wireless world
 SEPTEMBER 1979 50p

$25 \mathrm{NHz}_{\text {I }}$
Dualoice jitha

Front cover is 'Waves-
torm', an abstract de-
sign by Betty Palmer
based on displays from
Alan Ainslie's sweep
generator, described
in this issue.
:

Multimode two-metre transceiver. Advanced design will operate in s.s.b., f.m. and c.w. modes over the 144146 MHz amateur band.

Loudspeaker directivity and sound quality. How variation in speaker polar diagram with frequency affects quality - and methods of measurement.

How Michael Gerzon's soundfield microphone (Nows, August 1978) can in effect be adjusted after recording and protect recordings
from obsolescence.

Current issue price 50 p, back issue (if available) $£ 1.00$, at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 65p, back , issues (if available) $£ 1.00$, order and payments to Room CP34, Dorset House, London SE1 9LU
Editorial \& Advertising offices:
Dorset House, Stamford Street,
London SE1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339.

Telegrams /Telex: Wiworld Bisnespres 25137 BISPRS G. Cables Ethaworld, London SE1.
Subscription rates: 1 year $£ 9.00$ UK and $\$ 31$ outside UK.
Student rate: 1 year, $£ 4.00$ UK and $\$ 15.50$ outside UK.
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH 16 3DH. Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2nd-class postage paid at New York.
© IPC Business Press Ltd, 1979 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO

SEPTEMBER 1979 Vol 85 No 1525

41 Good, clean fun

42 Logarithmic audio sweep generator by A. C. Ainslie
48 Novatexts by P. Williams
50. World of amateur radio
51 Sidebands as phasors by J. M. Osborne
55 Auditory cues in stereophony by Philip Vanderlyn
61 A scientific computer - 6 by J. H. Adams
63 Sixty years ago
64 Selecting stabilizer thermistors for Wien-bridge oscillators by M. Salem
67 Microcomputer interfaces - 1 by lan H. Witten
70 Literature received
71 News of the month Viewdata for America Post Office monopoly
75 Circuit ideas L.e.d. flashers Differential rumble filter
79 Letters to the editor Engineers victims of market Audio kits T.h.d. measurement
83 Passive notch filters - 2 by G. Kalanit

87 Linear voltage-controlled oscillator
by J. H. Linsley Hood

91 Video disc battle looms

93 Victorian microwaves
by K. L. Smith

96 New products

THINK OFA SHAPE

 of power amplifiers will handle it
${ }_{\text {The }} \mathbf{H} \| \mid \boldsymbol{H}$ 'S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D
Dual Channel
19" rack mount $31 / 2^{\prime \prime}$ high
500w r.m.s. into 2.5 ohms per channel
900w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005\% harmonic distortion (typical) at 300 w r.m.s. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D
Single Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1}$ сво ${ }^{\text {\& I }}$ ево $: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$B V_{C B O}: \quad 10 \mathrm{~V}$ or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{\text {FE }}: \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$\mathrm{V}_{\mathrm{BE}}: \quad 1 \mathrm{~V}$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on h_{FE} test.
$\mathrm{V}_{\text {CE (sat) }}$: $\quad 1 \mathrm{Vf.s.d}$. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
$I_{D R}$: As $I_{E B O}$ transistor ranges.
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{ff.s.d}$ acc. $\pm 20 \mathrm{mV}$ at I_{DF} of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value.
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position. <10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V . Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

Telegraph testing simplified

Lightweight, portable, Telegdata TCT10 makes light work of on-site circuits and machines.

This new Plessey instrument combines signal generator and analyser in a single briefcase-size unit enabling on-site testing of telegraph circuits and machines to be carried out speedily and with a high degree of accuracy.

Powered from the a.c. mains supply, the TCT10 gives a choice of output levels and test signals in CCITT
No 2 and No 5 alphabets including the full 96 character 'fox' message, Q9S and any single cháracter on demand.

Accurate readout (to 1\%) is given unambiguously on an LED scale registering up to 40% distortion early/mark bias and late/space bias.

PLESSEY CONTROLS

moulded nylon 1RAMSIMLMARS

probably the most versatile and rugged insulating mounting system ever developed

Transipillar insulating mounts hold heavy sub-assemblies totally secure. Because they're precision moulded from very tough Nylon. Metric or Imperial versions are available, with insulator lengths from $1 / 2$ in to $23 / 4$ in, and a choice of metal screw or threaded insert end fittings from 0 to 6BA.
If one of the preferred sizes won't suit your application, the chances are we can make one that will.
Write today for samples, full technical details and prices of TRANSIPILLARS.

TVT WK ELECTRONICS LTD
 Napier Road Bromley Kent BR2 9JA Telephone: 01-460 9861/5 Telex: 896071

WW - 086 FOR FURTHER DETAILS

But what does it

Big is not always beautiful,

So when we boast
company wholly dedicated to the future growth and more resources than all our competitors put together you might be inclined to think: so what?

We agree.
When you are making substantial investments in two-way radio we expect more than facts and figures to be taken into account.

Like the people you are dealing with, starting with the salesman and right up to the top. How good is your relationship with the man up front. Is he thinking long term or looking for a quick sale today?

And who is backing up his promises - a well resourced U.K. based manufacturing and supplying
way radio or a remote parent company looking for maximum advantage in whichever markets suit it best at the time? (If the latter, ensure he'll be around next time you have a replacement or extension problem).

We are not suggesting that you look to Pye Telecom for perfection. In this business staying the course for 35 years and making all the running for the future will always have its problems. But if ever those problems happen to be yours, you can count on our full commitment now and our resources whenever you need them.

Cambridge Learning Enterprises

SELF-INSTRUCTION COURSES

UNDERSTANDING DIGITAL ELECTRONICS In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it -. designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.
FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO anwsers to questions.

The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

NEW ${ }^{\text {from Cambridge Learning Enterprises }}$
 O-LEVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.
CAMBRIDGE LEARNING ENTERPRISES, UNIT 32
RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON,
CAMBS. PE 17 4BR, ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES
REGD. IN ENGLAND No. 1328762

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programe structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic \& Electronics at $£ 6.50$ inc Six volumes Design of Digital Systems at $£ 10.50$ inc p \& p
Three volumes O-Level English Language at $£ 6.50$ inc p \& p
The Algorithm Writer's Guide at $£ 3.40$ inc p \& p
If your order exceeds $£ 14$ deduct $£ 2$ from your payment
Price includes surface mail anywhere in the world, airmail extra GUARANTEE If you are not entirely satisfied your money will be refunded

Please allow 21 days for delivery

I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR,
England.
Please send me the following books:
sets Digital Computer Logic \& Electronics at $£ 6.50, \mathrm{p} \& \mathrm{p}$
. sets Design of Digital Systems at $£ 10.50, p \& p$ included
. O-Level English Language at $£ 6.50$ p \& p included . . The Algorithm Writer's guide at $£ 3.40, p$ \& p included
I Name
I Address
....
I I enclose a *cheque/PO payable to Cambridge Learning Enter-
prises for $£$
I Please charge my *Access/Barclaycard/Visa/Eurocard/ Mastercharge/Interbank account number.
Signature.
delete as appropriate.
I Telephone orders from credit card holders accepted on
I 0480-67446 (Ansafone). Overseas customers should send a
I bank draft in sterling drawn on a London Bank, or quote credit
I card number.

The FM/AM 1000s with Spectrum Analyser

A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

IFR precision simulators
FieldTech Ltd Heathrow Airport London Hounslow TW6 3AF Tel: 01-759 2811 Telex: 23734 FLDTEC G

WW- 025 FOR FURTHER DETAILS

Litronix is our most recent newcomer.
This is very much in line with the Crellon policy of acting as distributor for only the finest principals.

The Litronix range is as impressive as its famous name and covers the following products:

LED's -
red, yellow, orange, green and infra-red Photo-transistors.
Opto isolators -
in a range that includes jedec types, high speed; duals and quads.

Displays -
including 7 segment and 16 segment alphanumeric.
Intelligent displays, too, alphanumeric with memory, decoder, driver and control circuitry, new smaller size package and much faster access time.

Add to all this the prompt, helpful and reliable Crellon service and you'll soon see why, when it comes to distribution, we've got plenty of muscle.

There's a very informative data pack available telephone or complete the reader reply card.

WW - 016 FOR FURTHER DETAILS

AIRMEC $2485-300 \mathrm{MHz}$
AIRMEC $85330 \mathrm{KHz}-30 \mathrm{MHz}$
MARCON1 233020 Hz -78KHz
TEKTRONIX IL2 20 10MHz-4.2 GHz Spectrum Analyser ATTENUATORS
ADVANCE A. $640-70 \mathrm{~dB}$ in 1 dB step 600 ohms
MARCONI TF.1073A 0-100dB in ldB steps 50 ohms
BRIDGES
B.P.L. CZ. 457 Mk . 11 Component Comparator

GENERAL RADIO 1607 Transfer Function Immittance Bridge WAYNE KERR B. 2210.1% Universal Bridge
COUNTERS
MARCONI TF. $1417+500 \mathrm{MHz}$ Divider 7 digit RACAL 835 DC-15MHz 6 digit
SYSTRON DONNER $603520 \mathrm{~Hz}-3 \mathrm{GHz} 7$ digit DIGITAL VOLTMETERS
DYNAMCO 2022S $0-2000 \mathrm{~V}$ Scale 3999910 uV ROBAND RDV.4. $0-1000 \mathrm{~V} 4$ digit

MARTIN ASSOCIATES
34 Crown Stree
Reading
1 2SE
Tel. Reading (0734) 51074

Youill do better at Martin Associates we guarantee it!

METERS 331 Freq. Meter \& Generator DC-3GHz
AVO Precision Meter
£200.00 £160.00
MARCONI TF.1245/46/47 Cct Magnification Meter + Oscillator MUIRHEAD D-729-BM Phase Meter RADIOMETER BFK. 6 Distortion Meter
TEKTRON1X 535A DC-15MHz c/w H Plug In Uni TEKTRONIX 567 Sampling 1GHz Digital Readout TEKTROND 4D-10B DC-10MHz 10 mV Sens. NEW SCOPEX 4D-10B DC-10MHz 10m
SCOPEX 4S-6 DC-6MHz NEW
HEWLETT-PACKARD 130 C X-Y-T DC- 500 KHz 200 uV Sens TELFORD 'A' OSCILLOSCOPE CAMERA
VARIOUS PLUG INS \& PROBES Information on Application POWER SUPPLY UNITS
ADVANCE CV. $500 / \mathrm{A} 240 \mathrm{~V}$ r.m.s. 500 Watt $£ 30.00$
ROBAND T. $1720-30 \mathrm{~V} 10 \mathrm{~A}$
ROBAND T. $1130-30 \mathrm{~V}$ 20A
SIGNAL SOURCES
ADVANCE J1B $15 \mathrm{~Hz}-50 \mathrm{KHz} 600 \mathrm{hms} / 50 \mathrm{hms}$ GENERAL RADIO 1362 UHF Oscillator $220-920 \mathrm{MHz}$. GENERAI RADIO 1215 C Oscillator Unit $50-250 \mathrm{MHz}$ HEWLETT-PACKARD 608D $10-420 \mathrm{MHz}$
E125.00
E85.00
E500.00
£500.00
£1500.00

£30.00
 £75.00

£70.00
From: $£ 450.00$
E 200.00
$\mathbf{£ 8 5 . 0 0}$
$£ 225.00$

| £130.00 |
| :--- | £135.00

$\mathbf{£ 5 5 0 . 0 0}$
£250.00
£95.00

HEWLETT-PACKARD $608 \mathrm{~F} 10-455 \mathrm{MHz} 50 \mathrm{ohms}$ MARCONI TF. $995 \mathrm{~A} / 3 / \mathrm{S} 1.5 \mathrm{MHz}-220 \mathrm{MHz}$ FM/AM MARCONI TF. $1066 \mathrm{~B} / 610 \mathrm{MHz}-470 \mathrm{MHz}$ MARCONI TF. 1099 Sweep variable to 20 MHz almost new $\quad \mathbf{~} 200.00$ MARCONI TF. $144 \mathrm{H} / 4 \quad 10 \mathrm{KHz}-72 \mathrm{MHz} 50$ ohms A.M. \quad M470.00 R \& S SWF 5MHz-225MHz Sweep Generator R \& S SWH 50Hz \quad £185.00 £195.00 RECORDERS $0.100^{\circ} \mathrm{C}$ \& $-70^{\circ}-0^{\circ} \mathrm{C} 9$ $\begin{array}{ll}\text { Probes } \\ \text { SMITHS Miniscript } 0-100 u A ~-~ & \mathbf{£ 6 5 . 0 0}\end{array}$ MISCELLANEOUS
GALLENKAMP FR. 554 Muffle Furnace $1100^{\circ} \mathrm{C}$

GRIFFIN Oven Amb. $-100^{\circ} \mathrm{C} \quad$| | $\mathbf{£ 2 0 0 . 0 0}$ |
| :--- | :--- |
| 60.00 | | ADMIRAL CORP 198A/B IFF/ATC Radar Test Set WESTON ROTEK 146AG5 A.C. Voltage Standard PERKIN ELMER F. 11 Gas Chromatograph

IFIT'S TIME YOU HADANEWTIMER COUNTER,DCTO
 Gould Advance have a wide range of timer counters.
 And here are two which

 should meet most engineers' needs.Both the TC320 and the TC321 have made extensive use of the latest low-power circuitry (CMOS, Schottky and thick film resistor networks, for example) and we have no hesitation in offering a (seldom-used) 2-year guarantee.
Check the functionswhilst remembering that both instruments are truly portable when internal rechargeable batteries are fitted as an option. * Frequency (Manual and Autoranging) $*$ Single Period * Multiple Period *Multiple Period Average (Manual and Autoranging) * Time A-B * Automatic Pulse Width * Count * Totalise * Count A/B-B * Ratio.

Of the two instruments, the 321 has the more sophisticated 'spec. But both are interesting.
Do ask for data. It'll be enough to impress you.

TC321

Gould Instruments Division,
Roebuck Road, Hainault, Essex 1 G6 3 UE Telex: 263785

- Covers most generalpurpose applications in professional and military communication including marine use (speech, telegraphy or f.s.k. teleprinter signals)
- Manual tuning plus accurate digital frequency lock
- High reliability and environmental performance
- Complies fully with MPT specifications 1201, 1216 1217, 1204

Please ask for details

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone : 021-475 2231 Telex : 337081
A GEC-Marconi Electronics Company

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

STEREO
PRE-AMPLIFIER

POWER
MODULE

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably the disc stage. The overload margin is a superb 40 KB , this together with the high slewing rate ensures clean top, even with high output carriages tracking heavily modulated records. Common-mode dis 70 dB relative to 3.5 mV ; distortion esign. R.I.A.A. is accurate to 1 dB ; signal to $<.005 \%$ at 30 dB overload 20 kHz
Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp. signal levels. Signal to noise ratio 86 dB ; slew-rate $3 \mathrm{~V} / \mathrm{uS}$; T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level.
E.T. muting. No controls are fitted There is no provision for tone controls. CPR 1 size is $38 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts.

MC 1 - PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 170 \mathrm{~V}$ switchable on the p.c.b. This module brings signals from the now popular low $70 / 170 \mathrm{uV}$ switchable on inputs). Can be powered from a 9 V battery or from our REG 1 regulator board
X02.X03 - ACTIVE CROSSOVERS. XO2 - two way, XO3 - three way. Slope 24 dB /octave. Crossover points set to order within 10\%
REG 1 - POWER SUPPLY. The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it

POWER AMPLIFIERS. it would be pointless to list in so small a space the number of , etc, who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality CRIMS N amps salis. The power amp is available in five types, they all have the same specification. T.H.D. typically 0.1% any power 1 kHz 8 ohms. T.I.D. insignificant, slew rate limit $25 \mathrm{~V} / \mathrm{uS}$; signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional, protection drives any load safely; sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request), size $120 \times 80-25 \mathrm{~mm}$.
er supplies which use our superb TOROIDA ranth a 120.240 primary and single bolt fixing (includes capacitors ' bridge rectifier).

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive instructions and full back-up services enable a novice to build it with confidence in a few hours.

PRE-AMP KIT

This includes all metalwork, pots, knobs, etc., to make a complete pre-amp with the CPR1(S) module and the $\mathrm{MC1}(\mathrm{~S})$ module if required

POWER AMPLIFIER MODULES
CE $60860 \mathrm{~W} / 8$ ohms $35-0-35 \mathrm{v}$
CE $1004100 \mathrm{~W} / 4$ ohms $35-0.35 \mathrm{v}$
CE $1004100 \mathrm{~W} / 4$ ohms $35-0-35 \mathrm{v}$
CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$
TOROIDAL POwER SUPPLIES
PPS 1 for $2 \times$ CE 608 or TXCE 1004
CPS 2 tor $2 \times C E 1004$ or $2 / 4 \times$ CE 608
CPS3 for $2 \times C E 1008$ or $1 \times C E 1704$
CPS5 1 for $1 \times$ CE 1708
CPS 6 for $2 x C E 1704$ or $2 \times$ CE 1708

heatsinks

Light duty, $50 \mathrm{~mm}, 2 \mathrm{C} / \mathrm{W}$,
Medium power, $100 \mathrm{~mm}, 1-4 \mathrm{C} / \mathrm{W}$
Disco/group. 150 mm , 1.1 C/W
Fan, 80 mm , state 120 or 240 v
$2 \times 4 \mathrm{C} / \mathrm{W}, 65$ max. with two 170 W
modules
THERMAL CUT-OFF, $70=\mathrm{C}$
£19.52 ع23.02
E25.95 £25.96
E31.00 E31.00
E33.97

POWER AMP KIT
£35.03 These are available in two versions one uses standard components, one uses standard components, and
the other (the S), uses MO resistor

£16.56
E18.80
£18.56
E18.85
E19.75
E19.75
E17.12
$E 17.12$

624.15
£25.53
ع1.44
ع2.35
$\varepsilon 3.04$
£3.04
$£ 19.70$
E31.05
ع1.54

CRIMSON ELEKTRIK

1A STAMFORD STREET, LEICESTER LE1 6NL. Tel. (0533) 553508
U.K. - Please allow up to 21 days for delivery

Und includ MAT and post COD gopent ıloo Export is
for specitic quote Send large SAE or 3 International Reply Coupons for detailed information \quad Sor 46 Distributors Minic Teleprodukter. Box 12035. S. 75012 Uppsala 12. Sweden. Badger Sound Services tid 46
Wood Street. Lytham St. Annes Lancashire. FY8 10G

Series IIIS precision pick-up arm

We took a hard look at the Series III because we wanted more people to enjoy it. We were not prepared to give an inch on performance or manufacturing quality and the nitrogen hardened titanium tone arm had to remain. However we found a number of ways in which economies could be effected and they have been incorporated in this new model.

Adjustments are made directly instead of through lead screws or rack and pinion, the absence of these things being a matter of operating convenience only. Lateral balance was also dispensed with as it is unimportant in this type of arm
unless the deck is seriously out of level. The fluid damper is a refinement but not essential and so we made it an optional accessory. This simplified version of the Series III offers an attractive saving in price and either is immediately available through your usual dealer. We shall be glad to send you details on request.

* Another accolade for SME: the Series I/I precision pick-up arm was one of the Design and Engineering Awards at the 1979 U.S Summer Consumer Electronics Show, the only pick-up arm to be acknowledged in this way.

This advertisement introduced the IVC 2001 Europe's most popular TBC

So what extra has the second generation IVC 2002 got to ofier?

$$
\text { (1)] } \frac{\text { TBC }-2002}{\text { Thentional Viteo Cargoratimen }}
$$

The all-in-one Digital Time Base Corrector AND Video Enhancer that operates with ANY VTR.

FEATURES OF THE ALL BRITISH IVC 2002

- Fully "Floating Window" with Dynamic Steering
- Random Access Memory Store
- Built-in Picture Enhancer
- Built-in Processing Amplifier
- Built-in Noise Reducer
- Chrominance/Luminance Delay Correction
- Capstan or Non-Capstan Servo Operation
- Output Fully Locked and Phased to Studio Sync
- Single Wire Locking or 3 Wire Drive
- Self-contained SPG
- Full Colour Drop Out Compensator
- Full Front Panel Controls
- Colour Averaging Noise Reduction
- New High Performance ADC Unit
- Small Size, Cool and Silent
- Fully Automatic Edit Framing with No Line Hop
- Selectable Sync \& Blanking Re-insertion
- Selectable Process Modes
- Direct or Heterodyned Colour Inputs
- 4 or 16 Line Store Option
- Quad-Dub Option for Remote Link or Non-Capstan Servo VTR

Please telephone or write for full details of our TBC's.

ORYX SR-2
High power de-solder tool with anti-recoil safety spring.

ORYX SR3A/S

Mini-silver de-solder tool. A more powerful version of the SR3A.

ORYX SR3A

Mini-orange. Our most popular model, the industry's standard tool.

The NEW ORYX SR3A/Micro
Identical to the SR3A but has a finer nozzle - only 1.5 mm internal diameter.

The Micro-Mini SR6
Only $1 / 2^{\prime \prime}$ diameter. Weighs only 1 oz - the smallest, really effective de-solder tool available.

ORYX 881

Bulb Solder Sucker. Handy, lightweight and easy to use.

Greenwood Electronics

WW - 009 FOR FURTHER DETAILS

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large oper scale meter. Süpplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00$ Model "Mini-Z 2" measures from-5 ${ }^{\circ}$ C to $+105^{\circ}$ C Price $£ 30.00$ Model "Mini-Z Hi" measures from + 100° C to 500° C £33.00 (VAT 15\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC̣.1X 8AX (Phone 01-837 7937)

Our new catalogue lists circuit boards for all your projects, from good old Veroboard through to specialised boards for ICs. And we've got accessories, module systems, cases and boxes everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. 'RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

The DMM you've wanted: Quality and performance at a low, low cost

A surprisingly low $£ 49.95$. Surprising because you get the type of performance you've wanted but expected to pay much more for.
Quality, Performance and Accuracy The 2010A offers you long-term accuracy with a laser-trimmed resistor network, a stable bandgap reference element, and single-chip LSI circuitry. With 31 ranges and 6 functions, you can measure AC or DC volts from $100 \mu \mathrm{~V}$ to 1000 V ; AC and DC current from $0.1 \mu \mathrm{~A}$ all the way to 10 A ; resistance from 0.1Ω to $20 \mathrm{M} \Omega$. Typical DCV and Ohms accuracy is $0.1 \% \pm 1$ digit. Easy-to-read $31 / 2$ digit LED's with 9 mm numerals and automatic decimal point.

Extra features for greater convénience and flexibility

- Unique X10 multiplier switch gives you convenient selection of the next higher decade. Hi-Low Power Ohms capability gives you three high-ohm ranges that supply enough voltage to turn on a semiconductor junction. You use the three low-ohm ranges for in-circuit resistance measurements. - Wide Frequency Response: 40 Hz to 40 kHz bandwidth lets you measure audio through ultrasonic AC signals.
- Touch-and-Hold Capability (with optional probe) lets you hold readings as long as you

wish so you can make measurements in hard- Whether you're a professional or a hobbyist to-reach places without taking your eyes off (orboth!): When quality, accuracy, and price the probe tip.
- And More: automatic polarity and zeroing; overrange indication; overload protection on all ranges.
This compact unit is powered by 4 «C» cells (not included) so that you can take your labquality benchtop unit anywhere with you.

Kit or Factory-Assembled

Either is a tremendous value. Complete kit only $£ 49.95$; assemble it yourself with our easy-to-follow instructions. Or, for only $£ 64.95$. Sabtronics will ship your 2010A factory-assembled and calibrated.
count, you should check out the 2010A DMM for yourself.

2010A Kit: £ 49.95

2010A Assembled: £ 64.95
(plus p.p. £ 3.50 and VAT at 8\%) THP-20 Touch and Hold Probe: $£ 9.95$. Making Performance Affordable

-20 INTERNATIONALINC.

Send your orders with your payment to: TIMWOOD INDUSTRIES LTD, Prospect Road, Cowes, Isle of Wight, England, Telex 86892

WW - 022 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560

FOR POWER SEMICONDUCTORS

INTERNATIONAL RECTIFIER

Diodes Thyristors Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays Silicon Stacks Surge Suppressors

> IN A HURRY! $070-6814931$

PHILIPS

[^0]

MODEL 756

 FULL ASCIILOW COST! KEYBOARD Assembled

756 KEYBOARD

* Intended for professional micro-
processor applications.
* This one Keyboard will meet most present and future requirements.
* Full 128-character ASCII 8-bit code
* Tri-mode MOS encoding
* Applications notes for auto repeat,
numeric pad, serial output.
Upper and lower case characters generated by keyboard with latching shift-lock.
* Selectable polarity.
* Size $305 \times 140 \times 32 \mathrm{~mm}$
$(121 / 4 \times 51 / 2 \times 11 / 4 \mathrm{in})$
* MOS/DTL/TTL compatible outputs.
* New guaranteed OEM grade components.
* Needs +5 and -12 V supply
* Board has space for small low cost DC/DC converter so that entire unit operates off single 5 V rail.

Carter Associates

P.O. Box 11262 VLAEBERG

South Africa postal code 8018

Alpha lock.

* Extra loose keys available. Supplied complete with full technical data.
Rugged mil. spec. G-1.0 PCB with plated through holes.
2-key roll-over
DC level and pulse strobe signal for easy interface to any 8 -bit input port microprocessor system, video display or terminal board. Strobe pulse width 1 ms .
User selection of positive or negative logic data and strobe output.

$£ 49.50$ + VAT 15%

Numeric keypad - interfaces with 756
£7. 50
DC to DC converter to give - 12 V
€ 5.00
(Mounts direct on 756 P.C.
10.75

Gold plated edge connector type $756 /$ con
Generous Quantity Discounts Available All U.K. enquiries to CITADEL PRODUCTS LTD
50 High St., Edgware, Middx. HA8 7EP
Tel.: 01-951 1848

Esc	Q	V							0	P			,		RETURW
CTRL	A	S	D	F	G	H	\checkmark	K				DEL	1		〕

WW - 054 FOR FURTHER DETAILS

LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE TEL. 06292430 OR 2817. TELEX 377482 LOWLEC G

CS1352 DUAL TRACE 15 MHz/2mV PORTABLE

The CS1352 oscilloscope offers you not only dual trace 15 MHz bandwidth operation at sensitivities down to $2 \mathrm{mV} / \mathrm{cm}$ but also use from $100-240 \mathrm{Vac}$ mains and pack Automatic charging is carried out when the CS1352 is plugged into a mains supply. Now you can have top plugged ce berm the bench and out in the field at an affordable price.

CS1575 DUAL TTRACE 4 FUNCTION

the normal

 facility of dual trace display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not only can it display the input signals on two channels, it can simultaneously display the phase angle between them and measure the phase angle referenced to a zero phase calibration display. In addition to these unique features, you also hat shannel to give stable displays ev chanely differing input frequencies. widely dif ging inequencie Absolutely indispensable to the professional audio engineer, the CS1575 action or send for complete details.
$\mathbf{£ 2 7 8} \mathbf{+}$ VAT

[^1]

POWER SUPPLIES

A.C. in/d.c. stabilised out. Sub-units D.C. in/d.c. stabilised out Series/linear regulator. Low cost O.E.M. Op. amp. powering. Encapsulated Miniature non-encapsulated High efficiency/small size switching Constant voltage. Constant current Outputs from 0 to $50 \mathrm{~V}, 0$ to 60A standards
Sub-bench (variable unmetered) Low cost utility bench units High stability bench units Constant voltage/current with or without automatic crossover. H.T.
Rack mounting
S.C.R. chopped

Fan cooled
Outputs up to 100A from standard
Battery standby systems (to order)
Specials and custom design work

SIGNAL SOURCES

Sine-square oscillators Function generators
Pulse generators
Digital signal generators
R.F. signal generators

Synthesized signal generators
Sweep generators

ANALOGUE MEASURING INSTRUMENTS

A.C./d.c. millivoltmeters
R.F. millivoltmeter

Phasemeter
Automatic modulation meter

DIGITAL MEASURING INSTRUMENTS

Digital multimeters. Digital thermometers Digital tachometers. Digital panel meters Digital frequency meters. Digital timers Modular high speed digital event counters

There's more to Farnell than power supplies...

OSCILLOSCOPES

12MHz bandwidth
30 MHz bandwidth
Dual trace
Long persistence tube versions
Rack mounting versions
Probes
Carrying cases/protector muffs

AGENCIES

through Farnell International Instruments Ltd.

AVO

Avometer instruments and accessories Avo component testers and accessories

MEGGER

'Megger' testers. Insulation testers Earth testers, etc.

SULLIVAN

Precision instruments
Measurement standards

TANDBERG

Computer peripherals. Formatters. Systems Digital tape transport.Video displayterminals 4 Channel F.M. instrumentation tape recorder Cartridge data recorder

DATA PRECISION

$3 \frac{1}{2}, 4 \frac{1}{2}, 5 \frac{1}{2}$ digital multimeters Low cost models. Portables. Bench models Systems compatible models Counter/timers. Frequency meters

FARNELL INSTRUMENTS LIMITED

SANDBECK WAY • WETHERBY• WEST YORKSHIRE LS22 4DH
TEL. 0937-63541 or 01-864 7433 • TELEX 557294 FARIST G

SPEAKER KITS FROM KEF.
 Now you can build a three-way loudspeaker system which incorporates all the features developed for the superb KEF Cantata, and hear its quality at your KEF dealer before you buy and build the kit.

KEF KIT CANTATA
The kit contains two baffles (only one illustrated) each with the three drive units preassembled, pretested and fully wired through an Acoustic Butterworth filter network. The middle and high frequency units have acoustic badance controls and are fuse protected.
The Cantata was developed by KEF using their concept of "Total System Design" whereby drive units, filters and enclosure are matched together to produce an acoustic response as near to the ideal as possible.

To get the same results, build the recommended enclosures, connect a féw wires, install the baffles and switch on. Write now for more details, and the name of your nearest KEF dealer. KEF Electronics Ltd.,
Tovil, Maidstone, Kent ME15 6QP. Telephone: 0622-672261. Telex: 96140.

WW - 018 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

for all demagnetising problems LEEVERS-RICH have the answer LR70 for tapes upto $8^{1 / 4}$ Dia and $1^{\prime \prime}$ wide LR71 for tapes up to $11 \frac{112}{2}$ Dia and $1^{\prime \prime}$ wide LR72 Han-d-mag for demagnetising heads and tape path components EQUIPMENT LTD

319 Trinity Road,Wandsworth,London SW18 3SL Tel:01-874 9054 Telex:92355

Artistic licence?

We at QUAD go to a very great deal of trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your loudspeakers is a virtually exact RIAA transfer of the voltage the pickup will produce into a stated passive load. Nothing added - nothing taken away.

A visiting journalist recently suggested that we should not do this. Final adjustment should be done by ear, he said.

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump in the quack region ($2-3 \mathrm{kHz}$), we can make most programmes sound superficially more impressive. Come to that, why not change the $3180 \mu \mathrm{~S}$ to $5000 \mu \mathrm{~S}$ adding a little more 'heft' that most people will fall for. We could even make a special model.for the boom and tizz brigade.

Been to any live concerts recently?

For further details on the full range of QUAD products write to :
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB
Telephone : (0480) 52561

QUAD 暙

for the closest approach to the original sound QUAD is a Registered Trade Mark

of research.

components and accessories for dictating machines, tele-communications, hearing aids

DANAVOX (GT. BRITAIN) LTD.
'BROADLANDS' BAGSHOT ROAD SUNNINGHILL, ASCOT, BERKS. TEL: 0990 23732/6: TELEX: 84584

and electroacoustic equipment etc."

Top Quality Test Equipment at the keenest prices

Acoustic

BRUEL \& KJAER
2203 Precision sound level meter
2204 Precision sound level meter
1613 Octave filter set couples directly 102203 \& 2204
4216 Artificial Mouth
*2624 Charge Amplifier
CEL
112 LEQ meter-digital readout
Bridges etc.
DAWE
210B Decade Capacitance box $0.1 \mu \mathrm{~F}-1 \mathrm{mF} 0.1 \mu \mathrm{f}$ step
MUIRHEAD
D30A Wheatstone bridge test set
SULLIVAN
T1098 Decade resistance bridge
WAYNE KERR
B601Z RF bridge to 5 MHz
SR268 Source for B601Z
Cable Test Equipment
MARCONI
TF2091A/TF2092A White noise generator/receiver 300 channel system complete
*TF2333 Transmission Test Set

STC

74226B Telephone cable test set
*74216A Noise Generator CCITT
*74261A Psophometer CCITT
Circuit Magnification
MARCONI
TF1245/46/47 ' O ' Meter with
Oscillators
Counter Timers
HEWLETT PACKARD
5263A Time interval plug-in
MARCONI
TF2414A DC -40 MHz 7 digits
TF2422 Fiequency divider to 300 MHz
RACAL
$902410 \mathrm{~Hz}-600 \mathrm{MHz} 7+1$ digits
$9059 \mathrm{DC}-560 \mathrm{MHz}$ with battery pack
$9835 \mathrm{OC}-.15 \mathrm{MHz} 6$ digits
Function Generators
HEWLETT PACKARD
$3300 \mathrm{~A} 0.01 \mathrm{~Hz}-100 \mathrm{kHz}$ sine.
square triangular
3301 Auxiliary plug-in
Logic Analysers
HEWLETT PACKARD
1601L Logic state analyser 12

Channeldisplay

Mains Monitors
AMPROBE
LAV3X Mains voltage recorder

GEC

FB31A Surge monitor records mains
spikes + filter
RUSTRAK
288 + CT Clamp-on AC recording mmeter

Modulation Meters

AIRMEC

*2101-300 M Hz AM/FM

* 409 3-1 500 MHz AM/FM

MARCONI
*:TF2300A $1-1000 \mathrm{MHz} \mathrm{AM} / F M$

Prices

Oscilloscopes

ADVANCE
OS1000A DC- 20 MHz dual trace COSSOR
$110 / 111 \mathrm{DC}-20 \mathrm{MHz}$ dual trace
$110 / 112 \mathrm{DC}-1 \mathrm{MHz}$ differential
HEWLETT PACKARD
$184 \mathrm{~A}+1801 \mathrm{~A}+1822 \mathrm{ADC}-50 \mathrm{MHz}$ system. T.B. and amplifier included. storage facility (storage de-rated please ask for details)
1707820 DC .75 MHz dual trace D.T.B
$1710 \mathrm{BC}-200 \mathrm{MHz}$ dual trace

TEKTRONIX

5103N/D15
Storage system $800 \mathrm{div} / \mathrm{ms}$ DC. 2 MHz
7A13 DC. 100 MHz differential comparator
7B70 Dual time base with 7B71
delayed sweep (for 7000 series) $\}$
536 Mainframe 11 MHz X-Y
5191 GHz Real Time. Matching
accessories included
$535 \mathrm{~A} / \mathrm{CA}$ DC- 15 MHz dual trace DTB
545 B /CA DC. 24 MHz dual trace DTB
$585 \mathrm{~A} / 81 \mathrm{DC}-80 \mathrm{MHz}$ dual trace DTB $454 \mathrm{DC}-150 \mathrm{MHz}$ dual trace DTB $\quad 550$
TELEQUIPMENT
$054 \mathrm{DC} \cdot 10 \mathrm{MHz}$ dual trace
D75 DC. 50 MHz dual trace D.T.B
Portable)
D83 DC- 50 MHz dual trace D.T.B Bench)
D53/CD/G DC-15 MHz Dual Trace
with differential amplifier
Oscilloscope Probes -
Current
TEKTRONIX
P6021 AC current probe to 20 MHz
Oscilloscope Probes -
Voltage
HEWLETT PACKARD
T121A 500 MHz
P6046 Differential probe DC- 100 MHz
Oscilloscope Cameras
HEWLETT PACKARD
95A Pack film polaroid
98A Pack film polarord
TEKTRONIX
C30AR Roll film polariod
Power Meters
HEWLETT PACKARD
$432 \mathrm{~A} / 478 \mathrm{~A} 10 \mathrm{MHz} \cdot 10 \mathrm{GHz}$
Power Supplies
HEWLETT PACKARD
$6265 B$ DC siab variable $40 \mathrm{~V} / 3 \mathrm{~A}$
ROBAND
10150 V 1 A Variable
SOLARTRON
As 75150 V 1 A Variable
STARTRONIC
11720 V 0.5 A Variable
SYSTRON DONNER
LNG 16-10 $16 \mathrm{~V} / 10$ A variable
Pressure \& Displacement
Transducers
ELECTRO MECHANISMS
LVDT DC linear variable ± 0.50 inches
from 5350

Prices

Pulse Generators

E. H. RESEARCH
H. RESEARCH from E

0110 NON DONNER
Recorders \& Signal
Conditioning Equipment
BRUNO WOELKE
ME102B Wow and flutter meter
Men wow and lluter meter
Recorders \& Signal
Conditioning Equipment
BRUEL \& KJAER
2305B Stylus Recorder includes
50 db pot
HEWLETT PACKARD
17502A Plug-in for 7100 series SE
E LABS
1000 LT 12 channels UV 6 inch chart 450 1000 Galvo $600 \mathrm{~Hz} 034 \mathrm{~mA} / \mathrm{cm}$
MICROMOVEMENTS
M400 Galvo $300 \mathrm{~Hz} 50 \mu \mathrm{~A} / \mathrm{cm}$
M1000 Galvo $600 \mathrm{~Hz} 034 \mathrm{~mA} / \mathrm{cm}$
M1600 Galvo $1000 \mathrm{~Hz} 04 \mathrm{maA} / \mathrm{cm}$
SIEMENS
KOMP III 2 pen potentiometric roll hart
Signal Sources \&
Generators
ADVANCE
H1 $15 \mathrm{~Hz}-50 \mathrm{KHz}$
DAWE
$410 \mathrm{C} 0.1 \mathrm{~Hz}-10 \mathrm{KHz}$
EH RESEARCH
67 Attenuator 25W.0-40 db
HEWLETT PACKARD
$200 \mathrm{CD} 5 \mathrm{~Hz}-600 \mathrm{kHzO} / \mathrm{P} 10 \mathrm{~V}$ RMS
$8693 / 1003.7 \cdot 8.3 \mathrm{GHz} 5 \mathrm{~mW}$
sweeper plug-in
$10-480 \mathrm{MHz} \mathrm{AM}$

* $618 \mathrm{C} 3.8-7.6 \mathrm{GHz}$ FM
* 620B 7-11 GHz FM

MARCONI
TF791 FM Deviation Meter $4-1024 \mathrm{MHz}$
TF801D1 $10-470 \mathrm{MHz}$ AM.PM
TF885 0-12 MHz Sine/Square
TF995A/2 1.5-220 MHz AM.FM
TF995B/5 0.2-220 MHz AM.FM
TF1060 0-1.2 GHz AM.PM
TF2005A Two tone $20 \mathrm{~Hz}-20 \mathrm{KHz}$
ROHDE \& SCHWARZ
SWOB $10.5 .400 \mathrm{MHz} 75 \Omega$
SWOB II 0.5-1200 MHz 50Ω with
delay line and accessories

TEXSCAN
VS40 1-300 MHz sweeper
WAYNE KERR
S $12110 \mathrm{~Hz}-120 \mathrm{KHz}$
022B $10 \mathrm{~Hz}-10 \mathrm{MHz}$
Spectrum Analysers
HEWLETT PACKARD
141T Display unt storage
8552A I.F. Plug-in
$8553 \mathrm{~L} 1 \mathrm{kHz}-110 \mathrm{kHz}$ Plug-in
$8554 \mathrm{~L} 500 \mathrm{kHz}-1250 \mathrm{MHz}$ Plug-in
T.V.Test Equipment

MARCONI
TF2909 Gray scale generator
Temperature \& Humidity
COMARK
1604 BLU Analogue thermometer $0.100^{\circ} \mathrm{C}$
LEE-DICKENS
HP5 Humidity probe
HUMIGUN Temp/humidityprobe
with meter
RAYTEK
T1000 Infra-red thermoprobe

Vibration

DAWE
1461 CV (M) Portable Vibration
Analyser Kit
Voltmeters - Analogue AIRMEC
264 Millivoltmeter 3 mV - 1 V ranges
8 MkVAC/DC/OHMS

BRADLEY
CT471C AC/DC/ $/$ /current
multimeter and RF
165
DAWE
614 C Millivoltmeter $0.3 \mathrm{mV}-300 \mathrm{~V}$ ranges

HEWLETT PACKARD
$302 \mathrm{~A} 20 \mathrm{~Hz}-50 \mathrm{kHz} 75 \mathrm{db}$ range 375
WAYNE KERR

Redundant

Test Equipment

Why not turn your under-utilized
test equipment into cash ? Ring us and we'll make you an offer.

1260 VAT charged at Standard Rate

330
610B Electrometer recorder O/P
LINSTEAD
M2B DC/AC $10 \mathrm{~Hz}-500 \mathrm{kHz}$
MARCONI
NORMA
$\begin{array}{ll}\text { U. Function Dual channel } & 325\end{array}$
PHILIPS
PM2454B AC voltmeter to $12 \mathrm{MHz} \quad 225$
Voltmeters - Digital
ADVANCE
DANA 199 FSD AC/DC/』/current

8300A 119999 FSD DC only

Contact David Kennedy
01-267 53112
Carston Electronics Limited,
Shirley House, 27 Camden Road,
London NW1 9NR. Telex: 23920

WHY BUY A MICRO-COMPUTER FROM

 ELECTRONIC SERVICING LTD.

BECAUSE

1) Established company trading since 1971
2) Electronic servicing is our speciality
3) We have in house programmers/systems analysts
4) We have our own service engineers
5) We will demonstrate the PET at your premises
6) We can customise the PET to your requirements
7) We can arrange f̣inance
$8 K £ 550.00$ + VAT
$16 K £ 675.00$ + VAT 32K $£ 795.00$ + VAT

New Large
Keyboard 'PETS
Now in Stock
8) We offer, after the three-month warranty, a service contract from £69.50
9) You benefit from our experience of having sold over 250 micro-computers to industrial, educational and business, personal users.
10) We specialise in programs and interfaces for weighing applica tions for average weight control and counting, etc.

Also

available:

24K Memory Expansion Boards (disk-compatible), only £320 + VAT
PET-compatible dual floppy disk unit with advanged operating system, only $£ 840$ + VAT
Large Extension Keyboard for the PET $£ 89.50$ + VAT
Telephone for complete system prices: Wide Range of Printers Available
If you require any more information or demonstration regarding the PET $2001 / 8$ or any associated equipment, programs, etc., please contact Mr. P. J. A. Watts or Mr. D. W. Randall at:

Shop at: PETALECT
Chertsey Road, Woking, Surrey Tel. Woking 20727/23637

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messagessometimes several at a time. In such instances a positive need for communications
recording arises-a need for a system with instant message trace and replay - at the touch of a button-and at any speed to assist intelligibility.

All these facilities, and more, are available in the Racal Recorders 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to:
Racal Recorders Limited Hardley Industrial Estate Hythe, Southampton, Hampshire, SO4 6ZH England.
Telephone: 0703843265. Telex: 47600 .

BACEIL

Although we may be a new name to you, our products use refinements of circuitry which has been well proven over the past few years. By redesigning to what we consider the
optimum cost/performance/appearance breakpoint we can now offer the best sound per pound that you will find anywhere. In addition to the items below we can supply ready built power amps, with active crossovers if required, in a variety of options including custom designed and finished metalwork in small $(5+$) or large quantities. If you do not see what you want please enquire.
'STATE OF THE ART' PRE-AMP
Undoubtedly the best pre-amp on the market, it is supplied ready built, not a kit, and caters for disc, aux and 2 or 3 -head tape machine. the built-in supply regulators require only the matching mains supply kit, CSI. The performance is almost perfect, with virtually zero thd ($<.002 \%, 1 \mathrm{kHz}$), zero common mode distortion, fast slewing, high overload $(40 \mathrm{~dB}$) and low noise (70 dB mag). It is attractively finished in black and is also available in a special version to cater for moving-coil cartridges.
Cl (mag):

'DOMESTIC' POWER AMP KITS

Styled and finished to match the Cl , they are supplied with ready built and tested pcbs and require only simple assembly and point-topoint wiring of power transistors, supply, etc. In this way the possibility of errors and performance, again, is second to none in this performance, again, is second to none in this
magazine, with ultra low thd $(<004 \%$ Ik magazine, with ultra low thd ($<.004 \%$, Ik, established exceptional subjective qualities.

'SLAVE TRAY' \& RACK MOUNTING KITS

0

KONTAKT 60
 EUROPE'S LEADING CONTACT CLEANING SPRAY

Kontakt products 60-61 and WL provide an unsurpassed cleaning capability for contacts and switchgear.

KONTAKT 60

Safely dissolves oxides and sulphides and disposes of resinated contact greases and dirt, but does not attack plastics or any standard production materials.

Is silicone free

Contains a light lubricant to avoid possible corrosion of contact paths - and obviates

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastic Spray K72 Insulating Spray K75 Cold Spray K80 Siliconised Polish K90 Video Spray K100 Antistatic Spray K101 Dehydrating Spray and Pos. 20 POSITIVE PHOTO RESIST VARNISH.

Distributed by

SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London W1 V OHL
Tel. 01-629 9556. Cables: Speciprod, London W1
Descriptive leaflets of the above products are freely available on request.

WW - 072 FOR FURTHER DETAILS

WW - 059 FOR FURTHER DETAILS

TO SEE AND HEAR

4 large exhibitions dealing with:

区
In the Palace No. 1 (A) there will be the manufacturers of radio and TV who will, moreover, give a sample of their most up-to-date know-how in the production of $\mathrm{Hi}-\mathrm{Fi}$ systems, comprising amplifiers,modular sets, tuners and other accessories. The exhibition will be completed with the most modern Sound and Image recording and playback equipment.

\squareThe Palace of Congresses (B) will house the largest Photography show in our country. Here the visitor will find from the simplest to the most sophisticated equipment, comprising complex professional developing and processing units. Moreover, supplementary to the Photographic Show, the whole wide, fascinating range of Audiovisual equipment.

The Fair Palace (C), specially set aside for Sound, is where the professional and the amateur will find everything relating to $\mathrm{Hi}-\mathrm{Fi}$, Public Address, Sound and Vision Recording and Playback, Musical Instruments and Show Illumination.

Electronic components will be exhibited in the Fiftieth Anniversary Palace (D), together with production systems and materials for electronic design, measuring and control instruments, communications (both at the highest technical and professional level and for radio hams and Security Systems.

65,000 SQ. M. OF SHOW SPACE WITH 380 EXHIBITORS REPRESENTING 1200 FIRMS FROM 30 COUNTRIES.

The best connection for the tube you want.

Whatever industrial tubes you need, you can be sure you'll find them in this extensive collection of information-packed literature. There's everything from camera tubes to display tubes. Lasers to photomultipliers. Transmitting valves to receiving tubes. I.R. emitters to CCD Image Sensors.

Having this wealth of reference material on hand can save time, trouble and money. Apart from setting out data in the most clear and convenient way, you'll find that our booklets group products into types and outline major parameters.

These include selection, replacement, equivalents and characteristics tables that will help narrow your choice.

Just contact us for the best connection in tubes you'll ever make.

Crellon Electronics Ltd.,
380 Bath Road, Slough, Berks.
Tel: Burnham (06286) 4434. Telex: 847571.

IOXO-100 SERIES LOW PROFILE CRYSTAL CLOCK OSCILLATORS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements, $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available.
Many frequencies can be supplied from stock.

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g

WW - 063 FOR FURTHER DETAILS

carbon film RESISTORS

PRICES REDUCED. SEND FOR DETAILS NOW

AERO SERVICES LTD.

42-44A-46 Westbourne Grove
London W2 5SF
Tel. 01-7275641 Telex 261306
WW-023 FOR FURTHER DETAILS
Ceramic Capacitors $\mathbf{£ 3 . 5 0}$ per, 100
Cable Sleeves and Markers from $\mathbf{£ 1 . 0 0}$ per 1,000
Compression Terminals from $\mathbf{£ 7 . 2 9}$ per 1,000
Pcb self-fixing Guides from $£ 4.86$ per 100
Elma Knobs and Accessories
Phone, write or call for catalogue
Carbon Film Resistors from $\mathbf{£ 4 . 0 0}$ per 1,000
Polystyrene Capacitors from $\mathbf{£ 1 . 5 0}$ per 100
Send for lists of values available
DBRA TA. $\begin{aligned} & \text { Hopfield } \\ & (073274) 345\end{aligned}$
Golden Green, Tonbridge, Kent, TN 11 OLH
WW - 044 FOR FURTHER DETAILS

Youcant beat The System.

The Experimentor System ${ }^{\text {TM }}$-a quicker transition from imagination through experimentation to realization.

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.

We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.32$.

There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardtм (where they're printed) to Matchboardтм (where they're silkscreened onto the component side) and always know where you are.

When you want to save time and energy, you can't beat The Experimentor System.

1. EXP-300PC, which includes one item:

A Matchboard pre-drilled PCB.
2. EXP-302, which includes three items:
2. Three 50-sheet Scratchboard workpads
£1.68
3. EXP-303, which includes three items: - Two Matchboards and an EXP-300 solderless breadboard.

4 EXP-304, which includes four items:
4. Two Matchboards, an EXP-300 breadboard and a Scratchboard workpad $£ 9.30$

CONTINENTAL SPECIALTIES CORPORATION
\square CONTINENTAL SPECIALITIES CORPORATION. DEPT. 7W

Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex.

Address
Inc P\&P and 15% VAT
Inc P\&P and 15% VAT

1.EXP $300 P C$ £2.38	Onty.Reqd.	2.EXP 302	Onty.Reqd.
3. EXP 303 $£ 11.04$	Onty.Reqd.	4. EXP 304	Onty.Reqd.

FREE Catalogue tick box \square
I enclose cheque/ PO for
EUROPE, AFRICA, MIDEAST: CSC UK LTD., DEPT. 7W
Shire Hill Industrial Estate Units 1 and 2 Saffron Walden, Essex CB11 3AQ
Telephone: SAFFRON WALDEN (0799)
21682. TLX 817477

Phone your order with Access, Barclaycard or American Express
Card No.
Expiry date

METRAVO 1H 500V AC/DC 5A AC/DC 20Kil/V 34 ranges, 4 basic parts - no screws

- owner replacement

PANTEC MINOR 2.5KV AC 12.5A AC 20Kil/V 30 ranges mirror scale ... £31.05 CITO 38 peg board type select 1.5KV AC/DC 1A DC 10Kil/V 24 ranges .. £18.95 AVO MULTIMONIR Avo brand name 1000 v AC/DC 1A DC 20Kil/V 19 ranges
AVO MOD 8 top of range 3 KV AC/DC 10 AC AC DC $20 \mathrm{Kil} / \mathrm{V}$ automatic cut out £34.84 $£ 101.89$ DOLOMITE SP 1.5KV AC/DC 5A AC/DC 20Kil/V, 40 ranges, cut out protection AVO DA 11613 mm LCD $31 / 2$ digits $.5 \%$ ACC 1000 v AC/DC 10 AC AC / DC batt opp 500
hrs life PAN 200015 mm LCD $31 / 2$ digits 3% ACC £135.12 option temp + signal inject facility . . B2K 28106 mm LED $31 / 2$ digit $.5 \%$ ACC 1000 v AC/DC $1 \mathrm{~A} A C / D C$ auto zero full
overload protection UNIGOR D210 13 mm LCD $33 / 4$ digit 2% ACC 500 v AC 1 DC 5 ml $£ 83$ + HV optional ..

OSCILLOSCOPES ETC.

SCOPEX 456 single beam $6 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}-50 \mathrm{v} / \mathrm{CM}$ display $8 \mathrm{~cm} \times 6 \mathrm{~cm}$ £161.50 SCOPEX 4D 10B new style dual trace 10 MHz display $6 \mathrm{~cm} \times 8 \mathrm{~cm} \ldots . . . \mathbf{£ 2 2 0 . 5 0}$ SCOPEX 4D25 dual trace 25 MHz with signal delay display $8 \mathrm{~cm} \times 6 \mathrm{~cm} \ldots$ E366.58 METRIX OX712 dual beam $15 \mathrm{MHz} 10 \mathrm{MV} / \mathrm{cm}-5 \mathrm{~V} / \mathrm{CM}$ display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ true CSC 2001 function generator $1 \mathrm{~Hz}-100 \mathrm{KHz} 5$ ranges - freq. ACC to $\pm 5 \%$ of Dial-setting. CSC 4001 pulse generator $0.5 \mathrm{~Hz}-5 \mathrm{MHz}$ TTL compatible - square wave mode CSC LOGIC MONITOR IM1 in 1 MP100K
 CSC CSC LOGIC MONITOR LM2 as LM1 but + power supply extending ranges + total
independance CSC LOGIC PROBE LP1 memory probe min detect pulse 50 nS max input freq 10 MHz CSC LOGIC PROBE LP3 high speed memory probe as LP1 + . 15 - pulse trains to 50 MHz

CSC MAX 50 FREQUENCY COUNTER 6 digit $100 \mathrm{~Hz}-50 \mathrm{MHz}$ $£ 48.55$ CSC MAX 100 FREQUENCY COUNTER 8 digit $20 \mathrm{~Hz}-100 \mathrm{MHz}$ gatetime $\mathbf{E 6 3 . 8 0}$ ± 11 Gunt + T8 error sec ACC AVO TRANSISTOR TESTER Go/ no go probe type tester NPN-PNP
PANTEC TRANSISTOR TESTER leakage ranges - gain - TESTER analogue type insitu testing 0-100 colour scale -2 PANTEC OHMETER - to 100-1000 PANTEC SIGNAL INJECTOR pen type freq $1 \mathrm{KHz}-500 \mathrm{KHz}$ harmonic to 500 MHz
500 V DC at probe tip 500 vDC at probe tip £10.35

BREADBOARDS \& PROTOBOARDS

PROTO-BOARDS CSC

	EXPERIMENTOR TM SOCKETS	
£2.58	CSC EXP325 22 terminal	E2.
£3.75	EXP650 46 terminal	£4.
£6.21	EXP48 N/A	
£7.18	EXP300 94 terminal	£7
£8.85	EXP600 94 terminal	

£26.39 PROTOCLIPS IC TEST CLIPS
 PROTOCLIPS IC TEST CLIPS

PC14	£3.45		
PC16	£3.75	PC40	$\mathbf{E} 6.21$

PB6	$\mathbf{£ 1 1 . 1 5}$	PB102
PB100	$\mathbf{£ 1 3 . 5 7}$	P8103
PB101	$\mathbf{£ 2 0 . 4 7}$	PB104
P203A	$\mathbf{£ 8 5 . 9 0}$	

MISCELLANEOUS

SCOPE LEADS/PROBE SET (specify type required)
4 mm multimeter leads, small in length
P203A $£ 85.90$ PB104

IEC PROBES PER SET (2) safety type
Hirshman safety probes
Ring main tester
Hand oported 500 v Megger

All other ESC types in stock

$\square=$

Counon information.
For purchase please give name/address in block capitals. Enclose cheque, postal order or credit card no with ERP date, or telephone giving access or Barclaycard no for immediate despatch.
NAME
ADDRESS

ACCESS or
ACCESS or No.

WW - 045 FOR FURTHER DETAILS

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

Of all the purpose-built power amplifier modules by I.L.P., the HY50 is understandably the most popular with those wanting to build or up-grade a hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practise or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make HY50 the ideal all-purpose quality power amp - and it is unconditionally guaranteed for five years! Tens of thousands are in regular use throughout the world.

. . . and a spec that just means what it says!

Encapsulated power amp with integral full-rated heatsink
Input - 500 mV .
Output 30 watts RMS / 8Ω.
Load Impedance - 4 to 16Ω
Distortion - 0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / 8 \Omega$
Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Inc. VAT and postage in U.K
$£ 8.33$
Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circuitry, no-compromise production standards and true professional finish ensure world leadership for I.L.P. Now we have up-graded output ratings and down-graded prices to bring I.L.P. within easier reach of all who want the best.

New production techniques have enabled us to reduce prices by an average of $\mathbf{2 0 \%}$, making I.L.P. a better buy than ever.
\star Guaranteed 7 days despatch on all products
USE OUR FREE POST SERVICE
for sending your orders, requests for information sheets, etc. Simply address envelope. No stamps required.

OTHER UNITS IN THE RANGE

All prices inc. VAT at 15% and postage in the U.K

HY5 PRE-AMPLIFIER

Compatible with all I.L.P. power amps and P.S.U.s. In a single pack, needs external pots and switches. Multi-function qualization, 5 inputs. High overirad margin. Active tone onnects, easily for stereo
£5.34

THE POWER AMPS
With heatsinks, full load line and thermal protection Distortion typically 0.05% at 1 KHz .

HY120 60 Watts RMS/8, $\Omega \quad 114 \times 50 \times 85 \mathrm{~mm}$ £17.48 HY200 120 Watts RMS $/ 8 \Omega \quad 114 \times 50 \times 85 \mathrm{~mm}$ £ 21.21 HY400 240 Watts RMS $/ 4 \Omega \quad 114 \times 100 \times 85 \mathrm{~mm} £ 31.83$

THE POWER SUPPLY UNITS
(Split line outputs to suit I.L.P. power units and HY5).
PSU 50 for 1 or $2 \times$ HY 50
PSU 70 for 1 or $2 \times$ HY 120
PSU 70 for 1 or $2 \times$ HY120
PSU 90 for one HY200
PSU180 for one HY400 or $2 \times$ HY200
$£ 9.32$
$£ 15.65$

Information sheets on application. Use our FREEPOST service.

OUR VALUES REMAIN SUPREME!

STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business

SEED - STRUMECH - PORTLAND HSE. - COPPICE SIDE - BROWNHILLS WALSALL

If we told you the best way to talk to your staff... what would you say?

We can tell you how to talk to your secretary, your accounts clerk, your foreman - or to all of them at once. We can now offer you the first really practical and economical duplex intercom system-for all your communication needs.

- The first 100% British designed and manufactured duplex intercom system
- Employs the smallest known control unit
- Offers paging facility as standard
- Conference facility up to 8 stations-also standard
- Uses less cable than competitive systems.

Easier to install - More standard facilities-And less expensive than most other systems

NOTEVERY CABLE HASALABEL

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal.
Eagle Test Equipment gives the right answers
The range covers general multimeters, high voltage probes, clamp meters, insulation testers.
Here are just four. Send the coupon for details of all the rest.

KEW 7 Multimeter 1000 OPV. DC volts up to 1000 , DC amps up to 100 mA . AC volts up to 1000 . Resistance up to 150 Kohms. Pocket size. "Off" damping. Complete with leads \& battery. R.R.P. £6.95 ex. VAT.

EM 1200 Multimeter 100,000 OPV. Taut band movement. Overload protection. Reversible DC polarity. AC amps: 15, AC volts to 1500 . DC amps up to 15, DC volts to 1500. Resistance up to 200 megohms. R.R.P. £49.95 ex. VAT.

K1400 Multimeter
20,000 OPV. DC and AC volts up to 5000. DC and AC amps up to 10. Resistance up to 20 megohms. "Off" damping. Overload protection. R.R.P. £79.35 ex. VAT.

EM10, 20 \& 30 Multimeters 10,20 \& 30,000 OPV. All with antiparallax mirror scale. DC volts to 1000 (1200 for EM30). DC amps to 250 mA (600 for EM30). AC volts to 1000 (1200 for EM30). Resistance up to 6,5 and 60 megohms respectively. R.R.P.'s EM10 $£ 13.50$ EM $20 £ 17.25$, EM $30 £ 20.75 \mathrm{ex}$. VAT.

TestEquipment: EAGLE $\sqrt{ }$

Please send me details of your complete range of Test Equipment.
Name \qquad Company

Address \qquad

EAGLE INTERNATIONAL $\begin{aligned} & \text { Precision Centre, Heather Park Drive, } \\ & \text { Wembley, Middlesex HAO 1SU. }\end{aligned}$

WALL MOUNTING CASES In four sizes. Made from 18 G M / S. In dark grey, hammer.
Type $301-175 \mathrm{~mm} \times 250 \times 110-£ 7.25$
$\mathbf{3 0 2 - 2 5 0 m m} \times 350 \times 110-\mathbf{£ 9 . 5 0}$

+ Post
$303-175 \mathrm{~mm} \times 500 \times 110-£ 9.50$ \& VAT
$304-350 \mathrm{~mm} \times 500 \times 110-£ 13.50$

low cost ultra violet eprom erasing lamp will erase up to 12 chips at one time.

PRICE $\mathbf{8 9 5 . 0 0}+$ VAT

INSTANT TRUNKING SYSTEM! 4 FEET LONG FOR WALL OR BENCH MOUNTING

Ready to use. Internal wiring suitable for 30 amp
TR6-6 sockets switched
£21.50 P\&P £1.85
TR9 - 9 sockets switched
£25.50

+ VAT

PORTABLE POWER DISTRIBUTION

 FOR INSTANT MAINS!NEW! 10 sockets switched
in sloping box

Type 13A/10SW £27.50. P\&P $£ 1.85$ + VAT

COMPLETE WITH 6FT. CABLE AND 13 AMP.FUSED PLUG
4 sockets 13 A
6 sockets 13A $£ 14.30$ 4 sockets 13A switched £13.75 6 sockets 13A switched £15.95
ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS \& PLUG OLSON ELECTRONICS Send for details of complete range

FACTORY NO. 8, $5-7$
TEL: 01-739 2343

HeycoNylon
 Hole Plugs

seal unwanted holes neatly, quickly and easily.
Snap-lock into panels with
fingertip pressure. Low
cost. 20 sizes for holes
from $3 / 16^{\prime \prime}$ to $2^{\prime \prime}$.
Vent plugs with perforated
head also available.

20SIZES

FREE SAMPLES
and catalogue showing our full range of bushings on request.
Heyco have got it made for cables

Heyco Manufacturing Co. Ltd., Uddens Trading Estate,
Nr Wimborne, Dorset BH21 7NL. Tel: Ferndown (STD: 0202) 871411/2/3/4. Telegrams: HEYCOMAN Wimborne. Telex: 41408.

WW - 098 FOR FURTHER DETAIİS

bimenclosures
ALL METAL BIMCASES
Red, Grey or Orange 14swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm}$ £15.52

MINI DESK BIMCONSOLES Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.48$ $\begin{array}{ll}\text { BIM } 1005(161 \times 96 \times 58 \mathrm{~mm}) & £ 2.48 \\ \text { BIM } 1006(215 \times 130 \times 75 \mathrm{~mm}) & £ 3.48\end{array}$

ALL METAL B'MCONSOLES
All aluminium, 2 piece desk consoles with Colour Code Top Panel Base either 15° or 30° sloping fronts, sit on \quad A \quad Off White $\begin{aligned} \text { Blue } \\ \text { Bluen }\end{aligned}$ $\begin{array}{lll}4 \text { self-adhesive non-slip rubber feet. } & \text { B } & \text { Sand } \\ \text { Ventilation slots in base and rear } & \text { C } & \text { Satin Black } \\ \text { Gold }\end{array}$ panel for excellent cooling. See latest catalogue for new styles and sizes 15° Sloping Panel 30° Sloping Panel
BIM 7151 ($102 \times 140 \times 51[28] \mathrm{mm}$) BIM $7301(102 \times 140 \times 76[28] \mathrm{mm})$ BIM $7152(165 \times 140 \times 51[28] \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28] \mathrm{mm})$ BIM7153 ($165 \times 216 \times 51[28] \mathrm{mm})$ BIM7303 ($165 \times 183 \times 102[28] \mathrm{mm})$ BIM 7154 ($165 \times 211 \times 76[33$) mm) BIM 7304 ($254 \times 140 \times 76$ [28) mm) MM7155 ($254 \times 211 \times 76[33) \mathrm{mm}$) BIM $7305(254 \times 183 \times 102$ [281 BIM $7156(254 \times 287 \times 76[33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28] \mathrm{mm})$ £16.36 BIM7157 ($356 \times 211 \times 76[33$) mm) BIM $7307(356 \times 183 \times 102[28] \mathrm{mm})$ f18 BIM7158 ($356 \times 287 \times 76[33$] mm) BIM $7308(356 \times 259 \times 102[28] \mathrm{mm}) ~ £ 19.92$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast).
$(50 \times 50 \times 25 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm}$ $112 \times 62 \times 31 \mathrm{~mm}$ $120 \times 65 \times 40 \mathrm{~mm}$ $(150 \times 80 \times 50 \mathrm{~mm})$ $190 \times 110 \times 60 \mathrm{~mm}$

ABS		Diecast	Hammertone	Natural
N/A		BIM5001/11	$£ 1.54$	$£ 1.23$
BIM2002/12	$£ 1.09$	BIM5002/12	$£ 1.66$	$£ 1.32$
BIM2003/13	$£ 1.27$	BIM5003/13	$£ 2.24$	$£ 1.70$
BIM2004/14	$£ 1.51$	BIM5004/14	$£ 2.81$	$£ 2.11$
BIM2005/15	$£ 1.72$	BIM5005/15	$£ 3.19$	$£ 2.72$
BIM2006/16	$£ 2.69$	BIM5006/16	$£ 4.94$	$£ 3.96$

Also available in Grey Polystyrene with no slots and self-tapping screws BIM $2007 / 17(112 \times 61 \times 31 \mathrm{~mm}) \quad £ 1.06$

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.34$ BIM 4004 ($111 \times 71 \times 41.5 \mathrm{~mm})$ £ 1.84 BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) \quad £ 2.48$

LOW PROFILE BIMCONSOLES
Orange, Blue, Black or Grey ABS body has ventilation slots as well as 1.8 mm pob guides and stand-off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.
BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.76$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) \quad £ 3.58$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) \quad £ 4.83$

- EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS
2. body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mm
Grey aluminium lid sits flush with body
top and held by 4 screws into integral brass bushes.

BIMTOLLS + BIMACCESSORIES

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or . $125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed ` 7500 rom. Oranae ABS, high impact, fully insulated body with integral on/off switch $£ 11.21$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.64$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in trans parent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 23.57$

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. $£ 1.15$ per pack of 25 .

BIMFEET

11 mm dia. 3 mm high, grey rubber self-adhesive enclosure feet
$£ 0.81$ per pack of 24 .

12 VOLT BIMDRILLS
2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. $£ 8.62$
Major BIMDRILL with 4 collets up to 3 mm dia. $£ 14.49$ Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit $1-£ 16.10$, Major Kit $1-£ 20.70$. Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains- 12 V dc adaptor. Mini Kit $2-£ 36.22$, Major Kit 2 - $£ 41.97$. Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - $£ 48.30$, Major Kit $3-£ 54.05$.

BIMPUMPS

2 all metal desoldering tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb

- operation with in-built safeBIMPUMP Major (180 mm long) $£ 8.51$ BIMPUMP Minor (150 mm long) $£ 7.24$

BIMBOARDS

DIL COMPATIBLE BIMBOARDS

Aćcept all sizes (4-50 pin) of DIL IC packages as well as resistors, diodes capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple
units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.
BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm ($0.1^{\prime \prime}$) matrix.

BIMBOARD $1 £ 9.40$
BIMBOARD 2 £22.37 BIMBOARD 3 £ $£ 1.83$) BIMBOARD 4 £ 41.53
DESIGNER PROTOTYPING SYSTEM

1, 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{~V}$ dc @ 100 mA and fixed +5 V dc @ 1 A) All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 £58. 65
DESIGNER 3 £71.30
Type 30 General Purpose 27 watt iron with long life, rapid change element,
screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. $£ 4.37$ Type M3 Precision 17 watt iron, quick change tip. Iona life

Ohio Scientifics

Full 8 K basic and 4 K user RAM Power supply and R.F. Converter P.O.A.

Features

- Uses the ultra powerful 6502 microprocessor

8K Microsoft BASIC-in-ROM

- Full feature BASIC runs faster than currently available personal computers and all 8080 -based business computers.
- 4K static RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memiory), features uppercase, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters.

Extras

Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
Assembler/editor and extended machine code monitor available.

Built and tested

(Delivery within 7 days)

Commands

CONT	LIST	NEW	NULL	RUN	
Statements					
CLEAR	DATA	DEF	DIM	END	FOR
GOTO	GOSUB	IF...GOTO	IF...THEN	INPUT	LET
NEXT	ON...GOTO	ON...GOSUB	POKE	PRINT	READ
REM	RESTORE	RETURN	STOP	PRINT	READ

Expressions
Operators
$-.+,{ }^{*}, l, \uparrow$, NOT, AND, $\mathrm{OR},>, \ll>,>=,<==$
RANGE 10^{-32} to $10^{+8.82}$

Functions		ATN(X)	$\operatorname{COS}(X)$	EXP(X)	FRE (X)
ABS (X)	INT(X)				
LOG(X)	PEEK(I)	POS(I)	RND (X)	SGN(X)	SIN (X)
SPC(I)	SQR(X)	TAB(I)	TAN(X)	USR(I)	

String Functions
ASC(X\$) CHR\$(I) FRE(X\$) LEFT\$(X\$,I) LEN(X\$) MID\$
($\mathrm{X} \$ \mathrm{I}, \mathrm{J}$).
VAL(X\$)

Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or TV and RF converter to be up and running.

4 MORGAN STREET TELEPHONE:01.9813993

 LONDON E3 5AB TELEX:261426 ATN.LOTUS SOUNDWW - 104 FOR FURTHER DETAILS

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: 01-868 1188 - TELEX 8812727
ASTRA-PAK
92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB All prices include V.A.T. Add 25p for
P\&P (Exira for overseas).
 over $£ 20$ 1ess 10%, over $£ 50$ less
15%, over $\varepsilon 100$ lass 20% 15\% over E100 less 20%.
Sind SAE gend SAE. for complete list of com-

Highvol capacitor boots give complete insulation of the terminal. Slip-on assembly - no mess, no heat. 30 sizes ensure a snug fit, yet the terminal remains easily accessible. 3 types for Tantalum, Aluminium and Ceramic capacitors, all conforming to UL safety and flammability ratings. FREE samples and catalogue showing our full range of insulator covers on request.

747 UNIVERSAL COUNTER TIMER £175 + £3.50 p\&p

DC-150MHz Measures - A KHz, C MHz, Period A 8 DIGITS 8 FUNGTIONS Measures - A KHz, C MHz, Period A, Pulse Width $A \pm$, Time $A \pm$ to $B \pm$, Count A, Count A (gated by B, reset by C) Max. resolution $0.1 \mathrm{~Hz}, 100 \mathrm{pS}$. Averages 1 to 1000 events.

3 CHANNELS

Also available - Counter Timers, Frequency Meters, Filter Oscillators, Function Generators, Off-air Standards, Lab/ Bench Power Supplies, Panel Meters \& Bar Indicators.

OMB ELECTRONICS

Riverside, Eynsford, Kent DA4 OAE
Tel: Farningham (0322) 863567
Prices, which are CWO \& ex-VAT, are correct at time of going to press and are subject to change without notice.

Measure Resistance to 0.01Ω
At a Price that has no resistance at all
 USA

ONLY £55 $(£ 3 \mathrm{p} \& \mathrm{p}+\mathrm{VAT} £ 8.70=£ 66.70)$

*FULLY GUARANTEED FOR 2 YEARS
-METAL CASE
ex stock delivery

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE! FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

SPECIFICATIONS:	
DC Volts	Riange $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
	Overload protection 1,000 volts max
AC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy 1.5\% ± 2 digits, Resolution .1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
DC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$, 2amp.
	Accuracy 1\%, 1 digit, Resolution 1 Microamp
	Overload protection - 2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
	Overload protection - 2 amp fuse and diodes
Resistance	Range 20, 200, 2K, 200K, 2 Meg. 20 Meg.
	Accuracy 1\% ± 1 digit, Resolution 01 ohms
Environmental	Temp coefficient 0° to $30{ }^{\circ} \mathrm{C} \pm .025 \%{ }^{\circ} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage -20° to $60^{\circ} \mathrm{C}$
General	Mains adaptor: 6-9 Volts @ 200mA (not supplied)
	4C size batteries (not supplied)
	Size $81 / 4 \times 53 / 4 \times 21 / 4 \quad$ Weight $21 / 2 \mathrm{lbs}$.
To: Maclin-Zand Electronics Ltd 1st Floor, Unit 10, East Block 38 Mount Pleasant, London WC1X OAP	
Please send me : DMM M 1200 B	
@ £66.70 inc. p8p + VAT (overseas £60)	
Name	
Address . ${ }_{\text {LETM }}^{\text {(BLT }}$	
- - - - - - - - - - - - - - -	
ELENED Precision Sole UK Distributor	
ME	Maclin-Zand Electronics Ltd 38 Mount Pleasant,London WC1XOAP
(C) N Zand Tel. 01-8371165 Telex. 8953084 MACLING	

we wondered why....

The B.B.C., British Rail, B.A.C., Decca Acoustics, Institute of Sound and Vibration Research, I.C.L., Post Office Telecommunications, Philips Research, U.K. Atomic Energy Authority, and many Universities were among our
customers.

Maybe they liked the competitive prices of our modules, or the fact that all modules have a frequency response from 20 Hz to $22 \mathrm{kHz}-0.2 \mathrm{~dB}$, a slewing rate of 8 volts per microsecond, input sensitivity of 0 dB 10.775 V), a damping factor greater than 400 to 1 kHz and a total harmonic distortion less than 0.055% at 1 kHz .

Or could it be that they went for the reliability and the comprehensive protection circuitry. Then thers is
the full 2 year guarantee which accompanies our range of modules.
OR PERHAPS THEY JUST LIKED THE SOUND OF US!
J.P.S. ASSOCIATES

Power supplies available to suit all modules. Send for
further information on further information on our range of pre-amplifier
modules. JPS products are now stocked at the distmodules. JPS products are now stocked at the dist-
ributors shown below. Further information ributors shown below. Further information on all
products available direct from JPS Associates or via reader reply service. All modules are made in the United Kingdom.
 (ASTONKILN LTD.) BELMONT HOUSE STEELE ROAD PARK ROYAL LONDON NW10 7AR Tel: 01-961 1274/5

$\Delta \quad 4$			 CNmarend custom equir. calomion Road Letcemtor Im. Fill Groxterd	Emenang, wed severmaide aume \& lts 2 m The Fromenete Comestiver hom Heter 137812 Tai ergulas mr. Peter Mamany

WW-032 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

 SPECIAL FEATURES:\star very low distortion content-less than 0.03\%
\star an output conforming to RIAA recording characteristic
\star battery operation for no 'ripple or hum loop
\star square wave output of fast rise time

$$
£ 70.00
$$

also available

Si452 Distortion Measuring Unit

\star low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc $£ 56.00$
ALL PRICES PLUS VAT
ALL PRICES PLU
Tel. 0274-872501

Pil are pleased to announce the official, opening of their new 1500 sq. ft. showroom to the public.

Offering a range of some 350 electrical measuring instruments manufactured by around 60 manufacturers, both British and international.

Pil can cater for practically every electrical' measurement problem for any user on an ex-stock/short delivery basis.

The showroom facilities and its technical back-up are available to everyone from export

Factory/Repairs 01-639 0155 North London Showroom 01-965 2352

AN IEC GROUP COMPANY
houses and overseas users, buyers engineers, to do-it-yourself enthusiasts and hobbyists.

Instruments Electrical the service and calibration division can provide full guarantee facilities as well as offering their normal repair and calibration service.

For an immediate solution to your instrument problems, contact the Instrument Group at Instrument House.
Showroom/Sales/Export 01-639 4461 Open Mon. to Fri. (ring for Sat. opening times)

IHSTRUMENT HOUSF,727 OLD KENT ROAD,LONDOH SE15 TELEPHONE:O1-639 4461 TELEXE8811854(INSTEL)

fact: viscous-damping straightens out all your records

your favourite record may be a tangle of warps

Your pickup cartridge "sees" such records as twisted, heaving surfaces, joiting up and down 0.5 to 8 times a second. Even records that look flat have warps; and a warped record can change the cartridge-to-record distance, the tracking force, and the vertical tracking angle. Warps produce frequency "wow" and distortion, and can dangerously overload speakers and amplifiers.
What's more, somewhere between 5 and 15 Hz , every pickup arm-cartridge system has a resonance frequency-a frequency at which a warp will produce an exaggerated response that may result in mistracking and in extreme.cases, cause serious damage to both the record and stylus.

The Shure V15 Type.IV is the first cartridge in the world to incorporate effectively the principles of viscous damping. The Dynamic Stabilizer acts something like a "shock absorber," carrying the cartridge over surface irregularities without distortion, without bottoming out, and without risk of damage to records or stylus. It even protects the stylus should it be dropped accidentally onto the record.

the role of the Dynamic Stabilizer:

The V15 Type IV's Dynamic Stabilizer makes certain you hear the recorded information, not the warps. The viscous-damping system of the Dynamic Stabilizer resists rapid changes in the cartridge-to-record distance. This remarkable Shure innovation eases the stylus over warps without affecting the tracking force on warped or unwarped portions of the record And the pickup arm-cartridge resonance is attenuated to a subaudible level. As further bonuses, the Dynamic Stabilizer cushions the stylus from accidental impacts, and the carbon fibres in the "brush" conduct static electricity from the record surface to earth!
For more information write for the V15 Type IV Product Brochure.
®

wireless world

Good, clean fun

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:

GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443
Projects Editor:
MIKE SAGIN
Phone: 01-261 8429

News Editor:

RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
Communications Editor:
TED PARRATT, B.A.
Phone 01-261 8620
Drawing Office Manager:
ROGER GOODMAN

Production \& Design:

 ALAN KERRAdvertisement Controller:
G. BENTON ROWELL.

Advertisement Manager:

BOB NIBBS
Phone 01-261 8622
DAVID DISLEY
Phone 01-261 8037
BARRY LEARY
Phone 01-261 8515
Classified Manager:
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
NEIL McDONNELL
(Classified Advertisemients)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

The Home Office - or, at least, that part of it which is concerned with the regulation of radio transmissions - is evidently one of the more inductive arms of central government and, in its unexplained opposition to any change in the current of public opinion, begins to exhibit slight, but unmistakable evidence of a belief in the philosophy of King Canute, though it is said that even he only sat there on the beach to show how ill-conceived an idea it was to try to curb the tide.
If, by chance, the good king left any family over there in Denmark, let it be known that a further demonstration of the futility of that approach is overdue, the need for it being occasioned by the remarkable blandness of replies to reasoned requests for the right to operate personal radio transceivers on a citizens' band.

It is possible that the unsympathetic response to such demands stems from the unnecessarily righteous arguments put to the government by the supporters of the c.b. lobby. The suspicion lurks that, while the use of such equipment in the USA may have been the means of saving innumerable, isolated old ladies from the attentions of escaped man-eating tigers and while, in the absence of c.b., the roads of the MidWest would be made all but impassable by the dried-up skeletons of longdistance truck drivers, the real reason for wanting the c.b. facility is that it is quite good fun.

If it is this aspect of the cult that bothers the Home Office, then there is nothing at all for them to worry about. There are several precedents which provide a stable platform for the assertion that entertainment is respectable, even when it relies on the use of natural resources - renewable or not.

Television has effectively commandeered many hundreds of megahertz of the usable spectrum, with sound radio a more moderate but still fairly grasping tenant. Much of the spectrum occupied by broadcasting carries identical pro-
grammes being transmitted to different areas on different frequencies - hardly an economical use of the broadcast bands. But, allowing that this is necessary and pretending that cable transmission has never been thought of, it all becomes well worth while, since every person in the land is provided with first-class entertainment and instruction: a highly respectable endeavour.

Or is it? One evening's examination of the aforementioned entertainment and instruction will rapidly demolish any pretence of an effective use of bandwidth. The content of broadcasts is not normally the province of Wireless World, but insofar as the imported trash (and some homegrown material of the same standard) is responsible for the annexation of so much of the available spectrum, and is considered worthwhile by the powers that be, it considerably reduces the impact of any argument based on the premise that c.b. operation is merely entertainment and consequently not to be encouraged.
The supporters of c.b. have their other argument to fall back on when faced with the Home Office's blank and uncomprehending disapproval; one which ought to appeal to bureaucratic self-interest, if nothing else. James Bryant of the CB Association has expressed the view that there will soon be so many illegal, and therefore unlicensed operators working with 27 MHz , a.m. sets that a free choice of the specification to be officially adopted will not be possible. Mr Bryant's figures cannot be checked and may seem somewhat excessive, but his argument does possess a certain force, and deserves a more considered reply than has so far been made public.
The official attitude that the need for c.b. has not been demonstrated is not even up to the standard of regulation Civil Service double-talk. Has anyone ever demonstrated the need for 'Sale of the century' or 'Wonderwoman'?

Logarithmic audio sweep generator

Unit for use with an oscilloscope to display I.f. response curves

by A. C. Ainslie

The log.sweep generator to be described was developed primarily for the display of overall I.f. response curves on a conventional, d.c.-coupled oscilloscope. Sweeps are calibrated over a 10:1, 100:1 and 1000:1 range, with selectable start frequencies of 10 Hz , $20 \mathrm{~Hz}, 100 \mathrm{~Hz}, 200 \mathrm{~Hz}$. This enables the "normal" audio band of interest of $20 \mathrm{~Hz}-20 \mathrm{kHz}$ to be presented in a single sweep.

Linear sweep facilities enable the graticule divisions on the oscilloscope to indicate frequency directly without a law conversion, while an accurate " log " facility produces sweeps with a linear sweep on the c.r.t. for uniform brightness but with logarithmic frequency conversion.

Outputs up to 10 V p-p are available into 600Ω loads from either sine, square or triangle sources. RIAA equalisation has been provided at a nominal 5 mV 1 kHz level for display of RIAA equalisation.

THE SIMPLIFIED block diagram of the unit in Fig. 1 shows the connexions to an oscilloscope and to the unit under test. Additionally, retrace blanking is provided to the c.r.o.

The ramp generator drives the X amplifier of the c.r.o., while simultaneously varying the frequency of the

voltage-controlled oscillator. Low frequencies are arranged to be on the left hand side of the display, providing the c.r.o. conforms to the convention of an increasing positive voltage moving to the spot to the right.
An integrated logarithmic amplifier converts the linear sweep to a log. v.c.o. control voltage so that the rate of increase of frequency increases with frequency, enabling responses to be displayed conforming to the more common form of presentation.

Amplification of the v.c.o. output is necessary to drive loads as low as 600with 10 V p-p level. Clearly the output

Fig. 1. Basic principle of swept-frequency investigation.
amplifier must be flat. A consequence of the v.c.o. used is that square and triangle waves are available simultaneously with the sine wave which is used for respónse sweeping. Selection is provided to enable these outputs to be used, giving a swept function-generator facility.
Y deflection of the oscilloscope is from the output of the device under test. The result of a sweep will be to display an envelope on the screen, the top of which is representative of the response of the device under test. Normally the lower half of the display would be lowered below the lower datum of the graticule to give a less confusing display. Several refinements to the display of the envelope will be discussed later on as an aside.

Sweep generator

The v.c.o. used in this design has a linear relationship between control voltage and frequency. The requirement for the sweep generator is, therefore, a simple linear ramp with variable repetition rate and the possibility of manual setting to any point in the sweep to enable frequency to be manually set. In Fig. 2, an astable 555 timer is used with a constant current source, Tr_{1}, to produce a linear sweep from the charging of C_{1}. The 555 is used between +15 V and earth with the internal comparator levels, resulting in a sweep from +5 V to +10 V . The charging current for C_{1} and hence the sweep repetition frequency is
controlled by R_{2}, a panel control labelled 'SWEEP'.

Switch $S_{1 a}$ selects either the automatic sweep or a manual tuning voltage from R_{9}, 'MANUAL,' to be passed to various level shifters by follower, IC_{2}. The combination of R_{12} and C_{4} removes high frequency jitter on the ramp from the 555. Amplifier IC_{5} converts the ramp from $\mathrm{S}_{1 \mathrm{a}}$ to a 10 V excursion, centred around 0 V , to drive the oscilloscope at $1 \mathrm{~V} /$ division maximum. Level shifter IC_{3} drives the log. conversion circuit, which requires the ramp to be presented inverted, running from about 2.5 V to just above earth. A linear, inverted ramp is also obtained from IC_{4}, sweeping from earth to -5 V . The h.f. end of the ramp is set by R_{21}. Potentiometers R_{17} and R_{23} set the working levels of the two translators, establishing the h.f. end of the log. sweep and the l.f. point of the linear sweep.
Oscilloscope trace bright-up must be provided under control of the sweeper.

Pin 3 of the 555 rises to +15 V during the sweep, falling to 0 V during retrace. This signal is used to turn on Tr_{2} during sweep; in the retrace period Tr_{2} is off and 'B.U. output' rises to +20 V , cutting off the oscilloscope. The $\mathrm{R}_{6} / \mathrm{C}_{3}$ combination prevents ripples getting onto the 20 V line, passing through the 15 V regulator and giving problems.

The convention used above, in which positive-going voltages reduce beam intensity, seems to be a fairly common requirement for most modern oscilloscopes: it is an easy matter to introduce an inverter should the need arise. If a greater bright-up voltage than 20 V is needed, it would probably be better to build a high-voltage amplifier into the mainframe, using its internal

Fig. 2. Ramp generator, logarithmic amplifier and sweep-width control. Letter code on connexions refers to author's p.c.b. layout. This may be made available if there is a demand.
supplies and driving the amplifier with the bright-up output of the sweeper.

To produce a logarithmic change in frequency when displayed on a linear trace, an antilogarithmic distortion of the linear ramp is needed, which is provided in this case by an Intersil 8049, the principle being shown in Fig. 3.

The 8049 was used in this design because various discrete "textbook" designs proved too fussy in respect of temperature control or compensation over the requisite 10^{3} range. This package is surprisingly inexpensive for its degree of precision and it is certainly simple to use. Setting up, once complete, is very stable.

The input presented to IC_{6} is a ramp falling from 2.5 V to about 0 V , which must be turned into a 10^{3} sweep voltage range. With a supply of 15 V on the 8049 , a maximum output of 10 V seems reasonable, making the l.f. end of the sweep output 10 mV . The scale factor of the device is approximately 1 V per decade of output, actually trimmed during

calibration to be less than this, and producing a 10^{3} output range from the $2-5 \mathrm{~V}$ input range. The lmA reference current for the device is produced by R_{37} from the +15 V rail.
The output from the package is obtained from one end of R_{38} - the external feedback resistor for the second internal op. amp. IC is a level translator and inverter, putting the sweep into a 5 V range, negative going, starting at 0 V as is the case with the output of IC_{4}, the LIN sweep. R_{46} trims the l.f. end of the log. sweep with R_{42} setting the h.f. end to be in line with that set by R_{21}.
Sweep width. Both lin. and log, sweeps as selected by $\mathrm{S}_{1 \mathrm{~b}}$ are negative-going from 0 V over a 5 V range. The sweep width selector, S_{2}, is connected to attenuators $R_{48} / R_{49}, R_{50} / R_{51}$ and R_{52} to give control of the total sweep range, reducing the sweep to -50 mV in the first instance for a $10: 1$ sweep and -500 mV in the second for a $100: 1$ sweep. The variable sweep with control, R_{52}, gives continuous control up to a ratio of $1000: 1$; it is a log. component for maximum controllability. With R_{52} at.its minimum setting, the v.c.o. should be running at its minimum sweep frequency. To trim this accurately, a pedestal voltage is applied to the bottom of R_{52} across R_{54}.

Voltage controlled oscillator

Rather than attempt to design a discrete v.c.o. (which would probably take the form of controlled astable with sinewave conversion) the popular Intersil 8038 v.c.o. package was chosen for this unit. It is specified up to 1 MHz with 1000.1 sweep and so appears to meet the requirements. However, even Intersil admit that operation with $1000: 1$ sweep range is full of problems and an application note breadboard certainly will not meet the intended specification. It is worth taking a little time to consider the operation of the device:
The 8038 contains two current sources, one producing a current I, the other, a current $2 I$. The timing capacitor on pin 10 is initially charged with I and then discharged at a threshold by the $2 I$ generator being switched on, giving a net discharge current, I. At a lower threshold the process reverses and the capacitor once again charges at I. The resulting symmetrical triangle is sine converted to yield the output.

The current I is set by the value of external resistors connected to pins 4 (for the constant source) and 5 for the switched source. Figure 4(a) shows the current generators internal to the 8038 which are also voltage controlled by pin 8 , common to both generators. If the control voltage is $-V$, the emitter of Q_{1} is $-\left(V+V_{\text {be }}\right)$, the emitter of Q_{2} and Q_{3}, being a single $V_{\text {be }}$ higher, are therefore at $-V$. Unfortunately, there is no inherent feedback over this currentcontrol mechanism internal to the 8038 , resulting in unpredictable compression at low frequencies when the control

voltage is approaching the 0 V rail.
By adding an op.-amp. round the internal current source; as in Fig. 4(b), this non-linearity is easily removed. The op.-amp. drives pin 8 , taking feedback from pin 4, and forcing the voltage on pin 4, and current through R_{59} etc., to follow the control voltage precisely. Figure 5 shows D_{2} which, in practice, serves to stop the control pin 8 being forced out of the linear v.c.o. range should the device be overswept for any reason.
Each of the four start frequencies are selected by S_{3}, START FREQUENCY, with $\mathrm{S}_{3 \mathrm{a}}$ selecting capacitors for each range. Switches $S_{3 b}$ and $S_{3 c}$ select appropriate calibration presets, enabling the symmetry to be individually set on each range. Symmetry can be lost due to unbalance of the current sources at low frequencies as control voltage approaches 0 V , but this is corrected by drawing current on pin 5 with R_{67}, adjustable by R_{68}.

Internally, the 8038 buffers capacitor voltage to give the triangle output on pin 3, while an uncommitted transistor on pin 9 is switched by the charge/ discharge flip-flop to give the square wave output. The sine wave output is produced by feeding the buffered triangle through an active attenuator with increasing attenuation as the level departs from the mean, giving a surprisingly pure output of less than 1% t.h.d. A preset, R_{72}, is used to make this non-linear attenuation symmetrical about the mean, giving symmetrical positive and negative half cycles.

Output

A simple push-pull amplifier delivers $10 \mathrm{Vp}-\mathrm{p}$ into loads of 600Ω with minimal distortion and excellent flatness over the frequency range. The function switch, S_{4}, selects the appropriate output from the 8038, centred about a d.er level of -7.5 V , via appropriate resistors

Fig. 3. Principle of Intersil antilog. amplifier.

Fig. 4. Use of op.-amp. to linearize output of 8038 v.c.o.
to equalize the gain. Feedback from R_{110} is also applied at the input of the amplifier: R_{82} serves to correct any zero effect that may occur.

Attenuator. A simple attenuator was judged to suffice for most requirements. The design shown gives up to 60 dB attenuation and provides a low source impedance. The network $\mathrm{R}_{91}, \mathrm{R}_{92}, \mathrm{C}_{12}$; C_{13} and R_{98} compose a RIAA weighting network, which enables checks to be made on pickup equalizers, etc.

Power supply

The instrument requires $\pm 15 \mathrm{~V}$ at around 125 mA . Monolithic fixed voltage regulators are suitable, but the design shown uses two 723 packaged regulators with external pass transistors and with R_{101} and R_{107} setting the positive and negative rails respectively. A +20 V supply is also provided for the b.u. amplifier. Clearly, any regulated power supply can be used but, since the calibration is very dependent on the supply rails, good long term stability is important. Hindsight makes the author favour monolithic regulators.

Construction

The prototype was built in a West Hyde 'Contil' case, approximately 10.5 in \times 4.5 in panel size. Doubtless, the more patient could build the design on Veroboard - there is nothing especially critical - but p.c.bs are to be recom-
mended. Five small boards were used in the prototype, as follows:

Board A sweep 4.5×3.5 in
Board B log. $5 \times 2.5 \mathrm{in}$
Board C v.c.o. 3.75×2.5 in
Board D output amp. 4×2 in
Board E p.s.u. $\quad 3.5 \times 3.25$ in

Care should be taken to avoid earth loops, which would give spurious output and affect v.c.o. control. A layout problem can occur with the edge of the squarewave breaking through to SINE. or TRIANGLE and producing a small pip at top and bottom. Should this occur in individual instruments the easiest cure is to use a spare pair of contacts on S_{4} to connect 100 nF between the square signal lead at this switch to ground on all but the SQUARE setting of the switch.

It is recommended that all presets be cermet and resistors 5 per cent film types, $1 / 3 \mathrm{~W}$ being adequate. However, in view of the extended l.f. range of a log. sweep, an error of perhaps only a fraction of a per cent of full sweep is shown as a considerable portion of the

Fig. 5. Voltage-controlled oscillator and output circuitry.

X axis. To avoid errors here, it is essential to ensure low drift in IC $_{7}$. Good quality resistors must be used, preferably the metal-film type for R_{45} and R_{47}. The preset R_{46} was a miniature 15 -turn type in the prototype, stuck behind a small hole in the panel with Araldite. It is simple to set the low-frequency end of the sweep to the correct frequency with this preset, should the calibration drift.

Setting up

There are many preset adjustments in the instrument and the use of a digital voltmeter is a good idea during the setting-up procedure. Providing goodquality components are used, subsequent calibration should only rarely be needed, and any single adjustment can often be carried out on a working instrument without test equipment.

1. Set R_{53} particularly and all other presets midway. Switch on and set R_{101} to give +15 V on the positive rail. R_{107} sets the -15 V rail.
2. Switch S_{1} to AUTO LIN sweep. Verify that IC_{2} gives the waveform shown in Fig. 2 at its output. Leaving the oscilloscope connected, switch to MANUAL LIN. Adjust the manual frequency control, R_{9}, anticlockwise and set R_{11} to give 5 V at IC_{2} output.

Turn R_{9} fully clockwise and check that IC_{2} output is 10 V .
3. Connect the oscilloscope's X input to the instrument X output socket, connect the bright-up, switch to AUTO LIN and adjust the oscilloscope for a 10 division horizontal line. Switch to MANUAL and confirm that the spot can be placed within the 10 division line using the MANUAL control. Switch to AUTO LIN. Adjust R_{23} to give 0 V at the zero end of the sweep, measured at IC_{4} output, and R_{17} to give zero at the h.f. end seen at IC_{3} output.
4. Set S_{2}, SWEEP WIDTH, to 1000:1. Adjust R_{21} to give -5 V at h.f. end of sweep measured at S_{2} wiper.
5. Connect the oscilloscope to the output, with sine output selected. Trim R_{82} for a symmetrical output about 0 V . Select the square-wave output and, with R_{52} set a maximum, and the oscilloscope connected to the X output, select MANUAL LIN. At the highfrequency end of the ranges, set R_{21} to give $10 \mathrm{kHz}, 20 \mathrm{kHz}, 100 \mathrm{kHz}$ or 200 kHz . At the low-frequency end, adjust R_{23} to obtain the correct output, trimming R_{68} to retain symmetry and to prevent the oscillator locking up. Approach this 1.f. setting with care. Trim R_{52} to a minimum now and adjust R_{53} so that the frequency is the same as with R_{52} at maximum. Set the frequency to h.f. again, selecting 100.1 and 10.1 sweeps. Trim R_{51} and R_{49} for the correct frequencies.
6. Each range of the voltagecontrolled oscillator has presets for the charging current.
start frequency

$$
\begin{aligned}
10 \mathrm{~Hz} & \mathrm{R}_{55} \text { and } \mathrm{R}_{62} \\
20 \mathrm{~Hz} & \mathrm{R}_{55} \text { and } \mathrm{R}_{63} \\
100 \mathrm{~Hz} & \mathrm{R}_{55} \text { and } \mathrm{R}_{64} \\
200 \mathrm{~Hz} & \mathrm{R}_{58} \text { and } \mathrm{R}_{65}
\end{aligned}
$$

Whichever range has been used for calibration this far is finally trimmed at

The author
Alan Ainslie studied electronic engineering at Sheffield Polytechnic and Brunel University, before forming an electronic design consultancy in the fields of audio and instrumentation. He has published over thirty articles and is engaged in writing two books on computer programming.
a mid frequency to be perfectly symmetrical (view single cycle of square wave on oscilloscope). Then the h.f. end is finally trimmed with R_{21}. Each other range now has its h.f. frequency and symmetry set by adjusting the relevant presets together. Finally R_{68} (low frequency symmetry) is checked. R_{72} is trimmed for best wave shape (+ and symmetry) on pin 2 of the 8038. Repeat 3,4 and 5 , paying particular attention to accuracy of low frequencies.
7. The antilog. amplifier can now be trimmed. Disconnect pin 16 from IC_{3} output. Connect pin 16 to +15 V . Adjust R_{36} for exactly 0 V out (use d.u.m.). Disconnect pin 16 from +15 V and connect to earth. Trim R_{30} for 10 V output on pin 10. Connect the antilog. amp. pin 16 back to IC_{3} output. With the unit set to MANUAL LOG, select 1.f. end of range and trim R_{34} for 10 mV output on pin 10 . Trim R_{46} for 0 V on wiper of $S_{1 b}$. Then select h.f. end of range and trim R_{42} for -5 V on $\mathrm{S}_{1 \mathrm{~b}}$ wiper.
8. Recheck 7. On MANUAL LOG check frequency of output at l.f. and trim R_{46} again so that LOG. and LIN. operation coincides. Similarly trim R_{42} so that h.f. end of range coincides.

Operation

Operation is quite self-explanatory. It is important to bear in mind, however, that high-Q circuits are not suitable for swift sweeps. It is always easy to switch to manual sweep to verify a display.

It should be quite obvious that only

the sine wave output is suitable for sweeping to display a frequency response. It is important if sweeping a highly-sensitive filter, for example, to remember that the t.h.d. is worse than 0.1% (60 dB down). This can lead to false rejection figures if a wide dynamic range, in the order of 60 dB , is used in the display. Normally, however, the output signal purity is more than adequate.

Display

The simplest display technique is to use the top of the envelope displayed on the

Fig. 8. Swept display of a t.h.d. meter, set to 1 kHz . In the final stages of calibration, an accurately-calibrated notch filter is useful for setting the scale factors.

Fig. 9. Tone control and filter responses of an audio amplifier.
oscilloscope as the frequency response plot. Photographic records can be particularly satisfactory if the exposure covers several sweeps, since the sweep and v.c.o. are not synchronous. However, there are several options open to improve the display which will be discussed below.
Precision full wave rectifier. This effectively doubles the number of points on the display, and improves resolution dramatically at the l.f. end of the display as seen in Fig. 7(a). However, the circuitry used has to accommodate the

Fig. 10. Impedance sweep of 8 in bass driver in free space. Resonance is at 50 Hz .

Fig. 11. Impedance sweep of small treble unit.

Fig. 7. Full-wave rectifier improves appearance and resolution at l.f. end of sweep, as at (a). Display at (b) shows trace obtained when bright-up is at peaks of response only, dots being extended to a continuous line by sample/hold arrangement of (c).
dynamic range of the output of the unit under test and have a flat frequency response over the bandwidth in question: simple op.-amp. full-wave rectifiers run into the usual slew rate problems at higher frequencies.
Bright up at signal peaks. By generating the bright up from the output of the device under test, so that for each peak the c.r.o. is under bright up for a small period of time, the display is comprised of a series of dots representing the response curve. As above, a full-wave rectifier doubles the resolution of the display. The result is as in Fig. 7(b).
Unfortunately, due to unpredictable phase shifts through the unit under test, which will probably vary with frequency, it is not possible to generate bright up from the sweeper, only the output of the unit under test as in Fig. 7(c). It is possible, using this technique, to display phase on the c.r.o. by using a constant-phase bright up.
Sample hold. By using a sample-hold to retain peak value, modifying this level with each subsequent cycle, the c.r.o. can be made to display a continuous envelope of response. This is possibly the most attractive display method but has the dynamic range and speed problems mentioned earlier.
Phase-locked loop. A phase-locked loop can be used to cause an oscillator to track the output of the unit under test and may be then used to bright up peaks. An 8038 is suitable for this task with a phase comparator, since the squarewave phase is suitable for generating the bright up without modification, or driving a sample/hold.

An interesting aspect of this technique is that it is possible to record the sweep on tape for example and play back after a delay to drive the scope display.
Log. amplitude display. Audio responses are usually displayed with a logarithmic vertical scale. This can be easily arranged with the Intersil 8048 log. amplifier package. a 10^{3} range is easily accommodated with no requirements for temperature compensation.

It is obvious from the above discussion that many possibilities exist for an additional unit to assist the display of the information. A possibility not mentioned above, but probably the most useful of all, would be a form of display storage for the slow sweeps. It is the author's intention to complete development of a complementary display and storage unit which will possibly be described at a later date.

Schmitt trigger equivalents

by Peter Williams, Ph.D., Paisley College of Technology

The operational amplifier is used in linear circuits because of the precision with which it allows functions to be provided. It has a limited speed of response when internally compensated to ensure stability under all negative feedback conditions up to and including 100% This constraint can be removed when using positive feedback to switch it through the linear region in the shortest possible time. Even simple amplifiers in their uncompensated state can have slow rates in excess of $10 \mathrm{~V} / \mu \mathrm{s}$. If series feedback is used, as is needed for maximum input resistance, then the input signal is taken to the inverting input i.e. the amplifier connections are the reverse of those for a series negative-feedback amplifier. With recent amplifiers having c.m.o.s. output stages the output can swing to within millivolts. Failing this the time switching levels become proportional to the output saturated levels $\left[R_{1} /\left(R_{1}+R_{2}\right)\right](\pm V)$. With the output at $+V_{0}$ the input has no effect if it is less than $\left[R_{1} /\left(R_{1}+R_{2}\right)\right] V_{0}$. When it reaches this critical level the amplifier is brought into its linear range where the loop gain exceeds +1 and the output swings negative (since the voltage at the inverting input becomes more positive than that at the non-inverting input). For large inputs the output is anti-phase to the input.

The alternate configuration, in form similar to the see-saw amplifier, has the non-inverting input fed from both source and output. Assume the output is positive; unless the source swings sufficiently negative the output remains in this saturated state. When the threshold is reached the non-inverting input becomes more negative than the inverting input, the output swings negative and regenerative switching ensues, forcing the output to its most negative value. The source has no further influence until it becomes sufficiently positive to overcome the negative contribution of the output. The threshold levels are obtained by applying superposition to determine when the non-inverting input is driven through zero. This gives threshold levels $\left(-R / R_{2}\right)\left(\pm V_{0}\right)$. Again for stability of switching levels the output swing must be well-defined: if this is not inherent in the amplifier output stage as is the c.m.o.s. types then breakdown diode or other clamping methods can be applied. In this circuit the current drawn from the source is significant and in particular experiences a sharp step as the output switches. This makes the inverting form more widely useful.

The same function can be performed by the Schmitt trigger and an appropriate combination of comparators and a set-reset flip-flop. Other advantages need to be established in return for the apparent increase in complexity; the word apparent is included because the number of elements in a complete i.c. using this method is surprisingly small. Each comparator contains far fewer components than an op. amp. as the output it has to provide is both smaller and better defined - just sufficient current to set or reset a simple flip-flop. The last-mentioned needs to be reasonably fast but has a defined input and is buffered by an output stage so that it has few components. Thus for comparable performance to the Schmitt trigger based on an op.amp., this form can be simpler. Compared with a single high-speed comparator used with positive feedback it is slower, but much more flexible in that the thresholds can be precisely set and controlled. When the input goes more positive than $\mathrm{V}_{\text {REF },}$ the output of the comparator 1 resets the Q output to logic O . It remains in this condition until the input swings more negative than $V_{\text {REF } 2}$ when the second comparator sets the Q output to logic 1.

The first commercial i.c. embodying these ideas has since become the industrial standard. Designed by Signetics for mass production it is arguably the first universal successor to the operational amplifier - a circuit of sufficient flexibility to permit a very wide range of functions. In addition to the comparators and flip-flop it contains an inverting output stage which is t.t.I. compatible and an additional open-collector output. The inversion leads to the use of the Q connection of the flip-flop to retain the same overall phasing. By connecting the comparator inputs to tappings on a chain of equal resistors the reference levels are set at $V_{s} / 3$ and $V_{s} / 3$ respectively. The top comparator input is brought out to a separate pin 5 for decoupling against transients on the supply for changing the threshold levels while retaining a $2: 1$ ratio, or for modulating the switching points. Another re-set terminal to the flip-flop 4 allows its timing cycle to be over-ridden, as for example when synchronizing to a higher-frequency source. The availability of these extra terminals has inspired a continuing stream of novel designs. It is a challenge to the ingenuity of designers, while because of its low cost it has to be considered for even the simplest of monostable and astable functions.

The similarity between the operational amplifier and comparator/flip-flop forms is sometimes obscured by the different voltage levels. The op-amp. normally functions from dual polarity supplies, while the 555 and similar circuits are designed for single-supply operation (for compatibility with logic circuits and battery powered systems where two batteries are inconvenient). The difference is illustrated by considering the hysteresis of each circuit. The graph of output against input is traced out as the input first increases through the upper. threshold and then back through the lower threshold. The output takes up only one of two values in each case. For the 555 the lower value is close to zero and the upper is around 1 V below the supply. The transitions occur as the input passes through the positive voltages $\mathrm{V}_{\mathrm{s}} / 3$ and $2 \mathrm{~V}_{\mathrm{s}} / 3$, independent of the precise output levels. If the op.amp. is adjusted for the same hysteresis the thresholds are spaced equally on either side of zero (assuming the output positive and negative saturation levels are equal).

Schmitt trigger equivalents

THEORY

Let the saturated output voltages be V_{A}, V_{B} where $V_{A}>V_{B}$ and where $V_{A} \rightarrow+V_{S}, V_{B} \rightarrow-V_{S}$ for standard op-amps. The two values of voltage at the non-inverting inputs are thus

$$
V_{1}=\frac{V_{A} R_{1}}{\left(R_{1}+R_{2}\right)} \text { and } V_{2}=\frac{V_{B} R_{1}}{R_{1}+R_{2}}
$$

These define the corresponding levels on the input wave at which the amplifier is driven into its linear region, raising the loop gain and initiating the switching action.
Typically

$$
\begin{aligned}
& V_{1} \approx \frac{R_{1}}{R_{1}+R_{2}} \cdot(+13) \\
& V_{2} \approx \frac{R_{1}}{R_{1}+R_{2}} \cdot(-13)
\end{aligned}
$$

for a typical op.amp. operating from $\pm 15 \mathrm{~V}$ supplies.
Certain comparators operating from a single-ended supply of say +10 V and have outputs capable of swinging between 0 and +10 V , i.e. the thresholds are

In all cases

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} \cdot 10 \\
& V_{2}=0
\end{aligned}
$$

$$
V_{1}-V_{2}=\frac{R_{1}}{R_{1}+R_{2}}\left(V_{A}-V_{B}\right)
$$

where $V_{1}-V_{2}=\Delta V_{\text {in }}$ referred to as the hysteresis is a defined fraction of the change in output.

$$
\text { i.e. } \Delta V_{\text {in }}=\frac{R_{1}}{R_{1}+R_{2}} \Delta V_{\text {out }}
$$

For the non-inverting Schmitt the thresholds again correspond to the points at which the amplifier is driven into its linear region i.e. when

$$
\begin{gathered}
\frac{V_{1}}{R_{1}}+\frac{V_{B}}{R_{2}}=0 \\
V_{1}=\frac{-R_{1}}{R_{2}} V_{B} \\
V_{2}=\frac{-R_{1}}{R_{2}} V_{A} \\
\Delta V_{\text {in }}=V_{1}-V_{2}=\frac{R_{1}}{R_{2}}\left(V_{A}-V_{B}\right)
\end{gathered}
$$

Note that the input thresholds are of opposite polarity to the output voltage.
The thresholds for the comparator/flip-flop combination are defined by a pair of independent threshold voltages

$$
\text { i.e. } \Delta V=V_{1}-V_{2}=V_{\text {Ref } 1}-V_{\text {Ref } 2}
$$

In certain cases it is convenient to apply the signal to one or both of the inputs via potentiometers so that $\mathrm{V}_{1}=\mathrm{k}_{1} \mathrm{~V}_{\text {ref } 1}, \mathrm{~V}_{2}=\mathrm{k}_{2} \mathrm{~V}_{\text {ref } 2}$ of the signal transmitted by the potentiometers. This allows independent control of the hysteresis for fixed values of $\mathrm{V}_{\text {Ref 1 }}, \mathrm{V}_{\text {Ref } 2}$.

- For this i.c. the reference levels are defined by a potential divider composed of three equal resistors, and the circuit normally operates from a single supply $+V_{s}$.

$$
\begin{aligned}
\therefore V_{\text {Ref } 1} & =\frac{2 V_{S}}{3} \\
V_{\text {Ref } 2} & =V_{S} / 3
\end{aligned}
$$

The hysteresis $\Delta V=V_{S} / 3$
Each of these terms is independent of any imperfections on the output stage that prevent the output swinging between 0 and $+\mathrm{V}_{\mathrm{S}}$.

EXAMPLES

1. A comparator has saturated output voltages V_{A} and V_{B} of +12 and -11 V . For $R_{2}=20 R_{1}$, in an inverting Schmitt determine the switching thresholds V_{1} and V_{2} and the hysteresis $V_{1}-V_{2}$.

$$
\begin{aligned}
V_{1} & =\frac{R_{1}}{R_{1}+R_{2}} \cdot 12 \\
& =\frac{1}{20+1} \cdot 12=\frac{12}{21}=0.57 \mathrm{~V} \\
V_{2} & =\frac{R_{1}}{R_{1}+R_{2}} \cdot(-11)=-0.52 \mathrm{~V} \\
V_{1}-V_{2} & =\frac{12-(-11)}{21}=\frac{23}{21}=1.09 \mathrm{~V}
\end{aligned}
$$

2. Find the corresponding figures for the non-inverting Schmitt:

$$
\begin{aligned}
V_{1} & =\frac{-R_{1}}{R_{2}} \cdot(-11) \\
& =\frac{11}{20}=0.55 \mathrm{~V} \\
V_{2} & =-\frac{R}{R} \cdot 12=-\frac{12}{20}=-0.6 \mathrm{~V} \\
V_{1}-V_{2} & =1.11 \mathrm{~V}
\end{aligned}
$$

3. With the component values of Ex. 1 determine the phase angles at which switching occurs for an input sinusoidal wave of 1 V r.m.s.

$$
V_{1}=V 2 \sin \theta
$$

\therefore switching takes place at V_{1}, V_{2} where
$V_{1}=0.57=\sqrt{ } 2 \cdot \sin \theta$
$\therefore \sin \theta_{1}=\frac{0.57}{\sqrt{ } 2} \quad$ similarly $\sin \theta_{2}=\frac{-0.52}{\sqrt{ } 2}$
$\therefore \theta_{1}=23.8^{\circ}$
$\theta_{2}=191.6^{\circ}$

4. A comparator/flip-flop combination has switching thresholds defined by a potential divider of three equal resistors placed across the supply lines of 0 and +10 V . The input waveform is sinusoidal and initiates the switching action at phase angles of 30° and 240°. Find the mean and peak-peak values of the waveform.

Let the input be $V_{m}+V$ sine
The switch thresholds are $\quad V_{1}=\frac{2}{3} V \quad$ and $V_{2}=\frac{1}{3} V$
because of the given resistor values.

$$
\begin{array}{r}
\therefore V_{a v}+V \sin \theta_{1}=\frac{2 V}{3} \\
V_{a v}+V \sin 30=\frac{20}{3} \\
V_{a v}+V \sin 240=\frac{10}{3}
\end{array}
$$

Similarly
Subtracting, V $(\sin 30-\sin 240)=10 / 3$

$$
\begin{aligned}
V & =\frac{10}{3\left(\frac{1}{2}+\frac{\sqrt{ } 3}{2}\right)} \\
& =3.85 \mathrm{~V}
\end{aligned}
$$

\therefore Peak-to-peak value of sine wave $=7.7 \mathrm{~V}$

$$
V_{\mathrm{av}}+7.7 \sin 30=20 / 3
$$

$$
V_{\mathrm{av}}=6.67-3.85=2.82 \mathrm{~V}
$$

1 Mean value of input $=2.82 \mathrm{~V}$

Century of amateur radio?

Few people think of 1979 as the centenary of amateur radio, yet a good case could be advanced in support of the view (put forward in the late John Clarricoats, G6CL "World at their fingertips") that "Britain's first radio amateur" was London-born, Americaneducated David E. Hughes, one-time professor of music but also a noted inventor of microphones and mechanical telegraphy systems. In 1879 Huges could have been found walking up and down Great Portland Street, London listening on a telephone earpiece and a detector consisting of a steel needle in loose contact with a piece of coke to clockwork-interrupted signals from a transmitter some 500 yards away. His experiments were virtually a discovery of Hertzian waves before Hertz, of the coherer before Branley and of wireless telegraphy before Marconi, as the Globe newspaper was later to record.
Hughes was convinced that his signalling was due to "aerial electric waves" but he was profoundly discouraged by an inability to convince wellknown scientists, claiming in February 1890 that his experiments were "poohpoohed" in an "unpleasant discussion" which ended with the scientists departing "very coldly." Even earlier than Hughes had been the efforts of an American dentist Dr Mahlon Loomis who in 1865 claimed to have spanned a distance of 18 miles using a kite "aerial" (it was Loomis who first named the aerial). It was left to Marconi to turn the whole host of early work by Hertz, Lodge and many others, into a practical communications system during the decade 1894 to 1904. But David Hughes came very close to this in his "pedestrian mobile" operation in 1879-80.

Polar-loop ssb transmitters

At a 21 st anniversary symposium organized by South Midlands Communications Ltd, V. Petrovic of the University of Bath suggested that radio amateurs could benefit from the recent development of the v.m.o.s. power f.e.t. form of polar-loop s.s.b. transmitters (Electronics Letters, May 10, 1979). This interesting approach appears to overcome many of the problems of designing and building linear amplifiers of high performance as well as making possible the use of more efficient Class C and Class D amplifiers for all stages of power amplification.
The polar-loop technique is based on a form of s.s.b. transmission by envelope elimination and restoration orginally proposed by Leonard Kahn in 1951 (Proc IRE, July 1952). However the team at Bath University has combined the Kahn approach of splitting the s.s.b. signal at low level into its phase-modulated

component and then restoring the amplitude envelope only in the final power amplifier stage with newly developed modulation techniques and the use of feedback to improve linearity. This has resulted in h.f. and v.h.f. $(99.5 \mathrm{MHz})$ s.s.b. transmitters with outputs of 20 W and 13 W respectively; with third-order intermodulation products typically over 50 dB down on p.e.p. and power efficiency in excess of 55 per cent.
It is claimed that the r.f. circuits, using a combination of v.m.o.s. and bipolar devices are exceptionally simple, and can include Class C frequency multipliers. It is also suggested that the feedback arrangement makes the equipment unusually insensitive to power-supply variations, tuning, change of components and does not require criticial setting up; all these are characteristics of particular interest to an amateur building his own equipment. While the system is the subject of a patent application, V. Petrovic made it clear that there is no objection to the use of these techniques in home-built equipment.

The use of v.m.o.s. r.f. devices is becoming much more attractive to amateurs with the appearance of relatively low-cost devices such as the Siliconix VN88AF and VN67AJ. Work at Bath has shown that while v.m.o.s. successfully overcomes many of the destructive problems associated with bipolar transistor power amplifiers, care is still needed to avoid, for example, destruction of devices by the use of too high bias resistors. The v.m.o.s. amplifiers however are extremely easy to bias and can also be neutralised using traditional valve neutralising circuits in either single-ended or pushpull form.

Spanning the bands

A.R.R.L., commenting recently on the continuing problem of the Russian 'Woodpecker' over-the-horizon radar interference to communications, stated: "despite numerous complaints to the FCC by the users of several radio services in the United States, and despite
the fact that the US State Department has been involved in this matter for nearly three years, the interference persists." The League suggests that American amateurs suffering from the interference should write to the Monitoring Branch of FCC at Washington DC.

During March a number of Australian amateurs worked N6CT and W6XJ in California on 52 MHz , the first Australian-USA 50 MHz contacts to be recorded in Solar Cycle 21. During) January $7-11$ many 144 MHz and some 432 MHz contacts were made across the Tasman sea between Australia and New Zealand. Late in June it appeared that the second of thefour predicted peaks of Cycle 21 had been passed with the last two peaks expected in late-Autumn and early 1980 .
The IARU Region 1 v.h.f. "records" suggest that it is becoming increasingly difficult to set up new "tropo" propagation records from the UK. Favoured stations would appear to be those along the Mediterranean where for example the 1977144 MHz contact between Israel and Malta spanned 1964 km - and could conceivably be extended to the Tunisian coast or even Spain, comparable to the sea-path ducts that have occasionally occurred between Hawaii and California.

In brief

Listeners registered as members of the BBC World Radio Club have passed the 38,000 mark The next Radio Amateurs' Examination will be held on Monday, December 3, 1979 FCC has confirmed its decision not to issue special-event amateur station licences.

Bill Leonard, W2SKE, has been named president of CBS-TV news . Amateurs in Spain, Balearic Islands, Canary Islands and Spanish Morocco have been granted permission to operate in the frequency band $1820-$ 1835 kHz while the USSR is opening the band $1850-1950 \mathrm{kHz}$ to amateurs The Italian amateur, Fausto Minardi, I4EAT, has contacted 50 countries on 144 MHz using tropo, moonbounce, meteor scatter, Sporadic-E and auroral modes . . Angus McKenzie, the well-known blind amateur (G3OSS) and audio consultant, received an M.B.E. in the Queen's Birthday Honours List for his services to audio research, the blind and disabled.

A Morse recording "ad astra per aspera" made by W. R. Schoppe, WB2FWS, was included on space probes Voyager 1 and $2 \ldots$. There seems little likelihood of any further operation through the two Russian amateur satellites RS1 and RS2 following telemetry indications of battery troubles Mobile rallies include: August 26 Torbay Mobile Rally at Paignton; September 9 Telford Mobile Rally; September 16 Peterborough; September 30 Harlow.

PAT HAWKER, G3VA

Sidebands as phasors

Depicting the mechanism of modulation: 1 - a.m., d.s.b. and s.s.b.

by J. M. Osborne, M.A., F. Inst.P., South London Science Centre

The phasor is a useful visual aid to understanding sidebands that bridges the gap between simple amplitude/frequency graphs, as seen on a spectrum analyser, and the rigorous mathematical expressions from which they come. This first article, dealing with amplitude modulation, outlines the principles of phasor representations of carriers and sidebands, then illustrates points such as why carrier re-insertion in s.s.b. is not critical while in d.s.b. it is near impossible. A second article will deal with phasor representation of sidebands in frequency modulation.

FOR MOST electronic engineers who have to deal with modulation, the structure of sidebands in a.m., s.s.b. and d.s.b. is well recognized. The direct mathematical approach is well within the (university or poly) student's grasp. The requisite manipulation of trig. functions is relatively elementary. The same cannot be said of frequency modulation. The consequences of rather involved mathematics (see later for Bessel functions) show that we have sidebands stretching to infinity. Text books tell us that in practice we need not have infinite bandwidth since the more remote sidebands are likely to be negligibly small.
If we frequency modulate a carrier by 50 kHz above and below the unmodulated carrier frequency, intuitively we might suppose that 100 kHz bandwidth would be required. The mathematicians tell us that this naive thinking could be quite erroneous; it happens to be the right approximation for large modulation indices but not true for narrow band f.m. They are right, since their approach is rigorous. Can we lesser mortals understand why? Let us start with a.m. Fig. 1 shows a typical a.m. signal of 1 MHz carrier 100% amplitude modulated with a 1 kHz audio note.

Such an illustration as Fig. 1(b) is used to give an elementary explanation of diode demodulation. This is valuable in, say, the "Beginners book of radio" or "How does a crystal set work?" Fig. 1(a) is more difficult for the beginner but is really the next step in sideband conception. It presents the mathematician's work in a form suitable for considering bandwidth and selectivity in practice. It is easy to visualize the extended form of

Fig. 1 when speech or music modulation is imposed on the carrier. I assume that the reader is familiar with the complex waveform seen on a c.r.o. when the y input is fed with an audio signal from a microphone or gramophone pickup; and that this complexity determines the required (audio) frequency response of associated amplifiers, loudspeakers etc. This is shown figuratively in Fig. 2(a) and (b). Here sidebands will be popping up and down like yo-yos. This may be used to discuss the hi-fi limitations of medium wave broadcasts.
What these figures fail to do, and what the mathematicians frequently fail to point out in their results, is the significance of phase. A plausible, though inadequate explanation is that each side band (in Fig. 1) heterodynes (beats with) the carrier to produce the difference frequency (1 kHz); the two contributions add to give the required audio output. In particular the real problems of homodyne and synchrodyne reception are missing; the superficial explanations of such techniques along these lines are of little value.

It is at this stage that the phasor comes into its own. The phasor bridges the gap between the simple representation of Fig. 1 (a) and the pure rigorous maths from which it comes (see Appendix). It gives the electronic engineer a

visual picture which rationalizes the significance of phase in the more sophisticated techniques of demodulation; e.g. why carrier reinsertion in s.s.b. reception is not critical while in d.s.b. it is near impossible. It also explains why a.m. works without such considerations, since everything starts right (in terms of phase) from the transmitter. When we amplitude modulate the carrier nothing is changed (no synthesized carrier is generated and inserted at the reception end) throughout the communication link. We gloss over selective fading in short-wave reception and its consequent distortion. Not only do 'phasors' rationalize the foregoing but, and this is perhaps the main point of this article, 'phasors' explain in Part 2 'f.m. sidebands'.

The explanation is best started by considering a.m. (see Fig. 3). This also has the spin-off in clarifying the relevance of phase in the examples mentioned above. "The 1 MHz sinusoidal (sine wave) carrier has its amplitude varied sinusoidally at the very much lower modulating frequency of 1 kHz ." Here is the catch for the unwary. The fallacy is in suggesting that the amplitude of a sine wave is changed. This is a nonsense statement. Look at Fig. 4(a) and (b), two sine waves of different amplitude (same

(a)

(b)

Fig. 1. (a) One way of representing the sidebands of an a.m. signal consisting of a 1 MHz carrier modulated 100% by a 1 kHz tone (b).

(b)

Fig. 2. (a) Typical pattern of sidebands when a carrier is amplitude modulated by an audio signal from a microphone or pickup (b).

Fig. 3. Transmitter and receiver using amplitude modulation.
frequency). Now consider changing from one to the other as in Fig. 4(c), or for that matter in Fig. 1(b). (c) is neither (a) nor (b). At some stage, the shape or slope of (a) must change to get it to (b). While this change is taking place we have no simple sine wave, neither (a) nor (b). (c) is not part of an amplitude modulated "sine" wave.

When is a sine wave not a sine wave? Answer in this case - while it is changing amplitude.

physical displacement, as in simple harmonic motion, or the instantaeous value of an alternating voltage or current. This is determined by the scale and label of the y axis. t along the x axis is usually chosen to show a few cycles.
The phasor representation of this is shown in Fig. 6(a). This shows a length a representing the generating radius which is supposed to be rotating anticlockwise at the frequency f_{0}. The attractive feature of this notation is that it shows phase. For example, if two sine waves, equal in amplitude and frequency, of different phases are combined, the resultant can be found by adding vectorially the phasors. This is shown in the examples of Fig. 6(b), (c) and (d); in (b) the signals cancel (180° phase difference) whereas in (d) the amplitude of the resultant is the sum of the two components (in phase), and (c) is an intermediate state of phase difference.
If the two above phasors have differing frequencies f_{1} and f_{2}, instead of f_{0}, their instantaneous resultant (that is amplitude) will change with their relative phase. Suppose we consider the two sine waves such that f_{1} is greater than the reference f_{0}, f_{2} less by the same amount. This shown in Fig. 7 in a series of diagrams showing the time for f_{1} to gain one cycle and f_{2} to lose one cycle on the reference. Note the suggested modification to the phasor notation to show which way f_{1} and f_{2} phasors rotate with regard to the reference phasor, frequency f_{0}. Row 1 shows the two components while row 2 shows successively the instantaneous resultant. Note another suggested notation (double bar) to identify the resultant.
If we now add these to the component of frequency f_{0} and amplitude equal to

Fig. 7. Effect of vectorially adding two phasors representing equal amplitudes but different frequencies. Row 1 shows the two phasors separately at successive instants of time (moving right on the page) while row 2 shows the resultants at those instants. (Small bars on moving ends of phasors in row 1 are modified from Fig. 6 to show directions of rotation. The double bars in row 2 identify the phasors as resultants:)

Fig. 8. The phasors in Fig. 7, representing upper and lower sidebands, are added to a phasor representing a carrier of constant amplitude and phase. Row 1 shows the separate phasors and row 2 the resultants. This demonstrates the carrier being amplitude modulated as a result of adding the sidebands to it.
the sum of the amplitudes of f_{1} and f_{2}, we obtain the resultant shown in Fig. 8 . Note that the instantaneous resultant remains precisely in phase with the reference. What this shows is that if two sine waves f_{1} and f_{2} are added to the reference sine wave the resultant is of frequency f_{0} and amplitude varying at a frequency $f_{1}-f_{0}$ (which is the same as $f_{0}-f_{2}$). Phasors show that an amplitude modulation of a carrier f_{0} results from adding to it an upper sideband f_{1} and lower sideband f_{2}, all three being pure sine waves.
(a) and (b) in terms of sine waves. Also it is not difficult now to visualize that imposing amplitude modulation on a carrier as in Fig. 3 distorts the 'pure' sine wave of the (c.w.) carrier to produce, in addition, the two sidebands.
The example chosen has been de-
liberately simplified to modulation by a single (audio) frequency. It is not difficult to visualize, say, speech or music modulation producing a complex of sidebands as in Fig. 2. What should now be clear is that, however complex the signal, it consists only of sine waves; the carrier f_{0} remains unchanged; the sidebands occur only in pairs, equally above and below the carrier frequency and that the final resultant remains exactly in phase with f_{0} varying only in amplitude. ${ }^{1}$
The example of Fig. 8 (and Fig. 1) shows 100% modulation, the amplitude of the sidebands being half each the amplitude of the carrier. It is important not to over-modulate, which can easily happen if the transmitter of Fig. 3 is improperly adjusted. Not only does it become impossible to recover the modulation in the receiver, but the sudden discontinuities when the resultant falls to zero produce very high frequency sidebands (splatter), resulting in spurious signals, i.e. interference, over a very great bandwidth. In fact to accommodate speech and music modulation, the average amplitude of the sidebands must be kept very small to avoid over-modulation on peaks.
In terms of power and efficiency
amplitude modulation is very poor. Bear in mind that doubling the amplitude quadruples the power (doubling the voltage in a circuit doubles the current and hence quadruples the power). For 100% modulation, each sideband is a quarter of the power of the carrier so that two-thirds of the total power goes in the 'reference frequency' carrier and only one third in the information bearing sidebands. This is the best case of 100% modulation; the general case of a typical broadcast station would probably show that over an extended period the average efficiency, that is the energy of the information bearing sidebands to total energy radiated, is only a few percent.
The radiation of vast amounts of carrier power, often 10 to 100 kW in the case of broadcasting stations, has led to suppressed carrier systems for other.

Fig. 9. Phasor illustration of the effect of using a reinserted carrier in a receiver 90° out of phase with the suppressed carrier in Fig. 8. Row 1 shows this reinserted carrier phasor together with the sidebands, while row 2 shows the process of their vectorial addition (a) and the resultants (b) indicating changes in phase but little change in amplitude.

Fig. 10. Phasor illustration of s.s.b. communication. At (a) is the s.s.b. equivalent of the Fig. 1 (a) spectrum; (b) radiated (lower) sideband; (c) carrier re-inserted at the receiver; (d) resultants from (c); and (e) resultants plotted as amplitude values to show waveform of amplitude modulated signal.
communication, only the sidebands being radiated. Double sideband suppressed carrier (d.s.b.) is shown in Fig. 7. This is easily generated by a balanced modulator in which the carrier frequency is balanced out and only the sidebands produced. To receive the signal is, in theory, simplicity itself! One needs only a local oscillator of frequency f_{0} and amplitude two (or more) times the peak sideband amplitude. This is added in the receiver (maybe a few milliwatts are involved) to the received sidebands and we proceed as in Fig. 8. The transmitted power is only sideband information so the transmission efficiency (effective radiated power) is theoretically 100% and only at the cost of a few milliwatts in the additional local oscillator in the receiver.
Such a system would obviously have come into general use years ago but there is a snag. The snag is in achieving the required performance specification for the local oscillator. The phasor
ápproach makes the problem clear. Consider a local oscillator of the right frequency f_{0} added to the sidebands of Fig. 7 but 90° out of phase with that shown in Fig. 8. If we redraw this new situation in Fig. 9 we see that the amplitude of the resultant hardly varies at all (and incidentally the phase no longer remains the same as the reinserted carrier). This shows the tight specification of the local oscillator; not only does f_{0} have to be the same frequency as the original suppressed carrier but if it differs by only 90° in phase the amplitude modulation virtually disappears. No practical free running oscillator could meet this specification. If the frequency of the local oscillator differed by only 1 Hz from f_{0} the received signal would disappear twice a second, as it passed the 90° and 270° phase difference point with reference to the original f_{0}, making meaningful reception impossible.

In a dispersive medium, different frequencies travel at different velocities. Only small effects are needed to alter the phase of received sidebands relative to each other and the carrier with consequent distortion. Likewise phasor additions of multipath propagations can give garbled results. A.m. propagation via ionspheric reflection (s.w. broadcasts) is liable to fall far below "entertainment" standards while
amateurs working long range v.h.f. by reflection of signals from the Northern Lights (aurorae), during periods of suitable sun spot activity, cannot use a.m. and use c.w. (morse code) for such communication. Variations in propagation conditions and the stability of the original transmitter f_{0} would not allow the requisite stability of the whole system even if such a precise local oscillator was feasible.
The phenomenon can be demonstrated by listening to an a.m. broadcast station on a communications receiver with a b.f.o. The carrier is reinforced by zero beating the b.f.o. with the carrier. Intelligible speech might be obtained for even a few seconds before it begins to get 'rough' and finally unintelligible. Should results be better than predicted some form of pulling (i.e. tendency to lock) of the b.f.o. to the carrier frequency is almost certainly taking place. This would result in homodyne/ synchrodyne reception ${ }^{2}$ (by accident rather than design). The mode of operation of receivers intentionally using these techniques is easier to follow if the 'phasor fundamentals' are first digested.

One such system of a.m. demodulation available as an i.c. package is the phase locked loop (p.1.1.). The local voltage controlled oscillator (v.c.o.) locks onto the carrier frequency f_{0}. The signal with its sidebands and local oscillator are mixed in a product detector to give the audio output. It so happens that the locked v.c.o. runs 90° out of phase, i.e. in quadrature, with the carrier. An external 90° shift has to be incorporated in the system to achieve the Fig. 8 rather than the Fig. 9 situation.

We can now, using the phasor reasoning, continue the argument to show the viability of s.s.b. as an efficient means of communication. Fig. 10(a) shows the s.s.b. as an equivalent of the Fig. 1(a) spectrum, taking the lower sideband. (Exactly the same argument would apply had we taken the upper sideband.) Fig. 10(b) shows the radiated sideband while Fig. 10(c) shows also the carrier $f_{0}(1 \mathrm{MHz})$ as reinserted at the receiver. The resultant is again the amplitude modulated signal as shown in Fig. 10(d). Only half a cycle is shown, as by now the reader will be familiar with the process. The resultant shows a small (spurious) phase modulation (hence phase distortion at modulating frequency). This can be reduced to negligible proportions by increasing the amplitude of the reinserted carrier. In practice the local oscillator in the receiver is so much more powerful than the signal that the problem solves itself.
As only one sideband is involved we can now see that the very stringent requirements for reinserting the d.s.b. carrier no longer apply. If the inserted carrier is, say, $\pm 10 \mathrm{~Hz}$ off the original f_{0}, the consequence is that the 1 kHz audio tone is in error by the same amount. If the original modulation had been
continued on page 60

Auditory cues in stereophony

Importance of transients in nature and in stereophony

by Philip Vanderlyn, Central Research Laboratories, EMI Limited

Now that the spate of new multi-channel stereophonic reproducing systems has decreased to a trickle, it seems timely to look again at the physical and psychological bases that govern directional hearing to discover why nothing has so far emerged to displace the familiar two-channel arrangement hitherto widely accepted.

This article emphasises the time difference cue to direction and the role of transients as "time tags" both in natural listening and in stereophony. Some experimental evidence is put forward in support of the conclusions which largely explains the failure of quadraphonic and other systems to make good their claims to "all-round" localization and total realism.

OVER THE LAST TEN years or so multichannel stereophonic systems have proliferated. The proponents of most of these systems have so far largely failed to spell out the objectives that they are pursuing, still less the means by which they hope to succeed. Not all of the systems aim at increased naturalness of reproduction: the so-called "surround" category in particular were only designed to produce a (hopefully) pleasing effect. Mostly, however, the implication is that they are trying to recreate the natural listening situation to a greater extent than is possible with the now conventional two-channel arrangement. Efforts have met with varying degrees of success but none can claim to have said the last word on this complicated subject.
One cause of failure is surely the lack of awareness of the auditory cues that have to be provided if nature is to be effectively imitated. This article summarizes the generally accepted facts concerning directional hearing of which architects of stereophonic systems must take note if they hope to achieve realism.

The Pioneers

Tribute is due to the illustrious workers who have contributed so painstakingly and rigorously over a vêry long period to piece together the now considerable body of knowledge that exists concerning the ear and hearing. From the
pinna which receives the pressure variations that constitute an acoustic stimulus, through the transducing members comprising the eardrum, stapes, cochlea, basilar membrane and hair cells, the action potentials they generate, their coding and mode of transmission along the fibres of the eighth nerve and its pathways and interconnections between the higher centres of the brain where the semantic and other significant information is extracted and utilized, would be long enough in itself to fill an article. A short list might include Helmholtz, Rayleigh, Stewart, Banister, Firestone, Stevens, Newman, von Békésy, Fletcher, Snow, Wallach, Rosenzweig, de Boer, van Urk, Galambos, Davis, Jeffress, Wiener, Hirsch, Cherry, van Bergeijk and Deatherage, omitting many more, particularly of the most recent workers. Anyone who cares to follow the unfolding story through the medium of their published papers will find it a fascinating, if as yet incomplete one.
Before examining hearing in detail it is interesting to compare the sense of hearing with that of sight. Hearing, like sight, must have evolved primarily as a survival mechanism; the reaction to a sudden stimulus automatically posing the questions: "What is it?" and "Where is it?" In daytime the eye has a great advantage in that the geometrical laws of optics do a great deal of the work of locating and recognizing remote objects, a process employing large numbers of parallel channels which respond relatively slowly (fortunately for the cinema and $t v)$. In the dark the ears become the first line of defence and by contrast provide only two channels, albeit capable of much more rapid response, and more processing is needed to extract meaningful information. From a complex sound stimulus the ears and brain together have to recognize which components cohere into groups identifying specific sources (the "gestalten" of Cherry ${ }^{1}$), their pitch and timbre, in which directions these lie, a rough idea of their distance and perhaps, from their reflections, something of the unseen environment. The process is essentially time-oriented, the response of the auditory complex being much more rapid than that of the visual. less than 100 discrete samples per second give an
impression of visual continuity; to do the same aurally requires upwards of 20,000 . At its most acute it can detect time differences of a few tens of microseconds.

Physical basis of localization

The simplest example of natural listening must be that of an observer exposed to sound from a single source a few metres distant, so that conditions in his vicinity approximate to plane wave propagation. If the direction of the source relative to the listener is arbitrary, i.e. it lies neither in the horizontal plane passing through his head nor in the median plane dividing his sphere of observation into left and right halves, the sounds reaching his eardrums will differ in time of arrival and will be modified spectrally by the effect of his own head as an obstacle in the sound field and by their passage through the convolutions of his pinnae. The spectral modifications depend on both frequency and direction of arrival and become increasingly large and complicated at high frequencies. The time difference, however, is invariant with frequency and depends only on the difference in length of the paths' from. the source to the two ears. This lack of dependence on frequency gives the interaural time difference an overriding s importance in sound localization.
If the sound source emits a pure: constant-amplitude sine wave the time difference manifests itself at low? frequencies as a phase difference proportional to frequency. As frequency. increases the phase difference becomes is equal to π radians at about 700 Hz for ${ }^{\text {? }}$ maximally left or right sources, when the path difference becomes half a z wavelength. Above this, the phase shift. s$)$ in excess of π radians would lead to an ambiguous judgment were it not for the fact that at this frequency the head 0 begins to be an obstacle in the sound field and introduces an amplitude difference that allows the ambiguity to be resolved ${ }^{2}$ up to something like 1.2 kHz . Above this point the only meaningful cue resides in this amplitude difference, $\%$ which is by no means so precise an indicator of direction as the time difference, being subject to perturbations o ? due to local obstacles or wax in the ears
or, in closed spaces, reflections from the boundaries. It is considered to be of secondary importance: the ear relies on it when it has to.

When the sound is complex as, for example, in the case of human speech it will contain many transients, i.e. identifiable singularities in the waveform: these restore the possibility of using at high frequencies the time difference cue that already provides a firm indication at low frequencies. Not only that, but the increased resolution possible at high frequencies permits increased accuracy of localization. Evidence from everyday life supports this argument: try, for example, to detect the position of a blackbird uttering its alarm call, consisting of long pulses of tone at about 3 kHz with long onset and decay times. The studied avoidance of sudden transients at the start and finish added to the choice of a frequency resulting in an ambiguous phase difference for large predators, leaves only the rather inaccurate amplitude cue which is subject to the confusing effects of obstacles and reflections. By contrast, its territorial and other song is rich in transients and presents little difficulty in locating the source.
It is difficult to overestimate the importance of transients in sound localization: a reliable mechanism clearly exists at low frequencies, but without transients it cannot be employed in that part of the frequency spectrum where the ear is at its most sensitive - from 1 to 6 kHz . With their aid the interaural time difference, the most important single parameter in sound localization, can be evaluated over the entire audible frequency range.
The interaural time difference alone, however, will not determine direction: what it does is to define a surface on which the source must lie. This surface is, strictly, a hyperboloid of revolution about the axis through the listeners two ears, but negligible error results in practice from considering it as the asymptotic cone, and it is the apical angle of this cone that the time difference defines.
At this stage what have so far been considered as secondary cues come into play. The amplitude difference reinforces the left/right impression given by the time difference, whilst at frequencies for which its dimensions constitute a half wavelength or more the characteristic shape of the pinna, with its narrow and highly individual polar characteristic introduces spectral changes that every proud owner of a pair of ears will have learnt subconsciously to interpret as an indication of direction of arrival. In this connection a recent paper by Butler and Belenduik ${ }^{3}$ throws some light on the use of spectral variation for estimating elevation in the median plane. A characteristic irregularity in the frequency response around 6 kHz is identified that varies systematically as the source elevation changes.

These cues to localization are available to the observer without any conscious action on his part. If, additionally, he is free to move his head he can learn more about the position of the source. By observing the change in its apparent position as he turns his head from left to right he can immediately tell whether it is in front of or behind him. He can also use the first derivative the rate of change of interaural time difference as his head turns - to estimate its elevation (Wallach ${ }^{4}$, de Boer and van Urk ${ }^{5}$).
By these means the listener has localized the source to a unique direction in space. It only remains to estimate its distance.
This parameter is the one that he has the least satisfactory means of determining. Loudness is a possible cue, but postulates prior knowledge of the strength of the source: in the case of something familiar like a human voice a rough guess at distance can result. It has been suggested that the particle velocity/pressure ratio that increases during the approach to a small source could be instrumental - the difficulty here is that the ear has no obvious means of perceiving velocity. It is true that it could be done by the two ears acting in concert sensing it as pressure gradient, but the means by which the gradient could be derived from the pressures at the ears has not been disclosed. Moreover the method would be insensitive, the rise in particle velocity amounting to only 3 dB for an approach to within one radian of the source frequency. At 50 Hz a radian corresponds to about 1 metre, and at higher frequencies it is proportionately less. At one wavelength distant the rise is only 0.1 dB and quite undetectable.

In a closed space such as a room, the ratio of direct to reverberant sound is a quantity that gives some idea of distance but it begs the question as to how the direct and reverberant components are differentiated. In view of the confusion caused by reflections the initial judgment of direction must rely almost entirely on transients of medium and high frequency since these are the only cues available in advance of the reflections. Perhaps the relative magnitude of transients to the total sound gives some idea of distance. Certainly these considerations give added emphasis to the importance of transients in localizing sound sources.

Having pinpointed the position of the source using the means outlined, the natural reaction - no doubt a relic of the primitive survival situation - is for the listener to turn and face it. This immediately brings it into the region of greatest perceptual acuity; all the asymmetries disappear and the accuracy of location is determined by the limiting angular discrimination in azimuth. Numerous investigators had experimented on this topic: typical results are those of Moir and Leslie ${ }^{6}$, who found that less than 2° was detect-
able. This corresponds to an interaural time difference of a mere $22 \mu \mathrm{~s}$ or so.

Psychophysiology of hearing

Nature of the Transducer

The foregoing describes the physical situation of a listener exposed to a sound source. If he is to be provided by artifical means with stimuli that affect him in the same way, it is necessary to discover something of the psychoacoustic processing that constitutes his response, so that a realistic impression may be created. We have to know what cues can be and must be provided.

It is not appropriate here to enter on a detailed discussion of the car complex: there is a very extensive literature on the subject should any reader wish to search more deeply than the present article allows. A good starting point is Fletcher ${ }^{7}$.

In summary: the visible portion of the auditory mechanism, the pinna, plays a not very significant role in hearing. It probably performs an energy collecting function and from its convoluted shape introduces characteristic colorations that its owner has learned to interpret as front/back and/or up/down information. Its small size restricts these functions to high frequencies, say 4 kHz and above.
Within the ear the sound impinges on a membrane - the eardrum - whose motion is transmitted by way of a linkage of small bones to a further membrane - the oval window - that in turn transmits the sound energy to a liquid-filled tapered canal known as the cochlea from its coiled configuration, similar to a snail shell. The small bones that form the linkage are so proportioned that they provide an impedance match between the eardrum and the cochlea.
Running centrally down the cochlea and dividing it into two parts lies the basilar membrane, narrow regions of which resonate in response to the different frequency components of the energy reaching the oval window, in a crude Fourier analysis. High frequency components cause resonance near the oval window at the basal end of the basilar membrane whilst progressively lower frequencies shift the activity down toward the apical end. There is thus a ready-made "place" mechanism of frequency discrimination, though the mechanical constants of the system are not in accord with the known discriminatory capability of a listener. If place alone were involved a " Q " of several hundred would be necessary instead of the value that actually obtains - about three. This low value is necessary to ensure a rapid response. One must therefore assume that critical frequency resolution results from neural processing higher in the chain.
Along the length of the basilar mem-
brane and cooperating with it to produce the initial response to a sound stimulus is the organ of Corti, comprising the hair cells that are thought to play an important part in originating this response.

Neural response

The processing that takes place in the brain is electrochemical in nature and is thus not suitable to operate on an electrical signal corresponding to the sound pressure waveform. That being so, there is no reason why an electrical analogue of the waveform should appear during stimulation. Such an analogue, however, can be detected by electrodes suitably placed on the head and neck. This response is called the "cuchlear microphonic", but it is not believed to play any part in subsequent processing. Possibly it is instrumental in initiating those neural signals that the brain does process, and which carry in coded form all the information subsequently extracted and recognized.

The eighth nerve, concerned with the sense of hearing, comprises at the peripheral (cochlear) level, a bundle of between 20,000 and 30,000 fibres, evenly distributed along the length of the basilar membrane, where they originate in the region of the hair cells. When the excitation of the basilar membrane adjacent to a nerve fibre ending reaches a certain threshold an "action potential" is generated, supposedly through the intermediary of the hair cells. This action potential, which propagates electrochemically along the fibre, bears little relationship to the stimulus waveform, consisting of a short pulse of the order of lms long, of standardized amplitude, repeated at intervals if the stimulus is maintained, at a rate depending on the stimulus intensity, but not exceeding 300 to 400 pulses per second in any single fibre. As the stimulus intensity is raised beyond the threshold, the fibre responds to an increasingly wide range of frequency, so that further processing must take place if the known fine limits of pitch perception are to be achieved. The behaviour of neural fibres was studied, notably by Galambos and Davis ${ }^{8}$, who worked with cats: their results are therefore conditioned by the differences between cat and human physiology. The neural mechamsms, however, operate on the same principles.
The question inevitably poses itself how can the brain, however cunningly organized, extract the detailed information that it does from signals that apparently bear so little relation to the incoming stimulus? We are here concerned mainly with the localization problem, so that it is proposed to discuss only those cues relevant to that purpose. For more general reading, an excellent review was written by Whitfield ${ }^{9}$ in 1957, most of which appears still valid today.

To return to the action potential; let
us examine some of its known characteristics in the light of the localization problem. It seems that although the rate of firing depends on stimulus intensity, successive firings of the same fibre are always separated by an integral multiple of the stimulus period. This strongly suggests synchronism, and in fact the firings relate to the zerocrossing times of the stimulus (in one direction only). As is usual in nature, things are not perfectly tidy, and there is a delay, known as "latency" between the onset of a stimulus and the generation of a spike action potential. The latency is least for strong stimuli and for high rates of zero-crossing, which suggests that a threshold has to be overcome - however the disturbance to synchronism is not great.

Additionally, it has been remarked already that transmission of the action potential impulses along the nerve fibres is not purely electrical, consequently we are not considering velocities of the same order as that of light. The process is more complex, involving ion exchange between the inside and outside of the fibre, and the speed is dependent on a number of factors, including the fibre diameter and the intensity of the original stimulus. It ranges from several hundred down to one or two metres per second in the fine fibres of the auditory cortex. This slow propagation is significant since it makes available the time delay parameter as one of the processing tools with which the brain can operate on the neural signals from the two ears. Significantly, innervation from both ears takes place quite early in the neural pathways, at the superior olivary complex. It is difficult to imagine any other purpose of such an arrangement than a close comparison of the two sets of neural signals.
Regrettably, at this point the trail peters out for the moment, and the processing that eventually results in localization itself is still a matter of conjecture. Models have been proposed by several workers, notably Jeffress ${ }^{10}$ and van Bergeijk ${ }^{11}$ and although these are interesting as far as they go, they are incomplete. They do, however, rely on the interaural time difference cue which is coded into the total neural response by the near synchronism of the spikes of action potential, with the vibrations of the sound stimulus as they appear at the basilar membrane. It seems that for all intensity levels well above threshold there will be at least one action potential pulse generated for every individual cycle of the incoming waveform by virtue of the large number of fibres involved. This holds good up to the limiting frequency at which one period of the stimulus is comparable with the duration of the spike: say 1 kHz or so.

Nature has taken too much care over the preservation of the interaural time difference in the transcoding of the linear input signal into the non-linear neural response for this to be the result of a happy accident. It must surely
indicate the importance of such a cue in the task of localization.

The stereophonic image

In the present context stereophony excludes systems that merely set out to make a pleasing effect, such as the quadraphonic class - some spatial correspondence between the sound sources in the recording studio and the images created in the reproducing room is implied. We have to consider how, and to what extent, the natural cues in directional listening can be provided artificially by stereophonic reproducing systems.

"Discrete" stereophony

As is well known, a minimum of two channels is needed to form any sort of sound image. The simplest arrangement envisages a pair of earphones driven through identical transmission channels from a pair of microphones mounted to simulate the ears on a dummy head. In this case the listener can be presented directly with the interaural time difference cues appropriate to the positions of the various sound sources around the dummy head. The arrangement does provide a good spatial impression, to which there are two main drawbacks.
First, because the headphones move with the head, those cues associated with head movement in a free field are absent, and although the time difference cue gives good directional information, listeners usually describe the sources as being "in the head" which is, to say the least, unnatural. Second, the wearing of headphones is in itself unaesthetic: it is far preferable to receive the sounds through one's own two ears from freely propagating acoustic waves.

Free-field stereophony

When we consider reproduction from a pair of symmetrically spaced loudspeakers we have to take account of the fact that each loudspeaker communicates with both of a listener's ears. - Thus, to produce an interaural phase difference it is not appropriate to drive the loudspeakers with signals differing in phase, as in the case of headphones. As Blumlein propounded in 1931^{12}, to produce phase differences at the ears, the loudspeakers must be driven by signals in-phase but of different magnitude. A recapitulation of his analysis can be found in a paper by Clark, Dutton and Vanderlyn ${ }^{13}$ of 1957.

As a phase difference proportional to frequency is equivalent to a constant delay, a realistic interaural time difference cue can be simulated. The analysis postulates that the wavelength is long compared with the ear spacing and thus that the attenuation at the further ear due to the shadowing effect of the head itself is negligible. This condition is met at low frequencies but starts to
break down at about 700 Hz , when the interaural path becomes half a wavelength: above this frequency it is necessary to seek some other mechanism of localization.

High frequency cues

Many workers in the field have, from the earliest days, looked to the interaural amplitude difference, which is most pronounced at high frequencies, to explain the undoubted directional capability of the ear in this region. Whilst a good impression of leftness or rightness in the horizontal plane can be produced by a simple amplitude difference there are two main difficulties in ascribing to it the entire mechanism of high frequency localization. First, stereo reproducing systems work much too well in the presence of room reflections and additionally they are much too sensitive to small displacements of the listener from the central position between the two loudspeakers. These considerations strongly suggest that transients play as important a role in stereo reproduction as they do in natural listening. Experiments carried out by Percival ${ }^{14}$ in 1957 confirm this, and suggest the following hypothesis.

Localization using transients depends on the integrating capability of the ear. The situation is illustrated in Fig. 1(a). The left and right ear responses are juxtaposed to show the relative timings. At an arbitrary time the left ear, for example, receives an impulsive signal L_{1} from the left loudspeaker and simultaneously the right ear receives a signal R_{r} from the right loudspeaker. This follows from the symmetry of the listening geometry. An image to the left of the sound stage is assumed; hence L_{1} is shown greater than R_{r}. After an interval equal to the extra time taken by these sounds to travel to the contralateral ears, which, for $a \pm 30^{\circ}$ loudspeaker spacing will be approximately 0.3 ms , the left ear will receive R_{1} and the right ear L_{r}. This later pair of signals will be reduced in amplitude as a result of their diffraction round the head. It is now suggested that the integrating capability of the ear - that is, its failure to resolve two impulses monotonically presented at an interval of less than 2 to 3 ms - will cause each ear to hear a single signal at a virtual time dependent on its component parts. The resultant summed signals S_{1} and S_{r}, shown in broken line in the diagram, will have virtual timings biased toward their larger components. The significant parameter is the equivalent interaural time difference Δt between S_{1} and S_{r}, which will determine the apparent direction when the ear-brain complex fuses them into a single stereophonic image at a direction determined by the loudspeaker amplitudes L and R.

The theory clearly holds for the central case when all is symmetrical, and for the limiting cases when one loudspeaker is silent and the delay corres-
ponds to the direction of the energized one. However, the signals shown in the diagram are over-simplistic, since they represent impossibly short impulses that would be severely mutilated in passing through filters and transducers, not to mention the peripheral mechanisms of the ear itself. The figure is really no more than a timing diagram, showing the fixed time relationship between the variable amplitude component sounds at the two ears. What it implies is that at some time after the onset of the partial stimuli indicated by the thick arrows of Fig. 1, the integral of the energy received by one ear will reach a threshold value before the other, depending on the relative amplitudes of these partial stimuli, and an action potential will be generated at that ear earlier than at the other, as though it had resulted from a single virtual stimulus with a timing indicated by the thick broken arrow.

In Fig. 1(c) the position of the virtual stimulus may seem strange, but remember that if the second pair of

Fig. 1. Timing diagram, shows generation of a virtual time difference Δt from components fixed in time but of variable relative amplitude.
partial stimuli are significantly delayed, the response tends to separate into two parts associated with the two components, and the second partial stimulus will have little effect on the first. This could indicate a timeweighting in the integration, the running integral having an effective decay time of a few milliseconds: clearly the integral cannot be allowed to build up indefinitely.

Experimental evidence

Some light is thrown on this theory by an experiment in which an attempt is made to recentralize the perceived image by delaying the signals to one or the other ear. Two symmetrically placed loudspeakers, driven in-phase at different amplitudes, produce signals at a pair of non-directional pressure microphones spaced 20 cm apart, representing the relative ear positions of a hypothetical listener. To eliminate any effects due to head shadowing, no dummy head is used: the only variable is the relative amplitude of the fixed time components of Fig. 1(b) as determined by the loudspeaker signals. The amplified microphone outputs are fed to delay networks arranged to produce a differential delay in either sense up to a maximum of 0.35 ms , and thence to the left and right receivers of a pair of stereo headphones. Assuming that integration takes place independently in each ear it should be unaffected by the interposition of the delays in the microphone channels, and it should be possible to shift the signals of Fig. 1(b) relative to each other by an amount $-\Delta t$ until the summed signals S_{1} and S_{r} synchronize to produce a central image.
Denote $(L-R) /(L+R)$ by x, and call this normalized amplitude difference the calculated position of the source. Against this is plotted the normalized angle of incidence of a sound wave at the microphone position which would give rise to the interaural time difference Δt determined experimentally. The full-line curve of Fig. 2 shows there is good correspondence between the theoretical and experimental values, which represent the average of six observers' results.

These results were not obtained without difficulty. It was pointed out previously that the signals of Fig. 1 are fictitious, and it was proposed initially to ensure that vestigial low frequency cues were absent by using a high frequency tone pulse with rapid onset and slower decay time. Difficulties were encountered with interference fringes due to the tone which, with the unavoidable small asymmetries of the experimental set-up, produced spurious amplitude differences at the microphones. To overcome this, random noise, band-limited by a 2 kHz high-pass filter was substituted for the tone and modulated with the same pulse waveform. This improved matters considerably but the final image produced

Fig. 2. Central listening results in linear stage geometry as virtual sources S_{1} to S_{11} from equal increments of x, require equal increments of Δt to restore centrality. Assymetric listening (broken curve) results in stage geometry distorted as the same virtual images are drawn towards the nearer loudspeaker. Dummy head (dot-dash curve) enhances the cue without affecting linearity.
in the headphones was still not so well defined as the actual image at the microphone position in the anechoic room. The results, nevertheless, are sufficiently clear' cut to show that an effective interaural time difference cue is produced when the loudspeakers are driven with high frequency transient signals, in-phase but of different amplitude, without benefit of any head shadowing effects.

The effect of the head

Because diffraction round the head undoubtedly plays a significant part in live listening the experiment was made more realistic by introducing a dummy head between the microphones. This was made of plaster, but wrapped in polyurethane foam so as to simulate human flesh a little more closely. The result of this was to enhance the angular sensitivity of the arrangement, requiring more compensating delay for a given amplitude difference at the loudspeakers, as shown by the dotdash curve of Fig. 2. This additional delay must represent a trade-off of time differences against the intensity differences introduced by head shadowing.

The enhanced angular sensitivity of the stereo listening arrangement at high frequencies was noted in ref. 13 as an empirical finding. In those early experiments the angular displacement of the image at low frequencies as the speaker amplitudes were varied agreed closely with that found in the present case in the absence of the dummy head, although two quite different mechanisms are involved. At high frequencies the excess sensitivity is now shown to be due to the presence of the head with its attendant diffraction pattern. The
magnitude of the increase is of the right order to account for the difference.

Before concluding the tests one further experiment of significance was performed to demonstrate the effect of asymmetrical listening. Reverting to the set-up without the dummy head, the right loudspeaker only was brought one foot nearer the microphones and the first experiment repeated. This is approximately the same as displacing the listener the same amount to the right of centre, but more convenient experimentally.

Fig. 1(c) shows how the timings are affected. The sound from the right loudspeaker clears both ears before that from the left reaches either, about lms later. By this time a fully right-handed cue is in course of establishment which the later sound from the left loudspeaker has difficulty in modifying. One can thus expect a strong bias to the right and this is indeed what happens, as is evident from Fig. 2. The broken curve shows that values of x corresponding to apparent sources S_{1} and S_{11} for the central listening position, five to the left and five to the right of stage centre, now yield a distorted image with only two ($\mathrm{S}_{1}, \mathrm{~S}_{2}$) to the left and eight $\left(\mathrm{S}_{4}\right.$ to $\left.\mathrm{S}_{11}\right)$ on the right, crowding up toward the loudspeaker position.
Moreover, this effect is not one which scales up or down with the size of the reproducing set-up. The result of a foot of misalignment is the same whether we are operating in a domestic living room or the Albert Hall. It is one of the principal hazards in the way of mounting a large scale demonstration of stereophony, as anyone who has made the attempt will be only too aware.

The implications for quadraphonic systems are obvious, but their pro-

Philip Vanderlyn joined EMI in 1935, working under A. D. Blumlein and H. A. M. Clark from where he learned the facts of stereophonic life. Experience at EMI up to retirement in 1979 included work on stereophony, sound locators, radar, data transmission and the application of digital techniques to sound recording. Born in London in 1913, he was educated at Christ's Hospital and Northampton Polytechnic.
ponents seem never to have faced up to them. All two-channel systems have a locus on which it is possible for a listener to position himself equidistant from the loudspeakers. For three channels there will always be one point that meets this criterion, but four channels do not provide even this vestigial possibility unless great care is taken in siting the loudspeakers - errors must be small compared with a foot. Nevertheless this factor seems to be universally ignored: much effort is expended on analysing the energy distribution around a point-sized listener, tacitly assumed to be exactly equidistant from every reproducer. Yet a little matter of a foot of error in the placing of one of them can distort the image geometry out of all recognition. Consideration of the directional distribution of energy may perhaps be appropriate under steady-state conditions. Speech and music, however, together with most other everyday sounds conveying useful information to a listener do not fall in this category. In contrast they may be more realistically considered as a stream of connected transients.

It is more than probable that, given additional channels, better stereophony can be achieved than with the basic two which economic stringency has hitherto allowed us. However, before we adopt any alternative multichannel system as an industry standard we ought to be clearer than we are now about its psychoacoustic basis, its aims and objects and the means by which these are to be put into effect.

Conclusion

The practice of stereophony comprises two facets: the understanding of how a listener uses his ear/brain complex to locate the sources of sounds under natural conditions, and the engineering of means to reproduce en-
ough spatial cues from a multiplicity of loudspeakers to recreate an effective image at another place or time.

We are still a long way from writing a full description of the total mechanism of localization. What is clear is that nature employs all the auditory clues available at all times, but they vary in effectiveness according to circumstances. The present article is intended to highlight the important role played by transients in nature and in stereophony - in the last instance it might well form an addendum to reference 13.

The experiments described are not proof that an actual interaural time difference is generated by the method described. Because the cue derived in Fig. 1(b) can be compensated by the introduction of a contrary time differential it is not rigorous to assume it consisted of a time difference in the first place: many workers (e.g. ref. 15) have shown that time differences can be traded directly with, for example, intensity differences. But the fact that the compensating delay in the experiment trades off linearly against the differential cue provided, arriving at the precise value of intermicrophone delay in the fully left or right condition when only one loudspeaker is operating, suggests strongly that an effective interaural time difference is indeed created.

Obviously, the additional intensity difference cue resulting from the insertion of the dummy head has to be traded off against an additional time delay (see the dot-dash curve of Fig. 2).

The experiment on asymmetric listening underlines an everyday experience in stereophonic listening. In this case it should be noted that only transients are involved; the low frequency cues to direction are not so fragile in the presence of small displacements. This very fragility, however, merely serves to underline the powerful influence exerted by transients, particularly in the reflective surroundings in which most stereophonic reproduction takes place.
The experiments are neither exhaustive nor conclusive and could probably be extended and elaborated, but I feel they go some way toward establishing the prime role of the interaural time difference cue in stereophonic listening and unravelling some of the mechanisms through which it works. Any stereophonic system designed to operate without regard to this cue does so at its peril.

Acknowledgments

My thanks are due to many colleagues, in particular Dr W. S. Percival, for numerous day-to-day discussions, mostly of some fifteen years ago, that have been responsible, along with the personal experience of living with stereo since its inception, for distilling the material of this article. Acknowledgements are also due to the Directors of EMI Limited for permission to publish it.

References

1 E. C. Cherry \& B. McA. Sayers, Mechanism
of binaural fusion in the hearing of speech. J.A.S.A. vol. 29 (1957) p. 973.

2 T. T. Sandel, D. C. Teas, W. E. Feddersen \& L. A. Jeffress, Localization of sound from single and paired sources. J.A.S.A. vol. 27 (1955) p. 842.

3 R. A. Butler \& K. Belenduik, Spectral cues utilized in the location of sound in the median sagittal plane. J.A.S.A. vol. 61 (1977) p. 1264. 4 H. Wallach, On sound localization. J.A.S.A. vol. 10 (1939) p. 270.
5 K. de Boer \& A. T. van Urk, Some particulars of directional hearing. Philips Tech. Rev. vol. 6 (1941) p. 359.
6 J. Moir \& J. A. Leslie, Stereophonic reproduction of speech and music. J. Brit. I.R.E. 1951 Radio Convention.
7 Harvey Fletcher, Speech and Hearing in Communication. Van Nostrand, 1953.
8 R. Galambos \& H. Davis, Response of single auditory nerve fibres to acoustic stimulation. J. Neurophysiology vol. 6 (1943) p. 39.

9 I. C. Whitfield, Coding in the auditory nervous system. Nature 25th Feb. 1957, p. 756 et seq.
10 L. A. Jeffress, A place theory of sound localization. J. Comp. Physiol. Psychol. vol. 41 (1948) p. 35.
11 W. A. van Bergeijk, Variation on a theme - of Békésy: A model of binaural interaction. J.A.S.A. vol. 34 (1948) p. 1431.

12 A. D. Blumlein, BP 394325.
13 H. A. M. Clark, G. F. Dutton \& D. B. Vanderlyn, The "Stereosonic" recording and reproducing system. Proc. I.E.E. vol. 104 part B (1957) p. 417.
14 W. S. Percival, Stereophonic reproduction with the aid of a control signal. EMI Research Laboratories Report RN/ 108 (1957).
15 L. L. Young \& R. Carhart, Time-intensity trading functions for pure tones and a high frequency a.m. signal. J.A.S.A. vol. 56 (1974) p. 605 .

Sidebands as phasors continued from page 54

speech or music, with a corresponding sideband structure as exemplified by the left-hand side of Fig. 2(a) the audio output from the receiver would be bodily shifted $\pm 10 \mathrm{~Hz}$ from the original. This would still give good "communication" quality speech. When, in a live news broadcast, a reporter from some remote part of the world sounds a little "rough" or "artificial" the explanation is probably due to a difference in frequency between the original and reinserted carriers, over an s.s.b. link.

It is worth noting that in suppressing the carrier in transmission, a source of interference, heterodyning, by adjacent carriers, disappears. Further, in the case of s.s.b., only half the bandwidth is used, enabling greater receiver selectivity to be employed. The absence of heterodyne interference from adjacent stations, twice the number of stations in the band, 100% efficiency in terms of the information content of the radiated energy, has made s.s.b. very popular for commercial and amateur usage.

Amplitude modulation is still the only system for broadcasting between

200 kHz and 20 MHz . The broadcasting of the very wasteful reference signal is necessary to enable the listener to use an elementary receiver requiring no sophisticated local oscillator and no skilled operating in the adjustment of a local oscillator. The increasing problems of heterodyne interference would be reduced if broadcast stations could use reduced (pilot) carrier working. The cost of the receiver and its operation will no longer be a factor with the potential use of specially designed integrated circuits in the future.

(To be continued)

References

1. Scroggie, M. G., "Phasor diagrams", Iliffe (1966), p. 18.
2. Hawker, P., "Synchronous detection in radio reception-1". Wireless World, September 1972, pp. 419-422.

Appendix

Mathematical expression of a.m. (for 100% modulation of a carrier, amplitude a, frequency f_{0}, (angular frequency Ω_{0}), the modulating frequency f (angular frequency ω) is

$a(1+\sin \omega t) \sin \Omega_{0} t$
 or in terms of frequency
 $\alpha(1+\sin 2 \pi f t) \sin 2 \pi f_{0} t$

This, shows that the amplitude of the $a \sin$ $2 \pi f_{0} t$ (carrier) term is rising and falling between $2 a$ and zero at the modulating frequency f. Rewriting, we have $a \sin \Omega t+a$ $\sin \omega t s i n \Omega t$. Expanding the left-hand term (using the trig relation $\sin x \sin y=1 / 2 \cos$ $(x-y)-1 / 2 \cos (x+y))$, this becomes $a \sin \Omega_{0} t+a / 2 \cos \left(\Omega_{0}-\omega\right) t-a / 2 \cos \left(\Omega_{0}+\omega\right) t$
We are left with the unmodulated carrier (sine) and two cos terms of frequencies f below and above the carrier frequency - the lower and upper sidebands. There is of course no difference (except phase) between cos and sine. Hence we have three sinusoidals - the carrier, amplitude a, and the lower and upper sidebands, amplitude $1 / 2 a$ - as depicted in Fig. 1(a).
We should still arrive at Fig. 1(a) had we started with any other appropriate expression, e.g. $a \sin \omega t \cos \Omega_{0} t$ and the corresponding trig formula for the expansion. It all depends on the time we start (i.e. when $t=0$) and the relative phases of the sidebands with respect to the carrier at any instant. The phasor diagrams in the main text explain clearly the significance of the sideband phase as related to the carrier.

A Scientific Computer - 6

Final program examples, tv interface and radio teleprinter interface

By J. H. Adams, M.Sc.

THE FINAL TWO programs in Table 18 were used to ease the design of active filters for the teleprinter interface. The filters are based around the LM3900 quad Norton amplifier i.c. and a lowpass version is shown in Fig. 24. The display in Fig. 25 shows a run of the first program which computes the resistor values required for a given gain, Q and fixed capacitor values. The program will intervene if the ratio of the capacitors is too low for correct operation, and when presenting the results it uses two graphic characters to enhance the appearance. New values for C_{1} and C_{2} may be entered repeatedly until the resistors are near enough to preferred values for the accuracy required.

Fig. 24. Low pass filter used for the teleprinter interface.

```
02 PRINT " LOW PASS ANALYSIS"
OG3 PRHNT " lNPUT R1, R2, C1; C2 NOW ..."
05 IMPLT. R S C D
OOC AXIS 125 &
ULE LET F=1
011 cGSUB }23
014 LET E=EO G -
017 GOSUB 232-
0 2 0 ~ L E T ~ G = G ~ E ~ + ~ + '
023 IF G<O THEN 32
026 PRINT "F ="F1, "HZ"
027 GRAPH G Z 
028 LET F=F 10 RT *
030 GO 17
U32 HALT
034 ERASE
036 GO 1.
232 LET X=1E12 2/PI/F/\dot{C}/
235 LET Y=1E12 2/P\/P/F/F/,
238 LET A=X Y/RS S X//Y/ - 1-SQ
M&1 LET B=X R S + - Y / SQ - - -
244 LET G=A B + ROOT REC LOG 2O-
247 RETUR'v
ODDO
OO& PRINT " LOW PASS FILTER PFOGRAR:"
OU5 PRINT " INPUT GAINY + Q REGUIREL, COINNEK FREGUEINCY, C1 + C2"
O20 LET W=2 PI. F *
023 LET C=C 1E12,
026 LET D=0.1E12 / - ROOT 1 + 2 / Q / K/W/W C / 1000 /
O3< LET R=S A /, - ROOT 1 + 2 / Q/
035 LET T=W C * SQ S * K * REC 1ECO/
038 PKINT "K1 ="k2, "k\Omega, R< ="S, "k\Omega, K3 ="T, "k\Omega"
039
040 GO 11
041 Erio
U50 PRIINT "REDLCE THE RATIU UF C2 TO C1. INPLT NEV VILUES NOW . .."
051 GO-3¢ 
056 LET D=D 1E12 /
059 GO 29
oucb
```

Table 18. Two programs for designing active filters based on the LM3900.

Fig. 25. V.d.u. showing a computer run for the circuit in Fig. 24.

The second program can then be used to give a gain versus frequency plot of the filter's characteristics. In Fig. 24, R_{3} is assumed to be equal to R_{1}. The program terminates when the gain falls below unity, but it may be re-run by pressing the space bar as described in part 4.

A specific tv interface

It was mentioned in part 2 that if a live tv chassis is used for the v.d.u., a mains isolation transformer is necessary. This expense can be avoided by using a television set such as the Ferguson or Ultra model 3845 which has a fully isolated power supply. A simple interface for this set is shown in Fig. 26. All of the connections are made to the tube base except for the sync. input. Resistor R_{72} on the tv's p.c.b. is lifted at the end nearest to the back of the set, and a wire from the empty pad is taken to a changeover switch which connects the original sync, or that from the computer

Fig. 26. Tv interface for the Ultra model 3845. The numbers in circles are pin connections on the c.r.t. base.
to the p.c.b. With negative going sync. supplied from the computer, a display should be obtained which, with the switch in the v.d.u. position, syncronises without any adjustment to either the horizontal or vertical holds. It is possible that the display will not completely fit onto the screen, but this can be rectified by the following alterations.

Loosen the polythene clamp which holds the scanning coils onto the neck of the tube and slide the plastic end of the width adjusting collar (this fits between the coils and the tube neck) to reduce the width of the picture. If the display is still too wide, connect a voltmeter between pins 3 and 4 on the tube base and adjust the preset resistor R_{69} which is just in front of the line timebase compartment. This sets the h.t.,
normally 11.3 V , and should produce the required change with less than a one volt alteration. If the display is not horizontally centred, adjust the position of the core in the line oscillator coil (this. can be found behind the line compartment nearer to the centre of the set than the "set h.t." preset). This must be done with a non-metallic tool.

If the television is tuned to a station whilst in use as a v.d.u., the tv picture may faintly modulate the display. This can be avoided by tuning off the station, unplugging the aerial or turning down the contrast control. If a brighter display is required, a higher supply voltage. to the 2N2369A will be necessary. This can be supplied by the computer or from the 90 V supply on pin 6 of the c.r.t. base. If the 90 V is used, a potential divider must be connected because the maxi-
mum collector voltage of a 2 N 2369 A is well below 90 V . Whichever supply is chosen, the collector load should be increased proportionately from the 560Ω shown in this design.

Radio-teleprinter interface

One task for which this computer is well suited is the reception and transmission of radio teleprinter signals - RTTY. The system described here consists of hardware which converts f.s.k. (frequency shift keying) signals into digital levels, and software which is used to receive the serial stream of data, recognise the start of bytes and then frame, translate and display them. This software allows the Baud rate, the style of encoding and the code used to be controlled by the programmer.
The receiver should use a product detector or a b.f.o. so that the f.s.k. signals are available as two audio tones. The difference in frequency between the tones will depend upon the shift being used by the sender of the RTTY, but will usually range from 170 to 850 Hz . If the receiver's bandwidth can be reduced to this extent, the wanted/ unwanted signal ratio will be improved and this will produce more reliable, decoding. However, even with conventional bandwidths, the first two amplifiers in Fig. 27., which are connected as high and low-pass active filters with gains and Qs of one and a bandpass of approximately 1200 to 2100 Hz , will filter out the required tones to some extent. The filtered signal is then fed into a 565 phase locked loop. This i.c. compares the input signal with

that of a v.c.o. which has been set at a frequency between the two tones. The result of this comparison will contain a low frequency component which after filtering is used to pull the oscillator to the frequency of the incoming tone. This voltage therefore switches in sympathy with the tones and is fed to a comparator which produces the digital output.

If reception only of RTTY is required, the oscillator's free-running frequency should be set at the midpoint of the active-filters pass band. Alternatively, when a complete terminal is used and standard frequencies are required, e.g. 1275 and 1445 Hz for a narrow shift, the oscillator is set to the midpoint of these frequencies. Before this adjustment is made, R_{2} should be set so that with no input to the unit the output is on the point of changing state. With an input of 10 mV at the required change-over frequency, R_{1} should be set in the same way.

A 12 V supply is available from the computer and the output of the unit should be fed, via the serial input buffer IC_{53}, to the line which feeds data bus line D_{2}.

A RTTY byte consists of a start bit, 5 data bits and $1 \frac{1}{2}$ stop bits. The software makes two checks 1 ms apart for a start bit, to improve the noise immunity, and when it is successful in finding a start bit the data byte is read in, translated into ASCII and displayed. As there are two sets of characters in the RTTY, Murray code numbers and letters, the computer is set initially to letters and section 1C39 to 1C48 of the program, see Table 19, recognises and acts upon the Murray bytes to draw the correct ASCII byte for display. Because most teleprinters have more than the v.d.u's 64 characters per row, the section 1C5D to 1C72 ignores conventional carriage return and line feed bytes, but looks for spaces in the last eight character positions on a row. When one is found a new line is called which, avoids the split words and short lines that occur with most v.d.u. systems. If this facility is not required, e.g. when receiving lines of tabulated data, alter 1C5F to 18, 1C9D and 1CBD to FF to obtain a new line with every carriage return received. Section 1C80 to 1CBF contains the look-up tables for converting letters (1C80 to 9F) and numbers (1CA0 to BF) from Murray to ASCII. Note that without the graphics option, the Murray $£$ appears as a $\$$. Tuning the receiver is most easily done by observing the output of the unit on an oscilloscope and
tuning for the cleanest display, although after some practice the ear is quite adept at picking out the correct point. If after correct tuning the display is random, this may be due to the transmission rate being other than 50 or 45.5 Baud. In this case the byte XX following the calling of the software time delay (CD 3603 XX) must be altered to change the delay length, see part 4 for details of the sub-routine. The time delay has been set at 21 ms as a compromise between 45.5 and 50 Baud by calling two delays with an XX of A0 between data bits, and three delays of 9B at the beginning to clear the start bit when recognised, and to return half way into the first data bit. Three times 9B plus the 10 time delay called between the two start bit checks equals $11 / 2$ times two A0 delays. If the code makes no sense when receiving at the correct Baud rate, it is probable that the sense of shift is reversed which causes the computer to read 1s as 0s and viceversa. This can be corrected by changing sidebands on a receiver using a product detector, or by tuning the b.f.o. to the tones on the other side of zero beat. This problem is most easily recognised by characters appearing regularly but without spaces which suggests that the timing is correct, or if the test signals often transmitted by such stations are received as SYSYSYSY . . . instead of RYRYRYRY. Narrow shift RTTY transmissions can usually be found between 14080 and 14100 kHz during most of the day.

Points arising

Unfortunately the following errors occurred in part 1 of the series. In the memory circuit of Fig.1. $\mathrm{D}_{0}-\mathrm{D}_{8}$ should read $D_{0}-D_{7}$. The 1 k 2 and 220Ω resistors on the base of Tr_{1} in Fig. 2 should be transposed. For the kit, move R_{2} to R_{1} and fit a 220Ω in the R_{2} position. Pin 15 of $\mathrm{IC}_{4,5}$ should be connected to 0 V and to maintain the correct order for $\mathrm{D}_{0}-\mathrm{D}_{7}$, the two outputs from $\mathrm{IC}_{4,5}$ to IC_{7} should be transposed. In the diagram on the left of Fig. 3, the NO arrow should be placed above the Read strobe box.

Two points have arisen from comments by constructors of the computer. Clock instability causing horizontal jitter on the picture can be eliminated by changing the 470Ω resistors at IC_{28} to $1 \mathrm{k} \Omega$. Due to manufacturing tolerances in some 4528 monostables, the tape reader may not function.
If this occurs replace the $27 \mathrm{k} \Omega$ resistor
connected to the 4528 with a $50 \mathrm{k} \Omega$ preset, feed a $1 V$ r.m.s. sine wave at 1800 Hz into the tape reader and adjust the preset until the 4013 output which connects to the monostable is just changing state. The preset can then be replaced with the nearest preferred value resistor.

In conclusion

This section completes the scientific computer series. Due to a lack of space the firmware details have not been published but readers who wish to program their own r.o.ms can obtain a firmware list by sending a s.a.e. to this office.

We hope to support this design in the future with a floppy-disk drive and further practical programs. However, readers are invited to submit details of their own modifications or programs for publication.
We understand that John Adams is prepared to undertake the service or repair of computers built from a kit. Constructors experiencing difficulties should contact the author at 5 The Close, Radlett, Hertfordshire (Radlett 5723).

SIXTY YEARSAGO

After World War 1, amateur radio enthusiasts were left wondering for a time what was to happen to them. Then, as reported in the September 1919 issue, all pre-war licences were cancelled, preparatory to sweeping changes being introduced. In the present-day uncertainty about citizen's band, one hears remarks which could have applied to the situation of sixty years ago.
". . . said an official of the General Post Office to a Daily Express representative, we are very careful to see that applicants are not simply out for amusement. Before the war we had a good deal of trouble with silly fools who apparently asked their best girls to tea and amused them by sending out 'S.O.S.' signals on their wireless sets. Now that there have been such improvements in the apparatus inanities of this kind will be very obstructive to messages of commercial importance."
All we have to say with regard to that statement is that any practical wireless man knows how the "fools" could be soon discovered and eliminated; no ban has been placed upon private motor cars simply because a "fool" occasionally runs over a pedestrian. As for amusement, we should like to know why people may not amuse themselves in any way they please, provided they do not infringe the liberties of other citizens or transgress against the law. The amateur is willing to be supervised and to conform to reasonable regulations; he is even willing to act as a policeman of the aether amongst his own class, but judging from the look of things there exists a desire to obliterate him altogether. America has bowed - stiffly, it is true - to Prohibition, but she did not agree to the proposal to stifle amateur wireless telegraphy. Why should you? What are the Wireless Clubs doing to defend their rights? It was the American amateurs themselves who won their day, though they interested their legislators in the matter. Have our Wireless Clubs knowledge of any Member of Parliament who will stand up for them in the House?

Selecting stabilizer thermistors for Wien bridge oscillators

by M. G. Salem Ph.D

Assessment of the output voltage of thermistor-stabilized Wien bridge oscillators very often depends upon cut-and-try methods. Similarly, the temperature coefficient relative to output amplitude is normally not effectively predicted. The general formula to determine these factors is provided here and is allied to a specific oscillator circuit. Selection details are also included, covering three "popular" thermistors.

In the Wien bridge oscillator shown in Fig. 1 an amplifier with two feedback loops is used, the feedback to the noninverting input being in phase with the input only at the frequency $f_{\mathrm{o}}=1 /$ $\left(2 \pi R_{1} C_{1}\right)$. Negative feedback is independent of frequency but is arranged to increase as output increases, helping to maintain a constant output level. The final oscillator constitutes an amplifier with a gain of 3 and a constant amplitude sinewave output at a frequency determined as in the calculation above.
Amplitude stabilization is usually accomplished by making one of the negative feedback resistors sensitive to temperature and ensuring that the power dissipated by it is sufficient to raise its temperature well above the ambient level. Under such circumstances the resistance of the temperature-sensitive element will be determined by the oscillator output, with only slight dependence upon ambient temperature. The temperature-sensitive element may be a resistor or thermistor, in which case the

Fig. 1: Wien bridge oscillator, used as a thermistor test circuit

Fig. 2: graph showing $V_{\text {out }}$ relative to R_{f} and operating temperature for three basic thermistor types
symbol R is used, indicating a negative temperature coefficient, or R_{f} indicating a positive temperature coefficient device or filament lamp.

If the open loop gain of such an oscillator is much larger than 3 the voltage fed back to the inverting input will be close to $1 / 3$ of the output voltage, giving $R+R_{s}=R_{f}$ It is convenient to set R_{s} at zero. The resistance of a thermistor is given approximately by $R=A$ $\exp (B / T)$ where A and B are thermistor constants and T is the thermistor temperature in degrees Kelvin. Temperature rise above the ambient level is approximately proportional to the power dissipated and it is usual for manufacturers to quote the dissipation cofficient, which we will term D, in $\mathrm{mW} /{ }^{\circ} \mathrm{C}$.

For a given value of R_{f} (and R_{s} if used) the steady-state resistance of the thermistor must be $R=2 R_{f}-R_{s}$. Temperature will be $T=B / \ln (R / A)$ degrees Kelvin and the temperature rise $\Delta T=T-T_{a}-273$, where T_{a} is the ambient temperature in degrees C, typically $20^{\circ} \mathrm{C}$. Power dissipated by the thermistor is $P=D \Delta / 1000 \mathrm{~W}$, current is $I=(P / R)$ in amps and output voltage is $3 I R_{f}$ Combining these expressions gives V_{ρ}

Table 1: principal operating details of each thermistor.

Thermistors with low dissipation factor

	R at	R at	I at		
Type	$20^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	A	B
R53	5 k	63	4.5 mA	0.12	3100
R24	20 k	150	7 mA	0.17	3400
R54	50 k	270	3.3 mA	0.18	3650
All types: $T_{\text {max }}=220^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {max }}=3 \mathrm{~mW}$				
$\mathrm{D}=0.016 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$					

(r.m.s. $)=3 R_{f}$

$$
\left.V \left\lvert\, \frac{D}{1000 R}\left(\frac{B}{\ln (R / A)}-T_{a}-273\right)\right.\right)
$$

$-T_{\mathrm{a}}-273$ where R is usually equal to $2 R$.
The relative temperature coefficient is $1 /(2 \Delta T)$ or $100 /(2 \Delta T) \% /{ }^{\circ} \mathrm{C}$, independent of thermistor or circuit. Such formulae should not prove daunting in these days of pocket calculators, but it may be worth remembering that ln $(R / A)=2.3 \log (R / A)$.

As a comparative test of the formula, continued on page 95

When editing a message it helps to see what you're doing

.... and the Transtel VDU attachment

 does just that.The operator can prepare messages on the VDU which acts as 'a window into the electronic memory' of the B315 ASR teleprinter. Messages can be altered instantly by deleting or inserting words or even whole paragraphs and the text re-justified to avoid broken words at the touch of a button.
The VDU can be used to prepare messages whilst previously recorded messages are sent to line, saving valuable time. The VDU can be used even when an incoming message is being received on the in-built printer.

- Microprocessor control.
- High quality dot matrix printout.
- Multicopy on standard paper
- Speeds up to 30 cps.

8000 character memory.

- Full word editing capability.
- Telex or Private Circuit operation.

Transtel Communications Limited

Mill Street, Slough, Berkshire SL2 5DD, England Telephone: Slough (0753) 26955 Telex: 849384

POWERTRAN

PS1 Comp 80.280 Based powerful scientific computer Design being published in Wireless World - NOW!

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete! Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board, 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer, 2 K Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

Kit also available as separate packs; e.g PCB, Keyboards Cabinet, etc.

PCB size $16.0^{\prime \prime} \times 12.5^{\prime \prime}$

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until October 31st 1979, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50p handling and documentation.
U.K. ORDERS. Subject to 15% surcharge for VAT ${ }^{\circ}$. NO charge is made for carriage. 'Or current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland oniy add $£ 2.50$ (VAT inclusive) per kit.

UK Carriage FREE

POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
ANDOVER
(0264) 64455

Microcomputer interfaces

Connecting input and output equipment

by Ian H. Witten, M.A., C.Sc., Ph.D., M.I.E.E.
a Th Department of Electrical Engineering Science, University of Essex.

THE SAME information can be represented in different ways, like marks on paper, or speech sounds. An interface is a connexion between one information representation and another. Computer interfaces convert between the computer's representation, namely electrical signals on the bus, and another representation - like dots of light on a display screen, or a musical note. There is an obvious distinction between input and output interfaces. (What is not obvious is which is which: it is conventional to look at things from the computer's point of view, so that "input" means from the outside world to the computer.)
Interfaces provide a means of communication between the outside world and the computer. Contrast this with buses ${ }^{1}$ which provide communication within the computer system itself. Communication along a bus is entirely in the form of binary electrical signals. The information to be transmitted falls naturally into logically separate groups: address, data and control. The control part is the most interesting, and depends on the protocol which is adopted for information transfer. Each control line has a different purpose, and each is necessary if the protocol is to be observed. All in all, the subject of buses is well-defined and satisfyingly logical.

Interfaces are a different matter. They are closer to the real world, with all its variety and hazards. For a start, there is a multitude of different representations of information. To interface to a car engine, the throttle position, mixture control, engine speed and temperature, and ignition timing all need to be converted or controlled. Where does interfacing end and mechanical engineering begin? To interface to smells, we need to study chemistry. What about transmission of information between the computer and a remote device which converts it to another representation - is this part of the interface? There is no clean logical structure to the subject of interfacing; no neat division between the interface and the real world. Nevertheless, interfaces must be understood, designed, and built, and this is probably the most important single area in the application of microprocessors to man-machine communication. For example, lack of a cheap car engine interface and smell interface is the chief reason why automatic anti-pollution controls for
vehicle engines - which would benefit everyone by improving petrol consumption and reducing pollution - are not commonly used.

Simple i/p and o/p peripherals

The simplest output peripheral is a bank of on/off 1.e.d.s (light-emitting diodes), which emit light when they conduct current. If eight l.e.d.s are provided, then one data word can be displayed. To keep the l.e.d.s alight, the data from the bus can either be latched into flip-flops, or periodically regenerated ("refreshed") by the processor. If l.e.d.s are refreshed twenty or more times a second for a millisecond or more each, an illusion of continuous illumination is achieved.

The input device corresponding to a bank of l.e.d.s is a row of switches, which are bi-stable devices, so latching is unnecessary. There is, however, a serious problem with contact bouncing. Figure 1 shows a typical waveform generated when a switch is changed from open to closed. The output does not change cleanly, as one might expect, but passes through a transition phase where it oscillates randomly. Unless appropriate precautions are taken, this will cause chaos if interfaced directly to a microprocessor. As with display refresh, the precautions can be taken in either hardware or software.
A hardware debouncing circuit is also shown in Fig. 1. It relies on a break-before-make switch action, so that no matter how unclean the switch output is as one contact is broken and as the

Fig. 1 - Malformation of low-to-high edge produced by switch bounce, with anti-bounce circuit.
other is made, the "breaking" is completely finished before the "making" begins. Then, the first "make" spike which exceeds the threshold for logic 1 will activate the latch, and it will remain in the new state throughout the rest of the "making" disturbance. Software debouncing uses a different principle. The program waits for a specified time (usually around 20 ms) after a change in switch value is detected, before reading the switch and returning the new value.
A 7 -segment display contains seven 1.e.d. segments arranged so that the numerals can be shown, the lights being connected to the appropriate bits in the data word. Again, the data may either be latched, or refreshed by the processor. The problems of latching are highlighted when several banks of 7 segment displays are used. If there are six displays in a bank, $6 \times 7=42$ latches must be supplied for each. With several banks, a fair-sized store is needed to hold the latched bits. But the microcomputer already has a store - accessible to the processor - which can be used providing the processor is prepared to undertake to refresh the segments regularly. The input device corresponding to a 7 -segment display is a thumbwheel.
Computer systems often need to communicate with devices with analogue electrical inputs and outputs. A d/a converter (digital-to-analogue) takes a binary signal and produces an output voltage whose size is determined by the input. Usually the relationship between output and input is linear, although non-linear (e.g. logarithmic) d/as do exist. Suppose the output range is 0 10 V , and the input is 8 bits. Then an input of $<00000001>$ will give 1×10 / $.256=0.04 \mathrm{~V}$ output, $<10000000>$ will give $128 \times 10 / 256=5 \mathrm{~V}$ output, and so

on. The use of an 8-bit input implies a precision of $1 / 256=0.4 \%$. If more accuracy is required by the analogue signal, then more input bits must be used -10 bits, 12 bits, or even 14 bits. An a/d converter (analogue-to-digital) performs the opposite conversion, taking as input an analogue voltage (say between 0 and 10 V) and producing the corresponding binary value as output.

Figure 2 shows the circuit of a simple d / a. It works by converting each " 1 " bit in the input to a current with a weighting appropriate to the position of that bit in the word, summing the currents,

Fig. 2 - Principle of digital-to-analogue conversion, using weighted resistors.

Fig. 3 - D-to-a converter in feedback loop makes a-to-d converter.

Fig. 4 - Interfacing d-to-a converter to a bus.
and converting the result back into a voltage. B_{0} to B_{7} are switches driven by the 8 bits of the input. When closed, they route the constant voltage E (say 10 V) through a weighting resistor into an amplifier. The resistors are chosen to give each bit an appropriately large or small influence on the overall output. The operational amplifier sums the currents produced in the resistors, with the $\mathrm{R} / 2$ feedback resistor ensuring that the most significant bit (B_{7}) accounts for exactly half of the total analogue output range.
There are problems with the d / a of Fig. 2. Resistors do not come in binaryrelated values. Furthermore, if the overall accuracy is to be 0.4%, in accordance with the 8 -bit input used, then the largest resistor must have 0.4%. tolerance - a stringent requirement. There are better d / a circuits which circumvent these difficulties, but Fig. 2 shows the basic conversion principle.

The most common types of a/d converter are made from a d/a converter and a voltage comparator. Figure 3 shows one possibility, in which an 8 -bit counter counts up from zero, its output being $\mathrm{d} /$ a converted continuously and compared with the input voltage. While it is smaller, the counter keeps counting. As soon as it exceeds the input voltage, counting is stopped and the "ready" line is activated to indicate that the conversion is finished.
Again, there are problems with the circuit. The inevitable transients during counting will produce terrible spikes on the d/a output. The most fundamental problem, however, is that the conversion takes a long time, especially if the input voltage is near the top of its range. Again, these difficulties can be overcome, but Fig. 3 illustrates one principle of a / d conversion.

Interface devices

The d/a converter in Fig. 4 is connected to a bus via an interface device. Since the bus is parallel, and the d/a converter needs a parallel input, why not connect it directly to the bus and dispense with the interface device? Consider the operations that must be performed:
-address decoding
-handling of read-write/address valid/
data accepted/reset lines
-data latching
-electrical buffering
-interrupt logic.
The first two operations were described in reference 1. (The "reset" control line is asserted at power-up, to initialise all devices attached to the bus.) Data latching is needed because the data is only present on the bus for a short time. Electrical buffering is often necessary when reading from a bus because many devices may be attached to it and precautions must be taken not to overload the lines electrically. Interrupt logic, which is essentially a way of signalling to the processor that new data is ready (for input) or needed (for output), is not covered in this course.

Fig. 5 - Simple output port.

An output interface that performs most of the tasks is shown in Fig. 5. The data latch assembly forms the basis of an interface device which goes under various names used by different manufacturers, such as "parallel output port", "PIA" (programmable interface adaptor), "VIA" (versatile interface adaptor), "PIO" (parallel input/output interface), "MILE" (microprocessor interface latch element). The address decoding function is not normally a part of the interface device, because with a 16 -bit address bus, 32 extra pins would have to be provided on the integrated circuit -16 for the address bus and 16 for the desired interface address - and circuits with lots of pins are difficult to manufacture and use.

Example. To drive a bank of six 7 segment displays, six separate parallel output ports could be used. A more elgant solution, which uses only two output ports, is shown in Fig. 6, where port 1 selects one of the six displays to be refreshed, while port 2 gives the data for the segments of that display. One of the six binary patterns

> 10000000
> 01000000
> 00100000
> 00010000
> 00001000
> 00000100
is written to port 1 to select just one of the displays, and the 7 -segment code for that display is written to port 2 . Care is taken to write zero to port 2 before changing the address, to prevent the transient appearance of the wrong pattern on the newly-selected display.

The simple output port of Fig. 5 is sometimes combined, on the same chip, with an input port. A more versatile interface allows each of the lines from the port to be programmed as an input or an output. A data direction register within the interface is used to indicate which are inputs and which are outputs. Each of the data direction register bits is
set to 0 if the corresponding line is to be an input and 1 if it is to be an output. For example, if the data direction register held $<01010011>$ then lines L7, L5, L3, and L2 in Fig. 7 would be inputs while L6, L4, L1 and L0 would be outputs. The data direction register can be written by the processor at any time.
The interface device shown has three registers within it: each can be read or written by the processor. When the data register is written, the bits in it which correspond to outputs appear on their respective lines. When it is read, the states of those lines which are configured as inputs appear in their respective bits. The control and status register, when written, affects the functioning of the device and the state of the extra output bit shown in the figure. When read, it gives the status of the interface and of the extra input bit. These two extra bits can be used for a variety of purposes, including handshaking of data with the input/output device connected to the interface. The functions of the control and status register can be summarised as:
[write]
set/reset extra output bit enable/disable handshaking select data direction register or data register enable/disable interrupts (i.e. should the processor be informed automatically when new data is present?)
[read] read extra input bit read interrupt status (i.e. is new data present?)

Fig. 8 shows the block diagram of a commercially available interface device, the Motorola PIA, which contains two separate, 8 -bit input/output ports. This is a relatively simple device! The MOS Technology VIA has 16 registers and is more complex than many processor chips.

Serial transmission

Serial transmission is used with remote devices, in which case the data rate will be relatively low, because cramming all the data down one wire is inherently slower than using a parallel connexion with many wires. Such devices are usually character-oriented input/

Fig. 7 - Input and output in same port.

Fig. 6 - Enable line allows sequencing of 7-segment displays, using only two ports.

Fig. 8 - Specimen block diagram of p.i.a. - Motorola MC6820.
output terminals, such as teletypes, v.d.u.s (visual display units), and printers. Serial transmission can either be synchronous or asynchronous, depending on whether the receiving and transmitting devices are driven by a common clock. We will examine the protocol for asynchronous transmission only.
According to a standard convention, transmission of a serial data word is preceded by a "start bit" and terminated by one or two "stop bits". Start bits are LOW and stop bits HIGH, so a HIGH-to-LOW transition is guaranteed at the beginning of a start bit. This transition signals to the receiver that a data word is coming. The receiver and the transmitter will have clocks running at approximately the same rates but, because no clock line is included in the cable joining the devices, they will not be synchronised together. The start bit allows the receiver to get its clock into synchronisation. Then, the line state is examined in the middle of each data bit. The stop bits give time for the receiver to ready itself for the next word. Figure 9 shows the bits transmitted for one data word.
Of course, if the receiver gets out of synchronisation, for example by being switched on in the middle of a data word, it may mistake a HIGH-to-LOW transition between data bits for the beginning of the start bit. Then the first word would be misread. The same mistake could also occur subsequently; however, there is a good chance that synchronisation will be regained within the first few words.
The number of bits/second transmitted down the line is called the "bit rate" or "data rate". ("Baud rate" is also met, and is a technical term used with telecommunications systems. For the kind of transmission we are considering, the baud rate happens to be the same as the bit rate. However, the definition of a baud involves extra complications that are not relevant here.) If 2 stop bits and 8 data bits are used, the bit rate is 11 times the rate of characters per second. Typical bit rates are:
teletype $110 \mathrm{bits} / \mathrm{sec} \quad 10$ chars $/ \mathrm{sec}$ v.d.u. 9600 bits/sec 960 chars/sec printer $1200 \mathrm{bits} / \mathrm{sec} \quad 120 \mathrm{chars} / \mathrm{sec}$

Note that the higher data-rate devices use only 1 stop bit.
So far, the principle of serial data transmission has been described. In practice there are various differences, summarised in Table 1, which often

Table 1. Some of the options for serial transmission.

stop bits	data bits parity	bit rate	electrical	
			300	
			300	
	7	odd	600	voltage driven
			1200	current driven-20mA
2	8	even	2400	current driven-60mA
			4800	

Fig. 9 - Serial transmission of 8-bit word, showing one start and two-stop bits at (a). Typical 8-bit word at (b) combined with start and stop bits.
confuse people trying to set up a serial link. We have already seen the alternatives of 1 or 2 stop bits. Similarly, there are different standards for the number of data bits used, of which 7 and 8 bits are the commonest. 7 bits (128 symbols) are sufficient to encode the alphabet, while for transmission of data words, 8 bits are more convenient. In either case an extra bit, called the "parity bit", can be added to make the parity (number of l's in the transmission) even or odd, as an error-detection feature, so 8 or 9 information bits are actually transmitted. There are many standard data rates, of which some of the most common are shown in the Table. Finally, there are different electrical standards for driving the line.
There are over 150 different possibilities.

A commonly-used standard for coding alphabetic and numeric characters and symbols into 7-bit words is the ASCII (American Standard Code for Information Interchange) code. The ASCII characters include upper- and lower-case letters, numerals, special symbols, and a sprinkling of extra control codes with standard interpretations like " ht " (assists in formatting tables horizontally tabulating - by moving the printing position along), "bel" (rings the bell on the terminal), and "etx" (end of transmission). These make the number of codes up to 128.
To be continued.

Reference

1. Witten, I. H., Computer buses, Wireless World, February 1979 and March 1979.

LTERATURERECENED

Report of study on workplace exposure to man-made mineral fibres, contains recommendations concerning inhalation of respirable fibres, etc. Report is available from HMSO, 49, High Holborn, London WCIV under title "Man-made Mineral Fibres" price 50p.

Catalogue of books on microcomputer matters called "Microdigital" from the "Microcomputer Bookshop", 25 Brunswick St., Liverpool 12 0BJ.

A general data booklet is available from IMF Electronics which is intended to explain the UHJ surround-sound system, developed by the N.R.D.C. in collaboration with the BBC and IBA. Interested parties should write, requesting information on "Ambisonics" to IMF Electronics, Westbourne St., High Wycombe, Bucks HP112 2PZ.

A product summary of available "Glennite" piezoceramics can be obtained from Gulton Europe Ltd., The Hyde, Brighton, Sussex. This covers the company's range of lead zirconate titanate and lead metaniobate piezoceramics, which are available as thin sheets, bender elements, shaped elements and strain gauges.

Catalogue from H. A. Wainwright and Co. gives details of the full range of Fenwal temperature controls. H. A. Wainwright and Co. Ltd., 95 Farncombe St., Farncombe, Godalming, Surrey, GU7 3BA.

A brochure from Ferranti discusses the selection and use of the Uncommitted Logic Array (ULA). This is a family of bipolar l.s.i. chips, each containing an unconnected final stage. The brochure explains how the interconnexion pattern can be arranged to convert the uncommitted chip into the required custom l.s.i. circuit. Ferranti Electronics Ltd., Fields New Rd., Chadderton, Oldham, OL9 8NP.

Illustrated catalogue of professional audio equipment from F.W.O. Bauch Ltd. Covers complete range of products under Studer, Revox, Neumann banners as well as many others. F.W.O. Bauch Ltd., 49 Theobald St., Borehamwood, Herts WD6 4RZ.

Latest technical information in the form of glossy brochures on the product range of Sony Broadcast, City Wall House, Basing View, Basingstoke, Hampshire RG21 2LA

Catalogue containing details of a range of products from abrasive paper to Zener diodes from Maplin Electronic Supplies Ltd., P.O. Box 3, Rayleigh, Essex. No price list supplied.

Shortform catalogue of microcomputer hardware plus list of books and software is available from New Bear Computing Store, 40 Bartholomew St., Newbury, Berks.

Information on transmitter "happenings" is contained in the IBA's "Engineering News" which covers activities in all UK regions. Engineering Information Service, Independent Broadcasting Authority, Crawley Court, Winchester, Hampshire SO21 2QA.

The Philips/Signetics data handbook, about 300 pages of technical information on bipolar and m.o.s. memories can be obtained from Mullard Ltd., Mullard House, Torrington Place, London, WC1E 7HD

Anti-dumping talks in EEC

Mr John Nott, the Secretary of State for Industry, and Mr Cecil Parkinson, the Minister for Trade, visited Brussels on July 10 for talks with the EEC Commission on Community anti-dumping activities. At the meeting it was generally agreed that there was a need for streamlining the Community regulations and this would take place when they had implemented the changes recommended by the results of the recent world trade talks ** which included a modification of the General Agreement on Tariffs and Trade (GATT) dumping and subsidies code. The GATT anti-dumping code says that dumping occurs when a manufacturer sells goods at a lower price in an export market than in his home market.
Readers may remember that in the past the Japanese have been accused of dumping hi-fi and amateur radio equipment in UK markets (see p59, August 1977 issue - Amateur radio equipment survey) but this was apparently never proved - probably because of the problems encountered in obtaining the necessary facts and figures at the time (see
p68, September 1977 issue). Today, however, the Department of Trade has its own expert anti-dumping unit which advises UK industries on the formulation of anti-dumping cases to present to the Commission.

A spokesman for the D. of T., when asked about the Japanese export question, said that the Japanese were generally not identified as a source of dumping. Because their products had been cheap compared with British products of the same kind they had frequently been suspected of dumping, but investigators had to determine whether the reduced prices were due to dumping or manufacturing and other efficiencies. On the odd occasion when the Japanese had been found to be dumping, the price difference due to dumping was very much less than that due to efficiency. The figures used t assess whether dumping is occurring are obtained by taking into account all the normal price differences due to shipment, import duty, product style changes etc, but even then there are variations due to such things as exchange rates and material cost fluctuations.

Electronics vital in transglobe expedition

On September 2 this year an expedition, headed by Sir Ranulph Fiennes, sets sail from London to start the first longitudinal circumnavigation of the globe - via the North and South Poles. As is usual in present-day expeditions of this kind, elec tronics is to play a vital role in ensuring the safety and comfort of the expedition team. Some 330 companies have sponsored the expedition and about 80% of these are British. Burndept, Racal, Ferranti and Sinclair are just a few of the electronics firms who have provided equipment for the journey.
The expedition team will use the latest pioneering equipment, ranging from shoes for walking on water, cardboard huts and motorised sledges to highly accurate watches, underwater cameras and diesel generators. Burndept Electronics (E.R.) have provided miniature ground-to-air emergency beacons which will be used for aircraft and supply drops and for pinpointing team positions in ice floes. Wherever possible they intend to use solar power equipment provided by Ferranti Ltd and in white-out conditions (when vision is impaired by weather and surroundings) they will use solar sensors made by Hawker Siddeley Dynamics Ltd.

Muirhead Data Communications Ltd have provided facsimile machines which will be operated both on the ship and at the ice bases and it is hoped that they will enable photographs to be sent back to the ship. R. H. Minns (Baluns) Ltd are supplying radio monitoring equipment for indicating imperfections in the antennae systems which the team will be relying upon. No man can go anywhere without a calculator these days so Sinclair Equipment International Ltd has supplied the team with pocket calculators
which are specially programmed for astronavigation.

One of the most important aids that an exploration team can have is good communications and on this score the entire expedition will depend upon products produced by Racal. The group companies involved are Racal Communications Ltd, Racal Group Services Ltd, Racal Systems Ltd, and Racal Tacticom Ltd. They will provide communications equipment for use on land, with Land and Range Rovers, at sea, on the Benjamin Bowring, which is a polar research ship that will be used to transport the team, and in the air, from a De Havilland Twin Otter aircraft. Communications will also be provided on ice, between ice group members, and from ice bases back to a Royal Aircraft Establishment Cove. Most of this equipment will be expected to operate in temperatures as low as minus $80^{\circ} \mathrm{F}$.

Dumping which does occur involves only relatively small amounts of money and this can be and is normally controlled by a policy of import restraints. Government (counterveil) subsidies are allowed on regional policy and unemployment grounds, but if these are applied only to export and not generally to the manufacturing industry, then these too can contribute to dumping.
** The talks have been taking place over the last five years but general agreement was reached shortly before the general election this year.

America to get British viewdata

An agreement between the US giant General Telephone and Electronics Corporation (GTE), and Insac Data Systems, the government-owned UK company, is expected to result in the US getting British viewdata later this summer. Under the terms of the agreement, GTE will initially be offering a limited public service for business users only but this is to be extended to residential users later.

Although Insac, which has a sole licence from the British Post Office to exploit Prestel-type systems in America, developed its viewdata service specifically to suit the US market, the end result is similar in operation to Prestel and therefore helps to encourage world-wide acceptance of the $B P O$ standards. Exclusive US and Canadian rights to the Insac system have been granted to GTE and the company has also been given a US sub-licence to Prestel under Insac's Post Office licence. Initially, the aim is to test the market in the US. Publishing, finance, news and entertainment companies have already expressed interest in the service. GTE will concentrate on business and domestic markets while Insac offers the service to corporate and closed-user organisations who may have special software needs.
This news follows the successes earlier in the year when it was announced' that the Post Office had sold its viewdata expertise to Switzerland, West Germany, the Netherlands and Hong Kong.

More home video machines at Berlin

Grundig will launch a new video cassette recording system at the Berlin Radio \& Television Exhibition (24.8 to 2.9). Called video 2000, it has been jointly conceived with Philips as a European response to the recent Japanese video recorders, which now incidentally includes a new longitudinal machine from Toshiba.

Grundig say the cassettes, measuring $18.3 \times 2.6 \times 11 \mathrm{~cm}$, can be played both sides. They claim a substantial reduction in hourly tape cost and a total of eight hours playing time. Recording speed is $5.08 \mathrm{~m} / \mathrm{s}$ with a tape speed of $2.44 \mathrm{~cm} / \mathrm{s}$.

The Toshiba system is a relative of the BASF longitudinal approach but whereas the original BASF proposal was to switch tape direction at the end of a longitudinal scan, the Toshiba machine uses an endless loop cartridge, the head stepping tracks after 100 metres of tape, travelling at $5.9 \mathrm{~m} / \mathrm{s}$. Toshiba say 200 tracks $40 \mu \mathrm{~m}$ wide are contained on $1 / 2$ in wide tape, with a spacing of $10 \mu \mathrm{~m}$. The fixed-head approach of BASF, and now Toshiba, is expected to reduce mechanical complexity albeit with more complex though potentially cheaper signal processing circuitry.

The British exporter and the Japanese yen

As Britain joins the select group of petroeconomies, spare a though for the British exporter shouldering the burden of an increase in sterling of 31 per cent against the Japanese yen and 10 per cent against the deutschmark since the beginning of the year, according to the trade weighted index. The trade figures for the first five months of the year are witness to these deadening export pressures, showing a $£ 1$ billion deficit on the current account. Following this trend of undiluted pessimism, a Department of Industry Survey of the top UK exporting companies predicts a slowdown in export growth for the whole of 1979
Imports have been rising in inverse proportion to exports as the strength of sterling continues to restrict volume growth. There are many advocates of the swings and roundabouts theory, who emphasize the beneficial effects of a strong currency in curbing inflation and lowering the prices of imported raw materials for end products. The larger companies and multi-nationals always have the advantage in this and most other situations, keeping trading within the privileged confines of the group, not having to bear the full brunt of competitors with weaker currencies.

Announcing Plessey's results for the year ended March 31, 1979, chairman Sir John Clark reported that the fall in other currencies relative to sterling had cost the Group more than $£ 2$ million in profits, and yet he still favours a strong currency. Over the same
period Racal reported that the upward movement in sterling had a $£ 6$ million impact on sales, but commenting on the military radio side of its operations a spokesman emphasized that though price was an important factor, it was by no means the only factor in determining sales. Asked about export expectations for the year, Pye of Cambridge stated that its first six months export turnover was up on the previous year but it was difficult to forecast the outcome of the second half with such variables as wages, fuel and currency fluctuations to consider. Centronics reported that exports were expected to stay at last year's level. Indications in the electronics industry are that export growth will be maintained over the year, though a decline is expected in many other industries.

Since 1977 Government has largely given up the attempt to give sterling some semblance of stability. In line with its ideal of a free market economy, the Conservative Government has stood behind or rather left alone the strong pound, quoting the example of other successful economies which have turned a strong currency to advantage. Indications are that the Government intends to follow through the relaxations in exchange control made in the budget. The dollar premium could go, freeing overseas investment, which might, though not necessarily, result in sterling declining against other currencies. Mrs Thatcher had also

Solar energy used in Nepal expedition

A team of explorers who have just returned from a four-month hovercraft expedition to open up the Kali Gandaka River in the West Nepalese Himalayas used solar-energy, battery-charging units to charge their film cameras, communications radios, engine starting, lighting and other electronics equipment. The films recorded were shown on the BBC2's World About Us programme on July 1.

Traditionally, the sun is the explorer's worst enemy but this time the solar cell units, supplied by Lucas Industries Ltd, enabled some of it, at least, to be tamed. Using the sun to recharge their batteries helped the exploration team to conserve valuable fuel. The
three Lucas panels shown in the picture, for example, are standard and supply a total of 13.6 V at 650 mA . Each panel contains 30 cells, each producing about 0.45 V , and when connected in parallel their total current is almost 2 amps . In strong sunlight, such as exists in West Nepal, it takes about seven hours to completely recharge a typical car battery. Each panel weighs only about $21 / 2 \mathrm{~kg}$ and measures approximately $510 \times 340 \times 25 \mathrm{~mm}$.

The expedition's aim was to demonstrate that, using modern technology, a river route could open up to link remote communities with the medical facilities of the outside world.
indicated a willingness to consider membership of the European Monetary System, though this would be particularly awkward at a time when sterling is at such an unnatural level.

Britain is not alone in the currency battle. In June the New York Federal Reserve Bank and the West German Bundesbank spent \$2.5 billion to support the dollar against the deutschemark. Growth of the deutschemark has already severely distorted the European Monetary System particularly at the expense of the Belgian franc. Japan has been attempting to strengthen the yen, as inflation continues to bite into its growth rate. More recently the economy has been seeing a boom in domestic demand with the export benefits of a weaker currency taking time to filter through. The current level of advance orders from abroad indicates that there will be a sharp rise in exports over the remainder of the year, wiping out Japan's first quarter's current account deficit. This year has seen considerable pressure brought to bear on the Japanese to open up their markets to exporters. At the Tokyo Summit the right of UK telecommunications manufacturers to tender for Japanese contracts was due to be debated, since to date large contracts for corporations like the Nippon Telegraph and Telephone Corporation have only been open to Japanese manufacturers. The Inward Investment subgroup of the recent Japanese Import Promotion Mission are reported to have been impressed with the idea of manufacturing in the UK as a means of reducing exports without reducing the level of UK sales. The National Economic Development Council's report on the electronic consumer goods sector suggests that inward investment should be turned directly to the benefit of UK exporters by the formation of joint ventures, increasing the competiveness of UK goods.

The response of British industry to lowprice competition from abroad has been defensive so far, often withdrawing manufacture of those products threatened. The appreciation of sterling has made the problem more acute, but competition is not only fought on the price front, and the anti-inflationary force of a strong currency can be used to increase export volume.

Record firms not too worried about oil prices

Despite the fact that co-polymer, the petrochemical material used in the manufacture of records, has increased in price by about 400% over the last ten years, with large increases recently, record manufacturers do not appear to be too worried about the current increases in oil prices.

According to a spokesman at EMI, copolymer cost $£ 130$ per ton in 1969, and at the end of June the same amount cost $£ 500$. Oil prices did have a direct effect on record production, he said, but manufacturers had to live with this. Mr Townsley, a director of Decca Records, held the same view but added that they had to be careful not to reduce the value of the product by making the record too thin. He did not know what the future held, as far as oil and record prices were concerned, but they were taking no special action at the present time. When asked whether record manufacturers would be looking for alternative materials for the product in the future, he said that this was "always on the books".

Houses discuss Post Office monopoly

The Post Office monopoly was the subject of discussion in both the House of Commons and the House of Lords recently.
In the House of Commons on June 25, the Industry Secretary, Sir Keith Joseph, said that he would not rule out the possibility of taking action to abolish the British Post Office's statutory monopoly, and during question time he joined MPs from both the Labour and Conservative parties in criticising PO efficiency. When Mr J. BruceGardyne, Conservative MP for Knutsford, asked whether he would give his support in introducing a one-clause Bill to abolish the PO's statutory monopoly, Sir Keith said that he had "no plans for such initiative or response at the moment but would not like to rule it out".
At the House of Lords on May 23, Lord Torpichen raised a question relating to the Carter Report on the Post Office (see p51, September 1977 issue). His question was: "To

US electronics sales up 15% in '78

American sales for electronic equipment, systems and components totalled $\$ 64.9$ billion (about $£ 32.5$ thousand million) in 1978, representing an increase of nearly 15% over the previous year, according to the 1979 Electronic Market Data Book***, which was published recently by the Electronic Industries Association. Over one third of the sales were for industrial electronic equipment, which had grown by 18% in the same period, and the consumer electronics, electronic components and communicating equipment sales had grown by about $15 \%, 14 \%$ and 12% respectively.

About 20% of the total sales of electronic products were exported during 1978, according to the EIA, which gave a trade surplus in these products of $\$ 2.6$ billion (about $£ 1.3$ thousand million) while the nation experienced an overall trade deficit of $\$ 34$ billion (about $£ 17$ thousand million). America's largest customer was Canada, which imported $\$ 1.6$ billion worth of electronic products, followed closely by the United Kingdom and West Germany who each imported $\$ 1.2$ billion. These three countries accounted for more than 30% of the US's electronic exports.

Forty-four percent of America's electronic

Earth terminal brings
 Congress to American States

Earlier this year, the Cable Satellite Public Affairs Network (C-SPAN) in Georgia, inaugurated its first live television coverage of the US House of Representatives. A tenmetre diameter antenna, made by ScientificAtlanta, at Fairfax, Virginia, has enabled television pictures and sound to be sent from the House chambers to 370 communities in 50 states. The signals are carried from the chambers to the earth terminal via a terrestrial microwave link and are then transmitted to the satellite for retransmission to the communities' cable tv systems.
imports came from Japan who supplied the country with more than $\$ 4.6$ billion worth of electronic products. The second and third largest exporters of electronics to the US were Taiwan, with $\$ 1.1$ billion and Mexico, with almost $\$ 800$ million worth of products. Together, these three countries accounted for more than 60% of the electronic products brought into America.

Employment growth rate in the electronic industries was 99% in 1978, almost twice the growth-rate in overall US employment. This brought the total number of US workers in that field to more than 1.3 million.
***The Electronic Market Data Book may be obtained from the EIA Marketing Services Department, 2001 Eye Street, NW, Washington, D.C. 20006.

New s.S. radar for Irish airspace
Eurocontrol, the European Organization for the Safety of Air Navigation, has placed an order with Thomson-CSF for a secondary surveillance radar (s.s.r.) system to be installed at Woodcock Hill (Shannon), in Ireland. The contract, worth almost $£ 640,000$, covers the first phase of a programme to replace the dual-head 'SECAR' s.s.r. system installed by Eurocontrol in 1968, which supplies upper airspace radar data to Shannon Upper Area Control Centre (see p70, October 1978 issue).

The new secondary surveillance radar, which is expected to be bought into service in early 1981, will be the first of its kind to be used in Europe. For reliability, it will have duplicated electronics so that if one set should fail, the other can take over. In addition, the system has been designed for future use in the monopulse mode. To minimise problems arising from ground reflections, a nevs antenna with a sharp lower cut-off is to be fitted. An option in the contract covers the installation of a second s.s.r. head in a new building near Woodcock Hill.
ask Her Majesty's Government whether any review of the Post Office telecommunications monopoly has taken place since the publication of the Carter Report in July 1977, and whether they plan to implement the recommendation in paragraph 63 of that report to relax the monopoly". The Minister of State for the Department of Industry, Viscount Trenchard, said in reply to this that the government were studying the scope for increasing competition in some areas now served by monopoly-nationalised industries. He confirmed that this included the Post Office telecommunications monopoly and the matter contained in the Carter Report. Thanking the minister for his reply, Lord Torpichen asked him if he could give the House some indication of when this would happen. Viscount Trenchard was unable to answer this question but said that the government regarded some of the matters in the Carter Report as having been outstanding for a long while. They were unaware of the need, both for morale and for other reasons, to clarify the atmosphere on theser matters.
Lord Plant then asked the minister if he would bear in mind the urgent necessity to take into account the views of the workers in the telecommunications industry and the Post Office and to have consultations with them. Viscount Trenchard said that all concerned would be consulted.

Lord Wallace of Coslany, praising the Post Office's telecommunications system, suggested that it would be a most retrograde step to partially sell off such a prosperous organisation leaving "the not so remunerative parts to the postal services to stand at a loss with public expense involved and possibly higher charges". Despite interruption from several Lords, he then added, "It would be a damnable result for our British telecommunications system to be completely castrated, which is the policy of the Tory Party". To this Lord Trenchard said that the government was well aware of the dangers of taking parts away and leaving a part which was very difficult to run but he wished to assure Lord Wallace that because their object was efficiency this point would be taken into account. As the Carter Report had indicated, the Government believed that a little competition was able to be introduced.

When Lord Shinwell suggested that the transfer of Post Office liabilities should be considered as well as the transfer of assets, Lord Trenchard appeared to ignore the question at first and then added that he did not believe that efficiency was compatible with dogma. The Minister later agreed with Lord Orr-Ewing to bear in mind that a greater measure of competition amongst those who seek contracts from the Post Office would also be beneficial.

Returning to his original question, Lord Torpichen reminded the minister that the "so-called telephone interconnection industry is virtually denied to British firms by nature of the restrictions placed upon it by the British Post Office, and that quite a small liberalisation of this monopoly could possibly pay dividends both to Post Office workers and to British firms who would be able to export the products relating to the telephone system". The minister said that he would bear this in mind too.

International trade exhibition in Paris

A new international exhibition and forum, called Expansion Co-operation 1980-1990, is to be held at the Centre National des Industries et des Techniques, Paris, from June 9 to 15, 1980. Its purpose is to develop closer trade links between Western Europe, the Arab countries of the Middle East and member nations of the Organization of African Unity by helping in the search for outlets for agricultural and industrial products, consumer goods, works and services and to provide the contacts necessary for arranging financial and technical agreements for the development of local industries. Developing nations will also have the opportunity to
show off raw materials and other goods.
The exhibition is specificially Western European, and no exhibitors will be allowed from Eastern Europe or from Japan or the USA, though European branches of multinational companies will be permitted to exhibit. It is under the patronage of the French ministers of Foreign Affairs, Cooperation, Economy and External Commerce and of the presidents of the Federation of French Industries and the Paris Chamber of Commerce and Industry. IPC Business Press, publishers of Wireless World, will be ensuring a substantial British and German presence at the exhibition.

Fibre optic prices cut by almost 50\%

Advances in cable manufacture and test techniques have resulted in Hewlett-Packard reducing the price of their 25 to 100 m fibre optic connector and cable assemblies by as much as 47% on quantity orders. Even on small quantity orders, reductions range from 17 to 47%.

Hewlett Packard's components group manager, Ian Graham, pointed out that their new prices continue to include installed and tested connectors guaranteed to meet the
standard performance specifications. Another spokesman from the company told Wireless World that the price cuts partly reflected increased usage but were mainly the result of the improved techniques. He believed that Hewlett-Packard was one of the first companies to introduce such a deal but he assumed that other companies would also be offering a similar package. Cuts of this magnitude are likely to increase the use of optical fibres still further in some fields.

False alarms anger firemen because they tie up costly men and machines at times when lives could be endangered by a real blaze. Racal Recorders Ltd has introduced an advanced cassette recorder which will help to guard against this. Callstore cassettes, as they are called, have been installed at the Oxfordshire fire service headquarters, Kidlington, and can quickly replay an incoming telephone call at the same speed, or faster or slower, to make identification of the caller's voice much easier. The divisional officer at the Kidlington HQ, which has three Callstores, says that they will also help the monitoring of genuine calls because people in a panic have a tendency to speak too fast. Our picture shows the Callstore recorders installed in one of the HQ's control consoles. A 19in rack houses the drive unit (below the desk) which can take up to four cassette drives. Although the digital remote-control units are shown at the console they can be used up to 100 m away from the drive unit. Tape speed is nominally $17 / 8 \mathrm{in} / \mathrm{s}$ but this can be varied -50% to $+20 \%$. A message search facility is also included in the unit - at the beginning of each message an audio tone is recorded and these can be sensed on rewind and selected by reference to a seven-segment message counter.

Israel solar heating for France

Miromit, an Israeli solar-heating equipment manufacturer, has been selected as "approved supplier" in France following a major international competition for the in stallation of sun-heating units in that country. The company was named as the only non-French firm among six, first prize winners in competition with 78 European solar equipment firms to supply solar energy for 3,000 residential units throughout France. Tests were conducted by the French Ministry of Environment with France's largest public building organization, L'Union Nationales des Federations De Organismes, H.L.M Miromit will be awarded at least 500 of the solar installations. Users who purchase their collectors will receive subsidies from the French government, which is encouraging the use of solar energy for domestic hot water.

Radios protect wildlife from poachers

The Kenyan government's Ministry of Wildlife and Tourism, which is taking measures to stamp out poaching that is threatening some wildlife species with extinction, has placed a large order for v.h.f. communications equipment with Marconi Communication Systems Ltd:

The order, received through the Crown Agents for Oversea Governments and Administrations, is for sixteen base stations, fitted with RC730 transceivers, more than 350 outstations and mobiles, fitted with RC625 10-channel f.m. radiotelephones, and over 200 RC530 transportable lightweight radiotelephones. The portable transceivers will be used by foot patrols.

Marconi's contract is to completely reequip and expand the country's present v.h.f. network to cover all their national parks and sanctuaries for both wildlife and fisheries.

NEWS IN BRIEF

Dr Thomas A. Mutch has been appointed (with effect from July 1, 1979) NASA associate administrator for space science. As professor of geological sciences at Brown University Providence, R.I. he has been a major contributor to NASA science programs since 1969. Among other things he was a member of the Lunar Science Review Board from 1969 to 1973 , leader of the lander imaging science team for the Viking project from 1969 to 1977, and is chairman of several NASA committees planning the post - Viking exploration of Mars.

Lionel Mudd, Head of the Engineering Support Department of the Research Division of Rediffusion Engineering Ltd, has been elected President to the Society of Cable Television Engineers, succeeding Chris Swires. Stanley Bell of the Radio Rentals' Relay Division is now Vice President. The society's Secretary is T. Hall, 10 Avenue Road, Dorridge, Solihull B93 8LD.

His Royal Highness, the Prince of Wales, has agreed to become Vice-Patron of the Royal Institution. There is a long tradition of Royal patronage going back to the foundation of the Institution in 1979, and past Princes of Wales have been Vice-Patrons since 1863.

CIRCUIT IDEAS

Differential rumble filter

A major problem with hi-fi reproduction from disc material is the large sub-audio signals known as rumble

A common solution to this problem is a steep cut filter below 50 Hz , but unfortunately this also removes musical information.

Examination of the unwanted signals show that they are generated mainly by stylus movement in the vertical plane which produces stereo difference signals. Because purely vertical stylus signals will produce antiphase output voltages at the cartridge terminals, they can be removed by simply mixing the two channels. If the mixing is confined to frequencies below 100 Hz , the mono bass output will have no effect on the stereo image.
The block diagram shows the basic system. The separate bass signals are simultaneously deducted from the

treble components, T_{L} and T_{R}, and the mono bass is also added to the treble components in the unity gain mixers, the outputs of which provide a stereo signal with a mono bass.

In the practical circuit the left channel, the filter and the inverter are in one stage around Tr_{1}. A Butterworth filterwith a 12 dB /octave roll off is used, andi the common bass mixer is formed by $\mathrm{Tr}_{3}, \mathrm{R}_{13}, \mathrm{R}_{14}$ and R_{15}.
Transistor Tr_{2} forms the unity gain mixer and operates in the virtual earth mode. To minimise phase shift and reduce the component count, direct coupling is used throughout.

The circuit should be inserted between the pre-amp and power-amp, and should be driven from an impedance of not more than $10 \mathrm{k} \Omega$.
My prototype significantly reduces spurious low frequency signals, and has no effect on the musical bass. No difference can be detected in the level of bass with or without the unit in circuit, and the measured frequency response of the prototype extends from 15 Hz to 30 kHz at the -1 dB points. Distortion measures less than 0.1% for outputs of less than $1 V$ r.m.s.
J. P. Macaulay

Crawley
W. Sussex

Portable wet and dry thermometer

By using two silicon diode sensors fed by a constant current source, this thermometer can make rapid temperature measurements from 0 to 60 deg C to within ± 0.1 deg C. With the values shown the diode current is 1.2 V / $R_{4}=250 \mu \mathrm{~A}$. The output V is given by
$-R_{\mathrm{F}}\left[\frac{V_{\mathrm{OFFSET}}}{\mathrm{R}_{3}}+\frac{\left(V_{\mathrm{DO}}-2.2 T\right)}{\mathrm{R}_{1}}-\frac{1200}{\mathrm{R}_{6}}\right] \mathrm{mV}$
and after calibration this reduces to

$$
V_{\mathrm{OUT}}=\frac{R_{\mathrm{F}}^{\prime}}{2 \mathrm{k} 2}\left[2.2 T-V_{\mathrm{OFFSET}}\right] \mathrm{mV}
$$

where R_{F} is the total feedback resistance in $\mathrm{k} \Omega, T$ is the temperature in deg $\mathrm{C}, V_{\mathrm{DO}}$ is the diode voltage at $0 \operatorname{deg} \mathrm{C}$ in mV and $V_{\text {OFFSET }}$ is the temperature range offset voltage in mV .
Diode D_{1} is housed in a wet wick and aspirated by a small fan. To calibrate the circuit disconnect the meter and set RV_{1} and RV_{2} about midway. Adjust RV_{3} and $R V_{4}$ so that 11 mV is developed across each of the $100 \Omega 1 \%$ resistors. Then, with the temperature offset switch in the 0 to 15 deg C position,
place both probes into an ice and water slurry. Connect a millivoltmeter to the output and adjust $R V_{1}$ and $R V_{2}$ for a null with the wet/dry selector switch in the appropriate position. If there is insufficient adjustment range replace R_{6} with a slightly different value. Next, place both probes in an accurately known water temperature of about 4 deg C. Reconnect the meter and adjust $R V_{6}$ and $R V_{7}$ until the correct temperature is indicated on the meter. Finally, put the probes into a beaker of water of known temperature around 25 deg C, place the temperature range switch in the appropriate position and adjust RV_{4} to obtain the correct reading. The last adjustment may be made in either the wet or dry position. Current drain is 4 mA from the positive and negative supplies. The circuit maintains its stated accuracy if the batteries discharge from 9 to 6 V , and if the ambient temperature rises to 45 deg C. High stability 1 or 2% metal oxide resistors should be used throughout and the circuit should be mounted in a case for protection against solar radiation.
K. D. Achleitner

Rondebosch
South Africa

L.e.d. flasher

If a flashing l.e.d. is required this circuit is simple and effective. A Schmitt trigger provides regenerative switching and R_{1} gives the necessary charge/ discharge bistable action as Tr_{1} is

switched on and off. Resistors R_{3} and R_{4} set the on and off times respectively and the best ratio seems to be $2: 1$. The values shown achieve this at about 1.5 Hz . Brightness of the l.e.d. is set by R_{1} and R_{2}.

W. C. Peaston

Gosta Green
Birmingham

For the first time...TWO NEW and separately situated display areas.

TWIN VENUES

Respected internationally for its professional service to the electronics industry, Internepcon takes on a new look this year by introducing two separately situated exhibition areas to cover all aspects of electronics production technology. More than 400 exhibits in the METROPOLE and BRIGHTON CENTRE will be displayed in three defined areas.

PRODUCTION CENTRE

Equipment for component insertion, milling, etching, drilling, soldering and cleaning will be displayed on large open stands in the BRIGHTON CENTRE.

SEMICONDUCTOR AREA

Devices, materials, test and production equipment, devoted to semiconductor development and production, occupying the ground floor of the METROPOLE HOTEL.

INTERNEPCON AREA

Six halls of components, materials, tools, hardware, PC's chemicals and production aids for the total electronics industry in the METROPOLE CONVENTION CENTRE.

CONFERENCE PROGRAMME
In addition to the Internepcon programme a special Semiconductor Conference will feature subject areas for Semiconductor Memories. Modern Packaging Methods. VLSI. Designing Systems with Microprocessors. LSI Testing. Semiconductors for Telecommunications. Static Elimination in Semiconductor Assemblies.
FOR ADVANCE INFORMATION COMPLETE AND RETURN THE COUPON - NOW

```
Return to Kiver Communications S.A.
171/185 Ewell Road, Surbiton, Surrey, England
Telephone: 01-390-0281 Telex: 929837
```

Name
Company
Address \qquad
-

Please send FREE exhibition ticket Please provide conference programme My prime interest will be

Production Centre Semiconductor Area Internepcon Area

ENGINEERS ARE VICTIMS OF
 THE MARKET

Mr C. E. H. Benson ("The Solicitor's Lot", May letters) contrasts the "bellyaching" engineer with the professional outlook of solicitors, yet is very reticent about their status.
The Law Society, as the professional body for solicitors, provides its members with guidance on the fees to charge for professional work. It prohibits advertising for clientele, thus limiting competition*. A law graduate who aspired to qualifying as a solicitor, but was in temporary employment, recently explained to me that practical training in law was difficult to obtain because the permitted number of training positions with firms of solicitors was limited. Thus competition was further limited. Overall, The Law Society has resort to the courts to protect its members from competition in legal work from outside the profession.

On the other hand, engineering is not a regulated profession. A qualified engineer has to have an aggregate of engineering education, training and responsible experience of not less than seven years to attain corporate membership of the Institution of Electrical Engineers, which has learned society status, and has to compete on the open market not only with other engineers but with many unqualified persons who trade and advertise as engineers. Because there is so much competition, skill and expertise cannot command economic rewards. Qualified engineers have to resort to the trade unions to prevent a continuing fall in living standards. Neither the engineer nor his institution can take action to prevent competition from unqualified persons.

The professional exercise of law differs from that of engineering. For example, last year The Law Society succeeded in obtaining a conviction (The Guardian 28 Jan. 1978) against Mr Barry Powell who runs a nonprofit organisation called Assistance in Divorce. The complaint was that he had helped people prepare documents to get undefended divorces. The difference between the professional practice of engineering and law is that the former is subject to the caprices of market economics while the latter is the exercise of real power in the community.
R. E. George

Ilford
Essex
*But the Law Society itself advertises for the profession as a whole, pointing out, incidentally, that individual solicitors can be found in Yellow Pages. - Ed.

RELATIVITY AND TIME SIGNALS

Initially failing to grasp Dr Essen's point (October 1978 issue), I did not at the time give his article the attention it deserved. However, the "answers" to his problem which you have published, together with some inconsistencies in the recent BBC television programme "Einstein's Universe", have convinced me that it is high time we physicists awoke from our relativistic dreaming.
It is implied in the April issue that this correspondence is regarded as being closed by Professor Fremlin's letter in that issue, but

I hope you will allow me space to pose the following extension to Professor 'Fremlin's scenario: consider a third party, "Observer", positioned along a line at right angles to that joining Sirius and Earth, far enough away that "Traveller" moves virtually at right angles to his line of sight. What is "Observer" to make of the proposed relativistic, or rather Lorentzian, caperings of "Traveller's" clock? Surely, he will see both "Traveller's" and "Stay at home's" clocks running always at the same rate.

A little more open-mindedness and a little less blind faith than has been revealed by this correspondence might reduce the present resemblance of physics to a moribund branch of theology.
W. T. Morris

Teddington
Middlesex

AUDIO KITS
 AND MODULES

I would most strongly like to endorse the comments of Ivor Abelson regarding reviews of kits and modules (May issue). Not one of the major electronics magazines even attempts to review such items, unless one absolutely pathetic attempt in April is to be counted (most of the samples never arrived so the magazine could not say very much).
The market in modules seems to be so cut-throat at present that unless the buyer wants something rather special which he is prepared to spend many hours building, it is pointless to build completely from scratchdesigns and Veroboards etc. Hence anyone simply restoring disco units or building p.as (which I do for churches and halls etc.) naturally turns to the "module" or kit market. But although there are some excellent units, I've discovered, there are some very dodgy specimens as well and specifications are often misleading - especially when the figures only apply when the unit is chassis mounted with an elaborate p.s.u. (not supplied!). To take an example, the Klifco $30+30$ amplifier module, if ordered with a stabilised p.s.u. comes complete with both mounted on a solid chassis which acts as heat sink. The BiPak modules do not. This, in practice, is a major consideration and makes a great difference to installation.

In more esoteric fields, kits are often the answer to component buying problems. I tried to build a magazine project recently just buying the parts from their cheapest sources...... and it took nearly 20 orders and cost a fortune in postage charges. I do, however, have the satisfaction of knowing that all the semiconductors are first grade,
that the capacitors in the power supply are computer grade and of recent manufacture, that the output and input socketry is both of the type I want (Standard jacks rather than DIN-plugs) and that the cabinet-work is very rugged. Some of the socketry supplied with kits that I have bought is better thrown away. With these kits it is not the electronics that form the bulk of the expense but the hardware, the socketry and the transformers and smoothing capacitors and these can vary enormously in quality. In my opinion, there would be no greater service you could do for many of your non-professional readers, than reviewing and monitoring such items.
Hugh Bridge
Vauxhall
London SE11

OWNING CB SETS SHOULD BE AN OFFENCE

The mere mention of citizens' band radio in the technical press almost invariably precipitates heated correspondence. However, despite this, one fact seems to be generally overlooked - that certain people do use c.b. equipment within this country and as such are openly flouting the law of the land. Furthermore c.b. sets are both widely advertised and are readily available from several retailers, despite regulations which expressly forbid their importation. Unless action is taken soon it will be impossible to clear the 27 MHz band if and when such a service is legally introduced on more suitable frequencies.
The activities of these c.b. pirate operators cannot possibly assist the efforts of many hardworking and responsible people who are at present campaigning for a recognised c.b. radio service within the United Kingdom. The apprehension of the 27 MHz and other pirate operators is, however, seriously hampered by the present regulations, and,I suggest that only by changing the law to make it an offence to possess radio transmitting equipment without the appropriate operating licences will the situation be readily brought under control.
J. Berry of Bristol (June letters) is mistaken in his belief that the "high and mighty" radio amateur is opposed to c.b. as such. The two services are fundamentally different and each has its part to play in a responsible society. The majority of radio amateurs do, however, take exception to the belief that c.b. should be introduced as an amateur band for unqualified operators, especially so since a radio amateur licence is readily available to any person who has sufficient interest to pass a simple examination.
W. B. Kendal G3GDU

Crawley
Sussex

RSGB TO CONTROL CB USERS?

I have no intention of entering into a discussion about the benefits that would result if we had a citizens' band in the UK; obviously very powerful financial interests are at work behind the scenes. But, as a member of the RSGB, I doubt the wisdom of compelling c.b. users to join this body as suggested by Mr

Berry in June letters. Although I feel that all radio amateurs should join the RSGB I would not dream of making it the law of the land that they should join.
And I do not follow Mr Berry's comment that if all c.b. users were members of the RSGB that body could ensure that they behaved properly on the air. The RSGB is not in my opinion the body to police either c.b. or the amateur bands. We have a government department charged with this task.
Of course the efficiency of the Home Office may fall soon as the Thatcher cuts take effect, but even then I would be loath to see the RSGB take over such jobs from the Government.
L. S. Chase

London SW2

ANOTHER CANADIAN ON C.B.

I felt it necessary to write in an effort to assure Wireless World readers that not all Canadians are cast in the same mould as MrI. Switzer whose letter appeared under the heading "Ridiculous UK" in your May issue. Considering the rudeness of the opening paragraph one tends to suspect that the writer is at least to some extent lacking in manners and thus is hardly qualified to comment on what is sociably desirable or acceptable.
Mr Switzer implies that as there are millions of citizens' band sets operating in North America it therefore must be a good thing and the rest of the world must follow. This theory that high numbers make anything desirable and good is a very interesting one. In North America we have millions of people with cancer, VD and all kinds of things that in my ignorance I thought were nasty.

One problem of c.b. is the tendency of some people to prattle away with no thought to logic or common courtesy; but then sometimes we get the same thing in a much older form of communication.
C. Henry

Pte Clare
Quebec, Canada

HAVERSINE FOR
 ANTENNA AIMING

Mr A. M. Stephenson (June letters) is in good company. It seems that few of my colleagues know what a haversine is. The haversine ${ }^{*}$ formula. hav $a=$ hav $(b \sim c)+\operatorname{hav} A \sin b$ $\sin c$; together with its various rearrangements, is very useful for solving spherical trangles. $(b \sim c)$ means the difference between b and c.

The angles of such a triangle might be referred to as A. B. and C and the sides opposite them as a, b and c. The sides are arcs of great circles and are expressed as the angles subtended by each arc at the centre of the sphere. If the radius of the sphere be known the distances along the arcs may be calculated. Since the geographical mile corresponds to one minute of arc along the equator it is convenient to leave a, b and c in angular form.

It might be thought that the haversine formula requires the use of a special calculator button but this is not so. Hav $\theta=\sin ^{2} \theta / 2$ and so any scientific calculator will do. The haversine is used to avoid ambiguity. $\operatorname{Sin} 93^{\circ}$ entered on a calculator will offer 87° when arc
\sin is pressed but $\sin 93^{\circ} / 2$ squared and put through the reverse process returns one safely to 93°. The haversine is always positive because of this squaring process.

While considering the matter of haversines recently I realised that manipulation of $\sin ^{2} \theta / 2=1 / 2(1-\cos \theta)$ leads to an algorithm for finding square roots; that is, that $\sqrt{ } n=\sin$ $\operatorname{arc} \cos (1-2 n)$. This works well for values of $n<1 .^{2} \sqrt{ } 375$, say, is best considered as $100 \sqrt{ } 0.0375$. Can anyone suggest a use for this amusing ornament?

Apropos of something quite different, I find that

$$
\sqrt{ } n=\frac{(n+1)}{2} \sin \arccos \frac{(n-1)}{(n+1)}
$$

This, apart from being a good party trick, is equally useless.
Perhaps it would be as well to state that the three points of the antenna aiming triangle are the points of transmission and reception and the north or south pole; whichever is convenient.
P. Wadham

Carshalton
Surrey

"SIMPLIFIED DISTORTION MEASUREMENTS"

The late Mr Butler's article on distortion measurements (April issue) emphasizes the need for great care in the theory and practice, particularly when the distortion is small. As an oldie with experience in the design of wideband feedback amplifiers at r.f. and a.f., I learnt in the difficult days of valves and transformers the value of single-point earths to avoid spurious feedback due to mutual impedances and also to use local feedback loops sparingly. Thirty years ago such techniques made possible stable wideband amplifiers with over 60 dB loop feedback over portions of the passband, but in those days we had the advantage of using pin-boards and not printed circuits but lacked the simplification due to transistors and transformer-less designs. Can anybody suggest a better method for seeking trouble due to improper earthing than to provide input and output sockets that are mounted close together on a sheet of metal? Mr Moir has drawn attention to similar bad practices. Mr Butler almost insists on the use of an isolating transformer as a cure but surely this only prevents troubles in one section of the system and problems due to poor earth techniques may well be causing troubles in other sections, necessitating the use of more transformers. No, the real answer is to 'clean up' the earth connections and only use transformers when such cleaning up is impractical or the other advantages of transformers are utilized.
On our tv feedback amplifiers we used, and rejected, the self-oscillating method described because the additional feedback loop could produce instability and changes in performance. Consider Mr Butler's typical amplifier shown in Fig. 5. The feedback network has a gain of about $1 / 40$ at the fundamental frequency and an effective Q of about 6, but as the author says "worse is to come". Assuming that the gain of the original amplifier was $40 \angle 0^{\circ}$ at the second harmonic frequency, the addition of the network will change this gain to about $40-j 5$. I think the amplifier designer would be justified in cal-
ling this a FB modification.
The RC parallel-T network is not strictly a three-terminal form of the Wien bridge since this bridge has two resistive arms. One can expect this T network to have a superior Q value - about twice - to the Wien bridge because in an equivalent bridge circuit all four arms contain RC combinations.

In the table associated with the bridged-T networks some of the information is wrong, as can be seen by applying Bartlett's Bisection Theorem to convert these networks to the lattice form. The sole reason for the presence of the resistance R is to compensate for the inductor loss resistance so that a complete null can be obtained. This is very important for low Q coils but the inclusion of these resistances alters the frequency of the null. In the case of the network using coupled coils the coefficient of inductive coupling is not unity and comes into the equation for the null frequency.

Thus from the foregoing and for other relevant reasons I think that it is more rewarding to spend effort on 'cleaning up' a driving oscillator than to use self-oscillating techniques. A useful network for nulling and the measurement of harmonics is as follows:
The use of a transformer can give a voltage gain which at low levels is always useful. The two halves of the centre-tapped winding are wound on together and high-permeability cores can be used. When $R=5.6 \omega_{0} L_{i}$ the relative output voltages are optimum and for the 2nd, 3rd, and 10th harmonics are respectively $0.5,0.77$, and 0.9 . For spot frequency working this can easily be equalized. In practice the oscillator frequency and the variable resistor are trimmed to give the desired null. It is much easier to set this null than with a bridged-T network.
F. G. Clifford

Wynberg
South Africa

I fear that the article "Simplified distortion measurements" by the late Mr F. Butler (April issue) dismisses the Wien oscillator too hastily. It has many advantages - uncritical setting up, range changing etc. - so it deserves a second look.
The author gives the correct transfer function (with $K=1$). for the network as

$$
\frac{e}{E}=\frac{1}{3+j(n-(1 / n))}
$$

but the oscillator takes the form of the Wien bridge, and the transfer function now becomes

which is a notch filter with infinite attenuation at $\mathrm{n}=1$. Another form is

$$
H_{(s)}=\frac{S^{2}+\omega^{2}}{S^{2}+(2+K) \omega S+\omega^{2}}
$$

and the position of the poles depends on the value of K. By a judicious choice of K the circuit could be used at the designed gain of the amplifier, or to make life easier at a high gain (e.g. with $K=0.01$) which would result in amplified distortion and so easier measurements.

On the subject of the low cost digital frequency meter by Messrs Tooley and Whitfield (January and February) there may be difficulties for some constructors in a well thought-out design.
There is no specification of frequency response for most c.m.o.s. devices, only typical performances being given, and quite the slowest device I have met is the 4049 inverter which could, in one case, just manage 180 kHz . The binary dividers also are suspect here. NAND or NOR gates are much quicker. Perhaps the easiest solution would be to change over to a crystal at 250 kHz . Another point is the input capacitance of the device, which varies significantly with the rail voltage at 5 V . Around this figure it is easy to trim the frequency by small variations to the rail voltage, whereas at about 12 V the frequency becomes much less voltage dependent.

For a frequency meter I would recommend a separate voltage regulator for the oscillator circuit.
Tim Hartigan
Dublin 4
Republic of Ireland

SMALLER TELETEXT RECEIVERS NEEDED?

I was interested to see the news item on the disappointing sales of teletext tv receivers in the July issue and the editorial comment on this subject in the August issue.
I wonder if this is due to the fact that the manufacturers treat teletext facilities as an exotic gimmick available only at the very top end of the market. I have enquired in several places about renting a set with teletext but in order to have the decoder I would also have to lumber myself with an obscenely large 26 -inch colour tv receiver, ultrasonic controls and a king's ransom in rental fees.
If teletext were available on a compact tv set I would get one tomorrow and I'm sure a lot of other folk would too.
Charles G. Brewster
Brockley
London SE4

T.H.D. MEASUREMENT AND SOUND QUALITY

I was somewhat dismayed to see in your July issue, yet another article describing methods of measureing harmonic distortion of the order of 0.00001%. Mr Linsley Hood and the late Mr F. Butler (April issue) have produced two well thought-out methods of measuring t.h.d. but without questioning the validity and usefulness of the technique in the first place.

In the audio field percentages of distortion have very little relation to the purity of the perceived sound. Unless the figures are weighted in relation to the harmonic struc-
ture of the distortion, the results are misleading to say the least. An amplifier with a 'spikey' 1% crossover distortion will sound quite different from one with 1% second harmonic distortion. It is true that t.h.d.. measurements at high frequencies can indicate problems of slewing - induced distortion but the correlation is not straightforward.

The present popularity of valve amplifiers, with their distortions in the 1% region, indicate that harmonic distortion alone is hardly a reliable criterion on which to judge the sonic performance of an amplifier. There are many other parameters in my estimation worthy of such detailed attention as is currently given to t.h.d., among which in power amplifiers are: dynamic power supply rejection; intermodulation with power supply ripple; variation of output impedance with (a) frequency, (b) output voltage; and dynamic shifting of the working point (dynamic offset).

I hope in future to see some designs that have a wider understanding of the mechanism of hearing.
Brian E. Powell
Crimson Elektrik
Leicester

INTERFERENCE FROM ELECTRONIC IGNITION

Mr Whitehead does not describe the nature of the interference from which he suffers (May letters), but a note of my efforts may be of interest. My problem was both impulse noise from the discharging of the reservoir capacitor and whine from the inverter. My system is a home-built affair but is fairly representative in operation.
It is important to understand that the primary and secondary current in the ignition coil both pass through the wiring to the ignition switch and return to chassis through the battery (Fig. 1). Thus it is clear that a car, radio will inevitably be connected to a noisy supply line. The actual route taken by the noise current may be quite complex and.
involve stray capacitances and inductances in the vehicle's wiring loom. Clearly, then, the interference must be suppressed at source.

The problem in my case was quite severe and the cure was complete. The lead to the coil primary was screened, this being earthed inside the box containing the electronics. All the other leads leaving the box were decoupled with $0.1 \mu \mathrm{~F}$ capacitors. The 12 V supply to the coil and to the electronics was passed through a filter as shown in Fig. 2; this filter was housed in a separate die-cast box and mounted close to the coil.
The performance of this arrangement is excellent. Only a trace of impulse noise remains at the high frequency end of the medium-wave band, and this disappears when the aerial is retracted. A.just audible trace of inverter noise (a rapidly modulated whistle) is apparent on weak long-wave signals.

The car radio used here is of the "cheap and cheerful" kind and is plagued by images and other spurios responses. The cure for this has been a two-section L-R low-pass filter at the base of the aerial, with a cut-off frequency of 1.8 MHz . This also gives some relief from noise from other vehicles and neon display lighting.
T. H. Woolner

Harpenden
Herts

Fig. 1.

DISPLACEMENT CURRENT

Messrs Catt, Davidson and Walton are perhaps right to draw attention yet again to the importance the distributed nature of real capacitors can have in real circuits (December 1978 issue). Its significance in r.f. circuits is well-known and obviously it has some slightly unexpected subtleties in highspeed pulse circuits. But I cannot see how they can claim to have excised displacement current from Electromagnetic Theory - or in their case circuit theory - in any useful way.

To begin with, Kirchhoff's "Laws" apply to ideal circuits of zero physical extent described by simple mathematical relationships between their terminal voltages and currents. No assumptions are made about their physical nature, nor is the concept of "displacement current". necessary for the development of all the richness of modern circuit theory from these basic assumptions. Nor is there any doubt about the practical usefulness of the resulting theory, for example, in. successfully designing high-performance filters.

If one must, for the sake of peace of mind, equate the terminal current of a capacitor with ". . . a mathematical manipulation of the electric field E between the capacitor plates" all well and good, and no harm will come provided the limits of the approximations necessary are always borne in mind; for example, that the dimensions of the capacitor must be small compared with the wavelength of the electrical disturbance being considered. But where is the conceptual improvement in equating the terminal current to what must in the end be a mathematical manipulation of the electric and magnetic fields associated with a transmission line? Especially when the manipulations involved are a lot more difficult.

If, as they claim, the concept of displacement current permits the retention of Kirchhoff's laws, does their "excision" of it throw out those too? And if so, what analytical tools are left to us for circuit analysis? If their transmission-line concept replaces displacement current, then how so? For there is still no closed path in which current can flow.

In short, are we to regard this article as a warning to beware of transmission-line effects in capacitors at frequencies (or pulse widths or risetimes) where they may be important, and can we therefore take the philosophical claims with a pinch of salt? Or are we asked to change the fundamental basis of circuit and electromagnetic theory as we know it? If the latter, I find the claims made to be very unconvincing.
John L. Haine,
Chelmsford,
Essex.

The authors reply:

We find the second paragraph of Dr Haine's letter ambiguous, and so cannot reply to it except to say that "modern circuit theory" is rich, in the same way as other tall stories are rich. High-performance filters are not designed using "modern circuit theory", because inductors and capacitors are not designed using theory; they are cobbled in a haphazard, experimental way. Try talking to the "experts" in a company "designing" chokes or capacitors.

As with para. 2, we find para. 3 is back to front, or at least ambiguous.

Para 4. The answer is, yes. Traditional analytical tools have been useful in the
setting and passing of examinations, but not in practical engineering problems; emphatically not in the interconnection of high speed (lns) logic, where they have created havoc, leading to the abandonment of virtually all such projects.
Para. 5. You are asked to change the fundamental basis of circuit and electromagnetic theory as we know it. The need to successfully assemble high speed logic systems forces us to abandon the slovenly mess which has masqueraded as electromagnetic theory for fifty years, and build a sound theory from the ground up. The first casualty is displacement current, the bastard issue of a marriage between ignorance and nonsense. We must clear away the rubble before we begin to build.
"Our electrical theory has grown like a ramshackle farmhouse which has been added to, and improved, by the additions of successive tenants to satisfy their momentary needs, and with little regard for the future. We regard it with affection. We have grown used to the leaks in the roof. . . . But our haphazard house cannot survive for ever, and it must ultimately be replaced by a successor whose beauty is of structure rather than of sentiment." - Intermediate Electrical Theory, by H. W. Heckstall-Smith, Dent, 1932, page 283.
A lot more sludge has collected since 1935. We must dredge deep, through a century of sycophancy.
I. Catt. M. F. Davison, D. S. Walton.

DISAPPEARING MAGNET

May I take Epsilon's problem of the magnetic sphere (December 1978, page 69) a little further and ask what is the external field if the last plug is later removed? The answer is that the field remains zero! To see why, one simply considers the energy required to push the last plug into place. Since, after you have done this, there is no magnetic field inside or outside the sphere, the energy involved must be that required completely to demagnetize the whole structure. Consequently when it is disassembled, the pieces will no longer be magnets.
J. Middlehurst

Sydney
Australia

The author replies:

Mr Middlehurst poses a most interesting extension to the original problem, one which is difficult to discuss with any precision unless the coercivity of the magnetic material is known. (Coercivity is the H field in ampere turns per metre required to completely demagnetize a specimen.) To avoid this difficulty it is convenient to replace each magnet by an equivalent solenoid. If the original magnet were long and thin, this solenoid simply consists of a current sheet wrapped around the surface. The sphere can now be built up as in the original problem.

Starting with the first solenoid, as soon as the second is brought up against it there will be a repulsive force. Furthermore, the currents in the two sides that buck one another flow in opposite directions and completely cancel one another. This is illustrated in Fig. 1(a). As the sphere is assembled, it will be found that all the solenoids repel one another and all adjacent sides have opposite current

Fig. 1 Stages in the assembly of the sphere, showing current cancellation.
flows. In fact, only the current at the extreme periphery causes an external magnetic field, and this is the situation illustrated in Fig. 1(b).

The situation when the last solenoid is about to be fitted in is shown in Fig 1(c); the currents cancel everywhere except round the small hole. The external field at this time is quite small, and insertion of the last solenoid will completely cancel the remaining currents shown in the diagram. The magnetic field is zero everywhere and the stored potential energy is distributed evenly over all the solenoids in the form of the strain in the clamps required to hold the whole structure together. Note that potential energy and magnetic energy are gradually interchanged as the sphere is built up.

What happens when the solenoids are replaced by permanent magnets is not quite the same. For all practical materials the coercivity is such that there would be a progressive demagnetization as the sphere is built up, the edges of the shell having the greatest magnetic intensity. Under such assumptions the completed sphere might have residual magnetism, and it is no longer possible to discuss Mr Middlehurst's interesting supposition.

TECHNICAL WORDS

F. L. Devereux (December 1978 letters) has raised a point which has been aired in some technical publications in this country, namely the use, spelling and pronunciation of words used by technologists. While "expertise" is not strictly a technological word (it does not describe an item or situation specifically related to a science or engineering) it is typical of the changes emer-
continued on page 86

Passive notch filters - 2

How to design high and low impedance null filters

by G. Kalanit, B.Sc., M.I.E.E., Rediffusion Engineering Ltd.

Selecting the right type of filter for the particular job at hand from the literature is laborious and time consuming. And little information is provided about design procedure and hardware.

Three articles provide design procedure and simple formulae by way of examples as well as hardware details. To simplify description of the examples formulae and statements are given without theoretical proof; normally theoretical and mathematical development is treated separately in appendices.

THIS THREE-PART article concentrates mainly on null-type notch filters which are derived from a prototype lattice or Wheatstone bridge. At the notch frequency the arms of the bridge are made to resonate into four equal resistances which perform a null of the bridge and no output of the frequency
appears at the filter output. At all other frequencies the filter acts as an all-pass network.
The lattice which possesses four resonant arms is a balanced type of network. In most practical applications an unbalanced or grounded form that employs only two resonant arms is preferred, achieved with a hybrid transformer.

There are number of unbalanced configurations, all of which use the same hybrid transformer and the choice depends on the particular application at hand. The notations of the formulae refer always to the prototype lattice; thus the same set of formulae serve all the variations. A detailed description summarising all the configurations is given in a section about the hybrid transformer in part three.
Examples 3 and 4 are high and low impedance null-type filters.

Example 3: High impedance null filter

A high impedance null type of filter provides a narrow notch in amplifier interstages where the impedances of the source and the load are comparatively high. The basic circuit is derived from Fig. 1-5 by the removal of the reactive components of arm ' b '. As with Fig. 1-5 it is possible to dispense with the hybrid transformer. The result is two possible
configurations shown in Figs 3-1 and 3-2, derived from Figs 1-9 and 1-10 respectively.
To minimize insertion loss in the pass band, the null resistance $R_{\mathrm{b}} / 2$ should be as high as possible, consequently $2 R_{\mathrm{a}}$ which is $4 \times R_{\mathrm{b}} / 2$ should also be maximal. Hence, no real $2 R_{a}$ resistor is employed; resistance $2 R_{\mathrm{a}}$ represents the

dynamic impedance D of coil inductance $2 L_{\mathrm{a}}$. Thus

$$
2 R_{\mathrm{a}}=D=\mathrm{Q}_{\mathrm{a}} \cdot \omega_{\mathrm{o}} 2 L_{\mathrm{a}}
$$

from equation 2-2 where Q_{a} is the Q value of coil $2 L_{\text {a }}$.
The equivalent circuit at resonance is shown in Fig. 3-3. To have a null: $R_{\mathrm{a}}=R_{\mathrm{b}}$. Hence

$$
R_{\mathrm{b}} / 2=R_{\mathrm{a}} / 2=2 R_{\mathrm{a}} / 4=D / 4
$$

i.e., $R_{\mathrm{b}} / 2$ is adjusted to be a quarter the value of the dynamic impedance.
From appendix C , equations $\mathrm{C}-10$ to C-12,

$$
\omega_{3}=\frac{(n+1) / n}{\left(C_{\mathrm{a}} / 2\right) \cdot 2 R} \cdot M
$$

where n is the ratio of R_{a} to R,

$$
n=R_{\mathrm{a}} / R=D / 2 R
$$

and

$$
M=\frac{2(n+m)}{n+m(n+2)}
$$

where m is the ratio of R_{s} to R,

$$
m=R_{\mathrm{s}} / R
$$

When the source and load resistance are equal, $R_{\mathrm{s}}=R$, then $m=1$ which results in $M=1$. Hence

$$
\omega_{3}=\frac{(n+1) / n}{\left(C_{a} / 2\right) \cdot 2 R},
$$

when $m=R_{\mathrm{S}} / R=1$.
Also $\omega_{3}=\frac{1}{C_{\mathrm{a}} / 2}\left(\frac{1}{2 R}+\frac{1}{D}\right)$.
When $D \gg 2 R \omega_{3}$ approximates to

$$
\omega_{3}=\frac{1}{\left(C_{a} / 2\right) \cdot 2 R}
$$

Fig. 3-3

Notice that the larger the source, the load and dynamic impedances the narrower the notch becomes. In the example shown in Fig. 3-4, a notch is required at $f_{0}=24 \mathrm{MHz}$ with bandwidth of about 10 kHz at notch depth of -40 dB , i.e., $f_{40}=0.01 \mathrm{MHz}$. Hence

$$
f_{3}=0.01 \times 100=1 \mathrm{MHz}
$$

$R_{\mathrm{S}}=R=1000$ ohm and $m=1, M=1(R$ is 2200Ω in parallel with 1800Ω is 1000Ω) From equation 3-8

$$
C_{a} / 2=\frac{1}{2 \pi \cdot f_{3} \cdot 2 \widetilde{R}} 79.5 \mathrm{pF}
$$

It is not possible to use equation 3-6 or $3-7$ to compute $\mathrm{C}_{\mathrm{a}} / 2$ more accurately because the dynamic impedance D of $2 L_{a}$ is unknown. However if one assumes a Q value for the coil, it is possible to use the following equation
(appendix C equation $\mathrm{C}-17$)

$$
C_{a} / 2=\frac{1}{\omega_{3} .2 R(1-q)}
$$

where $q=\frac{\mathrm{Q}}{Q_{\mathrm{a}}}=\frac{f_{\mathrm{o}} / f_{3}}{Q_{\mathrm{a}}}$,
and Q_{a} is the Q value of the coil.
Assuming $Q_{a}=100$ then

$$
q=\frac{24 / 1}{100}=0.24 \text { and }
$$

Example 4: Low impedance null filter

The low impedance null filter suits networks where the source and load impedances are low. A common example of low impedance source is an emitter follower. The lower the impedances the narrower is the notch. The circuit is in a sense the inverse network of the high-Z notch of example 3.

The circuit is derived from Fig. 1-5 by the removal of the reactive components of arm ' a '. Unlike example 3 , the hybrid transformer stays.

To minimize insertion loss in the pass band $R_{\mathrm{a}}=R_{\mathrm{b}}$ should be minimal, i.e. high Q_{b} value for inductance $L_{b} / 2$.

$$
Q_{\mathrm{b}}=\omega_{0}\left(L_{\mathrm{b}} / 2\right) /\left(R_{\mathrm{b}} / 2\right) \quad 4-1
$$

From appendix D, equations D-4 to D-7,

$$
\omega_{3}=\frac{R / 2}{L_{\mathrm{b}} / 2} \cdot \frac{k+1}{k} \cdot N
$$

where

$$
\begin{gather*}
N=\frac{2(1+m k)}{2+k(1+m)} \\
k=\frac{R / 2}{R_{\mathrm{b}} / 2} \text { and } \\
m=R_{\mathrm{S}} / R .
\end{gather*}
$$

When $m=1, N=1$ and
$\omega_{3}=\frac{R / 2(k+1)}{\left(L_{b} / 2\right) \cdot k}=\frac{(R / 2)+\left(R_{\mathrm{b}} / 2\right)}{L_{\mathrm{b}} / 2}$.
When $R_{\mathrm{b}} / 2 \ll R / 2$, i.e. when the coil losses are much less than the load resistance, equation 4-6 approximates to

$$
\omega_{3}=\frac{R / 2}{L_{b} / 2}
$$

In an example where $R_{\mathrm{S}}=R=10$ ohms a notch is required at $f_{0}=19 \mathrm{MHz}$ with bandwidth of 4 kHz at notch depth of -40 dB , i.e. $f_{40}=0.004 \mathrm{MHz}$, thus $f_{3}=0.4 \mathrm{MHz}$. From equation $4-7$

$$
L_{\mathrm{b}} / 2=\frac{R / 2}{\omega_{3}}=\frac{10 / 2}{2 \pi \times 0.4} \approx 2 \mu \mathrm{H}
$$

As the coil losses are not known it is not possible to use equation 4-6 for more accurate computation. However, one may assume a coil Q and compute (from appendix D, equation $D-12$)

$$
L_{b} / 2=\frac{R / 2}{\omega_{3}} \cdot \frac{1}{1-q} \text { when } m=1
$$

where $q=\frac{Q}{Q_{b}}=\frac{\omega_{0} / \omega_{3}}{Q_{b}}$
Assume $Q_{b}=90$ for coil $L_{b} / 2$. Then

$$
q=\frac{\omega_{0} / \omega_{3}}{Q_{b}}=\frac{19 / 0.4}{90}=0.53
$$

and from equation 4-8

$$
L_{\mathrm{b}} / 2=\frac{10 / 2}{2 \pi \times 0.4} \cdot \frac{1}{(1-0.53)}=4.2 \mu \mathrm{H}
$$

From equation 4-1
$R_{\mathrm{b}} / 2=\frac{\omega_{\mathrm{o}} \cdot L_{\mathrm{b}} / 2}{\mathrm{Q}_{\mathrm{b}}}=\frac{(2 \pi \times 19) \times 4.2}{90}=5.5 \mathrm{ohm}$
Hence $2 R_{\mathrm{a}}=4 \times 5.5=22 \mathrm{ohm}$.
Coil used was made of Neosid core CH1/7/900 wound with 20 turns, closewound single layer, of 0.4 mm copper wire, tinned nylon accetate. Measured Q of coil at 8 MHz was 120 . The hybrid coil was the same as that of example 1. Capacitor $2 \mathrm{C}_{\mathrm{b}}$ was 18 pF .
The extra insertion loss due to the notch circuit is

$$
\frac{R_{\mathrm{S}}+R}{R_{\mathrm{S}}+R+2 R_{\mathrm{a}}}
$$

In the example this gives

$$
\frac{10+10}{10+10+22}=0.48 \rightarrow 6.4 \mathrm{~dB}
$$

To compute $L_{\mathrm{b}} / 2$ when $R_{S} \neq R$; estimate q from equation 4-9 as above, and from $m=R_{\mathrm{S}} / R$ find k from appendix D , equation D-10.
Then compute N from equation $4-3$, and $L_{b} / 2$ from equation 4-2.

$$
\mathrm{C}_{\mathrm{a}} / 2=\frac{1}{2 \pi \times 2000 \times(1-0.24)}=104 \mathrm{pF} .
$$

Thus a 100 pF capacitor was used. The coil was made of 0.2 mm -diameter bifilar copper wire, $3+3$ turns wound on $4 \times 0.5 \times 10 \mathrm{~mm}$ core, Neosid, grade 900 . Q_{a} was measured to be 106 at 25 MHz . The notch width at -40 dB was measured to be $f_{40}=11 \mathrm{kHz}$. Maximum attenuation of the notch was -62 dB . Resistance $R_{b} / 2$ was 1500 ohm, which means $D=4 \times 1500=6000$ ohm. The introduction of $R_{\mathrm{b}} / 2=1500 \mathrm{ohm}$ gives an extra loss of 0.75 to the circuit. The general formula for extra insertion loss is.

$$
\frac{\frac{1}{R_{\mathrm{S}}}+\frac{1}{R}}{\frac{1}{R_{\mathrm{S}}}+\frac{1}{R}+\frac{1}{D / 4}}
$$

To compute $\mathrm{C}_{\mathrm{a}} / 2$ when $R_{\mathrm{S}} \neq R$; estimate Q_{a} as above and hence q (equation 3-10); then calculate $n\left(m=R_{S} / R\right)$ from appendix C, equation $\mathrm{C}-15$.
From n and m compute M of equation $3-4$. Then compute $C_{a} / 2$ from equation 3-2.

Correction. Equation 1.4 in example 1 (August) should read as equation E-7, page 86.

Appendix C. Lattice of high \mathbf{Z} notch

Fig. C-1
The lattice input impedance is not a constant at all frequencies, i.e. V_{1} and I_{1} are not constant, therefore the source resistance R_{S} has to be included in the calculation.
From the matrix equation $B-5$,

$$
\begin{align*}
V_{1} & =\frac{1}{b-a} \cdot\left[(b+a) \cdot V_{2}+2 b a I_{2}\right] \\
I_{1} & =\frac{1}{b-a} \cdot\left[2 V_{2}+(b+a) I_{2}\right]
\end{align*}
$$

From Fig. C-1

$$
\begin{aligned}
& I_{2}=V_{2} / R \text { and } \\
& E=V_{1}+R_{S} \cdot I_{1}
\end{aligned}
$$

C-3

$$
\mathrm{C}-4
$$

Insert I_{2} from equation $\mathrm{C}-3$ in $\mathrm{C}-1$ and $\mathrm{C}-2$, and then insert $\mathrm{C}-1$ and $\mathrm{C}-2$ in $\mathrm{C}-4$ which gives

$$
\begin{gather*}
E=V_{1}+R_{\mathrm{S}} \cdot I_{1}=\frac{V_{2}}{b-a} \\
{\left[(b+a)+\frac{2 b a}{R}+2 \cdot R_{\mathrm{S}}+\frac{R_{\mathrm{S}} \cdot(b+a)}{R}\right]} \\
=E=\frac{V_{2}}{1-a / b}\left[(1+a / b)\left(1+\frac{R_{\mathrm{S}}}{R}\right)+\right. \\
\left.+2 a / R+2 R_{\mathrm{S}} / b\right]
\end{gather*}
$$

In the high Z notch, Fig. $\mathrm{C}-2$, arm b is a resistor, and R_{a} is made equal to b for a null at $\omega_{0}=1 / L_{a} C_{a}$.

Make ' b ' a multiple n of R, thus $b=n R$ or $R=b / n$.
Also make $R_{\mathrm{S}}=m R$, hence
$E=\frac{V_{2}}{(1-a / b)} \times$
$[(a / b)(1+m+2 n)+(1+m+2 m / n)]$
and the voltage transfer is
$\frac{V_{2}}{E}=\frac{(1-a / b)}{(a / b) \cdot(1+m+2 n)+(1+m+2 m / n)}$
The voltage transfer in the pass bands V_{20} / E occurs when the impedance of arm ' a ' is zero, i.e. $a=0$, thus

$$
\frac{V_{20}}{E}=\frac{1}{(1+m+2 m / n)}
$$

which is the insertion loss in the pass bands. The voltage transfer function V_{T} is then the ratio of the transfer voltage to the insertion loss in the pass bands.
$V_{\mathrm{T}}=\frac{\left(V_{2} / E\right)}{\left(V_{20} / E\right)}=\frac{(1-a / b)}{(a / b) \cdot \frac{(1+m+2 n)}{(1+m+2 m / n)}+1}$
From Fig. C-2
$\frac{1}{a}=1 / b+\frac{1}{p L_{\mathrm{a}}}+p C_{a}=\frac{p L_{\mathrm{a}} / b+1+p^{2} L_{\mathrm{a}} C_{a}}{p L_{\mathrm{a}}}$
Hence $a / b=\frac{p L_{a} / b}{\left(p L_{a} / b+1+p^{2} L_{a} C_{a}\right)}$
Insert a / b in equation $C-6$
$\mathrm{V}_{\mathrm{T}}=\frac{1+p^{2} L_{\mathrm{a}} C_{\mathrm{a}}}{\left(p L_{\mathrm{a}} / b\right) \cdot\left[\frac{1+m+2 n}{1+\mathrm{m}+2 m / n}+1\right]+1+p^{2} L_{\mathrm{a}} C_{\mathrm{a}}}$
Multiply numerator and denominator by $\omega_{0}^{2}=1 / L_{\mathrm{a}} C_{a}$ and replace b by $n R=b$ then

$$
V_{\mathrm{T}}=\frac{\omega_{0}^{2}+p^{2}}{\frac{p}{C_{\mathrm{a}} \cdot n R}\left[\frac{2(n+1)(n+m)}{n+m(n+2)}\right]+\omega_{0}^{2}+p^{2}} \mathrm{C}-7
$$

From comparison with equation A-4, the coefficient of p is

$$
\omega_{3}=\frac{(n+1)}{C_{a} R_{n}} \cdot \frac{2(n+m)}{n+m(n+2)}
$$

where R is the load, $m=R_{S} / R$ and $n=b / R$. When the source and the load resistance are equal, $m=1$ and equation $C-8$ reduces to

$$
\omega_{3}=\frac{1}{C_{\mathrm{a}} \cdot R} \cdot \frac{n+1}{n}
$$

Unbalanced high-Z notch
The unbalanced form of Fig. C-2 is shown in Fig. C-3

Re-write equation $\mathrm{C}-8$

$$
\omega_{3}=\frac{1}{\left(C_{a} / 2\right) \cdot 2 R} \cdot \frac{n+1}{n} \cdot M
$$

where

$$
M=\frac{2(n+m)}{n+m(n+2)}
$$

When $R_{\mathrm{S}}=R, m=1$; hence $M=1$, and

$$
\omega_{3}=\frac{(n+1) / n}{\left(C_{\mathrm{a}} / 2\right) \cdot 2 R}
$$

To find $C_{a} / 2$ in terms of Q_{a} of inductance $2 L_{a}$

$$
n=b / R=\frac{2 b}{2 R}=\frac{D}{2 R}=\frac{Q_{\mathrm{a}} \cdot \omega 2 L_{\mathrm{a}}}{2 R}
$$

$$
=\frac{Q_{\mathrm{a}}}{2 R} \cdot \frac{1}{\omega_{0} \cdot C_{\mathrm{a}} / 2}=\frac{Q_{\mathrm{a}}}{2 R\left(\frac{\omega_{0}}{\omega_{3}}\right) \omega_{3} \cdot C_{\mathrm{a}} / 2}=
$$

where

$$
\frac{1}{q}=\frac{Q_{\mathrm{a}}}{\omega_{0} / \omega_{3}}=\frac{Q_{\mathrm{a}}}{Q}
$$

From C-10: $2 R C_{a} / 2 n \omega_{3}=(n+1) M$
and from equation $C-13: n 2 R \omega_{3} C_{a} / 2=1 / q$. Hence
$\frac{1}{q}=[(n+1) M=]=(n+1) \cdot \frac{2(n+m)}{n+m(n+2)}$

$$
\therefore n^{2} \cdot 2 q-n(1+m)(1-2 q)-2 m(1-q)=0
$$

The solution of n in terms of q and $m ; n=$
$\frac{(1+m)(1-2 q)+\sqrt{(1+m)^{2}(1-2 q)^{2}+16 q(1-q)}}{4 q}$

When $m=1, n=\frac{1-q}{q}$
C-16
and from equation C-12

$$
C_{a} / 2=\frac{(n+1) / n}{\omega_{3} .2 R}=\frac{1}{\omega_{3} \cdot 2 R(1-q)}
$$

Appendix D. Lattice of low-Z notch

In a manner similar to appendix C arm ' a ' is a resistor and R_{b} is made equal to a for a null at $\omega_{0}=1 /\left(L_{\mathrm{b}}, C_{b}\right)$. Make R a multiple k of 'a', i.e. $R=k a$. From equation C-5 where $R_{s}=m R$, $E=$
$\frac{V_{2}}{(1-a / b)}\left[(1+a / b)(1+m)+\frac{2 a}{k a}+2 m k a / b\right]$
$=\frac{V_{2}}{(1-a / b)}[(a / b)(1+m+2 m k)+(1+m+2 / k)]$.
Hence
$\frac{V_{2}}{E}=\frac{1-a / b}{(a / b) \cdot(1+m+2 m k)+(1+m+2 / \dot{k})}$
When arm ' b ' is open circuit, $b=\infty$ and

$$
\frac{V_{20}}{E}=\frac{1}{1+m+2 / k}
$$

$V_{\mathrm{T}}=\frac{V_{2} / E}{V_{20} / E}=\frac{1-a / b}{(a / b) \frac{(1+m+2 m k)}{(1+m+2 / k)}}+1$
From Fig. D-1 (to simplify, use L and C instead of L_{b}, C_{b})

$$
b=a+p L+\frac{1}{p C}=\frac{p C \cdot a+p^{2} L C+1}{p C}
$$

Hence

$$
a / b=\frac{p C \cdot a}{p C \cdot a+1+p^{2} L C}
$$

Insert this expression in equation D-1 and proceed as in appendix C.
$V_{\mathrm{T}}=\frac{1+p^{2} L C}{p C \cdot a\left[\frac{2(1+k) \cdot(1+m k)}{2+k(1+m)}\right]+1+p^{2} L C}$
Multiply by $\omega_{0}{ }^{2}=1 / L C$ and replace ' a ' by $a=R / k$
$V_{\mathrm{T}}=\frac{\omega_{0}{ }^{2}+p^{2}}{p_{k L}\left[\frac{2(1+k)(1+m k)}{2+k(1+m)}\right]+\omega_{0}{ }^{2}+p^{2}}$
Thus by comparison with A-4, the coefficient of p is

$$
\omega_{3}=\frac{R(k+1)}{L_{b} \cdot k}\left[\frac{2(1+m k)}{2+k(1+m)}\right]
$$

When $R_{\mathrm{s}}=R, m=1$

$$
\omega_{3}=\frac{R}{L_{\mathrm{b}}} \cdot \frac{k+1}{k}
$$

D-3
where $k=R / a$.

Unbalanced low-Z notch

Re-write equation D-2 to suit configuration of Fig. D-2

$$
\omega_{3}=\frac{R / 2}{L_{b} / 2} \cdot \frac{k+1}{k} \cdot N
$$

where $N=\frac{2(1+m k)}{2+k(1+m)}$
when $m=1, R_{\mathrm{s}}=R, N=1$

$$
\omega_{3}=\frac{R / 2}{L_{\mathrm{b}} / 2} \cdot \frac{k+1}{k}
$$

and $k=\frac{R}{a}=\frac{R}{R_{\mathrm{b}}}=\frac{R / 2}{R_{\mathrm{b}} / 2}$.
To find $L_{b} / 2$ in terms of Q_{b}
where $Q_{b}=\frac{\omega_{0} L_{\mathrm{b}} / 2}{R_{\mathrm{b}} / 2}$ or $\frac{1}{R_{\mathrm{b}} / 2}=\frac{Q_{\mathrm{b}}}{\omega_{0} L_{\mathrm{b}} / 2}$
$k=\frac{R / 2}{R_{\mathrm{b}}}=\frac{R / 2 \cdot \mathrm{Q}_{\mathrm{b}}}{\omega_{0} \cdot L_{\mathrm{b}} / 2}=\frac{R / 2 \cdot \mathrm{Q}_{\mathrm{b}}}{\omega_{3} \cdot\left(L_{\mathrm{b}} / 2\right) \cdot \omega_{0} / \omega_{3}}$

$$
=k=\frac{R / 2}{\omega_{3} \cdot\left(L_{\mathrm{b}} / 2\right) \cdot q}
$$

where $\frac{1}{q}=\frac{Q_{b}}{Q}=\frac{Q_{b}}{\omega_{0} / \omega_{3}}$.
From eq D-4 $\frac{k \cdot\left(L_{b} / 2\right) \cdot \omega_{3}}{R / 2}=(k+1) \cdot N$.
From eq D-8 $\frac{k \cdot\left(L_{\mathrm{b}} / 2\right) \cdot \omega_{3}}{R / 2}=1 / q$.
Hence $\frac{1}{q}=(k+1) N=(k+1) \cdot \frac{2(1+m k)}{1+k \cdot(1+m)}$
$\therefore k^{2} .2 m q-k(1+m)(1-2 q)-2(1-q)=0$ and thus $k=$
$\underline{(1+m)(1-2 q)+\sqrt{[(1+m)(1-2 q)]^{2}+16 m q(1-q)}}$

D-10
When $m=1, k=\frac{1-q}{q}$.
From equation D-6
$L_{\mathrm{b}} / 2=\frac{R / 2}{\omega_{3}} \cdot \frac{k+1}{k}=\frac{R / 2}{\omega_{3}} \cdot \frac{1}{(1-q)}$.

Appendix E

Derivations. Given: resonance (equation 1-1), constant resistance (equation B-4) and 3 dB bandwidth (equation B-9).

E. 1 Equation 1-5

From equation B-9

$$
L_{\mathrm{b}} / 2=\frac{1}{\omega_{3}{ }^{2} \cdot \mathrm{C}_{\mathrm{a}} / 2}=\frac{2}{\omega_{3}^{2} \cdot C_{\mathrm{a}}}
$$

From resonance equation 1-1

$$
\frac{1}{C_{a}}=\omega_{0}^{2} \cdot L_{\mathrm{a}}
$$

Substitute $1 / C_{a}$ in equation $E-1$

$$
\begin{gathered}
L_{\mathrm{b}}=\frac{2 \omega_{0}{ }^{2} \cdot L_{\mathrm{a}}}{\omega_{3}{ }^{2}} \\
\frac{L_{\mathrm{b}}}{L_{\mathrm{a}}}=\frac{4 \omega_{0}{ }^{2}}{\omega_{3}^{2}}
\end{gathered}
$$

or $\sqrt{\frac{L_{\mathrm{b}}}{L_{\mathrm{a}}}}=\frac{2 \omega_{0}}{\omega_{3}}=$ (equal by definition to) $=2 Q_{\mathrm{E}}=2$
This confirms equation 1-5
E. 2 Equation 2-3
Q factor of arm ' b ' is

$$
\mathrm{Q}_{\mathrm{b}}=\frac{\omega_{0} \cdot L_{\mathrm{b}}}{R_{\mathrm{b}}} \therefore R_{\mathrm{b}}=\frac{\omega_{0} L_{\mathrm{b}}}{Q_{\mathrm{b}}}
$$

From resonance equation 1-1

$$
\omega_{0} \cdot L_{\mathrm{b}}=\frac{1}{\omega_{0} \cdot C_{\mathrm{b}}}
$$

thus $R_{\mathrm{b}}=\frac{\omega_{0} \cdot L_{\mathrm{b}}}{\mathrm{Q}_{\mathrm{b}}}=\frac{1}{\mathrm{Q}_{\mathrm{b}}\left(\omega_{0} C_{\mathrm{b}}\right)}$
The dynamic impedance of arm 'a' equals R_{a} (where no resistor is employed), hence

$$
R_{\mathrm{a}}=Q_{\mathrm{a}} \omega_{0} L_{\mathrm{a}}
$$

E-5
From B-4 $R^{2}=R_{\mathrm{a}} \cdot R_{\mathrm{b}}$
Substitute R_{a} from E-5 and R_{b} from E-4 in above.
$R^{2}=R_{\mathrm{a}} R_{\mathrm{b}}$

$$
=\left(Q_{\mathrm{a}} \omega_{0} L_{\mathrm{a}}\right) \frac{1}{Q_{\mathrm{b}} \cdot \omega_{0} C_{\mathrm{b}}}=\frac{Q_{\mathrm{a}}}{Q_{\mathrm{b}}} \frac{L_{\mathrm{a}}}{C_{\mathrm{b}}}=\frac{\bar{Q}_{\mathrm{a}}}{Q_{\mathrm{b}}} R^{2} \quad \mathrm{E}-5
$$

as $\frac{L_{\mathrm{a}}}{\mathrm{C}_{\mathrm{b}}}=R^{2}$ from B-4.
Hence $\frac{Q_{a}}{Q_{b}}=1$ or $Q_{a}=Q_{b}$
which completes equation 2-3.

E. 3 equation 1-4

For $Q_{b(\min)}$ where no extra coil resistor is employed in arm ' b ', $R_{\mathrm{b}}=R$. Similarly, for $\mathrm{Q}_{\mathrm{a}(\min)}, R_{\mathrm{a}}=R$. Thus

$$
\frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}=\frac{R}{R}=1
$$

Substitute R_{b} from equation $\mathrm{E}-3$ and R_{a} from equation $E-5$

$$
\begin{aligned}
\mathrm{l} & =\frac{R}{R}=\frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}=\frac{\omega_{0} \cdot L_{\mathrm{b}} / Q_{\mathrm{b}(\min)}}{\omega_{0} \cdot L_{\mathrm{a}} / Q_{\mathrm{a}(\min)}} \\
& =\frac{L_{\mathrm{b}}}{L_{\mathrm{a}}} \cdot \frac{1}{Q_{\mathrm{a}(\min)} \cdot Q_{\mathrm{b}(\min)}}
\end{aligned}
$$

Substitute
$\frac{L_{\mathrm{b}}}{L_{\mathrm{a}}}=(2 Q)^{2}$ from E-2, thus

$$
1=\frac{(2 Q)^{2}}{Q_{\mathrm{a}(\min)} \cdot Q_{\mathrm{b}(\min)}}
$$

As $Q_{a(\text { min })}=Q_{b(\text { min })}$ from E-6
$2 Q=Q_{a(\min)}=Q_{b(\text { min })}$
which completes equation 1-4
Appendix F. Bartlett's bisection theorem

According to Bartlett's bisection theorem, if Fig. 1-10 is bisected the short-circuited half Z_{sc} forms one lattice arm and the open-circuit half $Z_{o c}$ the other arm. Hence $Z_{s c}$ becomes arm ' a ' and $Z_{o c}$ becomes arm 'b' in the lattice of Fig. 1-1 (see also ref. 2).
The two capacitors in series in $Z_{o c}$ become C_{b}, thus
$\frac{1}{\text { capacitance }}=\frac{1}{\mathrm{C}_{\mathrm{a}}}+\frac{1}{\frac{\mathrm{C}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{b}}}{\mathrm{C}_{\mathrm{a}}-\mathrm{C}_{\mathrm{b}}}}=\frac{1}{\mathrm{C}_{\mathrm{b}}}$.
To be continued

LETTERS TO THE EDITOR
 (cont)

ging in the various English languages.
In the 1976 edition of the Concise Oxford Dictionary I found:
expertise n. Expert opinion or skill or knowledge.
expertize, -ise v.i. \& t. Give expert opinion (concerning)
So I ask - why not use it?
The broad issue I wish to raise in this letter is who has the right to allow or disallow use of words. Obviously a dictionary compiler will not create a word and list it as in common use, so that it must be in use before it is listed. At this stage people with an academic interest in the language complain, forgetting that for most users of the language it is but a tool.

Specifically, technologists must have the right to create their own words not only as they do in naming a new invention, discovery or parameter (charmed quark), but where a minor descriptive category becomes of special importance. Brevity and phonetic ease with an attempt at spelling rationality are of prime importance. That this "jargon" is unintelligible outside the field is unimportant. Mathematical formulae, biological classifications, chemical nomenclature, astronomical designations are meant as tools for people trained in their use and these people resent being told that they may not coin new words for their use.
For it is not just the present with words such as expertise, program(me), hex(a)/ (i)decimal, microprocessor/microcomputer which are in question but all technological names and descriptions which have been coined over the centuries. It will be impossible to produce any technical publication, such as Wireless World, when only nonspecialised words and abbreviations are permitted.
My suggestion is that a society which desires literacy for all its people rather than as a privilege of the wealthy must actively expedite this policy. Acceptance of the nature of language (it is a tool) will precede the optimization and rationalization of usage, which includes acceptance of new words. Three types of dictionary could be collated:
Archaic - for words we may read but will never write.
Contemporary - for the words we see, hear, and use in everyday life.
Technical - a suitable criterion for inclusion would be frequency of occurrence in the media, as a measure of contemporaneity.
Our dynamic languages cannot be vitrified until our life styles do so. Countries which can alter currency and mensuration units can certainly regard their language with objectivity.
James Nolan
Sydney
Australia

MICROPROCESSOR USERS CLUB

It is proposed to set up a club in Britain for those people using the RCA 1802 microprocessor, Cosmac ELF, ELFII, Super Elf etc. The unofficial assistance of RCA and HL Audio has been promised. Would those interested please contact me at 7 Harrowden Court, Harrowden Road, Luton LU2 OSR. Please send a stamped addressed envelope. James Cunningham
Luton

Linear voltage-controlled oscillator

LC circuit provides increased s / n ratio

by J. L. Linsley Hood

The author describes a technique for linearizing the characteristics of a varicap-tuned LC tuned circuit, which allows a frequency control of $\pm 5 \%$, with a linearity of better than 0.5% over the range.

A NUMBER of circuit arrangements exist for the generation of a.c. signals whose frequency is a linear function of some direct control voltage. Of these, the majority in current use employ some form of RC relaxation oscillator,
which is usually an elaboration of the well-known cathode-coupled multivibrator.
There are three fundamental disadvantages in this type of circuit. These are that it is very difficult to make such circuits operate beyond some 20 or 30 MHz , because of the nature of the relaxation mechanism, and that the frequency stability is poor at this end of the operating range. Also, because of the way in which the circuit operates, the signal-to-noise ratio of the

Fig. 1. Voltage / capacitance characteristic of Varicap and base voltage/ collector current curve of transistor follow similar law in circuit at (a). Modification at (b) removes effect of base-emitter voltage of transistor. Practical circuit is shown at (c).

Fig. 2. Characteristic of circuit in Fig. 1(c).
generated signal may be some $20-30 \mathrm{~dB}$ less good than that of a comparable LC oscillator.

For some applications, the less good s / n ratio of the multivibrator circuit is relatively unimportant. However, it will be appreciated that this expresses itself as a ' jitter ' in the turn-on and turn-off timings, and that the noise is therefore of an f.m. nature.

By analogy with the way in which the noise accompanying the h.f. bias signal in a tape recorder will be superimposed on the recorded input, with a resultant degradation in the overall s / n ratio, it can be seen that any f.m. noise present on the output of the voltage-controlled oscillator in a phase-locked-loop, f.m. demodulator will be superimposed on the incoming f.m. signal during demodulation. This difficulty may be a significant reason for the almost complete absence of this type of demodulator in commercial f.m. receivers.
Alternative types of voltagecontrolled oscillator based on the combination of an LC circuit and some form of voltage-controlled reactance, such as a Blumlein integrator or a voltage variable capacitor or Varicap diode, are seldom used except in expensive and specialized equipment because of the complexity of the circuitry normally employed to obtain a linear relationship

Fig. 3. High-linearity, phase-locked-loop f.m. demodulator, providing improved s / n ratio.
between applied control voltage and output frequency. However, it is of interest, in this context, that there is a fairly close similarity between the exponential relationship in the applied voltage/capacitance characteristics of a Varicap diode and that of the base voltage/collector current characteristics of a normal junction transistor. Moreover, the temperature coefficients of these two characteristics appear to follow a similar law.
It is possible, therefore, to contrive a circuit in which the characteristics of these two components are complementary, and a simple arrangement which would achieve this result is shown in Fig. 1(a). In this circuit there would however, be an uncompensated d.c. component due to the forward baseemitter turn-on voltage of the transistor. This can be removed by the slight elaboration shown in Fig. 1(b), and a practical embodiment of this is shown in Fig. 1(c). The control voltage versus operating frequency characteristics of this circuit are shown in Fig. 2, based on a centre frequency of 10.5 MHz .

The measured linearity over the range $10-11 \mathrm{MHz}$ is better than 0.5% / MHz , which would allow a linearity in a p.l.1. demodulator operating at 10.7 MHz of better than 0.1% over a $\pm 75 \mathrm{kHz}$ modulation range. The actual centre frequency may, of course, be modified by adjustment to the L or C values of the tuned circuit. It was found in practice that a fair approximation to the optimum setting of the linear region of the v.c.o. is obtained when the circuit is adjusted so that there is some 3 volts d.c. across the Varicap diode - as

Fig. 4. F.m. oscillator for use in wobbulator.
reverse bias. This adjustment is made by R_{9}.
Two practical applications of this arrangement have been explored; the use of the v.c.o. in a very high linearity phase-locked-loop f.m. demodulator, of the circuit type shown in Fig. 3 which has a linearity as good as that of the RC v.c.o. used in the author's earlier phase-locked-loop f.m. receiver ${ }^{1}$, but with an improved demodulator s / n ratio, and in the conversion of an inexpensive battery-powered signal generator of commercial origin into a multi-range 'wobbulator,' using the circuit shown in Fig. 4, in which the transistors are part of a CA 3046 i.c.
The range of input control voltages required for proper operation of the circuit shown in Fig. 1 depends on the ratio of the input resistance $\left(\mathrm{R}_{1}\right)$ to the
value chosen for R_{2} which should be low in relation to the dynamic base-emitter impedance of Tr_{1} at the chosen operating current.

Reference

1. Linsley Hood, J. L., Wireless World Annual, 1975. p69 et seq.

You'd expect a Sweep Function Generator from Feedback to contain a lot more features for your money. And you'd be right-the SFG606 with its crisp frequency marker does just that. It sweeps up to 4 decades of frequency-bi -directionally. So you can avoid problems of transient effects. It maintains low signal distortion with absolute precision over the entire sweep range. It features a choice of decade or octave sweep - so it's ideal for narrow band analysis. It provides sine, square or triangle outputs over the frequency range 0.01 Hz to 1 MHz .

And with that beautifully sharp, fine line frequency marker that gives you accurate determination of spot frequency on the display, the SFG606 really does score top marks. Read all about the SFG606 and all its companion test instruments in the Feedback 600 range. Send to Feedback for literature today.

Feedback

Or contact our distributors elentuplan
P.O. Box 19, Orchard Road, Royston. Herts. SG8 5HH. Telephone: Royston 45145.

Instruments Limited

Feedback Instruments L.td., Park Road, Crowborough, Sussex TN6 2QR. Telephone: Crowborough (08926) 3322. Cables: Feedback Crowbr. Telex: 95255.

The new SFG606 passes even the testiest tester's test.
WW - 006 FOR FURTHER DETAILS

This solid state parts counter saves you money 20 ways. For as lifile as E6.95 per week

* Counts to 999,999
* Accurate from 0.01 gram
* Leasing from £6.95 per week
* Push button product reference
* Platform sizes up to $150 \times 120 \mathrm{~cm}$
* 24 hour service from factory trained technicians available
*British made - spares always available
* Comprehensive 5 year guarantee available
* Ex-stock delivery available on most models

To: Balance Consultancy, 35 Harford Street, Trowbridge, Wiltshire, BA14 7HL Telex 449128
Telephone !02214) 64461 and ask Karen York for our rapid leaflet service
\square Please send me details of your money saving machines.
\square Please ask your Area Manager to call. ww $7 / 9 / 79$
Tick as appropriate,
NAME
COMPANY
ADDRESS
"We've £150,000 worth of recording gear working 24 hours a day - all fed from the OTARI MX5050B. On a cost effectiveness basis alone the MX5050B is unbeatable, but when taking into account sheer professionalism and performance, it is unequalled by recorders three times the price."

Mike MoLoughin, Chief Engineer, Independent Tape Duplicators, Aylesbury.

The Otari MX5050B costs little more than modified domestic recorders. That little extra buys so much more.

1. Proper editing facilities with calibrated splicing block.
2. Four heads provide 2 or 4 track replay.
3. Bias and EQ adjustable from front panel.
4. Switchable NAB and IEC EQ.
5. XLR Connectors.
6. +28 dBm 600 ohm balanced output.
7. Direct drive capstan servo with varispeed.
8. Variable or preset output level.
9.70 dB (weighted) signal/noise ratio.
9. Sel sync on each channel.

OTARI from ITA

Video disc battle looms

Audio and video highlights from Chicago consumer electronics show

Introduced by Adrian Hope and continued by George Tillet

Big news at this year's Consumer Electronic's Show in Chicago was the introduction of the long-awaited video discs and the Magnavision display created quite a sensation. So did the demonstration by Pioneer whose player also uses the Philips-MCA laser system. The MCA library now offers a choice of 200 disc titles ranging in price from $\$ 6$ for 30 minutes playback to $\$ 16$ for a two-hour movie.

PROBABLY THE MOST IMPRESSIVE demonstration was given by JVC with their VHD-AHD system, which superficially resembles the Philips/ Magnavox video disc but is wholly incompatible with that system - and indeed every other video and digital audio system so far announced. Like the Philips disc, the JVC disc is of 30 cm diameter, is pressed from vinyl plastics and has a spiral track pits on its smooth, ungroved surface. But whereas the Philips system reads the pits optically (the Philips disc surface is coated with reflective material) the JVC system reads the pits electrically. The JVC vinyl plastics pressing mix contains a carbon additive and the disc is tracked by a relatively large sapphire stylus which embraces a small electrode. This electrode follows the spiral of programme pits under servo control derived from signals coded in a sequence of guidance pits alongside the programme pits. The track pitch is $1.4 \mu \mathrm{~m}$ and information is coded as variations in both length and depth of the pits. The relatively large stylus spreads its load over several turns of the spiral to offer a claimed stylus life of 2,000 hours and a claimed disc life of 50,000 plays. JVC cite the physical contact area as 30 times greater than that of a needle-in-groove system, such as Matsushita's Visc or the RCA grooved capacitance system. Tracking force is 40 mg but the servo system enables a player to track a disc on an uneven surface. The grooveless surface also enables random access (as with the Philips system) and (also as with the Philips system) there are facilities for trick play, such as freeze frame, multiplication or division of speed by $2,4,8$ or 16 times, and coded frame-by-frame identification. For NTSC countries the rotational speed is $900 \mathrm{rev} / \mathrm{min}$ which offers up to one hour playing time per side with two full picture frames, i.e. four fields, per revolution. Picture quality and stereo sound for the video disc appears every bit as good as that

offered by the Philips laser system. Imperfections up to $10 \mu \mathrm{~m}$ in size on the disc surface are simply sheared off and smoothed out by the tracking stylus and a drop-out compensator corrects for blemishes of up to $500 \mu \mathrm{~m}$ on the disc surface. Main snag with this system appears to be susceptibility of the disc to surface containment. Any oil or grease from a human hand will upset tracking so discs must at all times be stored in protective caddies (similar to those used by RCA and Matsushita). The disc is automatically removed from the caddy when introduced into the player so the disc is never touched by hand.

The audic capability of the system using pulse code modulation was also demonstrated. JVC, unlike Philips, argue in favour of a single player to handle both video and p.c.m. discs. Philips of course argues in favour of one player for video discs and another tailored for digital audio. JVC use a 14 -bit linear code with sampling at around 44 kHz . This provides predictably impressive audio performance, e.g. signal-to-noise ratio of 90 dB (presumably the extra 6 dB is achieved with pre-emphasis). Unfortunately JVC's in-

Carver magnetic field amplifier claims an output of 400 watts at 94% efficiency.

tention, at least as stated in Chicago, is to tie p.c.m. coding standards to TV frame standards, for instance by marketing a $900 \mathrm{rev} / \mathrm{min}$ video-audio player for NTSC countries and a different speed (e.g. $750 \mathrm{rev} / \mathrm{min}$) player for Europe. Although the world is now accustomed to the impossibility of playing NTSC video recordings on European players and vice-versa it would seem an absurdly retrogressive step to impose the same strictures on p.c.m. discs. Such strictures are as unnecessary as they are undesirable. For instance by the adoption of constant tangential rather than constant rotational velocity tracking, Philips will make Compact Discs world-wide compatible. Hopefully JVC will think again before any commercial launch of the disc system (promised for the end of 1980) and by divorcing tv and p.c.m. standards ensure that JVC p.c.m. audio discs bought anywhere in the world will play on similar system players anywhere else in the world. Otherwise the system will surely never fly. But whatever route JVC takes over pulse encoding, the basic incompatability of the JVC capacitance and Philips laser systems seems assured. A potentially crippling battle between commercial giants with competitive systems of similar potential thus also seems assured.
While the video world waits for BASF to show LVR, the linear or fixed head recording system at Berlin, Toshiba has already shown its own LVR system. According to the BASF technique a length of tape shuttles rapidly backwards and forwards past a fixed recording head. According to the Toshiba technique the tape is in a continuous loop, contained in a cartridge similar to an eight-track audio cartridge. The Toshiba cartridge contains a 100 metre continuous loop of 12.5 mm tape which traverses the head at 6 metres per second. As the loop finishes a full pass every 17 seconds the head steps fractionally across the tape width. Each step takes 22 milliseconds, and 220 tracks are laid across the tape width. This provides an hour of continuous recording with generally imperceptible transitions. Rapid access to any point on the tape loop is achieved by fast-stepping the heads across the tape width. Longer playing time and smaller units than the prototype on show in Chicago are promised for 1980.
RCA are very much pre-occupied with their SelectaVision video tape
recorders and now have quite a range. One model, the VDT 201 has a four-hour capacity and it comes complete with a digital clock timer that allows preset recording for seven days with a playing time of six hours.

Colour TV imports were down nearly 25% from last year's first quarter figures but black and white units were little affected at well over a million units. RCA are using a comb filter system with a memory to double process the picture, .thus increasing the sharpness. The system is called a Dynamic Detail Processor and it involves a charge-coupled device that effectively increases the number of lines by about 25%. Sylvania, like several other manufacturers, have suddenly realized the importance of good TV sound and models use a twoway speaker system with tone controls - and a filter switch. Projection TV is slowly gaining in popularity and several new models were to be seen. Sony's one-piece models have 50 - and 70 -inch screens and the VIRS (vertical interval reference signal) is used for colour control. Advent also has a single-unit model and this one employs a five-foot diagonal) screen.
Now for a brief look at the audio scene: here the main interest centred on the new cassette decks which had provision for metal tapes. Some firms, like Pioneer and Akai had more than four models with "metal tape compability", as the copywriters put it. One of the most interesting decks was the Nakamichi 680 which can play at halfspeed ($15 / 16$ th in/s) as well as $17 / 8 \mathrm{in} / \mathrm{s}$. The upper -3 dB at the slow speed was quoted at 15 kHz while the response is extended to 20 kHz at $17 / 8 \mathrm{in} / \mathrm{s}$. The metal tape used at the demonstration was made by TDK but Nakamichi propose to market their own brand soon. The 680 has three motors, one for tape drive, one for hub control and the third for transport functions. It has a built-in calibration generator, azimuth head adjustment, monitoring capability, dual function (that is peak-average) fluorescent level indicators and provision for cable or wireless remote control. Many of the new decks are using bar-graph indicators of one kind or another instead of VU meters - some are LCD, others consist of a series of LEDs. Microprocessors are being used extensively now: for example one of the new BIC two-speed ($17 / 8$ and $33 / 4 \mathrm{in} / \mathrm{s}$) decks use one for program control with digital display while Phase Linear's Model 7000 employs a microprocessor for automatically setting the bias, equalisation and levels for nine operating parameters, including different kinds of tape.

Dolby Labs took Chicago in June as the opportunity to launch the new HX system which, as an addition to the basic Dolby B domestic noise reduction system, offers additional high frequency head room. This is achieved by varying the level of the record bias in dependence on the character of the pro-

Toshiba linear video recorder achieves tape speed of $6 \mathrm{~m} / \mathrm{s}$ and a playing time of an hour with 220 tracks on continuous loop.
gramme being recorded. It is of course difficult, with even the most exotic cassette tapes and decks, to achieve accurate recordings of music which is particularly rich in high frequencies. The sound of percussion instruments, such as tambourines and cymbals, and synthesized music are particularly hard to record faithfully. This follows from the compromises necessary with a fixed bias system; the fixed level will often be too low for the optimal recording of mid and low frequencies and too high for optimally recording HF. The idea of varying the bias level according to signal content is not new but has so far foundered because bias variation also alters recorder sensitivity across the frequency spectrum and this produces a bumpy response. It was Dolby engineer Ken Gundry who recognized the need to vary the recorder sensitivity along with the bias. To achieve this a control signal is necessary and the new HX circuit derives this from the Dolby B circuitry which is already virtually standard in stereo cassette decks. Dolby is offering HX under free licence to all firms already licensed to use Dolby B. Headroom at 10 kHz and over can be improved by around 10 dB , regardless of tape type. This is of course in additon to the similar reduction of h.f. noise offered by the B system.

Tandberg's Dyneq system was also attracting a lot of attention and as used in the model TCD 440A it also reduces saturation effects and improves signal-to-noise. It works by automatically adjusting the record pre-emphasis to obtain the maximum high frequency response without distortion. The system is patented but the company is said
to be willing to consider licensing agreements. DBX (who prefer to be known as dbx) now have an ambitious encoded disc program with the cooperation of many well-known recording companies. Recordings that meet stringent technical and/or musical standards are re-mastered to produce dbx encoded discs. A simple playback decoder is required for playback but this is relatively inexpensive. So far, 25 records have been issued (re-issued?) and I for one was most impressed with the increased dynamic range and silent background.

One of the sensations at the January Show in Las Vegas was the Carver "magnetic field" amplifier which is claimed to be 94% efficient. Precise details are not available but the circuit involves a voltage or rather energy storage "in a relatively small lightweight and low cost magnetic field coil, thereby eliminating the need for a power transformer and electrolytic capacitors". The unit measures less than a 7 inch cube and weighs only $83 / 4 \mathrm{lb}$. Rated power output is 200 watts per channel and I can confirm that heat dissipation is insignificant. One of the most interesting features of the design is the constant impedance output so parallel loudspeaker connections cause no problems. Since the Las Vegas show, minor circuit changes have been made and the amplifier should be available later this year.

Amplifiers with "Class A" output stages are still popular with some audio enthusiasts although most of them are low powered models. An exception is the Threshold model 4000 which as a rated output of 200 watts per channel. The power supply uses a 1 kilowatt transformer and the 48 output transistors have a dissipation reserve of 6 kilowatts. A class A cascode circuit is used throughout and a matching cascode preamplifier is now available. The input stage is a little unusual as the open-loop curve is shaped to compliment the RIAA characteristic resulting in a constant amount of feedback over the audio range.

How to get bass from a small box is a problem that has long plagued loudspeaker designers and one method that has had a certain amount of success is the use of servo-feedback which involves a built-in amplifier. Now, KLH have come up with another variation the use of a dynamic bass equalizer which is controlled by the signals present at the loudspeaker terminals. The unit is connected in the tape-in, tapeout circuit or between the preamp and power amplifier and low frequency lift is dynamically controlled so the maximum displacement of the speaker cone is not exceeded. The attack time of the processor is so fast, say KLH, that mechanical overload is most unlikely. There are three systems in the associated range of loudspeakers, the smallest measuring $121 / 2$ by $81 / 2$ by 6 inches and the -3 dB point is at 40 Hz .

Victorian microwaves

Millemetre transmissions before the Boer War

By K. L. Smith, Ph.D., University of Kent at Canterbury

By 1900, the fundamentals of microwave transmission, and quasi-optical analogue results were firmly established. The theoretical solutions of waveguide transmission and modes of oscillation on spherical and other conductors were nearly all established; but the subject died completely.

MANY SCIENCE and engineering students in higher education still make believe how modern and up to the minute their advanced courses in microwaves are. Mainly because of the way modern mass-media approach such matters, they feel at one with all those dishes that sprout on Post Office towers and the microwave systems now used for satellite links around the the world. It seems to be symbolic of being right there and 'with it' in high technology.

It seems to come as a considerable shock to these students when it is pointed out that such technology was nearly all spelled out sufficiently early on for Queen Victoria to have had the possibility of seeing and inspecting the hardware. As the author of Ecclesiastes put it, "There is nothing new under the Sun".
Microwave physics was bound to be realised soon after Clerk Maxwell's equations predicted the possibility of long electromagnetic waves. In 1883, F . G. FitzGerald was already suggesting that Leyden jar discharges should emit Maxwellian radiation. ${ }^{2}$ Then in 1888^{3}, Heinrich Hertz, at Karlsruhe con= clusively demonstrated that such waves existed. The apparatus he devised to generate the shorter of his various wavelenghts was broadly resonant at 500 MHz , and with it most of the properties of microwave optics were established. Hertz used a resonant dipole at the focal line of a cylindrical parabolic aerial, together with a short, parallelwire transmission line to the detector from a similar dipole at the receiver. Working at the same time in Britain and very nearly establishing the space waves, Oliver Lodge was already well advanced in demonstrating powerful high-frequency waves on wires. Lodge, to quote a report of the time, ${ }^{4}$ ". . . got quantitative evidence of nodes and loops in wires when working with Mr. Chattock in the session 1887-8 (the Bath meeting of the BA) . . . the wires them-

Fig. 1. Lodge's radiating cavity with irises is clearly seen in this picture, together with a flanged circular waveguide receiving aperture and detection system. (Lodge's caption in figure).

Fig. 2. Pictured are two of Lodge's oscillators, which would have generated predominantly $T E_{11}$ mode radiation.

Dr. Lodge's Hollow Cylindrical Radiator, arranged horisontally
outaide of a Metal-lined Box containing athe Spart-producing gainat the outaide of a Matal-lined Box containing the Spark-producing Apparatua Half natural size. Emitting 3 in . waves.

Spherical Radiator for amitting a Horizontal Beam, arranged inside a Copper Hat, fixed against the outside of a metal-lined Box, which contains induction coil and battery and key. One-eighth natural size. The wires pass into the box through glass tubes not ahown.
selves becoming momentarily luminous
. except at the nodes, thus enabling the waves to be actually seen, having been made stationary by reflection. . . . The wires . . . were very long

- going five or six times round a large hall...."
The reports published on all these spectacular preliminary observations soon resulted in the near-exponential
growth of experimental work and the publication of papers, so well described by Derek De Solla Price in his book "Big Science, Little Science". ${ }^{5}$ Within five years, an identifiable "invisible college" existed on this subject - a socioscientific phenomenon also described by Price. The members of this international group were described as "the Hertzians". Hertz died at this time, and leadership moved over more firmly to Lodge, A. Righi ${ }^{6}$ in Italy, and to J. Chunder Bose from Calcutta, ${ }^{7}$ whose milimetre wave experiments were quite remarkable. It was during Righi's public lectures that the young Marconi became acquainted with electromagnetic wave phenomena. Other workers included F. J. Trouton in Dublin, J. A. Fleming, Zehnder in Germany, and contributions from Lord Rayleigh strengthened the theoretical base.

Oliver Lodge demonstrated radiation from circular waveguides on 1 June, 1894 at the Royal Institution in London. To this end, he invented the radiating iris, and in effect also resonant cavities. He called them 'copper hats', and clearly intended them as directive aperture radiators and to raise the "Q" of the oscillators, as in Figure 1. Figure 2 clearly shows that he was exciting the TE_{11} modes in the transmitting guide. By placing his coherer detector crossways in the receiving guide he detected this mode, but he also stated that, "Sometimes the (coherer) tube is put lengthwise in the hat instead of crossways, which makes it less sensitive, and also has the advantage of doing away with the polarising, or rather analysing, power of a crosswise tube." This position of his detector can be seen in figure 1.

Clearly Lodge understood he was using the circularly polarised TM_{01} mode in this instance. This mode has a null along the axis, and we find Lodge writing about the receiver as, ". . . a copper hat with its mouth turned well askew to the source . . ." thus receiving the TE_{11} mode radiation on one of the maxima to the side of the axis. Lodge's microwave demonstration operated at 4 GHz , his 7.5 cm waves were just above "S" band.

But it is to Bose we owe a considerable advancement in millimetre wave studies. He developed a semiconductor detector, rectangular waveguides and horn aerials (Figures 3 and 4). His microwave bench was put to use in measurements of refractive index, reflection from plane and curved surfaces and many experiments on polarisation.

Bose generated 5 mm wave radiation near " E " band. His resonator consisted of a conducting sphere set oscillating across a diameter. This was the common form of transmitter employed by virtually all the experimenters. Bose seems to have refined his spherical resonator by partially enclosing it in capacitive cups each side, as

Fig. 3. This microwave bench enabled Bose to investigate polar diagrams, crystal lattice diffraction (or its analogue), total internal reflection, refractive indices and so on, all at 60 GHz . (Bose's caption in figure.)

R, rediator ; S , apectrometer-circle ; M, plane mirror ; C. cylindrical mirror: p. totally
 reflectint prism; P, semi-eylinders; K, cryutal-holder: F, collecting funnel
athached to the apiral spring receiver ; t, tangent screw, by which the receiver is atrached to the spiral spring receiver; t, tangent screw, by which

K, cryatal-holder ; S, a piece of atratified rock ; C, a crystal : J. jute polariser ; W, wire-crystal-holder ; S , a piece of airatifed rock; C , a crystal ; jute polariser ; W, wire-
grating polariser ; D , vertical graduated dise, by which the rotation is measured. and in practice at any angle, to the E-vector of the 60 GHz beam of radiation. (Bose's caption in figure.)

Fig. 5. Reproduced here are Bose's capacitively loaded spherical oscillator, and a curious two dimensional spring contact detector.
seen in his drawing reproduced as Figure 5 . This must have increased the charge stored, therefore the energy, by capacitive loading. Also, the radiation must have been reduced by the partial screening effect, thus raising the "Q" of the system, which yielded many more cycles of oscillation per discharge than must have been usual. (The bandwidth of the radiation must have been reduced.) It had been reported elsewhere by other members of the "Hertzians" that the damping of an open oscillator of this type was such that normally only one or two complete oscillations were obtained.
The ingenious detector evolved by Bose is also shown in Figure 5. It most likely consists of a space-irradiated multicontact semiconductor (using the natural oxide of the springs) plus some cohering action. But from Bose's reports this action, unlike most coherers, appeared to be self-decohering.

One of his experiments involved Bradshaw's Railway timetable, inter-
leaved with sheets of tinfoil in the pages, as a cut off metal plate grating. Allso, one of his millimetre aerials used a sulphur lens, shaped to the required curve by using the refractive index as measured on the bench at 60 GHz .

A most remarkable development carried out by Bose has already been mentioned. His use of microwave horn aerials occurred well before the turn of the century. No doubt he considered that the larger collecting area of a horn aperture would increase the energy incident on his detector - reasoning precisely in the same way as a microwave engineer now designing his receiving aerial for a communication, links or satellite ground station.

All these workers generated radio frequency powers of considerable magnitude, so they were not energy limited. Oliver Lodge estimated that one of the shock excited oscillators that were in popular use at the time developed a peak power of some 70 kW . He goes on to say that sparks could be drawn from
all sorts of metal pipe wires and fittings, and that fuses were regularly blown by the received power that was picked up by the electrical system of the building, when the sending apparatus was operating.
In 1896, Lord Rayleigh ${ }^{8}$ published a complete solution to Maxwell's equations yielding all the possible modes in rectangular and circular waveguides, complete with Bessel's functions and all. Thus the stage was set for point to point communications links with parabolic aerials, waveguide feeders, increasingly sensitive detectors - and even microwave Radio Astronomy of the Sun as Oliver Lodge proposed, and actually attempted.

Yet one of the most remarkable mysteries in science and technology is that none of this occurred. The subject faded rapidly from the scene. Hertz was dead, the others seemed to switch to new fields of work. Microwave electronics was before its time and had to wait half a century until just before the second world war for Southworth, Chu, Schel-
kunoff and others, to make the rediscovery and begin the applications.:
Lodge, who was the outstanding British figure in this work, became increasingly involved in running a University, and took an increasing interest in the paranormal, becoming in fact President of the Society for Psychical Research. He continued to write many instructive articles on "wireless" in the journals such as the early editions of Wireless World, and was elected President of the Radio Society of Gt Britain for the year 1925 .
Bose moved on to investigations of plant growth and the effects of e.m. radiation upon biological structures. All the other workers faded from view. Perhaps it was Gugielmo Marconi's great success in using extremely long Hertzian waves for telegraphy that swung all the young engineers away from microwaves. But whatever the historial cause of the moratorium in microwave science, nothing can detract from the lustre of these first pioneers of microwaves at the end of the 19th century.

References

1. Ecclesiastes, ch. 1 and 2. (the 'Tao' of the Old Testament.)
2. See, Joseph Larmor, ed. "The Scientific Writings of the Late F. G. FitzGerald." Longmans Green (London) 1902. Page 100 contains the details of comments FitzGerald made at the 1883 British Association meeting in Dublin.
3. H. Hertz. "Electric Waves." Macmillan and Co. 1893. (Reprint by Dover available.)
4. O. J. Lodge. "Signalling Through Space Without Wires". 'The Electrician' Printing and Publishing Co. 1898.
5. Derek De Solla Price. "Big Science, Little Science". New York, Columbia University Press, 1963.
6. A. Righi. "L'Ottica delle Oscillazioni Elettriche".
7. J. C. Bose. "Collected Physical Papers". Longmans Green, NY. 1927.
8. Lord Rayleigh. "On the Passage of Electric Waves Through Tubes . . ." Phil. Mag. vol. 43, pp 125 to 132, February 1897.

Oliver Lodge had a paper on the history of his own contributions to early radio science in "Wireless World," July 1st. 1922. He was President of the R.S.G.B. during the year 1925.

Books Received

The latest offering in the Newnes Technical Books' "Master" series, in this case Master Hi-Fi Loudspeakers and Enclosures," by Dave Berriman, offers some interesting and attractive material covering the essentials of each element of the loudspeaker, both as individual items and in concert with the box. However, those who are observant will notice a tendency to gloss over the hairy areas, such as the power output losses incurred by passive filter networks. Active networks are not even mentioned, but the nice paper and intermittent two-colour presentation (blue type-face for captions on illustrations and silky white paper throughout), added to the fairly wide spread given to the subject, makes the book a good buy at $£ 2.95$ in limp back. One nasty inconsistency is that represented by the cover illustration. A confused shopper stands in front of a pile of speakers with the slogan "Special Offer", but as Mr Berriman provides no information at all on the efficiency/price relationship in the book, it could prove frustrating for some: Butterworth and Co. (Publishers) Ltd., 88 Kingsway, London, WC2B 6AB.

[^2]humorous and handy volume on the whole. Hardback at $£ 3.95$ from United Writers Publications, Trevail Mill, Zennor, St. Ives, Cornwall.

The IEE has recently (March) issued a new edition of its "Symbols and Abbreviations for Electrical and Electronic Engineering", and there's not a great deal to say about this except that, as always, it provides the fundamental sign language of electronics as well as quantity symbols for mechanics, heat and illumination among other universal phenomena. It comprises a sixteen page booklet costing 75p from The Institution of Electrical Engineers, Marketing Dept., Station House, Hitchin, Hertfordshire SG5 IRJ.
"Digital Hardware Design", by the popular (for us!) team of Catt, Walton and Davidson, converts some of the contributions by Heaviside, S.P. Thompson and Hertz to solutions of digital problems. The ideas are wellexplained, the maths fairly easy to handle and the drawings rather poor in places. Nevertheless, some half-forgotten ideas are given a fresh new treatment and appear at a high relevant moment, considering the development of high-speed digital techniques via ECL (emitter coupled logic) and Shottky t.t.l. $£ 4.50$ in limp-back from Macmillan Press, 4, Little Essex St., London WC2R 3LF.
"A Guide to Amateur Radio", by Pat Hawker, is a hard-back and up-dated version of the well-known booklet version of the 17th edition produced in 1978. This useful work contains two additional sections dealing with fundamentals of electronics and sample RAE examination questions. $£ 5.40$ from Butterworth and Co.

Yet another in the massive series of D.A.T.A.
books has appeared. This deals with memory integrated circuits and covers 9118 types spread across 51 manufacturers. The technical sections deal with r.a.ms, r.o.ms, character generators, code converters, shift registers and special memory devices including oddities such as trigonometric r.o.m.s. - a.t.n, rhythm generators and transistor arrays. This is edition 16 and is, as usual, available from London Information (Rowse Muir) Ltd., Index House, Ascot, Berkshire SL5 7EU at a price of $£ 32.65$.

Thermistor stabilizers

continued from page 64

J. L. Linsley Hood's "Low Distortion Oscillator" (Wireless World, Oct. 1977 pp 69-70) can be examined. In this case $\mathrm{R}_{\mathrm{s}}=220 \Omega, \mathrm{R}_{\mathrm{f}}=820 \Omega$ and the thermistor is an STCR53. The quoted output is 1.5 V and the calculated result is 1.60 V . Calculated temperature coefficient is $-22 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, which is equivalent to $-0.118 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$. With $\mathrm{R}_{\mathrm{s}}=0$ and $R_{f}=127 \Omega$ the calculated voltage is 1.01 V and the measured voltage 1.1V. The temperature coefficient is then $-4.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ or $-0.039 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$.

One way to reduce amplitude dependence upon temperature is to operate the thermistor at higher temperatures, but this is not profitable as the instantaneous temperature can rise above the steady-state level even when settling.

In principle it is possible to provide compensation over a temperature "band" by replacing R_{f} with a thermis' tor of dissipation factor which is much larger than the output sensing thermistor, or by means of a thermistor/resistor combination.

Cassette with die-cast frame

Claiming that its MA-R die-cast (zinc) framed cassette provides improvements in tape-to-head relationships, resulting in reduced levels of wow and flutter etc., TDK points to greater rigidity as the prime source of the improvements. The new cassette features a new type of tape anchorage within "truly circular hubs" which ensures "even, regular spooling." In addition to the new frame and tape anchorage, the cassette contains (C60 size) "metal alloy" tape and a table is provided giving details of the electrical properties of the new tape. Sensitivity figures for the three frequencies of 333 Hz , 10 kHz and 16 kHz are given as $5 \mathrm{~dB},-0.5 \mathrm{~dB}$ and 2 dB respectively. No information is provided concerning comparative wow and flutter measurements. The main advantage of the "metal alloy" (particle) tape is improved coercivity and remanence. This cassette will be available in the UK in September 1979 and the C60 will retail at about £6. TDK Tape Distributor (UK) Ltd., 11th Floor, Pembroke House, Wellesley Rod., Croydon CR0 9XW.

WW 301

1W (max.) v.h.f. crystal oscillators

A range of fixed-frequency crystal oscillators covering the frequencies 5 MHz to 300 MHz , the CO-284W series, can deliver an output of up to 1 W according to the distributors, Lyons Instruments. Those in the 300 MHz to 500 MHz range can deliver 0.5 W , giving levels of 30 dBm and 27 dBm for the two range spreads respectively. Oscillators can be supplied as "standard stability" types at $\pm 20 \mathrm{ppm}$ at temperatures between 0 and $50^{\circ} \mathrm{C}$ with options of stability to $\pm 3 \mathrm{ppm}$ and operation over temperature extremes between $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Each oscillator is factory-set to within 10 ppm of the specified frequency but adjustment for setting within 1 ppm is available as an option and electronic tuning is available for phase-locking applications. Sup-

WW 301

ply requirements are +15 V d.c. at 300 mA and the dimensions are $51 \times 76 \times 19 \mathrm{~mm}$. The oscillators are manufactured by Vectron Laboratories and the distributors point out that the pricing system is complicated by differences for "standard" and "high" stability units, variations for differing frequency coverage and savings obtained by "bulk" ordering. As an example, an item which costs between $£ 285-£ 490$ as a "one-off" could easily be brought down to the $£ 120$ - $£ 195$ range when ordered as a " 100 -off". Lyons Instruments, Hoddesdon, Herts.
WW 302

Sub-miniature rotary switch

Full dust-proofing and operation over the temperature range $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ are features of the PS613 series of sub-miniature rotary wafer switches which the manufacturer, Radiatron, claims

WW 302

milliradians are now available from Laser Diode Laboratories, a subsidiary of the (American) Valtec Corporation. These devices, which are said to feature high c.w. power output and low beam divergence, are classified as the SCW-30 and SCW-31. Other significant characteristics include a threshold current of 85 mA and a peak wavelength of 820 nm . Typical linewidth of the SCW-30 is 1 nm and that of the SCW-31 is 0.1 nm . Both lasers incorporate the SELFLOC lens and are housed in the LDL-9F package. A 10,000 -hour warranty is offered for both items. Walmore Electronics Ltd., 9-15 Betterton St., Drury Lane, London WC2H 9BS.

WW 304

Combined 5V
 regulator and bridge rectifier i.c.

A mains transformer, filter capacitor and an r.f. by-pass capacitor are all that is needed to turn a new i.c. from Fairchild (UK) into the central element of a self-contained 5 V and 5 A power supply. This is the SH1705 and contains the $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{~A}$ regulator in combination with a diode bridge circuit. The usual features of short-circuit protection, thermal shut-down, low drop-out voltage and internal current limiting are included, and if desired the regulator section can be used separately from the bridge rectifier. Absolute maximum ratings are 23 V r.m.s. input, 50 W internal power dissipation (at a case temperature of $25^{\circ} \mathrm{C}$) and a regulator section input/output differential voltage of 25 V d.c. (max.). Regulator input is via a separate pin, making it suitable for use in more complex supplies, using other devices. The retail price of the i.c. is $£ 9.71$ before v.a.t. Fairchild (UK) Ltd., Potters Bar, Herts.

WW 305

30W opto-isolated switchers

An efficiency level of 70% and remote sensing as a standard feature are two of the quoted points of interest relating to a new range of opto-isolated switchers recently introduced by ${ }^{\prime}$

Farnell Instruments. These are an extension to the " G " range of switching power supplies and four current combinations can be employed, at $6,12,15$ and 24 V . A further claim is that they will tolerate wide variations in input voltage, i.e. in the range 176 to 264 V (a.c.) or 92 to 132 V (a.c.). The application of opto-isolation switching techniques has resulted in compact, lightweight power supplies housed in a case measuring $145 \times 88 \times 33 \mathrm{~mm}$ and exhibiting an insulation tested breakdown point of 5.8 kV d.c. input to output. That is, 2.9 kV d.c. output to earth and 2.9 kV input to earth. In keeping with the rest of the " G " range the unit output is designed to hold up for the duration of a missing mains cycle without the addition of external output capacitors. These switchers comply with the interference requirements of VDE 0875, curve N, CISPR (publication 2) curve N and BS800. Farnell Instruments Ltd., Sandbeck Way, Wetherby, LS22 4DH.

WW 306

Car stereo booster and graphic equalizer

Compensation for high noise levels inside the car can be obtained by boosting the output power of a car stereo system and the RE-482 Car Stereo Booster, in combination with the RE-484 graphic equaliser, can supply this extra feature. The makers, Ross Electronics, say that each unit provides an output of 20 W per channel and is fitted with by-pass switches to re-connect the car stereo unit to the speakers direct. Each unit operates only with 12 V negative earth systems and output impedance is 4 to 8 -. The RE-482 is fitted with bass and treble controls providing, according to the makers, frequency control which can provide a response equivalent to home hi-fi systems. The graphic equalizer offers the same basic tonal variations but the five controls cover centre frequencies ' of 60 Hz , $250 \mathrm{~Hz}, 1 \mathrm{kHz}, 3.5 \mathrm{kHz}$ and 10 kHz . The dimensions of the RE-482 are $115 \times 40 \times 150 \mathrm{~mm}$, the unit being priced at $£ 27.90$ plus v.a.t. while those for the RE-484 are $160 \times 40 \times 150 \mathrm{~mm}$, the price of this item being $£ 50.40$ plus v.a.t. Ross Electronics, 32 Rathbone Place, London W1P 1AD.

WW 307

Digital thermometer

Covering the range 0 to $400^{\circ} \mathrm{C}$, a new digital thermometer offers more durable features than many previous items of a similar nature, according to the makers, DMS Electronics. For example, the probe is permanently wired to minimize errors and is fed with

WW 306

WW 307

WW 308

"armoured" coaxial cable for hard wear. Error is ± 1 digit over the entire temperature range with a claimed fast response in changes of temperature. The display is l.c.d. (0.5 in) and the low power consumption permits up to 100 hours continuous use from the self-contained rechargeable battery. The instrument is housed in a lightweight ABS case with a protective hinged lid. A carrying wallet is also supplied with the thermometer. DMS Electronics, Unit 10 Willow Close, South Anston, Sheffield S31 7GX.
WW 308

Suppression chokes

Radio frequency interference suppression chokes in a heavyduty form are being made and marketed by Ashcroft Electronics. Intended for use in vehicles, aircraft and ships, these chokes operate within the range 150 kHz to 200 MHz (approx.) and are constructed from enamelled wire wound on a ferrite former and connexions are taken to axial lead-outs. A tough plastic outer sheath gives protection against vibration and moisture. Inductance range is 5.5 H to 70 H ,

WW 310

tolerance is $\pm 20 \%$ and the normal operating temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Ashcroft Electronics, Cirencester, Gloucestershire.

- WW 309

Thick-film relays and drivers

Combination of several modern constructional techniques has given rise to a new range of solid state a.c. relays and thyristor drivers from Hamlin Electronics. Designated the 7580 series, the relays are constructed using thick-film technology and optical isolation methods and are formed as a compact single-in-line package occupying less than half a square inch ($300 \mathrm{~mm}^{2}$) of mounting area. Input/output isolation voltage (max.) is $1,500 \mathrm{~V}$. r.m.s. and the device features polarityprotected inputs, zero voltage switching and compatibility with i.c. logic. Load current rating is 2 A r.m.s. at a control voltage of 3 V d.c. and 1.75 A r.m.s. at 32 V d.c. Non-repetitive single-cycle surge current is 70A peak, and 1 second overload current is 35 A peak. The driver units in this series are intended to interface with logic control circuits and power thyr-
istors operating on the a.c. line. Output current to the thyristor is 50 mA r.m.s. (max.) or 150 mA pulse current. Both relays and drivers are mounted in a package measuring $40 \times 22 \times 9 \mathrm{~mm}$ and each weighs 7 g . Hamlin Electronics Europe Ltd., Diss, Norfolk.
WW 310

Quick index machine

Rapid access to index details and a capacity of about 1,000 entries are features of an electricallyoperated records index, the "Datax," which is available from Hadley Sales Services. Index cards slide in and out of plastic trays and the relevant details are quickly displayed behind a transparent plastic screen in response to the pressing of a button. The information stored could be telephone numbers, part numbers, prices, inventories, customer accounts, etc, and a 30 button keyboard (full alphabetical range) allows flexibility for combinations of letters and numerals. Each unit includes a supply of pre-cut index cards and keyboard tables. The "Datax" is portable and operates either from two HP2 cells or an a.c. mains adaptor. The price is $£ 40$ (plus 15% v.a.t.) for the TBX-30 and a smaller version, the TB-15, with a capacity of 360 entries, costs $£ 18$ plus 15% v.a.t. Hadley Sales Services, 112 Gilbert Rd., Smethwick, Warley, West Midlands B66 4PZ.

WW 311

Quad v.m.o.s. power f.e.t.

Four independently accessible v.m.o.s. power f.e.t.s. contained in a single 14 pin d.i.l. package and specified as the VQ1000 constitute one of the latest products from Siliconix. The manufacturer claims for this device advantages such as reduced component count, high switching densities and lower than usual assembly costs. Each individual f.e.t. within the package has a maximum switching capability of 60 V and a continuous current rating of 0.5 A or 1 A in pulse applications. In higher power applications each f.e.t. can be connected in parallel externally to take advantage of the load-sharing capabilities of v.m.o.s. devices and typical switching times are as low as 5ns. Applications are various and include t.t.l./c.m.o.s. logic to high power interfacing, l.e.d. digit strobe drivers, high speed line drivers, stepping motor drivers and peripheral control driving circuits. Overall package power dissipation is 1.75 W max. at $25^{\circ} \mathrm{C}$ and each VQ1000 will be available in either plastic or ceramic packages complete with Zener protection. Siliconix Ltd, Morriston, Swansea SA6 6NE.
WW 312

Softly, softly ...

I would like all manufacturers of domestic audio equipment to pay attention for a moment. It's high time for some plain speaking, so just stop trying to decide which bit of planned obsolescence to build in next and listen to me.

Well, that's it, really. Built-in obsolescence. It never used to be like this. When my father bought us a gramophone, he was reasonably confident that he would have time to get it out of the box before we were made to feel under-privileged by "new technology." At the current frantic rate of innovation, it would barely be fully wound up for the first Gracie Fields record before a new model with oil-fired winding and a cast-iron needle was introduced.
Even motor cars seem to last for a year or two before petrol-pump attendants start sneering at them, and in the other gadget-conscious brotherhood of photography, it is positively not done to have shiny new equipment - not according to glossy ads. for Olympus, at any rate.

What I feel is that it would be rather nice to have time to get the 13A plug on my new cassette deck before the next one is launched (amphibious, are they?). Because that is what this is all about. I want to buy a cassette deck, but by the time these devices have been on the market long enough for the intelligentsia to tell me whether they are any good or not, they can't be found in the shops, having been replaced by new designs with slight and probably unimportant differences. One can't keep up the pace. So, look, chaps, can you hold it for a couple of months, please. I'd quite like to be up there with the cognoscenti for the first time in my life, even if it is only for a week or two.

Paper tigers

When television was young, and keeping up with the Joneses entailed knowing someone who'd been to Torquay instead of Blackpool for the annual fortnight, it was not unknown for the H aerial on a chimney to feed nothing but its own downlead. If the neighbours thought you had a television set, that was the main consideration.

That sort of ploy was understandable I suppose, from impecunious high livers, but to transfer the philosophy to the camera end takes a devious mind - the kind which impels people to put notices on the front gate implying that the Hound of the Baskervilles is in residence and praying for a chance to sink its teeth into the juicy bits.

Nevertheless, I do feel a little less threatened than I used to when doing the weekend shopping in the supermarket, because a note came from a firm which makes it its business to keep all us potential shoplifters in line to tell me that the latest line in c.c.t.v. cameras

aren't what they seem. Those devices that follow your every move aren't cameras at all. A new fitting lately on the scene consists of four dummy lenses, mounted on a sort of pudding basin affair and fixed to the ceiling. Red lights flash to make you think that the manager has his little button eyes on you and a sign says "c.c.t.v. pictures relayed to central monitors." The missing articles and verb avoid the accusation of a downright lie, but the message is certainly there.

This isn't the only one of its kind. The same firm do a wall-mounted one which darts quick glances about the shop in an apparently purposeful way. It doesn't have anything behind the "lens," either.

I don't know how long this has been going on, but it's made me feel a bit foolish. It means that all those funny faces I've been pulling at c.c.t.v. cameras have been wasted. I would also have thought that to tell everyone about it would rather tend to reduce the effectiveness of the operation.

Information gap

I'm pretty sure that the most certain way of indicating which gaps in one's education yawn wider than average is to look at the front covers of the IEEE Transactions on various subjects. The front cover is about as far as I usually get because, since the contents list is printed thereon, it is made painfully clear to me that I can't even understand the titles, much less the articles themselves. Faced with a title such as "Recursive implementation of a twostep non-parametric decision rule," I cannot claim that my hearbeat reacts at all dramatically. The effect of "An intrinsic dimensionality estimator from near neighbour information" on my pulse rate can best be described as unspectacular.
It is all very depressing and I was considerably cheered to see, on the first issue of a new Trans., the article "A family of similarity measures between two strings." Well, like most people, I had previously supposed that when you'd seen one piece of string, you'd seen the lot, but I was pleased that there was at least one word in the title that meant something to me. So I took the
not inconsiderable step of opening the journal to read this account, and found that the strings in question were strings of symbols which were either identical ($\mathrm{S}=1$) or not like each other one little bit ($\mathrm{S}=0$), with shades of similarity in between. Well, that's fine, as far as it goes, but it's the kind of article that does tend to leave me wondering if I've missed the punch line.

What I mean to say is, it's so difficult to obtain even a smattering of the whole field of electronic study. When I was a lad, just after the Flood, a well-rounded engineer was expected to work effectively in any branch of the discipline from directly-coupled amplifiers to microwaves, from record players to guided weapons, from stabilised power supplies to stabilised platforms. The amount of information released in the last twenty years means that no one, or no one I know anyway, can even comprehend the whole field of interest.
It doesn't half make you feel old.

Les Miserables

As all good chess players know, the only thing to do when your king is pinned down and your queen is about to be abducted is to bend down to stroke the cat and accidentally knock the board on the way up again. In the ensuing argument, you can then maintain that the brilliant coup you were about to pull off would have enabled you not only to escape check, but to mate in the next four moves. When challenged to prove it, you can't, of course, quite remember where the pieces were.

Chess, so I'm told, is popular in France, which possibly explains the unreliability of their telephone system. You don't get the connexion? Well, no - neither did the Post Office Prestel exhibit at the Tele-informatics exhibition in Paris a few weeks ago. It seems that Prestel and Didon, ${ }^{\text {a }}$ a French viewdata system somewhat similar to Prestel, were on neighbouring stands. Comparison was thereby invited - at least, it would have been but for the fact that Didon wouldn't work. Prestel pressed on regardless, the Post Office people no doubt feeling distinctly chuffed by their unforeseen edge over Didon, until just after the relevant French Minister did his walkabout of the show, whereupon the Prestel decoder was left talking to itself. The telephone line had been cut off.

Urgent representations were naturally made, but in spite of the location of the exhibition - the French post office headquarters - the phone stayed dead. A token French engineer came round, said he'd have to get his screwdriver or something, and promptly disappeared into the hinterland. No one is saying anything. Not even why, out of all the telephone lines in use, only the three on the Prestel stand were out.
Still, these accidents will happen. Sometimes, it's the only way.

IRW wide handwidth linear hybrid amplifiers.

All the advantages and reliability of thin-film circuitry and gold metalization techniques.

The TRW CA2800 series is the perfect answer when you need really stable linear amplification from $10-400 \mathrm{MHz}$. Applications will be IF amplifiers, local oscillator buffer amplifiers, fibre optic drivers, laser/LED diodes or drives for accousto-optic modulators - in fact just about any situation where wideband linear amplification is needed.

Just check opposite the module that suits your particular requirements, then contact MCP for the complete data.

GENERAL PURPOSE			
PRODUCT			

To M.C.P. Electronics Ltd.
Station Whart, Alperton, Wembley, Middx. Tel: 01-902 5941.
Please send me full data on the
TRW CA2800 wide bandwidth linear hybrid amplifier range.
Name
Company
Address \qquad

Tel.:

Souncstor

 from Beyer Dynamic

 from Beyer Dynamic}

Truàe supercardioid characteristic

Well balanced, rising frequency response with low frequency roll-off and presence boostBuilt-in hum bucking coil to cancel electromagnetic humBreath and "pop" filterOn-off switch
Professional three-pin audio connector

DESCRIPTION AND APPLICATIONS

The Beyer Dynamic model M 400 N(C) soundstar mk II is a unidirectional moving coil microphone, especia designed to meet the demand of musicians, singers and entertainers for an elegant and superb soundi microphone. It is also an excellent microphone for instrument pick up and well suited for a varieti, of broa cast, recording and stage applications. Its supercardioid pickup pattern minimizes background noise a other undesirable acoustic effects. A highly effective built-in burst filter controls explosive breath and "po noises: For boom, stand and hand use, indoor and out, the M 400 is unaffected by humidity and temperatu extremes. Its rugged construction makes this microphone particularly suited to withstand the rigors professional use. The microphone is fully fieldserviceable.

M 400 N [C]

soundstar mk II

> Bever) $)$ II
> Dynamic

Please send me the Antex colour brochure \square I enclose cheque/P.0./Giro $\operatorname{No} 0.2581000$ ■

Please send the following

Name

TRANSISTORISED DC TO AC INVERTERS

$12 \mathrm{v}-24 \mathrm{v}-48 \mathrm{v}$ dc input models 110 v or 240 v AC off load output models
 Square-wave output or optional filtered models
 Frequency 50 Hz or 60 Hz models ($\pm 5 \%$ typical)

All silicon power transistors
Separate driver and output transformers
Designed for cool continuous operation
Aluminium ventilated cased units
DC input fused

12 v dc inputs / 110 v or 240 v outputs
50 Hz or 60 Hz
N12/A-8 $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts £18.00
N12/B-8" $126^{\prime \prime} \times 6^{\prime \prime} 60$ watts N12/C- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts N12/E-8"1 $\times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts N12/F- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts N12/G- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts N $12 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts

Filtered waveform models available at 15% extra.

24 vdc inputs / 110 v or 240 v outputs 50 Hz or 60 Hz

N24/A-8' $\times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts	£19.20
N24/B-8" $\times 6^{\prime \prime} \times 6$ " 100 watts	£29.80
N24/C- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts	£36.00
N24/D-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts	£44.00
N24/E-8' ${ }^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts	¢52.50
$\mathrm{N} 24 / \mathrm{F}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts	£60.00
N24/G-10"x8'土 $\times 6^{\prime \prime} 400$ watts	£71.40
$\mathrm{N} 24 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 500$ watts	$£ 83.00$
N24/I-12" $\times 8^{\prime \prime} \times 8^{\prime \prime} 700$ watts	£101.00
N24/J-12'x8'x8' 1000 watts	£150.00

Filtered waveform models available at 15% extra

48 v dc inputs $/ 110 \mathrm{v}$ or 240 v outputs 50 Hz or 60 Hz

N48/A-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 50$ watts	$£ 20.00$
N48/B-8' $\times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts	£31.60
N48/C-8'" $\times 6$ " $\times 66^{\prime \prime} 150$ watts	£37.00
N48/D-8" $\times 6^{\prime \prime} \times 66^{\prime \prime} 200$ watts	$¢ 45.00$
N48/E-8" $\times 6^{\prime \prime} \times 6{ }^{\prime \prime} 250$ watts	£54.00
	£62.00
N48/G-10'1 $\times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts	$£ 73.00$
$\mathrm{N} 48 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts	$£ 86.00$
N48/1-12" $\times 10^{\prime \prime} \times 8^{\prime \prime} 700$ watts	$£ 112.00$
N48/J-12' $\times 10^{\prime \prime} \times 8^{\prime \prime} 1000$ watts	£160.00
N48/K-12'" $10^{\prime \prime \prime} \times 10^{\prime \prime} 1500$ watts	£210.00

N48/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 50$ watts $\quad \mathbf{£ 2 0 . 0 0}$ N48/B- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts N48/C-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts N48/E-8 $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts N48/F- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts
N48/G- $10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts
N48/H- $10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts
N48
N48/K-12' $\times 10^{\prime \prime} \times 10^{\prime \prime} 1500$ watts
£160.00

Filtered waveform models available at 15% extra.

Audax HD 12 9D25 Audax HD13D34H Audax HP11P25EBC Audax HP20B25H4 Audax HD24S45C
Baker Superb
Castle Super 8RS /DD Chartwell CEA205 $8^{\prime \prime}$ bass, pairs only 8 ohm (pair) Coles 4001
Coles 3000
Celestion HF 1300 II
Celestion HF 2000
Dalesford D10 tweeter
Dalesford D30/1105in
Dalesford D50/15361/2in
Dalesford D50/200 8in
Dalesford D70/250 10 in
Dalesford ABR 10 in
Dalesford D100/310 12 in
Decca London horn
Decca DK30 horn
Decca CO / 1000/8
EMI 14A/770 14in x 9in 8 ohm
EMI $\sin \times 5$ in d/c, 10 watt, 4 ohm
EMI Type 3504 ohm Isophon KK8/8 Isophone KK10/8
Jordan Watts Module
Jordan Watts HF kit Jordan 50 mm unit Jordan CB crossover (pair) Jordan Mono crossover (pair) Kef T27
Kef B110
Kef B200
Kef B139
Kef DN13
Kef DN 22 (pair)
Lowther PM6
Lowther PM7
Peerless KO10DT
Peerless DT10HFC
Peerless KO40MRF
Radford BD25 II
Radford MD9
Radford MD6
Radford FN8/FN831
$\begin{array}{r}£ 7.65 \\ \hline 1275\end{array}$
$£ 12.75$
$£ 6.65$
13.25
$£ 20.50$
$£ 25.00$
£12.65 matched 61.25
$£ 7.65$ $£ 7.65$
$£ 7.65$ $\mathbf{£ 8 . 4 5}$ $£ 8.45$
$£ 10.25$ 88.45 $£ 11.25$ $£ 12.25$ £12.25 $£ 22.25$ £10.25 £35.75 $£ 57.25$ $£ 43.75$ $£ 10.25$
$£ 19.50$

$£ 4.05$

$£ 9.45$ $£ 8.15$ £8.45 £20.40 £9.15 $£ 24.50$ $£ 24.50$ $£ 24.50$
$£ 9.45$ $\begin{array}{r}£ 12.00 \\ \hline\end{array}$ £12.00
£13. £ 137.25 £ 27.00
$\mathbf{~} 5.40$ $£ 5.40$ $£ 8.65$
$£ 40.85$ $£ 40.85$ $£ 51.00$ $£ 88.45$ $£ 10.50$ $£ 10.50$ £12.25 T.B.A. T.B.A. T.B.A. T.B.A.

Richard Allan DT20 T.B.A.

Richard Allan DT20 £9.45 Richard Allan DT30 $£ 11.25$ Richard Allan CG8T
Richard Allan CG12T Super Richard Allan LP8B Richard Allan HP8B $£ 11.75$
Richard Allan HP1 28 $£ 17.60$ Seas H107 $£ 28.40$
Shackman Electrostatic, c/w polar network and crossover (pair) £130 Tannoy DC386 $15 \mathrm{in} \quad £ 178.90$ Tannoy DC296 $10 \mathrm{in} \quad £ \begin{array}{ll} & £ 107.35\end{array}$

PA GROUP \&

 DISCO UNITS| Baker Group 35 | £15.45 |
| :---: | :---: |
| Baker Group 50/12 | £23.45 |
| Baker Group 50/15 | £35.15 |
| Celestion Powercell 12/150 | £56.50 |
| Celestion Powercell 15/250 | £69.25 |
| Celestion G12 / 50 Twin con | ¢£15.95 |
| Celestion G12/80 Cambric | dge |
| | £20.25 |
| Celestion G 12 / 80 Twin con | £19.75 |
| Celestion G12/125 Cambr | edge |
| | £35.10 |
| Celestion G 15 / 100 Cambri | edge |
| | £31.95 |
| Celestion G15 / 100 Twin co | |
| | £32.25 |
| Celestion G18/200 | £53.25 |
| Celestion MH1000 | $£ 15.95$ |
| Fane Pop 40 | £12.50 |
| Fane Pop 50H | £13.80 |
| Fane Pop 75 | $£ 19.70$ |
| Fane Pop 65 | £21.25 |
| Fane Pop 80 | $£ 25.50$ |
| Fane Pop 100 | $£ 41.80$ |
| Fane Guitar 80L | £26.10 |
| Fane Guitar 80B | £27.15 |
| Fane Disco 80 | £27.15 |
| Fane PA80 | £26.10 |
| Fane Bass 85 | £34.00 |
| Fane Crescendo 12E | $£ 57.50$ |
| Fane Crescendo 15E | £74.50 |
| Fane Crescendo 18E | £94.75 |
| Fane J44 | £6.90 |
| Fane J104 | £14.85 |
| Fane J73 | £10.90 |
| Fane HPX1/HPX / 2 | £3.45 |
| Fane HPX3A | $£ 5.60$ |
| Fane HPX3B | ¢4.55 |
| Goodmans 8PA | $£ 5.05$ |
| Goodmans 12P | £21.00 |
| Goodmans 12PD | $£ 23.95$ |
| Goodmans 12PG | £22.65 |
| Goodmans 18P | £48.45 |
| Goodmans Hifax 50HX | £21.85 |
| Motorola Piezo horn $31 / 2$ in | £8.50 |
| Motorola Piezo horn $2 \mathrm{in} \times 6 \mathrm{in}$ | |
| | £12.25 |
| Richard Allan HD8T | £17.00 |
| Richard Allan HD 1:0T | £18.50 |
| Richard HD12T | £24.45 |
| Richard Allan HD 15 | £43.40 |
| Richard Allan Atlas 15 in | £75.00 |
| Richard Allan Atlas 18in | £90.00 |

$\begin{array}{ll}\text { i Baker Group 35 } \\ \text { Baker Group 50/12 } & \mathbf{£ 1 5 . 4 5}\end{array}$
Baker Group 50/15 £23.45
Celestion Powercell $12 / 150 £ 56.50$
Celestion Powercell 15/250 £69.25
elestion $12 / 50$ Twin cone $£ 15.95$

Celestion G12/80 Twin con
Celestion G12/125 Cambric edge £35.10
edge £31.95

Celestion G18/200
Celestion MH 1000
Fane Pop 50
Fane Pop 75
Fane Pop 65
Fane Pop 100
Fane Guitar 80L
Fane Guitar 80 Bisco 80
Fane PA80
Fane Bass 85
Fane Crescendo 12E
Fane Crescendo 18F
Fane J44
Fane J73
Fane HPX1/HPX/2
Fane HPX3A
Goodmans 8PA
Goodmans 12P
Goodmans 12 PD
Goodmans 18P
Goodmans Hifax 50HX
Motorola Piezo horn $31 / 2$ in

Richard Allan HD8T Richard Allan HD 1:0T Richard HD12T
Richard Allan Atlas 15 in
Richard Allan Atlas 18 in
£32.25
£53.25
$£ 15.95$
$£ 12.50$
$£ 19.70$

$£ 21.25$

£25.50
$£ 41.80$
$£ 26.10$
£27.15
£27.15
$£ 27.15$
£34.00
557.50
$£ 74.50$
£94.75
$\mathbf{£ 6} .90$
$£ 6.90$
$£ 14.85$ $\varepsilon 10.90$ $£ 3.45$ $\begin{array}{r}25.60 \\ \\ \hline\end{array}$ $£ 5.05$
£23.95
\&22.65
21.85
£12.25
$£ 18.50$
$£ 43.40$
£90.00

SPEAKER KITS

 KITS FOR MAGAZINE DESIGNS etc. Kits include drive units, crossovers, BAF/long fibre wool, etc, for a pair of speakers. sarriage £3.75Practical Hi-Fi and Audio PRO9-TI (Rogers) Felt panels for PRO9-TL $£ 6.72$ plus $£ 1.60$ carriage $£ 138$ Hi-Fi Answers Monitor (Rogers) £146 Hi Fi News State of the Art (Atkinson)
$£ 182$
$£ 48$
carriage £2.66)
Hi Fi for Pleasure Compact Monitor (Colloms) £115 (carriage £5.25) Popular Hi-Fi Mini Monitor (Colloms)
Popular Hi Fi Round Sound (Stephens) including complete cabinet kit

Jordan)
£71
£93
plus (carriage $\mathbf{£ 2 . 6 6}$)
Practich
Practical Hi-Fi \& Audio Monitor (Giles)
Practical Hi-Fi \& Audio Triangle
(Giles) £99
Practical Hi-Fi \& Audio Mini Triangle
(Giles) £108
Wireless World Transmission Line
(Bailey) KEF £122
Wireless World Transmission Line (Bailey) RADFORD £184
Hi-Fi News Tabor (Jones) with J4 bass units $\mathbf{E 6 0}$ bass units $\mathbf{£ 6 6}$

CARRIAGE 8 INSURANCE
Tweeters \& Crossovers 43p each Speakers up to 10 in . 80p each Speakers up to 12 in . $\mathbf{£ 1 . 6 0}$ each Speakers up to 15 in . £2.66 each Speakers up to 18 in $£ 3.75$ each Speaker kits . . . £2.66 per pair Magazine design kits
£3.
£3.75 per pair
PRICES CORRECT AT 1/7/79
ALL PRICES INCLUDE VAT @ 15\%

Dalesford System 1	$£ 54$
Dalesford System 2	¢57
Dalesford System 3	£104
Dalesford System 4	£110
Dalesford System 5	£142
Dalesford System 6	£95
Eagle SK210	£17.60
Eagle SK215	£32.60
Eagle SK320	£40.80
Eagle SK325	£68.50
Eagle SK335	$£ 93.00$
Goodmans DIN 204 ohm offer)	(special £27.60
LS3/5A equivalent kit	£71
Lowther PM6 kit E	£105.30
Lowther PM6 Mk 1 kit ¢	$£ 110.40$
Lowther PM 7 kit	$£ 176.85$
Peerless 1070 E	£124.70
Peerless 1120 E	£142.10
Peerless 2050	$£ 51.10$
Peerless 2060	£67.40
Radford Studio 90 kit	$£ 184$
Radford Monitor 180 kit	£218
Radford Studio 270 kit	£350
Radford Studio 360 kit	$£ 440$
Ram Kit 50 (makes RAM 100)	
	$£ 71.50$
Richard Allan Tango Twin kit	t £49.00
Richard Allan Maramba kit	t £69.00
Richard Allan Charisma kit £	£101.20
Richard Super Triple kit	E81.70
Richard Allan RA8 kit	£52.65
Richard Allan RA82 kit	£83.30
Richard Allan RA82L kit	$£ 89.90$
Seas 223	£40.85
Seas 253 E	$£ 63.10$
Seas 403 E	£76.60
Seas 603 £1	£122.60
Wharfedale Denton XP2 kit	£31.45
Wharfedale Shelton XP2 kit	£40.40
Wharfedale Linton XP2 kit	£56.20
Wharfedale Glendale XP2 kit $£$	£69.00

Everything in stock for the speaker constructor!
BAF, Long Fibre Wool, Foam, Crossovers, Felt Panels, Components, etc.
Large selection of arille
(Send $15 p$ in stamps for grille fabric samples.)

Send 15p stamp for free 38 page catalogue "Choosing a Speaker-

Telephone Speakers, Mail Order and Export
0625529599
Hi-Fi: (Swift of Wilmslow) 0625526213.
\square
Lightning service on telephoned credit card orders!

Swan Works, Bank Square, Wilmslow, Cheshire.

'Portable Precision
LMM-100 Multimeter
0.1% Accuracy WITH

Digital Hold

 £69$95+$ VAT
Crisp 0.5 " LCD read-out gives up to 2,000 hrs. battery life with 'Battery Low' warning. Basic Accuracy 0.1%. Ten voltage (min . reading 0.1 mV) ten current (min. reading $0.1 \mu \mathrm{~A}$) and five resistance (min. reading 0.1Ω) ranges. Unique 'digital hold' facility for easy data-logging. , Auto-polarity and Auto-zero. Inputs protected against overload. Full 2 year warranty. A rugged ABS case with adjustable handle makes the LMM-100 the ideal instrument for bench or field use.

LMM-100 MULTIMETER £69.95. SUITABLE LEADS £1.95. P \& P £1.50. ADD 15\% VAT TO ALL PRICES.

LASCAR ELECTRONICS BASILDON (0268) 727383

 Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LHWW-089 FOR FURTHER DETAILS

Lowe SRX30 utilises a drift cancelling loop system to give performance plus $500 \mathrm{KHz-30M} \mathrm{Mz}$ coverage. USB/LSB/AM/CW. $\mathbf{2 4 0 V a c} / 12 \mathrm{Vdc}$ supply. $£ 179$

Both the above receivers are currently available from stock. Prices INCLUDE VAT but please
add $£ 4$ for Securicor detivery
CALCDICS FOB TIE FITEST

Trio TR2300 2m FM portable trasceiver PLL with all 80 FM channels Trio TR 3200 70cm FM handy transceiver fitted 3 channels . . . £190 AR240 $\mathbf{2 m}$ synthesised FM hand-held transceiver in 5KHz channels. £199

USED AMAIEUR ERUPPEXTI

Catronics always have a good selection of reliable used and secondhand equipment - all with $\mathbf{3}$ months' GUARANTEE, including TR2200G: £100-£120 and Liner 2 £100.

HAVEPM ABMIS

Catronics stock the full range of VHF and UHF amateur aerials - send S.A.E. for list and special prices.

CIGROWVIVE MODULES
Converters and transverters for 2 m \& 70 cm - send S.A.E. for illustrated leaflet and price list.

EASY TERMS available. Access and Barclaycards welcome
GATRONIGS LTD.
(DCPR. 829) COMMUNICATIONS HOUSE
20 WALLINGTON SQUARE WALLINGTON, SURREY SM6 8RG
Phone: 01-669 6700. Mon.-Fri. 9 a.m.-5.30 p.m. Sats. 1 p.m. WW - 929 FOR FURTHER DETAILS

PCB's \& CONTACTS CLEANED WITHOUT WATER OR POWDER USING
 FYBRGLASS BRUSHES
 by

RUSH
ERASER INTERNATIONAL LTD.
Uni M, Portway Indistrial Estate
Andover. Hants, SP10a
Tel. 026451347

WW-071 FOR FURTHER DETAILS

J. L. Linsley-Hood High Quality Cassette Recorder

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation tells all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features includk: High quality separate VU meters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difficult wiring. Proper moulded escutcheon for cassette aperture improves appearance and removes the need for the cassette transport to be set back behind a narrow finger trapping slot. Easy to use, robust Lenco mechanism. Switched bias and equalisation for different tape formulations. All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a spacious, easily built and tested layout. All these features added to the high quality metalwork make this a most satisfying kit to build. Also included at no extra cost is our new HS 15 Sendust Alloy record/play head, available separately at $£ 7.60$ plus VAT, but included FREE as part of the REPRINTS of the 3 articles describin REPRINT of Postscript article 30p No VAT

TEST CASSETTE TC1
Special Hart Copyright test tape makes it easy to set up VU level. head azimuth and tape speed, without test instruments. Suitable for any cassette recọrder. Complete with instructions $£ 2.70$ inc. VAT.

LINSLEY HOOD CASSETTE RECORDER

Our new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board layouts have been altered and improved but retain the outstandingly successful mother and daughter arrangement used on our Linsley Hood Cassette Recorder 1
This latest version has the following extra features. Ultra low wow-and-flutter of .09\% - easily meets DIN Hi-fi spec. Deck controls latch in rewind modes and do no have to be held. Full Auto stop on all modes. Tape counter with memory rewind. Oil damped cassette door. Latching record button for level setting. Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents re-recording on valued cassettes. Frequency generating feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits. and the quality of the components used makes this new kit comparable with built-up units of much higher cost than the modest $£ 94.90$ + VAT we ask for the complete kit.

SUPER BARGAIN OFFER

LENCO FFR CASSETTE DECK

For those who missed our recent bargain CT4s, we now are delighted to be able to offer Brand New Lenco FFR decks complete with motor speed and solenoid control boards fitted and tested. This deck is almost identical to the CRV lacking only the pause control and record button.
A mono head is fitted but we can supply a stereo head, bought at the same time, for only $£ 2$ + VAT.
This deck would normally cost about $£ 25$, and we are offering it complete with a free escutcheon for the incredibly low price of $\mathbf{£ 9 . 9 9}+$ VAT.

VFL 910. Vertical front loading Super Hi-fi deck, as used in our new Linsley-Hood Cassette Recorder 2. £31.99 + VAT. Set of knobs $£ 1.46$ + VAT.

LENCO CASSETTE MECHANISMS

We hold stocks of a range of Lenco tape transports for all uses, we can also supply spare parts. For example.
CRV Motors complete $£ 4.00$ plus VAT
CRV Drive Belts 90 p plus VAT

CASSETTE HEADS

A large range of cassette heads for domestic, industrial and audio visual purposes is available from us. The very best stereo head that we can find is our HS 15 Sendust Alloy Super Head. This has an even better high frequency response than our HS 14 which it replaces. Unlike cheaper and ferrite types this excellent high frequency performance is combined with a high output, thus maintaining the best possible performance is combined with a high outp
signal to noise ratio. Price $£ 7.60$ plus VAT
signal to noise ratio. Price $£ 7.60$ plus VAT
4-TRACK Record/play head. Scans all 4 tracks on cassette tape. Suitable for auto-reverse mechanisms, film sync, quadrophonics and many other purposes Standard impedance $£ 7.40$ plus VAT.
Full details of these and other heads are in our lists.
ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and price breakdowns.

HART ELECTRONICS Penylan Mill, Oswestry, Salop
 \author{ Personal callers are always welcome

}but please note we are closed all day Saturday
instant easy ordering, telephone your requirements and credit card number to us on Oswestry (0691) 2894

OSCILLOSCOPES - FREQUENCY COUNTERS - OFF - AIR RECEIVERS MAINS /BATTERY PORTABLE OSCILLOSCOPE
A professional standard model dual trace DC to 15 MHz . Usable to 25 MHz with alternate, chop and single-channel A or B amplifier selection. $5 \mathrm{mv} / \mathrm{cm}$, accuracy 3%. Excellent triggering wide range time base. Natural anodised aluminium case with blue vinyl steel covers, retractable angled feet, carrying handle.

NewBear Books

 NEWBEAR MAIL ORDER: 40 Bartholomew Strect, Newbury, Berks. Tel: 063530505 NORTHERN SHOWROOM: Mersey House, 220-222 Stockport Road, Cheadle Heath, StockportChess Skill in Man and Machine 32 Basic Programs for the Pet Game Playing with Computers Basic Computer Games.
Star Ship Simulation
Game Playing with Basic BASIC
Learning Basic Fast Basic Basic
Advanced Basic
Illustrated Basic
The Basic Workshop
Basic with Business Applications Introduction to Basic Beginning Basic
Introduction to Basic NEW BOOKS
Fundamentals of Computer Algorithums
Computer Mathematics
Top-Down Structured Programming Techniques Microcomputer Design
A Directory of Microcomputing
Z80 BOOKS
Z80 Programming for Logic Design
Z80 Technical Manual
Z80 P10 Technical Manual .
Z80 Programming Manual
Z80 Microcomputer Handbook
Practical Microcomputer
Programming (Z80).

Tel: 0614912290
Levy
P. Frey
D. Spencer
D. Ahl
D. Spencer

De Rossi :
J. S. Coan
J. S. Coan
D. Alcock

Hayden
Hayden
J. Morton
P. Gosling
P. Hartley

Techniques

A Osbour

Zilog

Zilog .
Zilog
W. Barden

Weller .

$£$	7.16
$£ 11.84$	
$£$	9.95
$£ 10.20$	
$£$	5.50
$£$	5.10
$£$	4.10
$£$	6.30
$£$	5.00
$£$	5.50
$£$	2.25
$£$	6.60
$£$	5.56
$£$	6.50
$£$	2.95
$£$	1.95
$£ 15.00$	
$£ 8.58$	
$£ 12.76$	
$£ 8.99$	
$£ 10.00$	
$£$	5.95
$£$	4.00
$£ 2.75$	
$£$	4.50
$£$	6.99
$£ 23.96$	

£11.84
9.95
$\underset{ }{£} 5.50$
£ 5.10
£ 6.30
£ 5.00
£ 5.50
£ 6.60
£ 5.56
$£ 6.50$
$£ 2.95$
$£$
$£ 15.00$
± 8.58
$£ 12.76$
$£ 8.99$
$£ 10.00$
£ 5.95
£ 4.00

$£$
$£$

£ 6.99
£23.96
"BY RETURN ORDER SERVICE"

6800 BOOKS
6800 Programming for Logic Design A. Osbourne .
6800 Assembly Language
Programming . . . A. Osbourne .

Programming A. Osbourne
Using the 6800 Microprocessor
77-68 6800 Microprocessor
6800 Software Gourmet Guide Cook Book

Scelbi .
Practical Microcomputer
Programming (6800)
Weller .
D.N. 4 Definite description of
the 6800 Instruction Set

PASCAL

Pascal: User Manual \& Report Problem Solving Using Pascal Programming in Pascal
A Practical Introduction to Pascal 6502
The Best of Micro 6502 Journal
Sym Reference Manual
Sym Programming Manual
First Book of Kim
6500 Hardware Manual .
6500 Programming Manual
Programming the 6502 SYBEX COOKBOOKS
Active Filter Cookbook . . . Lancaster .
CMOS Cookbook Lancaster .
IC OP-AMP Cookbook : . . . Jung
IC Timer Cookbook Jung
TTL Cookbook
Jung
Springer-Verlag Springer-Verlag P. Grogono
A. Addyman .

Cheap Video Cookbook

Lancaster
Lancaster .
£ 5.95
£ 6.95
£ 5.65
£ 7.50
£ 7.95
$£ 17.56$
$£ 3.60$
£ 1.50
£ 5.99

\pm
$£$

\pm

£ 7.00

£ 7.00
$£ 7.50$

£ 7.50
$£ 7.50$
£ 7.95
$£ 10.45$
£ 6.95
£ 9.50
$£ 9.50$
$£ 7.50$
£ 6.95
£ 7.50
$£ 4.30$

WW - 101 FOR FURTHER DETAILS

KELSEY K102M TRANSFORMERS

 BALANCED LINE MICROPHONE AMPLIFIERSDirect P.C.B. mounting
Supply Voltage
Maximum Gain

	+15V
	43 dB
	38 dB
minal +	10 dB
Terminal +)	$\begin{gathered} +15 \mathrm{dBV} \\ 5 \mathrm{Kohm} \end{gathered}$
	200 ohm
	$+20 \mathrm{dBV}$
+ 0.5dB Ref.	Hz to 50 KHz
Better than	10 V microsec
Better than	$0.03{ }^{\circ} \mathrm{u}$ Ref IKHz
Typically	$0.027^{\circ} \mathrm{C}$
Better than	80 dB
Better than	-125 dBV (Din Audio band weighted)
	10 Kohm
40 mmx	$\mathrm{mm} \times 20 \mathrm{~mm}$
	48 grams

ELSEY ACOUSTICS LTD 28 POWIS TERRACE, LONDON W11. TEL: 01-727 1046

SEMICONDUCTORS

 BASES $\begin{array}{ll}\text { B7G unskirted } & 0.17 \\ \text { B7G skirted } & 0.35\end{array}$ B9A unskirted
B9A skirted B9A skirt
Int Octal
Loctal
Noctal
Nuvistor base
8 pin DIL
8 pin DIL
$\begin{array}{ll} & 0.17 \\ 16 \text { pin DIL } & 0.17 \\ \text { Valve DIL } & 0.20 \\ & \end{array}$

CRTs

\qquad

\rightarrow

$\begin{aligned} & \text { gix } \\ & 0 \\ & \hline 0 \end{aligned}$

 $\begin{array}{ll} \\ \text { VCR138A } & 14.38 \\ \text { VCR133A } \\ \text { V.200 } \\ \text { VCR517A } & 11.50 \\ & \end{array}$ $\begin{array}{ll}\text { VCR139A } & 9.20 \\ \text { VCR511A } & 1.50 \\ \text { VCR517B } & 11.50 \\ \text { VCR517C } & 11.50 \\ \text { Tube Bases } & 0.86\end{array}$

 ZTX502
ZTX503
ZTX504

 "
 $-$ 6DK6 2.59
4.49

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specialy produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug., 77
The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 input: selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $£ \mathbf{6 7 . 5 0}+$ VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. S / N 90 dB, Mags / n 80 dB .

Tone cancel switch. 2 tape monitor switches.
Complete kit only $£ 63.90$ + VAT.

Wireless World Dolby ${ }^{\text {n }}$ noise reducer
 Trademark of Dolby Laboratories Inc.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter.
provision for decoding Dolby f.m. radio transmissions (as in USA). - no equipment needed for alignment.
suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines.

```
Typical performance
Noise reduction better than 9dB weighted. Clipping level 16.5 dB above Dolby level (measured at \(1 \%\) third harmonic content)
Harmonic distortion \(0.1 \%\) at Dolby level typically \(0.05 \%\) over most of band, rising to a maximum of 0.12\%
Signal-to-noise ratio: \(75 \mathrm{~dB}(20 \mathrm{~Hz}\) to 20 kHz , signal at Dolby level) at Monitor output
Dynamic Range \(>90 \mathrm{db}\)
30 mV sensitivity.
```

all components
Single channel board with selected fet
Gold Plated edge connector
Selected FETs 65p each + VAT, 110p + VAT for two, $\mathbf{£ 2 . 1 0}+$ VAT for four. Please add VAT @ 15\%

Price $£ 9.00$ +VAT
Price £2.75 + VAT*
Price $£ 1.75+$ VAT

S-2020TA STEREO TUNER/AMPLIFIER KIT

SOLID MAHOGANY GABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 Wr.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \overline{\mathrm{M}} \mathrm{Hz} .30 \mathrm{~dB}$ mono S / N @ $1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE: $\mathbf{E 5 9 . 9 5}+$ VAT

NELSON-JONES MK.2 STEREO FMTUNER KIT
 Price: $£ 69.95+$ VAT.

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection - 85dB. THD typically 0.4%. IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter
Push-button tuning
PRICE: Stereo $£ 33.95$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3\%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

With ICPL Decoder $£ 40.67$ + VAT
With Portus-Haywood Decoder
$£ 44.20$ + VAT
Mono $£ 36.40$ + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of

> assembly and to minimize wiring
> Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60 dB . Radio input S / N 72 dB . Headphone output. Tape In / Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: $£ 35.95$ + VAT
Retail sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Also 325 Edgware Road, W2. Tel: 01-723 4242
Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133 and Bristol: 108A Stoke's Croft, Bristol. Tel. 0272426801

MARCONI TEST EQUIPMENT

TF2360R. TV Transmitter Sideband Analyser TF455E Wave analyser. New. £135 TF1101 RC oscillators. £65
TF 109920 MHz Sweep generators
TF1041 B \& C. VT Voltmeters
TF1 102 Amplitude modulator. 500 MHz TF1020A Power meter. 100W. 250 MHz . £85 TF1152A/1 Power meter. 25W. 500MHz. £75 TF890A/ 1 RF test set. £425
TF801B / 3S Signal generator. £175 TF1064B / 5 VHF. FM Signal generator TF1400 Pulse generator
TF675F Pulse generator
TF1370 Wide-range RC oscillator. £125 TF2 162. MF Attenuator
TF 1058 UHF / SHF signal generator
TF995A/4. AM /FM signal generator
TF1066 AM / FM signal generator
MARCONI TF144H/4 Signal Generator

ADVANCE CONSTANT VOLTAGE TRANS

FORMERS
Input 190-260V AC. Output constant
220 Volts. $250 \mathrm{~W} . £ 25$ ($£ 2$ carriage)
PYE RESISTANCE BOXES 5 decade resistance
ohm to 0.001 ohm \qquad
LABORATORY OVENS. - Gallenkamp, 3 cu . $\mathrm{ft} . £ 145$. Also Morgan Grundy $1 \mathrm{cu} . \mathrm{ft} . £ 55$. 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts. £2.50 each ($+25 p$ pp). Type 316 three pole plugs for above - 20p ea. (pp free).

POWER SUPPLIES

APT 10459/8. 12.5V-14.5V DC @ 5A £25 APT 10459/8. 5 Volts DC @ 5 Amps £25 APT 10459/13.24 Volts DC @ 5 Amps £25
(Plus £1 each carriage)

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each.
Wandel \& Gotterman Equipment
Level Meter $0.2-1600 \mathrm{KHz}$
Level Oscillator $0.2-1600 \mathrm{KHz}$
Level Transmitter $0.3-1350 \mathrm{KHz}$
Carrier Frequency Level Meter

P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NVV1 TEL: 01-723 8753

TEST EQUIPMENT

ADVANCE Q-Meter type T1
GAUMONT-KALEE Flutter Meter
HEWLETT-PACKARD 302A Wave-Analyser
RACAL type 801 R . 100 MHz digital frequency meter TELETYPE ASR33 now in stock
SOLARTRON 1420.2 digital voltmeter. 6 ranges to 1 KV BOONTON 80 Signal generator. $2-400 \mathrm{MHz}$
HEWLETT-PACKARD 180A 50MHz oscilloscope
BRANDENBURG EHT GENERATOR $0-15 \mathrm{kV} .1 \mathrm{~mA}$
GERTSCH Frequency meter and deviation meter $20-1000 \mathrm{MHz}$ HEWLETT-PACKARD 65A Sweep oscillator RADIOMETER AFM1/ Dev/Mod Meter. $3.5-320 \mathrm{MHz}$ £ 185 AIRMEC 314 A Electronic Voltmeter. 300 mV FSD-300V AC/DC.
DERRITRON. Digital Wheatstone Bridge
$£ 110$
WEINSHEL Power Supply Modulator MO3

BRUEL \& KJOER Vibration equipment 1018
BRUEL \& KJOER Frequency analyser 2105
BRUEL \& KJOER Microphone amplifier 2603 £195.
BRUEL \& KJOER Type 3301 Automatic trequency response recorder 200 Hz . $£ 750$.
MUIRHEAD-PAMETRADA D489EM Wave Analyser
TEKTRONIX 555 scope with plug-ins types CA (2 off), 21, 22 TEKTRONIX 515 A Oscilloscope
TEKTRONIX 545 main frames. £210. Choice of plug-in units extra
TEKTRONIX 585A oscilloscope with ' 82 ' P.I. DC-80M Hz BRANDENBURG 2595. EHT Generator. 50 KV 1 mA . DERRITRON 1 KW Power: Amplifier with control equipmen for vibration testing, etc
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee. Calibration and certificates can be arranged at cost. Overseas enquirie:
welcome. PLEASE ADD 15% VAT TO ALL PRICES

ROHDE \& SCHWARZ EQUIPMENT
HUZ Field Strength Meter. $47-225 \mathrm{MHz}$.
AMF TV. Demodulator $55-90 \mathrm{MHz}$.
Selective UHF v/meter, bands 4\&5 USVF. Selectomat. RF Voltmeter. USWV. BN 15221

Standard attenuator $0-100 \mathrm{~dB}, 0-300 \mathrm{MHz}$ UHF Sig. gen. type SDR 0.3-1 GHz
UHF Signal generator type SCH.
UHF Test receiver type USVD
POLYSKOP SWOB 1.
KROHN-HITE 10-Watt Amplifier DC-1 MHz
GR Impedance Bridge type 1650 A
$£ 175$

MODULATION METERS

AIRMEC 210. $3-300 \mathrm{MHz}$. AM / FM
RADIOMETER AFM / $13.5-320 \mathrm{MHz}$. AM / FM. RACAL $4093-600 \mathrm{MHz}$. AM /FM.

'CENTAUR' INSTRUMENT COOLING FANS

Made by Rotron Holland. These are very high quality, quiet running fans; specially designed for the cooling of all types of electronic equipment. Measures $4.5 \times 4.5 \times 1.5 \mathrm{in}$. 115 V AC. 11
Watts. The list price of these is over $£ 10$ each. Also 230V. AC available. 15V. £4.50 (postage 25p). 230V £5
Finger guards for above - 50p each. Also small type Papst fans as above measuring $8 \times 8 \times$ $3.8 \mathrm{cms} .26 \mathrm{cu} . \mathrm{ft} / \mathrm{min}$. 110 V only $\mathbf{£ 4 . 0 0 \text { (PP }}$ 25p). RS price for all these fans are now around £12.50 each!!!

LAMBDA 5U DC POWER

 SUPPLIESStabilised/regulated modular type power supply units giving 5 Volts 4 Amps . These units are ply units giving 5 Volts 4 Amps. These units are
brand new complete with instruction book. 110 V mains input (50 Hz) so ONLY $£ 10.00$ 110 V mains input (50 Hz) so ONLY £10.00
each ($+£ 1$ p\&p).

12V. DUAL POWER SUPPLIES

Mullard, brand new in original cartons complete with handbook. 230 V . AC Input +12 V . DC and -12 V . DC Output at 1 A and 0.4 A respectively Dimensions: $8 \times 4 \times 5^{\prime \prime}$. ONLY £10ea. ($+£ 1 \mathrm{pp}$).

SEMICONDUCTORS SEND YOUR ORDERS TO DEPT. WW 9; PO BOX 6, WARE, HERTS. VISIT OUR SHOP AT: 3 BALDOCK ST, WARE, HERTS. TEL: 0920 3182. TELEX: 817861

TRANSISTORS

${ }_{\text {AC }}^{\text {AC12 }} 127$	${ }^{\text {co. } 21}$	BC14	c0.08			BU105	11.84	2TX109	$\underline{50.11}$
${ }_{\text {ACl }}^{\text {AC12 }}$	${ }_{80}$	${ }^{\text {OC }} 149$	¢0.08	${ }^{\text {BC550 }}$	16	BU105/02	E2.24	2TX300	${ }_{\text {c00. }}$
AC128K	E8.30	${ }_{\text {BC1 }}$	${ }^{6} 0.12$	${ }^{\text {BC556 }}$	¢0.16	BU204	E1.81	2T×5	E0.14
	E0.23	BC159	50.12	${ }^{\text {BC5558 }}$	E0.15	BU2	E1.61	2N16	${ }^{2} 0.23$
	E0.23	BC167	E0.14	${ }^{\text {BC559 }}$	c0.14	8228/02		2N1711	c0.23
	E0.23	BC168	E0.14	80115	${ }^{2}$	MJ	E1.04	2N	51
	E0.25	BC169	10	B0116	E0.52		-	2N	E0.51
AC141	E0.35	69C	12	BD121	${ }_{50}$	M	80	2N1	
	¢0.		co. 10	B0124		MP			
	¢0.	BC171	E0.10	B0131				2N2	
Ac	E0.30	${ }^{8 C 172}$	10	BD132	E0.40	-			15
AC1	¢0.20	BC173	E0.10	80133		M			
	¢0.	BC	E0.18	80135	E0.46	MPS	23		44
AC180	E0.23	BC178	E0.18	BD136	E0.40	MPSA			44
A		8 C 179	co.18	BD137	E0.40	-			
AC18	. 23		¢0.29	B0138	${ }_{\text {E0.41 }}$	Oc			
AC181	32	BC181	¢0.10	80139	E0.41	OC24	¢1.55	${ }^{2 N 2182}$	${ }^{\text {E. }}$ 80.23
AC18	c0.21	BC1821	E0.10	BD140	E0.41	oc	E1.15	2N2219A	E0.25
AC187	E0.32	${ }^{\text {BC1 } 183}$	c0.10	BD155	E0.92	OC26		2N2904	${ }_{\text {co. }}$
${ }_{\text {ACl }}^{\text {ACl }} 188 \mathrm{~K}$	- 50.21	BC18	E0.10	BD175	ع0.69	OC2	92	2N2904A	
${ }^{\text {ACl } 188 \mathrm{~K}}$	£0.32	BC	co.10	BD176	¢0.89	OC29	09	2N2905	
AD140	${ }_{\text {co. }}^{60}$	BC207	E0.13	BD177	¢0.78	Oc		2 N2905A	E0.23
		${ }^{\text {BC }}$	E0.13	B0178	78	OC36		2N2906	18
		BC29	co.14	B0179	88	OC		2N2906A	21
AD161	E0.40	${ }^{\text {BC2 } 2121}$	¢0.10	${ }^{80203}$	c0.92				23
AD162		BC213	E0.10	B820	c0.92	TIC4	E0.33	2N2907A	E0.25
			c0.10	BF457	E0.43	P99A		-	
162 MP		BC214	c0.10	BF458	E0.43	T1P298		2N2926r	
AF124		BC214L	¢0.10	BF459	E0.44	TIP290		NN2260	09
	ع0.	BC227	E0.18	BF594	E0.35	TIP30A		2920	
	E0.	BC238	E0.18	BF596	E0.32	TIP308		2N29	
AF127	¢0.		60.17	вFR39	0.28	T1P3		230	
	c0.40	BC251A			E0.29	TIP31A		2N305	
	¢0.		32	BRR79	E0.32	TIP3	8	N355	
	¢0.				£0.32	TIP312		N3614	
	E1.3			BFX29	E0.25	TiP32A		N3615	
	E1.3			BFX	${ }^{2} 0.35$	TiP328		2N	
AUl 104	E1.		¢0.18	Bfx	E0.25	TIP32C			
Aul10	c1.61		17	BFX85	E0.28	TIP41A			
	¢1.61		20.17		E0.29	TiP4			
BC.107A			E0.17	BFx87	E0.25	TIP41C	${ }_{\text {E }}$		
CC1078	c0.10		E0.35		E0. 25	TiP42A	${ }_{60.50}$		
BC107C	c0.12		E0.		E0.18	TIP42B	${ }_{80.52}$		
C108A	E0.09			BFY51	E0.18	TiP42C	${ }_{80.55}$		
C108B	c0.11		E0.		E0.18	TIP2955	${ }_{60.69}$	2 N 378	
C108C	c0.12		20	${ }^{119} 19$	¢0.44	TIS43	80.65		
C109A			. 23	B1P20	E0.44	Tis90	E0.20	2N3711	8
C1098	ع0.10	79	${ }^{20.23}$	8iP19/		UT46	¢0.23		
(c109C	${ }_{\text {cos }}$	${ }^{\text {BC547 }}$		20 MP	80.92	ZTX10		2N3820	E0.40
		BC548		8RY39	c0.51	2TX108	co. 1		
74 SERIES TTL									

CMOS ICs

Type Price			ce	遇
CD4001 $\mathbf{6 0 . 1 7}$	CD4016 60.48	CO4027 60.57		C04070 ${ }^{\text {coser }}$
CD4002 60.18	CD4017 E0.88	CD4028 ${ }^{\text {ci. } 78}$	CD4045 £1.61	CO4072
C04006 $£ 1.05$	CD4018 ${ }^{\text {E0.97 }}$		C04046 ¢1.49	C04072
C04007 ¢0.19	CD4019 ${ }^{\text {E.4.48 }}$	CD4030 $£ 0.55$	CD4047 $£ 1.00$	${ }_{\text {co4082 }} \mathbf{E} 0.20$
C04008 $£ 1.05$	3	C04031 $£ 2.30$	C04049 ${ }^{\text {¢ }}$.48	CD4510
CD4009 $\mathbf{E 0 . 5 1}$	CD4021 80.94	CD4035 $£ 1.15$	CD4050 60.48	CO4511 E1.09
CD4010 E0.55	CD4022 $\mathbf{0}_{6.94}$	C04037 £1.09	CD4054 £1.26	
CD4011 ${ }^{\text {co.17 }}$	CD4023 $\mathbf{E 0 . 1 7}^{\text {a }}$	CO4040 £1.01	5	15
4012 ¢0.18	C04024 $£ 0.74$			
C04013 $\mathbf{\varepsilon 0 . 4 8 ~}^{\text {c }}$	25 ${ }^{\text {c0.17 }}$	CD4042 60.82	CD4069 $\mathbf{E 0 . 1 9}$	C04014 $\mathbf{6 0 . 9 2}$

LINEAR

There's a range of answers.

There's something every one of our scopes has in common, Great accuracy, tremendous reliability and keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility using CMOS ICs for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360.00*

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.
*UK list price excluding VAT.

IT'S FREE

Our monthly Advance Advertising Bargains List gives details öf bargains
arriving or just arrived often bargains which sell out betore our

2kW HIGH VOLTS TRANSFORMER
For metai erosion by the electro-spark principle and for high voltage applications generally. This is a big transtormer, size approx. 7in. cube,
weight around 60 oib, beautifuly made. Would probably cost at least
 load. we are not certain of the current rating but we estimate this at
amp.
arice 322.40 carragee
IS5 mainland only. TS (do-it-yourself type push them through vero boord, solder and then detach the top section. The result is al ow profile IC socket of the right type iust where you want it..
8 pin 17 p , 16 pin 27 p . 18 pin 38 p or quantity of 100 soldercons for E1.30.
22 poie 4 way siver plated 5 anp contracts with good length $1 / 4 i$ in. spindle. Price 34 + + ap. Pentivo
INTER VALVE SPEAKER
transformer
TRANSFORMER
Forvalue tye circuits standard matching to $3 / 40$ ohms. Price 56 p.
WIRE ENDS
Ring type for fixings on terminals and screws, and push on to spade
types. Both for crimping on the ends of wires. 10 for $2004+2$, 10 . 1000

Whit for san. circuar flex etc. 10 for 22p.
ARROW ROCKER SWITCH
 changeover swith
Motor and four bladee fan built into a tube approx. 2in. dia. and
MAKING A BLIOWER HEATER?
Element assembly made of $3 \times 1 \mathrm{kw}$ spirals with leads and Bank rocker
switch which will give oft 1 kww spirals with leads and Bank Which will give off. $1 \mathrm{kw}, 2 \mathrm{kw}$ or 3 kw . Price E 1.62 per pair with diagram
 protection, base mounting plate, good length of $\%$ in. shaft. Price
$\mathbf{E 1 5 . 6 6}$, carriage $\mathbf{E 4}$ (mainland ony). PROCESS TIMER
Chambalain and Hookham Litd. Their type no. P. We have two models in
stock. 0 . 30 seconds and 0.3 . impressive panel mounting instrumients. Price $£ 15.12$.
MANUUACTURERS and money. Send us a sample of the lead you use it we have one the
same or near enough we will supply at 5 per lead for wires fitted with one or two tags and $21 / 2 p$ per tag for multiple leads.

MAINS SOLENOIDS

With slugs for pulling when a mains voltage is applied, made by Westool.
these are replacements in many washing machines, these are replacements in many washing machines. toon disponsers etct.
Also useful as a magnetic lock. We have 4 models in stock. TT2 size
Also $11 / 2$ in. $\times 1 / 1 /$ in. $\times 1 / 1 /$ in., has a powerful 1 in. pull. Price $\boldsymbol{\varepsilon 2 . 1 6}$.

TT10 size 3 3in
MODEL
An even more powerful model by Magnetic Devices Ltd. Has the normal
pull plunger but this is extended through to give a big push as weil as a HIGH VOLTAGE ISOLATION AND STEPDOWN TRANSFORMER This gives $230 / 40 \mathrm{~V}$ from $\mathrm{m} 400 \mathrm{~V} / 440 \mathrm{v}$ supply and is s suitable for 100 w load. Other uses for this are as a normal stepdown $230 v$ to 75 V,
isolation, or as astep up 400 from 230 v with isolation. Price $\mathbf{\varepsilon 8 . 5 0}$. isolation, or as a step up 400
DOOR MOVING MOTOR
Framco reversible single phase 240 V AC motor with gear box giving final
speegd 5 rim. Molor areed at 501 b to the inch, shaft tiength is approx. weight approx. 131 b . Price E15, carriage E 3 mm
10 KVA 3 PHASE AUTO TRANSFORMER
Beautifully made and enclosed in a solid sheet steel case with a removable lid tor easy access to terminals. Voltaegs. veatialabe are 40 ,
400.380 and 240 . There is also a neutral tapping point, this transtormer weighs approximately 50 kilos. 2 only in stock. Price $£ 54$, carriage MULTI CORE POWER CABLE
36 collour codeded conductors each rated at 5 amps for longish runs, and
8. 10 amps for short tuns. Screened then 8. 10 amps for short runs. Screened then coverect overall with hinh grade
PVC. The diameere of the finished cable is $3 /$ in PVC. The diameter of the finished cable is 3 /in. approximately. Good
quantity avaiable, cut to your required length. Price $\mathbf{8 1 p}$ per metre. Post and packing 25 p per merre
ARE YOU USING AMERICAN TOOLS SAFELY?
Auality of insulation as 230 v tools, therefore to use the have the same transformer especially in damp conditions could be asking for trouble. You should use an isolation step down transformer. We have some of
these to offer at bargain price this month made for computers but hitle used. They come in metaic cases with inputs and outputs for leads. Rated
it 500 w regular price $\mathbf{E 3 5}$, our price $£ 18.25$ each post etc $£ \mathbf{2}$. at 50 w regular price $\mathrm{E3}$.
MAGETIC CLUTCH
Xerox $1215494-\mathrm{i} / \mathrm{n}-10-110$ PN866-10. Have no information
sheet on this but it appears that one section fits to the spinde of the sheet on this but it appears that one section fits to the spindie of the
machine and the other to a stationary part. It appears also that the clutch can be used as a partial brake by puting reduced voltage into it as a
normal brake with normal voltage, or as emergency soop by puting increased voltage into it American ad very
MULTI SECONDARY TRANSFORMER

MULTI SECONDARY TRANSFORMER
Primary $10-0-10-115-210-240 \mathrm{v}$, 50 cp

 37p.
JUG HEATER
E6.05. U.V. DISCO LAMP
175 wars.
New model with 2 ohm

EXTRACTOR FAN

MULLARD UNILEX

 Rated one ont the thnest tepereo sysuers inthe stereo field this would make a
the the stereoo field this would make a
wonderfui gift for almost anyone in
easy-roto-assemble modular torm and easy-to-assemble modular form and
complete with a pair of speakers this soecil bulk-buy and as an incentive fo you to buy this month we offer the
system complete at only E15 including
 system complitete a
VAT and postage.

HUMIDITY SWITCH

DELAY SWITCH

set with pointers knob for periods of up to
$21 / 2$ hrs. 2 contacts suitable to switch 10 amps - second contact opens few minutes

25A ELECTRIC PROGRAMMER

MULLARD AUDIO AMPLIFIERS
connection tags, data supplied Model 1153500 mW , power, output

RILL CONTROLLER
Electronically changes speed from
Full power at all speeds by tinger-tip
everything and full instructions. $\mathbf{£ 3 . 4 5}$

MAINS BLOWER

$21 / 2 \times 13 / 4$ for cooling equipment. etc. will extract if outlet is blowing outwards price
$\mathbf{£ 5 . 5 0}$. Othar models from $\mathbf{£ 2 . 0 0}$

NDUCTION MOTORS

for ITT $3 / 4$ stace is our reterence MM $11 / 2$ made model £1.75, 1 stack $£ 2.75$. $11 / 2$ stack

BURGLAR ALARM ITEMS

MINI-MULTI TESTER
Amazing, deluxe pocket size preciston
moving coil instrument jewelled
bearings - 1000 opv - mirrored bearin
scale.
11 Ins 11 Instant ranges measure.-
DC volts $10,50,250,1000$ AC volts 10. 10.50 .250 .1000
C amps 0.1 Continuity and resistance $0-150 \mathrm{~K}$
ohms.
Complete with insulated probes. leads. Complete with insulated probes. leads,
battery, circuit diagram and instruc-
tions. Unbelievable value only $\mathbf{~} \mathbf{6 . 5 0}+\mathbf{5 0}$ post and insurance.
FREE Amps ranges $k i t$ enable you to read DC current from REE Amps ranges kit enable you to read DC current from 0.10 amps, already own a minı tester and would like one send $\mathbf{£ 1 . 5 0}$.

TERMS: Cash with order - but orders under $\mathbf{£ 6}$ must add $\mathbf{5 0} \mathrm{p}$ to offer
BULK ENQUIRIES INVITED. PHONE 01-688 1833
ACCESS \& BARCLAYCARD ACCEPTED

J. BULL (EEECTRICAL) LTD

(Dept. WWW), 103 TAMWORTH RD. CROYDON CR9 1SG

IT'S FREE

Our monthly Advance Advertising Bargains List gives details of bargains
arriving or just arrived Wdverisement can arrived - ofteen bargains which sell out on interesting list and it's free - ourt
uist

EX GPO telephomes

. Iqpe. E.05 ach TELPMOME SWITCHES

sk mounting. These are the oldder. winking eye type almost becoming wseum piaces. Pricas

Smith's industries - ma
 diameter by $2 / / i$ in thick. Suirable for drying - blowing extraction, air circulating elte etce onfy
THREE MORE TRANSFORMERS are added to our list this month. TM54: This is an upright
mounting - varnish impregnated. it has a msin secondry of 200 v 500 mA and another of 6.3 v
m55: Agsin upright mountinn asd impregnaled. thisis one has two secondary windings hoth $12 y$ 5 amp so it can lio used as $12 v 10 \mathrm{amp}-24 \mathrm{v} 5 \mathrm{mp}$ or $12-0-12 @ 5 \mathrm{mpp}$. prici $84.95+$ 40 p posi $£ 1.25$. Sb: One secondary of $4 \mathrm{y} 12 / \mathrm{amp}=$ this is quite a amall iranslormer and could also be used TANGEATIAL BLOWER
 WANT LOW YOLTAGE MABMS AMD ISOLATIOM
A 10 watt $£ 2.10 .36$ watt at $£ 4$. Larger sizes on reques.
Wo havi at leas 15
Wo have at leasi 150.000 small bastery operated motars in stock, mostly Japanese made and
 mann i. stops inill got into a current position il possible. the largest is powerluw enough to operate a hand drill. We have a leaiflet which briefly describes these but if you're.
contemplating making a toy or a movelty noeding a motor then send $£ 2.50$ lor our assortment of 8 motors - find the right one for your projiect - we will supply this at I spacial quantity

discounl MOW SOME BIGGER 12 vOLT MOTORS

12v MOTOR BY CRDUZET - 2 powerful motor virtually impossibie to sitop by hand, size
 splined shath which could directly ongage a toothed gear wheth or wilthout toad. Fitted with a. altachad. Ideal for larpe models. or smail mac
12 vot motor By Smith impuSTRI
Made for use in cars thase Being series wound they will also wrave ofl add to to slopping point - reversitle by rewiring. You use a variabie voilage type then the moter snased con ongha sitep down transformer and in SLe approx $3 / 2$ in long by 3 in dia. these mave a lood langth of 1 tind by the voltape
24p. Ditto but double ended £3.95.
WAMS OPERATED LOW SPEED MOTOAS
 $30 \mathrm{r}-1 \mathrm{rmin}-2 \mathrm{rm}-4 \mathrm{rm}-8 \mathrm{rm}-15 \mathrm{rm}-25 \mathrm{rm}-30 \mathrm{rm} 200 \mathrm{rm}$ all at $£ 2.85$ өिch.
SPAT MOTOSS
SPTT MOTORS
Thase are powerful mains operated induction motors with gear box attached. Shaft is a 1 /in
rod with square hote. final spead is approx 5 revs per min. price $£ 5.25-$ similar molor but with final speed 110 rpm 55.1580 rpm same price.
SUB BIMI WICROPHOWE
Size only y yin x y 3 in $x 3 / 16 \mathrm{in}$ so small enough for a buggind device ex-haring aids but
guaranteed. Price $£ 1.50$. guaranied. Price EL1.50.
American make size approx x /in \times Yiin $\times 3 / 16$ in changeaver contacts - three types in slock.

wer 100.030 of them in stock at pric

planse with a sample if possibla

Hormal size, normal fixing bright plated togite and fixing nuts - by HSF. 3 amp 250v price 49p each, £35 + £2.40 por hundr
SP DT TOGGLE SWTCH
13 amp at 250 v - bakelite body flat togole - bright plated fixing nut $33 \mathrm{p} £ 22$ per hundred.
WAEE CHAMGE SWHTCHES We have mini types @ 40p +5 p a avilable in the following combinations: 4 -pole 3 -way. 3 -pole STAMDAFD TYPES

 slack up to 10 walers so could make say 10 -pole 12 -way or 80 -pole.
IISTRUMENT SWITCMES
These use a smadier noildard switchas rice $5150+1$ rer size approx 3/in dia - available in some combinations as Wand movintimg THERMOSTAT By Danfoss in a really pretty two-tone grey case with scrite and dial. Setting temperature from $0.30 \mathrm{C}-13$ amp 250ץ conta
UP TO 5 IIINUTE TIMER
Mains motorised, the diat of this is calibrated in $1 / 10$ th of a minute up to 5 minutes -8 stipping clutch molor takes preset time to travel to its siop. then it slips until switched olf. Fitted micro switch oparates at the stop. Micro switch could be used to make the limer repast, switch off olc. American made - ex aquipment - believed unused. Pricc £3.25.
A A 24 way stud
stud per impulse - the second solenaid returns the switch arm on a metal chessis size approx
sith
MIEIATURE FAAGMETIC CIRCUIT BREAKERS
Will trip taster than a fuse can biow. use to control your sarvice bench etc, will save you the trouble of renewing fuses, of replace your fuse box with a ling of these. Availeble as follows. 1 amp - 2 amp -5 amp - $10 \mathrm{amp}-15 \mathrm{amp}-25$ amp. All same price $E 2.25$ oach
With record and playback heads. All electronics. switches and spaakers. Price $£ 9.95$ (Surelly This muss the the bargain of the year). Stereo with heads but not elacironics $£ 14.95$.
BUS BARS FOR PUSH ON TAGS Type I
$18 L$ and hus bars will take 12 push ox Ian x in wilh two hatty cable trap terminals. marken construction of moxse elactrical heaters ett. Prite 44p. Type 2 . work benth or would help JUMCTIOM BOXES. Ideal tor fing main or lighting insta
COMWECTOR STRIPS. Mormal
12 scrow down in polythene base. 3.5 amp 10 tor $£ 2.15$ amp MUMBERED CDMNECTION STRIP. For 25 amp cables this is very compact only $31 / 2$ in long hin wide. The body is not polyithone but a harder malerial probably yyton. The contacts are PLUE-IM-ABLE COMMECTDR STRIP. Femala usual screw down of one side, but sprung holes on other. Male has screw down one sides and plugs on the other. The pluns are lightity gripped by the sprung holes. Femate portion is availiabie in strips of 3 connectors 16 p or 12 600 OH W WIE WDUND RESISTOR 15 watt type 10 for $£ 1$.
SPRIWG FIXIMG FOR 15 WATT RESISTORS. Specially shaped sprung clip pushes into
FUSE HOLDERS. For 20 mm luse. Chassis mounting, polythene base with hole for fixing.
Irips of 10. Price 54p.
Sesided packing. Price E6.50.
WOVEL 50 Hz FREQUENGY CHECKER for chacking frequency of invertors elc. this is a requency controlled motor with reduction gearbox-simply fit a cardhoard disc to spindle. evolves at 16 rpm than supply is correct frequency if less than 16 rpm it is 3 low. if more than
 quickiy hook those up you need female ended leads: we offer an assortment of 20 leads ending with push on conneciors. al for f1.08, will save their cost in no. lime. ty hrre-core lead. Price 85p. 10 for $\varepsilon 8$.
EAVY DUTY RELAY with win 20 amp changeover contacts. coil vollage is 24 volts D.C. or
0 volts A.C. Four of these wilh coils in series could be used to swith mains lighting
${ }^{\text {88p }}$ AIMS OPERATEO CONTACTDR. Beautifuly made in West Germany. this has 3 poles
 2^{2} 'in $x{ }^{3} 3$ in in high. Price $£ 4.50$. 6 YOLT RELAY. Standard open single scrow fixing with 3 pairs $10 \mathrm{amp} \mathrm{C} / 0$ conlacts. Price
MALIS SOLEMOID WATER VALIVES. Made by Asco. Two models available both sultabie
or water and non-corrosive liguids b blh for mormal minsoper

SERVICE TRADING CO

FT3 NEON FLASH TUBE

WHY PAY MORE?!

MULTI RANGE METERS Type MF15A. $\mathrm{AC} / \mathrm{DC}$ volts $10.50 .250 .500 .1000 . \mathrm{Ma}$. O .
$0 .-10$. $\mathrm{O}-100$. Sensitvity 2000 V . 24 range
dimensions $133 \times 93 \times 46 \mathrm{~mm}$. Price $£ 7.00$ plu 50 P P\&P ($£ 8.63$ inc. VAT \& P).

TRIAC.
haytheon tag symmetrical Triac. Type Tag $250 / 500 \mathrm{~V}, 10 \mathrm{amp} 500$ piv, Glass passivated plastic triac. Swiss precision product for long term
reliability $£ 1.25$ P\&P 10 ($\mathbf{E 1 . 5 5}$ inc. VAT \& P) (inclusive of date and
application sheet). Suitable Diac 22 p .

0 to 60 MINUTES CLOCKMORKTIMER. pouble pote 15 amp 230 V AC. Contacts (no dial). £1.50. P\&P 30p MERCURY SVIITCH including VAT $\mathbf{E 6 . 1 0}$. Min P\& 30p, total

230 VOLT AC FAN ASSEMBLY owerfut continuously rated AC motor complete
with 5 blade $61 / 2^{\prime \prime}$ or 4 blade $3^{\prime \prime}$: aluminium fan New red
VAT \& P
N.M.S.

21-WAY SELECTOR
SWVITCH with reset coil The ingenious electro mechanical device can be
witched up to 21 positions and can be reset from ny posith by energising the reset coil, strong chassis. Complete with cover. Price $£ 5.50$

A.E.G. CONTACTOR

TORIN BLOWER
 ure $10 \times 41 / 2 \mathrm{~cm}$ overall size $22016 \times 14 \mathrm{~cm}$. Aper- ©3ice availabe. P\&. 75 P. (incl VAT $£ 5.18$). Other types

24V DC BLOWER UNIT
C producing 30 cu ti min 110 mm , depth inc motor 75 mm , nozzle length 19 mm , dia 22 mm . Ideal for cooling mobile equipment, car, caravan, etc. $\mathbf{£ 4 . 5 0}$ P\&P 75 p ($£ 6.04$

MINIATURE UNISELECTOR

2 V 11 way 4 bank (3 non-bridging 1 homing) $\mathbf{E 3 . 0 0} \mathrm{P} \mathrm{\&}$ P 35 p ($\mathbf{£ 3 . 8 5}$

MICRO SWITCHES

Sub min. lever $\mathrm{m} / \mathrm{switch}$ type MML46. 10 for $\mathbf{£ 2 . 5 0}$ Type
\& P). BF lever operated 20a. c/o. mf. Unimax USA. 10 for $\mathbf{£ 4 . 0 0}$ D.P C/O lever m/switch, mfg. by Cherry Co, USA. Precious metal, low
resistance contacts. 10 for $£ 2.50$. P\&P 30 p . Total inc. VAT $£ 3.22$ min

HEAVY DUTY

SOLENOID 15 P P\&P (£6.33 inc. VAT \& P P) R $\& 4.75+$ PYE EYTHER

travel, intermitant rating. Price $\mathbf{£ 1 . 0 0}$ P\&P
20p (E1.38 inc VAT \& P) N.M.S.
WESTOOL TYPE MMB MODEL
240 VAC . Approx. $13 / 4 \mathrm{ib}$ pull at $1 / 2$ inch. Rating 1. Price $£ 1.50 \mathrm{P} \& \mathrm{P} 20 \mathrm{p}$ 18.24 V DC 70 ohm Coil Solenoid. Push or Pull. Adjustable travel to

240V AC SOLENOID OPERATED FLUID VALVE
 body, stainless steel core and spring $1 / 2$ in. Forged bras outlet. Precision made. British mfg Price $£ 3.50$ Post 50 p $\langle £ 4.60$ inc.

INSULATION TESTERS (NEW)
suitable for bench or field work. constant utch. Size L. 8 in., W. 4 in. H. 6 in., weight 6 lb .

YET ANOTHER OUTSTANDING OFFER

 £2.30VARIABLE VOLTAGE TRANSFORMERS
 Carriage and

INPUT 230V AC 50/60 OUTPUT VARIABLE 0/260V AC BRAND NEW. All types. 200W (1 Amp) fitted A/C
volt meter 14.50 0.5 KVA (Max. $21 / 2 \mathrm{Amp}$) . . $£ 17.00$ 1 KVA (Max. 5 Amp) 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) 5 KVA (Max. 25 Amp) 10 KVA (Max. 50 Amp) 17 KVA (Max. 75 Amp)

GEARED MOTORS

100 R.P.M. 115 lbs. ins.:
 1 lb . ins., 110 volt, $50 \mathrm{~Hz}, 2.8 \mathrm{amp}$. single phase. split capacitor motor. Immense power. Continuously rated. Totally enclosed. Fan cooled. In-line gearbox. Length 250 mm . Dia. 135 mm . Spindle Dia. 1.5 Fmm Length 115 mm , ex-equipment tested $\mathbf{\Sigma 1 2 . 0 0}$ Post $£ 1.50$ ($£ 15.53$ inc. VAT \& P). Suitable transformer $230 / 240$ volt $£ 8.00$ Post 75 P ($£ 10.06$ inc. VAT \& P)
 GEARED MOTORS
 28 r.p.m., 201b. inch 115 V AC Reversible motor $71 \mathrm{r} . \mathrm{p} . \mathrm{m}$. 10 lb . inch. 115 V AC Reversible motor
 71 r.p.m. 10 lb . inch. 115 VAC Reversible motor
 ($£ 6.33$ inc. VAT + P\&P)
 Supplied (Es.48 in

 FRACMO MOTOR

 FRACMO MOTOR}$0.10 \mathrm{~V}-15 \mathrm{~V}$ at 3 amp . (ex new equip) $£ 2.50 \mathrm{P} \mathrm{\& P} 50 \mathrm{p}$ ($£ 3.45 \mathrm{inc}$. VAT)

 $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 14.70 \mathrm{P} \& \mathrm{P} £ 1.50$ (inc. VAT $£ 18.63$) 0.12 V at 20 amp . or $0-24 \mathrm{~V}$ at 10 amp . $£ 12.00 \mathrm{P} \mathrm{\& P} £ 1.50$ ($£ 15.53 \mathrm{inc}$

VAT \& P)
$0.10 \mathrm{~V} / 17 \mathrm{~V} / 18 \mathrm{~V}$ at $10 \mathrm{amp} . £ 10.50 \mathrm{P} \& \mathrm{P} £ 1.50$ (inc. VAT $£ 13.80$)
Other types in stock; phone for enquiries or send sae for seaflet.
New ceramic construction, vitreous enamel
embedded winding, heavy duty brush assembly,
continuously rated

BLOWER/VACUUM PUMP

coupled to William Allday Alcosa carbon vane blower / yacum

STiOBE! STliOBE! STliOBE!

HY-LIGHT STROBE KIT MK. IV

Latest type Xenon white light tube. Solid state timing and triggering
circuit. $230 / 240 \mathrm{~V}$ AC operation. Speed adjustable $1-20$ tit
Designed for large rooms, halls, enc. Lightoutput greater than many
(so called 4 Joule) strobes. Price $£ 19.00$ post $£ 1.00$ (23 inc. VAT

- \& P). Specially designed case and reflector for Hy-Light $£ 8.80$ Post

\star ULTRA VIOLET BLACK LIGHT
* FLUORESCENT TUBES
- \quad f6. 40 watt $£ 10.00$. (Callers only. $£ 10$ inc. VAT. 2 ft .20 watt
- fittings). Mini $12 \mathrm{in} . \mathbf{8}$ wate. $£ 2.80$. Poss 35 p ($\mathbf{£ 3 . 6 2 \text { inc. VAT }}$
- 6 in. 4 watt $\mathbf{~} \mathbf{2} .25$. . Post 35 p ($£ 2.99$ inc. VAT \&
- Complete ballast unit for either $6^{\prime \prime} 9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 VAC op.
$\times \quad$ DC op, $\mathbf{E 3 . 5 0}$ plus P\&P 45 p ($£ 4.54 \mathrm{inc}$. VAT \& P).
* inc. VAT \& P). 400 watt UV lamp only £11.25. Post £1.20. 廿

SQUAD LIGHT

our conception in light control. handling 750 watts of spotlights

lash modulation, effectively giving programs all speed controlled plus ree. Price only 660 . 70 . Completely \qquad

WIDE RANGE OF DISCO LIGHTING

EQUIPMENT
XENON FLASH
GUN TUBES

RELAYS
Wide range of $A C$ and $D C$ relays available
from stock. Phone or write in your from sto
230/240V AC Relaya: Arrow, $2 \mathrm{c} / 0.15 \mathrm{amp} \mathbf{£ 1 . 5 0}$ ($\mathbf{E 1 . 9 6} \mathrm{inc}$. VAT \& P. P.C. open type $3 \mathrm{c} / 0.10 \mathrm{amp} £ 1.10$ ($£ 1.50$ inc. VAT \& P P). Omoron or
Keyswitch $1 \mathrm{c} / 0.7 \mathrm{amp} £ 1.00(1.38$ inc VAT \& P) OC Relays: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} £ 1.00$ ($£ 1.38$ inc. VAT \& P) Sealed $12 \mathrm{~V} 1 \mathrm{c} / 07 \mathrm{amp}$ octal base, $£ 1.00$ ($£ 1.38$ inc. VAT \& P). Sealed $12 \mathrm{~V} 2 \mathrm{c/o} 7$ amp octal base, $£ 1.25$ ($£ 1.67$ inc. VAT $\& P$ P). Sealed 12 V 3 c/o 7 amp 11 -pin. $£ 1.35$ ($£ 1.78 \mathrm{inc}$. VAT \& P). 24 V . Sealed $3 \mathrm{c} / \mathrm{Cl}^{7} 7$
amp 11 -pin $£ 1.35$ ($\mathbf{E 1 . 7 8}$ inc. VAT \& P) (amps $=$ contact rating). P\&P on any Relay 20p.
Other types available - phone for details. Very special offer. 9-12V D.C., 2 make contacts, new ITT3 for $£ 1.75$ +25 p) (inc. VAT 2.30)
Diamond H heavy duty AC relay $230 / 240 \mathrm{~V}$ AC, two c / o contacts 25
amps res at $250 \mathrm{VAC} \mathbf{£ 2 . 5 0} \mathrm{P} \& \mathrm{P} 50 \mathrm{p}$. ($\mathbf{~ 3 . 4 5}$ inc. VAT + P\&P). Special base 50p.
METERS (New) - 90mm
DIAMETER
AC Amp., Type $62 \mathrm{~T}:$: $0-1 \mathrm{~A}, 0-5 \mathrm{~A}, 0-20 \mathrm{~A}$. Ac Volt.
$0-15 \mathrm{~V}$. $0-300 \mathrm{~V} . \mathrm{DC}$ Amp, Type $65 \mathrm{C} 5.0-2 \mathrm{~A}, 0-10 \mathrm{~A}$, $0-20 A, 0-50 \mathrm{~A}$ DC Volt. $0.15 \mathrm{~V}, 0-30 \mathrm{~V}$. All types $£ 3.50$
ea. + P\&P 50 p . ($£ 4.60$ incl. VAT) $0-50 \mathrm{AC}$ O $0-100 \mathrm{ADC}$,

PERSONAL CALLERS ONLY 9 LITTLE NEWPORT STREET, LONDON, WC2H 7JJ

SPECIAL PRICE FOR COMPLETE KIT $£ 47.70$ + VAT
available as separate packs - prices in our free catalogue
Following the success of our Wireless World FM Tuner Kit this cost reduced model was designed to complement the $\mathbf{T} \mathbf{2 0}+\mathbf{2 0}$ and $\mathbf{T} \mathbf{3 0}+\mathbf{3 0}$ amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with either

Designed by Texas engineers and described in Practical Wireless, the Texan was an immediate success. Now
 on a single F / G Glass PCB and features all the normal facilities found on quality amplifiers including scratch and rumble filters, adaptable input selector and headphones socket. In a follow-up article in Practical Wireless further modifications, were suggested and these have been incorporated into the $T 30+30$. These include RF interference fitters and a tape monitor facility. Power output of this model is 30 W rms per channel
SPECIAL PRICES FOR COMPLETE KITS
T20+20 KIT PRICE $£ 3.10$ + VAT $\mathbf{T 3 0 + 3 0}$ KIT PRICE $\mathbf{£ 3 8 . 4 0}+$ VAT availlable as separate packs - prices in our free catalogue POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $\mathbb{E} 35.90$

+ VAT
AVAILABLE AS COMPLETE KIT ONLY
This is a simple, low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo selection (adjustable by controls on the front panel). This unit matches well with the $\mathbf{T} 20+20$ and $\mathbf{T 3 0}+30$ amplifiers

NEW!
 Another superb design by synthesizer expert Tim Orr! TRANSCENDENT DPX
 As featured in Electronics Today International August, September October, 1977 issues

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

The Transcendent PDX is a really versatile new 5 octave keyboard instrument. There are two audio outputs which can be used simultaneously. On the first there is a beautiful harpsichord or reed sound - fully polyphonic i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightforward piano or a honky tonk piano or even a mixture of the two. Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of the combination of strings and brass sounds simultaneously. And on all voices you can switch in circuitry keyboard is electronically split after the first two octaves) or vice versa or even a sounds - just like an acoustic piano. The digitally controlled multiplexed system makes practical sensitivity with the complex dynamics law necessary for a high degree of realism There is a master volume and tone control, a separate control for the brass sounds and also a vibrato circuit with variable depth control together with a variable delay control so that the vibrato comes in only after waiting a short time after the note is struck for even more realistic string sounds.

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) 3.3'" (front)
COMPLETE KIT ONLY £365.00 + VAT!
Also available as soparate packs - pricea in free catalgoue
To add interest to the sounds and make them more natural there is a chorus/ensemble unit u nich is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects. As the system is based on digital circuitry data can be easily taken to and from a computer (for storing and playing back accompaniment with or without pitch or key change, computer composing etc., etc.) and an interface socket (25 way D type) is provided for this purpose.
 The kit includes fully finished metalwork, solid teak cabinet, professional quality componate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet no more parts before plugging in and making great music! When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over £ 1200 !
 which we sent kits last year are shown in this advertisement. To assist in estimating postal costs our catalogue gives the weights of all packs and kits. This will be sent free on request, by airmail, together with our "Export Postal Guide" which gives current postage prices. There is no mith order by Bank Draft, Postal Order, International Money Order or cheque drawn on an account in the U.K. Alternatively for orders over £500 we will accept Irrevocable Letter of Credit payable at sight in London.

Value Added Tax not included in prices UK Carriage FREE

PRICE STABILITY, Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until October 31 st , 1979, if this month's advertisement is mentioned with your order. Errors U.K. ORDERS. Subject to $15 \%{ }^{*}$ surcharge for VAT U.K. ORDERS. Subject to 5% surcharge for VAT. No charge is made for SECURICOR DELIVERY. Forged
dd £2.50 NAT inclusive) per kit optional service (U.K. mainland only) SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter. Open 9 a.m.-4.30 p.m. Monday-Thursday.

QUALITY: All components are brand new first grade full specification guaranteed devices. All resistors (except where stated as metal oxide) are low noise carbon film types. All printed circuit boards are fibreglass, drilled roller tinned.
FOR FURTHER INFORMATION PLEASE WRITE OR telephone for our Free catalogue

Z \& I AERO SERVICES LTD.
 Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF

 Tel. 7275641 Telex 261306
RETAIL SHOP

85 TOTTENHAM COURT ROAD, W. 1
Tel. 580-8403

SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

TYPE

Sensitivity D.C Sensitivity A.C. D.C. Current A.C. Cürrent D.C. Volts A.C. Volts Resistance Capacity Accuracy

Price complete with pressed steel carrying case and test leads Packing and postage

U4313
20,000 $0.6 \mathrm{~mA}-1.5 \mathrm{~A}$ 75 m V-60̄OV 75 m V-600 $15 \mathrm{~V}-600 \mathrm{~V}$ $1 \mathrm{~K}-1 \mathrm{M}$ $0.5 \mu \mathrm{~F}$ 1.5% D.C. 2.5\% A.C

14315

20,000 o.p.v. 2,000 o.p.v. $50 \mu \mathrm{~A}-2.5 \mathrm{~A}$ $50 \mu \mathrm{~A}-2.5 \mathrm{~A}$ 0.5mA-2.5A $75 \mathrm{mV}-1000$ $1 \mathrm{~V}-1000 \mathrm{~V}$ $300 \Omega-500 \mathrm{k} \Omega$ $0.5 \mu \mathrm{~F}$ 2.5\% D.C 4\% A.C.

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

Sensitivity: Voltage ranges Current ranges Resistance
Accuracy:
Oscillator output

20,000 / /V
2.5-1000V A.C. / D.C. $0.05-500 \mathrm{~mA}$ D.C. only $5 \Omega-1 \mathrm{M} \Omega$
5\% F.S.D.
$1 \mathrm{kHz} \mathrm{50/50}$ squarewave
465 KHz sinewave
modulated by 1 KHz squarewave
PRICE, in carrying case, complete with leads and manual $£ 8.00$
Packing and postage $£ 1.00$

THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL

TYPE U4324

0.06-0.6-60-600mA-3A 0.3-3-30-300mA-3A D.C. Voltage: $\quad 0.6-1.2-3-12-30-60-120-600-1200 \mathrm{~V}$ A.C. Voltage: $\quad 3-6-15-60-150-300-600-900 \mathrm{~V}$ Resistance: $\quad 500 \Omega-5-50-500 \mathrm{k} \Omega$ Accuracy: D.C. 2.5% : A.C. 4% (of F.S.D.)

PRICE complete with test leads and fibreboard storage case $£ 9.50$

Packing and postage £1.20

TYPE U4341

COMBINED MULTIMETER AND

TRANSISTOR TESTER

Sensitivity: $\quad 16,700 \Omega / V$ D.C., 3,300 /V A.C Current: 0.06-0.6-6-60-600mA D.C., 0.3-3.0-30 300 mA A.C.
0.3-1.5-6-30-60-150-300-900V D.C 1.5-7.5-30-150-300-750V A.C. 2-20-200k $\Omega-2 M \Omega$
Collector cut-off current $60 \mu \mathrm{~A}$ max
D.C. current gain 10.350 in two ranges

PRICE, complete with steel carrying case, test lead, battery and instruction manual $£ 9.50$
Packing and Postage $£ 1.50$
OUR 1978 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS, PASSIVE COMPONENTS AND TEST EQUßMENT IS AVAILABLE. PLEASE SEND P.O. for £O. 30 FOR YOUR COPY

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option of $0-1.5 \mathrm{MHz}$ receive and / or any transceiving application $1.8-30 \mathrm{MHz}$.

RADIO SHACK LTD

For Communications equipment including Trio products and Trio testgear

We are situated just around the corner from West Hampstead Underground Station (Bakerloo line). A few minutes' walk away is West Hampstead Midiand Region station and West End Lane on the Broad Street Line. We are on the following Bus routes: $28,59,159$. Hours of opening are $9-5$ Monday to Friday. Closed for Lunch -2. Saturday we are open 9-12.30 only. World wide exports.

DRAKE \#SALES \# SERVICE

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical teaforit.
Full training courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon, 01-684 1422, 01-689 8741 CRO2XX. Tel: 01-689 8741

WW-035 FOR FURTHER DETAILS

Sullivan Taylor
Archcliffe Road, Dover, Kent. Telephone: 0304-202620 $\frac{1}{\text { rumem }}$ Thorn Measurement \& Components Division WW - $\mathbf{0 0 5}$ FOR FURTHER DETAILS

ELEGTROVALIE

Your leading direct suppliers for

NASCOM
MICROCOMPUTERS
AND FULL SUPPORTING
RANGE OF ITEMS
FOR WORKING TO PROPER PROFESSIONAL LEVELS

* Widest possible range of ancillary Nascom items stocked
* Information on request
\star Enquiries from trade, industrial and educational users invited

We are also Appointed Distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER
FAMOUS MANUFACTURERS
It's a good deal better from

- We pay postage in U.K. on orders list value 27 p handling charge.
- We give We give
discounts
as follows on C.W.O. orders except items marked Net or N in our catalogues.
5% on orders, list value
10% on orders list value £25 or more.

Not apolicable to Access or Barclaycard orders

- We stabilise
prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

all products brand new clean and to maker's spe No seconds, no surplus.

- WE WILL SEND YOU OUR 120 -PAGE EREE ON REQUEST. Comprehensive, informWrite, phone or call for your free copy, together with latest list. (Available separately.)

> Barrie Electronics Litd. 3,THE MINORIES, LONDON EC 3 N 1BJ TELEPHONE: 01-488 3316/8 IEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

YOUNEEDNEVERBUYA COLOUR FILM AGAIN!

WIRELESS WORLD COLOUR PHOTO SERVICE

> SUPER OUALITY HI-DEFINITION SHEEN COLOUR PRINTS

OFREE KODACOLOR FILMTOFIT YOUR CAMERA

RSP $£ 31: 18$ Our Price $£ 20.45$
 inc. VAT \& P\&P

Rome of the most respected names in photography. From Rollei, one of a 3 element optical glass lens, cift box Precision made witity colour photography. Supplied months. corrected for qualistrap. Fully guaranteed 2 brightness setting complete with wrist-strap. Fulter release - 2 brightessibility of Finger-light push button shuter speed $1 / 125 \mathrm{sec}$. reducing the possen with controls - Shutter clear view finder - easy - simplicity itself \bullet camera shake Drop-in 110 cartridge loading soded wires. 150) flashes spectacles ${ }^{\bullet}$ Drop-in Detachable electronic flash - no complic Detachable electronic flash -
from 2 pen-cell batteries (not supplied).

CAMERA ORDER FORM
To: Camera Offer. Freepost. Teddington TW11 8BR.
Please send me the Rollei Pocketline 200 Camera and
Electronic Flash-gun.
I enclose cheque p.o. for $£ 20.45$
(payable to Wireless World Camera offer)
Name (please print)
\qquad
\qquad
\qquad

You get a special deal when you use our Colour Photo Service. Thousands of magazine readers are delighted with it. Because you save money on Kodak recommended prices - and you only pay for the prints youractually receive! So why not give it a try? You'll be delighted with our luxury borderless colour prints. Without borders you get as large a picture as possible - and our pictures have a hi-definition sheen for greater clarity.

HERE'S WHAT YOU DO

Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with the film in a strong envelope to: Wireless World Colour Photo Service. FREEPOST. Teddington TWW11 8BR No stamp is required. Send no money at this stage.

FREE KODACOLOR FILM

We'll send you a Kodacolor film, absolutely free, with your prints, together with an invoice for only the successful shots, eliminating the need for credit notes.

UNBEATABLE VALUE

You're probably paying around 18 p a print plus $£ 1.10$ for developing. Well, our price is an amazing 16 p per print plus only 90 p to cover developing, administration, postage and packing! Our minimum charge is 90 p (assuming no prints come out) inc. V.A.T. Offer limited to U.K. and Eire, C.I. and B.F.P.O.
Remember, you only pay for successful prints - no credit vouchers. And you only pay on invoice; a straight forward business transaction with the extra advantages of quality, reliability and convenience. Value for money - and a free Kodacolor film worth about £1.00.

Films accepted on Standard Terms of Business (available on request).

From Wireless World
COLOUR PHOTO SERVICE,
Freepost, Teddington, TW11 8BR
I NAME (please print)
\qquad

WIRELESS WORLD, SEPTEMBER 1979

AS SEEN IN

EUROPES FASTEST SELLING ONE BOARD COMPUTER JUST CHECK THE SPEC'S.

SAMPLE TAPE
P.E. AUGUST, SEPTEMBER OCTOBER 1979

LOW COST SUPERBOARD IN KIT FORM

The Compukit UK101 has
everything a one board 'superboard' should have.
\star Uses ultra-powerfult 6502 microprocessor
$\star 50 \mathrm{~Hz}$ Frame refresh for steady clear picture results in ittery displays) 60 Hz frame refresh always results in jittery displays)
$\star 48$ chars by 16 lines - $1 K$ memory mapped video system providing high speed access to screen display Exten 25 games and graphs.
upper and lower character set which includes full for mathematical constants and numerous symbols characters enabling youtants and numerous graphic desire anywhere on the screen

* Video output and UHF Highgrade modulator (8 Mz Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF.
* Fully stabilised 5 V power supply including trans
former on board.
${ }^{\star}$ Standard KANSAS city tape interface providing high reliability program storage - use on any standard domestic tape or cassette recorder.
$\star 4 \mathrm{~K}$ user RAM expandable to 8 K on board $£ 49$
${ }_{*}{ }^{*} 40$ line expansion interface socket on board for attachment of extender card containing 24 K RAM and disk controller. (Ohio Scientific compatible)
${ }^{\star} \mathrm{K}$ mach machine code accessible through powerful
2 K machine code monitor on board.
* High quality thru plated P.C.B. with all I.C.'s
mounted on sockets.
\star Professional 52 Key keyboard in 3 colours - soft ware polled meaning that all debouncing and key
decoding done in software.

COMMANOS
STATEMENTS
ClEAR DATA
GOTO GOSUB NEXT GN IF..GOTO IF..THEN INPUT FLET REM RESTORE RETURN POKE PRINT READ EXPRESSIONS
OPERATORS
$+\therefore 1, \uparrow$ NOT.AND.OR. $>\lll\rangle>=<=$ RANGE 10^{-32} to 10^{+32}
variables
A.B.C. Z and two letter variables

The above can all be subscripted when used in an

* 8 K Microsoft Basic means conversion to and from Pet, Apple and Sorcerer easy. Many compatible programs already in print SPECIAL CHARACTERS
@ Erases line being typed, then provides carriage return, line feed.

Erases last character typed
CR Carriage Return - must be at the end of
each line.
CONTROL/C Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE XXXX" is printed, indicating line number of next statement to be executed or printed.
CONTROL/O No outputs occur until return made to command mode. If an Input stateCONTROLIO is typed or an error occurs. ? Equivalent to PRINT

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your own computer for only a small outlay.

KIT ONLY £219 + VAT
including RF Modulator \& Power supply.
Absolutely no extras.
Available ready assembled and tested, ready to go for £269 + VAT

EXTRAS AVAILABLE IN 4 WEEKS

COLOUR ADD.ON enables you to choose your foreground and background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

AD-A-RAM EXTENDER CARD provides up to 32 K Dynamic RAM Expansion, 8 Eprom sockets for 2708's or 2716's. Parallel Port (centronics compatible) and an RS232C serial port.

WIN YOURSELF AN ANADEX DP8000 LINE PRINTER

There's never enough good software around. That's why COMPUKIT LTD. are sponsoring a software contest. There are 2 categories: 1) Business and Education
2) Fun and Games

One lineprinter will be awarded to the winner of each category. Send or bring along to the address shown below the following: 1) The program on cassette in the format used by the COMPUKIT UK101
2) Any documentation that you have for the program (source listing not necessary)
3) This coupon signed by you accepting the rules and conditions of the competition

RULES:

1) Entries, including documentation, must be printed by computer or typed double spaced, with your name on every page.
2) Send or bring your entries to the address shown below.
3) Entries must be received by midnight on 29/2/80, any received after this time are void.
Winners will be notified by post before $31 / 3 / 80$.
4) You warrant by your signature that all programs and documentation material included is entirely your own creation, and that no rights to it have been given or sold to any other party, and you agree to allow COMPUKIT LTD. to use, publish, distribute, modify, and edit it as it sees fit.
5) All entries become the property of COMPUKIT LTD. No entries will be returned nor any questions answered regarding individual entries. 6) Judging will be by a selected panel chosen by, and including representatives of COMPUKIT LTD. Judges may assign programs to any of the categories as they see fit. Decision of the judges is final. 7) Employees of COMPUKIT LTD, its dealers, distributors, advertising agencies and media are not eligible to enter.

Name
Address \qquad

I agree to abide by the above mentioned rules.

Signature

Please add VAT to all prices - Delivery at cost, will be advised at time of purchase. Please make cheques and,postal orders payable to COMP, or phone your order quoting BARCLAYCARD, ACCESS, DINERS CLUB or AMERICAN EXPRESS number

OPEN - 10am to 7pm - Monday to Saturday CREDIT FACILITIES ARRANGED

SEETTIENIEWVHCHICIES WHIILTTHEYRESTLLLVICHITT..

Electronics Weekly is the main job announcements medium for the industry, carrying the majority of the best electronics positions advertised in the UK.

But all good vacancies have one thing in common. They don't stay vacant long.

If you only get to see Electronics Weekly days after publication... if, in other words, you're way down the office pass-on list... then you're leaving yourself at the back of the queue for career opportunities.

But for only 10p a week you could move up front, and see Electronics Weekly ahead of everyone in your company. Fill in and post this coupon, and you'll be breakfasting with Opportunity every Wednesday morning from now on!

ElectronicsWeekly

```
TEK scope 545A with H plug-in . . . . . . . £125 ea
TEK scope 545A with CA plug-in
H.P. scope 175A 50MHZ Dual trace
Single Trace
SOLARTRON CT316 6MHZ Single Beam
Ex-Ministry CT52 Small, Single Beam
Ex-Ministry CT522 Small, Single Beam
MARCONI Wave Analyser TF2330
MARCONI Audio Oscillator TF1101 20HZ-20
ADVANCE Signal Generator J1A (CT433A)
MARCONI Valve Voltmeter TF1041C ...io
DIGITAL EQUIP. CORP. Disk Drives (Fixed)
TEK Transistor Curve Tracer
NAGARD Pulse Generator 5002C
MARCONI Carrier Deviation Meter TF791D
MARCONI Carrier Deviation Meter TF
SOLARTRON DVM LM }1420\mathrm{ with AC
    NOLL }1920\mathrm{ character Upper Case ASCII VDU
    with edit and block mode transmission; limited
    quantity. With data
CALCOMP Drum Plotter type 564 ...... £1,500
MARCONI GEN. TF995 (CT402) ............170
MARCONI Bridge TF868B ............. . . £120
RANK Flutter Meters ........................
HEWLETT PACKARD Signal Gen. 608D
Carriage all units £4 ea.
\(\begin{array}{lll}\text { HEWLETT PACKARD Signal Gen. 608D } \\ \text { AVO Signal Generator HF135 } & \ldots . \mathbf{n}^{240} \\ \mathbf{£ 1 2 0} \text { ea. }\end{array}\)
```

£125 ea.
$£ 175$ ea. £175 ea.
$£ 175$ ea. £125 ва.
$£ 47.50$ ea $£ 47.50$ ea.
$£ 37.50$ ea. £37.50 ea.
$\quad £ 75$ ea. $£ 75$ ea.
$\mathbf{f 5 0 0}$ es. £500 ea.
200KHZ E45 ea. £45 es.
£35 ea. $£ 30$ ea.
o to VHF f 8 ea . $£ 160$ ea £225 $\mathbf{E} 50$ ea. £75 ea. E50 ea. £40 ea. limited £1,500 £120 $£ 50$ ea.
$\quad £ 240$

10-w.

0.

SPEAKERS $21 / 12$ In. 50 ohm 0.2 W. New 40p each. P\&P 50 p
STEPPING MOTORS $6 / 12$ position STEPPING MOTORS $6 / 12$ position with additional where the rota s coins. Devise can be used as a tacho. Diagram supplied. Will
artually work on 5 volts. 1224 recommended. $\mathbf{£ 1 . 5 0}$, each. P\& 5 R Reduction for quantity RAPID DISCHARGE capacitors 8 mfd 4 kV £5 anch. P\&P $£ 1.50$ GEC UHF 4 -button tuner. $\mathbf{E 2 . 5 0}$ each. P\&P 85p. . 50 cycle - very small. 50 CENTUAR 115 FANS. Brand New $4.5 \times 4.5 \times 1.5 \mathrm{in}$. $\mathbf{£ 4 . 5 0}$ ach. P\&P 75 p.
Ex-Used Equipment - tested 60p each. P\&P 75 p.
POTTER \& BRUMFIELDTIMER RELAY 115 VAC Heavy duty 2 pole $\mathrm{c} / 0$ with 2 -second delay. Change R \& C For different timing.
50 p esch. $\mathrm{P} \& \mathrm{P} 85 \mathrm{p}$.

 SWITHS encapsulated transistorised AUDIBLE WARNING DEVICES $4 V-12 \mathrm{~V}$. Can be driven from TTL. 35p each. P\&P 25 P . BRUAN Digital clocks Silent running. Large illuminated numerals. AC mains. Size $6 \times 21 / 8 \times 23 / 4$. ONLY $£ 3.75$ each. P\&P $50 p$. 931A PHOTOMULTIPLIER in stainless steel container w. Window and built in resistor network. £2 each. P\&P $£ 1$
Length $31 / 2 \mathrm{in}$. 25 p , awch. P\&P 25 p .
RANCO 250 V 18 T THERMOSTATS with Control knobs calibrated $50-200$ degree F. $\mathbf{2 . 5 0}$ ench. P\&P SOLID STATE UHF TUNERS 38 mcs. $£ 1$ each. P\&P 75 p . 5 in . SOLID RUBBER RINGS (1 in . dia. rubber). Keep the kids dog) hapoy 4 for E1. P\&P E1. 25

TRANSFORMERS
 £1.50 emech. P\&P $£ 1.66 \mathrm{~A}$. Size $23 / 8 \times 2 \times 2 \mathrm{in}$. Good quality 240 V input Sec. 12 V 0.92 A . Size $2 \% \times 2 \times 2$ in. Good quality,$~$
$£ 1.50$.
E1.50 each. P\&P
24 V 75 pu Sec. 12 V 100MA Size $60 \times 40 \times 42 \mathrm{~mm}$. 50p each

 For 50p. P\&P 75 p .
EMICONDUCTORS
A1 2p each.
iN 3063 , is 4
 A90, OA91, BA154, BA2
At 25p each. ${ }^{\text {TiP31P4 }}$, TIP47, 2 N5296. AF 1 39. 2 T $\times 341$
BY127 10p; BF 181 20p; BD239 40p; BD24140p; MJE34OAT 40p; BD222 50p.
BD23 \& BD 234 BD233 \& BD234 Comp pair 25W-80p per pair or 50p each.
Regulator TBA625 8 to 20 V in -5 V out 100 MA TO5 Can 50 p aech. BF 256 C - 20p.
TV Amplifieg TBA120 - 20. 15 sach. 40 p each.

Integrated Circuite

7453	5 p	74H74	12p	74154	70p
7451	5 p	74504	12p	75325	¢1
7401	5p	$74 \mathrm{H51}$	7 p	SN15862	4 p
7402	12p	74S38	10p	MC4028	60 p
7476	20p	74502	12p	7417	14 p
7495	35p	74500	12p	7441	40 p
709	15p				

Motorola Dual in line AM9140-4K RAMS 50 each.
AM9140-4K RAMS STATIC 5 Volts, ceramic, $£ 4$ each.
TELEPHONES, 706 style Black or Grev. E5.50 each, 746 style.
Black or Grey $\mathbf{£ 7 . 5 0}$ each. Older style. Black $£ \mathbf{\Sigma} .50$ each Postage $£ 1$ each HONEYWELL Humidity Controllers, 50p each. P\&P 40p. plastic relay case. Standard 7 -pin base. Series delay, $\mathbf{5 0}$ p oach P\&P 85 p. MINIATURE PC MOUNT SLIDE SWITCH. Single pole 3 -way. DIGITAL
TT1 socket. With dogue CONVERTOR, 8 -brt, will fit standard VARIACS 2 Amp. Statdard 240 V VIts, $£ 150$. ELECTROSTATIC VOLTMETERS, 7.5 KV , $\mathbf{£ 6}$ each. P\&P TRIMMERS Sub-min. 1-4.5 pf. 6p each.

Buy a System . . . Not just a "Pretty Box"

The SD System* - From about 97p per hour (40-hour week)

The SDS-200 TOTAL System features:

System Hardware

The SDS-200 give you features that are not found in systems costing thousands more
State-of-the-Art Engineering. Quality Production and Full Reliability testing make
the SDS-200 a dependable, compact and easy-to-operate data processing system.

- Up to 256 K Bytes RAM
- Full Keyboard with Special Accounting Key Pad
- Large 12 in . Video Display Screen
- Full Cursor Control including Addressable Cursor

Blinking, Underlining, Reverse and Protected Fields

- Uses 8in. Flexible Diskettes for Permanent Storage 2 Mbyte on-line

Forward and Reverse Scrolling

- Capable of up to 160 Special Characters
- Expandable with Memory and Peripheral Equipment

Will Operate as a Remote Batch Processor for Large Systems

- Industry Standards S-100 BUS /CPM
- 4 Spare S-100 Slots

System Software
A full range of Business Programs are available from CAP-CPP written in Microcobol
The system will support all normal high-level languages including
Fortran
Cobol
Basic

AUTHORISED DEALERS

Apple Computer, Glenalmond, Perthshire. Tel. 073-888 267
Apple Computer, Glenalmond, Perthshire, Tel. 0 ,
Codified Computer Systems, 69 Calabria Road, London. Tel.. 01-226 1319
Anglo American Computers Ltd., Milburn House, Dean Street, Newcastle-upon-Tyne. Tel. 0632
Bell Computers, 62 Lowther Street, Carliṣle. Tel. 0524411271.

* The SD System includes-

SDS-200 Microcomputer T.I. 810 Printer (or Equivalênt)

Cash Price for SDS-200: $£ 4750.00$

MINIATURE 24 HR TIME SWITCH

* Only $2^{\prime \prime}$ square \star Up to 32 on-offs * 16 amp contacts * Plug-in carrier

This amazing time switch enabies the programming of up to 32 on-offs in a 24 hour period. This is achieved by inserting triggers Sto the dial in the appropriate time positions. Plug in carrier for easy time setting and 16 amp applications. Supplied brand new with fixing screws and 3 sets on-off trigigers
£8.50

MPU EXPERIMENTORS POWER SUPPLY

Once again we are very pleased to offer this superb Power Supply Unit, and hope to satisfy most of our previous customers who were disappointed when we sold out due to demand, last time they were advertised! These units may just have well been made for your lab., they consist of a semi-enclosed containing all silicon electronics to give the followcontaining all silicon electronics to give the following fully regulated and short circuit proof outputs o
$+5 \mathrm{v} @ 2 \mathrm{amps}$ D.C. $+12 \mathrm{v} @ 800 \mathrm{ma}$ D.C. 12v@800ma D.C. + 24v@350ma D. and if that's not enough a fully floating 5 v output @ 50 ma D.C. which may be seriesed to give a host of other voltages. All outputs are brought out to the front panel via miniature jack sockets and are also duplicated at the rear on short flying leads Units accept standard 240 v AC mains input. They are ex GPO and may have minor scratches on the front panels, they are sold untested but in good internal condition. Our original price of $£ 16.50$ and snip at only $£ 15.50$ each $+£ 2.25$ P \& P P. Complete with circuit and component list

HY GRADE SMOOTHING CAPS MULLARD - PLESSEY - MALLORY - SPRAGUE | 1500 mf | $100 \mathrm{v} 60 \mathrm{p}^{*}$ | 3300 mf | 40 v 50 p |
| :---: | :---: | :---: | :---: |
| 3300 mf | $63 \mathrm{v} 70 \mathrm{p}^{*}$ | 4500 mf | 25 v |

 | $107,000 \mathrm{mf}$ | $7 \mathrm{v£} 1+$ | 2100 mf | $200 \mathrm{v} \mathrm{f} 2.50 \dagger$ |
| :--- | ---: | :--- | :--- | :--- | *Ex equipment tested †P.P. 40p

SEMICONDUCTOR GRAB BAGS'

Amazing value mixed semiconductors, include transistors, digital, linear I.C.'s, triacs, diodes, bridge recs. etc. etc. All devices guaranteed brand new, full $50+$ BAG $£ 2.95100+$ BAGS $£ 5.15$

ideal equipment cooling
tested, ex-equipment
$240 \mathrm{v} 50-60 \mathrm{HZ} \mathrm{E6.15}+\mathrm{p} . \mathrm{p} .45 \mathrm{p}$)
TRONIC
COMPONENTS
\& EQUIPMENT

DISCOUNT Due to our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s Transistors,
Relays, Cap's., P.C.B.'s, Sub-assemblies, Switches, Relays, Cap's., P.C.B. s, Sub-assembires, Switches,
etc. etc. surplus to our requirements. Because we don't have sufficient stocks of any one item include in our ads. we are packing all these items into the "BARGAIN PARCEL OF A LIFETIME Thousands of components at giveaway prices Guaranteed to be worth at least 3 times what you pay plus we always include something from our ads.

| $7 \mathrm{lb} £ 5.25 \quad 141 \mathrm{lb} £ 7.95$ |
| :---: | :---: | $28 \mathrm{lb} £ 13.75 \quad 56 \mathrm{lb} £ 22.00$

PLEASE ADD P + P£1.25
ISOLATED 240 V 4 AMP \& 10 AMP SOLID STATE RELAYS

Interface your MPU etc, with the outside world made by the famous "Astralux" Co. They consist of a miniature plastic module with mounting holes containing a reed relay for isolation, choke and triac. 12-20 volts D.C. at a fow milliamps enable on/off control of A.C. Ioads up to 10 ampsi The 10 amp version should be mounted on a heatsink. 100 's
uses including power control, lighting, etc, etc. uses including power control, lighting, etc, өtc. $4 \mathrm{amp} £ 1.45 \quad 10 \mathrm{amp} \mathrm{£} 2.10$ complete with circuit

OPTO SMASH! common anode direct drive (via

 esistors) from $7447 £ 1-10$ each TIL 119/OC72 Darlington opto isolator 3 for Elo. SAVE THAT SPACE! THICK FILM RESISTOR NE TWORK $7 \times 100 \Omega$ resistor in DIL pack. Ideal for use with TIL305 $0.3^{\prime \prime} 7 \times 5$ matrix LED TIL305 $0.3^{\prime \prime} 7 \times 5$ matrix LED PHOTO TRANSISTORPHOTO TRANSISTO
25 ma .4 for E 1.00 .
DISP LAY I.C. AND

TRANSI NEVER

well known manufacturers and fully guaranteed. No fall outs. Comprehensive data on I.C.'s 15 p per type.
2 N 4351 N channel MOS FET.
2N4352 P channel MOS FET
60 peach $£ 1.00$ per pair.
HIGH VOLTAGE NPN POWER SWITCHING transistors BVcbo 600 BVceo 500 v BVebo 15 v 1 c 5 amps c 125 watts HFE 60 typ ft 2.5 mh ideal invertors
BF258 NPN
F258 NPN 250v @ 200ma 45p each
3 for R 1.08.
. .
1.08 .

N4998 4 amp 100v P.C. mount diod
long leads 14 p each 10 for f 1.10 .
LM309K + 5 v 1.2 amp regulator $£ 1.10$ each 6 for $£ 5.35$.
2N1671B unjunction 450 mw 30 v 48 p
each 3 for $£ 1.00$.
N4004 SD4 1 amp 400v diodes $7 p$
ach 18 for $£ 1.00$.
GE RECS. 400 volt
POWER DARLINGTON SCOOP!
MJ1000 NPN 60v 90w 8 amps T03 95p each
MH4030 NPN 60 v 150 w 16 amps T03 12.25 each

PLESSEY EDGE STACKABLE DECADE THUMBWHEEL SWIT

plated contacts dimensions $2^{\prime \prime} \times 2^{\prime \prime} \times x^{\prime \prime} 85$ p each 8 for $£ 5.35$
AMPHENOL 50Ω BNC chassis socket single hole fixing 50 p each.
AMPHENOL 50Ω BNC plug 50 p. 50Ω BNC plug right angled 60 p.
C90 Audio Cassettes screw type construction 45p each 3 for $£ 1.00$
Bulbs 24 v 14 watt white frosted S.B.C. 8 for $£ 1.00$.
Bulbs 12 v 100 watt clear, base similar S.B.C. 45 p each.
S.B.C. Bulb Holders All steel cad. plated panel mount easily fixed via nut and round hole, ideal disco displays, scoreboards, etc. 4 for $£ 1: 10$.
Xtal filters S.E. 1 QC1121t/B miniature low insertion loss P.C. mount.
C.F. 10.7 mhz with B.W. of $7.5 \mathrm{khz} 2000 \Omega \mathrm{imp}$ in-out. Brand new @ $£ 7.99$

Heavy Duty Flat Insulated Earth Braid 100-200 amp braided tinned copper in heavy clear PVC sheath 50p per metre. $£ 6$ for 15 metres + PP £1 per 15 metres, BULGIN miniature 6 way male chassis mount socket and matching free plug 60 peach, 2 for $£ 1.10$.
Red L.E.D.'s full spec. $0.2^{\prime \prime} 14$ p each. 10 for $£ 1.25$.
Dynamic Stick Mics 600Ω with built in on/off switch complete with lead and min . jack plug $£ 1.15$ each. 10 for $£ 10.00$
TO5 HEATSINKS "Thermaloy" black anodised press on aluminium finned type 18 p each. 8 for £1.00
HARDWARE PACK Don't be stuck for the right nut and bolt for the job. Pack contains B.A. Metric, Unified, Self Tap, tc. Nuts, Bolts, Screws, Washers, etc. plated. Average contents $400-600$ pieces Sold by weight,
f2.65
1 ONLY DEC PDP8M
16 k memory, auto restart, vk8 video set, se parallel, printer interface etc.
$£ 850.00+$ VAT + carriage.

IMPORTANT

We have now moved to larger premises and whilst we are
ecovering! callers are welcome on Fridays and Saturdays betweer

$$
\begin{aligned}
& \text { recovering! callers are welcome on Fridays and Saturda } \\
& 9.30 \text { am and } 5.30 \mathrm{pm} \text {, and by appointment on other days. }
\end{aligned}
$$

64.66 Melfort Road, Thornton Heath, Surrey. 01.771 2027 MAIL ORDER INFORMATION
Unless otherwise stated all prices inclusive of VAT. Cash with order. Minimum order value $£ 2.00$. Prices and Postage quoted for UK only. Where post and packing not indicated please add 30 p per order. Bona Fide account orders same day where possible. Access and Barclaycard welcome.

SCOOP OF THE YEAR HAZELTINE H1200 V.D.U. TERMINAL

Due to an even bigger purchase we are now able to pass our bulk buy savings direct to you! 960 characters $12 \times 80,55$ key TTY keyboard, RS232 interface, scroll up, adjustable baud rate 75-9600 upgradable to 1920 (24×80) characters, lower case option, plus many other features.
Brand New and Boxed - at only

$\mathbf{£ 2 5 0}+\frac{\text { varige }}{}$

FULL TECHNICAL MANUAL $£ 10.00$

POWER SUPPLY UNITS

5 VOLT 2.5 AMP T.T.L. P.S.U. unit features a 10 amp transformer with D.C. outputs of 5 volts @ 2.5 amps and 7.5 volts @ 5 amps. The 5 volt output is fully regulated and moothed moded for 5 volts @ 7.8 amps , believed working but untested.
£8.25 p.p. .1. 60

KEYBOARD

special bulk purchase enables us to offer the above

 keyboard at a lowest ever price. 49 coded keys encoded rollover protection make this an absolute must for the MPU constructor' Supplied complete with connectiondiagram and edge connector. at a secondhand
$£ 20.00$ P.P. f 1.60
UNIVERSAL TOROID TRANSFORMER
Just what you have been waiting for, made for a major efectronics co. outputs of $0-10 \mathrm{v} @ 1.8$ amps and $2 \times 0.20 \mathrm{v} @ 750 \mathrm{ma}$. Intended for an MPU supply of +5 and + and $-12 v$, its small physical size of only $23^{\prime \prime} x$ MPU supply of +5 and + and $-12 v$, its smail physical size of only $2 \frac{\pi}{4}$
1.is" and negligible hum field make it a snip at only $£ 4.25+$ pp 60 .

Efficiency

 RADIALBLOWERSAre your hot parts sweltering? Then keep them cool
with our high efficiency radial snail type blowers. Made by Smiths, designed for continuous use in expensive electronic equipment very powerful and quiet, give massive air flow to prolong component life and
reliability. Easily mounted, air aperture reliability. Easily mounted,
$2 \frac{1}{2}^{\circ} \times 3^{\prime \prime}$. Ideal linears etc.
$2 \frac{1}{2} \times 3^{\prime \prime}$. Ideal linears etc.
Please state 240 v or 110 v
opesation. 50 hz only.
opegation. 50 hz only.

Electronic Brokers

49/53 Pancras RoadLondonNW12QB Tel: 01-837 7781. Telex 2986 C

Our background

Electronic Brokers is Europe's largest specialist in quality, second user test equipment, minicomputers and associated peripherals. Established 11 years ago, we have pioneered the second user concept in Britain, and many overseas territories.

One reason for our success is the company's policy of continually

Back up

To support our growth we have a service, and those who have dealt skilled team. This includes trained with us will know that we sales staff, whose role is not only to endeavour to always live up to our sell, but provide a helpful reputation. Equipment can be information service to our many configured to customer's exact customers. Backing this team is our requirement, and a number of own service laboratory where options can be made available technicians monitor each item of almost like custom-tailoring. equipment we sell. Our maxim is

Refurbishing

Our own service laboratory checks ach item that arrives at our Pancras Road headquarters. Electronic test equipment is then horoughly cleaned and a schedul
updating the type of equipment we sell. So from selling to private users, the business has rapidly developed, and today, our custome list includes leading international companies, research establishments, universities, colleges and government institutions throughout the world.

SEND FOR AUTUMN 79 CATALOGUE

Containing latest information on our stocks of Test Equipment, Minicomputers Peripherals, Stroboscopes, Tachometers, etc. Airmail to overseas addresses $£ 2.00$

SEE US AT
E.M.I.X. '79 OCT. 9, 10 and BLOOMSBURY CENTRE
LONDON

PHILIPS

PM3261 Dual Tace Portabte
OSciloscope.
0c - $720 \mathrm{MHz} .5 \mathrm{mv}-2 / \mathrm{div}$
Sns - 15 fdiv Full delayed sweep.
a dignteg event display
$£ 1250.0$
urrent now price
c1990.00

WAYNE KERR
Wayne Kotr Beoz VHF Admintance Bridge C/W Sn268 pource and Detector Frequency Range $100 \mathrm{kHz}-100 \mathrm{MHz}$ Ranges. $1 \mathrm{fF}-1 \mathrm{mF}, 100_{\mu} \Omega-100 \mathrm{M} \Omega$ toft - 10H, 10 m mhes - 10 k mhos Aecuracy typically 1%

PHILIPS

PM $2524.41 / 2$ Digit ©. M.M.
AC/DC vcltage and curcent and
Full autoranging.
£299.00
prepared for any work which needs laboratory where they are given to be carried out to meet final tests to ensure they meet customer's requirements. Whether manufacturers' specifications, it is new test equipment or used, all before delivery to the customer items pass through the service

Carriage and Packing charge extra on all items unless otherwise stated.

Add 15% VAT to ALL PRICES page advertisement is refurbished and in the case of Test Equipment also calibrated. Test equipment is guaranteed for 12 months; computer peripherals for 3 months.

Hours of Business: 9 a.m.- 5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.
Unless otherwise stated all equipment offered in the Electronic Brokers. 4 A copy of our trading conditions is available on request.

Electronic

 49/53 Pancras Road London NW12QBBRIDGES

WESTON
4449 3 1 VIt Digit D M M
AC-DC Voitage and current and resistance.
SUPERB VALUE AT ONLY
QUANTITIES AVAILABLE
$£ 59.00$

GENERAL RADIO
Immitance Bridge 1607A £750 1608A LCR Bridge. Accuracy typically. 05%. . $£ 1450$
MARCONI INSTS.
In Situ Univ. Bridge TF2 701
Univ. Bridge TF1313 . £395 WAYNE KERR
Univ. Bridge B221 (0.1\%)
$£ 275$
Univ. Bridge B521 (1\%) £120 Low Impedance Adaptor Q221 $£ 75$

CALIBRATION EQUIPMENT

HEWLETT PACKARD
DC Voltage Source \& Differential Voltmeter 740B \ldots £850 DC Voltage Source \& AC/DC Diff. Voltmeter 74.1B £975

FLUKE

883AB AC / DC Differential Voltmeter
$£ 975$

TEKTRONIX

Time Mark Generator $184 £ 275$ Time Mark Generator 2901
$£ 450$
5nS Pulse Generator 2101
Pulse Generator 109 ... £320

SOUND LEVEL METERS

GENERAL RADIO
Portable Sound Level Meter 1565B £225.
Portable Sound Level Meter
1983
$£ 190$
1933 \& 1935 Portable Sound Level Meter with data cassette recorder £2600
Portable Sound Level Meter 1981 £575

DIGITAL COUNTERS

GOULD ADVANCE
500 MHz Counter TC15 + 15 P1
80 MHz Counter TC 17 or TC17A $£ 195$

FLUKE

125 MHz Multi-Function Counter 1910A-01 £285
125 MHz Multi-Function Counter 1910A £199
520 MHz Communications Counter 1920A-06 . £490
125 MHz Multi-Function Counter 1925A £405
520 MHz Univ. Timer Counter 1953A-01 £675
125 MHz Univ. Timer Counter 1953A-15-16 £850
PHILIPS
80 MHz Timer Counter PM6612
1 GHz Timer Counter PM6615 $£ 795$
80MHz Freq. Counter PM6661 £185
512 MHz Freq. Counter PM6645 £710
520 MHz Automatic Freq. Counters PM6664 . £305

digital voltmeters
 \& MULTIMETERS

ADVANCE

True R.M.S. Voltmeter DRM6
$£ 150$

FLUKE

41/2 digit D.M.M. 8040A-01
$41 / 2$ digit D.M.M. 8600 A $\quad £ 290$

4½ digit D.M.M. 8600A-01
8800A D.M.M. $5^{1 ⁄ 2}$ digit $£ 335$ HEWLETT PACKARD
$51 / 2$ digit D.M.M. 34702 A +

34740A

£295

PHILIPS

4 digit D.M.M. PM. $2424 £ 300$
$41 / 2$ digit DC. D.V.M. PM2443
$£ 430$
$31 / 2$ digit D.M.M. PM 2513 £90
3½ digit D.M.M. PM2513A

SCHLUMBERGER-

SOLARTRON
51/2 digit Digital Multimeter A243 $\mathbf{£ 6 7 5}$
$41 / 2$ digit D.M.M. $7050^{\circ} \quad £ 350$

OSCILLOSCOPES

ADVANCE

OS2200 Dual Trace Storage with delayed time base .. £745

COSSOR

35 MHz Dual Trace CDU 150
£450
50 MHz Dual Trace 4000 £495
4100 Dual Trace $75 \mathrm{MHz} \mathbf{£ 6 9 5}$

DYNAMCO

30MHz. Dual Trace. 7100

PHILIPS

5 MHz Miniscope Battery/Mains. PM3010
£325
S.E. LABS

35 MHz D.T. Scope SM 113
$£ 350$

TEKTRONIX

24 MHz Dual Trace Bench. 543B

+ CA
£ 350

50 MHz Dual Trace Bench. 647
$+10 \mathrm{~A} 2+11 \mathrm{~B} 2 \ldots £ 600$
24 MHz D.T. Bench. $545 \mathrm{~B}+\mathrm{CA}$
$£ 425$
50 MHz D.T. Bench. $547+1 \mathrm{A1}$
$\mathbf{£ 7 7 5}$
80 MHz D.T. Bench 585A +82
Four Trace Plug in M . . £275
Four Trace Plug in 1A4 " $\quad \mathbf{E 6 0 0}$
Dual Trace Plug in CA . . $£ 60$
Differential Comparator Plug in Z
£150
10 MHz D.T. Battery Miniscope 326 $£ 900$
Spectrum Analyser Plug In 1L30 £1000
Spectrum Analyser Plug In 1 L40
7D11 Digital Delay ... $£ 850$
TELEQUIPMENT
50 MHz Portable Scope D75
£675

HEWLETT PACKARD

Time Domain Reflect. System
Type 140A \& 1415A £1200
High Sensitivity X-Y Scope 130C
£345
OSCILLOSCOPE PROBES
ELECTRONIC BROKERS

(NEW)

X1 Probe Kit EB90 £9
X10 Probe Kit EB91 ... £11
X1 X10 Probe Kit EB95 . £15

SIGNAL SOURCES

ADVANCE

Low Dist. Oscillator SG68A
FLUKE
Freq. Synthesiser 6160A / DX
$£ 875$
HEWLETT PACKARD
AM/FM. Generator 202H £495
VHF Sig. Generator 608D £495

VHF Sig. Generator 608E £67
Variable Phase Oscillator 203A
612A UHF Signal Generato $540-1230 \mathrm{MHz}$
£82

MARCONI INSTS.

AM/FM Signal Generate
TF2015/1 £110
A.M. Sig. Generator TF801D /
from $£ 40$
A.M. Sig. Generator TF801D 8S £60 AM/FM Sig. Gen. TF995A/2N

AM / FM Sig. Gen. TF995A/5 AM / FM Sig. Gen. TF995B/2

AM /FM Sig. Gen. TF2006
Two Tone Source TF2005R
A.F. Oscillator TF2000
R.C. Oscillator TF1101 £12
A.F. Oscillator TF2100 £15t

PHILIPS

AM/FM Signal Generato
PM5326X £73
AM/FM Sigñal Generato
PM5324 £450
Function Generator PM 5167
$£ 795$
SIGN/ROGERS
Low Distortion Oscillator S324

MISCELLANEDUS

AVO/BPL

| Component | |
| :---: | :---: | :---: |
| CZ457/6 | Comparato |

Electronit Multimeter EA 113
£85

BRADLEY

D.C. Voltage Calibrator 126B
E.N.I.
R.F. Power Amplifier 500L
£315
GERTSCH
Complex Ratio Bridge CR1B

GENERAL RADIO

Vibration Analyser 1911A
$£ 2100$
HEWLETT PACKARD
$£ 600$

310 A Wave Analyser 1 kHz .
$1.5 \mathrm{MHz} . . .{ }^{2} .{ }^{2}$
True R.M.S. Voltmeter 3400A
£505
Microwave Freq. Converter
2590B £595

MARCONI INSTRUMENTS

A.F. Transmission Test

Set TF2332 £425
M.F. Transmission Test Set

TF2333 £600
Quantization Distortion Tester TF2343 £400
Deviation Meter TF791D £195 Electronic Voltmeters TF2604
Attenuator TF2162 E250
Sine Sq. Pulse \& Bar Generator
TF2905 £450
Grey Scale Generator TF2909
£600

PHILIPS

Pulse Generator PM5712 £525
Pulse Generator PM5715 £575
Pulse Generator PM5775 £600
Pulse Generator PM5776 £700
Pattern Generator PM5501

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

AURA SOUNDS

THE WERSI SPECIALISTS

SOUTHERN SHOWROOM at $14 / 15$ ROYAL OAK SHOPPING CENTRE PURLEY, SURREY TEL. 01-668 9733

FOR

(1)IIIニORGANS D.I.Y. KITS LPs

Catalogues and Price Lists - $£ 1.00$

NORTHERN SHOWROOM

at 17 Upper Charter Arcade
Barnsley, Yorks.
Tel. Barnsley 5248

Automatic component testing

 got a ready made system for large batch testing of components. Just set the upper and lower limits and the equipment will indicate low, high or pass for the component.

Simplicity, accuracy and reliability -no more than you would expect from Sullivan.

Get in touch with ustoday, and we'll tell you the full facts about our equipment for automatic component testing.

Sullivan

HWSullivan Ltd

 Archcliffe Road, Dover, Kent CT17 9EN. Tel: (0304) 202620. Telex:96283.
PRĖCISION DIAL GAUGES John Bull No. 6 series fi. 01 mm . €6 P.P. 50p

 COAXIAL CRYSTAL DETECTORS. (Marconi-Saunders), $200 \mathrm{MHZ}-12 \mathrm{GHZ} . £ 7.50$ FIBREGLASS COPPER-CLAD BOARD$9 \times 41 / 2 \times 1 / 16 \mathrm{in}$. 40p P \& P 10p
$9 \times 6 \times 1 / 16 \mathrm{in}$. 50 p P\&P 15 p
$9 \times 41 / 2 \times 1 / 16 \mathrm{in}$. (double sided) $50 \mathrm{p} \mathrm{P} \mathrm{\& P} 10 \mathrm{p}$
$9 \times 6 \times 1 / 16 \mathrm{in}$. (double sided) 65 p P\&P 10 p
$15 \times 15 \times 1 / 16 \mathrm{in}$. (double sided) £2.50 P\&P $50 p$
OFF-CUT PACKS 150
OFF-CUT PACKS. 150 sq . ins. £1 P.P. 25 p
LOW PROFILE RELAYS (ZETTLER) P.C.
LOW PROFILE RELAYS (ZETTLER) P.C.
Mounting. 6 v or 12 v . D.C
2 P. c/o. 75p. P\&P 10p.
4 P. c/o. £1. P\&P $10 p$
TRANSISTORISED BRIDGE MEGGERS (500v.)
Ex P.O. Good condition. £20. P\&P £2
PLUG-IN (CRADLE) RELAYS $6 / 12 / 24 / 48 \mathrm{~V} . \mathrm{W}$
2 P. c/o. 65p. P\&P 10p
BASES 10p each
P.A.R. BI-STABLE RELAYS. 24 v d.c. $4 \mathrm{c} / \mathrm{o}$ £1 P.P. 15 p.
U.H.F. COAXIAL CABLE (white) Double screened

Lab. quality 100 m . drum £10 p.p. £1.50
multicore cables
10 CORE CABLE $10 \times 7 / 76$ (10 colours) P.V.C
O.D. $7 \mathrm{~m} . \mathrm{m} .10 \mathrm{~m}-£ 2: 50 \mathrm{~m}-£ 8.50: 100 \mathrm{~m}-£ 16$. P\&P 2 p per metre

10 PAIR RIBBON CABLE
Forming $18 \mathrm{~m} . \mathrm{m}$. wide loom. Polarised
10 m . $£ 3 ; 50 \mathrm{~m}$ - £ $13.50 ; 100 \mathrm{~m}-£ 25$
16 PAIR RIBBON CABLE 16×2 core P.V.C.
Double sheathed forming 2 in wide strip
10m-£3; 50m-£13.50; 100m-£25. P\&P 2p per metre
18 CORE SCREENED OVERALL, black p.v.c. outer
$18 \times 7 / 76$ colour coded $0 . d$. $7 \mathrm{~m} . \mathrm{m}$.
$10 \mathrm{~m}-£ 4 ; 50 \mathrm{~m}-£ 30 ; 100 \mathrm{~m}$ - $£ 50$. P\&P $2 \mathrm{p} /$ metre.
E.H.T. MODULES (resin encapsulated, in metal box
i/p 240 x .50 hz . o/p 13.7 kv @ 7 watts ($150 \times 95 \times 72 \mathrm{~m} . \mathrm{m}$.) £10 P.P. £1
P.C. EDGE CONNEGTORS

32 way (1 pitch) finished end 49p P\&P 10p
56 way (. 1 pitch) cuttable 65 p P\&P $15 p$
Mounting pillars for $56 / 64$ way 15 p per
M.D. THYRISTORS on deep finned per pair

65 amp@ 200 p.i.v. £3. P\&P 50p
'DRYFIT' RE-CHARGEABLE BATTERIES (Lead/Acid)
Ex. Equip. Good condition, tested.
$6 \mathrm{~V} @ 2.6$ A.H. £2.50 P\&P 50 p
6v @ 6A.H. £3.50 P\&P 75p
6 v @ 7.5 A.H. £5.00 P\&P 75p
STEP-DOWN TRANSFORMERS. Double wound
Input $200 / 240 \mathrm{v}$. Output $115 \mathrm{v} @ 20 \mathrm{amps}$
Fused output. $£ 22.50$. P\&P $£ 2.50$.

J. B, PATTRICK
 Romford, Essex RM7 9D Romford 44473

NEW Moder home study courses inelectronics.

Complete Self-sudy training in:-

1) Basic practical electronics - curcuit diagram masters - building oscilloscope and other test gear.
2) Training for Radio Amateur Licence.
3) Training for City \& Guilds and other professional examinations.
a) Servicing and maintenance of Radio, T.V. and other electronic equipment.
b) Digital electronic and Computer technology.

Brochure, without obligation to:-
British National Radio \& Electronic
School P.O. Box 156, Jersey, Channel Islands
NAME
ADDRESS

Specialists in electronic training. Established over 40 years. wW - 087 FOR FURTHER DETAILS

practical up-to-date SAMS BOOKS

 for radio enthusiastsWilliam I. Orr
RADIO HANDBOOK
21st Edition
This new edition of William Orr's famous communications handbook has been thoroughly revised. Among the new material in the twenty-first edition is a greatly enlarged section on semiconductors and IC circuit design.
£12.70 $\$ 26.351,136$ pages hardback 672-24034-3

REFERENCE DATA FOR RADIO ENGINEERS

 6th EditionA favourite with radio engineers since the first edition, the sixth edition of this comprehensive book contains three new chapters on active filter design, optoelectronics and optical communications. £19.50 \$40.50 1,344 pages hardback 672-21218-8

Prices are correct at the time of going to press but may be subject to change.
Book orders and enquiries These titles are available from your ustal bookseller. In cases of difficulty and for further information please contact the
Marketing Services Department at the address below.
Prentice/Hall Min International
66 Wood Lane End, Hemel Hempstead, Hertfordshire, England

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. $£ 1.25$ for booklet. "Nickel" Cadium Power," plus catalogue

Write or call at

SANDWELL PLANT LTD. 2 Union Drive, Boldmere

Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, Londoñ WC2.

WW - 043 FOR FURTHER DETAILS

BATTERY ELIMINATORS 3 -way type $7 / 71 / 2 / 9 \mathrm{~V}$
VO ma $£ 3.14$. 100 ma radio type with press-stud
$\begin{aligned} & \text { £.3.57. } 9 V+9 V £ 4.78 \text {. Car convertor } 12 \mathrm{v} \text { inpui, } \\ & \text { utput } 41 / 2 / 6 / 71 / 2 / 9 \mathrm{v} 800 \mathrm{ma} £ 2.66 \text {. }\end{aligned}$
BATTERY ELIMINATOR KITS 100 m
with press-studs $41 / 2 \mathrm{v} £ 1.49,6 \mathrm{v} £ 1.49,9 \mathrm{v}$ £ 1.49 ,
$41 / 2 \mathrm{~V}+41 / 2 \mathrm{v}$ £1.92, $6+6 \mathrm{v} £ 1.92,9+9 \mathrm{v} £ 1.92$.
$\begin{aligned} & \text { tabilised } 8 \text {-way types } 3 / 41 / 2 / 6 / 74 / 9 / 12 / 15 / \\ & 18 \mathrm{v} ~ \\ & 100 \mathrm{ma} 2-98,1 \mathrm{Amp} \\ & \mathrm{E6.8} \\ & \text {, stabilised power }\end{aligned}$
kits $2-18 \mathrm{v} 100 \mathrm{ma}$ £2.88, $2-30 \mathrm{v}$ 1A $£ 7.40$, 2.30 V
$\begin{aligned} & \text { 2A E11.66, } 12 \mathrm{v} \text { car convertor } 6 / 71 / 2 / 9 \mathrm{~V} 1 \mathrm{~A} £ 1.44 \text {. } \\ & \text { T-DEC AND CSC BREADBOARDS } \mathrm{s} \text {-dec } \mathrm{EA} .05 \text {, }\end{aligned}$
exp $350 £ 3.62$, exp $325 £ 1.84$.
BL-PAK AUDIO MODULES $\$ 450$ £24.03, AL60
$\begin{aligned} & \text { 4.97, PA } 100 \text { £17.33, spm80 £4.57, bmt80 } \\ & \text { £6.08, stereo } 30 \text { £20.57, AL30 } £ 4.04, \text { PA1 }\end{aligned}$
87.77,' PS 12 £1.42, MA60 £36.23.

SWANLEY ELECTRONICS

Dept. Ww, $\mathbf{3 2}$ Goldsel Rd., Swentoy, Kent.此t 30 extra. Prices include VAT. Olficial and verseas orders welcome. Lists 20p. post free

YOUR LAST CHANCE to obtain Wireless World Circards. we sull have some copises theo ingigna wrieness

 World circuit cards, even though the companion Circuit Designs 1.\& 2* are out of print. Fill the gaps in your circuit files with these sets of 5×8 in. ($127 \times 204 \mathrm{~mm}$) cards in plastic wallets - and at 1976 prices! These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.Micropower circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital counters 15 Pulse modulators 16 Current differencing amplifiers-signal processing 17 Current differencing amplifiers-signal generation 18 Current differencing amplifiers measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators - 126 RC oscillators - 227 Linear cmos - 128 Linear cmos -229 Analogue multipliers 30 Rms/ log/power laws 31 Digital multipliers $32^{\text {Tranansistor arrays }} 33$ Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications -2

*The two out-of-print volumes contained sets 1 to 10 and 11 to 20 of Circards.

[^3]
VALVES
 Order $£ 1.00$

A1065	1.40	EL82	0.70	PY80 0.70	5U4G	1.05	6L6GT	5	20P5	. 15
A2293	8.50	EL84	0.90	PY81/800 0.65	5V4G	0.75	6L7G	0.75	25L6GT	0.90
A2900	8.00	EL86	1.05	PY82 0.55	5Y3GT	0.75	6L18	0.70	25Z4G	0.70
AR8	0.70	EL90	1.45	PY83 0.60	523	1.15	6LD20	0.70	30 C 15	1.15
ARP3	0.70	EL91	1.80	PY88 0.75	524G	0.80	607G	0.90	$30 C 17$	1.25
ATP4	0.80	EL95	0.80	PY500 1.50	524GT	0.85	6SA7	0.65	30 C 18	
812 H	3.35	EL504	0.90	PY809 6.45	6A87	0.70	6SG7	0.85		
CY31	1.15	EL802	1.70	PY801 0.70	6AC7	0.70	6SJ7	0.80	see PCF805	
DAF96	0.70	EL821	5.05	QOVO3-10 2.80	6AH6	0.80	6SJ7G	0.60	30 F 12	1.35
DET22.	21.95	EL822	5.05	QQV03-12 2.80	6AK5	0.65	6SK7	0.70	30FL2	1.60
DF96	0.70	EM31	0.85	Qovob-40A	6АК8	0.60	6SL7GT	0.85	30FL14	2.05
DK96	1.05	EM80	0.70	15.75	6AL5	0.45	6SN7GT	0.85	30 L 15	1.15
DH76	1.00	EM81	0.70	QV03-12 2.80	6AL5W	0.80	6S07	0.85	30117	1.15
DL92	0.60	EM84	0.45	SC1/400 4.50	6AM5	1.80	6V6GT	0.90	30 P 12	1.15
DY86/87	0.65	EM87	1.15	SC1/600 4.50	6AM6	0.75	6×4	0.70	30PL1	1.15
DY802	0.65	EY51	0.55	SP61 0.95	6ANB	0.95	6X5GT	0.65	30PL13	1.25
E55L	8.45	EY81	0.55	T21 12.65	6A05	1.05	6Y6G	1.10	30PL14	1.25
E88CC/01	1.50	EY86/87	0.65	U25 $\quad 1.15$	6A05W	1.45	674	0.75	35L6GT	1.15
E180CC	1.50	EY88	0.65	U26 0.95	6AS6	0.90	6-30L2	1.95	35W4	0.80
E180F	6.75	E280	0.55	U27 $\quad 1.15$	6AT6	0.85	787	0.90	3524G	0.80
E182CC	3.95	E281	0.70	U191 0.85	6au6	0.45	7 V 4	0.90	50C5	1.35
EA76	2.25	GY501	1.05	$\mathrm{U} 281 \quad 0.60$	6AV6	0.60	9 D 2	0.70	50CD6	1.35
EABC80	0.60	GZ32	0.75	U301 0.60	6AX4GT	0.90	9D6	0.85	75	0.90
EB91	0.45	Gz33	3.95	$4600 \quad 5.10$	6AX5GT	1.16	10C2	0.70	75 C	1.15
EBC33	1.15	G234	2.25	$4801 \quad 0.90$	$6 \mathrm{B7}$	0.85	10 F 18	0.70	76	0.90
EbF80	0.60	Gz37	2.80	UA8C80 0.70	6BA6	0.45	10 P 13	0.70	78	0.90
EBF83	0.60	KT66	5.75	UAF42 0.85	68E6	0.60	11E2	12.40	80	0.85
EBF89	0.60	KT88	7.20	UBF80 0.65	68G6G	1.15	12A6	0.70	85A2	0.85
EC52	0.45	MH4	1.15	UBF89 0.60	6BJ6	1.25	12AT6	0.55	723A/8	2.70
ECC81	0.65	ML6	1.15	UBL1 1.15	6B07A	0.70	12AT7	0.65	803	14.40
ECC82	0.60	N7B	10.15	UBL21 0.85	68R7	2.60	$12 \mathrm{AU7}$	0.60	805	6.75
ECC83	0.65	OA2	0.65	UCC84 0.70	68W6	3.10	12AV6	0.80	807	20.25
ECC84	0.50	OB2	0.70	UCC85 0.75	6BW7	1.15	$12 \mathrm{AX7}$	0.60	813	1.15
ECCC85	0.60	PA8C80	0.60	UCF80 0.90	6C4	0.70	12 BA 6	0.60	829B	11.85
ECC86	1.40	PC85	0.60	UCH81 0.70	-6C6	0.70	$12 \mathrm{EE6}$	1.25	832A	7.35
ECC88	0.70	PC86	0.95	UCL82 0.85	6CH6	5.05	12 BM 7	0.70	866A	5.10
ECC189	0.90	PC88	0.85	UF41 0.90	6CL6	1.70	$12 \mathrm{C8}$	0.65	931A	3.15
ECFBO	0.60	PC900	1.40	UF80 0.55	$6 \mathrm{CY5}$	1.00	12 E 1	4.80	954	6.75
ECF82	0.55	PCC84	0.75	UF85 0.60	6 66	0.85	12K5GT	0.50	955	0.60
ECF801	0.90	PCC89	0.65	UL41 0.85	6EAB	0.90	12K7GT	0.70	956	0.65
ECH34	1.15	PCC189	0.75	ULB4 0.85	6F6GB	0.85	12K8GT	0.80	957	0.60
ECH35	1.70	PCF80	0.90	UM80 0.70	6F8G	0.75	1207GT	0.60	1625	1.00
ECH42	0.95	PCF82	0.45	UM84 0.70	6F12	0.90	12SC7	0.65	1629	1.15
ECH81	0.55	PCF84	0.75	UY82 0.65	6F14	0.95	12SH7	0.80	2051	0.80
ECH84	1.15	PCF86	0.75	UY85 0.60	6F15	1.15	12SJ7	0.65	5763	1.15
ECL80	0.70	PCF200	1.05	VR105/30 2.05	6F17	1.15	12 SO 7	0.65	5842	2.25
ECL82	0.65	PCF201	1.05	VR150/30 1.40	6F24	1.00	12 Y 4	0.45	5933	7.30
ECL83	1.40	PCF801	1.15	$266 \quad 1.05$	6F33	4.75	$13 \mathrm{D6}$	0.70	6057	3.45
ECL85	0.75	PCF802	0.75	K61M $\quad 1.70$	6H6	1.05	1457	1.15	6060	0.95
ECL86	0.65	PCF805	2.05	Z800U $\quad 3.40$	6 J 4 W	2.00	19405	0.85	6064	0.95
EF37A	1.80	PCF806	0.95	2801U 3.90	6 J 4	1.35	19 G 3	11.25	6065	0.95
Ef39	3.30	PCF808	2.05	2900T 2.50	6J5GT	0.85	$19 \mathrm{G6}$	6.75	6067	1.35
EF40	0.80	PCH200	0.90	$1 \mathrm{~A} 3 \quad 0.70$	6 J 6	0.60	19H5	19.15	6080	4.80
EF41	0.85	PCL81	0.70	$114 \quad 0.50$	6 J 7	0.85	20D1	0.70	6146	4.95
EF80	0.45	PCL82	0.75	1 125 0.65	6J7G	0.60	20F2	0.70	6146B	5.10
EF83	1.70	PCi84	0.80	15400.45	6 K 7	0.80	20 L 1	1.15	6360	2.25
EF85	0.45	PCL86	0.80	$1 \mathrm{S5} \quad 0.45$	6K7G	0.45	20P1	0.45		
EF86	0.55	PCL805/8		174	$6 \mathrm{K8GT}$	0.65	20P3	0.60		
EF91	0.65		0.85	1440.80	6L6M	2.15	20P4	1.25		
EF92	0.75	P0500	3.65	$1 \times 28 \quad 1.25$						

POSTAGE: $£ 1-£ 220$ p; $£ 2-£ 330$ p; $£ 3-$
£5 40p; £5-£ 10 60p; over $£ 10$ free. English Electric - $\mathbf{£ 2 0}$
special
VALVES
4CX 1000A YL 1420
4CX 5000A YL 1430
VALVES AND
TRANSISTORS

HIGH VACUUM VARIABLE CAPACITORS - ceramic envelopes - UC 1000A/20/150 =VMMHC 100060
$1000 \mu \mathrm{~F}, \mathrm{kV}-150 \mathrm{AFF}$ max $=27 \mathrm{MHz}$. TEST SET FT2 UNIVERSAL WIRELESS TRAINING SET No 1 Mk 2 hone. Complete installation consists of 3 kits packed in 3 special transit cases.
HARNESS " A " \&
" CONTROL UNITS "A" "R" "J1" "J2," Microphones No 5.6.7 connectors, frames. THYRATRONS GLASS ENVELOPE. MIL 5948/ 754. Us 25 KV . TA 1.25A. P.12.5M. 1754. US 25 KV
IGNITION BK
Current 140 A

COLOMOR

(ELECTRONICS LTD.)
170 Goldhawk Rd., London w. 12 Tel. 01-743 0899 Open Monday to Friday 9-12.30, 1.30-5.30 p.m.

PPM2: PEAK PROGRAMME METERS

\star Approved by broadcasting authorities in the U.K. and overseas for critical programme monitoring.
\star Reviewed Studio Sound September, 1976. Meets IEC268-10A. draft BS5428-9

* Accurate law at and between all PPM marks with minimal preset adjustment. Marginal adjustment is retained to allow compensation for the tolerance in scate markings between meter manufacturers and different meters from the same maker
- Decay matching of all boards allows use with twin movements without pairing
* Flat frequency response at all PPM marks and also below minimum calibration point Gold piated connector and floating input protected against mains or static voltages on the Close tolerance components with against reverse polarity Close toleranc
throughout.
Soughout. Soak tested bards. Ernest Turner meter movements 642, 643 and TWIN flush mounting
adaptors and illumination kits from stock $-12 T / T E S T /+12$ Type 11 b used by EBU and available 1.7 , IEC268 1OA Type 11 a N 15 (1972) but not recommended by us except for EBU and measuring instruments.

Stereo Disc Amplifier $2 \star 10$ Outlet Distribution Amplifier $2 \star$ Stabilizer \star Peak Deviation
Meter \star Chart Recorders

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG. Tel: (04866) 5887

BRITISH MOTOROLA 6800-6809 COMPUTER SYSTEMS

6800S, the world's most powerful 6800/6809 computer kit. Basic kit has 6 K ram, Mikbug type monitor, cuts + high-speed tape interface, power supply, full Querty keyboard, mem. mapped VDU with u/I case, graphics, scrolling, spare ACIA and PIA. Addon 16 K ram kit, disc available. All on a single board. From $£ 275.00$.

Mini 6800 System. A very versatile system based on several $100 \mathrm{~mm} \times$ 275 mm PCBs. The basic kit contains the CPU + cuts card and VDU card and costs £127.50. Add to this: $8 K$ RAM $+5 E P R O M$ card + calculator (MM57109) card + Errom programmer card + multifunction input-output card and you have a do anything system. Microcase: our own big ABS case to house a 6800 S or Mini. £29.00.

All prices exclude VAT and postage. Send stamped addressed envelope, please, for leaflets

HEWART MICROELECTRONICS 95 BLAKELOW ROAD, MACCLESFIELD, CHESHIRE

WW - 100 FOR FURTHER DETAILS

FOTOLAK

 POSITIVE LIGHT SENSITIVE AEROSOL LACQUEREnables YOU to produce perfect printed circuits in minutes!
Method: Spray cleaned board with lacquer. When dry, place positive master of required cirouit on now sensitized surface. Expose to daylight, develop and etch.. Any number of exact copies can of course be made from one master. Widely: used in industry for prototype work.

FOTOLAK
Ferric Chloride

Plain Copper-clad Fibre-glass
Approx. 3.18 mm thick sq..ft Approx. 2.00 mm thick sq. ft . Approx. 1.00 mm thick sq. ft.
 $30 p$
$40 p$ 40p

Pre-coated $1 / 16^{*}$ Fibre-glass board $204 \mathrm{~mm} \times 114 \mathrm{~mm}$ $408 \mathrm{~mm} \times 228 \mathrm{~mm}$ $467 \mathrm{~mm} \times 305 \mathrm{~mm}$

Single-sided £1.25
-
£1.50
Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$
G. F. MILWARD ELECTRONIC COMPONENTS LIMITED

369 Alum Rock Road, Birmingham B8 3DR. Telephone: 021-327 2339

FOR TESTING AMPLIFIER QUALITY YOU NEED A SIGNAL WITHOUT DISTORTION

We do not claim our Model A0146 Signal Generator is distortionless.
However it is so low (:0015\%) that only the most sophisticated Analyser can detect it.

Spec. Sine wave distortion below $.0015 \%$ output Iv rms. Freq. coverage $10 \mathrm{hz}-100 \mathrm{kHz}$ Coarse and fine attenuation into 600 ohms. Square wave alternative.
$£ 36.00$
Tax extra 15\% -.P. £1.50.

TELERADIO ELECTRONICS

 325 FORE STREET, EDMONTON, LONDON N9 OPE01-807 3719 Closed Thursdays. S.A.E. for lists.
WW - 105 FOR FURTHER DETAILS

SIGHT for sore eyes

STICKIES are printed self-adhesive labels that stick to the top of ICs. They turn a board-full of ICs into a working circuit diagram! See at a glance where to place your soldering iron or test probe. Use STICKIES for building and de-bugging prototypes, faultfinding, experimenting, teaching - even designing PCB layouts.
STICKIES come in handy-size packs for 7400 - or 4000 -series ICs. Each pack contains a sensible mix of more than 60 different IC types 120-label packs 80p.
480-label packs £2.80, 2-10 packs £2.50 each, $11+\mathbf{£ 2 . 2 0}$ each
Prices include 15% VAT and first-class postage.
Please state whether TTL or CMOS required.
Official orders welcome.
Let others suffer the sore eyes-try a pack of STICKIES and see the difference. For your STICKIES by return of post, contact CONCEPT ELECTRONICS,
8 Bayham Road, Sevenoaks, Kent, TN13 3XA (0293 514110).

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records,
Auto or Manual. A high quality Auto or Manual. A high quality
unit backed by BSR reliability unit backed by ASR reliability $200 / 250 \mathrm{~V}$. Size $131 / 2-111 / 4 \mathrm{in}$ 3 speeds. Above motor board with Ceramic Stereo cartridge.
£20.00 Post $£ 1.60$

HEAVY METAL PLINTHS ONLY

 Cut out for most BSR or Garrard decks. Silver grey finish
Model " A " Size $141 / 2 \times 121 / 2 \times 3 \mathrm{in}$.
£3.50
Model "B" Size $16 \times 13^{3 / 4} \times 3$ in.
$£ 4.50$
TINTED PLASTIC COVERS ONLY
$151 / 4 \times 131 / 2 \times 4 \mathrm{in}$. £4. $18 \times 131 / 4 \times 4 \mathrm{in} . \mathbf{£ 6}$.

$141 / 2 \times 143 / 4 \times 21 / 2$ in. Rosewood sides $£ 4$. Post $£ 1.60$
ideal for record decks, tape decks, etc.
BSR SINGLE PLAYER
deal replacement or disco deck
with cueing device and stereo
21 ceramic cartridge. 3 speeds. Large turntable, modern design
$\mathbf{~} 1.60$

TWO-SPEED BUDGET MODEL £15.
BSR P182 3 speeds flared aluminium turntable " S " shap arm, cueng device, ceramic Ceramic, balanced arm, cueing device. Bias compensator $£ 26$. Magnetic $£ 5$ extra.
GARRARD HI-FI AUTO CHANGER Model 2025
£16.50

B.S.R. P163 BELT DRIVE QUALITY DECK Mrecision balanced arm. Slide
in head, cueing device.
Bargain price
$£ \mathbf{3 0}$ Post $£ 1.60$
Suitable magnetic cartridge $\mathbf{£ 6 . 5 0}$.
ELAC HI-FI SPEAKER
8in. TWIN CONE
Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$ Bass resonance 40
8 ohm impedan
20 watt woofer
$£ 5.95$ Р
ost 75p
LOW VOLTAGE POWER PACK for MODELS
Ready made. Famous make Will supply 10 volts D.C

VOLUME

 CONTROLS $5 \mathrm{k} \Omega$ to 2 M . LOG o$\mathrm{L} / \mathrm{S} 35 \mathrm{p}$. DP 60p. Stereo L/ S 85p. DP Stereo L/ S 85p. DP
Edge Pot 5K. SP
£1.

80 Ohm Coax

fringe low loss 15 p yd. PLUGS 10p. SOCKETS 10p. INE SOCKETS 25 p OUTLET BOXES 80 p
300 ohm FEEDER 5 p yd 300 ohm FEEDER 5p yd.

EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS
With tweeter and
Bass woofer onl
£9.95 £10.95
Bass woofer only. C1. 15 ohm .20 watt. 25
Suitable Bookshelf Cabinet
$£ 8.50$
Size $16 \times 11 \times 8$ inches approximately.

THE "INSTANT" BULK TAPE ERASER
eels. A.C. mains $200 / 250 \mathrm{~V}$. Leaflet S.A.E.
N also demagnetise small tools $\mathbf{E} 6$

RELAYS. 12 V DC 95 p .6 V DC 85 p . 240 V AC 95p.
BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-$ -£1.85; $16 \times 10-£ 2.20$. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-20 p$. ALUMINIUM PANELS. $6 \times 4-24 \mathrm{p}$; $8 \times 6-38 \mathrm{p}$; $14 \times$ 3-40p; $10 \times 7-54 \mathrm{p} ; 12 \times 8-70 \mathrm{p} ; 12 \times 5-44 \mathrm{p} ; 16 \times$ -7AP; $14 \times 9-94 p ; 12 \times 12-\mathrm{E} 1 ; 16 \times 10-\mathrm{E} 1.16$.
VARICAP FM TUNER HEAD with MAN SIZES
Some technical knowledge required $£ 4.95$.
AG STRIP 28 way 12 p
TAPE OSCILLATOR COIL Valve type 35 p .
TAPE OSCILLATOR COIL. Valve type, 35p. $8 \mathrm{amp} £ 2.50$. TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50 p . MANY OTHER TOGGLES IN STOCK. Please enquire. SONOTONE 9TAHC Diamond £3.75. V100 Magnetic £6.50. WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt 15p. CASSETTE MOTOR. 6 volt £1.00.

MAINS OPERATED SOLID STATE

AM/FM STEREO TUNER

Mains F.M./A.M. Stereo Tuner 1605 KHz V.H.F., F.M. 88 108 MHz .
Ferrite rod aerial for M.W Full AFC and AGC on A.M and F.M. Stereo Beacon ndicator. Built-in Pre-amps with variable output adjust control. Max. o/p Voltage 600 mV R.M.S. into 20K. Simulated Teak finish cabinet. Will match almo wide, 4 in . high $x 91 / 2 \mathrm{in}$. deep approx
$£ 28$
RCS SOUND TO LIGHT KIT Mk. $2 \quad £ 18$
Kit of parts to build a 3 channel sound to light unit Post 50p
Easy to build. Full instructions supplied. Cabinet $\mathbf{£ 4 . 5 0}$ extra. Will operate from 200 MV to 100 watt signal.
RCS "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players, guitars, tape playback electronic instruments or small PA systems. Two versions
available: Mono, $£ 12.50$; Stereo, $£ 20$. Post 45 p. Specification 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE details. Full instructions supplied. AC mains powered. Input can be modified to suit guitar
R.C.S. STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp per channel. $£ 2.95$ Can be ganged to make multi-way stereo mixers Post 35p

MAINS TRANSFORMERS . ALL POST 75			
$250-0-250 \mathrm{~V} 70 \mathrm{~mA}, 6.5 \mathrm{~V}$			
$250-0-250 \mathrm{~V} 80 \mathrm{~mA}, 6.3 \mathrm{~V}$	5A, 6.3 V		¢4.
$350-0-350 \mathrm{~V} 80 \mathrm{~mA}, 6.3 \mathrm{~V}$	5A, 6.3		£5.80
$300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 2 \times$	3V 2AC.	5V 2A	¢8.5
$220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$			£1
HEATER TRANSFORMER	$3 V^{1 / 2}$ am	2. 3 amp	
'GENERAL PURPOSE LOW VOLTAGE. Tapped outputs available			
2 amp . 3, 4, 5, 6, 8, 9, 10	12, 15	25 and 30 V	£6.00
$1 \mathrm{mmp} .6,8,10,12,16,18,20,24,30,36,40,48,60$...... $£ 6.00$			
5 amp . 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40, 48, $60 \ldots .$. ... 16			
$12 \mathrm{~V}, 100 \mathrm{~mA}$........ £1.30 $20 \mathrm{~V}, 40 \mathrm{~V}, 60 \mathrm{~V}, 1 \mathrm{mmp}$. $£ 4.00$			
12V. 750 mA	$\varepsilon 1.50$	$12 \mathrm{~V}, 3 \mathrm{amp}$	
	£4.00	$20 \mathrm{~V}, 1 \mathrm{amp}$	
$0,5,8,10,16 \mathrm{~V}, 1 / 2 \mathrm{amp}$. £2.50 20V-0-20V, $1 \mathrm{amp} \cdot . . \mathrm{£}$			
AUTO TRANSFORMERS, 115 V to 230 V or 230 V to 115 V 150 W			
FULL WAVE BRIDGE CHARGER RECTIFIERS.			
COMPACT			
SPEAKERS			
Teak 4 or 8 ohm			
White 4 ohm only			
$13 \times 10 \times 6$ in. approx.			
50 to $14,000 \mathrm{cps} .10$			
watts 6 mair post $£ 1.60$			

EXTENSION SPEAKERS $£ 3.95$ ea. Globe shaped cases in high gloss mouldings of red or green, are lead already fitted with phon plug is supplied.

Full Range Quality
Frequency Res
Impedance: 8 ohms
LOW VOLTAGE ELECTROLYTICS
1, 2, 4, 5, 8, 16, 25, 30, 50, 100, 200mF 15 V 10 p .
500 mF 12 V 15 p ; 25 V 20 p ; $50 \mathrm{~V} 30 \mathrm{p} ; 420 \mathrm{mF} / 500 \mathrm{~V}$ £1.30. 1000 mF 12 V 17 p ; 25 V 35p; 50 V 47 p ; 100 V 70 p .
2000mF 6V 25p; 25V 42p;
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$3900 \mathrm{mF} 100 \mathrm{~V} £ 1.60 .4700 \mathrm{mF} 63 \mathrm{~V}$ £1.20.2700mF/76V £1. $5000 \mathrm{mF} 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V} £ 1.75$
HIGH VOLTAGE ELECTROLYTICS
$8 / 350 \mathrm{~V} 22 \mathrm{p}$
$8+8 / 450 \mathrm{~V}$ 50p

$80+50 / 300 \mathrm{~V} 50 \mathrm{p}$ $\begin{array}{rrrr}8 / 350 V & 22 p & 8+16 / 450 V & 50 p \\ 16 / 350 \mathrm{~V} & 30 \mathrm{p} & 8+32 / 450 \mathrm{~V} 75 \mathrm{p}\end{array}$ | $16 / 350 V$ | 30 p | $8+16 / 450 \mathrm{~V}$ | 50p |
| :--- | :--- | :--- | :--- |
| $32 / 500 \mathrm{~V}$ | $100+100 / 275 \mathrm{~V}$ | $\mathbf{6 5 p}$ | |
| $50 / 350 \mathrm{~V}$ | $16+16 / 450 \mathrm{p}$ | $32+32 / 350 \mathrm{~V}$ | $\mathbf{5 0 p}$ |
| $150+200 / 275 \mathrm{~V}$ | $\mathbf{7 0 p}$ | | | MANY OTHER ELECTRÓLYTICS IN STOCK

SHORT WAVE 100pf air spaced gangable tuner, 95p. TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p}$. $100 \mathrm{pF}, 150 \mathrm{pF}$, 15 p . CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 \mathrm{p}$. Siver Mica 2 to $5000 \mathrm{pF}, 5 \mathrm{p}$. 20p; $500 \mathrm{~V}-0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p} ; 0.25$ 25p; 0.4735 p . MICRO SWITCH SINGLE POLE CHANGEOVER 20 p . SUB-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG, $385+385 \mathrm{pF} 80 \mathrm{p}$; 500p F slow motion 75p. $365+365+25+25 \mathrm{pF}$. Slow motion drive 85p. 120pF 50p. TRANSISTOR TWIN GANG, 50p.
NEON PANEL INDICATORS 250 V . Amber or red 30p. ILLUMINATED ROCKER SWITCH. single pole. Red 65p. RESISTORS. 10Ω to $10 \mathrm{M} .1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 10 \mathrm{p}$ HiGH stability. $1 / 2 \mathrm{~W}$ 2\% 10 ohms to 10 meg ., 5 p .

ELECTRO MAGNETIC

PENDULUM MECHANISM 95p Post 30p
battery, fully adjustable swing and speed. Ideal displays,

BAKER "BIG-SOUND" SPEAKERS.
'Group 100' 'Disco 100' 'Group 50/15'
100 watt $£ 29 \begin{aligned} & 100 \text { watt } \\ & 1029 \\ & 75\end{aligned}$
BAKER LOUDSPEAKER, 12 INCH. 60 WATT
GROUP 50/12,4 OR 8 OR 16 OHM HIGH POWER.
FULL RANGEPROESSONAL QUALITY.
ESPONSE
23
WITH ALUMINIUM PRESENCE CENTRE DOME
TEAK VENEERED HI-FI SPEAKER CABINETS
For $61 / 2 \times 8 i n$. or 8 in . speaker
£8.50 Post 75 p
For $61 / 2 \mathrm{in}$. speaker and tweeter
£8.50 Post 7
Many other cabinets in stock. Phone your requirement
LOUDSPEAKER CABINET WADDING 18 in wide 20p ft.
R.C.S. 100 watt

VALVE
AMPLIFIER

CHASSIS

Four inputs. Four way mixing, master volume, treble and bass controls. Suits all speakers. This professional quality amplifier chassis is suitable for all groups, disco, PA, where high quality output socket. Produced by demand for a quality valve amplifier. 100 V line output to order $£ 10$ extra. $£ 105$ Send for leaflet. Suitable carrying cab $£ 21 \quad$ Price $£ 105$ carr. $£ 6.00$ GOODMANS TWIN AXIOM

hm, 15 watt hi-fi unit £10.50.

CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm
£1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}, ~ £ 2.20$.
LOUDSPEAKERS PM 3 OHM $7 \times 4 \mathrm{in}$. £1.50; $61 / 2 \mathrm{in}$., £1.95;
$8 \times 5 \mathrm{in} ., \mathrm{£1}, 90$; $8 \mathrm{in} ., \mathrm{£2.50}$.
SPECÍAL OFFER: 80 ohm, $21 / 4 \mathrm{in} ., 23 / 4 \mathrm{in}$., $35 \mathrm{ohm}, 3 \mathrm{in}$.,
 $3 \mathrm{ohm}, 2^{1 / 2 \mathrm{in} .,} 2^{5} / \mathrm{sin}$., $3^{1 / 2}$ in. 5 in . dia. $£ 1.50$ each.
PHILIPS LOUDSPEAKER, 8 in , 4 ohms, 4 watts, $\mathbf{£ 2 . 5 0}$. RICHARD ALLAN TWIN CONE LOUDSPEAKERS Bin. diameter 4W £2.50. 10in. diameter 5W £3.50; MOTOROLA PIEZO ELECTRIC HORN TVEETER. £6.50 Handles up to 100 watts. No crossover required.

| aluminium facia. Sturdy job. Size $61 / 4 \times 43 / 4 \times 2 \mathrm{in}$. | $£ 1.50$ |
| :--- | :--- | :--- |

BAKER 150 WAT PROFESSIONAL

MIXER AMPLIFIER
All purpose transistorised.
and PA 4 inputs speech and music 4 way mixing Output $4 \quad 8 / 16$ ohms. A.C. Mains. Separate treble and 100 volt line model $\mathbf{£ 9 9}$
$£ 85$
BAKER 50 WATT AMPLIFIER
£63

Superior quality ideal for Halls/PA systems, Disco's and Groups Two inputs with Mixer Volume Controls. Master Bass, Treble and ohm. AC 240 V (120 V available) Blue wording on black cabinet

GOODMANS COMPACT

 12-INCH BASS WOOFER Standard 12 in . diameter fixing withcut sides $12^{\circ} \times 10^{*} 14.000$ Gauss magnet. 20 watts R.M.S. 4 ohm imp. Bass resonance $=30$ c.p.s.

$$
£ 9.95 \text { each Post } £ 1.60
$$

ALUMINIUM HEATSINKS. FINNED TYPE.
JACK PLUGS. Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS. Open 20p; Closed 25p.
JACK SOCKETS Stereo Open 25p; Closed 30p.
FREE SOCKETS - Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKETS 15p.
2.5 mm and 3.5 mm JACK PLUGS 15p. DIN TYPE CONNECTORS
Sockets 3 -pin, 5 -pin 10p. Free Sockets 3-pin, 5-pin 25p
PHONO PLUGS and SOCKETS ea. 10p.
Free Socket for cable end ea. 15p.
V CONVERGENCE POTS

Current news: A PCB for the Mutlard DC tone and volume control system is now available $£ 3+\mathbf{0 . 4 5}$ VAT. HMOS PA modules for $\mathbf{6 0 - 1 0 0 W}$ - kit $£ 14+£ 2.10 \mathrm{VAT}$, heatsink $£ 4.10+0.61$. FM radio control system crystals $£ 3.75$ pair inc VAT (Sept. on). MK50366N: static drive clock/timer IC $£ 3.78+0.57 \mathrm{VAT}$. $121 / 2 \mathrm{kHz}$ channel spacing 8 pole 10.7 MHz XTAL filter by TOYO type H4402 $£ 1550+£ 2$ S2VAT. A further updated pricelist is now available, and we would like to remind you that enquiries can only be answered if accompanied either by an official business letterhead, or an SAE. STOP PRESS: TOKO's new split-apart triple AM tuning diodes are in stock $£ 2.45+37 \mathrm{p}$ VAT, (KV 1215). S BL1 diode DBM 1-500MHz-£4.25+0.64p. Terms: CWO please. Account facilities for commercial customers OA. Postage $25 p$ per order. Minimum credit invoice for account customers $£ 10.00$. Please follow instructions on Catalogues: Ambit. Part 145 p . Part 250 . TOKO Gur shortform 20 p . Micrometals toroid cores 40 p . All inc PP etc. Full data service described in pricelist supplements. Catalogues: Ambit. Part 145 p . Part 250 p 90 p pair. TOKO Euro shortform 20p. Micrometals Hours/phone: We are open from $9 \mathrm{am}-7 \mathrm{pm}$ for phone calls. Callers from 10 am to 7 pm . Administrative enquiries 9 am to 4.30 pm please (not Saturdays). Saturday service $\begin{aligned} & \text { AMBIT catalogues are guaranteed to contain the most up-to-date and best informed comment } \\ & \text { modern developments and advances in the field of radio and audio. There is no competetive } \\ & \text { publication that even approaches the broad range of parts/information on modern techniques. }\end{aligned}$ OIn O ${ }^{1}$ international ${ }^{\circledR} \frac{\text { IreshamRoud, Brentwoud, E5sex. }}{}$

WW - 110 FOR FURTHER DETAILS

EIFII EIFII EIIF II EIF II EIFII EIFII ELFII EIFII EIFUI ELFII EIF II EIFII

POWER SUPPLY (6.3v AC) for ELF 1 ELF 11 DELUXE STEEL CABINET (IBM Blue) \# GIANT BOARD KIT System/Monitor, Interface to /cassette, BS232

Expansion power supply (required when adding 4 K Rams ASC11 Keyboard Kits 96 printable characters, etc - ASC1 1 D/lux steel cab (IBM Blue)

- KLUGE protertype board (build you own circuits) 86 pin Gold plated connectors (EA) VL screens
- ELF 11 Bug/monitor powerful system monitor/editor * TPITMANS short course in programming manual (nil VAT) * T PITMAN short course on tony basic manual (nil VAT) - RCA 1802 users manual (nil VAT)
* On cassette test editor assembler, disassembler (EA)

SAVE 10\% AND BUY ALL THREE TOGETHER All units can be supplied wired and tested
Send s.a.e. for comprehensive brochure

BUT B

 minicamputer $\varepsilon 79 \cdot 95$ for less than sume Tu gamesELF 11 BOARD WITH VIDEO OUTPUT short course speedily instructs you how to use them purposes.

15.02 *RCA 1802 8-bit microprocessor
12.83 with 256 byte RAM - expandat
4.00
6.50
.6 .50
69.95 prea 1861 video IC to display
69.95 program on TV screen via the RF
3.50 modulator
4.00 Single Board with,
4.00 Protessional hex keyboard - fully 4.00 decoded to eliminate the waste of 16.95 memory for keyboard decoding circuits
Load, run and memory protect switches
16 Registers
interrupt, DMA and ALU
Stable crystal clock
Buill-in power regulator 5 slot plug in expansion bus (less connectors)

STOP reading about computer and get your "hands on" an, ELF 11 and Tom Pitman's short course. ELF 11 demonstrates all the 91 commands which an RCA 1802 can execute, and the

ELF 11 's VIDEO OUTPUT makes it unique among computers selling at such a modest price. The expanded ELF 11 is perfect for engineers, business, industry, scientific and educationalName
Address

Postmark

+ VAT
T.

Barclaycard Access
To: NEWTRONICS
The Personal Computer Div.
of H. L. Audio Ltd.
138 Kingsland Road E2 8BY
Tel. 7391582.

YOU ABE INYIEDTO THE

 Woith Silist
 First 'minio chinition. September $25^{\text {th }}$ to 27 th.
Second mini' APPLYING MICROP 9 th to 11 th. AND ADMISSION isfree.

On September the 25th the doors of the NationalMicroprocessor and Electronics Centre will be opened to the public.

We know it will surprise you. And admission is free to all.

Beneath the historic walls of The Tower of London we have established a unique facility for engineers and buyers to examine the latestproducts - without any salesmen breathing down their necks!

Over the coming year we shall create comprehensive displays augmented by a regular series of single technology displays.

For example, our first features Oscilloscopes; our second, a general introduction to "Applying Microprocessors"; and then some30+other topics during the next twelve months.

It is our intention that each product area shall be totally reviewed. So that you can try out all those you are likely to consider in a single visit to a single location. (And, obviously, make comparisons on the spot.)

The World Trade Centre, which houses our own Centre, is easy to get to by train, car-or by boat (just moor at Tower Bridge!).

But we'd prefer that you completed the coupon or used our enquiry number so that we can send you full instructions, our programmefor the first months of operation, and some more news about this unique service that is freely available.

Please make contact. Or else we'll have to put you next door...

WW - 103 FOR FURTHER DETAILS

Samson's
 (ELECTRONICS) LTD.

$9 \& 10$ CHAPEL ST., LONDON, N.W. 1 01-7237851 01-2625125 ADJACENT TO EDGWARE ROAD MET. LINE STATION

PLEASE ADD 15% TO ALL ORDERS INC. CARR.
CURRENT RANGE OF NEW L.T. TRANSFORMERS OPEN TYPE TAG CONNECTIONS
ALL PRIMARIES 220-240v

HEAVY DUTY OP TRANSFORMERS
Type OT28EL 100 watts. $3.75 \Omega, 7.5 \Omega, 15 \Omega, 1.75 \mathrm{~K} \mathrm{CT} .4$ EL34.

 Type SLAMPED O Type Sec Tap
$15 V$ twice
$16 V$ 26 V twice
3 GV twice 46 V -9V twice $\begin{aligned} & 56 \mathrm{~V} \text { wice } \\ & 6 \\ & 7 \\ & 7\end{aligned} 1-0.12 \mathrm{~V}$

$\begin{array}{ll}10 & 12 \mathrm{~V} \\ 11 & 12 \mathrm{~V}\end{array}$

AUTO STEPDOWN TRANSFORMERS FOR AMERICAN EOUIPMENT
$240-110 \mathrm{~V} 80-2250$ WATTS
Fully shrouded, fitted with American two or three pin outlet and three ofre 240 V mains lead. Send sae for latest price list. American
plugs, sockets, adaptors also available. Open plugs, sockets, adaptors also available. Open
frame types. Tag connections by famous makes, fraction of list price, tapped $240-220-$
$200-120.110-100 \mathrm{~V}, 750$ watts, $\mathbf{£ 1 2 . 0 0}$ carr $200-120.110-100 \mathrm{~V}, 750$ watts, $£ 12.00$ carr
$£ 2.500$ watts $£ 8.25$ carr $£ 2.80$ watts
 HEAVY DUTY ISOLATION TRANSS:
FORMERS $240-240 V$ OR $240-110 V$ UPTO Large selection available, ail by famous makers,
frattion of list price. Please telephone us for further details,
E.H.T. TRANSFORMERS CUMBERNAULD Pri. tapped 240-260-285-
$300-315-330-350-387 \mathrm{~V}$ Sec. 2500 V 0.11 A Open frame terminal board connections, fraction of maker's price $£ 15$ canre E3. PAR. MEKO potted type Pri. $220-240 \mathrm{~V}$ Sec. 1875 V
$60 \mathrm{~m} / \mathrm{a}$ and $500 \mathrm{~V} 31 \mathrm{~m} / \mathrm{f5} .95 \mathrm{car}$ GRESHAM open type terminal board conne. tions Pri. 240 V Sec. 2300
$1.5 \mathrm{~A} £ 4.50 \mathrm{carr} £ 1.50$.

SPECIAL PURCHASE BY FAMOUS MAKERS L.T. TRANSFORMERS IDEAL FOR UP-TO-DATE POWER SUPPLY CIRCUITS No 1 GRESHAM Pri. 240 v Sec. 43 v 3 amps. Fully tropicalised. Open type wire connections $\mathrm{E}^{3.95} \mathrm{pp} 75 \mathrm{p}$. No 2 HINCHLEY Pri. 240 V Sec. $33 v 5$ amps and $18-0.18 \mathrm{~V} 1 \mathrm{~A}$. Tropicalised will give $33-0.33 \mathrm{v} 5 \mathrm{~A}$ and $18-0-18 \mathrm{v} 2 \mathrm{~A}$ £.3.95 each, pp 75 p . No 3 PARMEKO Pri. 240 V Sec. 30 v 5 A and 12 v 2.2 amps. Table top connec- tions $£ 4.95 \mathrm{pp} £ 1$. No 4 . AEG open type tag board connections Pri. $220-240 \mathrm{~V} \mathrm{Sec}$. 10 V 13.8 A and $22.8 \mathrm{~V} 10.5 \mathrm{~A} £ 8.50 \mathrm{carr} £ 2$. No 5. ' C ' core tag board connections Pri. 220-240v $\mathrm{Sec} .27 \mathrm{v}, 9 \mathrm{v}, 3 \mathrm{v}, 1 \mathrm{v}$ separate windings, 10 amps each $£ 6$ carr $£ 1.50$. No 6 Pri. $120-240 \mathrm{v}$ Sec. $60-0-60 \mathrm{v} 10 \mathrm{~A}$ open type cable lead Sec. $60-0-60 \mathrm{ve}$ connections, size $6 \times 6 \times 6$ in $£ 19.50$ carr $£ 3$. No 7 Pri. 220-240v Sec 36 V 6A. Open type, tag board connections $£ 7.50$ carr $£ 1.50$, two will give 36-0-36v 6 amps Special offer for two $£ 15$ inc carriage.
L.T. TRANSFORMERS NEW SURPLUS FAMOUS MAKERS. FRACTION OF MAKER'S PRICE Limited number $£ 4$ No 3 Pri. 115-220-240v. Sec. 9 v 2 A and 9 v 1 A open type terminal block connections $£ 2.50 \mathrm{pp} £ 1$. No 4 Pri . 230 v Seci, 80 v 1.1 A open type tag board connections $£ 3.00 \mathrm{pp} £ 1$. No 5 Pri. $120-240 \mathrm{v}$ Sec. 13 v 3 A and 15 v 1 A open type terminal block connec5.5A and $12 v 2.2 \mathrm{~A}$ open type table top connections $£ 5.75$ carr $£ 1.50$. No 7 Pri. 230 V sec tapped $24-30-32 \mathrm{~V}$ 2A potted type $\mathbf{£ 3 . 0 0}$ $\mathrm{pp} £ 1$. No 8 Pri. 220-240v. Sec. 6 v 1 A twice shrouded GPO type $£ 2.00$.

LT. SMOOTHING CHOKES
 M/H $25 \mathrm{amps} £ 8.50$ carr $£ 2.4 \mathrm{M} / \mathrm{H} 12 \mathrm{amps}$
$£ 3.75$ carr $£ 1.50$. Swinging C^{\prime} core type. 10 $£ 3.75$ carr $£ 1.50$. Swinging ${ }^{C}$ ' core type. $£ 2$.
$\mathrm{M} / \mathrm{H} 4 \mathrm{~A}-100 \mathrm{M} / \mathrm{H} \mathrm{V} / 2 \mathrm{~A} £ 4.50$ carr $£ 2$. M/H AA $-100 \mathrm{M} / \mathrm{H} 1 / 2 \mathrm{~A} £ 4.50$ cart $£ 2$
Potted type, $100 \mathrm{M} / \mathrm{H} 2 \mathrm{~A} £ 3.75$ carr $£ 1.50$
 M/H 10A $£ 3.50$ pp 75 p . C' core types. 20
M/H 10A $£ 4.50$ carr $£ 1.50$. $140 \mathrm{M} / \mathrm{H} 5 \mathrm{~A}$ M4.80 carr $£ 4.50 .50 \mathrm{M} / \mathrm{H} 21 / 2 \mathrm{~A} £ 3.50 \mathrm{pp} £ 1$ $15 \mathrm{M} / \mathrm{H} 31 / 2 \mathrm{~A} £ 3.50 \mathrm{pp} £ 1$.
H.T. SMOOTHING CHOKES Potted types, $15 \mathrm{H} 75 \mathrm{M} / \mathrm{A} £ 1.50 \mathrm{pp} 75 \mathrm{p}$. 50 H
$25 \mathrm{M} / \mathrm{A} £ 1.50 \mathrm{pp} 75 \mathrm{p} .10 \mathrm{H} 75 \mathrm{M} / \mathrm{AE1.50pp}$
 280M/A $£ 3 \mathrm{pp} £ 1$. 'C' core $10 \mathrm{H} .350 \mathrm{M} / \mathrm{C}$
$£ 4.50 \mathrm{pp} £ 1.50 .40 \mathrm{H} 40 \mathrm{M} / \mathrm{A} £ 2.25 \mathrm{pp} £ 1$.

CRESSALL RHEOSTATS Builtin ventilated 6 inch metal surround with
control knob. $10100 \Omega 0.15 \mathrm{~A}, 980 \Omega 0.48 \mathrm{~A}$ control knob.
$3250 \Omega 0.24 \mathrm{~A} £ 3.95 \mathrm{pp}$ £1, 25.3 inch size
90000 . $1 \mathrm{~A} £ 2 \mathrm{pp} 75 \mathrm{p}$ ZENITH heavy duty 9000 O. $1 \mathrm{~A} £ 2 \mathrm{pp} 75 \mathrm{p}$. ZENITH heavy duty
fixed wire resistors, enclosed, size fixed wire resistors, enclosed, siz
$18 \times 5 \times 31 / 2 \mathrm{in}, 136 \Omega 1.7 \mathrm{~A}$ £ carr $£ 1.50$.

HEAVY DUTY 'C' CORE L.T. TRANSFORMERS BY FAMOUS
MAKERS, FRACTION OF LIST PRICE

ALL PRIMARIES $220-240 \mathrm{~V}$ IC No 112 volts 40 amps cont. $\mathbf{£ 1 9 . 5 0}$ carr $£ 3$.
No $214+3+1 / 2 V 40$ amps cont $\mathbf{£ 2 2 . 5 0}$ carr No Limit number.

HEAVY DUTY L.T.TRANSFORMERS BRAND NEW, FRACTION OF LIST PRIC Open frame type, Sec. $17+2+1 / 1 / 2+1$ separate windings, all at $20 \mathrm{amps} £ 9.50$ carr
£ 2 . No 2 as above, 10 amp rating $£ 6.50$ carr £2. No 2 as above, 10 amp rating $£ 6.50 \mathrm{carr}$
$\mathrm{E1}$. No 365 V 2.2 A and $30-0.30 \mathrm{~V} 100 \mathrm{~m} / \mathrm{a}$ $£ 3.95 \mathrm{pp} £ 1 . C^{\prime}$ core types $12 \mathrm{~V} \quad 10 \mathrm{~A}$ and
$30.0-30 \mathrm{~V}$
$1 / 2 \mathrm{~A}$
$\mathbf{£ 5 . 5 0} \mathrm{pp} £ 1.12 \mathrm{~V} 5 \mathrm{~A}$ and $30-0-30 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a} £ 3.75 \mathrm{pp} £ 1$. Sec. $18-22$ -
$27 \mathrm{~V} 250 \mathrm{~m} / \mathrm{a}$ twice $£ 2.75 \mathrm{pp} 75 \mathrm{p}$. Sec. 24 V $480 \mathrm{~m} / \mathrm{a}$ twice $£ 2.75 \mathrm{pp} 75 \mathrm{p}$. Sec. tapped
H.T. TRANSFORMERS OY FAMOUS
MAKERS. ALL PRIMARIES 240 V MAKERS. ALL PRIMARIES 240v
Type MT3 $300-0.300 \mathrm{v} 150 \mathrm{M} / \mathrm{A} 6.3 \mathrm{vct}$

 £1. MT11 Sec. $300-0-300 \mathrm{~V}$ 100M/A 6.3 v
3.5A 5v 2 A or 6.3 V 1 A E 3.75 pp £1. MT7 SAc.
 $350-0.350 V 100 \mathrm{M}$
$6.3 \mathrm{~V} 1 \mathrm{~A} £ 4.00 \mathrm{pp} £ 1$.

WODEN POTTED TRANSFORMERS
Pri 230 v sec. tapped $40.41 \cdot 42-48 \cdot 49-50$ Pri 230 vec senped $40 \cdot 41 \cdot 42-48-49-50$
very conservatively rated at 10 amps and 6 very conservativety rated ti 10 amps
$100 \mathrm{M} / \mathrm{A}$. Size $9 \times 7 \times 6$ in $£ 15$ carr $£ 3$ Hundreds of bärgans for cailers Huge stocks of high cepicity
computer bits.

C.T.ELECTRONICS (ACTON) LTD. ACmana

267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: 01-994 6275
This advertisement represents a fraction of our stock. Please phone your requirements. Minimum mail order $£ 5$ plus carriage and packing charge. Add VAT at 15% to all prices. Government, colleges, trade and export welcome.

DATA GENERAL COMPUTERS

We have three complete systems left, each consisting of
NOVA 820 main frame (including 240 V 50 Hz power supply)
NOVA 820 expansion chassis (including 240 V 50 Hz power supply)
CPU 1 (8206) with power monitor and restart (16 bit)
CPU 2 (8207) Multi/div. $1 / 0$ interface for teletype ($4007 / 4010$)
32 K core memory. Disk pack controller (4046)
General purpose interface board with data channel ($4040 / 4047$)
Diablo series 30 (type 4047A) moving head 2.5M byte disk drive.
240 V 50 Hz power supply for above, with adaptor and logic board (4047)
Computer control panel. Cabinet, including fans and mains filter.
OFFERS AROUND $£ 5,000$

FARRINGTON AUTOMATIC

 WRITING MACHINES:We have two machines each consisting of: Heavy duty typewriter, photoelectric paper tape reader paper tape punch and solid state logic control. The units together provide an automatic data processing system. $£ 750+$ VAT.
DATA DYNAMICS 390 ASR TELETYPE
Refurbished, full working condition. $£ \mathbf{£ 3 0 0}+$ VAT.

Diablo series 30 DISK DRIVES: Type 4047A, 2.5 M byte with psu. $£ 400$ + VAT.

BRANDENBURG Model 374 Photomultiplier power supply. $300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA . Current limit; metered, 19 inch rack mounting. $£ 20$ + VAT

TEXAS 4030JL DYNAMIC RAM (Eq. Intel 2107). £3 + VAT

> We have large stocks of spare parts for the Nova 820 series computer's, eg, Memory boards, I/O interface boards, Disk pack controller boards, disk drive power supplies, etc. Many surplus bargains in our retail shop for callers only.
> Much of our stock is constantly changing and hence not practical to list. Please phone your requirements.

3 Centaur Fans $110 / 120 \mathrm{~V}$ 12W (119/ $119 / 38 \mathrm{~mm})$. In 19 inch Vero case. £12 + VAT.

NEW SURPLUS OFFER HIGH SPEED 15 MHz 8 -BIT DIGITAL TO ANALOGUE CONVERTERS

by Micro-Consultants Ltd. 500 hm Cable-drive output. Linearity: 0.25% max; 0.125% typ. Settling time: 2volt step 70nS
Colour Television Transmission Standard. Differential Gain 0.5\%. Differential Phase Shift 0.5°,
TYPES RAD 802 AND MC2208/8
ONE-OFF CURRENT LIST PRICE OVER £250

UNUSED, EX-MAKER'S PACK

SPECIAL OFFER PRICE NOW £50 + VAT

Berk Tek BTK-30-3CL 30 AWG 5 mil wall Kynar cable (for computer back panel wiring) style $1423105^{\circ} \mathrm{C}$ red or white. Approx. $1 / 2$ list price at $£ 20$ per $10,000 \mathrm{ft}$. reel.
Blues Macs RIBBON CABLE $£ 20+$ V.A.T. 25 -way ($150 \mathrm{~V}, 105^{\wedge} \mathrm{C}$). 100 ft . Reels per reel
Special offer Filmet SC $651 \mathrm{M} \Omega 0.1 \%$ M. Film Resistors 20 p .
Special offer Filmet SC $651 \mathrm{M} \Omega 0.1 \% \mathrm{M}$. Film Resistors 20p each

[^4]

[^5]

PHOTO PAPER TAPE READERS 400 I.P.S. 8 BIT Part No. 6013-2 SPECIAL OFFER PRICE £150 + VAT

MAINS FILTERS

Potter 30A, $125 \mathrm{~V}(184 \times 51 \times 70)$. Sealed £3.00 Erio 8A, $250 \mathrm{~V}(61 \times 120 \times 47)$. Diecast box $£ 5.00$ BRIMAR CRT M17/15GV, with scan coils and Wallis power supply. Rectangular screen (96×130)
LARGE PANEL METERS (Clear view) SIFAM 140-0-140microAmp (107×145), Calibrated 0-14 and 7-0-7. Boxed

3P (4PM-4PB) 10A 380VAC. By BacoILLUMINATED SWITCHES by Licon

Rectangular snap in (01-800 series). 10A contacts. Min . flange bulb holders
SPCO Momentary $£ 1.00$
 Red, yellow blue g but not bulbs.

VEROBOARDS

$\begin{array}{lll}0.1^{\prime \prime} \text { Pitch Copper Clad } & 0.15^{\prime \prime} \text { Pitch Copper Clad } \\ 2.5^{\prime \prime} \times 5^{\prime \prime}\end{array}$

0.1 ${ }^{\prime \prime} \times{ }^{\text {Pitch }}$		0.15 " Pitch Copper Clad	
$2.5{ }^{\prime \prime} \times 5^{\prime \prime}$	0.59	$2.5^{\prime \prime} \times 5^{\prime \prime}$	0.53
$2.5^{\prime \prime} \times 3.75^{\prime \prime}$	0.50	$2.5{ }^{\prime \prime} \times 3.75$ "	0.44
$2.5^{\prime \prime} \times 17^{\prime \prime}$	1.77	$3.75^{\prime \prime} \times 17^{\prime \prime}$	1.98
$3.75^{\prime \prime} \times 5^{\prime \prime}$	0.66	$3.75^{\prime \prime} \times 5^{\prime \prime}$	0.74
$3.75^{\prime \prime} \times 3.75^{\prime \prime}$	0.59	$0.15^{\prime \prime}$ Pitch Plain Board	
$3.75^{\prime \prime} \times 17^{\prime \prime}$	2.28	$5^{\prime \prime} \times 3.75^{\prime \prime}$ "	0.47
$4.7{ }^{\prime \prime} \times 17.9^{\prime \prime}$	2.99	$2.5{ }^{\prime \prime} \times 5^{\prime \prime}$	0.30
$2.5{ }^{\prime \prime} \times \dagger^{\prime \prime}$ (Sold in 5s)	0.70	New V-Q DIP Board	1.11

$0.1^{\prime \prime}$ Pitch Plain Board
0.30

$3.75^{\prime \prime} \times 17.9^{\prime \prime}$ Board
 $3.75^{\prime \prime} \times 17.9^{\prime \prime}$ $3.75^{\circ} \times 2.5^{\prime \prime}$
 $3.75^{\prime \prime} \times 2.5^{\prime \prime}$ $3.75^{\prime \prime} \times 5^{\prime \prime}$.
 0.36
 SPECIAL OFFER

Cassette Erase Tape Heads $0.564^{\prime \prime} £ 1.00$ each*.
Cassette Monotape Heads $1 / 4^{\prime \prime}$ £2.00 each*. Brand new.
Miniature Moulded Track Presets by Plessey. Screwdriver operation, 0.25 W dissipation. PCB fixing, 15p each.
Open Cermet Presets. Most values in stock. 15p
ROTARY SWITCHES available in 30 different types, prices range from 45p-£1.20
PREH Television Push-button Tuner Units, 4 and 6 Large quantity available original boxes 75p each.

SINE WAVE INVERTERS

120-300 VA. $50 / 60 \mathrm{~Hz}$
HIGH QUALITY A.C.
POWER SUPPLIES FOR MOBILE, industrial, COMMUNICATIONS, MARINE AND MANY OTHER USES
\star Ruggedly built in welded steel cases

- Stabilised low distortion output
\star Closely controlled frequency
\star Full overload and short-circuit protection
SERIES A: $12 / 24$ V DC.IP. $\quad \star$ Battery protection by low voltage warn-
240,220 or 115 V . AC. O.P.
ing and automatic cut-out
* Automatic standby and remote options

CARACAL ENGINEERING
 42-44 SHORTMEAD ST., BIGGLESWADE, BEDS. Tel: 0767-81361

A complete High Quality 20AX System Colour Television Receiver Kit
 The Forgestone 500
 - 20AX Hi-Bri tube
 - Pin diode tuner
 - Full technical construction manual
 - Glass epoxy printed circuit panels
 - Modern cabinets Teletext option

Buy as you build. All Forgestone Kits are for the constructor of today. Sections of the Kit are available separately. Please send stamp for further details of these quality products.
Forgestone Colour Developments Limited
Ketteringham, Wymondham, Norfolk, NR18 9RY
Telephone: Norwich 810453 (STD 0603)
Telephone or Mail Orders accepted on Barclaycard/Access
WW - 108 FOR FURTHER DETAILS

KEYBOARD TERMINAL

The Newtronics Keyboard Terminal is a low cost stand alone Video Terminal that operates quietly and maintenance free. It will allow you to display on a monitor 16 lines of 64 characters or 16 lines of 32 characters on a modified TV (RF Modulator required).
The characters can be any of the 96 ASC 11 alphanumerics and any of the 32 special characters, in addition to upper-lower case capability it has scroll up features and full $X-Y$ cursor control. All that is required from your microcomputer is 300 baud, RS232-C or 20 ma loop, serial data plus a power source of 8 v DC \& 6.3 v AC. The steel cabinet is finished in IBM Blue-Black. And if that is not enough the price is only $£ 135.55$ + VAT as a Kit, or $£ 175$ + VAT assembled and tested. Plus $£ 2 \mathrm{P} \& \mathrm{P}$ (Monitor not included).

Dealer O.E.M. enquires invited
To order phone or write to:

EI-PRE-PAK

Type	Capacity in mAh	Voltage	Charge Rate mA/12 hrs	Size in mm dia Thickness NC20	200
1.24	20	24.8×7.4	Our price inc. 15% VAT		
NC28	280	1.24	28	34.4×5.3	$\mathbf{6 0 p}$
NC50	500	1.24	50	34.3×9.5	$\mathbf{8 0 p}$
NC90	900	1.24	90	50.5×8.3	$£ 1.20$
NC175	1750	1.24	175	50.7×14.9	$\mathbf{£ 1 . 7 5}$

High capacity for very small size High capacity for very small size.
Wide temperature operating range Wide temperature opera Very simple charging circ INDEFINITE SHELF LIFE.

TO ORDER
Please send cash with order. Minimum order E3.00 plus 30p p/p in U.K. Orders over $£ 10$ cart. paid U.K. All prices inc. V.A.T Ideal for portable \& emergency equipment, instruments, etc.

BI-PRE-PAK LTD.
(WW) 222-224 West Road
Westcliff-on-Sea, Essex
SSO 9DF
Telephone 037085543

APOLOGIES

With reference to advert on page 106 which is incorrect.

CORRECTED ADVERT APPEARS BELOW.

KELSEY K102M TRANSFORMERLESS BALANCED LINE MICROPHONE AMPLIFIERS

Specifications

Direct P.C.B. mounting
Supply Voltage
Maximum Gain
Gain Control Range

	+15V
	43 dB
	38 dB
rminal +1	10 dB
- Terminal +)	+ 15 dBV
	5 Kohm
	200 ohm
	$+20 \mathrm{dBV}$
+ 0.5dB Ref	z to 50 KHz
Better than	10 V microsec
Better than	$0.03{ }^{0} \mathrm{R}$ Ref KHz
Typically	0.027° *
Better than	80 dB
Better than	-125 dBV (Din Audio band weighted)
	10 Kohm
40 mm	$\mathrm{m} \times 20 \mathrm{~mm}$
	48 grams

Gain Reduction in Unbalanced Mode (Input to Terminal +)
Maximum Input Level (Unbalanced Mode, Input to Terminal +)
Input Impedance (Each Input Terminal to Ground)
Optimum Source Impedance
Maximum Output
Frequency Response
Slew Rate
Harmonic Distortion
Common Mode Rejection Ratio
Equivalent Input Noise (Unweighted)
Recommended Output Loading
Dimensions
Dimension
Weight
Weigh

Appointments

Advertisements accepted up to 12 noon Friday, August 31 st for October issue, subject to space being

 DINE LINE advertisements (run on): $£ 1.50$ per line, minimum three lines.BOX NUMBERS: 70p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Neil McDonnell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

You should be at least 19 years of age, hold or expect to obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications.
quarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.
Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing and maveloping, equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings.

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities

You could travel - we are based in Cheltenham but we have other centres in the UK, most of which, like Cheltenham are situated in environmentally attractive locations. All our centres require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas.

WORK IN

 COMMUNICATIONS R\&D AND ADD TO YOUR SKILLS[^6]

UNIVERSITY OF KEELE

ELECTRONICS TECHNICIAN

in the

DEPARTMENT OF

 COMMUNICATION AND NEUROSCIENCEVacancies exist for an Electronics Technician or Trainee to work on laboratory instrumentation, including computers and peripherals, in a Decomputers and peripherals, in a De-
partment engaged in research into partment engaged in research into
communication mechanisms of the communication mechanisms of the
brain. Experience in electronics and/ or computer maintenance desirable. A suitably qualified and experienced applicant can be appointed in Grade V (salary range at present £3474£4056 p.a.); but applications will be considered from less qualified persons willing to undergo training, with an initial appointment in a lower grade (salary range £1722-£3336 p.a.) (salary range $£ 1722-£ 3336$ p.a.)
Application forms and further particuApplication forms and further particu-
lars obtainable from the Registrar, The lars obtainable from the Registrar, The
University, Keele, Staffs ST5 5BG. Forms should be returned by 20 th August 1979.
(9614)

NATIONAL VEGETABLE RESEARCH STATION Instrumentation and
 Electronics Engineer

An Instrumentation and Electronics Engineer is required to provide a service for design, development and fabrication of electronic, electro-mechanical and mechanical apparatus and equipment.
Degree in electrical/electronic engineering or Council of Engineering Institutions Part II examination in an appropriate subject, or equivalent or higher qualification, with an aggregate of at least five years' recognised study, professional training or experience.
Salary scale: Professional and Technology grade P \& TO II $£ 4869$ rising by 5 increments to $£ 5739$. (Salary under review from 1 April 1979).
Further particulars and application forms from Secretary, National Vegetable Research Station, Wellesbourne, Warwick CV35 9EF.

UNIVERSITY OF LIVERPOOL

EXPERIMENTAL OFFICER

(Two POSTS)
(a) Department of electrical enGINEERIMG \& ELECTRONICS

(b) DEPARTMENTS OF MECHANICAL \&
 civi Engineerimg

Post (a) involves assistance in the development and application of microprocesses and other digital systems to a wide range of undergraduate, posigraduate and industrial activities. Post (b) involves responsibility for interfacing microcomputers with a wide variety of microcomputers with a wide variety of laboratory seasors and transucers used by
these Departments in both teaching and these De
research
research.
Expert advice on hardware and software is
availabla. available.
Candidates must possess a degres or equivalent qualification.
Salary within range up to $£ 5604$ p.a.
Application forms available from: The Registrar, The University, P.0. Box 147, Liverpeol L69 3BX. Quote Ref: BV/709/WW.

Appointments

Good Radio Systems Engineers are few and far between

So are opportunities like this

Yet again we are adding personnel to our Systems Planning Team. We need male or female Engineers to take on the responsibility of designing and planning systems ranging from single channel HF to Broadband microwave links. Detailing performance estimates, writing specs and systems descriptions are all part of the job. Naturally technical expertise and experience are paramount in our developing world. We need experience in the latest state of the art as well as traditional technology.
In return for your services we offer a variety of tasks and early responsibility in a highly motivated team. Please do not waste your time or ours unless you are prepared to travel overseas from time to time and to put in that little extra that IAL expects as the norm.
As well as paying the salary noted above we have an excellent pension scheme - the usual company social club who will do their best to organise your off time-good holiday travel benefits are available and our staff catering facilities are second to none. If you have to relocate to join IAL we will pay you reasonable relocation expenses and provide accommodation for the employee during the first few weeks of employment.
Our offices are close to Heathrow which puts the residential areas of Wokingham, Reading, the Chalfonts and Harrow in easy commuting reach.
Write or 'phone quoting ref. 259/K to The Senior Recruitment Officer, IAL, Aeradio House, Hayes Road, Southall, Middlesex. 01-5745134.
(9503)

Aviation and Communications

 Systems and Services-worldwide
ROYAL NORTHERN COLLEGE OF MUSIC

Applications are invited for the post of

SENIOR
 TECHNICIAN
 (SPECIAL PROJECTS).

Salary £3,732-£4,161 (under review)

Duties will include investigation into acoustic modifications, new recording techniques (quadrophonic and digital systems), design of equipment for electronic synthesis. Assistance will also have to be given to Academic Staff in respect of Aural Training and Staff in respect of Aural Training and
to the Recording Manager in the to the Recording Manager in the tions should include HNC or HND in Electrical Engineering, appropriate degree or Corporate Membership of the IEETE. This should be combined with an exceptional understanding of electro-acoustics (theoretical and practical), of acoustic problems and design and an interest in music and experience in video/sound recording. Application forms and further details may be obtained from Administrative Registrar, Royal Northern College of Music, 124 Oxford Road, Manchester M13 9RD. Tel: 061-273 6283, Ext. 46. Closing date for return of application form 10 September, 1979.
(9496)

UNIVERSITY OF LONDON GOLDSMITHS' COLLEGE New Cross, London SE14 6NW

Psychology Department

The Psychology Department has two senior vacancies for technical staff to start as soon as possible.

(1) TECHNICIAN

(Grade 6) to work on the Department's extensive range of electronic and video equipment. Normal qualifications for this post will be HNC/HND.
alary on the following scale:
£4,104-£4,236-£4,365 4,497-£4,626-£4,758 plus $£ 525$
(2) TECHNICIAN
(Grade 5) to work in the field of computer and microprocessor applications in psychological research. Normally technical
qualifications/experience would be required for this post but applications for graduates in relevant fields will be welcome
Salary on the following scale:
£3,474- $£ 3,582-£ 3,699-£ 3,816$ -£3,933-£4.056 plus £525 London Weighting Allowance.
Write for further details to the Personnel Officer to whom applications should be sent by 31st August, 1979.
(9603)

THE CITY UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

SRC RESEARCH STUDENTSHIP

Applications are invited for an SRC Research Studentship to investigate braille translation. This project, in braille translation. This project, in collaboration with the Royal National
Institute for the Blind, aims to produce Institute for the Blind, aims to produce
a low-cost office machine capable of a low-cost office machine capable of
accepting typewriter input, and forming braille on a refreshable braille display
Candidates would normally be required to have a good Honours Degree in computer science or electronics.
Applications, together with the names of two referees should be submitted as soon as possible to Dr. G. R. Dowling, Department of Computer Science, The City University, Northampton Square, London EC1V OHB, from whom further particulars may be obtained.
(9631)

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex - S.W. London

Salaries up to $£ 7,000$
To join our expanding R\&D Laboratories covering a wide range of R.F. spectrum, from L.F. to V.H.F. Equipments include transmitters and. receivers for marine and land based use, radio navaids and radio monitoring remote computer controlled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, microprocessor applications. Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits.
Contact: The Personnel Manager, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London S.W.18. Phone: 01-874 7281 (reverse charges):
9033)

Inner London Education Authority

HACKNEY COLLEGE

LECTURER I

Suitably qualified person required to teach theory and craft processes to ELECTRICAL AND ELECTRONIC ENGINEERING CRAFT AND TECHNICIAN APPRENTICES.

Applicants should hold a City and Guilds of London Institute Advanced Craft or Full Technological Certificate and have suitable industrial experience

Salary on an incremental scale within the range $£ 3,192-£ 5,334$ (under review) plus £474 Inner London Allowance. Starting point will depend on qualifications and experience.

Applications obtainable from/ returnable to Senior Administrative Officer, Hackney College, Dalston Lane E8 1LJ, Ext. 212 (01-985 8484).

Closing date 31 August, 1979.

Electronics Engineers

\section*{Can you think of a
 There can be few areas that present greater technical challenge than the
 more testing environment foryourtest
 If you fit one of the following, we

vantuberar fom you.
project we have started. It involves the creation of entirely new torpedo-based defence systems flexible enough to counter threats as yet unknown and incorporating the latest advances in microprocessing control and guidance technologies.

We need hardly underline the importance of an accurate, flexible and, above all, reliable test and maintenance system for the torpedo's success. What we're offering you is the chance to make your own direct contributionright from the start of the project.

As a vital member of a tightlyknit engineering team, developing the sophisticated ATE the system requires, you can expect full involvement. The scope of our work includes systems design, detail design and software applications of both manua and automatic test systems-integrating maintainability aspects of test logistics

The men and women we're looking for are self-motivated Electronic Engineers, unafraid of applying innovative thought to ATE systems and design.

An ATE Manager

Concerned with the design and development of an Automatic Test System, you will supervise both in-house design and sub-contract control following the generation of the initial requirement specification.

A Section Leader

You will be responsible for the design of special to type test equipment, to support the development, production and in-service use of the weapon system. This will involve generation of the initial requirement specificationas well as the subsequent design and development.

\section*{Engineers-Test

Engineers-Test System Studies

Possible areas of involvement include depth of test calculations, tolerance tiering philosophy, diagnostic procedures and maintenance logistics. Some previous experience of servicing complete weapon systems, while not essential, would be an advantage.

Engineers-
 Detailed Design

You will be working on special to type test equipment, both manual and computer controlled. Your involvement will extend to the weapon system's commissioning and development trials.

\section*{aTE Software

aTE Software Manager

You will lead a group concerned with i) the programs associated with executive control of a computer controlled ATE. and ii) generating, in conjunction with Design Engineers, the test specifications for the weapon system.

If you can't see your precise area of work here, but have an interest in test equipment, we would still like to hear from you-as we have a number of projects under way.

Apart from the excitement of the work itself, we offer realistic salaries, excellent opportunities for career development and a range of fringe benefits-including financial help with relocating you and your family to our pleasant South Coast setting, where housing is readily available.

For full details of career opportunities in our testing environment, complete the attached coupon. And get ready for your career to grow.

Address

Closed Circuit Television Manager

The name of "Chubb" is synonymous with progress and expansion in the field of integrated security systems. Recently we have relocated part of our diverse operation to Woking, Surrey. It is here that we wish to appoint a high calibre Closed Circuit T.V. Manager. The person we are looking for will be a self-starter with both engineering and commercial experience plus a sound and up to date knowledge of CCTV systems and techniques.

Sales project management and support to our busy field force both at home and abroad are two of the main responsibilities of this demanding position. The successful applicant (male/female) can expect an attractive remunerative package with salary in the range of $£ 6,500$ to $£ 8,500$ per annum, Company car and a wide range of Company benefits. If you feel that you can meet the above requirements and would like to develop your career in a positive direction then call:

Terry Ainsley
Personnel Department
Chubb Alarms Limited
42/50 Hersham Road • Walton-on-Thames • Surrey Telephone: Walton-on-Thames 43851
Relocation expenses will be paid where appropriate.

INNER LONDON AUTHORITY
London College of Printing Efophant and Castie, London SE1 6SB DEPARTMENT OF PHOTOGRAPHY, FILM AND TELEVISION

TELEVISION TECHNICIAN/ ENGINEER [ST1/2)

Applications are invited for the above post in the School of Film and Television, Depart ment of Photography, Film and Television. Candidates should be conversant with $1 / 2^{\prime \prime}$, $3 / 4^{\prime \prime}$ and $1^{\prime \prime}$ black and white and colour equipment and be capable of electronic maintenance. Experience in professional broadcasting would be an advantage, as well The successful applicant will be expected to assist in running studio productions, and video tape editing.
Salary within the scale $£ 3688.44$ £5401.44 inclusive. Progression up the scale to $£ 4867.44$ is by annual increments subject to satisfactory performance. Progression beyond that point is dependent on a positive assessment.
Application form, returnable within 14 days, obtainable from the Senior Administrative Officer at the College. Tel: No. 7358484 ext Officer
227.

LONDON BOROUGH OF HARINGEY

- Education Service

PART-TIME ASSISTANT hearing and visual AIDS TECHNICIAN

required at Blanche Nevile Special School, Philip Lane, N15, to work 15 hours per week $\times 52$ weeks per annum to assist in the repair and maintenance of hearing and visual aids equipment.
Grade/Salary: Pro-rata to N.J.C. Technical Grade $2-£ 3600$ per annum rising to £3972 per annum inclusive, which equals $£ 1542$ per annum rising to $£ 1704$ per annum inclusive (under review). Applicants should preferably have experience in maintaining electronic equipment and sho
qualifications.
Final City and
Technicians / Marine Shop Engineering / Mechanical Engineering, or other equivalent qualification.
OR a minimum of ten years suitable experience in a school or industry. Hours of duty. $9.30 \mathrm{a} . \mathrm{m}$. to $12.30 \mathrm{p} . \mathrm{m}$ Candidates will be welcome to contact Mr. H. Stanway, Headmaster (01-808 5744)

Application forms obtainable from
Chief Education Officer
Education Offices
Somerset Road, N17
Forms returnable by. September 7, 1979.

UNIVERSITY OF EDINBURGH
 DEPARTMENT OF CHEMISTRY
 ELECTRONICS SPECIALIST

£3,689 to £7,145 (Grade 1A/1B) Electronic Engineers! You are invited to apply for this post of electronics specialist. It is a staff position, academically related and benefits include six weeks holidays per annum. Applicants should have a bpead which they will exercise on the very broad range of analytical instrumentation used for teaching and research. The successful applicant will be responsible to the Head of Electronic Services for the design and construction of new equipment and the maintenance of existing equipment which includes N.M.R., E.S.R., Mass Spectrometers, real ime ultra high speed RF and digital equipment. Experience in RF and microprocessor techniques would be advantageous.
The appointment will be within the scale as shown commensurate with experience / qualifications.
Applications giving career history and the names of two referees should be made to The Secretary, University of Edinbu
, College, South Bridge, Edinburgh.
College, South Bridge, Edinburgh. 1979. Please quote reference $5034:(9489)$:-

Ifyou understand electronics...

Writing about electronic equipment is a fascinating and challenging career - especially when you're working with the sophisticated equipment that we produce at EMI.

Coming to EMI means joining one of our small informal, but highly professional teams, becoming totally involved in the development lifecycle of our major projects. With EMI training for this interesting and expanding field, you will be producing not only manuals, but the whole range of product literature both internal and external, and enjoying the opportunity to contribute your experience to our development activities.

You will therefore liaise with designers, engineers and draughtsmen on technical matters, and you should have developed considerable working experience in an electronics environment, ideally one connected with defence or industrial electronics utilising techniques such as micro-processor, miniature radar, infra-red and electro-optics. An ONC/HNC would be an appropriate qualification.

EMI offers excellent salaries dependant on your experience, and a full range of valuable benefits including relocation allowance where appropriate, and discounts off Group products and services.

Please telephone or send the coupon to K.D. Wilsher, Personnel Department, EMI Limited, FREEPOST (no stamp required), 135 Blyth Road, Hayes, Middlesex. Tel: 01-573 3888 or call Record-a-Call anytime on 01-5735524.
ooyou've got something to write about as a Technical Author with EMI

Hayes (Middx), Feltham, Woking, Camberley, Wells (Somerset)

ONC? This is no ordinary maintenance job

The Philips Research Laboratories near Redhill in Surrey are one of Europe's most advanced electronics research establishments.
So it follows that our labs, benches and test areas are packed with advanced professional equipment - oscilloscopes, pulse generators, digital equipment, recorders and so on. It also follows that maintaining and calibrating that equipment has to take a very high priority in an organisation such as ours.
If you're a man or woman who's reached at least Tech 3 or ONC and you've handled electronics repair work, moving to Philips Research would give you new and
interesting work experience, and bring you into an electronics environment where new things are happening all the time. Even if you already have full experience of our type of equipment, we can still give you plenty of fresh experience.
And of course, you'll enjoy all the benefits and future job opportunities you only find with an international organisation the size of Philips.
If you're looking for a maintenance job that's way above the ordinery, phone our Personnel Manager, Mr. Malpass, on Horley (029 34) 5544, or write to him at Philips Research Laboratories, Cross Oak Lane, Redhill, Surrey.

INSTITUTE OF
 PSYCHIATRY
 DEPARTMENT OF NEUROLOGY

Applications are invited for the post of Medical Laboratory

SENIOR
 SCIENTIFIC OFFICER

Duties will include designing new electronic Dutipment to expand a physioloctronic equipment to expand a physiologica laboratory and installing a existing PDP 12. Candidates are expected to have experience with computer programming and microprocessors. Involvement with research projects on the physiology of movement will be encouraged.
Whitley Council Terms and Conditions with starting salary, according to qualifications and experience, in the range $£ 4701$ p.a: $£ 6123$ p.a. including London Weighting $£ 354$ p.a. (This salary range is under review.)
For application form please write to the Deputy Secretary, Institute of Pzychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, or telophone 01-703 CDM/MNY (9626

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write: BUREAUTECH AGY, 46 SELVAGE LANE, LONDON, NW7. 01-959 3517.
(8994)

Electronics Service Engineer

Imaging Instrumentation

Searle Medical, a Company within the G. D. Searle Group, markets a wide range of advanced electronic equipment having applications throughout the medical field.

A Customer Service Engineer, with an electronics/physics background, is now required to join a high technology imaging instrumentation group at the Company's headquarters in High Wycombe.

Responsibilities will include the commissioning and testing of new installations of nuclear and ultrasound imaging equipment, using state-of-the-art micro-computing techniques, and maintaining a high level of post-installation customer service engineering.

A good salary will be offered in line with experience and ability and benefits include a company car and expenses. Full product training will be given and the appointment is open to both men and women.

Write for an application form to Mr. J. N. Williams, G. D. Searle \& Co. Ltd., P.O. Box 53, Lane End Road, High Wycombe, Bucks HP12 4HL.

9496)

SEARLE

ROHDE\&SCHWARZ

Independent concern
4,500 employees internationally represented in 80 countries require

SENIOR TEST AND CALIBRATION ENGINEERS

With a background in RF and microwaves, experienced in analogue, digital techniques, logic and microprocessor controlled ATE.

also vacancies exist for

TEST \& CALIBRATION ENGINEERS

with knowledge on one or more of the above techniques.
We offer an exceptional salary \star Performance related bonus scheme \star Training abroad \star Prospects of promotion $\star A$ wide variety of work $\star A$ happy atmosphere \star Non-contributory pension scheme \star Subsidised restaurant.
Please write or phone to:
Mr. Z. Eres (Technical Manager) extension 43.
Electronic Instruments \& Communicatipns Equipment

Roebuck Road, Chessington, Surrey KT9 1LP Tel: 01-3978771. Telex: 928479 Aveley

UNIVERSITY OF LEEDS

ELECTRONICS TECHNICIAN (Grade 3)

The person appointed would be required, under the supervision of the Electronics Engineer, to assist in the construction and maintenance of electronic equipment associated with the research and teaching of biological studies. Must be capable of working from circuit diagrams and sketches. Applicants should hold ONC or equivalent qualifications and relevant experience
Salary on the scale $£ 2931-£ 3336$ (under review), according to age and qualifications.
Applications stating age, qualifications and full experience, together with the names and addresses of two referees should be addressed to: Mr. E. French, Departmental Superintendent, Department of Physiology. The Worsley Medical and Dental Building, University of Leeds, LEEDS LS2 9NQ.
(9617)

OverseasInstallations and Commissioning Staff

Vacancies exist for all levels of technical staff to work world-wide on strategic HF radio installations. All posts are permanent and are based in Bracknell, Berkshire

Extensive overseas travel is necessary on unaccompanied tours of up to 90 days. Generous leave breaks apply, plus the opportunity for UK-based familiarisation and refresher training.
Installation/Commissioning Engineer vacancies up to Principal Engineer status.

All positions will require relevant academic qualifications, plus considerable field experience for the senior positions. A knowledge of modern circuit technology and $\mathrm{HF} / \mathrm{VHF}$ experience is required.

Antenna Installation Supervisor

Previous rigging and mast experience is a necessity for this post, together with an ability to supervise field crews. Candidates should have extensive experience in modern HF antenna systems. (eg Log Periodic Antennas).

Customer Liaison/Commissioning Engineers

In addition to the requirements outlined above, candidates will also need the ability to liaise with customers
and represent the Company at a high level.
These posts require previous experience, ideally in a similar capacity, and a confident ability to work on one's own. Installations Technicians

A craft apprenticeship or Forces experience would provide the ideal background. Good craft ability in prototype wiring and assembly of electronic equipments is required, together with the ability to use tools and work to high standards of modern installation practice.

All the above positions carry an excellent salary and benefits package, including overseas allowances and free overseas accommodation. Full medical insurance is also provided.

Please apply in writing, with brief career details to date, to:
Personnel Manager,
Racal Communications Limited, Western Road, BRACKNELL, Berkshire.
or
Telephone for an application form to:
BRACKNELL (0344) 3244 Ext. 149.

Britain's fastest growing electronics group

AUDIO + VIDEO LTD.

VTR ENGINEER

We require a VTR Engineer, preferably with broadcast experience, to service and maintain RCA and Ampex $2^{\prime \prime}$ Quad machines. A working knowledge of the Rank Cintel Mark III Telecine equipment would be an advantage.

Other in-house facilities include Marconi DICE Standards Converter, TBCs and a multitude of helical scan machines, and so the work can often be varied.

Please ring Mr. C. J. Carroll and have an informal chat about the work, salary and holidays, etc.

ELECTRONICS PRODUCTION
 ENGINEERS AND TECHNICIANS

Dolby Laboratories, the successful and progressive London manufacturers of professional audio noise reduction equipment, require production engineering staff. Duties will include the design and fabrication of test and assembly equipment, method study and application of techniques to maximise production from a limited area.
Qualifications: Several years' experience in electronics manufacture appropriate academic qualifications and the ability to work projects through to successful conclusions without close supervision.
Competitive salaries and excellent employment conditions are offered.
For application form, contact:
Paul Garrard
DOLBY LABORATORIES, INC.
346 Clapham Road, London, S.W. 9 01-720 1111

MINNESOTA 3M RESEARCH LIMITED

CREATIVE ELECTRONIC EQUIPMENT DESIGNER

We have a vacancy in our Physics and Systems Research Group for a person with an interest in applying the latest electronic techniques in the design and construction of novel instrumentation for a wide variety of research projects. Current programmes include dielectric measurements, electrolytic processes, particle size measurement and methods of process control. The broad interests of this Laboratory require that the successful candidate show initiative and genuine creativity in developing the specialized equipment required. Some knowledge of and interest in Physics or Chemistry would be an advantage.
The attractive salary offered will reflect experience and academic qualifications. The Company operates generous pension, life assurance and sickness benefit schemes, and above all, offers good future prospects.
The 3M Company world-wide invests millions of pounds in research programmes each year. This has been, and will continue to be, a major factor in the Company's success.

Please apply in writing, giving brief details of qualifications and experience to:

Administrative Manager MINNESOTA 3M RESEARCH LIMITED The Pinnacles, Harlow, Essex CM17 OHL

Electronic
 TO £4800 p/a Test Engineers

We manufacture and market audio noise reduction equipment which is used by major recording companies, recording studios and broadcasting authorities throughout the world and have enjoyed successful growth since incorporation in 1968.
The increased demand for our equipment in the recording and cinema industries has necessitated the recruitment of experienced test engineers.
If you have practical knowledge and experience of electronic testing, think you can test, calibrate and troubleshoot our sophisticated equipment and enjoy the challenge of quality and delivery pressures telephone Tony Hill 01-720 1111.

UNIVERSITY OF SURREY

ELECTRONICS TECHNICIAN
 Grade 5

DEPARTMENT OF PHYSICS

A vacancy exists in the Electronics Workshop of the above Department. The Workshop is responsible for the development, construction, repair and calibration of analogue and digital equipment used for both research and teaching. Whilst qualification to HHNC or final year City and Guilds will be required emphasis will be pland experience. The post will offer an ground experience. develop microprocessor opportunity to help deviculars and application form may be obtained from the Staff Officer University of Surrey, Guildford, Surrey GU2 $5 \times \mathrm{H}$, or telephone Guildford 71281 ext 452 .
(9615)

CHELSEA COLLEGE
 Univeraity of London

Electronics Workshop

DEPUTY SUPERVISOR

(Grade 6)

ELECTRONICS TECHNICIAN/ENGINEER (Grade 5) and ELECTRONICS TECHNICIAN (Grade 5) and ELECTRONICS TECHNICIAN Electronics and Physics Research and Teaching includes prototype instrument design, development and construction and the servicing and repair of commercial electronic equipment.
Experience and qualifications in Electronics at an appropriate level are essential. Generous holidays. Day release for approved further study can be arranged at
Inclusive salaries (under review).

Grade $6 £ 4508$ to $£ 5282$ p.a
Grade $5 £ 3998$ to $£ 4580$ p.a.
Grade $3 £ 3455$ to $£ 3860$ p.a.
Further details and application formis from. Mr. M. E. Cane (E.W.), Chelsea College, Pulton Place, London SW6 5PR.
(9642)

Royal Holloway College (University of London)

 Egham Hill, Egham, Surrey
TECHNICIAN

required by the departments of Computer Science and Computer Services. The technician will be in his early to mid-twenties with O.N.C. standard electronics or any similar training or experience and will undergo further in-house and day-release training, particularly in computer programming. The appointment will be on the University Technician Grade 4 or 5 depending on age and experience, that is $£ 3500-£ 4300$ including London weighting. Further details can be obtained from the Personnel Officer (WW).
(9497)

BRIGHTON POLYTECHNIC

 LEARNING RESOURCES
Electronics \& Computer Test

 To £7,500Use your C\&G/ONC/HNC/Forces Training and good DIGITAL/ANALOGUE/RF experience to advantage. Work ing with state-of-the-art MINI/MICRO PROCESSOR LASER; ATE; COMMUNICATIONS; NUCLEONIC; CCTV and similar equipment. Most UK areas; from Technician to Manager.

For free confidential counselling and practical career advice contact GRANT WILSON ref: GW470.
TECHNOMARK, 11 Westbourne Grove, London W2 4UA.
Tel: 01-229 9239 (01-229 4218-24 hrs).
Engineering Recruitment Consultants.

THE CHALLENGE

Over the next six months we will be hiring more than 170 aviation specialists for short and medium-term assignments in Africa, Asia, Latin America and the Middle East.
We are looking for very expert, very experienced technical specialists who have good academic degrees or equivalent high professional qualifications, together with a minimum of ten years' practical aviation experience, at least half of it in the specific area of specialisation. Obviously with this experience requirement we don't expect applicants to be much below the age of 35 . There is no upper limit as long as you are young in spirit and in good health.

THE ORGANISATION

We are the International Civil Aviation Organisation (ICAO), and we administer a technical assistance operation funded in main part by the United Nations Development Programme. Our expenditures this year will be close to (U.S.) $\$ 50$ million, and we shall be helping more than 75 developing countries.

THE TERMS

We pay good salaries, ranging from (U.S.) $\$ 28,000$ to $\$ 44,000$ before taxes, depending upon the job. The cost-of-living allowance depends on the duty station. For example, currently for an expert with dependants: $\$ 12,940$ to $\$ 17,730$ in Jordan and Venezuela, $\$ 7,470$ to $\$ 10,240$ in Nigeria, $\$ 6,370$ to $\$ 8,740$ in Malaysia. Plir- Installation grants, travel for dependants, education grants and six wer ${ }^{*}$ " leave per year with home leave after two years.
If you have the necessary experience and ability, and if you or your employer would like to help a country develop its citizens and resourceswhile you accumulate valuable international experience - send you résumé to:
Technical Assistance Recruitment
International Civil Aviation Organisation
1000 Sherbrooke Street West
Montreal, Quebec, Canada H3A 2R2

THE JOBS

We are looking particularly for electronics engineers and electronics technicians (technical officers) who are highly qualified in one or more of the following fields:

```
- Aeronautical Communications
    - Aeronautical Radar
    - Aeronautical Navigation Aids
```


Service Engineers Greenford, Middlesex

Sansui manufacture some of the most sophisticated equipment, and are rapidly making inroads into the U.K. market. To keep in line with current expansion, they now need two Service Engineers for their new service department in Greenford.
You will be involved in the repair and maintenance of our product range which includes speakers, turntables, amplifiers etc. If you're qualified to City \mathcal{E} Guilds or possess a similar qualification, so much the better. But experience will be considered as important.
Salary will very much be dependant on age and experience but will reflect the importance of the job. To find out more, telephone or write to:-
Peter Gibson, Sansui Audio Europe N.V., Unit 10A, Lyon Industrial Estate,

Rockware Avenue, Greenford, Middlesex, UB6 0AA. IB
Samarifi
Only Hi-Fi,everything Hi-Fi. \qquad

The BBC requires experienced electronic engineers to maintain Videotape equipment in its West London premises. These staff work a 7-day fortnight shift pattern. In addition to possessing a degree in Electrical Engineering, Electronics or Applied Physics, HNC/HND (Electrical) or City \& Guilds full Technological certificate in Telecomms., applicants, male or female, must have a thorough understanding of Television Broadcast Systems and be experienced in the maintenance of Videotape equipment.
Starting salary is between $£ 6,350$ and £6,913 (including shift allowance). For further details and application forms, please ring Ray Bell 01-743 8000 extension 2308.

ELECTRONIC ENGINEERS

ENGINEER

The BBC requires an Engineer in the Semiconductor Unit of its Valve Section, Motspur Park, Surrey. The Engineer deals with technical enquiries and is involved in all aspects of the acquisition from manufacturers and the distribution throughout the Corporation of a wide range of solid state devices. Candidates, male or female, should have a Degree or H.N.C. and be experienced in the use of transistors, integrated circuits, etc. and/or be able to demonstrate an in depth knowledge of modern devices. The salary will be in the range of $£ 6955 / £ 8405$ per annum depending on.experience. Other benefits include modern pension scheme, 23 days' annual leave, luncheon vouchers and assistance with removal expenses where appropriate.
Requests for application forms to the Engineering Recruitment Officer BBC, Broadcasting House, London W1A 1AA, quoting Reference Number
79.E. 2314/WW.

THE POLYTECHNIC, HÜDEDERSFIELD COMPUTING AND AUDIO VISUAL SERVICES DIVISION

TECHNICAL OFFICER
 (Audio Visual)
 T3 £3732-£4146 Ref NT417 B/WW

A Technical Officer is required to take responsibility for all radio and TV work within the audio visual services. He/she will lead a small team of Technicians, involved in a variety of audio visual work.
Experience of colour TV equipment, including vtr's and cameras is essential, as is C\&G 101 or equivalent qualifications. Experience of TV studio and production work is also desirable.
Application forms, obtainable from The Personnel Office, The Polytechnic, Queensgate, Huddersfield HD1 3DH. Telephone Huddersfield 22288, ext 2223, should be returned by 29th August, 1979.

AMPEX

Ampex Corporation, a world leader in analogue and digital data recording technology, has been designated the official 'supplier of video recording and magnetic tape products to the 1980 Moscow Olympics. The Group's UK companies now seek:

ENGINEERS

with broadcast television equipment experience, for their International Systems department which prepares proposals, designs and produces outside broadcast vans and television systems. Interest and challenge for dedicated engineers with possibility of travel overseas.

. . . CUSTOMER SUPPORT ENGINEERS

to maintain digital or analogue recording equipment throughout the United Kingdom.
These positions are based in Reading. The usual International Company benefits apply including Pension Plan and Life Assurance. Please contact Joan Feaver, Ampex Great Britain Limited, Acre Road, Reading, Berks. Telephone 0734-85200.

CATV CHIEF ENGINEER

Canada's most advanced CATV manufacturer requires a chief engineer with a solid background in RF and CATV design or related electronic experience. An exciting career opportunity for a highly technical innovative person eager and willing to learn and adapt to new technology in an expanding and stimulating field. Related RF, Passive, Digital, Microwave experience would be valuable to us.

This is a senior position with commensurate salary and a wide range of company benefits.

Situated in Ontario we have beautiful mountains, excellent housing and schooling and superb recreational facilities. An ideal place to bring up the family in an unspoilt area of Canada.

Please forward resumé with salary history and expectations in confidence to:

Mr. Thomas
 LINDSAY SPECIALITY PRODUCTS 50 Mary Street West
 Lindsay, Ontario, Canada K9V4S7
 Tel. Area Code 7053242196

(9648)

COME TO THE SUNNY SOUTH COAST
We require the following personnel in the areas: Hampshire, Dorset, Sussex, Somerset, Wiltshire and Berkshire.

Electronic Design Engineers
IC Development Engine
Production Engineers
Sales Engineers
Software Specialists
Syatem Design Engineers
Test Engineers

Buyers
Electro Mechanical/
PCB Draughtsmen irstrumentation Engineers
Phyaicists
Microwave Engineers
Service Engineera
Software Programmers
Technicel Authors
Q.A. Engineers

All these positions offer excelient salaries and in most cases relocation expenses.

Plẻase write or ring: CBS Appointments, 224 Old Chriatchurch Road, Boumemouth,
Bournemouth 292155. (24-hour Ansaphone Service-Agy.).
(9416) ;

LEEDS CITY COUNCIL
 Department of Education Loeds Polytochnic
 SENIOR TECHNICIAN

(ELECTRONICS)

Ref. 188/10 T $3 / 4$ £3732- $£ 4632+$ Technicians qualification allowance. Required to service and maintain high grade
electronics equipment used in the various electronics equipment used in the various
schools of the Polytechnic in theirteaching schools of the elytechnic courses. Knowledge of micro-electronics technology would be an advantage.
Applciation forms quoting reference number from the Administrative Services Officer, Leeds Polytechnic, Calverley Street, Leeds LS 1 3HE. Closing date 14 days' after appearance of advert

ELECTRONICS ENGINEERS ELECTRONICS ENGINEERS to $\$ 250 \mathrm{pw}$, microwave/RF test to $£ 220$ pw, digital, analogue, communications and computer engineers, design/test/service to $£ 230$ pw, for long (2 years) lucrative contracts at many sites throughout southern
England. - Roger Howard, C.Eng, England. - Roger Howard, C.Eng, ${ }_{99}$ MIEE, Cliveden Consultants Leonards Road, Windsor

$99533)$
$(07538$, answerphone. 19640

APPOINTMENTS
IN ELECTRONICS £5-£10,000 Take your pick of the permanent posts in:
MISSILES - MEDICAL COMPUTERS RADAR - COMMS MICROPROCESSOR hardware - software
For free expert advice and mimedinte action on salary and career inprovement, 'phone or write to, Mike GernatBSc.

Technomark
 Engineering and Tachnical hecruitment

 11 Westbourne Grove 1) W2. 012299239

GAPITAL
APPONTMENTS LTD.
FREE JOBS LIST

for

FIELD SERVICE ENGINEERS BASIC SALARIES TO £7,000 + CAR
(8781)

30 Windmill Street, London. W1 01-637 5551

ARE YOU UP FRONT-

Technologically speaking? If not trust yourselves to the tender hands of "Charlies Angels" (Judy, Anne and Dawn) and our buddy "EINSTEIN" (A compucolor II information retrieval system).

CURRENT VACANCIES INCLUDE

Design development engineers to join a new products group - a "thorn in the flesh to an industrial giant working on the latest intelligent terminals for TV microprocessors (4 bit - 16 bit) in audio telephone techniques and a wide range of microprocessors (4 bit - 16 bit) in use. Salary to $£ 9,000$ area. Ring and find out.

Commercial-aware Boffin to research futuristic data channels, application of CAD techniques to real design, circuit synthesis, digital coding and researching into high density recording. Intellectual dexterity in physical sciences essential. Area: Middlesex. Salary: "Wot 'e's werf.'

Technological Think Tank Boffs, i.e. pretty authoritative engineers to augment a team who have produced some of the most advanced satellite communications and radar systems of the century. To $£ 10,000$ for expertise in either computer controlled message switching, servo systems. Microwave systems or VHF/UHF equipment,
Berks.

Young graduate to join a high powered firm of telecommunication consultants involved in: research, planning and information retrieval for public and private sector of industry. Intellectual dexterity essential. London. Excellent salary.

ALWAYS IN DEMAND

Electronic engineers for design, development, post design, production control quality assurance, field trials, systems test, computer field service, test installation and commissioning. Note our success rate is between 70 and 80% of engineers
placed.

For further details, please contact:

Charles Airey Associates
 PROBAELY THE BEST RNOWM SUPPLIER OF ELECTHOMCS ENGIMEERS WW TME COUNTMY fmancial times
 155 KNIGHTSBRIDGE, LONDON, SW1. TEL: 01-581 0286

(9643)

TEST/QUALITY ASSURANCE ENGINEERS

Test/quality assurance engineers at senior and intermediate level wanted to work on our range of advanced broadcast television studio products including colour and manochrome television studio cameras.

Applicants should have an up to date knowledge of digital and linear circuit techniques gained from experience working on television studio equipment, radar equipment or similar sophisticated products, and qualified to HND, HNC or equivalent level.

Employment benefits include excellent salary, generous holidays, free life and health insurance, pension scheme, staff restaurant and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

Link Electronics Limited, North Way, Andover, Hants, SP10 5AJ.

Professional Careers in Electronics

All the others are measured by us...

At Marconi Instruments we ensure that the very best of innovative design is used on our range of
communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts, AL4 OBR. Tel: St Albans 59292

Electronics Technicians

The job ?

* Servicing and calibrating complex electronic equipment.
How much
could learn?
Overtime at premium rates?
* $£ 5600$ plus per annum.
pre?
*YES
Other benefits?

Where?

Qualification required?

* Generous Holidays increasing with Service
* Sick Pay,
*Superior Pension Scheme * Restaurant
* Relocation assistance, etc. etc.
* Assistance with Local Authority housing accommodation could, in certain circumstances, be made available.
* NEASDEN, N.W. 10. (Opposite the Underground Station, and close to the M.1.)
* CONSIDERABLE practical knowledge and experience of electronic circuitry faults diagnosis and rectification.
For further information please telephone, call or write to R. F. Honnor Personnel Manager

G \& E Bradley Limited,
Electral House, Neasden Lane,
London NW10 1 RR.
Telephone: 01-4507811

ELECHROEONIS

PRODUCTION TEST/ FAULT-FINDING ENGINEERS

Electrosonic Ltd. is a leading company in the expanding fields of lighting control equipment and audio visual systems.
The Company, based at Charlton within easy reach of rural Kent, offers an attractive working environment and excellent conditions of employment.
PRODUCTION TEST/FAULT-FINDING ENGINEERS: Engineers are required for a small batch production line and system testing/fault finding on a wide range of electronic equipment employing some of the latest digital, analogue and audio circuitry.
Applicants should have either experience in the testing /fault finding of electronic equipment or academic qualifications to HNC or degree level. Suitable applicants will find opportunities for advancement to higher paid technical support positions in the Company's software or hardware design teams and project engineering section after a period in the Test Department.
SERVICE ENGINEERS / HIRE DEPT. ENGINEERS: Engineers are also required for fault finding and presentation work on the above equipment both in - company and on customer's premises.
Applications in writing, giving a resume of career to date, addressed to: P. W. Way, Production Director, ELECTROSONIC LTD., 815 Woolwich Road, LONDON, SE7 8LT. Tel: 01-855 1101.
(9651)

If you have substantial electronics design engineering experience but perhaps have not been working on the frontiers - don't despair. We can offer a thorough formal training scheme (fully paid) of twelve weeks duration to update you on some of the most recent developments in electronics. After successfully completing this, you would be working on the design and development of solid state analogue control systems, power converters, etc.

Sperry Gyroscope can offer the employment benefits expected of a successful major company operating in an advanced technology environment including realistic relocation expenses where applicable.

To find out more contact Viv Moss, Personnel Dept., Sperry Gyroscope, Downshire Way, Bracknell, Berks RG12 1QL. Telephone Bracknell (0344) 3222 ext. 512 or 199. Quote ref. WW 18779

The Polytechnic of North London

Educational Development Service

EQUIPMENT TECHNICIAN

Grade 6

The Educational Development Service provides a comprehensive AV service throughout the Polytechnic. We require an experienced Equipment Technician to perform technical and administrative functions in the Service:-

To manage the physical resources of the Service and assist and deputise for the Chief Technician as required:

To establish a service routine for $A V$ equipment and maintain service records:
To establish technical standards and assist production staff using AV equipment:
To help to train and supervise various staff using AV equipment: To develop existing AV systems and advise on the purchase of new equipment.
An HNC or equivalent qualification is required and a minimum of nine years' relevant experience (including training period). Salary Scale: $£ 4509-£ 5283$ inclusive of London Weighting.
Application forms can be obtained from the Chief Technician, Educational Development Service, The Polytechnic of North London, Holloway, London N7 8DB.

Imperial War Museum LONDON

Audio Technician

The Museum illustrates and records all aspects of the two world wars and all other military operations involving Britain and the Commonwealth since 1914. This post is in the Department of Sound Records, where the technical operations are based on a Sound Suite incorporating Leevers-Rich E200 and Revox tape machines, disc reproducers, a Neve BCM 10/2 mixing desk and ancillary facilities.

The technician appointed will be responsible for the control of studio recording, transfer operations, routine servicing and maintenance of all the audio equipment, some location recording, control of public listening facilities in the Museum and the provision and maintenance of certain archival lists and procedural records. In addition the successful candidate will work from old recordings and those produced on domestic equipment, and assist in the production of programme material for use in the Museum's public and educational services.

This post has been exempted from the Government's

 ban on recruitment.Candidates must have an ONC in engineering TEC/SCOTEC Cert or C \& G Pt II in a relevant subject or an equivalent or higher qualification, and an aggregate of at least 8 years' training (eg apprenticeships and/or full-time study) and experience. Practical experience of operating and maintaining audio equipment and a theoretical knowledge of sound recording essential.

Salary, starting at $£ 4850$ rises to $£ 5390$. Salaries under review. Non-contributory pension scheme.

For further details and an application form (to be returned by 5 September 1979) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote ref: $\mathbf{T} / 5127$.

TELECOMMS TECHNICIANS/ENGINEERS

ABU DHABI

Al-Mariah United Company a fast growing telecommunications company häs regular requirements for qualified and experienced persorinel ranging from City and Guilds to Degree Level. Present requirements are for Telemetry Systems and VHF / UHF Radio Links CGLI Final and for a Senior Telecoms Engineer (married, accompanied or bachelors) of degree level.

Applications to Mr. George Fee, General Manager, 16 Hallview Grove, Darlington during August with copy to P.O. Box 206, Abu Dhabi with telephone contact. Full C.V. and if bachelor status interest. Usual expatriate terms and conditions.

KINGSTON POLYTECHNIC

TECHNICIAN
School of Electronic Engineering and Computer Science
The technician is required to support the work of the digital electronics laboratory. Digital sub-assemblies microprocessors experiments and digital exals, and the development of igital sub-assemblies microprocessors experiments and digital experimentation.
Wide variety of interesting work in the forefront of digital techniques in both development and research. Applicants should have some knowledge of digital integrated circuits and preferably of logical techniques.
T2 grade $£ 3600-£ 3972$ inclusive (award pending).

Application forms from Assistant Registrar (Personnel), Kingston Polytechnic, Penrhyn Road, Kingston upon Thames KT1 2EE, 01-549 1366.

Radio Officers

If you trade or training involves radio operating and you are no more than 35 years of age, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.
A number of vacancies will be available in 1979 / 80/81 for suitably qualified candidates to be appointed as Trainee Radio Officers. Candidates must have had at least 2 years radio operating experience or hold a PMG, MPT or MRGC certificate.
On successful completion of 40 weeks specialist training, appointees move to the Radio Officer Grade.

Government Communications Headquarters
Oakley, Priors Road, Cheltenham GL52 5AJ

NATIONAL FILM SCHOOL

ELECTRONICS TECHNICIAN FOR VIDEO STUDIOS

Experienced in prototype construction, versed in analogue, digital and RF design, to assist video engineer in the establishment and operation of the new video production facility.
Knowledge of video an advantage but not essential.
Apply to Studio Manager for application form, Beaconsfield Studios, Station Road, Beaconsfield, Bucks.

Test Gear ingineer Consumer Electronics

We have a vacancy for someone of HND/C (or equivalent) qualification in electronics, with a bias towards television and digital techniques, to join a team engaged in the design and construction of test gear for use in a manufacturing environment.
As well as a good theoretical and practical knowledge, the post demands the ability to apply the elements of circuit design and component technology to the production of test equipment to technical and commercial specification.
It is unlikely that we shall find someone with the necessary experience and creative flair outside the ranks of those already working in the field. Both men and women may apply.
The salary will reflect the job requirements and the calibre of person likely to fill it effectively. In addition, the situation affords a valuable opportunity to join a forward-looking company offering attractive conditions, including generous holiday entitlement, contracted-out pension arrangements, and the satisfaction of doing a technically interesting job located in a very pleasant part of the South Coast. (We will provide help to move here, where this is appropriate.)
Write, phone or call for application form: George Greaves, Senior Personnel Officer, ITT Consumer Products (UK) Ltd., Theaklen Drive, Hastings, Sussex. Tel: (0424) 437061.

World-wide Technology

ARTICLE
NUMBER CRUNCHER KIT Now you can add all the functions of a powerful calculator to your Z80 or SC/MP Microcomputer.Our MM 57109 based kit includes quality PCB, all components, complete instructions and software.Only neat soldering is required to complete this kit. The kit as supplied interfaces to an unmodified Nascom \qquad arcsine, logarithms and exponents. The design of theunit ensures that only a minimum amount of memory is required to perform complex calculations. Complete Kit (inc. VAT) $£ 38.75+£ 1.25$ p\&p. Control and Elactronic Davalopmente, 718 Pinebenk, Craigavon, Co. Armagh, N. Trelan.(9375)

FOR SALE: 24 band receiver RF8000 Super National Panasonic, unused, shop soiled only, value
$£ 2,000$, will let go for $£ 1,200$. V.C.R. £2,000, Will let go for $£ 1,200$. V.C.R. N. 1700 . Used, new cost f norle Reusable 1 hour let go for $£ 350$. Reusable 1 ath. tapes available at $66455{ }^{2}(0223)$ office hours, 46274 after office hours.
(9464
SOLAR CELLS: bits, books and bargains. Send stamp for list or 95 p for Solar Cell booklet and Data sheets. Edencombe utd 34 Nathans Road, North Wembley, Middlesex HAO 3RX.

VALVES RADIO - T.V.-IndustrialTransmitting. We dispatch valves to all parts of the world by return of post, air or sea mail, 2,700 types in stock 1930 to 1976 , Obsolete types a speciality. List 20 p . Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish to purchase all types of new and boxed valves, Cox Radio (Sussex Ltd., Dept WW, The Parade, East Wittering, Sussex
Wittering 2023 Wittering 2023 (STD Code 024366)

The Royal Fleet Auxiliary requires Junior Radio Officers

Applications are invited for Junior Radio Officer vacancies which will be arising in the near future. Applicants should possess MRGC and Radar Maintenance Certificate. For further details and application form contact: The Careers Office, Royal Fleet Auxiliary DST (FMV) 74a, Room 705 Empress State Building, London SW6 1TR. Tel : 01-385 1244 ext 2192 Closing date for receipt of completed applications 5th September.

ROYAL FLEET AUXILIARY
 RFA

(9619)

ARTICLES FOR SALE

ANTIQUE MACHINES + CURIOSITIES

The world's first high quality glossy magazine devoted to mechanical and other collectables and curiosities of all types. Fifty-six page first issue out now price 95 p including 16 pages in full colour and the unique collectors card index. Obtainable from your newsagent or direct from AM $+\mathrm{C}, 3$ Heathcock Court, Strand WC2R OPA. Telephone: 01-379 6025.
(9357)

INVERTERS
High quality DC-AC. Also "no break" (2ms) static switch, $19^{\prime \prime}$ rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd.
POB 51, London W11 3BZ
Tel: 01-727 7042 or 0225310916
(9101)

SCREEN PRINT SYSTEM. Prints labels, circuit boards, dials, front panels. Ready to operate, willing to train operator. About $£ 200$. J. Waller, Dunstable Street, Ampthill, Beds. 0525402279.
(9635

CM2506 DIGITAL CAPACITANCE

 meter $1 \mathrm{pF}-2 \mathrm{uF}, 5$ ranges, $2 \frac{2}{\frac{3}{2}}$ digits, 0.6 in leds; acc. 0.5%. Assembled module only $£ 20.75$ plus VAT. Precision Measurements, PO Box 70, 8 St Stephens Ct, Canterbury, Kent. (Callers by appointment). (9613

PARTRIDGE ELECTRONICS

THE MIXER MANUFACTURERS OFFER

Electronics-panels-frames-etc. i.e. everything for high quality mixers, large or small, available as assembled and tested sub units or kits.
A. C. Partridge Limited

56 Fleet Road, Benfleet, Essex
Telephone (STD 03745) 3256
Access-Barclaycard
(9500)
G.W.M. RADIO LTD, 40/42 Portland ${ }_{34897}$ for government and factory surplus second user and s / h equipment. Radio telephones for sale and wanted in large or small lots. Atalanta Marine Communication Receivers $£ 115$ plus carriage at cost. Avometers model 7 231. Model 8 \& 43 inc. sound powered telephones with intrinsically safe circuits, unused. 40 ft pneumatic masts by Scam Clark f32i, in original unopened maker's box gross weight 4 cwt. Many one off items in stock. No lists, we are worth a visiti52)

That's the sort of choice you could be faced with at Linotype-Paul. We're a highly successful, high technology electronics company designing and manufacturing computer controlled phototypesetting systems for use by the world's printing and publishing industries.
As a service engineer you'll be called in to client locations almost anywhere in the world, it's a fact that our systems are used on Pravda, so the Moscow connection really does exist. What's more, you'll be responsible for repairing right down to component level on systems that are as sophisticated as they are varied-that means electronics, mechanical units, electrics, high precision optics, and computer peripherals, such as VDU's, tape readers and disc drives.
But don't worry, we'll give you full product and technology training and when an overseas assignment comes up, you'll be asked rather than told to go.
For the right men and women we're offering highly competitive salaries, first class benefits, a Cortina 1600 Saloon, plus excellent prospects for career advancement. Generous assistance with relocation will be available where necessary.
If you are qualified to HNC or above and have had several years relevant experience ring or write now to David Hilton, Personnel Manager, Linotype-Paul Ltd, Kingsbury Road, London NW9 8UT. Tel. 01-205 0123.

WESTERN WHYBROW ENGINEERING

TEL. (0736) 762265

LAB CLEARANCE: Signal Generators; \quad Bridges; Waveform, transistor analysers; calibrators; mometers: KW meters: oscilloscopes; recorders; Thermal sweep sow distortion true RMMS audio FR. deviation. Tel. 040-376236. (18250

GENUINE original RGD radiogram.

 1046 G , perfect working order. Offers: Jackson, 235 Winstanley Drive, Leicester. Tel 824405. (9625
TELEPRINTERS

5 /Level Receive Only Creed Envoys, seen working and purchased as viewed, mounted in sound proof metal cabinet. $\mathbf{£ 8 5}$ each.
ASSOCIATED PRESS LTD.
83/86 Farringdon Street, London EC4.
01-353 1515 Ext. 212

Pye Telecommunications Ltd
St Andrews Road Cambridge England CB41DP
Tel: Cambridge (0223) 61222 Telex: 81166PYETELECOM CAMBGE A member of the Pye of Cambridge Group

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

Large quantities of Radio, T.V. and Electronic Compinents
RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics, Metalamite, C280, etc
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 445 2713, 4450749.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, M.12. 5 mins. from Tally Ho Corner
(9461)

Complete repair information, any requested T.V. $£ 5$ (with diagrams $£ 5.50$). Any service sheet requested for $£ 1$ plus S.A.E. S.A.E. brings newsletter and special offers - service sheets from 50p, bargain vouchers. Unique Publications, Aus.(V), 76 Church Street, Larkhall, Lanarkshire.

TRANSFORMER

PROBLEMS?
1VA-1 KVA Prototypes in $7-10$ days. Phone Vince Sellar on 06076 66716.

TRENT TRANSFORMERS LTD. 26 Derby Road
Long Eaton, Nottingham (8363)

ARTICLES FOR SALE EXCLUSIVE OFFER

RACX MOUNTNE CABIMETSHGHEST QUALTY 19^{*}				
Ref	$\mathrm{Ht}^{\text {n }}$	Width"		Price
PE	10	21		E10.00
410	54	21	18	\$20.00
IT	64	25	26	¢45.00
SL	71	25	26	E50.00
ST	85	22	24	E70.00
Racal cetbinets for RA-17/117				£30.60
Uuiframe, singls				¢30.00
Unitrume, touble				E40.00
Uniframe, tripla				850.00
Over 60 hpes willabia from $12^{\prime \prime}$ to $90^{\prime \prime}$ Migh.				
Aso twins, tripies and consoles. Ahove are only a lew trpes. Please send for full list.				

AUDIO AMD INSTRUMENTATION-TAPE

 RECORDER-PEPRODUCERS* Ferragraph YO 2 track $1 /{ }^{6}$
* Leevers-hich $1 /{ }^{\prime \prime \prime} 2$ track
* Uher $1 /{ }^{\prime \prime} 2$ track

* Ampex FR 1300
* Plessey 1033 Dipital Units. 7 track $1 / 2^{\prime \prime}$

* Plessey 1033 Dinital Units. 7 track $1 / 2^{\prime \prime}$
\star Plessey M5500 Oigital Unit. 7 track $1 / /^{\prime \prime}$
* Plessey M5500 Digital Unit. stareo $1 / /^{\prime \prime}$
\star Ampex FR-1100. 6 spoeds, sirea $1 / /^{\prime \prime}$
* Ampex FR. $13001 / 2^{2 \prime} 7$ track
* Consolidated VR-3800 $1 / 2^{\prime \prime} 7$ track
\star Consolidatad Vh-3600 $1^{\prime \prime} 14$ track

\star Minicam Cimp-100. 6 speeds. 7 track $14^{\prime \prime} .1^{\prime \prime} .1^{\prime \prime}$
* Ampex 3512 spead. 2 track $1 / 4$
* 3 m H. 4 speeds. 14 track $1^{\prime \prime}$

Prices of above E70 to E500 Also Transparl Decks enly available

We have a large quantity af "bits and ploces" we cannot list - please sond as your requrromants, we cian Frobethy holip - ell emquiries amswared.

RADIO RECEIVERS 0-4 G19/MCS by
Marconi, Collins, Racal, T.M.C., G.E.C. Rhode \& Schwarz, Polarad Eddystone, Nems Clarke, S.T.C., ETT. Lists available.

OSCILLOSCOPES TO 100 MHZ by
Tektronix, Hewlett Packard, Telequip ment Solartron, Cossor, Rhode \& Schwarz, Roband, etc. List available.

TEST EQUIPMENT by
Rhode \& Schwarz, Avo, Cintel, Dawe Bradley, Teleonic, Hewlett Packard, Racal, Sauders, Multihead, G.E.C.. Mafaid, B \& K, Solartron, Honeywell, Mesl, Airmec, Furze Hill, Plessey, etc.

SPECIAL MOBILE TOWER

80 feet high extended.
12 feet high closed.
Hydraulic operation with ladders and platform on top.

All mounted on Bedford 4-wheel-drive truck with self-levelling arrangements built in. Made to Ministry requirements.

mamuals

We have a quanlity of Technics Mawals of Elactronic Equipnent, not photostels, 1940 to 1960. Britsth and Equariean. Ho lists. Emqeirles invitud.

AERIAL EQUIPMENT

ALL TO MINISTRY SPECIFICATIONS Lattice towers
Lattice masts
Sectional tubular masts
Yagi arrays
Yog aperiodic arrays
Log aperiodic arr
Aerial amplifie
Multi couplers
Baluns
Attenuators
IST AVAILABLE

Wa have a variad assortment of iadustrial and professional Cathode Ray Tubes avalialle. List an request.

PLEASE ADD CARRIAGE AMD Y.A.t.
P. HARRIS

ORGANFORD, DORSET, BH166BR BOURNEMOUTH (0202) 765051
(8981)

Gallenkamp is a leading company in the laboratory equipment field, and a member of the Fisons Group

We require two young

Electrical Test Engineers
 to fill posts in our expanding

Product Assurance Section
One post will involve the examination in detail of the apparatus which we sell and the specification of any modifications necessary to ensure that it meets our quality assurance requirements and United Kingdom and foreign electrical safety specifications.
Experience of electrical testing is essential and experience of testing to BS3456 or to similar international specifications would be an advantage.

The other post will primarily involve the measurement of radio interference levels and the specification of suitable suppression systems. Experience of electrical testing is essential and experience with BS800 or similar international specifications would be an advantage.

The work is in a modern, well equipped laboratory at our Head Office building near Moorgate Tube and Liverpool Street stations
A good starting salary is offered, plus four weeks' holiday, subsidised staff restaurant and other benefits associated with a large company.

Please phone 01-247 3211 ext. 285 or write to Sarah Bramble Recruitment Officer, A. Gallenkamp \& Co. Ltd., P.O. Box 290, Technico House, Christopher Street, London EC2P 2ER

Gallenhamp

 complete factory clearance. (9509
ARTICLES WANTED

âll types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content

WANTED RACAL ATTACHMENTS MA350B and MA1350A Decade Frequency Generators.
 MA259 Frequency Standard or Equivalent.
 SA510 Frequency Standard.
 RA66A or B Panoramic Adaptor RA137 or 237 LF Convertor
 RA137 or 237 LF Convertor.
 RA1218 Receiver plus associated attach- ments - RA337-RA316 - RA298 ments - RA337-RA316-RA298-MA350B-MA210.
 ALL RACAL SPARES AND
 NT WANTED
 JOHNS RADIO
 424 Bradford Road, Batioy, Yorks.
 Tel: 09248159 (9.30 a.m. to 1 p.m.)

WANTED

All your gold washed scrap. Plugs, sockets, edge connectors, P.C. boards, pins, etc. We collect and pay cash for any amount from lowt.
Minimum price $£ 100-£ 200$ per cwt P. Skellern Metals, The Iron Yard (Est. 1935). Cutlers Green, Thaxted, Essex 862. 2PL. Telephone: Thaxted 830

SPOT CASH for all types test equipment, receivers, transmitters, valves, components, cable and surplus electronic scrap. M. \& B. RS1 4BB Bishopgate Street, Leeds LS1 4BB. 053235649.

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient supplies PC all test gear, power stc, regardess otirds, components, quantities. Call of condition or TURN YOUR SURPIUS 9413 . (8209 transistors etc SURPLUS Capacitors, COLES-HARDING \& Co. into cash. Contact Brink, Wisbech, Cambs 103 South Immediate settlement. We also welcomplete factortunity to quote for

SPOT CASH

paid for all forms of electronics equip ment and components
F.R.G. General Supplies Tel: 01-4045011

[^7]
ANSISTORS \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS

THE COMMERCIAL SMELTING \&
REFINING Co. Ltd.
171 FARRINGDON ROAD LONDON, ECIR 3AL Tel: 01-837 1475
Cables: COMSMELT, EC1
Works: FLECKNEY, Hr. LEICESTER

TELEVISION BROADCAST ENGINEER

We require an engineer to join the staff of a rapidly expanding video cassette duplicating facility. The candidate should have a minimum of three years' experience in broadcast television with specific knowledge of Quad and Helical Scan, VTRs, Flying Spot Telecines and related systems.
The candidate should be qualified to HNC, Full Technical Certificate, Degree or equivalent qualification. The job reports to the Technical Manager and the successful candidate will be responsible for maintenance of equipment, supervision of technical trainees and the installation of additional facilities.
High salary (level dependent upon experience and qualifications) plus normal benefits

Please reply in confidence to:
Mr. Tony Owers

PERSONNEL \& ELECTRONICS LTD.

Triumph House, 1096 Uxbridge Road, Hayes, Middlesex, UB4 8QH, England Telephone: 01-5738333 Telex: 934271

CAPACITY AVAILABLE

COIL WINDING

> Large orsmall PRODUCTION RUNS
> AIRTRONICS LTD
> GARDNER INDUSTRIAL ESTATE KENT HOUSE LANE
> BECKENHAM KENT BR3IUG $01-6591147$

> 8936

PCB ARTWORK DESIGN SERVICE With component notation masters and assembly drawings. PADS Southwood Road, New Eltham SE9.
(7905
ELECTRONIC CIRCUIT Design and prototype construction production assembly. Test and PCB artwork design. Write: Powerline Electronics, High Street, Bognor Regis, Sussex PO21 1EZ or telephone STD 024-32 (Pagham) 66587 evenings.
(8963
SMALL BATCH productions wiring assembly to sample or drawings. Specialist in printed circuits as sembly. Rock Electronics, 42 Bis hopsfield, Harlow, Essex 027933018
(9094
A COMPLETE SERVICE to manufacturers. Assembly, cable forming and testing. Also a prototype PCB service and component scheduling at competitive prices. Small or large runs with quick turn-round to high standards. Contact the pro fessionals - Techtronic Services, Yorks. Tel (0924), 409040 TX 556267 Yorks. Tel (0924) 409040 TX 556267

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development.
We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation

TEL. 01-253 4562
or reply to Box No. WW 8237
(8237)

MEKTON MINI BUS PCB strip. M822 - code 5-10-6, M823 - code 7-9-3, 225 per 100. Also thousands surplus 74 series IC's cheap. Tel. (0329) 237362
PRINTED CIRCUIT BOARDS: COMplete service for manufacture of single and double sided boards. Design, artwork, photography, gold plating, drilling, screen printing. Assembly: P.C.B. assembly, wire wrapping. Complete construction, screen printing and engraving of panels. Design and development of electronic equipment. - Scope Singer Road East Kilbride, Glasgow. 035-52-37112. Kilbride, (9474

PRINTED CIRCUITS BOARDS. Quick deliveries, competitive prices. Quotations on reqeust, roller thinning, drilling, etc. Speciality small batches. Larger quantities available. Jamieson Automatic Ltd., 1-5 Westgate, Bridlington, North Humberside. For the attention of J . Harrison 10262) 74738 or 77877

WORKSHOP CLEARANCE. Sale starts on August 27th-8th Septemplease phone $01-5432515$ or call in please phone 01-543 2515 or call in 550 Kingston Road. London SW20 8DR. Entrance from Edna Road, first alley left. Nearest tube station Wimbledon, Southern Railway Station, Raynes Park only 400 yards. Tektronix Oscilloscopes. 545B with CA unit plug-in, price 5195 ; 544 with L plug-in unit $£ 150$; 545A with CA plug-in unit $£ 175$; 585 with 82 plug-in units $£ 250$; 585 A with 82 plug-in units £350; Signal generator TF801D/8/S £195; R \& S signal
 signal generator $£ 15$; 190 A costantsignal generator $£ 15$; 190A costantAmpletude signal generator Solartron digital voltmeter LM1420 Solartron digital voltmeter f 40 R R\&SUSVD UHF test receiver £75; RP 2410B AC/OHMS converter £50; HP 8875A differential amplifier (quantity 4) with main frame $£ 50$. Attenuator variable CT532 (TF2162) Attenuator variable Muirhead-Wigan decade oscillator type 890 A , £85; HP oscillolator type 890A; £85; HP Oscope 140B £275; Q-Meter TF1245 $\begin{array}{ll}\text { scope 140B } \\ \text { with TF1246 oscillator £395; } & 547\end{array}$ with TF1246 with 1 A1 plug-in unit £375; 409 FM/AM modulation meter £170; TF2300A FM/AM modulation meter £350; TF791D deviation meter £95; Polyscop SWOB 1 wideband sweeper and display $0.5-2400 \mathrm{MHz}$ 2 probes, handbook, £395; wave analyser 248 freq $5-300 \mathrm{MHz}$ £45; 248A $£ 150$; $85330 \mathrm{KHz}-30 \mathrm{MHz}$ £45; Cohu DC voltage calibrator type 303B £185; type 324A £295. Advance pulse generator PG52B £250; Constant voltage transformers 500 W £15; 3 KW95, 5KW £120; Variac 8A £15; 3ph 20A 120 ; HP 606B HF signal generator 50 KHz 65 MHz £75; BNC to BNC5300hms cables length approx 7ft £1.50; Type N plug-in unit 660 ; Hewlett Packard electronic counter type 5245 M With 2 frequency converters type 5253B, and 2590 B , price negotiable; R\&S noise generator freq. $3-1000 \mathrm{MHz}$ 50 , RF power matts in two ranges 50 ohms, $0-300$ watts in two range £85; CT202 swept
freq. approx
$3-72 \mathrm{MHz}$
Signal generato freq. approx vico digital voltmeter DM20225 £60; 19in cabinet on castor wheels ht. approx 4 in $£ 50$; as above but 4 ft 11in approx $£ 65$; double pulse generator type 5002 £55; Solartron gewer supply $0-30 \mathrm{v}$ at 10A $£ 75$; HP power $624 \mathrm{C} x$ band signal generator £95; regulated high voltage power supply 0-3.4 KV £85; Philips power supply, type PE 1527, 0-150 volts, 3 amps, 195 ; Hughes travelling wave tube amplifier, L band, $£ 250$; Wayne Kerr Bridge Universal CT375 £25; CT530 with low impedance adaptor $£ 75$; UHF ad mittance bridge B801 with bridge sauce $£ 50$; Insulation tester ($500 \mathrm{~V}-$ 15 KV) CT318 $\mathrm{f}^{2} 75$: English Electric insulation tester 10 KV Vacuum tube voltmeter TFio41B ${ }^{\text {£10 }} \mathrm{MHz}$ Singer 40 Spectrum $\mathrm{KMC}_{\mathrm{M150}}$; Variable 10 Mr - delay in delat 1110 , de input 75 OHMS or 50 OHMS output 75 OHMS or 50 $0 H M S$ £95; pulse generator type GO 1101-2 £15: 24 MHz sweep signal generator TF1099/3S with probes e95, 180A time-mark generator $£ 45$. A parcel of glass envelope crystals qty. 3500 approx., price $£ 350$, or any individual freq. if available, £1 ea. Transistors BD121 30 ea, minimum order qty 140 B with 1415A plug-in unit £550. HN to BNC adaptors $£ 2$ each. As this is a genuine clearance, on some units an offer will be considered. All prices exclusive of
VAT and carriages.

ELECTRONIC COMPONENTS

 IN WEST GLAMORGAN bluebird electronics72 CRYMLYN ROAD
SKEWEN, NEATH
TELEPHONE SKEWEN 812103
Electronic Components available mai order or in the evenings 5 pm to 7 pm and at weekends: Sat., 9 am to 5 pm and Sun., 10 am to 1 pm
Send S.a.e. for catalogue or call in and see us

COLOUR, UHF AND TV SPARES (miniature size $4 \frac{1}{3} \times 34 \times 2 \frac{1}{8}$). New (complete and tested for sound and vision, $£ 28.50, \mathrm{p} / \mathrm{p} £ 1$.
TELETEXT, Ceefax and Oracle in Colour, Manor Supplies " easy to assemble". Teletext kit including Texas Tifax XM11 Decoder. External unit aerial input, no other connections to set. Wide range of facilities in colour include 7 -channel selection, Mix, Newsflash and Update (Price: Texas Tifax XM11 £130, Auxiliary Units £88, Case $£ 14.80$. p/p $£ 2.50$). Demonstration model alt 172 West End Lane, NW6. Also latest Mulrard. Call, phone or moduie available. Call, phone Write finED COLOUR BAR
COMBINED COLOUR BAR AND
CROSS HATCH GENERATOR KIT (MK 4) UHF aerial input type Eight pal vertical colour bars, R-Y, controls £35* p/p £1; Battery Holders $£ 1.50^{*}$: Alternative Mains Supply Kit $£ 4.80^{*}$; De Luxe Case $£ 4.80^{*}$ Kit £4.80*; De Luxe Case $\begin{aligned} & \text { © } \\ & \text { Aluminium } \\ & \text { Case } \\ & £ 2.60^{*} \text {. Built and }\end{aligned}$ tested (battery) in De Luxe Case £58*, p/p $£ 1.20$
 put type, also gives peak white and black levels, battery operated $£ 11$ $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey scale kit $£ 2.90^{*}$ p/p $35 \mathrm{p} ;$ De Luxe Cas
Aluminium Case $£ 2^{*}$ p/p 85p. Built and tested in De Luxe Case £23.80* p/p £1.20.
UHF SIGNAL STRENGTH METER KIT £16.80*, alum. Case $£ 1.50^{*}$, De Luxe Case £4.80* p/p £1. CRT TEST AND REACTIVATOR KIT
for Colour and Mono £20.80*, p/p for Colour and Mono £20.80*, p/p
$£ 1.30$; TV 625 IF Unit for Hi-fi amps £1.30; TV 625 IF Unit for Hi -fi amps or tape rec. $£ 6.80$, p/p 75p. Surplus
Bush IF panels. A816 £2.80, TV312 Bush IF panels. A816
(single IC) $£ 5$. BC5600 (Exp) $\begin{array}{lrlll}\text { (single IC) } & £ 5 . & \text { BC5600 } & \text { (Exp) } & £ 5 \text {, } \\ \text { A823 } & \text { (Exp) } & £ 2.80 \quad \text { p/p } & 85 p . & \text { Bush }\end{array}$ $\begin{array}{lll}\text { A823 (Exp) } & \text { (A2.80 p/p pap. } \\ \text { A823 } & \text { (A807) } & \text { Decoder panel } \\ £ 7.50\end{array}$ A823 (A807) Decoder panel p / p. A823 Scan Control panel p / p £1. A823 Scan Control panel panel $£ 3.80 \mathrm{p} / \mathrm{p}$ £1. Philips G6 single panel $\mathbf{x} 3.80 \mathrm{p} / \mathbf{p}$ £1. Phice unit 53.75 p/p 90 p GEC 2040 ex rental panels p/p 90p. GEC 2040 ex rental panels Decoder f5, Time Base f5 p/p 90p Decoder, frame, $1 F$ \&5 p/p 90 p . Decoder, frame, 1F $\begin{gathered}\text { Colour Scan coils, Plessey } £ 6 \text {, Yoke }\end{gathered}$ £3.50, blue lat, 76 p (Mullard also available). Mono Scan coils Philips/ Pye $£ 2.80$. Thorn $£ 2.80 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$ Phe £2.80. Thorn G 8 Decoder panels, salvaged for spares $£ 3.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Varicap UHF tuners gen. instr. $£ 3.50$, ELC 1043 £4.50, ELC1043/05 £5.50; Philips G8 $£ 5.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Salvaged UHF Varicap tuners $£ 1.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. UHF/VHF ELC2000S Varicap tuner £8.50 p/p 65 p . Varicap control units, 3 pos. $£ 1.20,4$ pos. $41.50,5$ pos.
£1.80, 6 pos. (special offer)
£1.80, 7 pos. $£ 3.80 \mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Touch Tune control unit Bush 6 pos. $£ 5 \mathrm{p} / \mathrm{p}$ 75 p . UHF transtd tuners, rotary incl: slow motion drive $£ 2.50,4$ pos. push button $£ 2.50,6$ pos. push button $£ 4.20 \mathrm{p} / \mathrm{p}$ £1. (Thorne,
Bush, Decca, etc., special types available, details on request). Delay Lines DL20, DL5 £3.50, DL1 $80 \mathrm{p} \mathrm{p} / \mathrm{p}$ 65 p . Luminance delay lines $£ 1 \mathrm{p} / \mathrm{p}$
40 p . Helical pots 100 K 4 for $£ 1.20$ 40p. Helical pots 30 p . Remote Control Thorn-type p/p 30p. Remote contro $£ 2$ pair p / p 45 p . Large selection of lopts, trip45p. Large selection of and other lers, mains foplar makes of colour and mono receivers.
MANOR SUPPLIES, 172 WEST END LANE, WEST HAMPSTEAD, LON LANE, WEST HAMPSTEAD PREMISES, EASILY ACCESSIBLE, WEST HAMPEASILY ACCERLOO, JUBILEE TUBE and BRITISH RAIL N. LONDON
(RICHMOND-BROAD ST.) and ST. PANCRAS-BEDFORD. BUSES 28, 159,2 , 13. Callers welcome. Thou sands of additional items available at shop premises not normally ad
vertised. Open daily all week in cluding Saturday (Thursday halfday). MAIL ORDER: 64 GOLDERS 9HT. Tel. 01-794 8751. VAT. Pleas add $12 \frac{1}{2} \%$ to ALL PRICES (EXCEPT
WHERE MARKED *VAT 8\%). (60

SOLAR CELLS 4 in diameter, 2 amps, $4 \mathrm{v} \$ 6.75$ each or 10 for $\$ 65.00$ plus shipping. - Kenneth Foster, $\begin{array}{ll}1742 \\ 63136, & \text { Dowd St Louis, Missouri } \\ (9621\end{array}$ TELEPHONE ANSWERING ma chine available for outright pur	Chase.
Trent	
$\mathbf{(0 2 8 3})$	

SOWTER TRANSFORMERS

WITH 37 YEARS' EXPERIENCE we have the expertise to desig
ANY TYPE OF AUDIO TRANSFORMER AT THE RIGHT PRICE. Whilst we specialise in every kind of transformer for audio control desks and mixers demands
are increasing for LOUDSPEAKER TRANSFORMERS and 100 VOLT LINE AUDIO OUTPUT TRANSFORMERS FOR MOST KINDS OF AMPLIFIERS FROM 30 WATTS TO OUTPUT TRANSFORMERS FOR MISo supply multi-output transformers for COLUMN IOUDSPEAKERS. A recent tendency is the demand for OUTPUT TRANSFORMERS FOR ULTRA LINEAR AMPLIFIERS using KT 88 and KT 66 BEAM TETRODES and for these we have standard designs with exceptional performance. We call your attention to our very successful MICROPHONE SPLITTER TRANSFORMER type 4079 with a high impedance 200 ohm primary and two 200 ohm secondaries. It will handle up to 2.3 volts rms at 30 Hz and has a frequency response of plus/minus $1 / 2 \mathrm{~d}$ fromi

We will supply single transformers, or any quantity, with short delivery times and, withou obligation on your part, will quote price and exact dispatch on receipt of your requirements. E. A. SOWTER LTD., Manufacturers and Designers, P.O. Box 36 iPSWICH iP1 2EG,
ENGLAND. Tel. IPSWICH (0473) 52794 and 219390.

DUTCHGATE LTD.
Pyle Hill, Winchester Rd. Fair Oak, Hampshire Fair Oak 5252

EQUIPMENT WANTED

TO ALL MANUFAGTURERS

 AND WHOLESALERS IN THE ELECTRONIC BADIO AND TV FIELD
BROADFIELDS \&

MAYCO DISPOSALS

surplus or redundant components which you may wish to clear. We will call anywhere in the United Kingdom.

21 LODGE LANE

NORTH FINCHLEY, LONDON N12 8JG Telephone Nos. 01-445 0749/445 2713 After office hours 9587624 (9123)

A.R. Sinclair

Electronic Stockholders

 Stevenage 812193We purchase all types of Mechanical and Electronic Equipment and Surplus stocks:

ERECTRONIC DESIGN SERVICES. Wide engineering experience avail able for the design of basic circuits to complete systems. Analogue DC to 1 GHz and Digital. Write or
phone Mr Anderson, Andertronics phone Mr Anderson, Andertronics Ltd, Ridgeway, Hog's Back, Seale
(Nr. Farnham), Surrey. Runfold 2639.
(9140
PRECISION SHEET METAL work chassis, panels, etc., steel, stainess or aluminium, long/short runs, good deliveries. EES Lta., Clifror Road, Monks Road, Exeter 36489.
Telex 42401.

DUST COVERS. Specialists in oneoffs and batch production of high equipment. scopes and electronic devices. Send drawings for immediate quote. Design Clovers, 7 Southcote Rise, Ruislip, Middlesex.
Telephone Ruislip 30583. Telephone Ruislip 30583.

TEST EQUIPMENT CALIBRATION AND REPAIR

Quick turn round, attractive rates, ring for details on Fair Oak 5252.
DUTCHGATE LTD.
Pyle Hill, Winchester Road
Fair Oak, Hampshire

DESIGN SERVICE. Electronic DeSign Development and Production Service available in Digital and Analogue Instruments, RF Transmitters and Receivers for control of any function at any range. Telemetery, Video Transmitters and Monitors, Motorrised Pan and Tilt Heads etc. Suppliers to the Industry for 16 years. Phone or write Mr. Falkner, R.C.S. Electronics, 6 WolSey Road, Ashford, Middlesex. Phone Ashford 53661.
(8341

EURO CIRCUITS
Printed Circuit Boards - Master ayouts - Photography - Legend printing - - Roller tinning - Gold
plating - Flexible films - Conventional fibre glass - No order too large or too small - Fast turnround on prototypes mall - Fast turnround on prototypes.
EURO CIRCUITS TD
Hightield House
West Kingsdown
Nr. Sevenoaks. Kent
WK2344

DESIGN AND DEVELOPMENT, competent engineering effort available for all aspects of electronic design Single circuits or complete systems prototype to production run. E.I.A., 80 Wheatland Lane, Wallasey, Merseyside, 051-639 9122.

POST-HNC ENDORSEMENT IN TELEVISION TECHNOLOGY

A postgraduate endorsement course in Television Engineering recognised by the IEE, for students of engineering at HNC or degree level.
18.00-21.00 Wednesday evenings

Course fee: $£ 10$
Enrolment: 24 September 17.30-19.00
25 September 17.30-19.00
Further details from, and enrolments at: The Registry, School of Engineering and Science, 115 New Cavendish Street, W1M 8JS Tel: 01-486 5811

The Polytechnic

of Central London

RADIO AMATEURS EXAMINATION

Classes are held at Paddington College on Tuesday and Thursday evening in preparation for the above examinations. Further details are available from the Course Tutor David Peace, at Paddington College, 25 Paddington Green, W. 2.

EQUIPMENT FOR SALE

GR ADMITTANCE METER 1602B with standard and lines in original wood case with handbook, $£ 50$. Ring 0752-42155 after 6 pm . (9438

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9 LU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate £1. 50 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus 60p.
- Cheques, etc., payable to "Wireless World" and crossed " \& Co.

NAME.

ADDRESS
\qquad
P-

160

Here's why you should buy an I.C.E. instead of just any multimeter

WW - 111 FOR FURTHER DETAILS

* Best Value for money
* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers. * World-wide proven reliability.
* Low servicing costs. * 20K/volt sensitivity and high accuracy. \% Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories.
* 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors
Prices from $\mathbf{£ 1 6 . 6 0 - \mathbf { ~ } \mathbf { ~ } \mathbf { 3 2 . 0 0 } + \text { VAT }}$
Send for full colour leaflet and prices on whole range including accessories.

- - ELECTRONIC BROKERS LIMITED

49-53 Pancras Road, London NW1 2QB. Tel: 01-837 7781. Telex: 298694.

INDEX TO ADVERTISERS
 Appointments Vacant Advertisements appear on pages 141-159

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

ELECTRONIC SUPPLIES LTD

A very high quality 40 W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155. Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday). Telephone: Southend (0702) 554000.

Mulicore soldarheps Europes OiS-2 sadellite orbit at 23,000 miles

OTS-2, a forerunner of a European communications satellite, was launched from Cape Canaveral on May 1lth 1978.

Now orbiting the equator at a height of 23,000 miles. OTS-2 was built for the European Space

- Agency by the MESH consortium, led by British Aerospace Dyramics Group. Stevenage
In building OTS-2. complete precision was called - for. Which is why Etsin Multicore solders were used for many of the soldering operations.

Quite simply, Multicore solders have that kind of reputation. For quality, toüghness and reliability. That's why so many electronics manufacturers won't use anything else. :

Next time you need solder of any kind, aim as high as OTS-2 . . and use Multicore.

Full details of Ersin Multicore solders, solder chemicals and high purity-bar solderş for automatic soldering from

Multicore Solders Litd

- Maylands Avenue

Hemel Hempstead Herts HP2 7EP

- Tel: Hemel Hempstead 3636

Telex: 82363

[^0]: - Audio and video service equipment automatic test And measuring equipment counters and counter,itmers oc power supplies and ac stablizers \because LOW FREOUENCY EOUIPMENT MICROWAVE EOUIPMENT MULTIMETERS OSCILLOSCOPES PROFESSIONAL IV EOUIPMENT PULSE GENERATORS ` RECORDERS WW - 067 FOR FURTHER DETAILS

[^1]: DTETQ
 The Trio range of oscilloscopes offer top quality at moderate cost. The brief specifications show the performance features which have made
 OSCILLOSCOPES these oscilloscopes firm favourites in all parts of the world, with bandwidths to 30 MHz and sensitivities down to $1 \mathrm{mV} / \mathrm{cm}$ on 130 mm FOR FULL DETAILS ON THESE AND OTHER MODELS, CONTACT THE SOLE AGENTS, LOWE ELECTRONICS

[^2]: "Starting and Running a Small Business", first published in 1977, must be one of those books which (ideally) should help to swell anyone's profits from business. The author, Alan Sproxton, outlines with admirable candour the main objection to the use of the book as an aid to money-making or the fractional reduction of the dole queue when he points out that he has so far managed to avoid making a fortune himself. Maybe fortunes aren't to be made in small business but it can't help circulation to act as your own devil's advocate. Nevertheless, the same general advice holds good in this up-dated version as did in the 1977 printing, though with more acid heaped upon Civil Service and government departments alike. A

[^3]: 1 Basic active filters 2 Switching circuits, comparators and Schmitts 3 Waveform generators 4 AC measurements 5 Audio circuits 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10

[^4]: TRANSFORMERS, all 240 V primary
 6-0-6 500mA $(63 \times 35 \times 48)$
 $0-11,2 \mathrm{~A} ; 0-22,1 \mathrm{~A}(76 \times 64 \times 60)$
 $12 \mathrm{~V} 130 \mathrm{~mA}(36 \times 45 \times 40)$
 $17 \mathrm{~V} 300 \mathrm{~mA}(44 \times 47 \times 74)$
 $18 \mathrm{~V} 2 \mathrm{~A}(80 \times 55 \times 70)$
 $18 \mathrm{~V} 2.5 \mathrm{~A}(115 \times 65 \times 62)$
 $28 \mathrm{~V} 200 \mathrm{~mA}(53 \times 45 \times 37)$
 $32 \mathrm{~V} 250 \mathrm{~mA}(46 \times 37 \times 31)$
 0-2-4-6-8-10-12, 0-1-1,5A

[^5]: $£ 1.40$ $£ 1.40$
 $£ 2.40$ $\mathbf{E} \mathbf{8 . 7 5}$ $£ 1.50$ $£ 2.80$ $£ 2.80$
 $£ 2.50$ $£ 2.50$
 $£ 1.00$ $£ 1.00$
 $£ 1.20$ £6.00

[^6]: You start at $£ 3900$ rising to $£ 5530$, and promotion will put you on the road to posts carrying substantially more. There are also opportunities for overtime and on call work paying good rate.
 Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext. 2269, or write to him at GCHQ, Oakley, Priors Road, Cheltenham, Glos. GL52 5AJ. If you seem, suitable we'll invite you to interview in Cheltenham - at our expense,
 of course.

[^7]: Telex: 24224 Quote Ref 3165

