

You've neverseen a faster, more accurate way of measuring frequency response from 30 Hz to 110 MHz

The TF 2370 Spectrum Analyser employs advanced technology to provide a complete system for measuring response, level, frequency, signal purity, modulation and much more, with a speed and degree of accuracy previously unobtainable. A digital memory permits the use of a standard monitor tube and internal logic selects gain ratios and sweep speeds for optimum performance. The specification speaks foritself:

* Flicker-free 100 dB display of frequency response from 30 Hz to 110 MHz on a high brightness c.r.t.
* Electronic graticule, with a $\pm 15 \%$ variation of horizontal divisions for pin-point positioning against waveform display * Three amplitude scales: one linear and two logarithmic with expansion to $1 \mathrm{~dB} / \mathrm{div}$. with an accuracy of $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$ * 9-digit electronic counter automatically gives centre frequency, reads any other frequency corresponding to manually-adjusted 'bright line' position on display, or the difference frequency between the two, at the press of a
button. All to an accuracy of $\pm 2 \mathrm{~Hz} \pm$ reference frequency accuracy on high resolution and manual. Internal reference frequency provided with setting accuracy of 1 in 10^{7}. * Internal generator supplies synchronous signal source for measuring such items as networks and filters.
* For"comparative measurements, unique memory storage system will retain one display indefinitely as required, for simultaneous display with response produced by items under test.
* Automatic adjustment of amplifier gains to give optimum lowest-noise performance with full protection against input overloading
* Automatic selection of optimum sweep speed
* With the 5 Hz filter, signals 100 Hz from a response at 0 dB can be measured to -70 dB .

Please send for full information or ask for a demonstration seeing is believing!

mi MARCONI INSTRUMENTS

Marconi Instruments Limited Longacres • St. Albans • Hertfordshire - England AL4 0JN • Tel: (0727) 59292 - Telex: 23350 Marconi Electronics Inc • 100 Stonehurst Court - Northvale - New Jersey 07647 USA - Tel: (201) 767-7250 • Twx: 710-991-9752

Marconilnstruments - 32 avenue des Ecoles - 91600 Savigny-Sur-Orge France - Tél: 996.03.86. Télex: $600541 . F$ Marconi Messtechnik GmbH - 8000 München 21 Jörgstrasse 74 - West Germany - Tel; (089) 582041 - Telex: 5212642

Scanning electron microscope photo of amorphous selenium as used for charge carrier layer in photocopying machines. Photo by Manfred P. Kage, made available by SEL. Stuttgart.

IN OUR NEXT ISSUE Digital storage for oscilloscopes, allows waveforms to be stored for later examination. Pre-trigger and step elimination are provided in an add-on unit.
Capacitance meter gives direct reading of capacitance in the range 1 pF $100 \mu \mathrm{~F}$, using the diodepump technique.

Electronic organ uses sine wave synthesis to simulate a pipe organ, and can accept two keyboards of 5 octaves each and a $21 / 2$ octave polyphonic pedal board.

Eurrent issue price $\overline{4} 0 \overline{0}$, back issue (if available) 50p. at Retail and Trade Counter, Paris Garden, London SE1. Available on microfilm: please contact editor.
By post, current issue 55 p, back issues (if available) 50p. order and payments to Room 11. Dorset House, London SE1 glu
Editorial \& Advertising offices: Dorset House. Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620. Advertising 01-261 8339 Telegrams/Telex: Wiworld Bishespres 25137 BISPRS G. Cables: Ethaworld, London SE1. Subscription rates: 1 year: $£ 7.00$ UK and $\$ 23.40$ overseas ($\$ 24$ USA and Canada).
Student rate: 1 year, £3.50 UK and $£ 4.50$ overseas ($\$ 11.70$ USA and Canada).
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath. Sussex. RH 16 3DH. Telephone 044459188 , Please notify a change of address.
U'SA mailing agents: Éxpediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022, 2nd-class postage paid at New York.
IPC Business Press Ltd, 1978
ISSN 00436062

ELECTRONICS / TELEVISION /RADIO / AUDIO

wireless world

SEPTEMBER 1978 vol 84 No 1513

33 Ideas for sale

34 Stereo f.m. tuner, MkII by L. Nelson-Jones
40 Instant tuning by Cathode Ray
41 Logic design - 15 by B. Holdsworth and D. Zissos
44 Sixty years ago
45 The f.e.t. as detector by Roger Amos
49 Literature received
50 Frequency synthesizers - 1 by R. Thompson
54 Versatile microwave source by G. D. Lean
58 Tunable audio equalizer by Martin Thomas
64 World of amateur radio
67 Trends in microprocessors by David Russell
71 News of the month Government conclusion on c.b. Slow-scan tv by telephone Mini-Nyquist speech prototypes

75 Mains interference and filtering by I. Catt, M. F. Davidson and D. S. Walton

79 Letters to the Editor

Mobile radio bandwidths Audio equipment reviews Poor prospects in electronic engineering

83 New products

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet. Herts. EN5 5SD
Tel. 01-449 5028/440 8686

I NTERNATIONAL DANAVOX (GT. BRITAIN) LTD.
"BROADLANDS" BAGSHOT ROAD. SUNNINGHILL, ASCOT, BERKS. TEL: 0990 23732/6 TELEX: 84584
of research... on commonents and accessoroiss tor dicictiting machines, tele-communications, hearing aids

WW-027 FOR FURTHER DETAILS

\section*{Understanding Digital Electronics New teach-yourself courses Design of Digital Systems is written for the engineer seeking to learn more about digital electronics its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers The contents of Design of Digital Systems include: In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace Tomorrow a digital display could show your vehicle speed and petrol consumption. you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic Learning by self-instruction has the advantages of being faster and more thorough than classroom learning You work at your own pace and must respond by answering questions on each new piece of information before proceeding After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological woirld around you e total cost is only 	The six volumes of Design of Digital Systems cost only:	\&8.10
And the four volumes of Digital Computer Logic and Electronics cost only:		
But if you buy both courses, the total cost is only:	\& 90p post	 \qquad Flow Charts \& Algorithms}

Book 1 Octal. hexadecimaland binary number systems, conversion between number systems, representation of negative numbers. complementary systems; binary multiplication and division
Book 2 OR and AND functions, logic gates. NOT, exlusive OR NAND, NOR and exclusive.NOR functions, multiple input gates, truth tables. De Margans Laws, canonical forms, logic conventions, Karnaugh mapping, three-state and wied iogic
Book 3 Halt adders and tulı adders. subtractors, serial and parallel adders, processors and arithmetic logic units (ALUs), multiplication and division systems
Book 4 Flip flops, shift registers, asynchronous and synchronous counters, ing, Johnson and exclusive-OR teedback counters, random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators keyboard encoding, decoding display data register systems. control unit, program ROM, address decoding instruction sets. instruction decoding, control program structure
Book 6 Central processing unit (CPU), memory organisation character representation. program storage, address modes. input output systems, program interrupts, interrupt priorities, programming. assemblers computers, executive programs operating systems and time sharing

Digital Computer Logic and Electronics is designed for the beginner No mathematical knowledge other than simple arithmetic is assumed though the student should have an aptitude for logical thought It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics Everyone can learn from it - designer executive scientis! student. engineer

Contents include Binary octal and decimal number systems conversion between number systems AND. OR NOR and NAND gates and inverters, Boolean algebra and truth tables. De Morgans Laws design of logic circuits using NOR gates R-S and J-K firp flops binary counters shift registers and hall adders

CAMBRIDGE LEARNING ENTERPRISES, UNIT 30, RIVERMILL SITE FREEPOST, ST. IVES. HUNTINGDON, CAMBS. PE 17 4BR. ENGLAND TELEPHONE: ST. IVES (0480) 67446

Phoprietors: oathioge lid. reg. office: rivermill lodge, st. Ives
Giro Ac. No. 2789159
REGD. IN ENGLAND No. 1328762
help you present
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions

THE ALGORITHiVI WRITER'S GUIDE explans how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought Size A5, 130 pages This book is a MUST for those with things to say

$+45 p$ post $\&$ packıng by surface mail anywhere in the world Airmail extra

GUARANTEE

Giro Ac. No. 2789159
If you are not entirely satisified your money will be refunded
\lceil Cambridge Learning Enterprises, Unit 30 . Rivermill Site
| Freepost. St. Ives, Huntingdon, Cambs. PE 17 4BR England
Please send me the following books
.sets Digital Computer Logic \& Electronics @ E5.50.p\&p included
sets Design of Digital Systems @ £9.00, p\&p included Combined sets@€13.00.p\&p included
The Algorithm Writer's Guide @ £3.40, p\&p included

Name

Address

I enclose a checive $P U$ payable to Cambridge Learning Enter prises for k
Please charge my 'Access Barclaycard Visa Eurocard Mastercharge, Interbank account number
Signature
deleted as appropriate
Telephone orders from credit card holders accepted on 0480 67446 (ansatone) Overseas custumers should send a bank draft in sterling diawn on a London Bank

WW30

INSULATE THAT CHASSIS, OR COMPONENT,
THE EASY WAY BY MOUNTING WITH TRANSIPILLARS

FOR
STRENGTH

INJECTION MOULDED NYLON PILLARS WITH INSERTS MOULDED IN FOR SUPER STRENGTH

TRANSIPILLARS

ARE
STRONGER THAN ANY SIMILAR DEVICES HAVING MECHANICALLY ASSEMBLED INSERTS

SIZES FROM 6BA ½"LONG TO OBA 23/4" LONG

METRIC EQUIVALENTS ALSO AVAILÁBLE
MIXED TERMINATIONS
(E.G. 2BA ONE END, 4BA AT OTHER END)

AND LENGTHS MADE TO USERS' REQUIREMENTS

DETAILS, PRICES AND SAMPLES FROM

The Ultimate uniti-mate What otherDMM offers all this for $£ 127$?

It's easy to see why Philips new PM 2517 digital multimeter is called The Ultimate Multi-mate. No other DMM comes anywhere near its
combination of laboratory performance and handy form - for such a handy price. Take a look at some of the features it packs in.

Small and sturdy construction makes this DMM ideal for bench or field work.

Full 4-digit display giving higher resolution than $3 \frac{1}{2}$ digits for 80% of measurements. Parameter readout, too.
Choice of LED or LCD display - choose the one that suits you, the price is the same. Mains unit supplied free with LED version.
Autoranging with manual override. Average auto response time less than two seconds.
True RMS rather than "average" detection. The Ultimate Multi-mate measures nonsinewave AC signals more accurately.
High accuracy necessary to make full use of those four digits. An impressive 0.2\% of reading $\pm 0.05 \%$ of scale on d.c. volts. Current to 10A via a separate input is standard, not optional, on the PM 2517.
Overload protection that is so comprehensive you have to try very hard to do any damage, even with mains and TV booster voltages.

Ergonomic design allows it to work in any position
without fuss or fumble.
\qquad
The Ultimate Multi-mate is available from Wessex Electronics Ltd.; 114-116 North Street.
Downend, Bristol BS16 5SE. Tel: (O272) 571404:
Rank Radio International, Watton Road, Ware, Herts. (Tel: Ware 3966); and Philips Service Centres
("phone 01-686-0505 for the address of your nearest branch).
It can also be purchased from the U.K. marketing organisation

Built to international standards - you name them and the PM 2517 meets them. But what else would you expect from an international company like Philips?

PhIIDS Test\&Measuring (f) Instruments

everything for the modern D.I.Y. electronics enthusiast and more.

ADDRESS

No. 1 for RCA Solid State and Industrial Tubes.

When you're the No. 1 distributor for RCA you've got to be good-big on stocks, big on service big on technical know-how. And when you're handling Industrial Tubes as well as solid state devices you really need to be on your toes. The range is tremendous-everything from CMOS to Vidicons, linear IC's to Lasers. Power transistors to LED's, Op Amps to Image Intensifiers, Microprocessors to Photomultipliers.

Crellon are at the top because they put it
all together under one roof. With some essential help from very knowledgeable in-house engineers and highly qualified sales engineers. Plus a large computer to keep control of the stock and deliveries - and provide you with fast information whenever you needit

Call Crellon when you need RCA Solid State or Industrial Tubes - you'll find it pays to go to the top.
\qquad

Address \qquad
\qquad

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance, fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messages sometimes several at a time. In such instances a positive need for communications
recording arises-a need for a system with instant message trace and replay - at the touch of a button - and at any speed to assist intelligibility.

All these facilities, and more, are available in the RacalThermionic 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to:
Racal-Thermionic Limited Hardley Industrial Estate Hythe, Southampton, SO4 6ZH England.
Telephone: 0703843265. Telex: 47600.

RACAL

Applications for this superb camera

Its inherent flexibility and sensitivity make this JVC portable camera ideal for almost any situation, including training, news-gathering, event recording, pilot commercial preparations and sport.

More new JVC units

To complement the CY-8800E camera, JVC is also initroducing a gen-lock unit (GN-8800E), 3" high-resolution viewfinder (VF-8300E), a more sophisticated electronic editing suite (CR-8500E), an automatic editing control unit (RM-85E), and a remote and sync unit (RS-8800E) for CY8800E studio applications.
Together, this equipment adds up to the world's finest $3 / 4^{\prime \prime} U$-format video system

For more information about all this new JVC video equipment. use the inquiry service to obtain literature and a list of Bell \& Howell video dealers.

Telegraph testing simplified

Lightweight, portable, Telegdata TCT10 makes light work of on-site circuits and machines.

This new Plessey instrument combines signal generator and analyser in a single briefcase-size unit enabling on-site testing of telegraph circuits and machines to be carried out speedily and with a high degree of accuracy.

Powered from the a.c. mains supply, the TCT10 gives a choice of output levels and test signals in CCITT No 2 and No 5 alphabets including the full 96 character 'fox' message, Q95 and any single character on demand

Accurate readout (to 7%) is given unambiguously on an LED scale registering up to 40% distortion early/mark bias and late/space bias

Full specification is available in a colour-illustrated brochure. See how your telegraph test operations can be improved - telex or write to: Telegdata Department, Plessey Controls Limited, Sopers Lane, Poole, Dorset, United Kingdom BH17 7ER Telex: 41272

ROBUST, FREE-STANDING
UNIT

- 24V DC POWER SUPPLY AVAILABLE
- ILLUMINATED PPM OR dB SCALE
- EACH UNIT SUPPLIED WITH INDIVIDUAL CALIBRATION CERTIFICATE

FREQUENCY RESPONSE FROM 15Hz TO 35KHz

Bulgin Electronics
One of the Bulgin Group of Companies

Park Lane, Broxbourne, Hertfordshire. Tel: Hoddesdon 64455

WW-119 FOR FURTHER DETAILS

Introducing the ORYX PSU24

a new compact self-contained 24 volt power supply unit for ORYX temperature controlled soldering irons.
Styled in tough plastic, the ORYX PSU 24 is a smart new supply unit that is self-contained and small enough for the smallest of benches. Designed to meet BSS 3456 the ORYX has all the features you
need - and more:- ON /OFF illuminated rocker switch; 3 pin non-reversible socket supplying
24 volts; a BSS 3535 transformer; an outside primary fuse; 1.5 metre white cable to BSS 6500 and fuse protection for transformer secondary wiring.
A unique feature is the facility to modify a 3 wire power system to a 2 wire fully isolated unit and vice versa

A new product from Greenwood Electronics

THE JAMES
 SCOTT

 INDUSTRIAL MMcromrrap RANGE OFEQUIPMENT

The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.
The range is made up of standard sub-assemblies which can be permutated to suit individual application requirements. Here are some sugge these units

Hewlett-Packard's HDSP-3400 series display.

The readability of the HDSP- 3400 series is excellent - designed for viewing distances of up to 33 feet Even in bright ambients the clarity is remarkable. They replace existing $0.6^{\prime \prime}$ and $0.8^{\prime \prime}$ displays and are fully compatible with them.

Significant features are:

* Nearly twice as bright as competitive devices.
* Low power requirements. Single Ga AsP chip per segment.
* Categorised for luminous intensity, assuring uniformity of light output.
* Grey packaging for optimum contrast.
* Overflow digit device available.
* Low cost. $100+£ 1.36$.

For full details of why you'd have to go a long way to beat the HDSP- 3400 series return the coupon.

 FREE
 INFORMATION SERVICE FOR MANAGERS AND ENGINEERS IN ELECTRONICS

In the electronics industry keeping abreast of new technologies, product development and market trends can be a problem. However, it need not be if you, the managers and engineers who are actively involved in the application of electronics, are regularly reading ELECTRON.
ELECTRON is committed to keeping its readers up-todate with information provided in the form of exclusive and authoritative feature articles, special reports and short, concise application notes.
Special supplements are published, each offering an in-depth appraisal of developments and innovations in specific product categories.
An informative news section provides a round-up of current events and general developments in the electronics industry.
To receive ELECTRON you will have to complete a registration card, so send the coupon below to us, at the address shown, and we will send you a registration card for completion.

It's such an easy way to keep yourself informed and it doesn't cost a penny!

Send to: ELECTRON
IPC Electrical-Electronic Press Ltd,
Room 221, Dorset House,
Stamford Street, London SE1 9LU.

I would like to receive ELECTRON
Please send me a registration card.

Name
Address

Artistic licence?

We at QUAD go to a very great deal of trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your loudspeakers is a virtually exact RIAA transfer of the voltage the pickup will produce into a stated passive load. Nothing added - nothing taken away.

A visiting journalist recently suggested that we should not do this. Final adjustment should be done by ear, he said.

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump in the quack region $(2-3 \mathrm{kHz})$, we can make most programmes sound superficially more impressive. Come to that, why not change the $3180 \mu \mathrm{~S}$ to $5000 \mu \mathrm{~S}$ adding a little more 'heft' that most people will fall for. We could even make a special model for the boom and tizz brigade.

Been to any live concerts recently?

For further details on the full range of QUAD products write to :
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PEl 8 7DB Telephone: (0480) 52561

QUAD 僁

[^0]

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited
Electron House,
Cray Avenue, St. Mary Cray.
Orpington. Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

LOW COST • MULTI-CHANNEL • HICHLY VERSATILE

Eddystone's Model 964 is already in worldwide use for high-performance single channel working. The new multi-channel Model 1964 fulfils a whole new range of communication requirements

- Pre-determined fixed frequencies
- Standard range $1.6 \mathrm{MHz}-27.5 \mathrm{MHz}$
- Versions available $100 \mathrm{kHz}-50 \mathrm{MHz}$
- Broadband or tuned RF amplifiers
- Dual diversity operation
- Remotable
- USB: LSB DSB: F1 telegraphy

Please ask for illustrated brochures giving details of complete range

483 mm panel to suit standard racking

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

Alvechurch Road Birmingham B31 3PP England
Telephone: 021-475 2231 Telex: 337081
A GEC-Marconi Electronics Company
WW - 067 FOR FURTHER DETAILS

A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU

Siockists Richards tlecuic, Gloucester; Hoopers of Ledbury; Kobbs of Ledbury; D $\& \overline{\mathrm{D}}$ Models. Hereford; Bertella. Gloucester: J Power Services \& Co. Lta., Worcester

All round performance you cantrust

This is the R.F. generator for you

It really is a pleasure to use our R.F. generator PM 5326. Frequency setting must be the easiest yet, press the range button and tune-in over $0.1-125 \mathrm{MHz}$ to one part in 10.000 with the 5 -digit LED display You have to see this to realise how it beats all those dials and multipliers that have been around for some time. Output level is stabilized over all ranges at 50 mV into 75Ω and can be attenuated right down to more than 100 dB !

That means output levels of $0.5 \mu \mathrm{~V}$ are easily available and then only via the RF OUT connector. A "double-box" construction keeps RF radiation very low, enabling you to make accurate sensitivity measurements with full confidence To these fundamental qualities of precise and stable frequency setting, wide range attenuation and excellent RFI, this generator also has:

- Frequency range 0.1 to 125 MHz
- Internal and external AM/FM modulation facilities
- Four RF sweep ranges for AM/FM IF's, Band II and Video IF's
- Variable and fixed markers
- COUNTER IN connector for checking external oscillators

[白
Pye Unicam Ltd
Philips Eléctranic Instruments Dept
York Stuet Cambridge England CB1 2PX Tel Cambridge (0223) 58866 Telex 817331

PHILIPS

[^1] WW-094 FOR FURTHER DETAILS

EIMCONEOLES
 BIMEOXES EIMBOAROS BIMDRILLS EIMDICATORS

ABS \& DIECAST BIMBOXES

5 sizes, in either ABS or Diecast Aluminium ABS moulded in Orange, Blue, Grey or Black Diecast Aluminium available in Grey Hammertone or Natural

All boxes incorporate guides on all sides for holding 1.5 mm thick pcb's and stand-off bosses in base for supporting small sub-assemblies etc. Close fitting flanged lids held by screws running into integral brass bushes (ABS) or tapped holes (Diecast)

MINI DESK BIMCONSOLES

Moulded in Orange, Blue, Black or Grey ABS and incorporating guides on all sides for holding 1.5 mm thick pcb's. 1 mm Grey Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. Stand-off bosses in base for supporting small sub-assemblies etc. 4 self adhesive rubber feet also in cluded. BIM 1005 $(161 \times 96 \times 58 \mathrm{~mm})$ £2.12*
BIM 1006
$(215 \times 130 \times 75 \mathrm{~mm})$
£2.94*

$(100 \times 50 \times 25 \mathrm{~mm})$
$(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 110 \times 60 \mathrm{~mm})$

ABS

 BIM2002/12 £0.95* BIM5002/12 BIM2003/13 £ 1.05 * BIM5003/13 BIM2004/14 f1.15* BIM5004/14 BIM2004/14 EI.15 BIM5004/14 $\begin{array}{lll}\text { BIM2005/15 } & \text { £1.30** BIM5005/15 } \\ \text { BIM2006/16 } & \text { £2.04* } & \text { BIM5006/16 }\end{array}$Hammertone £1.20* £1.50* £1.86* £2.38*
£2.38*

LOW PROFILE BIMCONSOLES
1 mm Grey Aluminium panel sits recessed into front of console base. which is moulded in Orange, Blue, Black or Grey ABS and sits on 4 self adhe-
sive rubber feet. Incorporating guides for holding 1.5 mm thick pcb, the base also has stand-off bosses for supporting small sub-assemblies etc. and ventilation slots. Front panel is held by 4 screws which run into integral brass bushes
BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.32^{*}$ BIM6006 ($143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 3.08$ *
BIM6007 ($214 \times 170 \times 82[31.5] \mathrm{mm}) £ 4.12$

Also available in Grey Polystyrene $(112 \times 61 \times 31 \mathrm{~mm})$ with no slots and self tapping screws BIM2007/17 £0.88*

MULTI-PURPOSE BIMBOXES
Moulded in Orange, Blue, Black or Grey ABS with 1 mm thick Grey aluminium recessed front cover which is retained by 4 screws running into integral brass bushes 1.5 mm pcb guides are incorporated on all sides and as with all ABS boxes they are $85^{\circ} \mathrm{C}$ rated. 4 self adhesive rubber feet also included
BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm}) \quad £ 1.24^{*}$ BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm}) \quad$ € 1.56^{*} BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) \quad £ 2.08$ *

MAINS BIMDRILL Operates directly from 220.240 Vac and supplied with 2 metres long cable fitted with 2 pin DIN plug. Will drill brass steel and aluminium as weli as pcb's etc. Has integra biased off switch and accepts rools with 1,2 and 3.2 mm dia shanks $£ 9.72^{\circ}$
Accessory Kit including $1 \mathrm{~mm}, 2 \mathrm{~mm}$, $\mathbf{1 2 5}^{\prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.20^{\prime \prime}$

12 VOLT BIMDRILLS 2 small but powerful 12 V dc drills, easily held in hand or used with lathe/stand adaptor. Both drills have integral on/off switches and 1 metre long cable.
Mini Bimdrill with 2 collets up to 24 mm capacity $£ 7.56^{*}$ Major Bimdrill with 3 collets up to 3 mm capacity $£ 12.96^{*}$ capacity $£ 12.96$ Mains to 12 Volts adaptor, lathe, stand and accessory kits also available, details on request.

Bimboards accept all sizes of DIL packages as well as resistors, diodes, capacitors and LED's etc. They have integral Bus Strips running up each side for carrying Vcc and ground as well as Component Support Brackets for holding lamps, fuses and switches etc. Available as either single or multiple units, the latter mounted on 1.5 mm thick, matt black aluminium back plates which stand on non slip rubber feet and have 4 screw terminals for incoming power
Bimboard 1 contains 500 individual sockets whereas the multiple units containing 2 , 3 or 4 Bimboards incorporate $1,100,1,650$ or 2,200 individual sockets, all arranged on a $2.5 \mathrm{~mm}\left(0,1^{\prime \prime}\right)$ matrix.
Bimboard 1 £ 9.72^{*} Bimboard $2 £ 22.68^{*}$ Bimboard 3 £ 32.40^{*} Bimboard 4 £42.12*

2 Herne Hill Road, London SE24 OAU Telephone: 01-737 2383 Telex: 919693 Answer Back 'LITZEN G' Cahles \& Teleqrams: 'LITZEN LONDON SE24
*All quoted prices are 1 and include Postáge. Packing and VAT. Terr are strictly cash with order unless you have authorised BOSS accou For individual data she on all BOSS products send stamped, self addressed envelope

As the demand for high quality sound increases, so does the need for M -OV valves.

Valves, and only valses, can provide the level of performance many listeners now demand

M-OV Beam Tetrode KT77 and KT88 valves meet all audio market requirements from 30-200 watts

KT77 is especially rugged and ultra linear.

KT88 is a proven long-life valve that is at home in your quality equipment

Get in touch with us now for technical data and details of worldwide distribution.

EEV/MOV

The FOR-4 Mark 2
The new Medelec FOR-4-2 fibre optic
recording oscilloscope is the result of a constant research and development policy. It incorporates many refinements which have been made to customers' special requirements.

The FOR-4-2 provides industrial and research users with high quality recording facilities at really Iow cost. X-Y Plot, Transient and Raster mode are all available in a single instrument.

Special features of the Medelec. FOR-4-2 include:

- 10 times gain X and Y

($1 \mathrm{mV} / \mathrm{cm}$ on 4 Y channels)

- Fully automatic triggering (with higher sensitivity)
- Improved recording facilities (for greater flexibility)
- Light control filter (for excellent contrast)
- Wide speed range (from 0.1 to $1000 \mathrm{~mm} / \mathrm{sec}$-in 3 models)
- Internal loudspeaker (for audio monitoring)

For further information on the new FOR-4-2 or instruments in the range, contact:

MEDELEC LIMITED

Manor Way, Woking
Tel: Woking (048 62) 70331 Telegrams: Medelec, Woking

medelec 髙

 Leaders in Fibre Optic Recording
METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

VIDEO or AUDIO BULK ERASURE

LR71
MAX REEL SIZE 11 $\frac{1}{5}$ VIDEO AND AUDIO

LR70

MAX REEL SIZE 8 ${ }^{\frac{1}{4}}$ AUDIO ONLY

LR70/71 bulk tape erasers are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1^{\prime \prime}}{}$ and tape width of $1^{\prime \prime}$, quickly and efficiently.
LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry

Quality equipment moderately priced
© LEEVERS-RICH
LEEVERS-RICH EQUIPMENT LIMITED
319 Trinity Road, Wandsworth
London SW18 1 YO
01 874-9054 Telex 923455
WW-016 FOR FURTHER DETAILS

THE BUNDNITS OF A TDST SET for the price of a signal generator!'
 If you're servicing or manufacturing mobile communications recelvers then look closely at Farnell's new synthesized 10 to 520 MHz signal generator, the SSG520. It outperforms other units in many respects, and, with its remarkable ease of setting, repeatability and SINAD facility gives you most of the advantages of a receiver test set costing much more.

Typical tests the SSG520 does with speed and simplicity are:checking and aligning channel frequency and bandwidth i.f. and filter alignment sensitivity tests (so easy with SINAD) mute/squelch performance adjacent channel rejection (using two units) and signal to noise and a.f. distortion tests are made easier using the SSG520.
R.F. leakage is remarkably low, permittting totally unambiguous sensitivity measurements down to $0.2 \mu \mathrm{~V}(0.05 \mu \mathrm{~V}$ if you like, using a 20 dB pad). There's no leakage from counter display holes-there isn't one; you don't need a counter with our thumbwheel setting/readout. The SSG 520 can be tuned in 100 Hz steps under locked conditions with maximum stability over the entire frequency range.
Contrast this with competitive instruments which have either a mere 2% tuning range before re-lock or will only fast synthesize in rookHz steps! Stability and accuracy are excellent and an optional ovened crystal version is available. Sideband phase noise is better than $-100 \mathrm{~dB} /$ Hz and harmonics better than -25 dB . Any combination of a.m. and f.m. modulation, internal or external is possible. Output is calibrated and automatically levelled over the whole frequency range and the attenuator is set by adjacent 10 and IdB click stop controls giving direct reading of dBm and volts - quicker to operate and enabling accurate mute/squelch settings.
 throughput of mobile radio telephones, fixed receivers, handportables, public correspondence radiophone and paging systems without spending as much as you would have thought, use this magazine's reply system now to obtain full details and price.
Y'u zeill also rccite, weith our compliments, a frec copy of our pocket card of useful Telecommumications Data.

Youalwaysperformbetter with the right equipment

With Neal Ferrograph youget the right equipment for the job, and the best in its class. \bar{A} goon formula for success, of which you can be assured every time you choose from the fully - integrated range of specialist recording and ancillary equipment in the NE:AI.

HERROCARIPII range.

The NENL 302.
Incorporating a 3 -motor mechanism, controlled by a full solid state logic system actuated be ultra light touch buttons, this is the machine used by top recording studios and broadcasting stations, for quality cassette copies and for in - cassette
duplication masters.

Studio 8

Aprofessional studio tape recorder logiccontrolledfor superb tape handling characteristics,

The Ferrographlilagie 7 .

A transportable tape recorder of umrivalled facilities; taking all spool sizes up to 27 cm , and providing three speeds, plus positive action push buttons in association with logic circuits . . . for fast, safe tape handling under all conditions.

The ITIS 2.
Combines in onc casy to use compact instrument the measurement of gain, noise, frequency response, input sensitivity, output power, distortion and the parameters relating to recording equipment, such as wow and flutter, crosstalk, drift and crasure. Its range of application can be extended even further by the addition of the Auxiliary Test Lnit ITU 1.

WW-829 FOR FURTHER DETAILS

PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS

MSI 6800
with 8K Ram.
KIT £375

NEW SWTPC 6800
Level 2
KIT £300

FD8 FLOPPY DISC £935. BFD68 MINI FLOPPY £522 SOROC 10120 TERMINAL £699 ASS. CASSETTE INTERFACE KIT £18.95

Send S.A.E. for full brochure
STRUMECH ENG. ELECTRONICS DIV. BROWNHILLS 4321
SOLE U.K. DISTRIBUTOR FOR MSI \& SMOKE SIGNAL BROADCASTING

New from AMCRON

Real Time Analyser RTA2

The Amcron RTA2 Real Time Analyser is designed as much for use as a production tool as it is for on-site audio analysis of theatres, and recording studios. A flight case is available.

* 5 CRT Display
* Internal Pink Noise Source
* $1 / 3$ or 1 octave Display
* Frequency range $20-20 \mathrm{kHz}$
* Outputs for X-Y Recorders
- Compatible with any microphone
* Price £1,960 ex. VAT

POWER AMPLIFIER D75

The AMCRON D75 power amplifier replaces the previous modeI D60. Employing completely new type circuitry it offers also many new features but without any increase in the price

* New Amcron IOC comparator.
* Balanced XLR input connectors
* Signal Presence indicators.
* Separate Signal/chassis earth.
* 45 watts into 8 ohms per channel.
* Price £230 ex. VAT.

Other AMCRON products include:

$$
\text { DC300A amplifier } 500 \text { watts/chan }
$$

€550
D150A amplifier 200 watts/chan.
£350
VFX2A Electronic Variable Filter
EQ2 Equaliser
IC150A Pre-amplifier
$£ 270$
$£ 599$
£260
£610

[^2]Tel. Saxmundham (0728) 2262/2615

Our new 1978 catalogue lists circuit boards for all your projects, from good old Veroboard through to specialised boards for ICs. And we've got accessories, module systems, cases and boxes everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

WW-019 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery. etc.. etc. .Just plug-in the Probe, and read the temperature on the large oper scale meter. Supplied with carrying case, Probe and internal $11 / 2$: volt standard size battery
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 30.00$ Model "Mini-Z $2^{\prime \prime}$ " measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price £30.00 Model "Mini-Z Hi"' measures from $+100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C} \quad \mathrm{E33.00}$ [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX
(Phone 01-837 7937)

Made to Measure Resistance. Capacitance. Inductance.

B642
Autobalance Universal Bridge 0.1\%

Whether you check components at Goods Inwards, during production or on Final Test, Wayne Kerr has the bridge you need. For fast measurements of components, or for continuous monitoring of changing values, you can select the ideal instrument from our comprehensive range. Take, for instance, the new B424 component meter; a simple-to-operate, low-cost meter which features a floating decimal point and fully automatic adjustment of test signal level and frequency-thus avoiding the need for resetting with each type of measurement. All models-AF, RF and VHFhave a wide measurement range and are easy to use. Many have automatic readout and automatic lead compensation; most will measure components in situ.
Only part of our range is illustrated. Send in the coupon for further information.

WW-059 FOR FURTHER DETAILS

Nound
 TRANSVERTORS

TRANSISTORISED INVERTERS

VALRADIO TRANSVERTORS ARE BEING USED ALL OVER THE WORLD FOR MANY APPLICATIONS, INCLUDING. VIDEO TAPE RECORDERS, SOUND TAPE RECORDERS, ALARMS, LABORATORY'EQUIPMENT, TELEVISIONS AND MANY OTHER TYPES OF EQUIPMENT.

SOME TYPICAL TYPES ARE:
D24/500S $24 v$ DC input 500 watts sine wave output 230 v AC
D12/150T 12 vDC input 150 watts square wave 230 v output
D24/60S $24 v$ DC input 60 watts sine wave 230 v outpu*

We also manufacture Frequency Changers, Power Supplies and Standby Systems, and we are always happy to quote for your special requirements.
Please send for full details to
VALRADIO LIMITED, BROWELLS LANE, FELTHAM MIDDLESEX TW13 TEN
Telephone: 01-890 4242/4837

World-wide exporters of crystals \& filters
Manufacturers of DIP crystal oscillators from 240 Hz to 20 MHz sole agents for
[ILTRONETICS LC \& crystal filters from 10 Hz to 100 MHz
[STATEK Ultra miniature low frequency crystals
ELECTRO DYNAMICS High volume timing crystals
29 Market Street, Crewkerne, Somerset England TA 18 7JU Telephone (0460) 74433 Telex 46283 inface g

745 COUNTER TIMER

DC-32 MHz

FREQUENCY, PERIOD, TIME \& TOTALISE

```
\(\pm 5\) ppm STABILITY@ \(25^{\circ} \mathrm{C}\)
```


745 COUNTER TIMER $£ 94+2.50$ p\&p Other product include
746 Autoranging Frequency Meter $£ 6$
WW 103
46 Autoranging Frequency Meter $£ 68$
643 Function Generator $£ 98$ WW 104
643 Function Generator $£ 98$ WW 105
643A Function Generator $£ 89$
631 Filter Oscillator $£ 108$ WW 106 631 Filter Oscillator £108
615 Off Air Standard $£ 81$ WW 086 WW 087
35 Digital Panel Meters from $£ 26$

\qquad
Prices correct at time of going to press. subject to change without notice
OMB electronics, Riverside, Eynsford, Kent. Tel: 0322863567

FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Series H3020

Basic error 2.5\% Sensitivity 8 mA F S D Response 0.2 sec Width of each channel Single and three-pen recorders $\quad 80 \mathrm{~mm}$ Five-pen recorders 50 mm

Chart speeds selected by push buttons $0.1-0 \quad 2.0 .5 \cdot 1.0$ $25-5.0-12.5-25 \mathrm{~mm} / \mathrm{sec}$
Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames. Curvilinear co-ordinates
Equipment Marker pen, timer pen paper footage indicator, 10 rolls of paper, connectors, etc
H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high

PRICE £108.00
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high PRICE £160.00 H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high

Series H327

Polarized moving iron movements with syphon pens directly attached. Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4%. Frequency response from $D C$ to 100 Hz 2 dB .

Onlyournamehaschanged.

 ERile

For Erie professional and military capacitors and filters; and for carbon film and metal oxide resistors and pots contact ITT Mercator.

We have changed only the name and telephone number in order to avoid confusion. You deal with the same people
at the same address and - what's more important - you get the same high standard of service.

ITT Mercator, South Denes, Great Yarmouth, Norfolk NR30 3PX. Tel: (0493) 4911. Telex: 97421.

wireless world

Ideas for sale

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc:
Phone 01-261 8443
Projects Editor:
MIKE SAGIN
Phone: 01-2618429

Communications Editor:
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

News Editor:

JOHN DWYER
Phone 01-261 8620

Drawing Office Manager:

ROGER GOODMAN

Production:

D. R. BRAY

Advertisement Controller: G. BENTON ROWELL

Advertisement Manager:

BOB NIBBS
Phone 01-2618622
DAVID KITCHENER
Phone 01-261 8037

Classified Manager:

BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
BARRY LEARY (Classified Advertisements) Phone 01-261 8508

JOHN GIBBON (Make-uṕ and copy)
Phone 01-2618353
Publishing Director:
GORDON HENDERSON

IT IS UNLIKELY that many engineers have hitherto seen themselves as technological Renoirs or
Gainsboroughs, or even prophets. But painters and practitioners in engineering suffer from the same barriers to full expression - they are often dependent on patronage and, in common with prophets, though most of them are not without honour, it is often not recognized in their own country.

We have recently seen examples of engineers who have originated quite remarkable inventions, but who, not having enough capital to put their ideas into practice, have hawked their wares round all the more obvious sources of finance - government establishments, manufacturers, financiers - with no success at all. No one, it appears, is in the risk business - at least, in the UK. As a result of this frustration, people are beginning to look overseas for their backing, which is fine for the inventor and his backer - not so good for this country.

Several British organizations exist for this very purpose, although if our correspondence pages are anything to go by, many bright ideas go unrecognized. A common complaint arnong engineers who do manage to sell their ideas and are assisted by, for example, the NRDC, is that the amount of money advanced is insufficient for an efficient operation. It may be said that half the amount needed is better than nothing, but if a cramped financial position leads to excessive caution and inhibits the broad view, it could well be worse than nothing.

Reasons for the directors of companies not wishing to risk venture capital on inventions with which they
are unfamiliar hinge to a large extent on the very fact of their unfamiliarity . Company directors, as a class, are not noted for their engineering knowledge, being recruited in the main from accountants, economists and arts graduates. Their field of interest is in marketing, finance and sales; the products of the companies over which they preside need not have much influence on their work at all, except insofar as they determine the people they rub shoulders with in business.

While they are reasonably adept in their own sphere of activity it seems unlikely that a financier is best able to judge the worth of even a simple piece of engineering, and if the project put forward for evaluation is even
' moderately recondite, then a degree of relevant knowledge is essential. And yet only around 30% of UK directors have any such knowledge. In contrast with this, Germany has about 70% of knowledgeable directors and the US 85%. Taken in conjunction with our fairly dismal performance in recent years, these figures are significant, although it is impossible to say that this is the real reason.

It does appear, though, that there is a need for more university and college students to be given a chance to read their chosen engineering subjects, with a background support of 'business' training. Admittedly, this does fly directly in the face of the university tradition which insists that universities are not there to train people, but to educate them. Times are hard, however, and it should be recognized that some students, at least, are going to have to soil their hands and engage in vulgar commerce.

Stereo f.m. tuner - Mk II

Improved design uses new i.cs - 1

by L. Nelson-Jones, F.I.E.R.E.

This tuner is based on the alithor's highly successful design first published in the April, 1971 issue. The circuit has been modified to use two recently introduced and improved i.cs, together with a pre-aligned f.e.t. front-end module designed by the author. The circuit features an improved a.f.c. system which operates directly on the varicap tuning and allows simultaneous tuning of all the r.f. stages. Circuit options include the use of either a six-pole LC filter or ceramic resonator i.f. units.

WITH THE LARGE SIGNAL LEVELS that can occur from high-gain aerial arrays it is possible for an f.e.t. front-end to malfunction. This is due to oscillatorpulling by the signal at g_{1} of the mixer which has capacitive coupling to g_{2} and therefore the oscillator. In extreme cases the oscillator may be pulled completely into lock with the signal, which results in a zero-frequency i.f. To overcome this a diode limiter has been used to damp the second tuned circuit so that the oscillator cannot be pulled-in. The diode limiter does, however, lower the image-frequency rejection performance but this only occurs at very high signal levels. With this modification, and by applying around 20 dB of a.g.c. to the r.f. stage at high signal levels, the front end can handle signals of around 600 mV .

This front-end circuit, shown in Fig. 1, also differs from the MkI design because it does not have a separate a.t.c.
system. The tuning supply voltage is now modulated by the a.f.c. voltage, and controls all three tuned circuits together. Even with a high level of a.f.c., there will be no loss or gain within the holding range.

Choke coupling is used in the r.f. stage so that all tuned circuits are at d.c. ground potential. Because Mk II design is for varicap tuning only, a more compact layout has been possible. Decoupling has been improved by shorter lead lengths and a reduction in value of the decoupling capacitors to 470 pF . This ensures that the capacitors do not come near to resonance. The complete frontend is now housed in a screened case to reduce oscillator radiation and pick-up from sources such as the i.f. strip, stereo decoder, and the demodulator.

An isolated coupling loop on the oscillator coil is brought out via two terminals on the main i.f. board. The loop provides a level of around 50 mV and is designed to feed a digital counter at 50Ω impedance. This level will not cause excessive oscillator radiation, and can be interfaced to a counter via a buffer stage. The second gate of the r.f. stage is brought out through a decoupling RC network for a.g.c. A suitable biasing network is provided if a.g.c. is not required (a.g.c. ref).

I.f. amplifier

The first i.f. amplifier stage is in the front-end already described, and pro-
vides a broadly tuned output at 330Ω impedance. Fig. 2 shows the main i.f. ciricuit. The block filter can be the Toko six-pole LC filter, as shown in Fig. 3(a). In this case the additional series resistor \dot{R}_{2} has to be used to raise the source impedance to $1 \mathrm{k} \Omega$, and C_{2} is placed at the filter input to provide the design source capacitance. Correct loading is provided by the input biasing resistor R_{8}.

A second option, shown in Fig. 3(b), is to use a pair of Toko i.f. ceramic resonators, type CFSE-10.7, which have a design source impedance of 330Ω. In this case R_{2} and C_{2} are not needed. As there is no d.c. path through these filters, C_{4} is also redundant and is replaced with a link. Because the gain with these resonators is too high, a 10 dB attenuator is placed between the two filter sections (this does not impair the noise performance of the tuner).

A third choice is to use two Vernitron FM4 i.f. ceramic resonators as in the Mk I design. These filters cannot normally be directly cascaded, but the 10 dB attenuator section between them provides a satisfactory performance. Whichever type of ceramic resonator is used, it is essential that both have the same colour coding.

The main i.f. gain is supplied by the multi-stage limiting amplifier contained within IC_{1}. The circuit has been designed around the recently introduced CA3189E, which is an improved and

Fig.1. Front-end module. Damping the second tuned circuit with a diode improves signal handling capacity.

Fig.2. Main i.f. circuit can use either the CA3089E or the newer CA3189E.

Fig.3. (a) Six-pole LC filter. (b) Two ceramic resonators. (c) Muting circuit for CA3089 and (d) CA3189.

Fig.4. Stereo decoder. Emitter follower on pin 11 of the i.c. improves the signal-to-noise ratio at low signal levels by reducing the separation.

somewhat altered version of the CA3089E. The printed circuit board can be used with either of these i.cs by making suitable component changes. However, in my experience the performance of the CA3089E is rather inferior to the CA3189E. The audio output of the CA3189E is adjustable and the values used give a level of 490 mV for each of the options.

A further option is available for the CA3089E and CA3189E because both can be used with single or double-tuned quadrature coils, L_{2} and L_{3}. The doubletuned arrangement can give very low demodulation distortion if correctly
adjusted, but this requires a low distortion f.m. signal generator, and distortion measuring equipment. With a single-tuned circuit both i.cs will stilr give low distortion compared to earlier integrated circuits such as the TAA661B. Both devices provide an a.g.c. feed for the front-end module, but because the level is not the same for the two devices the a.g.c. voltage is fed through potentiometer $\mathrm{R}_{6}, \mathrm{R}_{7}$. The a.g.c. threshold is adjustable with the CA3189E. I have found this particularly useful in setting up the signal strength output, from pin 13 of IC_{1}, to give a steady and progressive increase of level with signal input voltage. The potentiometer concerned is usually set around midway.
The external muting circuit components for the two i.c.s differ and are shown in Fig. 3(c) and 3(d). The newer CA3189E operates on deviation as well as signal level, and the value of R_{18} sets the deviation at which muting begins. This may be varied if required from about $2.7 \mathrm{k} \Omega$ for a large deviation before muting, to $22 \mathrm{k} \Omega$ for a very small-deviation before muting. In both circuits the setting of $R V_{2}$ determines the signal level at which muting takes place. With $R V_{2}$ set to 0 V , the muting action is stopped.

Tuning voltage supply and a.f.c.

The a.f.c. output from IC_{1} is not applied directly to the front-end, but is used together with the a.f.c. reference output from IC_{1} to derive a 12 V tuning supply which is modulated by the a.f.c. output

of IC_{1}. It should be noted that the tuning range of the new front-end is 1.5 to 11.5 V for 87.5 to 108 MHz . The a.f.c. reference of the CA3089E and CA3189E is a 5.6 V zener-stabilized supply which can be used for the reference of a conventional stabilized supply. If a suitable amount of a.f.c. voltage from pin 7 of IC_{1} is added to the reference supply, then the tuning voltage will change in a way that will correct the error which caused the a.f.c. output to differ from the a.f.c. reference voltage level.
The a.f.c. reference is permanently connected to the non-inverting input and the op-amp IC_{2} via an f.e.t. so that it can be switched in and out. When the f.e.t. is switched on, R_{22} and R_{23} control the amount of a.f.c. voltage that is added to the reference level. The tuning voltage output is controlled by the feedback chain $R_{26}, R_{27}, \mathrm{RV}_{3}$. The a.f.c. switch operates with the source and drain of the f.e.t. at the a.f.c. reference level. If the gate is connected to 0 V the f.e.t. is biased off; if the gate is left free, R_{25} turns the f.e.t. on; an f.e.t. with a cut-off bias of less than -4 V has been chosen to ensure clean switching. Values chosen for R_{24} and R_{25} allow the a.f.c. switch to be formed by a pair of
touch-pad contacts between 0 V and the a.f.c. on/off input. Capacitor ${ }^{-}{ }_{16}$ ensures that this input is not excessively sensitive to interference. If touch-pad operation is used it is essential that the chassis is correctly earthed and connected to the 0 V line.
With this system an almost constant a.f.c. performance is achieved across the whole f.m. band because, as the tuning voltage is reduced, the amount of change due to any a.f.c. control is also reduced. The tuning characteristic of the front-end is almost perfectly logarithmic with tuning voltage. The tuning-voltage supply must be free of noise and hum to prevent spurious modulation of the oscillator frequency. This is achieved by the high commonmode supply rejection of IC_{2}, and by the filter $\mathrm{R}_{28}, \mathrm{C}_{17}$ in the supply to IC_{2}.

Stereo decoder

The decoder circuit in Fig. 4 is essentially the same as that published in the April 1978 edition by M. J. Gay. The capacitor between pins 2 and 12 has been made 10 nF rather than 6.2 nF quoted, and the input capacitor has been raised from $2 \mu \mathrm{~F}$ to $4.7 \mu \mathrm{~F}$. These changes were made because my stock did not contain
the original values, so they need not be implemented.

The TCA4500A has a low impedance output due to the feedback networks R_{4}, C_{6} and $\mathrm{R}_{7}, \mathrm{C}_{7}$. It is therefore necessary to feed the multiplex filter through resistors which have a value equal to the design source impedance of $4.7 \mathrm{k} \Omega$ for the filter. Because the design load impedance of this filter is also $4.7 \mathrm{k} \Omega$, there will be at least a 6 dB loss. To restore the audio output level, and to isolate the filter from the load, an amplifier with a gain of two is connected to each of the stereo outputs. High negative feedback in each of these amplifiers makes the input impedance very high, so the matching network R_{11}, C_{12} and R_{12}, C_{13} is connected to ensure that the filter sees a resistive termination of $4.7 \mathrm{k} \Omega$. The bias for these two stages is derived from the d.c. output level of the i.c. at pins 4 and 5. The filter has a low d.c. resistance from input to output and the values of R_{5} and R_{6} are insufficient to cause any appreciable loss of voltage to the bases of Tr_{3} and Tr_{5}.
Gain of the stages is defined by the equal values of load resistors R_{16}, R_{17} and R_{22}, R_{23} so only half of the output is

ce	
Frequency range	87.5 to 108 MHz (tuning voltage +1.5 to +11.5 V)
I.f. I.f. bandwidth (-3 dB)	10.7 MHz
	$\begin{aligned} & 220 \mathrm{kHz} \text { (CFSE-10.7 } \\ & \text { filters-FM4) } \end{aligned}$
	250 kHz (6 -pole LC filter Toko
	135BBR3132A)
Input impedance	nominally 75 ohms unbalanced
Limiting input signal 1μ threshold	
level (mono)	$1.5 \mu \mathrm{~V}$ typical
Capture ratio	1 dB
Image response	-48dB
l.f. response at input	about -100 dB
Oscillator voltage at aerial input	less than 1 mV
Oscillator output to counter	about 50 mV into 50Ω
Muting threshold range	adjustable from 0 to about $8 \mu \mathrm{~V}$
Audio output level	490 mV for $\pm 75 \mathrm{kHz}$ peak deviation
Spurious decoder outputs	better than -60 dB at 19 kHz and all harmonics
Audio frequency response	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } 15 \mathrm{kH} \\ & \pm 1 \mathrm{~dB} \end{aligned}$
De-emphasis time constant	$50 \mu \mathrm{~s}(75 \mu \mathrm{~s}$ with capacitors raised by 50\%)
A.f.c. pull-in range	$\begin{aligned} & \pm 500 \mathrm{kHz}(1 \mathrm{mV} \\ & \text { input level) } \end{aligned}$

Mark II tuner is better than the Mk I design on noise performance, especially at low signal levels, and this is very noticeable in listening tests. A.m. rejection of the new tuner is again

better especially in listening tests.
fed back to the emitter of the input transistor. The output d.c. level is blocked by C_{14} and C_{15}, while R_{19} and R_{24} prevent clicks if the output is connected to an amplifier or switched after the receiver has been turned on. Resistors R_{18} and R_{26} in the output leads prevent oscillation in these two amplifier stages if very long and capacitive leads are used.

Stereo/mono switching is achieved by transistor Tr_{1}. This is normally biased on, and the decoder is in the mono state. If the m / s input is grounded, the biasing is removed and Tr_{1} is turned off, which restores the decoder to stereo operation.

Capacitor C_{10}, together with the biasing resistor R_{10}, form a h.f. filter to prevent this input from causing interference. A switching transistor was used because the manufacturers' data specifies a maximum capacitance, from pin 9 to ground, of 100 pF and I felt that this was too easily exceeded. Also, a long lead into the 228 kHz oscillator circuit is undesirable.

The signal-level voltage from the CA3189 can be used, as detailed in the TCA4500A article, to reduce the separation at low signal levels and provide a better signal-to-noise ratio. This has been added to the decoder circuit by placing an emitter follower between the signal level input from the CA3189, and pin 11 of the TCA4500A. Use of a p-n-p emitter follower ensures that the current can be drawn out of pin 11, and also provides a low impedance drive for the signal strength meter. The recommended resistor value for R_{13} is $39 \mathrm{k} \Omega$, which gives close to $100 \mu \mathrm{~A}$ for full signal strength. This resistor may be reduced in value for movements up to 1 mA . Diode D_{1} is included to remove the $V_{\text {be }}$ of Tr_{2} from the feed to the meter. Resistor R_{14} and capacitor C_{11} are included to prevent interference from passing through Tr_{2}. The supply to the decoder is filtered to prevent switching surges from reaching the rest of the tuner.

A stereo indication l.e.d. is driven from pin 7 through R_{8} and a further 270Ω on the tuning indicator board. If this board is not used, and only the external l.e.d. to the +12 V supply is required, then R_{8} should be raised to 680Ω.

Tuning indicator

.The circuit in Fig. 5 is exactly as used with the Mk I toner. It consists of a long-tailed pair feeding two l.e.d.s, whose brilliance will be equal for equal input voltage levels to the bases of the two transistors. A degree of degeneration is applied to lower the gain from the unbypassed resistors in the emitters. The output terminal is connected to the a.f.c. pin of the i.f. board. The stereo indicator l.e.d. in the original circuit had to be compatible with a filament lamp to match the Portus and Haywood decoder, but this requirement is not now

Parts List

Front end and i.f.
Front end and i.f.
Resistors $-5 \% 1 / 4$ E carbon film unless otherwise stated

R $1100 \mathrm{k} \Omega$
$6 \quad 1 \mathrm{k} \Omega$ (3089)
$39 \mathrm{k} \Omega(3189)$
7 omit (3089)
$39 \mathrm{k} \Omega(3189)$
8560Ω (6-pole)
330Ω (CFSE/FM4)
$12 \quad 2.7 \mathrm{k} \Omega$ (double-tuned)
omit (single-tuned)
$13 \quad 18 \mathrm{k} \Omega$ (double-tuned)
$3.9 \mathrm{k} \Omega$ (single-tuned)
$8 \quad 4.7 \mathrm{k} \Omega(3089)$
$8.2 \mathrm{k} \Omega(3189)$
19 omit (3089)
$4.7 \mathrm{k} \Omega(3189$ double-tuned)
$6.8 \mathrm{k} \Omega(3189$ (ingletun
$6.8 \mathrm{k} \Omega(3189$ single-tuned)
20 link (stereo)
$4.7 \mathrm{k} \Omega$ (mono)
$21 \quad 100 \mathrm{k} \Omega$
225.6 kS
$33 \mathrm{k} \Omega$
$2.2 \mathrm{M} \Omega 10 \%$
10MQ 10\%
$10 \mathrm{k} \Omega 2 \%$
$6.2 \mathrm{k} \Omega 2 \%$
680Ω
47Ω
$1 \mathrm{k} \Omega$ (stereo, or to suit meter on mono)

Capacitors - 20\% tolerance unless otherwise stated

C 1	$0.1 \mu \mathrm{~F}$	250 V	polyester
3	10 nF	100 V	min. ceramic
4	10 nF	100V (6-pole)	min. ceramic
	link	(CSFE or FM4)	
5,6	10 nF	100 V	min. ceramic
8	47nF	250 V	polyester
9	$10 n F$	100 V	min. ceramic
12	$10 \mu \mathrm{~F}$	25 V	tantalum bead
13	33pF	100 V (stereo)	min. ceramic
	4.7n	100 V (mono)	10\% ceramic
14.15	$10 \mu \mathrm{~F}$	25 V	tantalum bead
16	10 nF	100 V	min. ceramic
17	100 F F	16 V	min. vertical electrolytic

Other components
Tr, Siliconix 2N4339 metal can n-channel
f.e.t.

RV \quad or E113 plastic n-channel f.e.t
$R V_{1} \quad 47 \mathrm{~K} \mathrm{~min}$. horizontal skeleton
$R V_{3} \quad 4.7 \mathrm{k} \Omega \mathrm{min}$. cermet horizontal
potentiometer
$L_{1} \quad 22 \mu \mathrm{H}$ min. choke Sigma Products type SC10-22 $\mu \mathrm{H}$
$L_{2} \quad$ TKACS $34342 \mathrm{BM}\left\{\begin{array}{l}\text { (double tuned fo } \\ 3089 \text { or } 3189 \text {) }\end{array}\right.$
L_{3} TKACS 34343AUO Toko UK Ltd
$\mathrm{L}_{2} \quad$ KACSK586HM (single tuned for 3089 or 3189) - Toko UK Ltd
Front-end module Key Electronics FMT2-0 Integrex Ltd
I.f. filters
Fig.3(a)
$R_{2} \quad 680 \Omega$
$C_{2} \quad 10 p F \quad 100 \mathrm{~V}$ min. ceramic
Filter \quad Toko 135BBR3132A

Fig. 3(b)

R_{2}	Link
C_{2}	omit
R_{3}	220Ω
R_{4}	150Ω
R_{5}	220Ω
Filters	Toko CFSE or Vernitron FM4

Muting circuits

3089	Fig.
3(c)	
R_{14}	470Ω
R_{15}	$120 \mathrm{~K} \Omega$
R_{16}	link
RV_{2}	$470 \mathrm{~K} \Omega$ min. horizontal skeleton
C_{10}	$0.47 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead
C_{11}	omit

$\mathbf{3 1 8 9}$ Fig $\mathbf{3}$ (d)	
R_{14}	470Ω
R_{15}	link
R_{16}	$47 \mathrm{k} \Omega$
R_{2}	$10 \mathrm{k} \min$. horizontal skeleton
C_{10}	$47 \mu \mathrm{~F} 6.3 V$ tantalum bead
C_{11}	$2.2 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum bead

Stereo decoder
Resistors -5% 1/4W carbon film unless
otherwise stated otherwise stated.

Other components

IC. TCA4500A, Motorola
$\mathrm{Tr}_{1}, 3.5 \mathrm{BC} 109 . \mathrm{BC149} ,\mathrm{ZT} \mathrm{\times 109}$.BC 184 , etc.
$\mathrm{Tr}_{2}, 46$ BC179. BC159, BC2 14 etc.
D. $\quad 1 \mathrm{~N} 4148$

Filter Toko BLR3107N

Tuning indicator	
R_{1}	$4.7 \mathrm{k} \Omega$
2	100Ω
3	330Ω
4	100Ω
5	$1 \mathrm{k} \Omega$
6	omit
7_{1}	270Ω
$\mathrm{~T}_{1.2}$	$\mathrm{BC} 109, \mathrm{BC} 149.2 \mathrm{~T} \times 109 . \mathrm{BC} 184$ etc.
D_{3}	0.2 in red l.e.d.

Power supply Transformer	
	RS Components GVA type 196. 296 secondaries in series, or type
	196-303 secondaries in parallel
Rectifiers Capacitors	1 N 4003 (four)
	$0.1 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester (three)
	$470 \mu \mathrm{~F}$ and $1000 \mu \mathrm{~F} 25 \mathrm{~V} \mathrm{~min}$. vertical electrolytic
Resistor	22 ohm
Regulator	type 7812 plastic i.c.
Fuse	20 mm 250 or 300 mA anti-surge

Fig.5. L.e.d. tuning indicator and stereo indicator.

Fig.6. Power supply.
needed, therefore R_{6} is omitted and R_{7} is 2708.

Power supply

The power supply shown in Fig. 6 uses a full-wave rectifier which feeds two smoothing capacitors. This arrangement produces very little ripple on the +20 V supply to the a.f.c./tuning voltage circuit. The +12 V supply to the tuner and decoder is stabilized by a 7812 i.c. which has two $0.1 \mu \mathrm{~F}$ capacitors across its terminals for h.f. stability.

The capacitor wired across the bridge rectifier input prevents hole-storage noise in the diodes and forms a useful h.f. filter in conjunction with the leakage reactance of the mains transformer.

Interconnection of the tuner

The method of interconnection is shown in Fig. 7. It is important to ground the aerial input socket to the chassis only through its connection to the i.f. board. The 0 V terminal and wiring must be grounded to chassis at

only one point near to the output. The mains earth must be connected only to the mains transformer frame and the interwinding screen. The transformer frame is insulated from the chassis because the tuner will normally be part of an audio system, and it is usual to connect only the pre-amplifier to the mains earth.
To make such an earthing system safe it is essential to use a transformer of
good construction which has a copper. foil interwinding screen, and a good earth bond to the frame.

To be continued. The concluding article describes the alignment procedure and shows the printed circuit board layouts.

Fig.7. Interconnection diagram.

Instant tuning

By Cáthode Ray

SEVERAL TIMES LATELY I have overheard on the radio hints of a great new idea: instead of changing from one radio* channel to another by turning a knob, meanwhile scrutinizing the movement of a pointer along a scale crowded with figures and names of places (quite likely obsolete) to find the position that will give the wanted programme, and then when at last it has been found, via a cacophony of intervening hisses and shrieks, finding it is too late to hear the start; instead, as I say, of this gruelling process several times every day, some inspired scientist (never any mention of an engineer, of course) is on the verge of making possible an instant switchover from one programme to another!
Well, of course, I thought this was just another example of how illinformed so many people are, so that it can be commonly supposed that television was invented about 1950 and that Lindbergh was the first person to fly across the Atlantic (instead of, wasn't he, about the 55th?). But a few days ago I was pulled up short by reading in the IEE's journal Electronics \& Power, July 1977 issue, p.547, an article by Mr James Redmond, Director of Engineering of the BBC (and therefore presumably knowing something about these matters) in which he said as follows:
'At one time there was a large audience of television viewers who remained tuned to one programme because they dared not retune the set in the hope of finding something more to their taste. Pushbutton television receivers quickly freed them from this

[^3]tyranny, and now we impatiently await the pushbutton portable v.h.f. radio. 'Impatiently await!'
I fully appreciate the point about being afraid to depart from a channel, once it has been tuned in, because of the difficulty experienced by the lay public in retuning any radio (in its correct inclusive sense) receiver. My sympathies are entirely with them. What sort of a radio engineer is he/she who designs a set that obliges them to do anything so crude?

In the 9 th February 1939 issue of W.W. (i.e., getting on for 40 years ago) I am on record as stating 'A certain trade list of receivers now on the British market describes 665 models. Of these, 231 are to be found with pushbutton tuning.' I went on to say 'As regards the date of invention, leaving out the inevitable Chinese and Egyptian claims to priority... it can definitely be said that it [pushbutton tuning] was on the market at least as early as 1928' (fifty years ago now) and went on to describe an American Zenith model so fitted, which enjoyed a ready sale, including one to me.

By 1940 (December issue of W.W., p.499) I made fun of the 'ever-patient British public grinding away at their tuning controls' to change from one programme to another. Evidently the 231 pushbutton models less than two years earlier had not prevailed against the 434 others.

But Mr Redmond was writing about v.h.f. radios, which these early p-b models were not. So v.h.f. p-b models may still be in the future?

My wife being one of the lay public and therefore, I consider, fully justified in demanding instant programme changing, I provided her with it almost from the start; i.e., when I married her, which was not yesterday, since our grandchildren are by now doing a bit of demanding of their own in the electronic field. When the three BBC channels became available on v.h.f. (I exclude Radio 1 from consideration, while realizing that for many members of the population this is the preferred channel, but would I be hopelessly wrong in supposing that even they sometimes want a change?) I fully accepted the justice of the BBC claim that from then on all right-thinking citizens should turn exclusively to v.h.f. So, nearly 20 years ago, I scrapped all else and provided my wife with an all-v.h.f. set having a three-position switch covering her 'radio' needs.

All went happily until the BBC (obliged, I am sure, by hidden political
forces) began introducing intensely unwanted Open University lessons into v.h.f. channels. In distress at this unpredicted and frustrating development, my ever-loving wife turned to me; and with unfailing resourcefulness I devised a m.w. unit for Radio 4 making use of the existing switchgear.

This worked reasonably well until the next crisis, when for a time all Radio 4 channels, v.h.f. and m.w., were belting out studies on the life-style of the arachnidae or some such esoteric matter about which my wife did not at that time wish to know. Eventually it transpired that this was not more than a technical hitch lasting for a mere couple of hours, but it undermined my reputation for foreseeing and providing against every eventuality.

For the last year and more, the BBC, no doubt at the receiving end of bitter complaints from those listeners who had done as they had been bid and had changed over to v.h.f., has used every available gap between programmes to plug the necessity for a three-waveband receiver, long-wave, medium-wave and v.h.f., in order to be able to hear everything they provided. (I hope no unprincipled radio dealers take advantage of customers who remember only the 'three-waveband' bit, by unloading stock that technically conforms to this description but lacks v.h.f. and includes instead the not widely demanded short waves.) Among the ordinary undiscriminating British public these exhortations are unlikely to have been heeded, because the OUB public are able to get everything from the $B B C$ on their cheap imported 'transistors,' many of which are one-waveband sets. Any whose interest may have been kindled to the extent of inquiring would quickly be deterred by the price of the a.m. plus f.m. models.

Some of the OUBP-housewives chiefly - got their first jolt when they suddenly found that their Tuesday and Thursday afternoon plays had turned into Questions in Parliament (cleverly disguished as live broadcasts from the Zoo) and 'Disgusted, Tunbridge Wells' became thick with complaints. The BBC could always say, in polite euphemistic terms, of course, 'We told you so.' The same thing will happen again in November, only much more so, among the one-waveband brigade when, not having taken in the oft-repeated warnings, they find themselves unable to get any Radio 4 programmes at all, unless they acquire new sets at least with long waves. Moreover, those of

Logic design - 15

Action / status interface design

by B. Holdsworth" and D. Zissost *Chelsea College, University of London

\dagger Dept of Computing Science, University of Calgary, Canada

The operation of action/status interfaces, which was the subject of part 14 , continues, and design of interfaces is discussed, both in general and in two specific examples. This is the final article in the series on logic design.

With the exception of the go/no-go interface shown in Fig. 6, handshake system configurations which use two states to define the read/write cycle are easier to design and implement. Unless otherwise specified, the 'go' mode will start with a write operation. The diagram shown in Fig. 12(a) is used to define the read and write operations. For ease of reference the flip-flop used to generate the go/no-go signal G is shown in Fig. 12(b). The starting point in the design process is the basic system developed next.

Basic system

Read/write cycle. The implementation of a read/write cycle is straightforward. A block diagram of the two-device system is shown in Fig. 13(a), and its step-by-step operation is flow charted in Fig. 13(b). The state diagram of the interface logic is shown in Fig. 13(c).

By direct reference to the state diagram the following equations are obtained:

Turn-on set of $A=\bar{r}_{2}$,
turn-off set of $A=\bar{r}_{1}+R$.

$$
\begin{aligned}
& \mathrm{A}=\overline{\mathrm{r}}_{2}=\mathrm{Ar} r_{1} \overline{\mathrm{R}} \\
& \mathrm{a}_{1}=\mathrm{S}_{1} \mathrm{r}_{2}=\mathrm{Ar} \mathrm{r}_{2} \\
& \mathrm{a}_{2}=\mathrm{S}_{0} \mathrm{Gr}_{1}=\overline{\mathrm{A}} \mathrm{Gr}_{1}
\end{aligned}
$$

The NAND implementation of these questions is shown in Fig. 13(d).

The timing diagram for the read/ write cycle is shown in Fig. 13(e). Initially, it is assumed that $r_{1}=0$ and that the system is in state S_{0}, which implies that the system is writing and that device 1 is active. When device 1 has fully responded, r_{1} goes from 0 to 1 , $\mathrm{a}_{2}=\mathrm{Gr}_{1}$ and device 2 is activated. On activation its status signal r_{2} goes from 1 to 0 and thus initiates the transition from S_{0} to S_{1} and also turns off the action signal a_{2}.

In state S_{1} the system is reading and it continues to do so until device 2 has completed its resnonse, when r_{2} changes from 0 to 1 and device 1 is activated. The cycle is completed when

Fig. 12. Read/write cycle.

(a)
(b)

(c)

Fig. 13. Read/write cycle schematic (a) and flow diagram (b). State diagram is at (c) and NAND implementation and its timing are at (d) and (e).

(e)
the status signal of device $1, r_{1}$ goes from 1 to 0 , thus initiating a transition back from S_{1} to S_{0} and simultaneously turning off the action signal a_{1}.
Write-inhibit cycle ($i_{1}=1$). To inhibit the write operation in the basic read/ write cycle, the write operation is replaced by a read operation as shown in the flow chart of Fig. 14(a). The modification to the state diagram in Fig. 13(c) as a consequence of introducing the write-inhibit process is implemented by interchanging the values of a_{1} and a_{2} in state S_{1}, when $i_{1}=1$. Expressed algebraically, the entries for write/ inhibit are $a_{1}=r_{2} \bar{i}_{1}$ and $a_{a}=G r_{2} i_{1}$, as shown in Fig. 14(b).

Read-inhibit ($i_{2}=1$). Similarly, to inhibit the read operation in the basic read/write cycle, a read operation is replaced by a write operation as illustrated in the flow chart of Fig. 15(a) and the corresponding modification to the state diagram is shown in Fig. 15(b).

The block diagram of the basic system with reset, go/no-go, read-inhibit and write-inhibit facilities is shown in Fig. 16(a). Its step-by-step operation is described by the flow chart of Fig. 16(b). The following equations are obtained directly from the state diagram shown in Fig. 16(c).

$$
\begin{aligned}
\mathrm{A} & =\overline{\mathrm{r}}_{2}+\mathrm{AR}_{1} \overline{\mathrm{R}} \\
\mathrm{a}_{1} & =\overline{\mathrm{AGr}}_{1} \overline{\mathrm{i}}_{1}+\mathrm{Ar}_{2} \overline{\mathrm{i}}_{1} \\
\mathrm{a}_{2} & =\overline{\mathrm{A} G r_{1} \overline{\mathrm{I}}_{2}}+\mathrm{AGr}_{2} \mathrm{i}_{1} \overline{\mathrm{i}}_{2}
\end{aligned}
$$

Design steps

The design of interfaces can be accomplished in the five steps listed below, and illustrated in Fig. 17. These steps are general and can be used in all interface design problems.
Aims of the design. The system specification is first expressed in the logic interface designer's terms. This step is introduced to ensure that the system requirements are interpreted correctly by the designer.
This stage is critical and requires cooperation between the interface designer and the system designer.
Device characteristics. In this step the designer specifies the terminal characteristics of the devices to be interfaced. Consideraion of the purely internal characteristics of the devices should be avoided if possible.
System design. The interface designer specifies the system characteristics in general terms by means of a block diagram and a system flow chart and consults the designer for approval.
Hardware design. This step is provisional, and hardware design may well be modified as a consequence of the experience obtained in software design. It is accomplished conventionally using well-established methods described in this series.
Software design. On the basis of the hardware design and assuming the necessary instructions, the basic software for the operation of the device is designed. This process may well indi-

(a)

Fig. I4. Flow-chart for write-inhibit (a) and state diagram at (b).

(c)

Fig. 16. (a) shows block diagram of basic system, with flow chart (b) and state diagram (c).

(a)

(b)

Fig. 15. Read-inhibit flow chart is at (a) and the state diagram at (b).

(b)

(a)

Fig. 18 (a) is block diagram for "rub-out characters" interface, with flow-chart at (b). State diagram is shown at (c) and circuit at (d).

(c)
(d)

(b)

(b)

(e)
cate modifications to the hardware design which may lead to improvements. In fact, software and hardware design should be regarded as complementary and should be repeated until a satisfactory design of both hardware and software has been achieved.

Problems and solutions

The design steps described are illustrated by means of two typical problems and their solution. For further design problems the interested reader is referred to the second edition of Digital Interface Design, by Zissos and Duncan, published by Oxford University Press, and to "System Design with Microprocessors,"' by Zissos, published by Academic Press.
Rub-out characters. Given a paper tape reader and a tape punch, design and implement a small system that allows a new tape to be produced in which the rub-out characters (all l's) are deleted.
-The aim is to reproduce data after deleting specified characters, in this case the rub-out characters.

- Both reader and tape punch are action/status devices.
-The block diagram of the solution is shown in Fig. 18(a). The AND gate detects the rub-out characters on the data-bus. Its output d is logical ' 1 ' when all the digits on the data-bus are l's. When $d=1$ the data is inhibited from being punched and the input tape is advanced. This is equivalent to $i_{1}=0$, and $i_{2}=d$ in the basic read/write cycle notation.
The flow chart describing the step-by-step operation of the system is shown in Fig. 18(b).
The state diagram of the interface car be derived either directly from the system flow chart in Fig. 18(b) or by substituting $\mathrm{i}_{1}=0$ and $\mathrm{i}_{2}=\mathrm{d}$ in Fig. 16(c).

From the state diagram, which is shown in Fig. 18(c), the following equations are obtained:

$$
\begin{aligned}
& \mathrm{A}=\overline{\mathrm{r}}_{2}+\mathrm{Ar}_{1} \overline{\mathrm{R}} \\
& \mathrm{a}_{1}=\overline{\mathrm{A}}_{\mathrm{A}} \mathrm{Gr}_{1} \mathrm{~d}+\mathrm{Ar}_{2} \\
& \mathrm{a}_{2}=\overline{\mathrm{A} G \mathrm{r}_{1} \mathrm{~d}}
\end{aligned}
$$

The implementation of these equations is shown in Fig. 18(d).
Reader-to-plotter interface. The first four tracks of an eight-track tape specify eight actions a digital plotter can take, namely move $0.1 \mathrm{~cm} N, N E, E$, SE, S, SW, W and NW with the stylus up or down. The other four tracks indicate the number of times each command is to be executed. For example 10010110 is interpreted as: "Draw a line 0.6 cm long from NW to SE." Design a suitable interface between the reader and the plotter. The coding of the various directions specified in the problem is shown.
-The aim is as specified above.
-Both the reader and the plotter are action/status devices.
-The block diagram of the solution is shown in Fig. 19(b). In addition to the
two action signals a_{1} and a_{2}, the interface must reset the counter with signal R_{1} and increment it with signal c at the appropriate times.
Initially the counter is cleared with the system reset signal R prior to the interface being activated by the signal G.

Activating the interface causes the pen to move one space (in this case 0.1 cm .) in the direction specified, with the stylus up or down, as specified by the first four tracks of the tape. When the pen begins to move, r_{2} becomes 0 , and the counter is incremented. When the pen stops, indicated by r_{2} becoming 1 , the output of the comparator circuit shown in Fig. 19(b) is tested. If the output $\mathrm{k}=0$, the pen is moved again and the counter is incremented. This continues until $\mathrm{k}=1$, indicating that the stylus has moved through the number of distance units specified by the second set of four tracks on the tape. At this point the input tape is advanced and the counter is cleared. The process continues until the system is turned off, that is until $\mathrm{G}=0$.
-As in the previous problem the state diagram can be derived directly from the flowchart of Fig. 19(c) and

$$
l_{2}=b_{b_{4}} \sum_{b} . \quad \text { in the state diagram of }
$$

the basic system. Note $1_{2}=1$ when the last four digits on the tape are zeros.
The modified state diagram is shown in Fig. 19(d) and by direct reference to this figure the following equations are obtained:

$$
\begin{aligned}
& \mathrm{A}=\overline{\mathrm{r}}_{2}+\mathrm{AR} \mathrm{R}_{1} \\
& \mathrm{a}_{1}=\mathrm{AGr}_{1} k L_{2}+\mathrm{Akr}_{2} \\
& \mathrm{a}_{2}=\overline{\mathrm{A} G r}_{1} \overline{\mathrm{~L}}_{2}+\mathrm{AGr}_{2} \mathrm{ki}_{2} \\
& \mathrm{R}_{\mathrm{I}}=\overline{\mathrm{r}}_{1} \\
& \mathrm{c}=\overline{\mathrm{r}}_{2}
\end{aligned}
$$

The implementations of these equations is shown in Fig. 19(e).

Acknowledgements

The authors are grateful to Mr J. Bothoroy, a research assistant at the University of Calgary, for his contribution towards the development of action/status interfaces.

References

5. "Digital Interface Design," D. Zissos and F. G. Duncan, Oxford University Press 1974. 6. Microprocessor System Design," D. Zissos, Academic Press 1978.

SIXTY YEARSAGO

In late 1918, the triode (a name not yet used) was beginning to gain ground, and several valve receivers were in use. But its acceptance was not as rapid as it might have been, particularly under the stimulus of war-time development. A note appeared in this issue on the Marconi Double Note Magnifier which evidently exhibited a gain of three times per stage.
"Briefly, the instruments consist of two three-electrode valves connected in series with one another in such a way that the telephone currents from the magnetic detector or crystal receiver are magnified in two successive stages before being led to the telephones themselves. The valves thus act not as detectors but as amplifiers. All circuits have been simplified to the highest degree so as to remove the need for adjustments. Electrically there is no difference between the model for the magnetic and that for the crystal except in the design of the first transformer, the primary for which has, of course, to be of lower resistance for the magnetic detector than for the crystal. In one model a switch takes the place of three sets of terminals, and is connected in such a way that, when working direct without magnification, the valve filament circuits are broken. When using first magnification, one valve only is in circuit, whilst for second magnification both valves are in circuit. Otherwise the arrangements are the same.

The total magnification obtained with this new instrument is such that signals from the magnetic detector are at least three times as strong as those obtainable with a crystal receiver. It will be noticed that a 200 -volt battery is used for the plate circuit.
By the addition of the note-magnifier to the magnetic, we have available a receiver which possesses the notable reliability of the magnetic, and far greater sensitiveness than the crystal, which. - with the exception of the more complicated forms of valve receivers - has hitherto formed the most sensitive commercial type."

EDITORIAL WRITER FOR WIRELESS WORLD

Wireless World needs a new person on its editorial staff. Technical experience in electronics and/or communications and an ability to write are essential. The work is varied and includes writing technical news reports and other material, attending conferences, exhibitions, press conferences and other events, some abroad, and editing contributed technical articles. A good deal of freedom will be given to a person who shows ability and responsibility. Preferred age range 25 to 35. Write to: The Editor, Wireless World, Dorset House, Stamford Street, London SE1 9LU.

The f.e.t. as detector

Improvements in performance over the diode detector

by Roger S. Amos, B.Sc.

The author sets out his views on the advantages of field-effect transistors over semiconductor diodes as demodulators for a.m. receivers. Reduced distortion and improved signal-to-noise ratio are claimed and a design for a receiver using the technique is presented.
most modern radio and television receivers use silicon or germanium diodes to demodulate the output of the i.f. amplifier. Such detectors are purely passive, giving no power gain, but in superhet receivers this is generally of no account, since the r.f. and i.f. stages provide all the sensitivity that is needed and deliver the power to drive the detector. Before the advent of the superhet, however, the detector in a t.r.f. receiver was often a triode valve which gave a.f. amplification besides detection, contributing to the sensitivity of the receiver.
Today, with the ready availability of f.e.ts, which in many respects behave like triode valves, it is possible to apply the advantages of semiconductor technology to the triode detector circuits of yesteryear. And this is no purely academic matter, for some popular a.m. superhet i.cs, such as the NE546A, LM1820N, $\mu \mathrm{A} 720$ and CA3123E (which are all pin-for-pin equivalents) and the rather different TBA651, have an uncommitted i.f. output, leaving the manufacturer or constructor to add the detector of his choice.
The application of f.e.ts as a.m. detectors, however, demands an understanding of both f.e.t. parameters and triode detector operation. The latter may not be familiar to those who have learned radio theory in the age of the superhet and especially the semiconductor superhet. The three most popular triode detectors were the leaky-grid detector, the infiniteimpedance detector and anode-bend detector. But when these are simulated using f.e.ts, unexpected results are often obtained. This article seeks to explain those results and to show how the f.e.t. may provide an attractive alternative to the diode as an a.m. detector.

Leaky-grid (or-gate) detector

The leaky-grid detector, a typical circuit of which is shown in Fig. 1, is essentially an extension of one form of thermionic

Fig. 1 A basic leaky-grid detector. The component values shown are typical.

Fig. 2 Practical circuit for the f.e.t. equivalent of the leaky-grid detector shown in Fig. 1. Component values are typical.
diode detector, the grid of the triode acting as the anode of a diode. Hence the RC network betweeen tuned circuit and valve are similar to those used in diode circuits, and for high-quality a.m. detection would be chosen to give a time-constant of say $50 \mu \mathrm{~s}$. Positive half cycles of input cause grid current to flow (hence the circuit's name) rapidly charging the reservoir capacitor C. This charge leaks away slowly through resistor R, because this is high compared with the forward resistance of the "diode" when charging. Thus, before the charge has leaked away it is restored by the next positivie half cycle. The voltage across the capacitor there-
fore follows the modulation of the incoming carrier and because this voltage is applied to the valve between grid and (through the tuning inductor) cathode, the circuit gives both detection and audio amplification.

An f.e.t. equivalent of this circuit would probably employ a junction-gate f.e.t. since, in these, sufficient positive bias on the gate (an n-channel device is assumed) drives current across the gate-channel junction. Insulated-gate f.e.ts in normal use would be unsuitable since gate current is precluded, but a device having a separate substrate or base terminal could possibly be used with that ierminal as the "grid"; if the
device is an enchancement-type, the gate would need to be biased forward to establish drain current.

Direct substitution of the valve in Fig. 1 by a suitable j.u.g.f.e.t. with appropriate amendment of component and supply values generally yields disappointing results, the output being feeble and distorted. The principal reason for this is that the gate-channel junction, like a silicon diode, does not conduct appreciably if the forward voltage is below about 0.6 V . When silicon diodes are used as a.m. detectors, it is regular practice to apply forward bias to them to bring them into conduction, while maintaining the working point on a sufficiently non-linear part of the characteristic to achieve the required detection; often this bias is provided through the a.g.c. loop in the receiver. The addition of positive bias to the gate of the f.e.t., as shown in Fig. 2, greatly improves the audio quality and efficiency of detection. In the valve circuit of Fig. 1 no positive grid bias was needed because some electrons are emitted from the cathode with sufficient energy to land on the grid even when it is slightly negative relative to the cathode.

There are two main advantages in this form of detector. Firstly, like the diode detector on which it is based, it imposes a load on the tuned circuit through which power is delivered to drive the grid-cathode or gate-channel "diode". This loading can cause distortion since the "diode" resistance is nonlinear, falling with increasing positive half-cycle amplitude. In addition there is some steady damping of the tuned circuit through R in Fig. 1 and the effectively parallel R_{1} and R_{2} in Fig. 2. These reduce the Q of the tuned circuit, limiting the gain available from the previous stage. In superhet receivers, of course, the slight power loss is no great problem since sensitivity and power are available from the preceding i.f. amplifier; in early t.r.f. receivers the loss of power, sensitivity and also selectivity was less tolerable. In high-quality applications, however, the distortion may be less acceptable. Damping of the tuned circuit can be counteracted in some measure by driving the detector from a tapping or a secondary winding, although this further reduces the power available.

Secondly, because the "diode" must be capable of giving appreciable conduction on positive half cycles of input, no reverse bias may be applied to it, hence the absence of cathode and source resistors in the circuits of Figs. 1 and 2. Consequently current consumption is heavy, the f.e.t. giving best results as its saturation drain current is approached; this can be as high as 20 mA for a $2 \mathrm{~N} 3819,15 \mathrm{~mA}$ for a BF244B and 13 mA for a BF256LB. While this is of little consequence in mains-driven equipment, it is clearly wasteful in battery equipment. The detector

circuits to be described avoid both these disadvantages.

Infinite-impedance detector

As Fig. 3 shows, the infinite-impedance detector closely resembles one form of thermionic diode dectector. The difference is that in the former the power to drive the detector comes from the supply rather than the input tuned circuit. This gives it two advantages over the leaky-grid detector. Firstly, anode current in the cathode load resistor provides grid bias, ensuring that an effectively infinite impedance is presented to the input tuned circuit. This minimizes damping and enables the detector to make full use of the available input voltage. Consequently, distortion is low and at one time this detector was favoured in high-quality applications. Secondly, the cathode resistor limits anode current, which may be very low. Indeed, if the valve is near cut-off the non-linearity of its grid bias/anode current characteristic enhances the efficiency of detection; this non-linearity is not, however, essential to the operation of the infiniteimpedance detector.

Positive half cycles of input voltage cause peaks of anode current which rapidly charge the reservoir capacitor. Since the only discharge path presents a comparatively high resistance, the charge leaks away slowly. Consequently, negative half cycles of input voltage oppose the charge on the reservoir capacitor, causing the valve to
be biased back. Providing the cathode resistor and capacitor are chosen to give a suitable time constant, the cathode voltage will accurately track the peaks of the positive exclursions of input voltage. Since the detector is a cathode follower, it resembles a diode circuit in that it gives no voltage gain; it does, however, give appreciable power gain in that it transfers voltage from its practically infinite input impedance to the comparatively low output impedance at the cathode.

The valve in Fig. 3(b) may be directly substituted by an f.e.t. Since the gate. will not be required to conduct, insulated-gate and junction-gate types are equally suitable, but enhancementmode devices would require more complex biasing arrangements. Since junction-gate types are inexpensive and easier to handle, they will probably be preferred.

Figure 4 shows an infinite-impedance detector using an n-channel j.u.g.f.e.t. The circuit generally gives an excellent signal-to-noise ratio, low distortion and a higher level of audio output than might be expected; the reason for this will be discussed below. Mean drain current rises as signals are received and if amplified can be used to derive a.g.c. or " S " meter drive. In many respects this is the most promising f.e.t. detector.

The circuit, has, however, a disadvantage. In an f.e.t. there is some capacitance between gate and source; this is given as typically 8 pF for the 2 N 3819 and 4 pF for the BF244 and

BF256. Fig. 5 shows the circuit of Fig. 4 including this capacitance and a decoupling capacitor redrawn to show its similarity to a shunt-fed Colpitts oscillator. If the f.e.t. is a high-gain type or if it has a high gate-source capacitance, instability may occur. This can generally be eliminated by making the source resistor large (and the reservoir capacitor correspondingly small to maintain the required time constant) thereby reducing the gain of the f.e.t. In practice it is often helpful to make the source resistor a pre-set pot. ($50 \mathrm{k} \Omega$ is a useful value) which can be adjusted for stability and the reservoir capacitor (470 pF is a typical value) can be replaced by a more suitable value if necessary. If the detector is fed from a damped tuned circuit or from a voltage step-down transformer (as in Fig. 8) instability is unlikely to cause any problems.
There are circumstances in which the potential instability of this detector can be an advantage. In receiving c.w. and s.s.b. transmissions it is often helpful if the detector can be made regenerative, and this can often be achieved very simply by the addition of a suitable external capacitor between gate and source. A variable source resistor will usually give smooth control of regeneration. If the f.e.t. is a low-noise type such as the BF256, the detector alone at the threshold of regeneration exhibits remarkable sensitivity; one constructed by the author having only a ferrite aerial and followed by a low-noise audio stage feeding a power amplifier equalled several domestic superhet receivers in sensitivity, but gave better signal-tonoise ratio and less distortion. Almost certainly the inherent positive feedback through the f.e.t's internal gate-source capacitance and associated external circuitry accounts for the unexpectedly high level of audio output.

Anode- (or drain-) vend detector

Like the infinite-impedance detector, the anode-bend detector, of which a typical circuit is shown in Fig. 6, presents an infinite impedance to the input tuned circuit. Detection is, however, by virtue of the non-linear characteristics of the valve near cut off. Thus, this detector shares with that previously described the advantages of minimal damping and low current consumption; furthermore, it offers the extra advantage of useful audio amplification.

The operation and design of this detector are most easily understood if it is regarded as a stage of audio amplification in which the input is at r.f. If the valve were perfectly linear and if the input signal were too small to cause overloading there would, of course, be no audio output. But because the valve is biased nearly to cut-off and is nonlinear the increase in anode current on each positive half cycle of r.f. input is greater than the diminution caused by an equal negative half cycle and the

Fig. 4 An infinite-impedance detector using an n-channel j.u.g.f.e.t. The component values are typical, but there are complications - see Fig. 5 and text.

Fig. 5 Part of the circuit of Fig. 4 including the internal gate-source capacitance of the f.e.t. $\left(C_{g s}\right)$ and a decoupling capacitor across the supply ($C_{\text {decouping }}$) redrawn to show the similarity of the infinite-impedance detector to a shunt-fed Colpitts oscillator. This explains the instability sometimes encountered in this form of detector.

Fig. 6 Theoretical circuit of an anode-bend detector. The component values are typical.
mean anode current follows the modulation of the incoming carrier. This is converted to a voltage output by the insertion of an RC combination with a suitable time constant in the anode circuit of the valve. The author's experiments (with f.e.t. circuits) have shown that the cathode (or source) resistor needs to be decoupled at audio
frequencies, because it is common to input circuits and, without decoupling, introduces negative feedback, reducing the audio gain. With a source resistor of $47 \mathrm{k} \Omega$ the optimum bypass capacitor is about $10 \mu \mathrm{~F}$; higher values cause distortion and lower ones upset the audio frequency response.

The transfer characteristics of f.e.ts
resemble the grid voltage/anode current characteristics of triode valves, their non-linearity near cut-off suiting them theoretically for use in "drainbend" detectors. As in the infiniteimpedance detector, the gate will not be required to conduct, so that junctiongate and insulated-gate types are equally suitable. If an enhancementmode device were used, it would be necessary to hold the gate bias just above the threshold voltage, which could cause complications.
If an f.e.t. were substituted for the valve in Fig. 6 and the component and supply values amended accordingly, the performance of the resulting drain-bend detector would probably be disap. pointing compared with that of the simpler infinite-impedance detector shown in Fig. 4. In fact the drain-bend detector poses a number of problems.
Firstly, there is a loss in sensitivity caused by the Miller effect, which consists of negative feedback at radio frequencies through both internal and stray drain-gate capacitance. Although great losses might be expected because of the high value of drain load resistance and small drain bypass capacitor,
'this is largely counteracted by the low g_{m} (or $y_{f s}$) of the f.e.t. near cut-off. Miller effect can be overcome by the use of neutralization or a cascode circuit; a dual-gate i.g.f.e.t. can be employed since it behaves like a cascode. Although the helpful regenerative tendency seen in the infinite-impedance detector is destroyed by the high drain load resistance and extensive source decoupling, it can be re-introduced by partial decoupling at the source, as shown in Fig. 7. At the sacrifice of some audio voltage gain this permits the introduction of an external capacitor between source and gate to neutralise Miller effect, improving the sensitivity. It also facilitates regeneration if required. The resulting detector, however, is no longer a pure drain-bend detector - it is a hybrid between drain-bend and infinite-impedance types.
Secondly, the output impedance at the drain may be as high as $50 \mathrm{k} \Omega$. If this is coupled to a common-emitter audio stage having a low input impedance ($2 k \Omega$ is typical), the detector output voltage will collapse, leading to apparently poor results. For this reason it is advisable to follow a drain-bend
detector with either an emitterfollower, as in Fig. 7, or an f.e.t. audio stage.
Thirdly, a high supply voltage may be needed. With the f.e.t. operating near cut-off, the voltage across the source resistor approaches the pinch-off voltage. If the f.e.t. were a 2 N 3819 this may be as high as 5 V , and if the drain load resistor were, say, four times the source resistor, clearly 20 V would be needed to drive the drain current through it. Ideally, at least 3 V should be maintained between drain and source so that the minimum supply voltage under these conditions is 28 V . This can be overcome by deliberately selecting an f.e.t. with a low V_{p}; some BF244s have V_{p} less than IV and, using these, drain-bend detectors can be constructed which will operate satisfactorily from 9 V and even 6 V supplies. The BF256 can also be used with a 9 V supply if component values are chosen carefully.
Fig. 7 shows a practical circuit for a hybrid drain-bend/infinite-impedance detector with emitter follower output stage in which all the performancesaving steps outlined above have been

Fig. 7 Practical circuit diagram for a hybrid drain-bend/infinite-impedance detector with buffer emitter-follower audio stage; the latter is necessary to match the high output impedance of the detector. Neutralization is applied via the 25 pF trimmer to counteract Miller effect. But the performance may in some respects be inferior to that of the simpler infinite-impedance detector in Fig. 4.

Fig. 8 Circuit of an a.m. superhet using an i.c. for main functions and an f.e.t. infinite-impedance detector. The circuit combines performance, versatility and

The author

Roger Amos is Senior Publications Officer with the Institution of Chemical Engineers. Son of S. W. Amos, who has been a regular contributor to Wireless World for over 30 years, he has been active in radio and electronics as a hobby for as long as he can remember. Since graduating in botany from Chelsea College, London, in 1967, he has held a variety of positions in scientific and industrial publishing besides spending a number of years in the Baptist ministry. Current interests include electronic control systems for model railways.

taken. While it will generally give a greater audio output than its counterpart in Fig. 4 from the same input signal, the signal-to-noise ratio may well be inferior, and the circuit may suffer from treble-cut caused by the extra positive feedback introduced to neutralize the depredations of Miller effect. The infinite-impedance detector shown in Fig. 4 followed by a stage of low-noise a.f. amplification would give results superior in most respects using almost the same components. For this reason the latter circuit will probably be preferred.

Complete receiver

Figure 8 shows the circuit of a superhet receiver in which a readily available integrated circuit provides the functions of r.f. amplifier, local oscillator, mixer, i.f. amplifier and a.g.c. detector, an infinite-impedance detector like that in Fig. 4 providing a.f. output and a d.c. feed for an " S " meter circuit. Although a two-gang mechanical tuning capacitor could be used, the author's prototype employed a Motorola MVAM2 dual varicap diode, the tuning voltage being selected from an array of seven pre-set and one variable $100 \mathrm{k} \Omega$ pots by an eight-way push-button switch; the 27 V bias was provided by three 9 V dry batteries in series, which proved remarkably stable, the pre-set stations remaining in tune over many weeks.
Source-follower Tr_{1} matches the aerial tuned circuit to the r.f. stage and, helped by inherent regeneration as in an infinite-impedance detector, contributes to the sensitivity and signal-tonoise ratio of the receiver. The combination $\mathrm{R}_{4} / \mathrm{C}_{8}$ provides broadband coupling between r.f. stage and mixer. Coupling from mixer to i.f. amplifier is via the selectivity block $L_{3} / F_{1} / L_{4}$ which may consist either of two discrete i.f. transformers and a ceramic filter or, as in the author's prototype, an integrated block containing these elements; these are available commercially with a choice of bandwidths. The i.f. output appears at pin 6, a portion being fed through $\mathrm{C}_{11} / \mathrm{R}_{7}^{-}$to a voltage doubling diode pair in the i.c. which provides a.g.c. for the r.f. stage. Signal is transferred from i.f. amplifier to detector through a discrete i.f. transformer, which in the author's prototype gave a
voltage step-down, being intended for coupling to a diode detector. Although this transformer was far from ideal for its present detector, the detector nevertheless gave more than adequate output to feed a domestic high-quality amplifier. The step-down transformer also improved the stability of the detector. The combination $\mathrm{L}_{6} / \mathrm{C}_{13}$ removes any stray i.f. which might cause distortion in the amplifier or " S " meter circuit.
The optional " S " meter drive consists of the long-tailed pair $\mathrm{Tr}_{3 / 4}$ and associated circuitry. Mean drain current in the infinite-impedance detector rises when a signal is received; this appears as an increased voltage across the source resistor R_{8}, which biases Tr_{3} forward; in the absence of a signal Tr_{3} is biased off by Tr_{4}. For meters up to $500 \mu \mathrm{~A}$ f.s.d. R_{10} and R_{11} can be adjusted for meter sensitivity and zero respectively; meters over $500 \mu \mathrm{~A}$ f.s.d. may be satisfactory if R_{9} is reduced. Additional a.g.c. could be derived from Tr_{3} collector by the inclusion of a suitable resistor in series with the meter; this could be fed to the gate of Tr_{1}, the signal being fed in through a suitable capacitor.
Sensitivity of the receiver compares favourably with that of domestic superhet receivers; signal-to-noise ratio is superior and distortion very low. The latter two features are due in some measure to the nature of the detector. With junction-gate f.e.ts costing little more than silicon diodes, the infiniteimpedance detector surely offers scope for an improvement in a.m. receiver design.

LTERATURERECEMED

"Glossary of Microelectronic Terms, Defini; tions and Symbols" - JEDEC publication No. 99 costs $\$ 7.50$ and is obtainable from Standards Sales Office, Electronic Industries Association, 2001 Eye Street, N.W., Washington, D.C. 20006, U.S.A.

Publications of the International Telecommunications Union are listed in a catalogue available from General Secretariat, I.T.U., Sales Service, Place des Nations, CH-1211 Geneva 20, Switzerland

Electrostatic printer/plotter S1004, in both alphanumeric and graphic forms, described in a brochure from EMI Technology (SE Labs), Data Products Division, Spur Road, Feltham, Middlesex TW14 0TD. .. . WW402

Personal computer for small business use described by ITT in a leaflet from ITT Consumer Products (UK) Ltd, Chester Hall Lane, Basildon, Essex

WW403
Transducer energising and conditioning is the function of Industrial Unit IG2104, described in a leaflet obtainable from Carl Schenck (UK) Ltd, Stonefield Way, Ruislip, Middlesex HA4 0JT

WW404
Transient suppressor diodes, from 6.8 to 200 V , are the subject of a data sheet from Semtech, which can be obtained from Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middlesex

WW 405
Miniature motors for 1978 from Portescap, using ironless motors for low inertia, described in a leaflet from Portescap (UK) Ltd, 204 Elgar Road, Reading RG2 0DD WW406

Antennas and masts are fully detailed in a large catalogue from American Electronic Laboratories, Inc., Dept. 1122, P.O. Box 552, Lonsdale, Pennsylvania 19446, U.S.A. WW407

Timers working in the 'delay on de-energize' mode, are made by Tempatron and are covered by leaflet TDD9/77 from Tempatron Ltd, 6 Portman Road, Reading

WW 408
Microphones, headphones, communications and test instruments are listed and fully detailed in the Sennheiser 'Revue 9' catalogue. Contains much useful information in English. Hayden Laboratories Ltd, Hayden House, Churchfield Road, Chalfont St. Peter Bucks SL9 9EW

WW409

Screwdriving equipment, including power bits, screwdriver kits and adaptors are illustrated in Catalogue 3a from Harmsworth Townley \& Co. Ltd, Todmorden, Lancs OL14 5JY

WW410

Audio accessories catalogue, which also presents information on multimeters and digital timepieces, obtainable from Ross Electronics, 32 Rathbone Place, London WIP 1AD

WW411

Company analysis, considering the performance of 50 largest firms in European electronics over the last few years, is obtainable at $£ 18$ from Mackintosh Publications Ltd, Mackintosh House, Napier Road, Luton LUI 1RG.

Frequency synthesizers - 1

The generation of wanted frequencies from other frequencies

by R. Thompson, M.I.E.E.

The term "frequency synthesis" is applied to processes involving the generation of some wanted frequency from one or more other.frequencies. The most common forms of frequency synthesizer use high-grade fixed frequency references to generate fixed- or variable-output frequencies with stabilities similar to those of the references. Like many definitions, this one cannot be considered to be precise and we shall see that frequency synthesis represents a particular grouping of techniques, most of which are widely used in other applications of electronics.
the need to generate variable frequencies with the stability of a fixed reference has led to a concentration of effort on frequency synthesis over the past 15 years. A major application of this type of synthesizer is in radio communication equipment where narrowband modulation methods with precise carriers are required. Another major application has been in modestly priced instruments capable of very accurate
measurement c_{-}^{-}time, frequency and phase.

A feature of great importance with many modern synthesizers is the ease with which the required frequency can be selected. Communication equipment design has had increasing emphasis on ease of operation, aiming in many cases to eliminate the need for specialist operators. Nowhere has this pressure been greater than with military applications. Here, the trend has been from equipment requiring tediously repetitive adjustment to switch selectable operation, and now to radio equipment having entirely automatic frequency control.

The basic requirement for generating one frequency from another can be stated as: $f_{2} / f_{1}=X / Y$, where X and Y are rational numbers. In principle, therefore, synthesis only requires multiplication (X) and division (Y). However, as we shall see, practical considerations limit the attainable values of X and Y. where such practical limitations occur

Fig. 1. Simple rectangular waveforms and graphical representations of their associated frequency spectrums.

Fig. 2. A squarewave f_{1} being used to switch a sinusoidal signal f_{2} to produce frequency spectrums. In (a) each burst of f_{2} starts in the same phase. In (b) the squarewave forces each burst of f_{2} to start in the same phose.
X / Y can be factored as: $X / Y=(x / y)$ ($X_{1} \pm X_{2} / Y_{2}$). The introduction of the \pm allows the multiplication/division factors to be reduced. We shall be coming back to this in more detail later; the important point here is to see that we are interested in the four basic arithmetic functions.

Addition and multiplication

If we start with some very simple waveforms and their spectra we can get an appreciation of the possibilities and difficulties of adding and multiplying frequencies.

Figure 1 shows simple rectangular waveforms and their associated frequency spectrums. Frequencies are only present at integral multiples of the fundamental frequency f_{1} and, from the general expression for the Fourier series shown below, it can be shown that their amplitudes follow a $\sin x / x$ law.
$a(t)=\frac{A T}{T}\left|1 / 2+\sum \frac{T}{T m \pi} \sin \left(\frac{\tau m \pi}{T}\right) \cdot \cos \left(\frac{2 \pi m}{T}\right)\right|$
Obviously a wide range of frequencies can be generated, but if a reasonably flat spectrum is required up to high order harmonics, very narrow pulses will be required. This will, however, result in very little energy being available at any selected frequency.
If we are interested only in a particular range of harmonics, one method is simply to filter the output of the square wave, even though the level quickly reduces as we increase the harmonic number. An alternative method is to use the squarewave to switch a sinusoidal signal frequency f_{2}, as shown in Fig. 2.
In Fig. 2(a) there is an integral relationship between f_{1} and f_{2}, and each burst of f_{2} starts in the same phase. The resultant spectrum is a double-sided version of that in Fig. 1 centred on f_{2}.
In Fig. 2(b), where $f_{2} \neq \mathrm{m} f_{1}$, the squarewave not only switches f_{2} on and off but forces it to start each burst in the same phase. This gives a spectrum similar to that in Fig. 2(a) but now, although the spectral envelope is centred on f_{2}, there is no component there. Since the waveform is periodic at f_{1} the components will be at harmonics of f_{1}. The forced synchronisation of an oscillator, producing an output as in Fig. 2, gives high level outputs with a frequency stability dependant only on f_{1} and it can be seen that by controlling

(a)

Fig. 3. Diagram showing three frequency spectrums resulting from a mixing process which eriables frequencies to be added or subtracted. (a) is probably a simplification because it would normally also contain harmonics of f_{2}. In (b) the ratio of f_{2} / f_{1} is high and $f_{2}+f_{1}, f_{2}$ and $f_{2}+2 f_{1}$ are difficult to separate. In (c) the problem is that of removing $2 f_{2}-f_{1}$.
(b) Fig. 4. The use of equal on and off periods in Fig. 3 enables the $f_{2}+2 f_{1}$ frequency component to be suppressed. This diagram shows how, by also replacing the off period with a phase-reversed f_{2}, f_{2} may be suppressed too. In (a), where the periods are equal, the nearest components are $2 f_{1}$ away.
(c) (b) shows what can happen when the periods are not equal.
the switching pulse width a form of filtering is provided.
One of the recurrent problems in frequency synthesis is the selection of the wanted signal from a host of unwanted signals and any method capable of providing this selection is of interest. The most obvious methods are L,C,R and crystal filtering. However, these are often bulky, expensive and difficult to tune. Their selectivity is governed by the percentage frequency separation of the wanted and unwanted signals, selection becoming more difficult as percentage separation decreases. Because of these difficulties, any techniques providing selectivity, such as those illustrated in Figs. 1 and 2, are of potential interest in frequency synthesis.

Figure 3 shows a situation similar to that of Fig. 2(a) but with $f_{2} \neq m f_{1}$, and no forced phase synchronism. The spectral envelope in Fig. 3(a) is again the $\sin x / x$ shape centred on f_{2}. However, in this case, components do not in general occur at harmonics of f_{1}, but at $f_{2} \pm m f_{1}$. This follows from the fact that the waveform is no longer periodic at f_{1} but at some rational fraction of this and the periodicity is no longer controlled only by f_{1} but by the combination of f_{1} and f_{2}.

The process shown in Fig. 3(a) is of course normally referred to simply as "mixing" and it provides a means of adding or subtracting frequencies. As with multiplication, a major problem is the rejection of unwanted frequencies. The situation is normally worse than that shown in Fig. 3(a) because harmonics of f_{2} are present at the input or generated in the switching process. Figure 3(b) and (c) illustrate the problem created. In (b) the ratio f_{2} / f_{1} is high, making it difficult to separate $f_{2}+$
f_{1} from f_{2} and $f_{2}+2 f_{1}$. Components from the spectrum centred about the second harmonic of f_{2} will also come close to $f_{2}+f_{1}$. However, in this case, they will only be small amplitude signals.

In Fig. 3(c), the ratio f_{2} / f_{1} is low, easing the separation of $f_{2}+f_{1}$ from f_{2}. The problem is now that of separating out $2 f_{2}-f_{1}$. Filtering problems therefore set upper and lower boundaries on mixing ratios.

The problem in the case shown in Fig. 3 (b) can be eased by using the selective characteristics of the spectral envelope. To start with, the use of equal on and off periods will suppress the $f_{2}+2 f_{1}$ component. If, in addition, the off period is replaced by a phase reversed f_{2}, we can
achieve cancellation of f_{2} as well. This is illustrated in Fig. 4(a), the nearest components are now $2 f_{1}$ away. In practice this cancellation will not be complete; for instance, if the periods are not equal, the result will be as shown in Fig. 4(b). However, very useful attenuations of 20 to 40 dB , can be obtained.
These simple considerations of multiplication and addition lead us to some of the practical circuits used for these operations.
Harmonic generation can be achieved by a variety of standard pulse circuits, and modern integrated circuits can generate pulses with harmonics up to about 1 GHz . Traditionally, of course, class C amplifiers have been used in transmitters as frequency multipliers
and are normally a harmonic generator with some frequency selectivity incorporated.

Multiplication to very high frequencies, tens of GHz , is possible with step recovery diodes (s.r.ds). The s.r.d. functions as a switch with switching times in the region of 50×10^{-12} seconds. Figure 5 shows a particular arrangement using a s.r.d. with a resonant transmission line. The diode acts as a short circuit while passing forward current, and continues to maintain this condition after the current reverses. When all the current carriers have been swept out of the diode it rapidly switches to an open circuit, shunted by the reverse capacitance of the diode. With a suitable drive level and bias voltage V_{b} it can be arranged that there is a maximum current in the inductor L at the instant of switching due to L resonating with the diode capacity and the line impedance R_{o}, through the harmonic by-pass capacity C. The pulse generated across the diode travels down the line, is reflected at the open circuit, and returns to the diode. At this time the diode switches to forward conduction again. The energy therefore continues to be reflected up and down the line. It can be seen that the output is characterised by a forced phase synchronism of the waveform on the line. The frequency is therefore a harmonic of f_{1} and independent of the line tuning. The line tuning of course, provides the selection of the required harmonic.

The quenched oscillator shown in Fig. 6 gives a similar spectrum to that of the step-recovery-diode multiplier, though this is normally used at lower frequencies. Transistor Tr_{1} operates as a grounded-collector Hartley oscillator tuned by L and C to approximately the required harmonic frequency. Transistor Tr_{2} is switched by f_{1} causing the LC circuit to be heavily damped, thus stopping oscillation. The damping period must be sufficient to dissipate the stored energy in L and C. When T_{2} switches off the circuit transient causes oscillation to restart, in the same phase every cycle of f_{1}.

In our initial consideration of mixing, Fig. 3, it was seen that simple switching of one frequency by another produces the $f_{2} \pm f_{1}$ frequencies wanted for addition or subtraction. Mixer circuits normally apply such a switching action, though f_{1} and f_{2} are usually in sinusoidal form.

Figure 7(a) shows a transistor mixer in simplified form. Source f_{2} switches the transistor into conduction on positive half cycles and the lower amplitude source f_{1} modulates the amplitude of the pulses producing the output shown. This has components at $f_{2} \pm f_{1}$, but simple inspection shows that there are also components at f_{1} and f_{2}.

The possibility of cancelling components has already been mentioned and Fig. 7(b) is a reasonably obvious modification of Fig. $7(\mathrm{a})$ to provide cancellation. In (b) the two transistors

Fig. 6. Quenched oscillator circuit which provides a similar spectrum to the multiplier in Fig. 5. See text.

Fig. 5. Circuit diagram and waveforms for a step-recovery-diode multiplier on a resonant transmission line. When conditions are right, the diode switches to open circuit and the pulse generated across it travels down the line, is reflected, and returns to the diode. At this time the diode switches to forward conduction again and the process is repeated - the pulse being reflected up and down the line at a frequency equal to a harmonic of f_{1}, depending upon the line tuning. See text.

Fig. 7. Circuit (a) is a simple transistor mixer which produces frequency components at $f_{2} \pm f_{1}, f_{1}$ and f_{2}. In circuit (b) the f_{2} components in the two transistors are in antiphase, resulting in a waveform having no f_{1} component. Circuit (c) consists of two type (b) circuits and produces a resultant waveform having neither f_{2} or f_{1} components.

4 Fig. 8. Circuit and waveforms for a diode ring modulator. This circuit produces a waveform having only $n f_{2} \pm f_{1}$ components.

Fig. 9. Logic bistable used as a mixer. Waveforms shown are outputs resulting from $(m+x)$ cycles on D, where m is an integer. Transfer characteristic, also shown, has both a positive slope and a negative slope indicating that increasing f_{2} may increase or decrease $f_{\text {out }}$, depending upon the frequency ratio of f_{1} and f_{2}.

operate similarly to that in (a) but the f_{2} components are in opposite phases in the two transistors. The resulting output waveform has no f_{1} component and is in fact the waveform of a conventional amplitude modulated carrier.

The logical step from the method used in Fig. 7(b) is to arrange the cancellation of f_{2} as well, as shown in Fig. 7(c). This consists of two circuits of the type shown in (b) with antiphase f_{2} signals. The phase of the zero crossings, at the frequency f_{2}, reverse every cycle of f_{1}, and there is in fact no frequency component at f_{2}. The waveform shown is that of a suppressed carrier, double sideband signal.

Mixers that suppress only one of the input frequencies are called balanced and those that suppress both of the input frequencies are called double balanced.

While the transistors in the mixers of Fig. 7 are conducting, they can introduce spurious mixing products due to
the nonlinearities of the transistor characteristics. Many mixers use diodes or transistors as near ideal switches and the most common circuit is the diode ring modulator shown in Fig. 8. In this modulator the amplitude of f_{2} is much larger than f_{1} and switches on diodes 1 and 4 , or 2 and 3 . This chops the f_{1} signal as shown, producing an output having. suppressed f_{1} and f_{2} components. High. drive levels and fast-switching Schottkey diodes are used to make the circuit operate as an ideal switching mixer. The only terms in the output are $n f_{2} \pm f_{1}$, giving good separation of higher order products; that is, no $n f_{2} \pm m f_{1}$ terms.

Another type of mixer uses a logic bistable. This 'D' flip flop, which is readily available in integrated circuit form, when clocked, simply transfers the logic state on its D terminal to its output. If two separate frequencies are applied to the D and clock inputs, the output waveform will contain a beat frequency pattern varying as the two

The author

Raymond Thompson was born in Belfast but has spent most of his life in England. He was educated at Cheltenham and Birmingham Technical Colleges, and in 1960 joined the Plessey Company at West Leigh. In 1966 he went to Westinghouse Research in the USA where he worked on the design of high power convertors and inverters. including special inverters for h.f. fluorescent lighting and lightweight power supplies for X-ray units. In 1969 he rejoined Plessey and he is currently at their Roke Manor Establishment designing v.h.f. and u.h.f. digital radio systems for military applications. Raymond Thompson has had several papers published, including two articles in Wireless World.

waveforms move with respect to each other. Figure 9 shows the types of output waveform obtained with such a mixer and the mixer transfer characteristic.

Any number of cycles may occur on the D terminal between clocking pulses. If there are an exact integral number of cycles, the logic level on D at the clocking instants will always be the same. The output will be d.c. If there are $m+$ x cycles, where x is a fraction of a cycle, the level at D will vary between some successive clocking instants. Where $1 / x$ is an integer, the output will be a simple waveform with a fundamental frequency equal to $x f_{1}$ or $(1-x) f_{1}$, see Fig. 9.

When $1 / x$ is not an integer, the fundamental frequency will be a subharmonic of $x f_{1}$, with $x f_{1}$ being present as a harmonic of that.

An important point to nute is that there is a positive slope and a negative slope on the mixer transfer characteristic. This means that increasing f_{2} may increase or decrease $f_{\text {nu1 }}$, depending on the frequency ratio of f_{1} and f_{2}.

Part 2 of this article will discuss frequency division circuits which use digital binary counters. It will also explain how prescalers can be used to extend the frequency range of such circuits.

Versatile microwave source

Multiband unit comprises u.h.f. source and step recovery multiplier

by G. D. Lean, B.Sc., A.R.C.S., M.I.E.E.

Designed for simple communication links using Gunn diodes in either professional or amateur equipment, this unit improves frequency stability and reduces bandwidth. It can also be used as a replacement for klystrons in radar assemblies and communication systems. Comparing favourably in noise output to many earlier designs of solid-state sources it offers simplicity and improved reliability.
this simple multipurpose microwave source is capable of providing milliwatts of r.f. power at frequencies between 4.5 and 8 GHz . It can be used as a local oscillator or as a lower power transmitter or driver with frequency modulation of up to 80 kHz peak-to-peak deviation. By using scaled versions of the final

Modulation amplifier Tr_{6} of Fig. 1 can be situated in bottom left-hand compartment of this u.h.f. driver.

Fig. 1. Capacitor valves marked thus * in this driver circuit should be adjusted on test for best results. Variable types are Mullard C80905/02. Decoupling capacitors are ceramic discs and others have a polystyrene dielectric. See p. 56 for inductor details.
multiplier, frequencies in the range 2.5 , 4.5 GHz and 8.0 to 12 GHz can also be obtained. Output powers in the range 1 to 10 mW can be achieved depending on the output frequency and the varactor in use. The source comprises three separate units which can be built and tested separately: a u.h.f. driver, steprecovery multiplier, and harmonic selection filter.

Driver circuit

The driver circuit develops about 500 mW of power at around 384 MHz , with an optional output of 50 mW so that Mullard modules. BGY22 can be driven to operate high power multipliers for transmitter or up-convertor applications. The circuit shown in Fig. 1 is an adaptation of earlier designs ${ }^{1}$ originally based on a compact transmitter design by G3TDZ. It uses readily available cheap transistors and the complete unit can be built for less than $£ 10$ including the crystal.
The crystal oscillator stage uses a fifth overtone crystal to give positive feedback from collector to emitter with L_{1} tuned to the overtone frequency of 96 MHz . Slight pulling of the oscillator can be achieved by adjusting L_{1} so that the exact crystal frequency is obtained. The variable-capacitance diode and capacitor C_{4} form part of the tuned circuit together with L_{1}, C_{6} and C_{7}, and changes in varicap bias cause slight frequency shifts in the oscillator. The resultant narrow band f.m., with a peak deviation of about 1 kHz at the crystal frequency, produces adequate deviation for telephony communication when multiplied up to the microwave bands. Transistor Tr_{6} gives some gain for the modulation voltage and provides d.c. bias for the varicap diode via R_{5}. Resistor R_{8} damps coil L_{1} and prevents any tendency for self-oscillation of Tr_{1} due to its internal collector-emitter capacitance. Oscillation should cease if the crystal is removed and should not vary by more than 10 kHz as L_{1} is tuned. Capacitors C_{6} and C_{7} form a capacitive tap to match into the base of the first doubler stage. Components L_{2}, C_{9} and C_{10} form a tuned circuit at 192 MHz and provide matching into the second doubler Tr_{3}. About 10 mW can be measured at L_{3} and $\mathrm{C}_{4}(384 \mathrm{MHz})$ by using a one-turn coupling loop feeding a power meter. Resistor R_{15} is a base "stopper" to prevent parasitic oscillations which are common in BFY90 amplifiers.
Matching into the first amplifier is achieved by tapping the coil L_{3} and selecting C_{12}. About 70 mW can be measured at the output of Tr_{4}, which is driven into conduction by the self bias created across R_{17}. Components $\mathrm{L}_{5}, \mathrm{C}_{15}$, $\mathrm{L}_{6}, \mathrm{C}_{16}$ form a two-stage matching network going through 50 ohms at the link point. For low power requirements the final output can be connected to C_{15} instead of the wire link. For higher power Tr_{5} gives the extra gain to provide 0.5 -watt output at C_{18}. This final

Fig. 2. Step recovery multiplier gives a comb of frequencies spaced at 384 MHz , one of which is filtered out, to give a few milliwatts at 5.76 GHz . (Use BXY41D for X-band). Variable types are Mullard C80905/03.

Fig. 3. Step recovery multiplier unit and matching for 5.6 to 6 GHz . Dimensions in brackets apply for 10.4 GHz in waveguide 16 .
stage draws 60 mA and is self-biased through RFC_{2} and R_{19}.

Driver construction

The unit is constructed on double-sided glass-fibre board, etched on one side as shown in the diagram. For "one-off" production the easiest way is to photocopy the pattern and stick the copy onto a suitably-sized piece of board. Then drill through the paper into the board and clean up the holes carefully. Mark out the circuit using an etch-resist pen or resistant transfers and completely paint over the earth plane side.

This view of the step-recovery multiplying circuit omits screening cover and matching screws.

Fig. 4. Multiplier output at 5.76 GHz has 300 kHz bandwidth (top), improved to 30 kHz by Fig. 5 filter (bottom). Horizontal scale 100 MHz div.

Then etch the board and remove the resist. Countersink the holes on the earth plane side and fit pins to provide the external connectors. Copper or tinplate screens can then be soldered to the top side and coils L_{1} and L_{2} fitted. Fit the components, starting with the oscillator stage and test each stage before starting the next. Finally when the board is finished and tested mount it in a small die-cast box on 6BA nut spacers beneath the underside of the board. Modulation input, power supply and r.f. output connections can then be taken through convenient sockets in the box sides.

Multiplier design and construction

 The multiplier shown in Figs. $2 \& 3$ is a C-band version of an X-band design ${ }^{2}$ by P. Tunbridge (G8DEK) which uses a Mullard varactor diode to generate a comb of frequencies, one of which is selected by the output filter. The input matching components are L_{9} and C_{19} while C_{20} provides some capacitance trimming to the input capacitor formed inside the waveguide by the shaped diode-support pillar. Resistors R_{21} and R_{20} provide a d.c. bias return for the varactor; these are low impedance to give improved high-order multiplication. Matching into the waveguide is provided by four tuning screws in the broad face of the waveguide together with a sliding short circuit which provides a resonant cavity at the output frequency.First fabricate two cover mounting blocks, a diode holder nut and a matching screw block from brass, and solder these to the waveguide, together with a suitable flange. The matching screw holes can be drilled and tapped into the block and guide and only three holes spaced at $\lambda / 8$ are all that are strictly necessary. However, if four or five holes are drilled at about 7 mm spacing, a wider range of output

Fig. 5. Two-section filter has 25 MHz bandwidth at 5.76 GHz . Dimensions in brackets refer to 10.4 GHz in waveguide 16.
frequencies can be accommodated. Two slots for the short circuit can be cut in the narrow face of the waveguide and a $3 / 16$-in hole in the broad face for the connection to the diode support pillar. Underneath the guide the diode-holder nut should be cleared with a 2BA tap which should also continue the thread through the waveguide wall. Screwing a pointed tap right the way through until it touches the top wall will mark the position for the connection hole which can then be pilot drilled through the nut. A diode support pillar can either be turned down from a brass bar or made up of a disc of $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. brass or copper soldered to some $1 / 4$-in brass rod. The broad end is tapped 8BA for the connection screw. A disc of insulation material such as Micalex or just Sellotape is placed on the top of the pillar which can then be slid into the waveguide under the $3 / 16$ in connection hole. A thin $3 / 16$-in dia insulating washer is then dropped in the hole to centralize the pillar. A further $1 / 4-$ in insulating washer is used with an 8BA bolt and tag to clamp the pillar and provide electrical connection to the diode.

The diode holder is made of 2BA copper studding with a tapped hole in one and for the diode. Some diodes have untapped ends and a $1 / 16$-in hole is all that is required to mount them in the holder. Two side cheeks of 16 s.w.g. aluminium are bolted to the covermounting blocks with one supporting the BNC input socker. The rest of the input components can then be soldered into circuit.

Testing

Select a Mullard BXY39D for 5.7 GHz (a BXY40D may give more output around

Inductor details for Fig. 1

L_{1} five turns 22 s.w.g. wire tapped one turn from "cold" on 3/16-in dia former and slug.
$\mathrm{L}_{2} \quad$ three turns 22 s.w.g. wire on $3 / 16$-in dia former and slug.
L_{3} half turn 18 s.w.g. wire loop tapped halfway.
L_{4}, L_{5} one turn 18 s.w.g. wire.
$\mathrm{L}_{6} \quad 1 / 2$-in of track.
L_{7}, L_{8} one turn 18 s.w.g. wire.
$\mathrm{RFC}_{1} 10 \mu \mathrm{H}$.
RFC_{2} two turns 26 s.w.g. on ferrite bead.

6 GHz). This should be screwed into the diode holder using a dab of thermal grease on the threads. The holder is then screwed into the multiplier unit so that the diode flat contacts the bottom of the support pillar firmly, but not too tightly. A lock-nut should then be tightened on the diode holder.
With the diode in place the v.h.f. source can be connected and powered. A 96 MHz crystal will result in an output of the driver source at 384 MHz , which when fed into the multiplier produces a comb of frequencies from about 4 to 10 GHs with a spacing of 384 MHz . Some products of 96 MHz and 188 MHz are also present, depending on the purity of the driver output.
Alignment of the multiplier is best carried out with a spectrum analyser, but if the filter described below is made it is possible to align the multiplier with only a diode detector or power meter. Using the analyser the required final frequency is displayed together with the two adjacent 384 MHz spaced frequencies. Frequencies every 96 MHz will also be present about 30 dB below the 384MHz harmonics. First slide the short circuit in or out until maximum power is obtained at the output frequency. Then adjust $\mathrm{C}_{19}, \mathrm{C}_{30}$ and R_{21} again for maximum power of the output. There is some interaction between R_{21} and the capacitors; R_{21} should be set in several positions whilst C_{19} and C_{20} are adjusted for optimum each time. When no more improvement in output can be obtained from the input tuning, a 6BA tuning screw can be tried in each hole in turn until the best output is obtained. It is then left in the hole. More screws should be tried in the holes until the required output frequency is peaked about 6 dB more than other harmonics with the $\pm 96 \mathrm{MHz}$ products well down, as shown in Fig. 4 (top). Output purity can be much improved with the filter, see Fig. 4 (bottom).

Filter

The filter is a two cavity design, adjustable from about 6.1 to 5.2 GHz with the dimensions given. The design was achieved by accident as a gross mathematical error resulted in incorrect theoretical dimensions which work
well in practice. Basically if a post is put in the centre of waveguide it creates a large susceptance which reflects the incident wave. If another post is a quarter wavelength away from the first it will create an equal and opposite susceptance which will cancel the effect of the first at one frequency. Two such pairs of posts spaced at a quarter wavelength will cancel any residual susceptance giving unhindered matched transmission to the design frequency. This simple theory doesn't work exactly in practice and the modified dimensions should be adhered to. The dimensions can be scaled for other frequencies, remembering to scale waveguide dimensions to λ_{g} rather than the free-space wavelengths. Scaled versions have been made up to 11 GHz and perform just as the 5.7 GHz version shown in Fig. 5.
Construction is fairly obvious and for quick prototypes the posts need not be soldered into the guide but just pushed into tight fitting holes drilled through the guide. As the 4BA tuning screws are screwed in, the pass-band frequency is reduced and the response at midadjustment is shown in Fig. 6. Without a spectrum analyser the filter can be adjusted first on a fundamental signal source such as a Gunn diode ${ }^{3}$ or klystron whose frequency has been adjusted using a wavemeter. Once the filter is aligned on the correct frequency the multiplier can be adjusted for maximum output through the filter. The filter can the be slightly readjusted for maximum

Fig. 6. Response of two-cavity filter as measured at mid-adjustment of the tuning screws
output on the exact frequency multiple; it is unlikely that the wrong harmonic has been chosen unless the original frequency measurement using the wavemeter was more than 188 MHz out of true. Provided an output of 3 to 5 mW is obtained through the filter it is unlikely that any spurious products are present.

A single cavity version of the filter can be made for simple equipment when total suppression of other products is
unnecessary. The suppression of out of band products is about half that of the larger two-cavity design.
The multiplier input will accept frequencies in the range 350 to 450 MHz and so 432 MHz low-power f.m. transmitters can feed into the multiplier via an attenuator, although for amateur band use not all the bands can be covered as would be possible with a single 384 MHz generator. It is also possible to change crystals in the generator to produce local oscillator frequencies suitable for use with low intermediate frequencies. But to obtain the best results high intermediate frequencies (140 MHz) should be used to reduce local oscillator noise getting into the receiver. This does mean that a separate local oscillator is required for each band, but for a low-power transmitter a single modulated u.h.f. source can be used with several multipliers for all the bands.

A printed board pattern and component layout appear on page 63.

References

1. Lean, G.D. Simple solid-state converter \& tripler, Radio Communication 1976, page 506.
2. Tonbridge, P. M. Multiplier 10 GHz varactor, Radio Communication 1976, page 202.
3. Hosking, M. W. Microwave voice link, Wireless World, vol. 83, October 1977, pages 49-52, and November 1977, pages 69-71 \& 92.
continued from page 40
them situated peripherally and at present served with Radio 4 by local m.w. booster stations will get a much weaker signal and one more vulnerable to electrical machine noises.

But what about the discriminating public; i.e., the people who appreciate the merits of the f.m. service and are prepared to pay for it? They have already found that many BBC programmes are not available on v.h.f. It is all very well to be repeatedly reminded that with three-waveband receivers they can get all that the BBC offers, but these reminders studiously refrain from mentioning that owing to the increasing practice of subdivision many of the programmes are, and will continue to be, available only on a second-class service, i.e.,
(1) No stereo
(2) Lo-fi (restricted audio frequencies)
(3) Greater liability to noise

As regards those programmes that are on v.h.f., in fairness to Mr Redmond again I must recall that his impatient awaiting was for portable v.h.f. radios. Ever since v.h.f. receivers became available in quantity, some of the better-class non-portable models have
included instant tuning. The wonder to me is that anyone has the nerve to market any such model without inis facility. And I cannot see any major problem in extending it to portables. In fact, being no longer in touch with the trade I was really astonished by the authoritative statement that such sets were still being awaited - hence my present eruption into these now usually erudite and well-behaved pages.

Having, as I said, every sympathy with the general public in rejecting as totally outmoded and unacceptable a technology that requires from them a skilled and time-wasting procedure every time they want to change programmes, I suspect that there are many households that have several sets, each permanently tuned to one of the limited number of channels they use. Perhaps this wasteful solution is so good for the radio trade as to account for the tardiness of that trade in fulfilling Mr Redmond's earnest hopes.

Finally I will seize this opportunity to protest about what I regard as that design monstrosity advocated - I am sure very reluctantly and unwillingly by the BBC; the combined f.m. and a.m. receiver. The design requirements are
so different that a receiver which works on both is almost two different sets in one. A few years ago an even worse monstrosity was put before the British public: the combined 405 and 625 line TV set, which consisted virtually of two quite different - opposite, really receivers with a very complicated multi-contact (and therefore doubtfully reliable) hard-to-turn switch. I refused utterly to admit such a thing to my home, and did without colour until all-625-line sets were available. The solution to that problem was to provide all the programmes on one system.

The same solution is the only right one for radio. So my impatient waiting is for a broadcasting system in which all the programmes are obtainable on v.h.f. If they, or some of them, are also available on a.m., so much the better. But we ought to be able to go back, if we wish, to the v.h.f.-only receiver. It can be done by making available here more of the 88 to 108 MHz v.h.f. broadcasting band for the purpose of broadcasting, thus allowing the industrious student, the hard-working housewife, the parliamentary enthusiasts (if any), the pop addict and the music lover each to enjoy the benefits of f.m. stereo undisturbed.

Tunable audio equalizer

Flexible parametric equalizer with variable Q
by Martin Thomas

MOST AUDIO EQUALIZER circuits represent a compromise between cost, facilities and ease of use, and the Baxandall tone control has been by far the most successful design. For domestic audio equipment its simplicity and ease of use outweigh its disadvantage of providing only a limited degree of equalization, although the circuit can be modified to increase its flexibility ${ }^{1}$. Clearly, however, the "bass" and "treble" subdivision of the audio band is insufficient for many purposes, and the graphic equalizer approach of having a larger number of frequency bands becomes necessary. The only problem with this approach is that a large number of controls must be used to cover the audio band if the individual frequency bands are narrow, so even with this circuit the number of controls is a compromise.

Unquestionably the most versatile equalizer is the parametric, or tunable, type. In its simplest form it can consist of only a single boost/cut element, but its centre frequency can be varied continuously over a wide range (possibly over the whole audio band), and the Q can also be varied so that either a broad or a narrow frequency band can be equalized. This approach allows almost any equalization requirement to be met with only a small number of such elements, and since the elements are iden-

Fig. 1. Basic equalizer design shows how to achieve either boost or cut with a single active element.
tical, no more than are actually needed can be connected together for any particular application. A parametric equalizer may not be so straightforward to use as a graphic equalizer, but once you become accustomed to the rather different controls it's much easier than you might expect.

Circuits of this type have been around

Three years ago, Martin Thomas left
Cambridge University, having collected the B.A. and M.A. degrees in Natural Sciences and a Ph.D. in neurophysiology, to become first a research fellow and later an assistprofessor at Boston University. Now, he's returning to the UK to join the Physiology Department at Oxford University.

His audio interests developed while he was at Cambridge, and he designed the prototype for the equalizer there. He says his research activities aren't directly related to his audio and electronics interests, although in practice there's a lot of overlap between them. Using ion-specific dyes to follow changes in ion concentrations inside nerve and muscle cells during excitation is basically a technical problem. "I had to build a sensitive microspectrophotometer to be able to resolve the very small changes in dye absorbance, and it involved a fair amount of electronics.'

Would he ever consider moving out of research and into industry? "That depends. Most companies really aren't very interested
in my type of background, and I'd probably have to set up a business of my own. But I certainly wouldn't rule out doing that at some time in the future. "

for a number of years, but relatively little has been published about them. In this article I shall take the opportunity to discuss some aspects of the design theory, in addition to describing my own design. The circuit has continuously and independently variable centre frequency, boost/cut amplitude and Q , and also allows a choice of two different sets of boost/cut amplitudefrequency response curves as the control setting is varied; more about that later.

The circuit for a tunable equalizer can be broken into two sections, by which point the basic design is almost complete! The first problem is how to use a single active element either to boost or to cut a given frequency range, and this can be achieved by the circuit shown in Fig. 1. The filter used in the present design is phase-inverting, so its output is connected to the non-inverting input of the amplifier to give overall negative feedback. With this connection there is a gain of two from the filter output to the amplifier output, so the filter transfer function is specified as -G/2 to express the system transfer function in its simplest form. When the boost/cut potentiometer is at either end of its travel, the filter is entirely in either the forward or feedback signal path, giving transfer functions of $-(1+G)$ and $-1 /(1+G)$ respectively. An exact expression for the transfer function at other control settings will be developed later, but for now notice that when the control is at its midpoint, the forward and feedback contributions will be equal, giving a transfer function of -1 ("flat"). An extension of this circuit to include several filters and potentiometers yields the basic design for a graphic equalizer, of course, and a typical circuit is described in ref. 2.

The second problem is the design of the tunable filter. In theory this is very simple, but there are several practical difficulties. Although capacitors can be switched to change the frequency range, the variable control clearly has to be resistive, which rules out some otherwise very promising circuits such as the multi-feedback filter ${ }^{3}$, since the Q will then also vary. The Wien-bridge configuration does meet this requirement if the resistors in the forward and feedback arms of the bridge are varied together ${ }^{3}$, but the Q is sensitive to mismatch between these resistors. As the
sensitivity increases with Q , the circuit is suitable for use only at low Q, and the long-term reliability is questionable, once the resistor tracks start getting dirty!
The state-variable filter, which is synthesized from integrators, meets the
requirements very well, and has the additional advantage that it is inherently stable even at high Q . Its only drawback is that it uses three operational amplifiers rather than one, but the number of passive components is almost the same as for other circuits,

Fig. 2. "State-variable" bandpass filter is inherently stable even at high Q, (a). Modification for constant centre-frequency amplitude, (b). Varying Ry gives independent control of Q.

Fig. 3. Circuit diagram for a single-section tunable equalizer. Ganged resistors R_{21}, 22 determine centre frequency, together with range switch \bar{S}. \bar{B} control is $\bar{R} \overline{19}_{19}$ while Q is varied with R_{20}. Fig. 5 illustrates function of \bar{S}_{2}
and it has been chosen for the present design. Fig. 2 shows the circuit diagram. Further information on state-variable filters is given in the appendix and in ref. 4, but the basic equations are reproduced below. Referring to the component values in Fig. 2, the transfer function is

$$
\begin{gathered}
\frac{V_{0}(s)}{V_{i}(s)}=-\frac{R_{2}\left(R_{3}+R_{4}\right)}{\left(R_{1}+R_{2}\right) R_{4}} \times \\
\frac{R_{6} C_{2} s}{R_{5} C_{1} R_{6} C_{2} s^{2}+\left[R_{1}\left(R_{3}+R_{4}\right) /\right.} \\
\left.\left(R_{1}+R_{2}\right) R_{4}\right] R_{6} C_{2} s+R_{3} / R_{4}
\end{gathered}
$$

and the bandpass centre frequency is

$$
\omega_{\mathrm{o}}=\frac{R_{3}}{R_{5} C_{1} R_{6} C_{2} R_{4}^{+}}
$$

For $R_{3}=R_{4}$, and $\omega_{0}=1 / R_{5} C_{1}=1 / R_{6} C_{2}$, the transfer function becomes

$$
\begin{gathered}
\frac{V_{\mathrm{o}}(s)}{V_{\mathrm{i}}(s)}=-\frac{2 R_{2}}{R_{1}+R_{2}} \times \\
\frac{s / \omega_{\mathrm{o}}}{s^{2} w_{0}{ }^{2}+\left[{ }_{2} R_{1} /\left(R_{1} /\left(R_{1}+R_{2}\right)\right] s / \omega_{\mathrm{o}}+1\right.} \\
=-\frac{2 R_{2}}{R_{1}+R_{2}} \times \\
\frac{\omega_{\mathrm{o}} s}{s^{2}+\left[2 R_{1} /\left(R_{1}+R_{2}\right)\right] \omega_{\mathrm{o}} s+\omega_{0}^{2}}
\end{gathered}
$$

Comparison of this last equation with the generalized second-order bandpass transfer function

$$
\frac{V_{0}(s)}{V_{i}(s)}=\frac{\omega_{0} A_{0} s / Q}{s^{2}+\omega_{0} s / Q+\omega_{0}^{2}}
$$

Fig. 4. Effect of varying Q with boost/cut control at maximum boost:
shows that Q is $\left(R_{1}+R_{2}\right) / 2 R_{1}$, and the centre-frequency gain A_{0} is $-R_{2} / R_{1}$. By varying $R_{5} C_{1}$ and $R_{6} C_{2}$ together, it is thus possible to vary w_{o} independently of Q and A_{0}. The Q will change if there is any mismatch between these two time constants (although A_{0} will remain constant), but you can see from the transfer function that the sensitivity does not increase with Q, and hence accurate component matching is not necessary.

The Q can be varied independently of ω_{0} by varying R_{1} or R_{2}, but this will also alter A_{o}, and the relation between A_{o} and Q is non-linear. Fortunately, a simple modification to the basic circuit, as shown in Fig. 2(b), overcomes these problems. Resistance R_{1} is replaced by two resistors, R_{x} and R_{y}, so A_{o} is now $R_{2}\left(R_{\mathrm{x}}+R_{\mathrm{y}}\right) / R_{\mathrm{x}} R_{\mathrm{y}}$. Resistors R_{x} and R_{v} also form an attenuator for the input signal, the gain being $R_{y} /\left(R_{x}+R_{y}\right)$. The overall filter gain is the product of these two terms, i.e. $-R_{2} / R_{x}$, hence by varying R_{y} the Q can be varied independently of the centre-frequency gain. The only disadvantage of this modification is that the overall centre-frequency gain of the filter with the component values used in the final design is only 0.5 , so additional amplification in the filter path is necessary. The extra amplifier is placed before the filter, where it also provides the necessary low-impedance source.

The complete circuit is shown in Fig. 3. A low-impedance source is provided by IC_{1} for the boost/cut control and its associated amplifier IC_{2}. The input amplifier for the filter is IC_{3}, and $\mathrm{IC}_{4}-\mathrm{IC}_{6}$ comprise the filter itself. Although the circuit may appear elaborate, the number of passive components is relatively small, and the size and component count can be reduced further if dual or quad ICs are used. It should be borne in mind, however, that the circuit was designed around the LM318, which is a high bandwidth device. Use of other ICs will result in inferior performance at high frequencies, although it may still be satisfactory for many applications,
and possible substitutions will be discussed later on.

The present design is a generalpurpose one, but the range of centre frequencies, boost/cut and Q can easily be modified if required. The centre frequency is determined by the ganged variable resistors R_{21}, R_{22} and by capacitors C_{4} to C_{9} (see Fig. 3). The variable frequency range is just over tenfold, and capacitor switching gives a total range of three decades, the nominal frequency ranges being 30 to 300,300 to 3,000 and 3,000 to $30,000 \mathrm{~Hz}$. The range switch S_{3} should be a make-before-break (shorting) type, so that the capacitative feedback paths around IC_{5} and IC_{6} are not interrupted during the instant of switching, otherwise the circuit could oscillate. The sliders of R_{21} $\& \mathrm{R}_{22}$ should be connected to the clockwise end of their track, so that there is a d.c. path through the control even if the slider loses contact with the track, as the control has to provide a path for the input bias currents of IC_{5} and $\mathrm{IC}_{6} . A$ logarithmic control has been specified, although it will have to be turned anticlockwise to increase the frequency, whereas a clockwise law would be preferable. A clockwise law can be obtained by using a dual antilog control (in which case the sliders should be connected to the anticlockwise ends of the tracks), but this component may not be readily available from most suppliers.

The boost/cut range is determined by the gain of IC_{3} and the attenuator at the input of IC_{4}. There is a gain of two from the output of the filter network (at IC_{5}) to the output of the circuit (at IC_{2}), and a two-fold attenuation at the centre frequency through the filter itself, so the overall gain through the filter path at the centre frequency is given by the gain of IC_{3}, which is 10 with the component values shown in Fig. 3. Reference to Fig. 1 shows that the maximum boost and cut are $-(1+10)$ and $-1 /(1+10)$, i.e. \pm just over 20 dB , but these values could easily be modified by changing the gain of IC_{3}. which is of course $\left(R_{8}+R_{9}\right) / R_{9}$. Input
bias current for IC_{3} is provided by the boost/cut control R_{19} and by R_{7}, which provides an independent path in case of poor slider contact in R_{19}.

The method of Q variation is as already described with reference to Fig. $2(b)$, and R_{y} is represented by R_{20} and its series resistor R_{11} in Fig. 3. The Q range of the circuit is 1 to 30 with the component values shown, and although the upper limit is unnecessarily high for many applications, the value of 30 was chosen simply because it can be achieved over the entire audio range when LM318s are used. It can be reduced by increasing R_{11}. Once again we have a law problem with the control; if R_{20} is a logarithmic control, the Q will increase as the control is turned anticlockwise. An antilog control can again be used to obtain a clockwise law (slider now connected to the anticlockwise end of the track), or a range of fixed, switch-selected Q values can be obtained by replacing R_{20} and R_{11} by a series of fixed resistors, Q being

$$
\frac{R_{12}}{R_{10} / /\left(R_{20}+R_{11}\right)}
$$

Obviously it is useful to be able to switch out the filtering, and this is achieved by S_{1}, which simply shorts the non-inverting input of IC_{2}. If the d.c. output of the IC_{5} is not exactly zero, the d.c. output of IC_{2} will shift when S_{1} is closed, but the shift on the prototypes was only a few millivolts and did not cause any audible effects. In fact, the circuit is d.c. coupled throughout (apart from the input to $I C_{1}$), and it may be advisable to add a coupling capacitor at the output of IC_{2} if the possibility of output offset cannot be tolerated.

The output resistor R_{6} is not for protection, but rather to isolate any capacitative load from IC_{2} to ensure stability. Capacitors C_{2} and C_{3} also help to ensure stability by rolling off the amplitude response above 100 kHz . The only other stability precaution - but which is perhaps the most important is to decouple the $\pm 15 \mathrm{~V}$ supplies with

Fig. 5. Two sets of amplitude-frequency response curves can be generated by the circuit with S_{2} open circuit (a) and with S_{2} closed (b). Corresponding cut curves are symmetrical about log. frequency axis.

Fig. 6. Modified circuit suitable for use with any number of filter sections.
$0.1 \mu \mathrm{~F}$ capacitors. Such decoupling is very important with high bandwidth devices like the LM318, and if any instability problem's are experienced, they can almost certainly be traced to this cause. On the prototypes it was found helpful to connect a capacitor directly between the supply lines in addition to the normal practice of decoupling between each supply line and ground, and the capacitors should of course be sited as close as possible to the ICs. In spite of the impression which may have been gained from these remarks, I was pleasantly surprised by the high stability of the prototypes, and there is no reason to suppose that such results cannot be obtained consistently if standard layout practices are followed.

Performance details of the circuit are given in Figs 4 and 5. These graphs have all been obtained for a centre frequency $\dot{\Omega} / 2 \pi$ of 1 kHz , but the performance for any other frequency in the audio band can be obtained by appropriately shifting the log. frequency axis. Only the boost curves are shown; the corresponding cut curves are symmetrical about the log. frequency axis. Fig. 4 shows the effect of varying the Q control when the boost/cut control is at maximum boost, and gives an idea of the very wide range of equalization curves which can be generated by the circuit. The centrefrequency gain remains independent of the Q control setting as the boost/cut control is varied, but the effect of the boost/cut control on the frequency response is not as straightforward as might be imagined. Fig. 5(a) shows the effect of the boost/cut control when R_{20} is set for a Q of 3 , from which it can be seen that the Q is reduced as the control is rotated toward its centre ("flat") position. By a simple modification to the circuit, however, it is possible to generate the curves shown in Fig. 5(b), where the shape of the response' remains relatively constant as the boost/cut control is varied. The reason why these two families of curves can be. obtained may not be intuitively obvious, but it can be explained by the following analysis.

It has already been shown that the system transfer functions at full boost and full cut are given by $-(1+G)$ and $-1 /(1+G)$. At intermediate positions of the boost/cut control R_{19}, both forward (boost) and feedback (cut) signals will pass through the filter. Let the fractional rotation of R_{19} be represented by x, such that at full boost $x=0$ and at full cut $x=1$ (see Fig. 1). Resistor R_{19} will act as a potential divider for the two signals, so the forward signal contribution to the transfer function will be $-(1+(1-x) G)$, and the feedback contribution will be $-1 /(1+x G)$, which yields the system transfer function -$(1+(1-x) G) /(1+x G)$. This reduces to the forms previously given for $x=0$ and $x=1$, and to -1 (flat) when $x=0.5$. Gain G can be written as $A N / D$, where N and D are the numerator and denominator terms of G, and A is the centre-
frequency gain through the entire filter pathway (including the A_{0} term, defined previously), which is equal to 10 in the present circuit. The system transfer function now becomes

$$
-(D+(1-x) A N) /(D+x A N)
$$

Setting ω to 1 for convenience, we have $N=s / Q$ and $D=s^{2}+s / Q+1$.

We are now in a position to explain the curves in Fig. $5(\mathrm{a})$. When R_{19} is close to the full boost setting, x is close to 0 . As x increases (R_{19} rotated away from full boost), the numerator of the transfer function is reduced, but since A is large this reduction will be small compared to the increase in the denominator. Thus when x is close to 0 the transfer function can be approximated by $-A N /(D+x A N)$, which is to say that as R_{19} is rotated away from the full boost position, the change in frequency response can be accounted for primarily by a change in the pole positions. The denominator of the transfer function is $s^{2}+(1+x A) s / Q+1$, so the effect of increasing x is to reduce the Q to a new value Q^{\prime}, equal to $Q^{\prime}(1+x A)$, which explains the curves in Fig. 5(a). An analogous argument can of course be developed to explain the symmetrical form of the corresponding cut curves when x is close to 1 .

Whether or not the behaviour in Fig. $5(a)$ is desirable is a debatable point, but fortunately one can have it both ways! Suppose the feedback end of R_{19} is grounded instead of being connected to the output of IC_{2}. The circuit will now only boost, and the transfer function will be $-(D+(1-x) A N) / D$. Since A is large, the transfer function can be approximated by $-(1-x) A N / D$ except when x is close to 1 , so the major effect of changing x is now to change the centre-frequency gain without affecting the Q. The response curves obtained under these conditions are shown in Fig. 5(b).

There are several ways of modifying the circuit to obtain these curves, and the method used is to some extent a matter of personal choice, but here are three! First, changeover switches could be used to ground one or other end of R_{19} to obtain either the boost or cut curves. Second, the gain of IC_{3} could be made variable, when the curves in Fig. 5(b) would be obtained with R_{19} at maximum boost. The third possibility is my personal favourite, and I have indicated it on the circuit diagram (Fig. 3). This is to use a centre-tapped control for R_{19} (I really must apologise for continually recommending obscure potentiometers!) and to ground the tap via S_{2} to obtain the Fig. 1(b) curves. The advantage of this method is that the boost/cut setting is determined only by the control setting, just as before, although the control law will be changed. As will be appreciated from the change in the form of the transfer function, the centre-frequency gain will approach 0dB less rapidly as the control

State-variable filters

Although the present circuit uses the state-variable approach to provide only a bandpass filter, highpass (HP) bandpass (BP) and lowpass (LP) outputs are available simultaneously, as indicated in the accompanying derivation. Note that the basic form of the transfer function is quite simple, and the final expression is relatively cumbersome only because of the form of the a_{1} and a_{2} coefficients. The derivation also shows more clearly how it is possible to change the Q independently of the centrefrequency gain. Since $a_{2}=1 / Q$, we merely have to vary a_{1} and a_{2} together, which is achieved in the present circuit by a variable resistor $\left(R_{20}\right)$ to ground from the a_{1} and a_{2} summing point. This obviously requires that the two signals go to the same amplifier input, and since the a_{2} coefficient must be positive, a_{1} has to be as well. If this facility is not required, a_{1} could of course be either positive or negative.

A further advantage of the statevariable approach is that it can provide any second-order function, although this has not been exploited in the present circuit. The HP, LP and BP outputs are summed by a further amplifier (see ref. 4 for the system transfer function), which allows the corresponding reject functions to be synthesised. By making the appropriate coefficients variable, it would be possible to generate a continuous range of bandpass and band reject functions within the filter itself, rather than by changing the position of the filter within an amplifier feedback loop as in the present circuit. There may not be much to choose between the two methods, but I preferred the feedback loop method because it can be used with
any kind of filter, and any number of filters can be placed within a single feedback loop as shown in Fig. 6. It also allows the choice of two sets of frequency response curves (see Fig. 5), which may not be so easy to arrange by the other method.
$B P=H P \times-1 / R_{5} C_{1} S$, where $S=\mathrm{j} \omega$
$L P=B P \times-1 / R_{6} C_{2} S=H P \times 1 / R_{5} C_{1} R_{6} C_{2} S^{2}$
$H P=a_{1} \times$ input $+a_{2} \times B P-a_{3} \times L P$
$a_{1} \times$ input $=H P-a_{2} \times B P+a_{3} \times L P=$
$H P\left(1+\frac{a_{2}}{R_{5} C_{1} S}+\frac{a_{3}}{R_{5} C_{1} R_{6}^{*} C_{2} S^{2}}\right)$

$=\frac{a_{1} R_{5} C_{1} R_{6} C_{2} S^{2}}{R_{5} C_{1} R_{6} C_{2} S^{2}+a_{2} R_{6} C_{2} S+a_{3}}$
Referring to Fig. 2, the a coefficients are
$a_{1}=\frac{R_{2}\left(R_{3}+R_{4}\right)}{\left(R_{1}+R_{2}\right) R_{4}} ; a_{2}=\frac{R_{1}\left(R_{3}+R_{4}\right)}{\left(R_{1}+R_{2}\right) R_{4}} ; a_{3}=\frac{R_{3}}{R_{4}}$
Thus the complete highpass transfer function is
$\frac{H P}{\text { input }}=\frac{R_{2}\left(R_{3}+R_{4}\right)}{\left(R_{1}+R_{2}\right) R_{4}} \times$

The bandpass and lowpass transfer functions are obtained by multiplying the high-pass transfer function by
$-1 / R_{5} C_{1} S$ and $1 / R_{5} C_{1} R_{6} C_{2} S^{2}$.
When $R_{5} C_{1}=R_{6} C_{2}, a_{2}=1 / Q$.

is rotated towards its midpoint when the centre tap is grounded. Well, you can't have everything!

This effect can be reduced, however, by connecting a $1 \mathrm{k} \Omega$ resistor between the slider of R_{19} and ground when the centre tap is grounded, which will mean using a double-pole switch for S_{2}. The compensation is not exact, but it reduces the worst-case centre-
frequency mismatch to below 3 dB . The ultimate solution would be to replace R_{19} by two parallel chains of resistors, one of which is grounded at the centre, and to select a point along one or other chain by a multiway switch. The resistor values would be chosen to obtain equal dB steps between the switch points, and it would probably be much quicker to determine the correct values
by measurement than by calculation!
We can row consider the remaining aspects of circuit performance. When LM318 devices are used, the distortion is extremely low, and it was difficult to make any reliable measurement at midfrequencies. For a $+20 \mathrm{dBm}(22 \mathrm{~V}$ peak-to-peak) output signal at 20 kHz however, I managed to obtain a value of 0.015%, but this fell rapidly as the signal level was reduced. In general, the control settings affected the distortion only insofar as they changed the output signal level. This excellent performance is a result of the very high bandwidth (15 MHz) and slew rate ($70 \mathrm{~V} / \mu \mathrm{s}$) of the LM318, but there is sufficient latitude to allow the use of other devices for many applications

The best alternative devices are the various families of f.e.t. input high bandwidth operational amplifiers, and the circuit performance was also evaluated with one of these, namely the Fairchild $\mu \mathrm{AF} 356$, which has a 5 MHz bandwidth and $15 \mathrm{~V} / \mu$ s slew rate. Using this device throughout, the distortion for $\mathrm{a}+20 \mathrm{dBm}$ output at 20 kHz rose to 0.05%, and when the Q was increased at high centre frequencies, the centrefrequency gain also increased slightly an effect not observed with the LM318. Device substitution showed that the effect, which occurred only at high Q, originated at IC_{4}, and most of the extra distortion was generated by IC_{3}. Both the LM318 and the $\mu \mathrm{AF} 356$ have an input voltage noise of around $15 \mathrm{nV} \sqrt{\mathrm{Hz}}$ at midfrequencies, but the $\mu \mathrm{AF} 356$ may be slightly quieter since its input current noise is lower. I have not given any noise specification for the circuit, since the amplitude and frequency content of the noise will be greatly affected by the. control settings, and to quote one or two blanket values could be misleading. However, I have tried to keep circuit impedances below $10 \mathrm{k} \Omega$ wherever possible in order to keep the noise down to a level where it should be dominated by that of the ICs.
As mentioned previously, the circuit could be made more compact by the use of dual or quad i.cs. A possible i.c. is the Texas TL074 series, but the bandwidth is only 3 MHz , which will limit the performance at high frequencies. By the time this article appears, however, a wider range of quad devices may have become available.

Many applications will call for the use of more than one equaliser section, and the sections can be combined in two ways. The easier method is to connect them in series, and if the connection is. permanent the buffer stage IC_{1} can be omitted from the subsequent sections. This approach is best suited for a modular design, as it allows each section to be used independently. The other method is for the filter sections to be connected in parallel (as for a graphic equalizer), where $\mathrm{IC}_{3}-\mathrm{IC}_{6}$ and all the controls are duplicated, but share the same $I C_{1}$ and $I C_{2}$. The circuit configuration must be changed, however, to
allow the filter outputs to be combined, and the modified circuit is shown in Fig. 6. Circuit IC_{2} is now a virtual-earth mixer, which can sum any number of filter outputs without interaction, but to achieve this the outputs have to be sent to the inverting instead of the noninverting input of $I C_{2}$, so we need to make a compensating phase reversal in the filter path. In theory, this could be done by moving the filter input connection from the noninverting to the inverting input of IC_{4}, but we would then lose the interaction which allows the Q to be varied independently of the centrefrequency gain (see appendix). The solution adopted is to rewire IC_{3} as an inverting amplifier, which has the minor disadvantage that the gain of this stage will interact slightly with the setting of R_{19}, but the effect will make no difference in practice. Each filter section can be switched out independently as shown in Fig. 6, or they can be switched out together by a single switch between the common ends of the R_{5} resistors and the inverting input of $I C_{2}$.

How does the circuit sound? My advice is to build it and find out! At low Q, the response can be corrected over a large frequency range by as few as two stagger-tuned sections, and in this mode the circuit is a very useful "shelf" filter. As the Q is increased, the circuit becomes more like a graphic equalizer, and ultimately resembles a musical in-
strument! A wide variety of special effects can be created by tuning one or two high-Q sections up and down the audio band, and at high Q the circuit also becomes a useful notch filter. Obviously this design is too complex for it to pose a significant threat to the popularity of the Baxandall tone control, even though it is a lot more versatile. But if you really prefer the mode of action of the Baxandall circuit, don't worry - this design will give quite a reasonable approximation to it if you tune one section to each end of the audio band and set them both to minimum Q. Now all you have to do is to label one control bass and the other one treble. Well, I told you it was versatile!

References

1. M. V. Thomas. The Baxandall tone control revisited. High Fidelity Designs (Wireless World, 1977), pp. 118-120. Originally, Wireless World, vol. 80, September 1974, p. 341.
2. J. R. Emmett. Multi-channel tone control. High Fidelity Designs (Wireless World, 1977, pp. 106-108. Originally Wireless World, vol. 79, September 1973, p. 451.
3. P. Williams, J. Carruthers, J. H. Evans and J. Kinsler. Circuit Designs - 1, 1975 (Wireless World). Originally, Wireless World Circards, set 1.
4. W. J. Kerwin. Active RC network synthesis using voltage amplifiers. In Active Filters: Lumped, Distributed, Integrated, Digital and Parametric. L. P. Huelsman, editor. McGraw-Hill.

50 years of "Empire' broadcasting

Each year the callsign of the late Gerald 'Marcuse, G2NM, is re-activated by the Chichester club to commemorate the many facets of his remarkable pioneering activities that extended over the period from about 1912 until his death in 1961. This year the event emphasised that it was Marcuse who during the period 1927 to 1929 provided the first series of broadcasts from the UK aimed at listeners in many parts of the "British Empire." These began in September 1927 some months before the first experimental BBC service from G5SW at Chelmsford and several years before the official start of the old BBC "Empire Service" in December 1932. Wireless World played a prominent part in campaigning for the broadcasts, against BBC opposition.
With Post Office permission, Marcuse broadcast daily from his home in Caterham, Surrey, including concerts and song recitals from a "studio" set up in the home of Percy Valentine and also unofficial relays of BBC medium-wave programmes. Even full-sized orchestras were fitted into the studio and many well-known musicians and singers took part. "Outside broadcasts" included bird songs from his garden and it was the G2NM broadcasts that first enabled listeners in many parts of the world to hear Big Ben. With a 100 ft mast and Zepp aerial he ran about 1.5 kW on 32.5 m and the station was well received in many parts of the world until Post Office permission was withdrawn in 1929 and the role of Empire broadcasting was left to G5SW.

A British Oscar?

Almost a decade ago an attempt was made by a number of British amateurs to plan the construction of an amateur satellite for inclusion in the Oscar series ("Project Trident"). Although little came of these proposals, the idea has been revived, this time with the emphasis on providing the more technical amateurs with an experimental facility rather than a purely communications aid. The project is being formulated jointly by the University of Surrey UOS-AMSAT group and AMSAT-UK and will be run by the university's Space Studies Research Group, relying on support from industrial and research organisations and with the aim of establishing AMSAT-UK as a flight hardware group in its own right.

A number of suggestions on useful experimental facilities that could be included in such a satellite have been formulated, including the provision of real-time information for h.f operators on the state of the ionosphere by using h.f beacons as "topside sounders." It is also hoped that WARC 1979 will make provision for amateur satellites to carry beacons on microwave bands including

10 GHz . Martin Sweeting, G3YJ0 of the University group emphasises however that as a first venture the spacecraft would have to be kept simple and power consumption of all experiments might need to be restricted to an average of 5 or 10 watts.

WARC 1979

Although for most countries official proposals for frequency allocations to be formulated at the World Administrative Radio Conference next year still seem to be in a state of flux, radio amateurs have welcomed the news that the latest US proposals (although not necessarily representing final American policy) include three new amateur bands at 10,18 and $25 \mathrm{MHz}-10.1$ to $10.2 \mathrm{MHz}, 18.068$ to 18.162 MHz and 25.11 to 25.21 MHz - and in general represent an attitude favourable to the hobby. However, it is recognized that since the creation of the three separate ITU "regions" in 1947, amateurs in Region 2 (the Americas) have enjoyed significantly more favourable allocations than those in Region 1 (Europe and Africa) where European delegations have often proved among the most hostile to amateur allocations. The Home Office report "Preparation for the WARC 1979" (see July issue, News) notes that the decreased reliance on $h . f$ for international fixed service communications makes it possible to consider additional frequencies for various categories of users, including radio amateurs.

Spotty sun

Solar activity - and consequently maximum usable frequencies - continue to run ahead of predictions. This points either to an extremely high peak of activity during 1980, possibly even exceeding the remarkable Solar Cycle 19 peak of 1958 or to the peak being reached earlier than 1980. With several h.f daylight radio blackouts this year, with transequatorial paths extending up to u.h.f. and the many auroral events
(averaging almost one day in three), it may well appear that we are already approaching peak conditions. Chris Bartram, G4DGU, however believes that the considerable number of 144 MHz TE-mode contacts reflects the greater number of well-equipped $144 /$. 432 MHz amateur stations resulting from Oscar satellite operations.

In brief

In an article in the UK FM Group (London) newsletter, Kris Partridge G8AUU proposed the introduction of 12.5 kHz channel spacing in place of the current 25 kHz in the f.m simplex and f.m. repeater sections of the 144 MHz band (145.0 to 145.837 MHz). This year's RSGB National Mobile Rally is at Woburn Abbey on August 6 . . Arthur Milne, G2MI, read his 1000 th GB2RS news bulletin on May 7 ... The Home Office has resumed licensing of the "Phase 3" u.h.f. repeaters and will also consider applications for experimental repeaters on microwave bands although additional v.h.f. repeaters are still excluded . . . Special event "v.h.f./u.h.f." stations, with the prefix GB8, are being licensed by the Home Office through the RSGB

British amateur (maritime) licences for stations on board ship are no longer restricted to crystal control on h.f. bands . . . A beacon station, W6IRT, at Hollywood, California on 28.888 MHz has been licensed for 6 months by the FCC.. The International Amateur Radio Union is sponsoring a special amateur radio training.course in Colombo, Sri Lanka with instructors from West Germany .. Over 70 West German amateurs are operating on 10 GHz . Activity is also reported from East Germany, Switzerland and Luxembourg ... REF reports that 7 repeater stations (144 MHz) are in operation in France, 5 are undergoing tests; 5 are in construction; and 4 in the planning stage. Output ranges up to 100 -watts and heights above sea level to 1,200 metres According to Pierce Healy, VK2APQ in "Electronics Australia," an experimental amateur moonbounce installation of the University of Woolongong was wantonly damaged by vandals early this year. The station ("Project Dapto") has been built up over the past 8 years and may now have to be moved elsew, here ... Evening classes for those taking the Radio Amateur's Examination in December or (with the new syllabus and with multi-choice questions) in May 1979 are being run in many parts of the country with enrolment during early September. Enquiries should be made at local adult education centres ... Yukon, Canada is to use the prefix VY1 ... The Yeovil Mobile Rally is to be held at the STC/ITT Social Centre, Brixham Road, Paignton, Devon, on August 27.

PAT HAWKER G3VA

Please send the following

Please send me the Antex colour brochure

I enclose cheque/P. O./Giro No. 2581000 Name
Address

They are the PROTO-BOARD PB-6 and PB-100 solderless breadboard kits. Buy them, and you are only minutes away from the first circuit.
Contacts are made from non-corrosive nickel-silver alloy, and are reliable for more than 10,000 insertions.
Contact resistance is a mere $0.4 \mathrm{~m} \Omega$, insertion force is typically 3ozs per lead, and interterminal capacitance is typically less than 5 pF .
The kits are a must for experimental and development work in digital, audio, RF, video and beyond.
Resistors, capacitors, transistors, DIP's, LED's, transformers, pots, jumpers and any other component with leads between $0.015^{\prime \prime}$ and $0.032^{\prime \prime}$ will fit the contacts. You can run circuits well beyond the recommended ambient operating temperature $\left(100^{\circ} \mathrm{C}\right)$ if you wish, because the plastic used in the PROTO-BOARD is rated to over $200^{\circ} \mathrm{C}$.
The kits come complete with instruction manual, assembly hardware, binding posts, non-scratch feet and the appropriate number of preassembled sockets and bus strips.
The sooner you order, the sooner you'll have that first circuit operating.

THE PB-6.630 SOLDERLESS CONTACTS TAKES UP TO SIX 14-PIN DIPS.OREQUIVALENT IN LARGER AND SMALLERIC'S ONLY COSTS £11.01

\qquad
\qquad

Trends in microprocessors

An analysis of types now available on the market

by David A. Russell, B.Sc. Computer Technology Ltd

Since the last survey of microprocessors in Wireless World (December 1975 issue) a great many new devices with a wide range of capabilities have been introduced. This article provides a background to the current situation and discusses in general terms the directions that developments seem to be taking.

THERE are a number of starting points that could be considered when attempting to categorise the available devices, such as word width or technology. My own preference is to start from the product/market situation and determine where in the cost, performance and volume spectra the product will be. High volume, cost-sensitive applications will generally use a completely different type of microprocessor system from that used in a high performance, low volume application, even if both systems use 8 -bit words. See Fig. 1, an adaptation of some information pro-

	Chips	Quantity per annum
4-, 8 - and 16 -bit single chip microcomputers	1	$5 k-1 \mathrm{M}$
8-bit chip sets	$2+$	1-100k*
8-, 12- and 16-bit general-purpose systems	3	1-10k
16 -bit high-performance systems	10	$1-1 \mathrm{k}$
2 - and 4-bit slices	30	1-100

duced by Intel. Also, the memory and i/o requirements vary considerably, and this affects, for example, the type of memory used and the design of the i/o.
Before considering the details of the various configurations, it is worth looking at the costs of minimum sets of basic I.s.i. parts typically used in various microprocessor systems (see Fig. 2). The wide range of performances is reflected in a similarly wide spread in costs; it will be appreciated that, in practice, there are overlaps between the various cate-
gories shown. These costs do not include any allowance for overheads such as translators or buffers and drivers, printed circuit boards, power supplies and so on. Also, the quantities are assumed to relate to the application; for example, the minimum order quantity, for single chip microprocessors is typically $1000-5000$ pieces because they use mask-programmed r.o.ms., whereas $100+$ volumes are shown for the high performance bit slice systems.
At the design stage, the integrated

Fig. 1. Application markets related to types of microprocessors and relative memory capacity.

Explaining diagrams Fig. 4 onwards

In the diagrams, the rectangles drawn in thin lines are functional blocks, while the areas enclosed by thick lines represent actual chips. Where a functional block protrudes outside of a thick line, this means that extra logic, external to the chip, is required to take full advantage of the facilities available. Shaded areas imply that the part uses an interface specific to the microprocessor.

Fig. 2. Costs of l.s.i. parts used in microprocessor systems showing the falling trend over a number of years.
circuit manufacturers face specific trade-offs between costs and chip size, gate packing density, gate delays power dissipation and package pin counts. To meet the requirements of the wide spectrum of applications the manufacturers are obliged to produce a range of products having differing implementations of the hardware functional blocks in a microprocessor system, depending on cost, performance, instruction set and flexibility (expandability) objectives. I shall illustrate this in the diagrams by using a standard format for the functional blocks (thin lines) and "overlaying" the actual chip functions (thick lines).
The blocks generally include programme memory (r.o.m., e.p.r.o.m., or r.a.m.); data memory (r.a.m.); peripheral interface logic (general purpose or specific to a particular peripheral); timers (hardware timers are tending to replace software loops) and interrupt or test inputs. For high speed peripherals, a direct memory access facility is often included. These functions usually connect to the microprocessor unit (m.p.u.) via a common bus, and a clock generator and timing circuitry will control transfers across the bus.

Within the m.p.u. there will be an arithmetic logic unit (a.l.u.); the working registers (available to the programmer); internal registers (e.g. temporarily storing the current instruction or the next address); a control r.o.m. or equivalent logic, and instruction decode and sequencing logic (see Fig. 3). The established 6800 family is an example of a system in which the m.p.u. and the other functional blocks are provided by individual packages and the system is expanded by connecting more memory or i/o chips onto the bus.

Single chip microprocessors

The i.c. manufacturers seem to be agreed that a single chip microprocessor is a device that contains all the essential functional blocks (r.o.m., r.a.m., m.p.u., $\bar{i} / \overline{0}$, timer) to allow it to be

Fig. 3. Typical arrangement of functional blocks in a microprocessor unit.

Fig. 4. Examples of single-chip microprocessors: (a) the 4-bit TMS1000, and (b) the expandable 8-bit 6801
used in low cost, high volume applications such as microwave ovens, washing machines and electronic games. One can identify two basic types available: first, very low cost, nonexpandable microprocessor chips, with fixed capacity of memory and i / o. These are devices like the 4 -bit TMS1000 (Texas), the 8 -bit 3870 (Fairchild, Mostek) and the more recent 8 -bit 8021 (Intel), see Fig. 4(a). Because the applications are very cost-sensitive, the manufacturers are producing variations on the theme to meet particular requirements, with extra r.o.m. or i/o on larger chips, and, in the case of Intel's 8022^{1}, they have integrated much of the external logic normally required in microwave oven applications by including a two-channel analogue multiplexer and an analogue to digital converter on the chip. Intel say that this is the first of a number of 802 X parts that will be designed for specific high volume applications.
The second type of single chip microprocessor is expandable, allowing the use of more memory and/or i/o than is

Fig. 5. Examples of two-chip set microprocessors: (a) the 8-bit 6802 and (b) the expandable 8-bit 8049
included on the basic chip. This would also be useful where the design requires both r.o.m. and e.p.r.o.m.; the e.p.r.o.m. would allow specific customer variants to be produced, while the main programme would be in r.o.m. to reduce cost. Examples are the 8048 and 8049 families (Intel), 6801 (Motorola) ${ }^{2}$, Z8 (Zilog) and 9940 (Texas). See Fig. 4(b) and 5(b). Some of these types are available with serial i/o for distributed processing, and in due course versions with e.p.r.o.m. rather than r.o.m. should be increasingly available, allowing low quantity applications to use single chip microprocessors. Minor variants of these microcomputers can be used as peripheral controllers on microprocessor systems such as the 8080,6800 and Z80. Examples are the 8041 universal interface (u.p.i., Intel) and the 6801 E (Motorola).
It is interesting to consider that the performance of the faster types of microprocessors exceeds that of the early 8 -bit microprocessors, such as the 8080 and 6800 , even though the faster devices contain so much extra logic!

Two-chip expandable systems

Another approach for obtaining flexibility is to base the system design on chips that split the minimum system into two packages and can be expanded by the addition of bus-compatible devices. The longest established example is probably the F8 (Fairchild). Others to consider are the 6802 (m.p.u. and r.a.m.) used with the 6846 (r.o.m., i/o and timer) from Motorola, the 6500 series m.p.us used with r.o.m., r.a.m., i/o and timer chips from M.O.S. Technology, and similar systems for the National Semiconductor SC/MP and Signetics 2650 (see Fig. 5(a)). More recently "cutdown" versions of single-chip microprocessors have been made available, such as the 8035 , which can then be used with r.o.m., i/o combination chips or e.p.r.o.m., i/o chips from Intel.

As can be seen, with the introduction of the combination memory-andperipheral chips, the various single chip microprocessors and the m.p.u., i/o and memory combinations, the designer has plenty of scope if r.o.m. based systems are required. The choice is more limited if e.p.r.o.m. is needed, but this situation should improve during early 1979.

8,12 and 16 bit general purpose microprocessor systems

There are various situations where the previously mentioned systems would not be appropriate. For example, if greater performance is required or if large amounts of r.a.m. are to be used, such as in intelligent terminals or development systems, the familiar microprocessors such as the $8085,6800, \mathrm{Z} 80$ or 9980 would probably be the next types to consider (see Fig. 6). The families generally included selected high speed versions, with the manufacturers leapfrogginc each other as new devices are introduced. The 8085A-2 and Z80A seem to be the fastest available at the moment (it depends on who is running

Fig. 6. Examples of general-purpose microprocessors: (a) the 8 -bit 8085, (b) the 8 -bit Z80, (c) the 16 -bit TMS9980 and (d) the 16-bit PACE or CP1600.
the benchmarks as to which wins!). They will shortly be challenged by the 6809^{2} (Motorola) which, like the Z 80 , has a large instruction set and extended register set, some features of which are described below (see Fig. 7).

The applications where these more powerful devices are used will often involve interfacing to a variety of peripherals, and the recent and continuing developments in peripheral controller chips are significantly reducing the design complexity, costs and chip counts incurred. Devices like s.d.l.c./h.d.l.c.* chips, floppy disc controllers, and c.r.t. controllers can replace a whole board of t.t.l. m.s.i. logic. Some of the more recent peripheral controller chips are actually based on universal peripheral interfaces (u.p.i.), so that the specific requirements of a high volume user can be taken into account by modifying the programme in the u.p.i. (e.g. the Intel 8278 matrix printer controller).

Another point to consider is that in some cases it is possible to use one manufacturer's peripheral chips with another's microprocessor, which may
*Synchronous data link control/high level data link control.
be useful where your own manufacturer's device doesn't have the facilities required, or is not available.

The new 16-bit microprocessors

There is a lot of activity in the 16 -bit microprocessors, with the 8086^{3} (Intel) and Z 8000 (Zilog) coming onto the scene and the MACS (Motorola Advanced Computing System) in the de. sign phase, to join the existing devices such as the 9900 (Texas), F100C (Ferranti) and more recent 9440 (Fairchild). The 9440, 8086 and Z8000 are all claimed to have performances comparable with powerful minicomputers (i.e. Nova range, PDP 11/45 and PDP 11/70 without cache memory), and have very much larger instruction sets than most 8 -bit microprocessors. In common with the 6809, the software features being emphasized by some manufacturers include the ability to use position independent code (which facilitates the use of r.o.m. libraries such as maths packages, interpreters and so on), the availability of a large number of registers, and instruction sets designed for array and repetitive operations, such as are required in compilers, editors and executives.

Fig. 7. High performance microprocessor systems: top, the 8-bit 6809; below, the 16 -bit 8086 in the "minimum mode" and the "buffered mode".

Another feature of some units is the inclusion of hardware and software controls for use in multi-microprocessor systems.

The 8086 and $Z 8000$ are both able to address more than 64 K bytes of memory, and to achieve the large address ranges both manufacturers use different configurations for small and large systems. The 8086 (1Mbyte addressing) has a pin that is strapped to V_{cc} or ground to determine whether the "minimum mode" or "buffered mode" is selected, while the 5 Mbyte version of the Z 8000 will use a 48 -pin package instead of the 40 -pin package used on the standard version (see Figs, 7b, 7c). Whilst such large address ranges may seem out of place in microprocessor applications, with the rapidly increasing capacity of memory chips and the advent of the r.o.m. libraries, addressing beyond 64 Kbytes seems likely to become a useful feature in many applications.

Bit slice systems

The bit slice families have been developed as an extension to the existing Schottky t.t.l., e.c.l. and c.m.o.s. logic families, to combine the desirable performance characteristics and design flexibility of the logic families with the reduced costs and reduced package counts of l.s.i. Various chips are available that allow the designer to implement the functional blocks within a processor, such as a.l.u. and registers, control p.r.o.m., microinstructions sequencer (which determines the next address of the p.r.o.m.) instruction decode, and memory interface ${ }^{4}$.

In the schematic examples shown in Fig. 8 using the 2901 family (Advanced Micro Devices) the a.l.u., registers and some control is implemented in 4-bit slices, known as slice microprocessors. These can be cascaded to make a system of the desired word width; four of them are used to make a 16 -bit system. The microinstruction sequencing is controlled by a set of chips that are also cascadable 4 bits at a time, although recently a single-chip sequencer has been introduced (2912).

The author

David Russell graduated from Southampton University in 1969 and completed a sandwich course at A.E.R.E. Harwell the following year. In 1970, he joined CTL, starting in the Circuits and Memories group. After working with semiconductor memories and high speed logic families he moved into the Systems group and was involved in the design of a number of products including power supplies, peripheral controllers and switching units for ultra-reliable systems. More recently in the Product Group. in which he is now the company authority on microprocessors, he has been working in applications using microprocessors in peripheral controllers, and has presented papers reviewing the microprocessor scene at several symposia in the last two years.

Fig. 8. Schematic showing the principle of bit-slice systems, here for example, $1 \times$ 29811, 2×2911, etc.

These systems can, for example, be used for emulating existing minicomputers, or in the design of controllers for high speed peripherals such as rigid disc drivers ${ }^{5}$. The instruction set to be obeyed by the system is determined by the contents of the control p.r.o.m. The width of this is also in the hands of the designer, and may be in the region of 28-36 bits for small processors or peripheral controllers and 48-60 bits for emulation of powerful minicomputers.

The available families include the 9400 (Fairchild); 745481 (Texas) 6701 (Monolithic Memories) and the 10800 (an e.c.l. system from Motorola), but the market leader is the 2901 family, which has been very widely second sourced. A recent addition is the 2903, a 4-bit slice much like the 2901, except that more registers can be added onto the basic set via expansion ports and multiply and divide instructions are included.

To improve the performance of bit slice systems, more powerful memory control chips are being introduced that include an a.l.u. and registers, dedicated to calculation of the next address, while the main 4-bit slice microprocessor system continues with the current instruction. (This arrangement is also used in the 8086 16-bit microprocessor.)

As for future improvements in performance, the basic (internal) cycle times of Schottky t.t.l. systems probably cannot be reduced much below 150 ns , so some of the i.c. designers are turning towards the use of e.c.l. circuitry inside the slice family chips, while retaining s.t.t.l. or l.s.t.t.l.-compatibility by putting buffers on the chips ${ }^{6}$.

An alternative that may become attractive to the minicomputer designer is to switch to using an e.c.l. bit-slice family to overcome the speed limitations of the other technologies, such as the 10800 (Motorola), especially as translators to s.t.t.l. bus systems are available, as are development systems.

Conclusion

When microprocessors were originally introduced they were cheap, but slow and very basic, requiring a considerable amount of support logic around them. We are on the verge of a
new phase, where the microprocessor manufacturers can provide practically tailor-made l.s.i. systems, for example at the high volume, low cost end, using the application oriented single-chip microprocessors, and, for larger systems, using peripheral controller chips and standard r.o.m. packages with high performance microprocessors. With the steadily falling cost and increasing performance trends, the point will soon be reached where conventional uses of microprocessors will leave a lot of power to spare, and new and novel uses for them will be devised.

A major problem the manufacturers now face is ensuring that designers are able to use the increasingly more powerful microprocessor in sufficient volume to justify the enormous cost of development.

References

1. Check W. et al "Microcontroller includes a-d converter for lowest-cost analogue interfacing". Electronics, May 25, 1978, pp. 122127.
2. Wiles, M. et al. "Compatibility cures growing pains of microcomputer family!" Electronics, February 2, 1978, pp. 95-103.
3. Katz. B. J. et al. " 8086 microcomputer bridges the gap between the 8 - and 16-bit designs!" Electronics, February 16, 1978, pp. 99-104.
4. Mick, J. R. and Brick. J. "Microprogramming Handbook and Am 2910 Emulation." Advanced Micro Devices publication.
5. "A high performance disc controller." Advanced Micro Devices publication.
6. International newsletter. "Samples coming of high-speed 2900 version." Electronics, May 25, 1978, p. 71.

Bibliography

Alterman, L. "Microcomputer families expand," part 1: the new chips, Electronics, December 8, 1977, pp. 89-99.
Milton, R. "Product Review - Microprocessors". Computer Products International. May 1978, pp. 8-17.
Powers. C. "MC6809 microprocessor" Microprocessors, June 1978, pp. 162-165.
Kornstein, H. " 8086 - its development and capability" Microprocessors, June 1978, pp. 166-169.
Product review. "Z8000". Microprocessors, June 1978, p. 180.

NEWS OF THE MONTH

 Government conclusion

 Government conclusion
 The advantages of citizens-band radio are more than outweighed by the disadvantages

THE SUBJECT of citizen's-band radio was again raised in the House of Lords, on July 11, and again Lord Wells-Pestell made it clear that the Government had no intention of providing it in the UK. This time, however, his answers were far more relevant to the subject than they were last time (see News, July issue, p47).

Prior to the debate, Lord Torphichen told Wireless World that Lord Tanlaw would be posing a question in the House, and would be avoiding the use of the words "citizen's-band radio" - in the hope that it would be better. received. Lord Tanlaw's question was as follows: "To ask Her Majesty's Government whether they will accept a recommendation of the National Electronics Council to improve public communications by allowing individuals access to the radio spectrum for A to B communication." Lord W-P, saying "No" and introducing the description "citizen's-band radio," replied that the Government remained of the view that the aḍvantages of introducing such a service would be outweighed by the disadvantages.
To this Lord Tanlaw asked whether the Minister had conveniently overlooked that the radio spectrum ignored all national boundaries and was governed only by the law of nature, and if so could he justify his reply when there was no legal or con-
stitutional basis for any nation State to claim a part or the whole of the magnetosphere, or to prevent an individual from having access to it. Would he then say why the UK was one of the few democracies outside the Communist bloc that had not allocated a frequency over which members of the public could communicate freely with one another.
In reply, Lord W-P said that it was the view of the Government not to provide citizen's band radio for a whole variety of reasonstoo many to go into at question time. The Government had taken advice and had looked at what had happened in other countries. "There are many competing demands by the necessary users of radio, by mobile radio and by commercial industrial firms."

Reminding the-House that there was evidence of abuse and misuse in countries that have c.b. radio, he then made reference to part of an Electronics Australia editorial, printed in the RSGB's journal Radio Communication, which told of things that could be heard over the air, such as school kids swopping dirty yarns and prostitutes touting for business. The noble Lord did not think that this was funny and quoted another piece from the editorial: "It seems possible that citizen's band may even have played a key 'role in a recent murder." The final part of his quote said that c.b. radio was becoming
notorious, and many people were suggesting that the authorities should reverse last year's decision and try to suppress it altogether.

Lord Wells-Pestell concluded his answer by saying, "We see no reason to introduce the possibility of that kind of thing here."

When asked by Lord Tanlaw whether he was prepared to say that the examples which he had given did not take place over the telephone system, Lord W-P said that he did not think that the two were to be compared and pointed out that conversations on the telephone took place between two people and were not necessarily heard by a large number of people.

Lord Torphichen then wished to know whether the noble Lord, representing the Government, thought it wise that casual would-be users of radio communication should be forced to use either the already overloaded Post Office radio telephone network or, worse, to misuse the amateur frequencies. Seemingly becoming impatient, Lord W-P repeated that the Government had studied c.b. radio in other countries and had come to the conclusion that the advantages were more than outweighed by the disadvantages.
After the debate Lord Tanlaw told Wireless World that he will still continue to press for c.b. to be heard in the House of Commons. \square

Mini-Nyquist speech prototypes in 18 months

CONTRACTS ARE already being negotiated for the commercial exploitation of a speech processing technique which can transmit at one-seventh of the Nyquist sampling rate. The technique, developed by Brigadier Reginald King with the collaboration of the School of Electronic Engineering under Professor William Gosling at Bath University, reduces speech to an "alphabet" of 27 "letters" which are then transmitted at about 1000 five-bit words per second. One of the problems yet to be overcome is that the samples appear at non-regular intervals and present transmission techniques allow only for regular transmission rates, but Brigadier King told Wireless World that a prototype device, using microcprocessors, would be ready in about 18 months, and that commercial devices would appear in about four to five years if all went well. He emphasised that the technique did not make current techniques obsolete overnight.
Brigadier King, who completed his work during a sabbatical year at Bath University, said his work had been based on a wellknown paper published many years ago in the United States in which the authors described the effects of severely limiting the amplitude of human speech. They discovered that with 100% limiting, when all that was left of the speech waveform was a series of events corresponding to the zero-crossingpoints in the speech, the intelligibility was still 97%. This meant that although the odd
word was lost the sentences could still be understood. Brigadier King first worked on this and other speech processing techniques at the Royal Military College of Science at Shrivenham eight years ago.

The sound of such "infinitely-clipped" speech was, as Brigadier King says, "pretty awful to listen to," but it aroused a great deal of interest. King and others were sure that the time intervals between zero-crossingpoints in human speech conveyed the bulk of the information, "but there was something missing; some mislaid clue that we had yet to discover."

Then in May last year Bell Laboratories published a paper explaining why researchers into zero-crossing frequency were barking up the wrong tree. The paper "proved" that the reduction of data rates by using zero-crossing was theoretically impossible. A lot of the other researchers turned to other things. King stuck with it. It was after this that he began a year's sabbatical at Bath. He stresses the value of Bath's co-operation. He was given the use of staff and a PDP8 computer. Just as valuable, though, was that he and Professor Gosling were agreed on their approach, and that Bath, too, had done some work on zero crossing.
"We were looking for a way of sampling without involving the Nyquist rate. We had got to dispense with amplitude descriptors and linear processing." The mathematical model was shortly provided in a book by two

Russians: "Distribution of Zeros of Entire Function's." Speech, said King, was an entire function, having real and complex components. "The thing that was missing was the locations of the complex zeros."

The task was to identify one sub-set of complex zeros which would identify speech. The technique was not entirely accurate, said Brigadier King, "But all modulation systems are approximations."

The work so far, using computer simulations, has only confirmed that the technique works. "We've only cracked open the oyster, as it were." Bath is now refining the method, identifying, perhaps, other sub-sets of complex zeros which might improve it. A key to the technique is that, effectively, the packets of five-bit words occur in regular clusters. and this makes further condensation possible. Although there are 27 letters in the current alphabet, alphabets with as few as seven or eight letters have proved intelligible, though unpleasant to listen to.
Brigadier King says the technique is much simpler than current vocoder techniques. According to an Army statement, the equipment could be sold "at less than a tenth of the cost of any other existing system and will be housed in a terminal smaller than a shoebox."
The Army statement went on to say that the details of the technique were classified, but it appears that this is as much for commercial as for military reasons.

Custom i.cs produced by computer aided design

EQUIPMENT MANUFACTURERS can now get integrated circuits custom designed and produced for them by a British computer aided design service and chip manufacturing plant which offers speed and convenience as its main features. Conventional draughtsmen's work in the layout of masks is eliminated and layout design time is reduced from weeks to minutes. Customers, it is claimed, can get a price quotation for a given number of completed devices on the same day that they bring in a diagram of a prototype system that is to be integrated. Finished samples of the manufactured devices are available in ten weeks. The convenience comes from the fact that a computer system can provide a quick feedback of information that enables the
customer to check the design process as it is taking place. For example, the computer will run a simulation of a customer's logic system to make sure that what is specified on the system diagram will actually do what the customer requires of it when it appears as a manufactured device.

Design it yourself

The new service has just been started by GEC Semiconductors Ltd, who specialize in custom designed i.cs, and is called "Cellmos" This name derives from the principle that the customer designs his own integrated circuit using standard "cells" or circuits from a library of circuits taken from standard 4000

NEB details confirmed

THE NATIONAL Enterprise Board has published further details of the newly-formed microelectronics company into which $£ 50$ million of public money is to be invested. A statement was issued on July 22 saying that, initially, $£ 25$ million was to be invested in a new company called Inmos, and an agreement to that effect had been signed by the NEB, Inmos, and the three founders: Dr Richard Petritz, Dr Paul Schroeder and Mr Iann Barron, of whom more later

The NEB say that provision of the second $£ 25$ million will depend on the achievements of the company. The funding will be in the form of ordinary and convertible preference shares. "Key employees will have the opportunity to purchase ordinary shares in the company. When investment in the company reaches the level currently envisaged, the founders and the future employees could hold up to 27.5% of the voting shares in the company." The NEB's investment will have a preferred position because of the differentiation of rights attaching to the ordinary and preference shares.

Inmos will concentrate on the next generation of m.o.s. technology, according to the NEB. Their products will include very large scale integration (v.l.s.i.) memory and microcomputer devices. This means the production of 64 K ra.ms, compared with the current maximum of 16 K . Inmos will also, it is hoped, produce microcomputers - central processing units (c.p.us) on a single chip.

The company's headquarters and production will be based in the UK but technological and product development will be split between here and the United States, where the biggest market is. Operations will start simultaneously here and in the USA. A prototype production line will be based in the USA but by 1981 Inmos plan to establish volume production in the UK. The first task will be to establish design teams and plan production facilities. An NEB spokesman said that, as yet, no other appointments had been made than the three founders, but that the company was having "discussions with people about recruitment." By the middle of the $1980 \mathrm{~s}, 4,000$ people would be employed in the UK and 1,000 in the US. The NEB said they were looking at sites though no definite decisions had been made. The statement said
that areas of high unemployment would be given special consideration, and the spokesman said this meant careful study of the North and North-West.

Dr Richard L. Petritz, 55, received a Ph.D. in Physics from North Western University. After lecturing and Navy work he was director of Texas Instruments' semiconductor $\mathrm{r} \& \mathrm{~d}$ laboratory for ten years from 1958. He established TI's UK lab at Bedford. In 1968 he founded New Business Resources to launch new electronics companies and, in 1969 , Mostek. As a consultant he advised the World Bank and the Korean Government in setting up electronic business in the Korean Republic.

Mr Iann Barron, 42, did Army and Air Force research after receiving a Cambridge MA. He was head of systems research in the computer research laboratory of Elliott Automation. In 1965 he founded Computer Technology Ltd, the first UK minicomputer company, and was managing director until 1971. Since then, as a consultant, he has advised the Department of Industry on future developments in computers and information technology.

Dr Paul Schroeder, 38, won a Ph.D. in Physics from Massachusetts Institute of Technology in 1967 and worked for Bell on memory design until 1974. He moved to Mostek becoming, in 1967, director of memory design engineering. He is thought of as a leading expert in m.o.s. dynamic storage devices design.

One of the most interesting aspects of these appointments is that the head of the trio, Petritz, has based his business in Dallas on the finding of funds for new ventures. It is a comment on the willingness of the holders of risk capital to take risks that he has now thrown in his lot with the NEB, though he is said to find the new venture attractive because it will eventually allow the company to regain its independence from the NEB. Another attraction is that labour costs in the UK are lower than in the US, a fact which has also encouraged Japanese investment here of late. The memory products, first off the production line, will be made in the US to build up the company, and the microprocessors will be made in the UK.
series c.m.o.s. logic parts. At present the GECS Ltd library at their Wembley plant runs to about 500 items. Of course, this restriction of the customer's design options to a given library of elements is what "pays for" the gain in speed and convenience.
After a customer's engineer has designed his required system in these standard parts, and perhaps built a prototype in breadboard form, he supplies a logic diagram to GECS. At Wembley an accurate copy of this diagram is made and on it all the cells, or discrete logic circuits, and their connections are given code numbers and letters. From these code symbols a list is compiled which defines the logic completely in known terms and is a full description of the customer's requirements. In addition. the customer can supplement the circuit information with a set of test waveform definitions.
The list. either handwritten, typewritten or in computer readable form, is fed into a GEC 4070 computer to carry out compatibility checks (such as that an x-input gate is in fact receiving x-inputs). This may take anything from 15 to 30 seconds. If waveforms are supplied the service will run a logic simulation of the circuit on the same computer and return the results of this to the customer for him to verify that the circuit works as he intended and that the data have been transferred accurately. This takes from 1 to 13 minutes according to the complexity of the integrated circuit, and a similar time is needed to print out the results.

Once all this data has been verified by the customer's engineer and approved, it is released to the part of the service which lays out the integrated circuit. The layout process, claimed to be unique, optimises the placing of the cells and interconnections on the chip and then-generates two plots on paper. One plot shows the proposed physical layout of the i.c. with pad positions and so on. The second plot is a diagram of the chip in logic diagram form, and allows the customer to check this version against his original circuit.

Checking the layouts

At this stage changes can still be made in the initial list to correct errors or modify the circuit. If this is done, the procedure is repeated until the customer's requirement is met. Once the two layout plots are certified correct by the customer's engineer, the layout is translated into magnetic tape format for the preparation of masks on computer-based equipment. If waveforms were supplied, these can be used to produce a test programme for an automatic test equipment used by the service.

The final cost of such a custom-made integrated circuit is determined by the chip area and size of package. The greater the number of cells, the greater will be the chip area, the larger the package and the higher the cost. But GECS claim that, because of the reduction in the time required for design and the convenience of the whole design approach. "the overall cost of developing custom I.s.i. circuits can be significantly reduced for the smaller quantity user."

Post Office approve phone-line tv system a new aid to the British police

THE POST OFFICE have accepted for evaluation an application by Aero \& General Supplies, of Nottingham, for a slow-scan television (s.s.tv) system to be used as a private attachment to their public switched telephone network and private circuits. In addition, the British police, who were earlier given technical approval by the Post Office for a similar system for use on private circuits have now put s.s.tv into their research and development programme.

The heart of the system which has been proposed for the public switched telephone network is a slow-scan transceiver called the Robot Model 530. This unit is already in use in a number of phone-line tv systems in America and Canada, and has recently been technically-approved in Spain and the Netherlands. According to Aero \& General Supplies, the Post Office had four months previously similarly approved the system for use on private telephone networks in the UK but policy issues delayed approval for the public network. One may be forgiven for speculating that these policy issues could have had something to do with the fact that a s.s.tv system of this kind could in many cases compete with the Post Office's proposed Viewphone.
The Model 530 s.s.tv system, however, must run the Post Office gauntlet - the usual process of assessments and trials - because the approvals are subject to it meeting their technical requirements, which are to ensure the system's compatibility with the PO's networks and systems. Robot are confident that these requirements, which should involve only minor modifications to the equipment, can be met. These modifications will be discussed later.
Both the police system and the proposed switched-telephone network system, which
are manufactured by Robot Research Incorporated of California, can be used with telephones, or any other "speechcommunication" medium because they only require audio bandwidths to convey all of their picture information. The picture obtained is stationary and updated about every eight seconds (almost like a slide show)

Fig. 1
or can be held as long as required. The frame, in each case, is composed of a 256 line display having $12 \overline{8} \times 128$ discrete picture elements retained in a memory, and each coded into one of 16 grey shades. Although the picture definition does not compare with that of 625 -line fast-scan $t v$, it is nevertheless surprisingly good, as shown in Fig. 1. A normal 625 -line fast-scan tv camera is used to obtain the picture and this is sampled at a slow-scan rate and then transmitted immediately or recorded for later transmission if required. The display may be shown on a normal 625 -line monitor, or even on a domestic tv receiver (slightly modified).
S.s.tv systems have created enormous interest throughout the world and are already being used by security firms, banks, police and meteorologists. They are, for example, ideal for the quick transmission of "mug shots," fingerprints, cheque signatures and for security surveillance. When connected to a telephone answering machine they enable one remote operator to contact any chosen premises, a bank for example, and see a picture of the strongroom within seconds. When a system is connected to a

More about s.s.tv

In s.s.tv a television picture is slowed down so that it may be contained within audio bandwidths. This slowing down results in a picture having about. 120 lines (128 lines in the case of the Model 530) with a scan time of 7.2 (for a 120 -line. 50 Hz system).
Because the total bandwidth of s.s.tv lies well within the audio spectrum, it is possible to convey pictures using normal radio transmitters, telephones or other audio systems. In addition, the signals may be recorded on ordinary domestic tape recorders for later playback or for programme construction.
A slow-scan signal usually consists of a 1200 Hz audio subcarrier which is frequency modulated by the composite video signal. The resultant f.m. signal is normally used by radio amateurs to modulate a s.s.b. transmitter. Figure 3 shows the frequency composition of part of the f.m. signal - a single slow-scan line - in which an audio frequency of 1500 Hz represents a black level, and an audio frequency of 2300 Hz represents a white level. Intermediate shades of grey are represented by the frequencies between 1500 Hz and 2300 Hz . In the case of the Model 530 , each picture element is represented by one of 16 grey shades in a digital memory. The memory being a 65,536 -bit store, made up of sixteen 4,096-bit r.a.ms.
The aspect ratio of a s.s.tv picture is usually 1:1, mainly because the surplus cathode-ray tubes, generally used by radio amateurs for s.s.tv, are round, and the square format used
the maximum available screen area
All synchornisation pulses are transmitted at the 'ultra-black' subcarrier frequency of 1200 Hz and consequently they do not appear on the screen. As shown in Fig. 3, the line scan consists of a 5 ms sync pulse at 1200 Hz followed by the frequency variations representing the light intensities of the visual image which has been scanned. The spot on the monitor screen flies back during the sync pulse penod. At the beginning of each complete frame the 5 ms sync pulse is replaced by a 30 ms frame sync pulse during which the spot resets from the bottom right to the top left of the picture.

Although s.s.tv is almost entirely an amateur development pioneered by an American team headed by Copthorne Macdonald, W4 ZII, in 1958, it was only fairly recently (1968 in the USA and 1976 in the UK) that the controlling bodies (the FCC and the Home Office, Directorate of Radio Technology) put it into the standard radio amateur licence. Before about 1975, UK responsibility was with the Ministry of Posts and Telecommunications, who set fairly rigid standards for s.s.tv. These standards are no longer applicable, and providing s.s.tv is confined to the allocated frequency bands 3.5 to $3.8,7$ to $7.1,14$ to 14.35 , 21 to $21.45,28$ to 29.7 and 144 to 146 MHz , and the normal limitations of power and bandwidth are complied with, amateur s.s.tv transmissions may use any standards the operator wishes. This will not, however, be true of any unit proposed for private or public use with Post Office networks.
burglar alarm, the police can not only receive an alarm call, but can see a picture of what is happening. The eight-second interval between samples is sufficiently short for monitoring high security areas, and future developments are likely to include a system which compares one frame with the next to trigger an alarm after any picture-content change, caused by an intruder for example.

A typical s.s.tv system is shown in Fig. 2. This is a one-way system using transmitter and receiver separates. Transceivers can be used for two-way communications.

In the last few months, at least one British police force has carried out experiments with one of Robot's s.s.tv systems to determine its usefulness. They are using Robot's Model 400 which, being the amateur version of the Model 530, has more controls. As one might expect, they will be exploiting the system to the full and many modes and methods of transmission have been investigated - including telephone lines, and v.h.f., and h.f. radio - over both long and short distances.

For the system to be most beneficial to the police, they will be doubling the memory capability of the system and increasing the grey scale from 16 to 64 levels. Certainly, an s.s.tv system having 64 levels would be very useful for the transmission of both pictures and fingerprints. Robot also intend to make this modification some time in the future.
Continued on page 74

Because the Post Office insist on good mains isolation, one modification to the Model 530 will probably be to fit special transformers having screens between primary and secondary windings. The alternative is to add a mains isolation unit to each piece of equipment: this is how the police have solved the problem.

Problems are bound to arise because there is a Post Office line-signalling tone within the 1200 to 2300 Hz bandwidth required for the s.s.tv transceiver. This tone, at 2280 Hz , is used in the most common private (acl3 or $\mathrm{acl5}$) and public (ac9 or acl1) networks to seize and release the line during phone calls. A $2280 \pm 15 \mathrm{~Hz}$ receiver is used to sense this tone and it responds, only when the tone is pure and of sufficient duration, by cutting off the call. Since the s.s.tv system is f.m. it may be possible for it to produce a pure tone, which for one reason or another occurs within the bandwidth of the receiver and is, because of the picture content, of sufficient duration. This would also cut out the call.

Fig. 3
Other tones on 2280 Hz are for address signalling (dialling) and will therefore not affect the s.s.tv transmission.

One way in which this problem could be overcome is for the s.s.tv unit to produce a second tone (at 1000 Hz say) so that even if a tone of 2280 Hz was produced, it would not be pure because of the presence of the second tone - this would be interpreted as speech. Alternatively, the whole s.s.tv frequency band may be shifted down a few hertz to avoid 2280 Hz . Robot considered the use of a
second tone but the idea was dropped when it was discovered that. whatever second frequency was chosen, the beat frequencies created either interfered with the picture or fell outside the frequency bands permitted by the Post Office. Eventually Robot chose a bandwidth from 800 to 1900 Hz and are now trying to make this a standard acceptable to the whole of Europe and America. The police are also going to comply with this.

At the moment the model 530 is being retailed by Aero \& General Supplies, but their intention is to distribute it through a franchised network consisting mainly of established closed circuit video dealers.

According to the company, a price cannot, at this stage, be fixed for the equipment if it is used on P.O. lines, but it is anticipated that a phone-line television transceiver, as it will be called, will be offered for less than $£ 1,500$. The equipment is available now for uses which do not require P.O. approval, for less than this, and transmitters and receivers for one way transmission are available for even less.

Large-size l.c.ds to have longer lives

glass frit sealing, currently recognised as the best method of sealing liquid crystal between glass plates for the production of long-life l.c.ds, has been so well mastered by ITT Components Group Europe that they are now successfully mass producing displays having character heights as large as 13 mm . Few l.c.ds are given a life expectancy of greater than two years. but this UK company feels confident that their products will last for at least five years.

If a l.c.d. is to have a long life it is essential that the seal between the glass plates is impervious to all materials which could contaminate the liquid crystal. There are two types of seal in common use; glass frit and plastic. Since glass is more inert. physically and chemically, than plastic, it can withstand much worse environments, and is consequently expected to exhibit higher reliability. Unfortunately, the glass frit technique. which involves depositing low-softening point glass (frit), in paste form, on to the edges of the glass plates, and firing at about $500^{\circ} \mathrm{C}$, is extremely difficult to master. Difficulties arise because the glass plates must be separated by only about $1 / 2$ thousandth of an inch (12 microns), over the whole display surface and, of course, as the display gets larger these become even harder to overcome. Although a number of manufacturers are using the glass frit technique on smallsize displays, Siemens in Germany, Brown Boveri in Switzerland, Electrovac in Austria
and Motorola in the USA, ITT claim to be the first company in Europe and probably in the world to produce large-size displays in quantity.

ITT, although late entering the l.c.d. market, recognised the long-term potential of glass-frit seals and decided. at an early stage, to concentrate on this technique. The real importance of the technique is expected to be seen in the future when the ambient temperature range of l.c.ds is extended. With the current. restricted, operating temperature range (typically 0 to $60^{\circ} \mathrm{C}$) the difference in reliability between glass-frit seals and plastic seals is not market.

ITT intends to achieve, within the next five years. a 25% share of the European market and a 10% share of the World market for displays having a minimum 12 mm character height. The actual display that they are investing in is a field effective (twisted nematic) l.c.d. measuring $82 \times 34 \mathrm{~mm}$ overall. (For a description of the constructions and types of l.c.d. available see p230, May 1975 issue of Wireless World.)

General production area for ITT's liquid crystal displays. To achieve high yields it was accepted that airborne particles had to be virtually eliminated, and this purpose-built clean room area was constructed to create ultra-ciean conditions for all critical operations.

The company is currently supplying l.c.ds at a rate of about 1,000 pieces per week, and they forecast that this figure will be up to 3.500 by the end of 1978 and 10,000 by the end of 1979. At the moment, however, ITT admit that yields are unrealistic and a figure of 60% is the most any manufacturer could expect to obtain. They are working to improve the performance of twisted nematic l.c.ds, in particular to extend their operating temperature range. In the future we can expect to see larger displays with drive circuits mounted directly on them.

At ITT's Central Research Laboratory at Harlow, completely new types of l.c.d. are being developed. These include a display based on cholesteric I.c. which contains a dye enabling it to have its own intrinsic colour and avoid the need for polarizers. Research is also progressing into the use of smectic l.c. materials in displays. These l.c.ds would have memory and continue to display a message after removal of the drive signal.

News in Brief

The Radio Industries Club of Great Britain announce that Howard Thomas, Chairman of Thames TV, is to take over from Douglas Muggeridge, Deptuy Managing Director of BBC Radio, as the Club's President. John Record, Thorn Industries' National Sales Manager, will take over from Alan Pederson, of Antiference, as the Club Chairman.
Admiral of the Fleet Sir Edward Ashmore, G.C.B., D.S.C., Chief of the Defence Staff until his retirement last year, has accepted an invitation to join the Board of Racal Electronics Ltd.
Robert Telford, Managing Director of GECMarconi Electronics Ltd, has been knighted for his services to export. Under Sir Robert's guidance the GEC-Marconi Electronics Group's overseas sales have risen from about £ 18 million in 1968 to over $£ 230$ million, and since 1966, the Group has been awarded 19 Queen's Awards, of which 11 were for export.
A Marshall (London) Ltd have moved their offices, sales and stores departments to new premises at Kingsgate House, Kingsgate Place, London NW6.

Mains interference and filtering

Protecting logic systems from mains borne noise

by I. Catt and M. F. Davidson (CAM Consultants), and D. S. Walton (Icthus Instruments Limited)

Although great trouble is taken when designing d.c. power supplies for large digital systems, interference on the mains power lines is often overlooked or underestimated. This article outlines the types of noise that occur, and describes a suitable filter for overcoming the problem.

INTERFERENCE from the mains can be classified into three types. Balanced, where the noise signal travels equally down the live and neutral lines, and the earth line acts as a return path. This is often called common mode noise, and it causes earth currents which can upset high gain linear circuits. Unbalanced, where the noise signal travels down the live line and back on the neutral line, leaving the earth line unaffected. This is often called differential mode noise and may be lost or suppressed in the d.c. power supplies of a circuit. It can be shown that any complex signal travelling down the three lines can be resolved into a common mode component and a differential mode component. Mains borne radiated noise, which can be both balanced and unbalanced, enters the equipment via the three power lines, and then radiates directly into the logic.

Susceptibility of a digital system to mains noise

Differential mode noise on the live and neutral lines tends to be smoothed out at the unregulated and regulated d.c. points. However, because large value capacitors have a significant series inductance, some of the noise, if not suppressed before the transformer primary, will pass through the power supply and cause transient variations which can disrupt the logic operation. Screening the transformer will not help significantly because differential noise is fed through the transformer from primary to secondary and not via interwinding capacitance.

Common mode noise, however, does pass through the transformer via interwinding capacitance, so a screened transformer will help to suppress the interference. The typical inter-winding capacitance for an unscreened transformer is 100 pF . With screening, this falls to around 1 pF . Any common mode noise that does pass through the transformer tends to raise the positive voltage relative to 0 V , and tends to lift the
level of 0 V at some points but not others. The use of a choke rather than a link between 0 V and earth will help to render the logic immune to this noise because all of the logic supply lines will tend to move together. Therefore, any common mode noise which does pass through the regulated d.c. supply will see three loads in series. The link between the earth line and frame, the link between frame and 0 V , and the line carrying 0 V across the logic to the link. If the 0 V to frame to earth link has a high impedance, such as a choke. most of the noise will appear harmlessly across it. The d.c. resistance of the choke should be below 0.1Ω to conform to BS3861. If, however, the 0V to earth link is a low impedance, the noise will lift the potential at one point on the 0 V grid. This will degrade the logic signals and tend to cause a malfunction.

Mains borne radiated noise, which is emitted from the mains wiring, can be greatly reduced by screening the live and neutral lines, and earthing the screens to the frame. Another method of reducing the radiated noise is to include a mains filter at the point where the power lines enter the circuit module. A third approach is to have mains lines in the module separated from the vulnerable logic by correctly earthed bulkheads. Once past the mains filter, the mains cables do not normally need to be screened. If power is switched on and

Fig. 1

Fig. 2
off to loads within the module these power lines should also be screened.

Magnitude of mains borne interference

A reasonable noise amplitude to design against in a 240 V single phase supply is 2 kV over the range 100 kHz to 10 MHz . The noise may be common mode or differential mode and can be caused by, for example, switching off an electric motor which is on the same supply. It is wise to assume large amplitude noise above the nominal 240 V of the line, and also that it is both common and differential mode.

The source impedance of the noise is difficult to determine, but it is safest to assume a very low source impedance of, say, two ohms. Both of these assumptions might surprise the reader, but they have been chosen to give a reasonable safety margin.

Mains filtering

Mains filters are constructed from capacitors and inductors. The capacitors require an adequate voltage rating and also have to be able to dissipate the heat generated from the maximum current. By Ohm's law, $V=I Z$ so $I=$ $V / 1 / 6 \mathrm{fC}$ which is 240.300 . C. Therefore, for a 1 fiF capacitor the current is around 100 mA . It is worth noting that the mains filter can significantly alter the power factor of a load. The series inductance of such a capacitor can be as low as 10 nH , which is very satisfactory in this application.

With inductors, it is important to make sure that they do not saturate at the peak current. If the power taken by a circuit is around 1 kW , the r.m.s. current is around 4A and the peak current may be as high as 10A. A choke which saturates at 20 A and has an inductance of $200 \mu \mathrm{H}$ can have a parallel capacitance as low as 10 pF which again is satisfactory for this application. The d.c. resistance of such a choke is around 0.1 ohms, so it is possible to meet the safety requirements even if the choke is placed - in the earth line.

A mains filter is a low pass device and the usual circuit is a double π as shown in Fig. 1. High frequency signals entering either the live or neutral lines see a high impedance inductor ahead and are shunted to earth through a low impedance capacitor. Typically, at

Fig. 3

Fig. 4

1 MHz , with $1 \mu \mathrm{~F}$ capacitors and $200 \mu \mathrm{H}$ inductors, Z_{c} is around 0.2Ω and Z_{L} is around $\mathrm{lk} \Omega$. If the source impedance of the noise is $1 \mathrm{k} \Omega$ or higher, the noise is attenuated by a factor of $1 \mathrm{k} \Omega / 0.2 \Omega=$ 5,000 or about 70 dB . If the source impedance of the noise is low, the first capacitor is ineffective, but the potential divider formed by the inductor and the second capacitor still gives around 70 dB attenuation at 1 MHz .

Any high frequency signals approaching from either direction see a short to earth, and a high impedance series inductor blocking the path ahead. This arrangement works well if noise is the only problem. But, because the input and output of both lines are connected together at high frequency, an "earth loop" pickup of externally radiated noise can occur. Also, the possibility of electrostatic discharge into the circuit is much more likely. From the point of view of radiated noise
the circuit in Fig. 2, which blocks the passage of high frequency signals down all of the lines, is preferable. It makes the path down the lines an open circuit to high frequencies, and tends to isolate the system. This filter does however cause a disquieting amount of earth current. If the capacitors are $1 \mu \mathrm{~F}$, the total earth current is about 150 mA . With the circuit rearranged as in Fig. 3, the noise suppression is virtually unaltered and the earth current is reduced to around 2 mA . This circuit is also safer because there are no components linking live directly to earth, and a single shorted capacitor does not present a safety hazard. The two resistors discharge the capacitors if the filter is disconnected from the mains.

Commercial mains filters

Medium performance commercial filters have a specification of around

60 dB insertion loss in the region of 1 MHz . A filter of this type would cause 2 kV of noise to be reduced to a mere 2 V , which would easily be suppressed on its way through the power supply. Higher performance filters, specified at 100 dB insertion loss, reduce noise of 2 kV down to an unnecessarily low 20 mV . The most serious shortcoming in commercial units is when the windings of both chokes are on the same core as shown in Fig. 4. The theory is that the currents in the live and neutral lines, being equal and opposite, create zero total magnetic flux in the choke. This means that for a heavy live and neutral current the core will not saturate, and a single toroid can be used in place of two separate and more expensive chokes. However, instead of two chokes there is a transformer which will not stop any differential mode noise. The author has not seen a manufacturer's specification where insertion losses for both differential and common mode noise have been unambiguously defined. The insertion loss is the ratio of the output amplitude from the filter into a load divided by the input from a source with the same impedance. Sometimes the specification does not state this impedance so it is virtually impossible to determine the filter performance. The correct specification is the minimum insertion loss when the source impedance and load impedance are independently varied from zero ohms to open circuit.

This article is based on material from a book "Digital Electronic Design", by the above authors, published by C.A.M. Publishing, 17 King Harry Lane, St Albans, Herts, price £8.00 including postage. For information on the availability of the mains filters described write to Icthus Instruments Ltd, Princesway, Team Valley Estate, Gateshead. C.A.M. Consultants will be giving their next seminar on digital electronics design in St Albans, October 9 and 10. Information from 17 King Harry Lane, St Albans, Herts.

New 3-D military radar

MODERN RADAR DEFENCE SYSTEMS require faster reaction capabilities in order to combat the dramatic increase in aircraft speeds and manoeuvrability of targets. To achieve this, automatic data processing facilities, capable of carrying out high speed tracking and prediction from radar returns, have become essential. To operate with maximum effectiveness these automatic systems require continuous height information on all targets as well as their plan positions. Marconi Radar Systems Ltd have introduced a 3-D radar, called Martello, which does just this.

Martello has been designed for long range cover, transportability and to provide frequent height measurement to ensure that tactical height changes can be detected in good time. It is also equipped with full electronic counter-countermeasures (e.c.c.m.).

The radar, which operates in L band and provides automatic detection and plotting of targets, even in hostile environments, detects intruders at ranges in excess of 300 nautical miles and altitudes in excess of 100,000 feet Elevation cover extends from zero to 30 degrees.
Range, azimuth and height is recorded for every target detected, on every revolution, with accuracies of $0.05 \mathrm{~nm}, 0.5 \mathrm{~nm}$ (at (100 nm) and 1,000 feet (at 100 nm) respectively. For height finding Martello uses what is claimed to be a unique parallel receiving system. This has a vertical stack planar array antenna comprising sixty identical horizontal linear array elements, each with its own receiver. Each array has the same-shaped amplitude distribution, giving a narrow azimuth beam width. By precisely controlling the amplitude and phase feeds to each array, the side lobes
are kept to a minimum. In elevation, the transmitted r.f. power is distributed between the arrays to give cosec ${ }^{2}$ target illumination, and every target within the elevation coverage is illuminated on every transmission.

Returns from a target are received by all of the arrays and the individual receiver out, puts are then combined in a simple passive beam-forming network. This synthesizes the cosec^{2} surveillance pattern and eight elevation patterns matched to the required elevation coverage. The surveillance pattern and the lowest elevation pattern are pulsecompressed and processed either automatically or manually. Target range and azimuth are extracted from series of individual returns by a plot-forming unit and the height data is obtained by measuring the returns in adjacent elevation patterns.

The system is designed to self-adapt to the radar environment and it has comprehensive facilities for monitoring system performance necessary for complete control of the system parameters.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PIM 35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \% \mathrm{VAT}$), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

W"ith its rugged construction and battery operation, the PIDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.
What you get with a PDM35
$31 / 2$ digit resolution
Sharp, bright, easily read LEE)
display, reading to ± 1.999
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
(0.0001 HA).
Direct reading of semiconductor forward voltages at 5 different currents Resistance measured up to 20 Mm . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ma input impedance.

Compare it with an analogue meter!

The PIOM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PIM 135 will resolve $1 \mathrm{mV}^{\prime}$ against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PI)M35's I)C input impedance of 10 M M is 50 times higher than a $20 \mathrm{kr} /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negatice readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specification

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: $10 \mathrm{M}(1$ input impedance.
AC Volts ($\mathbf{4 0} \mathbf{~ H z - 5 ~ k H z) ~}$
Range: I V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: I nit to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .

Resistance (5 ranges)

Range: 1 s to 20 Ma .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / \frac{1}{2}$ in.
Weight: $61 / 20 \%$.
Power supply: 9 V' battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for $240 \mathrm{~V}^{\prime}$
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TV's. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair hare become one of the world's largest producers.
Tried, tested, ready to go!
When you buy your PDM35 it comes complete with leads and test prods, carrying wallet and comprehensive operating instructions.

The PDM35 is a new concept in multimeters - but over 20,000 have already been sold! If you'd like to know more about the PDM35, and how to get one, complete the coupon and post it to us. We'll send you detailed information by return. Send the coupon today!

> Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England.

The Teleprinter Plus... Transtel 315
 The Transtel 315 word processing communications terminal includes all the best developments and refinements that have been introduced in a decade of teleprinter technology

This high performance teleprinter has many plus features, including:

- Microprocessor control
- High quality dot matrix printout - KSR or ASR with up to 8 k memory㽣 Speeds of up to 30 cps
- Telex or private wire operation
- Full word editing capability

The Transtel 315 gives you high performance at a moderate price, and with thousands of machines installed worldwide, you need not worry about reliability and after sales service.

Contact us today for further information or to arrange a convincing demanstration.

Transtel Communications Limited

 Mill Street, Slough, Berkshire SL2 5DD, England Telephone: Slough (0753) 26955 Telex: 849384WW-117 FOR FURTHER DETAILS

Now . . . the next generation of bench DMMs!
Two New Keithley Models offer uncompromising performance and outstanding value!

- Accuracy $31 / 2$'s can't match $0.4 \%+1$ digit on dc volts and ohms
- Large, bright, 20,000-count LED display that's quick and easy to read
- Convenient bench size that won't get "lost" yel doesn't crowd
- Exceptional reliability.

MOBILE RADIO BANDWIDTHS

It is with great interest that I read Mr W. M. Pannell's article on mobile radio bandwidths in the June issue. Some of the proof of the pudding has been tasted by us, a public utility, some five years or more. In the face of great scepticism we obtained permission to operate some standard USA made 30 kHz fm fixed and mobile equipment at 15 kHz spacing using a little more than 2 kHz deviation. The equipment is used in hilly and mountainous country.
The practical result of our experiment, using single frequency simplex in the twometre band, can be summarized quite simply: 1. Utilisation of speech under difficult conditions with no perceptible degradation of intelligibility.
2. If base stations (100 watt) are placed at least some 25 km apart, possible use of the next channel at a 15 kHz spacing.

Please note all this with standard 30 kHz equipment. It is also necessary to state that propagation conditions in this area are such that they may almost be defined as antifading conditions, such that good results are a little surprising even to us. However, the peripheral mobiles suffer less noise (see par. 1) as a result and so operator acceptance was maintained.
Mr Pannell is to be congratulated on the redefinition of a technical problem which has very many economic and investment aspects. However, I hope that good sense will win out and that $121 / 2 \mathrm{kHz}$ or 15 kHz channels will become a standard. The latter seems the more likely to me, due to existing channel allocation in the USA and also its greater suitability for future 2.5 kHz narrow band allocations (see June issue, p. 48; "FCC produces ideas for better spectrum use"), which may yet be interleaved with the existing allocation scheme.
P. Hirschmann
The Israel Electric Corporation Ltd
Haifa
Israel

AUDIO EQUIPMENT REVIEWS

In a report in your July issue (p.49) you asked the question: "How accurate are audio reviews?" Instead of attempting to give the answer your reporter used his available space to explore the inner details of particular events. From this the reader could come to some extremely unpleasant conclusions. May I, therefore, through the courtesy of your pages and as a reviewer of long standing, attempt to supply the answer that you failed to give?
The accuracy of a review will depend upon a number of factors. Among these some of the most important are:

1. The personal experience of the reviewer himself which will obviously be variable from individual to individual.
2. The adequacy of his measurement facility to cope with the fine limits of distinction that must be observed in a scientific appraisal.
3. The ability of the reviewer to interpret correctly the integration of his measurements and subjective impressions, taking into account the further variations induced by programme source material, listening room acoustics and the fallibility of his own ears.

It follows that just as there is no "perfect" piece of equipment neither is there a "perfect" review. The eventual arbiter is in every case the customer, upon whom there devolves the final decision which is expressed through his cheque book.
As a matter of interest I have been using Bowers \& Wilkins DM7 loudspeakers in my listening room for several weeks. My subjective impressions are slightly different to the opinions quoted from the Gramophone review by Mr John Gilbert, but more closely accord with his feelings than with the comments of Mr Attewell as expressed in your extracts from his Hi-Fi News review. This fundamental difference does not in any way invalidate either of the two published reviews but serves only to underline the dangers of confusing "accuracy" with "conformity".

It seems to me that your reporter was preoccupied with considerations of integrity rather than accuracy. Let me therefore add that I have in the past been pleased to accept hospitality from Bowers \& Wilkins and in my capacity as publisher of Hi-Fi Trade Journal have indirectly accepted money from that company as payment for advertising space. The nub of the question is surely this: Have the "wicked men" of Worthing "got at me" to express the opinion quoted above? 1 find it very hard to believe that any serious minded person could entertain such a preposterous proposition for a single moment. The truth of the reviewing business is very, very different indeed.
In some twenty years I have frequently written critical reviews, some of which have been so condemning that the product has been withdrawn from the market. In all that time I can recall only one instance where any unpleasantness arose between the manufacturer/distributor and myself. To the contrary, an accurate but "bad" review is regarded as helpful by any sensible manufacturer since it points to the direction of essential improvement if he is to be successful in the market-place. This success is, after all, his final objective.

1 have never at any time been put under any pressure to alter or suppress measurements; such a thing has never even been suggested to me and if it were the proposal would be most forcefully rejected.
In order to consolidate my own position as an "accurate" reviewer I have made a personal investment in test equipment and facilities amounting to a five-figure sum. My laboratory is used for consultancy work on behalf of clients, some of whose products I have reviewed or will be reviewing. The object of this exercise is to advise on performance characteristics so that improvement can be effected where necessary. Is this not in the true interests of both the consumer and
the distributor? To suggest any kind of malfeasance is to imply a contrary endeavour; i.e. a deliberate attempt to market a poor quality product to a gullible and unsuspecting public. Any firm which attempts to embark on such a course within this highly competitive industry would be taking the shortest possible road to disaster.

Perhaps my point of view might be regarded as naive, originating from a simple mind. If so, such a judgement will be accepted as a compliment.
Denys G. Killick
Pontypridd
Mid Glam.

WANTED: EARLY WW VOLUMES

The Radio Society of Great Britain is anxious to obtain copies of the early volumes of Wireless World for the period when it was the official organ of the Wireless Society of London and later the RSGB.
The volumes required are: volume 8,3 April, 1920-19 March, 1921 ; volume 9, 2 April, 1921-10 March, 1922; volume 10, 1 April, 1922-30 September, 1922; volume 11, 7 October, 1922-31 March, 1923; volume 12, 7 April, 1923-26 September, 1923; volume 14, 2 April, 1924-24 September, 1924; and volume 15, 1 October, 1924-4 February, 1925.
The Society is also anxious to obtain volume 2 of Experimental Wireless, October, 1924-December, 1925.
If any of your readers could help the Society by supplying any of these volumes 1 would be glad to hear from them.
G. R. Jessop, G6JP

Consultant
Radio Society of Great Britain
35 Doughty Street
London WCIN 2AE

POOR PROSPECTS IN ELECTRONIC ENGINEERING

How wholeheartedly I concur with the perceptive exposition of your contributor in "Open letter to Finniston" (Letters, July). l, too, am saddened by our industry's attitude to young graduates. It is in the nature of the "small-minded people" who manage our industry that jealousy ranks high in their emotions, and leads to the notion that these arrogant young persons need to be kept in their place. If they are engineers that place will be fairly lowly. No lunches with customers or company cars for them!

The next hurdle for the unwary graduate I would describe as the Barnes Wallace syndrome, experienced as total opposition to the novel concept. The grinding down begins! This, surely more than any biological phenomena, leads to the misconception that a person's inventiveness declines asymptotically to zero at the age of 30 . I satisfy myself that this is a myth by observing that my own "rate of acquisition of patents" index is no less now that I have passed 40. Not being afraid of the unconventional I have obstinately gone on designing things and being an engineer. But at what cost?
Taking the price of a house as reference level, my salary in a senior engineering post
is less now in real terms than it was over 20 years ago when I took my first job as a technical assistant.
To my mind, a crucial factor in this continuing decline in living standards is that engineers are not generally militant by nature. Even if they were, what hold have engineers got compared with, say, train drivers? If we all stopped designing and developing things tomorrow, who would notice? Who, anymore than would have "noticed" if radar, television or the digital computer had never been invented?

If it is accepted that the electronics industry has some merit in society, then for its survival very positive steps must be taken to provide a sufficiently attractive working climate for the young to develop their engineering skills, and without the necessity to go abroad, move into "sales" or "management" or even the drawing office, to feed their children.

D. B. Brown

Charlwood

Surrey.

Several points raised in the "Open Letter to Finniston" by "Chartered Engineer" (Letters, July) have a depressingly familiar ring to them. Phrases such as "short-term industrial fodder" - "managed by narrow and smallminded people" - "irrespective of experience" - are amply justified in the light of my own, albeit short, experience.

To a young electronics engineer working at least, until recently - in a large company, part of an even larger privately owned group, the management philosophy (or is it a lack of one?) has been made abundantly clear. Staff who have gained experience on a particular. system - and who are consequently much better at their job than those who have never seen that system before in their life, regardless of qualifications - are treated no better in any respect than new recruits. For instance, graduate entrants with no previous training are paid the same, in some cases greater, salary as some of my contemporaries who have not only had a year's system experience but also undergone "sandwich" course training with the company. And though they may start out as "bright eyed and bushy tailed", by the time they have grown wise to the way they themselves are being treated (even with the least perceptive engineer this process takes only a few months - in some cases less than a week), disillusionment and cynicism have set in for good - as witness the present writer. In such a climate, even if the job itself and its environment are pleasant and enjoyable - not always the case - dissatisfaction is inevitable.

If this malaise were confined to one large company, or even to one group, there would be little point in publishing this letter. But, from conversations with friends who have joined other organisations, this seems not to be the case. How many engineers in large companies do you know who are quite satisfied with their employers? The solution is therefore not to be found simply by moving among different leviathans (the grass is always greener ...). A general rule would appear to be that the smaller a firm is, the better it treats its employees; but, of course, small firms do not employ the bulk of the country's electronic engineers, and also they prefer those who have already gained some practical experience. Hence the reluctance of graduates to enter the industry, an instance of which is provided by the letter cited above.

In these circumstances; the most sensible course for a young engineer is initially to take a job with a large company solely in order to gain enough experience that he can leave after a year or two, to join or form a small firm where he will have a much greater chance of finding job satisfaction. If this were to happen on a large scale, the effect would be to leave the large groups with inexperienced youngsters and experienced nohopers (some would have it that this is already so); in which case, if their senior management were unaware or, through inertia, unable to rectify the situation, they would simply collapse, due to inability to compete - in the absence of other market factors. It may be that this process is already in motion, and that the elephants have had their day. While to many this would be a cause for rejoicing, it would be a shame if the vast resources inherent in them were to go to waste, and it is to be hoped that some at least of their creative potential could be salvaged in such event.

Young engineers should therefore be encouraged to be more aware of the state of the industry they are entering, and reassured that there is a future for them, albeit perhaps along slightly different lines to what is obvious at the present. It is, after all, far better to give birth to something new and vital than to despair of the dying.
Tim Williams
Ely
Cambs.

The "name and address supplied" open letter to Finniston in your July issue makes chilling reading. There, but for the grace of God, go I. The poor man is fifty-one, trapped in the horror of an electronic engineering career.

I graduated in Engineering in Cambridge in 1959 and went into electronics R\&D. I finally read the writing on the wall late very late - and gave up the idea of a professional career in Engineering in 197I. I began teaching Remedial English in a secondary school, for which I received the same pay, although unqualified and inexperienced, as I had been receiving as a design engineer with a State Scholarship in Mathematics, a Cambridge degree, many publications in the top journals, some impressive research and development achievements behind me, and twelve years of experience.

Recently, when I was asked to give Science and Technology career advice to the pupils at my son's school, Haberdashers', I told them that if they took up such a career they would look forward to being on half pay, and that Britain was getting out of high technology. I told them that if they were really keen they should make certain to study foreign languages and think in terms of a career abroad.

Contrary to some reports, I have never attacked Finniston or his Committee of Inquiry into the Engineering Profession. However, I would now like to say that in my opinion there is no chance that their final report will be helpful to those who work in electronics and computer design. This is because none of the seventeen members of his committee is drawn from electronics, although electronics is a very large part of the engineering profession. (Computers alone are the third biggest industry in the USA.) The Committee will repeat the lie that our best engineers must be coaxed into rolling up their sleeves (like the good plumbers they really are) and getting into production. Because of their limited background, their lack of experience in high technology industry, the committee
members will not know that Production is a facet which tends to disappear as the sophistication of the technology increases. It is difficult even to find the production department in a high technology company, for instance one involved in advanced radar. If you think that Production is the essence of advanced engineering, you ignore the kind of message that Marshall McLuhan was trying to put across thirteen years ago. Notice that all examples on tv lauding the supposedly noble, against-the-tide first class engineer working in production are taken from old, declining industries. Such stories are merely another attack on high technology and its massive potential.

I am pretty certain that I can guess, from the tone of his letter, which company the fifty-one year old is working for. I would advise him that although the harassment of professional engineers is severe throughout British industry, in the case of his company it is a little worse than usual. The managing director of his company is systematically rooting out the engineering competence in his company, and by now has to a large extent completed the task. In five years' time, this managing director will be pilloried for destroying his company. But that is all in the future, and cold comfort for the fifty one year old.
Ivor Catt
St. Albans
Herts.

TALKING TO COMPUTERS

I was amused to read Mixer's remarks on computer programming (p.92, June).

The real reason we don't programme computers in the Queen's English is the same reason we don't write algebra textbooks in English prose - a formalized language is far clearer than a human language. There are things I can tell a computer succinctly in PL/l which I couldn't tell it (unless very awkwardly) in English.

Human languages are context-dependent; to understand a human language the hearer needs much more background knowledge and must make many more assumptions than are necessary in understanding a formal language. Though computer handling of natural language is not far away and will be quite useful, formal programming languages will hardly be superseded.
Michael A. Covington
Athens
Georgia, USA

F.M. TRANSCEIVER SYNTHESISER

Like Mr Hankins (Letters, June) I have constructed the synthesiser part of T. D. Forrester's two-metre f.m. transceiver (November and December, 1977). I have also found modifications essential to make it work. These are as follows:

1. L_{1} was increased to 20 turns, with a separate l-turn coupling coil. The varicap diode D_{17} was replaced by a device of greater capacitance - in my case a 1 N 4001 rectifier diode worked well - and C_{7} was increased to 330 pF .

The modified v.c.o.
2. I added a level shifter between the t.t.l. and c.m.o.s. to provide a proper voltage swing 'his was similar in design to Mr Hankins' circuit.
3. I found that the sensitivity of the 74LS74 was improved by increasing rather than decreasing R_{39} : I used a value of $10 \mathrm{k} \Omega$. The reason for this is that this allows the t.t.l. output to bias itself up to the logic "l" level; the input resistor forward biases the input diode of the gate to a point where its noise margin is effectively nil; and the full "gain" of the circuit is used to amplify the input signal.

As the input impedance of the low-power Schottky device is quite high - about $18 \mathrm{k} \Omega$ I found it made no difference to dispense with the buffer stage, Tr_{4}, altogether and to connect the t.t.l. input straight through a 2 n 2 capacitor to the collector of Tr_{2}. This saves 12 mA or so of current.
4. In a further attempt to reduce the power consumption of the v.c.o. I removed the zener dioide, D_{18}, and ran the oscillator stage (with changed resistor values) from the 5 -volt t.t.l. power supply (obtained from a 78LO5).

Replacing the 4049 hex c.m.o.s. buffer with a 4069 hex inverter might reduce the consumption of this chip, but unfortunately these devices are not pin-compatible.
5. Apart from using a different arrangement of switches and gates to obtain the Tx, Rx, $\mathrm{Tx}(\mathrm{Rpt})$ and $\mathrm{Rx}(\mathrm{Rev} . \mathrm{rpt})$ lines in the synthesiser logic. I also dispensed with many of the diodes and resistors: I used five diodes, and it can be done with four.
7. I used the spare divider section in IC_{4} to obtain a frequency close to 1750 Hz , for use as a toneburst generator.

The accompanying circuits illustrate these points.

As a further suggestion the whole v.c.o. could possibly be replaced with a single t.t.l. v.c.o. chip, such as the 74LS324, which has a typical operating limit of 30 MHz , a consumption of 30 mA maximum, and, of course, a t.t.l. output. The output would be rich in odd order harmonics, so could be followed by a frequency tripler, with a doubler up to 144 MHz : this is better practice as it avoids the generation of 48 MHz .

A friend has observed that on his synthesiser (and on mine) the frequency overshoots its target value. This could indicate that the filter components after the phase detector have not been chosen for critical damping of the control loop. Another problem that has been suggested is in the quadrature detector

Repeater access tone generator. By applying a suitable positive-going pulse to pin 10 of $I C_{4}$, the tone generator could be gated to provide a tone-burst.

The new Rx/Tx line generation and arrangement of diodes and resistors at inputs to b.c.d. adders.
of, the i.f.: the use of a crystal here is really only suitable for ultra-narrow bandwidths, and a friend who has tried this circuit reports that it doesn't work.
I would appreciate advice and suggestions concerning this design from other constructors; for example, the use of alternative microphone pre-amp/compressor circuits instead of the rather expensive Plessey chip specified.
I would like to conclude by congratulating Mr Forrester on producing an alternative to the Japanese "black boxes", although I daresay some constructors will be less enthusiastic about the D.I.Y. (Design-itYourself) aspects than those of us with access to 'scopes, frequency meters, etc.
J. D. Stumbles

Imperial College Computer Centre
Exhibition Road
London, SW7

A'UDIO OSCILLATOR PRODUCTION DESIGNS

I have designed, and brought to a fully developed engineering state, two sinewave audio oscillators having unusual and attractive performance characteristics.
The more complex design, which is neither a function generator nor a b.f.o., covers the complete audio spectrum in a single sweep, either by rotation of a dial having an accurately logarithmic scale shape, or by means of an internally or externally generated ramp voltage. Frequency-marker pulses are generated as the frequency sweeps through $0.1,1$ and 10 kHz . A warble-tone facility is also incorporated, the oscillator being intended for acoustic measurement work.
The total harmonic distortion of the above instrument is less than 0.05% from 40 Hz to 10 kHz and less than 0.1% from 20 Hz to 40 kHz . The distortion is mainly second and third harmonic. The variation in output amplitude with frequency does not exceed $\pm 0.1 \mathrm{~dB}$ from 20 Hz to 40 kHz and there is no significant bounce.
The basic circuit is an. R-C oscillator in which the R's have been replaced by transistor junctions whose d.c. bias voltage is varied to control the frequency in an inherently logarithmic manner. Two outputs in phase quadrature are available and could be used in association with a simple type of tracking filter. Very great care indeed has been taken to achieve accurate temperature compensation of frequency under production conditions.

In addition to the complete batteryoperated instrument with the above facilities, ten of the main $11 \mathrm{~cm} \times 12 \mathrm{~cm}$ printed-circuit boards have by now been made, of which eight are in use by a large and well-known loudspeaker firm who have standardised on the design for their production test purposes. Experience with these eleven basic oscillators has shown that the design can readily be set up on a production
basis to meet the performance specification. A complete test schedule has been written and special. production-test items have been made.

The second design is a simple two-op-amp thermistor-controlled R-C oscillator giving less than 0.001% total harmonic distortion from 100 Hz to 10 kHz - about 0.0003% at 1 kHz - and less than 0.002% at 30 Hz and 20 kHz . The oscillator operates from a couple of PP9 batteries and takes about 14 mA . In its present form the instrument is switchtuned to give a number of spot frequencies throughout the audio band, but has a fine-tuning adjustment. A simple potentiometer output control is provided, this being adequate for most distortion-measuring applications.

The good performance of this latter oscillator results from (a) adopting an unconventional basic oscillator circuit giving far greater attenuation of thermistor distortion than does the usual. Wien-bridge circuit, (b) giving careful thought to the theory of thermistor control-loop behaviour in order to obtain an optimum compromise between distortion and amplitude bounce, and (c) using good wide-band i.c. op amps. The total component cost, at Radiospares prices, including the instrument case, is about $£ 14$.

I would be glad to hear from any firm interested in the possibility of commercial exploitation of these designs.

Peter J. Baxandall

Malvern
Worcs.

PROGRAMMING MICROPROCESSORS

Alas, K. G. Parr (August Letters) and I (June Letters) seem to be addressing different audiences, and so our viewpoints are difficult to reconcile. His admirable letter aligns with the opinions of at least one of my colleagues who is professionally engaged in systems development, both hardware and software, and who has both the opportunity (and perhaps the personality) to make effective use of microprocessors. I would be the first to concede that if one is committed to design these chips into, say, gambling machines (August issue, p.57) commercially, then one must try to be as impeccably disciplined as K. G. Parr suggests. Even so, as he tells us, "bugs still remain." And not only can they reveal themselves years later when an established programme faults, but so also one may discover errors in flow diagrams. This is not to disparage the flow diagram as a sometimes useful tool; but for a definitive final document I have usually found it more useful to edit a listing of the programme with some relevant textual comments, including reference to sources of algorithms, and with labelled arrows to indicate the purpose of loops, switches, jumps etc.

I hope that the readership of Wireless World includes already many "hobby programmers"; though surely all its readers are hobbyists at heart? I see that there will soon be a new generation of microprocessors designed to that they can be completely tested before use. So, hobbyists take heart if you are struggling with octal and hexadecimal. It can only be matter of time before decimalisation catches on.
Desmond Thackeray
Department of Chemical Physics University of Surrey

DISCRIMINATIVE METAL DETECTOR

I read the article "Discriminative metal detector" by R. C. V. Macario (July issue) with interest. Although the author states that eddy currents mask diamagnetic effects in nonferromagnetic samples it is worth noting that these eddy currents do cause an increase in oscillator frequency. This is, of course, in the opposite direction to that caused by ferromagnetic samples, where the ferromagnetic effect usually masks the eddy currents.
The effect of eddy currents can easily be demonstrated by comparing the influence of a closed loop of thin wire with that of the same loop opened. [Surely a coupled shorted-turn. - Ed.]
The directional information could be restored with headphones by using the Q outputs of IC_{2} to drive a simple resistor ladder and voltage controlled oscillator (eliminating IC_{3}, etc.).
M. Walne

Halifax
More letters on the metal detector will be published next month.-Ed.

PICKUP-ARM PROBLEMS

I would like to point out that adoption of the technique proposed by F. Holloway (Letters, July) of producing discs by means of a cutting head on a radius-arm does not overcome the other serious shortcomings of the radius-arm reproducer so well highlighted in Mr Randhawa's article, i.e. side-thrust compensation and lateral balance.
There is no case for "concentrating the difficulty and cost of mechanical design once and for all in the recording equipment" as your editorial note suggests when paralleltracking arm designs with electronic controls are now coming to the fore and which solve all three problems at a stroke.

Is it not about time that electronic engineers turned their attention from designing amplifiers with specifications of unnecessary excellence and concentrated their talents on programme sources such as tape and disc, which are still producing distortions that are audible?
R. Cooper

Sutton Coldfield

Filter

A bucket-brigade filter, said to be the first charge transfer device filter i.c., is introduced by the American Reticon Corporation. The circuits consist of a 64 -stage, split-electrode brigade, the capacitors being the basic metaloxide semiconductors. Low-pass and band-pass filters are available, each being tuned by varying the clock frequency, and possess a linear phase characteristic. Extremely steep rolloffs of over 200dB/octave are exhibited. An example quoted is that of a bandpass filter, in which the centre frequency is at 0.25 the clock - frequency $(250 \mathrm{~Hz}-1 \mathrm{MHz})$, the bandwidth 0.055 the clock frequency and the ratio between stop band and pass band attenuation is 52 dB . The rate of change is 270dB/octave. Herbert Sigma Ltd, Spring Road, Letchworth, Herts.
WW301

Storage oscilloscope

Signal storage is performed digitally in the Advance OS4100 oscilloscope. It is a two-channel instrument using a digitizer and 1 kbit r.a.m. to provide a bandwidth of 600 kHz . An X-Y display

is also provided; the sum or difference of the two inputs can be displayed and an unusual feature is a triggering window, in which triggering takes place outside two threshholds. Triggering can be obtained from 2 mm of trace deflection and a delay can be used to display events occurring up to a quarter of the time-base period before the trigger. The trace consists of a number of dots, which can be 'smoothed' if required, and a split-trace mode can be selected where alternate samples can be sorted and viewed against a new trace for comparison. Gould Instruments Division, Roebuck Road, Hainault, Essex IG6 3UE.
WW302

Electronic
 wattmeter

An electronic multiplying technique used in Feedback Instruments EW604 power meter allows wide frequency and power ranges to be handled by the one instrument. It also means that waveforms other than sinusoids can be measured. The range of the instrument is 0.25 W to 10 kW f.s.d., 5 V to 1 kV r.m.s., 80 mA to 10A r.m.s., all in the frequency band from zero to 20 kHz . To reduce effects on the circuit under test, the input resistance is $5 \mathrm{k} \Omega$ per volt, drawing $200 \mu \mathrm{~A}$ full scale, and the resistance offered to a current input is $60 \mathrm{~m} \Omega$. Feedback Instruments Ltd, Park Road, Crowborough, Sussex TN6 2QR.

WW303

Digital tester

Comprehensive facilities for measurement in the time and frequency domain, voltage, resistance and temperature are contained in one new Tektronix instrument, the 851 Digital Tester. A 5-digit display is fed by a 35 MHz counter, which performs all the usual frequency,

time, ratio and event counting from three input channels; a digital multimeter of $41 / 2$-digit resolution measuring voltage, resistance, temperature and the thresholds of the input channels, together with polarity. The in-
puts can be set to t.t.l. as a calibrated knob setting or to any thresholds compatible with other logic families within $\pm 30 \mathrm{~V}$. All necessary probes are housed within the case of the instrument. Tektronix UK Ltd, Beaverton House, P.O. Box 69, Harpenden, Herts.
WW304

Audio system measurement

ATR-1 Audiotracer consists of a voltage-controlled oscillator, logarithmic in frequency from $20 \mathrm{~Hz}-20 \mathrm{kHz}$ or $200 \mathrm{~Hz}-200 \mathrm{kHz}$, an

output amplifier, a log. or linear input amplifier, a true r.m.s. rectifier and a pen recorder. The whole thing is contained in a 11 $\times 5^{1 / 2} \times 3$ in case and is intended to measure and record the frequency/amplitude performance of electronic or electroacoustic systems. A measuring microphone and an artificial ear coupler are available for acoustic measurements. The unit is mains-powered. ATR-1 is made by Neutrik A.G. of Switzerland and distributed here by Eardley Electronics Ltd, Eardley House, 182/4 Campden Hill Road, Kensington, London W8 7AS. WW305

Frequency scalers

Frequency scalers are dividers, used to reduce high frequencies to within the capability of lowfrequency counter-type frequency meters. There is no display, and the division factor must be re-applied to the counter display. Two units produced by MTG fulfil this function, the PS 1200 enabling a 10 MHz counter to measure a frequency of 1 GHZ (PS520 up to 500 MHz). Both units will accept 10 mV minimum input and are well protected against overload and out-

put short circuits. Versions offering division ratios of 10 or 100:1 are available. MTG (Instruments) Ltd, Beacon House, Christchurch Road, Lansdowne, Bournemouth, Dorset BH1 3LB. WW306

U.h.f. amplifier

A two-stage hybrid amplifer, the SH120A offers 16 dB of gain, which is said to be constant from $40-900 \mathrm{MHz}$, and a noise figure of 5 dB . It is a low-level aerial amplifier, being terminated in 75 ohms in and out and its maximum output is 100 mV . Voltage supply needed is 12 V . SGS-Ates (UK) Ltd, Planar House, Walton Street, Aylesbury, Bucks HP21 7QN.
WW307

Pressure transducer Two transducers from Philips convert pneumatic pressure to standard $4-20 \mathrm{~mA}$ signals for transmission or processing. A metric type (PR9363/20) covers the range $0.2-1$ Bar, while an Imperial version (PR9363/30) works from 3-15 p.s.i., both units conforming to DIN 19231 and IEC 381. Unstabilized power can be used. The principle of the devices is the deflection of a strainsensitive diaphragm by the pressure, unbalance in the strain elements giving rise to an output voltage. Pye Ether Ltd, Caxton Way, Stevenage, Herts.

WW308

Instrument cases

The new 'Princess' range of cabinets from West Hyde is intended to house the various kinds of equipment to do with computers, e.d.p. and calculators. The cases are made from ABS, in two horizontal parts, and have two frontal surfaces, at differing slopes, for mounting controls and displays. The plastic can be drilled and cut and is finished in an imitation leather texture, in black

or black and tan. The internal dimensions are keyed to the Eurocard shape, the largest case taking double Eurocards. West Hyde Developments Ltd, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET. WW309

Frequency meter

A u.h.f. counter, of the nondisplaying scaler type, of high stability and accuracy offered by the American firm of Davis is the 7208 Frequency Counter. The instrument will measure frequency up to 600 MHz at 10 mV
up to 60 MHz and 100 mV at 600 MHz -less with an optional preamplifier. Crystal frequency error is 1 part per million or 0.5 p.p.m. with the optional oven, while the drift is 1 p.p.m. per hour or 0.5 p.p.m. per month, again with the oven. An l.e.d. display of eight digits is used, with decimal point being adjusted by the switching. Davis Electronics, 636 Sheridan Drive, Tonawanda, New York. WW310

Spray etcher

This unit, from P.B. Electronics, is a double-sided etcher, which is small enough to stand on a bench and fast enough to etch a 12 in square board in less than three minutes. It uses four gallons of etchant, which is kept at $120^{\circ} \mathrm{F}$, and a timer stops the pump after a given time. A lid interlock reduces the chances of etching the ceiling. P.B. say that the etcher will be followed by other units for sensitizing, exposing and developing. P.B. Electronics (Scotland) Ltd, 9 Radwinter Road, Saffron Walden, Essex CB11 3HU.
WW311

Voltage-to-

frequency converter
The option of linear or logarithmic conversion and a dynamic. range of more than seven decades are the features of the Aragorn VFDI module. The output is a 10 V square wave, which responds to a $0-90 \%$ step within 1 cycle, the maximum output frequency being 2 MHz or 20 kHz to order. Accuracy of conversion is 0.1% and frequency stability is 200 parts per million at 1 kHz . Voltage supply needed is $15-0$ 15 V and the module measures 45 $\times 30 \times 16 \mathrm{~mm}$, with pins on a 0.1 in grid. Aragorn Dynamics Ltd, 8 South Side, Clapham Common, London SW4 7AA.
WW312

Buzzers

These are miniature, electronic units for use in clocks, timers, telephones, etc. They are for use where $2.5 \mathrm{~V}, 6 \mathrm{~V}$ or 12 V supplies, of low stability, are present. At least

70 dB relative to 0.0002 dynes/ sq.cm. is produced 22 cm away from the unit, while taking around 20 mA from the supply. Type number is GA100. Highland Electronics Ltd, Highland House, 8 Old Steine, Brighton, East Sussex BN1 1EJ.
WW313

V.m.o.s. memory

Two static 4 K memories from AMI use the v.m.o.s. technique to provide high-speed access and high density. The S 2114 is organized as a 1024×4 bit r.a.m. and is intended as a high-speed Intel 2114 replacement, for which it is claimed to be pin-compatible. Maximum response time can be down to 150 ns. The S4017 is a 4096×1 bit r.a.m. with a response time down to 55 ns . Both types are usable with t.t.I., operating from 5 V , and are contained in 18 -pin plastic or ceramic packages. AMI Microsystems Ltd, 108A Commercial Road, Swindon, Wiltshire.
WW314

P.s.u. for logic and linear
 Where 5 V digital circuitry and

 linear i.cs are to be used together the power needed can conveniently be provided by the Lascar 3-rail power supply. Outputs are 5 V at 1 A and tracking rails of 5 to 15 V , positive and negative, at 100 mA . The single and dual supplies are isolated from each other and both are well protected. A $160 \times 100 \mathrm{~mm}$ board carries the whole unit. Lascar Electronics Ltd, P.O. Box 12, Module House, Billericay, Essex CM12 9QA. WW315
Signal conditioner

Platinum resistance elements are widely used in temperature measurement bridges, but their non-linearity restricts them to laboratory use, in the main. Ancom have now produced a signal conditioner, 15RP-3, to allow the use of a platinum sensor with a linear measuring system - a digital panel meter, for example. The $51 \times 29 \times 16 \mathrm{~mm}$, encapsulated, p.c.-mounted module provides 10 mV per degree Centigrade output, within the $-110^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ working range, with errors of better than $\pm 0.1^{\circ} \mathrm{C}$ and $\pm 0.1 \%$ of reading. Power needed is $15-0-15 \mathrm{~V}$ at 10 mA (each rail). Ancom Ltd, Devonshire Street, Cheltenham, Glos. GL50 3TL. WW316

Keypad

This 12 -key pad from FR Electronics is of low height (less than 25 mm when the buttons are down - unspecified when they are not) and is said to offer a high degree of reliability as a consequence of its use of reed switches. The keys are mounted on a printed board, with

an edge connexion, from which the outputs are in binary form, compatible with t.t.l. levels. Voltage supply needed is 5 V and two-key rollover is a standard provision. F.R. Electronics Ltd, Wimborne, Dorset BH21 2BJ. WW317

Microwave f.e.t.

A noise figure of 1.7 dB or better at 4 GHz and a useful range of application from $1-12 \mathrm{GHz}$ is claimed for the HFET-1102 GaAs f.e.t. from Hewlett-Packard. Minimum associated small-signal gain is quoted as 11 dB at 4 GHz . The encapsulation is HPAC100A. Hewlett-Packard Ltd, King Street Lane, Winnersh, Wokingham, Berks RG11 5AR.
WW318

Coaxial relays

Between 2 and 30 coaxial inputs, switching to a single coax. output, all of either 50 or 75 -ohms, form a single-pole, multi-way, coaxial r.f. switch, with isolation of around 100 dB . Unselected inputs may be earthed; opencircuited or terminated in the relay block; contacts of the reed
relay can be expected to endure up to 20 million operations and will handle 250 mA at 100 V or less, depending on the switching mode. The switching signal can be anything from 5 to 50 V d.c. or a.c. Hercoax Ltd, Plumpton House, Plumpton Road, Hoddesdon, Herts.
WW319

Chart recorder

Unicorders are desk-top, potentiometric chart recorders with three to six steel pens, which may overlap. A complete traverse of

the 250 mm chart takes 0.3 s , and the pens can be lifted individually, by solenoid as an option. The 20 m chart is stepper-motor driven at a speed selected from 199 dial-selected or remotelycontrolled possibilities. Plug-in amplifiers accommodate the voltage range 1 mV to 200 V , currents from $1 \mu \mathrm{~A}$ to 500 mA and thermocouples at $0^{\circ} \mathrm{C}-1600^{\circ} \mathrm{C}$. Common-mode rejection ratio is 170 dB at zero frequency and 160 dB with alternating signals. Rostol Ltd, 33 Byron Road, Earley, Reading, Berks IG 6 1EP. WW320

P.c. switches

APEM 21000 N toggle switches are designed to be mounted on printed boards, projecting only 9 mm above the surface. Singlepole switches are $11 \times 7 \times$ 7.8 mm ; double-pole $21 \times 17 \times$ 7.8 mm , excluding pins. They possess either two or three positions, latched or momentary and have silver or gold-plated contacts. Voltage and current capability for the silver contacts are 250 V a.c. and 2 A a.c. and the gold contacts will control 10 mA at 50 mV . Iskra Ltd, Redlands, Coulsdon, Surrey CR3 2HT.
WW321

Mechanical filters

Low-frequency filters using flexure-mode mechanical resonators are announced by Rockwell-Collins. Nickel-iron bars and piezoelectric ceramics are the active elements, pro-

ducing a response of 0.2 to 1.5% bandwidth/centre frequency which is equivalent to a Q of 500 to 70 . The filters work in the range $3.5-70 \mathrm{kHz}$, with an insertion loss of 2.5 dB , and terminating resistance of $33 \mathrm{k} \Omega$. Centre frequency varies less than 4 Hz over a $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ range of temperature. G. A. Stanley Palmer Ltd, Elmbridge Works, Island Farm Avenue, West Molesey Trading Estate, Surrey KT8 OUR. WW322

Lead forming tool

Consistency and accuracy in the bending of component leads for printed-board mounting is the aim of the Litesold Opsec tool.

Components are dropped against a graduated step into the slots on the jaws, which are also graduated to take components of varying lengths. The tool is made of high-impact plastic and has non-slip feet, which can be screwed to a bench. Light Soldering Developments Ltd, 97/99 Gloucester Road, Croydon, Surrey CRO 2DN
WW323

Low-resistance meter

A main-frame and plug-in adaptors, the 1700 series, from Electro Scientific Industries are capable of measurement and numerical display of resistance values in the range 1 micro-ohm to 200 milliohms, in which lie the resistances of contacts, inductor windings and printed-board
tracks. One of the plug-in units offers the option of d.c. measurement for reactive components or a pulsed test for those components whose characteristic would change if current were to be passed continuously. Tranchant Electronics Ltd, Tranchant House, 100A High Street, Hampton, Middlesex TWI2 2ST.
WW324

R.f calorimeter

A numerical reading in kW , allied to the calorimetric determination of radio-frequency power, enables convenient power measurements to be made by the Bird 6080 up to 80 kW with a maxi-

mum error of $\pm 3 \%$. Temperature sensors and water flow monitors are remote, being connected via an 8 ft cable to the power meter. Aspen Electronics Ltd, 2 Kildare Close, Eastcote, Middlesex HA4 9UR.
WW325

Dual-lamp switch

A dual-lamp switch, available from Pye Electro-Devices Ltd, has a $3 / 4$ in-square cap incorporating two TI3/4 lamps with a midget flange base and a matching indicator. The cap has horizontal or vertical split screens, with five choices of filter and eight lens colours for each of the two zones of the screen. Silver or gold contacts; with momentary or alternative actions, are available in s.p.d.t. and d.p.d.t. configurations. Pye Electro Devices Limited, Controls Division, Exning Road, Newmarket, Suffolk CB8 0AX.
WW326

Darlingtons for tv deflectors

Two high power transistors, the BU806 and the BU807, are particularly suitable for use as horizontal deflectors in black and white televisions. The low driving power typical of the Darlington configuration allows elimination of the driving transformer and consequently reduces the cost of the stage. The high switching speed required is guaranteed by the presence of an integrated diode which extracts the charges accumulated during conduction. A clamper diode is also integrated in the devices. These devices, when used with the integrated horizontal deflection circuit, the TDA1180, no longer require a driving transistor and consequently the cost of the system is further reduced. SGS-Ates (United Kingdom) Limited, Planar House, Walton Street, Aylesbury, Bucks, HP21 7QN.
WW327

Fibre light guides

General purpose fibre-optic light guides in a p.v.c. sheath and terminated in stainless steel end fittings are produced by Valtec. Fibres of 0.002 in diameter are used in single, bifurcated and trifurcated branch types in lengths up to 30 ft attenuation is $600-700 \mathrm{~dB} / \mathrm{km}$, numerical aperture is 0.56 with a 68 degree acceptance angle. Fiberoptics Division, Valtec Corporation, West Boylston, MA, USA 01583. WW328

Supply failure simulator

Interference simulation by the Schaffner NSG200 series is extended to allow the simulation of d.c. power failure and interruptions. A new plug-in unit, the NSG204, is for use with the 200 C mainframe, and permits d.c. supplies between 5 V and 220 V at up to 10 A to be interrupted for adjustable duration between 1 ms and 2 s . The interruptions may be generated by an external trigger, a push-button or an internal timing generator, working between 5 Hz and $0-1 \mathrm{~Hz}$. Switching time is around $2 \mu s$ off and $1 \mu s$ on. Lyons Instrument Ltd, Hoddesdon, Herts.
WW329

T-test

Embarrassing moments experienced by television and film "personalities" can't be the same kind as those I have - they always seem so delighted to tell anyone who asks them all about the grisly faux pas and face-burning ineptitudes they've committed. I can't bring myself to tell anyone about mine, but I'm always happy to hear of other people's. The only time I've ever been able to see one of my own episodes as even remotely funny was when I sidled up to my wife, who was trying on a hat in a shop and said "You can always use it as a flower-pot when you're tired of it" and yes, you've guessed it, it wasn't my wife. The woman wasn't trying on hats, either; it was her own.
"What's all this to do with electronics?" I hear all my readers ask, both at once. Well, it's just that we were talking, this morning, about Chairman's Visit time, from which many of us have suffered. You know what I mean; the one day a year that makes it all worthwhile. White lines are painted on the factory floor, guards are put on machines and all design engineers are told to wear their clean shirt and tie and have a shave if they can possibly manage it.

Our chairman used to come round the labs. and demonstrate that democracy was still a force to be reckoned with by speaking to us. Actually, he usually directed his questions to us by way of the chief engineer, and didn't bother listening to the answers, but the intention was there. We always had to show him the newest bits of gear we had prised out the buying officer during the year so that the management could show him how forward-looking they were and, this year, we had bought an oven for environmental testing of components. It was a big metal box, with lots of terminals and leads sprouting from them and any amount of meters and generators clustered round it. The chap who was using it explained what it was for but seemed a bit reluctant to
open the door. It would upset the test run and probably spoil a lot of hard work and other protestations, but the Man wanted a look inside, so with a dramatic flourish, the door was opened. There were three shelves inside and nothing else at all, except that right in the middle of the centre shelf was a very small pork pie, gently steaming.

Not a word was spoken. The group moved on and the only sign of anything amiss was that our chief engineer was abstractedly chewing his tie. I don't remember what happened to the chap with the pie - he's probably a permanent lab. assistant now.

Timeo Danaos

It seems we're about to be saved. You can all come back in off the window ledge, because Whitehall has decided that the electronics industry could do with a hand and is intent on injecting $£ 50 \mathrm{~m}$ or so to revitalize, rejuvenate and rekindle the sparkle in our eyes.

Well, that's great, but you will, I hope, forgive me if I don't instantly leap to my feet and turn cartwheels all the way along Stamford Street. I'm too old and .frail, for one thing, and the other is that I have this sudden presentiment of
doom. I put it down to the SADIM syndrome, so named because of a Greek character - a king, as it happens who had a regrettable tendency to turn everything he touched into clay; he could have made a fortune in the china industry but he had no marketing sense. There he sat all day, strumming on his bouzouki and surrounded by little piles of pure gold; every now and then he would snatch a pile of gold and, calling on his training as an alchemist, transmogrify it into base clay. (His old prof. used to say that the lad had never seemed to get the point of the subject).
The striking thing about all this is, though, that not only did we learn our democracy from chaps like that, but some of his financial expertise seems to have rubbed off too. The cream of our society at Westminster have, it seems, only to take a passing interest in an industry for it to become a disaster area. There is no need to plod wearily through the list of victims, but if you kick off with the Brabazon and doff a mental hat at the TSR2 and the Hovertrain, finishing up with British Leyland (or whatever they call it these days) and Strathearn you'll see what 1 mean. It isn't a view of life to make one happy at the sight of Ministers bearing gifts.
Still, the china industry could have a rosy future.

Byter bit

Among the faults of David Bligh, excessive faith in l.s.i.
was very probably the worst, though in this field he was the first. He gathered chips from every source, attended every single course and ultimately he was known as Dai the Sums, and stood alone. As hardware goes, it came and went (around a thousand pounds he spent) but gradually, he amassed sufficient gear, and stopped his fast. Computers large, computers small, Dai knew the workings of them all. His own could indicate, at speed with all the confidence you need the contents of its ROM, in clear on a v.d.u., and bend your ear with cacaphonic sounds of bytes in battle for their storage rights. When Dai was asked if this was what his monster did, he waxed quite hot and instantly applied his mind to write a programme of a kind to show quite positively that computing's really where it's at. His friends all gathered round to stare being sure he'd finished with hot air. He ran the tape - the display flashed, the printer rattled - keys were bashed. Then, on the screen in letters twee was printed "Pawn to King's Knight Three".
The move was made, but all in vain, because a rook in wait had lain; it sidled gently up and said
"Checkmate, old son, afraid you're dead!"

Uncompromising performance. Incredible price. A professional $3 \frac{1}{2}$ digit DMM Kit for less than $£ 50.00$

Incredible? True! Professionals and hobbyists alike are believers in this Sabtronics 2000, the only portable/bench DMM which offers such uncompromising performance at the astonishingly low price of $£ 49.95$.

Uncompromising performance you'd expect only from a specialist in digital technology such as Sabtronics: Basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity.
The low price of $£ 49.95$? Simple: The Model 2000 is all solid-state, incorporating a single LSI circuit and highquality components. You assemble it yourself, using our clear, easy-to-follow, step-by-step assembly manual. Kit is complete, including a high-impact case.
Now you too can have it! A professional-quality $3 \frac{1}{2}$ digit Sabtronics Model 2000 DMM kit for only £ 49.95. If you don't have one in your lab, use the coupon below to order NOW.

sabtronicss

Brief Specifications:

DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to $1 \mathrm{kV}-\mathrm{AC}$ volts in 5 ranges $100 ル \mathrm{~V}$ to 1 kV - DC current in 6 ranges: 100 nA to $2 \mathrm{~A}-$ AC current in 6 ranges: 100 nA to 2 A - Resistance: 0.1 !! to 20 M ! in 6 ranges - AC frequency response: 40 Hz to 50 kHz - Display: $0.36^{\prime \prime}(9,1 \mathrm{~mm}) 7$-segment LED Input impedance: $10 \mathrm{M}!-$ Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}$ ($203 \times 165 \times 76 \mathrm{~mm}$) - Power requirement: 4 " C " cells (not included).

Ordering information for overseas readers:

The price listed is for readers in U.K. only. Since export orders are exempt from VAT you may send your orders directly to

Sabtronics International
Winkelriedstrasse 35
CH-6003 Luzern/Switzerland
Price: $£ 49.95$ plus $£ 6.50$ for shipping and handling

TIMWOOD LTD, Prospect Road, Cowes,
Isle of Wight. England. Telex: 86892
Please send me \qquad Sabtronics Model 2000 DMM Kit(s) at $£ 49.95$ and £3.00 P.P. plus VAT at 8%.

Total enclosed herewith: ε \qquad
Name:
Address: \qquad

City \qquad Postal Code

- Overseas Readers please see ordering information on this page.

WHY SETTLE FOR LESSTHAN A 6800 SYSTEM

MEMORY -

All static memory with selected 2102 IC's allows processor to run at its maximum speed at all times. No refresh system is needed and no time is lost in me. mory refresh cycles. Each board holds 4,096 words of this proven reliable and trouble free memory. Costonly $£ 80.00$ for each full 4 K memory.

INTERFACE-

Serial control interface connects to any RS-232, or 20 Ma . TTY control terminal. Connectors provided foi expansion of up to eight interfaces. Unique programmable interface circuits allow you to match the interface to almost any possible combination of polarity and control signal arrangements. Baud rate selection can be made on each individual interface. All this at a sensible cost of only $£ 30.00$ for either serial, or parallel type

PROCESSOR-

"Motorola" M6800 processor with Mikbug ${ }^{\circledR}$ ROM operating system. Automatic reset and loading, plus full compatability with Motorola evaluation set software. Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various Baud rate outputs for the interface circuits. Full buffering on all data and address busses insures "glitch" free operation with full expansion of memory and interfaces.

DOCUMENTATION-

Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer. This includes the Motorola programming manual, our own very complete assembly instructions, plus'a notebook full of information that we have compiled on the system hardware and programming. This includes diagnostic programs, sample programs and even a Tic Tac Toe listing.

PRICE EFFECTIVE 1st OCTOBER, 1977

Mikbug ${ }^{(®)}$ is a registered trademark of Motorola Inc.

Computer System

with serial interface and 4,096 words of memory. . (Kit form oniy)
'Please send me details of your full range of computer equipment and software.

Name
Address

Southwest Technical Products Co.
 Unit 12, Tresham Rd., Orton Southgate, Peterborough

Prices quoted do not include VAT

Heavy duty 10.0 Amp power supply capable of powering a fully expanded system of memory and interface boards. Note 25 Amp rectifier bridge and $91,000 \mathrm{mfd}$ computer grade filter capacitor.

POWER
 SUPPLY -

\qquad

If you want your connectors to stay the course specify Ferranti.

Ferranti circuit board edge connectors win through by their staying power. They're designed for a far higher number of insertions than you're likely to make. They need to be, so that you can rely on them throughout their working life

You'ill like our other design features too. Low force spring contacts. Gold flash or full gold plating on the contacts as you wish. Terminals for wire wrapping or soldering. Many options pitches of $100^{\prime \prime}(2.54 \mathrm{~mm})$-modular connector, $150^{\prime \prime}(3.81 \mathrm{~mm})$, $.156^{\prime \prime}$ (3.96 mm) and . $200^{\prime \prime}$ (5.08 mm).

Contact: Connector Sales, Ferranti Limited Professional Components Department Dunsinane Avenue, Dundee DD2 3PN, Scotland.
Telephone: 038289321 Telex: 76166 Distributors: Giltech Components Ltd., 22 Portman Road, Battle Farm Industrial Estate, Reading, Berks. RG3 1ES. Telephone: 0734582131.

FERRANTI Connector Capability

After the introduction of the CQ 110 E and CQ 301. NEC have completed their CQ-Line with the CQ 201 Digital VFO, the SP 110 . Speaker and the M110 SSB Microphone. The NEC CQ-Line represents highest technical standard, with regard to design, quality, reliability and price which is available to the modern radio communicator today.

NEC CQ 110 E, 300 watts Digital transceiver Modes: FSK/ USB/LSB/CW/AM, 100-240V AC/13.5DC handmike, Control speaker, VOX Sidetone, 3 Xtal filters, Blower, RCA 7360 RX Mixer, 22 fix-channels, 60 Page Manual, 160-10 meter, 11 Ranges of 500 Khz .

NEC CQ 301 2-3 KW SSB / AM Linear Amplifier $160-10$ meter, 2 EIMAC 3-500Z. Handbook, 100-240 V AC. High Speed Blower, incorp. Power Supply.
NEC CQ 201 Digital Additional VFO for Split-Frequency Operation, containing 3 VFO systems, usable as frequency counter, 100-240 V AC/13.5VDC, Handbook.

NEC SP 110 Communication Speaker with Electronical Digital Clock, timer, etc handbook 100-240 VAC
NECM110 SSB Communications Microphone, designed for CQ - Line

Colour of CQ line brown military sand-touch.

* Dealer inquiries welcome
* ASK ABOUT OUR UP TO 120 DAYS FINANCING FACILITIES
* ASK FOR OUR COLOUR CATALOGUE against payment of SFR 16 - or any other equivalent currency
* Shipments to EVERYWHERE

Sole distributor in Europe:
CiEC Corp., Via Valdani i- CH 6830 CHIASSO-SWITZERLAND Phone: (091) 442651 . Telex: 79959 CH

WW-044 FOR FURTHER DETAILS

HARMSWORTH 070-681 2601

 WESTCODE SEMICONDUCTORS

Westcode low, medium and high Power Diodes, Rectifiers, Hyregs, Potted Bridges, Triacs, Thyristors, Transistors and complete Rectifier Stack Assemblies.
Express delivery by our own transport and Securicor. HARMSWORTH, TOWNLEY \& CO. LTD. Todmorden, Lancs. OL14 5JY England. Phone 070-681 2601 \& 070-681 5246

WW-066 FOR FURTHER DETAILS

Some interesting figures have just come to light.

A Swiss engineered Digital Multimeter for just £85.

With:

- Automatic Polarity and overload Display.
- AC/DC Voltage 200 mV -1000V.
- $31 / 2$ Digit 15 mm Liquid Crystal Display.
- AC/DC Current 200mA-2A.
- Accuracy $0 \cdot 3 \% \pm 1$ digit.
- Resistance $2 \mathrm{~K}_{\Omega}-20 \mathrm{M}_{1}$.
- Overload protection to 1500V.

Plus:

- Capacitance Range 2000pf-20 $\mu \mathrm{f}$
- Signal injector $1 \mathrm{KHz}-500 \mathrm{KHz}$. Harmonic Frequencies up to 500 MHz .

Plus optional extras:

HV Probe/Temperature probe $-50^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$.

All just £85* plus Carr. \& VAT.
Visit our Showroom \& Exhibition centre any time for a demonstration, and see for yourself the value for money service you get when you deal with any of the IEC Group Electrical \& Electronic repair \& supply companies.

Precision Instrument Laboratories 727 Old Kent Road London SE15 1NT. Tel: 01-639 4461. Telex: 8811854 (INSTEL).

Instruments Electrical Co. Ltd. Instrument House, 212 IIderton Road, London, S.E. 15 Tel: 01-639 0155 Telex: 8811854 (INSTEL)

* Availability subject to demand

Higrade

 instruments Ltd., 56 Charlton Road. Harlesden, N.W. 10 Tel: 01-965 2352. Telex: 8811854 (INSTEL).

The Pantec Digital Multimeter

шiminiz. мипN werlourrin wiulew рнининй

Intel - the world's leading manufacturer of advanced integrated circuits - scores again. Using MOS technology they've produced memory and microprocessor devices which together provide powerful computing functions in just a few packages .at low cost! All are fully supported with development systems, software and debugging aids. Like the complete range of Intel products, they're supplied, stocked and supported by us in depth. A phone call will bring all you need

Your

 intedephone number OTFO 280This easy-reference descriptive price list contains over 2000 Intel products. Weill be delighted to send it to you by return of post with our latest up-date material. Just use the reader reply service or send this coupon to GEC Semiconductors Ltd East Lane, Wembley, Middx HA9 7PP. Telex: 923429.
\qquad
\square

OSTS new trom ambit tumatait One 5tap Terhnalogy 5happing starts here:

product reliability. But as complexities have muitiplied, and prices have become competetive - the delineation between 100% functional and 95% functional ICs has got a lot lass clear. But now more than ever, you cannot afford to waste time and effly ons
anything less than the very best - so at the OSTS, we have a strict policy to supply parts only from BS 9000 approved sources. No nondescript clearance lines of dubious pedigree, only the very best. I you are
the OSTS with total confidence.
the OSTS with total confidence.
As you may already know, we make a point of backing our products with extensive lab and technical facilities; so next time you want to buy your components, ask what support your present supplier can offer - and if it comes fromBS9000 sources......we look forward to supplying you
Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $12 \% \%$ except those marked ". Please keep orders separately totalled,
mirromarket

TLL:Standard RID LP SchottkV

	LSN'
74362	375
74365	49
74366	49
74367	43
74368	49
74373	70
74374	70
74375	60
74377	100
74378	90
74379	130
74386	55
74390	140
74393	140
74395	110
74396	133
74398	200
74399	150
74445	92
74447	90
74490	140
74668	110
74670	220
NE555	
NE556	
NE558	
LM3909	
ICM7217	
$\begin{aligned} & \text { counter ic } \\ & 1 \mathrm{CLL} 7106 \mathrm{CP} . \end{aligned}$	
KIT IC 2480	
ICL7107Cb	
LCD DVm	
Kit 2065	
Due to rapid price changes in	
ICs, pliase check	
for current and	
quantity	

Fram the Warld's leading radio innouation saurce:

On this side of the page, we offer you the leading products from the world of wireless. We are continually reviewing and adding to our range, and this month we feature some of the
more significant additions to our range. All available in depth, and usually ex-stock to0 !

Moving Coil Meters

| HA1370 HiFi 15 w in easy heatsink pack | 2.99 |
| :--- | :--- | :--- |
| Stereo Decoder Devices | |
| MC1310/KB4400 Original pll decoder - | 220 |

Tuner Modules

 \qquad
 TUNERSETS OY LARSHOLT (head +1

$\qquad$$\begin{array}{llll}\text { afc, meter drives etc } & \\ 7020 & \text { HiGain dual ceramic fitter } & \mathbf{6 . 9 5} \\ 7030 & \text { Hos preamp linear phase filer } & 10.95\end{array}$MPX decoders, all with pilot tone fifters and
buffer amplifiers for min 300 mV RMS
$\begin{array}{ll}92310 & 1310 \text { based system } \\ 93090 & 3090 \text { AO based system }\end{array}$ 6.95
8.85
129991196 B HA1196 based + birdy fitter +911223 HA11223 based system

91197 The original MW/LW varicap
11.85
13.22

AM FM RADIO UNITS
71083 USing TDA 1083 , provides a complete 71083 Using TDA 1083 , provides a complete
MW/LW/FM portable radio chassis $710830 \begin{array}{ll}\text { Sor clock radio etc } \\ \text { Drive/dial system for } 71083 & 1.75\end{array}$ SPECIALS. TUNERHEADS in the range $40-200 \mathrm{MHz}$ to soacial order
The EF5803 and EF5400 are available to cover bands in the region described. The costs
depend on quantity and actual mods required deppnd on quantity and sctual mods required
cover the desired band. Max coverage approx.
20% of 20% of centre frequency selected. Also, ple
allow 3.5 weeks delivery for thase items.

Treble-approved metal oxide resistors
 from IITI - of course

Two ranges of ITT metal oxide resistors are fully approved to BS 9111 NOO2 and BS CECC 40101 019 - types M04 and M05. In addition, M04 and M05 ITT metal oxide resistors are Post Office approved, and produced to high standards based on decades of experience in the manufacture of resistors
These significant approvals are for a wide range of resistance values: from 5Ω to $510 \mathrm{k} \Omega$ for M04 units, and from 5Ω to $1 \mathrm{M} \Omega$ for MO 5 resistors. Both ranges are made in a choice of tolerances: $\pm 1 \%, \pm 2 \%$, and $\pm 5 \%$.

Even though they are treble-appro"sd, all these $\ddagger W$ and $\frac{1}{2} \mathrm{~W}$ resistors are very competitively priced, and available on fast delivery. And if you prefer bandoliered ITT metal oxide resistors, you only have to ask! For more information, contact

ITT Components Group Europe

RESISTOR DIVISION.
South Denes, Great Yarmouth, Norfolk NR30 3PX Tel: 049356122 . Telex: 97421

$\bar{W} W-\overline{0} 40$ FOR FURTHER DETAILS

carbon film RESISTORS

ON BANDOLIERS OR PREFORMED 12.5 mm AT NO EXTRA COST

AERO SERVICES LTD.

42.44A-46 Westbourne Grove London W2 5SF Tel. 01-7275641 Telex 261306

WW-068 FOR FURTHER DETAILS

we wondered why....

 Tilfecommumications. Philios Resparch. UK Atomic Encrgy Authority. and many Universthes were amonq our stomers

Mivbe they luked the competripur prices of our modulus or the tace that all modultes have a frequench
 - damping factor queathe thari 400 on 1 kHz , whd atotharmome distortion less than 0.055% at 1 kM ,

Or could th be that they wernt for the reflithlity whe the comprehensuw protection circuitry. Then thet
2 bis quaramton which wacomodmest but romorn of modulus
OR PERHAPS THEY JUST LIKED THE SOUND OF US

[^4](ASTONKILN LTD.)
BELMONT HOUSE
Steele road PARK ROYAL LONDON NW 10 7AR Tel: $01.961 \quad 1274 / 5$

denmark TS.RADIO

belgium lata

ENGLANO MIdionds CROXFORO CUSTOM EOUIP
englano Wess
SEVERNSIDE AUOIO LTS

ENGLANO South
scotlano
 126 Channg Crowronal
 Landon
NC
Mi 018352372

Youill do better at Martin Associates we guarantee it!

```
METERS 
```



```
M,
MARCONITF 2604 Electronic V/Meter, 20Hz-1.5G Hz
MARCONI 6593V S.W. R. Meter/Amp. Mk. 111
LEVELTM6B Broad BandV/Meter 1Hz-450MHZ 50uV-500V
OSCILLOCOPES
HEWLET-PACKARD 140A DC-20MHz 5mV/cm Dual Beam Oscilloscope
TEKTRONIX 585A OC-80MHz Dual Beam
LEMTNNI 585A OC.80MHz Dual Beam
POWER SUPPLY UNITS
ADVANCE PMA. Y O-7V 1OA MOdular. P.SU
FARNELLTSV 700.35V/10A O 70V/5A Metered
SOLARTRON75720.50V 1A 
SIGNAL SOURCES
ADVANCEA.I Sine/Square 0.20V 15H2.50KHz Oscillator
ADVANCE J1 Sine Signal Generator
ADVANCE J4. Sine 10KHz-600KHz. Signal Generator
```

ANALYSERS
ATTENUATORS 1 Wave Analyser. $20 \mathrm{~Hz}-20 \mathrm{KHz}$
STC $746000-9 \mathrm{~dB}, 0.9008750 \mathrm{hm}$ Athenuators
MARCONITF 338 C 0.105 dB 600 mA 位 nuator
MARCONITF. $1073 / 250.100 \mathrm{de} 75$ ohms Attenuator
ADVANCE A. $640-70 \mathrm{~dB}$ in 6 steps 10 dB and 10 steps of $1 \mathrm{~dB} 1 \%$
bridges
WAYNE KERA B. 601 C.R.L $15 \mathrm{KHz} .5 \mathrm{MHz}_{2} 1 \%$ Bridge
WAYNE KERR B. 801 C.R.L C/w Source and Oetecior 5 -100 MHz WAYNE KERR B. 901 C.R.L C/ W Derector $5-250 \mathrm{MHz}$ Bridge COUNTER
MARCONITF 2401A 8 DigII DC- $110 \mathrm{MHz} 300 \mathrm{MHz}-2.5 \mathrm{GHz}$ OIGITAL VOLTMETERS
HEELLETT.PACKARO 2401 C 6 digit integrating 0 iV- 1000 V DC HEWLETT. PACKARD 3439A \& Digit AC/DC Autoranging

MARTIN ASSOCIATES 34 Crown Street Reading
Berks. RG 1 2SE
el. Reading (0734) 51074

HEWLETT.PACKARD $60 \overline{8} A$ TOMHz-500MMz Signal

| Oscillator |
| :--- | $\begin{array}{ll}\text { MARCONI TF } 144 \mathrm{H} / 410 \mathrm{KHz} 272 \mathrm{MHz} & 0.2 .75 \mathrm{~V} \\ \text { Signal Generalor } \\ £ 350.00\end{array}$ SARnal Generator

GGHz Signal Generato MARCONI TF 20030.4 .12 .5 MHz Signal Gen7.00 PhM/MA $\mathbf{E 2 0 0 . 0 0}$ MARCONI TF $1060 / 3470 / 960 \mathrm{MHz}$ Signal GeneraMARCONITF, 10120 Hz .200 KHz O. $20 \mathrm{~V}^{〔 350.00}$ Oscillatar \quad £120.00 MARCONITF 1370A 10Hz-10MHZ AC Oscillator MUIRHEAD D-880 A O O1 $\mathrm{H}_{z}-112 \mathrm{KHz}$ Oscillatol $\mathbf{2 0 0}$ WESTON ROTEK 146 AG 5 A C Voltage Standard $\underset{\substack{\text { ¢ } \\ \mathbf{7 5 0 . 0 0}}}{ }$

$=2 / 1 / 2$

RECORDERS

6500.00

650.00

HEWLETT-PACKARD 7700 Channel Thermal Recorder c / w Respiratory pre-amp
HONEYWELL 520 X. YPiotter $0.05 \mathrm{mV} .25 \mathrm{~V} / \mathrm{cm}$
OXFORD 30002 pen 1 mV - 100 V
MISCELLANEDOUS
MARCONI 6010 Universal Carsiage 6011 ; and 8 Grade 1 X and S Band
MARCONI 6010 Universai Carriage 6011 / and 8 Grade 1 X and S Band

WW-085 FOR FURTHER DETAILS

The new CS-1575 oscilloscope is a dual trace 130 mm screen size instrument incorporating unique features for the analysis of low frequency wave forms.

The most important feature is the facility to split the display and simultancously show not only the input signals on both channels but also the frequency and phase relationship between them - anyone concerned with stereo cartridge or tape head alignment can immediately see the advantages.

Another special feature is the provision of dual channel triggering with independent trigger point
adjustment for each channel together with full sensitivity (1 mV) X-Y display.

High input sensitivity of $1 \mathrm{mV} / \mathrm{cm}$ and wide bandwidth of DC-5 MHz make the new CS-1575 an indispensable tool for anyone interested in high performance audio and low RF measurement.

For full details of the CS-1575 and the complete range of Trio test instruments, contact the sole agents:

LOWE ELECTRONICS LTB.
119 Gavendish Road, Matlock, Derbyshire Tel. 06292430 or 2817. Telex: 377482 - Lowlec G

SINTROM MICROSHOP

? Has your chosen Microprocessor system and Supplier these Unique features

* Motorola 6800 by Southwest Technical
* Plug in expansion for memory and I/O
* Proven software: Assemblers, editors, floppy disc operating system and BASIC from 4 K to 4 user.
* Kansas City cassette tape and Shugart minifloppy fully supported
* New, system oriented, documentation * Walk-in hobbyshop with experienced staff
* Demonstrations always available
* Hands-on selection of software
* Manuals, Magazines and Data to browse or buy
* Ten years experience in minicomputers, disks, cartridge tapes and VDUs

MP. 68	M6800 by Southwest Technical. With 4K RAM, Mikbug ROM	$\underset{¢}{\mathrm{~K} T}$	Butit
	and TTY/RS232 input output interface	275	330
Ст-64	VDU controller with keyboard, serial ASCII	230	315
CT.VM	Video monitor for use with CT 64. 12 volt operation		140
AC. 30	Freestanding dual Kansas-City cassette interface	60	100
MF-68	Twin Shugar minfloppy, controller, interface card, and Disc Operating System with Disc 8 K BASIC	800	860
PR. 40	40 Column atphanumeric printer. 75 lines per minute	200	250
MP-4	4 K memory board	70	90
MP. 8	8k memory board	170	195
MP.S	Serial ACIA board	30	37
MP-L	Dual 8-bit paraliel interface board	30	37
MF-D10	Pack of ten Diskettes		
SWTBUG	Improved ROM Operating System, Mikbug compatible		

Software on paper tape or Kansas-Crity cassette f 10-25 per application.
Protessional Commercial packages to special quotation
All units include full documentation
All units include full documentation, powet supply and case where required and interface
directiy to MP-68 system.
All prices exclude VAT (8\%) and carriage
Write now for Free Catalogue and lists

NEW PRODUCTS NEW PRODUCTS POWER AMP KIT

The kit includes all metalwork, heaisinks and hardware to house any two of our power amp modules plus a power supply It is contemporarily styied and its quality is consistent with that of our other products. Comprehensive instructions and full back-up service enables a novice to build it with contidence in a few hours.

ADVANCED PRE-AMP CPR 1

This stereo module accomplishes pre-amplification of disc and other inputs to an impeccable standard. The
 slew fate. Other inputs have 70 mv sensitivity, thd of 001%. $90 \mathrm{~dB} \mathbf{s / n}$. $12 \mathrm{~dB} /$ octave subsonic folter.
$4 \mathrm{~V} / \mathrm{S}$ S slew rate and active batance control. Output is delayed from 10 seconds. No controls are fitted.

MOVING COIL PRE-AMP MC1

chieve $650 \mathrm{~B} / \mathrm{n}$ Sensitur is switched 70 or 160 NV tor 35 mV outpu

POWER SUPPLY
The regulator module. REG t provides $15-0.15 v$ to power the CPR I and MCI It can be used with any of our power amp supplies or our small wansformer IR 6 The power amp kit will accrommodate

		POWER muf kit 532.40
		PRI AMPS:
		CPRI £29.49. CPRIS 530.89: MCI 518.50 Mas $£ 29.49$
		月EE ¢6.75: TR6 fi. 75
		8RILGE DAIEER. BOI
		Obtain up to 340 W using zxi70w amps and this medula Bol〔5.40.
HEATSMOMS fan, 80man, atate 120 or 240 N $\{18.50$ Mantsinkz. 24.4 C/W. $65^{\circ} \mathrm{C}$ max with twa 170 w mediles TKEAMAL CUT-OUT. 70 C		
		RIMSON ELEKTRIK
		RINSOA ELEKTRIN
		STAMFORD HOUSE
		1A STAMFORD STREET
		Tel: (0533) 537722
All prices shown are UK only and include VAT and Dost COD 90p extra. ¢TOO limat Export is no problem. please write for specific quote Send large SAE or 3 Internationat Reply Coupons for detalled information		

W"W - $\overline{1} 22$ FOR FURTHER DETAILS

KONTAKT 60 eUROPE'S LEADING CONtaCt cleaning SPRay

Kontakt products 60.61 and WL provide an unsurpassed cleaning capability for
contacts and switchgear.

KONTAKT 60

Sately dissolves oxides and sulphides and disposes of resinated contaci greases and dirt, but does not attack plastics or any

Is siticone free.

Contains a light lubricant to avoid possible corrosion of contact paths - and obviates

Quality Industrial Sprays from Kontakt Chemie

K70 Protective Plastic Spray K72 Insulating Spray K75 Cold Spray K80 Siliconised Polish K90 Video Spray K100 Antistatic Spray

K101 Dehydrating Spray and Pos. 20 POSITIVE PHOTO RESIST VARNISH.

Distributed by
 SPECIAL PRODUCTS DISTRIBUTORS LTD.

81 Piccadilly, London W1VOHL
Tel. 01-6299556
Cables: Speciprod, London W1 Descriptive leaflets of the above products are freely available on request.

ARGUS BOORS ITD

ArgusHouse, 14 St James Road,Watford,Herts. Tel:Watford 47281/2

WW-101 FOR FURTHER DETAILS

EUBOMASOMOTE electronics

56A Fortis Green Road Muswell Hill London N10 3HN
Telephone 01-883 3705

VAT INCIISII: PIHITIS

Postage and Packıng 25p
Items followed by a *include V AT.@8\% all orhers include 125% ALWAYS PLEAS -D TO SEE PERSOONAL CALLERS TRADE AND EXPORT CUSTOMERS MOST WELCOME. Overseas Customers deduct $2 / 27$ from items marked with a $\# 1 / 9$ from others

WW-043 FOR FURTHER DETAILS

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
Sensitivity 10 mV
Stability 5 parts 10

FREQUENCY COUNTER TYPE801B

FREQUENCY STANDARDS

CRYSTAL $10 \mathrm{MHz}+\mathrm{MHz} 100 \mathrm{KHz}$
Stability 5 parts 10
OFF/AIR $10 \mathrm{MHz}, 1 \mathrm{MHz}, 1$ part 10

Type 203 Low Frequency Generator £78

FREQUENCY GENERATORS

DISTORTION .03\%
Amplitude Stability 0.1%
10 Hz to 100 kHz
Sine \& Square Wave Form

LOW FREQUENCY GENERATOR TYPE 203

STEREO DYNAMIC RANGE CONTROLLER CP-DR1

The CP-DR1 has two main applications it may be used to compensate for any compression or peak limiting which may have been applied to radio broadcasts or commercial gramophone recordings and thus restore lost realism. It may also be used to make "noise free" tape recordings, as an additional $30-40 \mathrm{db}$ of dynamic range can be encoded and recorded on to most cassette recorders and then decoded and recovered on replay. The unit may also be used as a compressor for listening in high noise environments (the motor car or workshop?) and for the preparation of constant volume background music

CP-DR1 - £41.40 incl. (U.K.). £43.40 incl. (Export)
Also available: Pre-Amplifiers, Power Amplifiers, Filters, Peak Programme Monitors. Active Crossovers, Stereo Function Modules, Power Supplies, plus all pots, switches, etc

TRGEUUT RUDIDLIT.

DEPT. W8, 13 HAZLEBURY CRESCENT
LUTON, BEDS. LU1 1DF
TELEPHONE: 058228887
SEND LARGE S.A.E. FOR DETAILS

WW-052 FOR FURTHER DETAILS
NEW!

Design,
manufacture \& installation

CMOS STICKIES

If you re in digital electronics you re probably already using our TTL STICKIES - printed self-adhesive labels for the 61 most popular 7400 -series ICs. They ie great for BREADBOARDING. FAULT-FINDING. FEACHING EIC
Recently we ve made some changes - *more labels per set - now 480 \# new handy pocket-size packs new 120 -label hobby pack ANO CMOS STICKIES - each sel covering the 64 most popular 4000 -series ICs. All with full instructions
480 -label sets $£ 2.80$ (Discounts for quantities
120 -label sets 80p. Prices include VAT. UK postage and packing
When ordering please specify TTL or CMOS
Official orders welcome

CONCEPT ELECTRONICS
8 Bayham Road, Sevenoaks, Kent TN 13 3XA Telephone: 0293514110

WW-020 FOR FURTHER DETAILS

© (WERF

Tomorrow's Electronic Organ Kit is Here

Abstract

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE.

USED BY WEST GERMAN BROADCASTING SERVICE

PLAYED BY KLAUS WUNDERLICH AND OTHER FAMOUS ORGANISTS

Without doubt, the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features

GALAXY
The Flagship of the WERSI range of
Organs
WERSI is the first kit producing company applying the latest achievements of the space age technology

This has decisive effects on the technical and musical quality of WERSI's electronic organs for the do-it-yourselfer
The application of modern integrated circuits, so-called IC's, simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic components

In addition, IC's save a lot of space and they are extremely reliable devices.

WERSI, however, went a step farther yet. IC's which were not available on the open market were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities.Precision Master Generator, using MOS-LSI.Integrated electronic keying in $1^{2} \mathrm{~L}$ technology
Unique - All switch functions are programmable

- Even the smallest organ has drawbars in addition to fixed stops
Craftsman-made cabinets available in 5 veneers
Ready-made wiring harnesses eliminate errors.

Send now for the 104 page full colour catalogue and 16 page price list describing the 8 organs in the range, together with the complementary kits which WERSI produce.

[^5]
RECHARGEABLE BATTERIES

EXTENDED RANGE

HP2 (size 'D') £3.56. HP11 (size 'C') £2.57. Sub 'C' £1.64. Pencill (size 'AA') £1.32. 9 volt PP3 $£ 4.98$. 9 volt PP6 £11.66. 9 volt PP7 £9.14. 9 volt PP9 $£ 14.30$. All chargers $£ 7.97$ (except for PP3 is $£ 5.82$ and Pencell-is $£ 6.98$). 6 volt 8 Ah sealed lead acid £1/1.88. New child's, $2-4$ mile range.

ELECTRIC CAR

SAE for all details and lists plus $£ 1.00$ for rec. booklet "Nickel Cadmium Power.' Add p.\&p. 10% (5% orders $£ 25.00$ and over). All prices include VAT.
Dept. WW, Sandwell Plant Ltd., 201 Monmouth Drive, Sutton Coldfield, West Midlands. Phone No. 021-354 9764. Callers to: TLC, 32 Craven Street, Charing Cross, OR to 2 Union Drive, Boldmere, Sutton Coldfield.

STEREO FUNCTION MODULE CP-FG1

For comprehensive hi and lo filtering and control of stereo separation (image width) mount a CP-FG1, 2 switches and 3 pots on a Magnum CP-MPC2 Interconnection Board This fully encapsulated function module incorporates some unique features. Two stereo filters ('rumble" and 'hiss') are provided, each with its own slope control and choice of three cut-off frequencies Stereo separation control allows variation of the apparent image width to suit listening conditions - if you can't place your speaker where it really ought to be, let the CP-FG1 do it for you! All modules are, of course, available separately - Magnum boards aren't essential but coupled with their specially designed P.C. mounting pots and switches, they are an easy way to build the system of your choice.

CP-FG1 - £13.22 incl. (U.K.). £15.22 incl. (Export).
Also available: Pre-Amplifiers, Filters, Power Amplifiers, Peak Programme Monitors Compressor/ Expander. Active Crossovers, Power Supplies, plus all pots; switches, etc.

TRGGUTM RUDID Ltd.

DEPT. W8, 13 HAZLEBURY CRESCENT LUTON, BEDS. LU1 1DF
TELEPHONE: 058228887
SEND LARGE S.A.E. FOR DETAILS

COMPUTER PERIPHERAL EQUIPMENT FROM CROFTON

For full details send for our Data Sheet ref: MC1
S.A.E. for return of post service

See us on Stand 1 at the Personal Computer World Show Sept. 21st to 23rd, West Centre Hotel, Lillie Road, London, SW6

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham, Middlesex - 01-891 1923

PA GROUP \& DISCO UNITS

WILMSLOW AUDIO
KITS FOR MAGAZINE DESIGNS etc

SPEAKER KITS

Kits include drive units, crossovers BAF/Long fibre wool, etc. for pair of speakers.

Carriage $£ 3.50$

Practical Hifi \& Audio PRO9-TL (Rogers)

11800 Felt panels for PRO9-TL
£5.50 + £ 1.50 p\&p Hifi Answers Monitor (Rogers)
£129.00
Hifi News State of the Art
(Atkinson)
£161.00
Nifi News No Compromise
$£ 126.00$
Popular Hifi Mini Monitor

> Popular Hifin (Coltoms)
£63.00
Popular Hifi Round Sound (Stephens) including complete cabinet kit
$£ 65.00$
Practical Hifi \& Audio Monitor
(Giles) £119.00 Practical Hifi \& Audio Triangle (Giles)
Practical Hifi \& Audtio BSC3 (Rogers)
Hifi News Tabor (Jones) Hifi News Tabor (with H4 bass units)
Wireless World Bookshelf (Wilkinson)
Wireless World T.L. KEF (Bailey)
Wireless World T L. / Radford (Bailey)e154.00

SMART BAOGES FREE WITH ALL ABOVE KITS TIO GIVE THAT PROFESSIONAL TOUCH TO OIY SPEAKERS!

Send $3 \times 7 p$ stamps for reprints/ construction details of any of above designs.

CARRIAGE \& INSURANCE		
Tweeters/Crossovers	$\mathbf{4 0 p}$ each	
Speakers up to 10	$\mathbf{7 5 p}$ each	
Speakers 12	$\mathbf{£ 1 . 2 5}$ each	
Speakers 15	$\mathbf{£ 2 . 0 0}$ each	
Speakers 18	$\mathbf{£ 2 . 9 5}$ each	
Speaker Kits	$\mathbf{£ 2 . 5 0}$ pair	
Mag design kits	$\mathbf{£ 3 . 5 0}$ pair	

Prices per pair. Carriage $£ 2.50$

Dalesford System 1	$£ 52.90$
Dalesford System 2	£55.75
Dalesford System 3	£101.75
Dalesford System 4	£108.00
Dalesford System 5	£139.00
Dalesford System 6	$£ 93.00$
Eagle SK210	£13.90
Eagie SK215	$£ 23.50$
Eagle SK320	£33.50
Eagle SK325	£59.00
Eagle SK335	£79.90
Goodmans DIN 20	£31.50
Goodmans Mezzo Twinkıt	£51.95
Lowther PM6 Kit	E91.75
Lowther PM6 MKI Kit	$£ 96.50$
Peerless 1060	£66.95
Peerless 1070	£115.00
Peerless 1120	£129.50
Peerless 2050	$£ 45.95$
Peerless 2060	£60.95
Radford Studio 90	£154.00
Radford Monitor 270	£208.00
Radford Studio 270	£275.00
Radford Studio 360	$£ 390.00$
Richard Allan Twin	£29.90
Richard Allan Triple 8	£45.50
Richard Allan Triple 12	£55.90
Richard Allan Super Triple	£65.90
Richard Allan RA8	£42.75
Richard Allan RA82	£67.75
Richard Allan RA82L	$£ 73.50$
Seas Mini	$£ 17.90$
Seas 203	£35.50
Seas 302	$£ 43.90$
Seas 303	$£ 73.90$
Seas 503	£111.90
Whamedale Denton 2XP	£26.95
Whartedale Linton 3XP	£41.95
Wharfedale Glendale 3 \times P	$£ 56.95$
Everything in stock speaker constructor! BAF, long fibre wool. crossovers. felt panels ponents. etc Large selection of grille fab (Send 15 p in stamps fo samples) (Prices correct at 12/4)	for the foam com brics. fabric 78)

Send 15p stamp for free 38 page catalogue Choosing a Speaker-

Telephone : Speakers, Mail Order and Export Wilmslow 29599 Hi-Fi: Wilmslow 26213
\square Lightning service ontelephoned credit card orders!

Swan Works, Bank Square
Wilmslow, Cheshire

AMI COS features modular flexibility. Each module is designed as a plug-in PCB, having jdentical serial contacts, and is connected to a common bus-line PCB, the COSBUS. The basic mudule MAINCOS incorporating the AMI $\$ 6800$ CPU chip drives the binary command ulit CONCOS. By using LED's and switches, the user will acquire a deeper knowledge and experience in the microprocessor field. Both inudules are expandable with standard TV $3:$ itertaces, cassette recorders, A/D converters,
 or hexadecimal keyboards.

The manual supplied with MAINCOS and CONCOS contains the AMI 6800 hardware and the module documentation, with instructions.
All AMI-COS modules are available separately.
The application of AMI-COS is not limited to students or amateurs. Its flexibility makes it very useful for industrial applications. Cooperating with hardware and software consultants RITRO assures you of the right back up.

An AMI-COS brochure is available on request.
AMI-COS - YOUR LOGICAL FUTURE.

GRENFELLPLACE, MAIDENHEAD, BERKSHIRE Telephone MAIDENHEAD (0628) 3622; NL 2930 BARNEVELD, PB 123, Gelreweg 22 Tel: (0)3420-5041 Telex: 40553 ritro nt is 2000 AN TWERPEN 172, Plantin and Moretuslei Tel: ($0 \downarrow 31-353272$ Telex: 33637 norics b

QUALITY COMPONENTS BY RETURN

Lineer Circu	ub br	CA, Nomio	
		¢39	
			${ }_{0}$
${ }_{\text {casol }}$			0
		${ }_{\text {MCl }}$	为
	1300		
			\%
	1700	Ne55	55
${ }^{\text {a }}$		Ne5560	\%
			00
	115	NE565	200
	10000	SNT6	200
${ }_{\text {Ca33123 }}$		SN76	${ }^{2000}$
	-		${ }_{2000}$
Oas		tia	200
	${ }_{125}^{65}$	TCa	
339	500	TDA	5700
${ }_{\text {cmos }}$	and		
4002	15		
4007	150	${ }_{4049}^{4046}$	
0099			${ }^{288}$
11			
12			
	S00		
4022		4075	
		4078	
		4511	
${ }_{4028}$		${ }^{5518}$	
${ }_{4030}$		4585	

AC125
AC126

Carbon Film Resistors
High stability, low noise, 0.25 W 5\% E 12 series from 4.7 ohms
to 10 Megohms. Any selection to 10 Megohms. Any selectio

each	$100+$	$1000+$	5000
$1 p$	$0.9 p$	$0.8 p$	$\mathbf{0 . 7 5}$

Special development pack of 10 of each value 4.7 ohms to 1 Megohm, a total of 650 resistors $£ 5.70$ Potentiometers
track, Log and Linear values.
$5 K-2 M 2$ single gang
$5 K-2 M 2$ dual gang stereo
Preset Potentiometers 0.1 Wrating. 100 ohms to $2 \mathrm{M} \quad . \quad . \quad 6 \mathrm{p}$ each Special development of 5 of each value from 100 ohms to 2 M a total of 70 presets (please state vertical or horizontal) $£ 3.95$ Ceramic Capacritors
Miniature plate type 50 V PC mounting. Avallable from 22 pF to
1000 pF in E12 series and 1500 pF to 0.047uF in E6 series
Polyester Capacitors
Mullard C280 series. 250 V PC mounting
$0.22,7 p ; 0,0.022,0.033,0.047,0.068,0.1,5 p ; 0.15$.22, 7p;0.33,0.47,10p; 0.68, 14p; $\uparrow 0,17 p ; 2.2 \mu \mathrm{~F}, 28 \mathrm{p}$ $\stackrel{\text { anch. }}{\text { Specia }}$
Tantal development pack of 5 of each value $£ 6.20$
Tantalum Capacitors
$0.1 .0 .15,022.0 .33,0.47,0.68,1.0 .2 .2 @ 35 \mathrm{~V}$ 4.7 @ 25 V .6 .8 and 10 @ 25 V

22 @16V, 47 @6V,68@3V,100@13p
Development pack 5 of each value $\mathbf{£ 8 . 3 0}$
Optoelectronics
LEDs
$\begin{array}{cccc}\text { LEDs } & \text { Red } & \text { Green } & \text { Yellow } \\ 0.125 \text { in } & \mathbf{9 p} & \mathbf{1 5 p} & \mathbf{1 8 p} \\ 0.2 \text { in } & \mathbf{9 p} & \mathbf{1 3 p} & \mathbf{1 8 p}\end{array}$
Displays DL70790p DL70490p
Dill Sockets
8 pin 11p 14 pin 12p 16 pin 13p 24 pin 30p Quantity discounts on any mix. TTL. CMOS and Linear Circuits $25+10 \%, 100+15 \%$. All orders despatched by return components guaranteed brand new and full specification from
 8. 30 am to 6 pm Monday to Saturday. All prices valid to Apy
30.1979 Send 12 p stamp for our new illustrated catalogue 30. 1979. Send 12 p stamp for our new illustrated catalogue.
Oticial orders welcome from colleges, universities etc.

C. N. STEVENSON (WI) 236 High Street, Bromley, Kent BR1 3PQ. Tel: 01-464 2951/5770

EASY BUILD SPEAKER DIY KITS Specially designed by AT．VC for cost conscious hi－fienthusiasts，these kits incorporate two teak－simulate enclosures． two EMI $13^{\prime \prime} \times 8^{\prime \prime}$（approx．）woofers two tweeters and a pair of matching crossovers Supplied complete with an easy to follow
$〔 2800$ circuit diagram，and crossover components． STEREOPAIR Input 15 wattsims． 30 watts peak，each unit －SPEAKERS AVAILABLE WITHOUT CABINETS． It＇s the units which we supply with the enclosures illustrated Size $13^{\prime \prime} \times 8^{\prime \prime}$（approx．）woofer（EMI），£ 1700 per tweeter，and matching crossover components．stereo pair Power handling 15 wattsims． 30 watts peak．$+p \& p f 3.40$

BUILT AND READY TO PLAY SPEAKERS Two models－Ouollt，teak veneer， 12 watts ims． 24 watts peak． $18 \frac{1}{3} \times 13 \frac{1}{2} \times 7 \frac{1}{2}$（appoiox $)$

AECORO

ta budget price．
PLAYER comprising ready assembled stereo amp module Garrard KIT auta／manual deck with cueing device．pre－cut and linished cabinet work Output 4 watts per channe f19．95 phones socket and record／re play socket

AM／FM STEREO TUNERAMPLIFIER CHASSIS COMPLETE Ready buil Designed inaslimform for compaci，moderninstallation Rovery Controis Vol On Dtt．Bass．Treble Balance
Push Butons ior Grami，Tape VHF MW（W and 5 button rolary selection switch
Power Supply Selenium 8ridgo－35V DC Irom 210－250V AC 50 Hz input．
 Iead tor FM aeriai
Power Output 5 walls per
7 walles speech and music
 $200 \mathrm{mV} / 50 \mathrm{~K}$ oupput ayallable from $25 \mathrm{KHz}+150 \mathrm{mV} / 100 \mathrm{~K}$ I deviation
 Radio FM sensitivity lor 308 belaw lumiting better than 10 UV

VALUE FOR PERSONAL SHOPPERS

CR $21 / 2 \mathrm{mp}$ ．	£2．50
	f11．95
LE0 5 tunction menis digital wath	f5 95
stanless sieel thish	¢ 5.95
	£7．95
	f12．95
	f1．95
board Usee，withou tuarantee（tet fuupment）	f1．95
Wat Poner Amp Modic	f13．95
ans oowe s spoliy parts	f3 50
：00k Multiun Varicap lumng pois 6 for	f1．00
music centre CABimet milh hmeed smoke	£1．00
	£5．95
mutchan But pome s spaly	f1．50
decca oc 1000 Stereo Cassene PC．	． 50
	f2．95
	4．95
	£24．95
er inc crossoves	£ 20.00
	£10．95
with ousiol mans poperion	f14．95
IOMASTER Oout	£1295
124 difteren tuies）	212.95
Micro cassetel tape eecorider	£13．95
	f8．95

	50 WATT MONO DISCO AMP £29．95
20×20 WATT STEREO AMPLIFIER $\quad 2^{990}$	$\begin{gathered} \text { P\&P £2.50 } \\ \text { Size approx. } 13^{3} \mathrm{~g}^{\prime \prime} \times 5 \mathrm{~h}^{\prime \prime} \times 6^{3} \end{gathered}$
Silver fascia with aluminium rotary controis and $p \& p$ pushbuttons．red mains indicator and stereo jack $\mathbf{f 2 . 5 0}$ socket．Function switch for mic．magnetic and crystal pick－ups，tape．tuner，and auxiliary Rear panel features two mains outlets．DIN speaker and input sockets，plus fuse．	50 watts rms． 100 watts peak output．8ig leatures include two disc inpuls． both for ceramic cartridges．tape input and microphone input．Level mixing controls fitted with integral push－pull switches．Independent bass and Ireble contols and masler volume． SPECIAL OFFER．The above 50 watt amp plus 4 Goodmans Type 8P． $8^{\prime \prime}$ speakers．Package price $£ 45.00+£ 4.00$ P\＆P．

$$
30 \times 30 \text { WATT AMPLIFIER KIT }
$$ For the experienced constructor complete in every detail． Similar lacilities as Viscount IV amplifier． $60+60$ peak $£ 29.00$ p\＆pE2．50 AVAILABLE NOW built and fully tested with output $£ 39.00$ $30+30$ watts rms． $60+60$ peak p \＆p $\mathcal{L} .50$ SPECIAL OFFER

PACKAGE PRICE WITH 30×30 KIT MK．It version．operates into 4 to 15 OHMS speakers．Designed by R \＆TVC for the experienced construclor．Complete in every detail．facilities as viscount IV amplifier $60+60$ peak．Supplied with 2 Goodmans Compact $12^{\prime \prime}$ bass wooler with cropped 14.000 Causs Magnet． 30 watt rms．handling $+314^{\prime \prime}$ approx．Fweeters and crossovers．
$£ 49.00$ p \＆$p £ 4.00$

tape level，mic level．deck level．PLUS INTER．DECK FADER for perfect graduated change from record deck No． 1 to
No．2．or vice versa．Pre fade level control 70 watt $£ 57$
（PFL）lets YOU hear next disc before fading $\quad p \& p E 4.00$ It in．VU meter monitors output level． 100 watt $\mathbf{6 5}$ a 400 K OHMS ：Output－ 300 mV RMS per channei＂t 1 KHz from 2 K DHMS source：Cross Talk－30db：Tape Counter－ 3 Digit－Resettable：Frequency Response $-40 \mathrm{H}_{z}-8 \mathrm{KHz}_{\mathrm{H}} \pm 6 \mathrm{db}$ Deck Motor－ 9 Volt DC with electronic speed regulations Key Functions－Record．Rewind．
Fast Forward，Play．Siop \＆Eject．p \＆p $\mathbf{6 2 . 5 0} \mathbb{〔 1 9 9 5}$
Opt．Extras：Mains Trans．to suit E $\mathbf{2 . 5 0}$ p．p． $\mathbf{f 1}$ ．

日TVに过

323 EDGWARE RDAD．LONDON W2 21 HIGH STREET．ACTON．W3 GNG 21a HIGH STAEET．ACTON．W3 6NG
aLL PRICES INCLUDE YAT AT $121 / 2 \%$ ALL PRICES INCLUDE V All items subject to availability
Price correct at 1.8 .78 and subiect io Price correct at notice
change withoul notice

PORTABLE DISCO CONSOLE Here s the big－value portable disco console
tom RI．VC It features a pain of BSAMP 60 rom RT VC It features a paur of BSR MP
trpe auto return，single play professional with rou need to deve fabulous disco performances

$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts The Standard of the Industry What more need we say.

Exclusive UK representative

electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UW TELEPHONE: 01-868 1188 - TELEX 8812727 WW-038 FOR FURTHER DETAILS

a fully built \& tested microcomputer system only $\mathbf{f 1 5 9}$ + VAT

KIM-1 CARD

*COMPLETE WITH KEYBOARD \& DISPLAY
*AUDIO CASSETTE INTERFACE FOR PROGRAM STORAGE *TELETYPE INTERFACE
*PROGRAM DEVELOPMENT SOFTWARE
*R6500 PROGRAMMING MANUAL
*R6500 HARDWARE MANUAL

IDEAL FOR THE HOME USER, STUDENT AND ENGINEERS

Fully built \& tested, with keyboard \& display for editing. de-bugging and running programs. Complete with 1 K bytes of RAM and 2 K bytes of ROM-resident monitor and executive sottware controlling executive sottware controlling
operation \& de-bug modes. operation \& de-bug modes.
Interface circuitry for program storage on a cheap audio cassette and teletype connection, with baud-rate determined automatıcally

An additional 15 unused 1/0 lines for use as inputs or outputs and 8 bil programable Interval Timer. De-bug facilities to 'singlestep' the program and trace the actions of the registers 16-bit address bus. data and 16-bit address bus. data and
control buses brought to an edge connector for extending the system to 65 K memory locations. Comes complete with full Rockwell R6500 programming and user manuals for only E159 +VAT Available Ex-Stock.

Pelco (Electronics) Ltd
 Enterprise House

83-85 Western Road, Hove, Sussex BN3 1 JB
Telephone: Brighton (0273) 722155
Buy if with your Access or Barclaycard. Fin- [maty
WW-058 FOR FURTHER DETAILS

The semicon IIDEXES

INTERNATIONAL SEMICONDUCTOR DEVICE DATA

VOLUME 1 TRANSISTORS ISBNO904944042 (7th Edition)
VOLUME 2 DIODES/SCRs ISBN 0904944026 (1st Edition)
VOLUME 3 ICs (including $\mu \mathrm{Ps}$) Publication ISBN 0904944034
MAKE SURE YOU FIND OUT ABOUT THE NEW INDEXES

SEND AN ENQUIRY OFF TO-DAY.

Each volume has a unique easy reference alpha-numeric listing of the maximum ratings and essential characteristics of more than 25,000 devices of international origin-European, USA \& Japanese. Accepted worldwide by Engineers, Technicians and Buyers. 12 months guarantee of validity. -Descriptive folders available.

SEMICON INDEXES LIMITED

7 King's Parade, King's Road, Fleet. Hants. GU13 9BW Tel: Fleet (02514) 28526 Telex: 858855G
ww-083 For further details

ASTR A-PAK 92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB							All prices include V A T Add 25 p for P\&P (Extra for overseas) Discounts over ≤ 10 less 5%. over c 20 less 5%. over 〔20 less 10\%, over ¢50 less 35\% over ᄃ- 100 less 20% Send SAE tor complete list of com. ponents				
7400	0.12	7495	0.54	74190	1.05	7415113	0.36	4007	0.18	4085	0.72
7401	0.12	7496	0.60	74191	0.99	$74 \mathrm{LS114}$	0.36	4008	0.92	4086	0.76
7402	0.12	7497	2.38	74192	0.95	7415123	0.82	4009	0.45	4089	1.55
7403	0.12	74100	0.94	74193	1.05	7415124	2.45	4010	0.48	4093	0.65
7404	0.13	74104	0.40	74194	0.90	74LS 125	0.44	4011	0.15	4094	4.80
7405	0.13	74105	0.40	74195	0.84	74 LS 126	0.44	4012	0.16	4095	1.10
7406	0.28	74107	0.28	74196	0.90	74 LS 132	0.68	4013	0.42	4096	1.10
7407	0.28	74109	0.45	74197	0.90	74LS 136	0.40	4014	0.80	4097	3.50
7408	0.14	74110	0.46	74198	1.48	$74 \mathrm{LS138}$	0.53	4015	0.77	4098	1.12
7409	0.14	74111	0.70	74199	1.48	74 LS 139	0.53	4016	0.42	4099	1.90
7410	0.13	74116	1.60	74221	1.50	74LS151	1.05	4017	0.77	4404	1.00
7411	0.18	74118	0.82	74273	2.15	74LS 153	0.50	4018	0.87	4412	0.30
7412	0.21	74119	1.30	74279	1.25	74LS154	1.20	4019	0.42	4428	0.80
7413	0.25	74120	0.82	74283	1.70	74LS155	0.86	4020	0.92	4445	1.50
7414 7416	0.54	74121	0.25	74284	${ }_{6}^{6.35}$	74LS 156	0.88	4021	0.82	4449	0.30
7417	0.27	74123	0.40	74293	1.35	74.5157	0.47	4022	0.82	4501	0.17
7420	0.13	74125	0.44	74390	1.92	74L. 5160	1.22	4024	0.15 0.66	4502 4507	0.88 0.50
7421	0.28	74126	0.45	74393	2.12	74LS 161	0.69	4025	0.15	4508	2.25
7422	0.17	74128	0.62	/41500	0.18	74LS162	1.22	4026	1.28	4510	1.05
7423	0.25	74132	0.68	$74 \mathrm{LSO1}$	0.19	74 LS 163	0.69	4027	0.50	4511	0.98
7425	0.20	74135	0.68	741502	0.19	74LS 164	1.20	4028	0.67	4512	0.92
7426	0.25	74136	0.75	74LSO3	0.19	74LS168	2.00	4029	0.86	4514	2.85
7427	0.25	74137	0.94	74L504	0.20	74LS169	2.00	4030	0.48	4515	2.80
7428	0.34	74141	0.58	746505	0.20	74LS170	1.78	4031	2.34	4516	1.02
7430	0.13	74142	2.00	741508	0.19	74LS173	1.05	4033	1.25	4518	0.95
7432	0.24	74143 74144	2.00	746509	0.19	$74 \mathrm{LS174}$	1.12	4034	2.00	4519	0.50
7433	0.32	74144	2.00	74 LS 10	0.19	74LS 175	1.05	4035	1.00	4520	1.05
7437	0.24	74145	0.64	74.511	0.19	74LS 189	2.85	4036	2.40	4521	2.00
7438	0.24	74147	1.30	74LS12	0.19	74LS 190	0.81	4037	0.98	4522	1.35
7440	0.13	74148	1.18	74LS 13	0.46	74LS191	0.81	4038	1.00	4527	1.60
7441	0.52	74150	0.98	74 LS 14	1.10	74LS192	1.80	4039	2.80	4528	0.92
7442	0.55	74151	0.80	741515	0.19	74LS193	1.80	4040	0.88	4529	1.10
7443	0.90	74153	0.80	74LS20	0.19	74LS 195	1.12	4041	0.77	4536	3.58
7444	0.90	74154	1.05	74LS21	0.19	74LS196	1.20	4042	0.72	4553	4.20
7445	0.70	74155	0.63	74LS22	0.19	7415197	1.20	4043	0.82	4555	0.85
7446	0.70	74156	0.63	74LS26	0.24	74LS221	1.12	4044	0.82	4556	0.85
7447 A	0.64	74157	0.63	74LS27	0.40	74LS247	0.97	4045	1.40	4558	1.25
7448	0.60	74159	1.70	74L530	0.19	74LS248	0.97	4046	1.32	4566	1.40
7450	0.13	74160	0.80	74.532	0.25	74LS249	0.97	4047	0.96	4583	0.75
7451	0.13	7461	0.80	74.537	0.27	74LS25 ${ }^{\text {P }}$	1.00	4048	0.60	4585	1.03
7453	0.13	74162	0.80	74LS38	0.27	74LS253	1.05	4049	0.42		
7454	0.13	74163	0.80	74LS40	0.19	7425257	1.05	4050	0.42		
7460	0.13	74164	0.89	74LS42	0.53	74LS258	1.05	4051	0.84		
7470	0.28	74165	0.69	74LS47	0.97	7415266	0.39	4052	0.84		
7472	0.22	75166	0.99	74LS48	0.97	7445273	2.50	4053	0.84		
7473	0.26	74167	2.70	74L549	0.97	74LS279	0.50	4054	1.10		
7474	0.28	74170	1.88	74LS51	0.19	74LS283	1.00	4055	1.00		
7475	0.30	74172	4.00	74LS54	0.19	74LS289	2.85	4060	0.98		
7476	0.28	74173	1.18	74LS55	0.20	74L5293	0.90	4066	0.48		
7480	0.45	74174	0.89	74LS 73	0.30	74L5298	1.60	4067	3.50		
7481	0.90	74175	0.68	74LS74	0.34	74L5352	0.92	4068	0.24		
7482	0.80	74176	0.88	74LS75	0.45	74LS353	1.05	4069	0.17		
7483	0.72	74177	0.88	74LS76	0.32	74 LS365	0.50	4070	0.17		
7484 7485	${ }_{0}^{0.80}$	74178 74179	1.20	74LS78	0.32	7445366	0.50	4071	0.17		
7486	0.26	74180	0.90	744L585	0.78 0.90	${ }_{74 \text { LS } 368}$	0.50 0.50	40072	0.17 0.17		
7489	2.00	74181	1.92	74LS86	0.35	74 LS386	0.37	4075	0.17		
7490	0.35	74182	0.75	74LS93	0.95	74LS670	2.00	4076	1.05		
7491	0.65	74184	1.20	74LS95	1.10	- 4000	0.14	4077	0.46		
7492	0.44	741854	1.20	$74 L S 107$	0.36	4001	0.15	4078	0.22		
7493	0.40	74186	7.20	74 LS 109	0.36	4002	0.16	4081	0.17		
7494	0.80	74188	2.70	74LS:12	0.38	4006	0.92	4082	0.20		

WW-03I FOR FURTHER DETAILS

FOTOLAK
 POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

Enables YOU to produce perfect printed circuits in minutes. Method Spray cleaned board with lacquer When dry, place positive master of required circuit on now sensitized surface Expose to daylight, develop and etch Any number of exact copies can of course be made from one master. Widely used in industry for prototype work

FOTOLAK
Developer
Ferric Chloride
Plain Copper-clad Fibre-glass Approx 318 mm thick sq ft Approx 318 mm thick sq ft
Approx 2.00 mm thick sq ft Approx 2.00 mm thick sq ft
Approx 100 mm thick sq ft
Single sided Copper-clad Paxolin. 10 sheets $245 \mathrm{~mm} \times 150 \mathrm{~mm}$ Clear Acrylic Sheet for making master. $260 \mathrm{~mm} \times 260 \mathrm{~mm}$

Postage and packing 60p per order. VAT 8% on total
G. F. MILWARD ELECTRONIC COMPONENTS LIMITED

369 Alum Rock Road, Birmingham B8 3DR. Telephone: 021-327 2339
E150
$30 p$
1/96 . $204 \mathrm{~mm} \times 114 \mathrm{~mm}$

Fibre-glass board

Single-sided
Double-sided
E1. 25
£1 50
£1.25
€2 25
£ 175
¢2. 50
$10 p$

FULL ASCII KEYBOARD

LOW COST!
Model 756
Full ASCII
Keyboard

* Intended for professional micro processor applications.
* This one Keyboard will meet most present and future requirements.
* Full 128-character ASCII 8-bit code
* Tri-mode MOS encoding.
* Applications notes for auto repeat, numeric pad, serial output.
Upper and tower case characters generated by keyboard with latching shift-lock
* Selectable potarity
- Size $305 \times 140 \times 32 \mathrm{~mm}$ (121/4 $\left.\times 5^{1 / 2} \times 11 / 4 \mathrm{in}\right)$
MOS/DTL/TTL compatible outputs
New guaranteed OEM grade components.
Needs +5 and -12 V supply

Carter Associates

P.O. Box 11262

VLAEBERG
South Africa
postal code 8018

Board has space for small low-cost DC/DC converter so that entire unit operates off single 5 V rail.

PRICED LOWER THAN SURPLUS KEYBOARDS

Please write for full technical details and price, and for names and addresses of our UK and European stockists.

* User selection of positive or negative logic data and strobe output. Alpha lock
Extra loose keys available. Supplied complete with goldplated PCB connector and full technical data.
Rugged mil. spec. G-10 PCB with plated through holes. 2-key roll-over
DC level and pulse strobe signa for easy interface to any 8 -bit input port microprocessor system video display or terminal board. Strobe pulse width 1 ms .

WW-113 FOR FURTHER DETAILS*

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements.

For full details of our service contact Rodger J. Sandiford

FAIRCREST ENGINEERING LTD.

Willis Road, Croydon
CRO2XX Tel 01-6898741

J E S AUDIO INSTRUMENTATION

Illustrated the Si 451 Millivoltmeter - pk-pk or RMS calibration with variable control for relative measurements 50 calibrated ranges £60.00

Si452 £48.00
Distortion Measuring Unit $15 \mathrm{~Hz}-20 \mathrm{KHz}-.01 \%$

Si453
£60.00

PRICES plus VAT

J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 87250। CARR STREET, CLECKHEATON, W. YORKS BD19 5LA

- High tolerance on insert procedure
- Monochrome or colour
- High conversion rate on ageing
- Standard, quick heat, delta or inline
- Wide range of neck sizes and heater ratings Neck glass, tube bases, equipment
- Predictable in use and performance and accessories also supplied

For full details contact
EDICRON
Redan House, 1 Redan Place, London W24SA.
Tel:01-2214717 Telex:265531 Edicrn G

AMPEX Thenamesaysitall... At around EITOO the ATR700 fits this year's buaget, not nert.

Distributed by:

1-7 Harewood Avenue, Marylebone Road, London NW1.
Tel: 01-724 2497. Telex: 21879
FRANCE: Son Professionnel, 29-31 Avenue André Morizet, 92100 Boulogne (Paris). Tel: 6053363

WW-124 FOR FURTHER DETAILS

SINCLAIR PRODUCTS*
Microvision TV now in stock $£ 200$. PDM 35
digital multimeter $£ 27.25$. Mains adapior $£ 3.24$. Padded case £3.25. DM2335 pod Cambridge programmable calculator $\mathbf{E 1 3 . 1 5}$. Prog libravy £2.85.
S-DECS AND T-DECKS
S.DeC £3.39. T.DeC £4.44. u-DeCA £4.52. WeC8 £6.73. 16 dil or 10 TO5 adaptors with
ockets $E 2.14$.

TV GAMES KITS

Send 5 a e for dala Tank Battle chip plus $\mathrm{k} t \mathrm{t} \mathbf{8 . 9 5}$. Ritle kit $\mathbf{\mathrm { E4 } . 9 5 \text { . AY-3-8600 plus }}$ economy kit $£ 14.70$.
MAINS TRANSFORMERS
 2.0 .12 V 50 ma 79 mp . 1 A E 1.99 . $2 \mathrm{~A} \in 2.80$.
 f3.58.
JC12, JC20 ANO JC4O AMPLIFIERS A range of integrated circuit audio amplifiers with €1.60. JC20 10 watts $£ 2.95$. JC 4020 watts E4.20. Send s.a e tor data
PRINTED CIRCUIT MATERIALS 50 sq ins PCB 40p. 11 FFEC E1.05. Dalo Pens 73p. Laminate Cutler 75p. Small Drill 8 il 20 p.
battery eliminator bargains
BATTERY ELIMINATOR BARGAANS
3 -way model $6 / 7 / 2 / 9 \mathrm{~V} 300 \mathrm{ma}$ E 3.30 .100 m redio models with press-5tud connectors 9 V
 $6 \mathrm{~V}+6 \mathrm{~V}$ £4.50. $41 / 2+41 / 2 \mathrm{~V}$ £4.50. Casaert Aecorder Mains
DIN plug e 2.85 .

BATTERY ELIMINATOR KITS
Send s a e for free data 100 man redio typata with
press.stud connectors $41 / 2 \mathrm{~V} 1.80$. 6 V \&1.80. 9 V
 $9 \mathrm{~V}+9 \mathrm{~V} \mathbf{E 2 . 5 0}$. Transiator stabalized 8 -we tyope for low hum $3 / 41 / 2 / 6 / 7 / 1 / 9 / 12 / 15 /$ 1BV 100ma $£ 3.20$. 1 Amp EB .40 . Heavy duty
13-way types $41 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 /$ 13 -woy types $4 / / / 6 / 7 / 8 / 2 / 11 / 13 / 4 / 17 /$
$21 / 25 / 28 / 34 / 42 \mathrm{~V}$ I Amp $£ 4.65 .2 \mathrm{Amp}$ £7.25. Stabilized powar kite 2.18 V 1.00 ma
¢3.60. 2.30 V 1 A 9.95 . 2.30 V 2 A £14.95. Cor C3.80. $2.30 \mathrm{~V} 1 \mathrm{~A} £ 9.95$. $2.30 \mathrm{~V} 2 \mathrm{~A} £ 14.95$. Cor
convertor kit inpul 12 V de. output $6 / 7 / 2 / 9 \mathrm{~V} 1 \mathrm{~A}$ convertor kin inpui
slablized $£ 1.85$.
Bi-PAK AUDIO MODULES
Send s a e for data S450 tuner £23.51. AL60 £4.86. PA 100 £18.71. SPM80 £4.47. BMT80
£5.95. MK60 £38.74. Stereo $30 £ 20.12$.

SWANLEY ELECTRONICS

 Dept. WW, 32 Goldsel Road Mall order only Postage 30 p extra. Price inciude VAT. Official orders welcome.

HIGH QUALITY
Very Low Distortion Audio Signal Generators Ideal Instruments for Hi-Fi testing

Based on Linsley Hood designs

Distortion levels $.02 \%$ and below 002%
Frequency range $10 \mathrm{hz}-100 \mathrm{Khz}$. Output Iv (attenuated).
Standard Model A0113 (Kit £22) - $\mathbf{E 2 6 . 0 0} \quad 02 \%$ - ditto - but with Push button freq. select $\quad \mathbf{E 2 7 . 0 0} \quad .02 \%$ Standard model but in metal case Very Low Distortion model (A0146) £30.00 . 02% - ditto - in Kit Form (less case and panel) $\}$ E Tax 8\% extra. Post Pkg and insurance £1. 25.
Other instruments: Millivoltmeter. Frequency Meter, Reg P.S Units. THD Analyser Also Hi-Fi Amp Kits $10-100$ F.M. Tuners. Kef Speaker Units. S.A.E. for instrument leaflets to TELERADIO ELECTRONICS (W.W.). 325 Fore Street, Edmonton, London, N.9. 01-807 3719.

r RADFORD
 AUDIO MEASURING INSTRUMENTS

Oscillators

LDO3. Low Distortion Oscillator
£ $\mathbf{3 0 0 . 0 0}$
LDO3B. Low Distortion Oscillator, balanced output
£400.00

Distortion Measuring Sets

DMS3. Distortion Measuring Set, manual nulling $£ 250.00$
DMS4. Distortion Measuring Set, auto-nulling . $£ \mathbf{3 5 0 . 0 0}$

Voltmeters

HSV1. Audio Microvoltmeter, average responding
£ 175.00
HSV2. Audio Microvoltmeter, true r.m.s. reading $£ \mathbf{2 2 5 . 0 0}$

Noisemeters

ANM1. Audio Noisemeter and Microvoltmeter, average responding
£200.00
ANM2. Audio Noisemeter and Microvoltmeter, true r.m.s. reading
$£ 250.00$
ANM3. Audio Noisemeter and Microvoltmeter, true r.m.s. and quasi-peak responding
£ 300.00

Descriptive leaflets available on request.
RADFORD LABORATORY INSTRUMENTS LTD. 4 High Street, Nailsea, Bristol BS 191 BW

Tel. 02755-6637

The Only Firm for Quality Audio Kits
HART ELECTRONICS

Are proud to offer the only DESIGNER APPROVED kit for the

J. L. Linsley-Hood High Quality Cassette Recorder

'Now offered with Super Quality Sendust Alloy Head at no extra cost, and incorporating noise reduction modifications given in the postscript article.

As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price We have therefore spent a litlle more on professional hardware allowing us to This enables a more satisfactory electir cal layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components Many other advantages also come from this system' which has separate record and replay amps for each channel plugging in to a master board with gold-plated sockets The most obvious is the reduction of crosstalk and imeraction which could with our modular system the layout is compact but there is no component crowding Testing is very easy with separate identical modules and buliding with the ard of our component-by-component instructions is chiddishly simple. but the finished result is a unit designed not to normal domestic standards but to the best professional practice

All printed circuits are of glasshibre material. fully drilled with a tinned finish or easy and reliable soldering Compon side of the board and are arranged so that all identification numbers are still visible after assembly.
$71 \times$ Complete set of parts for Maste Board. includes bias oscillator. relay controls. etc $£ 983+£ 123$ VAT

72x Parts for Motor Speed and Solenold Control for Lenco CRV deck This is the proper board lavout as given in

73x Complete set of parts tor stereo Replay Amps and VU Meter drive $£ 812+£ 1.02$ VAT
74x Complete set for stereo Record Amps $\{674+84 \mathrm{p}$ VAT
$75 \times$ Complete set of parts for Stabilised Power Supply to circuit given in Article This uses a special low hum field transformer with better charac leristics than the fommonly used toroid. $£ 879+£ 110$ VAT
F00m2 Individual High Quality VU Meters with excellent ballistics $5848+\varepsilon 1$ O6 VAT Per Par

700C/2 High Quality Custom buit steel Case Complete with Brushed aluminium front plate. mains swith record microswitch, turned record bolts nuts and mounting hardware All necessary holes are punched and all surtaces are electroplated Complete step-by-step assembly. instructions are included The cover is finished in an attractive black crackle surface $£ 1650+£ 206$ VAT

LENCO CRV CASSETTE MECHANISM - Now firted with Super Quality Sendust Alloy Head
High Quality, robust cassette transport for Linsley-Hood recorder Features fast full auto fast rewind, record, pause and facilties fitted with Record play and erase heads and suppled complete with Data and extra cassette ejection spring for above horizonial use Price $£ 2160+$ $£ 270$ VAT
Total cost of all parts $\{8358$
Special offer for Complete Kits $\mathrm{E8} 150$ + E10 19 VAT

Complete with data and set up notes to achieve best results with the Super Head Optional extra solid teak end cheeks. $£\}$ pair $+38 p$ VAT
Reprint of 3 Linsley-Hood Cassette Recorder articles 45 p post and VAT free .

OTHER CASSETTE SPECIALITIES LENCO MECHANISMS For industrial or domestic use We have in stock SPFF. FFR TB500. 502. 504 and Mini TB U. for endess loop cassettes Send for details Super Quality Sendust Alloy R/P Stereo Head for replacement use $£ 650+81$ p VAT
Set of components and data for optumising $\mathrm{L}-\mathrm{H}$ Cassette circuits for use with this
head, $50 \mathrm{p}+60 \mathrm{VAT}$ head. $50 p+6 p$ VAT
Standard Quality Stereo R/P Head. $\varepsilon 450+56 p$ VAT
Economy Cassette Stereo R/P Head. 4 -track Cassette R/P Head. $£ 740+93 p$
VAT
TEST CASSETTE 10 enable the user without instruments to easily set up the Head Azımuth, tape speed and VU level. £1 50 inc VAT
Blank Cassettes reliable mechanics and Super Ferric Low Noise tape C90. 80p inc VAT C10. 35 pinc VAT

Penylan Mill, Oswestry, Salop

SEW analogue panel meters are now available ex-stock (compared with 6-8 week delivery date from competitive manufacturers). And that's not the only advantage to buyers now ITT Instrument Services are sole UK stockists and distributors.

You also enjoy big choice of types, in-depth stocks, smooth streamlined progressing of your order and of course, a friendly personal service.

Broad range of sensitivities and sizes.
■ Low individual cost* with attractive quantity discounts.

Special scales to meet individual customer requirements on quantity orders.

- Precision construction with high quality pivot and jewel movement.

■Choice of moving coil, rectified moving coil and moving iron movements to suit applications.

Edinburgh Way, Harlow, Essex Tel: Harlow (0279) 29522 Telex: 81525

THE ONLY WAY TOBUY.

Analogue Panel Meters. Only SEW and ITT give you all this.

Communications of the first kind.

Every copy of Electionics Weekly is a close encounter with two worlds - the telecommunications and the electronics industry
A quality subscriptıon newspaper, Electronics Weekly is specifically designed to provide you with a full briefing on every factor important to senior inanagement decisions
Competitor activities ... prices ... new producis . rakeovers ...government plans, legal and financial ...export
opportunities ... stock exchange developments . . future trends Electronics Weekly reports in depth on all these areas, giving you a regular insight into where both industries are heading and what your competitors are doing 52% of its readers are in financial or general management - which makes Electronics Weekly not only essential reading for you, but the natural medium for launching new products and selling overseas through our European edition.

For a specimen copy, and advertisement rates contact : Brian Moloney on 01-2618000 or write to him at the address below

ElectronicsWeekly
 communicates the facts

Published by IPC Electrical/Electionic Press Lid Dorset House. Stamiord Street London SE1 9 LU A member of IPC Business Press Lid

It's SUMMER SALE time again!

THYRISTORS

 No THY 1 A/ 50 I Amp 50 volt TOSNo THY $14 / 400$ A Amp 400 volt TO
No THYAA/50 3 Amp 50 volt TO64 No THY 3 A/50 3 Amp. 50 volt t 064
No THY 3 / 2003 Amp. 200 volt TO6 No THY3A/200 3 Amp. 200 volt TO64
No THY3A/400 3 Amp 400 volt TO64 No THY3A/400 3 Amp 400 voll TO64
No. THY 5 / 505 Amp 50 volt TO66 No. THY5A/50 5 Amp 50 volt TO66
No. THY5A/400 5 Amp. 400 volt TO66 No. THY5A/6005 Amp 600 volt TO66

Order No

161685 pieces Assorted Ferrte rods $\quad 40 \mathbf{p}$ 161692 pieces Tuning gangs MW/LW 40p
16170 metres Single strand wire 16171 assorted wire
161723 Micro switches
1617620 Assorted electrolytics Trans
161771 pack Assorted hardware nuts/bolts. etc
1617920 Asserted 40 p
$16180 \quad 15$ Assorted control knobs
1618415 Assorted Fuses $100 \mathrm{~mA}-5$ a
$1618860^{1 / 2 W}$ resistors muxed 1618730 metres stranded wire
assorted colours
S100 120 \%watt resistors Pre-formed 1978 $\begin{array}{ll} \\ S 101 & 120 \\ 1 / 2 \text { watt resistors Pre formed } 1978\end{array}$
 $\begin{array}{ll}18 \mathrm{meg} \\ \mathrm{S} 103 & 220 \mathrm{l} / 2 \mathrm{wat}\end{array}$ Range $100^{\text {E2.00 }}$

| $\mathrm{S} 103220 \mathrm{l} / 2$ watt resistors Range $\begin{array}{c}100 \mathrm{ohms} \\ 10 \mathrm{meg} \\ \mathrm{£2.00}\end{array}$ |
| :---: | :---: |

St04 60 Low ohms $1 / 8$ watt res 10.1000 hms
S 10540 Low ohm $1 / 2$ watt resistors. $22-820$ p
S106 25 Mixed wirewound resistors $\quad 60 \mathrm{p}$ S 10720 Tantalum bead caps. $22-100 \mathrm{mF}$
S 108 High quality electrolitics $\begin{gathered}\text { Our mix } £ 1.00 \\ 10 \mathrm{mF}-500 \mathrm{mF}\end{gathered}$ voltage range $15-50 \mathrm{~V}$
16204 C280 Pak Contans 50 metal for $\mathbf{£ 1 . 0 0}$ 3136 Ribbon cable flat standard 15 .way $\begin{array}{r}\text { £ } 1.00\end{array}$ coloured PVC insulated. stranded tI

SILICON POWER TRANS. NPN S97 8D371 2 amp 12 w 60 Vceo Hfe 40
400 . Case TO92 with heat tab 5 for 60 p S98 2N5293 RCA 36 w 4 mps 75 Vceo Hfe
$\frac{30.120}{5 \text { for £ } 1.00}$
4 for $£ 1.00$

MAMMOT̈ I.C. मАニ
Approx 200 Pieces Assonted fall-out integrated Audio and DTL Many coded devices Linear Audio and D Many coded devices but some

Order No 16223
$£ 1.00$

No 55520 mixed values 400 mW Zene
No 556 diodes $3.10 \mathrm{~V} \quad £ 1.00$
\& diodes $11.33 \mathrm{~V} \quad £ 1.00$
No 55710 mixed values $1 W$ Zener
No. S 58 diodes 3.10 V
No. S58 $\left.\begin{array}{c}10 \text { mixed values } \\ \text { diodes } 11.33 V\end{array}\right)$ Zener

T
A
A
A
A
A
A
A

Typo	Price	Type	Price	Type	Price	Type	Price	Type	Price
AC107	25 p	8 C 177	12 p	8F194	9p	TIP32C	$36 p$	2N1711	$5 p$
AC 126	14p	8C178	12 p	8F195	9p	TIP41A	34 p	2N1893	$28 p$
AC127	$16 p$	8C179	12 p	8F196	-12p	TIP418	35 p	2N2218	$15 p$
AC128	$16 p$	8C182	9p	8F197	-12p	TIP41C	$36 p$	2N2218A	A 18 p
AC 128 K	24p	8C182L	-9p	8F200	-25p	TIP42A	$36 p$	2N2219	15 p
AC 176	$16 p$	8C183	-9p	8F×29	22p	TIP428	$37 p$	2N2219A	A 18 p
AC176K	24 p	8C183L	${ }^{-9 p}$	85×84	$18 p$	TIP42C	38p	2N2221	15p
AC187	$16 p$	8C184	${ }^{9} \mathbf{p}$	8FY50	12 p	TIP2955	65p	2N2221A	A $16 p$
AC 187 K	$26 p$	8C184L	9p.	8FY51	12 p	TIP3055	$42 p$	2N2222	$15 p$
AC 188	16p	8C212	$\cdot 10 p$	BFY 52	$12 p$	ZTX107	6 p	2N2222A	A 16p
AC188k	26p	8C212L	10 p	MPSA05	22p	ZTX108	6 f	2N2369	10p
AD161		8C213	$\cdot 10 p$	MPSA06	220	ZTX109	$\cdot 7 p$	2N2904	$14 p$
162 MP	$80 p$	8C213L	10p	MPSA55	22p	ZT×300	-7p	2 N 2904 A	A $15 p$
AF139	$30 p$	8C214	$\cdot 10 p$	MPSA56	$22 p$	ZT×301	-7p	2N2905	14 p
AF239	$30 p$	8C214L	10p	OC44	12p	2T×302	9p	2N2905A	A15p
8 C 107	. 6 p	8C251	10 p	OC45	12 p	2tx500	8 p	2N2906	$12 p$
8 C 108	6 p	8Cr70	12p	OC71	9p	ZTX501	10p	2N2906A	A14p
$8 C 109$	$6 p$	8CY71	12 p	OC72	12 p	ZTX502	$12 p$	2N2907	12p
8C118	${ }^{10} 0$	BCY72	12p	$0 C 75$	10p	2N696	10 p	2N2907A	A13p
8C147	8 p .	BD115	40p	0C81	14 p	2N697	10p	2N2926G	-8p
8C148	8 p	80131	$35 p$	TIP29A	$35 p$	2N 706	7p	2N2926Y	7p
8C149	8p	80132	37 p	T1P298.	$36 p$	2N706A	8 p	$2 N 3053$	12p
8C154	$\cdot 16 p$.8F115	$17 p$	T1P29C'	$38 p$	2N708	8 p	2N3055	$35 p$
8C157	9p	8F167	19p	TIP30A	$36 p$	2N1302	12 p	$2 N 3702$	$7 p$
8C 1.58	9p	8F173	?0p	T\|P308	$37 p$	2N1303	15 p	2 N3703	$7 p$
BC159	9p	8F180	:5p	TIP30C	38p	2N1304	$15 p$	$2 N 3704$	${ }^{6} \mathrm{p}$
8C169C	10p	8F181	:5p	TIP31A	32p	2N1307	18 p	2 N 3903	-11p
8 C 170	6 p	8F182	$25 p$	TIP318	33p	2N1308	22p	2 N 3904	-11p
$8 \mathrm{BC171}$	6 p	8F183	25 p	TIP31C	34p	2N1309	22p	2N3905	-11p
8C172	$6 p$	8F184	$25 p$	TIP32A	34p	2N1613	$15 p$	2N3906	-11p
8C173	7 p	8F185	$25 p$	TIP328	$35 p$				

DIODES

pe	Price	Type	Pric	Type	Price	ype	Pri	Type	ce
AA119	£ 0.05	8AX16/		8YZ16	¢0.30	OA85	¢0.07	IS44	£0.03
AAZ13	£0.04	OA202	¢0.05	8 YZ17	c0.28	OA90	$¢ 0.06$		
8A100	£0.06			8YZ18	c0. 28	0491	¢0.07	1N5400	£ 0.10
8 8115	£ 0.05	BY 100	C0.15	BYZ19	c0.28	0495	¢0.07	1 N 5401	£0.11
8A144	£0.05	8 Y 127	- $\mathbf{C} 0.10$					1N5402	£ 0.12
84148	¢0.10	8YZ10	£0.32	OA47	¢0.05	IN34	¢0.05	1N5404	£0.13
84173	£0.10	8YZ11	£0.32	OA70	¢0.05	IN60A	¢0.06	N5406	£0.16
84×13/		BYZ12	¢0.32	OA79	¢0.07	\|N914	c0.04	1 N5407	£0.17
OA200	£0.05	8YZ13	£0.30	OAB1	£0.07	IN4148	¢0.04	1N5408	¢0.19

LINEAR I.C.s

T84800 12 pin QIL • $\mathbf{£ 0 . 7 5}$ T8A810 12 pin QIL - $\mathbf{£ 1 . 0 0}$ TBAB20 14 pin QIL E0.80 $\begin{array}{ll}\text { LM381 } & 14 \text { pin OIL } £ 1.35\end{array}$ $\begin{array}{ll}72709 & 14 \mathrm{pin} \text { DIL } \\ \text { UA } \mathbf{£ 0 . 2 8} \\ \text { TO99 } & \mathbf{£ 0 . 2 8}\end{array}$

		OPTOEL
Displays		
No 1510	707 LED Display	70p each
No 1511	747 LED Display	£1.50 each
LEDs		
No S51	Red TIL 209 (5x	125) 50p
No S52	Red FLV1 17 ${ }^{\text {(5x }}$	2) 50p
No 1502	Green 125	18p eac/
No 1505	Green 2	18p eac/
No 1503	Yellow 125	18 p each
Nu 1506	Yellow 2	18 p eact
too S82	Clear 2 fillumina	ating red)
		12p

CABLE CLIPS
 S65-5ing fixing 25 mm round single pin 30p

CMOS ICs

Type Price Type Price Type Price CD4000£0.14 CD4022£0.80 CO4046£0.95 CD4001£0.16 CD4023£0.18 CD4047£0.75 CD4002€0.16 CD4024 ¢0.64 C04049£0.46 CD4006 $£ 0.80$ CD $4025 £ 0.18$ CD $4050 £ 0.46$ | CD4007£0.17 | CD4026 $£ 1.85$ | CD $4054 £ 0.95$ | |
| :--- | :--- | :--- | :--- |
| $C D 4008 £ 0.80$ | $C D 4027 £ 0.48$ | $C D 4055$ | | $\begin{array}{llll}C D 4008 £ 0.80 & C D 4027 £ 0.48 & C D 4055 £ 1.60 \\ C D 4009 £ 0.50 & C D 4028 £ 0.80 & C D\end{array}$ $\begin{array}{llll}C D 4009 £ 0.50 & C D 4028 £ 0.80 & C D 4056 £ 1.15 \\ C D 4010 £ 0.50 & C D 4029 £ 0.95 & C D 4069 & \end{array}$ $\begin{array}{lll}C D 4010 £ 0.50 & C D 4029 £ 0.95 & C D 4069 £ 0.32 \\ C D 40 \uparrow 1 £ 0.18 & C D 4030 £ 0.46 & C D 4070 £ 0.32\end{array}$ $\begin{array}{llll}C D 4011 £ 0.18 & C D 4030 £ 0.46 & C D 4070 £ 0.32 \\ C D 4012 £ 0.17 & C D 4031 \mathbf{1} .80 & C D 4071 £ 0.20\end{array}$ $\begin{array}{llll}\text { CD4012£0.17 } & \text { CD4031£1.80 } & \text { CD4071£0.20 } \\ \text { CD4013 £0.42 } & \text { CD4035£1.40 } & \text { CD4072 £0.20 }\end{array}$ $\begin{array}{llll}C D 4015 £ 0.80 & C D 4035 £ 1.40 & C D 4072 £ 0.20 \\ C D 4015 & C 0.78 & C D 4081 £ 020\end{array}$ CD4016£0.42 CD4040£0.78 CD4082£0.20 CD4017£0.80 CD4041£0.68 CD4510£1,10 $\begin{array}{llll}C D 4018 £ 0.85 & C D 4042 £ 0.68 & \text { CD4511£1.25 } \\ C D 4019 & \mathbf{~} 0.45 & C D 4043 £ 0.78 & C D 4516 £ 110\end{array}$ $\begin{array}{llll}C D 4019 £ 0.45 & C D 4043 £ 0.78 & C D 4516 £ 110 \\ C D 4020 £ 0.95 & C D 4044 £ 0.78 & C D 4518 £ 110\end{array}$ $\begin{array}{lll}C D 4020 £ 0.95 & C D 4044 £ 0.78 & \text { CD4518£110 } \\ C D 4021 £ 0.85 & \text { CD4045£1.15 } & \text { CD4520£1.10 }\end{array}$

ORDERING Please word orders exactiy as printed
P \& P Theasingid 35ρ towards postaqe \& packing unless otherwise stated VAT Add 12% to prices marked. Add 8% to others exceping those

UA711CTO99-7-C0.25 UA703 TO99
(Plastic)
7 741 P 8 Pin DIL 7274114 DIL UA741C TO99 $£ 0.20$

NEW CONSIGNMENT ZN 414 RADIO CHIP 75p*

Displays No 1510

50pench
P.O. RELAYS
$585-2$ off Post Office relays 40p

AUDIO LEADS

Order No
117 AC
cassette recorders and radios 18 Telefunken type
119 socke
or headphones 1243 pin io 3 pin Din plag 125. Aud
plug

126 Audio lead 5 pIn DIN plug to 50° $27^{\text {open ends }} 5$ 27 Audio lead 5 pin DIN plug to 29 Audio lead 5 pin plug to 5 pin DiN 130 plug Mirrorimage 5 metre lead 2 pin DIN plug to pin DIN inline socker

phone plug to stereo

POTENTIOMETERS

Slider 40 mm TRAVEL

Order No		
161916×470 Ohm	LIN Un	40
S24 $6 \times 1 \mathrm{~K}$	LIN Singl	40p
S25 6×5K	LIN Single	40
$161926 \times 10 \mathrm{~K}$	LIN Single	40p
$161936 \times 22 \mathrm{~K}$	LIN Singl	40
$161956 \times 47 \mathrm{~K}$	LOG Single	40p
$161946 \times 47 \mathrm{~K}$	LIN Single	40p
S27 $6 \times 100 \mathrm{~K}$	LIN Single	40p
S28 6×100k	LOG Single	40 p
$5296 \times 500 \mathrm{~K}$	LOG Single	40
Slider 60 mm TRAVEL		
S30 6 625 K	LOG Single	40p
S32 $6 \times 50 \mathrm{~K}$	LOG Singie	40p
S33 6x 250 K	LOG Single	40p
S34 4×5K	LOG Dual	40p
S36 $4 \times 100 \mathrm{~K}$	LOG Dual	40p
5374×13 MEG	LOG Dual	40p
S94 $6 \times 220 \mathrm{~K}$ LIN Single		40
S95 $6 \times 100 \mathrm{~K}$ LOG Single		40
S96 $6 \times 500 \mathrm{~K}$ LIN Single		40
S38 MIXED SLIDER POTS - VARIOUS VALUES AND SIZES - OUR MIX		
ONLY£1.00*		
S39 6 ¢ CHROME SLIDERK	N08S	40

WIREWOUND

90 Wirewound Pots Linear 1 Watt rating:
Mixed useful values $\begin{aligned} & \mathrm{£} 1.00^{\circ}\end{aligned}$

CARBON TYPES

MULTI-TURN PRE-SETS

S40 $3 \times 100 \mathrm{~K}$ LIN ONLY 50p

VOLTAGE REGULATORS	
Positive	
MVR7805 μ A 7805 TO220	. 85
MVR7812 4 A 7812 TO220	¢0.85
MVR7815 4 A 7815 TO 220	¢0.85
MVR 7818μ A 7818 TO220	
MVR 7824μ A 7824 TO220	¢0.85
Negative	
MVR 7905μ A 7905 TO220	£1.10
MVR7912 μ A 7912 TO220	E1.10
MVR7915 4 A 7915 TO220	£1.10
MVR7918 4 A 7918 TO220	¢1.10
MVR7924 μ A 7924 TO220	¢1.10
$\mu \mathrm{A} 723 \mathrm{C}$ TO99	38p
7272314 pin DII	8 p
LM 309 K TO3	${ }_{1} 1.20$
to take $6 \times \mathrm{HP} 7 \mathrm{~s}$	
Order No \$111 4t	

EX. G.P.O. MICRO-
SWITCHES
Order No $\mathrm{S}_{51}{ }^{4}$ for $\mathbf{5 0}_{\mathrm{p}}$

2N3819
FET
$15 p$

2N5458

AUDIO PLUG AND SOCKET PAKS

Order No.

S10 $4 \times$ Metal Std Chassis Switched
$2 \times$ Stereo Jack Sockets with instru
5×5 Pin 180 DIN Chassis socket
S 138×2 Pin DIN Chassis Sockets
S $146 \times$ Single Phono 50p
40 p
50 p

Dept. W. W. 9, P.O. Box 6, Ware, Herts.

NEW STYLING

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

The first ever kit specialy produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years" research by the Ambisonic team. W.W. July, Aug..'77.
The unit is designed to decode not only UHJ but virtually all other quadrophonic systems (Not CD4), including the new BBC HJ 10 input The unit is designed to decode not only UHJ but virtually all other quadrophonic sys selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ \mathbf{4 5 . 0 0}+$ VAT or ready built and tested £61.50 + VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval

As in "Wireless World", designed by Mike Hosking. 240V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet.

Complete exclusive designer approved kit $£ \mathbf{4 6 . 0 0}+$ VAT
or ready built and tested, $£ 54.00+$ VAT

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Trademark of Dolby Laboratories Inc.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter.
- provision for decoding Dolby f.m. radio transmissions (as in USA).
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines.

Typical performance
 Noise reduction better than 9 dB weighted.
 Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)
 Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 012%
 Signal-to-noise ratıo $75 \mathrm{~dB}(2 \mathrm{OHz}$ to 20 kHz , sıgnal at Dolby level) at Monitor output
 Dynamic Range $>90 \mathrm{db}$
 30 mV sensitivity

Complete Kit
PRICE: $£ 39.90+$ VAT
Price $£ 54.00+V A T$
Price £2.20+VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby (MR) PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm})$ with gold plated contacts are availabie with all components
Single channel board with selected fet
Gold Plated edge connector
Selected FETs $\mathbf{6 0 p}$ each + VAT, 100p + VAT for two, $\mathbf{£ 1 . 9 0 + \text { VAT for four }}$
Please addVAT@ $12 \frac{1}{2} \%$ unless marked thus., when 8% applies (or current rates)
We guarantee full after-sales tecnnical and servicing facilties on all our kits. have you checked that these services are avalable from otner suppiers?

Price $£ 2.50+$ VAT
Price $£ 1.50+$ VAT

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button

 FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape in/Out facility (for noise reduction unit etc.), THD less than 0.1% at 20W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic if INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PRICE: £58.95+VAT

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

quieting @ 0.75 uV . Image rejection -70 dB . IF rejection - 85dB. THD typically 0.4%.

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders. With ICPL Decoder £36.67 + VAT With Portus-Haywood Decoder
Compare this spec. with tuners costing twice the price.
$£ 39.20$ + VAT

Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator
PRICE: Stereo £31.95 + VAT

S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on /off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: $£ 3 \mathbf{3 . 9 5}+$ VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

[^6]

WW-070 FOR FURTHER DETAILS

TELEPHONE TV IS HERE

THE ROBOT " 530 " PLTV TRANSCEIVER

ROBOT TELEPHONE LINE TELEVISION (PLTV) WILL SEND AND RECEIVE STILL TV PICTURES OVER ANY VOICE GRADE COMMUNICATIONS CHANNEL SUCH AS TELEPHONE OR RADIO. 2.0 KHZ is ample bandwidth and the picture is updated every eight seconds. This totally new concept is already proving invaluable for security, signature verification. surveillance. medical and other uses and is being used by Police: Military. Security firms. Meteorologists, Banks Oit Gas and Electric companies, etc . etc
The system is remarkably inexpensive and undoubtedly has many uses not as yet explored or envisaged
explored or envisaged. If you think PLTV could be
we well send you full details
we well send you full details.
Dealership opportunities exist in most U.K. areas and we will be pleased to hear Dealership opportunities exist in most U.K. areas and we will be pleased
from you if you have the facilities and ability to explort this new concept of unlimited potential.

SOLE UK CONCESSIONAIRES
AERO \& GENERAL SUPPLIES (DEPT. PLTV)

NANAIMO HOUSE
 32 Rufford Avenue

Bramcote
NOTTINGHAM NG9 3JH
(0602) 397588

DRAKE SSR-1
GENERAL COVERAGE RECEIVER $0.5-30 \mathrm{MHZ} 30$ BANDS 10KHZ READOUT
$£ 149.85$ асctass on anaca
AS WELL AS DRAKE EQUIPMENT WE ARE THE DIRECT IMPORTERS OF HAL RTTY AND MICROPROCESSORS. ATLAS NYE MORSE KEYS PRESTELVHF/UHF PROFESSIONAL FIELD STRENGTH METERS HAM RADIO CIR ASTRO 200 HY.GAIN CDR ROTORS. HUSTLER OMEGA.T SYSTEMS MFJ FILTERS AND SPEECH PROCESSORS SUPEREX WE ALSO STOCK SHURE MICROPHONES YAESU MICROWAVE MODULES SOLID STATE MODULES. ICOM. CDPAL CLOCKS G WHIPS BANTEX MOSLEY. DAIWA ASAHI JAYBEAM DECCA AND THE USUAL ACCESSORIES -COAX CONNECTORS INSULATORS VALVES EtC We are situated fust around the corner from West Hampstead Underground Station (Bakerioo line) A few minutes walk away is West Hampstead Milland Re Bus ites and West End Lane on the Broad Street Line We are on the following Busn , the 28, 59159 Hours of opening are 9.5 Monday to Friday
Saturday we are open 9.1230 onlv World wide exports
DRAKE \#SALES \#SERVICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Giro Account No. 588 7151. Telephone: 01-624 7174. Cables: Radio Shack

Semiconductor
 SUMMER 1978 CATALOGUE (CROYDON) LIMITED

Orchard Works, Church Lane, Wallington. Surrey, SM6 7NF Telephone: 01-647 1006 (5 LINES) TELEX 946650

 (formerly synthesizer designer for EMS Lid) and teatured as a Constructional article in Electronics Today international, the RANEs up or down with portamento pitch bending a VCO with shape modulation. a versatule VCF with both low and high pass outputs and a separate dynamic sweep control a noise generator and an ADSR envelope shaper There is also a slow oscillator and a new putch detector amongst its many features

Kit includes fully finished metalwork, solid teak cabinet. filter sweep pedal and really is complete - right down to the last nu and bolt virtually everything is on one circuit board and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering! When finished you wilt possess a synthesizer comparable in performance and quality with ready built units selling for between $£ 500$ and $\subseteq 700$

INTRODUCTORY OFFER £172!

Oue to the fantastic success of the launching of this superb new k we are able to continue the Special Introductory Offer of ؟172 for complete ki

INTERNATIONAL POWFRSLAVE 2OD + 200 watt AMPIIFIER

As featured in Electronics Today International

 400W rms continuous - 800W peak! 0.03% THD at FULL power! PLUS all the following features too!* Each channel totally independent with its own stabilised power supply diven by custom designed TOROIDAL transformers'
* Inhertent reliability - monster heat sinks for cool running at the hottest venues - electronic open and shor circuit protection
* Ultra low feedback (an incredible low 14 dB overall') super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$) 200 W ms continuous to 4 ohm from EACH channel. input sensitivity $0775 \mathrm{~V}(\mathrm{OdB})$
* Professional quality components. sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work too.
* Easy to build - plenty of working space with ready access to all components minimal wiring anstruction sutable for both experienced constructors and newcomers to electronics
* Vaiue for money - quality and performance comparable with ready-built amplifiers costing ove ©6001

2. Set of capacitors. metal oxide resislors
3. Sel ol semicanduclors tor power and with mounting hardware. cooting labs

Price
$\mathbf{£ 4 . 2 0}$
Pars 1 $£ 27.60$
5. Toroidal iranstormer. Primary 0-117V-234V. Secondaries 42-0.42V. 0-15V 0.15y Etectro static screen ...50 bat senicoductors resistors capacitors atc bracket. semiconduclors, resistors, capacitors. elc
. Sel ol all paris or buflerfovardrive unit including fibre glass prinled circuil board.
7B. Sel of parts for peak power metar including prolessional quiality meler. fibre glass printed circuil board. companents. controls - required tor PSI 4002 onit 88.50
8. Set of all miscellaneous parts including sockets. illum, mains swilches. luse holders. fuses. cul-outs. cable. elc
9. Cabinet. including chassis. anodised silver an black panels. lixing parts. etc. Please slate whelher Slave or Studio model required
D. Handbook $£ 0.50$ or free on request when ordering any ot aboue packs.

2 each of packs 1.7 (A or B). 1 each 8.9 and 10 are required for complate $200+200 \mathrm{~W}$
Toul coss of individualy
$\begin{array}{ll}\text { PS1 } 4001 & £ 208.20 \\ \text { PS1 } 4002 & £ 217.60\end{array}$

SPECIAL PRICES FOR COMPLETE KITS!
PS1 4001 - £187.50
PS1 4002 - £ 196.90

DE LUXE EASYTO BUILD LINSLEY-HOOD 75W AMPLIFIER

amp $£ 1.1$ amp ... capacitors. pre-sels tor power
3. Set of semiconduclors for power amp Pair of 2 drilled. timned heal sinks Fibregtass printed-circuit board tor re-amp Sel of low noise resislors. capacilors, pre-sels for pre amp of low noise. high gain semiconductors for pre-amp $£ 2.40$ Set of po switch) Set of 4 pun $£ 3.50$ switch $\mathbf{£ 5 . 4 0}$ Toroidal transiormer complete with magnetio screan/ housing primary: 0 117-234 V: secon
daries: $33-0.33$ V. 25.3 .25 y
maximent
Fack
11. Fil

cacitors seco.... 80.85 | Set of resistors. capacitors. secomdary tuses |
| :--- |
| semicondectiors for power supply | Set of miscellaneous parts including oim skts mains input skt.. fuse holder. interconnecting cable coniral knobs $£ 6.2$ Set ol metalwork paris including silk scree primed lascia panel and all brackels. lixing paris etc.

5. Handbook

- 80.20

Hick …................................ 3. $1^{\prime \prime}$ " rak Venter cabine 18. x $12.7^{\prime \prime}$
each of packs 1.7 . 1 each of packs $8-16$ inclusive ars required tor complete slereo amplitier. Tatal cos of individually purthased packs $£ 92.80$ PACK PRICES FOR STANDARD KIT
AVAILABLE AS SEPARATE PACKS
PRICES SIN OURRECATAOGUE
SPECIAL PRICE FOR COMPLETE KIT $£ \mathbf{9 9 . 3 0}$

Over three limes the price tilter varable stope scratch filter variabie transition trequency tone controts tape montoring tacitules and individual
adjustable inputs This model is based on 5 circuit boards which not having the controls mounted on them can adjustable inputs this model is based on 5 circuit boards which not having the controls mounted
desired be effectiveir used separately if high pefformance audio systems not tased on our mealwork

 STANUARD LINSLEY-HOOD 75 W AMPLIFIER

Designed in response to demand for a tuner to complement the world．wide acclamed Linsley－Hood 75W Amplitier，this kit provides the perfect match．The Wireless World （Skingley and Thompson）published original circuit has been developed further for inclusion into this outstanding slimine unit and features a pre－aligned front end module． excellent a m relection and lemperature compensated varicap luning．which may be by a frequency meth and slidin Push－bution pre－selection Frequencies are indicated pre－set The PLL stereo decoder incorporates active fllers for each channel selecior power is supplied via a toroidal transtormer and integrated regutator for lone arm slability metal oxide resistors are used throughout gion ter
available as separate packs－prices in our free catalogue
LINSLEY－HOOD CASSETTE DECK

SPECIAL PRICE FOR COMPLETE KIT
$£ 79.60$

WIRELESS WORLD FM TUNER
 special price for complete kit £ $\mathbf{7 0 . 2 0}$

1．Stetso PCB｜accommodates 2 rep．amps． 2 meter amps．bias／erase osc．relay］		
2．Sterse sel of capacitors．M．D．se sistors． tiometers for above		
	Stereo set ol semiconductors for above	
	Miniature relay with socket	2.90
5．PCB．all components for solenoid．speed con		
	Goldring－Lenco mechanism as specified	£18．50
	Function switch．knobs	1.90
	Dual VU meter with illuminating lamp	．95
	Toroidat transtormar	

Pubished in Wireless World（May．June．August 1976 by Mr Linsley－Hood．this design．although straightforward and relatively low cost nevertheless provides a very high standard of performance To permit circuit optimization separate record and replay amplifiers are used the latter using a discrete component front－end designed such that the noise level is below that microphone use The mechanism used is the Goldring－Lenco CRV．a unit distinguished in its robustness and ease of operation Speed control and using an additional pre－amplifier for implemented by electronic circuitry This unit which is powered by a unit distinguished in its robustness and ease of operation Speed control and automatic cassette ejection are both and the Linsley－Hood 75 Watt Amplifier Circuit changes as published in February．1978，follow－up article are included in the kit AT NO EXTRA COSTI A higher performance head （Matsushita WY 436 AZ head as recommended in the follow－up article）is offered as an optional extra but this will be automaticaliy supplied FREE OF CHARGE with all orders for complete

T20＋20 and T30＋30 20W，30W AMPLIFIERS

20＋20 detivers 20W ims per channet of true H1 F_{1} at exceptionalify low cost The ensy to buitd design is based
modifications were suggestited and these have been incorporated into the $730+30$ ，These include RF

SPECIAL PRICE FOR COMPLETE KIT $£ 47.70$
available as separate packs－prices in our free catalogue
Following the success of our Wireless World FM Tuner Kit this cost reduced modet was designed to complement the $\mathbf{T} 20+\mathbf{2 0}$ and $\mathbf{T} \mathbf{3 0 + 3 0}$ amplifiers and the cabinet size．front

SPECIAL PRICES FOR COMPLETE KITS t20＋20 Kit price $£ 33.10$
t30＋30 кit price $£ 38.40$ available as separate packs－prices in our free catalogue

POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIt $£ \mathbf{3 5 . 9 0}$
his is a simple．low cost design which can be constructed easily without special alignment equipment but which still gives a first－class output suitable for feeding any of our very popular decoding and controls include switchable afc，switchable muting and push－button channel selection（adjustable by controls on the front panel）．This unit matches well with the $\mathbf{T} 20+20$ and $\mathbf{T 3 0}+\mathbf{3 0}$ amplifiers

Wireleas Word Dosigns：Full kits are not avalabte tor the propects betow bur PCBs and component sets are stocked Furthet
details of these dnd other packs are in our free Caralogue

30W Bailay Amplifier BAIL P_{x} 1
 BAIL Pk 2 Resisiors Ca

Linsloy－Hood Low Distortion Oacillato

$\begin{array}{ll}\text { On } P_{k} & \text { Fibreglass PCB } \\ \text { DO Pk }\end{array}$
LDO Pk 2 Fibreglass PCB

$\varepsilon 1.00$ 62.35

60VS Pk 1 F Glass PC

Stuare Tape Recorder

$€ 0.85$
$€ 2.20$

$\ell 2.20$
$£ 8.10$
$£ 8.80$

E．F．Tavlor Pro－Amplifier EFFTP Pk Z MO Res caps istereo
LFTP Pk 3 Semiconductors istereo）
$£ 1.45$
$£ 3.20$

$\$ 4.20$

SQ QUADRAPHONIC DECODERS

These state－of－the－atitarcuits described by CBS are oftered as k its of superior qualily with
close tolerance capacitors metal oxide resistors and Fibreglass PCBs designed for edge M1 Bask insertion Furher information on these kits is given in our FREE CATALOGUE 11 fuil logic decoder E5．90
E 17.20 L2A Full logit decoder with varable blend lor with tarbon film res．stors
SOM 1.30 Decoder
$\mathrm{T} 30+30$ amplifer order International Money Order or cheque drawn on an account in the U K Alternatively for orders over 5500 we will accept Irrevocable Letter of Credit payable at sight in London

Value Added Tax not included in prices

UK Carriage FREE

SERVICING FACILITIES：Avalable for all $\begin{gathered}\text {＊complete kits }\end{gathered}$ PRICE STABILITY：Order with confidencer trrespective of ari；${ }^{\text {Price }}$
changes we will honour all prices in this advertisement uritil Sept 30 th $9 / 8$ if this month s adverusement is mentioned with your order Errois and VAT rate changes excluded．
U．K．ORDERS：Subject to $12 \frac{1}{2} \%$ surcharge for VAT（1 e add $1 / 8$ to the price No charge is made for carriage of current rate if charged
SECURICOR DELIVERY：For this optional service（ U K mainland only） add ‘2 25 （VAT inclusive）per kit
SALES COUNTER：If you prefer to collect your kit from the factory call at Sales Counter（at rear of factory）Open 9 am－430 p m Monday
Thursday

QUALITY：All components are brand new first grade full specification guaranteed devices all resistors （except where stated as metal oxide）are low noise carbon film types All printed circuit boards are fibreglass drled rol inned and supplied with circur diagrams and construction layouts
FOR FURTHER INFORMATION PLEASE WRITE OR
TELEPHONE FOR OUR FREE CATALOGUE
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN
ANDOVER （0264） 64455

ADVANCE BOARD No. 70065. A modern fibre glass circuit board made for computer
Major items -8 transistors type BC 107. 8 transistors type BC 212 . 9 miniature diodes. 4 preset varable pots. A 10 volt capacitors. 1 I UF 63 volt capacitor, 50 assorted 10 volt capacitors. 1 UF 63 volt capacitor, 50 assorted components can be removed with working length leads £1.00.
Telephone Answering Machine. Used, but we understand re in good working order, however, we can supply only for They contain 4 4 pole tape motor, twin capstans with heavy fivw to take record-playback heads. erase head, lap operated brake, 8 standard reels, tape guides and solenoid operated brake, counter, elliptical speaker. 2 solenoids, 9 pin plug and socket, 36 pin plug and socket 5 Circuit boards contaning varied assormment of transistors in small parts. All the above mentioned components are mounted in 4 main chassis and there is a sub chassis with 5 miniature 4 pole relays. ferrite ransistors, over 300 various resistors, capacitors. diodes. tc. full wave recufier panel, 4 way push down wire etc, full wave rectifer pane, 4 way push down wire push-in neon bulbs. lid switch, 4 electrolytic capacitors. 2 power output transistors. The unit is nicely cased size about $27^{\prime \prime} \times 10^{\prime \prime} 6^{\prime \prime}$ and should be suitable for conversion to open eet tape recorder, background music machine, echo chamber etc. etc. Price $£ 12.25$.
High Vottage Mains Transfonmor. Normal mans primary secondary by our measuring equrpment is 8 KV approx at 5 ma We are offering theseft a bargam price of £4.75. Ou
Sorry, sold out of transformer ref-Ne TM 37 but we have just received another transformer which may fill your need This is a 100 w transformer 80 volt gecondary. tapped at 20 . 40 and 60 volts So this could be used gos a 80 v . 15 amp . 60 v at $2 \mathrm{amp}, 40$ volt 3 amp , a
Smith's Blower. Snail shape-with exterior motor, oblong outlet size $41 / 2 \times 13 / 4$ approx... paddle type air roto coupled to marns induction moior, with ant $1 /{ }^{1 / 2}{ }^{\prime \prime}$ wide $41 / 2^{\prime \prime}$ diameter. $\mathbf{£ 5 . 8 0}$
Torrin Blower. Snaıl type similar but smaller to above aperture stre $21 / 2^{\prime \prime} \times 13 / 4^{\prime \prime}$ approx. Normal mains induction
 Price £5.56.
High Voltage Capacitore. 80 nf 5 KV working ex equip-
ment but with useable length leads Normaly a very expensive capacitor, our pfice $25 p+$-2peact
Flex Bargain. 3 Core (standard colour coding). black oute puc cover, all made from heat resistant plastic Suitable for connecting direct to heating appliances but being tougher than usual it is ideal also for extension leads espectally outdoor ones 5 mm conduct
100 met coil. price $£ 10.95$.
$1 / 3$ rev per minute mains driven motor, 2 watts also suitable only for timers or other lightweight operations, price 2.70

Moving Coil Ponel Meter. 75 mA fsd $21 / 2^{\prime \prime}$ diameter this is an ex government tiem and the scale is headed Radiation
A Clock Swinch, 12 hour type as fitted to cookers This comprises a normal 12 hour continuously running clock
coupled to 25 amp swiches with levers ior setting time plus a further minute winder bell switchable up to 60 minutes. Less knobs which can be quite easily made from plastic rod Size approx. $71^{\prime \prime}$ wide, $3^{1 / 4^{\prime \prime}}$ high, $3^{\prime \prime}$ deep. limited quantity £2.12.
Mains Relay single screw fixing open type with single 10 amp changeover contact ex equipment with our usual guarantee price $60 p+4 p, 10$ for $£ 5+40 \mathrm{p}$.
Adjustable Air Thermostat with 15 amp contacts. spindle protrudes enough for normal type knob, can be easily assessable. screw enables these to be set for normal air
temperatures $30-80$ forlower or higher $50 p+4 p$ each. 10 for $£ 4.50+36 p$.
Car Spenkers. Two bargains this month both ellipucal, both 4 ohm size. Price $£ 1.50+19 p$ post 60 p
Immersion Heoter Thermostats, made by Satchwell $7^{\prime \prime}$, heaters $£ 2.10$
Themostar Pocket, to fit the above thermostat into a tank without heater then you need a pocket to hold the thermostat 18" long threaded complete with nut and washer, price
E1.62. Also available $8^{\prime \prime}$ long for $7^{\prime \prime}$ thermostat, same price. Hot Wire Vacuum Relay Switch. 4 pin plug-in type This has a heater coll wound around a bi-metallic strip causes switch on after a time which is adjustable. The energising voltage varies between $4 v \& 1$
Sofiry Stat, $60-90 \mathrm{C}$ remote phial_yperpittry-tenath
approx. with control knob marked 20 to 80 C . price $£ 2.16$. Transistor holdeatar TO b OC 26, etc.) allows transistor to be replaced quíckly, also threaded for holding screws AC capectior $1.25 \mu \mathrm{~F}$ for 40 volts rms. Aluminium can with tag connections ex
tee. $30 p+2 p$.
MINI-MUITH-TESTER

UNISELECTORS

DELAY SWITCH
Mains operated - delay can be
accurately set with pointers knoby for accurately set with pointers knobs to suitable to switch 10 amps - second contact opens few minutes after is
contact 95 . contact 95p.

HUMIDITY SWITCH

INDUCTION MOTORS

EXTRACTOR
FAN

Chon
6.

SMITHS CENTRAL HEATING CONTROLLER

 A handsome lookng unil with 24 hour movement and ine swiches and
other parts necessary to select the dessied proggramme ol heating Sulited compiete with wirng diag iam Orignally sold we believe at over $£ 15$
ofter these whule siocks ast at $£ 7.50$ each including VAT $\&$ Postage

TERMS

J. BULL (ELECTRICAL) LTD

 (Dept. WW)103 TAMWORTH ROAD CROYDON CR 9 1SG

IT'S FREE!

Our monthly Advance adverritiong Bargnin: Lien gives detaile of

 trom previous liat
Main* operated Siren. Don t let intruders get away with your possessions - they will never stay in a house when one of these sirens is going Quite small but very alarming £13.50.
Lever Switch as fitted to modern telephone switchboards 8 pole changeover contacts made by Pye/TMC biassed to return when
price $£ 1.08$.
Pulaing Switch. Motorized unit which gives pulses every 30 seconds. length of pulse can be adjusted up to 30 seconds and the pulse can be up to 20 amps at normal matns voltage Made up by famous Cramer Company of America, the drive motor of this device is $115 v 50 \mathrm{hz}$ but we supply complete with series voltage dropping device to make it suitable for our mains This is in a cylindrical plastic case overall size, with a knob on the front for adjusting the pulse length 20 amp switch "inside" is a changeover switch so this device could also be used as a time sharing switch, when one circuit is on the other circuit would be off for a length of time determined switch control settıng. price $£ 4.82$
16 Line Connecting Box. This is 16 way twin grub screw type connecting strip. mounted in a standard 2 gang MK white surface box with cover made for Satchwell so obviously a good produc: The cables, are brought in through breakaways in the plastic box 16 connection points are all
numbered for easy identification, price $£ 1.92$. Air Thermostat with remote setting dial. This is a Satchwell thermostat using a sensor connected to the switch by a $26^{\prime \prime}$ length of capillary The control setting adjustable temperature setting £2.46.
Twin 13 amp Rocker Switches (DOT), price 49p the par Presoure Gauge, standard arline thread. Reads $0_{-3} 30$ lbs per Sa inch Price 81 p .

Bargain for c Iिrge $£ 14.50$.

4 Way Terminar Biocks wing ubserew the pVC covered 10 for 65 p.
Spares for Dimplex Heaters. We have just taken delivery of a large quantity of various spare parts for Dimplex heaters please let us have your enquiries
Heavy Duty Casters. Four of these would carry a ton set o 4 £2.65.
Super Power 2N3055. RCA 52360 , in our trials this does Super Power 2 N .5055 . RCA 230

200 watt Transformer, $40 \mathrm{v}-0.40 \mathrm{v}$, normal type construc 2 High vokoge Bectifier. 5 kv working at 5 mA these are with the EHI transformer if joined in series, price 33p.
Spenker Cabinets. Simulated teak finish. nice handy size. modern black sponge type front $£ 3.75$.
In Car Speaker Cabiner. White with black edge very modern loung plasice 2.25 speake
AC Capacitore for use on fluorescent lighting for power factor correction or as a voltage dropping device, these are

 ags or wire ends, following values $125 \mu \mathrm{~F} 38 \mathrm{p}$, $\mathrm{F} 5 \mu \mathrm{~F} 49 \mathrm{p}$.
$(3 \mu \mathrm{~F} 59 \mathrm{p}, 4 \mu \mathrm{~F} 70 \mathrm{p}, 7 \mu \mathrm{~F} 92 \mathrm{p}, 8 \mu \mathrm{~F} \mathrm{C1.07}, 15 \mu \mathrm{~F} 1.35$. Nomentcar- isplay Tubes (Nixie tubes). Mullard ref ZM 1175 , this is a sideways viewing device which displays a
figures from 0.9 has wire leadouts. now in bon 92 p each Waterproof Diecast Box, very sultable for protecting a swich or a thermostat or a similar device wh
Multiway Switches, GEC silver fimished metal box with cable knockouts each complete with switch mounting grid Single switch 50 p, twin witch 60 p, 4 swith $\mathbf{7 5 p}, 6$ switch £1, 12 switch $£ 1.50$.
Modern toggle type miniature switches by GEC to fit above boxes, mains rating 5 amp on/off $35 \mathrm{p}, 15 \mathrm{amp}$ on / off $45 p, 5$ amp 2 way 30 p, 2 way and off 50 p, intermediate (polarity changeover $\mathbf{5 0}$ p). bell push $\mathbf{3 5 p}$ (ava،lable in several colours Please add 8% VAT to total cost of boxes and witches
Most of the above switches can be supplied wrthout toggles but operated ty a special key, add 10 p per switch and 25 p per key
Can Any Reader help! We have recently acquired some very nice American made motors 50 cycle for 50 hz 220 V working obviously made for the British Market but Ihey have 5 lead out wires and we have not been able to find out the correct method of working it is possible that they need a capacitor The colours of the leadout wire are red. White, yellow and blue The maker's name is Robbins and Myers
and the model number of the motor is KS.PP30.601 rated at and the model number of the motor is KS.PP30.601 rated at
$1 / 12 \mathrm{hp}$ single phase 1425 rpm Price of the motor $£ 5.50$ +44 p . Post and packing E2.
Boiler Stat. Satchwell remote dial type with knob calibrated 20.90 C Price £2.42

miniature relay IVV dC operated with two sets ot changeover
contacts The unique tealure of this retay is its heavy lead out wires. These provid
adequate support and theretore the relay noeds no hixing. .0n the other tand there es a
nixh
fing bon trough one stie so if you wis
you can fix the relay and use its very sirang you can fix the relay and use ins very sirang
tead outs ot secure cricul components and
expensive retay We are oftering them at onty expensive
g7p eact
T.T. 74 I.C.s By TEXAS, NATIONAL, I.T.T. FAIRCHILD ETC.

74151	$65 p$
77153	$65 p$
74154	$120 p$
77155	$70 p$
74156	$70 p$
77157	$70 p$
74160	90
74161	90
74162	90
7163	90
74164	125
74165	125
74166	
74167	125
714170	325
74173	150
74174	100
74175	75
7176	100
74177	100
74178	140

2112.4256×4 BIT 450
NANO SEC STATICRAM
$\mathbf{£ 2 . 9 5}$ each $\mathbf{4}$ £11.60.
$8 / £ 22.80$. CHARACTER
2513 2513 CHARACTER
GENERATOR UPEER CASE £ 7.00 .
2513 CHARACTER
GENERATOR LOWER CASE £7.00. MM5204AQ PROM 4096 BIT READ ONLY MEMORY
$\mathbf{£ 8 . 0 0}$. B2128 BIT IN/OUT PORT £3.00. 8831 TRI-STATE QUAD LINE DRIVER £2.00. TRANSCIEVER (TRUE) £2.00.
TRI.STATE TING) $£ 2.00$.
AY5-1013 UAR/T £6.00 TAGE REGULATOR E1.00
T. POWELL

306 ST. PAUL'S ROAD
HIGHBURY CORNER, LONDON N. 1
Telephone 01-2261489
Barclay / Access Credit Cards accepted

```
240v Plug-in Relays 3 pole c o 10 amp contacts 85p P P 15p.
COAXIAL CRYSTAL DETECTORS. (Marconi-Saunders). 200 MHZ-12 GHZ
FIBREGLASS COPPER-CLAD BOARD
9\times41/2\times1/16in 40p P&P 10%
OFF-CUT PACKS. 150 sq ins E1 P.P 25p
Double sided 1/2p per sq
MAGNETIC COUNTERS
3 Digir Reset (240v A.V) E 1 75 P&P 25p
6 Oigit Reset (24v. D.C.) E4 P&P 25p
6 Digit Non-Reset (240v A C) £1 50 P&, P 25p
MULTICORE CABLES
4 CORE RIBBON (RAINBOW) CABLE }
8 CORE RIBBON (RAINBOW)
8 CORE RIBBON (RAINBOW) CABLE 8 x 14/76
OD 7mm 10m-£2 50m-£8 50 100m-£16 P&& 2p per metre
12 CORE SCREENEO CABLE 12\times14/76 with outer screen -PV.C, covered O D
9mm
16 PAIR RIBBON CABLE; }6\times2\mathrm{ COTe P V C
Oouble sheathed torming 2in wide sirip
EH.r. MODLE
E.H.Y. MODULES (Resin encapsulated in metal box)
Input 240v50 hz Trpe 10/P 8kv@ 15 watts £B 75 P&P E
STABILISED POWER SUPPLY (APT) 5-14 volts @ 6-amp Pre-Set (with manual)
P.C.EDGE CONNECTORS
32 way (1 pitch) finished ends 40p P&P 10p
64 way (1 Mitch) cuttable 65p P&&P 15p
64 way gold piated pins 90p P&P 15p
Moungmars for 56/64 way 15p per par
'DRYFIT' RE-CHARGABLE BATTERIES (Lead/AcId)
Ex Equip Good condition testec
6V@6AH €350 P&P 75p 
"BLEEPTONE" AUDIO ALARMS (Ex Equip) 12v DC 75p P P 10p
EMERGENCY LIGHTING UNITS. Automatically Swithes to stand by battery power
botterIes). PP P E1 50
VARLEY LEAD-ACID BATTERIES. 6v 36 AH non-Spil &6 ea PP &1.50
```


J. B. PATTRICK

191/193 London Road

Romford, Essex RM7 9D」
Romford 44473

TRANSFORMERS

SCREENED - SAME-DAY DESPATCH
MAINS ISOLATING VAT 8\% 12 and/or 24-VOLT
PRI $120 / 240$ V SEC 120/240 Centre Tapped
Ref. VA (Watrs)

$07 \star \quad 20$ | Ref |
| :--- |
| $07 \star$ |
| 149 |
| 150 |
| 151 |
| 152 |
| 153 |
| 154 |
| 155 |
| 156 |
| 157 |
| 158 |
| 159 |
| $\star 1$ |

50 VOLTRANGE
Pri 220.240 V Sec. $0.20-25 \cdot 33-40$-50V
Voltages available $5.7 \quad 8,10.13 .15$.

Sec 0-1 2-15-20-24-30V Volzages available $3,4,5,6,8,9,10,12$. 15 . 18 20. 24.30 V or $12 \mathrm{~V} \cdot \mathrm{O}-12 \mathrm{~V}$ and 15 V .0 .15 V			
Ref.	Amps	£	P\&P
112	0.5	2.64	78
79	10	3.57	96
3	2.0	5.27	96
20	30	6.20	1.14
21	4.0	7.44	1.14
51	5.0	8.37	1.32
117	6.0	9.92	1.45
88	8.0	11.73	1.64
89	100	13.33	184

Ref.	Amps	£
102	0.5	3.41
103	1.0	4.57
104	2.0	6.98
105	3.0	8.45
106	40	10.70
107	6.0	14.62
118	8.0	17.05
119	100	21.70

P8 \mathbf{P}
.78
96
114
1.32
1.50
1.64
$2.0 B$
$O A$

Ref	Amps		£	P\& P
	12v	24v		
111	0.5	0.25	2.20	45
213	1.0	0.5	2.64	78
71	2		3.51	78
18	4	2	4.03	96
70	6	3	5.35	96
108	8	4	6.98	114
72	10	5	7.67	1.14
116	12	6	8.99	132
17	16	8	10.39	1.32
115	20	10	13.18	2.08
187	30	15	17.05	2.08
226	60	30	26.82	OA

30 VOLT RANGE Sec O-12-15-20-24-30V

	Ref.	AUTO TRANSFORMERS (Watts) TAPS P\&F				
,	113	15	0. 11	5-210-240V	2.48	71
V	64	75	0-11	$5-210-240 \mathrm{~V}$	3.95	96
	4	150	0-11	5-200-220-240V	5.35	96
P	66	300			7.75	1.14
6	67	500			10.99	1.64
6	84	1000			18.76	2.08
4	93	1500			23.28	OA
2	95	2000			34.82	OA
	73	3000		,	48.00	OA

SCREENED MINIATURES Primary 240V				
Ref.	mA	Volt	\pm	P8P P
238	200	3-0.3	1.99	55
212	1A. 1 A	0.6.0.6	2.85	78
13	100	9-0-9	2.14	38
235	330. 330	0-9, 0-9	1.99	38
207	500, 500	0-8-9.9.8-9	2.59	
208	1A. 1 A	0-8-9.9.8.9	3.53	8
236	200. 200	0-15. 0-15	1.99	38
239	50MA	12-0-12	1.99	38
214	300, 300	0-20. 2-20	2.56	78
221	700 (DC)	. 20 12-0-12.20	3.41	78
206	1A. 1A	0.15-20.0-15-20	4.63	
203	500.500	0-15-27 0-15-27	3.99	
204	1A. $1 A^{\circ}$	0-15-27 0-15-27	5.39	96
S112	500	0-12-15-20-24-30	2.64	

CASED AUTO. TRANSFORMERS

240 V cable inpu Flat pin outlets		PEP	Ref.
15 VA	¢4.96	90	T136
75 VA	E6. 03	1.14	64W
150 Va	¢8.48	114	4 W
250 VA	E9.92	145	65 W
soova	E15.73	164	67 w
750VA	E18.55	176	83W
1000 VA	¢22.68	230	84W
15cova	¢26.02	OA	936
2000 VA	$¢ 37.65$	OA	95W
2 inch PANEL METERS 4 inct			
$20.50 \mu \mathrm{~A}$	¢5.50	$40-50 \mu$ A	¢6.70
$20 \cdot 100 \mu \mathrm{~A}$	¢5.50	4 0-100 A A	¢6.70
$20-500 \mu \mathrm{~A}$	¢5.50	$40-500 \mu \mathrm{~A}$	£6.70
20.1 mA	$¢ 5.50$	4 0-1mA	¢8.40
250 V	¢5.50	0.50 V	¢8.40
VU indicator Panel 48-45 250μ a FSD VU Indicator Edge 54×14			$£ 2.60$ $£ 2.60$

\qquad Carriage 65 p VAT 8%

NEW RANGE TRANSFORMERS. Sec 4536 -0. 36. 45 to give $36-0-36.45-0-45 \mathrm{~V} .72 \mathrm{~V}$ or 90 V			
2A ¢9.89	PP £1.38	5A £16.74	PP E2.15
3A £11.47	PP £1 48	6A E20.77	PP ¢2.30
4A £13.90	PP £1.84		
PLUG-IN - SAVE BATTERIE			
3300. 675.9 v at 300ma piugs direct in			
13 A socket (fused) $\mathbf{£ 3 . 3 0}$			
A122 3V. 45 V .6 V .7 .5 V 9 V .12 V .500 mA £ 9.21 P\&P 55p VAT 8\%			
ANTEX SOLDERING IRONS 15W£3.75. $25 \mathrm{~W} £ 3.95$			
Stand for above $£ 1.40$. P\&P 46 p VAT 8%			
P! EASE ADD VAT AFTER P\&P SEMICONDUCTOR RESISTOR CAPACITOR SEMI CONDUC. tor audio accessories or babgain paks save pos. tage callers welcome (mon.Fri) or Send 15p Stamp FORLISTS PRICES CORRECTAT $15 \quad 578$			

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 674

 \qquad

 \qquad

Terms of business. Cash or cheque with order. Despatch charges - Orders below $£ 25$ in value. ad
Sp for post and packing. Orders over $£ 25$ post and packing free of charge All orders cleared same day
 request. Many others in stock too numerous
All prices subject 10 change with out not ice

1

 6CH6
6CL6
606
6 EA8
6 FBG
6 F 12
6 F 17

MARCONI SIGNAL GENERATORS

WHITE NOISE TEST SET. The instrument con sists al two Units a Marconi Noise Generato Type TF 2091 and Nose Receiver type TF 2092 Measures notse and intermodulation on wide band multichannei telephone systems. Sultable for 12 channet to 2.700 channel system

in crystal check tacility with hand book CT
OT480 Signal G eneraiors frequency from
11 kMS36. AERIAL MASTS consisting of 6 sections 68
AVO CT 160 VALVE TESTER
LOW RESISTANCE HEADPHAR88 D \& LF SPARES. We hotd the largest stock
UK Write 10 , 1,51
RF METERS 0.08 amps $21 / 4$ dia USA. brand new
E1.50. P\&P 25 ,

VALVES AND TRANSISTORS

OSCILLOSCOPES (NEW PRODUCTIOSCOPEX 4D-
SIGNAL GENERATOR H.P. MOOEL 680 C . Hig
FOR EXPORT ONLY
TEKTRONIX OSCILLOSCOPES
with market conirols FURZEILL SENSITIVE VALVE VOLTMETERminals and control lrequency and volume RECEIVER
EDOYSTONE COMMUNICATIONS SECIM
TEST SET FT 2
UNIVERSAL WIRELESS TRAINING SETNO 1 MkPacked ins special transit cases
VAT FOR TEST EQUIPMENTPLEASE ADD 8%

Master computers At home. The new practical way.

ot modern life and will continue to do so on an ever increasing scale... Do you understand the basic principles behind its operation? We can show you in a piactical and interesting way.

A new home study course on digital electronics and the basics of modern compute

Easy, fast and exciting! No previous knowledge needed.

WW-015 FOR FURTHER DETAILS

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for fast charge
HP7 (AA) £1.13, SUB C £1.47, HP II(C) £2.15, HP2 [D] £3.27, PP3 £4.09. PP3 CHARGER £5.81
All above Nickel Cadmium batteries are guaranteed 'EVER READY full spec. and are supplied complete with solder tags (except PP3).
Just in stock - New RECHARGEABLE SEALED LEAD ACID maintenance-free batteries suitable for burglar alarms, etc. 1.2 amp hr $6 v £ 4$ 40. $2.6 \mathrm{amphr} 6 v £ 5.65$
Quantity prices available on request. Data and charging circuits free on request with orders over $£ 10$, otherwise 30 p post and handling (specify battery type), all prices include VAT

Please add 10\% P\&P on orders under £10-5\% over £10 Cheques. Postal Orders, Mail Order to

SOLID STATE SECURITY, DEPT. WW, 10 BRADSHAW LANE, PARBOLD. WIGAN, LANCS. 02575-4726

WW-112 FOR FURTHER DETAILS

9" MONITOR \& MICROCOMPUTER POWER SUPPLY
 The VT9 is a ready-bult and tested high resolution 9 monitor and power supply suitable for most microcomputers
 specification

MONITOR

- All inputs TTL compatible

Vifeo bandwidth -20MHz
Separate or combined V8H sync
625 line 50 Hz or 525 tine 60 Hz

PRICE 5V 12 version $£ 168$ inc VAT \& Carnage
Video Terminals - 197 hornaeams, harlow, essex

middle east ELECTRONICS

YOUR SALES LINK WITH A MULTI BILLION DOLLAR MARKET, IN THE MIDDLE EAST AND NORTH AFRICA, FOR ELECTRONICS EQUIPMENT AND SERVICES

MIDDLE EAST ELECTRONICS

The first issue, October 1977, produced an average of 50 enquiries for each advertiser All future issues will receive the same response based on figures to date Can you afford to miss the next issue?

CONTACT:

BRIAN MOLONEY, Advertisement Manager
DORSET HOUSE • STAMFORD STREET • LONDON SE1 9LU • ENGLAND or Telex BUSNESS PRES 25137 LDN. Tel: 01-261 8638

Flectronic Brokers Itd The Test Equipment People

GOULD ADVANCE

Double Pulse Generator PG.56. Pulse Ampitude $0.1 \mathrm{~V} \cdot 10 \mathrm{~V}$ Sq. wave $0-10 \mathrm{~V}$ Rise

Pulse Generstor PG59 (Type CT600) Produces a pulse controllable in frequency imes. Also produces prepulse and gate outputs. Repetition frequency 1 Hz to 10 MHz . Pulse width 25 nsec to 1 sec . Rise and fall times 12 nsec to 1 sec . Delay 25 usec to 1 sec . Trigger; Internal, externa R100X.Y Plotter Specification $\mathbf{E 5 9 5}$ trame Frequency response 1 Hz Plug in amplifiers, LR1 20 general purpose amplifier. LR121 time base. Full specitica tion on request \quad E235.00 AF Signal Generator H1E. Specification Frequency range, $15 \mathrm{~Hz}-50 \mathrm{KHz}$ AF Output Sine Wave $200 \mu \mathrm{~V}$ to 20 V r.m.s. $\pm 2 \mathrm{~dB}$ Square Wave 1.4 mV to 14 V peak to peak approximately $\mathbf{E 8 0 . 0 0}$ Signal Generator J3. Frequency range Metered o/p \quad \&150.00 Signal Generator J4. Frequency range 10 Hz to 100 kHz . Sine and square $0 / \mathrm{p}$

Wide range oscillator SG 67A. Frequency range 1 Hz to 1 MHz Sine and square wave Low Distortion Oecillasor SG 6BA. $15 \mathrm{~Hz}-150 \mathrm{kHz}$. Output waveforms Low distortion - $<0.01 \%(40 \mathrm{~Hz} \cdot 20 \mathrm{kHz})$. Low distortion - <0.05\% (20kHz-150KHz) Square wave. Typically $600 \mathrm{\Omega}$ impedance Max. output 4V (r.m.s.) Battery operated True R:M.S. Voltmeter DRM6. 100 mV . 1 kV (6 ranges) 100% over-range. C.M.R
$90 \mathrm{~dB}(\mathrm{DC}-50 \mathrm{~Hz})$ Frequency Counter TC16. 5 Hz -80MHz digit display. 1 MHz crystal. Frequency and count functions $\quad £ 110.00$ Tinter Counter TC17A. 6 digit. DC ,UMHz. Gate times $10 \mu \mathrm{~s}$ to 10 s in decade steps Sensitivity 25 mV (r.m s.) sine wave Overload protected $\quad \mathbf{E 1 5 . 0 0}$ Timer Counter TC18. Specification Frequency Measurement. Inpul 10
100 MHz Input $2 \quad 10 \mathrm{MHz} .512 \mathrm{MHz}$

Timer Counter TC22 $\mathbf{E 2 4 5 . 0 0}$ Frequency DC. 100 MH 26 digit period, period average count, totalise puls width. ratio $\mathbf{2 7 5 . 0 0}$ Digital Muttimeter DMM3. $3^{1 / 2}$ digit Maximum reading 1999. 25 ranges of measurement. $A C$ and $D C$ volts. $A C$ and $D C$ current Resistance Dual Polarity Remote CIDIP CHART RECORDE 115.0 SCRIBE CHART RECORDER OMN: As New Condition." Full specification request. A. 5110 - 1
£200.00

Rench Oscilloscope Type 531A c / w dual Aench Oscilloscope Type $531 \mathrm{Ac} / \mathrm{w}$ dua
trace vertical plug-in unit CA. DC-13.5MHz trace vertical plug-in unit CA. DC - 13.5 MHz
Sensitivity $50 \mathrm{mV}-20 \mathrm{~V} /$ Div. Time base ranges 100 ns to $5 \mathrm{~S} / \mathrm{Div}$. Timebase modes A. $\times 5$. Internal voltage calibrator 0.2 mV 100 V |KHz square wave $\quad \mathrm{C} 290.00$ Bench Oscilloscope Type 647A c/w dual time thase plug in unit 11 B2A DC. 100 MHz Sensitivity 10 mV -20V/Div. Time base ranges $100 \mathrm{~ns}-5 \mathrm{~s} /$ Div on A \& B Time base modes A only. intensified, delayed sweep 100V $1 \mathrm{kHz} z=1$ Bench Oscilloscope Type 585A $£ 1200.00$ Bench Oscilloscope Type 585A c/w dua 80 MHz Sensitivity 10 mV - $50 \mathrm{~V} / \mathrm{Div}^{2} \mathrm{DC}$ base ranges A $50 \mathrm{~ns}-2 \mathrm{~s} /$ Div, $22 \mu \mathrm{~s}-1 \mathrm{~s} /$ Div time base modes A, B, intensified delayed $\times 5$ Internal voltage calibrator 0.2 mV - 100 V Bench Oscilloscope Type $547 \mathrm{c} / \mathrm{w}$ dua race vertical plug in unit 1 AI DC-50MHz ensitivity 5 mv -20 div Time base anges. A. B. modernate sweep $\times 2.5 \cdot 10$ delayed sweep. calibrator $0.2 \mathrm{mV} \cdot 100 \mathrm{~V} 1 \mathrm{kHz}$ square wave $€ 775.00$ ertical plug in unit CA DC-24MHz trac stivity 50 mV to $20 \mathrm{~V} /$ Div. Time base ranges $\mathrm{A} 100 \mathrm{~ns}-55 /$ Div. $\mathrm{B} 2 \mu \mathrm{~s} / \mathrm{is} /$ Div Time base modes A, B, intensilied, delayed weep. $\times 5$ internal voltage calibrato Bench Oscilioscope Type 543 B ¢55.00 sench Osce vert plug Type $430 \mathrm{c} / \mathrm{w}$ dual without B time base. With $\times 2 \cdot \times 100$ Horizontal gain E450.00 Time Marker Generator 184. 16 marke inewave output. Crystal controlled oscilla or. $10 \mathrm{MHz} \pm 0001 \%$ € 275.00 2101 5nz Puise Generator with Delay 2.5 Hz 25 MHz repetition rate Variable baseline offsel 5ns risetime and fall time latched on modes. External gate input Simultaneous positive and negative pulses 10 volts into $50 \Omega \quad € 575.00$ 2901 Time Mark Generator. 16 marke ntervals, 4 sinewave frequencies. 500 MH tor. 8 trigger pulse intervals $\quad \mathbf{~} 450.00$

TV Waveform Monitor $525 \quad £ 165.00$ Plug In Unit Power Supply 132 £ 120.00 Spectrum Analyser Plug in 3L10 for $\mathrm{E415.00}$ 4-Trace Plug In Unit "M" (for use with Differential Plug In Unit "W"' $\mathbf{W 2 5 . 0 0}$ Oscilloscope Camera Unit C12 £ 190.00 Digital Readout Oscilloccope 567 Choice of plugins avaılable Mainframe Constant Amplitude Signal $£ 510.00$ 191. 350 kHz -100MHz Sine Generator 5.5 V constant amplitude. 50 kHz Amplitude 120 Spectrum Analyser, 10 M350.00 -70 dBm to -110 dBm sensitivity. dependent on frequency 40 dB dynamic range. For use in S40 senes Mame. From £ 1050.00 575 Semiconductor Curve Tracer. Displays dynamic characteristic curves and wo devices C400.00

7613+7L13 Spectrum Analyser $\mathrm{MHz}^{2} 30 \mathrm{~Hz}-3 \mathrm{MHz} \mathrm{H}$ resolution. 70 dB on screen dynamic range. -128 dBm sen10 dB log display P.O.A. TM504 + DC502 + TR 502 Tracking Generator and Frequency Counter. Tracking Generator 100 KHz .
180 MHz 0 to -56 dBm o/ $\mathrm{p} \pm 0.5 \mathrm{~dB}$ 180 MHz 0 to $-56 \mathrm{dBm} .0 / \mathrm{p} \pm 0.5 \mathrm{~dB}$ Counter $-10 \mathrm{~Hz}-550 \mathrm{MHz} 7$ digit dis play Sensitivity 100 mV to 110 MHz into 1 M ahm 170 mV to 550 MHz into 50 ohms. Designed for use with 7 LI 13

DYNAMCO

Portable Solid State 'Scope 7500. DC $40 \mathrm{MHz} \quad 10 \mathrm{mV} /$ div sensitivity $\times 10$ gain
extends sensitivity to $1 \mathrm{mV} /$ div $(3 \mathrm{~Hz}$ 5 MHz) Mixed \& calibrated sweep delay 5 MHz) Mixed \& calibrated sweep
Dual trace $A C$ \& DC coupled Z mod Bran trace A \qquad ¢495.00 Dual Trace Portable Oscilloscope Type D7210. DC 15 MHz 10 mV -5V DIV De Dual Trace Poraculate £350.00 D7200. Same as D7210 but with smalle CRT and no dełay

WAYNE KERR

Universal Bridge B221A = CT530 105/948-8768 0.1\% accuracy. Meas . 5 +ve or -ve. $G+$ ve or -ve. $(\times 1$). 1592 Hz) Source frequency (1592 Hz (int). $50 \mathrm{~Hz}-2 \mathrm{OHz}(\mathrm{Ext})$ Mains operated. Weigh Low
¢275.00 Low Impedance Adnptor 0221A. For use with B22 permitting. impedance measComponent Bridge 8521 (Ministry Type CT375) A general purpose componen bridge for measuring LC \& R \& combina
tors of $R \&$ Reactance. It can be used to measure components in situ. Capacitance 100 Mohm . Inductance 1 uH to 500 kH .

€ 115.00

ELECTRONIC BROKERS LIMITED
49-53 Pancras Road, London NW1 2QB

WIRELESS WORLD. SEPTEMBER 1978
 Brokers Itd
 49-53 Pancras Road, London NWI2QB Tel: Ol-837 7781

50 MHz Pulse Generator PM5715. Specification on request $\mathbf{L 6}$. 600.00 $10 \mathrm{~Hz}-100 \mathrm{kHz}$ sine \& Square wave Sine a Square Wave Oscillator PM5125. $10 \mathrm{~Hz}_{2} 1 \mathrm{MHz} \quad £ 145.00$ PM5324 AM/FM Signal Generator. $100 \mathrm{KHz}-110 \mathrm{MHz}<5 \mu \mathrm{~V}-50 \mathrm{mV}$ o/p into
75 ohms. AM is 30% (a) 1 MHz FM is 75 ohms AM is 30% @ 1 MHz FM is
25 KHz @ 1 KHz rate Very good condition PM5326 AM/FM Signal Generator with Digital Frequency Display and Internal Sweep. $100 \mathrm{kHz}-125 \mathrm{MHz}>5 \mu \mathrm{~V} .50 \mathrm{mV}$ 22.5 kHz @ 1 kHz rate Sweep frequency
3.30 Hz As new condition $\mathbf{E 6 9 5 0 0}$

PM2513A O.M.M. AC-DC volts and new condition $\quad £ 95.00$
PM3010 Miniature oscilloscope. DC$5 \mathrm{MHz} 30 \mathrm{mV}-1 \mathrm{~V} / \mathrm{div} 1 \mathrm{~S}$ S-O. $1 \mathrm{~S} / \mathrm{div}$ with
$\times 10 \mathrm{mag}$ Battery operation Supplied with $\times 10 \mathrm{mag}$ Battery operation Supplied with
$\times 10$ probe and battery charger As new

RACAL

Universal Counter Timer 9838. Frequency. single and multipie period ume

interval. Freq range $10 \mathrm{~Hz}-100 \mathrm{MHz}$ H F Communications £285.00 RA117E. $1-30 \mathrm{MHz}$ full specification on request | Modulation Meter $210 A$ | $\mathbf{2} 5350.00$ |
| :--- | ---: |
| 300 MHz | | M range $0-100 \%$. F.M range $0: 0$ $\pm 100 \mathrm{kHz} \quad \mathbf{E 2 4 5 . 0 0} \mathbf{- 1 2 8 5 . 0 0}$ A.M./F.M. Modalation Meter 409. Freq

DUMONT

Porabie 'Scope 1100 P . oc 100 MH a Delayed ume base Full $8 \times 10 \mathrm{~cm}$ display

MARCONI

INSTRUMENTS

F.M./A.M. Signal Generator TF995B/2 Frequency Range $0, \mathrm{mV}$ to 200 mv m 675.00 U.H.F. Signal Generator TF1060. Frequency range $450-1250 \mathrm{MHz}$ (1 band). Output $015 \mu V$ to 445 mV Output impedmod

A.M. Signal Generator TF801D / Frequency Range
five bonds Output Attenuator $0.1, \mathrm{~V}$ to 1 V
Output Impedance $50 \Omega £ 400.00-£ 750.00$

Carrier Deviation Meter TF7910. Carrier Freq range 4 to 1024 MHz . Deviation ange up to +25 kHz . Modulating £295.00 $\mathbf{2 0 M H z}$ Sweep Generator TF1099. Video sweep output Lower limit 100 kHz fixed Upper limit continuousiy variable up to $20 \mathrm{MHz} \quad 0.3$ to $3 \mathrm{~V} p-\mathrm{p} \quad Z=75 \Omega$ Input \& Output detector probes Markers at 1 MHz
ntervals
$\mathbf{2 9 5 . 0 0}$ A.M. Signal Generator TF8010/8S. Same spec. as TF8010/is + freq countef
o/p iacility
$\mathbf{£ 6 9 5 . 0 0}$ Sensitive Valve Voltmeter TF2600. 12 ranges 1 mV -300V is d . $\%$ accuracy up to
 R.F. Electronic Voltmeter TF2604. 1500 MHz 8 ranges 300 mV .1 kV DC ranges Resistance 500Ω to $500 \mathrm{M} \Omega$ R-C Oscillator TF1 101. Frequency Ran 20 Hz to 200 kHz in four bands. Output Attenuator 1 mV to 20V. Maximum Output 20 V across external 600Ω load Output mpedance 600 1 Phase A.M. Signal Generator TF 2003
04.12 MHz

Two-Tone Signal Source TF2005R Frequency Range $20 \mathrm{~Hz}-20 \mathrm{kHz} \quad £ 415.00$ Blanking and Sync Mixer TF2908. Fo Reshapes and mixes blanking and sync $\mathbf{£ 9 0 . 0 0}$ L.F. Extension Unit TM6448, For use with $100 \mathrm{~Hz} 103 \mathrm{MHz} £ 200.00$ Wide Range R.C. Oscillator TF1370A. 10 Hz to 10 MHz sine wave 10 Hz to 100 kHz DC multiplier TM5033A. HV prote 30 kV . Impedance $3000 \mathrm{M} \Omega$ for use with TF104 1 series or TF2604 5 wate De.00 5 watt Dummy Load TM5582 for use with
E25.00 A.F. Oscillator TF $2100.20 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$ Extiemely low distortion. Output
Impedance 600Ω untatanced $\mathbf{E 1 5 0 . 0 0}$ M.F. Oscillator TF2101. $30 \mathrm{c} / \mathrm{s}$ to $550 \mathrm{kc} / \mathrm{s}$ Stable frequency Low distartion Output Impedance 600Ω untalanced
F.M./A.M. Modulation meter TF 23005. incorporating Oscillator TM8045/1 35 to
£825.00

M.F. Transmission Measuring Se
 F.M. Signal Generator TF 1066B/6. 10 470 MHz R F output $0.2 \mu \mathrm{~V}-200 \mathrm{mV}$ e in f
Output Impedance 50Ω Modulation In ternal $A M \quad 1 \mathrm{kHz}$ \& $5 \mathrm{kHz} 0-40 \%$ External
 400 KHz according to carner freq range External $F M \quad 30 \mathrm{~Hz}$ to 100 kHz deviation same as int Crystal Calibrator facility $\mathbf{£ 6 8 5 0 0}$ Variable Attenuator TF 338 C . 0.105 dB Freqs up to $100 \mathrm{KHz} 600 \Omega$ impedance
$\mathbf{\& 9 0 . 0 0}$
M.F. Attenuator TF2162. DC- 1 MHz .0
E120.00 Also TF1073A Spec as A/2S $\quad \mathbf{£ 5 5 . 0 0}$ 10-Watt A.F. Power Meter TF893A. Frequency range 20 Hz to 35 kHz . Five power ranges: 1 mW to 10 W tull scaie. Impedance
25Ω to $20 \mathrm{~K} \Omega$ in 48 steps. Balanced or unbaranced inputs Direct calibration in watts and dBm $£ 165.00$ 100-Watt R.F. Power Meter: TF1020A Series. Frequency range D. C to $250 \mathrm{MHz}^{2}$ Two nower ranges 50 and 100 W full scale. In Situ Universal Bridge TF2701 Meas ures capacitance capactance with R arallel Resistance \& Inductance In arce $80 \mathrm{~Hz}_{2}$ \& $1 \mathrm{KHz} \quad £ 395.00$ hms 1.50 watts \& 2.100 watts $O C$ $250 \mathrm{MHz} £ 120.00$ R.F. Power Meter TF1020A/5M1. 50 hrms $1-50$ watts 2.100 watts DC
$\mathbf{2 5 0 \mathrm { MHz }} \mathbf{£ 1 3 5 . 0 0}$ Outpur Test Set tFio65A. AF Power 10uW to 3W (5 ranges) Freq. Range解 wements Full spec on request $\mathbf{2 2 5} .00$ FM Signal Generator Type TF 2006 $2 \mu \mathrm{~V} 200 \mathrm{MV}$ int $50 \mathrm{obm} \mathrm{£950} 00$

EDDYSTONE

770 U VHF Receiver. $180-390 \mathrm{MHz}$ in 6 ranges $A M / F M$ demod. Muting, AVC,
Noise limiting IF gain S meter $£ 265.00$ 30/1A Communications Receiver $480 \mathrm{kHz}-30 \mathrm{MHz}$ in 5 ranges BFO noise limiting. AF fitter. AVC. rf gain. S meter $\quad € 240.00$ 380 Communications Receiver. 500 kH 30.5 MHz in 1 MHz wavebands BFO . AGC £325.00 7OR VHF Receiver. $19 \mathrm{MHz-165} \mathrm{MHz}$ in IF gain S meter $\quad \mathbf{2 7 5 . 0 0}$ SOLARTRON

A100 Modular Oscilloscope c/w A 101 and A1 12 modules. Dual trace DC 30 MHz $5 \mathrm{mv}-20 \mathrm{~V}$, div sensitivity time base range layed sweep A100 Modular Oscilloscope c/w A10 and A11 t Same spec as with A1 12 but no
delayed sweep
E340.00 CD1400 Modular Oscillozcope System C/wCX144 $1+$ CX144 1 and C 1442 Dual sitivity Time base range $0.5 \mu \mathrm{~S}-\mathrm{O} 5 \mathrm{~S} / \mathrm{div}$ Avallable with various other modules BRUEL \& KJAER
2112 Audio Frequency Spectrometer. B and C weighing $R M S$, average and peak 8 and C weighting RMS, average and peak

This is only a selection of

 the equipment we have available. If your requirement is not listed pleasc give us a call.Carriage and packing charge extra on all items unless otherwise stated
Rours of business: 9a.m.-5p.m. Mon.-Fri. Closed lunch 1-2p.m.
Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

SCOOP!

H1200
ONLY
£425
HAZELTINE H1000 and H1 200 SPECIFICATION
SCREEN SIZE - 12 diagonal

MASSIVE BULK PURCHASE BRINGS YOU haZELTINE VDUs AT LOWEST EVER PRICES

SCREEN CAPACITY -
H1000 - 960 characters 80 per line $\times 12$ lines
H1200-1920 characters 80 per line x 24
CHARACTER GENERATION -5×7 dot matrix 625 line raster
CHARACTER SET - 64 ASCII alphanumerics and symbols
CHARACTER SIZE -
H1000-1/8 inch (32 cm) nominal height $3 / 32$
inch (24 cm) nominal width
H1200-1/10 mich (25 cm) nominal height 3. 32 inch (24 cm) nominal width
CURSOR -

CURSOR -
H1000 undertine H 1200 reverse image block TUBE PHOSPHOR -- P4 (white on black) H1000 REFRESH RATE - 50 fields per second ONLY KEYBOARDS - TTY format attached $\mathbf{£} 50$ INDICATORS - Power On Parity Error £350 Dataset ready

PARITY - Parity error indicated by Parity light and question mark (") displayed in character position
TRANSMISSION - Asynchronous Switchselectable for any two standard rates up to 9600 baud
OPERATING MODES - Full, half Duplex
MEMORY - High speed MOS refresh
STANDARD INTERFACE - CC ITT V- 24

HAZELTINE H2000 SPECIFICA

 TIONSCREEN SIZE - 12 diagonal 1998 cha CHARACTER GENERATIO
matrix 625 line raster
matrix 625 line raste
CHARACTER SET
symbols 32 ASCII control codes
KEYBOARD - Detachable
telerypewriter design' 10-key nums solid stat, plus editing and cursor control keys
TRANSMISSION - Asynchronous. Switch-
selectable for combinations of 5 standard rates. 75 to 9600 baud
OPERATING MODES - Swith-selectable, full duplex. half duplex or batch (buffered)
EDITING FEATURES - Full Cursor controls Etus Insert, Delete Character, Insert/Delete Line Clear Screen. Clear Foreground Data Only. Tab STANDARD INTERFACE - CC ITT V- 24 (EIA RS-232 B/Cl or 202C Compatuble
REMOTE COMMANDS - insert / Oelete Line Clear Screen. Clear Foreground Data Only. Home Cursor. Address Cursor Set Background Inten-
sity Sel Foreground Intensity Carrage Return sity Sel Foreground Intensity, Carriage Return. Backspace, Ring Bell. Transmit, Print

H2000 FROM £495

AUXILIARY OUTPUT - Standard printer interfaces. standard cassette interiace: remote TUBE PHOSPHOR - P39 (green on black)

=3en =ine

D E CBIG SAVINGS ON OUR LARGE STOCK OF PROCESSORS, PERIPHERALS AND ADD-ON MEMORY
PDP11/04 PROCESSORS. Conti gured 10 suil your requirements - 8 k 16 K core memory increments Asynchronous interface /line clock ether OLIIWA (20 mA) or DL1IWB (EIA) All in perfect as-new condtion Prices from $£ 2,500$.
PDP11 ADD-ON MEMORV
11/04-11/34 Series - MS 11FP 8K MOS £550 MS 11 JP 16 K MOS £1,200; MM11OP 16 K core $£ 1,750$; M 7850 party control $\subseteq 250$ 11/35-11/40-11/45 series. MF 11 UP 16 K parity core complete with backplane MOLY £1.500; MM 11 -UP 16 K Disks
DISKS
RK11D/RK05J Disk drive and con-
roller
RK05J Slave disk drive
RKOSF Dual density disk drive
RPO2 Slave disk drive $£ 4,500$
$£ 2,500$ cabinets
DEC 4tr rack n
distribution unit
PDP11-05SD Processors 16 K core $101 / 2$ chasis
TMA11 TU10 9 track tape deck and contro
TU10 9 -track slave tape deck

Fmintars and
 GEARIGEIE

LARGE STOCKS OF ASR33
AND KSR33 TELETYPE

TERMINALS

* ASCII Keyboard
* Hard-copy unit (friction or sprocket paperfeed)
* Paper tape punch reader (ASR33 only) * Line unti ($20 \mathrm{~mA} / 6 \mathrm{~V} / 80 \mathrm{~V}$) Prices from $£ 425$ (KSR) and £ 650 (ASR)

SPECIAL OFFER - Standard ASR33 Teletype with custom-built acoustic (sound-reducing) cover $£ 675.00$

ALSO AVAILABLE: DATA OYNAMICS Model 390 KSR and ASR terminals from $£ 525.00$.

TEXAS SILENT 700 Model KSR 725 portable terminal with integral acoustic coupler £695.00
TEKTRONIX 611 STORAGE DISPLAY MONITORS
 a further special purchase of Tektronix
monitors in superb as-new condition Provides stored displays of combined alphanumeric and graphic data via $X Y$
and Z inputs through rear BNC connectors or remote program connector Operating functions View and Erase (manual or programmable control) Non-Store and Write-Thru (program. mable controll Oisplay arua $16 \times 21 \mathrm{~cm}$

- 4000 characters Viewing time at
 least 15 minutes without loss of resolution

Keyboards
NEM ASCII KEYBOARD MODEL KB756

NOW IN STOCK - BRAND NEW
56-STATION ASCII KEYBOARDS
Full 128 character set with ROM encoder (upper and tower case + control shift)
Fully TLL - compatible - power requirements $+5 \mathrm{v}-12 \mathrm{v}$ Supplied with full technical data, code chart, pin
connections. circuit diagram and applications

FANTASTIC VALUE AT £60.00

+ €1 $50 p \& p+B \%$ VAT (matl order total €66 42). Also available - a range of spares and accessones for the enclosure, spare ROMs. Send for data sheet/price list.

All items quoted are refurbished second-user equipment unless otherwise stated.

ELECTRONIC BROKERS LIMITED (COMPUTER DIVISION)

Gameson's
 (ELECTRONICS) LTD

9 \& 10 CHAPELST. LONDON, N.W. 1 01-723 7851 NTOEGOWARE ROAD M

CURRENT RANGE OF NEW L.T. TRANSFORMER OPEN TYPE TAG CONNECTION
ALLPRIMARIES $220-240 \mathrm{~V}$

Type	Sec Taps	Amps	Price	Carr
	24.30.40-48-60v	12	E26.82	¢2.00
	24.30-40-48-60v	10	¢22.31	¢2 00
3	$24-30-40-48.60 \mathrm{~V}$	8	¢18.11	¢175
4	24 30-40-48-60v	5	¢12.47	¢175
5	24-30-40-48-60v	3	$¢ 9.30$	¢1 00
6	24-30-40-48-60v	2	C6.60	E1 00
6-8-10-12-16-18-20-24-36-40-48-60v Can be obtained from the above range				
7	19-25-33-40.50V	10	¢20.41	¢200
8	19.2533 .40 .50 V	6	E14.62	¢1 50
9	19.25-33-40-50v	3	¢7. 81	E1 25
10	19.25-33-40.50v	2	c6.10	£1.00
$5 \cdot 7.8-10-13 \cdot 15-17-20 \cdot 25-30-40 \cdot 50 \mathrm{~V}$ OR 25-0.25v OR 20.0-20v CAN BE OBTAINEO FROM THE ABOVE RANGE				
17	12.15-20-25-30v	10	E11.91	¢175
12	12.15-20-25.30v	5	¢7.93	C1. 25
13	12.15-20-25-30v	2	¢4.79	£1.00
OR 12-0-12V OR 15-0.15V CANBE OBIAINED FROM THE ABOVE RANGE				
14	12.24v 12v6	A 24×30 A	c. 28.82	c3 00
15	12.24 v 12v3	A 24×15 A	¢16.33	¢2 0
16	12.24 v (2v20	A. $24 \times 10 \mathrm{~A}$	¢12.55	£260
17	12.24 v) 2 v 1	A 24 v 5A	c6.80	£1 00
18	12.24 v 12v	AA. 24 v 2A	¢3.74	E100
19	20.25-33-40-50v	5	c5.95	¢1. 50
20	20.25.33-40 50v	3	E5.75	£1. 25
21	12.15 20-24-30v		¢7.95	¢1 150
22	12.15-20-24-30v	3	¢5.75	£1. 25
23	28-32v	4	c. 5.95	£1. 25
24	14.16 v	2	63.75	[100
25	12 v	12	c5.95	¢ 150
26	30.0.30v	2	65.95	C1 25
27	25.0.25v	2	E5.75	c. 125
CENTRE TAPPED TRANSFORMERS				
Fully shrouded ferminas block connections. Screan Pr 220240 V sec tapped 36-25-0.25-36v 5A £13.50. คp E1 30-25-0-25-30v2A £6.75, pp E1 18-0.18v 2A E5.25, pp \& 1 Open frame types Prt				

"C" CORELT. TRANSFORMERS BY FAMOUSMAKKRS. ALLPRIMARIES 220-240v No $1155-0-155 \mathrm{v} 1$ amp lour times 19 v 1.

A.E. HEAVY DUTY CONTACTOR S 4C 25 make 2 make 2 break 20 amp contacts $£ 1.25$. 250 po 25 p 110 v AC types. 2 make 2 break 20

\qquad

MAIL ORDER PROTECTION SCHEME
 (Limited Liability)

If you order poods irom mall order adventisers in inis magazine. except for classified adverlise menls and pay by post in advance of delivery. Wir tiess Woiser shoutd become insalvent or bankrupl, provided
Yay have not racaived the peods or had your monay relurned: and
You wrile to the pubtish or of Wrelass World explaining the position not earlier than 28 days Irom the day you sent your order and not later than 2 monihs lrom that day
Please do not wail unlil lhe lazi momant to inform us. When you wrile. wa will leil you how 10 make your ciaim and wal evidence ol payment is required
We quarambe to med claims from readers made in accordance wilh the above procedure as soon as possible after the adverfiser has been declared bankrupt or insolvent up to a limit of E3. 550 per annum for any one advertiser so athected and up to f 10.000 per annum in respecl of all insolvent advertisers. Caims may be paid for higher amounls. or when the above procedure has nol been complied with. at the discretion of Wreless world: bel we do not guarantee a co
need to set some limit to lthis commitment and io learn quickly ol readers' diffic ulties.
This puarantee covars only advance payments sant in direct respense to an adverlisement in this magarine [nol. tor example, payments made in response to cataiogues. elc. received as a fesult mswering such adverlisements). Personal advertisements are exchuced.

NEW TESTER

Designed for fast in-circuit testing, new DATEST 2 ests transistors, FETS, SCRs and Triacs even when shunted by resistors as low as 20 ohms
1 will usually test every device in even a DC coupled AF power amp or in a colour TV (except line o/p) while still in circuit.
Automatic NPN/PNP indication, foolproof three-LED display, and unique test-probes allow a very high rate of testing even by unskilled users
Other features include long battery life, low battery warning rugged die-cast case, reliable six-IC circuit Best news of all DATEST 2 is affordable and available from stock
Full data sheet free on request
ONLY £39.50
WITH PROBES

CLASSIFIEDS

CAPACITY AVAILABL:

TECHNOVA DEVELOPMENTS offer comprehensive and fast service in. qualite P.1.i.. single and double sided PCBs; precision art work and draughting services Send drawing etc. for quotation Samples available. Technova De velopments 136 Whitehall Road Norwich, Norfolk. Tel. 060328015

CAPACITY AVAILABLE for electro hic assembly, setting up, faul finding etc. Also avallable to any would be or current metal detector manufacturers sin. injection moulded A.B.S. search heads, at tractive design with internal jigs for coils, one off sample, E4. T Thornhill, Ashleigh Estate, Crun dale,
Wales. ,

PCBS. Production runs or Prototypes. Assembly to sample or drawings. Design service if re quired. Quick response to demand expert hand soldering, Nothing or STE SEASHORE ELECTRONICS Ltd. Unit 2 Picow Farm Road Service Industry Estate Runcorn Cheshire Phone Runcorn (09285) 5950 Phone Runcorn (8439

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Ltd. 01-850 6516, 45 Southwood Road, New Eltham SE9

sPECIALISTS in printed circui assembly, and small batch produc tion wiring asscmbly, to sample or drawings. ASEMCO Electronics. 123 | Seabourne Road. Bournemouth |
| :--- |
| 0202 427836. |
| 8460 |

A COMPLETE and efficient PCB Service from layout emrought PCB sembly. Incorporating quality re llability and price. No order too arge or too small. Also mechanica detailing is undertaken. For de tails and free estimates please con lact: J. S. Roberts on 01-553 257 H.R.C. Artwork Design. 45 High Street, Maldon, Essex.

RECEIVERS AND ANP

HRO Rx5s, etc. AR8S, CR100 BRT400 G209. S640, etc., etc. in Ashville Oid Hall, Ashville Re London, Ell. Ley 4986 .

SIGNAL Generators Oscilloscopes utput Meturs Wave Voltmeters Frequency Meters Multi-range Meter, etc. etc., in stock. R. T 1. Electronics Ltd, Ashville old Hail. Ashville Rd., London E. 11 Ley 4986.

ARTICLES FOR SALE

DIGITAL CAPACITANCE METER

 24 digits. IPF to 100 in 6 rapges Keynes College, Canterbury, Ken
CT2 7 NP .

BRUEL \& KJAER Low nolse measur ing amplifier type 2607. Precisio sound/vibration measurement 10 UV 10300 V . List $£ 2.000$ plus, Offers

FURTHER CLASSIFIEDS AND FURTHER CLASSIFIEDS ANO
APPOINTMENTS APPEAR ON PAGES 140 TO 159.

BARREL TYPE X-Y PLOTTER ASSEMBLY

X-Y PLOTTER ASSEMBLY

PAPER TAPE READER ASSEMBLY

BARREL TYPE X-Y

 PLOTTER ASSEMBLYPen not sugplied). AS PICTURE $\mathbf{£ 5 5}$ ea
ent With alternative motor for non-reversible requirements recorder / printer applications etc $£ 48$ as. With Pen and Paper guides $£ 78$. With Pen. Sprocket and Paper guides $£ 88$. Other voltag
units $£ 2.50$

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $£ 3.25$.

 Advance OS 3000 £85 ea GEC types $924 \mathrm{~F}, \mathbf{£ 2 5}$ ea 924 E ,
 NOT BOXED - NEW - WARRANTED Tea reolacement for Solartron CD 1740 Cossor CDU150 SE Labs replacement for Solartron CD 1740 Coss.
SM1 12 and GEC/MOV 1474 at $£ 55$ ea

BUILD YOUR OWN BUS

Approx $11 / 2$ metre multiway ribbon cable terminated each end with a 50 -way temale edge connector Takes 0.1 printed circuit
board $£ 2$ ea $P R_{\mathrm{P}} 75$ p board $£ 2$ ea. P\&P 75p

NOW - INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per 10

TELETYPE ASR 33 with 2OMA LOOP Good condition Special price $£ 395$ ea. KSR33s from $£ 275$
TEKTRONIX OSCILLOSCOPES
541 A with G Plug trin 160.545 with CA Plug- in £ 200.547 Main Frame 581 A,
661 with $4 S 1$ E 350
quiries please. Plug-th units not sold separately
MARCONI Sweeper TF $1099 £ 45$ each
H.P. Oschloscope Type 1858 £ 100 each

TEKTRONIX OSCILLOSC
R \& S POWER METER BNRD-BN $2412 / 50$ ¢ 50 R \& S Z-g DIAGRAPH $300-2400 \mathrm{MHZ}$ BW3512 Good cundition E60.
MARCONI SIGn
CCindtition $£ 385$ each
MARCONIRF POWER METER TF1152A/1 (CT419) 50 otms $£ 65$ eac
MARCONI VVM TF428B $£ 12.50$ each
H. P. AC/OHMS CONVERTER 2410 .
H.P. AC/OHMS CONVERTER 2410 .
HP. DIGITAL COMPARATOR LBO.

PLUG-INS for Telonit Sweeper SM 2000 From $\mathbf{5 0}$ each KNOTT WOBBULATOR SYSTEM TYPE WM828 BN85 with WMC BNB52 and WMA BN850 $0-50 \mathrm{MHZ} £ 700$. MARCONITF868 UNIERSAL BRIDGE $£ 70$ each. AIRMEC SIC GEN. Type 2041.320 M 4 Hz E250.
R \& S POLYSCOPE SWOB1 at the low pIice of $\mathbf{£ 3 7 5}$ each Some POLYSCOPE SWOB 11 at $£ 550$ each MARCONI SIGNAL GENERATOR. 470 MHZ TYPE TFBC1B/3/S $£ 160$ each PGLARAD RECEIVER MOdeI FIM B2 $\quad 1.10 \mathrm{GHZ} \mathrm{E} \mathbf{\mathrm { E }} 25$ RHODE \& SCHWARZ Turnable indicating Amp UBM
$£ 75$. E75.
4ZOMHZ LImited quantity $£ 195$ eact
TRIPODS P\&THEAD $£ 22.50$ each

X-Y PLOTTER ASSEMBLY

Consisting of frame with $X \& Y$ assemblies
 can be changed to $12 / 24 \mathrm{~V}$) data supplies cal 51.15 oa. $12 / 24 \mathrm{~V} £ 70.40$ ea. P P\&P all
versions $£ 2.50$

PAPER TAPE READER ASSEMBLY
Rigid alloy frame 8 hole High quality
stepping motor Directly driven from 120 V stepping motor Directly driven from 120 V DC Siepped faster or slower. Steel paper guides Without Opto-sensor $£ 27.50$ ea. With Optics $£ 45$ ea. P\&\& \mathcal{P} £2

STEPPING MOTORS ONLY

 200 steps per revolution. 20 oz inch torque $120 \mathrm{~V} 1000 \mathrm{0}-1000 \mathrm{ohm}$ Can be changed with care to $12 / 24 \mathrm{~V}$. Data supplied $\mathbf{£ 8} \mathbf{e a}$ P\&P \&1 Supp£ 13 ea. P\& P §

LOOK AT THESE PRICES

BURROUGHS 9 digt PANAPLEX numeric display 7 seg 025 digits with red bezel With data $£ 1.95$ ea P\&P 30 p

 MINIATURE NIXIE TUBE type ITT 5870 ST Digit size 0.5 TRANSFORMERS 10VA 50p ea. P\&CALCULATOR CHIP. GENERAL INSIATMENTS IYR GIMT4 with Data £1.60 ea P\&P 20p
21 -wA SELECTOR SWITCH. Single pole with reset Cbil $£ 1.45$ ea P\&P 75 p
As ABOVE with additional 240 V relay on base and full black olastic cover $£ 2.45$ ea P\&iP $£ 1.50$
SNAIL BLOWER $110 V$ AC 500 MA. Brand new by Aifflow Developments. Quiet and very good looking $£ \mathbf{2 . 5 0}$ ea P \& P P £1 POTTER \& BRUMFIELD $18-48 \mathrm{~V}$ OC Relay 3 pole c / o. Heavy Duty Plug-in type with base $\mathbf{5 0 p}$ ea P\&P 25 p
MINIATURE KEYBOARD. Push contacis mark
MINIATURE KEYBOARD. Push contacis, marked 0.9 and A-F MULLARD CORE LA4245 at $15 p$ ea P\&P 10p
CLARE REED RELAYS 24 V DC Coil Single pole make Size $11 / 4 \times 7 / 16 \times 7 / 16$ at $\mathbf{2 5 p}$ ea. P\&P 10 p . blade $\mathbf{£ 4}$ ea P\&P75p
Min. PLUG-IN type RELAYS. Plastic covers 2 -pole c/o 24 V 25p ea P\&P 15
CROUZET/MURTEN SCHWEIZ MOTORS. 110 V 50 HZ 4 rpm Gear box can be removed. 75 ea P\&P $75 p$.
FRAMCO MOTORS. 115 V 50 HZ Input single phase HP 1.450 rpm : on silent mount As new $£ 2.75$ ea P\&P EI 75 supply Size $19 \times 25 \times 6 \mathrm{~mm}$ Drives one TTL load 72 ng Os. 5V 15 p . dinm phase £ 18 ea P\&P 12 . bly 240 V operation Oniy $£ 1.75$. Carr £ 3.25
MAGNETIC DEVICES. Plug-in RELAYS 240 V AC. 3 -pole $\mathrm{c} / 0$ Heavy duty 10 amp. Complete with base Ex brand new C 1.25 ea P80 45 p
SMALL MXINS TRANSFORMEN 240 V Pri 12 V 100 MA sec G.I. BRIDGE RECTIFIER type WOi (ideal for above) 17p ea GAIRCHID FND10? segment display 015 Red Comm cathode 65p ea. P\&P $15 p$ Info supplied. MULLARD TUNER MODULES - with
LP1171 combined AM/FM IF step $107 \mathrm{MHZ} \mathrm{£350} \mathrm{ea}$ LP1179 FM front end with AM tuning and 874 MHZ 1045 MHZ tuning 10.7 MHZ IF $£ 3.50$ ea. P\&P 50 p each un The Pair £5.75. P\&P 75p
POWER UNIT MODULE COntaining 2 small. 3 med $\& 1$ large powered diodes. 9 transistors. 3 minf fuse hoiders. etc $£ 1.50$ ea P\&PE1 25
GENERAL ELECTRIC OPTO.ISOLATORS type H $15 \mathrm{~V} \times 504$ $65 p$ ea P\&P 15010 for $£ 5$. P\&P
MINIATURE REED SWITCHES 9p ea P\&P $15 p$
ROTARY SWITCHES. 250 V 104 10p ea P\&P 15
LEDEX ROTARY SOLENOID
POTTER \& BRUMFIELD TIMER RELAYS $24 / 48 \mathrm{~V}$ Heavy duty 2 pole $\mathrm{c} / 0$ with 5 secs delay at 48 V increasing with voltage
reduction Timing can be altered by changing value of resistor capacitance 50p ea
CABLE NEATERS - neaten up your wire on a chassis with these AUDIO AMPLIFIER BOARD for $\mathbf{£ 1 . 5 0}$. P\&P extra TIP31s Circuit suppled E1.50 ea P\&P 30 p DIGITAL 24 HOUR CLOCK with buit in Alarm as used in BRAUN Digital Clocks Silent running Large ifluminated 50p
FOR THE VDU BUILDER, tube M28.13GH $23 \times 17 \mathrm{~cm}$ at $£ 12$. Base tonnections supplied. Limited qualtraty of $35 R 0-20 \mathrm{ma}$ and t 10 pars) OUR PRICE EXCLUDING PARTS REQUIRED $\mathbf{£} 70$ ed Ex Ministry Teletype Punches 8 level 110 char per $\sec \mathbf{£ 5 0}$ eacl.
A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS. ETC.. ON VIEW AT LOW COST

HIRD-BROWN ELECTRONICS LTD

 LEVER STREET BOLTON LANCS.
Marshallis
 Come and get a great deal Calin and seous $9.530 \mathrm{Mon+19.500S51}$
 Express Mail Order Tel orders on credit cards 510 min . Trade and export enquiries welcome

A. Marshall (London) Ltd., Dept: WW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel. 01-624 0805 Retail Sales London: 40-42 Cricklewood Bdwy., NW2 3ET. Tel. 01-452 0161/2. Telex. 21492 London: 325 Edgware Rd., W2. Tel. $01-7234242$. Glasgow: 85 West Regent St., G2 2QD. Tel. 041 1-3324133. Bristol: 1 Straits Pde., Fishponds Rd., BS 162 LX. Tel. 0272654201

POPULAR SEMICONDUCTORS. [A very small selection from our vast stocks, please enquire about devices not listed.)

Our range covers over 8,000 items. The largest selection in Britain. Top 200 ICs. TTL, CMOS \& LINEARS
 - 16 lines $\times 64$ characters - requires
\qquad

NEW 1978 CATALOGUE

 romponenis trom tranchised suppliers
avalahle in UK All VAT inclustve prin es Over 8000 line irems plus lots mide 45 ap pos: Dacicl or 35
inf ol ous lour liranches

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

R.C.S. SOUND TO LIGHT KIT Mk. 2

BSR HI-FI AUTOCHANGER STEREO AND MONO
 $33 / 4$ in Below motor board $21 / 1$ In with Sonotone V100 magnetic cartridge
BSR P128/MP60 with magnetic cartridge Balanced arm NEW BSR SINGLE PLAYER £19.95
 B S.R. Budget Autochanger with stereo
cantridge. plays all size records
$£ 12.95$

HEAVY METAL PLINTHS With P V.C Cover. Cut out for most BSR	£6
or Garrard decks. Silver grey frish.	
	£7.50

Exiv20x17\% 9 m. 1850 Shoo caller
BSR SINGLE PLAYER with cueing device and stereo ceramic cartridge 3 speeds.

£17.50

ELAC HI-FI SPEAKER 8in. TWIN CONE
Large ceramic magnet. $50.16,000 \mathrm{c} / \mathrm{s}$.
8ass resonance $40 \mathrm{c} / \mathrm{s}$ 8 ohm impedance $£ 5.95$ post 35

SMITH'S CLOCKWORK 15 AMP TIME SWITCH
0-6 HOURS $\mathbf{£ 3 . 3 0}$ post 35ρ Single pole two-way Surface mounting with fwitich screws lo give light for return home. garage, automatic anti-burglar lights. el Variable knob Turn on or off at
 mermediate settings Brand new TEAKWOOD LOUDSPEAKER G
board. SIze $101 / 2 \times 7 \%$ an 45 p.
GARRARD AP76 SINGLE RECORD PLAYER

GARRARD BUDGET
AUTOCHANGER
3-speed. stereo cartidge

VOLUME
 CONTROLS

$5 k \Omega$ to $2 M \Omega 2$ LOG or LIN L/S
35p. D P. $60 p$. STEREO L/S
$\mathbf{8 5 p}$. D P. £1. Edge $5 K$ S P 55p. D P. £1. Edge 5 K. S.P
1.000 watts per channel Suitable for home use

Easy to build Full instructions supplied Cabinet £.4.
£17
R.C.S. LOW VOLTAGE STABILISED POWVER PACK KITS
All parts and instructions with Zener diode.
printed circuit rectifiers and double wound
mains transformer input $200 / 240 \mathrm{~V}$ a c
Output voltages avalable. 6 or 75 or
9 or 12 Vdc up to 100 mA or less Size $3 \times 21 / 2 \times 11 / 2 \mathrm{In}$. 45 p
Please state voltage required
R.C.S. POWVER PACK KIT

12 VOLT, 750 mA Complete with printed E3.35
circuit board and assembly instructions
12 VOLT 300 mA KIT. £3.15.
${ }_{\text {Post }}^{3}-30 p$
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players. guitars, tape playback.
electronic instruments or small PA systems. Two versions electronic instruments or small PA systems. Two versions
avalable Mono, $£ 12.50$; Stereo. $£ 20$. Post 45p Specification available Mono, £12.50; Stereo, £20. $91 / 2 \times 3 \times 2$ in approx
10 W per channel input 100 mV . size 910 SAE details Full instructions supplied A C mains powered
R.C.S. DRILL SPEEO CONTROLLER/LIGHTDIMMERKIT. Easy to bulld kit
$£ 3.25$
R.C.S. STEREO PRE.AMP KIT. All parts to build this pre-amp
Inputs for high. medrum or low imp per channed. with volume
control and PC Board
$£ 2.95$

Can be ganged to make mult-way stereo mixers
$£ 2.95$

\section*{ELAC 9×5 in HI-FI $£ 3.45$ SPEAKER TYPE 59RM} | Post 350 |
| :--- |
| s. 8 hmm |

E.M.I. $131 / 2 \times 8$ in. SPEAKER SALE!
Wint tweeter and
crossover, 10 wat
3 or 8 ohm
$£_{\text {Posi45p }} 7$

With tw
crossov
20 wat crossover
20 watt
Flux $=11.000$ gaus

Suitable Bookshelf Cabinet
 THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER. S cassettes, and all sizes of tape
 mans $200 / 250 \mathrm{~V}$. Leaflet S.A E. $£ 4.95$
 £8.50
 Will also demagnetise small tools

AELAYS 12VDC 95p 6VDC 95p. 240 V

RELAYS. 12 V D C 95p. 6V D.C 85p. 240V AC 95p. BLANK ALUMINIUM CHASSIS. $6 \times 4-95 p ; 8 \times 6-1$.
$£ 1.40 ; 10 \times 7-£ 1.55 ; 12 \times 8-£ 1.70 ; 14 \times 9-£ 1.90 ; 16 \times 10$ $6-£ 1.85 ; 16 \times 10-£ 2.20$. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-15 p$. ALUMINIUM PANELS. $6 \times 4-24 p ; 8 \times 6-38 p ; 14 \times$ 3-40p; $10 \times 7-54 \mathrm{p} ; 12 \times 8-\mathbf{7 0 p} ; 12 \times 5-44 \mathrm{p} ; 16$
$6-70 \mathrm{p} ; 14 \times 9-94 \mathrm{p} ; 12 \times 12-\mathrm{f} 1 ; 16 \times 10-\mathrm{f} 1.16 \times 2$ 6-70p; $14 \times 9-94 \mathrm{p} ; 12 \times 12-\mathrm{£} 1 ; 16 \times 10-£ 1.16$. ALI BOXES IN STOCK. MANY SIZES
VARICAP FM TUNER HEAD with circuit \& connections C4.95
TAG STRIP 28-way 12 p.
TAPE OSCILLATOR COIL. Valve TYPe. 35p
BRIOGE RECTIFIER 200 V PIV $1 / 2$ amp 50 p .8 amp £ 2.50.
TOGGLE SWITCHES S.P. 30p. D P S 40 p . D P D T 50 p. MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS, GP9 $1 £ 1.50$. GP95 £2.50.
SONOTONE Stereo $£ 2.00$. ADASTRA magnetic $£ .5$.
WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt $\mathbf{1 5 p}$

BAKER MAJOR 12" $£ 16.88$

baker "big-s 'Group 25'	ND" SPE AKERS. Post E1 each -Group 35 'Group 50/15'
baker Loudspe GROUP 50/12,4 RESPONSE $30-16$. massive cerami WITH ALUMINIUM	
TEAK VENEERE For 12 in or 10 in . For $61 / 2 \mathrm{in}$ speaker Many other cabinets SPEAKER COVERII LOUDSPEAKER	

R.C.S. 100 watt

VALVE

AMPLIFIER
CHASSIS

four inputs four way mixing. master volume, treble and bass controls Suits all speakers This professional quality amplifier chassis is suitable for all groups, disco. PA where high quality power is required 5 speaker outputs A / C mans operated Slave output socket Produced by demand for a quality valve amplatle

Horn tweeters $2-16 \mathrm{kc} / \mathrm{s}$. 0 W 8 ohm or 16 ohm $£ 3.60$
Audax Tweeters $3.18 \mathrm{kc} / \mathrm{s} 50 \mathrm{~W} 8$ ohm $£ 7.50$
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$. £2.20.
LOUDSPEAKERS P.M. 3 OHM 7×4 in £1.50; $6 \frac{1}{2} / \mathrm{In}$. £1.80; 8×5 in £ $1.90 ; 8$ In. £1.95.
SPECIAL OFFER: 80 ohm $21 / 4 \mathrm{in}, 23 / 4 \mathrm{nn}, 35 \mathrm{ohm}, 3 \mathrm{~mm}$
 $3 \mathrm{ohm} .21 / 2 \mathrm{n}, 2^{5 / 1 \mathrm{~m},} 31 / 2 \mathrm{⿺}$, 5 in dia $£ 1.50$ each. PICHARD ALL 8in 8in diameter $4 W £ 2.50$. 10 In diameter $5 W £ 2.95$; MOTOROLA PIEZO ELECTRIC HORN TWEETER. £7.95 Handies up to 100 watts No crossover required
BLACK PLASTIC CONSTRUCTION BOX with brushed , E1.50

BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER
All purpose transistonsed
Ideal for Groups. Disco
 $\begin{array}{ll} \\ \text { Output } 4 & 4 \\ 8 / 16 \text { ohms ac } \mathrm{c} \text { and music } 4 \text { way mixing } \\ \text { Marns Separate treble and }\end{array}$ bass controls Master volume control

£85 \&1 50 car

100 WATT DISCO AMPLIFIER
£59
GOODMANS COMPACT 12-INCH BASS WOOFER Standard $121 n$ diameter fixing with Cut sides $12 \times 10 \times 14000$ Gauss magnet 20 watts RMS 4 ohm mmp . Bass resonance $=30 \mathrm{cps}$
Frequency response $30-8000 \mathrm{cps}$ ALUMINIUM HEAT SINKS. FINNED TYPE SIzes $61 / 2 \times 41 / 2 \times 21 / 4$ 95p. $61 / 2 \times 2 \times 21 / 465 p$.
BALANCED TVIN RIBBON FEEDER 300 ohme SALANCED TVIN RIBBON FEEDER 300 ohms. 5p Yd. JACK SOCKET Std. open-circuit 20p, ciosed
Phono Plugs 8 p . Phono Socket 8 p .
Phono Plugs 8p. Phono Socket 8p. STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chassis 3-pin 10p. 5 -pin 10 p.
DIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p. TV CONVERGENCE POTS
Values $=5,7,10,20,50.100 .200 \quad 250.470 .2000 \mathrm{ohms}$

MONO PRE-AMPLIFIER. Mains operated
sold state pre-amplifier unit designed to
complement amplifiers without low leve
complement amplitiers without low eve phono and tape input stages This iree automatic RIAA equalisation on magneuc phono input and NAB equalisation for tap
ON /OFF PHONO/TAP
 witches and pilot lamp are on the front pane
phono socket input and output are rear located
£4.50 each or $£ 8$ pair. Post 50 p

PORTABLE TEST EQUIPMENT BY nombrex

R.F. SIGNAL GENERATOR

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
* Overall accuracy - 21⁄2 \%
* Modulation variable depth and frqcy
* XTAL oscillator calibrator checks
$\star \mathbf{£ 6 0}+$ VAT \& Carriage

New Style Instrument Cases
New Style Elegant
Instrument Cases
In anodised aluminium with black vinyl top and bottom. Gives a professional finish to your assemblies

Height	Width		
	$83 / 4$	12	$161 / 2$
3	5.72	$€ 5.97$	$£ 7.68$
$41 / 2$	$\boxed{562}$	$\boxed{6.00}$	$\boxed{8.89}$
6	$\boxed{6.85}$	$\boxed{5.38}$	$\boxed{10.42}$

All depth 9^{\prime}
Add 80p for p8ip; do not add VAT

NOMBREX Ltd. Marsh Lane, Chudleigh, Newton Abbot, Devon. Tel. 852309.
Capacity/Resistance Bridges - Inductance Bridge - Stabilised Power Supplies

WW - 127 FOR FURTHER DETAILS

TV MONITOR KITS VISIONKITS

gives you professional TV equipment in kit form for all data display and picture applications, providing far superior results to converted TV receivers.

Top quality monitors exactiy as produced by one of today s leading manuiacturers All
parts plus comprehensive assembly instructions supplied along with full application notes $9^{\prime \prime}$ or $12^{\prime \prime}$ tube plus chassis kits are avalabie with a separate printed circuit module kit to fit ether size of tube

SPECIFICATION

Video - Composite $1 \mathrm{~V} \pm 6 \mathrm{~dB}$ input impedance 10 K ohms
Power -+12 volts stabilised Current 1 amp
System - 625 lines 50 fields and 525 lines 60 fietds
Video response to 10 MHz
Operating temperature - $0-50 \mathrm{C}$

PRICE LIST: (Including VAT and inland postage and packing) 9 tube and chassis kit
PC module kit
£45.00
Ready-built $9^{" 1}$ monitor
Ready-bult $12^{\prime \prime}$ monitor
Mains power supply for $12^{\prime \prime}$ monitor (built)
Please ailow 21 days for delivery
Mall order only

VISIONKITS
9 Claymill Road, Leicester LE4 7JJ

PRECISION POLYCARBONATE CAPACITORS

440 V ac range (+ - 10%)				63 V OC RAMASt \because,			
$\mu \mathrm{F}$	L. (mm)	D	E. each	山F (To	+ -1%	+ -2%	+-5\%
01	27	127	134	001.02	180	122	088
022	33	16	166	022.047	182	124	090
0.25	33	16	178	10	226	152	108
0.47	33	19	208	22	280	194	142
05	33	19	224	47	400	272	224
068	508	19	248	68	488	336	266
10	508	19	264	100	694	468	356
20	508	254	374	220	1332	998	680

TRANSISTORS, DIODES 1 C.s. Budat Rectifers. Capacitors. Flugs \& Sockets Vero etc RESISTCriS:Hyy SLLDIIty low roise, cardontirn + -5% tol $1 / 2 W(\mathbb{Q} 40 \mathrm{C} 1 / 3 @ 70$ C E 12 series conly - from 22 ohm to 47 M All $2 \mathrm{p}^{\circ}$ each $15 \mathrm{~m}^{\prime} 10$ of any one value $95 n^{\circ} 100$ of any one Value ${ }^{\text {SPECIAL DEVELOPMENT PACK. } 10 \text { off each value } 220 h m ~ t o ~} 22 \mathrm{M}$ (73
SPECIAL DEVELOPMENT PACK. 10 off each value 22 ohm to 22 M (730 resistors) PRESETS:
PRESETS: O IW submin skeleton presets - vertical or horizontal 100 ohm to $1 \mathrm{M} 7 \mathrm{p}^{\circ}$ eac ZENER DIODES: $400 \mathrm{~mW}+-5 \% 3 \mathrm{~V} .33 \mathrm{~V}$ iW $3 \mathrm{~V} 3-200 \mathrm{~V}$

MARCU IHADING (Dept. W9)
Id School, Edstaston, WEM. Shropshire
Tel: WHIXALL 464 (STF 094872)

- (Props Minicost Trading Lid

A. R. DAVIES

 OFFER THE FOLLOWING COMPONENTS AT KNOCK-DOWN PRICESAPPROX. 400 STABILISED POWER SUPPLIES
100 ASSORTED ELECTRIC MOTGRS, AC AND DC
VARIOUS TRANSFORMERS \rightleftharpoons VARIOUS FANS VARIOUS BLOWER MOTORS APPROX. 100 KEYBOARDS VARIOUS RELAYS VARIOUS CAPACITORS VARIOUS RESISTORS VARIOUS VALVES VARIOUS TRANSISTORS VARIOUS CHOKES VARIOUS RECTIFIERS VARIOUS SWITCHGEAR THQUSANDS OF MECHANICAL/UNITS FILTER UNITS MATRIX BOARDS FUSES AND FUSE HOLDERS
NUTS, BOLTS, SCREWS, SPRINGS,
WASHERS
CORE STORES
VARIOUS METERS VARIOUS PULLEY WHE\&LS MAGNETIC CLUTCHES PLUGS AND SOCKETS HYDRAULIC ACTUATORS TAPE DRIVES PHOTO ELECTRIC CELLS MEMORY UNITS HYDRAULIC VALVES LAMPS \& NEONS TOGGLE SWITCHES SOLENOHOS

Open to the public, Sat., 2nd-Sat., 16 thSat., 30th. All stocks listed above is only part of a huge range-of-cemponents and can be viewed at:
> A. R. DAVIES 28 ST. ALBAN'S ROAD CODICOTE NEAR OLD WELWYN HERTFORDSHHRE

Give for those who Gave

Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them or their dependants are now in need of help.
Please assist by giving all
you can for an emblem during WINGS WEEK or please send us a donation

PLEASE
WEAR THIS EMBLEM

DURING
Wings Appeal
in September

Are you legal, decen honest and truthful?

Advertisers have to be.

The Advertising Standards Authority. Write to I he Advertising Standards Authonit is i/ Rrigmount Street London WC IH JAW

Appointments

Advertisements accepted up to 12 moon Monday, September 4 for the October issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 1.10$ per line. minimum three lines.
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World. Dorset House, Stamford Street London SEI 9LU.) PHONE: Barry Leary on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V A T.

Senior Test Equipment Engineers Everything leads to Europe's most advanced electronics complex

No matter what it is you're looking for in your career - prospects for promotion - a broad spectrum of advanced products to work on - highly sophisticated ATE systems - a high level of personal involvement - job satisfaction - a chance to do things in your own way - an established, friendly team atmosphere - you'll find it alt at Pye Telecommunications in East Anglia Opportunities exist for suitably qualified and experienced men and women at both Haverhilt and at our new $£ 7$ million manufacturing and laboratory complex at Cambridge, one of the most advanced facilities in Europe.
You will be working in the company of some of the country's leading electronics specialists, with a range of highly sophisticated ATE systems, writing programmes and designing interfaces to cover mobile and fixed UHF/VHF two way radio systems. These will include computer-based inter-active systems, such as digital signalling, encoders/decoders, speech synthesis and data display.

2 years' related test equipment experience, then we'd like to hear from you.
We're offering highly competitive, negotiable salaries and first class benefits, including a generous relocation package covering all major expenses Cambridge is an extremely attractive city, offering excellent sporting, recreational and cultural facilities and a wide choice of reasonably priced housing, both to rent and to buy. And at Haverhill you witl be eligible for local authority housing under the key-worker scheme Please write giving brief details of qualifications and experience to date to:
Peter Simpson, Chief Test Equipment Engineer, Pye Telecommunications Lid. St. Andrews Road, Cambridge CB4 1DW

Pye Telecommunications Ltd

ELECTRICAL \& ELECTRONICS STAFF

The Test House of the British Standards institution at Hemel Hempstead have several vacancies within these Sections.

Senior Electrical Engineer

Responsible for the management of the Electrical Machines Laboratory which is engaged in the testing of Electro-Mechanical and Electronic equipment to recognised safety and performance standards. The products include office machines, portable tools and domestic appliances.
Candidates should be Chartered Engineers, preferably with experience in a relevant industry
Salary Scale $£ 5,260-£ 6.874$ inclusive of salary supplements Ref. HHC/E/36/676.

Senior Electronics Engineer

Responsible for the management of the Electronics Laboratory engaged in the testing of Radio and TV Products to recognised safety standards. The applicants should be familiar with the requirements of BS 415 and IEC 65. The Senior Engineer is expected to attend the relevant technical committees and to liaise with clients.
Candidates should be Chartered Engineers, preferably with experience in the radio and TV industry.
Salary Scale $£ 5,260-£ 6,874$ inclusive of salary supplements. Ref. HHC/E/36/645.

Electro-Medical Technicians/Engineers

Several vacancies have arisen in this new laboratory for the testing and assessment of electrically operated medical equipment to British and IET specifications. The work is interesting and varied and offers opportunities to work in an expanding National Test House associated with advanced technology.
Applicants should hold a Degree / HND / HNC in Physics or Electronic / Electrical Engineering and preferably have some experience of electro-medical equipment
Salary Scale. Negotiable and dependant on relevant experience Ref HHC/E/36/675.

The above posts are permanent and pensionable with five weeks' holiday for Engineer grades and four weeks for Technician grades

Please apply, quoting the appropriate reference number, to
Personnel Department
British Standards Institution
Maylands Avenue
Hemel Hompstead, Herts.
Tel. (0442) 3111
BRTISH STANDARDS smis罚

EIECTRONICS
IECHNICIANS When you see a good job advertised what do you look for next?
Obviously, before you contemplate a change of job and possibly area you must weigh-up your present job prospects, pay and surroundings and measure them against those that have attracted you.
Really that's all we want you to do NOW-we are confident that the combination of Marconi Instruments and its locations in St. Albans and Luton will persuade you to give very serious consideration to the appointments we have vacant.

Job Satisfaction If you would like working for a successful Company you'll like us-66\% of our products ranging from microwave test equipment to automated test systems are exported. Unlike any other in the business we achieved the 'double' in 1977 with the Queen's Award for both Exports and Technological Achievement-just two reasons why our people have every reason to be proud of their Company and its expertise

Housing

The Hertfordshire/Bedfordshire area is probably one of the most picturesque of the counties surrounding London and contains some very reasonably priced housing both of the modern and rural varieties. The average
 family house is priced in the region of $£ 16,000$ to $£ 22,000$.

Schooling
The family man will be particularly impressed with the local schools both Junior and Seniormodern, spacious buildings are the order of the day and individual successes are very encouraging.

Sports and Social Activities For the energetic our own sports and social club is very active, particularly with the recent addition of a squash court. Golf courses, cricket and football clubs abound and for the less energetic many social activities are available.

Local Amenities
If you still have time on your hands you will enjoy a visit to the theatre in either St. Albans, Luton or Watford. The local Rep. is very well supported.

All in all we can offer you a really worthwhile job, attractive pay, relocation and equally important, excellent local surroundings. Why not ring John Prodger, Personnel Officer, he lives locally and can give you first hand information about the jobs and surrounding districts.

MARCONI INSTRUMENTS LIMITED Longacres, Hatfield Road, St. Albans, Herts. Tel: St. Albans 59292 or atter 6 pm and weekends St. Albans 30602

With a viewo.

Medical Design

London

c. $£ 5.500$

Several opportunities offering satisfying aiid rewarding work These appointments are with a newly-formed group designing a range of medical ultrasonic instruments

The posts offer an excellent opportunity to be "in at the start" with a small and friendly team, and to grow with the success of the operation whilst having the stabllity and back. ing of a major group

Ideally you will have several years experience of the design of digital or analegue circuitry, but there are also vacancies for people with less experience

Our client offers excellent salaries, indivi dually negotiable, plus the benefits and stability of a targe company

For further information. please contact Mike Gernat ref: MAB

The Micro World

To £5,000 + Slough
Step into the future - work with advanced micro-terminal technology

LECTURER
CUSTOMER EDUCATION
An opportunity to establish and design courses based on all company products. making you THE expert

DEVELOPMENT ENGINEER
 HARDWARE + SOFTWARE

A chance to design and develop improve ments for existing and new applications your ideas in practice

A year's digital experience linked with an HNC or Degree in Electronic Engineering and possibly a knowledge of terminal or data transmission principles, could be your key to a new world.

This rapidiy expanding company offers excellent promation opportunities, product training and a substantial benefits package including relocation expenses
For further information, please contact Geoff Aldridge, ref GAB

Computer Engineers

c. $£ 6,000$

PROJECT ENGINEERS

- with previous project experience associated with electronic equipment, preferably on computer terminal equipment or data com munications equipment

MANUFACTURING TEST ENGINEERS
-experienced in electronic equidment pro duction preferably concerning computer terminal equipment

SERVICE ENGINEERS

- with several years experrence in the servicing and repair of minicomputer (PDPII useful) microprocessor, video display and communications systems

Forfurtherinformation, please contact Mike Geinat. ref: ME8

Quality Inspection

Rickmansworth

This is a progressive opportunity within a growing company for an inspector with experience of electronic and electro mechanical components and sub-assemblies.

Responsibifity will be for the quality contro of all inputs to manufacture. This will include the inspection of a range of items from PCBs and components through to power supplies. minicomputers and terminals

Our key requirements for this post are experience and difigence: age is relatively unimportant. The post carries a first class remuneration package, which includes free life and sickness insurance, a good pension scheme and an achievement-related bonus

For further information, please contact Mike Gernat. ref MD8

Post - Design Services International

Digital Projects

ro £5.360
North-West London
To $£ 5.600$
An unusual and exciting appointment for either a Digital Designer seeking customer contact and overseas travel, or for a Mini computer Service Engineer who wishes to retain mobility but is interested in problen solving and design.

The job entails updatıng and modifying minicomputer-based systems to suit customer requirements and investigating and over coming operating problems in close laison with the user This could involve, on average perhaps one trip per month overseas - within Europe or further afield
Out client is a progressive, medium-sized company whose products have earned an international reputation. As a member of a small friendly team in which hard work is rewarded, you may confidently expect an excellent salary/benefits package

For further information, please contact Mike Gernat, ref: MC8

An excellent opportunity to join a multi disciplinary tean and use your creative skills to design and commission sophisticated processor based Production Control and Information Systems In addition you will be encouraged to master new skills and evaluate possible applications using the latest tech. nology
This small but essential department serves a large company with several UK sites giving you project variety and a chance for occasional travel

With one vear's design experience, coupled with an HNC or Degree in an Electronic or related discipline there are exciting prospects for career advancement

The femuneration package is excellent, with regular salary reviews and attractive fringe benefits including removal expenses
For further information, please contact Geoff Aldridge, ref GC8

Probe Advanced Engineering

Rewarding opportunities at the forefiont o technology for Test Technicians at all levels TEST SUPERVISOR c. $£ 5.500$

If you have 4 years' Analogue and Digital test experience, and proven supervisory ability, this post offers you the opportunitv to develop a useful new expertse while equip. ping yourself for future advancement promotion. on merit, is a real possibility.
You will be responsible for the smooth running of a team of 40 Technicians their training and work scheduling
TEST TECHNICIANS
To $£ 5,000$
With a minimum of 4 years Analogue and Digital test experience, you could be working on varled and advanced systems gaining the right experience 15 improve your future prospects

These appointments are largely new ones due to the success and expansion of the company It is based in North West London and offers an attractive benefits package including housing assistance.
For further information, please contact Geoff Aldradge, ref GD8

An Open Invitation

Technomark invites you to discuss you career with our qualifted consultants who understand your needs and ambitions. We offer you FREE and constructive advice on advancement opportunities and can bring a new dimension to your career
This advertising feature outlines only a few of the many and varied opportunities available to our candidates: many more are neve, advertised
if you have any questions regarding your future - or the services offered by Technomark
please phone us or complete this coupon sending it to our FREEPOST address

My experience is in

Management	Sales
Design	Service
Commissioning	7est

Commissioning lest

Name
Address

Phone

FREEPOST, LONDON W2 4BR. Telephone 01-229 9239

Land a goodjob

Your Radio Officer's qualifications can mean a lot here on shore

If you're thinking of a shore-based job. here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

The Post Office Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties. from Morse and teleprinter operating to traffic circulation and radio telephone operating.
To apply you must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of Proficiency in Radio-telegraphy or an equivalent certificate issued by a

Commonwealth Administration or the Irish Republic. And. ideally you should have some sea-going experience. The starting pay at 25 or over works out at around £4093; after three years' service this figure rises to around £5093. (I \ddagger you are between 19 and 24 your pay on entry will vary between approximately $£ 3222$ and $£ 3732$). Overtime is additional. and there is a good pension scherne, sıck-pay benefits, at least 4 weeks' hol iday a year: and excellent prospects of promotion to senior management.

For further information, please telephone Andree Trionfi on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (L690), ET 17.1.2, Room 643 Union House, St. Martins-le-Grand, London EC1A 1 AR.

Post Office Telecommunications

ELECTRONICS ENGINEER

THE COMPANY

We are a young company experiencing vigorous growth, full of good ideas and successful in putting these ideas into practical uses
We are now the dominant force in our original market area and have expanded into others.

THE PRODUCTS:

Our products are state of the art, well conceived and built with care. To back this up we pride ourselves on the service our customers receive. Our products include Traffic Monitoring Equipment, Data Loggers, through to OEM Single Board Microcomputers.

THE JOB:

This involves the design, development and debugging of microprocessor based products. The ability to work in an inventive and practical manner is essential. Knowledge of programming would also be an advantage
THE APPLICANT:
This person will be qualified and hold a relevant degree, H.N.C. or H.N.D., although the emphasis is on ability rather than qualifications. A good salary is offered and the chance to grow with the company

IT'S YOU? Then for an interview write or phone Roy Tuthill (Technical Director) -

[^7](8454)

R \& D Engineers at senior and intermediate levels

required to work on digital and cable television systems for the domestic and surveillance market

Engineers should hold a degree, HNC or equivalent qualification and have some knowledge of either HF video or digital circuit design

Salaries will be commensurate with qualifications, age and experience

Fringe benefits include a contributory pension, life assurance scheme, subsidised canteen, etc

If you are seeking an enjoyable position in R \& D. write giving full details of your career to date, or telephone Dr. G. O. Towler, B.Sc. Ph.D. (Manager), Research and Development Establish ment, British Relay Ltd. Cleeve Road, Leatherhead, Surrey. Tel 76056

8469

SULTANATE OF OMAN

COLOUR TELEVISION SERVICE

We are recruiting on initially one year contracts and have vacancies for the following and other positions.

PROGRAMME STAFF

- Production Director
- Programme Director
- Film Editor
- Transmission Controller
- Administration

OPERATIONS STAFF

- Sound Supervisor
- Sound Dubbing \& Mixing
- Film Processing
- Film Cameramen
- T.V. Lighting/Cameramen

ENGINEERS

- Studio - V.T.R. - Telecine
- Transmitters
- Microwave
- O/B Van
- Technical Administration

ADMINISTRATION

- Training Officer

PLUS

- Aerial Rigger/Mechanic
- Electricians
- Diesel Mechanic
- Air Condition Technician

Let us discuss with you your abilities for these interesting and important positions. Would previous applicants re-confirm their interest.

Write or phone: Tony Owers, 01-5738333
PERSONNEL \& ELECTRONICS LTD.
TRIUMPH HOUSE
1096 UXBRIDGE ROAD
HAYES, MIDDLESEX UB4 80H

Listening-in at 75 fathoms needs your kind of engineering experience

Abstract

Modern anti-submarine warfare relies heavily on detection devices suich as the sono-buoys cations Lid that atter drop from an arrcraft flying at up to 10.000 ft cieploy ons llying at up to 10.000 ft , Geploy themselves automaticaled depth and rising a rado aenal so as to listen for amplify them and transmat the intormation amplify them and transmst the information back to subnuarine hunting arcraft. Group. also manufactures and denal Dowty Group also manufactures and develops communication control systems and interconn units for civit and military aircratt, arrborne emergency radios, and beacons for homung and rescue applications. Our latest project is in British Rall with a communication system between signal a communication system between signal boxes and trains. Many of these systems need a high degree of ingenuity and the kind of engineerng experience that maybe you can offer. In particular we

Electronic Development Engineers
We are looking for mien or women to join a small team of Engineers and Technicians working on the design of analogue systems and circuits. Visits to trials may be necessary
and opportunities might arise for visits to clients and suppliers.
clients and suppliers.
Applicants should be qualified to HND or Applicants should be qualified to HND or
preferably degree level with several years preferably degree
design expenence

Senior Development
Technicians
We requre men or women to fon project teams working on the design and development of analogue systems and circuits for prototype equipment will be responsible for building. testing and evaluating experimenta equpment and for assisting with the development of analogue circuitry.
Applicants, aged between 25 and 45 , should hold City \& Guilds Electronics, Radio \& TV. or Tetecommunications Certificates up to 5 years deralo 5 years development experience, preferably involving government contracts.
Test Technicians
Our production department require additional male or female Testers with experience of radio or analogue circuits and test equipment Candidates should have several years practical experience in this area with or without qualifications.

We are offering attractive salaries, negotiable

 according to qualifications and experience plus a wide range of attractive large company benefits There are good promotion prospects and generous relocation package is avalable where necessary covering all legal and estate agency fees. Buiding Society survey fees. viewing expenses, and a disturbance allowanceFor further information and an application form phone or write to
Mr Gavin Rendall. Personnel Manager. Ultra Electronic Communications
Limited, 419 Bridport Road.
Greenford,
Greenford,
MiddlesexUB68AU.
Tel:01-5780081.

Listening-in at 75 fathoms needs your kind of engineering experience

Electronics Technician

required to work with small team of Engineers on custom built equipment

Duties include assembly, wiring and test of complete equipment as well as testing small batches of PCB's

Previous experience of wiring essential, preferably to mulitary standards, previous production testing experience would be an advantage

Suitable candidate must be able to work unsupervised
Telemotive looks only for above average personnel, and this is reflected in conditions of employment offered

Please apply in writing. giving details of previous experience, to -
Telemotive U.K. Limited

Ministry of Defence

 Radio TechniciansThe Ministry of Defence has vacancies at RAF Henlow for Radio Technicians to work on the maintenance, fault diagnosis, repair, recalibration and modification of radio communication, radar, and electrical and electronic test equipment. Applicants must be experienced technicians in the radio/electronics field.
Starting pay according to age, up to $£ 3,700$ a year (at age 25) rising to $£ 4,252$ a year.
5 day week - 4 weeks paid holiday in addition to Public Holidays - prospects of promotion - pension scheme.

Applicants must be United Kingdom residents.
Write for further details to

Officer Commanding Radio Engineering Unit Royal Air Force
 Henlow
 Bedfordshire SG 16 6DW

Aword to the wise Aboutour advanced support engineering atBasildon

In the field of electro-optics, we're leading lights in more ways than one. Our work covers the development and manufacture of a wide range of advanced equipment for ground based, airborne, shipborne and underwater surveillance, guidance and tracking systems. We're work ing on acoustics and optical projects and the technology employs sensors in the visual to IR band and data transmission links toget her with all the associated signal processing.

It's a see all, hear all, and tell all enviromment and in our Electro-Optical Systems Group here in Basildon we cansu provide engineers with exceptional scope for creative involvement in all manner of high interest projects.

The continuing growth of our work has created unusually attractive career development opportunities for both men and women and at the moment we have a particular requirement for:-

Field Trials Engineers

To provide support to the development programmes during engineering and customer evaluation trials; commissioning. calihration and maintenance of prototype systems; acquisition of trials data and assisting with post trials analysis.

Trials Planning and
 AnalysisEngineers

For detailed planning of proving trials including definition of trials requirement; co-ordinating trials and analysing results, utilising such data acquisition techniques as audio and video recording and data analysis using computing facilities.

Component Engineers

To liaise closely with project development teams to ensure correct choice of components; prepare purchasing documents to ensure quality and reliability requirements and liaise with suppliers to secure acceptance of specification.

ProductSupport Engineers

Entails close liaison with company engineering production and test departments and with customers' technical staff in support of established equipments during manufacture and customer evaluation.

Technical Writers

'To prepare documentation in support of commercial and military projects including design and test specifications, handbooks and the preparation and editing of proposals and technical reports.

These appointments call for at least ()NC and preferably an HNC or equivalent qualification with relevant experience in servicing or design of major electronic systems.

If you have the sort of qualifications and experience we're looking for vou'd be wise to get in touch with us without delay: Write with details of your career to date to J. S. Nealon at Marconi Avionics Limited, Christopher Martin Road, Basildon, Essex 'Telephone: Basildon (0268) 22822 ext. 86 . Where necessary we can assist you with relocation to this attractive part of the country.

MARCONI

A GEC-Marconi Electronics Company

TECHNICAL INSTRUCTOR

c. 55,500

The Company wishes to appoint a Technical Instructor with HNC or equivalent experience in electronics. Preference will be given to candidates with proven lecturing experience covering analogue and digital techniques, including microprocessors.
Successful applicants, either male or female, will be responsible for the preparation and evaluation of course material using modern training aids which include OHP, slides, CCTV and video tape. This job involves training in-house staff, including sales and service engineers, customers' engineers and operators, and assisting where necessary in the preparation of technical and operators manuals. Occasional overseas travel may be necessary for 'on-site' training.
Based in London, this position offers the challenge, interest, satisfaction and rewards to attract the best of today's technical instructors.
Please telephone or write, quoting reference G/2002, to:-
Mrs L Geers, Personnel Officer, Crosfield Electronics Limited, 766 Holloway Road, London N19 3JG. Telephone 01-272 7766.

BRENT AND HARROW AREA
HEALTH AUTHORITY (Harrow District) NORTHWICK PARK HOSPITAL AND CLINICAL RESEARCH CENTRE
Watford Road, Harrow Middlesex HA1 3UJ Tel: 01-8645311

ELECTRONICS TECHNICIAN

(MPT GRADE III)
A technician is required to service and calibrate a wide range of equipment used for medical, surgical and engineering purpose The successtul applicant will work closely with medical and other protessional staff ONC. HNC. HND or Science Degree (or three years previous experience as a Technician Grade IV) is a necessity. Salary £3744-£4788 plus £354 London Weighting Allowance.
For further detals and application form please contact Personnel Department. Ext. 2001
(8429)

TELECINE/VTR ENGINEERS

you have VTR and Telecine experienc and want to move into Broadcasting in the West Country then Westward Television would like to hear from you
acancies exist within two teams of six engineers to undertake operational and maintenance duties

Salary according to age and ex a maximum of $£ 5.000$ basic

Apply, in writing giving full detais to the Personnel Manager. Wesiward TV Lid Derrys Cross. Plymouth PL1 2SP, or telephone 075269311 ext. 215 for further details and application form
\qquad

RADIO INSTALLERS

Radio and Radar Engineer

BRITISH AEROSPACE Dunsfold Aerodrome

This is a worthwhile position for a man or a woman wishing to strengthen a small team responsible for servicing and maintaining air traffic radio/radar installations.

Applicants should have a minimum of 5 years current air traffic radio / radar equipment maintenance experience.

We will pay you an attractive salary and fachlities include a subsidised Canteen and an active Sports and Social Club
Please write or telephone quoting WW/92 to
The Personnel Officer
BRITISH AEROSPACE
Aircraft Group
Kingston-Brough Division
Dunsfold Aerodrome
Nr. Godalming
Surrey
Telephone: Cranleigh 2121

H.M.G.C.C.

ELECTRONIC ENGINEERS

Designers and Development Engineers are required for work in the HF and UHF fields and in general analogue and digital circuitry.

The Establishment is sited in rural surroundings in North Bucks. within easy reach of Northampton, Bedford and Milton Keynes. A frequent rail service and the M1 motorway provide easy access to London. House prices in the area are still at provincial levels.

Minimum academic qualification is HNC and, for Higher Scientific Officer, five years' post-qualification experience (for graduates with First or Second Class Honours this is reduced to two years' post-graduate experience).

Salaries are
Scientific Officer £2839-£4415
Higher Scientific Officer £4101-£5448

DRAWING OFFICE STAFF

Drawing Office Staff are required in a supporting role to the above engineers
Salaries are in the ranges $£ 3148-£ 4326$
£4326-£4869
Salaries for Drawing Office Assistants are £2119-£3189, depending upon age, qualifications and experience

For application form please apply to
The Administrative Officer (Dept. WW) HM Government Communications Centre

Hanslope Park
Hanslope
Milton Keynes
Bucks.
MK197BH

干

TYNE TEES TELEVISION LIMITED

A Member of the Trident Television Group
have a vacancy for an

ENGINEER

In the Central Technical Facilities Department for operational duties in video tape recording, film transmission and network circuit tests. H.N.C./ H.N.D. in an appropriate subject is a desirable qualification together with an interest in current television broadcasting techniques.
Starting salary for an experienced applicant, in accordance with A.C.T.T. scale, will not be less than $£ 3580$ per annum. Shift working required. Company benefits include pension scheme, 4 weeks' holiday and staff restaurant.

Please write, in confidence, to
Mrs. J. M. Jacobson, Personnel Manager TYNE TEES TELEVISION LIMITED The Television Centre, City Road Newcastle-upon-Tyne NE1 2AL

Service Engineer

Dixons Technical forms part of the Dixons group of Companies. We wholesale export and provide sophisticated close circuit and video equipment to major T.V. companies, commerce and industry
We are currently looking for a Service Engineer with a minimum of two years' experience in the video field to work in our new headquarters in Croydon. Service experience on VTR is essential and training will be given in servicing cameras and monitors.
We can offer you a competitive salary, excellent fringe benefits which include 4 weeks' holiday and massive discounts on the very best photographic and audio equipment.
Contact
Ron Irving, Personnel Manager
Dixons Photographic UK Ltd., Prinz House
54-58 High Street, Edgware, Middx.
Tel. 01-952 2345, ext. 341
(8452)

Dixans

AUDIO + VIDEO LTD. SENIOR VIDEO ENGINEERS AND HIGH GRADE TELEVISION ENGINEERS

Because Audio + Video are the largest video duplicators in Europe, we naturally have a lot of high-class equipment tp produce our top quality video tapes. We have in house, the Marconi D.IC.E., the Rank Cintel Flying Spot Telecine, the RCA TK28 Telecine, TR60, TR70c and Ampex 20002 Quad machines, Sony D100 duplicator, 2850. 2600, 2030, 2630. Betamax. Philips VCR 1500 and 1700 , VHS, Keyline editor, etc.
We now require Senior Video Engineers with experience of maintaining and servicing any or all of the above equipment and high grade Television Engineers who can be trained to help maintain most of it. We will pay salaries in excess of $£ 5,500$ for the right people who enjoy working in television.
Please contact Cliff Carroll on 01-580 7161.

We require staff, male or female, to prepare and maintain the latest in communications equipment used by the Police and Fire Brigades in England and Wales.

You will need to be qualified at least to City and Guids Intermediate Telecommunications standard and be able to demonstrate practical skills in locating and dagnosing faukts in a wide range of equipment from computer based data transmission to FM and AM radio systems You would live near to and work from our service centres located throughout England and Wales or our Headquarters in the London area Specialised courses of training are run to assist staff to keep up to date with developments and new equipment and there are opportunities for day release to gain higher qualifications Applicatıons from registered disabled persons will be considered
Promotion prospects are good and the work represents a secure future with generous leave allowances and a non-contributory pension scheme
Possession of a driving licence is essential since some travelling will normally be involved
The salary is $£ 2627$ (at 17). $£ 3176$ (at 21) and $£ 3700$ (at 25). rising to £4252.
If you are interested in working with us. then write for further details and an application form to:

MrCBConstable
Directorate of Telecommunications
Horseferry House
Dean Ryle Street
LONDON SW1P 2AW
Telephone:01-2116420

The City University

Studio Technician

required to work in a team developing new facilities in the University, There will be two main areas of responsibility
In the Electronic Music Studio with responsibility for developing and maintaining equipment for students work as well as planning a computer link and a digital research programme
In the Language Laboratory carrying out regular servicing and immediate fault correction on language equipment and participating in forward planning
Applicants should have experience of both design and practical work some knowledge and interest in electronic music is useful.
Salary will be on the scale $£ 3441-£ 3890$ or $£ 3674-£ 4209$ per annum inclusive. Application forms are obtainable from: Mrs K. Fowler, Personnel Office, The City University, St. John Street, London EC IV 4PB (01-253 4399, ext. 334).

How to sind a better job without leaving your armchair.

Don't for a single moment question your motives. Striving for a higher income is a philosophy practised by people in all walks of life.

Perhaps though, you cannot get a fair picture of the opportunities avalable from the standard, limited sources of job information.

Lansdowne on the other hand, are asked for information on available people by over 3,000 good employers, big and small. Think of how many different careers they have to offer and you can see why in seven years thousands of people have used us to get a better deal.

You won't be questioned, grilled and pestered by us. Simply complete and post the coupon below. By return we shall send you a concise application form-treat it as an informal interview giving us all relevant details about your career, aspirations and the names of companies you would not like to work for - we guarantee to keep this information confidential

We match your ambitions and skills with our clients' needs. When the two are compatrble, the clients hear about you right away and you should get an invitation to talk.

Take this chance to find out how many companies are interested in having you on their side. They use us because our method is simple, quick, efficient. Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 2282 (24 hour answering service).

Lansdowne Appointments Register, Design House, The Mall, London W5 5LS. Tel: 01-579 2282 Tel: 01-579 2282
(24 hour answering service) 8485

FOREIGN AND COMMONWEALTH OFFICE COMMUNICATIONS DIVISION

has vacancies for

RADIO TECHNICIANS

to carry out shift duties concerned with MW and HF broadcasting systems involving frequency changing, fault finding and routine maintenance, keeping logs, and recordings.

Applicants should have minimum qualifications of City and Guilds Intermediate Certificate in Telecommunications or its equivalent.

The successful candidates will serve initially at Crowborough, but may be required to serve elsewhere in the UK or overseas should the necessity arise

Salary is according to age, e.g. $£ 3,176$ per annum at age $21, £ 3,435$ at age $23, £ 3,700$ at age 25 or over on entry rising by annual increments to a maximum of £4,252 per annum.

The appointments attracts 4 weeks ' paid holiday and prospects of pensionable employment.

Recruitment Section

Foreign and Commonwealth Office
Hanslope Park, Hanslope, Milton Keynes MK19
7BH
(8320)

Sound out your new career in $\mathrm{Hi}-\mathrm{Fi}$

Hardman's are now the No. 1 name in hi-fi retailing in Birmingham. Chester. Liverpool. Manchester and Preston with superb spacious showrooms offering the best hi-fi selection in town. But we're not just a single fast expanding company with five stores and more to follow; we're part of a large and successful Group with interests throughout the leisure industry. To you that means the big benefits that only a large Group can offer you: security plus the almost unlimited scope that an enthusiast like you will relish

Senior Audio and Hi-Fi Sales Staff

You must have a proven sales ability and/or sound audio or hi-fiexperience. We'll give you specific sales training and keep you up to date with regular seminars. Good salary plus commission. PLUS excellent opportunities for promotion to management within the group Hi-Fi Engineers
You're a qualified hi-fi/audio/video engineer, or you're mid way through an apprenticeship scheme with no immediate
opportunities. You'd like to service, test and repair hi-fi
equipment in our well-equipped premises. We'll tell you all about the equipment and keep you updated on new developments. Excellent salary. Please write for an application form to:
The Managing Director, Hardman Radio Limited, 26 Exchange Street East, Liverpool, L2 3PH.
(8401)

Talk to the helpful Hi-Fi people
HARDMANS

Development Engineers

for Pye TVT.

the Broadcast Company of Philips.
We are fast expanding into the areas of digital signal processing, microprocessors and computer based systems in studio engineering.

We are therefore looking for Development Engineers with at least 4 years experience in the design of high-speed digital signal and/or data processing equipment.

They will be involved in and carry responsibility for all aspects of the design of digital equipment for broadcast TV applications.

Applicants should possess a degree or equivalent. Software experience is an advantage, together with a background in broadcast TV equipment.

The positions offer competitive salaries, plus relocation expenses and the normal benefits offered by a progressive company at the forefront of broadcast technology.

For further details, contact Alison Millar, Personnel Department, Pye TVT Limited. Coldhams Lane, Cambridge CB1 3JU.
Telephone Cambridge (0223) 45115

Senior Design Development Engineer

Circa $£ 9,000$ p.a. + car + benefits
HIGH FREQUEMCY - HIGH POWER generation for industrial processing

A unique opportunity exists for a first-class engineer to contribute originality and professionalism to a number of development projects newly created within a vigorous, progressive company situated in the South of England.

The position calls for proven ability in innovative development and experience in R.F. Generation, High Voltage techniques and a working knowledge of light current electronics including digital and analogue circuitry. Emphasis is placed upon the candidates willingness to adopt more than one engineering discipline.

This attractive post carries benefits consistent with the responsibility and status of the position Advancement within the company will relate to the contribution of the candidate - progress to a Board position is expected. Additional benefits include BUPA, first-class superannuation and, where necessary, relocation expenses.

In the first instance telephone your nearest branch or write, enclosing c.v. to

ATA SELECTION \& MANAGEMENT SERVICES
23 Cumberland Place, Southampton
Southampton (0703) 37555
London 01-6370781
Crawley (0293) 514071
Bristol 0272211035
Birmingham 021-643 1994 Manchester 061-832 5856 Edinburgh 031-226 5381

BRENTFORD ELECTRIC LIMITED

A thriving Company of over 400 people with a number of "firsts" to its credit in the field of Industrial Power Converters seeks:

ELECTRONICS DESIGN ENGINEER
 for General Circuit Design

[^8]Please write with details of your career or for further information to

VIDEO ENGINEER

TECHNICOLOR VIDTRO.

 NICS LTD. have a vacancy for a Broadcast video engineer. Cinema film technology experience an advantage. Salary in a range of $£ 3,900$ to $£ 5,300$ commensurate with experience plus pending increase.Telephone 01-759 5432 and ask for Mr. Edgerton or Mr. Blight.
Technicolor Vidtronics Ltd. Bath Road, Harmondsworth, Middx.
(8474)

ASSISTANT MANAGER

Lynx offers an opportunity for an ambitious. enthusiastic young hobbyist to help build Lynx into a major maıl order retail organisatıon. This will involve expanding the range of products such as IC's, discreet semiconductors and passives Knowledge of radio, TV. and other electronic projects would be most useful.
Applications in writing to W. J. Bulman, Lynx Electronics Ltd., 92 Broad Street, Chesham, Bucks.
(8421)

NEWCASTLE AREA HEALTH AUTHORITY (TEACHING) ELECTRONICS \& MEDICAL ENGINEERING SECTION NEWCASTLE GENERAL HOSPITAL

CHIEF ELECTRONICS TECHNICIAN (GRADE 2)

Applications are invited for the above position. The Chief Electronics Technician will assist the Senior Area Electronics Engineer in the maintenance of electronic and medical engineering equipment
The position offers a unique opportunity to lead a specialist team of Technicians covering all applications of electronics in medicine. including brain scanning equipment and communications
Salary Scale $£ 4.470$ rising to $£ 5.610$ by 8 annual increments
Candidates must have a broad experience of electronics, experience of medical electronics an advantage. Minimum academic qualifications - H.N.C. Electronic Engineering or equivalent
Job description and application forms available from Area Engineer's Office, Newcastle Area Health Authority (T), Area Headquarters. Scottish Life House. $2 \cdot 10$ Archbold Terrace. Newcastle upon Tyne NE2 1 EF. Closing date for completed application forms. Friday. 25th August. 1978.
(8431)

ELECTRONICS ENGINEERS

ITA's expansion programme has created more en gineering vacancies. Secure future for Engineers with proven electronic ability. Varied and interesting work providing an attractive salary

Contact the Chief Engineer

INDUSTRIAL TAPE APPLICATIONS 1-7 HAREWOOD AVENUE, MARYLEBONE, LONDON, NW1
 TELEPHONE: 01-724 2497/8

Electronic Design Engineer

This new appointment is to join a small but growing engineering team involved in the design and development of electronic wheel balancers and electronic wheel alignment equipment. It involves completing product design from an initial outline specification prototype production, and assistance to manufacturing during the initial production stages

The Electronic Design Engineer will be responsible to the En gineering Manager for electronic aspects of the company's designs, and will work with development engineers, design draughtsmen and technicians. Some travel within the United Kingdom and occasionally abroad is required

The successful candidate, male or female, will be educated to degree or HNC level in Electronic or Electrical Engineering, and have at least three years experience with analogue and digital circuit techniques utilising transistors and integrated circuits

We offer an attractive starting salary, together with the employment benefits one would expect from a major industrial group

Please write for an application form, or telephone. Mrs. S. R Ballantyne, V. L. Churchill Limited, PO Box 3, London Road Daventry, Northants, NN 11 4NF. Telephone Daventry (032-72) 4461

Train as an Electronic Technician Engineer

The Chelmer Institute of Higher Education (Cheimsford) and Reading College of Technology, in conjunction with the Manpower Services Commission, Training Opportunities Scheme (TOPS), are running a twelve month full-time course starting in January 1979, leading to the Higher National Certificate in Electrical and Electronic Engineering.

WHAT DO YOU LEARN?

The course is based on an electronic systems approach with particular emphasis on electronic duties and signal generation, transmission, processing and display. It is intended to cover the knowledge and practical abilities for employment as an electronic technician engineer in a wide variety of functions such as development, diagnostic testing, commissioning or installation of electronic equipment and systems.

WOULD IT SUIT YOU?

The course is open to men and women aged 25 or over, who have been away from full-time education for a total of three years, have not taken a TOPS Course in the last five years and are between jobs or willing to leave their present job. Applicants should have had experience in electrical or electronic engineering in industry or the Services, and have at least an appropriate ONC,OND, or City \& Guilds technician certificate.

EARN AS YOU LEARN.

Tuition is free. TOPS tax-free weekly allowances are payable during training. Travelling and /or lodging allowances may also be payable in approved circumstances.

FURTHER INFORMATION

If you are interested write to or telephone the appropriate office: CHELMSFORD
Mr. John Pow ell, Manpower Services Commission, Training Services Division, District Office, 93 Southchurch Road, Southend-on-Sea, Essex SS1 2NX.

Tel: Southend (0702) 613134.
READING
Mrs. P. Evans, Manpower Services Commission, Training Services Division, District Office. Friars Walk, Friar Street. Reading, Berks RGIIBT. Tel: Reading (0734) 56633.

MICROPHOCESSOB CONSULTANGY

Training
Services Division
Manpower
Services Commission

FEQUIRED IN IRAN, Electronic Engincer with at least ten years experience to work in C.N.C De partiment for maintaning Batch matics, Devielegs, Cim-X. Hard ware. Will also be expected to help Irann our ensineers in this field Pease apply to Mr Eshragi. Per PO. Box 183, Tabriz, Irian. 18420

THE OPEN
UNIVERSITY

ARE YOU IN TEST
 SERVICE OR
 MAINTENANCE ENGINEERING?

WOULD YOU LIKE TO

live out in the North Bucks countryside where housing is available?
enjoy good working conditions including generous holidays?
service a wide variety of electronic-based scientific equipment?

If so, and you would like to know more, ring Dave Jones on Milton Keynes (0908) 63356. (Ref. $\mathrm{MH} / 3061 / 1$)

Applications are invited trem persons experianced in siectronic enginetring to join a team in the electronic section of the above department. Thers is a wide range equipment and laboralory equipment. A knowledge of diagnostic maintenance of inslrumentation and/or mini computers would be desirable. Candidales lor the post should hoid an O.M.C. H.M.C.. or equivalent qualification. Salary scale - Medical Physics technlcian. Grade III within the range e 3405 to $£ 4353$ inclusive of Stages 1 and II pay supplements. further details can be obtained from Chiel Physlcist. Walsgrave Haspital, Extonsion 482. Application lorms (quoting ref: WW) obtained trom Bridge Road. Waisgrave. Coveatry CY2 20x Closigg Bridge Rioad. Walsorave.
date: 31 sl August. 1978.

UNIVERSITY OF WARWICK
 ELECTRONICS TECHNICIAN

A vacancy has arisen in the Departmant of Chemiatry and Molecutar Sciences lor an axperienced Electronics electronics workshop. The duties include responsibility for maintenance of both electrical and elactronic equipment in the Department. design and construction ol one-ot instruments and modifications to existing equipment. and the supervision of a Grade 4 lechnician employed primarily on repair and maintenance work. The University is siltualed in pleassant rural surfoun. dings and is within easy commulting distance ol Coventry and Kenilworth. The successifil candidate will probably hold an HNC or equivalent in the fisld of electronics and
have a wide experience in the maintanince of intricais equipment and the design of circuits. Salary is on an incremental scale: $\{3.654$ - $\mathbf{f 4} .365$ p.a... slarting point depending on experience and qualifications.
Apply by letter giving full detaits and quating Rel. No. $50 / 7 / 78$ to the Academic Registrar. Univer sily of Warwick. Coventry CV4 7AL. as soon as possible.
(8435)

RADIO ENGINEER HAITI

required to work as technical adviser to the Haitian Radio School team working on a new adult literacy scheme. Responsibility for the maintenance and repair of the radio station equipment and the training of Haitian counterparts

A British Volunteer Programme Post. language training provided.

For further information write with details of curriculum vitae to CIIR Overseas Volunteers. 1 Cambridge Terrace, London NW1 4JL

TOP JOBS IN ELECTRONICS

Posts in Computers, Medical. Comms, etc. ONC to Ph.D. Free service.
Phone or write BUREAUTECH AGY, 46 SELVAGE LANE, LONDON, NW7. 01-959 3517.
(8490)

capital

APPQNTMENTS LTD.
FREE JOBS LIST
FIELD SERVICE ENGINEERS
BASIC SALARIES TO
$£ 5,000+$ CAR

30 Windmill Street, London. W1 01-6375551

8461

Éngineors

- DESIGN / DEV
- TEST
- FIELD SERVICE

High Salaries - Most Areas Phone 01.7314353
(8426)

Resident Service Engineers Electronics

London
c. $£ 5,000+$ Shift allowance of $£ 2,500$ and car

We are looking for a number of well qualified Electronic Engineers to maintain our computerised photocomposing system installed at a major London based national newspaper.
The installation consists of dual computers driving dual phototypesetters plus a large number of peripherals, 60 megabyte magnetic disc units, data entry keyboards, VDU's and page view terminals for editing purposes.
The system is responsible for producing the entire newspaper text using the most up-to-date methods of data input storage and management. Full product training will be given at our Kingsbury Works and will take $3 / 4$ months. Candidates should be educated to HNC, B.Sc. or equivalent and have a minimum of two years' computer servicing experience.
Candidates should already reside or be prepared to move to within approximately one hour's commuting distance of Central London. Relocation expenses may be met where appropriate.

Salaries will be negotiated on the basis of individual experience and qualifications. Expenses and a company car, which may be used for private purposes, will be provided.
Please ring or write to David Hilton, Personnel Manager, Linotype-Paul Limited, KingsburyWorks, Kingsbury Road, London NW9 8UT. Tel: 01-205 0123

Linotype-Paul 茹

The Polytechnic of North London

If you know a lot about video (U-matic edit suite, colour portable) and want a satisfying job in higher education, the Polytechnic of North London has a very interesting post to fill:

A technician post (Grade 6) with special responsibility for electronics

We are looking for a well-qualified electronics technician with a keen interest in video, audio and audio visual media. As a senior member of the technician staff of the Educational Development Service, you will be expected to set up procedures to commission, maintain and develop all electronic audio-visual equipment. You will have a key role in building up technical standards for production and training technician staff.

You'li need at least an HNC or equivalent qualification and a minimum of nine years' experience, including training.

Salary Scale: £4143-£4851 (inclusive of London Weighting).
Application forms from Educational Development Service,
The Polytechnic of North London, Holloway Road N7 8DB.

> PROTOTYPE WIRE PERSON required for development project. Salary by negotiation. Reply Box No. WW 8464 .

GCHQ, Oakley
Priors Road, Cheltenham GL52 5AJ
Cheltenham (0242) 21491 ext 2270

AGENTS WANTED

 AN AGENT required with well es-tablished connections in the electablished connections in the elec trical component field in the north basis, Box No. WW8481. $\quad 18481$

ELECTRONICS TECHNICIAN for Educational Services Unit. Cand:date should have interest in television as a teaching and research tool, sound background in electronics with ability to communicate with patients, students and saft at all levels. Major part of the post involves maintenance of small studio in Department of Psychiatry. preparation and replay of video recordings. Salary scale £3,186-£3,720 p.a. Application form from Assistant Secretary, Personnel Office, University of Birmingham, P.O. Sox 363 Birmingham B15 2TT. Ref. 496/C/135. 18436

156

GEC Gas Turbines Limited are one of the world's leaders in gas turbine manufacture. Our latest innovations include a new generation of large gas turbines, our unique mobile power stations, plus a full range of heavy duty and jet powered units.

To continue our development programme we are seeking an Electronic Controls Engineer

The successful applicant will be responsible for the design and development of electronic control units and complete systems. He/she must be conversant with the latest codes and practices of engineering drawing, and experience in electrical/electronic engineering would be desirable,

Write with brief details of age, experience and qualifications to
HPCross
GEC GAS TURBINES LTD
Cambridge Road, Whetstone, Leicester LE8 3LH
Tel: Leicester 863434
particularly with light current semi conductors. A relevant HNC is essential. An attractive salary is offered and working conditions are good. Relocation expenses will be paid where appropriate.

INVERTERS
High quality DC-AC. Also "no break' (2 ms) static switch. $19^{\prime \prime}$ rack. Auto Charger.

Interport Mains-Store Ltd. POB 51, London W11 3BZ Tel: 01-727 7042 or 0225310916

DUDDELL OSCILLOGRAPH

Offers are invited for a 6 -element Duddell Oscillograph. Made in 1957 and very little used. Offers should be made in writing addressed to

Head of Department of Electrical and Electronic Engineering. The Polytechnic, Wolverhampion WV1 1LY. Telephone 0902/27371

Are You Interested In

Radio Communications

and do you have practical experience in this field
if you have City and Guilds Intermediate Certificate in Electronics or Telecommunications; ONC; or an equivalent qualification
then the Metropolitan Police Office has a job for you as a Radio
Technician.
vacancies are at our depots in Central and South London we offer Good pay, Excellent prospects Secure employment 4 weeks holiday, Day release

For further information and an application form please apply to: The Secretary, Room 213 /WW/RT, 105 Regency Street, London, SW1P 4AN or telephone 01-230 3122 (24 hour answering service)
8402)

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex - S.W. London

Salaries up to $£ 7,000$
To join our expanding R \& D Laboratories covering a wide range of the R. F. spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine and land based use, radio navaids and radio monitoring remote computer controlled systems
Electronics Engineers should have experience in transmitter or receiver design, analogue or digital circuit design, micro processor applications.
Software Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and generous benefits
Contact: The Personnel Manager, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London, S.W.18. Phone: 01-874 7281 (Reverse charge).

ARTICLES FOR SALE

SOWTER TRANSFORMERS

WITH 37 VEARS' EXPERIENCE wo have the expertise to design and menufecture ANY TYPE OF AUDIO TRANSFORMER AT THE RIGHT PRICE
Whilst we specialise in every kind of transformer for audio control decks and mixers. demands are increasing for LOUDSPEAKER TRANSFORMERS and 100 VOLT LINE AUDIO
OUTPUT TRANSFORMERS for MOSt kind of amplifier from 30 watts to 500 watts output. OUTPUT TRANSFORMERS for most kind of amplifier from 30 watts to 500 watts output. We have standard designs for AMCRON and BOSE amplifiers and can also supply
Multi-output transformers for COLUMN LOUDSPEAKERS in a wide variety of powers. A Multi-output transformers for COLUMN LOUDSPEAKERS in a wide variety of powers. A
recent tendency is the demand for OUTPUT TRANSFORMERS FOR ULTRA LINEAR recent tendency is the demand for OUTPUT TRANSFORMERS FOR ULTRA LINEAR
VALVE AMPLIFIERS using KT88 and KT66 BEAM TETRODES and for these we have VALVE AMPLIFIERS using KT88 and KT66 BEAM TETRODES and for these we have
standard designs with exceptional performance. Many of our output transformers for standard designs with exceptional pertormance. Many of our Output transformers for
loudspeakers have been installed in Theatres. Television Studios. Lecture and Concert Halts. loudspeakers have been installed in Theatres. Television Studios. Lecture and Concert halls, Address Systems We will supply single transformers, or any quantity, with short detivery times and. without obligation on your part. will quote price and exact dispatch on receipt of your requirements
KINDLY NOTE OUR NEW ADDRESS AND TELEPHONE NUMBER: E. A. SOWTER
LTD., Transformer manufacturers and designers, P O BOX No 36, IPSWICH IP9 LTD., Transformer manufacturers and designers, P.O. BOX No. 36, IPSWICH IP1 2EL, ENGLAND. Tel: Ipswich (0473) 52794-219390.
(8289)

VHF MONITOR RECEIVERS, air. marine or business bands (low mid, high or AM or FM). All crystal controlled high performance models. Send 15p P.O., not stamps. Radiu Communications Ltd, St Sampsons, Guernsey, Channel Isles.

ELECTRONIC KITS - SAE for new catalogue, and clearance list of obsolete kits. AMTRON, 7 Hughenden Road, Hastings, Sx. 18226

REWINDING TRANFORMERS, a new

 manual covering 1VA to 5 KVA single phase, from Magnum Power Tools, Brinksway, Trading Estate.Stockport. Cheshire SK3 0BZ. $£ 4.30$ post paid by return. 18230

60KHz MSF Rugby Receiver, BCD TIME OF DAY OUTPUT. High performance, phase locked loop radio receiver, $5 V$ operation with 1 second LED indication. Kit com. plete with tuned ferrite rod aerial fit.08 rincluding postage and up version also available. Send for version also available. Send $\begin{array}{lr}\text { for detans, } \\ 1.4 .59) \text { Donsex. } & \text { Sherborne } \\ 8.8252\end{array}$ SEEN MY CAT? 5000 udds and ends Mechanical Electrical. Cat free. Whiston Dept. WW, New Mills,
Silockport.
$(7983$

MICROWAVE EQUIPMENT (Mar coni-Saunders), large quantity, new/boxed including: Signal gen-
erators
attenuators-wavemeters. gun diode OSC. waveguide, hardware etc. Offers invited for iot. Lists available. J. B. Pattrick, 191193 London Road, Romford, Essex RM7 日DJ. Romford 44473, is472

ESTABLISHED T.V. TUBES rebuilding business for sale. Output 7,000 for expansion principals room (Southern England). Box No WW 8458 .

VACUUM COATING plant. Edwards 12E3. some accessories. $£ 350.00$ Fleet 3266.

8479
CREED TELEPRINTERS, Deal micro enthusiasts. 7B, f15, 85, £15tup; $75.535 \cdot-40 ; 656$ readers and
type 25 MLV punches f10-£25: oritype 25 MLV punches $£ 10-f 25$: ori-
ginal toolkit $£ 15$. carr f1: most spares. fuh workshop overhaul/re. pair service and 6800 hardware/ softwear design service available. SAE for list. E \& P Electronics. $1 \times \theta$ Hadiow Rd, Tonbridge, Kent.

18457
PHILIPS PM5334 T.V. Sweep generator, never used f350 wanted. adaptors, Nuvistors. Fletcher Nottingham 0602-397446.

Electronics Engineer

The Diesel Division of Rolls-Royce Motors Limited, is continuing its expansion and investment programme. To meet the demands of this expansion we are looking for an Electronics Engineer who will be responsible for the design and development of electronic measuring equipment used in the Research and Development Testing of Diese! Engines
The work involves all stages of equipment development, from initial conception to construction of working prototypes, and is mainly concerned with signal conditioning, recording and computer data acquisition Applicants (male or female) should possess a Degree or HNC/HND in èreĉtronics engineering and have had at least 3 years relevant experience Job prospects are excellent and we offer a good range of fringe benefits including Contributory Pension Scheme, Sickness Scheme, Subsidised Canteen, and generous relocation allowances where applicable Please write in confidence, with brief details of age, qualifications,

ROOLS
MOYCE MOTORS

Diesel Division

ENGINEER

for after sales service VCR Sony in Saudi Arabia

Good salary and accommodation available

Please contact with

FAWZAN AL FAWZAN CORPORATION P.O. BOX 1716 RIYADH, SAUDI ARABIA

(8417)

ARTICLES FOR SALE

marse code receiving AMO SENDIMG

Recelving: CASSETTE A. For Amateur Radio examimation proparalion. Speed slowly inerassing from $1-12$ w.p.r.m. CASSETIE 8 . For Protassional examination maparation. Computer produced morse fram 12-24 wiphols and ther incerperatien inlo messenes.

Sending: Merse Koy and Buzzar Unit for zonding practice ind own Tape preparation. Phone outpot. Prices: asch cassette, including booklats. £4.50. morse key and bezzer unit, £4.50.

Prices include VAT, postage, etc. Overseas Airmail 11 extra
m.h. Electronics. 12 longshore way MILTON. PORTS WOUTH POA 8LS.

Books

WIRELESS WORLD bound volumes 1967-72 (13 volumes), also unbound 1973-77. Offers please. 0481-54833.

> SPECIAL OFFER
> Limited number of 1 mA Panel
> Meters, face
> dimensions $43 \times 43 \mathrm{~cm}$.
> 2 20 each including VAT postage \& packing
> Generous discounts for quantity. Send PO. Cheque or Barclaycard/ Access No. to Protimeter Ltd., Meter House, Marlow, Bucks SL71LX Tel: (06284) 72722.

BUSINESS OPROATUNITIES
TALENTED GRADUATE audio designer seeks employment (anywhere) or business partner(s) (prererably wiltshire). Box No. WW
8467 .

ARTICLES FOR SALE

SMALL MANUFACTURERS, ETC. We have a comprehensive stock of electronic compenents at reasonable prices. Enquiries welcomed. Claru Electronics Lid.. 7 The Grove. Harrogate M91 5NN. Tel: 0423 66659.

18480

HEATH KIT GR78, hardly used. Offers? - David Gutmann 98. Torrington Park. London N12 9PJ. 8
T.V. TUBE REBUILDING. Complete plant. equipment, supplies and training. If you can afford the gineering. Tel. $073 \quad 676$ 2265. (8048

SHACKMAN SCOPE CAMERA type PPLT with hood for $10 \mathrm{~cm} x$ 8cm screen. 8-posn polarold back 0935 $\begin{array}{ll}107 \text { film. Offers. Lelephone } \\ 872705 \text {. } & \text { (8483 }\end{array}$

LAB CLEARANCE: Signal Gener ators; Bridges; Waveform: transistor analysers; calibrators; ftandards; millivoltmeters; dyna mometers; KW meters; oscillo low distirtion true RMS, audio FR deviation. Tel. 040-376236. (18250

WE INVITE ENQUIRIES from any where in the world. We have in stock several million carbon resis. tors. $\frac{1}{3} . \frac{1}{4}, \frac{1}{2}$ and 1 watt, $\frac{1}{2}$ million wire wound resistors 5 and 10 watt - 1 million capacitors - 1 million electrolytic condensers - $\frac{1}{2}$ million transistors and diodes. thousands of poteniometers. and hosts of other components. Write. phone or call at our warehouse - Broadfields and Mayco Nisposals 21 N 12. 014450749 45 2713 London. N.12. 01-445 0749, 4452713

PRIVATE SALE 5 isin recording tape $\begin{array}{lll}\text { £2 each: } 7 & \text { X 4in speaker } \\ \text { each. } P+P \quad 30 p \text { each item. D. J. }\end{array}$ each. $\mathrm{P}+\mathrm{P}$ 30p each Leason 172 Harbour Way. Shore ham. Sussex, 18466

EXCLUSIVE OFFER

RACK WOUNTING CABINE

Ref PE LII TI SL PT TK ST

HI"	Width"	Depth"	Price
10	21	13	$£ 10.00$
54	21	18	$£ 20.00$
64	25	26	$£ 45.00$
71	25	26	50.00
72	20	21	$£ 20.00$
75	22	21	$£ 20.00$
85	22	24	$£ 70.00$

Racal cabinels for RA. $17 / 117$." to go" met
Abo hing trinles ate coesoles. Betew are oly a tupes. Plasese seat for cons lint

AUOIO ANO INSTRUMENTATION-TAPE RECORDER-
REPROOUCERS

- Plessey ID33 Digital Units. 7 Irack $/$
* Plessey M5500 Digital Unit. 7 tracks $/$
- Amplex FR-1100. 6 speeds. ster to $1 / /$
- Ampex FR600. 4 speeds. 7 track $1 / 2$
- D.R.I. RMI. 4 speeds. 4 tracks $1 / 4$
- Mincom CMP. 100.6 speeds. 7 tracks $1 / 1 / 1 / 2.1$
- Leevers Bich Console a speeds. 2 tracks

Prices of ahove $£ 70$ to $£ 500$
Niso Transpert Decks only available
Wa have a large guantity ai "hits and pieces" wa comet probably help - all enquirias answer ed.
All our aerial equipment is protessional moD
quality

* Thermionic Time Injection Units
* Mansan TFM-10I Multipliers
* Bradoy CT 471B Electronic meltimetters
- Servomex 2 kw Auto-repulators
- 125tt. Lattice Masts, 26" sides
- 10tt. Light Lattice Sections. 6° sid
* Ahode and Sehwarz Polyscopes SWDB
* Rhode and Sehwarz SMLM Sig Gens
- Roband Dscilloscopes 50 A and plag-in
- Solartron CD 523 Oscilloscopes
* Solartron CD 426 Dscilloscopes
* Solartron CO 1014 ascilloscopes
* Solartrem CD 1016 Oseilloscopes
- Munson Mutitimeters
- Wainshal Procisier
- Aerial Rotator Displays
- Coquelat Code Ielearinters
- Emi la Audio Tape 3600 FT Ma
* 25 -watt R.C.W. Experimental \$peakers
- SE4/2日C.R.T. s
* SE5/2A C.R.T.

- Emi r 301 Tape Recorders
- Stenorette L Tape Recorder
- $06-7-32$ C.R.Ts

D6-7-5 C.R.T.s
*Uniseiectors. 10 Bank 25 -way
40t. Sectional Aluminium Masts. complate

- Racal MA-79 Universal Drive Units
- Racal RA.17P Rectivers jnew!

Rhode \& Schwar ESM Tumabla vif Receivers $180-300 \mathrm{~m} / \mathrm{cs}$
*Rhode \& Schwarz HFH Field Stirength HF Loop
Merials

* Marda 504 Freq. meters $200-500$ m/cs
- B8K 2409 Elecironic Murtimeters.
* Rhode \& Schwarz fibreglass HA Diversity
\qquad
- Ion pump power supply. E.H.T.
- E.m.I. Documents CCTV Outitit
- Advance 3 Kva CV Transiormers
-Grainger Mf Long Log Aperiodic Aerial
manUALS
We have a quantity of Technicsi Manuzals of Electrmaic American. Mo lists. Emquirias invited.
- Data Etficiency Respoolers 240v
* Belling Lee 100 Amptinteriterence Filiters

Racal maplap pra-Selectors

- Racal Ma1978 pre-Selectors
* Gaumont Kalee 1740 Fwiter Meters
- Heavy Aerial Rotators

751 A Aluminium Latice Masts. 20 sides

- Rhodes \& Schwarz ser sig. gen. 1.62 .4 jom
* Large Aerial Turning Units
* 45 leet Uniradio 4 Co-ax 50 ohms

Addo 5 \& Track Punches
Quality Wbalher vanes 8 contacts (unused)
Racal Ma-175 I.S.8. Modulators fnew]

- Imslida Cabinet Shell Sliders

Tally 58 Track Tape Readers 60 cps
We have a quantity at Power Tranatormers 250 watts to
15KVA at vollapes up to 40 KY . Best quality at low

15KVh at votlapis up to 40 KV . Best quality at lo prices. Lists mailable.

* Racal Ra. 64 SS\& Adaptors. new
- Racal RA 298 L.S.8. Transistorised Converters

prolessional Cathoda Ray Tubas available. List on request.

MEASE AOD CARRIAGE ANO V.A.T.
P. HARRIS

ORGANFORD, DORSET, BH 6 6BR
8OURNEMOUTH (0202) 765051

COLOUR, UHF AND TV SPARES. CEEFAX, ORACLE IN COLOUR. MANOR SUPPLIES ''EASY TO ASSEMBLE " TELETEXT KIT. Including TEXAS Decoder. Aerial Input, completely external unit, no further connections to set. Full faclities, mixed TV programme and Teletext, Newsflash. Update, found in other units features not found in other units. Demonstration model in operation at 172 West End Lane, NWb. Phone
further information.
TEXAS TIFAX XM11
TEXAS TIFAX XMLI Decoder NEW COMBINED COLOUR BAR GENERATOR PLUS CROSS HATCH KIT (MK4) UHF Aerial input type KIT (Mk4) UHF Aerial input type. $B-Y$, Luminance combinations, Grey scale etc. Pushbutton controls Battery operated $£ 35^{*}$, De Luxe case $£ 4.80^{*}$, aluminium 'case $£ 2.40^{*}$, battery holders $£ 1.50^{*}$. mains sup: ply kit $£ 5.78^{*}, \mathrm{p} / \mathrm{p} £ 1.00$. Built and lested (battery) $£ 58^{*}$, $\mathrm{p} / \mathrm{p} \mathrm{fl} 20$. CROSS HATCH KIT, UHF Aerial input type, also gives peak white and black levels. Battery operated, £11* $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey Scale £2*, p/p 85p. Cross Hatch Unit. complete and tested in De Luxe case £20.80" p/p £1.
"WIRELESS WORLD" TV Tuner and FM Tuner Projects by D. C. Read. Kits of parts available, CRT test and reactivator kit for colour and mono $£ 19.80 \mathrm{p} / \mathrm{p} £ 1.20$. UHF Signal Strength Meter kit £18" p/p 90p. 625 TV IF Unit for Hi-fi amps or tape recording $£ 6.80 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Decca Colour TV Thyristor Power Supply
Unit, incl. H.T. L.T., etc. Incl. cirUnit, incl. H.T., L.T., etc. Incl. cir$\begin{array}{llll}\text { cuits } & £ 3.80 \mathrm{p} / \mathrm{p} & £ 120 & \text { Bush } \\ \text { (A807) decoder panel } & £ 7.50 \text { p.'p }\end{array}$ (A807) decoder panel £7.50. p.'p
£1. Bush 161 T-B panel A634 £3.80. IF panel A583 £ $3.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Bush Portable TV 11 V stab power supply unit £4.80 p/p f1. Bush CTV 25 Cunvergence Panel plus yoke, blue Standard Convergence Units complete, incl. 16 controls $£ 3.75 \mathrm{p} / \mathrm{p}$ 85 p . Colour Scan Coils, Mullard or Plessey. \&6 p/p 90p. Mullard AT 1023/05 Converg. Yoke £2.50 p/p als 75 p p/p 35 p . BKC 3000 type Scan Coils 52 p/p 90p. Delay Lines: DL20 £3.50. DL50 £3.50. DLIE. DLI 85 p
p/p $/ \mathrm{p}$
40 p . G8 Tripler 56 . Lum delay lines 50 p
300 p/p 40 p G8 Tripler 66 . BRC 300
Tripler $66.60 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Others available Plilips G8 Decoder part. complete $£ 2.50 \mathrm{p} / \mathrm{p} \quad 75 \mathrm{p}$. GEC 2040
Ex-Rental Panels. Decoder Ex-Rental Panels. Decoder $£ 5.00$. Time Base $\mathrm{E}_{\mathrm{S}} .00, \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. VARICAP $\begin{array}{lll}\text { TUNERS UHF: Gen. instr, } £ 3.50 \text {. } \\ \text { ELC } 1043 \text { £4.5U. ELC } & 1043 / 05 & £ 5.50 \text {. }\end{array}$ VHF: ELC 1042 £4.80, Philips VHF caps £ $1.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. VARICAP CON. caps £1.50 p/p 35p. VARICAP CON. PSN $£ 1.50 .5$ PSN $11.80,{ }^{2}$ PSN £2.80. Special offer 6 position $£ 1$,
$\mathrm{p} / \mathrm{p} 35 \mathrm{p}$. UHF Transd. Tuners incl slow motion drive $£ 2.80$. 4 position push button £2.5U. 6 psn. \&4.20, p/p 90 p . Helical Pots 100 K . 4 fur fi .20 p/p 30 p . Thorn 850 Dual Std. Time Base panels 50 p . Philips 625 If
panel incl, oct. $50 \mathrm{p} \quad \mathrm{p} / \mathrm{p} \quad 70 \mathrm{p}$. Mullard Mono Scan Coils for
Philips stella. Pye. Ekeo Ferranti. Invicta $12.00 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$. Large selection LOPTs, FOPTs available for most popular makes. MANOR SUPPLIES 172 WEST END LANE, LONDON, N.W.6. Shop Premises. Callers welcome. Thousands of ad ly advertised. iNos. 28,159 buses or British Rampstead-Bakerloo Line and Golders Manor Drive, London, Please ADD $1 /$ TO ALI PRICES (EXCEPT WHERE MARKED* V.A.T

TRANSFORMER PROBLEMS?
1VA-1KVA Prototypes in $7-10$ days Phone Vince Sellar on 06076 66716
TRENT TRANSFORMERS LTD Chapel Street Long Eaton, Nottm.

PYE MODULATOR/DEMODULATOR PROCESSING UNIT TYPE LDM 1472

> CD1400 Scope D/Beam
(2) Rhode and Schwartz Group Delay Mea suring Equipment Type BN 17950. Telonic Sweep/Signal Generator Sys tem Model 2003
All the
$E 1.000$
FEEDBACK LTD.
PHASOR SCOPE MODELTMS 280 ull work
50000
Harry Collins, St. Teress's, Ely Road
Waterbeach. Cambridge CB5 9NW
Tel. (0223) 860555

MSF 60KHz

TIME RECEIVER, internal ferrite rod, 1000 Km range. all parts. printed circuit. case, etc. E13.70. or with parts (no case. pcb) for sequential YEAR. MONTH. DATE, DAY, HOURS. MINUTES, SECONDS display $£ 24.40$, inc instructions, postage.

CAMBRIDGE KITS, 45(WJ)
Oid School Lane, Milron Cambridge

SOLAR CELLS: bits, bookS and bargains. Send stamp for list or 95 p for Solar Cell booklet and Data sheets. Edencombe Ltd 34 | Nathans Road. North Wembley. |
| :--- |
| Middlesex HA0 |
| 18292 |

HIGH PERFORMANCE
POWER SUPPLY KIT
$\underset{O}{2} / P$ resistance 1 mQ (at board O / P)
Noise/rpple $<$ Very sharp Ideal current tumit Generally idıot proot
Kit of pans $/ F / G$ pcb tinned, transformer controls. wire all components Schools and Colleges $£ 10+8 \%$ P\&P70p
PTFE Single Screened White, ideal thermis tor probes £60/1.000 yds Unmarked ZXT Transistors. SIM BC 107
PTFE Single Screened White. Ideal thermis Sprague 30A Mans R.F.I. Filter $£ 4(60$ p) Double VU Meter (W. W. Doiby Type) Papst Fan $41 / 2 \times 4 \frac{1}{2} \times 2$ in 100 c. $f m(20 p)$
Humedity Switch. adjustable $£ 3.50(80 \mathrm{p})$ Alr Operated Switch $1 / 2 \mathrm{ps}$ s. 50p (15p) Mains Latchıng Rełay . $\quad \mathbf{8 0 p}(20 \mathrm{p})$ Relays 8 pin Octal $12 v 24 v 110 v p(10 p)$ pin Octal $24 v 48 v$ DC. 11 pin Octal $24 v$

Base + clpp + $12 p$

 Toroid 3 dia. $\times 1$ £ 2.25 (30 p). $6.0-6 \mathrm{C}$
$250 \mathrm{~mA} £ 1.10(20 \mathrm{p}) \quad 6 \mathrm{v} 500 \mathrm{~mA}$ (20p), 19v 1.5 A £ 1.40 (35 p) 18 m 1.10 £2.25 (35p). $12+12 \mathrm{v} 36 \mathrm{VA} £ 2.25$ SGVA $£ 2.25$ (60p)
\dagger ELEBKROLYTICS
$15.000 \mu 50 \mathrm{~V} \quad . \quad 50 \mathrm{p}+(5 \mathrm{p})$
$1000 \mu 63 v$ $\mathbf{2 5 p}(12 p)$
$\mathbf{8 0 p}(12 p)$

PAPER CAPS

Add $121 / 2 \%$ VAT to items marked \dagger. Other

GOLFBALL PRINTERS

but separate BCD (opiten). similar to 735 . IBM Golfball Head Meord, will accept any Print solenoids are 50 v . Character selection s by Parallel BCD 50 v drive to tilt and rotate solenoids. Golfbali supplied is a banking type - a more usetul type (correspondence) n any language can be supplied for

Supplied in good condition with $\mathbf{7 . 5 0}$ extra manual and circuit Serviced and tested Other functions have separate solenoids pace. backspace. line-feed, tab. carriage turn. upper/lower case, red / black ribbon char / sec

Carriage / packing at cost
GE optical tape reader PTR66IA. Asynchronous stepping 150 char $/ \mathrm{sec} 8$-hole- 12 V
outputs $£ 25+8 \%$ P\&PE1.50 NCR 8 -hole punch $15 \mathrm{char} / \mathrm{sec} 115 \mathrm{~V} \quad \mathbf{£ 2 5 + 8 \%}$. car-
rage f .

KEYTRONICS

332 LEY STREET, ILFORD, ESSEX
Shop open Mon.-Sat. 9.30 a.m.-2 p.m.
Telephone 5531863

MICROCOMPUTER DESIGN, recent ly developed, for sale, very fexible system using single Size Eurocards.
Please telephone. $01-724 \quad 2497$ day. time or $01-794 \quad 4890$ evenings.

18369
TOGGLE SWICHES - S.P.S.T. chrome toggle - $250 \mathrm{~V} / 2 \mathrm{amp}$ with £2.50, $100 \cdot £ 20.00$. price includes V.A.T./P.\&P. Electronic Mailorder Ramsbottom, Bury. Lancs. BLo 9AG.

FOR SALE Royce oxy-metals high temperature batch furnace $1000^{\circ} \mathrm{C}$ $1500^{\circ} \mathrm{C}$, hydrogen process. Nitrogen purging. 4 in x in $x \quad 2 f i \quad$ orifice. almost unused and complete with operating manual and spare Molybdenum heating elements. $£ 3.950$ plus VAT. Box No. WW 8494

WIRELESS WORLD, 203 copies 1946-63. What offers? R, Archer, 55 1946-63. What offers? R, Archer. 55
High Oaks. St. Albans. Hert.s AL3 6D5.

WRELESS WORLD 1949 onwards.
mosily complete. Any uffers. R. Seduey, 46 Connaught way. Tunyoidre Wells, Kent. 18409

ARTICLES WANTED

WANTED!

all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content

TRANSISTORS

 \& PRINTEDCIRCUIT BOARDS
TO COMPLETE COMPUTERS
THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 farringdon road LONDON. ECIR 3AL Tel: 01-837 1475
Cables: COMSMELT. EC1
Works: FLECKNEY. Nr. Leicesten (8451)

* MINICOMPUTERS
 * PERIPHERALS
 * INSTRUMENTATION

COMPUTER APPRECIATION Godstone (088 384) 3221

STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test gear, power supplies. PC boards, components, etc., regardless of condition or
qualities. Call 01.771
9413 (8209 B.D. ELECTRONICS offer prompt settiemen for surplus electronic components, i.v./audio spares are of particular interest. Contact Miss Hughes, 9 Westhawe Bretton, Yeterborough. Tel 2652i9. (7632 WE PURCHASE, FOR CASH the lollowing: R. F. Power Transistors. Varactor Diodes, and all special
componts normally used in VHF/ components normally used in VHF/
UHF Transmitting equipment UHF Transmitting equipment.
MODULAR ELECTRONICS, 95 High Street. Selsey Sussex. PO20-0QL「el. Selsey 2916.
WANTED, all types of communications receivers and test equipment Details to R. T. \& I. Electronics Lid., Ashville Old Hall Ashville
Rd. London, E.11. Ley $4986 . \quad(63$ Rd. London, E.11. Ley 4986 . (63
ELECTRONIC SCRAP. Components, ELECTRONIC SCRAP. Components, etc, Receivers, Trarsmitters
Equipment wanted. Ferrographs $\mathrm{from}_{\mathrm{E} 1 \mathrm{j}}$ in stock. Contact M \& B Radio, 86 Bishopgate Street, Leeds 1. Tel. Leeds 35649 .

WANTED ALL TYPES R/T equip. ment urgently, good prices paid Ring Nato Telecommunications Rid. Norwich (0603) 24936 29444.
WANTED EHT. Power Supplies. Diffusion, Rotary Pumps, Colourbar Generators, Tube Reactivators 28 Esme Road, Birmingham 11. STORAGE,SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient clearance of all test. gear, power supplies, PC boards, components. etc., regardless of condition or quantities. Call $91-771$ 9413. 18209 MANUALS, originals or copies bought for advance HC20 recorder calinrator. ${ }^{\text {PM } 24}$ CT ${ }^{24}$ power test unit calibrator. AP 8441 preselector, HP 8406 fre quency comb generator. ${ }_{H P} \quad 844.2 \mathrm{~A}$. IF-filter. HP 4439 A notch filter. HP 5245 L counter. HP $\times 430$-series filters, any condition. Offers invited to Box No. WW 8459. 84459 SURPLUS STOCKS. Components. equipment, P.C. boards and allied items. in quantity. Prompt cash ${ }_{01-573}^{\text {payment. }}$ Courtenus service. Ring

WANTED IN LARGE QUANTITIES

Electronic components resistors

capacitors. potentiometers, chassis
loudspeakers, semi-conductors
diodes. TV tubes. especially colours,
etc., etc , etc. First or second grades Finished or incomplete products. record players. amplifiers radios tuners, tape recorders, enclosures
etc . etc etc
We will buy complete factories and
pay cash
TEL. 01-4914636
E.C.E. AVON HOUSE

360/366 OXFORD STREET
LONDON, W. 4
MINICOMPUTERS PERIPHERALS INSTRUMENTATION
For fastest, better CASH offer

Phone

CHILTMEAD LTD.
Reading (0734) 586419

WE PURCHASE ALL FORMS
 OF ELECTRONIC EQUIPMENT AND
 COMPONENTS. ETC.
 POT CASH
 CHILTMEAD LTD.
 7. 9, 11 Arthur Road
 Reading, Berks.
 Tel. !0734) 582605

WANTED, overseas buyer used EHT 60 KV power supplies, vacuum pumps, induction heaters. 554 Statford Road. Sparkhill, Birmingham 11. TURN YOUR SURPLUS Capacitors, ransistors. etc., into cash. Contact CULES-HARDING \& Co., 103 South Brink, Wisbech, Cambs, 0945-4188 Immediate settlement. We also wel come the opportunity to quote for complete factory clearance. ${ }^{17439}$ ARTS WANTED-
ELECTRONIC EQUIPMENT and components bought and sold. Any. lime considered, immediate cash setlement. Ring $\begin{gathered}\mathrm{Mr} \\ \text { s }\end{gathered}$ TANOY GRF corner horns, good price offered for one pair in good ed. Phone Mike on 047349541

WANTED Semicunductors and 18412 WANTED Semiconductors and clean return. Hewitts. 52 Barkby Road.

ARTICLES FOR SALE

TVs for EXPORT

Five hundred Kortung $22 \& 26$ colour TVs, fully serviced, perfect cabinets. multu band tuners. Converted for any Country
employing PAL system. spares provided free Elio OO FOB

Also 20 \& 24 Mono
el Farnham (02513) 24576

ENAMELLED COPPER WIRE

HEXADECIMAL KEYBOARDS $£ 17.50$ 1nc. TTL encoded. Individual keys 70 p it for 10 . Motorola D2 kit, 313 Green Lane, Ilford. Essex. Mail urder only.

EQUIPMENT
 TELECOMM SPARES

291 Holdbrook Court South
Waltham Cross. Herts EN8 7SL Tei. Lea Valley 716945
May we as competent factors. be of service to you in offering to purchase your obsolescent electro mechanical devices, test equipment. S
We will call anywhere throughout the British isles, and assure you of a prompt cash settlement at a most competitive price
(8433)

EQUIPMENT

 WANTED
TELECOMM SPARES

291 HOLDBROOK COURT SOUTH
WALTHAM CROSS HERTS
TEL: LEA VALLEY 716945
May we as component factors be of service to you in offering to purchase your obsolete electro-mechanical devices. semiconductors. wire and cable, etc., we will call anywhere outside the British Isles and assure of
a prompt cash settlement at a most competitive price
(8448)

BROADFIELDS AND

MAYCO DISPOSALS
21 Lodge Lane, N. Finchley
London, N12 8IG Telephone:
01-445 2713
$01-4450749$
01-958 7624
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment

A.R. Sinclair

Electronic Stockholders Stevenage 812193
We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

CAPACITY AVAILABLE

 Specialised PCB Service Layouts - Photography - Drilling Roller Tinning * Gold Plating Legend Printing - Profling Special quick prototype serviceCrofton Electronics Limited 35 Grosvenor Road, Twickenham Middlesex - Tel. 01-891 1923

AIRTRONICS LTD. for coil winding Large or small production runs. Bobbin - Layer-Wave-Bifilar

- Miniature Toroidals. Airtronics Limited. Gardner Indusirial Estate, Kent House Lane, Beckenham. Kent BR3 1UG. Tel. 01-859 1147 715 s
BATCH Production Wiring and Assembly to sample or drawings. MeDeane Electricals 19 B Station Parade. Ealing Common, London, PRINTED CIRCUITS. Ultra fast turnaround. Very competitive prices paper or glass. Punched or drilled. Single or double sided. Also prototypes, artwork, photography. Kidmore Circuits Ltd., 120 Garlands Road, Redhill, Surrey RH1 6NZ. Phone Redhill 64850 . 72 H 3

SERVICES

W.K.f. ELECTRONICS

(R.P.C.B.S. Ltd.)

THE COCVIT moand SPECLALISTS
UNIVIHSAL SUPPLIERS

NOTICE TO OTHER
MANUFACTURERS

 THE RATES AHE NEAY MESONABIE AND THI

TEST EQUIPMENT

We are disposing of a considerable amount of good quality test gear including Tektronic scopes at silly prices

* Ring Derek Pattinson now

Crofton Electronics Ltd.
35 Grosvenor Road
Tel.01-891 1923 (8211

RADIO OPERATED REMOTE CONTROL SYSTEMS

Range up to 50 mtrs
We welcome inquiries for your particular applicatıon
R.D. ELECTRONICS

South Glamorgan CF6 8DT
Tel: Barry 739653 (8281)

PRECISION SHEET METAL work. chassis, panels, etc., steel, stainless or ajuminium, long/short runs, good deliveries. EES Ltd, Clifford R_{36489} Monks Road, Exeter 56280

CIRCUIT DESIGN and prototpye construction. Instrumentation, test rigs, production run designs to audio, analogue, digital, $\mathrm{SC} / \mathrm{MP}$ micróprocessor circuits our specialities. HAMILL ELECTRONICS LTD., Box BCM-2090. London WCIV 6XX. Tel.: 01-542 9203. 7984

IWICE the Mantenance Manual
 Supertester 680R (illustrated)
 $20 k \cdot V \cdot 1 \%$ fad on d c $4 k \cdot 1 / V \cdot 2 \%$ fsd on a c 8 k fanges - 10 Functions 80 Fanges -10 Functions £ 32.00 + VAT
 (For Mall Order add 80p P\&P)

 I.C.E. MULTIMETERSin Half the size
The I.C.E. range of multimeters provides an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions. All I C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc, and a 50 -plus page, fully detailed and Hlustrated Operating and

Now avalable from selected stockists Write of phone for lisi or for detalls of direct mail-order service

Supertester 680G
$20 \mathrm{k} \cdot \mathrm{Y} \mathrm{V} \cdot 2 \%$ isd on d
48 Ranges -10 Functions
$£ 24.50$ + VAT
(For Mall Order add 80p P\&ip)
Electronic Brokers Ltd
49-53 Pancras Road, London NW1 2QB
Tel. 01-8377781

Microtest 80
$20 \mathrm{k} \cdot \mathrm{V}-2 \%$ fsd on d
4.
40 Ranges - 8 Functions Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$ $\mathbf{£ 1 6 . 6 0}$ + VAT
(For Mall Order add 80 p P\&P)

INDEX TO ADVERTISERS

 Appointments Vacant Advertisements appear on pages 140-159Acoustical Mfg. Co. Ltd.
PAGE
Advtg. Standards Authority
AEL Crystals Ltd.
Aero \& Gen. Supplies
Ambit International
Antex
Aspen Electronics Ltd.
Astra-Pak
Audix Ltd.
Bayliss, A. D. \& Sons Ltd.
Barrie Eelctronics Ltd.
Bell \& Howell
Bentley Acoustic Corp. Ltd.
Bib Hi-fi Accessories
Bi-Pak Semiconductors Lid
Boss Industrial Mouldings Ltd.
Boss Industrial Mouldings Ltd.
British Nat. Radio
British Nat. Radi
Bulgin Electronics Soundex Lid.
Bull, J.
Cambridge Learning
Cartson Electronics Ltd.
Carter Associates
Catronics
CEC Corporation
Chiltmead Ltd.
Chromasonics
C. N. Stevenson

Colormor (Electronics) Ltd.
Concept Electronics
Continental Specialies Corp.
Crellon (R.C.A. Tubes)
Crellon (Hewlett-Packard)
Crimson Elektrik
Crofton Electronics Ltd.
Danavox (G.B.) Ltd
Datong
Davies, A. R.
Dawes Electronic
Display Electronics

Edicron Ltd.

Eddystone Radio Ltd.
Eelctron
Electronic Brokers Lid.
Electronic Brokers Ltd. (.......... 129, 130, 131, 16
Electronics Weekly
Faircrest Eng. Ltd.
Farnell lnstruments Lid.
Ferranti Ltd.
Future Film Developments
Fylde Electronic Labs. Ltd.

'OVERSEAS ADVERTISEMENT

AGENTS:

France: M D. Soubeyran. Compagnie Francaise D Editions Division Internationale. 40 Rue du Colisee. Paris 8 e
Telephone 225-77.50 - Telex 280274
Hungary: Mrs Edit Bajusz Hungexpo Advertising Agency Budapest XIV Varosliget
Telephone 225008 - Telex Budapesi $22-4525$
INTFOIRE
Italy: Sig C Epis. Eias-Kompass. S pa - Servizo Estero Via Mantegna 6. 20154 Milan
Telephone 347051 - Telex 37342 Kompass

	PAGE
GEC M-O Valve	
GEC Semiconductors	92
Greenway Elec. Comps.	107
GHJ Developments	138
Greenwood Electronics Ltd.	13,23
Hall Electric	
Harmsworth Townley \& Co. Ltd.	90
Harris Electronics (London) Ltd.	24, 28
Harris, P.	157
Hart Electronics	111
Heyco Mfg. Co. Ltd.	99
Hilomast Ltd.	92
Hird-Brown Elec.	136
Industrial Tape Applications	109
Integrex Ltd.	116,117
Interface Quartz Devices Ltd.	31
ITT Components Resistors	94
Interport Main Stores	156
ITT Mercator	32
ITT Instrument Services	112
JPS Associates	
K. \& A. Distibutors	138
Keithley lnstruments Ltd.	78
Labgear Ltd.	
Langrex (R.S.T. Valves)	132
Leevers-Rich Equipment Ltd.	
Levell Electronics Ltd.	
Lowe Electronics Ltd.	
MacInnes Laboratores Lid.	
Magnum Audio	99,101
Maplin Electronic Supplies	
Marco Trading	138
Marconi Instruments Ltd.	Cover ij
Marshall, A. \& Sons (London) Ltd.	136
Martin Associates	95
Medelec	24
Modern Book, The	158
Multicore Solders Ltd.	Cover iv
MHZ Electronics	30
Milward, G. F.	
Neal Ferrograph	26
Newbear Computer Stores	107
Nexus/Click	111
Nambrex (1969) Ltd.	138
OMB Electronics	
Pattrick. J. B.	
Pelco	
Plessey Controls	12
Powell, T.	125
Powertran Electronics	122,123
Precision Instrument Labs.	
Precision Petite Ltd.	98

GE

 PAGEPye Electro Devices Ltd
Pye Electro Devices Ltd
Pye Unicam Ltd 7, 21
Q. Max Electronics Ltd. 14
Racal Thermionic 10 111
Radford Lab. insts: Ltd.
Radford Lab. insts: Ltd.
Radio Comp 137
118
R.C.S. Electronics 118
98
103
Ritro Electronics Lt 103
R.S.T. Valves Ltd. 132
105
Sabtronics (U.K.) Ltd.87
134
101
Samsons (Electronics) Ltd.
Sandwell Plant Ltd. 101
Scopex Instruments Ltd.
Scopex Instruments Ltd.
Scott, James (Elec Eng.) Ltd 14Semicon
Sescom
Sescom 120
127
Semicon Indexes Lid. 106
Service Trading Co.
Servo \& Electronic 119
107
Shure Electronics Sales Ltd Cover iii
Sinclair Radionics (SRL) 77
127
Sintel 127
96
S.M.E. 19.
88
Southwest Technical Prods. Ltd. 88
97
Southern Electronics
127
127
Sowter, E. A 156
Special Products Lid. 96
27
Strumech Engineering Ltd. Sugden, J. E. \& Co. L
Sullivan, H. W. Ltd 108
Surrey Electronics Ltd. 113
Swanley Electronics Lid. 110
Technomatic Ltd
120
120
Teleradio Hi Fi 110Valradio Ltd.
30
Vero Electronics Ltd 28
Vero Speed
Video Terminals 97
127
V ision Kit 138
West Hyde Developments Ltd 104
Wilmot Breeden Electronics Ltd. 29
Wilmslow Audio 102
Wings Appeal
139
World Radio \& Handbook 97
Z. \& l. Aero Services Ltd. 31.94, 118
'Japan: Mr maisuki Trade Media - IBPA (Japan, B 212
Azabu Heights $\ddagger 5-10$ Roppongi, Minato ku Tokyo 106 Telephone (03) 585-058

United States of America: Ray Edines

1PC. Business Press 205 East 42 nd Stree: New rork. NY 10017 - Telephone (212)689596; - Telex 421710 Mr Jack Farley Jnr The Farley Co Suite 158435 East
Wacker Drive Chicago, Nlinois 60601 - Telephone (312) Nacker Drive Chicago, Hilinors 60601 - Telephone (312) 6 Mr Vic
Mr Victor A Jauch. Elmatex International P O 80× 34607 Los Angeles. Calıf 90034. USA - Telephone (213)
8218581 - Telex 18-1059

Mi Jack Mentel The Fariey Co Suite 650. Ranna Building.
Cleveland. Ohio 4415 - Telephone 216 . 621 . 19 . Cleveland. Ohio 4415 - Telephone (216) 6211919 Beach. Florida 33140 - Telephone (305) 5327301 Miam Mr Jim Parks, Ray Rickles \& Co. 3116 Maple Drive N Atlanta. Georgia 30305 Telephone (404) 2377432 Mike Loughlin. IPC Business Press. 15055 Memoria! Ste 119, Houston. Texas 77079 - Telephone (713) 783

Canada: Mr Colin H MacCulloch Internationai Advertising Consultants Ltd . 915 Cariton Tower. 2 Cariton Stree: Toronto Telephone (416) 3642269
Also subscription agents

[^9]

The creation of the new V15 Type IV is a tour de force in innovative engineering. The challenge was to design a cartridge that would transcend all existing cartridges in musical transparency, technical excellence, and uniformity. The unprecedented research and design disciplines that were brought to bear on this challenge over a period of several years have resulted in an altogether new pickup system that exceeds previous performance levels by a significant degree-not merely in one parameter, but in totality.
In fact, this pickup system has prevailed simultaneously over several extremely difficult music re-creation problems which, until now, have defied practical solutions. Most of all, this is an eminently musical cartridge which is a delight to the critical ear, regardless of programme material or the rigorous demands of today's most technically advanced recordings.

THE V15 TYPE IV OFFERS:

- Demonstrably improved trackability across the entire audible spectrum-especially in the critical mid- and high-frequency areas.

*Cartridge-tone arm system trackability as mounted in SME 3009 tone arm at 1 gram tracking force.
- Dynamically stabilized tracking overcomes record-warp caused problems, such as fluctuating tracking force, varying tracking angle and wow.
- Electrostatic neutralization of the record surface minimizes three separate problems: static discharge; electrostatic attraction of the cartridge to the record; and attraction of dust to the record.
- An effective dust and lint removal system.
- A Hypereiliptical stylus tip configuration dramatically reduces both harmonic and intermodulation distortion.
- Ultra-flat response-individually tested to within $\pm 1 \mathrm{~dB}$.
- Lowered effective mass of moving system results in reduced dynamic mechanical impedance for superb performance at ultra-light tracking forces.
For more information on this remarkable new cartridge write for the V15 Type IV Product Brochure and read for yourself how far Shure research and development has advanced the state of the art.

[^0]: for the closest approach to the original sound QUAD is a Registered Trade Mark

[^1]: [A AUDID AND VIDEO SERVICE EQUIPMENT AUTONATIC TESI AND MEASURING EQUIPMENT COUNTERS ANO COUNTER/TIMERS \square OC POWER SUPPLIES AND AC STABILIZERS \square LOW FREQUENCY EQUIPMENT MICROWAVE EOUIPMENI MULTIMETERS OSCILLOSCOPES i PROFESSIONAL TV EOUIPMEN P PULSE GENERATORS Γ RECOROERS

[^2]: MACINNES LABORATORIES LTD.
 Cariton Park Industrial Estate
 Saxmundham, Suffolk, IP 17 2NL

[^3]: *About 25 years ago I poured scorn on the il logicality and sheer ignorance of persons on the entertainment side of broadcasting who started a custom of distinguishing between programmes and receivers confined to sound and those that provided both sound and sight by calling the former radio and the latter television (or more usually TV). How did the poor mutts imagine that TV programmes were broadcast if not by radio? Were it not that they, and the non-technical British public who swiftly copied them, would have been unaware that this absurd nomenclature needed any excusing they might have excused themselves by the plea that there was no word ready for use for referring to sound broadcasting. All except purists might have accepted 'telesound' had not 'tele' (pronounced 'telly') come to convey to the said public the idea, not, as it should, of distance, but of 'the box' and especially its pictures. Anyway, at last I have given up the unequal struggle, and can only gaze in awe at the respect for principle exhibited by the BBC in retaining the name Radio Times for their weekly list of all radio programmes, with or without pictures. Come to think of it, the same inflexible devotion to a cause is displayed by Wireless World. And by the author of Foundations of Wireless and Electronics. Or could it be just resistance to change? Let's give them the benefit of the doubt!

[^4]: J.P.S. ASSOCIATES

[^5]: To AURA Sounds, W1, Copthorne Bank. Crawley, West Sussex
 Telephone Copthorne (0342) 713338
 I enclose $£ 2.00$, refundable against my first order to the value $£ 25$, please send the Wersi Catalogue and price list.

 ## NAME

 ## ADDRESS

[^6]: BASIC NELSON-JONES TUNER KIT $£ 14.28+$ VAI BASIC MODULE TUNER KIT (stereo) £16.75 +VA1

 PHASE-LOCKED IC DECODER KIT
 PUSH-BUTTON UNIT

[^7]: Golden River Company Limited Telford Road
 Bicester (086-92) 44551
 Oxfordshire

[^8]: Qualifications A First Degree or equivalent and 2.3 years' experience in the production design of analogue circuits for servo controls. Some experience with digital hardware would be an advantage.
 This post is a responsible one carrying a corresponding salary and four weeks holiday Housing available

 Assistance with removal expenditure.

[^9]: London, SEI 9LU, telephone 01-261 8000. Wiretess World can be obtained abroad trom the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Led. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service Ltd, Gordon \& Gotch Lid. SOUTH AF
 UNITED STATES: Eastern News Distributors Inc., I4th Floor, 111 Eighth Avenue. New York, N.Y. 10011 .

