Radioandelectionies intothe eqgutes

 \section*{worle
 \section*{worle JANUARY $198050 p$}

Front cover design by Geoff Harrold symbolizes man's increasing involvement with his technology and introduces the special feature "Radio and electronics into the eighties".

IN OUR NEXT ISSUE

Microwave intruder alarm, based on a Gunn diode r.f. generator, uses a cycle counting scheme to prevent detector from being triggered by short movements and has good interference rejection.

The Townsman aerial is a design for two-band operation, for example 2 m and 70 cm , which uses no switching and needs no ground plane.

More on the Scientific Computer. In response to many requests from readers John Adams give: further details of the machine code monitor and the BURP monitor.

Current issue price 50 p, back issue (if available) $£ 1.00$, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 79p, back issues (if available) $£ 1.00$, order and payments to Room CP34, Dorset House, London SE1 9LU.
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE 1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339. Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE 1.
Subscriprion rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Student rates: 1 year, £4.00 UK and $\$ 15.50$ outside UK. Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Road. Haywards Heath, Sussex RH 16 3DH. Telephone 044459188 . Please notify a change of address. USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd-class postage paid at New York.
(c) IPC Business Press Ltd, 198U ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO
JANUARY 1980 Vol 86 No 1529

37 Into the 'eighties

38 RADIO AND ELECTRONICS INTO THE 'EIGHTIES
Land mobile radio by W. M. Pannell
Broadcasting by D. P. Leggatt
Consumer electronics by St John C. Jackson
Radio navigation and radar by D. W. G. Byatt
Audio by Adrian Hope
H.f. radio communication by R. F. E. Winn Electronic measuring instruments by John L. Minck

61 News of the month
 More v.h.f. broadcasting Engineers want registration Japanese make Prestel terminals

64 World of amateur radio

67 Practical parallel-tracking pickup arm - 2

by R. Cooper

73 Circuit ideas
Simple waveform generator Amplitude modulator Long duration timer

77 Letters to the editor

Sidebands as phasors Digital filters
The Poynting vector

81 More on the scientific computer
by J. H. Adams

87 S.s.b. and f.m. tranceiver - 4
by G. R. B. Thornley

92 Novatexts: astables - logic gate circuits
by P. Williams

Hameg the mame for quality, performance and value in OSCILLOSCOPES. Advanced design optimising the use of both integrated circuits and diserete components ensures reliability.
Just a glance at the specification chart will make you want to know more.

HM 307
HM 312

HM 412
Single Trace DC-10 MHz, $5 \mathrm{mV} / \mathrm{cm}$ Plus built in Component Tester

> Dual Trace DC- $20 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10 \mathrm{~cm}$ Display

Dual Trace DC-20 MHz, $2 \mathrm{mV} / \mathrm{cm}$
Sweep Speeds $40 \mathrm{~ns}-2 \mathrm{~s} / \mathrm{cm}$ and Sweep Delay
£350
HM 512 Dual Trace DC-50 MHz, $5 \mathrm{mV} / \mathrm{cm}$
Sweep Speeds $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$ plus Sweep Delay
HM 812
Dual Trace DC - $50 \mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$ $20 \mathrm{~ns}-5 \mathrm{~s} / \mathrm{cm}$, Sweep Delay and Storage

We may be a new name to you, but each instrinment is backed by over 21 years experience in oscilloseopes.

For FULL Details please contact HAMEG Limited
74-78 Collingdon St., Luton, Beds. LU1 1RX. Tel: (0582) 413174
UK Subsidary of Hameg K Hartmann KG

HM512

HM812

All prices UK list exc. VAT.

Quantum Electronics
 THE LATEST AND BEST SOURCE OF SUPERFI AUDIO EQUIPMENT

Although we may be a new name to you, our products use refinements of circuitry which has been well proven over the past few years. By redesigning to what we consider the optimum cost/performance /appearance breakpoint we can now offer the best sound per pound that you will find anywhere. In addition to the items below we can supply read builf power amps, with aclive crossovers if required,) large quantities. If you do not custom designed and finished met.
see what you want please enquirs.

'STATE OF THE ART' PRE-AMP

Undoubtedly the best pre-amp on the market. it is supplied ready buit, not ait, and caters for disc, aux and 2 or 3-head tape machine. The built in supply regulators require only ough dc, available from all our power amps or performance is almost perfect, with virtually zero thd ($<.002 \%, 1 \mathrm{kHz}$), zero common mode distortion, fast slowing, high overload (40 dB) and low noise (70 dB mag). It is attractively finished in black and is also available in a special version to cater fot moving-coil cartridges.
Cl (mag):
£67.85 CSI (mains supply kit): $€ 10.13$
CImc (m-coil): . . $£ 73.10$ Module (Irade and export only): © $\mathbf{~} 4.25, ~ £ 51.60$ (m-coil)
‘DOMESTIC’ POWER AMP KITS

STI: Mono $1 \times 55 \mathrm{~W} / \mathrm{BR}, \mathrm{BOW} / 4 \Omega$ ST2: Stereo $2 \times 45 \mathrm{~W} / 80$ E49.45 2. $65 \mathrm{~W} / 40$ ST3: Mono $1 \times 130 \mathrm{~W} / 8 \Omega$ | E63.84 |
| :--- |
| 63.84 | ST4: Stereo $2 \times 110 \mathrm{~W} / 8 \Omega$ £93.61 ST5: Mono $1 \times 150 \mathrm{~W} / \mathrm{BR}, 260 \mathrm{~W} /$ $\begin{array}{lll}\text { 3n } \\ \text { ST6: Mono ix250wisn } & \text { E89.74 } \\ \text { E86.25 }\end{array}$ STlain lid

Plano
P250W/8
E86.25
$£ 4.23$
Black lid
$£ 4.23$
£ 7.68
RACK MOUNTING KIT: Slave tray (state which) plus
Also available ready-buill POA

These kits are designed to cope with sustained high level use. for which the domestic kits are
not suitable. The same high performance circuitry is used with the' power transistors mounted on substantial external heatsinks. The "slave tray" is the bare bones of a powe amp and comprises a simple plain tinished chassis, tested amp pctis and transistors heatsinks and power supply. No specific connectors are supplied to allow flexibility o application. You can mount the slave tray in achieve a match with our pre-amp. The slave achieve a match with our pre-amp. The slave
tray forms the basis for the rack mounting kits tray forms the basis for the rack mounting kits black front. Low field toroidal transformers are used and there is spare room for extra circuitry it required. We stock a range of connectors for your convenience.

MODULES: UP TO 250W r.m.s.

These modules are available in a variety of powers and forms (including L bracket mounting) to trade and export customers only. They come ready built and tested and range same proven circuitry as the other amps in our and reliability. We unsurpassed standapplies for use with these. Please contact us for prices with competitive quantity discounts. The module illustrated is a medium - duty 250 W rms type using 4 of the latest Japanese "super" power transistors.

EXPORT: We can deal efficiently with orders to any country. Please write with your specific requirements for a quote by return. All power amps can be wired for 110 v mains. INFORMATION: Before ordering any of these or competitors' products, why not send for our detailed information? Large SAE or dollar bill please.
All prices shown are inclusive and all power ratings are real RMS watts, unlike the phoney ratings of many modules. Although we try to deal with orders promptly, please allow 28 days to avoid disappointment. Large orders please phone for delivery date.
DISTRIBUTORS: We are eager to establish distributors throughout the world and invite enquiries from interested parties.
SERVICING: We offer an after-sales service, with fixed maximurn charges, for all our
1A STAMFORD STREET, LEICESTER LE1 GNL Tel: 546198
USA: OX DISCO, BOX 123, CLAYMONT, DE 19703

Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique corse comes as four A4 books, written by three authors well-known in the fields of microcomputing, self instruction and writing clear English. In 60 straightforward lessons you learn the five essentials, problem definition. flowcharting, coding the program, debugging, and preparing clear documentation.
Every issue has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach. So you never sit glassy eyed with your mind a blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.
COMPUTER PROGRAMMING IN BASIC $£ 7.50$
Book 1 Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable names, LET, errors, coding simple programs.
variable names, LET, errors, coding simple programs. documentation: INPUT, IF . . TEN, GO TO; limitations of computers, problem
Book 3 Compilers and interpreters; loops, FOR . . . NEXT' RESTORE, debugging. arrays; bubbles sorting: TAB.
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming; examples: glossary.

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.
FORTRAN COLORING BOOK £5.40
If you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others - this one is so good it will even help you understand the standard, dense, boring, unintelligible texts. "New Scientist

A.N.S. COBOL $£ 4.40$

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format.

THE ALGORITHM WRITER'S GUIDE £3.75

FLOW CHARTS \& ALGORITHMS help you present; safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

Cambridge Learning Enterprises

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which, would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS $£ 7.00$

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.
Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates. Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders.

DESIGN OF DIGITAL SYSTEMS $£ 11.50$

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:

Book 1 Octal, hexadecimal and blnary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws: Canonical forms; logic conventions; Karnaugh mapping; three-slate and wired logic, and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive. OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Siructure of calculators; keyboard encodir, g; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character epresentation; program storage; address modes; inpul/ output systems; program programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £7.00

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

SELF-INSTRUCTION COURSES

CAMBRIDGE LEARNING ENTERPRISES, UNIT 36. RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON, CAMBS PE17 4BR, ENGLAND.
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra)
If order comes to £15 or more, deduct £2
Please allow 21 days for delivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be refunded. When books are returned in good condition.

Please send me the following books:
.... Computer Programming in BASIC (4 books) at $£ 7.50$
The BASIC Handbook at $£ 11.50$
FORTRAN Coloring Book at $£ 5.40$
A.N.S. COBOL at $£ 4.40$

Algorithm Writers Guide at $£ 3.75$
Digital Computer Logic \& Electronics (4 books) at $€ 7.00$

Design of Digital Systems (6 books) at £11.50
O-Level English Language (3 books) at $£ 7.00$
I enclose a "cheque/PO payable to Cambridge Learning Enterprises for E .
Please charge my
("delete where applicable).
*Access/Barclaycard/Visa/Eurocard/Mastercharge/Trustcard
Diners Club Account no
Signature..
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

Name
Address

Cambridge Learning Enterprises, Unit 36, Rivermill Site FREEPOST. St. Ives, Huntingdon, Cambs PE1 7 4BR, England

In future, recording the present will be a thing of the past.

What's past is past. And said to be best forgotten
But it's fundamental to the very existence of communications recording to be able to replay a selected portion of tape to find out what was said by who, to whom . . . and when. And 'when' can be vital.

Equally vital, particularly in emergencies when every second counts, is the ability to obtain such replay access rapidly, precisely, automatically. With absolute certainty - and without time-consuming multiple knob-twiddling aided by guesswork.

Racal Recorders has recognized this need and produced TIMESEARCH - designed specifically for its ICR range of multi-channel communications recorders-and providing just these facilities.

TIMESEARCH can generate a coded time reference signal of crystal accuracy and index it onto the tape. It can read and display that signal. It can search a tape at high speed for a pre-selected time signal and automatically initiate replay at that time.

In communications recording, the future becomes the present; the present becomes the past. And when you need to recall the past with precision, you need TIMESEARCH.

And for providing precise time signals every 10 seconds for recording onto magnetic tape: the International Timing Unit.

Racal Recorders always on the right track

Applications for the use of CINTEC FREQUENCY \& VOLTAGE STABILIZER are more numerous than can be listed. Therefore, if you have a supply problem, contact CINTEC LIMITED whose engineers will be only 100 pleased to assist.

SPECIFICATION

The CINTEC FREQUENCY \& VOLTAGE STABILIZER provides the answer to both these problems

When the supply frequency is fluctuating wildly, between 45 Hz and 65 Hz and the voltage by more than 10% the output from the Stabilizer will not vary more than $.01 \%$ from 50 Hz or 1% in voltage, even when different loads are imposed.

Used by Government establishments, oil rigs, hospitals, police, video and electronic industry, shipbuilders etc, for a wide range of applications including video systems, medical, frequency conversion, navigational aids and sound recording systeris.

The CINTEC FREQUENCY \& VOLTAGE STABILIZER is also available for supplies of $100-125$ volts, $45-65 \mathrm{~Hz}$ with an alternative output of 50 Hz or 60 Hz at 115 volts or 230 volts and as a dual frequency model with a switchable output of 50 Hz or 60 Hz

The Stabilizer may also be used as a frequency converter. For example, the supply to it can be any frequency between $45-65 \mathrm{~Hz}$ and the output can be switched to either 50 Hz or 60 Hz Cintec Led. Wandle Way, Mitcham, Surre Cintec L
Detailed Specification and Brochure - Available Post Coupon or Telephone/Telex

Name
Position
Company
Address
WW5
CINTEC LTD

[^0]
A professional printer-

200 c.p.s.
 (bi-directional)

12 month warranty

within your reach!

The M80-MC 80 column printer from MannesmannTally

Higher reliability, longer life, faster operation ... that's the M80-MC.
It may cost just a little more than some "personal computer" printers, but it offers a whole lot better value.
When other cheaper printers come to a halt in the middle of a heavy work load, the Mannesmann Tally M80-MC carries on. It's a proven, 200 c.p.s. bi-directional printer which is based on microprocessor electronics-hence the low price.

* 80 column, 200 c.p.s., bi-directional, 7×7 matrix (64 character U.K. set).
* Industry standard parallel interface-compatible with all popular microcomputers.
* Simple DIY installation.
* Only £995 + VAT (includes Securicor delivery).
* 12 month comprehensive Warranty (return to factory); fixed price repair service thereafter.
* Field service agreements available from our own nationwide maintenance organisation.
* Options include:- 16.5 c.p.i. condensed print, 9×9 matrix, 96 c . set, serial interface, etc.
Applications assistance is only a'phone call away.

(1) MANNESMANN TALLY

Send coupon for more details. Tally Limited, Tally House, 7 Cremyll Road, Reading,
Berks. RG1 8 NQ.

Make positive contact

IEA-ELECTREX

International Electrical Electronic and Instrument Exhibition

The third International Electrical, Electronic and Instrument Exhibition will once again prove to be a unique point of contact for specifiers, buyers, and indeed anyone interested in the future of the industry.

Over 1,000 different exhibiting companies covering just about everything electrical and electronic. From heavy power production equipment, coil-winding machinery, insulation and lighting .. to electronic test, control and measurement instruments, general and sophisticated. Electric vehicles and allied equipment to scient fic and laboratory instruments. Transformers...to opto-electronic devices. Electrical and electronic components of all kinds.

To help you locate specific items, the highly successful computer enquiry service will once again be operating; providing an instant read out of exhibitor and procuct information, as well as the specific location, based on the visitor's particular enquiry

As an additional bonus, too, visitors will be able to transier, free of charge, toIPHEX 80 -the International Pneumatics and Hydraulics Exhibition.

Naturally enough, IEA-ELECTREX ' 80 , the only internationally ecognised event for the electrical and electronic industries in the UK, will have an internationally recognised venue-Birmingham's National Exhibition Centre.

Here in the heart of the country, facilities for visitors are unrivalled. Excellent communications, accommodation and entertainment make a fitting location for this shop window for the British and international electrical and electronic industries.

Make sure you're there. And make some positive contacts at EA.ELECTREX '80.

IEA ELECTREX ' 80 . Together, they mean business
National Exhibition Centre Birmingham England 25-29 February 1980 Opening hours:
09.30-18.00 hrs. daily.

200

Please send me futher information on IEA-Electrex ' 80 NameAdaress .

Send to:-Print Services Department, IEA.Electrex '80, Industrial \& Trade Fairs Lid.,
Radcliffe House, Blenheim Court,
Solihull, West Midlands B91 2BG.
Tel:021-705 6707.
Telex: 337073

Eddystone EC9587 for arduous environments

This ruggedized version of the famous Eddystone 958 Series of high-grade professional receivers is fitted with anti-vibration mounts and drip-proof cowl. It covers 10 kHz to 30 MHz , with 1 Hz digital readout and 4 Hz stability under rigorous conditions of service. This receiver is ideal for general communication use, network monitoring, surveillance, military, mobile and shipborne installations. It is also available in standard form for bench or rack mounting.

WW - 006 FOR FURTHER DETAILS

Avo produce an impressive range of servicing instruments for on-site and work-bench use.

1. There is the tried and tested Avometer 8, with overload protection and a robust centre-pole movement resisting all the knocks of on-site work. It is just one of a complete range of portable multimeters.
2. Then there is the Avoscope A101, a portable, mains operated dual channel 10 MHz oscilloscope-a low cost instrument offering an accuracy of $\pm 5 \%$ that is simple to use.
3. Also, Avo offer a choice of AM or AM/FM Signal Generators with variable outputs, providing accurate repeatable attenuation.

Avo quality is built on many years of experience. If you'd like more detailed information about the range, contact your nearest Avo Appointed Distributor, or ask Avo.

AvoLimited, Archcliffe Road, Dover, Kent CT17 9EN.
Tel: 0304202620 Telex: 96283

- Thorn Measurement \& Components Division

You'll never meet a better meter

SCIENCE FACT

The invention of the silicon chip by Texas Instruments, turned science fiction into science fact overnight. That was in 1965, but only now is the full potential of the 'chip' being realised.

Texas Instruments offer you 14 years of extensive research and development in the form of data and reference books that will enable you to get the very best from their micro-miracle.

Whether it's your business or hobby, anyone interested in micro-technology will find these books invaluable. Get the real facts from the inventors of the 'chip.'
 TEXAS Instruments

Texas instruments Ltd, Supply Division, MS21, Manton Lane, Bedford Tel: 023467466

Slough: 186 High Street, Slough, Berks. Tel: 075370531
Manchester: Knightsbridge Mall, Arndaie Centre, Market Street, Manchester. Tel: 061-832 6238

Please send me the books ticked. I enclose £___ plus £1.15 P\&P DATA BOOKS

- TT.L. Data $£ 5.00$
\square Interface Circuits Data £3.50 ם Optoelectronics Data £3.50
\square Power Semiconductor Data $£ 3.20$
\square Transistor and Diode Vol. I £3.50
OTHER T.I. BOOKS
\square Optoelectronics Theory and Practice $£ 7.50$
\square Semiconductor Circuit Design Vols. I to IV $£ 6.50$ each - Volume V £7.95
\square Understanding Solid State Electronics $£ 1.20$
Understanding Digital Electronics $£ 3.50$
Software Design for Microprocessors $£ 12.00$
- 9900 Assembly Language Guide $£ 4.00$
$\square 9900$ Family Systems Design $£ 8.00$
\qquad
\square Calculating Better Decisions (SR51-II) $£ 5.00$
\square Calculator Decision Making Source Book (TI-51 III) £5.00
\square Calculator Analysis for Business and Finance (TI-42 MBA) $£ 7.00$ \square Sourcebook for Programmable Calculators (TI-58/58C/59) £11.45 TI-59 PAKETTES

Each pakette contains complete listings of programmes suitable for use with the T! Programmable 59 calculator $£ 5.95$ each

 \square Electronic Engineering\square Oil/Gas/Energy
\square Black Body Radiation \square Astrology

- Marketing/Sales

-

- Mathematics
\square Production Planning - TI-59 Fun (Games Pakette)
- Printer Utility
\square Programming Aids
\square Fluid Dynamics
\square 3D Graphics
\square Lab Chemistry

$\bar{W} W$ - 010 FOR FURTHER DETAILS

PORTABTE
 Pitcisd

A range of $31 / 2$ digit LCD multimeters offering high precision and extended battery life. All feature $0.5^{\prime \prime}$ LCD read-out with 'battery low' warning, inputs protected against overloads and transients, Auto- polarity, Auto-zero, rugged ABS cases and a full 1 -year warranty.

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures voltage from 0.1 mV to 500 V , current from 0.1 AA to 2 Amps , and resistance from 0.1Ω to $2 \mathrm{M} \Omega$

The LMM-2001 is an identical instrument but with 0.1% basic accuracy.

The LMM-100 has an adjustable handle, a 2,000 hour battery life and is ideally suited to field or bench use. It measures voltage from 0.1 mV to 1 KV , current from $0.1 u$ Â to 2 Amps , and resistance from 0.1Ω to $20 \mathrm{M} \Omega .0 .1 \%$ basic accuracy.

4-DLHT DDI'S FOR HED'S. SMARHMR. GIPAPRR. MONOMHHIC. FROM MNHRSIM. NATURAM.

DOWN GOES THE COMPONENT COUNT.

As a leader in monolithic Display Decoder Drivers (DDD), Intersil pioneered the "Driver on a Chip." But, we're not resting on our laurels. We're making more and better DDD's. Less expensively. The ICM7211 (LCD) and ICM7212 (LED) Display Decoder/Drivers are two good examples.

ONE CHIP FROM LOGIC TO DISPLAY.

The ICM7211 is simply the best 4 -digit LCD driver available today. $\mu \mathrm{P}$-controlled or multiplexed BCD input. Hexadecimal ($0-9, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$) or Code B ($0-9,-, E, H, L, P, B L A N K)$. It requires no external logic to drive four digits. The segment outputs of ganged chips can be directly slaved to the backplane. And, a complete on-board backplane oscillator eliminates the need for any external components. LED Displays? Specify the ICM7212 for non-multiplexed LED display and get a brightness control with a single potentiometer, no RF interference, and typically 8 mA DC per segment at full brightness.

LOW POWER CMOS DDD'S.

Today, Intersil offers a complete family of counters, timers and display drivers in low-power MAXCMOS ${ }^{\text {r" }}$. Monolithic circuits that reduce your component count, power requirements and design time. At a cost that helps you think CMOS.
COMPARE PRICE AND PERFORMANCE.

ORDER	PART NUMBER	OUTPUT CODE	INPUT CONFIGURATIONS	PRICE*
$\begin{aligned} & \text { LCD } \\ & \text { DISPLAY } \end{aligned}$	ICM7211IPL ICM7211AIPL	HEXADECIMAL CODE B	MULTIPLEXED 4-BIT	63.55
	ICM7211MIPL ICM7211AMIPL	HEXADECIMAL CODE B	MICROPROCESSOR INTERFACE	
$\begin{aligned} & \text { LED } \\ & \text { DISPLAY } \end{aligned}$	ICM7212IPL ICM7212AIPL	$\begin{aligned} & \text { HEXADECIMAL } \\ & \text { CODE B } \end{aligned}$	MULTIPLEXED 4-BIT	$¢ 2.57$
	1 CM 7212 MIPL ICM7212AMIPL	hexadecimal CODE B	MICROPROCESSOR INTERFACE	

COUNT ON US.

Whatever your display or counting problem, there's probably a better, simpler solution available from Intersil. For complete information on the ICM7211/ 7212, call your Intersil Sales Office, Franchised Distributor, or, return the coupon below.

U.K. SALES OFFICE

Intersil, Snamprogetti House, Basing View Basingstoke RG21 2EE, Hants.

U.K. DISTRIBUTORS

Macro Marketing Lid. 396 Bath Road, Slough, Berks. Tel: Burnham 63011
Tranchant Electronics (U.K.) Lid. 61-63 London Road, Redhill, Surrey. Telephone: Redhill 69217 Telex: 8953230 TRELEC G Rapid Recall Lid. 46-50 Beam Street, Nantwich, Cheshire CW5 5LJ. Tel: Crewe 626061 Telex: 36329
Rapid Recall Lid. Soho Mills Industria! Park, Wooburn Green, Bucks. Tel: Bourne End 24961 Telex: 849439
Andis Components Ltd. Etwall Street, Derby. Tel: Derby 363296

Name
Company
Address
Tel.:

If QUAD amplifiers are so perfect, why does it still sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiated and so are not 'phase locked' together nor are they subjected to common eigentones.

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing the pressure at the two ear drums. It is not possible to achieve this transfer accurately by means of loud-speakers or headphones however good these components may be.

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB. Tel: (0480) 52561.

SOUTHERN ELECTRONICS
6 WESTCLIFF ARCADE, RAMSGATE, KENT
TEL. THANET (0843) 57888
WW - M2 FOR FURTHER DETAILS

ORGAN and PIANO KEYBOARDS		
	(tices	P\&P
4-Octave C-C 5-Octave C-C	£32.20	
5-Octave C-C 5-Octave $\mathrm{F-F}$		¢2.75
S-Octave C-C	${ }_{\text {c }}$	

DALSTON ELECTRONICS

40a Dalston Lane, Dalston Junction
London, E8 2AZ Tel: 01-249 5624

WW - 043 FOR FURTHER DETAILS

ELECTROVILUE

 catalogue 10 Ready early DecemberOur computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay postage)

IT'S A GOOD DEAL BETTER FROM ELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.
5\% on orders, list value
£10 or more
10\% on orders list value £25 or more.
Not applicable on Access or Barclaycard purchase orders.
- We pay postage in
U.K.
on C.W.O. orders list value
£5 ur over. If under, add 30p handling charge

OUR NEW CATALOGUE No 10

Over 120 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustrations. Separate quick-ref price list.

ELEGTROVALIE LTD

HEAD OFFICE (Mail Orders)
28(G) St. Judes Road, Englehard Green, Egham, Surrey TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.
NORTHERN BRANCH (Personal Shoppers Only) 680 Burnage Lane, Burnage, Manchester M19 1NA Phone: (061) 4324945.

NOT EVERY CABLE HASALABEL =
 Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal.
 Eagle Test Equipment gives the right answers
 The range covers general multimeters, high voltage probes, clamp meters, insulation testers.
 Here are just four. Send the coupon for details of all the rest.

 KEW 7 Multimeter 1000 OPV. DC volts up to 1000 DC amps up to 100 mA . AC volts up to 1000 . Resistance up to 150 Kohms. Pocket size. "Off" damping. Complete with leads \& battery. R.R.P. $\mathbf{£ 6} .95$ ex. VAT.

 K 400 Multimeter 20,000 OPV. DC and AC volts up to 5000 . DC and $A C$ amps up to 10. Resistance up to 20 megohms. "Off" damping. Overload protection. R.R.P. £ 79.35 ex . VAT.

EM 1200 Multimeter 100,000 OPV. Taut band movement. Overload protection. Reversible DC polarity. $A C$ amps: $15 ; A C$ volts to 1500 . DC amps up to 15, DC volts to 1500 . Resistance up to 200 megohms. R.R.P. £49.95 ex. VAT.

EM10, 20 \& 30 Multimeters 10,20 \& 30,000 OPV. All with antiparallax mirror scale. DC volts to 1000 (1200 for EM30). DC amps to 250 mA (600 for EM30). AC volts to 1000 (1200 for EM30) Resistance up to 6,5 and 60 megohms respectively. R.R.P.'s EM10 $£ 13.50$ EM20 £17.25, EM30£20.75 ex. VAT.

TestEquipment: EAGLE ${ }^{-}$

Please send me details of your complete range of Test Equipment.
Name \qquad Company Address \qquad

EAGLE INTERNATIONAL
Precision Centre, Heather Park Drive, Wembley, Middlesex HAO 1SU.

CROPICO-A CERTAIN MEASURE OF PERFECTION

Cropico, established as one of Britains leading manufacturers of precision electrical measuring equipment, offer a wide range of instruments which have been proved for accuracy and performance throughout the world.

Resistance Boxes D.C. Null Detectors Resistance Bridges Digital Tomperature Indicators Resistance Standard Resistance Standard D.C. Potentiometers Ma Multimeters, Digital or Analogue Watmeters, Digital or Analogue Junctions Insulation Test Sets Thermocouple Switches Earth Resistance Meters Pt 100 Switches Fluxmeters Pi 100 Simulators And many more Cropico - Britains leading manufacturer, exporter and importer of precision electrical measuring equipment.
Request full details - Visitors Welcome CROPICO LTD., Hampton Road, Croydon CR9 2RU
Telephone: 01-684 4025 and 4094 Cables: CROPICO-CROYDON
Telex: 945632 CROPCO G

CROPICO

for all demagnetising problems LEEVERS-RICH have the answer
LR70 for tapes up to $8^{1 ⁄ 4}$ Dia and 1^{11} wide
LR71 for tapes up to $11 \frac{1122}{2}$ Dia and 1 " wide LR72 Han-d-mag for demagnetising heads and tape path components
LEEVERS - RICH EQUIPMENT LTD

319 Trinity Road,Wandsworth, London SW18 3SL Tel:01-874 9054 Telex:92355 WW - 041 FOR FURTHER DETAILS

Pil are pleased to announce the official, opening of their new 1500 sq . ft . showroom to the public.

Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international.

Pil can cater for practically every electrical' measurement problem for any user on an ex-stock/short delivery basis.

The showroom facilities and its technical back-up are available to everyone from export

Factory/Repairs 01-639 0155 North London Showroom 01-965 2352

AN IEC GROUP COMPANY
houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and hobbyists.

Instruments Electrical the service and calibration division can provide full guarantee facilities as well as offering their normal repair and calibration service.

For an immediate solution to your instrument problems, contact the Instrument Group at Instrument House.

Showroom/Sales/Export 01-639 4461

Open Mon, to Fri. (ring for Sat. opening times)

IHSTRUMENT HOUSE,721 OLD KENT ROAD,LONDOW SE15 TELEPHONE:O1-6394461 TEL $3: 88811854$ (INSTEL)

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER.
 Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input impedance.
 Reading to ± 1999.
 Scales: DC volts:
 DC volts: 1 mV to 1000
 $1 m \mathrm{~V} 101000 \mathrm{~V}$

A portable, compact sized multimeter with a full 31⁄2 digit LCD display. Auto polarity operation, low battery ind icator. 10 MOhm Input impedance.

cat No	DESCRIPTION	PRICE
276-032	LED	$\begin{aligned} & 4 \text { for } \\ & 69 p \end{aligned}$
276-033	LED	$\begin{aligned} & 2 \text { for } \\ & 48 p \end{aligned}$
276-034	LED	$\begin{aligned} & 2 \text { for } \\ & 59 p \end{aligned}$
276-142	Infra.Red Emmter Detector Parr	£1.37
277-1003	12VDC Automotive DigitalClock Module	$£ 17.52$
276-9110	6 pile edge compector $\mathrm{fon} 277 \quad 1003$	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	T0 220 Heat Sirk	60p
276-1364	TO 3 Heat Sulk	81p

AC/DC 8 MHz OSCILLOSCOPE

A new approved 8 MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in
laboratories and schools. Ideal for radio
and TV servicing, audio testing, etc

Specifications:
Hcrizontal axis: Deflection senstivity better Illan 250 mV DIV. Vertical axis: Deflection sensutivily 0.8 MHz . Inout Divedance Gmim). Bandwidth capacitance 35 pF . Time base: Sweep range: $10 \mathrm{~Hz} 100 \mathrm{kHz}(4$ ranges). Syilhronization: Internal(Size: 200 $155 \times 300 \mathrm{imn}$. Supply 220240 '50Hz. 22-9501.

You save because we design, manufacture, sell and service Tandy have over 7,000 stores and fealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement.

KNOWN AS RADIO SHACK IN THE U S.A MAKERS OF THE WUFLU'S BIGGISI SELLING MICHUCOMPUIL.R TRSMU

The largest electronics retailer in the world.

offers subject to availability. Instant c redit avalable in most cases

OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

TANDY
 DEALER

Most items also available
at Tandy Dealers. Look for this sign in your area.

Measure Resistance to 0.01Ω
At a Price that has no resistance at all
New Elenco precisin Digital Multimeter M1200B

ONLY £55
 $\left(\varepsilon 3 \mathrm{p} \varepsilon_{\mathrm{p}}+\mathrm{VAT} \mathrm{E} 8.70=666.70\right)$

YOUR OPPORTUNITY TO
BUY THIS SUPERB DMM AT THIS PRICE FOR A LIMITED PERIOD ONLY.

- FUlLY GUARANTEED

FOR 2 YEARS

- metal case
"EX Stock delivery

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $3 \frac{1}{2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

Ovdaning information: for orders under E50 add 50 p p. \&p. Add 15% VAT to Rotal. All items are subject to prior sale and therefore subbect 10 availablity. Prices are subiect to change without notice.

Quantity discounts are available for OEMs and deaiers. Send SAE for details.

All orders to:

TИ Miaro Birtuits

INTERSIL UNIVERSAL TIMER/

 COUNTER EVALUATION K 8 digits 5 Function 4 range to 10 MHz with 0.1 Hz res.time interval and period to 10 seconds with 0.1 microsecond res. units up to 10
miltion and ratio. A breadboarding area is provided for user to add his own input condianing circuirry or prescalers and plexed as well as being displayed Complete kit ONLY $£ 48+$ VAT
| Name

lease note now address 4 Meeting Street
Appledore, Nr. Bideford
North Devon EX39 1 RY Telex 8953084

NOTE OUR NEW ADDRESS

L
Also available from ELENCO : PRECISION Sole UK Distributor retail shop:
Audio Eloctronics,
301 Edgware Road
London, W. 2
Telephone:
$01-7243564$
(C) N Zand

ME

Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC1XOAP Tel. 01-837 1165
Telex. 8953084 MACLING

WE HAVE 397 TITLES IN STOCK, SEND FOR COMPLETE LIST.

GAMES

Chess \& Computer Chess Skill in Man and Machine
32 Basic Programs for the Pet.
Game Playing with Computers
Basic Computer Games.
Star Ship Simulation
Game Playing with Basic
Sargon
MISCEI, IL ANEOUS
Intro. to TRS 80 Graphics
Microprocessors C201
Scelbi Rute Primer
Business Data Systems
The Systems Analyst
Your Home Computer
Programming a Micro 6502
6502 Applications Handbook
BASIC
Learning Basic Fast
Basic Basic
Advanced Basic
Illustrated Basic
Basic with Business Applications Introduction to Basic
The basic Handbouk
COBOL
Cobol Programming Learning Cobol Fast Cobol with Style
Reducing Cobol Complexity
D. Levy . . . £ 7.16 P. Frey . . . 111.84
£ 9.95
D. Ahl . . £ 5.50
± 5.50
$£ 5.10$
$£ 4.10$
$£ 9.50$
£ 5.75
£ 7.50
£ 9.95
£ 5.75
$£ 6.60$
$\& 4.95$
£ 7.95
\& 8.95
\& 6.30
Je Rossi : : \quad £ 6.300
J. S. Coan : \& 5.50
I) Alcock

Hayden
Lien 11.00

Nickerson . . £ 6.95
De Rossi . . . £ 6.20
Hayden . . £ 4.20
Mc Clue

GBooks

ASCAL

Pascal: User Manual and Report Problem Solving Using Pascal Programming in Pascal Pascal A Practical Intro. to Pascal. In Introduction to Programming and
Problem Solving with Pascal
Springer-Verlag Springer-Verlag
P. Grogono A. Addyman

Schneider
Schneider
J. Welsh \& J. Elder
Introduction to Pascal

FORTRAN

Elementary Computer
Programming in Fortran IV
PROGRAMMING
Chemistry with a Computer Seminumeral Algorithms Fundamental Algorithms Assembly Level Programming for Small Computers Sorting \& Searching .
Top-Down Structured
Programming Techniques The Design of Well Structured and Correct Programs Computer Mathematics . Basic Principles of Data Processing Fundamentals of Computer

Algorithms
Computer Approach to Introductory
College Mathematics
Computer Input Design Computer Output Design How to Program Micro's.

Boguslausky . . £ 6.30
£ 5.52 $£ 7.84$ $£ 7.50$ £ 3.50 £ 9.50 ± 6.95

CREDIT SALES (Minimum £10), Access and Barclaycard

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

TRANSDUCER and RECOFIDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2X0
Telephone 077257560

Fylde Electronic Laboratories Limited.

NEW UNBEATABLE 1980 PRICES NOW! EXPLORER / 85 FEATURES INTEL 8085 CPU WITH ON BOARD S-100 EXPANSION

FLEXIBILITY: Real flexibility at LAST. The EXPLORER / 85 features the Intel $8085 \mathrm{cpu} 100 \%$ compatible with all 8080A and 8085 software. Runs at 3 MHz . Mother Board (Level A) with 2, S-100 pads expandable to 6 (Level C)

MEMORY

2K Monitor ROM
4K WORKSPACE / USER RAM
1 K Video RAM
8K Microsoft BASIC in ROM or Cassette
INTERFACES
STANDALONE FULL ASC1 Keyboard Terminal, $32 / 64$ characters per 16 lines
Cassette interface (with motor control and cassette-File structure)
RS-232/20Ma Loop. 4, 8bit: 1, 6 bit I/O ports, programmable 14 bit binary counter/timer Direct interface for any S-100 Board.
FULLL Buffering decoding for $\mathrm{S}-100 \mathrm{n}$ Bus pads, wait state generator for slow memory.
Each stage has separate 5 v 1 A regulator for improved isolation and freedom from cross taik.
P.S.U. requirements: $8 \mathrm{v}, 6.3 \mathrm{v} \mathrm{AC}$.

Runs with North Star controller and Floppies / CPM.
EXPLORER/85 is expandable to meet your own requirements with easy to obtain S-100 peripherals.
EXPLORER/85 can be purchased in individual levels, kit form or wired and tested. OR as a package deal as above

£275 + VAT

Microsoft BASIC on Cassette

£295 + VAT

Microsoft BASIC in ROM

AVAILABLE NOW!

WE ARE KILLING INFLATION WITH

BOARD WITH VIDEO OUTPUT
FEATURING THE RCA COSMAC 1802 cpu
STOP reading about computers and get your "hands on" an ELF II and Tom Pitman's shont course. ELF II demonstrates all the 91 commands which an RCA 1802 can execute. and the short course speedily instructs you how to use them.

EIF Il's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF II is perfect for engineers, business, industry, scienlific and educational purposes.

ELF II EXPANSION KITS

```
- Power Supply (6.3v AC) for ELF II
* &uf IV Oeluxe Stgel Cabinail IBm Bluel
* Giant Board Kit System/Monitor, Interlace to
    cassetle. RS232. TTY, otc.
    ** Static RAM board kits |requires expansion power
    supply
- Expansion power supoly frequireor when adefing
    4K RAMsl
- ASCIL Kghourd Kits 96 printable character s, etc.
* ASC11 D/lux stael can [IBM Blue)
* Khuga protdype board fbuild yaur owm circuits)
* }86\mathrm{ pin Gold plaled conneclors, sach
* Elf Light pen writes/draws on TV screens
* Yideo graphics board 32/6A characters by 16 lines on
N/monitor screens
FIT Imy basic an casselte
* ELF-Bug/mantar powertul systems monitar/editor
- T. Pitmans shorl course in programming manual (nil vat
* T. Pitman stort course on tiny basic manual nail vat!
- RCa }1802\mathrm{ users manual niil Vat!
* Dn casseme Text Editor. Assembler, Disas sembler pachl
Save 10% and buy sll twree tagether.
```

c5.00
$\begin{array}{r} \\ \\ \mathbf{C} 5.00 \\ \hline\end{array}$
£25.50
¢57.50
19.00

C39.95
\&12.75
£11.00
63.75
65.00

56150
$\begin{array}{r}661.50 \\ \\ \hline 9.75\end{array}$
69.75
£9.75

$£ 3.00$
2.00

E3.00
ع12.75

ELF II BOARD
 SPECIFICATION

* RCA 1802 8-bh microprocessor with 256 byte RAM expandable to 64 K
bytes
- RCA 1861 video IC to display program on TV screen via the RF Modulator Single Board wilh
Professional hex keyboard fully decoted to eliminate the waste of memory for keyboard decoding circuits
Load, run and memery
protecl switches
I6 Registers
Interrupt. DMA and ALU Slable crystal clock Built in power regulator 5 slot plug in expansion bus [less connectors]

NEWTRONICS KEYBOARD

TERMINAL AT £114.20 + VAT

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV (RF Modulator required).
The characters can be any of the $96 \cdot$ ASC II alphanumerics and any of the 32 special characters, in addition to upper/lower case capability, it has scroll-up features and full X-Y cursor control. All that is required from your microcomputer is 300 baud RS232.C or 20 ma loop serial data plus a power source of 8 v DC and 6.3 v AC. The steel cabinet is finished in IBM Blue-Black. And if that is not enough the price is only $\mathbf{£ 1 1 4 . 2 0 ~ + ~ V A T ~ a s ~ a ~ k i t , ~ o r ~} £ 144.20$ + VAT assembled and tested. Plus £2 P\&P (Monitor not included.).

RACAL AP12, C12 TAPES: 10 for $£ 4.50$ + VAT

NOW AVAILABLE 8K FULL BASIC FOR ELF II

NEWSOFT GAMES FOR ELF II: $\mathbf{4}$ for $\mathbf{£ 5}+\mathbf{V A T}$

SEND SAE FOR COMPREHENSIVE BROCHURE
Please add VAT to all prices (except manuals). P\&P £2. Please make cheques and postal orders payable to NETRONICS or phone your order quoting BARCLAYCARD, ACCESS number.

NEW ADDRESS:
 Bigger
 Premises
 H. L. AUDIO LTD. 255 ARCHWAY ROAD LONDON N6 5BS

New Phone No. 01-348 3325

[^1]Carston Electronics specialists in
second user testand
measuring instruments specialists in
second user testand
measuring instruments

Acoustic
BRUEL \& KJAER
2203 Precision sound level meter
2204 Precision sound level meter 1613 Octiave lilter sel coudles direcily to 220382204
CEL
112 LEO meter digitilieadou
Bridgesetc.
DAWE
210 B Decade Capacitance bo
$01 \mu \mathrm{~F} .1 \mathrm{mF} 0.1 \mathrm{LI}$ step
Cable Test Equipment TF2333 Transmisston Test Set STC
74216A Noise Generator CCITT 74261 A Psophometer CCITT
Counter Timers
HEWLETT PACKARD
S223A Time
ME2414ADC. 40 MH ? ${ }^{\text {M }}$
RACAL
$902410 \mathrm{~Hz} 600 \mathrm{MHz}^{7}+1$ digits 9835 DC 15 MHz 6 digits $80 \mathrm{MH}_{2} 6$ diqits
Logic Analysers
HEWLETT PACKARD
1601L Logic state analyser 12
channel display
Mains Monizors
AMPROBE
LAV3X Mans voltage recorder
RUSTRAK
$288+$ CT Clamp-on AC recorderg
Modulation Meters AIRMEC
2101 - 300 MHz AM/FM
409 3-1500 MHZ AM/FM

Prices
flom f
400

ROBAND
T10150 Vi a Varable
SOLARTRON

As 75150 V 1 A Varable
195 STARTRONIC
325 11720Vo5A Variable
Prices
from f
MARCONI
TF2300A $1-1000$ MH2 AM/FM 520

TF2300A1-1000
$110 / 111 \mathrm{DC} .20 \mathrm{MMz}$ duat trace
$110 / 112 \mathrm{DC} .1 \mathrm{MHz}$ difterentia
Lempar ofor

OS1000A DC-20 MHz dual trace COSSOR

HEWLETT PACKARD

5191 GMz Real Time Matching accessories included

UIPMENT
054 DC 10 MHz duat liale
P75 50 MHz dualrace D TB
Oscilloscone Probes
Voltage
PEKTRONIX D.llumal witue UC 100 MHz 215 Oscilloscope Cameras

Carston

Carston Electronics Limited
Shirley House. 27 Camden Road, London NW1 9NR. Telex:23920
$01 \cdot 2675311 / 2$

Pressure \& Displacement Prices

 TransducersELECTRO MECHANISMS
LVOTOC linear variable ± 0 inches 50 MP5 Humiaity probe

Pulse Generators

E. H. RESEARCH

G7105V/50 R $30 \mathrm{~Hz} 50 \mathrm{MH} /$ RT 5 ns .100
$132 \mathrm{AL} 50 \mathrm{~V}, 50 \mathrm{D} 5 \mathrm{~Hz} 3 \mathrm{Mmz}$ RT 12 ns 175
Recorders \& Signal
Conditioning Equipment
BRUNO WOELKE
350 ME 1028 Wow and flutier meter
ME102C Wow and flutter meter
Signal Sources 8
Generators
240 ADVANCE
H1 $15 \mathrm{~Hz}_{2} .50 \mathrm{KHz}$
DAWE
410 CO 1 Hz .10 KHz
HEWLETT PACKARD
$200005 \mathrm{~Hz} 600 \mathrm{kH} / 0$ P 10 V RMS
$86931003783 \mathrm{GH}_{2} 5 \mathrm{~mW}$
608 E 10.480 MHz AM
618C 3 8-7.6 GH\% FM
MARCONI
TF 791 FM Ueviation Meter 41024 MHz
TF8850 12 MHz Sone, SQuare
TF995A/21 $5220 \mathrm{MHz}_{2}$ AM FM
TF9958/502 $220 \mathrm{MH}_{2}$ AM FM TF 2005 A Two tone $20 \mathrm{~Hz}-20 \mathrm{KHz}$
ROHDE \& SCHWARZ
SWOB $1105.1200 \mathrm{MH}_{2} 50 \mathrm{R}$
25 WAYNE KERR
S 12110 Hz .120 KMz
S12
$022 \mathrm{~B} 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$
25 $022 \mathrm{~B} 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$

RAYTEK

Vibration
DAWE
$1461 \mathrm{CV}(\mathrm{M})$ Portable Vibration 450
Volimeters - Analogue
95 BRADLEY
CT471CACIOCID/curreni
multumeter and RF
HEWLETT PACKARD

KEITHLEY
LINSTEAD
$M 2 B C^{\prime} A C 10 \mathrm{~Hz}_{2} 500 \mathrm{kHz} \quad 25$
MARCONI
TF 2603 AC voltmeterto $15 \mathrm{GHz} \quad 300$
Voltmeters - Digital
SOLARTRON
A200 19999 FSO DC Only 160
A 20519999 FSO AC/DC/R
704519999 Auto AC/OC/OHMS 295
705099999 Auto AC/DC/OHMS 395
Wave Analysers
GENERAL RADIO
1232A Tuned amplifier and null
detector $20 \mathrm{Mz}-20 \mathrm{KHz}$
HEWLETT PACKARD
302 A 20 Hz 50 mHz 75 db range 375

WAYNE KERR
A 32120 Hz 20 KHz Sens 75 db

Redundant

Test Equipment

Why not turn your under-utilized test equipment into cash ? Ring us and we'll make you an offer.

MODEL 756 FULL ASCII
 LOW COST!

Fully KEYBOARD

Assembled

756 KEYBOARD

* Intended for professional microprocessor applications.
* This one Keyboard will meet most present and future requirements.
* Full 128-character ASCII 8-bit code
* Tri-mode MOS encoding.
- Applications notes for auto repeat. numeric pad, serial output.
* Upper and lower case characters generated by keyboard with latching shift-lock.
* Selectable polarity.
- Size $305 \times 140 \times 32 \mathrm{~mm}$
$\left(121 / 4 \times 51 / 2 \times 1 \frac{1}{4} \mathrm{in}\right)$
* MOS/DTL/TTL compatible outputs.
* New guaranteed OEM grade components.
- Needs +5 and -12 V supply
* Board has space for small low cost DC/DC converter so that entire unit operates off single 5 V rail.

Carter Associates
P.O. Box 11262 VLAEBERG

South Africa postal code 8018

Alpha lock

- Extra loose keys available.
- Supplied complete with full technical data
Rugged mil. spec. G-10 PCB with plated through holes. 2-key roll-over
DC level and pulse strobe signal for easy interface to any 8 -bit input port microprocessor system. video display or terminal board. Strobe pulse width 1 ms .
- User selection of positive or negative logic data and strobe output.

A new edition of a Newnes-Butterworths classic

Radio and Electronic Laboratory Handbook

Ninth Edition
M. G. Scroggie
assisted by G. G. Johnstone

* First published in 1938, and now recognised as a standard work in its field
* Covers every aspect of modern electronic laboratory practice
* Many new techniques are included for the first time and the subject of filters has been expanded
* Includes chapters on the general principles of measurement and laboratory practice including interpretation of results, methods of measurement and a comprehensive reference section
* Describes the use of integrated circuits and digital instruments

1980
608 pages $£ 17.95$ (US $\$ 40.50$)

Newnes-Butterworths

Borough Green, Sevenoaks, Kent TN15 8PH Tel: (0732) 884567

Butterworths has companies in Australia, Canada, New Zealand, South Africa and the USA, where local prices apply.

EMC/R.F.I. INSTRUMENTATION

6.8 WEEKS DELIVERY/ FULL AFTER-SALES SERVICE

ELECTRO-METRICS Interference Analysers ($20 \mathrm{~Hz}-40 \mathrm{GHz}$) CISPR/VDE/ANSI/MIL-STD 461/2.

- HIRE: A wide range of equipment available.
- FISCHER CUSTOM COMMUNICATIONS Current Probes - Spikeguard Suppressors (12 weeks delivery)
- AERITALIA Electric and Magnetic field sensor system
- CONTACT:

Electro-Metrics Services Ltd. 'Coach House', 84 Tilehouse St. Hitchin, Herts.

ELECTRO-METRICS SERVICES LTD.

STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business

SEED - STRUMECH - PORTLAND HSE. - COPPICE SIDE - BROWNHILLS WALSALL
the indispensable

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say.

Exclusive UK representative

The new Toolrange catalogue

still the only catalogue of itskind

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids. The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy. Telephone: Reading (0734) 22245 Telex: 847917 WW - 063 FOR FURTHER DETAILS
$15 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ Generator
0.008% THD
$100 \mu \mathrm{~V}$-IV Sin/Square
RIAA Output
6 Digit Frequency Display from input or output
$100 \mu \mathrm{~V}-100 \mathrm{~V}$ FSD Millivoltmeter 1\% Accuracy $1 \mathrm{~Hz}-200 \mathrm{KHz}$ Bandwidth

Ultra tow-power operation from single PP9 battery or optional mains adaptor DIN or BNC connectors

F゙\{ \{3TTER

$0.01 \%-10 \%$ FSD
$1 \mathrm{~Hz}-300 \mathrm{~Hz}$ or DIN Weighted Mean or DIN Quasi Peak

CCIR/ARM
DIN Audio Band
DIN Rumble A and B
Other Weightings Available
 PROBLEMS SOLVED IN ONE COMPACT PRECISION INSTRUMENT - THE LINDOS LA1 AUDIO
ANALYSER
£425 + V.A.t.

10 O O

LINDOS ELECTRONICS Sandy Lane, Bromeswell WOODBRIDGE, Suffolk IP12 2PR 03947432

WW - 007 FOR FURTHER DETALLS

HANOY-easy to hold, to carry, to use, 10 read. Aiways at hand to make difficult measurements easy.
VEASATLLE-all the functions and ranges you need . . . 29 in all: volts and amps. s.c. and d.c. swilchable Hi and Lo ohms.
TOUGH-built to lake the rough and fumble of fieid service and survive normally disastrous overloads the 935 will stay in cal.
PRECISE-basic 0.1% d.c. accuracy - better than many bench models!

VISIBLE-big. dear, high contrast 31/2 digit LCD display. readabte anywhere, $1 / 2^{\prime \prime}$ characters.
EXPANOABLE-accessories extend measure ments to 1000 A 40 kV r.t. It 700 MHz or temperature from 60 to 150 C.
INEXPENSIVE-the 935 has the lowest price Iag of any high performance hand-held DMM al E94. UK, mainland delivered exc VAT. II uses a low cosi ppg battery which can give up to 200 hours use.
Get the leaflet now
and see why your next multimeler shoutd be a Data Precision 9351
(0) Farnell International

WETHERBY - WIST YORKSHIRE LS22 4OH. TEL: 0937 63541- TEEEY 557294 FAAISTB OR LONOON OFFICE -TEL. 018647433

- the Mark III ASCII encoded touch keyboard

This professional quality touch sensitive keyboard has the full ASCII code set of characters available from the main keyboard, plus a separate 12 key pad to allow fast numeric entry. The MK III has a 'bleep' facility with volume control and power 'on' light plus a polyester sealed wipe clean surface making the unit particularly suitable for use in hostile environments. The MK III is supplied complete with mating gold plated edge connecter in a low profile matt grey plastic case with non-slip feet.

Additional features

- 7 bit parallel ASCII encoded output with positive and negative strobes
- Odd and even parity check bits (bit 8)
- Two user definable pads - switch closures ($\mathbf{2 4 V} \mathbf{5 0}$ mA max)
- Repeat pad
- Illuminating, electronically latched shift lock pad
- Electronic hysteresis
- Industry standard key spacing ($3 / 3 \mathrm{in}$)
- Operating life greater than $5.0(0), 0100)$ operations per pad
- Available ex stock (manufactured in U.K.)

Custom keyboard design and manufacturing capability

Optional extras (all options are incorporated in the unit)
A Serial output compatible to RS232/V24 £6.(0)
Al Internal baud rate generator, For use with Option A or C. Please state Baud rate required
A2 Internal generation of ± 12 Volts for use with Option A
£ ((x)
C $\quad 20 \mathrm{~mA}$ Current loop output. Passive. £6.())
D On board - 5 Volt regulator. Requiring unregulated D.C. input of $7-12 \mathrm{~V}$
f.4.(1)

E Earphone socket and plug in personal
earphone
£2.0)
F Switch selectable TTY compatability
£(1).(K)

With Option ' A ' or ' C ' the Baud rate may be supplied externally by the user
With Option 'A' the - 12 Volt may be externally supplied

Please send me details of your range of keypads.

Price $£ 48.50$ plus VAT

Postage and packing
U.K. £1.(K) *Europe $£ 2 .(K)$ * Outside Europe $£ 3$ (K)
*(This includes Air Mail delivery)
Payment should be made in sterling drawn on a l'.K. bank or I. M. ().
Cheques made payahle to Star Devices I.td.
P() Box 21, Unit 1, Mill Lane, Newbury. Berkshire.
Telephone (06.35 404(0)
Access/Eurocard/Mastercharge
Vame.
Address
Card Number
BL.OCK CAPITALS

A major exhibition of computers, peripherals, terminals and services, held each spring in the most highly industrialised area of Western Europe.

 BOMPEEURPE 80
Centre International Rogier, Brussels, May 6, 7 \& 8, 1980
The ever-growing international attendance gives Compec Europe exceptional status as a sales platform for providers of hardware, software and services from every country. Ensure participation in its benefits by posting the coupon below.

GOMPEG EUROPE'80 STAND RESERVATION FORM

To: The Exhibition Manager, Compec Europe, Room 821, Dorset House, Stamford Street, London, SE1 9LU, England.

Please provisionally reserve for us stand space at Compec Europe 80 and send the undersigned more information.
Name \qquad Company

- HI-FI

DRIVE
UNITS

Audax HD 12 9D25 Audax HD 13D34H
Audax HP11P25EBC
Audax HP2OB25H4
Audax HD24S45C
Baker Superb
Castle Super 8RS /DD
Chartwell CEA205 8" bass. pairs only 8 ohm (pair)
Coles 4001
Coles 3000
Celestion HF 130011
Celestion HF 2000
Dalesford D10 iweeter
Dalestord D30/110 5in
Dalesford D50/15361/2in
Dalesford D50/200 8in
Dalesford D70/250 10in
Dalesford ABR 10 in
Dalesford D100/310 12in
Decca London horn

£ 7.65
£12.75 £6.65 £ 13.25 £20.50 £25.00 £12.65 Castle Super 8RS /DD Chartwell CEA205 $8^{\prime \prime}$ bass, matched
pairs only 8 ohm (pair) $£ 61.25$ Coles 4001 E61.25 £7.65 £ 7.65 $£ 8.45$
Celestion HF 1300 II £10.25 Dalesford D10 iweeter £8.45 £11.25 £12.25 £12.25 £22.25 Dalesford D100/31012in Decca London horn
Decca DK30 horn Decca CO/1000/8 EMI 14A/770 $14 \mathrm{in} \times 9 \mathrm{in}$ 8 ohm £10. 25 £35.75
£57.25 $\mathbf{8} 7.25$
$\mathbf{8 4 3 . 7 5}$ EMI $\operatorname{Bin} \times \sin d / c, 10$ watt £ 19.50 4 ohm EMI Type 3504 ohm Isophon KK8/8 Isophone KK10/8 Jordan Watts Module Jordan Watts HF kit
Jordan 50 mm unit Jordan CB crossover (pair) Jordan Mono crossover (pair) $£ 23.00$ Kef T27

Kef 8110 Kef 8200

Kef B200
Kef 8139
Kef B139
Kef DN 13
Kef DN 12
Kef DN 22 (pair) Lowther PM6 Lowther PM 7 Peerless KO 100T Peerless DT10HFC Peerless KO 40MRF Radford BD25 II Radford MD9 Radford FN8/FN831 Richard Allan DT20 Richard Allan DT20 Richard Allan DT30 Richard Allan CG8T
Richard Allan CG12T Supe Richard Allan CG 12
Richard Allan LP8B Richard Allan LP8B
Richard Allan HP8B
Richard Allan HP8B
Richard Allan HP1 28 Seas H107
Seas H107 $\mathbf{~} 8.95$ Shackman Electrostatic, c/w polar network and crossover (pair) £130

[^2]
PA GROUP \&

 DISCO UNITSBaker Group 35 Baker Group 50/12
.45
Baker Group 50/15
$£ 23.45$
Cele £35.15 Celestion Powercell $12 / 150 £ 56.50$ Celestion Powercell 15/250 £69.25 Celestion G $12 / 50$ Twin cone $£ 15.95$ Celestion G12 / 80 Cambric

> edge
$\varepsilon 20.25$
Celestion G12/80 Twin cone $£ 19.75$
Celestion G12/125 Cambric
edge $15 / 100$ Cambic
Celestion G15/100 Cambric edge
Celestion G15/100 Twin cone
Celestion G18/200
Celestion MH1000
Fane Pop 40
Fane Pop 50H
Fane Pop 75
Fane Pop 65
Fane Pop 65
Fane Pop 80
Fane Pop 80
Fane Pop 100
Fane Pop 100
Fane Guitar 80 L
Fane Guitar 80B
Fane Disco 80
Fane PA80
Fane Bass 85
Fane Crescendo 12 E
Fane Crescendo 15E
Fane Crescendo 18E
Fane J44
Fane J104
Fane J73
Fane HPX1/HPX/2
Fane HPX3A
Fane HPX38 Goodmans 8PA Goodmans 12P Goodmans 12PD
Goodmans 12PG
Goodmans 18P
Goodmans Hifax 5OHX Motorola Piezo horn $31 / 2$ in Motorola Piezo horn 2 inx 6 in
Richard Allan HD8T Richard Allan HD8T Richard Allan HD
Richard HD12T Richard HD12T Richard Allan HD15 Richard Allan Atlas 15 in Richard Allan Allas 18 in
£35.10
$€ 31.95$
£32.25
£53.25
£15.95
ع 12.50
£ 13.80
$£ 13.80$
$£ 19.70$
$£ 19.70$
$£ 21.25$
$£ 21.25$
$£ 25.50$
£25.50
$\varepsilon 41.80$
$£ 26.10$
$£ 27.15$
$£ 27.15$

£27.15

£26.10

£26.10
$£ 34.00$
£57.50
$£ 74.50$
$£ 74.50$
$£ 94.75$
$£ 94.75$
$£ 6.90$
$£ 6.90$
$£ 13.75$
£13.75
E 9.75
$£ 3.45$
$£ 5.60$
$£ 5.60$
$£ 4.55$
$£ 4.55$
$£ 5.05$
$£ 5.05$
$£ 21.00$
£23.95
$£ 23.65$
$£ 48.45$
$£ 48.45$
$£ 21.85$
$£ 21.85$
$£ 8.50$
£8.50
¢12.25 $£ 12.25$
$£ 17.00$
£17.00
$£ 18.50$
$£ 24.45$
E 24.45
£43.40
¢85.15
£110.75

KITS FOR MAGAZINE DESIGNS etc

KITS FOR MAGAZINE DESIGNS

Kits include drive units, crossovers, BAF/long fibre wool, etc, for a pair of speakers.

Carriage £3.75
Practical Hi-Fi and Audio PRO9-TI (Rogers) Felt panels for PRO9-TL £6.72 plus £1.60 carriage £138 Hi-fi Answers Monitor (Rogers) £146 Hi fi News State of the Art (Atkinson)
Hi fi News Miniline (Atkinson) $\mathbf{E 4 8}$ (carriage $£ 2.66$)
Hi Fi for Pleasure Compact Monitor
(Colloms) £115
(carriage £5.25)
Popular Hi-Fi Mini-Monitor (Colloms)
Popular Hi Fi Round Sound (Siephens) including complete cabinet kit
Popular Hi-Fi (Jordan)
$\varepsilon 71$
plus (carriage £2.66)
Practical Hi-fi \& Audio BSC3 (Rogers)
E65
Practical Hi-Fi \& Audio Monitor (Giles)
Practical Hi-Fi \& Audio Triangl
(Giles) £99
Practical Hi-Fi \& Audio Mini Triangle
(Giles) £108
Wireless World Transmission Line (Bailey) KEF £122
Wireless World Transmission Line (Bailey) RADFORD E184
Hi-Fi News Tabor (Jones) with J4 bass
units $£ 60$
Hi-Fi News Tabor (Jones) with H4 bass units E66

Smart badges free with all above kits (to give that professional touch to your DIY speakers!). Send 50p for up to 6 reprints/construction de. tails of above designs.

PRICES CORRECT AT 18.6.79

ALL PRICES INCLUDE VAT @ 15\%

Send 30p stamp for free 38 page catalogue 'Choosing a Speaker'

Telephone Speakers, Mail Order and Export
0625529599
Hi-Fi: (Swift of Wilmslow) 0625526213
$=$
Lightning service on telephoned credit card orders! L

SPEAKER KITS

PRICES PER PAIRCARRIAGE $£ 2.66$

Dalesford System 1
Dalesford System 2
Dalesford System 3 Dalesford System 4 Dalesford System 5 Dalesford System 6
Eagle SK210
Eagle SK215
Eagle SK320
Eagle SK 325
Eagle SK335
$\begin{array}{lr}\text { Eagle SK335 } & £ 68.50 \\ & \text { E93.00 }\end{array}$
Goodmans DIN 204 ohm (special offer)
LS3/5A equivalent kit $\quad £ 71$
Lowther PM6 kit £105.30
Lowther PM6 Mk 1 kit E110.40
Lowther PM7 kit £176.85
Peerless 1070
Peerless 1120
$£ 124.70$
Peerless 2050 Peerless $2060 \quad$ £51.10 Peerless 2060
867.40 Radford Studio 90 kit $£ 184$ Radford Monitor 180 kit $£ 218$ Radford Siudio 270 kit £350 Radford Studio 360 kit E 440
Ram Kit 50 (makes RAM 100)
$£ 71.50$
Richard Allan Tango Twin kit $£ 49.00$
Richard Allan Maramba kit $£ 69.00$ Richard Allan Charisma kit $£ 101.20$ Richard Super Triple kit £81.70 Richard Allan RA8 kit $\quad £ 52.65$ Richard Allan RAB2 kit $£ 83.30$ Richard Allan RA821 kit 889.90 Richard Allan RA82L kit Seas 223
Seas 253
Seas 403
Seas 603
$€ 89.90$
Seas $603 \quad$ £76.60

Wharfedale Shelton XP2 kit $£ 40.40$
Wharfedale Linton XP2 kit $£ 56.20$
Wharfedale Glendale XP2 kit $£ 69.00$

Everything in stock for the speaker constructor
BAF, Long Fibre Wool, Foam, Crossovers, Felt Panels, Com ponents, etc
Large selection of grille fabrics. (Send $18 p$ in stamps for grille fabric samples)

Swan Works, Bank Square, Wilmslow, Cheshire.

Beancot computerscanners

New:
220 with aircraft,
direct programming
without calculating
A range of digital scanners with microprocessor, so without crystals Extremely accurate and reliable. Each Bearcat-scanner searches its frequencies itself, which you can read out immediately at the display. Lock-out, delay and search are some of the many functions of the Bearcat. Each type is delivered in the European frequency.
Bearcat 21010 channels
$72-90 \mathrm{MHz} . \quad 146-174 \mathrm{MHz} . \quad 416-512 \mathrm{MHz}$. sensitivity through all bands $0,6 \mu \mathrm{~V} / 20 \mathrm{~dB}$
Bearcat 25050 channels
$72-90 \mathrm{MHz}$. sensitivity $0,3 \mu \mathrm{~V} / 12 \mathrm{~dB}$
146-174 MHz. sensitivity $0,3 \mu \mathrm{~V} / 12 \mathrm{~dB}$
$420-512 \mathrm{MHz}$. sensitivity $0,6 \mu \mathrm{~V} / 12 \mathrm{~dB}$ Selectable speed control for both scan and search, as well as priority.

Bearcat 220

Police, Marine and Aircraft band, 20 channels
$66-88 \mathrm{MHz}$. sensitivity better than $0,3 \mu \mathrm{~V} / 12 \mathrm{~dB}$ $144-174 \mathrm{MHz}$. sensitivity better than $0,3 \mu \mathrm{~V} / 12 \mathrm{~dB}$ 118-136 MHz. sensitivity better than $0,8 \mu \mathrm{~V} / 10 \mathrm{~dB}$ $420-512 \mathrm{MHz}$. sensitivity better than $0,6 \mu \mathrm{~V} / 12 \mathrm{~dB}$
The Bearcat 220 has an extremely good selectivity, a selectable speed control for both scan and search, as well as priority.

Instead of $72-90 \mathrm{MHz}$. (BC 220-66-88 MHz.) the Bearcats can also be delivered in $30-50 \mathrm{MHz}$

Please send us your leaflets and pricelist of the Bearcats.

Name

Address ..

Wolfsen Electronics b.v. - Ged. Nieuwesloot 111-115 1811 KR Alkmaar - Holland

Wolfsen Electronics is the exclusive import dealer for many European countriès.

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate, as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Prnbe. and read the temberature on the large oper scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
'Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00$偳odel "Mini-Z 2^{2} " measures Irom- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 30.00$ Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ ㅇ.. E 33.00 [VAT 15\% EXTRA]
Write for further details to

HARFIIS ELECTRONICS (LONDON)

138 GRAY'S INN ROAD, LONDON, WC1X.8AX (Phone 01-837 79371
wW - 032 FOR FURTHER DETAILS

AEL CRYSTALS LTD
GATWICK HOUSE HORLEY SURREY ENGLAND RH6 9 SU Telephone Horley (02934) 5353 Telex 87116 (Aerpcon Hortey)
Cables Aerocon Yelex Horlex

WW-030 FOR FURTHER DETAILS

carbon film RESISTORS

PRICES REDUCED. SEND FOR DETAILS NOW

- AERO SERVICES LTD.

42-44A-4 6 Westbourne Grove London W2 5SF Tel. 01-7275641 Telex 261306

Instant Trunking System for Wall or Bench Mounting

 ISOLATING UNIT
The Olson mains isolating unit is an essential bench item for safety when testing and repairing mainsoperated equipment. The isolating transformer has an earthed screen and is rated 250VA.
$\mathbf{£ 3 8}+\mathrm{P} \mathrm{\& P} \mathrm{E} \mathbf{2}+$ VAT
OLSON ELECTRONICS LTD., FACTORY ND. 8, 5-7 LONG ST., LONDON E2 8 HJ

For use in Professional Equipment

Exceptionally wide range of spares for most equipment in use

Write for catalogues or just state your requirement to

AERO ELECTRONICS (AEL) LIMITED GATWICK HOUSE, HORLEY, SURREY, ENGLAND RH6 9 SU

Telephone: Horley (02934) 5353
"Telex: 87116 (Aero G Horley)
Cables: Aero G Telex Horley

747 UNIVERSAL COUNTER TIMER £175 + £3.50 p\&p

DC-150MHz Measures - A KHz, C MHz, Period A, 8 DIGITS 8 FUNCTIONS Pulse Width $A \pm$, Time $A \pm$ to $B \pm$, Count A, Count A (gated by B, reset by C) Max. resolution $0.1 \mathrm{~Hz}, 100 \mathrm{pS}$. Averages 1 to 1000 events. 3 Channels

Also available - Counter Timers, Frequency Meters, Filter Oscillators, Function Generators, Off-air Standards, Lab/ Bench Power Supplies, Panel Meters \& Bar Indicators

OMB ELECTRONICS

Riverside, Eynsford, Kent DA4 OAE
Tel: Farningham (0322) 863567
Prices, which are CWO \& ex-VAT, are correct at time of going to press and are subject to change without notice.

- High tolerance on insert procedure
- High conversion rate on ageing
- Long service life
- Neck glass, tube bases, equipment and accessories also supplied

For full details contact

EDICRDN

Redan House, 1 Redan Place, London W2 4SA T'el: 01-221 4717 Telex:265531 Edicrn G

WW - 066 FOR FURTHER DETAILS

LOWE ELECTRONICS LTD.
119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE TEL. 06292430 OR 2817. TELEX 377482 LOWLEC G

WW - 052 FOR FURTHER DETAILS

MOUNTINE HARDWARETHE NO. 1 SOURCE

 clecjit LED or micarthescent displays. Also electromic modutes with decoder driver, Iole.t and cremitof epplions to mate with hardware.

- 5 ranges ar comorxlate nost available clisplavs - Attactive one prece burei with Chomer of filte: -Ex stouk

LCD DICITAL PANEL METERS ULTRA LOW COST

DPMs 1 and 2 are extremely compact, significanily saving panel space while full scale values of 0-1.999V or $0-199.9 \mathrm{mV}$ are variable by means of a multi-1urn potentiometer Plastic bezel f screen, user selection of decimal point, auto polarity $\&$ zero, accuracy of $\pm 0.1 \%$ and character heights of 0.7° \& 0.5° combine to offer probably the most artractive DPM on the market

THINKOFA SHAPE

Whatever it is, the

|-7||- 'S' range

 of power amplifiers will handle it The driving, variable frequency power supplies and servo motor systems.
S500D

Dual Channel
19" rack mount $31 / 2^{\prime \prime}$ high 500w r.m.s. into 2.5 ohms per channel 900 w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics

MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/594
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR

fact:
 you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use. Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects Take, for example, the Shure SM58 and SM59 microphones:

wireless world

Into the 'eighties

Editor:

TOM IVALL, M.I.E.R.E

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Projects Editor:

MIKE SAGIN
Phone: 01-261 8429
News Editor:
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
Communications Editor:
TED PARRATT, B.A.
Phone 01-261 8620
Drawing Office Manager: ROGER GOODMAN

Technical llustrator:
BETTY PALMER
Production \& Design:
ALAN KERR
Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager:
BOB NIBBS, A.C.I.I.
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
Phone 01-261 8515

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL McDONNELL
(Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Our front cover this month, introducing the articles "Radio and electronics into the 'eighties", symbolizes man's increasing involvement with his technology. This is a two-way process. The more devices and systems he produces the more he changes his environment and this reflects back on him by modifying his customs, institutions and general way of life. And it may go deeper than this. According to the early sociologist Durkheim, a person's knowledge of himself - his self-image - is created by the society in which he lives. Not only does he exist in society but society exists in him. So in modifying the material basis of society and hence social relations by technology, he continually changes his concept of himself as an individual and all the imagined needs or wants that arise out of this concept. No wonder that modern man in industrialized society seems such a restless, anxious and dissatisfied creature.
This two-way process is very intense when the technology is electronics, for here we are concerned with transmitting and transforming information, and ultimately, if not directly, this information causes human beings to think, feel and act. What seems to emerge from the developments described in the following articles is that the 1980 s will see a further intensification of the links between the human being and his electronic systems. The systems will become even more closely matched to the input and output capabilities of the biological organism and will make even greater demands on it. It's not simply a case of more communication channels conveying more information in a given time, but a continuing increase in the refinement and variety of the information put in by and presented to the human beings.
Higher quality sound and visual images, and higher performance in radar systems and laboratory
instruments, for example, all demand greater attention and discrimination. In broadcasting the addition of colour and text to television and stereophony to sound have already given us more to perceive and cognize, and electronic tricks in sound and vision synthesis are stretching these abilities to the edge of confusion. In radiocommunication, voice messages are being supplemented by digital data transmission, often on the same circuits, to make possible greater detail and accuracy. And now the general public can retrieve useful facts from data banks over the ordinary telephone lines.
Telecommunications are, of course, essential to organizations - especially large, far-flung organizations like multinational companies, airlines and political/military alliances - to enable them to respond quickly and appropriately to events in any part of their structure. Any message demands a decision, if only to ignore it, but with messages arriving quicker, and in ever greater quantity and detail, the mounting pressure on responsible people to be continually making decisions and deciding priorities is reaching inhuman proportions. Some individuals have found it too much and have left for a quieter life.
On the 50th anniversary of Bell Laboratories, the president, W. O. Baker, said of communications: "I see it also as a mission of importance involving great responsibility. Improving communications, more efficient and satisfying handling of information - these I deeply feel are essential to help solve economic and social problems and aid efforts to civilise the future". These are noble sentiments but it is already evident that we cannot solve such problems by technology alone. As humans we are limited in our powers to assimilate information and in our good will to act on it properly. Perhaps what we really need is less information and more wisdom.

Intelsat V (above) the latest communications satellite, which will be launched at the turn of the year, marks dramatically the entry of radio and electronic technology into the 1980s, for it has
double the communications capacity of its predecessor, Intelsat IVA. Equally important advances are being made in terrestrial radio and its related fields, and in the following pages we present articles by seven specialists who first look back at what has happened over the past decade and then project their thoughts and expectations into the eighties.

Land mobile radio

by W. M. Pannell, M.I.E.R.E. Pye Telecommunications Ltd

Technical progress in the electronics industry over the past decade has taken vast strides, with the land mobile radio sector certainly not lagging behind. The inevitable questions arise: What effect have all the changes in technique had on the mobile radio industry and its users? Which changes have made the biggest impact? And, what can we expect over the next decade?

Although the changes to the mobile and portable units, the fixed equipments and the peripherals have shown considerable innovation over the past ten years, many of the changes in technique have been brought about by the increasing complexity of overall system requirements.

One change that made a major impact on mobile radio in the UK, over a decade ago, was the decision to split the channel bandwidth at v.h.f. from 25 to $121 / 2 \mathrm{kHz}$. This resulted in some
immediate relief in the search for extra spectrum and a marked reduction in co-channel interference. The change improved the utilization of channels for many types of user.

During the 1970 s we also saw the increasing use of personal portables in all types of system. This is, of course, a logical progression in view of communication being needed between people rather than vehicles in most cases - the main exceptions being where interrogation of vehicle status is desired or where vehicles are the essential tool, for example fire engines.

It was at this point that the move towards miniaturization became an essential requirement in all types of equipment, not so much because of the need for smaller equipments, although in portable design this was naturally a fundamental requirement, but more to enable equipments of increased com-
plexity and versatility to be designed for the more sophisticated systems without increasing the total volume of individual units. So an upsurge in the use of integrated circuits took place: the ubiquitous light bulb was replaced by light emitting diodes: l.e.d. followed by l.c.d. displays became a recognised means of presenting information; while conventional components became steadily smaller to keep up with the new techniques. At the same time, higher stability frequency sources and better i.f. filters became necessary in fixed, mobile and portable equipments as the need for higher performance developed.

Meanwhile, in the systems control field, processors began to take over many of the functions which had previously involved complicated manual operations. More facilities and information became available to the system controller, while, in the mobile, actions
could, for example, be initiated from control or other designated points without the need for intervention by the mobile user.

Signalling. Signalling over radio gained considerable ground during the 1970s. Previously such requirements as selective calling were often considered to be refinements and were avoided where possible, usually on the grounds of cost and size. Solid-state techniques changed this view and selective calling units employing relays and often mechanical selectors gave way to units of but a fraction of the size and power consumption.
Unfortunately during this period the variations in signalling techniques increased in an alarming way, each manufacturer tending to develop his own form of coding with the result that compatibility became almost impossible. At present there is however a trend to standardise on a few of the better systems, mainly of the sequential tone variety. Even with the reduced number of variants, compatibility is still a problem and further standardisation would be advantageous.

A lot of work has been undertaken in recent years in digital signalling, generally of the order of $1200 \mathrm{bit} / \mathrm{s}$. Various error detecting and correcting codes have and are being investigated to obtain higher coding efficiency and provide a good throughput of data. Such techniques may help in providing data communication at signal levels which in the past have been considered too low for error free data transmission. Digital signalling will undoubtedly be the answer to providing channel assignment switching, sophisticated selective calling, alarms, identity, printer drive, data display and many other uses. However, the low signal threshold achieved with tone signalling has yet to be equalled by any but very low speed digital signalling.

Microprocessors have enabled "intelligence" to be added to systems. The era of manual press-to-talk and the occasional channel change accompanied, where needed, by a selective call operating an electronic 'door bell' is now often superseded in the larger systems by intelligent switching functions where channel and routing procedures are performed automatically; hand shaking/identity routines are undertaken with complex control functions being processed, as well as many other technically complex operations. At the moment, microprocessors, although cheap, tend to be greedy in power consumption (n.m.o.s.). This may be improved in the near future by the use of c.m.o.s. and ultimately silicon on sapphire (s.o.s. m.o.s.). Microprocessors in portables where low consumption is critical may thus become practical.

Trunking. Trunking in land mobile systems is a technique which has grown during the past few years with the help
of the microprocessor. While the full advantages of such systems in frequency spectrum economy have yet to be seen, undoubtedly first indications are favourable. The use of trunking, however, can raise an operational problem concerning the ownership of the base complex, and this may limit its use to definite types of system where single ownership or the radio common carrier type of operation prevails.

Quasi-synchronization. System techni: ques evolved during the 1970s included the use of a quasi-sync - a method whereby a number of transmitters carrying the same intelligent radiate simultaneously without interference in a number of overlapping areas. Although as early as 1946 J. R. Brinkley proposed the use of staggere carrier techniques, this method ultimately became unworkable as the channel habd-- width was reduced down to $121 / 2 \mathrm{kHz}$. At these narrow bandwidths much closer staggering, of the order of a few hertz, is required, so that a need arose for high

stability, low noise oscillator sources. The technique of quasi-sync is generally applicable to a.m. and f.m. at frequencies up to 500 MHz although at v.h.f. the use of f.m. quasi-sync is subject to some reservations.

Frequency sources. The development of frequency synthesisers for mobile radio also shows signs of increasing in tempo as the need for greater frequency agility grows. Several designs have been announced using various custom built chips. It is just a matter of time before the cost of such devices is comparable with conventional crystals, even for one channel. Meanwhile frequency control has improved considerably by the use of a phase lock loop system and this is often standard on present day fixed receivers in the land mobile bands.

Modulation methods. Overshadowing many of the developments during the past few years has been the obvious rapidly diminishing spectrum space available for each new land mobile radio system. Much has been written on the

This microprocessor controlled equipment generates and decodes selective calling tones. Providing alert, identification, status, alarm and other operating functions, it is compatible with all known selective calling systems.

Synthesizer board in the Pye M206X two-way radio can be supplied for anything from 16 to 128 channels.

subject and at the recent World Administrative Radio Conference in Geneva much was undoubtedly discussed.

Even if, as a result of all the decisions made, extra spectrum is handed to mobile radio, the rate of growth is such that economies must be made. To this end techniques are already being investigated to achieve spectrum savings and further bandwidth splitting by the use of s.s.b. is but one method currently under review. Others include spread spectrum methods, stored speech and the virtual elimination of speech by the total use of data in those applications where standard forms of message predominate. The latter methods are still in the early stages of investigation, but the development of s.s.b. is quite advanced and shows considerable promise.

Cellular systems. Much has also been written on the use of small cell techniques in urban area radio systems. In the United States, where a lot of work has originated, several systems are being put into operation at 900 MHz using this principle. Although the cells involved initially in these systems cannot really be described as 'small cell', the possibility of sub-division exists and will undoubtedly be the subject of further investigation. Small cell systems are necessarily oriented towards processor control if all the functions proposed are to be implemented. Cellular systems and trunking have a great deal in common in many design aspects.

Energy sources. In spite of the huge variety of systems which have been devised over the past decade, one common denominator remains - that of the energy source required to drive the equipments. Vehicle units are generally no problem, there being a ready source of d.c. in the vehicle. Portables are a different matter insofar as, although a battery of a suitable type is included in the assembly, this must be either replaced or recharged after a period of work. There has been no outstanding design change during the past ten years which has increased the portable battery capacity appreciably or reduced its-size, so this is one aspect where changes are required.

In fixed equipment the tendency has been to use secondary batteries charged from sources of energy ranging from the public power supply through diesel
generating sets, wind and water driven generators, thermal generators to solar cells. All methods have their place in providing power to radio equipment. With the present energy crisis, further work is indicated, not only to find means of providing power in relatively inaccessible places but to do so using the minimum resources at present in great demand.

The next ten years

In view of the vast changes which have taken place over the past decade one is tempted to forecast the future almost in terms of science fiction. It is not my intention to examine such possibilities but rather to consider the more down-to-earth developments of existing techniques.

Data will undoubtedly appear as one of the main contenders for optimising usage of the frequency spectrum. While speech will be with us for some considerable time, particularly in the simpler systems, the efforts being made in the data field must be recognised. For example although there is a lack of economically viable vocoders suitable for digital speech at the moment, they will undoubtedly appear. Alternatively, stored speech controlled by a digital bit stream could well be a relatively inexpensive method of spectrum conservation. Speech synthesisers driven directly by computers are also likely. Good speech quality at real time digital speeds of 2 or $3 \mathrm{kbit} / \mathrm{s}$ now appears probable in the next decade. Bubble memory techniques permitting occupancy time reduction are, even now, a possibility, with available bubble memories capable of 10^{6} bits/chip, one square centimetre in size, already available.
At present the rate of growth of data by digital methods is in excess of 20% per annum and is expected to maintain or even exceed this during the next ten years.
Obviously the use of digital techniques, spread spectrum for example, provides a high degree of privacy and at the same time enables a high degree of large scale integration to be employed - all leading to smaller equipments and, one hopes, greater power economy.

Two-way mobile data unit for use in a vehicle availability system.

The use of data processing methods to impart "intelligence" to a system is of course one of the most important aspects. Already microprocessors play a major role in the more sophisticated systems, as indeed they are beginning to do in many other areas of present day activity. The future holds an almost unlimited range of possibilities. Dynamic channel allocation, automatic transmitter power level adjustment to suit the propagation conditions and local interference level, automatic call routing, and many others are already in the pipeline, and every day sees a new requirement.
In spite of the digital revolution we must not forget the more conventional forms of mobile communications forms which will undoubtedly remain in use for a long time, particularly in the simple system and in many of the overseas areas where sophistication is not necessarily needed at present. Here. single sideband at frequencies up to at least 500 MHz could well provide all the channels needed until the end of the present century even in areas of international congestion - where, for economic reasons, several countries merge into a single overall area. It should also be emphasised that s.s.b. can also carry the simpler forms of data on equal terms with the more conventional a.m. and f.m. systems.

Portables will tend to become the more normal form of unit, although generally adaptable also for mobile use. Here again the use of data may modify the portable as we see it. For example, display methods may be incorporated to minimize standard speech messages. Key pads to send alpha-numeric messages will be of greater convenience than speech, in many cases, for example, in crowded environments where privacy is required. Similarly key pads will be used for routing the call.

The low efficiency of the portable antenna is another area for further development. However, it could well be that, rather than improving the ranges possible with portables, cell type systems will predominate and most fixed networks will consist of many low power stations closely spaced. Typically, if operation into the telephone is envisaged, the existing telephone call box could be used to locate individual fixed stations, the present physical spacing being close enough to permit very low power to be used. available power and eacy connection into the telephone system favours such an approach.

All these innovations will inevitably increase the complexity of the portable, requiring more compact packaging if only to maintain the same size. Work must be undertaken on battery design if sizes are to remain as at present or preferably reduced in volume, while the extra consumption of the ancillary equipments means that increased battery efficiency is a 'must'.

With the ever increasing use of inte'grated circuits it is not impossible that the design of much of the radio circuitry will move from largely discrete components to both hybrid and monolithic i.cs. With this approach the basic radio equipment will tend to become stereotyped in design and specification, with only the overall packaging being different. The ancillaries, which will be determined by the system, will then be the part of the package which will highlight the individual units.

It is for these reasons that, although there is a desire to harmonize specifications in as many aspects as possible future advances may be inhibited by too great a degree of commonality as integration becomes more involved. The use of common designs, however, show up some advantages. Already we are at the point where 'throw-away' modules are often more economical if and when a fault develops. This practice could even extend to the complete unit, especially where the simpler type is in use. Even now for example, it is cheaper to buy another medium wave pocket broadcast radio than to repair it. It is only a short step to the more complicated mobile/portable transmitter/ receiver unit.

In the realm of power supplies, one hopes that there will soon be some breakthrough in the overall efficiency of batteries relative to size. Ultimately the size of portable units - in spite of increasing electronic complexity must be reduced to a point where they can be 'worn' in an inconspicuous manner by the average person. Nevertheless, very small units are not really practicable at this moment for a number of technical and functional reasons.

Possibly a packet of 'king' size cigar: ettes is about optimum, although the present day 'credit card' calculator seems to be popular, and this format could well be considered in future personal radio designs. The 'king' size package has already been achieved in many types of pager, but of course the battery requirement here is quite different as there is no heavy transmitter drain.

Methods of charging batteries, whether the batteries are small in size and number, or are the larger types feeding a fixed station, are important aspects requiring further attention. In many parts of the world solar energy is the obvious immediate answer for powers up to a maximum of 500 watts. If efficiency could be improved, many other types of station could benefit, quite often saving expendable fuel.
In suitable areas the wind is already utilized as a source of electrical power and work on optimizing the energy conversion has produced good results. The energy in water movement, whether wave motion, tidal changes or just flow, also offer large scope for investigation.

Without any doubt, the future of mobile radio looks exciting. We must however, keep a firm grip on future. developments to ensure that they do not fall into 'nice to have' category, but perform a real service to the world. Improved communication, saving of energy and all the other advantages likely to accompany the microchip era will undoubtedly gain momentum as we move through the years towards the next century. It is up to the engineer to ensure that the steps taken follow an ordered path.

Broadcasting

by D. P. Leggatt B.Sc., F.I.E.E.

Engineering Information Department, BBC

One of the most striking features of the last decade has been the public appetite for high-quality audio. The 'hi-fi' was becoming a must in any modern household in the early 'seventies and by the end of the decade this had developed into the 'stereo.' While this movement has been led by the gramophone record, it represents a gratifying conversion to the gospel preached by the broadcasters since the introduction of v.h.f./f.m. broadcasting in the 'fifties, with the addition of stereo in the 'sixties. Public acceptance was slow to develop but at last there is wide appreciation of highquality reproduction. Much recent development in radio broadcasting has been spurred by this public expectation: in the studios, stereo origination is becoming standard; on the distribution networks, high-quality digital p.c.m. systems are spreading stereo broadcast-
ing throughout the country; the v.h.f. transmitter network is being extended; and experimental transmissions of quadraphony or surround-sound systems have been mounted. Although the majority of the radio audience still uses medium and long waves, the congestion and limited quality of reception on these bands has added further impetus to the swing towards v.h.f.

Another reflection of the healthy activity of radio in the last ten years has been the development of local and regional radio services. BBC Local Radio started in the late 'sixties, followed by Independent Local Radio in the early 'seventies. These did not bring new technical problems, but they did increase pressure on available frequency channels: indeed, we have now reached the point where the v.h.f. Band II is badly congested and frequen-

cies have to be shared by programme services which really require channels to themselves.
Turning to television, the main areas of development in the past decade can be categorised as improvements in transmitted quality; extension of programme services; and improved facilities for programme makers. Improvement of picture quality is, of course, a continuing process as each generation of equipment succeeds the last, but one very obvious advance has been the spread of colour into the majority of all programmes with steady development in clarity, fidelity and consistency of colour picture generation and reproduction. Two other examples of technical quality improvement are worthy of mention: the introduction of almost distortion-free digital standard converters has brought significant quality improvements in the international exchange field; and the video noise reducer, a recent digital development, offers considerable benefits for programme material in general.

Programme services have been actively extended in the 'seventies. Notable developments have been the extension of u.h.f. transmitter coverage; the introduction of the teletext information services, Ceefax and Oracle; increasing use of satellites for international exchange; computer-based subtitling services for the deaf and for foreign films; the simultaneous transmission (on radio) of stereo sound with selected television music programmes; and, in the home, the availability of video cassette recorders for catching programmes which would otherwise be missed.

Improved facilities for programme makers should, and do, result in a wider range of better programmes for the viewer. The decade has seen much progress, including improved videotape recorders with sophisticated editing systems; instant replay and slow motion facilities; really portable cameras and video recorders for electronic news gathering; full-facilities outside broadcast cameras requiring only a single coaxial cable; zoom lenses of increased range and aperture; digital timing correctors and synchronisers for automatic signal timing; and digital picture stores for special effects and graphics work.

What, then, is the zeitgeist which has characterised the 'seventies? I suggest it is the realisation that with

transistors, large-scale integration and computer techniques, technical solutions can be devised for most problems. Increasingly, as time goes on, it will be economic, political and social factors which determine the course and pace of development. The questions for the future will more often be "how much do we want and what can we afford?" rather than "is it technically feasible?"

The next ten years

You want ' 100 Best Tunes' in the kitchen, so you pull out the telescopic aerial in your v.h.f. portable. For good results you need the aerial horizontal and angled for best reception; and in doing so you sweep three cups onto the floor! Then you find Radio 1 is taking its turn on the v.h.f. channel so you switch to medium wave. You find three or four stations transmitting serious music, so which is Radio 2? Eventually you hear Alan Keith's voice, but with an excitable Frenchman in the background plus crackles from your neighbour's electric drill. So there's nothing for it but down to the pub again!

This points the way to some main tasks for the 'eighties. We need more radio channels, signals which can be more easily received, and something to help us find the programme we want.

It is to be expected, following the World Administrative Radio Conference in Geneva, that more broadcasting channels will become available in the v.h.f. Band II. This will enable us to re-engineer the existing v.h.f. transmitting networks to avoid the necessity for sharing between BBC Radio 1 and Radio 2; to reduce the need for displacement of some Radio 3 and Radio 4 progreammes by educational material; to cater for significat extensions of local radio services, ILR and BBC; and to increase the number and power of transmitters so that adequate signal strengths for reception on portables and in cars become available throughout most parts of the country. Further ex-

Experimental BBC radio receiver allows programmes to be selected digitally by a sensing pen drawn across bar codes printed in the Radio Times.

IBA's transportable 14 GHz up-link to OTS satellite used for ITN broadcast from Wembley conference centre.

tension of the p.c.m. signal distributuion system will be a necessary ancillary to this transmitter development.

Towards the end of the 'eighties we may see the start of some direct transmission and reception of sound programmes in digital form. Although this may become the norm in the long-term future, current investment in conventional analogue systems is such that change to digital methods is not likely to be rapid.
Choosing a programme from the published schedules, selecting the right channel at the right time and tuning the receiver for optimum reception are becoming increasingly difficult for the average listener. Ideas are now developing for radio transmissions to carry coded identification signals inaudible to the listener but detectable by a suitable
receiver. Given such codes, a receiver could be pre-programmed at the lis: tener's choice to search for any desired programme - or type of programmes such as news, light music - and switch on at the appropriate time without the need for any manipulation or control by the listener. Such coded signals could also be used for automatic control of cassette recorders and to carry time information for electronic clocks.
New radio services we can expect in the' 'eighties may include whatever form of surround-sound is finally agreed; and a dedicated channel of motoring information such as the BBC's Carfax development.

At the programme origination end, digital sound recorders will fairly soon be with us and will offer quality good enough for multi-generation work with little need for the careful alignment and maintenance which analogue recorders demand. Digital sound mixing desks will also appear, together with computer control of complex mixdowns from multitrack recordings which is already a facility in some recording. studios and television sound dubbing areas.

Television. Although the solution to many technical problems can $b \in$ foreseen, there are in television one or two areas where we need to tell our inventors "go away and make a breakthrough!"
The limited sensitivity of colour cameras is a case in point. Existing sensors are already approaching the region where photon noise - arising from the quantum nature of light becomes the limiting factor. No new sensor, however revolutionary, can cross this fundamental barrier nor can we foresee optical devices of manageable size which would gather in many more of the limited number photons emitted by an ill-lit scene. The apparently much greater sensitivity of the human eye/brain combination is achieved by physical and subjective integration processes and it is down this road that useful investigation may proceed: the current development of integrating noise reduction equipment perhaps points the way.

In another area, colour camera sensors and recelver display devices employ rather cumbersome threecolour superimposition techniques with attendant disadvantages in terms of size, complexity and cost. A single colour pick-up device is wanted with outputs directly related to hue and luminance and no need for optical colour separation filtering; correspondingly a large area, flat display device is needed, responding to hue and luminance signals rather than relying on superimposition of three separate colour images. We must hope that the 'eighties will see a breakthrough in this area also.
Turning to more foreseeable developments, work will continue through

Prototype Carfax receiver module. \triangle

Teletext hard copy printer. Δ

2Mbit television field store based on c.c.d. devices, as used in digital standards converter and digital noise reducer. $\bar{\nabla}$

the decade to extend relay station coverage to yet smaller population groups in the UK, with community aerials and local wired distribution systems playing an important part. The fourth television channel will be with us and there may be increasing pressure for local television services. More channels will be needed and the u.h.f. bands may be extended to accommodate this: 405 -line services on v.h.f. Bands I and III will be closed down and Band III at least is likely to be re-developed for extended, or new, television networks. Band I is not ideal for television and could be used for mobile services displaced from Band II and perhaps for the start of direct digital radio broadcasts. Television broadcasting via satellites - for direct reception at home or with local distribution from a number of ground stations - is being actively planned for some European countries, but seems less needed in the UK where conventional transmitter coverage is fairly comprehensive.

An alternative source of television programmes is the video cassette recorder. Already well launched in the 'seventies, its use for replay of prerecorded material will become a significant factor in programme distribution in the 'eighties.

In the studios, programme makers will be looking for increased flexibility and reliability. These qualities are offered by digital techniques, by which signals may be stored, manipulated and passed between areas with little degradation or need for manual intervention. Already we have digital systems for special effects and graphics, standards conversion, noise reduction, source synchronisation, sound distribution, teletext services and numerous routing control functions. We can soon expect to see digital video recorders and editing systems, digital vision mixers and digital camera processing chains. Digital PAL coding will reduce very significantly the cross-colour effect which is perhaps the most obvious shortcoming of present-day colour television. For outside broadcasts we can look forward to compact cameras using highly integrated digital circuitry (and a single colour sensor?) with digital transmission via transportable satellite links into the network control centre.

The islands of digital operation now appearing in the chain will steadily be
merged during the 'eighties. Once a signal has been converted to digitat form there are many good reasons for keeping it that way until final conversion at the transmitter to the PAL coded analogue signal required by the domestic receiver.

For international exchange we shall find signals distributed in digital form, very possibly as luminance plus colour difference components; final coding into PAL, SECAM, etc. will be left to the individual customer countries. Accompanying sound will be digitally multiplexed with the vision signal, several sound channels being available for multilingual requirements. All this will require comprehensive national and international standardisation of digital coding methods, and much work in the 'eighties will be devoted to negotiation and argument on this front.

Teletext and similar services can clearly be expected to advance rapidly in the next ten years. The scope of the information provided can increase almost indefinitely, reasonably short access times being maintained by allocating an entire television channel to this purpose and by provision of further storage and processing in receivers.

High-resolution graphics, still and animated pictures of full television quality, and increasing sophisticated subtitling services will become available. Telesfotware, the transmission via teletext of computer programmes, will greatly extend the variety of tv games and will provide the non-specialised computer services which increasingly we shall make use of in our domestic lives. Hard-copy printers will become available to give us permanent records of any desired teletext information and (though not perhaps in the 'eighties) this may become the medium by which we receive our copy of Wireless World.

As we move towards the 'nineties, we may see the first optical fibre data circuits run into private homes. In the longer term all radio, television, information and communication services will come to us 'on the fibre,' radiated transmissions being reserved for mobile applications where wireless communication is essential. Once we have our domestic wide-band circuits and high-quality large screen displays, the way will be clear for 'hi-fi' television on new standards. But it will not be in the 'eighties that we shall be closing down the 625-line services.

Consumer electronics

by St John C. Jackson, Thorn Consumer Electronics Ltd

The last decade has been one of rapid development in the different design; areas of consumer electronics products making use of advances in electrical component availability and electrical engineering to entertain or make life easier for the majority of people, whose interest lies mainly in what such products will do rather than how they work.
There is perhaps one feature which, on looking back, makes consumer electronic products unique when compared with any other manufactured product. It is the fact that, despite the very real improvements and the ravages of inflation at the end of the 'seventies, on a like-for-like basis, products were cheaper at the end of the decade than they were at the start - in many cases in cash terms but without doubt in real money terms. A comparison of consumer electronics products shows that a 12in mains/battery monochrome portable tv cost around $£ 55$ (or 2 weeks average earnings) in 1970 and nowadays even with v.a.t. at 15%, the, same two weeks' average earnings will almost buy a 14 in portable colour tv. Similarly, the first electronic calculators retailed at over $£ 200$ - now for less than £10, a pocket calculator is commonplace and includes all or more of the functions of the earlier $£ 200$ machine. But the
'seventies also had their casualties remember the 8 -track cartridge, remember quadraphonic sound, remember Elcaset? Just to dwell on quadraphonic sound for a moment, possibly for the first time, technological advance overtook the ability of the market place to accept it. Whilst the
electrical engineer could point to the benefits of quad, the same engineer forgot that the user didn't have four ears or, perhaps more to the point, his girl friend, mistress or wife was not prepared to accept four separate loudspeakers in the living room.
There was also a more fundamental point; the competing quadraphonic systems each required their own prerecorded software and because more time and effort was spent on selling the advantages of one system against the, others, confusion reigned. For the future, it is important that product development is based on agreed international and common standards, but let's look at specific pocket areas and how they developed in the 'seventies.

With tv receivers now in 97% of UK homes (70% colour) it's right and proper to consider television first. In the early 'seventies, the transition was being made from hybrid chassis with a mixture of valves and transistors to all solid-state. With moves in this direction, styling improvements were made possible to reduce the overall size of the average television cabinet and chassis engineering moved towards modular construction.
Ultrasonic remote controls made their appearance, and were quickly accepted only to be gradually replaced by quicker-acting infra-red control systems. Whilst ultrasonic controls were more than adequate for the typical viewer of the late 'seventies who wanted to send simple commands to his receiver, the introduction of infra-red microprocessor-controlled systems is particularly relevant to the customer requirements of the 'eighties when

Music centre with digital frequency tiuning (Ferguson 3951)

Teletext and Prestel are likely to be in widespread use.

However, both of these great British developments with their data display capabilities are still in their infancy and the lack of average consumer awareness about their existence and what the services offer is an indication that it is not enough for the engineers to apply their minds and develop such powerful means of communication. Marketing people must do more to promote their benefits.

Probably the product area of the 'seventies which will have the greatest impact in the 'eighties is domestic video, both cassette recorder and disc. The late 'seventies saw the introduction of domestic video cassette recorders not much larger than conventional audio cassette recorders and almost as easy to install and use. The early recorders (of any format) relied heavily on mechanical control functions but already we are beginning to see mechanical operations replaced by electronics and especially microprocessor controls, but more of this later. The audio scene saw one overriding development - the growth in importance of the conventional audio cassette, aided by the world-wide acceptance of a common standard. Ten years ago, the available cassette hardware and software was still regarded as something of a novelty and not a serious contender to the established position of the quality record player and audio disc or open reel recorder. Developments such as noise reduction systems, improved drive systems and record/ replay heads, software developments improving overall performance standards (with first of all CrO_{2} tape and more recently the introduction of metallic tapes) have elevated the performance of cassette equipment and
cassettes of ten years ago to a replay medium generally accepted even in serious hi-fi circles. Certainly the public have also accepted the cassette. At the close of the 'seventies, UK homes owned more cassette playing equipment than disc playing.

The development of low price, good quality cassette mechanisms made the music centre a practical proposition and without doubt this particular item was the audio home entertainment product of the 'seventies. The audio cassette is also the common denominator amongst those other products that during the period had greatest appeal for the: public. Cassette and radio cassette recorders now sell at an annual rate of more than 2 -million units per annum in the UK. The biggest growth area in the late 'seventies was quality stereo radio cassettes with automatic programming facilities and even Dolby Noise Reduction.

Cassette-based products have been so successful because they have two overwhelming advantages over their disc counterparts; the cassette can be rerecorded and the machine is easily portable, satisfying today's demand for music on the move. In-car entertainment products have also adapted to the higher ownership levels of home based cassette equipment so that today it is possible to have better quality audio sound in a car than was possible in most homes ten years ago.

But enough of the past; it seems that the 'eighties will see most of the colour televisions acquired during the 'seventies replaced by receivers which, on the outside, may look similar (apart from the reduced number of function controls) but on the inside will bear very little likeness. The modular chassis of the 'seventies will increasingly be replaced by single board chassis de-

signed to optimize the availability of large scale integrated circuits (1.s.i.) and the application of microprocessors, remote control teletext and viewdata displays. The introduction of single board chassis will revolutionise not only product reliability but also the approach to servicing so that the service department of the 'eighties will look vastly different to that of the 'seventies. Today's cathode ray tube tehnology means that the television viewers of tomorrow will see demonstrably better pictures and data displays than have been seen to date.
Increasingly, tv receiver design will have to accommodate the requirements of home computers, video games etc. which are rapidly changing the nature of television from a passive piece of equipment capable of only showing programme material being broadcast by the BBC or IBA to a two-way, interactive display medium at the centre of a communications network. By the mid 'eighties, satellite broadcasting could become a reality, allowing the viewer a much wider choice of programme material. It is also reasonable to predict that voice-activated controls will begin to make their appearance, freeing the

Ferguson TX9 single circuit board colour tv chassis

Personal computer by ITT is contained in the keyboard unit with floppy disc drive on left. Memory is up to 48 K bytes of r.a.m. and $8 K$ bytes of r.o.m. holding BASIC and a system monitor.

viewer from the arduous task of having to press the control buttons of a hand-held remote unit!
But, as preyiously mentioned, the 'eighties will more than anything else be the decade of the widespread introduction of domestic video products. The VHS (Viden Home System) format has quickly established itself as the bestselling video system in the world in all the major developed markets - the UK Europe, USA and Japan - but despite this, other video formats are likely to be around for many years to come. The conventional format of the early video recorders is likely to change with the accent being on the portability of a recorder unit linked to a separate programmable tv tuner/timer which could be indispensable when satellite broadcasting is a reality. Indeed the situation could well arise that despite the increased leisure time available, video owners will be so busy recording programmes they will never have the time to replay them!

Already the introduction of the vidicon tube has made low-cost. good quality colour video cameras a reality. No one can doubt that the already high performance standards of today's products will be improved, real money prices will fall and the cameras themselves will weigh less and diminish in size. No wonder that with the arrival of electronic photography manufacturers around the wotld are getting out of the
conventional cine 8 camera business as quickly as possible - they have seen the writing on the wall.

It is forecast that the ownership of domestic video cassette recorders will parallel the early growth of colour tv in the UK. By 1984 at least 7% of UK homes are expected to have acquired one. They will be used mainly for time-shift recording and the replay of home-made video movies at around 55 per hour, compared with $£ 100$ per hour plus for cine, the difference adding greatly to consumer appeal. The additional appeal of pre-recorded video cassette software will pale into insignificance when video disc players with their lost cost software become a reality. One thing is certain; the incompatibility of the various video disc standards that are likely to appear will be a much more serious factor than with the present ones surrounding video cassette recorders. The availability of disc software will be a critical factor on three counts:
a. without the appropriate software the disc player itself is useless.
b. questions related to the low cost production of video discs still have to be resolved.
c. material for reproduction on video disc is likely to be surrounded by a minefield of copyright issues which have still to be resolved

However, the video disc player is likely to lead to the further demise of
-Ferguson's forward-looking flat screen (with other station monitors) receiver, called "Total Television." Although this is just a dummy, most of its component parts are available as production items or on the development horizon.

ITT TXV 16 viewdata terminal. The lower section contains an isolated power supply and the viewdata equipment while the upper section can function as either the viewdata display or as a "straight" 16in black and white tv receiver.

the conventional audio record player because despite the name "video disc," all video disc players give the capability of very much improved audio-only replay, making possible a signal-tonoise ratio in excess of 90 dB through the use of p.c.m. recording techniques. So looking ahead, any audio disc system that does not include a video replay mode is likely to find the going a bit tough.

So far no reference has been made to monochrome television receivers which, as the years pass, are likely to become increasingly less attractive as potential purchasers accept colour tv viewing as the norm. On the other hand it is not unreasonable to suggest that the youth of tomorrow will look at television in the same way that today they look at radio and the cassette. That is, they will want to take it with them wherever they go. Therefore (and with continuing miniaturization) today's combination tv products either with radio, or radio and cassette, are likely to become more and more popular. Audio products either mains-only, portable or "in-car" will become increasingly cassette-based as the youngsters of today become the purchasers of tomorrow. This is a generation to whom the cassette is not something new and the majority look upon their parents collection of $78,331 / 3$ and 45 r.p.m. discs with the same degree of interest that Arthur Negus looks at 17th century
antiques. Further improvements in cassette hardware and software, because of the introduction of p.c.m. recording techniques, will be readily accommodated on the conventional audio cassette format.

In looking at the 'seventies, little was mentioned about radio, not deliberately, but because with the expansion of $\mathrm{f} . \mathrm{m}$. stereo broadcasting that has already taken place, no great changes are anticipated. Certainly, in looking ahead it is, expected that pre-set tuning facilities will appear in all but the most basic of radio products. Synthesized tuning systems will undoubtedly make their way down the market into more basic products and digital tuning frequency displays will become standard.

To many people, the radio is still a very important vehicle for keeping in touch with the outside world and with broadcasting putting the emphasis on news and general current affairs, the radio will increasingly take the place of more conventional sources of information, for example, newspapers. News is of great value in the car, and travel information systems, such as the BBC's pilot testing of Carfax, will be a practical expression of advances in electronics applied to real consumer applications, particularly as such systems can lead to real time and energy savings. Citizens' band radio has received enough recent publicity and (regardless of its merits or drawbacks) at the end of the day the outcome will be decided by politicians and civil servants rather than engineers, marketers or even public demand.

Home video computers and programmable video games will be areas of dramatic growth in the 'eighties but initially confusion about base technologies could prove a deterrent factor. Certainly one of the best moneymaking opportunities in the 'eighties will be in providing the software programming facilities in support of the expanding range of hardware in these two product areas.

So where does this quick review lead us? Very simply, to many new and exciting product areas capable of providing new business opportunities and the ability to keep a continuous flow of new products available to customers to help and entertain them. Not all of these new products will be instantly accepted and one major problem will be in the retail store where the salesman will have to assimilate a lot of new technology if his or her traditional role is to continue.

The degree of product knowledge needed to demonstrate and sell a home computer calls for a different person to the one currently selling a mains/ battery cassette recorder. Service engineers too, are going to come across a lot of advanced new technology in the products they will be looking at on a day-to-day basis.

Beyond the 'eighties?

Quite recently Ferguson had an experimental look at the home entertainment centre of the early 1990 s. The result was a concept called "Total "Television" which included in a domestic console unit, a VHS electronic cassette recorder, floppy disc machine, electronic audio cassette, Prestel/home computer keyboard and videophone with remote control of all viewing functions. The conventional c.r.t. was replaced by a wall-mounted flat screen including four monitor screens to take account of the multiple screen viewing that might be a requirement of the future. A dream? Well apart from the sorting out of problems related to the flat screen the other features of the unit

are either with us today or at least a large scale manufacturing possibility

Only time will tell how close to reality the ideas of the late 'seventies will be at the end of the 'eighties.

Radio navigation and radar

by D. W. G. Byatt, B.Sc., F.Inst.P., F.I.E.E., GEC Marconi Electronics

The fields of radio navigation and radar cover a broad range of constantly changing techniques, and are influenced by advances in computers and military systems.
With both these topics, we are interested either in where we are, or where someone else is. The system may rely on transmitting or receiving signals at a known location or vehicle in question (ship or aircraft). Almost every permutation and combination of these alternatives has been investigated over the past fifty years or so.

In moving a vessel from A to B some basic form of dead reckoning and position plotting should be maintained and in ships in particular, traditional methods using the sextant, chronometer and compass are fundamental to good navigation. In the air, long-haul aircraft frequently rely on inertial navigation, again based upon the gyro, and indeed ships also use this type of navigational aid. However, we are here primarily concerned with radio aids and radar, and in very many ships, in aircraft and at airfields, the ubiquitous direction finder (d.f.) is used, and is sometimes the only form of aid. In fact, both radar and radio navigation can trace their ancestry back to the simple d.f.

The adoption of new equipment in civil aircraft and ships is inevitably limited by financial constraints; every piece of new hardware proposed for a ship or aircraft must be justified in terms of cost effectiveness. This means that adequate, well-proven techniques and systems tend to have a very long operational life. Nevertheless, if rapid, accurate position-fixing can shorten journeys and minimize delays, then in a period of increasing fuel costs, new
equipment capable of providing this must become more readily acceptable.

Safety at sea and in the air is, of course, vitally important. At sea, minimum safety. requirements are recommended by the International Maritime Consultative Organization (IMCO) primarily for vessels above 300 tons, although the country in which the ship is registered legislates for this - in the UK, it is the responsibility of the Department of Trade. In the air, the equivalent authority is the International Civil Aviation Organization (ICAO).

Direction finding

Before dealing with some of the more recent developments in navigation aids, the current state of d.f. is worth examining. There are three major areas of common commercial usage, air-toground, ship-to-shore and ground-toair. There are other military applications, but for general navigation the major advances have been in improving the equipment. A typical marine automatic direction finder, in common use, covers the m.f. beacons in the band $250-550 \mathrm{kHz}$ and also operates on the international distress frequency of 2182^{\prime} kHz . This equipment is as simple to use as a domestic receiver, gives automatic ambiguity resolution, the bearing of the station being read directly from a compass-type scale, typically to within $\pm 1^{\circ}$. Because of the relatively short range of reliable bearings, ship navigation by d.f. is mainly confined to coastal waters; in the consumer field, many thousands of simple direction finders are in use in modest sailing boats and motor cruisers. The situation with airborne d.f. is similar to that for ships: most aircraft carry one and the accent is
on automatic operation. The frequency band is typically 190 to 1800 kHz . The size of the antenna loops have been reduced and contained in stream-lined bumps to reduce air drag. In many parts of the world a.d.f. is still the primary source of navigation information, which in areas with good reception can provide a bearing of $\pm 1^{\circ}$.

Ground-based direction finders require only the minimum of a communication set in the aircraft to provide a position line, so that if all else fails, navigation assistance can still be provided. These direction finders mostly operate on v.h.f./u.h.f. and in order to minimize the bearing errors from all causes, antenna arrays are multielement, frequently wide aperture and automatic in operation, with directreading bearing presentation. Most locations can provide $\pm 1^{\circ}$ accuracy on signals of reasonable strength.

A short-range navigational aid closely allied to d.f. is the v.h.f. omnirange (VOR) which, when associated with a distance-measuring equipment (DME), gives aircraft a precise location. The range limitations caused by operating at v.h.f./u.h.f. $(108-118 \mathrm{MHz}$ for VOR and $960-1215 \mathrm{MHz}$ for DME) make this system unattractive for ships.

Hyperbolic systems

Measuring distances from known ground radio stations is a well established navigational aid. Hyperbolic systems are so called because the position lines they provide from such measurements are hyperbolic curves. Referring to Fig. 2, if T_{1}, a transmitting station, emits a short pulse, and transmitter T_{2} simultaneously emits a second pulse, then any receiver on line $A-B$ will receive these pulses together. Positions at which one pulse is delayed by a given time with respect to the other lie on one of the hyperbolae. The association of a third transmitter would provide two position lines and therefore a fix.

One of the best known puise systems is Loran ' C ' which operates on a frequency of about 2 MHz and covers large areas of the Pacific, Atlantic and Europe. During the last war, a similar British system known as GEE operated at v.h.f. With a good ground-wave pulse, position accuracies of better than one mile in 100 miles are possible but, as with many long-range navigational aids, ionospheric sky-wave propagation can produce errors an order of magnitude larger, and considerable skill is needed to interpret results in adverse conditions. The Decca system, operating at around 100 kHz , also became established during the second world war. This uses c.w. signals and phase measurement to provide position lines and fixes. Very many ships and aircraft carry Decca, which has been considerably refined over the years to overcome propagation and ambiguity problems. so that automatic plotting on route maps is now generally in use,

Fig. 1. V.o.r./d.m.e.

giving accuracies of fractions of a mile.
A system of increasing importance, which is designed to minimize range and propagation problems, is Omega. This operates on very low frequencies (v.l.f.)-typically $10-14 \mathrm{kHz}$-with interstation baselines of around 5,000 miles. The very low frequency provides long range, stable and predictable propagation characteristics and the large separation between stations means that position lines are almost parallel over very large areas. Omega is a c.w. phase-comparison system and is virtually the only radio navigation system
that can be used by completely submerged submarines.

A typical marine Omega receiver incorporates four channels for continuous monitoring of four transmitters, each channel measuring the phase of the signal relative to an internal high stability reference oscillator. Phase difference can be measured to onehundredth of a cycle, defined as centilanes. In use, the receiver is run continuously from leaving port, automatically logging the lanes. It takes about half an hour to cross one lane, and modern equipment provides direct

read-out of position. World cover is achieved with eight Omega stations.

For aircraft use, initial problems a rose with antenna design for such low frequencies: a further difficulty was the high speed of lane crossing. However, advances over the last few years have led to an increase in the use of Omega for aircraft, current equipments providing automatic operation with 95 per cent errors less than 3 nautical miles.

Terrain-reference navigation

The Doppler navigator provides an aircraft with means for measuring the
frequency shift of a radio signal reflected from the ground. With no drift and for a radio beam transmitted at a forward angle θ to the aircraft horizontal axis, the Doppler frequency shift $=(2 V / \lambda) \cos \theta \mathrm{Hz}$. Thus, the Doppler shift can provide an accurate measure of the aircraft ground speed, V.
If two beams are radiated downwards at an angle to the forward direction then it is possible to measure the sideways motion or drift of the aircraft. Note that the Doppler shift is also proportional to the cosine of the vertical angle of the beam, hence antenna sys-

tems must be horizontally stabilized or a further pair of beams arranged to point aft to provide a differential signal, independent of attitude.
The Doppler itself gives ground speed and drift angle: to determine location, accurate heading information must be provided to the navigation computer. Most Doppler systems operate at microwave frequencies around X-Band (3 cm) and are sufficiently refined to drive an automatic map reader, or feed an integrated navigation system. Overall accuracies of one or two per cent of distance flown can be expected.
Sonar Doppler operating on similar principles is increasingly used by larger ships, and mariners also use depth sounding to augment their position fixing, particularly near harbour.
Airborne radar systems giving very high azimuth resolution and known as synthetic aperture radar (s.a.r.) can be used for navigation by map reading the high quality returns. The high resolution is obtained by simulating the radiation as from a wide aperture antenna by storing and recombining the individual signal elements from a small antenna as the aircraft carrying this small antenna moves along its track.
Similarly, by storing the height of the terrain along or adjacent to your own desired flight path, and comparing actual height from a radio altimeter, positional information may be obtained using correlation techniques.

Satellite navigation

NAVSTAR or Global Positioning System (G.P.S.) is designed to give very accurate position and velocity information anywhere in the world. The full system is intended to include 24 satellites in three orbits, giving visibility of 6 to 11 satellites at 5° or more above the horizon from any location on the earth's surface.
The basic method of position fixing by means of satellites is similar to celestial navigation except that distance, rather than angle provides the basic data. Fig. 4 shows the essential components of NAVSTAR. The height of the satellite is accurately determined, the earth's radius is known and the range is measured by timing radio signals from the satellite. In three dimensions, the range line traces a circle upon the earth's surface giving an observer position line. Two such lines give a location fix, and three are needed
for an aircraft to include its height.
Signals are transmitted on two Lband frequencies, 1227 MHz and 1575 MHz , containing identification and the navigation data for the user to compute his position. This includes information on the status of the satellite, orbit details to enable the user to calculate the position of each satellite at the time of transmission, time corrections and propagation delay corrections.

High accuracy can only be achieved by precise synchronization of the satellite clocks with each other and the user clock error must be known or corrected; each space vehicle carries an atomic frequency standard which is corrected at least daily with a caesium clock at the master control ground station. In terms of accuracy one nanosecond of time error is equivalent to 0.3 m range error.

The concept of navigation by satellite is simple. In practice however, for a worldwide system, a number of space vehicles must be maintained in accurate orbit, constantly updated for time and position. The user equipment includes a microwave antenna and receiver, together with a comprehensive navigation computer. Nevertheless, advances in microwave and microprocessor devices have made possible a range of receivers for ships, aircraft and missiles, and even a 10 kg manpack, which will locate position to within about 10 m . At present, GPS is in the validation phase I - about six satellites are in operation. Phase II is the period of development for military use, primarily in the USA, and this phase will end in 1982. True production of an operational system will
take place between 1984 and 1987. Thus, one can expect that it will be the latter part of the ' 80 s before NAVSTAR can be considered a truly universal worldwide navigational aid.

Radar systems

There is an enormous variety of radar equipments and techniques, ranging from small boat sets, to large ground military complexes.

Radar is frequently used for navigation, especially by ships, but here I would like to discuss a few recent innovations affecting the big system design philosophies.

A simple, basic, airfield-based surveillance radar locates an aircraft by rotating a continuous train of pulses in a transmitted radio beam, narrow in azimuth, and measuring the time of flight of the pulses reflected from the aircraft. The aircraft position is usually displayed on a cathode ray tube or plan position indicator (p.p.i.) in the form of range and bearing from the radar antenna.

There have been considerable developments in radar techniques since the last war to help controllers cope with increased air traffic. Early improvements integrated computers and alpha/numeric labelling systems to automatically track and identify target returns. Extensive signal processing and moving target indication circuitry

Fig. 5. Automatic vehicle location, base station v.d.u.

(m.t.i.) have overcome many problems of false returns and clutter obscuration.

Perhaps two of the more recent major improvements in ground radar have been the growth of secondary radar for air traffic control and the evolution of the 3-D radar for military use.

In hostile conditions the ability to observe enemy aircraft without their co-operation is obviously useful, but for aircraft which are both co-operating and controlled, the addition of a transponder confers useful advantages.
Secondary surveillance radar (s.s.r.) is similar to the military Identification Friend or Foe (i.f.f.) developed during the war to protect friendly aircraft. S.s.r. works by sending a radar pulse from an interrogating transmitter. This pulse is received aboard the aircraft by a transponder and retransmitted on a different frequency as a group of coded pulses, which include aircraft identity and a height reading from the aircraft's altimeter. The equipment is normally mounted on the primary radar and the signals from s.s.r. are either displayed directly on the radar p.p.i. for identification purposes or separately processed in the computer system.

The classic radar with the rotating beam will not provide height information; in fact, the beam shape is designed to cover as much vertical air space as possible. For height information, a separate vertically-scanning radar antenna was employed, usually controlled on demand. Continuing improvements' in the design of microwave antennas and component design have enabled a new 3-D radar to be designed. Modern techniques enable such a system to be fully transportable and highly reliable; for example, the transmitter valve operates at 3.3 MW to provide a $10,000 \mathrm{~h}$ expected life. The operating wavelength of this particular system is 23 cm , the range accuracy 0.05 nautical miles, azimuth accuracy 0.5 nautical miles in 100 and height accuracy $1,000 \mathrm{ft}$ at 100 nautical miles. It has many advanced facilities such as automatic plot extraction and tracking in three dimensions, and for military operation provides a range of electronic counter-countermeasure (e.c.c.m.) facilities including unrestricted frequency agility, random pulse stagger, pulse compression, chaff and clutter suppression and digital Doppler moving-target indication.

The future

The ideal radar gives all-weather, clutter-free operation and as much information as possible about aircraft in the air space of interest. This is true for both ground-based and aircraft systems, and similar criteria apply to ships' radars. The ideal navigation aid gives exact location under all operational conditions, is lightweight and simple to use. For both activities, of course, ;equipment needs to be highly reliable and cost-effective. The systems described so far represent the current
state of development and undergo continuing refinement towards these objectives.

One must, however, differentiate between military and civil use. Co-operation-dependent systems, such as those based upon satellites or global transmitters, could well be vulnerable in times of national conflict. Probably the self-contained navaid is least open to this sort of criticism if high accuracy at reasonable cost can be sustained.

One can fairly safely predict that semiconductor microcircuit advances will continue to affect radar and radio navigation developments in a very significant manner. Digital processing and storage are already leading to new concepts in system organization and complex error corrections not previously feasible.

Miniaturization of the newer solidstate, microwave power sources and other components leads to new applications. One example is for location and control of road vehicles, increasingly important for large, commercial fleets or public utilities in these times of energy problems and rising fuel costs. The display shown in Fig. 5 us of part of the area of a map of London, where the characteristics of each road junction
are stored in a computer in the boot of a car for automatic position fixing.
A further example is in radar developments which are making feasible static antenna arrays where each element of the array is effectively a miniature transmitter/receiver and the beam is electronically rotated or selected. One such system, known as bi-static, can use a separate transmitter as an illuminator, with several spaced receiving systems using multi-beam static arrays. Such a system could provide enhanced protection against noise, interference and signal fluctuation.

The US Air Force hopes to deploy a $600 f$ diameter radar in earth orbit by 1985, using the space shuttle. This could be used for tracking ships, aircraft, cruise missiles, inter-continental ballistic missiles and even armoured vehicles on the ground.

The author thanks the technical director, GEC-Marconi, for permission to publish this article.

Further Reading

"Navigation Systems" G. E. Beck. Van Nostrand Reinhold 1971. Journal of Inst. of Navigation Vol. 25 No. 2 1978. "Radar Handbook" M.1. Skornik, McGraw-Hill.

Audio

by Adrian Hope

BACK IN the early winter of 1969 the Olympia Exhibition Hall played host to the International Audio and Photo-Cine fairs. Ten years ago, although burgeoning trade and public interest in sound reproduction had made it impractical to continue the post-war tradition of exhibiting equipment in the Russell, Washington and Waldorf hotels in London, there was still insufficient support to justify an audio-only show at Olympia. It soon changed of course as hi-fi became an essential domestic luxury. Now, ten years later, we have seen the rise to dizzy heights and fall into disfavour of Olympia as a hi-fi exhibition site. Indeed in many respects Olympia has been a barometer of hi-fi trade. After 1969 the Audio and Photo-Cine Fair became the Audio Festival and Fair and then the Home Entertainment Show. It was cancelled at the eleventh hour in 1976 and in 1977 drew only very disappointing crowds. Since then there hasn't been an Olympia audio exhibition.
The face of audio retailing has changed at least as much as the Olympia Exhibition. At the beginning of the 1970s most of the electronic shops in London's Tottenham Court and Charing Cross roads sold electronic
components, along with construction kits and a smattering of ready-built audio equipment. Almost all had one characteristic in common: undisguised impatience with the average customer. It was, I suppose, understandable. There is little profit to be had from testing a valve or advising an amateur constructor on why a resistor has burned out. Soon the names of the shops started to change, for a while almost exclusively to Lasky. Profits increase because the shops started to concentrate on selling hi-fi equipment, to the exclusion of components. By the mid-seventies anyone asking for a fuse. a resistor or a spare part could expect to be treated like a mad leper in all but a very few shops. Gradually the public became reconciled to the idea of buying equipment in a cardboard box from a shop assistant who might just as well have been selling washing powder or potatoes. The main culprit, some observers argued, was the end of resale price maintenance and the consequent declaration of a competitive price war. Shops selling at cut-to-the-bone prices could not hope to offer anything in the way of before and after sales service or advice. Some dealers stuck to higher prices but offered service into the bar-

gain. Inevitably some customers took free advice from the high price dealer and then bought the recommended product at cut price in a cardboard box from a warehouse dealer. Between these extremes some dealers, both in London's golden mile and elsewhere in the UK where the golden mile image had spread, offered intelligent advice and reasonable service at a low price. Others offered neither service nor advice but at high price.

It was inevitable that the bubble would eventually burst. There comes a time, especially when money is short, when a householder with an adequate sound system will no longer go out once a year and buy a replacement. There comes a time too when the public, working hard for their money, start to resent the need to junk relatively new equipment for the want of a single spare part that proves unobtainable, or at least an expensive nightmare to procure. It is no secret that now, at the end of the decade, the audio trade is in bad trouble. Spare cash now, and there is clearly less of it around, goes toward a video recorder or a second colour tv, not a new stereo amplifier, record turntable or cassette recorder to replace a perfectly adequate system which is still giving faithful service.

The Olympia barometer of hi-fi is not however to be taken as gospel. Although Olympia is no longer the site of an annual audio exhibition in London, other shows flourish. The sad truth is that Olympia now has a bad name in the audio world. Exhibitor firms have suffered once too often from what they euphemistically refer to as "union problems," but which in less euphemistic terms means spending many tens of thousands of pounds to exhibit and finding the stand unfinished on opening day. It's also a barn of a place, in many respects the unideal venue for audio demonstrations. But smaller shows in hotels in and around London have always left some exhibitors or visitors dissatisfied. One year in the midseventies there were two rival shows at two Heathrow hotels running in parallel. An autumn 1979 show in London was cancelled at the last minute through lack of trade support. Currently, perhaps rather curiously, the major UK show is the annual exhibition held at Harrogate in Yorkshire. The fact that so many of the trade, press and public are prepared to venture so far
north into the provinces as to make Harrogate an annual success, while declining to give sufficient support to make a London show viable, is surely the audio phenomenon of the decade.

Another phenomenon of the decade has been the rise, and occasional fall, of so many audio and hi-fi publications. At the beginning of the decade there were just two specialist hi-fi magazines. Both had a fairly staid outlook. Then the first of the breakaway "glossies" appeared followed by a string of several more. After various changes of ownership, a few bankruptcies, and several changes of title and direction the market now appears stable.

One theory is that the current misfortunes of the trade are partly due to the boom in hi-fi journalism. The argument is that enthusiasts, with limited money, are now content to read about new developments and leave buying them to someone else. Whereas magazines like Playboy and Penthouse work on the assumption that readers are interested mainly in vicarious thrills, the hi-fi industry has so far assumed that a stimulating article on audio will stimulate sales of the product described. As a result they have continued to keep the magazines in business by using them as an advertising vehicle. (It is easy for the lay reader to forget that although reputable magazines try hard to ensure that editorial content is not influenced by advertisers, every magazine relies on advertisements for commercial viability). Although the hi-fi magazine market now seems to have stabilized, with all those publications currently on sale likely to remain so, it is highly unlikely that any new hi-fi magazines will now appear.

Perhaps the most notable overall trend of the last decade has been the massive influx of Japanese electronics equipment, moving towards almost a total market domination in some areas. At the 1969 Audio and Photo-Cine Fair there was just a handful of USA exhibitors, notably ADC, Shure and Koss. From Europe (excluding Britain) there were 15 exhibitors, including Agfa, Arena, B \& O, BASF, Dual, Grundig, Luxor, MB, Mikrofonbau, Ortofon and Peerless. From the UK (excluding the BBC, and several magazine and book publishers) there were over 40 companies of which only a very few were importers. Among the British names showing were Brenell, Bush, Colton, Decca, EMI, Ferguson, Ferrograph, Ferranti, Garrard, Hacker, HMV, Leak (then still of Brunel Road, London, W3), Lowther, Lustraphone, Mullard, Dansette, Philips and Sinclair. These were in addition to currently famous names such as Armstrong, B \& W, Celestion, Connoisseur, Goldring, Goodmans, KEF and Quad who were all already well established. From Japan, and often with very low profile, came just 14 exhibitors. Of the Japanese firms, Yamaha was showing just loudspeakers
and cabinets but Trio offered a full range of amplifiers and tuners and Toshiba, Sony and Sanyo offered tuners, amplifiers and turntables. Teac offered just tape recorders. It is sobering to compare this list with the catalogue for the 1979 Harrogate Audio Exhibition. For the European electronics industry ten years has been a very long time.

The last decade has seen any number of new developments and offered, often foisted on the buying public. But a few have stood out head and shoulders from the rest either as a result of value which has been subsequently proven or because the passage of time has underlined their lack of consequence. But some ideas of consequence have failed, at least first time round. And some ideas of no consequence have succeeded, at least temporarily.

From a considered and selective recap on the technology seen in the 'seventies, likely trends for the 'eighties become clear.
The 1970s must surely go down in history as the decade in which surround sound didn't happen. In the late 'sixties engineers in the USA started to show interest in improving the reproduction of music in a relatively small domestic room by adding reverberation to simulate the sound of concert hall or large room. Early workers soon recognised that it was not sufficient merely to remove all sound absorbent furnishing and furniture from a small room, with short reverberation paths. An artificial long path reverberation signal had to be generated and reproduced from loudspeakers behind or around the listener. The 'sixties experiments sought to record and reproduce natural hall ambience, rather than simulate it at the reproduction stage.

The then-new breed of multitrack

When broadcasters finally agree a surround format we might get multi-channel surround sound records from the industry again.
studio recorders provided the ideal tool to record ambience along with the main, front, sound stage. An eight-track tape cartridge or four-track tape-recorder provided the ideal medium for selling the resultant multichannel surround sound to the public. The record companies, forseeing a drastic drop in twochannel stereo disc sales, panicked. At the turn of the decade numerous engineers around the world beavered away to produce a multichannel surround sound disc that would also offer good stereo and mono.

Not to be outdone, the broadcasters addressed themselves to the same problem. At first there was excitement that the apparently impossible had been achieved; a quartet of loudspeakers around the room could be fed with four sets of signals derived from a twochannel stereo source. But as the inevitable trade-offs and compromises became better understood, thinking engineers became disillusioned. So did the public not so much because of the various system deficiencies, but because of the lack of standardisation between so many competitive systems.
With the benefit of hindsight we now know that lack of standardisation on any one system was probably the best thing that ever happened to domestic audio. If any one early 'seventies system had become a world standard we would now be stuck with it - and all its inherent inadequacies. But early in the 1970s surround sound reproduction (or quadraphonics as it became known when four loudspeakers in the four corners of a room became tradition), looked to the marketing men like potential big business. The 1972 Consumer Electronics Show in Chicago saw private discontent flare into public squabbles. While the manufacturers tried to produce reproduction equipment capable of playing any or all of the competitive systems then available or announced, the record companies hedged over which system to adopt. "They ought to be locked in a room and kept on bread and water until they come out with an agreement" said one frustrated manufacturer.

At around this time a compromise offered by American engineer David Hafler started to find favour. This was the now familiar "Hafler circuit" which feeds a rear pair of loudspeakers with the difference information available across the outputs of a conventional stereo amplifier.

This simple connection provides signals for the rear, from almost any programme material. Readers of hi-fi magazines, puzzled over which quadraphonic system to buy, were repeatedly advised to compromise with a Hafler set up, at least temporarily until a standard was agreed. Even now, long after the quadraphonic bubble has burst, many enthusiasts retain a Hafler connection to feed rear loudspeakers because, especially with programme material recorded with a simple crossed pair of microphones, the results can be highly acceptable. There is now little doubt that every quadraphonic system marketed during the last decade is dead in its present form.

But the last years of the decade has seen the progressive acceptance of Ambisonics surround sound technology. This of course stems from the work of Michael Gerzon and Professor Peter Fellgett.

It is also embraced, albeit to a fluctuating extent, by the BBC and IBA. The recent patent pool agreement between Ambisonics-NRDC, Nippon Columbia and Duane Cooper (joint holders of most of the crucial patents covering a hierarchical approach to Ambisonics. surround-sound technology) will almost certainly prove a significant influence in the next decade. In the USA the Federal Communications Commission is currently debating, yet again, the future of surround-sound broadcasting. The signs are that the final FCC choice will be between Ambisonics and the CBS SQ system, or modern variants thereof. Until recently there has been a fairly unified approach from the Ambisonics faction. But now the IBA has raised a question mark over the validity of the hierarchical approach. Essentially the IBA argues that the best compromise is a three channel system, which offers good surround sound to listeners with a three-channel decoder, and good stereo and mono with existing equipment. This conflicts with the Ambisonics-NRDC approach which seeks to offer the surround-sound listener the choice of using either two or three channel (the third with or without limited bandwidth) reproduction equipment in hierarchical fashion. The IBA now describes the two approaches as "irreconcilable" so it is clear that if surround sound is to progress in the 'eighties past the laboratory stage the IBA, BBC and Ambisonics-NRDC engineers must reconcile their differences. This will require the cooperation of all parties in extensive on-air transmission tests. Unfortunately the BBC and IBA have not been noted for their mutual cooperation and have instead appeared
more inclined to generate competition even where none naturally exists. Although independency of technical research at the development stage is admirable and in the public interest, rivalry at the early stages of commercial development can only hamper the spread of a new technology. Witness the public ignorance over teletext. In fact cooperation of the two British broadcasting authorities is essential if ever the public are to be educated into what teletext and surround sound are all about. Is it too much to hope that the 'eighties may see British broadcasters thinking and speaking of new technologies as a common vehicle for competitive programming, not as a source of competition in their own right?

The 1970s saw not only the emergence of the Philips compact audio cassette as a serious recording medium, but also the parallel emergence of Dolby noise reduction as a standard. Indeed the parallel progress of the cassette and Dolby system is no coincidence. Without one the other would not be where it is now.

It took three years into the decade before Philips finally agreed on a licence to incorporate Dolby circuitry. Until then Philips had tried vainly to interest the cassette recording world in the Dynamic Noise Limiting playbackonly system. The pity of it was that DNL was a useful noise limiting tool, but certainly not an alternative to the Dolby encode-decode system. Now, at the end of the decade, DNL is reappearing as an addition to Dolby noise reduction on some cassette decks. Despite the emergence and marketing of rival noise reduction systems, Dolby B has become an integral part of cassette recording. Another Dolby proposal, the use of Dolby encoding on f.m. broadcasts with modified pre-emphasis to suit the frequency content of modern music and aid compatibility, has not however taken off in Europe. Another slow starter, Dolby's work in film sound encoding, is however starting to boom. The words "Dolby stereo" now often feature as large on the publicity posters outside the cinema, as the names of the stars or director of the film.

Throughout the last ten years tape manufacturers around the world have offered every imaginable modification of the basic iron oxide magnetic coating, plus a few more besides. Following work by Dupont in the USA magnetic oxides of chromium have also become popular with some tape manufacturers. Others mainly in Japan have eschewed the use of chromium and concentrated instead on a range of cobalt-modified iron oxide particles. The newest innovation, of which a few samples may reach the retail shops before the end of the year, is tape coated with pure iron particles. Although the original pre-war pioneering work in magnetic recording relied on ironcoated tape, this material is a brute to handle at the manufacturing stage. It is

only now that a few tape makers feel the time is ripe for a full circle return to this original technology. Philips and 3 M were the first to make public noise over their new metal tape formulations. But their announcements have backfired. Philips has at least temporarily pulled out of commercial production of the tape and 3 M , after proudly announcing the product in June 1978, is still unable to supply more than a few cassettes to a few selected dealers for retail sale. It is likely however that the first years of the 1980s will see pure metal tape come into plentiful supply. Certainly within a year or so virtually every respectable cassette recorder will be equipped with recording heads and circuitry capable of coping with the new high coercivity material. But all the manufacturers involved in tape production are agreed that the cost of pure metal tape will always be higher than oxide tape (currently around four or five times as expensive) and it remains to be seen whether the public will actually pay the extra for the new wonder medium when it is on open.sale and readily available.

Pure metal tape is counted as the short-term answer to digital recording. But in the long term, and at today's current accelerating pace of development, this may mean only a year or so. There is no doubt that the days of analogue recording are numbered. The idea of digital encoding is not new; it was Alec Reeves of course, at STC, who proposed and patented a workable system shortly before the last war. But without solid-state switching equipment Reeves could only theorize. By 1972 the BBC, after experimenting with digital sound links between London and Scotland, was regularly distributing p.c.m. sound for television and stereo radio around Britain using microwave links. The BBC has continued through the last ten years to develop digital sound encoding techniques both for the transmission of sound signals around the country and for digital audio tape recording. The IBA has meanwhile devoted considerable effort to the development of digital recording techniques applicable to colour video.

In the domestic area interest in digital sound has been stimulated by snowballing developments in video recording. Indeed only a closed minded fool would not attempt to delineate between audio and video. The two technologies are now so closely and inextricably linked
that the future of one is dependent on the other. It was in 1972 that Philips first announced a video cassette recorder capable of recording colour tv pictures and sound on a cassette of half-inch tape. Although the original N1500 machine was intended for the industrial and educational market, by 1974 it was launched for - albeit limited - open sale to the general public. This started not only the domestic video revolution but also the inexorable move toward digital sound. Any recording system capable of handling the four or 5 MHz necessary for colour video is more than capable of handling the bit stream necessary for stereo or multichannel sound in digital form. Moreover a decade of work into video reproduction from discs, which culminated in the USA test marketing launch of a practical video disc system by PhilipsMagnavox in 1979, brings the digital audio disc a step closer. Philips has of course already shown the compact disc, or digital audio version of the Philips VLP video disc, and toward the end of 1979 announced a patents liaison with Sony. Sony had independently developed a laser-optical disc system similar to that proposed by Philips. With the union of Philips and Sony standardization of a laser-read optical video disc comes a step closer. Almost certainly the Philips-Sony union will bring agreement on a digital Compact Audio Disc smaller than the 30 cm proposal made by Sony and larger than the 11.5 cm diameter chosen by Philips for the compact disc. Very probably a digital "compact audio disc" of around 15 cm will emerge from the union. But this will almost certainly not herald world standardization. JVC still sticks hard with its different, and quite incompatible, capacitance-read grooveless disc and RCA argues in favour of a grooved capacitance disc. Matsushita has proposed a grooved disc which is read by a mechanical pressure-sensitive stylus similar to that developed by Telefunken and Decca early in the decade and briefly marketed at the Teldec TeD video disc. It is now known that Teldec has a miniature digital audio disc version of TeD. This Teldec Mini Disc is ready to launch in Europe if and when the time is adjudged commercially right. Without doubt there are many bitter battles ahead before there can be world standardization on the digital audio disc. These battles will delay standardization and give impetus to the short term stop gaps such as metal tape. There is also a move toward $45 \mathrm{rev} / \mathrm{min}$ long-playing analogue discs. It is argued that their higher rotational speed, coupled with the long playing time per side offered by computer-assisted cutting techniques, offer the analogue album a shot in the arm.

Casual observers talk vaguely of some wholly new, as yet undreamed of, storage medium to replace the tape or disc. Without doubt it would be possible to encode programme material in

Cassette recorders for the 'eighties will have bias and equalization for
metal-particle tape but will the public pay the extra price?
holographic form. But the idea of a chip or memory, storing an hour of programme in solid state, must surely remain a dream for at least the next decade. Although high density memories with fast access time are available, a few moments calculation is sufficient to show that solid-state memories have a long way to go before they can offer the equivalent of an LP record in real time. Prophesies, especially in such fast-moving times, are always dangerous, but it seems a safe bet that for the next ten years sound and vision in the home will be stored on, and reproduced from, a moving strip of magnetic, capacitive or optical material or a rotating disc of similar characteristic.

The speed with which a new storage medium becomes a commercial success and gains acceptance as a household
norm, will depend entirely on the behaviour of the companies involved in the development and promotion of such a new medium. Rapid agreement on digital encoding standards and storage techniques could bring a new record medium into the home within a couple of years. But behind the scenes squabbling, similar to that which killed off the quadraphonic systems could delay even the start of a transition from analogue reproduction until at least the mideighties. But as we learned from the quadraphonics fiasco this may not necessarily be a bad thing. Currently the signs are that the strong US and Japanese influences may impose on us world coding and sampling standards for digital sound reproduction which are tied to local tv standards. These could well prohibit or make expensively difficult, the exchange of recorded audio material between continents. Certainly it would be an appallingly retrogressive step. Moreover in their enthusiasm for a new generation of recording and reproduction techniques, engineers at laboratory level appear to have overlooked, or at least brushed to one side, the very real problems of mass producing high-density storage pro, gramme material in reliable quality as well as quantity. After one hundred years of analogue disc recording, there are still all too few record pressing plants capable of producing a respectable audio disc pressing. With track spacing between 50 and 100 times tighter in digital or video programme storage the importance of producing blemish-free pressings becomes paramount. The video and digital audio systems that succeed in the long run may well be the system for which it proves easiest to mass produce programme material.

H.f. radio communication

by.R. F. E. Winn B.Sc.(Eng.), F.I.E.E. Racal Communications Ltd

Advances in component technology and new design concepts during the past decade, together with projected future developments, ensure that h.f. radio communications will retain importance well into the twenty-first century. In particular this is true of the maritime mobile service where satellite communication is still in its embryonic stage, in developing countries where the economics of h.f. point-to-point working with low traffic density are attractive, in defence (as a back-up if not always primary system), and in emergency use where air-transportable containerised stations can be rapidly deployed. As well as advances in tech-
nology in recent years there has been a better understanding of the vagaries of propagation. This has resulted in greater precision in predicting maximum usable frequencies over various paths during the 24 -hour day at different seasons and during sun-spot cycles.
For medium and long-haul communication h.f. radio today is still an economic, efficient and reliable solution.

Receivers of the 1970 s . The most significant technical changes have been in receiver design in which a number of ideas, coupled with newly available

WIRELESS WORLD, JANUÁRY 1980
components, converged to provide by the early 1970 s a completely new order of excellence in terms of overall performance and ease of operation. Before discussing the "breakthrough" of the 1970s it is helpful to look briefly at two previous generations of receivers.

In the immediate post-war years the most exciting development was the drift-cancelling technique known as the Wadley Loop. Although a tricky concept, demanding skilled mechanical as well as electrical design, it was successfully implemented in the now classic RA 17 receiver, made by my company, of which some thousands are still in daily, use throughout the world. For the first time it had become possible to tune to a given frequency and leave the receiver unattended with reasonable confidence in its frequency stability over extended periods.

The next big challenge came in the 1960s with the change from thermionic valves to solid state devices. Early examples were heavily influenced by the previous valved designs, and although greater ingenuity was sometimes achieved they were little more than an exercise in re-engineering using transistors in place of valves. The advantages were reductions in weight, size and power consumption and an increase, at least in theory, in reliability. Overall performance, however, was disappointing and, in general, the best of the first generation of solid state receivers were inferior to the best of the valved sets. There was not even an advantage in price.

A parallel development in the 1960s was the frequency synthesizer, which generated a wide range of frequencies each with a stability equal to that of a single master crystal oscillator. This was seen as an elegant substitute for the often troublesome free-running local oscillator in superhet receivers and as a simpler solution to drift than the

Wadley Loop. Unhappily the early synthesizers brought their own problems in the shape of unwanted intermodulation products generated by the internal mixers, adders and dividers. The advent of the digital synthesizer provided a cleaner output and today's units are capable of excellent spectral purity. The early synthesizers also suffered from. the operational disadvantage in that frequency was selected through decade switches. Excellent if the exact frequency of a wanted signal was known, but hopeless for "searching". This problem was overcome later.

With so much new technology becoming available, engineers in this field came to the conclusion that a radical re-think on receiver design was overdue. Not only on how newly available technology and components could be implemented to advantage but also all aspects of performance and operation in modern conditions. The starting point was a statistical analysis of their occupancy of the h.f. frequency spectrum in terms of density and types of signals, their distribution and relative strengths, which would give a clearer indication of how a receiver needed to perform in order to use efficiently the 9,000 or so 3 kHz channels available. An analysis was made by a computer in my company and, independently, a similar exercise was carried out by B. M. Sosin of Marconi Communications Systems.

It had been realised that the most significant limiting factor in receiver performance was linearity. Selectivity was as important as ever but the emphasis on front end sensitivity which had been a paramount feature of design for the past 50 years had come to the end of its usefulness and no further gains were necessary or indeed possible in this area.

It was found from the analysis and measurement that high powered broadcast and commercial stations

were generating tens, in some cases hundreds, of millivolts at the antenna terminals when received on large collecting systems. The strong signals were generating a large number of intermodulation products strong enough to give the appearance of liveliness in the receiver yet masking weak wanted signals. What was required was a big increase in dynamic range together with extreme linearity, and the key to the problem of intermodulation products was to work out the linearity of previous receivers and to discover where the products were formed and at what level.
The first range of solid state receivers to incorporate the new principles in the 1970s was the RA 1770 series, of which the RA 1772 general purpose receiver will be discussed. The block diagram of this receiver (Fig. 1) shows it to be a straightforward double conversion superhet but with a number of novel features which provided a performance with respect to dynamic range, intermodulation products, reciprocal mixing, cross modulation, blocking and spurious response far superior to any other receiver then in production. This

Fig. 1. Block diagram of the RA 1772 general purpose receiver.

was achieved through using a single linear broadband r.f. amplifier, a double-balanced hard-driven fastswitching m.o.s.f.e.t. first mixer, only moderate gain at the first i.f. of 35.4 MHz with the main gain in the second i.f. amplifier operating at 1.4 MHz .
The new order of performance at first caused some confusion. First comments on the development models, later echoed by the first customer, were apparent lack of sensitivity because there were far fewer signals. Repeated tests with a signal generator were necessary to convince ourselves that the design sensitivity had indeed been achieved and that the "emptiness" of the h.f. band was due to the elimination of spurious signals and not lack of band activity or insensitivity.
Apart from the redistribution of gain throughout the receiver the most notable advance in achieving the new performance was the use of a high first i.f. of 35.4 MHz . This became possible through using a high stability digital synthesizer which also provided additional advantages. It was now no longer necessary to employ the traditional tuned r.f. preselector amplifier ahead of the first mixer to eliminate image signals. There were no tracking problems associated with a linear broadband amplifier so the front end was greatly simplified and this, in turn, helped open the way to remote control.

As a general purpose receiver, the set needed a free-tune facility and this was achieved by using an optical shaft encoder on the tuning knob which provided electrical pulses and directional information to step the synthesizer in 100 Hz (fast) or 10 Hz (slow) intervals up or down giving the operator all the "feel" of the familiar v.f.o. but with synthesizer stability. The tuning knob could be disengaged electrically to hold the receiver on any particular frequency. The digital frequency readout, derived from the local oscillator, although at first disliked by operators accustomed to dial and pointer indicators, was necessary if the accuracy of the synthesizer was to be exploited operationally. No traditional mechanical analogue dial could achieve a resolution of 10 Hz at 30 MHz and even the most conservative of the old-time operators now see its advantages.
Another innovation was to provide a complete receiving terminal in a single case instead of extending facilities with add-on adaptor units, which, in the past, had frequently resulted in a 6 ft high rack of equipment. Provision was made for six internal filters which could be fitted at the customers' choice. The filters were selected through transistor switching controlled by d.c. only from the front panel. This not only eliminated the potentially troublesome mechanical switching of r.f. circuits from the front panel but also simplified remote control.
Although an earlier receiver had' been developed using plug-in modules

Fig. 2. Solid state 1 kW transmitter comprising eight 125 W modules.
it was decided in the interests of economy to use conventional construction in the RA 1770 series but the physical configuration allows all circuits and components to be accessed by test gear for fault diagnosis while the receivers are in an operating condition.

By the mid-1970s the series had been extended to include programmable and remote control receivers. The programmable set, in addition to continuous tuning at three selectable rates $(10 \mathrm{~Hz}$, 20 Hz or 1 kHz), had twelve programmable channels selected from a front panel switch.

The receiver for extended or full remote control is in two units, the receiver itself with blanked-off front panel except for local test facility, and an associated remote control unit with all the front panel controls. The receiver is triple conversion with the third i.f. at 100 kHz . Apart from a spin-wheel tuner and rotary controls for b.f.o. setting and i.f. and a.f. gain, all other functions on the remote control unit are selected by push-buttons. Control is exercised by a time-sharing data-multiplexing system which converts parallel control information into serial form for transmission over single wire lines. For extended control of all receiver functions three cable pairs are required. For full remote control over virtually any distance standard data modems are used on an ordinary unconditioned four-wire telephone circuit.

The system enables complete receiving systems to be built in which a single operator with one remote control unit commands several remote receivers.

The advent of such remote control systems resolved a social as well as a technical problem. It now became possible to establish the receivers at the best or alternative sites without having to move the operators. Assuming three shifts for round-the-clock surveillance, considerable savings are effected in re-housing, quite apart from the natural reluctance of operators to move to an unfamiliar and very often isolated environment.

This, then, was the measure of progress in receiver technology in the 1970s. The order of excellence was henceforth to be expressed not in sensitivity, selectivity or long-term stability, although all of these are still. important, but in terms of third order intermodulation performance with a figure better than -90 dB for two 30 mV signals as the new industry standard.

Transmitters of the 1970 s . Transmitter development in the past decade has not been as spectacular as in receivers. The digital synthesizer came into more general use for frequency control in drive units and remote control systems provided flexible extended and fully remote control. The most dramatic development was a solid-state power amplifier delivering up to 1 kW of power (Fig. 2). This presented a great technical challenge, the problem as with solid state receivers being the inherent nonlinearity of bipolar devices which demanded careful balance at every stage. No single device could produce significant output and my company's approach was to employ eight modules, each of 125 W output with combiners summing through hybrid units to 250 W , 500 W and finally 1 kW . The system had to survive a module failure which necessitated some complexity in design to provide protection over a large frequency range.

The advantages of the solid state design were mainly in reliability and ease of servicing. The 30 V supply rail was non-lethal (although it is of course still possible to receive a serious r.f. burn from the antenna terminal). In terms of reliability there was adequate redundancy, failure of a module merely reducing total power output and any of the eight modules could be replaced or worked on without interruption of service. A 500 W version on the same principle but with only four 125 W modules was also produced.

For higher powers the valve remains supreme in terms of economy and efficiency. One 10 kW transmitter of the 1970s period, still in production, was solid state in the drive stages with aircooled ceramic electrodes in the power stages. Automatic tuning, servo-driven, gave a typical tuning time of 8 seconds with a maximum over the band of frequencies of 20 seconds. Automatic level control was provided and the power supply had automatic overload protection with automatic re-set which would not finally lock out the supply in
the case of a transient fault until four unsuccessful attempts at reconnection had been made.

The next ten years

Both technical and economic gains are anticipated in the decade ahead and in fact are already being realised. The market is highly competitive and it is clear that design trends will be towards better specification and more facilities per unit cost.

A positive example is an m.f./h.f. receiver which made its public debut in London in October 1979. It is a joint Anglo-American development and substantial orders have already been recelved from the US Air Force. The receiver (Fig. 3) has the overall perfor-
mance of its predecessors at a far lower price, achieved largely by more functions per integrated circuit and therefore a smaller number of components. It is a double conversion superhet with the first i.f. at 40.455 MHz and the second i.f. at 455 kHz . Frequency and receiver status displays are liquid crystal and all functions are push-button selected, control being through a microprocessor.

The important innovative advance is the synthesizer. In the RA 1772, described earlier, there were five circuit loops constructed on four printed circuit boards. In the new receiver a single loop synthesizer occupies only one board and as well as generating the local oscillator frequencies at intervals of 1 Hz (previously 10 Hz resolution) it

also generates the b.f.o. output in 10 Hz steps. Because of the single loop design the new synthesizer has even greater spectral purity because all mixing has been eliminated and thus fewer frequencies are being generated. The unit is based on an l.s.i. m.o.s. chip developed by Racal Microelectronics Ltd which achieved 1 Hz resolution by synthesizing phase as well as frequency. The UK version has a 100 -channel frequency store and an interface for a remote control system. The US version has IEEE 488 input/output interfaces as standard, but both versions can be adapted for other interfaces by software changes.

Fig. 3. Anglo-American m.f./h.f. receiver. This recently introduced model uses a microprocessor for control and a new synthesizer.

The synthesizer mentioned above is also employed in a military wide-band receiver where it is used to cover the h.f./v.h.f. spectrum continuously from 2 MHz to 512 MHz .

On the transmitter front the advances that one will see in the 1980s are less spectacular but none-the-less worth-while. A second-generation 1 kW solid state amplifier uses four 300 W modules which, allowing for losses in the combiners, delivers a full 1 kW to the radiating system. Linearity has been further improved so that for the first time the CCIR recommendations for intermodulation products have been met over the whole of the h.f. range.

Looking further ahead there are two great hopes. One is v-m.o.s. devices which could provide much greater linearity than current bipolar devices, and of greater efficiency. The second is the feed-forward or polar loop concept on which research is being conducted at Bath University. If successful, there is a promise of solid-state transmitters comparable in efficiency and linearity with current class $A B$ vacuum tube amplifiers.

On a more immediate note the world demand for low-cost channelised transmitters continues unabated, and it is now becoming apparent that the conventional channelised drive unit may well be displaced by a programmable synthesizer on economic grounds. With modern technology a synthesizer is already comparable in cost with a 10 channel crystal drive unit.

Receiver performance has now reached a new plateau but the application of the microprocessor will provide considerable refinement, resulting in more "intelligent" units in both systems management through remote control and in the receiver itself. For example, there is the self-adaptive receiver already realisable which senses the type of signal it is receiving and automatically adjusts itself by minor frequency shift and selection of appropriate filters and demodulators to the transmission mode it is receiving without operator intervention. If on c.w. it would probably select the narrowest filter and adjust the b.f.o. frequency for a pleasant tone, and audio gain to a convenient level, for recording or operator convenience. If s.s.b. is detected then the appropriate upper or lower sideband filter, and so on. The microprocessor will also be used for routine selfchecking of sensitivity and other parameters.

The newer techniques pioneered on h.f. are already producing a spin-off at higher frequencies, particularly the concept of a high first i.f. which opens the door to broad band pre-mixer amplification. High stability v.h.f. synthesizers will also allow s.s.b. on v.h.f. and u.h.f., thus enabling more efficient use of the spectrum as has happened on h.f.

We may also expect new forms of modulation which will help overcome
the inherent limitations of ionospheric propagation. There could be re-births such as the Piccolo system, where the advent of solid state circuitry has made the system economic enough to attract much wider application.
Work is currently being conducted on topics such as time encoded digital speech at 2.4 kilobit/s and, though presenting considerable technical difficulties, few professionals doubt that
such developments will eventually prove successful and further enhance communications at h.f.
Although for purposes of illustration the practical examples quoted are all from the author's own company, he gladly acknowledges parallel work in, other countries which, through professional cross-fertilisation, will continue to advance the art and science of h.f. radio.

Electronic measuring instruments

by John L. Minck Hewlett-Packard Company

Progress in instrumentation is a result of at least three driving forces: the on-rush of new system requirements such as fibre-optic communications and satellite technology; 'breakthroughs' in component technology, such as microprocessors or microwave, hybrid microcircuits; extensions and combinations of present instrumentation, such as the remarkably successful IEEE-488 interface bus for programmable systems.

Very often, progress is really an intricate combination of all of the above. In so many cases successful instruments don't involve technology 'breakthroughs', but merely embody the right combination of customer requirements. With few exceptions, most of the component technologies were already in place at the beginning of the decade. Digital, analogue, and microwave integrated circuit techniques advanced substantially, but the primary technology was already there.

The 1970s

Dramatic progress did take place during the 'seventies. Probably the most important new developments were of logic analysers and logic design instru-

Fig. 1. Modern logic analysers can show timing waveforms, logic states, and some provide logic "maps" which help engineers diagnose malfunctioning processors.
ments. The earliest of these, typified by the HP 1601L introduced in 1973, was. nothing more than a standard oscilloscope display with columns of 0s and 1 s . An early serial data analyser, the HP 5000 A , permitted diagnostics on long streams of data captured and displayed on rows of l.e.ds.

In the six years since, the progress in logic analysers and microprocessor design instruments has been nothing less than breathtaking. And none too soon either, because relentless marketing pressure is pushing microprocessors well beyond the obvious applications in calculators and communications into appliances, toys, electric organs and motor cars. Design, qualification, production test, maintenance and service all need these measurement tools to work with microprocessors and digital circuitry.
One common theme of the 'seventies for most classes of instrument was that requirements moved two ways at once. Thus, the market called for smaller, more portable and less expensive models at the same time that other models went as far as technology would allow, with highly complex and powerful instruments and remarkably high price tags. An example of the former is the low-priced, digital voltmeter, while the high-priced example is the HP 3455A, a high-precision, system d.v.m.
Oscilloscopes handled higher frequencies and became both smaller and more portable, while others became much more powerful and complex, using microprocessors to measure digital time delay or rise times. Waveform, pulse and function generators tended to go in only one direction - towards smaller and cheaper designs, but with remarkably strong specifications. It's amazing how much wa veform performance can be packed in a small package these days. The more complex pulse-generator products usually were the word and coded-pulse instruments
required by new digital communications technology and fibre-optics.
R.f. and microwave. R.f. and microwave instruments entered the 'seventies with great promise. In 1970, hybrid microcircuit technology and the design processes using scattering parameters were in place, ready to supply the building blocks; G.a.s.f.e.t. devices were coming. The results were truly astounding. The microprocessor has made the difference - about half the circuits in many microwave instruments are now digital and it comes as no surprise that about half of our microwave design teams are digital and software designers.

A typical result is a newly-introduced synthesized signal generator. The $10 \mathrm{kHz}-1280 \mathrm{MHz}$ signal spectral purity of this generator rivals the best cavitytype generator of previous years, but it is also fully programmable and frequency agile ($500 \mu \mathrm{~s}$ switching time). The real contribution of this very expensive generator is in the design of the front panel controls. The mostly digital keyboard communicates only to the microprocessor, which does all the circuit and signal control, making things extremely easy for the operator. For example, he can set up ten completely different front-panel signal conditions, store each, and recall them at the push of a button.

Another example of this "smart" type of microwave instrument is a recent 1500 MHz spectrum analyser. Starting from power switch-on, the machine runs through 30 self-tests and draws its own graticules and titles, and provides powerful measurement routines which are far beyond usual manual testing. Self-tuning routines bring identified signals to the centre of the screen and read out frequency and amplitude digitally. Sweep speed, bandwidth and resolution are automatically seiected in program to prevent errors and ease the job. Peak detecting and hold and store functions capture information digitally
to show historical peaks. Six sets of user-defined front panel set-up conditions can be stored and recalled. Powerful diagnostic routines and displays aid maintenance people. This new measurement capability can't be appreciated by reading about it. One must sit down in front of such a machine for about an hour to grasp its significance. For example, if the spectrum analyser is connected to a receiving antenna, all background spectrum accumulated for a given period can be used to cancel a given signal environment and the display will then show only new signals which show up later.
R.f. network analysis finishes the 'seventies with a typical instrument, covering 500 kHz to 1.3 GHz , which measures, calculates and displays complex impedance transfer functions, group delay, deviations from linear phase, etc. It's about all the design power an r.f. design engineer needs.

Fig. 3. 110 MHz spectrum analyser employs digital storage, a television type display and automatic operation to give accurate spectral information quickly and easily.

Fig. 2. Synthesized signal generator provides precision r.f. signals and, being bus-controllable, may be incorporated into a fully automatic test set up.

In instrumentation, the 'seventies brought one development which probably overshadows all other advances in instrument techniques - the IEEE-488 bus. Interestingly, the IEEE bus was not a technological breakthrough; it was really more of an organisational and political advance. A simple data party line allowing automatic control of instruments and resulting data computations has revolutionised measurements already: over 700 instruments and controllers from over 160 manufacturers throughout the world now operate on the bus. Engineers now think in terms of automatic measurements for labs and production and maintenance uses.

Servicing. Finally, in the late 1970s, a more coherent strategy for dealing with service and repair of digital circuits was emerging. Early attempts at field diagnosis and repair of 'digital' boards placed the emphasis on changing the board. When the total number of instruments in service was small and widely scattered, the organisation to make this feasible was difficult.

One solution gaining rapid acceptance now is a design strategy based on signature analysis of digital circuitry. Instruments with a high content of digital components are designed with a certain portion of the microprocessor set aside to be used in fault diagnosis. In that test mode, the instrument circuitry is forced through a switching procedure which causes each digital circuit node or pin on a digital logic pack to produce a sequential stream of 0 s and 1 s . That repetitive pattern is unique to that pin of a good instrument. Thus a signature analyser like the HP 5004 takes a bit stream as long as 2^{16} bits and compresses it into a 4-digit alphanumeric display. Instruction manuals and test procedures are written to measure and assign a unique 4 -digit signature number to every digital circuit pin. Technicians can quickly troubleshoot right down to a component level, picking out faulty i.c. packs with little trouble and alleviating the serious problem of stocking complete p.c. boards.

The future

Forecasting the future is always risky, but the clues to the next five years of instrumentation are already apparent from the most recent offerings.

Alternative digital methods will continue to invade analogue and r.f. techniques. For example, instead of a superaccurate, flat-frequency-response r.f. attenuator for use in signal generators, a signal generator will use a moderately-accurate but highly stable one: a highly-precise calibration table stored in memory then corrects the output signal. This is effective and inexpensive so long as there is already a microprocessor available.

It seems quite clear that analogue and radio-frequency circuit techniques will be further eroded by digital methods. As faster analogue-to-digital converter components come along, instruments will sample and convert signals to digital form further forward in the measurement process. Output signals may be more commonly generated by digital waveform synthesizers. For example, oscilloscope sweeps would be much more accurate if generated digitally by a clock whose frequency was referred to a crystal standard.

Systems. Systems engineering will call for new initiatives in measurement which will create new instrument concepts. Communications systems àre moving rapidly to digital modulations. Signal simulators will be needed for generating phase-shift-keyed modulations for satellite work as well as frequency agile signals for the new military communications and the cellular mobile telephone technology.

Fibre optics technology's on-rush into communications, in spite of its highly optimistic projections, has been underestimated: few people really see its impact clearly. The bandwidths of communication power to be unleashed by fibre optics will revolutionise not only the system business but will change instrumentation. Fibre optic data links can already link IEEE-488 bus

Fig. 4. Each pin of a digital i.c. pack has a unique 4-digit signature displayed and referenced in the repair manual, allowing diagnostics down to a component level.
instruments. Computer and terminal links as well as medical data transmission with no ground loops are just the beginning. These technologies will call for design and test equipment not yet envisaged. More importantly, they will call for new concepts in measurement.

The computer system technology will have memory and processors in every corner. Instrumentation will more than adapt: there is very heavy interaction between logic design instrumentation and the semiconductor revolution itself.

Fig. 5. Logic analysers for design of microprocessor-based everything will proliferate into many companies and industries outside electronics.

Certainly, computer-aided design for assistance in lab. projects becomes? crucial. Engineering productivity is the key: in the 'seventies, automatic test equipment found willing ears for production test and for lowering costs - it was easier to justify.

The 1980s must attack the design side of things. Technology moves so fast that any lab. project which lasts longer than three years is going to produce a product with old or obsolete technology. As a result, there will be a steady proliferation of IEEE-488 bus minisystems in laboratories. New instruments will appear with more operatorinteractive controls and displays which interact, compute, correct and translate into your terms.

Complicated measurement procedures will be captured in software so the same tests can be re-run two weeks later. Suppose you run a particular test as you complete your circuit breadboard. Two weeks later, after modifications, you would like to recall the same procedure, set up all front panel settings as they were, run the test and compare the data to the previous test. This may sound a little like the HAL computer from the movie 2001, but it isn't; the technology to do that is here now in IEEE- 488 bus systems. Now just contemplate individual instruments doing much of the same.

How will we maintain all this equipment? One computer maker recently proposed throwaway p.c. boards as a repair strategy; that might happen. Super-integration and high-reliability test programs could well give a substantial advance in reliability. But the usual reaction to that is to pack even more complexity into the instrument functions, putting instrument reliability back where it started. Smaller, lower cost, highly digital instruments will get more reliable. Larger, more complex, high priced instruments will hold their own on reliability. The most likely course will be a combination. With maintenance labour rates bound to increase, there may be same trends towards the throw-away-type repair on very low-priced instruments. In higherpriced equipment the instrument will contain more self-test and diagnostic capability, under control of its own microprocessor: that trend is already apparent. Then when the self-test has isolated problems to a given module or p.c. board, the digital signal analysers. will take over.

Instruments in ten years will still consist of printed-circuit mother boards and plug-in modules. But p.c. board testing which has focused mostly on production functions may gravitate to maintenance depots where repair quantities can justify the cost. The new. super-flexible automatic board-test systems are becoming attractive because of their remarkably low prices.

So, get ready for some technically exciting times. The surface has barely been scratched.

"Make way for engineers"

 IERE presidentThe normal fabric of British life will have to be substantially changed, claims Professor William Gosling of the University of Bath, if we are to create an engineering profession adequate to the needs of our society. Giving his inaugural address as new president of the IERE, he said that we urgently need "an elite corps of engineers, particularly electronic engineers, who will be as able, perhaps abler, than any others in the world. To induce the most talented people to seek such a life, society will need to use the only inducements which have ever been known to work, namely honour, prestige and wealth. They will also need a good 'second division' of
supporting engineers, of technician engineers and technicians. At each level of employment the appropriate rewards - tangible and intangible - to secure the quality and numbers to meet our social needs must be forthcoming. Such things are not achieved cheaply, but only by the diversion of resources in the appropriate direction. Since, the wealth of society cannot immediately increase, even with the most favourable industrial policies, we are faced with a stark logic. If we need better engineers, more able to facilitate the creation of wealth by in: dustry, we must make that career more attractive to the ablest of our children. To do

"Engineers want statutory registration"-survey

A survey has revealed that professional electrical and civil engineers are overwhelmingly in favour of a statutory registering authority for the profession. The survey, carried out by NOP Market Research Ltd for the Institution of Electrical Engineers, questioned IEE and ICE members on their attitudes towards their professions, standards, and the way qualified engineers were perceived by society. It found that 92 per cent of IEE members favoured registration while the figure for the Civils was 87 per cent. The registering authority should be responsible for the registration of professionally qualified engineers (said 92 .per cent IEE, 93 per cent ICE) as well as exercising control over the standards of education, training and qualification (80 per cent IEE, 72 per cent ICE) and professional conduct and discipline (78 per cent IEE, 79 per cent ICE). Virtually all members questioned believed that the registering authority should have the right of sanction against an individual if professional standards were not maintained.
It should be compulsory for all professional engineers to become registered (said 58 per cent IEE and 65 per cent ICE). A further fifth thought registration should be compulsory above a certain level of responsibility. However, if registration wasn't made compulsory then 79 per cent (IEE), 71 per cent (ICE) said they would apply anyway.
Not only did the majority favour registration but 67 per cent of both institutions believed that work requiring a high degree of responsibility should only be undertaken by registered engineers. When it came to the way the profession was perceived by the public, 97 per cent (IEE), 98 per cent (ICE) stated that "the public have little knowledge of the engineering profession." On the question of pay, 91 per cent (IEE), 88 per cent (ICE) said that they believed they were paid less than others in similar professional occu-
pations. An overwhelming majority stated that engineers had achieved a higher professional status abroad than in the UK.

The questions were posted to a random sample comprising 4,400 corporate members of the IEE and 600 of the ICE, and the overall response rate was 52 per cent.
that the rewards must be markedly improved. But if the very best engineers grow richer, everybody else, including all the other engineers, the trade union members and the arts graduates, must for a time see their prosperity grow less rapidly than would otherwise have been the case. This is a high hurdle for us all to get over, particularly in a society largely run by a collusion of arts graduates and trade unions, which has developed a marked predilection for living on its seed corn."
In a reference to the Finniston inquiry into the engineering protession, Professor Gosling said that nothing that could conceivably come out of this will change overnight the whole status and remuneration of engineers. "Maybe if engineers could be organised into a tight and monolithic union, and if they exploited their power ruthlessly and without regard for others, a change of that magnitude could be achieved. So far, engineers have for the most part not shown that willingness to unionize themselves, nor yet to their credit the extreme degree of ruthlessness and militancy. We may be sure that what they have not been prepared to organize themselves for and force from society, they will not be given unasked, from some kind of altruistic recognition of merit. We do not live in that kind of world."

Japanese see opportunity in Prestel

Only a month after Prestel, the Post Office's viewdata system, started as a full public service (December 1979 issue, p55), the Japanese firm Sony displayed in London some equipment it has specially developed and manufactured for this information retrieval service. Shown by Sony (UK) Ltd at the Professional Viewdata Exhibition in November, it consists of two 14 -inch colour television terminals using the famous Trinitron tube (December 1971 issue, p.587), one with a simple keypad and the other with a full alpha-numeric keyboard. Editing will be possible on these terminals. The equipment was developed at Tokyo and at the Sony (UK) manufacturing plant at Bridgend, Wales, and is assembled at Bridgend

Speaking of his company's involvement in Prestel, Mr Kazuo Imac, of the Commercial and Industrial Division, said: "As well as being the first Japanese company to develop Prestel equipment, we have considerable investment in viewdata technology and this Prestel equipment is only the first of many developments to come." It will be remarked that this Japanese company seems to show considerably more enthusiasm for the system than the television set manufacturers in the country where Prestel was born. The British set makers have been well behind schedule in supplying viewdata receivers ordered for the test service started in September 1978.

- Four companies, Mullard Ltd, General Instruments, Texas Instruments and VG Electronics, demonstrated the British teletext/viewdata system in Tokyo on December 10 and 11 . The object of the presentations was to show the advantages of the system's components and sub-assemblies to Japanese setmakers who undertake, or plan to undertake, the manufacture of suitablyadapted tv receivers in the UK or Europe. The presentations were organised by the British Overseas Trade Board. The Sony terminals mentioned above in fact use Mullard viewdata integrated circuits.

Arts competition

The Royal Society of Arts is including an audio-visual presentation in its 1979/80 Design Bursaries Competition, which this time will offer awards to the value of $£ 50,000$. In the audio-visual presentation section, students and young designers are given the opportunity to develop their technical skills and to apply their visual imagination to animating a sequence of ideas by means of lasers, holograms or any other audio-visual method.

Further information may be obtained from the Royal Society of Arts, John Adam Street, Adelphi, London WC2N 6EZ.

Hospital paging using synthesized speech

A new microprocessor-controlled radio paging system, recently installed by Multitone Electric Company Ltd at Frenchay Hospital near Bristol, includes synthesized speech. Multitone's ACESS 1800 paging terminal has enabled the hospital to organise several group alert sections of staff and considerably speed up the connection of one member of staff to another by telephone without using the switchboard staff.

ACCESS 1800 enables simultaneous calls to be made to as many as 12 team members in up to ten teams including the cardiac arrest team, a mobile resuscitation unit, and major accidents and fire teams. A member of staff can locate any receiver holder by simply dialling an access digit on any telephone, followed by the receiver number and the caller's extension number. He may then hang up the phone. A "bleep" will be heard by the receiver holder who, upon pressing a button, will then hear a synthesized speech message giving the caller's extension number. The switchboard is not involved in this at all. The cardiac arrest team can be alerted and mustered within seconds to a particular ward by a verbal message over their receivers. Similarly, the mobile resuscitation unit can usually be mobile in about 30 seconds from the origination of a call from the switchboard.

Thirty calls may be stacked in the computer's memory and automatically processed

An operator on Frenchay Hospital's busy switchboard using the control panel for Multitone's ACCESS 1800 microprocessorcontrolled speechsynthesized paging system.

In sequence, even when interrupted by a priority call. Any temporary change of receiver number, for staff on call, can be programmed into the memory, which will automatically call the alternative number when the original, unobtainable number is
dialled. If one doctor is unobtainable, a second on-call doctor can be summoned automatically in his place. This call transter system eliminates the need to inform all staff of the change of number when any receiver is exchanged.

Pseudo-direct satellite speculation

Mr Pat Hawker of the IBA, speaking as a 'devil's advocate' - his own words - at a meeting of the Society of Cable Television Engineers on October 16, posed the question "What would happen if say a commercial company in Luxembourg were to use a lower-power satellite positioned at $19^{\circ} \mathrm{W}$ (the orbital position allocated to Luxembourg, France, West Germany etc.) on the appropriate 12 GHz channels and carrying a stream of bought-in programmes in the English language?" Speculating, he said, "Such transmissions would be picked up in the UK."
A small number of enthusiasts, according to Mr Hawker, would undoubtedly be capable of making their own equipment to receive these transmissions, either directly or for community distribution. For good quality reception, he said, they would need efficient satellite receive-only terminals with - for 12 GHz - possibly $1.5,2$ or at most 3 metre dish aerials and these, while requiring greater profile accuracy, would not necessarily be any more expensive than the 4.5 metre dishes used in the USA. According to a recent press report, he said, enthusiasts in North America had managed to receive tv from Westar and Satcom Systems, mainly to mining and timber camps. The report said that Canadian government officials had estimated that 50 unlicensed stations were involved, but their operators were not shut down because the government had difficulty in locating them and there was a genuine danger, according to an official, that the lumberjacks and miners
would resist with force.
Reminding his audience that Radio Luxembourg had been carried on cable, Mr Hawker posed a second question, "Would British cable networks be permitted to distribute programmes from France, West Germany or Luxembourg?"
"It would need Home Office approval," he said, "but as Erik Jurgens, chairman of the Netherlands Broadcasting Corporation has pointed out, there is Article 10 of the European Convention. This states: Everyone has the right to freedom of expression. This right shall include freedom to hold opinions and to receive and impart information and ideas without interference by public authority and regardless of frontiers. This Article shall not prevent States from requiring the licensing of broadcasting, television or cinema enterprises." Mr Hawker suggested that such an Article posed legal questions which only experts could answer, and that it was possible that no two experts would agree on how this might be held to effect the distribution of programmes from other members of the EEC and where no copyright protection was sought. If cable operators could distribute programmes in such a manner, it would open the way for programmes and advertisements which did not conform to BBC or IBA conventions, guidelines and regulations - de-regulation of broadcasting.

Pat Hawker made it clear that the views expressed were entirely his own and not those of the IBA.

CA for CB

The Consumers' Association have come out in favour of introducing a citizens' band radio service in the UK. In a one-page summary of the arguments for and against in the November issue of their magazine Which? they conclude: "Citizens Band radio in this country may not save many lives, nor may it be the best way of relaying traffic information. But it could provide an easy-to-use, relatively cheap method of communication that many people would find useful to have on occasions. We'd like to see it available here, if the problems of interference can be overcome."
The Association maintains in fact that the possibility of interference with other electronic equipment is the only serious argument against the introduction of c.b.: "The system of transmission used in most other countries would certainly cause interference, and shouldn't be used in the UK. There are other systems (e.g. v.h.f./f.m.) that would be much less troublesome - but the problem of interference is undoubtedly important, and more research is needed to ensure that any chosen system would be satisfactory."

SERT move

The Society of Electronic and Radio Technicians moved to larger offices on November 10, 1979. Its new offices are at $57-61$ Newington Causeway, London SE1 6BCL. The Society occupied its previous offices, in Faraday House, since 1968.

German press considers higher frequencies for c.b.

Conditions on the 27 MHz citlzen's band are giving users cause for concern and every day there are new calls for better operating conditions. The German electronics journal, Funkschau, therefore carried out tests and compared some alternative bands to get acquainted with the advantages and disadvantages of each one as far as c.b. was concerned. Their findings showed that shifting c.b. into the v.h.f. or u.h.f. region could produce considerable advantages. It would cause much less interference to homeentertainment equipment, and the substantial increase in the channels which could be used would put an end to the present overcrowding.

Because special permission is required in West Germany to use frequencies around 900 MHz , this band could not be included in the tests. Instead the 23 cm amateur band $(1295 \mathrm{MHz})$, which has similar propagation characteristics, was considered, together with the $70 \mathrm{~cm}(435 \mathrm{MHz})$ band and the current $11 \mathrm{~m}(27 \mathrm{MHz})$ band. On the 11 m band they found that there was always heavy interference from stations in countries further south and from industrial generators, while on v.h.f. and u.h.f. only noise could be heard. The tests were carried out using omnidirectional antennas with no gain and powers of less than 1 W .
For propagation comparisons the different types of terrain were considered. Munich was chosen as a heavily built-up municipality, the Upper-Bavarian lakes were used for propagation over areas of water, and the hilly country in the north of Munich enabled trials to be done over undulating terrain. As expected, the poorest ranges were observed in the 23 cm band, and usable ranges could not be achieved until a station arrived at an exposed location. Penetration was good on this band and radio contact was not even lost when one station moved into a garage. In the city, however, the "phase wipeouts" from passing vehicles proves a great nuisance, and it was concluded that diversity reception could help in this case. It was the journal's experience that the 23 cm band could only be of value for c.b. radio if repeater stations were set up on high buildings or mountains, and it would also be necessary to obtain approval for high-gain antennas.

US noise jammer simulator to be made by UK company

A contract, valued at more than $\$ 4$ million, to build the US Navy a noise jammer simulator, has been awarded to Watkins-Johnson the Windsor-based electronics company. The order, which comes from the Naval Weapons Centre at Dahlgren, Virginia, gives the company the responsibility of designing, manufacturing, installing and activating a computer-controlled system capable of emulating hostile jamming environments. When completed in 1981, the simulator will be used at the Atlantic Fleet Weapons Training Facility to provide electronic counter-countermeasures training for Navy radar operators.

More v.h.f. broadcasting likely

The v.h.f. sound broadcasting band in Region 1 , at present 87.5 MHz to 100 MHz , will almost certainly be extended upward to 104 MHz as a result of a decision at WARC 79, we understand. In Britain, for example, this will allow an extension of BBC and IBA local radio services, will avoid the necessity for sharing between BBC Radio 1 and Radio 2, and will reduce the need for some Radio 3 and Radio 4 programmes to be displaced by educational broadcasts (see article by D. P. Leggatt in this issue). To permit this extension of broadcasting, the police radio communications at present occupying 100-104 MHz will have to be moved elsewhere but it is not yet known what frequencies are likely to be used.

Apart from this loss, mobile radio in Re gion 1 has benefited overall from the decisions at WARC 79. At the time of going to press we understand from unofficial sources that this service will be allocated sections of the spectrum which it has not had the use of before. In Britain one of these sections could well be part of Band $1(47-68 \mathrm{MHz})$ which is at present used for 405 -line television broadcasting by both the BBC and IBA, but what happens here will in fact be an internal UK decision made by the Home Office. The BBC
hint that the remainder of Band 1 could perhaps be used for the new direct digital radio broadcasts.

It seems there has been something of a conflict at WARC 79 between the USA and Canada over the allocations for services in the u.h.f. bands in Region 2. Because the heavily populated areas of Canada are close to the US border it is obviously necessary that the two countries use these bands in the same manner in an integrated way to avoid interference. Canada wants to use the u.h.f. bands exclusively for television broadcasting (the present exclusive allocation for this service being $470-890 \mathrm{MHz}$), partly because it has a large number of language groups to cater for both native peoples and immigrants, while the USA wants a more flexible arrangement in which they are shared with mobile radio. For example, the land mobile radio community in the USA recommended a co-equal mobile and broadcasting allocation between 470 and 806 MHz to provide flexibility in the international table of allocations and leave the domestic u.h.f. television allocations intact to the degree that is necessary. At the time of going to press we understand that the Canadian case is getting strong support from other delegations, but the issue is not yet settled.

Impulse buying by hi-fi customers

A consulting firm, Venture Development Corporation, from Massachusetts, claims that there is a link between the time spent by a customer selecting a hi-fi product and the amount of money spent by the manufacturer. The Corporation says that hi-fi buyers sometimes have a lot in common with new car buyers in that they need a lot of information, they often price shop, and they frequently require substantial psychological support. At other times, it says, the hi-fi buyers behave like chewing-gum buyers, needing very little time to make a brand selection and being completely pre-sold on a particular product. Price did not seem to be a critical factor as long as the merchandise was available.
The consulting firm compared the owners of systems costing $\$ 1400$ or more with owners of systems costing less than $\$ 800$, and found that 72.7% of the owners of high-priced systems spent at least a month selecting component brands, but only 37.2% of lowpriced systems owners spent that long. Two factors accounted for this, according to the firm. Firstly, the larger the purchase, the more time the people were willing to invest to guarantee an optional selection, and secondly, the more expensive systems had more features requiring consideration, making the final choice more complicated. 20.7% of the owners of systems worth less the $\$ 800$ decided on their components within one day or less, and only 4.2% of the owners of high-priced systems were able to make a purchase in the same time.
The Corporation claims that the implica-
tion for retailers is clear. They should not rush the sales of high-priced merchandise. Product literature, specification sheets and reprints of reviews should be readily available for customers to consider at their leisure, and the higher the price, the more information should be offered.

V.o.r. computer

Walter Freter, who is a member of the Munich gliding club and the Siemens (Munich) amateur electronics group, has developed an automatic v.h.f. omnirange (v.o.r.) receiver, using a microprocessor to calculate and display the required compass bearing. Normally, the pilot of an aircraft is required to look up the frequency of the selected v.o.r. beacon, tune his navigation receiver and set the omni-bearing selector, observing the left/right indications of the display and adjusting the heading to keep the needle centred.

Freter's design avoids all this by virtue of its programmed table of all European frequencies, and the power of its microprocessor to tune the navigation receiver to the beacon transmission. The processor will calculate the required compass course to fly, using the left/right information which would normally be displayed, and will show the continuously up-dated compass course on a numerical display on the control panel.

Siemens say that several manufacturers (not Siemens?) have shown interest in the equipment.

Past the peak?

By the time these words are published it seems likely that the peak of Solar Cycle 21 may have passed - although this will not be known for certainty until mid1980. Long-distance paths on frequencies up to and above 50 MHz reappeared in mid-October with many cross-band ($50 \mathrm{MHz} / 28 \mathrm{MHz}$) amateur contacts between Europe and North America. The season appears to have opened on October 18 when American 50 MHz signals were received in West Germany. The amateur station, G3SSO, operated by personnel at GCHQ, Cheltenham is thought to have been the first British station to make such a contact this autumn, working Canadian VEIAVX on October 19. RSGB advises that $28.875-28.895 \mathrm{MHz}$ has become established as the frequencies for cross-band s.s.b. operation with 50 MHz North American stations.

The sunspot peak has been reached sooner than expected, although if the cycle follows the usual pattern, the decline will be considerably slower and several more seasons of 28 MHz (and possibly 50 MHz) long-distance "openings" appear likely. The past decade has shown once again the great difficulties experienced by radio physicists in accurately predicting, except in the short-term, the dates of maxima and minima and the level of maximum sunspot activity. Perhaps the most interesting new theories to emerge recently are those of Professor R. H. Dicke of Princeton University who believes that the cycles are accurately timed deep inside the sun by a form of magneto-fluid oscillator but take varying times for the magnetic fields to reach trhe surface; he also espouses the theory that the true solar cycle last 22 years with a reversal of magnetic field polarity at 11-year intervals.

Foxhunting

One of the aspects of amateur radio that continue to attract a small but faithful and enthusiastic following is the art of locating hidden stations by the use of direction-finding receivers. For many years the RSGB has organized a series of "qualifying events" leading to a "national final" based on transmissions in the 1.8 MHz amateur band. For the qualifying events, competitors are expected to locate two different hidden transmitters within about a ten-mile radius of the starting point, but for the national final it is a question of finding three stations in a matter of a few hours. The 1979 winner, Eric Mollart of the Mid-Thames Club, took only just over
two hours to do this, in spite of the many ingenious difficulties that tend to get built into the course as a result of past experience. For example, a technique which has been used at séveral events is to have an extremely long aerial which even when located may apparently lead nowhere. At Wolverhampton, in one of the 1979 qualifying events, for instance, one transmitter had several hundred yards of fine wire suspended in the trees as aerial, but with a final length tacked under the horizontal rails of a fence, eventually leading to gorse bushes in which the operator and his transmitter were concealed. The d / f bearings thus led the competitors only to a wooden fence with no sign of the concealed station.
A rather different form of 'foxhunting' using the 144 MHz band, is also organized, for example, by the UK FM Group (London), though one gains the impression that care is taken to ensure that it can be combined with the objectives of the Campaign for Real Ale!

The first G/YL

Miss Barbara Dunn, G6YL, who died recently, is generally believed to have been the first licensed 'YL' (young lady) amateur operator in the UK and held her licence for over 50 years. Through. out the 1930s she was one of the small group of British 'YL' operators who were tremendously active on the long. distance bands and in pioneering both 28 MHz and the old 56 MHz bands. Even in 1937, ten years after she took out her licence, there were only five 'YL' amateurs in the UK: Nell Corry, G2YL; Constance Hall, G8LY (still licensed); A. J. Burns, GM2IA; G6SF; and Barbara Dunn - though these were joined soon afterwards by Catherine Myler, G3GH, who later was one of the very few amateurs to receive official recognition for their work as Voluntary Interceptors in the Radio Security Service.

Barbara Dunn became interested in radio communication as early as 1923 when she heard spark signals from ships breaking through on top of the old London 2LO broadcasts. She taught herself $20 \mathrm{w} . \mathrm{p} . \mathrm{m}$. Morse by listening on a crystal set to the FL (Eiffel Tower) time signals on 2600 metres and ships on 600 metres before becoming interested in short waves at the end of 1925, acquiring her licence in 1927 and using initially an LS5 power oscillator with a rotary converter powered from 6 V accumulators. Next year, moving from Stock, Essex to Northumberland, she
was still limited (like many other amateurs of the time) to using 100 V d.c. mains but worked all over the world with a maximum input of 8 watts to t.p.t.g. oscillators and, using a bent $60-\mathrm{ft}$ 'AOG' (Act of God) aerial; with her rotary converter mounted on a block of sorbo rubber under the table. Her interest in ships continued and she made contact with many of those equipped with h.f. radio, although at that time British ships were not permitted to operate in this way.

The amateur radio
 market

Throughout the 1970s, the amateur radio equipment market has been increasingly dominated by Japanese firms whose products are now used by the majority of amateurs in most parts of the world (including many of the Eastern European countries although not in the USSR where much of the equipment continues to be described as "home made"). Although during the decade the total amateur market for equipment has risen sharply, few of the old-established British or American firms have come through unscathed from the torrent of equipment from Yaesu, Trio (Kenwood), Icom (Inoue), FDK etc. Some firms have adopted the policy of continuing to manufacture established designs but without introducing new equipments involving heavy development costs; others have attempted to keep ahead of the Japanese designs, although this is proving an increasingly difficult and hazardous policy and there are unconfirmed rumours that one of the more innovative American firms may soon be a further casuality of the trade war.

In brief

The USSR is planning to launch an RS3 amateur radio satellite during spring or summer 1980 \qquad King Hussein of Jordan (JY1 and G5ATM) recently met 45 members of the Radio Society of Harrow at a reception given by the Mayor Richard Thurlow, G3WW has become the third amateur in the world to obtain a CQDX award for working 100 different countries on slow-scan television (No. 1 was W8YEH, No. 2 G3IAD) Japan is now issuing amateuir callsigns in the JM prefix series The VHF Commit'tee of the RSGB has recommended 145.650 MHz as a "calling frequency" for amplitude-modulated transmissions.

PAT HAWKER G3VA

NOBODY CAN DO IT LIKE SABTRONICS CAN. NOBODY!

We pioneered the first benchtop professional quality Digital Multimeter at lowest price anywhere. We sold tens of thousands of units around the world and are still selling. Nobody has been able to beat our price/performance ratio.

Now we are making the impossible again. A $31 / 2$ Digit LCD handheld professional quality multimeter at an absolute low price of only $£ 59.95^{*}$. But don't get sold yet, wait till you have read further.

QUALITY, PERFORMANCE AND ACCURACY

The model 2035A offers you long term accuracy with a laser trimmed resistor network, a stable bandgap reference element, and single chip LSI circuitry. Expert circuit design and board layout have reduced component count to the optimum minimum. With 32 ranges** and 6 functions, you can measure $A C$ or $D C$ volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC current from $0.1 \mu \mathrm{~A}$ to 2 A ; resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV accuracy of $0.1 \% \pm 1$ digit.

OVERLOAD PROTECTION FOR GREATER SAFETY

Input overload is protected to 1000 V (DC + AC peak). Ohm and current ranges are fuse protected. These features, plus a high immunity to voltage transients, protect the 2035A against uncertain input conditions. Input and battery eliminator jacks are recessed to ad to operational safety.
Wait don't order it untill you have read further.

OTHER FEATURES FOR GREATER CONVENIENCE AND FLEXIBILITY

Automatic zero; Automatic polarity (+ implied, - shown); Large $1 / 2^{\prime \prime}$ LCD readout with automatic decimal and low battery indicator; uses inexpensive 9 V transistor battery; 200 hours battery life; push button switches for easy"operation; light weight (only 11 oz); fits easily into a jacket pocket; specially designed injection moulded rugged plastic case in beautiful grey beach colour with matching switch buttons; only 2 caliberation controls. Whether you are professional or amateur, you should check out the Model 2035A for yourself.

BRIEF SPECIFICATIONS MODEL 2035A \& 2037A

Making Performance Affordable

sabtronics

* Model 2035A as shown.

Model 2037A with temperature measuring circuitry $£ 69.95$.
** Model 2037A has 34 ranges and 7 functions.

Send your orders with payment to:

TIMWOOD LTD.

14 Albert Street, Cowes Isle of Wight, England: Telex 86892

Please send me by parcel post:
_ Model 2035A
assembled and tested at $£ 59.95 £$
Model 2037A
assembled and tested at $£ 69.95 \quad £$ _
_ Model THP 20
Touch and Hold probe at $£ 9.95$ £
Plus VAT at 15% and p.p. $£ 3.50$ each $£$ \qquad

Total enclosed herewith: \qquad

Name:
Address:
City: \qquad Postal Code:

Model TCSU1

Model CTC $\cdot 24$ volts Priced at $£ 9.75$ (1.87) 2

Model XTC - 24 volts Priced at $£ 9.75$ (1.87

Model CX 17 watts- 230 volts Model $\times 2525$ watts- 230 volts

$=-2$

A miniature iron with the element enclosed first in a ceramic shaft, then in stainless steel. Virtually leak-free. Only $71 / 2^{\prime \prime}$ long. Fitted with a 3/32" bit. \&4.20(.98)
Range of 5 other bits available from $1 /{ }^{\prime \prime}$ down to 3/64" A/ 64
Also available for 24 volts

Spare element Model CX230E

Model SK1 Model MLX 12volts ST3 Stand.

Contains both the model C×230 soldering iron and the stand ST3. Priced at 25.70(1.49) It makes an excellent present for the radio amateur or hobbyist.

With the model X25/240 general purpose iron and the ST3 stand. this kit is a must for every toolkit in the home.
Priced at
£5.70(1.49)

* VAT + P\&P as shown in brackets (J

This kit contains a 15 watt miniature soldering iron. spare bits, a coil of solder, a heat sink and a booklet. 'How to Solder: Priced a C5.95(1.53)

The soldering iron in this kit
The soldering iron in this kit ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car a boat or a caravan ready for soldering in the field Price $\{4.55(1.14)$

A strong chromium plated, steel spring screwed into a plastlo base of high grade insulating materla provides a safe and handy receptacle for all ANTEX models soldering irons. Priced at $[1.50$ (.57)

[^3]
Practical parallel-tracking pickup arm - 2

Despite the many advantages of the parallel-tracking record deck, the high cost of owning one deters all but the well-heeled few. This prompted the design and construction of a pick-up arm and control system with simplicity of construction specifically in mind. By avoiding complex
engineering it is possible to construct the design with non-specialized tools in about 40 hours and for a fraction of the cost of a commercial item.

WHILST ACCESS to a lathe makes construction quicker and easier, it is quite feasible to make all the parts with tools normally found in a small workshop. An electric drill and stand, some BA taps and dies and a selection of metal cutting files and saws are however essential.

Both the tracking arm and reference arms are made of thin-wall Duralumin tube, readily available from aeromodel shops. One end of the tracking arm is plugged with a tight fitting brass rod and glued into place with Araldite. This serves to strengthen the fragile tube where the vertical pivot goes through, and provides some degree of counterbalance.

Constructors will notice that the positions of horizontal and vertical pivots have been transposed, compared with the conventional arrangement. Having the vertical pivot on the tracking arm is not good practice on a conventional arm of course, but is permissible here because the tracking arm on a parallel-tracking machine does not swing on the pivot more than half a
degree, whereas the conventional must swing through a wide angle. The change enables an unusual design of horizontal pivot to be used - one that allows the tracking arm assembly to be easily taken off for transport or adjustment without having to dismantle anything, and allows replacement without having to re-align it with the reference arm. There are other advantages to this design, namely: it is much easier to make than the usual spindle type, it is virtually friction-free, needs no lubrication, has no play due to bearing clearances and does not introduce play due to wear.
Avoiding play is important because the control system cannot distinguish between play and tracking error. It is for this reason too that the sliding platform is spring loaded, so that any running clearance in the track is taken up. Diagram 3 shows the horizontal pivot design. Two adjustable screwed pivot points rest on top of two support pillars, one in a slot and the other in a conical cup on the opposite side of the gimbal ring. The arrangement is quite stable, provided the two pivots are far enough apart.
The vertical pivot is straightforward. Adjustment for inclination is by means of the brass plate which forms the upper bearing, and which can be moved around on the flat top of the gimbal ring to the correct position.
The track in Fig. 4 can be cut with a small hacksaw and then filed to the exact dimensions. It is worth spending some time ensuring the track is straight, as the whole concept depends on the reference arm maintaining a constant angle to the tracked radius of the
record. Also, it is essential that the carriage slides without any hard spots. It is not necessary to produce a perfect fit, as a small amount of slack will be taken up by the spring-loading.
To reduce wear, a few drops of clockoil (which has good non-gumming properties) can be applied to the vertical pivot, the lead screw and the running surfaces parallel track. Don't use mineral oil sold as general-purpose or light machine oil because it thickens to a gum after a while.
The hinge pivot holder part 14 is soldered in position to the lower plate, part 11. The best way of doing this is to pre-solder both plate and holder; with a length of 6BA rod through both holders, position them the correct distance apart and place them on the plate, and gently heat the plate from below. It is then quite easy to move the two holders into the exact position while the solder is molten; excess solder will cause holders to float out of place, so use the bare minimum.
For the sake of simplicity, the counterweight on the prototype was made from a piece of lin diameter brass bar drilled through the centre and decoupled with a foam rubber insert. However, the comments by Randhawa on counterweights (WW April 1978 pages 63-8) should be noted by constructors as a better design is probably possible. The main requirement for the counterweight is that it should give neutral equilibrium with the chosen cartridge when the tracking arm is positioned about half way up the vertical pivot.

The photocell holder was filed from a piece of solid engineering-grade p.v.c. which is particularly easy to use, but
other reinforced or filled plastics such as Tufnol would probably be suitable. The two photodiodes were cemented to the holder with Araldite. An aluminium shim separated the diodes, this being necessary to prevent light from one diode reaching the other by reflections via the transparent sides of the BPW34. The size of the shim is not critical but for good light cut-off between the diodes it should project $1 / 8 \mathrm{sin}$ or so all round.

A shroud was made from the same shim material to clip onto the holder. It is best if this is eventually fixed in place with Araldite when the system has been proved to work satisfactorily. Beer and soft drink cans are a good source of strong, thin aluminium. It is important that the weight of the holder and shroud is kept as low as possible to preserve the low inertia of the tracking arm.

Regarding the finish and appearance of the self-made metal parts, both polished brass and aluminium can be protected from tarnish by Letraset aerosol spray No. 101. This provides quite a tough, abrasion-resistant transparent film which is almost undetectable.

Fig. 4. Lower assembly comprised lead screw arrangements as shown, together with drive mechanism pictured in December issue.

Wiring to the cartridge, opto-switch and filament bulb is made with $3 \times 45 \mathrm{swg}$ Litz wire. There seems to be no readily available alternative to Litz wire which is flexible enough for the job. The cartridge and opto-switch wiring is carried inside the tubular tracking arm, exits near the vertical pivot and is firmly clipped to the back of the upper platform. From here the cartridge wiring is kept apart and carried in p.v.c. sleeving to a 16 pin dual in-line plug and socket on the plinth. The opto-switch wiring is combined with the wiring from the bulb and carried in separate p.v.c. sleeving to the socket. This arrangement gives a neat and symmetrical layout and helps prevent the lead-out wires from fouling the gimbals.
The T1 $1 / 4$ filament bulb is rated at 24 V 35 mA and is run directly from the 20 V supply. When under-run like this it has a very long life but does not emit much white light. This hardly matters, as the response of the BPW 34 diode lies mainly in the infra-red and matches the bulb's output quite well. An infrared-emitting diode could propably be used instead. The efficiency of the reference arm tube can be improved by polishing the inside surface - bright aluminium has a high reflectivity in the infra-red register.
The T11/4 bulb is the only commonly available bulb which will insert into the standard $1 / 4 i n$ diameter tube. It should not be free to move when in place, and wrapping a small piece of adhesive tape round the plastic body of the bulb will make it a firm push fit. Insert so that the filament is vertical.
The cassette motor used in the prototype drew 60 mA on normal play, rising only a few milliamps when running on full rated voltage, but drawing 500 mA when stalled. The output transistors need to be mounted on heat dissipators to avoid overheating when the motor is stalled; though stalling should never take place in theory, it is not unlikley during testing and setting up. Similarly, the short-circuit protection resistor in the BD135 collector circuit should be generously rated.

The relay used was a sensitive reedswitch type with a coil wound specifically for this circuit, but a standard 12 V relay could be used in conjunction with a series ballast resistor. The $47 \mathrm{k} \Omega$ adjustment potentionmeter should be set so that in normal ambient light conditions and with the light slit off the face of the photodiodes, the relay will close. High ambient light conditions may swamp the diodes despite the shroud, and prevent the relay from closing. However this is never likely to occur if the unit is used sensibly, for example away from bright sunlight. A heavily-tinted or even light-tight cover on the record player is recommended.

The power supply for the turntable, servo motor and electronics is a 20 V stabilized unit capable of giving 1A (my turntable required 350 mA peak). As the design of the power supply is by no

PARTS LIST
Raw materials
Identification
No allowance has been made for wastage during machining.
$1 / 2$ in 2BA brass screws
8in 2BA screwed steel rod
1 in plain round brass rod $3 / 16 \mathrm{in}$ dia.
2BA brass screw
$21 / 2$ in 6BA screwed rod
$1 / 2 \times 1 / 4$ in brass shim say 20 or 22 gauge)
2 in plain brass rod $1 / 4$ in dia.
$91 / 2 \times 21 / 2$ in brass plate $3 / 16$ in thick
4×2 in brass plate $1 / 16$ in thick
$2 \times 2 \times 1 / 4$ in brass bar
2×1 in brass plate $1 / 8$ in thick
2 in of $1 / 8$ in clock spring
$1 \times 1 \times 1 / 2$ in brass block
$1 / 2 \times 1 / 2$ in aluminium angle 2 in length
10 in alloy tube, thin wall, $1 / 4$ in o.d.
5 in alloy tube, thin wall $1 / 4$ in o.d.
$21 / 2$ in plain brass rod, dia, 10 suit i.d.
1/ain 10BA steel grub screws
$1 / 1 /$ in 10BA steel screw ;or $1 / 16$ in dia. rod)
$1 / 4$ in plain brass rod $1 / 8$ in dia.
Short length steel rod © / / 16 dia.)
10BA screw to suit photocell holder
8BA $1 / 4$ in brass screws
1 in brass bar
$1 / 2$ in length 10 gauge extruded aluminium sube 1 in $0 . d$.
Aluminium sheet, as appropriate
Aluminium shim, as appropriate

Other essentials

1 mA meter movement
6 V d.c. reversible electric motor, cassette deck type
Relay - see text
Two small lever-type microswitches
$\mathrm{T} 1 / \frac{1}{4} 24 \mathrm{~V} 35 \mathrm{~mA}$ light bulb*
Chassis-mounting 16 dual in-line socket
Wire-terminating type 16 dual in-line plug for above
4 metres Litz wire*
Four pulley wheels to suit motor, lead screw, gears
Matched worm gears and shafts*
Matched pair BPW34 diodes*
Watch oil
Raw materials and parts marked with asterisk are available from J. Biles. Send s.a.e. for list to 120 Castle Lane, Solihull, West Midlands B92 8RN. Suitable turntable and motor are available from Symot Ltd, 22a Reading Road, Henley-on-Thames, Oxon RG9 1AG

Suggested simplifications for reference arm hinge include avoiding cuts in top plate by making lower plate larger. Gimbal pivot pillars, shown rectangular on page 67, are more simply made from $1 / 4$ in rod.

Fig. 5. Assembly details of motor and 100 to one speed reduction llower portion) are left to individual
constructors. Upper assembly is detailed in drawings and Figs. 3 \& 4.

Fig. 6. When properly adjusted a tracking error of 0.2° is corrected in half a second. A set square is needed for scribing reference lines on an aluminium template at right angles to radius line.
means critical it is left to the discretion of the constructor. On the prototype, which had the mains transformer botled to the plinth, it was found that mechanical vibration was finding its way to the tracking arm to give 50 Hz hum. Mounting the transformer on rubber grommets cured the problem, but it is perhaps a better solution to have a power supply unit which is separate from the plinth. At least one commercial unit has adopted this approach.

Setting up

With the tracking arm fully assembled with cartridge and counterweight, raise or lower the vertical pivot to produce neutral equilibrium. The horizontal pivots can also be adjusted to help produce equilibrium, and then set in place with Loctite thread-locking compound. With the cartridge resting on a discarded record, the level of the optoswitch is now adjusted to be in line with the light beam, by means of the spacing washer (Fig. 1, part 1), which may have to be filed down or added to in order to achieve this.
A template to check the accuracy of tracking is essential. A sheet of thin aluminium is cut to suit Fig. 6. the

corners being checked against an engineer's set-square, Find distance d, which will depend on cartridge position, with the template resting firmly against the front edge of the parallel track. Scribe a radius line at distance d parallel to the front edge of the template, left to right, and then using the set-square scribe several lines for reference purposes at right angles to this radius. Adjust the reference arm by means of the screws securing it to the upper platform so that it is parallel to one of the reference lines on the template. Track the arm fast forward and check that the reference arm remains parallel to the various other reference lines. If there is a discrepancy, the parallel track is not straight, and should be re-filed; fortunately the eye has very good perception of parallelism. When this is satisfactory, and with the opto-switch disconnected, play a record, setting the voltage to the servo motor so that the tracking arm keeps pace with the record, very approximately. Note this voltage.

Now connect the opto-switch and with the record stationary and the sliding platform disconnected from the lead screw, bring the tracking arm parallel to the reference arm. The meter reading should now correspond to that
obtained with the opto-switch disconnected. If it is not then either the reference arm must be moved sideways to correct this (and then re-aligned of course) or the opto-switch must be moved in relation to the tracking arm.

As a final check, observe the tracking arm from above as it plays a record properly, and note the changes in meter reading as the servo-system corrects tracking errors. Now is the time to adjust the sensitivity by means of R_{f} and the maximum voltage to the motor (if necessary), by changing the 13 V limiting Zener diode for a higher or lower value as required. The prototype was set to correct an error of 0.2 degrees in about 0.5 seconds, which I found to be adequate. The time taken depends not only on the sensitivity but on how hard one is prepared to drive the servo motor. The amount of noise and vibration generated is naturally small in motors designed for cassette decks, but in the prototype, which used a 6 V motor, 5.5 V was the optimum voltage, before noise from this motor overtook noise from the turntable motor.

S. G. Brown, F.R.S.

At the time of his death shortly after the end of the second world war Sidney George Brown F.R.S. had more than 1000 patents for inventions. These included the gyrocompass used by the Admiralty during the first world war, when they wanted to avoid adopting the American Sperry equipment; the tuned-reed headphones, which were so sensitive to weak signals that they were a standard issue for wireless operators; and a loudspeaker. Brown was the son of a family which had already won fame in the USA for proposing methods of preventing a repetition of the fire which destroyed much of Chicago in the eighteenth century.

Mr F. P. Thomson, biographer of A. D. Blumlein, is now preparing a biography of Brown. He would like to hear from people who knew the Brown family in the USA or worked for S. G. Brown or his company in Britain and who could give or lend papers, notes, photographs, etc. Mr Thomson's address is 39 Church Road, Watford, Herts WD1 3PY.

Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material. attending meetings, exhibitions, press conferences and other events, some abroad, and editing contributed technical aŕticles. A good deal of freedom will be given to a person who shows ability and responsibility. Preferred age range 25 to 35. Write to: The Editor, Wireless World, Dorset House, Stamford Street, London SE 1 9LU.

C.m.o.s. compatible piezo sounder

Piezo electric sounders are efficient and reliable devices which contain a ceramic transducer and a switching transistor. Although the average current drain is 50 mA , the sounder functions as a class C blocking oscillator where the current is pulsed with a peak of 800 mA .
It is difficult to switch such a current directly with c.m.o.s. or t.t.l. and a switching transistor would need a wasteful 50 mA or so of base current to ensure saturation. Although v.m.o.s. transistors need no drive current they
are relatively expensive and have a significant saturation voltage. The simplest solution is a small thyristor which requires a maximum gate current of only 0.2 mA . Because the anode current falls to zero between each pulse, the thyristor will turn off unless gate current is present. No gate to cathode resistor is required because a logic low output clamps the gate off.
C. Stephens

Woodbridge
Suffolk

Variable current-limiting supply

This simple power supply offers variable current limiting from 10 mA to 3 A by using the pass transistor to offset the $V_{b e}$ of the protection transistor. Resistor R_{1} can have any reasonable value and omitting \mathbf{R}_{2} allows unlimited maximum current. In the alternative circuit, R_{3} and D_{1} must be chosen for the maximum current required.
D. Rawson-Harris

Stockport
Cheshire

Thermistor replacement for oscillators

The R53 thermistor is often used in oscillator circuits to stabilize the output and reduce distortion. Unfortunately the device is reasonably expensive and intolerant of accidental power surges. This circuit provides a more stable output than the bridge driven rectifier previously published in Wireless World.

In the bipolar version the transistor and diodes can be any general purpose silicon types. The output level can be raised by connecting a Zener diode in series with the emitter. As the output of the oscillator is stabilized to $2.5 \mathrm{~V} \pm 5 \%$ it should be at least 3.5 V r.m.s. before limiting.
If low distortion is important, a similar circuit with a f.e.t. can be used as shown. This does, however, require an oscillator output which at least equals $V_{\text {gsc }}$ i.e. 8 V r.m.s. for a 2 N 3820 . R. Dynan London

Improved transistor tester

This transistor tester is based on a circuit by N E Thomas in the March 1977 issue of Wireless World. Any unknown bipolar transistor can be placed in the test socket and the transistor leads can be in any order. The ring of three oscillator produces a three-phase waveform which switches either two green and one red l.e.d. on for a n-p-n device or two red and one green for a p-n-p type. Other displays indicate a faulty device. By switching S_{1} to the appropriate position, the base can be biased via the correct test socket switch. When this has been identified, increasing the base current by reducing the variable resistance turns the collector l.e.d. on first so all three leads are identified. Noting the position of the wiper and the brightness of the l.e.d. gives an indication of the transistors' gain.
M. Odyniec

Podlaska
Poland

12W class A power amplifier

Almost all of the published audio power amplifier designs have had outputs in excess of 30 W . However, there are still many applications where a high quality amplifier with less output is needed.

This circuit uses a class A output stage with feedback control of the quiescent current. Two independent amplifiers throughout simplify the circuit and provide a 3 dB improvement in the signal to noise ratio. The necessary trimming of resistors R_{1} to R_{4} can be achieved by temporarily connecting them in a bridge arrangement. Specification of the prototype is shown below.
Power output into $8 \Omega \quad 12.5 \mathrm{~W}$ Frequency response 5 Hz to 225 kHz (-3 dB)
Output slew rate $\quad 10 \mathrm{~V} / \mu \mathrm{s}$
Distortion
(5 Hz to $20 \mathrm{kHz}, 0$ to 10 W)
Hum (rel. full power) $<0.02 \%$
$-85 \mathrm{~dB}$
Noise excluding hum component
Stabililty
Output offset without nulling network
N. Pollock
V. Polloct
$-103 \mathrm{~dB}$
Unconditional
15 mV

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. $p \& p$.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character gencrator; or 4096 spot positions in graphics mode) on UHF domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved.

FROM HERE...

TO HERE...

NEED NO LONGER TAKE AN ETERNITY OR COST A FORIUNE

Time is money and with conventional custom designs, the process from the detailed logic design through to layout of the chip can take 6 to 9 months of total engineer involvement.

The following stages of mask making, prototypes, and test programmes still have to take place. In this age of rapidly changing technology, two years to production is an eternity in both commercial and economical sense. This is why GEC Semiconductors have developed the Cellmos system, which allows customers to benefit from special LSI designs with a much lower
starting fee and in a much shorter time.
Once we have approved logic diagrams, our computer will process the design through a series of programmes, which will layout the circuit onto the chip. The whole sequence will not take more than a few hours of computer and engineering time. The turn round time from the approved logic to samples is within 12 weeks. Hardly an eternity..

If you feel the Cellmos system can help with your problem, please write or phone our sales office for further details or even a demonstration.

HURRAH FOR TELETEXT

May I, as a television dealer, air my views concerning teletext, which seems to have dominated Letters to the Editor in recent issues?

I feel the first point I must make concerns the letter from Mr Williams in the October 1979 issue. He complains on the one hand that there are not enough pages, and then goes on to add that if there were, he would not have time to read them all. Spelling and punctuation errors, he says, occur frequently but in my opinion they do not occur as often as in some newspapers.
Regarding access time, it takes on average 12 seconds for a page to appear, a little longer on Oracle - not bad for a system that has to ride piggyback on a few borrowed lines.
Teletext is not fading away as some people would have you believe. We dealers must take a lot of the blame for its slow start. My teletext customers are extremely pleased with their sets, which could be due to the fact that we spend over an hour demonstrating the full teletext facilities to them.

I keep wondering why some people wish to change the format of teletext. As far as I am concerned, it offers a very good and comprehensive service the way it is. Teletext sales are on the increase and I feel there is a healthy market developing for the future. So hands off our teletext service, it is the best thing in television for years!
R. J. Timms

Swadlincote
Burton-on-Trent

SIDEBANDS AS PHASORS

The opening remarks of J. M. Osborne's excellent article "Sidebands as Phasors" (September 1979) suggest that Bessel functions are necessary to show that the sidebands of a frequency modulated wave extend to infinity. This is not strictly true for their use is merely a mathematical convenience. The same result can be achieved using mainly traditional trigonometrical methods.
A general expression for a frequency modulated wave (see Terman's "Electronic and Radio Engineering", page 588) is:

$$
e=A \sin \left(\omega_{\mathrm{c}} t+m_{f} \sin \omega_{\mathrm{m}} t\right)
$$

where ω_{c} and ω_{m} are $2 \pi \times$ the carrier and $2 \pi \times$ the modulation frequency respectively and m_{p} is the modulation index. This expression can be expanded using the well known "sine-sum" formula to

$$
\begin{array}{rl}
e=A & A \sin \omega_{c} t \cos \left(m_{f} \sin \omega_{m} t\right) \\
& \left.+\cos \omega_{c} t \sin \left(m_{f} \sin \omega_{m} t\right)\right]
\end{array}
$$

Thus the problem now turns on finding a simplification for the terms $\cos \left(m_{f} \sin \omega_{m} t\right)$ and $\sin \left(m_{r} \sin \omega_{m} t\right)$ and here we must depart into the realms of simple differentiation. Sine x and cosine x can each be expanded in series form (see, for example, Saxelby "A course in Practical Mathematics", page 221) so that:
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$

$$
\text { and } \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}
$$

Substituting $m_{f} \sin \omega_{m} t$ for x in these two series we arrive at two other series, one with odd powers of $\sin \omega_{m} t$, and the other with a zero frequency component and even powers of $\sin \omega_{m} t$. Each has related coefficients in powers of m_{f}.

The individual terms of each series can be further expanded into fundamental and harmonic components of ω_{m}. The even indices will produce cosine terms of even harmonics and the odd indices harmonic sine terms, the highest harmonic in a particular term being equal to the order of the index.

For example:

$$
\sin ^{3} \omega_{m} t=1 / 4\left(3 \sin \omega_{m} t-\sin 3 \omega_{m} t\right)
$$

and $\sin ^{4} \omega_{m} t=1 / 8\left(3-4 \cos 2 \omega_{m} t+\cos 4 \omega_{m} t\right)$
It is now necessary to collect together terms of similar frequencies and to consolidate their coefficients. We have to substitute these terms back into the original expansion where the cosine terms will be multiplied by $\sin \omega_{c} t$ and the sine terms by $\cos \omega_{\mathrm{c}} t$. We are now on familiar ground where each term will resemble that of an a.m. wave. The terms will have the form:
$\left(\cos \omega_{c} t\right) \cdot \sin p \omega_{m} t$ and $\left(\sin \omega_{c} t\right) \cdot \cos n \omega_{m} t$
where p is an odd integer and n is an even one. The expansion of these two expressions results in:

$$
\begin{aligned}
& \quad 1 / 2\left[\sin \left(\omega_{c}+p \omega_{m}\right) t-\sin \left(\omega_{c}-p \omega_{m} t\right]\right. \\
& \text { and } 1 / 2\left[\sin \left(\omega_{c}+n \omega_{m}\right) t+\sin \left(\omega_{c}-n \omega_{m}\right) t\right]
\end{aligned}
$$

respectively.
These are, of course, the infinite sidebands of the frequency modulated wave. The carrier term will result from the zero frequency component arising from the expansion of the even powers of $\sin \omega_{m} t$ and it should be noted that it will have an amplitude depending on a complex function of m_{f}.

The method is laborious and it does not have the elegance of the more accepted method. However, it may appeal to students who have not progressed far with their mathematics - if they have the time and patience to pursue the complicated calculations. There may also be advantages when the modulating wave is not a simple sine or cosine function as, for instance, in frequency shift telegraphy, although the mind boggles at the intricacy of the ensuing manipulations.

A similar expansion can also be used for showing the infinite extent of the sidebands when phase modulation is employed.
S. F. Brown

Post Office Telecommunications
Rugby Radio Station
Warwickshire

CORRECTIONS

In the second part of J. M. Osborne's article "Sidebands as phasors" in the October issue, several errors occurred on page 68 in Appendices I and 2, for which we apologize to readers. In Appendix 1 the expression in the second line (for p,m. of carrier) should read:
$a \sin (\Omega 2 t+\theta \sin \omega t)$

The second expression (seventh line) should read:

$$
a \sin \left(2 \pi F_{0} t+\theta \sin 2 \pi f t\right)
$$

In Appendix 2 the first expression (for f.m. of carrier) should read:

$$
a \sin \left(\Omega t+\frac{\Delta F}{f} \sin \omega t\right)
$$

and the second expression (seventh line) should read:

$$
a \sin \left(2 \pi F_{0} t+\frac{\Delta F}{f} \sin 2 \pi f t\right)
$$

Also in Appendix 2 the expression in the middle column of $p .68$ for the maximum rate of swing in terms of frequency (11 lines from top of column) should read:

$$
2 \pi \Delta F=\theta 2 \pi f
$$

- Editor.

WHAT IS AN ELECTRON?

Neither Dr Theocharis nor Professor Jennison appears to understand the aim of modern physics (Letters, October). This is to discover and systematise useful descriptions of the natural universe as we observe it in experiment. Those descriptions are invariably mathematical and some of them are carefully bounded. Professor Jennison has proposed a model and time alone will show whether or not it is useful. Particle-wave duality must be one of the classic paradoxes and it remains unresolved. Dr Theocharis thinks that most .physicists actually believe in a real Jekyll and Hyde electron. Professor Jennison actually appears to do so-and that is his prerogative.
Most modern scientists will be happy to leave these two to fight it out. Paradoxes arise through the inadequacy or incompleteness of mathematical descriptions but that does not itself invalidate those descriptions. One must simply tread carefully in making use of them.
D. A. Ross

Poynton
Cheshine

CITIZENS' BAND AND
 THE LAW

In November a correspondent criticised you for "supporting" the illegal use of c.b. radio, and his criticism was based on the belief that law-breaking is automatically wrong in any circumstances. Is lawbreaking automatically wrong? Let us hear some eminent views.
J. J. Rousseau, 1762: "The inflexibility of the laws. which prevents them from bending to circumstances, may in certain cases make them injurious, and bring about in a time of crisis the ruin of the state."
Edmund Burke MP: "It is not what a lawyer tells me I may do, but what humanity reason. and justice tell me I ought to do."
J. S. Mill. 1861: "There is no ethical creed which does not temper the rigidity of its laws by giving a certain latitude for accommodation to peculiarities of circumstances
it seems to be universally admitted that there may be unjust laws, and that law.
consequently, is not the ultimate criterion of justice."
"There are different degrees of obedience and it is not every degree that is commendable. Only an unmitigated despotism demands that an individual citizen shall obey unconditionally every mandate of persons in authority.
Bertrand Russell: "Individuals who opposed received opinions have been the source of all progress. Without rebellion mankind would stagnate and injustice would be Irremediable."
C.B. is not illegal because it's wrong but only because the constitution has virtually ground to a halt under the strain of modern life. Within government it is mainly the unelected bureaucrats who are against c.b. and neither the Home Secretary nor the Commons has had time to examine the issue closely because of more pressing matters.

So the bureaucrats rule by default. In respect of this and most other matters we are ruled by what J. S. Mill called "the obstructive spirit of trained mediocrity." This is not democracy; it is not even elective dictatorship; it is pure tea-cup tyranny; and in a tyranny it is morally right to break the law because of the absence of democratic procedures for changing the law.

Mr Pearson says that he is opposed to modification of law by blatant disregard for it, but he fails to understand that the only reason the law is being modified in this way is because there is, in practice, no other way.
C.B. is only one of many issues which are clamouring for the attention of an overburdened parliament. (For an example of another issue see the remarks of Dr Budworth, News. August 1979, p. 41.) The threat to the rule of law does not come from Wireless World but from the lack of parliamentary time to deal with these matters. This problem does not exist in federal countries like Australia and Switzerland;it need not exist here.

The more support that respected journals give to the fight against the tyranny of centralism the sooner that tyranny will be ended and the sooner respect for the law will be restored.

Carry on Wireless World!
S. Frost

Dunsyre Lanarkshire

COMMENT IS POLITICAL

I have read Wireless World for more than 25 years and paid for it out of my own pocket as, unlike many readers. I do not have the subscription paid by my company. During this period it has served me well and I shall be forever grateful for the technical help and guidance it has provided me with. There have also been delightful moments of humour which have helped to demonstrate that technical people can be human.

However, recently I have noticed a tendency to knock the establishment - whatever flavour it might be. I consider the inclusion of political rhetoric out of place in a journal of the calibre of Wireless World: your November editorial was particularly distasteful to me. I take Wireless World for many reasons but they do not include being subjected to the political bias of the editorial staff, both in editorials and general content.

Please, Mr Editor, can we return to an apolitical journal - crusades I can accept but political bias no.

J. Greenwood

Chelmsford

Essex

DIGITAL FILTERS

It is with great interest that I have been following the Wireless World articles on digital filters ever since the original article by Rees ${ }^{1}$. Having programmed the RC low-pas's filter on my H-P calculator, I would like to draw attention to a problem that seems' to have been overlooked concerning the testing of these algorithms.

As the algorithm is basically derived from the impulse response via the Laplace transform method, the user is tempted to test it by applying a unit step, and feel satisfied when the desired exponential response is obtained. However, the filter cannot operate meaningfully on any frequency above the Nyquist frequency, while any impulsive type of test signal contains a large proportion of its energy in its high frequencies. Thus the only acceptable test signal must be one containing no harmonics beyond a certain frequency.

When a sine wave was used to test the RC filter it was found to be phase advanced by an amount corresponding to half of one time increment. The amplitude error was 0.16% when there were 10 samples per cycle and the period was equal to RC. To correct the time error a sliding mean was applied. Each sample was meaned with the previous sample before being used (see Fiig. 1). The sliding mean can be considered as another filter with a rectangular impulse response whose first frequency null falls upon the sampling frequency (see Fig. 2). The equivalent geometrical procedure is to interpolate the samples as shown in Fig 1. Even so the procedure is not entirely satisfactory as odd multiples of the Nyquist frequency are only attenuated, not removed. The interpolated sine wave had negligible phase error but the amplitude error had increased to 3.5\%.

The process is equivalent to using an almost ideal filter on the interpolated

Fig. 1. Replacement of $v(t)$ with $v / 2(v(t)+w(t+\Delta t))$.

Fig. 2. (a) Spectrum of sampled sine-wave frequency w_{s}. (b) Frequency response of sliding-mean pre-processor.
waveform and then sampling the output at the original sample rate. Presumably a more sophisticated pre-processor such as for example a filter with a Gaussian impulse response would reduce errors due to residual harmonics.
In conclusion, and as Ham^{2} points out, aliasing of the input signal is to be avoided if at all possible. Thus, at least for instrumental data there is no entirely 'satisfactory substitute for an analogue anti-aliasing filter to be applied before any digital processing. For synthetic test data, some digital preprocessing is needed to reduce unwanted harmonics. It seems that digital filters are not necessarily as simple as 'has been implied in your articles.
W. Gray

Farnborough
Hants

References

I. V. J. Rees, "Digital filter design", W.W. Oct 1976 and subsequent correspondence. 2. P. A. L. Ham, "Simple digital filters," W. W. July 1979.

PROGRAMMABLE NOTES FOR MUSICAL INSTRUMENTS

Your correspondent M: Robins (Növember letters) does not seem to be aware that the scale of tuning proposed in his letter was in fact discarded some 250 years ago. Until this time 'just' temperament tuning was the standard, but, as M. Robins says, the problem is that a piece of music sounds very different when played in different keys, some keys being'unusable. 'Bach was a great promoter of 'equal' temperament tuning and composed his 48 Preludes and Fugues as proof that all keys could be used with this tuning method. He even called these pieces' "The Well-tempered Clavier". Incidentally, even in 'equal' temperament tuning certain keys sound 'brighter' than others. This is a well known fact amongst musicians who would also consider going back to 'just' temperament verv much a retrograde step.

Richard Waters

Leighton'Buzzard
Beds

POYNTING VECTOR

Apparently many people find the concept of displacement current useful and some find it distasteful. Not being a member of either group I would normally be prepared to continue as a passive spectator of the fascinating correspondence which has been stimulated by the recent articles on the subject; after all, no-one is suggesting that $\partial D / \partial t$ should be struck out from Maxwell's equations, and presumably no-one is insisting that everyone must believe that there is any physical reality in a current which is said to flow in empty space where there is nothing to carry it (and nothing to be displaced). 1 would even leave it to others to point out that in Fig. 4 of "The history of displacement current" in your March issue the current i will vary continuously between B and ' B ', as is the way
with transmission lines, so if you want a continuous "current" you do need a displacement current, not localised at B, but distributed along the length of the transmission line.

However, the excellent iconoclasts Catt, Davidson and Walton have spurred me to action by their uncharacteristically unquestioning use of a concept/mathematical construct which is far less harmless than displacement current, namely the Poynting vector or "energy current" $\mathbf{E} \times \mathbf{H}$. A single, example will show what I mean. Suppose I take a battery and connect it to a lamp by a pair of good thick metal wires. Since the electric field is negligible inside the wires the Poynting vector is too. In fact the Poynting vector is mainly localised in the space surrounding and particularly between the wires. By examlning the Poynting vector one can validly draw the conclusion that energy flows from the battery to the lamp. One could even, in principle, integrate the Poynting vector over a surface containing the battery or the lamp, but not both, and calculate correctly the rate at which energy flows from the battery to the lamp, but one would be allowing oneself to be blinded by one's own mathematics to deduce from the fact that the Poynting vector is partically zero in the wires and is at a maximum between the wires that the energy flows mainly between the wires and not to any appreciable extent through them.
In case anyone does believe that even in this case the Poynting vector represents a physical energy flow I propose the following experiment. First, interpose a metal screen between the battery and the lamp, insulated from the wires themselves, but fitting as closely as possible, so as not to leave more than the tiniest space for the Poynting vector to squeeze through. Note the effect (if any) on the amount of energy which gets to the lamp. Now take away the screen and make a break (just a little one, mind) in one of the wires. Again, note the effect on the amount of energy (if any) which gets through. A similar experiment could be carried out on telegraph lines, at some inconvenience to the public. If the Poynting vector really represents a flow of energy, the screen should have more effect than the break. After all, what do we mean when we say (if we do) that the energy flows between the wires rather than through them, other than that if we wish to obstruct the flow of energy we would do better, to a first approximation at least, to insert a barrier where the energy flows than where it does not flow.

Perhaps it is time someone did a hatchet job on the Poynting vector along similar lines to that of Catt, Davidson and Walton on displacement current, with the hoped-for result being that it is cut back to its proper size, not that it is necessarily cut out completely. It may be less entertaining (surely not if the same team could be persuaded to take on the job) but the usefulness in actual practice would arguably be greater.
C. M. K. Watts

Western Electric Company Ltd
Woodford Green
Essex

The authors reply:
The last sentence of Mr Watts's first paragraph shows that he does not understand the mechanism for a TEM signal travelling undistorted between two perfect uniform conductors.
We should however applaud, not con-
demn, those who come out in the open and discuss electromagnetic theory even though their grasp of the fundamentals is weak. CAM Consultants have found that those professors and text book writers who are hiding from the present dialogue, although their professional duty would direct them otherwise, are more ignorant than Mr Watts and the other brave men who are rushing in to the vacuum. CAM Consultants challenge professors of physics and electronics to come out of the undergrowth and start earning their salaries by discussing the fundamentals of electromagnetic theory.

Returning to para. 2, if Mr Watts bares his chest to the sun, does he believe that the electromagnetic energy (light) burning his skin is travelling from the sun to him down conducting wires, or through a dielectric?
Paragraph 3 is very instructive. (Why must he leave the "tiniest space"? Why leave a space at all if the conductor is what it is all about?) Our book Electromagnetic Theory Vol. 2 discusses such situations thoroughly, on pages 245 and 319 and elsewhere. Referring again to his second sentence, conventional transmission line theory lets us calculate the mechanism by which energy current rapidly builds up to a high flow rate through a small gap as a result of repeated reflections. The argument somewhat resembles that in the appendix to our article in the December 1978 issue. If in his second sentence, the screen hugs the conductors for a long length (say one mile), creating a long section with very low characteristic impedance, transmission line reflection theory correctly tells us that energy flow from battery to lamp is delayed. More conventionally, this delay would be thought of as an $R C$ time constant, the C being the narrow gap between conductor and screen for the very long distance. Referring to his sentence 3 ; once the tiny break in the conductor (which Heaviside called an obstructor) is made, energy current flows through the break and out into the vast space beyond. This space presents a rapidly increasing (characteristic) impedance, causing all the outgoing energy current to be reflected back through the break into the narrow channel through which energy was previously gliding calmly (at the speed of light) from the battery to the lamp. After the initlal disturbance of the steady state caused by the breaking of the conductor (obstructor), the lines of energy current gradually, through the mechanism of reflections, settle down to a new pattern where energy (of the same amplitude as before the conductor was broken) flows out of the battery to the gap in the wire, there to be fully reflected báck into the battery, in a "continual dance of energy" which Carter dismissed as absurd but CAM Consultants do not. (The Electromagnetic Field in its Engineering Aspects, by G. W. Carter, Longmans 1954, page 321.) If however the break made in the conductor is extremely narrow (and long), it will take time for its existence to become apparent. Very traditionally, this very narrow, long gap in the conductor would be regarded as a capacitor. We should regard it as a transmission line of very low characteristic imped. ance.
Dealing with his third para. in a lighter vein, one is urged to suggest that it is the "phlogiston" in a balloon material which keeps it doing its job. The absurd theory that it is the air pressure in the space inside whlch maintains a balloon's femininity can easily be disproved by making a tiny hole in the balloon; too small to let the air out but large enough to collapse any imagined air pressure
inside. Alternatlvely, we can show that the goods travelling in a railway system travel inside the rails, or an obstruction across between the rails, nearly touching the rails close enough to leave too little space for the train wheels to get through. This will prove that goods are really piped along inside the railway lines and it is absurd to think that the lines merely guide the flow of merchandise.

When all is said and done, however, the acid test is the question of whether the velocity of propagation of the energy (/electric) current is a function of the characteristics μ, ϵ of the dielectric or of the conductor. When a seagull (or merely the reflection of a seagull) glides along above (/below) the surface of the water, does its speed depend on the nature of the air or of the water?
I. Catt, M. F. Davidson, D. S. Walton

'TRIVIAL" AMPLIFIER DESIGNS

I find it quite incredible that Wireless World, should see fit to publish yet another article describing amplification equipment for domestic sound reproduction, in which purely academic distortion levels are pursued virtually for their own sake. The author states that he designed the amplifier with a view to its being "competitive with current commercial designs." Can this really be an altruistic aim? In my experience the second and third harmonic distortion audibility threshold (even where skilled sound engin eers and producers are concerned) is in the region of 0.1%. Given that this is so, then an amplifier with second and third harmonic distortion not in excess of 0.1% over its entire bandwidth should sound as good as one with 0.0002% second harmonic distortion, all other factors being equal - entrance slew rate limitations, overload effects, audibility threshold of high harmonics, et al

A multitude of exotic schools of thought currently abound to extol the 'sound' of polypropylene capacitors, special loud speaker cables, discrete circuitry, valves, f.e.ts, 'real time' amplification, $180 \mathrm{~V} / \mu \mathrm{s}$ slew rates, passive equalisation, minimal overal feedback, etc. I challenge Wireless World to seek out the truth of this mysticism, rather than to present conventional designs adnauseam. I wish to state that I in no way whatsoever wish to depreciate per se the designs presented by Douglas Self and B. J Codd, but rather to suggest that whilst their engineering approaches are interesting, they are really grossly trivial in a world where the allowable second harmonic distortion on a studio tape machine is of the order of 3%, where 70% of record pressings are defective and electromechanical transducers from the cutting head to the loudspeaker are as yet imperfect.
To exemplify: I have recently built Douglas Self's Mk I advanced preamplifier design using TDA 1034 N op-amps. Using hornloaded loudspeakers and Crimson Electrik amplifiers in a tri-amplified configuration, I perceive no difference. I am still waiting for my friends to say "Your equipment sounds different." The chances are high that your recently acquired records were mixed in the studio on desks stuffed with 'nasty' op-amps and transformers. Need I say more?
Ben J. Duncan
Tattershall
Lincoln

THERMIONIC DEVICES

I know of nothing more likely to start an argument between historians than that of throwing into the ring a seemingly innocuous statement such as ". . no doubt that Fleming's diode ushered in the thermionic 'valve era . . ' (November 1979, p.94).

Dare I suggest that Edison's patent of 1884 (nothing to do with wireless of course) covered a most practical application of thermionics to the control of a generator? For all I know this may also have been the first thermionic closed-loop servo-mechanism to be described. But Edison was very busy inventing hundreds of other things, and can perhaps be excused for not applying his "so-called" effect to wireless, the phonograph, moving pictures etc. as well.

What is most puzzling is that Fleming was apparently so slow off the mark - a whole 20 years before the penny dropped! Of course he had been fairly busy around 1900 combining the more recent ideas of Tesla, Thomson and Marconi into the Poldhu transmitter, a very substantial engineering task; and this may have diverted his mind from developments in Germany, such as Wehnelt's lime-coated thermionic filament also published in 1904 which was incorporated into the BraunWehnelt cathode ray tube of 1905 . (The same Braun, of course, who later shared a Nobel prize with Marconi.)

In the event it must have been a little humiliating for Fleming that there was not more interest in his thermionic diode (though it may have stimulated the invention of the the crystal detector). The reasons were that the carbourundum detector was simpler and more rugged and the Marconi magnetic detector needed no battery. Thermionics really took off in a more obvious fashion about a decade later, with the advent of better vacua and other technical improvements. In fact, it became important enough for litigation over rights; and though neither side seemed to emerge with much of value, the ruling did confirm Fleming's legal title to his (rather gassy) diode valve.
Desmond Thackeray
University of Surrey
Guildford

MICROPROCESSOR PERIPHERAL ICs

A problem exists in the design of circuits using the latest microprocessor peripheral i.cs. I would like to suggest a solution which, although using one more pin of the package, would require little complication of the i.c.
The problem is evident when several such peripherals interface to the same data bus, and this bus includes one or more sets of bi-directional bus buffers. In order to ensure that these buffers are always driving in the correct direction, the logic designer finds himself duplicating circuitry that must already exist inside the i.c. Some peripheral chips put data on the bus for up to one of three different reasons. To determine the direction of the relevant bus buffer, all these states must be decoded, and ORed together, along with similar lines from other peripheral chips on that section of the bus.

My suggestion is that a 'drivers active' function be brought out to a pin of each bus-interfacing device. Relevant bus buffers could be turned around by a simple OR of these few signals. Even greater simplicity
could be achieved if the 'drivers active' lines were open-collector types, a wired-OR then being possible.
I feel sure that this line would also be useful in the debugging phase of microprocessor support circuitry where problems of bus conflicts and floating buses may have to be resolved.
E. J. Board

St Albans
Herts

PRE-AMPLIFIER WITH NO T.I.D.

Potential builders of the Miloslavskij passive de-emphasis preamplifier (August issue) might like to note that its RIAA network is grossly in error. Correct design formulae for passive de-emphasis can be found in the literature ${ }^{1,2}$
Stanley P. Lipshitz
University of Waterloo
Ontario, Canada

References

1. Livy, W. H., Disc replay equalizers. Letters to the editor, Wireless World, vol. 63, January 1957, p. 29. 2. Lipshitz, S.P., On RIAA equalization networks, J, Audio Eng. Soc., vol 27, June 1979, pp458-481

ELEMENT OR DIAMOND?

While experimenting in television during the "mechanical" period, I realised that the accepted theory of the "picture element", based on the chessboard idea, is a fallacy. I found that a continuously moving spot cannot resolve a picture detail as small as itself; it smudges along the traced line, generating a maximum frequency only two-thirds that calculated by the element-based linestandard formula. This was proved by the failure of the "low definition" broadcast to reach the frequency of 13 kHz , the theoretical maximum for a picture with 2,100 elements (30 lines with aspect ratio $3: 7$) at $121 / 2$ pict ures a second. Only about 9 kHz was achieved, yet the same erroneous formula was employed for the 405 -line transmission, and is still the basis of the $625-$ line standard. "Line" still means "line of elements", with line-pitch "elemental"
My letter in Wireless World for July 1961 explained how practical engineers, with a calculated "high frequency" definition to achieve, focus spot-size to half-elemental (4/9) by reducing spot diameter to two-thirds of line-pitch. This is easily proved on any monochrome screen by reducing picture height until the traced lines touch; the closed up lines leave about one-third of the screen dark.

I eventually found a spot shape which forms no visible structure, however large the spot: the "playing card" diamond. Cutting experimental discs (thin black card was adequate) I turned the original square "elemental" aperture on end, then extended it transverse to the scan direction, reducing it along the scan. Each field traced doublespaced lines (which just touched), and alternate lines "interlinked" their lines by half-overlap both ways. Diamond scan exposure tapers uniformly about line-centre, so two interlinking lines conceal structure: The line-free complementary scanning allows diamond size to be chosen for desired defini-
tion only, with resolution enhanced by the reduced scanning depth of the diamond.
The ideal "diamond" focus may be impossible electronically, and would be wasted on a 625 -line picture. A close approximation is possible by extending the existing halfelement spot vertically to points, while compressing it horizontally. The resulting pointed oval, resembling the contracted pupil of a cat's eye, would raise resolution to the standard's limit.
Astigmatic focus has been tried but the "elemental line" taboo seems to have prevented any attempt at elongating the spot sufficiently to achieve complementary overlap. This inexpensive focus correction at camera and receiver would improve definition and remove all trace of visible structure from our screens.
A. O. Hopkins

Worthing
West Sussex

JOHN SCOTT-TAGGART

Your brief, but nostalgic, 'obituary on John Scott-Taggart ($p .55$ October 1979) recorded his prowess as an engineer. In his earlier days he was also a formidable showman. From the mid-twenties to the early thirties, thousands of experimenters were persuaded that the 'ST' series of circuits had supernormal powers

The celebrated 'ST100' offered plenty of scope for compulsive twiddlers, with two tuning capacitors, plug-in coils with variable coupling, filament rheostats and a cats whisker. Although it was an essentially simple reflex arrangement, Scott-Taggart showed real originality in circuit-diagram presentation. Scorning ordinary logic in layout, he produced bafflingly devious links.
One of the figures I have sent you is copied from an 'ST100' diagram, which involved 15 crossed wires. The other one is the same circuit, but as it would more commonly have been drawn 50 years ago - with only three crossovers [Diagrams supplied.-Ed.] The contrast speaks for itself.
C. Leslie Thomson

Kingston
Edinburgh, 16

RADIO AMATEUR INVALID AND BLIND CLUB

May I bring to your attention the change in the title, secretary and address of the Radio Amateur Invalid and Blind Club.

Now celebrating its silver jubilee, the Club is formed of invalid and blind members interested in the hobby of amateur radio; their local representatives who undertake to help by visits, repairs and advice; and supporter members whose financial contributions enable help to be given. The sole condition of membership in any of the above categories is an annual subscription of £I minimum for Radial the Club newsletter which is issued every six weeks.
F. E. Woolley (Mrs)

Hon. Secretary
9 Rannoch Court
Adelaide Road
Surbiton
Surrey KT6 4TE

More on the scientific computer

Further details of the monitors

By J. H. Adams, M.Sc.

Abstract

After publication of the scientific computer series (April to September 1979) there have been many requests for more information on the firmware. This article describes in more detail the machine code and BURP monitors in terms of hexadecimal machine code. Readers will need a hex print-out of the three p.r.o.m.s and the mnemonic to hex conversion tables published in the July 1979 issue of Wireless World.

Several readers have expressed incredulity at the thought of working directly in machine code rather than using assembly language mnemonics. However, the hex codes for 50 to 60 of the most regularly used operations can soon be learnt and, thanks to the logical distribution of codes to operations, many more follow from these. The once-in-a-megabyte ones such as IN D (C), ED 50 in hex, can be obtained from the conversion table. This; does not rule out working in assembly language and using an assembler, or translating yourself, but in my experience the latter soon becomes tiresome and it is easier to write in hexadecimal.
When writing software it is useful to have a supply of the forms shown in Fig. 1. The instruction 18 , a relative jump, should be pronounced one eight and not eighteen. Similarly, the second byte is
one seven and definitely not seventeen. If you want to jump forward with a relative jump, simply make the jump byte the number of bytes (up to 7F) over which execution must move, in this case $17-1$ row and 7 bytes, to reach the target byte FF. For a jump back to the same target from the second 18, calculate the jump forward code to the next byte immediately under the target, 02 in this case, and then jump up row by row, decrementing the higher order hex character, i.e. from 02, F2, E2. When using a jump back the byte must be in the range 80 to FD (FE and FF serve no useful purpose).

Machine code monitor

Both monitors follow the same basic sequence as illustrated in Fig. 2. With the machine code monitor the base address of the Z 80 stack is set, the address for the top corner of the screen is loaded in to the DE register pair which is then used throughout the monitor as the destination pointer or vector for v.d.u. operations, and the message READY is printed by the subroutine at 03CE. This is one of several routines in the computer which draws data from the locations directly following the call of the routine. The program counter, which will have been pushed onto the stack, is exchanged with the contents of the HL register pair and then used as a

Fig. 1. Typical software form.

0	1	2	3	4		5	6	7	8	9	A	B	C	0	E	F
						18	17									
															FF	
											18	E2				

pointer to that data before being exchanged back onto the stack, at the end of the routine, to cause a return to, in this case, 0010 . The start procedure then clears the rest of the top line, resets the teleprinter output flip-flop and, using the subroutine at 0355, reads in and encodes a command from the keyboard. As explained in table 1, only the first and last letters are important to the subroutine. Whilst this limits the number of possible combinations which will produce different codes, a byte by byte comparison with a look-up table comprising all of the commands would use far too much p.r.o.m. space. After this has been achieved (001 A), a comparison is made and if the code is not FC (the entry code for RUN) executions jump over OD bytes for a further comparison and so on until a match is found, whereupon a block of instructions is executed before operation reverts to 0000 again.

Table 1. Low level monitor suproutines

Address

0254	Sets tape interface tone to 2400 Hz and then calls 255 long time delays - about 4 seconds.
0260	Transmits the byte in register A to the tape interface, preceded by a start bit and followed by two stop bits.
027F	Calls a new line and then prints the contents of HL on the teleprinter.
O28E	Formats the hex byte in register A for printing as two characters on the teleprinter.
O2EC	Prints a space on the teleprinter.
02F0	Calls a new line on the teleprinter.
0301	Prints the contents of the A register on the teleprinter.
0317	List subroutine. Entered at 0317, the starting address must be loaded in from the keyboard. Entry at 031 D assumes the address to be at 1FFO to 1 . Entry at 0320 assumes that the address is already in HL .
0336	A programmable time delay. The computer loops through six E3s, a long exchange instruction which, if used in pairs, does nothing but use up time. The number of loops is set by the byte immediately following the CALL in the original program. Each loop lasts $64 \mu \mathrm{~s}$.
0345	Clears the top line and sets DE at 8000.
O34E	Used to format results, as in FIND and COR, this rounds DE Up to the next multiple of 8.
0355	The algorithm for encoding input commands. Returns with last letter of the command minus the first letter in register A .
0372	The formatter used in LOAD and LIST in machine code language.
0393	Clears the v.d.u., leaving $D E$ unaffected.
039F	Displays HL and a space: Used in LIST, LOAD, FIND, COR and in BURP lists.
O3AA	Displays the contents of A as a two character hex byte.
03C4	Calts a new line on the v.d.u. and clears the remainder of the current one.
O3CE	Displays the string of characters following the call in the program block up to byre 10.
O3DE	Loads HL from the keyboard.
03 E 7	Loads A with a hex byte from the keyboard.
03F6	Reads in a single keyboard character and, if a letter adds.6, then truncates to four bit binary (used as part of 03E7).

An exception to this is for the code FC, the routine for which 001 E jumps immediately to 0042 . This avoids one of the subroutines which have to be located at particular points in the memory map. Several subroutines can be called by single byte instructions which are known in mnemonic form as RSTs. These were originally intended for use with the 8080 and the Z80's " 8080 mode" interrupt response which, after receiving the interrupt, calls for the interrupting device to place one or more instruction bytes onto the data bus for execution. Although this mode is not used, the single byte calls are a useful space-saver where a subroutine may be short and often needed. The subroutine which is avoided in this case at 0020 is called by byte E7 and produces a space on the v.d.u. At address 0028 is a jump to a subroutine which would require more than eight bytes. It is intended for use during the testing of machine code programs and when its RST byte EF is inserted into the program by using an ALT, it will suspend the execution of the program and display the contents of the HL, DE and AF registers, the point at which the EF was found, and the last entry onto the stack. Note that whilst there is not a specific subroutine at 0000

Table 2. Machine code routine starting addresses.

002F	FILL	0042	RUN	0040	MOV
0099	LOAD	$00 F 7$	PROM	0120	ALT
0113E	ALPM	$014 D$	PRINT	$016 F$	COR
01CD	FIND	0203	TAPE	0226	READ
01A6	LIST				

the one byte call CF for this address is used as an end command to a program. Although it does not do the same as C3 0000 , because the stack is immediately re-defined at 0000 , it has the same effect and saves two bytes.
The two interrupts also use fixed service routines. At 0038 is the maskable interrupt routine which reads in and stores number cruncher data using HL as a pointer. At 0066 the non-maskable interrupt's routine services the keyboard, first checking if the computer is at a HALT byte (76) and reading in the keyboard if it is or reseting the computer if it is not $(006 \mathrm{~B}$ is an example of a long relative jump). This particular software does not make use of the control characters available in ASCII except for the RETURN byte 0D, which it translates to 1 F . Instead, it blanks off the top three bits of any codes above 3 F (mainly the letters) at 007 C and moves
lower and upper case codes into the area 00 to 1 F . This compression of the ASCII code into six bits produces bytes which are compatible with the v.d.u. character generator and this makes writing to the v.d.u., which occurs at many places in the monitors, a simple operation.

Beyond the service routines, the routines for the various operations in table 2 fit end to end up to 0253 , with the exception of some unprogrammed space at $0130-9$. This space may be used by overprogramming the jump byte $011 F-10$ and the ten bytes as required. Note that the LIST (01 A4) routine is just a call to a subroutine at 0317 because an identical block of instructions are required as part of the ALT routine. As this is the last command code to be checked, the call is conditional on a match so that if the code is undefined, execution passes to 01A9 and a software reset.

Table 3. BURP subroutines.

0400	Used in graph plotting. Converts a number stored in 1E00-F to the nearest integral value. Negative values are put to zero.
042E	Executes MM57109 instruction present in register A. The sequence checks that the 57109 is ready, outputs the instruction with the hold off, waits for the ready to go off and then puts the hold on again.
0446	Repeats 042 E for the string of 57109 instructions following the call in the main program. The tist is terminated by FF.
0452	Jumps over the next word in the program tine. Used in FOR statements to miss STEP and UNTIL.
045A	04E6 with BC protected.
0460	Outputs the contents of the 57109 X register to locations 1FF4.1FFF and then reformats it into the location specified by the contents of register A at the call, i.e. 1 E10 for 01 in $A, 1 E 20$ for 02 etc.
04BA	Converts denary digits in the text to binary in register C. HL must be pointing to the first digit which must be in register A.
04D4	Graph plorting routine which scales the variables to be plotted to the screen matrix of 63×126. It divides the variable specified by the contents of A , by the declared maximum for that axis, and then multiplies by 126 before outputting to 1 EOO .
04E6	Jumps any spaces in the text and then analyses the following for (a) operators (04FB) which are converted by algorithm to 57109 code and executed (b) numbers (O50F) which are rearranged and then input to the 57109 (c) instructions (054E) which are encoded by algorithm and the result used as part of the address for the location in a look-up table (positioned at the end of the r.o.m.) where the 57109 instruction code can be found, drawn and executed (d) variables (057B) which are foundas in 0460 and entered as a series of 57109 instructions. When encoding words the standard algorithm two times first plus last is used but to compress the range of codes produced, those under 20 have 20 added and those above 50 are reduced by 10 . This compressed byte is then added to 0784 which is used as a pointer to the instruction required. Some instructions need two bytes for their execution, the first being 20, e.g. 24 is SIN but 20 then 24 is SIN ${ }^{-1}$. These are encoded in the table and detected at 0566 by bit 7 of the instruction being set.
058A	Handles the 57109 BR (branch) output which pulses low whenever one of the 57109 test instructions proves to be true. The subroutine starts the execution of the instruction in register A and then reads in the 6 -bit data word from the 57109 . The four digit out lines are blanked off so that only the READY and BR lines, both initially high, get through (0591). By continually re-reading and jumping back on even parity, the Z80 is effectively waiting for one of these two lines to become active. If it is the BR line the $\mathbf{Z 8 0}$ outputs a NOP to the 57109 because, when tests prove true, the 57109 immediately looks for a new instruction and waits for its completion. If READY became active to indicate a failed test, the last procedure is jumped. Finally, the read in and miasked byte which caused the exit from the parity checking loop, stored in register B as part of that loop, is read into A and masked for bit 6 so that the state of this line and hence the zeroflag in the F register is set on a successful test.
05A9	With the HL register pointing to a variable in the text, and with that variable in register A, this subroutine computes the variable's address, formats it into 6 bit ASCII in the area 1 EOO-F and converts results in the range 0.000 1-99 999999 to floating point. The byte in the text is checked and, if a digit, is used as the new mantissa digit count to be stored at 1 FEO (063 A$)$. Whether or not the contents of 1 FEO are then drawn out, the block from 0641 to 0681 rounds off the figures after the decimal point to the extent indicated by this digit. Blanked figures are replaced by ASCII spaces. The mantissa is then sent to the v.d.u. and the text interrogated again, this time for a comma, which has the effect of suppressing the printing of any spaces and close packs the digits in the number (0693-7). Finally, at 06A3 an E for the exponent is looked for and if found the exponent is displayed. The alternative is three spaces or nothing, depending upon the comma, for floating point numbers.
06BB	Prepares the store area specified by the contents of A using 0714 and then reads in a number from the keyboard, converting standard and non-standard scientific and floating point arrangements to the machines standard format.
0714	Prepares a number store by dumping $900 \mathrm{~s}, 60 \mathrm{Fs}$ and a 3 F . This means that 06 BB dump the input data into the store without having to worpy about leading or trailing zeroes or the non-existance of an exponent (OFs being NOPs as well). The 3 F terminates number entry to the 57109 as well as being a NOP therefore two consecutive variable inputs to the 57109 do not have to be separated by an ENTER as with reverse polish calculators.
0729	Algorithm for entering words from keyboard (two times first letter plus last).
0736	Inputs denary keyboard digits to binary in C.
074A	Converts A to three digit denary and displays on v.d.u.
076D	Converts A to three digit denary and displays on teleprinter.
07A2	Data for MOD command.
07AC	Forms the address for the start of a variable store area in HL from the variable code in A .
0787	Displays a number formatted by $05 A 9$ in 1 E00-F displaying E for OB, for OA, a space for OF., - for OC and ASCII digits for 00 to 09.
0706	The look-up table for the 57109 instructions.

Table 4. Format for storing and printing three variables.

Table 5. BURP routine starting addresses.

O83F	DEL	O8C7	MOD	$08 F 7$	ADD
0929	LOAD	$092 F$	LIST	0939	DUMP
0977	RUN				
		$09 B 2$	PRINT	0908	END
O99A	INPUT	O9EB	LET	OAO4	IF
O9DF	GOTO	OAB3	ERASE	OABF	TOP
OA43	WRITE	OAAA	RETURN	OAB2	FOR
OA9E	GOSUB	OB13	HALT		
OAE2	NEXT				

From 0254 to $03 F F$ are the subroutines listed in table 1. When necessary, the subroutines PUSH registers to be used solely within the subroutine and then POP them back before the return so that no interference is caused to data within the main program. Most subroutines are selfcontained but some, e.g. 02EC, jump on to others for their completion. As subroutines are sometimes called within subroutines, within subroutines etc., the stack storage area, which extends into the r/w.m. from 1FDF, should be left free to at least $1 F C 0$ for the computer's use. Like C7, other space savers will be found in the subroutines, e.g. AF to clear the register A instead of 3 E 00 , A7 to set the flags according to the contents of A. To save byte space some apparently unnecessary bytes appear, e.g. E3 at the start of the routine at 03 C 4 is included so that it and 03CE can share the same ending. Care is needed when writing subroutines because with a lot of PUSHing, POPping and EXchanging taking place it is important to ensure that the bytes called back off the stack by the return command at the end of a subroutine are definitely the correct ones. I have found this to be the Z80's most adept way of erasing painstakingly developed programs. This type of error is common when a conditional return is used as in 034E which prints spaces until the lower three bits of DE are zero. Ideally this should have pushed AF initially as it uses A and F, but to also arrange for them to be restored on return would extend the routine to at least nine bytes. The EF described earlier is a very powerful tool for sorting out these problems.

BURP monitor

For the BURP monitor the first p.r.o.m. is solely for subroutines whilst the second contains the operating system which makes use of them. Details of the subroutines are given in table 3. In BURP. program material is loaded from

0 C 00 on, the area 1E00 to 1 E 0 F is used for the formatting of results to be printed and $1 E 10-\mathrm{F}$ stores variable A ' and so on up to 1FB0-F which holds the FOR loop step. Table 4 shows the formatting used for the storage and printing of three different variables. Note that all results are stored scientifically to maintain eight digit accuracy. Although the MM57109 can operate in either mode, it is quicker to stay in the scientific mode and let the Z80 convert the results within the range 0.0001 99999999 to floating point for display.
At 0800 the stack pointer is set and DE is assigned as the screen pointer again. BURP is then displayed and the rest of the top line cleared. The mantissa digit count is set at 04 (0817) and the screen position reset to 8008 ready for the input of a command. 081E to 0823 is

Fig. 2. Basic operating seque ice for both monitors.
harmless nonsense and 0824 to 0837 resets the number cruncher by sending the operation 3 F (NO OP) with the hold to the 57109 off, pausing for 8 ms and then reapplying the hold. During this sequence the interrupt mode is set but as it is the masked one that is driven by the number cruncher, the somewhat capricious behaviour of the i.c. before it has been reset has no effect upon the rest of the system. The i.c. is then given a master clear (2F) and switched to the scientific mode (22) by a multiple executive subroutine at 0446 (0832).

At 0838 another command encoder is called to read in a command from the keyboard. The algorithm used here is two times first plus last, so once again only two letters are required. However, this algorithm is capable of producing a far greater list of codes and therefore reduces the chance of two words deriving an identical one. As with the low level monitor, routines entered by recognition of this code ensue, see table 5 . The start of the last of these, for the RUN command, reads in and encodes the line number input in the command and stores it in register C. The v.d.u. pointer is then set to 8040 , the start of the second line, and \mathbf{C} is decremented, pushed, popped, incremented and then pushed again. Four of these operations might seem to do nothing to C and on this occasion they do not. The total effect is to store the current line number on the stack. When the execution of a line is completed however, the next line number can be computed and saved by returning to 097 F . After GOTOs, when A will hold the next line number, a pop to remove the old number followed by a jump to 0981 will load this as the next line to be executed. As all lines will terminate by jumping back to one of these locations (except for END which returns to 0800), to avoid absolute jumps (i.e. jumps to specific addresses), relative jumps to these two critical points are string out through the third p.r.o.m.

A line of BURP is stored as the hex byte ED, the line number in hex, the actual data in modified ASCII and then the byte $1 F$ to signify its end. The end of the memory block in use is signalled by the byte C 0 . With the commands ADD, DEL. DUMP, LIST and RUN involving line numbers, the interpreter scans the program block up to C0 and looks for ED followed by the line number in question. During a RUN the next word in the line is encoded using the two times first plus last algorithm (0993) and again, the routines for all of the commands are strung end to end and each is preceded by an immediate compare and a jump-on-not-zero (20 hex). The last command. HALT, compares at OBOF and if a match is not made the computer jumps over the single byte 76 of the HALT routine and goes on to the next line by executing several relative jumps back to 097F. This explains why there is no routine for REM as it and any unrecognised first word on a line is just

Table 6. New features of the improved firmware.

General
V.d.u. cursor on all modes

DEL delete last character on all modes.
RETURN available in graphics mode.
Interface for ASR or KSR teleprinter (as printer and/or punch).

BURP

Extended iF statements. Any statement may be conditioned by IF
Mathematical capability available in IF, FOR PRINT, WRITE; GRAPH and AXIS statements
Printed strings in INPUT as well as PRINT statements.
Multiple statements - virtually unlimited numbers of statements may be written against a single line number. This speeds execution and expands the effective statement capacity wetl beyond the 254 lines.

Extra maths functions:
ABS makes current result positive
INT blanks digits following decimal point
FRAC blanks digits preceding decimal point
RND places pseudo-random number into the MM57109
No need for LET at the start of LET-type lines.
in a line, causes the computer to ignore the data following, up to the end of that line (alternative to REM)
Hardware changes required
The wiring of several spare keys.
The teleprinter interface shifted from D_{7}, to D_{0}, and 55 V reduced to 5 V
P.r.o.m, required

Complete with the graph plotting firmware, this will still fit into three 2708 e.p.r.o.ms
ignored (the very requirement for REM). Throughout the monitor the register pair HL address the program block contained from 0 C 00 onwards, whilst B and C are available for general use within the execution routines.

Subroutine p.r.o.m.

As far as possible, subroutines have been written which can be called in many different places within the interpreter. This particularly applies to 04E6 which can be thought of as a basic text handler which recognises and deals with words, variables, numbers and operators.
In the next part a new monitor will be described, the features of which are
given in table 6 . I would like to thank all of the readers who have contacted me with suggestions for extra facilities and I hope that the new system will meet their requirements. Lists of the new firmware will be available from Wireless World (editorial department) upon receipt of a large s.a.e. and these will be a useful accompaniment to the details in part two.

The author is offering a set of three p.r.o.ms programmed with the new monitor hardware for £30. Alternatively, existing p.r.o.ms can be reprogrammed for $£ 6.50$ (both plus 35 p post and packing).

Micro show is bigger

Personal computers are prominent among the systems to be displayed and discussed at the Microsystems ' 80 conference and exhibition, January 30 to February 1. Sponsored by Wireless World and associated electronics and computer journals, this annual event has grown in size to such an extent that it has had to be moved from its hotel venue to the Wembley Conference Centre (opening hours, 0930 to 1800 hours each day).
The 1980 conference has a four-part programme ranging from an introduction to microprocessors to an overview of the latest developments in microelectronics. Topics include: technology update, micro processor software, controlling microprocessor pro-
jects, microprocessor applications, bridging the hardware/software gap, and microprocessors in process control. The conference will concentrate on personal computers on its third day.
There will be buyers' forum sessions to help people in selecting goods and services, and a one-day appreciation course to introduce managers to the use of microprocessors in business and industry. Delegates' fee for the conference is $£ 145.50$, including v.a.t. and booking forms are obtainable from the organizers, Iliffe Promotions, Room 821, Dorset House, Stamford Street, London SE1 9LU (telephone 01-261 8113). The exhibition, with some 110 stands, is open to all at no charge, whether or not the visitor is a conference delegate.

Literature Received

Reference sheets on the world's electronics industry produced by Mullard, showing exports, consumption, production of a variety of products. Sheets can be obtained from Mullard, Ltd, Mullard House, Torrington Place, London WCIE 7HD.

WW401
Leaflet on the ZIP KDP computer terminal, comprising $30 \mathrm{ch} / \mathrm{s}$ dot-matrix printer, keyboard and v.d.u., can be had from Data. Dynamics, Data House, Springfield Road, Hayes, Middx.

WW402
Fourteenth edition of Intel News contains descriptions of an 8086 single-board computer, 1Mbit bubble memory and other items of interest in the computing field. Intel Corp (UK) Ltd, 4 Between Towns Road, Cowley, Oxford OX4 3NB.

WW403
Solid-state relay applications manual on specification, preotection circuits, loading and failure modes, with typical circuits, is available from Hamlin Electronics Europe Ltd, Diss, Norfolk IP22 3AY.

WW404
Full ordering information on the component parts of the Elma collet knob range is available in broadsheet or wall-chart form from Radiatron Components Ltd, 76 Crown Road, Twickenham, Middx.

WW405
Signal-conditioning amplifiers in the SE 990 series are described in a leaflet now available from Spur Road, Feltham, Middx, TW14 0TD.

WW406
Data for meteorologists, oceanographers, and ecologists can be collected by sensors on ships, without attention from the crew, collated by a data collection platform and transmitted to a satellite for retrieval. The McMichael platform is briefly described in a new leaflet from McMichael Ltd, Wexham Road, Slough, Berks SL2 5EL.

WW407
Leaflet from Astralux gives full details of 8000 series of opto-coupled, solid-state relays in 10, 20, 30 and 40A versions. Sales department, Astralux Dynamics Ltd, Brightlingsea, Colchester, Essex CO7 0SW.

WW408
Selection of test equipment for logic-testing is presented by Electroplan in a four-page leaflet, obtainable from Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts. .SG8 5HH.

WW409
Various types of panel meter, counters, printers, etc., are described in a 48 -page catalogue, produced by Techmation, Ltd, 58 Edgware Way, Edgware, Middx. HA8 8JP.

WW410
Brochures on the American Crown (Amcron) range of audio equipment can be had from the sole UK distributors, HHB PA Hire and Sales, Unit F, New Crescent Works, Nicoll Road, London NW10 9AX.

WW411
A collection of tools for bending and cutting component leads and for handling i.c. packages is detailed in a Wybar catalogue from. Eraser International Ltd, Unit M, Portway Industrial Estate, Andover SP10 3LU.

WW412

VALVES RECEIVING, SQ, TRANSMITTING

Pype No:	Price os.	Type No.	Price 0 as.	Trpe No.	Pricesan.	Type No.	Price ${ }^{\text {a }}$.
A31.410W	19.50	EF37A	3.75	PC900	0.55	2P1230	42.50
A34.510 W	20.50	EF80	0.95	PCC85	1.32	2P1240	36.00
A44.510w	31.15	EF 85	1.10	PCC89	1.58	ZP1300	15.75
A47.13W	22.00	EF86	0.80	PCFF80	1.36	2P1310	13.20
A50.120WR	37.11	EF89	1.77	PCF86	2.10	2P1320	18.39
A61.120WR	37.11	EF93	3.40	PCF 200	2.46	zP1470	45.00
8K. 66	59.15	EF92	3.20	PCF 801	9.58	${ }_{2 P 1481}$	30.00
${ }_{81} 8488$	76.90	EF93	1.10	PCF805	1.58	2P1530	46.50
875	37.80	EF95	3.95	PCFP802	0.85	2021	1.95
8758	28.15	EF183	1.36	PCF808	1.60	58254 M	18.00
8 T 17	68.95	EF184	144	PCL82	1.36	5U4G	1.95
8T19	23.55	EK90	0.96	PCL83	0.65	5 V 4 G	1.55
8 ST 125	66.90	EH90	1.26	PCLB 4	1.10	6AK 6	2.33
81127	73.25	El34	2.24	PCL85/805	1.58	6 A06	1.68
D10-160GT	64.41	Et36	1.94	PCL86	1.58	GAUE	0.95
D14-170GH 077	92.56 0.80	E137	5.75 1.60		3.90 1.98	68H6	1.85
DF. 61	0.56	EL84	1.15	PL36	2.98	68807A	1.85
OG7.32	52.79	E186	2.16	PL84	0.85	68R7 6857	7.50
OR2010	4.85	E190	1.50	PL81	1.85	68W6	4.00 6.35
DY86/87	0.64	E191	7.25	PL95	1.55	6BW7	1.85
DY802	1.04	E195	1.32	PL504	3.13		
E556	21.00	El 360	4.12	PL509	3.33	6i6Gt	1.85
EBOCC	8.32	EL821	7.50	PL802	3.46	6S4A	1.25
E80CF	10.40	E1822	7.50	PY88	2.10	6SJ7G	1.25
E80F	6.32	EN10	13.50	PY500A	1.95	6SL7GT	2.68
E82CC	2.20	EN32	14.30	PY800	1.55	6SN7GT	1.25
E83CC	3.50	EN91	2.56	Pr801	1.15	6V6GT	0.95
E83F	2.10	EY51	2.37	Quob 20	10.32	6X5GT	0.95
E86C	8.75	EY81	3.38	avob-20	11.50	12 AL 5	2.15
EB8C	5.56	EY84	5.50	Qov03.20	18.10	12 AU6	1.85
E88CC	4.98	EY86	1.10	acvo3.10	4.50	128H7	1.50
E88CC/ $/ 01$	5.48	EY88	1.45	OOV06 40A	21.85	12 E 1	8.00
E92CC	2.25	EY802	1.10	Qov02-6	12.04	12SN7GT	2.50
E99F	5.20	EZ80	0.95	00706-4D	55.20	29 C 1	13.20
E180CC	5.87	E281	0.95	OS75/20	4.75	30FL2/1	1.55
E180F	6.48	E290	1.40	OS150/45	15.50	30PL 14	1.95
E182CC	6.34 6	G232	1.65	OS1200	2.40	90 Cl	2.80
E186F	6.50	GZ34	1.95	OS1205	1.90	90CG	13.68
E188CC	4.20	KT66	5.75	OS1209	1.90	90 CV	13.30
E280F	21.43	KT88	8.72	OS1212	3.80	92AG	7.96
E288CC	11.70	M8081	6.50	ar4-250	72.00	EN92	4.50
E891	1.10 0.87	$M 8082$ $M 8083$	3.00	O206.20	24.10	5726	2.50
ECCB2	0.95	M8100	4.20	RGF 1.240 A TY2.125	16.00 61.80	5749 5751	6.72 4.50
ECC83	0.95	M81 36	1.10	Tr 4.400	62.27	5763	2.60
ECC84	1.19	M8137	1.10	UCL82	0.65	5881	2.00
ECC85	1.16	M8162	1.10	XG1-2500	50.60	5963	2.00
ECC86	2.20	M82 12	8.10	XL601	19.90	5965	2.50
ECC91	2.25	ME1400	4.85	2M1000	5.24	6057	2.85
ECC804	1.12	ME1403	5.50	ZM1020.	6.63	6060	0.95
ECF80	1.20	OA2	1.85	2M1040 ${ }^{\circ}$	11.00	6080	7.00
ECH. 81	1.50	082	2.55 1.10	2M1042	15.71 3.60	68506	23.15
ECL80	1.32	PC86	0.85	ZM1551	3.76		
ECL82	1.32	PC88	0.85	2P1200	28.25		
ECL85	0.86	PC97	2.45	ZP1210	37.20		

ILLUMINATED POCKET MICROSCOPE WITH MEASUREMENT GRATICULE

The low-cost illuminated pocket microscope designed for close observation and measurement of minute detail too small to be seen with the naked eye. Gives a sharp and brilliant vision with wide field of view at $20 \times$ magnification, plus built-in focusing system and illumination system

Ideal for close inspection of PCB, components, metals, depth of cracks, samples, minerals and tissues. A valuable aid to Quality Inspectors, research engineers and laboratory personnel.

Complete with batteries and plastic pocket case at the special price of £13.99, including postage and V.A.T.

The graticule is calibrated to 4 mm overall in increments of 0.1 mm , with angles shown from 30° to 90° and hole sizes of $0.2,0.3,0.4$ and 0.5 mm diameter.

CASH WITH ORDER Carriage 50p. VAT 15%. Account facilities available for established customers. Quotations given for large quantities.

INTEL ELECTRONIG GOMPONENTS ITD. $30 / 50$ Ossory foad

 London SE1 5AN. Tel: 2370404WW - 074 FOR FURTHER DETAILS

Businesses havebeen builtonour ferrites.
 Oursincluded.
 If you're a manufacturer, even the most inexpensive

 components must be checked out - or they'll let your product down. And it's particularly true of ferrites. Apex are the sole UK agents for one of America's largest ferrite manufacturers, Fair-Rite. Apex use Fair-Rite products in their own manufacture of wound components and know how good they are.

The range covers most shapes from torroidal and pot cores to Ecores, shield beads and baluns.

Full data is available on request.
The most useful kit in the business.
We've put together a kit of assorted ferrites that contains a versatile selection of ferrite cores that will enable designers of RFI suppression devices and wideband transformers to optimise circuits and approximate final designs very quickly.

A comprehensive data kit is included that contains impedance vs frequency curves, attenuation curves and wideband transformer design data.

It costs just $£ 10.00$ (cheque or company order).
It's really too good to miss.

Apex. Big enough to look after you. Properly. Apex Inductive Devices, 27 Abbey Industrial Estate, Mount Pleasant, Alperton, Middx. Tel:01-903 2944.
 clear SWVEPD. Feedback to contain a lot more featu res for your money. And you'd be right - the SFG606 with itscrisp frequency marker does just that.

It sweeps up to 4 decades of frequency -bi -directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01 Hz to 1 MHz .

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the Feedback 600 range. Send to Feedback for literature today.

Or contact our distributors

1? O. Box 19, Orchard Road. Rovston. Herts. SCi8 5HH. Telephone: Rovston 45145.

Feedback

 InstrumentsI:eedback Instruments I.d... Park Road. Crowborough. Sussex T N 62 QR . Tèlephone: Crowborough (08926) 3322. Cables: leedback Crowbr. Telex: 95255.

The new SFG606 passes even the testiest testers test.
wW - 014 FOR FURTHER DETAILS

there are transformers and.o. $\sqrt{ } /$ Drake

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.

Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

Two-metre s.s.b. and f.m. transceiver-4

Alignment procedure and operating notes

by G.R. B. Thornley, G2DAF

For satisfactory alignment the following test instruments will be required: a c.w. signal generator; an absorption wavemeter; an AVO Model 8 or equivalent; a diode probe valve-voltmeter; a digital frequency meter; and an audio oscillator.

It is advantageous to test and align as many units as possible before final assembly in the chassis, so the following instructions will be based on this method. Initially, each unit should be connected to a stabilized power supply, set to 12.7 V , with a milliameter in series to monitor the current drain and to ensure that there is no short circuit or fault condition on the circuit.

S.s.b. generator unit

Connect the power supply, still set to 12.7 V , to the +12 V TX terminal post on the s.s.b. generator board and wire an external 1-pole, 2-way switch in place of $S_{1 a}$, with the pole connected to the power supply. Check that there is 9.1 V feeding Tr_{4}. Set the slider of R_{11} to mid position and connect the diode probe of the valve-voltmeter to the test point TP. Adjust the core of L_{5} for maximum carrier output - this will be in the range 0.3 to 0.5 V r.m.s. Operate the temporary switch $\mathrm{S}_{1 \mathrm{a}}$ to select crystals XL_{1} and XL_{2} in turn, and ensure that they are both oscillating at approximately equal -amplitude.

Remove the valve-voltmeter probe and connect the digital frequency meter via a 5 pF series capacitor to the test point TP. Switch to the I.s.b. crystal and adjust C_{30} until the crystal is on exactly $10,701.5 \mathrm{kHz}$. Next, switch to the h.s.b. crystal and adjust C_{32} until the crystal is on exactly $10,698.5 \mathrm{kHz}$. (The author found that additional 20 pF capacitors, C_{29} and C_{31}, were necessary for the crystals used in the prototype, and these were soldered across C_{30} and C_{32} on the etched side of the p.c.b.) The i.f. gain is determined by the gate 2 potential of Tr_{1} and Tr_{2}. Initially, set the R_{2} slider to mid position. Unbalance R_{11} by turning the slider to one end of the track, and adjust the cores of L_{4}, L_{3} and L_{2} for maximum r.f. output, monitoring by connecting the diode probe of the valve-voltmeter to the input connection of the s.s.b. filter (junction of C_{44} and R_{30}). Disable the carrier oscillator by removing the 12 V connection to the temporary switch and ensure that the valve-voltmeter indi-
cates a zero reading. If this is not the case, the i.f. stages Tr_{2} and Tr_{1} are unstable, and R_{2} requires adjusting to reduce the gate 2 potential of the transistors until stability is ensured.

Reconnect the 12 V supply to the temporary switch and balance the diode modulator by adjusting R_{11} and C_{18} in turn to the point at which the valvevoltmeter indicates zero reading. Note that C_{18} is not connected by the p.c.b. and must be connected by a wire link to one side of R_{11}. If adjusting C_{18} does not improve the modulator balance, transfer the link to the other side of R_{11}.

With a short length of screened cable running along the top of the p.c.b., connect the "A out" terminal post to the "A in" terminal post. Transfer the valve-voltmeter probe to the "I.F. out" terminal post (output side of C_{91}). Connect a microphone to the "Mic" terminal post and adjust R_{25} for maximum gain. If all is well, a whistle into the microphone will produce an s.s.b. signal and will deflect the pointer of the valve-voltmeter to approximately 0.25 V r.m.s.

Connect an 8-ohm loudspeaker to the circuit, transfer the 12.7 V supply to the +12 V amplifier terminal post and adjust R_{57} for exactly 6.35 V at the junction of R_{60} and R_{61}. Open circuit the wire link between the test point TP and the ground plane, and connect the AVO, on the $1,000 \mathrm{~mA}$ range, in lieu. Adjust R_{75} for a quiescent $\mathrm{Tr}_{13}, \mathrm{Tr}_{14}$ collector current of 20 mA . Set the audio signal generator to 1.5 kHz and zero output, and connect it to the " A in" terminal post (connection to C_{69}). Advance the audio generator output to 100 mV r.m.s. while watching the AVO reading, which should increase to $250-300 \mathrm{~mA}$. A clean undistorted note, at full volume, should be heard from the loudspeaker. Reduce the audio drive to about 100 mA collector current and swing the audio generator output frequency from 300 to 3.000 Hz . The sound amplitude should remain approximately constant and without distortion at any frequency. Remove the AVO and reconnect the link. (Note that R_{75} is soldered across D_{13} on the etched side of the p.c.b.)
Temporarily bridge the "A out" terminal post of the demodulator (junction of R_{44} and C_{64}) to the " A in" terminal post of the audio amplifier using screened cable. Connect the 12.7 V
power supply to the +12 V RX terminal post, check that the source rail is at 3.3 V and set the a.g.c. rail to 5.5 V by adjusting R_{65}. Set the wiper arm of the balancing potentiometer R_{45} to mid position, connect the signal generator, set to exactly $10,700 \mathrm{kHz}$ to the "IF. 'in" terminal post (input to C_{92}) and advance the r.f. output until a 1.5 kHz tone can be heard from the loudspeaker. Adjust the cores of L_{9}, L_{8} and L_{7} for maximum output while progressively reducing the signal generator output to avoid overloading the demodulator and the audio stages.
Make a screened-cable link from C_{62} to the drain of Tr_{9}, on the underside of the p.c.b. and temporarily connect R_{62} and R_{63} to a ImA-movement S-meter. With no signal generator input, set the S -meter to zero by adjusting R_{63}. This will alter the a.g.c.-line potential because R_{63} and R_{65} interact, so it will be necessary to reset R_{65}. Repeat the two adjustments until the S -meter reads zero and the a.g.c. reads 5.5 V . Set the signal generator output to 10 mV and adjust the core of L_{12} for maximum S-meter reading. Reduce the signal generator output to $100 \mu \mathrm{~V}$. If all is well the meter should give about an S9 reading. When the transceiver is completed, R_{66}, which controls the S-meter sensitivity, can be set to obtain an S9 reading for a $50 \mu \mathrm{~V}$ two-metre-band signal.
Reduce the signal generator output to zero, and the S-meter should return to zero. If it does not do this, it means that the carrier oscillator output is leaking into the i.f. amplifier. Connect C_{65} to one side of the balanced-modulator potentiometer, R_{45}, and adjust R_{45} and C_{65} in turn to balance the modulator and obtain a zero indication on the S-meter. If adjusting C_{65} does not improve the balance, remove the link and connect C_{65} to the other side of R_{45}. While making these adjustments ensure that the correct h.s.b. crystal $(10.698 .5 \mathrm{kHz})$ is switched into operation. If balance cannot be fully obtained and C_{65} is at full capacity, wire a 25 pF ceramic capacitor across C_{65} on the underside of the p.c.b. and readjust C_{65}.

F.m. generator unit

Connect a 100μ A f.s.d. S-meter to the. SM terminal post of the f.m. generator board. Turn the i.f. gain control, \mathbf{R}_{81}, to

Fig. 18. S-curve for the CA3089E f.m.acrystal discriminator*
maximum, and inject exactly $10,700 \mathrm{kHz}$, from the signal generator, into the "F.M. in" terminal post, at a level that starts to deflect the S-meter. (Note that the meter will read approximately $50 \mu \mathrm{~A}$ with no signal input.) Adjust the cores of L_{14} and L_{15} to obtain maximum S-meter reading. At the same time as the tuned circuits are brought onto resonance, reduce the signal generator output to avoid overloading the i.f. stages.

Set the signal generator input to obtain an S-meter deflection of threequarter full scale and connect the digital frequency meter in parallel with the signal generator so that the frequency can be monitored. Connect the AVO, on the $250 \mu \mathrm{~A}$ range, to the two test points TP adjacent to IC_{1}. If the meter does not show a reading, reverse the connecting leads. Check that the meter is indicating $10,700,000 \mathrm{~Hz}$ and carefully adjust C_{111} until the AVO reading falls to $0 \mu \mathrm{~A}$. Carefully alter the generator frequency until the AVO reads $50 \mu \mathrm{~A}$ and make a note of the frequency. Repeat for $100 \mu \mathrm{~A}$ and $150 \mu \mathrm{~A}$ and note these frequencies too. Go back to the $0 \mu \mathrm{~A}$ reading and reverse the AVO connecting leads. Set the frequency until the AVO reads $50 \mu \mathrm{~A}$, note the frequency and again repeat for $100 \mu \mathrm{~A}$ and $150 \mu \mathrm{~A}$. Plot the readings taken on graph paper to obtain the crystal discriminator S-curve. This should look like the graph shown in Fig. 18, and it should be noted that a signal deviation of plus or minus 10 kHz produces a detector output of plus or minus $150 \mu \mathrm{~A}$. The curve should be symmetrical about the $10,700 \mathrm{kHz}$ centre, and have straight lines indicating low distortion. Note that the crystal XL_{3} must be cut for series resonance operation.

Connect the valve-voltmeter probe to "FM out" terminal post, and the +12 V
supply to the " +12 V TX" terminal post. Set the slider of R_{101} to give maximum gate 2 voltage, and adjust the core of L_{19} for maximum r.f. output. Remove the valve-voltmeter and connect the d.f.m. to "FM out" terminal post. Adjust the core of L_{20} until the carrier crystal XL_{4} is exactly on $10,700,000 \mathrm{~Hz}$. Note that crystal XL_{4} must be cut for parallel resonance operation.

Wire the microphone to "Microphone in", and high impedance headphones to "Mod out". Set the slider of R_{117} for maximum audio gain. Speak into the microphone, and if all is well this should produce low-level crisp, clean audio in the headphones.

Phase-lock v.c.o. unit

The alignment instructions for the phase-lock v.c.o. unit assume that the three p.c.b.s and the MC7805 regulator have been assembled in the screening box, and the l.e.d. indicator D_{29} connected to C_{203} and C_{204}. All interconnections should be made, and supply and switching terminal posts wired to the appropriate box via $1,000 \mathrm{pF}$ feed-through capacitors. Measure the output voltage of the MC7805 regulator and ensure that this is 5.0 V .

With a soldered link, short circuit TP P_{1} on the v.c.o. p.c.b. to the groundplane in order to disable the oscillator Tr_{30}. Apply the signal generator output to TP_{2}, and connect the valve-voltmeter probe to "RF out" terminal post. Set the signal generator to 134.3 MHz and adjust the core of L_{24} for maximum r.f. output. Transfer the valve-voltmeter probe to "V.C.O. out" terminal post and adjust core of L_{23} for maximum r.f. output.
Wire an external single-pole two-way switch S_{2} to C_{169} and C_{170} and +12 V terminal posts. With a two turn link, couple the absorption wavemeter to L_{25} and set wavemeter to 62.5 MHz . Set
external switch \mathbf{S}_{2} to the position that' will connect XL_{5} into circuit, and adjust core of L_{25} for maximum r.f. output. Set S_{2} to connect XL_{6} into circuit, and with the wavemeter set to 63.0 MHz ensure that the circuit is oscillating at approximately the same amplitude. Switch back and forth a number of times to be sure that each crystal "fires" first time - it may be necessary to slightly re-adjust the core of L_{25}. With XL_{5} oscillating and wavemeter set to 125 MHz , couple the two-turn link to L_{26}, and adjust core of L_{26} for maximum output. Set the wavemeter to 126 MHz , switch to XL_{6} and ensure that the r.f. output is approximately equal to 125 MHz . If necessary, slightly readjust the core of L_{26}.

Connect the d.f.m. to test point TP_{3}, and with trimmers C_{171} and C_{172} trim each crystal as near as possible to the required frequencies $125,000 \mathrm{kHz}$ and $126,000 \mathrm{kHz}$. Note that crystals for amateur use are normally supplied to a frequency tolerance of $\pm 0.005 \%$ and it $_{\text {. }}$ may not be possible to pull XL_{5} and XL_{6} completely on to the required frequency. Finally operate S_{2} a number of times, and ensure that both crystals operate without hesitation and without frequency jumping. Remove the d.f.m. and connect the signal generator, set to $9,300 \mathrm{kHz}$ to test point TP_{4} and the' valve-voltmeter probe to "I.F. out". Adjust cores of L_{28} and L_{29} for maximum r.f. output.

Set the AVO to the loV d.c. range, connect to "D.C. out" and observe reading which should be 4.9 V . Remove the short-circuit link from TP P_{1} and the AVO should now read 0.85 V . With the external switch S_{2}, select the 125 MHz crystal and connect the signal generator, on 9.3 MHz and 500 mV r.f. output, to "V.F.O. in". Screw the core of L_{21} completely into the winding. The AVO will now read 4.9 V . Slowly unscrew the core of L_{21} until the AVO indication drops from 4.9 V to 2.9 V . At this point the indicating l.e.d. will light. The loop is now locked.

Operate the external switch S_{2} to select the 126 MHz crystal. The AVO should now read 4.5 V and the l.e.d. should remain lit. Select the 125 MHz crystal and tune the signal generator to 8.3 MHz . The AVO should now read 1.6 V with the l.e.d. illuminated. Switch to the 126 MHz crystal and the AVO should read 2.9 V with the l.e.d. illuminated.

It will be noted that with the 126 MHz crystal selected and the v.f.o. (signal generator) input of 9.3 MHz , the loop control voltage is 4.5 V falling to 2.9 V with a v.f.o. input of 8.3 MHz . Swing the signal generator across the 1 MHz tuning range and the control voltage, will follow in step, within the above limits. Select the 125 MHz crystal and repeat. The control voltage will follow in step within the limits of 2.9 V to 1.6 V .
As a final check of reliable phase-lock loop operation, short circuit the "I.F. in" terminal post to chassis earth. This should cause the AVO reading to
change to 4.9 V and the l.e.d. to cease illumination - loop unlocked. Immediately the short circuit is removed, the AVO should revert to its. original reading and the l.e.d. should illuminate - loop locked. Switch the 12.7V power supply on and off a number of times, and check that the loop always locks reliably from switch on, at any 8.3 to 9.3 MHz input frequency.

For reliable operation the v.f.o. input should be not less than 500 mV r.m.s. The i.f. input at "I.F. in" will only appear when the loop is locked, and this, measured with the valve-voltmeter diode probe, will be in the range 0.6 to 1.2 V r.m.s., depending on the v.c.o. operating frequency (133.3 to 135.3 MHz).

Note that it is important that the v.f.o. input drives Tr_{39} and the i.f. input drives Tr_{40} as shown. If these input connections are reversed the MC4044P phase detector will be disabled and the loop will not lock.

V.c.o. amplifier unit

Connect the signal generator set to 134.3 MHz to "V.C.O. in", and the valvevoltmeter probe to "Out RX".

Adjust cores of L_{30} and L_{31} to obtain maximum r.f. output. Transfer valvevoltmeter probe to "Out TX" and check that both readings are approximately the same. The measured output should be in the range 500 to 700 mV r.m.s.

V.f.o. unit

These alignment instructions assume that a $100: 1$ ratio gear drive is being used (i.e. $50: 1$ for 180 degrees rotation of C_{222}) and that 40 turns of the tuning knob will change the v.f.o. by $1,000 \mathrm{kHz}$, equal to 25 kHz per turn.

Fully mesh the vanes of C_{222} and mark a reference point on the drum dial. Turn the tuning knob two complete turns clockwise. Mark a calibration point on the drum dial and number 0 . This is 0 kHz and is the start of the tuning drum scale. Now turn the tuning knob 40 complete turns, mark the calibration point on the drum dial and number 1,000 . This is $1,000 \mathrm{kHz}$ and is the end of the v.f.o. tuning range.

Unscrew the cores of L_{33} and L_{34} so that they are outside the windings. Check that there is 8.5 V feeding Tr_{45}, Tr_{46} and Tr_{47}. Connect the "V.F.O. out" terminal to the d.f.m. and with the dial at 0 kHz adjust the dust core of L_{32} for an output frequency of $8,300 \mathrm{kHz}$. Turn the drum dial to $1,000 \mathrm{kHz}$ and adjust C_{220} for $9,300 \mathrm{kHz}$. These two adjustments interact with each other, and must be repeated until the d.f.m. readout is correct at each end of the tuning range. Once this has been achieved the drum dial can be calibrated each 100 kHz with main divisions, and every 25 kHz for intermediate divisions. Finally the tuning knob circumference is divided into 25 equal sections and numbered 0 to 24 so as to provide a calibration mark every 1 kHz .

Disconnect the d.f.m. and replace

Transceiver with top chassis rail removed to show detail of the s.s.b. generator p.c.b.

Top view of the transceiver showing, left to right, the s.s.b. generator p.c.b., the transmit-converterp.c.b. with screening box, the reduction drive gear box and v.f.o. assembly, and the power amplifier screening box
with the valve-voltmeter probe and measure the r.f. output at $8,300 \mathrm{kHz}$ and $9,300 \mathrm{kHz}$. The two readings should be approximately equal and in the range 0.9 to 1 V r.m.s. (unloaded value). Set the v.f.o. output to $9,300 \mathrm{kHz}$ and screw in the cores of the low-pass filter L_{33} and L_{34} equally until the valve-voltmeter reading just begins to reduce. At this point unscrew each core by one turn. Alignment has been undertaken without any biasing potential on D_{31}. When in normal operation with \mathbf{R}_{190} connected to the "Calibrate" control, the mean potential on D_{31} will be about 2 V and this will ręduce the capacitance by
approximately 10 pF . The v.f.o. can be brought back to correct calibration by re-adjusting C_{220}.

Receiver converter unit

Because a second signal generator is required for the heterodyning in put (133.3 to 135.3 MHz) to the receiver converter unit and the transmitter converter unit, it is at this stage an advantage to complete the construction by installing and wiring all units and panel controls in the main chassis - with the exception of the power amplifier.

Connect the valve-voltmeter probe to the "HET in" terminal and check that
the input level is 500 to 700 mV r.m.s. Set slider of R_{211} to mid position, and tuning dial to 144.9 MHz . Couple 100 mV output from signal generator via a two turn link, to L_{39} and adjust the transceiver tuning knob until a 1.5 kHz tone can be heard from the loudspeaker. Adjust cores of L_{40} and L_{41} for maximum Smeter reading. Transfer the link to L_{38} and adjust C_{249} and C_{244} for maximum S-meter reading. Couple the signal generator to the aerial input socket and adjust C_{242} and C_{237} for maximum meter reading. As each circuit is brought into resonance reduce the signal generator output to avoid overloading the following stages.

Re-set R_{211} as necessary to give equal voltages at source connection of Tr_{51} and Tr_{52}.

Transmit converter unit

Fit a TO-5 clip-on heat sink to Tr_{56} and bend the vanes as necessary to clear the screening can of L_{52}. Check that the emitter potential is 0.15 V indicating a collector current of 15 mA . This is not critical and can be in the range 10 to 20 mA . If outside these limits it will be necessary to withdraw the p.c.b. and adjust the value of R_{224}.
Set the transceiver tuning dial to 145 MHz . Connect the valve-voltmeter probe to "HET in", and check that the input level is in the range 500 to 700 mV r.m.s. Set the slider of R_{216} to mid position. Connect 75 ohm dummy load to "RF out" via two feet of coaxial cable, with the valve-voltmeter probe in parallel with the 750 hm load. Set the dust cores of L_{49} and L_{52} so that each core is just level with the top of the screening can. Connect the signal generator, set to 145 MHz , to test point TP_{6}. Operate the "press-to-talk" switch and adjust trimmers $\mathrm{C}_{276}, \mathrm{C}_{277}, \mathrm{C}_{281}$ and C_{282} for maximum output. Unscrew cores of $\mathrm{L}_{48}, \mathrm{~L}_{47}$ and L_{46} for maximum adjust $\mathrm{C}_{276}, \mathrm{C}_{277}, \mathrm{C}_{288}$ and C_{282} for any improvement in output. Transfer signal generator to test point TP_{5} and adjust cores of $\mathrm{L}_{48}, \mathrm{~L}_{47}$ and L_{46} for maximum output.
Disconnect the signal generator from
the test point TP_{5}. Connect the audio signal generator to the "Mic" input socket on the front panel, via a 40 dB attenuator (1 megohm series arm, 1 k ohm shunt arm). Set the audio generator to 1.5 kHz , operate "press-to-talk" switch and advance the audio output to drive the converter until the valvevoltmeter just begins to show a reading. Adjust cores of L_{45} and L_{44} for maximum output. As the circuits are brought into resonance reduce the audio drive to ensure that the following stages are not overloaded.

Finally adjust R_{216} for equal Tr_{53} and $T r_{54}$ source voltage.

Power amplifier

On the power amplifier, first check that the damping resistors R_{230} and R_{233} have been wired across the r.f.cs. to the bases of Tr_{58} and Tr_{59}. Unsolder the link between C_{288} and C_{289} and replace with a milliameter wired to extension leads. Connect the +12.7 V supply to the +12 V terminal. Adjust value of R_{227} to obtain Tr_{57} collector current of 10 mA . Reconnect the link between C_{288} and C_{289}.

Unsolder the link between C_{303} and C_{314}. Connect stabilised 20 V supply to C_{303} with the milliameter in series and adjust value of R_{229} to obtain Tr_{58} collector current of 40 mA .

Connect a 20 V supply to the +20 V terminal with the milliameter in series. Adjust value of R_{232} to obtain Tr_{59} collector current of 90 mA . Reconnect the link between C_{303} and C_{314}.

Assemble the amplifier in the die-cast screening box, install in the main chassis, and complete all connections.

Connect a 750 hm dummy load via a two foot length of coaxial cable to the junction of L_{66} and C_{312}, with the valvevoltmeter diode probe in parallel with the 75 ohm load. Wire a suitable am meter in series with the 20 V supply. Couple a 1.5 kHz audio tone into the "MIC" socket via a 40 dB attenuator. Set the output of the audio generator to zero and operate the "press-to-talk" switch. Tr_{58} and Tr_{59} should be drawing the combined quiescent collector current of 130 mA .
S.s.b. generator unit a.g.c. performance

$\mu \mathrm{V}$				
Signal	Input dB relative $1 \mu \mathrm{~V}$	A.g.c. Line (Volts)	Audio Output relative that at $10 \mu \mathrm{~V}$ signal	
0		5.5	mA	dB

Test procedure

Signal generator on $10,700 \mathrm{kHz}$ connected "IF in" terminal post.
2. A.g.c. volts. AVO 8 on $10 \mathrm{Vd.c}$ range.
3. Audio output. AVO 8 on 100 mA a.c. range in series with loudspeaker
4. Source rail. 3.3 volts. 2.7 V BZY 88 zener).
5. $R_{\text {hH }}$ set at mid position , 110 ohms).

It will be noted that the change in audio output is within 2 dB for a change in i.f. input of 60 dB and within 5 dB for a change in i.f. Input of 80 dB . This represents very acceptable receiver i.f performance.

Set all trimmer capacitors and Tr_{59} tuning and loading capacitors to half value. Advance the audio generator output to drive the transmitter until a reading just begins to show on the valve-voltmeter. Adjust C_{283} and C_{284} for maximum output and immediately tune up C_{310} and C_{312}. Adjust $\mathrm{C}_{300}, \mathrm{C}_{301}, \mathrm{C}_{290}$ and C_{291} in that order. As the circuits are brought into resonance the ammeter reading will rise. Initially do not allow it to rise beyond 500 mA by progressively reducing the audio drive as required. Now increase the drive from the audio generator to the maximum intended. which should be about 1.5 amps from the 20 V supply and quickly re-adjust all capacitors for maximum r.f. output because they are all sensitive to the power level at which the associated transistor is running.

Disconnect the audio generator and plug the microphone into its socket. Whistle into the microphone to obtain a full output reading on the valvevoltmeter, and at the same time reduce the microphone amplifier gain with R_{25} (on the s.s.b. generator p.c.b.) until the power output just begins to drop.

At full output (single tone) expect a reading on the valve-voltmeter of 30 to 35 V r.m.s. across a 75 -ohm dummy load.

Set the "MODE" switch to the "FM" position, and adjust R_{101} (on the f.m. generator p.c.b.) until the power output. just begins to drop.

Note that the continuous power output capability is limited by the available heat sinking. During the first weeks of operation it is a wise precaution to use a 20 V power supply with an indicator ammeter. This enables the collector current of the power transistors Tr_{58} and Tr_{59} to be continuously monitored. If at any time the (zero signal) standing current starts to rise, it means that the transistors are being overdriven and denotes the onset of thermal runaway, (i.e., the dissipation is exceeding the capability of the heat sinking). Switch off immediately to allow the transistors to cool. Adjust the i.f. gain controls R_{2} (s.s.b.) and R_{101} (f.m.) as appropriate to give some reduction to Tr_{58} and Tr_{59} power levels.

Dust core locking

It is most important that all the dust cores are an interference fit in the former and will hold their setting, and the material used must hold the core firmly but must not become solid, in case re-adjustment should be necessary at some future date. Before commencing alignment it is recommended that the screwed threads of each core and former are smeared with zinc ointment (obtainable from any chemist). The author has used this method for many years without any problems.

Operating notes

It is worth noting that the transmit output from the f.m. generator unit is a
c.w. carrier and the frequency modulation on the final 144 to 146 MHz signal is derived from the v.f.o. Deviation is controlled by the microphone amplifier gain control potentiometer \mathbf{R}_{117} (on the f.m. generator p.c.b.), and, in the absence of a deviation meter, this can be set to accepted amateur band requirements by "on-the-air" reports. The "CALIBRATE" control - nominally set at the mid position - will provide the required reference bias of 2 volts for the varicap diode in the v.f.o. unit.
For a final check on s.s.b. carrier attenuation, connect the "Aerial" out put socket to a 75 ohm dummy load with the diode probe of the valve-voltmeter in parallel across the load. Set the valve-voltmeter to the 1.5 volt range and remove the microphone from its socket. Operate the "press-to-talk" switch, and if there is a reading on the valve-voltmeter this denotes carrier leakage. Carefully re-balance the transmit modulator on the s.s.b. generator p.c.b. by adjusting R_{11} and C_{18} in step, until there is zero reading on the valvevoltmeter.
For the c.w. operator, transmission is conveniently effected by keying an outboard transistorised 1 kHz audio oscillator fed into the microphone input socket.

Both the receiver converter unit, and the transmitter power amplifier will work equally well into a 50 ohm aerial system.

Modifications

As a result of more than two years "on-the-air" experience, two modifications have been incorporated to improve the s.s.b. operating convenience. These are as follows:

1. Wire a $10 \mu \mathrm{~F} 10 \mathrm{~V}$ capacitor across the end pins of R_{2} on the printed circuit side of the s.s.b. generator p.c.b. This delays the gate 2 potential of Tr_{1} and Tr_{2} and prevents the transmission of a small "splash" of carrier caused by the switching transient when relay RL_{1} changes over from "receive" to "transmit".
2. Relay RL_{2} has a spare set of contacts which can be used to speed up the receiver a.g.c. recovery time, for those operators who like fast "break-in" operation. Connect the pole (pin 12) to chassis earth and the by-pass contact (pin 13) to chassis earth via a $47 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitor. With a length of PVCcovered connecting wire routed along the fold of the chassis rear apron, connect pin 13 to gate 2 of the a.g.c. amplifier Tr_{17} (junction of R_{71} and R_{72} on the etched side of the p.c.b.) This modification shorts down Tr_{17} 's gate-2 potential to zero when transmitting, and prevents the switching transient feeding from the 10.7 MHz i.f. amplifier into the a.g.c. system at high level.

Conclusion

This transceiver has been designed to provide a high level of performance
on both transmit and receive, together with a high standard of reliability and convenience of operation.
For the f.m.-only operator, construction can be greatly simplified by omitting the s.s.b. generator unit. Repeater operation on any channel in the 145 to 146 MHz section of the band can be provided by installing two crystals 300 kHz apart, in the phase-lock unit. (That is, 63.0 MHz and 62.7 MHz giving heterodyne frequencies of 126.0 MHz and 125.4 MHz .) The switching lines can be taken to a spare set of contacts on the change-over relay RL_{2}, so that 126.0 MHz is selected on "receive" and 125.4 MHz on "transrnit" for normal repeater operation. If reverse repeater operation is also required, it is only necessary to add a panel-operated, 2 pole 2 -way switch and wire this so that the crystal switching lines can be reversed.
Because there is ample information in textbooks and other literature on stabilized power supplies, detailed constructional details have not been given. The two units used by the author incorporate simple series stabilization using BDY20 transistors with the usual BC108 and BZY88 reference diode, and have proved to be entirely satisfactory.
All prospective constructors are strongly advised to use - with the exception of the surplus S.T.C. 445-LQU 901B FM filter specified - only first class new guaranteed components and transistors.

Richard Thornley spent almost a lifetime in the electronics industry and during the last 20 years, before retiring in December 1977, worked for the Pye/Philips Group commissionining and planning v.h.f. wired television systems. He has been a licensed radio amateur for 41 years and is mainly interested in research, development and construction - particularly in the field of s.s.b. Richard is well known in the amateur movement for his many technical articles which the Radio Society of Great Britain published from 1959 to 1973. Among his many designs is a patented simple method of operating tetrode valves as linear power amplifiers for s.s.b. transmission, without the use of conventional bias and screen power supplies.

Notes on Part 3. Component suffixes for L_{1} to L_{14} in Fig. 11 are incorrect and should read respectively: $53 ; 54,55,60,57,56,59,62,61,58,63,64,65$ and $66 . C_{228}$ in line four of p78 should read C_{288}. Fourth line of last column on p79 should read ". . . die-cast box are mounted vertically at either end of the chassis platform, and the squelch unit is mounted vertically on the rear panel." Caption to Fig. ${ }^{\circ} 16$ on p 80 refers to Tr_{58} and Tr_{59} and not Tr_{227} and Tr_{228} as shown. Component suffixes for C_{50} to C_{54} in Fig. 17 are incorrect and should read respectively: 200, 206, 203, 204 and 193. A table of d.c. voltage checks for this transceiver will be made available on request.

Books Received

Manual of Avionics, by Brian Kendal, is said by the publishers to enable the layman to acquire a working knowledge of radio navaids, but to have as its primary aim the detailed analysis of electronics in civil aviation for the professional reader. The author, however, maintains that he has steered a middle course between the elementary and the mathematical analysis.

The book is certainly of interest to the layman, and is written at this level." it will probably not be of great help to the professional for the reasons given in the author's introduction - it is simply not possible to perform both tasks in one book. At the layman's level, it is extremely detailed, comprehensive and authoritative, if one bears in mind that the 'avionics' of the title is restricted to communications and navigational aids, including radar.
A short historical chapter, which manages to cover everything from Clerk Maxwell to cavity magnetrons in 26 pages, is followed by seven chapters on air traffic management, radio telephony and direction-finding, shortrange navaids and radio landing systems, radar, and the hyperbolic systems and Doppler navigation

For anyone interested in gaining a fairly superficial (in professional terms) idea of the control and navigation of civil aircraft, the book can be highly recommended for its comprehensiveness and authority - the author is Senior Air Traffic Engineer of the Civil Aviation Authority. It is published by Granada Publishing, PO Box 9, Frogmore, St Albans, Herts. at $£ 10$.
A Window in the Sky, by A. T. Lawton, is concerned with the possibilities opened up for astronomers by the use of equipment outside our atmosphere. In contrast to many works on astronomy, the book is not only immensely detailed and factual, it is also a 'good read.' Mr Lawton puts the case for extra-terrestrial instruments, discusses the techniques for putting them there and examines several possible 'sites' in space When all the equipment is in place, there is then the problem of what to investigate and, after a detour into the physics of integrated circuits and optical and radio telescopes, the rest of the book is a survey of some of the astronomical phenomena already known and others only guessed at. The book is published in hardback by David and Charles, Brunel House, Newton Abbot, Devon, at £6.50.

Astables: Logic gate circuits

by Peter Williams, Ph.D. Paisley College of Technology

CMOS ASTABLE: DUAL INVERTER

CMOS ASTABLE: TRIPLE INVERTER

ALTERNATIVE INTERPRETATIION

MULTI-INVERTER ASTABLES

Single Active -ELement Astables

A widely quoted astable circuit using inverters from the c.m.o.s. logic family is shown, using one capacitor and one resistor. A modification using a second resistor R_{s} is also well-known but $R_{\text {s }}$ plays no part in the frequency control; rather it isolates the protective diodes at the inverter input from the voltage step applied via the capacitor, thereby protecting the input and preventing the diodes from conducting heavily and disturbing the frequency. Because only two passive components are needed the circuit seems not to conform to any of types I to V (December issue). It does, however, contain a differentiator as in type IV and though the amplifier gain is much less the behaviour should be similar in this respect. The other amplifier has an inverting gain of relatively small magnitude and this corresponds to the see-saw amplifier of type IV. Hence this apparently new circuit is in fact type IV whether the inverters be c.m.o.s:; t.t.I. or e.c.l.

Another common form of astable circuit quoted in the literature uses three inverters and a single capacitor with no passive resistors. It is sometimes described in terms of a three-phase oscillator. Such circuits are used as sinusoidal oscillators with 60° phase-shift per stage and with feedback or attentuation to limit the gain of each stage such that oscillation is not excessive. The present circuit is then argued to be a development of this with one external capacitor to define a longer time constant and hence lower the frequency. It is not then clear how the other inverters contribute to the response and the circuit certainly seems quite different from types I to V . It is unwise to press arguments based on sinusoidal response too hard when applied to switching behaviour and vice versa. The absence of a passive resistor does not mean that the circuits have no resistance. The output slope resistance of a c.m.o.s. invertor is quite high and the maximum current may be limited to $<1 \mathrm{~mA}$. Hence to compare the circuit with one based on op.amps it has to be visualized with a resistor at each output.

There is a simple change tht suggests a different interpretation of the circuit and allows it to be classified as a known type. The circuit is simply redrawn with the capacitor appearing to shunt two of the cascaded inverters rather than one. This involves no actual change since the capacitor is still connected across the single inverter - it is merely a changed appearance. The two cascaded inverters are equivalent to a single high-gain, non-inverting stage and, adding a resistor at the output of the first stage to represent its output resistance, the circuit is now seen to be functionally identical with type V. An inverting amplifier of finite gain drives a non-inverting amplifier with capacitive feedback via a resistive path. It is important to try re-arranging unfamiliar or difficult circlits to see if various sub-sections become recognizable. Many circuit diagrams have a layout that suits the whims of a designer or the convenience of a draughtsman; they have to be made to serve the understanding of the user.

Other apparently more complex astable circuits can sometimes be simplified readily. In the circuit shown the cascaded inverters become equivalent to either a high gain inverting or non-inverting amplifier depending on whether an odd or even number of inverters is employed. Once this is noted, then this circuit is obviously a type V astable again. As in the previous circuit the external resistor offers a considerable advantage - the resulting time constant can be very large and hence the frequency can be very low while using only a small value of capacitance. If the resistor is omitted the frequency also becomes strongly dependent on supply voltage via the variation in output resistance of the individual devices composing the inverter. The multiple delays in the cascaded inverters limit the upper frequency of oscillation but the high gain makes lower frequencies less dependent on parameter variations. Such circuits are not recommended for stable frequency clock generators, a task normally performed by crystal-controlled oscillators.

Astables can also be devised that use only a single active circuit and correspond to types I and II. In some logic families Schmitt circuits are already available often with more than one input. These add the AND function to the switching action. The circuit with the unused inputs inhibited beaves like an operational amplifier with series positive feedback and the signal applied to the inverting input, i.e. when the output is returned to the input via an RC section it becomes a type I astable. When the output is positive the capacitor charges until it reaches the upper threshold voltage, switching the output to zero and discharging the capacitor back toward the lower threshold. The op.amp. and potential divider in type II comprise a non-inverting amplifier of finite gain. If the combination is replaced by a non-inverting logic buffer an astable action should again result. The missing factor is that the circuit must have a quiescent state in the capacitor's absence that brings it into the linear region. A grounded resistor is not valid for a logic gate, and is here replaced by a potentiometer. When set in the linear region oscillations commence - an additional series resistor can be used to set the frequency.

Astables: Logic gate circuits

THEORY

Both gates must enter their linear region for the loop gain to reach unity and initiate regenerative feedback. If these regions correspond to a small range of input voltages centred on $\mathrm{V}_{\mathrm{s}} / 2$ the analysis is simple. For low-gain inverters both the waveforms and frequencies are less precise. It is assumed that input conduction is avoided (or minimized) as shown.

Under these conditions the outputs are anti-phase square waves with the transitions occurring as the differentiator input passes through $V_{s} / 2$. On the positive going step this input is driven up to $V_{s} / 2$ $+V_{5}=3 V_{8} / 2$. At that instant the other end of the resistor is taken down to zero. Hence $V_{1}=-3 V_{s} / 2$ while $V_{2}=-V_{s} / 2$

$$
t_{2}-t_{1}=\tau \log _{9} 3 \approx 1.1 \tau
$$

The second part of the cycle has the differentiator input driven to $V_{\mathrm{s}} / 2-\mathrm{V}_{\mathrm{s}}=-\mathrm{V}_{\mathrm{s}} / 2$ while the other end of the resistor rises to V_{s}. Hence $V_{1}=3 V_{s} / 2, V_{2}=V_{s} / 2$ giving an identical time interval.

$$
\text { Hence } T=2 \tau \log _{\mathrm{e}} 3=2.2 \tau
$$

If the circuit is interpreted as a phase-shift circuit using analysis as for a sinusoidal response, invalid results are obtained.

The modified form of the circuit has an inverter with a voltage-gain $\gg 1$. Hence its output is saturated for most of the timing cycle, and though type V in structure, a modified analysis is required. Again the thresholds are assumed to be close to $\mathrm{V}_{\mathrm{s}} / 2$ and the CR junction is driven to $3 \mathrm{~V}_{\mathrm{s}} / 2$ and $-\mathrm{V}_{\mathrm{s}} / 2$ on the transitions.

This leads to comparable values of period and frequency, viz $T \approx 2.2 \tau$

Second-order effects are important at high frequencies where gate delays modify the response. In each case an additional large value resistor should be added in series with any gate/inverter input subject to voltage steps going outside the supply lines.
The first-order response is identical with that of the previous circuit. The Schmitt trigger is assumed to have upper and lower threshold voltages V_{U} and V_{L}. The time for the rising ramp is

$$
\left.t_{2}-t_{1}=\tau \log _{*} \left\lvert\, \frac{V_{2}}{V_{1}}\right.\right\rceil=\tau \log _{*}\left|\frac{V_{S}-V_{L}}{V_{5}-V_{u}}\right|
$$

$$
\text { and for the falling ramp } \tau \log _{0}\left|\frac{-V_{U}}{-V_{L}}\right|
$$

$$
\text { The period is } T=\tau \log _{e}\left(\frac{V_{S}-V_{L}}{V_{S}-V_{U}}\right)+\log _{e}\left(\frac{V_{H}}{V_{L}}\right)
$$

$$
T=\tau \log _{e}\left|\frac{\left(V_{S}-V_{L}\right) V_{U}}{\left.N_{S}-V_{U}\right) V_{L}}\right|=\tau \log _{e}\left[\frac{\frac{V_{S}}{V_{L}}-1}{\frac{V_{S}}{V_{U}}-1}\right]
$$

But for symmetrically placed thresholds

$$
\frac{V_{u}+V_{L}}{2}=\frac{V_{S}}{2}
$$

$T=\tau \log _{e}\left[\frac{\frac{V_{U}+V_{L}}{V_{L}}-1}{\frac{V_{U}+V_{L}}{V_{U}}-1}\right]=\tau \log _{e}\left(\frac{V_{U}}{V_{L}}\right)^{2}=2 \pi \log _{e}\left(\frac{V_{U}}{V_{L}}\right\rangle$

EXAMPLES

1. The c.m.o.s. astable has $R=100 \mathrm{k} \Omega$ and is required to oscillate at 10 kHz . Assuming that R_{s} is large enough to avoid conduction choose a suitable value of capacitance stating any assumptions.

The threshold of c.m.o.s. inverters is normally within the range 45 to $55 \% \mathrm{~V}_{\mathrm{s}}$. It is convenient to take the threshold as $\mathrm{V}_{\mathrm{s}} / 2$

To check the effect of the variable threshold, assume each inverter switches at $0.45 \mathrm{~V}_{\mathrm{s}}$.

$$
\begin{aligned}
& V_{1}=V_{s}+0.45 V_{s} \\
& V_{2}=0.45 V_{s}
\end{aligned}
$$

\therefore First time interval

$$
=\tau \log _{e}\left(\frac{1.45}{0.45}\right)=1.170 \tau
$$

The second part of the cycle has

$$
\begin{aligned}
& V_{1}^{\prime}=-1.55 \mathrm{~V}_{\mathrm{s}} \\
& \mathrm{~V}_{2}^{\prime}=-0.55 \mathrm{~V}_{\mathrm{s}}
\end{aligned}
$$

Second time interval $=\tau \log _{e}\left(\frac{1.55}{0.55}\right)=1.036 \tau \quad \therefore T=2.206 \tau$
This compares with a value of 2.197 for the symmetrical case if $\log _{8} 3$ is evaluated more accurately i.e. on changing the threshold by 5% of supply (or 10% of its initial value) the mark-space ratio changes from 1:1 to 1:1.12 a change of 13%, though the frequency changes by only 0.4%.
2. An astable is constructed with a c.m.o.s. Schmitt circuit having upper and lower thresholds of 3 V and 6.5 V at a supply voltage of 10 V . Estimate the frequency of oscillation with an RC section having $\tau=500 \mu \mathrm{~s}$.
$T=\tau\left|\log _{e}\left(\frac{V_{1}}{V_{2}}\right)+\log _{e}\left(\frac{V_{1}^{\prime}}{V_{2}^{\prime}}\right)\right|$
$=\tau\left|\log _{e}\left(\frac{V_{S}-V_{L}}{V_{S}-V_{U}}\right)+\log _{e}\left(\frac{-V_{U}}{-V_{L}}\right)\right|$

$=T\left|\log _{0} \frac{\left(V_{s}-V_{L}\right) V_{U}}{\left(V_{s}-V_{U}\right) V_{L}}\right|$

$$
T_{1}=1.47 \mathrm{r}, f=1.36 \mathrm{kHz}
$$

For symmetrically placed thresholds but with the same hysteresis of 3.5 V .

$$
\begin{array}{ll}
V_{U}^{\prime}=5+1.75=6.75 \\
V_{L}^{\prime}=5-1.75=3.25
\end{array} \quad T^{\prime}=2 \tau \log _{\mathrm{e}}\left(\frac{V_{\mathrm{U}}}{V_{\mathrm{L}}}\right)=1.46 \tau
$$

This result can be obtained from the general case above by substitution as in the analysis opposite.

Circuit Ideas continued

Amplitude modulator

With a 555 connected in the astable mode the timing capacitor charges and discharges between $V_{H}=2 \mathrm{~V}_{\mathrm{cc}} / 3$ and $V_{L}=V_{c c} / 3$. By simultaneously increasing or decreasing V_{H} to V_{L} symmetrically about $V_{c c} / 2$, amplitude
modulation can be achieved. Resistor R_{x} is a compromise between excessive drop under d.c. conditions and loading of op-amp A_{1}.
A. D. Teckchandani

Faridabad
India

Simple waveform generator

For audio frequencies this waveform generator offers several advantages over the usual Wien bridge circuit. No amplitude stabilization is required, there are no spasmodic interruptions to the output when switching range, and a range of $10-1$ is easily achieved with a standard twin-gang potentiometer.
The integrator $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$, the emitter follower and the Schmitt trigger $\operatorname{Tr}_{4} \operatorname{Tr}_{5}$ produce a triangular waveform at the collector of Tr_{2}. This output is of con-
stant amplitude throughout the frequency range due to fixed triggering points. The triangular waveform also feeds a second integrator $\operatorname{Tr}_{6} \operatorname{Tr}_{7}$ which produces a good sine wave of constant amplitude. The audio range is easily covered by three pairs of capacitors and the three outputs can be taken selectively to a single emitter follower.

> F. V. Goodfellow
> Southampton

Long duration timer

The two oscillators constructed from a 556 have periods $\mathrm{T}_{1}+\mathrm{t}_{1}$ and $\mathrm{T}_{2}+\mathrm{t}_{2}$, where the outputs of the oscillators are high during T_{1} and T_{2} and low during t_{1} and t_{2}. Also, t_{1} is much smaller than T_{1} and t_{2} is much smaller than T_{2}, but T_{1} and T_{2} are almost, but not quite, equal. When the supply is connected the oscillators start simultaneously and there is a long duration before the low periods of the oscillators overlap. When this occurs a short low pulse is produced by the 7400 . The maximum interval between the pulses can be estimated as follows. Let $\mathrm{t}_{1}=\mathrm{t}_{2}=\mathrm{t}$ and let $\mathrm{T}_{2}=\mathrm{T}_{1}+\mathrm{t}$.

It then takes T_{1} / t periods of the slow oscillator to overlap at the low duration. Therefore, the time delay T is $\mathrm{T}_{1} \mathrm{~T}_{2} / \mathrm{t}$ and can be very long. For example, if t is $50 \mu \mathrm{~s}$ and $\mathrm{T}_{1} \mathrm{~T}_{2}$ is 18 min , T is 778 years. In the practical circuit with a 556 or two 555 s , such long periods are not possible because the well known current spike, caused when the output of a 555 goes high, triggers the other oscillator into a low state before its high period has been completed. However, the new 355 timer should produce better results.

O. B, Hellman
 Turku
 Finland

Solenoid-operated cassette units

Typical applications of two new? solenoid-operated cassette mechanisms, the Symot models LW 104 and YME 1006, include remote data acquisition, automatic annunciation, and processing activities in security systems. The LW 104 has been designed for use with continuous loop cassettes and is manufactured in corrosion-resistant plastic with a close-fitting translucent dust cover. The control solenoid, which operates on either 6 V or 12 V d.c., pulls on the pinch wheel and head assembly. The standard motor is an electronically-regulated type with an external circuit. YME 1006 is an all-metal skeleton mechanism for use with either continuous loop or conventional compact cassettes. Three forms are available. - play only, record/replay with rewind facility and record/replay with cue and review facility. A (specially compounded) rubber capstan pinch roller permits permanent tape engagement with out damage or roller indentation. Mono tape heads are fitted as standard and motors are mechanically regulated at 6 V or 9V d.c. Symot Ltd, 22a Reading Rd, Henley-on-Thames, Oxfordshire RG9 1AG.
WW 301

Diagnostic engine tester

Diagnosis of engine timing and faults in the electrical system of petrol engines is the function of the SD-80 ignition tester manufactured by Albol Electronic and Mechanical-Products. The unit is supplied from a 12 V battery and the makers claim that, by its use, savings of about 10% can be made on petrol costs, although we assume that this presupposes that the engine is already operating below par. Functions covered by the tester include engine revs, ignition angle (with respect to t.d.c.), contact breaker make angle (dwell), battery voltage, h.t. voltage, plus two resistance checking ranges. The unit also powers a stroboscopic lamp for advance/retard measurement and dimensions are $250 \times 310 \times 170 \mathrm{~mm}$ at a weight of 4.8 kg (2.21b). Price is $£ 198$ plus v.a.t. and a six-month guarantee is provided. Albol Electronic and Mechanical Products Ltd, 3 Crown St, London SE5.
WW 302

WW 301

Ww 302

WW' 303

7-segment l.e.d. display

Each of the seven segments of the Highland Electronics 31-019 l.e.d. display can be illuminated separately and the unit can be panel-mounted in a single 16 mm diameter round hole. Terminations are provided on a miniature p.c.b., which is an integral part of the unit's construction and extends in a vertical plane from the moulded body of the display
tage. The display provides, apart from numerals, upper case letters ACEFHJLPUY and lower case letters bcdeghinoruy. Highland Electronics, 8 Old Steine, Brighton, East Sussex BNI IEJ. WW 303

Pocket frequency meter

Mobile communications applications are the areas of use which Electroplan quotes for the Labgear CM7044 portable frequency meter. This instrument covers the range 10 MHz to 500 MHz and it is powered by rechargeable batteries. A small antenna (with b.n.c. fitting) is provided enabling measurement of transmissions to be made without disturbing the transmitter or making internal connections. Readings are presented on a 7 -digit l.e.d. display in two ranges -10 to 50 MHz and 50 to 500 MHz . Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH.
WW 304

Radial component

pre-former

An automatically fed machine, capable of forming and cropping up to 5000 components (radial capacitors and transistors) an hour is now available from Elite Engineering Ltd. The design of the machine allows the cropping and forming of components to

WW 305
the same form even where their bodies are different, without changing the tooling, although interchangeable tooling permits most different transistors to be cropped and formed for insertion in p.c. boards. Radial lead capacitors can be hopper fed if necessary or hand fed on to a belt if an especially difficult form is required. Demonstrations of the machine can be arranged or sample components sent to the makers for forming on standard
tools. Peter J. W. Noble, Elite Engineering Ltd, Unit 3, Saltern Lane, Fareham, Hants PO16 0TD. WW 305

Power supply and ni-cad charger

Producing an output of 13.8 V d.c. at 750 mA for amateur radio transceiver operation and a second output at 45 mA , constant current, for recharging nickelcadmium batteries, the Lar Modules PS1200, permits trans-

mission from the base station while recharging is taking place. The transceiver output supply is. 'regulated and all switching is automatic. Protection circuits are included and output 2 (charger) is at negative ground. LAP Modules Ltd, 27 Cookridge St, Leeds, LS2 3AG.
WW 306

R.f.i. sealing paste

Described as "extremely fine in texture, consisting of a high concentration of pure silver particles in silicone resin" by the makers, Emerson and Cumming (UK) Ltd, Eccoshield SX is a conductive, non-hardening sealant and gasketing material for use as an r.f. shield. Volume resistivity of the paste is less than $0.005-n c m$ and it can be used at temperatures from $-70^{\circ} \mathrm{F}$ to $+400^{\circ} \mathrm{F}$ $\left(-56^{\circ} \mathrm{C}\right.$ to $\left.+204^{\circ} \mathrm{C}\right)$ with no adverse effects. The paste's consistency can be changed by thinning with toluene and the manufacturer quotes its use on cover plates of conduit junction boxes, to replace knitted metal gaskets and on bolt threads where it can help to assure continuous electrical contact and to prevent corrosion. The claim is also made that structures sealed with Eccoshield have a measured insertion loss in excess of 100 dB

for both electric and magnetic fields in the frequency range 10 kHz to 10 GHz . Emerson and Cumming (UK) Ltd, Colville Rd, Acton, London, W3.
WW 307

Mains socket tester

Constructed in the form of a 13A mains plug top, a socket tester with a visual display which indicates a variety of fault conditions in a domestic mains supply is available from Galatrek. The makers say that when the tester is plugged into a socket (any form, including 5A or 15A round pin, these are connected by a length of cable) the neon display indicates "correct," "live fault," "no earth," "live/neutral

reversed," "neutral fault," and "live/earth reversed." The tester costs $£ 4.50$ including v.a.t. and a 3 -phase remote tester is also available at $£ 8.95$ inc. v.a.t. Galatrek, Scotland St, Lanrwst, Gwynedd, LL26 0AL, North Wales.
WW 308

Tape head demagnetizer

Demagnetization of tape heads without the need to withdraw the demagnetizing yoke away from the head at a constant speed is the claim made by TDK for its battery-operated electronic head demagnetizer, type No. HD11. The defluxing operation can be carried out in 1 s , and the yoke is adjustable to settings of 15° and 30° from the horizontal. The design of the unit also makes it possible to carry out defluxing of heads on many older models of tape recorder, some of which are difficult in terms of head access. TDK Tape Distributor (UK) Ltd., 11 th Floor, Pembroke House, Wellesley Rd, Croydon, Surrey.
WW 309

Auto transformers

A range of transformers intended for the adaptation of modernized equipment which has been imported from the US is now available from F. H. Radford Ltd. This comprises a series of single phase auto transformers for either 240 or 220 V supply, this input being transformed to 115 V , by means of a single connection change. Four basic models are available as $500,1000,2000$ and 3000 VA units, each of which is equipped with two American 15A 3-pin outlets and a 3-core output lead. F. H. Radford Ltd, 38 Charlotte St, London WIP 1HP. WW 310

Magazine storage rack

A collapsible frame moulded from polythene and held together by four metal tubes constitutes the Multi-file magazine storage rack. The frame is designed to hold up to 24 issues of a fairly weighty A4 publication (such as Wireless World) although a few more can be squeezed in if required. Each magazine is fitted with two clips which pinch at either end of the spine, and located at the centre spread these must be fitted carefully to avoid tearing - and the journal is then hung by these polythene clips from the rails at each side of the frame. The price, ex works, is $£ 8.50$ each, including v.a.t. or $£ 3.50$ each per unit per 1000 and the rack is available in four colours - brown, light grey, blue and yellow. Alternative colours and "house" branding can be arranged on orders over 5000 at extra cost. Multi-file Ltd, Sands Industrial Estate, Hillbottom Rd, High Wycombe, Bucks,

WW 311

Long scale panel meter

Applications requiring higher than usual accuracy are quoted by Bach-Simpson (UK) for its new range of panel meters fea-
turing a 250° pointer deflection angle. These meters, specified as 2123 L for d.c. and 2143L for a.c. (rectified) are self-shielded, permanent magnet moving-coll instruments with non-magnetic

pivots and spring-backed jewels; zero adjustment is via the front pivot. The facia dimensions of these meters are identical to the Simpson "Century" range of $31 / 2$ in panel meters. Bach-Simpson. (UK) Ltd, Trenant Estate, Wadebridge, Cornwall, PL27 6HD.
WW312

Noise blanking chip

Designed for the removal of noise spikes from broadcast f.m. composite signals before decoding, the Toko KB4436 is claimed by the UK distributor, Ambit International, to be capable of providing an improvement of approximately 25 to 30 dB on the unblanked signal to noise ratio. This i.c. is specifically intended for the removal of short duration impulse noise such as that generated by a car's ignition circuits or d.c. motors. In order to maintain the 19 kHz pilot tone during blanking periods, a signal derived from the decoder v.c.o. is added to the input signal for a period determined by the setting of externally-controlled time constants. This method ensures that the blanking process does not impair the quality of the output signal. Further information for alternative applications is available from the distributor and the one-off price of the i.c. is $£ 2.53$ excluding v.a.t. Ambit International, 200 North Service Rd, Brentwood, Essex CM14 4SG. WW313

Finally, you can have all the advantages of DMMs and none of the disadvantages of analogues for about the same price.

Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \%$ DC accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component life and fewer failures. MTBF is $20,000 \mathrm{hrs}$. or about 10 years.

All 5 functions are fully protected -1400 V peak on DCV and $\mathrm{ACV}, 300 \mathrm{~V}$ on Ω,

> Is this the end for Analogue $2 \mathrm{~A}(250 \mathrm{~V})$ on DCA and AC.A. The fuse is externally accessible for quick replacement. Extensive vibration stress-testing assures the 169 will stand up to all the mechanical shock and abuse normally associated with tough applications.

Cost-conscious ease of maintenance is so thoroughly designed into the 169 that only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about $£ 1.50$.

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour coded front panel, we think you'll get the point. No analogue meter or DMM can match the price/ performance of the new 169 . It costs $£ 99$ (plus VAT) For information on the 169 or any Reithley DMM call (0734) 861287
Telex: 847047

Ex stock
WW - 059 FOR FURTHER DETAILS

O.E.M. PLATE POWER AMPLIFIERS

MADE IN ENGLAND

I.L.P. offer for prompt delivery, a range of O.E.M. Plate Power Amplifiers in three useful output ratings. These units are typical of I.L.P. design and manufacture - encapsulated circuirry, rugged construction, just five pin connections, trouble-free mounting, no output capacitor or ther external components to be added, and operation from split line power source. PRICES ARE KEENLY COMPETITIVE. QUALITY AND MANUFACTURE OF THE HIGHEST POSSIBLE STANDARDS. Modules can also be manufactured to customer's own design.

UNIT PRICE FOR	100 +	250 +	500 +	1000 +	2500 +	5000 +
HY 120P $60 W$ rms 8Ω	$£ 10.30$	$£ 9.37$	$£ 8.51$	$£ 7.74$	$£ 7.04$	$£ 6.40$
HY 200P $120 W$ rms 8Ω	$£ 13.18$	$£ 11.98$	$£ 10.89$	$£ 9.90$	$£ 9.00$	$£ 8.18$
HY 400P $200 W$ 4 rms	$£ 19.26$	$£ 17.51$	$£ 15.92$	$£ 14.47$	$£ 13.16$	$£ 11.96$

HYP 120P and HY 200P
$116 \times 50 \times 23 \mathrm{~mm}$
$116 \times 75 \times 23 \mathrm{~mm}$

A division of I.L.P. electronics ltd., Graham bell house, roper close, Canterbury, Kent, cT2 7 7ep (0227) 54778 : Telex 965780
 WW-088 FOR FURTHER DETAILS

WHOLESALE

ELECTRONIC COMPONENTS

	Stock	Price
AU113	120	.98
$3 \mathrm{k}-$ Presets	2,000	.01
TBA800	500	.44
4700μ F 16v Elec.	800	.14
7448 TL .	1,600	.20
$16-$ Pin DIL Socket	5,000	.08
Z-80 P10 4MHz	30	6.50
2708 EPROM	500	4.39
2114 SRAM	800	3.51
4116 DRAM	800	4.50

And many more. Companies invited to send SAE for our up-todate price list

Please phone for availability before ordering. Afl our prices include 15\% VAT. Postage extra.

STRUTT
ELECTRICAL AND
MECHANICAL ENGINEERING LTD.
ELECTRICAL COMPONENT
DISTRIBUTORS

3c BARLEY MARKET ST. TAVISTOCK DEVON PL19 05
Tel. TAVISTOCK (0822) 5439
Telex: 45263

Available from selected stockists ELECTRONICS BY NUMBERS

RAIN ALARM
You need never be caught out by the weather again. The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere. The current drawn from the battery is negligable so it can be left switched on for up to a yearl
WOBBLY WIRE GAME
All the fun of the fair, in your own homel Test your skill at building and playing this version ot the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY

TESTER

An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.
Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects.
Look at the diagram, select RI, plug it in to the letter numbered holes on the EXPERIMENTOR
BREADBOARD, do the same with the other components, connect to battery and ANYBOOY can build a perfect working project.

YOU WILL NEED
e.g. LED Bar Graph (a previous project) components EXP300 or EXP350 O1 to D15-Stlicon Diodes R1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes
For the full detailed instructions, including "Electronics by Numbers" circuit diagrams, simply

EXPERIMENTOR BREADBOARDS
No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to builda breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP $4 B$.

EXP 325 f 1.60 The ideal breadboard for 1 chip circuits. Accepts $8,14,16$ and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP 360 £3. 15 Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs. Has 270 contact points including two 20 point bus-bars.

EXP 300 E5. 75 The

most widely bought bread-board in the UK. With 550 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to $6 \times 14 \mathrm{pin}$ DIPS.

EXP $600 £ 6.30 \mathrm{Most}$ MICROPROCESSOR projects in magazines and educational books are built on the EXP 600

EXP 860 E3.60 Has $6^{\prime \prime}$ centre
spacing so is perfect for
MICROPRƠCESSOR applications.

EXP 4B E2.30 Four
more bus-bars in
"snap-on" unit.

The above prices are exclusive of P\&P and 15% VAT.

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately

CONTINENTAL SPECIALTIES CORPORATION

CSC (UK) LTD.
Dept 7EE Shire Hill Industrial Estate Unit 1
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21e82. Telex: 817477

take the coupon to your nearest CSC stockist or șend direct to us and you will receive "THREE FREE PROJECTS FROM CSC"
If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT $\mathbf{5 9 . 2 0}$

PB 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80

The 7208600 MHz Mini Counter

the quality low cost counter

FEATURES

- All Metal Cabinet 8 Digit .4" LED Display Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included 240 V or 12V Operation - Proportional Control Crystal Oven (Optional) Built-in VHF-UHF Preamp Completely Portable with Rechargeabl Batteries (Optional).

aVAILABLE FROM THE EXCLUSIVE U.K. DISTRIBUTORS: SOTA COMMUNICATION SYSTEMS LTD.

26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14 6TX MERSEYSIDE. TEL. 051-480 5770 Telex 627110 SOTA G

DESCRIPTION

The Davis 7208 VHF-UHF Frequency Counter incorporates the latest LSI technology in a wide range portable instrument at a reasonable price. The 7208 offers outstanding features including an all metal cabinet for RF shielding, large 8 digit display, built-in prescaler, automatic DP, and with the built-in VHF-UHF preamp the 7208 can directly measure low level RF signals from RF generators. The 7208 can also be operated completely portable with the Ni -Cad battery option. Price $£ 145.00+$ VAT.

SNew Bear Components

CAl.LERS AND MIAII. ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505

Microcomputing		6502 BASED MICRO KIT . . $£ 65.00$
MC6800 £ 7.	HCORA	8K RA.II KIT $£ 95.00$
MC6802 - . \& 8.50		MAINS ADAPTOR £ 5.00
MC6821 MC6850	SIOU	V.D.U. KIT $£ 88.00$
MC6810AP - \& 3.61	at NEWBEAR	SPECTRONICS
MC 6840 $\mathrm{MC8602P}$ M - . \& 12.72 2.88		UV Eprom-Erasing Lamp
	8K STATIC: RAM BOARD $\quad 18.75$	PE14 ${ }^{\text {P }}$ Erases up to 6 chips. Ta
MC3459 . . . £ 2.43	V.D.U. BOARD . 118.75	PE14 Erases up to 6 chips. Takes approx. $£ 56$.
Z.80 CPU $2.5 \mathrm{MH} \mathrm{\%}$ - £ 8.99	2708/2716 EPROM BOARD $£ 18.75$	PE14T* Erases up to 6 chips. Takes approx.
Z80 P10 2.5 MHz - £ 7.99	PROTOTYPING BOARD . $£ 18.75$	19 mins. . . . £ 76.58
Z80 (:TC 2.5MHz \& 7.99	RANGE OF MOTHER BOARDS	PE24T* Erases up to 9 chips. Takes approx.
280A CPU 4MHz \& 13.99	\$100 (:oNNf:C'TORS . e 3.95	15 mins. $£ 111.22$
Z80A P10 4 MHz 780A CTC 4 MHz \& 10.00 \& 10.00	Memories	PR125* Erases up to 6 chips. Takes approx.
S(/MP 11 - . £ 8.88		rases up to 36 chips. Takes appro
(INS 8060N) . . £ 8.18		PC100* 7 mins. 2384.09
${ }_{8080 \mathrm{~A}}$	21021-1** . . ${ }^{\text {\% }} 0.99$	PC1000* Erases up to 72 chips. Takes approx.
6502 - . . £ 9.90	2112 . . . ¢ ¢ ${ }_{2} 114.25$	UV Eprom-Erasins Cabine
${ }_{65322}^{*}$ - . . . ${ }^{\text {6 }} 12.90$	2114 2708$\quad: \quad: \quad \underset{\perp}{2} 6.99$	
6532 6551 : . . . \& 12.56	MC6803L.7 (MIKBUC) ${ }^{\text {¢ }} 13.65$	PC2000* Erases up to 144 chips. Takes approx. 7 mins. $£ 122$
6545 . . . £ 16.66	2716 (INTEL) : . £ 21.50	
28001 AMD 9511 : arithmetic pach age	$\begin{array}{r} £ 142.50 \\ \& 136.50 \end{array}$	TERMS: Credit Sales (minimum £10.00) Barclaycard and Access Welcome. Please add 15% VAT.

CALILERS ONLY: 220-222 Stuckport Road, Cheadle lleath, Stockport Tel: 0614912290 SEND FOR OUR NOVEMBER CATALOGUE AND BOOK LIST.

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. Julv, Aug., 77.
The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 input selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. S/N 90 dB, Mags $/ \mathrm{n} 80 \mathrm{~dB}$ Output device rating 360 w per channel
Tone cancel switch. 2 tape monitor switches.
Metal case-comprehensive heatsinks
Complete kit only $£ 63.90$ + VAT .

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance. The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated. Disguised as a hard-backed book. Detection range up to 45 feet.
Complete kit $\mathbf{£ 4 9 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories Inc.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA).
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Typical performance

Noise reduction better than 9dB weighted Clipping level 16.5 dB above Dolby level <measured at 1% third harmonic content)

Harmonic distortion 0.1% at Dolby level typically Harmonic distortion 0.1 , at Dotby level typically
0.05% over most of band, rising to a maximum of 0.12\%

Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output
Dynamic Range $>90 \mathrm{db}$
30 mv sensitivity.
Complete Kit PRICE: $£ 43.90$ + VAT

Also available ready built and tested
Price $£ 59.40$ + VAT
Calibration tapes are available for open-reel use and for cassette ispecify which)
Price £2.40 VAT
Single channel plug-in Dolby PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components
Price $£ 9.00$ + VAT
Please add VAT @ 15\%
We guarantee full after-sales technicai and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

All kits are carriage free

INTEGREX LTD.

[^4]
S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner Combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit etc.), THD less than 0.1% at 20W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic iF INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.2 \alpha \mathrm{~V}$. THD 0.3%. Pre-decoder birdy filter. PRICE: £59.95 + VAT NELSON-JONES MK. 2 STEREO FM TUNER KIT Price: 669.95 + vat Improved pefformance with linear phase IF and second generation IC decoder

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC If amp.

Brief Spec. Tuning range $88-1.04 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection - 85dB. THD typically 0.4% IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders
Compare this spec. with tuners costing twice the price

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$ THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

Mono $£ 36.40$ + VAT
With ICPL Decoder $£ 40.67$ + VAT
With Portus-Haywood Decoder
$£ 44.20$ + VAT

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 33.95$ + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on /off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60dB. Radio input S/N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

$$
\text { PRICE: } £ 35.95 \text { + VAT }
$$

West Hyde have the greatest range of instrument cases

(WIH) CONTIL-DIN

SAMOS

SAM 001	1.59	SAM DOS	2.24
SAM 002	1.79	SAM CO6	2.63
SAM 003	2.08	SAM 007	2.92
SAM 004	1.96		

FRONT FURNITURE

All West Hyde cases are av Prices include P\&P but not VAT with substantial discounts for quantities. Most cases have discounts at 5,10 and 25 off with discounts up to 25% at 100 of WEST HYDE DEVELOPMENTS LIMITED, Unit 9, Park Street Industrial Estate, AYLESBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570 WW - 054 FOR FURTHER DETAILS

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of $0-1.5 \mathrm{MHz}$ receive and / or any transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communications equipment including Trio products and Trio tesigear.

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes' walk away is West Hampstead Midland Region routes: $28 \quad 59159$ Hours of opening are 9.5 Mone. We are on the following Bu 1.2. Saturday we are open 9.12.30 only. World wide exports.

DRAKE *SALES *SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Glro Account No. 588 7151. Telephone: 01.6247174 Cables: Radio Shack, London, Nw6. Telex: 23718

J E S AUDIO INSTRUMENTATION

Hllustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 50 calibrated ranges £78.00.

Si452	Si453
Distortion Measuring Unit	Low distortion Oscillator
$15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$	Sine-Square-RIAA

PRICES plus VAT

J. E. SUGDEN \& CD. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET, CLECKHEATON, W. YORKS BD 19 5LA

-SERVICE TRADING CO

FT3 NEON FLASH TUBE
 E3. P8P 50p ic4.03 inc. VAT \&
WHY PAY MORE? MULYI RANGE METERS TYPE MF15A. 0.10. 0.100. Sensitiviy 2000 V .24 ranges. dimensions $13 \times 93 \times 46 \mathrm{~mm}$.
50 P P\&P (E8. 83 inc. VAT $\&$ P .

TRIAC.

Rathener tag symmertical Triac. Type Tag $250 / 500 \mathrm{~V} 10 \mathrm{amp} 500$ piv.
Glase passivated
 apphcaton shoelf). Suitable Diac 22p.

MERCURY SWITCH

 durt tye $36 \times 15 \times 10 \mathrm{~mm}$. Minimum quentity
$10 . E 7.50$ post paid ($\mathbf{E 8 . 8 3}$ inc. VAT \& P).

230 VOLT AC FAN

ASSEMBLY
Powerful continuously rated AC motor complete Now roduced price $£ 3.00$ P\&P 65 p ($£ 4.20 \mathrm{inc}$.
VAT \& P) N.M.

21-WAY SELECTOR

SWITCH with reset coil

 any position by enero is.
$230 / 240 \mathrm{~V} A C$ the repration. Unit is it mount coil.

A.E.G. CONTACTOR

 N.M.S.

ARROW-HART MAINS CONTACTOR, CAT. NO. 130A30.
Coil 250 V . or 500 V AC. Conactis. 3 make 50 mp up to 660 V AC 20
$\mathrm{~h} p$. at 440 V . 3 phase 50 Hz . Price $67.75+$ PAP E 400 (Total Incl VAT

TORIN BLOWER

$16 \times 14 \mathrm{~cm}$. Price $\ell 3.75$ P\&P 75ρ (incl VAT (5.18)

SMITH BLOWER
Type FFB 1706. Small quiet smooth running. Overall size $135 \times 165 \mathrm{~mm}$. Flange mounting.

24V DC BLOWER UNIT

USA made $24 \mathrm{VDCC.8} \mathbf{~ a m p ~ b l o w e r ~ t h a t ~ o p e r a l e s ~ w e l l ~ o n ~} 12 \mathrm{~V} 0.4 \mathrm{amp}$ 110 mm , depth inc molor 75 mm . nozzie length 19 mm . dia 22 mm . ideal

BLOWER/VACUUM PUMP

 Pump. 0.9 ctm 8 hg . Price $£ 22.00$ P\&P $\mathrm{E} .00(£ 27.60$ tnc. VAT \& P).

MINIATURE UNISELECTOR

MICRO SWITCHES

Bonnello. Price: 10 for E2.00. PGP 250. Toalt ind VAT E2. 59 A As above less rotier 20 lor $E 1.80$. P\&P 25 p . Total incl VAT \& P E2. 36.
D.P. C/O lever m/switch, mlo. by Cherry Co. USA. Precious metal. Iow
resistance contacts. 10 tor $£ 2.50$. P\&P 300. Total inc. VAT $\{3.22$ inw resistance connc
10. N.M.S.

HEAVY DUTY SOLENOID

 PYEETHER

WESTOOL TYPE MMB MODEL 2

TYPEAG/TG
$18.24 V$
$3 / 16 \mathrm{in}$. Fithed 70 ohm Coil Solenoid. Push or Pull. Adjustable trevel to
to

INSULATION TESTERS (NEW)
Test io
suitabe for spec. Rugged metal construction.
field work. .
 1000 vOLTS 80000 Posi 80 (E5 100 V E55.00 Post 80 P (E 64.17 inc. VAT \& P)

YET ANOTHER OUTSTANDING OFFER

VARIABLE VOLTAGE TRANSFORMERS

INPUT 230V AC 50/60
OUTPUT VARIABLE $0 / 260 \mathrm{~V}$ AC

VAT ©xto BRANO NEW. All types.
200W (1 amp) fittod A/C

LT TRANSFORMERS

$0-4 \mathrm{~V} / 6 \mathrm{~V} / 24 \mathrm{~V} / 32 \mathrm{~V}$ at 12 amp

 VAT $\&$ PI
O $10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at $10 \mathrm{mpp} £ 10.50 \mathrm{P} \mathrm{\& P} £ 1.50$ (inc. VAT $£ 13.20$)
Other types in stock: phone for enquiries or send SAE for leafles.

RHEOSTATS
 New ceramic construction, vitroous anamel embeeded winding heawy dury brush azembly.
 25 WATT 10, 25, 100. $150,250,500,1 \mathrm{k}, 1.5 \mathrm{k} \mathrm{ohm} \mathrm{E} 2.40$ Post $(\mathbf{2 l} .62$ inc. VAT \& P). 100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 /$ bush. Ideai for above Rheostats, 24p es.
 SPECIAL OFFER
 BERCO type L RHEOSTAT
 85 ohm 300 watt 1.86 amp £ 7.50 PaP 50 p (fotal $£ 9.20 \mathrm{inc}$ VAT)

STROBE! STRDBE! STROBE!

HY-LIGHT STROBE KIT Mk. IV Latest type Xenon white light tube Solid state timing and triggering *
circuit. $230 / 240 \mathrm{~V}$ AC operation. Speed adjustabie $1-20$ fps
Designod Designed for large rooms. halls, etc. Light output greater than many (so called 4 Joule) strobes. Price $£ 22.00$ post $£ 1.00$ ($£ 27.03 \mathrm{inc}$.
VAT \& P). Specrally designed case and reflector for Hy-Light $£ 9.00$. Post E1.00 (E12.08 inc. VAT \& P). ULTRA VIOLET BLACK LIGHT FLUORESCENT TUBES ©ft 40 wrete $£ 8.70$ (callers only $£ 10$ inc. VAT): 2 h 20 wart E6. 20 Post $75 p$ ($£ 7.99$ inc. VAT \& P). (For use in stan br-pun fittingss). Mini
12 in 8 watet E2.80. Post 35 p ($\mathbf{E 3 . 6 2}$ inc. VAT \& P). Sin 6 worr £2.25 Post. 35 p ($£ 2.99$ inc. VAT \& P). 6 in 4 watt $£ 2.25$ Post 35 p ($£ 2.99$ inc. VAT \& P).
Complete ballast unit for either $6^{\prime \prime} .9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 VAC op
$£ 3.50$ plus $P \& P 45 \rho$ (54.54 inc. VAT \& P). Also available for 12 V DC op, $\mathbf{C 3 . 5 0}$ plus P\&P 45 ($\mathbf{E 4 . 5 4} \mathrm{ncc}$ VAT \& P).
400 watt uv lamp and ballasi complete $\mathbf{£ 3 8 . 0 0}$. Post $£ 3$ ($£ 47.73$ inc. VAT \& P). 400 wart UV lamp only $£ 14.00$. Post $£ 1.50$.
$(E 17.83$ inc. $V A T \& P$. ※x $ヶ * * * * * * * * * * x * x ~$

SQUAD LIGHT

A new conception in light control.
Four channels each capable of
handling 750 watts of spotlights
 Flash modulation, effectively giving 14 different displeys. Makes sound-10 inght obsolete. Completely electricall/
free. Price only $\mathbf{\Sigma 6 0 . 7 0}(\mathbf{\Sigma B E . 8 1} \mathbf{~ i n c}$ VAT \& P).
WIDE RANGE OF DISCO LIGHTING
EQUIPMENT SA
GUN TUBES

RELAYS
$\mathbf{2 3 0 / 2 4 0 V}$ AC Relays: Arrow. $2 \mathrm{c} / 0.15 \mathrm{amp} \mathrm{E1.50}$ (E1.96 inc. VAT T.E.C. Open rype $3 \mathrm{c} / 0.10 \mathrm{amn} \mathrm{E1.10}(\mathrm{E} 1.50$ inc. VAT \& P).
 (EA. 32 mel. VAT)
 Sealed $12 \mathrm{~V} 1 \mathrm{c} / 07 \mathrm{amp}$ octal base, $\mathbf{£ 1 . 0 0}$ ($£ 1.38$ inc. VAT \& P). Seeled c/o 7 mp 81 -pin, (1.35 (19.78 inc. VAT $\&$ P). 24 V . Seated $3 \mathrm{c} / 07$
 any Relay 20 p .
25 P P\&P (inc VAT $£ 2.30$).
Ormond H heavy duty AC rellay $230 / 240 \mathrm{VAC}$, wo c/o contacis 25
amps res at 250 V AC $\$ 2.50$ P\&P 50 p. ($£ 3.45 \mathrm{inc}$. VAT + P \& P). Sheae 3 mps
500

METERS (New) - 90mm DIAMETER AC Amp. Type $62 T 2.0-1 A . ~ 0.5 A . ~ O .2 O A . ~ A C ~ V o l t . ~$

GEARED MOTORS

100 RPM 115 Ibs ins! !
 $71 / 2$ नpm Kimon Motor. Approx. 251 b inch 28 1pm Wmecato Mowor. Approx. 201 b inch formers. 240 V AC operation $£ 7.75$ (P\&P 75 p). Total incl. VAT \& P. ce.78. N M.S

56 mpm . 501b. INCH

length 35 mm , dia. 16 mmp , Weght 6 kulos 600 grams. Proce E 15.00 P\&P \& 1.50 . Total kincl. Va L
$1400 \mathrm{rpm} \mathrm{H.P}$.
Continuous rated 115 VAC fitred with anti-vibration cradie mounting,
Mt Fracmo. Supplied complete with uansformer for $230-240 \mathrm{~V}$ AC op. $£ 10.00$ P\&P $£ 1.00$. Total incl VAT \& P $\mathbb{£} 12.65$

12 V SHUNT $1 / 30$ th PH MOTOR

 Continuous rated 4,000 rpm. Mf. Parvalux. TypeSO2. Price $£ 10.00$ P\& 75 p . Total incl. VAT \& P. £12.36.

PARVALUX 230/250V AC MOTOR Type SD 18240 V AC raversible 30 rpm 50 otbe
inch. Price $£ 15.00$ P\&P $£ 1.50$ (18.98 inc. VAD).

CITENCO

FHP motor type C $7333 / 15 \quad 220 / 240 \mathrm{~V}$ AC 19
rpm reversible molor, torgue 14.5 kg Gear rate rpm reversible molor. torque 14.5 kg . Gear ratio
$144: 1$. Brand new incl capachor. our price
E14.25 $+£ 125$ P\&P (17.93 inc VAT E14. 25

CROUZET $-230 / 240$ A AC $^{2} 2 \mathrm{mpm}$ sy
P\&P 30 p (Total $£ 3.68 \mathrm{inc}$ VAD). N.M.S
P\&P 300 , Total 13.68 inc VAD. N.M.S
HAYOON $-230 / 240 \mathrm{~V}$ AC
HAYOON $-230 / 240 \mathrm{VAC1}$ Ipm sym
P\&P 30 p (Total $£ 3.68 \mathrm{inc}$ VAT) N.M.S.

BIG INCH

 REDUCTION DRIVE GEARBOX

atio 72:1nput spindie $1 / 4 \times 1 / 2$ in. Output spindie 3×3 in. long. Overall

 size approx: $120 \times 98 \times 68 \mathrm{~mm}$. Ail metal construction. Ex-equip. rested. AC Wkg TUBULAR CAPACITORS

SANGAMO WESTON TIME SWVITCH
Type S251 $200 / 250 \mathrm{~V}$ AC 2 on 2 otl every 24 hours. 20 amps contacts
with overnde switch. diameter $4^{\prime \prime} \times 3^{\prime \prime}$. prite $£ \$.00$ P\& 50 p ($£ 9.78$
AEG TIMESWITCH
$200 / 250 \mathrm{VAC} 1$ on $/ 1$ oth every 24 houre. 80 amp contact (idefil slorage
heaters). Spring reserve $£ 10.00$ P 8 P 50 . (Total $£ 12.08$ inc. VAT heaters). Spring reserve $£ 10.00$ P\&P 50 P (Total $£ 12.08$ inc: VAT).
N.M.S.

AC MAINS TIMER UNIT
 MINIATURE PROGRAMMER

MINIATURE 24-HOUR TIMESWITCH German mfr.)

All Mail Orders - Callers - Ample Parking

PROBABLY THE MOST INEXPENSIVE QUALITY SIGNAL GENERATOR AVAILABLE TODAY

Audio Range: $10 \mathrm{~Hz}-100 \mathrm{Khz}$, in four switched ranges.
Distortion
Extremely low.
(.0015\% typical, @ 1 Khz).

Output

Iv into 600 , with
Fixed and Variable Atten
Sine and Square Wave
Based on a Linsley Hood design.
Battery or Mains.

$£ 36.00$ (batty.)
Tax extra £5.40
P\&P $£ 2.00$

TELERADIO ELECTRONICS
325 FORE STREET, EDMONTON, LONDON N 9 OPE 01-807 3719

Closed Thursdays SAE for lists
WW - 020 FOR FURTHER DETAILS

Direct drive motor/die cast turntable pack -

$\mathbf{£ 2 6 . 0 0}+\mathbf{£ 3 . 9 0}$ V.A.T. including post \& packing
(V.A.T. shown at present rate of 15\%) Further details of these top quality components in return for s.a.e. - or personal callers weicome.
This offer applies to U.K. \& Northern Ireland only: ask for quote for export orders. Symot Limited, 22a, Reading Road, Henley-on-Thames. Oxfordshire. RG9 1AG. Telephone:(049-12)2663.

WW - 081 FOR FURTHER DETAILS

RT 올 (6) A150 MIXER AMPLIFIER

150 WATTS SINE WAVE POWER

£149.50

inc. VAT

Double anodised facia. Full electronic short circuit protection
Six independent inputs: Dual Phono, RIAA, change-over fader for Discos. Twin Jack output sockets: $8 \Omega 150 \mathrm{~W} ; 4 \Omega 100 \mathrm{~W} ; 16 \Omega 80 \mathrm{~W}$. (R.M.S.)
K.A.C. Electronic Inv. Led., 20 Priory St., Tonbridge, Kemt CALL FOR DEM Or PHONE (0732) 358109 FOR LEAFLET

WW - 050 FOR FURTHER DETAILS
Kepoture
ContactecIEAN
BY USING A

DIACROM

 SPATULA

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are utilised.
2. Blades are reated with hard chrome to reinforce the setting of the dia mond grains. to obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface. This eliminates all excessive scratching during use.
4. All diamond gra ins are rigidly calibrated to ensure a perfectiy uniform grain size of either 200.300 or 400.
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handle is calculated to permit proper utlifation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200 . thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial relays and switching equipment, etc.
- Grain size 300 . thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For smaller equipments, tike telephone relays. computer relays. etc.
- Grain size 400 , unickness $25 / 100 \mathrm{~mm}$., one face diamonded. For sensitive relays and tiny face of the spatla is abractive. facing each other can be individually cleaned. because only one

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supptied to the M.O.D., U.K.A.E A.. C.E.G.B. British Reil and other Public Authoritios; atao major industrial and alectronic users throughout the Unitod Kingdom. WW - 079 FOR FURTHER DETAILS

EURO VHF FM TUNERSET 7252

Larsholt
The long experience of Larsholt Electronics is reflected in this superbly engineered VHF Band II varicap FM tunermodule. (As used in the Signalmaster Mk 8.)

The four stage frontend employs dual gate MOSFET transistors for both RF and Mixer stages, providing the 7252 with a 1 uV sensitivity for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{B}(\mathrm{m})$. The IF uses a dual ceramic IF filter, and provides all usual Hifi functions, of tuning meter drives, muting, AFC and AGC. THD is only 0.1%

LARSHOLT ELECTRONICS

DK 4622
ex-slock from:
havdrup - denmark
AMBIT INTERNATIONAL
200 North Service Road Brentwood, ESSEX CM14 4SG Tel. (0277) 230909

INTO THE 80'S WITH CATRONICS TELETEX DECODERS!

Specially reduced prices for ready-built Teletext Decoders
from only E160. Send SAE for detalis and current list

WW-921 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

TRADE ENOUIRIES WELCOME

Full range available to replace 1.5 voli dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.25 for booklet. "Nickel Cadium Power," plus catalogue.

Write or call at
SANDWELL PLANT LTD. 2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, Londoñ WC2

WW - 038 FOR FURTHER DETAILS
Ceramic Capacitors $£ 3.50$ per 100
Cable Sleeves and Markers from $\mathbf{£ 1 . 0 0}$ per 1,000
Compression Terminals from $£ 7.29$ per 1.000
Pcb self-fixing Guides from $\mathbf{£ 4 . 8 6}$ per 100
Elma Knobs and Accessories
Phone, write or call for catalogue
Carbon Film Resistors from $\mathbf{\$ 4 . 0 0}$ per 1.000
Polystyrene Capacitors from $\mathbf{£ 1 . 5 0}$ per 100
Send for lists of values available

PBRA LTD.
 Hopfield
 (073274) 345

Golden Green, Tonbridge, Kent, TN11 OLH

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8

Simply ahead. . ILP’S NEW GENERATION OF HIGH

I.L.P. modular units comprise five power amplifiers, pre-amp which is compatible with the whole range, and the necessary power supply units. The amplifiers are housed and sealed within heatsinks all of which will stand up to prolonged working under maximum operating conditions.

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance.

These have stood the test of time far longer than normally expected from
ordinary commercial modules. So we have
concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as
those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. J.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume - 10K Ω log.
Bass/Treble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s, it is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer, the other with toroidal transformer, having half the weight and height of conventional laminated types.

Model	Output Power R.M.S.	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8Ω	0.02%	90 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance - all models $4-16 \Omega$
Input sensitivity - all models 500 mV
Input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz} \cdot 45 \mathrm{~Hz}-3 \mathrm{~dB}$

NO QUIbBLE

5 YEAR GUARANTEE
7.DAY DESPATCH ON

ALL ORDERS
integral
HEATSINKS
BRITISH DESIGN AND
MANUFACTURE
FREEPOST SERVICE -see below

- ALL U.K. ORDERS DESPATCHED POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.
ELEーTRロNICB LTB.
FREEPOST Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778 Telex 965780

Please supply
Total purchase price $\mathbf{£}$
| I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME
ADDRESS

I Signature.

Communications
 8
 Communications Equipment and Systems National Exhibition Centre
 Birmingham England
 15 April - 18 April 1980

AN INVITATION TO

Communications 80, the fith in a series of international expositions dealing with the applications of communications equipment and systems, particularly in the major growth areas of data and business communications which are being
 created by the converging technologies of computing and telecommunications. The other important themes of the exposition are PTT telecommunications, civil fixed and mobile radio and emergency communications.

Communications 80 will attract visitors from all over the world (from 69 countries at the last event in 1978) who will be coming to see the latest developments in communications technology displayed by leading international manufacturers. Many of the visitors will also attend the integral conference, organised by the Institution of Electrical Engineers in association with leading international learned societies, to learn about the latest technical advances in communications equipment and systems.

Communications 80, the world's leading international exposition in the field, is actively supported by the International Telecommunication Union - the world telecommunications authority representing 153 governments; the British government, through the Home Office; the British Post Office; Cable and Wireless Ltd; and the two main UK trade associations - the Electronic Engineering Association and the Telecommunications Engineering and Manufacturing Association.

Please make a note of the dates and venue of Communications 80 - Tuesday 15 April to Friday 18 April, 1980, at the National Exhibition Centre, Birmingham, England.
You cannot afford not to come if you make, use or specify communications equipment and systems.
Communications CD
Please send me details of exhibition \square conference \square

Name
Position
Company
Address

Complete, detach and mail to
Tony Davies Communications
c/o Industrial and Trade Fairs Ltd, Radcliffe House,
Blenheim Court,Solihull, West Midlands B91 2BG, England
Telephone: 0217056707 Telex: 337073

LINES FROM OUR VAST STOCKS NEW STOCKS 8ELOW MA MUFACTURERS' PRICES. Postage \& packing add 50 p per order. CALCULATOR CHIPS General instrument DISPLAYS BY HEWLETT-PACKARD. Seven segment anode hall meh red display, brand new in makers cartons, 6 tor $\mathbf{E 5} .50$ for 70 p ses. 1,000 for $85 p$ TBA 120 A. T.V. I.C. amplrtier Siemens B5p, 10 Tor 65,100 tor $550,1,000$ for $£ 350$. BECKMAN 500 kCE Triggersble oscllhtor for use with calculator chips $5 v$ supply with circuit $£ 1,10$ for $£ 8,100$ for $\mathrm{EB5}$. BURROUGHS A DIGIT Panaplex calculator display 7 segment $0.25^{\prime \prime \prime}$ digits. Neon type with red beerei socket and data $£ 1.95$ ea. 10 for $£ 17$. 100 for E140. HONEXVELi PROXIMITY DETECTOR inte. ea. 10 for $\mathrm{EB}, 100$ for $\mathrm{£70,500}$ for $£ 300$. RCA CA 3089 . F. M. IF $£ 1.50,10$ for $\mathbf{£ 1 2}$. RCA CA3090AO. F.M. decoder E2.50, 10 for £20, 100 for $£ 175$. BU 205 MULLARD. $£ 1.50$ ea, 10 for $£ 12,100$ for $£ 100$. $2 N 3055$ 2 \qquad 100 for $£ 28,500$ for $£ 12 \mathrm{E}, 1,000$ for $£ 200$. BU208 TO3 Texas T.V. Power transistors. $£ 1.75$ MC1310P-SN7E115N F. M. STEREO DE- COOER, E1.20 each, 10 for E1 ea, 100 for $85 p$ MULLARD AD161-AD162 Matched priirs. part 809.10 pairs $₹ 6,100$ pairs E50. Cartons of 600 pairs 15250 EX-STOCK. RADIATION DETECTORS Quartz Fibre O.50R. Originally over $£ 5$ OUR PRICE 95 p CLOCKING OSCILLATOR (Pye.Dynamics). $33 / \times 2^{2 / 4 \times 11 / 4} \mathrm{E2.50}$ ea. io for $\in 20,100$ $E 175,500$ for $E 750,1.000$ for $E 1,250$. E175, 500 for E750, MULLARD TUNER MODULES with data. LP1171 combined AM/FM IF strip $£ 3.50$. 10 pairs for $£ 50,100$ pairs for $£ 400$. CA3085 RCA POSITIVE VARIABLE REG 5 volt 100 m amp variable $1.8-24455 \mathrm{p}$ ea. 10 for EE, 100 for £ $35,1.000$ for E300 MULLARD LP1 57 AM tuner \qquad circuit $£ 2.50$ ea. 10 for $£ 20,100$ for $£ 175$. LUSTRAPHONE RIBSON MIKE $£ 1.50$, + pre amp on chases 3n2nlin. 10 tor $£ 1250$	S - IMMEDIATE DELIVERY PHOTO CONDUCTIVE CELL £1.25. High Resistance 800 ohm to 4 K . Misx volts 240 . Size $11 / 2 x^{1 / 2 u n . ~} 10$ for $£ 11,100$ tor $\mathbb{1} 100$. DYNAMIC MICROPHONE. Low imp. Foster inset. £1.A5, 10 for £11, 100 for $£ 100$. tuning. Size $5 \times 3 \times 2$ in. $£ 3 \mathrm{ea} .10$ for $£ 25,100$ for TWO GANG MINIATUĀE VARICAP TUNER, 500. 10 for $£ 10,100$ for $£ 85$. ATES U 14552 AUDIO I.C. AMPLIFIER 14 PIN D.I.L. 300 m . watts 55 p e8ch, 10 for $£ 4.50$. 100 for $£ 35$. audio chips with circuit \& data £1.95 each. RCA CD 4028 AE 16 pin D.I.L. presertage E50, 1.OOO for £355 (in anti slatic tubes of 25). each. Buit on P.C. board $2 \times 2 \mathrm{in}$ (sold without data), 10 for $£ 4.50,100$ for $£ 35,1,000$ for E250. MARCONI I.C. Oscillator Datil (TO99 can) 30p each io for $£ 2.100$ for $£ 15,1,000$ for $£ 125$. PLESSEV SL432A IC. IF amplifier (TO99 can) $85 p$ each, 10 tor 65,100 for $£ 39,500$ for $£ 150$. V.H.F. MODULATORS for TV games 55 p each. 2 transistor - on built P.C. sizes $2 \times 2 \times 1 / \mathrm{in}, 10$ for $£ 4,100$ for $£ 35,500$ for $£ 150$. R.F. Filters for above modulators $20 p$ each with $\times 1 / / 4 \mathrm{n}, 10$ for $£ 3.50,100$ for $£ 30.500$ for $£ 125$. HIGH VOLAGE TV TRIPLER DIODES aY I.T.T. stick type per $10 £ 1.50$, per $100 \mathrm{£18}$, per ench. ULTRASONIC TRANSDUCERS. E2.95, 10 pairs $E 25,100$ pairs E220. pair
EXPORT ORDERS add 10% for carriage	All mail to: 404 Edgware Road London W2 England Phone 01-723 1008 TELEX 262284. REF 1400.

ASTRA-PAK

92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE
 \section*{BAKER LOUDSPEAKERS}

BSR DE LUXE AUTOCHANGER Plays $12^{\prime \prime \prime} \cdot 10^{\prime \prime}$ or $7^{\prime \prime}$ records.
Auto or Manual. A high quality Auto or Manual. A high quality
unit backed by BSR reliability. Stereo Ceramic Cartridge. AC 200/250V. Size $131 / 2 \cdot 11 / / 4 \mathrm{in}$.
3 speeds. Above motor board 3 speeds. Above motor board with Ceramic Stereo cartridge.

£20. Post $£ 1.60$
HEAVY METAL PLINTHS
Cut out for most
Silver grey finish.
Silver grey finish.
Modé ' A " . ${ }^{2}$ ize $141 / 2 \times 121 / 2 \times 3$ in.
Model "B" Size $16 \times 13^{3 / 4} \times 3$ in
Sies: $141 / 2 \times 121 / 2 \times 41 /$ in $^{5} 5 \mathrm{C}^{2}$

BS
Ideal replacement or disco deck
with cueing device and stereo
ceramic cartridge. 3 speeds.
${ }_{\text {post }} \mathrm{E}_{\mathrm{p}}$

TWO-SPEED BUDGET MODEL E15.

ELAC HI-FI SPEAKER 8in. TWIN CONE Large ceramic magnel
8ass resonance $40 \mathrm{c} /$
8 ohm impedance
10 watts. RMS
$£ 5.95 \mathrm{Po}$
20 watt wooter
£7.95 Post 75p

LOW VOLTAGE POWER PACK for MODELS Ready made. Famous make. Will supply 10 volts D.C. at
400 mA . With erminals and mains lead. $£ 2.75$ Post 50 p

POTENTIOMETERS

With spindles $5 \mathrm{k} \cap$ to 2 2Mn. LOG or LIN.

 \begin{tabular}{l}$5 \mathrm{k} 1 \mathrm{to} 2 \mathrm{Mn}$. . LOG or

$\mathrm{k} / \mathrm{S} 35 \mathrm{p} .0 \mathrm{P} 60 \mathrm{p}$.

\hline
\end{tabular} Steren L/S 85 p .

Edge Pot 5 K . SP Sliders Mono 65 p. 45p. B5p.

MAINS OPERATED SOLID STATE
AM/FM STEREO TUNER

200/240V AC Mains F.M./A.M. Stereo Tuner
Covering M.W., A.M. 540 1605 KHz .
V.H.F., F.M. 88-108MHz Ferite rod derial for M.W fuil AFC and AGC on A.M. and F.M. Stereo Beacon
Indicator. Built-in Pre-amps with variable output adjust control. Max. o/p Voltage 600 mV R.M.S into 20 K . Simulated wide, 4 in . high $\times 91 / 2 \mathrm{in}$. deep approx. Only
$E 28$
RCS SOUND TO LIGHT KIT Mk. 2 E 18 Kit of parts to build a channel sound to light unit
1.000 watts per channel. Suitable for home or disco. Post 50 Easy to build. Full instructions supplied. Cabinet $£ 4.50$ extra: Will operate from 200 MV to 100 wan signal
"MINOR" 10 watt AMPLIFIER KIT $£ 12.50$ This kit is suitable for record players, guitars, tape playback, available: Mono, $£ 12.50$; Stereo, $£ 20$. Post 45 . Specification 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE details. Full instructions supplied. AC mains powered. Input can be modified to suit guitar.
R.C.S. STEREO PRE-AMP KIT, All parts to build this pre-amp Inputs for high, medium or low imp pp
With volume control and P.C. Board
$£ 2.95$ Can be ganged to make multi-way stereo mixers
Post 35 p

MAINS TRANSFORMERS $250.0 .250 \mathrm{~V} 70 \mathrm{~mA}, 6.5 \mathrm{~V} .2 \mathrm{~A}$	$\begin{aligned} \text { LPOST } 75 \mathrm{p} \\ \underline{E 3.45} \end{aligned}$
250.0 .250 V 80 mA . $6.3 \mathrm{~V} 3.5 \mathrm{AF}, 6.3 \mathrm{~V} 1 \mathrm{~A}$,	. 60
$350.0 .300 \mathrm{~V} 100 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{mmp}$	

Model	Size	Power	Type	Our	List
8 or 16 ohms		in	watts		
Major	12	30	Hi-Fi	E 12	£17.25
Dehnee Mk II	12	15	Hi.Fi	¢14	£19.75
Superb	12	30	$\mathrm{Hi}-\mathrm{Fi}$	¢22	£27.60
Auditorium	12	45	$\mathrm{Hi}-\mathrm{Fi}$	E20	£27.60
Auditorium	15	60	$\mathrm{Hi}-\mathrm{Fi}$	£30	£40.25
Group 35	12	40	PA	E12	E17.25
Group 45	12	45	PA	E15	E. 17.25
Group 50	12	60	PA	E20	£26.45
Group 50	15	75	PA	¢ 30	£40.25
Group 75	12	75	PA	E24	£27.60
Group 100	12	100	PA	¢29	£33.35
Group 100	15	100	PA	£35	£40.25
Disco 100	12	100	Disco	£29	£33.35
Disco 100	15	100	Disco	¢35	£40.25

BAKER AMPLIFIERS
for PA Disco. General purpose with built-in mixers and pre-amps.

50 watt 2 inputs 3 outputs
Our price E 63 List pric
 Post £2.00 each.

150 watt 4 inputs 3 outputs OUR PRICE 58 List price $£ 97.75$

LOUDSPEAKERS. FAMOUS MAKES "SPECIAL PRICES"

Make	Post E 1.50 ea				
	Model	Size	Wath	Ohms	Oui
			Power		Price
Seas	Tweeter	4 in round	50	8	¢7.50
Goodmans	Tweeter	$31 / 2 \mathrm{in}$	25	B	£4.00
Audax	Tweeter	square 33/4in square	60	8	£10.50
Seas	Mid-range	4 in	50	B	c7.50
Seas	Mid-range	5 in	80	8	¢10.50
Sous	Mid-range	$41 / 2 \mathrm{in}$	100	8	¢12.50
Goodmans	Full-range	8 in	20	B	¢5.50
Seas	Wooter	8 in	30	8	£14.00
Moscow	Genera!	10 in	30	8	£ 10.50
McKenzie	Oisco-group	15 in	150	$8+16$	¢56.00
Celestion	Disc-group	18 in	100	$8+16$	\$59.00
Selestion	Disco-group	18 n	200	$8+16$	¢69.00

TEAK VENEERED HI-FI SPEAKER CABINETS

 GOODMANS TWIN AXIOM 8 inch dual cone loudspeaker. 8
 ohm, 15 watt hi.fi unit $£ 10.50$
 CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm E1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$, $£ 2.20$.

 :SPECIAL OFFER: 64 ohm, 2 \%in 35 ohm, 3 in $25 \mathrm{ohvm}, 21 / 2 \mathrm{in}$, 3 in. $5 \times 3 \mathrm{in}$.. $7 \times 4 \mathrm{in}$., 8 ohm , $21 / 2 \mathrm{in}$.. 3 inm ., $31 / 2 \mathrm{in}$ 5 in.. 15 otwn. $31 / 2 \mathrm{in}$. dia, $6 \times 4 \mathrm{in}$., 7×4 in.. 5×3 in PHILIPS LOUDSPEAKER,' Bin., 4 ohms, 4 watis, $£ 2.50$. RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in. diameter $4 W £ 2.50$. 10 in. diameter $5 W £ 3.50$; MOTOROLA PIEZO ELECTRIC HORN TWEETER. © 6.50 BLACK PLASTIC CONSTRUCTION BOX with brushed

 GOODMANS RUBBER SURROUND BASS WOOFER Standard 12 in . diameler fixing with magnet. 20 watts R.M.S. 4 ohm imp . 8ass resonance $=30 \mathrm{c.p.s}$ Frequency response $30-8000 \mathrm{c}$. p.s. $€ 9.95$ each Post £1.60

 $32 / 500 \mathrm{~V} 75 \mathrm{p} \quad 16+16 / 450 \mathrm{~V} 50 \mathrm{p} 100+100 / 275 \mathrm{~V} 65 \mathrm{p}$ $50 / 500 \mathrm{~V}$ ¢1. $20 \quad 32+32 / 350 \mathrm{~V}, 50 \mathrm{p} 150+200 / 275 \mathrm{~V} 70 \mathrm{p}$ MANY OTHER ELECTROLYTICS IN STOCK
SHORT WAVE 100 pf air spaced gangable tuner, 95p.
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$. $50 \mathrm{pF}, 5 \mathrm{p}$. $100 \mathrm{pF}, 150 \mathrm{pF}, 15$ CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 p$. Silver Mica 2 to 5000 pF , 5 p . PAPER $350 \mathrm{~V}-0.1 \mathrm{7p} ; 0.5$ 13p; $1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$ 20p; 500 V - 0.001 to $0.0512 p ; 0.115 p ; 0.2525 p ; 0.4735 p$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p SUB-MIN MICRO SWITCH, 25p. Single pole change over TVIN GANG, $385+385$ pF 80p; 500 pF slow motion 75 p . $365+365+25+25 \mathrm{pF}$. Slow mo
NEON PANEL INDICATORS 250 V . Amber or red 30p.
II UMINATED ROCKER SWITCH single pole. Red 65 RESISTORS. 100 to $10 \mathrm{M} .1 / \mathrm{WW}, 1 / 2 \mathrm{IW}$. $1 \mathrm{WW}, 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}$. 10 p . HIGH stability. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 meg., 12p.
Ditm 6%. Preferred values 10 ohms to 10 meg. 5 p .

"'VALVES" mpecied offer sublect to being unsold ¢1 \%a. Poat Free					
6A1116	12K7GT	PCF82	PL84	EBF80	EF80
6 K 8 G	3516GT	PCF86	PY33	ECC83	EM84
607G	954	PCL82	PY80	ECC84	EM85
$6 \mathrm{V6G}$	30PL1	PCLI4 4	PY82	ECF80	EM87
1207 GT	352461	PL81	PY83	ECL80	EY51
$12 \mathrm{K8M}$	PCCB4	PL82	E891	ECL82	EY86
$28 Y 5 \mathrm{G}$	PCCB9	PL83	E8C81	EFA 4	E240

ALUWINUM HEAT SINKS. FINNED TYPE
SIzes $5^{\prime \prime} \times 4^{\prime \prime} \times 1^{\prime \prime} 95 p .6^{1 / 2^{\prime \prime}} \times 2^{\prime \prime} \times 21 / 4^{\prime \prime} 45 p$
JACK PLUGS Mono Plastic 25 p; Metal $30 p$.
JACK PLUGS Mono Plastic 25p; Motal 30p,
JACK PLUGS Stereo Plastic 30p; Motal 35p. JACK SOCKETS Siereo Open 25p; Closed 30p FREE SOCKETS - Cablo end 30p. 2.5 mm and 3.5 mm JACK SOCKETS 15 p . 2.5 mm and 3.5 mm JACK PLUGS 15p DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 10p. Free Sockets 3-pin 5-pin 25p Plugs 3-pin 20p; 5-pin 25p.
FHONO PLUGS and SOCKETS aa. 10 p Free Socket for cable end ea. 15p TV CONVERGENCE POTS 15 p each Values $=5,7,10,20,50,100,200,250,470,2000 \mathrm{ohms}$. MONO PRE-AMPLIFIER. Mains operated solid state pre-amplifier unit designed to complement amplifiers without low level isation on magnetic phono input and N.A.B equalisation for tape heads. Phono sockets for
 $£ 5$

Terknouledgep far

DIY Hi－Fi will never seem the same again．Ambit＇s Mark 111 uner system is electrically \＆ visually superior to all others． Some options available，but the illustrated version with reference series modules： $£ 149.00+£ 22.35$ VAT

With Hyperfi Series modules $£ 185.00+£ 27.75$ VAT

PW SANDBANKS PI METAL LOCATOR Maintaining our prolessional approach to home constructor kits，we offer the pulse induction＇Sandbanks＇．Now with inject． ion moulded casing for greatly improved enviromental sealing． $\mathbf{E 3 7} .00+E 5.55$ vat VHF MONITOR RX WITH PLESSEY IC $4 / 9$ channel version of the PW design but using standard（fund $\times 9$ ）crystals，and TOYO 8 pole crystal filter with matching ransformers Coil sets from our standard range to cover bands from 40 to 200 MHz Complete module kit $£ 31.25^{\circ}+£ 4.6 \dot{8}$ MICROMARKET OSTS overflow： | 6800p | 650 p | 8212 | 230 p | 2102 |
| :--- | :--- | :--- | :--- | :--- |
| 6820 P | 600 p | 8216 | 195 p | 170 |
| 8112 | 340 p | | | |

6810		$2750 p$	8224	$350 p$	2513
8228	$478 p$	$754 p$			

 Precision comstructaon \＆ slesign of all parts Time／frecpuctry display State of the art periormance with lacifities for uplates． using modular plug in systemis．
Deviation level calibrator for recordinge All usual funer teatures

Telephone（0277） 227050
WW－ 080 FOR FURTHER DETAILS

Current news：A PCB for the Mullard DC tone and volume control system is now available $£ 3+0.45$ VAT．HMOS PA modules for $60-100 \mathrm{~W}-\mathrm{kit} £ 14+£ 2.10 \mathrm{VAT}$ ，heatsink $£ 4.10+0.61$ ． Clirrent news：A PCB for the Mulard type $\mathrm{H} 4402 £ 15.50+£ 2.32 \mathrm{VAT}$ ．A further updated pricelist is now available，and we would like to remind you that enquiries can only be answered if accompanied either by an official
business letterhead，or an SAE，STOP PRESS：TOKO＇s new split－apart triple AM tuning diodes are in stock $£ 2.45+37 \mathrm{p}$ VAT，（KV1215）．S BL1 diode DBM $1-500 \mathrm{MHz}-\mathbf{E 4 . 2 5 + 0 . 6 4 p}$ ． business letterhead，or an SAE．STOP PRESS：TOKO＇s new split－apart triple AM tuning diodes are in stock $£ 2.45+37 \mathrm{p}$ VAT，（KV1215）．S BL1 diode DBM $1-500 \mathrm{MHz}$－$£ 4.25+0.64 \mathrm{p}$ ． Terms：CWO please．Account facilities for commercial customers OA．Postage 25p per order．Minimum credit invoice for account customers £10．00．Please follow instructions on VAT，which is usually shown as a separate amount．Overseas customers welcome－please altow for postage etc according to desired shipping method．Access facilities for credit purchases． Catalogues：Ambit．Part $145 p$ ．Part $250 p 90 p$ pair．TOKO Euro shortform 20p．Micrometals toroid cores 40 p ．All inc PP etc．Full data service described in pricelist supplemen Hours／phone：We are open from 9 am .7 pm for phone calls．Callers from 10 m to 7 pm ．Administrative enquines 9 am to 4.30 pm please（not Saturdays）．Saturday service 10 am to 6 pm

ambit
 AMBIT catalogues－are guaranteed to contain the most up to date and best informed comment modern developments and advances in the field of radio and audio．There is no competetive publication that even approaches the broad range of parts／information on modern techniques．

2 GreshamRoad，Brentwand，Esser．

COMPONENTS FOR RADIO／COMMUNICATIONS／AUDIO／TV EIC． As usuat，Ambit brings you the latest and best，a smalt selection of which is sho in this advertisement．The Ambit eatalogues contain information on most of the
devicess mentioned here－and an order for the new part three will ensure you stay devices mentioned here－and an order for the new part three will ensure you stay up

with latest developments．Date photoccopino service described In pricelist info． RADIO ICs for FM vat SL1600 series \begin{tabular}{lll|ll}
RA 3089 E \& 1.94 \& 29 \& SL． 1610 \& 1.60

CA3189E \& 2.45 \& 37

HA \& 37137 W \& 2.40

\hline

 $\begin{array}{lll}\text { HA } 1137 \mathrm{~W} & 2.20 & 33\end{array}$ $\begin{array}{lll}\text { HA11225 } & 2.20 & 33 \\ \text { SN76660N } & 0.75 & 11\end{array}$ $\begin{array}{lll}\text { SN76660N } 0.75 & 11 \\ \text { RADIO ICs for AM／FM }\end{array}$ $\begin{array}{lll}\text { RADI } 1090 & 3.35 & 50\end{array}$

TDA1090 \& 3.35 \& 50

TDA1083 \& 1.95 \& 29

\hline
\end{tabular} $\begin{array}{lrl}\text { TDA1220 } & 9.40 & 21 \\ & \end{array}$ IF AMPLIFIERS $\begin{array}{lll}\text { KB4406 } & 0.50 & 07 \\ \text { MC1350 } & 1.20 & 18\end{array}$ MC1350 1.20

see comms ics also COMMUNICATIONS $\begin{array}{ll}\text { KB4412 } & 2.55 \quad 38\end{array}$ | | | |
| :--- | :--- | :--- |
| KB4413 | 2.55 | 38 |
| | 275 | 41 | $\begin{array}{llll} \\ 506000 & 3.75 & 56\end{array}$

\qquad | LM381N | 1.81 | 27 | 言 |
| :--- | :--- | :--- | :--- |
| LM382N | 1.65 | 25 | |
| KB4436 | 2.53 | 38 | O． |
| K | | | |
| K | | | | SL． 1610

SL1611

SL1612 $\begin{array}{ll}\text { SL1613 } & 1.89 \\ \text { SL1620 } & 2.17\end{array}$ $\begin{array}{ll}\text { SL1621 } & 2.17 \\ \text { SL1621 } & 2.17\end{array}$ $\begin{array}{ll}\text { SL } 1623 & 2.44 \\ \text { SL } 624 & 3.28\end{array}$ SL1 | SL |
| :--- |
| SL16 |
| SLI6 |
| SL16 |
| SL16 |
| |
| | SL1

SL1
SL6 SL1640
SL1641
SL
S640 $\begin{array}{ll}\text { SL6640 } & 1.89 \\ \text { SL6690 } & 3.75\end{array}$ $\begin{array}{ll}\text { SL6690 } & 3.20 \\ \text { MC3357 } & 3.12\end{array}$ $\begin{array}{llll}\text { MC3357 } & 3.12 & 47 \\ \text { MC1496 } & 1.25 & 19 \\ \text { NE544 } & & & \end{array}$ KB4436
KB4438 KB4438
TDA1028
TDA1029 TDA1028 TDA1074 Audlo powe TBA820M TBAB10AS LM380N
ULN2283
TDA 2002 TOA2002 HA1370 $\begin{array}{lrr}\text { TDET } & 2.99 & 45 \\ \text { FET MOSFETS } & 45\end{array}$ FETs，MOSFETs，bipolars．
and various others see要要
FOR 30.200 MHz
20% of the centre Irequancyl in the range described．Details in our price list．
$\frac{\text { FOR FM Ifs at } 10.7 \mathrm{MHz}}{7030}$
7130 single 6 pole linear phase fiker if with HA1137\＆ 10.95 ＊ 1.64 VAT 7230 two 6 pole linoar phase filter IF with CA3189E $£ 16.25+2.44$ VAT DECODERS for MPX（STEREO）

LARSHOLT FM TUNERSET
7252 MOSFET front end combined with CA3089 IF £26．50 +3.97 VAT 7252 JFET front end，comblne，s with if and decoder e26．50＋3．97VAT internatianal

scopefor recording
 The use of a Fibre Optic Recorder in the unique Raster mode with wideband brilliance modulation allows digital data to be recorded in an ideal format for visual inspection．
 Typically a test word would be transmitted through a system with the output digital data applied as brilliance modulation to the FOR． The word marker triggers the timebase which would be adjusted to cover one word across the paper The paper speed is adjustable to just separate successive words，thus producing a uniform pattern on a regular signal from a perfect system． Disturbances due to data change， errors and drop－outs are very
 obvious．Resolution and bandwidth are adequate to resolve 265 bit words at 9600 bands．
 Medelec Fibre Optic Recorders are also used for research and development in Video Imaging， Noise and Vibration，Transients and many other fields．
 and many other fields．
 Digital Data th

The 14D-15 is the very latest addition to the Scopex range of brilliantly engineered, easy to use oscilloscopes.

Here's what it offers:-

- Large screen $10 \mathrm{~cm} \times 8 \mathrm{~cm}$
- Triggers on channels 1 and 2
- $2 \mathrm{mV}-10 \mathrm{~V}$ DIV sensitivity
- 3\% accurccy - a Scopex speciality
- DC-15 MHz bandwidth over the entire screen
- Probe test output
- Wide time base range
- Switched mode power supply

Plus a host of well throught-out additional facilities,
free delivery in the UK mainland and a very good price of £280 plus VAT.

Trust Scopex to get it right.

COPEX

Pixmore Avenue, Letchworth, Herts. SG6 1 JJ
Telephone: 0462672771.

J. L. Linsley-Hood High Quality Cassette Recorders

LINSLEY-HOOD CASSETTE RECORDER 1

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include: High quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record/play head, available separately at $\begin{aligned} & \text { complete kit at } £ 1.50 \text { plus VAT }\end{aligned}$
REPRINTS of the 3 articles describing this design 45 p No VAT
REPRINT of Postscript article 30p No VAT.

VFL 910 . Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hood Cassette Recorder $2 . £ 31.99$ + VAT. Set of knobs $£ 1.46+$ VAT.

LENCO CASSETTE MECHANISMS

We hold stocks of a range of Lenco tape transports for all uses, we can also supply spare parts. For example:
CRV Motors complete $£ 4.00$ plus VAT.
CRV Drive Belts 90p plus VAT

CASSETTE HEADS

A large range of cassette heads for domestic, industrial and audio visual purposes is available from us. The very best stereo head that we can find is our HS 15 Sendust Alloy Super Head. This has an even better high frequency response than our HS 14 Alloy Super Head. This has an even better high frequency response than our HS 14
which it replaces. Unlike cheaper and ferrite types this excellent high frequency performance is combined with a high output, thus maintaining the best possible - signal to noise ratio. Price $£ 7.60$ plus VAT

4-TRACK Record/play head. Scans all 4 tracks on cassette tape. Suitable for auto-reverse mechanisms, film sync, quadrophonics and many other purposes. Standard impedance $£ 7.40$ plus VAT.
Full details of these and other heads are in our lists.
ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and price breakdowns.
HART ELECTRONICS

LINSLEY HOOD CASSETTE RECORDER 2

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1.
This latest version has the following extra features. Ultra low wow-and-flutter of $.09 \%$ - easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do not have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest $£ 94.90+$ VAT we ask for the complete kit.

SUPER BARGAIN OFFER LENCO FFR CASSETTE DECK

For those who missed our recent bargain CT4s we now are delighted to be able to offer Brand New Lenco FFR Decks complete with motor speed and auto-stop control board fitted and tested. These will operate with any supply between 9 and 16 volts. This deck can be used for both record and playback applications and is fitted with an erase head. A mono record/play head is fitted and we can supply an extra stereo head, if ordered with the deck at the very special price of £2 plus VAT. We also supply, with each deck and completely FREE, one of our specially moulded escutcheons. This deck would normally cost about $£ 25$ but we are able to offer them, while they last, at only £9.99 plus VAT.

BAILEY 30 WATT AMPLIFIER

We have now completed our redesign of this popular amplifier to make it as easy to build as our latest kits. The power amplifiers are complete modules plugging into a power supply master board, all possible wiring has meen eliminated but faith has been maintained with the existing metal maintained with the existing metal
work to enable owners to update if work to enable owners to update if
they wish. Send for full details in our they
list.

COME AND SEE US ON STANDS C9 \& C10 AT BREADBOARD' 79

Penylan Mill, Oswestry, Salop
but please note we are closed all day Saturday

Instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894 Telex: 35661 Hartel G

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.
Full training courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, CRO2XX
 01-684 1422, 01-689 8741

PPM2: PEAK PROGRAMME METERS

Approved by broadcasting authorities in the U.K. and overseas for critical programme monitoring.
Reviewed Studio Souna September. 1976. Meets IEC268.10A. draft BS5428.9

- Reviewad Studio Sound September. 1976. Meets IEC268.10A. draft BS5428.9. adjustment is retained to allow compensation for the tolerance in scale markings between meter manufacturers and different meters from the same maker
- Decay matching of all boards allows use with twin movements without pairing
* Flat frequency response at all PPM marks and also below minimum calibration point. - Gold plated connector and floating input protected against mains or static voltages on the signal lines. Supply input protected against reverse polarity. Close tolerance components with excellent temperature and ageing characteristics used throughout.
Soak tested boards. Ernest Turner meter movements 640, 642, 643, and TWIN flush mounting adaptors and illumination kits from slock. Scalings available $1 / 7$ CCITT recommendation N15 (1972) but mot recom used by End conf EBU io measuring instruments.
Stereo Disc Amplifier 2 * 10 Outlei Distribution Amplifier 2 \& Stabilızer *Peak Deviation
Meter * Char Recorders.
SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh, Surrey Gu6 7BG. Tel: (04866) 5997

SEMICONDUCTORS

 	 －0who－000000000－0000000000000000030000
 	 －－－0－000000－H－1－7－00000000000000000000

BF257	0.28
BF258	0.30
BF259	0.37
${ }_{\text {BFF336 }}^{\text {BF3 }}$	${ }_{0.35}^{0.35}$
${ }_{\text {BF338 }}$	0.36
日FS21	4.55
日FS28	2.56
${ }^{\text {日FS61 }}$	023
Brsse	0.23
${ }_{\text {BFW11 }}$	0.74 0.74
bFXS4	0.25
BFX85	0.26
${ }_{\text {BFF }}$	0.24
	0.24 0.30
BFY51	0.30
${ }_{\text {BFY5 }}$	－ 0.30
${ }_{\text {BFY }}^{\text {BFS }}$	0.30
BSx19	0.24
BSX20	0.23
${ }_{\text {BSX21 }}$	${ }^{0.23}$
	${ }_{8}^{1.44}$
	3.67
BU205	${ }^{2.02}$
BU206	${ }_{2}^{2.59}$
${ }^{\text {BU208 }}$	230
BY100 BYI26	0.52
${ }_{\text {BY127 }}$	${ }_{0} 0.17$
B2x61	0.21
Senies	
${ }^{\text {B2Y }} 88$	0.15
${ }_{\text {Creses }}$	
CRS1／40	0.69
CRS3／06	${ }^{0.52}$

CRS3 60	1.04	0
Cif．${ }_{\text {G } 66}$	1.73	0
GEXJT1	4.611	
GJ3M	0.86	
GM0378A	2.02	
KS100A	0.52	
MJE340	0.92	
MJE370	1.35	
M．${ }^{\text {P }}$ 371	0.71	
MJE 520	0.60	
MJE521	0.63	
MJE 2955	1.44	
MJE3035	0.86	
MPF 102	0.35	
MPF103	0.35	
MPF 104	0.35	
MPF105	0.35	
MPSAOS	0.28	
MPSA56	0.30	
MPSU01	0.41	
MPSU06	0.53	
MPSU56	0.56	
NES5S	0.52	
NKT401	2.30	
NKT403	1.99	
NKT404	1.99	0
OA5	1．09．	
OA7	0.63	0
OAl0	0.74	0
OA47	0.16	0
OA70	0.35	O
OA79	0.35	O
OA81	0.35	0
OA85	0.35	，
OA90	0.09	0
OA91	0.09	
OA\％	0.09	
OA200	0.10	
OA302	0.10	
OA231	1.15	O
OAZ 200	1.15	

Series		OAqs	0.09	0 C 170	1.15
CRS1／40	0.69	OA200	0.10	0 Cl 171	1.15
CRS3／06	0.52	OA 302	0.10	OC200	1.73
CRS3／40	0.8	OA211	1.15	0×201	2.02
		OAZ 200	1.15	（1）202	2.02
PC97	1.38 1.38 1.5	QY		UY41 UY85	1.4

 ᄃ〔G

$$
\begin{array}{lll}
\text { VCR138A } & 14.38 \\
\text { VCR19A }
\end{array}
$$

$$
\begin{aligned}
& \text { VCR139A } 8.20 \\
& \text { VCR517A } 1.50
\end{aligned}
$$

$$
\begin{aligned}
& \text { VCR55178 } \\
& \text { VCR50 } \\
& \text { VCR } 5178 \\
& \hline 1.50
\end{aligned}
$$

INTEGRATED CIRCUITS

 Q

2N1308	0.63		
6EB8	$\begin{aligned} & 2.44 \\ & \hline \end{aligned}$	$12 E 14$	34.50

0.16
23.12

Tested
$\substack{\text { Ex－Equipment } \\ \text { C } \times 250 \mathrm{~B} \\ 5.75}$

Torms of business：CWO．Poztage and packing valves and semiconductors 30p per order．CRTs 81 ．All prices include VAT．

[^5]Telephone 01－6772424／7
Telex 946708

DISPLAY ELECTRONICS

Would like to wish all their customers and business associates a Very
Merry Christmas and Prosperous New Year

Dept. W.W., 64.66 Melfort Rd., Thornton Heath, Surrey. Telephone: 01-689 7702

$\sqrt{A} \sqrt{5}$					Minimum Order $£ 1.00$			VALVES VAT IS INCLUDED			
${ }^{\text {A } 1065}$		EH90	0.80		0.75	1 A3	0.70	$6 F 12$		1963	1.50
A109	8.50	(132	1.10		1.60	114	20	6F14	0.90		${ }_{690}$
A2900	B.00		1.75		1.50	185	0.65	${ }^{6 F 515}$	1.35		
	0.75				${ }_{3.65}$	154					
						155					
					3.15						
E188											
	${ }^{3.95}$	EY	. 65	-0		${ }_{5}^{53} 36$. 80		0.80		25
		Ez81	0.70								
	0.65				4.50	524 GT	0.90	65			
				SCL/600							0.85
				π	11.8		0.7				
					1.15						
					1.00		0.60		1.10	76	0.95
	${ }^{1.05}$	M H 4	1.15	427	${ }^{1.15}$	${ }^{\text {6A }}$	${ }_{0}^{0.50}$		0.75		
	0.60	N78	10.45	4281	0.65		3.25				
							130				
				U600	11.50						
ECC	0.65	PABC	${ }_{0.60}$	U801	0.90	${ }_{6 A}$	6.20	906	0.85	85	6.95
				UBC			0.9	100			
											30
									1.20		
${ }_{\text {ECCH}}$	0.60					6at6	0.85	1112	12.40	${ }^{832 A}$	5.20
	0.55	${ }^{\text {PCCO}}$		Ubr89	0.6	${ }^{64}$					
											2.00
ECH3	1.70	PCC	0.75	UCCB	0.75	6AX	1.15	12 A			
	0.95				0.80				0.80	${ }_{956}$	${ }^{0.760}$
ECH8	50				0.90	${ }^{\text {6BAE }}$	0.50	12 A	0.65	957	1.05
	1.20 0.70	${ }_{\text {PCFF86 }}$		CH8						1625	
	0.85				0.90						
	140						1.25	12 Cl	0.65	5763	4.0
EO	07			UL41				1215	0.55	593	3.50
${ }_{\text {EF }}^{\text {EF }}$	3.40 1,70	${ }_{\text {PCFF }}$		บ18	${ }^{0.75}$		5.18				
EFA1	0.85	PC181	0.70	Wr85	0.60	${ }_{6} 6$	7.50	$12 \mathrm{SH7}$	${ }^{0} 8$	6067	
				VR105/30	2			12517	0.6	6080	4.90
		${ }^{\text {PCLI84 }}$		VR150/30	1		1.15	12507	0.85		4.95
EFFer		805					0.85	${ }^{1234}$	0.5	${ }^{61468}$	5.20
		PC1805/8		(661M				1457			
EF92	0.85	P0500	4.35			${ }^{6 F \mathrm{Fb}}$. 85	79405	+1.50	68570	${ }_{14.00}^{6.60}$
${ }_{\text {EFF }}^{\text {Ef } 183}$				2800			P	A		VES	
		82		3830	. 90	4 CX	1000a	YL 1430		R 189	
Efl200	0.95			00t	. 55	4 Cx	5000A	YL. 1440		V6131	
VIDECON TUBE TYPE P863								cxu 6		gu 2	
								CVI597		-50	
	Englis	Elect	ric -	20		DM 2				85/55	
VALVES AND TRANSISTORS								4 CX 1		M1L 5948/	
Telephone enquiries for valves, rransistors elc retal7993934 rade and expori 74308999						INTEGRATED CIRCUITS					
PRICES MAY VARY						10	1 N	SN74173N	0.38	SN76033	N 1.95
							0.3	SN7485N	0.95		
							0.48	SN7425N	1.10	MC14511	BA 2.95
TELUROM LOW RESISTAMCE HEADPHONES TYPE CLS $\mathbf{5 1 . 5 0}$. 40p postage. VAT 15%.						SN5440	1N 0.29	SN7491AN SN74123N	${ }^{0.32}$	${ }^{\text {B17 }} 782 \mathrm{AL}$	
40p postage. VAT 15% \%COWTINUANCE TELEPHONE DRUM YC00433						SN7408	0.18	OM74123n	N 0.38	мCM6810	DAP 3.
HIGH VACUUM VARIABLE CAPACITORS - cer. amic envelopes - UC $1000 \mathrm{~A} / 20 / 150=$ VMMHC $100060 \cdot 1000$ \& $20 \mathrm{kv} \cdot 150 \mathrm{~A}$ RF max $=27 \mathrm{MHz}$						- SN7444	P 0.85	N1560	-0.26	340	${ }^{3}$
							5 0.18	SN76003N	N 1.80	Mic936.5	
$900060 \cdot 1000$, $20 \mathrm{kv} \cdot 1504$ ar $\max =27 \mathrm{MHz}$ TEST SET FT 2 for testing Transcelvers A40. A41, A42 and CPRC26						-36 AE	hial ma	STS consis			
						21/" dia Complere with all accessories to erect and					
UNIVERSAL WIRELESSTRAINING SET No 1 MK 2 YA ${ }^{2} 316$ to train 32 operators sumultaneously on key											
and phone Complete installation consists of 3 kis packed in 3 special iransit cases \qquad											
						on request. For export only POSTAGE: $£ 1-£ 3$ 30p; £3-£5 40p: $£ 5-£ 1045$ p: over $£ 10$ free					
harmess "A" \& " B " CONTROL UNITS "A" "R" "J1" "J2," Mrcrophones No 5, 6, 7 connectiors. trames, carrier sets etc DRUM CABLE COntinuous connection YC 00433											
COLOMOR						Tel. 01-743 0899					
						Open monday to Friday$9-12.30,1.30-5.30 \mathrm{p} . \mathrm{m} \text {. }$					
170 Goldhawk Rd., London W. 12											

HI-FI TONE ARM BARGAINS
 -from Britain's Leading Audio Store

The superb 3.77 is the only choice in compact professional recorders.

Who says?

Hundreds of satisfied professional users - Broadcast authorities, studios, record companies,
universities etc etc.

What makes it the best?

The 3.77 provides more performance and features for your $£$ than any other model. Like 3 speeds, flat metal facia with excellent editing facilities, 100% variable speed control, logic control with motion sensing, line-up oscillator.
\}

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497. Telex: 21879 A. Marshal (London) Ltd., Kingsgare House, Kingsgate Place, London NW6 4TA. Tel: 01-624 0805 Tolex: 21492.
Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel:01-452 0161/2 ALSO 325 Edgware Road, W2. Tel:01-723 4242 Glasgow: 85 West Regent Street, G2 200. Tel: 041-3324133 AND Bristol: 108A Stoke's Croft, Bristol. Tel: 0272 426801/2.

ROHDE \& SCHWARZ

TV.Demodulator. AMF 55.90 MHz Selective UHF V/Meter. Bands $4 \& 5$. USVF Selectomat Volimeter USWV. E450. UHF Sig. Gen type SDR 0.3 .1 GHz . $£ 750$. Polyskop SWO B I. E450.
Videoskop SWOF with sideband adapter. Modulator/Demodulator BN17950/2. -Video Tesı Signal Generator type SPF. UHF Sig. Gen. type SCR. $1=1.9 \mathrm{GHz}$.

MARCONI

TF2360R TV Transmirter Sideband Analyser. TM6936R UHF Converter for above. TF 109920 MHz sweep géner TF 1041 B Valve Voltmeter $£ 65$. TF1 $152 \mathrm{~A} / 1$. Power meter. 25 W . 500 MHz . $£ 75$. IF 1020A Power Meter. 100 W .250 MHz .685 . TF890A/1 RF Test Set. $£ 395$
TF 1400 Pulse Generator $\mathbf{£ 6 5}$
TF675F Pulse Generator
TF $8018 / 35$ Signal Generator. $£ 550$

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.) Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.
Wandel \& Gotterman Equipment
Level Meter $0.2-1600 \mathrm{KHz}$
Level Oscillator $0.2-1600 \mathrm{KHz}$
Level Transmitter 0.3-1350KHz
Carrier Frequency Level Meter

ADVANCE CONSTANT VOLTAGE
 TRANSFORMERS
 Input 190-260V AC. Output constant
 220 Volts. $250 \mathrm{~W} . £ 25$. ($£ 2$ carriage)

PYE RESISTANCE BOXES

5 decade resistance boxes measuring from
11.111 ohra to 0.001 ohm

LABORATORY OVENS. - Gallenkamp, 3 cu. fr. £145. Also Morgan Grundy $1 \mathrm{cu} . \mathrm{ft}$. $£ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. $£ 2.50$ each ($+25 \rho \mathrm{pp}$). Type 316 three pole plugs for above $\mathbf{- 2 0 p}$ ea. ($p \mathrm{p}$ free).

AIRMEC Display oscillosciope. 4 beam.
AIRMEC 314 A Voltmeter. 300 miV (FSD) -300 V
BRANDENBURG EHT Generator. 50 KV .1 mA
DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc.
GAUMONT KALEE Flutter Meter
GERTSCH Frequency Meter and Dev Meter. $20-1000 \mathrm{MHz}$ E350.
HEWLETT PACKARD 302A Wave Analyser
HEWLETT PACKARD 695A Sweep Oscillator £350. BOONTON 202H AM / FM Signal Generator BOONTON Model 80 Sig. Gen. 2-400MHz $£ 95$. RACAL type 801 R. 100 mHz Digital Frequency Counter TELETYPE KSR. One remaining.
SOLARTRON LM 1420.2. DVM. 6 ranges to 1 KV . MUIRHEAD type K-134-A Wave Analyser. Portable. RADIOMETER AFM/1. Dev/Mod Meter. $3.5-320 \mathrm{MHz}$. £185. TAYLOR Model 62A AM/FM Signal Generators. £85. WEINSHEL Power supply Modulator type MO3 BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018 BRUEL \& KJOER Frequency analyser 2105 BRUEL \& KJOER Microphone amplifier $2603 £ 195$. BRUEL \& KJOER Type 3301 Automatic frequency response recorder 200 Hz . $£ 750$.
MUIRHEAD-PAMETRADA D489EM Wave Analyser
TEKTRONIX 555 scope with plug-ins types CA (2 off), 21, 22 TEKTRONIX 515A Oscilloscope
TEKTRONIX 545 main frames. £210. Choice of plug-in units extra
TEKTRONIX 585A oscilloscope with ' 82 P.I. DC-80 MHz NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most isems carry our three months' guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries welcome. PLEASE ADD 15\% VAT TO ALL PRICES

DC POWER SUPPLIES

'APT 10459/8 12-14V. 5 Amps. £25. (+£1 pp).
APT 10459/8. 24V. 5 Amps. £25. (+£1 pp) -APT Your voltage requirements from 6 V to 36V.@ 5 Amps. £25. $1+£_{1} \mathrm{pp}$).
-Mullard Dual supplies. Brand new with hand book. Pos \& Neg 12 V at 1 A and 0.4 A resp Dims $9 \times 4 \times 5 \mathrm{in}$. $£ 10 .(+£ 1 \mathrm{pp})$.
LAMBDA Brand new with book. 5V.4A. (110 AC Input through, so) ONLY $£ 10.1+£ 1$ pp). $7 \times 5 \times 4 \mathrm{in}$. Following range availab. 5 Volts @ 3 Amps. $13-17$ Volts @ 2 Amps 30 Volts @ 1 Amp. Price only $£ 15$. ($+£ 1$ pp). All the above power supply units are 230 V . AC input (except Lambda type) and are stabilised and regulated and fused. All are fully tested before despatch and guaranteed in first class order throughout. As with all our equipment. there is a money back guarantee.

MODULATION METERS

AIRMEC $2103-300 \mathrm{MHz}$. AM /FM
RADIOMETER AFM/1 $3.5-320 \mathrm{MHz}$. AM/FM RACAL $4093-600 \mathrm{MHz}$. AM /FM.

'CENTAUR' INSTRUMENT COOLING FANS

Made by Rotron Holland. These are very high

 quality, quiet running fans, specially designed for the cooling of all types of electronic equip ment. Measures $4.5 \times 4.5 \times 1.5 \mathrm{in}$. 115 VAC . 11 Watts. The list price of these is over $£ 10$ each. Also 230 V . AC available. 15 V . £ $\mathbf{4 . 5 0}$. (postage 25p). 230V £5.Finger guards for above - 50p each. Also small type Papst fans as above measuring $8 \times 8 \times 3.8 \mathrm{cms} .26 \mathrm{cu} . \mathrm{ft} / \mathrm{min} .110 \mathrm{~V}$ only E 4.00 (PP 25p). RS price for all these fans are now around £12.50 each!!

OLIVETTI PRINTER \&
KEYBOARD type Te 300
with PUNCH \& READER. Upper case ASCII with V24 Interface. 240

£125 each

TELETYPES KSR33

Upper case ASCII with 20MA Loop. This is a printer with Keyboard (no Punch or Reader on this model).
£225 each
BRUEL \& KJOER EQUIPMENT
AUDIO FREOUENCY SPECTOMETER tyPe $2112 £ 175$ aa. BEAT FREQUENCY OSCILLATOR type 1013 £140 BEAT FREQUENCY OSCILLATOR TYPE $1014 £ 140$ BEAT FREQUENCY OSCILLATOR type 1022 £140 AUTOMATIC VIBRATION EXCITER CONTROL IYPe $1018 £ 90$ AUTOMATIC VIBRATION EXCITER CONTROL EyPe 1019 £90 AUTOMATIC VIBRATION EXCITER CONTROL IYPe 1016 £90

TRANSISTOR INVERTOR $115 \mathrm{~V} 50 / 60 \mathrm{HZ}$ INPUT
These run at 20 KHZ . They can be modified to be a switching power supply or to provide EHT for VDU, Oscilloscopes, etc. or the output core could be rewound to provide any
vohage/current within the units rating. As supplied they have multiple outputs. A schematlc is provided. Size $31 / 2 \times 4 \times 81 / 0^{*}$. All units are tested before dispatch. £3.25. P\&P £1.50.

INFRA RED IMAGE
CONVERTER type 9606 (CV 144)
$13 / 4 \times 2^{\prime \prime}$ diameter. Requires single low current 3 KV to 6 KV supply. Individually boxed. With data
£12.50 each P\&P 75p.
Infra Red Lamps also advertised
HONEYWELL VDU
1920 Character Upper Case ASCII. With edit and block transmission.
Limited quantity with data.
NEW LOW PRICE $£ 200$ each
POLARAD SPECTRUM ANALYSER
$5^{\prime \prime}$ Display. These are supplied with STU 2 plug-in. 1 to 4.5 GHZ $£ 125$ each.

MARCONI SPECTRUM ANALYSER Type TF 1094
 This gigantic but superb analyser covers from 100 HZ to 30 MHZ with a

6 HZ resolution. $5^{\text {" }}$ display. Complete with trolley £75 each.

CROWN replacement MOTOR for IBM GOLFBALL TYPEWRITERS. BALL TYPEWRITERS. 115 volt $50 \mathrm{HZ} \quad 1350 \mathrm{rpm}$
$£ 4.50$ each P\&P $£ 1.50$.

STEPPING MOTORS

$6 / 12$ position with additional where the rotor
is coils. Device can be used as a tacho. Diagram is coils. Device can be used as a tacho. Diagram
supplied. Will actually work on 5 volts. 12/24 recommended.
recommended.
$£ 1.50$ each P\&P 75 p or 5 for $£ 5$ P\&P $£ 1.50$.

ex.maval ati dia steel oishes new crateo. it deep al centre. These are plain steel dish
oplons. $£ 22.50$ os. Camtage $£ 4$

LSTS AVAILABLE - WRITE OR PMONE.

```
TRANSFORMERS
Secondary outputs.
3440V O.66A with matching 40M Choke & 30, the pair
5V 0-20.30.40.50-60V 40 Amps c20. 5kV 300MA &15,
12KV 30MA E20.
12RV SOMA E20. 
lol
18KV 30MA CEO.
22.5KV 110MA E50 ea.
Input 200V 50H2 Sec 100KV 0.05 E150,
MULTI PURPOSE MAINS TRANSFORMER 4 windings each
muning O-10-110-125 at 4 8A E15 ea,
24OV a Y/zratng E15 ea, IRANSFORMER. InPut 220. 250V 
50Hz Ouput 115V 1.8 K
COnservaively ra
l
2mfd 5KV E4 өa.
0.5muld 5KV EA ea. discharge £10 eз
0.5mid 1OKV E4 ea.
8. mid 2.5KV £4 ea.
```

INFRA RED QUARTZ LAMPS. 230V 620 Watts. Size $131^{\prime \prime}$
INFRA RED QUARTZ
1/" dia. E1. 50. P\&P 50 p
1/" dia. E1.50. P\&P 50 p .
BRIOGE RECTFIER. 2 AMp 50 p ea.
PHOTODIOOE DETECTOR $4^{\prime \prime}$ fiy leads. $25 p$ ee
A SUPERIOR KE YBOARD. Size $3 \times 25 \times 2=2$ migh with 12
One black. NOW EA. We. P\&P 75p.
AMPMENOL. 17 .way chassis mount odge connectors 0.1
AMPMENOL. 17 .way Chassis mount dige connectors 0.1
SDACing. 15p
I.E.C Standard MAINS LEA D. Moulded (3 venical flat pins centre
ofiser) $60 p$ en P8P 50 p
FANS, 115 V 13 Watts. Sizo $31 / 4 \times 31 / 4 \times 11 / 2^{2 \prime}$ BRAND NEW.
E4.50*. Secondh and $\mathrm{E2} .50$ ea PRP 75 p .
MOTOROLA REGULATORS, ype 781212 V 1 amp $65 p$ ea.
Miniature MOTORS 12 V with geared wheel (8 ieeth $3 / 16^{\prime \prime}$ dia).
Miniature Morors 12 V with geared wheel (8 feeth $3 / 16^{\prime \prime}$ dia).
Size $11 / 4 \times 2 / /^{\prime \prime}$ dia New 30 pes.
Slae
Moror 12 V DC with pulley and integral semic.onductor Speed
Control New $£ 1$. SPQ 50 .
Control New E1 P\&P 50p.
LEDEX ROTARY SOLENOIDS, 115 V DC. No switch assembly,
15P ©e.
DIAMON H CONTROLS ROTARY SWITCH. Single pole
DIAMOND H CONTROLS ROTAAYY SW
10 way Printed Circevi Mount. New 10p ea.
DELAY LINE. 50 nanosecs. 3 connections. ground-in-out. Size
$2 \times 7 / 16 \times 16^{\prime \prime}$. Now 25 DEP .
PULSE THANSFFRMER. Sub min. Suze $\mathrm{K} \times 5 / 16 \times 1 / \mathrm{a}^{\circ}$
Secondary centre rapped. New 20 p as.
MICROSWITCH. V3 syle. Button 250 V 6 A .15 p aco
MOTOM by Inland Molor CIorp. DC High Torpue. Reversible.
Usable torque aI $5 V$ M Max voltage. $24 V$ H2.50 Torque. Reversible.
REMO TV TVPE MULTIPLIER. Two high voliage outpuis and
YOCUS CY TAM PEP $£ 1$.
OONT TAKE CHANCES. Use the proper EHT CABLE, $10 p$ por
motor by Eastern Arr Devices lici 125 V reversible with foothed

PHOTOGRAPHIC LAMPS. Peal 230 V 500 watl Screw cap
7Sp EO Box of 12 E5.50 P\&P E1.50.
Decoupling CAPACITOAS 005 midd 10 V Size $0.25^{\prime \prime}$ beiween

reads "/"height 0.01 mfd. Sure $5 / 16^{\prime \prime}$ between leads. $x^{\prime \prime}$ rerght.
100 for E1. P\&P 50 p .
MYSTERY 1 C PACK.
dYSTERY IC PACK. Some 40 pin - good inlxture - all new
devices 25 ICe for $£ 9$. P\&P 50 . You find oul what they are and
We will buy the information from you.
SUPERE $18^{\prime \prime}$ RACK CABINET. Approx $4^{\prime} 6^{\prime \prime}$ high $\times 33^{\prime \prime}$ deep.
Instrument front panel position can be adjusted. Chocolate colour
noticeable. E35 mech. Carr [4.
VACUUMM PUMMPS - TRAPS. ETC. Send for lint
10Way Mult Colour Ribbon Cable New 40 p , per metre. P\&P
 GEC UHF 4 bution tuner. E2. 50 each. PRP 85 .
BIG INCH Mosor 110 AC 3 rom 50 cycle. Very BIG INCH Mosor 110 V AC 3 rpm 50 evcle. Very small 50 p each. PgP 50 D.
CENTAUR
 EX-USED Equipment, Iesied 60 p eoch. P\&P 75p.
POTTER \& BRUMFIELD TIMER RELAY, 115 V duty. 7 pole c / s with 2 second delay Charge R \& C for differen timing 50p emch. P\&P 85p.
CONTRACTORS. Heavy Duty 2 AV DC 5 brake $\mathcal{C 1}$ each P\&P GPC. UHF/VHF 6 button tuner $\mathbb{\text { E4. }} 50$ eoch. P\&P $£ 1$
DIGITAL 24 HOUR CLOCK with built-rn alarm as used in Braun Digital clocks. Silent running Large illuminated numerals.
mains S Size $612 \times 21 / 4 \times 2^{1 / 4^{\circ \prime}}$ ONLY E3.75 oech. P 8 AP 50 p . $531 A$ PHOTO MULTIPLIER in stainless steel containe
 knob. Lengih $313^{\prime \prime} .25 \mathrm{p}$ each. P \& P 25 p .
RANCO 250 V I8A THERMOSTATS with Comirol knobs calibroted $50-200$ degree F. 2.50 ench. P $\&$ P E1.
SOLID STATE UMF TUNERS. 30 acs E1 aech. P\&P 750
BRAND REX blue wre wraps. 30 metres for E1. P\&, 750 5 in SOLID RUBBER RINGS $1^{\prime \prime \prime}$ dia. rubberl. Keep the kids (or
dog) happy. 4 for E1. P\&P E1 25. TRANSFORMERS
AUTO 240 V inpur 115 V . 1 Amp output $£ 1.25$ each. P\& P $£ 1.25$
240 V inpur $8 \mathrm{ac}, 6 \mathrm{~V} .1 .86 \mathrm{~A} 8 \mathrm{kw} 21 / 2 \times 2 \times 2^{\prime \prime}$ Good quality $\mathrm{E} 1.50 \mathrm{c}^{\circ}$. PRP E 1. E1.50 inpul P\&F 8 f. ${ }^{2}$. 0.92 A . Stie $21 / 2 \times 2 \times 2^{\prime \prime}$ Good quality. 240 V inpurt 12 VI 100 MA . Size $60 \times 40 \times 42 \mathrm{~mm}$, 50 p ench, P\&P

 for 50p. P\&P $75 p$.

SEMICONOUCTO

At 20 ment.
 8A154. BA243. Al 25P Pach
BY 123 10p. BF $18120 \mathrm{p} ;$ BD239 $40 \mathrm{p}:$ BD241 40p, MA343AT p Pair 25W-80p perpr Regulator TBA 6358 to 20 V in - 5 V out 180 MA TO5 Con. 50p TVA. BF266C. 20p.

7453	$5 p$	709	15p	75325	c1
7454	5p	74474	12p	SN15862	${ }^{4}$
7401	$5 p$	74 M 51	$7{ }^{\circ}$	MC4028	60p
7402	$12 p$	74538	100	7417	14 p
7476	200	74502	120	7441	40 p
7495	35p	74154	70p		

C 5 Voli ceramic $\mathbb{E} 4$
2708 E5.50 Bech. P8P 25 D.
 Honewnell humidity Controllers 50 p sach. P\&P 40 D THYRISTOR TIMER. Solid State. 15 secs adusiable freser) in
plastic relay case. Standard 7 pin base Series delay 50 p epch. P\& P. plastic relay case. Standard 7 pin base Series delay 50 p epch. P8 P
85 p.
10p wich. AMALOBUE CONVERTEA. 8 bit will thi standard 10p each. WO ANALOBUE CONVERTEA. 8 b
OIGITAL
$\Pi 11$ socker. Wih data $£ 2.50$ esch. P\&P 250
T1 1 sockel. With dala $£ 2.50$ each. P\&P 25 p
VARIACS. 2 amp Slandard 240 Volts $£ 10$ ©ach. P\& E 1.50 VARIACS. 2 amp Slandacd 240 Volts $\mathbf{E 1 0}$ esch. P\&P E1. 50
ELECTROSTATIC VOLTMETERS. 75 KV £8 ench. P\&P
Other ranges avalable Please enquire.

Minimum order $£ 3$ value of goods. P\&P or Carriage and VAT at 15% on total must be added to all orders.
CALLERS VERY WELCOME STRICTLY BETWEEN $9 \mathrm{am}-1 \mathrm{pm}$ and 2 -5pm Monday to Saturday inc.
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome

Our catalogue contains small metal enclosures for every application including the attractive new G range cases, with unique integrated chassis and sloping visor front and the inexpensive kit-form Veropak. We've also got circuit boards, accessories, module frames and plastic boxes - all to the highest standard to give your equipment the quality you demand. Send 40 p to cover post and packing and the catalogue's yours.

VERO ELECTRONICS LTD RETAIL. DEPT. Industrial Estate, Chandler's Ford,
Hampshire SO5 32R
Tel: (04215) 62829

> Wireless World wishes to apologise to all parties concerned for any inconvenience caused by the publication in the December 1979 issue, of an advertisement purportedly on behalf of Nevenco Ltd. This was published due solely to an error on the part of Wireless World and not as the result of an order by any advertiser.

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER
Enables YOU to produce perfect printed circuits in minutes!
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work

FOTOLAK
Developer
Ferric Chloride

Plain Copper-clad Fibre-glass Approx. 3.18 mm thick sq. ft . Approx. 2.00 mm thick sq. fi Approx. 100 mm thick sq. ft

PSI Comp $\mathbf{8 0} \mathbf{Z 8 0}$. Based powerful scientific computer Design as published in Wireless World, April-September, 1979

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction. IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

PSI COMP 80 Memory Expansion System

Expansion up to 32 K all inside the computer's own cabinetl By carefully thought-out engineering a mother board with buffers and its own power supply (powered by the computer s transformer) enables up io 38 K RAM or 8 K ROM boards to be fitted neatly inside the computer cabinet. Connections to the mother board from the main board expansion socket is made via a ribbon cable.
Mother Board:

8 K Static
RAM board

$8 \mathrm{8K}$

ROM board
Fibre glass double sided plated through hole P.C.B
$8.7^{\prime \prime} \times 3.0^{\circ}$ set of all components including all
brackets, fixing parts and ribbon cable with socke
to connect to expansion plug $£ 39.90$
Fibre glass double sided plated through hole P.C.B
$5.6^{\prime \prime} \times 4.8^{\prime \prime}$..... $£ 12.50$
$\begin{aligned} & \text { Set of components including IC sockets, plug and } \\ & \text { socket but excluding RAMs }\end{aligned}$
socket but excluding RAM 2114 LRAM (16 required) 5.00
Complete set of board, components, 16 RAMS
Fibre glass double sided plated through hole P.C.B
$5.6^{\circ \prime} \times 4.8^{\prime \prime} \ldots \ldots 12.40$
Set of components including iC sockets, plug and
2708 ROM (8 required) $\ldots 8.00$
Complete set of board, components, 8 ROMs
£78.50

Floppy Disk, PROM programmer and printer interface coming shortly

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence Irrespective of any price changes we will honour all prices in this advertisement untit December
31 st. 1979, if this month's advertisement is mentioned with your order Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT Postage charged at actual cost plus 50 p handling and documentation.
U,K, ORDERS. Subject to 15% surcharge for VAT. NO charge is made fo carriage. "Or current rate $1 f$ changed
SECURICOR DELIVERY: For this optional service IU.K. mainfand only) add $\{2.50$ NAT inclusivel per kit

PC8 size $16.0^{\prime \prime} \times 12.5^{\prime}$
UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS) PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

ANDOVER (0264) 64455

Newnes Technical Books for the '80s

Available now:

Teletext and Viewdata Steve A. Money
Audio Equipment Tests
Gordon J. King
$£ 5.50$ (US\$12.50)

Microprocessors for Hobbyists
Ray Coles £6.50 (US\$14.75) £2.95 (US\$6.75)
Radio and Electronic Laboratory Handbook $£ 17.95$ 9th Ed. M.G. Scroggie and G.G. Johnstone (US\$40.50)
Two-Metre Antenna Handbook
F.C. Judd
£3.95 (US\$9.00)

Coming early in 1980:

Guide to Broadcasting Stations 18 th Ed. BBC
Introduction to Microcomputer P
£3.50 (US\$8.00) approx.
P.G. Sanderson
£3.50 (US $\$ 8.00$) approx.
Questions and Answers Amateur Radio
F.C. Judd
£1.75 (US\$4.00) approx
Beginner's Guide to Digital Electronics
I.R. Sinclair
£3.00 (US\$6.75) approx.

And there will be more to keep you informed during the year.
For further particulars, write to
Newnes Technical Books
Borough Green, Sevenoaks, Kent TN15 8PH
Tel: (0732) 884567

KELSEY K102M TRANSFORMERLESS BALANCED LINE MICROPHONE AMPLIFIERS

Specifications

Direct P.C.B. mounting
Supply Voltage
Moximum Gain

	$\begin{array}{r} +15 \mathrm{~V} \\ 43 \mathrm{~dB} \end{array}$
	38 dB
minal - 1	10 dB
Terminol +1	$\begin{aligned} & +15 \mathrm{dBV} \\ & 5 \mathrm{Kohm} \end{aligned}$
	200 ohm
	+20d8V
$\rightarrow 0.5 \mathrm{~dB}$ Ref.	to 50 KHz
Better thon	10 V microsec
Better thon	$0.03^{\circ} \mathrm{Ref} 1 \mathrm{KHz}$
Typically	0.027
Better than	80 dB
Better than	-125 dBV (Din Audio bond weighted
	10 Kohm
$40 \mathrm{~mm} \times$	$\mathrm{m} \times 20 \mathrm{~mm}$
	48 grams

Gan Continge
Goin Redution in Unbalanced Mode (Input to Terminal -)
Moximum Input Level (Unbolanced Mode, input to Terminol +) Input Impedance (Each Input Termingl to Ground) Optimum Source Impedance
Moximum Output
Frequency Response
Slew Rote
Harmonic Distortion
Common Mode Rejection Ratio Equivalent Input Noise (Unweighted)
Recommended Output Looding
Dimensions
Weight
48 grams
KELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON W11. TEL: 01-727 1046

Dual output power supplies

Now you can get on-card dual output power supplies from Vero Systems in five versions:

- DUAL 5 Volte
- DUAL 12 Volts
- DUAL 15 Volts
- MIXED 5 and 12 Volt
- MIXED 5 and 15 Volts

The cards are designed to Eurocard standard size $(100 \times 160 \mathrm{~mm})$ to fit straight into your card or case frame.

ORDER CODE
89-2665G
89-2671K
89-2703B
$89-9017 \mathrm{~B}$
$89-9018 \mathrm{H}$

Each supply is fully regulated with over voltage over current and thermal protection. Input voliage is protection. Input voltage is
$110 / 120 / 220 / 230 / 240$ volts both outputs are fully isolated from both outputs are fully isolared rom give different power rail configurations.
The cards are supplied fulty tested each one complete with 64 way indirect connector plug, card handle and connection chart

FUNCTION PRICE
DUAL5V E32.43
$\begin{array}{ll}\text { DUAL } 12 \mathrm{~V} & £ 38.50 \\ \text { DUAL } 15 \mathrm{~V} & \end{array}$
$\begin{array}{ll}\text { DUAL } 15 \mathrm{~V} & € 38.50 \\ \text { DUAL } 5.12 \mathrm{~V} & £ 38.50\end{array}$
$\begin{array}{ll}\text { DUAL } 5.12 \mathrm{~V} & £ 38.50 \\ \text { DUAL } 5-15 \mathrm{~V} & £ 38.50\end{array}$

VEROSYSTEMS

VERO SYSTEMS (ELECTRONIC) LTD
362 Spring Rd. Southampton Hants. SO9 5QJ Tel: (0703) 440611 Telex: 477164 WW - 084 FOR FURTHER DETAILS

YOUR LAST CHANCE to obtain Wireless World Circards. we sill have some copises ot the originan wireless

World circuit cards, even though the companion bound volumes Circuit Designs $1 \& 2^{*}$ are out of print. Fill the gaps in your circuit files with these sets of $5 \times 8 \mathrm{in}$. ($127 \times 204 \mathrm{~mm}$) cards in plastic wallets - and at 1976 prices!
These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

Micropower circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital counters 15 Pulse modulators 16 Current differencing amplifiers-signal processing 17 Current differencing amplifiers-signal generation 18 Current differencing amplifiers measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos - 128 Linear cmos - 229 Analogue multipliers 30 Rms/ log/power laws 31 Digital multipliers 32 Trānsistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications -2

1 Basic active filters 2 Switching circuits, comparators and Schmitts 3 Waveform generators 4 AC measurements 5 Audio circuits 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

JVC-VICTOR HIGH FIDELITY STEREO CASSETTE TRANSPORT MECHANISM

ELECTRO-TECH COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as "SEN-ALLOY" type 1.5 micron record/replay heads, and solenoid-controlled auto-stop action. These were manufactured by JVC/VICTOR of Japan to specification of TANDBERG OF NORWAY, for inclusion in a cassette deck costing over $£ 250$. This mechanism alone would normally cost over $£ 50$.

features:

- Close-tolerance, high-quality, top loading transport
* "Sen-Alloy" (SA type) R/P head
* Solenoid-driven autostop circuit
* Automatic head cleaning device
* Air damped "soft" cassette eject
- Miniature microswitches for switching
* Pre-aligned heads and calibrated motor speed regulator built in
* Three-digit tape position counter
* Six-function keyboard controls: "Record," "Rewind," "Forward, 'Play," ' 'Stop/Eject," ' Pause.'
- PCB connectors and cables attached
* High-mass balanced flywheel with permanent lubrication spindle
* Full specifications for motor, heads, and switches available on request.

Price of above unit $£ 14.95$

Plus $£ 1$ P\& P V VAT Inc.
Regular readers of WIRELESS WORLD will know of the original LINSLEY-HOOD CASSETTE DECK design, published in May 1976 . Subsequent articles by Mr. Linsley-Hood have confirmed that the design far exceeded his original expectations, so much so that he published a number of improvements, modifications, and additional features to the original design, which are now incorporated in our:

*CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD *

We have developed an outstanding stereo cassette kit with the aid of Mr. Linsley-Hood, to complement the improved specification and latest important advances in cassette electronics since the original design was published
Included in the kit are two fibreglass PCB's, drilled and plated for immediate assembly, two VU meters, Dual LED Peak Meters, Variable Bias system, Power Supply, over 10 micro-circuit IC's for the most up-to-date performance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) $£ 15.95$ plus $£ 1.00$ P\& P. VAT inc.
Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish. Price of Case $\mathbf{£ 9 . 7 5}$ plus E1.00 P\&P. VAT inc.

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM

Consider the following features:
6 resistance ranges from 200 ohm-20 chms
8 current ranges from 2mA-2A
10 voltage ranges from 200 mv-1000v DC-200 mc-750V AC
Pocket size - weighing only 370 gms.
Full overload protection - will withstand 6 kv spikes
Rugged construction - virtually indestructable
Meets tough
drop proot
In line, pushbutton operation for single-handed useage
Incorporates low power cmos chip for low power consumption All his plus a 2 -vear full guaran tee

For only $£ 89$

Carriage and insurance ξ^{3}

Even much more sophisticated the Fluke 8020A Identical in most respects to the 8022 A but in addition incorporates a
conductance range from 2 ms - 200 s . conductance range from $2 \mathrm{mS}-200 \mathrm{~ns}$.

DIGITAL MULTIMETERS
BRAND NEW FROM FLUKE!!! NOW AVAILABLE THE 8024A HAND HELD DMM
This model incorporates all the features of the 8020A but in addition has:
A peak hold switch which can be used in $A C$ or $D C$ for volts and current functions. Audible continuity resting and level detection for sensing logic levels.
A remperature (${ }^{\circ} \mathrm{C}$) range for use with a thermocouple.
£135
Carriage and Insurance $£ 3$
The following nccesories are in stock now Y8008 Touch and Hold Probe 81AF RF Probe to 100 MHZ 80 F .150 C Temperaturs Probe (C) E18.00
645.00
632.00
655.00
$£ 50.00$ 801 -600 Clamp-on AC Current Probe $\quad \mathbf{5 5 0 . 0 0}$

PLEASE ADD
15% VAT TO ALL ORDERS CALLERS WELCOME We are open 9 a.m. 6 p.m. Monday-Saturday We carry a very large selection of electronic components and electro-mechanical tems Special quotation

8010A AND 8012 A BENCH MODEL D.M.M.s The 8010A is a general purpose. bench/porable digital multimeter with more functions and features than ever offered for such a low price. Its companion, the 8012A. has identical characteristres except that it has two additional low resistance ranges, 2Ω and
208 to replace the $8010 A^{\prime}$'s 10 ampere current range. The 8010A and 8012A feature:
3 conduciance rangem $200 \mathrm{mv}-1000 \mathrm{v} \mathrm{dc}$.200 mv . 75 v ac.
6 conductance ranges from 2 ms .200 ns .
28 and 208 .
10 current ranges tom anges 10A AC and $10 A D C$

$$
8010 \mathrm{CA} £ 159 \quad 8012 \mathrm{~A} £ 179
$$

e 80, OA is also Carriage and insurance $£ 3$
$.188010 A$ is also a
$\therefore 01 \mathrm{a}^{\prime} \mathrm{El} 79.00$.

18

IT 1/2 20,000 OPV IT $1 / 2$ 20,000 OPV
AC volts 0 to 10,50 . DC volhs 0 100. 25, 50 250. 500, 2500. 2.5 ma . 250 ma Resistance. 0106 K ohms. 6 meg ohms.
Decibels -20 to db
Capacriance. 10
pl. 0
0 ut 01 ut
Size: $41 / 2 \times 31 / 2 \times 1$ inch
$\sum_{\mathrm{P} \& \mathrm{P} .950} 10.95$

Resistance 0.3 k ohms. 300 k ohms. 3 meg ohms Decibels. $-20-+63 \mathrm{db}$ £10.95 P\&P 750

ME
210
210
211
21
21
21
40
40
41
51
68
78
78
82
R0
71
74
74
74
74
74
74
82
93
93
93
93
9

 LEDS
0.125
 T1L216 Red
OISPLAYS

 F 747
FNO 357
FNO500
FNO507
FNOSOT
MAN364

 79105
79115
 0 夕夕大亍亍

170
AAA 170
JA 180
INS 118

TRANSFOMMER （prm 220／240M

$5_{\text {ma }}$

1

$\begin{array}{ccc}8 \mathrm{pin} & 10 \mathrm{p} \\ 14 \mathrm{pin} & 11 p \\ 16 \mathrm{pm} & 12 \mathrm{p}\end{array}$
$\begin{array}{ll}18 \mathrm{pin} & 22 \mathrm{p} \\ 20 \mathrm{pm} & 25 \mathrm{p} \\ 22 \mathrm{pm} & 28 \mathrm{p}\end{array}$

LOG 1OK $\quad 60 \mathrm{~F}$

SPECIAL OFFER

$£ 18 / 100$
$£ 16 / 100$
$£ 4.50$
$£ 32 / 8$

$2716(+5 \mathrm{~V}$
$27805 / 12$
$\begin{array}{lr}\text { 7805／12／15 } & \text { E } 21 \\ 7905 / 10\end{array}$
please add P\＆P and VAT．All offers valid until 31／1／80 and

IC TEST CLIPS
140 an

16 KEY KEYPAD
UHF Modulators
Red Swriches（ 12 VA ）
LOGIC PROBE
subject to stocks．

E4．00 COMPUTER KITS

MULTIMETERS
SUPERTESTER 680 R
MICROTEST $80 R$ MiCROTEST BOR
TMK500 TMK500

$£ 3.75$		E45．00
£0．25	SERIAL I／P VDU INTERFACE KIT	E56．00
E18．00	ELF II MICROCOMPUTER KIT	
799.95		

$\begin{array}{llll}\text { £33．00 } & \text { GIANT MONITOR BOAR K KT FDR ELF II } & \text { £35．00 } \\ \text { £17．00 } & \text { 4K STATIC RAM BBARR FOR ELE II } & \text { £69．44 } \\ \text { £22．00 } & \text { ASCII KEYBOARD KIT } & £ 50.58\end{array}$
$\begin{array}{llll}£ 17.00 & \text { 4K STATIC RAM BOARD FOR ELF II } & £ 69.44 \\ \text { £22．00 } & \text { ASCII KEYOARD KKIT } & \\ \text { £4．75 } & \text {（Please add } 75 \mathrm{~F} \text { p\＆ip to all above items）．} & \end{array}$

DE LUXE EASY TO BUILD LINSLEY-HOOD
 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards imterconnected with gold plated contacts resulting in minimal wiring and construction
delightfully stranghtforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection push-button station selection as well as infinitely variable tuning and a phase locked loop
stereo decoder. incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK $£ 79.60$ + VAT
This design, published in Wireless World. although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control

TRANSCENDENT 2000

Cabinet size 24.6'x15.7'x4.8" (rear) 3.4" (front)

SINGLE BOARD SYNTHESIZER As featured in Electronics Today International

The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components is complete - right down to the last nut and bolt and last piece of wire! There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professionat quality fibre glass PCB printed with component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between £500 and £7001

COMPLETE KIT ONLY $£ 168.50$ + VAT!

Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more than a multi-meter and a pair of ears!

CHROMATHEQUE 5000 5-channel lighting effects system

This versatile system featured as a constructional article in ELECTRONICS TOOAY INT ERNATIONAL has 5 trequency channels with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music tevel or front panel contro serting or use the internal digital circuitry which produces some superb random and sequencing effects. Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightiorward

Kit includes fully finished metalwork. fibreglass PCB, controls, wire. etc. - Complete right down to
the last nut and bolt!
COMPLETE KIT OMLY

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3'

MrA200 100W MIXER/ AMPLIFIER

Featured as a constructional aricle in Electronics Today International the MPA 200 is an exceptionally low-priced but professionally finished general purpose, rugged, high-power amplifier which has an adaptable range of mputs such as disc, microphone, guitar, etc. There are 3 wide range tone controls and a master volume control. Mechanically the design is simplicity in the extreme with minimal wiring making constructlon very straightforward Kit includes fully finished metalwork, fibreglass PĆB's, contyols, wire, etc. - Complete right down to the last nut and


```
£ 49.50 + VAT
            £49.50 + VAT
```

[^6]
COMPLETE KIT ONLY $£ 49.90$ + VAT

T20＋ 20 and T30＋ 30 20W，30W AMPLIFIERS

WWII TUNER

SPECIAL PRICE FOR COMPLETE KIT $£ 47.70$＋VAT
available as separate packs－prices in our free catalogue
Following the success of our Wireless World FM Tuner Kit this cost reduced model was designed to complement the $\mathbf{T} \mathbf{2 0}+\mathbf{2 0}$ and $\mathbf{T 3 0}+\mathbf{3 0}$ amplifiers and the cabinet size，front panel format and electrical characteristics make this tuner compatible with either

Designed by Texas engineers and described in Practical Wireless，the Texan was an immediate success．Now
developed further in our laboratories to include a Toroidal transformer and additional improvements，the sliming developed further in our laboratories to include a Toroidal transformer and additional improvements，the slimling on a single F／Glass PCB and features all the normal facilities found on quality amplifiers including scratch and umble fitters，adaprable input selector and headphones socker．In a follow－up article im Prattical Wireless furthe modifications were suggested and these have been incorporated into the $130+30$ ．These include R

SPECIAL PRICES FOR COMPLETE KITS
T20＋20 KIT PRICE 233.10 ＋VAT
T30＋ 30 KIT PRICE 238.40 ＋VAT
AVAILABLE AS SEPARATE PACKS－PRICES IN OUR FREE CATALOGUE
POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $£ 35.90$

+ VAT
AVAILABLE AS COMPLETE KIT ONLY
This is a simple，low cost design which can be constructed easily without special alignment equipment but which still gives a first－class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment．A phase－locked－oop is used for stereo selection（adjustable by controls on the front panell）．This unit matches well with the T20＋20 and $\mathrm{T} 30+30$ amplifiers

INCREASED CAPACITY AT OUR BIG NEW FACTORY MEANS MANY PRICES DOWN！ALL OTHER FROZEN！ Another superb design by synthesizer expert Tim Orr！

As featured in Eleztronics Today International August，September October， 1979 issues

DIGITALLY CONTROLLED，TOUCH SENSITIVE，POLYPHONIC，MULTI－VOICE SYNTHESIZER

The Transcendent POX is a really versatile new 5 octave keyboard instru ment．There are two audio outputs which can be used simultaneously．On the first there is a beautiful harpsichord o reed sound－fully polyphonic i．e．you can play chords with as many notes as you like．On the second output there is a wide range of different voices，still fuliy polyphonic．It can be a straightforward piano or a honky tonk piano or even a mixture of the two！Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the kevboard or should you prefer－strings on the top of the keyboard and brass at the lower end（the keyboard is electronically split ather the first two octaves）or vice versa or even a combination of strings and brass sounds simultaneously．And on all voices you can switch in circuitry to make the keyboard touch sensitive？The harder you press down a key the louder i sounds－－just ike an acoustic piano．The digitaly controled multiplexed system makes practical sensitivity with the complex dynamics law necessary for a high degree of realism．There is in oniy after waiting a short time after the note is struck for even more realistic string sounds．

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime \prime}$（rear） $3.3^{\prime \prime}$（front）
COMPLETE KIT ONLY £299．00＋VAT！

Aleo available as separese packe－prices in froe catalgoue

To add interest to the sounds and make them more natural there is a chorus／ensemble unit which is a complex phasing system using CCD（charge coupled device）analogue delay lines．The overall effect of this is similar to that of several acoustic instruments playing the same piece of music．The ensemble circuitry can be switched in with either strong or mild effects As the system is based on digital circuitry data can be easily taken to and from a computer for storing and playing back accompaniment with or without pitch of key change．computer composing etc．，etc．）and an interface socket（ 25 way D type）is provided for this purpose．
Although the DPX is an advanced design using a very large amount of circuitry，much of it very sophisticated，the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors．just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet
The kit includes fully finished metalwork，solid teak cabinet，professional quality components（all resistors 2% metal oxide），nuts，bolts，etc．，even a $13 A$ plug－you need buy absolutely
no more parts before plugging in and making great musicl When finished you will possess an instrument comparable in performance and quality with ready－built units selling for ove
EXPORT A SPECIALITY！
Our Expon Department can readily despatch orders of any size to any country in the world．Sonie of the countries to which we sent kits last year are shown in this advertisement．To assist in estimating postal costs our catalogue gives the weights of all packs and kits．This will be sent free on request，by airmail，together with our＂Export Postal Guide＂which gives current postage prices．There is no minimum order charge．Prices same as for U．K customers but no Value Added Tax charged．Postage charged at actual cost plus 50 p documematon and handling．Please send payment with order by Bank Dratt．Postal Order，International Money Order or cheque drawn on an account in the U．K．Alternatively for orders over $£ 500$ we will accept Irrevocable Letter of Credit payable at sight in London．

Value Added Tax not included in prices UK Carriage FREE

PRICE STABILITY．Order with confidence！Irrespective of any price changes we will honour all prices in this advertisement until February 281 h 1980，if this month＇s advertisemens is mentioned with your order Errors and VAT rate changes excluded．
U．K．ORDERS．Subject to $15 \%{ }^{\circ}$ surcharge for VAT．No charge is made for carnage．Or current rate if charged
SECURICOR OELIVERY：For this optional service（U．K．mainiand only） add $£ 2.50$（VAT inclusive）per kit Sales Sales Counter．Open 9 a．m．-4.30 ，p．m．Monday－Thursday．

QUALITY：All components are brand new first grade full specification guaranteed devices．＇All resistors （except where stated as metal oxide）are low noise carbon film types．All printed circuit boards are fibreglass， drilled roller tinned

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND PHONE NUMBER UNCHANGED
our catalogue is Free！write or phone NOW！

ANDOVER，HANTS SP 10 3NN
ANDOVER
（STD 0264） 64455

WW - 086 FOR FURTHER DETAILS

CHILTERN ELECTRONICS

B.C.M. BOX 8085 LONDON WC1V 6XX

PDP8 COMPUTERS:

PDP8E. Latest version with 16 K Core, as new ... £800 PDP81 8K with high speed tape reader/punch ... $£ 450$ PDP81 and PDP8L $4 K$ processors from £200 All above with teletype interface and ready to use software available includes BASIC, FOCAL, FORTRAN, etc. UDC8 Industrial Interface for PDP8 - provides 50 inputs and outputs isolated and buffered for process control. Brand new, with all data and cables
£450
All spare PDP8 modules and add-on memory in stock!
TERMINALS:
GE TERMINET - modern $30 \mathrm{ch} / \mathrm{sec}$ silent terminal. Full ASCII set, correspondence quality upper and lower case. Ideal for word processors. RS232 Interface.

As new with keyboard
£350
Without keyboard
£200
JUST ARRIVED FROM U.S.A. .. .
INCOTERM SPD $10 / 25$ Inteliligent terminals. Top quality VDU with powerful computer. Memory 4 K Core and 4 K MOS. Two RS232 ports. Second video oútput. Detachable ASCII keyboard. Cost over $£ 5,000$. Offered at only $£ 750$ TELETYPES/CENTRONICS PRINTERS /VDUs - lots more in stock
from $£ 50$ to $£ 500$ ELLIOTT Paper Tape Readers, $250 \mathrm{ch} / \mathrm{sec}$ optical £40 IBM 8-level readers with step motor, no data £20

Add $\mathbf{1 5 \%}$ for VAT. For more details please send SAE or ring Nigel Dunn on 0494714483

WW - 095 FOR FURTHER DETAILS

Electronic Brokers

 49/53 Pancras Road LondonNWI2QB Tel: ㅇ--837 7788. Telex 298694 No. 1 in Second User Minis \& Peripherals

Hazelune Glass Telerype vous $12^{\prime \prime}$ screen choice of 2 Switch-selectable baud rates (from range 11096001 slandare RS232 N 24) intertace Model H 1000112 lines of 80 characters) $\mathbf{5 3 5 0 . 0 0}$. Model H 1200 (24 limes of 80 characters) £375.00.

DEC PDP11/40 SYSTEM
PDP 114048 KW Panty Core Processor complete with KTIID OLII Asynchronous Interlace
RK 110 DIsc Controller
$4 \times$ RKO5J Oisc Orive
$2 \times 6 \mathrm{ft}$ Rack Cabinets
Fully OEC -mantained -- in immaculate condition $£ 12,750$ to coutal be reconfigured to stm?

GE TERMINET 1200

TYPEWRITER QUALITY impaci pinier win swith-selectable print speeds of 10.30 and 120 cps 80 print positions with adjustable pin-feed paper tractor. ful! upper and lower case ASCII character set. current loop $(20 \mathrm{~mA})$ intertace $£ 695$

ASR33 and KSR33

TELETYPES

Input / Output terminals with 64 ASCII character set 110 baud operation. Paper tape punch and reader (ASR33 only). Choice of interface (20mA or RS232) KSR33 - £425.00. ASR33 - £650.00. Pedestal E 30.00 .

DEC EQUIPMENT

PDP11/04BD 9-slot 51/4" Processor with 8KW MOS and DL11W Interface. BRAND NEW SURPLUS £ 3.250 .00 re memory £ 1.850 .00 RKO5J Add-on disk drive
$£ 1.850 .00$ Large stocks of DEC modules and add-ons

PRINTERS \& TERMINALS

CENTRONICS 101 Matrix Printer
£750.00 COSSOR UNITEL II Visual Display Unit £295.00 HAZELTINE H-2000 Editing Visual Display Unit
from $£ 395.00$
SCOPE DATA Electrosensitive Printer . $£ 495.00$
TEXAS 725 Portable Terminal £695.00 TEXAS 733ASR Terminal
from $£ 1,450.00$

NEW ASCII KEYBOARDS -NEW LOW PRICES
 KB756 56-station ASCII Key-
 Mall Order Total

 board mounted on P.C.B.$£ 45.00$ £53.48
KB 756 MF As above, fitted with metal mounting frame for extra rigidity
$£ 50.00 \quad £ 59.23$
KB710 10-key numeric pad supplied with connecting cable

KB701 Plastic enclosure for KB756 or KB756MF
KB702 Steel enclosure for KB756 or KB756MF
KB2376 Spare ROM Encoder
KB15P Edge connector for KB756 or KB756MF
DC-512 DC convertor to allow operation at 5 V only (plugs in to P.C.B.)

KB771 71-station ASCII Keyboard including numeric/ cursor control cluster, mounted in steel enclosure
$£ 95.00 £ 115.00$
DB25S Mating connector for KB771
$£ 4.25$ £5.46
PERK 56-station ASCII Keyboard for PET. Complete with PET interface, built-in power supply and steel enclosure
145.00 £172.50 Discounts available for quantities

MISCELLANEOUS

CALCOMP 565 Drum Plotters £1,250.00 DIGITRONICS P120 Paper Tape Punches $£ 75.00$ EMI $15^{\prime \prime}$ Diagonal TV Monitors $£ 100.00$ SEALECTRO 11×20 Patch Boards £12.50 SHUGART SA400 51/4" Floppy Disc Drives

SHUGART SA800 8" Floppy Disc Drives $£ 395.00$

Electronic Brokers 49/53 Pancras Road LondonNW12QB Tel: O1-837 7781. Telex 298694

ONLY SMALL SELECTION OF OUR VAST STOCKS SHOWN HERE - SEND FOR LATEST CATALOGUE

Electronic Brokers unique catalogue contains 62 pages plus update of second user Test Equipment, and Mini Computers and Peripherals. Vast lists of Signal Sources, Oscilloscopes, DVMs, Counters, Recorders, DEC Computers, VDUs, Teletypes, etc. Largest stocks - most cost effective.

LATEST EDITION JUST OUT. SENT FREE IN UK.
Airmail to overseas addresses $£ 2.00$

MARCONI INSTS.

1F 2162 M.F. Attenuator I. 11 IdB. Steps of 0.1 dB
 D 111 dB . Steps of 0.1 dB

Large Stocks
£135.00

HEWLETT PACKARD
Spectrum Analyser System
141T Display
8552 A IF Section
8554L RF Section
$500 \mathrm{KHz}-1250 \mathrm{MiHz}$
total price $£ 5,250$

Unless otherwise stated all equipment offered in the Electronic Brokers 4 -page advertisement is
refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for $\mathbf{3}$ months.

Hours of Business: 9 à.m.-5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

WW - 107 FOR FURTHER DETAILS

SOLARTRON
7055 Microprocessor Controlled D M.M.
£975.00
Wishout processor option
With processor option

HEWLETT PACKARD

1703 Storage Oscilloscope
35MHz Delayed Sweep. Dual Channel
£1850.00

MARCONI INSTRUMENTS
TF 2300 F FM/AM Modulation Meter
Carner Freq 41012
range up to 500 KHz
Measupes AM depth up to 95\% at
carrie freas up to 400 MHz
$\mathbf{E . 9 5 0 . 0 0}$ carrier freas up to 400 MHz

PHILIPS
est Equipment

RIDGES

eneral radio
7mitance Bridge 1607 A
£750 608A LCR Bridge. Accuracy typically 15\%

IARCONI INSTS

niv. Bridge TF1313A (0.1\%) £790 Situ Univ. Bridge TF2701 . £395
niv. Bridge TF1313
£395

IAYNE KERR

niv. Bridge B2 21 (0.1\%)
w impedance Adaptor Q221 £75

ALIBRATION EQUIP.

IENT
EWLETT PACKARD
Voltage Source \& AC/DC Diff
altmeter 741 B
£975
UKE
3AB AC/DC Differential Voltmete $£ 975$

EKTRONIX

me Mark Generator $184 \ldots$
me Mark Generator 2901 . $£ 2750$
me Mark Generator 2901
is Pulse Generator 2101
£525

IGITAL COUNTERS

OULD ADVANCE
DOMHz Counter TC $15+15 \mathrm{P} 1$
JMHz Counter TC17 or TC17A
£195

UKE

25 MHz Multi-Function Counter 310A-01
£285
25 MHz Multi-Function Counter 310 A £199
20 MHz Communications Counter 320A-06
£490
25 MHz Multi-Function Counter 325A £405 25 MHz Univ. Timer Counter 353A-15-16 £850

HILIPS

JMHz Timer Counter PM6612£405 3Hz Timer Counter PM6615 £795 JMHz Freq. Counter PM6661 £185 12 MHz Freq. Counter PM6645
£710
20 MHz Automatic Freq. Counters v6664 £305 20 MHz Counter PM6614 .. $£ 450$ 0 MHz 9 digit Univ. Counter V6611/02
£350

YSTRON DONNER

3 MHz Counter Timer 6250
£175

- Freq. Counter 6220
£160

IGITAL VOLTIVIETERS \& IULTIMETERS

DVANCE
ue R.M.S. Voltmeter DRM6 ATRON
$1 / 2$ digit D.M.M. 1051
-

LUKE

$1 / 2$ digit D.M.M. 8600A £290
$1 / 2$ digit D.M.M. 8600A-01
£335
300A D.M.M
800A D.M.M. $51 / 2$ digit
ع599
EWWLETT PACKARD
$1 / 2$ digit D.M.M. $34702 A+34740$ A £295

HILIPS

digit D.M.M. PM2424
£300
$1 / 2$ digit DC D.V.M. PM 2443 §430 $1 / 2$ digit D.M.M. PM2513A . £95 utoranging D.M.M. PM2514 £125 utoranging D.M.M. PM 2527 £400 M.M. PM 251 7E
£ 120
M.M. PM2522A

SCHLUMBERGER-SOLARTRON

$51 / 2$ digit Digital Multimeter A243
$41 / 2$ digit D.M.M. 7050 £675
D.M.M. (Microprocessor Controlled) 7065 £1,150

- with processor option
£ 1,450
OSCILLOSCOPES

ADVANCE

Storage Scope OS2200 £745
COSSOR
35 MHz Dual Trace CDU 150 £450 75 MHz Dual Trace $4100 \ldots$ £695 HEWLETT PACKARD
500 KHz High Sensitivity 130C £345 75 MHz Dual Trace 17078 £ 925
T.D.R. System 140A +1415 A
£1200
T.D.R. System $140 B+1415$ A
£1500
PHILIPS
5 MHz Battery Miniscope PM3010
£325
15 MHz Portable Dual Trace PM3211 £450
25 MHz Portable Dual Trace PM3212 £625
25 MHz Portable Dual Trace PM3214 £700
120 MHz Portable Dual Trace PM3260 £1095 100 MHz Portable Dual Trace PM3262
£1300 50 MHz Storage Scope PM3243
£2000

TEKTRONIX

10 MHz Dual Trace Battery Miniscope 326 £900
24 MHz Dual Trace 545B + CA $£ 299$ 50 MHz Dual Trace $547+1$ A1 £775 25 MHz Split Screen Storage Scope 434 £1600
Large stocks of Plug ins for 500 series mainframes at new low prices. Details on request
TELEQUIPMENT
10 MHz Single Trace P7CRT
S54AR (Mint)
£175
$554 R$ (Mint)
50 MHz Dual Trace £400

OSCILLOSCOPE PROBES

ELECTRONIC BROKERS (NEW)
X1 Probe Kit EB90
X10 Probe Kit EB9
$£ 9$
X1×10 Probe Kit EB95
£15

RECORDERS

AMPEX

FM/DR Tape Recorder PR2200
$£ 6500$

BRUSH

Multipoint 8 Channel Chart Recorder 816
PHILIPS
Single Channel Chart Recorder PM8110

RACAL

Store 4FM Tape Recorder . . £2600 SHANDON SOUTHERN
6 Channel Recorder 10.650
£725

WATANABE

6 Channel Chart Recorder MC64 1
$£ 2250$

YOKOGAWA

2 Channel Chart Recorder $3047 £ 530$

SIGNAL SOURCES

HEWLETT PACKARD

203A Variable Phase Sine \& Square Wave Generator $0.005 \mathrm{~Hz}-60 \mathrm{kHz}$
$£ 495$
651 B Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz}$ $0.1 \mathrm{mV}-316 \mathrm{~V}$ into 50 or 600Ω Sine Wave only. Metered O/P ... £415 608 D VHF Signal Generator. 10 $420 \mathrm{MHz} .0 .1 \mu \mathrm{~V}-\mathrm{O} 5 \mathrm{~V}$ into $50 \Omega \mathrm{AM}$ 0-95\%
£420
608E VHF Signal Generator. 10 480 MHz £450 608 F VHF Generator $10-455 \mathrm{MHz}$
£450
612 A UHF Signal Generator. 540 1230 MHz £850 4204A Decade Oscillator. 10 Hz 1 MHz £750 8640A AM-FM Signal Generator. $500 \mathrm{kHz}-512 \mathrm{MHz}$
£1800

MARCONI INSTRUMENTS

TF144H/4 AM Signal Generator. $10 \mathrm{kHz}-72 \mathrm{MHz}$ £750 TF144H/4S AM Signal Generator. Same spac. as $144 \mathrm{H} / 4$ but her metically sealed meters
£550
TF801D/1 AM Signal Generator. $10 \mathrm{kHz}-470 \mathrm{MHz} \ldots £ 400$ TF801D/8S AM Signal Generator. Similar spec. to TF801D/1 . . £600 TF801D/5M1 AM Signal Generator. $10-400 \mathrm{MHz} 0.1 \mu \mathrm{~V}-1 \mathrm{~V}$ in to 50Ω. AM $0-90 \%$ @ 1 kHz Demodulator output, 75 MHz Crystal £450 TF995B / 2AM/FM Signal Generator. $200 \mathrm{kHz}-220 \mathrm{MHz}$........ £675 TF1066B/6 AM Signal Generator. 10.470 MHz £675
TF1101 R-C Oscillator. 20 Hz 200 kHz . Metered O/P
TF 1370 R R-C Oscillator £100 £275
TF2000AF Oscillator. $20 \mathrm{~Hz}-20 \mathrm{kHz}$
£325
TF2012 UHF Signal Generator. 400 520 MHz
$£ 900$
TF2005R Two Tone AF Signal Source. 2 identical oscillators $20 \mathrm{~Hz}-20 \mathrm{kHz}+$ 10 dBm O/P 0-111dB attenuator
£299
TF2 101 MF Oscillator. $30 \mathrm{~Hz}-550 \mathrm{kHz}$
TF2102M/1 AF Oscillator. 3 Hz 30 kHz 195 TF2950/5 Mobile Radio Test Set $65-108 \mathrm{MHz}$. $138-180 \mathrm{MHz} .420$ 470 MHz . AM/FM Generator. 1 kHz audio oscillator. RF power meter. AF mV / meter. AM /FM modulation meter
$£ 1250$

RACAL

9081 Synthesized Signal Generator Frequency Range $5-520 \mathrm{MHz}$. AM/ FM. Phase \& Pulse modulation £1900 SINGER
FM-10 Decade Switched FM Signal Generator. Up to $500 \mathrm{MHz}, ~ £ 1200$ PHILIPS
PM5167 Function Generator. 1 MHz 10 MHz Sine, square \pm pulse, ramp. triangle, single shot with variable phase
£675
PM5326X AM /FM Signal Generator.
$100 \mathrm{kH}-125 \mathrm{MHz}$
£735
PM5127 Function Generator. Sine sqaure/triangle/pulse signals £395 PM5108 Function Generator. Sine square/triangle/pulse signals £395 offset. TTL output. Stepped and continuous attentuation. Frequency range $1 \mathrm{~Hz}-1 \mathrm{MHz}$

TELONIC

2003 Sweeper Main Frame c/w $3302,3331,3341,3351,3360$ and 3370 modules. Frequency range 0 300 MHz sweep width with 0.100% of the range $0-62 \mathrm{~dB} \mathrm{O} / \mathrm{P}$ attenuator in 1 dB steps. O/PZ 75 Sweep time $0.01-50 \mathrm{~S}$. Internal $5 \& 10 \mathrm{MHz}$ markers. Internal AM /FM mcdulation. Internal detector
£1150

TEXSCAN

VS40 Sweep Generator. Frequency range $1 \mathrm{MHz}-300 \mathrm{MHz}$
£650

WAVETEK

$135 \mathrm{Lin} / \mathrm{Log}$ Sweep Function Generator. $0-2 \mathrm{~Hz}-2 \mathrm{MHz}$. 10 V into 50Ω. Sine square triangle. Sweep time $10 \mu \mathrm{~S}-10000 \mathrm{~S}$
£275

SOUND LEVEL METERS

BRUEL \& KJAER
Sound Level Meter 2203 ... £50
GENERAL RADIO
Portable Sound Level Meter, 1983
£190
Portable Sound Level Meter 1981
£575
1933 \& 1935 Portable Sound Level
Meter with data cassette recorder
£2600

MISCELLANEOUS

BIOMATION

16 Channel Logic Analyser 1650
E4100

BOONTON

True R.M.S. Voltmeter 93A . £375 BRADLEY
DC Voltage Calibrator 126 B
$£ 275$
DATA LABS
Power Line Disturbance Monitor $£ 300$ DYMAR
LF Wave Analyser 1771
£375
AM/FM Mod. Meter 1785
LF Distortion Meter 1765
£250

GERTSCH

Complex Ratio Bridge CR1B
£600 GENERAL RADIO
Vibration Analyser 1911A $\quad £ 2100$
HEWVLETT PACKARD
Power Meter $432 A+478$
Camera 195A
Camera 198A
£450
rue R.M.S. voltmeter 3400A £505
16 Channel Logic Analyser 1600A
£2050

MARCONI INSTRUMENTS

AF Transmission Test Set TF2332
£425
Quantization Distortion Tester TF2343
Deviation Meter TF791D
Electronic Voltmeters TF2604 £250
Q meter system TF1245/46/47
Divider TF2422
8875
Sine SO E75
TF2905 450
AM/FM Mod. Meter TF2300A £550
RF Millivoltmeter TF2603 . . $£ 525$

THE COMPLETE SOLUTION TO THERMOCOUPLE AMPLIFICATION

Programmable Cold Junction Compensation
Complete with AdjustmentsPlatinum R/T Stability for C.J.C.Zero Suppression/Elevation Built inGain from 100 to 10000 Built in

The Model TA100 thermocouple conditioning Unit is housed in a $50 \times 50 \times 15 \mathrm{~mm}$ package and can be used to condition any type of thermocouple.
Simply dial in the Thermocouple sensitivity (in $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$), set gain and zero, and the Unit automatically corrects for the Thermocouple you are using.
Gone are problems of different electronics for different applications
THE ONE ANSWER

CIL Electronics Ltd
14 Willowbrook Road Worthing, Sussex BN148NA Tel: Worthing (0903) 204646 Telex: 87515 WISCO G ATT CIL

Z \& I AERO SERVICES LTD.
Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF Tel. 7275641 Telex 261306

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE Sensitivity D.C. Sensitivity A.C D.C. Current A.C. Current D.C. Volts A.C. Volts Resistance Capacity Accuracy	U4313 20,000 o.p.v 2.000 o.p.v $60 \mu \mathrm{~A}-1.5 \mathrm{~A}$ $0.6 \mathrm{~mA}-1.5 \mathrm{~A}$ 75 m V-600V $15 \mathrm{~V}-600 \mathrm{~V}$ $1 \mathrm{~K}-1 \mathrm{M}$ $0.5 \mu \mathrm{~F}$ 1.5% D.C. 2.5% A.C.	U4315 20.000 o.p.v 2.000 o.p.v. $50 \mu \mathrm{~A}-2.5 \mathrm{~A}$ $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ 75 mV -1000V $1 \mathrm{~V}-1000 \mathrm{~V}$ $300 \Omega \cdot 500 \mathrm{k} \Omega$ $0.5 \mu \mathrm{~F}$ 2.5\% D.C. 4\% A.C.
Price complete with pressed steel carrying case and tosi leads Packing and postage	$\begin{array}{r} £ 10.50 \\ £ 1.50 \end{array}$	$\begin{array}{r} £ 10.50 \\ \text { E1.50 } \end{array}$

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity
Voltage ranges
Current ranges
Resistance
Accuracy
Oscillatar output
$20.0002 / \mathrm{V}$
20.000 $/$ / V
$2.5 \cdot 1000 \mathrm{~V}$ A.C. $/ D . C$ $0.05-500 \mathrm{~mA}$ D.C. only $5.2 .1 \mathrm{M} \Omega$ 5% F.S.D
$1 \mathrm{kHz} 50 / 50$ squarewave 465 KHz sinewave modulated by $\{\mathrm{KHz}$ squarewave

PRICE, in carrying case, complete with leads and manual £8.00
Packing and postage £1.00

RETAIL SHOP
85 TOTTENHAM COURT ROAD, W. 1
Tel. $580-8403$

Appointments

> Advertisements accepted up to 12 noon Monday, January 21 st for February issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.
BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street. London SE1 9LU.) PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONICS TESTENGINEERS

Staying true to typeis our business.
Were Linotype-Paul. world leaders in the design. development and marketing of an advanced range of photo-typesetting equipment Our highly so,phisticated computer-controlled machines are revolutionising the graphics industry and setting increasingly higher standards of type production Keeping our systems on the leading edge of technology is our aim - and to back us in our efforts. we need more skilled electronics telt engineers.
If you have 2-3 years experience of testing complex digital equipment. ideally reinforced by ONC or to stay true to

equivalent. you could build a great career with us. A knowledge of analogue circuitry would be an added advantage. The workis deeply interesting and stimulating - and never routine. Staff facilities include superb working conditions. sick pay scheme.a
subsidised canteen and relocation expenses where appropriate. And salary structures are highly competitive. Posts are open to both men and women. For full details, write or telephone to the Personnel Department. Linotype-Paul Lımited. Runnings Road. Cheltenham. Tel: Cheltenhant 45001

THORN CONSUMER ELECTRONICS LTD.

Advance Study Engineer

Thorn Consumer Electronics Limited, leading manufacturers of television and audio equipment in the U.K. wish to appoint an experienced Engineer for their Advance Study Group situated in the Research and Engineering Centre at Enfield.
The successful applicant will join a team investigating new ideas and systems including digital techniques and microprocessors as well as modern analogue methods.
He/she should preferably be under 35 years of age with a degree or H.N.C. or relevant experience, recent graduates will be considered.
Please apply in writing to:
The Personnel Manager (ASE/WW),
Thorn Consumer Electronics Limited,
Great Cambridge Road, Enfield, Middlesex EN1 1UL
or telephone 3635353 extension 2201 for an application form
,
University of Wales
DEPARTMENT OF PHYSICS ELECTRONICS AND
ELectrical engineering
M.Sc./DIPLOMA COURSE IN ELECTRONICS

Applications are invited for places in the full-time one-year M.Sc. I Diploma course in Electronics, commencing October 1. 1980.

Further details and application forms (returnable as soon as possible) may (returnable as soon as possible) may
be obtained from the Academic Reqbe obtained from the Academic
istrar. UWIST. Cardiff CF1 3NU.
(9914)

AMPEX CORPORATION, a world leader in analogue and digital data recording technology, has been designated the official supplier of video recording and magnetic tape products to the 1980 Moscow Olympics.
Early in 1980 the Group's Training Department in Reading will need an additional

INSTRUCTOR

IN BROADCAST TELEVISION COLOUR CAMERAS AND VIDEO TAPE RECORDERS

This is an opportunity to join a company in the forefront of technological innovation in a position involving contact with engineers from all over the wôld and some overseas travel.
The essential qualification are:

* experience as, or personality to become, an expert instructor training engineers of many nationalities.
» sound knowledge of advanced electronics, particularly in the broadcast television field.
* sound knowledge of foreign language would be useful.

An attractive salary and benefits package is offered.
Please telephone Clive Legg on Reading 85200, Ampex Great Britain Limited, Acre Road, Reading, Berks.

QUEEN ELIZABETH COLLEGE Konsington
University of Landon)
ELECTRICAL
LABORATORY/ WORKSHOP TECHNICIAN GRADE 5
Technician needed with particular interests in electrical safety aspects of equipment and instruments in science laboratoris. Work will equipment. advice on installation, drawing up (in conjunction with College Safety Officer) safety checking schedules. Knowledge of electronics useful, but post will be located in Electronics Unit, which will provide assistance. Maintenance and repair also involved.
Salary in range $£ 3,700-£ 4,320$ p.a. (under review) plus London weighting of $\mathbf{£} 780$ p.a. Applications with brief particulars of Secretery, Queen Elizeto th Colloge. Campden Hill Roed, London W8 7AH Cmmpden Hill Roed, London Wa 7 A
(9944)

GAPITAL

APPONTMENTS LTD.

FREE JOBS LIST
 for

FIELD SERVICE ENGINEERS BASIC SALARIES TO $£ 8,000+$ CAR
(9879)

30 Windmill Street, London, WI D1-637 5551

TESTERS, TEST TECHNICIANS,

 TEST ENGINEERS. Earn what yourking for a world in Loader in Radio \& Telecommunications. Phone Len Porter on $01-8747281$, or write: REDIFON TELECOMMUNICATIONS REDIFON TELECOMMUNICATIONS London, SW18. Road, WandsworthL985

ANTENNA SALES ENGINEER

Unusual opportunity for introducing Kathrein FM, TV and communication transmitting antennas to UK customers and to increase sales of Spinner and Kabelmetal products in same market.
The job entails calling on existing customers throughout the UK, developing new customers, the preparation of quotations and tenders and assisting customers with their technical problems.
The successful candidate will be over 25 and preferably have good sales ability, suitable experience and qualifications. A good salary and an above average car will be offered. Four weeks' holiday per annum and a non-contributary pension scheme complete the package.
Please apply in writing, marked confidential, to: The Managing Director
Hayden Laboratories Limited

Foreign and Commonwealth Office

Telecommunications Officers

in London and at Hanslope Park, Milton Keynes, for work in the installation, modification, maintenance and operation of HF, VHF, UHF and microwave receivers, associated test equipment, recorders, telephone and teleprinter equipment, electronic ancillary apparatus (some using analogue and digital techniques), voice frequency telegraph and other specialised equipment

Candidates must have served an apprenticeship or have had equivalent training. They should normally have 3 years' relevant experience, and hold ONC in Engineering (with pass in Electrical Engineering 'A') or Applied Physics or TEC/SCOTEC certificate or equivalent qualification in a relevant subject. Ex-Service personnel who have had suitable training and at least 3 years' appropriate service (as Staff Sergeant or equivalent) will also be considered

Salary: $£ 4,575-£ 6,100$; London $£ 780$ more. Starting salary may be above the minimum for those with additional relevant experience. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 17 January, 1980), write to Civil Service Commission. Alencon Link,

Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote $\mathrm{T} / 5274$.
Hayden House
Churchfield Road
Chalfont St Peter, Bucks

ELECTRONIC TECHNICIAN GRADE 5

A Technician is required to join a small enthusiastic team of Engineers engaged on a variety of interesting and challenging projects involving the application of modern electronic techniques within the department for both teaching and research.
The successful candidate will be expected to work in close liaison with academic and technial staff, and must be able to oroduce the necessary equipment from initial designs.
A basic knowledge of analogue and digital techniques is required and some experience of computer interfacing and microprocessors would be an advantage.
Minimum qualifications are ONC or equivalent together with relevant experience.
Salary in the scale $£ 4,480-£ 5,100$ in Salary in the scale $£ 4,480-£ 5,100 \mathrm{inc}$.
under review $\$.10 .79$ with further minimum increase of $£ 226-£ 264$ from 1.4.80. Post is superannuable; there is a generous sick pay scheme. The working week is 37-and-a-half hours; 5 weeks annual holiday plus several days in addition to public holidays at Christmas and Easter. There is a modern staff, club and excellent facilities with sports centre and swimming pool.
Please apply to Mr. J. S. Oakley, Departmental Superintendent, Chemical Engineering Department, Imperial Col01.5895111 (991 1912 , S. ext. 1912.

KING'S COLLEGE, LONDON ELECTRONICS TECHNICIAN

For interesting work in busy Physics Research Department including construction, repair and maintenance of equipment. Experience in integrated circuits and digital electronics desirable. Good conditions. 5-weeks' an. nual holiday. Superannuation scheme. Interest-free loans for annual rail season tickets. Salary on scale $£ 4,480$ p.a. to $£ 5,100$ p.a. inclusive (under review).

Apply in writing with full details to: The Head Clerk (Ref. 221743 WW), King's College. London, Strand WC2R 2LS.
(9935)

Success is simply a matter of Luck ask any failure - Earl Wilson.

Digital Engineers - get lucky in

FIELD SERVICE

To register for wide choice of field service positions-

Ring 01-464 7714
Ext. 502, 24 hours

ELECTRONICS RECRUIIMENT SERVICE 309 HGH PIAD LOUGHTON FSSEX 1610170

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service
Phone or write BUREAUTECH AGY, 46 SELVAGE LANE, LONDON, NW7. 01-959 3517.

Career Opportunities in Audio Electronics

 DODolby LaboratoriesThe UK operation of this international name in audio electronics manufactures a comprehensive range of professional noise reduction systems which is employed world-wide in the broadcasting,

Application Consultants c. $£ 9,000$

Reporting to the Intemational Marketing Director, the prime responsibility will be the provision of a full technical consultancy to professional users. Major activities will include advice on installations and equipment compatibility in cinemas and studios; training installation and service technicians; distributor and end-user liaison; field servicing and troubleshooting operational problems; and sound consultancy during film dubbing
recording and film industries. Dramatic increase in world demand has stimulated the company's development, creating the following exciting career opportunities.

Production Engineers
 (Electromechanical \& Electronic) c. £7,000

Reporting to the Production Director, the principal responsibilities of these posts will include the introduction of new products to line production; production improvements/ trouble-shooting; modification control; and liaison with the California-based R\& D team. The electromechanical engineer will have prime responsibility for all mechanical aspects of production, with major emphasis on assembly processes; jig, fixture and tool design; and packaging. The electronics engineer will have responsibility for defining test procedures

Inspection Supervisor c. £7,000

Reporting to the QA Manager, the Supervisor will assume full responsibility for inspection of 'in-house' assembly operations. Key tasks will be the motivation, control, training and development of the inspection team, and the preparation and analysis of inspection reports and quality investigations to improve both quality standards and

Initial interviews are conducted by PA Consultants. No details are divulged to clients without prior permission. Please send brief career details or write for an application form, quoting the appropriate
cost-effective production. This post is likely to appeal to young electronics engineers (from age 23 years) who seek a stepping stone into line management. The attractive salaries will be supplemented by competitive benefits which include relocation assistance. Location: London SW9.

Ref: W61/7149/WW.
reference number on both your letter and envelope, and advise us if you have recently made any other applications to PA Personnel Services.

PA Personnel Services

Hyde Park House, 60a Knightshridge, London SWIX 7LE. Tel: 01-2:35 6060 Telex: 27874

AMPEX

BROADCAST VTR ENGINEERS

FOR MIDDLE EAST AND AFRICA BASED IN ATHENS

We seek HNC calibre Electronics Engineers or those with equivalent experience, to whom product training will be given. They will be required to travel and work independently and to join our highly professional team serving this area from its Regional Office in Athens.

Salaries reflect the demanding nature of the job. Assistance with relocation, rent, education expenses will be given. Pension, medical expenses and insurance

Write fully to Don Cameron, AM PEX, P.O. Box 45, Halandri, Athens, Greece, or for application form from Clive Legg, Ampex Great Britain Lid., Acre Road, Reading, Berks. on Reading 85200.

The Group parent company. Ampex Corporation, has been designated the official supplier of video recording and magnetic tape products to the 1980 Moscow Olympics.

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388
Name
Address

London Borough or Bromley
RAVENSBOURNE COLLEGE
OF ART AND DESIGN

SENIOR ENGINEER

TELEVISION
AND
BROADCASTING

A senior television broadcast engineer is required to manage a small engineering section of the television department. Duties will include installation and maintenance of the broadcast standard colour television installations which are used by the department.

The successful applicant should be qualified to H.N.D. level with recent experience in the unsupervised maintenance of colour television broadcast studio and video sustems, including cameras and quadruplex video tape equipment.

Salary on grade T5 within the range $£ 5610$ to $£ 5937$ including London Weighting.

Further details and application forms from the: Registrar, Ravensbourne College of Art and Design, Walden Road. Chisiehurst BR7 5SN.
(9899)

THE POLYTECHNIC OF CENTRAL

 LONDONEngineering Division
ELECTRICAL WORKSHOP/ LABORATORY TECHNICIAN GRADE 3
Salary: £3456-£3861 inclusive of London Allowance (Under Review)
Technician required for an expanding group working in communication and computer fields. Experience in electronics and workshop practice necessary. Workload includes laboratory and research projects.

The following qualifications are required: ONC with 3-5 years' experience finclusive of training) or the equivalent and/or appropriate industrial experience.
Application form and further details from the Establishmant Officer, PCL, 309 Regent Street, London W1R 8AL. (Tel: 01-580 2020 ext. 212)
(9894)

TELECOMMUNICATIONS ENGINEER
 Salary $£ 7,000$

Good all round engineer required for an International Company with worldwide telecommunication network.
Good knowledge of telecom. munications peripherals and multiplexing. Facsimile experience an advantage. Some international travelling will be necessary.
Apply in the first instance to
Miss L. J. Walker, United Press International, 8 Bouverie Street, LONDON EC4Y 8BB.

How to get second interviews without having first ones, you have to cut a few corners.

All too often, first interviews are unnecessary.
You provide a mass of information for the second or third time.

You're screened by comparatively junior people.

And you have to invent some excuse for being away from your own job at an inconvenient time.

Second interviews are when it all happens.
You meet the decision-makers and you know they're interested.

Lansdowne can save you from wasteful first 'interviews.

Just fill in and send us this coupon and you will receive our 'First Interview' form.

And, because we have access to the
opportunities in over 3,000 companies, large and small, we can match you with the situations that might suit you.

The employer will then get in touch with you directly and invite you to what is, in effect, a second interview.

From then on, it's up to you.
As you'd expect from Britain's most professionally respected register, we maintain total confidentiality throughout.

And you can specify those companies to which you do not want your particulars sent.

Cutting corners could save you a great deal of time.

Why not cut a few right now?

RADIO OFFICERS

If your trade or training involves radio operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.
A number of vacancies will be available in 1980/81 for suitably qualified candidates to be appointed as Trainee Radio Officers. Candidates must have had at least 2 years radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly.
On successful completion of 40 weeks' specialist training, appointees move to the Radio Office Grade.

Salary Scales

Trainee Radio Officer
Age 19 £ 3271
Age $20 £ 3382$
Age $21 £ 3485$
Age 22 £361.1
Age 23 £ 3685
Age 24 £ $376 \mathbf{6}^{7}$
Age $25+£ 3856$

Radio Officer

Age $19 £ 3961$
Age $20 £ 4107$
Age $21 £ 4243$
Age 22 £4359
Age 23 £4571
Age $24 £ 4854$
Age $25+£ 5166$
then by 5 annual increments to $£ 6981$ inclusive of shift working and Saturday, Sunday elements.

For further details telephone Cherrenham 21491 Ext. 2269 , or write to the address below.

MARTIN-BAKER (ENGINEERING) CO. LTD.

 has a vacancy for an
ELECTRONIC TECHNICIAN

AT CHALGROVE AIRFIELD, OXFORD

The successful applicant will be required to assist small team, on commissioning and operation of telemetry and instrumentation systems for ejection seat trials.

QUALIFICATIONS - Ability to make prototype units from rough drawings and test to specifications using standard test equipment. Knowledge and experience of U.H.F. Trans/Recs., tape recorders and logic systems. (Gained as a radio amateur perhaps).

Salary range $£ 5500-£ 5700$ per annum. Weekly paid 40 -hour week. 22 days' holiday per year, noncontributory pension scheme after five years.

Enquiries to: Mr. G. B. Thompson, Martin-Baker (Eng) Co. Ltd., Chalgrove Airfield, Oxford OX9 7RJ. Telephone: 0865-890251.
(9807)

Editorial writer for Wireless World

Wireless World needs a new person on its editorial staff. Technical experience in electronics and /or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending meetings, exhibitions, press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and responsibility.
Preferred age range 25 to 35.
Write to: The Editor
WIRELESS WORLD
Dorset House, Stamford Sreet
London SE1 9LU

TELEVISION PROJECTS ENGINEERS

We have vacancies in our expanding Projects Section for Junior and Intermediate engineers. Responsibilities cover all stages of custom-built vision/audio switching system manufacture, from customer liaison through design, production and test to final acceptance.
The positions offer the chance for energetic engineers with initjative to join a small, expanding company manufacturing and supplying elecronic equipment to many professional TV broadcasters in the UK and Europe. A certain amount of travel here and abroad could be involved.
In particular this opportunity would suit engineers possessing some experience in electronic testing wishing to expand their horizons and gain experience in television broadcast systems.
In addition to a good salary the company offers profit-sharing and noncontributory pension schemes, free BUPA membership, a friendly environment in rural settings and excellent career prospects.

For more details contact David Steel at:

VIDEO ENGINEERS

Experienced Video Engineers are required for important work, mainly in the field of high security systems. Some work on short contracts is available in the Middle East, North Africa etc, if required, but not mandatory. A company car, pension scheme and generous salary can be expected but loyalty and a determination to do the job well are necessary. We are looking for Engineers who expect to earn $£ 4,000-£ 7,000$.
Please apply to:
ANDROMICA (T.V.) LTD.
34 Rockingham Road
Uxbridge, Middlesex
Tel. Uxbrige 57971
(9956)

Appointments

HNC Level Engineers~

(Electrical or Electronic)

Train for the future as a Broadcast Transmission Engineer

Through our network of over 500 transmission stations the IBA is responsible for the transmission of all Independent Television and Local Radio services. With a steadily increasing number of stations, the preparations for the fourth television channel and more local radio stations now underway we are taking on increased responsibilities.
We take great pride in the fact that our system is one of the best in the world and great importance is placed on maintaining the efficiency of the service. To do this we have teams of highly trained and experienced engineers all over the country.
Internal promotions and continued expansion have created a number of opportunities for H.N.C. or H.T.C. or equivalent level engineers (male or female) to train for a challenging future. Our carefully devised training programme, which will commence this summer, can lead to a recognised Diploma and combines theoretical study and practical training. This comprehensive training is a step beyond traditional learning and gives a grounding in broadcast engineering that is second to none. Naturally, course fees, accommodation and meals will be paid during the course. A full driving licence is required, but if you do not already have one, we will assist you by arranging and paying for instruction.
On the satisfactory completion of the training programme your salary will be $£ 5,880$ per annum and then rise annually to $£ 7,280$ per annum, with further progression to $£ 8,202$ per annum. (During the training period you will receive a salary of up to $£ 4,700$ per annum, depending upon experience.) At higher levels it will be up to you to demonstrate your ability as promotions are based on internal competition - all of our Regional engineering managers started their careers at transmitting stations.
Employment benefits include Free Life Assurance and Personal Accident Schemes, a Contributory Pension Scheme, generous relocation expenses and subsidised mortgage facilities.
Please write or telephone Mike Wright for a fully illustrated information package and application form, at IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone: Winchester 822574.

DESTHN ENCINE=B

Thorn Consumer Electronics

Limited, leading manufacturers of television and audio equipment in the U.K., wish to appoint an experienced Design Engineer for their Research and Eng ineering centre at Enfield.

The successful applicant will join a team investigating new ideas and systems for the television

ITA EXPANSION

We need more high-calibre engineers conversant with current recording equipment. Applicants must be able to assume responsibility in return for attractive
salary and secure future.
Apply: Chief Engineer ITA, 1-7 Harewood Avenue Marylebone Road London, N.W. 1
01-724 2497 industry and should have a degree or equivalent, with at least two years in television design, outside suppliersis essential.

CAPITAL APPTS.

 Please apply in writing, stating age, experience and qualifications to:

The Personnel Manager, (DE/WW),

JUNIOR DEVELOPMENT ENGINEERS ELECTRONICS

John Player and Sons, a leading manufacturer of tobacco products, offer the opportunity to young electronics engineers to gain valuable practical experience in industrial electronics.
Vacancies exist for work in the Machinery Evaluation Section where new generation cigarette making and packing machines are undergoing preproduction trials. These machines are equipped with increasing numbers of modern electronic control circuits using the latest technological advances including microprocessors.
The successful applicants will undergo a period of familiarisation, look after specific machines during the evaluation period, be involved in the dovelopment of special features as well as devising evaluation aids and uttimately in the training of others in the maintenance of these machines on the production floor.
We are looking for men or women who are qualified to HNC or equivalent, and who have 2 years' experience in one or more of the following areas:
a) electronic control and logic circuits
b) process control systems
c) microprocessors

A knowledge of the tobacco industry is not essential.
We offer a starting salary of $£ 5,500$ per annum together with other benefits associated with a large progressive company including relocation assistance where applicable.
Application forms can be obtained by phoning Nottingham (STD 0602) 787711 Extension 345 or writing to:

Lorna Blayney

JOHN PLAYER AND SONS
 Nottingham NG75PY

(9902)

Manufacturers of professional film and video equipment now need the following staff:

ELECTRONICS DESIGNER

An engineer with some experience is required to join a small design team working on a variety of projects. Fields of interest include logic, analogue and power control circuits. The level of work would suit a Graduate or someone with relevant design experience.

ELECTRONICS TECHNICIANS

There are vacancies for test personnel for fault finding and general testing of PCB's and equipment. Some experience of logic and analogue circuits is essential.
The above vacancies are suitable for men or women. If you are interested in either of them please telephone Nigel Gardiner on 01-543 3131, or come along and see us.

PAG GROUP

565 KINGSTON ROAD, RAYNES PARK
LONDON, SW20

ROHDE\&SCHWARZ

Independent concern represented in 80 countries

SENIOR TEST AND CALIBRATION ENGINEERS

With a background in RF and microwaves, experienced in analogue, digital techniques, logic and microprocessor controlled ATE.

also vacancies exist for

TEST \& CALIBRATION ENGINEERS

with knowledge of one or more of the above techniques.
We offer an exceptional salary \# Performance related bonus scheme *Training abroad $\#$ Prospects of promotion $\star A$ wide variety of work $\# A$ happy atmosphere * Non-contributory pension scheme \star Subsidised restaurant.

Please write or phone to.
Mr. Z. Eres (Technical Manager) extension 43.

Electronic Insiruments \& Communications Equipment

Roebuck Road

Chessington
Surrey KT9 1LP
01-397 8771

GUERNSEYMEN

come home, we need you here! We have vacancies for, ELECTRONICS ENGINEERS and a DRAUGHTSMAN
We are forming a Product Development group within our company here in Guernsey which will be involved in the introduction, appraisal, and design of new products aimed at our European Markets.
We are in the business of manufacturing data communications equipment including sophisticated microprocessor - based monitoring and test equipment. We have immediate vacancies for Engineers with experience in one or more of the following areas: Systems, Analogue, Software, and digital design. We also have a vacancy for a Draughtsman with electronics experience.
Applicants, who must have Guernsey residential qualifications are invited to write to the Personnel Manager giving details of experience and qualifications.

SOUTHERN ELECTRICITY Littlewick Green, Maidenhead

SECOND ENGINEER (TELECOMMUNICATIONS)

CHIEF ENGINEER'S DEPARTMENT HEAD OFFICE

SALARY WITHIN THE RANGE £6,830-£8,955 PER ANNUM

Applications are invited for the above post in the Technical Services Section of the Chief Engineer's Department.

The successful applicant will be part of a team engaged in the design, commissioning, and subsequent maintenance of telecommunications systems throughout the Southern Electricity Board, and must be able to spend periods away from Head Office when carrying out these duties.

Schemes in progress include telecontrol, data communications, medium capacity microwave links, multi-channel line circuits and radio and line telephony systems. Applicants should have had experience in some of this work and preferably be in possession of suitable technical qualifications.

The successful candidate will be required to drive a motor vehicle which may be either a private car or a Board-owned car.

Appropriate relocation assistance will be provided.
Applications on forms obtainable from the Secretary, Southern Electricity, Southern Electricity House, Littlewick Green, Maidenhead, Berks., SL6 30B, and returned to him quoting 76/79 by not later than January 11, 1980
(9916)

FIELD ELECTRONICS ENGINEERS

Gardline Surveys are a leading Hydrographic and Geophysical Survey Company providing shipping, offshore positioning and site investigation services to oil companies and other clients.
Due to continuing expansion we have vacanices for the following personnel:
SEISMIC ENGINEERS - with a strong electronics background, a familiarity with digital acquisition systems and preferably with marine or shallow marine operations.
UNDERWATER SYSTEMS ENGINEERS - with a sound background in electronics and an aptitude for practical work and fault finding. Gardline operates a variety of equipment including Huntec Deep Tow Boomers, E. G. and G. Sidescan Sonars, Magnetometers, Sparkers, etc. Experience with one or more of these systems is desirable but not essential.
POSITIONING ENGINEERS - with experience in the field of survey vessel navigation or oil rig positioning. Gardline operates a variety of positioning systems including Satellite Navigation, 2 MHZ Systems, Syledis and Trisponder. A computer and track plotter are usually used in conjunction with the above equipment. Familiarity with digital techniques and the ability to fault-find desk top calculators would be an advantage.
Whilst formal qualifications are an advantage, experience and the ability to work effectively in a field environment is considered to be of prime importance. We expect our engineers to be adaptable and willing to learn to use systems that they are not familiar with at present. Employment will be based at Great Yarmouth or if required Aberdeen. Operations are primarily North Sea based but there are good prospects of overseas employment through our branch offices in Houston and Sharjah (U.A.E.)
Salary is fully negotiable and with sea pay is likely to be around £8,000.
There is a company pension scheme and 4 weeks' annual leave plus roster leave accrued whilst at sea.

Applicants should write or telephone The Technical Manager, Gardline Surveys, Oilmar House, Admiralty Road, Great Yarmouth, Norfolk. Tel. Great Yarmouth (0493) 50723.

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a number of interesting opportunities in our Design,
Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Hents, AL4 OBR. Tel: Si Albans 59292

Appointments

HOLLAND

Holland, the most 'English' country in continental Europe offers you high salaries and excellent opportunities for advancement.
If you have the following background you could earn around

on a long-term contract in Holland.
We have an immediate need for: Technical Authors and/or Instructors with either an electronics, radar/sonar or weaponry background.
Contact Norma Baxter on 01-952 8092
or evenings between 6pm and 8pm on 01-207 1725.
The Howard Organisation enjoys an international reputation and you are invited to benefit from our experience and success.

Howard Organisation International Ltd
Employment Business Section
Russell House, 140 High Street, Edgware, Middx HA8 7BS
lisev/Alid

> ENGINEER
> for Deaf Teaching Equipment (MALE OR FEMALE)

£4,317-£4,770
Epsom

For the Media Resources Centre, Glyn House, Church Street, Ewell. To carry out on-site service / repair work to electronic equipment used for teaching deaf children (VHF radio microphones, speech trainers, group hearing aids, audiometers, etc). To remove from site and repair in Ewell workshop those items best serviced by bench work. You will be expected to travel from school to school and school to base in your own vehicle, for which Casual User car allowance will be paid. You will be expected to diagnose and repair the special equipment as necessary, working alone in schools.

Proven ability to carry out the above work and a current driving licence are essential requirements. The Centre is situated within easy access to public transport and ample free car parking is available on-site.

Application form from Media Resources Centre, Tel. 01-393 0208.

SURREY
 COUNTY COUNCIL

TAITO ELECTRONICS ENGINEER

An enthusiastic and self-motivated engineer required to work on the latest microprocessor controlled coin operated video games, with a rapidly expanding company in the leisure industry
Applicants should possess a good working knowledge of fault finding techniques to component level.
Excellent working conditions and highly competitive salary for the right candidate.
Applications (in writing) should be addressed to the Personnel Officer.

TAITO ELECTRONICS LIMITED
264 Water Road, Wembley, Middx.

MINISTRY OF DEFENCE

require

Telecommunications Professional and Technology Officers III

for

BRITISH FORCES GERMANY

For (a) management and development planning for a private telephone network, (b) maintenance and repair of a multi-channel radio and relay network, (c) maintenance and repair of a colour TV transmission system. Candidates should be British Subjects, hold a current British driving licence, and must possess a City and Guilds certificate for telecommunications technical final or Part II (or intermediate plus 3 B subjects, which must include mathematics and tele-communications principles) or radio television and electronics technicians final or Part II, or an equivalent or higher acceptable qualification. Candidates must have served a recognised apprenticeship or had equivalent training and have at least three years' appropriate operating experience. Ex-Service candidates who do not fulfil the above requirements will be considered only if, after completing a course of approved technical training they have served for at least three years in an approved technical capacity in HM Forces with the rank of Staff Sergeant or equivalent. A knowledge of German, although not essential, would be an advantage.

Salary: $£ 4984-£ 5551$ (currently under negotiation) plus an allowance equal to Inner London Weighting of £780 and Foreign Service allowance ranging from $£ 1365-£ 2810$. There are additional grants and allowances dependent on individual circumstances.

For further information and an application form (to be completed and returned by 18 th January, 1979) please write, quoting reference NW, to: Ministry of Defence, $\mathrm{CM}(\mathrm{S}) 3 \mathrm{e} 2$, Room 317 . Adelphi, John Adam Street, London WC2N 6BB, or telephone 01-2174677/5128.
(989)

YOUR CAREER STARTS HERE

 with
GELLER BUSINESS EQUIPMENT LTD.

London, W. 1

This company, leading distributors of electronic point of sale systems and up market calculators, needs

1. JUNIOR ELECTRONIC TECHNICIAN

(aged 18 approx.) to train in fault locating and repair of printed circuit boards and associated equipment
Some formal qualifications desirable, but enthusiasm and ability to benefit from training are equally important.

2. SENIOR ELECTRONIC TECHNICIAN

(aged 24 approx.). City \& Guilds standard to work with 'state of the a microprocessor based units
Following training, the work will involve modification and programming advanced electronic cash registers and educating users.
THESE JOBS OFFER TOP PAY RATES AND FULL OPPORTUNITY TO DEVELOP TALENTS, FURTHER KNOWLEDGE AND ENCOURAGE THE ENTHUSIASTIC.
OUR TECHNICAL SECTION COMPRISES A SMALL GROUP OF
YOUNG, FRIENDLY PEOPLE, WHO WORK AS A TEAM AND DEVE-
LOP THEIR ABILITY BY MUTUAL ASSISTANCE.
Write fully or Telephone:
Norman Geller
GELLER BUSINESS EQUIPMENT LTD.
15 PERCY STREET.
TOTTENHAM COURT ROAD
LONDON WIP OEX
Telephone No. 01-580 1614
GELLER

Senior Electronics Engineer for component and standards evaluation

GEC-Computers is a world leader in the design, development and manufacture of highly sophisticated computers for both commercial and military applications.
Within the Techniques and Components Section of our Engineering Department at Borehamwood, we now require a Senior Electronics Engineer to work on a wide variety of components ranging from the latest semiconductor devices through to state-of-the-art printed circuit boards.
It's a job calling for a man or woman qualified to degree, HNC or equivalent level with several years' sound practical experience of component and standards evaluation, application rules and packaging techniques. Specialist training can, however, be given where specific experience is lacking.

We offer a competitive salary; attractive benefits, including assistance with relocation expenses, and the opportunity of working in a challenging environment as a member of a highly professional team.
Write with details of experience to Ivan Hickmott. GEC-Computers Limited. Elstree Way, Borehamwood, Herts. WD6 1 BR Telephone: 01-935 2030.

Technical Manager

Radio Communications

 Londonto be responsible for the management of staff engaged on type testing of communication equipment for maritinte and land services to approved Home Office specifications. Work will involve development of specifications and participation in national and international technical committees and working groups dealing with maritime radio communications.

Candidates must have an HNC or equivalent qualification in a relevant subject. They must also have electrical/electronic engineering experience and a detailed knowledge of radio communications.
Salary starting at $£ 8.440$ and rising to $£ 9,380$. Promotion prospects Non-contributory pension scheme.

For further details and an application form (to be returned by 17 January, 1980), write to Civil Service Commission. Alencon Link, Basingstoke, Hants. RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref. $\mathrm{T} / 5266$.

HOME OFFICE

TEST/ COMMISSIONING ENGINEER

To $£ 6,500$ plus car
MIDDLESEX
We make an extensive range of environmental test systems, covering every application from strain measurement to the vibration of vehicles and buildings.

If you are:
-self-motivated and self-reliant;
-qualified to HNC or equivalent in electronics/radio and TV, and also interested in mechanics;
-experienced in analogue and/or digital work:
Then we can offer you a wide variety of testing and commissioning experience, working with newly developed modular control systems, in house and also at customers' premises in the U.K. and abroad.

SERVOTEST LIWITED
Sarstield Road
Greenford, Middlesex UB6 7AA
Tel. 01-998 1552

DIAL 01-741 4011

Think of the Op Amp and the NAND Gate and your are through to:
CHARLES AIREY ASSOCIATES

4 Hammersmith Grove

 London W6 ONA
CURRENT VACANCIES INCLUDE:

Chief Control Engineer for multi-million pound company engaged in the manufacture of roof tiles. Managerial ability as important as the ability to create a new generation of process automation products. Surrey. Excellent salary.

Young Entrepreneurial Engineers to join a multidisciplinary company with interests in: radio-controlled target systems, range finders, aerospace products, etc. Good microprocessor hardware/ software experience. Wilts. Salary good.

Microprocessor Hardware/Software Engineers to design systems and supply modules for a very wide range of applications. Experience in either:M6800, R.P.A. 1802, GM 1650 or INTEL 8085. Berks. Salary - "What 'es worth.

INTEL Microprocessor Engineers for message switching systems based on a minicomputer and the INTEL $8080 / 85 / 86$. Surrey - to £9,000.

Digital Engineers for exceptionally advanced technology associated with an MPU control system for shipborne aerials or early warning radar. To $£ 9,000$. Berks.

Computer Engineers for either technical support, field service, permanent site or systems test. Vacancies througout the U.K.

For further details, please contact:
(9940)

Appointments

144

ELECTRONIC ENGINEER

We are a research laboratory engaged in detergency and toiletry projects which range from inception through development to pilot plant operation and are seeking to strengthen our instruments section by filling the following vacancy:

INSTRUMENTATION DESIGN ASSISTANT

An Electronics Engineer is required to join a Design team working on the development of scientific instruments.
The job will require knowledge of analogue and digital techniques, together with some experience in applying microprocessors and interfaces to design problems.
Applicants with City \& Guilds, ONC, HNC or graduate qualifications will be considered.
Day release will be offered to persons already following a suitable course.
A progressive salary will be offered to the successful candidate and re-location where necessary. Flexible working hours operate in the Laboratory.
Those interested should write or telephone for an application form quoting ref: PS 655 AMA.

The Employment Officer Unilever Research
Port Sunlight Laboratory
Port Sunlight, Wirral
Merseyside, L62 4XN
Tel: 051-645 2000, Ext. 8408
Interested persons should write to the address below for an application form. Employment Officer, Unilever Research, Port Sunlight Laboratory. Port Sunlight, Wirral, MERSEYSIDE L62 4XN

Commissioning Editors £7000 negotiable

Butterworths, publishers of legal, medical, scientific and technical books, are looking for two experienced Commissioning Editors to develop lists of books on electronic engineering, electrical engineering and computers. One Editor will be required to work with professional engineers and academic staff to provide reference books, monographs and textbooks.
The other is needed to takeover and extend a programme of publishing for enthusiast constructors, personal computer users and electrical and electronic servicing personnel.
Our modern offices are in pleasant rural surroundings about 50 minutes from London.
Please write to:
Linda Stammers,
Personnel Assistant,
Butterworth \& Co. (Publishers) Ltd., Borough Green, Nr. Sevenoaks, Kent.

ELECTRONIC SEISIMIC ENGINEERS

We are looking for young electronics engineers, with degree or equivalent qualifications, to join our marine seismic acquisition company.
This is a field position, with the successful applicants joining the technical crew of our exploration vessel for on-board training in seismic techniques. They will stant as Assistant Technicians with a salary of $£ 6,000+$ per annum, and one month's leave after each two months on the crew.
The seismic industry offers an interesting career with world-wide travel, and rapid promotion for the right person.
Sefel Geophysical is a member of the Sefel Group, which has seismic processing centres in Houston, Denver, Calgary and London.

Please write with full curriculum vitae to:

Marine Manager
Sefel Geophysical
Turriff Building
Great West Road
Brentford
Middlesex TWV 9HY
1994

No more long goodbyes RadioOfficers

With the Post Office Maritime Service, you can do the job you're trained for, and still work close to home! Several coast stations need qualified Radio Officers to carry out a wide variety of duties ranging from Morse and teleprinter operating to traffic circulation and radio telephone operating. It's a secure job that pays well, and if you're ambitious, the prospects of promotion to senior management are excellent.

You must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an
equivalent certificate issued by a Commonwealth Administration or the Irish Republic. Preferably you should have some sea-going experience.

The starting pay at 25 or over will be about $£ 5,381$; after 3 years service this figure rises to around $£ 7,087$. (If you are between 19 and 24 your pay on entry will vary between approximately $£ 4,229$ and $£ 4,937$). Overtime is additional, and there is a good pension scheme, sick-pay benefits and at least 4 weeks' holiday a year.

For further information, please telephone Kathleen Watson on Freefone 2281 or write to her at the following address: ETE Maritime Radio Services Division (ETE17.1.1.2, Room 643, Union House, St. Martins-le-Grand, London ECIA IAR.

Radio Communications

Electronics Engineers and Software Designers

Mid-Sussex-S.W. London

Salaries up to $\mathbf{£ 8 , 0 0 0}$

To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine- and land-based use, radio navaids and radio monitoring remote computer-controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software
Attractive salaries are complemented by excellent prospects and generous benefits.

Contact: David Bird, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (reverse charges).

DEPARTMENT OF NUCLEAR PHYSICS, UNIVERSITY OF OXFORD

has a vacancy in the

EXPERIMENTAL ELECTRONICS LABORATORY

giving an opportunity for work with a wide range of the most modern electronic equipment. A suitable candidate would preferably be of HNC standard, and have experience in servicing, development and construction of analogue and digital equipment. The laboratory encourages staff to learn new skills and where appropriate arrangements are made to attend relevant courses. Salary $£ 3700-£ 4320$ with further award from April, 1980. Eight weeks' paid leave pe year. Write to the Administrator, Nuclear Physics Laboratory, Keble Road OX1 3RH, mentioning reference A209 and giving details of education, qualifications, and job experience.

Marine Radio Service Engineers Glasgow, Aberdeen,Tilbury, Cardiff and Newcastle

International Marine Radio Co., a member of the STC Group of Companies, is engaged in the manufacture of high quallty marine communication equipment. We have vacancies for Marine Radio Service Engineers in our Glasgow, Aberdeen, Tilbury, Cardiff and Newcastle Depots.

The work will be concerned with installation and service of communication equipment on board commercial vessels of all types.

Ideal candidates, male or female, will have had at least three years sea experience as a Radiol Electronics Officer. A company vehicle is provided for business and personal use.

For further details on these positions please contact: Jonathan Smith, International Marine Radio Co. Ltd., Intelco House, 302 Commonside East, Mitcham, Surrey CR4 1YT. Tel: 01-640 3400
IMRC

Come to Somerset to make themost of your Electronics experience

At Wells, EMI Electronics Limited are developing new 'state of the art' electronic systems.

Current projects include microwave systems, radar signal processing, computer simulation and real-time software programmes.

Our established reputation for performance and reliability is dependent on quality requirements being incorporated in projects from inception to completion.

Due to expansion we have vacancies for:

Project Ouality Engineers

To work with research, development and design teams with responsibility for ensuring that the engineering data produced complies with the quality requirements.

Applicants should be qualified to at least HNC standard and have previous experience in related fields.

Test Gear Engineers

To install, commission, calibrate and service a wide variety of proprietary and company designed test equipment.

Applicants should hold an HNC or equivalent and have practical experience of servicing, fault diagnosis and maintenance of modern complex electronic test equipment.

Test Engineers

To ensure that our microwave or digital assemblies and systems conform to design performance and quality standards.

Applicants should be qualified to at least City \& Guilds final technician certificate standard and have relevant experience.

Transformer Test Technicians

To undertake reliability tests on R.F. Transformers and Chokes in a small batch production environment.

Necessary specialist training will be given to the appointed applicant who will have previous experience in similar fields.

Technical Supervisor (Electrical)

To plan and control the work of a team of electrical inspectors. Applicants should be qualified to at least ONC standard, be familiar with MOD electrical inspection requirements in the Electronics Industry and preferably have previous supervisory experience.

Starting salaries are commensurate with the importance of the posts, other benefits include subsidised meals, sports and social club and the opportunity to live and work in the heart of Somerset. Where appropriate, assistance with relocation will be discussed at interview.

In the first instance please write or 'phone Wells (0749) 72081 for an application form (quoting ref. no. WW135) to D. K. Shires/F. M. Taylor, Personnel Department, EMI Electronics Limited, Wookey Hole Road, Wells, Somerset BA5 1AA.

EMIElectronics Limited, Wells, Somerset

ARTICLES FOR SALE			
TELEQUIPMENT EL011 SCOPE, only		GWM RADIO LTD., 40/42 Portland	TWO wELL maintained recently
nine months old. twin trace, vari-		Road, Worthing, Sussex. Tel: 0903	serviced ASR-33 teletypes with
able time base, first-class order,		34897 for surplus supplies. AVO 8	20 mA interface for sale. In good
£245 inc. VAT. Dorset (09297) $\underset{(9883}{257}$ (§43. Model 7 MK II with power, capacity and decibel ranges $£ 32$	working order. Each $£ 600$. Box No 9830.
WIRELESS WORLD, 1952 to 1966.	REliAble	inclusive p\&p. Receivers, atalanta marine for AC, mains $£ 115$ plus	MICRO COMPUTER
Offers? - Chamberlain, 60 Harpool		carriage. B40 ex-Govt. communica.	MICRO COMPUTER - ${ }^{\text {with }}$ /4 monitor, power
Rd.. Redditch. Worcs. Tel. 10527)		tions recelver for AC, mains. £65	with T4 monitor, power supply
24995.		plus carriage. Sound powered tele-	Phone Charles Frater, 01-937 3347.
VHF MONITOR RECEIVERS, Air or		as new. quft preumatic masts by	
Marlne band from [50. FM Business	are enquiries, send ! 30 mm stantips for brochure	Scam Clark £321, in original un-	IIN COMPUTER tape fin computer
bands from 190 . For leaflets send		opened makers box gross wejght 4	tape, can be used as video tape on
50p P.O., not stamps. Radio munications Ltd. 13 Clos du Murier,	HE COALS CIACIAL CO.LI	cwt. Radio telephones bought \& sold. Many one off items in stock.	some machines. Three teleprinter
St Sampson, Guernsey. Channel	Q.C.C. WORKS, IVELLINGTON CRESCENT NEIW MALDEN. SURREY 01.9420334 \& 2988	No lists. we are worth a visit.	54 's. Phone for further details 0622 50350. MKS, 27 Upper Stone St
Isles. 19874		(9773)	Maidstone, Kent. 9442

Production Manager For Quad £9,500+car Huntingdon,Cambridgeshire

The Acoustical Manufacturing Company produces amplifiers and loudspeakers under the brand name 'Quad' and is one of the world's most respected hi-fi equipment manufacturers. 'Quad' products have an enviable reputation for quality and technical excellence.
We require a fully experienced Production Manager to be resporisible to the Managing Director for every aspect of the running of a medium sized manufacturing plant producing domestic audio equipment at the rate of 1,000 units per week.
Candidates, male or female, should be aged around 35 years with qualifications or experience at graduate level. The candidate should have proven success in running an electronic assembly plant coupled with experience of the latest automatic assembly and test methods and of metal finishing.

There is a good range of benefits, including a non-contributory pension scheme, subsidised restaurant and sickness provision. Huntingdon offers a wide variety of reasonably priced housing; recreational amenities are excellent and London is within easy reach.

For an application form and Company 'information, please write to or telephone The Acoustical Manufacturing Co. Ltd., St. Peters Road, Huntingdon PE18 7DB. Telephone 048055480.

QUAD for the closest approach to the original sound

ARTICLES FOR SALE

RCA SOLID STATE COS/MOS MEMORIES
MICROPROCESSORS AND
SUPPORT SYSTEMS DATA BOOK
by RCA Price: $\mathbb{C} 5.75$
H/B OF ELECTRONICS
CALCULATIONS FOR
ENGINEERS \& TECHNICIANS
by M. Kaufman Price: $£ 14.70$ ELECTRONIC DESIGNER'S H/B by K. Hemingway Price: $\mathbb{1 3} 25$ ACTIVE FILTERS FOR
COMMUNICATIONS 8
INSTRUMENTATION
|by Bowron P. Price: $£ 7.0$
DESIGN OF ACTIVE FILTERS
WITH EXPERIMENTS
by H. M. Berlin Price: 6.45
DESIGN OF PHASE LOCKED DESIGN OF PHASE LOC
LOOP CIRCUITS WITH
EXPERIMENTS
by H. M. Berlin \qquad Price: £6.45
by H. M. Berlin GUAGE
280 ASSEMBLY
PROGRAMMING
PROGRAMMING
by L. A. Leventhal
Price: $\mathbf{£ 5} 75$ LOGIC \& MEMORY EXPERIMENTS USING TTLIC'S BKI
by D. G. Larsen Price: $£ 7.60$ TELETEXT \& VIEWDATA by S. A. Money Price: $\mathbb{£ 6 . 0 0}$ THE EUROPEAN CMOS SELEC-1 TION
by Motorola
Price: 17.75

* ALL PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO.
Specialist in Scientific \& Technical Books
19-21 PRAED STREET LONDON W2 1 NP

Phone 402-9176
Closed Sat. 1 p.m.

TO MANUFACTURERS, WHOLESALERS \&

 BULK BUYERS ONLYLarge quantities of Radio, T.V. and Electronic Compinents.
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3.1$ Watt from 1 ohm to 10 még.
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713 4450749

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N.12. 5 mins. from Tally Ho Corner

INVERTERS

High quality DC-AC. Also "no break" (2 ms) static switch,
19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd. POB 51, Landon W11 382 Tel: 01-727 7042 or 0225310916
(9101)

MSF CLOCK

NEWI Shows continuous Date. Hours, Minutes. Seconds, 8 digit LED, also parallel BCD output. auto-reset after power lailure. auto GMT/BST. only $5 \times 8 \times 15 \mathrm{~cm}$, built-in 60 KHz antenna, 1000 Km range, all parts. case, pcb. instructions. postage eic. money back assurances. send $£ ₫ 8.80$ for the RIGHT TIME - NOW.

CAMBRIDGE KITS
45 (WA) Old School Lane, Milton Cambridge

COLOUR, UHF AND TV SPARES (miniature size $4 \frac{1}{5} \mathrm{x} 3 f \times 28$). New (miniature size $4 \frac{1}{3} x 3 \frac{1}{x} 28$). New
Saw Filter IF Amplifer plus tuner Saw Filter if Amplifer plus tuner (complete and tested
Vision, £28.50, p/p £1.
TELETEXT, Ceefax and Oracle in
Colour, Manor Supplies "easy to Colour, Manor Supplies "easy to assemble ". Teletext kit including Texas Tifax XM11 Decoder. External unit aerial input, no other connections to set. Wide range of facilities in colour include 7-channel selec-
tion Mix Newsflash and Update. tion, Mix, Newsflash and Update.
(Price: Teyas Tlfax XMil (Price: Texas Tifax XM11 $\mathrm{E130}$
Auxiliary Units 888 , Case Auxiliary Units $£ 88$, Case fl4.80.
$\mathrm{p} / \mathrm{p} £ 2.50$). Demonstration model at $\begin{array}{ll}\text { p/p } & \text { £2.50). Demonstration model at } \\ 172 & \text { West End Lane, NW6. Also }\end{array}$ 172 West End Lane, NW6. Also module avallable. Call, phone or write for further information.
COMBINED COLOUR BAR AND CROSS HATCH GENERATOR KIT (MK 4) UHF aerial input type. Etght pal vertical colour bars, R-Y, B-Y, Grey scale etc. Push-button controls $£ 35 \mathrm{p} / \mathrm{p}$ £1; Battery Holders $£ 1.50$; Alternative Mains Supply
Kit $£ 4.80$; De Luxe Case $£ 4.80$; Aluminlum Case $£ 2.60$. Built and tested (battery) in De Luxe Case £58, p/p $£ 1.20$.
CROSS HATCH KIT, UHF aerial input type, also gives peak white, and black levels, battery operated $£ 11$ $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey scale kit £2.90 $\mathrm{p} / \mathrm{p} 35 \mathrm{p}$; De Luxe Case £4.80; Aluminium Case $£ 2 \mathrm{p} / \mathrm{p}$ 85 p . Built and tested in De Luxe Case $23.80 \mathrm{p} / \mathrm{p}$ £1.20.
KIT SIGNAL STRENGTH METER KIT $£ 16.80$, alum. Case $£ 1.50$, De Luze Case £4.80 p/p £1.
CRT TEST AND REACTIVATOR KIT for Colour and Mono $£ 20.80$ p/p £1.30; TV 625 IF Unit for Hi-fi amps or tape rec. $\mathrm{E}^{6.80, ~ p / p} 75 \mathrm{p}$. Surplus Bush IF panels. A816 £2.80, TV312 $\begin{array}{lcl}\text { (single IC) } & £ 5 . \quad \text { BC5800 (Exp) £5, } \\ \text { A823 (Exp) } & £ 2.80 \quad \text { p/0 } 850\end{array}$ A823 (EXp) £2.80 P/p 85p. Bush $\begin{array}{ll}\text { A823 (A807) Decoder panel } \\ \mathrm{p} / \mathrm{p} & \text { £1. A823 Scan Control panel }\end{array}$ p/p fl. A823 Scan Control panel standard convergence unit $£ 3.75$ $\mathrm{p} / \mathrm{p} 90 \mathrm{p}$. GEC 2040 ez rental panels Decoder $£ 5$, Time Base $£ 5 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Decoder $£ 5$, Time Base $£ 5 \mathrm{p} / \mathrm{p}$ gop.
Thorn 3000 ex rental panels, Video, Thorn 3000 ex rental panels, Video, Colour Scan colls, Plessey £6, Yoke £3.50, blue lat, 76 p (Mullard also avallable). Mono Scan colls Phillps/ Pye $£ 2.80$. Thorn $£ 2.80 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$. Philips G8 Decoder panels, salvaged for spares $£ 3.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Varicap UHF tuners Gen Instruments £3.50, ELC 1043 £4.50, ELC1043/05 $\$ 5.50$: Philips G8 $£ 5.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Salvaged UHF Varicap tuners $£ 1.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. UHF/VHF ELC2000S Varicap tuner $58.50 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. Varicap control units, 3 pos. $£ 1.20$, 4 pos. $£ 1.50$, 5 pos, $£ 1.80,6$ pos. (special offer) £1.80, 7 pos. $£ 3.80 \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Touch Tune control unit Bush 6 pos. $£ 5 \mathrm{p} / \mathrm{p}$ 75 p . UHF transtd tuners, rotary incl. Slow motion drive $£ 2.50,4$ pos. push button $£ 2.50,6$ pos. push but: ton $14.20 \mathrm{p} / \mathrm{p}$ £1. (Thorne, GEC Bush, Decca, etc., special types avaliable, detalls on request). Delay Lines DL20, DL5 £3.50, DL1 80p p/p 65p. Remote Control Thorn-type Transmitter, receiver $£ 2$ pair p / p 45p. Large selection of lopts, triplers, mains aroppers, and other spares for popular makes of colour
and mono recelvers. MANOR SUPPLIES, 172 WEST END LANE, WEST HAMPSTEAD LONDON, NW6, SHOP PREMISES, EASILY ACCESSIBLE, WEST HAMP' STEAD-BAKERLOO, JUBILEE TUBE, and BRITISH RAIL N. LONDON (RICHMOND-BROAD ST.) and ST. PANCRAS-BEDFORD. BUSES 28 , 159, 2, 13. Callers welcome. Thousands of additional items avallable at shop premises not normally advertised. Open dally all week in cluding Saturday (Thursday halfday). MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON NW11 gHT. Tel. 01-794 8751. VAT. Please 9HT. Tel. 01-794 8751. All prices subject to 15% VAT.

[^7]TELEQUIPMENT E1012 SCOPE, Only nine months old. twin trace, variable time base, first-class order $£ 245$ inc. VAT. Dorset (09297) 257. (8883

WEVE FORMEDA NEW R\&D GROUP

to make our shaving products even better

As one of Britain's leading manufacturers of Razor Blades, we are continuously looking into better ways to shave, better methods and systems of production, and on line control. So in the interests of speed and efficiency of communication we are bringing our Research and Development teams together to form one multi-discipline group at our factory in Acton.
The group will be mainly concerned with the Research, Design and Development of new shaving systems and concepts. Join it in any of the following positions and we can promise you plenty of opportunities to apply your problem solving abilities to our modern technology.

Process Control Department Senior Electronic Engineer

The successful candidate will head our Control and Instrumentation Department as Section Leader. The work involves the design and implementation of a wide range of systems from Research and Development instrumentation to Production line control systems. Candidates should have a degree or H.N.C. in electronics or control engineering plus several years' experience of practical electronic engineering.

Electronic Design Engineer

Applicants should have several years experience of practical circuit design of both analogue and digital systems. The work involves the design of a wide range of production line control systems, and specialised electronic equipment required by our Research and Development Departments.
We offer excellent salaries and all those benefits expected of a major organisation.
interested men and women should write with details of age, qualifications and experience, or phone for an application form to: Senior Personnel Officer, Wilkinson Sword Lid., 287 Acton Lane, London W 4 5LE Tel: 01-994 3666.

WILKINSON
 SWORD

ARTICLES FOR SALE

LOGIC MONITOR. Clips over TTL I.C. to show logic states on 16 LED display. Fully buffered. $£ 22.50$ inc. psp. Also latching model available. SAE detalls. J. E. Sinclare \& Co. 139a Sloane St., London SW1X 9AY.,
(9034

[^8]LAB CLEARANCE: Signal Gener ators; Bridges; Waveform, transistor analysers; calibrators; standards; millivoltmeters; dynamometers; KW meters; oscillo scopes; recorders; Thermal, sweep.
low distortion true RMS, audio FR, low distortion true R3S, audiation. Tel. 040-376236. 8250

TEKTRONIX 545 B and IAI plug-in TEKTRONIX 545 B and IAI plug-in
£350. AR88 receiver $£ 60$. Phone: 022824029 (Carlisle).

THE UNIVERSITY OF LEEDS, School of Medicine, The Electronics Workshop of the Multidiscipline Laboratories has a vacancy for a Grade 3 Techniclan. The successful candidate will assist in the repair, maintenance, development and electronic equipment used both for electronic equipment used both for teaching and research. The post would Ideally suit applicants who having gained a basic grounding in electronics wish to broaden their experience and work with modern microprocessors, in a stimulating microprocessors, in a stimulating given in appropriate cases to day given in appropriate cases to a relevant course). Aprelease for a relevant course). Ap-
plicants should hold an ONC or equivalent qualification and have a minimum of three years' relevant experience. Salary on the scale $£ 3,122$ - $£ 3,553$ a year (under re view). Further information may be obtained from Dr J. Fourman, Multidiscipline Laboratories Medi cal and Dental Building, University of Leeds, Leeds LS2 9NL, tel. 31751, ext 7542. to whom applica tions in writing should be sent glving details of age, qualifications, experjence and the names of two referees.
(1432

VIDEO SALES ENGINEER required by Studio 99 Video, the leading industrial and commercial CCTV systems company. High level sales video/electronics knowledge some Video/electronics knowledge essen: Phone Roger Betts $01-328 \quad 3282$.

ARTICLES FOR SALE

IIN COMPUTER tape $\frac{1}{2} \ln$ computer tape, can be used as video tape on some machines. Three teleprinter 54 's. Phone for further detalls Maldstone, Kent.

VHF MONITOR RECEIVERS, Air or
Marine band from $£ 50$, FM Business Marine band from $£ 50$. FM Business bands from $£ 90$. For leafiets send $50 p$ P.O., not stamps. Radio. Com mumer Isles.
(9874
ENCAPSULATING, colls, transformers, components, degassing, sill cone rubber resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating colls, transformers, components. Vacuum equipment low cost, used and new. Also for CRT regunning met allising. Research \& Development Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917.

TELEPHONE ANSWERING machine avallable for outright purchase. Telephone Burton-on-Trent (0283) 47427. $(8608$

SOLAR CELLS, bits, books and bargains. Send stamp for list or $95 p$ for Solar Cell booklet and Data sheets. Edencombe Ltd, 34

 Nathans Road, North WembleyMiddlesex HAO 3RX.

EX-GOVT. TAPE AECORDERS: E.M.I., Ferrograph, Tandberg, Uher

 Vortexion etc. S.a.e. for detalls, A. Wright, "Sunningdale ', Broad heath, Worcester (9831BRADLEY 158 Oscilloscope Sampling Adaptors DC-1, 2 GHz two off for sale As new and guaranteed complete with manuals. First offer secures. Glass ElectronFirs, 7 Commonhead Road, Kil marnock, Ayrshire. 0563-33536. (9898

[^9]ARTICLES FOR SALE EXCLUSIVE OFFER

AUDIO AND INSTRUMENTATION-TAPE RECORDER-REPRODUCERS

- Ferrograph YO 2 rack 1/4"/EMI RE-301 * Ampex FR1300 7 track $12^{\prime \prime}$ UHER 4000% - Consolideted 28007 track $1 h^{2 \prime}$
*Plesser 1033 Digutal Units. 7 rack $1 / 2^{\prime \prime}$
- Plessey M5500 Digual Uni. 7 tracks $1 / 2$
- Ampex FR600. 4 speeds. 7 wack $1 / 2$

\# Min-com CMP. 100.6 speeds. 7
*Ampex 3512 speed 2 racks.
(3 M. H. 4 speeds 14 track $1^{\prime \prime}$
Prices of stove $£ 70$ to $£ 500$

We have a large quanstry of "bits and pieces". W cannot list - please send us your requirements. W

 cannor ist - please send us your requiremecan probably help - all enquifies answered.

All our seriol equipmemt is protersional MOD quallity

	Marconi HR-23 T.S.B. Receivers K.B. Discometlc Juke Boxes SCR-625 Mine Detectors in chests Marconi TF/888 Universat Bridges Hewlett Packard 400 H VT Merres Hewlen Packerd 21 AA Sq. Wave Gen Astrodata \&t Ikor Meteorological Equlpme Ion Pump E.H.T. Power Supolies Haynes D.W. 500W Cased Transformers	C 85.00 E 40.00 c110.00 $\uparrow 95.00$
	Racal Rage Adaptors	
	Racat MA 1350 Synthesizers G.B. Kilee Autter Meters. Mod	$¢ 125.00$ $¢ 90.00$
	Telequipment C.I. Oscilloscope Calibr	
	Tektronix 551 Scopes	
	Tektronix 555 Scopes	
	Teleonic VR2M Sweeps	
	Hell Schriber RC-28 Lenkurt Model 260 Da	
	Panoramic SB 15 A Analysers	C125
	Aerisl Multicouplers fr	
	Marconi Tf 1168 Oisc Oseilla	120
	Hughes Memoscop	
	Nems Clarke 1306 VHF Receiver	c26
	Teleturken Surveillance Rec	
	Helix Aerials 11": 18" and Reflecto	26
	Textronix 543A Uscilloscopes CA. Plu	
	Textronix 545A Oscilloscopes D. Plug-ins	¢140
	Textronix 5614 Oscilloscopes 80. Plug-i	
	Marconi TF 2200A Oscilloscopes	¢26
	Solatron 1016 Oscitloscopes	
Simon Mobile 80 loon Tower Hydreulic 80 t extended. 12 closed. Mounted on 4 wheel drive Bedford Truck for servicing dish aerials P.U.R.		
	Racal RA. 17 P Recrivers (new)	
	Eddystone 770/ U VMF Recervers	
	Collins KWT 6 Transminter Receive	
	Roband RO 50A Oscilloscopes	
	8 \& K 2407 Electronic Voltmeters	
	Winston "5" Band Spectru.ti Analy	
	Armec 352 Sweep Generators D	130.00
	Advance Transistor Testers TT-1S	
	Marconi TF 329 Magnification Meters	c14
	Marconi Tf 10668 FM Signal Generat	
	Marconi TF 801/0/1 AM Signal	
	Ferrami 7.5 KVa Auto Voltage R	E150
	Manson TFM. 101 Multipliers	C24
	Servomex 2 kw Auto regulators	
	125ht Latice masts. $26^{\prime \prime}$ sides	
	30\%. Lentice Masts. 15 " sides	
	10ft Light Lamice Sections. $6^{\prime \prime}$	
D.R.I. Model RC-1 Professional Tape Recorder Reproducers. 4 tracks $1 /{ }^{\prime \prime} 4$ speeds. $11 / 2^{\prime \prime}, 3 h^{\prime \prime}, 71 / 28$ $1^{\prime \prime}, 4$ amplifiers Monitor Scope. All rack mounting \&		
	Transistonsed	
	28CRT.s	
	5/2AC.R.T.S	
	3AZPIZ (DMMN-9) C.RT, 5	
	sey 386 KCSSSS B. Filters	
	AVO CT 471a Electronic Multimeters	
	EMI R301 Tape Recorders	
	Stonoretre L Tape Recorders	
	Uniseleciors. 10 Bank 25-way	
	40tr. Sextional Aluminium Masts, com	
	Multi purpose Trolleys with Jacks	
	Advance 3kVa CV Transforme	
	Meral V O.U. Tables $30^{\prime \prime} \times 36^{\prime \prime \prime} \times 30^{\prime \prime}$	
MANUALS		
We have a quantity of Technical Mansjals and Periodicals of Electronic Equipment, not photostats. 1940 to 1960. British and American. No lists. Enquiries invitad.		
- Data Efficiency Respoolers 240V - Belling tee 100 Amp inierterence Filters * Oscilloscope Trolleys from - Racal MA1978 pre-Selectors * Rack Mounting Operator Tables * 75 h . Aluminium Latice Masts. 20 ii sides - Racal MA. 175 L.S.B. Modulators (new) * Tally $5 / 8$ Track Tape Readers Track Spooiting $£ 65.00$ - Racal RA-63 SSB Adaplors, new - Racal RA 298 I. S.B. Transistorised Adaptors (new\}		
We have a varied assortment of industrial and protessional Carhode Ray Tubes avalliable. Lisi on reques.		

please auu lahrimge and v.a.t

P. HARRIS

ORGANFORD, DORSET. BH16 6BR
(0202) 765051

Experienced All-Round Video Engineer

required for operational and maintenance work.
We are one of the leading video and audio companies in Belgium, distributing Sony, JVC, National, Barco, CV3, Shintron, Microtime, etc
The successful applicant will work in an enthusiastic team and will have the possibility to take charge of our technical department.
Promotion prospects are excellent in this expanding company. We offer an attractive salary and 4 weeks' holiday a year.
Written application in the first instance, giving experience and qualifications can be sent for the attention of W. KLINKEMALLIE, Personnel Manager, and will be treated in strict confidence.

TO ALL MANUFACTURERS AND WHOLESALERS IN THE ELEGTRONIG BadIO AND TV FIELD

BROADFIELDS \&

 MAYCO DISPOSALSwill pay you top prices for any large stocks of surplus or redundant components which you may wish 10 clear. We will call anywhere in the United Kingdom.

21 LODGE LANE

NORTH FINCHLEY, LONDON N 128 JG Telephone Nos. 01 -445 0749/445 2713 After office hours 9587624
(9123)

A.R. Sinclair
 Electronic Stockholders Stevenage 812193

We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

Avenue Moliére, 116
Belgium

Test Engineers A rewarding outlook for the 80's

We at Tektronix are not modest about being the acknowledged world leader in Test and Measurement Instrumentation and at our Hoddesdon location in rural Hertfordshire we manufacture the world famous range of Telequipment oscilloscopes.
To keep our products to the highest possible standard we are looking for Technicians/Engineers qualified to at least ONC with two years'test and fault finding experience to component level, an enquiring mind and the ability to work on their own initiative.
Excellent salaries, profit sharing, generous holidays, sick pay, free life assurance, non-contributory pension and relocation expenses where applicable all add up to make Tektronix the best break you've ever had.
To get all the facts phone Norman Spreckley on
Hoddesdon 67151 or write to him at Tektronix UK Ltd,
Pindar Road, Hoddesdon, Herts.
Tektronix COMMITTED TO EXCELLENCE

Electronics \& Computer Test

To £7,500

Use your C\&G/ONC/HNC/Forces Training and good DIGITAL/ANALOGUE/RF experience to advantage. Working with state-of-the-art MINI/MICRO PROCESSOR; LASER; ATE; COMMUNICATIONS; NUCLEONIC; CCTV and similar equipment. Most UK areas; from Technician to Manager.

For free confidential counselling and practical career advice contact GRANT WILSON ref: GW470.
TECHNOMARK, 11 Westbourne Grove, London W2 4UA. Tel: 01-229 9239 (01-229 4218-24 hrs). Engineering Recruitment Consultants.

ARTICLES WANTED

WANTED

All your gold washed scrap. Plugs, sockets. edge connectors, P.C. boards, pins. etc We collect and pay cash for any amount from 1 cw
Minımum price $£ 100-£ 200$ per cwt
P. Skellem Metals, The Iron Yard (Ese. 1935), Cutters Green, Thaxred, Essex CM19 2PL. Telephone: Thaxted 830
862.

SPOT CASH

paid for all forms of electronics equipment and components.
F.R.G. General Supplies 550 Kingston Road London SW20 8DR
Tel: 01-4045011
Telex: 24224. Quote Ref. 3165 (8742)

WANTED: Recording equipment of all ages and varieties. (California, U.S.A.). Tel. (415) 232-7933. (9814

VALVES RADIO. - T.V.-IndustrialTransmitting. We dispatch valves to all parts of the world by return of post, air or sea mail, 4,000 types
in stock 1930 to 1976. Obsolete in stock 1930 to Lispes a speclallty. List 50 p . Quotatypes a speciality. List 50p. Quotato Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish 10 purchase all types of new and boxed valves. Cox Radio (Sussex) Ltd., Dept WW, The Parade, East Witter ing, Sussex PO20 SBN, West Wittering 2023 iSTD Code 024366) (9082

[^10]

WW - 056 FOR FURTHER DETAILS

WANTED

Test equipment, receivers, valves, transmitters. components. cable and electronic scrap, any quantity. Prompt service and cash. Member of A.R.R.A.

> M\& B RADIO 86 Bishops gate Street Loeds LS $\%$ ABB $0532-35649$

TURN YOUR SURPLUS Capacitors. transistors, etc, into cash, contact COLES-HARDING \& Co., 103 South Immediate settlement. We also wel. come the opportunity to quote for complete factory clearance. (9509

STORAGE SPACE is expensive, why slore redundant and obsolete equipment? For fast and efficient clearance of all test gear, power supplies, PC boards, components, etc., regardless of condition or quantities. Call 01-771 9413. (8209

EOU|PMENT FOR SALE

SCOPES TEK. 545B \& CA £200

 884382 .19907

Whth 38 yearn' oxperience in the design and manufacturing of coveral hundred thoucend transformers we cen supply

AUDIO FREQUENCY TRANSFORMERS OF

 EVERY TYPE YOU NAME IT! WE MAKE IT!
OUR RANGE INCLUDES

Microphone transformers (all types). Microphone Splitter / Combiner. transformers. Input and Output transformers. Direct Injection transformers for Guitars. Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification Tapped impedance marching transformers, Gramophone P,ickup transformers, Audio Mixing Desk transformers (all types). Miniature transformers. Microminiature transformers for PCB mounting. Experimental transformers, Ulitra low frequency transformers. Ultra linear and other transtormers to Valve Amplitiers up to 500 watts. Inductive Loop Transformers. Smoothing Chokes, Filter inductors. Amplifier to 100 volit line transformers (rrom a few watts up to 1000 watts). 100 volt line transformers 10 speakers. Speaker matching transformers (all powers). Column Loudspeaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY. STUDIO QUALITY. HI-FI QUALITY, OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS Many standard types are in stock and normal dispatch times are short and sensible.

OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES. MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS. AND PUBLIC ADDRESS FIRMS. Export is a spectality and we have overseas clients in the COMMONWEALTH E.E.C. USA, MIDDLE EAST ETC

Send for our questionnaire which. when completed, enables us to post quotation by return

SOWTER TRANSFORWERS

E. A. SOWTER LTO. (Earablished 1941), Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipawich IP 1 2EG Sutfolk. P.O. Box 36 Jpswich IP1 2EL, England

Phone: $047352794 \& 0473219390$

TEK 5458 mainframe

TEK 547 mainframe
TEK 151 Sampeling plug in
1 L10 Spectrum analyser plug in
TEK 42215 MHZ portable
RACAL 9913200 MHZ counter
POLYSKOP 1400 MHZ POLYSKOP 21200 MHZ
FLUKE 8300 DMM AC $\mathcal{O C}$ IOHM BRAOLEY 233 post generator PHILPS PM 6505 television analy

MARCONI TF 144 H sig/gen MARCONI TF 868/1 LCR bridg MARCONI TF $1370 / 9$ oscillator MARCONI TF 2162 attenuator MARCONI TF 220130 MHZ scope MARCONI TF 2169 pulse modulato HP 211 A square wave gen HP 400 H vuare wave gen
HP 140 A mainframe
HP 1416 A swept freq ind HP 8694 A 8-12.4 GHZ HP 8694 B 7.12.4 GHZ sweeper plug HP 8693 A 3.7-8.3 GHZ sweeper plug HP 1403 vertical plug in HP 1420 horizontal plug in SINTEL Capacitance bridge ADVANCE
BPLCZ 960 component comparitor AVO 8
TELEQUIPMENT S 51 E oscilloscope TELEQUIPMENT S 52 scope TELEQUIPMENT S 61 A scope

$$
\text { All }+15 \% \text { VAT }
$$

ALL EQUIPMENT WORKING \& calibrateo

DUTCHGATE LTD

94 ALFRISTON GARDENS
SHOLING, SOUTHAMPTON
SOTON (0703)431323

SPEAKER KITS

Tiwn great new kits from KEF - the Sneaker Engineern respected be HiFi enthusiatsts all over the wortal.
(hoe is haserlon the Moxlel 10tab and the other on the larger. free standing Ciantat:

We'll give ysu helpsul arlviee euse full instructions.
And you can hear how goxk the speakers are luflore yw build

BADGER SOUND SERVICES

46 Wood Street Lytham St. Annes Lanes FY8 1QG Tel: 0253-729247

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 06474-573 for Instant quote or write to AKTRONICS Ltd., $42 / 44$ Ford Street, Moretonhampstead, Devon. $(9857$

services

SMALL BATCH

Productions assembled from Sample or Orawings. Quick deliveries. Competitive prices. Design Service also available. Write
or telephone:
SYNERGY BRITON ELECTRONICS LIMITED
BRITON HOUSE, 62 RAILWAY ROAD OOWNHAM MARKET
MORF01K PE38 9EL
Telephone $[036$ 63) 5222 (9942)
ELECTRONIC DESIGN SERVICES. Wide engineering experience avallable for the design of basic circuits to complete systems. Analogue DC to 1 GHz and Digital. Write or to 1 GHz and Digital. Write or phone Mr Anderson, Andertronics Lta, Ridgeway, Hogs Back, Seale 2639. Farnham), Surrey. Runfold
$(9140$

REPETITION SHEET METALWORK

 on Wiedemann turret press. Long/ short runs. Highty competitive. Quick deliveries commission for introductions. - EES Lid., CliffordDESIGN SERYICE, Electronic Design Development and Production Service avallable in Digltal and Analogue Instruments, RF Transmitters and heceivers or control of any function at any range. Telemetery, Video Transmitters and Meads etc Suppliers to the Industry Heads etc. Suppliers to the Industry for 16 years. Phone or Write Mr.
Falkner, R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesex Phone Ashford 53661. (8341

SMALL BATCH PCB's produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND, - Details: Winston Promotions, 9 Hatton Place, London EC1N 8RV. Tel. 01-405 4127/0960.
(9794

- FOR CLASSIFIED ADVERTISING RING NEIL McDONNELL ON 01-261 8508

TECHTROत
 INDUSTRIAL \& COMMERCIAL ELECTRONICS

P.C.B. AND SYSTEMS ASSEMBLY • LARGE AND SMALL BATCHES BACK PLANE, PROTOTYPE AND PRODUCTION WIRING TO SPECIFICATION • PROMPT QUOTATIONS AND DELIVERIES Park Farm.Hoxne-Diss-Norfolk. Tel: Hoxne 520

I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone to arrange for one of our' engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-2534562
or reply to Box No. WW 8237 (8237).

COIL WINDING

Large or small PRODUCTION RUNS AIRTRONICS LTD

GARDNER INDUSTRIAL ESTATE KENTHOUSE LANE BECKENHAM KENT BR3 IUG 01-659 1147

PCBs Production

 runs or prototypes Assembly to sample or drawings \star Design Service if required * Quick response to demand \star Expert hand solderina * Nothing too large or too small. Telephone or write:

PCB AND ETCHING, small runs. - Electronic Mall Order, Ramsbottom, Bury, Lancs. Tel. 070 682-3036.

Capacity Available

Production and Prototype capacity on all types of P.C.B.s CONTROL PANEL CAPACITY

Electronic/Electrical Equipment manufactured to specifications or designed and manufactured to meet your requirements. Delivery dates always adhered to
Do not hesitate to contact us at any time on
0536515424
Roger Perkis
Roper Ind. Systems
1 Cromwell Road, Kettering

K.A.H. BHECTRONICS HTD.

CONSULTANTS - DESIGNERS ASSEMBLERS

SPECIALISTS IN MICRO-BASED SYSTEMS
50 Flixton Road
Umiston, Manchester
Umston, Manchester
Tel: $061-7483878$
Tel: 061-748 3878
(9919)

SMALL BRTCH productions wiring assembly to sample or drawings. Specialist in printed circuits assembly. Rock Electronics, 42 Bishopstield, Harlow, Essex 027933018.
(9094

PRINTED CIRCUITS BOARDS.
Quick deliveries, competitive prices. Quotations on reqeust, roller thinning, drilling, etc. Speciality small batches. Larger quantities avail. able. Jamieson Automatic Ltd., $1-5$ Westgate, Bridlington, North Humberside. For the attention of J Harrlson (0262) 74738 or 77877.
(9652

ELECTRONIC DESIGN SERVICE ELECTRONIC DESIGN SERVICE. circuit design and development work, PC artwork, etc. Small batch w.ork, PC artwork, etc. Small batch - E.P.D.S. Lid. 93 b King Street, MAIDSTONE, Kent. 0622 -677916.
(9667

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Lid, $01-850$ 6516, 45 Southwood Road, New Eltham SE9
(7905
PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on reqeust, roller thin: ning, drilling, etc. Speciality small able. Jamieson Automatic Ltd 1-5 Westgate, Bridlington, North Hum. berside. For the attention of berside. For the attention of
Harrison $(0262) 74738$ or 77877 . ELECTRONIC DESIGN SERVICE Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome - E.P.D.S. Ltd. 93 b King Street, MAIDSTONE, Kent. 0622-677916.

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ÖN FORM BELOW

Rate $£ 1.50$ PER LINE. Average six words per line. Minimum THREE lines.

- Name and address to be included in charge if used in advertisement
Box No. Allow two words plus 60p.
- Cheques, etc., payable to "Wireless World" and crossed "\& Co.

NAME.
ADDRESS
\qquad
P|-

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS.

1 기 = ELECTRONIC BROKERS LIMITED
49.53 Pancras Road, London NW1 2QB Tel: 01.8377781 . Telex: 298694.

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 133-151

overseas advertisement

AGENTS:

France है Belgium: Norbert Hellin. 50 Rue de Chemin Veat, F-9100. Boulogne, Paris.
Hungary: Mrs Edit Bajusz. Hungexpo Advertising Agency
Budapest XIV. Varosliget
Telephone 225008 - Telex• Budapest 22-4525
INTFOIRE
Italv: Sig C Epis, Elas-Kompass, S.p.a. - Servizio Estero Via Mantegna 6. 20154 Milan.
Telephone: 347051 -Telex: 37342 Kompass

Brand New -
 Top Quality Performance 8: Value

 HM 307Single Trace DC-10
$\mathrm{MHz}, 5 \mathrm{mV} / \mathrm{cm}$
Plus built-in Component Tester.
£149
HM 312
Dual Trace DC- 20 MHz . $5 \mathrm{mV} / \mathrm{cm}$. Sweep Speeds $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm} 8 \times 10$ cm Display.
$£ 250$
Other models up to 50 MHz bandwidth available. Prices and full specs on request. Full demonstration at our premises. Quick delivery
Prices do not include VAT (15%) or Carriage
Prices do not indude VAT (15%) or Carnage
WW - 094 FOR FURTHER DETAILS

This superb organ - build the first working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rifythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new catalogue from bigger and better than before. if you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.
Our bi-monthly newslefter contains guaranteed prices, special otters and all the latest news from Maplin.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The $\mathbf{3 8 0 0}$ synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc.
They're all in our catalogue.
Send the coupon now!

Groov-Guard XL-2

Anti-static liquid and record preservative.
Following years of research, Bib laboratories have developed GroovGuard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groo Guard XL- 2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable
 Ref. 27 $£ 2.48$ inc. VAT

All prices shown are recommended retail, inc. VAT

Bib
In difficulty send direct, plus 20p P \& P . Send S.A.E. for free copy of colour catalogue detailing complete range Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts.,HP2 4RO.

Soft bristles on leading edge remove dust and humid velvet pad collects partic!es. This advanced cleaner is engineered in a fine shiny black finish and is supplied with dust cover and a 22 ml . bottle of anti-static cleaner. Ref. 47
3.29 inc. VAT

[^0]: Wandle Way, Mitcham, Surrey CR4 4NB. England. Telephone: 01-640 2241 Telex: 946177

[^1]: We are now open for demonstrations and Sales, Monday-Saturday, 9.30 a.m.-6.30 p.m. Near Highgate Underground, on main A1 into London.

[^2]: 7) SWMFT The firm for $\mathrm{Hi}-\mathrm{Fi}$ 5 SwanStreet, Wilmslow, I Cheshire.
[^3]: Please send me the Antex colour brochure \square I enclose cheque/P.0./Giro No. 2581000 Name

 Address

[^4]: "Please send SAE for complete lists añd specifications Portwood Ïndustrial Estate, Church Giresley, Burton-on-Trent, Staffs DE 11 9PT Burton-on-Trent (0283) 215432 Telex 377106

[^5]: Price ruling at time of de spatch．
 Account facilities avallable to approved companies with minimum order charge £10．Carriage and packing

[^6]: All kits also available as separate packs (e.g P.C.B. component sets, hardware sets, etc.). Prices in FREE CATALOGUE.

[^7]: SOLATRON 10 MHz scope, iwin trace trig. delay, valve set, good working order, A snip at $£ 60$. Dorset (09297) 257. (9882

[^8]: TELETYPE 33 KSR (6.0.6) £120, 8 unlt readers and punches $\mathbf{2 0 . 2 5}$. Phone Braintree 24118.

[^9]: "VERO 19" card frames (SU). Suit Newbear 77-68. Includes case and 5355 for 115 . PP 24. Detaits 0488 5355. anytime.

[^10]: SPOT CASH for all types test equipment, receivers, transmitters, valves, components, cable and sur plus electronic scrap. M. \& B. S1 4BB 053235649 18789 LS 1 4BB. 053235649.

 18789

 HU-GO offer prompt settement for surplus electronics components, TV/ audio spares are of particular inaudio spares are of particular in-
 lerest. Contact Miss Hughs, 9 Westhawe, Bretton, Peterborough. Tel. 265219.

