

Not just a Data Analyser, Signature Analyser, or Logic Analyser, but...

...all three in one very portable box: The 308 Analyser

To find out more about the NEW 308 Analyser, clip the coupon, circle the enquiry number, contact your field engineer, or simply phone. We'll be pleased to help.
Tektronix UK Limited, PO Box 69, Coldharbour Lane, Harpenden, Herts. AL5 4UP. Tel: Harpenden 63141
Regional Telephone Numbers; Livingston: 32766, Maidenhead: 73211, Manchester: 428 0799, Dublin: 508132

COMMITTED TO EXCELLENCE

Please send me full information on the New 308 Analyser.
| Tektronix UK Limited, PO Box 69, Coldharbour Lane, Harpenden, Herts. AL5 4UP. Tel: Harpenden 63141.

Name
Position
Company
Address

Front cover is a photograph, by Paul Brierley, of the printed-circuit pattern on a Motorola microcomputer board.

IN OUR NEXT ISSUE
Digital capacitance meter is a $31 / 2$-digit instrument, with full-scale readings of 200pF to $20 \mu \mathrm{~F}$.

How serious is multipath distortion? An investigation into this effect in v.h.f.lf.m. sound broadcasting and results of recent research.

Shared-memory v.d.u. with opto-electronic interface is an economic and efficient peripheral for a home computer.

Current issue price 50p, back issue (if available) £1.00, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 79 p , back issues (if available) $£ 1.00$, order and payments to Room CP34, Dor:set House, London SE1 9LU.
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU
Telephones: Editorial 01-261 8620. Advertising 01-261 8339. Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE 1.
Subscription rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Student rates: 1 year, $£ 4.00$ UK and $\$ 15.50$ outside UK.
Distribution: 40 Bowling Green Lane. London EC1R ONE. Telephane 01-837 3636.
Subscriptions: Oakfield House, Perrymount Road. Haywards Heath, Sussex RH16 3DH. Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison. Avenue, Suite 1217 , New York, NY 10022. 2nd-class postage paid at New York.
© IPC Business Press Lid, 1980 ISSN 00436062

74 Books 55 Literature received 58 World of amateur radio

53 Microwave radar alarm

56 Novatexts - alternative astable circuits
 by P. Williams

59 Impedance mismatching
by F. J. Lidgey

by F. J. Lidgey
Digital filters \quad Letters to the editor
Programmable notes for musical instruments

65 Electronic combination lock

by A. Oakley
68 News of the month
Electronic mail Microwave cancer testing
Tube plants to be automated

72 More frequency allocations

77 Maxwell equations revisited
 by I. Catt

79 Microwave intruder detector - 2
 by K. Holford

87 Microelectronics and the Third World

by S. Jacobsson
90 Circuit ideas
Cmos triggered timebase Opticaily-isolated triac control
Photographic enlarger analyser

Photographic enlarger analyser

93 New products

From the raw material to the finished component, Erie has been deeply involved in producing crystals for the past twenty years - to exacting specifications. The factory and test facility
complies with the latest MIL standards. Each crystal is tested at least nine times during manufacture. Only after a final check against the customers specification is it allowed through the door.
Erie crystals from 1 KHz to 100 MHz , oscillators and filters, whether standard range or custom-built, could be the answer to your frequency control problem. Consult us with your specification.
ITT Mercator, South Denes, Great Yarmouth, Norfolk, NR30 3PX. Tel: (0493) 4911. Telex: 97421.

ITImercator

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{IC}^{\mathrm{C}} \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1}$ CBO ${ }^{\& 1} I_{\text {E BO }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV CBO $\quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A_{r} 10 \mu A, 100 \mu A$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E}: \quad 1 \vee$ f.s.d.acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(s a t):} \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $1 \mathrm{C} / \mathrm{I}_{\mathrm{B}}$ selected at 10.20 or $30 \mathrm{acc} . \pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$I_{D R}$:
As IEBO transistor ranges.
V_{Z} : Breakdown ranges as $\mathrm{BV} \mathrm{CBO}_{\mathrm{C}}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ at $I_{D F}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mathrm{H} \mathrm{A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .
唯 $£ 145$

DON'T GAMBLE

 WITH PERFORMANCE BUY LEVELL TESTERS

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu A$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

< 3s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre.
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.
唯" $£ 155$
Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

Topvalue tequipment romTANDY

LCD DIGITAL MULTIMETER.

Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.

Scales:
 DC volts:

ImV 101000 V
($11^{\circ} 0 \pm 1$ digitaccuracte). AC volts: 1 mv 10500 V ($1^{\circ} \circ \pm 2$ digits accurate). DC current: 1μ A to 200 mA ($1 \%+1$ digt accurate). Resistance 10 hm to 20 NOhms 1.5 $5^{\circ}=1$ dgit accurate). Power source: 9 V battery or AC wuh optional adaptor. Size: $\underset{22-198}{155 \times 75 \times 30 \mathrm{~mm} .}$ 22-198

PRICE

53
19

LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

CAT No	DESCRIPTION	PRICE
276-032	LED	4 for 69p
276-033	- LED	2 for 48p
276-034	LED	2 for 59p
276-142	Infra-Red Emiter Detector Pair	£1.37
277-1003	12 VDC Automotive Digitai Clock Module	£17.52
276-9110	6 pil édge comiector for 2771003	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	TO 220 Heat Sunk	60p
276-1364	10 3 Heal Smk	81p

AC/DC 8 MHz OSCILLOSCOPE

A new approved 8 MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in
laboratories and schools. Ideal for radio
and TV servicing, audio testing, etc.

You save because we design. manufacture, sell and service Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

Specifications:
HCrizontal axis: Deflection sensitivity better than 250 mV DIV Vertical axis: Deflection sensitivity better than 10 mV DIV (IDIV 6 nim) Bandwidth:
0.8 MHz Input impedance. capacitance 35pf Time base: Sweep pange capacitance 35pF. Time base: Sweep range
$10 \mathrm{~Hz} \quad 100 \mathrm{kHz}(44$ anges $)$ $10 \mathrm{~Hz} \quad 100 \mathrm{kHz}$ (4 ranges). Syihrourzation: Internal() Size: 200×155 $\times 300 \mathrm{~mm}$. Supply
220240 50Hz.22-9501.

KNOWN AS RADIOSHACKIN THE U.S A MAKERS OF THE WORLD'S BIGGESI SELLINGMICRUCOMPUILR IRSMO

The largest electronics retailer in the world.
MICROCHIPS AT MICRO
PRIGES

Compare our prices before you buy elsewhere. All brand new Prime.	
MEMORIES	
2102 Static RAM	${ }^{80 p}$
2114 Low power high speed 300NS	
	4.00
EPROMS	
1702A	3.75
2708	5.95
2716 Single 5 V supplv	19.95
IUART	
AY.5-1013A	2.98
CHARACTEA GENERATOR	
RO.3-2513 UC	4.50
FLOPPY DISK CONTROLLER	
FD 1771 Single Density IBM Compatible	17.95
FD 1791 Dual Density	
IBM Compatible	34.95
\|SUPDGITDEVICES	
MC14412VL	7.97

7 WATT AUDIO AMP KIT

Small. Single hybrid IC and components fit on a $2^{\prime \prime} \times 3^{\prime \prime}$ board (included). Runs on 12 VOC. Great for any project that needs an inexpensive amp. Less than 3% THO kit. £4.50 plus 50 p P\&P and VAT

DISPLAY LEDS AT LOWEST PRIGES

Que to bulk purchase, we are able to offer
unbeatable prices on INTERSIL chips.
Compare our prices and see how much
you save.
ICL7106CPL
ICL7T07CPL
ICL803BCCPO

NE555N-8 Timer
NE556N-14 Dual Timer
UA723CN Voltage Regulator
7812 Voltage Reg. 18 p
50 p UA723CN Voltage Regulato

POWER CONVERTER

 mTE5WS| Now you can operate $115 / 120$ Volts American equipment from 240 Volts. This converter has outlets for American type 2 or 3 pin pluggs. Fated 20VA.
 Only E .95 |
| :---: |
| From T. 1.: TL490 BAR/DOT DRIVER IC. Drives 10 LEDs with adjustable analog steps. Units are cascadable up to 10 (100 steps). Drives LEDs directly. Great for voltage, current or audio displays. Similar in features to LM 3914 with specs and circuir notes. |

FAIRCHILD RED LED LAMPS

*flv5057 Medium Size Elear Case RED EMITTING. These are not retested offEMMe. units as sold by some of our com-
ppetions. These are factiony prime. first petitors. These are factory prime, dirst quality, new units. Very Limited STOCK:
8p EACH 100 OFF 6 p EACH 1,000 OFF
5 p EACH 2,000 OFF

INTERSIL UNIVERSAL TIMER/ COUNTER EVALUATION
ICM $7226 A$ EV/KIT
8 digits 5 Function 4 range 10 MHz with 0.1 Hz res
time interval and period 10,10 seconds with 0.1 microsecond res units seconds with .1 microsecond res. unirs up to 10
milion and ratio. A breadboarding area is million and ratio. A breadboarding area is
provided for user to add his own input provided for user to add his own input
conditioning circuitry or prescalers and conditioning circuitry or prescaters and
digital outputs are available as multiplexed as well as being displayed. Complete kit ONLY $\mathbf{E 3 9 . 5 0}+$ VAT

THE MOST VERSATILE LIQUID CRYSTAL DISPLAY
$1.2425+100+$ $\begin{array}{llll}\text { LCD106 } & 6.45 & 5.50 & 5.25\end{array}$
$.5^{\prime \prime}$ Field effect LCD display featuring $31 / 2$ digits, colon, plus / minus sign, 3 decimad points and 'LO BAT"' indicator Ideal for DMMs, DPMs digital thermometers AM/FM radio readouts Just look at the features Ultra low power consumption, high contrast ratio, wide viewing angle, rapid response, proven sealing techniques, superior MTBF reflective aluminium foil Over 300,000 already sold! Perfect interface for Intersil 710640 Pin DIL

SE 01 Sound Effects Kit NEW

The SE-01 contains all the parts to
build a pro.
grammable
sound effects
generator generator.
Besigned
around the around the Instruments
SN 76477 SN 76477
Sound Chip
the board the boar banks oif
MINI oif
switches and switches and gram the various com Binations of
the SLF the SLIllator
Oscill Aoise
VCO. No

> One Shot,
and Envelope Controls. A Quad Op Amp IC is used to implement an Adjustable Pulse Generator, Level Comparator and satility. The $31 / 4^{\prime \prime} \times 3^{\prime \prime}$ PC Board features a
sater prototype area to allow for user added protorype area
circuitry. Easily programmed to duplicate Explosion, Phaser Guns, Steam Traina. or almost an infinte number of other sounds. The unit has a multiple of applications. The low price includes all parts, assembly manual, programming charts, and detailed 76477 chip specifications. It runs on a 9 V battery (not included). On board 100 MW amp will drive a smal speaker directly, or the unit can be conresultsl (Speaker not included.)

COMPLETE KIT ONLY £12.50 P\&P 50p + VAT

Orderwing information: For orders under E50 add 50p p. \&p. Add 15% VAT to otal. All items are subject to prior sale and herefore subject to availability. Prices are subject to change without notice.

Quantity discounts are available for OEMs and dealers. Send SAE for details.

All arders to:

4 Meeting Street
Appledore, Nr. Bideford
North Devon EX39 1 RY
Telex 8953084

Measure Resistance to 0.01Ω At a Price that has no resistance at all

New ELENCO PrecIIDIN Digital Multimeter M1200B

ONLY £55

YOUR OPPORTUNITY TO BUY THIS SUPERB DMM AT THIS PRICE FOR A LIMITED PERIOD ONLY
-FUlly guaranteec
FOR 2 VEARS
METAL CASE
EX STOCK DELIVERY

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading.
- $\quad 100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V lexcept 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit Hi for diodes

	SPECIFICATIONS:
DC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
	Overload protection 1,000 volts max
AC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
DC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$.
	Accuracy $1 \% \pm 1$ digit, Resolution 1 Microamp
	Overload protection - 2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
	Overload protection - 2 amp fuse and diodes
Resistance	Range $20,200,2 \mathrm{~K}, 200 \mathrm{~K}, 2 \mathrm{Meg} .20 \mathrm{Meg}$.
	Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
Environmental	Temp coefficient 0 to $30 \mathrm{C}^{\circ} \mathrm{C} .025 \% \mathrm{C}$
	Operating Temp 0 to $50{ }^{\circ} \mathrm{C}$ Storage - 20 to $00^{\circ} \mathrm{C}$
General	Mains adaptor: 6 - 9 Volts @ 200 mA (not supplied)
	4 C size batteries (not supplied)
	Size $81 / 4 \times 5 \frac{1}{4} \times 2 \%$ Weight $21 / 2 \mathrm{lbs}$.
To: Maclin-Zand Electronics Lid 1 st Floor. Unit 10. East Block 38 Mount Pleasant, London WC $1 \times$ OAP	
Please send me @ $\mathbf{6 6 6 . 7 0}$ inc. p\&p + VAT (overseas $\mathbf{6 6 0}$) I enclose cheque/PO/Bank Dratt for \mathbb{E}	
Name	
Address	
	LETTERS
Also available from -	
Also available from retail shop:	ELENLO: PRECISIOM Sole UK Distributor
Audio Electronics, 301 Edgware Road	ME

Maclin-Z and Electronics Ltd 38 Mount Pleasant, London WC1XOAP Tel. 01-837 1165
Telex. 8953084 MACLING

MICRODIGITAL1980

AppleIIplus Nascom2

Microprocessor
Z80A bit CPPU This will run at 4 MHz
but is selectable between $1 / 2 / 4 / \mathrm{MHz}$ Hardware
$12 \times 8{ }^{-}$Card
All bus lines are to the Nasbus specifications
All bus lines are full bulfered
Memory
On board, addressable memory
1 K Video HAM (MK4118)
1K Work space/User RAM (MK4118) 8K Microsoth Basic
(MK 3600 HOM)
(MK 3600 ROM) 1 Static RAM/2708 EPROM 64 K BYTES programs your home.

Apple II Plus will change the way you think about computers. That's because it Is specifically designed to handle the day to day activities of education, business, and entertainment

- APPLESOFT

A last, extended 10K BASIC with 9-digit precision and graphics extensions
HIGH RESOLUTION GRAPHICS On a malrix of 280×192 individually addressable points.
AUTO-START ROM
With power on boot of applications programs, resel protection and improved INTERNAL MEMORY EXPANSION TO
For big system performance at a low cos
EIGHT EXPANSION SLOTS To let the system grow with your needs

Nett V.A.T Total
Apple Il Plus,
16K RAM
$69500 \quad 104.25 \quad 799.25$
APPLE PASCAL
Apple Pascal is the new extension to microcomputer power
Pascal Incorporating UCSD PASCAL TM ollers extended features in a complete interactive package employin
mos: sophisticated structured
programming lanquege it provide performance and cut development time for large business, scientific and educational
This software package provides the most powertul set of tools yet available lot the

APPLE Pascal Nett VAT Total $\begin{array}{lllll}\text { System } 22900 & 44.85 & 343.85\end{array}$ FLOPPY DISCS
Gives your system immediate access to consists of an intelligent interface card powerful Disk Operating System and one or two mini-floppy drives
Floppy disk Nett V.A.T Total Subsystem...... $34900 \quad 523540135$ Second disk drive
and connecting

Parallel Printer Interface Card
Allows you to connect almost any popular an produce hard.copy output program it prints to the TV monitor screen.
Command interpretation and printer Command interpretation and printer
control details arehandled by the control detaiis are handled by the
limmare built into the card, to elim urmware built into the card, to eliminate
user programming requirements
Parallel Printerl Nett V.A.T Total Interface Cardl $104.00 \begin{aligned} & \text { Nett V.A.T Total } \\ & 15.60 \quad 11960\end{aligned}$

Communications Interlace Card

 Allows your Apple to "talk" (through a Allem) with orher computers and terminals over ordinary telephone and load programs over the phone, send your olfice computer from the comfort ofCommunication
Nett V.A.T Total
$\begin{array}{lll}\text { Interface Card .. } 130.00 & 1950 & 149.50\end{array}$

Keyboard
New expanded 57. Key Licon solid state keyboard especially built for Nascom controlled

T.V.

The T.V. Peak to peak video signal can drive a monitor directly and is also fed to the on board modulator to drive the he on bo
$1 / 0$
On-board UART (Int. 6402) which provides serial handling for the on-board assette interface or the RS $232 / 20 \mathrm{~mA}$ teletype interface. The cassette interface
Kansas City standard at either 1200 or 300 baud This is a link operation on the Nascom-2
PIO
There is also a totally uncommitted PIO (MK3881) giving 16, programmable, 1/O nes
Character Generator
The IK video RAM drives a 2 K ROM The IK video RAM drives a 2 K , Re character generalor providing the
standard ASCll Character set with some standard ASCl character set with some second 2 K ROM sacket for an on-board graphics package which is software Nett VA.T. Total
Nascom-2 in kit Nell V.A.T. Total $\begin{array}{lrrr}\text { form......... } & 295.00 & 44.25 & 339.25 \\ \text { Power Supply } & 24.50 & 3.68 & 28.18 \\ \text { Graphics ROM. } & 15.00 & 2.25 & 17.25\end{array}$

SuperboardII

The sensational single bonrd computer trom Ohio Scientific Superboard comes fully assembled and tested mic (exoprocessor, 4 K AM (expandable on borrd to 8K). BK Mscrosole BASIC in ROM CUTS cassette intertace. full ASCII keyboard Superboardinteriaces with a video monitor or do mestic television (via display with Upper/Lower casennd a wide
Superboard comes complete with
Superboard comes complete with
documentantion and sample soltware on cassette

Ex.Stock

NEW LOW PRICES

Video Genie

A third generation personal compule
system, the video genie is a powerful
microcom puter upwardly compatible with the Tandy THS-80. TM

Central Processor
The system uses the poweriul and popular Z80 processor A system reset button is
mounted at the rear of the console. Power mounted ar is NOT required should the system erash

Video Display

16 lines of 32 (2 pages) or 64 characters switch selectable. Full sottware cursor control
Composite video output to a domestic television
Memory
RAM - 1 K Screen Ram
ROM - 12 K Extended Level II Basic interpreter, system monitor, TRS.80TM Level II BASIC.
Cassette
niegral $500 \mathrm{~b} . \mathrm{p} . \mathrm{s}$ cassetie deck eliminate Additional interors
cassette deck Manual overide of cassette deck and tape counter cures problems normally associated with this storage medium
Basic
An extended Level II Basic. compatible with RS. 80 level II Basic T Features line editing, formalted printing,
multi.dimensional arrays. AUTO Line numbering. Programtracing A huge range of software, on cassette is lready available
Peripherals
Full ASCII keyboard with 10 key rollover liminates keyboard bounce Expansion printer

Video Genie
$\begin{array}{ccr}\text { Nett } & \text { V.A.T } & \text { Total } \\ 369.57 & 55.43 & 425.00\end{array}$

Sharp
SHARP MZ.80K
Z.80 based CPU

4X Byte monitor in ROM
AAM
14 K Extended BASIC
0 in video display, 40 chars, of 24
80×50 bit mapped graphics.
Extensive character set with upper, lower case, graphics etc.
Built in music synthesizer with 3 octaves Fast reliable cassette unit with tape counter 1200 b.p.s.

50 pin bus connector lor system

A complete personal computer system to the microcomputer user, at an economic price. The Sharp comes complete with all and excellent documentation - giving the user a personal system of unmatched flexibility and ease of use. At the heart of the machine is the Z. 80 CPU - widely accepled as the most poweriul 8.bit CPU on the market. A 4 K byte system monitor of RAM can be resident on board; enough room for the most demanding applications.
An extensive graphics character set, plus 3 octave sound generator and last cassette unit hi resolution video monitor
complement these basic lacilities. It has the ease of use and compactness of "black box computer combined with extensive Sharp 1 Rer RAM: and Sharp Basic occupies 14 K of RAM: and normal microcomputer implementations

Model	Nett	V.A.T.	To
6K	520.00	78.00	\$98.00
10K	540.00	81.00	621.00
18K	620.00	93.00	713.00
22K	640.00	96.00	736.00
34K	740.00	111.00	851.00

Acorn

This compact stand-alone micro-compute s based on Eurocard modules, and employs the highly popular 6502 MPU . see how Acorn meets your requirements. The Acorn consists of two single
The Acorn
Eurocaris: 6502 mic mprocessor, 512

1. MPU card; 6502 8 ACORN Monitor; $1 \mathrm{~K} \times 8$ RAM 15 -way IVO with 128 bytes of RAM; 1 MHz crystal; 5 V reg| sockets for 2 K EPROM and second RAM 1/O chip. 2. Keyboard card; 25 click-keys 16 hex, 9 standard crystal controlled tape interface slineuitry
el

Acorn Operating Manual

With Acorn, you'll receive an operatirg manual that covers computing in full, from efficient hex programming with the 6502 instruction set. The manual also includes a listing of the monitor programs and the instruction set, and other useful

Nett V.A.T Total $\begin{array}{ll}\text { Kit.................... } 65.00 & 9.7574 .75 \\ \text { Ready Built } 75.00 & 11.2586 .25\end{array}$

Acorn Memory

A high quality fibre glass, through hole plated. $C B$ wh solder rest and has provision for 8 K of RAM (2114) and 8 K of EPROM (2732) 8K RAM (Kit) \ldots	Nett	V.A.T.	Total
5.00	14.25	109.25	ACORN V.D.U

Acorn Computer. Board connects to the memory mapped character storage which is transparently written to or read from, by the C.P.U
An MC 6845 programmable controller I.C Provides all the synchronisation signals to drive a 625 line 50 fields per second V.D.U. together with read addresses for the character R.A.M. Characters are then fed to an SAA 5050 character qenerator IC to create the characters to refresh the to crea
V.D.U
The SAA 5050 produces Teletext standard characters and has Red, Green and Blue or graphics.

Bigger and better than ever!

Commodore

A complete Computer for the price of a ood type writer! With a library of over 200 and entertainment
et can store and retrieve data which conventially occupies large storage apacity, and solve numerical problems
raditionally tedious and time consuming

Ease of Operation
The Commodore PET comes complete with well as its full computer circuitry. It is plugged into any 13 amp and no special computer knowledge is needed for unning standard programs. Personal programs can readily be written in the
BASIC computer language of PET which is asily learned.

An Expandable System
Further expansion is a prime design concept enabling PET to be made the heart of a much larger system incorporating printers,
required.
Computers PET 2001.8 - PET with integral cassette and calculator type keyboard. 8K bytes memory.
$550.00 \quad 82.50 \quad 632.50$ PET $2001-16 \mathrm{~N}$ - PET with 16 K bytes mentory and large keyboard. External

$$
\begin{array}{rrr}
\text { Nett } & \text { V.A.T. } & \text { Total } \\
675.00 & 101.25 & 776.25
\end{array}
$$ ET 2001.32N - PET with 32K bytes assette and large keyboard. External

$$
\begin{array}{rrr}
\text { Nett } & \text { V.A.T. } & \text { Total } \\
795.00 & 119.25 & 914.25
\end{array}
$$

Computhink Disk Units
$\begin{array}{lllll}\text { 400K RK Pet } \\ \text { for BK } & 795.00 \quad 119.25 & 914.25\end{array}$ $\begin{array}{llll}\text { New Pet } 2 & \text { Na...... } 840.00 & 126.00 & 966.00\end{array}$ New Pet 2 $995.00 \quad 149.251,144.25$

25 Brunswick Street, Liverpool L2 OPJ Tel: 051.2360707 (24 Hour Mail Order) $051-227$ 2535/6/7/8 (All other Depts.)

Please Send Me:

I Enclose
Cheque/Postal Order No.
Barclaycard No
Access No.

Post Code
All Prices Include Carriage

If QUAD amplifiers
 are so perfect why does itstill sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones.

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loud-speakers or headphones however good these components may be.

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PEl8 7DB. Tel: (0480) 52561.

> QUAD
> for the closest approach to the original sound QUAD is a registered Trade Mark

We wouldn't knock our rivals.
After all, it was they who inspired us to design and manufacture our own power loudspeakers . . . because of the frustration we experienced when trying to obtain power loudspeaker components for our enclosures. Nobody could consistently supply components to the exacting HH standards of quality, power and performance - at any price.

So, our designers started from a clean drawing board and were prepared to defy convention in the construction of a superiorpower loudspeaker. Our powerful computer calculated optimum cone
profiles, whilst our scientists pushed back the frontiers of adhesives technology to develop new construction methods. Then we tested them relentlessly and did our best to destroy these new products (that was the hardest part.) Now this range of superior power loudspeakers, crossover networks, "bullet" radiators, compression drivers and horns can be purchased at sensible prices from HH dealers. In their new and convenient packs you will also find an applications book, full of useful hints.

Send for our brochure, so you can convince yourself why our components are superior, by following our logical scientific arguments. Then you'll realise why we never need to knock our "rivals".

Power to the Performer. HH Acoustics.

Carston Electronics

 specialists in second user testand measuring instruments

NEW

Prices

Acoustic

BRUEL \& KJAER
2203 Precision sound level meter
1613 Octave filter set couples
directly to 2203 \& 2204
CEL
112 LEO meter digital readout

Amplifiers

MICRO MOVEMENTS
M1270 DC Amplifier 15 mV -150V
2 and 10 channel rack systems
availabie. Per channel.

Attenuators

MARCONI SANDERS
6593 VSWR Indicator. Batt/Mains
STC
746003 decade units. $0: 100 \mathrm{~dB}$
atten, in steps of $0.1 \mathrm{~dB} 75 \Omega$

impedance

Bridges

CINTEL
277 Measures iron core inductances
$0.01 \mathrm{H} \cdot 1000 \mathrm{H}$ (with a Q value not
less than 2)
DAWE
2108 Decade Capacitance box
$0.1 \mu \mathrm{~F}-1 \mathrm{mF} 0.1 \mu \mathrm{ftep}$
MARCONI
TF1313 Measures C/L/R with an. accuracy better than $\pm 0.25 \%$ TF1245 ' Q ' meter. Freq. range 1 kHz 300 MHz using external osc.
WAYNE KERR
B221. Plus low impedance adaptor 0221. Measures L/C/R
-35-37B. Noise, level and VU measurement. Sensitivity ' 80 dBm up to +20 dBm

STC

74216A Noise Generator CCITT 4261A Psophometer CCITT WANDEL u. GOLTERMANN DLM-1. Send/receive system for measuring phase jitter random nolse and frequency shift on data and frequency shift
LDS $-2.200 \mathrm{~Hz}-600 \mathrm{kHz}$ sender measuring group delay and measuring group delay LDEF-2. Fllters for DLM unit Counter Timers
425 HEWLETT PACKARD
$350-5300 \mathrm{~A} / 5303 \mathrm{BC}$ D- 520 MHz 6 digits
5300 A Display Module. 6 Digits. 3×10^{7}
5300 B Display Módule. 8 Digits.

Prices
from E

E
 Time inte
5303 BC . 520 MHz . (Plug-on)
125 mV sens. 50Ω
$5308 \mathrm{~A} 0-75 \mathrm{MHz}$. Universal Module.
50 mV sens. $1 \mathrm{M} \Omega$
5267 A Time Interval Plug-in 10 ns MARCONI
TF2414A DC-40MMz 7 digits TF $2416 / 8 \mathrm{DC}-50 \mathrm{MHz} .7$ Digits. 10 mV sens. Stab: $1 \times 10^{\frac{7}{/} / \text { day. } B C D}$ 0/P TF2416/2 As for $2416 / 8$ without
BCD. O/P
RACAL
835. DC-15 MHz 6 digits

Time interval/Period/Ratio
$902410 \mathrm{~Hz}-600 \mathrm{MHz} 7+1$ digits
$9835 \mathrm{DC}-15 \mathrm{MHz} 6$ digits
9837 DC .80 MHz 6 dlgits
S F LABORATORIES
SM202 DC -150 MHz 8 Digits.
SM202 DC-150MHz. 8 Digits. OMv. A, B,C, Input. Time Interval nd Totalise

1500

Data Loggers

SOLARTRON
3240/3301 Data Transfer Unit and
100 Channel Scanner with the
following Maln Units:
3205 Universal Interface
3210 Digital Clock
3211 Controller
3115 Scan Controller
3238 Power Supply
3221° Drive for Facit 4070 (ASC 11)

- Fitted as required

3209 Manual Entry Keyboard 3213 Push Button Display for Time or Measured Value of Selected
Channel
330510 Channel I/P Card IQuantity as required) Price per 10 Channels FACIT
4070 Tape punch (ASC 11) CLARY
$35 / 3220 / 326410$ columns, $21 / 2^{\prime}$
wide paper. 0.55 print cycle.
interface for 3240 only
Distortion Systems
RADFORD
DMS2 $10 \mathrm{~Hz}-100 \mathrm{KHz}$ meter
D02 $10 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ Oscillator
Function Generators
ADVANCE
J4. $10 \mathrm{~Hz}-100 \mathrm{kHz} .10 \mathrm{~V}$ r.m.s.
output Sine/Square Wave
HEWLETT PACKARD
$33100.0005 \mathrm{~Hz}-5 \mathrm{MHz}$. Multi-Mode $10 \mathrm{~V} / 50 \Omega$ sine, square, triangular INTER-STATE
ELECTRONICS
F51A Multi-Mode. + and -offset: 0.0005 Hz to $10 \mathrm{MHz}, 10 / 15 \mathrm{~V} / 50 \Omega$ F55A Multi-Mode, $0.0005 \mathrm{~Hz} \cdot 10$ $\mathrm{MHz} .10 \mathrm{~V} / 50 \Omega$. Ext. VGC. Burs O/P up to 100k bursts/sec
PHILIPS
PM5127. 0. $1 \mathrm{~Hz}-1 \mathrm{MHz}$ Sine Square/Triangular/Pulse outputs. External sweep facility 30 Vp . p max output
Logic Analysers
HEWLETT PACKARD
1601L. Logic state analyser
12 channel display
Mains Monitors
AMPROBE
LAV3X. Mains voltage recorder
RUSTRAK
$288+$ CT Clamp on AC recording ammeter
Modulation Meters AIRMEC
2101.300 MHz . AM/FM 4093.1500 MHz . AM/FM MARCONI

AVO
MKIII AC/DC V.AC/DC Amps
OHMS
Oscilloscopes
ADVANCE
OS 1000 A DC $\cdot 20 \mathrm{MHz}$. dual trace $\quad 310$
DYNAMCO
D7100. DC- 30 MHz 2 channel
delayed timebase. Sensitivity $10 \mathrm{mV} \quad 375$
HEWLETT PACKARD
1703A Storage 1000Div/ms.
DC- 35 MHz . Dual trace Mains/Ext
$1707 \mathrm{~B} / 020 \mathrm{DC} .75 \mathrm{MHz}$. Dual trace
Dual Time Base.
1707B/012 As 1707B/020 with
internal Battery fitted
1814 Siorae 1000 Div/ms
DC. 100 MHz Main frame only PHILIPS
PM3226. DC-15 MHz. dual trace 2 mV sensitivity
PM3233. DC -10 MHz . true dual
beam 2 mV sensitivity
PM3410. DC-1GHz. Sampling oscilloscope
TEKTRONIX
$535 \mathrm{~A} / 1 \mathrm{~A} 1$, DC-15 MHz. dual trace 5 mV sensitivity. Delayed timebase 556/1A1. True dual beam.
DC- 50 MMz . Can display 2 separate
signals at different sweep rates.
$545 \mathrm{~A} / 1 \mathrm{AI}$. DC- 30 MHz . dual trace.
Delayed timebase

		MARCONI SAUNDERS			
585A/82. DC -80 MHz . dual trace 10 mV sensitivity	525	$646010 \mathrm{MHz}-40 \mathrm{GHz}$ (Depending on		30183 Pen Potentiometric. $1 \mathrm{~cm} / \mathrm{s}$ -	
$547 / 1 \mathrm{AT}$. DC. 50 MHz : dual trace	525	Head	300	$1 \mathrm{~cm} / 6 \mathrm{~min}$. Ranges $25 \mathrm{mV} / 10 \mathrm{mV}$.	
DTB	525	$642010 \mathrm{MHz}-12.4 \mathrm{GHz} 10 \mathrm{mw}$	75	12V DC power supply required.	250
$547 / 1144$. DC-50 MHz. four trace		$642110 \mathrm{MHz}-12.4 \mathrm{GHz} 100 \mathrm{mw}$	75	FERROGRAPH	
DTB	625	642210 MHz -12.4 GHz 1 mw 642826.5 .40 GHz 10 mw	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	RTS2. Recorder test set. Wow and	
7704A DC-200 MHz. CRT Readout.			50	flutter elc.	275
Mainframe for 4 Plug-in	1200	Power Supplies		HEWLETT PACKARD	
TELEQUIPMENT D53. DC-15 MHz. dual trace		APT	40	680M. 5 inch. Stripchart Single Pen 5 mV -120V I/P $20 \mathrm{~cm} / \mathrm{min} 2.5 \mathrm{~cm} / \mathrm{Mr}$	295
10 mV sensitivity	225	KSM		RACAL	
D53A. DC- 25 MHz . dual trace.		MV601. 0-60V, 1A. Constant voltage		Store 4. Uses $1 / 4$ inch magnetic	
10 mV sensitivity with C-2 plug-in		or current	40	tape. Will record 4 F.M. channels.	
DC-15 MHz with JD plug-in	250	ROBAND		Operates at 7 different speeds.	1950
D34 DC-15 MHz dual trace		T101. 50 V . 1A. Variable	15	SMITHS INDUSTRIES	
Batt/Mains Portable	450	SOLARTRON		RE501.20 Single Pen 10 mV -10	
Oscilloscope Plug-ins		As 751. 50V. 1A. Variable	15	FSD. Battery Operated XY and Strip	
TEKTRONIX		STARTRONIC		Chart	220
Type R. Transistor R.T. tester. Pulse rate 120 pulses $/ \mathrm{sec}$. R.T. Less than		117, 20V. 0.5A. Variable iwin	30	RE541.20 Single Pen. 0.5 mV -100V FSD. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour	350
$5 \mathrm{~m} \mu \mathrm{~s}$ Type L. DC- 20 MHz .5 mV sensitivity	100	DB ELECTRONICS		RE571.20 2 Pen. 200μ V-100V FSD. $8^{\prime \prime}$ Chart. $3.60 \mathrm{~cm} / \mathrm{min}$ and hour	525
fast rise time amplifier	30	150. I.C. pulse generator	50	SOUTHERN INSTRUMENTS	
Type G. Differential amplifier. 100:1		EH RESEARCH		10.100. 6 channel U.V. 5-1000	
CMR DC. 20 MHz .50 mV sensitivity	50	120D. 100 Hz -10 MHz $20 \mathrm{~V} / 50 \mathrm{R}$		$\mathrm{mm} / \mathrm{sec}$	250
Plug-ins for 500 series		RT ins	100	M1330. 10 channel U.V. 5-2500	
1 A1 dual trace Plug-in DC-50 MHz	225	122. $1 \mathrm{KHz}-200 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$		$\mathrm{mm} / \mathrm{sec}$	325
1 122 dual trace Plug-in DC-50 MHz	180	RT 12ns	220	Selection of Galvonometers	
1 A 4 four trace Plug-in DC-50 MHz	375	1391L). $10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} / 50 \Omega$		available at £15.00 each.	
1 145 Differential Plug-in	175	RT 5ns	175	YOKOGAWA	
2 Differentlal Plug-in	140	1221. Timing Unit 6 Channel		3046. 10 inch Chari Single Pen. 0.5	
81 Adaptor Plug-in 1A Series to 580		$0.10 \mathrm{MHz} 5 \mathrm{~V} / 50 \Omega$ RT 8 ns	50	3046. 10 inch Chari Single Pen. 0.5	
Series	75	G710. $5 \mathrm{~V} / 50 \mathrm{~S}$ 30 $\mathrm{Mz}-50 \mathrm{MHz}$ RT 5 ns	100		$\begin{aligned} & 350 \\ & 425 \end{aligned}$
TELEQUIPMENT		132 AL . $50 \mathrm{~V} / 50 \Omega 5 \mathrm{~Hz}-3 \mathrm{MHz}$		Sígnal Sources and	
DM64 Storage 250 Divs/ms.		RT 12ns	175	Signai Sources and	
DC- 10 MHz Dual trace.	400	HEWLETT PACKARD		Generators	
D67 DC-25 MHz. Dual trace. Dual		214A 100V/50s. Double pulse O/P.		ADVANCE	
Time Base. TV sync.	325	W50ns-10ms. $10 \mathrm{Hz-1} \mathrm{MHz} .15 \mathrm{~ns}$ RT	350	638. FM/AM 5-200 MHz	130
D75 DC-50 MHz. Dual trace. Dual		PHILIPS		HEWLETT PACKARD	
Time Base.	600	PM5705. $0.1 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$. Typical RT		200 CD .5 Hz 600 kHz O/P 10 V RMS	75
D83 DC-50 MHz. Dual trace. Large $61 / 2^{\prime \prime}$ CRT. Dual Time Base	650	6ns Output 1-15V	225	$20405 \mathrm{~Hz}-1.2 \mathrm{MHz} .600 \Omega .80 \mathrm{~dB}$ att.	
Oscilloscopes istora	650	PM5776 3V/50N. $1 \mathrm{~Hz}-100 \mathrm{Mz}$.		O/P 5V RMS	150
TEKTRONIX		Rise/fall Times less than Ins.	275	204D/001 As for 2040 (Battery	175
$549 / 1 \mathrm{A1}$. DC- 30 MHz .5 mV		Recorders and Signal		608 E .10 .480 MHz AM	410
sensitivity. Dual trace. Storage		Conditioning Equipment		618C. $3 \cdot 8 \cdot 7.6 \mathrm{GHz}$ FM	1600
scope, Writing speed: $5 \mathrm{~cm} / \mu \mathrm{s}$ with		AMPEX		MARCONI	
enhancement. Includes trolley	675	PR2200 Instrumentation Recorder		TF791. FM Deviation Meter	
564/3A74/3B4. DC-2MHz, four		up 1016 channels. FM/DR. Record		$4-1024 \mathrm{MHz}$	95
channel. 20 mV sensitivity. Writing		replay all speeds. 1' tape FM/DR		TF801/D1. 10-470 MHz AM. FM.	255
speed up to $500 \mathrm{~cm} / \mathrm{ms}$	650	I.R.I.G. DC-40 kHz FM. 100 Hz -		TF995A $12.1 .5-220 \mathrm{MHz} \mathrm{AM}. \mathrm{FM}$.	350
$564 \mathrm{~B} / 3 \mathrm{~A} 6 / 2 \mathrm{B67}$. DC-10 MHz . Dual		300 kHz DR	6500	TF995B/5. 2-220 MHz AM. FM.	475
trace 10 mV sensitlvity, split screen		BRUNO WOELKE		TF2005A. Two tone $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$	200
storage oscilloscope	750	ME102B. Wow and flutter meter	75	PHILIPS	
Phase Meter		ME 102C. Wow and flutter meter	90	PM5326. $100 \mathrm{kHz}-125 \mathrm{MHz}$. Digital	
DRANETZ		BRUEL \& KJAER		display of frequency. AM. FM.	
$301 \mathrm{~A} 5 \mathrm{~Hz}-500 \mathrm{kHz} .2$ in $100 \mathrm{k} \Omega$.		2305B Bench type. Mains operated.		Sweep facility for I.F. measurements	525
Accuracy $\pm 1^{\circ}$ to $\pm 2^{\circ}$. Analogue		Log recording of AC: $2 \mathrm{~Hz}-200 \mathrm{kHz}$		PM6456. FM Stereo generator.	
O/P	400	and DC. 50 or 100 mm paper width.	750	RF output 100 MHz	175

ROHDE \& SCHWARZ SWOB $11.0 .5 \cdot 1200 \mathrm{MHz}$. 50Ω SCHAFFNER

- NSG101 Mains Interference Simulator. Superimposes Pulses on mains for testing immunity of
equipment to interference. Pulse amplitude: $\pm 800 \mathrm{~V}$. Rise Time $0.25 \mu \mathrm{~s}$. Width 50 \& $200 \mu \mathrm{~s}$
NSG330 Ignition Interference Attachment

TEXSCAN

$9900.10 \cdot 300 \mathrm{MHz}$. Sweep generator with CRT display
Spectrum Analysers NELSON ROSS
011. DC-20 kHz. 80 dB dynamic range. Dispersion: $100 \mathrm{~Hz}_{\mathrm{z}}-6 \mathrm{kHz}$ $022 . \mathrm{DC}-100 \mathrm{kHz}$. Dynamic range 60 dB fits into various 500 series CRO's
TEKTRCNIX
3L5. Plug in unit fits into various 500 B series CRO's. $50 \mathrm{~Hz}-1 \mathrm{MHz}$
Greater than 60 dB dynamic range
1L20. Plug-in fits various 500 series
CRO's $10 \mathrm{MHz}_{2}-4.2 \mathrm{GHz}$. 40 CB
dynamic range
Sweep Generators
HEWLETT PACKARD
8690B Mainframe. Int/Ext AM. Ext FM
$9693 \mathrm{~B} / 100$ 3.7.8.3 GMz. 5 mW . PIN
levelled ' N ' connectors
$8699 \mathrm{~B} / 100$ 0.: $\cdot 4 \mathrm{GHz} .6 \mathrm{~mW}$. 120 mW to 2 GHz). PIN levelled. ' N '
connectors
T.V. Test Equipment

PHILIPS

PM5508B Pattern Generator. 625
lines PAL. UK Systems
Vibration
DAWE
1461. CV(M) Portable Vibration

Analyser Kit
Voltmeters-Ànalogue
BRADLEY
CT47IC. AC/DC/ $\Omega /$ /current multimeter and RF
HEWLETT PACKARD
427A. AC/DC/8 multimeter
$3406 \mathrm{~A} .10 \mathrm{kHz}-1.2 \mathrm{GHz}$
LINSTEAD
M2B. DC/AC 10 Mz .500 kHz
MARCONI
TF2603. AC voltmeter to 1.5 GH 300
PHILIPS
PM24548 1 mV - $300 \mathrm{~V} .10 \mathrm{~Hz}-12 \mathrm{MHz}$ Z in 19Ms. DC O/P.

FARNELL
DM1318. 1999 FSD AC/DC/ $\Omega /$
FLUKE
8000A 1999 FSO.
AC/DC/OHMS/Current 11
HEWLETT PACKARD
34740 A/34702A 9999
FSD.AC/DC/OHMS
SOLARTRON
LM1420.2. 2300 FSD DC only 0.05\%
LM 1420.2 BA . 2300 FSD AC
True RMS/DC
A200.19999 FSD DC only
A203. 19999 FSD AC/OC/I2.
Sensitivity: $(1 \mu \vee D C, 10 \mu \vee A C$
$100 \mathrm{~m} \Omega$ resistance)
A243. 119999 FSD AC/DC/ת
Sensitivity: $(1 \mu \vee D C, 10 \mu \vee A C$.
$10 \mathrm{~m} \Omega$ resistance)
7045. 19999 Auto AC/DC/R
7050.99999 Auto AC/DC/?

Wave Analysers
HEWLETT PACKARD
$302 \mathrm{~A} .20 \mathrm{~Hz}-50 \mathrm{kHz} 75 \mathrm{~dB}$ range
MARCONI
TF2330 $20 \mathrm{~Hz}-50 \mathrm{kHz}$. Selective
Range ± 3.5 to 80 Hz . Dynamic
range 75 dB .
A $32120 \mathrm{~Hz}-20 \mathrm{KHz}$ Sens 75 dB

Carston

Carston Electronics Limited

Shirley House. 27 Camden Road. London NW1 9NR. Telex: 23920 Contact David Kennedy
or Noel Jennings

WW-062 FOR FURTHER DETAILS

Hameg the mame for quality, performance and value in DSCILLDSCDPES. Advanced design optimising the use of both integrated eircuits and discrete components ensures reliability.

Just a glance at the specifieation chart will make you want to know more.

HM 307
Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester
HM 312 Dual Trace DC- $20 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display
£250
HM 412
Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep Delay
£350
HM 512
Dual Trace DC-50 MHz, $5 \mathrm{mV} / \mathrm{cm}$
Sweep Speeds $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$ plus Sweep Delay
HM 812
Dual Trace DC - $50 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$
$20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$, Sweep Delay and Storage
£1325

We may be a new name to you, but each imstrument is backed by over 21 years experience in oscilloscopes.

Distributed by
Electronic Brokers
49/53 Pancras Road
London NW1 20B
Tel. 01-837 7781

All prices UK list exc. VAT.
 Order as Wr
Price 58.17
ANTI-STATIC MAT © GUN discs while they are Tumtable plaving. $\times 10 \mathrm{~L}$ price $\mathrm{c}_{3} .19$ Order as $\mathbf{G u}$ removes slatic charge from discs. Ather use dust no Gun removes slatic charge hom discs atil longer dings and may EXOAE Price $\mathbf{6} .90$
Order as
Order as LXOKENZIE PUWER SPLAKERS MCKENZIE POWER SPEAKERS
High quality, high power speakers. High qualty, hing pow as XO79L
12 in . 50 W \&r 12in. P £ $£ 18.20$ 12 in . $50 \mathrm{~W} 16 \Omega$ Order as $\times 0808$ Price $£ 18.20$ 12 in . $80 \mathrm{~W} 8 \Omega$ Order as $\times 2010$
Prics 526.92 12 in. 80 W 160 Order as $\times 0020$ Price 576.92 15in. 150 W B Order as K083E Price 556.80

三沛 \Longrightarrow an ELECTRET MICROPHONES Super quatity genuine electret microp on 1.5 V battery 1 HP7 Yypet supplied. Cassette type with price 93.84
Order as YB33L Price EJ. . OmndirectionaM Price $\mathbf{5 3 . 5 4}$
Ordes as YB3aM Price 63 . 6 . Undirectional 600 Price 99.45
Oider as YB350 $6005.150 \mathrm{k} \Omega$ dual with slandard jack plug lpicturedi.
pilug (picturedi.
Order as WF3MM Pice $£ 16.71$

DEMAGNETISER

Thise head demagnetuser with curved probe ideal for Tape head demagneuser wis this due to permanently cassette lape heads. Amarno fow price. magne tised heads. Price $£ 4.15$
tupntables Autochanger complete with stereo ceramic cartidge and cucuit to make a complete low costan.
player ideal for the
Order as X000a Price $£ 18.48$. Single-play rim-drive tumatern
catridge. Order as X823A Price $[23.49$. Single play telt-dive

Fits flexibly

 into your system. micro-processor Heart of the KGM C700 is a micro-processor powerful enough for really fast text movement. Card expansion space allows for extra memory up to 64 K .High performance display
High definition scan coil and dy namic focussing give exceptionally clear display on the 12 " screen. A character generator offers 80×24 characters in 10 to $48 \mathrm{pt}-$ KGM designed to match the display performance.

Keyboard choice

Specify a 128 character computer keyboard, a selective format text editing keyboard, or a separate plug-in numeric pad - all planned for easy use.

Henfo ELECTRONICS

SCOTCH STORAGE MODULE THE MEMORYSAFE.

When you entrust your records to a disk storage and retrieval system, you need to be sure that they're safe. And the best insurance you can have is a Scotch Storage Module.

Because built-in to every Scotch Storage Module is all the experience of magnetic coating technology which is why 3 M are known as the Magnetic Media Specialists. Like the unique 'Crashguard' binder formulation, which protects you from data checks, damaged disks and heads, downtime and data loss.

Use the 3M Minicomputer Media Service for all your media supply needs. You can order from us direct, or from our network of local distributors.

Find out more. Phone or write to:
The Minicomputer Media Service, 3M United Kingdom Limited, FREEPOST, Bracknell, Berkshire, RG12 1BR. Te:: Bracknell (0344) 58502.

WW - 075 FOR FURTMER DETAILS

FROM PHILI IPS
Input odvertisements to met the are designed to meersional customilips Test a chonging the dow you. the coupon and attoch it to needs of our shop window for and we will be chacts to show, tick the coupon and reader inquiry servents. They are a shop inuments. and a lot of produch a product. Use the journol's reeific requirement Measurng because we holl information or, of course, use reflecting your specr. frequently you require fuli inl letterheas information pock

The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters - and still it remains in a class of its own.
Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240 , which a $31 / 2$ digit meter would read.

Some other PM 2517 plus points: - LED or LCD display

- True RMS readings of AC voltage and current
Autoranging with manual override - Optional accessories include temperature and data hold probes

Reader inquiry number 220

GREAT COUNTERS MYSTERY

Philips engineers have encountered the same reaction from customers and competitors alike when showin": off the new microcomputer controlled PM 6667 (120 MHz) and PM 6668 (IGHz) frequency counters: ' 'How do they do it for the price?". Here's a brief summary of what the counters offer.

- Reciprocal frequency counting (for higher resolution without \pm I cycle error)
- Auto-triggering on all waveforms

Reader inquiry number $\mathbf{2 2 2}$

Test \& Measuring Instruments

- High contrast liquid crystal display - Self diagnostic routine - High stability TCXD: $10.7 /$ month

- Auto triggering from either channel with adjustable level between peaks and TV triggering
- 5 m '/ sensitivity, Y and X (via A input) - B invert facility

Reader inquiry number 221

Both these instruments are avaliable off the shelf from the Philips Electronic Instruments Department (see address below) or from the following distributors. British Tungsram, West Road Tollenham, LOndon N17 ORN Tel: O1-808.4884, Philips Service Centres (25 throughout the country). Tel: $01.686-0505$ for the address of your nearest branch. Wessex Electronics Ltd, 114.116 North Street, Downend, Bristol BSI6 SSE. Tel. (0272) 571404.
inquiry no
PM 2517 multimeter 220
PM 3207 oscilloscope PM 6667/8 counter

WW - 038 FOR FURTHER DETAILS

19" Rack Mounting Type 13A/4SW/R £16.80. P\&P £1 + VAT.

Low cost ultra violet eprom erasing lamp will erase up to 12 chips at one time.
PRICE 995.00 + VAT

Instant Trunking System for Wall or Bench Mounting

COMPLETE WITH GFT CABLE AND 13-AMP FUSED PLUG.

4 sockets 13A
6 sockets 13A
4 sackets 13A switched
6 sockets $13 A$ switched
+ Post £1 + VAT

TR6 - 6 sockets switched $£ 21.50$
TR9 - 9 sockets switched $£ 25.50$ Plus P\&P E2 + VAT

MAINS

 ISOLATING UNITThe Olson mains isolating unit is an essential bench item for safety when testing and repairing mainsoperated equipment. The isolating transformer has an earthed screen and is rated 250VA.
$£ 38+P \& P £ 2+V A T$

OLSON ELECTRONICS LTD., FACTORY NO. 8, 5.7 LONG ST., LONDON E2 8 HJ TEL. 01-739 2343

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten.
But it's fundamental to the very existence of communications recording to be able to replay a selected portion of tape to find out what was said by who, to whom ... and when And 'when' can be vital.

Equally vital, particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty - and without time-consuming multiple knob-twiddling aided by guesswork.

Racal Recorders has recognized this need and produced TIMESEARCH - designed specifically for its ICR range of multi-channel communications recorders - and providing just these facilities.

TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time.

In communications recording, the future becomes the present; the present becomes the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.

The MSI System 12 computer system combines the popular MSI 6800 processor ... complete with 56 K of memory ... the MSI FD-8 QUAD floppy disk system, and the new MSI HD-8/R 10 megabyte fixed/removable hard disksystem in one compact desk unit.

Ideal for business applications, the MSI System 12 gives you a large capaciry hard disk for mass storage, and a floppy disk system for program loading, backup, software updates and exchanges. System 12 will use MSIDOS, SDOS or FLEX operating systems. A variety of programs is available including Multi-User BASIC and a complere Management/Accounting package

Complete with industry standard CRT and high speed printer, the MSI System 12 is one of the most powerful microcompurer systems available.

STRUMECH
 PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS, WEST MIDLANDS.

Quantum Electronics

NEW PRODUCTS - NEW PRODUCTS
Our product range for the 80 s is outlined but it is impossible to cover everything in such a small space. For detailed information and a price list send a large SAE or a dollar bill

PRE-AMP \& POWER AMP KITS

The pre-amp is now available in kit form in versions to suit any cartridge and consists of the module C1 (below) and the hardware kit HK1. No soldering is involved and assembly takes about 20 mins. There are six power amp kits, four mono and two stereo, trom 45 to 260 W an ease of construction similar to module based kits at lower cost. There are also mains supply kits to enable independent use of the pre-amp, which is normally powered via our power amp. Similar equipment is also available ready-buits from us or via our dealers
$\mathrm{C} 1+\mathrm{HK1} \quad \mathrm{E} 68.70 \quad$ P2 (stereo 45 W per channel) kit \quad E87.28

MOVING-COIL \& PRE-AMP MODULES

C1 (C1mc)

MC1
Previously restricted to trade and export, the C1 pre-amp module is now available separately in 3 versions to match any cartridge. It has unbeatable specifications, caters for disc, d.c. The new moving coil pre-pre-amp achieves low thd high overload good r. 18 rejection and good noise performance without resorting to the expensive multiple transistor design. Only tantalum capacitors and metal oxide resistors are used in the signal path and it can be powered either via the Cl or by a battery. Hardware kits are available to build both types and they are also available ready-buit. MC1 Module: $£ 22.25 \quad$ C1 Module: $£ 49.50 \quad$ C1me $£ 51.75$

POWER AMP MODULES AND SUPPLIES

The power amp modules are now also available to retail customers in a variety of powers and formats up to $260 \mathrm{~W} . \mathrm{m} . \mathrm{s}$. They use the same high performance circuitry as the kits above, giving t.h.d. below. 01% at 1 kHz , but are capable of sustained high level use with excellent reliability. There are power supplies for use with any one or two of these modules, all of medium duty 150 W r.m.s. type, the M1508, which requires the MS3 supply medium duty 150 W r.m.s. type. the M1508, which requires the MS3 supply

$$
\text { M1508: } £ 35.79
$$

MS3: $£ 26.28$
Exports: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All equipment can be wired for 110 V mains.

1A STAMFORD STREET, LEICESTER. Tel. 546198
OX DISCO, BOX 123 CLAYMONT, DE 19703, U.S.A. Tel, 1-302-798-7932 MINITELEPRODUCTOR, BOX 12035, S-750 12. UPPSALA 12. SWEDEN L.A.B. (A.P.S.), VANDKUNSTEN 4, dK 1467 , COPENHAGEN, DENMARK.

The Thinking Cap

Now you can measure, sort and check capacitance in less time, with more accuracy.

The new 3001 Digital Capacitance Meter is yet another superb instrument from C. S C Designed specifically for professional laboratories, test and production benches, it offers outstanding accuracy with features and accessories to match All in a well designed, rugged unit for only $£ 155^{*}$

As usual, we continued where everyone else left off. Behind the $3^{1 ⁄ 2}$-digit LED display is a unique Dual Threshold circuit that gives an accuracy of 0.1% of the reading $(0.5 \%$ in the iwo highest ranges). Other features include nine overlapping ranges, up to 0.1999 F , with down to 1 pF resolution, automatic over and under-range indications, and the 3001 isn it fooled by dielectric absorption. Once the range is selected, measurement is speedy - less than half a second!

Our back panel I as more facilities too. An easy interface for remote display. sorting arid control accessories, and, to eliminate battery problems an AC mains input.

A great deal of thought has been put into the accessories which include a production test fixiure, a Limits Unit, a variety of test cahles, and an exiremely comprehensive manual covering not only measurement on capacitors but also applicatıons to testing other types of components and even cables

The 3001 Digital Capacitance Meter. The only one worth thinking about.

Tomorrows tools for todays problems

CONTINENTAL SPECIALTIES CORPORATION
\square
C.S.C. (UK) Limited,

Dept 7FF, Unit 1 Shire Hill Industrial Estate. Saftron Walden. Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682 Telex: 817477

Britain's first com

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.
The Sinclair ZX80 changes all that. For just ¿79.95 you get ezerything you need to build a personal computer at home .. PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television; everything!
And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The $\mathrm{ZX80}$ is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power statian.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source ${ }^{\text {* }}$ and you're ready to go

Your $\mathbf{Z X 8 0}$ kit contains...

- Printed circuil hoard, with IC: sockets fur ail ICs.
- Complete components set, including all ICs - all manufactured be selected worldleading suppliers
- New rugyed Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- I.cads and plugs for connection to any portable cassette recorder (to store
programs and domestic "IV (to act as VI)U
- FREI: course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at $9 \mathrm{I}^{\prime} 1 \mathrm{X}$: nominal unregulated (available separately - see coupon
- Additional memory expansion hoard plugs in to take up to 3 K bytes extra RAM chips. Chips also available see coupon.
 adaptor. Availahle from Sinclair if desired see coupon

Two unique and

valuable components of the

Sinclair $\mathbf{Z} \times 80$.

The Sinclair 7×80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX 80 nas iwo uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.
The unique Sinclair BASIC interpreter. offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the ZX80 eliminates a greal deal of tiresome typing. Key liminates a great deal of tiresome typing. Key singie-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $/ \times 80$ also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Integer names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomisc function, useful for games and secret codes, as well as more serious applications.
- Timer under program control
- PEEK and POKE enable entry of machine code instructions, USR causes iump to a user's machine language sub-routine.
- High-resolution graphics
with 22 standard graphic symbols.
- All characters printable in reverse under program control.

.. and the Sinclair teach-yourself

BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry They"re all explained in the specially-written 96 -page book frec with every kit! The book makes learning casy, exciting and enjovable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately - purchase price refunded if you buy a $\mathbf{Z X} 80$ later.)

Fewer chips,

compact design,

 volume production more power per pound!The 7×80 owes is remarkatle low price to its remarkable design: the whole system is packed onto fewer, newer, more powerful and advanced I.SI chips. A single SUPIRR ROM, for instance, contains the BASIC interpreter, the charaoter set, opecrating system, and monitor. And the $\% \times 80^{\prime}$'s 1 K bytc RAM is roughly equivalent to 4 K bytes in a conventional computer, because the $\% \times 80$ brilliant design packs the RAM so much more tightly. (Key words, for instance, occupy ust a single byte.)
To all that, add volume production - and vou've that rare thing: a price breakthrough that really is a breakthrough.

The Sinclair ZX80. Kit: $£ 79.95$. Assembled: $£ 99.95$. Complete!
The ZX80 kit costs a mere $\mathbb{1} 79.95$. Can't wait to have a 2 X 80 up and running? No oroblem! lt's also available, ready assembled, or only $199,95$.
Whether you choose the kit or the readynade, you can be sure of world-famous sinclas technology - and years of satisfying use. Science of Cambridge Ltd is one of the Sinclai companies owned and run by Clive Sinclair. To order, complese the coupon, and post to Science of Cambridge for delivery within 28 days. Return as received within 14 days for full money refund if not completely satisfied.

cience of Cambridge Ltd
Kings Parade, Cambridge, Cambs., CB2 ISN el: 0223.311488.

Order Form

To: Science of Cambridge Lid, 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Remember: all prices shown includs VAT, postage and packing. No hidden extras.
Please send me:

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britains leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.
Resistance Boxes
Resistance Bridges Resistance Bridges Resistance Standard
D.C. Potentiometers D.C. Potentiometers Thermocouple Reference
lunctions
Thermocouple Switches P4 100 Switches \quad Fluxmeters
D.C. Null Detectors Digital Temperature Indicators Electronic Standard Cell Multimeters. Digital or Analogue Wultmeters. Digital or Analogue Insulation Test Sets And many more
Cropico - Britains leading manufacturer, exporter and importer of precision electrical measuring equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road, Croydon CR9 2RU
Telephone: 01-684 4025 and 4094
Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 9 is probably the disc stage. The overload margin is a superb 40 dB , this together with the high slewing rate ensures clean top, even with high output cartridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual
design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV : distortion design. R.I.A.A is accurate to 1 dB ;
$<.005 \%$ at 30 dB overload 20 kHz .

Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp signal levels. Signal to noise ratio 86 dB ; slew-rate $3 \mathrm{~V} / \mathrm{US}$; T.H.O. $20 \mathrm{~Hz}-20 \mathrm{kHz}<00 \mathrm{~B} \%$ a any level.
F.E.T. muring. No controls are fitted. There is no proviston for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.
MC 1 - PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This module brings signals from the now popular low output moving-coil cartridges up to 3.5 mV (typical signal required by most pre-amp dis
inpuis). Can be powered from a 9 V battery or from our REG \{ regulator board.

X02:X03 - ACTIVE CROSSOVERS. XO2 - two way, XO3 - three way. Slope 24 dB / octave. Crossover poin1s set to order within 10%.

REG 1 - POWER SUPPLY. The regulator module, REG 1 provides 15.0 .15 v to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it.

POWER AMPLIFIERS. It would be pointless to list in so small a space the number of recording studios, educational and government establishments, etc., who have been using CRIMSON prices. The power amp is available in five types, they all have the same specification. T.H.D. typically $.01 \%$ any power 1 kHz B ohms. T.I.D. insignificant, slew rate limit $25 \mathrm{~V} / \mathrm{uS}$ signal to noise ratio 110 dB ; tiequency response $10 \mathrm{~Hz}^{2} \cdot 35 \mathrm{kHz}$. $-3 \mathrm{d8}$; stability unconditional, protection drives any load safely; sensitivity 775 mV (250 mV or 100 mV on request). size $120 \times 80-25 \mathrm{~mm}$
POWER SUPPLIES. We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capacitors/bridge rectifier).

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours

PRE-AMP KIT

This includes all metalwork, pots, knobs, etc., to make a complete pre-amp with the CPR1(S) module and the MC1(S) module if required.

CRIMSON ELEKTRIK

IA STAMFORD STREET, LEICESTER LEI GNL. Tel. (0533) 553508 U.K. - Plesee allow up to 21 day for delivery

All prices shown are UK only and include VAI and post. COO 90p extra. ©100 lemit. Export is no problem, please writ for specific quote Send large SAE or 3 International Reply Coupons for detalled information.
Dispriburas Oown He. Fl $\&$ Video Cente. 66 Abbey Street, Bangor, N. Ireland. Badger Sound Services Lid.. 48 wood

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 WW - 047 FOR FURTHER DETAILS

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560

CAMBRIDGE

 Self LEARNING ENTERPRISES
Instruction

 CoursesMicrocomputers are coming - ride the wave! Learn to program. Millions of jobs are threatened but millions more will be created. Learn BASIC- the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problemn definition, flowcharting, coding the program, debugging, clear documentation.
Book1 Computers and what they do well; READ, DATA, PRINT, powers, brackets, variable names; LET; errors; coding simple programs.
Book 2 High and low level languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TQ; limitations of computers, problemn definition.
Book 3 Compilers and interpreters; loops, FOR....NEXT, RESTORE; debugging; artays; bubble sorting; TAB
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples; glossary.

Understand Digital Electronics

Written for the student or enthusiast, this course is packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits and finally to an understanding of the design and operation of calculators and
 computers.
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR. NAND, NOR and exclusive NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic. Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and ALU's; multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring. Johnson and exclusive-OR feedback counters; ROMS and RAMS.
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding.
Book. 6 CPU ; memory organisation; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming,

assemblers computers' executive proprams' onerating sustems.

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.
Please send me:-
...Computer Programming In BASIC (4 books) @ £7.50
Design of Digital Systems (6 books) @ £11.50
All prices include worldwide surface mailing costs (airmail extra) IF YOUR ORDER EXCEEDS £15, DEDUCT £2
I enclose a cheque/PO payable to Cambridge Learning Enterprlses for $£$.
or please charge my Access/Barclaycard
account no.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc Eire) send a bank draft in sterling drawn on a London bank, or quote credit card and number.
Name .
Address

Cambridge Learning Enterprises, Unit 38, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE1 7 4BR, England.

The New FM/AM 1000s with SpectrumAnalyser-we call it the SUPER-S
A portable. communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

COMBIWRAP
 A high precision, low cost hand tool which performs three functions

The Vero Systems' Combiwrap is designed to strip the insulation from 30AWG wire wrapping wire and make a 'modified wrap' joint onto a miniwrap terminal.

To remove a wrapped joint, simply use the tool in an anti-clockwise direction and the wire will be unwrapped with ease and without damage to the terminal.

SPECIFICATION
Wire Size: 30AWG
$(0.25 \mathrm{~mm})$
Post Size: Any Miniwrap terminal eg
$0.025^{\prime \prime} \times 0.025^{\prime \prime}(0.6 \times$
0.6 mm)

Strip length: $1.0^{\prime \prime}(25,4 \mathrm{~mm})$
Modified wrap - a wrap having 1 - $11 / 2$
turns of insulation wrapped around the terminal for additional mechanical stabllity.
Order Code: 163-28300A
Price: $\mathbf{E 5 . 6 0}$ p including post and packing and VAT
VEROSYSTETS
VERO SYSTEMS (ELECTRONIC) LIMITED 362, SPRING ROAD, SOUTHAMPTON, HANTS, SO9 5QJ Telephone: (0703) 440611 Telex: 477164 WW - 063 FOR FURTHER DETAILS

WW - 057 FOR FURTHER DETAILS

\oplus
 TRIO

 TEST

 TEST INSTRUMENTS

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS 183030 MHz + Sweep Delay

The CS 1830 is a completely new 30 MHz dual trace oscilloscope employing a square format, internal graticle, PDA tube for accurate bright display. A new feature is the inclusion of calibrated sweep delay with a range of $1 \mu \mathrm{~S}-100 \mathrm{mS}$ and trace bright up to show the delay position. As you can see from close study of the photograph, the CS1830 has all the facilities you could require in a high performance instrument but for more detail, simply ask us for a comprehensive leaflet.
Brief specification
Rectangular PDA tube $120 \times 96 \mathrm{~mm}$. P31 phosphor.
Bandwidth DC -30 MHz
Overshoot less than 3\%
Sensitivity $5 \mathrm{mV} / \mathrm{cm}(30 \mathrm{MHz}) \quad$ Sweep time $200 \mathrm{~ns} / \mathrm{cm}-0.5 \mathrm{~s} / \mathrm{cm}$
$2 \mathrm{mV} / \mathrm{cm}(20 \mathrm{MHz})$
Input R.C. $1 \mathrm{M} / 23 \mathrm{pF}$
Linearity better than 3\%
Risetime 11.7 ns
Trig. bandwidth $D C-30 \mathrm{MHz}$
CS1830 only $£ 455$ + VAT includes 2 probes

THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS 1572
The CS1572 is a dual trace 30 MHz oscilloscope designed for the video tape recorder engineer. Video delayed sweep facilities are provided to allow magnification and analysis of any point in a single video frame together with separation of video odd and even fields. A truly unique tool for anyone concerned with video measurements as well as a top specification dual trace wide band oscilloscope for general lab use. The complete range of video facilities is too great to explain in a sma!l advertisement so why not call us and ask for the full story on the CS 1572.
Brief Specification
As for CS 1830 except that the sweep delay feature is replaced by comprehensive video sweep delay facilities which allow complete analysis of video wave forms and VTR alignment.

CS 1572 only $£ 425+$ VAT, includes 2 probes

THE CS 157730 MHz at 2 mV + Signal Delay
The most popular scope in the range
The CS 1577 is, without doubt. our most popular oscilloscope and hundreds of satisfied users in all sections of the electronics industry will confirm this. The CS 1577 combines a wide bandwidth $\mathrm{DC}-30 \mathrm{MHz}$ performance with extremely wide trigger bandwidth (DC- 40 MHz) and 2 mV sensitivity over the full bandwidth.
Fixed signal delay is provided by a helix delay line which allows viewing of the leading adges of fast pulses for accurate rise time measurement, and the 130 mm PDA tube gives a bright, stable trace even at the highest sweep speeds $120 \mathrm{nS} / \mathrm{cm}$ using $\times 5$ expansion). Good triggering, even at low levels has always been an outstanding feature of Trio oscilloscopes and the CS 1577 demonstrates this to perfection. Triggering, as in the other 30 MHz instruments can be from CH 1 or CH 2 or can be alternated with the beam switching so that input signals of differing frequency will provide stable displays. Truly an oscilloscope masterpiece. CS 1577
CS 1577 only $£ 410$ + VAT, includes 2 probes.

THE CS1575, unique dual trace 4 function Audio Scope
The CS 1575 is a unique tool for the audio engineer. It features the normal facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signal on two channets, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also have independent triggering from each channel to give stable displays even with widely differing input frequencies.
Absolutely indispensable to the professional audio engineer, the CS1575 is now in use all over the world. See it in action or send for complete details.
CS 1575 only $£ 235$ + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER
FC756 500 MHz COUNTER

DC to 1000 V
$A C$ to 1000 V
Ω to $20 \mathrm{M} \Omega$
I to . 2 A
Semi Auto Ranging

$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb instrument

For further details and ex stock delivery contact

WAVE ANALYSERS
AIRMEC $248 \mathrm{~A} 5-300 \mathrm{MHz}$
DYMAR 771 A.F. Wave Analyser $20 \mathrm{~Hz}-50 \mathrm{KHz}$
HEWLETT:PACKARD 331A Distortion Analyser $5 \mathrm{~Hz}-600 \mathrm{KHz}$ MUIRHEAD D-988-A High Frequency Analyser $0.2 \mathrm{KHz}-6 \mathrm{AMHz}$ TEKTRONIX 1 L 20 Spectrum Analyser $10 \mathrm{MHz}-4.2 \mathrm{GHz}$

BRIDGES
General Radio 1607A Transfer Function \& Immittance Bridge MARCONI TF. 868 B 1\% Universal Bridge $1 \mathrm{KHz} \& 10 \mathrm{KHz}$ MARCONI TF 2701 Insitu Universal Bridge WAYNE KERR 221A . 1\% Universal Bridge WAYNE KERR B. 224.1% Universal Bridge WAYNE KERR B.641.1\% Autobalance Bridge WAYNE KERR SR. 268 Ganged Source \& Detector

MARTIN ASSOCIATES 34 Crown Street Reading Berks. RG 1 2SE Tel. Reading (0734) 51074

Youill do better at Martin Associates we guarantee it!

METERS ANALOGUE
AIRMEC 210 Modulation Meter 8125.0
AIR MEC 301 A R.F. Millivoltmeter $100 \mathrm{~Hz}-900 \mathrm{MHz}$
BOONTON 91DA R.F. Voltmeter $20 \mathrm{KHz}-1200 \mathrm{MH} 2$
DYMAR 761 Noise Factor Meter $100 \mathrm{~Hz}-100 \mathrm{KHz}$
HEWLETT-PACKARD 43IC Power Meter \& Thermistor MARCONI TF. 791 D Carrier Deviation Meter
MARCONI TF.1020A/1 R.F. Power Meter 50w \& 100w 50 Ohm

MARCONI TF. $1245 / 1247$ 'Q' Meter \& Oscillator
MARCONI TF 2600 Sensitive Valve Voltmeter $10 \mathrm{~Hz}-5 \mathrm{MHz}$
MARCONI
RADIOMETER BKF. 6 Distortion Meter $20 \mathrm{~Hz}-200 \mathrm{KHz}$
OSCILLOSCOPES
HEWLETT-PACKARD 130 C X-Y-T DC-150KHz $200 \mathrm{uV} / \mathrm{cm}$
SCOPEX 4D-10B Dual Beam $10 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}$, NEW
SCOPEX 4D-25 Dual Beam $25 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}$, NEW
TEKTRONIX 502A Dual Beam DC-1 MHz 100 uV
TELEQUIPMENT D. 32 Dual Beam DC-10MHz Malns/Batt.
TELEQUIPMENT D. 53 Dual Beam DC-25MHz
TELEQUIPMENT S. 22 Single Beam DC-5MHz Mains/Batt TEKTRONDX Plug Ins. E:L:R:M:1A1:1A6:CA:82:1S1 from
E150 HEWLETT-PCKARD 1110 A Current Probe Up to 45 MHz
ع150.00 TEKTRONIX P. 6045 FET Probe DC -230 MHz
£ 150.00 TEKTRONIX P. 6056 Probe 3.5 GHz X 10
C120.00 TEKTRONIX P. 6057 Probe 1.4 GHz X 100
£1500.00 TEKTRONIX P.6075A Probe 100 MHz X 10

RECORDERS

£250.00 B \& K 2305 Sound Level Recorder $E 500.00$
$E 130.00$ £100.00
200.00 GOULD 260 Clevite 6 -channel Recorde
£200.00 HONEYWELL 5-124 17-channel U/V Recorder + 7 Galvos
ع200.00 HEWLETT-PCKARD 7700 6-channel Thermal Recorder
E600.00 HEWLETT-PACKARD 320R 2-channel Recorder
c500.00
1200.00
195.00 MISCELLANEOUS

B \& K 1018 Automatic Vibration Exciter io.......
B \& K 1612 Filter Set Band Pass 1/srd and 1 Octave
BARNETT Dead Weight Tester + Weights \& 2 Gauges
PODMORE VIbration Bowl $18^{\prime \prime} \& 24^{\prime \prime}$ dia.
PYE LING Vibration Systems I000!b. Thrust
HEDIN Climatic Oven $-10^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
MONTFORD Climatic Oven $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
£250.00

The Bang \& Olufsen microprocessor quartz controlled Wow and Fluttermeter calibrator is a compact low cost device, especially designed to calibrate Wow/ Fluttermeters with great accuracy according DIN, IEC, CCIR and IEEE standards. The application in this microprocessor controlled instrument has rendered calibration obsolete. Therefore the first and the last produced WFC 1 will be exactly alike!

Functions:
-Center frequency: 3 KHz or 3.15 KHz . Siǹus and Squarewave outputs
-Wow/Flutter generator: (5 ranges).
Drift: (4 ranges).

- Pulsgenerator, to check the meter ballistics.
- Modulation signal generator.
- Accuracy and stability for all functions <50 ppm.
- Option 1 portable
- Option 2 adaption to your mains supply.

> Bang \& Olufsen Instruments A solid investment

The pre-eminent pick-up arm

Whilst able to explore the best of the present, the Series III precision pick-up arm anticipates the greater engineering elegance of impending miniature cartridges which may weigh as little as one and a half grammes.

Its unique patented balance system minimises mass and inertia, presenting optimum conditions for even the most delicate transducer.

No other pick-up arm is as versatile, a reason why the Series III is already playing its part in the development of tomorrow's cartridges.

Choose it for your listening pleasure today with confidence in the future.

*Another accolade for SME: the Series I/I precision pick - up arm was one of the Design and Engineering A wards at the 1979 U.S Summer Consumer Electronics Show, the only pick-up arm to be acknowledged in this way.

Series III precision pick-up arm

The best pjck-up arm in the world

Write to Dept 0655,
SME Limited, Steyning, Sussex, BN4 3GY, England

$1015 \sqrt{1} 4=$ ©is 5

A RANGE OF $31 / 2$ DIGIT LCD MULTI METERS OFFERING HIGH PRECISION AND EXTENDED BATTERY LIFE. ALI TYPES FEATURE FIVE FUNCTION OPERATION (AC AND DC VOLTS, AC AND DC CURRENT, RESISTANCE) WITH ABILITY TO CHECK DIODES. 0.5" LCD DISPLAY WITH 'BATTERY LOW' WARNING. AUTO-POLARITY, AUTO-ZERO. FULL PROTECTION AGAINST TRANSIENTS AND OVERLOADS WITH ABILITY TO WITHSTAND MAINS ON ANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1 -YEAR WARRANTY

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures $A C / D C$ voltage from 0.1 mV to $500 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to 2 Msl .200 hour battery life.

The LMM-2001 is an identical instrument but with a 0.1\% basic accuracy.

The LMM-100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures $A C / D C$ voltage from 0.1 mV to $1 \mathrm{KV}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handle.

Lascar Electronics Ltd, Unit 1, Thomasin Road, Basildon, Essex. Telephone No: Basikdon (0268) 727383.

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.
Pleasé send me Data \square
LMM-100 £82.17 \square LMM-200 £41.34 \square LMM-2001 £52.84 \square TEST LEADS £2.53 \square
Name
Address

I enclose cheque/P.O. value
WW - 042 FOR FURTHER DETAILS

When
components are small and space is tight use our $1-7$ MICRO SOLDERING STATION
$\mathrm{T}-7$ is a 12 -watt continuous duty instrument for production line, lab or protoshop. Heating
element in soldering tip puts heat right where needed. Accurate, stepless dialing, 175° to $910^{\circ} \mathrm{F}\left(79^{\circ}-487^{\circ} \mathrm{C}\right)$. Work protected by solid-state, line-isolating circuitry and grounded element. Two interchangeable, reshapeable tips, plus slip-on tips for special needs. Ideal for soldering, rework, fine touch-up; working wax and plastic; heat-etching various materials.

A.MIKRIC.A.N Bİ.AU'I'

Available from

Special Products Distributors Ltd.
" 81 Piccadilly, London W1V OHL
Tel: 01-6299556

Slip-on tip $2 / 3$ actual size
s.

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g
ww-078 FOR FURTHER DETAILS
A.C. ADAPTOR (Battery Charger) 120 vac input, 5.8 vdc . at 200 mA output. USA type mains plug to 3.5 mm jack plug. Brand new \& boxed £1. 25 each. A.C. ADAPTOR (Battery charger) 117 vac input, 4.5 vdc at 150 mA output. USA type mains plug to 2.5 mm jack plug. Brand new \& boxed $£ 1.00$ each. VARICAP TUNER HEADS, 4 button type, 22 K res. with AFC switch \& station idicator, Brand new res. with AF
$£ 2.00$ each.
£2.00 each.
SCREWVS. Pack of nuts, bolts, washers, tags, self taps etc. Mixed BA \& metric. Sold by weight. £2.00 per Kilo.
LOW VOLTAGE ELECTROLYTICS. Pack of mixed values \& voltages. Approx. 150 items £1.50. JAYBEAM STARBEAM UHF set top aerials. Brand new \& boxed $£ 2.00$ each.
MODERN TELEPHONES Type 746 with dials, colour cream, used but new condition. $£ 8.00$ each. ERSIN MULTICORE SOLDER 3 core solder ERSIN MULTICORE SOLDER 3 core Solder
wound on a plastic reel. 20 swg. Ally $60 / 40$ tin wound on a plastic reel. 20 swg . Ally $60 /$
lead. Available in 500 gm reels. $\mathbf{5 5 . 7 0}$ each.
CHANNEL MASTER COLORATOR aerial rotator Model 9502. Rotation speed 1 .rpm, gear ratio $3200: 1,3$ conductor wire for economy. pinpoint positioning to within one degree. Few only at $£ 45.00$. We also stock Jaybeam T.V. and Radio aerials. SAE for lists.
ISEP SLOTED HORIZONTAL RAIL available in 9 ft. lengths. £4.00 each.
WATCH STRAPS Black stainless steel 50 p each. Black plastic 25 p each. Watch spring bars 10 p each. Discount for Quantity.
RADIOGRAM lid pumps $£ 1.00$ each, 2 for $£ 1.50$. RIBBON CABLE 19 way decimal coded, 4 metres for $£ 1.25$.
PYE TELECOM Yagi aerials, 4 element, very rugged construction, 71.1 mHz \{ldeal for four metres). Brand new $£ 10.00$ each.
DISGUISED MOBILE AERIALS (dustbin lids). Available in mid band \& high band. Brand new $\$ 5.00$ each.
BYX25-100 \& BYX25R Rectifiers, 1000V 20 A BYX25-100 \& BYX25R Rectifiers, 1000V 20A
mounted on finned heatsink. Ex-Equip. £1.25 each. mounted on finned heatsink. Ex-Equip. £1.25 each.
BZY $93 C 75$ Diodes, 75 v 20 W Zener mounted on BZY93C75 Diodes, $75 v 20 W$ Zener mounted on
finned heatsink similar to above. Ex-Equip. 75p each.
FERRANTI MICROSPOT CATHODE RAY TUBES Type 3H/1010 Suitable for Photoyraphic Multi-Channel Recorder Systems. Fitted with a mounting collar and prism cemented to the faceplate, screen aluminised Phosphor P. The tubes are also fitted with mounting units type MU1053 and deflection coil type SC48A. Few only at $£ 55.00$

SEMICONDUCTORS

8FY 50 Transistors 4 for 60p.
BSX20 (VHF osc/mult) 3 for 50p. BC 108 (metal can) 4 for 50p. BC 109 (metal can) 4 for 50p. 2N3819 fet. 3 for 60 p.
BC 158 PNP Silicon 4 for 50p.
74 1CG Op Amps 4 for $£ 1.00$.
TIP 2955 Silicon PNP 2 for £1.50. LM 309 K 5 v Regulator f 1.00 . 8CY72 Transistors 4 for 50p. 8C 107 (metal can) 4 for 50p.

VALVES

EZ81 new 50p.
ECC81 new 50p.
ECC83 new 50p.
E180F new $£ 3.00$
85 A 2 new 80 p.

PBC108 (plastic BC108) 5 for 50 p. BF152 (UHF amp/mixer/ 3 for 50p. BC148 NPN Silicon 4 for 50p. BAY 31 Signal Diode 10 for 35 p. SCR 400 V at 3 A stud type, 2 for £1.00.
1N4148 (1N914) diodes 10 for $25 p$.
LM340/12 12v Regulator £1.00.

Large Stocks of Quartz Crystals for R.T: equipment HC6U, HC18, HC25, £2.00 each. Ring your requirements or SAE for lists.

PYE WESTMINSTER PCBs ALL BRAND NEW

TX AUDIO PCB AT268838
ULTI-CHANNEL OSC. PCB FOR AM
AT26812/8 10 channel Low band
AT26812/8 10 channel Low band
AT $26811 / 10 \& / 26$ channel High band
RX MULTIPLIER PCB FOR AM \& FM
AT 26808 Low band $/ 24$
AT26808/23 30MHz band
FM TX MOD DRIVER PCB
AT26826/68 B band (will tune Migh band) Order code WS5 £15.00
PA BOARDS WITH ALL TRANSISTORS AND HEATSINKS /screen covers not
supplied) $10784 / 10$ P band (will tune Low band) Order code WS7 $£ 18.00$ Low band pcb only, complete except for transistors and heatsink for spares only) Order code WS8 $£ 1.50$
AM 10.7 MMz IF PCB WITH XTAL FILTER
AT $26805 / 1025 \mathrm{kHz}$ spacing
AT26805/11 50 kHz spacing
AM TX MULTIPLIER / DRIVER PCB
AT26838/138 band (will tune high band)
AT26838/14 Low band
TX FILTER W 1 5AM AT10787/21 AT10787/23 AT10787/30

Order code WSO $£ 8.00$
Order code WS1 £10.00 Order code WS2 $\quad \mathbf{7 . 0 0}$
Order code WS3 $£ 7.00$ Order code WS4 $\quad 5.00$

RADIOTELEPHONE EQUIPMENT

Pye Westminster W15AM high band \& low band available. Sets complete and in good condition but are less speakers, mikes, cradles and LT leads. (sets only) $£ 70.00$ each.
Pye Westminster W15AM mid band 6 channel similar to above (sets only) $£ 45.00$ each.
Pye Westminster W15AMB (Boot Mount) low band complete with control gear and accessories, good condition $\mathbf{E 8 0} 0.00$ each.
Pye Westminster W3OAM low band, sets only no control gear, complete and in good condition. § 45.00 each.
Pye Westminster W3OAM mid band, sets only good condition. $£ 35.00$ each
Pye Base Station F27 Low \& Migh band, few only at £75.00 each.
Pye Base Station F30 AM Low \& High band, with \& without T/T Prices from $£ 220.00$ each
Pye Cambridge AM 10B (Boot Mount) low band 12.5 kHz , sets only, no control gear, good condition, $£ 20.00$ each.
Pye UHF Link U450L Base Station Tx $£ 15.00$ Rx $£ 15.00$ or $£ 25.00$ for the two. Sold as seen.
Pye BC14 Battery Charger for PF1 (Pocketfone) batteries, will charge up to 12 Tx batteries \& 12 Rx batteries at the same time. $£ 15.00$ each.
Pye RTC Controller units, for remotely controlling a VHF or UHF fixed station radiotelephones over VHF or UHF fixed sta
landlines. $£ 35.00$ each.
Pye PF1 Pocketfones suitable for convertion to 70 cm , sets complete but less batteries, supplied with service manual. £26.00.
Pye PF2FMB Low band FM portable, complete and good condition but untested, few only at $£ 65.00$ each.
Pye PF2UB UHF portable, complete and good condition but untested, few only at $£ 65.00$ each.
Pye Europa MF5U 3 channel UHF mobile good condition $£ 90.00$.
Pye Reporter MF6AM High band mobile, very good condition $£ 200.00$.
Pye Olympic M'212 UHF mobile, new condition, £185.00.
Pye Voltage Converter MF24PU 24 v plug-in converter for Europa range of sets, to provide for 12 volt floating ground from 24 volt supply. $£ 15.00$.

PHILLIPS 25" Monochrome Monitorr new condition with service manual. $£ 25.00$, carriage $£ 2.00$. IC TEST CLIPS, clip over IC while still soldered to pcb or in socket. Gold plated pins, ideal for experimenters or service engineers. 28 pin DIL $£ 1$ 1.75, 40 menters or service engineers. 28 pin DIL $£ 1.75 .40$
pin DIL $£ 2.00$. Or save by buying one of each for pin DIL
$£ 3.50$.
IC AUDIO AMAP. PCB. Output 2 watts into 3 ohm speaker. 12 volt DC supply. Size approx $5^{1 / 2^{\prime \prime} \times 1} 11^{\prime \prime} \times 1^{\prime \prime}$ high, with integral heatsink, complete with circuits. $£ 2.00$ each.
NICAD CHARGER CONVERTER PCB. (Low power inverter). Size $4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 1^{\prime \prime}$ high. $12 \mathrm{v} d c$ supply. 60 v dc output through pot on pcb for charging portable battieres from mobile supply. Only needs one BFY $50 / 51 / 52$ or similar transistor Only needs one BFY $50 / 51 / 52$ or similar transistor
which can be mounted direct on the pcb pins on the which can be mounted direct on the pcb pins on the
board fitted with a star type heatsink (not supplied) board fitted
£2.00 each
10.7 MHz SSB XTAL FILTERS $(2.4 \mathrm{kHz}$ Bandwidth) Low imp. type. Carrier and unwanted sideband rejection min - 40 db (needs 10.69835 \& $10.70165 \times$ xtals for USB/LSB . not supplied) Size approx $2^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}, £ 10.00$ each.
LOW PASS FILTERS (Low imp. type). $2-9 \mathrm{MHz}$, small metal encapsulation. Size $11 / 2^{\prime \prime} \times^{3 / 4^{\prime \prime}} \times^{3 / 4^{\prime \prime}}$ 75 peach.
BSR AUTOCHANGE RECORD PLAYER DECKS with cue device. 33-45-78 rpm for $7^{\prime \prime} 10^{\prime \prime}$ $12^{\prime \prime}$ records. Fitted with SC 12M Stereo Ceramic $12^{\prime \prime}$ records. Fitted with SC12M Stereo
cartridge and styli. Brand new $£ 12.00$ each
cartridge and styli. Brand new $£ 12.00$ each.
XTALS FOR TV SY NC GEN. 20.25 kHz for 405 line, B7G glass type. $£ 2.00$ each.
RED LEDs (Min. type) 5 for 70 p
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base $£ 6.50$ each. Brand
UR41 ATTENUATOR CABLE, Nominal 720 hm , overall dia. approx. $1 / 4^{\prime \prime}$, Att. per $100 \mathrm{ft}: 100 \mathrm{MHz}$ $218 \mathrm{~dB}, 200 \mathrm{MHz} 316 \mathrm{~dB}, 600 \mathrm{MHz} 449 \mathrm{~dB}, 3000$ MHz 625 dB . Ideal for Rx or Low power Tx fixed MHz 625 dB . Ideal for Rx or Low power Tx fixed
attenuators. Supplied with attenuation graph. 4 attenuators. Sup
metres for $£ 1.00$.
metres for £1.OO.
HIGH QUALITY RELAYS, 4 pole C/O, 3A contacts, 12 V DC coil, 150 ohm. Size approx. $1^{\prime \prime} \times 3 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$, with plastic covers. 80p each or 2 for $£ 1.50$.
OSMOR REED RELAY COILS (for reed relays up to $1 / \mathrm{s}^{\prime \prime}$ dia., not supplied) $12 \mathrm{~V}, 500 \mathrm{hm}$ coil, 2 for 50p.
RIGHT ANGLED UHF SERIES ADAPTORS PL259 to SO239 £1. 00 each.
BACK-TO-BACK SO239 SOCKETS, $£ 1.00$ each

A selection of items below from our 1980 catalogue, the products we stock are by Eagle, Weller, Draper, Spiralux, Knipex, Servisol, Barnard's \& Babani, Newnes, Jaybeam, Vero, and others. If you send us $£ 1.35$ you will receive the catalogue plus five bi-monthly shortform catalogues to keep you up to date with prices and special offers. A free pack of Blob Board comes with this month's
issue. EAGLE FIA780T Electric fully automatic 6 section retractable car aerial with EAGLE MAA780T Electric fully automatic 6 section retractable car aerial with built-in voltage sensor. Remote drive system makes fiting easier. Aerial tength,
1.000 mm , below wing 220 mm , lead length $9,000 \mathrm{~mm}$, flexible drive link $1,000 \mathrm{~mm}$, below wing 220 mm ,
700 mm . Price $£ 16.95$ plus VAT.
EAGLE DD 7 Paging microphone, impedance 600 ohm or 50 K ohms, sensitivity 2.25 mV at 50 K ohms, frequency response $300-9000 \mathrm{~Hz}$. desk or wall mounted. $£ 14.85$ plus VAT.
EAGLE MULTIMETER EM $5050,000 \mathrm{opv}$. DC volts: $0-1200$ vols, $A C$ volts: $0-1200$ volts, DC current 0-6A, Resistance $0-10$ megohms. Price $£ 19.95$ plus VAT.
DRAPER super-chrome $1 / 4^{\prime \prime}$ square drive socket sets. 38 piece, 9 AF hexagon sockets, 3 AF bi-square sockets. 11 MM hexagon sockets, 9 BA hexagon sockets, and 6 accessories. Price $£ 12.75$ plus VAT.
Sockets, and 6 accessories. Price $£ 12.75$ plus VAT. SPIRALUX metric nut spinner sets, conter with cellulose ecetate handis. Price £ 7.53 plus VAT.
WELLER TCP3 IRONS 24 volt series, 3 wire power units, for applications requiring earthed tip. TCP3 irons $£ 13.84$, PU3D power units $£ 24.12$ plus VAT. WELLER instant heat guns Model No. 8100D $£ 13.21$ each plus VAT.
WELLE R cordless soldering irons Model No. WC $100 £ 25.47$ plus VAT
JAYBEAM "STEREOBEAM" VHF /FM antennas Model SMB2, folded dipole and reflector with universal clamp. $£ 8.00$ each. Full range of Jaybeam aerials and accessories available. (See 1980 Catalogue).
ECA TVT78/78 semiconductor equivalent and data books. Data covering 12,000 transistors and more than 60,000 equivalents. 2 volumes for $£ 6.00$ Zero VAT
ORYX DE-SOLDER TOOLS model SR3A, desoldering pump with built-in safety guard. Price $£ 6.50$ plus VAT

AUCTION NOTICE

As from Sat. 3rd February 1980 we will hold weekly auctions on Saturday mornings of Radio \& Electronic components \& equipment, you bring and buy. Entries will be accepted on morning of sale from 8 am . The Sale will start at 10 am . So come along and bring something with you to sell. Light refreshments will be available

Callers welcome by appointmen
 S.A.E for all enquries
 TERMS OF BUSINESS: CASH WITH ORDER

Carriage:
Packing and carriage charges for orders of under
$£ 5.00$ nett invoice value -75 p.
Orders exceeding $£ 5.00$ but less than $£ 20.00$
invoice value - 50 p .
Over $£ 20.00$ carriage paid.
VAT at 15% must be added to the total of all orders.

TYPE 631 FILTER OSCILLATOR £112 \& 2.50 carriage, ins. etc. Covers the range 0.1 Hz to 100 KHz

MODES -

$$
\begin{array}{ll}
\text { ACCEPT } & 0 \text { from less than } 1 \text { to over } 300 \\
\text { REJECT } & 90 \mathrm{~dB} \text { notch } \\
\text { HI and LO PASS } & 12 \mathrm{~dB} \text { per octave } \\
\text { OSCILLATE } & \text { Sinewave and squarewave }
\end{array}
$$

TYPE 631LF - $£ 118.13 \& 2.50$ carriage, ins. ett. Low frequency version 0.01 Hz to 10 KHz

OMB ELECTRONICS, RIVERSIOE, EYNSFORD, KENT OA4 OAE Tel. Farninghanı (0322) 863567

Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subiect to change without notice.

SINE WAVE INVERTERS : 120 to 1000 VA -NOW USING WAVEFORM SYNTHESIS

DESIGNED FOR FIXED, MOBILE OR MARINE USE AND STANDBY A.C. POWER FOR DATA PROCESSING, COMMUNICATIONS, LABORATORY AND MANY OTHER APPLICATIONS.
A.C. Output: $220-240 \mathrm{~V}$ or $110-120 \mathrm{~V}, 50 \mathrm{~Hz}$ or 60 Hz
D.C. Input: 12 VOLTS or 24 VOLTS

Waveform synthesis, with pulse width modulation to regulate the output voltage, has been used in high power inverters for some time.

Now, for the first time, CARACAL have developed this technology to produce a complete range of high quality sine wave inverters from 120 VA to 1000 VA AT COMPETITIVE, VALUE-FOR-MONEY PRICES.

The result is a very low distortion output waveform which is very stable, both in voltage and frequency, over all load and battery voltage conditions

And that is not all-replacing obsolescent tuned transformers has resulted in lighter weight and high efficiency on both part and full loads, with low standby current drain.

CARACAL ENGINEERING

Although the cases are designed as a low-cost case. they are well finished and truly look expensive. This effect is enhanced by the proportion of anodised aluminium, to shiny black leather textured top and bottom plates. Such features as these panels sloting into the front and rear extrusions and into mitled grooves in the side plates, keepling them completely flat, increases the impression of a costly case.

All prices plus

All Case System cases are available with Discounts 50 off-10\%, $10-12 \%, 25-15 \%, 50-20 \%, 100-25 \%$. Prices include p. \& p. U.K. Terms c.w.o. S.A.E. for details: 20 HUNT LANE, CHADDERTON, LANCASHIRE, ENGLAND TEL: 061-652 1580

WW - 009 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.25 for booklet. "Nickel Cadium Power, " plus catalogue

Write or call at
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, Londoñ WC2

COMPUKIT UK101
 EUROPE'S FASTEST SELLING ONE BOARD COMPUTER

* 6502 based system - best value for money on the market. \star Powerful 8K Basic - Fastest around \star Full Qwerty Keyboard $\star 4 \mathrm{~K}$ RAM Expandable to 8 K on board. * Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. \star Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. $\begin{gathered}\text { If you want to learn about Micros, but }\end{gathered}$ didn't know which machine to buy then this is the machine for you.

Build, Understand and Program
your own Computer for
only a small outlay

KIT ONLY $£ 199$ + VAT
NO EXTRAS NEEDED

AVAILABLE READY
ASSEMBLED \& TESTED
READY TO GO FOR E249 + VAT

Specially designed case for Compukit in orange/black
6502 Assembler/Editor for Compukit $£ 14.90$
The Compuklt UK101 comes in kit form with all the parts necessary to be up and working, supplied. No exiras are needed. Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute vour commands and programs. By pressing the C key the world of Basic is open to you.
Simple Soldering due to clear and concise instructions compiled by
Dr. A.A. Berk, BSc. PhD
This machine is ideal to the computing student or Maths student, ideal to teach your children arithmetic, and is also great fun to use.
Secause of the enormous volume of users of this kit we are able to offer a new reduced price of $\mathrm{E} 199+$ VAT

 ROM. 8 K Pet 32K \& 16 K with new improved kevboard All, with green screen.
Extra cassette deck $\mathbf{6 5 5}$ full range of sotware avallable

videa 100

12" BLACK \& WHITE LOW COST VIDEO MONITOR RRP E79 only $\mathbf{£ 6 9}$

Ideal for home, personal and business computer systems - $12^{\prime \prime}$ diagonal video monitor Composite video input Uuter systems Solid-state Compatible with may sharp picture Video bandwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$ - Inpus im. pedance - 75 Ohms Resolutlon - 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central . 80% and

Fully converted to UK T.V Standard Comes complete with easy 10 follow manuals UK Power Supply - Casselte Leads - Sample tapes Special box to enable you to plug into your own TV. Recommended tor tirst time buyers. Just plug in and yo. Full fange of Software Avallable

Larsholt \approx

MODULE KITS

For the quality conscious constructor
$2 \times 30 \mathrm{~W}$ rms AUDIOMASTER (below)
-if you require immaculate electronics in a professionally designed system.

- complex parts pre-built and aligned.

LARSHOLT has the answer
Prices:
Audiomaster

AMBIT INTERNATIONAL
 BRENTNOOD ESSEEE ROAD
 Tel. (0277) 230909

SIWPIV AHEAD-and staying there! O.E.M. PLATE POUER AMPLIFIERS

MADE IN ENGLAND

1.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful outpur ratings. These units are typical of I.L.P. design and manufacture - encapsulated circuitry. rugged construction, just five pin connections, trouble-free mounting, no output capacitor or other external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE, QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

UNIT PRICE FOR	100 +	250 +	500 +	1000 +	2500 +	5000 +
HY 120P 6OW rms 8Ω	$£ 10.30$	$£ 9.37$	$£ 8.51$	$£ 7.74$	$£ 7.04$	$£ 6.40$
HY 200P 120W rms 8Ω	$£ 13.18$	$£ 11.98$	$£ 10.89$	$£ 9.90$	$£ 9.00$	$£ 8.18$
HY 400P 240W rms 4 Ω	$£ 19.26$	$£ 17.51$	$£ 15.92$	$£ 14.47$	$£ 13.16$	$£ 11.96$

Sizes

HY 120P and HY 200P HY 400P
$116 \times 50 \times 23 \mathrm{~mm}$
$116 \times 75 \times 23 \mathrm{~mm}$
0.1\% DISTORTION WIDE BANDWIDTH PROTECTED O/P TRANSISTORS FULL LOAD LINE PROTECTION NO EXTERNAL COMPONENTS only five pins to connect

A divisior, of I.L.P. ELECTRONICS LTD., GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP [0227] 54778 : Telex 965780
 WW - 067 FOR FURTHER DETAILS

Si451 Millivoltmeter

* 20 ranges also with varriable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:* very low distortion content-less than 0.03\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fașt rise time

"HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?"

It's easy to make mistakes when buying video equipment.
Buy the cheapest and you may soon find that it can't meet the varying needs of all the people (in marketing, management, training and security, for example) who will want to use it.

Buy the most expensive and you could literally waste thousands on features never used.

Forget compatibility and the future and you could find yourself spending more money on extra equipment - or discarding equipment you've just bought

WIDE CHOICE. GOOD ADVICE.

Through our network of Video Centres, we at Bell \& Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"

We answer that question by first helping you to define how you're going to use a video system.

We pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes
from libraries or other companies? Will you want a lot of duplicate tapes?

From your answers we can build up a video package to meet your exact needs. It could be a simple monochrome camera with a VHS video recorder. Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite. Whatever it is, we make this promise.

If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video system which, because it has been tailored to your individual needs, will be right for you.

AND SUPERSHIELD.

No matter what you buy from the Bell \& Howell video range; our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop.

Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Let Bell \& Howell show you the answer.

[^0](6) Belı
(0) BelleHaweu

carbon film RESISTORS

PRICESREDUCED. SEND FOR DETAILS NOW

AERO SERVICES LTD.

42-44A-46 Westbourne Grove London W2 5SF Tel. 01-7275641 Telex 261306

WW - 027 FOR FURTHER DETAILS

WW - 018 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate, as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe. and read the temperature on the large oper: scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-2 $1^{\prime \prime}$ " measures from- $40^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00$ Model "Mini-2 2" measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 30.00$ Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ £33.00 [VAT 15\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX. (Phone 01-837 7937)
WW - 020 FOR FURTHER DETAILS

Thurlby PLK triple output

A bench power supply system that meets today's needs
 - Three fully independent Outputs, all fully floating
 - Simultaneous digital metering of voltage and current - 3% digit (4000 count) meters with $1 / 2^{\prime \prime}$ LED displays - 0.1% accuracy, Resolution of 0.01 volts and 0.001 amps - 5 volt high current Output with overvoltage crowbar - Remote sense facility for maintained precision at high currents - Fully variable voltage and current. 0 to 60 V or 0 to $\pm 30 \mathrm{~V}$

Thurlby PL Series Single, Dual and Triple Output Units Prices from under $£ 100$

[^1]

PL310K, 0 to 30V at 0 to 1A, 0 to 30 V at $1 / 2 \mathrm{~A}, 5 \pm 1 \mathrm{~V}$ at $3 / 2 \mathrm{~A}, \mathrm{f} 199.50$

fact:
five New Shure Cartridges feature unique, state-of-the-art technology

the M97 Era IV Series pickup cartridges

Model	Stylus Configuration	Tip Tracking Force	Applications
M97HE	Nude Hyperelliptical	$3 / 4$ to $11 / 2$ grams	Highest fidelity where light tracking forces are essential.
M97ED	Nude Biradial (Elliptical)	$3 / 4$ to $11 / 2$ grams	
M97GD	Nude Spherical	$3 / 4$ to $11 / 2$ grams	
M97EJ	Biradial (Elliptical)	$11 / 2$ to 3 grams	Where slightly heavier tracking forces are required.
M97B	Spherical	$11 / 2$ to 3 grams	
78 rpm Stylus for all M97's	Biradial (Elliptical)	$11 / 2$ to 3 grams	For 78 rpm records.

Shure writes a new chapter in the history of affordable hi-fi by making the latest cartridge technological breakthroughs available in a complete line of high-performance, moderately priced cartridges; the M97 Era IV Series Pickup Cartridges, available with five different interchangeable stylus configurations to fit every system and every budget.

The M97 Series incorporates such vanguard features as the Dynamic Stabilizer-which simultaneously overcomes record-warp caused problems, provides electrostatic neutralization of the record surface, and effectively removes dust and lint from the record-and a unique telescoped stylus assembly which results in lower effective stylus mass and dramatically improved trackability.

Each of these features. . . and more...has been incorporated in the five cartridges in the M97 Series-there is even an M97 cartridge that offers the low distortion Hyperelliptical stylus! What's more, every M97 cartridge features a unique lateral deflection assembly, called the SIDE-GUARD, which responds to side thrusts on the stylus by withdrawing the entire stylus shank and tip safely into the stylus housing before it can bend! The performance of the cartridges is highly faithful to the recorded music. Hear it you must!

NEW! M97 Series Era IV Pickup Cartridges... Five new invitations to the new era in hi-fi.

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU, Telephone: (0622) 59881

wireless world

Editor:

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER,'B.Sc
Phone 01-261 8443

Projects Editor:

MIKE SAGIN
Phone: 01-261 8429

News Editor:

RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

Communications Editor:

TED PARRATT, B.A.
Phone 01-261 8620
Drawing Office Manager:
ROGER GOODMAN

Technical Illustrator:
BETTY PALMER
Production 8e Design:
ALAN KERR

Advertisement Controller:

G. BENTON ROWELL

Advertisement Mianager:

BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037

BARRY LEARY
Phone 01-2618515

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423

NEIL McDONNELL
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Education for integration

Since a televislon programme put the cat among the pigeons and made the world at large believe that Karel Capek's view of the future was to materialise in about a fortnight at the very latest, engineering persons have become accustomed to hearing references to 'chips' from the unlikeliest of sources. Cabinet ministers, trade union leaders, industrial writers, popular magazine and newspaper columnists, television commentators - all kinds of non-engineering person never seem to tire of discussing integrated-circuit technology and its impact on society in terms that imply total familiarity with semiconductors in all their manifestations.

It is quite difficult to discover the received picture of modern electronics possessed by people whose interests do not include engineering. The crescendo of strident and frequently doom-laden prophecy, initiated by the adoption of 'the chip' as a sort of 1970 s Spinning Jenny substitute, coupled with saner (because better informed) comment from engineers, must have generated considerable confusion among those whose only present involvement is the direct or indirect provision of finance.

The integrated circuit in question is, of course, the microprocessor. Most of the others have arrived at the stage where they are thought of as components; and are consequently not newsworthy: decade counters, operational amplifiers and phase-locked loops are used in a manner almost as abandoned as were discrete transistors ten years ago, But the microprocessor has an aura of sanctity about it which its lineage and capabilities do not warrant, and which
may well be not only technically but politically perilous.

A Ludditic reaction to 'new technology', fuelled by badly disseminated information and mass news posing as information, is one possibility; the newspaper industry has already seen an illustration. The alternative is to demonstrate the respectability of the microprocessor as a down-to-earth, extremely useful, but entirely non-occult electronic component in a programme of education carried out by people who really do know what they are talking about. We have seen far too many newspaper and television pieces whose aim has been to describe the applications of integrated circuits in the 'wonder of modern science' manner, heightening in a most irresponsible way modern man's ingrained and well-founded suspicion of single-minded, but accident-prone technocrats.

The attitude of mind which impels otherwise reasonable people to walk out on strike when 'new technology' is discovered in the offing is unlikely to be of muich assistance to anyone. If an organisation is compelled by a lack of understanding to stick to outmoded methods of working, its customers will simply go to another source of supply' which has taken advantage of modern developments. Many people will no doubt need to change their skills, but there is no reason to think that a smaller total workforce will be needed in the society of the next decade.

The microprocessor is not an invention of the Devil, but in the face of sensational reporting it will tax the skill of educators to prove it.

Pulse induction metal detector

Experimental system for overcoming magnetic viscosity effects
by J. A. Corbyn

Fig. 2 Standard cylinder target.
Fig. 3 Response of soil or rock when the primary magnetic field is switched off.

Fig. 4 Equivalent circuit of the transmit and receive coils.

Because the author considers buried
"treasures" to be the most lasting and potentially most informative repositories of human history, he feels that their detection and excavation should be restricted to approved organisations. This article describes an experimental metal detector, originally developed for detecting gold in Western Australia (so far unsuccessfully), that can be dapted for archaeological or military applications. Particular emphasis is placed on magnetic viscosity and how to eliminate this undesirable effect.

Metal detectors used in searching for buried metallic objects are similar in concept to those used for geophysical exploration. All such instruments depend on the measurement of a magnetic field associated with eddy currents induced in the target by a primary magnetic field. The two main groups of metal detector are the continuous wave type where normally a sinusoidal primary magnetic field produces eddy currents in the target, and the pulse induction system where the primary field is a series of pulses. In a continuous wave detector, coupling between the transmitter and receiver is effected by the geometry of the system which must be rigid for detecting small metallic targets such as archaeological artifacts. Rigid geometry is not so important in a pulse induction system because there is no direct coupling between the transmitter and receiver.
Early metal detectors were mainly continuous wave types because simple circuits could be used. However, pulse induction systems have been described in the geophysical context by Grant and West ${ }^{1}$, and in the archaeological con: text by Colani ${ }^{2}$.

In a conventional pulse induction system a primary magnetic field is switched off and induces eddy currents in a conductive target. Voltages induced by the decay of these eddy currents are detected and then displayed. Fig. 1 shows a system comprising.circular primary and receive coils which are coaxial with a target illustrated as a conducting loop. Fig. 2 shows the case where a magnetic flux of B_{p} Weber is normal to a loop of radius a and effectively falls to zero in time Δt. If L is
the self inductance of the loop, R the resistance and i is the current then

$$
\begin{equation*}
i R=-\frac{d}{d t}\left[B_{\mathrm{p}} \pi a^{2}+L i\right] \tag{1}
\end{equation*}
$$

If $B_{p}=B_{0}$ at $t=0, B_{p}=0$ at $t=\Delta t$ and $i_{\Delta t}$ is the current at $t=\Delta t$,

$$
\begin{equation*}
i_{\Delta t}=\frac{\pi \alpha^{2}}{L} B_{0}-\frac{R}{L} \int_{0}^{\Delta t} i d t \tag{2}
\end{equation*}
$$

If $\Delta t \ll L / R$, equation (2) can be approximated by

$$
\begin{equation*}
i_{\Delta t} \approx \frac{\pi a^{2} B_{0}}{L} \tag{3}
\end{equation*}
$$

If the target is given a standard form of a cylinder with radius a, height a and wall thickness $\mathrm{a} / 2$, L can be calculated. from an adaptation of Wheeler's formulae

$$
\begin{equation*}
L=a \times 2.07 \times 10^{-6} \mathrm{H} \tag{4}
\end{equation*}
$$

Although equation (4) is an approximation it is sufficient for practical purposes because targets are rarely standard shapes. The resistance can be calculated from

$$
\begin{equation*}
R=\frac{0.289 \times 10^{-6} \times k}{a} \Omega \tag{5}
\end{equation*}
$$

where it is assumed that the specific resistance of the metal is for gold ($0.023 \times 10^{-6} \mathrm{\Omega m}$) and k is the specific resistance in relation to gold. When the primary magnetic field is removed the
current in the target decays exponentially with a time constant.

$$
\begin{equation*}
T=\frac{L}{R}=\frac{7.16 \mathrm{a}^{2}}{k} \mathrm{~s} \tag{6}
\end{equation*}
$$

The eddy current induced in the model target is then

$$
i=\frac{\pi a^{2} \mu_{0} H_{0}}{a \times 2.07 \times 10^{-6}} e^{-\frac{\varepsilon \times k}{7.16 a^{2}}} \mathrm{~A}
$$

and setting μ_{0} at $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

$$
\begin{equation*}
i=1.907 a H_{0} e^{-\frac{t \times k}{7.16^{2}}} \tag{7}
\end{equation*}
$$

In the pulse induction system of Fig. 1 the primary magnetic field at P is approximately

$$
\begin{equation*}
H_{0}=\frac{\pi r_{\mathrm{t}}^{2} N_{\mathrm{t}} I_{\mathrm{p}}^{2}}{4 \pi h^{3}}=\frac{r_{\mathrm{t}}^{2} N_{\mathrm{t}} I_{\mathrm{p}}}{2 h^{3}} \mathrm{~A} / \mathrm{m} \tag{8}
\end{equation*}
$$

The voltage at the receiver coil is determined by the rate of change of flux linkage originating from the target and is given by

$$
\frac{r_{t}^{2} N_{\mathrm{t}} I_{\mathrm{p}}}{2 h^{3}} 1.907 a\left(\frac{-k}{7.16 a^{2}}\right) e^{\frac{-t k}{7.16 a} 2} \frac{\mu_{0} a^{2}}{2 h^{3}} \pi r_{\mathrm{r}}^{2} N_{\mathrm{r}}
$$

therefore,

$$
\begin{equation*}
V_{\mathrm{r}}=0.262 \times 10^{-6} r_{\mathrm{t}}^{2} r_{\mathrm{r}}^{2} N_{\mathrm{r}} N_{\mathrm{t}} I_{\mathrm{p}} \frac{a k}{h^{6}} e^{\frac{-t k}{7.16 a} 2} \tag{9}
\end{equation*}
$$

If the received signal is integrated the mean output signal level V_{m} will be

$$
\begin{array}{r}
\frac{1}{T_{\text {rep }}} \int_{0}^{\infty} V_{r} d t= \\
1.875 \times 10^{-6} \frac{r_{t}^{2} r_{r}^{2} N_{t} N_{r} a^{3} I_{p}}{T_{\text {rep }} h^{6}} \tag{10}
\end{array}
$$

where $T_{\text {rep }}$ is the repetion interval defined in Fig. 1 and $T_{\text {rep }} \gg T$.
As an example, consider the case where T_{t} is $0.6 \mathrm{~m}, T_{\mathrm{r}}$ is $0.45 \mathrm{~m}, N_{\mathrm{t}}$ is 54 turns, N_{r} is 68 turns, a is $0.04 \mathrm{~m}, h$ is $1 \mathrm{~m}, I_{\mathrm{p}}$ is 1 A and $T_{\text {rep }}$ is 0.016 s . Equation (10) gives a V_{m} of $1.1 \mu \mathrm{~V}$ and for $k=1, T=5.7 \mathrm{~ms}$. This is very approximate because h is not much. greater than $r_{\mathbf{t}}$.

The time constant of a non metallic material in the vicinity of a metal detector can be calculated by appropriate modifications to equation (6) as

$$
\begin{equation*}
T=\frac{1.64 \times 10^{-6} a^{2}}{S} S \tag{11}
\end{equation*}
$$

where S, is the specific resistance of the material. Substituting $a=1 \mathrm{~m}$ and $S=0.2 \Omega \mathrm{~m}$, the approximate specific resistance of sea water, the time constant is $0.8 \mu \mathrm{~s}$.
Most rocks and soils have a specific resistance much higher than this so an effective separation can be made between signals due to metallic targets and conductivity effects in the ground by

introducing a delay Δt between switch off of the transmitter current and observation of the returned signal. In practice delays from $40 \mu \mathrm{~s}$ to $300 \mu \mathrm{~s}$ are suitable.

Magnetic viscosity effects

The magnetic properties of soils and rocks are mainly attributable to magnetite and maghaemite. These minerals exhibit a magnetic viscosity effect because their magnetization does not instantaneously follow an applied magnetic field. Magnetic viscosity is qualitatively similar to the effects of a conductor on a metal detector. The direction of temporary magnetization is the same as the primary magnetic field and the magnetic flux in the conductor being detected. Although there is no comprehensive theory of magnetic viscosity, Tropin ${ }^{3}$ has critically reviewed Neel's theory which is described by Stacey and Banerjee ${ }^{4}$. Useful data for metal detector design has been provided by Colani and Aitken ${ }^{5}$.

When designing a pulse induction metal detector it is necessary to know the response of soil or rock to a decreasing step in magnetic field. A general equation is

$$
\begin{equation*}
M \propto K \Delta H g(t) \tag{12}
\end{equation*}
$$

Fig. 7 Gated amplifier. Note that only one section of the 4053 is used, all unused inputs should be connected to ground. All voltages are d.c., measured with a high impedance méter. All capacitors are ceramic or aluminium electrolytic types.

Fig. 6. Circuit block diagram.

where \dddot{K} is the magnetic susceptability and M is the magnetic moment per unit volume of material resulting from a change ΔH in the magnetic field at time t after this change. Equation (12) is linear in that $g(t)$, which describes the decay of the magnetization, is independent of the primary magnetic field. At $t=0, g(t)$ should be finite and as $t \rightarrow \infty$ $g(t)$ should go to zero. Furthermore, $g(t)$ from practical experiences should be a decreasing function of t. Fig. 3 shows the response of a soil or rock to a decreasing step in magnetic field. A review of available literature and some experimental work shows that $g(t)$ can be expressed as a sum of two exponentials. An electronic system was constructed to simulate the sum of exponentials and
compare the result with the response of soil or rock. A satisfactory model for the derivative of $g(t)$ is

$$
\begin{equation*}
g^{1}(t)=(1-P) e^{-t / T_{1}}+P e^{-t / T_{2}} \tag{13}
\end{equation*}
$$

where T_{1} is $75 \mu \mathrm{~s}, T_{2}$ is 550 to $800 \mu \mathrm{~s}$ and P is in the range 0.08 to 0.30 . These observations apply to lateritic soils in the goldfield region of Western Australia. The function $g^{1}(t)$ does not depend on the physical dimensions of the material being magnetized and the form of the decay due to a conductive target is generally a simple exponential decay as in equation (7). I therefore decided to construct a ground effect elimination system for a pulse induction metal detector by determining the difference

Fig. 8 Synchronous detector. The regulated power supply is shared with the gated amplifier. The 47 pF compensation capacitor is soldered directly to the 3130 leads.

Fig. 9 Sum of exponentials eliminator. Resistor R, controls the mixture of exponentials, R_{2} controls the decay constant T_{1}, and R_{3} controls the decay constant T_{2}. Production of the initiation pulse from logic level A is shown in Fig. 10.

Switch	Type	Control
\mathbf{S}_{1}	4016	Coth closed only when
\mathbf{S}_{2}	4016	Bitiation pulse is present init
S_{3}	4016	Closed during end of receive period pulse
S_{4}	4053	Output earthed except when logic level is high

between the response of the ground and the observed response, assumed to be due to magnetic viscosity.

Coil design

Design objectives for the coil system are to maximise the primary magnetic field at the target and the voltage induced in the receiver coil by eddy currents in the target. The noise level due to variations in the earth's magnetic field and movement of the gradiometer over the ground is about $l \mu \mathrm{~V}$ with a coil of 25 turns, an area of $1 \mathrm{~m}^{2}$ and with a similar coaxial coil 1 m away. This limitation was determined for a receive system with a centre frequency of 200 Hz and a bandwith of 10 Hz . The major noise contribution is from normal variations in the earth's magnetic field and does not account for man-made electrical interference.

The time constant of a critically damped gradiometer constructed with the above limitation is generally under $10 \mu \mathrm{~s}$ for a coil diameter above 1 m .

Transmitter coil design is controlled by the decay resistance required to prevent an excessive voltage being applied to the transistor switch, see Fig. 4. Neglecting coil capacitance, the decay of current I through a coil of self inductance L_{t} and decay resistance R_{t} is

$$
\begin{equation*}
I=I_{t o} e^{-t / T t} \tag{14}
\end{equation*}
$$

where T_{t} is the decay constant R_{t} / L_{t} and $\dot{I}_{\text {to }}$ is the initial current through the transmit coil. If $M_{t r}$ is the mutual inductance between transmit and receive coils and V_{p} is the peak voltage permitted at the switch, the voltage decay at the receive coil due to the current decay through the transmit coil is, for $I_{\mathrm{r}} \ll I_{t}$,

$$
\begin{equation*}
V_{\mathrm{r}}=V_{\mathrm{p}} \frac{M_{\mathrm{t}}}{L_{t}} e^{-\mathrm{t} / \mathrm{Tt}} \tag{15}
\end{equation*}
$$

If V_{e} is the maximum permitted voltage at the receive coil at time Δt

$$
\begin{equation*}
\Delta t=T_{\mathrm{t}} \log _{\mathrm{e}}\left(\frac{V_{\mathrm{p}} M_{\mathrm{tr}}}{V_{\mathrm{e}} L_{\mathrm{t}}}\right) \tag{16}
\end{equation*}
$$

With $V_{p}=750 \mathrm{~V}, V_{r}=1 \mu \mathrm{~V}$ and $M_{r t} / L_{t}=0.1$, equation (16) gives $\Delta t / T_{\mathrm{t}}=18.1$.

Equation (16) shows that the minimum value of Δt is determined principally by T_{t}. In practice T_{t} cannot be much greater than 5% of Δt, depending on the ability of the circuit to reject a background decaying voltage during the receive period.

A circular metal detector array with coaxial receive and transmit coils is shown in Fig. 5. The receive coils are arranged in a gradiometer configuration and the bottom winding is coplanar with the larger transmit coils. Increasing the size of the transmit coils reduces the magnetic viscosity effects due to a relatively intense primary field close to them.

In addition to this array, various circular types have been constructed with diameters from 0.05 to 2 m , and rectangular versions up to 2 m long for searching large areas. For the larger arrays it is desirable to keep coil capacitance as low as possible by. careful winding design. As previously noted, rigid system geometry is not essential for a pulse induction system and the simple wooden structure described is sufficient.

Circuit design

A block diagram of the metal detector circuit is shown in Fig. 6. An alternating primary magnetic field is used to avoid magnetic polarization of the ground and to improve the overall signal-tonoise ratio. The gated wideband amplifier in Fig. 7 consists of a high voltage protection network, a c.m.o.s.

Fig. 10 Interface, buffer and initiation pulse generator. A 4001 inverts the end of the receive period pulse and derives a $60 \mu \mathrm{~s}$ initiation pulse from the receive period signal.

analogue switch and a transistor amplifier designed for fast recovery from saturation. The 4053 grounds the amplifier input except during the receive period when the receive coils are connected. The passband of the amplifier is 20 Hz to 100 kHz and the gain is approximately 4000 . It is not practical to use a higher gain due to instability and amplifier saturation caused by the decay of current in the transmit coils.

The synchronous detector in Fig. 8 recognises a pulsed alternating signal with a unity-gain sign switched amplifier. The op-amp provides an output of +1 or -1 and the 4053 grounds the input when a useful signal cannot be received. The rise-time of the detector for a square wave is about $25 \mu \mathrm{~s}$.

A sum of exponentials eliminator is shown in Fig. 9. This circuit takes samples of $60 \mu \mathrm{~s}$ duration at the beginning and end of the receive period and simulates the magnetic viscosity effect of the ground by inserting a function as shown in equation (13). The simulated ground effect is subtracted from the input signal to give an output when the response does not match that caused by the ground. The parameters T_{1}, T_{2} and P can be changed to suit the ground conditions. RC combinations are used for the simulation and a $0.32 \mu \mathrm{~F}$ capacitor stores the background level to which the sum of exponentials decays. With the components shown the range for T_{1} is 20 to 240μ s (typically $80 \mu \mathrm{~s}$), for $T_{2} 50$ to $900 \mu \mathrm{~s}$ (typically $800 \mu \mathrm{~s}$) and P is from 0 to 1 .

References

1. Grant, F. S. and West, G. F., Interpretation Theory in Applied Geophysics, McGraw Hill 1965.
2. Colani, C., A New Type of Locating Device, The Instrument, Prospezioni Archeologiche, 1966, pl5-23.
3. Tropin. YU. D., A Contribution to the Theory of the Magnetic Viscosity of Multidomain Rock Grains, Earth Physics, No. 6, 1969, pl00-194.
4. Stacey, F. D., Physical Principles of Rock Magnetism, Elsevier, 1974.
5. Colani, C. and Aitken, M. J., Utilization of magnetic viscosity effects in Archaeological Prospection, Nature, vol 212 No. 5069, pl446-1447, Dec 241966.

To be continued

February cover - correction

The thyristor stack pictured on our February issue front cover was made by Powerstax Division of The House of Power, of Orpington, Kent, not by Pinnacle Electronics Ltd as stated in the caption. We apologise to both companies and to readers for any invonvenience that may have resulted from this error.

Non-echoic acoustic measurement with the H-P 3582A

New Hewlett-Packard spectrum analyser uses digital signal processing

by R. N. Grubb, Auris of Boulder, Colorado

The HP3582A is a recently announced audio spectrum analyser using fast Fourier transform analysis. A number of its features can be exploited in the measurement of loudspeakérs and microphones in non-echoic conditions. These are described and some practical examples of its application given.

THE RECENTLY announced model 3582A spectrum analyser by HewlettPackard is an example of the new generation of instruments which depend on microprocessor technology to provide powerful capabilities at a lower price than has previously been possible. In this case, digital signal processing technology is used to implement a flexible $0.02 \mathrm{~Hz}-25.5 \mathrm{kHz}$ spectrum analyser, using the fast Fourier transform (FFT) of the digitized input signal to calculate the signal spectrum in the frequency domain from a sample of the input signal in the time domain. Although the instrument is a computer system, the mechanics usually associated with the use of a computer are completely transparent to the user, who is presented with a fairly conventionallooking front-panel control layout. The program is, of course, contained in read-only memory.
The 3582 A is not a real time third octave analyser. In fact, one thing which may put off the average audio engineer is the lack of anything but
linear frequency-scale presentations. However, it is inherent in the fast Fourier transform approach that a linear, equally-spaced set of spectral estimates is produced. The resolution and bandwidth of each estimate depends on the length and shape of the time window used to select the signal sample for analysis. Thus a logarithmic presentation of the data would necessarily be only cosmetic, information at the higher frequencies being lost, if a constant proportional resolution were displayed. As the available frequency ranges of the instrument are very extensive, all the information is available, although it is perhaps more time consuming to obtain.
By audio spectrum-analysis standards, the capabilities are unconventional, including measurement of phase, measurement of transfer functions and time-domain signal averaging before analysis.
Measurement of the phase response of audio systems, particularly of loudl speakers, has recently become of interest in the quest for the more realistic reproduction of transients. The 3582A provides in one box the means to make response measurements, including phase, on loudspeakers and other audio trandsucers, without requiring an anechoic chamber, or the roomful of minicomputer used by loudspeaker manufacturers to make such measurements.

Fig. 1. Arrangement required for phase measurement.

Phase

Before proceeding to explain how to use the analyser for this hurpose, it may be useful to some readers to review what is meant by phase response and in particular how it can be measured by a spectrum analyser. The phase response of a device refers to a measurement of relative phase, usually the difference between the input and the output of the device. Unlike amplitude, or spectral amplitude, which is measured with a single connexion to the system under test, two separate connexions are needed to measure phase response as in Fig 1. Thus, although a spectrum analyser is normally a single-input device, with analysers like the 3582 A , one must think in terms of two inputs to measure phase. Simply feeding in a composite signal to one channel of the instrument will give a perfectly good amplitude spectrum, but the phase answer computed will be different for each time sequence analysed because of the lack of a reference. This may not matter in some applications. For instance, if we want to know whether sidebands observed on a carrier are due to amplitude or phase modulation, their phase relationships to the carrier itself as seen in Fig 2 and a single sample

Fig. 2. Identifying amplitude or phase modulation.

Phase spectrum of amplitude modulation sidebands average to 0° or 180° with respect to the carrier

Phase spectrum of frequency modulation sidebonds average $+90^{\circ}$ or -90° with
respect to the currier

Fig. 3. Comparison of two AKG C451 microphones. Lower tràce-amplitude. Upper trace-phase.

Fig. 4. Comparison of two lin diameter capacitor microphone capsules in a stereo coincident pair configuration. Lower trace-amplitude. Upper trace-phase.

Fig. 5. The effect of a foam windshield on a C451. Upper trace - without windshield. Lower trace - with windshield. (Scales are the same as Figures 3 and 4).
analysis will give us the answer we want.

Transfer function

The most straightforward mode of operation to give repeatable phase measurements is that of the transfer function measurement. The two channels of the analyser are connected across the input and the output of the device to be tested and one of the two built-in noise sources connected to the input. The analyser now plots the ratio of the amplitudes and the difference in the phase of its two inputs versus frequency.
This transfer function measurement
capability can be applied very neatly to the measurement of microphones. By connecting two microphones, one of which is to be regarded as the standard, to the two inputs of the analyser and placing them close together and in the sound field of a loudspeaker fed from the analyser noise source, their responses can be compared directly and very quickly. Figure 3 shows the result of comparing two nominally-identical C451 microphones with CK1 capsules. This disclosed the interesting information that although the microphones are well matched up to 15 kHz , the two differed by nearly 6 dB at 17.5 KHz . In this case, since neither microphone could be regarded as a standard, it was not possible to say which microphone or whether one or both was at fault. Exchanging the capsules on the microphone bodies showed the problem to be in the capsules and not in the microphone electronics or the amplifier chains.

The upper trace shows the phase difference. The constant phase slope at low frequencies shows that the "test" microphone was slightly in front of the reference microphone and it was possible by careful adjustment of the relative microphone position to make the phase slope zero. It is interesting that the difference between the capsules shows up in the phase at a lower frequency than in the amplitude. One thing to note in this and in most of the other examples shown is that the lowest-frequency point plotted by the analyser in the zero frequency start mode is in fact actually 0 Hz , i.e., d.c. and the position of this point depends on the analyser amplifier d.c. offsets or externally applied d.c. In this case, of course, the microphone amplifiers are a.c.coupled, so the zero frequency point is quite meaningless.

Figure 4 shows another comparison of two microphones, in this case two lin cápacitor capsules mounted one above the other in the same case and designed to be used as a coincident stereo pair. The lower trace is the magnitude again. This showed a good match at all frequencies, except in the region 3 9 kHz , where there are $2-3 \mathrm{~dB}$ differences. Some experiment and the use of another microphone as a comparison standard showed that the irregularities were only present in the lower of the two capsules and were very sensitive to the angle of the microphone in the vertical plane to the direction of the incident sound field. This seemed to show that the problem was due to diffraction effects at the microphone case, the lower capsule being much closer to the case than the upper.

Yet another interesting comparison is shown in Fig. 5. This is the pair of C45ls again, but this time the stored trace facility has been used to show the effect of the standard foam windshield on one of the microphones. The effect is easily measurable and amounts to nearly 3 dB
at 15 kHz (unfortunately, I forgot to illuminate the graticule for this photograph!)

Impulse testing

All the preceding three examples were measured in a normal room with some acoustic treatment, but nevertheless far from anechoic. Thus, the sound field at the microphones being compared is composed of direct and reflected components. The comparison results have to be based on the assumption that the microphone polar responses are similar. It is only possible by this method to compare a cardioid microphone with another cardioid or an omnidirectional one with another omnidirectional microphone, etc. Providing the pair of microphones is not too far from the source compared with the dimensions of the room, and that the room is reasonably non reverberant, then small errors in polar response should have little effect on the comparison. However, we can do this kind of measurement in a non-anechoic room without these restrictions by using the capability of the instrument to analyse the impulse response of loudspeakers and microphones and present the results in the more familiar terms of amplitude and phase and it is to this, probably least familiar, mode that I now turn.
Fourier transform theory tells us that a zero width pulse contains equal energy per unit bandwidth (power spectral density - p.s.d.) at all frequencies, i.e., it possesses an infinite bandwith. Of course, this is a mathematical abstraction because, unless the impluse is infinitely large in amplitude its energy in any particular bandwidth will be infinitely small. Fortunately for any given audio bandwidth, it is easy to produce an impulse sufficiently narrow for the p.s.d. to be flat. The theory tells us that the power spectrum of a pulse of width t is

$$
P(f)=\left(\frac{A \sin \pi f t}{\pi f t}\right)
$$

This function, the familiar $\sin x / x$, is plotted in Fig. 6. By choosing t to be small enough, we can make the p.s.d. as flat as we wish over the working bandwidth. For instance, it is easy to calculate that a 1μ s wide pulse is only 0.01 dB down at 25 kHz , the maximum band-

Fig. 6. The function $\sin \mathrm{x} / \mathrm{x}$.
width of the analyser. A $10 \mu \mathrm{~s}$ pulse is only $\approx 1 \mathrm{~dB}$ down. At the rear of the 3582 A is a t.t.I.-level impulse output. This gives a positive-going pulse which is $\approx 1 \mu \mathrm{~s}$ long at the widest analysis bandwidth (25 kHz) and which increases in width as the analysis bandwidth is reduced. If this output is connected to the input of the analyser, the displayed amplitude spectrum will show the first of the problems of impulse analysis which has to be carefully considered in order to obtain valid results. Indeed, the analyser shows a flat spectrum but, as the sensitivity is increased to bring the observed spectrum above the baseline the input channel overload light rapidly. comes on. In fact, it is impossible to get more than a 20 dB measurement range above the noise. floor. This, of course, is because the test signal has a very high ratio of peak to mean value, and the analyser input dynamic range, which is set by its analogue to digital converter, only permits this limited range in the spectral domain. This situation can be improved considerably, however, if an external impulse source is used. As calculated above, a pulse of ten times the width $(10 \mu \mathrm{~s})$ is about 1 dB down at 25 kHz . This gives another 20 dB of analysis dynamic range, which is adequate for nearly all acoustic testing; it is easy to correct for the small loss at high frequencies of the test signal, if 1 dB is important.

Phase

Having developed the test signal, the next question to consider is what is meant by the phase of the test signal and how the analyser measures it. The reference, in this case, is set in the time domain by the position of the time window, in which the analyser samples the input signal. At a time t_{0} one can think of all the reference frequencies starting simultaneously at zero phase (zero amplitude for a cosine wave). If the impulse is positioned at t_{0}, then its spectrum consists of all frequencies also starting at zero phase and the analyser will read 0° at all frequencies. If the impulse is displaced from t_{0} then there will be a progressive displacement, increasing with frequency, in the analysed phase expressed by the formula for the group delay introduced by the displacement

$$
\frac{\Delta \phi}{\Delta f}=\Delta t \times 360^{\circ}
$$

(ϕ in degrees, f in Hz .)

where $\Delta \phi / \Delta f$ is the phase slope with frequency. For a positive delay (signal later than t_{0}) the phase of the higher frequencies lags the lower and vice versa. Note that a linear rate of change of phase implies only a delay and no waveform distortion.

In the $3582 \mathrm{~A}, t_{0}$ is set at the middle of the time window when the 'flat top' or

Hanning passband shape is selected, or at the start of the time window when the 'uniform' passband shape is selected. The latter is the passband intended for transient analysis. In the former cases, the passband shape is set by amplitude weighting in the time domain so that a transient at the beginning or end of the time window would not be analysed correctly. To be able to interpret the phase readout from the analyser, it is necessary to place the impulse close to t_{0}, because a large phase slope due to a time difference will obscure the properties of the system under test and, if too large, renders it discontinuous, because the discrete samples computed by the analyser are not close enough together to resolve the rapid phase change. To adjust the timing, the analyser can be operated in

Fig. 7. Sound paths for direct and reflected sound in a small room.

Fig. 8. Typical loudspeaker time domain response when driven by an impulse.

two ways and can be thought of more like an oscilloscope. In fact, the timedomain sampled waveform can be selected for display on the c.r.t.; this is an almost indispensable mode for setting up the analyser for trantient analysis. In the free-run mode, the instrument repeatedly starts new time windows as soon as it is ready to analyse new data. The rear-panel impulse outout occurs at the start of each time window. Alternatively, the analyser can be triggered like an oscilloscope by an input signal on channel \mathbf{A} or by a t.t.l. level pulse at a rear-panel input.

Echo gating

The advantage of using a transient signal to analyse the response of acoustic devices is that it is possible to suppress the effect of room reflections entirely without having to work in an anechoic room. To a close approximation, sound travels 1 foot per millisecond: the typical response of a loudspeaker to a $10 \mu \mathrm{~s}$ wide impulse is over in $2-3 \mathrm{~ms}$, depending on the physical size of the cabinet. Even in a quite small room with a loudspeaker 3 to 4 feet from the floor and the measuring microphone 8 feet away, the first room reflection will arrive at the microphone $3-4 \mathrm{~ms}$ later than the direct sound. Figure 7 -shows the situation. A typical time domain response of a loudspeaker to a $10 \mu \mathrm{~s}$ wide impulse is shown in Fig 8, which was taken from the analyser screen, with the instrument set on the $0-25 \mathrm{kHz}$ range. On this range the time window is $\approx 5 \mathrm{~ms}$ long and, by controlling the trigger time, the transient picked up by the measuring microphone can be positioned near the centre of the time window with the first reflection just outside the window. This enables the amplitude response to be obtained, but as explained above, the transient should really be positioned near the start of the time window if the phase response is desired. Since the time window gets longer as the analysis bandwidth is reduced (necessary if the

Fig. 9. Timing diagram for impulse measurements on loudspeakers.
low frequency response is to be examined in detail), an electronic signal gate is needed so that the first directpath signal can be isolated. To do this, and to be able to adjust all the delays. correctly and generate the test impulse required some auxilliary equipment in addition to the analyser itself. This is unfortunate because it seems that it would have been quite simple to build all the required functions into the analyser in the first instance.*
Figure 9 shows the overall timing and gating required. Because the analyser time window must be started later than the impulse sent to the loudspeaker, it is best to generate the measurement repetition rate externally. This should be set to the highest rate which allows, all room responses to die out before the next pulse.

Two delayed trigger pulses are then needed - one to start the analyser time gate at the correct time with respect to the transient picked up by the measurement microphone, and one to start the signal gate. A convenient way to get the first delay is to use a second microphone slightly closer to the loudspeaker under test and feed its amplifiedoutput to channel A of the analyser as the trigger signal. The measurement microphone output is fed to channel B. The delay is adjusted by setting the relative distances of the two microphones to bring the received transient just at the start of the time window on channel B. Channel A should also be examined to make sure that the trigger point on the transient is a stable one.

It is very important to make sure that all the significant energy from the transient radiated by the loudspeaker is included in the time gate. This can be checked both by inspection in the time domain and by changing the signal gate window over a small range and seeing if it affects the transformed frequency and phase response. With high quality loudspeakers of small dimensions, it seemed the response died essentially to zero after about 3 ms , and it seemed to be possible to get a clean separation between the direct arrival and the first reflected arrival in a room with a smallest dimension of 8 feet. With larger loudspeakers or units with pronounced resonances, this may not be possible and it would be necessary to use a larger room.

The delay mechanism for the signal

Fig. 10. F.e.t. signal gate.

Fig. 11. Frequency and phase response of a Spendor BC1 loudspeaker measured with an impulse, a) $0-25 \mathrm{kHz}$, b) $0-2.5 \mathrm{kHz}$.
gate and the signal gate itself need to be electronic. Commercial pulse generators can be used to generate these and the basic impulse and its repetition rate or, with the aid of a few digital i.cs, a special generator and controller could be assembled. Some commercial signal gating devices may be satisfactory in this application - a simple shunt f.e.t. switch such as is shown in Fig. 10 works well. It is most important that the switch does not introduce appreciable transients itself in the signal path. When the analyser bandwidth is reduced, the time window becomes longer and it may be necessary to readjust the system repetition rate. Also, as discussed previously, the impulse length must be increased proportionately to preserve approximately constant spectral power density.

Practice

Unfortunately, no measuring technique is completely free of disadvantages and the gating-out of room reflections is no exception. The problem is that of determining whether the initial response of the loudspeaker really has died away or not. It turns out that the use of a time sample of length t produces an uncertainty in the value of the spectral amplitude points for all frequencies roughly less than $1 / t$ in frequency. Why the effect is an uncertainty and not just a calculable loss can be seen by considering a couple of simple examples. If the device being analysed is perfect (i.e. a piece of wire) then locating the time window would clearly have no effect,

Fig. 12. Frequency and phase response of a Chartwell LS3/5A loudspeaker mea. sured with an impulse. a) 0.25 kHz , b) 0.2 .5 kHz .
because the input impulse signal has a zero value at all times except for a small interval near zero time. However, if the device had a low-frequency cut off caused by the equivalent of a single pole RC network, then its response to the impulse would have an overshoot following the impulse which returns to the baseline exponentially with a time constant of RC seconds. In this case, a significant error will be made in the low-frequency response measurement unless the time window is maintained for 5 or 6 time constants, so that the response has reached zero for all practical purposes. Locating the impulse response at a point where the net remaining area under the response is negative will result in an apparent enhancement of low frequencies well below $1 / t$ and vice versa. Thus the effect of the truncation depends entirely on the exact form of the impulse response.

Fig. 13. Apparent response of a BC 1 with the signal gating disabled and the first room reflection included.

Figures 11 and 12 show typical results obtained in the author's studio with a Spendor BC1 and a Chartwell LS3/5A. The phase responses clearly show the effects of the crossover in the case of the Chartwell as a change in time delay (phase slope) starting at $\approx 3 \mathrm{kHz}$. With a little more flexible arrangement, the average phase slope could have been brought closer to zero with resultant ease in interpretation. In all cases, the measurement microphone was about on axis and 6 feet from the loudspeaker. Figure 13 shows the effect of disabling the signal gate and allowing some of the room reflection to be analysed! I found that these loudspeaker measurements were relatively unaffected by the microphone used, providing it was a capacitor type and of professional quality, since these microphones invariably have a much flatter response than monitor loudspeakers. If a standard measuring microphone is not available, then a $1 / 2$ in diameter, omnidirectional capacitor microphone such as the AKG C451 with a CK2 capsule would be the best second choice. The examples shown were made with this same microphone but with a CKI capsule, which probably does affect the results somewhat. In all cases the low frequency response below about $2-300 \mathrm{~Hz}$ appears to be attenuated
compared with the published responses of these particular speakers, so it must be assumed that some truncation of the impulse response was taking place.
Care should be taken not to overdrive the loudspeaker with the impulse: A few watts peak power should be all that is required. The sound should be that of a quite quiet tick similar in volume to that of a typical alarm clock. If the measurement conditions are quiet, then the response can be obtained with only one impulse. However, if you don't live in the country or have a well isolated studio handy, there is no need to despair; use the last unique feature of the analyser, time domain averaging. This adds together, algebraically, each successive sample at the same time with respect to the trigger. The wanted signal is preserved but non coherent background noise cancels itself on the average. Thus, not only do you not need an anechoic room to make loudspeaker measurements, you do not even need a quiet one. The examples in Figs. 11 and 12 used a signal average of 16 impulses.
All the comparison tests of microphones described earlier can be better done using a loudspeaker excited by an impulse with the appropriate delays and gating. In this case, since both signal channels will be needed for the measurement, the rear-panel t.t.l.-
level trigger input must be used Absolute measurement of microphone response requires an acoustic impulse generator of known characteristics. It has been reported in the literature that a high-voltage spark discharge or an exploding wire forms a useful source for this purpose, providing the construction of the electrodes is such that the sound radiation is unimpeded. However, the lauthor has not yet tried this.

* It is possible to do the signal gates within the instrument using the IEEE 488 bus programing input. However, this means significant additional complication and expensè.

References

${ }^{1}$ Hewlett Packard Application Note, Understanding the HP3582A Spectrum Analyzer.
${ }^{2}$ J. M. Berman and L. R. Fincham. The Application of Digital Techniques to the Measurement of Loudspeakers. Journal of the Audio Engineering Society. June 1977, Vol 25, No. 6, pp. 370, 384.

EEV provides bright lights for ATV games

A large scale, computer-controlled electro-ic display board supplied by English Electric Valve Co. can be seen by television viewers of the Bob Monkhouse "Family Fortunes" panel game on Sunday evenings.
The main body of the display consists of 300 "character display tubes" (a form of c.r.t. costing about $£ 100$ each), which EEV say offer very high variable brightness, low power consumption and electronic switching with low level logic. The control logic, including a keyboard and v.d.u. control console, includes an Intel single board computer and the complete installation is said to have cost ATV about $£ 80,000$.

Cross-sectional view of the EEV character display tube. The flying lead grid connections are for multiplexing; the "expected life" of the tube is 40,000 hours or about five years.

Clock timer - 2

'Memory circuit, construction and testing

By R. D. Clemow and T. C. Carden.

Numerical data from the keyboard is encoded to b.c.d. and fed to the memory data inputs. Four of the memory address pins are used to address an alarm time and are driven by a 4 -bit binary counter. Two of the pins address the four digits of the alarm time and are connected directly to the A and B multiplex control lines from the clock. In the Set mode the alarm key clocks the counter and accesses the memory locations which store the next alarm time. In the Run mode, control line C clocks the counter so that the alarm times are scanned at one every 6 ms . The read/ write control circuit ensures that only the correct memory locations are used.
The memory input circuits are shown
in Fig. 5 and Fig. 8. To set an alarm time, S_{2} is switched to Set and S_{3} to Alarm which takes Y low. This transition is differentiated by C_{10} and R_{25}, see Fig. 8, and takes pin 12 of $\mathrm{IC}_{17 \mathrm{~b}}$ momentarily low. The output of $\mathrm{IC}_{17 \mathrm{D}}$ goes low which sets both Q outputs of IC_{6} high and also resets IC $_{7}$ via IC ${ }_{19 e}$. In Fig. 5, if no key is pressed, the outputs of IC_{1} are all high and data valid is low. If a numerical key is pressed, an inverted binary code of the number appears at IC_{1} output, data valid goes high and the first monostable in IC_{23} is triggered which in turn triggers the second. This produces a 15 ms write pulse at pin 5 of IC_{23} and, because the first monstable has a period of about 150 ms , the second monostable cannot
be retriggered by contact bounce, see Fig. 9. The write pulse clocks $\mathrm{IC}_{6 \mathrm{a}}$ in Fig. 8 and the \bar{Q} output goes high which clocks $\mathrm{IC}_{6 \mathrm{~b}}$ whose Q output goes low. The Q outputs of IC_{6} are compared with the multiplex control lines A and B by exclusive NOR gates $\mathrm{IC}_{15 \mathrm{a}}$ and $\mathrm{IC}_{15 \mathrm{~b}}$, and the output is high only when the control lines are both low. The write pulse from IC_{23} is delayed by R_{27} and C_{11}, to allow IC_{6} to be clocked, and is gated to the memory r / w pin if data valid is high and all three multiplex lines are low. Data present at the memory inputs is then written into the tens-of-hours locations for the first alarm time. Pressing a second key clocks $\mathrm{IC}_{6 \mathrm{a}}$ again so that its Q output goes high. Therefore, writing

can only occur when control line A is high and B, C are low which means that the data is written into the hours location of the memory. This procedure is repeated for the tens-of-minutes data. If a mistake is made, pressing four more keys overwrites the incorrect data. When the first alarm time has been set. the alarm key is pressed which triggers the second monostable in IC_{22} and produces a low advance-alarm pulse at the \bar{Q} output. This pulse is gated through IC_{170} to the set inputs of IC_{6} so that the Q outputs are high. The advance-alarm pulse also clocks IC_{7} via $\mathrm{S}_{2 \mathrm{~b}}$ and $\mathrm{S}_{3 \mathrm{~b}}$ so that the memory locations corresponding to the second alarm time are addressed, see Table 2. If a numerical key is released in less than 15 ms the datavalid line goes low to force the memory r/w pin high and prevent the writing of false data.

Memory output circuit

A display selector switches the actual time or the alarm time and is controlled by the Run-Set and Alarm-Day switches. A comparator compares the actual time with the output from the memory and the comparison detector recognises an agreement if the alarm is enabled. The output circuit then drives a relay or other suitable device. Because

Fig. 10. Memory output circuit and comparator.

Table 2 Memory truth table
the output drive capability of the memory is only one t.t.l. load, each output is buffered and inverted to pro-
duce non-inverted b.c.d. as shown in output is buffered and inverted to pro-
duce non-inverted b.c.d. as shown in Fig. 10. Data is selected from the memory or the b.c.d. time output from memory or the b.c.d. time output from
the clock by IC_{4}. When Y is low in the Set-Alarm mode the alarm times are
displayed as they are set. As only the Set-Alarm mode the alarm times are
displayed as they are set. As only the hours and minutes are set, seconds are blanked by $\mathrm{IC}_{21 \mathrm{~d}}$. When Y is high in the blanked by $\mathrm{IC}_{21 \mathrm{~d}}$. When Y is high in the
Run mode the output of $\mathrm{IC}_{2 \mathrm{dd}}$ is low and the time is displayed normally. The memory output data is compared with the multiplexed time from the clock by

Fig. 9. Single write pulse
IC_{3}. Normally, IC_{7} is clocked by control line C via $S_{2 b}$ so that the alarm times are fed out from the memory in sequence at one every 6 ms . This sequence repeats after 16×6 i.e. 96 ms . The comparator output in Fig. 10 is high when all four bits of a digit in the time agree with the memory data. The two inputs to $\mathrm{IC}_{14 \mathrm{c}}$ are high only when the alarm is enabled by $\mathrm{IC}_{18 d}$ output going low, and during the first four seconds of a minute, i.e. tens-of-seconds A, B and C, and seconds C and D are all low. The output of $I C_{13 c}$ is high only when the above conditions are met, control line C is low, i.e. tens-of-seconds or seconds data is not being processed, and the clock is not being updated at 100 kHz i.e. the set-timepulse line is low. Therefore, if a true comparison between the stored alarm time and the displayed time exists, a 4 ms high pulse appears at the output of $\mathrm{IC}_{13 \mathrm{c}}$. The 4 ms pulse is repeated at 96 ms intervals until four seconds past the start of the minute. However, during this time shorter pulses may appear at $\mathrm{IC}_{13 \mathrm{c}}$ output such as a 3 ms pulse produced by agreement of three consecutive digits in one alarm time. Pulses which are not 4 ms long are rejected by the comparison detector in Fig. 11. The comparator output goes low for 2 ms every 6 ms when control line C goes high. Capacitor C_{16} therefore discharges through D_{20} to around 0.7 V in the 2 ms period, and then charges via R_{43} when the comparator output goes high. Resistor R_{43} is adjusted so that C_{16} charges sufficiently to switch Tr_{9} on if the comparator output remains high for 3.5 ms . When the collector of Tr_{9} goes low, the 555 monostable triggers and produces an output pulse adjustable from 4 to 15 s by R_{46}. This method of detecting the 4 ms pulse provides high noise immunity and is easy to adjust although an error of up to 96 ms can be produced in any serial alarm-time output. A simple relay driver for the comparison detector output is shown in Fig. 12. Diode D_{22} protects Tr_{10} and R_{49} limits the voltage across the relay. Resistor R_{46} can be used to adjust the duration of the alarm.

Construction alignment and testing

Construction of the timer depends largely on how the clock has been built. In the prototype a Rugby clock was assembled on two 8×8 in boards and the timer was built on a third board. The keyboard and day indicator were mounted on the board inside a case to prevent unauthorised setting. The remaining components were positioned carefully to minimise wiring. The memory must be handled carefully to avoid damage by static charges and the 5 V supply to the i.cs should be decoupled at regular intervals with 10 nF capacitors.
Alignment and testing is best carried out on individual sections. After constructing the power supplies check that no switching spikes are present on the

Fig. 11. Comparison detector. Resistor R_{43} is adjusted so that pulses shorter than $4 m s$ are rejected.

Fig. 12. Relay driver.

Fig. 13. Circuit waveforms.

battery charger and control circuit when the mains is switched on and off. Adjust R_{1} until the charging current is about 45 mA and then disconnect the -battery. Next, construct the keyboard encoding and debouncing circuit and insert all of the i.cs except for the memory. Check that pins 4 and 12 of $1 C_{22}$ give single 150 ms pulses when the respective keys are pressed and only when S_{2} is switched to Set. Check that pin 5 of IC_{23} gives a 15 ms pulse when any numerical key is pressed.
Assemble the day-of-the-weekindicator and check that the day advances each time the day key is pressed. To test the midnight-pulse circuit, set the clock to 23.59 by injecting pulses into the divider chain with the clock -aerial disconnected, and check that the day indicator advances by one when the
display changes to 00.00 .00 . Construct the alarm-enable/inhibit section and set the switches to Set Day. Test that the alarm-enable l.e.d. switches on by pressing key 1 , and off by pressing key 0 . Check that the data is recycled correctly by pressing the Day key seven times.

Construct the read/write control circuit and comparator, then modify the clock for display blanking and switch-on-reset as shown in Fig. 8 and Fig. 4 respectively. Insert the memory, check that the time is displayed with S_{2} at Run and that only hours and minutes are displayed with S_{2} at Set and S_{3} at Alarm. These digits will be random due to the unprogrammed memory. Pressing a numerical key should write into the

Microwave radar alarm

Improvements to the 1977 design

Abstract

Accumulated experience since publication of Mike Hoskings design (July \& August 1977) has led to a number of useful comments being received on the operational performance which, when combined with some circuit re-design, has resulted in a generally improved alarm system. This article presents the new system, which still has Home Office type approval for indoor use.

The alarm operates on the Doppler effect whereby a frequency shift occurs when a signal source and a receiver are moved relative to each other. For a given source frequency, the Doppler shift depends only on the relative radial velocity and is expressed by $f_{d}=2 V / \lambda$, where V is the radial velocity, and λ is the source wavelength. In this intruder alarm, the source and receiver are combined together into a single module, which then operates like a single radar.

The transmitter is a Gunn device mounted in a resonant cavity and produces a c.w. signal. This signal spreads out over a wide beam and when positioned in a room portions of the signal are reflected back into the receiver. The receiver front-end consists of a single Schottky-barrier mixer diode, operating as a superhet by mixing a directlycoupled portion of the transmitter power with the reflected signal. A difference or beat frequency is then extracted from the mixer output ter. minals.

When no movement is present, the received radar signal is at exactly the same frequency as that transmitted and so there is no output frequency (only a rectified d.c. level) from the mixer. As soon as any movement occurs, such as from an intruder, a Doppler frequency shift is imposed upon the reflected signal and appears at the mixer output. The appearance of such a signal can
then be used to operate a remote alarm system.

Such is the basic simplicity of the alarm, but when account is taken of false alarms, transient movements, r.f. interference and special triggering requirements, then careful circuit design is necessary. It is in the amplifying, filtering, triggering and control sections that the up-dates and improvements to this intruder alarm have taken place.

In this country, the emission characteristics of the radar module are specified by the Home Office and for this application, the transmitter frequency is 10.687 GHz . From the equation, the linear relationship between Doppler frequency and radial velocity is 71.25 Hz for each metre per second (or 31.85 Hz per mile $/ \mathrm{h}$).
In the complete circuit of the alarm shown the power supply is essentially the same as the previous supply to the radar module and provides an adjust-

able, highly stable output voltage with low ripple. This aspect is important as it minimizes the a.m. and f.m. content of the transmission. The main differences from the original version are
-fewer components
-conversion to a single-sided supply rail, making battery operation more convenient
-active filtering
-modification to the diode pump circuit to give increased immunity to interference and transient responses
-automatic switch-off and alarm reset after sounding for a period.

At the heart of the electronics is the RC4136 quad op-amp. Each individual op-amp is similar to the popular 741, but has a lower input noise figure. The first stage is used as a filter with a fixed gain of about 60 dB , leading into a variablegain second stage. Following the second stage is the diode pump, with the addition of a transistor to act as a fast
discharge path and so prevent the circuit charging up on short-lived inputs such as might be generated by interference, insects or twitching curtains. This, together with the mains and i.f. input filter gives an excellent immunity to false alarms and ensures reliable triggering on more sustained movement.

A feature of the original circuit which is retained, but implemented differently is a built-in delay of about 45 seconds from the time of initial switch-on to when the alarm will start to respond. This allows one to leave the room after switching on the alarm. The delay is provided by the charging time constant of R_{1} and C_{1} to switch the output level of $I_{2 c}$, and hence the correct noninverting input of $\mathrm{IC}_{2 \mathrm{~d}}$. Conversely, a new feature is now provided by the R_{2}, C_{2} feedback combination which will automatically switch off the subsequent transistors after they have been on for about half a minute. This is a relatively long time for a loud alarm to sound and is considered sufficient to scare off an intruder. It also removes the embar-

Printed circuit board for this improved version of the 1977 intruder alarm is available from Intignex Ltd, Portwood Industrial Estate, Church Gresley. Burton-on-Trent, Staffs DE 11 9PT, for E3. 75^{\prime} plus v.a.t.
rassment of returning home after a weekend away only to face one's neighbours, sleepless after an incessantly ringing alarm. After the re-set action, the alarm is, of course, returned to the "on-guard" state. Finally, the alarm circuit suggests a relay, with the coil connected in parallel with the sounder, so that a set of contacts may be provided for activating additional external circuitry.
Switch $S_{1 a}$ is a push-button type which will manually re-set the alarm and is also connected to a jack socket for connection to a remote switch. Thus, one has the choice of deliberately triggering the alarm on entering the room and re-setting at the alarm itself thereby providing a check that it was functioning satisfactorily, or else re-
setting from some other, concealed, position.

A printed circuit board has been designed for the new alarm and all the components are intended for board mounting. The original idea has been maintained, enclosing this board with a chassis and fitting it with a cover to disguise the complete assembly as a book. The alarm thus becomes smart in appeararce and can be situated unobtrusively on a bookcase or table.

Constructional points

The mixer diode in the radar module is easily damaged by static and similar precautions to the handling c.m.o.s. devices should be taken. As supplied, a shorting link is attached which should only be removed after assembly is finished.

Wiring associated with the input circuitry should be kept as short as possible to avoid noise pick-up.

The Gunn transmitter will be permanently damaged by a reverse polarity. Set the +7 V supply to within $\pm 0.1 \mathrm{~V}$, using R_{3} with a dummy load resistor of $47 \mathrm{ohm}, 1 \mathrm{~W}$ in place of the Gunn device and then remove the dummy load and connect to the transmitter.

When the complete alarm is reassembled, the final operation is to set the sensitivity using R_{4}. This is done by observing the l.e.d. flash in response to movement in front of the alarm. It continues to flash whilst the gain is increased with R_{4}, until a point is reached when self-oscillation begins and the l.e.d. remains permanently on. Decrease the gain from this point until the l.e.d. just remains off when no movement is present and the alarm will be at maximum sensitivity.
In common with all devices that emit r.f. signals, approval to operate is required from the Home Office. In this instance, the complete alarm system has been granted Home Office type approval and provided the circuit shown is used, a licence will be granted on application (see page 82).

Performance specification

Transmitter frequency
$10.687 \mathrm{GHz} \pm 12 \mathrm{MHz}$
Transmitter output power 10 mW max.
Antenna gain ...5 5dB above isotropic
Out-of-band radiation 4OdB below carrier
Operating temperature range
-5 to $+40^{\circ} \mathrm{C}$
Range
approx 10 m against a man-sized object
Switch-on delay approx 45 s
Automatic re-set after approx 30s

Literature Received

Range of professional electron tubes, cathode ray tubes, vacuum capacitors and special products such as reed capsules and gas detectors are described in the EEV/M-0V abridged data book for $1980 / 81$. An equivalents index is included. Available free of charge in response to requests on company letter heads

A colour brochure on the production and design processes used in the CELLMOS integrated circuits by GEC is available free from GEC Semiconductors Ltd, East Lane, Wembley, Middx HA9 7PP

WW 401
Catalogue of edge connectors is produced by Molex Electronics Ltd, Holder Road, Aldershot, Hants.

WW 402
A leaflet giving details of a range of toroidal power transformers rated up to 130 VA , in p.c.b. or leadout style can be obtained from Avel-Lindberg Ltd, South Ockenden, Essex RM5 5TD.

WW 403

A suite of modules forming STATUS - an information retrieval system for use with many types of computer - Is described in a leaflet by BNF Metals Technology Centre, Grove Labs, Dechworth Road, Wantage, Oxfordshire OX12 9BJ.

WW 404
BS4739, entitled "Expression of the properties of cathode-ray oscilloscopes," is identical with IEC351 and is in two parts. Part 1 deals with general-purpose types, Part 2 being concerned with storage instruments. Part 1 at $£ 12.50$ and Part 2 at $£ 4.50$ can be obtained from BSI Sales Dept, 101 Pentonville Road, London N1 9ND.

A booklet on the Telpro range of hand tools and production equipment for electronics can be had from Tele-production Tools Lid, Stiron House, Electric Avenue, Westcliff-onSea, Essex SS0 9NW.

WW 405
Three IEC publications have recently been received; IEC147 details a measuring method standard for i.cs; IEC 430 is on test procedures for high-purity Ge detectors, and IEC647 is concerned with dimensions for magnetic oxide cores. They are obtainable from the International Electrotechnical Commission, 1211 Geneva 20, Switzerland at S.fr. 70 (147), S.fr. 32(430) and S.fr. 16 (647).

The first issue of a monthly newsletter from Rapid Recall, intended to be of interest to anyone concerned with micro-processors or memories, can be had from 6 Soho Mills, Woodburn Industrial Park, Wooburn Green, Bucks.

WW 406

A method of using a computer to write programs for a computer has been developed by Compelec, who call it Instant Software. A leaflet describing the facility and how customers can make use of it is obtainable from Compelec Electronics Ltd, Fourth Floor, 14-15 Berners Street, London W1P 3DE

WW 407
A film entitled "The challenge of choice," written by David Weir and directed by James Hill for STC, examines the effect of developments in telecommunications on people's lives. A brochure containing the script is
available from STC at STC House, 190 Strand, London WC2R 1DU.

WW 408
A bulletin on the various sound systems which can be assembled from equipment made by Millbank, describing several specimen installations, is obtainable from Millbank Electronics Group Ltd, Uckfield, Sussex TN22 1PS.

WW 409
Connectors of various types, including those for printed boards, modular connectors and other multi-way and single-pole kinds, are illustrated and briefly described in a leaflet from Hypertac Connectors, Chronos Works, North Circular Road, London NW2-7JT

WW 410

A vapour deposition system for production work on semiconductor materials is the subject of a leaflet, available from Metals Research Ltd, Melbourn, Royston, Herts SG8 6EJ

WW 411
Multiplexed monitoring and control systems made by Vindicator is described in a leaflet from the UK representatives, Fieldtech Ltd, London (Heathrow) Airport, Hounslow, Middx.

WW 412
Performance optimization, fault-finding and evaluation of minicomputer using logic analysers is the subject of an application note from Hewlett Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks.

WW 413
Analogue and digital test-meters made by Sanwa are described in a catalogue from Quality Electronics Ltd, 24 High Street, Lydd, Kent TN29 9AJ.

WW 414
An introduction to laser velocimetry and details of systems and components available are offered in a publication from Biral, Bristol Industrial Research Associates Ltd, PO Box 2, Portishead, Bristol BS20 9JB.

WW 415
Weighing cells type Z7, which are shearbeam transducers for tensile and comprehensive loading, are the subject of a leaflet from the manufacturers, HBM, Stonefield Way, Ruislip, Middx HA4 0JT.

WW 416
The 1980 catalogue from Livingston Hire is now available from Shirley House, 27 Cam= den Road, London NW1 9NR.

WW 417

'Radio navigation and radar'
 The article on 'Radio Navigation and radar'

 in the January issue, p 47, contained an error, pointed out to us by LCDR R. E. Burke, Jr. The description of the Loran-C hyperbolic system on p 48 was in reality that for LoranA. Loran-C is also a pulsed system, working on a 100 kHz carrier, but the time differences are measured on the carrier itself, giving errors of 50 to 300 feet from the starting point on a return trip. Ground wave, LCDR Burke tells us, extends up to 1000 miles, with a position accuracy of 0.25 nautical mile. We apologise for the mistake.
Alternative astable circuits

by Peter Williams Ph.D. Paisley College of Technology

These have generally been designed for special rather than general purpose use. Both transistors go off and on simultaneously. In circuits such as the one shown a long space is obtained by making $R_{B} \gg R_{C}$. Hence the current is only on for a small part of the time and the mean current is low. Similarly astables based on the complementary pair shown earlier in the unijunction model have been used as pacemakers for heart stimulus. In these applications a space to mark ratio of up to $10,000: 1$ is needed to prolong battery life. Such circuits have an additional advantage in that the mean dissipation is also reduced for a given peak output current. The basic principle of the circuit shown is seen by assuming both devices are conducting though not saturated and then switch off. Point A rises sharply because of the positive step at Tr, collector while B corresponding falls. The capacitors then recover with $R_{C}+R_{B}$ determining the rate of recovery and A and B approach and then pass each other. When the difference is about $1 V$ the transistors just begin to conduct and regenerative switching forces A down and B up. The base currents are dependent on the current gains and the pulse duration is relatively short but ill-defined.

The two-transistor astable is often advocated because it can provide anti-phase and square-wave outputs. That facility is easily attainable with logic gates and flip-flops from almost any astable or puise generator and more attention is due to such alternators. The long-tailed pair is the basis of a current-switching astable which operates at much higher speeds because neither transistor need be saturated. In this it is closely linked to the e.c.l. gate with which it can be implemented. The emitter resistor is sometimes replaced by a true constant-current circuit but this is not critical. Provided $R_{c} \ll R_{E}$ the circuit will not saturate; keeping R_{c} low reduces output pulse size, but generally improves the speed of response. Assume Tr_{2} goes into conduction. The fall in collector voltage drives the base of Tr_{1} negative and Tr_{1} cuts-off transferring all of R_{E} 's current to Tr_{2}. As the base of Tr_{1}, recovers toward zero the amplifier enters its linear region. Tr_{1} begins to conduct and current is diverted from Tr_{2}. Its collector voltage rises and regenerative switching carries it up to $+V$. All the current in R_{E} now flows in T_{r}, until the base of Tr_{2} again returns to its linear region and the cycle recommenced. The long-tailed pair is a non-inverting amplifier of finite gain and the circuit is equivalent to a known form of op-amp astable.

A similar conclusion can be drawn about the emitter-coupled astable if it is considered as cascaded common-base and common-collector stages. The long-tailed pair comprises cascaded common-collector and common-base stages. The non-inverting combination having both $A_{v}>1$ and $A_{i}>1$ consists of a pair of cascaded common-emitter stages and this example is treated later. The analysis of this astable is easiest if $R_{E 1}$ and $R_{E 2}$ are replaced by constant-current sources I_{1} and I_{2}. The capacitor must change its p.d. by equal and opposite amounts during succeeding portions of the cycle as the p.d. must always return to its original value at the start of each cycle in any stable oscillator. When the emitter of Tr_{2} goes high. Tr_{1} is cut off and the current in $\overline{\mathrm{C}}$ is I_{1}. When $\mathrm{T} r_{1}$ conducts it pulls the base of Tr_{2} below its emitter cutting it off and the current in C is I_{2}. Hence $I_{1} t_{1}=I_{2} t_{2}$ and the mark-space ratio is unity for $I_{1}=I_{2}$. If R_{c} $\ll R_{E 1}, R_{E 2}$ the voltage steps on the resistors:are small compared to the mean values and the waveforms and frequency differ little from the constant-current case. The circuit is again non-saturating and is capable of high speed.

Current-operated circuits extend the range of possibilities as compared to the restriction of voltage operation. A halfway house is provided where active devices are operated in series from a voltage supply. These are again a specialized sub-group of astables, but can be simple and effective. The version shown is a serial form of the emitter-coupled astable though implemented with junction f.e.t.s as this eliminates a number of bias components.

This circuit has been referred to above and can be approached in more than one way: as a conventional astable in which one of the capacitive couplings is replaced by a direct connection. as one of the iwo-amplifier single capacitor astables similar to a c.m.o.s. astable, or as equivalent to a single positive-gain amplifier with CR feedback. In this last interpretation the two inverting stages perform the same function as the two non-inverting stages of the long-tailed pair and emitter-coupled astables. This emphasizes the danger of "is" statements in electronic circuits. To say that a given circuit "is" a particular type refers only to the way in which the designer or user has decided to partition it. Each redrawing or repartitioning may reveal a new pattern, a new way of classifying it, or even a new class of which it is the first member. This particular astable has still greater significance when related to the classic two-transistor monostable.

Alternative astable circuits

THEORY

From symmetry then, when the transistors are conducting, the emitters are both at $V_{s} / 2$ with the bases $\pm 0.6 \mathrm{~V}$ about that level. The timing is imprecise depending inter alia on $h_{\text {fE }}$. It is only one of a number of such complementary astables and no analysis is offered though the period is primarily defined by $R_{B} C$.

- In this circuit the output voltage step is of magnitude $V_{S} R_{C} / R_{E}$ for a supply of $\pm V_{S}$ as the current in R_{E} is switched between $T r_{1}$ and $T r_{2}$. If the circuit were to have a linear voltage gain A_{v} then the switching thresholds would be at $\pm V_{S} R_{C} / R_{E} A_{v}$ and the appropriate values of V_{1}, V_{2} are

$$
\begin{aligned}
V_{1} & =V_{S}\left(1-\frac{R_{C}}{R_{E} A_{v}}\right) \\
V_{2} & =\frac{V_{S} R_{C}}{A_{v} R_{E}} \\
t_{2}-t_{1} & =\operatorname{qog}_{e}\left[\frac{1-\frac{R_{C}}{A_{v} R_{E}}}{\frac{R_{C}}{A_{v} R_{E}}}\right] \\
& \operatorname{\tau log}_{e}\left[\frac{A_{v} R_{E}}{R_{C}}-1\right]
\end{aligned}
$$

For R_{E}, R_{C} comparable $A_{v} \gg 1$

$$
T \approx 2 \pi \log _{\cdot}\left[\frac{A_{v} R_{E}}{R}\right]
$$

A more accurate análysis uses the transistor exponential characteristics to derive the non-linear transfer function $\mathrm{V}_{0}=k \tanh \left[\mathrm{~V}_{1}\right.$.] From this the condition $\mathrm{dV} / \mathrm{V}_{0} / \mathrm{d} \mathrm{V}_{1}=1$ can be obtained, fixing the switching threshold accurately.

Assume $R_{C} \ll R_{E 1}, R_{E 2}$ so that voltage swing is small. Then charging and discharging currents are approximately constant at V_{S} / R_{E} for supply $\pm V_{S}$ and $R_{E 1}=R_{E 2}=R_{E}$.

Hence the transitions are separated by a time interval governed by ΔV $\approx R_{c} V_{s} / 1 / 2 R_{E}$ (since for T_{1} conducting, R_{c} carries currents in both tails while for Tr_{2} conducting the current in R_{c} is negligible) while the current in the capacitor in each case is $\mathrm{V}_{\mathrm{S}} / \mathrm{R}_{\mathrm{E}}$. Thus $\mathrm{T} \approx 2 . \mathrm{C} \Delta \mathrm{V}$ / $\mathrm{I}=4 \mathrm{CR}_{\mathrm{C}}$.

The above involves a number of approximations that make the result useful as a guide to the behaviour but not an accurate one. It suggests that neither R_{E} nor the negative supply rail have any significant effect on the frequency of oscillation though they directly control the amplitude.

- Circuit behaviour is strongly dependent on the variable fet characteristics.

The voltage step at Tr_{1} collector is $\mathrm{V}_{\mathrm{BE}}(\mathrm{sat})_{2}-\mathrm{V}_{\mathrm{CE}}(\text { sat })_{1} \approx 0.5 \mathrm{~V}$. The voltage available to control the current in the capacitor is too small for a stable well-defined frequency to be achieved. An additional resistor in the base of Tr_{2} helps.

EXAMPLE

A long-tailed pair astable has $R_{C}=R_{E}$ and supply voltage of $\pm 5 \mathrm{~V}$. Assume that the differential output current $\left(I_{0}\right)$ of a long-tailed pair is given by $I_{0} / I=\tanh [V / 2 k T / q]$ where V is the large-signal differential input voltage and I is the tail current. Determine the value of V at which the open-loop voltage gain from input base to output collector falls to unity. Hence determine the amplitude of the waveform at the base and the frequency of oscillation in terms of $\tau=R_{B} C$.

The gain will be half that for the differential output condition i.e. the latter is derived and equated to 2.

$$
V_{0}=I_{0} \cdot R_{c}=1 R_{c} \tanh \left(\frac{V}{2 k T / q}\right)
$$

But $I=\frac{V_{S}}{R_{E}}$ for a supply of $\pm V_{S}$

$$
\therefore \frac{d V_{0}}{d V}=\frac{V_{s} R_{c}}{\frac{2 k T_{\mathrm{AE}}}{q}} \cdot \operatorname{sech}^{2}\left(\frac{V}{2 k T / q}\right)
$$

$k T / q \approx 26 \mathrm{mV}$ at room temperature and substituting for $d V_{0} / d V=2$ etc

$$
\begin{gathered}
2=\frac{5 \times 10^{3}}{52} \operatorname{sech}^{2}\left(\frac{V_{1}}{52.3}\right) \text { where } V \text { is in } m V \\
\therefore \cosh ^{2}\left(\frac{V}{52}\right) \approx 48, \cosh \left(\frac{V}{52}\right) \approx 7
\end{gathered}
$$

but $\cosh \theta=e^{\theta}+e^{-\theta}$

$$
\therefore \frac{v}{52} \approx 1.95
$$

$$
V \approx 100 \mathrm{mV}
$$

The circuit should thus switch when the input base reaches about +100 mV and again at -100 mV giving a peak-peak amplitude of 200 mV .

The collector step voltage is V_{S}. This might lead to saturation and a slowing of the response; reducing R_{C} to $R_{E} / 2$ avoids this but reduces the threshold to 80 mV and the peak-peak amplitude to 160 mV .
For a step of V_{s}, the resistor voltage is raised from $-V$ to $-V+V_{s}$ i.e. from -0.1 up to 4.9 V , decaying to +0.1 V before initiating the switching action again.

$$
\therefore t_{2}-t_{1}=\tau \log _{e}\left(\frac{V_{1}}{V_{2}}\right) \approx 3.9 \tau
$$

From symmetry $f=\frac{1}{T}=\frac{1}{2 \times 3.9 \tau}=\frac{1}{7.8 \tau}$ assuming $R_{B} \gg R_{C}$.
For $R_{C}=R_{\xi} / 2$ the step size is reduced making $V \approx 2.4 V$ but the gain is also reduced

$$
\begin{gathered}
\cosh ^{2}\left(\frac{V}{52}\right)=24 \\
\frac{V}{52} \approx 1.54 \\
V \approx 80 \mathrm{mV} \\
\therefore t_{2}-t, \approx \tau \log _{0}\left(\frac{2.4}{0.08}\right)=\tau \log _{0} 30=3.4 \tau
\end{gathered}
$$

This is a reduction of about 13% for a 50% fall in resistance. This is reasonable stability for a fast and simple circuit.

What's cooking?

The reluctance (for whatever reasons) of the Home Office to introduce a lowpower citizens' band radio facility in the UK is in marked contrast with the open-ended permission given to the public to install crude, high-power transmitters in their homes in the form of microwave ovens. Radioastronomers at Jodrell Bank have investigated (Nature, Vol 282, 6 December 1979) the amount of broadband spurious "out-of-band" emission from typical ovens and have confirmed that this is sufficient to cause interference to extra-terrestrial signals when picked up on the sidelobes of large radiotelescopes at distances up to 20 km or more on some frequencies.
Ovens generally use the "rectified a.c." form of pulsed, self-excited microwave generators on the i.s.m. (industrial, scientific, medical) frequency of 2.45 GHz with a power output of the order of $1-2 \mathrm{~kW}$.
The primary source of leakage of unpolarized radiation is, the report states, from the seals around the oven door: "The seals are non-contacting and seem to consist of a resonant, quarterwavelength choke nominally tuned to 2450 MHz , followed by microwave absorbing material." It is emphasised that while this form of sealing is sufficiently effective at 2.45 GHz to satisfy the UK safety regulations (i.e. exposure to microwave radiation), It fails to give adequate out-of-band suppression to prevent possible interference with other radio services authorized to operate: within the $1-6 \mathrm{GHz}$ spectrum. Elsewhere it has been suggested that harmonic: emission from ovens could prove to be: the major source of interference to 12 GHz reception of television from. direct-broadcast satellites.

The use of large numbers of microwave ovens in residential areas could also prove a major problem for radio amateurs interested in the development of microwave communication at low signal levels.
The Jodrell Bank team complain that for the past ten years they have been urging the Home Office to specify permitted levels of out-of-band spurious radiation from ovens.

A boom in the hobby

A mateur radio in the UK experienced a sharp boom during 1979 and a record 26,981 licences were current in De cember. The number of new licences issued by the Home Office during the year amounted to 3155 , of which 1054 were Class A (all modes, all bands) and 2101 Class B (v.h.f./u.h.f., no morse). Some 2400 people passed the first
"multichoice" Radio Amateurs' Examination held in May 1979 and a considerable number sat the December examination.
The RSGB reports a 10.5 per cent increase in membership with some 4145 new members enrolled during 1979.

It remains to be seen whether these exceptional increases in the hobby were part of a long term trend or were partly the result of the unusual amount of media coverage during 1979 which included the "Open Door" and "Nation. wide" programmes. The British electronics manufacturing industry, however, has benefited only marginally from this boom, with the overwhelming majority of factory-built equipment coming from overseas. While there appear to be no figures on the total UK amateur market, Electronics estimates the US market as worth $\$ 23$-million in 1979 , rising to an estimated $\$ 26$-million in 1980 .

Topics in the air

The New Year brought forth a flurry of "new prefix" activity. East German amateurs appeared under the guise of "Y2" instead of the long familiar "DM" in what seems likely to be a permanent change. A selected 200 Russian amateurs in Moscow, Leningrad, Tallinn, Kiev and Minsk introduced a series of prefixes to mark the country's hosting of the Olympic Games, using RX, RZ, RK and RU prefixes for what are termed "special Olympic hàm operations." Clubi stations in Moscow and Tallinn will| similarly change prefixes on July 1st: and those in Leningrad, Kiev and Minsk: on July 15th. These special prefixes end on August 3rd.

The first complete break in 50 MHz long-distance propagation in more than two months came on December 15th, 1979 when the expected decline in solar flux took effect. A feature of the period of high solar activity was its remarkable freedom from geomagnetic disturbances, normally expected at sunspot maxima. An aspect of v.h.f. propagation in the USA that does not appear to occur in the UK is a regular winter Sporadic E season affecting signals on 28 and 50 MHz .

A 432 MHz amateur television repeater is in operation in the Wellington area of New Zealand, providing opportunities for tv transmission over distances of 60 to 100 miles, with several more in the planning/construction stage. An estimated 50 such repeaters are now operational in various parts of the world. A special "intruder watch" callsign - ZL61W - has been issued by the New Zealand Post Office but will not be used for normal contacts.
A new reciprocal operation agree-
ment between Canada and the USA came into force on January 21 st with exceptionally liberal terms: It allows amateurs of either country while visiting the other to operate without needing to obtain prior written permission. However, since US-type novice and technician licences are not issued in Canada, US amateurs with such licences are still not permitted to operate in Canada.
The Vojvodina Amateur Radio Federation of Yugoslavia has more than 10,000 members and its basic aims are: "to maintain radio links, teach and train young people in electronics and telecommunications and train all members for all-people's defence and social self-protection". The national amateur society in Yugoslavia is SRJ (Savez Radioamatera Jugoslavija).
Special event callsigns in the UK in the series GB4 plus two or three letters are being issued through the RSGB; the GB3 plus two letter calls will in future be used for repeater stations, and GB3 plus three letters for beacons. Special event callsigns in the series GB2 and GB8 continue to be issued.

A number of FCC employees who received callsigns in a manner stated to have been "inconsistent" with official procedures are to be allotted new calls. This follows an investigation into fraudulent upgrading and licensing of stations in recent years.
A special Certificate of Membership has been presented by the Royal Naval Amateur Radio Society to 87 -year-old Mrs F. V. McKenzie, OBE, former VK2FV who was Australia's first YL operator, first qualified woman electrical engineer and founder of the Women's Emergency Signalling Corps (later Women's Royal Australian Naval Service) which trained about 11,000 Australian, American and Indian radio operators during World War 2.

In brief

A new RSGB award for microwave operation will require confirmation of contacts with five "large QTH locator squares" on any of the bands between 1.3 and 24 GHz FCC is expected soon to permit American rtty enthusiasts to use ASCII. . . . A regular moonbounce newsletter is being organized by the Oxford University EME Group (G3WDG, 10 The Crescent, Pattishall, Towcester, Northamptonshire) ... Rev G. C. Dobbs, G3RJV, Hon. Secretary of the "G.QRP-Club" has changed address to 17 Aspen Drive, Chelmsley Wood, Birmingham B37 A linear translator (repeater) on the 1296 MHz band is operating in San Jose, California.

PAT HAWKER, G3VA

Impedance mismatching

A pitfall to be avoided when using Thevenin and Norton equivalent sources

by F. J. Lidgey, Ph. D., B.Sc. Oxford Polytechnic

equivalent source.

Thus $\eta=\left(\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}+R_{\mathrm{L}}}\right)$.

Power transfer from a source into a load is frequently discussed in circuit theory. Also a parameter of interest is the transfer efficiency (η) defined as the ratio of load power P_{L} to total power delivered by the source P_{s}. The proposal of this article is to outline a common error made in calculating η which stems from an incorrect assumption regarding the power delivered by a Thevenin or Norton

With transfer efficiency in mind it is easy to show that a 'mismatching' of load to source impedance reduces power dissipation in the source impedance. For example, in Fig. 1:
$P_{\mathrm{L}}=i_{\mathrm{L}}{ }^{2} R_{\mathrm{L}}=v_{\mathrm{s}}{ }^{2} \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)^{2}}$
$P_{\mathrm{s}}=v_{\mathrm{s}} \cdot i_{\mathrm{L}}=i_{\mathrm{L}}^{2}\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)=\frac{v_{\mathrm{s}}^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}$.
η tends to zero for $R_{L} / R_{s} \ll 1$ and η tends to its maximum value of one for $R_{L} R_{s} \gg 1$. If for example $R_{s}=50 \Omega$ then 80% efficiency of transfer of power into R_{L} occurs for $R_{L}=200 \Omega$ and $P_{L}=64 \%$ of $P_{\text {Lmax }}$. However, there is obviously no optimum choice, as can be seen from the plot of Fig. 2, which shows that for η of 100%, i.e. no power dissipated in the source, then no power flows in the circuit, since $R_{L} / R_{s} \rightarrow \infty$ and $i_{L} \rightarrow 0$.

All this seems quite reasonable and as one would expect, if $\boldsymbol{R}_{\mathrm{s}}$ and v_{s} are really known in any circuit. At first sight, it appears that they are: all that seems necessary is to generate the Thevenin equivalent source, which gives R_{s} and v_{s}; hence, η may be obtained from the expression given previously. This, however, is a fallacy, which can be exposed by the example of Fig. 3.

Taking the special case of $v_{1}=2 v_{\mathrm{s}}$ and $R_{1}=2 R_{s}$, then applying Thevenin's Theorem, the source can be replaced by a voltage source of v_{s} and a source resistance of R_{s}, exactly as in the circuit of Fig. 1. Clearly, P_{L} is the same but is P_{s} ?
For Fig. 3:

$$
\begin{aligned}
P_{\mathrm{s}} & =\left(2 v_{\mathrm{s}}\right)^{2} /\left(2 R_{\mathrm{s}}+\frac{2 R_{\mathrm{s}} R_{\mathrm{L}}}{2 R_{\mathrm{s}}+R_{\mathrm{L}}}\right) \\
& =\left(2+\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}}\right) \frac{v_{\mathrm{s}}^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}=P_{\mathrm{s} 3}
\end{aligned}
$$

For Fig. 1:

$$
P_{\mathrm{s}}=\frac{v_{\mathrm{s}}^{2}}{\left(R_{\mathrm{s}}+R_{\mathrm{L}}\right)}=P_{\mathrm{s} 1}=\frac{P_{\mathrm{s} 3}}{\left(2+\frac{R_{\mathrm{L}}}{R_{\mathrm{s}}}\right)}
$$

Fig. 1. Simple series circuit with $\eta=R_{L}$ $R_{L}+R_{S}$
Fig. 2. For maximum η no power can flow.
$\xrightarrow[\frac{4}{R_{5}}+\frac{R_{5}}{R_{1}}+2]{ }$ (${ }_{s}$ / $4 R_{s}$

Fig. 3. Thevenin equivalent of this circuit gives different η to circuit of Fig. 1.
and so $P_{\mathrm{s} 3}>P_{\mathrm{s} 1}$ whatever the choice of R_{L} / R_{s}.

Unless the circuit is a Thevenin type source we cannot use the expression for η derived earlier, so what is going wrong? The mistake lies in the use of Thevenin's Theorem. In deriving the Thevenin equivalent source the current and voltage at the terminals of the equivalent source are exactly equal to those of the original source. But there is no one-to-one correspondence between the previous sources and the new - Thevenin equivalent voltage source which depends on both the terminal voltages and all the source resistors, and so the power delivered from the Thevenin source is in general different to the power from the original source. The difference between P_{s} and P_{L} must be the power flow in the source resistance P_{D}, i.e., $P_{D}=P_{s}-P_{L}$. As already stated, in obtaining the Thevenin equivalent source P_{L} remains the same, so $P_{s}-P_{D}$ must remain the same; since the source powers are different, P_{D} is different in the two circuits; the power dissipated in the source resistance of the Thevenin equivalent source is not equal to the power dissipated in the original source.

The same argument applies if a current source is substituted for the voltage source, as in the circuit of Fig. 4, which is a Norton equivalent of Fig. 1.

$$
\begin{gathered}
P_{\mathrm{L}}=i_{\mathrm{L}}^{2} R_{\mathrm{L}}=\left(\frac{v_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{S}}}\right)^{2} R_{\mathrm{L}} \\
P_{\mathrm{s}}=i_{\mathrm{s}} \cdot v_{\mathrm{L}}=\left(\frac{v_{\mathrm{s}}}{R_{\mathrm{s}}}\right)^{2}\left(\frac{R_{\mathrm{L}} R_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{s}}}\right) \\
=\frac{v_{\mathrm{s}}^{2}}{\left(R_{\mathrm{L}}+R_{\mathrm{s}}\right)} \frac{R_{\mathrm{L}}}{R_{\mathrm{s}}} \\
\because \eta=\frac{P_{\mathrm{L}}}{P_{\mathrm{s}}}=\frac{R_{\mathrm{s}}}{R_{\mathrm{L}}+R_{\mathrm{s}}}
\end{gathered}
$$

Continued on page 78

STATUS OF ENGINEERS

Regarding the status of engineers, as discussed in your editorials and correspondence. One factor seems to be overlooked, viz, that the status and respect given to doctors and lawyers increases exponentially with age, right up to their 70s, whereas that of an engineer, however experienced, reaches a plateau at 25 and then drops off rapidly beyond 35 . How many jobs offered in $W W$ advertisements are open to anyone over 30? Precious few!

Nor is this exclusive to Britain, but has already spread to the USA and is now beginning to be felt in Japan.

In countries devoted to production in support of the almighty deutschmark, engineers are still accorded some degree of respect in their middle years, but one wonders how long it will stay so when production there also falters, as indeed it must eventually in a world of resource shortages.

The sad fact is that engineers don't stay engineers long enough to get status! It would be interesting to know what old engineers do, for a living. Is there a suitable subject for a survey there? (They can't all retire at 40!)

A final word: no matter how much headway young engineers make, the days when they might have made it socially have gone. Yet, somehow, I don't ever expect to see aged doctors or lawyers being thrown out of work by computers or young graduates!
Ronald G. Young
Peacehaven
Sussex

DIGITAL FILTERS

Perhaps, following Mr Gray's letter in your January 1980 issue, I could raise a point which is not always well-made in text books and which space did not permit me to touch on in my article on simple digital filters in the T-i.ly 1979 issue.

A digital filter algorithm performs calculations and outputs certain values at fixed intervals of time. Strictly speaking, the output values are only meaningful at those exact instants, and what happens in between is not defined; hence the plots of the points only in Figures 2 and 5 of my article.

This, however, is not particularly helpful in practice since we generally wish to produce some analogue waveform for further use or inspection on an oscilloscope. As soon as we do this we enter the field of waveform recovery and make implicit assumptions about the technique involved. Most frequently, as Mr Gray's Fig. 1 implies, a zero-order-hold is assumed, the properties of which have been well discussed by Zuch and include an average delay of half the iteration interval and a linear phase response equal to 90° lag at the Nyquist frequency. If Mr Gray finds a phase advance of half the iteration interval, I would suggest he has made an error in interpreting or plotting his results.

Other methods for waveform recovery are, however available. A first-order hold retains the value of the previous iteration as well as the present one, and uses this data to

generate a slope which will, one hopes, lead towards the point where the next sample will arrive as shown here. This method effects a significant reduction in the delay terms. A second order hold is also possible and this will generate sections or parabolae. I do not know of any applications in real time where this technique is used, but it is not uncommon for curve generation in the computer numerical control of milling machines, for example.

These factors are of importance to the practical engineer, since they imply that the exact response obtained from a digital filter as we approach the Nyquist frequency may owe as much to the waveform recovery technique as to the filter itself.

Incidentally, the reference to Nyquist derives from the communications field; it may be of interest to note that in the process industries virtually the same law is known as Shannon's Theorem ${ }^{2}$ but the formulation places greater emphasis on the exclusion of frequencies higher than $1 / 2 t$.
P. A. L. Ham

NEI Parsons Ltd
Newcastle-upon-Tyne

References

1. E. L. Zuch: "Designing with a sample-hold won't be a problem if you use the right circuit." Electronic Design 23, November 8, 1978, pp. 84-89.
2. E. I. Lowe \& A. E. Hidden: "Computer Control in Process Industries." Peter Peregrinus Ltd 1971, pp. 180.

AUDITORY CUES IN STEREOPHONY

We were most interested in Philip Vanderlyn's article on auditory cues in stereophony in the September 1979 issue. The whole piece begs one particular question - what does the current craze of multimiking do for our stereo perception? Perhaps Mr Vanderlyn could be persuaded to relate his research experiences in this aspect. I, for one, would be interested in a researcher's views of this
particular debasement of Alan Blumlein's original ideas.
But more immediately I would question Mr Vanderlyn's attribution of "in the head" sounds to dummy head derived stereo, listened to on headphones. We are currently marketing a number of binaural records and would claim that "in the head" sounds are the last things being achieved. Real distance "out of the head" effects are clearly discernible on many parts of our discs. True, it is easier to get distance, side and rear effects as opposed to "out front" images, but to describe the effect as "in the head" clearly defeats the reason for the marketing of our discs.
M. G. Skeet

Whitetower Records
Milton Keynes

The author replies: First of all multimiking is not a current craze; it has been going on almost from the introduction of stereo records. Secondly, it owes nothing to research, so I have no experience of it in that context. Thirdly, my personal opinion of it is not for publication, but I would agree with him that it represents a debasement of Blumlein's conception. There is a fourth aspect, the economic one. Very early in the practice of stereo recording using "pure Blumlein" techniques it was found difficult and time consuming to get a good musical and spatial balance. It also called for much patience and understanding on the part of musicians and conductors. It was thus very expensive and the multimiking technique came into being, which permitted subsequent editing and which produced a colourable imitation of "real" stereo. I did wonder at one time whether it fell foul of the Trade Descriptions Act, but because the definition of stereophony in BS 661 is so widely drawn it appears it can unblushingly be called stereo. Nonetheless it is a fact that, in this way, many very satisfying stereo records have been made that would not or could not had it been necessary to keep to theoretically rigorous methods. We have to bear in mind, as I
am sure Mr Skeet does, that record companies exist to sell home entertainment rather than to demonstrate scientific truths.

My comments on headphone stereo were based on early experiences when it was found impossible to create a convincing image using dummy head techniques. The expression "in the head" was a form of words used to describe the vivid but unnatural effects produced. At that time the only headphones readily available were those affectionately known as "cans" - excellent for reading Morse code signals but not really suited for serious listening. Now that there are many excellent high quality headphones the situation is different and it is possible to listen with pleasure to all types of programme material. I must admit that on more than one recent occasion I have heard realistic external sounds, but these have been from special recordings which preserved possible cues due to the pinna. I am inclined to think that the role of the pinna, which has only recently been studied in detail, has hitherto been underrated. However, I still feel that the head rotation cue is an essential part of any convicingly external image, at any rate over an appreciable period of time, and there seems to be no possible way to provide this using transducers held in a fixed relationship to the ears.
Philip Vanderlyn

RUMBLE CANCELLATION FILTER

Congratulations to J. P. Macaulay for his elegant method of removing rumble from stereo disc reproduction without degrading the deep bass response (Circuit Ideas, September 1979 issue). The concept of turning the lowest bass into a mono signal is so beautifully simple that one wonders why this technique is not widely used.

After having studied the discrete circuit design, I depcided to build a simplified and
improved version, making use of today's superior integrated op-amps. The diagram shows how a TL074 quad op-amp i.c. is used together with a simpler matrixing system to form a rumble cancellation filter (as I prefer to call it) with near ideal characteristics. The TL074 exhibits a performance, in terms of extremely low distortion coupled with high slew-rate and bandwidth, that is hard to beat using even complex discrete designs. Expected figures will be around $10 \mu \mathrm{~V}$ noise, $d<0.002 \%$ (to 20 kHz) and $f_{u} \approx$ several MHz .

In his filter Mr Macaulay uses equal C-values (33 nF); this will not give a Butterworth characteristic. For this a ratio of $2: 1$ is required, hence my corrected values of 47 and $22 n \mathrm{~F}$.
It should be kept in mind that the rumble filter inverts the polarity of the input signal. If it is ever to be installed in a system where it may be switched in or out of service, inverting gain-of-one buffers must be used for the polarity convention to be preserved.
Jens Languad
Ring Instrument
Vanlose
Denmark

TRICKLE DOWN OR TRICKLE UP?

Referring to the November editorial, I thought that in general the "trickle down" theory of reducing poverty by development was discredited, though there are exceptions. Where a country has a resource which can be turned into cash, as for example Britain's North Sea oil, there is a case for using the cash for capital investment in industry. This was also the Shah's policy in Iran; and no-one who has seen the traffic jams (of private cars) in Teheran would suppose that the beneficiaries of this policy were very few in number, though they might well be a minority of the whole population. On the issue of intermediate technology versús

High performance rumble
cancellation filter. Channel
separation is maintained only down to
100 Hz . Lower frequencies are
averaged between L and R, thus

capital-intensive technology, there is also the prestige consideration which may be rationalised in the form: "If we are going to buy machinery from abroad, we should obviously buy the most up-to-date."
Those who are seriously interested in under-developed countries should see a book such as "Income Distribution Policy in Developing Countries" by Irma Adelman and Sherman Robinson.* Much of this book is concerned with the technicalities of constructing a computer model (for South Korea); but the authors do discuss various economic policies and conclude that the most effective single way to reduce poverty in such countries is to assist agriculture.

A pocket calculator is of no use to an under-nourished family; and such things as radio communication to call a doctor improve the amenities but do not reduce the poverty. The positive contribution of electronics is through computer simulation of the economy, which makes it possible to answer the question "What will happen if we do such-and-such?" without actually implementing an experiment which might prove to be disastrous. "Chips with everything" may be all right for developed countries, but we should be modest enough to admit that high technology alone cannot solve all the world's problems.
D. A. Bell

Walkington
Beverley
Yorks
*Published for the World Bank by Oxford University Press, 1978. There are many books on income distribution, but this one (a) is concerned with developing countries and (b) has a computer model, based on continuing processes rather than extrapolation of past data, which appears to match reality successfully.

3D TELEVISION

K. P. Wood (October 1979 letters) suggests that it is impossible to provide stereoscopic viewing of a moving object on a flat screen without viewer discomfort. This he claims is because of conflict between focusing and convergence clues received by the viewer. However, his claims are pure hypothesis without any attempt to provide qualitative or quantitative evidence.
A major factor he omits to mention is perspective, a subject all painters and photographers have to fully comprehend to master their arts and crafts. A very strong illusion of depth is conveyed in mono pictures whether paintings or projected kinematograph films by the correct use of perspective in images on a flat surface. If Mr Wood is correct there would be a strong case for supposing that viewing of painted pictures with strong perspective would cause viewer discomfort. Surely he would not sustain this argument?
It is true that viewing of red/green analglyph 3D images is tiring, but this is because it is quite an abnormal situation for one' eye to see only deep red images whilst the other sees only green.

It is also true that viewing of a large number of early 3D polaroid colour films produced headaches and eye strain. However, it has now been established, as a result of research and a better understanding of the subject, that this was not due to the factors postulated by Mr Wood. It was because the camera men and directors who made the early 3D films did not properly understand
the rules that apply to stereocinematography and both in camera work and subsequent editing produced visual cue conflict situations much worse than Mr Wood postulates.

There is now no reason to believe that a correctly photographed and edited 3D stereo film of the colour/polaroid type will produce any viewer discomfort even over long periods. If there is any scientific evidence to the contrary I shall be most interested if Mr Wood will quote the basis of it.

Meanwhile, recommended reading for those interested in factual accounts of work done in this field is: "Introduction to 3D" by H. Dewhurst, Chapman \& Hall, 1954; and American Cinematographer, (special 3D issue), April 1974, 1782, North Orange Drive, Hollywood, Calif. 90028.
A. E. Lott

Reading
Berks

HERE BE DRAGONS

In his piece on audio in your 'Into the 'eighties' feature (January issue), Adrian Hope expresses his surprise that so many people "are prepared to venture so far north into the provinces as to make Harrogate an annual success . . .". If Wireless World were to consider holding a 'Remark that could have been better put' competition, then I am confident that Mr Hope would stand every chance of winning first prize.
Attacks by marauding bands of savage Yorkshiremen, in their distinctive flat caps, on traffic on the Al have lessened markedly in recent years, and many travellers from the south have claimed that it is now relatively safe to venture north - even well beyond Watford. The only real danger lies in any reckless suggestion to one of the natives that Harrogate is a curious place to hold a national exhibition: black puddings can be unpleasant, particularly when stuffed whole into unlikely places.
W. Dampier

Wallington
Surrey

THE "WHY?"
 OF ELECTRONICS

I was just reflecting on our good fortune in having in Wireless world a high quality technical journal which (unlike the numerous trade journals) is not afraid to discuss the why? and what for? of electronics as well as the how? when I came across Mr Greenwood's letter (January issue) calling for an end to "political rhetoric" in your editorials.

Unlike Mr Greenwood I think it needs more than a few "delightful moments of humour" to "demonstrate that technical people can be human." Technology is changing society now faster than at any other time: some changes are for the better, some for the worse. The people who find their lives changed as a result of the engineers' combined efforts will not think us "human" if we blindly and mechanically create what we're told to without sparing so much as a comment in a technical journal on the desirability of what we are creating. Technology has great potential for improving the quality of life - if applied sensibly. As technologists we must make our contribu-
tion to the discussion of how to apply it sensibly, rather than allow its control to pass unquestioned to those primarily concemed with financial gain in the short term.

So, long may Wireless World continue its perceptive and searching editorial comment, followed I hope by vigorous discussion in the letters pages.
P. A. D. Bird

South Brent
Devon

"'TRIVIAL"' AMPLIFIER DESIGNS

In reply to Mr Duncan's letter "Trivial amplifier designs", in the January issue, whilst I am in general agreement with his views on psycho-acoustics, I feel he may have missed the object of my article ("Low distortion amplification," October 1979).
The nature and control of distortion and other important parameters in a.f. amplification are generally misunderstood, resulting in the growth of jargon and mysticism (as witnessed by Mr Duncan). The aim of my article was to combat this by defining the problems in engineering terms and using the solutions as design criteria for a gain cell block. Although the article described its use in a domestic sound reproduction system it could have equally been applied to a laboratory amplifier, low distortion oscillator, distortion factor meter etc.

To take Mr Duncan's objections to their logical conclusion, should design in any one field of engineering be terminated due to imperfections in another?
B. J. Codd

Medical Physics Department
Leicester Royal Infirmary

FAILURE OF DISTRESS SIGNALS AT SEA

I was surprised on reading the letter by R. Philpot (November) and a previous letter by John Wiseman (June) about the problems encountered at sea operating at 500 kHz . In theory a solution of salt and water effectively earths the r.f. power present in the aerial's insulator, which makes electrical contact with the wire.
The practical solution is the use of e.h.t. cable, so that there is no electrical contact with the conductor. A 150 -watt input has been used, but much higher levels are believed possible. In the experiment, RS Components 18 kV e.h.t. cable was used.

I feel sure that this is a late, but effective answer, and with lives at stake the cost is very small.
Peter C. Gregory, G4 HXV
Ashton-under-Lyne
Lancs

Mr Wiseman replies:

The use of e.h.t. cable would be similar in principle to the naval practice of using p.v.c. coated whip aerials. However, the statement that ". . . a solution of salt water effectively earths the r.f. power..." is an oversimplification. I have letters from people at sea reporting severe problems with 'wet insulators' at. 500 kHz but less effect at 2182 kHz and similar, and very little at all at h.f. in the 4 to 21 MHz marine bands, and my own experience confirms that. Since Mr Gregory gives an amateur call sign, the experiments he refers to will have been
carried out in the amateur bands 1.8 to 30 MHz . A ship's main aerial is invariably greater than $1 / 4$ wave-length at h.f., and why h.f. is almost unaffected I leave to others to explain, but at 500 kHz the antenna is always less than $1 / 4$ wavelength and its capacitance forms part of the pi-coupler resonant tank circuit. It is, in my opinion, change in antenna capacitance due to Kohlrausch Effect that is the cause of the problem at 500 kHz . For reasons of economics, the pi-coupler range of adjustment will be much less at 500 $\mathbf{k H z}$ than at h.f., due to the size of components required. The pi-coupler may be able to accommodate changes in aerial parameters at h.f. which it cannot accommodate at 500 kHz .
E.h.t. cable of the automotive kind would present some problems. Coated with salt water it might become a concentric capacitor, aggravating pi-coupler problems. It would lack mechanical strength and would not stand up to rough treatment; once the insulation was cut or bruised it would be rendered ineffective, and it does not lend itself to easy repair if broken by a wharf crane, for example.
John Wisemari

PROGRAMMABLE NOTES FOR MUSICAL INSTRUMENTS

Mr Waters is incorrect on several points in his letter in your January issue.

The system of temperament that was discarded when equal temperament was adopted about 140 years ago (not 250 as Mr Waters states) was mean tone temperament, not natural or just temperament. Mean tone temperament is based on natural temperament with a few judicious changes which produce harmonious music in 6 major keys and 3 minor keys. The remaining keys suffer from the effects of the changes and have rough harmonies. Handel and Bach had instruments tuned to this system. Equal temperament is an artificial system not based on the natural system at all. The result is that all keys have equally rough harmonies but music can be played in all keys.

The system I am proposing uses natural temperament, which sounds best, and allows modulation to any key. Surely, had such a system been available to Bach he would have adopted it in favour of equal temperament. I would be interested to find out in which ways Mr Waters's musician friends consider my proposal is retrograde since it has not been possible hitherto!
M. Robins

Bilton
Rugby

I was very interested in M. Robins's letter "Programmable Notes for Musical Instruments" in the November 1979, issue since I did some research on the possibilities a couple of years ago for my own amusement. I would like to mention, for anyone interested in pursuing this subject, the excellent treatise "On the Sensations of Tone" by Helmholtz, which is published by Dover with many extra appendices and tables; the theoretical work on harmony and tuning has never been bettered.

The information required by an instrument to perform a perfect job of just tuning is more complex than merely the key of the music. It
requires some skill in analysing harmonies to derive the data, and more than a few extra keys to enter it into the instrument. I do not believe that performers would welcome additional manual input to the instrument of this complexity.

My research concerned a computer model of an instrument which would analyse the music in real time and tune from the knowledge gained. Actually, it is theoretically impossible to make a perfect job of this in real time, as M. Robins probably knows, because the context of the harmony must be known, including what follows. My work showed that only about half of the job could be done this way, and it would not be cheap, given the amount of computer power it consumes.

Just temperament is interesting, but it is not obvious that it is musically desirable all the time. Unaccompanied singing, such as the close harmony which I have done, tends to go flat, for good reasons related to the tuning changes that occur when modulating in just temperament. This would be unacceptable in an instrument. Further, the sound of chords in just temperament is very smooth and restful, lacking the high frequency beats which are normal in any other temperament. These are important, since they add "life" to the instrument, which would be dull and monotonous without them. The power of indefinite modulation, which arrived with equal temperament, is now such a central feature of music that it cannot be discarded, as would prove necessary with the progressive flattening otherwise encountered in just temperament.
I believe that just temperament is not a marketable feature, since the research and development costs would be considerable, as my work has shown. Nevertheless, it would be nice to see some organ manufacturer offer it as an optional (and no doubt very expensive) feature. Otherwise it should remain what it has been for the last few hundred years - a guide used by musicians, but not blindly followed, in aiming at acceptable compromises in tuning.
Michael C. Bailey
Winchester
Hants

C-D IGNITION PROBLEMS

Recent letters in Wireless World on motor cycle c.d. mentioned "false triggering" and "cross talk". My problem does not involve motor cycles but misbehaviour of c.d. ignition in cars of various units built. This shows up as a slight roughness in the engine at about 2000 r.p.m.
My first unit which showed this problem was the Marston, but a cure was effected by changing the triggering circuit to a unijunction circuit. Perfect operation was enjoyed for some months until the h.t. lead worked its way out of the coil, causing the thyristor and the unijunction to expire. Upon fitting new components, the unit once more worked but .with this irritating misfire. Many hours of work produced no cure, so the Marston unit was regretfully removed. The distributor was even removed from the car as well as the coil and driven by a lathe while monitoring the h.t. voltage with a good oscilloscope, but this showed only a perfect train of sparks.

Then I came across an article in Electronic Engineering of December 1974 written by Jorgen Hoyer of Motorola, who advanced a most interesting theory as to the cause of this erratic misfire - to quote: "Very often the
petrol/air mixture is far from being ideal. It may be too rich or too weak and usually is very unevenly mixed, in fact, an ignitable mixture may not have even reached the spark gap at the time the first arc occurs. Under these conditions an arc must be maintained for the lucky event where inflammable gas happens to move into the spark gap." Mr Hoyer goes on to describe a simple method of increasing the period. This he accomplished by connecting a suitable diode across the ignition coil primary.

However, this made no difference at all when tried on my car. Also a unit which would not function correctly on my car would perform well on a different make of car.

Another peculiar point is that tests were done on three identical units built on p.c.bs with machine wound inverter transformers. Two gave the same erratic miss but the third worked perfectly. No discernible differences could be found in the units, which were all factory built.

If any of your readers have had similar problems, I would like to hear from them as this is a problem I would dearly like to solve. D. J. Bruyns

Witbank
Republic of South Africa

INTERFERENCE WITH MSF RECEPTION

A popular student project is the reception of the Rugby transmitter (MSF) which puts out time and frequency standards and can be used to drive a self-setting clock.

The service area is large; it is claimed' to include most of Europe but in some areas interfering signals may cause trouble. There is a powerful transmitter 1800 hertz away from MSF and in the Manchester area it is 10 dB larger than MSF. In Preston it is 20 dB larger. A relatively wide band receiver is needed to make use of the coded time signals and this project has defeated several of our students.

May we suggest that anyone considering The problem should do a few measurements in his area before building the complete clock? It would be interesting to know if your readers have ever had trouble with commercial equipment in this area.

Another source of interference is the fourth harmonic of the tv line timebase but this can be solved by moving the receiver. T. G. Izatt

Preston Polytechnic
M. D. Samain

University of Salford

Reference

1. Mullard Technical Communications, Volume 14, Number 40, October 1979.

We understand that the interfering transmitter (on 61.8 kHz) is in fact H.M.S. Inskip, between Preston and Blackpool. - Ed.

MAGAZINE PROJECTS AND KITS

It occurs to me that many of your readers may be puzzled as to why different companies quote such widely differing prices for kits of parts for projects in the magazines, and possibly a few words explaining this might be of interest.

The fact is that when engineers design/ build projects, they use any materials which happen to be at hand, and then when the project is finalised, a list of parts is sent out by the magazine to the leading companies for pricing.

If completely standard parts, normally carried in stock by the firms concerned, are specified, then there is no problem, and all companies should be able to offer competitive prices. Unfortunately, this is seldom the situation, and very often special nonstock items have to be obtained. Even this in itself would be unimportant if one knew how many kits were going to sell, but it is usually pure crystal-ball gazing, and because of this the special parts have to be costed on a one-off basis.
Another problem is that for convenience a designer often uses a purely trade source to obtain his parts. This would not be particularly important if retailers were able to buy competitively from these sources, but one of the best and most reliable trade sources offers no discount for the retailer, and will not sell direct to retail customers, which means the retailer has to add his margin, and the end product becomes very expensive.

This letter is not meant as a criticism of designers or magazines, but might assist designers to provide economical kits. There is no doubt that if there was more liaison at the design stage with the retailers concerned many of these problems could be overcome. J. N. Shipton
A. Marshall (London) Ltd

London NW6

HIJACKING CARFAX?

D. P. Leggatt of the BBC (October letters) in replying to Peter Manson's letter expresses optimism that the designers of the Carfax service have adequate means to control the security and authenticity of the information broadcast. Surely such a system is fundamentally vulnerable to hijacking for the following reasons.
Firstly, inexpensive Carfax decoders are going to be manufactured in large quantities; therefore their principles of operation cannot be inordinately complex. Secondly, some 80 genuine transmitters throughout the country will be quite openly broadcasting the "secret" initiation code every few minutes. Thirdly, test generators producing the appropriate signals will, no doubt, be extensively used in service workshops.

But, perhaps, traffic wardens will have their duties extended to ensure that no obscene, humorous or alien messsages are being transmitted.
Mandy Peterson
Swindon
Wilts

The BBC replies:

Mandy Peterson will not let me get away with my rather generalised statement on Carfax security, and she makes some very relevant comments.
Certainly 'secret' initiating codes would have their limitations, but there are other techniques available including comparisons between the originated and transmitted signals.

As ever, it will be difficult to ensure absolute security and I must confess that our obscenity detector is not yet perfected!
D. P. Leggatt

Head of Engineering Information Dept BBC, London WI

REVERSE POLISH NOTATION

Concerning the comments on Reverse Polish notation by W. H. Powell in August letters, I for one certainly prefer the normal Basic notation as opposed to its Reverse Polish form. The last-mentioned may be useful when minimising keystrokes on a calculator, but my policy is to make the machine do the work.
However, the notation for formulae is not of great significance. Far more controversial is Mr Powell's belief that languages should use Reverse Polish notation throughout (presumably including key words like IF, ELSE) for efficiency. I would suggest that his notions of efficiency are concerned purely with the output from a compiler (i.e. smalier, faster) and should not influence the appearance of the written program, which one hopes is a clear, readable document making use of control and data structures (Pascal perhaps?). Apart from certain high-speed, real-time applications, I have no objection to clearly readable programs with a few inefficiencies.
Michael Parr
Barnsley
West Yorkshire

DIGITALLY CONTROLLED ATTENUATOR

I read the Circuit Idea on the digitally controlled attenuator by Mr S. R. Taylor, in the December issue with interest. The AD75XX series of c.m.o.s. d-to-a converters are all inherently 4 -quadrant multiplying devices. They can all therefore be used for audio applications, one of which Mr Taylor describes. It is not a large step of course to implement a stereo balance and volume control system using two such circuits running from updown counters fed serially.
Perhaps I could emphasize one or two general points with regard to such audio applications. Compared with analoguecontrolled electronic attenuators, digitallycontrolled attenuators offer some distinct advantages. Total harmonic distortion figures are significantly better, bandwidth is significantly wider and noise immunity greatly improved. In addition, such systems have the facility for remote operation under touch-switch or microprocessor control.

Could I also make a recommendation with regard to Mr Taylor's circuit? The selection of the operational amplifier should be done with care. The output resistance of the d.a.c. changes with code-setting (as does its capacitance). This means that an amplifier with a large input-offet should be avoided as a code-dependent variable output-offset will result. This may produce significant noise during code change. As the d.a.c. has a few pF output capacitance typically $37-120 \mathrm{pF}$ (depending on code), capacitive feedbackcompensation must be employed when using wide-bandwidth amplifiers. This is usually about $10-20 \mathrm{pF}$ depending on the amplifier.

Instability may occur at some code settings if no compensation is used. Mr Taylor shows a gain-adjust potentiometer in the feedback loop of his system. I would suggest a fixed, low noise, resistor of value $1 \mathrm{k} \Omega$ in the feedback loop and include a $2 k \Omega$ adjustable resistor in the in the input line to the AD7520. (However, l suspect that there is only a limited need for a full scale absolute accuracy
of better than 0.1% in anything other than test equipment).
In conclusion, perhaps to back up the above comments, Mr Taylor and other audio engineers may be interested to know that Analog Devices intend introducing a device specifically aimed for the audio field, the AD7110, in mid March 1980. The AD7110 is a monolithic c.m.o.s. digitally controlled attenuator in a 16 -pin d.i.l. package. The analogue output voltage decreases logarithmically as the 6-bit digital-input code increases. The attenuation range is 0 to 88.5 dB (plus full muting facility) in 1.5 dB steps. The total harmonic distortion is better than -98 dB (0.002%) and the signal-to-noise ratio is 124 dB . When tested with a commonly available audio op-amp, a bandwidth of 0 to 250 kHz was observed.
M. I. Stephenson

Analog Devices B.V.
Limerick
Republic of Ireland

WHAT'S SO NATURAL ABOUT e?

I would like to suggest two thoughts on the article "What's so natural about e?" by J. C. Finlay in your December 1979 issue. First, perhaps I have missed something, but I do not see how memorising or writing a "trick" such as 193/71 for e is easier or simpler than memorising or writing e itself. Particularly since if you have memorised e to five decimal places (2.71828) you have also memorised it to nine decimat places (2.718281828) because of the repetition of the " 1828 " digits.

Second, I agree that it is a nice touch for some calculator manufacturers to print values such as e on the calculator. However, we are not limited to what the manufacturer may print on the calculator. I find it convenient to keep a small data booklet in my calculator case, and to consider the booklet as an accessory for the calculator.

In closing, I enjoyed reading the article, and the rest of the issue, and look forward to receiving Wireless World each month.
Tenny Lode
Englewood
Colorado, USA

AND NOW THE PICOBEL

Contrary to Anne King's letter (November 1979), the millibel has immediate and important application in musical recording/ reproduction systems. In fact, a lengthy article in International Audio Review 3 was devoted entirely to the ear's sensitivity to 2-5 millibel deviations in frequency response, and the consequent need for very precise RIAA de-emphasis in phono preamplifiers.

This article discussed how those traditional experiments, which established the entrenched belief about our hearing insensitivity to loudness changes on single tones of less than 1 dB , are irrelevant to our hearing sensitivity to frequency response deviations on broadband signals, such as music.

Our experiments have established that we can hear frequency response differences in the 2-5 millibel area, as has empirical work by our friend Stanley Lipshitz and others. Not only can we reliably detect that there is a difference (which is a sufficient criterion to establish an auditory threshold). The difference is so clearly perceivable that we can correctly describe it, qualitatively, and, yet more remarkably, quantitatively.

For example, we aurally compared one pre-amplifier against a straight wire on music. In spite of the masking presence of the pre-amplifier's distortion byproducts, which seemed to add distorted bright energy to music above 5 kHz , we also heard what seemed to be a purely tonal balance anomaly. We aurally judged this anomaly to be a plateau hinged at the 2120 Hz RIAA breakpoint, and estimated its magnitude at 20 mB . Only then did we measure the pre-amp. Its actual RIAA frequency response was flat save for a plateau hinged at 2120 Hz that measured 20 mB in magnitude ($\pm 1 \mathrm{mB}$). The pre-amplifier's designer and manufacturer, who witnessed this experiment, asked why we even bothered with measurements, if the human ear could be that perceptive and calibrated.
Incidentally, our measuring technique presented in IAR 3 can reliably measure down to about 0.2 millibels, unlike the 0.5 dB limitation of Ms King's meters. And since IAR 3 we have extended our measuring sensitivity (using differential techniques) into the picobel region. Therefore, and in sympathy with Mr Marks' desire to end decimal point confusion, I herewith enter a plea for the picobel as the standard unit of commerce! Also, if we are to capitalize engineering unit names in deference to the scientists they honour, let us do the job right and revert from bel to Bell, not Bel. That bell which tolls is hardly ever capitalized, so the confusion should be minimal.
J. Peter Moncrieff

International Audio Review
Berkeley
California, USA
In the UK it is standard practice to use capital letters for the abbreviations of unit names but not for the full names. - Ed.

LIQUID-STATE AMPLIFIER

The late Professor Fleming's account. of the thermionic diode (November 1979^{-}issue) reminded me of a little search for the 'missing' counterpart of the vacuum gas and solid-state devices - the liquid-state amplifier.

Although it might be argued that this is the biological amplifier of choice, as, for example, in the form of the 'cochlear microphonic' signal generator available in the mammalian ear (a signal capable of driving an ordinary audio amplifier), I was interested to find that a liquid 'ionic diode', at least is easy to arrange. A diode made with a platinum wire and a silver/silver-chloride wire dipped in dilute sulphuric acid gave a forward to reverse conductance ratio better than $25: 1$ for signals of less than $\pm 100 \mathrm{mV}$ amplitude d.c. Moreover, Professor Fleischmann (Southampton) was able to describe a two-membrane 'ionic triode' which he constructed as a research student in 1947.
Considering the speeds of the various charge carriers estimated below:
$>10^{5} \mathrm{~m} . \mathrm{s}^{-1}$ in a hard valve,
$<10^{-2} \mathrm{~m} . \mathrm{s}^{-1}$ in a copper wire,
$\sim 10^{.7} \mathrm{~m} . \mathrm{s}^{-1}$ in an ionic liquid,
for an electric field of IV^{-1}. I expect the frequency response of the wet triode is, well, wet.
B. Whatcott

Addlestone
Surrey

Electronic combination lock

Non-volatile logic devices give easy programming and long-term storage

by Alan Oakley, B.Sc. Plessey Semiconductors

This article describes how an ordinary key operated mechanical door lock can easily be converted to a 14-digit, multi-code electronic security lock, using non-volatile logic devices. The data in these devices can be altered easily but once entered can be retained for a considerable time even in the absence of applied power. The 4-digit combination codes are easily programmed and the versatility of the design means that the system does not need clearing.down. It is a simple matter to extend the system from a 4 digit code (some 65,000 odd combinations) to any greater number of codes by adding more quad latches. Apart from the normal door latch such a system could find application anywhere where access is to be restricted, and could also be converted to be remote controlled.

The MN9102 quad latch is one of the NOVOL range of integrated circuits produced using the Plessey 'metal-nitride-oxide-silicon' (m.n.o.s.) process. This is essentially a p-channel, metalgate process, but with the additional feature that variable-threshold memory transistors may be fabricated alongside conventional fixed threshold m.o.s. transistors. These memory transistors can be used to retain data even in the absence of applied power and therefore provide the facility of non-volatile data storage in standard m.o.s. circuits.

Data may be stored in the MN9102 for at least one year, in the absence of applied power, over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range. The device runs off standard m.o.s. supplies of +5 V and -12 V which are used internally to generate the high-voltage supply normally associated with m.n.o.s. memory devices, and requires only a single external capacitor to act as a charge reservoir for supplying current when writing into the memory. The data that is applied to the four inputs is written into the memory when the SAVE control is taken to a logic 0 level and the data subsequently appears on the four outputs. Typically, ten million 'save' operations may be made before the performance of the device is impaired. The stored data is automatically restored to the outputs whenever power is reapplied. An output enable is also available which, when taken to a logic 0
level, presents a high-impedance state on each data output line, thus permitting multiplexed operation.

The digital security code system uses the MN9102 quad latch to store hexadecimal digit data in the absence of applied power. When this data is interrogated with the correct incoming data from a keyboard there is a $2 \frac{1}{2}$ second delay before an electro-mechanically operated mortice catch is opened for $21 / 2$ seconds. The delay and opening times may be varied easily and are included to improve security and conserve power. The number of digits in the security code is totally dependent on the number of quad latches.

Data is entered into the system via a hexadecimal keyboard with a diode/ resistor decoder, if a 16 , single-pole output keyboard is used. Alternatively, the data may be entered using a 16 key encoder (74C922) if a 4×4 matrix output keyboard is in use. Either system generates the four data signals and 'anykey,' which is normally low but goes high when a key is pressed; this signal is used to generate the timing pulses. The four data signals are fed into a c.m.o.s. quad D-type flip-flop (74C175) which is clocked by SRCLK, generated from two monostables gated with 'anykey' to prevent any keyboard bounce effects. Once clocked, this data is then compared with the stored data in the

MN9102 using a c.m.o.s. four-bit magnetic comparator (14585). If the keyboard data is the same as the stored data, then the $A=B$ output of the comparator will go high. For more digits the quad latches, comparators and flip-flops are cascaded as follows. The outputs of the nth flip-flop are connected to the inputs of the $(n+1)$ th flip-flop, with all the 74 C 175 connections the same: i.e., SRCLK to CLK, clear held high, and all the Q outputs unused. The outputs of the nth flip-flop are also connected to the inputs of the nth quad latch (for use in programming), and to the lst set of inputs of the nth comparator. The outputs of the nth quad latch are connected to the second set of inputs of the nth comparator, of which the nth $A=B$ output is connected to the $(n t h+1)$ th $\mathrm{A}=\mathrm{B}$ comparator input. Other common connexions are $\mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$ held low with their respective outputs unused for the 14585 , and output enable held high and Save inputs common for programming on the quad latch.

When a 4 -digit code is stored the following sequence of events will occur when the code is interrogated. If, for example, the code stored was 9102 , the data stored would be with 2 in latch A, 0 in latch $B, 1$ in latch C and 9 in latch D. The 9 when entered would be clocked in to the output of flip-flop A and compared

Fig. 1. Internal block diagrám of MN9102 quad latch.

Fig. 2. Circuit diagram of lock logic.
with 2 in latch A , giving $\mathrm{A}=\mathrm{B}$ on comparator A as a low level. When the 1 is entered, the 9 is clocked to the output of flip-flop B and compared with the 0 in latch B ; hence $\mathrm{A}=\mathrm{B}$ out of comparator B will also be low level. The 1 will be at the output of flip-flop A and will be compared with the 2 in latch A, so the $\mathrm{A}=\mathrm{B}$ output on comparator A will remain low. The third digit 0 will cause the 9 to be clocked to the output of flip-flop C, the 1 to the output of flip-flop B and the 0 to the output of flip-flop A. The $A=B$ output of comparator C will be low, as will the outputs of the other two comparators. The final digit 2 , when entered, will cause the correct digits to fall in place with the stored data, hence the 2 s will match in position A , the 0 s in position B , the 1 s in position C and finally the 9 s will match in position D : the $\mathrm{A}=\mathrm{B}$ outputs of all comparators will go high, indicating that the code was correct.

To program a new code, it is entered and the Save inputs to all latches are held low for at least 10 ms , by pushing a switch for that time. The switch poles are connected to the inputs of a bistable, which have pull up resistors to +5 V , and the centre pole is at 0 V . When the
switch is operated, the outputs change state, giving a high-to-low transition on on one of the bistable outputs, going high again when the switch is released: it is this signal which is used as the common Save.

To make the system more secure

Fig. 3. Timing diagram of logic.

Fig. 4. Power supply and switch driver.
there is a $21 / 2$ second delay after the correct code has been found. This is achieved by means of a 14528 retriggerable c.m.o.s. monostable, which is positive-edge triggered from SRCLK, and initially preset with a delayed power-up pulse. When Q goes high again it is ANDed with 'Correct code' to give 'Door open', which is normally low but which goes high $21 / 2$ seconds after 'Correct code' goes high. The positive edge of 'Door-open' triggerrs another 14528 retriggerable monostable whose Q output, when it goes low again after $21 / 2$ seconds, is ANDed with 'Correct code', thus producing a 'Door enable' pulse. Although this signal is normally a low level, going high $21 / 2$ seconds before going low again, the values of the resistors and capacitors on the monostables
may be varied to give different 'Door enable' delays and widths. The 'Door enable' signal is used to drive two bipolar transistors, which in turn activate the electromechanically operated mortice. The second inverter consists of a high-power p-n-p transistor, which is designed to switch between the unregulated supply and zero volts to provide 1.5 for the solenoid. A l.e.d. and resistor are used to indicate when the door is open

Further modifications may be made to the outlined system with provision to activate an alarm when more than three incorrect codes are entered or possibly control the logic remotely, depending on the user's requirements. The system described would need only the minimum modifications.

Clock timer - 2 continued foom ogege 52

memory and change the display accordingly. Pressing more than four keys should repeat the writing process. Pressing the Alarm key should access the memory for the next alarm time. Incorrect times may be entered such as $\mathbf{3 0 . 1 5}$ to fill up unwanted space if sixteen alarm times are not required. Alternatively, the alarm times may be repeated.

Assemble the comparison detector and relay driver and with IC_{13} omitted, connect pin 5 of IC_{14} to test point 1 . Set an alarm time to the actual time, leave the switches at Set Alarm and display test point 1 on an oscilloscope which should follow Fig. 13(a). Display test point 3 and adjust R_{43} until the negative going edge occurs 0.5 ms before the negative edge at test point 1 . Set an alarm time so that only tens-of-hours, hours and tens-of-minutes digits agree.
with the real time. Leave the switches at Set Alarm and check that the waveforms agree with Fig. 13(b). Insert the remaining i.cs and adjust R_{46} for a suitable output pulse length. Note that if the value of R_{46} is too low, IC_{5} is retriggered and produces a double output pulse. If the timer does not operate correctly when the tested circuits are connected together it is probable that 100 Hz ripple on the 10 V supply is turning Tr_{2} off every 10 ms which produces spikes on the power fail line. This is easily cured by increasing the value of C_{3}.

Modifications

The output of the 555 timer is t.t.l. compatible and can directly drive a variety of interface units. A simple flipflop enables an external circuit to be

Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending meetings, exhibitions, press conferences and other events. some abroad, and editing contributed technical articles. A good deal of freedom will be given to ${ }^{\circ}$ a person who shows ability and responsibility. Preferred age range 25 to 35. Write to: The Editor, Wireless World, Dorset House, Stamford Street, London SE 1 9LU.
switched on at one alarm time and off at the next. A counter and decoder allows the system to be expanded for the control of several different devices. The alarm-enable/inhibit circuit can be modified to select one of two different alarm-time programmes by taking the alarm-inhibit line to a spare address input on the memory, pin 3 or 21, and grounding pin 13 of $\mathrm{IC}_{13 \mathrm{~b}}$.
Up to 64 alarm times can be obtained by adding two flip-flops to the chain in IC_{7} and connecting the two new outputs to the spare memory address pins. If the alarm-enable/inhibit section is not required, the circuit can be omitted except for $\mathrm{IC}_{21 \mathrm{c}}$. Alternatively, if the alarmenable/inhibit section is duplicated and the two alarm-inhibit lines are connected to the spare memory address pins, four alarm-time programmes are obtained. If this modification is made, the control logic IC 16b $^{\text {b }}$ and $\mathrm{IC}_{16 \mathrm{c}}$ must be altered so that keys $0,1,2$ and 3 select the appropriate programmes.

The timer can be used with a conventional digital clock which has a suitable multiplexed display and multiplex control lines coded in binary. A midnight pulse and the inputs to $\mathrm{IC}_{13 \mathrm{a}}$ and $\mathrm{IC}_{13 \mathrm{~b}}$ have to be decoded from the display. The five inputs to IC_{13} can be replaced by the tens-of-seconds C bit driving a monostable to give a pulse of at least 100 ms duration at the start of each minute. If switch-on-reset is not needed the set-time-pulse input is grounded and the circuit around $\mathrm{Tr}_{7} \mathrm{Tr}_{8}$ omitted.

Acknowledgements

The authors thank the management of EM1 Electronics for permission to publish this article and the technical staff in the Operations Training and Education department for their encouragement and assistance.

Finniston - what the Institutions say

The long-awaited Finniston Report (see p36 Jan., p88 March and p46 June, 1978 issues) has now been officially published, some weeks after much of it had been leaked. Having had time to consider the proposals in the report, the professional institutions are welcoming it, but they also have reservations.

The Council of the IERE was disappointed to find that the Finniston Committee had little to say about what the IERE considered to be the root cause of the inadequate performance of the nation's manufacturing industry, namely the general lack of enthusiasm for work at non-professional levels and the consequent low standard of industrial relations within many areas of British industry. They also regretted that the summary report failed to give credit to the engineers concerned with the design and manufacture of electronic equipment and with systems engineering, and that it did not reflect "the high regard in which the British electronic and radio engineer is held overseas.'
This institution particularly endorsed the committee's recommendations to improve and extend the balance of theory and prac tice in the pattern of education and training for the engineer of the future. The Council also welcomed the formation of the British Engineering Authority, and in particular the proposal that this would endeavour to bring together groups such as working engineers, employers, engineering teachers, public agencies and the Government, who have common interests but who, at present, tend to act in relative isolation from each other because there is no active mechanism for linking them.

Concern was felt about the proposal that the Authority would maintain an "expert staff" to implement its policies. This propo sal, they thought, could deny the Authority direct access to the institutions, which according to the IERE are "the focal points of the best expertise available in each of the engineering disciplines at both Board and working levels". It is the IERE Council's view that this would also create an unnecessarily expensive new area of bureaucracy for the registration of engineers in place of the present self-financed resources available in and through the engineering institutions. However, the Council was pleased to note the recommendation that the learned society task of the institutions might be advantageous to the profession as a whole. "This", the council said, "reflected the point made by the IERE President, Professor Gosling, in his 1979 Inaugural Address, that it was perhaps time that they gave careful consideration to whether the engineering profession was not now two professions - the old with its scientific basis of Newtonian mechanics and the new, as represented by the IERE, whose business was founded on quantum mechanics and the new concepts of network theory, control theory and information science".

Finally, the IERE was relieved to see the Finniston team's unanimous view that the new statutory register must embrace the
current stock of engineers as well as the engineers of the future. They were, however, very concerned to note that the Committee could not agree on how this should be done.

The IEE particularly welcomed the proposed distinction between courses for students and engineering students, each involving substantial cooperation between industry and the schools of engineering. They also welcomed the committee's hope that registration by the engineering authority would become in effect a licence to practice, but regretted that the Committee had not put forward firm proposals for legislation to implement that view. "If registration does not open avenues of employment in limited areas otherwise closed to engineers, the authority will be deprived of the strength needed to implement its policy", said an IEE report

The Chairman and Officers of the CEI, after discussions with the presidents of member institutions and the chairman and senior members of the Engineers Registration Board (ERB), made a statement in which they endorsed the Finniston Report's analysis of the ills of the British manufacturing industry and its broad objectives for recognising and improving the contributions to be made by professional engineers. The council particularly supported the view that employers must be encouraged to look on their engineers as valuable investments to be developed, rather than assets to be exploited; and the need for thorough practical training for engineers in industry. The CEI, however, had reservations about the proposed methods of attaining these objectives, and the relevance of these proposals to the practical and urgent needs of manufacturing industry, they thought, would require critical examination.
According to the CEI, the benefits to industry claimed by the Finniston Report could be achieved much more cheaply and quickly by an evolutionary process - that of developing the already existing machinery of the engineering institutions to meet the broad objectives set in the report - rather
than by the revolutionary process of replacing this machinery, which operates in the public interest under the authority of the CEI's Royal Charter, by the British Engineering Authority.
The CEI was strongly opposed to the recommendation that all members of the proposed BEA should be appointed by the Secretary of State, as they saw this as having their affairs taken out of their hands - it is characteristic of all professions in the UK that they are mainly self-regulating and consist of members who have been elected or nominated by the profession itself.

Being aware that the new engineers products of the proposed education arrangements - could not become fully qualified engineers before the late 1980 s, and that for the next half-century the majority of practising engineers will be those who now exist or who are under training by the present methods, the CEI warn that unless the morale of these engineers and international confidence in their ability are fully maintained, very great damage would be caused to the national interest.

The CEI considered that the report's failure to make any proposals for improving the education, training and progression of engineering technicians was a serious weakness.
A union view
Ken Gill, General Secretary of the Technical, Administrative and Supervisory Section of the AUEW was disappointed with the Finniston Report because the Committee of Enquiry had failed to deal with the pay and status of engineers. "It is surprising that in a report of 253 pages only about six pages are devoted to engineers' pay and the role of the trade unions in the engineering industry", he said. TASS, he said in a recent report, blamed the engineering professions' lack of status on inadequate salaries and the lack of rational salary structures. "If urgent consideration is not given to raising the salary and status of engineers, the British manufacturing industry will fail to attract and recruit a large enough number of new engineers", he added.

"In the beginning........"

Analysis of the cosmic microwave background radiation left over from the "big bang," the primordial explosion which it is believed began our universe, suggests the existence of clusters of galaxies containing hundreds of millions of stars. Data collected by NASA's U-2 aircraft in the upper atmosphere from remnants of radiation points to the conclusion that the Milky Way galaxy, of which we are a part, is hurtling toward the constellation Virgo at more than a million miles an hour, under the gravitational influence of a "supercluster" around it.

University of California scientists believe the supercluster contains 30 to 40% more galaxies than are normally found in the same volume of space and that it may be 2 billion light years across.

The supercluster would account for about
1% of the volume of the observable universe, which extends through 10 billion light years of space. Dr. George Smoot has pointed out that not enough time has elapsed since the "big bang" for such a supercluster to have formed, which implies that such a gigantic concentration of mass dates back to the beginning of the universe: "If one such huge concentration of matter exists," says Dr. Smoot, "there are probably others."

The new findings introduce an element of doubt into the previously accepted idea that the event which started the universe about 15 billion years ago was a powerful but tightly controlled expansion of matter in all directions at a uniform speed. The supercluster's existence implies that the primordial fireball was "lumpy" and that the vast forces released were by no means uniform in their effects.

BBC responds to WARC'79 frequency proposals

In a recent engineering press statement the BBC outlines its reactions to the WARC '79 frequency allocations, those for Region 1 having been given in our February 1980 issue.

The Corporation's response is generally favourable where domestic broadcasting is concerned, but is "less happy with the implications for external services on the h.f. bands.". For domestic radio broadcasting, extension of the v.h.f. band II to 108 MHz is welcomed. Although formal international agreement does not provide for complete clearance for broadcasting use until 1995, some additional programme channels can be made available much earlier than this, and services which now have to share the three national v.h.f. channels can be separated. The band II extension is also welcomed for the future development of local radio services.

Allocation of the sub-band $519.5-526.5 \mathrm{kHz}$. is welcomed for use with the BBC Carfax motoring information system, but such use is subject to non-interference with navigational beacons in neighbouring countries; the

BBC would have been happier with an exclusive allocation.

Extension of the v.h.f. television band III by two 625 -line channels will be of value if this band is to be re-developed after closure of the 405 -line service. The current WARC proposals require the closure of this service by 31st December 1986, although the Annan report suggested a phased programme of closure beginning in the early 1980 s. On the u.h.f. television bands the provision of up to four additional channels will considerably ease the planning of further extensions of u.h.f. coverage throughout the country.

Allocations for s.h.f. satellite links are also welcomed, but the rearrangement of the $h . f$. bands for overseas broadcasting falls considerably short of the BBC's wishes, especially at frequencies below 9 MHz where no extensions have been agreed.
The statement ends with the BBC asserting its support for the reservations entered by the UK and the USA delegations to the conference, retaining the right to "take whatever steps may be necessary to maintain the effectiveness of our external services."

Scripts by wire af Bush House

Two mini-computers and an array of disc storage units form the heart of a "scripts by wire" system now in operation at the BBC's Bush House, the Overseas Broadcasting department's headquarters.

Some 30 million scripts covering news stories, talks and features can now be distributed each year by electronics to more than 200 outlets in the complex. The central newsroom contains 39 v.d.u.s and journalists dictate their stories to operators who type them into the system. Once written, the story can be directed by the computer to specific language sections and can be printed out in individual offices.

Both short pieces and longer talks can be written into the system which can accommodate items of up to 5000 words; news stories are kept on file for seven days, current affairs talks for 14 days and general features for 100 days.

A selective "list" can be drawn up on the v.d.u. according to subject matter, or the full list of talks may be checked. On the other hand, stories which only apply to a particular part of the world may be called up for display.

The electronic distribution system is controlled by two General Automation 16/440 mini-processors. Both are in continuous operation and receive the same input, but only one provides output. If a fault occurs, the standby processor can take over immediately. Each processor is associated with a 2 megabyte fixed-head disc and a 24 megabyte disc pack drive. New material is entered on magnetic tape and later transferred to microfiche for archive storage.

Each of the 137 v.d.u.s distributed around the building can undertake full text editing, but only those in the news, talks and features areas are free to amend stories in the central store. Hard copies are available from 85 printers strategically placed amongst the offices.

Ken Clayson, engineering manager in charge of the new system says, "The system is saving an enormous amount of time and paper and it lets us make far wider use of the material we prepare. Every one of the broadcasting sections at Bush House now has access to every script prepared here. In the days when we relied entirely on paper that was just not possible."

The hardware was provided by the data system division of ITT Business Systems to a specification set up by the BBC's Capital Projects Department.

Microwave unit detects
 cancer

An instrument containing a sensitive radiometer capable of measuring temperature variations of less than 0.1° Celsius (0.2° Fahrenheit), part of a microwave appli-' cator made by Microwave Associates, an American company, is being used to locate and possibly destroy cancerous tissue. The equipment has located tumours in 14 known cancer patients and has detected a cancerous site in one patient which was not revealed by the use of conventional techniques.

The principal advantages offered by the new instrument are that it does not emit harmful radiation, can be used outside the body and could become relatively inexpensive if mass-produced.

Cancerous tissue is hotter than healthy surrounding tissue and conventional methods such as infra-red thermography can detect tumours near the surface of the skin, but the new method permits checking at a much deeper body level.

If the instrument proves itself effective, after an extensive series of hospital and laboratory tests, it could become standard equipment in doctor's surgeries. Patients could be quickly and easily tested for many forms of cancer, just as they are now tested in a routine manner for heart malfunction by means of an electrocardiograph.

The treatment side of the new instrument's use would involve microwave heating of a tumour to destroy cancer cells. Tumours have a relatively poor vascular system (compared with healthy tissue) and researchers believe that a tumour will heat faster and remain hot longer than surrounding tissue because there are fewer blood vessels to carry the heat away.

The next stage in the instrument's test programme will be its use on cancers in large animals in the Norfolk, (Virginia) Medical School laboratories.

Mullard to "axe" 900 jobs

Mullard's decision to "streamline" its tube production business will, according to a report in The Times, 16th Jan 1980, result in the loss of 900 jobs at its Durham and Simonstone, Lancashire works.

The main changes, to take place over the next two years, will involve further automation and alterations to quality control departments; these moves are seen as necessary to compete with the high output of quality tubes and tv receivers from Japanese manufacturers and in the face of the deve lopment of domestic products using tv-like tubes.

The National Economic and Development Office has recently identified certain trends in the $t v$ and components industries and a study of production costs of colour television sets in the UK, Japan, South Korea and W. Germany has shown that Japan in particular gains a high cost advantage from its overall higher level of investment in advanced automated plant, superior efficiency in manufacturing and design and more rigid quality control of components.

The Muilard decísion reflects an awareness of these findings and also links up with NEDO's main recommendations which include the "rationalization" of UK tv production into larger units producing five times the current number of receivers, more involvement directly with Japanese technology, to improve and introduce more new designs and to carry out more research and development.

Only about 100 of the threatened jobs will go in 1980 and Mullard says that it "intends to continue to invest substantially in the picture tube business."

A modern tv tube production line in Finland using "Japanese" technology, in this case a Hitachi range of $20 \mathrm{in}, 22 \mathrm{in}$ and 26 in tubes of the "in-line" variety, featuring quick-start heater, 110° deflection angle, temperature-compensated shadow mask, electrostatic focusing and self-converging integrated neck components. This automated plant, operated by the Automation Group, Valmet Oy, Finland is expected to be producing about 500,000 tubes by the end of 1981

Multi-I.e.d. aircraft instruments under test

A 4 in by 3in screen incorporating more than 49,000 l.e.ds, providing a resolution of 64 lines per inch is currently being evaluated by the USAF Flight Dynamics Laboratory as part of a joint project between the USAF and the Canadian Department of Industry, Trade and Commerce

The device is intended as a replacement for the mixture of dials and c.r.t. displays at present found in aircraft cockpits; it is computer-controlled and is designed to provide the pilot with information on various subsystems, such as navigation or weapon delivery. This information can then be called up at the flick of a switch, the data being depicted on the l.e.d. screen.
Walter Melnick, of the Flight Dynamics Laboratory says that the new display system
is an advance on the c.r.t. form due to its less cumbersome nat ure and higher reliability he estimates a c.r.t. display life of 500 hours and an l.e.d. display life of 10,000 hours. Furthermore, while all information can be lost in the event of tube failure, even if several thousands of l.e.ds fail, the display can still be read.

Several technical solutions to the problem were examined before deciding on the l.e.d. method, and this was eventually selected because it is adaptable to the "building block" mode of construction, where one inch squares of the diodes can be assembled into a variety of display sizes.

Bowmar Instruments, of Weybridge, are the UK representatives of the makers of the display, Optotek Ltd. of Canada.

Getting wise to electronic mail

According to a report from Mackintosh International and Communications Studies and Planning Ltd, organizations which rely on post and telecommunications services should urgently review their communications needs to take account of the opportunities presented by "electronic mail."
The report, entitled "Electronic Mail: user alternatives in the 1980 s " stresses that it is not too late to take advantage of the costeffectiveness of equipment and services currently available. However, prompt action is necessary, says the report, because users must take transitional measures over a
period of time to ensure that the benefits of the new equipment, such as communicating word processors, text and graphic terminals and the next generation of "facsimile," are realised.
One of the report's main aims is to advise non-technical business users about the scope and benefits of electronic mail equipment and services on offer from manufacturers and telecommunications authorities. It also stresses that users should prepare for the introduction of the enhanced telex service, to be known as Teletex, which begins operation in Germany and Sweden sometime in 1980.

Disobedient spacecraft

Radio contact with Voyager 1 was lost on 3rd January just after the spacecraft had been commanded to turn in space and fire thrusters for a trajectory correction. The manoeuvre apparently took place but the antenna alignment was not entirely successful. However, later in the day NASA controllers received confirmation that command signals intended to switch on the low-gain antenna and place it in a two-way reception mode, had been received and executed.

Efforts are being made to correct the antenna/Earth alignment, the problem requiring some analysis to ensure that attitude control fuel is not wasted.

Voyager 1 was launched in September 1977 and flew past Jupiter in March 1979. The spacecraft is now 660 million miles from Earth and is scheduled to encounter Saturn in November 1980. Voyager 2, a sister craft, is due to encounter Saturn in August 1981.

News in brief

The FCC is proposing to award additional frequencies for c.b. use on s.s.b. operation and may also liberalize rules on the distances c.b. stations are permitted to work over. The use of variable frequency oscillators may also be permitted.

Car to telephone service
 launched in Norwich

A new car telephone service, claimed by Air Call Ltd. as the first of its kind in England, was started in Norwich on the 21st January 1980.

This service, known as "interconnect", enables direct two-way communication between a car telephone user and subscribers to the public telephone network and is now available to Air Call's East Anglian customers. The company's branch manager, Derek Cunningham, says that Interconnect will be available to subscribers in addition to the existing range of services, which includes message handling, "talking bleeper" and

telephone answering services.

In order to house the additional equipment required, the Norwich control complex has been moved to larger premises in the city centre, and plans have been drawn up to extend the Interconnect service to most of the company's 34 control centres during the coming year

Car telephone users can take advantage of the new service without necessarily changing the equipment in use; the cost of all messages and inland telephone calls is included in the rental charge.

ITT researcher wins award

Paul Barton, a research engineer with Standard Telecommunication Laboratories, has received the William E. Jackson award from the Radio Technical Commission for Aeronautics (USA).

Mr Barton won the award, consisting of an honorarium and commemorative plaque, for his thesis, "Airborne Signal Processing for the Microwave Doppler Landing System," submitted for a Ph.D degree from University College, London. He graduated from Churchill College, Cambridge with an honours degree in mechanical sciences and joined STL in 1965, working with the late Alec Reeves on pulse code modulation and electro-optic systems.
In 1971, he began work on the microwave landing system (MLS) programme, being

Personal
 computer

The Sinclair Research ZX80 computer measures $218 \times 170 \times 50 \mathrm{~mm}$, weighs 12 oz and features a 1 kbyte memory, claimed to be "equivalent to 4 kbytes in a conventional computer." How the latter trick is accomplished is not explained in the otherwise useful literature which comes with the computer, and which includes BASIC programming instructions, presented in a lighthearted manner, ideal for the beginner to the mysteries of programming.

A cassette player can be used directly to store programs, and the unit dispenses with the need for a dedicated v.d.u. by virtue of the "plug in to your tv aerial socket" facility. A further useful feature, especially for the beginner (and the unit seems particularly suitable for use in schools, where "computer science" is becoming a popular subject) is the syntax error check. This ensures that only syntactically correct lines can be added to the program list at the top of the page. A marker identifies a syntax error and thus helps to speed up the production of an errorfree program.

The display format is 24 lines of 32 characters; the unit costs $£ 99.95$ inc. v.a.t. fully assembled, becoming available in March, or in kit form at $£ 77.95$ inc. v.a.t. Prices include the cost of the programming manual, but exclude mains adaptors, which cost $£ 8.95$ extra.
particularly concerned with the design of the Doppler scanning system and in 1976 began the work which led to the winning thesis. He holds some 20 patents in the MLS and radar fields and is currently leading a team working on radar and adaptive systems at STL.

The award is a memorial to William E. Jackson, a pioneer in the development and implementation of the present airways, air' traffic control and aviation communication systems.

News in brief

The British Amateur Electronics Club, which claims that it is the only national amateur electronics club, is seeking help from established local electronics groups, its main problem being difficulty in finding premises for meetings. The mainly scattered nature of. the membership adds to the problem and if local groups are willing to welcome BAEC members to their meetings, they would be prepared to pay an affiliation fee. The chairman of the BAEC will send out a copy of a simple questionnaire to any reader who is interested enough to contact him: Cyril Bogod, "Dickens", 26 Forrest Rd, Penarth, S. Glam., or telephone 0222707813.
The IEETE have the following lecture events planned for March 1980:
5th March, J. J. Fallon of MK Electric will present "Standardisation of the proposed international plug and socket system" at the Duke of Cornwall Hotel, Millbay Rd, Plymouth, at 8 p.m.

17th March, "Robots and telechirs for Industry", presented by Prof. M. W. Thring at the IEE Building, Savoy Place, London, at 6 p.m.

20th March, G. W. Lord, Merlin Gerin (UK), will present "Up-to-date development in moulded case circuit breakers", at the Y.E.B. Staff Restaurant, 161 Gelderd Rd, Leeds 12, at 2 p.m.

27th March, "Lasers and their uses" will be presented by J. Dawson of the REME School of Engineering, at the REME School of Elec. tronic Engineering, Aborfield, Reading, at 7.30 p.m.

28th March, G. Simpson, Champion Fire Defence Ltd, will lecture on "Developments, standards and future of automatic alarm systems" at the Royal Dublin Hotel, O'Connell St, Dublin, at 8 p.m.

The IERE propose to hold the following conferences in 1980: 22-25 April, "The electronic office", at 99 Gower St, London WC1; 3-4 July, "Re-training in the electronics industry for the microprocessor age", at 99 Gower St, and 16-18 Sept., "Electromagnetic compatibility", at the University of Southampton.

The IEE will be running a conference on "Radio transmitters and modulation techniques" from 24 to 25 March, 1980. The conference programme and application forms are available from the IEE, Savoy Place, London, WC2. Hotel booking forms are available from Exp-O-Tel, Strand House, Great West Rd, Brentford, Middlesex.

The 22nd International Festival of Sound will be open to the public from Wednesday 5 th to Sunday 9th March 1980 at the Palais des Congres, Porte Maillot, Paris. Doors open from $10 \mathrm{a} . \mathrm{m}$. until 8 p.m., open late on Saturday the 8 th - until 10 p.m. Trade days are from 2nd to 4th March inclusive. On Monday 3rd March two conference debates will be held on the subjects "tapes and high fidelity" and "standardization and high fidelity".

An exhibition to mark the 50th anniversaryof Baird's 30 -line tv transmissions from the BBC's transmitter at Brookmans Park (March 1930) is being staged by the Science Museum, Kensington, beginning 27 March 1980 , running for six months.

The show is called "The Great Optical Illusion" and the introductory exhibit will illustrate first principles of television. The "illusion" theme will be set up by other demonstrations, including "chromakey", an electronic overlay method which will show visitors as performing a feat of aerial daring, while "front axial projection" will insert them optically into a projected scene.

There will be a range of exhibits outlining the development of television since the opening of the 405-line service in 1936 and period room settings will show a montage of contemporary programmes on restored receivers of appropriate vintage; these will include a pre-war receiver with a five-inch tube and a projection set of the early 'fifties.

Frequency change for BBC's Ventnor Radio 3 Transmitter

In order to escape interference from the French transmitter at Caen in Normandy, the BBC's Ventnor v.h.f. transmitter has changed frequency (on lst February). The previous frequency of 91.6 MHz has been changed to 91.7 MHz , but no change will be made to the shared Radio 1/2/4 frequencies also relayed by this transmitter.

The station is located at St. Boniface Down, on a height above the town, serving about 6,000 people in the Ventnor and Bonchurch area and also relays the tv services of BBC1, BBC2, and ITV on 625 lines (u.h.f) and the 405 -line BBC1 service. Listeners will only have to change the tuning of their receivers by a very small amount.

More frequency allocations

WARC 79 decisions for 10 GHz to 275 GHz in Region 1

Last month we published a list of frequency allocations, as decided at the 1979 World Administrative Radio Conference, Geneva, for radio services up to 10 GHz . We now present the remainder of the frequency allocations made at WARC 79 , from 10 GHz up to 275 GHz . This, of course, is the microwave region of the electromagnetic spectrum (centimetre and millimetre wavelengths) and is occupied mainly by services such as radar, satellites, and radio astronomy. These highly specialized activities are of interest to only a small number of Wireless World readers, but in fact this $10-275 \mathrm{GHz}$ region is also available for amateur radio, while the satellite allocations include broadcasting satellites, which of course will eventually bring new types of domestic receivers and aerials to homes everywhere (see January 1979 issue, pp 3842).

As in the February issue, the list is restricted to Region 1 as defined by the International Telecommunication Union (Europe, Africa, Middle East and Russia) and does not include the numerous footnotes giving additions, qualifications etc for particular countries. Nor does it distinguish between the three categories of service, primary, permitted and secondary (see February for definitions); but as a rough guide the first code letter, to the immediate right of the frequency band, is almost always a primary service, while the remainder, reading from left to right are divided among primary, permitted and secondary services in that order. Where secondary services are allocated they are always on the extreme right.
In the previous frequency plan, embodied in the Radio Regulations resulting from the WARC of 1959, the following bands were not allocated to any services: $48.50 \mathrm{GHz}, 71-84 \mathrm{GHz}, 152-$ $170 \mathrm{GHz}, 200-220 \mathrm{GHz}$ and $240-250 \mathrm{GHz}$. It will be seen from the list that these are now occupied. Neither the 1959 nor the 1979 conference attempted to allocate anything to the region above 275 GHz (which, after all, goes into wavelengths of less than a millimetre) but this remains available for individual governments to permit experimentation. In particular a need has been identified for making spectral line measurements at various frequencies from 278 GHz to 381 GHz .

An outstanding feature of the present list is the large amount of spectrum space now allocated to satellites communication, broadcasting, Earthexploration and so on. It will be seen from the key to the code letters that, of the traditional categories of terrestrial radio services (fixed, mobile broadcasting, amateur etc.), there are now seven which also have a corresponding service provided through satellites. The coming of the satellite was first recognized officially by the ITU at an Extraordinary Administrative Radio Conference in 1963 and there have been others devoted to satellites since then. The results of a 1971 space conference were already embodied in the Radio Regulations before WARC 79 took place, and now, following WARC 79, three further ITU conferences devoted to space services have been planned or requested.*

As we reported earlier, the UK Home Office had recommended that allocations for communication satellites should be increased in the $10-11 \mathrm{GHz}$ band. This-proposal has in fact been generously implemented by a doubling of the spectrum space available. The original allocation was 500 MHz , split into two separated bands at 10.95 11.2 GHz and $11.45-11.7 \mathrm{GHz}$, but now, as will be seen from the list, there is a new, uninterrupted 1 GHz band from 10.7 to 11.7 GHz in which, in fact, communication satellites are a primary service (although this band is shared with fixed and mobile primary services). In the space-to-Earth direction of communication this is a world-wide allocation. In the Earth-to-space direction, however, for Region 1 countries this band is also reserved for use by feeder

[^2]links ("uplinks") to broadcasting satellites (see later).

The needs of the maritime mobilesatellite as well as the aeronautical mobile-satellite services have been provided for and as a result these systems will be able to develop without hindrance. Also, in principle, it was agreed to provide for the feeder links to these services in the bands allocated below 10 GHz . A mobile-satellite service has been introduced and frequencies have been provided for this.
Passive sensing in the Earth exploration-satellite and space research services have been identified as important activities in the future, so provision has been made for these services. Furthermore, in some parts of the spectrum where the fixed and mobile (except aeronautical mobile) services operate under a footnote provision, agreements have been reached to either limit or phase out the fixed and mobile services over a period of time with the intention of providing exclusive bands for the passive services. Increases have been made to the spectrum space allocated to Earth exploration satellites and space research. In addition, provision has been made for the operation of radars on board spacecraft in these services (e.g. in the band $35.5-35.6 \mathrm{GHz}$).

Key to code letters in list

A	Amateur
AR	Aeronautical radionavigation
AS	Amateur - satellite
B	Broadcasting
BS	Broadcasting - satellite
BSL	Broadcasting satellite feeder link
F	Fixed
FS	Fixed - satellite
IS	Inter satellite
ISM	Industrial, scientific, medical
LMS	Land mobile - satellite
M	Mobile
MA	Meteorological aids
MS	Mobile - satellite
RA	Radio astronomy
RL	Radiolocation
RN	Radionavigation
RNS	Radionavigation - satellite
S	Space research
SAT	Earth exploration satellite
SFTS	Standard frequency and
	time signal - satellite

Additional spectrum has been allocated to the fixed-satellite service in the Earth-to-space direction near 100 GHz , keeping in mind the allocation to the broadcasting-satellite service in the band $85-86 \mathrm{GHz}$ (see later).

The pattern of allocations to the inter-satellite and the fixed-satellite services follow, in general, that laid down by the 1971 space conference, i.e., with the former concentrated in the absorption bands so as to take advantage of the atmospheric attenuation to
provide shielding between the space and the surface (or low-altitude) systems, and the latter located in parts of the spectrum between the absorption bands.

In certain combinations of space and terrestrial services the conference concluded that there was inadequate information on sharing. Footnotes were therefore added to reflect this uncertainty and the subjects were referred to the CCIR for further study.

The three bands for direct broadcast-

Table of frequency allocations for Region 1

GHz

10.0-10.45
10.45-10.50 10.50-10.55
10.55-10.60 10.60-10.68 10.68-10.70 10.70-11.70 11.70-12.50 12.50-12.75 12.75-13.25 13.25-13.40 13.40-14.00 14.00-14.25 14.00-14.50 14.25-14.30 14.30-14.40 14.40-14.47 14.47-14.50 14.50-14.80 14.80-15.35 15.35-15.40 15.40-15.70 15.70-16.60 16.60-17.10 17.10-17.20 17.20-17.30 17.30-17.70 17.30-18.10 17.70-18.10 18.10-18.60 18.60-18.80 18.80-19.70 19.70-20.20 20.20-21.20 21.20-21.40 21.40-22.00 22.00-22.21 22.21-22.50 22.50-22.55 22.55-23.00 23.00-23.55 23.55-23.60 23.60-24.00 24.00-24.05 24.00-24.25 24.05-24.25 24.25-25.25 25.25-27.00 27.00-27.50 27.5-29.5 29.5-30.0 30.0-31.0 31.0-31.3 31.3-31.5 31.5-31.8 31.8-32.0 32.0-32. 3 32.3-33.0 33.0-33.4 33.4-34.2 34.2-35.2 35.2-36.0

Services	GHz	Services
F, M, RL, A	36.0-37.0	SAT, F, M, S
RL, A, AS	37.0-37.5	F, M
F, M, RL	37.5-39.5	F, FS, M
F, M, RL	39.5-40.0	F, FS, M, MS
SAT, F, M, RA, S, RL	40.0-40.5	F, FS, M, MS
SAT, RA, S	40.5-42.5	BS, B, F, M
F, FS, M	42.5-43.5	F, FS, M, RA
F, B, BS, M	43.5-47.0	M, MS, RN, RNS
FS	47.0-47.2	A, AS
F, FS, M, S	47.2-50.2	F, FS, M
AR	50.2-50.4	SAT, F, M, S
RL, RN, SFTS	50.4-51.4	F, FS, M, MS
FS, RN, S	51.4-54.25	SAT, S,
LMS	54.25-58.2	SAT, F, IS, M, S, RL
FS, RN, F, M, S	58.2-59.0	SAT, S
F, FS, M, RNS	59.0-64.0	F, IS, M, RL
F, FS, M, S	61.0-61.5	ISM
F, FS, M, RA	64.0-65.0	SAT, S
F, FS, M, S	65.0-66.0	SAT, S, F, M
F, M, S	66.0-71.0	M, MS, RN, RNS
RA, SAT, S	71.0-74.0	F, FS, M, MS
AR	74.0-75.5	F, FS, M
RL	75.5-76.0	A, AS
RL, S	76.0-81.0	RL, A, AS
RL	81.0-84.0	F, FS, M, MS
RL, SAT, S	84.0-86.0	F, M, B, BS
FS, RL	86.0-92.0	SAT, RA, S
BSL	92.0-95.0	F, FS, M, RL
F, FS, M	95.0-100.0	M, MS, RN, RNS, RL
F, FS, M	100-102	SAT, F, M, S
F, FS, M, SAT, S	102-105	F, FS, M
F, FS, M	105-116	SAT, RA, S
FS, MS	116-126	SAT, F, IS, M, S
FS, MS, SFTS	122-123	ISM
SAT, F, M, S	126-134	F IS, M, RL
F, M	134-142	M, MS, RN, RNS, RL
F, M	142-144	A, AS
SAT, F, M, RA, S	144-149	RL, A, AS
F, M	149-150	F, FS, M
F, IS, M	150-151	SAT, F, FS, M, S
F, IS, M	151-164	F, FS, M
F, M	164-168	SAT, RA, S
SAT, RA, S	168-170	F, M
A, AS	170-174.5	F, IS, M
ISM	174.5-176.5	SAT, F, IS, M, S
RL, A, SAT	176.5-182.0	F, IS, M
RN	182-185	SAT, RA, S, F, M
F, M, SAT, SFTS	185-190	F, IS, M
F, M, SAT	190-200	M, MS, RN, RNS
F, FS, M	200-202	SAT, F, M, S
FS, MS	202-217	F, FS, M
FS, MS, SFTS	217-231	SAT, RA, S
F, M, SFTS, S	231-235	F, FS, M, RL
SAT, RA, S	235-238	SAT, F, FS, M, S
SAT, RA, S, F, M	238-241	F, FS, M, RL
RN, S	241-248	RL, A, AS
IS, RN, S	244-246	ISM
-IS, RN	248-250	A, AS
RN	250-252	SAT, S
RL	252-265	M, MS ${ }^{\text {RN, RNS }}$
RL, S	265-275	F, FS, M, RA
MA, RL		

ing from satellites remain substantially unchanged. $11.7-12.5 \mathrm{GHz}$ is completely unchanged (and it will be recalled that 40 channels within this band were assigned at the 1977 satellite braodcasting conference - see January 1979 issue, p.41). However, the original $41-$ 43 GHz satellite broadcasting band has now been shifted slightly downwards to $40.5-42.5 \mathrm{GHz}$. This has been done to give better clearance for various radio astronomy frequencies around 43 GHz which are used for spectral observations of silicon monoxide. Furthermore the band is now shared with three other services - terrestrial broadcasting (on a "permitted" basis) and fixed and mobile communications (secondary basis). The third band for satellite broadcasting, $84-86 \mathrm{GHz}$, is unchanged in its band limits, but, whereas in the 1977 frequency plan written into the Radio Regulations it was exclusively for this use, it is now shared with primary fixed, mobile and terrestrial broadcasting services. (Although there is a footnote saying that these three must not cause harmful interference to broadcasting satellites to which frequencies are assigned.)

What is completely new in relation to broadcasting satellites is the set of frequencies chosen for the uplinks to them - the communication channels which convey the programme signals to the satellites' transmitters. These were not planned at the 1977 space conference. At WARC 79 a wide range of proposals came from different countries. For example, the official British proposal was $21.2-22 \mathrm{GHz}$ (which the Scandinavians objected to because of rain attenuation at their northern latitu'des), while the Indian proposal was $14.5-15.35 \mathrm{GHz}$ (which the USA and UK objected to because it conflicted with fixed communication services including military systems). In the end a world-wide compromise was found which did not conflict too seriously with the other services sharing allocations with it (see list), and this was 17.318.1 GHz . At the same time the door was left open for two other bands to be used in particular areas. Outside of Europe and for Malta, $14-14.8 \mathrm{GHz}$ may be used for the uplinks, with the lower end; $14-14.5 \mathrm{GHz}$, "subject to co-ordination with other networks in the fixedsatellite service". And in Region 1, the uplinks may, as mentioned above, use the new $10.7-11.7 \mathrm{GHz}$ allocation which is otherwise intended for communication satellites, fixed and mobile services.

An unusual type of satellite uplink, pioneered by the IBA in Britain, is a road transportable earth station on a trailer designed for sending television outside broadcasts from any location straight up to a communications satellite (see picture in January issue, p. 42). It has already been used, in fact, with the OTS satellite. Largely through the IBA's initiative, supported by the BBC, a decision was made at WARC 79 to allocate
a'band of frequencies to this type of land mobile-satellite service, as it is called, at $14-14.5 \mathrm{GHz}$ on a secondary basis world-wide. In Europe this type of outside broadcast link will probably work through the Eurovision transponders of the ECS satellite, which is due to be launched at the end of 1981 (see December 1978 issue, p. 63, for details).

Radio amateurs will note that amateur satellites have received an allocation at $10.45-10.5 \mathrm{GHz}$. This is worldwide and on a secondary basis, the primary service in this band being, of course, 3 cm radar. The amateur and amateur satellite bands between 24 and 24.25 GHz remain unchanged. There is a new amateur and amateur satellite allocation at $47-47.2 \mathrm{GHz}$ (6 mm), two more at $75.5-76 \mathrm{GHz}$ (primary) and 76 81 GHz (secondary, sharing with radar), and a further linked pair in the 2 mm wavelength region at $142-144 \mathrm{GHz}$ (primary) and $144-149 \mathrm{GHz}$ (secondary). The highest amateur bands of all to be allocated are in the previously unoccupied region $240-250 \mathrm{GHz}$, and are at $241-248 \mathrm{GHz}$ (on a secondary basis) and $248-250 \mathrm{GHz}$ (primary basis), both including a satellite service. These are all somewhat different from the UK proposals for the amateur service taken to Geneva by the Home Office (December 1979 issue, p. 62).

Three new bands have been designated for ISM (industrial, scientific, medical) applications. Two significant factors in these allocations are (a) that the bands are in harmonic relationship and (b) that the use of the bands is subject to special authorization by the government of the country concerned in agreement with other administrations whose radiocommunication services might be affected.

Radiolocation allocations have been made in two distinct groups - in the absorption bands for shorter range systems with a high potential for frequency re-use, and in the radio "windows" between those bands for longer-range systems.

Additional spectrum has been made available to radio astronomy, with recognition of the nature of the observations, e.g. spectral lines. The requirement to observe emissions from extraterrestrial sources has been accepted and frequency bands are identified where these observations are likely to be made.

It will be noticed that numerous allocations for the fixed and mobile communication services run right through the list, up to the very highest frequencies. According to one Home Office official, this was the result of certain countries being "obsessed" with making their mark on the frequency plan, regardless of whether these frequencies could actually be used or not with current available technology. Acknowledgment. We are indebted to Dr G. J. Phillips, BBC Research Department, for a great deal of help in the preparation of this article.

Radio and Electronic Laboratory Handbook, by M. G. Scroggie, is probably far too wellknown and respected to need much introduction. It has changed considerably, however, in the forty years since it was first published, having been continually revised to keep pace with accelerating change in the industry. It is now in its ninth edition, this one updated largely by G. G. Johnstone.
The plan of the book remains the same, information on measuring equipment being concentrated in the first half. Measuring techniques take up most of the second half of the book, and the already large reference section is extended for this edition: the piece on filter design is particularly useful. Throughout the text, references to the literature are lavishly scattered. The book is published in hard back at $£ 17.99$ by NewnesButterworths, and contains 592 pages.

Frequency Engineering in Mobile Radio Bands, by W. M. Pannell. Continuous expansion of land mobile radio communication makes it essential to plan allocations inside a frequency band in such a manner that interference is kept to a low level and that the spectrum is used to its fullest possible extent. The book is intended to help in the early stages of frequency planning, and is in two sections, the first dealing. with general' procedures and the second of a more speciflc nature. Mr Pannell has many years of experience in the mobile radio field, and was responsible.for the Pannell Report on future spectrum requirements for mobiles in the UK. Published in hard back, a£ $£ 25.00$ by Granta Technical Editions, Hargrave Lodge, 7 Brooklands Avenue, Cambridge.

Audio Equipment Tests, by Gordon J. King, is intended to demonstrate the performance testing of high-fidelity sound equipment to technicians, dealers and those users who take an interest in the technicalities of their equipment. Each component of an audio chain from f.m. tuner (no a.m.) to loudspeaker is allotted a number of test procedures with a list of equipment needed, a diagram of connexions, the procedure to follow and a few clarifying remarks. The author has a long experience of writing on hi-fi subjects for the audio magazines, and of reviewing audio equipment. The book is published at $£ 6.50$ by Newnes-Butterworths, Borough Green, Sevenoaks, Kent, and has 158 pages.

BBC Handbook 1980 is now on sale. It is similar in format to earlier editions and contains the familiar tightly-packed mass of information on technical, artistic, commercial and political subjects in the broadcasting field. It is published in limp back at $£ 3.00$ by the BBC, 35 Marylebone High Street, London WIM 4AA.

The Einstein Myth and the Ives papers is, not surprisingly, an attack on Einstein's theories of relativity and a substitution of the ideas propounded by Herbert E. Ives of Bell Labs. About half of this substantial book is a series
of papers and a lecture by Ives, the rest consisting of The Einstein Myth, in which one of the editors, Dean Turner, puts the case for a universal 'nowness' or simultaneity. He argues for the reality of space and time, eliminating, among other concepts in relativity, the Twins Paradox. Papers and notes by other scientists take up the rest of the book.

In essence, Ives replaces Einstein's principle of covariance (which says that physical laws must apply to systems in any kind of motion, including acceleration) with a restricted theory, in which gravitational and kinetic energy are equivalent. The book is easy to read, and seems to be aimed as much at the layman as at the physicist, only in isolated places becoming mathematical, and even then merely algebraic. The book is in hard back, is A4 sized, contains 447 pages and is published at 22 dollars 50 cents by The Devin-Adair Company, Old Greenwich, Connecticut 06870, USA.

Radio Enters the Home is a reprint, by Vestal Press, of the 1922 catalogue of RCA receiving equipment. In common with most catalogues, it contains full descriptions and illustrations of contemporary wireless sets and, most usefully, a large number of circuit diagrams of 1922 commercial receivers. The first few pages demonstrate the novelty of 'wireless', being illustrated with photographs of groups of people staring fascinated at loudspeakers as though expecting a materialization, and of malevolent infants being tranquillized by a bedtime story.

The sets described range from the Model ER-753 crystal receiver at 18 dollars to the Aeriola Grand valve detector, amplifier and loudspeaker model, complete with battery, charger, aerial and stand and covering 150550 m at a cost of 409 dollars.

In 1922, the catalogue cost 35 cents: now, it is published by The Vestal Press, 320 N. Jensen Road, PO Box 97, Vestal, NY 13850, USA at 12 dollars 50 cents, plus postage.

Entertainment Year Book

What used to be simply the Hi Fi Year Book has now been extended in scope to include reference material on colour television sets, electronic organs, video cassette recorders and television games. This is in addition to the familiar illustrated information on current audio products, including descriptions, technical data, prices (where available) and suppliers' names, addresses and telephone numbers. There are four survey articles on various audio topics. The 1980 " Hi Fi Year Book \& Home Entertainment" contains over 580 pages and can be obtained from booksellers at $£ 3.75$. Alternatively it can be obtained directly from the publishers; IPC Business Press Ltd, by writing to the General Sales Manager, Room CP34, Dorset House, Stamford Street, London SE1 9LU and sending' $£ 4: 25$ which includes packing and postage.

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only $71 / 2^{\prime \prime}$ long. Fitted with a $3 / 32$ " bit.〔4.20(.98)
Range of 5 other bits available from $1 / /^{\prime \prime}$ down to 3/64"
Also available for 24 volts.
Accurate pin point temperature control between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tio of the iron for fast response. Interchangeable slide-on bits from $4.7 \mathrm{~mm}\left(3 / 16^{\prime \prime}\right)$ down to 0.5 mm . Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC (35-40watt) Iron or XTC (50watt). TCSU1 soldering station with XTC or CTC iron £36 (6.44). Nett to industry.
Model CTC - $\mathbf{2 4}$ volts Priced at $£ 9.75(1.87)$

Model XTC - 24 volts Priced at $£ 9.75$ (1.87)
Spare element Model CX230E

* VAT + P\&P as shown in brackets \mathbf{C}

Stocked by many wholesalers and retailers or direct from us if you are desperate.

[^3]

To measure an unknown value, simply select the correct function on the large rotary switch and take the reading.

However, should you want to take comparative readings on the same range, a 'freeze' button is incorporated which locks the range. Press the button again to return to auto-ranging.

Our new auto-ranging digitital multimeter won't take a second

The trouble with most auto-ranging DMM's is that they are comparatively slow to respond. Which let's face it rather defeats the object of an auto-ranging facility.

Avo have changed all that with the new Avo DA117 which has a response time of less than a second on d.c. and resistance ranges. Indeed, even on the a.c. range the DA117 will respond in less than three.

The Avo DA117 has many other fine features. A large, easy-to-read

Alarge, easy-toread
 $31 / 2$ digit liquid crystal display with automatic indication of decimal point and the unit of measurement-so reading errors are virtually eliminated. There is automatic polarity indication for d.c. measurement, visual displays for when

There is also a range-up or range-down facility incorporated for manual range selection.

So now you have a choice of digital multimeters from Avo. The DA116-for accurate manual operation; and the DA117 which does the same thing automatically. Contact your usual Avo distributor for further details, or call us direct. We'll be quick to respond.
 Tel: 0304 202620. Telex: 96283.
ww - 10 FOR FURTHER DETAILS
ThornMeasurement \& Components Division.
You'll never meet a better meter

Maxwell's equations revisited

A critique of orthodox electromagnetic theory

by Ivor Catt, CAM Consultants

Abstract

"It was once told as a good joke upon a mathematician that the poor man went mad and mistook his symbols for realities; as M for the moon and S for the sun."

Oliver Heaviside, Electromagnetic Theory, 1893, volume 1, page 133.
". . . the universe appears to have been designed by a pure mathematician."

Sir James Jeans, The Mysterious Universe, 1931, page 115.

Faraday's Law of Induction, $\nu=-\mathrm{d} \phi / \mathrm{dt}$, seems to imply:

1. A causality relationship; the rate of change of magnetic flux through a surface causes a voltage around the circumference of the surface.
2. A reluctance, or resistance to the change of magnetic flux indicated by the minus sign.
A careful analysis of this one equation will give an insight into the bogus nature of contemporary mathematical operations in electromagnetic theory. First let us discuss the minus sign, which leads us to the idea of a Lenz's Law reluctance, or resistance, to the change $d \phi / d t$. We shall see that a minus sign can occur in an equation when no causality can be involved.
Consider a high speed (125) railway train with sloping front passing an observer. As the front face passes, the observer will see a negative slope $\partial \mathrm{h} /$ ∂x as shown below. However, if the

observer had watched the event through a narrow slit in a fence, he would have seen a rising edge $\partial h / \partial t$, as shown here.

It would be absurd to suggest that there was a causality relationship between $\partial h / \partial x$ and $\partial h / \partial t$. They are both descriptions associated with the passage of the train. Since Newton, it is accepted that a body continues in its
state of uniform motion without a continuing cause, or push. (However, this principle is taking a long time to be applied to electromagnetic waves. $)^{1,2}$
Now we regard the velocity of the train $\partial x / \partial t$ as positive. This creates an anomaly when we want to write the equation

$$
\begin{equation*}
\frac{\partial h}{\partial x} \cdot \frac{d x}{d t}=\frac{\partial h}{\partial t} \tag{1}
\end{equation*}
$$

because the left hand side product is negative when the right hand side is positive, as in the case of the leading face of the train.
This kind of absurdity, or anomaly, is ignored when Newton's Laws are considered. It is reasonable to do so, because Newton's Laws are close to common sense and the obvious. Common sense will prevent absurd conclusions from creeping into a Newtonian theoretical framework, even though the mathematical formulation of Newton's Laws has always been slovenly in this respect.* (Another perhaps permissible slovenly aspect is the use of the $=$ sign for numerous different, mutually contradictory meanings.)
Maxwell's Equations are not in the same class. Common sense will not save us from absurdity and nonsense if our initial formulations are ambiguous or wrong.
Let us consider an electromagnetic wave front advancing at the speed of light. When the step (or more accurately ramp) passes, as shown here

$\partial H / \partial x$ is negative. However, $\partial H / \partial t$ for the step is positive. To get the algebra right, we are forced to conclude that

$$
\begin{equation*}
\frac{\partial H}{\partial x} \cdot \frac{d x}{d t}=-\frac{\partial H}{\partial t} \tag{2}
\end{equation*}
$$

However, no one would propose that the minus sign indicated a causality relationship between $\partial H / \partial x$ and $\partial H / \partial t$.
The last equation never appears in the text books. In the books, one of the

[^4]terms is first converted into a function of E according to the formula
$$
\frac{E}{\boldsymbol{H}}=\sqrt{\frac{\mu}{\epsilon}}
$$

The result is either

$$
\begin{equation*}
\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial H}{\partial x}=-\frac{\partial D}{\partial t} \tag{4}
\end{equation*}
$$

The text books say the "solution" to this pair of equations is a sine wave! See references 3 to 7. (In fact, almost anything is a solution to these equations.)
At this stage, the whole subject starts to look sophisticated and profound. Really it is neither. The minus signs have no significance, as we have seen. B and D are introduced on the r.h.s merely to suppress μ and ϵ using the formula

$$
\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}
$$

In fact, the last two equations (3), (4) are meaningless. If the front end of the high speed train were pointed, sloping out sideways as well as upwards, and w were the term given to width (as H stands for height), exactly the same pair of equations could be constructed.

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=-\mu \frac{\partial H}{\partial t} \\
& \frac{\partial H}{\partial x}=-\varepsilon \frac{\partial w}{\partial t}
\end{aligned}
$$

As with e-m theory, we could conclude with equal validity that a train's height (and width) must vary sinusoidally along its length, making our trains look like the Loch Ness monster, or more accurately, like a row of short sausages, as shown here.

It is shocking that this nonsense has survived for a century at the core of a subject as crucial as electromagnetic theory. We see now that mathematical formulation of e-m theory, far from making the subject more rigorous, has
made it ludicrous and false. We see that the mathematicians are incompetent where physical reality is concerned and hide their incompetence and confuse others by conjuring up nonsensical, interrelated formulae.
When Hertz established that electromagnetic waves existed, Maxwell's equations should have been reexamined, and the large rubbish 'element removed. Instead physically ignorant mathematicians took over, piling garbage on garbage, frightening away those with real insight into the subject - the latter-day Faradays.
Those who try to build extensions, or additions to, the House of Newton should not assume that since the foundations were good enough for Newton's simpler theory, they are strong enough to support their own more complex constuctions. Minkowski's failure to re-examine the foundations of Newton, in particular his assumption that velocity is positive and the passage of time is positive, makes his constructions useless in the same way as Maxwell's equations are useless.

In the Minkowski sense ${ }^{8}$ time really flows from $+\infty$ to $-\infty$, not, as he thought (and our clock faces, with their ascending sequence of numbers, think), from $-\infty$ to $+\infty$. Velocity, being the gaining of distance in return for the loss of time, is negative. This points to a fundamental difference between space and time, and means that the "spacetime continuum" as Minkowski formulated it is bogus. At best, we see his pronouncements as oracular, similar to the answer that Delphos gave when being asked about the sex of an unborn child, "Girlnoboy". This remark could well be interpreted as true, but really it has no content.

Einstein failed to consider the problem of the sign of time and of velocity. Also ${ }^{9}$, he never succeeded in fighting his way through the mass of mathematical garbage surrounding electromagnetic theory.

References

1. Wireless World, July 1979, page 72.
2. I. Catt et. al., Digital Electronic Design Vol

2, C.A.M. Publishing, 1979, page $248,319$.
3. G. W. Carter, The Electromagnetic Field in its Engineering Aspects, Longmans, 1954, page 268 , eqns. (12.5.1), (12.5.2).
4. A. F. Kip, Fundamentals of Electricity and Magnetism, McGraw-Hill, 1962; page 321, eqns. (12.19), (12.20).
5. E. G. Cullwick, Electromagnetism and Relativity, Longmans, 1959, page 81, eqn. 6(2).
6. S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand, 1943, page 39, eqn. (10-1). 7. Wireless World, August 1979, page 44, eqns. (i) and (ii).
8. A. Einstein etc., Principles of Relativity, Dover, page 76.
9. ed. P. A. Schilpp, Albert Einstein, Philosopher-Scientist, Library of Living Philosophers, 1949, page 17, "...the approach to more profound know: ledge. ..."
10. ibid, page 63.
11. I. Catt, Computer Worship, Pitman, 1973; page 71.
12. I. Catt, "The rise and fall of bodies of knowledge", The Information Scientist, 12(4), Dec. 1978, pp. 137-144.

This article is taken from "Electromag. netic Theory" published by C.A.M. Publishing, 17 King Harry Lane, St. Albans.

Impedance mismatching

continued from page 59

Thus, for maximum power transfer efficiency from the Norton source, the load must be such that $R_{\mathrm{L}} / R_{\mathrm{s}} \rightarrow 0$ (the opposite of the voltage source case). A similar set of arguments to those used above can be used to show that the expression for η is meaningless unless the actual circuit is a simple current source with source impedance.

Despite the fact that Thevenin/ Norton equivalent sources do not allow calculation directly of the transfer efficiency, it is perfectly true that to attain maximum power transfer into a load, the load impedance should be chosen to match the Thevenin or Norton source impedance (they are the same) but to say that this means 50% of
the power from the source is lost in the source resistance is in general not true; often the power loss in the source resistance is higher!

Despite the cautions outlined in this paper the notion of transfer efficiency is not without its uses, since a number of

Fig. 4. Current equivalent to Fig. 1.
Fig. 5. Amplifier inter-stage coupling behaves as current source, as in Fig. 4.

frequently encountered circuits behave as true Thevenin or Norton circuits; for example, the common emitter amplifier shown in Fig. 5. Neglecting the biasresistance loading effects and assuming that all capacitors are short circuits, the mid-band voltage gain is given approximately by

$$
\begin{gathered}
A_{\mathrm{v}}=\frac{v_{0}}{v_{\mathrm{i}}}\left(\frac{-R_{\mathrm{c} 2}}{r_{\mathrm{e} 2}}\right) \cdot\left(\frac{-R_{\mathrm{c} 1} \beta_{2} r_{\mathrm{e} 2}}{R_{\mathrm{c} 1}+\beta_{2} r_{\mathrm{e} 2}}\right) \cdot\left(\frac{1}{r_{\mathrm{e} 1}}\right) \\
A_{\mathrm{v}}=\left(\frac{R_{\mathrm{c} 2}}{r_{\mathrm{e} 1}}\right)\left(\frac{\beta_{2}}{1+\frac{\beta_{2} r_{\mathrm{e} 2}}{R_{\mathrm{cl}}}}\right) \\
A_{\mathrm{vmax}} \sim\left(\frac{R_{\mathrm{c} 2}}{r_{\mathrm{e} 1}}, \beta_{2}\right)
\end{gathered}
$$

which occurs when the input impedance of Tr_{2} is much less than the collector resistance of Tr_{1}, i.e. $\beta_{2} r_{e 2} \ll R_{\mathrm{cl}}$. The output of Tr_{1} is a current source of impedance $R_{c 1}$ and the Norton transfer efficiency result obtained above tells us that $R_{L} / R \rightarrow 0$ for good transfer efficiency, i.e. $\beta_{2} r_{\mathrm{e} 2} / R_{\mathrm{cl}} \ll 1$.

In conclusion, I would stress that extreme care should be taken to interpret the components of a Thevenin or Norton equivalent circuit correctly especially in deriving expressions for losses in power transfer.

Microwave intruder detector - 2

Design with good interference rejection and noise monitoring

by K. Holford, C.Eng., Philips Research Laboratories

This design provides a simple but effective circuit which uses a cycle counting scheme to prevent the alarm being triggered by short movements or pulses. The circuit has excellent interference rejecting properties. A noise monitoring circuit is described that allows the alarm to be set up easily and reliably in terms of a low false-alarm probability.

The complete intruder alarm circuit designed for use with the Mullard CL8960 module is shown in Fig. 9. It requires a nominal 12 volt power supply able to produce at least 300 mA during switch-on but in general less than 200 mA unless a high current relay is used (about 160 mA plus the relay). This supply can be a car battery with the usual voltage variation during charging such as up to 16 volts. The minimum voltage is safely 11 volts with a 7.5 volt V_{g} (or 10.5 volts with a 7.0 volt setting). With a selected 748 as in the text, this can be reduced by up to another 0.5 volts. However, with supply ripple, these represent an alarm risk level and should be avoided.

Supply ripple within these restrictions can be up to 1 V pk-pk. without affecting performance and some prototypes have tolerated 5 V pk-pk with a 13 volt supply and $\mathrm{a} \mathrm{V}_{\mathrm{g}}$ of 7.5 volts.

The radar sensitivity is limited en-
tirely by that of the microwave module, afterwards just called a module, rather than the circuit design. However, to realise this, due regard must be paid to the use of short screened leads at the amplifier input, because of the gain the circuit has to 50 Hz and 100 Hz signals.

Two 741 op-amps are used as the main Doppler amplifier. These can be a single (twin) 747, if required. Thus the complete circuit uses one 1.5 watt power transistor, four small transistors and three cheap i.cs. Much of the circuit is directly connected which saves on components.

The microwave module requires some cautionary remarks because the mixer contains a diode of extremely small electrical proportions so as to respond to the 10.687 GHz frequency. If the mixer, or its lead to the amplifier, is touched with a measuring lead or an object which has not been grounded to the module metalwork it could be destroyed by static discharge. If a shorting clip across the mixer is supplied leave it in situ until connections have been made.

Fig. 9. Components: $T_{1}, B C 557, T_{3}$ Tr_{4}, BC547 or BC 107. Tr 5_{5} BC 135 or BFY51, with $50^{\circ} \mathrm{C} / \mathrm{W}$ fin. Capacitors: Bead tantalum maximum leakage C_{4}. $2 \mu \mathrm{~A}, \mathrm{C}_{7} 1 \mu \mathrm{~A}$ at $\mathrm{t}_{\text {max }}$. Resistors: all 0.1 W . R_{2} and R_{3} are 2% the rest 5% or could be 10%

Connect the module to the amplifier circuit as follows. Use a screened input lead and make the amplifier connection first. The braid is connected to 0 V at only the amplifier end. Keep exposed unscreened ends down to about 12 mm . Next make the amplifier $0 V$ connection to the module 0 V metalwork. Then clip a lead with crocodile clips between the soldering iron bit and the module metalwork to equalize potentials. If the iron is not earthed, make a second lead between the module and earth. The lead from the amplifier which is to be connected to the mixer should now be touched on the module metalwork just prior to connection. Maintain one finger on the metalwork while the joint is being made to discharge and prevent the build-up of static also on the solder. Remove any shorting clip while the metalwork is being contacted and after making the connections.

Should it be necessary to measure the mixer direct voltage while it is working contact the metalwork beforehand and while the leads are being handled; but make the 0 V connection first. To ensure no static, fit a $10 \mathrm{k} \Omega$ resistor to the end of the measuring lead and touch on the metalwork just prior to the measurement. Mixer failure is evident by loss of sensitivity and by little or no direct voltage when passing a direct current, such as the $40 \mu \mathrm{~A}$ bias current.

Circuit description

The circuit supplies about $40 \mu \mathrm{~A}$ of current via R_{1} for mixer d.c. bias. Mixer bias will be about 300 mV with no microwave energy and ideally about half this with the optimum mixer power. However, voltages from about 90 to 270 mV with a 300 mV diode will only. cause a 1.5 dB loss in signal-to-noise ratio at the extremes but require 5 dB more gain for the same signal at the upper bias point. Observe the precautions mentioned when measuring mixer voltage to avoid static discharge damage; nothing must inadvertently touch the live mixer-to-amplifier lead.

The mixer power for the CL8960 is obtained by leakage across the two waveguides outside the module. Thus during measurement it is best to point it upward and have no obstruction in front for at least 300 mm . Covering the module requires special material (see data sheet) which is near-transparent to microwaves.

A hand moved slowly at about 150 mm in front of the module should move the bias by a few tens of mV and confirm that microwaves are present and that the mixer is probably good. A bias voltage of 50 mV or less together with 5 mV or less of movement suggests a faulty mixer.

A 2 mm screw can be used to reflect power and to either set the correct bias or, at another spaced distance, cancel an over-reflection from a covering to bring the bias back to a correct level,* provided the reflection is not excessive, such as causing the voltage to be more than about 100 mV negative without the screw. The best position for this screw is in the front shroud supplied with the
*The intended optimum mixer power will occur naturally if the module is bolted to a $160 \times 43 \mathrm{~mm}$ aperture in a $1 / 16$ in plate, such the side of a box, provided the plate is sandwiched between the front shroud, Fig. 10 and the rest of the module. The shroud and module are supplied together.
module, Fig. 10, at a position in line with the centre web, such as between 4 and 8 mm out from the shroud-to-module interface joint (without the plastics cover).

The supply voltage to the amplifiers is also used for the Gunn microwave oscillator in the module and so should lie between 7.25 and 7.75 V . Lower voltages than 7.0 V may not allow the oscillator to work properly, although will cause no damage. Voltages above 8.0 V risk damage; the life at 10 V can be just a few seconds. Thus the 7.5 V line should be checked before connection.

Using a 7.5 V zener diode with IC_{3} will' usually produce a voltage within the above spread. Lower voltages can be corrected using the $1 \mathrm{k} \Omega$ resistor across link AF, with a second resistor of higher value across FB. For instance a $10 \mathrm{k} \Omega$ resistor will raise the voltage by about 10%. No adjustment exists for too high a voltage other than changing the diode. Alternatively a 6.8 V zenermay be fitted, in which case the resistor FB will lie between about 3.9 and $18 \mathrm{k} \Omega$.

The module produces audio frequencies in response to radial movement, the relationship being 32 Hz per $1 \mathrm{mile} / \mathrm{h}$. Movement across the 140° beam will produce a much lower frequency, or even zero at perfect constant radius with no change in target reflection properties during the movement. Range depends on the target size and is about 10 metres or could be more if C_{2} were increased and R_{4} decreased. But a high

Fig. 10. Mixer power can be adjusted by. fitting a 2 mm screw in shroud.

4 Circuit board for combined alarm and monitor circuits of Figs. 9 \& 11 includes noise indicator on board for demonstration use Board pattern appears on page 81 with location diagram on page 84.
sensitivity has false alarm risk due to extraneous movement.
Signals from the module are coupled in via C_{1} and amplified by $I C_{1}$ and IC_{2} to produce a clipped "square" sinewave of 4 to 5 V pk-pk amplitude out of IC_{2} or less at long range. This drives the following circuit which counts beat cycles and is set to alarm when the voltage across C_{7} reaches about four volts. This will take about 600 mm of travel with C_{7} of $47 \mu \mathrm{~F}$ or 300 mm with $25 \mu \mathrm{~F}$. Capacitor C_{6} is used as a bucket to discharge into C_{7} once for each beat cycle. A cycle occurs for each 14 mm of radial distance change towards or away from the radar. The larger C_{7} the greater one singlemovement distance can be before an alarm is given. The method affords protection against an alarm from odd spurious pulses and short single events.

The result of movement is stored in C_{7} to prevent an approach by a series of short movements. The memory is discharged by \mathbf{R}_{12} to prevent built up to an alarm by odd spurious events. C_{7} will ideally have a leakage current less than \mathbf{R}_{12} for a long storage time. At four volts ($4 \mu \mathrm{~A}$ per $1 \mathrm{M} \Omega$) Tr_{2} and Tr_{3} will conduct and Tr_{4} will be turned off thus setting the contacts for an external alarm.

The floating change-over contact is intended to be used for a more powerful external relay operating an audible warning device such as a bell or door opener. The relay is a low current type to preserve battery life during mains failure and its contact rating must be observed. If this is not required a more powerful relay may be fitted with a coil current up to 100 mA . A diode across the relay absorbs inductive voltage and protects the transistor at switch off. If a relay is used with this already fitted, the coil must be connected the correct way round, otherwise both the diode and the transistor may be destroyed. A shorted diode will mean a useless relay unless it can be burnt away.

Sensitivity is set by R_{7}, which should be a log.-law potentiometer for smooth control and with the/low resistance end the last to be shorted. A standard log. pot. will increase gain anti-clockwise.

The d.c. working point of IC ${ }_{1}$ and IC ${ }_{2}$ is set by 2% tolerance resistors R_{2} and R_{3}. The design centre voltage from IC and $\mathrm{IC} \mathrm{C}_{2}$ is 3.9 to 4.4 V with a 7.5 V line and roughly in proportion for other voltages. Voltages above about 4.8 V can infrequently occur due to end-of-spread leakage current in C_{2} and C_{4} and if this happens a selected component should be used. An inaccurate d.c. level will limit the output voltage swing from IC_{2}. Leakage has limited the value of these capacitors and they would otherwise have been increased by a factor two.

Setting the sensitivity

Setting the sensitivity can be done using an oscilloscope, but the noise monitor circuit of Fig. 11 is strongly recommended. The alarm starts to operate when the signal output from IC_{2} reaches 1.5 V pk-pk and 2.0 V pk-pk will usually lead to an alarm. The sensitivity should be set for no more than 0.5 V pk-pk from IC_{2} to leave a margin for unforeseen events. This noise level will be entirely due to extraneous disturbance as the noise level of the alarm itself in a perfectly "quiet" room with the circuit values shown will be several times less than this.

Setting the sensitivity without either an oscilloscope or the circuit of Fig. 11 is more difficult if it is important that a false alarm should not occur. By shunting R_{12} with $100 \mathrm{k} \Omega$ the memory can be shortened and an indicator l.e.d. can be fitted to the relay contacts and a walkabout test carried out. Fitting the $100 \mathrm{k} \Omega^{\circ}$ will shorten the memory time to five seconds to 37% of previous movement stored in C_{7}. However, to be sure that there will not be a build up to an alarm with the $100 \mathrm{k} \Omega$ removed the gain of the amplifiers really needs to be increased. by 3 or 4 times or more as a test. This could be done by reducing R_{4} to, say; $1 \mathrm{k} \Omega$ and increasing C_{2} to $22 \mu \mathrm{~F}$ to maintain the low speed response, but precautions must be taken to see that an alarm is not false due to the introduction of hum with long unscreened wires and that the leakage of the $22 \mu \mathrm{~F}$ does not cause the voltage out of IC_{2} to go above 5 V .
It is much better, and there will be more reliability, to build the noise monitoring circuit given. This will also monitor the MID environment and give warning that the safety factor is insufficient.

Fig. 11. Noise level monitor uses l.e.d. to indicate when noise level exceeds safe limit as well as simplifying setting-up procedure. Switch is shown in setting-up mode.

For instance, with a lot of extraneous interference it may be necessary to accept a lesser degree of protection from the alarm and reduce the value of R_{12}. Where the alarm is intended as an automatic door opener the distance walked may be very short and the value of C_{7} may be reduced to, say, $22 \mu \mathrm{~F}$. Storage time is reduced with a reduced C_{7} but also R_{12} can be reduced. Thus the values may be suited to the application. With large values of C_{p}, so as to tolerate a large single infrequent movement without an alarm, the leakage current should be selected to be low so as to get the desired time of storage.

False alarms

The MID circuit should be well screened from 50 Hz pick-up and preferably in a metal box with a good fitting lid. There should be no mains transformer nearby to induce 50 Hz voltages.

The alarm should not be used in the same room as fluorescent lamps while they are on as the gas in these ionizes at. 100 Hz to become a fluctuating reflector. Fans inside equipment, having apertures through which microwave energy can pass, will cause signals. These apertures can be screened with gauze of, say, not more than 6 mm mesh size, and tested by placing the radar fairly close.

The alarm sensitivity should not be greater than necessary bearing in mind that radar signals grow very quickly as range is shortened. The rate is four times in voltage per range halving and so if a target is detected occasionally at one range it will be detected most positively at half that range.

Flat metal surfaces should be treated as mirrors via which the radar may be able to see a movement or fluorescent lamps. Radar signals pass through glass, although weakened, and through dry plaster board. Any testing must include walking outside windows.

Short flapping movements can lead to an alarm. A flap of less than about 14 mm can give rise to one pulse into C_{7} and an extra pulse for each 14 mm approach and recede travel.

Movement across the beam has less effect than when radial and may be used to advantage in the siting of the radar.

Cirćuit construction

In constructing the circuit treat it as you would a high gain audio amplifier. Screen the input lead and mount the circuit preferably inside a metal box with just the business end of the module protruding. Avoid earth loops and don't spread out the circuit. Insulate the box from the circuit and connect to the 0 V line by only a single connection. Ideally the module metalwork would be insulated from the box, but if this is not so the module metalwork is already 0 V and no other 0 V connection should be made to the box.

If the box is bonded to earth, as preferred, leave the power supply floating. so as to be earthed via the 0 V and the box. Preferably use the same bolt to earth the box as used for the 0 V connection inside the box. If both must have separate earth wires do nöt use the box as a conductor for 0 V , nor take the earths for the box and that of the power supply to two different ground points.

Avoid long leads in circuit wiring. associated with transistor connections because these high frequency devices can produce h.f. oscillation. In the case of Tr_{4} a capacitor of $\ln \mathrm{F}$ is fitted across it and close to it to prevent this being caused by the relay inductance. The 0 V lead from the regulator and IC_{3} is three separate leads to each part of the circuit to avoid possible earth loop problems.

Apart from the 2% tolerance resistors R_{2} and R_{3}, which set the d.c. working point of the i.cs resistor tolerance is not critical and 5% or even 10% can be used if they must.

Transistor Tr_{5} dissipates about 1.5 watts and requires a small heatsink of $50 \mathrm{degC} /$ watt or better. This could be a fin of say $15 \times 25 \mathrm{~mm}$ or an area of printed board copper of say 12 mm square, and could have the transistor bolted to it. In each case use heatsink compound or silicon grease in the joint.
The microwave module can be obtained from RS Components who also send out a licence form with it. Unfortunately they do not deal with the public and it is necessary to find a shop or someone who has an account with them. The cost depends on the mark up put on by the shop. For single units a price of about $£ 33$ should be aimed at, as of September 1979. An alternative supplier might be found in one of the Tot-

Fig. 12. To give a limited alarm time, say 2-5 min, use a 555 timer as suggested in Fig. 8, part 1, but with a diode and capacitor combination across the relay to prevent retriggering.

Internal photograph of demonstration model shows circuit board using Fig. 9 circuit only.
tenham Court Road shops. People forming themselves into groups may be able to deal more directly with stockists and obtain them for about $£ 25$ plus v.a.t.

The open ends of the microwave module should preferably be covered to keep out dust which may eventually degrade performance. However, such a cover must not reflect appreciable microwave power or this will upset the mixer working. A simple and effective covering is to sandwich a very thin polythene membrane between the module shroud, Fig. 10, and the rest of the module, Fig. 1. Ordinary plastic bag material is suitable; the thinner the better. A capacitor of about 10 nF should be soldered across the Gunn connection to the module metalwork to prevent high frequency oscillation on the Gunn supply lead due to the negative resistance of the Gunn diode.

Microwave intruder alarms are re-
quired to be licensed so that the Home Office is aware of their location should there be an interference problem with other equipment. A licence costs $£ 1.40$ and last for 5 years and is called a Telapproach Licence. Normally only finished equipment is approved as a production equipment. However, as the microwave module is set at the factory to meet Home Office requirements, the Home Office will issue a licence on the understanding that the frequencysetting screws on the module are not disturbed from their factory settings and the equipment is operated only indoors. When applying for a licence the module should be described as the Mullard CL8960/H, the H signifying the use by a home constructor, as opposed to a professional manufacturer with frequency measuring equipment. The address is, Radio Licence Department, Home Office, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

Provided that the frequency setting is not disturbed the possibility of interfering with other services is extremely remote. Some mutual interference with another alarm in the vicinity is a possibility where the two microwave frequencies drift through each other to produce a spurious signal. Where two must be operated in these circumstances it is normal practice to install as pairs having their frequencies staggered by about 5 MHz .

False alarm confidence indicator

The intruder alarm circuit of Fig. 9 seems to be about the simplest that can be produced and still achieve the standard considered necessary in a microwave intruder alarm. But unless it can be readily set up to work as intended with a low false alarm risk, it is likely to remain a novelty. Thus some attempt should be made at providing a setting up and monitoring circuit for completeness.

Basically what is needed is an amplifier with about five times voltage gain to follow the last amplifier of the previous circuit and which will show by means of an l.e.d. whether the noise level of the MID, with its chosen setting of sensitivity, is too high to be reliable from a false alarm point of view. This would not only monitor the noise due to the alarm circuits themselves but also the environment in which the alarm worked.

There are really two requirements. One for a quick response for setting-up the installation, and a second which allows the equipment to be monitored to see that the noise level stays within safe limits. The monitor should have an amplifier but ideally should also be followed by indentical bucket counting as in the main part of the MID circuit. Furthermore, the long-term monitor should have an l.e.d. indicator which stays on once it is lit until reset manually with a push button.

A circuit with a two-way switch, S_{1}, is shown in Fig. 11 for these purposes. It has been built and tested on a one-off basis and worked extremely well. The connections M1 to M4 go to the similarly marked points on the MID Fig. 9. As shown the switch is in the setting-up mode and the values of R_{D} and C_{D} are $220 \mathrm{k} \Omega$ and $4.7 \mu \mathrm{~F}$ for quick response and extinguish. When the switch is thrown these are increased to approximately $1 \mathrm{M} \Omega$ and $4.7 \mu \mathrm{~F}$, as in the main MID circuit. Also the capacitor discharge resistor is taken to the collector of Tr_{8}. The l.e.d. then locks-on and the reset button has to be pressed to extinguish it. The lock-on mode may also be preferred for setting up, as this can then be done by one person; in which case S_{1} should just short out the $820 \mathrm{k} \Omega$ from Tr_{8} collector.

Setting up the MID is now easy. Check that the monitor is working by walking in the protected area. Turn the

COMPONENTS

[^5]sensitivity to maximum, set the monitor switch as shown and carry out tests by walking outside windows etc, thumping walls to simulate vibration (and therefore possible MID movement) and see if the l.e.d. can be made to indicate. If the l.e.d. indicates or the sensitivity is higher than needed, reduce the sensitivity.

In the setting-up mode the circuit responds much faster than the main MID circuit and also has less memory time, which speeds the setting-up process. Having established a safe sensitivity setting, it remains to check that the MID is sensitive to an intruder. In doing this there is no need to be too critical as signals increase in voltage by a factor of four each time range is halved. Thus occasional detection at one range becomes most positive at 70% of that range.

It is a good idea to mount the l.e.d. outside the protected area, so that with the monitor switched to the long time constant, the safety factor can be monitored without intruding the protected area. Any tendency to approach a risk situation will be latched in by the l.e.d. staying on until reset. In the case where the MID is set to sound an alarm for five minutes and stop if there is no further movement, it is worth fitting a second latched I.e.d. by the side of the first to show that the main MID circuit has alarmed. This will help sort out the situation where the monitor l.e.d. is latched. For instance, was this due to an intruder or a noise problem? If the main MID indicator is out then it is most likely, though not certain, that it is an interference problem to be aware of.

The above setting-up does not cover the case where the MID appears to have a safe setting but in fact is close to making the l.e.d. indicate and so a second attempt has to be made to get it correct; after perhaps one day seeing the l.e.d. indicating. This would need some two-stage gain control so that the alarm is first set up and then the gain is reduced even more to ensure a onceonly setting up. An alternative, well worth considering, is to give the monitor circuit a higher gain in the setting up mode than in the monitor mode. Perhaps seven times for setting up. and four as a monitor. The gain is $1+R_{\mathrm{m}} / R_{\mathrm{s}}$ and the reader can choose the value of \mathbf{R}_{m} to suit.

One can carry on increasing the complexity of MID's almost indefinitely. For instance, a clock could be. included to show the time of the intrusion. But the above system in my opinion is the least that should be provided in any professional equipment. A great advantage of such monitors is that it allows the MID to go on test for a few days without being connected to an alarm bell.

For a long time there has been a need for this type of monitor circuit. True an oscilloscope can be used to look at the noise level in a particular installation,
but this is no substitute for proper monitoring. Poor design in the past has been one reason for the growth of companies which now intercept alarm calls before passing these on to the appropriate security people. Of course, the problem of protecting a warehouse,
where the roof may rise and fall in the wind, is much more difficult than a house or shop, and such problems may be helped by a security house who know about the difficulty. So would a wind meter which turned down the sensitivity in a storm.

DRILLING DETAILS
A HOLES DRILL 3.4 mm 1.0 FF
B HOLES DRILL 3.2 mm 4 . OFF C HOLES DRILL 1.1 mm 11 -OFF D HOLES DRILL 1.0 mm 8-OFF E HOLES DRILL 0.9 mm 11 -OFF OTHER HOLES DRILL 0.8 mm

FIT SOLDER PINS IN B-POSITIONS SHOWN X
MIN. DOMED END.
WIRE PRODUCTS LTD. WP 3066.
FIT SOLDER PINS IN 5-POSN'S SHOWN \ddagger
VERO ELECTRONICS P2 144.

NOW
 AVALLABLE IN BRTTAN!

(1) RV11 Voltmeter/Multimeter. A highly versatile instrument which, when used with its probe accessories, allows measurement of temperature, frequency, DC high voltage, RF signal voltage etc in addition to its standard readings of $D C$ and AC voltage from 0.2 mV to 1000 V and resistance from 1Ω to $50 \mathrm{M} \Omega$ AC bandwidth to 1 MHz Automatic polarity indicator.
(2) RV9A Voltmeter, with fully automatic and manual selection of $100 \mu \mathrm{~V}-316 \mathrm{~V}$ AC and $10 \mathrm{~Hz}-10 \mathrm{MHz}$ Easy-to-read scale and illuminated range indicator. Doubles as a measuring amplifier; bandwidth $10 \mathrm{MHz} \pm 3 \mathrm{~dB}$, gain -50 to +60 dB in 12 steps.
(3) Stabilised DC Power Supply from model SN14 (0-20V DC/0-2A) or SN15 ($0-50 \mathrm{~V}$ DC/0-1A). Both offer high accuracy regulation with extremely low ripple and noise.
(4) TG7. A low-distortion RC oscillator for testing high-specification AF amplifiers. Provides both sine and square waves. Output adjustable by push-button in 10dB steps.
(5) WM2 Wow/Flutter meter. Professional standard instrument for record players and tape mechanisms. Separate fitters for wow and flutter measurement Analog outputs for oscilloscope, pen recorder, analyser etc.
(6) AM1. AF Monitor Watimeter/AC Voltmeter. Measuring range $10 \mathrm{nW}-140 \mathrm{~W} / 4 \mathrm{~Hz}-500 \mathrm{kHz}$
(7) A5. Attenuator for unstepped attenuation (4-60dB) of signal voltage. Effective up to 1 GHz .
Full details and prices of these and other high quality test instruments are available on application to the Instruments Division, Bang \& Olufsen UK Limited, Eastbrook Road, Gloucester GL4 7DE. Telephone (0452) 21591.

Bang\&Olufsen

 Feedback to contain a lot more features for your money. And you'd be right - the SFG606 with its crisp frequency marker does just that.

It sweeps up to 4 decades of frequency -bi-directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01 Hz to 1 MHz .

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the Feedback 600 range. Send to Feedback for literature today.

Or contact our distributors

elefroplan

P.(). Box 19. Orchard Road, Royston. Herts. Si8 5HH. Telephone: Royston $+51+5$.

Feedback Instruments Limited
leedback Instruments I.td., Park Road. Crowborough Sussex 1N6 2QR. Telephone: Crowborough (08926) 3322. Cables: 1-edback Crowbr. Tèlex: 95255

As fast and as simple as that, for batch testing, laboratory use or instrument servicing.
Accuracy 0.25% over a wide measurement range. With its companion CA4 jig unit, the B424 Meter forms an easy-to-use L, C and R Component Test Station
. and all for less than £800 Write or ring today for details

Wayne Kerr
 WILMOT BREEDEN ELECTRONICS LIMITED

DURBAN ROAD BOGNOR REGIS WEST SUSSEX PO22 9RL ENGLAND TELEPHONE BOGNOR (0243) 825811 TELEX 86120

AUSTRIA - Peeriess \& Handels-Gmbt BELGIUM - Regulation-Mesure SPRL FINLAND - Finnmetric OY FRANCE - THOPC ATHO GERMANY - Keitnley instruments Gmor TALY - Ing.S \& Dr. G. Beloth SRL NETHERLANDS - C. N. Rood BV NORWAY - Metric AS SPAIN - Unitronics SA
SWEDEN - Scandia Metric AB
SWITERLAND - G \& P Electronics AG U.S.A. - Mechanical Tecnnology Inc. Latham. NY. Tel: (518) $785-2211$

Te: 0222832224 Tel: (01032 2) 771.20 .20 Tel: 460844 Te: (Parls) 027.75 .3 Tel: (O89) 7144065 Tel: (Milan) 5420.5 Tel: (070) 99.63 .60 Ter: (02) 28-26-24 Tet: (Madrd) 242.5204
Tel: (Slockholm) $82.04,10$ Tel: (Ot) 64.32 .31

The new SFG606 passes even the testiest tester's test.
WW - 052 FOR FURTHER DETAILS

Microelectronics and the Third World

An argument against labour intensive technology for less developed countries

by S. Jacobsson Research Policy Institute, University of Lund, Sweden

Microelectronics based technologies

 are now spreading into economies with already high unemployment levels. After discussing the possible implications of this technical change for employment in these countries, the author argues against the widespread view that the solution to the problems of the less developed countries lies in labour intensive manufacturing. Human labour has natural limitations and cannot match the abilities of the new electronic machines and the superior technologies that result from them.Concern about the effect of microelectronics on future employment is now strengthened by the fact that microelectronic based technologies, are being diffused into economies with already high unemployment levels. In the OECD (Organization for Economic Co-operation and Development) area the level of unemployment in the second half of the 1970s was the highest ever since the second world war ${ }^{1}$ and, more importantly, it stayed at a high level also in the post-recessionary period of 1975-8. ${ }^{2}$. While this situation in the OECD area is serious enough to warrant more attention than is given to it today, it is nevertheless rather insignificant in comparison with that of the less developed countries (LDCs). In the rest of this article I shall outline some possible effects of technical change induced by the diffusion of microelectronics on the employment situation in these economies.
The prevalent view on the evolution of the employment structure in the development process has suggested that the manufacturing sector would gradually absorb the rural labour force and transform the employment pattern in LDCs into something similar to that which prevails in the industrialized world of today. Table 1 gives a rather interesting perspective on this hypothesis. (A similar table is found in Stewart (1978). ${ }^{3}$). It shows that, on the basis of past trends, not even the yearly addition to the labour force has been absorbed by the expanding manufacturing sector in any of the countries. Indeed, apart from the Republic of Korea, the jobs provided by the manufacturing sector were extremely inadequate in relation to the number of
jobs required as a result of only the growth of the labour force, not to mention the already vast number of unemployed. (The figure of 1 billion has been mentioned by the ILO.).
Now it seems reasonable to ask whether this inadequate employment generation potential will prevail also in the future and, if so, what implications will it have. While there are several factors which may determine the answer to this question, e.g. rate of population growth and capital accumulation, we shall deal with only one factor, namely technical change, as this is the one most strongly associated with the diffusion of microelectronics.
The overwhelming majority of the world's technology is produced in the OECD area and there is nothing that points to any significant reduction in

Table I: Manufacturing employment and labour force in LDCs

	$\begin{aligned} & \frac{\Delta \mathrm{Em}}{\mathrm{Em}} \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \frac{E m}{E t} \\ & (2) \end{aligned}$	$\begin{aligned} & \frac{\Delta L}{L} \\ & (3) \end{aligned}$	Inc Need (4)
Philippines	2.0	11.4	2.8	24.5
India	2.6	9.5	2.1	22.1
Rep of Korea	12.7	13.2	1.8	13.6
Peru	4.1	13.2	2.9	21.9
Brazil	$4.9{ }^{\circ}$	17.8	2.9	16.2
Kenya	6.5	$16.3^{* *}$	3.5	21.4

-Only Sao Paolo area. *Wage employment excluding agriculture
$\Delta \mathrm{Em} / \mathrm{Em}$ is the yearly increase in manufacturing employment. Em/Et is manufacturing labour force as percentage of total tabour force. $\Delta \mathrm{L} / \mathrm{L}$ is the labour force increase. "Inc. need" column is $\Delta E \mathrm{~m} / \mathrm{Em}$ needed to absorb $\Delta L / L$

Sources: (1)-iio ${ }^{14}$ except for Brazil. For Brazil, Boletin do Banco do Brazil ${ }^{17}$. The years covered are: Philippines 1960-1975; India 1961-1975; Republic of Korea 1963-1977; Kenya 1967-1975; Peru 1963-1972 and Brazil 1967-1975. (2)Morawetz (1974) ${ }^{15}$ table 1. (3)-World Bank $(1977)^{16}$. (2) was from 1970 and (3) from 1970. 1975.

Table 2: Annual average rates of change of employment and output in percent per annum

Years	$55-60$	60.64	$64-69$	$69-73$
Employment	2.58	1.66	0.53	0.72
Output	6.85	6.55	6.51	5.39

Source: Jones $(1978)^{18}$
the LDCs' technological dependence on the developed countries in the future: What happens here is therefore of greatest relevance for the LDCs.

In Table 2 we have reproduced data on trends in manufacturing output and employment in the 'EEC-five' countries. (The same trends exist also in Britain; see Clarke (1979). ${ }^{4}$).
The table reveals that in the postwar period and in particular since the early 1960s, there has been a strong downward trend in employment generation for a given rate of change in output. While the data covers only the period up to the 1973 'oil crisis', the trends have continued also in the post-recession period. Thus, the manufacturing output did not only recover but increased after 1975, while manufacturing employment has fallen in absolute numbers in most OECD countries. ${ }^{5}$.

While part of the change in labour input versus output can be explained by a structural shift of relatively labour intensive processes to the LDCs, for example in garment manufacturing, the magnitude of the change strongly suggests that the figures reflect an intensified process of labour saving technical change, that is, a jobless growth ${ }^{1,4}$. This trend is important for LDCs for two reasons. Firstly, it would not be unreasonable to suggest that the LCDs experience a time lag in the vintage of their technologies. This implies that the recent strong labour saving bias has not yet been fully transplanted to the LDCs. Secondly, and most importantly, the trends reflected in Table 2 will most likely continue, and perhaps in an intensified way by the diffusion of microelectronics into industry. The important implication of this is that the already extremely insufficient labour absorptive potential of the manufacturing sector will decline even further in the future.

Before elaborating on the implications of this statement, we have to examine the very widespread suggestion that it is possible to reverse these trends and develop economically efficient labour intensive technologies on the scale needed,* i.e. technologies which are deemed to be more 'appropriate' in labour abundant economies.
This I believe is wrong, since the basis for the proposal that labour intensive technologies can be developed on a
large scale is the neoclassical economist's conceptualization of alternative technologies in terms of different quantities of capital and labour. I would ${ }^{\prime}$ instead suggest that there are extremely important qualitative differences between the two factors of production. To my knowledge the first economist or social scientist who pointed out the qualitative differences between capital and labour was Marx. The distinctive feature of what he called large scale modern industry was that the characteristics of the worker and his physical limitations did not constitute a limiting factor in the design of the production processes. In line with his analysis, it is simple to argue that the physical properties of labour are quite different from those of a machine. In relation to a machine a person is first of all variable, which implies uneven quality; secondly he is weak, which has obvious implications; thirdly, he cannot achieve the same precision, which is absolutely basic in any machine-making activity; fourthly, he cannot stand extreme heat, and heat is essential in key processes such as steel and chemical production; fifthly he is slow, which implies that any industry which produces above a certain minimum level of output will use machines instead of people. From studying the history of technical change one may, as Marx did, draw the conclusion that technical change is to a very large extent a process of overcoming the restrictions set by these properties of human labour, through increasing the capital intensity of the production process.
Today developments in electronics mean that it is not so much human muscle as human intelligence ${ }^{6}$ which is replicated and extended.

Thus any system which involves the processing of data, decision making, or control of systems and equipment - in short, any task involving logic - is a candidate for the application of electronics. A list (not exhaustive) of these tasks includes: ${ }^{7}$.
-controlled movement of materials, components, products -control of process variables -shaping, cutting, mixing, moulding, etc. of materials
-assembly of components into sub. assemblies and finished products

- control of quality at all stages of manufacture by inspection, testing or analysis
-organisation of the manufacturing process, including design, stockkeeping dispatch, machine maintenance, invoicing and the allocation of tasks.
*From the figures in Table 1, we can see that if only the yearly addition to the labour force were to be absorbed by the expanding manufacturing sector, the labour intensity of new investment projects would on average. have to increase by a factor of 12.25 in the Philippines, 8.5 in India, 5.3 in Peru and 3.3 in Brazil and Kenya.

This all-embracing character of electronics will probably have important implications for the application of more labour intensive technologies in LDCs and thus for the possibility of absorbing a greater proportion of the labour force in the manufacturing sector through reversing the trend towards more capital intensive technologies.

The reason behind this assertion is that the cause of increased competitiveness through using electronically based innovations lies not only in their labour saving nature (which is less important in cheap labour economies), but also in probable savings in investment, materials and also in producing a better quality product, thus leading to superior technologies. ${ }^{8,2}$. The labour saving nature has been amply dealt with in the public debate, but the lastmentioned characteristics need some elaboration. I shall give examples from two sectors which traditionally have been very labour intensive, the mechanical industries and the garment industry.

Mechanical Industries. In metalworking industries batch production dominates over flow-line techniques, with an associated low efficiency through poor machine utilization. Numerically controlled machine tools (n.c. machines) constituted a first attempt to increase the efficiency in this sector. With these machines, the control signals containing the information needed to produce the part are fed into the machine as the operation is performed. The control signals imitate the instructions given by a skilled machine operator, but with much greater speed and precision. By changing the control tape, an n.c. machine can be quickly switched to the next job which may involve a totally different sequence of operations. In this way the downtime the setting time - of the machine tool is reduced, which is very important for machine utilization in small batch production work. By replacing the still relatively inflexible hard-wired circuitry in the n.c. machines by software in mini- or micro-computers - i.e. producing computerized numerically controlled machine tools (c.n.c.) - the versatility and flexibility of the machine tools are considerably enhanced. ${ }^{9}$.
The capital saving nature of technical change in this sector stems not only: from increased machine utilization. C.n.c. and direct numerical control (which involves one computer controlling several machine tools) also increase quality, for example in precision lathing. They also increase the throughput and reduce inventories, which saves capital embodied in materials. Furthermore they allow for in-process quality control, which makes possible early discovery of mistakes, and correction of process variables through electronic feedback systems. The latter source of capital saving is of considerable importance for process flow techniques
also, for example in paper pulp and glass production, where work in progress often constitutes a very substantial part of total capital cost. Finally, the fixed investment costs are reduced by price cuts in the cost of control systems. According to one Japanese ${ }^{10}$ source, "today's n.c. systems are priced at a quarter of those of ten years ago".

Garments. The clothing sector has been characterized by having capital costs among the lowest in manufacture ${ }^{6}$. The complexity of the production process and ever changing fashions have not justified purpose built equipment except in some cases. However, with microelectronics both a high flexibility and a high degree of automation are made possible. As Dr Juan Rada explains ${ }^{6}$,

> "The use of self-programming robotic arms for cutting, and computerised systems for design, producing patterns, monitoring quality of fabric and guiding laser beam cutters, is changing the face of the industry. Microprocessors are being used to control knitting heads (instead of the centuries old Jacquard's card), to control ink-injectors with high flexibility to change design and colours; they are used to control sewing patterns and fast stitching. These are part of a growing number of applications - the trend being towards a "total system concept" which means the use of computerised techniques to detect flaws, keep track of patterns and orders, monitor the progress of work throughout the plant, automate the matching of patterns and the cutting and sewing. These applications save labour, skills and materials (in the case of cutting, the saving ranges from 8 to 15 per cent):"

The investment saving nature of microelectronic based innovations in this sector has been particularly emphasized by Raphael Kaplinsky ${ }^{2} \ddagger$ who gives the example of a UK firm who produced an electronic pattern machine for a circular knitting loom. This machine cut down time in the change-over of knitting patterns by more than 50% "as well as lowering the hardware costs of the control system (itself at 20% of the total loom cost) by 50 percent".

Thus, because of the breakthrough made possible by microelectronics, in the near future the competitive edge in garments manufacturing will probably no longer be labour costs but technology.

All in all, it seems therefore very unlikely that more labour intensive technologies may be chosen in LDCs to the extent that the trends towards more capital intensive techniques may be altered or reversed.

The transformation of the technology
\dagger Kaplinksy, together with Kurt Hoffman, Howard Rush and Luc Soete at IDS and SPRU, University of Sussex, is working on the implication of microelectronics on developing countries. I have greatly benefited from discussions with them.
in some traditional industries, i.e. not only garments but also textiles, leather and shoes ${ }^{2}$, may have particularly severe implications for LDCs. The contribution to the total increase of manufacturing employment in the period 1968-1975 from these industries accounted for 30% for all LDCs and nearly 38% for the Asian LDCs ${ }^{11}$.

Furthermore in some Asian countries such as the Republic of Korea and Hong Kong, manufacture for exports accounts for a sizeable part of total employment ${ }^{11}$. For example, it has been estimated that more than one half of the total increase in manufacturing employment during 1963-1970 in the Republic of Korea was due to an expansion of exports ${ }^{11}$. (This may partly explain Korea's exceptional performance as shown in Table 1.) The important point is that it is particularly in these economies where textiles, garments, leather and footwear products account for a considerable part of manufacturing exports ${ }^{2}$.

Two implications can be drawn. Firstly, these traditional industries which account for a considerable part of yesterday's and today's employment generation in LDCs will probably fail to do so in the future. Secondly, as R. Kaplinsky has pointed out ${ }^{2}$, the export oriented growth and employment strategy - much cherished today among both LDCs and Western economists - which so successfully has guided the industrialization strategy of the Republic of Korea, will probably not be able to be duplicated by other LDCs in the future. This is essentially so since cheap labour will probably lose its importance as a factor in determining international trade. Of course, some more advanced LDCs with the necessary skills and 'industrial environment' might be able to pursue a growth strategy based on the new technologies, but the employment impact will then be marginal. (It could be argued, as has convincingly been done by R. Kaplinsky, that the high and possibly increasing unemployment figures in the OECD area will restrict the market for these countries.)

The implication of the previous analysis is that the manufacturing sector in most LDCs will not be able to absorb the growing labour force, not to speak of transforming the structure of employment in a way similar to what has happened in the OECD area. While the urban-based service sector may improve the employment situation slightly, the only possible way out seems to be that the agricultural sector will have to absorb the main part of the labour force permanently. This sector has greater potential to fulfil this task as it is much more flexible in the degree of mechanisation than the manufacturing sector - mainly due to the fact that the human limitations of precision/speed/ quality etc. are not so critical in agriculture as in industry.

Well, what is the problem then? one
may ask. Why not let a very 'modern' industrial sector coexist with a very labour intensive agriculture?

There are at least two very considerable ones.** Firstly, institutional changes - mainly concerning distribution of land - need to be implemented if agriculture is to absorb a growing proportion of the labour force. This is widely recognized - even by the World Bank - so I will not elaborate on it. Secondly, even if the employment problem were to be solved in this way, the LDCs would experience a gigantic distributional problem since they would be faced with vastly different labour productivities in the industrial and agricultural sectors. (I was first made aware of this problem by C. Edquist at the Research Policy Institute, Lund, Sweden.) To take China as an example, as she has undertaken the most far reaching institutional changes in recent 'decades, the pressure on the agricultural sector to absorb the growing labour force has been associated with a decreasing marginal productivity of labour between 1959 and 1975 ${ }^{12}$. Indeed, this occurred in spite of massive capital formation projects such as irrigation schemes. Thus, while the agricultural sector may absorb the labour force, the price to be paid for it, as noted already by the classical economists, is a very low and possibly decreasing labour productivity.

The very important point here is that as the industrialization process continues and the agricultural sector is charged with the job of absorbing the labour force, the political problem of transferring income from the high productive, and geographically concentrated, industrial sector to the low productive agricultural sector will take on increasingly stronger dimensions. This distributional issue will probably be one of the key ones for developing countries to deal with. $\dagger \dagger$

This article is a revised version of an article. 'Technical Change, Employment and Distribution' which was attached to the Lund Letter of Science and Technology for Basic Human Needs, 13 June, 1979, published by the Research Policy Institute, University of Lund, Sweden. We are indebted to both the Salen Foundation and to SAREC for financial support for that essay. The Salen Foundation also generously sponsored 'the Lund workshop on technological change in industrialized countries and its consequences for developing countries', held in Lund in May 1979. Part of the content of this article has greatly benefited from discussions in the workshop. In addition, many people have contributed with very helpful comments on earlier drafts. In particular, we would like to thank Claes Brundenius, Kurt Hoffman, Howard Rush, Jon Sigurdson and John Wilton, but also Enrique Bautista, Richard Conroy, Charles Edquist, Christopher Freeman and Hans Gustafsson.
**I will not, due to space limitations, treat the problems of surplus production by a labour intensive agriculture, which is needed if the industrial sector is to grow. See Jacobsson. (1979), reference 8 .

References

1. C. Freeman. Technical Change, Employment and Unemployment. Mimeo. Science Policy Research Unit, University of Sussex, 1978.

2r. R. Kaplinsky. The impact of microelec. tronics. Technology on LDC Exports of Manufacture to DCs. Institute of Development Studies, University of Sussex, November, 1979.
3. F. Stewart. Technology and Underdevelopment. Macmillan, 1977.
4. J. Clarke. An examination of the historical basis for some recent projections of employment and unemployment in the U.K. Paper presented for the joint SSRC/IDS Conference on U.K. Employment Projections. 24th-25th May, 1979.
5. L. Soete. Technical Change, Import Penetration and UK Employment: Some Points for Discussion. Paper prepared for the Joint SSRC/IDS Conference on UK Employment Projections, 24-25 May, 1979.
6. J. Rada. Microelectronics, Information Technology and its effect on developing countries. Paper prepared for the Conference on Socio-Economic Problems and Potentialities of the Application of Microelectronics at Work. The Netherlands 19 to 27 September, 1979.
7. J. Bessant. An overview of the impact of microelectronics on manufacturing industry. Paper presented at the Lund Workshop on Technological Change in Industrialized Countries and its consequences for Developing Countries, May, 1979.
8. S. Jacobsson. Technical Change, Employment and Technological Dependence. Research Policy Institute, Lund, Sweden. Discussion Paper No. 133.
9. K. Dickson and J. Marsh. The microelectronic revolution: a brief assessment of the industrial impact with a selected bibliography. The University of Aston in Birmingham, December, 1978.
10. S. Kobayashi. Editorial, Metalworking, Engineering and Management. September, 1979. News Digest, Nagoya, Japan.
11. UNIDO. World Indistry since 1960. Progress and prospects, July 1979. E. 79 II B.3.
12. T. Rawski. Industrialization, technology and Employment in the People's Republic of China. Report prepared for Employment and Rural Division, Development Economic Dept., IBRD, April, 1978.
13. J. Sigurdson. The Changing Pattern of Intersectoral Technological Linkages in the Rural Machinery Industry in China. WEP 2-22/WP 45, January, 1979.
14. International Labour Organisation. Year Book. Labour Statistics (various).
15. D. Morawetz. Employment Implications of Industrialization in Developing Countries: a survey. The Economic Journal, September, 1974.
16. World Bank. Atlas, 1977.
17. Boletin do Banco do Brasil, Vol. 15, No. 7. Janeiro de 1979.
18. D. Jones. Output, Employment and Labour-productivity in Europe, since 1955. NIER, 1978.
\dagger †Indeed, as the absolute number of people engaged in industrial production in the OECD area declines, the very same problem of taxing this sector in order to provide employment and income in other sectors mainly public services where microelectronics is likely to displace proportionally little labour - may become (is?) a major problem.

Optically-isolated triac control

A common problem with optical isolators is that a separate power supply is required. A tapping from a mains transformer primary can be used, but this is not always available, particularly on small transformers. A simple solution is to use the transformer primary as a current limiter for a suitable low voltage supply. However, triacs often require a gate current of around 50 mA , which is more than this type of supply can provide. To overcome this problem, gate current is pulsed with a duty cycle of about 10%. The current required by the l.e.d. to turn the triac off is about $250 \mu \mathrm{~A}$, so it can be directly driven by c.m.o.s. logic. Resistor R_{1} is included for protection in case the Zener diode goes open circuit.
G. R. Rulter

Woking
Surrey

Voltage-to-period converter

In some circuits it is more convenient to have an oscillator whose period, rather than frequency, has a linear relationship to the control voltage. This circuit was developed to drive an analogue delay line for audio signal processing. Resistors R_{1}, R_{2}, R_{3}, diode D_{1} and Tr_{1} form a reasonably temperature-stable current source, which charges C_{1} until the ramp voltage exceeds the control voltage. The comparator is biased by R_{6} for high current and fast slew rate, and $\mathrm{R}_{4}, \mathrm{C}_{2}$ decouple the control input and prevent spurious triggering. The output is taken via D_{2}, R_{5}, which prevent negative bias, to a c.m.o.s. buffer and discharge circuit. With the values shown, antiphase outputs equal to the reset pulse width are available from pins 12 and 1 of IC_{2}. The reset pulse width of around 100 ns is determined by propagation delays in the i.cs. If a longer pulse width is required, C_{x} may be used to form a monostable with a period of approximately $\mathrm{C}_{x} \mathrm{R}_{5}$. If low-frequency operation is required, C_{1} must be completely discharged and C_{x} should be equal to $C_{1} / 6$. The value of C_{1} is limited by the ability of IC_{2} to discharge it without damage and, in the prototype, a 100 nF has been successfully used. With the values shown the period varies from about $0.5 \mu \mathrm{~s}$ to $30 \mu \mathrm{~s}$ for control voltages from 0.15 to 8 V .
E. J. Leonie-Smith

Royston
Herts

Enlarger analyser

This analyser uses a recently introduced silicon-blue photoamplifier i.c. to achieve high linearity at low light values. A bridge circuit measures the current drawn by an open-collector output of the TFA 1001 W and a set-time control converts this current into a voltage which is compared with a reference level. The reference is set by a speed control for various brands of printing paper. Bridge balance is indicated by a TCA 965 window discriminator and three l.e.ds. The bridge is fed with a few millivolts of a.c. from the transformer to overcome hysteresis. At balance the set-time control is used with the 555 timer to expose the paper. S_{1} turns the enlarger on for focussing and measurement, or allows S_{2} to start the exposure. Times from 2 to 140 s with paper speeds from 80 to 400 ANSI can be selected after speed calibration using test strips.

In the prototype, the photoamplifier was housed in a potting box together with the linearity control, associated components and twin-screened lead to the main circuit. Linearity is adjusted, with a d.v.m. across the time control set to $1 \mathrm{M} \Omega$, by using the halving values obtained from progressively stopping the lens. Judicious setting of linearity can compensate for reciprocity failure. Note that linearity setting only applies at low light values and the components may be omitted if higher levels only are used.
R. I. Harcourt

Thornton Heath
Surrey

Economic three rail supply

In t.t.l. circuits which use 710 type comparators, power supplies of +5 V , +12 V and -6 V are needed. The common arrangement is inefficient and costly compared with this circuit, which provides the voltages required from a single standard transformer. Although the 5 V rail may have to provide a substantial current, the other supply rails only need to deliver small currents which can be provided by half wave rectification. During positive halfcycles the lower winding feeds the +6 V rail via D_{1}, and the two windings in series feed the +12 V rail via D_{1} and D_{2}. Diodes D_{3} and D_{4} are biased off. During negative half-cycles D_{1} and D_{2} are biased off and the windings are isolated. The top winding now feeds the +6 V rail with a return via D_{3} and the lower winding feeds the -6 V rail via D_{4}. Therefore, the +6 V rail is fed during both half cycles by the two secondary

windings alternately and both low current rails are fed on alternate halfcycles. The voltages shown increase when capacitors are connected to provide an adequate margin for the regulators.
R. M. Adelson

Hornby
Lancaster

Simple oscillator

A silicon bilateral switch, s.b.s., is a useful component for producing a simple, economic and versatile audio oscillator. With a 12 V d.c. supply the circuit oscillates at 100 Hz and draws only $400 \mu \mathrm{~A}$. Direct or alternating supplies can be used and with suitable component values, mains operation is possible. Frequency modulation or on/ off control is achieved by feeding a voltage or pulse to the gate. Minimum direct supply voltage is about 10 V but an $18 \mathrm{k} \Omega$ resistor between the gate and

A_{2} reduces this to around 3 V . An 8Ω speaker can also be used with a small reduction in output power.
D. Di Mario

Johannesburg
S. Africa

Triggered timebase

High-quality oscilloscopes with sweep rates up to $0.1 \mu \mathrm{~s} / \mathrm{cm}$ use special components, such as fast f.e.ts and tunnel diodes, together with logic i.cs. This timebase provides a wide sweep range with trigger hold-off and bright-line functions and does not require any expensive or uncommon devices. Three NAND gates generate a rampwaveform, and a Schmitt trigger shapes and inverts the square wave from gate C. When the flip-flop is set the output goes low and C_{1} discharges via D_{1} to provide the flyback at pin 3 and a pulse at pin 4. Ramp rate is varied by R_{1}, and C_{1} is switch-selectable for a wide range of sweeps. The trigger input is shaped by a 710 and gated by a Schmitt trigger, so the flip-flop is only clocked when the output of gate C is high. This sets the output high and charges C_{1} linearly. The 710 output also goes to D_{2} and an integrator, which negatively charges C_{2} and disables the oscillator around gate K. When disabled, the oscillator output is high and therefore enables gate G to clock the flip-flop. When no input signal is present, the oscillator feeds the clock input of the flip-flop and provides automode operation for the timebase.
K. Padmanabhan

Madras
India

Two terminal constant current source

Most constant-current sources require output, ground and supply connexions to a circuit. However, a two-terminal arrangement can be obtained by combining two standard sources, of opposite polarity, back-to-back. In the circuit diagram the current is $2 V_{\mathrm{be}} / R$. J. J. Ellis

Cambridge

Prestel/ Viewdata printer

The Olympia International NMP 40 mechanism, incorporated in a printer terminal, forms one of the first screen image printers to appear in the UK. A hard copy of displayed Prestel/Viewdata images can be made with the printer which Dataplus, the equipment's distributor, claims as "very quiet" in operation. The unit will print alphanumeric characters and graphics at high speed and paper loading is simple. The printhead consists of 240 discrete electrodes equally spaced across the 127 mm wide paper and each is spring-loaded, obviating the need for adjustment. The rubber platen is driven by a small d.c. motor, this being the only moving part. Overall dimensions of the terminal are 250 mm wide $\times 360 \mathrm{~mm}$ deep \times 150 mm high. Production quantities of the unit will be available in late 1980 as will the full drive electronics to suit UK television receivers. Dataplus Itd, 39-49 Roman Road, Cheltenham.
Ww301

D.i.y. keyboards

-Individual keys, rows of keys or groups of keys, elements of theseries 87 family of switches, can be used to create keyboard forms for prototypes, short runs or volume production, according to the makers, Highland Electronics. Legending of switches is achieved by hot stamping of the buttons to customers' requirements before delivery, although for prototype work, versions of the switches are available with snap-on caps. In this event a legend sheet is supplied and each legend is placed under the cap. The series 87 employs snap-dome contacts previously used on Highland series 83,84 and 86 , all 16 button keypads. A typical circuit for these switches is single-pole/common-bus and the 3×4 and 4×4 keypads are also available with matrix switching. Highland Electronics Ltd, Highland House, 8 Old Steine, Brighton, East Sussex.

WW302

V.s.w.r. / power meter

Direct reading of v.s.w.r. and output power without the need for interpolation is one of the capabilities of the v.s.w.r./power meter offered by Zycomm Electronics. The unit is autoranging

WW301

WW302

WW303
for power output measurement, covering 20 W to 2 kW in three ranges for 1.8 to 30 MHz and 50 to 150 MHz , and 2 W to 200 W for the 430 to 470 MHz range. V.s.w.r. from $1: 1$ to infinity can be measured. Separate sensing heads are supplied to cover each frequency range and these can be connected at any point in the feed line, including the masthead, for precise radiated power indication. Push switches on the front panel permit the selection of the appropriate head and the display of forward or reverse power as either peak or r.m.s. readings. The electronic comparator included in the unit permits constant readout of v.s.w.r. irrespective of power variation, thereby giving true indication during speech on s.s.b. The unit is for operation on 240 v 50 Hz mains. Zycomm Electronics Ltd, 47, 49 and 51 Pentrich Rd, Ripley, Derby DE5 3DS.
WW303

Digital slow scan transceiver

The Colorado Video model 285 is intended to provide "quality" tv picture transmission over data channels and is available as a receiver, a transmitter or transceiver. Features incorporated are "frame freeze", a repeating "freeze and scan" mode for surveillance applications and continuous display at the receiver as each new image wipes off the previous image. The unit accepts tv signals from camera, v.t.r. or video disc recorder and also produces a signal for viewing on c.c.t.v. monitors. Transmission is in the synchronous serial digital form at rates up to $500 \mathrm{k} /$ bits/s and the equipment requires no adjustment when changing rates, the unit itself tracking the modem clock rate. The operator may select left-to-right or top-tobottom scanning to suit the item scanned and may transmit either a single field (shorter transmission time at reduced resolution) or a full frame, i.e. normal transmission time at full resolution. Transmission times vary according to the grey-scale levels chosen, either 64 levels (6 bit) or 256 levels (8 bit) depending upon the bit rate. Data may be encrypted for security purposes. Prices start at $\$ 9,000$, this being the price for the receiver only. Colorado Video, Box 928, Boulder Co, 80306, USA.
WW304

Music processor/. mixer

The Cambridge Electronic Workshop music processor is a full broadcast specification mixer intended as an off-the-shelf item for club and mobile use, built in standard 19 in rack units in modular form. The technical complement includes transformer-coupled inputs with phantom powering, microphone limiters, plastic track faders with remote start for external tape or disc transport mechanisms, and separate equalization for two disc units, two line inputs and both microphone inputs. Outputs are complete with a stereo limiter, "voice over," adjustable voice switch from the d.j.'s microphone and a nine-band graphic equalizer. Also featured is a built-in comprehensive lighting control which is compatible with Pulsar equipment and contains a six-channel sound-to-light chaser, strobe drive and four independently controlled mains terminals. Cambridge Electronic Workshop, 4 Water Lane, Oakington, Cambridge CB/4 5AL.
WW305

High temperature contact adhesive

Excellent acid resistance, high moisture resistance and good dielectric strength are properties which Aremco Products International attributes to its AremcoBond 570, an elastomer-phenolic adhesive intended for the bonding of ceramic, glass and metallic materials at temperatures up to $315^{\circ} \mathrm{C}$. A further characteristic is its good shock resistance due to a small degree of flexibility being present after curing, thus allowing bonding of materials with a dissimilar coefficient of expansion. The adhesive is applied in the usual manner to both surfaces, which are allowed to dry before pressing together and final heat cure under press. ure will produce a high temperature high strength bond. Aremco-Bond 570 costs $£ 21.50^{\circ}$ per pint, plus carriage costs. Photograph shows the adhesive being used to bond together two ceramic bushes. The Meclec Company, 5-6 Towerfield Close, Shoeburyness, Essex SS3 9QP
WW306

WW305

Spark gap c.r.t. protectors

The focusing electrode of a c.r.t. can be protected from the damaging effects of excessive e.h.t., by the spark gap series 5389, manufactured by Welwyn Electric. These units can also be used to protect v.d.u. tubes, oscilloscopes and photomultipliers from high voltage discharges and transients. The three items in the series cover the "popular" (perhaps not so for the tv service technician!) break down bands of 7 to $9 \mathrm{kV}, 8.5$ to 10.5 kV and 10 to 12 kV all with current handling up to 1500 amps. These spark gap protectors meet BS2011 ("Components for printed circuit applications,") and are flame retardant in accordance with BS415-14/4. Welwyn Electric, Bedlington, Northumberland NE22 7AA.

WW307

Radio i.cs

Two new i.cs which the makers claim will considerably increase the level of integration possible in professional radio equipment, are available in 8 lead TO5 or 8 lead d.i.l. plastic packages. These two circuits, the SL6270 and the SL6310, are additions to the recently introduced Plessey SL6000 series of linear radio circuits. The SL6270 is a microphone amplifier with integral gain control, the control circuit providing a constant output level whether the level of the incoming speech signal is high or low, making it suitable for use in the fields of tape recording and public address. The SL6310 is an
audio i.c., designed to avoid the high quiescent current consumption typical of portable receivers. A "mute" signal switches off the circuits in weak or noisy signal conditions, the normal standby current being 5 mA while still maintaining an output power of 500 mW . Plessey Semiconductors Ltd, Cheney Manor, Swindon, Wiltshire.
WW308

"Crowbar" s.c.rs

A range of s.c.rs which the makers, Motorola, describe as "the first in the industry to be specifically characterised and specified for "crowbar" applications, is accompanied by data sheets giving a graph detailing peak capacitor discharge current. This plot indicates peak discharge current as a function of power supply discharge time, permitting power supply designers to select a specific s.c.r. whose peak current characteristics are suited to a particular supply circuit. Each item in the MCR67-71 range of s.c.rs is capable of dumping peak currents of 300 to 1700 A , thus discharging the power supply output capacitors and clamping the voltage to -the on-state voltage of the s.c.r. until a fuse or circuit breaker opens. Gate trigger current for the series is 2 mA minimum and 30 mA maximum. The s.c.rs are available in both metal and plastic packages with operating voltages between 25 and 100 V Motorola Ltd, Semiconductor Products Division, York House Empire Way, Wembley, Middlesex HA9 0PR.
WW309

Infra-red detectors

A range of lead sulphide and lead selenide infra-red detectors manufactured by the American Optoelectronics Inc, is now being marketed by Wentworth Laboratories. These detectors are available in single element or multi-array packages incorporating standard units made up from elements in sizes from 1 to 5 mm square. Detectors for use at room temperatures are included and these can be provided as standard units or units with an optional built-in thermoelectric cooler. Thermistors may be used in conjunction with the detectors for the monitoring of detector temperature and to allow closer control of performance. Wentworth Laboratories Ltd, Sun St, Potton, Beds, SG 19 2LR.
WW310

Bar graph l.c.d. unit

Numerical annunciation and over-range/under-range indication are features included in the 20 element bar-graph liquidcrystal display unit from Hamlin Electronics. Each bar has a separate backplane enabling each of the two bars to be driven independently. The display is available with pins for d.i.l. mounting or with snap-on terminal strips. An applications note, including a drive circuit for the display, is also available. Hamlin Electronics, Diss, Norfolk.

WW311

THE VALVE AND TUBE SPECIALIST

VALVES RECEIVING, S.Q.,TRANSMITTING, GAS FILLED, DISPLAY, TV ETC. AT NEW SPECIAL LOW PRICES

Trpe No.	Price eo.	True No.	Price 20	Tppo No.	Price as.	Type No.	Price 0.
A31.410W	19.50	EF37A	2.75	OA2WA	2.50	6au6	0.95
A34.510W	20.50	EF39	1.50	${ }_{0}{ }^{\text {P2 }} 2$	2.55	$6 \mathrm{BH6}$	1.20
A44.510 W	31.15	EFbo	0.80	EN92	3.10	6807A	1.85
A47.13W	22.00	Ef85	0.91	PC86	0.83	6BR 7	6.00
A50.120WR	+37.11	EF 86	0.80	PC88	0.83	6B57	4.00
A61.120WR	R 37.11	EF89	0.72	9 C 97	1.40	7BW6	5.30
8 K 66	S9.15	EF91	1.85	PC900	0.58	6 BW 7	1.45
8K448	76.90	EF92	2.20	PC885	1.10	6 C 4	1. 30
BT5	37.80	EF93	0.60	PC889	1.50	${ }_{6549} 6$	1.60 1.25
${ }^{\text {B75 }} 5$	28.15	EF95	2.60	PCC1 89	1.75	654 A	1.25
077	0.80	EFF183	1.26	PCF80	0.87	6 Su 7 C	1.10
OF 61 OM160	0.56	EF184	0.75	PCFA6	1.58	6SL7GT	2.68
OM160 OYB6 /87	3.20 0.64	EK90	0.86	PCF200	2.15	6SN7GT	0.90
OYB6/87	0.64 15.00	EK90	0.76	PCF801	0.95	6V6GT	0.85
E850cc	15.00 8.65	EL34	1.64	PCFF 82	0.81	6×569	0.85
E80CF	10.40	EL37	4.65	PCFF805	1.40	12ALS	1.85 1.85
E8OF	6.32	EL81	1.48	${ }^{\text {PCFH200 }}$	1.10	128 H 7	0.98
E82CC	1.85	E184	0.96	PCL82	1.10	12E1	8.00
E83CC	3.50	EL86	1.65	PCL84	0.83	12SN7GT	200
E83F	2.10	EL90	1.25	PCL85	0.85	29 Cl	10.00
E86C	6.20	EL91	5. 85	PCL86	0.85	30FL2/1	1.20
E88C E8BC	3.15 3.15	EL95	1.28	P0500	3.90	30 PL 14	1.95
E92CC	1.65	EN91	2.56	PFL200	1.40	90 Cl	2.80
E995	3.65	EN92	3.18	PL36	1.15 0.80	90 cv	3.68 9.00
E130L	16.30	EY51	1.66	PL84	0.85	92 AG	7.96
E180CC E180F	4.65	EY84	4.40	PL95	1.10		
E180F	5.45 6.34	EY86	0.64	PL504	1.58		
E186F	5.50	EY500A	1.25	PL508	1.85 2.75		
E188CC	3.45	EY802	0.96	PL802	2.90		
E288CC	7.40	E280	0.58	PY88	0.78		
E810F	8.10 2.75	E281	0.75	PY5004	1.55		
EBC81	2.85	E290	1.20 15.00	PY800 PY81/801	1.20		
E891	0.95	GZ32	1.45	OVO6-20	11.58		
EC91	1.82	G233	1.55	Quvo3-20	18.10		
EC92	0.94	G234	1.45	Qavo3-10	4.50		
ECC81	0.78 0.60	KT61 KT66	3.56 4.25	COVO6-40A	- 21.85		
ECC83	0.78 0.78	KT88	4.15 7.15	OOV02.6	12.04 55.20		
ECC84	1.19	M0879	0.82		55.20 72.00		
ECC85	0.82	M808 1	3.40	O206-20	24.10		
ECC88	1.20	M8082	2.14	RG 1-2404	16.00		
ECCC91	1.38 4.50	M8083 M 8100	2.14 1.45	Tr2-125	61.80		
ECF80	0.80	M8136	0.85	TY4.400	62.27		
ECF82	0.80	M8137	0.94	KG 1.2500	0.65 59.60		
ECH81	0.75	M8162	0.85	SU4G	59.60 1.95		
ECL80	0.95 0.63	M8163 M8212	2.65 0.85	${ }^{5 V 4 G}$	1.35		
ECL85	0.82	ME $\dagger 400$	3.50	6AK6	1.90		
ECL86	0.94	042	1.45	6 A06	1.30		

ILLUMINATED POCKET MICROSCOPE WITH MEASUREMENT GRATICULE

The low-cost illuminated pocket microscope designed for close observation and measurement of minute detail too small to be seen with the naked eye. Gives a sharp and brilliant vision with wide field of view at 20 X magnification, plus built-in focusing system and illumination system.

Ideal for close inspection of PCB, components, metals, depth of cracks, samples, minerals and tissues. A valuable aid to Quality Inspectors, research engineers and laboratory personnel.

Complete with batteries and plastic pocket case at the special price of £13.99, including postage and V.A.T

The graticule is calibrated to 4 mm overall in increments of 0.1 mm , with angles shown from 30° to 90° and hole sizes of $0.2,0.3,0.4$ and 0.5 mm diameter.

CASH WITH ORDER
Carriage 50p. VAT 15% Account facilities available for established customers. Quotations given for large quantities.

THE FOR 1004 ANEW WIDEBAND GRAPHICAL RECORDER

9 Recording Modes

The FOR-1004 is the first of a new generation from Medelec. A highly versatile graphical recorder, it has been specially developed for wide ranging applications in research and industry. In both performance and economy it has many advantages over conventional instrumentation. There are nine recording modes all push button controlled, which permit the optimum presentation of most graphical data. Triggering is fully automatic and displayed signals can be monitored via an internal loudspeaker. The fast response time and wide range timebase allows the detailed examination of transients and trends.

Attractive new styling and ease of operation combine to make the FOR-1004 an important new instrument.

Simultaneous View and Record

Four High Input Signal Channels

High Resolution Inexpensive Records

For further information please contact:

Medelec Limited Manor Way Old Woking Surrey GU22 9UU England Tel: Woking (04862) 70331 Telex: 859141 Medlec G A Vickers Limited Company

Simply ahead . . ILP'S NEW GENERATION OF HIGH

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - $10 \mathrm{~K} \Omega$ log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack 50 x $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$£ 4.64+74 \mathrm{p}$ VAT

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Dis- tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	120 W into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$
$+£ 2.77$							

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz} \cdot 45 \mathrm{~Hz}-3 \mathrm{~dB}$

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to
five HY5 pre-amps $\mathbf{£ 4 . 5 0}+\mathbf{£ 0 . 6 8}$ VAT
PSU 36
PSU 50
PSU 70
for 1 or 2 HY30's $£ 8.10+£ 1.22$ VAT 1.L.P. Power Supply Units are with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

NO QUIBBLE 5 YEAR GUARANTEE 7.DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS BRITISH DESIGN AND MANUFACTURE

FREEPOST SERVICE

 -see below- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

FREEPOST Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

Please supply

I enclose Cheque \square Postal Orders \square International Money Order \square
Please debit my Account/Barclaycard Account No.

NAME
ADDRESS .

Signature

HALL 4, Stand 4228
THE BIGGEST SELECTION DF CASES IN EUROPE

MSA
WEST HYDE DEVELOPMENTS LIMITED, UNIT 9, PARK STREET INDUSTRIAL ESTATE, AYLESBURY, BUCKS. TEL: 029620441
WW - 065 FOR FURTHER DETAILS

N.M. SNewBear GBooks

\star SEND FOR COMPLETE LIST. \star

VISIT OUR NEW BOOK STALL AT FIRST FLOOR OFFICES, TIVOLI CENTRE, COVENTRY ROAD, BIRMINGHAM. TEL: 021-707 7170.

GAMES

Chess \& Computer D. Ievy . . . £ 7.16
Chess Skill in Man and Machine
32 Basic Programs for the Pet Game Playing with Computers Basic Computer Games
Star Ship Simulation
Game Playing with Basic
Sargon
BASIC
Learning Basic Fast
Basic Basic
Advanced Basic
Illustrated Basic
Basic with Business Applications Basic Primer
The Basic Handbook
COBOL
Cobol Programming
Learning Cobol Fast
Cobol with Style
Reducing Cobol Complexity

PASCAL
Pascal: User Manual and Report Problem Solving Using Pascal
Programming in Pascal
A Practical Intro. to Pascal .
An Introduction to Programming and Problem Solving with Pascal Introduction to Pascal
Z80 BOOKS
Z80 Programming for Logic Design Z80 Technical Manual Z80 P10 Technical Manual . Z80 Programming Manual ${ }^{\circ} 80$. Z80 Microcomputer Handbook
Practical Microcomputer Programming (Z80). Z80 Instruction Handbook
Z80 Assembly Language
Programming
Introduction to TRS 80 Graphics
Zilog Data Book
Z8001/Z8002 Product
Specification.
Z8000 CPU Instruction Set
Z80 Micro Programming \&
Interfacing
NEW BOOKS
JC Converter Cook Cook by Jung BASIC for Everyone

Springer-Verlag Springer-Verlag P. Grogono A. Addyman .

Schneider J. Welsh \& J. Elder \& 9.50
A. Osbourne . £ 5.95
Zilog . . £ 4.00
Zilog : $\quad . \quad £ 3.25$
Zilog . . . \& 4.50
W. Barden . . $£ 6.95$
Weller . . $£ 19.55$
Scelbi . . $£ 3.25$
A. Osbourne . $£ 6.95$
Inman . . . £ 5.75
Zilog . . . \quad £ 3.50
Zilog . . . \& 3.75

Nichols . . £ 7.10
MICROS for Business Applications Barden .. 50
£. 5.52
£ 7.84 £ 7.50
$£ 3.50$

$$
9.50
$$

$$
95
$$

6502 Assembly Lanugage Programming by A. Osbourne $£ 6.95$
is CREDIT SALES (Minimum 10% Access and Barclaycard of Welcome.

Whatever it is, the HH H of power amplifiers will handle it

 The driving, variable frequency power supplies and servo motor systems.
S500D

Dual Channel
19" rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channel 900 w r.m.s. in bridge mode DC-20 KHZ at full power . 0.005% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-buill force cooled dissipators

S 2500
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics

WW-099 FOR FURTHER DETAILS

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \%$ DC accuracy.

Its fow-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is $20,000 \mathrm{hrs}$. or about 10 years.

All 5 functions are fully protected -1400 V peak on DCV and $\mathrm{ACV}, 300 \mathrm{~V}$ on Ω,

Is this the end for Analogue

 $2 \mathrm{~A}(250 \mathrm{~V})$ on DCA and ACA. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.Cost-conscious ease of maintenance is so thoroughly designed into the 169 that only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about $£ 1.50$.

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the pricel performance of the new 169. It costs $£ 99$ (plus VAT)

For information on the 169 or any Keithley DMM call (0734) 861287
Telex: 847047

Exstock

ww - 035 For further details

KEITHLEY

Keithley Instruments Ltd.

1. Boulton Road

GB-Reading, Berkshire RG2 ONL
UNITED KINGDOM
(0734) 861287 Telex: (851) 847047

Keithley Instruments GmbH

Heiglhofstrasse 5
D-8000 München 70
(089) 714-40-65

Telex: 5212160
Keithley Instruments SARL. 44, Rue Anatole France F-91121 Palåiseau Cedex 01-014-22-06.
Telex: (842) 204188

The NEW Marshall's 79/80 catalogue is just full of components

and that's not all . . .

\ldots our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's

These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors. Crystals, Diacs, Diodes, Dis plays, Heatsinks, I.Cs, Knobs. LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Resistors, Soldering Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc. etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering
Plus - Many new products and data
Plus 100 s of prices cut on our popular lines including 1.Cs.
Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50p.

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01 -452 0161/2. Also 325 Edgware Road, W2. Tel: $01-7234242$. Glasgow: 85 Wes:
Regent Street, G2 2QD. Tel; 041-332 4133. And Bristol: 108A Siokes Croft, Bristol. Tel: 0272426801/2.

the indispensable $\square\{\square \square \square \square \square\}$

 THRULINE WATTMETER
 $0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts

The Standard of the Industry What more need we say.

Exclusive UK representative

E®•选•(G3) A150 MIXER AMPLIFIER

150 WATTS SINE WAVE POWER

£199.50

inc. VAT R.R.P
Trade
Enquiries
welcome

Mono, all purpose, reliable, strongly made ($3 / 8^{\prime \prime}$ Ali frame).
Double anodised facia. Full electronic short circuit protection
Six independent inputs: Dual Phono, RIAA, change-over fader for Discos Twin Jack output sockets: $8 \Omega 150 \mathrm{~W} ; 4 \Omega 100 \mathrm{~W} ; 16 \Omega 80 \mathrm{~W}$. (R.M.S.)
K.A.C. Electronic Inv. Lid., 20 Priory St., Tonbridge, Kent CALL FOR DEM Or PHONE (0732) 358109 FOR LEAFLET

WW - 011 FOR FURTHER DETAILS

Audax HD 129025	£7.65
Audax H013034H	£12.75
Audax HP11P25EBC	£6.65
Audax HP 2OB25H4	£13.25
Audax HD24S45C	£20.50
Baker Superb	£25.00
Castle Super 8RS/00	£12.65
Chartwell CEA205 $8^{\prime \prime}$ bass, matched	
.pairs only 8 ohm (pair)	£61.25
Coles 4001	¢7.65
- Coles 3000	£7.65
Celestion HF 1300 II	£8.45
Celestion HF 2000	£10.25
Dalesford D10 iweeter	£8.45
Dalesford D30/110 5in	£11.25
- Dalesford D50/153 61/2in	£12.25
Dalesford D50/200 8 in	£12.25
Dalesford D70/250 10in	£22.25
Dalesford ABR 10 in	£10.25
Dalesford D100/31012in	£35.75
Decca London horn	£57.25
Decca DK30 horn	£43.75
Decca CO/1000/8	£10.25
EMI 14A/770 $14{ }_{\text {in }} \times 9$ in	
EMI $\sin \times \operatorname{sind} / c, 10$ watt.	¢4.05
EM1 Type 3504 ohm	£9.45
Isophon KK8/8	£8.15
Isophone KK 10/8	¢8.45
Jordan Watts Module	£20.40
Jordan Watts MF kit	¢9.15
Jordan 50 mm unit	£23.00
Jordan CB crossover (pair)	£23.00
Jordan Mono crossover (pair)	£23.00
Kef T27	$£ 9.45$
Kef 8110	£12.00
Kef 8200	£13.25
Kef 8139	£27.00
Kef ON13	¢ 5.40
Kef DN 12	£8.65
Kef ON 22 (pair)	£40.85
Lowther PM6	£51.00
Lowther PM 7	£88.45
Peerless K0100T	£10.50
Peerless DT10HFC	£10.50
Peerless KO 40 MRF	£12.25
Radford BD25 II	T.B.A.
Radford MD9	T.B.A.
Radford MD6	T.B.A.
-Radford FN8/FN831	T.B.A.
Richard Allan DT20	£8.95
Richard Allan DT30	¢9.45
Richard Allan CG8T	£11.25
Richard Allan CG12T Super	£25.30
-Richard Allan LP8B	£11.75
Richard Allan HP88	£17.60
Richard Allan HP1 28	£28.40
Seas H107	£8.95
Shackman Electrostatic, c network and crossover (pair)	Shackman Electrostatic, c/w polar
- Tannoy DC386 15 in	178.90

Tannoy DC296 10in $£ 107.35$ 5 Swan Street. Wilmslow, Cheshire.

PA GROUP \& DISCO UNITS

Baker Group 35
$\begin{array}{lr}\text { Baker Group } 35 & \text { €15.45 } \\ \text { Baker Group } 50 / 12 & \mathbf{~} 23.45\end{array}$ Baker Group 50/12 $£ 23.45$ Baker Group 50/15 £35.15 Celestion Powercell $12 / 150$ £56.50 Celestion Powercell $15 / 250 £ 69.25$ Celestion G12/50 Twin cone£15.95 Celestion G12 / 80 Cambric

edge

$£ 20.25$
Twin cone £19.75 edge
Celestion G15/100 Cambric
edge
Celestion G15/100 Twin £31.95
Celestion, G 15/100 Twin cone
Celestion G18/200
Celestion MH1000 $\quad \mathbf{5} 3.25$
Celestion MH1000 £15.95
Fane Pop 40
Fane Pop 50H
Fane Pop 75
Fane Pop 65
Fane Pop 80
Fane Pop 100
Fane Guitar 80L
Fane Guitar 80B
Fane Disco 80
Fane PA80
Fane Bass 85
Fane Crescendo 12
Fane Crescendo 15
Fane Crescendo 18E
Fane J44
Fane $J 104$
Fane J73
Fane $\mathrm{HPX} 1 / \mathrm{HPX} / 2$
Fane HPX3A
Fane MPX38
Goodmans 8PA
Goodmans 12P
Goodmans 12 PD
Goodmans 1 2PG
Goodmans 18P
Goodmans Hifax 50HX
Motorola Piezo horn $31 / 2 \mathrm{in}$ Motorola Piezo horn 2 inx 6 in
Richard Allan H081
Richard Allan HD10T
Richard HD12T
Richard Allan HD 15
£ 24.4 .40
Richard Allan Atlas 15 in $£ 85.15$
Richard Allan Atlas 18 in $£ 110.75$

KITS FOR MAGAZINE DESIGNS etc
KITS FOR MAGAZINE DESIGNS
Kits include drive units, crossovers.
BAF/long fibre wool, eic, for a pair of speakers. Carriage £3.75

Practical $\mathrm{Hi}-\mathrm{Fi}$ and Audio PRO9.TI (Rogers) Felt panels for PRO9.TL £6.72 plus £1. 60 carriage £138 Hi-Fi Answers Monitor (Rogers) £146 Hi Fi News State of the Art (Atkinson)
£182
Hi Fi News Miniline (Atkinson) $£ 48$
Hi Fi for Pleasure (carriage £2.66)
Hi Fi for Pleasure Compact Monitor
(Colloms)
(carriage £5.25)
Popular Hi-Fi Mini Monitor (Colloms)
Popular Hi Fi Round Sound
(Stephens) including complete
cabinet kit $£ 71$
Popular Mi-Fi (Jordan) $£ 93$
plus (carriage £2.66)
Practical Hi-Fi \& Audio BSC3 (Rogers)
Practical Miofi \& Audio Monitor (Giles) $£ 155$
Practical Hi-Fi \& Audio Triangle (Giles) £99
Practical Mi-Fi \& Audio Mini Triangle
(Giles) £108
Wireless World Transmission Line (Bailey) KEF £122 Wireless World Transmission Line (Bailey) RADFORD £184 Hi-Fi News Tabor (Jones) with 14 bass units $£ 60$
Mi-Fi News Tabor (Jones) with H4
bass units £66
Smart badges free with all above kits (to give that professional touch to your DIY speakers!). Send 50p for up to 6 reprints/construction details of above designs

PRICES CORRECT AT 18.6 .79

ALL PRICES INCLUDE VAT @ 15\%

Send 30p stamp for free 38 page catalogue 'Choosing a Speaker'

Telephone Speakers, Mail Order and Export
0625529599
Hi-Fi: (Swift of Wilmslow) 0625526213
=
Lightning service ontelephoned credit card orders!

SPEAKER KITS

PRICES PER PAIR-
CARRIAGE $£ 2.66$

Dalesford System 1

Dalesford System 2 Dalesford System 3 Dalesiord System 4 Dalesford System 5 Dalesford System 6 Eagle SK2 10 Eagle SK215 Eagle SK320 Eagle SK325 Eagle SK335 ohm (special
S3/5A equivalent kit Lowther PM 6 kit
Lowther PM 6 Mk 1 kit Lowther PM 7 kit
Peerless 1070
Peerless 1120
Peerless 2050
Peerless 2060
Radford Studio 90 kit Radford Monitor 180 kit Radford Studio 270 kit Radford Studio 360 kit Ram Kit 50 (makes RAM 100)
£71.50
Richard Allan Tango Twin kit $£ 49.00$
Richard Allan Maramba kit $£ 69.00$ Richard Allan Charisma kit $£ 101.20$ Richard Super Triple kit $£ 81.70$ Richard Allan RA8 kit Richard Allan RA82 kit Richard Allan RA82 L kit Seas 223
Seas 253
Seas 403
Seas 603
$£ 54$
$£ 57$
$£ 57$
$£ 104$
£104
£110
£105.30
$£ 110.40$
£110.40
\&176.85
£124.70
£142.10
£51.10
£67.40
$£ 184$
£218
£350
$£ 440$

Wharfedale Denton XP2 $£ 122.60$
Wharfedale Shelton XP2 kit $£ 31.45$ Wharfedale Linton XP2 kit £40.40 Whariedale Glendale XP2 kit $£ 69.00$

Everything in stock for the speaker constructor!
BAF. Long Fibre Wool Foam Crossovers, Felt Panels, Com Crossovers,
ponents, etc.
Large selection of grille fabrics (Send 18 p in stamps for grille fabric samples)

wimsiow

The firm for Speakers
Swan Works, Bank Square, Wilmslow, Cheshire.

$\mathrm{SN}_{\mathrm{S}^{2}}$ Jew Bear Components

CAI.LERS AND MAIL. ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505
Microcomputing I.C.'s
MC6800

MC6821
MC6850
MC6810AP
MC6840
MC8602P
MCl4536P
MC3459
7.80 CPU 2.5 M Hz

Z80 P10 2.5 MHz
Z80 CTC 2.5 MHz
Z80A CPU 4 MHz
Z80A P10 4 MHz
Z80A CTC 4 MHz
SC/MP 11
(INS 8060N)
INS 8154 N
8080A
6502
6522
6532
6551
6545
28001
£! 42.50
AMD 9511: arithmetic packageACORN

6502 BASED MICRO KIT
£85.00
ACORN
$£ 95.00$
MAIN'S ADAPTOR
V.D.U. KIT
£ 5.00
$£ 88.00$

Disc Drives

SPECTRONICS

UV Eprom-Erasing Lamp
PE 14 Erases up to 6 chips. Takes approx.
19 mins. 6 chips. Takes approx.
PEI4T* Erases up to 6 chips. Takes approx.
PE24T* Erases up to 9 chips. Takes approx.
15 mins. 6 chips. Takes approx. 7 mins.
£ 56.00
£ 76.58

PR125* Erascs up to 6 chips. Takes approx.
ases up to 36 chips. Takes approx
PR320T* Erases up to 36 chips. Takes approx.
7 mins.
PCI 000* Erases up to 72 chips. Takes approx.
7 mins.
$£ 842.83$
UV Eprom-Erasing Cabinet
PC2000* Erases up to 144 chips. Takes approx. 7 mins.
£1227.69

* Includes a 60 min . Timer.

TERMS: Credit Sales (minimum $£ 10.00$) Barclaycard and Access Welcome. Please add 15% VAT.

CALLERS ONLY: 220-222 Stockport Road, Chcadle Heath, Stockport Tel: 0614912290
SEND FOR OUR NOVEMBER CATALOGUE AND BOOK LIST.

FUSES Quick acting, Anti surge. Ceramic, from $\mathbf{£ 2 . 8 0}$ per 100 POWER RESISTORS $5 \mathrm{w}-17 \mathrm{w}, 4 \mathrm{R} 7-10 \mathrm{~K}$, from $£ 10$ per 100. PCB Guides, self-fixing from $£ 4.86$ per 100 C.f. RESISTORS, AEL \& Iskra $1 / 8 w-2 w$, from $£ 4$ per 1,000 ELMA knobs \& accessories. Crimp (solderless) terminals Cable Sleeves \& Markers from $£ 1$ per 1,000.
SLEEVING, Neoprene, PVC, Silicone rubber - all colours Surplus stock lists available of Power resistors. c.f. resistors, self-fixing epoxy Eureka resistance wire (and other types), Polystyrene capacitors etc.
Write, phone or call for lists required
PBRA LTD.
Hopfield
(073274) 345

Golden Green, Tonbridge, Kent, TN 11 OLH

WW - 106 FOR FURTHER DETAILS

HI-FI TONE ARM BARGAINS

-from Britain's Leading Audio Store

AUDIO TECHNICA AT-1007
S shaped arm. Low compliance magnesium universal head shell. Low capacitance heads. High trackability SONIC PAICE £29.95
ALL LEADING MAKES OF HI-FI and MANY OTHER ACCESSORY BARGAINS AVAILABLEFROMTHECOMMUNICATIONS CENTRE:

The $\mathbf{7 2 0 8} \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

FEATURES

- All Metal Cabinet - 8 Digit . $4^{\prime \prime}$ LED Display O Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included 240 V or 12 V Operation Proportional Control Crystal Oven (Optional) Built-in VHF-UHF Preamp Completely Portable with Rechargeable Batteries (Optional).

DESCRIPTION

The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an all metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the 7208 can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni-Cad battery option. Price $£ 145.00$ + VAT.

Please tick as required.
For further information on this product
Complete range of sound equipment

Name
Position
Attach this coupon to your letter heading and send to: MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT, P.O. BOX 33, UCKFIELD, SUSSEX. ENGLAND.

Recognise me?

If you do
you should know
your
authorised

Avo Sales and Service Centre

Quick turn round on estimates/repairs Large stocks of new AVOMETERS

Farnell International

Farnell International Instruments Ltd. Sandbeck Way, Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist G

WW - 112 FOR FURTHER DETAILS
codeseesed IEctronios
P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTM, MANTS, PO3 5BJ
DIGIT O.1" LED DISPLAY MUlIiplexed, common cathode. 99p each DIGITAL. ALARM 8 DIGT O."'LED LISPLAY multiplexed common cathode, 99p each DS
CLOCK MODULE with O $7^{\prime \prime}$ display. wuth data E5.99 each. A DIGIT CLOCK LCO $0.5^{\prime \prime}$ digns. supplied with data, $£ 4.99$ each. MM 5316 digutal alarm clock chip. with data $£ 2.29$ each. REJECT CALCULATORS, untested, but good value for spares. E2.50 each. LED WAISTWATCH IC Mostek MK5030, with data 95 each LED WAIS TWATCH DISPLAY type DIS501 01 "d dgits
With data 95 p each SUPER SAVER purchase an MK 5030 and e OIS 50 for only E1.50 the pair NOTE the MK 5030 and DIS501 are housed in 'legless flatpack' style package and require some fairly fine soldering. 20 KEY KEYBOAROS calculation keyboards. 2 for 99 , (nol for use with
NORTECA 204 calc chiol. 4 DIGIT $0.8^{\prime \prime}$ LED DISPLAY common cathode with dala $£ 3.75$ each. NORTEC4204 calc chipl, 4 DIGIT $0.8^{\prime \prime}$ LED DISPLAY common cathode with dala $£ 3.75$ each. DIGITAL MULTIMETER CNIP MM 5330 IC to build \& 4% digut multimeter, with da ta $£ 3,49$ each
SUPER QUALITY JACK SOCKETS $1 / 401635 \mathrm{~mm}$) lack sockets, mono 23 p each stereo 25 pach SUPER QUALITY JACK SOCKETS KNOBS, nice syle. 18 mm diam, black with coloured cap Please state colour required 18 sp each. 10 LED DISPLAYS, untested maierial. 0 1"" digis. Common cathode, 95 F . 6 DIGIT O. $1^{\prime \prime}$ LED DISPLAV multiplexed. common cathode. 99p. 55E TIMER IC with data and applications booklet.
23p. POLARIZING FILM, max $19^{\prime \prime}$ wide. any lengih. Only 2p per sq inch Amy size cut SLIDER SWITCHES 2 pole, change over, 15p each PUSH BUTTON SWITCHES, spring loaded
 Constant, with dala, 80p. 2102 MEMORIES, dynamic memories for your micros, with data. 95 ,

NEW CATALOGUE AVAILARLE FROM JANUARY. SEND S.A.E. FOR YOUR FREE COPY POST AND PACKING PLEASE ADD 35 P (OVERSEAS ORDERS ADD 90p) V.A.T. ADLL SATISFACTION GUARAMTEEON ALI ITE

WW - 113 FOR FURTRER DETAILS

PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY

Audio Range: $10 \mathrm{~Hz}-100 \mathrm{Khz}$, in four switched ranges. Distortion Extremely low
(.0015\% typical, @ 1 Khz).

Output
1 v into 600Ω, with
Fixed and Variable Atten.
Sine and Square Wave.
Based on a Linsley Hood design.
Battery or Mains.

£36.00 (batty.)
Tax extra $£ 5.40$
P\&P $£ 2.00$

TELERADIO ELECTRONICS
325 FORE STREET; EDMONTON, LONDON N9 OPE
01-807 3719 Closed Thursdays SAE for lists

WW-076 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial
PL504 - PL802 - PCL805 - CV131 - CV1 36 CV138 - CV329 - CV345 - CV450 - 805 -807-813-2K25, Etc

Phone/write to
PYPE HAYES RADIO LTD. 606 Kingsbury Road Birmingham B24 9PJ

021-373 4942

AIR - MARINE - COMMERCIAL VHF/UHF MONITOR RECEIVER

Frequency Range: 66-88, 118-136, 144-174, $450-512 \mathrm{MHz}$ Sensitivity: Better than $0.8_{\mu} \mathrm{V}$ for 10 dB Send for details.

VHF FM MOBILE

2 WAY RADIO

- 10 watts RF power
- Made by us in the UK
- Up to 12 channels
- Modular construction
- Home Office Approved
- Small physical size

Great Igridsale

SUPER SOUND SAVING! DINDY LOW NOISE CASSETTES

 SN30SN55
SN3
S132

8200 6250 8250

E4.50

BI-KITS AUDIOMODULES AT

ALL REDUCED! CAPACITOR PAKS

$6201 \quad 18$ electrotyica

1620318 electrolytics 18 eut 100 ouf
ALL $3=$ SPECIAL PRICE of 81.30

$\begin{array}{lll}16162 & 24 \text { ceramic caps } & 470 \text { ont } 3300 \mathrm{opt} \\ 16163 & 24 \text { ceramic caps } & 4700 \mathrm{f}-0.047\end{array}$
24 cerramic caps
ALL 4 a SPECIAL. PRICE of $E 1.80$
RESISTOR PAKS
$\begin{array}{lll}16213 & 601 / 4 \mathrm{w} \text { resustors } & 100 \mathrm{omm} .820 \text { ohim } \\ 16214 & 601 / \mathrm{ww} \text { resistors } & 1 \mathrm{~K} .8 .2 \mathrm{~K}\end{array}$
$\begin{array}{lll}16216 & 60 \mathrm{kw} \text { resistors } & 10 \mathrm{~K}-82 \mathrm{~K} \\ 6216 & 60 \mathrm{kw} \text { résistors } & 100 \mathrm{~K}-820\end{array}$

$16219 \quad 40 \mathrm{y}$ /w resistors $\quad 1 \mathrm{~K} .82 \mathrm{~K}-82 \mathrm{~K}$

\section*{IC SOCKET PAKS

 F.E.T.s
 | $\begin{aligned} & 2 N 3819 \\ & 2 N 5458 \end{aligned}$$\begin{aligned} & 2 N 4220 \\ & 2 N 4860 \end{aligned}$ | |
| :---: | :---: |
| | |
| (PROGRAmmable | |
| | |
| | |

VOLTAGE REGULATORS

Positive	Case T 0220		Negative	
UA7805	c0.65	UA7905		¢0.70
UA7812	c0.65	UA7912		¢0. 70
UA7815	c0.65	UA7915		¢0.70
UA7818	c0.65	UA 7918		c0. 70
UA7824	c0.65	UA7924		¢0.70
UA723 14 pun DIL	¢0.35			
LM309K T03	[1.10			

OPTOELECTRONICS

2nd QUALITY L.E.D. PAKS

L.E.D. CLIPS

	${ }_{2}^{125}$	
5		¢0.25

SJ Texas NPN Sil
meral can -perlect 8 coded
50 off $£ 2.50-100$ off $£ 4.00-1,000$ off $£ 35.00$
SPECIAL OFFER
SJ100 12v Electric Drill 7.500 RPM for all your PCB driling
complete with 2 drills $1 \& 15$
SUPER DUPER COMPONENTBOX Election
R.ent
Roard.
Bat

Realis.
Board.

miconductors. wire, hardware erc, etc. elt
CALCULATOR CHIP
IC INSERTION / EXTRACTION TOOL

ANPLIFIERS

PRE-INCREASE PRICES!

$\begin{array}{ll}\text { AL10 } & \text { 3 watt Audio Amplitier Module } 22.32 \mathrm{v} \text { supply } \\ \text { AL20 } & 5 \text { watt Audio Amplifier Module } 22.32 \mathrm{v} \text { supply } \\ \mathrm{E3.25} \\ \text { AL30A } & 7.10 \text { watt Audio Amplifter Module } 22.32 \mathrm{v} \text { supply }\end{array}$ 7.10 watt Audio Ampliter Module 22.32 v supply $\mathrm{EX.79}$. 1525 watt Audio A mplifiter Module 30 -50v supply. 35 wall Audio Amphfier Moduie 40-60v supply $£ 7.34$ $\begin{array}{ll}\text { Al80 } & 35 \text { wall Audio Amplifier Module } 40-60 \mathrm{v} \text { supply } \\ \text { Al.120 } & 50 \text { watt Audio Amplitier Module } 50.70 \mathrm{v} \text { supply }\end{array}$

STERED PRIE-ANPLITISR

poply vollage 24.36 volts inpurs: Tape. Tuner, Mag
MONO PRE-AMPLIFIERS

POWER SUPPLIES
 SPMBO $\quad 33 v$ Stablised supply - suit $2 \times$ AL60. PA 100 to 10150 $\begin{array}{ll}\text { SPM 120/55 } & \text { 55v Stabilised supply }=\text { suit } 2 \times \text { AL80, PA200 ©5.80 } \\ \text { SPM 120/65 } & \text { 65v Stabilised supply }- \text { suit } 2 \times \text { AL120. PA200, } 1 \times \\ & \text { AL250. PA200 }\end{array}$ SG30

WISGELLANEOUS

 STEREO 30 Complete 7 wall per Chanmel Stereo Amplifier Board $\begin{array}{ll}\text { BP } 124 \\ \text { GEIOOMK11 } & 5 \text { watt } 12 \text { volt max. - Siren Alarm Module } \\ 10\end{array}$ sliders and knobs PS250 $\quad 0-2 \mathrm{amps}$ ated stabinsed 0 oner supply $2-30$ volis

2034	1.7 amp 355 suri SPM80			C5.40 P\&P $£ 1.21$ E6.35 P\&P 1.47			
2035							
2036	$2 \mathrm{amp} 55 v$ 750 mA 17 v suit PS 12			$\begin{aligned} & 6.35 \text { P\&P } £ 1.47 \\ & 63.20 \end{aligned}$			
2040	$1.5 \mathrm{amp} 0-45 \mathrm{v}-55 \mathrm{v}$ suif SPM $120 / 45$. SPm $120 / 55 \mathrm{v}$ E5.20 P\&P £1. 21						
204							
2041	2 amp 0.55 v -65v suit SPM $120 / 5$			5. SPM $120 / 65 v$			
2050	1 amp 0-20v suit Stereo 30			E3.25 P\&P 50.75			
1725							
	ABPESNUTS						
139	Teak Cabinet suit Stereo $30.320 \times 235 \times 81 \mathrm{~mm}$						
140							
FP100	Fromt Panel for PA 100 \& PA200 Back Panel for PA 100 \& PA200				¢1. ${ }^{\text {co }}$		
BP 100					¢1.80		
GE100FP	Front	anel for one C	100 MKII		¢1.76		
2240	Kit of. pars including Teak Cabiner. chassis.				sockets. E1 10.95		
Type ${ }_{\text {A }}$	Price c0.06	Type 0470	Price co.06	Type IN4004	Price E0.06 0.07		
balot	E0.08	OA79	c0.08	in4005	¢0.07		
BA148	¢0.13	OAB1	c0.08	iN4006	¢0.08		
8A173	E0.13	OA90	¢0.08	IN4007	£0.09		
Bax 13	¢0.05	OA91	¢0.08	IN5400	60.12		
BA×16	E0.06	OA95	E0.08	IN540t	£0.13		
OA200	C0.06	1N34	$\underline{6} .06$	in5402	¢0.14		
OA202	¢0.07	IN60	¢0.07	IN5404	¢0.15		
BY 100	E0.18	1N4148	60.05	in 5406	¢0.19		
BY126	c0.12	IN4001	¢0.04	IN5407	${ }_{60.23}$		
BY127	E0.14	$\begin{aligned} & \text { iN4002 } \\ & \text { IN } 4003 \\ & \hline \end{aligned}$	60.04	IN5408	c0.28		
0447	¢0.06		¢0.05	IS44	c0. 03		
	4N3 Ai						
Type	Price	Type	Price	Type	Price		
CA270	60.95	SL414A	E1.75	TBA810	c0. 85		
CA3089	$\underline{51.70}$	SN76013N	£1.65	tbag20	C0.65		
CA3090	¢3.00	SN76023N	£1.60	UA 703	c0. 20		
LM380	60.80	SN76115	E1.60	UA 709C	co. 25		
tM381	$\underline{51.35}$	TAA550	c0.30	UA 710	c0.25		
(M3900	¢0.50	taa621a	¢1.80	UA 711	¢0. 26		
MC1310P	E0.85	TEA1208	c0.60	741P	c0. 16		
NE 555	¢0.18	tbag41A	E1.10	TAA661	¢1.25		
NE556	¢0.55	tbaboo	$\underline{6} .75$	taA661B	¢1.25		

SPECIAL OFFER

COMPONENT PAKS

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of 0-1.5 MHz receive and/or any transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear.

We are situated just around the corner from West Hampstead Underground Statior Bakerloo line). A few minutes' walk away is West Hampstead Midland Region outes: 2 B 59 End Lane on the Broad Street Line. We are on the following Bus $1-2$. Saturday we are open 9-1 2.30 only. World wide exports

DRAKE *SALES *SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Account No. 588 71515. Telephone: 01:624 7774
Cables: Radio Shack, London, NW6. Telex: 23718

Model No.	ADV 030	ADV 025
Output Current	5 Amp	10 Amp
Output Volts	2-30 DC	0-25 DC
Input Volts	115-230-250 A/C	115-230-250 A/C
Tolerated Mains Variation	15\%	15\%
Ripple On Load	05\%	. 05%
Load Regulation Better Than	5\%	5\%
Protection	Both Models. Internal Fold Back. Overload. Thermal and short circuit Protected.	
Guarantee	Both Models. 2 years	
Dimensions	Height. $130 \mathrm{M} / \mathrm{M} \mathrm{mm}$ Width. $250 \mathrm{M} / \mathrm{M} \mathrm{mm}$ Depth. $170 \mathrm{M} / \mathrm{M}$ mm	177 mm 335 mm including 294 mm handles

SOUTHERN ELECTRONICS
 6 WESTCLIFF ARCADE, RĀM̄̄̄CATE, KENT TEL. THANET (0843) 57888

WW - 095 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full training courses are individually tailored to customers' requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CRO2XX: 01-684 1422, 01-689 8741

WW - 055 FOR FURTHER DETAILS

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime}, 10^{\prime \prime \prime}$ or $7^{\prime \prime}$ records. Auto or Manual. A high quality
unit backed by BSR reliability Unit backed by ASR reilibility. 200/250V. Size $131 / 2-11 / 4 \mathrm{in}$. 3 speeds. Above motor board $33 / \mathrm{in}$. Below motor board $21 / 2 \mathrm{in}$. with Ceramic Stereo cartridge.
£20

HEAVY METAL PLINTHS

TINTED PLASTIC COVERS
Sizes: $141 / 2 \times 121 / 2 \times 41 / \mathrm{in}$. or $141 / 2 \times 121 / 2 \times 3 \mathrm{in}$. $£ 3.50$ $151 / 4 \times 131 / 2 \times 4 \mathrm{in}$. £4. $18 \times 131 / 4 \times 4 \mathrm{in}$. $£ 6$.
$71 / 4 \times 91 / 2 \times 31 / 2 \mathrm{in} . \mathbf{E 2} .18 \times 121 / 2 \times 3 \mathrm{in}$. £6.
$18 \times 133 / 2 \times 31 / 2$ in with standup hinges $£ 7$.
$141 / 2 \times 141 / 2 \times 21 / 2$ in Rosewood sides $£ 4$.
$1.41 / 2 \times 14 / 4 \times 21 / 2$ in. Rosewood sides $£ 4$. Post $£ 1.60$
BSR SINGLE PLAYER
BSR P 1823 speeds. flared
aluminium qurntable 's. shape rm, cueing device, ceramic cartridge £24 Post £1.60. BSR MP60/P 128 Stereo Ceramic, balanced arm, cueing de-
vice. Bias compensator $£ 26$.
 Magnetic £5 extra.

GARRARD AUTO CHANGER CC10A

£6.95 Post £1.60
BSR P163 BELT DRIVE QUALITY DECK

ELAC HI-FI SPEAKER 8in. TWIN CONE
 Bass resonance 40 8 ohm impedance. $£ 5.95$ Po
10 watts. RMS. 20 watt wooter £7.95 Post 75 p

LOW VOLTAGE POWER PACK for MODELS Ready made. Famous make. Will supply 10 volts D.C.

POTENTIOMETERS	80 Ohm Coax
With spindles $5 \mathrm{k} \cap$ to $2 \mathrm{M} \Omega$. LOG or LIN	
5kn to 2Mn. LOG of	FRINGE LOW LOSS 15 p yd.
L/S 35p. DP 60p.	
Edge Pot 5K. SP 45p.	UNE SOCKETS 45p.
Sliders Mono 65p. St	
85 p .	300 ohm FEEDER 5p
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS	
With tweeter and crossover. 10 watt. 3 or 8 ohm . With tweeter and crossover 8 ohm. 15 watts.	
$\mathbb{E P O s t}^{9.95}$ $£ 10.95$ Posi 75 p	
Bass woofer only15 ohm. 20 watt.P10.95 Post 75p	

Suitable Bookshelf Cabinet
Toak finish. For EMl 13×8 spazkers.
THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of
reels. AC mains $200 / 250 \mathrm{~V}$. Leaflet SAE Will also demagnetise small tools £7.50

RELAYS. 12 V DC 95 p . 6 V DC 85 p .240 V AC 95 p .
BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$ 6-E1.85:16×10- 2.20 . ANGLEALI. $6 \times 3 \times 36$. ALUMINIUM PANEIS. $6 \times 4-24 p ; 8 \times 6-38 p ; 14$ 3-40p; 10×7-54p; 12×8-70p; 12×5-44p; $16 \times$ $6-70 \mathrm{p} ; 14 \times 9-94 \mathrm{p} ; 12 \times 12-\mathrm{E1} ; 16 \times 10-\mathrm{E1.16}$. PLASTIC AND ALIBOXES IN STOCK. MANY SIZES VARICAP FM TUNER HEAD with circuit \& connection Some technical knowledge required $£ 4.95$.
TAG STRIP 28 way 12 p.
TAPE OSCILLATOR COIL. Valve type, 35p.
BRIDGE RECTIFIER 200 V PIV $1 / 2 \mathrm{amp} 50 \mathrm{p} .8 \mathrm{amp} £ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40 p . OPDT 50p.
PICK-UP CARTRIDQES ACOS, GP91 £2.00. GP94 £2.50. SONOTONE 9TAHC Diamond £ $£ 3.75$. V100 Magneric $£ 6.50$. SONOTONE STAHC Diamond E3.75.V100 Magnetic E. E.5. RES.
10 p.
10p.
HIGH STABILITY.
$1 / 2 W$
2%
10
ohms to 1
1 meg. $8 p$

MAINS OPERATED SOLID STATE
AM/FM STEREO TUNER

2001240 V AC Mains Covering M.W.. A.M. 540 1605 KHz . V.H.F., F.M. 88.108 MHz . Ferrite rod aerial for M.W. Full AFC and AGC on A.M. and F.M. Stereo Beacon
Indicator. Builtin Preater Indicator. Built-in Pre-amps with variable output adjust-
able by pre-set
control. Max. o/p Voltage 600 mV R.M.S. into 20K. Simulated Wide, 4 in , high $\times 9 \mathrm{~g} / 2 \mathrm{in}$. deep approx. $\mathbf{2} \mathbf{8}$ Post $£ 1.60$
Only

RCS SOUND TO LIGMT KIT MK. 2
Kit of parts to build a 3 channel sound to light unit
1.000 watts per channel. Suitable for home or disco. 18 Easy to build. Full instructions supplied. Cabinet att siọna
"MINOR" 10 watt AMPLIFIER KIT £12.50 this kit is suitable lor record players, guitars, tape playback, electronic instruments or small PA systems. Two versions 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE details. Full instructions supplied. $A C$ mains powered. Input can be modified to suit guitar

LOW VOLTAGE ELECTROLYTICS
1.2.4,5,8,16, 25,30,50, 100, 200mF 15 V 10 p $00 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$. $000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
4500 mF 64 V £2. $4700 \mathrm{mF} 63 \mathrm{~V} \mathrm{£1.20.2700mF/76V} \mathrm{£} \mathrm{1..}$. $5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V}$ £ 1.75
HIGH VOLTAGE ELECTROLYTICS
$8 / 350 \mathrm{~V} 22 \mathrm{p} \quad 8+8 / 450 \mathrm{~V}$ 50p
$\begin{array}{cccc}\text { IGH VOLTAGE ELECTROLYTICS } & \\ 8 / 350 \mathrm{~V} 22 \mathrm{p} & 8+8 / 450 \mathrm{~V} \text { 50p } & 50+50 / 300 \mathrm{~V} 50 \mathrm{p} \\ 16 / 350 \mathrm{~V} 30 \mathrm{p} & 8+16 / 450 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 450 \mathrm{~V} \\ 75 \mathrm{p}\end{array}$ $16 / 350 \mathrm{~V} 30 \mathrm{p} \quad 8+16 / 450 \mathrm{~V}$ 50p $32+32 / 450 \mathrm{~V} 75 \mathrm{p}$ $32 / 50 \mathrm{~V} 7 \mathrm{p} 16+16 / 350 \mathrm{~V} 50 \mathrm{p} 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ MANY OTHER ELECTROLYTICS IN STOCK
SHORT WAVE 100pf air spaced gangable tuner, 95
SHORT WAVE 100 pf air spaced gangable tuner, 95 p .
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15$
TRIMMERS 10pF. 30pF, 50 pF , 5 p . 100 pF , 150 pF , 15 p . CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 \mathrm{p}$. Silver Mica 2 to 5000 pF , 5p. 20p. $500 \mathrm{~V}-001$ 10 05 12p; 115 p 0.25 25p; 0.4735 p 20p; $500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 p ; 0.2525 p ; 0.4735$ MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25 p . Single pole change over $365+365+25+25 p$ F. Slow motion drive $85 p$. 120pF 50 p TRANSISTOR TWIN GANG, 50p.
NEON PANEL INDICATORS 250V. Amber or red 30p.
ILLUMINATED ROCKER SWITCH. single pole. Red 65p.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt $15 p$
CASSETTE MOTOR. 6 volt £ $£ .00$
CASSETTE MECHANISM. Mono heads, no motor $£ 3.00$

"Valves'"	pecial off	bioc	boin		
		PCF82	PL84	E8F80	EF80
6K86	35L6GT	PCF86	PY33	ECC83	EM84
607 G	954	PCL82	PY80	ECC84	EM85
6V6G	30PL1	PCL84	PY82	ECFPO	EM87
1207GT	3574GT	PL81	PY83	ECLBO	EY51
12 KBM	PCC84	PL82	E891	ECL82	EY86

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AERO ELECTRONICS (AEL) LIMITED GATWICK HOUSE, HORLEY, SURREY, ENGLANDRH6 9SU
Telephone: Horley (02934) 5353
Telex: 87116 (Aero G Horley) Cables: Aero G Telex Horley

WW - 105 FOR FURTHER DETAILS

$15 \mathrm{~Hz}-100 \mathrm{KHz}$ Generator

0.008% THD
100μ V-IV Sin $/$ Square
RIAA Output
6 Digit Frequency Display from input or output
$100 \mu \mathrm{~V}$-100V FSD Millivoltmeter 1% Accuracy
$1 \mathrm{~Hz}-200 \mathrm{KHz}$ Bandwidth
Ulira low-power operation from single PP9 battery or optional mains adaptor
DIN or BNC connectors

GE\{TYTER

$0.01 \%-10 \%$ FSD
${ }_{1} \mathrm{~Hz}-300 \mathrm{~Hz}$ or DIN Weighted Mean or DIN Quasi Peak

CCIR/ARM
DIN Audio Band
DIN Rumble A and B
Other Weightings Available

COMPACT PRECISION
INSTRUMENT - THE
LINDOS LA1 AUDIO
ANALYSER
$1 £ 425$ + V.A.T.

ใ $0 \rightarrow 0$

LINDOS ELECTRONICS Sandy Lane, Bromeswell WOODBRIDGE, Suffolk IP12 2PR 03947432

WW-083 FOR FURTHER DETAILS

FEEL DEEP DOWN

SUB FREQUENCY SYNTHESIZER

When connected to your HiFi system or PA this unit will generate frequencies one octave below the lowest frequency recorded on your discs or cassettes. SUB FREQUENCY SYNTHESIS adds a fourth dimension to sounds. It enables you not only to hear, but to feel the vibrations created by bass instruments. Connected to a high powered HiFi system the S F S assails your body with blasts of infra-sound. A disc (or cassette) recording lacks most of the frequencies below 50 Hz that were present in the original music. The S F S recreates these lost parts of the sound image, widening the dynamic range of the recording.

HOW IT WORKS

The frequency and amplitude of recorded signals in the range 60 to 120 Hz are used to synthesize frequencies one octave lower. These high tonal purity sub-harmonic signals are then added to the existing bass to produce a smooth spectral extension af the recorded sound. Higher frequencies are not affected by the S F S.
Two controls on the front match the input signal to the synthesizer level and control the level of sub-harmonic sound.
The S F S was tested by the Swedish Audio magazine R\&T (no.5/1979) which praised the unit for its sensational effect when connected to a system of adequate power capacity. The sensation of feeling sound was described as tremendous.
The S F S is available as a kit comprising a mounted and tested PC board, aluminium case, mounting hardware and assembly instruction. The kit, when completed, is easily connected to any HiFi system, following the instructions provided.
Cost is $£ 6+$ p\&p $(£ 3)+$. V.A.T. Enclose cheque for $£ 79$ when ordering.

Mail your order to:

INGENJÖRSFIRMA LEIF MARENIUS \& CO HB

P.O. Box 5086, S-421 05 VASTRA FROLUNDA, Sweden WW - 010 FOR FURTHER DETAILS

LINSLEY HOOD CASSETTE RECORDER 1

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertlse and experience guarantees the engineering design of the kit. Advanced features include: High quality PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy aseembly and test. Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record/play head, available separately at $£ 7.60$ plus VAT, but included FREE as part of the complete kit at $£ 81.50$ plus VAT.
REPRINTS of the 3 anticles describing this design 45 p No VAT
REPRINT of Postcript article 30p No VAT.

VFL 910 . Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hcod Cassette Recorder 2.531 .99 + VAT. Set of knobs $£ 1.46$ + VAT.

CASSETTE HEADS

HS 15 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer life than Permalloy. Higher output than Ferrite. Fantastic frequency response. Complete with data
HC20 Stereo Permalloy R/P head for replacement uses in car players, etc. HM90 Stereo R/P head for METAL tape. Complete with data
H561 Special Erase Head for METAL tape
H524 Standard Ferrita Erase Head
4-rrack R/P Head. Standard Mounting
R484 2/2 (Double Mono) R/P Head. Sid. Mig.
ME1512/2 Ferrite Erase. Large Mig.
We are the ectuali importers of these hewde and invite Trade/quantity enquirios.

All prices plus VAT

Pleas
ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and price breakdowns.
Personal callers are always welcome
but please note we are closed all day Saturday
Instant easy ordering, telephone your requirements and credit card number to us on

Oswestry (0691) 2894

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley H cod Cassente Recorder 1.
This latest version has the following extra features. Ulira low wow-and-flutter of $.09 \%$ easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette
 alued casseptes. Frequency generating feedback servo drive motor with buitt-in speed control for thermal stability. Alf these desirable and useful features added to the excellent design of the Linsley.Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest £94.90 + VAT we ask for the complete kit.

SUPER BARGAIN OFFER LENCO FFR CASSETTE DECK

for those who missed our recent bargain CT4s we now are delighted to be able to ffer Brand New Lenco FFR Decks complete with motor speed and auto-stop control board fitted and tested. These will operate with any supply between 9 and 16 volts. This deck can be used for both record and playback applicatlons and is fitted with an erase head. A mono secoply on extra stereo head, if ordered supply an extra stereo head, if ordered £2 plus VAT. We also supply, with each deck and completely FREE, one of our specially moutded escutcheons. This deck would normally cost about $£ 25$ but we are able to offer them, while they last, at only £ 9.99 plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our redesign of this popular amplifier to make it as easy to build as our latest kits. The power amplifiers are complote modules plugging possible wiring has been eliminated but faith has been maintained with the existing metal work to enable owners to update if they wish. Send for full details in our list.

LINSLEY HOOD 30-WATT AMPLIFIER

Advanced new cost-effective amplifier of impeccable specification from the master Published in the January and February issues of Hi.fi News. We are supplying full kits to our usual protessional standard.

STUART TAPE CIRCUITS

These circuits are just the (For reel-to-reel decks)
ransistorised recorder. Total syg for converting that old valve tape deck into a useful replay sections for simultaneous off tape monitoring. We also stock the heads. This kit is well engineered but does not have the detailed instructions that we give with our more recent designs. We would not therefore recommend it to beginners. Reprints of the
original three articles 45 . Post free. No VAT. original three articles 45 p . Post free. No VAT

TYPE U4323
COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity
Voltrge ranges. Current ranges. Resistance.
Accuracy.
Oscillator outpur
$20.000 \Omega / \mathrm{V}$
2.5-1000V A.C. ID.C.
0.05-500mA D.C. Only-
$5 \Omega-1 \mathrm{MQ}$
5% F.S.D.
$1 \mathrm{kHz} 50 / 50$ squarewave
465 KHz sinewave:
modulated by 1 KHz squarewave
PRICE, in carrying case, complete with leads and manual $£ 8.00$
Packing and postage £ 1.00

85 TOTTENHAM COURT ROAD W. W. 1
Tel. 580-8403

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE U4324

D.C. Current. $\quad 0.06-0.6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
A.C. Current: $\quad 0.3-3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
D.C. Voltage. A.C. Voitage A.C. Voitage Accuracy.
$0.6-1.2-3-12-30-60-120-600-1200 \mathrm{~V}$
3-6-15-60-150-300-600-900V 500 - 5 - $50-500 \mathrm{k} \Omega$
D.C. 2.5% : A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreboard storage case $£^{9.50}$

Packing and postage $£ 1.20$

TYPE U4341

COMBINED MULTIMETER AND TRANSISTOR TESTER

Sensitivity: $\quad 16.700 \Omega / V$ D.C.. $3.300 \Omega / V$ A.C. Current: \quad 0.06-0.6-6-60-600mA D.C., 0.3-3.0-30-

300 mA A.C.
$0.3-1.5-6-30-60-150-300-900 \mathrm{~V}$
$1.5-7.5-30-150-300-750 \mathrm{~V}$ A.C.
1.5-7.5-30-150-300-750V A.C.
$2.20-200 \mathrm{k} \Omega-2 \mathrm{M} \Omega$

Collector cut-off current $60 \mu \mathrm{~A}$ max
D.C. current gain 10.350 in two ranges

PRICE, complete with steel carrying case, test lead, battery
and instruction manual $£ 9.50$
Packing and Postage E1.50

THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL

WW - 028 FOR FURTHER DETAILS

Our Signal Processing Components come highly recommended

Space/Satellite/Military specification
Since 1967, Merrimac has developed sixty seven different items designed for more than twenty five space and missile applications.

In addition, many other signal processing devices are in use in fighter and reconnaissance aircraft demonstrating a reliability that is second to none.

As UK agent for Merrimac, Pascall can offer the most comprehensive standard product line of signal processing
components in the industry - over seven hundred and fifty catalogue items from DC to 18 GHz incorporating lumped element, stripline or ferrite technology. And if this isn't sufficient to meet your requirements Merrimac offers custom designed derivatives of all these products which surely will.
Pascallin-depth service and advice
Pascall is technically equipped to discuss the Merrimac range in detail and recommend integrated component packages - providing controlled component electrical
interfaces at lower costs than the purchase of individual components.

Why not get the full facts on

Pascall Electronics Limited

Hawke House, Green Street,
Sunbury-on-Thames,
Middlesex TW166RA
Telephone: (09327) 87418 Telex: 8814536
UK agent for
Merrimac
Signal Processing Components

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC- 25 MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360.00*

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT

Not just any "Off the shelf - Out of the Door" Microcomputer Business. Nicomtech can make your Microcomputer into a Telecommunications Terminal - Morse-Telex. Make it work instead of accounting or playing games. Nicomtech adds the experience of Electronic Engineering and Telecommunications to that of Microcomputers - the result could be the answer to your problem. For further information on our services - write or call - stating your problems and requirements, to:-
Nigel Huntiey, Nicomtech, 212 St. Stephen's Road, Saltash, Cornwall. Tel. 075552066.

WW - 093 FOR FURTHER DETAILS

QUANTITY PRICES - SAVE - SAVE - IMMEDIATE DELIVERY INCL. VAT

MEW STOCKS BELOW MAMUFACTUREAS

eco Docrmal Docoder-Diver 10 tor 4p en. 100

 tor 65.50 for 70000.1 .000 lor 550 Oe. TV soumb. High quabity sound through your

 10010 ctito.
HONETWELL PROXIMITY OETECTO InIG. gralampifite svoc c3.e0 wa 10 tor $\mathbf{C 3 0}$. 10 Her Gel 100 tor 1720,500 for $\mathbf{c 3 0 0}$. RCA CAIOES. FM IF $C 1.60,10$ tor $\varepsilon 12$

 E100. ${ }^{2 N} 3056$ BOV versoon TO3 power 10 for $\mathbf{C 3 . 6 0}$. 100 lor [22, 500 to $\mathbb{E 1 2 5 , 1}, 000$ tor $\in 200.60$. - 10 (TO3 Texas TV power trassistors E1.75

 mulland A0181-AD142 Maichec Carronsot 600 pars 6250 EX.SToCK MADIATION DE TECTOME OVariz FIbre

 1179 FM Imaned $A M / F M$ IF strip E3.
 10 pairs for 650.100 parrs too $\mathbf{E} 400$. 5 volt 100 mamp varabie 1.8 .24 V B5p ω. 10 for E5. 100 ofr 235.1 .000 tor $\mathbf{C 3} 300$. MULAAD LP 1157 AM UCnet modules win
 ompon chassis $3 \times 2 \times$ in. 10 Ior $£ 12.50$.

 previous lines in stock

 XRPS 36 Record / Replay 6.00 E35.00 $\mathbf{E 2 5 0 . 0 0}$
 TyNe CUTHANS FORMENS All 200/250VIN

 1/2x/2m 10 for E11. 100 Nor E100. OYMAMIC MICROPHONE. LOW Imp Foster

 Two gang mimiature vanicap tumer

ATES UT LE5E2 AUDIO IC AMPLIFIER 14 PIM DIL 300 m n mats E5p eo. 10 tor $\mathbf{C h} .50 .100$ tor E35, 1.000 to 30p Chins Mm cruct d date E1.55 ∞.

 RF) Filters tor above modulators 20 p on with
 E125.
HIGHV stick yoee trage tu Tripler oiode 5 By itm E85. TBAE25 ATES voltrag regulatars $5.5 \mathrm{pee}$.5 volts 18 18 pin low poitie oll sockets 12 p . 10 tor El .

A clean 90° sweep!

The Astrolab 90° sweep connector advances the state of the art on precision RF components. Manufactured by a unique process to give extremely close tolerances and hence low VSWR and insertion loss.

Pascall is the UK agent for these unique 90° sweep connectors, including SMA, TNC and N type for flange bulkhead and cable mounting.

The Astrolab RF Interconnection Component range	
* Precision Connectors	* Astro-super-flex
* Precision Cable	* Astro-cobra-flex
* Precision Cable Assemblies	* 90° Sweep
- Phase Matched Cablos	Connectors

Pascall Electronics Limited Hawke House, Green Street, Sunbury-on-Thames,
Middlesex TW16 6RA
Telephone: (09327) 87418 Telex: 8814536
WW-114 FOR FURTHER DETAILS

Cabinet Size $19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}$ Television by courtesy of Rumbelows Lid., price $£ 58.62$

РошенгRAM

PSI Comp 80 Z80. Based powerful scientific computer Design as published in Wireless World, April-September, 1979

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is completel
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole prinied circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinet!
By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer's transformer) enables up to cabinet Connections to the mother beard from the main toard expansion cabine. Connection

Mother Board: Fibre glass double sided plated through hole P.C.B $8.7^{\prime \prime} \times 3.0^{\prime \prime}$ set of all components including all brackets, fixing parts and ribbon cable with socket to connect to expansion plug £39.90
8K Static
RAM board

8K
ROM toard
Fibre glass double sided plated through hole P.C.B. $5.6^{\prime \prime} \times 4.8^{\prime \prime} \ldots \ldots(12.50$ Set of components including IC sockets, plug and Socket but excluding RAMsE E51.20 Complete set of board, components, 16 RAMS

Fibre glass double sided plated through hole P.C.B $5.6^{\prime \prime} \times 4.8^{\prime \prime}$. Set of components including iC sockets. plug and socket but excluding ROMs 70 2708 ROM (8 required) …........... 88.00 Complete set of board, components, B ROMs $£ 78.50$

Flopoy Disk, PROM programmer and printer interface coming shortlyl

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until April 30th 1980, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus $£ 1$ handling and documentation
U.K. ORDERS. Subject to 15% surcharge for VAT NO charge is made for carriage. 'Or current rate if changed.
SECURICOR DELIVERY: For this optional service IU,K. mainland only add $t 250$ NAT inclusivel per kit

PCB size $16.0^{\prime \prime} \times 12.5$

UK Carriage FREE

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER
ANDOVER HANTS SP10 3NN
(O264) 64455

THE CRÊME DE LA CRÊME OF ELECTRONIC ORGANS FOR YOU TO BUILD . . .

Yes, any one of these superior instruments can be built by yourself in the comfort of you own home. The unique WERSI Kit-pack system is designed around modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully illustrated instructions and preformed harnesses lead you to the final product which is now becoming accepted as the world's most advanced instrument. All cabinets come fully assembled in a wide range of veneers. Home construction enables you to build one of these fabulous organs at 40% below factory price.
All Electro-Voice showrooms have resident demonstrators so why not come along and hear for yourself the wonder of WERSI. Alternatively send £1 for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth. Herts RD3 6PF).

HEAD OFFICE
Maple Cross Industrial Estate
Denham Way, Rickmansworth, Herts (Tel: Rickmansworth 75381)

The Voice of $\operatorname{CHIII}=-=$

NOTTINGHAM
389 Aspley Lane Nottingham
(Tel: Nottingham 296311)

Paramount Organ Studios

Smith Road, Great Lever, Farnworth, Bolton (Tel: Bolton 29939)

HIGH EFFICIENCY POWER AMPS 200W to 2000W

These amplifiers are not for those who wish to heat their dinner on as they remain cool without the need for expensive and heavy cooling fans.

They are d.c. coupled throughout giving low distortion but excellent transient response.

Typical Part Specification

Output Power 500W into 4ohms
Full Power Efficiency $\mathbf{9 0 \%}$
1/4 Power Efficiency 70\%
Frequency Response DC -100 KHz
Signal to Noise >80 dB
Short Circuit Indication and Protection
Overload Indication
Weight 15 kgs

For further details apply to:

C. M. ELECTRONICS

11 Brookfield Lane, Cheshunt. Herts
Tel: Waltham Cross (0992) 32451

Happy Memories

21102	450 ns	83p	16K Mernory Upgrade Kits for TRS-80, Apple and	
21 LO2	250 ns	1.00		
2114	450 ns	4.25		
2114	250 ns	4.75	Vero 5100 Products	
4116	200ns	4.50	6 Slot Card Frame with Power Supply	241.36
4116	150 ns	5.50	Prototyping Cards (3 types) each	13.66
2708	450 ns	5.95		
2716	5 V	19.95	Extender Card Motherboard with 6 connectors	$\begin{aligned} & 21.70 \\ & 67.65 \end{aligned}$
IC Sockers:			Ithaca Intersystems Products:	
Pins	Solder	W/w	$5100 \mathrm{z80}$ CPU Card $4 \mathrm{MHz} \mathrm{A8T}$	176.81
8	10p	24p	5100280 CPU Card 2MHz A8,	150.94
14	1,1p	36p	S100 280 CPU Card Bare Board	30.19
16	12 p	39p	S100 Video Display Board A8 T	125.06
18	$16 p$	46p	S 100 Video Display Board Bare Board	21.56
20	$17 p$	58p	S $10016 \times 2708 / 2716$ A\&T	73.31
22	19p	$61 p$	S100 16×2708/2716 Bare Board	21.56
24	$21 p$	63p	S100 Proto Board (Plated Through)	21.56
28	$27 p$	70p		
40	37 p	109p		
			VER8ATIM Mini-discs (Pet, TRS-80, etc)	19.95
SAA 5050		14.85	Cannon MIN-D 25 way connectors: Female Male 1.45. Hoods $57 p$. Other sizes available	1.65
SAA5020		7.15		
81LS95		1.50		
811597		1.54	DIN 41612 Euroconnectors 64 way: Female	3.17
74LS series:			Right-angled Male 1.93. Other sizes available	
Lots of them POA			DIP Switches: 4,7 \& 8 way all at	85p

We stock a full range of Wire-Wrapping equipment and supplies for you to choose from: we have shelves of books - give us a ring with your requirements and avoid crippling postage charges. Our stocks are too numerous to list here - free price lists sent upon request:
The shop is open from 10 until 6 Monday to Saturday and is worth a visit to catch a surplus bargain - Keyboards at 39.50 today, we may have some left when this gets to print? 18 slot S 100 Mother Boards at 22.50 ; Double Eurocard prototyping boards for a pound.

ALL PRICES INCLUDE VAT. POSTAGE FREE ON ORDERS OVER 10 POUNDS IN VALUE OTHERWISE ADD 25 p. ACCESS AND BARCLAYCARD WELCOME, YOU MAY TELEPHONE WITH YOUR CARD NUMBER AND REQUIREMENTS. TRADE ACCOUNTS ON APPLICATION, GOVERNMENT \& EDUCATION ORDERS WELCOME \& 10 MIN .

DEPT. WW

19 Bevois Valley Road, Southampton
Hants SO2 OJP. Tel: (0703) 39267

SERVICE TRADING CO

 FT3 NEON FLASH TUBE

 FT3 NEON FLASH TUBE

 VARIABLE VOLTAGE TRANSFORMERS

 VARIABLE VOLTAGE TRANSFORMERS}
 flash tube. Designed for ignition tuning, eqc. £1.50 P \& P 25 p
($£ 2.01$ inc. VAT). 3 for $£ 3$. P \& P 50p ($£ 4.03$ inc. VAT \& P). WHY PAY MORE?!
MULTI RANGE METERS TYPO MF15A. AC/DC volts 10.50 .250 .500.
1000. Ma. 0-5.0.10. 0-100. Sensitivity 1000. Ma. 0-5. 0-10. $0-100$. Sensitivity
2000 V .24 ranges, dimensions $2000 \mathrm{~V}, 24 \mathrm{ranges}, ~ d i m e n s i o n s$
$133 \times 93 \times 46 \mathrm{~mm}$. Price $£ 7.00$ plus 50 p P\&P ($£ 8.63$ inc, VAT \& P).

TRIAC.

Raytheon tag symmetrical Triac. Type Tag $250 / 500 \mathrm{~V} 10$
amp 500 piv. Glass passivated plastic amp 500 piv. Glass passivated plastic iriac. Swiss precision
product for tong term reliability $£ 1.25$ P\&P $10 p$ ($£ 1.55$ inc product for long term reliability $£ 1.25$ P\&P $10 p$ ($(\mathbb{1} .55$ inc.
VAT $\&$ P) (inclusive of date and application sheet). Suitable Diac 22p.
MERCURY SWVITCH
Size $27 \mathrm{~m} \times 5 \mathrm{~mm}$, 10 for $£ 5.00 \mathrm{P} \mathrm{\& P} \mathbf{3 0 p}$, total in.
cluding VAT $£ 6.10$. Min quantity 10 . Heavy duty type $36 \times 95 \times 10 \mathrm{~m}$ Minimum quantity 10 . $\mathbf{E 7 . 5 0}$ posi paid ($\mathbf{E 8 . 8 3}$ inc. VAT \& P). N.M.S
230 VOLT AC FAN ASSEMBLY Powertul continuously rated AC motor aluminium fan. New reduced price $£ 3.00$ P\&P $65 p$ ($\$ 4.20$ inc. VAT \& P). N.M.S.
 21-WAY SELECTOR SWITCH wi the ingenious electro mechanical device
can be switched up to 21 positions and can be reset from any position by energising the reset coit. $230 / 240 \mathrm{~V}$ AC operation. Unit is mounted on strong chassis. Complete with cover. Price $£ 5.50$
P\&P 75p (E7.19 inc. VAT \& P). N.M.S.
 A.E.G. CONTACTOR

Type LS $6 / \mathrm{L} 11$. Coil 240 V 50 Hz . Contacts -3 make: 600 V : 20 amp. 1 break: $600 \mathrm{~V}: 20$ amp. Price: $E 5.50+50 \mathrm{p}$ P\&P (E6,90 inc. VAT \& P) N.M.S.
ARROW-HART MAINS CONTACTOR
Cat. No. 130430
Coll 250 V or 500 V AC. Contacts, 3 make 50 amp up to E1.00 (Total inc VAT \& P E10.06). N.M.S.
TORIN BLOWER
$220 / 240 \mathrm{~V}$ AC Aperture $10 \times 41 / 2 \mathrm{~cm}$ overall size $16 \times 14 \mathrm{~cm}$.
75 p (incl VAT $\mathrm{f5} 5 \mathrm{i8}$).
 SMITH BLOWER
Type FFB1706. Small quiet smooth running. 240 V AC operation. Output aperture $45 \times 40 \mathrm{~cm}$. Overall size $135 \times 165 \mathrm{~mm}$. Flange mounting. Price $\mathrm{C4.25}$. PaP 75 p N.M.S.

24V DC BLOWER UNIT
USA made 24 V DC 0.8 amp blower that operates well on 12V 0.4 amp OC producing 30 cu ft min at normal air pressure. Maximum housing dia 110 mm , depth inc motor 75 mm , nozzle length 19 mm , dia 22 mm . Ideal for cooling
mobile equipment, car, caravan, etc. $£ 4.50$ P\&P 75 p ($£ 6.04$ mobile equipment, car,
BLOWER /VACUUM PUMP
3 phase AC motor, $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V}, 1.425 \mathrm{rpm} 1 / 8$ hp cont. Direct coupled to William Allday Alcosa carbon vane blower / vacuum pump. 0.9 cm m
2 2.00 (E27.60 inc. VAT \& P). N.M.S MINIATURE UNISELECTOR 12 V 11 way 4 bank (3 non-bridging, 1
homing). $£ 3.00$ P\&P $35 p$ ($£ 3.85$ inc. VAT \& P).
MICRO SWITCHES

Miniature roller micro switch. 5 A C/O contacis. MI incl. VAT \& P $£ 2.59$, As above less roller 20 E1.80. P\&P 25p. Total incl. VAT \& P E2.36. D.P.C/O lever $\mathrm{m} / \mathrm{switch}$, mfg. by Cherry Co, USA. Precious metal, low resistance contacts. 10 for $\mathbf{E 2}$.50. P\&P $30 p$. Total inc. VAT E3. 22 ($\min 10$). N.M.S.
HEAVY DUTY SOLENOID
Mig. by Magnetic Devices. 240 V Intermittent operation. Approx. 201 b pull at 1.25 in . Ex. equip. Tested
 Price €4.75 P8
PYE EYTHER
PYE EYTHER
240V AC solenoid. Approx 1 lb pull, $1 / 4^{\prime \prime}$ travel, intermittent rating. Price $£ 1.00 \mathrm{P} \& \mathrm{P} 20 \mathrm{p}(£ 1.38$ inc VAT \& P) N.M.S. WESTOOL TYPE MM 8 MODEL 2 240 V AC. Approx, $13 / 4 \mathrm{lb}$ pull at $1 / 2$ inch. Rating 1. Price E1.50 P\&P 200 ($£ 1.96$ inc. VAT \& P). N.M.S. TYPE AG/TG
18-24V DC 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to 3/16in. Firted with mounting brackets and spark suppressor. Size: $100 \times 65 \times 25 \mathrm{~mm}$. Price: 3 for $\mathbf{£ 2 . 4 0} \mathbf{~ P \& P}$ $30 \mathrm{p}(\mathrm{min} .3$ off) ($\mathbf{\$ 3 . 1 0 \mathrm { inc } \text { . VAT \& P) }}$

INSULATION TESTERS (NEW)

 Test to IEE spec. Rugged metal construction, suitable for bench or field work, constant speed clutchH. 6 in, weight 6 hb .
 500 volTS 500 megohms
E49.00 Post 80p ($E 57.27$ inc. VAT \& P) i,000 VOLTS 1,000 megohms $£ 55.00$ Post 80p (E64.17 inc. VAT \& P). SAE for leaflet YET ANOTHER OUTSTANDING OFFER New IMFD 600V Dubilier wire ended cap
E1.50 P\&P 50p. ($\mathbf{E} 2.30$ inc. VAT + P\&P).

INPUT 230/240V a.c. 50/60 OUT PUT VARIABLE 0-260V 200W 1 amp inc a.c. vol 1 KVA (5 amp MAX) 2 KVA (10 amp MAX) 3 KVA (15 amp MAX) 5 KVA (25 amp MAX) 10 KVA (50 amp MAX) 17 KVA (75 amp MAX)
3-PHASE VARIABLE VOLTAGE
3 KVA (max. 15 amp) TRANSFORMERS
$\begin{array}{lll}3 \mathrm{KVA}(\max .15 \mathrm{amp}) & \ldots . \varepsilon^{106.43} \\ 6 \mathrm{KVA}(\text { max. } 30 \mathrm{amp}) & \cdots .{ }^{2} 159.37\end{array}$
$6 \mathrm{KVA}($ max. 30 amp$)$
$10 \mathrm{KVA}($ max. 50 amp$)$
\ldots $\mathbf{E 3 2 7 . 4 3}$
CARRIAGE PACKING \& VAT EXTRA

LT TRANSFORMERS

13-0.13V at $1 \mathrm{amp} \in 2.50$ P\&P 50 p ($\mathbf{E 3 . 4 5} \mathrm{inc}$ VAT)

All plus Carriage \& VAT
$0.4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at $12 \mathrm{amp} £ 18.50 \mathrm{P} \& \mathrm{P} £ 1.90$ ($£ 23.46$
inc. VAT \& P) $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at 20 amp £ 14.70 P\&P £ 1.50 (inc. VAT E18.63) 0.12 V at 20 amp or 0.24 V ot $10 \mathrm{amp} £ 12.00 \mathrm{P} \& \mathrm{P} £ 1.50$ (E15.53 inc. 10 \&
 O-6V/12V/17V/18V/20V at 20 amp (E19.00 P\&P $£ 1.50$
(23.5 inc VAT \& $)$ (E23.58 inc. VAT \& P)
$0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at
E13.80)

STROBE! STRDBE! STROBE!

HY-LIGHT STROBE KIT Mk. IV

 Latest type Xenon white light tube. Solid state timingand triggering circuit. $230 / 240 \mathrm{~V}$ AC operation. Speed adjustable $1-20 \mathrm{fps}$. Designed for large rooms,' halls, etc. Light output greater than many (so called 4 Joule) strobes. Price £22.00 post £1.00 (£27.03 inc. VAT \& PIrobes. Specilly designed case and reflector for Hy-Light
£ 9.00 Post $£ 1.00$ ($£ 12.08$ inc. VAT \& P).

* FLUORESCENT TUBES
* 4ft 40 watt 58.70 (callers only E10 inc VAT). 2 ft 20
\& watt £6.20. Post 75p ($£ 7.99$ inc. VAT \& P). (For use
stan bi-pin fittings).
Mini 12 Z
8
wata
9 in 6 watt $£ 2.25$ Post $35 p$ ($£ 2.99$ inc. VAT \& P P)
* 6 in 4 watt £2.25 Post $35 p$ (E2.99 inc. VAT \& P)
 230 V AC op. $£ 3.50$ plus P\&P 45 p ($£ 4.54$ inc. VAT \&
P). Also available for 12 V DC op, $£ 3.50$ plus P\&P 45 p ($£ 4.54 \mathrm{inc}$. VAT \& P).
400 watt UV lamp and ballast complete £38.00. Post 400 watt UV lamp and ballast complete $£ 38.00$. Post
\& $£ 3$ ($£ 47.73$ inc. VAT \& P). 400 watt UV lamp only

PROGRAMME TIMERS

$240 V$ AC op

REED SWITCHES

Size 28 mmx 4 mm dia. Price: 10 for $\mathbf{E 1 . 0 0}+\mathrm{P} \& \mathrm{P} 20 \mathrm{p}$ (total incl. VAT
£9.55).
WIDE RANGE OF DISCO LIGHTING EQUIPMENT SAE (Foolscap) for details
XENON FLASH GUN TUBES Range of Xenon tubes available \qquad远

RELAYS
 Wide range of $A C$ and $D C$ relays available in your enquiries.

$230 / 240 \mathrm{~V}$ AC Relay: Arrou $2 \mathrm{C} / 0.15 \mathrm{amp}$ £1,50 (E1.96
TEC Open type 3 c/0 10 amp E1.10 (E 1.50 inc VAT \& P). TEC. open type $3 \mathrm{C} / 0$ to 10 amp E1.10 (1.50 inc VAT \& P).
KMK Relay. 230 V AC. $1 \mathrm{c} / 0$, open type 10 amp comtact

 Sealed 12 V 1 cio 7 amp oclat base. $£ 1.00$ (E1.38 inc. VAT \& P). Sealed 12 V
$2 \mathrm{c} / 07$ amp octal base, E 1.25 (11.67 inc. VAT \& P). Sealed $12 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7$ amp

 P\&P (ince. VAT $£ 2.30$)
Diamond H heavy dury , elay $230 / 240 \mathrm{VAC}$. wo c/o contacts 25 amps res

METERS (New) - 90 mm DIAMETER AC Amp. Type 62T2, 0-1A, 0-5A, 0-20A AC Vols. $0.15 \mathrm{~V} .0-300 \mathrm{~V}$ OC Amp. Type 65 C 5. $0-2 A, 0-10 A, 0-20 \mathrm{~A}, 0-50 \mathrm{~A}$. DC volt. $0-15 \mathrm{~V}$
 $0-30 \mathrm{~V}$. All types $£ 3.50$ ea + P\&P 50 p ($\mathrm{E4.60}$ incl. VAT). $0-50 A D C, 0-100 A D C$. Price $£ 5.00+50 \mathrm{p}$ P\&P ($£ 5.94 \mathrm{inc}$.
VAT) VAT).
15.5 mm . Tength 145 mm . Tested. Price C12.00 + $£ 1.50$ P\&P ($£ 15.53$ inc. VAT). R \&
T Suitable Transtormer for $230-240 \mathrm{~V}$ op. Price ca.00 +75 p \& P (($1 \mathbf{1 0 . 0 6}$ ine. VAT).

Price E15.00 C โ1.50 P \& P P (E20.13 inclua. VAT). N.M.S
Sulable transtormer for $230-240 \mathrm{~V}$ a.c.
Price $£ 8.00+\$ 1.00 \mathrm{P} \& \mathrm{P}(\mathrm{E} 10.35$ includ: VAT). N.M.S
12V. D.C. type SD2 Shunt $1 / 30$ th ph continuously rated 4.000 rpm. Mf PARVALUX. Price E10.00 + P\&P (E12.35 includ VAT) N.M.S.
1 RPM $230 / 240 \mathrm{~V}$. a.c. Synchronous geared Motor. mf . HAYDON. 2 rpm $230 / 240 \mathrm{~V}$ a.c. Synchronous geared Motor. MF. CROUZET. Eith
($£ 3.68$ includ VAT). N.M.S.
(E3.68 includ VAT). N.M.S.
\$.400 ppm 115 V . a.c. Motor. HP $1 / 301 \mathrm{~h}$ continuously rated. Fitted with anti-vibration cradle mounting. Mf. FRACMO. Supplied complete with Transformer for $230 /$ 240 V . a.c. operation. Price $£ 10.00+£ 1.00$ P\&P. ($£ 12,65$

COMPRESSOR

 win head diaphragm type producing 201bs. Plus P.S.I. per head. 3.5 plusC.F.M. Outpu virtully pulse tree. Pow-
red by 110 V A. C. motor size
$30 \times 23 \times 15 \mathrm{~cm}$, weight 7 kilos. Price E 24

P\&P E2. (inc. VAT E29.90
Suitabie ranstormer tor

REDUCTION DRIVE GEARBOX

Ratio 72.1. Input spindle $1 / 4 \times 1 / 2 \mathrm{in}$. Output spindle $\% \times 3 \mathrm{~m}$. long. Overall sine approx: $120 \times 98 \times 68 \mathrm{~mm}$. Al
etice: $: \mathbf{\ell 2 . 0 0}+50 \mathrm{p}$ P\&P(E2.BB

AC Wkg TUBULAR CAPACITORS

1.5 mld .	440 V AC	60p	10	mid.	400 VaC	¢1.75
2 mid .	250 VAC	60 p	14	mid.	400 VAC	¢3.00
2 mld .	450 V AC	75p	15	mid.	250 VAC	
2.2 mld .	440 V AC	75p	(bloct			¢1.50
3 mid .	440 VaC	E1.00	19	mid.	280 VaC	¢2.00
4.1 mid.	440 V AC	E1.00	20	mid.	250 VAC	¢2.28
5 mtd .	400 VaC	¢1.25	50	mid.	370 V (bo	
53 mid .	160 VAC	${ }^{60 p}$				E5,00
5.4 mld .	280 V AC	75 p	P\&P. up to 2.5 mtd .25 p .3 mfd. $1020 \mathrm{~m} / \mathrm{d} .50 \mathrm{p} 50 \mathrm{mid} . \$ 1.50$ All plus Vat			
6.5 mid.	280 VaC	$\underline{1.00}$				
7.5 mld .	200 V AC	¢1.00				
mid.	250 V AC	£1.00				

'VENNER TYPE' ERD TIME SWITCH

$200 / 250 \mathrm{~V}$ AC 30 amp. 2 on $/ 2$ off every 24 spring reserve and day omitting device. Built to highest Electricity Board specification. Price E9.00 P\&P 75 p. (E11.21). R \& T

SANGAMO WESTON TIME SWITCH

Type $\$ 251200 / 250 \mathrm{~V}$ AC 2 on 2 off every 24 hours. 20 amps contacts with override switch, diameter $4^{\prime \prime} \times 3^{\prime \prime}$. price
$£ 8.00$ P\&P 50 p ($£ 9.78$ inc. VAT \& P). Also available with solar Pial R

AEG TIMESWITCH

$200 / 250 \mathrm{VAC} 1 \mathrm{on} / 1$ off every 24 hours, 80 amp contact (ideal storage heaters). Spring reserve £10.00 P\&P 50p (Total £12.08 inc VAT). R\&T

MINIATURE PROGRAMMER

Crouzet 1 rm .115 V AC Motor operating 2 Roller Micro switches (4 amp). Can be used on $240 \mathrm{~V} A C$ with either 0.25 mfd 250 V Condenser or 5.6 K wirewound Resistor 7 wait supplied. Price $£ 2.50 \div 50 \mathrm{p}$ P\&P. ($£ 3.45 \mathrm{inc}$. VAT P \&P).

MINIATURE 24-HOUR TIMESWITCH
(German mfr.) 240 V AC operation. Spring reserve. 24 hours. Calibrated in on-off every 24 hours. Calibrated in
two hour steps. Minimum on-off two hour steps. Day Omission. usual feature with these switches is that trips may be removed at will enabling individual days to be pro grammed as required. Size only
$3^{\prime \prime} \times 4^{\prime \prime}$. Depth $23^{\prime \prime}$. Price $\mathbf{E 6 . 5 0 +}$
 50 p P\&P ($£ 8.05$ incl. VAT \& P)

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button

 FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

NELSON-JONES Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: £69.95 + và̀

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W. W. July. Aug., ' 77 The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4). including the new BBC HJ 10 input selections. The decoder is linear throughout and does not rely on listener fatiguing
Complete with mains power supply, wooden cabinet, Complete kit, including licence fee $£ 49.50+$ VAT or ready built and tested $£ 67.50+$ VAT

S5050A STEREO AMP
 Very high performance kit
 50 watts rms-channel. 0.015% THD. $S / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{m} 80 \mathrm{~dB}$. Output device

 rating 360 w per channelrating 360 w per channel
Tone cancel switch. 2 tape monitor switches. Metal case - comprehensive
heatsinks.
Complete kit only $£ 63.90$ + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguished as a hard-backed book. Detection range up to 45 feet.
Complete kit $£ 49.50$ plus VAT, or ready built and tested $£ 64.50$ plus VAT.

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories Inc.

Complete kit PRICE: $\mathbf{£ 4 3 . 9 0}+$ VAT
Also available ready built and tested
Typical performance
Noise reduction better than 9 dB weighted
Noise reduction better than 9dB weighted.
Clipping level $16.5 d \mathrm{~dB}$ above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band. rising to a maximum of 0.12%
Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz . signal al Dolby level)
at Monitor outpul
Dynamic range $>90 \mathrm{~dB}$
30 mV sensitivity

Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby ($T M$) PROCESSOR BOARDS $(92 \times B 7 \mathrm{~mm})$ with gold plated contacts and all components
We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free
IITEGREK LIMITED

Please send SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE 11 9PT Burton-on-Trent (0283) 215432 Telex 377106

Cut costs and speed troible shooting

Huntron Tracker

This easy to use te instrument displays shorts, opens, and leakage in solid state components. Geck diodes, unijunctions, bipolars, Darlingtons, J-FET's, MOS FI's, LED's, electrolytics and IC's... IN CIRCUIT!
Test pure digital canalogue hybrid boards ... WITHOUT CIRCUIT POWER! Current limitd to protect delicate devices in the MOS-CMOS family. Save $20 \ldots 30,40 \ldots$ even 50% of trouble shooting time and recover your investmentast! Exclusive 12 months warranty, available from-
MTL Microesting Limited
1.15 Butts Roaj Alton, Hampshire TelephoneAlton (0420) 88022

WW-117 FOR FURTHER DETAILS

FOTOLAK

POSITYE LIGHT SENSITIVE AEROSOL LACQUER
Enables YOU to profuce perfect printed circuits in minutes!
Method Spray clezed board with lacquer. When dry, place positive master of required circuit on ow sensitized surface. Expose to daylight, develop and etch Any number of ex copies can of course be made from one master. Widely used in industry for rototype work.
fótolak
Developer
Ferric Chloride
$£ 2.00$
30 p
$30 p$
$50 p$
Pre-coated $1 / 16$ fibre glass board
$204 \mathrm{~mm} \times 114 \mathrm{~mm}$
$204 \mathrm{~mm} \times 228 \mathrm{~mm}$
$408 \mathrm{~mm} \times 228 \mathrm{~mm}$ $467 \mathrm{~mm} \times 305 \mathrm{~mm}$
$\div 3.00$

Plain Copper-cladiffre-glass
Approx. 3.18 mm tick sq. ft . Approx. 2.00 mm tick sq. 11 . Approx. 1.00 mm tick sq.
Clear Acetate Sheefor making mastet. $260 \mathrm{~mm} \times 260 \mathrm{~mm}$
Polage and packing 65 p per order. VAT 15% on total
G. F. MILUARD ELECTRONIC COMPONENTS LIMITED

369 Alum Rock joad, Birmingham B8 3DR. Telephone: 021-327 2339

TRANSFORMERS
CONTINUOUS RATINGS
Please add
ather. P\&P
MAINS ISOLATOR

50 VOLT RANGE
Pri 220-240V. Sec. O-20.25-33-40-50V. Voltages available $5,7,8,10,13,15$, 1.20, 25, 30, 33, 40 or 20 V -0
$j \mathrm{FV} .0 .25 \mathrm{~V}$ Screened

hic.	Amps	t	P\& ${ }^{\text {P }}$
102	0.5	3.75	90
103	1.0	4.57	1:10
- 104	2.0	7.88	1.31
105	3.0	9.42	1.52
106	4.0	12.82	1.75
107	6.0	16.57	1.89
118	8.0	22.29	2.39
119	10.0	27.48	OA
109	12.0	31.79	OA

30 VOLT RANGE
Pri 220.240 V Sec
 Ref. Amps $12 \mathrm{~V} \cdot \mathrm{O}-12 \mathrm{~V}$ and $15 \mathrm{v} \cdot 0.15$

Ref. 112

P
90
10
31
52
75
.89
.39
OA
OA

$\underset{\text { Ref. }}{\text { SCREA }}$
\qquad

60 VOLT RANGE

 Sec 0.24-30-40-48-60V. Sec ilable 6, 8, 10.12, 16, 18,20, Voltagesave, $36,40,48,60 \mathrm{~V}, 30 \mathrm{~V}$ avalable $6,8,10,12,16,18,20,24$
$30.36,40,48.60 \mathrm{~V}$, or 24 V .0 .24 V
 $\begin{array}{r}124 \\ 126 \\ 127 \\ 125 \\ 123 \\ 40 \\ 120 \\ 121 \\ 122 \\ \hline\end{array}$

$189 \quad 12.0 \quad 37.47$			OA
HIGH VOLTAGE			
	AINS IS	OLATIN	
Pri 200/220 or 400/440			
Sec 100/120 or 200/240			
VA	Ref.	E	P\&P
60	243	7.37	1.58
350	247	18.07	2.12
1000	250	45.94	OA
BRIDGERECTIFIERS			
100v			E.2.10
200v	2A		45p
400 v	2 A		55p
200 v	4 A		65p
400 v	4 A		85p
400 v	6A		E1.40
500 v	12 A		E2.85
	P\&P 17p	VAT 15\%	

ABS PLASTIC BOXES
Insei brass nuts. slots to take PC
cards (boards) flush fitting fid.
PB1 B0mm 62×40
P81 $180 \mathrm{~mm} \times 62 \times 40 \quad .80 \mathrm{p}$
P82. $100 \mathrm{~mm} \times 75 \times 40 \quad .90 \mathrm{p}$ P82. $100 \mathrm{~mm} \times 75 \times 40 \quad .90 p$
P83 $120 \mathrm{~mm} \times 100 \times 45 \quad$ ع1.04 P83 $120 \mathrm{~mm} \times 100 \times 45 \mathrm{E1.04}$ P84 $215 \mathrm{~mm} \times 130 \times 85$ ع2.
P\& 33p. VAT 15%
ANTEX SOLDERING IRONS
$15 \mathrm{~W} £ 4.58 .25 \mathrm{~W} £ 4.58$
Stand for above £1.7
$\frac{53 p \text { VAT } 15 \% \text {. }}{\text { ISOLATOR Ref. } 30 \text { 240V: }}$
ISOLATOR Ref. $30{ }^{240 V}$:
$240 \mathrm{~V} 200 V A$
E4.62. P\&
ISOLATOR Ref. 62 240V:
240 V 250 VA E5.62. P\&P

AUTO TRANSFORMERS					
Ref. VA (Watts)			TAPS	E	P\&P
113	15	$0-11$	15-210-240V	2.73	81
64	75	0-11	15-210-240V	4.41	1.10
4	150	0.11	15-200-220.240V	5.89	1.10
67	500			12.09	1.91
84	1000			20.64	2.39
93	1500		.	25.61	OA
95	2000			38.31	OA
73	3000		"	65.13	OA
80 s	4000	0.10	-115-200-220-240	84.55	OA
. 57 s	5000			98.45	OA
		Step	Up or Step Down		

Step Up or Step Down
CASED AUTO TRANSFORMERS
40 V cable input USA 115 V Flat pin outlets P\&P Ret.

VAT 15% P\&P $71 p$ \qquad
E.
2.83
3.14
2.35
2.19
3.05
3.88
2.19
2.88
3.08
3.75
5.09
4.39
6.64

238	200	3.0.3	2.83	. 63
212	1A, 1A	0.6.0.6	3.14	. 90
13	100	9.0 .9	2.35	4
235	330, 330	0.9, 0.9	2.19	44
207	500, 500	0.8.9, 0.8.9	3.05	85
. 208	1A. 1A	0.8.9, 0-8.9	3.88	90
236	200. 200	0.15. 0-15	2.19	44
239	50 MA	12.0-12	2.88	37
214	300, 300	0.20, 2-20	3.08	90
221	700 (DC)	20-12.0-12.20	3.75	90
206	1A. 1A	0.16-20, 0-15-20	5.09	1.10
203	500. 500	0-15-27, 0-15-27	4.39	1.10
204	1A. 1A	0-15-27, 0-15-27.	6.64	1.10

$43 \mathrm{~mm} \times 43 \mathrm{~mm}$		$82 \mathrm{~mm} \times 78$ mm	
$0.50 \mu \mathrm{~A}$	$E 6.20$	0. 50.1 A	C6.
$0.500 \mu \mathrm{~A}$	E5.95	0.500 $\mu^{\text {A }}$	E6.70
0.1 mA	¢5.95	0.1 mA	E6.70
0.30V	65.95	0.30 V	E6
VU Indicator tdge $54 \mathrm{~mm} \times 14 \mathrm{~mm}$ нa FSD			
VU Panel Ind. $48 \times 45 \mathrm{~mm} .250_{\mu}$ a FDS Carriage 76p VAT 15\%			

44315 Budget Meter 20K $\Omega \stackrel{V}{ }$. Rangers to 1000 V | 2.5A AC/DC 500KD. Res in steel case $£ 15.85$. |
| :--- |
| P\&P £1.32. VAT 15%. |

NEW RANGE TRANSFORMERS
Pri $0-120 ; 0-100-120 ;(120 \mathrm{~V}$ or $220-240 \mathrm{~V}) \mathrm{Sec}$ Pri 0-120; 0-100-120; (120 V or $220-240 \mathrm{~V}$) Sec

$0-36-48$ rwice to give 72 V or 92 V . | $2 A$ | $£ 13.35$ | $P P$ | $£ 1.40$ | $4 A$ | $£ 20.65$ | $P P$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $3 A$ | $£ 16.17$ | PP | $£ 1.11$ | | | |
| 1.70 | $5 A$ | $£ 29.30$ | $P P$ | $£ 2.47$ | | |

METAL OXIDE RESISTORS $5 \% ~ 1 / 4 W$ (Electrosil)
390n-4700-5100-560n-820n $1 \mathrm{~K}-1 \mathrm{K1}$ $1 K 2-1 K 6 \cdot 1 K 8-2 K-2 K 4-3 K-16 K-20 K-22 K$
$24 K-47 K-82 K-100 K-130 K \cdot 180 K \cdot 220 K$ 270K-300K E1.50-100

MVA30.6.7.5.9V at 300 mA plus dorect inio $3300-3-6-9.12 \mathrm{~V}$ at 300 mA plus straight to 13 A socket (fused) with multiplug

Send 150 for calalingue Prikes correct of $30,10 / 79$.

> Barrie Electronics Ltd.
> 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
> nEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as 'SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to specification of TANDBERG OF NORWAY, for inclusion in a cassette deck costing over $£ 250$. This mechanism alone would normally cost over $£ 50$.
FEATURES:

* Close-tolerance, high-quality, top loading transport
* "Sen-Alloy" (SA type) R/P head
* Solenoid-driven autostop circuit
* Automatic head cleaning device
* Air damped "soft" cassette eject
- Miniature microswitches for switching
* Pre-aligned heads and calibrated motor speed regulator built in
* Threea-digit tape position counter
* Six-function keyboard controls: "Record,." "Rewind," "Forward," -Play." "Stop/Eject," "Pause,"
* PCB connectors and cables attached
* High-mass balanced flywheel with permanent lubrication spindle
* Full specifications for motor, heads, and switches available on request. S.A.E. please.
Price of above unit $£ 14.95$ VAT Inc.
Plus 1 1 P\&P
Trade and Export Enquiries invired
Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1976. Subsequent articles by Mr. Linsley-Hood have donfirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our:

\star CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD *

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in cassette electronics since the original design was published. The kit is ideal for use in conjunction with the JVC transport mechanism (above)

Included in the kit are two fibreglass PCB's, drilled and plated for immediate assembly, two VU meters, Dual LED Peak Meters, Variable Bias system, Power Supply, over 10 micro-circuit IC's for the most up-to-date performance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) $£ 35.95$ VAT inc. plus $£ 1.00$ P\&P
Also available: A custom-designed caṣe for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish:
Price of Case £9.75 VAT inc. plus $£ 1.00$ P\& P.

HERE.IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:
 6 resistance ranges from 200 ohm-20 ohms
 8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$
 $\mathrm{AC} / \mathrm{OC}$ 10 voltas
 10 voltage ranges from 200 me $\mathrm{Ac}-1000 \mathrm{~V}$ OC-200 mc-750V ${ }^{A C}$
 Pocker siz 370 gms .
 Full overload protect
 withstand 6 kv spikes - will Wihstand knv spikes Rugged construction - virtually Rugged constru indestructable
 Meets tough military specs drop proot
 In line, pushbutton operation for single-handed useage
 Incorporates low power cmós chip for low power consumption All this plus a 2 -year full guaran-

SOFT.CARRYING CASE £7 extra

Identical in most respects to the 8022A but in addition incorporates a

Price £112

Carriage and insurance $£ 3.00$
A handsome sott carrying case is included (this-model onty)

 250.12 amp
mesistance. 0 to $6 \mathrm{~K}, 60 \mathrm{~K} .6 \mathrm{meg} .60$ meg. Oenibels. -20 ot +56 db .
Short test. Internal buzze. Short tes. internal buzzer.
Sue: $160 \times 110 \times 55 \mathrm{~mm}$
£20.50. P.\&P. 75p
£52.95
For only $£ 89$
Even more sophisticated the Fluke 8020A conduclance range from $\mathrm{ems}-200 \mathrm{~ns}$.
\qquad
Accurataly sovers 120
KCS $\mathrm{T}_{0} 500$ MCS in 6 tends
burecily
 ade
240 AC
Dimens. 140×215 Dimens.
170 mm

P\&P E1 25

CHROME DIOXIDE CASSETTES

Limited quantity only. Excellent quality little known brand (Italian). Satisfaction guaranteed. C90s only. Price per six (minimuri quantity) $£ 6$ inc. VAT. P\&P 75p any quantity.

FERRIC OXIDE CASSETTES
Excellent quality (Italian) C1 20s only. Price per 6 (min. quantity) $£ 5$ incl. VAT. P\&P $75 p$ any quantity.

This offer only applies while stocks last

DIGITAL MULTIMETERS
BRAND NEW FROM FLUKE!!! NOW AVAILABLE
THE 8024A HAND HELD DMM
This model incorporates all the features of the 8020A but in addition has:
A peak hold switch which can be used in $A C$ or $O C$ for volts and current functions. Audible continuity testing and level detection for sensing logic levels.
A remperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple.

C135
Carriage and Insurance $£ 3$
The following occessnies are in stock now Y8008 Touch and Hold Probe
$80 \mathrm{~K}-40$ High Voltage Probe $\begin{gathered}\text { E18.00 } \\ \mathbf{E 4 5 . 0 0}\end{gathered}$ 81 KF RF Probe to 100 MHZ BOT-150C Temperature Probe (C)
801.600 Clamp-an $A C$ Current P. $£ 32.00$

$\mathbf{E 5 5 . 0 0}$

PLEASE ADD 15% VAT
TO ALL ORDERS EXCEPT WHERE TEMS MARKED VAT INCLUDED."
CALLERS WELCOME
We are open 9 a.m. 6 p.m
Monday-Saturday
We carry a very large
selection of electronic components and Special quotations on Special quotatios
quantities

8010A AND 8012 A BENCH MODEL D.M.M.S The 8010 A is a general purpose, bench/portable digital multimeter with more functions
and teatures than ever offered for such a low price. Its companion, the 8012 A , has and teatures than ever offered for such a low price. Its companion, the 8012A, has
identical characteristiccescept that h has two additional low resistance fanges. $2 \$ 2$ and 201210 replace the B010A's 10 ampere current range.
The 8010 A and 8012 A . The 8010 A and 8012 A feature:
10 vollage ranges from $200 \mathrm{mv} \cdot 100 \mathrm{vac}, 200 \mathrm{mv} .75 \mathrm{vac}$
3 conductance ranges from $2 \mathrm{~ms} \cdot 200 \mathrm{~ns}$. 6 resistance ranges from $20012.20 \mathrm{~m}\{$. th

```
10 current ran
``` 10 current ranges from 200 mA . \(2 \mathrm{~A} A \mathrm{AC} / O \mathrm{C}\) - the B010A has iwo additional current 8010A £159 8012A£179 ve 80 , 04 is also a
\(-01 a^{\prime}\)
E179.00.

\section*{LOW COST, AUTORANGING MULTI-FUNCTION COUNTER MODEL 1900A}

£175

Y7206 EN 20,000 OPV
Vois 0.10 .50 -AC Voils \(0-10.5\)
\(250.500,1000\). \(\begin{array}{ll}250,500,1000 . \\ \text { DC Voll } \\ 25 & 0.0 \\ 125 & 0.5\end{array}\), 25, \(125,250,500\).
1000 .
DC Current: 0.0 .05 . DC Current:
5.250 mA

Resistance: 0.3 k ohms, 300 k ohms. 3 meg
Jecibers: \(-20-+63 \mathrm{db}\). ims \(127 \times 90 \times 32 \mathrm{~mm}\)

Cabinet size \(24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}\) (rear) \(3.4^{\prime \prime}\) (front)

\section*{SINGLE BOARD SYNTHESIZER As featured in Electronics Today International}

The kit includes fully" finished metalwork, fully assembled solid teak cabinet, fiter sweep pedal, professional quality components (all resistors either \(2 \%\) metal oxide or \(1 / 2 \%\) metal filmi) and it really is complete - right down to the last nut and bolt and last piece of wirel there is even a 13 A plug in the kit - you need buy musicl Virtually all the components are on the one professional quality fibre glass PCB printed with component locations. 'All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat solderingl When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between \(£ 500\) and \(£ 7091\)

\section*{COMPLETE KIT ONLY \(£ 168.50\) + VAT!}

Comprehensive handbook, supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more than a multi-meter and a pair, of ears!

\section*{CHROMATHEQUE 5000 5-channel lighting effects system}

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have It strobe all the lights at a speed dependent upon music level or front panel contro setting or use the internal digital circuirry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward

Kin includes fully finished metalwork, fibreglass PCB controls, wire, etc. - Complete right down to the last nut and bolt!

COMPLETE KIT ONLY £49.50 + VAT

Panel size 19.0"×3.5". Depth 7.3"

\section*{MFA200 100W MIXER / AMPLIFIER}

Featured as a constructional article in Electronics Today International the MPA 200 is an exceptionally low-priced but professionally finished general purpose, rugged, high-power amplifier which has an adaptable range of inputs such as disc. microphone. gutar, etc. There are 3 wide range tone controls and a master volume control. Mechanically the design is simplicity in the extre!

COMPLETE KIT ONLY \(£ 49.90\) + VAT

Destgned by Texas engineers and described in Practical Wireless, the Texan was an immediate success. Now developed further in our laboratories to Include a Toroid al transtormer and additional improvements, the slimlin
\(20+20\) delivers 20 Wmms per channel of true Hi . Fiat exceptionally low cost. The eas to build design is based on a single \(\mathrm{F} / \mathrm{Glass} \mathrm{PCB}\) and features all the normal facilities found on quatity amplifiers including scratch and cumble fithers, adaptable input selector and headphones socket. In a fotlow-up article in Practical Wireless furthe modifications were suggosted and these have been incorporated into the \(\mathrm{T} 30+30\). These include RF
interference fithers and a tape monitor lacility. Power output of this model is 30 W rms per channel. SPECIAL PRICES FOR COMPLETE KITS
T20 20 KIT PRICE \(£ 33.10\) + Vat
T30 30 KIT PRICE \(£ 38.40\) + Vat
AVAILABLE AS SEPARATE PACKS - PRICES IN OUR FREE CATALQGUE
POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT \(£ \mathbf{~} \mathbf{3 5 . 9 0}\)
AVAILABLE AS COMPLETE KIT ONLY
This is a simple, low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo selection (adjustable by controls on the front panel). This unit matches well with the \(\mathbf{T} \mathbf{2 0 + 2 0}\) and \(\mathrm{T} 3 \mathrm{C}+30\) amplifiers.

\section*{WE'VE MOVED! NEW FACTORY UP! PRICES DOWN!}

\section*{INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN! ALL OTHER FROZEN!} Another superb design by synthesizer expert Tim Orr!

\section*{TRANSCENDENT DPX}

As featured in Electronics Today International August, September October, 1979 issues
DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
The Transcendent PDX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices. still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive? The harder you press down a key the louder it combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry to make the keyboard touch sensitive? The harder you press down a key the louder it a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes
 Cobinet size \(36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}\) (rear) \(3.3^{\prime \prime}\) (front) Also available es separate packe - prices in free catalgoue

\author{
COMPLETE KIT ONLY £299.00 + VAT!
}

To add interest to the sounds and make them more natural there is a chorus / ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based on digital circuitry data can be easily taken to and from a computer (for storing and playing back accompaniment with or without pitch or key change. computer composing etc., etc.) and an interface socket (25 way \(D\) type) is provided lor this purpose.
it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with muliway connectors. just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet. no more parts before plugging in and making great musicl When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over £ 12001

\section*{EXPORT A SPECIALITY! \\ Our Export Department can readily despatch orders of any size to any country in the world. Some of the countries to} weights of all packs and kits. This will be sent free on request. by airmail, together with our "Export Postal Guide" which gives current postage prices. There is no minimum order charge. Prices same as for U.K. customers but no Value Added Tax charged. Postage charged at actual cost plus \(£ 1\) documentation and handing. Please send payment with order by Bank Draft. Pnstal Order. International Money Order or cheque drawn on an account in the U.K. Alternatively for orders over E500 we will accept Irrevocable Letter of Credit payable at sight in London.

Value Added Tax not included in prices UK Carriage FREE
PRICE STABILITY. Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until April 30th 1980. if this month's advertisement is mentioned with your order 1980. if this month's advertisement is menioned excluded
Errors and VAT rate changes excle
U.K. ORDERS. Subject to \(15 \%\) surcharge for VAT. No charge is made for Carriage. Or current rate if changed.
SECURICOR DELIVERY: For this optiona' service (U.K. mainland only) SECURICOR DELIVERY: For this
add £2.50 NAT inclusive) per kit.
SALES COUNTER: If you prefer to collecl your kit from the factory, call at Sales Counter. Open 9 a.m. to 12 \& 1 p.m to \(430 \mathrm{p} . \mathrm{m}\) Monday. Thursday.

QUALITY: All components are brand new first grade full specification guaranteed devices. All resistors (except where stated as metal oxide) are low noise carbon film types. All printed circuit boards are fibreglass drilled roller tinned

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND PHONE NUMBER UNCHANGED OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

\section*{POWERTRAN ELECTRONICS}

PORTWAY INDUSTRIAL ESTATE
ANDOVER ANDOVER, HANTS SP10 3NN
(STD 0264) 64455

\section*{숭 \\ MIRCONI TB95A/5 Ah-FM SIG GEN \\ Ont again a limited}

\section*{}

Minisy release enables us to offer yothis fine piece of equipment. The' \(995 \mathrm{~A} / 5\) has a continuously vaable range in five bands from \(1.50220 \mathrm{MHz}-\mathrm{F} . \mathrm{M}\) deviation is also ariable from \(0-15 \mathrm{KHz}\). Output voltagesdjust from \(1 \mu \vee\) to 200 mV . Outpuind deviation are displayed on an asily read meter. Other features such asiTAL calibrator, small size, etc. makes is a snip at only
\(\because 25\) carr. + VAT
Full manual avaible.
Note: All units are sted and working prior to despatch, but alsold unguaranteed.

\section*{STOPPRESS! \\ WORD PIOCESSOR VDU TIAMINALS}

Just arrived a VDU witr green screen! As yet no time to obtain full detailsut we'll make a start. Made by the famous Ventek \(C\) Thev have the following spec. 12 monitor, 24 linex 80 characters, upper and lower case with descejers. 85 plus keyboard,
numeric keypad ASCIIRS232 serial interface, adjustable baud rate, full osor control, edit function character(s) flash functioretc, etc, latest technology used, mostly 74LS withplug in dynamic rams upplied in 3 grade
Grade I complete tested anworking \(\mathbf{2 7 5 . 0 0}+\) VAT Grade 2 complete less sorkeyiops \(\mathbf{£ 2 5 0 . 0 0 + \text { VAT }}\) Grade 3 condition asseendescribed \(£ 175.00+\) VAT Although grade 1 sold worhg no guarantee is offered. Carrlage extra. New ramsvailable 95p each. P.S

HV GRADE SMOTHING CAPS \(1500 \mathrm{mt}^{100 \mathrm{v} 60 \mathrm{p}^{*} 1300 \mathrm{mt}^{2} \text { SPRAGUE }}\) \begin{tabular}{ll|l}
3300 mf & \(63 v 70 p^{\circ}\) & 300 mf \\
mf 600 vMYLAR 28 p
\end{tabular} \(10,000 \mathrm{mf} 15 \mathrm{vf1}+\left\lvert\, \begin{array}{ll}\mathrm{mi} \\ 2,000 \mathrm{mf} 16 \mathrm{v} \mathrm{E} 1.10 \dagger\end{array}\right.\) \(\begin{array}{lllll}100 \mathrm{mf} & 250 \mathrm{v} 45 \mathrm{p} & 100 \mathrm{mt} & 200 \mathrm{v} \mathrm{E} 2.50 \dagger\end{array}\)
- Ex equipment tested

\section*{SEMICONUUCTOR 'GRAB 3AGS'}

Amazing value mixed semionductors, include transistors, digital, linear I. Cs, triacs, diodes, bridge recs. etc. otc. All devices guranteed brand new, full
spec. with menufacturers inkings, fully guaranteed \(50+\) BAGC2.95 10 + BAGS E5.15

tested, ex-equipmet
\(240 v 50-60 \mathrm{HZ} \mathrm{C65}\)

ELECTRONIC
COMPONENTS
6 EOUIPMENT
\(B\)
: \% auchasing programme which enables us to bring tu the best possible bargains. We have thou sandel I.C 's Transistors. Relavs, CaD S., P. C. 8 s. Sutassemblies. Switche erc eic surplus to our requemenis. Because w don 't have sullicient stocksif anv one item to melude in bur ads. We are pcking all these items Thousands of components agiveaway prices ! Guar anteed to be worth at hive 3 umes what pay plus we always include mething from our ads. for unbeatable value'l Sotd weigh
\(71 \mathrm{bf} 5.25 \quad\) 41bf 7.95 281b f13.75 6 lb f 22.00 PLEASE ADD P + P 4.25

\section*{ISOLATED 240v 4 AVP \& 10 AMP SOLID STATERELAYS}

Interface your MPU eic, witthe outside world made maniature pleptic modulo wil mounting hotes containurg a read rey forlion, choke and riac. 12-20 vorte DC at a low miliampe enable on/ofi controt of A.C laeda up tel0 ampal The 10 amp version should bo mounted \(\rho\) e theataink. \(100^{\prime}\) s including power controlighting, etc.

\section*{OPTO SMASH \\ TIL 302/MAN 77 segment LED} common anode direct drive (via
resistors) from 7447 Eq-10 each TIL 119/OC72 Darlington opto isolator 3 for \(£ 1-00\). TIL305 \(0.3^{-7} 7 \times 5\) matrix LED Iphanumeric readouts \(£ 3.7\) PHOTO TRANSISTOR

\section*{4k x 12 RAM static Memory card}
 compuler system. TiL in and out make interfacing a "canch". We under sland ihat by leading the outputs colrectly, the memory can be organsed as a \(6 \mathrm{~K} \neq 8\) ! Features include tast 230 ns max. access ume. Standard \(\rightarrow 12 v\). \(-12 v+5 v\) power rals comp memory, data remains even when power switched of!
Ongonai cost over c800 each. supplied complere with
full data and crrcuit manual, al an unbelievable price of Note Memones aie remozed trom working equipment but supplied untesied. ungualanteed In stock now test equipmelies, scopes, sig. gen's, molors,
iransformers, power supplits, keyboards equipment, I.C. s, tools, componens, varisemblies t thousands of ransistors, microswitches, other stock lines. Jus? a mere train
displayed below 100 's of bargain

25 ma. 4 for \(£ 1.00\)

\section*{OISPLAY I.C. ANDRCAINS TRANSISTOR BAF}

\section*{NEVER CHEAREB}
well known manufacturers and fully
guaranteed. No fall outs. Comprehensive
data on I.C.'s \(15 p\) per type.
2N4352 P channel MOS FET
60 p each E 1.00 per pair
HIGH VOLTAGE NPN POWER SWITCHING transistors BVcbo 600 v BVceo 500 v BVebo 15 vic 5 amps Pc 125 watts MFE 60 yyp H 2.5 mh deal invertors, etc. TO3 f 1.60 each
4 for 55.40 .
BF258 NPN 250v @ 200 ma 45 p each
R BSB01
.R. BSBO1 2.5 amp 100 v bridge rec. f1.08.
IN4998 4 amp 100 V P.C. mount diodes
long leads 14 p each 10 for f 1.10
LM309K +5 v 1.2 amp regulator f 1.10
each 6 for \(f 5.35\).
2N16718 unjunction \(450 \mathrm{mw} 30 \vee 48 \mathrm{p}\)
each 3 for f 1.00 .
iN4004 SD4 1 amp 400 v diodes \(7 p\)
each 18 for f 1.00
R. 12 amp BRIDGE RECS. 400 voll
on
POWER DARLIMGTON SCOOP!
Dition NPN \(60490 w\) amps 103950 eat
2W6395 PNP 80v 100 w 10 amps TO 5 f 1.25 each
S.C.月.'s
2W3001 30 va 350 ma T018 22 p each 6 for \(£ 1.00\)
 2 M1441 50 v \& amps 7022045 p each 10 for Ct .00 C10601 400w 5 amps TO202 55p each 10 tor 55.00 G.E. 12 amp 500 y T0220AB 95p each 10 tor \(\mathrm{f8} .7\) E.C.C. 1.6 amp 400 v lo5 38p each 3 tor \([1.00\) A.E.S. 10 amp A00w ready mounted on \(23^{\circ}\) LOW PROFILEIC. SOCKETS 140.1 .1 .14 p each 8 for fl 100 160.11. Gold Plated mill grade 22p each 6 for 11.8 22011.27 p each 5 tor Cl .00

2401 L 35 peach 3 LOI \(\mathrm{C1} 00\)
OTHER GOODIES
AF279 low nouse PN P \(32 p\) each 4 for \(f 1.10\)
2 N5943 R.F. outpul 40 volts. 1 watt up to 1000 MH 2 T. 0.555 p each 10 lor f5.00
2NA 300 WN720 F.E. Transis or 37 p each 3 lor C 1.00 Lm380ws.6051 140.1 .1 .2 wall A.F. amp 80 D each 8 for 6600
CA302BB OC. 120 MHZ ditterential cascode ame 11.00 each 3 for \([2.50\)

CA 301120 MHZ wideband amp T099 case 65p each 2 for Cl .00
2.5 MHZ 11.50 each 4 for f 0.25

ME555 10 tor \([2.55\)
 FSA27198 independent doodes INA148, IN914 type in 150.1 .1 . pack 38 p each 3 for \([1,00\) FiPO 37254 MPN 50 y 500 ma mansistors in 14

PLESSEY EDGE STACKABLE DECADE THUMBWHEEL SWITCHES. Gold plated contacts dimensions \(2 \times 2 \times 85\) each 8 for 65.35
Miniature Continental Series 12 VDC 4 c/o plug in relays El .30 each
AMPHENOL \(50 \Omega\) BNC plug 50p. \(50 \Omega\) BNC plug right angled 60 p.
C90 Audio Caseettes screw type construction 45p each 3 for El .00
Bulbs 24 v 14 watt whire frosied S.B.C. 8 for \(£ 1.00\).
Bulbs 12 v 100 watt clear, base similar S.B.C. 450 each
S.B.C. Bulb Holders All steel cad. plated panel mount easily
round hole. ideal disco displays, scoreboards, etc. 4 for f1. 10
Xtal filters S.E. 1 QC \(1121 / /\) B miniature low insertion loss P.C. mount.
C.F. 10.7 mhz with B.W of 7.5 khz 2000 ת imp in out. Brand new @ f 7.9
Heavy Duty Flat Insulated Earth Braid 100.200 amp braided tinned copper in heavy clear PVC sheath 50 p per metre. f 6 for 15 metres + PP f 1 per 15 metres BULGIN minuature 6 way male chassis mount socket and matching free plug 60 p each, 2 for \(\mathrm{E} 1,10\).
Rod L.E.D. sfuli spec. 0.2 14p each. 10 for \(£ 1.25\)
Red L.E.D.'s 0.12510 peach 10 for 80 pl
Dynamic Stick Mics \(600 \Omega\) with built in on/ ofl switch complete with lead and min. jack plug f 1.15 each. 10 for \(£ 10.00\)
TO5 HEATSINKS "Thermaluy" black anodised press on aluminium finned vpe 18 p each. 8 for \(£ 1.00\)
HARDWARE PACK Don't be stuck for the right nut and bolt for the job. Pack contans B. A. Metric, Unified. Seff Tap. c. Nuts, Bolts, Screws, Washers, etc.
Brass Bronze and Steel. All steel items Brass Bronze and Steel. All steel items
plated. Average contents 400600 pleces.
 weight.
ONE OFF SPECIALS

"Mewlett Packard" HP67 pro caic \(£ 150.00+\) VAT
Wordplex" B uset word pocessor system. CPU dual \(\mathrm{a}^{+}\)
Hoppr's etc \(£ 950.00+\) VA7
BARGAINS GALORE!
In our walk round Warehouse
NOW open Monday to Saturday 9.30-5.30

Dept. W.W., 64.66 Melfort Rd., Thornton Heath, Surrey. Telephane: 01-689 7702

MAIL ORDER
INFORMATION

\footnotetext{
Unless otherwise stated all prices inclusive of VAT. Cash with order. Minimu
order value \(£ 2.00\). Pricas and Postage quoted tor UK only Where post and order value \(£ 2.00\). Prices and Postage quoted for UK only. Where post and packing not indicated please add 30 p per order. Bona Fide account orders same day where possible. Access and Barclaycard Visa welcome.
}

\section*{SCOOP OF THE YEAR hazeltine h1200 V.D.U. TERMINAL}

\author{
HOW TO \\ GET HERE \\ Victoria, London Bridge or Holborn \\ Viaduct 10 Thornton Heath 1 minute from Thornton Heath \\ Station.
}

Due to a fantastic bulk purchase, we are now able to offer this superb terminal at a price almost below the cost of manufac ture!! Features include: 12 " screen, 55 key TTY keyboard, full ASCII, RS232 interface, adjustable baud rate 75 to 9600 12 lines \(\times 80\) characters lupgradable to \(24 \times 801\), cursor control, lower case option, plus many other features

Brand new at only

\section*{\(£ 250\) + VAAR}

FULL Technical Manual available
POWER SUPPLY UNITS
5 VOLT 2.5 AMP T.T.L. P.S.U. unit lestures a 10 amp transtormer with D. C.
outputs of 5 volts @ 2.5 amps and 7.5 volts @ 5 amps The 5 volt output is fully regulated and smoothed and has elecrronic currerit limiling. May be easiv moded 5 vols 88 amps, beheved Complete with ciecuin
£8.25 p.p. 11.60 KEYBOARD

A special bulk purchase enables us to offer the above keytoaid at lowest ever price, 49 coded keys encoded into a direct TIL compalible bat output Features such as delayed strobe, 5 volt O.C. single rail MPU constructorl Supplied commolete with connection diagiam and edge no tume to lest" \(\mathbf{0 0}+\) P.P. \(\mathbf{E 1 . 6 0}\)
SUPER CASED VERSION Same as above spec but housed in attractive two tone moulded. tree standing case. Unit also
[27.50 + P.P. \(£ 1.85\)
TOROIDAL TRANSFORMERS
 All voltages measured off load.

\section*{ RÁDIALBLOWERS}

\section*{with our high efficiency radial snall iype blowers. Mad}

\section*{electronic equipmed} equipment very powerfut and quiet. gives
eliability. Eastly mounted

Item No

27－36
37
38
39
40
41
42 42
43 44 45
46
47
48－50
51－53

54
55 55
56
57 57
58
59

73
74
\(75-7\)
78
79－80
81
82
83－86
87－88
ゅロ
91
92
\(\stackrel{93}{94}\)
\(\mathbf{9 4 - 9 5}\)
\(\mathbf{9 6 - 9 7}\)
98
99
100－102
103
104
105
106
106
107
107
108
109.115
\({ }_{116}\)
117－118
119
120
121.122
123
123
124
125
126．127 128 WAYNE KERR PULSE GENERATOR CT500 £25 129 HEATHKIT SOLID STATE VOLTMETER 1 M－16 HEATHKIT FM STEREO GENERATOR 1G－37
WAYNE KERR COMPONENTBRIDGE B121
TELEQUIPMENT DM53A Double Beam Scope §140
MINIATURE SCOPE CT52 1104 ／1 with display Marconi \(£ 30\)
RANK WOW \＆FUTTER METER type 1740 ©
ADVANCE SIGNAL GENERATOR HIE 15HZ－50KHZ £70
ADVANCE UHF MILLIVOLTMETER VM79 £60 ea
BRANDENBURG EHT POWER SUPPLY \(471 / R \quad 500-2500 \mathrm{~V}\) 1 mA
£150

R \＆S UHFTEST RECEIVER USVU BN \(15: 0.9-2.7 \mathrm{GHZ} £ 120\) ROCHAR UNIVERSAL COUNTER TIIER A1149 1HZ． 10MHZ SHF STANDARD SIGNAL ENERATOR SDAF R \＆S UHF STANDARD SIGNAL GNERATOR SDAF BN41023／2 AM／FM 17OMHZ－900MHZ
SIEMENS THERMAL MILLIVOLTMETE． \(50 \mathrm{ohm} 1-500 \mathrm{mV} /\) \(0-12.4 \mathrm{GHZ}\)
SOLARTRON SCOPE CD523S． 2 Single Bfin DC－10MHZ £25
SEXTANT ATTACHMENT
E 60 Єa
£ 250

R8 S POLYSCOPE SWOB BN4 244
C 100
H．P．RMS VOLTMETERS 3400 A
\(£ 150\) ea
WAYNE KERR AUTOBALANCE ADAPT AA221 £75
TEKTRONIX SAMPLING SCOPE iype 66 complete with plug－
TEKTRONIX Scope type 581 DC to 80MHzMain Frame
\＆350
TEKTRONIX Scope 585 ．DC－80MHZ．Dualib．Main Frame
TEKTRONIX Scope 585A DC－85MHZ．Du贾B．Main Frame
£300 е в
TEKTRONIX Scope 547 DC－50MHZ．Dual 3．Main Frame £300 TEKTRONIX Scope 545 B DC－3OMHZ．Du \({ }^{\prime}\) B．Main Frame

TEKTRONIX Scope 545A DC－30MHZ．DuajB．Main Frame
£125 ea
TEKTRONIX Scope 545 DC－30MHZ．Dual 3．Main Frame £100 TEKTRONIX Scope 543 DC－30MHZ SingléB．Main Frame
TEKTRONIX Scope 541 A DC 30 MHZ Sing TB．Main Frame TEKTRONIX 536 DC－ 1 OMHZ X－Y Oscillospe．Main Frame \({ }^{\text {E100 }}\)
TEKTRONIX Scope \(533 A\) DC－ 15 MHZ figle TB with 100 X Magnification．Main Frame \(\quad \mathbf{1 2 5}\) TEKTRONIX Scope 555 DC－33MHZ．Conpletely independent deflection of beams．Price included TB units £250 ea TEKTRONIX Scope 551 DC－27MHZ will tae two vertical plug－ins． Main Frame £150ea TEKTRONIX Scope 517A Special Migh Sped－bulky hence

Plug－ins available for above Ofilloscopes CA DC－24MHZ Dual Trace \(50 \mathrm{mV} / \mathrm{cm}\) © \(\quad\) ． 65 ea D HIGH GAIN DC Differential \(1 \mathrm{mV} / \mathrm{cm}\) q 300 KHZ £ 20 ea E LOW LEVEL AC Differential \(50 \mathrm{microV} / \mathrm{m} 3 \mathrm{db} 20 \mathrm{KHZ}\) £ 75 ea G WIDE BAND DC Differential \(50 \mathrm{mV} / \mathrm{cmDC}-20 \mathrm{MHZ}\) £20ea K DC－30MHZ \(50 \mathrm{mV} / \mathrm{cm}\)
LHIGH GAIN SINGLE BEAN \(5 \mathrm{mV} / \mathrm{cm} . . .{ }^{\circ} \mathrm{C} 20\) ea M 4 TRACE \(20 \mathrm{mV} / \mathrm{cm}\) DC－20MHZ
N SANIPLING UNIT
R FOR MEASUREMENT of Transistor Ptwmeters ．．．\(£ 100\) 2 FOR ACCURATE voltage measuremert．．．．．．．．\(£ 100\) es 1444 TRACE \(10 \mathrm{mV} / \mathrm{cm}\) DC－50MHZ
1S1 SAMPLING to 1 GHZ 81 THIS ADAPTOR is required on all 50 range main frames to enable the user to fit lettered plug－in ．．．．．．．．．．．．．．．．．．．．．．．．． 82 DUAL TRACE DC－8OMHZ \(10 \mathrm{mV} / \mathrm{cm}\) ．．．．．．．．．．．．．．．．．． The following plug ins can be purchased starately \(L ; D ; G ; M ; N ; Z ;\) 1A4；1S 1.
The remaining plug－ins CAN ONLY BE PGCHASED WITH MAIN

Due to factors outside our control it has been decided to sell off the excess stock of Test Gear at Norwood Road．This additional page carries the majority of such equliment．In our endeavour to sell
this equipment we are prepared to accept the best offer received by the close of business on Saturday，March 15 th provided that the offer received is relative to oupriginal cost．To place an order PLEASE PHONE．In the event or you offering the full price and the item being still available it will be booked to you and a reasonable it may be possible thowed or your monies etci be received．If you offer below the listed price it may be possible to immediately accept and again book the nem to you．In the event of your olter being too low，time must elapse to allow us to obtain more acceptable offer．If your
OLIVETTI PRINTER \&
KEYBOARD type Te 300
operation
£125 each
INFRA RED IMAGECONVERTER type 9606 (CV 144)
Individually boxed. With data
£12.50 each P\&P 75p
Infra Red Lamps also advertised

STEPPING MOTORS

200 Steps - 20 -oz/in. torque. \(12 / 24\) volt
£12 each. \(\mathrm{P} \& \mathrm{P}\). E .50

\section*{4K RAM}

Signetics 22 pin with data type 268065 p each. Four for \(\mathbf{C 2}\).

STEPPING MOTORS
200 Steps. 20 oz/in. torque. 120 volt
£4 в ach. P\& P £1.50.

\section*{4K STATIC RAM} Type 9140. £4 each. 8 for \(£ 24\).

\section*{WEATHER PLOTTER}

RECEIVER SET AN / GMH 5
FACSIMILE SYSTEM
Speed is switch selectable 7 rates 1200 Bauds to 4800 Bauds. Max Print width 18". Input signal digital 3 KHZ nominal 2 -wire 600 ohm. Max Jitter less than \(0.0025^{\prime \prime}\). Uses 7400 range ICs on 2 boards. 200 plus ICs per board. This unit is as New and complete with Manuals.
only one unit available \(£ 350\)
\(\longrightarrow\)

KEYBOARD PAD
Size \(3 \times 2^{1 / 2 \times 2^{\prime \prime}}\) high with 12 Alma Reed Switches. Blue keys marked in green 0-9 and a star with one blank. E4 each, P\&P E1, or 5 for E 15 P\&P \&2.

\section*{'BLUE THERMAL PAPER}

430 ft roll \(811_{2}^{\prime \prime}\) wide

709 DIL 14-PIN OPERATIONAL AMPLIFIERS at \(8 p\) each
100 off \(25 \%\) discount.

\section*{MINIATURE}

KEYBOARD
Push contacts, marked O-9 and A.F and 3 optional function keys. \(\mathbf{E 1 . 7 5}\) each. P\&P
\(65 p\) 65p

\section*{TRANSISTOR INVERTOR} 115 V AC 1.7 Amp Input. Switching is at
20 Khz . Output windings from Pot Core. Can 20 Khz . Output windings from Pot Core. Can
be rewound to suit own purpose or unit can be rewound to suit own purpose or unit can
be broken for host of components. Circuits \(\begin{aligned} & \text { be broken for host of components. Circuit } \\ & \text { supplied. } \\ & \text { £1.25 each. P\&P } £ 2 \text {. }\end{aligned}\)

\section*{TELETYPES}

ASR; KSR; RO's with \(20 \mathrm{ma} / \mathrm{RS} 232\) loops. Prices from £80. Please enquire.

\section*{STEPPING MOTORS}

\section*{North American Phillips. 5 volt 3.3 Amp} operation. 2 wire PPS O-200 revs per min 0.250 used. Tested \(£ 16\) esch. P\&P \(£ 1.50\)

POLARAD SPECTRUM ANALYSER

\section*{\(5^{\prime \prime}\) Oisplay. These are supplied with STU 2} plugin. 1 to 45 GHz E125 oach

\section*{STRATHEARN AUCTION}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BC337 & 8p & 2N3704 & 8 p & BFT60 & 5 p & \\
\hline BC327 & 8 p & 2N5447 & 5p & TLO82CP & 15p & 4013 \\
\hline BC251 & 5p & 2N5449 & 5p & TIS92 & 10p & , \\
\hline BC171A & \(5 p\) & 2N3053 & 15p & TIS93 & 10 p & \\
\hline
\end{tabular}

STEPPING MOTORS \(6 / 12\) position with additional where the
rotor is coils. Device can be used as a tacho. rotor is coils. Device can be used as a tacho.
Diagram supplied. Will actually work on 5 viagram suppliec. \(12 / 24\) recommended E1.50 each P\& P 75 p or 5 £1.50.

TELEQUIPMENT SERVICE SCOPE MINOR Modern style - Small size \(5 \times 7 \times 11^{\prime \prime}\) approx. Circuit diagram supplied. £55 each

10p

16 pin DIL Socket 10 p .14 pin SIL Socket 8p.
LED type TIL 209 Red with holder 10p each.
SLOTTED OPT SWITCH supplied with data - normally over \(£ 2\). OUR PRICE 75 pach
Spring Action TERMINAIS 2 - Tsp each
Spring Action TERMINALS - normally over 30 p ea. OUR PRICE 15 p each.
TOROIDAL TRANSFORMER \(0-115 \mathrm{~V}\)-230V Input; \(13.5 \mathrm{~V}-0-13.5 \mathrm{~V}\) rated 8 VA output \(\mathrm{\varepsilon} 1.70\) each. P\&P 75 p .
Sub-min TRANSFORMER \(0-120-240 \mathrm{~V}\) Input. \(12 \mathrm{~V}-0-12 \mathrm{~V}\) rated 4 VA . Ourpur 75 p each. P\&P 50 p .
ALL GOODS ARE GUARANTEED TO BE NEW AND FULL'SPEC. DEVICES. 100 off discount \(25 \%\) - other discounts by arrangements

\section*{DIODES}

All new full spec devices. IN3063; IN4148; IS44. 100 off £1.501000 off E 10 .

\section*{GENERAL ELECTRIC TERMINET PRINTER}
with Twin Cassette RS232 Interface. IN VERY GOOD CONDITION.
\[
£ 1,200
\]

VARIACS
20 AMPS
Some 3 phas

\section*{-Equipment. Good candition. 8 Amps}
ase available. Please enquire
CRYSTALS
19.2KHZ FLAT METAL CASE - 50 p asch. \(10 \mathrm{MHZ} \mathrm{B7G} \mathrm{50p} \mathrm{each}\).
x.MAVAL Aft dia STEEL OISHES. NEW CRATED. 1 h. deep at centre. These are plain steel drahes with holes fow
\begin{tabular}{|c|}
\hline \multirow[t]{12}{*}{\begin{tabular}{l}
TRANSFORMERS - Standard Mains input \\
Secondary outpuls. \\
6KV0-125A E15 ea. \\
3440V 0.66A with matcting 40H Choke £ 30 the pair. \\
5KV 300MA £15. 18KV 30MA E60. \\
12 KV 30 MA E20. 22.5 KV 110 MA ¢ 50 ea. \\
3KV 5OMA E8 es. GOKV 0.0273 C150. \\
MULTI PURPOSE MAINS TRANSFORMER 4 windings each winding \\
\(0.10-110-125\) at 48 A E15 on. \\
425 V 50 Hz 2 Wire input. Output 85 KV 2.55 KVA . Could be run on \\
240 V at \(1 / 2\) rating \(£ 15 \mathrm{se}\). \\
STEP OOWN ISOLATING TRANSFORMER. Input \(220,250 \mathrm{~V} 50 \mathrm{HZ}\). \\
Output 115 V 1.8 KVA . BRANO NEW. These are very conservatively rated \(£ 20\) *. \\
CAPACITORS \\
 \\
CARRIAGE on these unlts will be charged at cost.
\end{tabular}} \\
\hline \end{tabular}
1.50

BRHOGE RECTI

MPHENOL 17 Ray I.E.C. Standard MAINS LEAD. Moulded (3 vertical flat pins centre oftset)
 Secondhand E 2.50 oa.
 Miniature MOTORS 12 V
\(\times 1 / 6^{\prime \prime}\) dia. New, 30p 20.
 New, 11
LEDEXROTARY SOLENOIOS. 115 V DC. No swiech assembly. 15 p en. DIAMOND H CONTROLS ROTARY SWITCH. Single pole 10 -way Primed Circuir Mount. New, 10 p ea.
OELAY LINE, 50 nanosecs. 3 conne
ions, ground \(1 n-\) out. Size \(2 \times 7 / 16\)
PULSE TRANSFORMER. SUb min. Sizo \(1 / \times 5 / 18 \times \mathbf{4 \prime \prime}\) Secondary centre lapped. New, 20 pan .
MOTOR by Inland Motor Co
MOTOR by Inland Motor Corp. OC. Wigh Torque Reversible. Usable torque at 5 V . Max voltage 24 V £2.50 ow. P8P \(£ 2\).
SPEAKERS \(21 / 2^{\prime \prime} .50\) ohm 0.2 W . New, 40 p .
RAPID DISCHARGE capacitors Bmid 4 kV E5 each P\& P E2
REMO TV TYPE MULTIPLIER. Two high voliage outputs end focus. E1
ODN. T TAKE CHANCES. Use the proper EHT CABLE 10p per metre or E7. 50 per 100 metre / drum. P\$P E 2 .
MOTOR by Eastern Air Devices Inc 125 V revers ble with 100 thed shat 110

PHOTOGRAPHIC LAMPS. Pear 230 V SOO wat Screw cap 75p es. Box of \(12 € 5.50\) P\&P \(£ 1.60\).
MYSTERY IC PACK. Some 40 pin - good mbrture - all new devices. 25
CE for E1. P\&P 50. You find out what they are and we will buy the information from You. TRAPS, ETC. Send for list
VACUUM PUMPS - TRS
DECOUPLING CAPACITON \(5.0 .05 \mathrm{mid} 10 \mathrm{~V} ; 0.01 \mathrm{mfd} ; 0.1 \mathrm{mfa} 50 \mathrm{~V}\),

10-WAY MULTI COLOUR RIBBON CABLE. New, 40p per metre. 10 motres for \(£ 3\).
GEC UHF 4-bun
GEEC UHF 4-bunton tuner \(£ 1.50\) ench.
EX-USEO Equipment, tesied 60 p .
POTTER \& BRUMFIELD TIMER RELAY, 115 V AC. Meawy duty, 7 pole
 BIG INCH Motser
CONTACTORS. Heary duty 24 V OC 5 make EI 1 sech.
GEC UHF/VHF 6 -bution luner. \(£ 2\) eoch.
DIGITAL 24 -HOUR CLOCK with bulthin
DIGTAL 24-HOUR CLOCK with buith-in alarm as used in Braun Digital

931A PMOTO MULTIPLIER in stalnless steel contalner with window and built-1m resistor network, \(£ 2\) anch. PBP \(£ 1\).
SLIDER CONTMOL 500 W .
SLIDER CONTHOL 500 W . Log Single track. Complete with knob. Length
\(31 /{ }^{\prime \prime}, 25 \mathrm{paach}\).
RANCO 250 V , 18 THERMOSTATS with Control knobs calibrnted 50.200 degree \(C\), E2.50 sach.
SOLIO STATE UHF TUNEAS

SOLID STATE UHF TUNERS. 30 acs \(£ 1\) each.
BRAND REX blue wire wraps 30 matres for \(£ 1\). P\&P \(25 p\).
\(\operatorname{Sin}\) SOLIO RUBBER RINGS
happy 4 for E1. P\&P \(£ 1.50\) each
TRANSFORMERS
\({ }^{240 V}\) inpur \(S O C\). 6 Y 115 V . 1 Amp output \(£ 1.25\) each. P\&P \(£ 1.25\)
\begin{tabular}{l}
P\&P \\
240 O \\
\hline
\end{tabular}
240 V input. Soc 12 V 0.92 size \(21 / 2 \times 2 \times 2^{\prime \prime}\) Good qualiv El .50 ol
240 V input 12 V 100 MA . Size \(60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{p}\) ach.
240 V inpur. Soc. 12.012 V 50 MA . Size \(53 \times 45 \times 40 \mathrm{~mm}\); \(\subset 1\) ea.
115 V input. Soc. 5 V 250 MA . Sire. \(111 / 6 \times 1.5 \times 1 \mathrm{~h}^{\prime \prime} .2\) for 50
115 V input. Soc. 5 V 250 MA . Sire \(111 / 6 \times 1.5 \times 1 \mathrm{hm}^{\prime \prime} .2\) for 50 p .
SEMICON OUCTORS

\section*{N40055p; 1 N 40033 p .}
 BA 243 . 25 oen
TIP 31, TIP 41 AA, 2 N5296, AF 139,2 TX341
8 BY 127 10p. BF 18120 p ; BO239 40p; BO241 40p: MA \(343 A T\) 4OP: \(8022250 \mathrm{p} ; \mathrm{BD} 233\) \& BD234 Comp Pail 25 W - 80 P per pr. ot 50 p Regulator TBA6 35 \& to 20 V in - 5 V out 100 MA TO5 Con. 50 p each. 8 F NAMPLIFIER TBA 120 20p anch.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Integroted Circuits} \\
\hline 7453 & \({ }_{5 p}\) & 74121 & \(10 p\) & 74502 & 12p & SN15862 & 40 \\
\hline 7451 & 50 & 74122 & 12p & 74154 & 700 & MC4028 & \\
\hline 7401 & 5p & 74 CoO & 17p & \(74 \mathrm{CO2}\) & 16p & 7417 & 14 \\
\hline 7402 & 12p & 74 \(\mathrm{H}^{7} 4\) & 12p & \(74 \mathrm{CO4}\) & 18 p & 7441 & 40 p \\
\hline 7476 & \(20 p\) & 74451 & 7 p & 74 C 74 & 18p & 74.88 & 50 \\
\hline 1495 & 35p & 74538 & 10p & 75325 & E1 & 74C161 & 24 \\
\hline
\end{tabular}
tester version 50 p ouch.
EPROMS 2708 E5.50
EPROMS 2708 E5.50 eech.
C7.50 each. Older style black \(\mathbf{~}\) grey \(£ 5.50\) eech. 746 stylo black or grey KONE WWELL humidity confoller 50 p . Pech. E 1.50 per telephone. THY胃STOR TIMER. Solid State 50 p each.
case. Standard 7 pin base. Series delay 50 p act
MINIATURE
Dich. Socket. With data \(E 2.50\) sach
ELECTROSTATIC VOLTMETERS. 75 KV Ez ench. PEP \(£ 1.50\)
Orher ranges available. Please enquire.
TRIMMERS. Sub min 0.25 to
sach.
50 HZN repiacement MOTOR to IBM
50 Hz 1350 rpm E 4.50 on. PEP \& 2. SMITHS encapsulated from TTL 65 pedat
\(4 \mathrm{~V}-12 \mathrm{~V}\). Can pe driven fible WARNING DEVICES

\section*{there are transformers and... Drake Transformers}

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774)51155 Telex: 99426 (prefix Drake)

When you want to.o.

HEYCO MANUFACTURING COMPANY LTD.
Uddens Trading Estate, Nr. Wimborne, Dorset BH21 7NL. Ter. Ferndown (STD: Cezce) 871411/2/3 HEYCOMAN Wimborne Teiex 41408

WW - 121 FOR FURTHER DETAILS

\section*{reprints}

If you are interested in a particular article/ special Feature or advertisement published in this issue of

\section*{WIRELESS WORLD}
why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)

For further details contact:
Brian Bannister, IPC Electrical-Electronic Press Ltd. Phone 01-261 8046 or simply complete and return the form below.

To Brian Bannister, Reprints Department Dorset House, Stamford Street London SE 1 9LU
I am interested in
copies of the article /
advertisement headed

\section*{WIRELESS WORLD}
on page(s)in in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No.

\title{
Electronic Brokers
}

\section*{49/53 Pancras Road LondonNW12QB Tel: 01-837 7787. Telex 298694} No. 1 in Second User Minis \& Peripherals

MODULAR ONE SERIES VDUs .arge new stocks of the tabulous MAZELTINE MODULAR ONE SERIES VDU

BASIC Model from \(£ 450.00\)
EOITING Model from £695.00

\section*{EXAS SILENT 700}
ef 725KSR Terminal mounted in integral carrying case complete buithin acoustic coupler. 64 ASCII character set with \(5 \times 7\) dot ix. 30 cps . Weight 35 lbs . Dimensions \(211^{\prime \prime} \times 19^{\prime \prime} \times 6 \frac{1}{2} 2^{\circ}\)
del 733ASR £1,450.00. Model \(742 £ 1,750.00\) del 733KSR £750.00

\section*{TERMIPRINTER 7075}

\section*{DEC PDP11/04 SPECIAL PURCHASE}

PDP11/

\section*{ASR33 and KSR33}

\section*{TELETYPES}

Input / Output serminals with 64 ASCII character set. 110 baud operation Paper tape punch and reader (ASR33 only). Choice of interface (20 mA or RS 232) KSR33 - £425.00. ASR 33 - £650.00. Pedestal £30.00.

BALL MIRATEL MONITOR
\(9^{\prime \prime}\) diagonal P4 phosphor tube Bandwidth \(12 \mathrm{MHz}(-3 \mathrm{~dB})\) Input voltage 220 V 5060 Hz 24 W Output voltage +15 VDC (short circuit protected) +12 kV DC 126 V rms Separate low voltage power supplies amplifier and attractive moulded plastic housing including space for keyboard Case dimensions - \(20^{\prime \prime} \times 19^{\prime \prime} \times 10^{\prime} / 2^{\prime \prime}\) including keyboard space \(20^{\prime \prime} \times 7^{\prime \prime}\)) Full technical manual provided \(\mathbf{8 5}\) (totat

\section*{DEC EQUIPMENT}

PDP11/40 System 48KW Parity Core Processor complete with KT11D Memory Management, DL11 Asynchronous Interface, RK 11 D Disc Controller, \(2 \times\) RKO5J Disc Drives, \(2 \times 6 \mathrm{ft}\). Rack Cabinets, Fully DEC maintained in immaculate condition (or could be reconfigured to suit) £9.750.00 PDP \(11 / 055^{1 / 4}\) " Processor with 8 KW core memory
£1.850.00
RK05J Add-on disk drive
£1,850.00
MM11DP 16K parity core (for PDP11/04 and \(11 / 34\) series). BRAND NEW SURPLUS - ONLY
£995.00
PR11 High Speed Paper Tape Reader \& Control
£ \(1,450.00\)
KL8JA Asynchronous Interface £275.00
Large stocks of DEC modules and add-ons
PRINTERS \& TERMINALS
CENTRONICS 101 Matrix Printer \(£ 750.00\)
CENTRONICS 102 Matrix Printer \(£ 895.00\)
GE TERMINET 300 KSR Impact Printer £625.00
GT TERMINET 1200 RO impact Printer £695.00
HAZELTINE H-1200 VDU
£375.00
HAZELTINE H-2000 VDU from £395.00 SCOPE DATA Electrosensitive Printer £495.00 TEKTRONIX 611 XY Storage Monitor \(£ 1,350.00\) TEKTRONIX 4010-1 Graphics Terminal \(£ 1,500.00\)
TEKTRONIX 4601 Hard Copy Unit . \(£ 1,400.00\)

\section*{NEW ASCII KEYBOARDS -NEW LOW PRICES \\ K8756 56-station ASCII Key-} board mounted on P.C.B.
£45.00 £53.48
KB756MF As above, fitted with metal mounting frame for extra rigidity
\(£ 50.00 \quad £ 59.23\)
10-key numeric pad supplied with connecting cable

K8701 Plastic enclosure for KB756 or KB756MF
KB702 Sieel enclosure for KB756 or KB756MF
KB2376 Spare ROM Encoder KB15P Edge connector for KB756 or KB756MF
DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.)

KB771 71 -station ASCII Keyboard including numeric/ cursor control cluster, mounted in steel enclosure
\(£ 95.00 \quad £ 115.00\)
D825S Mating connector for KB771
PERK 56-station ASCII Keyboard for PET. Complete with PET interface, built-in power supply and steel enclosure

\section*{Discounts available for quantities}

\section*{MISCELLANEOUS}

AMPEX \(1^{\prime \prime} \times 3000^{\prime}\) Video Tape

\title{
Electronic Brokers 49/53 Pancras Road LondonNW12QB Tel: 01-837 7781. Telex 29869 \\ \\ ONLY SMALL SELECTION OF OUR VAST STOCKS \\ \\ ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWV HERE - SEND FOR LATEST CATALOGUE SHOWV HERE - SEND FOR LATEST CATALOGUE \\ Electronic Brokers' unique catalogue contains 62 pages plus update of second user Test Equipment and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc. Largest stocks - most cost effective. \\ LATEST EDITION. SENT FREE IN UK Airmail to overseas addresses \(£ 2.00\) \\
}

TEKTRONIX
326 Bathery/Mains
Dual Trace 10 MHz Osciltoscope
1 Only reduced
£725.00

HEWLETT PACKARD
Spectrum Analyser System
141T Display
8552A IF Section
8554L RF Section
\(500 \mathrm{KHz} \cdot 1250 \mathrm{MHz}\)
TOTAL PRICE \(£ 5,250\)

Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipnent is guaranteed for 12 months; computer peripherals for \(\mathbf{3}\) months.

Hours of Business: 9 a.m.-5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

Add 15\% VAT to ALL PRICES

Carriage and Packing charge extra on all items unless otherwise stated.

SOLARTRON
\(\begin{array}{lr}\text { 7055 Microprocessor Conir olled D.M.M } & \text { \&975.00 } \\ \text { Without processor option } \\ \text { With processor option } & £ 1300.00\end{array}\)

FERROGRAPH
Tape Recorder Test Set
RTS2. 2 Only
\(£ 395.00\)

NEW EQUIPMENT
HAMEG SCOPES
(from W. Germany) from 10 MHz to 50 MHz See ad. at top of index page at rear of this magazine
AVAILABLE EX-STOCK ICE MULTIMETERS (from Italy) Microtest 80, Supertesters 680G \& 680R and their accessories always in stock.

FROM THE USA.
DE FOREST ELECTROHICS
Wher ceo display DMAT

In+d málationith c 7.00 .xat

HEWLETT PACKARD
Universal Bridge B642

No. 1 in Second User rest Equipment

\section*{RIDGES}

ENERAL RADIO
Imitance Bridge 1607A
\(£ 750\) j08A LCR Bridge. Accuracy iypically \(£ 1450\)

\section*{ARCONI INSTS.}
niv. Bridge TF \(1313 \mathrm{~A}(0.1 \%) ~ £ 790\) Situ Univ. Bridge TF2701 \(£ 395\) niv. Bridge TF 1313

\section*{IAYNE KERR}
niv. Bridge B221 (0.1\%) ow Impedance Adaptor 0221 niv. Bridge B642
C. Testamatic A60
£75

\section*{ALIBRATION EO}

C Viltage Source \& AC/DC Diff. oltmeter 7418
```

UKE

```
\(33 A B\) AC / DC Differential Voltmeter

\section*{EKTRONIX}
me Mark Generator 184
£275 me Mark Generator 2901
£450
1S Pulse Generator 2101
£525

\section*{IGITAL COUNTERS}

\section*{OULD ADVANCE}

00 MHz Counter TC \(15+15\) P1 £495 OMHz Counter TC 17 or TC17A £195

\section*{K}
\(25 \mathrm{MHz} \mathrm{Multi-Function} \mathrm{Counter}\) \(910 \mathrm{~A}-01\)
20 MHz Communications Counter 920A-06
£490
25 MHz Multi-Function Counter 925A £405 24 MHz Univ. Timer Counter. 953A-15-16 £850 15 MHz Communications Counter \(980 \mathrm{~A}-01\) 20 MHz Multifunction Counter 912 A
\(£ 480\)

\section*{HILIPS}

GHz Timer Counter PM6615 £795 12 MHz Freq. Counter PM6645
\(£ 500\)
\(2 \mathrm{MM} z\) Automatic Freq. Counters 16664
20 MHz Counter PM6614 £305 \(\mathrm{MHz}_{7} 9\) digit Unv Counte 16611/02
OMHz Counter Timer. PM 6604
YSTRON DONNER
Freq. Counter 6220

\section*{IGITAL VOLTMETERS}

\section*{MULTIMETERS}

OVANCE UKE
/2 digit D.M.M. 8600 A /2 digit D.M.M. \(8600 \mathrm{~A}-01\) 300A D.M.M
300A D.M.M. \(51 / 2\) digit
£285 /2 digit D.M.M. 8022 A (NEW) \(£ 89\) /2 digit D.M.M. 8020 A £99 EWLETT PACKARD \(/ 2\) digit D.M.M. \(34702 A+34740\) A £295 /2 digit D.M.M. 3490A ... \(£ 550\) ILIPS
digit D.M.M. PM \(2424 \quad £ 300\) / digit D.M.M. PM2513A
£300 utoranging D.M.M. PM 2514 £ 125 toranging D.M.M. PM2527 £400
M.M. PM 2517 E
M.M. PM 2522
M.M. PM 2523
V.M. PM2443
£120
£200
£175
£235 £350

\section*{weston}
\(31 / 2\) digit D.M.M. 4449 .. \(£ 49.50\) SCHLUMBERGER-SOLARTRON \(51 / 2\) digit Digital Multimeter A243

41/2 digit D.M.M. 7050
£595 7065

Entrolled)
£ 1150
- with processor option
£1450

\section*{OSCILLOSCOPES}

\section*{COSSOR}

35 MHz Dual Trace CDU \(150 \quad £ 450\) 75 MHz Dual Trace 4100
£695 HEWLETT PACKARD
500 KHz High Sensitivity \(130 \mathrm{C} £ 345\) 75 MHz Dual Trace 1707 B £925 T.D.R. System 140A + 1415 A
£1 200
T.D.R. System \(140 B+1415\) A
\(£ 1500\)
75 MHz Dual Trace 1707A .. £850 PHILIPS
15 MHz Portable Dual Trace PM3211 \(£ 450\)
25 MHz Portable Dual Trace PM3212 £625
25 MHz Portable Dual Trace PM3214 £700
120 MHz Poriable Dual Trace PM 3260 £1095 100 MHz Portable Dual Trace PM3262
£1300

\section*{TEKTRONIX}

10 MHz Dual Trace Battery Miniscope 326
£795
24 MHz Dual Trace \(545 \mathrm{~B}+\mathrm{CA}\) £299 50 MHz Dual Trace \(547+1 \mathrm{~A} 1 \quad £ 775\) 25 MHz Split Screen Storage Scope 434 £1600 Large stocks of Plug Ins for 500 series mainframes at new low prices. Details on request.
500 MHz Scope \(7904 \mathrm{c} / \mathrm{w} 7 \mathrm{~F} 19\), 7A26, 7B92
£5995
35 MHz Scope T932 \(£ 550\)
1 MHz Miniscope/D.M.M. 213 £950 Vectorscope 526

〔550
TELEQUIPMENT
10 MHz Single Trace P7CRT S54AR (Mint)
£175

\section*{OSCILLOSCOPE PROBES}

ELECTRONIC BROKERS (NEW)
X1 Probe Kit EB90
X10 Probe Kit EB9 1
\(\times 1 \times 10\) Probe Kit EB95

\section*{RECORDERS}

\section*{BRUSH}

Multipoint 8 Channel Chart Recorder 816

\section*{PHILIPS}

Single Channel Chart Recorder PM81 10
£225

\section*{RACAL}

Store 4FM Tape Recorder
\(£ 2600\)
SHANDON SOUTHERN
6 Channel Recorder 10-650
£725

\section*{WATANABE}

6 Channel Chart Recofder MC641
£2250

\section*{SIGNAL SOURCES}

ADVANCE
J2E Oscillator (MINT) E90 J4 Oscillator

\section*{HEWLETT PACKARD}

Hewlett Packard 202H 54-216 MHz AM/FM
£495
203A Variable Phase Sine \& Square Wave Generator \(0.005 \mathrm{~Hz}-60 \mathrm{hHz}\)
£495
651 B Oscillator \(10 \mathrm{~Hz}-10 \mathrm{MHz}\). \(0.1 \mathrm{mV}-316 \mathrm{~V}\) into 50 or \(600 \Omega\) Sine Wave only. Metered \(p / p\)... \(£ 415\) 608 D VHF Signal Generator 10 \(420 \mathrm{MHz} 0.1 \mu \mathrm{~V}-\mathrm{O} 5 \mathrm{~V}\) into \(50 \Omega \mathrm{AM}\) : 0-95\%
£420
608 E VHF Signal Generator, 10 480 MHz
608 V VHF Generator. 10.455 MHz
£450
612A UHF Signal Generator. 540-
1230 MHz
. \(£ 850\)
1 MHz
£750

\section*{MARCONI INSTRUMENTS}

TF144H/4 AM Signal Generator. \(10 \mathrm{kHz}-72 \mathrm{MHz}\)
£750
TF144H/4S AM Signal Generator. Same spac. as \(144 \mathrm{H} / 4\) but hermetically sealed meters £550 TF8010/1 AM Signal Generator. \(10 \mathrm{kHz}-470 \mathrm{MHz}\)........ \(£ 400\) TF801D/8S AM Signal Generator. Similar spec. to TF801D/1 . . £600 TF8010/5M1 AM Signal Generator. \(10-400 \mathrm{MHz} 0.1 \mu \mathrm{~V}-1 \mathrm{~V}\) into \(50 \Omega\). AM 0.90\% @ 1 1kHz Demodulator output, 75 MHz Crystal \(£ 450\) TF995B / 2AM /FM Signal Generator. \(200 \mathrm{kHz}-220 \mathrm{MHz}\)........ \(£ 675\) TF1101 R-C Oscillator. 20 Hz 200 kHz . Metered P/P \(£ 100\) TF1370A R-C Oscillator £275 TF2012 UHF Signal Generator. 400520 MHz \(£ 900\) TF2005R Two Tone AF Signal Source. 2 identical oscillators \(20 \mathrm{~Hz}_{z}-20 \mathrm{kHz}+\) \(10 \mathrm{dBm} 0 / \mathrm{P} 0-111 \mathrm{~dB}\) attenuator
£299
TF 2101 MF Oscillator. \(30 \mathrm{~Hz}-550 \mathrm{kHz}\) £115
TF2102 M/i AF Oscillator \(3 \mathrm{~Hz}-30 \mathrm{kHz}\) £195
TF1060/3 UHF Signal Generator \(470-960 \mathrm{MHz}\)
£750 TF2100 Oscillator
£150

\section*{SINGER}

FM-10 Decade Switched FM Signal Generator. Up to 500 MHz . \(£ 1200\)

\section*{PHILIPS}

PM5167 Function Generator. 1 MHz . 10 MHz Sine, square \(\pm\) pulse, ramp, triangle, single shot with variable phase
£675
PM 5127 Function Generator. Sine / square/triangle/pulse signals £395 PM5108 Function Generator. Sine, square / triangle / pulse signals. Offset. TTL output. Stepped and continuous altenuation. Frequency range 1 Hz 1 MHz \(£ 250\)
PM5324 AM / FM Signal Generator
£450
TELONIC
2003 Sweeper Main Frame c/w 3302, 3331,3341, 3351, 3360 and 3370 modules. Frequency range 0 . 300 MHz
£1150

\section*{TEXSCAN}

VS40 Sweep Generator. Frequency range \(1 \mathrm{MHz}-300 \mathrm{MHz}\)..... £650

\section*{SOUND LEVEL METERS}

BRUEL \& KJAER
Sound Level Meter 2203 ... £500

\section*{GENERAL RADIO}

Portable Sound Level Meter, 1983
£190
Portable Sound Level Meter, 1981
£575
1933 \& 1935 Portable Sound Level
Meter with data cassette recofder
£2600

\section*{MISCELLANEOUS}

\section*{adVance}

Power Supply PMA 50
0-15V 5A (selectable)
\(£ 45\)
Power Supply PM 53
\(0-15 \mathrm{~V} 10 \mathrm{~A}\) (selectable) \(£ 65\) OFS2B Off Air Frequency Standard 1 MHz and \(10 \mathrm{MHzO} / \mathrm{P} \ldots £ 200\) BIOMATION
16 Channel Logic Analyser 1650
£4100

\section*{BOONTON}

True R.M.S. Voltmeter 93A : \(£ 375\)
BRADLEY
DC Voltage Calibrator 126B . £275
BRUEL \& KJAER
Electronic Voltmeter 2409 . £225

\section*{BRUSH}

XY Plotter Model 500
£550

\section*{DATA LABS}

Power Line Disturbance Monitor \(£ 300\)
DYMAR
R.F. Power Meter 1561 £350

GRETSCH
Complex Ratio Bridge CR1B
\(£ 600\)
GENERAL RADIO
Vibration Analyser 1911A . £2100
HEWLETT PACKARD
Camera 195A
£295
Camera 198A £200
True R.M.S. Voltmeter 3400A \(£ 505\)
16 Channel Logic Analyser 1600A
£2050
AC Voltmeter 400 F
£195
Wave Analyser 310A £950

\section*{LYONS}

Pulse Generator PG 22
£225
MARCONI INSTRUMENTS
AF Transmission Test Set TF2332
Quantization Distortion Tester TF 2343
Electronic Voltmeters TF2604 £400
Q meter system TF1 245/46/47
Divider TF2422
Sine Sq. Pulse \& Bar Generator TF2905 £450
AM/FM Mod. Meter TF2300A \(£ 550\)
RF Millivoltmeter TF2603 .. £525
Diff Voltmeter TF2606
D.F.M. TF2331 £200
A.F. Power Meter TF893A
£475
P.C.M. Regen. Tester TF2342 £375

Quartiz. Dist. Tester TF2343 . £400 L.F. Attenuator TF2162 0-1 11 dB . 0.1 dB steps DC- 1 MHz 600 . £ 135 PHILIPS
Pulse Generator PM5715
£575
AC Millivoltmeter PM2454B . £299
Pattern Generator PM5501
£180

\section*{Appointments}

Advertisements accepted
DISPLAYED APPOINTMENTS VACANT: \(£ 10.00\) per single col. centimetre (min .3 cm). up to 12 noon Monday, LINE advertisements (run on): \(£ 1.50\) per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\section*{Electronic EngineersWhat you want, where you want!}

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around \(£ 4000\) to \(£ 8000\) p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form:
Name
Address

\title{
Radio Communications Electronics Engineers and Software Designers
}

\author{
Mid-Sussex-S.W. London
}

Salaries up to \(\mathbf{\varepsilon 8 , 0 0 0}\)
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control. signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

\section*{DATEK SYSTEMS LTD.}

A leading company in the phototypesetting indusiry manufacturing minicomputer based VDU terminals, incorporating the latest in MSI and LSI techniques in real time applications.

\section*{We require}

\section*{SENIOR TEST ENGINEERS}

Salary \(£ 5,500+\)
Qualified to at least HNC with considerable experience in digital electronics including some knowledge of machine language software
A background of word processing or printing industries would be beneficial The position involves occasional overseas travel.

\section*{JUNIOR TEST ENGINEERS}

Salary \(£ 3500\) +
This position requires a young engineer with HND, HNC or C and G Full Tech in Electronics.
Some experience of TTL logic or microprocessors would be anaadvantage but a real interest in electronics is more valuable
The company provides 4 weeks holiday and pension scheme
Write or phone for application form to: Miss Buk, Datek Systems Led. 849 Harrow Road, Wemblev. Middx. Tel. 019040061.

\section*{Appointments}

\section*{Our channels are open for communication}

The sophisticated communications systems and ancillary services produced by IAL help people all over the world to stay in touch. However, on this occasion, we would like you to do the communicating.
An increasing number of projects, embracing everything from mobile radio centres to all types of telephone telegraph and data switching centres, means we need additional specialist personnel. It is in your interest to get in touch.
Installation/Commissioning Engineer
£5200-£6800
You will lead a small feam responsible for installing all types of communication systems and allied equipment. As well as being appropriately qualified, you will have about seven years' experience of radio link installation, lesting and commissioning, three of which should have been spent at supervisory level and some overseas. The job will necessitate travelling abroad for limited periods at short notice, offen to remote areas. Quote ref K/025.

\section*{Maintenance Technician Electronic Services Unit}

You will be involved in the installation, commissioning and maintenance of a wide range of electronic, digital and radio equipment. Maintenance is to component level, including DIL/IC packages, transistorised equipment and some valve circuits. Experience is needed in some of the following fields: facsimile, computer peripherals, VHF radio, the control/operation of systems over private wires and data transmission. You should be qualified to ONC Electronics or equivalent, capable of working unsupervised and under pressure and prepared to be on out-bf-hours standlby. Quote ref K/026.
Salaries for both positions are negotiable and are at present under review; there are also a wide range of attractive company benefits. For more information, please contact the Senior Recruitment Officer, IAL, Aeradio House, Hayes Road, Southall, Middlesex. Tel: 01-574 5134. Systems and Services-worldwide

\section*{ELECTRONICS TECHNICIAN}

Univaraity College, London
TECHNICIAN Grade 5 reauired in connection with the setting-up and day-to-day running of first degree laboratory courses in Speech Science

Work involves helping students, staff and patients; technically it is primarily elećtronic but some Mechanical Workshop ex perience an advantage. Applications in acoustic measurements; microprocessors; TV displays; video and audio recording. New Laboratory in the Department of Phonetics and Linguistics which has an established technical group with good existing facil ities. Salary in range \(£ 4.776\) £5.448 (further increase 1/4/ 80), inclusive of London Weigh ting). Application form from Per sonnel Officer (Technical Staff BB1). University College, Lon don, Gower Street, London WCIE 6BT

\section*{UNIVERSITY OF GLASGOW} DEPARTMENT OF PSYCHOLOGY

\section*{LABORATORY TECHNICIAN SUPERVISOR}

GRADE 6 technician required with super visory responsibility for the operation of teaching laboratory facilities in a laboratory dealing with Introductory and advanced level courses in Psychology. Construction of ment. Supervision and training of other technical staff and lialson with other laboratory staff. Experlence in electronic/ telecommunications deslrable. Relevant H.N.C. or equivalent with minimum of 9 years experience required. Salary range £4584-£5475 (rising to £4884-£5832 on 1st April).

Applications, giving full details of age, experience and qualifications should be addressed to the Personnel Officer. Unlversity of Glasgow. Glasgow, G12800. Ref No. 4574 WA

\section*{ROHDE\&SCHWARZ}

\section*{ndependent concern represented.in 80 countrie}

\section*{SENIOR TEST AND CALIBRATION ENGINEERS}

With a background in RF and microwaves, experienced in analogue, digital techniques, logic and microprocessor controlled ATE
also vacancies exist for

\section*{TEST \& CALIBRATION ENGINEERS}
with knowledge of one or more of the above techniques
We offer an exceptional salary * Performance related bonus scheme * Training abroad * Prospects of promotion * A wide variety of work * A happy atmosphere * Non-contributory pension scheme * Subsidised restaurant.

Please write or phone to
Mr. Z. Eres (Technical Manager) extension 43

Electronic Instruments \& Communications Equipmen

Roebuck Road
Chessington
Surrey KT9 1LP
01-397 8771

\section*{WEST YORKSHIRE METROPOLITAN COUNTY COUNCIL}

\section*{RADIO ENGINEER}

\author{
Post Ref: ES 38004
}

\author{
Salary £5,220-£5,547
}

Radio Engineer to plan and supervise changes to its network of 320 vehicle-mounted radios, 5 VHF transmitters, 14 UHF Links and numerous Land Lines; to let contracts for radio-telecommunications installations and repairs; to organise a false reporting service and steadily improve the benefit / cost ratio of the mobile-radio system.

An HNC Certificate or equivalent is desirable but experience of mobile-radio system design. Post Office Line techniques and Home Office Regulations are most important. The knack of maintaining good personal relationships is essential and a knowledge of PYE Radiotelecommunications would be an advantage.
A. H. Evans (Wakefield 67111 Ext: 3536) will answer queries.

Application forms from Room 238. Directorate of Planning. Engineering and Transportation, County Hall. Wakefield to be returned by 7th March, 1980

\title{
HNC Level Engineers~
}

\author{
(Electrical or Electronic)
}

\section*{Train for the future as a Broadcast Transmission Engineer}

\section*{Through our network of over 500 transmission stations the} IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities.
We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all over the couniry.
Internal promotions and continued expansion have created a number of opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do not already have one, we will assist you by arranging and paying for instruction.
On the satisfactory completion of the training programme, your salary will be \(£ 5,880\) per annum and then rise annually to \(£ 7,280\) per annum, with further progression to \(£ 8,202\) per annum. (During the training period you will receive a salary of up to \(£ 4,700\) per annum, depending upon experience.) At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition - all of our Regional engineering managers started their careers at transmitting stations.
Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.
Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court. Winchester, Hampshire SO21 2QA. Telephone: Winchester 822574.

\section*{ELECTRONICS} WORKSHOP TECHNICIAN
to work in the above Department. The duties of the post will include the construction and modification of equipment for the Department's teaching and research work. Servicing. and repair of a wide range of equipment is also a requirement.

Applicants for the post should have. an appropriate ONC or equivalent qualification and not less than seven year's relevant experience in engineering.

Salary scale £3996 to £4668, Grade 5 (to be reviewed in April 1980) with point of entry dependent on qualifications and experience. Grant towards removal assistance to Dundee.

Application forms and further particulars may be obtained from the Establishments Office, The University, Dundee DD1 4HN and should be returned by 5th March. 1980. Please quote Ref: EST/106/80WW. (171) College of Wales, Aberystwyth, and with overseas groups and the ranges in the UK and abroad for periods of a few weeks.

The vacancy is as Professional and Technology Officer Grade III level. Applicants should have at least ONC or a TEC/SCOTEC Certificate with a minimum of 4 years experience including the design, construction and operation of analogue and digital circuits.

The Salary scale is under review but currently stands at \(£ 5309\) £5876, inclusive of Outer London Weighting Allowance. There is a noncontributory pension scheme. The post will be located at Ditton Park, Slough until mid 1981 when it is anticipated that the work will be transferred to the Laboratories' site at Chilton, Oxfordshire.

Please request an application form, quoting reference VN5017 from:
Mrs Jane Williams, Rutherford and Appleton Laboratories, Chilton, Didcot, OXON OX11 0QX. Tel: Abingdon (0235) 21900 - Extension 510.

\section*{Rutherford and Appleton Laboratories}

Royal Military College of Science, Shrivenham Lecturers/Senior Lecturers Electronic Engineering

The College is a residential establishment, running first degree and postgraduate CNAA courses. Army Staff courses and specialist courses, for both civilian and military students. It has an academic staff of over 100, whose duties are similar to those of University Lecturers. There are comprehensive laboratory, computing, workshop and library facilities, and staff are given every opportunity to become involved in research and development work, and read for higher degrees.

The Electronics Branch is responsible for instruction in the principles of electronic devices, the fundamentals of signal transmission and processing, and in the applications of these topics to telecommunications, radar, telemetry and radio guidance. The Lecturer(s) appointed will be expected to take an interest in one of the topics listed above, but the posts will be mainly concerned with digital electronics and signal processing. For further information contact Professor Hill, Shrivenham 782551 , ext. 290.

Candidates must have a first or second class honours degree or equivalent in electrical engineering or applied
physics (with electronics). Experience in the field of electronics or communications is desirable and preference will be given to candidates with experience in the design and application of modern digital electronic systems. including microprocessors.
Appointment will be as Senior Lecturer (\(£ 6330-£ 8705\)) or Lecturer (\(£ 4210-£ 5485\)) according to age and experience. At least 4 years' post graduate experience is necessary for appointment as Senior Lecturer. Starting salary may be above the minimum at each level. Non-contributory pension scheme and promotion prospects to a salary of \(£ 11,000\) and above. Accommodation may be available for single staff and housing for married persons.

For further details and an application form (to be returned by 14 March 1980) write to Civil Service Commission, Alencon Link Basingstoke, Hants. RG211 JB , or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote reference: S(C) 908.

\section*{In Electronics, there's Good and UHPRA Good.}

UEL have established a formidable international reputation for the innovation and manufacture of advanced technological equipment. By applying their engineering ability in a highly sophisticated and creative way, UEL have been awarded numerous long term contracts for which they require a diversity of talented personnel. Because of the high standards employed in . these projects, we are therefore looking for the following experienced people.

\section*{Electronic Development Engineers £5000-£6500}

You should be a graduate or equivalent, with a minimum of 2 years development experience in an electronic laboratory.
A knowledge of Radio Frequency and Analogue Circuit Design is necessary (ideally on MOD project work). Working within a close knit team, you will report to a Project Engineer and be assisted by laboratory technicians.
* A specific vacancy also exists for a Test Equipment Design Engineer *.

\section*{Quality Engineers}

\section*{£4500-£6000}

You should ideally be an experienced Quality Engineer, but suitable Inspectors or Test Engineers would be considered. Holding at least an ONC; you should have a good command of English combined with some mathematical ability. Responsibilities include development of quality procedures for new product ranges and the maintenance and development of existing product quality.

At U'EL you will work in a small group environment and can look forward to a stimulating and demanding job with good career prospects. There are many benefits - sports and social club, contributory pension scheme, 22 days annual holiday, subsidised canteen and a weekly attendance bonus.
If you feel you are one of the few who can help by injecting a rather rare combination of skills, expertise and enthusiasm, we would be pleased if you'd contact us.
To find out more, please ring
Gavin Rendall on 01-578 0081.

\section*{CLUNKCLUNK, BUZZBUZZ, SWISHSWISH SIZZLESIZZLE, YUMYUM, BRMMBRRM...}

\section*{SALES ENGINEER Public Address Systems}

EXCELLENT PROSPECTS - A Public Address Sales Engineer with wide experience is required to head up the Vortexion Division of this Company.

The applicant must be experienced in this field, prepared to handle sales enquiries through to the wiring and installation stage, also to develop and expand the sales of Vortexion amplifier equipment to existing Agents / Distributors in the UK. In this position he/she will be responsible to the Sales Manager.

The successful applicant will be selfmotivated, with a professional approach and a willingness to travel, initially in the UK and later in export markets

An excellent career is assured, together with negotiable salary/commission, company car, incurred expenses, BUPA Plan, and a good working environment in the suburbs of London. Age is not important, experience and a desire to carry out a job well is paramount.

Applications should be addressed to: Personnel Manager, Clarke \& Smith Mfg Co Ltd, Melbourne House, Melbourne Road, Wallington, Surrey SM6 8SD. Tel: 01-669 4411 , ext 32

Not going mad - yet - just tuning in to hi-tech, '80s

\author{
HAVE YOU? \\ TwiddleTwiddle, SwitchSwitch, SloopSloop DingDing.... Time to get up and Ring: CHARLES AIREY ASSOCIATES
}

CURRENT VACANCIES INCLUDE
Hardware Design Consultant for prestige group involved on application of compurers and computer hardware to a variety of projects which include: Microprocessor based astronomy instruments, multiprocessor systems for digital speechover satellites and equipment based on Bi-Polar microprocessors.
Project Engineer for small dynamic company with a very wide range of products, including multi-channel radio telemetry, multiplexing equipment and distance measuring equipment. Experience in modern circuit design, appreciation of microprocessors, and ideally some knowledge of electro-optics. Berks. to \(£ 10,000\).

Principal and Senior Engineara for company relocating to Dorset. 'Product lines include sonar, video cameras, film 'processing and G.P.O. Line communication equipment. To sonar, vid
\(£ 10.000\),

Dasign Development Engineere working for advanced projects group on Blomedical Design Development Engineers working for advanced projects group on Blats, electric vehicle technology and novel line communication equipment. Oxford. To products.
£8.000.

Young Engineers with experience or wishing to gain experience in microprocessor hardware/soffware to join a team engaged on engineering "the ultimate" in ATE. High and low level language employed. London. To \(\S 7,000\).

Design Development engineers for RF and microwave test equipment, incorporating digital and microprocessor automation techniques. Devon and Sussex. To £7,000.

Computer Engineers for either technical support, field service, permanent site or systems test. Vacancies throughout the UK.

For further details etc.

\title{
Electronics Field-Technicians Company Car
}

Linotype-Paul field technicians install, commission and service real time high technology systems for the printing/publishing industry. Our technicians can think logically, work alone and provide a timely, accurate service. Because they meet customers, often at high level, they also have to be diplomatic, tactful and friendly.
We want to build our team with men and women who are qualified to ONC level and have several years experience on electronics equipments which we will complement with progressive product training.
We provide a competitive salary and generous expenses and benefits. As there is considerable travel, sometimes involving overnight stays, a company car is provided which is available for private use. In time there may be the opportunity to work abroad for short periods.
We are continually expanding our markets and products and career prospects could not be better.
If you are interested contact: Personnel Department, Linotype-Paul Limited, Kingsbury Road, Kingsbury, London NW9. (01-205-0123)

\title{
Electronics Engineers Donotmissthis opportunity!
}

Apply yoúr inventor's ingenuity in designing, developing complex communication systems for commercial and military use over the next decade and beyond.

Our work demands a dedication not normally experienced in an electronics manufacturing environment. Highly skilled qualified men and women are needed to make a useful contribution in any of the hardware/software areas below.

\section*{Digital Design \\ Micro-Processors \\ Circuit Design \\ UHF/VHF Development}

\author{
A/D Signal Processing ECM and ECCM Systems Analysis
}

Send a brief C.V., give me a ring to arrange an informal chat with one of our Senior Engineers, or just complete the coupon and send it to me for further information.

\section*{Jack Burnie, Marconi Space \& Defence Systems Limited,}

Browns Lane, The Airport, Portsmouth PO3 5PH,
Tel: Portsmouth 699414.
Name \(\qquad\) Address

\section*{IMPERIAL COLLEGE}
(UNIVERSITY OF LONDON) DEPARTMENT OF COMPUTING AND CONTROL

Applications are invited for a

\section*{RESEARCH ASSISTANT}
to work on an SRC funded project which involved the design of communication techniques for distribution process control, based on a network of 4LSI II microcomputers.

Candidates should have a degree in computer science or digital electronics and post graduate experience in computer communications, distributed processing, or real-time mini or micro computer systems.
The appointment will be for 2 years, with a salary on the 1 A scale, \(£ 4335\) \(£ 7521\) (under review) plus \(£ 740\) London Allowance and USS.

Applications, including curriculum vitae and the names and addresses of two referees, should be sent to Dr. M. Sloman, Computing and Control Department, Imperial College, 180 Queensgate, London SW7 2BZ, from whom additional information can be obtained.
(126)

\section*{UNIVERSITY OF SURREY \\ ELECTRONIC/ ELECTRICAL ENGINEERING OPPORTUNITIES}

Owing to the expansion of the highly successful Industrial Electronics Group in the Deparmenti of
Electionics and Electrical Engineering at the UniverElectionics and Electrical Englineering at the Univer
sity of Surfey, vacancies exist, immedialdy, for technicians (engineers) who are keen to further their experience th a whide range of elec
qualified o ONC Cevel or higher.
The work will involve operating on a project basis. covering all phases of prototype quipment Tanufscture, development and documentation.
There is an opportunity to spectalise in olectromechanical destgn and draughting if desired. The Group at present conssists of small team, of
Professional Engineept and Techniclans Professional Engineeff and Techniclans who laise
closely with ac ademic staft in problem solving for closer. with academic stat in probliem solving for
industry. Projects usually ental the development of novel instrumentation covering communication, non destructuve testing and signal processing fields
with increasing emphasis on micro-processor based with increas
systems.
systerns.
Commen
within the range
E 3372 . 44668 both under review
and public holidays. Generour sick pay and superary - nuation schemes exists.

Normal hours are \(37 / 2\) per week and fiellible working can be arranged
Day release is
qualifications. The University facilites provide a wide rat in sot and sports opportunities. Assistance range ol social moving house will be given where appropriate. An informal disccussion or visit can be erranged by
telephoming Mr. Matley. Head of Indusirial tronics Group (Guilaford 71281 , ext. 341). or writein confidence. 10: The Stath Officer, University of
Surrey. Guildford. Surrey GU2 5 KM . 149)

\section*{kadel vision}

\section*{A.V. AND VIDEO SERVICE ENGINEERS}

We require service engineers with specific experience of Tape/Slide systems and/or Video. Salary according to age and experience.

Contact: Mrs. J. Histon KADEKVISION LIMITED Shepperton Studio Centre Studios Road
Shepperton, Middlesex
Chertsey (093 28) 68941

\title{
Graduate Electrical/ Electronic Engineers-
}

\section*{Research and Development in telecommunications}

The Directorate of Telecommunications, London, is responsible for the extensive and sophisticated facilities used by the police, fire, prison and associated services. The role of the Research and Development Section is to ensure that maximum benefit is derived from the use of modern techniques.

The training and experience given to Graduate Engineers - ranging from the initial interpretation of non-technical statement of requirement through to the management of design. development and contract - is carefully planned by a senior engineer and covers the training requirements of the IEE.

You should preferably be aged under 26 and must have a good honours degree in electronics or electrical engineering or an allied subject.

Salary (under review) starts at a minimum of \(£ 5035\). Completion of training (usually one or two years) leads to a salary rising to \(£ 7680\). Promotion prospects
Non-contributory pension scheme.

For further details and an application form (to be returned by 13 March 1980) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG 21 1 JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote Ref: T/5308.
Home Office

\section*{LIVERPOOL AREA HEALTH AUTHORITY ELECTRONICS TECHNICIAN}
- (MEDICAL PHYSICS TECHNICIAN III)

Salary Scale: \(£ 4,605\) to \(£ 5,952\) per annum
Applications are invited from Technicians / Engineers with good general electronics experience for the above post which will involve the maintenance / development of equipment used in the Department of Nuclear Medicine at the new Royal Liverpool Hospital.
Application form available from the Personnel Department, Royal Liverpool Hospital, Prescot Street, Liverpool 7.
Closing date: March 7th, 1980.

SOUNDOUT Laboratories, Surbiton, Surrey, who manufacture a range of professional sound equipment, are looking for an experienced

\section*{TEST ENGINEER}
who has had extensive experience of testing amplifiers, mixers and other audio apparatus. The position entails total responsibility for final product approval. Remuneration up to £5,000 plus profit-sharing and a total package including BUPA, 18 days annual holiday and sickness benefit. Call John Sradius, Tachnical Director, on 01-399 3392.
āǵenč̆, n. Active operation, action. Concise Oxford Dictionary ELECTRONICS ENGINEERS FIELD SERVICE
If you want a free piece of our action. call now for a registration form - 24 hours on

01-464 7714 ext. 502

EIECTRONICS RECRUITMENT SERVIICF 309 HIGH RIAO COMGHTON FSSEX MCOM ITD.

\section*{Electronics \& Computer Test}

\section*{To £7,500}

Use your C\&G/ONC/HNC/Forces Training and good DIGITAL/ANALOGUE/RF experience to advantage. Work ing with state-of-the-art MINI/MICRO PROCESSOR LASER; ATE; COMMUNICATIONS; NUCLEONIC; CCTV and similar equipment. Most UK areas; from Technician to Manager.

For free confidential counselling and practical career advice contact GRANT WILSON ref: GW470.
TECHNOMARK, 11 Westbourne Grove, London W2 4UA. Tel: 01-229 9239 (01-229 4218-24 hrs). Engineering Recruitment Consultants.

The Whittaker Corporation of the U.S.A. is responsible for the staffing and management of three general hospitals in Saudi Arabia, where the task is to provide a high standard of Health Care in this rapidly developing country.
We now wish to appoint a man with \(2 / 3\) years \({ }^{2}\) experience of biomedical electronics who has successfully completed a formal course in biomedical electronic equipment repair.
The bencfits package includes free accommodation, life and medical insurance and return air fare. In addition, there are bonuses of around \(£ 5()\) after 6 and 15 months' service and an extra month's salary on completion of the 2 year contract.
Please write with full career details, or telephone ()1-584 7639).

James Macl)onald, Whittaker Life Sciences Limited, 19) Knightsbridge, London SW7.

\section*{ \\ }

Life: Somences Liti

\section*{Test Engineers}

Pye Telecommunications are a well established company, involved in the field of radio communications, both at home and overseas. The Pye trademark is synonymous with systems that are highly reliable. To ensure that reliability, we need Test Engineers to check our VHF/UHF systems to very exacting specifications prior to delivery.

We are looking for skilled men and women with experience of fault diagnosis, alignment and testing of electronic equipment, preferably communications equipment Formal qualifications are desirable, but less important than sound practical ability. Armed Forces experience would be particularly acceptable.

We can offer you job security and long term career opportunities, both within the company and the Pye and Philips Group as a whole. Our salaries are competitive and we offer up to five weeks' annual holiday. Attractive additional benefits include contributory pension scheme, good canteen facilities and assistance with relocation expenses where appropriate

If you are interested please contact: Jane Easy, Personnel Department, Pye Telecommunications Limited, St. Andrew's Road, Cambridge CB4 1DW. Tel: Cambridge 61222, ext. 755.

\section*{Pye Telecom}

\section*{Test Development Engineer}

Our Test Projects Section has an opening for a Test Development Engineer. In this job he/she will be developing practical production test methods for our broad range of integrated circuits.
The work covers evaluating test methods with the designers and producing test hardware and software, through to the production of efficient test facilities for use on sophisticated computer-controlled test equipment. This requires interfacing with the production, QA and circuit design functions of our business and thus offers a unique opportunity for those who wish to broaden their knowledge of electronics.
Applicants must have a minimum qualification of HNC plus a practical engineering background.
Write or phone for an application form to Shirley Cave, Resourcing Officer, Plessey Semiconductors Limited, Cheney Manor, Swindon, Wilts. SN2 2QW. Tel: Swindon 36251.

\section*{ELECTRONIC TECHNICIANS}

PRODUCTION
RESEARCH \& DEVELOPMENT and SERVICING

\section*{OXFORD} C \(£ 5,500\)

We are a small. young successiul com. pany, being the leading UK manufac. turers of microcomputer systems for research and education
We are offering the opportunity of varied and satisfying work on technically ad vanced equipment. We are looking for people who have some expertise working with complex TTL logic boards. Microprocessor experience is not necessarily required, but applicants must be eager to acquire expertise in this field
A salary of around \(£ 5.500\) is being offered together with good company benefits, and the possibility fo acquiring a 3802 com puter at low cost.

Interested? Plases phona Karen on Oxford 43244 for an application form
(135)

\section*{CAPITAL}

APPINTMENTS LTD.
FREE JOBS LIST
FIELD SERVICE ENGINEERS
BASIC SALARIES TO
\(£ 8,000 \div\) CAR

30 Windmill Street, London. W' 01-6375551

\section*{TOP JOBS IN ELECTRONICS}

Posts in Computers. Medical, Comms, etc. ONC to Ph.D. Free service.

Phone or write: BUREAUTECH, AGY, 46 SELVAGE LANE, LONDON, NW7. 01-906 0251.

\footnotetext{
UNIVERSITY OF LEEDS. ELECTRONICS TECHNICIAN - Grade 3, required in the Department of Phy. siology. The person appointed will be responsible to the Electronics Engineer for the development, construction and maintenance of with research and whi research and teaching of blo hold ONC or equivalent qualification in relevant subjects and have at least 3 years' appropriate experience. Salary from 1st April 1980 on the scale £3594-£4092. Applicaon the scale \(23594-\) s 4092 . Applicaand full experlence, together with the names and addresses of two referees, should be addressed to Mr E. French, Departmental Superintendent, Department of Physioogy, Worsley Medical and Dental Building, Leeds LS2 9JT. 1181

\section*{LABORATORY TECHNICIAN Gradc} ABequired for undergraduate teaching laboratories providing experimental instruction for students physics and astronomv. Qualifications C \& G Laboratory Techniclan Certficate or equivalent and relevant experience. Some experience in electronics an advantage. Salary (under review) in range \(\{4,487-£ 5.046\) inc. of London Weighting. Five weeks Daid annual holiday plus statutory and customary holidays at Christmas and Easter. Application form and further details from Personnel Officer (Technical Staff CJ21) University College London, Gower St. London WCIE GBT. 1104
}

\section*{Appointments}

\title{
Electronics Engineers
}

Linotype-Paul is in the process of expanding its Test Engineering facility throughout the production function. Recently considerable expenditure has taken place in the provision of additional sophisticated ATE facilities.
We seek a number of Engineers/Technicians with experience of digital electronics who may wish to become involved in ATE Programming. Ideally some previous experience of ATE would be an advantage, although Electronics Engineers having good hardware experience in logic techniques will be provided full appropriate programming training.
Consideration will also be given to recently qualified Electronics Engineers who seek their first industrial appointment.
Vacancies also exist for Engineers and Technicians to provide a wide range of duties on sophisticated digital equipment.
The above posts are open to both men and women
Assistance with relocation will be provided where appropriate.
Please write to the Personnel Department, Linotype-Paul Ltd, Runnings Road,
Cheltenham. Telephone Cheltenham 45001

\section*{Linotype-Paul}

\section*{WIRELESS TECHNICIANS}

We require staff, male or female, to prepare and maintain the latest in communications equipment used by the Police and Fire Brigades in England and Wales.
You will need to be qualified to at least City and Guilds Intermediate Telecommunications standard and be able to demonstrate practical skills in locating and diagnosing faults in a wide range of equipment from computer based data transmission to FM and AM radio systems. You would live near to and work from one of our service centres located at Andover, Hants: Bishops Cleeve, Gloucs; Hannington, Basingstoke, Hants; Shapwick, Somerset; Harrow, Middlesex.
Specialised courses or training are run to assist staff to keep up to date with developments and new equipment and there are opportunities for day release to gain higher qualifications. Applications from registered disabled persons will be considered.
Promotion prospects are good and the work represents a secure future with generous leave allowance and non-contributory pension scheme.
Possession of a driving licence is essential since some travelling will normally be involved.
The salary scale is as follows:- \(£ 3900\); \(£ 4160\); \(£ 4420\); £ 4680 ; £ 4940 ; £5200; £5530.
If you are interested in working with us, then write for further details and application form to :-
Mr. C. B. Constable, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW. Telephone 01 211-5293.

\section*{TRAINEE BROADCAST ENGINEERS}

ITN needs more engineers to support its expanding programme of news coverage - expansion which is expected to continue through the 80 s with the coverage - expansion which is exp
introducrion of the fourth channel.
Wé have a number of vacancies for Engineering Trainees - vacancies which could give you the opportunity to start a career in Broadcast Television Engineering with ITV.
Firstly, we need you to have a firm interest in pursuing a career in the technical side of broadcasting.
Then you should have completed or expect to complete theoretical training in Electronic Engineering or allied subjects this academic year.
Applicants may have a wide range of acceptable initial qualifications, but those generally most suitable are erther the ItC's Higher Technical Diploma. Higher Technical Certificate, HNC or HND
After a training period of nine months you would be employed on the operation and maintenance of a wide range of studio, outside broadcast and computer type equipment at ITN's Central London studio centre near Oxford Circus from which the ITV national news programmes are networked.
Successful applicants will join ITN in the summer of 1980 .
Starting salaries would depend on qualifications and experience, but would lie withın the range of \(£ 3,857\) (at 18) to \(£ 4.898\).

\section*{Interested}

Please call us on \(01-6373144\) for an application form quoting vacancy number 40799 or write 10: The Director of Engineering. ITN House, 48 Wells Street. London W1P 4DE, with a short resume of your interests, qualifications and experience. (178)

\section*{SCOTTISH HOME AND HEALTH DEPARTMENT}

\section*{WIRELESS TECHNICIAN}

Applications are invited for one post of Wireless Technician in the Scottish Home and Health Department.

\section*{LOCATION:}

The post is in Inverness.

\section*{QUALIFICATIONS:}

Candidates must hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of a higher or equivalent standard.

\section*{EXPERIENCE:}

3 years' appropriate experience.

\section*{STARTING SALARY:}
\(£ 3,900\), scale maximum \(£ 5,530\).
Applicants should have sound theoretical and practical knowledge of Radio Engineering and Radio Communications equipment in HF , VHF and UHF bands. The work involves installation and maintenance of equipment located at considerable distance from headquarters. A clean current driving licence and ability to drive private and commercial vehicles are essential.

The appointment is unestablished initially but there is prospect of an established (i.e. permanent) appointment after 1 year's satisfactory service.

Application forms and further information are obtainable from Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH 1 3DN (quote ref: PM(PTS) \(2 / 2 / 80\)) (031-556 8400, Ext. 4317 or 5028).

Closing date for receipt of completed application forms is 18 April. 1980.

\section*{DRG}

Flexible Packaging

> INSTRUMENTS \& ELECTRONICS SUPERVISOR

DRG Flexible Packaging is one of Europe's largest converters of protective packaging materials using a wide variety of sophisticated plant and machinery.

There is a vacancy for a Supervisor in the instruments and electronics section of the engineering department. The section consists of six electronics and three industrial technicians and is responsible for the maintenance and development of industrial electronic equipment including photo-electric, process control and measuring equipment and machine drives. The section works mainly double shift (although it serves a treble shift factory) but the Supervisor's job is a day position. The successful applicant will have had several years' experience in electronics and hold a relevant qualification such as City and Guilds Full Technical Certificate.
The Company offers a competitive salary, 4 weeks holiday a year, a contributory pension scheme and other benefits associated with working for a large company.

Applications should be made in writing, giving brief career details and current salary to:

\section*{Mr. P. Hawkins \\ DRG FLEXIBLE PACKAGING \\ Filwood Road \\ Fishponds, Bristol BS 16 3RY}

A Dickinson Robinson Group Company

\section*{R \& D Engineers}
required to work on digital circuits for micro-processor based industrial and commercial systems.

The candidate should have a working knowledge of TTL and CMOS logic and have experience of programming at assembler language level for micro-processor systems.

Engineers should hold a degree / HNC or equivalent qualifications. Salary will be commensurate with qualifications, age and experience.

If you are seeking an enjoyable position involving both hardware and software development, write giving your career to date or telephone

\section*{Dr. G. O. Towler \\ (New Product Development Manager) \\ British Relay Electronics Ltd. \\ 32 Biggin Way \\ Upper Norwood \\ London, SE19 \\ Tel. 01-764 0931 \\ }

SENIOR ELECTRONICS ENGINEER

\section*{Gloucestershire}

The Company, pleasantly situated on the outskirts of Cheltenham, is a leading manufacturer of aircraft gas turbine fuel systems and associated equipment. Our Electronics Laboratory has a vacancy for an experienced Electronics Engineer to join a small team engaged in the design and development of special purpose prototype instrumentation and control equipment

Applicants, male or female, educated to at least HNC / HND standard or equivalent should have practical experience in current digital and analogue design techniques
In addition to a competitive salary, we offer excellent fringe benefits including a selffinancing productivity scheme and excellent pension scheme. Generous assistance with relocation expenses to this desirable Cotswolds area will be given where appropriate
Please write giving details of career to date and salary expectations to: The Senior Personnel Officer, Dowty Fuel Systems Ltd, Arle Court, Cheltenham or telephone: Cheltenham 21411 Ext. 163 for further details and an application form.

\section*{RADIO OFFICERS}

If your trade or training involves radio operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation
A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee Radio Officers. Candidates must have had at least 2 years' radio operating experience or hold a PM G, MPT or MRGC certificate, or expect to obtain this shortly. Registered disabled people may be considered.

On successful completion of 40 weeks' specialist training appointees move to the Radio Office Grade.
Salary Scales:

\section*{Trainee Radio Officer} Age 19 £ 3271 Age \(20 £ 3382\) Age \(21 £ 3485\) Age 22 £ 3611 Age 23 £ 3685 Age 24 £3767 Age \(25+\mathbf{£ 3 8 5 6}\)

Radio Officer
Age 19 £4493
Age \(20 £ 4655\)
Age \(21 £ 4844\)
Age \(22 £ 4989\)
Age 23 £5249
Age \(24 £ 5559\)
Age \(25+£ 5899\)
then by 5 annual increments to \(£ 7892\) inclusive of shift working and Saturday, Sunday elements.

For further details telephone Cheltenham 21491 Ext. 2269, or write to the address below.

Recruitment Office
Government Communications Headquarters
Oakley, Priors Road. Cheltenham GL. 52 5AJ
(109)

We require two additional qualified

\section*{ELECTRONIC ENGINEERS}
to work in our acoustics and electronics divisions on the testing and development of our prestige range of loudspeakers, amplifiers and tuners

The electronics post is based at our factory in London S.E.6. within 20 minutes of Central London, as is the acoustics post which is based at our Mitcham Loudspeaker Division.

Both positions offer a competitive salary with fringe benefits. Applicants should apply initially in writing to:

MR. M. S. SCED
Technical Director
SWISSTONE ELECTRONICS LIMITEO
4/14 Barmeston Road, London SE6 3BN

\section*{Appointments}

\section*{Appointments}

\section*{CALLING ALL ENGINEERS up to \(£ 19,000\)}
per contract year after tax
The Communications Department of Aramco, the world's largest oil producer, based in Saudi Arabia, urgently requires

MICROWAVE ENGINEERS experienced in microwave system project management and design, with practical knowledge in one or more of the following: Telephone, mobile radio, analog-digital communications and control systems.

UHF/VHF ENGINEERS experienced in mobile UHF/VHF systems project management and design and practical experience in one or more of the following: Microwave, telephone, analog-digital communications and control systems.

SENIOR FIELD CONSTRUCTION SPECIALISTS FIELD CONSTRUCTION SPECIALISTS to install and commission electronic instrumentation and data acquisition systems. Experienced in trouble shooting complex digital electronics at the system, card and component levels. Familiarity with electonic test equipment, digital diagnostic test procedures and equipment as applied to mini-computers and/or other digital systems.

PLANNING \& SCHEDULING ENGINEERS to evaluate schedules, implementation and control analysis and, if necessary, initiate corrective action.

There are also requirements for Engineers \& Technicians in INSTRUMENTATION, ELECTRICAL \&
ELECTRONICS disciplines, 1 14,500- 19,000
All positions require at least HNC and 10 years experience.

Renewable contracts, single status
12 days Public Holidays per year.
Leave for married men - 14, 14, 25 days after each 4 month period per contract year.
Leave for single men-30 days after 12 months
- Free Medicare.
- Valid U.K. Driving Licence essential.

Switch to a new wavelength with ARAMCO
write with career details quoting ref: ww/2

\section*{Professional Careers in Electronics \\ }

\section*{All the others are measured by us...}

At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a number of interesting opportunities in our Design,
Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 0BR. Tel: St Albans 59292

Marconi Instruments

\section*{DEVELOPMENT ENGINEER}

To work on the design of new broadcast TV studio products. Applicants should have some knowledge of television studio techniques and be qualified to HND or Degree level.

\section*{TEST ENGINEERS}

At senior and intermediate level to work on our range of advanced broadcast television studio products, including colour and monochrome television studio cameras.
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

\section*{SYSTEMS ENGINEER}

You would be involved in all stages of product management on the design and building of studio and mobile TV systems and should be prepared for occasional world-wide travel. The appointment requires someone with a background in this type of work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative.
Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.
Please apply for further details and application forms to Jean Smith at the address given below.

Link Electronics Limited, North Way, Andover, Hants, SP10 5A).

\section*{MEDIA RESOURCES CENTRE GLYN HOUSE, CHURCH STREET, EWELL}

The Centre is within easy reach of main line railway stations and on bus routes, convenient for shops. There is ample free parking available on site.

\section*{Field Service}

Engineer
(Electronic \(A / V\) Equipment) (\(M / F\)) £4317-£4770
To carry out on-site service, including fault finding, on schools' audio visual equipment, e.g., language laboratories, TV/Video installations, radio systems. Hi-Fi, etc.
Some of the time, you will be engaged in bench service at the Centre workshop. Experience in the maintenance / repair / fault diagnosis of some, or all, of the above is essential, and practical experience is vital. You should passess City \& Guilds or ONC and experience in digital equipment is highly desirable.
Installation/Field Service Engineer
£4317-£4770
To carry out installation/repair work of school fixed \(A / V\) systems, wiring of radio lines, aerials (not roof work), language laboratory trunking, etc. This will involve installing screens in school classrooms (drilling walls, etc.) installing study carrels, etc., relocating language laboratories, moving all services, furniture, etc. and re-installing in new positions. Also same bench work at the Centre, dealing with repair of some A/V items. You should possess ONC or City \& Guilds and practical experience of installation work together with a working knowledge of \(A / V\) systems.
Applicants will be expected to use their own transport for travelling to establishments - an appropriate car allowance is payable.
Application forms from Mrs S. Goode, Administrative Officer at the Centre, Tel: 01-393 0208.

\section*{MIDDLE EAST}

\section*{Precision Measuring Equipment Technicians}

The Northrop Corporation, a major US aerospace company, is seeking experienced personnel for their support operations at a number of locations in Saudi Arabia.
Qualified to C \& G/ONC or equivalent, you should have at least 5 years' laboratory experience on the calibration and testing of avionics systems and related ground based equipment.
This is an opportunity to secure a sound financial future for yourself and to become involved with the latest developments in electronics technology. The employment package include.3:
* 1 year renewable contract * Good bachelor accommodation
*Regular home leave *Excellent recreational facilities
Please contact us quoting ref. 84 PMT.

INTERNATIONAL RECRUITMENT CONSULTANTS, 45 KENSINGTON HIGH STREET, LONDON W8 5ED. TEL: 01-937 6586. TELEX: 21879 ATT WEBB WHITLEY.

\title{
Opportunities for Radio Hazards and Microwave Engineers
}

At EMI Electronics Ltd. Feltham, we are involved in the design and development of high technology equipments. Thanks largely to the high calibre of its staff, the Company is already a recognised authority in this sphere and is rapidly gaining an International reputation for its specialized equipment and expertise.

\section*{Radio \\ Frequency Engineers}

To join the existing team engaged in work associated with the assessment of the radio frequency characteristics of a variety of weapon systems. The work currently in hand includes the definition of user requirements, the generation of new analytical and measurement techniques, the development of new forms of miniature radio frequency and analogue instrumentation, and the performance of field trials.

We are looking for engineers with a relevant degree or equivalent qualifications together with up to five years' post-degree experience. Vacancies also exist for less experienced graduates with an interest in this exciting field.

\section*{Microwave Development Engineers}

To join our radiation laboratory for work on the design and development of microwave components, aerials and systems for ground and airborne applications.

The people we are looking for include graduate engineers with one or two years' post-degree experience in an appropriate field. New graduates with a good degree in physics or electronic engineering and who are looking for an exciting career in the microwave field are also invited to apply.

EMI offers competitive salaries of circa \(£ 7,500\) for the senior posts, excellent experience and career prospects as well as good employment conditions and substantial fringe benefits. Relocation expenses will be paid where appropriate.

To apply, telephone or write to Lisa Kleinhorn, Personnel Officer, EMI Electronics L.td., FREEPOST, Victoria Road, Feltham, Middlesex. (NO STAMP REQUIRED). TeI: 01-890 3600 ext 117 or 01-7510702.

\section*{ELECTRONIC SERVICE ENGINEERS}

LONDON - BRISTOL - MANCHESTER - GLASGOW
Our Company specialises in both sales and servicing of Discotheque Sound and Lighting equipment. We currently have vacancies for engineers who have had previous experience of either HiFi, Studio PA or similar equipment Excellent salary plus quarterly bonus and P.P.P.
Please telephone or write to Andree Mead, Personnel Director for further details.

\section*{TELECOMMS ENGINEERS/ TECHNICIANS}

\section*{for Saudi}

Libya
Nigeria
Salaries to \(£ 22,000\) p.a.
for degreed Switching Engineers, External Plant Engineers, Microwave and Mux Engineers. Minimum qualifications must be BSc or equivalent.

Salaries to \(£ 12,000\) p.a.
for Telephone Technicians with digital PABX experience, Radio Technicians, Teleprinter/Telex Installation and Repair Technicians

All salaries are paid tax-free plus accommodation and transportation.

\author{
Please send résumé to:
}

ADVANCE PERSONNEL SERVICES LTD. (Agy)
The White House, 12A Lodge Road, Hendon, London NW4

\title{
RF pollution control wasn't so critical in the first crystal age Electronics Engineers/Physicists to specialise in interference technology
}

Develop your career and make a significant contribution to the control of electrical noise by moving into the increasingly important field of interference technology with Plessey Assessment Services.
Pleasantly situated in purpose-built laboratory units at Titchfield, Hampshire, we're a wellestablished and rapidly expanding test house and consultancy offering in-depth specialist services to a wide variety of Government and industrial organisations.
Strengthening an existing team of experts in one of the most advanced computer-aided testing facilities in Europe, you'll be responsible for evaluating the effects of across-the-spectrum electro-magnetic interference on a wide range of electronic equipment.

Ideally, you should have analogue or digital experience, together with a relevant qualification, and knowledge of radio frequency measurement techniques.
Lack of experience in interference technology should not be a bar to applicants since training can be arranged.
There are opportunities at all levels from Assistant Engineer upwards with salaries to suit up to \(£ 7,500\), plus benefits including generous relocation expenses where appropriate
Contact Richard Wyatt, Recruitment Manager, on Titchfield 032943031 or write to him at Plessey Assessment Services Limited, Titchfield, Fareham, Hampshire, PO14 4QA.

\section*{ARTICLES FOR SALE \\ TRANSFORMER PROBLEMS?}

IVA-IKVA Prototypes in 7.10 days Phone Vince Sellar on 06076 6671.6

TRENT TRANSFORMERS LTD. 26 Derby Road
Long Eaton, Nottingham (8363)

\section*{TESTERS, TEST TECHNICIANS,} TEST ENGINEERS, Earn what you're really worth in London working for a World Leader in Radlo \& Telecommunications. Phone Len Porter on 01-874 7281. or write: REDIFON TELECOMMUNICATIONS \(\underset{\substack{\text { Ltd., Broomhill Road, Wandsworth. } \\ \text { London. } \\ \text { (9856 } \\ \text { SW18 }}}{\text { (}}\)

Inner London Education Authority London College of Furniture DEPARTMENT OF MUSICAL INSTRUMENT

\section*{LECTURER GRADE I}
is required as soon as possible to teach electronics to Technician Education Council (T.E.C.) Diploma level in subjects related to electronic musical instruments and audio
frequency engineering.
The person appointed should have a C \& G Final or HNC/HND in electronics and a practical knowledge of electronic music systems.
Salary: On an incremental scale within the range of \(£ 3,480-£ 5,988\) plus supplement of \(£ 6.00\) per month (subject to formal approval), (plus \(£ 474\) Inner London Allowance), starting point depending on qualifications, training and experience.
Application form and further details available from:-

Senior Administrative O\&fice London College of Fumiture
41-71 Commercial Road
London EI ILA
Tel, No. 01-2471953

NORTHERN REGIONAL HEALT AUTHORITY

\section*{TECHNICAL ASSISTANTS [ELECTRONICS]}

Applications are invited for two vacancies which involve electronic development work connected with the Mospital Buildings lated and maintenance of electronic equipment in hospitals.
Applicants must have a wide experience in practical applications of electronics, preferably with a significant element of radiocommunications
Qualifalions preferred are: HNC or HND in Electronic Engineerihg or Phvsical Elec-
Salary Scale: \(£ 5502\)
Salary Scale: £5502-£6492 (increase pen-
Applic
Application form and job description Olficer, Northern Regional Health Authority, Benfield Road, Walkergate, Newcastie upon Tyne, NE6 4PY.
Closing date: 5 March, 1980

THE UNIVERSITY OF SUSSEX MICROPROCESSOR SPECIALISTS MICROPROCESO POSTS)
The University is seeking to establish a framework whereby de velopments in microprocessor and
microelectronic technology can be effectively applled to its teaching and research needs, and applications are invited for two new posts for microprocessor specialists. Both posts are available immediately, and it is hoped to make the appointmerts as soon as pos sible. One post is in the University Computing centre, the other Applied Sciences. Duties will ind Applied Sciences. Duties will indevelopments and providing advisory services, together with
and specific support in the design and development of devices and software.
Candidates (M/F) should have proven experience and expertise in microorocessor/ microelectronic developments and their application. Experience of working in an would be of High Education would be an advantage but not essential, and a degree of equivacomputing would in electronics or Starting salary for both posts will be towards the upper end of the salary scale for Other Related Facuilt Grade 1A, which from ist April 1980 will be \(£ 5052\) p.a. £8769 p.a. (under review), although in exceptional cases consideration may be given to placement on the salary scale for Other Related Faculty Grade II, \(£ 8427\) p.a. £10484 p.a. (under review) from 1 st April 1980.
Application forms and further particulars are avallable from the Assistant Secretary of Sclence,
Sclence ofrice (E) Sussex House. Science Office (E), Sussex House.
Unlversity of Sussex Brighton BNi 9 RH , to whom com: pleted applications io whom com- 17 copies) including the names of three referees should be sent to arrive no later than 3rd March 1980.

SITUATIONS VACANT

\section*{Callhrationand Maintenance Engineer}

We'd like to start by asking you a few pertinent questions:
- Do you enjoy working with digital and analogue measuring and test equipment?
- Can you maintain, calibrate and program micro/computer-based ATE?
- Do you have ONC, HNC or something similar in Electrical/Electronic Engineering - or can you match it with relevant experience?
- Are you looking for more technical and professional challenge and an environment where an ambitious product development programme is investing no less than
\(£ 2\) million in new test facilities for the 80s?
If the answer is "Yes", you could be the man or woman we need to join the small metrology team based at the Brighton manufacturing plant of ITT Creed, Part of ITT Business Systems Group Ltd., already one of the leading names in data comms - and fast becoming a world leader. There will be occasional travel to other ITT locations: a current driving licence would be useful.
Salary is attractive, there's an excellent range of benefits - and our location offers the pleasant choice of living by the sea or in the country.
For an application form and more information, please contact Hazel Johnson, ITT Creed Limited, Hollingbury, Brighton BN1 8AL
Tel. Brighton 507111 Ext. 3521. Outside office hours please leave a message on our answering machine.
(187)

ITT Creed Limited _ IT

ARTICLES FOR SALE

\section*{\(0^{0^{\circ}}\) THE VINTAGE \({ }^{\circ} \%\) WIRELESS COMPANY 1920 to 1950} Receivers, valves, components, service repairs and restorations. A complete service for the collector and enthusiast of vintage radio
S.a.e. with enquiry and for monthly news sheet
1980 catalogue \&1
CHE YIMTACE WIRELESS COMPAMY
GA Broad Street. Staple Hill. Bristol BS 16 5ML

\section*{FOR DISPOSAL} OHers are invited for P.A.X. 4117 INTERNAL TELEPHONE SYSTEM Comprising of:

1-AC Mains Power Supply Unit 1-Main Distribution Box 46-Telephone Handsets
Detailed information available from The Chiet Constable, Greater Manchester Police, Communications Department. P.O. Box 47 (S. West P.D.O.). Chester House, Boyer Sireet. Manchester
Number \(061-8552244\). OSD. Telephone
\((164)\)

A POWERFUL WORD PROCESSOR AT E950 PLUS VAT, IBM golfball ypewriter linked to twin magnetic tape cassette (or twin magnetic card) memory stations. Comprehen sive edit/search and formating operations. Autotype (speciallsts in Abingdon 831245 and Otford 3256

ARIAL BOOSTERS AND SIGNAL INJECTORS f5 and 56 each. S.a.e for leaflets. Electronic Mailorder. Ramsbottom. Bury. Lancs. BL0 9AG
(108

With 38 yaara' oxporionce in the deaign and manufacturing of several hundred thoucand trensformors wo can supply: AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE

\section*{YOU NAME IT! WE MAKE IT!}

OUR RANGE INCLUDES
Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection Iransformers for Guitars, Multi-Secondary output ranstormers. Bridging transtormers, Line transformers, Line transformers to G.P.O. Isolating Test Specification Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all iypes). Miniature transformers, Microminiature transformers for PCB mounting. Experimental transformers, Ultra low frequency transformers. Ulira linear and other transformers for Valve Amplifiers up to 500 watts. Inductive Loop Transformers. Smoothing Chokes. Filter inductors. Amplifier to 100 volt line transformers (from a few watts up to 1000 watts). 100 volt line transformers to speakers. Speaker matching transformers (all powers). Column Loudspeaker transformers up to 300 watis or more.

We can design for RECORDING QUALITY. STUDIO QUALITY, HI-FI QUALITY. OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE and we supply large or small quantities and even single TRANSFORMERS. Many standard iypes are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS. HIFFI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH E.E.C., USA, MIDOLE EAST etc.

Send for our questionnaire which, when completed, enables us to post quotation by return.

\section*{SOWTER TRANSFORMERS}
E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990 The Bont Yard, Cullingham Road, Ipswich IPA 2EC Suffolk. P.O. Box 36 Ipswich IP1 2EL, England Phone: \(047352794 \& 0473219390\)

LAB CLEARANCE: Signal Gener. ators; Bridges; Waveform, transistor analysers; calibrators: standards; millivoltmeters; dynamometers; KW meters; oscilloscopes; recorders; Thermal, sweep. leviation Tel \(040-376236\) audio R (8250

VHF MONITOR RECEIVERS, AIT OT Marine band from \(£ 50\). FM Business bands from \(£ 90\). For leaflets send 50 p P.O., not stamps. Radio Communications Ltd, 13 Clos du Murier, St Sampson, Guernsey, Channe Isies.
(9874
TELEPHONE ANSWERING machine avallable for outright purchase. Telephone Burton-on-Trent (0283) 47427.

9609
500 WATT Boozy \& Hawkes amplifier. 16 and 30 watt paging ampli-
fiers. Creed teletype No. 7 s . Tel. (0622) 50350. MKS Upper Stone St., Maidstone. Kent.
(9442)

VERO 191N card frames sult Newbear \(77 / 68\) or Nascom. Complete with extras and case, \(£ 15\) Dlus \(£ 4\) (0A895) 5355. Conns fi. - 1116
COMPONENTS FOR SALE brand new, price per 100 IZUMI Relay and base 4 PCO RY4S, 230 V ac f51. BOSS Filament Ind 14 V Amber Wire Lead £20. ISKRA IFD 180pf 8KV £7. Min Ord £100. Carr £2.50 add VAT \(15 \%\). CWO only. Electropoint, Beechwood House Falkland Close. Coventry, West Midlands.

\section*{MSF CLOCK}

NOW GET ABSOLUTE TIME, never gains or loses, auto GMT/BST. 8 digits show Date, Hours, Minutes and Seconds, also parallel BCD output, receives Rugby time signals, 1000 Km range, built-in antenna. EXACT TIME E48.80.
60 KHz Receiver, as in MSF Clock, audio and serial data outputs. E13.70
V.L.F. \(\boldsymbol{T} 10.150 \mathrm{KHz}\) Receiver E10.70: Each fun-to-build kit includes all parts. printed circuit. case, postage, etc., money back assurance so SEND off NOW. Cambridge Kits, 45 WC). Old School Lane
Mition Cambridge (108)

\section*{INVERTERS}

GEC Elliott 45 KVA 415/3/50 Static Inverter. No-break Auto. Charge. New, unused GEC Elliott 15 KVA 240/1/50 Static Inverter. New, unused. For full details and inspection please contac

Mr. G. Peabody
Walker \& Partners Ltd. Staveley, Derbyshire 543 3JN Telephone: 0246-87-2147 Telex: 547323

\section*{TO ALL MANUFACTURERS AND WHOLESALERS IN THE ELECTRONIG BADIO AND TV FIELO}

\section*{BROADFIELDS \&} MAYCO DISPOSALS
will pay you top prices for any large stocks of surpius or redundant components which you the United Kingdom.

21 LODGE LANE
NORTH FINCHLEY, LONDON N128JG Telephone Nos. 01 -445 0749/445 2713 After office hours 9587624
(9123)

\section*{A.R. Sinclair}

Electronic Stockholders Stevenage 812193
We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

\title{
Classified
}

\begin{tabular}{|c|c|}
\hline K 5458 mainfram & c80 \\
\hline TEK 547 mainframe & \\
\hline TEK 151 Sampeling plug in & E1 \\
\hline 1 L 10 Spectrum analyser plug in & E45 \\
\hline TEK 42215 MHZ portable & c3 \\
\hline RACAL 9913200 MHZ counter & E150 \\
\hline \multicolumn{2}{|l|}{SYSTEM Donner 5008500 MHZ sweeper} \\
\hline & \\
\hline POLYSKOP 1400 MHZ & c350 \\
\hline POLYSKOP 21200 MHZ & c8 \\
\hline POLYSKIP 3110 MHZ & c60 \\
\hline FLUKE 8300 DMM AC/DC/OHM & E195 \\
\hline BRADLEY 233 post generator & ¢250 \\
\hline \multicolumn{2}{|l|}{PMILIPS PM 6505 television analyser} \\
\hline & \\
\hline MARCONI TF 144 H sig/gen & 195 \\
\hline MARCONI TF B68/1 LCR bridg & ¢85 \\
\hline MARCON: TF 1370/9 oscillator & E100 \\
\hline MARCONI TF 2162 atmenuator & c85 \\
\hline MARCONI TF 220130 MHZ scope & ¢195 \\
\hline MARCONI TF \(2 \mathbf{1 6 9}\) pulse modulator & ¢195 \\
\hline HP 3200 B VHF oscillator & E395 \\
\hline HP 21iA square wave gen & ¢75 \\
\hline HP 400H voltmeter & 5 \\
\hline HP 140 A mainframe & ¢175 \\
\hline HP 1416 A swept freq ind & ¢300 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{HP 8694 A 8-12.4 GHZ sweeper plug in}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{HP 8694 8 7-12.4 GHZ sweeper plug in} \\
\hline & \\
\hline \multicolumn{2}{|l|}{HP 8693 A 3.7-8.3 GHZ sweeper olug in} \\
\hline & \\
\hline HP 1403 vertical plug in & c75 \\
\hline HP 1420 horizontal plug in & ¢75 \\
\hline SINTEL Capacitance bridge & 150 \\
\hline ADVANCE DVM5 & c75 \\
\hline BPL CZ 960 component comparitor & £175 \\
\hline AVO 7 & E30 \\
\hline AVO 8 & E50 \\
\hline TELEQUIPMENT S 51 E oscilloscope & c95 \\
\hline TELEQUIPMENT 552 sc & £110 \\
\hline TELEQUIPMENT S 61 A scope & 85 \\
\hline \multicolumn{2}{|l|}{All \(+15 \%\) vat} \\
\hline \multicolumn{2}{|l|}{ALL EQUIPMENT WORKING \& callbrated} \\
\hline \multicolumn{2}{|l|}{DUTGHGATE LTD} \\
\hline \multicolumn{2}{|l|}{94 ALFRISTON GARDENS SHOLING, SOUTHAMPTON SOTON (0703) 431323} \\
\hline
\end{tabular}

UHF COLOUR TELEVISION TRANS PONDER Input 200 Volts Chl 40, 43, \({ }^{46}\), output 1 watt ch. 88 , 8 , nack bin high. All solld state. Power 24V.D.C. 2A. Mains supply many low signal television areas in U.K. £2, 800 ex stock. R.C.S. ElecMiddlesex.
WATTMETER MODEL 43 Throuline with 3 elements, as new condition £100; Ham power, SWR meter type
SWR \(3.5,150 \mathrm{MHZ}\) f15, Phone SWR
42155 .
GEIGER COUNTER for nuclear radiation 5190 : Venner frequency meter and event counter, f65.

\section*{SERVICES}

PRINTED CIRCUIT PROBLEMS? WE can solve them. We specialise in facture at competitive rates. Small quantity or one-offs welcome. tested or untested. Electromechanical design on control work for motors. mechanical handling, traf fic control. security systems, hybrid
one-offs, etc. 10 completed control panel stage if required. Electronic circuit designs utilising digital and/or analogue disciplines with microprocessor applicatluns: Efficient turn round - tixed price quotations. Just
details.
send
Contact
circuit
Electronics. Byron House, 140 Front Street, Arnold, Nottingham. Te! Nottm. (0602) 269606.

\section*{TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY}

\section*{Large quantities of Radio, T.V. and Electronic Compinents.}

RESISTORS CARBON \& C/F \(1 / 8,1 / 4,1 / 2,1 / 3\). 1 Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. \(1 ½, 2,5,10,14,25\) Wat
CAPACITORS. Silver mica,- Polystyrene, Polyester, Disc Ceramics Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, iuners, speakers, cables, screened wires, connecting wires, screws, riuts, transistors, ICs, Diodes, etc., etc.
All at Knockout prices. Come and pay us a visit. Telephone 4452713 4450749.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

\section*{RCA SOLID STATE COS/MOS MEMORIES. \\ MICROPROCESSORS AND} SUPPORT SYSTEMS DATA BOOK
by RCA
Price: \(\mathbf{£ 5 . 7 5}\)
H/B OF ELECTRONICS
CALCULATIONS FOR
ENGINEERS \& TECHNICIANS by M. Kaufman Price: \(£ 14.70\) by K. HONIC OESIGNER'S H/B ACTIVE FILTERS FOR
COMMUNICATIONS \&
INSTRUMENTATION

DESIGN OF ACTIVE FILTERS
WITH EXPERIMENTS
by H. M. Berlin Price: E6.45 DESIGN OF PHASE LOCKED LOOP CIRCUITS WITH
EXPERIMENTS
by H. M. Berlin Price: E6.45 280 ASSEMBLY LANGUAGE PROGAAMMING
by L. A. Leventhal
Price: \(£ 5.75\) LOGIC \& MEMORY
EXPERIMENTS USING TTLIC'S BK 1
by D. G. Larsen Price: \(£ 7.60\) TELETEXT \& VIEWDATA by S. A. Money Price: \(£ 6.00\)
THE EUROPEAN CMOS TION
by Motorola
Price: \(£ 7.75\)
* ALL PRICES INCLUDÉ POSTAGE *

\section*{THE MODERN BOOK CO. \\ Specialist in Scientific \\ 19-21 PRAED STREET LONDON W2 1NP}

Phone 402.9176
(8974)

TEST EQUIPMENT: Airmec 210 modulation meter \(1-300 \mathrm{MHZ}\) £195; Marconi TF \(1064 / \mathrm{B}\) VHF generator £150; TF1041 V.V.M. £30; Telonic Schomandl £80. Phone: Taunton 83440 . 131 MODERN FACSIMILE M/C (convert for Meteosat, \({ }^{665}\); BC221 (orig charts) f18; ASR33 mechanism for
 0235-87695.
LOGIC MONITORS, 16 bit, \(£ 24.50\). Send for data: J, E. Sinclaire \& Co., 139a Sloane St., London SW1X 9AY. running graphics and expansion plug, \(£ 280\). Rolley. \(2-24\) Lawrence Kershaw Hall, Jarrom Street, Leicester
PARALLEL TRACKING ARM as (105 design in W.W. Jan. 1980. Designer approved machined metal parts available, S.a.e to J. Biles, 120
Castle Lane, Solihull. West midlands.
RADIO TELEVISION SHOWROOM
RADIO TELEVISION SHOWROOM/ WORKSHOP to be cleared - stock spare parts, test gear. fixture. fit \begin{tabular}{ll}
\(01-574\) \\
2159 . Closing. & 1180 \\
\hline
\end{tabular}

CONSTRUCTION CHARTS: Radio telescope, detects distant galaxies, £2.75. Solar energy furnace, 20 kw possible \(£ 2.50\). Digital Mult!mer (including capacitance) \(£ 3.20\). Weather computing tape (basic) £5. R\&E, Hlghiands, Needham CAPACITORS, METAL CASED, paper dielectric. 12 uF at 1500 volts, ford 71281 ext. 515 . volts. Gulld. ford 71281, ext. 515.
NEWBURY VDU RS232C, 21 lines of 30 , upper case ASC11 characters. edit mode, \(110 / 1200\) band,
£175. - Box 140. TELEVISION TUBE REBUILDING PLANT FOR SALE. Latest equip ment. Full details from (0704) 69181 or 0519206803.
TEKTRONIX 545B scope +1 Al vgc, boxed with manuals, 2290 inc Securicor. \(240 / 24 \mathrm{~V}\) 1.5A transformers \(£ 2.50\) ea. 748 's 10 off \(£ 2.50\). LARGE QUANTITY OF RADIO AND RADAR EQUIPMENT, 1940-1960, RADAR EQUIPMENT, \(1940-1960\),
covering three floors of large house covering three floors of large house Send large s.a.e. for list. R. A. F. Palmer \& Son, P.O. Box 4, Bexhill on-Sea, Sussex.
SOLAR CELLS, bits, books and bargains. Send stamp for list or \({ }^{95 p}\) for Solar Cell booklet and Data sheets. Edencombe Ltd, 34 \begin{tabular}{l}
Nathans Road, North Wembley. \\
Middlesex HAO 3 HX. \\
\hline
\end{tabular}
\(\qquad\) 8061
TYCHTRONIC PLUG-IN UNITS Type CA - dual trace, 550 ; Type D - differential hlgh gain, f60; Type B - calib. wide band, 550 ; Type O. current probe amp. \& \(^{20}\). Tel. Wraysbury 2321 (Nr. Heath.

COLOUR, UHF AND TV SPARES (miniature size At \(\times 3 t \times 2 \|\)). New
Saw Fiter IF Amplifier plus tuner Saw Filter IF Ampliner plus
(complete and tested for sound and (complete and tested 1 .
vision, \(28.50, \mathrm{p} / \mathrm{p} \mathrm{f}\)
VIELE'AEXT, Ceefax and Oracle in Colour, Manor Supplies "easy to assemble ". Teletext kit including Texas Tifax XM11 Decoder, External unit aerial input, no other connections to set. Wide range of facilities in colour include 7 -channel selection, Mix, Newsfash and Update. (Price: Texas Tifax XM11 \({ }^{\text {f130 }}\), Auxiliary Units £88, Case model at 172 West End Lane, NW6. Also latest Mullard Teletext 610LVM module available. Call, phone or write for further information.
COMBINED COLOUR BAR AND CROSS BATCH GENERATOR KIT (MK 4) UHF aerial input type. Eight pal vertical colour bars, R-Y, B-Y, Grey scale etc. Push-button controls \(535 \mathrm{p} / \mathrm{p}\) £1; Battery Holders f1.50; Alternative Mains Supply Kit E4.80; De Luxe Case £4.80; Aluminium Case \(£ 2.60\). Bullt and tested (battery) in De Luxe Case

put type, also gives, UHF aerial input type, also gives peak white and black levels battery operated \(£ 11\)
p/p 45 p . Add-on Grey scale kit
 £4.80; Aluminium Case \(£ 2 \mathrm{p} / \mathrm{p}\) Case \(£ 23.80 \mathrm{p} / \mathrm{p}\) £1.20. UHF SIGNAL STRENGTH METER KIT \(£ 16.80\), alum. Case \(\mathrm{f1.50}\), De cuxe Case \(54.80 \mathrm{p} / \mathrm{p} \mathrm{E}\)
CR'I TEST AND REACTIVATOR KIT lor Colour and Mono 820.80 , \(\mathrm{p} / \mathrm{p}\) £1.30; TV 625 IF Unit for Hi -fí amps or tape rec. \(£ 6.80\), \(p / \mathrm{p} 75 \mathrm{p}\). Surplus (single IC) \(£ 5\) BC5600 (Exp) \(£ 5\), A823 (Exp) \(\quad \mathrm{E} 2.80 \mathrm{p} / \mathrm{p}\) 85p. Bush A823 (A807) Decoder panei 87.50 p/p 51 . A823 Scan Control panel standard convergence unit \(£ 3.75\) p/p 90 p . GEC 2040 ex rental panels, Decoder 55 , Time Base \(15 \mathrm{p} / \mathrm{p} 90 \mathrm{p}\). Thorn 3000 ex rental panels, Video, Decoder, frame, IF \(£ 5\) p/p 90 p . Colour Scan coils, Plessey £6, Yoke
£3.50, blue lat, 76 p (Mullard also £3.50, blue lat, \({ }^{76 \mathrm{p}}\) (Mullard also
avallable). Mono Scan colls Philips/ Pye \(£ 2.80\). Thorn \(£ 2.80 \mathrm{p} / \mathrm{p} 85 \mathrm{p}\). Philips G8 Decoder panels, salvaged for spares \(53.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}\). Varicap UHF tuners Gen Instruments 83.50 ELC 1043 £4.50, ELC1043/05 85.50 ; Philips G8 \(85.50 \mathrm{p} / \mathrm{p}\) 35p. Salvaged UHF Varicap tuners \(£ 1.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}\). UHF/VHF ELCz2000S Varicap tuner \({ }^{88.50} \mathrm{p} / \mathrm{p} 65 \mathrm{p}\). Varicap control units,
 \(£ 1,80\), \({ }^{6}\) pos. (special offer) 1.81 .80,
7 pos. \(£ 3.80\) p \(/ \mathrm{p}\) 45p. Touch Tune control unit Bush 6 pos. \(£ 5 \mathrm{p} / \mathrm{p}\) 75 p . UHF transtd tuners, rotary incl. slow motion drive \(£ 2.50,4\) pos. ton \(£ 4.20 \mathrm{p} / \mathrm{p}\) i1. (Thorne, GEC, Bush, Decca, etc., special types avanable, detans on request). Delay 65p. Remote Control Thorn-type Transmitter, receiver \(£ 2\) pair p/p 45 p . Large selection of lopts, tip lers, mains droppers, and other spares for popular makes of colour and mono receivers
MANOR SUPPLIES, 172 . WEST END LANE, WEST HAMPSTEAD LON DON NW6, SHOP PREMISES EASILY ACCESSIBLE, WEST HAMP. and BRITISH RAIL N (RICHMOND-BROAD ST.) and ST PANCRAS-BEDFORD. BUSES 28 159, 2, 13. Callers welcome. Thousands of additional items avallable at shop premises not normally ad-
vertised. Open dally all week invertised. Open daily all week in cluding Saturday (Thursday halfday), MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NWII 9 HT . Tel. 01-794 8751. All prices
subject to \(15 \%\) VAT subject to \(15 \%\) Vat.

ENCAPSULATING, colls. transformers, components, degassing, siliwax casting for brass, ver, etc. Impregnating colls, transformers, components. Vacuum equipment components. cost, used and new. Also for CRT regunning met allising. Research \& Development Barratts. Mayo Road, Croydon. \(\begin{array}{lll}\text { Barratts. } & \text { Mayo } & \text { Roa } \\ \text { CRO } & \text { 2QP. } \\ 01-684 & 9917\end{array}\)

9678

\section*{SERYICES}

\section*{TV TUBE REBUILDING!}

We can offer the most complete range of All gun guns, parts and tube components. definition guns black and white, aiso high range of colour guns, to sui European American and Japanese tube types.

We also offer equipment for testing and manufacturing. Prices, catalogue and techn reques
ALGOGRIFF p.v.b.
(Electronics \& Equipment)
LISPERSTEENWEG
1962500 Lier / Belgium
el: 031 /802387. Telex: 35371

\section*{SMALL BATCH Drawings. Quick delliveries. Competitive pricos. Desig \\ SYNERGY BRITGN ELECTRONICS UNITED \\ BRITON HOUSE, G2 RALLWAY ROAD DOWNHAW WARKET MORFOLK PE38 9EL \\ Telephone (13663) 5222 (9942)}

SMALL BATCH PCB's produced from your artwork. Also DIALS, PANELS, - Details: Winston Promotions, 9 Hatton Place, London EC1N 82V, Tel. 01-405 4127/0960
DESIGN SERVICE. Electronic Design Development and Production Service available in Digltal and mitters and Recelvers for control of any function at any range. Telemetery, Video Transmitters and Monitors, Motorised Pan and Tilt Monitors, Motorised Pan and Tilt for 16 years. Phone or write Mr. for 16 years. Phone or write Mr.
Falkner, R.C.S. Electronics, 6 WolFalkner, R.C.S. Electronics, 6 WolPhone Ashiord 53661. \(\quad 18341\) REPETITION SHEET METALWORK on Wiedemann turret press. Long/ short runs. Highly competitive. Quick deliveries commission for Rd., Monks Rd., Exeter. 36489 . (8060 SHEET METAL WORK fine or general front panels chassis; covers, boxes, prototypes, 1 off or baten work fast turnround. 01-449 \begin{tabular}{l}
2695 . M. Gear Ltd 179 A Victoria \\
Road, New Barnet, Herts. \\
\hline\((9908\)
\end{tabular} Road, New Barnet, Herts.
PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for Instant quote or write to AKMrotonhampstead, Devon.

PCB MANUFACTURE including circuit design, artwork (P.TH) 2:1 reduction photographic service. Drilling/profiling, assembling/test ing. Single/double - sided boards Any intermediate stage undertaken. Prototype service available.- Ring (0621) 741560 or write Mayland sea, Chelmsford, Essex CM3 6AB.

\section*{DESIGN DEVELOPMENT MANU} FACTURE. We can offer a high quality, professional service, cover to small batch production. Digital Analogue prototypes welcome. For competitive pricing and quick de livery phone Mr. Flower, Digitalls Ltd., 9, Milldown Road, Goring-on Thames, Oxfordshire. Tel: 049 3162.

ELECTRONIC DESIGN SERVICES Wide engineering experience avail able for the design of basic circuits to complete systems. Analogue DC phone and Digital. Write or Ltd, Mr Anderson, Andertronic (Nr. Farnham), Surrey. Runfold

AUDIO AND COMPUTER cassette duplicating. One to one or hi-speed from 33p inclusive. - Stable, Inglenook, West End,
Oxon. Tel, 086922831
okon. Tel. 086922831.

\section*{TEST EQUIPMENT CALIBRATION AND REPAIR}

\section*{Quick turn round, attractive rates. ring for}

DUTCHGATE LTD.
94 Alfriston Gerdens,
(99385)

PROCESS PHOTOGRAPHY. reductions of PCB artwor Prices for positives:- \(5 \frac{1}{2} \mathbf{x}\) Return of post plus 50 p or while Return of post plus 50p or while you wait service for afternoon callers. D.J.S. Electronics, Totter down Centre, 140 Wells Rd, Totter down,
776289.

\section*{COURSES}

\section*{UPIVERSITY OF LANCASTER DEPARTMENT OF PHYSICS MSc COURSE IN SEMICONDUCTOR DEVICES}

Microelectronic devices - their operation. construction and use are studied in this one-year course. The current national expansion in the production of microelectronic devices will result in a need for experts in the device physics, design and manufacture of semiconductor devices. This course covers material problems associated with the on the basic manufacturing processes as well as the theory of operation. There is project done in collaboration with indusiry

The course is approved by the Science hesearch Council for award of their Ad. vanced Course Studentships. Applicants should hold a first or second class degrre in hysics or Engineering or equivalen qualifications.

Further details and application form from: Profeseor R. H. Tredgold, Department of Physics, University of Lancaster, Lancaster LA1 AYB.

\section*{UMIST}
postgraduate course in SOLID-STATE ELECTRONICS M. Sc and Ph O

A 12 -month MSC course comprising two terms of lectures. followed by a 5 -month research project, starts at UMIST in October each year. This course, suitable for gradu-
ates in Physics. Electrical Encineering or ates in Physics. Electrical Engineering or related subjects, is concerned with the
design and behaviour of solid-state devices such as transistors, integrated circuits. such as transistors, integrated circuits. solid-state physics on which they are based. Suitable candidates may be given the opportunity to proceed to Ph.D. work. SRC studentships are available for suitably qualified candidates.
Further information from Dr. K. E. Singer, Department of Electrical Engineering and
Electroncs, UMIST Manchester M60 io0 Electroncs, UMIST. Manchester M60 100.

\section*{ARTICLES WANTED}

HU-GO offer prompt settlement for surplus electronics components, TV/ audio spares are of particular in terest. Bretion Peterborough Tel hawe, Bretton, Peterborough, (9731)
265219 .

TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES.HARDING \& Co., 103 South Brink, Wisbech, Cambs. \(0945-4188\).
Immediate settlement. We also welImmediate settlement. We also welcome the opportunity to quote for
complete factory clearance. (9509

\section*{K.AH. PHBCTRONICS LID.}

CONSULTANTS - DESIGNERS ASSEMBLERS
SPECIALISTS IN MICRO-BASED SYSTEMS 50 Flixton Road Urmston, Mancheste Tel: 061.748 3878

SMALL BATCH productions wiring assembly to sample or drawings. Specialist in printed circuits as sembly. Rock Electronics, 42 Bis hopsfieid, Harlow, Essex 027933018 (9094

GATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals 19b Station Parade, Ealing Common, London,
W5. Tel. \(01-9928976\). PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on reqeust, roller thinming, drilling, etc. Speciality small batches. Larger quantities avall. Westgate, Bridington, North HumWestgate, Bridington, North Hum Harrison (0262) 74738 or 77877.
(9652
ELECTRONIC DESIGN SERVICE. Immedlate capacity avallable for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome. - E.P.D.S. Ltd. 93 b King Street, MAIDSTONE, Kent. 0622-677916.

\section*{I.H.S. SYSTEMS}

Due to expansion of our manufac turing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development
We can produce. test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation

TEL. 01-253 4562
(8237).

\section*{JELVALE LIMITED}

Electronic Design, Development and Pre-production Manufacture

104 Marshalswick Lane
St. Albans, Herts
St. Albans 69437

PCB ARTWORK DESIGN SERVICE with component notation masters \(\underset{\text { Electrical }}{\text { and }}\) Ltd, \({\underset{01}{ } \text { drawings. }}_{6516}\) PADS Southwood Road, New Eltham SE9.

KIBMORE for printed circuits, rapid prototype to production runs, also panal printing design, layout, artwork and photographic services. Surrey Kibmore Circuits Ltd., Redhill, Surrey. Tel. Relgate 41010. (9973)
ELECTRONIC ASSEMBLY, High quality, Quick turn around for all your needs: Prototypes, Batch, PCB Hardwiring. Testing. Wandtronics, Frogmore, Wandsworth,
London
SW18. \(01-870\)
6585.
\((10015\)

RAVEN TRANSFORMER COMPANY offer production, transformer and coil winding, quick delivery and

\section*{BUSINESS OPPORTUNITIES}

\section*{INNER NORTH LONDON}

Excellent first floor premises. Fully equipped for Electronic/Light Assembly, 8,000 sq. ft. Rent £9,288 p.a. Price: \(£ 25,000\) (would consider sensible offer for quick sale or would sell without fittings). Drivers \& Norris, 407 Holloway Road London N7-6075001

\section*{ARTICLES WANTED}

\section*{WANTED}

Test equipment, receivers, valves, transmit-
ters, components, cable and electronic scrap, any quantity. Prompt service and M \& BRADIO
86 Bishopsgate Street
Le532-35649

\footnotetext{
We will purchase your surplus and obsolete Telephone Equipment and Electronic Components. Anything considered, from Relays to Complete Exchanges.

\section*{TELECOMM. SPARES}

Lea Valley (0992) 716945
}

\section*{SPOT CASH}
paid for all forms of electronics equip ment and components
F.R.G. General Supplies 550 Kingston Road London SW20 8DR Tel: \(01-4045011\)
Telex: 24224. Quote Ref. 3165
(8742)

\footnotetext{
WANTED: Recording equipment of all ages and varieties. (Callfornia,
U.S.A.). Tel. (415) \(232-7933\). 9814
}

STORAGE SPACE Is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test gear, power
supplies, PC boards, components, supplies, PC boards, components, \begin{tabular}{l}
etc., regardless of condition or \\
quantities. Call \\
\hline
\end{tabular}

ITED Tel: 01.837 7781. Telex: 298694.

\section*{Brand New - \\ Top Quality Performance \& Value}

HM 307
Single Trace DC-10 \(\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}\) Plus built-in Component Tester.
Component Tester.

HM 312
Dual Trace DC-20 MHz.
\(5 \mathrm{mV} / \mathrm{cm}\). Sweep Speeds
\(40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10\) cm Display.

\section*{£149 \\ \(£ 250\)}

Other models up to 50 MHz bandwidth available. Prices and full specs on request. Full demonstration at our
 premises. Quick delivery
Prices do not include VAT (15\%) or Carriage WW - 125 FOR FURTHER DETAILS

\section*{INDEX TO ADVERTISERS}

\section*{(Appointments Vacant Advertisements appear on pages 133-151}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PAGE & & PAGE & & PAGE \\
\hline Acoustical Mfg. Co. Ltd. & & H.H. Electronic & & Quantum Electronics & 18 \\
\hline Adcola Products & 37 & Hi-Fi Y/Book & 36 & Quartzlock & 114 \\
\hline A.E.L. Crystals & 36 & H.L. Audio & & & \\
\hline Aero Elec (AEL) Ltd. & 110 & & & & \\
\hline Antex & 75 & IL.P. Electronics Ltd. & 34, 96, 97 & Racal Recorders & \\
\hline Aspen Electronics Ltd & 102 & Industrial Tape Applications & 124 & Radio Components Specialists & 109 \\
\hline Avo Led & 76 & Integrex Ltd. & 118 & Radio Shack & \\
\hline B. Bamber Electronics & & Intel Electronic Comps. Ld. & & & \\
\hline Barrie Electronics Ltd & 119 & Interface Quartz Devices & \[
28
\] & & \\
\hline Bang \& Olufsen Insts. & 26,85 & IT Mercator & & Sandwell Plant Litd. & 32 \\
\hline Bell \& Howell & 35 & & & Science of Cambridge & 20,21 \\
\hline BIB Hi-Fi & Cover iv & K.A.C. Electronic Investment & 102 & Scopex Instruments Lid & 113 \\
\hline Bi-Pak Semiconductors Ltd & 107 & Keithley Insts. & 101 & Service Trading & 117 \\
\hline & & K.G.M. Electronics & & Shure Electronics & 38 \\
\hline Cambridge Learning & & Kirkham Amplifier & 99 & SMELtd. & 27 \\
\hline Caracel Eng'g. & 31 & & & Softy Ltd. & 100 \\
\hline Carston Electronics Ltd & 10, 11 & & & Sonic Sound Audio & 32, 104 \\
\hline Case Systems & 32 & Larsholt Electronics & & Sota Communications Systems Ltd. & 104 \\
\hline Chiltmead Ltd & 126, 127 & Lascar Electronics & & Southern Electronics & 108 \\
\hline C.M. Electronics & 116 & Leevers-Rich Equip. Ltd & & Special Products Ltd & \\
\hline Codespeed & 106 & Leif & & Strumech Eng. Ltd. & 18 \\
\hline Comp Computer Comps. & 33 & Levell Electronics Lt & & Sugden, J. E. \& Co Ltd & 34 \\
\hline Com-Tek & 106 & Lowe Elec & & Surrey Electronics Ltd & 102 \\
\hline Continental Specialities & 19 & & & Swanley Electronics Ltd & 106 \\
\hline Crimson Elektrik & 22 & Maclin-Zand Electronics Lid & & & \\
\hline Cropico Ltd & & Maplin Electronic Supplies & Cover [v, 13 & & \\
\hline & & Marshall, A. \& Sons (London) Ltd & & Tandy Corporation & \\
\hline Display Electronics & & Martin Associates & & Technomatlc Led & 132 \\
\hline Dominus & 119 & Mayware & ... 31 & Tektronix (Telequipment) & Cover ii \\
\hline & & Medelec & & Teleradio Electronics & .. 106 \\
\hline & & Microcircuirs & & TMEC & \\
\hline Electronic Brokers Lid & 129, 130, 131, 152 & Microdigital & 6, 7 & 3M (United Kingdom) & \\
\hline Electro-Tech Comps & 121 & Millbank Electronics
Milward, G. F. & 105 & Thurlby Electronics & 37 \\
\hline Electrovoice & 116 & MTL Microtesting Itd. & & & \\
\hline Elvins/Dalston & 108 & Multicore Solders Ltd & Cover i & & \\
\hline & & & & Vero Electronics Ltd & \[
\begin{aligned}
& 24 \\
& \\
& \hline 16
\end{aligned}
\] \\
\hline Faircrest Eng Lid & 108 & & & Vero Speed & \\
\hline Farnell Instruments Ltd. & 106 & Newbear Computer Stores & 98,104 & Vero Systems & \\
\hline Feedback Instruments & 86 & Nicomtech & & Videotone . & Loose insert \\
\hline Fieldtech & ... 24 & & & & \\
\hline Flight Link Controls & 110 & Olson Electronics & - 16 & & \\
\hline Fylde Electronic Labs Ltd. & & OMB Electroni & & West Hyde Developments Ltd & \\
\hline Happy Memories & 116 & Pascal Electronics & & West London Direct Supplies & \\
\hline Hameg Ltd & 12 & PBRA Ltd. & 104 & Wilmot Breeden Electronics Ltd. & 86 \\
\hline Harris Electronics (London) Ltd & 23, 37 & Powertran Electronics & 115, 122, 123 & Wilmslow Audio & 103 \\
\hline Hart Electronics & 111 & Practical Computing & 128 & & \\
\hline Henry's Radio & 108,114, 120 & Pye Unicam & 15 & & \\
\hline Heyco Mfg. & 128 & Pype Hayes Radlo & 106 & Z. \& 1. Aero Services Ltd & 36. 112 \\
\hline
\end{tabular}

\footnotetext{
apan: Mr. Inatsuki. Trade Media - IBPA (Japan), 8.212 Azabu Heights, 1.5.10 Roppongi, Minato-ku, Tokyo 106 Telephone: (03) 5850581

United States of America: Ray Barnes, IPC Business Press 205 East 42 nd Street. New York. NY 10017 - Telephone 212) 6895961 - Telex: 421710.

Mr Jack Farley Jnr. The Farley Co. Suite 1584, 35 East Wacker Drive Chicago, Illinois 60601 - Telephone: (312) 63074
Mr Victor A. Jauch. Elmatex International, P.O. Box 34607 os Angeles, Calif. 90034 . USA - Telephone (213) 821 8581 - Telex: 18-1059
}

\footnotetext{
Mr Jack Mentel, The Farley Co. Suite 650, Ranna Building. Cleveland, Ohio 4415 - Telephone: (216) 6211919 Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028. Miami Beach, Florida 33140 - Telephone: (305) 5327301. Mr Tim Parks. Ray Rickles \& Co, 3116 Maple Drive N.E Atlanta, Georgia 30305 . Telephone: (404) 2377432. Mike Loughlin. IPC Business Press. 15055 , Memorial Sie 119.
Houston, Texas. 77079 Telephone 713) 7838673 Houston, Texas 77079 - Telephone (713) 7838673.
Canada: Mr Colin H. MacCulloch, International Advertising Consultants Lid. 915 Cartion Tower. 2 Carlton Street, Toronto 2 - Telephone: (416) 3642269
-Also subscription agents
}

\footnotetext{
Printed in Great Britain by QB Lid.. Sheepen Place: Colchester, and Published by the Proprietors IPC ELECTRICAL.ELECTRONIC PRESS LTD. Dorset House, Stamford Street, London, SE1 9L.U, telephone \(01-2618000\). Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co. CANADA: The Wm, Dawson Subscription Service Lid. Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid: William Dawson \& Sons (S A.) Ltd. UNITED STATES: Eastern News Distribution Inc., 14th floor. 111 Eighth Avenue. New York, N.Y. 10011
}

This superb organ - build the first working section for just over \(£ 100\). Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new catalogue from Maplin that's even Mapin thats even
bigger and better than before. If you ever buy electronic ever buy electronic the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data

A wide range of disco accessories at marvellous prices. Our catalogue has all the details.

A very high quality 40 W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150 W per channel stereo disco to build yourself. Full specification in our catalogue.

All mail to:P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155. Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.

\section*{Cassette} Editing Kit

Make editing simple with the Bib splicer, tape culter and olicing tape, with 6.3 mm adaptor. Ref 56 ¢2. 88 inc. VAT

USA Pat. No. 4067563 (splicer)
Brit. Pat. No. 1507583
Brit Pat. No. 1258280 (method of splicing)

\section*{Groov-Guard XL-2}

Anti-static liquid and record preservative.
Following years of research, Bib laboratories have developed GroovGuard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record Another advancement with Groov Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable

\section*{Non-toxic}

Ref. 27
E2.48 inc. VAT
All prices shown are recommended retail, inc. VAT.

Bib
In difficulty send direct, plus 20p P \& P. Send S.A.E. for free copy of colour catalogue detailing complete range. Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

The Bit Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a C. 90 cassette in 60 seconds - faster than most recorders. Ref. 78 \(£ 1.59\) inc. VAT

Everything necessary for cleaning heads, capstan and pinch wheel on all types of recorders.
Cleaning and polishing pads, cleaning liquid and brush inspection mirror included.
Ref \(25 £ 2.48 \mathrm{inc}\). VAT
Brit. Pat. No. 1485069```

[^0]: To Pieter Glas, Bell \& Howell A.V Ltd., Freepost, Wembley, Middlesex HA0 1BR. I'd like to discuss video with Bell \& Howell.
 Name
 Organisation
 Address

[^1]: Full data and distributor list from Thurlby Electronics Ltd.,
 Coach Mews, St. Ives, Cambs. PE17 4BN. Telephone: (0480) 63570

[^2]: *The first, in mid 1983, will be a Regional Administrative Radio Conference for detailed planning (channel assignments, orbit positions etc.) of broadcasting satellite services in the 12 GHz band and associated uplinks in Region 2. The second, in late 1983, will be an Administrative Radio Conference for planning uplinks to broadcasting satellites operating in the 12 GHz band in Regions 1 and 3. The third will be a World Administrative Radio Conference for space services in general; it is expected to be held in two sessions, possibly in Autumn 1984 and early 1986, but detailed arrangements will be decided later by the ITU.

[^3]: Please send me the Antex colour brochure \square I enclose cheque/P.0./Giro No. $2581000 \square$ Name

 Address

[^4]: * Even the brilliant philosopher Ernst Mach failed to notice this anomaly.

[^5]: Voltage rating of capacitors is that of components used by author. They need be no more than 16 V in practice.

