

Value for money.

 10 Hz to $80 \mathrm{MHz}, 10 \mathrm{~Hz}$ to 200 MHz and 10 Hz to 560 MHz models.

 10 Hz to $80 \mathrm{MHz}, 10 \mathrm{~Hz}$ to 200 MHz and 10 Hz to 560 MHz models.}

The many good quality benefits offered by the competitively priced TF 2430 Series make these frequency meters of outstanding value.
Simple to use-no sensitivity controls. Just connect the signal and select the range.
Two year Guarantee - with special LSI chip, our counters have the lowest 'component count' on the market. Couple this with our "Autotest" production equipment, which checks every component of every instrument, and you can see why we have confidence in their reliability.
Wide dynamic range - high sensitivity and acceptance of
mains voltages on all high impedance inputs.
Resolution to $0.1 \mathrm{~Hz}-560 \mathrm{MHz}$ can be measured to 0.1 Hz resolution

High Stability - a choice of internal frequency standards is available. Or external standards may be used.
Excellent r.f.i. performance-all models are of robust construction and tested to meet military specifications.
Meets IEC $\mathbf{3 4 8}$ and BS $\mathbf{4 7 4 3}$ safety requirements-in full! And all three designs meet our rigorous environmental specifications of bump, vibration, temperature and humidity. For further information write or 'phone:

Front cover shows various stages in the production of a printed circuit board at Exacta Circuits Ltd. Photographer Paul Brierley.

IN OUR NEXT ISSUE

Chatterbox, a simple speech synthesizer. This hand controlled electronic model of the acoustic properties of the vocal tract will utter recognisable words and phrases.

Measuring spectrum use. Space and time as well as bandwidth come into this method of measuring the efficiency with which radio services use the spectrum.

Solar heating control. A differential temperature. controller based on a recently available transducer.
Current issue price 40 p. back issue (if available) 50p. at Retail and Trade Conunter. Paris Garden, London SE1. Āvailable on microfilm. ${ }^{4}$ please contact editor.
By post, current issue b5p, back issues (if available) 50p, order and payments to Room 11, Dorset House, London SE1 9LU.
Editorial, 8 Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339. Telegrame/Telex: Wiporld Bisnespres 25137 BISPRS G. Cables: Ethaworld, Londón SE1.
Subscridtion rates: 1 year: $£ 7.00$; UK and $\$ 23.40$ overseas ($\$ 24$ USA and Canada).
Student rate: 1 year, $£ 3.50$ UK and $£ 4.50$ overseas ($\$ 11.70$ USA and Canada).
Distribution: 40 Bowling Green Lane, Londón EC1R ONE. Telephone 01-837 3636. Subscriptions: Oakfield House, Perrymount Road, Haywardsi Heath, Sussex. RH 16 3DH. Telephone 044459188 . Pleäse notify a change of address.
USA mailing agents: Expëditers of the Printed Word Ltd, 527 Madison Avenue, Suite 1217. New York, NY 10022. 2nd-class postage paid at New York.
© IPC Business Press Ltd 1978 ISSN 00436062

wireless world

ELECTRON̈CS/TÉLEVIISION/RADIO/AUDIÖ

NOVEMBER 1978 vol 84 No 1515

43 Intelligent machinery

44 The UK wavelength changes
 by G. H. Sturge

$4 \overline{8}$ World of amateur radio

4⿹ㅡ Character rounding for the WW teletext aecoder
by J. H. Hinton

54 Wideband noise redu
59 Letters to the Editor A.m. broadcast reception The naked microprocessor International viewdata/teletext standard
61 Telesoftware by John Hedger
67 Frequency synthesizers - 3 by R. Thompson
71 News of the month ACARD on semiconductor technology Common frequency repeater IBA test surround-sound broadcasting
73 Multiplexed alarm by R. J. Chance
75 Circuit ideas
79 Add-on oscilloscope waveform store - 2 by R. H. Fastner
83 Electronic organ tone system - 2 by A. D. Ryder
89 What future for television? by D. A. Bell
91 Breadboard survey
y4 Stereo f.m. tuner - 2 by L. Nelson-Jones
97 New products

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House.
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone : Orpington 27099
Telex: 896141

ELECTRONIC

120 BASIC RANGES

$A C \vee, I \& d B$
DC V, I \& NULL
RESISTANCE
LEAKAGE at 3 V
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $\mathrm{R}=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$. Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering ± 4 decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits.
Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT TEMPERATURE
$: 0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 24+$ VAT.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, AC/DC, using HV Probe. Price £17 + VAT.
1.5A/50A fsd, AC/DC, using Current Shunt. Price £16 + VAT.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 39+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at El $4+$ VAT.

LEVELL
 ELECTRONICS LTD.

MOXON STREET, BARNET, HERTS, ENGLAND, EN5 5SD.
TEL: 01-4495028/4408686
HW-4+U IORFLKIHIK MI FAILS

Can you believe your Ears?

Pick a wizzed up record ; play it loud; and most Hi-Fi gear can be made to sound impressive - at least initially. In fact you've only to go to a hi-fi show to find that nine out of ten have to play it that way to get any effect at all.

But what happens when you turn the volume down a bit? Are the strings relaxed and silky? - or do they all have clenched teeth like a bunch of amateurs struggling with a difficult bit of Hindemith? Does speech at natural level sound like a real person? -- or are his fricatives in a twist? - Is it believable? or is it all rather a caricature?

Listen carefully, you'll have to live with it long after the honeymoon.

For further details on the full range of QUAD products write to
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB.
Telephone : (0480) 52561

for the closest approach to the original sound

The Ultimate Multi-mate What other DMM offers all this

It's easy to see why Philips new PM 2517 digital multimeter is called The Ultimate Multi-mate. No other DMM comes anywhere near its
combination of laboratory performance and handy form - for such a handy price. Take a look at some of the features it packs in.

Small and sturdy construction makes this DMM ideal for bench or field work.

Full 4-digit display giving higher resolution than $3 \frac{1}{2}$ digits for 80% of measurements. Parameter readout, too.

Ergonomic design allows it to work in any position
without fuss or fumble. the price is the same. Mains unit supplied free with LED version.
Autoranging with manual override. Average auto response time less than two seconds.
True RMS rather than "average" detection. The Ultimate Multi-mate measures nonsinewave AC signals more accurately
High accuracy necessary to make full use of those four digits. An impressive 0.2\% of reading $\pm 0.05 \%$ of scale ond.c. volts.
Current to 10A via a separate input is standard, not optional, on the PM 2517
Overload protection
that is so comprehensive you
have to try very hard to do any damage, even with mains and TV booster voltages.

The Ultimate Multi-mate is available
from Wessex Electronics Ltd. 114-116
North Street, Downend, Bristol BS16 5SE
Tel: (0272) 571404: Rank Radio
International, Watton Road, Ware,
Herts. (Tel: Ware 3966); and Philips

Service Centres ('phone 01-686-0505 for the address of your nearest branch)

It can also be purchased from the U.K. marketing organisation

Pye Unicam Ltd

Philips Electronic Instruments Dep!
York Sireet Cambridge England CB1 2 PX Yoik Sireet Cambridqe England CB1 2 PX
Tel Cambuidge (0223) 58866 Telex 817331

PHILIPS Test\&Measuring (${ }^{\ddagger}$ Instruments

GenRad's ... a low cost/high performance range of $\mu \mathrm{P}$-based bridges

GenRad's new range of μ P-based bridges make full use of advanced

The 1657 Digibridge

* Automatically measures R, L,C,D and Q
* 0.2\% Basic accuracy testing needs today. Check the list of features, and contact us for further information, price and delivery.

Cigibridge * Automatically measures R,L,C, D
0.1\% Basic accuracy

- 10 Bins for sorting - Autoranging * IEEE 488 bus/handler interface - Three option * Selectable continuous, average or single component measurements - Three types of display programmed bin limits, measured values or bin number * Five-digit display for R,L and C
* Four-digit display for D and Q
* Selectable test frequencies of 1 $k \mathrm{~Hz}$ and $120 \mathrm{~Hz}(100 \mathrm{~Hz})$
* Series or parallel measurement
* Built-in Kelvin test fixture tests radial and axiallead components

everything for the modern D.I.Y. electronics enthusiast and more.

Youalwaysperformbetter with the right equipment

With Neal Ferrograph youget the right equipment for the job, and the best in its class. A good formula for success, of which you can be assured every time you choose from the fully - integrated range of specialist recording and ancillary equipment in the NEAL

FERROGIRAPII range.

The NEAL 302.
Incorporating a 3-motor mechanism, controlled by a full solid state logic sistem actuated by ultra light touch buttons, this is the machine used by top recording studios and broadcasting stations, for quality cassette copies and for in - cassette
duplication masters.

Studio 8

A professional studio tape recorder logiccontrolled for superb tape handling characteristics,

The Ferrograph Iogic 7.
A transportable tape recorder of unrivalled facilities; taking all spool sizes up to 27 cm , and providing three speeds, plus positive action push buttons in association with logic circuits ... for fast, safe tape handling under all conditions.

The RTS 2.
Combines in one easy to use compact instrument the measurement of gain, noise, frequency response, input sensitivity, output power, distortion and the parameters relating to recording equipment, such as wow and flutter, crosstalk, drift and erasure. Its range of application can be extended even further by the addition of the Auxiliary Test Init ATT 1.

NEAL゙FERRO(iRUPH TOTAL TAPE TECHNOLOGY

When you're the No. 1 distributor for RCA you've got to be good-big on stocks, big on service, big on technical know-how. And when you're handling Industrial Tubes as well as solid state devices you really need to be on your toes. The range is
remendous - evervthing from CMOS to Vidicons, linear IC's to Lasers, Power transistors to LED's, Op Amps to Image Intensifiers, Microprocessors to Photomultipllers.

Crellon are at the top because they put it all together under one roof. With some essential help from very knowledgeable in-house engineers and highly qualified sales engineers. Plus a large computer to keep control of the stock and deliveries-and provide you with fast information whenever you need it.

Call Crellon when you need RCA Solid State or Industrial Tubes-vou'll find it pays to go to the top.

Crellon Electronics Ltd., 380 Bath Road, Slough. Berks. Tel. Burnham (06286) 4434
Please send me data on RCA. \square Linear devices \square CMOS
\square Microprocessors and memories \square Industrial Tubes Power transistors
Name \qquad
Company

Tel: \qquad

PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS

MSI 6800
with 8K Ram.
KIT £375

FD8 FLOPPY DISC £935. BFD68 MINIFLOPPY £522 SOROC 10120 TERMINAL £699 ASS. CASSETTE INTERFACE KIT £18.95

Send S.A.E. for full brochure
STRUMECH ENG. ELECTRONICS DIV. BROWNHILLS 4321
SOLE U.K. DISTRIBUTOR FOR MSI \& SMOKE SIGNAL BROADCASTING

Equipment production and component quality go hand in hand
The need for reliable instruments to assist in controlling the quality of your incoming components is critical. This is why Avo instruments are among the most widely specified in the UK
Our quality never falters. This is well reflected in the range of instruments shown above:Electrolytic and Tantalytic Capacitance Bridge, 1 kHz Hz Component
Comparator, 100 kHz Component Comparator, Analogue Limit Detectors. DC Wheatstone
Comparator Bridge and our Breakdown (AC/DC) and lonisation Tester. The Avo
range goes even further than this, with instruments designed for $\mathrm{R}+\mathrm{D}$ and servicing applications.

So,if you'relooking for reliability in your own products, take a look at the reliability in ours.

Avo Limited

ArchcliffeRoad,Dover,Kent,CT179EN
Tel:(0304)202620 Telex:96283

dissatisfied with your SOUND?

Non-Linear Phase? Crossover Roughness? Capacitor Re-actance? Unbalanced Outputs? Bass Loss as Low Power?
Contented JORDAN-WATTS Loudspeaker users know nothing of such problems - they enjoy fatigue-free clean natural sound from
their amazing single metal daphragm full-range JORDAN-WATTS High Fidelity Loudspeakers
With 4 out of 5 emigrating to ease the balance of payments JORDAN-WATTS Loudspeakers are sometimes hard to find, but the reward is years of pleasure

Service delays? Not with JORDAN-WATTS Instant Exchange Service
Send stamps for illustrated brochure and D-I-Y details to: -

Jordan-Watts Ltd.,
Benlow Works
Silverdale Road
Hayes, Middx. UB3 3BW
Tel: 01-5736928

Name

Address

WW

WW-043 FOR FURTHER DETAILS

Mix quality with quality.

It makes no sense to record with top grade microphones and tape deck ... only to lose quality at the mixer. So the Soundex 1300 is your clear choice. Signal-to-noise figures are excellent and overload margins avoid distortion even in the loudest passages. Stereo facilities make sense too ... one knob gain control for a stereo pair, and 'pan' controls for another two mics. Frequency response is 20 to $20,000 \mathrm{~Hz}$, but ask us for a data leaflet with all the impressive figures.

Bulgin Electronics
 One of the Bulgin Group of Companies

Park Lane, Broxbourne, Herts. Tel: Hoddesdon 64455

WW-125 FOR FURTHER DETAILS

Introducing the ORYX PSU 24

a new compact self-contained 24 volt power supply unit for ORYX temperature controlled soldering irons.
Styled in tough plastic, the ORYX PSU 24 is a smart new supply unit that is self-contained and small enough for the smallest of benches. Designed to meet BSS 3456 the ORYX has all the features you need -"and more:- ON / OFF illuminated rocker switch; 3 pin non-reversible socket supplying 24 volts; a BSS 3535 transformer, an outside primary fuse: 1.5 metre white cable to BSS 6500 and fuse protection for transformer secondary wiring.
A unique feature is the facility to modify a 3 wire power system to a 2 wire fully isolated unit and vice versa

[^0]

The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.
The range is made up of standard sub-assemblies which can be permutated to suit individual application requirements. Here
are some suggested

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-048 FOR FURTHER DETAILS

AT BREADBOARD'78
SEYMOUR HALL, LONDON, W. 1
21-25 NOVEMBER, 1978

SEE thekits
HEAR the sounds
TALK to the specialists

AURA SOUNDS
COPTHORNE BANK CRAWLEY,W. SUSSEX TEL. 0342713338

We've made the impossible AGAIN. A superior frequency counter Kit for only $£ 69.95$

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of a much higher-priced counter for only£ 69.95.
This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20 Hz to 100 MHz ; selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability. An 8 -digit LED display features floating decimal point, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments - or from Sabtronics' advanced digital technology.

Uncompromising performance, Incredible price. A professional $3 \frac{1}{2}$ digit DMM Kit for less than $£ 50.00$

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable/bench DMM which offers such uncompromising performance at the astonishingly low price of £ 49.95.
Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity.
The low price of $£ 49.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality $3 \frac{1}{2}$ digit Sabtronics Model 2000 DMM kit for only $£ 49.95$. If you don't have one in your lab, use the coupon below to order NOW
Easy to follow caliberation procedure provided in the assembly manual.

BRIEF SPECIFICATIONS:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{AC}$ volts in 5 ranges $100 \mu \mathrm{~V}$ to 1 kV - DC current in 6 ranges: 100 nA to 2 A AC current in 6 ranges: 100 nA to 2 A - Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz - Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED input impedance: $10 \mathrm{M} \unrhd$ - Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ ($203 \times 165 \times 76 \mathrm{~mm}$) - Power requirement: 4 " $\mathrm{C}^{\prime \prime}$ cells (not included).

Ordering information for overseas readers:

The price listed is for readers in U.K. only. Since export orders are exempt from VAT you may send your orders directly to
Sabtronics International
Winkelriedstrasse 35
CH-6003 Luzern/Switzerland

Price:

$£ 69.95+£ 6.50$ for shipping and handling for Model 8100
$£ 49.95+£ 6.50$ for shipping and handling for Model 2000

BRIEF SPECIFICATIONS:

Frequency Range: 20 Hz to 100 MHz guaranteed, (10 Hz to 120 MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to $70 \mathrm{MHz}(20 \mathrm{mV}$ typical); 45 mV RMS, 70 MHz to 120 MHz (30 mV typical) Selectable Impedance: $1 \mathrm{M} \underline{1} / 25 \mathrm{pF}$ or $50!$ - Attenuation: X 1 X 10 or X 100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$ - Temperature Stability: $\pm 10 \mathrm{ppm}$, 0° to 50°. C - Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ select able Display: 8-digit LED, floating DP, overflow indicator Overload Protection - Power Requirement: 9-15 VDC.
Also available assembled at $£ 84.95$.
Optional prescaler will be available from around January 1979.

TIMWOOD LTD. Prospect Road, Cowes, Isle of wight, England: Telex 86892.

Please send me \qquad Sabtronics Model 2000 DMM kit (s) at $£ 49.95$ and $£ 3.00$ p.p. plus VAT at 8%.
Please send me \qquad Sabtronics Model 8100 Frequency counter kit (s) at $£ 69.95$ and $£ 3.00$ p.p. plus VAT at 8\%.
Assembled at $£ 84.95$ each $£ 3.00$ p.p. plus VAT at 8%.
Total enclosed herewith: $£$ \qquad
Name: \qquad address:
City: \qquad Postal code: \qquad

* Overseas readers please see ordering information on this page.

Pye Electro-Devices' Series 951 coaxial relay is designed for high speed switching of signals up to 450 MHz . It can be used to advantage in applications requiring exceptionally low inter-contact capacitance.

Multi-position clamps enable UR43 type coaxial cables to be connected directly to the relay body. Connection is simple and efficient And there's no need for coaxial plugs and sockets. Consequently the relay is extremely compact, and weighs less than 100 g .

The contacts are rated at 1 A or 50 W maximum, and coils are available for operation at up to $100 \mathrm{~V} \mathrm{d.c}$
 -

Pye Electro-Devices Ltd.

Controls Division, Exning Road, Newmarket, Suffolk CB8 OAX Tel : Newmarket (0638) 5161 Telex: 81245

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand Send 25 p to cover post and packing, and the catalogue's yours

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

WW-075 FOR FURTHER DETAILS

We design and manufacture an extensive range of amplifiers, active equipment, tap-off units, outlet plates and other accessories for TV distribution systems. May we send you a copy of our latest catalogue which gives detailed technical specifications?

[^1]
PHILIPS
 You can tapea whole world of sound into Philips newCassettes

Here's a new generation of cassettes from hilips, inventors of the original compact cassette.

With five types of cassette in the range, from arro to hi-fi Chromium, there's one that matches most any cassette machine you can name. From expensive Hipsters to the most costly systems.

We live in a world of sound. Whatever your ste, be it Punk Rock or Beethoven, these new
of the sound you want to hear. And they all have Philips' unique Floating Foil security to help put a stop to jamming and looping.

Look out for the Philips Select-a-Cassette chart in your local stockists. And ask for the free leaflet. Remember, when you explore the whole world of music, for the clearest sound from your equipment use Philips new Cassettes. hilips Cassettes give you a true reflection

YOUR COMPLETE RANEE OF ELEOTRONIC HARDVVARE...

BIMENCLOSURES
ALL METAL BIMCASES
Red, Grey or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £ 14.58

ALL METAL BIMCONSOLES

All aluminium, 2 piece desk consoles with either 15° or 30° sloping fronts, sit on 4 self.adhesive non-slip rubber feet Ventilation slots in base and rear panel for excellent cooling.
15° Sloping Panel
30° Sloping Panel BIM $7151(102 \times 140 \times 51[28) \mathrm{mm}$) BIM 7301 ($102 \times 140 \times 76\{28) \mathrm{mm}$) BIM $7152(165 \times 140 \times 51[28) \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28) \mathrm{mm})$ BIM $7153(165 \times 216 \times 51[28) \mathrm{mm}$) BIM7303 ($165 \times 183 \times 102[28) \mathrm{mm}) £ 1196$ BIM 7154 ($165 \times 211 \times 76[33) \mathrm{mm}$) BIM $7304(254 \times 140 \times 76[28) \mathrm{mm}) £ 12.93$ BIM $7155(254 \times 211 \times 76[33) \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28) \mathrm{mm}) £ 14.47$ BIM $7156(254 \times 287 \times 76[33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102(28] \mathrm{mm})$ £ 15.46 BIM $7157(356 \times 211 \times 76(33) \mathrm{mm})$ BIM $7307(356 \times 183 \times 102[28] \mathrm{mm}) £ 16.55$ BIM $7158(356 \times 287 \times 76(33) \mathrm{mm})$ B $(\mathrm{M} 7308(356 \times 259 \times 102[28) \mathrm{mm})$ £ 17.43

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural All boxes incorporate 1.8 mm pcb guides, stand-of f supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast).

| ABS | | | Diecast | Hammertone |
| :--- | :--- | :---: | :---: | :---: | | Natural |
| :---: |

$(50 \times 60 \times 31 \mathrm{~mm})$
$(100 \times 50 \times 25 \mathrm{~mm})$
$(112 \times 62 \times 31 \mathrm{~mm})$
$(120 \times 65 \times 40 \mathrm{~mm})$
$(150 \times 80 \times 50 \mathrm{~mm})$
(190×110×60mm)

8IM2006/16 £2.37 BIM5006/16

Top Panel Off White Sand

MINI DESK BIMCONSOLES Orange, Blue, Black or Grey ABS body in corporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad$ £2.18 BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) € 3.05$
Orange, Blue, Black or
Grey ABS body in
corporates 1.8 mm pcb
guides, stand-off bosses
in base with 4 BIMFEET
supplied. Imm Grey Alum inium
panel sits recessed with fixing screws
BIM integral brass bushes. $1005(161 \times 96 \times 58 \mathrm{~mm})$ £2.18
BIM $1006(215 \times 130 \times 75 \mathrm{~mm})$ E3.05

MULTI PURPOSE BIMBOXES

Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into ntegral brass bushes.
1.8 mm pcb guides incorpora ted and 4 BIMFEET supplied.

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.18$ BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm}) \quad$ £ 1.62 BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) \quad$ £2.19
LOW PROFILE BIMCONSOLES
Orange, Blue, Black or
Grey ABS body has
ventilation slots as well
as 1.8 mm pot guides
and stand-off bosses in
base. Double angle
recessed front panel
with 4 fixing screws
into integral brass
bushes. 4 BIMFEET
supplied.

BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.37$ BIM 6006 ($143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.08$ BIM $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) £ 4.12$

EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS
2) body accepts full or $\frac{1}{2}$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb guides incorporated and 4 BIMFEET supplied. 1 mm Grey aluminium lid sits flush with body top and held by 4 screws into integral brass bushes.

Also available in Grey Polystyrene with no slots and self-tapping screws BIM $2007 / 97$ ($112 \times 61 \times 31 \mathrm{~mm}$) £ 1.00

BIM 8005 ($169 \times 127 \times 70(45] \mathrm{mm}) \quad £ 4.12$ BIM 8007 (to be announced shortly)

BIMTOOLS

MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts alt tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks. Drills brass, steel, aluminium and pcb's. Under 250 g , off load speed 7500 rpm . Orange ABS, high impact, fully insulated body with spring return on/off switch $£ 10.53$
Mains A ccessory K it 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and .125 collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 22.14$

12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.

$$
\text { Mini BIMDRILL with } 3 \text { collets up to } 2.4 \mathrm{~mm} \text { dia } £ 8.10
$$ Major BIMDRILL with 4 collets up to 3 mm dia $£ 13.60$

Accessory K its 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit $1-£ 15.12$, Major Kit $1-£ 19.44$.
Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains 12 V dc adaptor. Mini Kit 2 - $£ 34.02$, Major Kit 2 - $£ 39.42$.
Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit $3-£ 45.36$, Major Kit $3-£ 50.76$.

BIMDIPS

Rapidly inserts and withdraws any 4-18 pin, . $3^{\prime \prime}$ pitch DIL package without beding the legs. Adjustable metal jaws for MOS type devices grip the bottom of the leg for minimum strain. Will pick up IC's from a bench, a carrier or a pcb. £13.77.

Precision made side cutters, spring action, ground steel fine pointed blades for intricate work.

51/4" long £3.34

BIMIRONS

Type 30 General Purpose 27 watt iron with long life, rapid change element, screw on tip, staintess stee! shaft and clip on hook. Styled handle with neon. £4.05
Type M3 Precision 17 watt iron, quick change tip, long life element, styled handle with clip f4.43

BIMPUMPS

2 all metal desoldering tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoil system.

BIMPUMP Major (180 mm long)
f7. 99
BIMPUMP Minor (150 mm long) $\mathbf{£ 6 . 8 0}$

bimstation
Type PSU6 Soldering Iron Station complete with $6 \mathrm{~V}, 6$ Watt miniature iron having stainless steel shaft, quick change slide on tip and long life element.

Station contains $240 \mathrm{~V} / 6 \mathrm{~V}$ transformer, neon, coiled iron support and sponge iron tip cleaning pad.

New product available shortly

EIMDICATORS

BIMACCESSORIES

ECONOMY QUALITY LED's

Mixed bags of . $125^{\prime \prime}$ and $.2^{\prime \prime}$ dia. Iens in various colours 50 for $£ 5.67,100$ for $£ 10.00$

FULL SPECIFICATION LED's
$125^{\prime \prime}$ or.$^{\prime \prime}$ with mounting clips and data
Red - £1.67/pack of 5, Green - £2.48/pack of 5, Yellow/Amber - £3.18/pack of 5
33 and $\mathbf{3 4}$ SERIES
Front viewing (30° angle) LED indicators
BIM 33 is nickel plated, uses 3.2 mm dia LED and needs 6.5 mm
dia. fixing hole.
BIM 34 is chromium plated, uses 5 mm dia. LED and needs
8 mm dia. fixing hole.
Red- $£ 2.80 /$ pack of 5, Green/Yellow - £3.24/pack of 5

AS | A SERIES |
| :--- |
| 240V Neon with integral resistor |
| held in 8 mm hole by plastic bezel. |

Red, Amber, Clear or Opal lens $£ 2 /$ pack of 5 , Green lens $£ 3 /$ pack of 5
Low Voltage equivalent of above with Red, Amber, Clear, Opal or Green Lens. $6 \mathrm{~V} £ 0.54$ each, $14 \mathrm{~V} £ 0.58$ each, $28 \mathrm{~V} £ 0.65$ each
State Voltage, lens style, colour and whet her tags or flying leads.

D SERIES

B LES and Midget Flanged lampholder with 13 mm dia. (A) and 18 mm dia (B) lens. Solder tags. $1 / 2^{\prime \prime}$ dia. hole fixing (lamps not supplied) plus chrome bezel with A lens.

Red, Amber, Clear, Green, Opal $£ 0.66$ each

G SERIES

TI Midget Flanged lampholder. Lamps are available on request
8 mm fixing hole, solder tags. Front replaceable, 7.25 mm dia.
lens. Red, Amber, Clear, Green, Opal $£ 0.43$

05 SERIES

240 V Neon with integral resistor. Self retaining in 13 mm hole, Solder/.25" push on blades. 13 mm dia. lens with 19 mm dia. chrome bezel. Red and Amber $£ 0.61$ each. Green $£ 0.78$ each.
 $\begin{array}{ll}\mathrm{M}(\mathrm{B}) & \mathrm{M}(\mathrm{C}) \mathrm{MP} \\ \mathrm{BE} & \mathrm{B}\end{array}$

M \& MP SERIES

Low voltage nickel plated brass
(M) and Polycarbonate (MP) indicators, 150 mm leads, 6.4 mm fixing hole Red, Amber, Clear, Green, Opal
6.9 mm dia. Iens (M) 6 V £ 0.65 each, $14 \mathrm{~V} £ 0.68$ each, $28 \mathrm{~V} £ 0.79$ each 7.5 mm dia. lens (MP) $6 \mathrm{~V} £ 0.55$ each, $14 \mathrm{~V} £ 0.59$ each, $28 \mathrm{~V} £ 0.68$ each

BIM M LED SERIES

Nickel plated brass bodied LES indicator, 21 mm wire wrappable leads, 6.5 mm fixing hole, 2 styles, $6,8 \mathrm{~mm}$ dia lens.
Red $£ 0.85$ each, Green/A mber $£ 1.34$ each

BIM LM \& MM LED SERIES
Subminiature nylon bodied LED indicators with 12 mm wire wrappable teads
LM \& MM push fit into $4.75 \mathrm{~mm} \& 4 \mathrm{~mm}$ holes
respectively. Each series has 4 lens styles in
Red $£ 0.67$, Green $£ 0.83$, Yellow $£ 1.00$ each.

BIM 23, 26 \& 56 LED SERIES
Black nylon 'oodied LED indicators. BIM 23 has 7 mm flat face, BIM 26 \& 56 utilise 4 \& 5 mm dia LED's. Push

2 Herne Hill Road, London SE24 0AU

 Telephone: 01-737 2383 Telex: 919693 Answer Back 'LITZEN G' Cables \& Telegrams: 'LITZEN LONDON SE24'
seenfrom the professional angle

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accousticai conditions.

Specifications:

Frequency Response: $40-18000 \mathrm{~Hz}$. Output Level at $1 \mathrm{kHz}: 0,14 \mathrm{mV} / \mu$ bar '스 $-56 \mathrm{dbm}(0 \mathrm{dbm} \leqslant 1 \mathrm{~mW} / 10$ dynes/cm2). EIA Sensitivity Rating: -149 dbm . Hum Pickup Level:
$5 \mu \mathrm{~V} / 5 \mu$ Tesla (50 Hz). Polar Pattern: Hypercardioid. Output Impedance: 200Ω. Load Impedance: > 1000 . Connections: M $201 \mathrm{~N}(\mathrm{C})=$ Cannon XLA-3-50 T or Switchcraft: $2+3=$ $200 \Omega_{1}, 1=$ ground. $\mathrm{M} 201 \mathrm{~N}=3$-pin Din plug T 3262: $1+3=200$ \& $2=$ ground. $M 201 N(6)=6$ pin Tuchel.
Dimensions: length $6^{\prime \prime}$, shaft $\varnothing 0,95^{\prime \prime}$. Weight: $8,60 \mathrm{oz}$.

BEYER DYNAMIC (GB) LIMITED
1 Clair Road, Haywards Heath, Sussex.
Tel:Haywards Heath 51003
WW-034 FOR FURTHER DETAILS

Europe's most popular bench power supply range. Well over 40,000 in use. Nine models to choose from. (Most with NATO stock numbers).

Get the details from:

FARNELL INSTRUMENTS LIMITED - WETHERBY • WEST YORKSHIRE LS22 4DH TEL. 093763541 - TELEX 557294 FARIST G • LONDON OFFICE TEL. 01 -864 7433 WW-095 FOR FURTHER DETAILS

ELECTRONIC
 INDUSTRIAL THERMOMETER

the modern way to measure temperature
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery. etc., etc. Just plug-in the Probe. and read the temperature on the large oper scale meter. Supplied with carrying case, Probe and internal $1 / 1 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ " measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00$ Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price £30.00 Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C} \quad £ 33.00$ [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX
(Phone 01-837 7937)
WW - 047 FOR FURTHER DETAILS

Made to Measure Resistance. Capacitance. Inductance.

Keepthase

 Contacts CLEAN BY USING A
DIACROM SPATULA

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamond grains are urilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains. to obviate loosening or breakaway during use. This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are recified to ensure an absolutely smooth surface by sliminating diamond grains which may rise above the sufface. This eliminates all excessive scratching during use
4. All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200.300 or 400 .
5. The chrome gives a very weak co-efficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200. thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleaning of industrial
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$.. both faces diamonded. For smallier equipments. like
telephone relays. computer relays. etc.
- Grain size 400 . thickness $25 / 100 \mathrm{~mm}$.. one face diamonded. For sensitive relays and tiny contacts. Two clase contacts facing each other can be individually cleaned. because only one tace of the spatula is abrasive

Sole Distributors for the United Kingdorn

 SPECIAL PRODUCTS (DISTRIBUTORS) LTD81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As suppliad to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Austhoritios: also maior industrial and elocetronic users throughour the United Kingdom. WW-117 FOR FURTHER DETAILS

WW - 070 FOR FURTHER DETAILS

Understanding Digital Electronics New teach-yourself courses

 In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption: you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you
 These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding
 After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidiy changing technological world around you.
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">The six volumes of Design of Digital Systems cost only:</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">$$
28.10
$$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">+ 90p post</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">And the four volumes of Digital Computer Logic and Electronics cost only:</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">24.6</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">\& packing</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">But if you buy both courses, the total cost is only:</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; "></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$+£ 1$ post \& packing</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| The six volumes of Design of Digital Systems cost only: | 28.10 | + 90p post |
| :---: | :---: | :---: |
| And the four volumes of Digital Computer Logic and Electronics cost only: | 24.6 | \& packing |
| But if you buy both courses, the total cost is only: | | $+£ 1$ post \& packing |</table-markdown></div>

 the total cost is only:

 the total cost is only:

 \& packing

 \& packing}

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.
The contents of Design of Digital Systems include:
Book 1 Octal, hexadecımaland binary number systems conversion between number systems, representation of negative numbers. complementary systems, binary multiplication and division
Book 2 OR and AND functions, logic gates NOT, exlusive OR NAND. NOR and exclusive-NOR functions, multiple input gates, truth tables. De Morgans Laws, canonical forms. logic conventions, Karnaugh mapping, three-state and wired iogic
Book 3 Half adders and tuli adders, subtractors, serial and paralle! adders, processors and arithmetic logic units (ALUs), multiplication and division systems
Book 4 Flip flops, shift registers, asynchronous and synchronous counters: ring. Johnson and exclusive-OR feedback counters, random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding. decoding display data; register systems, control unit, program ROM, address decoding instruction sets. instruction decoding, control program structure
Book 6 Central processing unit (CPU), memory organisation character representation, program storage, address modes, input, output systems; program interrupts, interrupt priorities, programming assemblers, computers, executive programs, operatıng systems and time sharing

Digital Computer Logic and Electronics is designed for the beginner No mathematical knowledge other than simple arithmetic is assumed. though the student should have an aptitude for logical thought It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electionics Everyone can learn from it - designer executive scientis' student enginee
Contents include Binary octal and decimal numbel systems conversion between number systems AND OR NOR and NAND gates and inverters Boolean algebra and truth tables. De Morgans Laws design of logic circuits using NOR gates R.S and J-K flip flops binary counters shift registers and half adders

CAMBRIDGE LEARNING ENTERPRISES. UNIT 32 RIVERMILL SITE,
 FREEPOST. ST. IVES, HUNTINGDON, CAMBS. PE17 ABR. ENGLAND TELEPHONE: ST. IVES (0480) 67446

PROPRIETORS: DAYRIOGE LTD. REG. OFFICE: RIVERMILL LDOGE. ST. IVES
REGO. IN ENGLAND No. 1328762

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORiThin WRITER'S GUIDE explaıns how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say

£2.95

$+45 p$ post \& packing by surface extra

guarantee

It you are not entirely satisified your money will be refunded

Cambridge Learning Enterprises, Unit 32 Rivermill Site Freepost. St. Ives, Huntingdon, Cambs. PE 17 4-BR England
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50.p\&p included
sets Design of Digital Systems @ £9.00, p\&p included Combined sets@E13.00.p\&p included
The Algorithm Writer's Guide @ £3.40. p\&p included

Name

Address

I enclose a cheque, PO payable to Cambridge Learning Enterprises for t .
Please charge my Access Barclaycard Visa Eurocard Mastercharge/Interbank account number

Signature

deleted as appropriate
Telephone orders from credit card holders accepted on 0480 67446 (ansafone) Overseas customers should send a bank draft in sterling drawn on a London Bank
ww32

WW-018 FOR FURTHER DETAILS.

VIDEO or AUDIO BULK ERASURE

LR71

MAX REEL SIZE $11 \frac{1}{2}$ VIDEO AND AUDIO

LR70

MAX REEL SIZE 8 $\frac{1}{4}$ AUDIO ONLY

LR70/71 bulk tape erasers are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1^{\prime \prime}}{2}$ and tape width of $1^{\prime \prime}$, quickly and efficiently.
LR70/71 bulk erasers are currently used in Broadcast Companies Recording Studios, Government Departments, Educational Establish ments and the Computer Industry.
Quality equipment moderately priced

- LEEVERS-RICH

LEEVERS-RICH EQUIPMENT LIMITED
319 Trinity Road, Wandsworth
London SW18 1 YQ
01 874-9054 Telex 923455
WW-016 FOR FURTHER DETAILS

Westcode low, medium and high Power Diodes, Rectifiers, Hyregs, Potted Bridges, Triacs, Thyristors, Transistors and complete Rectifier Stack Assemblies.
Express delivery by our own transport and Securicor.
HARMSWORTH, TOWNLEY \& CO. LTD. Todmo:den, Lancs. OL14 5JY England. Phone 070-681 2601 \& 070-681 5246

Amid the confusion ...

 So much is stated, contradicted and re-stated, but in the end it is not a matter of opinion expressed in simple terms. A pick-up arm should have the lowest possible effective mass, coupled with the highest possible rigidity. A cartridge should have the lowest possible effective tip mass, coupled with a correctly
related compliance and tare (cartridge weight).
These are the rules of physics and engineering.
 They can be denied for various reasons but the penalty is then paid each time you play a record.
mmediately available.
In case of difficulty write to Dept 0650 ,
SME Limited Steyning, Sussex, BN4 3GY
In case of difficulty write to Dept 0650 ,
SME Limited Steyning, Sussex, BN4 3GY

The best pick-up arm in the world

\section*{| Design Council |
| :--- |
| Award 1978 |}

The Series I/l precision pick-up arm and Shure V15 Type IV cartridge.
Designed and built by the rules for
faithful, uncoloured musical reproduction.

INSTANT TRUNKING SYSTEM!

Ready to use. Internal wiring suitable for 30 amp
TR6-6 sockets switched
£21.50
TR9-9 sockets switched
$£ 25.50$
P\&P £1.85

+ VAT
PORTABLE POWER DISTRIBUTION
FOR INSTANT MAINS!
NEW! 10 sockets switched in sloping box

Type 13A/10SW £27.50. P\&P £1.85 + VAT

COMPLETE WITH GFT CABLE AND 13 AMP FUSED PLUG

6 sockets 13A
4 sockets 13A switched
4 sockets 13A switched
6 sockets $13 A$ switched
14.30
£13.75
$£ 15.95$
ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS \& PLUG Send for detalls of complete range + postage $85 p$ each $+8 \%$ V. A OLSON ELECTRONICS LTD., FACTORY NO. 8,5-7 LONG ST., LONDON E2 8 HJ TEL: $01-7392343$

THRULINE"WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say... Exclusive UK representative

B-S electronics limited

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UW TELEPHONE: 01-868 1188 - TELEX 8812727 WW-058 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements. 50 calibrated ranges £70.00.

Si453
$£ 70.00$ 15 Hz - 20 KHz - $.01 \%$ - Square - RIAA

PRICES plus VAT
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET, CLECKHEATON, W. YORKS BD 19 5LA

WW-006 FOR FURTHER DETAILS

carbon film RESISTORS

ON BANDOLIERS OR PREFORMED 12.5 mm AT NO EXTRA COST

78
AERO SERVICES LTD.
'42-44A-46 Westbourne Grove London W2 5SF
Tel. 01-7275641 Telex 261306

This superbly styled highly accurate instrument is offered to Wireless World readers at a genuine $£ 20$ off the manufacturer's list price.
Wherever you want temperature read the Comark 3001 will read it. From $-50^{\circ} \mathrm{C}$ right up to $+1000^{\circ} \mathrm{C}$, with a resolution of $0.5^{\circ} \mathrm{C}$. It gives flash or continuous readout from the large green fluorescent display and fits snugly in your hand.
There are no inaccurate readings due to batteries running low. A built-in check circuit illuminates all decimal points if the power is too weak to provide the correct accuracy.
Then there's the 3002: built to the same high standards but with a resolution of $0.1^{\circ} \mathrm{C}$ for applications that need that extra sensitivity. Both models are ideal for measuring the temperature of almost any liquid, solid or gas and each instrument comes complete with multi-function probes, attractive PVC case and batteries, so you can use it the moment it arrives.
Take your pick. Choose whichever you prefer. Complete and post the order coupon now and you will see how simple temperature measurement can be

For further details call 09062 71911, or use reader enquiry number.

Fingers Geupen

Please send 3001 digital thermometer (s) complete with batteries, PVC case and probe, at $£ 117$ each (including VAT and £1.50 p\&p)

Please send 3002 digital thermometer (s) complete with batteries, PVC case and probe, at $£ 145$ each (including VAT and £1.50 p\&p)

I enclose cheque for $£$
OR please charge my Access/Barclaycard A/c No

All instruments are covered by a 12 months guarantee. I understand that if I am not fully satisfied, I can return the goods undamaged within 14 days for a full cash refund

BONA FIDE UK TRADERS ONLY!

A Fast and Easy Profit Message from FASTH: AND EASMBCBEMS.

For hobbyists and home project constructors, Lektrokit have put together the most comprehensive range of breadboarding and testing devices on earth. For you, Lektrokit have display racks, window stickers and catalogues to help you sell the entire range-faster and easier. For you, too, Lektrokit will be advertising to hobbyists and home project constructors continuously - telling them about the Lektrokit products that you supply If, of course, you have the stocks. And that's up to you.
Launch dates for Lektrokit's exciting new range are November 21-25-at BREADBOARD 1978-but you can get in on it NOW! Just use the coupon.
P/RADFORDAUDIO MEASURINGINSTRUMENTS
Oscillators
LDO3. Low Distortion Oscillator
£300.00
LD03B. Low Distortion Oscillator, balanced output
£400.00
Distortion Measuring Sets
DMS3. Distortion Measuring Set, manual nulling £250.00 DMS4. Distortion Measuring Set, auto-nulling . $£ \mathbf{3 5 0 . 0 0}$

Voltmeters

HSV1. Audio Microvoltmeter, average responding
£175.00
HSV2. Audio Microvoltmeter, true r.m.s. reading $£ 225.00$

Noisemeters (psophometers)

ANM1. Audio Noisemeter and Microvoltmeter, average responding
£200.00
ANM2. Audio Noisemeter and Microvoltmeter, true r.m.s.

ANM3. Audio Noisemeter and Microvoltmeter, true r.m.s. and quasi-peak responding
£300.00

Descriptive leaflets available on request.
RADFORD LABORATORY INSTRUMENTS LTD. 4 High Street, Nailsea, Bristol BS 191 BW

Tel. 02755-6637

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs.WORTH £5.00 OR MORE. CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messagessometimes several at a time. In such instances a positive need for communications
recording arises-a need for a system with instant message trace and replay - at the touch of a button-and at any speed to assist intelligibility.

All these facilities, and more, are available in the RacalThermionic 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to:
Racal-Thermionic Limited Hardley Industrial Estate Hythe, Southampton, SO4 6ZH England. Telephone: 0703843265. Telex: 47600.

BEICAT

Callstore, from Racal--Thermionic, answers all the questions.

After the introduction of the CQ 110 E and CQ 301, NEC have completed their CQ-Line with the CQ 201 Digital VFO, the SP 110 Speaker and the M110 SSB Microphone. The NEC CQ-Line represents highest technical standard, with regard to design, quality, reliability and price which is available to the modern radio communicator today

NEC CQ 110 E, 300 watts Digital transceiver Modes: FSK/ USB/LSB/CW/AM. 100-240V AC/13.5DC handmike Control speaker, VOX Sidetone, 3 Xtal filters, Blower, RCA 7360 RX Mixer, 22 fix-channels, 60 Page Manual, 160-10 meter, 11 Ranges of 500 Khz

NEC CQ 301 2-3 KW SSB / AM Linear Amplifier 160-10 meter, 2 EIMAC 3-500Z. Handbook, 100-240 V AC, High Speed Blower, incorp. Power Supply
NEC CQ 201 Digital Additional VFO for Split-Frequency Operation, containing 3 VFO systems, usable as frequency counter, 100-240 V AC/13.5VDC, Handbook

NEC SP 110 Communication Speaker with Electronical Digital
Clock, timer, etc handbook 100-240 VAC
NEC M 110 SSB Communications Microphone, designed for CQ - Line

Colour of CQ line brown military sand-touch.
\star Dealer inquiries welcome

* ASK ABOUT OUR UP TO 120 DAYS FINANCING FACILITIES
* ASK FOR OUR COLOUR CATALOGUE against payment oí

SFR 16 - or any other equivalent currency

* Shipments to EVERYWHERE

WW-044 FOR FURTHER DETAILS

HI-FI
DRIVE UNITS

PA GROUP \& DISCOUNITS

KITS FOR MAGAZINE DESIGNS etc.

7.50

Audax HD20 B25J4
Audax HD1 1 P25EBC
Baker Superb
Castle 8RS / DD
Chartwell CE 2058 ba pairs only Coles 4001
Coles 3000
Celestion HF 1300 I
elestion HF2000
Dalesford D 10 tweeter
Dalesford D20/1054
Dalesford D30/1105
Dalesford D50/15361/2
Dalesford D50 / 2008
Dalestord D 70/250 10
Dalesford D 100/31012
Decca London
Decca CO/1000/8
Decca DK30
£ 12.5
E 14.65
£12.25
$£ 7.25$
£ 22.50
E12.35
E.M.1. type 3504 ohm
irs 59.90
59.90
$£ 6.25$
$£ 6.25$
$£ 6.25$
$£ 6.25$
$£ 8.25$
$£ 8.25$
$£ 9.95$
$£ 8.95$
$£ 8.25$
$£ 8.25$
$£ 10.95$
$£ 10.95$
$£ 10.95$
$£ 10.95$
$£ 1195$
£11.95
E11.95
£ 24.95

\section*{£34.95}
 $E 41.25$

£8.95
$£ 8.95$
$£ 27.50$
$£ 9.25$
$£ 16.95$
E 3.95
$£ 3.95$
$£ 8.25$
$£ 8.25$
$£ 7.50$
$£ 7.50$
117.95 $E 17.95$ 22.50
$\mathbf{2 2} 50$ 22.50
$£ 8.50$
£ 10.95
E11.95
$E 24.95$
$E 4.95$
$£ 4.95$
$£ 7.25$
± 7.25
$£ 36.00$
£49.95
E 52.00
$\Varangle 86.50$
$£ 9.75$
$£ 8.95$
£ 11.75
E 26.95
$£ 14.50$
£ 17.95
£ 19.95
$\begin{array}{r}£ 9.95 \\ \hline 22.45\end{array}$
$£ 22.45$
£15.50
£10.35
$£ 25.25$
$£ 7.25$
$£ 7.25$
$£ 7.45$
$£ 7.45$
$£ 8.75$ Richard Allan DT30 Seas H086 £8.75 Shackman Electrostatic C/W polar nework \& $2 / 0$ pair E112.00
E91.50

Tannoy HPD 315 A Tannoy HPD 385A
Baker Group 25 Baker Group 25 Baker Group 35 Baker Group 50/12 Baker Group 50/15 Celestion G 12 M Celestion G 12 H Celestion G18C Celestion G12/75 (alum dome) Celestion G12/75 (d/cone) $\mathbf{E 2 2 . 5 0}$ Celestion G $12 \mathrm{M} / 50$ (cambric edge) Celestion G $15 / 100$ (alum dome) Celestion MH 1000 Celestion Powercell 12 Celestion Powercell 15 Celestion Powercell 15
Fane Pop 40 Fane Pop 50 H
Fane Pop 75
Fane Pop 65
Fane Pop 80
Fane Pop 100
Fane J44 horn
Fane J 104 horn
Fane J73 horn
Fane Guitar 80L
Fane Guitar 80B
Fane Disco 80
Fane PA80
Fane Bass 85
Fane Crescendo 12A Fane Crescendo 12B Fane Crescendo 15/100 Fane Crescendo 15/125
Fane Crescendo 18 Fane Crescendo 18 Fane 920 II Horn
Fane HPX1/HPX2
Goodmans 8PA
Goodmans 12 P Goodmans 12 PD Goodmans 12PG Goodmans 18P
Goodmans 50 HX
McKenzie C 1280 McKenzie GP15 McKenzie GP15
McKenzie TC15 McKenzie CG 15 Bass Motorola Piezo Horn
Richard Allan HD8T Richard Allan HD 10 T Richard Allan HD 12 T Richard Allan HD 15 Richard Allan HD $15 T$
£102.95
£ 119.95
£ 13.00
£ 14.50
£ 21.00
$£ 33.00$
$E 13.50$
E17.95
E41.95
£ 22.50
e) $£ 24.50$

Kits include drive units, crossovers, BAF/Long fibre wool, etc. for pair of speakers.

Carriage $€ 3.50$
Practical Hifi \& Audio PR09-TL (Rogers)

PRO9-TL $£ 5.50+£ 1.50 p \& p$
Hifi Answers Monitor (Rogers)
£129.00
Hifi News State of the Art
£161.00
Popular Hifi Mini Monitor

> (Colloms)
£63.00
Popular Hifi Round Sound (Stephens) including complete cabinet kit
$\begin{array}{ll} & \mathbf{£ 6 8 . 0 0} \\ \text { Popular Hifi (Jordan) } \quad \mathbf{£ 9 1 . 0 0}\end{array}$
Practical Hifi \& Audio Monitor
(Giles) $£$
Practical Hifi \& Audio Triangl
(Giles)
Practical Hifi \& Audio BSC3
(Rogers)
Practical Hifi Mini Triangle (Giles)
Hifi News Tabor (Uones)
Hifi News Tabor (with H4 bass units)
119.00
£86.00
£60.00
$£ 99.00$
£59.75
£65.00
Wireless World T.L. / KEF
(Bailey)
$£ 112.00$
Wireless World T.L. Radford
(Bailey) $£ 154.00$
Smart badges free with all
ABOVE KITS [TO GIVE THAT PROFESSIONAL TOUCH TO DIY SPEAKERS!

Send $3 \times 7 p$ stamps for reprints/ construction details of any of above designs.

CARRIAGE \& INSURANCE
Tweeters/Crossovers 40p each
Speakers up to 10
Speakers up to 10
Speakers 12
Speakers 15
Speakers 18
Speaker Kits Mag. design kits 75p each 75p each £ 1.25 each £ 2.00 each E 2.95 each £2.50 pair £ 3.50 pair

Prices per pair. Carriage $£ 250$

Dalesford System $1 \ldots \mathbf{£ 5 2 . 9 0}$

 Dalesford System $2 \ldots . . E 55.75$ Dalesford System $3 \ldots \mathbf{£ 1 0 1 . 7 5}$ Dalesford System $4 \ldots$ E108.00 Dalesford System 5 £139.00 Dalesford System 6 ...E93.00 agle SK 210 Eagle SK 215 Eagle SK 320 Eagle SK 325 Eagle SK 335Goodmans DIN20 Goodmans Mezzo Twinkit Kef Kit I Kef Kit III

Lowther PM 6 Kit Lowther PM6 MKI Kit E108.00 Peerless 1070 E122.00 Peerless 1120E139.0 Peerless 2050 … $\mathbf{E 4 9 . 9}$ Peerless 2060 ….... $\mathbf{6 5 . 9 5}$ Radford Studio 90 £ $1 \mathbf{5 4 . 0 0}$ Radford Monitor 270 ⑳8.00 Radford Studio $270 \quad \mathbf{E 2 7 5 . 0 0}$ Radford Studio $360 \quad \mathbf{£ 3 9 0 . 0 0}$ RamKit 50 (makes Ram 100) $£ 69.95$ Richard Allan Twin

Assembly $\mathbf{£ 3 3 . 0 0}$ Richard Allan Triple 8 $\quad \mathbf{£ 5 1 . 0 0}$ Richard Allan Triple 12 .. £62.00 | Richard Allan. Super Triple | $\mathbf{£ 7 3 . 0 0}$ |
| :--- | :--- |
| $\mathbf{R} \mathbf{~} \mathbf{4 6} 50$ | | Richard Allan RA8 Richard Allan RA82 Richard Allan RA82L

Seas Min
Seas 203
Seas 302
Seas 303
Seas 503
 Wharfedale Linton $3 \times P$ E41.95

Everything in stock

 speaker constructor! BAF, long fibre wool foam ponents. etcLarge selection of grille fabrics (Send 15p in stamps for fabric samples)
(Prices correct at 1/10/78) 5 Swan Street. Wilmslow, Cheshire.

Send 15p stamp for free 38 page catalogue Choosing a Speaker-

Telephone: Speakers, Mail Order and Export Wilmslow 29599 Hi-Fi: Wilmslow 26213
\square Lightning service on telephoned credit card orders!

Swan Works, Bank Square,
Wilmslow, Cheshire.

THE EXPANDABLE GENERAL-PURPOSE MICROCOMPUTER

filhen

THE RESEARCH MACHINES $380 Z$ - A UNIQUE TOOL FOR RESEARCH AND EDUCATION

Microcomputers are extremely good value The outright purchase price of a 3802 installation with dual mini floppy disk drives, digital 1/0 and a real-time clock is about the same as the annual maintenance cost of a typical laboratory minicomputer It is worth thinking about'

The RESEARCH MACHINES 3802 is an excellent microcomputer for on-line data logging and control. In university departments in generall, it is also a very attractive alternative to a central mainframe Having your own 3802 means an end to fighting the central operating system. immediate feedback of program bugs, no more queueing and a virtually unlimited computing budget. You can program in interactive BASIC or run very large programs using our unique Text Edinor with a $380 Z$ FORTRAN Compiler. If you already have a minicomputer, you can use your 380 Z with a floppy disk system for data capture

What about Schools and Coileges? You can purchase a 380 Z for your Computer Science or Computer Studies department at about the same cost as a terminal. A $380 Z$ has a performance equal to many minicomputers and is ideal for teaching BASIC and Cesil. For A-Level machine language instruction, the $380 Z$ has the best software front panel of any computer. This enables a teacher to single-step through programs and observe the effects on registers and memory, using a single keystroke.

WHAT OTHER FEATURES SET THE $380 Z$ APART?

The 3802 with its professional keyboard is robust, hardwearing equipment that will endure continual handling for years. It has an integral VDU interface - just plug a black and white television into the system in order to provide a display unit - you do not need to buy a separate terminal. The character set includes upper and lower case characters and low resolution graphics Text and graphics can be mixed anywhere on the screen

The $380 Z$ also has an integral cassette interface, software and hardware, which uses named cassette files for both program and data storage. This means that it is easy to store more than one program per cassette.

Owners of a 3802 microcomputer can upgrade their system to include floppy (standard or mini) disk storage and take full advantage of a unique occurence in the history of computing - the CP/M $M^{\text {TM }}$ industry standard disk operating system. The 3802 uses an 8080 family microprocessor - the $Z 80$ - and this has enabled us to use CP/M. This means that the 3802 user has access to a growing body of CP/M based software, supplied from many independent sources

3802 mini floppy disk systems are available with the drives mounted in the computer case itself, presenting a compact and tidy installation. The FDS-2 Standard floppy disk system uses double-sided disk drives, providing 1 Megabyte of on-line storage.

Versions of BASIC are available with the $380 Z$ which automatically provide controlled cassette data files, allow programs to be loaded from paper tape, mark sense card readers or from a mainframe A disk BASIC is a/so available with serial and random access to disk files. Most BASICs are available in erasable ROM which will allow for periodic updating

If you already have a teletype, the $380 Z$ can use this for hard copy or for paper tape input. Alternatively, you can purchase a low cost 3802 compatible printer for under $£ 300$. or choose from a range of higher performance printers
-Trademark, Digital Research
3802/32K COMPLETE WITH

We're getting bigger to give you a hetter sprvice

We've opened a Sales and Customer Service Centre in London. And our new factory is fully operational. Southwest'Technical Products provide a range of superb computer systems with technical backing second to none.

Systems

To suit all types of user - OEM, process control, data handling, small business systems, and all accounting functions.

Software

Low cost packages for word processing, selective mailing, progress control and invoicing. Our Software Development Unit available to prepare programmes to customer specification.

Training

Inexpensive courses (at Dover Street): BASIC - programming for the businessman; microcomputers in EDUCATION; WORD PROCESSING made easy; SOFTWARE DEVELOPMENT-make your microprocessor work.

Maintenance
Comprehensive national service by Computer Field Maintenance Ltd.

Sales Office: 38 Dover Street, London W1.
Tel: 01-491 7507 Telex: 268913.
Factory: 12 Tresham Road, Orton Southgate, Peterborough.
Tel: 0733-234433 Telex: 32600.

the symbol of reliability

New from AMCRON

Real Time Analyser RTA2

The Amcron RTA2 Real Time Analyser is designed as much for use as a production tool as it is for on-site audio analysis of theatres, and recording studios. A flight case is available.

* 5 CRT Display
\star Internal Pink Noise Source
* $1 / 3$ or 1 octave Display
* Frequency range $20-20 \mathrm{kHz}$
* Outputs for X-Y Recorders
* Compatible with any microphone
* Price £1,960 ex. VAT

POWER AMPLIFIER D75

The AMCRON D 75 power amplifier replaces the previous model D60 Employing completely new type circuitry it offers also many new features but without any increase in the price

* New Amcron IOC comparator.
* Balanced XLR input connectors.
* Signal Presence indicators.
* Separate Signal/chassis earth.
* 45 watts into 8 ohms per channel.
* Price £230 ex. VAT

Other AMCRON products include:

DC300A amplifier 500 watts/chan.
£550
D150A amplifier 200 watts/chan.
E350
VFX2A Electronic Variable Filter
£270
EO2 Equaliser
£599
IC150A Pre-amplifier
£260
IMA Intermodulation Distortion Analyser unit
E610

MACINNES LABORATORIES LTD.

Carlton Park Industrial Estate
Saxmundham, Suffolk, IP17 2NL
Tel. Saxmundham (0728) 2262/2615

MPU

 XTALS
OVER SEVENTY STANDARD FREQUENCIES

TENS OF THOUSANDS STOCKED

DELIVERY FREE WORLD-WIDE

INTERFACE QUARTZ DEVICES LTD 29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g WW-013 FOR FURTHER DETAILS

WW - 068 FOR FURTHER DETAILS

WW - 065 FOR FURTHER DETAILS

643A FUNCTION GENERATOR $£ 89+£ 2.50 \mathrm{p} \& \mathrm{p}$

OnlyValves are good enough

 for this customer.As the demand for high quality sound increases, so does the need for M-OV valves.

Valves, and only valves, can provide the level of performance many listeners now demand

M-OV Beam Tetrode KT 77 and KT88 valves meet all audio market requirements from 30-200 watts. KT77 is especially rugged and ultra linear.

KT88 is a proven long-life valve that is at home in your quality equipment.

Get in touch with us now for technical data and details of worldwide distribution.

New from GREENWOOD

 a precision vice that rotates a full 360 degrees-tilts 180 degrees from vertical to horizontal, and offers a choice of 3 bases, 3 heads, a bench clamp and a PCB holder.
We think it's like no other vice you've ever used. Its head rotates a full 360 degrees - and tilts 180 degrees from vertical to horizontal
One conventional knob locks work in any desired position, firmly yet gently. You can choose a standard, low profile or vacuum base - a standard, low profile or wide opening head - a bench clamp mounting base - a printed circuit board holder and of course replacement jaws and pads if ever you need them. Panavise is more than just a vice - it's a system.

Greenwood Electronics

Obtainable also from our distributors

[^2]

 , ? a

FULL ASCII KEYBOARD

LOW COST! Model 756
Full ASCII Keyboard

* Intended for professional microprocessor applications.
This one Keyboard will meet most present and future requirements. Full 128-character ASC11 8-bit code Tri-mode MOS encoding.
Applications notes for auto repeat, numeric pad, serial output.
Upper and lower case characters generated by keyboard with latching shift-lock.
* Selectable polarity.
- Size $305 \times 140 \times 32 \mathrm{~mm}$ $\left(121 / 4 \times 5^{1 / 2} \times 1 \frac{1 / 4}{} \mathrm{in}\right)$
* MOS/DTL/TTL compatible outputs.
- New guaranteed OEM grade com

Board has space for small low-cost DC/DC converter so that entire unit operates off single 5 V rail.

SPECIAL EVALUATION PRICE $£ 43$ + vat

Please write for full technical details and pricing to Citadel Products Ltd 50 High Street, Edgware Middx. HA8 7EP, England 01-951 1848. Cables: Citadel Edgware

Needs +5 and -12V supply
User selection of positive or negative logic data and strobe output.

Carter Associates
P.O. Box 11262 VLAEBERG South Africa postal code 8018

WW - 051 FOR FURTHER DETAILS

ENGLAND iSOUTH) A.E.W. AUDIO VISUAL 126 Charing Cross Road WC2
W.C. $2-8362372$
Tel. $01-836$
Mr Jonn Cowan

ENGLAND (midlands)
CROXFORD CUSTOM EQUIP
64 London Road Leicestar
Tel 053353846

axforp Custom eouip.

Mr. Phit Croxtord
ENGLAND (WEST)
SEVERNSIDE AUDIO \& LTG
29 The PIomenade
Gloucester Road
Bristol BS7 $8 T Z$
Tie 027241666
Mr. Peter Hannay

SCOTLAND
ATMOSPMERELIG \& SOUND
57 Netson Street
Aberdeen
Aberdeen
Scotland
Scotland
Tel 0224572905
Tel. 0224572905
Mr. Keith Main

DENMAFK
TS.BADIO Bakxegrorsve; 36
3300 freder 3300 frederiksweeck
Oenmack Oenmark
Tal. 1203$)$
120739

belgium
STUDELEK ELEKTRONICA
Tienvestrast 260
3000 Leuven
Beigium
Ben

[^3]
The professionals' colour pattern generator

Over 20 patterns to CCIR or RTMA standards

_- Full RF coverage: TV IF, Band I-III- IV and V.

- Electronic tuning and choice of six preset channels.
- Synchronisation according to TV standard, also obtainable as composite and frame sync.
- Adjustable Video, calibrated chroma/burst and variable RF amplitude.
- Internal/external video and sound modulation.

Linearstaircase signal with 8 identical steps combined with definition pattern of 5 vertical bars at 0.8-1.8-2.8-3.8 and 4.8 MHz .

This pattern generator is the finest available for precise:measurement and alignment work on video equipment including domestic TV receivers, VCR's, VTR's, VLP's, closed circuit and cable TV installations.
Service technicians, video development engineers, TV broadcast staff and lecturers will all appreciate the quality and ease of use of this compact but very versatile pattern generator. More than 20 patterns are available on six channels frequencies using instant touch-button selection. The RF, video and trigger outputs are superior to many other portable generators and closely resemble those transmitted from your local TV station.

Philips Electronic Instruments Dept York Street Cambndae. England CB1 2PX Tel Cambridge (0223)58866 Telex 817331

PHILIPS

OSTS mow trom ambit
 internatianal

counter atiractions:

New this month from Intersil, the ICM 7216. This is probably the most significant new IC and operates on inputs of up to 10 MHz minimum. The single 28 pin DIL also ha The IC cost is $£ 19.82$, and the $10 \mathrm{MHzHC18U} \times$ tal $£ 2.50$ (for timebase functions). ircuit data is free with the ic, or $£ 1$ purchased separately. Input preamp board $£ 7.00$ New from Ambit is the MC3357. $6 \mathrm{v}, 2 \mathrm{~mA}$ standby NBFM IF, detector and squelch
with 10.7 .455 kHz balanced mixer, onboard oscillator device, and 5 uV sensitivity ideally suited to our CFM and LFY filter series, and costs $£ 3.12$ with full data. Xtal $£ 2.50$. Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $121 / 2 \%$ except those marked ". Please keep orders separately totalled,

TD4000 $\mathrm{tmO5}$

Mirramarket stasheo

From the Warld's leading radio innountion saurce:

WW-038 FOR FURTHER DETAILS

STEREO DYNAMIC RANGE CONTROLLER CP-DR1

The CP-DR1 has two main applications it may be used to compensate for any compression or peak limiting which may have been applied to radio broadcasts or commercial gramophone recordings and thus restore lost realism. It may also be used to make "noise free" tape recordings, as an additional $30-40 \mathrm{db}$ of dynamic range can be encoded and recorded on to most cassette recorders and then decoded and recovered on replay. The unit may also be used as a compressor for listening in high noise environments (the motor car or workshop?) and for the preparation of "constant volume background music
CP-DR1 - £41.40 incl. (U.K.). £43.40 incl. (Export).
Also available: Pre-Amplifiers, Power Amplifiers, Filters, Peak Programme Monitors, Active Crossovers. Stereo Function Modules, Power Supplies, plus all pots, switches, etc

SHEET METAL PUNCHES

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 ram mild steel)
- Q-MAX stands for quality and reliability
- Holes`are punched cleanly and no filing is necessary
- Continuous even load during punching No jagged edges. Burr-free hole
- Specially heat treated to maintain keen cutting edge
- Used for years all over the world
- Simple operation, saving time and energy

57

METRIC
\&
LINEAR
SIZES

100\% British made

Q-Max (Electronics) Ltd

(as recommended by ETI)
Oscilloscope offer from KRAMER \& CO. Sole U.K. Importers
4" Oscilioscope for under $£ \mathbf{1 0 0}$

ELMAC 4810
 5 MHz Input Attenuator - (calibrated) $-95 \operatorname{sen} 01.02051 .2 .510 .20 .50$ /div Input Impeadance HORIZONTAL AXIS (X) Detlection Sensitivity - $0400 \mathrm{mV} / \mathrm{division}$ Bandwidh ibetween 3 dB points 1 Hz 350 KHz Gan Control - Continuous when time bases in EXT position Input impedance - 1 Mag
Input Voltage - Max - 600 P P P TiMp BASE Sweep Range (calitbrated) - $100 \mathrm{msec} / \mathrm{div}$ to 1μ sec $/$ div in 5 steps FINE Control - Variable between steps - includes time base calibration position 8lanking - Internal - on all ranges
SYNCHRONISATION Selection - Internal. external Synchromsation Level - Continues from positive to
 CRT DATA - 4 in - tlat face. single beam - Maximum high voltage - 15 kV - Fitted with 8×10 division blue filter graticule
 2 position flat and inclined Case - Steel, epoxy enamelled Front Panel - Aluminium, enamelifed epory CASH WITH ORDER
\&99 - VAT Univervity echool company and govt. orderi eccepted ty telex end telephone Totel - £109.00. Including VAT + delivery ond insurbnco. Company orders welcome. Ceath with order. Bercley and Access by errangement. Trade inquirite welcome. $\mathbf{3}^{\prime \prime}$ ELMAC 3C SCOPE
E 92.50 AVAILAELE.
To: Oscilloscope Offer, Kramer \& Co., (Dept. ww) 9 Ocrober Place, Holders Hill Road, London NWW 1 EJ

Callers welcome by appointment only

(elc.i.) TRANSVERTORS

TRANSISTORISED INVERTERS

VALRADIO TRANSVERTORS ARE BEING USED ALL OVER THE WORLD FOR MANY APPLICATIONS, INCLUDING. VIDEO TAPE RECORDERS, SOUND TAPE RECORDERS, ALARMS, LABORATORY EQUIPMENT, TELEVISIONS AND MANY OTHER TYPES OF EQUIPMENT.

SOME TYPICAL TYPES ARE:

D24/500S $24 v$ DC input 500 watts sine wave output 230 V AC
D12/150T 12 v DC input 150 watts square wave 230 v output
D24/60S $24 v$ DC input 60 watts sine wave 230 v output

We also manufacture Frequency Changers, Power Supplies and Standby Systems, and we are always happy to quote for your special requirements.
Please send for full details to
VALRADIO LIMITED, BROWELLS LANE, FELTHAM MIDDLESEX TW13 TEN
Telephone: 01-890 4242/4837

	FIX-PRINT JIG for printed circuits	S2 Drill Stand Robust all metal with ample throat dimensions Adjustable height cantilever with lever actuated feed Spring return Will accept both drills. £18.50. P\&P 106p P2 Mk. 2 Drill $£ 18$ inc. VAT P\&P 86p	S1 Drill Stand Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work. £5.13 inc. VAT P\&P 38p P1 Drill $£ 9.67$ inc VAT P\&P 38p	
	Write of phone for full details. Price $£ 10 \mathrm{inc}$. VAT. P\&P \& 1	HAVE YOU TRIED SPADE DRILLS for printed circuit boards and other soft materials? No clogging - cooler - cleaner holes - there sa range of sizes, 0.1 to 25 mm		
			DOINGTON	DLESEX TWII 8HG Sole UK Distributors

WW - 063 FOR FURTHER DETAILS

LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE TEL. 06292430 OR 2817 . TELEX 377482 LOWLEC G

The Trio CS 1500 series oscilloscopes offer top performance at moderate cost The specifications show the
performance features that have made inese ossilloscopes timf fivouries in all parts 1 the wortd. with a selection of bandwidths to 30 MHz and sensitivities down to $5 \mathrm{MV} / \mathrm{CM}$ on a 130 mm screen. Prites are very
realistic and more so when you learn that the price includes two full bandwidth $\times 10 / \mathrm{X} 1$ dual purpose probes - normality offered as expensive options. Delivery ts even better - ex slock and we intend to keep it tha! way
CS-1570
130 mm DUAL TRACE TRIGGERED SWEEP OSCILLOSCOPE
$£ 467$

- 130 mm mesh PDA
- DC. $30 \mathrm{MHz} / 5 \mathrm{mV}$
Delay
- Detay line
- Dusolavel modes ICHI - Trigger modes (CHCLFRej HF RejDC)

CS 1560 A 15 MHz
CS 56210 MHz

FOR FULL DETAILS ON THESE AND OTHER MÖDELS, CONTACT THE SOLE AGENTS, LOWÉ ELECTRONICS
WW-041 FOR FURTHER DETAIL

Design,
manufacture \& installation

BPECIFICATION
Bandwidth
Deflection
DO

Inpur R.C $1 \mathrm{MQR}, 24 \mathrm{pF}$ Risetime Oversice
 $\begin{array}{ll}\text { Overshoot } & \text { Be } \\ \text { Signal delay } & 16\end{array}$

$\begin{array}{ll}\text { Risetrme } & 117 \text { Tnsec } \\ \text { Oershoor } & \text { Betier then 3\% } \\ \text { Oignal delay } & 160 \text { nsec }\end{array}$
$\begin{array}{ll}\text { Polarity } & \text { CH2 can be inveried } \\ \text { Sweep time } & 02 \mu \mathrm{~S} / \text { div } 1005 \mathrm{~s} / \text { div }\end{array}$
Magntier $\quad 5 \quad 5 \mathrm{~S} /$ div 100

Intensity moduatiol More than 5Vpp
Phosphot P31

Dimensions $\begin{aligned} & 50 / 60 \mathrm{~Hz} 225 \mathrm{~W} \\ & \mathrm{~W} 260 \times \mathrm{H} 190 \times 0375(\mathrm{~mm})\end{aligned}$
Weighs

Audix Limited
Station Road, Wenden Saffron Walden Essex CB11 4LG

Sound \& Communications systems

Please send me details
\square public address equipment
\square Theatre sound equipment
\square Hospital distribution
and nurse call systems

Intercom systems, commercial \& industrial
\square Hotel entertainment systems
\square Simultaneous interpretation
and conference systems

Name

Address

C\$ 1575
Unique 4 function audio analysis scope Shows not only two channels but also phase relationship between them. $\mathrm{DC}-5 \mathrm{MHz} 1 \mathrm{mV} / \mathrm{CM}$ $\mathrm{OC}-5 \mathrm{MHz} 1 \mathrm{mV} / \mathrm{CM}$
A must for the audio engineer A must for
repairman
$£ 262$

Stayahead-follow this sign

GOULD ADVANCE INSTRUMENTS HAVE AWORLDWIDE REPUTATION. BUT THEY NEED NOT COST YOU THE EARTH.

OS245A AND OS250B OSCILLOSCOPES

Two dual trace oscilloscopes, with sensitivity of $5 \mathrm{mV} /$ div., and $2 \mathrm{mV} / \mathrm{cm}$ respectively. The OS250B offers variable trigger level with or without bright line. The OS245A has a bandwidth of 10 MHz , the OS250B offers 15 MHz . Fully portable, these are the ideal instruments for servicing, educational and general purpose applications.

ALPHA III DIGITAL MULTIMETER

A tough, attractive, $3 \frac{1}{2}$ digit multimeter with 25 ranges and a basic accuracy of $\pm 0.2 \%$. A bright red LED display gives a clear reading even in high ambient light conditions, and yet power consumption is low enough for extensive field applications.

A purpose built CMOS chip incorporates all analogue and digital circuitry, giving a low component count and increased reliability.

TCB20 TIWER COUNTER

This new, tough, 5 -digit unit has an operating frequency of 35 MHz . Plated through hole PCB construction keeps the component count down, for exceptional reliability. Frequency measurements up to at least 35 MHz can be easily read from the clear 7 -segment display. The TC320 offers outstanding performance including "disciplined" triggering - at a remarkably modest price.

BETA DICITAL MULTIMETER

A general-purpose multimeter, offering 29 ranges, including temperature (optional), and a basic accuracy figure of $\pm 0.2 \%$. A clear, $3 \frac{1}{2}$ digit Liquid Crystal Display, $0.5^{\prime \prime}$ high, gives a high-contrast read-out. Fully portable, with a minimum of 300 hours' battery life, the Beta has already established a reputation for accuracy and reliability.

For details of any of these instruments and the Gould Advance 2 year guarantee, write or phone today. Gould Instruments Division,
Roebuck Road, Hainault, Essexig6 3UE. Telephone:01-5001000 Telex:263785.

wireless world

Editor:

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443
Projects Editor:
MIKE SAGIN
Phone: 01-261 8429
Communications Editor:
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
Drawing Office Manager:
ROGER GOODMAN

Production:

D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisement Manager:

BOB NIBBS
Phone 01-261 8622
DAVID KITCHENER
Phone 01-2618037
Classified Manager:
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
BARRY LEARY (Classified Advertisements) Phone 01-261 8508

JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

Intelligent

THROUGHOUT 1978 electronics engineers have been looking on with mild amusement at all the excitement occasioned by the discovery of the microprocessor by the politicians, the press and the general public. It's not merely that the engineers have known all about the device and its abilities for some years anyway, but that the m.p.u. has suddenly become the symbol for a whole field of technology. Through it microelectronics has been revealed to all, and this of course just happens to be the dress in which electronic engineering appears at the moment. .While the electronics man has more or less absorbed the m.p.u. as just another component to be soldered onto a p.c. board, the rest of the world is rightly concerned about the effects of the associated technical change - the widespread introduction of software on its life an work. Committees, study groups and other organizations have been set up, and these are simultaneously encouraging the use of m.p.us in new products and manufacturing processes and examining their effects on productivity and employment. What these bodies may not be aware of, but should certainly get on to immediately, is the next stage after programmed logic, namely Artificial Intelligence.

Of course AI, as it is unfortunately abbreviated (the same initials being used for artificial insemination), has been an established field of scientific research for several decades. It could be said to have begun with the late Alan Turing's article "Intelligent machinery" which, perhaps significantly, appeared in 1947 at about the same time as the invention of the transistor. Centres for studying machine intelligence - at Edinburgh University and Stanford Research Institute to name but two - have been set up and, apart from their scientific work relating to such things as the

machinery

functioning of the central nervous system, have developed robots and other systems which display some of the attributes of animal or human intelligence in the performance of tasks. As distinct from programmed or deterministic machines, they are characterized by having some degree of autonomy or self-organizing ability in the way they perform given tasks or solve problems. The field is vast and defies neat description (as does "intelligence" itself) but it could be roughly divided into the three areas of problem solving, pattern recognition and learning systems. There is a link with adaptive control systems and the dynamic programming methods used to make their searching processes amenable to digital computing.

What is now significant is that some AI self-organizing systems, complicated as they are, may soon leave the laboratory and appear in practical microelectronic form. Two semiconductor manufacturers have voiced their ideas already. In recent speeches, Robert Heikes of Motorola has referred to products "that will have a 'thinking' capability and, as such, will provide a dramatic extension to mankind's basic capabilities" while Tom Lawrence of Intel has said that microprocessors "will evolve to become units of artificial intelligence with adaptive control in the m.p.u. architecture." If, as has been predicted, the semiconductor chip of the 1980s will be capable of integrating over a million components, these pronouncements are well within the bounds of engineering possibility.

Intelligent machines, as distinct from the automatic kind that are merely deterministic, are certainly on the way. Industrial work will be de-skilled even further, and our various committees and advisory bodies such as ACARD now studying the microprocessor will have an even bigger job to do.

The UK wavelength changes

Long- and medium-wave broadcasting from November 23

by G. H. Sturge, M.I.E.R.E. Engineering Information Department, BBC

Many readers will have heard already of the impending changes to the frequencies used for BBC services in the I.f. /m.f. sound broadcasting bands. This article gives the reasons for the changes, which stem mainly from increased demands for frequencies from other countries. A great many of these demands were written into the 1975 Geneva Plan (see January 1976 issue, p.42) which comes into effect this year on November 23rd. The author first gives the historical background and then explains in detail the BBC's reasons for its choice of the frequencies to be used for Radios 1, 2, 3 and 4 and the External Services and the effect on the transmitter network

THE LOW FREQUENCY broadcast band extends from 155 to 285 kHz and the medium frequency band from 525 to 1605 kHz , although at present $255-285$ kHz is not available for broadcasting in Western Europe. With 9 kHz spacing between carriers, there is room for only 15 channels on l.f. and 120 on m.f. In the early days of radio broadcasting this would have been sufficient to assign exclusive channels to individual transmitters, but as the number of broadcasting stations in Europe increased in the 1920s an element of channel sharing became inevitable. Ever since then, periodic conferences have been necessary to regulate the use of frequencies for broadcasting by the various stations and countries. Thus we had a Geneva plan in 1926, a Prague plan in 1929, Lucerne in 1934, Copenhagen in 1948 and recently Geneva again in 1975. There was also a Montreux plan in 1939, but this was never implemented.
The latest Geneva Conference was by far the largest of its kind, because it embraced not only the European area, but the whole of Africa, Asia and Australasia as well. There are good reasons for having a single plan for the whole of this area. At present, for instance, Europe and Africa use mainly 9 kHz channelling, but Asia and Australasia use 10 kHz , so inevitably there are areas where heterodyne interference occurs between stations operating on the different channelling standards. This article will be concerned mainly with I.f./m.f. broadcasting in the 'European area', which in addition to Europe in-
cludes much of North Africa and the Middle East.
The recent Geneva Conference was long overdue. The Copenhagen plan made provision for 620 transmitters having a combined power of 20 MW ; by the end of 1976 the number of transmitters in the European area had grown to 1450 and the combined power had increased to 82 MW . Mutual interference between stations has grown steadily worse and, due to the increased range of interfering signals after dark, the night-time service range obtained is in many cases only a fraction of that achieved in day-time. A crucial factor in l.f. and m.f. planning is, of course, this difference between day- and night-time propagation. Day-time reception depends almost entirely on the ground wave, which falls off in a predictable way and enables several high power stations to use the same channel without mutual interference. At night-time (and in some cases during the winter day), the signals are propagated over much greater distances by ionospheric reflection, giving rise to significant field strengths at distances up to a thousand or more miles. Although we use the terms day-time and night-time, the transition from one condition to the other is a gradual one, and in northern latitudes, night-time conditions apply during the mid-winter period to a substantial part of the working day, between about 1500 hours one day and 1000 hours the next (including the important period around breakfast time).

At earlier conferences the planners were most concerned with night-time

November 23 - Principal new BBC frequencies		
Radio 1	1053 kHz	285 metres
	1089 kHz	275 metres
Radio 2	693 kHz	433 metres
	909 kHz	330 metres
Radio 3	1215 kHz	247 metres
Radio $4 \quad 200$ kHz 1500 metres (With m.f. supplements in Aberdeen, Carlisle. Tyneside, Ulster and parts of South-West England).		

conditions because it was during the evenings that audiences were at their largest. This situation has changed in the last 20 years, and television now claims the mass audience during the evenings, whilst radio's largest audiences normally occur in the daytime. Nevertheless, a significant number of people still listen to the radio, during the evening hours, and in the United Kingdom this is typically around 1 million; there are also very large audiences during the morning and early evening periods.

The Geneva conference

This was held under the auspices of the International Telecommunication Union, in two sessions. The first session in 1974 was intended to settle the technical standards to be adopted; the second in 1975 prepared the frequency assignment plan. Some 100 countries were represented at the second session and the delegations were from governments, not broadcasting authorities. Thus the United Kingdom delegation was led by the Home Office, although senior engineers from both the BBC and IBA were included.
The consideration of technical standards was, of course, a long and detailed one, but the main decisions taken in the first part of the conference were these:

1. 9 kHz channelling to be used throughout, with all carrier frequencies in the m.f. band to be multiples of 9 . Some European countries, including the UK, and supported by the European Broadcasting Union, would have liked to change to 8 kHz spacing, to provide more channels; but others, mainly in Asia, would have preferred to retain 10 kHz . The adoption of 9 kHz was, therefore, a compromise between these views.
Figures were also established for the minimum field strengths needed to provide a satisfactory service, depending on the geographical area and the frequency used.
2. The protection ratio adopted as providing a just acceptable standard of reception was taken as 30 dB . This is the ratio between the strength of the (nonfading) wanted signal and the strength of interfering signals on the same frequency. A different figure is used for adjacent channel interference, but in considering the repercussions of the

Geneva conference, this is not a major factor.

Countries were asked to submit, in advance of the 1975 session, a list of their estimated needs to cover the period from 1978 to 1989, with details of frequencies, transmitter sites and powers.

In the early post-war years the UK already had a well developed broadcasting service, and at the time of the Copenhagen conference in 1948 enjoyed a rather privileged position in European broadcasting. The situation was quite different for many of the other states represented at the Geneva conference; in 1948 they were either not in existence or else had only a rudimentary broadcasting system. It was, therefore, to be expected that these countries would submit quite legitimate claims for increased frequency assignments. For the UK, however, the Home Office decided only to submit claims for those frequencies and power levels which are already available to the UK, together with a modest claim for additional low power assignments to allow for some future development of local radio.
At the 1975 session the proposals which had been submitted by the different countries were listed so that a study could be made of all the incompatibilities, that is to say, instances where one transmitter could be expected to create an unacceptable level of interference in the service area of another. A large computer programme was used to provide an estimate of the minimum usable night-time field strength, for every transmitter, i.e., the field strength which would be needed in order to provide a 30 dB margin over the sum of the interfering co-channel signals. In the absence of interfering signals, a field strength of 1 or $2 \mathrm{mV} / \mathrm{m}$ may be quite adequate for satisfactory reception. In the presence of night-time interference, a much greater fieldstrength - say 20 or $30 \mathrm{mV} / \mathrm{m}$ - may be needed to provide the 30 dB margin. Thus the effective coverage obtained from any transmitter is usually much less at night-time than during the day. Some, but by no means all, of the most obvious incompatibilities were resolved by direct negotiation between the two countries concerned. Nevertheless, it 'had to be accepted that, with the considerable increase in both the number and power of transmitters, there would inevitably be an increase in the usable field strength values in many cases,

Radio 2 distribution. The map shows which frequency is most likely to provide satisfactory reception in any particular area. Although a signal should normally be audible in the day-time, the areas of satisfactory reception at night-time will be much more limited than those shown.
leading to a reduction in night-time coverage.

In the final outcome most of the original submissions were written into the plan, and many countries were therefore able to obtain a considerably increased number of frequencies; to what extent these will actually be taken up, time alone will show. In the European area, the plan includes some 2700 transmitters, with a total power of 214 MW , an increase of almost $2: 1$ in the number of transmitters, and almost 3;1 in total power, over the 1976 situation.
So far as the United Kingdom is con-
cerned, all of its existing frequencies, including 13 high power m.fs and one high power l.f. were retained, most of the m.fs with a change of just 1 kHz , to conform to the new channelling plan. The United Kingdom also gained the right to use an additional l.f. channel 227 kHz - at medium power, although this is shared with a 2MW transmitter at Warsaw. Some additional low power assignments were also obtained, to provide for the future development of local radio. There are of course, no exclusive frequencies in the new plan, and many of the usable field strength figures for

Radio 2
Distribution using two MF Channels

night-time are appreciably higher than at present. They range from about $8 \mathrm{mV} / \mathrm{m}$ at best to over $100 \mathrm{mV} / \mathrm{m}$ in the worst case, the average being around $20 \mathrm{mV} / \mathrm{m}$. The inevitable result is that when the new plan is fully implemented, most transmitter service areas will shrink quite drastically at night-time, as compared to the day-time situation, and many listeners will suffer from increased interference to their m.f. reception.

The UK channels on which high power is permitted are shown below, together with the programme services for which they have been used until November 1978:

Frequency (kHz) *	Programme service
$200(200)$	Radio 2
$647(648)$	Radio 3
$692(693)$	Radio 4
$809(810)$	Radio Scotland
$881(882)$	Radio Wales
$908(909)$	Radio 4
$1052(1053)$	Radio 4
$1088(1089)$	External Services
$1151(1152)$	Independent
	Local Radio
$1214(1215)$	Radio 1
$1295(1296)$	External Services
$1340(1341)$	Radio Ulster
$1457(1458)$	BBC Local Radio
$1546(1548)$	BBC and
	Independent
	Local Radio

*Frequencies after Nov. 23, 1978 shown in brackets

For the BBC it was necessary to consider very carefully its future plans for l.f./m.f. broadcasting. It would have been possible to leave the main networks substantially as they were; but this could have led to a reduction in coverage at night-time, affecting most services, but especially serious in the case of Radio 3. It was therefore decided to study the possibility of devising a better way of using the frequencies available, in order to overcome the increased interference so far as possible, and also to take account of certain changes which the BBC had considered desirable for some years.

Firstly, Radio 4. In the last few years we have seen the development of local radio in England, and national services in Scotland, Wales and Northern Ireland, known as Radio Scotland, Radio Wales, and Radio Ulster respectively, each including an increasing proportion of locally produced programmes. At the same time Radio 4 has developed as the BBC's main channel for news and information, leading to the concept of a Radio 4 national UK service, which could provide an alternative both to local radio in England, and to Radio Scotland, Radio Wales and Radio Ulster in those countries. The most satisfactory way of realising this concept is to transfer Radio 4 to l.f., with additional transmitters in Scotland to extend the
existing coverage on long-wave.
Secondly, it is hoped to improve the coverage of Radio 1 . This is one of the most popular services, yet it has had since its inception only one m.f. channel and no v.h.f. - apart from the limited use of the Radio 2 v.h.f. network. It is not, unfortunately, possible to provide complete coverage with only one medium frequency, even in the daytime. As an additional v.h.f. network is not practicable at present, two medium frequencies will be used for Radio 1 , which will enable a substantial improvement to be made to both the day- and the night-time coverage.

The night-time interference level on 648 kHz can be expected to increase very considerably in the new plan, and the value of this frequency for Radio 3 would, therefore, be much reduced. It is, however, a valuable frequency, which can be used more effectively by the External Services, using high power and a directional aerial system, to provide a mainly day-time service to much of northern Europe. This frequency was therefore exchanged for 1089 kHz , which will be used for Radio 1 .

The existing frequencies for Radio Scotland, Radio Wales and Radio Ulster will remain unchanged, although if all the Geneva plan assignments are taken up it may be necessary to increase the power of some of the transmitters concerned to maintain the night-time coverage. Similarly, the frequencies used for local radio -1458 kHz (BBC), 1152 kHz (ILR) and 1548 kHz - are not affected by the proposed rearrangements. This leaves five frequencies $-693,909,1053,1089$ and 1215 kHz - to provide the coverage required for Radios 1, 2 and 3. Two will be used for Radio 2 (693 and 909), two for Radio 1 (1053 and 1089) and one for Radio 3 (1215). The final list of BBC high power channels from Nov. 23 therefore, works out as follows:

Frequency $\mathbf{(k H z)}$	Programme service
200	Radio 4
648	External Services
693	Radio 2
810	Radio Scotland
882	Radio Wales
909	Radio 2
1053	Radio 1
1089	Radio 1
1215	Radio 3
1341	Radio Ulster
1296	External Services
1458	Local Radio (BBC)

Programme services in italics represent a change of use.

The only major change which has been found necessary to the original plan concerns the use of 227 kHz . It was intended to use this frequency for Radio 4 in Central Scotland, as well as 200 kHz at Droitwich in the Midlands and Burghead in the North of Scotland. It was always recognised that inter-
ference from Warsaw, also on 227 kHz , would be a problem under night-time conditions, and small m.f. transmitters were, therefore, proposed for Edinburgh, Glasgow, Dundee and Aberdeen. To check the interference situation, a series of measurements were made during 1976/77, and these showed that the CCIR propagation curves which had been used in planning the use of 227 kHz were not valid for this particular path, particularly for day-time conditions in winter. It was found that the Warsaw signals were appreciably stronger than expected, and as a result the service area achieved with 227 kHz would have been extremely restricted, except during the day-time in the summer. This would not be an acceptable situation and further studies showed that much better overall coverage could be achieved by synchronising all three transmitters (Droitwich, Westerglen and Burghead) on 200 kHz . On this channel much lower field-strengths can be used, so a greater night-time coverage is possible; but, of course, the advantage of using two different frequencies is lost. With a single frequency, an area of unsatisfactory reception is created between adjacent transmitters in those areas where the field strengths from two transmitters are similar.

In the case of 200 kHz , these areas will fall across the border country and the central Highlands of Scotland. The main population centres which could be affected are Aberdeen, Carlisle and Newcastle, and low power m.f. transmitters will be provided for those places. To reduce the effect of interaction between geographically adjacent transmissions, the 200 kHz carriers will be phase locked and the timing of the audio modulation will be adjusted so that the total delay over the two paths will be as nearly equal as possible. In many places within these so called 'mush' areas, it will be possible to use the directional properties of ferrite rod aerials to favour one transmission relative to the other, and therefore improve the standard of reception. With the use of 200 kHz at Westerglen, the provision of m.f. transmitters at Glasgow, Edinburgh and Dundee became unnecessary.

It should be noted that each of the networks to be used is a completley new one, except for that of $1214 / 1215 \mathrm{kHz}$, which will be transferred almost unchanged form Radio 1 to Radio 3. The total numbers of transmitters and the total powers are as follows:

Service	No. of trans.	No. of freq.	Total output power (kW)
Radio 1	24	2	759
Radio 2	24	2	625
Radio 3	18	1^{*}	271
Radio 4	13	1l.f. +8 low power m.f.	
*Plus			

*Plus one or two very low-power transmitters on 1197 kHz .

Local radio

Most of the m.f. channels used by the 20 BBC local radio stations will only be changed by 1 or 2 kHz . In three cases, however, larger changes are involved, and these are: Radio Leicester moves from 1594 to 1584 kHz . Radio Solent (Bournemouth area transmitter) changes from 1594 to 1359 kHz . Radio Leeds moves from 1106 to 774 kHz . This last change is necessary because the original frequency is only two channels away from 1089 kHz , which is to be used for Radio 1 in the same area.

Re-engineering the network

The BBC's existing m.f./l.f. network has been built up over many years, and there are a number of old installations - dating in some cases from the 1930s - which are inefficient in terms of both power consumption and maintenance effort. A programme of modernisation was clearly overdue, but was deferred until the results of the Geneva conference were known.

The plan described above requires a complete re-organisation both of the sound distribution network and the transmitter system. To implement the changes which are needed by November 23rd, 38 new transmitters have to be installed, in addition to 24 new masts and 28 multi-frequency aerial systems; 70 more transmitters will be replaced during the next few years. It has been decided to standardise all transmitters, with output powers of 1,10 or 50 kW , and these can be used singly or in groups to provide powers of $1,2,10,20,50,100$ or 150 kW . Nearly all the transmitters will be operating in synchronised groups, and the power levels and aerial directivities have been carefully planned to provide the maximum coverage.

Several stations will be carrying 3,4 or even 5 services, and an interesting example is Burghead in the North of Scotland, which will be carrying Radio 1 on 1053 kHz , Radio 2 on 693 kHz , Radio 3 on 1215 kHz , Radio Scotland on 810 kHz and Radio 4 (UK) on 200 kHz , with powers ranging from 20 to 100 kW . The l.f. service will be transmitted from a T aerial suspended from two $500-\mathrm{ft}$ masts, and each of these masts, in addition to supporting the T aerial, will act as a mast radiator for two of the m.f. services. For maintenance or in an emergency all four m.f. services can be combined into one mast.

Effect of the changes

The effect of the changes will, of course, vary between the four services and also from one area to another. Taken overall, however, they should provide some improvements in coverage, and a very considerable improvement over the night-time coverage which would have been achieved if the changes had been confined to those required under the Geneva plan. Taking the coverage as the percentage of the population who

Service	Before November 23, 1978			After November 23, 1978		
	Frequencies (kHz)	Coverage\%		Frequencies (kHz)	Coverage\%	
		Day	Night		Day	Night
Radio 1	1214	87	38	1053 \& 1089	96	55
Radio 2	200	98	83	693 \& 909	98	65
Radio 3	647	92	71	1215	87	38
Radio 4	692,908 \& 1052	991	751	200°	98^{2}	91^{2}
-Plus 9 low-power m.f.					${ }^{1}$ England only ${ }^{2}$ United Kingdom	

should be able to obtain a satisfactory standard of reception (provided that a suitable receiver is used), the situation before and after the changes is summarised in the accompanying table.

It will be seen that Radio l's coverage is increased appreciably both by day and by night, as well as that of Radio 4. The day-time coverage for both Radio 2 and Radio 3 is maintained at a nearly identical level. Night-time coverage for these networks will be less than at present, but these are in the main music services, and a high proportion of listeners can be expected to use the highquality stereo (or mono) version which is available on v.h.f.

There are, of course, considerable problems in introducing such wholesale changes, and a concerted publicity campaign is being mounted to help and guide listeners in finding the new frequencies. Problems will undoubtedly arise, not least the number of receivers without the long wave band (about 10% of the total number of sets in use) and the fact that after the changes the markings on many tuning scales will show the wrong programmes. This situation will correct itself gradually as new sets come into use; many imported receivers already have scales marked in kHz
without any station names. Those who for some reason do not hear of the changes, and tune to their accustomed place on November 23rd, will in all probability still find a BBC programme, though it may not be the one they expect to hear - who knows, some new horizons may be opened.

The author would like to acknowledge the assistance and helpful comments received from many colleagues in the BBC. He also wishes to thank the Director of Engineering for permission to publish this article.

Geoffrey Sturge was educated at Gresham's School and Faraday House. from which he went into the RNVR in 1940. After three years in bomb and mine disposal, he transferred to the Fleet Air Arm, and served as Air Radio Officer in an aircraft carrier. In 1946 he joined Murphy Radio, and worked in their service, export. and distribution departments. He joined the BBC in 1962, to work in engineering recruitment, and he has been in his present post since 1970. He has been closely involved in the preparation of information on the coming frequency changes.

Radio and television interference

The latest Directorate of Radio Technology (Home Office) report on radio interference, covering 1977, again confirms that the revised method of recording the statistics, introduced in 1976, indicate the relatively small number of cases (a total of 171 complaints involving 102 sources) officially ascribed to fundamental or harmonic radiation from amateur stations. Altogether some 42,148 complaints represented all forms of interference with some 43.38\% ascribed as being due to "conditions at the receiving site" (i.e. faulty receivers or inefficient aerials). While interference to television reception from all causes fell by 11.28% to 24,595 , interference to radio reception rose by a hefty 22.45% to 16,313 (including 10,476 for m.f./l.f. and 5837 for v.h.f./f.m.). The rising figure for radio (in 1971 it was only 6,492 compared to 65,826 for television) indicates that pollution of the radio spectrum by electrical interference from domestic and other apparatus is no longer falling (as it did in the 1960s following legislation) but is again increasing, although the figures also suggest that there has been a marked revival of interest in sound radio in recent years. The fall in interference to television has undoubtedly been primarily the result of the change from v.h.f. to u.h.f.

Certainly amateurs in urban and suburban environments are finding the severe spectrum pollution an ever increasing problem for weak signal reception, particularly that arising from time-base and switched-mode power supplies in colour television receivers. This form of pollution is usually of an intensity where it does not interfere with tv reception and makes relatively little impact on the Home Office statistics (380 complaints). Contact devices such as faulty switches and thermostats account for 57.38% of complaints from specified sources (20.23% of all complaints). Among some of the more unusual sources of interference one finds plastic seam welders, fish thawing equipment, microwave cooking, wood glue drying, r.f.-excited arc-welders and the like - the list seems to grow longer year by year.

WARC 1979

The World Administrative Radio Conference starting at Geneva next September continues to dominate the thoughts and activities of many amateur radio organisations, although few people seem prepared to hazard any firm opinion on the likely outcome of the conference from an amateur viewpoint. IARU Region 1 Bureau points out that there are still many unknown factors, including the attitudes of many of the countries of Africa and Asia where amateur activity tends to be at a sub-

dued level. Historically many of the most damaging attacks on the amateur service have stemmed from European telecommunications administrations and the results are evident when comparing amateur allocations in Region 1 with those of Regions 2 and 3. A recent IARU summary of the attitudes of Region 1 administrations towards amateur h.f. allocations shows a wide variation of attitudes from favourable to unfavourable towards the proposed additional allocations around 10,18 and 24 MHz although reasonable support for maintaining or improving the position in regard to existing amateur h.f. allocations.

In the air

Although sunspot activity looks set to increase to an extremely high maximum in 1979-80 there was an unusually sharp decline in activity towards the end of July, lasting through August.

Fifty years ago, on October 21, 1928, Jimmy Mathews, G6LL (still an active amateur) made the first two-way transatlantic contact on 28 MHz , lasting almost two hours, with C. K. Atwater, W2JN of Upper Montclair, New Jersey. It must have been no easy matter obtaining reasonable r.f. output at 28 MHz from a DETl power valve, and like many other amateurs of the period, G6LL in North London had to obtain power from d.c. mains by means of a rotary converter. Although several other British amateurs "got across" that year, 1928 was on the declining phase of a sun-spot cycle and it was another seven years before the 28 MHz band again opened for world-wide communication.

Douglas Johnson, G6DW, of Capel, near Dorking, recently held an "At Home" attended by many "old-timers" to mark the 55 th anniversary of his obtaining his "experimental" call-sign. in 1923.

It was, incidentally, forty years ago October 22, 1938 - that a welcome OHMS letter came through my letter box. It contained the radiating licence G3VA (replacing an "artificial aerial"
licence held since 1936). But like most newcomers of that era my initial efforts at transmission were only moderately successful. Despite many calls on 7 MHz phone, my first day's efforts brought only one contact - with a friend less than a mile away! Next day, on 1.8 MHz , several contacts over distances of 20-30 miles were made, and altogether in the first three months some 150 contacts with about 15 countries were achieved on $1.8,7$ and 14 MHz (the only bands then available to newcomers). Transmitter power had to be limited to about 10 watts and receivers were an $0-\mathrm{v}-1$ "straight" receiver and a domestic "allwave" set with an external b.f.o. But it is curious how, now half-way through my 11th log book, some of those early contacts remain indelibly etched in one's memory.

A rather different contact rate has been established by Dick Spenceley, KV4AA (AJ3AA) on the U.S. Virgin Islands who can be heard most evenings contacting many European stations on 14 or 21 MHz . In two years, 1966-67, he made 67,235 contacts and looks set to achieve 100,000 in under three years and his contacts are not just "conteststyle" exchanges. He was first licensed in 1927 as K4AAN.

In brief

The RSGB is one of the sponsoring organisations for a two-day conference "Recent advances in h.f. communication systems and techniques" to he held at the IEE, Savoy Place, London next February 27-28... Reciprocal licences in France now cost 117.5 francs (about £14) and cover one year ... To operate with a reciprocal licence in the USA, it is now necessary to file FCC form 610-A at least 60 days before the proposed start of operation . . . The Radio Club of America has honoured Arthur Collins, WOCXX/WB5MAR, founder of Collins Radio, with the Armstrong Medal, while its Pioneer Award went to W. E. D. Stokes whose testimony in 1910 (when he was only about 12 years old) before a Senate hearing against the Depaw bill is generally credited with helping to preserve the existence of amateur radio in the United States when it was threatened with a complete shut-down.

The G2NJ Trophy of the "G-QRPClub" (devoted to low power radio communication) has been awarded to the Rev. George Dobbs, G3RJV, editor of "Sprat" and founder of the club. The low disposal prices of 23 -channel Citizens Band equipment in the United States has encouraged many American amateurs to modify such units for lowpower amateur operation on 28 MHz . . . Good contacts with South American stations were achieved this summer on 1.8 MHz . . . Hellschreiber equipment is being increasingly used by a group of amateurs in Western Europe on 3.5, 7 and 144 MHz .

PAT HAWKER, $\bar{G} \overline{3} \mathbf{V} A$

Character rounding for the Wireless World teletext decoder

New board offering improved display and revised timing

by J. H. Hinton, M.Sc.

When the original Wireless World teletext decoder was designed by J. F. Daniels ${ }^{1.2}$, a deliberate choice was made by the author to omit the rounding of characters on the grounds of extra circuit complication and the increase in cost of around $£ 20$. Since 1976 , the balance of argument has shifted in several ways towards the incorporation of rounding. Firstly, the improvement in appearance and legibility, though significant with double-height characters and, to a lesser extent, with ordinary capitals, is much more important with lower-case characters. Indeed, the fitting of the Texas lower-case r.o.m. to the author's decoder without rounding was a disappointment, since the lower-case characters were, by comparision, more difficult to read. Rounding means that they are now preferred to a 'capitals only' display. Secondly, the Tifax decoder, the Mullard i.c. set ${ }^{3}$ and other commercial designs use rounding, which makes the appearance of the original Wireless World decoder display compare unfavourably. Lastly, the cost of the rounding facility, including extra power supplies and one or two other features, is still about $£ 20$, whereas the cost of a full decoder kit is now around $£ 200$.

The extra circuitry, shown in Fig. 1, provides the following facilities:

- character rounding on single and double-height characters, which can be disabled for comparison purposes.
- seven-clock-pulse-wide character cell, with symmetrical separated and contiguous graphics.
- optional display of characters in upper-case only.
- re-timing of Flash and Steady controls to set 'after' and 'at' correctly. The new board uses 17 t.t.I. integrated circuits, including the Texas r.o.m. and has been designed to work with R. T. Russell's board 3^{4}. A design capable of working with or without this board and for either type of character generator would have been more complicated and it was felt that people who want rounding would also want the features offered by Russell's 'new facilities' board 3. Existing Texas r.o.ms must be transferred to the new board 4 .
IC_{1} dot count zero, the output data for the new character being loaded into the latches IC_{28} and $(69,9)^{*}$ at dot count 7 . The graphics generator output responds quickly, having a propagation delay of four t.t.l. gates, but the 2513 r.o.m. requires an access time of up to 500 ns ; the first three dots after the data change (7, 0 and 1) are therefore used as spaces, providing a time of 375 ns . The consequent absence of a gap between the last dot of an alphanumeric character and the first of a following graphic was avoided with the later use of a 75S262 r.o.m., which has an access time of 280 ns maximum, by changing the strobe pulses from IC_{42} to give two spaces of 250 ns before and one space after alphanumeric characters relative to graphics. Compared with the shift register technique, this method of sequentially gating the dot outputs has the advantage that when r.o.m. access time is short, only the first character column is at risk, since the others have additional time to settle.

The rounding operation involves comparison between the display row and the reference row, so the serial data for both rows must be simultaneously available to the display circuits. Three methods are possible:
-two r.a.ms in parallel can be addressed by the two rows, as described by Mullard ${ }^{5}$. This is simple, but costly.
-a fast r.a.m. can be read in three cycles of a seven-clock cell, the r.o.m. addressed on the reference row during the next two cycles, its output latched and addressed on the display row during the last two cycles. This is also relatively simple, requiring no timing changes in the rest of the decoder; a new design of decoder could use this to advantage since the extra cost of a faster r.a.m. is small. The need for compatibility with existing decoders ruled this out.
-three successive character display cycles can be used to read the r.a.m., access the r.o.m. twice and display the character with rounding. This imposes an extra delay of one display cycle in the alphanumeric channel and timings must be changed to introduce a compensating delay in the

Display cycle timing

In the original design, the display column address for the r.a.m. is changed at
*Gates and pins are identified in this way. (69,9)
refers to the circuit whose output is on pin 9 of C_{69}
graphics and control channels. This method was chosen.
In the initial teletext specification, control characters were always displayed as blank spaces, so it was immaterial when in the cycle they took effect. The original W.W. decoder took advantage of this by strobing the control character decoder at count 3 , having allowed the new data plenty of time to propagate through the gates. Under the current specification, where control character cells may be displaying held graphics, or a 'new background' colour, they act at a cell boundary and are therefore defined either as 'set at' if they take effect immediately, or 'set after' if they do so at the transition to the next character.
Russell's board 3 deals with the propagation delay in gates 101, 106 and 116 by feeding the control character decoder and graphics generator from latches which are loaded at dot count 0 , the one-clock-period interval after the r.a.m. latches are loaded (at count 7) allowing plenty of time for the gate outputs to settle. The character cell for graphics and controls is therefore one dot to the right of the alphanumeric cell, the effect being to give one space before and two after the alphanumeric symbols (with the T.I. r.o.m.), rather than two before and one after, as was originally the case. The purpose of the graphics latch IC_{102} on board 3 is to keep the most recently displayed graphics symbol available to be called up as a held graphic, its loading being controlled by AND gating of data bit 6 (high for graphics, low for alphanumerics) with dot count $\mathrm{Q}_{\mathrm{c}}(1,8)$ so that a new graphic appearing on the data bus at count 7 is clocked into the latch at count 0 .
The bit 6 signal used here is delayed in IC_{21}, which ensures that the new value appears at 116, pin 1 after Q_{c} has gone low, remaining static while it is high. If 116, pin 1 were fed from $(117,10)$, the old value of bit 6 , still present at the Q_{c} step due to delays in IC_{117} and IC_{118}, would clock IC_{102} with a spurious signal. The delay of one display cycle in the control and graphics signals needed to compensate for the extra cycle taken by the character rounder is achieved by changing the load point of the r.a.m. latches IC_{28} and $(69,9)$ from count 7 to count 0 , the same as the board 3 latches, thereby giving the one cycle delay.

WIRELESS WORLD. NOVEMBER 1978
4 Fig. 1. Circuit diagram of board 4. Asterisks denote changes in connexions to board 3. Upper-case and character rounding switches are taken to body of board. All pads connected to board III are on the lower side of board IV and are denoted by suffix L. Prefixes C and W are those used on board III.

Where two latches are used in cascade in this manner it is essential to ensure that any differences in precise loading time due to different gate paths tend to clock the second latch first. This condition is met here because the r.a.m. latches are fed from a 7442 decoder containing three stages of logic, while the control character latches IC_{112} and IC_{117} are clocked from $\mathrm{IC}_{213} \mathrm{Q}_{\mathrm{c}}$, via an inverter and a gate.

With Russell's 'new facilities' modification, the controls for 'Box' and 'Unbox' are decoded on board 2 and delayed from 'set during' to the correct 'set after' by $(117,5)$ on board 3 . The additional delay of one character needed with rounding to match the other signals is provided by a 22 nF capacitor on the output of IC_{41}. This method is permissible here because the signal is not used for any other purpose and because $(117,5)$ only samples the signal at count 0 , so the correct state will be loaded if the delay due to the capacitor is between 4 and 11 clock pulses. The situation with 'Flash' is more complicated, since board 3 uses the original board 2 circuitry for alphanumeric/graphic selection, blanking held over a 'Flash' or 'Steady' control character, generation and mixing of 'Flash'. The controls for Flash and Steady still set at count 3 , so without the new board a graphic will start and stop flashing in the middle of the character cell. To minimise interconnexions and modifications to board 2 the select and blanking functions are performed on the new board, while the flash control gated with the oscillator signal is brought onto it. Latch $(207,5)$ at $(207,2)$, in conjunction with gate (206,10), delays 'Steady' to the next cell boundary, timing it into set 'at' while 'Flash' is delayed to the next boundary plus one cell to give set 'after', to achieve the specification.

Odd/even field detection

The original field sync. separator circuit gated the mixed sync. waveform with $10 \mu \mathrm{~s}$ pulses from the margin generator IC_{3}, (a monostable flip-flop, triggered from the front edge of sync. pulses), the gate (4,13) suppressing line syncs. and equalizing pulses, while leaving field syncs. only slightly shortened. Unfortunately, the trigger delay time of the monostable (70 ns max) allows a short spurious pulse through $(4,13)$, which is
removed by integrating it with C_{2} $(10 \mathrm{nF})$ in conjunction with the $30-\mathrm{ohm}$ output impedance of $(4,13)$, a 7428 buffer gate, to prevent it being seen by IC_{7} and IC_{14}. The author cured stubborn problems of vertical bounce by sampling the sync. waveform $10 \mu \mathrm{~s}$ after syncs by means of a ' D ' flip-flop, clocked from Q of IC_{3}. Clearing the flip-flop from the sync. waveform produces the same waveform as at $(4,13)$ in the original circuit.

On the new board this function is performed by D flip-flop (218,5) which sets whenever a broad field puise is detected (following either a line sync. or an equalizing pulse), loading into $(218,8)$ the state of monostable 208 IC which is triggered from syncs, as seen in waveform diagram Fig. 2. Provided that its period is less than 32μ s plus the duration of IC_{3} pulse ($10 \mu \mathrm{~s}$), field syncs occurring in the first half of a line will load $(218,8)$ high, while those in the second half will load it low, so that it takes up a state determined by whether the final field pulse was in the first or second half of the line, thereby distinguishing between odd and even fields. The period of monostable 208 IC must be greater than $32 \mu \mathrm{~s}$; if less it will retrigger on the equalizing pulses. The timing components are therefore chosen for $37 \mu \mathrm{~s}$ allowing $5 \mu \mathrm{~s}$ margin each way. The resistor and capacitor must therefore be close-tolerance, high-stability components of $\pm 2 \%$ or better.

Reference row address selection

In character rounding, the address of the reference row is alternately one more and one less than the display row. For normal-height characters this alternation occurs every field (requiring the odd/even signal), while for double height the alternation is every line, the least significant bit of the line count being used. The selection between these two signals is performed by gates $(215,12)$ and $(215,6)$ under the control of a normal/double height signal from board 3, the gates being enabled by a low state of the display/reference signal from $\mathrm{IC}_{213} \mathrm{Q}_{\mathrm{c}}$ to give a row-address alternation signal at IC_{217}, pin 11. This is
fed to the $2 \mathrm{nd}, \overline{3 r d}$ and 4 th bits of the adder IC_{204} to add zero or 14 which, with the inverted display/reference signal on bit 1 , gives an overall addition of one or fifteen, the latter being equivalent to a subtraction of one.
At IC_{213}, count 0 , the new data is applied to the character-address of the r.o.m., together with the reference row address. At count 4 , the row data is latched into IC_{211} and the address changed to that for the display row, while at count 0 the reference row data is loaded into the shift register IC_{214} and the display row data into its partner IC_{212}.

Character generation and rounding

The alphanumeric characters are built up on a dot matrix of 5 wide by 7 high , each dot having a duration of one clock cycle and a height of one line per field. The overall height is two picture lines, due to the interlacing of alternate fields. Character rounding effectively doubles both the horizontal and vertical resolution on diagonals by detecting and then smoothing them out by adding small dots, sometimes described as 'half dots', although they are really a quarter of a full dot in area, being half a clock cycle wide and one line high.
On an odd field, the upper one of the interlaced pair, the display row is compared with the reference row (the picture line immediately above) as follows. Where there is a dot in the reference row and the following point in the display row but not the following point in the reference row, these three conditions, AND gated with the second half of the clock cycle in $(210,8)$, produce a 'pre-rounding' quarter dot, as shown in Fig. 3. The reference row is similarly gated with the previous point in the display row, the inverse of the previous point in the reference row, and the first half of the clock cycle in $(210,6)$ to produce a 'post rounding' quarter dot. On even fields the display row is compared with the one below in the same way.
These logical operations require simultaneous availability of the preceding current and following picture

Fig. 2. Waveforms in the odd/even field selector, IC 218
points on both the display and reference rows, six signals in all. The serial outputs from the shift registers IC_{212} and IC_{214} are each fed through two sections of quad D latch IC_{216} connected as a further two stages of shift register, the 'following' signals being taken direct, the 'current' ones after one stage, and the 'previous' ones after two. The complementary outputs provide the inverse signals needed, and the outputs from the pre-rounding gate $(210,8)$ and the post-rounding gate $(210,6)$ are combined with the 'current' display-row signal in gate $(202,6)$.
The new facilities introduce an important difference between the actions of line/field and control-character blanking. The latter, when overridden in held graphic mode by a graphics select signal via 118,6 , disables the Y signal on board 4 , leaving a space which may be displayed black or in a new background colour. The line/field blanking, applied outside the area of the display, inhibits it completely via the strobe input of R G B multiplexer IC ${ }_{105}$ and is also fed into board 4 to blank its white output in order to provide a proper monochrome signal there for test purposes.

Under certain circumstances, differing delays in the propagation paths of the various signals involved in the generation of the graphics Y signal give rise at character cell boundaries to glitches of incorrect data lasting a few tens of nanoseconds, which if not removed are clearly visible on the display. A t.t.l. gate in the high state acts as a source of 3.6 volts in series with about 190 ohms, so the exponential charging waveform across a capacitor of $\ln F$ takes around 50 ns to rise to the approximately 1.3 V input threshold level of the following gate. The lowstate output impedance of 10 ohms with a current limit of 50 mA discharges the 1 nF capacitor to the threshold level in around the same time, so positive and negative edges both undergo a delay of 50 ns , while any pulses of shorter duration than this disappear altogether.

These typical figures depend on i.c. parameters, which are liable to vary between samples, and repeatability can be improved by adding resistance in series with the gate output. With 100

Display row Display line Reference
row

Fig. 3. Method of rounding characters with quarter dots.
ohms, both transitions are expotential and the ratio of the time constants balances the effect of gate input threshold being nearer 0 than 1 level, so the edge delays are again about equal. Unfortunately, this only applies where the interval between edges is long compared with the delay time. In the case of a short pulse, where the back edge starts from a point on the exponential tail of the front edge which has not reached its full value, the back edge is delayed less than the front one, producing an overall narrowing of the pulse. Without the series resistance, negative (but not positive) going pulses can be delayed without distortion due to the almost linear capacitor waveform with very little tail, but it is not true that a pair of equal value capacitors at opposite polarity points balance out distortion - in fact they produce it on short pulses of either polarity.
Applying these principles to the decoder waveforms, the only area of one clock pulse width in the graphics is the central space in separated-mode characters, so a capacitor can safely be used to remove glitches, provided that is is used without gate series resistance and at a point of positive going video. A value of lnF at $(206,1)$ is sufficient to absorb the glitches and brings the total delay in the graphics Y channel up to around 110 ns relative to the colour controls. To prevent this giving rise to wrong colours at the right hand edges of graphics held-over colour controls, a compensating delay is introduced into the latter signals. Since these contain no

Fig. 4. Waveforms of the dot counter I_{213}.
short pulses, 100 ohm gate series resistances can be used here in conjunction with the shunt capacitors.

Rounded alphanumerics contain bright areas of one clock pulse width, and gaps of a half, so shunt capacitors cannot be used at all on these signals. Fortunately, their phasing is less critical due to the 1 dot space either side of the character, and the arrangement of timings in the character generator to give a delay of one clock period gives acceptable relative alignment. In this circuit, a negative-going dot count 7 signal from IC_{42}, pin 9 is fed to the synchronous shift/load inputs of the 74166 shift registers IC_{214} and IC_{212}, so that the new row data from the reference latch and the r.o.m. is loaded into the two sets of parallel inputs C to G on the next positive clock edge (dot count 0). The other inputs, including H , are earthed, so that the first character dot appears on the shift register output Q_{h} at count 1 , and the generator output $(202,6)$ at count 2 due to the further delay in IC_{216}.

Upper-case only

Before the character rounding circuit was fitted, an experimental reversion to displaying all letters in upper case was found to imprve readability, but the crude method of switching r.o.m. bit 6 input to bit $\overline{7}$ renders $1 / 4,11,3 / 4, \div$, DEL, and control characters incorrect. A gating circuit to change letters a to z to upper case without affecting any other characters was therefore devised using $\mathrm{IC}_{201},(202,8),(209,10)$ and $(209,12)$. Four separate switches are provided to disable this circuitry, together with the character rounding, the control character blanking, and the new facilities provided by board 3. The feature of being able to bring these in and out of action at will is valuable for instruction and demonstration purposes, and is not provided for in l.s.i. decoders designed for consumer use.

Character-display dot counter

To help minimise the number of i.cs in the decoder, Daniels used common clock-divider circuitry for acquisition, and display modes, giving an eight-dot character cell. The alphanumeric cells have five character dots to three spaces, while graphics are split $4 / 4$ for contiguous and $1 \mathrm{sp}-2$ char- $2 \mathrm{sp}-2$ char- 1 sp for separated ones. The illustrations on page 16 of the current specification ${ }^{3}$ show a seven-dot cell, split widthwise into $31 / 2-31 / 2$ dots for contiguous graphics and $1 \mathrm{sp}-2$ char- $1 \mathrm{sp}-2$ char- 1 sp for seprated ones. The new board therefore contains a new dot counter, IC_{213},

| Display clock |
| :--- | :--- | :--- |
| $Q_{A} 213,14$ |

' t ' is the propagotion delay from clock through ciounter IC213 gates 202,12 and 217,3

ALPHANUMERIC CHARACTER
CONTIGUOUS GRAPHIC CHAR
SEPARATED GRAPHIC CHAR.

WIRELESS WORLD, NOVEMBER 1978
which is switched to give seven clock pulses per display character. In order to split up the graphics cells correctly it is necessary for counts 4 and 5 to occupy only half a clock pulse each, as shown in the waveform diagram of Fig. 4.

During acquisition mode (line 11-21 high), $(202,12)$ output is high all the time, so the inverted clock waveform from (209,2) is simply inverted back again in the exclusive-OR gate $(217,3)$. During display mode, count 3 sends $(202,12)$ low, switching $(217,3)$ over to non-invert and changing its output to low. A synchronous counter is needed to ensure that the propagation delay round this loop is less than half a clock cycle (72 ns), so when the clock goes low $(217,3)$ goes high, causing the counter IC_{213} to advance to 4 . IC_{202}, pin 12 then reverts to high, returning (217,3) to invert, so its output goes low ready to advance the counter again when the clock goes high. The counter spends half a clock period in the ' 3 ' state and half in the ' 4 ' state due to the extra count, a scale of eight being achieved in seven clock periods. Placing the extra count in the middle preserves the symmetry of the graphics, whether separated or contiguous.

Board 3 modifications

Because alphanumerics are generated during the character cycle before that in which they are displayed, the new row address for both alphanumerics and height' has to reach the alphanumerics generator a cycle before the change is to take effect in the display. Since double height is a 'set-after' mode, the 'at' signal on IC_{113}, pin 11, whose back edge sets the double height bistable IC_{121}, can be combined with its output in gate $(205,11)$ to change the row address at the arrival of the control character. Unfortunately, this is too early for the graphics and has to be delayed for them in ' D ' latch IC_{207}, otherwise a graphic being held over a double-height control character would be incorrectly displayed as the top half of that graphic in double height.

On return to normal height, the row address for both alphanumerics and graphics now sets 'after' rather than 'at', but this of no consequence, since section 3.1.7 of the specification ${ }^{4}$ requires that held graphics are cleared at a change between alphanumerics/ graphics or between double/normal height, so a normal-height control can only be displayed as a space. The lineblanking signal is delayed one character cycle by feeding through the unused section (output pin 2) of hex. latch IC_{117}. A lnF capacitor was found to be needed from IC_{125}, pin to to earth to prevent vertical jumping of the part of the picture below a double height row.

To enhance the action of the video switch, the mixed blanking signal is taken out ater inversion by (124,8), combined with the 'box' signal in gate $(205,3)$ and fed back into $(105,15)$ to

Humphrey Hinton, aged 40, with three children, has lived most of his working life in Cambridge where his spare time is taken up with being a Church Council secretary and school manager.

After reading Electrical Sciences at Trinity College, he took an M.Sc. and then worked with tunnel diodes at Harwell before returning to Cambridge as a technical officer at the observatories. From 1968 he was engaged on acquisition and handling of test data for the Hovertrain project until its cancellation by the Government in 1973. He now works in the engineering department of Pye Business Communications Limited on special c.c.t.v. and audio systems for industry. and has recently developed a pushbutton, stored-number loudspeaking telephone.
disable the R G B text outputs while the tv picture is displayed. This makes the unit suitable for those sets where the preferred method of interfacing is to use the 'cut hole' signal to blank the picture in the video processor, while feeding the R G B text signals in via switching transitors wired in parallel with the set's R G B output stages.

Power supplies

The new display board 4 together with board 3 bypasses a fair amount of board 2 circuitry, but, unfortunately, this is distributed among the i.c. packages such that only seven i.cs, numbers 52 , $53,58,60,61,74$ and 75 could be dispensed with completely, which reduces power consumption by only around 100 mA . It is useful to retain board 2 intact for diagnostic and test purposes. There is also a risk of introducing faults by unnecessary disturbance of the board in removing i.cs.

While the original power unit may just supply board 3 if the reservoir capacitance is increased, the further current required by the new board makes an additional power supply essential, although how this is achieved depends on the individual constructor. For the prototype, a completely new power supply was built, with three 7805 , three-terminal regulators feeding respectively:
-board $1(750 \mathrm{~mA})$ and analogue board $(100 \mathrm{~mA})$.
-board $2(470 \mathrm{~mA})$ and board $3(570 \mathrm{~mA})$.
-board $4(530 \mathrm{~mA})$ and possible future additions
The printed-circuit board is designed to mount above board 3 so that the assembly will just fit into the standard cabinet, with VR_{3} removed and the existing boards mounted as close together as possible.

Construction and installation of the new board will be described in the next article.

References

1. Daniels, J.F. "Wireless World Teletext Decoder", Wireless World, November 1975June 1976.
2. Daniels, J.F., "Further Notes on the Wireless World Teletext Decoder', Wireless World, February 1977.
3. Mullard Ltd, "Decoder and Display Systems for Ceefax and Oracle", TP1403-1406 (1974), 1407-1408 (1975) and TP1410 (1977). 4. Russell, R.T., "Teletext Decoder Modifications", Wireless World, December 1977 and January 1978.
4. Mullard Ltd, "Character Rounding for Alphanumeric Video Display", Mullard Technical Communications No. 126, (April 1975).

Electrical noise measurement

Mr Richard C. Kirby, Director of the CCIR, Geneva, writes as follows about James Moir's article "Electrical noise measurement in audio engineering" in the August 1978 issue:,
In this article numerous references are made to "1EC 268-3" "CCIR 468-1" and "CCIR 468-2". In fact all these references should read "CCIR Recommendation 468-2" since this is the text to which reference is made. There appears to be some confusion by the author of the two organizations ISO and CCIR.
Furthermore, since Recommendation 4682, replaces and abrogates Recommendation 468-1, reference to this latter text should be deleted.
Finally, in the references, the insertion "CCIR Recommendation 468, Study Programme 2A-10" should read:

CCIR - Documents of the XIVth Plenary Assembly, Kyoto, 1978, Volume X, Recommendation 468-2, 1978.

Wideband noise reducer

Cost-effective i.e. design pumping effects with pre-emphasis

by D. L. Harrison B.Sc.(Eng)

The noise reduction system described can yield a wideband reduction of tape recorder noise of about 30dB. A compander integrated circuit forms the heart of the system and judicious use of pre-emphasis and de-emphasis reduces noise pumping effects.

ONCE OPTIMIZED for the signal levels in a particular installation the noise reduction provided by this circuit is dramatic. From a hissy, hummy tape output one can enjoy absolute silence during quiet passages without, in my opinion, noticeably degrading the music programme. The system does not use r.m.s. signal detection, as does the dbx system, but I feel that r.m.s. signal detection, whilst it does offer some advantages, is not the panacea it is often made out to be. It is less sensitive to phase errors in the channel compared with average signal detection. Admittedly the tape medium is notorious for introducing phase errors that could lead to compander mistracking if r.m.s. detection is not used. However r.m.s. detection is more susceptible to h.f. amplitude response errors than average signal detection* a fact rarely mentioned by the proponents of r.m.s. detection. It would seem, therefore, that r.m.s. versus average detection is something of a "swings and roundabouts" situation. Considering that the cost of the system here is about one tenth that of a dbx system and that the results are impressive. I feel a really cost-effective design has been achieved.

A problem which has plagued simple companders in the past has been that of noise pumping. When the average value of the signal is high as at A in Fig 1 the expander gain is also high and so the background noise signal is amplified. However this noise is generally not heard because of the masking effect of the signal. At B, however, the average value of the signal has dropped, i.e. a very quiet passage following a very loud passage of music. The expander is unable to change its gain instantaneously and so due to this fall back time the gain

[^4]

Fig. 1. Simple companders are unable to respond instantaneously to a fall in signal level, giving rise to obtrusive changes in noise level.
is high whilst the signal is of a low level and thus the noise can be clearly heard. This is a serious shortcoming of the simple compander because a noise level of varying amplitude which is pumped up and down by the signal level has a greater annoyance value than a steady noise level.
Fortunately the effect of this noise pumping can be subjectively reduced by including signal pre-emphasis before compression and de-emphasis after expansion. This is the method adopted by dbx Inc and by the system presented here. In this particular design a preemphasis of +12 dB starting at about 500 Hz is used. This does not' eliminate noise pumping but reduces the high frequency noise by 12 dB and renders it inaudible under normal listening conditions. On compression this 12 dB lift becomes 6 dB which is passed to the tape recorder.
Now unfortunately if one is recording at levels of about -10 to 0 VU there is very little headroom until tape saturation is reached and even less at the higher frequencies. Thus 6 dB lift at frequencies above about 2 kHz could very easily lead to high frequency tape saturation. This may be counteracted by including pre-emphasis in the signal detector path as shown in the system block diagram. The particular design here uses a detector pre-emphasis of +20 dB starting at about 1.6 kHz , in common with the dbx svstem. Curve (a) of Fig 2 shows the signal preemphasis whilst curve (b) shows the overall frequency response of a compressor combining the two amounts of pre-emphasis. At frequencies above about 2 kHz the recorded signal level actually reduces.

A further problem akin to noise pum-

Fig. 2. Effect of noise pumping is reduced by using pre-emphasis (curve a) prior to compression and corresponding de-emphasis on expansion to reduce h.f. noise by 12 dB . Possibility of tape saturation is alleviated by adding pre-emphasis in the detector path, as in the dbx system, giving combined result of curve b. Low frequency pre-emphasis, included in curve chelps to reduce audibility of hum signals.

(a)

(b)

Fig. 3. Variable-gain circuit in compressor (a) and expander (b) provides signal current into the op-amp whose amplitude is proportional to the average of the current flowing in the rectifier circuit.

State of the art cassette tape decks costing say, $£ 700$, can offer a dynamic range of about 60 dB , but a more realistic figure for machines which the majority of us are able to afford is about $45-50 \mathrm{~dB}$. As the signal-to-noise ratio of good quality discs played using high quality electronics can be about 60 dB , f.m. broadcasts can be as good as 70 dB , and live material can have a dynamic range exceeding 100 dB , one must ensure that programme peaks do not cause tape saturation, thus losing the lower end of the dynamic range amongst the noise.

This problem has been addressed by many workers in recent years and the solution, in one form or another, is to use signal compression before recording and complementary expansion on playback Possibly familiar is the Dolby B system for domestic use, providing up to 10 dB reduction in noise frequencies above about 2 kHz . Whilst a 10 dB reduction is certainly worthwhile the remaining noise is still audible when listening at realistic sound levels. A more recent system, introduced by dbx Inc, yields
improvements of 30 dB and subjectively reduces noise to below audibility. Excellent though it may be, the system is still very expensive and so a circuit was designed with the aim of approaching the dbx performance but which was well within the scope of the amateur

constructor
The circuit achieves noise reduction by wideband compression and expansion. The compressor contains a voltage controlled amplifier (v.c.a.) whose gain is inversely proportional to the average value of its output voltage, i.e.

$$
\begin{aligned}
& G=\frac{k_{1}}{V_{\text {out(av) }}}=\frac{k_{1}}{G V_{\text {in(av) }}} \\
& \therefore G=\left(\frac{k_{1}}{V_{\text {in(av) }}}\right)^{1 / 3}
\end{aligned}
$$

The gain of the v.c.a. is controlled by the d.c. output of an averaging rectifier stage whose output is proportional to the average value of its alternating input voltage. If input $V_{\text {in }}$ changes by, say, +20 dB then the gain will change by -10 dB thus the output will increase by only +10 dB . Square-law expansion is the exact complementary process. i.e. $G=k_{2} \times V_{\text {in(av) }}$
thus an input change of
+10 dB will cause the gain to increase by
+10 dB and the output to increase by +20 dB .
ping is that of hum pumping. This arises when the playback signal from the tape recorder contains an audible hum component. This hum signal will also be pumped up and down in level by the signal. Now whereas a high level signal will effectively mask a high frequency noise component the same is not true for a low frequency noise component (hum) hence hum pumping is subjectively even more annoying than h.f. noise pumping. This problem is eased by the use of low frequency pre-emphasis and curve (c) in Fig. 2 shows the overall compressor frequency response of the final circuit. Note that the end-to-end frequency response of the compressor and expander combination is flat since their frequency responses are complementary to each other.

In any compander system the bandwidth of signals presented to the device which measures signal level and hence controls signal gain should be the same in expand mode as in compress mode. From any high quality music source the bandwidth could be up to 20 kHz whilst a low quality cassette tape recorder may have a bandwidth of only $10-12 \mathrm{kHz}$. Such a mismatch means that the signals seen by the rectifier circuit are not identical on record and playback. Since most of the energy of music signals is contained in frequencies below 10 kHz a 20 Hz -to- 10 kHz bandpass filter is included in the signal feed to the rectifier to prevent this bandwidth mismatch. The lower filter frequency of 20 Hz ensures that subsonic signals such as
turntable rumble or acoustic pickup from passing heavy goods vehicles do not cause rectifier mistracking. The compander integrated circuit used is the Signetics NE570 which contains a stereo pair of compander circuits. Each half of this chip contains an operational amplifier, a variable gain cell and an averaging rectifier circuit. The variable gain cell can be thought of as the v.c.a. but it provides a signal current into the summing node of the op-amp whose amplitude is proportional to the average amplitude of the signal current flowing into the rectifier circuit. The relationship, with symbols as in Fig. 3(b), is

$$
\frac{\left.V_{\text {in }(\text { avy }}\right) V_{\text {in }}}{70 \mu A \times R_{1} R^{2}}
$$

The basic configuration of the NE570 in both compress and expand modes is given in Fig. 3. In compress
$V_{\text {in }}=Z_{3} I_{\mathrm{JG}}$ (considering magnitudes only)
and $V_{\text {in }}$ in equation 1 becomes $V_{\text {out }}$ (comp)

$$
\therefore V_{\text {in }}=\frac{Z_{3} V_{\text {outav) }} V_{\text {out }}}{70 \mu A x R_{1} R_{2}}
$$

If we write $V_{\text {out }}=G V_{\text {in }}$

$$
\text { then } \begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}}=G & =\frac{70 \mu A x R_{1} R_{2}}{Z_{3} G V_{\text {in(av })}} \\
1 & \therefore G=\left(\frac{70 \mu \mathrm{Ax} R_{1} R_{2}}{Z_{3} V_{\text {in(av) }}}\right)^{1 / 2}
\end{aligned}
$$

which is a square-root compression law.

In expand, $V_{\text {out }}=Z_{3} I_{\Delta G}=\frac{Z_{3} V_{\text {in(av) }} V_{\text {in }}}{70 \mu \mathrm{AxR} R_{1} R_{2}}$
or $V_{\text {out(av) }}=\frac{Z_{3} V_{\text {in }}{ }^{2}{ }^{2} \text { (av) }}{70 \mu \mathrm{Ax} R_{1} R_{2}}$,
which is square-law expansion.

IN THE EXPAND MODE the output noise of the NE570 is about $20 \mu \mathrm{~V}$ and the maximum signal output available is around 5 V r.m.s. (2 V r.m.s. in compress). Thus the available dynamic range of this chip is in excess of 105 dB . To take maximum advantage of this very good figure an input amplifier stage in the form of an LM381 low-noise chip is used to drive the NE570 at fairly high levels on playback see Fig. 4. Resistors R_{4} and \mathbf{R}_{3} bias the output voltage to about half supply voltage. The configuration chosen also allows the gain in playback and record modes to be changed very easily. The value of R_{1} was chosen to suit my hi-fi set up and allows a maximum input signal level in compress mode at any frequency of 2.0 V peak. And the value of R_{2} was chosen to suit my tape recorder when playing back signals recorded at -10 to -6 VU . In the expand mode the absolute maximum input signal is 300 mV peak.

Referring to Fig. 3 the complex impedance Z_{3} is realised in Fig. 4 by R_{5}, R_{6} and C_{7}. These components provide the signal pre-emphasis as follows. At low frequencies C_{7} is virtually open circuit and Z_{3} is $100 k \Omega$. As frequency
increases the reactance of C_{7} decreases and gradually shunts R_{5} with R_{6}, until at high frequencies C_{7} is virtually a short circuit. The h.f. impedance of Z_{3} is then $33 \mathrm{k} \Omega$ in parallel with $100 \mathrm{k} \Omega(25 \mathrm{k} \Omega)$ i.e. 12 dB lower than the low frequency impedance. Hence the 12 dB preemphasis prior to compression and 12 dB de-emphasis after expansion. The value of Z_{3} was chosen so that the average gain of the NE570 at the signal levels involved was approximately unity. Thus on switching the noise reduction system in and out there is little or no difference in output level.
The NE570 is d.c. biased with R_{7} and R_{8} with a.c. feedback being returned to ground by C_{8}.
Input offset currents in the variablegain cell can cause even-harmonic distortion which can be trimmed out if desired; it is quoted as typically 0.3% if pins 8,9 of IC_{2} are left unconnected. Provision is made on the p.c.b. for R_{9}, R_{10} and the pre-set resistor which can be included to trim the distortion down to 0.05%, given a distortion meter to set up this adjustment.
Capacitor C_{10} is the rectifier averaging capacitor and its value determines the transient response of the compander. The value of $3.2 \mu \mathrm{~F}$ was
determined by experiment only and was found to suit the type of music which I most often listen to (pop with some lighter classics). You may of course, choose other values to suit your own preferences.

Resistors R_{12} and R_{13} are included to refer the a.c. signals to ground so that on switching between in and out, or between compress and expand, large d.c. changes are not passed on to the output resulting in loud "thumps".

The rectifier bandpass filter and preemphasis are realised by IC_{3}, a quad op-amp, also a fairly conventional voltage-controlled voltage source type of active filter. Resistors $\mathrm{R}_{24}, \mathrm{R}_{25}$ and R_{18} bias the filter output voltage to half supply voltage.

Components $\mathrm{R}_{21}, \mathrm{R}_{22}$ and C_{16} provide rectifier pre-emphasis. At low frequencies C_{16} is open-circuit and the closedloop gain of IC3b(d) would be R_{23} / $(10+100) \mathrm{k} \Omega$. At high frequencies C_{16} is short-circuited and the gain is $\mathrm{R}_{23} / 10 \mathrm{k} \Omega$, i.e. 20 dB higher.

Signal pre-emphasis at low frequencies is produced by C_{11} in conjunction with R_{11} and the internal $20 \mathrm{k} \Omega$ resistor. Resistor R_{26} limits the maximum I.f. pre-emphasis to 12 dB . In compress, this network controls the feedback current

WIRELESS WORLD, NOVEMBER 1978
via the $\Delta \mathrm{G}$ cell and in expand the network controls the input current to the NE570 op-amp.Components $\mathrm{R}_{11}, \mathrm{C}_{11}, \mathrm{R}_{26}$ provide l.f. pre-emphasis in the compress mode and I.f. de-emphasis in the expand mode. If you find that hum pumping is still a problem experiment with different values of C_{11} and R_{26}, according to how much hum is present in the tape recorder playback output.
The lowish value of C_{9}, in conjunction with the low values of $\mathrm{R}_{14}, \mathrm{R}_{15}$ forms a high pass filter ($\mathrm{f}_{0} 20 \mathrm{~Hz}$) to remove the change in direct voltage which occurs at the NE570 output pins when the gain changes. This does not affect the l.f. signal frequency response however, because C_{9} is within the feedback loop around the NE570.
I chose to use flat p.c.-mounting NFtype relays by Thorn or National Panasonic to achieve signal switching between compress and expand mode and to switch the processor in and out of circuit. Multipole switches, other types of relay or even semiconductor switching may be used, but the p.c.b. design accepts only the NF relays, however. It is advisable to use separate power supply and earth return leads for the relays. The relay coil current is about 40 mA and this will avoid small

Double-sided glass fibre printed boards are available from the author at 22 Chandos Drive, Martlesham, Woodbridge, Suffolk IP12 4TA at $£ 3.50$ inclusive. NE570 i.c. costs $£ 4.95$ from the same source.

Board holes are 0.8 mm dia. except mounting holes $(3.5 \mathrm{~mm})$,
potentiometer holes (1.3 mm), and relay, terminal connections and power supply components (1 mm).

Fig. 5. Printed board design includes the power supply components to the right of the broken line of this suggested circuit.
clicks being heard due to transient voltage drops in the signal earth line.
A possible power supply circuit is show in Fig. 5. As my system was to be built into an existing tape recorder I usedits existing mains transformer and rectifier. The transformer secondary provided about 17 V r.m.s. on load and could easily cope with the extra loading. The circuit consumes about 20 mA , the relays up to 80 mA and the voltage regulator another 5 mA . The rectified output voltage on the reservoir capacitor of the tape recorder was about 22 V d.c. on load. A voltage doubler circuit was used to obtain a voltage of about +45 V . The voltage applied to the L123 voltage regulator i.c. is dropped by R_{27} and limited under no-load conditions by Z_{1} and Z_{2} to about 30 V . The ratio $\left(\mathrm{R}_{28}+\mathrm{R}_{29}\right) / \mathrm{R}_{29}$ determines the output voltage. The p.c.b. design includes the power supply components to the right of the broken line in Fig. 5. The current through, and the voltage drop across, the L123 are sufficiently low for there to be no need to heatsink it.

Precautions

When a music signal is compressed, regardless of whether pre-emphasis is used or not, its tonal balance is dramatically changed. This is because higher frequency components of the signal for example cymbals, wire brush, etc., in general contain less energy than the low or mid-range frequencies. Because of their lower amplitude, when passed through a compressor they will be amplified more, relative to the lower frequency instruments, when there are no other high level signals present. This is confirmed by listening to a compressed music signal, even without preemphasis, when it sounds extremely bright and toppy. When recording a compressed signal, therefore, the problem of h.f. tape saturation is made even worse because there is now a greater proportion of high frequencies to deal

Compressor law with ideal curve and measured values. Measurements made at LM381 input and NE570 output at 1 kHz .

Expander characteristic with ideal square law curve and 1 kHz measured values (marked x).

Come and see us at "Breadboard '78"

Wireless World will be taking part in "Breadboard ' 78 ", an exhibition of electronic "kits and bits" to be held at Seymour Hall, Seymour Place, London W1, November 21 25 , from 10 a.m. to 7 p.m. each day. Admission price is $£ 1.00$ (students 70 p). Readers will be welcome at our stand, No. B4.

Breadboard survey - p. 91

INTERNATIONAL VIEWDATA/TELETEXT STANDARD

In the August issue of Wireless World, I read a report entitled "Systems rivalry for inter-' national viewdata and teletext." I am very interested in this report, in which I have found serious mistakes. These may lead your readers to a complete misunderstanding of what really happens and I hope you will publish some clarifications and corrections: the high quality of your public and the international reputation of your journal deserve more consideration than is shown in this anonymous report.

First, it is useful to recall that an international standard for a communication service is not issued from one national body or from one country. It comes from long discussions in international organizations such as EBU and CCIR for broadcast services and CEPT and CCITT for telecommunication services. The ISO may also be involved when data processes are concerned. Every country may take part in these discussions and propose its national solution as an example in order to reach a compromise, acceptable at the international level. There is no "systems rivalry" in this fact but international cooperation between administrations from which progress may come.
This does not preclude, unfortunately, competition between industries, and it is often a temptation for them to try advancing their own products as internationally standardized equipment. This is not the case for CCETT, which is a little study centre of French broadcasting and telecommunication administrations (and not a massive research centre as is said somewhere in your report). It is one reason why. at the Rennes meeting in late January this year, a compromise was found, compatible with present viewdata and with significant differences from the present Antiope. The fact is that French and German representatives said that they prefer to lose money now, keeping present systems for experimentation only and awaiting an international agreement to develop the definitive one. Unfortunately, the agreement obtained in Rennes between the three participants was unhappily no longer supported by the UK administration (probably due to some pressure from industry which supported the Ceefax/Oracle development) and the proposal made by the German Bundespost and the French Administration to CEPT was then modified at Darmstadt in a manner that gave better compatibility with existing standards and a lower compatibility with the viewdata system. It has been, since then, supported by six European administrations and forwarded to CCITT and ISO.

This common CEPT proposal keeps the original principles of the Antiope system presently exploited on broadcast and in interactive operations with enhancements due to contributions of other countries. It appears as an important step towards an internationally agreed standard. The Munich. demonstrations for CCITT Study Groups I' and VIII were of the present experimental Antiope standard and, of course, not of the proposed one. They did not suffer from a communication breakdown, as said in your report, but the demonstration given for Study Group VIII did suffer from the effects of a nice wine party kindly offered to delegates by the German Post Office! But that is another story.

Another clarification should be made. A

report and contributions have been written by CCETT showing that, with the Antiope system or according to its philosophy, a twin character set is enough for all CEPT and EBU countries. A BBC report from John Chambers shows that with the teletext system it should be necessary to use seven character sets, and a GPO contribution to ISO claims the need for three character sets. But this is a minor error of your report: the box describing the Antiope system is full of such errors and confusions between the system at present used and the proposals made for international discussion. We would be very pleased to have the opportunity to describe in detail for your readers either the present Antiope broadcast or interactive system or the present state of proposals for a European standard. We consider that they deserve a complete treatment rather than such a polemic.
B. Marti

Centre Commun d'Etudes de Télévision et Télécommunications (CCETT)

Rennes

France
Editor's note: CEPT stands for Conférence Européenne des Administrations des Postes et des Télélcommunications.

F.M. TRANSCEIVER SYNTHESIZER

The use of a 10.7 MHz crystal in the CA3089/HA1137 quadrature detector for n.b.f.m. most certainly does work and not as your correspondent J. D. Stumbles suggests (September Letters). In my own 2 m synthesized transceiver which was built from an American ham radio article, I found that the usual LC circuit in this application was useless, being very unstable and subject to drift. This can easily be seen with the use of a centre zero meter connected between pins 7 and 10 (with the usual $4.7 \mathrm{k} \Omega-5.6 \mathrm{k} \Omega$ series resistor). Tuned to a steady signal, the pointer goes from one side to the other as the quadrature LC tuned circuit drifts. Now, the use of the crystal completely eliminates this, but the secret is to damp the crystal with about $4.7 \mathrm{k} \Omega$ in parallel with it. It will be found that the choke shown in the original article (between pins 8 and 9) must be replaced by a very small capacitor, typically 1 pF . In my case I used $1 / 2$ inch of twisted wires. In fact the crystal may not act exactly on 10.700 MHz as the circuit capacitance will more than likely differ from the crystal design shunt capacitance of $25-30 \mathrm{pF}$. This usually gives rise to no problems unless the use of a
centre zero meter is used, and is largely academic.

Of greater concern is the well known property of this i.c. that with a high gain front end, or the use of a pre-amp, the squelch facility does not work. This can be overcome with an external squelch amplifier, and several circuits have been published lately (see recent editions of Radio Communication).

The CA3089/HA1137 is quite capable of giving good results with n.b.f.m., and with a narrow filter and CA3089 I have plenty of recovered audio, and a stable receiver demodulator.
Stephen J. Gilbert G30AG
Manchester 16

V.H.F. FREQUENCIES

I read with interest 'Cathode Ray's' contribution to your September issue and noted in particular his reference to the benefits for v.h.f. broadcasting if more of the $88-108 \mathrm{MHz}$ band is made available for the purpose of broadcasting. While he is, of course, right in referring to this as in some sense a broadcasting band, in view of its general designation as such within the ITU I really must point out that very many very large mobile radio users in this country currently have assignments in this frequency range for p.m.r. You will, of course, appreciate that not only would we view with horror the loss of any part of our currently available spectrum, but mobile radio users generally are experiencing greater difficulty in securing what we would consider appropriate assignments from the Radio Regulatory Department of the Home Office, and we are, therefore, pressing for considerable additional spectrum to be made available to us.
I would not want to propound a dog in the manger attitude. I think we all realise that there is a legitimate claim on spectrum for many different uses and broadcasting is quite demonstrably one of them but we do have to learn to live with each other and any. significant changes can only be made over quite a long term, otherwise the cost implications for many p.m.r. users are frightening. M. S. Hicks Greater Manchester Transport
Manchester

A.M. BROADCAST RECÉETION

While having no quarrel with the sentiments expressed by 'Cathode Ray' (September issue) on the lack of programme choice offered to v.h.f. listeners, I should like to challenge his (and, it seems, just about everyone else's) assumption that a.m. reception in the medium-frequency broadcast band need always be as poor as it usually is, and to press for a.m. quality to be taken more seriously by broadcasting authorities and receiver manufacturers alike.

This band is usually dismissed as hopeless for quality reception because it is horribly congested - which it is, but only at night. During the day, at all the locations in the UK and Europe that I have visited, I have never counted more than half a dozen strong local transmissions and at most twenty more
distant ones, on a typical domestic receiver. Between them, there is more empty spectrum, proportionately, than in the v.h.f. broadcast band. I would therefore submit that there is a strong case for increasing the transmitted bandwidth of medium frequency transmissions to 13.5 kHz during the hours of daylight, consequently radiating a very small amount of energy into the two adjacent channels on either side of the allocated frequency. Since the benefits of the widespread (but fortunately not universal) practice of eliminating audio frequencies above 5 kHz are only fully conferred on those few receivers whose selectivity already introduces a comparable degreee of sideband cutting prior to the detector, adjacent channel interference is unlikely to be any worse than it is at present for the vast majority of listeners. Indeed, I should be surprised to hear of instances where listeners, tuned to their local programmes during the hours of daylight, are suffering this form of interference at all, since co-sited transmissions are invariably well spaced along the band.

This would involve, of course, acceptance by transmitting authorities and receiver manufacturers that the proper organisation of medium-frequency broadcasting consists of producing not one inevitably unsatisfactory compromise between day and nighttime reception, but two distinct approaches optimised for two completely different sets of circumstances. This has never been accepted by domestic broadcasters - planning still takes place on the basis that only the ground wave is to be trusted and the sky wave is just a damned nuisance, with the absurd result that, for instance, it is easier in many parts of Scotland to receive Deutschlandfunk than it is to hear the BBC, after dark.

Given that an improvement in bandwidth is quite feasible during the daylight hours, let's also do something about the signal-tonoise ratio. First, consider spending half as much as your three-element cost on a long piece of wire and a few insulators, and admit that a ferrite rod is not the last word in aerials.) As far as dynamic range is con-. cerned, it is generally accepted that a good deal of compression is advantageous on a.m. radio - but why not standardise the characteristic, and introduce corresponding decompression on up-market receivers? It is saddening that a.m. has been largely ignored in experiments on noise reduction when it obviously is in much greater need of it than its f.m. counterpart.

Receiver manufacturers ought to tear themselves away from the esoteric delights of designing even more spectacular f.m. receivers, the advantages of which are unlikely to be appreciated by the user, whose transmissions do not exceed broadcast standards even if his tuner does. How many hi-fi manufacturers dare publish the recovered frequency response and distortion figures for the a.m. sections of their equipment? How many reviewers comment on the a.m. performance of this equipment, except in a couple of lines vaguely indicating whether it is any better or worse than usual? How good is 'usual'? I have yet to come across a chrome-plated state of the art whose a.m. performance stands comparison with the Quad a.m. tuner, which is now a dated design, surely easy to improve on with modern devices and techniques.

It is not beyond the wit of man to design, at no great cost, an a.m. receiver with switchable bandwidth for day and night-time reception, low-distortion detection, a sensibly engineered audio response and (broad-
casters willing) noise reduction, which would surely result in a.m. being weccomed as a useful additional service, instead of tagging along as such a poor relation of f.m. as to be worth little time or trouble.

Nor, I venture, is it impossible to reduce interference from television timebases, fluorescent lights, thyristor dimmers, etc. If the legislation we have is not adequate to deal with such problems it should be strengthened, and if it is adequate, it should be enforced more thoroughly. Right now, using an inexpensive but high-performance receiver ${ }^{1}$, I can enjoy reception of certain transmissions which would astound those who cringe at the very thought of listening to an a.m. broadcast. And even if no-one will soil their hands trying to improve it, medium-frequency broadcasting will be with us still, for better or worse, in the foreseeable future.
Norman McLeod
Brighton
Sussex

Reference

1. J. W. Herbert, 'A homodyne receiver', Wireless World, September 1973, pp.416-419. Editor's note: Readers may like to consider the first part of this letter in relation to the discussion in "The UK wavelength changes" by G. H. Sturge of the BBC elsewhere in this issue.

EUROVISION LINKS

In your somewhat facile dismissal of Eurovision programming (July issue, page 50) you imply that "football matches, 'It's a K Knockout' and . . . the Eurovision Song Contest" do not merit the retention of international television links. As is well known, these programmes are among the most popular shown on British television.

In addition, you ignore the thrice-daily Eurovision News Exchanges, from which the UK broadcasters obtain many of their news items and to which they make a valuable contribution, not to mention many other programmes that do not fall into the three categories mentioned.

I venture to suggest that you try pulling the plug on the Olympic Games in 1980 to see whether the television public share your opinions (or even your sense of humour).

R. Gressman

Technical Centre
European Broadcasting Union
Brussels

THE NAKED
 MICROPROCESSOR

Although I wholeheartedly agree with Mr Parr's comments about software development and maintenance (Letters, August), I feel I must challenge his view that microprocessors will remain essentially "naked."

Microprocessors were indeed developed as programmable logic, but it has become abundantly clear that the architecture of the first ones does not readily support development of large and complex programmes, particularly, when written in machine code. It is interesting to note that the 16 -bit microprocessors currently under development by Intel, Motorola and Zilog all have much more sophisticated architectures which are not only much closer to those found in "conventional" computers but which also make the job of high level language implementation much easier.

The rapidly decreasing cost of both hardware and software is likely to be crucial to the development of more complex systems. Hardware, particularly memory, is coming down in price constantly and there does not seem to be any likelihood that this trend will stop soon (although it might be slowed down by another "memory famine"). Software is also very cheap due to the sheer size of the market and there are signs that as this expands the prices will fall considerably .lower.
There is also an increasingly large number of high level languages available: PL/1, CORAL 66, Micro COBOL, etc. This diversity means that it is easier to find software tools suited to the job in hand rather than constructing one's own or doing without.

It is to be hoped that the naked microprocessor will not be with us for very much longer; it has already donned underwear and soon it may be dressed, in stout winter clothing, to meet the storm of problems, the howls of which can already be heard!

M. R. Barrett

Hextable
Kent

ARE YOU SITTING COMFORTABLY?

"I have a dream about the future. I see the interior of a living-room. The wide windows are formed from double panes of glass, fixed and immovable. The conditioned air is fresh and warm. Oldfashioned people would feel uncomfortable without the fire and fireplace, others might miss the raucous brown box we used to call "the wireless".
But flush against the wall there is a translucent screen with numbered strips of lettering running across it. The lettering spells out titles which read like newspaper headlines. These are the titles, describing the many different "broadcasting" programmes which can be heard by just pressing the corresponding button. Television programmes are set apart - even as I run my eye down the titles some have changed, showing that a new item has superseded the old. I lower myself into a chair and press the proper numbered button on a remote control panel place conveniently beside me.

Tonight is the television premiere of a new English comic opera - I must get my dinner soon or I shall miss the curtain, otherwise I would stay to see the end of the tennis. But I shall get the result in my house newspaper tomorrow..
Printed while I sleep, by a machine in the lobby".
In these quotations from his book The Power Behind the Microphone (1941) P. P. Eckersley, Chief Engineer of the BBC, 1923 to 1929, was dreaming of something which he admitted was "too expensive for practical realization".

Now that we are once again dreaming of the future ("The Paperless Revolution," WW July 1978, p. 38) I believe that such "dreams" should be based upon our human limitations. Eckersley remarked upon "The control panel conveniently beside me". This is where I must disagree with Mr Cawkell: sitting at and concentrating on his "consumersole" is not going to be a pleasure for me, much as I will delight in the multiplicity of electronic joys that it may bring. The size of the screen will surely correspond to the angle of useful vision, and the controls must be "conveniently" (ergonomically?) placed.

What will our friends the psychologists think of sitting all day or even several hours at the console?
G. Beard

London SW4

Telesoftware

Home computing via teletext

by John Hedger, Oracle service, Independent Television

Telesoftware is a name given to a scheme for broadcasting computer programmes, by means of the teletext service, directly into microcomputers built into the teletext decoders of tv receivers. The television set becomes in effect a computer which receives its programme instructions by off-air signals rather than from a local source. As well as being available to the domestic user the service could be of value in education, science and business. A study by the Independent Television Companies' Association has resulted in an experimental demonstration decoder-terminal (shown at the recent International Broadcasting Convention), which is now being tested on-air. In this article the author reviews, the progress of the project, and looks at possible applications for this new broadcasting technology.

THE WORD 'Telesoftware' was coined by W. J. G. Overington, the man who proposed the idea. It literally means 'software at a distance' and refers to the transmission of programmes for a microcomputer via teletext. Software bytes are represented by pairs of standard teletext characters, thus utilising an existing and well-proved transmission technique.
The standard teletext decoder is, in fact, well suited to be adapted to work as a small computer. Its character generator and associated display circuitry can be pressed into service as a visual display. It has a page store which

Fig. 1. Block diagram of ideal Telesoftware concept.
may be used as memory. Even its numerical keypad, normally used to select teletext pages, can be used to enter simple data. With the addition of a suitable microprocessor, extra memory and other interfacing circuitry, the result is quite a powerful stand-alone computer, right inside the television set itself.
At this stage, there is no mass-storage available, but since all the software for such a system can be stored in and transmitted from the teletext data base, the user only has to select the required page(s) containing his desired programme. Once this has been read in, it may be loaded and executed by the microprocessor, obviating the need for expensive storage peripherals or even a telephone line. Thus, once the hardware has been obtained, Telesoftware is a completely free service.

The number of separate computer programmes which may be carried by a teletext system at any one time is, of course, subject to the same limitation as the number of normal pages of text: namely, that an increase in the number of pages causes a corresponding increase in the time required to gain access to any one page. Programmes themselves, however, need not be confined to a single page, and may consist of data carried on a number of sequentially linked pages. The advantage of this is that no matter how many separate pages are employed in such a sequence, the total increase in access time on the system is limited to the time taken to transmit one page. For this reason, all Telesoftware experiments to date have been made using this method of transmission.

The original specification

The Independent Television Companies' Association has been broadcasting Oracle, a teletext news and information service, since mid 1975. After about one year of operation, ITCA were approached by W. J. G. Overington with a proposal for a Telesoftware system. At ITCA it was felt that the idea had some exciting possibilities for Oracle, and in late 1976 Overington drew up a provisional specification for Telesoftware, based upon the use of the Signetics 1650 microprocessor.

The first specification drawn up was somewhat open-ended; deliberately so, since this would allow changes to be incorporated with little difficulty. The primary aim at this stage was to interest manufacturers of decoders, broadcasters and the computer industry. The system proposed was designed around a standard teletext decoder together with a Signetics 2650 microprocessor, extra memory and interfacing logic.

The main memory used the teletext page-store r.a.m. (random access memory) already to be found in the decoder. This was arranged as two 512 $\times 7$ bit memory blocks, and would allow programmes to be entered as 23 rows of 32 columns of teletext characters. A secondary memory was also specified; this being 8 K bytes of extra r.a.m. storage. There was also a tertiary memory. This was intended to act as a partial or complete replacement for the standard teletext character r.o.m. (read-only memory), so as to allow any character set to be remotely defined to a terminal.

There was also provision for eight toggle switches to be used as an input register. An optional control programme, held on erasable p.r.o.m. (programmable read-only memory), was included, although for cheapness there was provision for a control programme to be loaded from teletext itself.

Progress of the scheme

The first broadcast of Telesoftware (a simple programme written by Overington) took place during late February, 1977. Although fairly well reported the transmission simply served to provoke interest, since the project was still embarrassed by the lack of a working terminal on which to demonstrate programmes. The situation was solved towards the end of 1977, when the ITCA initiated a study project to design and build an experimental Telesoftware terminal for demonstration purposes. It was decided to use for the experiment a simplified and somewhat modified version of Overington's original specification. Work began towards the end of that year.

Fig. 2. Mullard teletext decoder module.

The aim of this project was clearlydefined; to produce a terminal capable of very quickly demonstrating the concept of Telesoftware. As a result the design was somewhat crude and far from the optimum. It was felt that by showing in a very limited way what was possible with Telesoftware this would further stimulate the interest of decoder manufacturers and broadcasters who, in the future, might continue the development to a stage where a specification for the 'ideal' software system could be incorporated as an important extension to teletext. Fig. 1 shows how such an ideal design might look.

Compatibility with teletext

It was realised at a very early stage that Telesoftware could not be allowed to interfere in any way with the present teletext specification - indeed, would have to be structured in such a way as to remain compatible with modifications which might be made in the future. For this reason, it was decided to base experimental work upon the use of entirely standard teletext transmission techniques, using normal characters in pairs to represent bytes of programme. The redundancy was used in order to preserve the integrity of the data using the Hamming error-correction techniques.
It would in the future be technically possible to use some of the extra eight rows per teletext page ($25-32$) which are specified as being available, although not capable of being displayed on a normal decoder, for the transmission of Telesoftware data, thus separating it from the normal editorial output. Alternatively, if normal pages were to be used it might be desirable to set a control bit in Row 00 (the header row) so as to inhibit the display of what to the viewer of a normal decoder would appear as gibberish text!

Experimental terminal

The design of the experimental terminal consisted of a single add-on board for the Mullard teletext decoder module (Fig. 2). The new board (Fig. 3) contained some 45 i.cs, these being made up of secondary memory, a temporary store, an e.p.r.o.m. to hold a special control programme (to handle data storage, to store various system subroutines etc), plus, of course, a Signetics 2650 microprocessor. The design did not incorporate a tertiary memory since by this time a foreign language character facility was already available within teletext.

With large-scale integration, of course, the final design of a terminal could be reduced to two or three i.cs, but at this early stage discrete components were employed as a matter of practicality.

The teletext keypad, which would normally be used to select pages from teletext broadcasts, was also used for system control and user data entry. It
was of the ultrasonic remote control type

The main memory was the teletext page store addressed by two bytes of indirect address, the first pointing to a row and the second to a column address. This memory occupied the addressing range hexadecimal 2000 to 3727. The temporary store, which was used as a buffer between data in main and secondary memory while it was vâlidated, was 256 bytes of r.a.m. in the range hexadecimal 1 F00 to $1 F F F$. The secondary memory was 2 K bytes of r.a.m. in the range hexadecimal 4000 to 47FF
The control programme was held on e.p.r.o.m. and its functions were as follows:
-To accept and interpret commands.
-To validate incoming data, using Hamming techniques

- To transfer valid data to secondary memory.
-To re-read data incorrectly received.
-To go to the start of a programme when correctly loaded.

The whole terminal was contained in a standard colour television set.

The decision to opt for a single microprocessor and associated instruction set was basically for convenience in this particular experiment. It may be that when a final specification for Telesoftware is agreed upon it will be desirable to transmit programmes in an intermediate language rather than in a specific instruction set. This would allow different microprocessors to be used and enable the system to support a high-level language (for example, BASIC). A high-level language interpreter would be resident (on r.o.m.) within the terminal, leaving only user programm ${ }^{\circ}$ s to be transmitted via teletext.

Fig. 3. Add-on Telesoftware board to go with the teletext decoder in Fig. 2.

It would in any case be unwise to specify a single m.p.u. device, since the system will undoubtedly have to take account of many future developments in microprocessor technology.

Experimental programmes

A number of simple test programmes were developed in order to demonstrate and test the basic workings of the system:

Fig. 4. Display format used in mortgage calculation programme.

MORTGACE CALCULATION

```
Cordinary repayment mortgage>
To compute your monthly repayments complete the following questionnaire using keys o to 9 . Key 11 for next line SUM BORROHED (UP to 99999)
```



``` IMTEREST (Currently \(9.75 \%\) ) TERM ( 5 to 35 years ) years
```

GROSS MONTHLY REPAYMENTS WILL BE \&

To start again key 1
 11

played using the same hardware. There is no limitation such as those which are found in hard-wired games units of five or six games. Even with more sophisticated conventional games, of the cartridge type (r.o.m.-based), extra cartridges have to be purchased to vary the games repertoire. With Telesoftware every game is completely free of charge once the basic hardware has been purchased.
Depending on the complexity of the terminal, it would be technically possible to incorporate animated games, though at present games are limited to the display characteristics of the teletext format, which lends itself to games demanding verbal reasoning rather than pure hand-to-eye co-ordination. Such games also lend themselves to user input via the keypad, though it would be a simple matter to provide the terminal with one or more games 'paddles' via an analogue-to-digital converter.

Calculation and programme development

The system can be used for many different calculator type functions, e.g. tax calculations, gas and electricity consumption, metric conversion. However, for some users, a facility for developing their own programmes may be required. A high-level language such as BASIC would support such a facility though an extended ("qwerty") keyboard would be needed. It is likely that slots for extension boards (or simply sockets leading to built-in boards) would be an inherent feature of a terminal to permit the connexion of keyboard, cassette recorder, hard-copy printer, etc, in much the same way as in a conventional home computer.
However, the basic unit would be built with the more conventional user in mind who will probably be content to draw from the repertoire of programmes being broadcast on teletext. The possibility of extending the system easily to incorporate more advanced facilities could prove of great importance to educational bodies like the Open University, for whom Telesoftware could offer significant advantages with computer studies, etc.

Public information

Telesoftware may be used to provide public information of the kind often met when dealing with social security claims, health education and tax problems. All these cases often require some degree of assessment. With Telesoftware, this can be selfassessment - for example, with tax problems, a simple question-andanswer routine could probably cope with assessment of tax allowance eligibility. In this respect, Telesoftware offers a social advantage over a human adviser in many cases, since it seems that people are far more truthful and uninhibited when 'talking' to a machine
instead of a human. Also, unlike a more conventional computer system, Telesoftware clearly has no means of storing the users' responses or communicating them to anyone else. This ensures security, very important when dealing, for example, with the medical field.

Education

A very large and important field of application of Telesoftware will be in education and computer aided learning. Telesoftware offers two significant advantages to the teacher: firstly, it is free, and secondly, any number of people may use it concurrently, since there is no apparent loading problem with the ether!' Quite a number of proved but expensive systems already exist for computer aided learning, but all rely upon costly terminals and hardware, and are often used on a time-sharing basis, so loading probelms can occur at times of peak usage. Also, adult and further education could be assisted by Telesoftware, since it is as available in the home as it is in the classroom.

The Computing Unit at the University of Surrey is already deeply involved in the computer-aided learning field, and is now actively participating in the Telesoftware experiments.

Adult literacy and vocal output

Telesoftware could be used to provide a graded course of literacy for adults. It may be possible in the future for the terminal to have built into it a simple vocal output, using synthetic speech to back up written data, though at the time of writing the very considerable amounts of memory required to support this feature are not yet available at realistic cost.
It is also possible for a terminal to control a variety of domestic peripherals, set up telephone calls, control lights, etc. This would be of assistance to the handicapped and disabled. For the blind, teletext type data may be rendered usable by an electromechanical Braille output device of the type currently used in special computer periphefals. These use a 3×2 matrix of solenoids to give a tactile output along a 40 -character row, though at present they are too expensive for the domestic user.

Telesoftware and the business user

Although the main use of Telesoftware will probably be in the home, there are a number of possible business applications for the system. One of these is in the detection of credit card fraud. Every terminal could be constantly supplied with the latest list of credit cards known to be lost or stolen, via teletext. The terminal store is kept constantly up-todate, and at points-of-sale the assistant has simply to enter the number of the credit card which is presented on the numerical keypad. The terminal will scan its local store for that number and

John Hedger has been involved with Independent Television's Oracie service since it started in 1975. He began his career with London Weekend Television in an administrative capacity but soon moved to programme production where he spent some time working on children's programmes. Since joining the Oracle project he has been closely concerned with both technical and editorial develop ments in the service and now has special responsibility for associated new technology, including Telesoftware and captioning for the deaf.
will report upon finding a match. The sales assistant can then take appropriate action. The advantage is that, unlike other similar systems, Telesoftware incurs no running charges, does not rely upon a telephone line, and is simple and cheap to install. The power to instantly update every terminal in the country with the latest stolen card numbers could be a real aid in preventing frauds involving credit cards, cheque cards, airline tickets, etc, which are constantly on the increase.

The future

It is expected that with massproduction of teletext decoders the extra cost of incorporating the basic Telesoftware facility will be in the region of $£ 50$ per unit. With this one charge the system clearly shows advantages over a wired system in a domestic market. However, the limitations of Telesoftware have also to be recognised. It can never, for example, allow the user to interrogate a large data base for a very small and obscure item; it can never order a plane ticket or make a hotel reservation. But its inherent advantages of cheapness, availability and simplicity make it very attractive to the man-in-the-street, who may not in reality be able to afford the per page running cost of systems like viewdata.

A wired system can, however, benefit from an "intelligent" terminal like that employed for Telesoftware, by making use of it as a front-end processor, maximising the use of the telephone line and thus minimising the expense.

With continuing research, the present aim is to enable the system to support a high-level language, such as 8 K BASIC. Once this has been achieved, together with rationalisation in transmission techniques and data reliability, and a final specification is agreed, Telesoftware will be ready to take its place among the many other data systems which will inevitably compete for user time on the domestic television set.
Acknowledgements. The author would like to thank the following for their assistance with the preparation of this article: P. James, R. Eason and M. Figuerola of Mullard Applications Laboratory; N. W. Green of ITCA; H. Quilliam of University of Surrey.

You can now combine fingertip accuracy with strict temperature control (within 2%) at the 0.6 mm tip of a miniature soldering iron by using the soldering station shown with one of the 24 volt irons
The exceptionally fast recovery time of a miniature iron of 40 watts at the chosen temperature ensures a short exposure
or dwell time. If your requirements are less demanding, one of our ordinary miniature or general purpose soldering irons or kits may suit better.
All our soldering equipment is made in England to strict local
and international standards of safety. Our name for
reliability is spreading from all over Europe to the U.S.A., to Japan and to most other countries

Maytlower House, Armada Way, Plymouth, Devon Tel: 0752 67377/8 Telex: 45296

Model TCSU1 Soldering Station

The TCSUI soldering station witherther the XTC 50 watt -24/26 volt soldering iron or the CIC 35 watt - soldering yron for pin poin! precision and exceptionally tast recovery time. We have put at least twice as much power into irons which are already well known for good recovery time. The temperature control stops them from over-heating; the "fail-sate" electronic circuit provides protection even if the thermocouple fails. inclusive of VAT and P.\&P

Model CX- 17 watts

a muniature iron with the element enclosed first in a cerramic shatt, then in a stainless steel Virually leak. Free. Only 7% " Range of 5 other bils available from $1 / 4$ "down to $3 / 64^{4}$

Model X25-25 watts

A general purpose iron also with a ceramic and steel shatt to give you toughness combined with near.pertect insulation. P.\&P Range of 4 other pits available.

Model SK3 Kit

Contains toon the
model Cx230
soltenng ion and soddenno iron and
the stano ST3 the stano ST3
Priced at 85.99 Pricer ar or VAT and P.\&P It makes an excellent present for the radio amateur.
modelmaker or modelmak
hobbyist
hobbyist
Model SK4 KIt

Model SK1 Kit
This kit contains a 15 watt mininature bits a coil of solder a heal sink and a booklet' How to solder'. Pnced at $£ 6.48$ inclusive of VAT and $P \& P$

Model MLX Kit

 The soldering iron in tis kit can beoperated from any ordinary car battery. It is firted with 15 feet llexibte cabte and battery clips Packed ina strong plastic envelope it can be left in a car a boat or a caravan ready for soldering in the field. Price $£ 4.83$ inclusive of VAT and P.\&P

Please send the following

Please send me the Antex
colour brochure
I enclose cheque/P.0./Giro No. 2581000
Name
Address

Antex Lid. Freapost, Plymouth PL1 1BR Tel. 075267377

At the end of the test session the communications engineer sang the praises of our filters.

"What performance" he said, referring to the

EF3 Variable Filter System
Designed on a modular basis to give flexibility in use and to match your budget. A plug-in system developed for use in labs., test departments, anywhere where signal conditioning is required. Filter units can be used separately or combined to give a wide variety of functions from low-pass to band-separate.

The current pass-band capacity is from d.c. to 10 MHz .

Active Filter Modules

The ready-to-use convenience of small, encapsulated filter units, each with a basic function. No filter knowledge required to set up for specific characteristic or cut-off frequency. These filters are equally suited to the one-off lab. application and the
large quantity production requirement.
Available in low-pass, high-pass, universal and notch designs with a range of cut-off frequencies and attenuation rates.

Custom-Built Filters

The basis of our filter activity, this service has for 20 years provided solutions to customers specific requirements. Based on in-house computer facilities and an extensive programme library we can design and manufacture the filters not provided in our standard range.

Designs can be passive or active with cut-off rates up to several hundred dB per octave in a frequency range up to around 70 MHz

Barr \& Stroud adds to your resources

Frequency synthesizers - 3

The generation of wanted frequencies from other frequencies

by R. Thompson, M.I.E.E.

Parts 1 and 2 of this three-part series described the synthesis of frequencies by means of addition, multiplication and division. This final part covers the principles of phase-locked loops as synthesizers and presents three solutions to specific problems.

Phase-locked loops

It has already been mentioned that the major difficulty with synthesizers is not the generation of the wanted frequency so much as the rejection of unwanted products. The phase-locked loop, p.l.l., is a circuit capable of providing highly selective amplification,-its unique feature being its precise and automatic tuning. It is because of this feature that the p.1.1. is used extensively in frequency synthesis.

Figure 14 shows the block diagram of a basic p.l.1. It is simply a feedback circuit which controls the phase, and hence frequency, of the output with respect to the phase of an input signal. For steady state conditions there can be no frequency error between $f_{\text {in }}$ and $f_{\text {out }}$. This follows from the action of the phase detector which integrates any frequency error. There will in general be a steady state phase error, though this can be made arbitrarily small by increasing the loop gain.

The term 'type l loop' is sometimes applied to low gain loops and 'type 2 loop' to high gain loops. Strictly speaking type 2 loops have zero steady state phase error and employ a second integrator in the loop. However, it should be appreciated that a range of performance is available between types 1 and 2 by varying gain.

The simplest type of loop has no low pass filter. The open loop gain characteristics therefore take the forms shown in Fig. 15(a). The closed loop frequency response is also shown and the bandwidth is approximately equal to the frequency at which the open loop gains equals unity. This follows from the action of the feedback which is able to stabilise gain at all frequencies where the loop gain is greater than unity. The 6 dB /octave slope is produced by the integral relationship of phase and frequency.

The loop will be able to track changes in input frequency, or compensate for voltage controlled oscillator (v.c.o.) errors, provided the frequency change
does not exceed $\pi / 2 \mathrm{~K}_{\mathrm{f}}$. This assumes that the phase detector saturates at phase errors of $\pm \pi / 2$, as many detectors do. Increasing the loop gain K_{0} therefore increases the "hold in" range. However, this increases the bandwidth as shown in Fig, 15(a) and there is therefore a conflict between bandwidth and hold in range in the choice of K_{o}.

The transient response shown in Fig. 15(a) is that of a simple CR filter, as of course is the frequency response. This type of loop is in fact referred to as a first order loop since the Laplace transfer function has a first order denominator (giving a simple pole in the s plane).

If the loop low pass filter consists of a simple CR filter the transfer function becomes second order (giving two poles in the s plane). The advantage of introducing a filter can be seen from Fig. 15(b). To a first order, the closed loop bandwidth will always be equal to the open loop unity gain frequency ω_{o}. With the added filter therefore it is possible to increase K_{o} without increasing the bandwidth. The frequency responses of the loop illustrate this, although the exact shape of the response depends on the ratio ω_{1} / ω_{0}. The transient response, like the frequency response, can exhibit overshoots which are characteristic of multiple pole networks.

The time response is characterised by a 'natural' frequency, $\omega_{r p}$ and a damping factor ζ. In general, responses with large overshoots are highly undesirable and we may therefore still have conflicting design requirements. Loop gain (for accuracy and 'hold in'), bandwidth (for filtering) and ζ (for transient response) cannot be independently controlled by the two variables K_{o} and ω_{1}. The solution to such a design conflict is to use a modified CR filter, normally referred to as a lead/lag filter. Fig. 15(c) shows the filter. The purpose of R_{2} is to take out the effect of C as the frequency increases. The filter therefore has an initial 'break' frequency ω_{1} when $R_{1}=X_{c}$ and 'breaks back' towards a simple resistive attenuator when $X_{c} \doteq R_{2} A$ loop with such a filter is still 'second order'.

The transient response of the loop is determined primarily by the open loop phase shift around its unity gain frequency. Lowering ω_{1} below ω_{0} increases this phase shift towards 180° from the 90° shift present with no filter.

Fig. 14. Basic phase-locked loop, in which no frequency error can exist between $f_{\text {out }}$ and $f_{\text {in }}$ in the steady condition.

It has been seen that this results in decreased damping. Adding the break back at ω_{2} tends to cancel the increased phase shift, its effect obviously increasing as ω_{2} approaches ω_{1}. The effect of varying ${\omega_{2}}_{2}$ is shown in Fig. 15(c).

The most common type of loop found in synthesizers is in fact a high gain second order loop. High gain is often not required specifically for accuracy but to reduce the level of noise generated by the phase detector. This detector is often a logic circuit producing a variable width square wave at the comparison frequency. The components of this, even after filtering in the low pass filter, will produce phase noise in the output signal. A high gain loop will have a very small steady state phase error producing very narrow low energy pulses at the detector output. Use of such high gain means that the filter must use a lead/lag network. The filter is in fact often in the form of an operational amplifier integrator which provides increased loop gain.

The loop bandwidth is controlled by a simple low pass filter and bandwidths of only a few Hertz can easily be obtained. When it is remembered that the input to the loop can be at high radio frequency the unique filtering characteristics of the p.l.l. can be appreciated. It can be used to separate wanted from unwanted signals even when the percentage frequency separation is very small.

The cut-off rate of the loop frequency response is only 6 dB /octave when. a lead/lag filter is used. This can be increased at frequencies substantially greater than ω_{0} without altering the basic characteristics of the loop. In synthesizers this is often done to reduce comparison frequency noise generated in the phase detector which can modulate the v.c.o.

The 'hold in' range of the loop represents the range of frequency

which the loop can track once phase lock has been established. The maximum frequency error for which the loop can acquire lock is called the 'pull in' range. This is never greater than the 'hold in' range and even with this range acquisition can take very long times. High gain second order loops are particularly bad in this respect. Because of this type of acquisition problem p.l.1.s sometimes use a subsidiary frequency discrimination to provide coarse tuning correction. Once phase lock is established the frequency discriminator action carn be ignored.

Synthesizer circuits

Having looked at four basic types of "building block"; addition, multiplication, division and the p.l.l., we will now consider their combined application in frequency synthesizers. The basic requirement of a synthesizer is the generation of one frequency from another and this can be stated as:

$$
f_{2} / f_{1}=X / Y
$$

Fig. 15. Characteristics exhibited by loops with no filter (a), simple CR filter (b) and lead/lag filter (c). Loop gains are shown in the left-hand column and the associated frequency responses in the centre. Corresponding transient respose is in the right-hand column.
where X and Y are rational numbers. Synthesis can therefore be achieved by the simple cascade of an X-times multiplier followed by a Y-times divider. Practical realisation in this form is limited by the values of X and Y.

The divider techniques described earlier allow a wide range of division ratios to be achieved with proprietory devices operationg at frequencies up to about 1 GHz . In general therefore it will be the realisation of high multiplication factors which will impose practical difficulties. Where p.1.1. techniques are not used multiplication factors of greater than 5 in one stage are difficult if reasonable spectral purity is to be maintained. The procedure adopted to
avoid excessive multiplication is to split the requirement into the form:

$$
X / Y=(x / y)\left(X_{1} \pm X_{2} / Y_{2}\right)
$$

For instance, if we have a specific requirement to generate 2.35 MHz from a reference to 3.52 MHz , then:

$$
\begin{gathered}
\left(f_{2} / f_{1}=2.35 / 3.52=235 / 352\right. \\
=X / Y
\end{gathered}
$$

this can be split into:

$$
\begin{aligned}
235 / 32 & =(5 / 32) \times(47 / 11) \\
& =(5 / 32)(4+3 / 11)
\end{aligned}
$$

This synthesis involves a mixer to carry out the subsidiary addition as shown in Fig. 16. The multiplication terms, 5, 4 and 3 are all reasonable, but the addition of $4+3 / 11$ represents a ratio of $44: 3$ in the input frequencies to the mixer. As explained earlier unwanted frequencies generated in the mixer give upper and lower bounds on the ratio for practical filtering. A better factoring is therefore:

$$
(5 / 11)(3+14 / 11)
$$

giving a mixing ratio of $33: 14$. The multiplication factor of 14 can be reduced
by a second mixing loop as shown in Fig. 16, providing synthesis in the form:

$$
(5 / 32)(3+(1+3) / 11)
$$

The requirement has thus been factored into a form readily realised with practical circuit elements. It can be seen that the complexity of the synthesizer is dependent on the practical bounds set primarily by filtering problems.

Phase-locked loops are widely used in synthesizers because their excellent filtering characteristics allow very wide bounds on multiplication and mixing ratios. Before looking in more detail at the application of p.l.ls, an alternative form of selective filtering is worth mentioning. This is the "triple mixing" system shown in Fig. 17.

Highly selective fixed-tune filtering is provided and the auxiliary oscillator is used to "scan" the incoming spectrum with these filters. Filtering having been accomplished, the third mixer cancels out the auxiliary oscillator frequency together with any associated frequency drift. Mixer 2 is used to introduce an interpolation frequency, normally an incremental frequency which can be used to span the separation of the harmonics in the input signal f_{1}.

The p.l.l. can also be considered as a form of heterodyne/fixed filter system, the signal being converted down to zero frequency and fixed filtering provided by the low pass filter. In its basic form it ean be used simply as a high grade filter in synthesizing loops, allowing constraints on multiplication and mixing ratios to be relaxed. More frequently, the p.l.1. is modified by the inclusion of a divider in the feedback loop as shown in Fig. 18(a). When modified in this way, the loop stabilises the v.c.o. frequency at n times the input frequency. The p.i.1. loop gain is reduced by a factor of n and the characteristics of the loop are modified accordingly. This arrangement operates as a multiplier, having the very important feature that its multiplying ratio is readily controllable over a wide range by proprietory divider circuits. It is also "fail safe" on its operation, simple harmonic multipliers have the problem that the wrong harmonic may be selected, particularly where high ratios are involved. In synthesisers, it is normally an advantage to have maximum bandwidth, as opposed to the p.1.1. being used as a narrow band filter of input signals. The wider bandwidth allows cancellation of noise generated in the loop, in particular v.c.o. noise. Wide bandwidth also reduces tuning time. Since the bandwidth must be subtantially less than the comparison frequency we have a design conflict between low comparison frequency for fine tuning increments and wide bandwidth for noise and tuning time performance.

The solution of the synthesizer requirement $F_{1} / F_{1}=X / Y$ can be realised in a simple two-step operation, using a multiplying p.l.l. Figure 18(b) illustrates the solution to our previous example of $235 / 352$.

Fig. 16. Evolution of synthesizer to perform basic furctions shown at (a).

Fig. 17. Triple mixing synthesizer.
(a)

(b)

Fig. 18. Phase-locked loop multiplier (a) and a p.l.l. multiplier solution to the $2.35 / 3.52$ problem (b).

Fig. 19. P.l.ls can be used as high-speed dividers by inclusion of a multiplier in the loop. P.l.l. at (a) divides by 5. Mixer at (b) reduces frequency requirements of divider and (c) shows alternative method.

(b)

Fig. 20. Methods of achieving wide bandwidth and small increments.

The operating frequency of the divider circuits is often an important constraint on the synthesizer design. For this reason, Fig. 18(b) shows the division followed by multiplication; reversal of this would require the divider to operate at over 850 MHz . Currently-available dividers in integrated circuit form have the following approximate frequency limits:
direct variable dividers - 10 MHz variable division with "early
decode"
25 MHz
variable modulus prescaler

- 500 MHz
fixed prescaling $\quad-1500 \mathrm{MHz}$
At frequencies higher than this, or as an alternative to prescaling techniques, the p.l.1. can be used as a high-frequency divider by employing a multiplier in the feedback path. Figure 19(a) shows an arrangement where the reference frequency is very high.

Another alternative used to cope with high frequency requirements is to introduce a mixer into the p.I.1. This reduces the frequency handled by the divider, such an arrangement being shown in Fig. 19(b). The synthesis is $f_{2}=f_{1} \mathrm{X} / \mathrm{Y}+f_{3}$, with a maximum frequency at the divider of $f_{2}-f_{3}$. A harmonic of the reference frequency can be used and the digital mixer described earlier can be used as a combined mixer and harmonic multiplier. Figure 19(c) shows such an arrangement. The synthesis is $f_{2}=f_{1} X / Y+N f_{1}$ where N is the harmonic of f_{1} selected by the loop. For example f_{1} might be 5 MHz and f_{2} required to be in the region of 56 MHz . The 11th harmonic of f_{1} is subtracted from f_{2} in the mixer, giving a frequency into the variable divider in the region of 1 MHz (the exact frequency depending on X and Y).

As described earlier we have problems in achieving wide bandwidth and low frequency increments. The vernier system uses two synthesizers, offset in their reference frequencies so that increments in frequency are set by the difference, as shown in Fig. 20(a).

In the Tandem system a wideband synthesizer produces a low-noise output while the fine frequency increments are achieved via a second synthesizer providing the reference frequency for the output loop. The secondary loop is slow because of the low comparison frequency, so tuning is slow when a change to that loop is involved.

The display loop system uses an accurate timebase counter to display the frequency. When the required frequency is obtained the loop is completed with correction being generated by any variation of the last digit of the counter.

The next article will conclude the series with examples of specific designs.

NEWS OF THE MONTH

 64K r.a.m. unveiled by USA

 64K r.a.m. unveiled by USA}

The race to produce a 64 k r.a.m. in volume quantities has probably been won by Texas Instruments Incorporated. Sample quantities of the 16 -pin device, at $\$ 125$ each (in the USA), are expected to be made available in October or November. The device has been given the designation TMS 6164.
The r.a.m., according to reported TI specifications, operates from a single 5 V supply rail. This will make the device very attractive when compared with Japan's Fujitsu 64k r.a.m. which will require a dual rail for +7 and -2 V supplies. A report in the American journal Electronics says: In achieving its single-supply operation, TI has made a significant development in m.o.s. design. All 5 V m.o.s. devices now on the market require a negative supply for reverse-biasing the substrate to make iripus and outputs compatible with transistortransistor logic - on-chip circuits called charge pumps generate the negative voltage. The new r.a.m., however, contains no on-chip substrate-biasing circuit - TI designers have altogether eliminated the need for negative voltages. "Although it is t.t.l.-compatible on the outside, the inside is geared more toward achieving an optimal speed-power product," says G. R. Mohan Rao, who headed the design team at TI. "People will be surprised when they see how we did it."
Not only does the new 64 k device quadruple the density of current generation of 16 k r.a.ms, it also outperforms them in many respects, according to the American journal. The device has a maximum power dissipation of 200 mW , or $3 \mu \mathrm{~W} /$ bit, compared with 462 mW or $28 \mu \mathrm{~W} /$ bit for TI's older 16 k device, the TMS4116. Access times have also been improved. These range from 100 to 150 ns and the minimum cycle times range from 200 to 250 ns . Another difference is that Tl's 64 k r.a.m. incorporates a 256 cycle $/ 4 \mathrm{~ms}$ refresh period instead of the 128 cycle $/ 2 \mathrm{~ms}$ period used in current 4 k and 16 k devices.
In addition, TI has kept the bar size down to 132 by 252 thousanths-of-an-inch, and with 60% of the area taken up by the array, it is claimed by Rao to be "the first dynamic r.a.m. not dominated by the peripheral circuitry". The tricky part, according to Rao, was getting 40 internal clocks on the chip timed together. Using TI's approach the major internal clocks are guaranteed not to have a timing skew, even if the row and column strobes from the user are nonperiodic.

Some analysts put the eventual 64 k r.a.m. market.at between $\$ 700-1000$ million per year, which compares with an estimated current market of $\$ 200$ million for the 16 k r.a.m.

Though Texas Instruments are the second company to announce a 64 k dynamic random access memory they claim this will become the industry Standard on account of its single 5 V supply design. At a press conference for their "most significant product announcement this year" Robert Wilmot managing director of the UK subsidiary, said they hadn't finally decided where it will be made, though initial production will be in the U.S. In any event, in terms of investment to create jobs, such a development was a "dead loss" he said. Volume production is set for the
middle of 1979 but sample devices are expected late this year at $£ 80$ a piece. Mr Wilmot wouldn't discuss volume forecasts but said that by 1981 he expected price would be down to $£ 4$.
In a clear reference to the NEB's Inmos investment, Mr Wilmot said that being first is obviously a key factor. Dynamic r.a.ms were on a 68% learning curve - for every doubling in volume price fell to 68% of its prior value and to be in business one can't afford to be late, he said. "The fate of many companies to disprove the learning curve theory in the sixties is only too well known." There had been opportunities for new companies to get into the business - Intel and Mostek were
examples of companies launched on what he called a "technological discontinuity" - but he didn't see any "windows" in the foresee able future.

Costs of active circuit elements falls in proportion to their increase in density, which appears to be at a rate of two "decades" (orders of magnitude) per decade (10 years). A density of 10,000 elements per chip will become old but as production of 64 k r.a.ms and 16 -bit microcomputers dominate, with 100,000 elements for chip, and which in turn will give way to 256 k r.a.ms and 32 -bit microcomputers as v.l.s.i. escalates to a density of a million by 1985

Radiocommunications breakthrough by UK company

A bright idea by a design team member at Plessey Avionics and Cónmúnication's Roke Manor laboratories has resulted in the production of a v.h.f. repeater capable of receiving and transmitting radio signals on the same frequency, simultaneously. This is a major breakthrough in radio communications techniques
Work began on the repeater, which has been given the name Groundsat, some eighteen months ago, shortly after the concept was first recognised. The discovery Plessey claim it to be revolutionary rather than evolutionary - was made while the design team were working on the job of simplifying army communications equipment.

Because of the large market potential of this new repeater, and the communication technique, and the fact that Groundsat is primarily intended, as it stands, for use by armed forces, the technical details of the new technique cannot be made public at the present time. In the past, attempts to receive radio signals on one antenna while simultaneously retransmitting the same signal, on the same carrier frequency, on a second antenna on the same site, have failed because the first antenna, which is probably receiving only microvolts, is swamped by the second antenna, typically transmitting watts of effective radiated power. Plessey's team has found a way of overcoming this problem. While they are not the first to have followed up theories associated with this problem, they do claim to be the first to have made the theory work in practice.
Groundsat is expected to have a major impact in battlefield v.h.f. communications. Only 24 hours after their introduction to Groundsat, a spokesman for the British army made a statement to the effect that they were very impressed with the equipment and would be purchasing at least one for field trials. On the battlefield, Groundsat will enable a soldier or a patrol to remain in contact in difficult terrain where normal v.h.f. radio coverage has ceased to be effective. In order to gain a tactical advantage, a soldier in battle must use the terrain -
keeping to low lying areas at the foot of a hill for example - but this'frequently causes difficulties in maintaining radio communication. The usual way of overcoming this in these situations is to employ a re-broadcast station, where the original signal is retransmitted to the soldier via an operator using a multi-set installation. The re-broadcast equipment is bulky, complex and expensive, and setting up is difficult and time consuming. In addition, several widely-spaced channels are required, with transmission and reception on separate channels, as compared with one channel for normal network operation. The repeater, which is no larger than a man-pack radio, and can be used as such overcomes these problems and may be left unmanned in a suitable re-broadcast posi tion. Operation is so simple that the soldier has only to press his p.t.t. switch once for normal working, and if he fails to make contact, to press again for repeater operation.

Plessey say that several armies can de expected to take advantage of their development and the prospects for exports are ex cellent.

Technical

Specifications

Groundsat operates in the frequency range 30 to 76 MHz and has 1840 or 920 channels spaced at 25 or 50 kHz . Frequency modulation with a 5 kHz deviation is employed and output power can be between 10 mW and 1 W to a 50Ω load. The unit has a re-broadcast ratio of greater than 100 dB and a sensitivity of $1 \mu \mathrm{~V}$ for 10 dB signal-plus-noise/noise ratio. lt has built-in test modes, including an overload test facility for obtaining optimum antenna separation. (Wireless World witnessed repeater operation using two Clansman elevated antennas with a separation of about 15 m .)

Surround sound.field tests by IBA

The IBA will shortly be field testing their three-channel surround-sound broadcasting system, based on the NRDC's ambisonic technology, on independent local radio. The broadcast tests, which are in support of studies being made by the European Broadcasting Union, are expected to start in the London area on Capital Radio $(93.8 \mathrm{MHz}$ v.h.f./f.m.) during late October or early November. Other ILR stations will also be involved - accouncements of dates and times made after consultation with the Home Office.

For the broadcasts, programme material will be specially recorded by IBA engineers using their new surround-sound mobile recording unit including, where appropriate, the new Calrec sound-field microphone (August issue, page 75). A small quantity of stereo receivers are currently being modified by the IBA for three channel reception. Listeners will be invited to participate by
reporting the degree of stereo and monophonic compatibility on the receivers currently in general use. A reply-paid questionaire is to be made available from the IBA Engineering Information Service to assist the collecting of data.
The encoding scheme being used is the " $21 / 2$-channel" member of the UHJ family in which a band-limited third channel is transmitted in phase quadrature to what is normally the stereo difference signal. One of the benefits of this additional information is that the 180° phase anomaly inherent in twochannel matrix systems is removed, in the psychoacoustically all-important region of the spectrum. The other important difference is the greater freedom of listener position it was largely the constraint on position that led the major two-channel proponents CBS, Sansui, BBC - to try and "rescue" their systems with some form of programactuated decoding. The price to be paid, of
course, is some degradation in signal-tonoise ratio but as to how much is acceptable still seems a matter for debate. The BBC have officially doggedly said in effect that no worsening is allowable (Feb. 1977 issue, page 43, Dec. 1977 issue, page 77), while the IBA clearly feel there is more to be gained than there is to be lost. Their work indicates a clear preference for $21 / 2$-channel working, compared with twn-channel (with or without program-actuated decoding), and a penalty to stereo listeners of a fraction of a dB in signal to noise ratio, and a 1 to 2 dB reduction for the $21 / 2$-channel mode (Sept. 1977 issue, pages $50 / 1$).

According to the IBA, listeners who are interested in surround-sound reception, will soon be able to obtain a technical leaflet which will give full information on the kind of decoder required. Wireless World hope to publish this information for the benefit of readers.

Britain must take full advantage of teletext Minister for Industry

The Minister of State for Industry, the Rt Hon. Alan Williams, MP, said at the opening of the National Teletext Week Exhibition (20/27th Sept.), that Britain had scored a very important first in the electronic field and it had done so in a remarkably short development time. "It has taken half as long, for example, to develop teletext as it took to develop v.t.r. in Japan. However, there is always the risk that we, as in the past, may fail to take full advantage of the first that we have now established, and the lead that we have established." He continued by saying that teletext was an extremely important step forward, and could eventually help to restore a balance between viewing and reading. "The Japanese have, on the v.t.r. side, been able to establish, or look as if they are going to establish, a very dominant market position because they have had and made a co-ordinated approach and attack upon the world market. Sadly, so far, we have not seen as co-ordinated an approach from British industry as far as teletext is concerned. We have the product. We are convinced there is the market. In fact we are convinced there is a market potentially for eight million sets a year, and yet, so far, we have not managed to exploit that market."

As far as the set manufacturers were concerned, Mr Williams said that it was imperative that they decide to incorporate teletext into as many of their sets as they possibly can, and as far as the component manufacturers were concerned it was imperative that they made the appropriate decisions and provided the most sophisticated and the cheapest chip components that were available. The broadcasters, retailers and rental companies had a role to play in ensuring that the opportunities, advantages and values of the new system were brought fully to the public and to the consumers.
The Government's part, according to Mr Williams, was to do anything they could to
give further support to the venture. He regarded the National Teletext Week as a very important step by the industry to recognise that an opportunity was in danger of slipping by yet again and he welcomed it as an attempt to co-ordinate the activities of all sectors of the industry.

National Teletext Week, which was sponsored by the BBC, IBA, BREMA, ECIF, RETRA and the National Television Rental Association, marked the culmination of an excellent example of co-operation between the British broadcasting organisations and the manufacturers of television receivers.

Mr Donald Cullimore, a member of the Oracle board, said at the opening that the board were planning a number of new and exciting services, which they would be telling the public about in a few weeks time, and afterwards they would aim to cut down on the time it took for them to get a page on the screen and increase the number of pages and categories in the service.

The BBC's news and current affairs director Mr Richard Francis gave details of the Ceefax service. About the cost of Ceefax he said, ". . . from the broadcasters point of view the cost of producing the service is very cheap. Even with the new transmission equipment we are installing it probably only represents $31 / 2$ p in the annual licence fee. A large expansion in what we have to offer would still only cost a few bob per person per year."

In addition to expanding the Ceefax service - including the installation of a new computer and software programme - the BBC has developed a hard-copy Ceefax printout, which was shown publicly for the first time at the exhibition. They also have plans for developing the regional content of Ceefax and hope to start with their first sub-unit in Manchester in 1980, extending to Glasgow, Birmingham, Cardiff, Belfast and Bristol. Telesoftware - p. 61 .

News in Brief

An IERE Conference on television measurements is to be held at the Commonwealth Institute, London, from May 21-23 1979. It will review current developments and innovations in teletext and digital systems and there will also be sessions on colorimetry, video and r.f. instrumentation and measurement techniques and distribution system performance.

At the 1978 General Assembly of EUREL the Convention of National Societies of Electrical Engineers of West Europe - held in Helsinki on September 7, Professor William Gosling was elected President of the Convention for 1979. Professor Gosling, who is head of the Electronics Group in the School of Engineering at the University of Bath, has been the IERE's representative to EUREL for the past four years. EUREL was founded in 1972 and now comprises 17 societies from 13 . countries. Its aims are to facilitate the exchange of information and to foster multilateral collaboration between its member societies.

Seminex Ltd is calling for papers for Seminex 79 to be held from March 26-30. In addition to microprocessor-related subjects, topics covered are to include bubble memories, optoelectronics and displays, hybrid integrated circuits, power semiconductors and microwave devices. Authors interested in preparing papers for the seminar event are asked to contact the organisers at Seminex Ltd, 79 High Street, Tunbridge Wells, Kent TN1 1XZ.

From Nov. 16-25, 47 companies will participate in the first all-British Scientific Instruments Exhibition in Peking organised by the British Overseas Trade Board and sponsored by the Scientific Instruments Manufacturers Association. Among the items on display will be an X-ray scanner diagnostic system, microwave instrumentation, electrophysiological measuring systems and laboratory equipment.

Multiplexed alarm

Remote sensing of up to 10 points with a two-wire system

by R.J. Chance B.Sc.

This multiplexed system is the result of improving a rather primitive burglar alarm. The redesigned circuit can detect the state of up to 10 sensors and give an immediate identification and location of an activated sensor. Because each sensor does not form part of an overall alarm loop, separate sensors or groups can activate different audible / visual signals. Installation is simplified because one pair of wires connects all of the sensors to a control unit.

BECAUSE wiring is the most inconvenient feature of an alarm system I felt that having around 10 sensors all wired separately to a central point would be
unacceptable. Although time division multiplexing seemed to offer a solution where connections could be made from one site to the next, it appeared that

Fig. 1. Remote multiplexer circuit. Each unit uses a different output from one to zero.
Fig. 2. Control circuit. The 10 channels can be individually turne \bar{d} on and off or switched in groups.

Fig. 3. Circuit waveforms.

Fig. 4. Transistor OR gate.
power supply lines, a reset line, clock line and a sensor state indication line would be necessary to supply the multiplexer circuit at each site. The present design has reduced this requirement to just 2 wires by making use of the low current and large power supply tolerance of c.m.o.s.
The multiplexer circuit is based on a 4017 decade counter with 10 individual outputs as shown in Fig. 1. Up to 10 of these can be used, each with a different output, to give signals in 10 time slots. A reset line has been avoided by using the power supply rail to reset the counter. When switched on, a CR time constant holds the reset line at $V_{D D}$ to make sure that counting starts from 0 . A clock line has been eliminated by switching the supply line as a square wave. When this supply waveform is applied as shown, the capacitor charges through D_{1} and the resistor. Because V_{SS} is taken low before the reset pin, the 4017 is set to zero. When the square-wave input returns to $V_{D D}$ the 4017 is powered by the charge on the capacitor, and counting proceeds from zero as long as the square wave is present.
The sensor indication line has also been eliminated by detecting the power supply current drain. If a sensor such as a reed switch is connected via a limiting resistor and D_{2}, between one of the 10 counter outputs and the negative supply line as shown, the current drawn through the sensor switch can be detected by the control circuit. In this way one pair of wires can be used to supply 10 remote sensors.
The main circuit is shown in Fig. 2. An oscillator and shift register generate clocking waveforms as shown in Fig. 3, and a 3900 quad op-amp converts current flowing in the line to logic levels. A master 4017 clocks these logic levels, which correspond to the 10 time slots, into 10 output latches. This data is also stored in an 11 stage shift register which holds the state of the last 11 sensor checks.
An open sensor output produces a 1, so two consecutive sensor-open signals are detected by the 2 input NAND gate connected to the 1st and 11th stages of the shift register. Because the NAND gate requires two consecutive sensor open outputs to switch, this system prevents an interference pulse from activating the alarm. If a supply current

Fig. 5. Power supply.

Fig. 6. Interconnection of the remote alarm units.
of greater than normal is detected because, for example, the remote multiplexers are not in step, the circuit is reset by a monostable.
The output of the NAND gate is fed to the data inputs of 10 D-type flip flops which are used as latches. The output from the NAND gate is sequentially clocked into these latches by the 10 outputs of the master 4017. Ten 4018 AND gates connect the Q outputs to the reset pins of the latches. When the gates are enabled by the alarm-on switch, a latch will be held in the 0 state if corresponding sensor contacts are opened for two counting cycles of the multiplexer. The latch will remain in the 0 state even if the sensor contacts are closed again. Transistors drive 1.e.ds from the flip flop Q outputs, and are switched between red and green types to indicate alarm-on or alarm-off. An oscillator pulses all of the display drivers to give a flashing l.e.d. for the sensor which has been interrupted.

The 10 alarm signals are available at the 4081 outputs, and the method of using them will depend on individual requirements. Although each output can be used to drive a separate bell or siren, it is much more likely that groups of these will need to be ORed to operate one alarm. The simplest way of achieving this is to drive a transistor from the required outputs as shown in Fig. 4. A relay in the transistor collector provides a contact closure that can switch mains or low voltage alarms. Although only one switch has been shown for the alarm on/off function, it is possible to use several so that some sensor sites can be activated while others are switched off. Alternatively, 10 switches can be used to give inde-
pendent control of each site. Only a simple power supply is necessary as shown in Fig. 5. The l.e.ds are powered from the unstabilised supply and a simple regulator is provided for the c.m.o.s. logic.

Installation of the alarm is obviously an individual matter, but in my installation a twisted pair of wires was used for interconnection between remote units and the control box as shown in Fig. 6. Detectors for windows were made from a loop of fine enamelled copper wire glued to the surface of the glass. This is unobtrusive and easily broken if the glass is shattered. For doors, standard reed switches were mounted vertically in a slot cut in the door jamb. A ferrite bar magnet was horizontally mounted in a slot cut in the door opposite the reed switch. This arrangement gave satisfactory operation and enough latitude to ensure that wind rattling the door did not give, a false alarm.
This system has been in use for nearly three years and has proved to be far superior to the simple alarms which are available. The ability to detect which doors or windows have been left open is particularly convenient when setting the alarm, and it is felt that this facility alone is worth the extra expense. The only trouble experienced over this time has been interference caused by a particularly bad motor on the same power line. Although the correct approach would have been to suppress the motor, fitting a mains interference filter to the burglar alarm immediately cured the trouble. In this connection, it may be of interest that a 100 m drum of three core mains cable appears to be more effective than a commercial LC filter.

Pulse generator

The number of pulses at the input of this circuit determines which output will produce one pulse. Input pulses can be applied by a push-button switch via a Schmitt trigger to remove contact bounce, or by other logic circuitry. The
first positive edge triggers a monostable which disables the AND gate latches of the 7490 output. Every other positive edge retriggers the monostable and keeps the AND gates disabled until all of the negative edges have been counted by the 7490 . The period of the monostable must be longer than the pulse width of the input. A b.c.d. output from
the AND gates is decoded and the eight-input NAND gate resets the 7490 counter so that a single pulse is produced. The output can be applied to bistables for two-state control, or to counters for step-by-step control.
R. Champaneri

Sparkhill
Birmingham

Contrast expander for weather satellite pictures

This expander performs the same function as the circuits described by Bayliss \& Brush, Wireless World December 1973 and G. R. Kennedy, Wireless World, December 1976, but it operates on the detected video signal and is variable from zero to approximately 83%. Resistor R_{1} is adjusted for +1 V at the non-inverting input of IC_{1} which then operates as an inverting amplifier

with a gain of $-R_{8} /\left(R_{7}+R_{1}\right)$ with reference to $1 \bar{V}$. Resistors R_{2} and R_{3} provide a $-2 V$ level shift to give the required but inverted transfer function. Positive video is restored by IC_{2}, and
$\mathrm{D}_{1}, \mathrm{D}_{2}$ prevent the output from going negative.
J. Beauchamp

Portsmouth
Hants

Digital extremum calculator

This circuit is useful if the extreme value of a continuously changing parallel n-bit binary signal has to be calculated. The latest and the last extremes are stored, and two comparator outputs indicate whether these are maximum or minimum values.

Data is clocked into shift-register A and then transferred into shift-register B. The comparator outputs indicate whether the input from A is greater or less than B, and change state whenever an extreme occurs. The transition trig. gers the corresponding monostable, and the OR gate produces a pulse which enables shift register C. The output of shift register A is then stored in C. If several shift-registers are connected in series with C, and clock by the OR gate, all of the previous extremes can be stored.
K. R. Srinivassa Murthy

ISRO Satellite Centre
Bangalore
: India

Simple v.h.f. preamplifier

This preamplifier is suitable for portable use and operates between 85 and 95 MHz . The components can be mounted on a board approximately one inch square. Gain is about 15 dB but this can be increased with a small sacrifice in stability by using a BF185. All resistors are $1 / 4 \mathrm{~W}$ metal oxide types and the capacitors are ceramic disc.
Ronald G. Young
Peacehaven
Sussex

Three-function RS latch

A standard RS latch as shown in (a) responds to an input at both SET and RESET by bringing both outputs low. An alternative latch, shown in (b), can be used in cases where non-complement outputs are undesirable. When RS is 00 , latch 1 and hence latch 2 will not change. When RS is 01 , latch 1 resets which sets latch 2 . By symmetry, RS at 10 causes latch 2 to reset. With RS at 11, both outputs of latch 1 are forced low. However, two low inputs at latch 2 will not alter the output. A similar latch may be constructed using cross-coupled NAND gates.

(a)

(b)

Ulster College
Northern Ireland

It had to happen... the NEW1000 series

a new generation of easy-to-use, economy line scopes offering the flexibility that you the customer demanded and from who else but Telequipment, world leaders in low cost scopes.

Before introducing the 1000 series, we conducted an intensive market survey throughout Europe, the results of which were analysed by our engineering and marketing teams; from this a definite set of parameters emerged. These have all been embodied in our new 1000 series.

A choice of bandwidth: 10 or $15 \mathrm{MHz}, 5 \mathrm{mV}$ sensitivity at full bandwidth and 1 mV sensitivity at 4 MHz and a choice of modes; Algebraic Add, true $X-Y$, and $X 5$ gain switching; remember we told you it was flexible.

Easy-to-use: this it certainly is; note the minimum number of controls on the front panel, probably less than any other competitive scope available and, of course, all colour coded for easy reference.
Easy-to-read: note the five inchCRT. Easy-to-service: primary circuits are constructed on only three boards in a "u" configuration.
The amplifier and time base boards pivot around the regulated power supply making for excellent accessibility. Wherever possible, standard commercial
components have been utilised throughout, simplifying acquisition.
Lightweight: only 8 kg (approx. 17.5 lb).
Reliable: here we have called on our many years' experience in the manufacture of low cost scopes. Components are rated in excess of their required values. Automatic insertion and testing reduces human errors. Flow soldering ensures maximum reliability of soldered joints.

Low cost: just check our price list and remember there is a lot more to cost than just the price.

We made it happen,
so if you would like to know the full spec., send for our colour leaflet.

TELEQUIPMENT < (贈>

Tektronix UK LId PO Box 69. Coldharbour Lane Harpenden. Herts

Cew Snder iowers difitalmitimetes.

3/2digits...6functions...fullyportable...

Underesod

The DM235 incorporates the most important features of a bench-top meter into a rugged yet lightweight instrument for true portability. High accuracy, resolution and input impedance mean superior performance to analogue meters - but at a price significantly lower than many. The DM235's design and specification makes it ideal for all but the most demanding applications.
Big, bright, unambiguous display
Full $31 / 2$ digit display, reading to ± 1999.
8 mm LEDs, ultra wide angle of view.
Six functions, 26 ranges
DC Volts. 1 mV to 1000 V
AC Volts.......................... 1 mV to 750 V
DC Current............................ $1 \mu \mathrm{~A}$ to 1 A
AC Current............................. $1 \mu \mathrm{~A}$ to 1 A
Resistance.......................... 1Ω to $20 \mathrm{M} \Omega$
Diode test.......................... $0.1 \mu \mathrm{~A}$ to mA
$10 \mathrm{M} \Omega$ input impedance.

High accuracy

Basic accuracy of 0.5% (2 V DC range).
Other DC ranges and Resistance 1.0\%.
AC ranges $1.5 \% 30 \mathrm{HZ}-10 \mathrm{kHz}$.
Easy to use, by anyone, anywhere
Automatic polarity operation, automatic decimal point placement, automatic out-of-range indication.

Lightweight but strong

High-impact moulded ABS case, size 10 in $\times 5.8$ in $\times 1.6$ in. Weight less than $1 / 2 \mathrm{lb}$. Basic operation from disposable cells, for independence from AC supply. Line operation available via optional AC charger/adaptor.
A full range of optional accessories DM235 meter complete with test leads and prods................................ $£ 49.80$ AC adaptor/charger $240 \mathrm{~V} 50 \mathrm{HZ} \ldots \ldots . \mathrm{E}_{3.50}$
Eveready carrying case with lead stowage compartment. . 8.50
Rechargeable battery units............. $£ 8.00$
30 KV high voltage probe.............. $£ 15.00$
(All prices subject to 8% VAT)

Find out more!

Sinclair Radionics are one of the world's largest producers of digital multimeters the DM235 embodies over seven years' expereince. It comes with a full 12 month guarantee. If you'd like to know more about the DM235, send the coupon below. We'll send all the facts (and a list of distributors) by return.

Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs., PE174HJ.

World leaders in fingertip electronics

Add-on oscilloscope waveform store

2 - Control circuitry, setting-up and operation

by R. D. Fastner (G8GRZ)

Digital storage techniques allow an ordinary dual-channel oscilloscope to function as a storage type. The input signal to the oscilloscope is extracted, converted to digital form, stored, converted back to the analogue form and displayed on the oscilloscope screen. A useful feature is that the waveform before the trigger pulse can be displayed. Circuitry is included to remove the "steps" in the waveform which would ordinarily be the result of a sampling process.
Control circuitry These circuits seen in Fig. 7 are operated from a 15V supply and consist of the sync counter, blanklength counter, store read/write bistable, roll read/write bistable and storefull bistable. "A" and "B" gate-level shifters, sync + and blank buffers are also part of these circuits but are not described in detail.

Sync. counter. This consists of three MC14510 decade counters, the input being derived from the e.o.c. pulse via IC_{31} in Fig. 5. The last stage (100 's) is preset to the number of divisions required for pretriggering, i.e., $2(200)$ for two divisions pretrig. The terminal count from pin 7 of IC_{12} is used to flip over bistable flip-flops when the memory is "full". It is also used, after . being delayed for one count, as a sync pulse.
Blank-length counter. One half of a 4013 dual " D " type flip flop, IC_{13} and a 4024 seven stage binary counter, IC_{14}, are used in this part of the circuit. Its function is to count the number of "divisions" after the tenth division displayed in order to reset the blank bistable. The count length is determined by the number of divisions the scope continues to sweep after the tenth division before flyback. The counter length is set by diodes and may range from 2% to 2.55 divisions. A length of 1.5 divisions is selected in the circuit diagram.

Store read/write bistable. When in the store mode, the outputs from this bistable, half a 4013, IC $_{18}$ opens or shuts the gates at the input of the memory. These outputs, when selected by IC_{15}, are labelled Read and Write for the Q and $\overline{\mathrm{Q}}$ outputs respectively. When Read is high and Write is low, the gates, IC_{6-7} in Fig. 2, are enabled to allow the data
from the memory output to flow to the memory input, hence allowing it to recirculate. Simultaneously, Write is low and this closes the gates from the a-d convertor to the memory input. When the Write button is depressed, the outputs reverse allowing the memory to be "written". This condition is once again reversed when the sync counter terminal count goes high.

Roll read/write bistable. The function of this circuit, IC_{16}, in the roll mode, is similar to that described previously, except that it is controlled by the sync counter. The effect is to change the read/write lines once per sweep for one sample, i.e., the waveform is sampled once in a thousand. This bistable is also used to delay the sync pulse by one "sample" to allow for the analogue delay in the step eliminator. When in the roll mode the Q output inhibits the counter for one count, causing it to count 1001.

Store-full bistable. This is made up from two sections of a $4011, \mathrm{IC}_{17}$, to form a bistable. When in the store mode, its function is to inhibit the sync counter between the time that the write button is depressed and the scope's sweep being detected (A or B gate going high). It is also used to preset the sync counter at the beginning of the write cycle.

Interfacing

This unit has been designed and built around the Tektronix 465 oscilloscope. For it to operate with other instruments the inputs and outputs of the unit may need to be interfaced with those of the oscilloscope.

Feeding the output waveform into the second channel of the oscilloscope should present no problems, as the output voltage has been selected so that the waveform may be expanded and compressed and at 2 V /div most instruments should be able to do this. However, if desired, the gain of $\mathrm{IC}_{2 B}$, the output buffer, may be altered as required by altering the feedback resistor.
The sync + output also should present no problems. If the 0 to +15 V edge is too high for the oscilloscope to trigger on reliably, a simple potentiometer divider may be placed across the output and the sync signal taken from the junction of the two resistors. The pull up on Tr_{4} emitter should not be increased, as the increased capacitive effect between base and emitter will reflect back into the high impedance c.m.o.s. logic. This may cause trouble when in the roll mode.
The blank signal, fed into the Z mod. or axis input of the oscilloscope, has an output of 0 to +15 V , the output being at +15 V during the blank period. If inversion is required to give 0 V during the

Fig. 7. Control circuit

80
blank period, Tr_{3} base could be taken to the Q output of the blank bistable. Again, if the levels present a problem, a simple potentiometer divider could be used, as for sync + .

Due to the very large number of oscilloscope models, it is impractical to go into detail when describing the pickoff points for "A" trig, " B " trig and waveform in. All instruments of worth have trigger and blanking circuits, the former being derived from the input amplifier, via a buffer, and the latter from the sweep controlling logic.

Minimum interference is caused to the operation of the oscilloscope by taking the "waveform in" signal via an interface buffer from the "trigger buffer". This buffer can be some form of operational amplifier in the noninverting mode (high impedance) or a simple emitter follower. The sweep waveform is usually obtained from an integrator, whose input is a step derived from the trigger circuit. Also from this circuit an unblanked signal is derived which enables the "trace" during sweep. Either of these two signals may be buffered and used for the A and B trig. Care should be taken to ensure that they are clean, and the signal does not have "chopped blanking" waveforms superimposed on it, or that the A sweep signal does not have B sweep signals (or vice versa) mixed with it. For correct blanking circuit operation within the storage unit, the " A " trig should stay high for at least 10 divisions ($10 \times$ storage unit store time/div setting) and is independent of " B " timebase which may be a positive pulse.
Some scopes have A and B gate outputs using higher output levels. In these cases $\mathrm{R}_{6,} \mathrm{R}_{63}$ are changed so that $\mathrm{Tr}_{\text {r, }}$ base voltages are a little less than the "high" input voltage.

Practical considerations

Care should be taken when mixing analogue and digital circuits and it is recommended that the impedances around the input amplifier should be
kept low to reduce adjacent track crosstalk. It was found that the wire from the position pot to the noninverting input of the input amplifier had several microvolts of hum induced in it by the mains transformer. To stop this being superimposed on the output of this amplifier, a capacitor C , has been added from the non-inverting input to 0 V . The storage capacitor, C_{28}, in the sample-and-hold section of the step eliminator is floating when the analogue switch is off, and therefore board leakage should be reduced as far as possible to prevent discharge (or charge) of this capacitor. Also the tracking to and from this capacitor should be kept as short as possible to reduce hum pick up. It has been found that slight amounts of "tilt" and hum on the integrator input have negligible effect on its output even on low displayed time/div settings.

Setting up

Only two adjustments need to be made, the first being to null the offset voltages of the d-a and output stages. This is achieved by selecting R_{14} so that with Bl only present the "waveform out" is 0 V . The second adjustment is to set the gain of the input amplifier so that when a voltage proportional to ± 3 divisions is fed into the unit, an output of $\pm 6 \mathrm{~V}$ or ± 3 divisions is obtained.
To null the offset voltages first disconnect the +15 V supply to the store/ roll switch. This disables the read/write lines which in turn disables the read/ write gates. Bits 1-8 at the memory input will now be low. Disconnect B1 to the memory input and connect it to +5 V , The d -a convertor will now only see $B 1$, and R_{14} may now be selected so that the output of the unit is as near as possible to 0 V . The offset voltages of the d.a.c., step eliminator, and output buffer have now been nulled. Reconnect up the supply to the switch and B1 to the memory output.
Setting up the gain is accomplished in the following way. Connect up the

WIRELESS WORLD, NOVEMBER 1978 inputs and outputs between the oscilloscope and unit. If a single timebase instrument is used connect the " B " trig input to 0 V . Set both oscilloscope and unit to $1 \mathrm{~ms} / \mathrm{div}$, the oscilloscope to "A" timebase only, and Auto trig on Ch1. Set the unit to Store mode and "B" trig, and press the Write button. The write indicator should come on and stay on. Feed into the Chl input of the oscilloscope a sine wave of approximately 500 Hz and $\pm 3 \mathrm{div}$ in amplitude (symmetrically about 0 V). Ch2 should be displaying the processed waveform and the gain control RV_{2}, in conjunction with theposition control $R V_{1}$ may be adjusted to give a unit output of $\pm 6 \mathrm{~V}$ (about 0 V). If the input is increased above ± 3 div the output should saturate at $\pm 6 \mathrm{~V}$. In the above, it is assumed that the channel whose output is used as the input to the unit is Chl.
The maximum position voltage req. uired is a little more than the maximum input voltage. If the input voltage is $50 \mathrm{mV} /$ div for 6 div, this gives an input voltage V_{A} of 300 mV , and the position voltage V_{B} will also be around 300 mV . A value for R_{5} of $47 \mathrm{k} \Omega 2$ satisfies this requirement.

Operation

Store mode. The oscilloscope is operated normally in either the singlesweep or normal trigger mode. So that the displayed waveform is stored as originally displayed, the time/div switches of the oscilloscope and unit should be set to the same positions. When storage is complete the oscilloscope should be triggered from the unit sync output.

The Write button is depressed before the oscilloscope triggers; this resets the store read/write bistable and causes the Write indicator to light and the data from the a-d converter to be gated into the memory. The Store Full bistable will be reset by IC_{16}, pin 12 and its $\overline{\mathrm{Q}}$ output • on pin 3 is gated with IC_{16}, pin 12 in IC 17 , pin 4. The output of the gate is inverted by IC_{18} and the resulting high output is fed to the chip enable input of IC_{10}, inhibiting it. The circuit remains in this state, i.e. Write high, sync counter disabled and the unit waiting for the oscilloscope to be triggered.

When the oscilloscope triggers, the A gate will go high, indicating that the sweep has commenced. This high is level-shifted to +15 V and IC_{17}, pin 10 goes low, setting $\mathrm{BS}_{2}, \mathrm{BS}_{2} \mathrm{Q}$ output is fed into a pulse-forming circuit which produces a positive-going pulse of approximately 3μ s duration. This pulse presets the sync counter to 200 if 2 divisions of pretrigger has been selected. The \bar{Q} output of BS_{2}, causes IC_{17} pin 11, to go high. This, via IC_{18}, pin 3 , enables the sync counter, which proceeds to count up a further 800 samples to 1000 . At the count of $1000 \mathrm{IC}_{12}$ terminal count goes high clocking BS_{1} and setting it. "Read" will now be high and the gating is enabled to allow the data in
the memory to recirculate. Since the a-d converter was operating prior to the oscilloscope triggering, the data in the memory will consist of 200 samples, which have not been displaced by new data, and the 800 samples fed into the memory after the oscilloscope triggered. Hence, 2 divisions pretrigger and 8 posttrigger. The counter is preset in a similar manner for each of the other pretrigger positions.

Also, at the instant the terminal count goes high, BS_{3}, the roll read/write bistable, is reset. The $\overline{\mathrm{Q}}$ output clocks BS_{4} the blank bistable, so setting it. This has two effects: the first is to cause Blank to go high, blanking the oscilloscope's trace. The second is to inhibit Clock 1 to the memory, Clock 2 to the sync counter and Enable to the blank-length counter. These two actions result in the unit locking up, with the oscilloscope in a blanked condition, for the duration taken for the blank-length counter to time out. When the desired count (selected by diodes) is reached BS_{4} is reset, re-enabling the sync counter and memory. During the blank period the memory presents the first sample to be displayed at its output. This is done so that the step eliminator can ramp the "false sample" between the end and the beginning of the stored waveform, (i.e. sample 1000 and sample 1) whilst the trace is blanked. The first clock pulse after the blank phase clocks BS_{3}, setting it. Sync goes high which, if the oscilloscope were set to ext. trig. would trigger the oscilloscope at the start of the stored waveform. Thus the complete store cycle is: Write button depressed-unit locks up waiting for the oscilloscope to trigger; oscilloscope triggered; counter preset; counter counts up the number of "divisions" required; terminal count reached; unit "switched" into Read; oscilloscope blanked and unit "locked up" with the first sample at the output of the memory; oscilloscope ends sweep and flyback; blank circuit times out allowing the stored waveform to be displayed. The oscilloscope trigger source is set to external so that it triggers from the unit. Triggering the unit from the " B " timebase allows delayed storage to take place.

The unit can be used to store a peak level, whilst observing the incoming waveform, by setting the oscilloscope to "A Intens by B" and setting the "B" trigger level to the peak level to be detected/stored. For example, if the normal input waveform level to the scope is ± 15 divisions, the " B " timebase may be set to trigger at +1.6 div. Thus, if the input goes above +1.6 div the unit will store the waveform around this point (store peak detected).
Role mode. This extends the oscilloscope's lowest range from 0.5 $\mathrm{s} / \mathrm{div}$ to $500 \mathrm{sec} / \mathrm{div}$. The waveform appears to move from right to left, in similar manner to a paper strip recorder, with the latest level appearing on the right. When $0.5 \mathrm{sec} /$ div is selected, the

Circuit elements	
Oty	l.cs
2	CD 4010 hex. non-inverting buffer/convertor
6	CD4011 quad 2-input Nand gates
1	CD4012 dual 4 -input Nand gate
2	CD 4013 dual " D " type flip. flop
1	CD 4016 quad analogue gate/switch
3	CD 4019 quad And-Or-Select gates
1	CD 4024 7-stage binary counter
1	CD 4029 presettable binary/decade up/down counter
5	MC 14510 presettable decade up/down counter
1	MC 14559 successiveapproximation register
2	MC 1408-L8 8-bit digital-toanalogue convertor
1	MC 1407 a-d control circuit
4	NE 531 high-speed differential op-amp
16	NE 2528 dual 250-bit shift register
1	LM 302 voltage follower
Transistors	
1	BSX19 n-p-n
3	2N2906 p-n-p
3	BC107 n-p-n
Diodes	
35	1 N4148 general-purpose
1	BZY 88 C 4 V 7 Zener
1	1.8 MHz crystal (for oscilloscopes scopes with 10 horizontal divisions)
Resistors	
1	470R 1/2w 2\%
2	560R
1	820R

5	1k	
1	2k	
3	2k2	
1	3k	
2	5k 1	
1	9k1	
10	10k	
1	11k	
8	15k	
2	18k	
1	30k	
2	33k	
3	47k	
15	100k	
1	18M	1/2w 5%
1	1 k pot.	
1	47k trimpot	
Capacitors		
1	$15 p$ tubular ceramic	
1	20p	
2	22p	
2	39p	
4	100p	
1	120p	
3	270p	
1	470p	
1	680p	
16	100n	disc ceramic
1	470p 1% mica	
1	1 n	
1	2 n 2	
1	$4 n$	
1	$10 n$	
1	22n	paper, polyester, etc
1	47n	
1	100n	
1	220n	
1	470n	
1	100μ	electrolytic 10 V
Switchas		
1	3-pole	10pos. rotary
1	1-pole	2-throw toggle
2	1-pole	2-throw toggle
1	1-pole	push button
1	1-pole	4-pos. lever

Specification

The unit gives a storage area of 6 divisions vertical and 10 divisions horizontal

Input from oscilloscope:
+300 mV for all positive storage
-300 mV for all negative storage $\pm 150 \mathrm{mV}$ for bipolar storage
The input levels are easily adjusted to suit the oscilloscope and the OV position is adjusted by a control on the front panel.

Time/div.'ranges:

Store mode 500, 200, 100, 50. 20. 10.5, 2, $1,0.5 \mathrm{~ms} / \mathrm{div}$. Roll mode: $500,200,100,50,20$. $10,5,2,1,0.5 \mathrm{~s} / \mathrm{div}$. Thus the range is from $0.5 \mathrm{~ms} / \mathrm{div}$ to $500 \mathrm{~s} / \mathrm{div}$ in 19 ranges.

Waveform
 oscilloscope:

$\pm 6 \mathrm{~V}(2 \mathrm{~V} /$ div $)$-irrespective of input polarity; i.e. OV appears as -6 V for all positive storage.
+6 V for all negative storage,
and OV for bipolar storage.
The output levels are easily adjustable.

Sync to ascillascope

0 to +15 V edge at the start of the stored waveform. This is fed into the Ext Trig input of the oscilloscope.
Blanking to oscilloscope:
+15 V level after the tenth division the length of which is selected to suit the oscilloscope.

A-Gate from oscilloscope:
+5 V logic level, going high at the start of " A " timebase sweep. Level must be maintained for at least 10 divisions during display stored waveform period.

B-Gate from oscilloscope:
+5 V logic level or pulse going high at the start of "B' timebase (approx $10 \mu \mathrm{~s}$ min).
waveform is displayed at $0.5 \mathrm{~ms} / \mathrm{div}$ whilst "moving" from right to left. This provides a display that is easy to view since the whole waveform can be seen instead of a moving dot. Switching the unit to 'store' holds the waveform. The Roll mode is achieved by inhibiting the sync counter for one count, causing it to count to 1001 , which means that the oscilloscope triggers on successive samples. Hence, the waveform then appears to roll round. Whilst the counter is inhibited, the read/write lines change over so that the sample before the oscilloscope triggers is "up-dated" and appears at the end of the sweep.
At the count of $999, \mathrm{IC}_{12}$, pin 7 (terminal count) is low and the unit is in the Read mode. $\mathrm{BS}_{3} \overline{\mathrm{Q}}$ is low, the sync counter is enabled and Sync + is high. On the next clock pulse (1000)IC C_{12}, pin 7 goes high and the previous low terminal count is clocked through BS_{3}. This inhibits the sync counter via $\mathrm{BS}_{3} \overline{\mathrm{Q}}$ and causes the unit to go into the Write mode. The next clock pulse (1001) again clocks the previous high terminal count state through BS_{3}. Sync + goes high,
triggering the oscilloscope, and the sync counter is again enabled. The unit goes into Read mode for the next 999 clock pulses. In this roll mode the unit does not lock up during the blank phase, and the oscilloscope triggers on alternate sync pulses, i.e. the sync pulse follows immediately after the end of 10 divisions.

It is regretted that it is impracticable to publish the printed board design for the storage unit, but Wireless World can supply photocopies (made on a rather better machine than in the past) to readers who send a stamped, addressed envelope to their offices.

Acknowledgements

The author would like to acknowledge his indebtedness to Gould Advance Ltd, whose OS4 oscilloscope gave rise to the ideas of roll, pre-trigger and stepelimination, although it should perhaps be pointed out that the design of the present instrument was started three years ago - before the OS4000 was made public. Thanks are also due to Tektronix, who lent a C-5A camera for the screen photographs.

Electronic organ tone system - 2

Frequency generation and keying matrix

by A. D. Ryder, M.A., Ph.D., F.I.E.E.

The previous article gave details of the reference generator and its construction on a Veroboard. This month's article describes the gate cards which are based on specially designed printed circuit boards.

One gate card is needed for each of the 12 notes in the scale. The d.c.. signals from the playing keys are brought in, either directly or via the coupling circuits, through edge connections at the front. Output connections are made via the rear edge-connector which also carries supply rails, the reference signal and, if used, the vibrato signal.
Outputs of, for example, the C card are square-wave signals at multiples of 32.7 Hz , the fundamental of the lowest C used. These are collected onto a set of square-wave buses (SQB) which are common to all 12 gate cards and form the inputs to the three filter cards. There are seven sinewave harmonic pitches for each department, 21 in all, which are the outputs of the filter cards. To ease filter design, the fundamental SQBs are each divided into three sections, and the rest into two, so that in all there are 45

Fig. 10. Phase lock* loop for C card. This circuit multiplies the reference frequency by 60.
i \because

Fig. 11. Feedback loop of p.l.l. at low frequencies.

Fig. 12. Frequency derivation on C Card. All diodes are general purpose devices such as the IN4148.

gate card outputs. The cards also provide a spare $S Q B$ for each department so that there are a further six output lines -which can be used for the various options to be described later.
The functions of each gate card are thus the local generation of the required frequencies, tied to the incoming reference, and the gating of these selectively to the square-wave buses under the control of key signals. In addition, the cards carry circuits for shaping the keying envelope, and can accept a signal for vibrato.

Frequency generation

The circuit in Fig. 10 shows how a 4046 p.l.1. is used to derive a frequency of 60 times the reference. Except for R_{1} and R_{2}, which decrease with increasing frequency, this circuit applies to all 12 gate cards. The reference input at pin 14 is a.c. coupled, and the $1 \mathrm{k} \Omega$ resistor,

Fig. 13. Common-base transistor gates. Input signals F_{1} and F_{2} are square-wave divider outputs.

Fig. 15. Portion of the three-way matrix. This layout is roughly the same as the p.c.b. viewed from below.

Fig. 16. Component layout of the frequency generating section on EOI cards.

Fig. 14. Keying circuit. The double integrating network is used to control a d.c. output component by shaping the keying envelope.
together with the $22 \mathrm{k} \Omega$ buffer in Fig. 4 control the reference level. A divider is connected between the v.c.o. output and the comparator input, and the digital phase-comparator output at pin 13 is used for control. This comparator has a switching action which reduces the settling time for a given feedback time constant. The control signal at pin 9 must have an in-phase component for stability, which in turn makes h.f. filtering desirable to minimise output jitter. Fig. 11 shows the circuit at l.f. where the lower network is the parallel combination of $82 \mathrm{k} \Omega, 120 \mathrm{k} \Omega$ and 100k Ω. Returning the capacitor to about 2 V reduces the charging time at switch-on.

When a vibrato signal of 4 to 8 Hz and amplitude E is applied, the amplitude at pin 9 is roughly $\mathrm{E} / 3$. The frequency deviations cause an antiphase square. wave signal at pin 13 which swings between about +1.25 and +3.75 V . Except for very low values of E, this has negligible effect on the extent of frequency modulation. However, the mean voltage at pin 9 , if not initially 2.5 V , will tend to this figure, assuming symmetrical modulation, so that the mean frequency will drift slightly, though the original frequency will always lie within the modulation range. The trimmer allows initial setting-up for 2.5 V . Generation of the vibrato signals is considered in a later article. Table 4 shows some frequencies used on the 12 gate cards.

Frequency dividers

In Fig. 12, each 4520 i.c., which contains two independent 4 -stage dividers, has

the enable inputs connected to the positive supply rail. Non-binary counts are achieved by premature reset. Counter 1A, for example, divides its input at pin 9 by 15 because the four outputs represent counts of $1,2,4$ and 8 . The diode AND connection allows line N to go high on reaching the count of 1 $+2+4+8$, i.e. 15 . The $120 \mathrm{k} \Omega$ resistor in series with the reset input at pin 15 , together with the input capacitance, provides a short delay to avoid switching ambiguities. The 1 output appears eight times in the cycle, the last time briefly. The 8 output has a frequency of $60 \mathrm{ref} / 15$ i.e. 4 ref , which in this case is 8370 Hz , and a mark to space ratio of approximately $7 / 8$.
Counter 1B is used without reset, pin 7 grounded, so that the overall division to pin 4 is 60 , as required for Fig. 10. The pin 3 output, at 2 ref, is taken to a 4024 7 -stage counter so that a total of 9 octavely-related C frequencies, the unisons, are available down to 32.7 Hz .

Counter 2 B is connected to divide by $12,8+4$, and produces an output of 5 ref, again extended by a 4024 to give eight 5 th harmonic pitches. As this is an even division, the 1 output at pin 3 is a square wave at 30 ref, which is divided by 10 in counter 2A. Here the 4 output has the same frequency of 3ref as the 8 output, but a mark to space ratio of nearer unity. This output is used with another 4024 to provide eight 3rd and 6 th harmonic pitches.

As already noted, the lowest pedal frequency is 32.7 Hz , and the lowest manual is 65.4 Hz . These correspond to $4 \mathrm{ref} / 256$ and $4 \mathrm{ref} / 128$ respectively. The 3 rd harmonic of $32.7 \mathrm{~Hz}, 51 / 3 \mathrm{ft}$, is $3 \mathrm{ref} / 64$, and the 5 th, $3 / 5 \mathrm{ft}$ is $5 \mathrm{ref} / 64$, so that in the basic system, neither of these buses requires the lowest output from its 4024 i.c.

The fundamental of the highest manual key, CK6, is 2093 Hz , therefore the highest unison at 4 ref, 8370 Hz , provides only the 4th harmonic at this level. A frequency of 8370 Hz is the normal limit for the fundamental of an organ pipe. With the next highest key, BK5, 4 ref at $15,794 \mathrm{~Hz}$ would provide the 8th harmonic but, as table 5 shows, the various pitches are discontinued at about 10 kHz , and at CK6, the 5 th is the highest provided.
Although CK6 is the highest key, the gate cards carry K6 circuits up to G, to operate with octave couplers if used. The frequency limits are noted in table 5. The highest pedal key is GK3 which has a fundamental of 196 Hz and an 8th harmonic at 1568 Hz . A complete K 4 octave is provided for the pedal department, which extends to 3135 Hz .

Alternative reference set

As noted in the previous article, the clock input to the multiple divider may be at various frequencies. For example, at 1 MHz instead of 943.7 kHz , the C reference is 4186 Hz as shown in table 2 . This is accommodated by taking the comparator signal from pin 3 of counter

Table 4. Some gate-card frequencies using the tunable reterence source set to zero beat

Note	Nominal ref frequency (Hz)	Actual ref frequency (Hz)	60 ref	4 ref	5 ref	3 ref
C	2093.0	2092.4	125,544	8370	10.462	6.277
C'	2217.5	2215.2	132.912	8861	(11.076)	6,646
D	2349.3	2347.4	140.844	9390	(11.737)	7.042
D	2489.0	2489.9	149.394	9960	(12.450)	7.460
E	2637.0	2635.9	158.154	10.544	$(13,180)$	-7,908
F	2793.8	2791.9	167.514	(11.168)	(13.960)	8.376
F'	2960.0	2958.2	177.492	(11.833)	(14.791)	8.875
G	3136.0	3135.1	188.106	(12.540)	$(15,676)$	9,405
G'	3322.4	3322.8	199,368	(13.291)	(16.614)	(9,968)
A	3520.0	3521.1	211.266	(14.084)	(17.606)	(10.563)
A ${ }^{\text {. }}$	3729.3	3729.9	223,794	(14.920)	(18.650)	(11.190)
B	3951.1	3948.4	236,904	$(15,794)$	(19.742)	(11.845)

The brackets indicate frequencies not used directly.

Table 5. Upper frequency limits

Harmonic no.	1	2	3	4	5	6	8
Highest key	GK6	GK6	GK6	EK6	CK6	GK5	EK5
Frequency	3135	6270	9405	10,544	10,462	9.405	10.544

EK6 and GK6 do not represent actual keys, but circuits are provided up to GK6 for use with octave coupling.

Fig. 17. Keying circuit layout from $\mathbf{\Delta}$ component side, showing two circuits. Except for the value of R, all of the circuits are identical. The common wire connections bend down to enter the p.c.b. on the left.

Fig. 18. Card C square-wave bus output connections on copper side. This pattern also applies to cards C^{\prime} to G , except for fewer gates in the TK6 and SK6 columns. Spare gate positions at the bottom are not shown.

1B in Fig. 12, rather than pin 4, and so multiplying the reference by 30 instead of 60 . This selection is by a wire link on the p.c.b. see Fig. 16.

Keying

Because a large number of gates are needed, a minimum component count per gate is desirable, and the commonbase transistor configuration which was chosen is shown in Fig. 13. Input signals F_{1} and F_{2} are $5 V$ square-wave divider outputs. When the base voltage of one of the transistors, e.g. Vk_{1}, is zero, it is held off. As this voltage is increased, the transistor starts to conduct during the low excursions of F_{1} and a current of roughly ($\mathrm{Vk}_{1}-0.6$)/ R_{1} flows out of the emitter. When Vk_{1} is about 5.6 V , the transistor ceases to cut off during the F_{1} cycle and the output current swing at the collector is at a maximum of $5 / R_{1}$, with a mean level of $2.5 / \mathrm{R}_{1}$ for a unity mark to space ratio. A further increase of Vk_{1} merely raise the mean current without increasing the a.c. component.

The high output resistance of the common-base connection means that, with practical values of filter input impedance, the contribution of each gate is more or less independent of the others, and almost entirely determined by its input resistor. The base provides a low-current input for the keying signal and, if decoupled to ground, isolates the input and output. The main cause of breakthrough with the g: te off, is emitter-collector capacitan :, but for the suggested BC548C trans tor this is less than 0.2 pF .
Although the common-t configuration has advantages or he usual diode gate, it does have: wback in common with other unt $\cdots \cdots \cdots$ - gates, of the d.c. output component. If switched directly by the key, there would be an intolerable thump at the start and finish of a note, especially as the following filters must be low-pass. This thump is controlled by shaping the keying envelope with a doubleintegrating circuit as shown in Fig. 14. The time constants are graded over the frequency range. A $100 \mathrm{k} \Omega$ pull-down resistor produces a turn-off time similar to the attack time, and the voltage at K is limited by the diode.

Amplitude control

Reducing the direct keying voltage below 5.6 V provides one means of reducing the volume of a complete department, without using controls in the signal path, and can be used for expression pedals and/or switchable departmental balance. A square waveform, as used here, is the only type which can be controlled in this way without affecting the harmonic spectrum.

Keying matrix

With provision for coupling, there are 68 keying circuits for each manual department, and $32+12$ for the pedal. Thus, there are in all 180 of the circuits
in Fig. 14 with 16 on each card C to G, and 13 each on G^{\prime} to B .

Each KB signal controls seven gates, one for each harmonic pitch, except where the higher harmonics are discontinued at the top end. Every manual SQB set collects the outputs of up to 68 gates and similarly, each pedal SQB set collects the outputs of up to 44 gates. The generated frequencies on a gate card may feed one or more gates because, for example, the fundamental of C 6 is the 2nd harmonic of C 5 , the 4th harmonic of C4, and the 8th of C3.
The required interconnection pattern using a three-way matrix, is shown in Fig. 15. Keying circuits, not shown, are at the top, and their KB outputs, as printed tracks, run vertically to the transistor bases. Input signals at frequencies F_{1}, F_{2}, etc., are connected by wires on the component side, and the input resistors project upwards from the board with their lower ends connected to the emitters by printed track. The collector leads pass through holes and are connected below the board by wire to form the buses $1,2,4$, etc. This layout minimises stray capacitance across the gates. A suitable wire is 33 s.w.g. Kynar insulated, as used for wire-wrapping.

Component layout

The EOl board carries connector pads on both of its vertical edges, 24 at the input end and 59 at the output end. The frequency-generating components shown in Fig. 16 are towards the input side, separated from the matrix area by a broad vertical ground track.

The board also carries tracks for an additional p.l.l., and for three further i.cs, associated with options to be described later. The keying components mount along the top of the matrix area and, as shown in Fig. 17, the $100 \mathrm{k} \Omega$ resistors and diodes are mounted on end with overhead wires which terminate in the left of the board. Connections K to the input pads are made in wire starting with UKl to position 10, TK1 to 11, and so on leaving positions 1 to 9 unused. This differs from Figs. 22 and 23, but is suggested to simplify one of the options

Fig. 19. Card output connections for G^{\prime} to B. Connection on pads 25 to 52 follow the pattern of Fig. 18, except that there are no gates in columns UK4, TK6 and SK6.
described later. On cards with only 13 keying inputs, G^{\prime} to B , positions 19,24 , 25 (UK4, TK6 and SK6) will also be unused.

Matrix area

As already mentioned, only the base and emitter leads are soldered to p.c.b. tracks, and the collector connections are made with wire as shown in Figs. 18 and 19. The output edge connections finish at oval pads indicated by the numbered dots at the right.

The labelling at the far right identifies the SQB by harmonic number and department. For example, $1 U$ is the pedal fundamental, 2 T is the great 2 nd harmonic, and so on. The low, middle, where used, and high sections of each SQB are connected in sequence so that pad 8 is 1 UL , pad 9 is 1 UM , and pad 10 is 1 UH , pad 21 is 2 TL , pad 22 is 2 TH , etc. Labelling is primarily for descriptive purposes and the connections are straightforward. The staggered rows of dots represent the collector leads, and the short rows are associated with the pedal buses.

Each horizontal rectangle in Fig. 20 represents a gate transistor and its vertically mounted input resistor, R_{n}. The upper ends of the resistors are soldered to the wire signal buses which run diagnonally. The divider output connection points of Fig. 16 are indicated at the right, and connections from these to the signal buses are made on the component side with wire.

Values of R_{n} vary with frequency to produce, in conjunction with the filter response, a predetermined amplitude/ frequency characteristic, which will be described in a later article. Choosing appropriate filter parameters minimises the variety of values on any one gate card.

Assembly and testing

For the output connections of Figs. 17 and 18, where two or more collectors are joined, wire is stripped to length and soldered to the leftmost position. A small blob of solder is deposited on each collector lead to the right, and the wire is then held tight and soldered to each lead and finally to the output pad. To suit the suggested rack spacing, the component leads must not project more than $41 / 2 \mathrm{~mm}$ from the underside of the p.c.b.
lt is convenient to first connect the

vertically mounted resistors and diodes as sub-assemblies by using the simple jig in Fig. 21. The holes are marked out from a p.c.b., drilled to fit the components, and opened out at the top tor easier soldering. Leads at the p.c.b. ends of the components are cut to a uniform short length and, after insertion in the jig, their upper leads are soldered to a straightened length of bare wire laid along the top. The jig and cutting dimensions should give a maximum projection above the board of 14 mm .

It is recommended that the area in Fig. 16 is completed and tested first, which requires +5 V on connector 3 . ground on 59 and 60 , and the appro-

Fig. 20. \bar{C} ard C matrix resistors viewed from the component side. All values are in $k!$ Divider outputs are numbered as multiples of the lowest frequency on the card. Harmonic numbers are in circles. Pedal harmonics are at half the manual frequencies. The lowest three rows of the matrix, which are not shown, are spares.

Fig. 21. Section of assembly jig constructed from two pieces of hardwood.

priate reference on connector 4. The vibrato connection should be substituted by a $1 \mu \mathrm{~F}$ capacitor to ground. A $1 \mathrm{k} \Omega$ resistor temporarily in the 5 V lead should not drop more than about 2 V uniess there is a fault, in which case it should prevent damage. Divider outputs should be checked with an oscillograph and frequency meter if possible. The trimmer should be set to give 2.5 V at the lower end of the $10 \mathrm{M} \Omega$ resistor.

To be continued.

Isit'goodbye' tothe Dynamometer?

The new Feedback Electronic Wattmeter EW 604 could be your ideal replacement for the conventional dynamometer.

It's inexpensive yet amazingly versatile, reliable and efficient. A self-contained unit which needs no other accessories, the Feedback EW 604 is really robust - both physically and electronically.

It performs over a remarkably wide range of power (250 mW to 10 kW full scale), current (50 mA to 10 A) voltage (5 V to 1000 V) and frequency (d.c. to 20 kHz).

The instrument is fully protected against misuse or incorrect terminal connection. It's the ideal answer to most power measurement problems in power systems, audio systems, heating plant, vibration testing, pumps, machinetools, compressors, generators, aircraft systems, transformers, domestic equipment and education.

It's an instrument whose wide ranging performance should bring an equally wide grin to the face of even the testiest tester! Particularly when he learns it's covered by a two-year guarantee. For fully detailed literature on the Feedback EW 604, simply complete and post the coupon today. Or contact our distributors
IT I P.O. Box 19, Orchard Road,

For Erie professional and military capacitors and filters; and for carbon film and metal oxide resistors and pots contact ITT Mercator.

We have changed only the name and telephone number in order to avoid confusion. You deal with the same people
at the same address and - what's more important - you get the same high standard of service.

ITT Mercator, South Denes, Great Yarmouth, Norfolk NR30 3PX. Tel: (0493) 4911. Telex: 97421.

What future for television?

Possibilities for three-dimensional and other effects

by D. A. Bell, M.A., B.Sc., Ph.D., F.Inst.P., F.I.E.E., University of Hull

RECENT events have highlighted the fact that the manufacturing capacity of the television industry has always been in excess of the requirements of a steadystate market. It was at one time rescued from the doldrums by the introduction of higher definition (625 instead of 405 lines) and higher frequency radio channels. Then, after an interval, it was rescued again by the introduction of colour. Now the market is getting saturated with colour receivers - so what next? Can some other technical development be introduced which will (a) be sufficiently attractive to the public to generate a large volume of sales but (b) be compatible? There is, of course, the possibility of starting a noncompatible service service on one of the higher-frequency bands which has not yet been brought into use, but such a proposition would have to compete with the pressure for a "fourth channel" in the present service and with all the non-television services which compete for frequency allocations.

There is, of course, teletext, in the form of Ceefax and Oracle developed by the British broadcasting authorities, and the Post Office offering the viewdata service called Prestel. The broadcasters have the advantage that their communication channel already exists in nearly every home, but the disadvantage that the viewer can choose only from a limited repertoire, all the items of which are actually being transmitted. In Prestel, on the other hand, the viewer can actively request items from a data bank, the size of which is in principle unlimited.

At the present time "television games" adapters are more commercially active. The presentation offered by some of these is too repetitive and pre-determined; so the next step should be to introduce more randomness, using either "noise" (e.g. from an avalanche diode) or the output of a pseudorandom binary generator. The more difficult step is to increase the degree of active participation by the player.

The third dimension

It is a simple argument that the progression from monochrome to colour should follow on from flat to threedimensional. It has sometimes been suggested that the information in a three-dimensional picture is infinite,
because there is an unlimited number of arbitrary viewing points from which the scene could be observed, each one presenting the viewer with a somewhat different picture. This high-lights the difference between 3 -dimensional reconstruction of a scene and stereoscopic presentation, since the latter is limited to giving a 3-D effect as seen from a particular view-point. It seems clear that in any telecommunication system we must be limited to a fixed viewpoint at which the "camera" is situated, and therefore stereoscopic systems are acceptable. (This does not prevent the producer from changing view-points by switching from one camera to another or moving a camera, as at present.)

We should, however, have a brief look at two non-stereo devices before dismissing the possibilities. First, of course, is the hologram which has acquired almost an aura of magic. It is true that the appearance of the reconstructed image can be varied by changing the observer's position. But it is not true to say that this is equivalent to being able to walk round the object, because the range of view-points must be limited to the range of angles taken in by the holographic recording set-up. Then it was estimated in the comparatively early days (reference l) that holographic television would need a bandwidth of a considerable number of gigahertz, so it has been assumed to be impracticable. Now the fact is that holography as at present known is hopelessly mismatched to the requirements of television because it is essentially precise in depth, recording to better than a wavelength of light. If we consider the presentation of a news reader, taking in an area of roughly one metre square in the studio, a 625-line system gives a surface precision of the order of one to two millimetres in that area, but a holographic system with visible light gives a perpendicular depth precision of better than a micrometre, i.e. it is over 1000 times too precise and one has to pay for this in bandwidth. At the same time the transverse precision in holography is much less, because a transverse movement produces less change in optical path length from object to recording system than does a perpendicular movement. The traditional device of using a longer
wavelength, as in acoustic holography, is unacceptable both because it loses transverse resolution and still more because it loses all the optical characteristics of surfaces, such as colour. Bandwidth could be reduced by scanning only a small portion of the hologram of the scene to be transmitted, but this would lose definition in both directions. So the problem is to find a new "holographic" technique which greatly reduces the resolution in depth without unduly reducing the transverse resolution.

Another proposal for a nonstereoscopic system is the variablefocus method. This involves a projection type receiver and instead of a flat screen a cube of opalescent material is used to receive the picture. By varying the focus of the projection lens the picture appears sharply at varying depths, and if the focus is changed quickly enough and in synchronism with corresponding changes in focus in the transmitting carrier, a threedimensional picture should be built up in the viewing cube. Both lenses, at transmitter and receiver, must operate at a large aperture in order to sharpen the focus to a particular depth. The change of focus must be rapid, and it has been suggested that moving-coil devices, similar to loudspeakers, should be used. Finally one has the dilemma of the viewing device. If the opalescent' medium is too clear, most of the light will pass right through it, and not be seen by the viewer; but if it is noticeably opaque, the scene will appear to be on a stage filled with mist, so that only near objects are completely unobscured. This system represents an intriguing idea, but it does not seem to be practicable unless the opalescent box can be replaced by a variable-distance screen. This effect could be provided through an optical viewing system, but not with a large screen for family viewing.

We are then reduced to stereoscopic viewing, in which there are two problems: one is to ensure that left and right pictures are presented to the viewer's left eye and right eye respectively, and for broadcast television the problem is to devise a system which is compatible with monoptic viewing. To solve the first problem one first thinks of the cinema techniques using spectacles with pink and green lenses. With
a colour tv system one need only put appropriate colour filters in front of the two cameras of a stereo pair and reproduce the two signals on a single colour tube in the receiver. Apart from any questions of eye strain resulting from using this device of splitting left and right by colour, this would not be a satisfactory advance in entertainment television because it would not allow reproduction in colour - the 3-D pictures could only be in monochrome. The obvious solution is to use polarisation instead of colour as the means of discriminating between left-eye and right-eye signals, but this would seem to need two separate transmission channels.

The problem of compatibility

The problem of compatibility can be examined at two levels. The first is to see whether the complete stereo picture can be sent over a normal transmitting. channel. This has only been achieved for broadcast stereo sound by using wide band transmitters; but the number of television channels is so small, and the necessary bandwidth per channel so large, that one is reluctant to suggest the use of two channels for one stereo picture. A small group at the University of Hull has therefore been investigating the possibility of using the alternate frames of the standard interlace for left and right pictures*. One suggestion was that if the two images were presented on a common screen, the viewer's eyes and brain might recognise their nature and use them as a pair of stereo images. Although this might happen with some. individuals, especially after training, it certainly did not happen with the - observers who saw it for the first time, so this mode of presentation is considered to be impracticable for general viewing. One is then forced to resort to crossed polarisation and "polaroid" spectacles to separate the two images. It may eventually be possible to present the images on a single tube with a polarising screen of the liquid-crystal type which could be switched electronically; but the response time of currently known liquid crystals is too long, so at present one is obliged to use two separate picture screens (cathode-ray tubes), each having its own polarising screen. This is possible, using a half-silvered mirror to superimpose the two images and "polarised" spectacles. It came to light that such an arrangement had been tried before \dagger and was alleged to cause some eye strain.
In any case, it has not solved the

[^5]problem of compatibility at a second level, namely allowing the viewer with a non-stereo receiver to use the same programme. If he were to use one only of the images, he would be losing interlace; and although arrangements could be made to reconstruct the missing lines by correlation techniques (as proposed for bandwidth reduction in Viewphone) this would not represent true compatibility since it would require substantial alterations to receivers.

It was therefore concluded that the use of alternate frames from the interlace was not an entirely satisfactory technique. A technique which does appear to work is that of halving the transmitted field of view and transmitting over any normal channel a stereo pair of half-width pictures. These two images appear side-by-side on the viewing screen and may be combined as a stereo pair by the crossed polarisation technique; or either can be viewed separately as a normal picture. The division into two half-sized pictures may be performed either optically or electronically \ddagger. Thus instead of using two complete communication systems for the two images, one has multiplexed a single communication system into two channels, each carrying only half as much information. Halving the width of picture may be too high a price to pay for stereo production in entertainment, though it is acceptable in some industrial applications.

Other optical effects

In entertainment television the real objective is to create an illusion rather than to allow the viewer to extract certain information analytically from the picture. If the 3-D problem is so intractable, can tv advance in any other directions and in particular can anything be learnt from developments in the cinema? The cinema tried stereoscopic presentation, e.g. by the red/green method, as a stunt but does not appear to have produced any normal film in 3-D, neither feature nor documentary. (There is an obvious argument against its uses when making news films.) The visual analogue of "surround sound" was the all-round cinema, one of the few examples of which showed a US travelogue at the Brussels International Exhibition in 1952. A small audience had to stand in a circular chamber while a number of projectors produced a 360° panoramic picture round the top of the wall. This was very impressive but clearly not practicable for commercial entertainment. The cinema adopted various ver-
\ddagger The optical method is used by 3-D Television Systems, Inc., of 4382 Lankershim Boulevard, North Hollywood, California, who offer a 3-D conversion kit for industrial closed-circuit television. The electronic method is described by K. Sunderland of the Electronic Engineering Department, University of Hull (reference 3).
sions of wide screens in order to give a picture of greater appeal without going to 3-D; and perhaps part of the psychological appeal of the cinema is its tendency to produce larger-than-life images, which is just the reverse of the small screen of television. Now if one is to maintain the standard of definition and brightness, an increase in field of view of the cinema picture requires only an increase in power of illuminant and area of film, together with an increase in size of camera lens to cover the wider film, all of which are subject to economic rather than technical constraints. But in television the transmission of more information to fill a wider picture needs more bandwidth, as well as modifications to both cameras and receiving equipment; and so long as we are concerned with broadcast tv, bandwidth is a rather scarce commodity. If the Post Office ambition of having a wide-band channel to every household is ever realised, especially if the idea moves forward from coaxial cable to glass fibre, there will be bandwidth to spare for two-channel compatible stereo and wide-screens.

In the mean time, can nothing be done? Every photographer knows that lighting is of the utmost importance in producing what he calls "plastic" effects. Do television producers make full use of this factor? An argument for using an acoustically dead studio for sound is that the listener's room will provide some reverberation; but there is no way in which this argument can be extended to vision. Mention of "plastic" effects serves as a reminder that emphasis of edges also enhances this effect. In normal television scanning, only vertical edges can be enhanced by differentiating the signal (or boosting the high frequencies) but anyone who has studied papers on the analysis of television signals in terms of picture differences must have been struck by the "bas relief" effects which can be so obtained.

A brief trial of this technique led to the conclusion that although it is of some value for "irregular" objects, such as human faces, its uses must be severely limited if the picture contains straight vertical edges of any length.
-Until someone invents a workable system of compatible 3-D television, the producers of broadcast television might give more thought to the production of illusions!

References

1. Leith, E.N. and Upatnieks, J. Reconstructed wavefronts and communication theory, Journ. Optical Soc. of America, vol. 52, pp. 1123-1129, 1962.
2. Butterfield, J.F. Three Dimensional Television, Proc. of 15th Annual Society of Photographic Instrumentation Engineers Symp., Annaheim, California, September 1970.
3. Sunderland, K.R. Single-Channel Stereoscopic Television - a Feasibility Study. Report to the Department of Electronic Engineering, Unversity of Hull, 1978.

Breadboard survey - 1

A look at solderless circuit construction aids

EVĖR SINCE electronic circuits have not behaved as designers intended, "breadboards" or patchpanels have been built to quickly assemble, modify and dismantle circuitry. Over the years various commercial types have appeared varying in style from a bare board sprouting with leads and "croc-clips," to a panel two foot long and littered with enough readouts, switches and controls to confuse even the most seasoned engineer. In the last few years several breadboard systems have been designed which are simple to use and can quickly pay their way in a work-
shop. Although any system which allows components to be temporarily connected together can be called a breadboard, the more popular types have a number of standard features. The most important of these is the method of interconnection. A socket based system where components are plugged in is essential for good breadboarding because the components can be quickly changed and used repeatedly. Flexibility is also important so that different component types and sizes can be used on the same board. A third facility which makes for a good bread-

(a)

(b)

(c)

Fig. 1. Breadboard socket systems.
board is the inclusion of power supply points or rails.

Apart from these main features, there are several other points to consider before choosing a system. Size is important and this will depend on the flexibility of the breadboard, and whether it can be extended. Compatibility must also be considered together with any accessories which can or have to be purchased.
In general there are three types of breadboard currently available. The simplest types are breadboard blocks which are normally based on a matrix of sockets. These blocks will accept individual components which are then interconnected by the sockets and supplementary wiring on the block. When the circuit has been completed, the components and wires are unplugged and can be used again.
The second group of breadboards are more elaborate assemblies, often composed of several blocks mounted on a base board, with the provision of power supply terminals and several supply rails. These systems often have accessory kits such as jumper leads which can save more time. The most elaborate breadboards systems are normally housed in a purpose built case, and offer built-in power supplies, oscillators and other general purpose outputs which simplify circuit evaluation even further. Again, these complete systems are often based on individual breadboard blocks and can be used in the same way.
The main problem with all solderless breadboards is the socket connection. Unlike i.c. sockets, which are only used a few times, the conductive contacts have to be robust enough to survive many operations, and always provide a reliable low resistance contact. To overcome this potential problem, several types have strips of contacts which can be replaced if a socket is damaged. This facility is very useful because a damaged or intermittent connection can waste more time than the breadboard will save.

Breadboard blocks

Euro Bread Board, see Fig. 2, measures $92 \times 82 \mathrm{~mm}$ and follows the socket connection system of Fig 1(a). A single panel will accept 0.3 and 0.6 in i.cs as well as most discrete components with leads of up to $0,85 \mathrm{~mm}$ dia. A total of 500

Fig. 3
Fig. 2
sockets are provided based on a 0.1 in matrix with four columns of 25 separate rows each containing five interconnected sockets. Four extra rows, each of 25 sockets, surround the matrix and are used as power supply rails. The layout is designed to accept two rows of 0.3in i.cs and one row of 0.6 in i.cs. All of the socket strips, which are replaceable, are double sided types made from nickel silver alloy and rated at 1 A . Contact resistance is specified as below $10 \mathrm{~m} \Omega$ and the life is quoted as above 10,000 insertions.

Bim Board 1, see Fig. 3, measures $150 \times$ 50 mm and follows the socket connection system in Fig. 1(a). The fayout will accept 0.3 in i.cs, or 0.6 in types by sacrificing some potential connection points. Most other discrete components can be accommodated with lead diameters up to 0.85 mm . The block has 470 main sockets in a 0.1 in matrix organised in two columns, each of 47 rows containing five interconnected sockets. Two extra rows, each of 40 interconnected sockets, serve as power supply rails. The strips of sockets, which are replaceable, are double-sided types constructed from nickel silver with a contact resistance rating at 1 A of $10 \mathrm{~m} \Omega$. On the top of the board the matrix area has the columns and rows numbered and lettered for easier circuit construction. The plastic moulding is provided with male and female connectors so that several boards can be locked together in an expanded system. A plug-in vertical panel is also provided for mounting external components.

Super Strip, see Fig. 4, measures $165 \times$ 57 mm and follows the pin connection system in Fig. 1(a). The layout will accept 0.3 in i.cs, or 0.6 in types by sacrificing some potential connection points. Most other discrete componentscan be accommodated with lead diameters up to 0.81 mm . The layout has 640 main sockets in a 0.1 in matrix which is arranged as two columns, each of 64 rows containing five interconnected sockets. Four extra rows, each with two

Fig. 4

Fig. 5
strips of 25 linked sockets, provide eight power supply rails. The double-sided strips of sockets are available in nickel silver or with a gold plated finish. The blocks are supplied with a self adhesive backing compound for instant and semi permanent mounting. This backing can be peeled off to expose the socket strips which can then be removed. However, this is a sticky procedure and normally destroys the backing. Alternatively, the block may be mounted with self-tapping screws which are supplied.

S Dec, see Fig. 5, measures $114 \times 76 \mathrm{~mm}$ and follows the socket connection system in Fig. l(b). The board is designed to accept only discrete components with lead diameter up to 1 mm . The layout has 70 sockets arranged in seven rows each with two strips of five linked sockets. The double-sided sockets are constructed from brass, and are rated at 5 A . Each hole is numbered from 1 through to 70 on the top of the board.

An extension of this system, known as T-Dec, contains 208 contacts with alphanumeric labelling for the rows and columns. This board allows one i.c. to be plugged into the block via an adaptor. A further extension, known as μ-Dec has a similar layout, but allows two i.cs to be used either directly or by adaptors.
A useful feature of all three versions is the availability of complementary printed circuit boards which reflect the layout of each board. This allows a breadboard layout to be transferred permanently to a p.c.b.

Experimentor, see Fig. 6, type 300 measures $152 \times 53 \mathrm{~mm}$, and type 600 measures $152 \times 60 \mathrm{~mm}$. Both versions follow the connection system in Fig. 1(a), and are designed to accept 0.3 in or 0.6 in i.cs together with most discrete components. The layout has 470 main sockets in a 0.1 in matrix organised as two columns, each of 47 rows containing five interconnected sockets.

Two extra rows, each of 40 interconnected sockets, serve as power supply rails. The strips of sockets, which can be removed by peeling off an insulated backing paper, are a double-sided type constructed from nickel silver alloy. The top of the block has the matrix area numbered and lettered, and the plastic moulding has a male and female locating groove on each side. This allows both types of block to be snapped together either side-by-side or side-toend. For permanent mounting, the moulding is also provided with four screw holes.
I.C. breadboards from Cambion are based on i.c. sockets and 0.040 in jacks. Type 702210502 has four 18-pin i.c. sockets which are connected to corresponding jack sockets. By using patch leads, connections are made between the i.c. pins. Power supply and ground terminals accept bare wires or spade connectors. Type 705036901 is a similar system measuring 165 $\times 159 \mathrm{~mm}$, but with 160.3 in i.c. sockets. Solder turrets are provided for input/ output and supply connections, and supply buses travel inbetween the rows of i.cs. Two other boards in this range accommodate 32 and 64 i.c. sockets.

Alternatively, the three boards can be supplied with i.c. jacks instead of sockets.

The Hirschmann Experimental Plate in Fig. 7 follows the layout in Fig. 1(c). The board will directly accept most discrete components with lead diameters up to 1.2 mm and, via special adaptors, 0.3 in i.cs. Interconnection of components is by special patch leads which are supplied in a kit. The plate has 1,128 connection points organised in six columns each with 47 rows of 4 interconnected sockets. The board is supplied with two plug strips which are used as power supply buses, and connect either 23 or 24 rows of sockets together.

The socket springs, which are constructed from beryllium copper and can be either nickel plated or gilded, have a contact resistance of around $45 \mathrm{~m} \Omega$ for 5,000 operations, and a current rating of 1A. The moulding has the columns and rows lettered and numbered, and dovetail clips are provided on two sides so that several plates may be joined together. The plate also incorporates four 4 mm sockets which can be used for input and output connections.

A screw-fixed vertical panel is also available for mounting switches and potentiometers. Draft sheets are supplied which have a socket layout. This enables the constructor to draw a circuit plan on paper before assembling the breadboard.

Wonderboard is available in two sizes which measure $81 \times 35 \mathrm{~mm}$ and $81 \times$ 140 mm . The layout will accept most i.cs and discrete components as shown in Fig. 8. The basic board contains six

Fig. 6

Fig. 7

Fig. 8
rows of 31 holes. These rows are spaced at 0.3 in and the holes are filled with a conductive elastomer

Components are pushed into these contacts from the top of the board, while interconnection leads are used on the underside. Each contact can accept one component lead and up to six 26 gauge wire contacts. Contact resistance is specified as $10 \mathrm{~m} \Omega$ and the current rating is 7 A , with a breakdown voltage of 9 kV . Contact life is given as 150 insertions in a temperature range from -55 to +100 deg C . Both sides of the board have the co-ordinates labelled with numbers and letters for easier wiring. The larger board is laid out as four standard boards side-by-side.

The concluding article describes breadboard assemblies, and gives a list of suppliers together with prices.

Stereo f.m. tuner - Mk |I

Alignment and printed circuit board layouts

by L. Nelson-Jones, F.I.E.R.E.

The main part of the design, a development of the author's highly successful tuner of 1971, appeared in the September issue (pp. 34-39). This concluding article gives the alignment procedure and also the layouts of the printed circuit boards.

To align the circuit, disable the muting control RV_{2} on the i.f. board by turning fully anti-clockwise, and then switch off the a.f.c. Set the tuner supply to +12 V using $R V_{3}$, and switch the a.f.c. on again. For alignment of the quadrature coil a broadcast transmission is needed. With the receiver tuned for maximum signal level output on the "signal level" pin of the i.f. board, adjust the quadrature coil for zero difference between the a.f.c. and a.f.c.-reference voltages. With a.f.c. off, slowly tune the receiver through the station and adjust the coil, if necessary, for equal peaks on the S -shaped characteristic. This procedure is only satisfactory for the singletuned system, and a wobbulator must

Effect of tuning $L_{2}(a)$ and $L_{3}(b)$ in double-tuned discriminator circuit, compared with characteristic of single-tuned discriminator (c). Ordinate $0.5 \mathrm{~V} / \mathrm{cm}$, abscissa $100 \mathrm{kHz} / \mathrm{cm}$.

Printed circuit board layout for power supply
be used for alignment of the doubletuned circuit. Next, set the a.g.c. level control RV_{1}, CA3189E only, to give a satisfactory law for the signal-level meter.

For the decoder the oscillator frequency is set on a stereo signal. Slowly turn the potentiometer on the decoder board until the l.e.d. lights, and continue until it goes out again. The correct setting is mid-way between these two points. If a counter-timer is
available, set the frequency to 228 kHz at the end of R_{2} adjacent to the potentiometer.
The pre-aligned front-end needs only the i.f. coil adjusted to the frequency of the i.f. filter. Tune to a station and set for maximum signal-strength on the meter. Carefully adjust the core of the i.f. coil to peak this reading. The frontend tuning adjustments are marked, so that the complete alignment can be carried out if desired. Set the oscillator
range to cover from 87.5 MHz at +1.5 V tuning input, to 108 MHz at +11.5 V tuning input. Set the tracking by adjusting the inductors at the 87.5 MHz frequency, and the capacitors at the 108 MHz frequency. Only the inductors and capacitors of the aerial and r.f. stages are adjusted because the oscillator is already set. For peaking the coils use the signal strength output or meter if fitted. Great care should be used when adjusting the coils because the ferrite

Printed circuit board layout for the i.f. circuit
cores are delicate. The correct adjusting tool must be used at all times.

The Toko screened coils are slightly sensitive to the presence of metal. It is therefore necessary to check the align ment by removing the tool temporarily This is especially important when set ting the symmetry of the S -shaped discriminator characteristic

NEW PRODUCTS

Monochrome monitor

Plessey has developed a high quality monochrome monitor which they say is particularly useful for computer v.d.us where high character-density displays are required. The suggested format of 25 rows each with 80 characters can occupy up to 90% of the screen area. The monitors, which are currently available with 12 or 15 in screens, use 110° c.r.ts with a 1000 line centre, and 800 line corner resolution. Linearity is 2% of raster height, and picture geometry has a distortion of less than 1.5%. Other ranges are available which operate from either a composite video signal, or from separate and sync at t.t.l. levels. Plessey Wound Products Ltd, Titchfield, Fareham, Hants.
WW 301

Meter relay

This edge type panel meter has two switchable transistor outputs which are controlled by two opto-electronic detectors that can be adjusted over the full 80 mm scale. Two scale markers set the switching points while a

third independent pointer gives a continuous visual readout. The unit measures $100 \times 30 \times 139 \mathrm{~mm}$ and can be supplied with meter movements from $100 \mu \mathrm{~A}$ f.s.d. Centrelco S.A., Case Postale 241 , CH-1211 Geneve 26, Switzerland. WW 302

Dual output power supply

The model HP-6234A d.c. power supply offers two independently adjustable and isolated outputs from 0 to 25 V . Both outputs, which are automatically limited at 0.2 A , can be connected in series to provide up to 50 V . Pushbuttons select either voltage or current for each output, and two multiple-turn controls adjust the voltage. Regulation is quoted as within 0.01%, while ripple and

WW 303

WW 304
noise are said to be less than $200 \mu \mathrm{~V}$ r.m.s. The mains powered instrument measures $90 \times 155 \times$ 190 mm , weights 2.3 kg , and is priced at £112. Hewlett-Packard Ltd, King Street Lane, Winnersh, Wokingham, Berkshire RGll 5AR.
WW 303

Marker generator

A battery-powered, crystalcontrolled marker pulse generator, the TE 5, from ALL-M Products, provides markers at 1 MHz , $500 \mathrm{kHz}, \quad 250 \mathrm{kHz}, \quad 200 \mathrm{kHz}$, $100 \mathrm{kHz}, 50 \mathrm{kHz}, 25 \mathrm{kHz}, 20 \mathrm{kHz}$ and 10 kHz . The unit contains a mixer and amplifier to provide a beat between an unknown frequency and the selected marker, the beat being presented on an oscilloscope screen or audibly by earphones. Provision is made for an external power supply or the 9 V internal battery can be used; current drain is around 7 mA . All-M Products Ltd, 3 Westhill Close, Highworth, Swindon. Wiltshire SN6 7BY.
WW 304

Magnetic tape head

The C44RPS02 magnetic tape head will enable an audio cassette recorder to simultaneously record or playback up to four channels. Each channel has an impedance of $900 \Omega 2$ at 1 kHz and a head gap of around 1.5 microns. Playback frequency response at 8 kHz is $8 \mathrm{~dB} \pm 5 \mathrm{~dB}$. A bias current of $300 \mu \mathrm{~A}$ of 50 kHz is required, while the record current is $30 \mu \mathrm{~A}$. Monolith Electronics Co Ltd, 5/7 Church Street. Crewkerne, Somerset TA187HR.

WW 305

Interference simulator

The SG41 interference simulator can be used to measure noise immunity of digital and analogue instruments, or for testing electronic, components. The unit, which simulates voltage peaks, spark interference, and static discharges, can be connected between the incoming power supply or mains, and the device
under test. Voltage peaks from 0.1 to 6 kV can be simulated with an energy of two joules and a repetition frequency of 25 Hz . Spark interference from 0.5 to 3 kV may be selected with a repetition frequency of 250 Hz . and static discharges with an amplitude of up to 15 kV may also be repeated at 250 per sec. Seltek Instruments Limited, Hoddesdon Road, Stanstead Abbotts, Hertfordshire SG12 8EJ.
WW 306

Universal meters

The Meter Made range of movements has five basic versions with either edge or flat face displays. The blank meters are supplied in a kit of three with a sheet of rub-down scales and legends which cover most standard and a few non-standard units. As well as the normal biased left movements, centre zero and double versions are available. Kit prices start at $£ 7.50$ from Ambit International, 2 Gresham Roao, Brentwood, Essex
WW 307

Video a.-to-d.

converter

An 8-bit video a-to-d converter, type VADC820, developed by ILC Data Device Corporation, is capable of sampling at a 20 MHz rate. The converter, which is compatible with NTSC and PAL standards, has been designed for digitising tv and radar signals for storage, measurement and trans-

mission. The video track/hold input amplifier has a 100 MHz bandwidth, and its internal f.e.t. input can be terminated for any coax impedance. Peak signal/ r.m.s. noise ratio is specified as 45 dB minimum, and maximum linearity error is $\pm 1 / 2$ l.s.b. The circuit requires $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ and -5.2 V d.c., and the logic is t.t.l. compatible. Techmation Limited, 58 Edgware Way, Edgware. Middlesex HA8 8JP.
WW 308

Crystal oscillators

The frequency range of Vectron oscillators CO-234, CO-238 and CO-239 is now extended to cover 16 kHz to $100 \mathrm{MHz}(25 \mathrm{MHz}$ in the case of the 234). Initial frequency tolerance is $\pm 0.005 \%$ or $\pm 0.001 \%$ and the units work in the $0-70^{\circ} \mathrm{C}$ temperature range with a variation of $\pm 0.01 \%$ maximum. Increased accuracy and stability is available, as are oscillators working in the temperature range -55 to $125^{\circ} \mathrm{C}$. Power required is 5 V at $15-80 \mathrm{~mA}$, depending on frequency. Package is either the d.i.l. type or a hermeticallysealed can; Lyons Instruments Ltd, Hoddesdon, Herts.
WW 309

Torque screwdriver

A range of precision torque screwdrivers, manufactured in Switzerland, allow bidirectional movement through 270°. Six models give ranges from 20 100 gcm to $1-5 \mathrm{kgcm}$ with scale divisions ranging from 5 gcm to 250 gcm . Each model has two scales for clockwise and anticlockwise torques. A sliding

pointer can either be positioned on the scale for a maximum torque or moved by a spring movement to indicate the greatest torque applied through the screwdriver. SSIH Equipment (UK) Ltd, Fimecor Division, 67-74 Saffron Hill, London ECIN 8RS.
WW 310

Fan cooled s.m.p.s.

A dual output switching power supply known as the MGD500, incorporates a fan cooling system which increases the power density, and allows the unit to be mounted in any plane. The supply has been designed for use with e.c.l. and offers two independently controlled outputs which track together and give a total output of 526 W . Two d.c. outputs provide 5.2 V , adjustable from 0 to 80 A and 2.2 V adjustable from 0 to 50 A , with a common positive terminal. Regulation is said to be within 0.2% on both outputs and ripple is 10 mV r.m.s. Dimensions for the unit are 127 $\times 203 \times 267 \mathrm{~mm}$. Gould Electronic Components Division,

Raynham Road, Bishop's Stortford, Hertfordshire CM23 5PF WW 311

Illuminated microscope

A miniature illuminated microscope from Intel Electronic Components is said to be ideal for the inspection and measurement of p.c.bs, components, and instruments. The device is 125 mm long and features a graticule which is calibrated in increments of 0.1 mm , and with angles from 30° to 90°. Magnification is $\times 20$ and illumination is by a standard bulb and two 1.5 V batteries. Intel Electronic Components Ltd, 30 / 50 Ossory Road, London SEl 5AN
WW 312

Frequency counter

The 02 series of frequency counters from R.C.S. Electronics operate from either a mains or 12 V d.c. supply. Seven segment 0.6 in l.e.d. displays indicate frequencies up to 520 MHz as well as average period and timer functions. Sensitivity is 10 mV and the stability is around 3 parts in 10^{10}. R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesex TWl5 2RB.
WW 313

Drill stand

This drill stand supports the motor body on a cantilever spring system which, when depressed, switches the motor on, and off
when released. The stand meas ures $315 \times 115 \times 150 \mathrm{~mm}$ and has an integral fused and switched 12 V d.c. power supply, a low voltage lamp, and a high speed motor mounted in an adjustable clamp. Throat depth is 168 mm and each unit is supplied with $X-Y$ locating jigs. Recommended retail price is $£ 61$ plus v.a.t. from Technomark, Allnut Mill, Church Road, Lower Tovil, Maidstone, Kent
WW 314

Programmable pulse generator

Models 1505 and 1506 are single and dual channel programmable pulse generators which have been designed for automatic test systems that require a fast rise time. The instruments feature e.c.l. drivers, and provide variable output amplitudes within $\pm 2.5 \mathrm{~V}$ into 502. All of the pulse parameters, except for rise and fall times, are programmable by several methods including the IEEE Standard 488-1975 digital interface, a 16 -bit address and data bus, a serial ASCII format, and parallel programming. Microsystem Services, Duke Street, High Wycombe, Bucks. WW 315

Frequency doubler

A passive frequency doubler from Racal-Dana enables the output of a 240 to 570 MHz signal generator to be extended to above 1 GHz . The device, which is fitted with N-type connectors and measures $100 \times 30 \times 30 \mathrm{~mm}$, can be connected directly to the output socket of most signal generators in common use. When used in a $50 \Omega 2$ system, the insertion loss is less than 13 dB and the input v.s.w.r. is less than 2:1. Racal-Dana Instruments Limited, Duke Street, Windsor, Berkshire SL4 ISB. WW 316

Miniature p.c.b. relay

A p.c.b. mounting relay which measures $16 \times 11 \times 10.5 \mathrm{~mm}$ has contacts rated at 0.5 A 100 V a.c.

WW 314

or 1 A 24 V d.c. Coil ratings range from 1.5 to 24 V at currents between 18.8 mA and 300 mA , while service life is said to be in excess of 5×10^{6} operations. Coil resistances range from 5 to 1280Ω, and the maximum switching frequency is 1800 operations per hour. Operate and release times are both around 5 ms and the insulation resistance is greater than $100 \mathrm{M} \Omega$. IMO Precision Controls Ltd, 349 Edgware Road, London W2 1BS
WW 317

R.a.m. controller

The 8202 i.c. from Intel is a dynamic r.a.m. controller which, say the makers, allows a designer to treat a dynamic r.a.m. in the same way as a more expensive static device. The i.c. can refresh a dynamic r.a.m. of up to 16 K words without the need for external drives, and will simultaneously resolve demands for memory access and refresh. The 8202 is compatible with Intel's 8080 A and 8085A microprocessors, and is capable of decoding the 8085A status lines. Intel Cor poration (UK) Ltd, 4 Between Towns Road, Cowley, Oxford OX4 3NB
WW 318

Interference filters

A new range of filters for opera tion at voltages up to 250 V a.c. offers current ratings from 1 to 30A. The JX5 100 series is for general purpose applications and provides r.f.i. control of line-to ground noise. Series JX5200 controls line-to-line interference as .well as line-to-ground r.f.i., and series JX5300 offers an improved performance in low impedance applications. Sprague Electric (UK) Ltd, 159 High Street, Yiewsley, W. Drayton, Middx.
WW 319

Manual card reader

Type MCM-105-1R is a hand operated device for reading mag. netic cards. The reader, which has no moving parts, can accept cards at speeds between 75 and $1500 \mathrm{~mm} / \mathrm{s}$. Power requirements are 5 V at 30 mA , and the operating temperature range is from -15 to +50 deg C . The reader measures $120 \times 40 \times$ 38 mm , weighs 200 gm and is claimed to have a head life of at least 300,000 card operations. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, East Sussex TN31 7BR
WW 320

We are pleased to announce our latest sales list. This contains our greatest ever range of test equipment and offers it for sale at the best prices on the market. We are also on the look-out to buy good quality test equipment. So if you have some for sale, let usknow. Make certain of getting your FREE copy of the sales list now.

Phone:

01-267 4257 or
Circle WW200 for buying orselling

Carston Electronics Limited
Shirley House 27 Camden Road London NW1 9NR Telex 23920

* Prices and quality no one else can match.
* All equipment sold calibrated to manufacturers' specification. * Full inspection may be carried out at our premises.
* Full handbook and circuit diagrams supplied with each item. * Keenest prices offered for your own surplus equipment.

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -

STERED

PRE-AMPLIFIERS

MC 1

CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K The supertority of the CPR 1 is probably the disc stage The overload margin is a superb 40 dB . this together with the high slewing rate ensures clean top, even with high output cartridges design RI.A.A. is accurate to 1 dB , signal to noise ratio is 70 dB relative to 3.5 mV ; distortion $<.005 \%$ at 30 dB overload 20 kHz

Following this stage is the flat gain / balance stage to bring tape, tuner. etc up to power amp signal levels Signal to nolse ratio 86 dB . slew-rate $3 \mathrm{~V} / \mathrm{uS}$: T H.D $20 \mathrm{~Hz}-20 \mathrm{kHz}<.008 \%$ a any level.
F.E.T. muting No controls are fitted There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15 volts
MC 1 - PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartidges Sensitivity $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This module brings signals from the now popular low output moving-coil cartndges up to 35 mV tiypical stgnal required by most pre-amp disc inputs) Can be powered from a 9 V battery or from our REG 1 regulator board

REG 1 - POWER SUPPLY. The regulator module, REG 1 provides 15-0-15v to power the CPR 1 and MC 1 It can be used with any of our power amp supplies or our small transforme The power amp kit will accommodate in

POWER AMPLIFIERS. It would be pointless to list in so small a space the number of recording studios, educational and government establishments. etc who have been using CRIMSON amps satisfactorily for quite some time We have a reputation for the highest quatity at the lowest prices The power amp is avalable in five types, they all have the same mocit 25 V S sigal 10 P . unconditional; protection dives any load salely; sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request), size $120 \times 80-25 \mathrm{~mm}$

POWER SUPPLIES. We produce suitable power supplied which use our superb TOROIDAL ransformers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capacitors/bridge rectifier).

POWER AMPLIFIER KIT. The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply it is contemporarily styled and its quality is consistent with that of our other products Comprehensive instructions and ful back-up services enables a novice :o build it with confidence in a few hours

POWER AMPLIFIER MODULES
 CE 1008 100W/8 ohms $45-0.45 \mathrm{v}$ CE 1708 170W/ 8 ohms $65-0-0.45 \mathrm{v}$

OROIDAL POWER SUPPLIES
CPS 1 tor $2 \times C E 608$ or $1 \times C E 1004$
CPS 2 for $2 \times C E 1004$ or $2 / 4 \times$ CE 608 PSS for $1 \times$ CEE 1008 CPS5 1 for $1 \times$ CE 1708 CPS 6 for $2 x$ CE 1704 or $2 \times$ CE 1708 heatsinks
 Medium power. $100 \mathrm{~mm} .14 \mathrm{C} / \mathrm{W}$ Oiscolgroup. 150 mm . $1.1 \mathrm{C} / \mathrm{W}$
Fan 80 mm , state 120 or 240 v

w | $£ 1.30$ |
| ---: |
| $\$ 2.20$ |
| 2.85 | an mounted on two drilled 100 mm healsink $2 \times 4 \mathrm{C} / \mathrm{W} .65 \mathrm{C}$ max with two 170 W nodules

THERMAL CUT-OUT, 70 C

CRIMSON ELEKTRIK

1A STAMFORD STREET, LEICESTER LE1 GNLL. TeI. (0533) 537722
All prices shown are UK only and include VAT and post COD 90p extra, E100 limit Expor is no probiem, please write for specific quote Send large SAE or 3 Intirnailonal Reply Coupons for detailed information
Distributor Minuc Teleproduckier Box 12035 S 75012 Uposala 12 Sweden

All West Hyde cases are avallable with substantial discounts for quantities. Most cases have discounts at 5,10 and 25 off with discounts up to 33% at 100 off. Prices include P\&P and are less 10% if collected on first two price breaks on cases only. Send for catalogue Prices correct at press date. WEST HYDE DEVELOPMENTS LIMITED. Unit 9. Park Street Industrial Estate, AYLESBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570 ww-074 FOR FURTHER DETAILS

1-7 Harewood Avenue, Marylebone Road, London NW1. Tel: 01-724 2497 Telex: 21879

FRANCE: Son Professionnel, 2 Rue des Tennerolles, 92210 Saint Cloud (Paris). Tel: 6026815.

QUALITY COMPONENTS BY RETURN

The Only Firm for Quality Audio Kits

HART ELECTRONICS

 Are proud to offer the only DESIGNER APPROVED kit for the
J. L. Linsley-Hood High Quality Cassette Recorder

Now offered with Super Quality Sendust Alloy Head at no extra cost, and incorporating noise reduction modifications given in the postscript article.

As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by
designing a kit down to a price We have designing a kit down to a price We have
therefore spent a little more on professional hardware allowing us to design a very advanced modular system This enables a more satisfactory electil ical layout to be achieved, particularly around the very critical input areas of the replay preamps These are totally stable
with this layout and require no extra with this layout and require no extra
stabilising components Many other stablising components Many other
advañtages also come from this systern advantages also come rom and replay amps for each channel plugging in to a master board with gold-plated sockets The most obvious is the reduction of crosstalk and interacion which could cause trouble on a single plane board with our •modular system the layout is compact but there is no componen crowding. Testing is very easy with separate identical modules and bullding
with the aid of our component-by-com ponent instructions is childlishly simple. but the finished result is a unit designed not to normal domestic standards bu to the best protessional practice

All printed circuits are of glassfibre material. fully drilled with a inned finish for easy and reliable soldering Component locations are printed on the reverse side of the board and are arranged so tha all identification numbers are still visible atier assembly.

71x Complete set of parts for Maste Board, includes bias oscillator, rela
$72 \times$ Parts tor Motor speea ana solenord Control for Lenco CRV deck This is Control for Lenco layout as given in the articles. $£ 3.52+44 \mathrm{p}$ VAT
73x Complete set of parts for sterec Replay Amps. and VU Meter drive £8 12 + £1 02 VAT

74x Lomplete set for suereo hecord Amps. $£ 6.74+84 p$ VAT
75) Complete set of parts for Stabilised Power Supply to circuit given in Aricle. This uses a special low hum teristics than the fommonly used torord $£ 879+£ 110$ VAT use

100M2 Individual High Quality VU Meters with excellent ballistics $£ 848+£ 106$ VAT. Per Pair

700C / 2 High Quality Custom buit steel aluminium front plate, mans swith. record microswitch, turned record level knob, plastic cabinet feet, all bolts. nuts and mounting hardware All necessary holes are punched and all surfaces are electroplated Complete step-by-step assembly instructions are included The cover is finished in an attractive black VAT

LENCO CRV CASSETIE MECHAN. ISM - Now firted with Super Quality Sendust Alloy Hesd.
High Uuality, robust cassette transpuri to forward, fast rewind, record, pause and full auto stop and cassette ejection facilites Fitted with Record / play and erase heads and supplied complete witt Data and extra cassette ejection spring fo above horizontal use Price $£ 2160+$ Total cost of all parts $£ 83.58$
Special offer for Complete Kits $£ 8150+$ E10 19 VAT.
Complete with data and set up notes to achieve best results with the Super Head. Optional extra solid teak end cheeks. £3 pair $+38 p$ VAT

Reprint of 3 Linslev-Hood Cassette Recorder articles. 45 p post and VAI iree OTHER CASSETTE SPECIALITIES LENCO MECHANISMS. For industrial or domestic use We have in stock SPFF, FFR tB300, 502. 504 and MinitB ' U ' for endiess loop cassettes Send for details Super Quality Sendust Alloy R/P Stere Head for replacement use $£ 650+81$ p VAT
Set of components and data for optimising L-H Cassette circuits for use with this Standard Quality Stereo R/P Head $£ 450+56 \mathrm{p}$ VAT
Economy Cassette Stereo R/P Head $£ 280+35$ p VAT.
4-track Cassette R/P Head, $£ 740+93 p$
TEST CASSETTE to enable the user without instruments to easily set up the Head Azimuth, tape speed and VU level. $£ 150$ inc VAT
Super Ferric Low Noise tape C90, 80p inc VAf. C 10.35 p inc. VAT

SAVE

Build your own GOLDRING CK2

Belt Drive Turntable
Beautifully engineered unit from
the famous Goldring company,
comes complete with instructions and all necessary parts. Ready to incorporate into your design plinth and cover. The pleasure of assembling your own deck (Plinth, cover and cartridge not included). Usually sold for $£ 54.95$ with plinth and cover. ALL PAICES
Call in or send cheque, P.O, M.O, Access,
Barclaycard, Diners Club or American Express Number.

WW - 069 FOR FURTHER DETAILS

NEW STYLING

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specialy produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July, Aug., 77.
The unit is designed to decode not only UHJ but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 input selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc

Complete kit, including licence fee $\mathbf{£ 4 5 . 0 0}+$ VAT or ready built and tested $£ \mathbf{6 1 . 5 0}+$ VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval
As in "Wireless World", designed by Mike Hosking. 240 V ac maıns operated and disguised as a hardbacked book Detection range up to 30 feet

Complete exclusive designer approved kit $\mathbf{£ 4 6 . 0 0}+$ VAT or ready built and tested, $£ 54.00$ + VAT

Wireless World Dolby ${ }^{\text {in }}$ isise reducer
 Trademark of Dolby Laboratories Inc

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable t.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA).
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Typical performance
Noise reduction better than 9dB weighted
Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)

Harmonic distortion 01% at Dolby level typically 0.05% over most of band, rising to a maximum of 0 12\%

Signal-to-noise ratio $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output

Dynamic Range $>90 \mathrm{db}$
30 mV sensitivity

Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby PROCESSOR BOARDS (92 $\left.{ }^{(1)} 87 \mathrm{~mm}\right)$ with gold plated contacts are available with all components
Single channel board with selected fet Price £8.20 + VAT

Gold Plated edge connector Price £2.50 + VAT

Selected FETs 60p each + VAT, 100p + VAT for two, $£ \mathbf{1 . 9 0}+$ VAT for four
Please addVAT @ $12 \frac{1}{2} \%$ unless marked thus*, when 8% applies (or current rates)
We guarantee full after-sales technicai and servicing facilitıes on all our kıts, have you checked that these services are available from other suppliers?

IITIECREK

 S-2020TA STEREO TUNER / AMPLIFIER KIT
SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noıse reduction unit etc.), THD less than 0.1% at 20W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE: £58.95 + VAT

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ 0.75 uV . Image rejection - 70 dB . IF rejection - 85dB. THD typically 0.4\%

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.

Compare this spec. with tuners costing twice the price.
Mono $£ 32.40$ +VAT
With ICPL Decoder $£ 36.67+$ VAT With Portus-Haywood Decoder
$£ 39.20$ + VAT

Sens. 30dB S/Nmono@ $1.2 \mu \mathrm{~V}$ THD typically 0.3\% Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 31.95+$ VAT

S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers,
switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: $£ 33.95+$ VAT

[^6] COMPREHENSIVE INSTRUCTIONS

WW-105 FOR FURTHER DETAILS

WW-028 FOR FURTHER DETAILS

CAPACITY + a FREE MULTIMETER

The NEW INTEX Type 20

NiCd Batteries
volts
Alternating
Alternating
Direct
Direct
Resistance
Resistance
In hand for E149

DAWES ELECTRONICS
21 Dawes Road London SW6
$01-3813975$

WW-027 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements

For full details of our service contact Rodger J. Sandiford
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon
CRO2XX. Tel 01-689 8741

Come and get a great deal
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Express Mail Order Tel orders on credit cards 510 min Trade and export enquiries welcome
A. Marshall (London) Ltd., Dept: WW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel. 01-624 0805 Retail Sales London: 40-42 Cricklewood Bdwy., NW2 3ET. Tel. 01-452 0161/2. Telex: 21492 London: 325 Edgware Rd., W2. Tel. 01-723 4242. Glasgow: 85 West Regent St., G2 20D. Tel. 041-3324133. Bristol: 1 Straits Pde., Fishponds Rd., BS 162 LX. Tel. 0272654201

POPULAR INTEGRATED CIRCUITS. (A very small selection from our vast stocks, please enquire about devices not listed.]

CA3018	0.75
CA3018A	1.10
CA3020	2.20
CA3020a	2.50
CA3028a	0.90
CA30288	1.25
CA 3030	1.50
CA3030A	2.20
CA3038	2.90
CA3038A	4.10
CA3045	1.55
CA3046	0.77
CA3048	2.45
CA3052	1.78
CA3080	0.85
CA3080A	2.10
CA3086	0.50
CA30888	1.87
CA30898	2.90
CA30900	4.40
C43130	1.06
CA3140	1.04
Lm 301	0.30
LM307N	0.50
LM308N	0.95
LM 309KC	1.95
LM317\%	3.35
LM318N	2.45
LM320ts	2.95
LM320t122.15	
LM320t15	
LM320t24	
	2.15
LM320P 15	
LM320P24	
	1.15
LM323k	6.95
LM339N	0.80
LM340T5	0.88
LM340T 15	
LM340T24	0.88

Our range covers over 8,000 items. The largest selection in Britain. Top 200 ICs, TTL, CMOS \& LINEARS

(1) DRAKE Radie Shack Ltd

 DRAKE SSR-1
 GENERAL COVERAGERECEIVER
 $0.5-30 \mathrm{MHZ} 30$ BANDS 10 KHZ READOUT

 AS WEIL AS DRAKE EQUIPMENT. WE ARE THE DIRECT IMPORTERS OF HAL RTTY AND MICROPROCESSORS. ATLAS NYE MORSE KEYS. PRESTEL VHF UHF PROFESSIONAL FIELD STRENGTH METERS HAM RADIO CIR ASTRO 200 . HY-GAIN. CDR ROTORS, HUSTLER OMEGA.T SYSTEMS. MFJ FILTERS AND SPEECH PROCESSORS, SUPEREX WE ALSO STOCK SHURE MICROPHONES YAESU. MICROWAVE MODULES, SOLID STATE MODULES ICOM, COPAL CLOCKS. G-WHIPS. BANTEX MOSLEY OAIWA. ASAHI JAYBEAM DECCA AND THE USUAL ACCESSORIES--COAX CONNECTORS. INSULATORS, VALVES. ETC We are sttuated ıust around the corner from West Hampsteau Undergiouilu sidion (Bakerloo line) A few minutes walk away is West Hampstead Midand Region station and West End Lane on the Broad Sireet Line We are on the following Bus Roules 28. 59159 Hours of opening are 9-5 Monday to Friday Closed for Lunch 12 Saturday we are open 9-12 30 only World wide exports
 ADIO SHACK LTD
 188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No. 588 7151. Telephone: 01-624 7174. Cables: Radio Shack

 London. N.W.6. Telex: 23718

REALLY Read any $/$ good OSCILLOSCOPES lately?

[^7]WW-080 FOR FURTHER DETAILS

Now...

 the next
generation of bench DMMs!

Two New Keithley Models offer uncompromising performance and outstanding value!

- Accuracy $31 / 2$'s can't match $0.04 \%+1$ digit on dc volts and ohms
- Large, bright, 20,000-count LED display that's quick and easy to read.
- Convenient bench size that won't get "lost" ye doesn't crowd
- Exceptional reliabiaity

Model 178 offers functions and ranges for most measurement needs $100_{\mu} \mathrm{V}$ to 1200 V dc, $100_{\mu} \mathrm{V}$ to 1000 V ac, 0.1Ω to $20 \mathrm{M} \Omega$.
Model 179 is a fult-function, multi-feature model offering the same advantages as the 178 . Plus TRMS AC; $10_{\mu} V$ Sensitivity; Hi and Lo Ohms; AC and DC Current Yet it's still half the price you'd expect. Only $£ 199$
Both models feature designed-in reliability
Rugged circuits use a minimum of parts - high quality, off-the-shelf parts - carefully assembled and tested by Keithley.
Outstanding overload protection and rugged mechanical design keep both units going even after severe abuse. One-year accuracy specifications minimise recalibration costs.
A battery option, user installable, gets you off "fine" for critical measurements or for field use.

For complete specifications on the 178 and 179, call Keithley Instruments, 1 Boulton Road, Reading. Phone 0734861287

The measurement engineers.
WW-057 FOR FURTHER DETAILS

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards. entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp.
These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as ${ }^{*}$ soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown bèlow.

OVERSEAS SUBSCRIPTIONAGENTS	
Australia: Gordon \& Gotch (Austrolasia) Ltd, 380 Lonsdale Street. Melbourne 3000, Victoria	Japan: Western Publications Distribution Agency. 170 Nishi-Okubo 4-Chome, Shinjuku-Ku,
Balgium : Agence et Messageries de la Presse, 1 Rue de la Petite-ILE Brussels 7	Lebanon : Levant Distributors Co., P.O. Box 1181. Makdesi Street, Halim Hanna Bldg, Beirut
Canada: Davis Circulation Agencr, 153 St. Clair Avenue Wost, Toronto 195, Ontario	Malaysia: Times Distributors Sdn. Bhd. Times House. 390 Kim Seng Road.
Cyprus: General Press Agency Lid, 131 Prodromou Street, P.O. Box 4528, Nicosla	Singapore 9, Malaysia. Malta: W. H. Smith Continentel Lid, 18a Scots Street, Valleta
Denmark: Dansk Binddiatribution. Hovedvagregade 8 , Dk. 1103 Kobenhavn.	Now Zealand: Gordon \& Gotch (New Zealand) Ltd, 102 Adelaide Road. Wellington 2
Finland: Rautakiria OY, Koivuvsarankuja 2, 01640 Vantae 64, Finland.	Nigorla : Daily Times of Nigeria Lid, 3 Kakawa Street, P.O. Box 139, -Lagos
France: Dawson-Fra S.A., 日.P.40, F-91121 Palaiseau	Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Oslo 6
Germany: W.E.Saarbach GmbH, 5 Koln 1. Follerstrasse 2	Portugal : Livaria Bertrand s.a.I. Apartado 37, Amadors
Greece: Hellenic P.O. Box 315, 246 Syngrou Avenue.	South Africs: Central Nows Agencr Lid, P.O. Box 1033. Johannesbure
Holland: Van Ditmar N.V.. Oostelljke Handetskade 11. Amsterdam 1004	8 paln: Comercial. Atheneum s.s. Consejo de Ciento, 130-136 Barcelona 15
India: International Book House, Indian Mercantile Mansion Ext, Madame Cama Road, Bombay 1	8wedan: Wennegien Williams A B. Feck S-104, 25 Stockhoim 30
Iran: A.D.A., 151 Khiaban Sorava. Tohren	
Israel: Stelmatzky's Agency Lid, Citrus House. P.O. Box 628, Tel Aviv	Savogelstrasse 34, 4002 Basle
Italy: Intercontinental s.a.s. Via Veracini 9 , 20124 Milano	U.S.A.: John Barios. IPC Business Press, 205 East 42nd Street. New York, N.Y. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt. Britain, Channel Islands or N. Ireland

BUSINESS REPLY SERVICE
Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH GROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

WW	WW.... WW
WW....	WW . . . WW .
Ww	WW.... Ww
WW.	WW.... Ww.
Ww	ww.... ww
Ww	ww.... ww
Ẃw	WW.... Ww
Ww	ww.... ww
Ww	ww.... WW
WW:	WW.... ww
WW.	ww... ww
Ww.	ww.... ww
Ww	ww.... ww
WW.	ww. . ${ }^{\text {c }}$ ww.
Whw.	ww. .. . ww
WW...	WW.... WW

WIRELESS WORLD *Wireless World, November 1978 WW 871 '
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
\qquad
Name of Company .
Address.

Telephone Number

Position in Company
Nature of Company/Business:
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager, IPC' Business Press, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Sërvice for Professional Readers ONLY.-

WIREĹESS WORLD Wireless World, November 1978 WW 871

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland

Please arrange for me.tor receive further details of the products listed, the appropriate'reference numbers of which have been entered in the spacé provided.

Name

Position in Company
Name of Company .

Address.

Telephone Number

Nature of Company/Business
No. of employees at this establishment

VALIO FOR SIX MONTHS ONLY

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz,' Hungexpo
Advertising Agency, Budapest XIV,
Varosliget - Telephone : 225 008-
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku, Tokyo 106-
Telephone : (03) 585-0581

United States of America Ray Barnes,
*IPC Business Press 205 East 42nd Street,
New York, NY 10017 - Telephone :
(212) 6895961 - Telex: 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive;
Chicago, Illinois 60601 - Telephone :
(312) 63074 -

Mr. Victor A Jauch,
Elmatex Internatiónal,
P.O. Box 34607 ,

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 821 !8581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickies, Ray Rickles; \& Co.,
P.O. Box 2008, Miami Beach, Florida 33140 - Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (41.6) 3642269
*Also subscription agents

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR P128/MP60 with magnetic cartridge Balanced arm Cueng device Bias Compensator £ 24.50. Post
NEW BSR SINGLE PLAYER £ $\mathbf{1 9 . 9 5}$
Model
S shaped arm. cueing device. stereo ceramic cartridge
B S R Budget Autochanger with stereo
$£ 14.95$
HEAVY METAL PLINTHS

BSR SINGLE PLAYER Ideal replacement or disco deck with cueng device and stereo ceramic cartridge 3 speeds Large turntable. modern design £17.50 Post E1 $_{1}$

GARRARD AP76

HI-FI RECORD PLAYER
$£ 27.50$ GARRARD HI-FI MODEL $2025 £ 14 . \overline{9} 5$ AUTOCHANGER
SMITH'S CLOCKWORK 15
AMP TIME SWITCH
0-6 HOURS $£ 3.30$ Post 35 p Single pole two-way Surace mounting
wwht fixing screws. Will replace existing wall switch to give light for return home
garage, automatic antu-burgar lights etc Variable knob Turn on or off at full or

intermediate settings 8 rand new
TEAKWOOD LOUSSPEAKER GRILLES will easily tit to baifle
board $\mathrm{S}_{12 \mathrm{E}} 101 / 2 \times 7 / \mathrm{min}-45 \mathrm{p}$.
ELAC HI-FI SPEAKER Bin. TWIN CONE Large ceramic magnet $50-16,000 \mathrm{c} / \mathrm{s}$ Bass resonance 40
8 ohm impedance. 10 wetus RMS $£ 5.95$ Post 35 p

ELAC 10in. ROUND

10 watts. 8 or 16 ohms models
£4.95 each. Post 40 p

VOLUME CONTROLS

5 k to 2 MQ LOG or LIN
 35p D P 60 p . STEREO L/S $\mathbf{8 5 p}$. OP $£ 1$. Edge $5 K$ S P

Transistor 45p.

80 Ohm Coax 8p yd. FRINGE LOW LOSS $15 p_{\text {yd }}$
Ideal 625 and col our
 LINE SOCKETS 18 p.
OUTLET BOXES 50 p .
300 ohm FEEDER 5p.
E.M.I. $131 / 2 \times 8 \mathrm{in}$. SPEAKER SALE!
With tweeter and
crossover 10 watt

3 or 8 ohm \quad| Otto |
| :--- |
| 8 |

8 or $15 \mathrm{ohm}-20$ to $20.000 \mathrm{c.ps}$
£8.50
THE "INSTANT"' BULK TAPE ERASER Suitable for cassettes, and all sizes of tap Will also demagnetise small tools,
Head Demagnetiser. Only $£ 4.75$ $\mathbb{£ 4 . 9 5}$ RELAYS. 12VDC 95p. 6VD C 85p. 240VAC 95p BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8$ £1.40; $10 \times 7-£ 1.55 ; 12 \times 8-£ 1.70$
 ALUMINIUM PANELS. $6 \times 4-24 p ; 8 \times 6-38 p ; 14 \times$ 3-40p; $10 \times 7-54 \mathrm{p} ; 12 \times 8-70 p ; 12 \times 5-44 \mathrm{p} ; 16 \times 12$
$6-70 \mathrm{p} ; 14 \times 9-94 \mathrm{p}$ 6-70p; $14 \times 9-94 p ; 12 \times 12-£ 1 ; 16 \times 10-£ 1.16$. ALI BOXES IN STOCK. MANY SIZES
VARICAP FM TUNER HEAD with cricu
£4.95. Some technical knowiedge required
£4.95. Some technical kn
TAG STRIP 28 -way 12 p
TAPE OSCILLATOR COIL. Valve type, 35p
TAPE OSCILLATOR COIL. Valve type, 35p.
BRIDGE RECTIFIER $200 V$ PIV $1 / 2$ amp 50 p . $8 \mathrm{amp} £ 2.50$.
TOGGLE SWITCHES S.P 30p. O.P S T 40p. OP D T 50 p.
MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS. GP91 £1.50. GP95 £2.50.
SONOTONE Stereo £2.00. ADASTRA magnetic £5.
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 watt $15 p$
BALANCED TWIN RIBBON FEEDER 300 ohms. $5 p$ yd.
R.C.S. SOUND TO LIGHT KIT Mk. 2

Kit of parts to build a 3 channel sound to light unit
1.O00 watts per channet Suitable for home use
Easy to build Full instructions suppolied. Cabinet $£ 4$
extra. Will operate from 200 MV to 100 watt signal
ost 135
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode.
prnited circuit rectifiers and double wound
mans transformer. Input $200 / 240 \mathrm{~V}$ a.c
Output voltages available. 6 or 75 or
9 or 12 Vdc . up to 100 mA or less Size $3 \times 21 / 2 \times 1 / 21 \mathrm{Cl}$
P 45 p
Please state voltage required
£3.35
12 VOLT. 750 mA . Complete with printed
Post 30 p
circuit board and assembly instr
12 VOLT 300 mA KIT. $£ 3.15$.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players. guitars, tape playback.
electronic instruments or small P A systems Two versions available Mono, £12.50; Stereo, £20. Post 45p Specification 10W per channel; input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{in}$ approx S.A E details. Full instructions supplied A C mains powered.
R.C.S. DRILL SPEED CONTROLLER/LIGHT DIMMERKIT $\begin{array}{ll}\text { Easy to build kit } & \text { £3.25 } \\ \text { Will control up to }\end{array}$
R.C.S. STEREO PRE-AMP KIT. All parts to buitd this pre-amp inputs for high, medium or low imp per channel, with volume
control and PC Board
Can be ganged to make multi-way stereo mixers $\quad \underset{\text { Posi } 35 p}{\mathbf{2 . 9 5}}$

250.0250 V 70 mA . 65 V 2 A	¢ 3.45
$250-0.250 \mathrm{~V} 80 \mathrm{~mA} .63 \mathrm{~V} 35 \mathrm{~A} .63 \mathrm{~V} 1 \mathrm{~A}$	64.60
3500.35 CV 80 mA 63 V 35 A 63 V 1 A	¢5.80
$3000.300 \mathrm{~V} 120 \mathrm{~mA} 2 \times 63 \mathrm{~V} 2 \mathrm{ACT}, 5 \mathrm{~V} 2 \mathrm{~A}$	c8. 60
$220 \mathrm{~V} 45 \mathrm{~mA}, 63 \mathrm{~V} 2 \mathrm{~A}$	c1.75
HEATED TRANS $63 \mathrm{~V} 1 / 2 \mathrm{amp}$	¢1.00
Dito 3 amp	¢1.75
GENERAL PURPOSE LOW VOLTAGE Tapped outputs	
	¢5.30
1 amp 6. 8. 1012.161818024 .30 .36404860	E5.30
$2 \mathrm{amp} 6.8,10,12,161820243036404860$	¢8.50
3amo 6. 8. 10. 12. 16181820.24 .3036404860	E11.00
$5 \mathrm{mmp} 6.8,10,1216,1820.24,3036404860$	£14.50
12 V .100 mA ... E.1.00 20 V 40 V 60 V 1 amp	¢3.50
$12 \mathrm{~V}, 750 \mathrm{~mA}$ [1.30 $\quad 12 \mathrm{~V} 300 \mathrm{~mA}$	E1.00
10-0.10V 2amp e2.45 10V 30V 40V 2 amp	62.75
30 V .5 amp and 17 V .0 .17 V , 40 V 2 amp	¢2.95
2 amp ¢3.45 20 V 1 amp	¢2. 20
O 5.8.10 16V $1 / 2 \mathrm{amp}$ ¢1.95 20V.0.20V 1 amp	¢2.05
9V. 3 amp e2.75 30v.0.30V. 2 amo	c7.00
	c. 9.00
$30 \mathrm{~V} 2 \mathrm{amp} \quad \mathrm{E3.00} \quad 12.0 .12 \mathrm{~V} .2 \mathrm{mp}$	$\underline{2.95}$
	[1.30
AUTO TRANSFORMERS, 115 V 10230 V or 230 V to 115 V 150 W	¢ 5.00
250W ¢6.00. 400W ¢7.00 500W	¢ 8.00
full wave bridge Charger rectifiers	
6 or 12V outputs 2 amp 75p. 4 amp ¢1.25	
CHARGER TRANSFORMERS $11 / 2 \mathrm{amp}$	¢3.50
4 amp	CE. 80
$12 \mathrm{~V} 11 / 2 \mathrm{amo}$ Half Wave Setenium Rectifier	25p
COMPACT	
SPEAKERS	
Teak or White	
$13 \times 10 \times 6$ in approx.	
50 to 14.000 cps	
10 watts rms 4 ohms	
\& 16 pair post £i 30	

E16 pair post £ 30

BAKER MAJOR $12^{\prime \prime} £ 16.88$

$30-14.500 \mathrm{c} / \mathrm{s}$. Post $£ 1.00$
double cone wooler and tweeter cone togethe with a BAKER ceramic magne assembly having a flux density of 145000 gauss and a total llux of . 000 Maxwells. Bass resonance 16 ohms must be stated

Module kit, 30-17.000
baffle
£20.52
and instructions.
ost 1.50 eac
Please state 4 or 8 or 16 ohms
BAKER "BIG-SOUND" SPEAKERS. Post $£ 1$ each
'Group 25' 'Group 35' 'Group 50/15'

BAKER LOUDSPEAKER, 12 INCH. 60 WATT.
GROUP 50/12, 4 OR 8 OR 16 OHM HIGH POWER RESPONSE 30.16 .000 CPS £22.68 MASSIVE CERAMIC MAGNET

TEAK VENEERED HI-FI SPEAKERS AND CABINETS Kor 12 in or 10 in speaker $20 \times 13 \times 12$ n $\quad £ 14.50$ Post $£ 2$ For $61 / 2 \mathrm{in}$. speaker and tweeter $12 \times 8 \times 6$ in $£ 5.95$ Post $75 p$ Many other cabinets in stock. Phone your requirements. SPEAKER COVERING MATERLALS. Samples Large S.A.E.
R.C.S. 100 watt

VALVE
AMPLIFIER
CHASSIS

Four inputs. Four way mixing, master volume, treble and bass controls. Suits all speakers. This protessional quality amplitie power is required. 5 speaker outputs. A/C mains operated Slave output socket Produced by demand for a quality valve amplifier 100 V line output to order
Suitable carrying cab $£ 16.50$ Price $£ 99 \begin{aligned} & \text { Send for leafle } \\ & \text { carr } \\ & \text { E6 } 00\end{aligned}$
Horn tweeters $2.16 \mathrm{kc} / \mathrm{s} 10 \mathrm{~W} 8 \mathrm{ohm}$ or 16 ohm £3.60.
Audax Tweeters $3-18 \mathrm{kc} / \mathrm{s}$. 50W 8 ohm $£ 7.50$.
CROSSOVERS. TWO-WAY

 5in.. 15 ohm. $31 / 2 \mathrm{in}$. dia. $6 \times 4 \mathrm{in}$. 8 ohm, $21 / 2 \mathrm{in}, 3 \mathrm{in} .31 / 2 \mathrm{in}$,
$7 \times 4 \mathrm{in} . ~$
$5 \times 3 \mathrm{in}$ 3 ohm. $21 / 2 \mathrm{in}, 2 \% \mathrm{in}$. $31 / 2 \mathrm{in}$. 5 in dia. £ 1.50 each.
PHILIPS LOUDSPEAKER PHILIPS LOUDSPEAKER, Bin, 4 ohms, 4 watts. £ 1.95 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in. diameter $4 W £ 2.50$. 10 ın. diameter $5 W £ 2.95$;
12 in diameter $6 W £ 3.50$. MOTOROLA PIEZO ELECTRIC HORN TWEETER Handles up to 100 watts. No crossover required.
BLACK PLASTIC CONSTRUCTION BOX with brushe 4.50

BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER

These litle mals SPEAKERSE3.95 ea. These little marvels of modern sound reproduction are ideally spheres, each with 5 watt deep throated ceramic magnets, witl produce superb stereo reproduction
The globe shaped cases in high gloss mouldings of red or green,
are finished with chrome frontal trim and provided with screw-on are finished with chrome frontal trim and provided with screw-on rubber inset protective
metres of strong lead

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$;
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \vee 70 \mathrm{p}$
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} \mathrm{42p;} 420 \mathrm{mF} / 500 \mathrm{~V}$ £ 1.30
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$3900 \mathrm{mF} 100 \mathrm{~V} £ 1.60 .4700 \mathrm{mF} 63 \mathrm{f}, 20.270$
$5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 76 \mathrm{~V} £ 1.75$
MANY OTHER ELECTROLYTICS IN STOCK
SHORT WAVE 100 pF air spaced gangable tuner, 95p. TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$. 50 pF . 5p. 100pF 150 pF , 15p PAPER 350V-0 1 001 mF ; 05 13p; Silver Mica 2 to 5000 pF . 5p. 20p; 500V-0 001 to 0.0512 p ; $0115 \mathrm{p} ; 0.25$ 25p; 047 35p MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUR-MIN MICRO SWITCH, 25p. Single pole change over. TWIN GANG, $385+385$ pF 50p; 500 pF standard 75p. $365+365+25+25 \mathrm{pF}$ Slow motion drive 65 p . 120pF TWIN GANG, 50p; 365 pF TWIN GANG, 50p.
NEON PANEL INDICATORS 250 V . Amber or red 30p. NEON PANEL INDICATORS 250V. Amber or red 30p.
RESISTORS. 10Ω to $10 \mathrm{M} 1 / 1 \mathrm{~W} .1 / 2 \mathrm{~W}, 1 \mathrm{~W} .20 \% 2 \mathrm{p}$; 2 W . 10 pp RESISTORS. 10 Q to $10 \mathrm{M} 1 / 1 \mathrm{WW} .1 / 2 \mathrm{~W} .1 \mathrm{~W} .20 \%$ 2p; 2 W . 10p.
HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 meg. 12 p . Ditto 5%. Preferred values 10 ohms to 10 meg . $\mathbf{5 p}$.

ELECTRO MAGNETIC
PENDULUM MECHANISM
15 V d c. operation over 300 hours continuous on SP2
battery, fully adjustable swing and speed Ideal displays
teaching electro magnetism or for $\quad \mathbf{9 5 p}$ Post 30 p
metronome. strobe. etc

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries. SAE for lists and prices. E1 00 for booklet. "Nickel Cadium Power

Write or call at

SANDWELL PLANT LTD
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Craven street, Charing Cross, London WC2

WW-100 FOR FURTHER DETAILS

SWANLEY ELECTRONICS

PRECISION DIAL GAUAGES John Bull No 6 series 101 mm E6P P 50p COAXIAL CRYSTAL DETECTORS. (Marconi-Saunders). 200 MHZ -12 GHZ ع7. 50 (Diode S9B E1 50).
FIBREGLASS COPPER-CLAD BOARD

$9 \times 41 / 2 \times 1 / 16$ in (double sided) 50 p P\&P 10 p
$9 \times 4 \times 1 / 16$ in (double sided) 65 p P\&P $10 p$
$9 \times 6 \times 15 \times 1 / 16$ in. (double sided) E2 50 P\&P $50 p$
OFF-CUT PACKS. 150 sq ins E1 PP 25 p
P.A.R. BI-STABLE RELAYS. 24 v d.c. $4 \mathrm{c} / \mathrm{o}$ E

PLUG-IN RELAYS 240vac
2 pole c/o.(8 pin) B5p P.P 15 p
U.H.F. COAXIAL CABLE (white) Double screened

MULTICORE CABLES
4 CORE RIBBON (RAINBOW) CABLE $4-10 / 2 \mathrm{~mm}$.
Forming $1 / 4 \mathrm{in}$ wide strip $10 \mathrm{~m}-75 \mathrm{p} 50 \mathrm{~m}-\mathrm{E} 3.100 \mathrm{~m}-\mathrm{E} 6$ P per metre
10 CORE CABLE $10 \times 7 / 76(10$ colours) P.VC
$007 \mathrm{~m} .10 \mathrm{~m}-£ 250 \mathrm{~m}-£ 8.50100 \mathrm{~m}-£ 16 \quad P \& P 2 p$ per metre
12 CORE SCREENED CABLE $12 \times 14 / 76$ with outer screen-PVC covered O.D
9 m ($10 \mathrm{~m}-\mathrm{E} 40 \mathrm{~m}-\mathrm{E} 1850-100 \mathrm{~m}-£ 35$ P\&P 2 p per metre
16 PAIR RIBBON CABLE 16×2 CORE P
Double sheathed forming 2 in wide strip
$10 \mathrm{~m}-£ 3 ; 50 \mathrm{~m}-£ 1350 ; 100 \mathrm{~m}-£ 25$. P\&iP $2 p$ per metre
200 way TELEPHONE CABLE o.d 12 mm § 1 per metre PP. 40 p
E.H.T. MODULES (resin encapsulated. in metal box)

STABILISED POWER SUPPLIES input 120/240v.50hz
5-14 volts @ 6amp (pre-set) with manual £20 PP E2
12.17 volts @ 6amp variable £20 PP £2
P.C. EDGE CONNECTORS

32 way (1 pitch) finished end 49 p P\&P $10 p$
56 way (1 pitch) cuttable 65p P\& P $15 p$
64 way (1 pitch) cuttable 75 FP P\&P $15 p$
64 way gold plated pins 90 p P\&P 15 p
Mounting piliars for $56 \quad 64$ way 15 p per pa
'ORYFIT' RE-CHARGEABLE BATTERIES (Lead/Acid)
Ex Equip Good condition, teste
$6 \mathrm{~V} @ .9 \mathrm{~A}$ § $125 \mathrm{P} \& \mathrm{P} 35 \mathrm{p}$
6 V @ 2.6 AHE £ 50 P\&P 50 p

J. B. PATTRICK

191/193 London Road
Romford, Essex RM7 9DJ
Romford 44473
SEMICONDUCTORS
and

sum
 SHOT

cassette, ideal event filming etc. Electrically selectable speed of 24 fps and single shot Flash contacts
provided, removable Dalymer 125 mm wid angle tens. tocus and f stops adjustable from ORIGINAL Complete COST £200! $£ 25 \begin{aligned} & \text { withm manual } \\ & \text { P.P.! } £ 2-50\end{aligned}$

ELECTRONIC COMPONENTS C EOUIP

2 N3001
LM380N SL6051 14- D.L.L A. F amp 75p each 8 for $£ 5.00$ MC7812CK TO3:2 amp + 12 TMS $1 .{ }^{\text {C. }} 114$ DUAL MOS 128 bit thifl reg. DC. 2.5 mhz €1.75 each 4 £5.00 C4.75 each 8 for $£ 30.00$ TIL119.0C-147 opto coupler 6 pin D. GE 424 zero voltage swith Gelay driver TO5 can $\mathrm{f} 1-00$ each 7 C CA3011 $20 \mathrm{MH} Z$ wideband TO99 case 60 p each 2 for $£ 1.00$ TO99 case 60 each 2 for
FSA 27198 diodes1N4 148 . 1 N9 type in $16 \mathrm{D} . \mathrm{I}$. pack ali type in 16 Dil. . pack ali independenty connected $35 p$ each FPO3725 4 NPN 50v 500 ma silicon 2 fror firs in 44 D.IL. Dack 65p each TEXAS LOWPROFILE I.C. SOCKET 1. Din 14 p fach 9 for $£ 1.00$. 24 pin 30 p eash 4 for $£ 1.00$ 7 2NE109 R.F. power output 400 ma 2 watts up to
2 for Et.00.
AF279 low noise PNP germ AF 279 low noise P.N.P. germanium 2N4304-WN720 F E. T transistor 35 each 4 for $£ 1-00$

Miniature Tantalum Beads 10 mf 25 v and
Scotch 215 Long Play Tape Brand new
spools $£ 1.50$ each 4 for $£ 5.00+$ P P $45 p$
1000 Watt fulty shrouded auto transtormers ierm, bock connections £ 13.75
Bulbs 24 v 14 watt white frosted S B C. 8 for $£ 1.00$
S.B.C. Bulb Holders All steel cad plated panel mount easily \dagger
round hole Ideal disco displays, scoreboarcts etc 4 for $£ 1.00$
Ctal filters S.E. QC 12 of 7.5 khz 2000 ? imp in out Brand new at
Heavy Duty Flat Insulated Earth Braid 80.100 amp brated tinned coppe
BULGIN miniature 6 way male chassis mount socket and matching shrouded
free plug. 60p each 2 fo: $£ 100$
Red L.E.D.'s full suec $02^{2} 12 \mathrm{p}$ each 10 tor $£ 1.00$
Dynamic Stick Mics 600 !
min lack plug $£ 1-00$ each

dised press on aluminium finned HARDWARE PACK Don't be stuck for the B.A. Metric, Unified. Self Tap. etc, nuts, bolts ontents $400-600$ pieces. $\& 2.50$
DIODES•DIODES•DIODES

avallatili
 8_{8}^{80}

215 WHITEHORSE LANE LONDON SE25 TEL 01-771 2027 All prices inclusive of V. A T. Cash with order, Minimum order value $£ 1.00$. Postage quoted for UK only. Export and trade enquiries welcome. Orders despatched same day where

LRU.GORNEB
POWER SUPPLY UNJTS
5 VOLT2.5 AMP T.T.L. P.S.U
 5 amps The 5 volt output is fully regulated and beasily mroded for 5 vol working butuntested.
comivete with circuit
p_p. f1-50

KEYBOARD
 OFFER

A special bulk purchase enables us to offer the above Keyboard at a lowest ever price 49 coded keys encoded into a direct TTL compatible 7 bit outpur. Features such as delayed strobe, 5 volt D.C. single rall operation and MPllover protection make this an absolute must for the Mpu constuctor! supplied complete with connection
$£ 18{ }^{50}$ Pp.f. 50

10 WAY MOMENTORY
Features 10 individuai feather light bushswitct
each with $1 \mathrm{n} / \mathrm{o}$ and $1 \mathrm{n} / \mathrm{c}$ gold wiping contact.
Each switch has integral replaceable bulb and
removeable lens cap which may be solit for
engraving etc. Switch dimensions $19 \times 19 \times 90$ m
Easily solit for single use. Undoubtably the most
atractive switch you will ever
atee Original cost over $£ 16-00$ per
s.00 see. Original cost over $£ 16$-00 per $\mathcal{J} \mathbf{3 P P}_{45}$ 8 WAY INDEPENDENT PUSH
ON - PUSH OFF
Features 8 way switch assembly, each switch
with, 2 clo gold wiping contacts and replace.
able bulb, complete with orange $12.5 \times 12.6 \mathrm{~mm}$
bution and lens cap. P.C mount 0.1 . spacing.
£2.75
TopGradeMULLARD+PLESSYCAPS
500 mi 100 S T.
3300 m 463 v Screw Term
5000 mf 30 v Soider Tag
high Efficiency SMITHS RADIALBLOWERS
Are your hot parts swe'tering? Then keep them cood
massive air flow to profong component life and
reliability. Easily mounled air aperture
$2 / 2^{*} \times 3^{*}$ supplipd complase with fixing bolts Ideal linears

Top: The Signalmaster Mk.8 Lower: The Audiomaster amplifier

Larsholt Electronics
Price inc VAT : Signalmaster $£ 97.35$ Audiomaster $£ 88.80$: the pair $£ 165$

Matched Pair

The Audiomaster $25+25 \mathrm{~W}$ rms amplifier and the matching Signalmaster Mk. 8 FM tuner, are fine examples of Larsholt's long experience in producing electronic kits that are neither insulting to the most experienced constructor, nor are they baffling to the beginner
We unhesitatingly recommend them on the grounds of style and performance
ex-stock from carriage $£ 3$
Ambit international,
2 Gresham Road, Brentwood,
Essex. telephone (0277)216029

-Cassettecopiers from PENTAGON

Simple operation-fully automatic 16 times speed Choice of one or three copies. C32/34outproduces all other makes - 75 C60 per hour. Budget Price from $£ 587$ + VAT

1-7 Harewood Avenue, Marylebone Road
Model C-1 Mono C-4 Stereo .
PENTAGON
\qquad

London NW1. Tel. 01-724 2497. Telex: 21879

Are you legal, decent, legal, decent, honest and truthful?

The Advertising Standards Authority.
trie to the Adverising Slandards Authonity 15/17 Ridgmount Street. London WCIE IAW

NOW!

SEMICON INDEXES
(International Semiconductor Device Data)

announce

THE NEW VOLUME 3

IC INDEX

This new volume follows the now well established format of the International Transistor Index and the Diode/SCR Index but in loose-leaf binder easily updatable form. There are over 25,000 entries of analogue and digital devices of international origin

SEND FOR DETAILS TO-DAY

SEMICON INDEXES LIMITED

7 KING'S PARADE, KING'S ROAD, FLEET. Hants. GU 13 9AB Tel: 0251428526 Telex: 858193 (Barmer G)

WIRELESS WORDS

RADIO COMMUNICATION HANDBOOK (5th edn)

First published in 1938 and a favourite ever since, this large and comprehensive guide to the theory and practice of amateur radio takes the reader from first principles right through to such specialized fields as radio teleprinter. slow-scan television and amateur-satellite communication.
"By today's standards it represents excellent value formonev" (Electronics Weekly on Vol 1)
Vol 1: 480 pages; hardback; 248 by $183 \mathrm{~mm} ; £ 8.39$ ($£ 9.36$)
Vol 2: 336 pages; hardback; 248 by $183 \mathrm{~mm} ; £ 7.25$ (£8.12)

RADIO DATA REFERENCE BOOK (4th edn)

T. G. Giles and G. R. Jessop
Presents a wide range of useful reference material, mainly in the form of Presents a wide range of useful reference mate that to permit its effective use 200 pages; hardback; 223 by $140 \mathrm{~mm} ; £ 3.00$ ($£ 3.65$).

VHF/UHF MANUAL (3rd edn)

D. S. Evans and G. R. Jessop

The standard textbook on theory, techniques and equipment for amateur radio transmission and reception at frequencies from 30 MHz to 24 GHz ".. . it very reasonably suggests that it contains information likely to be of value to the professional engineer
(Radio and Electronic Engineer, IERE).
416 pages; hardback; 248 by 183 mm ; $£ 5.90$ (£6.82)

All titles published by RSGB. Prices in parenthesis included postage packıng. Send for a complete list of RSGB publicatıons.

TEK TRONIX OSCILLOSCOPES

Main frames 545 with CA $£ 225$; 536,585 with type B2 $£ 395$ 58 1A; 661 with 5 T1A \& $4 \mathrm{S3}$ £ 325 ; 555 ; 561 A with Plug-i
 he prices of main frames will vary enormousity and plug-ins. Hence prices are guides only
The fact we don't advertise modern oscilloscopes. etc.. doesn normally around long enough to advertise For example H.P. OSCILLOSCOPE tyPe 183A with 1B30A and 1B40A 3db $250 \mathrm{MHZ} £ 950$
TEKTRONIX 453 3db 50 MHZ £ 650 .
TEKTRONIX $4543 \mathrm{db} 150 \mathrm{MHZ} £ 1,000$
S. E. LABS SM 111 3db 20 MHZ £ 325.
$40 \mathrm{GHZ} £ 550$.
R\&S RECEIVER 44-210MHZ HUZ BN 15012 Poor $£ 60$ BONTOON RX METER type 250 A 0.5 to 250 MHZ . Clean $£ 85$. MARCONI Q METER type 1245 with $1246 £ 350$ Optional $1247 £ 100$
TEKTRONIX Sig Gen Type 190A 350 KHZ to 50 MHZ and Fixed 50 KHZ freq $\mathbf{£ 4 5}$ ea
TEKTRONIX TIME MARK GEN type 180A £ 60 ea SOLARTRON PULSE GEN GO 1101 £ 30 ea
R\&S SWEEP GEN 5 OKHZ-12MHZ SWH BN4242/2 $£ 100$. R\&S ENOGRAPH-G ZSG BN 18531 £120. R\&S AM /FMGEN SMAF BN4 1404 4MHZ-300MHZ $£ 300$ ea R\&S AM /FM GEN SDAF BN41023/2 170940 MHZ £ $\mathbf{3 0 0}$ R\& R\&S POWER SIG GEN SMLR BN4 10010.1 MHZ -30MHZ R\&O. Z-G DIAGRAPH 30-300/420MHZ type ZDU BN35610 £140. R\&S AM GEN 30.300 MHZ SMLM BN4 $105 £ 90$ ea R\&S ATTENUATOR DPU BN 1 B044/50 0.3000 MHZ 0 109db 50 ohm $£ 150$.
MARCONI AM/FM GEN TF $106610-470 \mathrm{MHZ} \mathbf{E 2 7 5}$
MARCONI FM GEN TF $1077 / 1 £ 120$.
PHILLIPS AM/FM GEN type $201 £ 160$.
BONTOON AM/FM GEN type 202 H with Low freq adaptor
R\&S AM GENERATORS $300-1000 \mathrm{MH}$ Z $£ 120$ ea AIRMEC AM/FM GENERATOR TYPE $365 £ 140$. HP SAMPLING Oscilloscope type 185B 1000MHZ complete SOLARTRON Oscillator CO546
LIy Merered Good attenuator $£ 25 \mathrm{HZ}-500 \mathrm{KHZ}$. Sine wave SOLARTRON PRECISION VOLTMETER
scale. 1.5 mV full scale to 150 V full scale $£ 25$
H. Oscilloscope type 140 A with sampling
$1410 \mathrm{ADC}-1000 \mathrm{MHZ} £ 550$.
H.P Oscilloscope Type 140A with Samping plug-in
1411 A and 1432 A Sampling head $\mathrm{DC}-4 \mathrm{GHz} \mathbf{~} \mathbf{7 5 0}$. 1411A and 1432A Sampling head DC-4GHz $£ 750$. SOLARTRON DVM type LM1440 £75 ea Other Solarifon models avalable. Call and see.
H.P Digital Recorders 11 digit $£ 35$ ea
AIRMEC AM $/ F M$ MODULATION METER type $210 £ 80$.

BIRD TERMALINE WATTMETER 67C $30-1000 \mathrm{MHZ} 50$ O
© 95.
E.H. PULSE GEN model 122 £ 140

MARCONI AMM/FM MODULATION METER TF2300 with
TM8045 450 TM8045£450.
R\&S POLYSCOP SWOB1 Scruffy, working $£ \mathbf{2 5 0}$ ea; Nice condition £350 ea
R\&S POLYSCOP
R\&S POLYSCOP SWOB2 Fair condition, working $£ 425$ ea; Very clean 5550 ea
EXXINISTRY American USM 16 AM/FM SWEEP SIG GEN camhz-420MHZ. Incremental controls. Auto lock Crystal
calibrator and many other features. In transit case with

COSSOR OSCILLOSCOPE type CDU 150 DB. DC- 35 MHZ £425 ea.
R\&SZ-G DIAGRAPH 300 - 2400 MHZ BN35 12 Good condition ¢60 ea.
,
MARCONI RF POWER METER TF $1152 \mathrm{~A} / 150 \mathrm{ohm} £ 55$ ea PLUG-INS for Telonic Sweeper SM 2000 . Various form $£ 50$ ea
TELONIC SWEEPER SD $3 M 425-930 ~ M H Z ~$ MARCONI TF868 Universal Bridge $£ 70$ ea $£ 80$ ea
MARCON IF 868 Universal Bridge $£ 70$ ea.
ARMEC SIG GEN type $2041-320 \mathrm{MHZ}$
MARCONI SIG GEN TF801B $\mathbf{E} 160$ ea
POLARAD SPECTRUM ANALYSER TSA
1000 MHZ £ 350 .
POLARAD MICROWAVE RECEIVER MODEL TR IGHz $2.04 \mathrm{GHZ} £ 200$ ea
BRUEL \& KJOER Automatic Vibration Excter type 1016 Sine Wave sweep from 5 HZ to $10 \mathrm{KHz} £ 75$ ea.
GENERAL RADIO Osc Unit $12098250-920 \mathrm{MHZ} £ 50$
POLARAD SPECTRUM SIGNATURE MO
$\pm 125 \mathrm{MHZ}$ Sensitivity 120 dbm . Price $£ 250$.
POLARAD SIGNAL GENERATOR GB2/G-711 $£ 250$ GENERAL INSTRUMENTS TRANSFER FUNCTION \& IMMIT ANCE BRIDGE rype 1607 in transit case $\mathbf{£ 4 2 5}$.
MARCONI SIGNAL GENERATOR TF 1060 £ 185. MARCONI SIGNAL GENERATOR TF 1060 £185. BRADLEY MULTT METER CT471 £45 ea
 MARCONI CT44 Watt Meter 0.6 Warts $£ 25$ ea
AVO TRANISTOR \& AVO TRANSISTOR \& DIODE TESTER CT $537 £ 50$ e
AUTO TRANSFORMER 240 V input 110 V output
E14 ea
DIGITAL EQUIPMENT CORPORATION
memory. TYpe KD1 1 £425 ea
TWINFLPPY with LSI 11 niterface card from $£ \mathbf{1 , 2 0 0}$
PDPBL. Very nice condtion $£ 550$.

STEPPING MOTORS

All motors 200 steps per revolution. 20 oz inch torque, 120 V 1090-0-1000 ohm. Can be changed with care to $12 / 24 \mathrm{~V}$ Dath supplied. $£ 8$ ea

AV operation $£ 13$ ea. P\&\& $\mathcal{P} 1$

JUST IN

Various High Voltage Power Supplies, e.g. $0-100 \mathrm{KV}$ Variable
VIEWLEX INSTRUCTIONAL SUPER VIEWERS MODEL 136 with Headphones, 9 screen Takes standard cassette. Fron £3. 25 ea

* TRANSISTORS/DIODES/ RECTIFIERS, ETC \star

Guranteed all full spec devices. Manufacturers' Markings At 5 pea
CC147, 2N3707: BC172B, BC2518: BC34BB: BC171A/B BC413. D10: BAX15. 1N937: BA102BE: BZX83: TIS61 2N5040
At 10 p ea
IN4733A; SN7451N; BYX10-15V 0.36A, BYZ10 $15 p$ ea TIP 34A-50p ea. BD53B-40p ea. Heavy Duty Bridge Rectifier-20p ea CA3123E-£1 ea BDY55-£1 ea 2N3055-40p ea TiP31B 12p ea BFY51 - 12 р ea 2N5293-16p ea TBA560CO \&2 ea. 1 N 4436 T -TO3 Flat Mount 10A 200 piv \& 1 ea. 2 N 5897 with 2 N 5881 Motorola 150 W Comp pair $£ 2$. BU208£. 1.20 ea
BD535. BD538 Comp pair - 75p
P\&P extra on all items.
FINNED HEAT SINK
Texas Bridge Rectitier 5SBO5-50V 5A 60p ea. P\&P $20 p$ MOTOROLA POWER TRANSISTORS type WO993/44 TO3 Min voltage 500.20 p ea P\&P 15p

DON'T FORGET YOUR MANUALS

EX-MINISTRY OSCILLOSCOPE CT436
Double Beam DC6 MHZ £ 120

A MILLION MUST GO

HIGH NOISE IMMUNITY LOGIC
OUAL IN LINE 16 -PIN CERAMIC, 12 V Rail Conventional TTL
package Guaranteed spec. devices Full data. 2p ea

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $£ 3.25$. Telequipment S52£10 ea; D51 £15 ea; S42. £ 10 ea; D53A £ 20 ea 052 £ 15 ea; S31 £ 10 ea; Bradley 200 £ 85 ea
 D10. $210 \mathrm{GH} / 32 £ 40$ ea. D $13-46 \mathrm{GM} £ 35 \mathrm{ea}$
NOT BOXED - NEW - WARRANTED. Telefunken D 14 131 replacement for Solartron CD1740, Cossor CDU 150 . S.E Labs SM1 12 and GEC / MOV 1474 at $£ 55$ ea

BUILD YOUR OWN BUS

Approx. $1 / 2$ metre multiway ribbon cable terminated each end with a 50 -way female edge connector Takes 0.1 printed circuit
board, $\mathbf{2}$ ea \mathbf{P} 75p

TELEPHONES. Post Office style 746 Black or two-tone £6.50 ea. Modern style 706 Black or two-tone grey $£ 4.50$ ea. $\mathbf{P} \& \mathrm{P}$

HANDSETS 706 style $£ 1.75$ each Older style $£ 1$. P\&iP 75p. TELEPHONE EXCHANGES. EG 15 -way automatic exchange only from $£ 95$.

74S00 120	74S10 5p	74H51	$7 p$
7401 5p	$7417 \quad 14 p$	7453	5 p
74SO2 12p	74538 10p	$74 \mathrm{H74}$	12 p
$74504 \quad 12$ p	7451 5p	74574	12p
MC402860p	MC744140\%	7402	12p

NOW-INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per Ib

TELETYPE ASR 33 with 2OMA LOOP. Good conditioh Special low price $\mathbf{£ 3 9 5}$ ea. KSR33s from $£ 275$.

ALMA Min. PUSH BUTTON REED SWITCHES. High extra MINIATURE FANS 3 square (llike muffins) $115 \mathrm{~V} \mathbf{£} \mathbf{~ e a}$ HONETVELL HUMIDITY CONTROLLERS 25p ea P\&P
SPRAGUE $100 \mathrm{mfd}+500 \mathrm{mfd} 2$ TOVDCRYOMe Brand new 5 for 50 p . P\&P
REED SWITCHES
SMITHS encapsulated trans size 20 mm 10 p , AUDIPEt WARNING OEVICES 4 V .12 V Can be driven tom 50 p ea. P\&P 25 p
AMPHENOL 17 -WAY CHASSIS MOUNT EDGE CON NECTOR. 0.1 spacing $20 p$ ea. P\&P extra
BURROUGHS 9 digit PANAPLEX

30p.

gis wite £ 1.95 ea. P\&P Wire ended 50p ea P\&P20p 4 for $\mathbb{1} 1.75$. P\&P 35 . TRANSFORMERS $115 V$ AC 4 for $\mathbb{E} 1.75$. P\&P $35 p$. 10VA. 50p ea P\&P 50p
21-WAY SELECTOR SWITCH. Single pole with reset coil $1,45 \mathrm{AC}$ cots Additional switch contacts for wite resel £1.45 ea. P\&P 75p
As ABOVE with additional 240 V relay on base and full black SNAIL BLOW $£ 2.45$ ea P\& P £ 1.50 Developments Quiet and very good looking $£ \mathbf{2 . 5 0}$ ea. P\&iP POTTER BRUMFIELD 1B-4BV DC Relay. 3 pole $\mathrm{c} / 0$ Heavy Duty. Plug-in type with base $\mathbf{5 0 p}$ ea. P\&P 25p MINIATURE KEYBOARD. Push contacts, marked 0.9 and A-s and user definable keys $£ 1.75$ ea. P\&P $35 p$.
MULLARD CORE LA4245 at 15p ea P\&P $10 p$
CLARE REED RELAYS $24 V$ DC Col
CLARE REED RELAYS $24 V$ DC Coll Single pole make Size $1 / 4 \times 7 / 16 \times$ xTAUR at $25 p$ ea P\&iP 10p
ROTRON CENTAUR FANS. Size 4.5×4.5
blade $£ 4$ ea $\mathbf{P}{ }_{\$ 1} P 75 p$
MIN. PLUG-IN type RELAYS. Plastic covers. 2-polec/o 24 V
25p ea. P\&P 15p.
CROUZET/MURTEN SCHWEIZ MOTORS. 110 V 50 HZ 4 rpm. Gear box can be removed 75p ea. P\&P 75p.
FRAMCO MOTORS. 11550 H .
FRAMCO MOTORS. 11550 HZ . Input single phase, $1 / 12$ th
HP 1.450 rpm ; on silent mount. As new $\mathbf{\& 2 . 7 5}$ ea $\mathrm{P} \& \mathrm{P}$
PYE DYNAMICS THICK FILM. 1 MHZ Clocking Osc 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load. 75 p ea. P\& P
COMPRESSOR UNIT. Compact. 115 V 50 HZ single phase 1.5 A continuous 1.425 rpm Outside piston housing approx MAGNET DEVICES. Plug.in RELAYS 240V AC 3-pole C Heavy duty 10 amp. Complete with base. BRAND NEW
EQUIPMENT NOTUSED. 3 on sub assembly $£ \mathbf{2} 50$. P\&P 1 or EQUIPMENT NOT USED. 3 on sub assembly £2.50. P\&PE1 o £ 1.25 ea P\&P 45 p.
SMALL MAINS TRANSFORMER 240V Pri. 12 V 100 MA
$\mathrm{sec} .60 \times 40 \times 42 \mathrm{~mm} .50 \mathrm{p}$ ea. P\&P 75 p
G.I. BRIDGE RECTIFIER type WOI
G.I. BRIDGE RECTIFIER type WOI (ideal for above) 17p ea
FAIRCHILD FND 107 segment display 0 . FAIRCHILD FND10 7 segment display
cathode 65p ea. P\&P 15 p Info supplied.
cathode 65p ea. P\& 15 . Info supplied,
MULLARD TUNER MODULES - with data
LP1171 Combined AM/FM IF strip. 107 MHZ £ 3.50 ea
LP1179 FM front end with AM runing and B7.4MHZ 104.5 MHZ tuning 107 MHZ IF $£ 3.50$ ea P\&P 50 p each unt. The Pair £5.75. P\&P 75p
POWER UNIT MODUPE
POWER UNIT MODULE containing 2 small. 3 med \& large ferrite cores: 3-TO3 power transistors, caps, resistors high powered diodes, 9 transistors, 3 min . fuse holders. etc £ 1.50 ea. P 8 P P € 1.2
GENERAL ELECTRIC OPTO-ISOLATORS type H15VX504 MINIATURE REED SWITCHES $£$
ROTARY SWITCHES 250 V 10 A 10p Pa. P\& 15 p
ROTARY SWITCHES $250 V$ 10A 10p ea. P\&P 15p
biy 25p ea P\&P 25p
POTTER \& BRUMFIELD TIMBER RELAYS. $24 / 48 \mathrm{~V}$ Heavy duty 2 pole c/o with 5 secs delay at 48 V increasing with valage reduction Timing can be altered by changing value of resistor/capacitance. 50p ea. P\&P 25 p
CABLE NEATERS - neaten up your wire on a chassis with these push-on clips. 10 for 20p. 100 for $£ 1.50$. P\&P extra AUDIO AMPLIFIER BOARD. Size $41 / 2 \times 21 / 2$. Output pair
TIP31s. Circuit supplied $£ 1.50$ ea. $P \& P 30 \mathrm{p}$. DIGITAL 24 HOUR CLOCK with buitrin a
BRAUN 24 HOUR CLOCK with bult-in alarm as used Numerals. AC Mains. Size $63 / 4 \times 23 / 4 \times 23 / 4$ ONLY $£ 4.25$ ea P\&P 50p
BROOKE CROMPTON \& PARKINSON extractor fan assembly 115 V operation. £1 ea P\&P £2. OR TWO for $£ 1.50$.
P\&P $£ 3.25$ P\&P £3. 25

$1 / 2^{\prime \prime}$ MAG TAPE

Approx. 1,500ft. Now 20p each. P\&P E1, or 7 for $£ 1$, carr

FOR THE VOU BUILDER, tube $\mathrm{M} 2 \mathrm{~B}-13 \mathrm{GH} 23 \times 17 \mathrm{~cm}$ a £12. Base connections supplied
Limited quantity of 35RO-20ma loop - can be changed to PRICE EXCLUDING PARTS REQUIRED £70 ea OUR Ex-Ministry Teletype Punches 8 level 110 char per sec $£ 50$ ea Polished Wooden Cases to take normal OWERTY KEY.
BOARDS, or can be carefully cut to take any size $\mathbf{£ 3}$ ea. P\&P . 1.50
-TELETYPE ASR28 w
on rape facility, £375
VARIACB- eheg $2 \mathrm{amp} £ 8 \mathrm{ea}$ B ampold style $£ 18$ ea, later VARIACS-
style £22 15 amp amp $£ 8$ eal B amp old style $£ 18$ ea, later
available please enquire.

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS, ETC., ON VIEW AT LOW COST

Minimum Mail Order £2. Excess postage refunded. Unless stated - please add £ 3.25 carriage to all unit VALUE ADDED TAX not included in prices - Goods marked with $\$ 121 / 2 \%$ VAT, otherwise 8%

7/9 ARTHUR ROAD, READING, BERKS (rear Technical College, King's Road). Tel: Reading 582605

SINTEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT

- high brightness display
automatic intensity control
- deep red display filter
- SLIM WHITE CASE
- battery back-up
* CRYSTAL CONTROL FOR IMPROVED ACCURACY

Order as ACK + BBK $\times \mathbf{X T K}$
The ACK is also avallable without battery back-up and crystal control Order as ACK 628.8

OTHER SINTEL CLOCK KITS
4 Red Digit DESK CLOCK w 154 mm h .154 mm d 85 mm 4 Green Digit DESK CLOCK w 154 mm h 40 mm d 85 mm 4 Red Digit CAR CLOCK w. 154 mm h .40 mm d .85 mm 50 Hz CRYSTAL TIMEBASE KIT

CODE	PRICE
$111-222$	$£ 15.50$
GCK	$£ 12.95$
AUT-CK	$£ 18.85$
XTK	$£ 5.45$

NEW PRICES AND SOME NEW CMOS ADDITIONS

If vou need your CMOS by return-buy it from SINTEL

DATA BOOKS

ASSEMBLED LATCHED COUNTER MODULES

Our range of Industrial Latched Counter Modute Kits is now avaliable ready-buit These counters use both CMOS and TIL ICs and wil save you considerable design, purchasing. building and de-bugging time Each module uses a set of ed $\ell \in D$ displays. and features a single in-iine plug and socker chntion

SOLDERCON		ClOCK CHIPS	DISPLAYS ${ }_{\text {FND500 C C }}$		memories		MEK6800D2	190.00	
		2102 A - 6			1.85	MC6800			
100			AY51202 3.1	Tll321C A Type	1.30	$2102 A .4$	1.85	MC6820	6.94
1000	0.50	AY5 12243.45	5Lt01C A Type	4.90	2112.4	2.90	2804-CPU	22.40	
3000	10.50	MK50253 5.40	crystals		2708	8.80	280actc	12.25	
			32768 KHz	2.95	6508-6	8.05	280A-PIO	12.25	

Our offices are Chapel Street Oxford, bur please do not use this as a postal address
OFFICIAL ORDERS ARE WELCOME from Companies, Government Departments, Natn. Inds. Univs., Polys., etc
ORDERS: C.W. O. add VAT at $8 \%+35 p$ p\&p TELEPHONE and CREDIT (Invoice) Orders add VAT at
$8 \%+600$ p $8 p$ (minimum charge, the balance will be added at cOSy. 'FAST SERVICE.' EXPORT Orders welcome, no VAT but add 10% (Europe), 15% (Overseas) for Air Mail $\rho \& p$ For Export postage rates on heavy items - contact us first.
ORDERS TO: SINTEL
PO BOX 75C, OXFORD
Tel: 086549791

VERY LOW DISTORTION
(.0015\%)

AUDIO SIG: GENERATOR
Based on
J. Linsley Hood design (W. W.)
£35.00
(Kit. £30.00) $+\operatorname{tax} 8 \%$

Low cost version (A0113) 02\% dist. (Kit. £22). Other instruments include Millivoltmeter, Tachometer, Noise level meter, Distortion Analyser F.M. Sig. Gen Crystal Frequency Standard KEF Speaker Units. Send S.A.E. for lists. VAT extra 8\%. Post/Pkg. £1.50

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, N.9. 01-807 3719
Closed all day Thursday
WW-025 FOR FURTHER DETAILS

PRECISION POLYCARBONATE CAPACITORS

 RESISTORS:Htgn stability. low noise. carbon tilm $+-5 \%$ tol $1 / 2 \mathrm{~W} @ 40 \mathrm{C} 1 / 3 @ 70 \mathrm{C}$ E 12 series only - from 2.2 ohm to 4.7M All $2 p^{\circ}$ each $15 p^{\prime} / 10$ of any one value $95 p^{\circ} / 100$ of any one value tit ${ }^{2} / 500$ (niay be mixed in 100 s) E8, 1000 (may be mixed in 100 s).
SPECIAL DEVELOPMENT PACK. 10 off each value 2.2 ohm to 2 M (730 resistors) E6.50'each.
PRESETS: 0.1 W submin, skeleton presets - vertical or horizontal 100 ohm to $1 \mathrm{M} 7 p^{\circ}$ each

TANT BEAD CAPS: $\mu F / V 0.1,0.22,0.33 .0 .47,1 / 35-10 p \cdot 22 / 25,11 p: 2 / 2 / 35-12 p$ $47 / 35 \cdot 15 p^{\prime} \cdot 68 / 35,10 / 25 \cdot 17 p^{\prime}: 10 / 35,15 / 20.22 / 15$. $33 / 10.47 / 63 \cdot 21 p^{*}: 68 / 3$

MARCOTRADING (Depi W11) The Old School, Edstaston, WEM, Shropshire Tel: WHIXALL 464 (STD 094872) (Props Minicost Trading Lid WW - 010 FOR FURTHER DETAILS

THE MOST COST EFFECTIVE FREQUENCY COUNTERS AND GENERATORS

OFF/AIR FREQUENCY STANDARD TYPE 103 $0 \mathrm{MHz}, 1 \mathrm{MHz}$ Stability 1 part $10^{8} \quad \mathbf{£ 1 0 4}$ Type 102 Crystal Frequency Standard $10 \mathrm{MHz}, 1 \mathrm{MHz}$. 100 KHz
Stability 5 parts $10^{10} \quad £ 104$

LOW FREQUENCY GENERATOR TYPE $203 £ 78$ DISTORTION 03\% Amplitude Stability 0.1 SINE AND SQUARE WAVE FORM 10 Hz to 100 KHz

WW-821 FOR FURTHER DETAILS

TRANSFORMERS

SAME-DAY DESPATCH

MAINS ISOLATOR VAT $8 \% 12$ or 24 -VOLT

$$
\begin{aligned}
& 50 \text { VOLT RANGE } \\
& \text { Pri } 220-240 \mathrm{~V} \text { Sec } 0.20 \cdot 25-33-40-50 \mathrm{~V} \\
& \text { Voltages available } 5.7 .8,10.13,15 \\
& 17.20 .25 .30 .33,40 \text { or } 20 \mathrm{~V}-\mathrm{-}-20 \mathrm{~V} \text { and } \\
& 25 \mathrm{~V} \text { - } 0.25 \mathrm{~V} \text { Screened }
\end{aligned}
$$

Pri 220-240V Sec 0-12-15-20-24-30V Voltages available 3.4.5. 5. 8. 9. 10. 12. 15 , 18

Ref.	Amps	$£$	P\&P
112	0.5	2.64	78
79	10	3.57	96
3	2.0	5.27	96
20	3.0	6.20	1.14
21	4.0	7.44	1.14
51	5.0	8.37	132
117	6.0	9.92	1.45
88	8.0	11.73	1.64
89	10.0	13.33	1.84

60 VOLT RANGE Pri 220.240 V			
Sec 0.24-30-40-48-60V Voltages available $68,10 \quad 12,16,18,20 \quad 24$ 30. $36 \cdot 40,48 \cdot 60 \mathrm{~V}$ or $24 \mathrm{~V}-0-24 \mathrm{~V}$			
Ref.	Amps		
124	0.5	3.88	96
126	1.0	5.58	96
127	2.0	7.60	1.14
125	3.0	10.54	132
123	4.0	12.23	1.84
40	5.0	13.95	1.64
120	60	15.66	1.84
121	8.0	20.15	OA
122	100	24.03	OA
189	12.0	27.13	

HIGH VOLTAGE			
	INS	olatin	
Pri 200/220 or 400/440			
Sec	-/120	or 200	240
VA	Ref.	E	P\&P
60	243	5.89	132
350	247	14.11	184
1000	250	41.76	OA
2000	252	58.63	OA

BRIDGE RECTIFIERS

	BRIDGERECTIFIERS	95	
50 v	25 A	$\mathbf{5 2 . 0 0}$	73
200 v	2 A	$\mathbf{4 5 p}$	80
400 v	2 A	$\mathbf{5 5 p}$	57
200 v	4 A	$\mathbf{6 5 p}$	

SCREENED MINIATURES Primary 240 V				
Ref.	mA	Volts	£	P\&P
238	200	3-0-3	1.99	55

 \section*{AV08 M
AVO 71
AVO 73}
 \section*{AV08 M
AVO 71
AVO 73}

TEST METER
AVO8 Mk 5
AVO73
AVOMM 5 MINOR

- WEE MEGGE

ACO TT 169 (tests transmi
in circult)
(1) 4315 budget mete
budget meter 142
ranges) $20 \mathrm{k}-\mathrm{V} / \mathrm{DC}, 1000 \mathrm{~V}$
AC/DC (9 ranges) $25 A$
500 K resistance

EM272 DA1 16 Digita

$\begin{array}{ll}\text { DA116 Digıtal } & \mathbf{£ 1 0 0 . 0} \\ \text { Megger 8M7 (8attery) } \\ \mathbf{£ 4 4 . 1}\end{array}$

Avo Cases and Accessor
P\&P £ 1.15 VAT B\%
MINI-MULTIMETE
DC 1000 V . AC-1000V
AC $/ 0 C-1000 \Omega / \mathrm{V}$

DC. 100 mA Res -
$\frac{\text { VAT } 8 \% \text { P\&P } 62 \mathrm{p}}{\text { ABS PLASTIC BDXES }}$
Inset brass nuts. slots to take
cards (boards), fiush fitting lid
$\begin{array}{ll}\text { cards (boards), flush fitting lid } \\ \text { P81 } 80 \mathrm{~mm} \times 62 \times 40 & \mathbf{5 6 p} \\ \text { PB2 } 100 \mathrm{~mm} \times 75 \times 40 & \mathbf{. 6 3 p}\end{array}$

| PB2 $100 \mathrm{~mm} \times 75 \times 40$ | .63p |
| ---: | ---: | ---: |
| PB3 $120 \mathrm{~mm} \times 100 \times 45$ | .70 p |
| P\&P 29 p VAT 8% | |
| AN | |

ANTEX SOLDERING IRONS
$15 W £ 3.75 .25 W £ 3.95$
$5 W £ 3.75 .25 W £ 3.95$
Stand for above $£ 1.40$
Barrie Electronics Ltd.
3,THE MINORIES,LONDON ECBN 1BJ TELEPHONE: 01-488 3316/8
NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOL ST

$\stackrel{\sim}{0}$

SPECIAL PRICE FOR COMPLETE KIT over inree tumes the price
\qquad
The standard model of our kit for Mr Linsley. Hoods 75 watt design has for o long time offered exceptional
 diustable inputs This model is based on 5 circuit boards which not thaving the controls mounted on inem can if desired, be effectively used separately in high performance audio systems not based on our metalwork
Our new De Luxe model uses 14 boords which interconnect with gotd plated contacts and are designed to have the ather their assembly. deligntully straightormerd, and as each board can be easily removed in seconds from the chassis. checking and mainteniance is so sumple that even newcomers to electionics will be able to cope competentiy with the kit Addtitional teatures of our new model are inclusion of the latest crrcut improvements generousty sized
hear smks tor heavy duty use even in tropical clumates and metal oxide resistors throughout tor long term stabluty and elability

WIRELESS WORLD FM TUNER
 SPECIAL PRICE FOR COMPLETE KIT \& 70.20 Pack

. Saps. 2 meter, of capacitors. rectifiers. I.C. voltage regulator
 2. Sterso sat of capacitors. M.O. rasistars. paten- 11. Set ol miscelianeous paris. including sockets. Iuse

 0-117V. 234Y. Sec. 15 V $£ 4.90$ individually purchased packs $£ 83.00$

Malsushita WY 436 AZ head (optional extra) . £4.50 |liree wilh compete kit]

Published in Wireless World (May. June. August 1976) by Mr Linsley-Hood, this design. alhough straightrorward and relatively low cost, nevertheless provides a very high standard of performance To permit circuit optimization separate record and replay amplitiers are used. the latter using a discrete component front-end designed such that the noise level is below that of the tape background Pushbutton switches are used to provide a choice of equalization time constants, a choice of bias levels and also an option of using an additional pre-amplifier for microphone use The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of operation Speed control and automatic cassette ejection are both implemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellent match for the Wireless World Tuner (Matsushita WY 436 AZ head as recommended in the follow-up article) is offered as an optional extra but this will be automatically supplied FREE OF CHARGE with all orders for complete ${ }_{(\text {Mats }}$

T20 + 20 and T30 + 30 20W, 30W AMPLIFIERS

WWII TUNER

SPECIAL PRICE FOR COMPLETE KIT $£ 47.70$
available as separate packs - prices in our free catalogue panel format and electrical characteristics make this tuner compatible with either.
 $120+20$ delivers 20 W rms per channel of true H I.FI at exceptionally low cost The sasy to buitd design is based on a single $\mathrm{F} / \mathrm{Glass}$ PCE and features all the normal facitutes tound on quatity amplifiers including scratch ant
rumble filters. addaptable input selector and neadphones socket In a follow-up anticiel in Practical Wireless further moditications were suggested and these have been intorporated into the T30 30 These include AF

SPECIAL PRICES FOR COMPLETE KITS T20+20 Kit price $£ 33.10$

T30+30 KIT PRICE $\mathcal{E} 38.40$
available as separate packs - prices in our free catalogue
POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $£ 35.90$
AVAILABLE AS COMPLETE KIT ONLY
This is a simple. low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment A phase-Iocked-loop is used for stereo decoding and controls include switchable atc. switchable mutng and push-button channel selection (adjustable by controls on the front panel) This unit matches well with the $\mathbf{T 2 O + 2 0}$ and T30 $\mathbf{+ 3 0}$ amplifiers

Pl
．Fibre glass printed circuit board for power amp
 Set of semiconductors lor power and with mounting hardware．cooling tabs ．．．．．．．$\$ 867.60$ 5．Toroidal transtormer．Primary $0-117 \mathrm{~V}-234 \mathrm{~V}$ ．Socondarias $42-0-42 \mathrm{~V}$ ． $0-15 \mathrm{~V}$ ． $0-15 \mathrm{~V}$ ．Esctro－
 6．Sol of all parts Iar stabilized power supply including fibre oplass printed circuit hoard．mounting bracket semiconductors．resistors．capacitors．etc
7h．Set of all parts for bulter／overdrive unit including fibre plass printed circuit board semiconductors．resisters．capaciters，controls－requirad for PSI 4001 only ．．．．$\{3.80$
7B．Sal of parts lor paak power meter inctuding protessional quality meter．libre glass printed circuit board．components．cantrols－requirad ler PSI 4002 only ．．．．．．．．．．．．．．．．$\Sigma 8.50$
8．Set of all misceilaneous parts inctuding sockets．illum．mains switches．fuse holders．luses． cul－ouls，cable．atc
Cabinet，including chassis．anodised sitver on black panals．tixing parts．etc．Phease state whether Slave or Studio model required
．Honthock 50p or tee on request when arder ．．．．．．．．．．．．．．．．．．．．．

2 aach of preks 1.7 （ A or B ）． 1 asch 8.9 and 10 ire required for comptele $200+200 \mathrm{w}$	prolessional amplitier．	
Total cost of individuathy purchesed packs	PS $14001 \quad £ 208.20$	

PSI 4002 STUDIO MODEL

SPECIAL PRICES FOR
COMPLETE KITS！
PS1 4001－£187．50
PS1 4002－£196．90

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER As featured in Electronics Today International（July，August 1978）

SQ QUADRAPHONIC DECODERS
Wiroloses World Designs：Full kits are not avalabie for
3ow Bailev Amplifier
$\begin{array}{ll}\text { BAAL Pk } & \text { F. Glass PCB } \\ \text { BAlL Pk } & 2 \\ \text { Resistors Capacitors } \\ \text { BAIL Pk } & 3 \\ \text { Semiconductors }\end{array}$

| Linslay-Hood Low Distortion Oecillator |
| :--- | :--- |
| DO |

$\begin{array}{ll}\text { iniay-Hood Low Disto } \\ \text { DO Pk } \\ 1 & \text { Fibreglass PCB }\end{array}$
$\begin{array}{lll}\text { LDO Pk } & 2 \mathrm{MO} \text { Resistors, } \\ \text { LDO Pk } & & \text { Semicondict }\end{array}$
E. F. Tavior Pre-Amplifier
E. F. Tavior Pre-Amplifier
EFTP Pk 1 Fibreglass PCB (stereo)
EFTP Pk 2 M 0 Aes caps (sereo)
EFTP Pk 3 Semiconductors (siereo)

Our Export Department can readily despatch orders of any size to any country in the world Some of the countries to which we sent kits last year are shown in this advertisement To assist in estimating postal cosis our catalogue gives the weights of all packs and kits This will be sent free on request．by airmail，together with our Export Postal Guide which givescurrent postage prices There is no minimum order charge Price same as for $U K$ customers but no Value Added Tax charged Postage charged at actual cost plus 50 documentaton and handling Please send payment with order by Bank Dratt．Posta Order，

Value Added Tax not included in prices UK Carriage FREE
PRICE STABILITY：Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement until Decembe 1 st ． 97 B ．if this month＇s advertisement is mentioned with your orde
U．K．ORDERS：Subject $1012 \frac{1}{2} \%{ }^{\circ}$ surcharge for VAT（i e add $1 /\left(\right.$ to the $^{\text {E }}$ price）No charge is made for carriage or current rate if charged SECURICOR DELIVERY：For this optional service（ $U K$ mannland only） add $£ 2$（Vat inclusive）per kit
SALES COUNTER：If you prefer to collect your kit from the factory．call at Sales Counter（at rear of factory）Open 9 a m .430 pm Monday Thursday

QUALITY：All components are brand new first grade full specification guaranteed devices All resistor （except where stated as metal oxide）are low noise carbon film types All printed circuit boards are fibreglass． er tinned and supplied with

FOR FURTHER INFORMATION PLEASE WRITE OR
telephone for our FREE CATALOGUE
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN
（0264） 64455

EXPORT A SPECIALITY！

Regulated Power Supply for Bailey Amplifier
$60 \mathrm{VS} \mathrm{Pk}_{1} \quad 1 \quad \mathrm{~F} / \mathrm{Glass} \mathrm{PCB}$
lass PCB Capacitors

RRC Pk i Replay Amp F／G PCB（stereo） RHC Pk 1 Recoro Amp F／G PCB（stereo）
$£ 1.30$
$£ 1.70$
6.30
tmproved stereo decoder
（as described in April 1978 W W F／Glass PCB．M O Res．Caps．Cermet

Larsholt \approx

The long experience of Larsholt Electronics is reflected in this superbly engineered VHF Band II varicap FM tunermodule. (As used in the Signalmaster Mk8). The four stage frontend employs dual gate MOSFET transistors for both RF and Mixer stages, providing the 7252 with a $1 u V$ sensitivity for $30 d B S / N(m)$. The IF uses a dual ceramic IF filter, and provides all usual HiFi functions, of tuning meter drives, muting, AFC and AGC. THD is only 0.1%
Special frequency options are available for OEM
use, where the high standard of Larsholt construction is frequently employed in sound distribution systems
1-9: £26.50 + 12.5\% VAT (£29.81) PP 25p
Further details of this and other Larsholt products in Catalogue (40p)
ex-stock, from
Ambit international, 2, Gresliam Road, Brentwood, Essex. tel(0277) 216029
WW-078 FOR FURTHER DETAILS

Electronic Brokers Itd

Iheresest twiumment Pepple

Visit us at the EPG Bloomsbury Centre Hotel Bloomsbury Cenire ho
London. 10th. 11 h and London. 10th. 11 th
12th October. 1978 12th October. 1978
Post House Hotel Post House Hotel. 26th October. 1978

In Volmears frlatironit Mulimatars

ADVANCE

VM77E Transistorised Voltmeter 10 Hz
$£ 130.00$

AIRMEC

301 A RF Velve Voltmeter 100 Hz
$900 \mathrm{MHz} 300 \mathrm{~V}-300 \mathrm{~V}$ BOONTON
91 H RF Valve Volimeter 20 KHz -

BRADLEY

112 RF Millivoltmeter $3 \mathrm{mV}-300 \mathrm{mV} 1$
300 MHz Battery operated $£ 375.00$

BRUEL \& KJAER

2409 Electronic Voltmeter $2 \mathrm{~Hz}-200 \mathrm{KHz}$

HEWLETT PACKARD

400F AC Voltmeter $20 \mathrm{~Hz}-4 \mathrm{MHz} 100 \mu$
 411 A RF Milivoltmeter 50 mV 10 V £395.00

PHILIPS

PM. 2503 Electronic FAultimeter AC/DC

ROHDE \& SCHWARZ

U.R.V. RF Voltmeter $1 \mathrm{KHz}_{\mathrm{L}}-2400 \mathrm{MHz}$ 50 Ohms insertion unit 20 mV - $10 \mathrm{~V} \mathbf{~} \mathbf{£ 2 3 5} \mathbf{0 0}$

SIGN

AM324 AC Volemeter $15 \mathrm{~Hz}-500 \mathrm{Khz}$

Mratuly

Cillimatas
AVO
Model 7
Model 8 $\quad £ 40.00$
Model 8
Precision Avo
Precision Avo
PHILIPS
PM 2412 AC/DC Volis \& amps 40 K
[IITITHERS
BRUEL \& KJAER
2112 Af Spectrometer $22 \mathrm{~Hz}-45 \mathrm{KHz}$

HEWLETT PACKARD

332A Distortion Analyser $5 \mathrm{~Hz}_{2}-600 \mathrm{kHz}$
 $\begin{array}{ll}\mathbf{3 3 3 A} \text { Distortion Analyser } & 5 \mathrm{~Hz}-\mathbf{6 0 0 \mathrm { kHz }} \\ 0.1 \%-100 \% & \text { also Auto Null } \\ \mathbf{5 1 5} \mathbf{5 1 5 0}\end{array}$

RACAL

ROGERS/SIGN
DM. 344 Distortion Meter $\begin{array}{r}20 \mathrm{~Hz}-20 \mathrm{KHz} \\ \text { £ } 230.00\end{array}$

TEKTRONIX

$1 \mathrm{L5}$ Spectrum Analyser Plug In 10 Hz

1 L30 Spectrum Analyser Plug In
$925 \mathrm{MHz}-10.5 \mathrm{GHz} £ 1200.00$
$1 \mathrm{L40}$ Spectrum Analyser Plug $\operatorname{In} 15$.
124 GHz
$\mathrm{E} \mid 275.00$
T.E.S.
D. 5668 Distortion Meter $10 \mathrm{~Hz}-1 \mathrm{MHz}$ MARCONI
INSTRUMENTS
T.F. 7910 Deviation Meter 4.1024 MHz

gENERAL RADIO
874 GA Variable Attentuator 100 MHz
MARCONI
INSTRUMENTS

100 MHz 0.100 dB 50 or 75 Ohms E 75.00 | TF. 2162 Step Attenuator $D C-1 \mathrm{MHz}$ |
| :--- |
| 0.111 dB 600 Ohms. |
| 120.00 | ROHDE \& SCHWARZ

RBD Attenuator BN $33662 / 60 \mathrm{DC}$. $600 \mathrm{MHz} 20 \mathrm{~dB} 60 \mathrm{Ohms} \quad \mathrm{f} 40.00$ OPR Step Attenuator 8N $18042 / 60$
$\mathrm{OC}-300 \mathrm{MHz} \mathrm{O}-100 \mathrm{~dB} 60 \mathrm{Ohms} \mathbf{£ 9 0 . 0 0}$
ROHDE \& SCHWARZ
R8D UHF Attenuator BN $33661 / 50$ DC-
24 GHz OdB 50 Ohms
$\mathbf{E 5 5 . 0 0}$

MARCONI
INSTRUMENTS
TF. 2701 In Situ Universal Bridge $£ \mathbf{£ 9 5 . 0 0}$ TF. 1245 ' Q Meter Supplied with
TF. 1246 Oscillator 40 KHz - bOMHz £625.00

WAYNE KERR

B. 221 (CT.530) Univ. Bridge $0 \quad 1 \%$ accu-
racy
$\mathbf{E 2 7 5 . 0 0}$ a. 221 Low Impedance Adaptor for use B.521 (CT.375) Univ. Bridge
$\begin{aligned} & 1 \% \text { accu- } \\ & \\ & \\ & \mathbf{~} 120.00\end{aligned}$

Hfilluration Enuiment

HEWLETT PACKARD
$\mathbf{7 4 0 B}$ DC Voltage Source \&
$\begin{aligned} & \text { Differential } \\ & \text { Voltmeter } \\ & \mathbf{£ 8 5 0 . 0 0}\end{aligned}$

741 B DC Voltage Source \& AC/DC
Differential Voltmeter FLUKE
931B True RMS Differential Voltmeter 883AB. AC/OC Differential Voltmeter $1 \mathrm{mV}-1100 \mathrm{~V} \quad \begin{array}{r}\text { £ } \\ \mathbf{9 7 5 . 0 0}\end{array}$

TEKTRONIX

184 Time Mark Generator £27
191 Constant Amplitude Generator £375.00 2901 Time Mark Generator $\quad £ 400.00$ 2101 5nS Pulse Generator $\quad £ 525.00$

advance
TC. 14 Frequency Counter DC. 250 MHz 9 ${ }_{\text {digit }}$ +TC 15 P1 Counter \& Plug in $\mathrm{OC}-500 \mathrm{MHz} 9$ digit. 10 mV sensitivity
$£ 495.00$ TC. 16 Frequency Counter $\begin{aligned} 5 \mathrm{~Hz}-80 \mathrm{MHz} \\ £ 110.00\end{aligned}$ TC. 17 or TC.17A Time Counter Freq period Period Average Pulse widin coun DC-80MHz $£ 195.00$ TC. 21 Time Counter Freq Time. Period TC. 22 Time Counter DC-100MHz

FLUKE

1900 A opt. $015 \mathrm{~Hz}-80 \mathrm{MHz} 25 \mathrm{mV}$ Sen sitivity with battery option £215.00 1941A Industrial Counter/Totaliser 1980A Communications Counter $5 \mathrm{H}_{2}$ $515 \mathrm{MHz} \quad 15 \mathrm{mV}$ sensitivity 6 digit. Battery £295.00

PHILIPS

PM. 6612 Timer Counter $10 \mathrm{~Hz}_{2}-80 \mathrm{MHz} 9$ digit display $\quad £ 405.00$
PM.6615 Timer Counter $10 \mathrm{H}_{2} 1 \mathrm{GHz}$ 10 mV sensitivity $\quad \mathbf{~} 795.00$ PM. 6620 Timer Counter DC 45 MHz 50 mV sensitivity $\quad \mathbf{} 395.00$ PM. 6625 Timer Counter DC IGHz Sen£ $£ 1,010.00$ PM.6661 Frequency Counter 10 Hz -
80 MHz 20 mV sensitivity 8 digit $£ 185.00$

PHILIPS

PM.6630A Timer Counter DC-160MHz 8
digit Display
f 600.00
PM. 6645 Frequency Counter 30 Hz

RACAL

836 Timer Counter DC-32MHz $£ 250.00$ 9838 Timer Counter DC- 100 MHz 10 mV sensitivity 6 digit $\quad £ 285.00$ 9905 Universal Timer Counter DC
200 MHz Sensitivity 10 mV , ito 1 M Ohm 8 digit display $£ 275.00$

ELECTRONIC BROKERS LIMITED

 49-53 Pancras Road, London NW1 2QB VAT Tel. 01-8377781. Telex: 298694
Electronic

R

Dinital Valtmeters flullimetars ADVANCE
DMM2 Digital Multimeter $31 / 2$ digıt 95.00 DRM 6 True R.M.S. DVM $41 / 2$ digit, scale $1999 \quad 10 \mathrm{mV}-1 \mathrm{KV} \quad 10 \mu \mathrm{~V}$ resolution
Frequency range $\mathrm{DC}-1 \mathrm{MHz} \quad £ 295.00$
HEWLETT PACKARD
3490 A DM $51 / 2$ digit, scale length 120000
$A C$ Volts $1 V-1 \mathrm{kV} 10 \mu \vee$ resolution. DC Volts $100 \mathrm{mV} \cdot 1 \mathrm{kV}, 1 \mu \mathrm{C}$ resolution Resistance
100 Ohms. 10 M Ohms. 1 M Ohms resolufon Full auto-ranging and variable sample 34702 A DMM C/W 34740 © 595.00 34702A DMM C/W 34740A Display
$41 / 2$ digit $\mathrm{AC} / \mathrm{DC}$ Ohms $\quad \mathbf{2 9 5 . 0 0}$

PHILIPS

PM 2424 DMM 4 digit $\quad £ 300.00$ PM. 2443 DC DVM $41 / 2$ dig!, scale length

1) PM2513 D.M.M. $3 \frac{1 / 2}{2}$ digit $\frac{£ 430.00}{\mathbf{9 0 . 0 0}}$ PM.2513A DMM $31 / 2$ digit scale length PM. 2522 DMM $31 / 2$ digit $\quad £ 175.00$
S.E. LABORATORIES

SM210 DC DVM 4 digit, scale length
$9999100 \mathrm{mV}-1 \mathrm{kV}$ 10 V resolutin

SM214 AC-DC DVM $51 / 2$ digit. scale | lengith 10999 SC-DC Volts 11 iv .11 kV |
| :---: |
| 400.00 |

SCHLUMBERGER

A243 Oigital Voltmeter $51 / 2$ digit $1 \mu \mathrm{~V}$

resolution Autoranging DC \& AC (mean) \& | |
| :--- |
| Ohms |
| $£ 675.00$ |

HEWLETT PACKARD 1100A Delay Line \quad E75.00 8434 Pase Bend filser $8.124 \mathrm{GH5} 50$
 Ohms £ $\mathbf{1 0 0 . 0 0}$ £ 100.00
ROHDE \& SCHWARZ
ZDP Reflectometer 300.4 200MHZ 50
Ohms
£ 70.00

USEH ITSEDDICS

COSSOR
CDU 150 Dual Trace Oscilloscope DC
35 MHz 5 mV 20 V , div Full delayed sweep 4000 Dual Trace Oscilloscope DC-50 $\mathrm{MHz} 5 \mathrm{mV}-10 \mathrm{~V} / \mathrm{div}$ Full delayed sweep
Unused
$\mathbf{4 9 5 . 0 0}$

DYNAMCO

7100 Dual Trace Portable Oscilloscope with 1 Y 2 and 1×2 modules DC. 30 MHz
$1 \mathrm{OmV}-20 \mathrm{~V} /$ div Full delayed sweep
(4)
*)

49-53 Pancras Road, London NWI2QB Tel: Ol-837 7781

7500 Dual Trace Portable Oscilloscope $0 \mathrm{C}-40 \mathrm{MHz} 10 \mathrm{mV}-20 \mathrm{~V} / \mathrm{div}$ Full delayed
$\mathbf{f 4 9 5 . 0 0}$

HEWLETT PACKARD

184 B Storage Scope Rack style, variable
persistance, c/w 1808A Dual Channel Vertical Amp. OC 75 MHz . 1825 Time CONDITION - BARGAIN $£ 1.600 .00$

PHILIPS

PM. 3240 Dual Trace Portable scilloscope OC-50MHz 5 mV 2Vidiv PM3010 \quad £950.00 M3010 Miniature Scopo DC5MHz Dual weight $1.8 \mathrm{Kg} \quad £ 325.00$ PM3230 Dual Beam Scope OC 110 MHz $20 \mathrm{mV} / \mathrm{div}$. TV frame and Sync separator

M3260E Portable Scope DC 120 M .00
$5 \mathrm{mV} /$ div Delayed Sweep. Dual Trace £ $1,300.00$

S.E. LABORATORIES

SEM 121 Six Channel Display Monito

SOLARTRON

CD. 1400 Dual Trade Oscilloscope with 2 off CX1441 and 1 off CX1443 modules. DC- $15 \mathrm{MHz} \quad 10 \mathrm{mV} \cdot 50 \mathrm{~V} / \mathrm{div}$ o 5 HSO 5 S

TEKTRONIX

5314 Bench Oscilloscope with Dial trace vertical Plug In unit CA. DC- 135 MHz
Sensitivity 50 mv 20V, div
$\mathbf{E 2 9 0 . 0 0}$ 647A Bench Oscilloscope with Dual trade vertical Plug-tn untt 10A2A and delayed me base plug-in unit 11B2A OC 20000 $585 A$ Bench Oscilloscope with Dual trace 585 Bench Oscilloscope with Dual trace
vertical plug-in unit 82 DC .80 MHz Sen. sifivity 10 mv .50 V , div E 775.00 547 Bench Oscilloscope with dial trace vertical Plug-in unit 1 A 1
$\mathrm{DC}-50 \mathrm{MHz}$ sen-
$£ 775.00$ 545B Bench Oscilloscope with Duat trace vertical Plug-in unit CA DC-24MHz Sen-
sitivity 50 mV to $20 \mathrm{~V} / \mathrm{div}$
$\mathbf{E 4 2 5} .00$ 543 B Bench Oscilloscope with D. vertical Plug-In unit CA $£ 350.00$ 575 Transistor Curve Tracer $\quad £ 400.00$ 556 Dual Beam Scope (Mainframe) DC 50 MHz dependent on choice of Plug-ins 555 Dual Beam Scope (Mainfram25.00 33 MHz wide choice of Plug-ins $\mathbf{£ 3 0 0 . 0 0}$ DCI Porrable Scope Dua Trac TION QUANTITIES AVAILABLE $£ 495.00$

TELEQUIPMENT

D. 8350 MHz Oscilloscope c/w V4 \& S2A Plug-ins DC. 50 MHz Delayed sweep

DSEIIIDSEDPE Aralifs

PROBES
EB90 X1 Probe Kit DC-2OMHz 5 mtr BRAND NEW 500 DC max work EB91 $\mathbf{X 1 0}$ Probe Kit. DC $-80 \mathrm{MHz}, \frac{\mathbf{2}}{} \mathbf{9 . 0 0}$ cable I/P Z 10 M Onms paralleled by 108 pF Compensation $15-50 \mathrm{pF}$ BRAND NEW £ 11.00 EB95 $\times 1$ and $\times 10$ Switched Probe Kit.
 12 mtr cabie BRAND NEW $£ 15.00$

GREENPAR

GE81500/2 $\times 1$, $\times 10$ Probe Kit. DC pensation 1550 pF UNUSED $\mathbf{£ 2 7 . 0 0}$

Paver Mideras

HEWLETT PACKARD
430C RF Power Meter with 477 B The
£225.00

MARCONI INSTRUMENTS

Tf 893A af Power Mater 20 Hz - 35 KH £185.00 TF.1020A Series RF Power Meter DC P 75 -1k 50 -100W -300W FS Ohms on $150-300 \mathrm{~W}$ model
T.E.S.

Mu964 AF Powar Meter 20 Hz -50KHz
¢175.00

Palls Ganaritars

ADVANCE
PG.52B Modular Pulse Generator 01 Hz
f 700.00
PG59 Dual Output Pulse Generator

PHILIPS

PM5704 TTL Pulse Generator with to 30 gates PM5712 Pulse Generator 1 Hz -50 MHz Variable delay width single or double pulse Base line offset
PM5715 Pulse Generator Sinta
P525.00 PM5712 but with variable rise and fall tios - $£ 575.00$ PM5770 Pulse Generator $: \mathrm{H}_{2} 100 \mathrm{MHz}$ Variable delay width rise and fall ume Single or double pulse base line offset
$\mathbf{£ 7 9 0 . 0 0}$ PM5775 Pulse Generator 1 Hz -100M Hz Variable delay width rise and fall time PM5776 Pulse Generator $£ 800.00$ PM5 775 Pulse Ganal 9

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

Hours of business: 9a.m.-5p.m. Mon.-Fri. Closed lunch 1-2p.m.

Brokers Itd The Test Equipment People

Ratio

Reraivers

EDDYSTONE
$4 \mathrm{BOKHz} \cdot 30 \mathrm{MHz}$ in 5 ranges. BFO no
£ 175.00
730/4 Communications Receiver $480 \mathrm{KH}-30 \mathrm{MHz} .5$ Bands. BFO, noise CONDITION $£ 275.00$ 880 Communications Receiver 500 kHz RF-JF gain, noise timiting. AF filter, SMeter 770R VHF Receiver $19 \mathrm{MHz}-165 \mathrm{MHz}$ in 6 ranges. AM/FM demod Muting, noise

RACAL

RA117E Communications Receiver 30 MHz MHz and KHz tuned separately
Selectivity $100 \mathrm{~Hz}-13 \mathrm{kHz}$ in 6 ranges BFO

Beantider
 ADVANCE

Omniscribe 5000 Strip Chart Recorder : and 2 pen models available. Please contact trames from $\mathbf{E 2 0 0 . 0 0}$

HOUSTON

INSTRUMENTS

PHILIPS

PM8110 Mini Single Channel Chart Recorder Sensitivity tomv-10V full span RECORD
3" Paper Width Recorder with $500 \mu \mathrm{~A}$ sensitivity FS . Left-hand zero and $\quad \mathrm{E75.00}$
hour chart speed

YOKAGAWA

3047 Two Channel Chart Recorder Scan
width 250 mm Sensitivity 05 mV - 100 V Speeds $60 \mathrm{~cm} / \mathrm{min}$ to $2 \mathrm{~cm} / \mathrm{hr} \quad £ 530.00$ Signal Souram ADVANCE
50 kHz . Sine Square $\quad \mathbf{£ 7 5 . 0 0}$ J2E L.F. Oacillator $15 \mathrm{~Hz}-50 \mathrm{kHz} \quad £ 90.00$ J4 L.F. Oscillator $10 \mathrm{~Hz} \cdot 100 \mathrm{kHz} £ 135.00$ SG67A Wide Range Oscillator $1 \mathrm{~Hz}-1 \mathrm{MHz}$ SG68A Low Distortion Oscillator 15 Hz than 0.01%. $\quad \mathbf{E 1 5 0 . 0 0}$
HEWLETT PACKARD
$\mathbf{2 0 2 H}$ AM/FM Signal Generator 54
216 MHz From
$\mathbf{£ 4 9 5 . 0 0}$ 608 D VHF Signal Generator $10-420 \mathrm{MH} \mathrm{H}_{2}$ 612 U U.H.F. Signal Generator 540 616 A U.H.F. Signal Generater $£ 950.00$ 4.2 GHz
$\mathbf{6 y y y}$ H.F. Signal $£ 500.00$ 608E A.M. Signal Generator $10-480 \mathrm{MHz}$ 675.00

MARCONI INSTRUMENTS
TF.8010/1 AM Signal Generator
10kHz-470Mhz
£ 400.00 TF.995A/5 AM/FM Signal Generator 5MHz-220MHz £380.00 TF995B/2 AM/FM Signal Generator
200KHz-220MHz
$\mathbf{£ 6 7 5 . 0 0}$ $200 \mathrm{KHz}-220 \mathrm{MHz} \quad £ 675.00$ TF1060 AM Signal Generator
$\mathbf{1} 550 \mathrm{Mhz}$ From
$\mathbf{4 0 0}$ TF1066B/1 AM/FM Signal Generator $0-470 \mathrm{MHz}$ £625.00 10.470 MHz AM/F Signal G. $\mathbf{6 7 5} .00$ TF1101 R-C Oscillator $20 \mathrm{~Hz}-200 \mathrm{kHz}$ $1 \mathrm{mV}-20 \mathrm{~V}$ into 600 Ohms Metered $0 / \mathrm{P}$ F1370A R.C Oscillator $10 \mathrm{H}_{z-1} 10 \mathrm{MHz}$
 £
$\mathbf{~} 125.00$ TF2002 AM Signal Generator 10 kHz TF. 2005 R Two Tone AF Signal $£ 675.00$ $\mathbf{3 5 0 . 0 0}$ TF2100 AF Osciltator $20 \mathrm{~Hz}-20 \mathrm{kHz}$

MURHEAD

PHLILPS

PM5125 Sine/Square Oscillator 10 Hz 1 MHz
PM5167 Function Generator
$\mathbf{M} 145.00$ 10 MHz Sine square. + pulse ramp triangle, single shol with variable phase \quad E 875 PM5105 LF Oscillator $10 \mathrm{~Hz}-100 \mathrm{kHz}$ PM5324 AM / FM Signel Generator PM5324 AM/FM Signel Generator $100 \mathrm{KHz}-110 \mathrm{MHz}$ Signal Genser 100 KHz .125 MHz Digital Readout

ROHDE \& SCHWARZ
SBF Wide Band Oscillator BN40861
 SMCB S.H.F. Signal Generator $1700-$
$\mathbf{5 0 0 0 M H z}$
 $8300 \mathrm{MHz} £ 500.00$ $\begin{array}{cc}\text { SMLR Power Signal } & \text { Generator } \\ \text { BN4 } 1001100 \mathrm{kHz}-30 \mathrm{MHz} & £ 350.00\end{array}$ TELECOMMUNICA-

TIONS

SG5U Battery Oparated F.M. Signal SIGN ELECTRONICS

S324 Low Distortion Oscillator 6H2

KAY
PM7650日 PIeper Main Frame Wit PM76508 Plug-in Unit $50 \mathrm{KHz}-110 \mathrm{MHz}$

MARCONI

 INSTRUMENTS TF1099 MF Sweep Generator 100 KHz20MHz

ROHDE \& SCHWARZ

Polyscop SWOB 1 Wideband Sweepe and Display 0.5 .400 MHz \& $1,000,00$
Polyscop SWOB II Wideband Sweeper and Display $0.5-1000 \mathrm{MHz}$ From
SWH LF Swep Generator £1.450.00

TELONIC

SM2000 Sweeper Main Frame with E-3M RF Plug-in Unit $530 \mathrm{MHz}-3.12 \mathrm{GHz}$ SM2000 Sweeper Main Fr LA-1M Plug-in $0.20 \mathrm{kHz} \quad £ 200.00$ S-6 Plug-in Unit for SM 2000 Main Frame $600-1200 \mathrm{MHz} \quad £ 250.00$ S-4M Plug-In Unit for SM 2000 Main Frame $50-500 \mathrm{MHz}$ £200.00 L-6M Plug-In Unit for SM2000 Main HD-1A Swop Generetor 400 £200.00 SD. 3 Sweop $£ 400.00$ $£ 450.00$

HEWLETT PACKARD

8690 A R.F. Swesp Generator C/W $8693 / 100$ R F Unit $3.7-8.3 \mathrm{GHz} 5 \mathrm{mV}$
O / P into 50 ohms
E 1050.00

Iaftsats

MARCONE INSTRUMENTS
TF. $1065 A$ Transmitter/Receiver Outpu
Test Set
$£ 280.00$ TF. 2332 AF Transmission Test Se $20 \mathrm{~Hz}-20 \mathrm{kHz} \mathrm{£} 425.00$ TF.2333 MF Transmission Test Set
$\mathbf{3 0 H z} 560 \mathrm{kHz}$
£600.00 TF. 2343 Quantization Distortion Tostor S.T.C.
$74262 B$
MHz
WANDEL \& GOLTERMAN
3PS-1 Barld Pass Filter Centre freque

SEND FOR NEW 80

 PAGE CATALOGUEContaining latest information on our stocks of test equip ment, minicomputers, com puter peripherals, stroboscopes and tachometers

Apply now on official company headed paper for your free copy.
Private address applications please remit £1.00
Airmail to overseas addresses E2.00

1

EASY BUILD SPEAKER DIY KITS Specially designed by RT.VC for costconscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures. two EMI 13×8 (approx.) Woofers. Two Supplied complete with an easy-to-follow cricuil diagram. and crossover components路 -SPEAKERS AVAILABLE WITHOUT CABINETS It's the units which we supply with the enclosures illustrated Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofer (EMI). $\quad \mathbf{1} 700$ pér tweeter. and matching crossover components. stereo pair Power handling 15 watts rms. 30 watts peak $+p$ \& $p f 3.40$

BUILT AND READY TO PLAY

SPEAKERS Two models - Duo llb, teak veneer. 12 watts Ims. 24 watts peak. $18 \frac{1}{4} \times 133^{\prime \prime} \times 7{ }^{\prime \prime}$ (approx.) Duollb $\mathbf{5 1 7} 7_{\text {PEAPCIIR }}$

EASY TO BUILD
with speakers Not to scale

RECORD fot De D Y man who tequices a stereo unit at a budgel price PLAYER comprising ready assembled stereo amp module. Garrard KIT aulo/manual deck with cueing device, pre-cut and finished cabinet work Outpu 4 wans per chamel.
f19.95

pete f4 05

AM/FM STEREO TUMER AM PLIFIER CHASSIS COMPLETE Ready built. Designed in a slem form tor compact. modem installation Roury Contiols vol On/Dit Bass. Treble. Balance
Push Buttons for Gram. Tape VHF MW, LW and 5 button oraty selection switch
Power Supply Selenium.Bridge - 35V OC from 210-250V aC AOHz
 Powar Output 5
7 watts speech and music
rapa Sensitivity Piayback $400 \mathrm{mV} / 30 \mathrm{~K}$ OHM tor max output Record $200 \mathrm{mV} / 50 \mathrm{~K}$ output avalabie from $25 \mathrm{KHz}(150 \mathrm{mV} / 100 \mathrm{~K})$ deviation M signail Fraquency Range (Audiw) 50 Hz to 17 kHz within $\pm 1 \mathrm{~dB}$ Adio FM sensitivity tor 3dB below inming better than 10 uV

VALUE FOR PERSONAL SHOPPERS 160 16 vOLT MANMS IRAMSFORMER $21 / 2$ \qquad f2.50	
ESf Recrot wlo deck on mitht milh	£11.95
L0 5 tu	f5.95
Stamiess steel this	£7.95
tCO 8 Function CHROMOGRAPH men's digital watch. stanitess steed tinish	f13.95
125 Wan Pamea Amp Modut	£13.95
Mains power supply for above unit LENTEX Monitor loudspeaker cabinet ize approx. $431 / 4^{\prime \prime} \times 151 / 2^{\prime \prime} \times 15 / 4^{\prime \prime}$ 100K Multiturn Varicad tuning pats, 6 to MUSIC CEMTRE CABIMET with hinged smoke size $30 \%^{\prime \prime} \times 14 \%^{\prime \prime} \times 74^{\prime \prime}$ approx	
	24.95
	O
MULLARO Buil! powet supply DECCA OC 1000 Stereo Cassatte PC.B. complete whth swich oscillator cuils and	
	1.5
	£2.95
DECCA 20w Stereo speaker bi comprising	
${ }^{28}$	
Yioge mastir Ooor Tuns	
Micro cassmete tipe mecricer	
ol modots trom	
DIGITAL CIICK RAOIO Meins operated $\quad \mathbf{1 0 . 9 5}$	
STERED RADIO/CASSETEE RECDRDER MW.	
It PROIO/CASSETTE RECOROER. AM/FM with clock	
SW, VHF mains/bate	

> Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE PRICE EE
ATOVR PERPCK
SEEOURPRICES

PACK 2×1 P1 Pow. RMS output power audio ceramic and auxiliary input.

PACK $2.2 \times$ LP 117310 w. RMS output power audio amp modules +1 LP1 184/2. Stereo pre amp for illus. wiminim $£ 7.45$

ACCESSORIES

Suitable power supply parts including mains transformer, rectifier, smoothing | capactiors. |
| :---: |
| $f 100$ |
| $p+\rho$ |$£ 1.95$

ded set 0 rotary stereo control comprising BASS, TREBLE VOLUME and BALANCE
p+ 500 95p

3
PACK $3.1 \times$ LP1179/2 FM Tuning head with AM gang. 1×1 P1 $165 / 1$ AM/FM IF module. 2×1 P1 1 $73 / 10 \mathrm{w}$. RMS output power audio amp modules +1 LP1182/2 Stereo pre amp for ceramic and auxiliary input.

ounand $\mathfrak{x} 9.95$

TRADE ENQUIRIES INVITED

20×20 WATT STERED AMPLIFIER Viscount IV unt in teak-finished cabinet Silver tastia
£29.90 with aluminum rotary controls and pustboutions, red
8. 2.50 manns indicator and slereo pack sockel. Function
swich tor mic. magnetic and cystal pick-wps tape Rear panel teatures wo mains oultsts DIN spape, tuner. and auxlliary plus fuse $2 a+20$ watts rms $40+40$ watts peak 30×30 WATT AMPLIFIER KIT
30×30 WATT AMPIIFIER KIT
For the experienced constructor complete in every derail. $\quad \mathbf{£ 2 9 . 0 0}$ Similar facilifiess as Viscount IV amplfitier $60+60$ peak

р\& 52.50 * SPECLAE OFFER: PACKAGE PRICE WITH 30×30 KIT Mk II version operates info 4 to 15 hims speakers Specially designed by RTVC tor the experienced constructor, compiete in every detail. Samie Maccilles as Viscount amplitier 60.60 peak. supplied winh 26000 magnet 30 watts rims handing $+31 /{ }^{\prime \prime}$ approx magnet 30 watts rins handling $+3 \% 4^{\prime \prime}$ approx
Now AVAlLable fuliy bult and lested Outpu $30+30$ watts rms. $60+60$ peak
p\&p $£ 2.50 £ \mathbf{3 9 . 0 0}$

 -
323 EDGWARE ROAD. LONOON W2 21a HIGH STREET. ACTON. W3 GNG ALL PRICES INCLUDE VAT AT $121 / 2 \%$ All items subiject to availabilly Price correct al 1.9 .78 and subject to change without notice
相 66.50 £64.00

scoop!
 MASSIVE BULK PURCHASE BRINGS YOU haZeltine vdus AT LOWEST EVER PRICES

 SCREEN CAPACITY -

 SCREEN CAPACITY -}H1000 - 960 characters 80 per line $\times 12$ lines
$\mathbf{H 1 2 0 0}-1920$ characters 80 per line $\times 24$ lines CHARACTER GENERATION -5×7 dot matnx 625 me raster
CHARACTER SET - 64 ASCII alphanumerics and symbols
CHARACTER SIZE -
H1000-1/8 inch (32 cm) nom
inch (24 cm) nominal width
H1200-1/10 inch (25 cm
3/32 inch (24 cm) nominal width
H1000 H1000 underline H1200 reverse image block TUBE PHOSPHOR - P4 (white on black) H 1000 REFRESHRATE - 50 lields per second ONLY KEYBOARDS - TTY Pormat attached ONLY
£ 350
H1200 ONLY
£425
HAZELTINE H1000 and H1 200 SPECIFICATION Dataset ready
PARITY - Party error indicated by Parity ligh and question mark (?) displayed in characte

TRANSMISSION - Asynchronous Swich selectable for any two standard rates up to 9600 OPERATING MODES - Full/ half Duplex MEMORY - High speed MOS refresh

HAZELTINE H2000 SPECIFICA TION
SCREEN SIZE - 12 diagonal 1998 characters. 74 per line $\times 27$ lines CHARACTER GENERATION CHAtrix 625 line raster CHARACTER SET - 64 alphat
symbols 32 ASCII control codes Symbols 32 ASCII control codes
KEYBOARD - Detachable KEYBOARD - Detachable, solid state. plus editing and cursor control keys TRANSMISSION - Asynchronous selectable for combinations of 5 standard Switc 75 to 9600 baud
OPERATING MODES - Switch-selectable, full duplex half duplex or batch (buffered) MEMORY TYPE - 2048×8 RAM EDITING FEATURES - Full Cursor controls plus Insert/Delete Character. Insert / Delete Line. Clear Screen. Clear Foreground Data Only. Tab
STANDARD INTERFACE - CC ITT V- 24 (EIA STANDARD INTERFACE-CCITTV-24 (EIA
RS-2328/C) or 202C Compatible REMOTE COMMANDS - Insert/Delere Line Clear Screen. Clear Foreground Data Only. Home Cursor Address Cursor. Set Background IntenBackspace. Ring Bell. Transmit Print

H2000 FROM £495

AUXILIARY OUTPUT - Siandard printer interfaces. standard cassette interface, remote montor interface
TUBE PHOSPHOR - P39
(green on black)

Vini~Computer Exchange

D E BIG SAVINGS ON OUR LARGE STOCK OF
PROCESSORS, PERIPHERALS AND ADD-ON MEMORY
gured to suit your requirements -8 K and 16 K MOS memory increment or 16 K core memory increments Asynchronous interface /line clock (ElA) All in pertect as-new condition (E|A) All in pertect
Prices from $£ 2.500$.

PDP11 ADD-ON MEMORY
11/04-11/34 serıes MSIIFP 8 K MOS. E550 MS 11 JP 16 K MOS £1.200; MM 11 DP 16 K core £1.750; M7850 parity -
$11 / 35-11 / 40-11 / 45$ series. MF 11 UP 16 K parity core
complete with backplane - ONLY £1.500: MM 11 UP 16 K expander core (prerequisite MF11 UP) NOW ÓNLY £1.250.

DD11A 4 SPC•slot backplane
DR11B DMA Intertace complete with backplane £ 750.00 PC11A High-speed paper tape reader/punch and control

PR11 High-speed paper tape reader and control $£ 1,450.00$ RTO1AB Numeric single-line data entry termina

TC11 TU56 DECtape drive and control

STANDARD INTERFACE - CC ITT V- 24
(EIA RS $232 \mathrm{~B} / \mathrm{C}$) 202 C Optional

Fpinters grac
 REMRIDE

LARGE STOCKS OF ASR33
AND KSR33 TELETYPE TERMINALS

CENTRONICS MATRIX PRINTERS ASCll character set. 165 cps operation
Model 101-5x7 dot matrix Model 101A-7x9 dot matrix £ 950.00 . Inte
aiso avalable

DEC LA30 80-column DECwriter
30 cps KSR Terminal with 64 ASCII Interface $£ 575$

Keyboards
NEMV ASCIIKEYBOARD MODEL KB756

NOW IN STOCK - BRAND NEW 56-STATION ASCII KEYBOARDS Full 128 character set with ROM encoder (upper and lower case + conirol shift). uly Th-compaibe - power requirements $+5 \mathrm{v}-12 \mathrm{v}$ Supplied with full technical data, code chart. pin
connections. circuit diagram and applications notes

FANTASTIC VALUE AT $£ 60.00$ Also avalable - a range of spares and accessories for the KB756 - edge connector, mounting frame. plastic or steel enclosure. spare ROMs Send for data sheet/price list

All items quoted are refurbished second-user equipment unless otherwise stated

ELECTRONIC BROKERS LIMITED (COMPUTER DIVISION)

 49-53 Pancras Road, London NW1 2QB. Tel. 01-837 7781. Telex: 298694Carriage \& Packing charge exira on all items unless otherwise stated

NTHE NEWBEAR COMPUTING STORE

The Bear announces its new store a
2 GATLEY ROAD, CHEADLE, CHESHIRE Tel. 061-491 0134

Callers welcome, mail order to Newbury
PETITEVID V.D.U. KIT, £85 110 to 1200 baud V24. $64 \mathrm{CH} \times 16$ line scrolling. all on 8×4 " P.C. B. Needs T.V. set. UHF modulator and ASC 11

BOOKS

WB-1 a TTL Mcrocomputer
zilog 2-80 Technical Manual
2.80 PIO Manual
2.80 Programming Manua;

6800 Mirderstanding Microprocessors M6800 Applications Manual
6800 Assembly Language Programming Understanding Microcomputers 2. 80 Programming for Logic Design Microcomputer Primer Adam Osbourne Introd vol 1 Basic Concepts Vol 2 Some Real Producis 8080 Programming for Logic Design 6800 Programming for Logic Desi Some Common Besic Programs
Payroll with Cost Accounting in Basic Sybex Microprocessors Microprocessor Intertacing Techniques C20 6800 Software Gourmer Guide Cook Book The Scetbi Byte Primer What To Do Atter You hit Retur My Computer Likes Me Games with a Pocker Cakculator若ies for a Hand Catculator Best of Creative Computing Vol 2 Hobby Comp Best of Byte The Home Computer Games Computer Lib
Frrst Boak of Kill
yboard

A ONCE ONLY FANTASTIC OFFER

the amazing SaПШa

BUY NOW

LCD-900

First in the world using LCD scale

Down! from £83.86

+ £1.62 P. \& P

WHILE STOCKS LAST

Just send your Cheque or P.O. to QUALITY ELECTRONICS LTD.
24 HIGH ṠTREET, LẎDD, KENT TN29 9AJ (TEL. 0679 20252)

OR TELEPHONE US YOUR ACCESS NO

Learn to understand electronics for your hobbies

1. Learna-Kit course

Step by step, we take you through all the funda mentals of electronics and show you how easily the subject can be mastered.
(1) BUILD AN OSCILLOSCOPE
(2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS
(3) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK.

2. Become a Radio-Amateur

Learn how to become a radio-amateur in contact with the wide world. We give skilled preparation for the G.P.O. licence.
Brochure without obligation to:
BRITISH NATIONAL RADIO \&
ELECTRONICS SCHOOL, Dept
P.O. BOX 156, JERSEY, CHANNEL ISLANDS
I name \qquad
address
WWA11/78
block Caps please

WW - 064 FOR FURTHER DETAILS

8-digit universal

 counter-timer

IREQUIN(rRATIO) belweentwo Imputs
"Computer Weekly", "Data Processing" and '"Systems International" present

GOMPEG78

Olympia, London, England. December 5, 6 and 7
from 10 am each day
BRITAIN'S MAJOR SPECIALISED EXHIBITION OF COMPUTER PERIPHERALS, SMALL BUSINESS SYSTEMS AND MINI AND MICROCOMPUTERS, NOW IN ITS EIGHTH YEAR, IS MORE COMPREHENSIVE THAN EVER, WITH 200 EXHIBITORS

Compec '78 is a full registration exhibition, and the entrance and registration fee is $£ 2$. However, advance registration
tickets will be sent free of charge if the application form below is received not later than November 22.

December $5,6 \& 7$ National Hall. OLYMPIA, LONDON

Please send me me having to pay £2 at the door
Name
Address

To Compec Tickets, Room 821, Dorset House, Stamford Street, London, SE1 9LU, England.

WW - 135 FOR FURTHER DETAILS

Type JP12
Test voltages $0-6$ and $0-12 \mathrm{Kv} \mathrm{DC}$.
Leakage current meter $100 \mu \mathrm{~A}$.
Type JP30
Test voltages 0-3, 0-10 and 0-30Kv DC. Leakage current meter 1,10 , and $100 \mu \mathrm{~A}$

Breakdown Testers
$0-5 K v A c 0-3,0-5$ and $0-10 K v D C$.
For further information on these quality instruments, or any of the Danbridge range please contact

DANERIDCE

Danbridge U.K. Ltd.

sherwood house high street crowthorne berks TELEPHONE: CROWTHORNE 2369

reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)

For further details contact
Brian Bannister, IPC Electrical-Electronic Press Ltd Phone 01-2618046 or simply complete and return the form below.

To Brian Bannister, Reprints Department Dorset House, Stamford Street London SE1 9LU
I am interested in
copies of the article /
advertisement headed
featured in

WIRELESS WORLD

on page(s) in the issue dated
Please send me full details of your reprint service by return of post.
Name
Company
Address
Tel. No

Latest transistorised Telephone Amplifier is compietely automatic with detachable plug-In speaker Placing .he receiver on
to the cradle activates a switch for to the cradle activates a switch for
immediate two-way conversation with out holding the hand-set. Many people can listen at a time. Increase efficiency in office shop, workshop. Perfect for "conference" calis: leaves the user's hands free to make notes. consult files. No long waiting. On/Off switch. volume rontro Model with tape-recording facility $£ 19.95$ + VAT £1. $60+$ \& +89 p.

Made to Hugh Safery and Telecommu 3 tions Standards The modern way of instant 2-way communications Supplied with 3-core wire Just plug into power socket Ready for use Crystal clear communications ram office to office Operates over $1 / 2$-mide switch Volume control Uselul as office intercom, surgery and homes, between office and warehouse Full price refund in
returned in 10 days Six months' guarantee. P \& P 99_{p}

WEST LONDON DIRECT SUPPLIES (W/W)

 169 Kensington High Street, London W. 8
ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR TONY FAYERS

01-261 8353

TERMINAL BARGAINS

TELETYPE Model KSR 33

Suitcase-sized version with case and line unit by MOORE REED. With RS 232 interface.
In first-rate condition with very low hours, £225.00.
(Other TELETYPE Models available)

OLIVETTI Model 318/328

offered UNTESTED to clear stock at £175.00. Featuring:

* ASC11 coding
\star Paper tape reader and punch
* TTY compatible interface
\star Correspondence-quality upper/
lower case

CDMP TERAPDRECAMTD $\begin{aligned} & 86 \text { High Street, Bletchingley, Surrey } \\ & 0883 \text { (Godstone) } 843221\end{aligned}$

WW - 123 FOR FURTHER DETAILS

R.F. IMMUNITY

Our equipment sometimes has to operate at transmitter sites so the susceptiblity to breakthrough of radio signals and an objective method of measurement has been of interest
Pick up of r f signals by audio equipment is encountered in normal use when nearby radiotelephone or broadcast transmitters or interference from electrical contacts, such as between complexity or cost and the immunnty achieved so an assessment based on the between complexity or cost and the immuniy achieved so an assiding breakthrough is approprate The test procedure we have devised gives the following figures

Output level in a carner feeld strength of $+\begin{aligned} & +100 d 8 \mu \mathrm{~V} / \mathrm{m} \text {. } 84 \mathrm{MHz}, \quad 100 \% \\ & \text { amplitude modulated by } 1 \mathrm{KHz} \text { sine wave }\end{aligned}$

10 Outlet Distribution Amplitier 2
Stereo Disc Amplifier 2
Stabilizer, balanced
Stabilizer, unbalanced
$-85 \mathrm{dBV} 7$
$>-70 \mathrm{dBV} 7$

Stizer,
PPM2 IEC268-10A. BS5428 drive circuit No deflection in $+120 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$
Stabilizers with extra if proofing can be supplied at additional cost and give figuies of $\rightarrow-75 \mathrm{dBV} 7$ balanced and $>-70 \mathrm{dBV} 7$. unbalanced

SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG Tel: 048665997

NEW COMPONENTS - SPECIAL PRICES

ceramic
CAPACITORS EDPU 63 V
Stock Values PF
 $680: 820,1000 / 2200$
3300.4700 .10 .000

CERAMIC CAPACITORS 5 mm Pitch 250 V

 Stock Values (pi)15: 47: 56: 100 , 1000 : 1500: 2200 $\begin{array}{ll}2700 ; & 3300,4700 ; 5600 ; \\ 10.000 & 6800,8200 \\ .03 \text { esch }\end{array}$

$$
\begin{aligned}
& \text { POLYPROPYLEN } \\
& \text { RADIAL LEAD }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RADIAL LEAD } \\
& \text { Cylindrical Plastic Case. } \\
& \text { PCM } 5 \mathrm{~mm} \text { 21/2\% }
\end{aligned}
$$

$$
\text { PCM } 5 \mathrm{~mm} \quad 21 / 2 \%
$$ Tolerance - 100pf: 220 pf : 330 pt . 470 pf 630 V 680 pf 1000pf 1500 pf . 2200pf: 3300pt 4700 pf 160 V Size

Price 08 ea

NOISE SUPPRESSION CAPACITORS 250v AC

RADIAL		$\begin{aligned} & \text { PCM } \\ & 152 \end{aligned}$	15 mm 275 mm
0.015	. 13	0068	16
0.022	. 13	01	18
0.033	. 14	0.15	24
0047	. 15	022	32

ELECTROLYTICS RADIAL
$\begin{array}{lll}\text { 470-6.3 } & 0.6 & 2200-16\end{array}$
$\begin{array}{lll}470.25 & -13 & 4700.6 .3\end{array}$
$\begin{array}{llll}470-50 & .20 & 4700-63 & .95\end{array}$
GREENWAY ELECTRONIC COMPONENTS (EAST GRINSTEAD) LTD.. MAIL ORDER DEPT. 62 Maypole Road. Ashurst Wood, East Grinstead, Sx. RH19 3RB

TANTALUM BEAD

SPECIAL THIS MONTH

AXIAL LEAD MONOLYTHIC CERAMICS . 01×7 R 10% CERAMICS .OTX
POTENTIOMETER 16 mm with switch and knob Miniature 200 K Log .30p
\qquad POLYESTER RADIAL
100V 10%
MYIAR

MYIAR			- 10MM PITCH	
0022	025	01*	03	(100V)
01	025	022*	03	(200V)
068	. 02	047*	035	(200V)
1	035	1*	04	(100V)
22	05	1 *	045	(200V)
33	07	47	08	(100V)
47	095	68	085	(100V)
		2 (250V)	15	
ELECTROLYTICS AXIAL				
470-25		10p	1000-40	$20 p$
680-16		18p	2200-25	$41 p$
MMOUSTRIAL				

Build any Project-Fast and Easy

It's the new deal for project builders from Lektrokit! A complete new range of breadboarding and testing devices. At prices anyone can afford For any project anyone could want to build- from one-chip simplicity to 1,000 -chip complexity It's fast and easy project building, too. You simply push components in and pull them out. No soldering, no de-soldering, no chance of heat damage. You can make design changes instantly, keeping full leads on components. In fact, with Lektrokit, you can build a project as fast as you used to sketch a layout. And a lot more easily

LEKTROKIT

 completes the circuitSee Lektrokit at one of the Lektrokit dealers near you. There's bound to be one they're springing up everywhere. Send for the name of your nearest - plus FREE full colour catalogue-to:

Lektrokit Ltd., Sutton Industrial Park, Earley, Reading, Berks RG6 1 AZ
Telephone 0734669116

...and now No.3!

This third book in Wireless World's popular series will be welcomed by all concerned with designing, using and understanding electrenic circuits. It comprises information previously included in the third ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. The book follows on from Circuit Designs Nos. 1 and 2. It is magazine size in hard cover and contains ten sets of Circards plus additional information and an explanatory introduction. Like its predecessors, it may soon be difficult to obtain, so you are advised to order your copy without delay.

Voltage to frequency converters.
Amplitude modulators.
Reference Circuits.
Voltage regulators.
RC oscillators-part 1.
RC oscillators - part 2.
C.M.O.S. - part 1.
C.M.O.S. - part 2.

Analogue multipliers.
R.m.s./ log./ power law circuits.

General Sales Department. IPC Busine'ss Press Letd
Room CP 34 , Durset House, Stamford Street, London SEI 9LU.

Appointments

Advertisements accepted up to 12 noon Friday, October 27 for the December issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col centimetre (min .3 cm) LINE advertisements (run on): $£ 1.10$ per line, minimum three lines
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Barry Leary on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Nomore long goodbyes

RadioOfficers

by a Commonwealth Administration or the Irish Republic. And, ideally, you should have some sea-going experience.

Salary starts at 25 or over around $£ 4093$ and rises after three years to about $£ 5093$. (Starting salary for those between $19-24$ varies between $£ 3222$ - $£ 3732$). Overtime is additional, and there is a good pension scheme, sick-pay benefits and at least 4 weeks' holiday a year.
For further information, please telephone Andree Trionfi on Freefone 2281 or write to her at the following address:
ETE Maritime Radio Services Division (WW/B/7), ETE 17.1.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Ofifice Telleconninnunicaitions

WESSEX EDUCATIONAL TELEVISION CONSORTIUM

CCTV ENGINEER

An engineer is required for the Consortium's mobile CCTV production unit which is based at Winchester
Applicants should possess a graduate or full professional qualification Inclusive salary ranges from €4.245 to ¢5.073, depending on age. qualifications and experience Further details from The Director Wessex Consortium. King Alfred's Colliege. WinchClosing datar Phone 66359 3 rd

(8606

CHELSEA COLLEGE sity of London ELECTRONICS TECHNICIAN

Grade 3 required for Electronics Workshop Interesting prototype construction and
servicing work manly for Departments of Electronics and Physics Relevant ex. perrence essential and a suitable qualifica. ton in Electronics desirable Day release can be arranged for approved courses
Salary $\in 3153-£ 3.525$ p a inclusive (under review) Application forms and further information from Mr M E Cane (3 EW). Chelsea College. Department of Electronics.
Pulton Place London SW6 $5 \rho \mathrm{~B}$
Pulton Place. London SW6 5PR

AUDIO + VIDEO LTD. SENIOR VIDEO ENGINEERS AND HIGH GRADE TELEVISION ENGINEERS

Because Audio + Video are the largest video duplicators in Europe, we naturally have a lot of high-class equipment tp produce our top quality video tapes. We have in house, the Marconi D.I.C.E., the Rank Cintel Flying Spot Telecine, the RCA TK28 Telecine, TR60, TR70c and Ampex 20002 Quad machines. Sony D 100 duplicator. 2850. 2600, 2030, 2630. Betamax, Philips VCR 1500 and 1700 , VHS. Keyline editor, etc.
We now require Senior Video Engineers with experience of maintaining and servicing any or all of the above equipment and high grade Television Engineers who can be trained to help maintain most of it. We will pay salaries in excess of $£ 5,500$ for the right people who enjoy working in television.
Please contact Cliff Carroll on 01-580 7161.

Enginees

- DESIGN / DEv
- TEST
- FIELD SERVICE

High Salaries - Most Areas Phone 01-7314353
ex/eex Personnel
(8515)

TOP JOBS IN ELECTRONICS

Posts in Computers. Medical, Comms, etc. ONC to Ph.D. Free service.
Phone or write BUREAUTECH AGY, 46 SELVAGE LANE, LONDON, NW7. 01-959 3517.
8490)

Marconi Instruments
 ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton. Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates.
Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts. tel St. Albans, 59292

THE MOMENT OF A COUPLE

Who but an engineer would realise this is serious technology - that we are fust as interested in your cerebral prowess as your manual dexterity. Enough of the nether regions, concentrate on our vacancies.

theyinclude:

PROJECT LEADER

for a new range of A T.E small subsidiary company of well-known manufacturer of measuring instruments Technical ability and managerial acumen essential To 58,000 South Coast

YOUNG ENGINEER

or believe it or not the microprocessor itself The firm will train recent graduates in relevant hardware and software West Country, to £4,500

ANALOGUE DESIGN ENGINEERS

for work on Thyristor-controlled fire control systems in Aircrafi - A great challenge as equipment has to function in such different environments. Arctic to Desert regions. To £6,000. Berks

SYSTEMS DESIGN ENGINEERS

for some of the most advanced military work of the century involving interfacing avionic equipment to a special type computer New factory/atmosphere for a well-known firm in Berks, to $£ 7,500$

No joking - whether you are a designer, a computer engineer, an installation commissioning engineer, a soffware wizard or just an ordinary electronic bloke, someone, somewhere needs you - we are the Sales team.

Place your curriculum vitae in the expersenced hands of Judy. Anne or Dawn CHARLIES ANGELS

Charles Airey Associates

"probably the best known supplier of electronics engineers in the countay IINANCIAL TIMES
155 KNIGHTSBRIDGE, LONDON. SW1. TEL 01-581 0286

Electronios Engineer

[^8]

THE BAITISH COUNCIL INVITES APPLICATIONS FOA THE FOLLOWING
ELECTRONICS TECHNICIAN (IRAN)

 The Arilish Concill. 65 Davisas stront. Leden. Wiy 2 M . [\quad B59e|

CRICKLADE COLLEGE ANDOVER
 TECHNICIAN
 -ELECTRONICS AND ENGINEERING SCIENCE

The person appointed will be required to have a working knowledge of electronic and radio systems engineering equipment. Additional duties will be related to the operation of an engineering science laboratory. 37 hours per week, 52 weeks per year (less 18 days annual leave).
Salary within Technical Grade 1 €2.676-£2.967 plus $£ 312$ supple ment.
Application forms from the Registrar, Cricklade College, Charlion Road Andover. (Tel. 63311).
(8607)
 ROYAL HAMPSHIRE COUNTY
HOSPITAL

MEDICAL PHYSICS TECHNICIAN GRADE III Under the control of the District Engineer in the
District Etectronics Depariment based at this Hos. District Etectronics Department based at this Hos-
pital The successful applicant will be required to work on repair and meintann electro-medical and
electroncer electronic equipment used by all departments within
the hospitals attached to the winchester and Central the hospitals attached to the Winchester and Central
Hampshire Health District Selary scale $£ 3744 \mathrm{p}$ to $\mathrm{C4} .788 \mathrm{p}$ 日 Applicants not previously employed by the Health Service will stor at the minimum of the scale Minim
equivalent

Application forms from: The District Personnel OHfice, Royel Hompenhire County Hospinal. Tel:
Winctionter 63535 , Ext. $350 / 352$.
(8603)

ELECTRONICS ENGINEER

 EAST ANGLIAExciting possibilities exist for an electronics graduate with experience or keen active interest in consumer electronics. The right person will design and develop audio and R.F. circuits with a salary of $c £ 4000$. Relocation with a salary of $c £ 4000$. Relocation
assistance can be made available.

Send résumé to Box 8646 c/o Wireless World
Dorset House, Stamford Street London SE 1 9LU

AN EXPERIENCED

PART-TIME
CAR RADIO
ENGINEER
Phone for details

Don't keep it to yourself

We need your knowledge and experience
With sound practical experience and the necessary qualifications - degree. d ploma. professional qualfications. HND HNC. FTC. etc.. depending on your specialisation - you can train as a lecturer in Further and Higher Education. A -year grant-aided course will prepare you to teach in one of the following fields Agriculture \& Horticulture Business Studies Catering \& Allied Subjects Ciothing \& Fashion Construction - Education for the Disadvantaged E'ngneering - Nursing \& Health Studies Management Mathematics \bullet Printing \& Graphic Arts Sciences - Social Work
ither ctetails either phone or send the coupon to any of the following colleges Bolton College of Education (Technical). Chadwick Street. Bolton BL2 1JW Tel Bolton 22132
Garnet College Downshire House. Roehampton Lane. London SW15 4HR. Te! 01.7896533
The Polytechnic. Hudderstield. Holly Bank Road. Lindley. Huddersfield HD3 3BP Tel Huddersfield 25611
Woiverhampton Polytechnic. Faculty of Edication. Compton Road West Wolverinampton WV3 9DX Tel: Woiverhampton 24286

Please send further detaıls and an application form for a one-year course to traın as a lecturer ADDRESS

While you're sitting there looking through the limited available sources of job information, we're being asked if you're interested in better opportunities and higher earnings
If we don't know about you. we can't answer the questions. This is how Lansdowne Appointments Register works.
You complete and post the coupon below We send you a confidential application form which you fill in at your lesure and return to us. We'll then compare your skills and ambitions to the personnel needs of over 3,000 good employers, big and small Matching them is a precise business. One
thing we ask you, is which companies should not be told about you No-one on your list will everknow you re looking around When all your requirements compare favourably. we send the employer your information Pretly soon. you should be contacted directly by someone who thinks you're worth a better deal
We don't pester you ask you to come and see us or send us money. We also guarantee to treat all the information you give us as highly confidential So just post this coupon and take the same simple step to a belter career as thousands of others before you Lansdowne Appointments Register. Design House. The Mall London W5 5LS Tel 01-5792282 (24 hour answering service).

Lansdowne
For those too busy doing a good iob to tind a better one

3,00

 have been asking us aboutyoul.Our chents are keen to meet men and women aged 20 to 40 years with potential earnings of between $£ 4.000$ and $£ 7: 000 \mathrm{p}$. a

Name
Address

Lansdowne Appointments Register, Design House, The Mall. London W5 5LS. Tel: 01-579 2282 (24 hour answering service)

GUILDFORD \& DISTRICT ENGINEERING TRAINING ASSOCIATION LIMITED
SLYFIELD GREEN, GUILDFORD, SURREY

have a vacancy for

ELECTRONICS INSTRUCTOR

Applications are invited from people 25-50, who hold either a full Technological Certificate or have relevant practical experience for the post of Electronics Instructor
Duties include conducting both theoretical and practical work for first year apprentices in our purpose-built training centre.
Salary (starting) £3882 p.a with increments. Subsidised canteen, non-contributory sickness and life assurance scheme. Training in instructional techniques given if required
Please contact. Guildford 65485

BGB

$B B C$ requires a

ELECTRONIC MAINTENANCE SUPERVISOR

at its Engineering Training Depariment, in Evesham, Worcs

Duties:

Directing a team of Broadcasting Engineers responsible for maintaining the full range of professional radio and television broadcasting equipment. Irregular nours of working are nvived
Requirements
Ability to motivate and lead other Engineers in such a way as to provide an efficient maintenance facility
2. Recent experience of maintaining electronic equipmen

3 A good technical knowledge of audio and/or video equipment
One of the following qualifications is essential
a) A degree from a British University in Electronics or Electrical Engineering
b) HNC or HND (Eiectrical Engineering or Apphed Physics)
c) A pass in the Counctlo of Engineering Institution or exemption therefrom

Reward:
A base in the Worcestershire countryside Working in well-equipped Radio and Colour Television Studios Excellent welfare and club facilities. Four weeks two days leave Pension
scheme.
Salary in the range of $£ 4160-£ 4570$ depending upon experience and qualifications, rising to £5185 per annum plus 15% ir regular hour working allowance
Further Details:
If you would like to hear more and receive an application please send a stamped addressed envelope of at least 9×4 to Head of Technical Operations Training Section. Engineering 78 E. 4073 /WW Closing date for return of application forms fourteen days after publication

Sales Engineering Opportunities
-Avionics Acoustics and Field Telephones

Communicate with Racal

Racal Acoustics Limited a member of the world-renowned Racal Electronics Group. is a major manufacturer of aircraft communication control systems. military tield-telephones and acoustic ancillary equipment.
Recent expansion has given rise to excellent opportunities at our Wembley. Middlesex Head Office for Sales Engineers in all three of the above product areas Specific vacancies exist for

\author{

- Avionics Sales Engineer - Sales Engineer (Telephone Systems) - Sales Engineer (Acoustics)
}

Applicants should be aged $25+$. possess a sound education and have a good technical background preterably in the field of avionics. acoustics. public military telephone equiprnent or related areas.

The successful applicants (male femaie) will mainly be responsible for visiting and corresponding with existing and potential customers demonstrating the Company s products processing customers enquirles and assisting with exhibitions
For the above positions. the Company offers an attractive remuneration package. together with over four weeks annual holiday. pension and free life-assurance scheme If you wish to be considered for these challenging positions. please write in fulf contidence giving details of education experience and present salary to
The Personnel Officer RACAL ACOUSTICS LIMITED
Beresford Avenue. Wembley. Middlesex

THE ROYAL FREE HOSPITAL HAMPSTEAD

MEDICAL PHYSICS TECHNICIAN IV (ELECTRONICS)
An Electronics Technician is required for the Electronics Workshop of this major teaching maintenance of electronic circuits and equipment.
Applicants should hold the City and Guilds Final Certificate in appropriate subjects or an experience in the use of analogue and digital circuit techniques is desirable
Salary on scale $£ 3.423-£ 4.488$ per annum Salary on scale
including all allowances. The starting point depending on qualifications and experience and the successful candidate will be encouraged to study for a higher qualification. by means of Day Release.
Application form (to be returned by 3 rd November. 1978) and Job Description from the Personnel Department. The Royal Free Hospital. Pond Street, Hampstead. London NW3 20C. Tel 01-7940500 Please quote
ref 0761.

Camden and Isimgton
Area Health Authortty (T) (8594)

UNIVERSITY OF OXFORD DEPT. OF HUMAN ANATOMY ELECTRONICS TECHNICIAN
(GRADE 6)
SALARY £3,654-£4,365
The Department of Human Anatomy requires an Electronics Technician to assume responsibility for running 3 Electron Microscopes, closed circuit television installation and other sophisticated equipment including the supervision of research students in their use
Application with details of qualifica tions and previous experience (Part। cularly of electron microscopes and closed circuit television) should be sent in writing together with the names of two referees to

Professor C. G. Phillips, FRS
Dept. of Human Anatomy South Park Road Oxford OX1 $30 \times$

Lambeth, Southwark and Lewisham AHA (T) Guy's Health District

Medical Physicist Technician III

Salary £4098 rising to $£ 5142$ inclusive
Required for the Department of Clinical Physics and Bioengineering. The Technician (male/female) will join a team of Physicists and Technicians engaged on design, development, maintenance and repair of a wide range of electromedical equipment.
Minimum qualıfications are H.N.C. or O.N.C. and at least 3 years experience as a qualified electronics/electrical technician.
Application form available from the Personnel Officer, Guy's Hospital, St Thomas Street, London SE1 9RT. Telephone: 01-407 7600, Ext. 3462.

INSTRUMENT TECHNICIANS FOR THE OIL INDUSTRY

NEC Gas, the only British company offering formation mud logging services to the oil industry, is rapdily increasing its penetration in both North West Europe and Overseas

This expansion has created excellent opportunities for experienced Instrument Technicians to become involved in a variety of development, commissioning and maintenance projects both on and offshore. Although based at Kilwinning, Ayrshire, offshore working would amount to a total of around 100 days per year and candidates would be expected to travel, sometimes at short notice, both in Europe and Overseas

Applicants should be qualified to H.N.D standard and have at least 3 years' experience in industrial electronics, electronic process instrumentation or a related field. Although not essential, experience with digital logic systems and/or gas analytical instruments would be an advantage

Candidates in good physical shape who can show above average commitment both in initiative and in the ability to work under arduous conditions will be suitably rewarded by the company, financially as well as in terms of career progression.

Write or telephone

NEC Gas Analytical Services International Ltd., 2/4 Simpson Place. Kilwinning, Ayrshire. Tel: 029241752

UNIVERSITY OF SUSSEX
school of molecular sciences
SENIOR TECHNICIAN IN ELECTRONICS

Grade 5

The School of Molecular Sciences has an immediate vacancy for an electronics engineer. The essential requirements are a sound knowledge and practical ability to diagnose and to clear faults on the if and electronics side of a wide range of modern analytical equipment including nuclear magnetic resonance, electron sp
mass spectrometry, etc

The ability to deal with calibration and repars to a wide range of electronic instruments is also required

Candidates should be qualified to at least full technological certificate tevel or equivalent and had five years' relevant experience
Salary range $£ 3,186.00-£ 3,720.00$ per annum Four weeks annual leave and excellent working conditions

Applications including the names of two iechnical referees. from whom further information could be obtained if necessary. to Mr P. J. Gilliver. Superintendent of the
Laboratories, School of Molecular Sciences University of Sussex, Falmer. Brighton, BN 1 90.
(8620)

UMIST

ELECTRONICS TECHNICIAN

Applications are invited from candidates of either sex for a vacancy of Electronics Technician Grade 5 in the Department of Pure and Applied Physics. The technician is required for the development. construction and maintenance of specialised electronic equipment for research and teaching using the full range of electronics workshop procedure Applicants should be at least 24 years of age and preferably hold ONC. OND or equivalent qualifications

Salary within the scale $£ 3.186$ £3. 720 per annum.

Application forms may be obtained from the Registrar. UMIST, P O. Box 88. Manchester M60 10D, by quoting reterence $\mathrm{PH} / 119 / \mathrm{AU}$. Closing date for applications November. 1978

RADIO COMMUNICATION ENGINEERS AND RADIO PAGING ENGINEERS NEEDED
£4,900 AND £4,400
(Remuneration inclusive of bonuses)
Applications are invited for the above posi tions Due to continuing expansion we need engineers at our London depot and also our new branch at Harrow Middx We are London's largest independentradio telephone company. and would be interknowledge of mobile V.HF equipment

Contact Mike Rawlings or Bill Clarke, on 01.3285344

London
Communications
(Equipment) Lid

(B547)

A secure and rewarding career in Telecommunications and Instrumentation Hertford/East Anglia based

Eastern Gas is a major Region of today's energy industry and we are currently operating and developing sophisticated Communications and Instrumentation Systems for operational and business purposes.
Continued expansion in these fields has now created a number of important vacancies for maintenance staff at our Central Workshops in Hertford and various Field Depots throughout East Anglia.
The duties, which are both varied and interesting, involve the maintenance of a wide range of Communications and Instrumentation equipment and candidates should ideally be qualified to ONC/C \& G level and have some experience in one of the following:

Radio/Multiplex;

Telemetry or Digital/Logic Systems;
Electronic/Pneumatic Instrumentation.
Starting salary will be in the range $£ 3540-£ 4332$ plus the appropriate Weighting Allowance, and usual major benefits.
Application forms from N. H. Griffin, Personnel Officer, Eastern Gas, Star House, Mutton Lane, Potters Bar, Herts EN6 2PD. Telephone Potters Bar 51151 ext 426.

COMMUNICATIONS TECHNICIAN
 £5,070-£5,945 p.a.
 3-day week

Amongst the variety of services provided by the Port of London Authority is the maintenance of telecommunications equipment which helps to ensure the safe and efficient operation of the Port
We are currently looking for a telecommunications specialist with radar and telemetry experience to become involved with the maintenance and installation of the sophisticated equipment on which this vital service depends. The equipment includes VHF and UHF, radio, radar, microwave telemetric links and UHF telemetry located between Tower Pier and the Royal Docks. Based at North Woolwich you will therefore become involved in a variety of interesting work in which you will be expected to act on your own initiative in a variety of locations. The three-day, 35 hour week is worked in 12 and 11 -hour day shifts
You should have ONC or equivalent Service qualifications but it is imperative that your background includes at least 5 years' experience of radar and radio maintenance. You must also possess a current driving licence.
The salary scale ranges from $£ 5,070$ p.a. to $£ 5,945$ p.a. and the commencing rate of pay will be the lowest point in the scale.
Please apply for an application form by ringing 01-476 7555 or by writing to the Personnel Manager, Port of London Authority, Basin South, North Woolwich, London E16 20F

PORT OF LONDON AUTHORITY

EIECTBNNCS ENGINEPS

 Areyou partofateam,or justa face in the crowd?Eley, the country's leading sporting and target ammunition manufacturer, based in the West Midlands, need two people to fill newly-created posts.
Challenging work with a small team responsible for the smooth running of electronic systems which control our production plants.
The systems involve mainly digital/ a nalogue electronics, some using microprocessors and mini-computers, which interface with hydraulics, electrical systems, pneumatics, optics and various transducers. You'll also assist in the commissioning of new plant and the production of maintenance manuals. Qualifications - HNC or equivalent in electronics and control, with at least two years experience in the computer and technological field.
If a good salary, excellent chances of promotion and relocation expenses. interests you then please write or telephone for an application form, to: David Roberts, Personnel Manager, Eley,
P.O. Box 216, Witton, Birmingham, B6 7BA. Tel: 021-356 4848 ext. 2277.

Chief of Test

for DECCA COMMUNICATIONS LTD. situated in Sevenoaks, Kent
To work on their new range of High Frequency Radio Systems and to supervise a small but expanding Test Department.
Candidates should have at least 5 years' experience in the organisation, operation and supervision of a Test Department. Preference will be given to applicants with experience in H.F. Receivers and high power H.F. Transmitters.

A competitive salary will be offered along with the substantial fringe benefits associated with a major company.
Appropriate qualifications and experience should be sent, together with any service with H.M. Forces to:

Mr. C. Tyas, Personnel Assistant, Decca Limited, Decca House, 9 Albert Embankment. London SE1 7SW.
 satellite, microwave and telephony.

Your job as a Radio Technician will concern you in developing constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques microprocessors. and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings

Training is comprehensive special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham but we have other centres in the UK, all of which require resident Radio Technicians and can call for others to make working visits. There will also be some opportunities for short trips abroad, or for longer periods of service overseas

At the Government Communications Head
quarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio.

WORK IN COMMUNICATIONS
R\&D AND ADD TO COMMUNICATIONS
R\&D AND ADD TO YOUR SKILLS

RADIO COMMUNICATION ENGINEERS AND RADIO PAGING ENGINEERS NEEDED
£4,900 AND £4,400
(Remuneration inclusive of ponuses) Applications are invited for the above positions. Due to continuing expansion we need engineers at our London depot and also our new branch at Harrow, Middx. We are London's largest independent radio-telephone company, and would be interested in hearing from you if you have knowledge of mobile V.H.F equipment. Contact Mike Rawlings or Bill Clarke on 01-328 5344.

London
Communications (Equipment) Ltd.

NW8 Telephone 01-3285344

RADIO TECHNICIANS Keep police lines open

You should be at least 19 years of age, hold (or expect to obtain) the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles of telecommunications and radio, together with experience of maintenance and the use of test equipment. If you are or have been in HM Forces your Service trade may allow us to dispense with the need for formal qualifications

You start on £2927 at 19 , up to £ 3700 if you are 25 or over, rising to E4252, and promotion will put you on the road to posts carrying substantially more. There are also opportunities for overtime and on-call work paying good rates

Get full details from our Recruitment Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext. 2269, or write to him at GCHO (Ref. WW1 1), Oakley, Priors Road, Cheltenham, Glos GL525AJ. If you seem suitable, we'll invite you to interview in Cheltenham - at our expense of course.

Police depend on communications equipment every hour of the day - so if this equipment suddenly acts up, the police are seriously handicapped. That's where you can make a difference. As a Police Radio Technician in Central or South London, you'll help make sure our wide range of equipment is in top working condition.
Qualifications: two years' experience together with either C \& G Telecommunications Technicians Intermediate Certificate; ONC or equivalent.
Salary: from £3092 - £4165 p.a. according to age at entry, rising to $£ 4717$ p.a. including Inner London Weighting Allowance. There are substantial extra allowances for those employed on shiftwork at New Scotland Yard. Benefits include day-time release to study for higher qualifications, assistance with course fees and 4 weeks' holiday a year. Good prospects of promotion.
For details and an application form, contact:
The Secretary, Room 213/WW/RT, 105 Regency Street, London SW1P 4AN. Telephone 01-230 3122 (24-hour answering service).

144

Electronics Development Engineer

How do you refine Europe's best in film processing?

You accomplish this through applying your creative engineering talents to increase our capaicty for future business by improving the operation methods and equipment at our laboratories in Denham. Rank Film Laboratories is already recognised as the most advanced motion picture and television film processor in Europe with all throughput controlled by a central mini-computer but we naturally have long-term objectives for the future and will be relying on you to help meet them
In a nutshell, your brief will be to explore the undoubted potential for further process-controlled systems, examining problems and coming up with effective solutions in terms of new equipment or systems. You will have every opportunity to conceive and implement innovative suggestions based on your knowledge of microprocessor technology and digital and analogue developments. Aged 25-45, you should also have an electronics degree and at least two years' industrial experience in the design/development of process control equipment.
For the right man or woman, it's an exciting position, which willcvenerate change within the company. Salary is around $£ 6500$ p.a and benefits are as you would expect of a successful international company.
For further information, please telephone Colin Mossman, Technical Manager, on Denham 2323 or write for an application form to The Personnel Manager, Rank Film laboratories, North Orbital Road, Denham, Uxbridge, Middlesex.

RANK FILM LABORATORIES

University of Surrey
 TELEVISION ENGINEERS

UMIVERSITY COLLEGE OF nORTH WALES. BAMGOR
 ELECTRONICS TECHNICIAN

GRADE 5 £3.186-E3.720 p.a.

 Tho succoratal aplicial will
 sitectronic aprip ieall tor a thachime in the screvel.
 eqectirancici
equalicat.
Proviens applicenala need mol appy apian.

SENIOR SYSTEMS TEST ENGINEER

A leading company in the photo typesetting industry requires Test Engineers who feel capable of testing and installing brand new range of minicomputer based V.D.U. terminal equipment, incorporating the latest in MS1 and LS1 techniques in real-time applications.

The right candidates will be qualified to at least H.N.C. level and/or have considerable experience in digital electronics with knowledge of 74 Series T.T.L. A background of the word processing or printing industry would be advantageous. One of the positions would involve some U.K. and European travel to handle system installations and back-up service for our overseas agents

The company provides 4 weeks holiday and pension scheme. Salary circa $£ 5000$

Phone for application form to
MISS BUX, DATEK SYSTEMS LTD.
849 HARROW ROAD, WEMBLEY, MIDDX. 01-904 0061
(8643)

ITN SENIOR ENGINEER

Independent Television News Ltd. has a vacancy for a Senior Engineer to work in their Radio Links section. The work involves the installation and maintenance of temporary microwave links and R.T. systems for Outside Broadcasts.

Candidates should be qualified to H.N.C. or above and have ex perience of SHF, UHF and VHF radio systems. Television experience would be an added advantage.

Salary: $\bar{£} \overline{5}, \overline{9} \dot{2} 0$ per annum

Please telephone the Personnel Office on 01.637 3144 for an application form, quoting reference 3514

THE ROYAL FREE HOSPITALHAMPSTEAD
MEDICAL PHYSICS TECHNICAN II [ELECTRONICS]
An experienced engineer is required to assist with the day-to-day running of the Electronics workshop of this major teaching hospital
Proven ability in the design of electronic circuits and systems using state-of-the-art techniques is essential. Previous experience in the medical field would be an advantage. Applicants should hold a Higher National Certificate in appropriat subjects or an equivalent, or higher qualification
Salary on scale: £4,824-£5,964 including all allowances.
Application form (to be returned by 3rd November, 1978) and Job Description available from the Personne Department. Pond Street, Hamp stead London NW3 2QG. Tel. 01 794 0500. Please quote reference no. 0757.

Camden and /slington
(8595)

SALES ENGINEER

-Knobs, Trime and Mechanical appearance items

We are looking for a specialised Sales Engineer with experience in appearance tems and mechanical fitings for the Elecof the TV. Radio and Domestic Electrical industries is essential.
A substantial salary plus commission. vehicle. and other benefits including a vehicle. and other benefits including a
non-contributory pension scheme, are off ered to the successful applicant.

Please telephone: (01) 8372701
or write enclosing C.V. to
The Managing Diractor
PEDOKA LIMITED
28/29 White Lion Stree
London, N1 9PD
(8613)

COVENTRY AGEA HEALTH AUTHORITY
 Clinical Physics and Bio-Engineering Department Walsyrave Hospital
 ARE YOU INTERESTED IN A CAREER IN MEDICAL ELECTRONICS?

With the growth of technology in inesicine. tisctronic Medical Physics Technicians are requirad by the above depariment to join a tasam involved in the maintenance and devalopment of a wide range of physioiogical laboratary equipment. A knowledge of diannoslic maieterace of instrumentation and/or mini computers would be desirable.
Candidates for the post should hald an O.M.C. H.M.C. or equivalent qualification. Salary scale - Medical Physics Technician. Grade II within the range f 3744 to ¢ 4788 per annum.
Further details can be oblained from Chief Physicist. Walsgrave Hospilal. Telephone Covantry 613232 Walsgrave Hospilial. Telephone Coventry 613232.
excension 482 . Application torms Iquoting refl. Ww) obtained from the Sector Administralor. Walsgrave Hospital. Clifford Bridge Read. Walsgrave. Coventry CV2 Hospita
20x.

SENIOR ENGINEERING POSITION

Well-established Canadian manufacturer of communications equipment requires experienced engineer to direct engineering department and carry out diver sification programme
Successful candidate will have several years of experience in communications or instrumenta tion. Experience in several fields will be considered an asset as will experience in fibre optics
Send résumé to Mr. J. E Thomas, Lindsay Speciality Pro ducts Lid., 50 Mary Street West Lindsay. Ontario, Canada K9V 4S7.

Audio \& Design (Recording) Ltd. have a vacancy for a

UK SALES ENGINEER

based in Reading, Berkshire
The person we are after should preferably be single. educated to 'A' level Physics / Maths and/or OND Technology standard and
possess a current driving licence. possess a current driving licence.
Since the work involved will require close contact with our customers previous experience as an audio electronics engineer or advantage
After an initial familarisation period of about 6 weeks the successful applicant will be responsible for fitting customers' options to standard equipment and the atter-sales
service/repar schedules, both in the work service/repair schedules, both in the work-
shop and on site. Additionally some degree or sales suppor and overseas travel will be required
Salary is negotiable depending on applicant's experience and qualifications and will include a carallowance
If you are interested please write to The Personnel Director
Audio \& Design (Recording) Lid.
84 Oxford Road. Reading RG 17 LJ quoting reference (KJB/SEWW/0978 giving curriculum vitae and current salary. Applications for this post should reach us no later than December 31. 1978

ELECTRONICS

Take your pick of the permanent posts in:

MISSILES - MEDICAL

 COMPUTERS - COMMS MICROWAVE - MARINE HARDWARE - SOFTWAREFor expert advice and immediate action on career improvement, 'phone, or write to,
Mike Ģernat BSc
Technomark
11 Westbourne Grove London W2. 01-229 9239.

CITY OF LONOON POLYTECHNIC

 LIBRARY \& LEARNINGRESOURCES SERVICE
TECHNICIAN GRADE 5
We are looking for a versatile person to join a small team involved in the running of Media Services throughout the Polytechnic The successtul applicant will be mainly concerned with the servicing of audio visual and television equipment. but he/she will also be required to operate a whole range of television and audio equipment, and be come involved in media productions. A keen interest in the audio visuak field is essential together with a sound practical knowledlge of TV electronics Salary - (Grade 5) £3.675-£4.212 in
cluding London Weighting starting dependent upon qualifications and experience.
Further detalls and application forms may be obtained from the Assistant Secretary. City of London Polytechnic. 117-119 Hounds ditch. London EC 3 A $7 B U$
The closing date for completed applica-
tions will be 1st November, $1978 \quad$ (8592)

UNIYERSITY OF GLASGOW

DEPARTMEMT OF NATURAL PHILOSOPHY

TECHNICIAN

 construction mad maintenames in a large ultrs haph vacuem system

 exparience.
 Oepartment of Matural Pmiosophy. The Unversity. Gisspow. Git

Grade I

Airtraffic Engineers

The Civil Aviation Authority has vacancies for men and women as Air Traffic Engineers Grade I in its Telecommunications Division offering a variety of work on a wide range of electronic systems and specialised equipments. Air Traffic Engineers I will work with Senior Engineers responsible for major projects, the planning and provision of new systems and equipments and the formulation of national and international telecommunications operational and engineering policies.

Duties can include development work. system engineering, equipment acquisition, software engineering, installation planning, implementation, and field management of a wide variety of electronic operational systems such as en-route navigational aids, radar, communication systems, data processing and computer systems. The current requirement is for staff to fill Headquarters posts either in Central London or at West Drayton, Middlesex.

Qualifications and experience

You must hold an honours degree in an engineering discipline such as Electronics, Computer Sciences or an equivalent
degree with an electronics specialisation. Alternatively you should have satisfied the academic require ments for entry into corporate membership of the IEE, IERE or RAES.
In addition you should have at least four years post graduate experience. For some posts software specialisation is appropriate.

Salary

Salaries are on an incremental scale $£ 5513$ 66957. Posts in the London Area attract an additional allowance (Inner London $£ 495$ Outer London £293). Senior Air Traffic Engineer posts with salary up to $£ 8030$ are normally filled by promotion from ATE I.

Electronic Test Engineers

We manufacture and market audio noise reduction equipment which is used by major recording companies, recording studios and broadcasting authorities throughout the world and have enjoyed successful growth since incorporation in 1968.

The success of such films as "Star Wars" and "Close Encounters of the Third Kind" has led to an increased demand for our cinema equipment and contributed to our need for experienced test engineers for all our professional products.

If you have practical knowledge and experience of electronic testing, think you can test, calibrate and trouble-shoot our sophisticated equipment, enjoy the challenge of quality and delivery pressures and want to hear about the excellent pay and conditions, telephone Tony Hill, 01-720 1111

$$
\square \text { OQ } \begin{aligned}
& \text { Dolby Laboratories Inc } \\
& 346 \text { Clapham Road } \\
& \text { London SW9 9AP } \\
& \text { Telephone 01-720 1111 }
\end{aligned}
$$

Appointments

Electronic Engineers!

 Get your career off the ground!
And enjoy these benefits

We're a small, dynamic avionics company in Hastings, ready to go places! But we need some young, talented electronics engineers to go with us!

Our projects are exciting. We are already in the forefront of avionics technology and daily breaking new ground in that field and in the field of ground support automatic test equipment with special emphasis on microprocessor technology

Prospects are just as exciting ! You can look forward to generous re-location allowance - assistance in obtaining mortgages locally - well designed career development plans including payment of tuition fees - superb working environment - free life assurance - superior pension and disability plans - paid sick leave -3 to 5 weeks holiday Luncheon vouchers - and even a company car could be yours!
Your salary will be as high-powered as you are!
Electronic Design and Development Engineers to £7.000
Ouridea/holds an Honours Degree in a relevant discipline, with years of experience in high-grade avionic digital circuitry

Software Engineers to $\mathbf{£ 5 , 7 5 0}$
Our ideal graduated in Computer Science, and is now
skilled in programming in Assembler Code and/or Coral 66 If you also have experience in interfacing with hardware or small systems - you're our successful candidate
Project Engineers to $\mathbf{£ 6 , 0 0 0}$
Ouridea/has a good Degree in Electronics or HNC/HND in electrical/electronic subjects

COMPUTING DEVICES ๔๖ COMPANY LIMITED

CONTRAL
DATA P.O. Box 10 Castleham Road St Leonards-on-Sea East Sussex TN38 9NJ Telephone : (0424) 53481
Please return this with a summary of your
qualifications and experience

(----------------------1)
 NAME
 ADDRESS
 \qquad
 \qquad

Lead the world with FROUDE

Total Test Plant Technology
Froude Engineering Limited are world leaders in total test plant technology. Our steady expansion, based on a century of experience in the design and manufacture of dynamometers and ancillary equipment, provides employment for nearly five hundred people. So why not join Froude now and help to lead the world in total test plant technology. Join Froude and enjoy the countryside of Malvern, Hereford and Worcester. Due to expanding business activity, the Electronics Products Department have vacancies for the following staff :

PROJECT ENGINEERS

Responsible for estimating, contract design /administration and customer liaison. We expect successful applicants to be qualified to degree level and previous experience with industrial electronics or instrumentation would be an advantage. The position offers excellent career opportunities.

TEST AND ENGINEERS COMMISSIONING

For both in-house and on-site testing and commissioning of the department's products. The work will involve travelling both within the U.K. and overseas

The position would be of interest to newly graduated engineers seeking experience and career opportunity

PROJECT DESIGNERS

To join a newly equipped drawing office on projects involving industrial electronics, instrumentation and medium power distribution systems. Experience in these or allied areas would be an advantage
We can offer very attractive salaries, good working conditions and relocation expenses will be paid where appropriate

Please contact Mrs.Barbara Thomas, Personnel Officer . for an application form.

Froude Engineering Limited

Printed Circuit Technicians

The Switching Main Exchange Products Division of STC requires Senior and Junior Printed Circuit Technicians in their Model Shop.

To produce high quality small votume experimental single sided, double sided, and through hole plated printed circuit boards from engineering schematics.

These vacancies require thorough knowledge of the processes used in the production of the above type of printed circuit boards, including the production of the necessary silk screens. The successful candidates will also be responsible for liaison with the chemical laboratory to ensure correct operation of process tanks.

No formal qualifications are required but at least four years experience of printed circuit board manufacture including process baths and dry film resist techniques is required for the senior positions and 1-2 years for the other vacancies.

For further information, telephone or write to:
Maureen Renouf, Switching Main Exchange Products Division, Standard Telephones and Cables Limited, Oakleigh Road South, New Southgate, London N11 1HB. Tel: 01-368 1200 Ext. 3141.

EXPERIENCED ENGINEER REQUIRED

Must have knowledge of all types of electronic musical instruments.
Five-day week.
Wages negotiable
Phone 01-459 7294/5 for details
(8605)

[^9]SOUNDOUT - a dynamic company
manufacturing professional band, PA and discotheque equipment require a test engineer with at least three years experience in a production environment. The position involves production test of amplifiers and mixers. writing test specifications, designing ATE jigs and some post development work on established designs. Informal working condions, usual to $£ 4.800$ pront - Ring Todd Wells 01-399 3392 p.a. - Ring Todd Wells 01-399 3392.

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex - S.W. London

Salaries up to $£ 7,000$
To join our expanding $R \& D$ Laboratories covering a wide range of the R. F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine and land based use, radio navaids and radio monitoring remote computer controlled systems
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, micro processor applications.
Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits.
Contact: The Personnel Manager, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (Reverse charge).
(8604)

ARTICLES FOR SALE

[^10]REGULATED power supply units 13.8 volt 5 amp cont. 7 amps int Electronic short circuit protection 240 VAC input. British Manufacture £25.65 p \& p fl.25. Reduction for
10 plus units. E.M.A. Electronic 10 plus units. E.M.A. Electronic Suffolk. Tel. $039 \quad 45328$. 18630

AUDIO AND INSTRUMENTATION-TAPE RECDRDERAEPAODUCERS

* Plassey 1033 Digital Units. 7 track $1 / 2$
* Plessty MS500 Digital Uait. 7 tracks $1 / 2$
* Amplex FR-1100. 6 speads. steree $1 / 4$
* Rmpex FRG00. 4 spoeds. 7 track $/$
- Mincom CMP. 100,6 spaeds. 7 tracks $14.1 / 2.1$
* Laevers Rich DA. $2 \mathrm{P}, 2$ spoeds. 2 tracks $11 /$
* Leevers Rich Censole. 2 speods. 2 tracks \%

Prices of above $\mathbf{C 7 0}$ to C 500
Also Transport Decks oaly wailable

All our
quatity
Thermioaic Timene Iajection Units

- Manson TFM. 101 Mulijpliers
- Bradey CT 4718 Eactronic Multimalers

Seroy rive Eacironic multimaliers

- 125t. Lattico Masts. 26° sides

30ft. Lattica Masts. 14^{-*} sidas

* loft. Linht Lattice Sections. 6^{-0} sides
* Rhode and Schwarz SMLM Siy Gens
* Roband Oscillos copes 50 A and plug. ins
* Solartran CD 523 Dscillostopes
- Solartran CD 426 Dscilloscopes
- Solartron CO 1014 Dscilloscopes
* Solartron CD 1016 Dzcilloscopes
- Kay Sonographs
* Munson Multimettars
* Weinshal Pratision Aitinu.
* Rerial holater Displays ..

EM1 $/ 2$ Rudio Tape 3600 fT Wab...
25-watl R.C.W. Exponential Speakers

* SE4/28 C.R.T.s
* SE5/2A C.A.T. s
- 3AZP/2 (DMM.9|c.в.T.s
- Piessey 3 \& GKCS S.S.B. filters
- avo CT 471 A Electronic Multimeters
* EmI R 301 Tapa Recorders

- Marconi TK 1041 V VI Votimeters
* Unis 库ectors. 10 Bank 25-way
* 40HL. Sectionsi Aluminium Masts. Complata
- Racal MA. 79 Universal Drive Units
* Aacal RA-17P Roceivers (now)
- Rhoda \& Schwerz ESM Tenabia VHF Roceivors
- Rhode of Schwarz HFH Fitid Str ength HF Loop Aerials
- Harda 504 Freq. melers $200-500$ M/cs
* B8K 2409 Electronic Multimoters
- Metti-purpess Trolleys with Jacks 19×17... E16.00
- Rhode \& Schwarz fibreqlass HA Diver sily

Dipoles
£120.00

- lon pump power supply. E.H.T.
- Advance 3kva cy Iranslormer
* Metal V.D.U. Tables $30^{\circ "} \times 36^{\prime \prime} \times 30^{\circ} \ldots \ldots$. . $£ 24.00$

We have a quantity of Technical Manuals of Electronic
Equipment. not photostats. 1940 to 1960. Brilish and
American. Ho fists. Enquiries inviled.

Belling Lee 100 Amp Interterence Fihtars	
* Dacilloscape Trolleys fram	E18.00
* Aacal mal978 pre.Selectors	¢65.00
* Rack Mounting Operator Tablas	E10
Gaumont Kaida 1740 Fle	£75.00
* Heavy Aorial hotators	
* 75h Aluminium lattice masts. $20{ }^{\circ}$	E400
* 月hodes 8 Sthwarz SBR sig. pen. 1.62 .4 gmc	E47
* Large Aerial Turaing Units	P.U.
* 45 teet Uniradio 4 Co-sx 50 ohms	E2.00
* Addo 58 Track Punches	¢48.0
* Quality Weather Vanes 8 coniacts [unused]	E25.00
* hacal Ma-175 I.S.8. Modulators [new]	£45.00
* Inalide Cabinet Shell Slidars	E3.00
* Tally 58 Track Tape Rasder	
5 B Track Tape Readers Track Spo	

We have a quantily ol Power Translormers 250 watis to t5MA at voltapes up to 40KV. Best quality of lew pricas. Lists available.

* Racal RA-64 SSB Adaptors. new ….......
* Racal RA 298 L.S.B. Iransistorised Converiera |new|
We have a varied assoriment of industrial and pro Iessional Cathode Ray Tubes available. List on request.
please add carriage and y.a.t.

Electronics Technician

required to work with small team of Engineers on custom built equipment.

Duties include assembly, wiring and test of complete equipment as well as testing small batches of PCB's
Previous experience of wiring essential, preferably to military standards, previous production testing experience would be an advantage
Suitable candidate must be able to work unsupervised
Telemotive looks only for above average personnel, and this is reflected in conditions of employment offered
Please apply in writing, giving details of previous experience, to -

Telemotive U.K. Limited

TELEMOTIVE HOUSE, 100 HIGH ROAD BYFLEET, WEYBRIDGE, SURREY BYFLEET 47117

TEST ENGINEERS

Vacancies exist within our Radio "Test, Final Test and Service Departments for experienced Test Engineers with knowledge of VHFF Radiotelephone Equipment

* Good salaries
* Pleasant working conditions.
* Subsidised canteen.

For application form and further details

 contact.Mrs. A. Bowles
DYMAR ELECTRONICS LIMITED Colonial Way, Radlett Road Watford, Herts.
Tel. Watford 37321, Ext. 27

ARTICLES FOR SALE

60KHz MSF Rugby Receiver, BCD TIME OF DAY OUTPUT. High performance, phase locked loop radio receiver, 5 V operation with 1 second LED indication. Kit complete with tuned ferrite rod aerial t14.08 (including postage and VAT). Assembled circuit and cased. up version also available. Send for details, Toolex, Sherborne
Thorn Consumer Electronics Limited, leading manufacturers of television and audio equipment in the U.K., wish to appoint an experienced Design Engineer for their Research and Engineering centre at Enfield.

The successful applicant will join a team investigating new ideas and systems for the television industry and should have a degree or equivalent, with at least two years in television design, with some digital design experience, and be preferably under 35 years of age.
The ability to work on his/her own initiative, liaising with internal development departments and outside suppliersisessential.

Please apply in writing, stating age, experience and qualifications to
The Personnel Manager (DE / WW)
Thorn Consumer Electronics Ltd.
Great Cambridge Road, Enfield, Middlesex EN1 1 UL

> WE INVITE ENQUIRIES from any-
> where in the world. We have in stcck several million carbon resistors, $\frac{1}{8}, \frac{1}{2}$ and 1 watt, $\frac{1}{2}$ million tors, $\frac{1}{5}$, ${ }^{\frac{1}{2}}$ and 1 watt, million
wire wound resistors 5 and 10 watt - 1 million capacitors - 1 million electrolytic condensers - $\frac{1}{2}$ million transistors and diodes. thousands of potentiometers, and hosts of other components. Write, phone or call at our warehouse. - Broad. fields and Mayco Disposals Ltd. 21 Lodge Lane, North Finchley. London, N.12. 01-445 0749, 4452713 (8403

ELECTRONIC KITS - SAE for new catalogue, and clearance list of obsolete kits. AMTRON, 7 Hughenden Road. Hastings, Sx.

SOWTER TRANSFORMERS

WITH 37 YEARS' EXPERIENCE we have the expertise to design and manufacture ANY TYPE OF AUDIO TRANSFORMER AT THE RIGHT PRICE Whist we specialise in every kind of transformer for audio control decks and mixers, demands OUTPUT TRANSFORMERS for most kind of amplifier from 30 watts to 500 watts output We have standard designs for AMCRON and BOSE amplifiers and can also supply Multi-ourput transformers for COLUMN LOUDSPEAKERS in a wide variety of powers. A recent tendency is the demand for OUTPUT TRANSFORMERS FOR ULTRA LINEAR VALVE AMPLIFIERS using KT88 and KT66 BEAM TETRODES and for these we have standard designs with exceptional performance Many of our output transformers for loudspeakers have been installed in Theatres. Television Studios, Lecture and Concert Halls Churches and Outdoor Arenas whilst others are in constant use for high quality portable Public Admes and without obligation on your part will quote price and exact dispatch or receipt of your requirements.
KINDLY NOTE OUR NEW ADDRESS AND TELEPHONE NUMBER: E. A. SOWTER LTD., Transformwr manufacturers and designers, P.O. BOX No. 36, IPSWICH IP1 2EL, ENGLAND. Tel: Ipewich (0473) 52794-219390
(8289)

\{UNDERSTANDING DIGITAL ELECTRONICS

By Texas tns Price £3.95
CHEAP VIDEO COOKBOOK by D. Lancaster. Price $\mathbf{E} 6.95$.

BEGINNER'S GUIDE TO MICRO. PROCESSORS by C M. Gilmore. Price £4.85.
MINIPROCESSORS FROM CALCULATORS TO COMPUTERS bY D. L. Heiserman. Price $£ 4.85$.

REPAIRING POCKET TRANSISTOR RADIOS by 1 R. Sinclarr Price $£ 2.50$.

USING DIGITAL AND ANALOG INTEGRATED CIRCUITS by L W. Shacklette 8 H A. Ashworth. Price E8.50.
HOW TO BUILD YOUR OWN STEREO SPEAKERS by C. Robin Price £12.00.

WORLD $\bar{D} X$ GUIDE by J Vastenhoud. Price E5.30.

OP-AMP CIRCUIT DESIGN \& APPLI CATIONS by J. Carr Price E4.00.

FOUNDATIONS OF WIRELESS AND ELECTRONICS 9 th Ed by M. G. Scroggie. Price EA^{25}.

DESIGN TECHNIQUES FOR ELEC TRONICS ENGINEERS. Price E11.60.
-All Prices Include Postage

THE MODERN BOOK CO.
SPECIALISTS IN SCIENTIFIC \& TECHNICAL BOOKS 19-21 PRAED STREET LONDON W2 1 NP
Phone 7234185
Closed Sat. 1 p m.

HI-FIDELITY DESIGNS No. 1 (a Wireless World publication). We had announced that this publication was out of print but we now discover that we have 350 copies in stock. Due to our announcement, many readers were disappointed, but we are now pleased to inform them that copies are available from The General Sales Manager, Room CP34, Dorset House, Stamford Street, London sel gid. Please forward your order together with your remittance of $£ 1.50$ (including
P\&P) made payable to IPC Business Press Ltd. 18652

MUIRHEAD satellite Fax machine, Model D900-S $240 \mathrm{r} . \mathrm{p} . \mathrm{m}$., including supporting 2.4 KHz electronic units, cables and paper $£ 350$. Bolton 52384 . 18647

[^11]THE FABULOUS D2
MICROPROCESSOR EVALUATION KIT FROM MOTOROLA
Featuring' 24 key keyboard 'Seven segment Featuring
display Cassette interiace 'Erom \&i Ram Expandable 'Interface Capability. Full Documentation ' 5 Volt power supply required
One year's FREE membership of The Amateur Compuser Club with of The purchase" $£ 176+£ 150$ P\&P $+8 \%$ VAT ENAMELLED COPPER WIRE SWG

$$
\begin{array}{ccc}
\text { ED COPPER } & \text { WIRE } \\
\mathbf{8} \mathbf{~ o z} & \mathbf{4} \mathbf{~ o z} & \mathbf{2} \text { oz } \\
1.40 & 66 & 55
\end{array}
$$

$$
\begin{aligned}
& 40-43 \\
& 44-46
\end{aligned}
$$

$$
\begin{aligned}
& 44-46 \\
& 47 \\
& 48
\end{aligned}
$$

$$
\begin{array}{llllr}
47 & 800 & 500 & 3.00 & 176 \\
48 & 15.00 & 9.00 & 600 & 3.30 \\
\text { Tinned Copper, Even Gauges } & 14-30 & £ 3 \text { pe }
\end{array}
$$

$$
\begin{aligned}
& \text { Tinned Copper. Even Gauges } 14-30 £ 3 \text { per } \\
& \text { Ib Multicore } 60 / 40 \text { Solder } 18 \text { SWG } £ 3.24
\end{aligned}
$$ per it Prices include P\&P and VAT SAE brings list of copper and resistance THE

HE SCIENTIFIC WIRE COMPANY PO Box 30 London E. 4

SOLAR CELLS: bits, books and bargains. Send stamp for list or 95 p for Solar Cell booklet and Data sheets. Edencombe Ltd 34 Nathans Road, North Wembley, Middlesex HA0 3RX.
(8292

RF USERS! New UHF AC/DC Converters, vacuum junction, 50% per verters, vacuum junction,
cent off normal price. While cent off normal price. Stocks last. Suitable for RF \quad Power Measurement 5 mA range, with 6 mV open circuit output, 200 per cent overload permitpacking or, $£ 7.50$ pack of 6 . Postage included (UK only). Cheque with order please. Allow 7 days for delivery. Prosser Transducers, Lady Lane Industrial Estate, Hadleigh, Ipswich IP7 6BQ. 18525

VALVES RADIO. - T.V.-IndustrialVALVES RADIO. We dispatch valves transmitting. We all parts of the world by return to all parts of the world by return
of post, air or sea mail, 2,700 types
in stock 1930 to 1976 Obsolete types a speciality. iLst 20 p . Quotatypes a speciality. iLst 20p. Quota-
tion S.A.E. Open to callers Monday tion S.A.E. Open to callers Monday
to Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish to purchase all types of new and boxed valves. Cox Radio (Sussex) Ltd. Dept WW, The Parade, East Wittering, Sussex PO20 SBN, West Wittering 2023 (STD Code 024366). (8266

WW/CATRONICS Ceefax Decoder, works but needs some ate (0379) 3222. (8658

OLIVETTI Teleprinters Type TE300 qty. 3. All require repair. $\{200$ lot or would consider breaking for spares. - Horndean 594438 (8626
Hants.
T.V. TUBE REBUILDING. Complete plant, equipment, supplies and training. If you can afford the gineering. Tel. $073 \quad 676 \quad 2265$. 18048

TRANSFORMER

 PROBLEMS?1VA.1KVA Prototypes in 7.10 days. Phone Vince Sellar on 06076 66716.

TRENT TRANSFORMERS LTD Chapel Street
Long Eaton, Nottm
(8363)

ENAMELLED COPPER WIRE


```
MORSE CODE TUITION AIDS
Cassette A 1.12wpm tor amateur rado examina
l/on
toon preparation
Morse by light system avalable Morse Key and
Buzzer unit tor sending practice
Buzzer unit for sending practice (ing booklets? ¢4 50
Morse Key and Buzzer &4 50
Prices include postage. erc Overseas Aurmail &1 }5
    MHELELECTRONICS (Dept. W)
        \12 Longshore Woy, Milton (8609)
```

FOR SALE, Practical Electronics, Nov. 1964 (No. 1) to June 1977, £40 plus carriage. Holland, 6 Rodine
Drive. Holmfirth, W Yorks.

TV TUBE 20 in , in teak cabinet with deflection components and information for V.D.U. or monitor, $£ 20$. Harlow 32293.

M-PROCESSOR Intel 8008 Board Prom and ram memory board triple output P.S.U. in vero rack with full circuits and data $\mathbf{8 2 0} \mathbf{8 0}$. Harlow
32293.
(8650

PHILLIPS PM 5334 T.V. sweep generator, never used, £350. Wanted, CV-157/URR and Kahn sideband adaptors, Nuvistors. - Tel A. Fletcher 0602397446 . 18633

VISION ENGINEERING COMPARASCOPE SER. NO. 139

with binolulars, as new
Price $£ 1,000$ o.n.o.

Please contact J. R. Butt C. E. Hammond Co. Ltd. 105-109 Oyster Lane Byfleet, Surrey
Tel: Byfleet 51051
(8618)

ENDLESS LOOP CASSETTES

Large quantity of high quality cassettes for sale $21 / 4$ spool loaded with $1 / 4$ graphited tape Min qity order 6. Cash with order Price inc VAT and post 60p.
WEM Led., 66 Offley Road, London,
SW9 OLU. Phone 01.7356568 . 8622)

SMALL MANUFACTURERS, ETC. We have a comprehensive stock of electronic components at reason. able prices. Enquiries welcomed. Harrogate HG1 $5 N N$. Tel: 0423 66659.
W.W. 50 MHZ oscilloscope with 500 MHZ tube almost complete/working 15 KV EHT parts, cost 150 , selling for 550. - $01-653$ 6179. Buyer col-
lects Croydon.

RECEIVER'S SALE. Offers are invited for a quantity of test equip. ment including Tektronix scope, etc., plus optical scanners. Telephone J. C. Malthouse, Malthouse \& company, 14 Castle Street, Liverpool L2 ONE - 051-227 3471

18614
EXC̄LUSIVE LINSLEY-HOOD designed moving coil head amplifier. f46 inc P\&P etc. - Lyden Audio
Ltd. 38 The Street Uley, Glos Ltd., 38 The Street, Uley, Glos.

COLOUR, UHF AND TV SPARES CEEFAX, ORACLE IN COLOUR. MANOR SUPPLIES "EASY TO Ancluding TEXAS Decoder. Aerial Including TEXAS Decoder. Aerial further connections to set. Full fachities, mixed TV programme and Teletext, Newsflash. Update, and many special features not found in other units. Demonstration model in operation at 172 West End Lane, NW6. Phone or write for further information.
TEXAS TIFAX XM11 Decoder module, new, £130, p/p \&1.00. GENERATOR PLUS CROSS HATCH KIT (MK4) UHF Aerial input type KiT (Mk4) UHF Aerial input type B. Y, Luminance combinations, Grey scale etc. Pushbutton controls scale etc. Pushbutton controls.
Battery operated $£ 35^{*}$, De Luxe case $£ 4.80^{\circ}$, aluminium case 22.40^{*}, case $\begin{aligned} & \text { battery holders } £ 1.50^{*} \text {, mains sup }\end{aligned}$ ply kit $\mathbf{\& 5 . 7 8 ^ { \circ } , \mathrm { p } / \mathrm { p } \text { £1.00. Built and }}$ tested (battery) $£ 58^{*}$, p / p plon $£ 1.20$.

CROSS HATCH KIT, UHF Aerial nput type, also gives peak white and black levels. Battery operated, E11" $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey Scale kit $82.90^{*} \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Aluminium case $£ 2^{*}, p / p$ 85p. Cross Hatch Unit,
complete and tested in De Luxe case $£ 20.80^{*}, \mathrm{p} / \mathrm{p}$ £1.
"WIRELESS WORLD"' TV Tuner and FM Tuner Projects by D. C. Read. Kits of parts available, CRT test and reactivator kit for colour and
mono $£ 19.80 \mathrm{p} / \mathrm{p}$ £1 20 UHF Signal mono $£ 19.80 \mathrm{p} / \mathrm{p}$ £1.20. UHF Signal Strength Meter kit $£ 18^{*} \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. 625 TV IF Unit for Hi-fi amps or tape recording $£ 6.80 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Decca Colour TV Thyristor Power Supply Unit, incl, H.T., L.T. etc. Incl. cir cuits $£ 3.80 \mathrm{p} / \mathrm{p}$ £120 Bush A823 (A807) decoder panel ${ }^{27.50} \mathrm{p} / \mathrm{p}$ IF. Bush 161 T-B panel A634 \&3.8. Portable TV 11 V stab power supply Portable TV 11V stab power supply
unlt $£ 4.80 \mathrm{p} / \mathrm{p}$ £1. Bush CTV 25 unit $44.80 \mathrm{p} / \mathrm{p}$ fl. Bush CTV 25 Convergence Panel plus yoke, blue lateral $£ 3.60 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Philips Single
Standard Convergence Units complete, incl. 16 controls $\mathbf{~} 3.75 \mathrm{p} / \mathrm{p}$ plete, incl. 16 controls es.75 p/p Plessey, £6 p/p 90p. Mullard AT 1023/05 Converg. Yoke $£ 2.50 \mathrm{p} / \mathrm{p}$ 75 p . Mullard or Plessey Blue Laterals 75p p/p 35p. BRC 3000 type
Scan Coils ${ }^{2} 2$ p/p 90 p . Delay Lines: Scan Coils $£ 2$ p/p $90 p$. Delay Lines:
DL20 £3.50. DL50 £3.50. DLIE, DLI 85p p/p 45p. Lum delay lines 50p p/p 40p, G8 Tripler 66 . BRC 300 Tripler $66.60 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Others avail able. Philips G8 Decoder part$\begin{array}{ll}\text { complete } £ 2.50 \mathrm{p} / \mathrm{p} \\ \text { Ex-Rental Panels. Decoder } & 2040 \\ \mathbf{5 5 . 0 0}\end{array}$ Ex-Rental Panels, Decoder 55.00 . Time Base $55.00, \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. VARICAP ELC 1043 £4.50, ELC $1043 / 05 £ 5.50$. VLC : ELC 1042 £4.80, Philips VHF £3.80. Salvaged UHF \& VHF Varicaps £1.50 p/p 35p. VARICAP CON TROL UNITS, 3 position, T 1.20 .4 PSN $£ 1.50$, 5 PSN $£ 1.80,{ }^{2}$ PSN e2.80. Special offer 6 position El,
$\mathrm{p} / \mathrm{p} 35 \mathrm{p}$. UHF Transd. Tuners incl. p/p 35 p . UHF Transd. Tuners incl.
slow motion drive $£ 2.80,4$ position Slow motion drive $£ 2.80$. 4 position
push button $£ 2.50 .6 \mathrm{psn} . ~ £ 4.20$, p / p
 p/p 30p. Thorn 850 Dual Std. Time B/p pase panels 50 p. Philips 625 IF panel incl. oct. 50p p/p 70p. Mullard Mono Scan Coils for
Philips Stella, Pye, Ekco, Ferranti, Invicta 22.00 p/p 85 p . Large selec tion LOPTs, FOPTs available for most popular makes. MANOR SUP PLIES 172 WEST END LANE LONDON, N.W.6. Shop Premises Callers welcome. Thousands of ad ditional items available not normally advertised. (Nos. 28, 159 buses or
West Hampstead-Bakerloo Line and West Hampstead-Bakerloo Line and British Rail), Mail Order: 64
Golders Manor Drive London Golders Manor Drive, London, Please ADD 12t\% TO ALL PRICES (EXCEPT WHERE MARKED*. V.A.T. (EXC
8%).

AGENTS WANTED

[^12]INVERTERS
High quality DC-AC. Also "no break' [2 ms] static switch, 19" rack. Auto Charger.

Interport Mains-Store Litd. P0B 51, London W11 3BZ Tel: 01-727 7042 or 0225 310916 ผ92

ARTICLES WANTED

WANTED IN LARGE QUANTITIES

Electronic components, resistors capacitors, potentiometers. chassis loudspeakers. semi-conductors, diodes. TV tubes. especially colours. etc., etc., etc. First or second grades. Finished or incomplete products. record players, amplifiers, radios. tuners, tape recorders, enclosures. etc, etc., etc
Ne will buy complete factories and Day cash

TEL. $01-4914630$
E.C.E. AVON HOUSE

360/366 OXFORD STREET

$$
\text { LONDON, W. } 4
$$

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of ander
supplies, PC boards, components, etc. regardless of condition or qualities. Call 01-771 9413. (8209

TURN YOUR SURPLUS Capacitors, transistors, etc., into cash. Contact CULES-HARDING \& Co., 103 South Brink, Wisbech, Cambs, 0945-4188. Immediate settlement. We also welcome the opportunity to quote for
complete factory clearance. (7439

Specialised PCB Service

Layouts - Photography - Drilling
Roller Tinning - Gold Plating
Legend Printing • Protling
Special quick prototype service
Crofton Electronics Limited 35 Grosvenor Road, Twickenham Middlesex - Tel.01-891 1923

8210
AIRTRONICS LTD. for coil winding Large or small production runs. Bobbin - Layer - Wave - Bifilar Limited Ginature Toroidals, Airtronics Limited, Gardner Industria! Estate, Kent House Lane, Beckenham, Kent BR3 1UG. Tel. 01-659 1147.

BATCH Production Wiring and Assembly to sample or drawings McDeane Electricals 19B Station Parade Ealing Common, London W.5. Tel: 01 -992 8976.

A COMPLETE and efficient PCB Service from layout through to as sembly. Incorporating quality reliability and price. No order too large or too small. Also mechancal detailing is undertaken. For detact: J. S. Roberts on $01-5532577$ H.R.C. Artwork Design. 45 High Street, Maldon, Essex. (7731

* MINICOMPUTERS * PERIPHERALS * INSTRUMENTATION

For fastest. best CASH offer, phone COMPUTER APPRECIATION Godstone (088 384) 3221

WE PUREHASE ALL FORMS. OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

SPOT CASH

CHILTMEAD LTD.

7. 9,11 Arthur Road Reading. Berks.

Tel. 10734) 582605
ELECTRONIC EQUIPMENT and components bought and sold. Anytime considered, immediate cash settlement. Ring Mr Q. Yateley 0252871048 any time.

18407
WANTED ALL TYPES R/T equipment urgently, good prices paid, Ring Nauto Telecommunications Ltd, Norwich (0603) 24936 29444.

VACUUM

Impregnating and degassing pumps, tanks, systems, diffusion pumps, components, etc New and secondhand.

BARRETT'S OF CROYDON
1 Mayo Road Croydon, Surrey
01-684 9917
(8653)

ARTICLES WANTED
 MINICOMPUTERS PERIPHERALS INSTRUMENTATION

For fastest, better CASH offer Phone

CHILTMEAD LTD. Reading (0734) 586419

WANTED, all types of communications receivers and test equipment. Detalls to R. T. \& I. Electrontc Rd.. London, E.ll. Ley 4986 . (63

ELECTRONIC SCRAP. Components, etc., Receivers, Transmitters Tes Equipment wanted. Ferrographs from $£ 15$ in stock- Contact M \& B 1. Tel. Leeds 35649 .

WE PURCHASE FOR CASH the ollowing: R. F. Power Transistors. Varactor Diodes, and all special components normally used in VHF/ MODULAR ELECTRONICS 95 High Street, Selsey Sussex. PO20-0QL Tel. Selsey $2916 . \quad$ (7696

STORĀ̄E SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient supplies, PC boards, components supplies, PC boards, components quantities. Call 01-771 9413. (8209

PCB CLEANING PLANT and tem perature cabinet. - Batvale Ltd Tel. Ely 778756.

CAPACITY AVAILABLE

PCB ARTWORK DESIGN SERVICE with component notation masters $\begin{array}{lll}\text { and assembly } & \text { drawings. PADS } \\ \text { Electrical Ltd, } & 01-850 \quad 6516, ~ & 45\end{array}$ Southwood Road, New Eltham SE9.

TECHNOVA DEVELOPMENTS offer a comprehensive and fast service in: quality P.T.H., single and
double sided PCBS: precision artwork and draughting services Send drawing etc. for quotation Samples available. Technova De velopments 136 Whitehall Road Norwich, Norfolk. Tel. $0603 \underset{(8355}{28015,}$

PRINTED CIRCUIT ASSEMBLY. Assembly services to customer specification. Also, design, layout and wiring service available. A. E, Electronics,
Stockton Heath Warrington WA
WA 2AY. Tel. 0925-68339. (7912

HIGHWAY ELECTRONICS. Logic design. PCB artwork, assembly, testing, custom built electronics, Unit. 112, Springvale Ind. Estate, phone Cwmbran (06333) 68042 (8347

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to under take assembly and testing of circuit boards or complete units in addition to contract development.
We can produce. test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands.
Telephone to arrange for one of ou engineers to call and discuss your requirements, or send full details for a prompt quotation.

TEL. 01-253 4562
or reply to Box No. WW 823

5MALL BATCH PRODUCTIONS wir ing assembly to sample or draw assembly. Rock Electronics, 42 assembly. Rock Electronics,
Bishopsfield, Harlow, Essex. 0279 33018. (7674

PRODUCTION PROTOTYPE DESIGN Work Req. from PCB \& Sub Assem bly to Complete Instruments and ing PC. Wire Wrapping, Coil wality ing, PCB Design. - For a quality
service contact Mr. Bartram, Batvale Ltd, tel. Ely (Cambs) 778756.

TEST EQUIPMENT

We are disposing of a consid erable amount of good quality test gear including Tektronic scopes at silly prices

* Ring Derek Pattinson now and discuss your requiremeris. Crofton Electronics Ltd. 35 Grosvenor Road.
Twickenham, Middlesex Tel. 01-891 $1923 \quad(8211$

PRECISION SHEET METAL work. chassis, panels, etc., steel, stainless or aluminium, long/short runs, Rd Monks Road, Exeter 56280 36489.

CIRCUIT DESIGN and prototpye construction. Instrumentation, test yigs, production run designs to audio, analogue, digital, SC/MP microprocessor circuits our specialities. HAMILL ELECTRONICS LTD., Box BCM-2090, London WCIV 6XX. Tel.: 01-542 9203. (7984

DESIGN AND DEVELOPMENT, competent engineering effort available for all aspects of electronic design. Single circuits or complete systems. 80 Wheathand seyside, 051-639-9122. (8615

EURO CIRCUITS

Prinied Circult Boards - Master Prinitd Circull Boards - Photography - Legend layouts - Fhotlegraphy - Legend plaung - Flexible films - Convention al fibre glass - No order too large cx too small - Fast turnround on prototypes All or part service avallable NOW, 7669 EURO CIRCUTS TD. Wghtield House Nr. Sevenoaks. Kent. wx2344

DESIGN SERVICE. Electronic Design Service. We offer a Design Sign Service. We offer a Despopment and Production Service with many years' experience wice with many years experience working for Civil and in Digital and Analogue Instruin Digital and Analogue Instruments, RF Transmitters, Receivers, cluding U.H.F. TV Transmitters and Monitors, Cameras, Motoriszed Pan and Tilt Heads, general electronics, including Micro Processors using the latest techniques and hardware. Phone or write Mr. Falkner R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesex. Phone Ashford 53661 .
(8341

COURSES

RADIO AMATEURS EXAMINATION CITY \& GUILDS. Pass the impor. tant Examination and obtain your G8 licence with an RRC Home-study course. For details of this and other courses (GCE, professional examnations etc), write or phone: The Rapid Results College, Dept: JWI, Careers Advisory Service 01-947 7272 or ring 01-946 Service, 01-947 tus only (24 hr answering service) tus only (24 hr answering service).
$(8575$

TO AIL MANUFACTURERS AND WHOLESALERS IN THE ELECTRONIC RADID AND TV FIELD
BROADFIELDS \&
MAYCO DISPOSALS
will pay you top prices for any large stocks of surplus or redundant components which you may wish to clear. We will call anywhere in the United Kingdom

2 LODGE LANE
NORTH FINCHLEY. LONDON N 128 8.JG Talophone Nos. 01-445 0749/445 2713

After office hours 9587624
(8632)

HRO Rx5s, etc. AR88, CR100, BRT400 G209, S640, etc., etc. in stock. R. T. \& I. Electronics, Ltd, Ashville Old Hall, Ashville Rd. London, E11. Ley 4986 . (65

SIGNAL Generators Oscilloscopes. Output Meters, Wave Voltmeters, Frequency Meters Multi range Meter, etc., etc., in stock. R. T. \& I. Electronics Lid, Ashville Old Hall, Ashville Rd., London E.11. Ley 4986.

FOR
 CLASSIFIED ADVERTISING RING BARRY LEARY ON 01-261 8508

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

Rate £1.10 PER LINE.Average six words per line Minimum THREE lines

- Name and address to be included in charge if used in advertisement
- Box No Allow two words plus 50p
- Cheques, etc.. payable to "Wireless World" and crossed "\& Co.
\qquad
\qquad
\qquad
\qquad

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION,
NUMBER OF INSERTIONS.

TWICE the informatio
 I.C.E. MULTIMETERS
 in HALF the size
 The I.C.E. range of multimeters provides an

 unrivalied combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions. All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc., and a 50 -plus page, fully detailed and illustrated Operating and Maintenance ManualSupertester 680R
(illustrated)
(illustrated)
$40 \mathrm{kQ} \Omega \dot{\mathrm{V}} . \pm 2 \%$ fsd on a c

- 80 Ranges -10 Functions
$\cdot 140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£ 3 2 . 0 0} \mathbf{+}$ VAT
(For mall Order add 80ρ P\&P)

Supertester 680G
$.20 \mathrm{kS} / \mathrm{V} .2 \% \mathrm{fsd}$ on d
$4 \mathrm{kR} / \mathrm{V}, \pm \%$ fsd on a.c. 48 Ranges - 10 Functions $109 \times 113 \times 37 \mathrm{~mm}$ $\mathbf{£ 2 4 . 5 0}+$ VAT (For Mall Order add 80 p P\&P)

Mircotest
$20 \mathrm{~V} / \mathrm{V} \pm 2 \%$ isd on dc - 40 Ranges -8 Functions

Complete with case -
only $93 \times 95 \times 23 \mathrm{~mm}$
only $93 \times 95 \times 23 \mathrm{~mm}$
$£ 16.60$ + VAT
(For Mall Order add 80p P\&P)

Electronic Brokers Ltd. 49-53 Pancras Road, London NW1 20B Tel 01-837 7781

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 136-151

	PAGE
Acoustical Mfg. Co. Ltd.	
Advtg. Standard Authority	117
Ambit International	38, 116, 124
Antex	65
Aspen Electronics Ltd.	26
Astra-Pak	121
Audix Ltd.	41
Aura Sounds	14
Avo Ltd.	11
Barr \& Stroud Ltd.	66
Barrie Electronics Ltd.	121
Bentley Acoustic Corp. Ltd.	118
Beyer Dynamics (GB) Ltd.	20
Bib Hi-Fi Accessories	Cover IV
Bi-Pak Semiconductors Ltd.	115
Boss Industrial Mouldings Ltd.	18,19
British Nat. Radio	130
Bulgin Electronics Soundex Ltd.	13
Bull. J.	108
Cambridge Learning	23
Cartson Electronics Ltd.	99
Carter Associates	36
Catronics	121
CEC Corporation	
Chiltmead Ltd.	. 119
Chromasonics	. 28
Circuit Designs No. 3	135
C. N. Stevenson	. 102
Colormor (Electronics) Ltd.	. 117
Comark	. . 27
Compec	131
Computer Appreciation	133
Crellon (R.C.A. Tubes)	. . 9
Crimson Elektrik	. 100
Danbridge UK Ltd	132
Datong	
Dau (UK)	24
Dawes Electronic	110
Display Electronics	116
Doram Electronics	12,30
Electronic Brokers Ltd.	26, 127, 152
Electronic Brokers Ltd. (Second U	puter Div.)
-....'	129
Faircrest Eng. Ltd.	. 110
Farnell Instruments Ltd.	. 20
Feedback Instruments Ltd.	87
Future Film Developments	34
Fylde Electronic Labs Ltd.	. 12
GEC M-O Valve	35
Genrad Ltd.	
Gould Advance	42
Greenway Elec. Comps.	134

Greenwood Electronics Ltd. PAGE 13, 35
Hall ElectricHarmsworth Townley \& Co. Ltd.Harris Electronics (London) Ltd.Harris, P.
Hart Electronicsndustrial Tape Applications
Integrex Ltd. 22
.$\quad 24$
$4 \quad 20$14, 20147
Interface Quartz Devices Ltd ITT Mercator 34
88
JPS Associates 36Jordan Watts LidKeithley lnstruments LtdKGM ElectronicsLabgear Ltd
Langrex (R.S
Lascar ElecLevell Electronics Lid.
Lowe Electronics Ltd
Marconi Instruments Ltd.
Martin Associates 10
Modern Book, The 149
MHZ Electronics 39
Neal Ferrograph 8
Nexus/Click 130,134
. .111
OK Machine \& Tool
Pattrick, J. B.Philips CassettesPowell, TPowertran ElectronicsPowertran ElectronicsPrecision Petite LtdPye Electro Devices LtdPye Unicam Ltd.Q. Max Electronics Ltd.
Quality Electronics LtdPAGE
Quality Electronics Ltd. 40
130
Racal Thermionic 29
Radio Components Specialists 28
113
Radio Shack 111
Radio Society of Gt. Britain
Radio Society of Gt. Britain 118
120
Research Machines Lid. $\begin{array}{r}32 \\ \hline\end{array}$
Sabtronics (UK) Ltd 15
Samsons (Electronics) Ltd. 114
114
Sandwell Plant Ltd.
Scopex Instruments 112
Scott, James (Elec. Eng.) Ltd 14
30
Sescom. 140
118
Service Trading Co 109
Servo \& Electronics Sales Ltd. 133
Shure Electronics Ltd. Cover iii
Sintel78
120
Leevers-Ri
Leevers-Rich Equipment Ltd.
Leevers-Rich Equipment Ltd. 24 S.M.E28. 134 Southwest Technical Prods. Ltd
Southern ElectronicsSonic Hi Ei DironicsSonic Hi-Fi Discoun
Sonic Sound Audio
11033
39
Sota Communication Syst.
Sowter, E. A Maclnnes Laboratories Ltd
Magnum Audio39 Special Products Lid.
149
22
Mapnum Audio Electronic Supplies
Sugden, J. E. \& Co. Ltd. Maplin Electronic Supplies
Marco Trading 120 26
133
Surrey Electronics Ltd.
Surrey Electronics Ltd.
Swanley Electronics Ltd. 114Technomatic Ltd
124
Tektronix (Telequipment)77
120
Trident Exhibitions 103
Unilab 132
Valradio Ltd. 40
Vero Electronics Ltd
Vero Electronics Ltd
OMB Electronics 35

Vero Speed

Vortexion Ltd
22133
West Hyde Developments Ltd.
West London Direct Supplies 100
132
Wilmot Breeden Electronics Ltd. 21
31
Z. \& 1. Aero Services Ltd. 26. 110

Japan: Mr Inatsukı. Trade Medıa - IBPA (Japan) B 212 Azabu Herghts. 1 -5-10 Roppongı. Minato-ku. Tokyo 106 Telephone: (03) 585-0581

United States of America: Ray Barnes

${ }^{-}$IPC Business Press, 205 East 42nd Sireet New York, NY 10017 - Telephone. (212)6895961-Telex 421710 Mr Jack Farley Jnr, The Farley Co. Surte 15884, 35 East Wacker Drive. Chicago, Illinois 60601 - Telephone (312) 6 3074.

Mr Victor A. Jauch. Elmatex Internatronal, PO Box 34607,
Los Angeles. Calif 90034. USA - Telephone (213)

[^13]

New! Equalization analyzer...

Balance a system...Balance a budget.

Quick and accurate adjustment of sound system frequency response is finally within the reach of most budgets. The Shure M615AS Equalizarion Analyzer System is a revolutionary breakthrough that lets you "see" room response trouble spots in sound reinforcement and hi-fi systems-without bulky equipment, and at a fraction of the cost of conventional analyzers.
The portable, 11-pound system (which includes the analyzer, special microphone, accessories, and carrying case) puts an equal-energy-per-octave "pink noise" test signal
into your sound system. You place the microphone in the listening area and simply adjust the filters of an octave equalizer (such as the Shure SR107 or M610) until the M615 display indicares that each of 10 octaves are properly balanced. You can achieve accuracy within $\pm 1 \mathrm{~dB}$ without having to "play it by ear.
Send for complete descriptive brochure

Shure Electronics Limited
Eccleston Road
Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

TECHNICORNER
The M615 Analyzer's display contains 20 LEDs that indicate frequency response level in each of 10 octave bands from 32 Hz to $16,000 \mathrm{~Hz}$. A rotary hi/lo envelope control adjusts the HI LED threshold relotive to the LO LED threshold. At minimum setring, the resulting frequency response is correct within $\pm 1 \mathrm{~dB}$. Includes input and microptrone preomplifier overtood LEDs A front ponel switch selects either flot or "house curve" equalization.
The ES615 Omnidirectional Analyzer Microphone (also available separarely) is designed specifically for equalizarion onolyzer systems.

[^0]: For full technical data write tor information 10 Greenwood Electronics. Portman Road. Readıng. RG3 1 NE Telephone Reading (0734)595844 Telex 848659

[^1]: Labgear
 Labgear Limited Abbey Walk
 Cambridge CB1 2RO England Telephone: 022366521 (7 lines) Telex: 81105 LAB Telegrams: Labgear. Cambridge

[^2]: Toolrange Ltd Upton Road, Reading RG3 4JA. Special Products Distributors Ltd 81. Piccadilly. London. W1 ITT Electronic Services Edinburgh Way. Harlow, Edinburgh Way. H
 Essex CM20 2DF.

[^3]: J.P.S. ASSOCIATES, Belmont House, Steele Road, Park Royal, London NW 10 7AR. Telephone: 01-961 1274

[^4]: *M. G. Duncan, D. Rosenberg, \& G. W. Hoffman. Journal of the Audio Engineering Society. Oct. 1975, vol. 23. Design criteria of a universal compander for the elimination of audible noise in tape, disc, and broadcast systems.

[^5]: *The idea arose in discussions with Mr V. A. Daniels and Mr B. Peers of the Audio-Visual Centre, University of Hull. A small feasibility-study grant was given by the Science Research Council.
 \dagger It is mentioned in a paper by J. F. Butterfield (reference 2).

[^6]: ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND

[^7]: (B) SCOPEXInstruments Ltd, Pixmore Industrial Estate, Pixmore Avenue,

[^8]: Telemotive UK Limited is a Company in association with a major U S.A manufacturer with world leadership in the adio control of industrial machines systems, and processes. in colliston prevention in remote positioning and in other industrial electronics activities

 Our principal products are founded on the Near Field Induction Effect and on other inductive techniques in the 300 kHz band No other U.K Company has a comparable product line, and our business therefore offers engineering experience of unusual interest Training in our techniques is provided

 Our current requirement is for a young engineer with versatile abilities because at different times the work will involve application engineering, testing commissioning of systems on customers' sites, field and base service, the anglicisation of designs originating in other countries, and a measure of production control. In each o these fields there is scope for personal engineerıng contributions.

 The position involves some travelling within the $U K$ and will take the engineer into a wide variety of industries

 Telemotive is a good employer It only employs people who are exceptronal in their particular job. and it treats them accordingly The salary will depend upon the capability of the chosen applicant
 A company car is provided
 Please forward personal details to

 ## Telemotive U.K. Limited

[^9]: CREATIVE graduate electronic in video and sound techniques to assist in development of new products on a part time basis. North West London area. -
 $202-8495$.

[^10]: LAB CLEARANCE: Signal Gener ators; Bridges; Waveform, transistor analysers; calibrators; standards; millivoltmeters; dyna. mometers; KW meters; oscilloscopes; recorders; Thermal, sweep deviation. Tel. 040-376236. 18250

[^11]: TRANSFORMERS for sale. Redund ant stock. $220 / 440 \mathrm{~V}$ input, 12 V output. 12 Vg Rating. Price to be agreed, minimum order quantity 100. TDS Dextralog Limited. Whitebirk Estate, Blackburn, Lancs (0254) 662244

[^12]: AN AGENT required with well established connections in the electrical component field in the north east, to work on a commission
 basis. Box No. WW8481.
 (8481

[^13]: Mr Jack Mentel. The Farley Co. Suite 650. Ranna Building. Cleveland. Oho 4415 - Telephone (216) 6211919 Mr Ray Rickles. Ray Rickles \& Co, PO Box 2008. Miami Beach, Florrda 33140 - Telephone (305) 5327301 Mr Jim Parks. Ray Rickles \& Co.. 3116 Maple Drive N.E
 Atlanta. Georgia 30305 Telephone 404) 237743 Atlanta. Georgia 30305 Telephone (404) 2377432 Mike Loughlin. IPC Business Press. 15055 Memorral. Ste 8673
 Cansda: Mr Colin H MacCulloch. International Advertising
 Consultants Ltd., 915 CarIton Tower. 2 Carliton Street, Toronto 2 - Telephone (416)3642269

 - Also subscription agents

