit of distance. If the distance is increased by one by the addition of an overall check digit, the extra set of points allocated will each be equidistant between two signal points; and this means that they can be recog. nized as erroneous but not corrected. The code will still be capable of correcting t errors and can now also detect $t+1$ errors. In the single-errorcorrecting code with $d=3$, there are n possible errors so that each cluster will contain $n+1$ points, including the code point. But the whole binary code of length n occupies a 'space' of 2^{n} points. Therefore the greatest number of code points which can be packed into the space (i.e. the number of members of the code) is the total number of points available, 2^{n}, divided by the number of points in each cluster, $n+1$. But it has been shown above that the quotient can be made equal to 2^{r} by choosing n equal to one less than a power of two. These Hamming single-error-correcting codes are therefore said to be perfectly packed, meaning that every point in the available space is allocated to one of the clusters of guard points.

Each code point in a code for correcting t errors will need guard points corresponding to $1,2, \ldots t$ errors, the numbers of which are given by

$$
n,\binom{n}{2}, \ldots\binom{n}{t}
$$

where the binomial coefficient.
is the number of ways of choosing x (erroneous) digits out of n and is equal to $n!/ x!(n-x)!$. With the one exception of the $(23,12,3)$ code due to Golay ${ }^{2}$ (see Appendix), multiple-error-correcting binary codes are not perfectly packed; ${ }^{3}$ and the packing gets worse as n increases. (One can visualise packing of shapes in three dimensions. But packing of polyhedra in n dimensions, where n may range from seven to some thousands, is to most of us just a form of expression for the mathematical constraints, or at most an allegory.) The problem then is so to distribute the code points in n-dimensional space that as many as possible may be packed in without their clusters of guard points overlapping. Unfortunately, the mathematical techniques which have been

"Fig. 1. Numbers of check digits for errorcorrecting codes of léngth 15. (a) Theoretical (non-integral) values. (b) The mt rule for BCH codes. Circled points indicate the values for actual BCH codes.
employed are above the level which readers of Wireless World can reasonably be expected to digest. Those who are not deterred by the use of combinatorial algebra can find the details in a specialist book ${ }^{4}$. A general-purpose set of codes, which can be constructed to any length $n=2^{m}-1$ and certain other lengths and with various errorcorrecting capacities is generally, known as BCH (Bose-Chaudhuri. Hoquenghem in full); and it has the special feature that a code of length 2^{m} to correct t errors can be constructed with not more than $m t$ check digits. For $t=1$ the relation $r=m t$ always holds exactly and these codes are equivalent* to the Hamming codes. But for $n=15$ or greater and $t \geqslant 3$ for $n=15$ and roughly proportionately larger for longer codes, fewer check digits are required. Figure 1 for $n=15$ (a fairly small value of n makes the calculation of binomial coefficients manageable, or avoidable by the use of tabulated values) shows (a) the minimum number of check digits ideally required in order to correct 1,2 , or 3 errors (b) the straight-line relationship. $r=m t$ and circled points corresponding to known BCH codes. BCH codes result from factorising suitably $\mathrm{X}^{n}-1$, where n is the length of the code, into a product $\mathrm{g}(\mathrm{X}) \cdot \mathrm{h}(\mathrm{X})$; and a table of irreducible polynomials (the algebraic equivalent of prime numbers) is given in reference 4. The (composite) factors $g(X)$ and $h(X)$ can be used to form a generator matrix and a check matrix which are necessarily mutually orthogonal. For example, $\mathrm{X}^{15}-1=\left(\mathrm{X}^{4}+\mathrm{X}+1\right)\left(\mathrm{X}^{4}+\mathrm{X}^{3}+\mathrm{X}^{2}+\mathrm{X}+1\right)$ $\left(X^{2}+1\right)\left(X^{4}+X^{3}+1\right)(X+1) \quad$ The last factor would be $(X-1)$ in ordinary algebra; but -1 does not exist separately in binary arithmetic, so +1 is written instead. The first three factors \dagger multiplied together with binary arith-

[^2]metic of coefficients, $1+1=0$, give the polynomial $X^{10}+X^{9}+\bar{X}^{7}+\bar{X}^{4}+X^{2}+1$ so that the generator matrix consists of the binary series corresponding to this plus its four shifts:

$G=\left|\begin{array}{lllllllllllllll}1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right|$
If r is the degree of the composite factor, $k=n-r$ is the number of information digits. In this case $n=15, r=10$ and therefore $k=5$: it is a $(15,5,3)$ code. For a code correcting t errors we must take t irreducible polynomials; and since each irreducible factor may in principle be of degree m when $n=2^{m}-1$, there may be at most $m t$ check digits. But it may be pessible to use a factor of less degree, like the third factor in this example, so that the number of check digits is less than $m t$. It depends how $\mathrm{X}^{\mathrm{n}}-1$ factor-- ises.

It can be shown that BCH codes of length $n=2^{\mathrm{m}}-1$, distance $d=[n / 2]$ and $t=[n / 4]$, where the square bracket mean "the nearest integer less than", are exactly related to Hadamard matrices of dimension $n+1$. Some of the Hadamard matrices can be used as the basis of the much-discussed Walsh functions. It follows from the orthogonal property of the rows of Hadamard matrices that in this particular case BCH codes are optimum in the sense of having the maximum possible number of code members for the given length and distance ${ }^{5}$.

Implementation of BCH codes

BCH codes are cyclic, i.e. if one has a key pattern of digits to represent 2°, then 2^{x} is represented by the same pattern shifted x places. One can represent the whole code by an array (matrix) in which each row is of length n and the number of rows is equal to the number of information digits in the code word. As a simple example, the $(7,4,1)$ code can be represented by a generator matrix \mathbf{G} :

$$
G=\left|\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 2^{0} \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 2^{1} \\
2^{2} \\
2^{3}
\end{array}\right|
$$

Then if the 4 -digit binary number 1101 (decimal 13) is to be encoded, take the first, third and fourth rows of G, corresponding to $2^{0}, 2^{2}$ and 2^{3}, and add them together digit by digit modulo 2 (without carries) to give 100101 as the coded version of 1101 . Note that the code can be considered to be based on the polynomial $1+x^{2}+x^{3}$ and its multiples by x, x^{2}, x^{3} and the number to be encoded is similarly represented by $1+x+x^{3}$; then the encoding operation is equivalent to multiplication of the polynomial equivalent of any binary message by the
fixed polynomial of the code. Decoding is by division of the received signal by the code polynomial: an error-free signal must divide exactly and the value of any remainder indicates the nature of the error pattern. Because a division must be started at the most-significant end of a number, the signal must be sent with high-order coefficient first: e.g., when $2^{3}+2^{2}+2^{\circ}$ is sent the train of digits moving to the right into the transmitting encoder will look like 1011. If T is the duration of a digit, the system in Fig. 2(a) will respond to a single 1 digit input by giving an output of 1 immediately, 1 after a single digit delay in the second digit place, then nothing more until 1 in the fourth place, combining to give 1011 (read from the right). Following digits, being each in turn one place later, will give outputs (counting from the same starting point) commencing with the appropriate number of noughts. Since the patterns produced by successive input digits will overlap, the various feeds to the output line must go through modulo- 2 adders. A practical point is that the delays are usually obtained from shift registers, of which every stage has an equal delay of one digit period. Each stage stores one digit, and on each clock beat the content of each stage is passed to the next stage in line: the original form of (binary) shift register employed a flip-flop for each stage, but a charge-coupled device is preferable for a large number of stages. With these two modifications the circuit now looks like Fig. 2(b), where each square box represents one stage of a shift register. A blank interval - a number of noughts equal to the number of check digits in the code - must be left after each message group to allow the shift register to clear before inserting further digits.

It is a commonplace in analogue working that any operation can be inverted by placing the operator in the feedback path around an operational amplifier, e.g. the inversion from differentiation to integration. In the same way a digital operation can be inverted by substituting feedback for feedforward; and Fig. 3 shows the dividing circuit corresponding to the multiplying circuit of Fig. 2(b). The output is zero for a number of shifts equal to the number of check digits, followed by the quotient which in the absence of transmission errors would be the original message. (Full details, including a stage-by-stage comparision with algebraic long division, are given in Peterson and Weldon ${ }^{4}$.) If the division is not exact the remainder is left in the shift register, which should otherwise be zero at the end of the signal. It is therefore necessary to provide some means of inspecting the content of the shift register at the end of every signal block. One method would be to transfer the whole content in parallel to another register having the same number of stages and then check out serially the content of the latter. In the meantime

Fig. 2. (a) Encoding a single digit by means of delays T and $2 T$.
(b) Encoding a group of digits by means of a tapped shift register and adders.

Fig. 3 Decoding by means of a shift register with feedback.

Fig. 4 Portion of majority-logic decoder, for one digit of Hsiao code.
the message would have to be held in another register, in case any corrections were required.

Decoding by majority logic

A disadvantage of the BCH codes for correcting multiple errors is that the procedure for converting from the error syndrome of the received signal to the location of the erroneous digit tends to be complicated. But there are some codes with which the step from syndrome to digit correction can be carried out by logic circuits using majoritydecision gates as well as ordinary adders, but without requiring any other algebraic operation (like the solution of simultaneous equations). These methods of decoding are described by Peterson and Weldon ${ }^{4}$ in their Chapter 10 under the title of "Majority-logicdecodable codes", including a logic diagram for decoding the Hamming $(7,4,1)$ code. Another family of cyclic codes called Euclidean Geometry codes and Reed-Muller codes, are also suitable for this type of majority-logic decoding.

But such majority-logic decoders
require the clocking of the information digits through a shift register, so that corrections can be made one by one. In communication systems the insertion of a further delay of one word time is not usually important: it does not affect the communication rate. But such delay is not tolerable in a computer which handles all digits in parallel, e.g. in reading information out from a random-access memory. So a different form of majority logic decoding, was proposed in the early days of semiconductor memories ${ }^{6}$ and it relates to memories in which each digit of a word is stored in a separate l.s.i. plane. Now it is difficult to ensure perfection in every cell of a l.s.i. plane, but unlikely that faulty cells will occur in the same position in several planes of the stack. Therefore it is assumed that any given word (digit position in the planes) may have only a small number of errors. In order to avoid delay in read-out, the code is designed so that each digit in the word can be obtained immediately by majority vote of a group of digits read out from certain memory planes and the digits of these majority groups, consisting partly of information digits and partly of check digits, are interleaved and shared in such a way that the total number of memory planes need not be unduly increased. Particular examples for a 25-bit error-free output are:
(a) Single-error-correcting (best out of three voting) 35 planes;
(b) Double-error-correcting (best out of five voting) 45 planes;
(c) Triple-error-correcting (best out of seven voting) 55 planes.

Figure 4 shows how this works for the first output bit b_{0} in the case of a single-error correcting code which has a total of 35 planes, 25 information digits d_{0} to d_{24} plus 10 check digits C_{1} to C_{10}. The elements M are the majority-logic gates, the output of which will agree with any two similar inputs (or all three if alike). It would not be true to say that the correct output is instantaneous on the computer time scale, since two successive gates are involved; but the delay in a gate is normally small compared with a digit period and certainly very small compared with the n digit periods of a serial word.

Burst errors

The codes which have been mentioned so far are concerned with random errors, and where provision must be made for several errors in a block the number of possible error patterns is large and the code correspondingly complicated: an example is the $(15,5,3) \mathrm{BCH}$ code, which for $0,1,2$ or 3 errors in a block of 15 has 576 different error patterns and uses 10 check digits to discriminate between them. In contract, if it were known that any errors which occurred would be grouped together as a burst of 1,2 or 3 digits the number of possible error patterns would be 15 for a single digit plus 14 for a burst of 2 and 13 for a
burstof $\mid 3$,makingatotal of 43 (including the no-error case). The first cyclic burst-error-correcting codes, due to \mathbf{P}. Fire, needed $3 b-1$ check digits for bursts of length up to b, but later codes listed by Lucky, Salz and Weldon ${ }^{7}$ are better. Peterson and Weldon quote on p. 364 a code length 15 capable of correcting bursts up to length 3 with only 6 check digits, as against 10 or 3 random errors. In fact the rule is that a code capable of detecting bursts up to lengthb needs precisely b check digits but a 'code for correcting such bursts needs at least $2 b$ check digits. Codes using exactly $2 b$ check digits are known for lengths $7,15,27,34$ and 50 with corres-: ponding values of b of $2,3,5,6$ and 8 ; and a few more check digits are required for longer codes. (But the longer codes cited by Peterson and Weldon. have mostly fairly small values of b, between 3 and 7).
The mathematical techniques used in the construction of these cyclic burst-error-correcting codes are very similar to those of the BCH codes. For example the $(15,9,3 b)$ code for correcting bursts up to length 3 can be constructed from the pattern

111100100000000
which is taken to be 2^{8}, and its 8 right shifts which are taken to be the powers of two from 2^{7} to $2^{0}=1$. Then the decimal number 409 , which is $2^{8}+2^{7}+2^{4}$ $+2^{3}+2^{0}$, encodes as

100000110100001

There may be a requirement to correct both random and burst errors. It is often said that random errors are typical of radio communication, as a result of thermal and shot noise in the receiver and atmospherics; but bursts are typical of land-line circuits, as a,
result of intermittent contacts in switching systems or interference from power lines. But clearly this is an oversimplification, particularly as land lines are using higher and higher trequencies, to say nothing of wave guides and optical fibres. Then one device to avoid special measures for the correction of burst errors as well as random errors is. to scramble the order of digits before transmission and unscramble them at the receiver. The re-ordering of digits at the receiver will break up any bursts into scattered errors which can be dealt with by a code for random errors. However, the whole point of burst-errorcorrecting codes is that for a given number of check digits they can deal with more errors in a burst than scattered at random; so the scrambling should extend over more than one block so that, for example, a burst of 6 errors in one block length during transmission becomes 3 random errors in each of two blocks after "unscrambling" in the receiver.

Error-correcting and error-detecting codes constitute a vast subject, with special codes being developed for special purposes. This article makes no, pretence of reviewing the subject: it aims merely to explain some of the underlying principles with illustrative examples. The subject is formidably mathematical, so that most users will be content to use existing codes rather than attempt to design codes for themselves; but even to list all existing codes with their properties would be a very major undertaking. Most of them can be ${ }^{\prime}$ found in books such as Peterson and. Weldon ${ }^{4}$ but there are always a few which have been developed since the publication of a book. Fortunately the
basic codes such as BCH will serve for. most purposes.

Appendix. The Golay code

Golay discovered a triple-errorcorrecting binary code of length 23 , with 12 information digits, which is perfectly packed. A code of length $n=23$ and capable of correcting up to 3 random errors will have to be able to distinguish between $1+23+\binom{i j}{2}+\binom{i j}{3}$ error patterns. The binomial coefficients evaluate to 253 and 1771 so that the whole series sums to 2048 , which is exactly 2^{11}, and so with 11 check digits (and therefore 12 information digits) the code is perfectly packed. This Golay $(23,12,3)$ code is the only binary code capable of correcting more than one error which is perfectly packed. A cyclic code which is equivalent to the Golay code can be developed from the fol: lowing sequence and its eleven shifts:10101110001100000000000

References

1. Hamming, R. W., Error detecting and error correcting codes. Bell Syst. Tech. J., vol. 29, pp 147-160 (1960)
2. Golay, M. J., Notes on digital coding. Proc. Inst. Rad. Engr., vol. 37 p. 657 (1949)
3. Tietäväinen, A., On the nonexistence of perfect codes over finite fields. SIA M J. Appl. Math., vol. 24 pp 88-96 (1973)
4. Peterson, W. W. and Weldon, E. J., Error. Correcting Codes. The M.I.T. Press. (Cambridge, Massachussets, 1972)
5. Bell, D.A. and Laxton, R., Some BCH codes are optimum. Electronics Letters, vol. 11 pp 296-297 (1975)
6. Hsiao, M.Y., Bossem, D.C. and Chiem, R. T. Orthogonal Latin square codes. I. B. M. Journ. R\&D, vol. 14, pp 390-394 (1970)
7. Lucky, R. W., Salz. J. and Weldon, E. J. Principles of Data Communication, McGraw Hill (New York, 1968)

Programmable audio attenuator

From this

$$
\begin{equation*}
R_{2}=R_{\mathrm{a}}\left(1-\mathrm{G}_{2}\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\mathrm{b}}=\frac{\mathrm{G}_{2} R_{\mathrm{a}} R}{R-G_{2} R_{\mathrm{a}}} \tag{29}
\end{equation*}
$$

Therefore, R_{2} is $9.09 \mathrm{k} \Omega$ ($9.1 \mathrm{k} \Omega$ standard value) and R_{b} is $1.54 \mathrm{k} \Omega$. The last step gives F ig. 18 where

$$
\begin{equation*}
R_{3}=R_{\mathrm{b}}-\frac{R \cdot R_{\mathrm{y}}}{R+R_{\mathrm{y}}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{3}=\frac{\frac{R \cdot R_{y}}{R+R_{y}}}{R_{\mathrm{b}}} \tag{31}
\end{equation*}
$$

From (30) and (31),

$$
\begin{array}{r}
R_{3}=R_{\mathrm{b}}\left(1-\mathrm{G}_{3}\right) \\
R_{\mathrm{y}}=\frac{G_{3} \cdot R_{\mathrm{b}} \cdot R}{R-\mathrm{G}_{3} \cdot R_{\mathrm{b}}}
\end{array}
$$

and

The nearest standard value for R_{3} is $1.24 \mathrm{k} \Omega$ and for R_{4} is 294Ω. These calculations give an idea of the accuracy that can be expected. The worst case error occurs with a maximum

error in the input switching network of A_{2}. If, for example, R_{11} and $S_{2 a}$ in Fig. 8 each have a maximum resistance error of 200Ω in the same direction, the gain error would be no more than 0.15 dB .

- Printed circuit board

A printed circuit board which accommodates one attenuator circuit and decoder will be available for $£ 4.20$ inclusive of v.a.t. and UK postage from M. R. Sagin at. 23 Keyes Road, London NW2.

The author

J. M. Didden started his career in 1964 with Philips where he was involved in the design of iv receiver deflection circuits. - After three years he joined the Royal Netherlands Air Force to work in air defence operations and specialise in software.

The author is currently involved with software design for NATO air defence systems. Apart from audio, his hobbies include reading science fiction.

Periphonic sound

continued from page 50

early tetrahedral array (besides its awkwardness) was that these two localizations didn't coincide; in fact energy vector localizations show that with the tetrahedral array sounds at high frequencies are pulled toward the loudspeakers.
Requirements for coincidence of localizations according to the two main theories are neatly summed up in Gerzon's diametric decoder theorem, which says that

- all loudspeakers must be the same distance from the centre
- speakers must be diametrically opposite pairs
- the sum of two signals fed to a pair must be the same for all pairs (Incidentally, Gerzon has also shown that such layouts can be fed by $p+1$ channels, where p is the number of speaker pairs, so four speakers need three channels, six speakers need four channels.) One of the most convenient speaker arrays that meets these requirements is a birectangular type because it also provides conventional stereo speaker placement. Speakers are at the corners of two rectangles, one horizontal, one vertical. This was the arrangement used in the recent AES
demonstration which produced a very satisfying result, the loudspeakers being as acoustically unobtrusive as one would hope. The images were not so sharp as perhaps one is accustomed to with fewer loudspeakers, but nevertheless well fixed. The demonstrators remark that what is lost in image precision is gained in stability seemed borne out. Switching to the horizontal rectangle made the sound less compelling and the reversion to "full sphere" sound was distinctly more satisfying.

With the horizontal type of ambisonic decoder it is not possible to achieve a value of r_{E} of unity to give ideal image stability. In fact, averaged over afl directions, it has been shown that the value cannot exceed 0.707 . But it is possible to increase the value in some directions (e.g. 0.8 front-back) at the expense of others (0.6 left-right). Twochannel decorders are worse in this respect with a maximum average of 0.5 , giving poor image stability, though it is said that judicious distribution around the circle can hide the fault to some extent. With spherical reproduction the maximum average value is 0.58 ; and it is argued that the decoder shelf filters must therefore be carefully optimized.

But the opportunity for directional trade-offs is obviously greater, and a typical choice would be 0.69 front-back, 0.58 left-right, 0.39 up-down.

Because of this the shelf filters of an horizontal-only decoder are different from those for a spherical or periphonic decoder. (Shelf filters allow different matrix coefficients to be used at low and high frequencies and provide a controlled transition from one to the other.) For instance the ratio of I.f. to h.f. shelf-filter gains for horizontal-type decoders is 0:1.76 (in dB) for the W signal and $0:-1.25$ for the X and Y directional components, whereas for a periphonic decoder the gains are 0:3 for W, and 1.76:0 for X, Y, Z signals. Production periphonic decoders would almost certainly contain switchable shelf-filtering but the day that four channels reach the home, existing ambisonic decoders will need some alteration!

For periphony to be judged in effectiveness against horizontal systems perhaps what is needed is a statistical assessment in objective terms compared with stereo and two and three-channel horizontal surround systems. It was eight years after the introduction of the first quadraphonic surround system before preference tests were carried out (by NHK) that showed the square speaker array had a rating of $+0.9,+0.5$ and +0.3 for non-experts, audio enthusiasts and acoustic engineers respectively, where 1.0 meant "slightly better" than two-speaker stereo. Little wonder it didn't catch on?

BBC's data company will link with Europe-wide information service

In order to exploit commercially its large store of information, which includes 24 mil lion press cuttings from British national and provincial newspapers as well as complete collections of news bulletins broadcast on radio, tv and external services, the $B B C$ has set up a new trading company called BBC Data.
The new company is an information provider for Prestel International and is currently discussing, with a number of other organizations, ways of making BBC information available in machine-readable form. BBC Data's manager, Richard Hewlett, says
that the company will also link up with Euronet-DIANE as a "host" information provider (see our news report, Feb. 1980 issue) although the precise interface method has not yet been decided.
Mr Hewlett expects BBC Data's income to be "substantial" after about three years and the next major move will be a deal with a computer services "bureau" whose equipment will be used as a host for the electronic versions of the BBC's files. Information acquisition will then merely entail the customer contacting the bureau via computer terminals accessed by telephone.

Exhibitions, courses and conferences

Breadboard ' 80 will be held at the Royal Horticultural Halls, Elverton St, Westminster, London SW1, from November 26 to 30,1980 . Opening times have been changed to read Wednesday 26, 10 a.m. to 6 p.m., Thursday 27, 10 a.m. to 8 p.m., Friday and Saturday, $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. and Sunday $30,10 \mathrm{a} . \mathrm{m}$. to 4 p.m.

Electronic Test and Measuring Instrumentation ' 80 will be held at Wythenshawe Forum, Manchester, April 22 to 24th 1980 . Full details are available from Trident International Exhibitions, Ltd, 21, Plymouth Rd., Tavistock, Devon.

The S.E. Asia 3rd Biennial International Exhibition of Electrical and Electronic Engineering opens at the World Trade Centre, Singapore from 21 to 25 October 1980. Interested parties should contact Interfama Pte. Ltd, 834, 8th Floor, World Trade Centre, Maritime Square, Singapore 0409.

Cambridge Microcomputers are offering a series of one-day courses under the general title of "Practical Introduction To Microprocessors." Each course costs $£ 50$ (plus v.a.t.) for early courses (22 April, 21 May, 18 June, 30 July) with later courses (September

Massive report on GaAs is dubious

A report written by Gene Hnatek, quoted as a "noted US authority on integrated circuit technology" by Infotech, and which is said to consist of 650 pages, priced at $£ 150$, has been dismissed by Dr Cyril Hilsum, a leading UK expert on gallium arsenide applications, as "melodramatic."
The report maintains that GaAs devices, due to their increased switching speed, will "rapidly replace the silicon chip," but Dr Hilsum points out that production processes cannot compete with silicon on an economic basis and GaAs will be used only where its properties make it a sensible choice.
to December 1980) costing £55 per day and a five-day course on m.p.u.-based systems costing $£ 240$ plus v.a.t., running from March to July 1980. Further details are available from Cambridge Microcomputers Ltd, Milton Rd, Cambridge CB4 4BN

A series of lectures and seminars dealing with general microelectronics topics will be held at the South-West Herts Teachers' Centre, Tolpit's Lane, Watford. It will be run by the GEC-Marconi Group and a teachers' organization. Contact Peter Rackham, Marconi House, Chelmsford CM1 1PL.

15V $1 / 2 \mathrm{~A}$ regulator

Although cheap and genera! purpose components are used throughout, this circuit offers good load regulation and temperature stability. Output resistance is typically $20 \mu \Omega$ at low frequeries and, unlike conventional regulators where the power transistor is connected to the op-amp output, only a few hundred milliVolts are required across the series-pass transistor to maintain regulation. The circuit can be built for negative regulation by using n-p-n transistors in the negative supply lead of the 741 . Fold-back current limiting is included to limit the maximum dissipation to 4 W . The 3 k 3 resistor allows the output stage of the 741 to turn off when no current is being drawn, and the 220Ω resistor prevents the 741 quiescent current from turning the power transistor on. The diode and $470 \mathrm{k} \Omega$ resistor allow start-up and the $0.1 \mu \mathrm{~F}$ capacitor improves the response to sudden changes in output current.
J. W. Rowe

Brinsley
Notts.

\qquad

High-frequency doubling with c.m.o.s.

High-frequency doubling can be achieved by using the propagation delay of c.m.o.s. together with exclusive OR gating. The circuit shows an oscillator operating at 1.6 MHz , and an exclusive OR gate fed with the oscillator output and an inverted and delayed output. Propagation delay of the buffers depends on $V_{D D}$ and the load capacitance, but for a 7.5 V supply and a load capacitance of 50 pF , the delay for each buffer is about 34 ns . Therefore, the total delay $t_{p d}$ for six buffers is 204 ns and the difference between the two signals is 170 ns , which produces a 3.2 MHz output with an almost equal mark-to-space ratio.
D. J. Greenland

Bear Hill
Cambridge

Simple manual-reset latch

One 4001 can provide a latch that will turn off but will not turn on again until manually reset. Gates a and b together with two resistors form a Schmitt trigger which provides noise immunity. A low at the input causes the output of gate a to go high and the output of gate d to go high which then inhibits the output of gate b after it has gone low. Reset is achieved by removing the power supply to discharge C_{1}, or replacing C_{1} with a push-to-make
switch for manual reset. If the capacitor is used it must be large enough to ensure that the input goes high before point A goes low. If a switch is inserted at point B and $1 M \Omega$ resistor connected to 0 V , the circuit will follow the input. Resistors R_{1} and R_{2} can be omitted if the latch is driven by logic and noise is not a problem.
I. J. Nicolle

Guernsey
Channel Isles

Variable phase all-pass filter

This all-pass filter offered constant amplitude, a distortion content of less than 0.1% for a 1 V r.m.s. output, and a frequency range up to 100 kHz . Transistors $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and Tr_{3} form a low output-impedance phase-splitter which drives a CR network. Transistors Tr_{4} and Tr_{5} form a buffer stage, and the 1 k 8 gate resistor prevents spurious oscillations. With a $10 \mathrm{k} \Omega$ potentiometer and a suitable value for C, the phase of a waveform can be varied from 0 to nearly 180° or, by reversing \mathbf{C} and R , from 180 to near 0°. The graph shows the normalized all-pass phase response with four values of R.
T. G. Izatt

Preston Polytechnic
and
E. Ball

Salford University

Multi-channel voltmeter with tv display

This voltmeter provides up to 25 channels and displays them as horizontal bars on a television screen. A scale is provided by an $8 \times$ line-frequency square wave, gated as a video signal between adjacent bars. The circuit comprises an integrator which ramps from 0 to 1 V in $40 \mu \mathrm{~s}$ and is reset to slightly below 0 V at each line sync. pulse. The input signal is gated by one or more 4051 analogue multiplexers, depending on the number of shannels required, and fed to a 748 comparator whose remaining input is connected to the integrator. When the integrator output equals the input signal, the video output is switched from white to black. The sync. timing chain consists of a 1 MHz crystal oscillator, a 4024 and 4518 which provide a divide-by-64 for line sync. $(15,625 \mathrm{~Hz})$ and a second 4024 provides a divide-by- 320 for frame sync. (48.8 Hz).

An AF139 modulator is shown, but the circuit can be modified to drive one of the commercial modulators now available. The transistor is housed in a small tin box and the $10 \mathrm{k} \Omega$ preset is adjusted to zero the display on a convenient scale point close to the left of the screen. The $100 \mathrm{k} \Omega$ preset is adjusted with a 1 V input to set the display on the tenth scale point. These adjustments should be rechecked because there is some interaction between the controls. The display can also be adjusted for centre zero.

A similar circuit, but without the scale and input multiplexing, can be used as a wobbulator display or a simple spectrum analyzer. The drive for the v.c.os can be generated from a second integrator, reset only on the frame sync.

pulse. For 25 channels, four 4051 i.cs are enabled in turn by a 1 -of- 4 decoder driven by a divide-by- 32 and 64 on the second 4024. All of the 4024 outputs, except frame sync., are increased in frequency four times.
J. D. Owen

Castle Lloyd
Dyfed

Displays from left to right
 show OV, 0.35 and IV
C.m.o.s. 60 kHz receiver

One c.m.o.s. NAND gate i.c. can be used as a low frequency receiver as shown. All of the gates are connected as inverters and the first three operate in the linear mode with 100% feed-back. Gate 4 and Tr_{1} provide amplification and a t.t.1. interface. The input to gate 4 is biased so that; with no carrier, Tr_{1} is turned off
and the output is high. With the carrier on, negative half-cycles at the output of gate 3 partially discharge C_{5} via D_{1} and turn Tr_{1} on via gate 4. Although the a.c. gain and d.c. input-output voltage varies with different packages, three :4011AE i.cs functioned satisfactorily with R_{3} adjusted to give a carrier-off
voltage of 0.3 V at the base of Tr_{1}. With a correctly tuned aerial, the only critical components are $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{5}. The value of C_{2} assumes L_{1} to be the input winding of a yellow-coded i.f. transformer. G. Jackson

Greigiau
Cardiff

Model TCSU1

Accurate pin point temperature contro between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tip of the iron for fast response. Interchangeable slide-on bits from $4.7 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ down to 0.5 mm . Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40watt) iron or XTC (50watt). TCSU1 soldering station with XTC or CTC iron £36 (6.44). Nett to industry.
Model CTC - 24 volts Priced at $£ 9.75(1.87)$
Model XTC - 24 volts Priced at $£ 9.75$ (1 87)

Model CX 17 watts- 230 volts Model $\times 2525$ watts -230 volts

Model CTC - 24 volts Priced at 50.75 (1.87)			
Model XTC - 24 volts Priced at $¢ 9.75$ (187)			
Model SK3 Kit		Model SK4 Kit	
	Contains both the model CX230 soldering iron and the stand T3. Priced at £5.70(1.49) It makes an excellent present for the radio amateur or hobbyist.		With the model X25/240 genera urpose iron and the ST3 stand his kit is a must for every toolkit in the home Priced at ©5.70(1.49)

* VAT + P\&P as shown in brackets C J

Stocked by many wholesalers and retallers or direct from us if you are desperate.

This kit contains a 15 watt miniature solcering iron, spare bits, a coil of solder, a heat sink and a booklet, How to Solder' Priced al £5.95 (1.53)

The soldering iron in this kit can be operated from any fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car, a boat or a caravan ready for soldering in the field Price $£ 4.55(1.14)$

A general purpose iron also with a ceramic and steel shaft to give you toughness combined with near-perfect insulation Fitted with $1 / 8^{\prime \prime}$ bit and priced at $\mathbb{\$ 4 . 2 0 (. 9 8)}$ Range of 4 other bits available.
Also available in 24 volts

Spare element Model X25/240E
Spare element Model CX230E
ST3 Stand.

A strong chromium plated, steel spring screwed into a plastic base of high grade insulating material provides a sate and handy receptacle for ail ANTEX models soldering irons. Priced at E1.50 (.57)
Please send me the Antex colour brochure \square I enclose cheque/P.0./Giro No. $2581000 \square$ Name
Address

Facts from Fluke on low-cost DMM's

Is this any way to treat an 689 multimeter?

In the rough world of industrial electronics, even a precision test instrument can get treated like dirt. You need all the ruggedness and dependability you can get in a DMM for field use.

You'll find these qualities and more in the Fluke line of low-cost DMM's. Our DMM's have been dropped from towers, stepped on, and run over by construction equipment. And they've survived because we never cut corners on quality, even on our lowest-priced, six-function Model 8022A Troubleshooter at $£ 89$.

Take a close look at a low-cost DMM from Fluke and you'll notice tough, lightweight construction that stands up to the hard knocks of life.

Sturdy internal design and high-impact, flame-retardant shells make these units practically indestructible. Right off the shelf, they meet or exceed severe military shock/vibration tests.

Even our LCD's are protected by cast-tempered plastic shields. We use rugged CMOS LSI circuitry for
integrity and endurance, and devote a large number of

components to protection against overloading, accidental inputs and operator errors.

We go to these lengths with all our low-cost DMM's to make sure they are genuine price/performance values. You can count on that. Because, that's what leadership is all about.

For more facts on DMM reliability and where to find it, call (0923) 40511; use the coupon below: or contact your Fluke sales office or representative.

FLபK틀

Fluke (G.B.) Limited
Colonial Way, Watford, Herts. WD2 4TT Tel: Watford (0923) 40511. Telex: 934583

Why does an electron have inertia?

Give me an electron and I can move the world

by T. B. Tang, M.Tech., Ph.D. Darwin College, Cambridge

Abstract

Professor Jennison's article in June 1979, in dealing with the mass and inertia of the electron, mentioned Mach's suggestion that the inertia of a body originates from the influence of the distant masses of the Universe. Although the Mach Principle has no empirical support, the author here sketches an elementary scheme for the interaction it visualizes and claims that this "appears capable of explaining, in a manner, some of the known facts concerning inertial mass."

WHEN you switch on an oscilloscope to monitor a signal, you are in essence deflecting a scanning beam of electrons by an electric field proportional to the signal. The inertial mass of an electron has been established as a constant whose value is known to 6 parts in 10^{6}, so that the angle through which the beam will be deflected can, if you wish, be predicted for any given strength of the transverse electric field.
Many people, however, are not satisfied by merely knowing how things behave: they want to find out why as 'well. Why does an electron have inertia, and furthermore why is its inertial mass that particular value and not some other magnitude? Indeed, why matter in general exhibits inertia? Inertia is, of course, defined in Newton's Second Law. Therefore the question is reduced to why $F=m a$, where the symbols have the usual significance. Our modelling of the objective world will be more complete if this law, of which the First Law is a special case, is shown as derived and no longer remains an axiomatic postulate.

Mach principle

As mentioned in a recent Wireless World article ${ }^{1}$, so far the only suggestion to explain inertia is that attributed to Ernst Mach. The idea can be traced further back, to Leibniz, but it is usually referred to as the Mach Principle, a terminology used by Einstein who strived to incorporate it in his theory of gravitation - but did not quite succeed. It is, contrary to the opinion expressedin that article, not entirely a qualitative hypothesis that is incapable of accounting for the precise observations of inertial mass and inertial force. In fact, it has been realised in a number of
alternative theories ${ }^{2-8}$. True, none of them is commonly accepted. Nevertheless, many interesting deductions can be made in even a simple realisation of the Mach Principle; some we are going to describe in this article. First, however, let us discuss the content and the plausibility of Mach's (or Leibniz's) proposal.
The Mach Principle embodies the conception that the inertia of an object arises wholly from its interaction with background matter. A force has to be applied to an electron to change its state of motion, because, in its own frame of reference, the applied force is needed to balance the pull by you, the Earth, the sun and planets, and the 'fixed stars': a pull which is generated whenever it 'accelerates relative to the surrounding matter. Were all background matter removed then for the electron, alone, no distinction could be made between uniform'and accelerated motions. This seems reasonable enough unless space on its own can, metaphysically, have intrinisic inertial properties. (Strictly speaking, quantum field theory envisages that the vacuum is still filled with carriers of the fields of the lone electron. The existence here of these virtual quanta is, however, completely irrelevant because there are no other particles to absorb or emit them.)
In other words, accelerating an electron is kinematically and dynamically equivalent to accelerating, in the opposite direction, all other matter in the Universe. Take the particular case of rotation. In accordance with the Mach Principle, an object is dynamically non-rotating, meaning suffering from no centrifugal or Coriolis force, if and only if it is seen to be not rotating with respect to distant matter, which: constitutes the bulk of the Universe and which by definition is non-rotating. The Earth is rotating, as made apparent for instance by the Foucault pendulum at the United Nations' headquarters in New York. So there must be much more matter in the sky than there is under our feet. Is then the collection of some 10^{11} suns forming the Milky Way nonrotating? Its shape is of a flattened disc, indicating the presence of centrifugal forces. There should exist, therefore, extragalactic matter. It duly turns out that the Galaxy is but a member of the
"Local Group' of about 30 galaxies, which, together with more galactic groups and chains, forms what has been recognised as the Virgo Supercluster. This local supercluster, containing 10^{2} to 10^{3} galaxies, is apparently again flattened. Well, from sky surveys we find at least 10^{10} other galaxies further out in the Universe!

From the measured degree of isotropy (to 3 parts in 10^{4}) of the 2.7 K cosmic radiation, it has been calculated ${ }^{10}$ that the distanct galaxies cannot be rotating faster than once in 10^{19} years. The placing of this lower limit on the. rotational period, 10^{9} times the age of the Universe, is a strong, albeit indirect, observational support for the Mach Principle.

Second Law of motion

Let us now devise a simple mathematical expression for the Machian interaction which is experienced whenever matter accelerates, and explore the consequences. Following Einstein (see for example his book The Meaning of Relativity) we assume that the interaction is gravitational in nature, so that its strength between one gravitational mass (m) and another (M) depends on G, the universal constant of gravitation, and will have the form

$$
\begin{equation*}
F=\left(G / c^{2}\right) m M a r^{-1} \tag{1}
\end{equation*}
$$

where a is the relative acceleration and r the distance between m and M.F has to fall off as the first power of r, no faster and no slower, else strange things would happen ${ }^{9}$. The velocity of light c is involved in the coupling constant to give the right-hand side the dimension of a force. The form of equation (1) will be justified by its predictions.
F as specified above is Newtonian in the sense that it is instantaneous interaction. However, it was shown by Milne and McCrea, in the 1930s, that Newtonian cosmologies lead to results which are formally identical to those from general relativity models, once an interaction cut-off range is introduced. That is, the Universe is considered as a closed sphere in Euclidean space, with a finite radius, the test particle under study being put at its geometrical centre. With the use of this convention in solving first-order linear problems, the mathematically difficult (and perhaps
even pathological) relativistic models can be avoided, and at the same time difficulties such as the existence of infinite gravitational potential in an unbounded universe disappear. In this way, the pull on m which is being accelerated with respect to other matter in the 'island universe' can be summed, in the simplest (scalar) manner, as

$$
\begin{align*}
F_{m}= & \left(G / c^{2}\right) m(-a) \int_{0}^{c A} \\
& 4 \pi r^{2} \rho r^{-1} d r \\
= & -m a\left(2 \pi G \rho A^{2}\right) \tag{2}
\end{align*}
$$

in which ρ is the mean density of the Universe, whose 'radius' is its present age A multiplied by c. Checking with experimental and observational data we ;now discover the remarkable fact that, within the margin of errors; the dimensionless number

$$
\begin{equation*}
2 \pi G \rho A^{2}=1 \tag{3}
\end{equation*}
$$

Hence (2) very probably reduces to $F_{m}=-m a$. Since the applied force $F=-F_{m}$, Newton's Second Law is at once derived.

Life and gravitation

There are in cosmology a number of numerical coincidences which are empirically found to hold but none of which can be fitted into the structure of known physics. Equation (3) is one of them but, as has just been shown, turns out to be explainable by the Mach Principle. They are of imposing importance to us, speculating or otherwise (see last sentence of this paragraph). Based on some of the other cosmological coincidences, Dirac has proposed several unconventional cosmological. models, in a series of papers in Proceedings of the Royal Society the first of which was in 1938 and the latest in 1979. However, we shall have the space to say. no more about the numerical 'coincidences', except to state that the validity of many of them is a prerequisite for our ability to live in the Universe ${ }^{11,9 \text { ! }}$
To continue with the discussion on the Machian theory, we point out that it can reproduce all the dynamic effects. pertaining to co-ordinate acceleration in Newtonian mechanics. The case of linear acceleration has been dealt with in the above. In circular motion, centrifugal and Coriolis forces of the right form come out when F_{m}, acting on m which is 'non-rotating'' by 'rotating' background matter, is summed in the same manner. This should hardly be surprising, since these forces are consequences of Newton's Second Law which can be derived via F_{m}.

Most interestingly, it has been claimed ${ }^{12}$ that the force described by Newton's Law of universal gravitation is in fact but a manifestation of F_{m}. The elementary particles in two bodies execute implusive motions ('zitterbewegung' of electrons etc.) and are therefore continuously accelerating; the resulting Machian interaction between their constituents is, it was argued, the force traditionally called
'gravitational attraction'. My comment is that, if this bold idea is valid, then inertial and gravitational forces are completely unified, and also the problem of infinite self gravitational energy for a point-like electron is removed. The theory will achieve such economy and eliminate such a long-outstanding singularity that it should not be wrong.

Relations between inertial and gravitational' masses

Equation (2) proves that the inertial mass of an object is proportional to is gravitational mass m. This is why two balls of different weights but released from identical heights should really take the same time to strike the ground. The proportionality has been demonstrated with increasing accuracy by Galileo (who probably had not performed the Leaning Tower experiment he said he had, but did have done some inclined plane experiments), Eotvos, Dicke, and others. It cannot be ex plained, however, in either classical mechanics or Einsten's theory of gravity: in the latter, indeed, it is postulated under the name 'Principle of Equivalence'.

There is another interesting deduction. When the object is alone, it has no inertial mass but, when brought back to the centre of the island universe, it acquires a mass m. At the same time, it acquires a gravitational potential energy

$$
E^{\prime}=-G \int_{0}^{c A} m\left(4 \pi r^{2} \rho / r\right) d r=-m c^{2}
$$ where in the last step we have used (3). The process should conserve energy and, therefore, the inertial mass has to be associated with an energy $E=m c^{2}$, as implied by $E+E^{\prime}=0$.

The mass of an electron

As a final illustration of the fruitfulness of hypothesis (1), an estimation will be made of the rest masses of stable elementary particles. The exercise will be instructive but, unfortunately, only a phenomenological approach can be adopted and the accuracy will only be to the rough order of magnitude. Consider an electron. Since its inertial mass is not an intrinsic property but is purely determined by surrounding matter, m will be slightly different from that of another electron. However, the difference Δm is 'insignificant', because experimentally electrons are observed indistinguishable (as shown for example by chemical spectroscopy). Now, the energy associated with Δm is, as has just been deduced, $\Delta m c^{2}$. The longest time interval over which the .electron has existed before its mass is 'measured' (before it interacts with another particle) is the age of the Universe. Hence, the difference is unobservable, as judged by Heisenberg's uncertaintly principle, if

$$
\begin{equation*}
\Delta m c^{2} A \leqslant h \tag{5}
\end{equation*}
$$

where h is Planck's constant and any

WIRELESS WORLD, MAY 1980
factors of the order unity are ignored. Secondly, the total number of electrons, or protons, in the Universe is $N=\rho(c A)^{3} / m$, factors such as $4 \pi / 3 \sim 1$ again being neglected. By a statistical rule of thumb,

$$
\begin{equation*}
\Delta m / m=1 / N^{1 / 2} \tag{6}
\end{equation*}
$$

Substituting for N and eliminating Δm between (5) and (6) we obtain

$$
\begin{equation*}
m \leqslant\left[\left(h^{2} / c\right) \rho A\right]^{1 / 3} \tag{7}
\end{equation*}
$$

which, on plugging in the numerical values, gives $10^{-27} \mathrm{~g}$ and is a correct order of magnitude! The degree of closeness is astonishing in view of the enormous range of magnitudes for different combinations of the factors appearing in (7). Heavier particles should be unstable, which indeed is the case. A zero rest mass (and correspondingly a vanishing Δm) is, of course, also consistent with (5) and (6); this is the case of the other two types of stable particles, namely the photon and the neutrino family.

If the Mach Principle can be generalised, it may be conceived as that all local properties are related to the global condition of the Universe and as such are ultimately changeable: that a part, however small, must not be regarded in isolation from the whole. This means that any collection of particles constitutes an open system, for which dynamic equilibrium will always be accidental rather than the normal state, just as a living organism or a biosphere is. The Principle itself is speculative, enjoying as yet no direct empirical evidence, but we have sketched here an elementary scheme for the interaction it visualises. Surprisingly, the resulting' simple-minded theory appears capable of explaining, in a manner, some of the known facts concerning inertial mass. Are you sufficiently impressed to believe that you now understand more about what actually happens to the electron beam in the oscilloscope, and why one should wear a seat belt?

References

1. Jennison, R.C. Wireless World, June 1979. 2. Sciama, D.W. Mon. Not. Roy. Astron. $\bar{S} 0$. 113, 33 (1953).
2. Dicke, R:H. Science, 129621 (1959).
3. Hoyle, F. and Narliker, J.V. Proc. R. Soc. Lond., A 282, 191 (1964).
4. Sachs, M. Nuovo Cimento (Ser. 10), B 53, 398 (1968).
5. Sciama, D.W. 'The Physical Foundations of General Relativity', Doubleday, Garden City, N.Y., 1969.
6. Barbour, J.B. Nuovo Cimento (Ser. 11), B 26, 16 (1975).
7. Eby, P.B. Lett. Nuovo Cimento, 18, 93 (1977).
8. Tang, T.B. J. Br. Interpl. Soc., 32, 84 and 88 (1979).
9. Hawking, S.W. 'Confrontation of Cosmological Theories with Observational Data', Ed. M.S. Longair, I.A.U. 1974, p. 283.
10. Cart, B.J. and Rees, M.J. Nature, 278, 605 (1979).
11. Cook, R.J. Nuovo Cimento (Ser. 11), B 35, 25 (1979).

Communication receiver design

Even before the end of the 1930 s, the h.f. communications receiver could provide \bar{a} high standard of performance: designs such as the National HRO, Hallicrafters SX28, Hammarlund Super Pro and the RCA AR88 enabled operators to select and copy extremely weak signals close up to far stronger signals, aided by good single-crystal filters and the reasonable immunity to spurious responses of single-conversion superhets having two tuned r.f. stages. Indeed many of the subsequent developments were aimed primarily at reducing the high cost of tuning mechanisms used in such models with their four ganged tuned circuits and with providing the additional stability and lower tuning rate needed to cope with single-sideband transmissions. The gradual change from valves to transistors tended to result at first in lower standards, particularly in the reduced ability of receivers to cope with both very weak and very strong signals without driving stages into nonlinearity. Questions of "shape factor" of filters and then "dynamic range". of the early stages of solid-state designs have tended to dominate the scene, and it is only in the past few years that all-solidstate designs have reached and improved on the best valve designs of the fifties and sixties.
Now, however, the steady progress is making the measurement and evaluation of receiver specifications increasingly difficult, as Wes Hayward, W7Z01 has pointed out. Such parameters as "minimum detectable signal" are easier to describe than actually to measure; "intercept point" is being interpreted in different ways, and so on; furthermore many of the improvements become important only in highly competitive conditions, making little noticeable difference during routine communication.

The limiting factors of highperformance receivers now tend to be reciprocal mixing due to noise sidebands on the h.f. oscillators; insufficient "ultimate rejection" of filters, particularly when actually installed in receivers; non-linearity and sometimes non-reciprocal effects in "passive" components such as crystal filters and ferrite cores. For most amateurs the difference between a "good" and a "not-so-good" receiver is still likely to involve questions of "operability"; convenient controls without backlash; absence of hum; ability (missing from many current models) to be able to turn the a.g.c. off; good audio performance, etc. Perhaps what we are seeking is the good electronics of the best 1980 models
combined with the excellent mechanical designs of 40 years ago. Unfortunately while electronics still get relatively cheaper, mechanical excellence grows steadily more expensive

Winter Sporadic E

Recently it was suggested (WoAR March) that while American amateurs recognise the existence of a winter Sporadic E season, this did not appear to be the case in Europe. John Branegan, GM41HJ of Saline, Fife, however reports that he has observed such a season each year since 1977. He uses sensitive equipment including a tunable Eddystone 770 R v.h.f. receiver, various pre-amplifiers and converters feeding a Yaesu FRG7, a multi-standard tv receiver and rotatable 3 -element Yagi aerials.

He finds the winter Sporadic E season usually starts about Christmas and lasts until about the first week in February (with three of four days of such events followed by several days without any). During winter, SpE signals are heard up to about 53 MHz and on about one-inthree occasions to 70 MHz ; very rarely to about 90 MHz ; no event extending to 144 MHz has been observed. From contacts with VEIAVX during the 50 MHz F2 layer openings, he believes that winter SpE occurs on the same days at the same local time in Eastern Canada. As an example of a typical winter SpE event he provides a clear picture of Norwegian tv (48.25 MHz) taken on January 21 this year. Curiously, he does not find that the range of SpE signals changes in the manner that has been suggested as likely due to the gradual descent of metallic particles in windshears, but remains in the range bracket of 650 to 1250 miles throughout the events.

GM41HJ is convinced that there are still endless possibilities for amateurs to add to our meagre understanding of Sporadic E, including the differing world patterns (SpE conditions are almost a regular daily event in tropical countries such as India).

EMC regulations increasing

German amateurs are worried at some aspects of new "electromagnetic compatibility" regulations which are due to be introduced there in July 1981 and which could present major problems to the operators of medium or high-power transmitters in residential areas. While a welcome feature of these regulations is the setting of a minimum limit to the strength of broadcast transmissions that are regarded as protected against interference, ranging from 0.1 to 0.5
mV / m for v.h.f. and television to $1 \mathrm{mV} / \mathrm{m}$ for m.f. and l.f. transmissions, they also specify the standard of "immunity" to very strong local signals that receivers should be expected to withstand, implying that listeners and viewers can expect to be protected against any signals which are stronger. The limits vary from $3 \mathrm{~V} / \mathrm{m}$ to only $0.5 \mathrm{~V} / \mathrm{m}$ between 47 and 108 MHz and as low as $0.2 \mathrm{~V} / \mathrm{m}$ on intermediate frequencies of the receiver. It has been shown that field strengths of $15 \mathrm{~V} / \mathrm{m}$ can be encountered at distances of about 12 m from amateur transmitting aerials of stations operating at legal levels in Germany.

Regulations introduced early in 1980 in Switzerland appear similarly to set a limit of $1 \mathrm{~V} / \mathrm{m}$ to receiver immunity, with the possibility that the amateur station may be held to blame for interference arising from higher signal levels. The subject is also being considered with a view to EEC regulations. The German e.m.c. regulations are not concerned with electronic appliances other than radio and tv receivers and do not cover audio amplifiers, tape recorders or electronic organs.

In brief

Jeremy Royle is reported to be developing new techniques for the transmission of slow-scan tv pictures in colour . . Amateur stations in the USSR are reported to be increasing by about 8 to 12 per cent annually and by early 1979 there were 30,034 stations of which 3629 were "club" stations, 17,234 individual h.f. stations and 9111 v.h.f. licences; nevertheless it is suggested that in some areas numbers of stations remain stagnant due to insufficient attention being given to the development of amateur radio, especially stations for collective ("club") use . . Swiss amateur licences increased from 2341 at the end of 1978 to 2681 at the end of $1979 \ldots$ The number of amateur licences in West Germany, where for a long time the totals were roughly comparable with the UK, now seem to have forged decisively ahead, totalling 41,500 of which 17,610 are Class C (v.h.f. only) licences. There are 1305 club stations (including 208 repeaters) and 2090 "YL" and "XYL" licensees . . . The annual Radio \& Electronics Exhibition of the Northern Radio Societies Association will be held at Belle Vue, Manchester, on April 27, with numerous contests, inter-club quiz. Morse code challenge, 145.550 MHz and 433.200 MHz talk-in stations (GB4NRS G8NRS/A) ... The RSGB National Amateur Radio Exhibition is at Alexandra Palace on May 9 and 10.

PAT HAWKER, G3VA

Outlook for short-wave broadcasting

Meagre increase of frequency allocations gained from WARC 79

by Jim Vastenhoud Radio Nederland

Most readers will have seen reports about the 1979 World Administrative Radio Conference (WARC 79) in this journal, and will know that short-wave radio stations all over the world attach great importance to its results. The main objective of the conference was the re-allocation of the radio spectrum (February issue pp. 46-48, March issue $\mathrm{pp} .72-74)$. The allocations are to be found in Article V of the Radio Regulations, a book which contains all international agreements on the use of the radio spectrum and is the standard reference for radio users all over the world. Article V was revised previously in 1959. Since then, however, there have been significant shifts in the usage of the spectrum, partly due to technical developments, such as the opening-up of satellite communications, but also resulting from other world developments like the new frequency requirements of nations which have gained their independence since 1959. These frequency requirements of the emergent nations affect all fields of communications and especially those bands which were already heavily loaded, or even congested, in 1959.

Increased demand

The most marked increase in the demand for radio spectrum space in the past twenty years has taken place in the fields of maritime mobile communications and short-wave radio broadcasting. In Band 2, the v.h.f./f.m. band, agreement was reached at WARC 79 on an expansion in Regions 1 and 3 to 108 MHz . A planning conference, to be held in a few years' time, will decide about the channel allocations in this band for each area. Before this can take place, however, non-broadcasting services which still make use of the band will have to be relocated in other frequency ranges. Medium-wave broadcasting has also grown considerably, but a frequency plan for the medium- and long-wave bands was adopted at the ITU conference on m.f./l.f. broadcasting in 1974/75 (Januảry 1976 issue, p. 42) and its results were accepted (with some minor changes) at WARC 79.

The frequency range between 6 and 30 MHz is suitable for world-wide communications without the use of repeaters or satellites. This fact makes this h.f. part of the spectrum important
to various users - mobile communications on land, at sea or in the air, fixed communications between points on earth, radio amateurs, and broadcasting, to mention a few. In the past twenty years the occupation of various bands in this range has changed. Extensive monitoring, taking place alt over the world in recent years, has shown that the number of stations in the fixed bands (which occupy about 48% of the available short-wave spectrum) has considerably decreased. It has also shown that the number of stations inside the allocated short-wave broadcasting bands has grown to intolerable levels.

The decrease of band loading in the fixed bands was due partly to the development of satellite communications, which proved to be more reliable to the fixed user and is able to handle all traffic without interference. Apart from this measured effect, however, many young nations still feel the need for frequencies in the fixed bands, to establish and maintain domestic or international radio communications (telephony, commercial traffic, data transmission).

Many short-wave broadcasting organizations, after studying the results of monitoring the fixed bands and looking at the gloomy situation inside the short-wave broadcasting bands, had the feeling that it would be reasonable to re-allocate portions of the fixed bands for broadcasting purposes. This feeling was strengthened by the knowledge that some administrations (the official postal and telecommunication authorities of the various countries)
have permitted their short-wave broadcasters to move into the fixed bands. This situation, not endorsed by many countries who live by the intentions and rules of the Radio Regulations, was made possible by the use of an escape clause in these regulations which renders such a move possible if no interference is caused to other services which are allotted in the fixed bands. Since the broadcasting service usually replaced a fixed service of the same country (though at an increased bandwidth), generally no complaints from other fixed users were filed and the broadcasting service in the fixed band could thus be established.

Exclusive h.f. bands

In most countries, however, shortwave broadcasting stations have not been allowed to operate "out-of-band", because the administration is wary of causing congestion in the fixed bands with transmissions of another kind. Most administrations felt bound by the 1959 agreement, which established certain frequency bands for the exclusive use of high frequency (short-wave) broadcasting only and provides a similar arrangement for the fixed bands. Mixing the two would cause precedents which would harm international interests.

At the start of WARC 79 a number of administrations had hoped to correct this situation by extending a number of short-wave broadcasting bands into adjacent fixed bands, thereby giving all s.w. broadcasters equal opportunities to

Jim Vastenhoud, author of this article, is the deputy director of engineering services of Radio Nederland, the Dutch world broadcasting organization. He joined them in 1953, transferred to Dutch television in 1962 but returned to Radio Nederland in 1969. His present work is on engineering projects and the co-ordination of frequencies for short-wave broadcasting. He occasionally takes part in BBC "World Radio Club" broadcasts from London.
establish a good service while doing away with the privileged situation of those broadcasters who are already operating in the fixed bands. It was not expected that all the administrations concerned would co-operate with such a measure, but those against were considered to be in the minority.

However, things turned out differently. The non-aligned countries, which now have a voting majority in most international bodies, could only be partly convinced of the reasonableness of the international broadcasters' requirements. Moreover, they were concerned about the loss of fixed frequencies, which are so vital to them.

Meetings held in the important working group 5BB, which dealt with the frequency range between 3.9 and 27.5 MHz , were difficult and progress was slow. The proposals, which obtained a majority in the group, did account for about 780 kHz of band extension for all broadcasting bands between 9 and 22 MHz , or less than half the extension needed to operate short-wave broadcasts with a reasonable chance of satisfactory reception quality. The results, agreed on by Committee 5 and the Plenary Assembly, are given below.

Band (m)Old frequency range (M Hz)	New frequency range (M Hz)	
75 m	$3.950-4.000^{\prime \prime}$	$3.950-4.000$
49 m	$5.950-6.200$	$5.950-6.200$
41 m	$7.100-7.300 \dagger$	$7.100-7.300$
31 m	$9.500-9.775$	$9.500-9.900$
25 m	$11.700-11.975$	$11.650-12.050$
22 m	-	$13.600-13.800$
19 m	$15.100-15.450$	$15.100-15.600$
16 m	$17.700-17.900$	$17.550-17.900$
13 m	$21.450-21.750$	$21.450-21.850$
11 m	$25.600-26.100$	$25.670-26.100$

- Not allocated in Region 2. $3900-4000 \mathrm{kHz}$ allotted in Region 3.
\dagger Not allocated for broadcasting in Reglon 2 (the Americas).

The outcome must be considered "meagre" by many administrations and short-wave broadcasters in the western world, who have put so much work into measuring and evaluating data and calculating what they consider to be a very reasonable proposal for all concerned, based on technical data rather than on political motives. It is a disapproving result, which might also be ascribed to the failure of some delegates from less. technically developed areas to fully appreciate the real value of the proposals put forward and their unjustified reserve as to the good intentions behind them.

An observer at WARC 79 must have felt that some of the voting was indeed not free from political motivation. Some countries could occasionally be seen grouping together, and the influence of certain leaders was sometimes very evident. But this is all part of the modern set-up where each country has
one vote only, regardless of the size of its population.
One of the important decisions taken at the conference was to set in motion the preparation for a new technical conference. Such a conference, called a planning conference for the h.f. broadcasting bands, will be held in two sessions, probably in 1982 or 1983 . The first session will establish the technical parameters to be used during the planning conference. Some of the important parameters are: maximum number of frequencies used for the same programme to the same zone; the necessary or maximum transmitter power to be allowed; and a specification for a single-sideband system suitable for future use. Also, the CCIR, which is the ITU's technical consultative committee for broadcasting, is to prepare and distribute extensive data on directional antennae, on methods of estimating field strengths and transmission losses, on calculating necessary protection ratios between co-ch annel and adjacent channel broadcasts, on frequency prediction methods, on solar indices, and so on.

The second session, which will be the planning conference proper, will be held 12 to 18 months after the first session. During this period all concerned will be in possession of the same data. This means that there will be no technical arguments based on data of different origins or liable to different interpretations. It also means that everyone concerned has at least the opportunity to prepare for the responsible task of participating in a world forum on h.f. broadcasting, which will determine its weal and woe for the next twenty years or so.

News notes

The Australian government has authorized tv stations to go ahead with data broadcasting services. The announcement was made by Mr T. Staley, the minister for Post and Telecommunications, who welcomed this development as a useful addition to community services

A multi-track digital recording of an opera, using the 3 M Mincom 32 -track digital mastering system, was made by Polygram during December 1979 and January 1980. The recording of Wagner's four-and-a-half-hour opera "Parsifal" was performed by the Berlin Philharmonic Orchestra and the Chorus of the Berlin Opera. Analogue tapes were also made of the sessions.

The first deep water optical-fibre telephone cable, a trial 9.5 km loop, was laid by the STC division of ITT, using the Post Office cableship "Iris" in Loch Fyne, on the West coast of Scotland early in March. A regenerator housing with mechanical terminations was also laid with the cable, to be equipped later with the necessary regeneration equipment.

The case for community radio

Many people are dissatisfied with the centralised nature of national broadcasting, even when it includes regional and local stations Community feeling, discussion and culture could be encouraged by alternative radio. Norman McLeod assesses what could be done in the UK

'Off-resonance' metal defector

This newcomer to metal detecting is basically similar to the b.f.o. type but senses the search coil's inductance change differently and uses the properties of a parallel-tuned circuit to obtain more information about the physical nature of the object

What happened to analogue computers?

Apart from the i.c. op-amp. analogue computing techniques seem to have been swamped by the tide of digital computers and microprocessors. This article reminds us of the basic electronic analogue techniques and of how flexible they are for modelling proposed systems

LC oscillators: general theory

by Peter Williams, Ph.D. Paisley College of Technology

PTASE RELATIONSMPS

RL nerwore
L6 NETHORA

Transistor and valve oscillators can be closely related: not in the obvious way by a direct replacement, but with inputs and outputs interchanged. If a particular network requires a transistor of short-circuit current-gain $h_{f e}$ for oscillation, and used with a valve with terminations reversed requires an open-circuit voltage gain of μ, then $\mu=h_{f 0}$. Neither the input resistance of the transistor nor the output resistance of the valve appear in the frequency and gaindetermining relationships. This is a surprising result and though exactly true only for a circuit composed of pure reactances it remains useful under a wide range of practical conditions. The minium number of pure reactances for oscillation with a single device is three, two of one type and the third of the opposite type. By extension, circuits may use mutual inductance and other more complex arrangements but at the frequency of oscillation the reactances are always equivalent to two inductive and one capicitive or vice versa.

Taking the device resistance ($h_{\text {re }}$ for the transistor and r_{d} for the valve) into the external circuit the passive circuit becomes the general form shown, i.e. activated by an ideal voltage amplifier from left to right or by a current amplifier from right to left. The particular LC form corresponds to the previous valve/transistor oscillators. The configuration is identical with the RC lag-lead network, the basis with the related Wien and lead-lage networks of so many RC oscillators. In the LC form the overall phase shift is found to be 180° at the frequency for which the reactances go into series resonance and an inverting amplifier is used. The RC circuit has zero phase shift at the frequency of maximum response and needs a two-stage amplifier for the non-inverting gain. From the standpoint of frequency stability, it is the rate-of-change of phase of the passive network at the frequency of oscillation that is important. The higher this value the smaller the frequency shifts in compensating for internal amplifier phase errors or those resulting from the intermodulation via feedback distortion components.

These are quide different for the two circuits; that the LC circuit has a higher $\mathrm{d} \phi / \mathrm{d} \omega$ at the frequency of oscillation. Considering the RC circuit first, the two sections result in successive phase lags and leads. It is simplest to visualize if the second stage impedance is much higher than the first but with equal time-constants. There is then a simple relationship for the frequency at which the first stage provides a 45° lag simultaneously with a 45° lead for the second stage, i.e. a net phase-shift of zero. Equal R and C values modify the relationship but leave the principle the same, viz a single frequency at which the phase shifts cancel. The LC circuit depends on resonance to obtain the necessary phase conditions. The currents in L, and L_{2}, C are antiphase only for those frequencies at which the reactance of C exceeds that of L_{2}. The net current flow can therefore become zero resulting in there being no voltage dropped across R. It is this that allows R to vanish from the frequency and gain-determining equations.

Further inspection of the phase relationships shows that the voltages across C and L_{2} are anti-phase with v_{c} greater in magnitude than v_{12}. Because, at resonance, v_{12} is antiphase to the drive voltage v, it is the inductor voltage in this configuration that is normally used to close the oscillatory loop. This form is shown in the second of the two circuits with an inverting amplifier. If the locations of L_{2} and C are interchanged then at the same frequency the output of the network is now in phase with the drive voltage but of greater magnitude. Hence a non-inverting voltage amplifier with voltage gain below unity is required. The new oscillator might be described as a grounded-collector (or drain or anode) oscillator but not a common-collector. This last terminology must be avoided as there is no external signal source and hence there cannot be a common point between input and output. The terminal that is grounded is merely a matter of convenience, perhaps of biasing of minimizing stray capacitance or of extracting the signal; the nature of the oscillator remains unchanged.

The three circuits shown simply represents shifts in ground points for the same basic oscillator; L_{1} still appears between base and emitter, L_{2} between collector and base. The supply times are assumed to have zero impedance to ground and bias networks are omitted. This latter point is of practical importance because one factor influencing the choice of configuration will be the case of biasing. Considering the common base circuit first it can be seen that a direct current path is needed for the colleltor current, but one whose impedance is very high at the frequency of oscillation. This suggests a large-value inductance (or a parallel resonant circuit!) which is not an attractive solution. This problem is not present with the other two, though each requires a bias path for base currents. If the bipolar transistors are replaced by junction fets capable of operating with $V_{G S}=0$ then a self-biasing oscillator results in each case.

LC oscillators: general theory

THEORY

The two forms have the passive networks similarly terminated on the assumption that only the input resistance of the transistor and the output resistance of the valve or f.e.t. need be considered, i.e. in both cases there is a conducting path across L_{1} but not across L_{2}.

Let $t=v_{0} / v$ for the general passive network shown. Applying Thevenin's theorem to R, Z_{1}

$$
\begin{aligned}
i_{v}= & \frac{Z_{3}}{Z_{3}+Z_{2}+\frac{Z_{1} R}{Z_{1}+R}} \frac{Z_{1}}{Z_{1}+R} \\
& =\frac{Z_{1} Z_{3}}{Z_{1} Z_{3}+Z_{1} Z_{2}+\left(Z_{1}+Z_{2}+Z_{3}\right) R}
\end{aligned}
$$

For oscillation the circuit would need to be connected to an amplifier of voltage gain A_{v} so that

$$
\begin{aligned}
& A_{v} t_{v}=1 \text { at one frequency only } \\
& A_{v}=1+\frac{Z_{2}}{Z_{3}}+\frac{R}{Z_{1} Z_{3}}\left(Z_{1}+Z_{2}+Z_{3}\right)
\end{aligned}
$$

By reciprocity, if the same network is interconnected with an ideal current amplifier of current gain A_{i} then A_{i} has to meet the same constraint.
For many oscillators the impedances are almost pure reactances i.e.
$Z_{1}=j X_{1}, Z_{2}=j X_{2}, Z_{3}=j X_{3}$, where X_{1}, X_{2}, X_{3} can have either sign subject to the constraints to be established below.

$$
A_{v}=1+\frac{X_{2}}{X_{3}}-j \frac{R\left(X_{1}+X_{2}+X_{3}\right)}{X_{1} X_{3}}
$$

Equating real and imagi iary parts

$$
\begin{aligned}
& A_{v}=1+\frac{x_{2}}{x_{3}} \\
& x_{1}+x_{2}+x_{3}=0
\end{aligned}
$$

(i) This last condition corresponds to the series resonant condition of x_{1}, x_{2}, x_{3}.
(ii) The constraint cannot be satisfied using three reactances of the same type as there must be at least one capacitive and one inductive for resonance.
(iii) If used with a grounded-emitter (grounded-source) stage with inverting gain then $X_{2}>X_{3}$ and they must be of opposite types.
(iv) To simultaneously satisty the second constraint, X_{1} must be of the same type as X_{3}.
The above are the conditions resulting from $A_{v}<0$. Other conditions obtain for $1>A_{v}>0$ and $A_{1}>1$.

- A comparison of the related LC and RC forms shows the lead/lag cancellation of the former, and the availability of more than one feedback connection for the latter, since the voltages at resonance are all either in phase or in antiphase.
- Because $V_{c}+V_{L 2}=V_{L 1}=V_{0}$ and $V_{L 2}$ is antiphase to V_{c}, then V_{c} is in phase with V_{0} and exceeds it i.e. $1>A>0$.

For the second form, V_{12} is antiphase to the output and $A^{\prime}<0$.

$$
\begin{aligned}
& \frac{x_{1}}{x_{3}}+\frac{x_{2}}{x_{3}}+1=0 \\
& \text { i.e. } \frac{x_{1}}{x_{3}}=-A_{v} \\
& x_{1}: x_{2}: x_{3}::-A_{v}: A_{v}-1: 1
\end{aligned}
$$

EXAMPLE

A bipolar transistor with $h_{\text {te(min) }}$ of 50 is used with $\mathrm{C}=500 \mathrm{pF}$ and is required to oscillate at 200 kHz . Determine suitable values for L_{1}, L_{2}

$$
\begin{aligned}
& Z_{1}=j \omega L_{1} \quad Z_{3}=j \omega L_{2} \\
& Z_{2}=\frac{1}{j \omega c}
\end{aligned}
$$

The fraction of the output current flowing in $h_{i e}$ is

$$
\begin{gathered}
i=\frac{\frac{Z_{1}}{h_{i e}+Z_{1}} \cdot Z_{3}}{Z_{3}+Z_{2}+\frac{h_{1 e} Z_{1}}{h_{i e}+Z_{1}}\left(-h_{\text {ie }} i\right)} \\
=-h_{\text {he }}=\left(Z_{3}+Z_{2}+\frac{h_{i e} Z_{1}}{h_{i e}+Z_{1}}\right)\left(\frac{h_{i e}+Z_{1}}{Z_{1} Z_{3}}\right) \\
=\frac{h_{\text {ie }}}{Z_{1} Z_{3}}\left(Z_{1}+Z_{2}+Z_{3}\right)+1+\frac{Z_{2}}{Z_{3}}\left(i \omega\left(L_{1}+L_{2}\right)+\frac{1}{j \omega_{c}}\right)+1-\frac{1}{\omega^{2} L_{1} L_{2}}
\end{gathered}
$$

Equating real and imaginary terms

$$
\begin{aligned}
& \omega^{2}=\frac{1}{\left(L_{1}+L_{2}\right) C} \\
& -h_{1 \mathrm{e}}=1-\frac{1}{\omega^{2} C L_{2}} \\
& h_{\mathrm{fe}}=\frac{\left(L_{1}+L_{2}\right) C}{L_{2} C}-1=\frac{L_{1} C}{L_{2} C}=\frac{L_{1}}{L_{2}} \\
& \therefore L_{1}=50 L_{2} \\
& L_{1}+L_{2}=\frac{1}{\left(2 \pi 200.10^{3}\right)^{2} 500.10^{-12}} \\
& \quad=\frac{1}{4 \pi^{2} .5} \approx 5.07 \mathrm{mH} \\
& \therefore 51 L_{2}=5.07 \mathrm{mH} \\
& L_{2} \approx 99.4 \pi \mathrm{H} \\
& L_{1} \approx 4.97 \mathrm{mH}
\end{aligned}
$$

Ih ie plays no part in determining the resonant frequency nor in the ratio of the components. But it does affect Q and the behaviour of the circuit for any departures from the nominal conditions.

Image sensor

Drive circuits are included in the IPL 64P image sensor i.c., which forms the first item in a new family of devices from Integrated Photomatrix. It can be operated in conjunction with a t.t.l. oscillator and other features include a programmable shift reg-

ister, making operation as a 1 to 64 element array possible. The i.c. is c.m.o.s. compatible and a quartz window extends the spectral response to 250 nm , making it suitable for spectrographic applications. The one-off price is £45. Integrated Photomatrix Ltd, The Grove Trading Estate, Dorchester, Dorset
WW301

Flexible contact transducer

Designed as a self-adhesive ; acoustic transducer and intended for applications such as the direct -amplification or recording of acoustic musical instruments, the-Ducer" is a flexible electret transducer in flat tape form available in several lengths to suit various instruments. According to the makers, C-Tape Developments, the device offers a very low noise level, a flat frequency response over the range 10 Hz to 5 MHz , and is supplied complete with a f.e.t. amplifier, which has a variable output level, permitting control of an external amplifier. Because
the device detects vibrations through a solid it is relatively insentitive to airborne signals, partially relieving the typical problem of "howlround," which is induced acoustic feedback. The makers quote many other uses such as that of stress detection, burgular alarms (where "invasive" sounds can be picked off for attention), or situations where a high immunity to electromagnetic or radio frequency interference is a problem. The amplifier/polarizing supply required consists of two PP3 batteries and the amplifier unit is portable. The "professional" range has provision for mains or phantom powering and the price scale begins at $£ 59$ plus v.a.t. C-Tape Developments, 128 Grange Rd, Guildford, Surrey GU2 6QP.
WW302

Versatile microcomputer

The System 80 computer, which is fundamentally a packaged Nascom -2, has been designed for flexibility, several new boards having been introduced. The main housing contains a racking frame which holds a mother board, a power supply, the c.p.u. board and up to four expansion boards. Provision is made for external connection to the boards and the computer has a g.r.p. cover with a keyboard cutout. A future expansion housing will accommodate a further five boards, mounted on top of the System 80 case. A programmable character generator board uses $2 k$ bytes of static r.a.m. and can accept the Nascom blockgraphics r.o.m. The high resolution graphics operate on a cell structure consisting of 112 dots. Up to 128 cells can be produced in the 2 k r.a.m. and each cell, once defined, can be displayed any-

where on the screen. A colour board offers high or low resolution for the three main television systems or an r.g.b. output. High resolution uses 6 k of static r.a.m. and gives a choice of 16 colours. A dynamic r.a.m. board is available with 16,32 or 48 K bytes and has decoding, buffering and memory support. An input/ output board can accommodate three MK 3881 p.i.as, a MK 3882 counter-timer and a 6402 u.a.r.t. The fifth optional board, a floppy disc controller, can handle up to four Siemens double-density, double-sided $51 / 4$ in drives using the 1791 i.c. Various link options permit single or double-sided and single or double-density disc to be used and the c.p.u. can be run at 2 or 4 MHz . Nascom claim that the larger the system, the more competitive the price becomes. For example, with System 80 supported by 96 K of r.a.m., a programmable character generator, a high resolution colour card, and a complete twin disc set, the cost is about $£ 1,750$. All parts can be supplied in kit form. Nascom Microcomputers Ltd, 92 Broad St, Chesham, Bucks.
WW303

Sound level exposure time meter

The Department of Employment's "Code of Practice for Reducing the Exposure of Employed Persons to Noise" defines the maximum time for which an employee may be safely exposed to high sound levels in a working day. At 90dBA an
employee may work for eight hours but if the level increases to 93 dBA (a barely audible increase), the energy content is doubled and the permissible working time reduced to four hours. At a typical discotheque level of 110 dBA the exposure limit is less than five minutes per day. In addition to displaying the sound level, the Willie 85E has a linked scale showing the level and the maximum permissible exposure time. The microphone is mounted on a "pull-out" boom to limit case reflections and the list price of the complete unit is $£ 130$. It is also available as a full measurement kit complete with calibrator in an attache case, priced at $£ 215$. W. C. Willis and Co, Ltd, 6 Methil St, Scotstoun, Glasgow G14 0BH.

WW304

Mobile radio test set

Full system testing of mobile communication receivers and, transmitters is the function of the Farnell TTS 520. The test set (lower of the two instruments shown in the photograph) is married to a signal generator and is capable of handling outputs of up to 100 W via a suitable IEEE488 interface module. The TTS 520 incorporates an r.f. counter, an automatic modulation meter, a directional r.f. power meter, an a.f. voltmeter, an a.f. synthesiser, a distortion analyzer, an a.f. counter, weighing filters and an r.f. power load/ attenuator. Among the measurements Farnell says the test set can handle are transmitter frequency, power output and modulation level, sensitivity,
bandwidth and distortion content. Transmitter continuous tone modulation checks can be carried out as can checks on aerial efficiency. Identical tests can be carried out on receivers by means of the SINAD or quieting method. Price of the test set is quoted as "well under $£ 6,000$ exicluding v.a.t." Farnell Instruments Ltd, Sandbeck Way, Wetherby, Yorkshire LS22 4DH. WW305

Wrap-around braid connectors

Although a specialised tool is recommended for installation by the makers, Thomas and Betts, the "Shield-Kon" range of connectors can be used to make secure outer braid or foil connections to conventional shielded or co-axial cable in a matter of seconds. Four sizes are available over the range 0.055 in to 0.300 in in diameter. Thomas and Betts Ltd, Sedgwick Rd, Luton, LU4 9DT.
WW306

Miniature digital panel meter

The overall measurements of the OEM-1 digital panel meter module, made by Anders Electronics Ltd are $60 \times 38 \times 15 \mathrm{~mm}$ deep. In spite of being very thin, the unit features a $31 / 2$ digit liquid crystal display with $1 / 2$ in digits and can be powered from a single 9 V d.c. supply. The current drawn is 1 mA and the makers say that the single-chip dual-slope a-to-d converter provides a true differential input with auto-zero and auto-polarity operation drawing a cumulative current of 1pA. Among the unit's operational modes is the display of inputs ${ }^{\text {i }}$ up to $\pm 200 \mathrm{mV}$ directly with an accuracy of 0.1%. Alternatively, it can be connected for differential (i.e. ratiometric) operation, per-1 mitting operations such as resistance and temperature measurement. "Quantity" price is $£ 10$ per unit, with evaluation samples

WW305

WW306
costing £21.90, plus v.a.t. Anders Electronics Ltd, 48-56 Bayham Place, London NW1 0EU.
WW307

Contemporary-type reverb plate

A "contemporary-type sound" is claimed for the Ecoplate reverberation plate, made by Programming Technologies Inc. of Linolnwood, Illinois. One of its features is a long h.f. decay time giving a "crisp sibilance that is very attractive for contemporary music". The long decay time is in contrast, to the fast h.f. decay of plates like the more naturalsounding EMT plate. A new smaller version, Ecoplate II, was shown at the February London AES convention that measures $173 \times 109 \times 26 \mathrm{~cm}$. If plates are made smaller they must also be made thinner to keep the eigentone density and hence coloration constant. But with a thinner plate, air pressure dampens the higher frequencies, resulting in a loss of high frequency decay time. To offset this, Ecoplate II has been developed to match the characteristics of the larger plates, the, makers say, by the use of a "special" metal and damping plate. Reverberation time is adjustable from one to six seconds. Price is $£ 1300$ and UK sales are through Turnkey at 8

East Barnet Road, New Barnet, Herts EN4 8RW. WW308

Power line filters

Protection against surges and transients is the main function of "Kleanpower" line filters, made by Lightning Elimination Associates. The MB series is an extension of the LEA type SE but offers the additional features of protection from noise spikes, r.f.i. and other disturbances which could cause damage or logic errors. Typical applications mentioned by the makers include computers, multiplexers, medical monitoring systems, electronic registers, word processors, communications systems on $200 /$ 240 V a.c. supplies and has a, maximum current rating of 13A. Lightning Elimination Associates' Ltd, Vine Cottage, Moreton, Thame, Oxon.
WW309

Sealed touch keyboard

Optional X-Y or individual leadouts and a choice of 12 or 16 key formats are features of the Invader fully sealed touch keyboard. The unit, manufactured by. Jack Evans Electronic Distribution has a normal operating temperature range of $-29^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and.each contact will carry up to 100 mA at 300 V d.c. at, a typical contact resistance of 1 | milliohm. The makers quote the ${ }_{1}$ advantages of a wipe-clean flat surface and very low profile, and the keyboards are fully t.t.1. and c.m.o.s compatible. Jack Evans 'Electronic Distribution Ltd, 244. ,Bath Rd, Hayes, Middlesex
WW310

Conductive plastic digital fader

A new conductive plastic digital fader offers a direct grey scale 8 -bit output from zero to decimal 255 within a stroke length of 102 mm . The makers are Penny and Giles and the fader is interchangeable with the company's 1100 and 1500 series faders, making use of identical top plates and fascias. Applications quoted for the fader include driving digital attenuators or direct inputs to a computer. Penny and Giles Group, Mudeford, Christchurch, Dorset BH23 4AT. WW31 1

Neon displays

Described as "bright neon orange seven segment displays" by the 'makers, Impectron, the NEO8000 range of indicators measure $130 \times 80 \times 9 \mathrm{~mm}$, operating at a 'peak anode supply of 190 V and peak anode current of about 5 mA . Normal operating temperature range is $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$; the displays are designed for either p.c.b. or socket mounting and the makers expect them to be used in public information displays, vending equipment and industrial control equipment. Impectron Ltd, Foundry Lane, Horsham, W. Sussex.
WW312

Extended view

We get a lot of press handouts from the BBC and IBA. Fairly often, they are about new transmitters and relay stations and, to be perfectly honest about it, we don't often spare them much more than a passing glance as they slither a cross our desks on their way to the news person. We think we know all about it, you see, having read so many.

So I thought, too, until I read a recent example and took note of some of the figures. Four new relay stations were to be opened, each serving as few as 500 people. One of them was to transmit to an audience of 2500 , but three of the four were for $500-600$. It struck me as totally admirable that small communities like this weren't being ignored, so I rang the Beeb to ask for more information. (I spoke to the BBC because it was their press release, but the IBA are just as much involved.)

It turns out that a four-channel relay station can cost about $£ 40,000$, so that the smallest groups are having about £80 per person spent on them, split between BBC and IBA. In Orkney, where the groups are smaller, the cost has been much higher - around $£ 480$ per person. In a year the two broadcasting organizations get through about £8million between them on this sort of filling-in exercise and the communities served are getting smaller as the bigger blank spots are eliminated. Coverage of the UK population is now 98.6% and it would need about another 100 relays like these to get it up to 98.7.
A bewilderment of terms
I think it's time we tidied up the verbiage a bit, because it's beginning to confuse a lot of people who aren't engineers, but who have to know something about electronics so that they can make decisions which could affect everyone. It isn't just beginning either - it's got some of them talking a whole lot of utter cobblers because they've misunderstood definitions.

A recent report for the Department of Industry set out to discover what use industry was making of, to pluck a word out of the air, microprocessors. The information was gathered by telephone, the questions being put to managing directors of companies by interviewers whose main concern in life is not electronics. So. to start with, this was not a very promising approach; not many company directors could, with any confidence, distinguish an integrated circuit from a momentarily-inactive centipede. It was, in fact, a proceeding not unlike a Xingu Indian and a native of Vladivostok discussing Test cricket.

The reason for the difficulty seems to
lie in the quantity of different descriptions given to i.cs, some of which mean the same while others don't. Take just a few: integrated circuit, microelectronics, microchip, microprocessor, solid-state, 'new technology', silicon chip, silicon microcircuit, microcomputer - how on earth can we expect a non-specialist to ask or answer intelligent questions when faced with a collection of gobbledygook like that?

For example, if a non-engineer is asked how long his company has been using microchips, microelectronics, silicon microcircuits or solid-state devices, he might say they've used them for ten years, say, meaning they've had small-scale logic, linear circuits, counters and the like. The trouble is that these words are taken to be synonymous with 'microprocessor', 'new technology' and 'microcomputer' to the lay mind, which does rather tend to mean that any survey conducted on these lines will be, at the very least, suspect.

Verbose video

All that exhausting trekking across the sitting room carpet every two or three hours to push the television channel button is now, of course, very much a thing of the Spartan sixties. No one with any claim to the smallest degree of savoir vivre will countenance any more effort than a touch of the button of a remote-control unit. A quick tap on the key-pad and off goes one piece of imported, American life-style propaganda to be replaced by something more mind-stretching like "Blankety Blank". You can even wind down the sound during the commercials without tiring yourself out. What more could one ask?

A good deal, it appears, because there are plans to produce a telly-box that not only does as it is told but tells you it's done it - it talks back. Now, personally, what I like to see in pets, small children, wives and domestic appliances is blind, unquestioning obedience. I do not wish to become involved in tiresome discussion with a garrulous electrical device.
I can see myself becoming visibly annoyed if, when told to switch to "Match of the Day" the creature says "Oh! do you think that's wise? There is a Western on BBC2 which is really rather super - I firmly believe you would be much better off with that." Mind you, if you could instil some semblance of your own tastes into a store in the machine, you would be able to rely on the thing protecting you from nasty shocks. An inadvertent instruction to switch to "Top of the pops" would meet with an offended refusal to do any such thing
and a suggestion that you read a good book for the next two hours because there isn't anything worth watching.
Maybe there's something in the idea after all.

Garage gurus

"It'll cost yer, squire," is a remark that garage mechanics learn before they progress to more advanced expressions such as "Mama". The pursed lip, sorrowful shake of the head and low whistle of disbelief are acquired much later in life, on the threshold of manhood and around the time when they learn how not to bat an eyelid when uttering a statement such as "That'll be a fiver, guv," after a cursory glance at the points and a quick polish of the radiator cap.

I exaggerate, of course. Garage mechanics are quite possibly totally admirable to a man, but I usually come upon them in circumstances of such dire discomfort and after such long periods of lonely vigil by the roadside that Sir Galahad himself would appear ill-natured and surly.

Having, at length, arrived on the scene, diagnosis of the trouble is usually rapid, and the fault can be put right there or at the garage, because spares are fairly easy to get hold of and reasonably quick, though expensive, to fit. (I speak as one with some experience of the above scenario.)

In short, on their own ground these chaps are pretty competent, on the whole, even though the prices they charge often do seem to have been calculated by squaring the chassis number. What bothers me is what will happen when microprocessors begin to take over.

It is also a matter for concern to Olaf Lambert, of the Automobile Association. While conceding that chips will make for quieter and more economical cars, he is worried that not many garages are going to be able to afford the test gear to diagnose faults, particularly as the connectors may well be different in different makes of car, in keeping with the VITSOL policy (Variety is the spice of life).

I do so agree. It is not easy to imagine the minor prophet at the local garage explaining the sleeping sickness afflicting one's wheels in terms of microprocessors. "It's yer chips, innit?" he will say. "What yer want is new r.o.m. - soon wear out, these foreign ones", he will remark, casually, mentioning also that he will need to pay a 'hightechnology bonus' and that it will therefore cost even more than usual.

It almost makes you hope the oil runs out quickly so that we can all go back to push-bikes.

 If noise is a problem

 If noise is a problem in your design in your design these instruments these instruments are essential for are essential for diagnosis

 diagnosis}

ANM3

- Switchable quasi peak/true r.m.s.
- CCIR weighting filter
- IEC weighting filter
- DIN weighting filter
- High sensitivity ($10 \mu \mathrm{~V}$ f.s.d.),low noise

WW - 082 FOR FURTHER DETAILS

Simply ahead . . I.L.P's PROVEN RANGE OF HIGH

Chosen in more countries throughout the world than any other U.K. make

I.L.P. constructional modules are different. Whereas most others come with components neatly arranged on open P.C.Bs with little else, I.L.P. modules are encapsulated within totally adequate heatsinks and have circuitry which makes further components unnecessary. As a result, I.L.P. power amplifiers, pre-amp and matching power supply units are infinitely more rugged, impervious to extremes of temperature in use and they can be positioned to requirements. Nor is metal work needed to take away heat connections. I.L.P. modules are made for endless years of optimum service. Circuitry, workmanship and performance are of the highest standards, equal to the demands of the finest loudspeakers, pick-ups, tuners, digital sound sources, etc.
Tomorrow's equipment is likely to be even more exacting than today's so that any amplifier system less than the best will be completely inadequate. Now study the tested and guaranteed specs. for I.L.P. That is why more people in more countries prefer these British designed and made modules.

Why toroidal?

Toroidally wound transformers are more compact than their conventionally laminated equivalents, being only half as high and heavy. Their circular profile ensures greater operating efficiency and as such they are particularly valuable in heavy duty applications. We have our own production section for winding and making toroidal transformers, enabling us to offer this much soughtafter type at competitive prices. Four of the larger models in our range are now supplied with this type of transformer.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

Danavox

DANAVOX (GT. BRITAIN) LTD.
1 CHEYNE WALK.
NORTHAMPTON NN 15 PT
TEL. NORTHAMPTON (0604) 36351

of research... on commonenens snd accossories tor ditataing machines, tele-communications, lhearing aids and electroacoustic equipment etc."

Whatever it is, the of power amplifiers will handle it The ${ }^{\prime} \mid$ S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D
Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel
900 w r.m.s. in bridge mode
$0 \mathrm{C}-20 \mathrm{KHZ}$ at full power
0.005% harmonic distortion (typical) at
300 F r.m. into 4 ohms at 1 KHZ
3 KW dissipation from in-built force cooled
dissipators

S 2500
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
Full short and open circuit protection
Drives totally reactive loads with no adverse effects

A complete range of matcinng transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

QUANTITY PRICES - SAVE - SAVE - IMMEDIATE DELIVERY INCL..VAT

 WW - 086 FOR FURTHER DETAILS

Happy Memories

$4116200 \mathrm{~ns} \quad £ 4.50 \quad 4116150 \mathrm{~ns} \boldsymbol{£ 5 . 5 0}$
$2114200 \mathrm{~ns} \quad £ 4.75 \quad 2114450 \mathrm{~ns} \quad £ 4.25$
$2708450 \mathrm{~ns} \quad £ 4.95 \quad 27.165$ volt £16.95
21L02450ns 85p 21 L02 250 ns £1.25
VERBATIM mini discs soft sectored-with FREE library case $\mathbf{£ 1 9 . 9 5}$ per ten.

SALE

We're moving shortly to new premises and don't want to carry much

Bargains from Saturday, 26th April
All prices include VAT
30p postage on orders below $£ 10$
Access \& Barclaycard

All orders to

Dept. WWW

19 Bevois Valley Road
Southampton, Hants, SO2 0JP
Telephone (0703) 39267

FUSES Quick acting, Anti surge. Ceramic, from $£ 2.80$ per 100 POWER RESISTORS $5 w-17 w .4 R 7-10 \mathrm{~K}$, from $£ 10$ per 100 PCB Guides, self-fixing from $\mathbf{\$ 4 . 8 6}$ per 100
C.f. RESISTORS, AEL \& Iskra $1 / 8 \mathrm{w}-2 \mathrm{w}$, from $£ 4$ per 1.000 ELMA knobs \& accessories. Crimp (solderless) terminals Cạhle Sleeves \& Markers from $£ 1$ per 1.000
SLEEVING, Neoprene, PVC, Silicone rubber - all colours. Surplus stock lists available of Power resistors. c.f. resistors, self-fixing epoxy Eureka resistance wire (and other types), Polystyrene capacitors etc.

Write, phone or call for lists required.

PBRA LTD Hopfiold
 (073274)

Golden Green, Tonbridge, Kent, TN 11 OLH

WW-050 FOR FURTHER DETAILS

PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY

Audio Range: $10 \mathrm{~Hz}-100 \mathrm{Khz}$, in four switched ranges.
Distortion
Extremely low.
(.0015\% typical, @ 1 Khz)

Output
Iv into 600』, with
Fixed and Variable Atten.
Sine and Square Wave.
Battery or Mains.

$£ 36.00$ (batty.)
Model
Tax extra £5.40
149
Based on a Linsley Hood design

TELERADIO ELECTRONICS

325 FORE STREET, EDMONTON, LONDON N9 OPE 01-8073719

Closed Thursdays
SAE for lists

The New FM/AM 1000s with

Spectrum Analyser-we call it the

 SUPER-SA portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-\mathbf{3 0} \mathrm{MHz}$ receive with bult-in 150 MHz frequency counter plus option of 0-1.5 MHz receive and / or any transceiving application $1.8-30 \mathrm{MHz}$.

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear

We are situated just around the corner from West Hampstead Underground Station '(Bakerloo line). A few minutes' walk away is West Hampstead Midland Region station and West End Lane on the Broad Street Line. We are on the following Bus
. Joutes: $28.59,159$. Hours of opening are 9.5 Monday to Friday Closed for Lunch Joutes: $28,59,159$. Hours of opening are 9.5 Monday to Friday Closed for Lunch 1-2. Saturday we are open g-12.30 only. World wide expörts.

DRAKE SALES SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No. 888 7151. Tolephone: 01-624777 "Cobles: Radio Shack, Lom hon, NWB, Tolex: इ37is

WW-042 FOR FURTHER DETAILS

DEVELOPING A MICROSYSTEM?

SOFTY-Whatelse do you need?

For literature and the name of your local retailet. contact Dataman
P.O. Box 5, Dorchester,

Dorset. DT2 7 UB or
Telephone 03002700.

Climax House, Fallsbrook Rd., Streatham, London SW16 6ED Tel: 01-677 2424 Telex: 946708

		NDUC	OR			BD	0.40	bren	028	CRSS 60	1.04	2201	1.15	${ }^{\text {ach }}$ O204	288	27×502	0.18	${ }_{2}^{2 N 1369}$	0.83	${ }^{2 \mathrm{~N} 3771}$	2.02
AAlil9	0.12	ASZ15	1.44	BC172	0.12	BD13	0.44		0.30 0.37	GE	1.73 4.80	OAZ206	1.15	${ }^{\text {Ocher }}$	${ }_{2}^{2.88}$	2TX503	${ }^{0.20}$	${ }_{\text {2N }}^{\text {2N1671 }}$	${ }_{1.73}^{0.29}$		2.30
AAY	0.31	AS216	1.44	${ }^{\text {BC173 }}$	0.14		0.39		0.35		0.96		2.30	0 C 2	2.88		0.23	2N1893	0.29	2 N 3819	0.41
AA	0.48	'ASZ17	1.44	BC177	0.17	BD	0.40	BF33	0.35	GM0378A	2.02	CO_{2}	${ }_{2.8}$	Oc	2.02	2 T	0.18	2 N 21	202	'2N3838	
A 213	0.21	ASz20	72	178			0.46		36	KSIO	0.52		2.88	OCP	1.4		0.06	2 N 21	1.89		
	0.39		2.30	BC179	18		0.49		4.55	MJE3	0.92	O	3.16	ORP	1.15	N			29		
217	0.31						0.51		2.56		135		3.45	R2					0.28		
	0.69	Y10	2.30		0.12		230	BFS	23	MJE3	0.71	O	1.04	R200	2.5	N40	. 07	2 N 2220	0.21		
	0.23	U110	1.8				1.26		023		1.60			R20108					0.21		
	0.23		0.15				1.36	BFW1	74	MJ	. 63	0	2.30	- TIC	0.35		0.08	2 N 2222	0.21	4058	0.16
AC127	0.23		0.15				0.46	BFW1	0.74	MLE	4		2.30	${ }_{T 112209}$	1.38	N40	0.009		3.86	${ }^{2 N}$	
	0.23						0.63		0.25	MIF	86			T11299		N40	0.09	2N2	20		
	0.29		0.12		0.10		,	-x8	碞	MPF102	0.35	${ }_{\sim}^{\circ}$	73	TIP30A	0.47	1200	0.10		24	2 N	
	0.40				03	${ }^{\text {BDX }} 32$	2.30	BFX8	0.24				92	T1P393A	0. 21	N4009	0.07		0.23		
	0.23		0.06		-0.38	${ }^{\text {BDY } 20}$	1.42	BF888	24	MPFI	0.35	OCl^{0}	0.88	T1P32A	0.55	N4	18	2 N 2	0.63	${ }^{2 N 4124}$	
	0.35		0.07		-38		1.72				35		2.59	T1P33AA	- 78				0.29		
	0.23		0.10	307	0.12		0.29	Y	0.30		28	C	. 69	TIP3P3A	${ }^{0.79}$	ins			0.29		
	0.23		0.14	2088			$0 \cdot 2$		30	MPSA		Cras	0.6		- 0.84	Ss4			0.24		
	0.23		0.14				0.23	BFY	0.30	PS	41		6		. 81	${ }_{15920}$	0.06		0.24		
	0.98	${ }^{\text {BC109 }}$	0.15	3238	0.21				1.4	MPS			0.68		7		0.08	2 N	024		
	0.92		0.14.		0.21		0.26	esxis	24	MPS	0.56		13		${ }^{0.64}$	2 G 301	1.15	2 N 2	0.25		
	0.96	${ }^{\mathrm{BC} C 14}$	0.15	(338	0.20				0.23	NESTS					0.52	2		2 N	0.16		
	0.90		0.16	Y30			0.23		0.23	NKT4	30		0.74		${ }_{0}^{0.52}$		1.27	2 N 30	0.29		8
${ }_{\text {ACY }}$	0.98	${ }^{\text {BCLII }} 17$	0.17							-	990				0.29	${ }^{2 N}$		2 N 3	0.58		
			0.20					8TY79		NKT			1.38	25178			0.29		81		3.80
AD	0.52	${ }_{\text {BC1 }} 125$	0.12			${ }^{\text {BFP78 }}$	0.28	BU	3.67	OAS	1093:	CO_{8}	88	25271	0.26	${ }^{2 N 687}$	0. 29	${ }_{2}^{2} \times 3$	0.69		${ }^{3}$
	0.52	${ }_{\text {BCl }} 126$		Y39		${ }_{8 F} 8$	0.29	${ }_{\text {BU }} 206$	${ }_{2}^{2.02}$				1.7	ZS278	0.65		0.35	2 N 34	${ }^{0.92}$		
${ }_{\text {AFIIO6 }}$	0.52	${ }^{\text {BCLI35}}$	0.16	ВСY ${ }^{\text {¢ }}$	1.15	BFIBI	${ }_{0.35}$	${ }^{\text {BU }} 208$	230	OA47	${ }_{0.16}$	0	0.74	2Tx109	0.13	${ }_{2 N 706}$	0.17	${ }_{2} 2 \times 3614$	1.75	23322	0.92
AF	0.86	${ }^{\text {BC1 } 136}$	0.17	Y4	0.29	BF182	0.35	BY 100	0.52	OA70	0.35	OC88	0.74	ZTT	0.12	2N708	0.23	2 N 3702	0.13	25324	4
		BC137				BF183		BY 126	0.16	0479	0.35	OC122	1.73		0.14	$2 \mathrm{NS30}$	23	2N3703	15		
AFI16	0.86	- BC 147	0.10	BCY58	0.18	BFIB4	0.29	BY127	0.17	OA8:	0.35 .	${ }^{\circ} \mathrm{C} 123$	200	27×300	0.14	${ }^{2} \mathrm{NH131}$	0.30	2 N 3704	0.15	25745A	0.40
AFII7	0.86	${ }^{\text {BC1 }} 148$	0.09 .	Y70	0.17	BFIB5		${ }^{\text {B2X61 }}$	0.21	OA85	0.35	-OC1	259	2Tx301	0.15	${ }^{2} \mathbf{N 1 1 3 2}$	0.30	${ }^{2} \mathbf{N} 3705$	0.15	25746 A	0. 40
AF	0.48	${ }^{\text {BC }}$	0.10			${ }^{\text {BFF}} 199$	0.10	Ses	0.15		0.09	${ }_{0} \mathrm{C} 14$	18	ZTX 303	0.20	${ }_{2 N} 2 \mathrm{~N} 130$	0.40	2N306	0.15		
AF239	0.52	${ }_{\text {BC15 }}$	0.09	${ }_{\text {BCZ21 }}$	1.72		0.12	Y88	0.15	${ }_{\text {OASO}}$	0.09	${ }^{\circ} \mathrm{Cl} 170$	1.15	2TX304	0.22	${ }_{2}$ N1304	0.52	2N3708	0.12		
AF211	316	${ }^{\text {BCCI } 159}$	0.12	${ }^{\text {BD }} 115$	${ }^{0.52}$	BF197	0.14.	CRSSI/40	Qem	Oaza0	0.10	OC171	1.15.	27x311	0.14	${ }^{2} 131305$	0.52	2N3709	0.15		
AF212	3.16	${ }^{\text {BCL } 167}$	0.14	${ }^{\text {BDI21 }}$	1.50	BF200	0.31	CRS3/06	0.52	OA302	0.10	Oc200	1.73	${ }^{27 \times 314}$	0.23	${ }^{2} \mathbf{N 1 3 0 6}$	0.58	${ }^{2 N 3710}$	0.12		
As	0.46	${ }_{\text {ach }}$	0.13			${ }^{\text {BF } 224}$	0.23	CRS3/40	0.86		1.15	OC		2TX501				2 N 371.1.	0.12		
		BCII	0.12	BDI24	L,	8F24	0,			-ris	1.9	C.	$2{ }_{1}$			2N306	0.0.				
A	ES	E130	19.39	${ }_{\text {EF86 }}$	1.74	Gxul	16.10			QY5-3000A		UY41			${ }_{33}^{23.12}$						
${ }^{\text {A1834 }}$	10.35	EIBOF	${ }_{7} 8.83$	EF91	2.07	Gxu3	30.49	PCC84	1.15	QZ06-20	${ }_{27.72}$	V S631	15.24		46.00	$6{ }^{6} 6$	2.02	19	28.75	5749	${ }_{5} .73$
A208	13.58	E182C	9.34	EF92	6.03	GXU4	32.77	PCC55	1.38	R10	5.75	XG1-2500	32.37	51180E	851.00	${ }_{6 F 23}$	1.84	1945	40.25	. 5751	5.36
${ }^{\text {A2234 }}$	10.06	E186F	11.62	EF93	1.15	Gxuso	12.80	${ }^{\text {PCCC88 }}$	1.38	R17	1.89	XG2.6400	22.98	5 Sk 2	2.36	6F28	3	${ }^{248}$	4.87	5763	4.14
${ }^{\text {A2293 }}$	8.62	E188C	36	EF94	1.27	GY50	${ }^{2.95}$	PCCB	L. 51	${ }^{R 18}$	4.89	$\times \mathrm{XG}$	19.32	504	${ }_{2}^{4.35}$	${ }_{681}^{683}$	${ }^{22.088}$	${ }^{300}$. 34	${ }_{58}^{58}$.
${ }^{\text {A2 } 22626}$	17.63	E280F	25.88	EF95	6.27	G232	1.44	${ }^{2} \mathrm{Cl} 193$	1.51	R19	1.38	40	00	$5{ }^{5}$	250	$6{ }^{6}$	121	$3 \mathrm{30C}$	84		5.06
${ }^{\text {A2521 }}$	11.62	E283CC	9.02	EF98	1.44	Gz33	4.60	PCC805	1.01	R20	${ }_{1}^{1.66}$		106	${ }_{5}$	1.78		1.21	${ }^{3}$	${ }_{93} 8$	${ }_{58764}$	+15.59
${ }^{\text {A2300 }}$	${ }^{10.98}$	E288CC	17.25	EFI83	0.92	Gz34	2.18	${ }^{\text {PCCEB0 }}$	2.07	RG3-250	32.49	XR1.1600		573	0.988	${ }_{6}^{643}$	1.21			5887	${ }^{3} 5.06$
${ }^{\text {A3343 }}$	25.56	, EA52	19.43	EFI84	0.96	GZ37	4.60	PCEE2	207.	$\mathrm{RG3}^{2505}$	84.098	-	27.	523	1.73	64	1.3	:30FL12	1.28	5879	5.57
A231	1.22	EA76	2.02	EFrats	12.65	KT61	4.02.	PCF8	1.15	RG3-1250	${ }^{29.56}$	XR1.3200	76.9	524 G	1.75	${ }^{64}$	6.10	\%ort1		5886	12.08
Az41	1.32	EABC30	1.38	EF805s	8.05	KT66	11.50	${ }^{\text {PCCFP2 }}$	1.15	RG4.1250	13.13	RR1-3200A		524 G	1.75 1.79	${ }_{6}{ }^{\text {dib }}$	6.21	$30 \mathrm{FL14}$	1.84	5963	${ }^{3.45}$
BR	8.43	EAC91	0.92	EH50	1.61	kT88	13.80	PCFF6	1.84	RG4.3000	75.44		76.9	${ }^{6.300 .2}$	1.74		9.0.	30L1	1.15	5965	
${ }^{10} 488$	1.9 .54	EAF42	1.44	EK90	1.24	KTW61	2.02	${ }^{\text {PCCFF }}$	1.84	RR3.250	48.68	XR1. 6400	8.	${ }^{64} \mathrm{AB4}^{\text {a }}$	1.44	6k	1.4	300	207	6005	${ }_{6}^{6.33}$
BSs	${ }_{3} 1.33$	EAF801	2.02	EL32	1.73	kTW62	2.02	PCFF200	2.82	RR3-1250	88.20	XR1-6400		${ }_{6 A B 7}$	1.23	$6{ }^{6} 7$	1.73	30.17	2.07	${ }_{6021} 6057$	5.12
日S880	35.24	E841	2.30	EL33	4.02	TW	2.02	PCFF201	245	SIIE12	30.48		149.30	${ }_{6 A}$ 6AC7	${ }^{1.61}$	${ }_{6} 6$	1.73	30819	1.28		4.02
BT3	4.43	Eb91	1.01	EL34TH	2.53	M8079	11.59	PCF801	1.84		${ }_{2}^{2.30}$	¢D1120	2..60	6AF4	1.94		${ }_{7}^{2.08}$		${ }_{207}^{1.38}$	${ }_{6}^{6058}$	${ }^{10.40}$
8217	${ }^{79.79}$	EBC33	2.02	EL34M	2.57	M8080	7.68	PCFFO2	1.82	S130P	288	YD1240	241.50	6 6ab	230	${ }_{6} 6.66$		30914	2.97	6059	4.60
BT19	27.08	EBC41	1.44	EL36	1.84	M8088	9.95	PCFEOS	1.84	STV280-40	(11.50	2759	11.04	6AM6	5.32		2.83	-30PL14	${ }_{2}^{1.93}$	${ }_{6062}^{6061}$	4.89
${ }^{\text {B7 } 29}$	242.93	EBC81	1.26	EL41	1.44	M8082	${ }^{6.41}$	${ }^{\text {PCFFROE }}$	1.84	STV280-80	24.15	2M1000	6.03	6Ahs	3.38	${ }_{6}^{6 L 6 G}$	2, 24	${ }^{35 \mathrm{~F}}$	${ }_{0}^{209}$	${ }_{6}^{61662}$	4.31
879	247.30	EBC90	0.97	ELA2	2.02	M8083	7.59	PCF808	1.84	SU41	2.88	2M1001	6.19	6Ah6	2.81		2.24	${ }^{3} \mathrm{c} 5$	0.69	60.3	4.20
${ }^{\text {BT775 }}$	102.46	EbF50	0.58	ELs1	288	8091	10.85	PCLB2	1.15		10.35	ZM102	${ }^{10.83}$	${ }^{6 A L S}$	1.01	617	288	${ }_{751}$	0.81	${ }_{6054} 605$	6.50
${ }_{\text {CBL }}$	95.16 2.30 1	EBF83	${ }^{1.94}$	${ }_{\text {EL8 }}^{\text {EL8 }}$	1.44 1.15 1.15	2096	4.31	${ }_{\text {PCLP3 }}$	2.35	TDO3.10	${ }_{216}^{24.73}$	2M1021		6AM4	265	${ }_{6} 6 \mathrm{~N} 2 \mathrm{P}$	+1.21	${ }_{7581}$	4.26	${ }_{6067}^{6072}$	4.02
${ }^{\mathrm{Cl} 33}$	2.30	EBL31	4.60	ELs6	2.48	- M8098	4.37	PCLPS	1.24	TDO3.10F	27.60	ZM1023	8.91	6AM6	2.07	6 N 3 P	1.21	85 Al	${ }_{8.63}^{2.26}$		${ }_{7.88}$
CY31	1.15	EC90	1.28	EL90	1.10	M8099	5.98	PCL. 86	1.24	TT15	34.50	zM1040	22.26	6AN5	6.12	${ }_{6}^{6} 7$	1.73	8542	2.42	6097A	
CIK	11.50	EC91	9.35	El9	8.21	M8100	8.23	PCLRO5	1.24	TT21	14.16	2M104	19.16	6ANE	${ }^{3180}$	${ }_{6825}$	4.14		9.15		
${ }_{\text {c }}$ C3	11.50	EC92	. 41	EL95	1.51	M8136	8.4	PD500	4.14	TT22	14.16	ZM10	20.44	6AQ	1.10	${ }_{607}$	2.53		9.15	614	5.89
C3A	23.23	EC157	27.92	ELI56	\$. 60		872	PE06.40N	31.40	TT100	59.51	${ }^{2} 12051$	100.05	${ }^{\text {6ASS }}$	1.84	${ }_{687}^{687}$	2.07	sac	2.47	${ }_{6}^{614}$	5.42
DAA	${ }^{21.50 .50}$	cc3	4.02		${ }_{6} .32$	M8140		PFL20	2.07	TY2.125	${ }^{65.33}$	B3C	${ }^{2.58}$	6AS6	${ }^{6} 9$	${ }_{6 S \text { 6 }}^{6}$	${ }^{1.67}$	9006	(1573	6159	95
${ }_{\text {DA }}{ }_{\text {DA }}$	(12.30	ECC3 3	4.02	${ }_{\text {ELL500/504 }}$	${ }_{3}^{2.16}$	M841	${ }_{5}^{5.52}$	${ }_{\text {PL } 181}$	1.388	TW4.400	${ }^{71.61} 9$	(1824	${ }^{11.50}$	${ }^{\text {6AS76 }}$	7.76 0.98	${ }_{6}^{6557}$	${ }_{1}^{1.84}$	${ }_{92 \mathrm{AG}}$	${ }_{9} 15$	${ }_{6201}$	${ }_{5} 9.93$
DaF91	0.46	ECCBI	1.01	ELP21	11.06	м814	4.31	PL81A	1.38	TY5.500	147.20	1863	57.50	${ }^{6 A U 5 G}$	4.81	${ }^{6517}$	1.73	92 AV	9.15	${ }_{642}$	17.25
DAF96	1.15	ECC82	0.82	ELS22	11.38	M8149	598	PL82	1.38	TY6.800	165.70	iR5	1.21	6 6UV	1.24.	6557	1.84	9541	${ }^{6.56}$	${ }^{68838}$	2.81
DETT22	24.15	CC83	1.01	EM34	5.75	8161	7.87	PLI33	2.55	TYB-5000A		155	0.46	6AV	4.36	6S57	1.50	${ }^{15082}$	${ }_{5}^{2.76}$	${ }_{7025}^{6973}$	${ }_{\text {4, }}^{4}$
DET24	${ }_{5}^{52.90}$	ECC84	${ }^{1.36}$	EM80	${ }_{1}^{1.15}$	M M	7.59 5.17	${ }^{\text {PLLS } 54}$	${ }_{1}^{1.24}$	TY6.5000 ${ }^{2}$		${ }_{\text {2ASI }}$	-	${ }_{6 A}$ 6AX6	${ }_{3} .57$	$6_{65 N 7 G T}$	${ }^{1.84}$	${ }_{150 \mathrm{C} 2}$	${ }_{1.73}$	7551	${ }_{6} .83$
DF96	1.15	ECC86	2.30	EM84	1.15	M8190	5.29	PL508	2.07		236	${ }^{2 C} 398$	${ }^{21.85}$	${ }_{687}^{687}$	${ }^{1.73}$	6S57	1.50	$150 \mathrm{C4}$	2.42		${ }^{13.09}$
Dk91	1.21	ECCC88	${ }_{1}^{2.07}$	EM85	${ }_{1.73}^{1.44}$	M8195	4.25	${ }^{\text {PLLL509 }}$	3.68	TY6-5000		${ }^{2} \mathbf{C} 43$	20.70	68	1.15	6SR7 655 6557	1.73		${ }^{6.90}$	7387	${ }^{22.54}$
- ${ }_{\text {DK96 }}^{\text {DK92 }}$	1.26	${ }_{\text {ECC89 }}$	1.88 10.27	EM37	1.728	M88	${ }_{6}^{7.47}$	${ }_{\text {PLLEOI }}$	${ }_{1.27}$	TY7.6000 A		${ }_{2 E 26}^{2021}$	${ }_{7,82}^{2,84}$	6BAA 6BA7	5.89	6U5G	230		11.50	7868	${ }_{4}$
DL92	1.26	ECC189	1.90	EN91	2.94	M8212	11.76	PL802	3.40		286.93	2142	88.70	6BABA	4.31	648	0.92	805	23.00	7895	14.84
DL.94	1.38	807	2.02	EN92	618		3.17	PY	1.27	TY7.6000		215	201.25	${ }^{68 C 4}$	${ }^{4.27}$	${ }_{6}^{608} 8$	3.24	807	2.30	8005	50
${ }_{\text {disio }}^{\text {DLI }}$	(1.26	ECC888	2.29 1.24 1.29	EYS1	${ }_{1}^{2.02}$	M822	($\begin{aligned} & 3.85 \\ & 289 \\ & 289\end{aligned}$	PY82	${ }_{0}^{0.97}$		33.47 17.25 1				1.75		1.38	${ }_{812 A}$	${ }_{9}^{9.760}$	(8122	${ }^{6.33}$
DLSI5	12.37	ECF82	1.38	EY83	2.02	M8248	11.55	PY83	0.81	U18-20	2.88	${ }_{2}{ }^{2} 25$	40.25	6^{6316}	1.24	$6 \times 5 \mathrm{C}$	0.97	813	36.80	8136	81
DLSI6	12.37	EC	1.73	Y84	10.57	MU14	1.73	PY88	1.01	U19	10.33	3.4002	51.75	68 K 4	4.84	787	.96	833A	86.25	${ }_{8417}$	14
DLS	12.37	H35	2.30	EY86	,	MX119	${ }^{53.82}$	PY500	207	425	1.33	3.500	63.25	68.6	97.74	${ }^{1} \mathrm{C} 5$	3, 30	${ }^{8860}$	${ }^{6.651}$	${ }_{1}^{18042}$	${ }^{6.92}$
- ${ }^{\text {DM70 }}$ DM71	1.4	${ }_{\text {ECH4 }}$	${ }_{1}^{1.38}$	EY500 A	${ }_{2.23}$	${ }_{\text {M }} \times 12145$	63.25 50.40	PY801	${ }_{0}^{0.97}$	${ }_{4}{ }^{26}$	1.66 10.35	38.54 3824	${ }_{9.20}^{1.55}$		97.75	${ }_{7}$	${ }_{2}$	${ }_{922}^{872 A}$	$\begin{array}{r}15.81 \\ 5.01 \\ \hline\end{array}$	18045	10.86
DM160	3.96	ECH83	1.44	EY802	94	MX15t	15.18	Qovor 6	13.91	UABCB	1.44	3828	5.18	6BN6	1.89	${ }_{\text {7R7 }}$ 7S7	${ }^{1.73}$	931 A	14.08		
DY86	0.73	ECHIS	1.47	Ez35	97	M $\times 15$	15.00	${ }^{03.6}$		UAF42	1.4	3829	-11.50	6807A	4.144	${ }_{\text {7 }}^{7 \text { 7 }}$	2.54	1624 1625	${ }_{2}^{2.95}$		
E55L	25.17	ECLE1	1.73	EZ41	1.44	${ }_{M \times 163}$	${ }_{19.55}^{129.72}$		20.13	UBC41	1.73	${ }_{38241 \mathrm{M}}$	17.25	6ER8	2.02	724	${ }^{2.13}$	2050	8.00	$4 \mathrm{C} \mathrm{\times 250B}$	
E8OCC	${ }^{9.27}$	Li82	1.15	Ez80	0.96	MX	21.14	QQVo6		UBF99	1.38	${ }_{3}^{3} 23$	${ }^{13.89}$	${ }_{68 W}^{\text {6B5 }}$	4.60	${ }_{12 \mathrm{LES}}$	co. 1.38 1.38	${ }_{4}^{4212 \mathrm{E}}$	169.90 207.00		
${ }_{\text {E }} \mathrm{EBOO}$	${ }_{9} 1.75$	${ }_{\text {ECLS }}$	${ }_{1}^{1.73}$	E2	${ }_{1.38}^{0.96}$	(Mx166	${ }^{1266.50} 40.25$	Sevor-50	53.13	UCCR ${ }^{\text {c }}$	${ }_{1.38}$	$3 \mathrm{3C4} \times 100 \mathrm{~A}$		6 6W7	1.75		. 01	52,	62.10		
${ }_{\text {E8ilc }}$	${ }_{6}^{9.51}$	${ }_{\text {ECLIS }}$	${ }_{1}^{1.28}$		288	${ }^{\text {N78 }}$	${ }^{10.35}$	Z03-20		UCFRO	132	3 E 29	${ }^{29.67}$	${ }^{\text {6BX76T }}$		12AU6 $12 \mathrm{LaU7}$	2.83 0.83 1	5445 5551 A			
E811	10.28	EF37A	4.02	G1.371K	${ }_{23.23}^{2.88}$	OA_{0}	${ }_{5.69}$	QQZ06. 40 A		UCH81	2.67	${ }_{3}$	${ }_{1}^{1.38}$	$66^{6} 4$	1.61	12AV6	2.39	${ }_{5552 \mathrm{~A}}$	119.54		
E822CC	7.03	EF39	3.16	G551K	12.65	OAf	4.02		55.10	UCL82	1.20	465A	29.15	${ }_{6}$ CB6A	${ }_{5}^{2.86}$	${ }^{12} 12 \mathrm{~V} 7$	3.98	${ }^{55533}$	259.10		
E8	7.16 12.48	${ }_{\text {EF }}^{\text {EF }}$	+1.32	${ }_{\text {G }} \mathrm{G} 180.2 \mathrm{D}$	18.42 12.85 188	082 083 83	${ }_{2}^{1.24}$	QV03.12	14.38	UF41	${ }_{1}^{1.15}$	4.250A	${ }^{41.99}$	${ }_{\text {6CG7 }}$	${ }_{2.55}$	$12 \mathrm{AY7}$	5.24	5654	4.05		
E88C	${ }_{6}^{6.71}$	Er	2.30	G $400.1 \mathrm{~K}^{\mathrm{K}}$	19.28	OC2	3.04	Qvor-7	${ }^{2.88}$	UF49	1.44	4.400 A	52.05	${ }_{6} \mathbf{6} \mathrm{CH} 6$	7.48	1284 A	3.50	5651	2.07		
E88CC	3.86	EF	1.73	GN	${ }_{8}^{8.62}$	${ }_{0} \mathrm{OC3}^{0}$	2.20	${ }^{\text {OVP3-65 }}$	${ }_{5374}$	UF80	${ }_{1}^{1.66}$	$\begin{array}{r}4832 \\ 4 C 35 \\ \hline\end{array}$	29.16	6cl	${ }_{8.33}^{4.12}$	${ }_{\text {12BE6 }}$	${ }_{2.55}^{2.95}$	${ }_{5675}$	51.03		
E90F	9.71	${ }_{\text {EF5 }}^{\text {EF5 }}$	+ ${ }^{5.85}$	GS	$\begin{array}{r}8.62 \\ 10.35 \\ \hline\end{array}$	-	2.20	QY3.125	56.78	UF89	${ }_{1.66}$	$4 \mathrm{C} \times 250 \mathrm{~B}$	28.53	6D2	1.01	$128 \mathrm{H7}$	1.29	5687	7.08		
${ }^{\text {E914 }}$	5.34		2.		14.28	${ }^{\text {PC8 } 86}$	1.61	QY4.259		UL41	2.88	$4 \mathrm{C} \times 350 \mathrm{~A}$	48.88	C6	2.59	128Y7	3.01	${ }^{5696}$	4.53		
${ }_{\text {E92CC }}$	${ }_{9.39}$		${ }_{0}^{2.02}$		14.31 13.62	${ }_{\text {PC88 }}{ }_{\text {PC95 }}$	${ }_{1.49}^{1.61}$	OY4.400 OY5.500	75.67 59.39	UL848	1.38 1.15		28.75	${ }_{\text {6EAB }}$	${ }_{3.31}$		8.17 19.26	5718 5725	7.36 6.28		
								N	G	ATE	CI	UIT		7495		74.32		74173		TAAS	
				SAMPP1				2400	0.18	7123	0.37	7460	0.21	7496 7497	0.92	74136	0.63	74174 71175	73	TAAG	
BAS	ES	CR	T					7401	0.18	7425	0.35	7470	0.40	74100	1.73	741	${ }^{0.95}$	74175 74176	${ }_{1.26}^{1.26}$	TEA4800	12
G uns				${ }_{5 C \text { c PIA }}$	${ }_{46.00}$	VCR138	8A 14.38	7402 7403	0.18	7427 7428	0.35 0.49	7472 7473	${ }_{0}^{0.38}$	74107	0.52	741	${ }_{2.88}^{2.65}$	71178	1.44	TBA5200	2.65
B7G skirt	ted	$5{ }^{28 P 1}$	10.35	5FP15A	17.25	VCR139	${ }^{\text {9A }}$. ${ }^{8.20}$	7404	0.20	7430	0.20	7474	0.46	74109 7410	${ }_{0}^{0.81}$	741	2.88	74179	1.4	$\mathrm{TBAFS30}^{\text {a }}$	${ }_{228}^{228}$
A unsk	kirted	$7{ }^{\text {a }}$	(11.50	SGC7.	${ }_{28.75}^{16.10}$	VCR517	${ }_{78 \text { A } 11.59}^{1150}$	7405 7406	0.18 0.46	7432 7433	0.0 .35	7475 7476	${ }_{\text {cose }}^{0.62}$	74111	${ }_{0}^{0.81}$	74145 74147	1.04	711290	${ }_{1}^{1.73}$	TBAS400	${ }_{3}^{2.75}$
A sk		${ }^{5}$ 3EG1	8.05	${ }^{\text {DG } 7.32}$	41.40	VCR517	7 C 11.50	7407	0.46	7437	0.37	7480	0.63	74116	2.02	74148	2.02	74191	. 33	tras50]	
Loctal			${ }_{6}^{690}$	${ }^{\text {D }} \mathrm{DH} 3$-91	35.65 78.20	Tube Ba	bases	7408 7409	${ }_{0}^{0.23}$	7438 7440	0.37	7482 7483	${ }^{0.88}$	74119	1.73	74150 74151	${ }_{0.97}^{1.84}$	74192 7419	1.55	trai	
Nuvistor	base	731	20	VCR97	13.80		app	7410	0.18	7441	0.97	7484	1.15	${ }^{74120}$	0.95	74154	2.02	714194	1.44	tBA7200	
pin Dil		$17 \frac{3192}{3}$	20	VCR138	11.50.			7412	0.30	7442	0.83	7486	0.48	74121	0.46	74155	0.97.	74.95	1.15	tBA ${ }^{\text {tra }}$	
pin Di	,	${ }^{3} 3$ 3P7	11.50					7413	0.37	7477an	1.04	7490	0.60	74	.69	${ }^{74156}$	0.97	741996 7419	${ }^{38}$	TBA	
		${ }_{3}^{3} \mathrm{KPP1}$	17.25 40.25					7416 7417	${ }_{0}^{0.37}$		0.21	7491 7492	0.92	74125	${ }_{0.63}$	74157 74159	${ }_{2}^{0.86}$	74198	59	tbag200	
cans all s	sizes							7417 7420 7422	${ }_{0}^{0.37}$	7451 7453 7454	0.21 0.21	${ }_{7493}$	${ }_{0}^{0.69}$	74126 74128	${ }_{0}^{0.63}$	74170	${ }_{2}^{2.65}$	74199	${ }_{2}^{2.59}$	trasobe	3.34
								7422	0.23	7454	0.21	. 8494	0.92	74128	. 69	71172	5.06	76013 N			
Terms of bueiness: CWO. Postege and packing valves and somiconductors 30 p per order. CATs E1. All prices include VAT. Price ruling at time of despatch. In some cases prices of Mullerd and USA valves will be higher than those advertised. Prices correct when going to press. Telephone 01-677 $2 \overline{4} 24 / 7$ Account facilitics available to approved companies with minimum ordgr charge $£ 10$. Carriage and packing $£ 1$ on credit orders. Telex 946708 Over 10,000 types of valves, tubes and semiconductors in stock. Quotations for my types not listed. S.A.E. E. \& O.E. Open to callers Monday-Friday 9 a.m.-5 p.m.																					

WW-051 FOR FURTHER DETAILS

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

FEATURES . . .

All Metal Cabinet 8 Digit $4^{\prime \prime}$ LED Display Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included 240 V or 12 V Operation Proportional Control Crystal Oven (Optional) Built-in VHF-UHF Preamp Completely Portable with Rechargeable Batteries (Optional).

AVAILABLE FROM THE EXCLUSIVE U.K. DISTRIBUTORS:
SOTA COMMUNICATION SYSTEMS LTD.
26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L 346 TX MERSEYSIDE. TEL. $051-4805770$ Telex 627110 SOTA G

[^3]
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime} .10^{\prime \prime}$ or $7^{\prime \prime}$ records, Auto or Manual. A high quality Siereo Ceramic Cartridge. AC 200/250V. Size $131 / 2-111 / / \mathrm{in}$. 3 speeds. Above motor board $33 / \mathrm{in}$. Below motor board $21 / 2 \mathrm{in}$.
with Ceramic Stereo canridge. £20 Post £2

HEAVY METAL PLINTHS

 Silver grey finish.Size $16 \times 14 \times 3 \mathrm{in}$ Tinted Cover for above

Tinted Cover for above
PLASTIC COVERS
Sizes: $141 / 2 \times 121 / 2 \times 41 / 2 \mathrm{in}$. or $141 / 2 \times 121 / 2 \times 3$ in. $£ 3.50$. $151 / 4 \times 131 / 2 \times 4 \mathrm{in}$. £4. $18 \times 131 / 4 \times 4 \mathrm{in}$. £6. $18 \times 133 / 4 \times 31 / 2$ in with standup hinges $£ 7$. Ideal for record decks, tape decks, etc.

BSR SINGLE PLAYER
BSR P 1823 speeds flared
aluminium qurntable " $S^{\text {" }}$ shape arm, cueing device, ceramic Post E^{2}
bSR TWO-SPEEO BUDGET MODEL EIS

GARRARD MINI CHANGER CC10A

Plays all size recortridge.

BSR P163 BELT DRIVE QUALITY DECK Manual or automatic play. Two
Precision balanced arm. Slide in head, cueing device. argain price

E 30 Post $£ 2$
Suitable magnetic cartridge $£ 6.50$.

ELAC HI-FI SPEAKER 10in. TWIN CONE

Large ceramic magnet.
bass resonance $40 \mathrm{c} / \mathrm{s}$.
8 ohm impedance
10 watis. RMS. $£ 7.95$ Post 990
LOW VOLTAGE POWER PACK for MODELS Ready made. Famous make. Will supply 10 valts D.C.

POTENTIOMETERS

5 KO to 2 MD . LOG or LIN L/S 35p. DP $60 p$ Stereo L/S 85p. DP EI
Sliders Mono 65p. Stereo Slide
85p.
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS crossover. 10 watt. With tweeter and crossover

$£ 9.95$
 $£ 10.95$

Bass mote onty $£ 10.95$ pos 98
Suitable Bookshelf Cabinet
Teak finish. For EMI $13 \times$ B speakers.

80 Ohm Coax

 fringe low loss $15 p$ yd. PLUGS 20p. SOCKETS 25p. LINE SOCKETS 45p. OUTLET BOXES 855^{5} 300 ohm FEEDER 5p yd.THE "INSTANT"' BULK TAPE ERASER Suitable for cassettes, and all sizes of
reels. AC mains $200 / 250 \mathrm{~V}$. Leatlet SAE. Will also demagnetise small tools $£ 7.50$

RELAYS. 12 V DC 95 p . 6 V DC 85p. 240 V AC 95
BLANK ALUMINIUM CHASSIS, $6 \times 4-95 p ; 8 \times 6-$ €1.40; 10×7-£1.55; $12 \times 8-£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times$ 6-£1.85: 16×10 - $£ 2.20$. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-20 \mathrm{p}$. ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p} ; 8 \times 6-38 \mathrm{p} ; 14 \times$ 3-40p; $10 \times 7-54 \mathrm{p} ; 12 \times 8-70 \mathrm{p} ; 12 \times 5-44 \mathrm{p}: 16 \times$ 6-70p; $14 \times 9-94$ p; $12 \times 12-\varepsilon 1 ; 16 \times 10-E 1.16$.
PLASTIC AND ALI BOXES IN STOCK. MANY SIZES
ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 € 1.4 \times 2 \times 2 £ 1.3 \times 2 \times 1$ $70 \mathrm{p} .6 \times 4 \times 2 £ 1.20 .7 \times 5 \times 21 / \mathrm{c} 1.45 .8 \times 6 \times 2$.
$7 \times 3 £ 2.50 .12 \times 5 \times 3 £ 2.30,12 \times 8 \times 33$.

TAG STRIP 28 -way 12 p .

TAPE OSCILLATOR COIL. Valve type, 35 p .
BRIDGE RECTIFIER 200 V PIV $1 / 2$ amd 50 p .8 amp $£ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p
MANH OTHER TOGGLES IN STOCK. Please enquire PICK-UP CARTRIDGES ACOS. GP91 £2.00. GP94 £2.50. SONOTONE 9TAHC Diamond £3.75. V100 Magnetic £6.50. RESISTORS. 10 D to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{p}$; 2 W 10 p . HIGH STABILITY. $1 / 2 W 2 \% 10$ ohms to 1 meg. 8 p.

$£ 9.50$

Post $£ 2.00$
$£ 4.50$
HIGH QUALITY

J.V.C. BELT DRIVE STEREO DECK With magnetic pick-up detachable head CN2316R, adjustable counter balance weight, hydraulic damped cueing platitorm
automatic pick-up arm automatic pick-up arm return, 2 speeds, 33 and 45 rpm ,
suppression circuit to start stop switch, 240 V AC motor, suppression circuit to star stop switch, 240 VAC motor, aynamic £9. Post £2, plastic cover £6, post £2.

RCS SOUND TO LIGHT KIT Mk. 2

 Kit of parts 10 build a 3 channel sound to light unit £18 Easy to build. Full instructions supplied. Cabinet Post 50p Easy to buil. Full instuctions supplied. Cabinet$£ 4.50$ extra. Will operate from 200 MV to 100 w watl signa
MINOR"' 10 watt AMPLIFIER KIT $£ 12.50$ This kit is suitable for record players, guitars, tape playback,
electronic instruments or small PA systems. Two versions electronic instruments or small PA systems. Two versions
available: Mono. $£ 12.50$; Stereo, $£ 20$. Post 45 p. Specitication available: Mono. $£ 12.50$; Stereo. $£ 20$. Post 45 p. Specitication
$10 W$ per channel; inpur 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE 10 W per channel; inpur 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{in}$. ap
details. Full instructions supplied. AC mains powered. Input can be modified to suit guitar

15 watts 8 oh
£20 pair post $\varepsilon 2$
LOW VOLTAGE ELECTROIYTICS

1. 2, 4, 5, 8, 16, 25, 30, 50, $100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$ $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
00 mF VV 17p; $26 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$ 2500 mF 5 V 25 p ; $25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $4500 \mathrm{mF} 64 \mathrm{~V} 2 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. 5000 mF 35 V 25.4700 mF 63 V £ $1.20 .2700 \mathrm{mF} / 76 \mathrm{~V}$ £ 1 HÍGH VOLTA $85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V} £ 1.75$
IGH VOLTAGE ELECTROLYTICS
$8 / 350 \mathrm{~V} 22 \mathrm{p}$
$8+8 / 450 \mathrm{~V} 50 \mathrm{p}$

$16 / 350 \mathrm{~V}$ 22p $8+8 / 450 \mathrm{~V}$ 50p $\quad 50+50 / 300 \mathrm{~V}$ 50p | $16 / 350 V$ | $30 p$ | $8+16 / 450 \mathrm{~V}$ | 50 p |
| ---: | ---: | ---: | ---: |
| $32 / 500 \mathrm{~V}$ | $32+32 / 450 \mathrm{~V}$ | $16+16 / 450 \mathrm{~V}$ | 50 p |
| $100+100 / 275 \mathrm{~V}$ | $65 p$ | | | $\begin{array}{llll}50 / 500 \mathrm{~V} \text { £1.20 } & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 150+200 / 275 \mathrm{~V} \\ 50 \mathrm{p}\end{array}$ $\begin{array}{rrrrr}50 / 500 \mathrm{~V} & \text { £ } 1.20 & 32+32 / 350 \mathrm{~V} & 50 \mathrm{p} & 150+200 / 275 \mathrm{~V} 70 \mathrm{p} \\ 8 / 800 \mathrm{~V} & \mathrm{E} .20 & 16 / 500 \mathrm{~V} & 55 \mathrm{p} & 220 / 450 \mathrm{~V} 95 \mathrm{p}\end{array}$

$50+50 / 500 £ 1.80 \quad 80+40 / 500 \mathrm{~V}$
E2
SHORT WAVE 100pf air spaced gangable tuner, 95 p .
TRIMMERS 10 pF 30 pF 50 pF 5 p .100 pF 150 pF TRIMMERS 10 pF . $30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}$, 15 p CERAMIC, 1 pF to 0.01 mF , 5 p . Silver Mica 2 to $5000 \mathrm{pF}, 5 \mathrm{p}$. 20p; 500V-0.001 to 0.05 12p; $0.115 \mathrm{p} ; 0.2525 \mathrm{p} ; 2 \mathrm{mf} 150 \mathrm{~V}$ MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change o TWIN GANG, $385+385 \mathrm{pFF} 80 \mathrm{p}$: 500 pF slow motion 75 p . $365+365+25+25 \mathrm{pF}$. Slow motion drive 85 p . 120 pF 50 p . TRANSISTOR TWIN GANG, 50p.
NEON PANEL INDICATORS 250 V . Amber or red 30p. ILLUMINATED ROCKER SWITCH. single pole. Red $65 p$. WIRE-WOUND RESISTORS 5 watt. 10 watt, 15 watt 15 p CASSETTE MOTOR, 6 volt $£ 1.00$
CASSETTE MECHANISM. Mono heads, no motor $£ 3.00$

BAKERLOUDSPEAKERS "SPECIAL PRICES "'SP

major

DELUXE MKII
SUPERB
AUDIT ORIUM
AUDITDRIU
GROUP 35
GROUP 45
GROUP 50
GROUP 50
GROUP 50
GROUP 75
GROUP 50
GROUP 75
GROUP 100
GRDUP 100
GROUP 100
DISCO 100
DISCD 100

BAKER
50 WATT
AMPLIFIER

£65 Posi £2.00 Ideal for Halls/PA systems. Discos and Groups. Two inputs. Mixer, Volume Controls. Master Bass, Treble and Gain Controls.

BAKER 150 WATT MIXER /

AMPLIFIER

Protessional 4 inputs with mics, decks, musical instru ments, etc.
E85 post 2.00

FAMOUS LOUDSPEAKERS

"SPECIAL PRICES"				Post £1.50 ead.	
make	MnDEL	SLe	watts	OHMS	OUR
			POwER		PMice
SEAS	TWEETER	4 in round	50	8	57.50
G000mams	TwEETER	31/nin	25	8	8.00
		square			
Auoax	TWEETER	$34 \% \mathrm{in}$ square	60	8	110.50
SEAS	mio-ramge	4th	50	8	'27.50
SEAS	MuD-RAMGE	5n	80	8	810.50
SEAS	MID-RAMGE	41/2h	100	8	512.50
COODMAMS	PULL-RAMGE	\% ${ }^{\text {in }}$	20	8	E5.50
SEAS	WOOFER	tin	30	8	\$14.00
K.G.8.	GENENML	10in	30	8	¢10.50
mexEmzIE	DISCO-	15 in	150	$8+16$	¢56.00
CELESTION	disco-	18 in	100	$8+16$	¢59.00
	group				
CELESTION	OISCD-	18 in	200	$8+16$	¢69.00
	GROUP				

TEAK VENEERED HI-FI SPEAKER CABINETS
For $13 \times 8 \mathrm{in}$. Or 8 in, speaker
For $61 / 2 \mathrm{in}$, speaker and tweeter
Many other cabinest in sto F . Phone your requirements.
SPEAKER COVERING MATERIALS. Samples Large SA.E.
LOUDSPEAKER CABINET WADDING 18 in wide 20p f.

GOODMANS TWIN AXIOM 8 inch dual cone loudspeaker. 8
ohm, 15 watt hi-fi unit £ 10.50
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}, ~ £ 2.20$.
($1.50 ; 61 / 2 \mathrm{in} . . ~ £ 1.95$
SPECIAL OFFER: 64
25 ohm, $21 / 2 \mathrm{in}$. 3 in ., $5 \times 3 \mathrm{in} 7 \times 4$ ohm, $2 \frac{5 / \mathrm{sin} \text {., } 35 \text { ohm, } 3 \mathrm{in}, ~}{3}$,
 $3 \mathrm{ohm}, 4 \mathrm{in}$. 5 in . dia. £ 1.50 each.
PHILIPS LOUDSPEAKER, 8 in ., 4 ohms, 4 watts, $£ 2.50$. RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in. diameter $4 W \subset 2.50$. 10 in . diameter $5 \mathrm{~W} £ 3.50$; MOTOROLA PIEZO ELECTRIC HORN TWEETER £6.50 Handles up 10100 watts. No crossover required Handes up to 100 watts. No crossover required. aluminium facia. Siurdy job. Size $61 / 4 \times 41 / 4 \times 2 \mathrm{in}$. $£ 1.50$
GOODMANS RUBBER SURROUND BASS WOOFER Standard 12 in . diameter fixing with
cut sides $12^{\prime \prime} \times 10^{\prime \prime} 94.000 \mathrm{Gauss}$ cut sides 20 wans RMS 4 ohm imp. Bass resonance $=30$ c.p.s. £9.95 each Post £2
ALUMINIUM HEAT SINKS. FINNED TYPE
Sizes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95 p .612^{\prime \prime} \times 2^{\prime \prime} \times 211^{\prime \prime} 45$ p.
JACK PLUGS Stereo Plastic 30p; Metal 35p
JACK SOCKETS. Mono Open 20p; Closed $25 p$. JACK SOCKETS Stereo Open 25p; Closed 30p.
FREE SOCKETS - Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKETS $\mathbf{2 . 5 p}$.
2.5 mm and 3.5 mm JACK PLUGS $15 p$. DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 10p. Free Sock erts 3-pin, 5-pin 25p. Plugs 3-pin 20p. 5-pin 25p.
PHONO PLUGS and SOCKETS ea. 10p
Free Socket for cable end ea, 15p.
Screened Phono Plugs ea, 15 p.
TV CONVERGENCE POTS 15 p each
Values $=5,7,10.20 .50,100,200,250,470,2000$ ohms. MONO PRE-AMPLIFIER
solid state pre-amplifier unit designed
complement amplifiers without low level 1
phono and tape input stages. R.I.A.A. equal-
isation on magnetic phono input and N.A.B.
isation on magnetic phono input and N.A.B.
equalisation for tape heads. Phono sockets.

Recognise me?

If you do
you should know
your
authorised

Avo Sales and Service Centre
Quick turn round on estimates/repairs Large stocks of new AVOMETERS

Farnell International

Farnell International Instruments Ltd. Sandbeck Way. Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist G

WW-070 FOR FURTHER DETAILS

WW - 066 FOR FURTHER DETAILS

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONALARTICLE IN ELECTRONICS TODAY INTERNATIONAL
The TRANSCENOENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is a portamento, pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an AOSR envelope shaper. There is also a slow oscillator, a new pitch detector. AOSR repeat, sample and hold, and special circuitry with procision components to ensure tuning stability amongst its many features

The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal triml) and it really is complete - right down to the last nut and bolt and last piece of wirel parts before plugging in and making great musicl Virtually all the components are on the one protessional quality fibreglass PCB printed components are on the one protessional quality fibreglass FCE printed board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you wil possess a synthesizer comparable in performance and qually with ready-built units selling for between $£ 500$ and $£ 700$!

COMPLETE KIT ONLY $£ 168.50+$ VAT!

Comprehensive handbook supplied with all complete kits! Thls fully describes construction and tells you how to set up your synthesize with nothing more elaborate than a multi-meter and a pair of ears!

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

WE'VE MOVED! NEW FACTORY UP! PRICES DOWN!

CITV AT OUR BIG NEW FACT
 INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHER FROZEN! TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER ANOTHER SUPERB DESIGN BY SYNTHESIZER EXPERT TIM ORR! AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL AUGUST, SEPTEMBER, OCTOBER 1979 ISSUES

The Transcendent OPX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord of reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, stilh fully polyphonic. It can be straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the straightforward piano or a honky tonk piano or even a mixture of the two Alternatively you can play stings you prefer - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split after the first iwo octaves) or vice versa or even a combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitivel The harder you press down a key the louder it sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism. There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime \prime}$ (front)
COMPLETE KIT ONLY £299.00 + VAT!
To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCO (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects.

As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change, computer composing. etc., etc.) and an interface socket (25 way 0 type) is provided for this purpose

Although the OPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet.
The kit includes fully finished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide), nuts, bolts, etc., even a $13 A$ plug - you need buy absolutely no more parts before plugging in and making great muslcl When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over $£ 1,2001$

NEW BOOKS
The S 100 and other Micro-buses Software development
Computers and Commonsense
Architecture of Small Computer Systems Principles of Data Base Management Cobol for Beginners
16-bit Microprocessor Architecture 6502 Assembly Lang. Programming Introductory Experiments with Digital

Electronics and 8080A Book I Book 2
Microcomputers for Business Applications Handbook of Microprocessors,

Microcomputers and Minicomputers Introduction to Microprocessors
The VNR Concise Encyclopedia of
Mathematics

COOKBOOKS

Active Filter Cookbook
CAIOS Cookbook
IC OP AMP Cookbook
IC Timer Cook book
T.V. Typewriter Cookbook

TTL Cookbook
The Cheap Video Cookbook
IC Converter Cookbook

INTRODUCTORY BOOKS

The Mighty Micromite
Intro. to Personal \& Business Computing

- Dictionary of Nicrocomputing

Poe	£ 5.05
Jones	$£ 13.95$
Hunt	£ 3.95
I,ippiatt	£ 4.50
Martin	£12.50
Worth	£ 7.75
Dolhaff	£16.20
Osbourne	£ 6.95
Rony	1 8.40
Rony .	£ 8.40
Barden	£ 5.80
Lenk	$£ 11.65$
Levanthal	£ 8.95

Z80 BOOKS

Z80 Programming for Logic Design	Osbourne	£ 5.95
Z80 Technical Manual	Zilog	± 4.00
Z80 P10 Technical Manual	Zilog	£ 3.25
Z80 Programming Manual	Zilog	± 4.50
Z80 Microcomputer Handbook	Barden	£ 6.95
Practical Microcomputer Programming Z80	Weller	$£ 19.55$
Z80 Instruction Handbook	Scelbi	£ 3.25
Z80 Assembly Language Programming	Osbourne	£ 6.95
Introduction to TRS 80 Graphics	Inman	± 5.75
Z8001/Z8002 Product Specification	Zilog	£ 3.75
28000 CPU Instruction Set	Zilog	£11.50
Z80 Instant Programs (book) for Nascom	Hopton	$£ 7.50$
Z80 Instant Programs (cassette) for Nascom	Hopton	$£ 10.00$
Z80 Microprocessor Programming and		
Interfacing Book 1		£ 7.75
Z80 Assembley Language Programming	Osbourne	$\begin{array}{r} £ 8.50 \\ £ 6.95 \end{array}$
BASIC		
The Basic Primer	Waite	£ 5.80
The Basic Handbook		111.00
SOFTWARE TAPES FOR PET \& TRS 80		
Applications Program Game Program Graphics Display \& Misc. Program	cational hematics	gram gram
All at $£ 6.65$ each.		
Terms: OFFICIAL ORDERS (min. £10.00) BARCLAYCARD WELCOME. SEND FOR COMPLETE BOOK LIST. ALI POSTAGE \& PACKING.	ACCESS PRICES	UDE

MAIL, ORIDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
MANCHESTER: 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 0614912290
BIRMINGIIAM: Ist Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 0217077170

TRANSFORMERS $6-0.6 \mathrm{~V}$ 100ma BOp. $11 / 2 \mathrm{a}$
E2.60 G.
 IC AUDIO AMPS with pcb. JC12 6W E2.08. JC20 COW E3.14.
BATIERY ELIMINATORS 3 -way type $6 / 7 \% / 9 \mathrm{y}$
300 ma ©2.84. 100 ma radio type with press-studs
 OUPU $41 / 2 / 6 / 7 / 2 / 9 v 800 \mathrm{ma}$ € 2.66 . BATTERY ELIMINATOR KITS 100 ma IBdio Types with press-studs $41 / 2 \mathrm{v} £ 1.49,6 \mathrm{v} £ 1.49 .9 \mathrm{v} £ 1.49$.
$4 \mathrm{y} / 2+41 / 2 \mathrm{v} £ 1.02 .6+6 \mathrm{v} £ 1.92 .9+9 \mathrm{v} £ 1.02 \mathrm{~g}$ Stathized 8-way types $3 / 41 / 2 / 6 / 71 / / 19 / 12 / 15 /$

 T-DEC ANO CSC BREAOBOAROS s -dec $\mathbf{£ 3 . 7 \% \text { . }}$
 £2.64. exp 300 £6.61, exp $350 £ 3.62$, exp 325 EI-PAK AUDIO MOOULES 5450 £25.06. AL60 E5.06. pa 100 £17.33. spm 80 £4.74. bm180 £6.08. Stereo 30 £21.57. Al30A £4.08. pal2 ¢8.38. p512 £1.58. ma60 £18.27.

SWANLEY ELECTRONICS

 Oopt, WW, 32 Goldael Rd., Swanley. Kent.Post $35 p$ extra. Prices include VAT unless stated.
Official and overseas Oificial pnd overseas orders welcome. Lisiss 27ρ post
free. Mail order only.

Rectifier bridges 35 amps 800 volts for sale. suitable for full wave rectification of AC voltages up to 400 . Price $£ 3.60$ each. Diodes 10 A 600 volts
£1.00
Diodes 40 A 600 volts
$£ 3.00$

Thyristor 8 A 600 volts $£ 2.00$

Thyristors 24 A 800 volts 6.00
Also thyristors, diodes, and stacks up to 550 amps 1200 volts in stock with control cards if required.
$A C$ power regulators for regulating 250 V AC input. Output 0 to 250 V AC at $10,20,40,80,120,240,500 \mathrm{amps}$. Also DC power regulators at any voltage and current from 250 or 415 volts input. Outputs 0 to 6 to 0 to 400 volts DC at $10,20,40$. $80,100,200,500,1000 \mathrm{amps}$.
Regulators supplied with semiconductor fuse.
Triac AC regulators 240 volts $0-10 \mathrm{amps}$ with control potentiometer
£28.00

TEL: A. T. WORTLEY

W CONTROLS
8 ENDERBY RD., BLABY, LEICESTER (0533) 773577
WW-053 FOR FURTHER DETAILS

Thurlby - the digital power supply NEW!

Triple output models
5 volts up to 7 amps plus 2×0 to 30 V

for analogue and digital systems

The Thurlby PL series of bench power supplies covers the complete requirements of the electronic engineer whether he works on large microprocessor boards or on precision analogue systems.

Single, dual or triple output models are available up to 130 watts. Features include simultaneous digital metering of voltage and current to very high accuracy, high current logic outputs with remote sense and overvoltage crowbar protection, high resolution constant current setting, and other special features

All models are available ex-stock.
Thurlby PL. Series $\begin{aligned} & \text { Single, Dual and Triple Output Units } \\ & \text { Prices from around } £ 100\end{aligned}$
Full data and distributor list from Thurlby Electronies Led.
Coach Mews, St. Ives, Cambs. PE17 4BN. Telephone: (0480) 63570

CHROMATHEQUE 5000
 5 CHANNEL LIGHTING EFFECTS SYSTEM COMPLETE KIT ONLY $£ 49.50$ +VAT!
 Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3"

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channols with individual level controls on each channel. Control of the lights is comprehensive to say the least, You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward.
Kit includes fully finished metatwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER $£ 99.30$ + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected whth gold plated contacts resulting in minimal wiring and
construction delightully straightorward. The design was published in Hi-Fi News and Record Review and features include rumble fitter, variable scratch filter, versatile tone controls and tape monitoring while distortion is less than 0.01%.

All kits also available as separate packs (e.g. FCB, component sets, hardware sets, etc.). Prices in our FREE CATALOGUE.

$\mathbf{T} 20$ + 20 20W STERED AMPLIFIER $\mathbf{£ 3 3 . 1 0 ~ + ~ V A T ~}$
This kit, besed upon a design published in Practical Wireless, uses a single printed circuft board and offers at very low cost. ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for E38.40+VAT.

Above 2 kits are supplied with fully finished metalwork. ready assembled high quality teak veneer cabinet, cable, nuts, bolts, etc. and full instructions - in fact everythingl Matching TUNERS and CASSETTE DECK - see our free catalogue.

BLAKM NOLS

FEATURED IN THIS MONTH'S ELECTRONICS TODAY INTERNATIONAL
The BLACK HOLE designed by Tim Orr. is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and aCHORUS mode which gives a spacey" feel to the sound achieved by delaying the input signal and mixing it back with the original. Notches (HOLES), introduced in the frequency response, move up and down as the time delay is modulated by the chorus sweep generator. An optional double chorus mode allows exciting antiphase effects to be added. The device is floor standing with foot switch controls, LEO effect selection indicators, has variable sensitivity input, has high signal/ noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all our kits everything is provided including a highly superior, rugged steel, beautifully finished enclosure

COMPLETE KIT ONLY 49.80 +VAT (single delay line system)
De Luxe version (dual delay line system) also available for $£ 59.80+$ VAT

MPA 200100 wATt (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier. It features adaptable input mixer which accepts a wider range of sources such as microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straightforward.
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

COMPLETE KIT ONLY
£49.90 + VAT!
MATCHES THE
CHROMATHEQUE 5000 PERFECTLYI

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until July 31 st , 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes are excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation.
U.K. OROERS: Subject to 15% surcharge for VAT. No charge is made for carriage or at current rate it changed
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add $£ 2.50$ NAT inclusive) per kit.
SALES COUNTE R: If you prefer to collect kit from the factory, wall at Sales Counter. Open 9 a.m. 12 noon, 1-4.30 p.m. Monday-Thursday.

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND PHONE NUMBER UNCHANGED
our catalogue is Free! write or phone now!
POWERTRAN ELECTRONICS

TYPE 80 SERIES UNITS

RF PREAMPLIFIERS, FREQUENCY CONVERTERS SIGNAL SOURCES, ETC. . . .

TYPE' 8025 MOUNTED IN TYPE 8036

TYPE 8025
STRIPLINE PREAMPLIFIER $200 \mathrm{MHz} .-1500 \mathrm{MHz}$. Noise factor 1.2 dB .
TYPE 8026 STRIPLINE RF CONVERTER Input $200 \mathrm{MHz} .-1500 \mathrm{MHz}$. Output $1 \mathrm{MHz} .-1000 \mathrm{MHz}$. Noise factor 1.2 dB .
TYPE 8027 RF PREAMPLIFIER
$1 \mathrm{MHz} .-250 \mathrm{MHz}$. Noise factor 1.0 dB RF CONVERTER
Input $1 \mathrm{MHz} .-250 \mathrm{MHz}$. Noise factor 1.0 dB .
TYPE 8028
WIDEBAND RF PREAMPLIFIER
$10 \mathrm{kHz} .-150 \mathrm{MHz}$. without tuning. Gain $40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$. Noise factor 3.0 dB .
TYPE 8030 VMOS LINEAR POWER AMPLIFIER 40 MHz . -250 MHz . without tuning. 4 watts maximum RF output. VMOS LINEAR POWER AMPLIFIER $30 \mathrm{kHz} .-40 \mathrm{MHz}$. without tuning. 4 watts maximum RF output.
TYPE 8032 SOURCE
20 MHz .1000 MHz . 1 V . output at 50 ohms max.
TYPE 8033
TELEVISION PREAMPLIFIER Channel group 'A' 21-34, 'B' 39-51, or 'CD 49-68.
Gain 20 dB . Noise factor 1.2 dB . Weatherproof unit.
TYPE 8034
TYPE 8035
TYPE 8036
$100 \mathrm{kHz} .-500 \mathrm{MHz}$. WIDEBAND MIXER $10 \mathrm{MHz}-1500 \mathrm{MHz}$. WIDEBAND MIXER MASTHEAD WEATHERPROOF UNIT Designed to completely enclose our standard units.
TYPE 8037 POWER SUPPLY/OUTPUT SPLITTER UNIT Stabilized mains power supply
Provides 4 outputs from one amplifier. UNITS ARE AVAILABLE FROM STOCK CONTACT:

RESEARCH COMMUNICATIONS LTD.

PEEL HOUSE PORTERS LANE OSPRINGE FAVERSHAM KENTME13 ODR ENGLAND
TELEPHONE: FAVERSHAM 2064 (STD CODE 079 582)

Cut costs and speed trouble shooting

with the

Huntron Tracker

This easy to use test instrument displays shorts, opens, and leakage in solid state components. Check diodes, unijunctions, bipolars, Darlingtons, J.FET's, MOS FET's, LED's, electrolytics and IC's... IN CIRCUI'T!
Test pure digital or analogue hybrid boards . . WITHOUT CIRCUIT POWER!
Current limited to protect delicate devices in the MOS-CMOS family.
Save $20 \ldots 30 \ldots 40 \ldots$ even 50% of trouble shooting time and recover your investment fast! Exclusive 12 months warranty, available from-

MTL Microtesting Limited
1-15 Butts Road, Alton, Hampshire
Telephone: Alton (0420) 88022.

WW - 092 FOR FURTHER DETAILS

ORGAN and PIANO KEYBOARDS

	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \end{gathered}$	$P \& P$
4-Octave C-C	£32.20	£2.75
5-Octave C-C	£34.50	£2.75
5-Octave F-F	£34.50	£2.75
6-Octave C-C	£36.80	£3.00

DALSTON ELECTRONICS
40a Dalston Lane, Dalston Junction London, E8 2AZ Tel: 01-249 5624

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet. "Nickel Cadium Power,' plus catalogue.

Write or call at

SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street. Charing Cross, London WC2.

2 MICROPROCESSORS

280 the powerful CPU with 158 instruction including all 78 of the 8080 , controls the MM57109 number cruncher. Functions include,,+- 1 , squares, roots, logs exponentials, trig functions, inverses, etc. Range 10^{-99} - $109 \times 19-99$ to 8 figures plus 2 exponent digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC
With extended mathematical capability, Only 2 K memory used but more powerful than most 8 K Basicst

1K MONITOR

Resident in EPROM
SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the superb quality double-sided plated through-hole PCB.

COMPLETE KIT
NOW ONLY
£225+var!

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is complete!
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

Value Added Tax not included in prices

PRICE STABILITY: Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement until July 31 st, 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus £1 handling and documentation.
U.K. ORDERS: Subject to 15% surcharge for VAT'. NO charge is made for carriage. 'Or current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add E2.50 (VAT inclusive) per kit.
SALES COUNTEFF: If you prefer to collect your computer from the factory. call at Sales Counter. Open 9 a.m. -12 noon, $1-4.30$ p.m. Monday-

KIT ALSO AVAILABLE AS SEPARATE PACKS
For those customers who wish to spread their purchase or build a personalised system the kit is available as separate packs e.g. PCB $\left(16^{\prime \prime} \times 12.5^{\prime \prime}\right) £ 43.20$. Pair of keyboards $£ 34.80$. Firmware in EPROMS $£ 30.00$. Toroidal transformer and power supply really beautifully finished) $£ 2650$. P S. Will greatly enhance any other single board computer including OHIO SUPERBOARD for which it can be readily modified. Other packs listed in our FREE CATALOGUE

PSI COMP 80 Memory Expansion System

 Expansion up to 32 K all inside the computer's own cabinetBy carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to cabinet Connections to boards to be fited neally inside the computer socket is made via a ribbon cable.
Mother Board: Fibre qlass double sided plated through hole PCB $\begin{array}{ll}\text { Fibre glass double sided plated through hole PC8 } \\ 8.7^{\prime \prime} \times 3.0^{\prime \prime} & \text { set of all components }\end{array}$ brackets, fixing parts and ribbon cable with socket to connect to expansion plug $£ 39.80$
8K Static
RAM board

8 BK
ROM board $5.6^{\prime \prime} \times 48^{\prime \prime}$, Set of components including IC sockets sockel but excluding RAMs $£ 11.20$ 2114 L RAM (16 required)
$£ 5.00$ Complete set of board, components, 16 RAMS

Fibre glass double sided plated through hole PCB $5.6^{\prime \prime} \times 4.8^{\prime \prime}$................... 12.40 Set of components including IC sockets, plug and socker but excluding ROMs
2708 ROM (8 required) Complete set of board, components, 8 ROMs $\notin 78.50$

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND TELEPHONE NUMBER UNCHANGED
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER
ANDOVER HANTS SP10 3NN
(0264) 64455
"We've $£ 150,000$ worth of recording gear working 24 hours a day - all fed from the OTARI MX5050B. On a cost effectiveness basis alone the MX5050B is unbeatable, but when taking into account sheer professionalism and performance, it is unequalled by recorders three times the price."

Mike McLoughlin, Chiet Engineer, Independent Tape Duplicators, Aylesbury

OTARI from ITA

WW - 058 FOR FURTHER DETAILS

AIR - MARINE - COMMERCIAL VHF/UHF MONITOR RECEIVER

Frequency Range: 66-88, 118-136, 144-174, $450-512 \mathrm{MHz}$ Sensitivity: Better than $0.8 \mu \mathrm{~V}$ for 10 dB Send for details.

VHF FM MOBILE

2 WAY RADIO

moser NEW Mast
cT210 NEW
CT210

- 10 watts RF power
- Made by us in the UK
- Modular construction
- Up to 12 channels
- Small physical size

Export enquiries welcome

OM-TEK (MIDS) Lud
Reg office

506 Alum Rock Road, Birmingham B8 3HX

 Tel: 021-326 6343 Telex 339938NEW, GUARANTEED, FULL SPEC. COMPONENTS
L.E.D.s . 125 and . 2

1N4148 Diodes

$$
\begin{aligned}
& { }_{1+}^{\text {RED }} 08 \text { YELLOW or GREEN } \\
& \begin{array}{lll}
11+ & 08 & 11 \\
100+ & 069 & 10 \\
\hline
\end{array} \\
& \begin{array}{r}
100+.069 \\
1000+.058
\end{array} \\
& \text { CARBON FILM } \\
& \text { RESISTORS } \\
& \text { E12 SERIES }
\end{aligned}
$$

T.I. LOW PROFILE I.C. SOCKETS

$1+$.02
$100+$.016
$1000+$.013

Prices per 100. Larger and Mixed Quantity prices available.

\[

\]

	$1+$	$100+$	$500+$
8 pin	$.075 p$	$.068 p$	$.06 p$
14 pin	.09	.082	.073
16 pin	.10	.096	.085
18 pin	.125	.113	.10
20 pin	.14	.126	.113
22 pin	.15	.135	.12
24 pin	.15	.135	.12
28 pin	.16	.145	.125
40 pin	.24	.215	.19

Please add £1.50 handling charge and 15% V.A.T
We also stock transistors, diodes, TTL. CMOS, capacitors, instrument cases, switches, connectors etc. Free trade catalogue available. All enquiries welcome

369 Alum Rock Road, Birmingham 88 3DR. Telephone: 021-327 2339

HARBISON BROS.
22 Mitton Road, Westelift-on-Saa, Easbx Telephons: Southend 32338

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER
Enables YOU to produce perfect printed circuits in minutes!
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work
FOTOLAK
Developer
Ferric Chloride
Plain Copper-clad Fibre-glass
Approx 3.18 mm thick sq. ft Approx. 2.00 mm thick sq. ft Approx. 1.00 mm thick sq. ft . Clear Acetate Sheet for making E1.50 Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$

Postage and packing 65 p per order. VAT 15% on toral
G. F. Wil WARD ELECTRONIC COMPONENTS LIMITED
\qquad
board
E1.50
E1.
50
50
E3.00
$\begin{array}{ll}30 \mathrm{p} & 204 \mathrm{~mm} \times 114 \mathrm{~mm} \\ 504 \mathrm{~mm} \times 228 \mathrm{~mm}\end{array}$
1600 $408 \mathrm{~mm} \times 228 \mathrm{~mm}$ 59.00

Single-sided Double-sidedi
€2.00
F1 50
€1.75
$\frac{8175}{12 p}$

WW-028 FOR FURTHER DETAILS

Z\&TAERO SERVICES LTD.
 Head Office: 42-44A-46 WESTBOURNE GROVE, LONDON W2 5SF

 Tel. 7275641 Telex 261306RETAIL SHOP
Tel. 580-8403

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE Sensitivity D.C. Sensitivity A.C. D.C. Current - A.C. Current D.C. Volts A.C. Volts Resistance 'Capacity ;Accuracy	44313 20,000 o.p.v. 2.000 o.p.v. 60μ A-1.5A 0.6 mA .1 .5 A 75 m V-600V 15 V -600V $1 \mathrm{~K}-1 \mathrm{M}$ $0.5 \mu \mathrm{~F}$ 1.5% D.C. 2.5\% A. \bar{C}	$\begin{aligned} & U 4315 \\ & 20.000 \text { o.p.V. } \\ & 2.000 \text { o.0.V. } \\ & 50 \mu \mathrm{~A} .2 .5 \mathrm{~A} . \\ & 0.5 \mathrm{~mA}-2.5 \mathrm{~A} \\ & 75 \mathrm{mV}-1000 \mathrm{~V} \\ & 1 \mathrm{~V} .1000 \mathrm{~V} \\ & 300 \Omega-500 \mathrm{~km} \\ & 0.5 \mu \mathrm{~F} \\ & 2.5 \% \mathrm{D} . \mathrm{C} \\ & 4 \% \mathrm{~A} . \mathrm{C} . \end{aligned}$
Price complete with pressed steel carrying case and test leads 'Packing and postage	$\begin{array}{r} £ 10.50 \\ £ 1.50 \end{array}$	$\begin{array}{r} £ 10.50 \\ £ 1.50 \end{array}$

TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity
Current ranges $\quad .55 .500$ A.C./D.C.
Resistance
Accuracy.
Oscillator output. $1 \mathrm{kHz} 50 / 50$ squarewave
455 KHz strowave
modulated by 1 KHz squarewave
PRICE, in carrying case, complete with leads and manual $£ 8.00$
Packing and postage £ 1.00

[^4]TYPE U4324

D. C. Current $\quad 0.06-0.6-60-600 \mathrm{~mA}-3 \Delta$
A.C. Current: $\quad 0.3-3-30-300 \mathrm{~mA}-3 \bar{A}$
D.C. Voltage: $\quad 0.6-1.2-3-12-30-60-120-600-1200 \mathrm{~V}$
A.C. Voltage: $\quad 3-6-15-60-150-3 \overline{0}-\overline{-} \overline{0} \overline{0}-900 \mathrm{~V}$

Resistance: $\quad 500 \Omega-5.50-500 \mathrm{k} \Omega$
Accuracy: \quad D.C. 2.5% A.C. 4% (of F.S.D.)
PRICE complete with test leads and fibreboard storage case £9.50

Packıng and postage £1.20

TYPE U4341

 COMBINED MULTIMETELR AND TRANSISTOR TESTER

Sensitivity
$16.700 \cap / V$ D.C.. $3.300 \Omega / V$ A.C. Voltage: $\quad \begin{aligned} & \quad 300 \mathrm{~mA} A . C . \\ & 0.3-1.5-6-30-60-150-300-900 V ~ D . C . ~\end{aligned}$ 0.3-1.5-6-30-60-150-300-900V D.
1.5-7.5-30-150-300-750V A.C. 2.20-200k $\Omega-2 \mathrm{M} \Omega$

Collector cut-off current $60 \mu \mathrm{~A}$ max D.C. current gain 10.350 in two ranges
\bar{P} RICE, complete with steel carrying case, test lead, battery and instruction manual $£ 9.50$
Packing and Postage E1. 50

OUR 1980 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUUCTORS ANO PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. for EO. 60 FOR YOUR COPY

A new Q \& A from Newnes Technical Books

Amateur Radio FC Judd G2BCX

* What kinds of transmitters are used for amateur radio?
* Is an aerial difficult to make?
* What receiving equipment is available?

Butterworths has companies in Australia, New Zealand, South Africa, Canada and the USA, where local prices apply.

Tonoridal Transformers

Yet another new development from I.L.P

MADE IN OUR OWN FACTORY AND READY FOR PROMPT DELIVERY

In designing and developing our own very efficient power amplifiers, it became essential to provide power supply units able to maintain our accepted high performance standards. Ideally, we knew that with the heavier output units, toroidally wound transformers were by far the best solution to the problem. So we decided to design and make our own. Now we have a well organised manufacturing division devoted exclusively to making these special transformers and are in a position to offer a range of useful values at keen prices and for prompt delivery

15 VA	30 VA	60 VA	120 VA	180 VA	300 VA
$2 \times 6 \mathrm{~V}, 1.25 \mathrm{~A}$	$2 \times 6 \mathrm{~V}, 2.5 \mathrm{~A}$	$2 \times 6 \mathrm{~V}, 5 \mathrm{~A}$			
$2 \times 12 \mathrm{~V}, 0.62 \mathrm{~A}$	$2 \times 12 \mathrm{~V}, 1.25 \mathrm{~A}$	$2 \times 12 \mathrm{~V}, 2.5 \mathrm{~A}$			
$2 \times 15 \mathrm{~V} .0 .5 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 1 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 2 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 4 \mathrm{~A}$		
$2 \times 20 \mathrm{~V} .0 .3 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 0.75 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 1.5 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 3 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 4.5 \mathrm{~A}$	$2 \times 20 \mathrm{~V} .7 .5 \mathrm{~A}$
			$2 \times 25 \mathrm{~V}, 2.4 \mathrm{~A}$	$2 \times 25 \mathrm{~V} .3 .6 \mathrm{~A}$	$2 \times 25 \mathrm{~V}, 6 \mathrm{~A}$
			$2 \times 30 \mathrm{~V}, 2 \mathrm{~A}$	$2 \times 30 \mathrm{~V}, 3 \mathrm{~A}$	$2 \times 30 \mathrm{~V}, 5 \mathrm{~A}$

SIMPLY AHEAD - and staying there
 Enquiries to.
 THE TRANSFORMER DIVISION I.L.P. ELECTRONICS LTD Graham Bell House Roper Close, Canterbury, Kent CT2 7EP Telephone: (0227) 54778. Telex: $\mathbf{9 6 6 7 8 0}$

WW - 061 FOR FURTHER DETAILS

The exhibition for the professional radio amateur.

May 9th 10am-7pm, May 10th 10am-6pm.

RSGB 1980 EXHIBITION ATALEXANDRA PALACE
Admission Fee $£ 1.00$.
Whether you are a professional involved in electronics, a dedicated radio amateur, short wave listener or interested in any aspect of electronics as á hobby, this specialist exhibition is well worth a visit.

Find out how radio amateurs bounce signals off the moon and off meteors as they enter the earth's atmosphere, and if you feel inspired by that you can also find out how to join the ranks of over 1 million radio amateurs world wide.
$=$ Discover the world of

- AMATEUR RADIO

Radio Society of Great Britain, 35 Doughty Street, London WCIN 2AE.

How to get there.
Public Transport. A lexandra Palace is easily reached by road and has free car and coach parking. Bus services 29, 41, 102. 123, 134, 212, 221 and 244 are within easy walking distance, and service W3 connects with the Underground an Wood Green (Piccadilly Line) and Finsbury Park (Piecadilly and Victoria Lines).
By Car. A.P. is near Muswell Hill or Wood Green, off the North Circular Road.
Talk-in: GB2AP.
FM S22 or SU8 (initial calls). SSB 144.28 MHz (listening watch),
with RSCB

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360:00*.

Plus the $4 S 6$ single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$

Return the coupon for full details of the range that gives you a lot more scope.
"UK list price excluding VAT.

there are transformers and...
 Drake Transformers

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED

South Green Works Kennel Lane Billericay Essex CM11 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

Lighted switches . 'Minitop'miniature switches LED indicator lights • Fuse holders

Switches - toggle, slide, rocker, push-button - cable connectors

Binding posts. Phono plugs and sockets Terminals. Miniature jack plugs

Valve sockets • Appliance plug connectors
Mains connectors - Coaxial components
The vast range of components now available from Rendar include West German, Swiss and Japanese products which all conform to international state-op-the-ant specifications.
Call Tony Lane now for a quotation!

WW - 083 FOR FURTHER DETAILS

S-2020TA STEREO TUNER / AMPLIFIER KIT

NOW WITH BIFET OP AMPS

A high-quality push-button

 FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer. Mag. input, Tape In/Out facility (for noise reduction unit, etc.) THD less than 0.1% at 20 W into 8 ohms, High Slew Rate. Low noise op. amps INTERSTATION MUTE, and phase-locked IC stereo decoder, LED funing and stereo Indicators. Tuning range 88 -104MHz, 30 dB monos 3302 FET module requiring no RF alignment, ceramic if

PRICE: $£ 59.95$ + VAT

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase l.F. and 3 state MPX decoder.

PRICE: £69.95 + VAT

NRDC-AMBISONIC

 UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W. W. July, Aug.. ' 77 The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ. 10 input selections.
The decoder is linear throu hout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $\mathbf{£ 4 9 . 5 0}+$ VAT or ready built and tested $\mathbf{£ 6 7 . 5 0}+$ VAT

S5050A STEREO AMP
 Very high performance kit
 50 watts rms-channel. 0.015% THD. $S / \mathrm{N} 90 \mathrm{~dB}$, Mags/n 80 dB . Outpur device

 rating 360 w per channel.Tone cancel switch. 2 tape monitor switches. Melal case - comprehensive
heatsinks.
Complete kit only $£ \mathbf{6 3 . 9 0}$ + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells etc.
Complete kit $£ 49.50$ plus VAT, or ready built and tested $£ 64.50$ plus VAT

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories Inc.
 Typical pertormance

Complete Kit PRICE: $£ 43.90$ + VAT (3 head model available)
Also available ready buitt and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Oolby (TM) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components. Noise reduction better than 9 dB weighted.
Clipping level 16.5 dB above Dolby level (measured at 1% third Clipping level 16.5
Harmonic distortion 0.1% at Oolby level typically 0.05% over most of band, rising to a maximum of 0.12% Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Oolby level) at Monitor output
Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity

We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

 IBM SELECTRIC I//O GOLFBALL TYPEWRITERS
 now test equipment. microprocessor, motors, p

OLIVETTI TE318
ONLY
£130

+ CARR
VAT
The cheapest way to $1 / 0$ to your computer, 80 column high quality printer, friction feed, serial ASCII in and out, RS232, feather light keyboard, and inbuilt 8 bit paper tape punch and reader. Supplied in good condition with interface data and accessories but untested, unguaranteed What more could you ask for
$1^{\prime \prime}$ Paper tape 75p per roll + pp 40p.
HURRY WHILE STOCKS LAST.

RACAL C10 "Supergrade cassettes,

 66 p each, 10 for $£ 5.45$VENTEK WORD PROCESSOR VDU TERMINALS

Still a few available. The VDU with the GREEN screen Made by the VENTEK Co. with the following spec: case with descenders, 85 characters, upper and lowe ASCII, RS232 interface, adjustable baud rates, full Aursor control, edit function, character(s) flash eic. etc. Latest technology used, mostly 74 LS with dynamic rams.
Supplied in 2 grades
Grade 1 Complete tested and working $\mathbf{£ 2 7 5 . 0 0}+$ VAT Grade 2 Conditionas seen or described $225.00+$ VAT Carriage Extra
Although Grade 1 sold tested and working no guarantee offered. Any

\section*{MULLARD GRADE SMOOTHING CAPS HY PLESSEY - MALLORY - SPRAGUE | 1500 mf | $100 \mathrm{v} 60 \mathrm{p}^{\circ}$ | 3300 mf | 40 v 50 p |
| :---: | :---: | :---: | :---: |
| 3300 mi | $63 \mathrm{v} 70 \mathrm{p}^{\circ}$ | 1 mt | 600 v MYLAR 28 p | $10.000 \mathrm{mf} \quad 15 \mathrm{v} \mathrm{E} 1+\quad 22.000 \mathrm{mf} 16 \mathrm{v} \mathrm{E} 1.10 \dagger$ $100 \mathrm{mf} \quad 250 \mathrm{v} 45 \mathrm{p} / 2100 \mathrm{mf} \quad 200 \mathrm{vf2.50}+$ tested}

SEMICONDUCTOR GRAB BAGS

Amazing value mixed semiconductors, include
transistors, digital, linear I.C. 's, triacs, diodes, bridge
pec. with manufacturers markings, fully guaranteed
$50+$ BAGE2.95 100 + BAGS E5.15

MUFFIN FANS

Keep your equipment Cool and Reliable with our lested ex equipme "Muthn Fans" almost silent running and easily mounted Available wo valtages 110 VAC. $85.06+$ pp 65 p OR 240 v A.C. $\mathrm{fE} .15+$

electronic
 COMPONENTS
 EQUIPMENT

Dueto our massive bulk purchasing programme bargains, we have thousands of 1.C.s Transistor Releys. Cao's., P C.B's. Sub-assemblies. Switches etc. erc. surpius to our requirements Because we include in our ads., we are packing all these items include in our ads., we are packing all these items
into the "BARGAiN PARCEL OF A LIFETIME Thousands of componeris al giveaway prices' pay plus we always include something trom our for unbearable valuelt Sold by weight

7lb $£ .5 .25+\mathrm{pp} £ 1.25$ 14 $\mathrm{lb} £ 7.95+\mathrm{pp} £ 1.80$ $28 \mathrm{lb} £ 13.75+\mathrm{pp} £ 2.25$ 56 $\mathrm{lb} £ 22.00+\mathrm{pp} £ 4.75$

ISOLATED 240v 4 AMP \& 10 AMP SOLID STATE RELAYS

interfece your MPU enc, with tho duido work mede

 by the fomous "Astralux" Co. They consiat ministure plastic module with mounting hotes 12.20 vaing reed revy for solation, choke and triac $12-20$ votre D.C. at a low milliampe anabie on/af controt of A.C. loseds Up to 10 ampse The 10 amp uses including power control. lighting, etc, etc.

 Heal for word processor applications, will accept a host of difterent tipetaces for all
 \qquad
 at your disposal!
ACULAB interta

NEVEA All I.C.'s and Transistors by guaranteed. No fall outs. Comprehensive data on I.C.'s $15 p$ per type.
2N4351 N channel MOS FET
2 N4351 N channel MOS FET
2N4352 P channel MOS F
60 peach $f 1.00$ per pair.
HIGH VOLTAGE NPN POWER SWITCHING transistors BVcbo 600 V BVceo 500 v BVebo 15 v ic 5 amps
Pc 125 watts HFE 60 tyo 2.5 mhz Pc 125 watts HFE 60 typ ft 2.5 mhz 4 for f5.40.
BF258 NPN $250 v$ @ 200 ma 45 p each 3 forf1.08.
I.R. 日SBO1 2.5 amp 100 v bridge rec.
P.C. mount long leads 35 p each 4 for

E1.08.
IN4998 4 amp 100 V P.C. mount diodes
long leads 14 p each 10 for £1. 10 .
$\mathrm{LM} 309 \mathrm{~K}+5 \mathrm{~V} 1.2$ amp regulator E .10
each 6 for $\mathbf{C 5} .35$
each 6 for $\mathrm{C} 5,35$
2N16718 unjunction 450 mw 30 v 48 p
each 3 for f 1.00 . each 3 for f1.00.
IN4004 SD4 1 amp
N4004 SD4 18 amp 400 v diodes 7p
I.R. 12 amp BRIDGE RECS. 400 volt €1. 25 each

POWER DARLINGTON SCOOP! Wu 1000 MPN 60v 90 w 8 amps 70395 peach 2N6385 NPW 80v 100w 10 amps 103 t 1.25 each ML4030 NPN 50w 150w 16 amps 103 E2.25 each

SUPER 77 KEY KEYBOARD KIT We've done it again/ We've purchased a large quantity of CP CLARE top quality
keyboard reed switches plus full QWERTY keyop sets and thrown in a PCB to
enable you to customise the kers just as YOU want them, ust add and wire an
encoder chip and you can arrange ASCII. BAUDOT, anvthing! Adding uo to a encoder chip and you can arrange ASCII, BAUDOT, anything! Adding up to a quality keyboard which would normally cost around
layout and assembly info at only $£ 26.99+£ 1.50 \mathrm{pp}$
S.C.R.'s
2N3001 30 v 350 ma T018 22p each 6 for f 1 ©0 2W5051 $60 \times 800 \mathrm{ma}$ TO18 27 p each 1 for f 1.00 2 W441 $50 \% 8$ amps T0220 45p each 10 lor $\mathbb{5} .00$ C10501 40fy 5 amps T0202 55 p each 10 for 55.00 TRIACS G.E 12 amp 600y T0220ab 95p each 10 for 58.75 E.C.C. 1.6 amp 400 w 105 39p each 3 lor $\{100$ A.EI. IO amp 400 v ready mounted on $2 \frac{1}{2} 12 \mathrm{~g}$ hearsink f 1.00 each 4 for T .75
LOW PROFILE I.C. SOCMETS 80.1 L 100 each 12 for El .00 4 D.IL. 1 p each 8 for fl. 00 $60.1 . \mathrm{L}$. Gold Plated mil grade 22 p each $6 \mathrm{lor} \mathrm{fl}, \mathrm{al}$ $240.1 . \mathrm{L} 35 \mathrm{peach} 3$ tor $\{1.00$

2N3055 (RC.A) 55 THER GOOO

2N3055 in C. A. 65 p each
2NSSH3 RF. output 40 volts. 1 wat up to locomhe T.0.5 55p each 10 for 55.00
 ach 8 for 56.00
CA30298 OC. 120 MHZ fillerential cascode amp 1.00 each 3 for $£ 2.50$

A 301120 MH2 wideband amp 1099 case 65p each 2 lot C 1.00
TMS3114 DUAL MOS 128 bit static smit reg OC 2.5 MH2 $[150$ each 4

GE 224 zero voliage swilch
105 can 11.10 each 7 for $f 650$
FSA2719 8 independent diodes IN4 148 IN914 type in 1601.1. pack 38p each 3 tot $f 100$ FFO3725 4 NPN 50 v 500 ma trans stots in 14 D:1. pack 70 p each 2 lof fl 00

DECADE 0-9 THUMBWHEEL SWITCHES. Stackable, gold plated contacts dim. $33 \times 43 \times 8 \mathrm{~mm}$. 90 p each. 10 for $\mathbf{t 5} .50$.
Ministure Continental Series 12 VDC $4 \mathrm{c} / 0$ plug in relays C 1.30 each
Greenpar 50Ω BNC Chass. socket single hole fixing 65 p
C90 Audio Cassettes screw type construction 45 p each 3 for E 1.00 Bulbs 24v 14 watt white frosted S.B.C. 8 for 巨1.00
Butbs 12 v 100 watt clear, base similar S.B.C. 45 peach.
S.B.C. Bulb Holders All steel cad. plated panel mount easily fixed via nut and round hole, ideal disco displays, scoreboards, etc. 4 for E1.10.
VMOS VMPI Siliconix T03 power FET 0-60v, DC- 200 mhz will drive direct
from CMOS etc, $\subset 1.50$ each, full date 30 p .
Heavy Duty Flat Insulated Earth Brald $100-200 \mathrm{amp}$ braided tinned copper in heavy clear PVC sheath 50 p per metre. E 6 tor 15 retres + PP £1 pet 15 metres. 60p each. 2 for $f 9.10$
Red L.E.D.'s full spec, 0.214 peach. 10 for E1. 25
Red L.E.D.'s 0.125 ' 10 peach 10 for 80 p)
Dynamic Stick Mics 600Ω with built in
TO5 HEATSINKS "Thermaloy"

fype $18 p$ each. 8 for $f 1.00$

BURROUGHS SELF SCAN DISPLAYS

A masterpiece of electronic engineering. This unit could be described as a miniature
VDU VOU. Module consists of an 18 digit display area, mounting bezel, on board
character generator and decoder driver circuitry, all measuring onty $8.5^{\circ} \times 2.25^{\circ} \times 1.34^{\circ}$ character generator and decoder driver circuitry, all measuring only 8 . numeric characters may be displayed simultaneously. addition of external logic enables the unit to scroll along just like a newscaster. Internal 64 character
repertoire, or external inputs for special characters are provid

Supplied brand now.
complete with data
$\mathbf{E 5 5 . 0 0}+\mathbf{£ 1 . 2 5 p p}$.
BARGAINS GALORE!
In our walk round Warehouse
NOW open Monday to Saturday $9.30-5.30$

M- Mo:

Oept. W.W. 6466 Meltort Rd., Thornton Heath. Surrey. MAIL ORDER Telephone: 01.689702 NFORMATION Unless otherwise stated all prices inclusive of VAT. Cash with orderr. Minimum order value $£ 2.00$. Prices and Postage quoted for UK only. Where-post and packing not indicated please add 40 p per order. Bona Fide account orders minimum $£ 10.00$. Export and trade enquiries welcome. Orders despatched same day where possible. Access and Barclaycard Visa wrders despatched

POWER SUPPLY UNITS

5 VOLT 2.5/8 AMP TLL Made for TTL this compact ex computer systems unit features a 10 amp transformer. DC outputs of 5 volts @ 2.5 amps and 7.5 volts @ 5 amps are with electronic current limiting. May be easily moded for 5 voirs @ 7.8 amps . Sold complete with circuit, believed working but untesled. $£ 8.25+\mathbf{£ 1 . 6 0 p p}$.
5 VOLT 5 AMP An extremety compact unit measuring only $125 \times 175 \times 83 \mathrm{~mm}$, aimost tuly enclosed with volts and current limit make it ideal for an MPU system. Sold as new. $\mathbf{£ 1 4 . 9 9 + £ 1 . 6 0} \mathbf{p p}$.
" +" \& "-" 12-15v @ 250 ma . ITT Powercard. Measuring only $140 \times 80 \times 40 \mathrm{~mm}$, this precision totally
enclosed PSU should meet all your memory and negative enclosed PSU shouid meet all your memory and negative
rail requirements. Individual pots allow independent adjustment of both the plus and minus supply rails. Supplied BRAND NEW with circuit and edge connector a nly $\mathbf{E 1 2 . 7 5}+\mathbf{£ 1 . 0 0} \mathbf{p p}$.

KEYBOARDS

76 KEY ASCII CASED At last a coded 75 key cased ASCII keyboard at the right price. Housed in an attractive light grey case, this unit was originally made for ICL for use in airport reservation systems so only the BEST parts were used. It has everything, we think, to meet your most exacting requirements, numeric keypad, upper and lower case, cursor controls, single 5 volt rail, serial and parallel data outputs, plus eight LEDs mounted on the case. Supplied with circuits, believed brand new, but may have minor scratches on cases

Only $£ 43.50+£ 1.60$ pp
\star LOW PRICE CHASSIS \star

A spectal bull purchase enables us 10 otter the above heyboard al a 7 bit output. Fealures such as delaved strobe, 5 voli O.C. single rail operation and ralloves protection mate this an absolute must lor the oper ation and railloves protection mathe this an absolute must lor the
MPY constructor! Supplied complete with connecion diagram ant edge connector, at a secondhand price of only f20 $0^{00+\text { PP. } E 1.60}$ SUPER CASEO VERSION Same as above spec. but housed includes an all $\pi \mathrm{TL}$ parauliel to serial convertior foo detais)
£27.50 +P.p. 61.85

TOROIDAL TRANSFORMERS

reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 25Q.)
For further details contact
Brian Bannister, IPC Electrical-Electronic Press Ltd. Phone: 01-261 8046 or simply complete and return the form below.
To: Brian Bannister. Reprints Department Dorset House, Stamford Street London SE1 9LU
I am interested in
copies of the article / advertisement headed
on page(s) . . . in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No.

Coderaesd \#ectronios

REJECT FLUORESCENT CALCULATORS Modern, fluorescent, 10 function Plaulat memory, Most repatrable but no guarantees. £2.99 each. ALARM CLOCK I.C. MM5316, wrand now. mith data $£ 2.29$ each. POLARIZING FILTER $0.006^{\prime \prime}$ thick plastic film. Any size cut, max, size digit multumeter. With data E 3.49 each. WhIS TWATCH LCD supplied with polarizers and data, 99p each. O. $\mathbf{B}^{\prime \prime}$ LED DISPLAY 4 digit, common cathode, with data. E3.75 each LED ALARM CLOCK MODULE with $0.7^{\text {"' }}$ high digits. With data E5.99 each. 10 UNTESTED LED DISPLAYS
 I.C.) With data $95 p$ each. NOTE the MK5030 and DIS501 are in thaless thatpack" styte package and require some fairly fine soldering. 20 KEY CALCULATOR KEYB OARDS 2 tor 99 p inot for use with
NORTEK 4204 calc NORTEK 4204 calc. Chip). REJECT LED CALCULATORS Some repairable, but ail good value for SWITCHES spring loaded (momentary) with one n.o contact 14 p . LM 555 TIMER IC.C supplied with applications booklet 23p each. LED CALCULATOA DISPLAY 8 digit. common cathode, multppexed. O. 1 "d digits. With data 99 . 2102 MEMORIES Dyilamic memortes for the micro-men, REEORELAYS 500 ohm coll. 12 V d.c. One n.o. contact. $79 p$ each. QUALITY SUB MINIATURE 39p each. $4^{\prime \prime}$ CABLE TIES 25 Iywiaps for only 35 p .

> POST AND PACKING ADD 35p \{OVERSEAS ADD [1]

MORE GOODIES IN OUR CATALOGUE. SEND MEDIUM SIZED SAE FOR YOUR FREE COPY
VAT ADD 15% TOTOTAL COST (INCLUDING POSTAND PACKING

MAIL ORDER PROTECTION SCHEME
 (Limited Liability)

If you order tromf mail order advertisers in this magazine, except tor classilied adverlisaments, and pay by post in advance of delivery. Wirsless world will consider you for compensation it the adveriliser should become insolvent or.bankrupt. provided

1. You have not recoived the goods of had pour money relur ned: and
2. You write to the publisher of wiretess World explaining the position not earlier than 28 days Irom the day rou sent your order and not later than 2 months from that day.
Please do not wail until the lasi moment to inlorm us. When you write. we will tall you how to make your claim and what evidence of payment is requirad.
We guarantee to meet claims trom readers made in sccordance with the sowe procedure as sodn as possible after the advertiser has been declared bankrupt or insolvent up 10 a timit al E3.550 per annum lor any one advertiser 30 ahecled and up lo $\mathbf{1 0 , 0 0 0}$ per annum in respect of all insolven with. at the discrelion ot wireless World: but we do not guarantee to do so in view of the need to set some limit to this comminment and to tearn quickly of readers dillicullies.
This quarantae covers oniy advance paymonts senl in direci response to an advertisement in this magazine |not lor example, payments made in respons 10 calalogues.

TRANSFORMERS

CONTINUOUS RATINGS

MAINS ISOLATOR

PRI 120 or 240 V Sec 120 R

 Centre Tapped and Screened Ref. VA M Ref. VA
$\frac{50 \text { VOLT RANGE }}{\text { Pri } 220.240 \mathrm{~V} \text {. Sec. } 0-20-25.33}$ Pri 220.240V. Sec. O-20-25-33.40-50V Voltages avalab $17,20,25,30,33,40$ or 20 V . $\mathrm{O}-20 \mathrm{~V}$ an $17,20,25,30,33,40$ or $20 \mathrm{~V} \cdot \mathrm{o}$
$25 \mathrm{~V} \cdot 0.25 \mathrm{v}$

	$25 V .0-25 V$	Screened	
R	Arips	E	P\& P
102	0.5	3.75	.90
103	1.0	4.57	1.10
104	2.0	7.88	1.31
105	3.0	9.42	1.52
106	4.0	12.82	1.75
107	6.0	16.57	1.89
118	8.0	22.29	2.39
119	10.0	27.48	$0 A$
109	120	31.79	$0 A$

AT $15 \% 12$ or 24 VO Separate 12 V windings Pri $220-24 \mathrm{VV}$
Ref Amps
\& 12 v 24v

Separate 12 V windings Pri $220-240 \mathrm{~V}$				
	12 v	24v		
111	0.5	0.25	2.42	52
213	1.0	0.5	2.90	. 90
71	2	1	3.86	90
18	4	2	4.46	1.10
85	5	2.5	6.16	1.10
70	6	3	6.99	1.10
108	8	4	8.16	1.31
72	10	5	8.93	1.31
116	12	6	9.89	1.52
17	16	8	11.79	1.52
115	20	10	15.38	2.39
187	30	15	19.72	2.39
226	60	30	40.41	OA
30 VOLT RANGE				

HIGH VOLTAGE

MAINS ISOLATING Sec $100 / 120$ or $200 / 240$ $\begin{array}{cccc}\text { VA } & \text { Ref. } & \text { \& } & \text { P\& P } \mathrm{P} \\ 60 & 243 & 7.37 & 1.58\end{array}$ $\begin{array}{cccc}1000 & 247 & 18.07 & 2.12 \\ 1080 & 45.94 & \text { OA }\end{array}$ BRIDGERECTIFIERS | 100 V | $25 \mathrm{~A}+$ | $\mathrm{E2.10}$ |
| :--- | :---: | :---: |
| 200 v | 2 A | 45 p |
| 400 v | 2 A | 55 p |
| 200 V | 4 A | 65 p |
| 400 V | 4 A | 85 p |
| 400 V | 6 A | $\mathrm{E1.40}$ |
| 500 V | 12 A | $\mathrm{E2.85}$ |
| | P\&P 17 p VAT 15% | |

TESTMETERS

ABS PLASTIC BOXES
Inset brass nuts. slots to take PC
cards (boards) flush fitting lid. PB1 $80 \mathrm{~mm} \times 62 \times 40$.80p PB2 $100 \mathrm{~mm} \times 75 \times 40 \quad .90 \mathrm{p}$ PB4 $215 \mathrm{~mm} \times 130 \times 85 £ 2.68$ PB4 P\& 33p. VAT 15%
ANTEX SOLDERINGIRONS 15W 64.58 . 25W E4.58

530 VAT 15%
 ISOLATOR Ref. 30 240V:

240 V 200 VA £4.62. P\& $\mathrm{A} P$
ISOLATOR Ref. 62240 V .
Send 15 p tor catalogue. Prices correct an 30/10/79

> Barrie Electronics Ltd:
> 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
> NEAREST TUEE STATIONS: ALDGATE \& LIUERPOOLST

DIODES
 All new full spec. devices. IN 3063 ; IN 4148 ; IS 44 100 off $£ 1.50-1,000$ of $£ 10$.
 BLUE THERMAL PAPER
 430 ft roll $81 / \mathbf{n}^{\prime \prime \prime}$ wide $£ 2$ per roll. P \& $\mathrm{P} £ 1.75$
 VARIACS 20 AMP

 19.2KHZ FLAT METALALS
 19.2KHZ FLAT METAL CASE - 50 p e ech. $10 \mathrm{MHZ} \mathrm{B7G} \mathrm{50p} \mathrm{each}$.

 TRANSFFRMERS Secondary outout

 12 KV 30 MA L20. 3 KV SOMA 88 ea.
 IBKV 30MA E60.
 3KV SOMA E8 ea.
 22.5 KV 110 MA E50 ea 60 KV 0.0273 E 150.

 6OKV 0.0273 E150. FORMER 4 windings each winding
 Ouput 115 VV 1.8 KVA . BRANO NEW. These are very conservatively rated $\mathbf{E} 20$ es.
 2 mla 5 KV E4

IMFRA RED OMARTZ LAMPS. 2300 620 WS. STE 13
c1.50.
BRIDGE RECTIFIER. 2 AMP 50 D a
MPTOHODE DETECTOR $4^{4 \prime \prime}$ fly leads. 25 p ea.

Socondhand $£ 2.50$ oa.

```
M
    M,
    New. E1 oa,
    LEDEXROTARY SOLENOIDS. 115V DC. No switch assembly, 15p oa,
    DIAMOND H CONTROLS ROTARY SWITCM. SIngle pole, 10.way.
    Printed Circuit Mount. New, 10p oa.
DELAY LINE. 50 nanosecs. 3 Connections, groundim-OUU. Size 2 }\times7/1
```



```
Ccntre lapped.New, 20p o
MOTOR by Inlind Mator Corp. OC High Tor
```



```
RAPIO DISCHARGE Camacitiors Bmid. 4kV E5 mech. PAP E2
REMO TV TYPE MULTIPLIER, TWO high voltage oulpuns end focus, E1
Oach'T TAKE CMANCES. Use The proper EHT CABLE 1OP per motre or
```



```
*)
Of 2E5.50 P&P &1.50.
M\STERYICPACK. Some 40 pin - oood muxure - all new devices. 25
intormation fom You.
OECOUPLUNG CAPMCITOSS, ETC. Send for Ist.
0.044mitd 250V, Allvalues 100 00 ह1.
M,
10.WAY MULTI COLOUR RIBBON CABLE. New, 40p per metre, 10
movas for f3.
CENTUAR 115VFANS.4/2 x 4 x 
EX.USEEEQQuipment, Ested 60p.
POTTER & BRUMFIELLTIMER RELAY, 115V AC. HeavY duty. }7\mathrm{ Pole
c)
```



```
clocks. Slient funning. Large ilum
931A PHOTO MULTPLER in stainless steel container with window and
bult-m res stor network. E2 ach. P& P E1
*).Complete with knob. Lengin
RANCO 250V 12A THERMOSTATS with Convol knobs caflibaled
S0.200 degree C.E2.50 anch.
SOLID STATE UHF TUNERS. 30 acs E1 osch.
```

MINIMUM ORDER £3 VALUE OF GOODS. MINIMUM P \& P $£ 1$ - where P\&P not stated please use own discretion - excess refunded
CARRIAGE ALL UNITS $£ 5$. P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN $9 \mathrm{am}-1 \mathrm{pm}$ and $\mathbf{2 - 5 p m}$ Monday to Sazurday inc. BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome

TERMIPRINTER 7075

Typewriter-quality Keyboard Send/Receive Impact Printer providing full upper and lower case character set, switch-selectable print speeds of 10.15 and 30 cps , 118 column print line with pin-feed platen suitable for
paper rolls or continuous stationery (paper width $12.85^{\circ \prime}$) paper rolls or continuous stationery (paper wid

DEC EQUIPMENT

KW11P Programmable Clock. £345.00.
LA 11-PD Matrix Printer complete with Unibus Controller
$£ 1800.00$
MF11L 8KW Parity Core including 9-slot system unit. £975.00.

MM 1 1LP 8KW Parity Core. $£ 750.00$.
PR11 High Speed Paper Tape Reader complete with Unibus Controller
£1295.00
PDP $11 / 40$ Processor with 48 KW parity core, KT 11 Memory Management, DL 11 Asynchronous Interface and 6 ft cabinet. £5250.00.

PDP 11/04-MD 9-slot 51/4" Processor with 28KW Core and. DL 11 W Interface. BRAND NEW SURPLUS. £4500.00.

PDP11/10 51/4" Processor with 8kW Core and Asynchronous Interface . £1850.00

PDP8E Series Modules - large stocks of option modules, add-on core, CPU boards, etc. all at reduced prices.
RK11D Disk Controller with RK05J and RK05F Drives +6 ft Cabinet $£ 6250.00$

DECMM11PCore

16 KW Parity Core
BRAND NEW SURPLUS
ONIY 999500

CALCOMP 565 XY PLOTTER
Otgital incremental Plotter
Yaxis 11 X axis
$120 \mathrm{HE} \Sigma 1250.00$

NEW ASCII KEYBOARDS NEW LOW PRICES

Mail Order
Total KB756 56-station ASCII Keyboard mounted on P.C.B. £45.00 £53.48 KB756MF As above, fitted with metal mounting frame for extra rigidity $\quad £ 50.000 \quad £ 59.23$ KB710 10-key numeric pad, supplied with connecting cable £8.00 £9.78 KB701 Plastic enclosure for KG756 or KB756MF $£ 12.50$ £15.24 KB702 Steel enclosure for KB756 or KB756MF
$£ 25.00 \quad £ 30.48$ KB2376 Spare ROM Encoder£12.50 £15.24 KB15P Edge connector for KB756 or KB756MF $£ 3.25 \quad £ 4.31$ DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.) ... £7.50 £9.20 KB771 71-station ASCII Keyboard including numeric/cursor control cluster, mounted in steel enclosure
$£ 95.00 £ 115.00$ DB25S Mating connector for KB771
$£ 5.46$ PERK 5-station ASCI Keyboard for PET Complete with PET interface, built-in power supply and steel enclosure ... £145.00 £172.50 Discounts available for quantities

MODULAR ONE SERIES VDUs
large new stocks of the fabulous HAZELTINE MODULAR ONE SERIES VDUs
BASIC Model from E425.00
EEITING Model Irom $\mathbf{6} 695.00$

ASR33 and KSR33 TELETYPES

Input/Output terminals with 64 ASClI character set. 110 buud operation. Paper tape punch and reader (ASR33 only) Choice of interiace (20 mA or RS232) KSR33 - $\mathbf{\$ 4 2 5 . 0 0}$ ASR33- £650.00 Pedestal $£ 30.00$

PRINTERS \& TERMINALS

BALL MIRATEL 9" Monitor with case
£95.00
GE TERMINET 300 KSR Impact Printer
£625.00
GE TERMINET 1200 Impact Printer
£695.00
HAZELTINE H-1200 VDU ... £375.00 HAZELTINE H-2000 VDU from $£ 395.00$ HAZELTINE Thermal Printer. £395.00. SCOPE DATA Electrosensitive Printer
$£ 495.00$
TEKTRONIX 4601 Hard Copy Unit
£1400.00
TEXAS 725 Portable Terminal $£ 695.00$.
TEXAS 733 ASR Terminal £1450.00. TEXAS 742 Programmable Terminal
£1750.00

MISCELLANEOUS

AMPEX $1^{\prime \prime} \times 3000$ Video Tape. $£ 15.00$ DATA GENERAL NOVA 12104 K CPU
£795.00
DIGITRONICS P1 35 Paper Tape Punches
$£ 95.00$
EMI 15' Diagonal TV Monitors $£ 100.00$ SEALECTRO 11×20 Patch Boards $£ 12.50$ SHUGART SA 400 Minifloppy. £195.00. SHUGART SA $8008^{\prime \prime}$ Floppy. £395.00.

WW - 099 FOR FURTHER DETAIL.

A.C. VOLTMETERS

 BOONTONTrue R.M.S. Voltmeter 93A £375
BRUEL AND KJAER
Electronic Voltmeter 2409 £225
FLUKE
AC/DC Differential Volimeter $883 A B$ $£ 975$
HEWLETT PACKARD
True R.M.S. Voltmeter 3400A
MARCONIINSTRUMENTS
Log Voltmeter / Amplifier 7563A
A.C. Voltmeter 400 E -
A.C. Voltmeter 400 F £225
A.C. Voltmeter 400 EL Valve Voltmeter TF- 2600

Valve Voltmetej TF 2604 R.F. Millivoltmeter TF 2603

ANALYSERS

A.C. Millivoltmeter PM2454B

299

BIOMATION
Logic Analyser 1650 D £3900
GENERAL RADIO
Vibration Analyser 1911A E2100
HEWLETT PACKARD
Spectrum Analyser 141 T
c/w 8552A \& 8554L
Logic Analyser 1600A.
Wave Analyser 310A
Network Analyser System 8407A / 84 12A

MARCONI INSTRUMENTS

Wave Analyser TF 2330A
SOLATRON
Frequency Response Analyser $1172 \quad £ 3900$

BRIDGES

A.V.O./B.P.L.

Capacitance Bridge CZ154/5 £995
GENERAL RADIO
¢ 750
Immitance Bridge 1607A £ $\mathbf{Y 5 0}$
LCR Brdige (0.05\%) 1608A £1195
MARCONI INSTRUMENTS
Universal Bridge TF 1313 £395
Universal Bridge TF 1313 A
In Situ Bridge TF 2701
$£ 790$
In Situ Bridge TF 2701 £325
O' meter TF $1245 \mathrm{~A}, \mathrm{c} / \mathrm{w}$ TF 1246 \& TF 1247
Q' meter TF1 245 c/w TF1 246 and TF1 247

ROHDE AND SCHWARZ

Inductance Meter LRT £475
Capacitance Meter KRT
£475
WAYNE KERR
Universal Bridge B 642
Source and Detector SR 268
£695
A.C. Testamatic A60
$£ 950$
Universal Bridge B221 (0.1\%)

D.V.M.'S AND D.M.M.'S
 DATRON
 $51 / 2$ digit D.V.M. 1051 £995

FLUKE
31/2 digit D.M.M. 8022A (New) £89
$31 / 2$ digit D.M.M. 8020A
$41 / 2$ digit D.M.M. 8600A $51 / 2$ digit D.M.M. 8800A $51 / 2$ digit D.M.M. 8800A-01 PHILIPS
Autoranging D.M.M. PM 2514
31/2 digit D.M.M. PM 2522
4 digit D.M.M. PM 2527
Autoranging D.M.M. PM 2527

HEWLETT PACKARD
$51 / 2$ digit D.M.M. 3490A AC-DC Volts and Resistance Self Check Facility
$£ 550$

MARCONI INSTRUMENTS

R.C. Oscillator TF 1370 A
$10 \mathrm{~Hz}-10 \mathrm{MHz}$
$£ 275$

SCHLUMBERGER
$51 / 2$ digit D.M.M. A243
Microprocessor D.M.M. 7065
Microprocessor with processor option Microprocessor D.M.M. 7055
$£ 595$
$£ 1150$
£1450
$£ 975$
$£ 1300$

FREQUENCY COUNTERS

ADVANCE
500 MHz Counter TC 15 \& TC 15 P1 £495
FLUKE
250 MHz Multifunction Counter 1911 A -01
500 MHz Multifunction Counter 1912A $£ 380$
125 MHz Multifunction Counter 1925A £405 Counter Tracer 1953A opt. 15 \& 16
£850 PHILIPS
1 GHz Timer Counter PM 6615 £795 80 MHz Universal Counter PM $6611 / 02 \quad £ 350$

Digital Error Rate
Measuring Set Up. PF-1
Comprising PFG-1@ £995.
PFM-1@£1495

Network Analyser System $8407 \mathrm{~A} / 8412 \mathrm{~A} .110 \mathrm{MHz}$
£3500

MARCONI INSTRUMENTS

X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit TK 2214 £790

15 MHz Dual Trace PM 3211
25 MHz Dual Trace PM 3212 £625
120 MHz Dual Trace PM 3260 £1095
120 MHz Dual Trace PM $3261 \quad$ £1250

TEKTRONIX
10 MHz Dual Trace Battery/Mains $326 \quad £ 795$
25 MHz Storage Scope $434 \quad £ 1600$
10 MHz Storage Scope 564 B model $121 \mathrm{~N} \mathrm{c} / \mathrm{w}$
3A6 \& 3B3 £950
$\mathbf{3 5 M H z}$ Dual Trace T932 £550
1 MHz Miniscope / D.M.M. 213 £950
W. Diff. Plug in $£ 295$

IA6 Plug in £19

RECORDERS

PHILIPS
Single Channel Recorder PM $8110 \quad £ 225$ RACAL
F.M. Recorder Store 4 £2600

SHANDON SOUTHERN
6 Channel U/V Recorder 10-650 £725
WATANABE
6 Channel Chart Recorder MC $641 \quad £ 2250$
YOKOGAWA
Chart Recorder 3047

BOONTON
Inductance Bridge 63H
$0-110 \mathrm{mH} 0.25 \%$ $50 \mathrm{KHz}-500 \mathrm{KHz}$
$£ 2750$

MARCONIINSTRUMENTS
Wave Analyser TF2330
Frequency Range
$20 \mathrm{~Hz}-50 \mathrm{KHz}$

SIGNAL SOURCES

HEWLETT PACKARD

Variable Phase, Sine and Signal Generator 203A
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$ V.H.F. Oscillator 3200B Decade Oscillator 4204A
U.H.F. Signal Generator 612A V.H.F. Signal Generator 608F MARCONI INSTRUMENTS
A.F. Oscillator TF 2000
A.F. Oscillator TF 2100
A.M. Signal Generator. TF801D/8S
L.F. Oscillator TF $2102 / 1 \mathrm{M} 1$
U.H.F. Signal Generator TF1060/3

Two Tone Source TF 2005R
H.F. Generator TF 144H/4

PHILIPS

Function Generator PM 5108 Function Generator PM 5127
Function Generator PM 5167

MISCELLANEOUS

ADVANCE

Pulse Generator PG 59 (CT 600)
Off Air Frequency Standard OFS 2B
AVO
Valve Tester VCM 163
£395

WANDEL \& GOLTERMAN

Complete P.C.M. System

- ANDIMAT P.O.A.

BRUEL KJAER

Sound Level Meter 2203 \& Microphone 4145

DATALABS

Power Line Disturbance Monitor DL019 £300

FLUKE

DC Differential Voltmeter 895A £950

Meter Calibrator 760A / AF £2150

GENERAL RADIO

Sound Level Meter 1933
$£ 2000$
Cassette Recorder 1935

Power Meter 432A \& 478A \&450
Sweeper \& Marker Generator 860.1 A \& 8600A
$£ 1950$
DC Microvolt-ammeter 425A £250
AC/DC Differential Voltmeter 741B £695
Vector Impedance Meter $4815 \mathrm{~A} \quad £ 1950$
LYONS
Pulse Generator PG $22 \quad$ E225
MARCONI
M.F. Attenuator TF $2162 \quad £ 135$
A.F. Power Meter TF 893A £185

Transmission Test Set TF 2332 ,
$\mathbf{£ 2 0 0 ~ T r a n s m i s s i o n ~ T e s t ~ S e t ~ T F ~} 2333$ £600
P.C.M. Regenerator Test Set OA 2805A £3500
$£ 475$ P.C.M. Multiplex Testep TF 2807 £ 1800

ROHDE AND SCHWARZ
 Stereocoder MSC

TEKTRONIX
Pulse Generator 2101 £420
Time Mark Generator 184 £275
Time Mark Generator 2901 £395
TEXSCAN
Sweep Generator VS 40
$£ 650$
WAVETEK
Sweep Generator 135
$£ 275$
Programmable Phase Meter 755

Also large stock of Wandel \& Goltermann and Siemens Level Oscillators, Receivers, Sweep Systems etc. Phone us with your requirements.

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE - SEND FOR LATEST CATALOGUE

Electronic Brokers unique catalogue contains 62 pages plus update of second user Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Compuzers, VDUs, Teletypes, etc. Largest stocksmost cost effective.

LATEST EDITION. SENT FREEIN UK Airmail to overseas addresses $£ 2.00$

is just full of components

 and that's not all

 and that's not all
 .. our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
 These include Audio Amps, Connectors, Boxes. Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs, LEDs. Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors. Transformers. Voltage Regulators, etc., etc.
 Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
 Plus - Twin postage paid order forms to facilitate speedy ordering
 Plus - Many new products and data
 Plus 100 s of prices cut on our popular lines including 1.Cs, Transistors, Resistors and many more.
 If you need components you need the new Marshall's Catalogue
 Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50 p

The NEW Marshall's 79/80 calalogue

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01 -452 $0161 / 2$. Also 325 Edgware Road, W2. Tel: 01 - 723 4242, Glasgow: 85 Wesi Regent Street, G2 2QD. Tel: 041-3324133. And Bristol: 108 A Siokes Croft, Bristal. Tel: 0272426801/2.

NEW VALVES
 BRANDEO \&
 INOIVIDUALLY BOXED
 - AVAILABLE FROM:

PM COMPONENTS LTD. VALVE \& COMPONENT SPECIALISTS CONINGSBY HOUSE WROTHAM ROAD, MEOPHAM, KENT

${ }^{\text {A1834 }}$	8.00	ECC85	60	ELEP	1.25	082	B0			U184	90	${ }^{\text {a } 542}$	1.45
22087	9.00	ECCB6	1.40	ELR3	1.25	ab3	1.50	P1519	3.00	UY85	70	${ }^{9046}$	9.00
\$2179	9.00	ECC89	. 75	ELP4	60	063	1.50	P180?	2.80	X61.2500	32.00	sony	9.00
${ }^{* 2293}$	8.00	ECCC69	. 90	EL8\%	96	PC ${ }^{\text {B }}$	80	prse	75	4.125 A	32.50	${ }^{90 c 1}$	1.95
[0m180	2.50	ECCE04	. 54	ELSO	. 90	PC88	80	Prsoun	1.55	$4 \mathrm{C} \times 2508$	25.00	9006	2.50
DY86/87	. 60	eccem	1.50	E1.91	4.50	PC92	98	PY800	. 70	56254m	9.00	9ncy	9.00
DY802	. 65		69	f195	. 80	PC97	. 98	Pr801	. 70	58255m	9.00	9246	9.00
E551	15.00	ECFP ${ }^{\text {P }}$	69	El360	5.50	PC900	. 60	Q83-300	32.50	5R464	1.25	gay	9.00
E800	5.50	ECH42	1.15	E1504	1.80	PCCCB	40	OpY02.6	9.50	5146	1.05	${ }^{\text {954, }}$	5.50
Exact	8.50	ECHBI	65	E1509	3.00	PCLCS 5	. 62	gqvaz 10	2.85	5246	1.05		
E80F	6.25	ECH83	. 90	£L221	9.50	PCCB8	72	Oecta-20		6046	1.50	15083 15058	4.50
E81Cx	4.50	есй4	1.10	ELB22	9.50	PCCB9	. 72		15.00	${ }^{5} 33812$	1.25		1.50
E81L	5.50	ECL 80	76	Em81	. 70	PCC1 189	72	Opvob-433		68.7]	4.90	${ }^{1566}$	132.50
ELSCOL	2.25	ECL 81	85	¢mb4	70	P6F80	. 80		16.00	6857	3.70		32.100 1.85
1835x	3.00	ELCL ${ }^{\text {2 }}$. 64	Em87	1.10	PG82	. 70	002-60-40		68w7	1.05	211A	7.00
E33F	200	Eal ${ }^{\text {a }}$	1.30	En32	11.00	P¢8\%	1.10		52.00	${ }_{66 \text { cifc }}$	1.60		
E888C	3.00	ECLB4	80	EN9!	1.95	Pcrazo	1.50	0wo3 12	3.75	${ }_{61565}^{6156[6]}$	255	${ }_{8334}$	5500
E88CC. 01	3.60	Ears	. ${ }^{\text {c }}$	5992	3.00	PCY 201	1.50	Qvos-25	1.35	${ }_{6 S 5169}^{6665}$	1.75	8664	
E91F	4.50	EC.286	. 80	EY51	. 40	PCS 801	1.05	073-125	35.00	6s. 6 6\%	1.05	20504	4.50
E易F	4.50	E¢37a	275	EY86/87	. 60	PCART2	. 74	0\%.250	60.00	65N76T	1.05	5670	
E130	15.50	639	220	Er5004	1.55	POTO 805	1.75	OY4.400	70.00		1.05	5687	5.90
E180CC	4.00	EFEO	55	E280	. 52	P6\% 306	70	Qr5-500	52.50	$124 \cup 6$ 12316	2.50	5749	4.90
E180F	5.35	[855	. 55	E281	. 60	P08 808	1.70	R61.2404	13.50 1350	12886 12847	2.50 1.05	5751	4.50
E1820x	4.50	EF86	. 75	E290	. 85	P9H200	1.00	R63-250A	13.50		7.50	5763	4.00
E1880	3.35	E89	. 75	ExU1	14.50	Pa 82	. 75	T01.100	12.50 50	1215	2.15	5879	4.50
E801F	9.50	Ef91	1.40	6us0	9.50		88	U25	. 70	I2SNTGT	1.85	5965	3.75
cabc80	. 60	Ef93	. 75	6Y50	1.45		85 85	U261	70	1247	3.50	6005	5.50
E891	. 60	Ef94	. 75	${ }_{6732}$. 75				.85	1308	1.50	6080	4.85
	. 95	E95	. 90	${ }_{6}^{6233}$	1.45 3.50	ค1200	3.25 1.25	UAF42	82	30512	1.20	6096	7.50
${ }_{\text {ELCs }}$.95	EF183	60	K161	3.50 4.00		. 98	UR4		30 P 13	. 50	6146	4.75
${ }_{\text {Esc91 }}^{\text {Eces }}$. 95	Ef184 EHSO	. 80	KY\% ${ }_{\text {K17 }}$	4.00	${ }_{\text {Pla }}^{\text {Pla }}$. 78	${ }_{\text {UBFPG9 }}$	1.65	30 P 14	1.20	6201	4.75
Leces	. 60	Ek90	75	${ }_{\text {*1 }}^{188}$	6.90	PLS2	. 60	UCC8S	80	40K05	2.50	8870	13.50
ECCB2	60	EL33	275	${ }^{17} 78$	10.90	P1退	75	UCH4?	1.45	7561	1.05	7032	8.90
eccas	60	E34	1.70	$0 \mathrm{O}_{2}$	B0	Pl.504	1.30	UCH81	. 60	${ }^{8311}$	4.95		21.00
ECCB4	. 50	E137	3.45	0.3	2.50	Pt508	1.70	UC. 82	. 70	85a1	20	78909	26.50 4.75

MANY OTHER TYPES AVAILABLE, INCLUDING SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

Post \& Package 50 p on all orders
PRICES INCLUDE VAT
Prices subject to change without notice

EXPORT\& TRADE enquiries welcome.
Phone our sales desk
0474813225

DESIGN /PRODUCTION

PROBLEMS?

Suffer no more - contact the experts by dropping a line to:

CODESPEED ELECTRONICS

P.O. Box 23, 34 Seafield Road

Copnor, Portsmouth, Hants PO3 5BJ
We design and assemble equipment ranging from PCBs to complete systems. Long or short production runs, competitive prices with good delivery dates.

'IDEAS INTO REALITY'

WW-046 FOR FURTHER DETAILS

ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR BRIAN CHAPMAN 01-261 8353

ELECTRO-TECH COMPONENTS LTD.
 364 EDGWARE ROAD,ILONDON, W.2. TEL: 01-723 5667

 JVC-VICTOR HIGH FIDELITY STEREO CASSETTE

 JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

 TRANSPORT MECHANISM}

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms. equipped with all the latest improvements, as well as "SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to the high specification of TANDBERG OF NORWAY.

FEATURES:

* Close-tolerance, high-quality, top loading transport
* "Sen-Alloy" (SA type) R/P head
- Solenoid-driven autostoo circuir
* Automatic head cleaning device
- Air damped "soft" cassette eject
* Miniature microswitches for switching
* Pre-aligned heads and calibrated motor speed regulator built in
*Trree-digit tape position counter
* Six-function keyboard controls: "Record," "Rewind," "Forward Play," "Stop/Eject," " Pause.
- PCB connectors and cables attached
* High-mass balanced flywheel with permanent lubrication spindle
* Full specifications for motor, heads, and switches available on request. S.A.E. please.
Price of above unit $£ 14.95$ VATInc.
Plus $£ 1$ P\& \mathbf{P}

CHROME DIOXIDE CASSETTES Limited quantity only. Excellent quality little known brand (Italian). Satisfaction guaranteed. C90s only. Price per six (minimum quantity) £6 inc. VAT. P.\&P 75 p any quantity

FERRIC OXIDE CASSETTES
Excellent quality (Italian) C12Os only. Price per 6 (min. quantity) $£ 5$ incl. VAT. P\&P $75 p$ any quantity.

This offer only applies while stocks last

Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1976. Subsequent articles by Mr. Linsley-Hood have confirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our

ћCASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD ћ

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in cassette electronics since the original design was published. The kit is ideal for use in conjunction with the JVC transport mechanism (above).
Included in the kit are two fibreglass PCB's, drilled and plated for immediate assembly, iwo VU meters. Dual LED Peak Meters. Variable Bias system, Power Supply, over 10 micro-circuit IC's for the most up-to-date performance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) £35.95 VAT inc. plus £1.00 P8P
Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish.
Price of Case $\mathbf{£ 9 . 7 5}$ VAT inc. plus $£ 1.00$ P\&P.

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features 6 resistance ranges from 200 ohm-20 ohms
8 current ran
8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ 10 AC/D 10 voltage ranges from 200 $\mathrm{mv}-1000 \mathrm{v}$ DC. $200 \mathrm{mc}-750 \mathrm{v}$

370 gm
37 gms . Full overload protection withstand 6kv spikes
Rugged construction - virtually indestructable
Meets rough military specs drop proof
In line, pushbutton operation for single-handed useage
Incorporates low power cmos chip for low power consumption tee

For only $£ 89$
Carriage and insurance E^{3}

SOFT CARRVING CASE £7 extra

Even more sophisticated the Fluke 8020A
Identical in most respects to the 8022A but in addition incorporates a
conductance range from $2 \mathrm{~ms}-200 \mathrm{nS}$

Price £112

Carriage and insurance $£ 3.00$
A handsome soft carrying case is included (this model only)

DIGITAL MULTIMETERS
BRAND NEW FROM FLUKEIII NOW AVAILABLE
THE 8024A HAND HELD DMM
This model incorporates all the features of the 8020A but in addition has: A peak hold switch which can be used in $A C$ or $D C$ for volis and current functions. Audible continuity testing and level detection for sensing logic levels.
A temperature $\left({ }^{\circ} \mathrm{C}\right)$ range for use with a thermocouple
$£ 135$
Carriage and Insurance $£ 3$

The following nccessories eve in stock now
Y8008 Touch and Hold Probe
f18.00
$80 \mathrm{~K}-40 \mathrm{High}$ Voltage Probe
81 AF AF Probe to 100 MHZ
C45.00
E32.00
81 RF RF Probe to 100 MHZ
80T. 150 C Temperature Probe (C)
801.600 Clamp-on AC Curen $\varepsilon 32.00$
$\varepsilon 55.00$

655.00 | $801-600$ Clamp-on AC Current Probe | $£ 55.00$ |
| :--- | :--- |

8010A AND 8012A BENCH MODELD.M.M.S

 The 8010A is a generat purpose, bench/portable digital multimeter with more functionsand features than ever offered for such o tow price. It companion, he 8012 A . has
identical characteristics except that it has two additional low resistance ranges. 2Ω and identical characteristics except that it has two addition
203 to replace the $8010 A^{\prime}$'s 10 ampere current range
 10 vol tage ranges from $200 \mathrm{mv}-1000 \mathrm{vdc}$. $200 \mathrm{mv}-75 \mathrm{v}$ acm
3 conductance ranges trom 2 ms .200 ns . 6 res islance raan
22 and 2082
10 curfent ranges from 200
anges 10A AC and
8010A £159 8012A £199
1680.04 also
-012×179.00

LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A

- Autoranging in both frequency and pertod

High sensitivity -25 mV , iypucatly 15 mV

- Sox digil LED display wih leading aero
- ODtional internal batrerv dack oroviding 4 hours c

Autoreset on all gale times, all function switches Fow manually selected gate times providing resolution

- Event countung to 10^{6} events with overfiow indicator

Opugged moulded case willel data output with decimal point and annunciation - Traditional h
$\underset{\text { Carriage and Insurance E. }{ }^{\text {3 }}}{ }$

£3.25 P\& ${ }^{50} 5$

BENDIX MAGNETIC CLUTCH

A7600

The top-of-the-range is the A 760075 watts per channel amplifier. With enough power to fill a hali, it gives you a unique range of facilities.
Connect not just one cassette deck, but two (or a reel-to-reel recorder) and use it for tape transfers and dubbing. The monitor switch lets you check the quality as you go. Connect two turntables if you wish. And use the microphone mixing facitity as well
There's never been such a sophisticated amplifier for such a reasonable price before.

PRICE £77.40 EX. V.A.T.

A7400

If 50 watts per channel is all you need, then go for the A7400. It has virtually all of the features of the A7600 except for the second turntable facility.
And if you want to fill your house with crystal clear sound, then choose the medium priced A7400.

PRICE £65.54 EX. V.A.T
T7400 TUNER (not shown)
A medium wave and FM NHF) tuner matched perfectly to the two amplifiers shown.

PRICE £65.54 EX. V.A.T

A.C. ADAPTOR (Batter, Charger) 120 vac input. 5.8 vdc, at 200 mA

 Autpur. USA type mains plug to 3.5 mm jack plug. Brand new $\&$ boxed. A.C. ADAPTOR (Bamerr Charger) 117 vac. input. 4.5 vac at 150 mA oupput USA type mains plug to 2.5 mm jack plug. Brand now and boxed E1.00 osch.VARICAP TUNER hEADS, 4 bution yype. 22 K res. with AFC swich

schews. Pack of nuts bolts, washers, tags, self taps etc. Mixed BA \& metric. Sold by weight $\in 2.00$ par Kirs.
Aporox. 150 tiems. $£ 1.50$.
Aporox. 150 Hems. E1.50.
2.00 ench

E2.00 ench
MODER TELEPHONES Type 745 with dials, collour cream, used Sut new condition. 88.000 ech

 tion speed \dagger rpm, gear ratio $3200: 1,3$ conductor wire for economy, pinpoint positioning to within one degree. Few only at E45.00. We also

WATCH STRAPS . Black stainless steel 50p each. Black plastic 25p
WATCH STRAPS. Black stainless steoe 50 pach, Black plastic 25p aech, Warch spring bars 100 each. Discount for Quantity.
RADIOGRAMB lid pumps $E 1.00$.ech. 2 for E1. 80 .

zY93C 75 Dodes. 75 v 20 W Zener mounted on fin ned hearsink simi-
 Each or 12 for ES .00 .
LARGE range of diecass boxes
OIVERTER 12 HCGU type $£ 2.00$ oach.
equipment supplied with circuit diagoram. E5.00

RADIOTELEPHONE EQUIPMENT
RAD IOTELEPRONE EQUIPMENT
PYE WESTMINSTER WIPAE Nigh band \& low band available, SeIS Complete and in good condition but are less speakers. miles. Gradies PYE WESTMIN STER W $15 A$ Me PYE WESTMINSTER W 15 AMB (Boot Mount) low band compiete With contiol gear and accessorres. and in good condition $\mathbf{E 8 0 . 0 0 \text { oach, }}$ PYE WESTMINSTER W $30 A M$ I low band, sets only no control gear. complete ond in good condition. 645.00 esch. PPE BASE SATION F27 LOW EAHMh Hand few only at E75.00 each. Prices from $\mathbf{E 2 2 0 . 0 0}$ unch.

 E25.00 tor the two Sold as seen.
PYE BC14 Bartery Charger for PF1 (pockoflone) batteries, will charge up to 121 Tx batiories 812 Rx battenes at the neme time. 15.000 oanch. Saption rydionetronhenens over or andilines. $E 20.00$ each.

 PYE TELECOM Yagi aerials 4 element. very rugge
71.1 mHz fideal lor four metres). Brand new. E10.00.
SEMICONDUCTORS

BC109 (metal can) 4 tor 50 p
2 N 38 ! 9 let. 3 for 60 p .

$\mathrm{BC107}$ (metal can) 4 for 50 p .
PCCB 108 (lias 1 B BC 108) 5 for 50 .

BAY 31 Signal Diode. 10 tor 35 p.
SCR400V nt 3A stud type 2 for E 1.00
1N4148 (1N914) diodes 10 for 25 .
iM $340 / 12$ I2v Reoulator $E 1.00$.

KEW 6. Current ranges Amps 150.30 AC . Voltage ranges $600-300.150 \mathrm{AC}$. Resistance ranges (mid-scale) 300 ohms (25 ohms). Jaw size $27 \mathrm{~mm} / 1$ inch. Accuracy $A / V=3$. ($\%$ FSO) $\Omega \pm 3$ Overall length 190 mm . Approx. weight 285 g . PRICE E 25.95 EX . V.A.T

HME 450. De-luxe padded headphone and earpieces. This is essential for long periods of use, e.g. advanced language classes Conforms so C.E.T. UNSPEC No 17 EDUCATIONAL/INDUSTRIAL HEADPHONES
PRICE $\mathbf{3} .95$ EX.V.A.T

£12.70 EX. V.A.T

 TIECLIP CAPACITOR- 0 to 24 V DC from $\mathbf{R P} 124$ - 1 Amp load

Semi-regulated bench power supply with vaable output in two ranges, 0 to 12 VDC and 12 to 24 V DC via changeover switch. The meter can be switched to show output voltage or Voltage: 220 to 240 V AC in \% to 24 V DC Max current: 1 Amp
Regulations: 5% no load to full load Dimensions: $85 \times 185 \times 105 \mathrm{~mm}$. PRICE f27.75 EX.V.A.T.

PROM5

Omnidirectional
Impedance: 600 ohms
Sensitivity: $1.10 \mathrm{mV}(-59 \mathrm{dBV})$ Frequency response: $70-2000 \mathrm{~Hz}$ Battery type: Ever Ready HP7 Cable: 5.8 metres, low noise Connector: $1 / 4^{\prime \prime}(6.35 \mathrm{~mm}$) Jack Plug Supplied in transportation box complete with tieclip.

EAGLE in our 1980 catalogue you will find a full range including: Sound Systems, Hi-Fi Separates, Loudspeakers, Cartridges, Radios, Cassette Recorders, Headphones, Microphones, In Car Entertainment, Aerials, Speaker Units, Intercoms, Telephone Amplitiers, Test Meters, Pub lic Address Systems, Industrial Intercoms, Fire Security. Test Equipment, and much more.

1980 CATALOGUE contains 104 pages. Send only $95 p$ and you will also receive 3 bi-monthly Shortform Catalogues, to keep you up to date with special offers and latest prices. Catalogue includes products by Eagle, Weller, Draper, Spiralux, Knipex, Servisol, Jaybeam, Vero, Amtron, Yaesu and microwave modules. Books by Barnard's and Babani, Newnes and others.

TERMS OF BUSINESS: Cheques or P.O. with order, made payable to B. Bamber Electronics, or phone your Access or Barclaycard No. Please add 15% VAT on all goods advertised after adding postage as aplicable.
CARRIAGE: Orders under $£ 5.00$ nett invoice add 75 p. Orders over $£ 5.00$ but less than $£ 20.00$ add 50 p. Orders over $£ 20.00$ carriage paid. Callers welcome. Tues.-Sat. 9.30 a.m.-5.30 p.m.

\qquad

visa

TERMINAL BARGAINS

ITEL Model 1051

* IBM GOLFBALL Typewriter
* RS 232 N24 Interface
* Full upper / lower case character set
* Paper tape reader/punch
* Works as stand-alone word processor
* Full technical information available
- £375.00

DI/AN Model 3030

* 30 cps KSR terminal similar to DECwriter
* 110, 150, 300 BAUD
* Upper / lower case
* Compact, desk top size
* Optically isolated RS 232 interface
* $£ 395.00$ (also available with tape reader/punch at £750.00

DATA DYNAMICS KSR 390

\star Printing terminal

* RS 232 interface
* Optional stand available at no extra cost
- In first-rate condition
* £175.00 (ASR teletypes available from $£ 275.00$)

OLIVETTI Model 318/328

* ASCII coded
* Paper tape reader and punch
* TTY compatible interface
* RS 232 line unit
* Free optional stand
$\star £ 100.00$ (correspondence quality u/l case version available at $£ \mathbf{2 5 0 . 0 0}$)

COMPUTER APPRECIATION
 86 High Street, Bletchingley, Surrey 0883 (Godstone) 843221

- Available with $14,16,24$ and 40 contacts.
- Mate with standard IC sockets.
- Fully assembled and tested.
- Integral molded-on strain relief.
- Line-by-line probeability.

Faster and Easier is what we're all about.

- Ex stock delivery
* Ask for free catalogue
* All prices for 1 off. Huge discounts for quantity

AP PRODUCTS INCORPORATED

PO Box 19
SAFFRON WALDEN ESSEX
Tel: (0799) 22036

Compare These Prices!

FLAT RIBBON CABLE ASSEMBLIES WITH DIP CONNECTORS

AP DIP Jumpers are the low-cost, high quality solution for jumpering within a PC board; interconnecting between PC boards, backplanes and motherboards; interfacing Inout/Output signals; and more.
All assemblies use ribbon cable. Standard lengths are 6, 12, 18, 24 and 36 inches.

SINGLE-ENDED DIP JUMPERS
 DOUBLE.ENDED DIP JUMPERS

Arrow Denotes Pin No. :

SINGLE ENDED

double ended

PINS	$6^{\prime \prime}$	$12^{\prime \prime}$	$18^{\prime \prime}$	$24^{\prime \prime}$	$36^{\prime \prime}$
14	$£ 1.81$	$£ 1.96$	$£ 2.12$	$£ 2.27$	$£ 2.57$
16	$£ 1.99$	$£ 2.16$	$£ 2.33$	$£ 2.50$	$£ 2.85$
24	$£ 3.11$	$£ 3.38$	$£ 3.64$	$£ 3.90$	$£ 4.43$
40	$£ 5.20$	$£ 5.64$	$£ 6.08$	$£ 6.53$	$£ 7.41$

"HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?"

It's easy to make mistakes when buying video equipment.
Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.

Buy the most expensive and you could literally waste thousands on features never used.

Forget compatibility and the future and you could find yourself spending more money on extra equipment - or discarding equipment you've just bought.

WIDE CHOICE. GOOD ADVICE.

Through our network of Video Centres, we at Bell \& Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"

We answer that question by first helping you to define how you're going to use a video system.

We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes
from libraries or other companies? Will you want a lot of duplicate tapes?

From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder. Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite Whatever it is, we make this promise.

If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD.

No matter what you buy from the Bell \& Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop

Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Let Bell \& Howell show you the answer:

[^5]Lascar's ntw rathgr of UIN Cased Digıtal Display Products are low-cost, compact alternatives to electro-mechanical products. Thry give hicgh levels of accuracy and enhance the appearance of any instrument or panel. The range

MEstres 3 ERENIUNF

UNIT 1, THOMASIN ROAD, BURNT MILLS INDUSTRIAL ESTATE, BASILDON, ESSEX SS13 1LH TEL: BASILDON (0268) 727383

good discounts and free postage on u.k. orders over es.75 Computer-controlled service aids prampt delivery 128-page catalogue free for the asking
ELECTROVALUE LTD., 28 (W5), St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London 87) STD 0784. Telex 264475.

NORTHERN BRANCH (Personal Shoppers Only): 680 Burnage Lane, Burnage, Manchester M19 INA. Phone (061) 4324945

$2 \mathrm{CB}^{2}$
 Jew Bear Components

SHARP MZ80K квом $\mathbf{£ 5 2 0 . 0 0}$

Adcom X80 Printer

Plugs directly into the sharp full graphics capability

£710.00

Sharp Monitor Listing $£ 15.00$ Sharp Basic Manual $£ 7.00$

Exorciser Compatible Products

	ASS
9600 MPU Module	£330.00
9601 Motherboard (16 slot)	£128.65
9603 Motherboard (8 slot).	£73.60
9602 Card cage (Kit)	£55.00
9610 Prototyping Board	N/A
9616 32K EPROM/ROM Module	£191.00
962016 port parallel 1/O (with 8 PlA's)	£215.00
962016 port parallel I/O (with 2 PIA's)	£185.00
9622 Combination Serial/Parallel 1/O Mod	£250.00
9612 Buffered Utility Prototyping Board	t.b.a.
9627.8 16K RAM Module (470ns 8 K bytes)	£235.00
9627 16K RAM Module (470ns 16K bytes)	£360.00
9627 A 16 K RAM Module (300ns 16K bytes)	£410.00
9630 Card Extender	£45.00
9640 Multiple Programmable Timer	£269.40
9640 Multiple Programmable Timer (Part populated)	£205.00
96508 port Duplex serial 1/O (with 8×6850 's)	£240.50
$9650-28$ port Duplex serial 1/O (with 2×6850 S)	£207.00
96702 Relay Contact Module	£275.00
9690 Card Puller	£9.95
96102 32/32 I/O Module	£222.00
SPECIAL OFFER: 2716 (+ 5V Version)	£18.5

MAIL ORDER \& CALLERS: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
CALLERS ONLY: Mersey House, 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 061-491 2290.
CALLERS ONLY: Ist Floor Offices, Tivoli Centre, Coventry Road, Birmingham. Tel: 021-707 7170.
TERMS: Official Orders (min. £10) Access \& Barclaycard welcome. Please add 15\% VAT. Send for book list \& components/kits catalogue.

HI-FI DRIVE UNITS

PA GROUP \& DISCO UNITS

 Celestion G $12 / 80 \mathrm{CE}$ Celestion G $12 / 80 \mathrm{TC}$ Celestion G12/125CE Celestion G15/100CE Celestion G15/100TC Celestion G18/200 Celestion Powercell 12/150 Celestion Powercell 15/250 Celestion MH 1000 Fane Classic 45 12" Fane Classic 55 12"" Fane Classic 80
Fane Classic 85
$15^{\prime \prime \prime}$ Fane Classic $8515^{\prime \prime}$
Fane Classic $1501^{\prime \prime}$ Fane Classic $125^{18} 8^{\prime \prime}$ Fane Classic $1751 \mathrm{~B}^{\prime \prime}$ Fane Guitar 80L 12" Fane Guitar 8OB/2 12 Fane Disco $10012^{\prime \prime}$ Fane PAB5 12" Fane Bass 100 15" Fane Crescendo 12E Fane Crescendo 15 E Fane Colossus 15 E Fane Colossus $15 E$ Fane J44
Fane J104
Fane J 73
Fane HPX1/HPX2
Fane HPX3A
Fane HPX3B
Goodmans 8PA Goodmans 8PA Goodmans D112 Goodmans GR12 Goodmans 18 P Goodmans Hifax 50HX McKenzie C1280GP McKenzie C1280TC
McKenzie C12B0 bass McKenzie C1280 bass McKenzie GP15
McKenzie TC15v McKenzie C15 bass Motorola Piezo hom $31 / /^{\prime \prime} \mathrm{c}$
Motorola Piezo $2^{\prime \prime} \times 6^{\prime \prime}$ Richard Allan HDBT Richard Allan HD10T Richard Allan HD 12 T Richard Allan HO15 Richard Allan HD15P Richard Allan Allas 15
Richard Allan Atlas 18",
E 33.50
$£ 9.95$
$£ 10.75$
$£ 8.95$
polar. network
30.00 pair
f107 35
c148.50
£178.90

Audax HD12.9D25	¢8.25
Audax HD 11 P25EBC	¢7.50
Audax HD 20825H4	¢14.95
Audax HD13034H	¢12.95
Audax HO24S45C	£21.95
Baker Superb	£25.00
Castle Super 8 RS/00	¢14.95
Chartwell CEA205 pairs only	pairs only E81.25
Coles 4001	¢7.65
Coles 3000	¢7.65
Celestion HF1300 II	¢10.95
Celestion HF2000	£10.95
Dalesford ABR 10"	¢10.25
Dalesford D30/110	E11.25
Dalesford 050/153	E12.25
Dalesford D50/200	¢12.25
Dalestord D 70/250	¢25.50
Dalesford D100/310	¢35.75
Dalesford D10 iweeter	c8.45
Decca London Horn	E61.85
Decca CO/1000/8	¢10.25
Elac 6NC204 61/2"	¢7.50
Elac 8NC298 $8^{\prime \prime}$	C7.95
EMI type 350, $13^{\prime \prime} \times 8^{\prime \prime}, 4 \mathrm{chm}$	". 4 ohm ¢9.45
EMI 14A/770, $14^{\prime \prime} \times 9^{\prime \prime}$. Bohm	$9^{\prime \prime}$. 8 ohm E19.50
Isophon KKB/8	¢8.15
Isophon KK10/B	c8.45
Jordan Watts Module	¢23.50
Jordan Watts HF kit	c9.15
Jordan 50 mm unit	¢24.50
Jordan CB crossover ¢24	¢24.50 pair
Jordan Mono crossover ¢24	¢24.50 pair
Kef T27	E9.45
Ket B110	¢12.25
Kef B200	¢13.50
Kef B139	¢27.75
Kef DN13	¢6.75
Kef DN12	E9.40
-Kef DN22 pair	pair $£ 42.00$
Lowther PM6	C59.00
Lowther PM6 Mk I	¢62.00
Lowther PM 7	¢94.50
Peeriess KO100T	¢10.75
Peerless OT10HFC	¢10.50
Peerless K040MRF	E12.95
Radford BD25 Mk III	E36.95
Radtord MD9	£14.85
Radford MD6	E19.95
Radford FN8/FNB31	E21.40
Pichard Alan CG8T	¢13.50
Richard Allan CG12T Super	uper \quad £29.50
Richard Allan MP8B	£20.75
Richard Allan LP88	¢14.50
Richard Allan HP128	¢33.50
Richard Allan DT20	¢9.95
Richard Allan DT30	¢10.75
SEAS H107	¢8.95
Shackman Electrostatic with polar.	with polar, network
\& crossover $£ 130$	£130.00 pair
Tannoy DC296 10"	E107.35
Tannoy DC316 12"	E148.50
Tannoy DC386 15"	£178.90

ALL PRICES INCLUDE VAT @ 15\%

Send 50p for 1980 56-page catalogue 'Choosing a Speaker'

Tel: 0625529599 FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS, ETC.

Tel: 0625526213 (SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKER SYSTEMS

Lightning service on telephoned credit card orders!
 WILMELOW $\Delta][0] 0$ The firm for Speakers
Swan Works, Bank Square, Wilmslow, Cheshire.

LINSLEY HOOD CASSETTE RECORDER 1

We are the Deslgner Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include: High quality PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equatisation for different tape formulations. All wiring is terminated with plugs and sockets for easy aseembly and test. Sophisticated modular PCB system gives a spacious. easily built and tested layout. All these features added to the high quality metalwork make this a most satistying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record/play head, available separately at $£ 7.60$ plus VAT, but included FREE as part of the complete kit at $£ 81.50$ plus VAT.
REPRINTS of the 3 anticles describing this design $45 p$ No VAT
REPRINT of Posteript anticle 30 p No VAT. REPRINT of Postcript anticle 30 p No VAT

VFL 910. Vertical front loading Super H1-fi deck, as used in our new Linsley-Hood
Cassette Recorder $2 . £ 31.99 \div$ VAT. Set of knobs $£ 1.46+$ VAT.

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalioy. Higher output than Ferrite. Fantastic frequency response. Complete with data HM90 Stereo R/P head for METAL tape. Complete with data
H561 Special Erase Head for METAL tape
H524 Standard Ferrita Erase Head
4-Track R/P Head. Standard Mounting
R4842/2 (Double Mono)R/P Head. Sid. Mig
ME1512/2 Ferrite Erase. Large Mig.
CCE/8M $2 / 2$ Erase. Std. Mig.
$\begin{array}{r}4.25 \\ \hline\end{array}$
We are the actual importers of these hesds and invite Trade/quantity enquiries

All prices plus VAT

ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and price breakdowns
Personal callers are always welcome but please note we are closed all day Saturday Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder
This latest version has the following extra features. Ultra low wow-and-flutter of .09\% easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto, stop on all modes. Tape counter with memory rewind. Oil damped cassette output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest $£ 94.90+$ VAT we ask for the complete kit.

SUPER BARGAIN OFFER

LENCO FFR CASSETTE DECK

For those who missed our recent bargaln CT4s we now are delighted to be able 10 offer Brand New Lenco FFR Decks com plete with motor speed and auto-stop control board fitted and tested. These wil operate with any supply between 9 and 16 volts. This deck can be used for both record and playback applications and is fitted with an erase head. A mono supply an extra stereo head, it ordered with the deck at the very special price of E2 plus VAT. We also supply, with each deck and completely FREE, one of our specially moulded escutcheons. This deck would normally cost about $£ 25$ but we are able to offer them, while they last, at only $\mathbf{£ 9 . 9 9}$ plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our redesign of this popular amplifier to make it as easy to build as our latest kits. The power mplie a power supply master board, all possible wiring has been eliminated but possible wiring has been maintained with the existing metal work to enable owners to update if they wish. Send for full details in our list.

LIN SLEY HOOD 30-WATT AMPLIFIER

Advanced new cost-effective amplifier of impeccable specification from the 'master' Published in the January and February issues of Hi-Fi News. We are supplying full kits io our usual professional standard.

STUART TAPE CIRCUITS

(For reel-ro-reel decks)
transistrcuits are just the thing for converiing that old valve tape deck into a useful transistorised recorder. Total system is a full three head recorder with separate record and replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more original three anticles 45 p. Post treefore VAT original three anticles $45 p$. Post free. No VAT

ROHDE \& SCHWARZ

TV Oemodulator. AMF. $55-90 \mathrm{MHz}$
Selective UHF V/Meter. Bands $4 \& 5$. USVF
Selectomat Voltmeter USWV. $\mathbf{E A 5 0}$.
UHF Sig. Gen type SLR SCH $\mathbf{1 6 H z}$. 7750 XUO Decade Synthesizer \& Exciter
Videoskop SWOF with sideband adapter
Modulator/Oemodulator BN17950/2
Video Test Signal Generator type SPF UHF Sig. Gen type SCR. 1.1.9GHz

MARCONI

TF2360R TV Transmitter Sideband Analyser
TM6936R UHF Converter for above.
TF1101RC oscillators £65.
TF 10418 Valve Voltmeter 655
F1152A/1, Power meter $\mathbf{6 5}$.
F1152A/1. Power meter. 25W. 500MHz. €75.
F1020A Power Meter. 100 W .250 MHz .885.
F890A/1 RF Test Set. $£ 395$
F675F Pulse Generator
TF 1066 AM/FM Signal Generator. $£ 550$.
TF $801 \mathrm{~B} / 3 \mathrm{~S}$ Signal Generator $£ 775$.

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diarn.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.

KAY ELEMETRICS SONA-GRAPH Sona-Graph model $7029 \mathrm{~A} .5-16000 \mathrm{~Hz}$ Spectrum Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds, such as speec, voice, doppler shifts, explosións etc. Supplied in excellent condition with handbooks.

ADVANCE CONSTANT VOLTAGE TRANSFORMERS
Input 190-260V AC. Output constan 220 Volts. $250 \mathrm{~W} . £ 25$. ($£ 2$ carriage)

PYE RESISTANCE BOXES

5 decade resistance boxes measuring frorr. 11.111 ohm to 0.001 ohm

LABORATORY OVENS. - Gallenkamp, 3 cu. ft. £145. Also Morgan Grundy $1 \mathrm{cu} . \mathrm{ft} . £ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $£ 2.50$ each ($+25 p$ pp). Type 316 three pole plugs for above - 20p ea. (pp free).

P. F. RALFE ELECTRONICS

10 CHAPEL STREET; LONDON, NW1
TEL: 01-7238753

AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V
LEVELL TG66A-1 Decade oscillator
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
SOLARTRON CD1740 Dual-Beam Oscilloscope. £475 GERTSCH Frequency Meter and Dev. Meter, $20-1000 \mathrm{MHz}$ £ 350 .
HEWLETT PACKARD 302A Wave Analyser.
HEWLETT PACKARD 695A Sweep Oscillator $£ 350$. BOONTON 202H AM /FM Signal Generator
SE Labs Dual-Beam oscilloscope type EM102 c/w EM515 plug-in unit. DC-15MF*. Mains or 12 V Battery operated Solid-state. $8 \times 14 \times 1$ Bins. $250+$ VAT.

SOLARTRON LM1420.2. DVM. 6 ranges to 1 KV . MUIRHEAD type K-134-A Wave Analyser. Portable
RADIOMETER AFM/1. Dev/Mod Meier. $3.5-320 \mathrm{MHz}$. £185
HEWLETT PACKARD 608C Signal generator. $10-480 \mathrm{MHz}$
WEINSHEL Power supply Modulator type MO3.
BRUEL \& KJOER type 1504 Deviation Bridge
BRUEL \& KJOER Vibration equipment 1018.
BRUEL \& KJOER Frequency analyser 2105
BRUEL \& KJOER Microphone amplifier $2603 £ 195$.
BRUEL \& KJOER Type 3301 Automatic frequency response recorder 200 Hz . $\mathbf{£ 7 5 0}$.
MUIRHEAD-PAMETRADA D489EM Wave Analyser
TEKTRONIX 555 scope with plug-ins types CA (2 off), 21,22 TEKTRONIX 51 5A Oscilloscope
TEKTRONIX 545 main frames. $£ 210$. Choice of plug-in units extra
TEKTRONIX 585A oscilloscope with ' 82^{\prime} P.I. DC-B0MHz
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries

DC POWER SUPPLIES

APT 10459/8. 12-74V. @) ち Amps. ๕゙< ((2 p.p.) *APT 10459/8. 24V.@ 5 Arrips. £25. (£2 p.p.)
*We can supply the above power supply at any fixed voltage between 5 V and 36 V at 5 A . $£ 25$. Mullard Dual supplies. Brand new with handbook. Pos $\& \mathrm{Neg} 12 \mathrm{~V}$. at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00+(£ 1$ p.p.)

- FARNELL Current limited. Dimensions $7 \times 5 \times 4$ ins. Following types available. 5 Volts @ 3A. £15.13-17 Volts@ 2A. £15. 27-32 Volts @1A £15. Plus £1.50 each postage. All the above power supply units are 230 V . AC input and are stabilised and regulated and fused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a money-back guarantee if not completely satisfied

MODULATION METERS

AIRMEC $2103-300 \mathrm{MHz}$. AM / FM
RADIOMETER AFM/1 3.5-320MHz. AM/FM. RACAL $4093-600 \mathrm{MHz}$. AM / FM

'CENTAUR' INSTRUMENT COOLING FANS
 \section*{Made by Rotron Holland These are very high}

 quality, quiet running fans, specially designed for the cooling of all types of electronic equipment. Measures $4.5 \times 4.5 \times 1.5 \mathrm{in}$.Airflow 90° cu/fitminute. These are ex equipment fans supplied in excellent condition fully tested before despatch. Prices as follows: $115 \mathrm{~V} . \mathrm{AC}: £ 4.50$. $230 \mathrm{~V} . \mathrm{AV}$.: £5.00. Small type fans as above but measures $8 \times 8 \times 3.8 \mathrm{cms}$ $26 \mathrm{cu} / \mathrm{ft}$ / minute. $115 \mathrm{~V} . \mathrm{AC} £ 4.00$. Carriage on $\mathbf{2 6 c u} / \mathrm{ft} /$ minute. $115 \mathrm{~V} . \mathrm{AC} £ 4.00$. Carriage on
any of the above fans is 35 p ea. Finger guards any of the above fans is 35 p ea. Finger guards
available for the larger type at 50 p each. (RS available for the larger type at 50p
price for these fans is $£ 12.50$ each!!).

Superboard II

At these prices why waste time and money on unauthorised kit copies? Just a little more in price than Sinclair for a whole lot more and fully expandable !
610 Expansion Board 8k RAM ONLY £159.95 + VAT IP CD3P Minifloppy Disc, Cased, PSU, 2 copies Dos ONLY £289+VAT Set of $4 k$ RAM (Superboard users only) ONLY £28 + VAT Plastic Case, Beige ONLY £26+VAT Challenger IP-Metal Cased, Superboard, PSU modulator ONLY £208 +VAT

INTELLIGENT EPROM PROGRAMMER Connects Directly to TV.
Develop,Copy,Burn, Verify 2708,\& with mod 2516 Softy is a versatile product and each application will be different by definition. When Softy is connected via a serial (RS 232) or parallel link with any small computer capable of supporting an assembler a simple and Capable Product Development System is performed. For product develop ments less than $2 k$ of firmware Softy may be the only development tool you need.

ONLY £120+VAT Built \& Tested $\mathbf{£ 1 0 0}+$ VAT Kit
$£ 20+$ VAT Built - Power Supply

PERFORMANCE IMPACT PRINTER

The ideal companion for PET, APPLE, TSR80,

 Exidy, Superboard, Compukit, OhioChallengers and most micro's
Rugged metal enclosure makes it ideal for home computing, small business systerns, data logging etc.
*RS-232, 20mA, IEEE 488 and Centronics $1 / 0$ * 16 Baud Rates to 19,200

60 Lines per minute - Bidirectional

* 5 print densities 72,80,96,120 or 132 Chr/Line
*Self Test Switch
"Tractor and Fast Paper Feed/Graphics Model 800st ONLY $£ 389$ + VAT

ZT Driving Computer

ADD A NEW DIMENSION TO YOUR CAR WITH COST EFFECTIVE FUEL MANAGEMENT

*Miles per gallon - Instant "Miles per gallon. Average "Miles per hour - Instant "Miles per hour - A verage "Gallons used since fillup *Miles to empty "Elapsed Time "Time to empty "Time on trip *Miles on trip

Accuracy: Time: +30 secs/month
Speed: +0.5 mph - Instant
+0.005 mph - Average
Fuel Used: $+3 \%$

Takes only about 2 hours to fit

ONLY $£ 77.50$ + VAT

Careers in the electronics industry

Types of work available and what you need for them

by Ronald C. Slater, F.I.E.R.E. TJB Electrotechnical Personnel Services

Abstract

This review sets out some of the careers which the electronics industry has to offer, the academic qualifications which are needed and the possible rewards. It is intended to help those who are already employed in the industry but who, for one reason or another, are not satisfied with their present career paths; those who are training for a career in the industry but who have not yet started work and, last but by no means least, the younger readers who, though they have an interest in radio or electronics, have not yet decided on their careers.

Perhaps the first question to be asked is 'Can the electronics industry provide a worthwhile career at all?' This question is not so absurd as it may seem, especially if it is qualified by the words 'in the UK'. Only a decade or so ago it may have been thought that the steel industry or the automobile industry could offer a worthwhile career; the position now is somewhat more doubtful. A young man or woman embarking on a career may have a working life of some 40 years ahead of him or her. It would indeed be rash to forecast the path of any industry over so long a period, especially one such as electronics where changes and advances in technology are so rapid. Yet, while it would be foolhardy to forecast the changes in technology, it can be predicted with almost complete certainty that more and more sophisticated forms of communication will be demanded, that more and more processes in commerce and industry will become automated, and that the use of electronics, in one form or another, will become more widespread in industry, commerce, and the home.

Hand-in-hand with this will go an increasing demand for electronic engineers and technicians at all levels, to design, produce, test, install and service an expanding conglomeration of even more sophisticated equipment.

Education and qualifications

Twenty or thirty years ago formal qualifications were of very much less importance than they are today and many persons rose to the top of the engineering professions by dint of experience, perseverance and 'green
fingers'. In the intervening years qualifications have assumed ever in-1 creasing importance, partly due to the advancing sophistication and complexity of technology and partly to the increasing availability of technical education. Thus, although it still may be possible to succeed without formal qualifications it is increasingly difficult to do so and almost certainly the entry point on the career ladder will be determined by the educational course which has been followed and by the qualifications which have been attained.
Although in terms of employment there will be considerable overlap, technical personnel in the electronics industry can, in general, be divided into the three grades recognised by the Engineers Registration Board. These are 'Technicians', 'Technician Engineers' and 'Chartered Engineers'. To become registered in any of these grades needs specified academic attainments plus a laid down period of training, experience and responsibility. Registration will normally be made through an appropriate society or institution. For Tech-
nicians and Technician Engineers these are the Society of Electronic and Radio Technicians (SERT) and the Institution of Electrical and Electronics Technician Engineers (IEETE); for Chartered Engineers there are also two institutions, these being the Institution of Electrical Engineers (IEE) and the Institution of Electronic and Radio Engineers. Anyone who is seriously attempting to carve a career in electronics should strive for corporate membership of an appropriate professional society or institution; not only for the qualification and the letters it allows one to append after one's name but for the facilities it provides for mixing with persons with similar professional interests and for keeping up-to-date with advances in technology.

Full details of the requirements for registration as a Technician, Technician Engineer or Chartered Engineer are available from the organisations mentioned above, all of which are in the London telephone directory. Very briefly, the choice of 'academic' requirements at present is as follows:

More and more women are making successful careers in electronics. Padmini Sathiaseelan, who won an award in the 1979 "Girl Technician of the Year" competition, is a development engineer at Rank Hi-Fi. She has a B. Sc. (Eng.) degree, having specialised in electronics and communications, and in her present work on acoustics has contributed to the development and design of a new range of loudspeakers.

Technicians

Ordinary National Certificate (ONC) in Engineering with at least one electrical subject.
Approved TEC (Technician Education Council) Certificates and Diplomas in electronics and communications.
City and Guilds of London Institute Part II Certificate in one of the following:

Course 271 - Telecommunications Technicians.
Course 282 - Electrical Technicians (with at least one electronics subject). Course 272 - Radio and Television Electronics Technicians
Course 172 - Final Certificate in Electronics Servicing.
Some training courses in the Armed Services are also acceptable, e.g.

Royal Navy - Artificers and Mechanicians in appropriate trades.
Army - Class I Technicians in appropriate trades.
Royal Air Force - Electronic Air or Ground Technicians.

Technician Engineers

Approved TEC Higher Certificates and Diplomas.
Higher National Certificate or Diploma (HNC or HND) in Electrical and Electronic Engineering.
City and Guilds Full Technological Certificate in an appropriate course.

Chartered Engineers

A university or CNAA (Council for National Academic Awards) degree in Electrical and/or Electronic Engineering. Some degrees in associated disciplines such as Physics and Mathematics may also be acceptable.
HND in Electrical and Electronic Engineering plus the CEI (Council of Engineering Institutions) Part II Examination.
The CEI Part I and Part II Examinations.

In all three grades there are certain other qualifications which may be acceptable. There are also several changes which are imminent, particularly in the Technician and Technician Engineer qualifications. Full advice on these will gladly be given by the institutions. It is also a good idea to seek advice from them before embarking on a course of study

The course of study followed by a young person may be dictated by personal circumstances, such as the mundane need to earn money at an early age. In general, it is possible to obtain Technician or Technician Engineer qualifications by part-time study, e.g. evening classes, day release, block release, or a combination thereof. To obtain qualifications to Chartered Engineer level full-time study is almost essential and this usually will be in the form of a three- or four-year degree course. This, in turn, usually means that it will not be possible to go into full-time paid employment before the age of 21 or 22. Education Authority grants and sponsorships from companies are, of
course, available to ease the financial difficulties.

Alternatively the course to be followed may be determined by the failure to secure the necessary ' A ' levels for admittance to a degree course.

However, even if none of these limitations applies the question still remains, how high should one aim? Ambition is undoubtedly a very good thing, but it must be a realisable ambition; if it is not, then it can only lead to frustration and discontent. It really comes down to the not easy task of knowing oneself and one's capabilities. We do not all have the ability to become a director of research or the managing director of a large company. It is better, far better, to become a first-rate technician than a mediocre chartered engineer.

There is just one further thing to be said, about education and that is quite simply that it is not a 'once and for all exercise'. It is, or should be, a continuing process that will go on for the whole of a person's career. This is particularly necessary in an industry such as electronics where technical advances are so rapid. This continuing education may take the form of 'in-house' courses, short courses at educational establishments, attendance at colloquia and conferences or diligent reading of professional journals and the technical press.

Types of jobs

In electronics there is a very wide range of jobs and careers available, and within the confines of this article it is not possible to give an exhaustive list. In addition the names used to describe various tasks may vary considerably from company to company and, particularly in the smaller companies, there may be considerable overlap in the tasks one is called upon to perform. The following, however, represents the main activities of a typical company:

Research
Design and development
Production engineering
Quality and reliability engineering
Test
Sales and marketing
Installation and commissioning Service
Which of these you go into may be decided by a number of factors such as educational attainments and personal inclinations, plus, of course, the availability of jobs at the right time and in the desired location. The following paragraphs outline the qualifications and personal attributes which are generally necessary in the various sectors.

Research. The primary reason for research is to extend the frontiers of knowledge. A great deal of fundamental research is carried out in universities and, to some extent in polytechnics. Much original work is also done in the very fine research laboratories of the
larger manufacturers. Many research projects will require the services of multidisciplinary teams which may consist of materials scientists, physicists, mathematicians, electronic engineers, chemists etc. To take an active part in research will generally require the acquisition of highly specialised knowledge and will usually call for at least a good first degree and possibly a second degree (e.g. M.Sc., Ph.D.). It also calls for a questioning mind, an ability for innovation and creativity and the pertinacity to continue to seek for a solution where none seems possible. In terms of self-esteem and inner satisfaction the rewards of successful research can be very great, but not all research is successful and it is also necessary to be able to accept defeat, possibly after months, or even years, of endeavour. To be a leader, manager or director of research it is also essential to have that fine judgement to know which projects should be pursued and which should be abandoned.

Design and development. The purpose of design and development is to produce something which can be manufactured and sold. The 'something' may range from a single component such as a resistor or capacitor through to a complex computer-controlled data communication system. It may be a oneman task or it may need the expertise of a number of multidisciplinary teams and it may call for the assistance of outside specialist companies in, for instance, the design and supply of large scale integrated circuits.
In most cases the precise objective will be known and the design and development work may have to be carried out within the constraints of a tight performance specification and against a rigid time scale while at the same time taking account of national, international or military standards.
The most usual qualification for a design and development engineer is a degree in electrical and/or electronic engineering or a related subject such as physics or computer science, but other qualifications such as HND and HNC are often acceptable, especially if backed up by relevant experience.

Apart from technical knowledge the design phase of the project will, more often than not, call for original and innovative thinking and a disciplined and logical approach, plus in many cases, a fair degree of commercial awareness. Also it will often involve close liaison with a customer's own technical staff and the ability to quickly appreciate a problem outside of one's own discipline, as for instance, when electronic equipment is being designed to control some other non-electronic function of process.

Between the original concept, design and building of a laboratory model and the engineering of a product suitable for manufacture and marketing there is often a long path to tread; this is the
development phase. This may call for close liaison with component suppliers and with internal departments such as test, production, quality assurance and the drawing office. Thus it requires a knowledge of the availability of materials and components, of manufacturing processes and costs. There's no use in developing a product which cannot be manufactured by the means available or which cannot be produced at a competitive price. Except for the very simplest of products the design and development engineer must have the ability and willingness to work as a member of a team, which very often will be of a multidisciplinary nature. Another essential asset which is often overlooked and neglected by the budding D \& D engineer is the ability to communicate. The finest or most revolutionary ideas in the world are completely and utterly useless if they cannot be communicated to others.
To be involved in the design and development of a successful product can be a very satisfying experience. It can also offer a very worthwhile career progression from, say, engineer to senior engineer to section leader to project leader and all the way up to development manager and technical director Furthermore a few years in design and development can be a very useful stepping stone to a successful career in other areas, such as sales and marketing, production and general management.
So far research and design and development have been treated as the preserve of the holders of degree, or near degree level qualifications. However, in research laboratories and in design and development departments there are many openings for technicians and technician engineers; as assistants to the engineers, for the building and testing of prototypes, for the maintenance of test equipment etc. Most forward looking companies will help their more promising technicians to obtain higher qualifications by sending them on day release or block release or by sponsoring them for sandwich degree or HND courses. There are indeed many men who have entered the electronics industry as apprentice technicians and who, at the company's expense, have progressed through ONC and degree courses and subsequently to positions of high responsibility.

Production engineering. Production is really what industry is all about, yet many, far too many, well qualified technicians and engineers in the UK shy away from it and seem almost to regard it as a dirty word. This is in direct contrast to most other industrialized countries where a large proportion of engineering graduates take up employment in the manufacturing sector. This is probably one factor in explaining why Britain's production record has been so poor in recent years.

For many the-words 'production' and
'factory' still conjure up pictures of the dark satanic mills, but modern production, in the electronics industry at least, is not like that. More often than not it will take place in a clean, well lit and congenial environment. It offers a wide range of jobs for junior technicians right through to the best graduates. These include production planning and co-ordination, production equipment maintenance, and, of course, production management. For the person who likes solving problems, seeing the fruits of his labours and who likes working with people it has a great deal to offer. It is also an area where able persons with qualifications can expect promotion with a clear way open to the very top.

Quality control and quality assurance. Although quality assurance and quality control are closely related to production many companies arrange these activities as a separate department. Again, although many of the attributes necessary for a quality control engineer and a quality assurance engineer are similar their functions are slightly different. Quality control is a process through which actual performance is measured and compared with standards and specifications and, if necessary, remedial action is taken. Quality assurance, on the other hand, provides the evidence needed to ensure that the quality function is being properly performed and includes activities such as quality auditing, quality assurance analysis and qualification approval of products.

Generally both QA and QC engineers will be expected to have a minimum qualification of HNC. They must both have, or be willing to acquire, a knowledge of specifications, measurement methods, methods of assessment and an understanding of the manufacturing processes. It is very much a. job for the person who is interested in statistics and statistical analysis. With the increasing use of electronics in applications where failure cannot be tolerated the quality function is becoming ever more important. It is, in a way, becoming a profession in its own right and the demand for QA and QC engineers is very good.

Test. For many young technicians the test department will form their first introduction to the electronics industry; that will also be true for a number of new graduates. While the basic task of a test department is to measure whether a component, sub-assembly or a complete equipment meets the specified criteria, there is obviously a great deal of difference between the knowledge and skill required to test a single component or small sub-assembly and those needed to deal with a large complex system. At the higher levels the work will not only involve actual testing but will also include test planning, drawing up test schedules, devising test methods and, in

Some people stay in the industry a long time. Wilf Williams, a senior production engineer at Eddystone Radio, has just celebrated his 50 th year with the company. He started as a 15 year old "radio mechanic" in 1930.
some cases the design of special test equipment. Furthermore, with the influx of advanced automatic test equipment it may also call for further skills, such as computer program writing. Test engineering can offer a good career in its own right; the chief test engineer is usually a person of some importance in his organisation. It also provides a good grounding for a career in other areas such as development or production engineering.

Sales and marketing. A product without a customer is about as much good as a sick headache and, since few products sell themselves, the role of the salesman or sales engineer is a vital one. Unfortunately many people, engineers and careers advisers among them, somehow conjure up a rather strange picture of a salesman. They either see him as a rather woebegone character peddling his wares from door to door or as a smooth talking 'Flash Harry' who spends most of his time driving around in a company car and eating expense account lunches. True, a technical salesman may have to knock on a few doors and will almost certainly have a company car, but he or she will be very far from those fictitious pictures. First, he or she needs to have a thorough knowledge of his products, and this generally means a good engineering education and background. For this reason many companies prefer to recruit their sales engineers from people who have spent several years in other sectors of the industry such as development or production.

The sales engineer needs the ability and willingness to understand the customers' problems and has to be able to communicate enthusiasm, to stay calm
under pressure, to be self-motivated and self-disciplined, to be able to accept setbacks and failures philosophically, and to be at ease with other people whether they be other engineers or top management. The latter is very necessary for the sales engineer selling capital equipment worth, perhaps, many thousands of pounds. Above all he or she must really want to sell and to succeed. It is, perhaps, a rather formidable list of requirements and, certainly, selling is no easy way out for the person who wants a quiet life. On the other hand, for the person who has the necessary attributes it can be an exciting and rewarding life both in terms of job satisfaction and financial benefit. A career in sales engineering is open to persons with all levels of qualification provided that they are sufficient to allow a complete understanding of the product being sold. Clearly, the more complex and advanced the product the greater is the knowledge needed to understand it. Some of the virtues which go to make a successful sales engineer, such as the ability to communicate enthusiasm and to deal effectively and comfortably with people at varying levels, are also among the requisites for successful general management and this is one of the ways in which a sales engineer may progress.

Marketing is allied to sales engineering but is somewhat wider in scope, embracing subjects such as marketing strategy, publicity, possibly pricing and pricing agreements, and is an area into which a sales engineer may transfer.

Installation and commissioning. In many instances, particularly in the case of large equipments or systems, a manufacturer will supply a team to install and commission the equipment; that is, to ensure that it is working. satisfactorily before it is handed over to the customer. The 'team' may consist of anything from one person upwards and the installation and commissioning time may be anything from a few hours to several months or more. It is a job which will usually entail periods spent away from home and it will often involve considerable travel both in the UK and overseas; it may also necessitate working unusual hours. For the man or woman who likes to do a practical job combined with travelling and working in different places it can be an enjoyable and rewarding way of life.

A large number of installation and commissioning engineers will come from the ranks of technicians and technician engineers but there are also good openings for graduates, both in a supervisory role and in dealing with the larger and more complex equipments and systems.

Service. Service engineers and technicians are basically of three types: 'inhouse', 'field' and 'site'. The in-house
service technician will spend his or her time on fault diagnosis and repair in the company's own premises. The field service technician will be working away from the company's premises and will usually have a number of 'customers' within an allotted geographical area. The site service technician will be working permanently on the premises of one of the firm's customers. Each has its advantages and disadvantages. Inhouse service will usually mean regular hours and working alongside other people, with help close at hand if needed. Field service will entail a certain amount of travel, often working on one's own, and possibly working out of normal hours; thus it calls for self-reliance and self-motivation; on the other hand it provides a certain amount of freedom and often the use of a company car. In site service a person may be working alone but far more likely he or she will be a member of a team; in many instances where site service engineers are employed the equipment concerned will be working round the clock and the service engineers will be expected to work on a shift basis - for which they will, naturally, be compensated.

Many technicians and technician engineers will be employed in servicing but there are many openings for graduates, especially in dealing with the more sophisticated systems where skills such as diagnostic programming may be required. Servicing is a good career for people who like solving problems and 'putting things right'. Field servicing, which provides direct contact with the customer, can be a good stepping off point for a subsequent career in sales engineering.

Specialisation

So far the electronics industry has been treated as an entity and no mention has been made of specialisation. Should one concentrate on analogue techniques or digital techniques? Is there a better future in communications or computers or consumer electronics etc, etc? These questions (and the answers!) are important to everyone in, or entering, the industry but they are, perhaps, of special relevance to the design and development engineer. To attempt to answer them would need another article but a few general remarks may be helpful.
In the first place it will usually be necessary to specialise to some extent, even if only on a temporary basis to deal with the job in hand. Whether or not one should specialise completely and permanently is open to question, but if one decides to do so then clearly it should be in an area which is likely to have a reasonably long future. In any case it is advisable to retain some adaptability by reading as widely as possible outside of one's specialisation. So far as the digital versus analogue argument is concerned this is also a very open question. It is true that the trend in many
spheres is towards digital techniques. It is also true that the microprocessor will make an impact in many areas of electronics, even though it may not be the wonder of the age as proclaimed by the lay press. However, it is equally true that there is a widespread demand for good analogue designers and this is likely to continue. Indeed, as a result of the enthusiasm with which so many young engineers have followed the digital and microprocessor trail, acute shortages are becoming apparent in other areas. For example, good r.f. designers are now beginning to have a scarcity value. In other words do not necessarily do what everyone else is doing and do not necessarily try to get on the band wagon of the day - less popular areas may pay off better in the long run.
Most of the above remarks also apply when orie is considering the various sectors of the industry such as communications, computers, instrumentation, avionics, components. Excellent careers are available in most sectors and what you choose is really a matter of personal inclination and interest. It may be worth emphasising again that it is not always the superficially most glamorous sector which offers the most interesting and rewarding career. For example, many engineers shy away from component technology whereas in fact this is the sector where many major advances originate.

Footnotes

Because of limited space many points have been treated very briefly and some not at all. One of these is the not unimportant matter of salaries. The only thing that can be said here is that in the past year or two there has been a significant upward trend in the salaries of technicians and engineers. For example in 1975 the average starting salary for a university graduate going into his or her first job was between $£ 2300$ and $£ 2600$; this year it will be between $£ 4500$ and $£ 5200$ p.a. Other salaries have increased proportionately. A look through the Appointments section of this issue of Wireless World will give some idea of the going rates.
Finally, a word about geographical location. Although companies who manufacture or use electronic equipment are to be found throughout the UK there are many areas where they are very thin on the ground and other areas where they are concentrated. It is clearly rather pointless to decide to live in say, Abermuirig and pursue a career in the design of r.f. instrumentation if the nearest appropriate company is 200 miles away. In other words, to pursue a successful career it is necessary to go where the work is. The difficulties of moving from place to place are not overlooked or minimized but it may sometimes be necessary and many companies now pay relocation expenses on a very generous scale.

Appointments

Advertisements accepted up to 12 noon Tuesday, May 6th for June issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Mike Thraves 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

TELEVISION

 BROADCAST ENGINEERWe require an Engineer to join the staff of our rapidly expanding Video Cassette Duplicating Facility. The candidate should have a minimum of three years' experience in broadcast television with specific knowledge of Quad and Helican Scan, VTRs, flying spot Telecines and related systems.

The candidate should be qualified to HNC, full technical certificate, degree or equivalent qualification. The job reports to the Technical Manager and the successful candidate will be responsible for maintenance of equipment, supervision of technical trainees and the installation of additionalfacilities. An excellent salary will be offered, commensurate with qualification and experience.

Please reply in confidence to: I.V.S. (U.K.) LTD., 32 Eveline Road, Mitcham, Surrey, or telephone: 01-648 6235.
(270)

ELECTRONICS TECHNICIANS

S. LONDON

to $£ 6,000$ p.a.
Electronics technicians are required for interesting work in the Production Engineering Department of Dolby Laboratories.
Duties will involve prototype work and the design manufacture and maintenance of A.T.E. and assembly equipment.
Qualifications: Several years' experience in electronics and an ability to work without close supervision. Sound constructional abilities essential.
For application forms contact:

Phil Marshali
DOLBY LABORATORIES INC.
346 CLAPHAM ROAD LONDON, SW9
TEL. 01-720 1111

Career move in Electronics

Our clients are major companies in avionics, defence, microprocessors, microwave, communication systems, radar, T.V./Hi-fi, electronics and other fields.

This is an opportunity to secure a sound financial future for yourself and to become involved with the latest developments in electronics technology in either service or manufacturing.

If you are interested in obtaining a career with a future contact Alan Elmes on 0763852453 for the latest in Electronic Vacancies.

PROSPECT RECRUITMENT ELECTRONICS DIVISION

 PROSPECT HOUSE, GUILDEN MORDEN, ROYSTON, HERTS, SG8 OJS
FOREIGN AND COMMONWEALTH OFFICE

has vacancies for

BROADCAST RELAY ENGINEERS

to serve a one-year contract (unaccompanied) tour of duty on the island of Masirah (off the coast of Oman).
Applications are invited from engineers with experience of the operation and maintenance of high-powered radio transmitters, and who hold a third-year City and Guilds Certificate in Telecommunications or its equivalent.
SALARY: $£ 16.852$ per annum plus a tax-free allowance of $£ 1,185$ per annum for a single officer or $£ 3,040$ per annum for an unaccompanied married officer
Please apply to:

Recruitment Section

Foreign and Commonwealth Office
Hanslope Park, Hanslope
Milton Keynes, MK19 7BH

Computer and Electronics Engineers and Technicians

 Can you grow at 30% per year and more?

 Can you grow at 30% per year and more?}

We do - and to help us maintain our expansion plans, we need dynamic engineers at our new multimillion pound, minicomputer manufacturing facility at Ayr in the West of Scotland.

Hardware Support Engineers

We are looking for people with experience of 16 bit minicomputers and their associated peripherals to plan and monitor the introduction of new models over the next few years and to provide technical support to the production department on hardware and systems problems.

Some travel to our parent company in Mavnard. Massachusetts, would be required in the course of your duties. Product specific training would be provided where necessary.

Production Engineers

We need Production Engineers with experience of assembly and test measures and procedures to undertake process specification and method improvement programmes in our systems test areas, where computers are tested for reliability prior to shipment to the customer's site.

These positions would suit engineers from similar disciplines or customer engineers who wish to return to a manufacturing environment having gained experience of the types of problems seen in the field.

Systems Test Technicians

Responsible for test and repair on a full range of minicomputer systems. These systems include: C.P.U.'s of various memory sizes; Disc drives; Mag tapes; V.D.U.'s; Printer's, etc.

Test methods include the running of diagnostic software and customer operating systems to a high level of acceptability and quality.

The people we are looking for will have at least 2-3 years experience in the electronics industry and preferably in computers.

Comprehensive in-house training is available on a wide range of our products (i.e. hardware and software).

To the right people we offer very competitive salaries and the wide range of benefits you'd expect from the world's largest manufacturer of minicomputers. Full relocation assistance is available where applicable.

Our Ayr facility provides an excellent working environment and Ayr itself is a pleasant coastal resort situated some thirty miles south west of Glasgow, five miles from Prestwick International Airport and has good road and rail networks south and north. The area affords first-class housing, medical, educational and social facilities, plus a wide range of recreational pursuits (golf, fishing, sailing, etc).

If you have a degree, HNC or equivalent in an appropriate discipline, together with relevant experience - we'd like to hear from you.

Write or 'phone:

Gus Gannon

Digital Equipment Scotland Limited Mosshill, Ayr, Scotland
Tel: Freefone 8508
 Make our future your future
 Telephone: 01-6375551 (3 lines)

Appointments

FrustratedinR.\&D? Joinour Microprocessor Development Systems SalesTeam Uptos10,000+car

Hewlett-Packard is a multi-nat ional high technology company involsed in the measurement and computation fields.

IVe now have a brand-new . Nicroprocessor Development sistem for which we need highly technically-orientated Field Sibles Fingineers. This is astate of the art product breaking new ground, and you would be able to make a sperial contribution as a member of a small and dedicated team. You will have the scope to use sour initiative and entrepreneurial skills.

Ideally, you will be qualified to $\mathrm{HX}\left({ }^{\circ}\right.$ I egree level. aged 25-35. and hawe had several years experience in industry including 2 years within the digital comput ing microprocessor field. You also need skill in interfacing with people at all hevels of management.

In addition to an excellent starting salary, we offer a range of benefits including:

* Twice-yealy cash profit sharing and Christ mas bonus.
* Non-contributory pension and life assurance sedemes.
* fweeks holidas.

Pleasering Wia Trition in the Personnel Department on Wokingham (0734) $78+774$ for an application form. or wite to her sending full currieulam vitae to the Persomnel Department. Hewlett-Parkard Limited. King Street Lame. Wimmersh. Wokingham. Berks.

AUDIO VISUAL AIDS TECHNICIANS

Two experienced technicians are required by the Croydon Education Service.
. One to maintain and repair language laboratories in schools. A knowledge of other visual equipment would be an advantage.

Salary £4,470-£4,923 per annum depending on qualifications and experience.

The second technician will maintain and repair a range of audio and video equipment including TV receivers in schools.

Salary $£ 5.034-£ 5.457$ per annum inclusive according to qualifications and experience.

Apply in writing giving details of age, qualifications, present post, relevant work experience and the names and addresses of two referees to The Superintendent, Education Service Centre, Princes Road, Croydon, Surrey, stating for which post you wish to be considered.

Further information may be obtained from the Superiendent, Mr. A. Bevan, telephone no. 01684939.
(264)

THE MIDDLESEX MOSPITAL MEDICAL SCHOOL

ELECTRONICS TECHNICIAN

A Technician to work
electronic apparatus.
Duties would include the use. maintenance and development of research, practical CCTV equipment.

Applicans should
Applicants should have HNC, C and G, or equivalent qualifications with experience. Salary in the range $£ 4.524$ to $£ 5.730$ (including London Weighting) depending on qualifications and experience.
Please apply in writing to: Chief Technician, Hospital Medical School, Cleveland Sireet London W1 P 6DB.
(261)

UNIVERSITY COLLEGE LONDON
 OEPARTMENT OFPHYSICS AND ASTRONOMY
 ELECTRONICS TECHNICIAN

Grade 6
is required to work in the Laboratory for Planetary Atmospheres in the design con struction and programming of micro. programmer based equipment. These activities are associated with the Laboratory's image processing studies of the Earth and planets.
Salary in the range £4884-£5832 $+£ 780$ London Allowance.
Applications, including Curriculum Vitae and the names and addresses of two referees. should be sent to: Dr. Garry E.
Hunt. Laboratory for Planelary Atmospheres. Department of Physics and Astronomy. University College London Gower Street, London WCIE 68T

Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a range of studio products from colour cameras to simple D.A.s. We are also one of the largest suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in Andover for a worldwide market.

Due to continuing Company growth the following vacancies have been created.

PRODUCT DESIGN AND DEVELOPMENT ENGINEERS

Experienced and recently qualified graduates are required to join our research and development team. You will be involved in the design of new studio products including a new range of colour cameras using the very latest analogue and digital techniques. You will have the opportunity to see your designs made in volume production, fulfilling the high technology requirements of the 80 s. Applications are invited from engineers who are qualified to degree or HND level and who preferably have some knowledge of video engineering and/or microprocessor techniques.

TEST/QUALITY ASSURANCE ENGINEERS

We require engineers at senior and intermediate level to assist in the manufacture of our new range of products for the Broadcast studio television market.
Applications are invited from engineers with an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment, or similar sophisticated products, and qualified to HNC, HND, or TEC level. Opportunities also exist for recently qualified engineers who are interested in developing skills in the studio broadcast engineering field.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside Broadcast vehicles and television studios. This is an opportunity for engineers to become involved in projects from their initial design concept through manufacture to delivery and installation.
Our custom-built systems require a high degree of customer contact at engineering level from the initial design, to customer training after completion of the contract, both with in the UK and overseas.
Applications are invited from engineers with a knowledge of TV studio engineering gained from experience in this type of work or from experience on the operational side of television.
Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.
Please apply for further details and application forms to Jean Smith -at the address given below

Link Electronics Limited, North Way, Andover, Hants, SP10 5AJ.

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the following details:-

Degree Level Electronics Engineers

$£ 9115$

Manchester-based
to work on special projects at our studios.
The work will involve installation and troubleshooting on advanced video and sound equipment and the provision of specialist maintenance advice and assistance to our operational engineering staff. Some travel to manufacturers in the UK and possibly overseas will be needed.
The right people, men or women, will be under 30 , graduate or HND, with a thorough knowledge of sophisticated digital and analogue technology, ideally in broadcast or CCTV applications.
Conditions of service include 23 days holiday with generous pension and free life assurance benefits. Ässistance with re-location is available.
Write to me with full details of your qualifications and experience by Wednesday April 23rd.

소
Bob Connell (Ref. G7). Granada Television Ltd. . Manchester M60 9EA.

AN OPPORTUNITY

 IN ELECTRONICSA vacancy exists in the Electronics Section of the Physics Department at St. George's Hospital. S.W.17. The work of this section manufacture of a wide range of medical and research instruments,
Experience with both digital and analogue devices would be very desireable.

Appointment will be made to Medical Physics Technician Grade 111 for the person with the appropriate skill and experience.
Present salary scale: $£ 4,605-£ 5.952+$ E398 London Weighting per annum
Minimum academic qualifications are O.N.C. or equivalent, but an H.N.C. in mally be expected. mally be e
For further de tails of the post, contact Mr. O. Ritchie, Chief Technician, Department of 4058.
058.
available from Mrs. Katherine Goodacre Administrative Assistant. St. George's Hospital. Blackshaw Road, Tooting, SW 17 OOT. noel. No. D1.672 1255, Ext. 4121.

HAMPSTEAD HIGH
FIDELITY LTD.
require an experienced. competent and esponsible

SERVICE ENGINEER

for fieid and bench work.
The applicant must be conversant with all aspects of quality HI-FI equipment. A presentable appearance and ability to converse intelligently with customers, is essential. Salary $£ 5500$ with review after four months.
Apply in writing giving full details of experience to:

The Director
GH FIDELITY
63 Hampetead High St. London, NW3

TRAINING IN BROADCASTING OPERATIONS

The BBC requires technical staff to instruct at its Training Centre near Evesham, Worcestershire.
Duties will involve contributing towards the operational training of Technical Staff in Television and/or Radio Broadcasting. This includes instructing Technical Operators who are responsible for sound coverage, audio mixing, camera work and lighting in Television or operating Network Continuity Suites in Radio.
The starting salary will be in the range $£ 6,505$ to 17,830 depending upon experience and qualifications, rising to $£ 9,130$.
The Training Centre, which is situated in the Worcestershire countryside has Radio and Colour Television Studios using the latest broadcasting equipment.
Candidates, male or female, should have recent experience in some aspect of Technical Operations or Engineering in the Broadcast or Closed Circuit field and a good technical knowledge of audio or video equipment. They should preferably have a qualification of H.N.C. or C. \& G. Full Technological Certificate in Telecommunications or equivalent. Consideration will be given to providing appropriate training to otherwise suitable applicants who do not hold these qualifications.
Excellent welfare and club facilities. Pensionable posts. Re-location expenses considered.
If you would like to hear more and receive an application form, please send a stamped addressed envelope of at least $99^{\prime \prime} \times 4^{\prime \prime}$ to Head of Technical Operations Training Section, Engineering Training Department, Wood Norton, Evesham, WR14TF, quoting reference number 80.E.4019/WW
Closing date for return of application forms 14 days after publication.

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $\mathbf{8 8 , 0 0 0}$

To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.

Attractive salaries are complemented by excellent prospects and generous benefits.
Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

LEEDS BRADFORD AIRPORT

AIR TRAFFIC ENGINEER

Air Traffic Engineer required to undertake maintenance of all ground communications and navigational equipment including ILS, Radar, CRDF on a watchkeeping basis. Applicants must qualifications. Salary in accordance with Local Government grade T3 to T5 ($£ 4,080-£ 5547$ per annum). commencing salary dependent upon experience and qualifications. In addition. the post attracts payment of 14% of basic salary for shift working and approx. 16% enhanced payments for weekend working. The result of a Comparability Study is pending. National Joint Council Conditions for Local Authorities apply to the position and in addition a car allowance is payable for journeys to and from the place of work. Applications, stating age, experience and full details of education and technical training should be forwarded to: The Airport Director Leeds Bradford Airpor, Yeadon, Leeds, LS 19 TZZ, by May 2, 1980.

Appointments

DO DOLBY SYSTEM

TECHNICIAN

Dolby Laboratories manufacture professional audio noise reduction equipment which is widely used by major recording studios.
Working closely with our application engineers the person appointed will maintain studio and theatre replay equipment in our listening room as well as assisting in the construction of specialised equipment.

The successful applicant will be familiar with audio equipment and will be able to construct prototypes from circuit diagrams with the minimum of supervision. Aged between 18 and 30 he, or she, will probably have experience in the service or manufacture of audio equipment.

Salary is negotiable dependent on experience.
Write or telephone:
John Iles or Elmar Stetter
DOLBY LABORATORIES INC.

346 Clapham Road
London SW9 9AP
Telephone: 01-720 1111

Technical and Operational Training

Thames Television will be running its Technical Training Scheme beginning September 1980. The course will be of 9 months duration and traineeships will be available in the following areas:-

1) Technicians covering VTR, Telecine and Vision Control operations and maintenance;
2) Engineering, covering planning, design and installation;
3) Television Camera Operations;
4) Television Sound Operations;
5) Film covering Camera, Sound, Editing.

The course will consist of 5 months broad based training and 4 months specialist training and will take place at the Training Centre, Teddington, with additional experience gained on attachment at each of the Company Sites.
Salary during training will be $1-3$ months $£ 4,400$ per annum, 4-9 months $£ 5,000$ per annum.
Successful Trainees will then be absorbed into operational departments at one of the Company's sites and go on to a salary structure applicable to the grade.

Candidates should preferably be 20-30 years of age and have academic qualifications, specialist training or experience relevant to their chosen area.
For an application form and full details please write (indicating area of preference) to:-

Miss Pat Evans, Staff Relations Dept., Thames Television Ltd., Teddington Lock, Middlesex. Tel: 01-977 3252, ext. 325.

TEST ENGINEERS NEEDED

By Electrosonic, leaders in the fields of lighting control and audio visual systems. Work will involve testing analogue, digital and microprocessor circuits. Applicants should be qualified to ONC or HNC level and have experience in analogue and testing digital techniques.

Salary will be around $£ 5,000$, please contact:
Mr. A. Kidd
Electrosonic Lid.
815 Woolwich Road
London SE7
or Tel: 01-855 1101 ext. 37

"Whoever heard of a Resident Field Engineer?"
 - Major Installation

If you're an experienced Field Engineer and you're tired of travelling, this is an ideal opportunity to enjoy the best of both worlds.
To ensure our Burroughs equipment is professionally maintained we are now looking for a resident FIELD ENGINEER.
You will be part of a team responsible for the maintenance of 3 large scale (B 6800), 3 medium scale (B1800), 24 small scale (B90) computer systems and peripherals and over 150 terminals which are linked to these various systems.
For this challenging position, we prefer that you are qualified to $H N C$ or equivalent level. Engineers experienced in the maintenance of any major computer systems will be considered. We will provide all necessary training on our mainframes and peripherals as part of the successful applicant's personal development.

You will be offered an attractive salary and excellent conditions of employment.
If you're looking for more stability and excellent career prospects contact:
Recruitment Manager, Ref. Ww,
Burroughs, Cumbernauld G68 OBN.
Telephone 023-67-35457.
An Equal Opportunity Employer.
Burroughs

VIDEO RECORDING EQUIPMENT SERVICE ENGINEER

With the outstanding success in marketing a new range of airborne and high speed video tape equipment we need to appoint a top rate video service engineer. Full product training will be given in either America or Japan to a suitably qualified or experienced person.
The successful applicant will probably be aged between 25 and 35. A Company car will be provided, after a probationary period, as extensive travel within the UK will be necessary.
We pay top rates and the salary will be commensurate with experience and ability. We offer 4 weeks' annual holiday, free life assurance, sick scheme and free canteen facilities.

For further details and application form please apply to:

Ann Janes

Personnel Officer John Hadland (P.I.) Ltd Newhouse Laboratories Newhouse Road, Bovingdon Hemel Hempstead
Herts. HP3 OEL

RADIO OFFICERS

If your trade or training involves radio operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.
A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee. Radio Officers. Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly. Registered disabled people may be considered.

On successful completion of 40 weeks' specialist training. appointees move to the Radio Office Grade.
Salary Scales:

Trainee Radio Officer

Age 19 £ 3271
Age 20 £ 3382
Age 21 £ 3485
Age 22 £ 3611
Age 23 £ 3685
Age 24 £ 3767
Age $25+£ 3856$

Radio Officer
Age 19 £4493 Age $20 £ 4655$ Age $21 £ 4844$ Age $22 £ 4989$ Age $23 £ 5249$ Age $24 £ 5559$ Age $25+£ 5899$
then by 5 annual increments to $£ 7892$ inclusive of shift working and Saturday, Sunday elements.

For further details telephone Cheltenham 21491 Ext. 2269, or write to the address below.

 ,

Land a good job

Your Radio Officer's qualifications could mean a lot here onshore

If you're thinking of a shore-based job, here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

The Post Office Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone operating.
To apply, you must have a United Kingdom Maritime Radio
Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an equivalent certificate issued by a

Commonwealth Administration or the lrish Republic. Preferably you should have some sea-going experience.
The starting pay at 25 or over will be about $£ 5381$; after 3 years' service this figure rises to around $£ 7087$. (If you are between 19 and 24 your pay on entry will vary between approximately $£ 4229$ and £4937). Overtime is additional, and there is a good pension scheme, sickpay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.
For further information, please telephone Kathleen Watson on 01-432 4869 or write to her at the following address: IEMaritime Radio Services Division (IS8.1.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

COLOUR TELEVISION

If you have experience in television or test equipment engineering. there could be an interesting and rewarding future for you at Rediffusion Consumer Electronics Ltd. We are currently manufacturing an advanced range of colour television receivers at our factories in County Durham and Cleveland and wish to make the following appointments.

GROUP LEADER - Test Equipment

Effective testing of television receivers plays an important role in ensuring that our very high quality standards are maintained, and we now wish to appoint an experienced engineer of proven ability, to control a team of engineers and technicians responsible for all aspects of production test equipment.
Responsibilities will include the calibration and maintenance of a sophisticated range of test and signal origination equipment. employing both digital and analogue techniques. Although some test gear is designed and constructed locally, close liaison will be required with the design team, based at Chessington, Surrey, both to keep abreast of new developments and influence the new design of new equipment in the light of production experience.

SENIOR ENGINEER Production Support

A senior engineer with a sound understanding of television systems and receiver circuits is required to assist production departments with technical problems arising during receiver manufacture
Responsibilities will include investigation of design problems, component fault assessment and the origination of quality assurance procedures to check that the product conforms to design specifications.
Both positions are based at our factory in Bishop Auckland, County Durham, which is within easy reach of attractive countryside and has excellent road, rail and air connections. A wide range of good quality housing is available and assistance with re-location expenses will be available where appropriate.
Attractive salaries will be offered, together with the benefits of a good pension scheme, free life insurance and 4 weeks' holiday with a choice of leave period
If you are interested in these challenging positions and would like more details, please write to or telephone:

Support Engineer SWINDON

We are looking for a Support Engineer to become involved in professional technical support to a sophisticated production test area in the semiconductor industry. Production equipment consists mainly of computer-based test systems and instrumentation.
You should hold HNC/City \& Guilds Tech. Certificate or equivalent in electronics. Experience of DEC and Teredyne equipment would be desirable but training will be given where necessary.
The normal range of fringe benefits expected from a large company plus a competitive salary and a good working atmosphere are part of what we have to offer. In addition you would be working in the industry of the future: The exciting world of microelectronics. Write or phone for an application form to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon, Wilts SN2 2QW. Tel: Swindon 36251.

I didn't get where I am today by not using an agency - C.J.

> FIELD SERVICE ELECTRONICS ENGINEERS

Register now and get somewhere tomorrow. $01-4647714$ ext 502 (24hrs) 309 HROM ROAD LOUGHTON ESSEX 1610 ITD 0150215890937 Ot 4647714 Ex7 $502 \quad$ (321)

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical. Comms, etc. ONC to Ph.D. Free service.

Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251.
(8994)

Product Evaluation Engineer

Dixons are Britain's leading and most successful photographic and home entertainment specialists. We are now looking for a product evaluation engineer for audio, video and similar electronic products.

This interesting vacancy, based at Edgware, has arisen from an internal promotion. You would be responsible for accurately assessing the specifications and performance of new and sometimes untried products. This information is vital to the success of our marketing department and you will often be working under pressure to meet tight deadlines.

The person we are looking for will have the technical skill and ability to devise and implement appropriate test systems. He or she will also need to be self-motivated and able to work unsupervised.

Preference will be given to applicants who possess a City \& Guilds (Full Technical Certificate), ONC or HNC qualification or equivalent. Test and calibration experience, preferably in radio and TV will be a great advantage. Some knowledge of current safety specifications for consumer electronic products would also be useful.

The successful applicant can expect an attractive salary which reflects the importance and responsibilities of the job. Other benefits include a subsidised restaurant, four weeks' holiday, excellent pension and insurance schemes and generous staff discount.

If you are interested in this opportunity to broaden your career with a dynamic and rapidly expanding company, contact Janet Gearing on Stevenage 4371, or write to her giving brief details at Dixons Photographic (UK) Ltd., Camera House, Cartwright Road, Stevenage, Herts.

RESEARCH ENGINEER

Oxley Developments Company are Manufacturers and Consultants in the field of passive electronic components and supply into the control systems, instrumentation and communications industries throughout the world
We are currently seeking a Research Enginner with a natural enthusiasm, backed up by extensive experience of radio and electronic design and development. Whilst a high standard of academic achievement is a prime requirement, considerable importance is also attached to the practical application of knowledge
Oxley Developments Company is privately owned and has enjoyed steady and consistent international growth built upon an extensive range of unique products specially developed to fulfil needs within industry. As a result, the successful candidate will have unrivalled opportunities to expand work horizons and to pursue professional advancements both at home and abroad
The factory and research facilities are located on the edge of the Lake District National Park.
In the first instance, please request an application from from:
The Personnel Director
Oxley Developments Company Limited
Priory Park, ULVERSTON
Cumbria LA 12 9QG
Telephone: (0229) 52621

ELECTRONIC ENGINEERS: PERMANENT or CONTRACT TRAINEES to MANAGEMENT

We can offer you a vast selection of Field Service or internal vacancies across the U.K. Find out more by either phoning CRAYFORD (0322) 51923, Ext. 4, or send the slip below to:

CLIFFORD EDWARDS LTD., 5 Crayford High Street,
Crayford, Kent
wwo 1
Name
Address

A GREAT' COMPANY 'TO BI: WI'IH

Appointments

Electronics R\&D Join us in the forefront of technology

Take your pick

HF-VHF-UHF-

 Microwave Optics \& AcousticsA challenging and full career in Government Service. Minimum qualification - HNC. Starting salary up to £6,737. Please apply for an application form to the Recruitment Officer (Dept.ww 1), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

Medical Equipment for Hospitals

A vital role for Electrical / Electronic Engineers

These opportunities are in the Scientific and Technical Branch which provides the scientific, engineering and other professional services essential to the provision of medical apparatus, instrumentation and supplies to hospitals.

The successful candidates will join a London-based team working on the specification, laboratory testing, inspection and quality control of a wide range of medical electrical and electronic equipment used in the National Health Service. Some UK travel required.

Candidates must have a degree or an equivalent qualification in electronics or electrical engineering, at least 2 years
training in electrical engineering, and subsequent experience in the design, testing and/or inspection of electronic equipment. Experience of medical electrical equipment advantageous

Salary (under review) starting between $£ 5955$ and $£ 7680$ depending on qualifications and experience. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 8 May 1980) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1 JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote T(23)85.

Department of Health and Social Security
(319)

CORPORATION OF LONDON

Department of Architecture and Planning SENIOR ELECTRONICS ENGINEER

£6878 to $£ 8165$ inclusive (under review)

Applications are invited from suitably qualified and experienced Engineers with wide experience in Electronics. This is a new post and the person appointed will be responsible for, among other things, advice, installation, operation and maintenance of telecommunications and electronic equipment. Matters covered besides public address systems for important State and other functions at Guildhall and elsewhere, will include fire alarms, call systems, television, surveillance, computer and other applications. Liaison with BBC and ITV regarding outside broadcasts from Corporation premises will be required

Job Outlines and application forms from City Architect and Planning Officer, Guildhall, London EC2P 2EJ, 01-606 3030, extension 2725
(332)

> TECHNICIANS, ELECTRICAL/ELEC TRONIC, required to support Academic staff in teaching and/or Research Laboratories. Work inand setting up of Electronic expertments for opportunity to work in an environ. ment of Electronics being continually up-dated. Salary according to ally up-dated. Salary according to experience in range $£ 4,374-£ 4,872$ or eighting. Application form from Weighting. Application form from EE10) University College London Gower Street, WC1E 6BT. $\begin{gathered}\text { (298) }\end{gathered}$

> RADIO ENGINEERS, Permarient positions overseas. Tax free salaries, first-class accommodation and conditions. Apply SPS EXECUTIVES (Ref 1726), Recruitment Consultants, Delme Court, West Street, Fareham, Hampshire, or better stil telephone (0329) 235611/236857.
> (287)

Essex County Council CHELMER INSTITUTE OF HIGHER EDUCATION SENIOR TECHNICIAN

A with Degree Allowance is re-
quired to assist in research work. The person appointed should be prepared to travel on a limited basis. Salary: T3/T4 £4080-£5067 per annum.
The person appointed will have at least an ONC or OND, but an HNC in digital electronics or telecommunications will be preferred. Experience in prototype construction and interpretation of developmental circuit drawings, and in the field of radio communications. microprocessors and radio circuitry, both transmitters and receivers, will be an advantage Application forms and further details available from the Institute Secretary. Chelmer Institute of Higher Educafion, Victoria Road South, Chelmsford, CM 11 LL . Closing date 2 nd May 1980. Telephone: Chelmsford 354491. Ext. 221

BROADCAST ENGINEER

grade I.L.R. 2 to be involved in all aspects of slation engineering. Preference will be given people having experience in this field.
Apply: Phil Thompson
Chief Engineer
Piccadilly Radio
P.O. Box 261

Manchester M60 IOU

VIDEO ENGINEERS required by Studio 99 Video for high level de. sign, development and installation for industry for industry, Varied assignments, excellent working conditions in wellequipped new premises in N . London, good salary, and company car company pension, plus four weeks' hollday, - Call Eva Parnell, 01-328 3282 .
(318)

TESTERS, TEST TECHNICIANS, 'rEST ENGINEERS. Earn what you're really worth in London working for a World Leader in Radio \& Telecommunications. Phone Len Porter on 01-874 7281, or write: REDIFON TELECOMMUNICATIONS Ltd., Broomhill Road, Wandsworth, London, SW18

Radio Technicians Work in Communications R\&D and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including löng-range radio, satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham, but we have other centres in the UK, most of which, 'e Cheltenham, are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call ior others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas.

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment If you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.
Registered disabled people may be considered.
Pay scales for Radio Technicians start at $£ 3900$ per annum, rising to $£ 5530$, and promotion will put you on the road to posts carrying substantially more; there are also opportunities for overtime and on-call work, paying good rates.
Get full details from our Recruitment Officer, Robby Robinson, on
Cheltenham (0242) 21491, Ext 2269, or write to him at GCHO, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. We will invite suitable applicants (expenses paid) for interview at Cheltenham.

Recruitment Office
Govermment Commumications: Headquarters

GRADUATE ELECTRONICS ENGRADUATE ELECTRONICS ENesting applications of electronics to medicine. Applicants should have medicine. Applicants should have
digital design experience and be digital design experience and be
interested in working with microinterested in working with micro-
processors and microcomputers. processors and microcomputers. Day release may be possible to
study for a higher degree. For further information, please contac Miss J. Newbigin, Personnel Department. Charing Cross Hospltal (Fulham). Tel: $01-748 \quad 2040$ ext. 2992, and for more details contact Mr A. Brewer on ext. $2593 / 3$. (295)

ARTICLES FOR SALE

TELEQUIPMENT D66A, mint condition, £300. Radford DMS 3 £100, Woelke ME102B wow and futter meter $£ 90$. All mint condition. Property of Hi-fi Reviewer. Woking 4866.
TEXAS TMS 270 8JL eproms, available at $£ 4$ each. No VAT. no post age. - J. Hawthorne, 23 Iver Lane Cowley, Mlddx. Tel. Uxbridge 36428 evenings.
(268)

ENCAPSULATING, colls, transforn ENCAPSULATNO, coll, transform ers, components, degassing, sil cone rubber, resin, epoxy, Lo wax casting for brass, bronze, si formers, components. Vacuur formers, components. Vacuur
equipment low cost. used and new equipment low cost, used and new Also for CRT regunning me allising. Research \& Developmen CRO 2QP. $01-684$ 9917. \quad (967

PROFESSIONAL CRT TEST SET

Tests; Heater current: Gas ratio: E mission; cut-off Leaks; Shorts; Life. Supplied with Sockets WESTERN aptor box to cover most types of tubes. £1,244 plus VAT. TR20 90t.
SAE please for descriptive leaflet.
WESTERN-WHYBROW can supply everything for professional TV tube rebuilding up to a complete plant
(316)

COMPUTER PERIPHERALS

N.C.R. CRAM memory system 149 M bytes storage 8 bit TTL parallel 1/0. Like 384 floppy discs in one unit! Needs 3 Ph supply
$£ 500$
Fixed head sealed disc unit 1 M bits storage, includes R/W electronics but no controller $\mathbf{6 0}$
A.S.R. 33 Teletype V. 24 interface with paper tape reader and
punch. Reasonable working order
£ 175

CHROMATRONICS, COACHWORKS HOUSE RIVER WAY, HARLOW, ESSEX CM 20 2DP TELEPHONE: (0279) 418611

(266)

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT never gains or loses, 8 digits show Date, Hours. Minutes and Seconds, auto. month STOP CLOCK and parallel BCD output, ideal for navigation, synchronising events, astronomy, etc., receives Rugby time signals. 1000 Km range, ABSOLUTE TIME, £48.80.
GOKHZ RUGBY RECEIVER, as in MSF Clock, built-in antenna, serial data and audio outputs, £13.70.
L.F.? 10.150 KHz Receiver, C10.70. Each
fun-to-build kit includes all parts, printed fun-to-build kit includes all parts, printed circuit, case, postage, etc. Money-back Cembridge Kite 45 (WE)
Cambridge Kite, 45 (WE) Old School
Lane, Milton, Cambridge. Lanc, Milton, Cambridge. (272)

BURGLARS

Safeguard your home, shop, etc. from burglars and vandals with the best D.I.Y. equipment available
Send S.A.E. for comprehensive price list. e.g. E6 for one of our fully weather-proofed steel Bell-Boxes the professionals use.

Lawrence, $42 / 45$ New Broad Street, London, EC2M 1QY.

Don't buy in Kits
buy in Bits'
(277)

CABLE SOCKET WITH LEAD

1 m length (approx. 3.3' 1) 50 p ea.; or 3 for

Phone: Mr Galita 01.5432515 or $01-4045011$

Abstract

LAB CLEARANCE: Signal Gener ators; Bridges; Waveform transistor analysers; calibrators; standards; millivoltmeters; dyna: standards; millivoltmeters; dynascopes; recorders; Thermal, sweed low distortion true RMS, audio Fu devlation. Tel. $040 \cdot 376236$. (8250 500 WATT Boozy \& Hawkes ampli- fier. 16 and 30 watt paging amplifier. 16 and 30 watt paging ampli- fiers. Creed teletype No. 7 s . I'el. (0622) 50350. MKS, Upper Stone St., Maidstone, Kent. (9442)

GWIA RADIO L.TD., $40 / 42$ Portland Road, Worthing, Sussex, Tel: 0903 34897 for surplus supplies. AVO 8 £43. Model 7 MK II ${ }^{2} 32$ inclusive P X P receivers. Eddystone 730 's Atlanta Marine, B40 ex.Govt. 40 ft Atlanta Marine, B40 ex.Govt. 40 ft pneumatic masts by Scam Clark. details. Avo movements. All types details. AVo movements. All types of radio telephones large or small of radio telephones large or small quantities bought and sold, many are worth a vist, wholesale and retall.

TEKTRONIX OSCILLOSCOPE Type 545B complete with CA D/trace plug-in and full technical handbooks, first-class condition, $£ 240$ inclusive. Also L/D/IAI plug-ins. Bournemouth 0202 291481 .

A POWERFUL WORD PROCESSOR AT 8950 PLUS VAT. IBM golfball typewriter linked to twin magnetic tape cassette (or twin magnetic card) memory stations. Comprehensive edit/search and formatting operations. Autotype (specialists in reconditioned Word Processors), Abingdon 831245 and Otford 3256 . 1132

MARCONI INSTRUMENT SIGNAL GENERATOR TF995B/2 for sale, offers around $£ 500$. Usage to date 1 hour. Marconi Instrument Pulse Modulator TF2169 for use with the above. Usage to date 10 hours. Offers around $£ 100$. Purchasing Department, Open University, Sherwood House, Sherwood Drive, Bletchley, Milton Keynes. 1297)

POLYSKOP SWOB 1 with 1 probe 1 input cable, 1 inline attenuator: 1 adaptor R\&S-BNC, 1 adaptor R\&S N. plus manual book. The lot $£ 395$. Signal generator TF 801D/8/S freq $10 \mathrm{MH} / \mathrm{Z}-485 \mathrm{MH} / \mathrm{z}$ £285. Pulse gen. modular CT578/3 with P1A, P2A \& p6 plug-in units 995 . A226 program mer. The A226 programmer is a simple means of automating any Master Series Digital Voltmeter. It provides programming of DVM range and mode, off-limit detection and scanning of analogue inputs. Mint condition. $£ 95$ only. Gaumont Kalee Wow \& Flutter meter, $£ 48$. Cohu D.C. Voltage standard type $303 \mathrm{~B}, \mathrm{E}^{195}$. HP 624C X-Band tes set freq. $8.5 \mathrm{GH} / \mathrm{z}-10 \mathrm{GH} / \mathrm{z}$, $£ 195$. Pulse generator Type 109 Fast Rise f95. Plug-in Unit Type 10AL, £95 N Type f50. Valve Voltmeter Type
 $3-1000 \mathrm{MH} / \mathrm{z} 50$ OHMS £95. Eddy stone Communication Receiver Type 770 S
TVDe
585
with L Plug in Unit.
£165. TVDe 585 with L Plug-in Unit. £165.
CDU 150 Osclloscope 1295 . All goods subiect to VAT and being goods subiect to VAT and being or by arrangment. - Piease phone Mr . Galka. 01-543 2515 or 01-404 5011. Personal callers welcome bv adpointment onlv.
(326)

TEKTRONIX 555 dual beam 'scope. 30 mhz four plug-ins plus probes. trolley and manuals. Bargain, £375. Tel. 0202875065 (Bournemouth)
(285)

TEST EQUIPMENT. Audio \& R.F Signal Generators Grip Dip and S.W.R. Meters. Transistor Testers Reg. P.S.U. Send s.a.e., stating requirements, to TELERADE, (292)

MARCONI COUNTER TF2401A Offers requested for the above. Information avallable from the Supplies officer, Luton Borough Coun30.4 .80 .
(325)

With 38 years' exparionce in the design and manufacturing of several hundred thousand tranaformars we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

YOU NAME IT! WE MAKE IT!

OUR RANGE INCLUDES

Microphone transformers (all iypes). Microphone Sphtter/Combiner, transformers. Input and Output transformers. Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers. Line transformers, Line transformers to G.P.O. Isolating Test Specification Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types). Miniature transformers Microminiature transformers for PCB mounting. Experimental transformers Ulira low frequency transformers. Ultra linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop Transformers. Smoothing Chokes, Filter inductors. Amplifier to 100 volt line transformers (from a few watts up to 1000 watts). 100 volt line transformers to speakers. Speaker matching transformers (all powers). Column Loudspeaker transformers up to 300 walts or more

We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY, OR P.A. QUALITY, OUR PRICES ARE HIGHIY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH E.E.C., USA, MIDDLE EAST efc.

Send for our questionnaire which, when completed, enables us to post quotation by return

SOWTER TRANSFORMERS

A. Sowrer ITD IEnufacturars and Dasigner

No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP 1 2E6 Suffolk. P.O. Box 36 Ipswich IP 1 2EL, England Phone: $047352794 \& 0473219390$

NEW 1980 Ed. WORLD RADIO

 T.V. HANDBOOKCOMPLETE DIRECTORY OFIN. TERNATIONAL RADIO \& T.V. 1980 Price: $£ 9.50$ H/B by ARRL AMATEUR'S HOW TO USE INTEGRATED CIRCUIT LOGIC ELEMENTS by J. W. Streater Price $\mathbf{\$ 4 . 5 0}$ HIGH PERFORMANCE LOUD. SPEAKERS by M. Colloms Price: £5.70 VIDEOCASSETTE RECORDERS THEORY\& SERVICING
by G. P. McGinty Price: $£ 8.95$ RADIO \& ELECTRONIC LABORATORYH/B by M.G. Scroggie Price: $£ 18.95$ A PRACTICAL INTRO. TO ELECTRONIC CIRCUITS by M. H. Jones Price: $£ 5.25$ PRINTED CIRCUITS H/B by C. F. Coombs Price: $£ 25.35$ INTRODUCTION TO VLSI SYSTEMS
by C. Mead Price: $£ 12.00$

* ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO

pecialist in Scientific \& Technical Books
19-21 PRAED STREET
LONDON W2 1NP
Phone 402.9176
Closed Sat. 1 p.m

INVERTERS

High quality DC-AC. Also "no break" (2 ms) static switch,
19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Lid. POB 51, London W1138Z Tel: 01-727 7042 or 0225310916

GOING ON HOLIDAY??? BEAT THE BURGLAR SIONAL WA MICROWAVE INTRUDER ALARMS

Commercial instruments by famous manufacturer. These units are complete in
plastic housing with mounting spigot, they plastic housing with mounting spigot, they
are in good used condition, checked and guaranteed working. Similar specification 10 units recently described in constructional article in this magazine (Feb. - March) Require 12 -volt supply at approx. 200 mA . Price $£ 30.00+£$
@ 15% on total.

ELECTRONIC WORKSHOPS
5 Burston Rond, Putney London SW 15
Phone (01-789) 3989 or 01-373 0439

INVERTERS

GEC Elliott 45 KVA 415/3/50 Static inverter. No-break Auto. Charge. New. unused GEC Elliott 15 KVA 240/1/50 Static Inverter. New, unused.
For full details and inspection please contact

Mr. G. Peabody
Walker \& Partners Ltd.
Staveley, Derbyshire 543 3JN
Telephone: 0246-87-2147
Telex: 547323

BURGLARS

Safeguard your home, shop. etc. from burglars and vandals with the best D.I.Y. equipment available. Send S.A.E. for comprehensive price list. E.g. £6 for one of our fully weather-proofed steel Bell-Boxes the professionals use.
Lawrence, $42 / 45$ New Broad Street, London EC2M 10Y 'Don't buy in Kits, buy in Bits'.

COLOUR, UHF AND TV SPARES (mintature stze 4t X $3 \frac{1}{2}$ 2t). New Saw Filter IF Amplifier plus tuner (complete and tested for sound and vision, $£ 28.50, \mathrm{p} / \mathrm{p} £ 1$.
TELE'TEXT, CBeefax and Oracle in Colour, Manor Supplies "easy to assemble ". Teletext kit including rexas Tifax XM1l Decoder. External unit aerial input, no other connecthons to set. Wide range of facinties in colour include 7 -channel selection, MIx, Newsflash and Update. (Price: Texas Tifax XM11 f130, Auxillary Units $£ 88$, Case $£ 14.80$. p/p £2.50). Demonstration model at 172 West End Lane, NW6. Also latest Mullard Teletext 610LVM module avallable. Call, phone write for further information.
COMBINED COLOUR BAR AND CROSS HATCH GENERATOR KIT (MK 4) UHF aerial input type. Eight pal vertical colour bars, R-Y, B-y, Grey scale etc. Push-button controls $835 \mathrm{p} / \mathrm{p}$ fi; Battery Holders 11.50 ; Alternative Mains Supply Kit E4.80; De Luxe Case 14.8 . Aluminium Case $£ 2.60$. Bullt and £58, p/p $£ 1.20$.
£58, P / P ¹. ${ }^{\text {£1.20. }}$ KIT, UHF aerial input type, also gives peak white and put type, also gives peak white and p/p 45 p . Add-on Grey scale kit
 £4.80; Aluminium Case $£ 2$ p/p Case $£ 23.80 \mathrm{p} / \mathrm{p} £ 1.20$
UHF SIGNAL STRENGTH METER KIT $£ 16.80$, alum. Case $£ 1.50$, De
Luxe Case f4.80 p/p f1. lor Colour and Mono $£ 20.80$, p/p 81.30; TV 625 IF Unit for Hi -f amps or tape rec. £6.80, p/p 75 p. Surplus (single (C) $£ 5$. BC5600 (Exp) $£ 5$, A823 (Exp) $52.80 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$. Bush A823 (A807) Decoder panel $£ 7.50$ p/p 1 . A823 Scan Control panel t3.50, blue lat, 75p. Philips G6 single standard convergence unit $£ 3.75$ p/p 90 p. GEC 2040 ex rental panels, Lecoder $£ 5$, Time Base $£ 5$ p/p 90 p. Thorn ${ }^{3000}$ ex rental panels, Video, Decoder, frame, IF $£ 5$ p/p $90 p$.
Colour Scan colls, Plessey 66 , Yoke Colour Scan colls, ${ }^{\mathbf{~ P l}}$
£3.50, blue lat,
(Mullard also avallable). Mono Scan coils Philips/ Pye $£ 2.80$. Thorn $£ 2.80 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$. Phillps G8 Decoder panels, salvaged for spares $£ 3.80$ p/p 90 p. Varicap UHF tuners Gen Instruments $\mathbf{5 3 . 5 0}$ ELC 1043 £4.50, ELC1043/05 £5.50; Philips G8 $55.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Salvaged UHF Varicap tuners f1.50 p/p 35p. £8.50 p/p 65 p. Varicap control units, £8.50 p/p 65 p . Varicap control units,
3 pos. 11.20 , 4 pos. $£ 1.50,5$ pos. $\mathrm{f} 1.80,6$ pos. (speclal offer) fi .80 , 7 pos. $£ 3.80$ p/p 45p. Touch Tune control unlt Bush 6 pos. $25 \mathrm{p} / \mathrm{p}$ 75 p . UHF transtd tuners, rotary push button $52.50,6$ pos. push but ton $£ 4.20 \mathrm{p} / \mathrm{p}$ £1. (Thorne, GEC
 avallable, detalls on request). Delay Lines DL20, DL5 $£ 3.50$, DL1 $80 \mathrm{p} \mathrm{p} / \mathrm{p}$ 65p. Remote Control Thorn-type Transmitter, receiver $£ 2$ palr p / p 45 p . Large selection of lopts, trip.
lers, mains droppers, and other lers, mains droppers, and other spares for popular makes of cotour
and mono recelvers. MANOR SUPPLIES, 172 WEST END LANE, WEST HAMPSTEAD, LONDON NW6, SHOP PREMISES, EASILY ACCESSIBLE, WEST HAMP-
STEAD-BAKERLOO, JUBILEE TUBE, STEAD-BAKERLOO, JUBILEE TUBE,
and BRITISH RAIL N. LONDON (RICHMOND-BROAD ST.) and ST PANCRAS-BEDFORD, BUSES 28 159, 2, 13. Callers welcome. Thousands of additional items avallable
at shop premises not normally ad. at shop premises not normally ad-
vertised. Open dally all week invertised. Open dally all week hat
cluding Saturday (Thursday halfday). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NW11 9HT. Tel. 01-794 8751. All prices subject to 15% Vat.

TEKTRONIX TYPE 545 OSCRLO SCOPE wilth 1A2 dual-trace plug-in and instruction manual. Good work ing order. $£ 175$

[^6]
TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

Large quantities of Radio, T.V. and Electronic Compinents
 RESISTORS CARBON $\&$ C/F $1 / 8,1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to

 10 meg.RESISTORS WIREWOUND. $1 \frac{1}{2}, 2,3,5,10,14,25$ Watt CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc.. etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713 4450749

8Й̄OADFIELDS 8: MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Cornar! (9461)

STC 4001 TWEETERS bargain clearance offer, 2 for $£ 6,4$ for $£ 10$, $£ 1.50$ prith Lane, London N.W.

CCTV EQUIPMENT FOR SALE, cOnsisting of 7 Grundig FA 41 cameras, 1 FA 30 with motorised zoom lens, 12 Shibaden HV 16 S cameras and $3 \mathrm{HV} 15,21$ lens various, ${ }^{8}$ heavy
duty Dennard camera housings with duty Dennard camera housings wind 1 Dennard Pan and Tilt unit, 65 E.M.I. Vidicon types 9677 C and M . 3 Sets G.P.O. approved video llne transmission equlpment, 500 yards of 22 -way multicore TV cable, this equipment is a mix of new, soiled and second-hand and is sold as
seen and as such is open to offers elther as a whole or separately. Telephone 01-346 9271 .

SPECIAL PURPOSE and high power valves of Eimac and Varian wanted: $304 \mathrm{TL}, 4-125 \mathrm{~A}, ~ 4 \mathrm{CX1} 1000 \mathrm{~A}$, etc. 53 6L6, 7N7, 7 F7 valves also desired - Ted, W2KUW 10 Schuyler Avenue, North Arilngton, New $\begin{aligned} & \text { Jer- } \\ & \text { sey } 07032 \text { (USA). }\end{aligned}$
(USi)

PCB. FI日REGLASS OFF-CUTS, £3
per ib inclusive. Electronic Mail per 1b inclusive. Electronic Mail Order Ltd. Ramsbottom,

FLUKE DMM Model 8600A-01 mains battery, c/w carrying case, manual and test leads, little used, £240, -

EOUIPMENT WANTED

TO ALL MANUFAGTURERS AND WHOLESALERS
IN THE ELECTRONIC RADIO AND TY FIELD

BROADFIELDS \&

 MAYCO DISPOSALSwill pay you top prices tor any large stocks o surplus of redundant components which you
may wish to clear. We will call anywhere in the United Kingdom

21 LODGE LANE
NORTH FINCHLEY, LONDON N128JG
Telephone Nos. 01-445 0749/445 27
19123)

AGENTS

EXPANDING British manufacture requires sales agent for the follow ${ }_{2}$ ing: 1 top quality audio amplifiers Medical electronlc equipment.
Detalls of experience should be Detalls of experience should be submitted. Overseas enquiries wel-
come. - Box No. WW
$\mathbf{3 0 9}$ (308

ENTHUSIASTS

AMATEUR ELECTRONICS / Micro processor enthusiast. Wishes to contact similar minds for exchange of Ideas on household automation. coventry - West Midlands area pre- ferred. - Box No. W.W. 304. 1304

THINKING OF RENTING A TELEPHONE ANSWERING MACHINE? then stop!

Did you know that for the equivalent of just one year's rental you could actually buy one outright?

For details write to
Javal Supplies Lid. (Dept. 2C), 120 Alexandra Road, Burton-onTrent, Staffs DE16 OJB or
telephone (0283) 47427 any time.

CONSTRUCTOR? MANUFACTURER? DISTRIBUTOR? RETAILER?

NI-CADS

size, 500 mAh . 1.2 volts

+ + VAT)!!
South Midiands Communications Ltd., Osborn Road, Totton, Southampton SO4 4DN. Phone (0703) 867333 . Telex
477351 SmComm G.
$\begin{aligned} & \text { (314) }\end{aligned}$

SERVICES

FRINTED CIRCUIT MANUFACTURE. Very fast, rellable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for instant quote or write to AKTROtonhampstead, Devon. (9857
HEPETITION SHEET METALWORK on Wiedemann turret press. Long/ Quick deliveries commission for introductions. - EES Ltd. Clifford Rd., Monks Rd., Exeter. 36489. (8060

DESIGN SERVICE. Electronic Design Development and Production Analogue Instruments Kr^{\prime} TransAnalogue instruments, Kr Trans. any function at any range. Tele. metery, Video Transmitters
Monitors, Motorised Pan and Tilt Heads etc. Suppliers to the Industry tor 16 years. Phone or write Mr. Falkner, R.C.S. Electronics, ${ }^{6}$ Wol.
sey Road, Ashford, Middesex. Phone Ashford 53661 .
SMALL BATCH PCB's produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. Details: Winston Promotions, ${ }^{9}$ Hatton Place, London EC1N 8RV. Tel. 01-405 4127/0960. \qquad

TV TUBE REBUILDING!

We can offer the most complete range of electron guns, parts and lube components. All gun types for black and white, aiso high definition guns for monitor tubes. A wide American and Japanese tube types

We also offer equipment for testing and manufacturing. Prices, catalogue and technical advice on request
ALGOGRIFF p.v.b.a.
(Electronics it Equipment)
LISPERSTEENWEG
1962500 Lier/Belgium
Tel: 031/802387. Telez: 35371

TEST EQUIPMENT CALIBRATION AND REPAIR

Qurck turn round, attractive rates. ring for
DUTCHGATE LTD.
94 Alfriaton Gardens, Sholing
Southampton

(9385)

SHEET METAL WORK fine or

 general front panels chassis, covers, boxes, prototypes. 1 off orbaten work fast turnround. $01-448$ 2695 . M. Gear Ltd 179 A Victoria
Road, New Barnet, Herts. Road, New Barnet, Herts.

PCB MANUFACTURE Including

 circuit design, artwork (P.TH) $2: 1$ reduction photographic service Drilling/profiling, assembling/tes ing. Single/double - sided boards. Any intermediate stage undertaken. Prototype service available.- Ring (0621) 741560 or write Mayland PCB Co Litd, 4 The Drive, Mayland sea, Chelmsford, Essex CIM3 6AB.(121

RAPID PCB SERVICE prototypes and prod. Runs up to 500 off, from your artwork. 5 p per sq. in. min. order $£ 5$. Panel screening and a work service fa
Braintree 40281.
(308

EURD CRIGUTS

Printed Circuit Boards - Master

 layouts - Photography - Legend printing - Roller tinning - Gold plating - Flexible films - Conventional fibre glass - No order too large or too All or part service available Now (9630 EURO CIRCUITS TO.Hightield House
West Kingsdown
Nr. Sevenoahs. Xent. WK2344

MICROPROCESSOR CONSULTANCY SERVICE, Design and Programming. For details write to C.J. hech, Birmingham B14 7BT. (3841

DESIGN DEVELOPMENT MANU. FACTURE. We can offer a high quality, professional service, coverIng all aspects from original design to small batch production. Digital/ Analogue prototypes welcome. For competitive pricing and quick delivery phone Mr. Flower, Digitalis Ltd., 9 Milldown Road, Goring-onThames, Oxfordshire. Tel: 04914
3162.
$(9925$

ELECTRONICS DESIGN SERVICE. Prototype analogue or digital clrcuits designed and built. Speciality instrumentation for nolse and vibration measurement. Contact Eastleigh, Hampshire. Tel. 0703 616182 evenings and weekends.
(307.

A COMPLETE SERVICE to manu acturers Assembly, cable formin and testing, Also a prototype PCB

 service and component scheduling at competitive prices. Small or large runs with quick turn-round to high standards. Contact the professionals - Techtronic Services, Staincliffe Mills, Dewsbury, W Yorks. Tel (0924) 409040 TX 556267(310

ELECTRONICS DESIGN SERVICES. Microprocessor hardware and soft ware. Design facilities have now been added to the established ex pertise and comprehensive test facilities previously available for Analogue and Communications De sign. - For fastest results please phone Ridgeway Hogs Back Seale (nr. Farnham) Surrey 02518 - 2639
(nr. Farnham) Surrey. 02518-2639

HU-GO offer prompt settlement for surplus electronics components, TV/ audio spares are of particular in. terest. Contact Miss Hughs, 9 West-
hawe, Bretton, Peterborough. Tel. hawe, Bretton, Peterborough. Tel.
265219.
(9731)

TURN YOUR SURPLUS Capacitors, transistors etc, into cash. Contact COLES-HARDING \& Co., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate setuement. We also welcome the opportunity to quote for complete factory clearance. (9509

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test gear, power supplies, PC boards, components, quantities. Call 01-771 9413. (8209

CAPACITY AVAILABLE

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to under take assembly and testing of circuit boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital analogue and' RF equipment in batches of tens to thousands.
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation

TEL. 01-253 4562
or reply to Box No. WW 8237

ELECTRONIC DESIGN SERYICF: Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome MAIDSTONE, Kent. $0622-677916$ MAIDSTONE, Kent. 0622-677916.

PROTOTYPE SERVICE capacity available to produce your prototypes or small batch quantities
from samples or drawings, also from samples or drawings, also PCB artwork design and manuAdam Close Coxheath Kent. Tel 0622 679584. (282

PCBs Production runs or prototypes

Assembly to sample or drawings

* Design Service if required
* Quick response to demand
* Expert hand soldering
* Nothing too large or too small

SEAHORSE ELECTRONICS LTD.

Unit 2. Picow Farm Roed
Runcom Chestire
Tel. Runcom (09285) 75950

RAM BHETHONICS HTD.

CONSULTANTS - DESIGNERS ASSEMBLERS
SPECIALISTSIN MICRD-BASED SYSTEMS 50 Flixton Road
Urmston, Manchester Tel: 061-748 3878
$19919!$

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals, 19 b Station Parade, Ealing Common, London,

ARTICLES WANTED	
	WMAMED
	ANGLIAN INDUSTRIAL AUCTIONS
Conrquies, Parpherals, etc. \% Iom 31用解 	We sell by auction, all radio and electronic components and equipment. Why not let us sell your surplus and end of production materials. All entries must be received at least 21 days prior to sale.
WW -056 FOR FURTHER DETALLS	For entry forms or catalogue of next auction contact:
WANTED Test equipment, receivers, valves, transmitters. components, cable and electronic scrap, any quantity. Promipt service and cash. Member of A.R.R.A.	B. BAMBER ELECTRONICS 5 STATION ROAD LITTLEPORT CAMBS. CB6 10 E TEL: (0353) 860185
M B BRADIO 86 Bishopsgate Streer Loods LS 1 4BB 0532-35649	(263)
	DEA OR ALIVE
We will purchase your surplus and obsolete Telephone Equipment and Electronic Components. Anything considered, from Relays to Complete Exchanges. Contact: TELECOMM. SPARES Lea Valley (0992) 716945	SPOTCASH
	paid for all forms of electronics equipment and components.
	F.R.G. General Supplies
	London SW20 8DR
	Tel: 01-404 5011
	Telex: 24224. Quore Ref. 3165 (8742)

WANTED: Recording equipment of all ages and varieties equilfornia U.S.A.). Tel. (415) 232-7933. (9814

FIELD STRENGTH METER for TV and FM wanted. Contact Mr Pedersen Salliva, 24, $4620 \quad$ Vagsbygel,
Norway.

WHOLESALE electronic component suppliers required for company starting in mail order market. Prices, info. to Box No. WW 305.
(305

WANTED SEMICONDUCTORS and clean new surplus components clean new surplus components
Hewitts, 52 Barkby Road Syston Leicester.
(294)

CAPACITY AVAILABLE

CIRCOLEC

for Electronic/Electro-Mechanical Assembly. We offer The following ver sallle and quality service for smatl to large batches.
PCB and Final Assembly, Repairs and Servicing. Inspection and functional Test, Prototypes and Associated Services, and modifications.

For competitive prices and last turnaround. contact Circolec. Tel: 01.7671233 : 1 Franciscan Hoad. Tooling.
\square
SMALL BATCH productions wiring assembly to sample or drawings. Specialist in printed circuits as sembly, Rock Electromics, Bis hopsfield, Harlow, Essex 027933018,

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Ltd, 01-850 6516, 45 Southwood Road, New Eltham SE9. MEDIUM SIZED COMPANY with capacity for sheet metal work and
wiring assembly requires immedi. - ate sub-contract work. Tel $01-261$ ate sub-contract work. Tel. 01-261
1677.

PCB ASSEMBLY
 CAPACITY AVAILABLE

Low or high volume, single or double sided, we specialise in flow line assembly.
Using the Zevatron flow soldering system and on line cutting, we are able to deliver high quality assemblies on time, and competitively priced.
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and discuss your requirements.
TW ELECTRONICS LTD.
120 NEWMARKET ROAD
BURY ST, EDMUNDS, SUFFOLK
TEL: 02843931
Sub-contract assemblers and wirers to the Electronics Indusiry
(9068)

B00ks

FREE 1980 AMTRON CATALOGUE with new range of kits and equip ment cabinets. Send S.A.E. Amtron Hastings, Sussex TN64 3TG. Tel Hastings 436004

1 こー = ELECTRONIC BROKERS LIMITED 49.53 Pancras Road, London NW1 2 OB. Tel: 01.837 7781. Telex: 298694.

Brand New -

Top Quality Performance \& Value

HM 307
Single Trace DC-10 $\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$. Plus built-in Component Tester.

HM 312
Dual Trace DC- 20 MHz , $5 \mathrm{mV} / \mathrm{cm}$. Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10$ cm Display.

 £149

$£ 250$

Uther models up to 50 MHz bandwidth available. Prices and full specs on request. Full demonstration at our
 premises. Quick delivery
Prices do not include VAT (15%) or Carriage
WW - 094 FOR FURTHER DETAILS

INDEX TO ADVERTISERS MAY Appointments Vacant Advertisements appear on pages 138-151

overseas advertisement

AGENTS:
France Bolgium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne. Paris.
Hungary: Mrs Edit, Bajusz. Hungexpo Adventising Agency. Budapest XIV, Varosliget.
elephone: 225008 - Telex: Budapest 22.4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero. Via Mantegna 6. 20154 Milan.
Telephone: $\mathbf{3 4 7 0 5 1}$ - Telexb; 37342 Kompass

Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B. 212
Azabu Heights. 1-5.10 Roppongi, Minato-ku. Tokyo 106 Azabu Heights. 1-5.10 Roppongi, Minato-ku. Tokyo 106 Telephone: (03) 5850581
United Steres of America: Ray Barnes, IPC Business Press 205 East 42 nd Street, New York. NY 10017 - Telephone (212) 6895961 - Telex: 421710.

Mr Jack Farley Jur.. The Farley Co.. Suite 1584. 35 Eas Wacker Drive. Chicago, Illinois 60601 - Telephone: (312) 63074.

Mr Victor A. Jauch. Elmatex International. P.O. Box 34607 8581 - Telex: 18.1059.

Mr Jack Mentel. The Farley Ca. Suite 650. Ranna Building. Cleveland, Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co.. P.O. Box 2028, Miami Beach. Florida 33140 -Telephone: (305) 5327301. Mr Tim Parks, Ray Rickles \& Co, 3116 Maple Drive N.E.. Alianta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055 , Memorial Ste 119,
Houston. Texas 77079 - Telephone (713) 7838673.

Canada: Mr Colin H . MacCulloch, International Advertising Consultants Lid.. 915 Cartion Tower, 2 Carlton Sireet. Toronto Consultants
2 - Telephone: $(416) 3642269$.

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

[^0]: * To reduce a number modulo x, subtract from it the largest possible multiple of x leaving a difference less than x, which is defined as the original number modulo x

[^1]: * The terminology is that a message is a unit of Information to be communicated, e.g. a number or a letter or a group of them, while a signal is that which is transmitted, e.g. a group of binary digits.

[^2]: * The order of the digits in a code can be changed, provided the order of columns in the check matrix is changed in the same way. Codes which result from such re-ordering are equivalent to the original code.
 \dagger The reason for these being "suitable" factors goes beyond the mathematical depth of this article.

[^3]: DESCRIPTION
 The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an ell metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the $\mathbf{7 2 0 8}$ can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni-Cad battery option. Price $£ 145.00+$ VAT.

[^4]: WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15% V.A.T. ON THE TOTAL

[^5]: To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HAO 1BR I'd like to discuss video with Bell \& . Howell.

 Name
 Organisation
 Address

[^6]: FRIDEN MODEL 1 FLEXOWRITER automatic typewriter with 8 chan nel paper tape reader and punch Good working order. E35. - Tony
 Frost, $01-874$ 9889 evenings.

