# wreless 

## world

## AUGUST 1977 40p

## Distortion in amplifiers Amateur racto survey

## TVGuesswork out



## TV Pressworkin

If your system is PAL, SECAM or NTSC and you use ITS, the TF2914 Insertion Signal Analyser is the answer to your measurement problems whether you are involved in broadcasting, programme production or PTT networks. The fast, push button action puts clear, unambiguous digital readout of 24 accurate television measurements at your fingertips. No more timeconsuming subjective tests using an oscilloscope.

Versions are available for all national and international ITS formats including CCIR; NTC 7; CBC and UK national.

What is more, the TF2914 can form the nucleus of a fully automatic TV monitoring system which can be as simple or as comprehensive as desired. This can provide instant, fully automatic scanning of system parameters, selection of video inputs and executive action whenever distortion exceeds pre-set limits. Data outputs can be used for recording and interrogation of the system either on site or at a remote station.

Ask for full information and throw away your oscilloscope graticules.

## mi MARCONI INSTRUMENTS

[^0]
## wireless world

Electronics, Television, Radio, Audio

## AUGUST 1977 Vol 83 No 1500

## Contents

23 Can sound quality be quantified?
24 Shortwave boradcasting efficiency by George Jackson
28 Distortion in low-noise amplifiers by Eric F. Taylor
33 News of the month
Radar without the clutter
APRS attracts more visitors
Geos: disappointment and despair
37 Microwave intruder alarm - 2 by M. W. Hosking
41 Letters to the editor
Radio and air safety
No co-ordination on mobile radio
Calculators as stopwatches
44 Rhythm unit - 3
45 Montreaux television symposium by J. F. Golding
51 Circuit ideas
Pitch to voltage converter
Fm. tuner wobbulator
GMT/BST converter
54 World of amateur radio
55 Rate sensor testing and precision motion systems by R. G. Bent
59 Amateur radio equipment - 1 by Ray Ashmore
69 Multi-system ambisonic decoder - 2 by Michael Gerzon
74 New products
76 Sidebands by "Mixer"
111 APPOINTMENTS VACANT
128 INDEX TO ADVERTISERS

[^1]

Photographer Paul Brierley
Front cover shows the interior of a power transistor made by Newmarket Transistors Ltd

## IN OUR NEXT ISSUE

## Low-distortion audio osc-

illator. Constructional design for 10 Hz to 100 kHz instrument using i.cs and suitable for distortion measurements on audio equipment. Distortion at $1-5 \mathrm{kHz}$ les than 0.005\%.

Band II ferrite aerial - el minating the telescopic whip aerial of v.h.f./f.m. portable radio sets. A unit developed for the industry by the BBC.

Amateur radio transmitters and transceivers, the second part of the survey of amateur equipment started in this issue.

ISSN 00436062

Sullivan AC Test sets are designed for the precise measurement of ac voltage ( $10-500 \mathrm{~V}$; current (0.5-30A) and power (up to $1 / 4$ million watts when coupled with a current transformer). They can also measure dc voltage over an exceptionally wide range.
The accuracy and reliability of our AC Test Sets is assured by our manufacturing techniques. Components are hand fitted and subject to a series of searching checks. The coil and pointer, for instance, goes through a delicate test of balance known as poising. We're the only manufacturer who does this.
Every hair spring is cropped to match the coil.
Every scale is hand calibrated, too, matching it precisely to the individual instrument.


Every resistor is aged to ensure long term stability-so there is no need for frequent recalibration. At the end of the process, you get an instrument of high accuracy that is suitable for either workshop or laboratory. Sullivan also produce Precision Multi-range Voltmeters,
Wattmeters and Ammeters. All built to the same high standards. If you'd like to know more, simply get in touch with us. We're also poised to deal with your enquiry.

## Sullivan

H. W. Sullivan Ltd.

Archcliffe Røad, Dover, Kent CT17 9EN.
Tel:(0304)202620 Telex:96283
nom Thorn M Masurement and Components Division

## for greater

 efficiency

## RELIABLE



## 120 BASIC RANGES

$A C \vee, 1 \& d B$
DCV, I \& NULL
RESISTANCE
LEAKAGE at 3 V
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$ Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above 500 HV and 500 nA . Input $\mathrm{R}=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \% \mathrm{fsd}$ above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$ Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering $\pm 4$ decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test valtage for solid state circuits.
Uses 3 V source with current anges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$.
Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

## 30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 22+\mathrm{VAT}$.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $A C / D C$, using HV Probe. Price $£ 16+V A T$.
$1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $A C / D C$, using Current Shunt. Price $£ 15+V A T$.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 38+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at £13 + VAT.

MOXON STREET, BARNET, HERTS., ENGLAND, EN5 5SD.
WW - 018 FOR FURTHER DETAILS

# FAST RESPONSE STRIP CHART RECORDERS <br> Made in USSR 

## Series H3020



Basic error $2.5 \%$
Sensitivity 8 mAF F D
Response 02 sec Width of each channel Single and three-pen recorders $\quad 80 \mathrm{~mm}$ Five-pen recorders 50 mm 25-5 0-12 5-25 mm/sec
Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames. Curvilinear co-ordinates.
Equipment: Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc
H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high PRICE £108.00 H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ PRICE E160.00 high H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$
high
PRICE £295.00

Series H327


Polarized moving iron movements with syphon pens directly attached Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4\%. Frequency response from $D C$ to 100 Hz 2 dB

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5volts/cm Width of each recording channel 40 mm
Chart drive $220-250 \mathrm{~V} 5 \mathrm{~Hz}$
Chart speeds 1-2-5-10-50-125-250mm/sec
Type H3271-1. Single pen: Dimensions: $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

PRICE $£ 265.00$
Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos

PRICE E520.00
Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$ Weight 25 kilos $\ldots$ PRICE E770.00.................................

## Z \& I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF
Tel. 01-7275641
Telex: 261306
WW-046 FOR FURTHER DETAILS

## HIGH POWER DC-COUPLED AMPLIFIER <br>  <br> * UP TO 500 WATTS RMS FROM ONE CHANNEL <br> * DC-COUPLED THROUGHOUT <br> $\star$ OPERATES INTO LOADS AS LOW AS 1 OHM <br> * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC. <br> $\star 3$ YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm , and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise $(20.20 \mathrm{kHz})$
DC. 20 kHz " 150 watts + 1 db . Odb

500 watts rms into 2.5 ohms
+0 . -15 DC to 20 kHz 1 watt $8 \Omega$
Below 0.05\% DC in 20kHz
Below 0.05\% 0.01 watt to 150 watts
Greater than 200 DC to 1 kHz at 88
At least 110 db below 150 watts

Slewing Rate Load impedance input sensitivity Input Impedance Protection Power supply
Dimensions

8 volts per microsecond
1 ohm to infinity
1.75 V for 150 watts into 88

10 K ohms to 100 K ohms
Short. mismatch \& open cct. protection $120.256 \mathrm{~V}, 50 \cdot 400 \mathrm{~Hz}$
19"Rackmount. 7" High. 94" Deep

Other models available from 100 watts to 3000 watts

## the DYMamIC DUO



The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S 15 produces a system of incredible performance
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on /off switch
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high powe handling and compact size

C15/15
15 Watts per channel into $4 \Omega$
Distortion $0.2 \%$ at 1 KHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{KHz}$
Input Impedance $8 \Omega$ nominal
Input sensitivity 2 volts R M S for 15 watts output
Power line 10-18 volts
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches

Data on S 15
6" Diameter
51/4" Air Suspension
2" Active Tweeter
20oz Ceramic magnet
15 Watts R.M.S handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency response
$4 \Omega$ Impedance

## I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Chequer Postal Orders Money Oider
Please debit my Access accoumt Barclaycardaccoumt
Account number
Name \& Address

## SAVEUPTO£75 DON'T MISS DORAM'S SHORT SAVE BAND



Both the complete Digital Multimeter kit and the complete Digital Frequency kit for only $£ 99.95+£ 8.00$ VAT! Buy the se products already assembled and together they could cost you up to $£ 75$ more!

Complete Digital Multimeter kit normally $£ 54.50+£ 4.36$ VAT.

Complete Digital Frequency Meter kit normally $£ 54.50+£ 4.36$ VAT.

## SOLD AS A PAIR FOR ONLY £99.95+£8.00 VAT

Digital accuracy. Ferranti-based technology, printed circuit boards, elegant shatterproof carry-cases with display tilt foot... and Doram dependability. What a rare chance to save even more than usual with Britain's leading professional kits. Don't delay. post today.

## YES, I WANT TO SAVE UPTO £75

## Please send me (subject to avallability)

Please sendme....complete DORAMKITS CATALOGUE(s). showing an additional 25 kits at 25 p each
lenclose cheque/PO vaiue
NAME (BLOCKCAPITALS)
ADORESS
town

## KEY DATA

Digital Multimeter mit:
VOLTS DC
200 mV .2 V 20 V 200 V 500 V Inpul impe dance $42 \mathrm{M} \Omega$
Maximum sensitivity 100 NV VOLTSAC 200 mV 2 V . 20 V 200 V 500 V Mpux impedance $42 \mathrm{M} \Omega$ CURRENTACIOC ZOONA. 2 mA . 20 mA .200 mA .2 A Digital Frequency Meterkit: Frequency range $\quad 20 \mathrm{~Hz}$ to 50 MHz in 3 steps Sensitivity 20 mV m s 20 mV ims s
iM תin parallel with 30pF Input Impedance Input Coupling Maximumlnput lovems Frequency Standard $1 \mathrm{MHZ} 00 \%$ calibration loterance

Display
Accuracy
Supply Voltage

4 Dignt LED display with shittleth for 5 digll readoul
$\pm 1$ digit ( $01 \%$ )
220.240 Vac with 12 vac 100 mA

COUNTY
Posi 10 DORAM ELECTRONICS LTD. DEPT W.M F. PO BOX TR8 LEEDS WEST YORKSHIRE LS 122 UF」

## Plug into world-wide coverage with the new T1000

solid-state 2-30MHz Linear Amplifier

This compact desk-top package incorporates the following features

- New generation high power transistors giving 1000W PEP, 600WCW output.
- Broadband requires no operator tuning
* Full VSWR protection
- Drive requirements 70-120W

Full technical information is available on request from the sole distributors in the UK


## We've just made the impossible . . . a professional $31 / 2$ digit DMM Kit for less than $£ 70$



The Sabtronics Model 2000 is an impossible £69.95!
And that price still includes phenomenal accuracy, range and professional features.

This all-new bench/portable multimeter, reading to $\pm 1999$, has a basic accuracy of $0.5 \% \pm 1$ digit, and has five functions giving 28 ranges, $100 \%$ overrange and overload protection. So you know it's no toy!

Besides, what toys are as automatic as the 2000 ? With automatic overrange indication, automatic polarity, even automatic zeroing!

Yet the 2000 is easy to assemble. We send you all the parts you need, even the high-impact case. We also send you clear, step-by-step assembly instructions
So you end up with a professional quality $31 / 2$ digit
DMM for the unheard of price of less than $£ 70$.
From Sabtronics, specialists in digital technology And manufacturers of the impossible.

Order yours today!

## SEBTMO P

## SPECIFICATIONS: (condensed)

DC volts in 5 ranges: 100 uV to 1000 V .
$A C$ volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1000 V
DC current in 6 ranges: $10 n A$ to 2 A .
AC current in 6 ranges: $10 n A$ to 2 A .
Resistance in 6 ranges: $1 \Omega$ to $20 \mathrm{M} \$ 2$.
Input Impedance: 10MS.
Display: 9 mm (. $36^{\prime \prime}$ ) LED
Power requirements: 4.5 VDC to 6.5 VDC .
( 4 " C " cells - not included).
Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3.0^{\prime \prime} \mathrm{H}$
(203W $\times 165 \mathrm{D} \times 76 \mathrm{Hmm}$ ).
drdering information for readers dutside the u.k.
The price listed is for readers in the $U K$. Only which includes import duties and V A T
For readerspnoverseas countries the price is $£ 49.95$ plus $£ 500$ for Handling and postage, not included are any import duties or other taxes levied upon receipt of goods overseas Payments from overseas
customers should be made only by Bank drafts or International money orders and payable to Sabtronics International Orders should be sent to
Sabtronics International Ltd
Winkelriedstrasse 35
6003 Luzern
Switzerland


Sabyronics (U.K.) Ltd.
50 Galton Road
Westeliff-on-Sea
Essex

## WW7

To: Sabtronics (U.K.) Ltd.
50 Galton Road
Westcliff-on-Sea, Essex

Please send me
Sabtronics Model 2000 DMM
Kit(s) at $£ 69.95$ each incl. V.A.T. and Postage

Total enclosed herewith: $£$

Name

Address

City
County
Readers Overseas please see ordering information.

## PLASTIC FASTENERS FOR ELECTRONICS <br>  <br> SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to flat surfaces. No drilling or fixing screws necessary. The peel-off backing is removed immediately before placing the clip The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

## CABLE STRAPS are semi-permanent fasteners

 for strapping wires and cables into tight, compact looms. The ratchet fastener is adjustable and can be released by pinching-in the sides of the fastener head. Cable straps are made from black nylonWIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-looming times. Wire ties are made from nylon and are available in various sizes each determined by a different colour.
The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and grips p.c boards firmly and securely. The guide is available in two types of material - yellow acetal or grey Noryl, for high temperature and voltage applications

P.C. BOARD SPACERS are simple to fit, onepiece mouldings for use with p.c. boards. They have a self retaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of 0.062" thickness. They have good resistance to vibration and are suitable for board-to-board or board-tochassis use
P.C. BOARD STAND-OFFS are quickly assembled. self-retaining panel supports for p.c. boards. Made from natural (off white) nylon and have good resistance to vibration. Suitable for panels up to $0.079^{\prime \prime}$ thickness. Stand-Offs accept a No. 4 self-tapping screw


PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materials like fibreglass, hardboard and glass. Shank, head and pin are one piece. Fixing is by driving the pin through the head into the space between the legs, gripping the work

DRIVE FASTENERS hold two or more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boatshaped DRIVE Fasteners are for panels of thin and medium thickness and are removable, Ribbed Drive Fasteners are used in blind holes where hole length exceeds lergth of shank.


PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and moisture. Attractively shaped heads give a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole Plugs are made from nylon and are non-corrosive

LOKUT ANCHORS are used to strengthen holes by providing additional screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily fitted by hand


10DD's DF OTHER TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST
HARMSWORTH
HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMORDEN LANCS OL 145 JY Phone TODMORDEN 2601 (STD 070-681 2601)

# S.E.E.D. 

The new name in Mini Processors and associated equipment
C1 30/60 Cassette interface kit 300/600 baud complete with all components including switches, L.E.D.s, motor control relay, etc.

## For the 6800 User

M-16 16K Memory plug compatible with the SWTPC 6800 and allows expansions under 32 K without modification
Used in conjunction with the P-38 EPROM boards a total of 56 K of RAM plus EPROM may be used in your system.
P-38 Provides room for 8 - EPROMS and is switch selectable to any 8 K memory location beginning at 0000 or any multiple of 8 K .
Alternatively Mikbug plus 7 EPROMS can be accommodated.
P-38-I As above plus interface to Paper Tape reader
P-38-FF Contains all the features of the P-38-I plus a plug in interface to the Frugal floppy.
BFD-68-1 Basic floppy disc system including 1 Disc drive (in cabinet capable of holding up to 3 drives).
BFD-68-2 As above but 2 drives.
BFD-68-3 As BFD-68-1 but with three drives
The BFD-68 System comes completely assembled with a disc controller that is plug compatible with the SWTPC 6800. The cabinet and power supply is capable of handling up to three drives.

The BFD-68 includes a bookstrap PROM to operate the DOS. 80 K - bytes per Disc.
Diskettes for the BFD-68 System.
SA-400 Additional drives for the BFD-68 system.
PROM PROGRAMME FACILITIES AVAILABLE from your 300 baud cassette tape.

## For the S100 User

4K memory kits
8 K memory kits
Send S.A.E. for full range and price list to:
STRUMECH ENGINEERING LIMITED Electronics Division
Portland House, Coppice Side Brownhills, Walsall WS8 7EX



Our bi-monthly newslatter keeps you up to dete with latest guaranteed prices - our latest special offers (they save you poundsl - details of new projectes and new lines. Send 30p for the next six issues ( 5 p discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend (0702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex
iClosed on Monday) Telephone: Southend $\mathbf{1 0 7 0 2 1} 47379$

## IT'S A FANTASTIC BESTSELLER!

216 big ( $11^{\prime \prime} \times 8^{\prime \prime}$ ) pages! Over a thousand illustrations!
Over 30 pages of complete projects to build!
Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!

## DON'T MISS OUT! SEND 60p NOW!

## POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE

 PRICE 60pPlease rush me a copy of your 216 page catalogue by return of post. I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

## - NAME

## 1 ADDRESS

1


WW -049 FOR FURTHER DETAILS

## Four Good Reasons for using Zettler Relays:

Zettler Relays are first class quality We have about 50 years experience in producing relays. Zettler Relays are readily available. Most are available ex stock Harrow Zettler Relays are proved in practical applications. Millions are used in our own electronic systems and products. Zettler has the right relay for most applications, e.g.

Flattorm Relay AZ 531
for universal application with control circuits, i. e. for black and whites operation. 2 independent changeovers Contact material: Fine silver, silver cadmium oxide. fine silver with hard gold flashing Printed circuit mounting $(27.5 \times 22.5 \times 11 \mathrm{~mm})$ Coil voltages: 6 to 110 VDC Contact rating 110 VDC/ 125 VAC max 1 A/2.5 A max., 30 W/100 VA Also available in spray-proot version Also available in spray-proo
with an ultra-welded base.

Let us help you with your switching problems.
 est. 1877
Zettler UK Division
Brember Road Harrow, Middx. HA2 8AS Tel. (01) 4220061
Zettler offers more than technology

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMBOARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins
Incorporates Bus Strips For Vcc And Ground
Includes A Component Support Bracket
Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors


Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors $=-$ INDUSTRIAL MOUIDINGS ITD
Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 OAU, England Telephone 01.7372383 Telex 919693


## BULK ERASURE PROBLEMS?



LR71
LR70
MAX REEL SIZE $111 / \mathbf{2}^{\prime \prime}$
MAX REEL SIZE $81 / \mathbf{4}^{\prime \prime}$

If it's personal we can only advise a diet or joining weightwatchers If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $111 / 2^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement.

The LR70/71 bulk erasers are currently used in Broadcast Companies. Recording Studios, Government Departments, Educational Establishments and the Computer Industry
Moderately priced and available from:
LEEVERS-RICH EQUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL
Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley
WW-031 FOR FURTHER DETAILS

## ELECTRONIC INDUSTRIAL THERMOMETER


the modern way to measure temperature
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $1 \frac{1}{2}$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ measures from-40 C to $+70^{\circ} \mathrm{C}$. Price $£ 25.00$ Model "Mini-Z $2^{\prime \prime}$ measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} \quad £ 27.50$ [VAT 8\% EXTRA]
Write for further details to

## HARRIS ELECTRONICS (LONDON)

138 GRAY'S INN ROAD, LONDON, WC1X 8AX
(Phone 01-837 7937
WW - 008 FOR FURTHER DETAILS

## seen from the professional angle



## the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accousticai conditions.

Specifications:
Frequency Response: $40-18000 \mathrm{~Hz}$. Output Level at $1 \mathrm{kHz}: 0,14 \mathrm{mV} / \mu$ bar ' $\leqslant-56 \mathrm{dbm}(0 \mathrm{dbm} \triangleq 1 \mathrm{~mW} / 10$ dynes/cm2). EIA Sensitivity Rating: -149 dbm . Hum Pickup Level:
$5 \mu \mathrm{~V} / 5 \mu$ Tesla $(50 \mathrm{~Hz})$. Polar Pattern:
Hypercardioid. Output Impedance:
$200 \%$. Load impedance: $>1000$ Q.
Conriections: $\mathrm{M} 201 \mathrm{~N}(\mathrm{C})=$ Cannon
XLR-3-50 T or Switcheraft: $2+3=$
$2002_{1}, 1$ = ground. $\mathrm{M} 201 \mathrm{~N}=3$-pin
DIN plug T 3262: $1+3=200 \Omega$
2 = ground. M $201 \mathrm{~N}(6)=6$ pin Tuchel.
Dimensions: length $6^{\prime \prime}$, shaft $\varnothing 0,95^{\prime \prime}$. Weight: 8,60 oz.


BEYER DYNAMIC (GB) LIMITED 1 Clair Road, Haywards Heath, Sussex. Tel:Haywards Heath 51003 WW - 065 FOR FURTHER DETAILS

SHORT \& OPEN CIRCUIT, IMPEDANCE OVERLOAD, MISMATCH AND THERMAL PROTECTION. ONLY 5 EXTERNAL CONNECTIONS REQUIRED.
FULL 2 YEAR GUARANTEE.

| Power Output | $\begin{array}{ll} \text { JPS } & \text { price } \\ 80 & \text { (E20.62) } \end{array}$ | $\begin{array}{ll} \text { JPS } & \text { price } \\ 100 & \text { (£25.85) } \end{array}$ | JPS price <br> ( 32.61 )  |
| :---: | :---: | :---: | :---: |
|  | 70 watts 7.5 ohms | 110 watts RMS <br> 7.5 ohms | $\begin{gathered} 170 \text { watts RMS } \\ 7.50 \mathrm{hms} \\ \hline \end{gathered}$ |
| Frequ. Response | $10-30 \mathrm{kHz}=0.5 \mathrm{~dB}$ | $10.30 \mathrm{kHz}-0.5 \mathrm{~dB}$ | $10.30 \mathrm{kHz} \cdot 0.5 \mathrm{~dB}$ |
| Slowing Rate | 7.3 V permicrosec. | 8 V per microsec. | 8.4V per microsec |
| T.H.D. | 0.05\% @ 1 kHz | 0.05\% ¢ 1 kHz | 0.05\% @ 1 kHz |
| Damping Facto | 200 | 400 | 400 |
| Hum \& Noise | 115 dB below 70 watts | 115d8 below 110 watts | 115 dB below 170 <br> watts |
| Input Sansitivity | Od8 (0.775V) 70 wates | $\begin{array}{\|c\|} \hline 0 \mathrm{O} 8(0.775 \mathrm{~V}) 110 \\ \text { walls } \\ \hline \end{array}$ | $\begin{array}{r} \text { OdB }(0.775 \mathrm{~V}) 170 \\ \text { watts } \\ \hline \end{array}$ |
| Input Impedance | 47k | 47k | 47k |
| Power Requirement $\pm .35 \mathrm{~V}$ olis |  | $\pm 45 \mathrm{Yolts}$ | $\pm 55$ Volts |
| Overall Dimens. | $\begin{aligned} & 5.8^{\circ 0} \text { Long } \times 3^{\circ \circ} \\ & \text { Wide } \times 1^{\circ} \text { High. } \end{aligned}$ | $\begin{aligned} & 5.8^{\circ \prime} \text { Long } \times 3^{\prime \prime \prime} \\ & \text { Wide } \times 1^{\prime \prime} \mathrm{High} \end{aligned}$ |  |
| For Industrial usiage the frequency response of the amplifiers can be extended down to DC + odB-0.2d8 Input Impedance \& Sensitivity can be modified to suit particular requirements. |  |  |  |
| POWER SUPPLIES |  |  |  |
| PS 100 powers 1 JPS 100 price $£ 15.51$ PS 150 powers 1 JPS 150 price £ 19.22 <br> All Prices ar |  | PS 100/2 powers 2 PS $150 / 2$ powers Subiect To $8 \%$ $V A$ | PS 100 price 128.82 PS150 price $\mathbf{E 3 0 . 7 5}$ |
| BELMONT HOUSE - STEELE ROAD PARK ROYAL - LONDON NW10 7AR TELEPHIONE 01-961 1274 |  |  |  |

## DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet $30,300 \& 1200$ ( 30 and 120 cps ) Teleterm: 132 and 1200 series (portable / fixed 30 cps ) with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.)
$\star$ Spares, repairs, overhauls and maintenance
$\star$ Other types and models available
$\star$ Refurbished units also available
$\star$ Short and long period rentals
$\star$ Minicomputer interfaces
$\star$ Quantity discounts
$\star$ Immediate delivery

TELEPRINTER EQUIPMENT LTD.
70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables RAHNO Tring Telex 82362 A/B Batelcom Tring


WW-023 FOR FURTHER DETAILS

## 805 (8TRACK) MASTER RECORDER



Fully modular electronics using plugin PCB's throughout. Separate sync and replay amps give identical levels Switchable VU's with slow decay Individual oscallator for each channel Dolby A switching facility Comprehensive facilities include sync on all channels. servo controlled capstan, modularelectron ics, vartable speed (optional), relay solenoid operation Compact presenta tion for easy porta bility.
$£ 1890$ + VAT Full console optional extra
Compatible 8-output Mixer available $\mathbf{£ 1 3 6 0}+$ VAT


THESE ITEMS ARE INDUSTRIAL PRODUCTS AND SUBJECT TO 8\% VAT

# 4 YAESU MUSEN <br> vats <br> FOR THE FINEST VALUE IN THE WORLD <br> THEFRG7 $\begin{aligned} & \text { Synthesised General Coverage } \\ & \text { Communications Receiver }\end{aligned}$ 



The FRG7 is a solid state mains and $12 v$. receiver offering continuous coverage $0.5-30 \mathrm{MHz}$ with specifications unparalleled in its price range.

Its advanced circuitry provides superb performance for professional. or amateur alike: search, monitor, test, amateur or broadcast band applications

The use of a Wadley loop (using the same VHF oscillator to mix up, then after pre-mixing with a stable crystal source down again (this cancelling all drift from the variable oscillator). It provides equivalent performance to 30 crystal controlled converters feeing a low IF, but without the image problems of such an arrangement
The signal path starts with the choice of 3 antenna connectors: for $1.6-30 \mathrm{MHz}$, a $50 / 75 \mathrm{ohm}$ feed (to a SO239 (UHF) coax socket and a binding post) and for $0.5-1.6 \mathrm{MHz}$ (medium wave) a separate high impedance binding post. A 3 position 0-40dB'switchable attenuator aids reception of very strong signals and reduces adjacent channel interference. The low noise MOSFET RF amplifier provides a SSB sensitivity of $0.25 \mu \mathrm{~V}$ (for $10 \mathrm{~dB} N+S / \mathrm{N}$ at 10.5 MHz ) and is sharply tuned by a well calibrated "pre-selector" capacitor with 4 band switched coils. Its output is low pass filtered ( $\mathrm{fc}=35 \mathrm{MHz}$ ) removing VHF image problems from the following mixer. This comprises a pair of JFETS, driven by the " MHz set" $55.5-84.5 \mathrm{MHz}$, oscillator, which upconverts the signal to the band pass first IF to $55 \mathrm{MHz} \pm 500 \mathrm{KHz}$ where it is MOSFET amplified. The second IF of $2-3 \mathrm{MHz}$ is produced by a FET mixer by hetrodyning with the synthesiser derived 52.5 MHz signal. A 1 MHz crystal oscillator and diode harmonic generator produces a $3-32 \mathrm{MHz}$ comb spectrum. This, with the first hetrodyne oscillator ( MHz set) is fed to a dual balanced i.c. pre-mixer. The output is expurged by a multiple stage selective amplifier producing the 52.5 MHz second oscillator. A small fraction of this is rectified, DC amplified and lights the 'lock' LED (saving power) when the MHz oscillator is malset. The 2-3 MHz signal is MOSFET amplified and fed to the third mixer (a JFET whose input and output are tuned by capacitors ganged to the main tuning control) where it is hetrodyned to the final IF by the main VFO which covers a 1 MHz range (2.455-3.455), is clearly calibrated, 10 5 kHz (or better), well buffered and highly stable. The third ( 455 kHz ) IF starts with the ceramic selectivity element and is followed by two stages of bipolar (the first in the signal path) amplification before the choice of detectors; twin diodes for AM, or a 4 diode product detector, with well buffered switched frequency (for selectable
 sidebands) B.F.O. A diode rectifies, a fraction of the output from the final IFT, this is boosted to drive the illuminated " $S$ " meter and automatically gain control the MOSFET amplifier in the RF, second and third IF stages, reducing fading and distortion. Immediately following the demodulator is an automatic noise limiter, highly effective in suppressing pulse type interference on AM signals, and a three position "tone" switch a (high, low or band pass) audio filter, reducing the bandwidth to that required. A transformerless AF amplifier : delivers a generous 2 W to the internal $5^{\prime \prime} \mathrm{x}$ $3^{\prime \prime}$. or external speaker, drives a phone jack, and a "volume" independent output for tape recorder. The receiver is, mains (234VAC). external ( 12 v DC ) or internal dry cell powered, the most economic source being automatically chosen. This is reduced to a stable regulated 10 v . (or 9 v . for oscillator and the harmonic generator). A dial lamp switch is provided to conserve power on battery operation.

## PERFORMANCE WITH ECONOMY WORLD WIDE WIRELESS

## CONSERVATIVE SPECIFICATIONS

FREQUENCY RANGE $0.5-30 \mathrm{MHz}$ General coverage in 4 bands AUDIO DISTORTION less than $10 \%$ at 2 W output AUDIO OUTPUT more than $2 W$. ANTENNA IMPEDANCE 50-75 ohms. Unbalanced for $1.6-30 \mathrm{MHz}$. High impedance for $0.5-1.6 \mathrm{MHz}$.

MODES SSB (selectable USB\&LSB) AM, AM/ANL or CW CIRCUITRY 13 bipolar and 9 field effect transistors 2 ICs and 16 diodes. SIZE $1312^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{H} \times 111 / 2^{\prime \prime} \mathrm{D}$. POWER REQUIREMENTS 13.5 V DC. Neg ground or 8 off HP11. or $100 / 110 / 117 / 220 / 234 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$.

FREQUENCY STABILITY within 500 Hz during any 30 mins. after warm up. SELECTIVITY $\pm 3 \mathrm{KHz}$ at 6 dB (nominal) with $\pm 7 \mathrm{KHz}$ at -60 dB down. WEIGHT $151 / 2 \mathrm{lbs}$ without batteries. SENSITIVITY $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB} . \mathrm{N}+\mathrm{S}: \mathrm{N}$ ratio for SSB and $\mathrm{CW} .0 .7 \mu \mathrm{~V}$ for $30 \%$ modulated $A M$ at 10.5 MHz .

## Amateur Electronics

 508-514 Alum Rock Road Alum Rock Airmingham B8 3HXQUR AGENTS

South Midlapds Communications Ltd.
T.M.House. Osborne Road

Totton
Totton Se. Osborne Road
Southampton, Hampshire SO4 4DN

Western Electronics (UK) Lid. Fairfield Estate
Louth
Lincolnshire LN1 1 OJH

# 66 where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune? 

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to $1 \%$, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take-with no calculations thanks to the mechanical irr-line digital display and interlocking units selector.

The B150Mk. 3-for use in production, quality control, development labs -even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From good distributors everywhere.

Ring us for the name of your nearest stockist or for fuller details of AVO's Universal Bridge B150̊ Mk. 3 .


Avo Limited, Archcliffe Road, Dover, Kent. CT17 9EN.
Tel: 0304202620 Telex: 96283.
Inem Thorn Measurement Control and Automation Division


WW - 007 FOR FURTHER DETAILS

METER PROBLEMS?


137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

## HARRIS ELECTRONICS (London) <br> 138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

## Wilmslow Audio

## THE Firm for Speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE
OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC.
AND DISCOUNT PRICE LIST

[^2]
## WILMSLOW AUDIO (Ioep. wm

SWAN WORKS. BANK SQUARE. WILMSLDW. CHESHIRE SK9 1 hf
Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street Tel. Wilmslow 29599 for Speakers Wilmslow 26213 for Hi-fi


New from Antex-the CX miniature soldering iron, the very latest addition to the range that has given us a reputation second to none.

Manufactured on the same principle as the extremely successful X25 the CX incorporates these points:
$\square$ Heating element encased by inner thin ceramic tube, outer tube of stainless steel.
$\square$ Soldering bits fit precisely over steel tube, with easy and quick exchange possible for any of the additional bits (shown in photograph).


Stand Model ST3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at $£ 1.40$ exclusive of VAT.


Model X25 is a general purpose soldering iron, also with two shafts for toughness and perfect insulation. Available for $220-250$ volts or $100-$ 120 volts at 25 Watts and priced at £3.40 exclusive of.VAT E3.40 exclusive or


Mayflower House, Plymouth. Telephone (0752) 67377/8 Telex 45296 Giro 2581000 To Antex Ltd; Freepost Plymouth PL1 1BR. Please send me catalogue and price list.
Name Address and price list.

## I

$\square$ Use for ordinary or micro-soldering: tip sizes range from 6 mm down to 1 mm .
$\square$ Available for $220-250$ volts or $100-120$ volts.
$\square$ Weight-11/202 (40gram) Length $-71 / 2^{\prime \prime}(19 \mathrm{~cm})$.
$\square$ Price- $£ 3.40$ fitted with standard bit $3 / 32^{\prime \prime}(2.3 \mathrm{~mm})$. Spare bits $£ 0.46 ; £ 0.72 ; £ 0.84$. Exclusive of VAT.

Adaptable, efficient and with a very high safety standard the Antex CX may be small-but it's already building up a big reputation!

Send the coupon below for colour catalogue and price lists. CR

## 15-240 Watts!

## HY5

Preamplifier

HY30
15 Watts into $8 \Omega$
The HY5 is a mono hybrid amplifier ideally suited for all applications. Alt common input functions (mag Cartidge tuner etc.) are catered for internally, the desired function is achieved enther by a multi-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting to external potentiometers (not included) The HY5 is compatible with all ILP power amplifiers and power supplies To ease construction and mounting a P C connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack - Muli-function equalization - Low noise - Low distortion-High overload - two simply combined for stereo
APPLICATIONS: HIF1 - Mixers - Disco - Guitar and Organ -- Public address
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV . Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$ : input impedance 47 k ! at 1 kHz
OUTPUTS Tape 100 mV Main output 500 mV R M S
ACTIVE TONE CONTROIS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz : Bass $\pm$ at 100 Hz DISTORTION $01 \%$ at 1 kHz Signal/ Noise Ratio 68 dB
OVERLOAD 38 dB on Magnetic Pick-up SUPPLY VOLTAGE $\pm 1650 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\&P ${ }^{2}$ free
HY5 mounting board Bi $48 p+6 p$ VAT P\&P free
The HY30 is an exciting New kit from $1 L P$, it features a virtually indestructible : $C$ with sholt circuit and thermal protection The kit consists of I.C. heatsink, PC board 4 resistors 6 capacitors, mounting kit, rogether with easy to follow construction and operating instructions This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology avaitable
FEATURES: Complete kn - Low Distortion - Short. Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier to Audio APPLICATIONS: Updating audio equipment -- Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS:
OUTPUT POWER $15 W$ R.M.S into 80 DISTORTION $01 \%$ at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $=18 \mathrm{~V}$
Price $£ 5.22+65 \mathrm{~V}$ VAT P\&P free

## HY50

25 Watts into $8 \Omega$
The HY50 leads I LP s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink -- Only five connections -- 7 Amp output transistors - No external components

APPLICATIONS: Medium Power Hi-Fi systems -- Low power disco -- Guitar amplifie
SPECIFICATI
OUTPUT POW
OUTPUT POWER 25W RMS in 89 LOAD IMPEDANCE 4-1612 DISTORTION $004 \%$ at 25 W at
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE +25 V SIZE 1055025 mm Price $£ 6.82+85 p$ VAT P\&P free
HY120
60 Watts into $8 \Omega$
requirements including of ILP s new high power range designed to meet the most exacting requirements including load line and thermat protection, this amplifier sets a new standard in modular FEATURES: Very low distortion - Integral Heatsink -- Load line protection -- Thermal protection APPLICATIONS: H1-Fi - High quality disco -- Public address -- Monitor amplifier -- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 8: LOAD IMPEDANCE $4-160$ DISTORTION $004 \%$ aः 60 W at
 $\stackrel{+}{\text { Size }} 114 \times 50 \times 85 \mathrm{~mm}$.
Price £15.84 + £1.27 VAT P\&P free.
HY200
120 Watts into $8 \Omega$
rugged conditions such as disco or group while still retaining true Hi-Fi pertormance FEATURES: Tharmal shutdown -- Very iow distortion -- Load tine protection -- Integral Heatsink APPLICATIONS: HI-Fi -. Disco - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 89 LOAD IMPEDANCE 4-160 DISTORTION $005 \%$ at 100 W at
SIGNAL NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE
-45 V SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £23.32 $+£ 1.87$ VAT P\&P free
HY400
240 Watts into $4 \Omega$
The HY400 is I L.P's "8ig Daddy" of the range producing 240 W into $49^{\prime}$ ' th has been designed for high power disco of public address applications If the amplitier is to be used at continuous high power lead the market as a true high power hi-fidelity power modute FEATURES: Thermal shutdown - Very low distortion -

APPLICATIONS: Public address -- Disco -- Power slave .- Industria
SPECIFICATIONS
OUTPUT POWER 240W RMS into 40 LOAD IMPEDANCE 4-16! DISTORTION 0 \% \% at 240 W at SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £ $32.17+£ 2.57$ VAT P\&P free.
POWER SUPPLIES

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque $\square$ Postal Orders $\square$ Money Order $\square$
Please debit my Access account $\square$ Barclaycard account $\square$
Account number
Name \& Address
Signature

# Uniquefull-function 8-digit wrist calculator... available onlyas a kit. 

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\% VAT, P\&P). And for that, you get not only a high calibre calculator, but the fascination of building it yourself.

## How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the convenience functions $\sqrt{\mathrm{x}}, 1 / \mathrm{x}, \mathrm{x}^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.


Dimensions
$113 / 16^{\prime \prime}(46 \mathrm{~mm})$ wide $17 / 6$ ( 37 mm ) deep Weight:
less than $102(28 \mathrm{~g})$

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys.
2. and hold it to the right to use the functions to the right above the keys.


The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.


Sinclair Instrument Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

Assembling the Sinclair Instrument wrist calculator
The wrist calculator kit comes to you complete and ready for assembly. Alf you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.
servos synchronous steppers d.c. motors control systems gearboxes friction clutches instrument couplings
for a technical advisory service and off the shelf delivery, contact
mclennan telephone 034465757 /8 MOTOR STOCKISTS FOR: IMPEX, PORTESCAP
PRINTED MOTORS
McLENNAN SERVO SUPPLIES LTD. .KINGS ROAD, CROWTHORNE, BERKS.

WW-030 FOR FURTHER DETAILS
A. D. BAYLISS \& SON LTD. Behind this name there's a lot of real POWER!
Illustrated right is a TITAN DRILL
Mounted in a multi-purpose stand This drill is a powerful tool running on 12 V DC at approx
9000 rpm with a torque of 350 grm . cm Chuck capacity 300 m
9000 rpm with a torque of $350 \mathrm{grm} . \mathrm{cm}$ Chuck capacity $300 \mathrm{~m} / \mathrm{m}$.
The multi-purpose stand is robustly constructed of steel and aluminium The base and bracket are
finished in hammer blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan.
Approx. speed $9000 \mathrm{rpm}, 12 v \mathrm{DC}$, torque 35 grm cm Capacity $24 \mathrm{~m} / \mathrm{m}$.
TITAN DRILL \& STAND
titan drill only
RELIANT DRILL \& STAND
reliant drill only

$\varepsilon 8.90+8 \%$ VAT $=\varepsilon 961+35 p$ P\&P

TITAN MINI KIT DRILL
RELIANT MINI KIT DRILL


Plus 20 Tools


Plus 20 Tools
$+8 \%$ VAT $=£ 13.08+50 \rho$ P\&
TRANSFORMER UNIT
$+8 \% V A T=\varepsilon 923+750$ P8 $\mathbf{8 . 5}$
These are examples of the extensive range of power tools designed to meet the needs of development engineers. laboratory workers model makers and others requiring small precision
production aids production aids
To back up the power tools. Expo offer a comprehensive selection of Drills. Grinding Points and other tools
SEND STAM

MP for full details to mann distributors

A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU<br>Stockists Richards Electric, Worcester and Gloucester; Hoopers of Ledbury: Hobbs of Ledbury; D\&D Models, Hereford; Bertella, Gloucester

## WW-064 FOR FURTHER DETAILS

## ACTIVE CROSSOVER SYSTEM <br> LATEST MAGNUM MODULE FOR LINEAR PHASE ACTIVE CROSSOVER NETWORKS

[^3]\mp@subsup{}{}{2

``` & \[
\begin{aligned}
& 305 \\
& 12 \\
& \text { Hardened } \\
& \text { Aluminium } \\
& 0.03 \\
& 0.0012 \\
& 160 \\
& 350 \\
& 0.107 \\
& 0.079
\end{aligned}
\] \\
\hline External Control & Input required for full scale speed 3 dB bandwidth for \(10^{\circ} / \mathrm{sec}\) peak to peak sinewave demanded input & \[
\mathrm{Hz}
\] & \[
\begin{aligned}
& +5 \\
& 115
\end{aligned}
\] \\
\hline Slip rings & \begin{tabular}{l}
No. power circuits 5A \\
No. twisted pairs of signal circuits 1 A \\
Noise per ring in bandwidth of 1 KHz
\end{tabular} & m & 6
\[
\begin{aligned}
& 20 \\
& 10
\end{aligned}
\] \\
\hline Calibration output & One pulse OV to +5 V per rev Angular accuracy Duration (10 pulses per rev can be provided as an optional extra) & \% msec & \[
\begin{aligned}
& +0.05 \\
& 5
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Automated testing}

Besides providing information on the various parameters, the rate transfer test is used as the fundamental calibration of any rate sensor. It is therefore important that the test conditions are repeatable. Many factors can influence the output of a rate sensor, such as settling time, which is the time allowed after a change to an input rate before the sensors output is recorded, and the dwell time.

The effect of most variables can be minimised by agreed standardisation between different operators, but for exact repeatability of test conditions it is essential that the process is automated. The need for automatic testing of rate sensors has led to the development of rate table programme units which accept paper-tape commands for range setting and rate control, and provide digital monitoring facilities. A precision digital-to-analogue converter is used in place of the voltage reference source and divider networks, with relays to control the setting of range. Such units can be driven by a numerical control and logging station which translates commands from punched paper-tape and issues them upon clock demands as b.c.d. signals to the unit. After a preset delay, data are recorded in punched tape form for subsequent computer analysis.

The parameters established by the rate transfer test are obtained under steady state conditions. In practice, however, the sensor is normally used dynamically within a servo-control system, and knowledge of the dynamic characteristics is required. This is achieved by subjecting the sensor to oscillating rate inputs and measuring the amplitude and phase shift of the corresponding outputs. In this way information on the transfer function order, gain and error constants, and


Fig. 5 Rate table and servo-system control unit.
resonant frequencies is obtained. The oscillating rate table is designed specifically for high bandwidth frequency testing of rate sensors. The basis for the oscillating table and control system is a velocity servo-loop similar to that used for standard rate control. Frequency response of the system is usually limited by the resonant frequencies of the mechanical coupling between table platter and motor drive.

The inertia of the moving parts controls the peak rate achievable from the available torque at any specified frequency of rate oscillation. Consequently, oscillating tables tend to be of a smaller and lighter construction than the constant rate types. The performance of a typical system using a 250 W d.c. amplifier to power a 9.5 Nm torque motor is shown in Table 3.

\section*{Precision low rate testing}

Integrating-rate gyroscopes are rescrained from rotating about their output axes by a torque generator. An angular pick-off between gimbal and case provides the input signal to a gyroscope servo-loop which drives the torquer and
restores the gimbal angle to a null. Thus the integrating gyro is a low-rate input device in which the time integral of the torquer current represents the total angular movement of the gyro. Any error torque will generate a compensating current through the gyroscope servo and will be integrated into the calculation of angle. Predictable nonrandom error torques may be quantified at low rates on a rate table and may be subsequently removed by compensation within the avionics. At low testing rates, typically one degree per hour and below, the signal from the tachogenerator of the rate table is liable to drift by as much as \(10 \%\). Also, the table rate may be swamped by the earth rate of 15 degrees per hour. Proportions of earth rate, or vector summations of earth rate and table rate, can be achieved by precise orientation of the gyroscope and table axis relative to the earth axis. This is most easily achieved with a precision tilt-stand. A solution to table error at low rates is the use of precision position

Fig. 6 Block diagram of rate table control system.



Fig. 7. Multi-axis system. This system allows three-axis component testing from two axes.
markers to monitor the average rate between pulses. Moire fringe techniques will provide absolute positional accuracies to \(\pm 0.001^{\circ}\), allowing rate to be monitored to an accuracy dependent on the averaging distance.

\section*{Multi-axis systems and motion simulators}

In practice rate sensors are rarely used singly but are incorporated within an overall system containing two or three sensors aligned with mutually perpendicular axes. Each sensor is calibrated, both for steady state and dynamic response, for inputs about the rate-sensitive axis and also for inputs about the other two axes, to determine any cross-coupling effect.
By using a multi-axis rotational table, a sequence of rates may be applied along various directions without the need to physically move the system. The testing of all axes ensures that the same conditions apply to each test and also removes the possibility for error in relocating the sensitive axis. The natural extension of using a multi-axis system is to simulate the motion of the vehicle in which the package will be used. A computer is programmed to generate the vehicle response to signals from the package, and the multi-axis system is driven by the computer to simulate the resulting vehicle motion. Thus, the multi-axis system can be used as a development tool to calibrate and test systems and can also provide a useful facility during the design and development of the control system.
Design difficulties for a multi-axis system are the same as those for a rate table, but multiplied by the number of axes and compounded by the physical size and inertia of the axis elements and the need to carry one axis within another. The basic components are the same as previously described for rate tables, a d.c. torque motor drive, tachogenerated signal for rate achieved, d.c. power amplifier, and slip ring assembly, for each of the rotating axes. The reference rate is set either internally by a precision voltage reference or by external analogue signals from the computer. In addition there is usually a

Table 3. Typical performance specification of an oscillating rate table.
\begin{tabular}{|c|c|c|c|}
\hline Peak rates & Input frequency 2 Hz (No load) Input frequency 200 Hz (No load) Input frequency 200 Hz (load 0.01 lbf. ft. \(\mathrm{sec}^{2}\) ) Input frequency 200 Hz (load \(0.02 \mathrm{lbf} . \mathrm{ft} . \mathrm{sec}^{2}\) ) & \[
\begin{aligned}
& 0 / \mathrm{sec} \\
& 0 / \mathrm{sec} \\
& 0 / \mathrm{sec} \\
& 0 / \mathrm{sec}
\end{aligned}
\] & \[
\begin{array}{r}
1000 \\
60 \\
17 \\
11
\end{array}
\] \\
\hline Acceleration & & \(0 / \mathrm{sec}^{2}\) & 100.000 \\
\hline Peak torque & (Nominal at stall) & Nm Ibf ft . & \[
\begin{aligned}
& 9.5 \\
& 7
\end{aligned}
\] \\
\hline Table top & \begin{tabular}{l}
Diameter \\
Material \\
Flatness \\
Inertia (total moving parts)
\end{tabular} & \begin{tabular}{l}
mm \\
in \\
mm T.I.R. \\
in. T.I.R. \\
\(\mathrm{kgm}^{2}\) \\
lbf ft. \(\mathrm{sec}^{2}\)
\end{tabular} & \[
\begin{aligned}
& 152 \\
& \quad 6 \\
& \text { Surface } \\
& \text { hardened } \\
& \text { aluminium } \\
& 0.03 \\
& 0.0012 \\
& 0.005 \\
& 0.004
\end{aligned}
\] \\
\hline Inertia load capacity Demand & \begin{tabular}{l}
Maximum inertia \\
Sensitivity range 1
\[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] \\
Maximum input \\
input impedance \\
Frequency response \\
+1 dB , small signal. unloaded \\
+ '3dB. small signal, unloaded
\end{tabular} & \begin{tabular}{l}
\(\mathrm{kgm}^{2}\) \\
lbf. ft. \(\mathrm{sec}^{2}\) \\
\(\% / \mathrm{sec} / \mathrm{V}\) \\
\(\% / \mathrm{sec} / \mathrm{V}\) \\
\(0 / \mathrm{sec} / \mathrm{V}\) \\
v \\
kn \\
Hz \\
Hz
\end{tabular} & \[
\begin{array}{r}
0.03 \\
0.02 \\
1 \\
10 \\
100 \\
10 \\
100 \\
150 \\
250
\end{array}
\] \\
\hline Rate monitor output & \begin{tabular}{l}
Output voltage ranges 1 and 2 range 3 \\
Minimum load impedance \\
Maximum load capacitance \\
Accuracy
\end{tabular} & \[
\begin{aligned}
& \mathrm{V} / \% / \mathrm{sec} \\
& \mathrm{~V} / \% / \mathrm{sec} \\
& \mathrm{kn} \\
& \mathrm{pF} \\
& \% \\
& +\% / \mathrm{sec}
\end{aligned}
\] & \begin{tabular}{l}
0.1 \\
0.01 \\
500 \\
220 \\
1 \\
0.02
\end{tabular} \\
\hline Calibration output & One pulse \(O V\) to \(+5 V\) per revolution Angular accuracy Duration & \[
\begin{aligned}
& \% \\
& \mathrm{~ms}
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \\
& 5
\end{aligned}
\] \\
\hline
\end{tabular}
mechanical accuracy requirement for orthogonality of the axes and the sphere of axis intersection. It is an unavoidable fact of life that the axes increase in physical size from innermost to outermost, with consequent decrease in speed, acceleration, and frequency response. The inertia of each axis controls the dynamic capability of the system and thus optimum performance is achieved by designing each multi-axis system for the specific application. Fig. 7 shows an optimised design which achieves three-axis component testing from two axes. This can be used when two of the axes are interchangeable. For example, in the case of a missile spinning about the roll axis, the pitch and yaw axes see identical motion waveforms which are \(90^{\circ}\) apart.

\section*{Conclusion}

Major advances in the near future will be the universal adoption of standard calibration procedures, the use of test equipment in production areas, and the increasing use of completely automated test facilities. Longer term developments for test equipment are likely to be increased range and accuracy to accommodate new designs of sensor and more demanding applications.

\section*{References}
1. Standard gyro and accelerometer terminology, IEEE Gyro and Accelerometer Panel, P528/D3, 22 September 1975.
2. Specification format for single - degree - of - freedom spring - restrained rate gyros, IEEE Gyro and Accelerometer Panel, November 1967.
3. Test procedures for single - degree - of freedom spring-restrained rate gyros, IEEE Gyro and Accelerometer Panel, November 1967.
4. Andrews, T. R. DGON Symposium on Gyro Technology: Calibration of the Rate Transfer Characteristics of a Rate Sensor, February 1976.

\section*{Correction to advertisement}

AVO Limited have asked us to point out that in their advertisement for the AVO Model 73 in the June 1977 issue, p.10, the price stated was incorrect. It should read "UK Trade Drice \(£ 36.30\) plus VAT"'.

\title{
Amateur radio equipment - 1
}

\title{
A survey of modern commercially-built receivers, transmitters and transceivers
}

\author{
by Ray Ashmore, G8KYY
}

The radio amateur scene has changed quite considerably over the past fifteen years or so. Today the amateur equipment market is dominated almost entirely by the Japanese, instead of the Americans as it was ten years ago.

It was in the mid-sixties when the British and American manufacturers, such as Drake, Collins, Eddystone Radio, Hallicrafters, Hammerlund, National, Heathkit, Lafayette, Swan and KW Electronics and some European firms were first confronted with Japanese equipment. In those early days the products from the Far East were very similar, in basic design, to the then current American designs, but they were offered at 'landed' prices sometimes less, it is claimed, than what it was costing UK firms for components and labour for similar equipment.

The main Japanese companies which export amateur equipment to Britain, America and Europe at present are Trio (also known as Kenwood), Yaesu Musen (initially marketing in Europe as Sommerkamp) and Inoue (who manufacture Icom products). Other companies include Seiwa (makers of the Drake SSR-I receiver) and Fukuyama (who make FDK products).

Another change resulted from the introduction of the Class \(B\) licence in 1964, which entitled amateurs who had passed the Radio Amateurs Examination, but not the morse test, to operate only telephony on frequencies of 430 MHz and above - and later 144 MHz and above. This resulted, initially, in an acceleration in the rate of issue of amateur licences, and later, in the appearance of amateur equipment for v.h.f. and u.h.f.

Before 1970 most of the equipment available was for, what are now, Class \(A\) licensees who may operate telephony and morse telegraphy (c.w.) in both the v.h.f./u.h.f. bands and the h.f. bands. At present, about sixty percent of commercial amateur equipment is for the amateur v.h.f. and u.h.f. bands. Another reason for this is that these bands are very narrow compared to the h.f. bands, and this greatly simplifies the manufacture of the equipment - for example, no
bandswitching is required. This has resulted in a number of small companies setting themselves up to produce only v.h.f. equipment.

Although there are more amateurs today, fewer of them appear to be building their own main-station equipment. The main reason for this is that, with the increasing cost of one-off or small quantity electronic components, it is very difficult for the amateur to build such compact equipment equal in quality and performance to some of the Japanese equipment now available, for less cost. However, it is good to see that the manufacturers and traders make an effort to educate the amateurs in the workings of their products, through their instruction books, and encourage them to carry out their own repairs or modifications. Unlike the makers of domestic appliances and hi-fi equipment, amateur equipment manufacturers normally allow the amateur to


Drake R-4C valve/semiconductor hybrid receiver.


Drake SPR-4 programmable receiver introduced in 1971.
carry out these operations without affecting the warranty - unless, of course, a fault occurs as a result of these operations.

Also, now that the amateur movement is enveloping and taking more seriously other areas such as satellite communications, slow-scan tv, amateur television, r.t.t.y., facsimile, microwaves, etc., and including them within the terms of the normal amateur licence, there is ample for the constructor to build and take an interest in without feeling unadventurous because he is not designing and building his own transmitter and receiver. Aerial design, for example, is one area where amateurs are very active and where they can cheaply make improvements to their stations.

\section*{High frequency receivers}

In the early sixties the radio amateur or shortwave listener could choose from a very wide selection of h.f. receivers. These included general coverage receivers, ham-bands-only receivers, and communications receivers - the last-mentioned referring to receivers of either of the former types but with send-receive switching to make them suitable for use in two-way communications. The sets came mainly from British and American manufacturers.

In addition there was a large number of older professional and military communications receivers, for example the famous HRO from National and AR88 from RCA, which had become popular among the amateurs and were availabie on the second-hand or 'surplus' markets. Many of these receivers still appear on the second-hand market today. New professional-type receivers were then, as they are now, normally too expensive for the average amateur.

Today, by comparison, there are only a few manufacturers producing h.f. receivers for the amateur market. One reason for this was undoubtedly the reduced demand for amateur receivers due to the increase in the number of transceivers developed after 1960 . When amateurs began to use trans-


Trio's Model R-300
single/double-conversion receiver introduced in 1976.
ceivers for normal fixed station operation there was less need for a communications receiver than there was when one was required to accompany a separate transmitter for two way communications.

However, the main reason for the reduction in the number of receivers is that many of the companies who produced amateur equipment in quantity for Britain and America were hit very hard when faced with the strong competition from the Japanese in the mid-sixties. For example, National, the makers of the HRO single-conversion receiver, ceased production of amateur equipment altogether, and so did Hammerlund. Of the other American and European manufacturers, some disappeared altogether and others either entirely or partly withdrew from the amateur market.

One UK company which was badly affected by the Japanese competition, but still produces amateur equipment today, was KW Electronics. Although this company no longer exists under the name KW Electronics, its KW products continue to be made and marketed by Decca Communications Ltd. These products, however, are all-valve designs which are having to compete with the all-solid-state synthesized designs now being introduced by the Japanese, who are undoubtedly the pacesetters in amateur equipment design.
Another UK company which, before the sixties, was very active in the amateur scene, was Eddystone Radio. This company, now part of the GEC group, ceased production of amateur equipment in 1969 and now produce receivers intended mainly for professional military and marine communications. The Eddystone 1001 receiver has been included in the abridged-specifications table so that the amateur receivers listed can be com-
pared with a professional set having a similar frequency range.

Professional receivers are generally more expensive than amateur ones for a number of reasons. A professional receiver, more often than not, is required to continuously cover a larger frequency range than an amateur set. Also the selection of an i.f. can be greatly simplified in amateur h.f. receivers because the frequency can be chosen to lie between one of the amateur bands. This cannot be done in the professional receiver, which also, more frequently, has to use bandswitching capable of altering the number of frequency conversions to optimise the receiver characteristics throughout the frequency ranges.

In addition, professional receivers normally have to comply with strict type approvals - especially if they are for military or marine applications. For

Drake SSR-1 synthesized receiver manufactured by Seiwa.
example, the parts in a marine receiver may require special treatment for humidity protection and the design itself may have to take into account the presence of transmitter aerials in close proximity to the receiver aerial. Other factors, such as high stability, long testing procedures and the fact that production quantities are normally small, all increase the cost of manufacturing professional receivers. However, unlike amateurs the professional users can live with these high prices, and this is one reason why UK receiver manufacturers prefer to stay in the professional market.

\section*{Design aspects}

Owing to increased use of s.s.b., which occupies only a narrow band, the crowding of the amateur bands, and the difference between strong and weak signals, which may differ by up to 500,000 times, there have been stringent demands made on the designers of modern amateur receivers.

The four main considerations in communications receiver design are selectivity, sensitivity, stability and spurious signals.

\section*{Selectivity}

For amateur telephony, selectivity should be about 3 kHz on each side of the nominal frequency (at the -6 dB point), and for c.w. this should be about 100 to 200 Hz . This compares with a bandwidth of about 9 kHz for a good quality broadcast receiver.

Most of the modern receivers available today, many of them multimode sets, have bandwidths of typically 2.4 kHz at the -6 dB point, and typically 7 kHz at the -60 dB point, on the s.s.b. mode. Some sets, such as the Drake DSR-2 communications receiver, have variable selectivity. This particular receiver has four bandwidths ranging from 6 to 0.3 kHz at the 6 dB point. Other receivers have separate selectivities for



\title{
Deal with THE DIRECT IMPORTERS for: \(\star\) LARGEST STOCKS \(\star\) WIDEST RANGE \(\star\) TOP AFTER SALES SERVICE IN THE AMATEUR RADIO FIELD
}

An outstanding example from our extensive range is the superb Atlas Line the choice of the professionals. Call and operate the equipment of your choice.


\section*{The Sensational ATLAS-210/215X}

HOW TO REACH US (EASY PRIVATE PARKING ON OUR 70ft. FORECOURT)
FROM SOUTH AND EAST. We are located approximately two miles from Junction 5 of the \(M 6\) which follow signposts to Blimingham Within \(1 / 4\) mile turn right at Clock Gatage and proceed towards city After one mite look for traffic lights at Fox \(\&\) Goose and immediately over the lights take minor left fork into Alum Rock Road We are located one mile from this point
on follow \(A 4040\) to the right and within 100 yds vere again to the right, approximately one mile further on brings you to the Fox and Goose Turn right and see preceding


COMMUNICATIONS PRODUCTS
FREQUENCY-AGILE
AUDIO FILTER
MODEL FL1
Versatule bandpass or bandrejec filter with fully variable bandwidth and centre frequency plus unique search / lock / track capability for automatic removal of heterodyne whistles Connects betveen receiver and loudspeaker.

\section*{UP-CONVERTER} MODEL UC / 1
Adds full receiving coverage from 90 kHz to 30 MHz to existing receivers or transceivers tuning \(28-29 \mathrm{MHz}\) or \(144-145 \mathrm{MHz}\). Connects between receiver and antenna

\section*{R.F. SPEECH CLIPPER} MODEL RFC
Processes speech as a SSB signal at 60 kHz to increase its ratio of average to peak levels without adding harmonic distortion. Improves talk power of SSB FM and AM transmitters without increasing the peak transmitted power. Connects between microphone and transmitter (See articles by Dr D. A. Tong. Wireless World Oct 1976, 77-81 and Feb 1975. 79-82)
Prices (including delivery in UK only) UC/1 £97.50; FL1 \(£ 47.50\); RFC \(£ 38.88\). All plus VAT at \(12 \frac{1}{2} \%\). Data sheets available on request

DATONG ELECTRONICS LIMITED
Spence Mills, Mill Lane, Bramley
Leeds, LS 13 3HE Tel: Pudsey (0532) 552461

\section*{DRAKE Radio Shack Ltd}


THE RECEIVER WITH CLASS!
Can now be extended from 1.5 to 30 MHz with FS-4 Frequency Synthesizer.
S.A.E. for details please.

AS WELL AS DRAKE EQUIPMENT, WE ARE THE DIRECT IMPORTERS OF HAL RTTY AND MICROPROCESSORS, ATLAS, NYE MORSE KEYS, PRESTEL VHF UHF PROFESSIONAL FIELD STRENGTH METERS, HAM RADIO. CIR ASTRO 200
HYGAN CDR ROTORS HUSTLER OMEGA.T SYSTEMS, MFJ FILTERS AND HY GAIN CDR ROTORS HUSTLER OMEGA-T SYSTEMS MFJ FILTERS AND
SPEECH PROCESSORS SUPEREX WE ALSO STOCK SHURE MICROPHONES YAESU MICROWAVE MODULES. SOLID STATE MODULES, ICOM COPAL CLOCKS G-WHIPS BANTEX, MOSLEY DAIWA ASAHI JAYBEAM DECCA AND
THE USUALACCESSORIES -COAX CONNECTORS INSULATORS VALVES EIC

SEND FOR A COPY OF OUR PRICE LIST (Stamps olease)
We are situated just around the corner from West Hampstead Underground Station (Bakerloo line) A fewminutes walk away is West Hampstead Midland Region station and West End Lane on the Broad Sireet Line We are on the following Bus Routes
ar Saiurday we ate open 9.1230 only World wide exports

\section*{DRAKE \&SALES \#SERVICE}

RADIO SHACK LTD.
188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Account No. 5887151. Telephone: 01-6247174. Cables: Radio Shack, London, N.W.6. Telex: 23718

The world's most famous company in communication, the Nippon 'Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers
Today we present

\section*{NEC ca 110 E digital}

allband, \(\mathrm{HF}, 300\) wattstransceiver, \(160 / 80 / 40 / 20 / 15 / 11\) \(10 \mathrm{~A} / 10 \mathrm{C} / 10 \mathrm{C} / 10 \mathrm{CWW}\) / modes FSK, USB LSB. CW, AM with separate 8 pole \(X\)-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent regeiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

\section*{NEC co 301}

allband HF, 3 KW , linear amplifier, \(160 / 80 / 40 / 20 / 15 / 11 /\) 10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110 OE or other exciters capable of about \(50-100\) watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!

\section*{Sole distributor in Europe}

CEC Corp. Via vaidani 1 -ch 6830 chiasso-switzerland \(^{\text {and }}\) Phone: (091) 442651 Telex: 79959 CH


Fig. 1. Block diagram for the Yaesu Musen FR-101 amateur
communications receiver. This is a typical modern double-conversion superhet having built-in mode filters for c.w. ( 0.6 kHz ), a.m. \((6 \mathrm{kHz}\) ) and s.s.b. ( 2.4 kHz ), and an optional filter for f.m. The f.m. unit and filter shown are also optional. It has three b.f.o. oscillators for u.s.b., l.s.b. and r.t.t.y., with crystals for the s.s.b. modes only. Other options include \(6 m\) and \(2 m\) converters which can be switched in between the aerial and the r.f. attenuator.
each mode of operation. The Trio R-599, for example, at the one end, has a bandwidth of 20 kHz -for its f.m. mode, and at the other end a bandwidth of 0.5 kHz for its c.w. mode. The Drake SSR-1, Drake R-4C, FDK TM56B and Trio R-300 each have only two selectivities, one narrow and one wide, either for s.s.b. and a.m. reception or for narrow- and wide-band f.m. reception.
Having bought a receiver, the amateur is not necessarily restricted to the bandwidths specified for the set. Some receivers, such as the Yaesu FR101, the Drake R-4C and the Trio R-599 offer mode filters as optional extras. Fig. 1 shows a block diagram of a typical modern amateur communications receiver.

Smaller, simpler receivers, such as pocket portables or scanning monitor receivers, do not, in general, have such narrow bandwidths. They are mainly v.h.f. f.m. receivers, having selectivities of about 12 kHz at 6 dB down and 24 kHz
at 50 dB down, used either by shortwave listeners interested in the v.h.f. bands or by amateurs monitoring their favourite frequencies. Since these sets are not used for two-way communications, broadcast quality is normally adequate.

Decca's all-valve receiver, the KW202, has a 6 dB selectivity bandwidth of about 3 kHz but it uses a Q-multiplier to increase its selectivity to isolate a c.w. signal, for example, or to provide a deep notch to eliminate an interference signal. The Drake SPR-4 also uses a notch filter.

\section*{Sensitivity}

In communication receivers the sensitivity is not how much the set will amplify a signal, but how well the set
will receive a small signal above the noise level. A high-quality amateur receiver should have a signal-to-noise ratio of about 10 dB for an input of between 1 and \(3 \mu \mathrm{~V}\). However, even an input of \(5 \mu \mathrm{~V}\) for this noise figure is very good for amateur purposes or shortwave listening.

Commercial receivers now available have sensitivities very much better than this. Typical input levels for a 10 dB noise figure at 14 MHz are from 0.25 to \(0.5 \mu \mathrm{~V}\) for s.s.b. and 0.5 to \(1.5 \mu \mathrm{~V}\) for \(30 \%\) modulated a.m.

Yaesu Musen FRG-7 receiver with Wadley-loop drift cancelling system.


\section*{Stability}

Without stability, sensitivity and selectivity is useless in a receiver. In most well designed receivers drift should be small and should settle down within 15 minutes of switching on from cold.
For s.s.b. speech, the resolution requires that a receiver should be capable of remaining within about 30 Hz of the nominal frequency. Unlike the professional receiver, which normally requires long term stability, the amateur receiver is adequate if it has a good short-term stability.
Typical stability figures for modern amateur receivers are less than 100 Hz drift during any 30 minutes after warm-up and less than 100 Hz drift for a \(10 \%\) change in line voltage. In comparison the specification for the Eddystone 1001, designed for professional use, quotes one part in 10 per dec.C.

The Yaesu Musen FRG-7 and Drake SSR-1 receivers both use synthesized drift-cancelling systems which are variations of the Wadley-loop system, probably first used in the Racal RA217. Both of these receivers are relatively low cost sets with reasonably good performance characteristics.

Phase-locked synthesizer systems using digital techniques are also being used more in amateur equipment, especially in the latest Japanese transceiver designs. This will be discussed in more detail in the next part of this survey.

Since some components do not return to exactly the same values after a few temperature cycles, all good modern amateur-bands or general-coverage receivers include built-in calibrators.

Mechanical shock was often responsible for frequency drift in the older valve receivers, and consequently they had to be very rugged. Today, most sets are all solid-state and the semiconductors used are of fairly rugged construction. However, because of the miniaturization and portability of modern receivers, they are more frequently moved from place to place and used for mobile communications. Consequently the sets still have to be ruggedly constructed, and it is a credit to most of the manufacturers that their equipment is extremely hardy. The number of after-sales repairs required occur on only about \(1 \%\) of all receivers sold, the most common fault being semiconductor failure.

\section*{Spurious signals}

One of the main enemies in receiver design is the spurious signal. Many amateur-built and commercially-built receivers, and this includes some designed for professional use, have had extremely good specifications, and have been very popular among the users, but, when used in the field, they have rapidly developed a bad name for spuriae.

An example of a 'rig' which suffered in this way was the once very popular

Liner-2 Transceiver. Happily to say, this set is still used extensively by amateurs, normally as a mobile station.

The most common spurious signal is image response. Others include inter-nally-generated signals (birdies) and i.f. breakthrough. To reduce the possibilities of birdies, attention must be given at the design stage to the number of mixer stages used and the choice of frequencies. Because each mixer produces many different frequencies at its output, the greater the number of stages used, the more probable is the occurrence of spurious signals.

The Yaesu Musen FRG-7, which has three mixer stages, uses two dual f.e.ts and one balanced mixer together with eight tuned circuits and a four stage low-pass filter to minimize spurious responses. Careful screening is also used, and ceramic filters are employed for the rejection of unwanted signals and interference.
Typical specifications for modern amateur receivers are: image rejection, greater than 50 dB down; i.f. rejection, greater than 50 dB down; and internal spurious signals, below \(1 \mu \mathrm{~V}\) (equivalent to the aerial input).

The trend in modern receivers is now towards the use of a higher first i.f. (for better image rejection) and one less conversion stage to reduce these spurious responses.
One method of obtaining audio image rejection is that of using phasing techniques similar to those used in s.s.b. generation. With careful design, the use of, for example, 90 degree phase-shifting networks in an "outphasing" system (see the Radio Communication Handbook, fifth edition) can result in the reduction of one sideband by about 30 to 40 dB . Another system, the "third method" (sometimes called the Weaver or Barber system), uses additional balanced mixers working at a.f., to eliminate the need for accurate 90 degree a.f. networks. This system has yet to be developed for commercial amateur designs.

\section*{V.h.f. receivers}

There are very few v.h.f.-only receivers on the amateur market. Those that do exist are normally f.m. monitor receivers. Fig. 2 shows a block diagram of typical v.h.f. receiver, the MS-2 from Seiwa. This set has four crystal channels which are digitally scanned.
Scanning systems are common only to v.h.f. or u.h.f. f.m. receivers because of the regular channel spacings; they are unsuitable for s.s.b. v.h.f. or h.f. receivers where channels are narrower and normally harder to define. On digitally synthesized receivers channel scanning is simplified because it can be done by selecting the frequencies digitally, rather than by switching crystals.

Amateurs or shortwave listeners who wish to monitor v.h.f. or u.h.f. bands normally use home-built or commer-cially-built converters with h.f. communications receivers or h.f. transceivers. There is now a wide selection of commercial add-on modules available for the amateur. These include pre-amplifiers, filters, transverters and converters for frequencies up to at least 1296 MHz . Fig. 3 is a block diagram of a typical commercial converter for 144 MHz .
Two firms which produce modules in quantity are Modular Electronics and Microwave Modules.
One rather unusual converter now available from another company. Da-

Fig. 2. Block diagram of the MS-2 v.h.f. f.m. receiver - a pocket-sized channel-scanning superhet made by Seiwa. This is a crystal-controlled double-conversion design suitable for frequencies from 140 to 170 MHz . Crystals are sequentially switched into the first mixer oscillator by a digital circuit until a signal appears on one of the channels. The receiver remains on this channel for about 7s only, unless switched to manual.



\section*{Valves from}


THE HOUSE OF POWER

\section*{Iskra Multimeters a choice of units for every application}

All the multimeters shown here are made by the international Iskra organisation. Three of these superbly styled units are known as Unimer l, Unimer 3, and Unimer 4-while the fourth is called the Minimer, a miniature version of the Unimer range.

Each model is designed for a specific application, and is available from any one of a nationwide network of officially appointed Iskra distributors.

Unimer 1
Electronic multimeter 50 ranges.
Sensitivity \(200 \mathrm{k} \Omega / \mathrm{V}\). 100 mV to 1000 V and \(5 \mu \mathrm{~A}\) to 5 A , on both a.c. and d.c. Shunt available for currents up to 30 A , and a probe for up to 30 kV d.c. Accuracy of volt and current ranges \(\pm 2.5 \%\) FSD.


Unimer l is a high sensitivity electronic instrument for laboratory use.

Unimer 3 42 ranges including 2 for capacitance. Sensitivity \(20 \mathrm{k} \Omega / \mathrm{V}\) (d.c.). 100 mV to 2000 V and \(50 \mu \mathrm{~A}\) to 5 A d.c.; 2.5 V to 1000 V and \(250 \mu \mathrm{~A}\) to 2.5 A a.c.
Accuracy of volt and current ranges \(\pm 2.5 \%\) FSD.


If you're looking for a general purpose multimeter, you need the Unimer 3 which is intended for educational and industrial applications.

When it comes to on-site electrical work, choose the robust Unimer 4.


Unimer 4 19 ranges. Sensitivity \(2.2 \mathrm{k} \Omega / \mathrm{V}\) (d.c.). Voltage to 600 V and current to 30 A , on both a.c. and d.c.

And for servicing household appliances, the Minimer is ideal.


\section*{Minimer}

Miniature easy-to-use multimeter. 4 ranges: a.c. mains, d.c. to 27 V , a.c. currents to 7 A , ohms to \(5 \mathrm{k} \Omega\).

For more information about these Iskra multimeters, or any other Iskra products contact:


Redlands, Coulsdon, Surrey CR3 2HT Telephone 01-668 7141 Telex 946880
Abridged specifications for most of the commercially-built amateur receivers available today.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Model & Trio R-300 about \{184 & Trio R.5990 about \(£ 396\) & Yaesu Musen FRG.7 about \(£ 145\) & \begin{tabular}{l}
Vaesu Musen FR101 \\
£299 to £480
\end{tabular} & Decca KW-202 about £236 & \begin{tabular}{l}
Drake SSR-1 \\
about \(£ 150\)
\end{tabular} & Drake R-4C about \(£ 450\) & Drake SPR-4 Drogrammable receiver, about £472 & Heathkit HR-1680 about £198 Easy assemble kıt & Eddystone 1001 less than \(£ 600\) \\
\hline Frequency coverage & 170 KHz to 30 MHz in 6 ranges with bandspreads for sw or ham bands & 35 to 297 MHz in 10 ranges & 05 to 299 MHz & 13 to 30 MHz in 21 amateur and \(\mathrm{s} w\) bands & 1.8 to 30 MHz in 9 ranges & 05 to 30 MHz in 30 ranges & Five ranges from 35 to 29 MHz with crystal sockets for 15 extra 500 kHz ranges & Can be programmed for 23 ranges from 0.15 to 30 MHz & 35 to \(29 \mathrm{MHz}_{\mathrm{I}}\) in 6 ranges & 055 to \(30 \mathrm{MHz}_{\mathrm{in}}\) 5 ranges \\
\hline Receiving modes & \[
\begin{aligned}
& \text { usb is b } \\
& \text { am } \\
& \text { cw }
\end{aligned}
\] & \[
\begin{aligned}
& \text { usb isb } \\
& \text { cw } \\
& \text { am } \\
& \text { f.m }
\end{aligned}
\] & \[
\begin{aligned}
& \text { usb isb } \\
& \text { am } \\
& \text { cw }
\end{aligned}
\] & \[
\begin{aligned}
& \text { usb. Isb } \\
& \text { am..c.w. } \\
& \text { Provision for } \mathrm{fm} \\
& \text { and rit.t.y }
\end{aligned}
\] & \[
\begin{aligned}
& \text { usb isb } \\
& \text { am } \\
& \text { c.w }
\end{aligned}
\] & \[
\begin{aligned}
& \text { usb is.b } \\
& \text { am } \\
& \text { cw }
\end{aligned}
\] & \[
\begin{aligned}
& \text { s.s.b c.w } \\
& \text { a m. } \\
& \text { r.t.t.y. } \\
& \text { s s.tv }
\end{aligned}
\] & \[
\begin{aligned}
& \text { us.b. is b } \\
& \text { a.m. } \\
& \text { c.w. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { us.b. } \\
& \text { I.s b. } \\
& \text { c.w. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { us.b. I s.b } \\
& \text { am. } \\
& \text { c.w., m c w }
\end{aligned}
\] \\
\hline Type of circuit & Single - conversion superhet with double conversion on 18 to 30 MHz range & Double-conversion superhet & Wadley loop synthezrser with triple - conversion superhet & Double-conversion superhet & \begin{tabular}{l}
Double-conversion superhet with mechanical filter \\
Attenuator \\
Preselector
\end{tabular} & Triple-conversion superhet with synthesized driftcancelling system & Titple-conversion superhet & Double-conversion superhet & Double-conversion superhet & Single-conversion superhet with cascode r.f. amplifier. \\
\hline \begin{tabular}{l}
Sensitivity \\
for iOnB \\
\(S+N / N\) ratio
\end{tabular} & Better than \(15 \mu \mathrm{~V}\) (a.m) and \(05 \mu \mathrm{~V}\) (s.s.b (cw) on all bands & \[
\begin{array}{ll}
05-V & \\
\text { (s.5b } \mathrm{cw}) . & \\
3-V(\mathrm{a} \cdot \mathrm{~m}) & \text { for } \\
10 \mathrm{~dB} \\
3-V(\mathrm{fm}) & \\
20 \mathrm{~dB}
\end{array}
\] & \[
\begin{aligned}
& \text { s.s.b / c.w } 07 . \mathrm{V} \\
& \text { at } 30 \% \mathrm{mod}
\end{aligned}
\] & 03 mV for ssb. cw. \(1 \mu \mathrm{~V}\) for a.m at 14 MHz & 0.5 V & \begin{tabular}{l}
03 V ons.s b. \\
1 LV on a.m. at \(30 \% \mathrm{mod}\) from 2 to 30 MHz
\end{tabular} & Less than \(025 . \mathrm{V}\) on ham bands & \[
\begin{aligned}
& \text { s.s b. /c.w. } \\
& 025 / \mathrm{V} \text { a a m } \\
& 05 \mu \mathrm{v} \text { with } 30 \% \\
& \text { mod. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Less than } 05 . \mathrm{V} \text { on } \\
& \text { s.s.b. }
\end{aligned}
\] & 5 N on 4 ranges 15 N on low frea. range for \(\mathrm{S}+\mathrm{N} / \mathrm{N}\) of 15 dB \\
\hline Selectivity & Two selectivities. narrow. more than 2.5 kHz at 6 dB and less than 12 dB at \(60 d B\) & ```
2.2kHz (s s b ).
0.5kHz (c.w).
5kHz (a.m),
20kHz (f.m.) at 6dB
``` & \[
\begin{aligned}
& 3 \mathrm{kHz} \text { at } 6 \mathrm{kB} \\
& 7 \mathrm{kHz} \text { at } 50 \mathrm{~dB}
\end{aligned}
\] & 24 kHz at 6 dB 4 kHz at 60dB on s s.b/c w and rt.t.y & 3 kHz at 6 dB 6 kHz at 60 dB & \begin{tabular}{l}
\[
3 \mathrm{kHz} \pm 25 \% \text { on }
\] s.s.b. \\
\(5.5 \mathrm{kHz} \pm 25 \%\) on a.m. at 6 dB
\end{tabular} & 2.4 kHz (s.s.b.) and 8 kHz (a.m.) at 6dB Filters available for c.w. & \[
\begin{aligned}
& 4.8 \mathrm{kHz} \text { (a.m.). } \\
& 2.4 \mathrm{kHz} \text { (s.s.b.). } \\
& 0.4 \mathrm{kHz} \quad \text { (c.w.) at } \\
& 6 \mathrm{~dB}
\end{aligned}
\] & 2.1 kHz min at 6 dB 7 kHz max. at 60 d 8 & 4 kHz at 6d8 12 kHz at 40 d 8 for narrow selection \\
\hline Devices & 4 fets 21 transistors & \[
\begin{aligned}
& 2: \mathrm{cs} \\
& 10 \mathrm{f} . \mathrm{e} \text { ts } \\
& 34 \text { transistors }
\end{aligned}
\] & \[
\begin{aligned}
& 21 . c s \\
& 9 \text { f.e ts } \\
& 12 \text { transistors }
\end{aligned}
\] & \[
\begin{aligned}
& 41 \mathrm{cs} \\
& 12 \text { fe.ts } \\
& 20 \text { transistors }
\end{aligned}
\] & Valves & All solid state & Hybrio & All solid state & All solid state & 1.f. and audio i.cs. F.e.t. mixer \\
\hline Country of origin & Japan & Japan & Japan & Japan & U.K. & Japan & USA & USA & USA & UK \\
\hline Additional information & Introduced about Oct 76 500kHz calibration marker as standard Tone selector & \begin{tabular}{l}
Introduced about April 75. \\
25 kHz calibration
\end{tabular} & Introduced about Aug 76 Includes r.f attenuator, pre. selector and tone selector & Introduced about Feb 75. Four types including a digital readout model & Introduced in 1971 Built-in Q-mulıplier with notch or peak facility \((200 \mathrm{~Hz}\) at 10 dB ) 100 kHz calibration & Introduced about Sept. 75. Preselector. & Introduced about March 73, Per. meably tuned v.f.o Notch filter, 25 kHz calibration. & Introduced in 1971. Includes a notch filter 100 kHz calıbra tion & Introduced in summer 76. Includes preselector 100 kHz calıbration. & Introduced in summer 72. Flywheelloaded reduction drive tuning \\
\hline
\end{tabular}
tong Electronics Ltd, is the Up-converter Model UC/1, described in the November ' 76 issue of Wireless World.

\section*{Trends in receiver design}

During recent years the trend towards the use of h.f. semiconductors instead of valves has brought the most significant change in h.f. receiver design. More recently, integrated circuits have also been used, especially in phase-lock-loop systems and portable receivers and transceivers. These solid state devices have led the way to amateur receivers which are compact, highly stable and more reliable than valve sets.
An obvious advantage of semiconductor receivers is that they may be operated from low voltage supplies, making them very suitable for mobile and portable operation. In addition the semiconductors used today can have better noise characteristics, even up to ultra high frequencies. They have also enabled compact converters to be constructed easily and quickly.

One disadvantage with semiconductor designs is that, because they are more susceptible to cross-modulation and intermodulation, and damage due to strong local transmitters and static build-up on the aerial, the dynamic range of the receiver is limited. This has brought about a change in design emphasis. A few years ago the main criterion in amateur receiver design was sensitivity. With the now crowded bands, and the increase in s.s.b., the principal criterion is signal handling the ability to listen to weak signals in the presence of strong signals. This is a function of the r.f. and mixer stages at the front end of the receiver.

Amateur receiver designers are now following the example of the professionals by keeping low gain in these

Fig. 3. Block diagram of a 144 MHz m.o.s.f.e.t. converter, as manufactured by Microwave Modules Ltd, suitable for use with a h.f. receiver tuned to the 28 to 30 MHz band. The module also provides a 116 MHz local oscillator signal suitable for use with transverter.



Hand-portable v.h.f. receiver. This is typical of the 12 -channel crystal-controlled sets produced by Seiwa.
early stages, even in cheap sets, to increase the dynamic range, leaving just enough gain to drive the following stages. Some manufacturers foresee a trend towards removing the first r.f. amplifier altogether in addition to the use of very low noise double-balanced mixers.

Other problems normally associated with semiconductor designs, for example increased circuit loading due to the lower input impedances, feedback capacitances and characteristic changes with temperature, have largely been overcome by the use of single- and dual-gate field effect transistors.

Some manufacturers, however, still prefer to use valves. The KW202, for example, is an all-valve receiver which is still popular among many valve-orientated amateurs. However, a spokesman from Decca Communications Ltd, who manufacture the set, said that any new design from them would be a solid-state one, mainly because of the future availability of valves rather than a lack of confidence in them. The company has been assured a supply of valves for another 10 years.

The Japanese company Trio, although producing all solid-state receivers, prefers to use valves in the driver and final p.a. stages of their transmitters and transceivers.

In the mid-thirties the tuned-radiofrequency receiver, in which the received signal is converted directly into audio by means of a demodulator working at the signal frequency, because of its poor performance and lack of selectivity on a.m. telephony, was beginning to be replaced by superhet communications receivers.

These early superhet designs were mainly single conversion sets which used an i.f. from about 455 kHz to 470 kHz and two or three i.f. stages. At least one r.f. amplifier stage was needed to raise the signal level so that the minimum of amplifier gain would be
needed after the relatively noisy mixer stage.

Because of the conflicting desire to have a low i.f. for good selectivity and a high i.f. for good image rejection, a later trend was towards double or even triple conversion receivers. The double-conversion sets normally had a first i.f. of 1.6 MHz or above and a second i.f. at about 470 kHz . In the triple-conversion receivers the third i.f. was usually about 50 kHz , which gave good single-signal selectivity without using a crystal filter.

Later still there was a trend towards the variable i.f. type of receiver which provided a higher stability than was possible with a band-switched h.f. oscillator. These designs were usually single- or double-conversion superhet receivers having a series of crystal-controlled converters at the front end, each covering a narrow frequency range of about 500 kHz .

The present trend is to go back to fixed i.f. receivers of the single-conversion or sometimes double-conversion type - the minimum number of conversions being preferred because of the difficulties involved in minimising spurious responses in receivers having a number of mixers. In the double-conversion case, an extra filter is necessary in the first i.f. to reduce the number of strong signals passing down the i.f. chain. Image rejection is maintained by using a much higher i.f. of about 9 MHz . This is now possible due to the availability of suitable s.s.b. and c.w. crystal filters.

To obtain the maximum possible dynamic range, double-balanced mixers using Schottky diodes or f.e.ts are preferred.

Finally, there is a trend, especially in the latest Japanese transceivers, to use Nixie-type or l.e.d. displays for frequency readout. The Yaesu Musen FR-101 Digital receiver is one example of this. However, this facility can add as much as \(£ 100\) to the cost of a receiver.

The next part of this survey will discuss transmitters, transceivers and Japanese importing and exporting.

References and acknowledgements
Old and new editions of the Radio Communication Handbook*
Amateur Radio Techniques by Pat Hawker, . G3VA*.
A Guide to Amateur Radio by Pat Hawker, G3VA*
V.h.f.-u.h.f. manual, by D. S. Evans G3RPE and G. R. Jessop, G6JP*.
Various issues of Radio Communication*, Shortwave Magazine. Ham Radio and Wireless World.
Instruction manuals and equipment catalogues from manufacturers and traders, too numerous to mention.
* Published by the Radio Society of Great Britain.

\section*{Surround sound decoders - 7}

\title{
Multi-system ambisonic decoder
}

\section*{2 - Main decoder circuits}

\author{
by Michael Gerzon, M.A., Mathematical Institute, Oxford
}

The ten systems of decoding provided in this decoder are listed in Table 1. The mono and stereo decoding modes provided are not conventional two-speaker reproduction, which in any case is not a sensible means of reproduction with the first hexagon speaker layout of Fig. 5 last month. Instead they provide a full ambisonic multispeaker reproduction of conventional mono and stereo records or broadcasts, providing a subtle enhancement of first-rate material, but no gimmickry or "pseu-do-quadraphonic" effect. The enhancement is not obvious except during extended listening, and a more obvious but still gimmick-free effect over a wider stage is provided by the "superstereo" mode.
Superstereo also gives excellent reproduction of many Regular Matrix and QS records with a full \(360^{\circ}\) stage, although the RM decoding mode is in some ways better optimized for surround reproduction of records in that system. The five decoding modes for recordings made in the System 45J,

This series of articles describes a decoder capable of decoding all major existing and proposed two-channel surround-sound systems, including the Ambisonic System 45J, SQ, Regular Matrix, BMX and BBC Matrix \(H\). For systems other than SQ, the decoder gives full psychoacoustically optimized results using NRDC Ambisonic decoding technology. In addition, Ambisonic playback of mono, stereo and of three-channel studio-format signals is provided. The decoder is suitable for three-amplifier/four speaker, four amplifier/ four-speaker, and four amplifier/six speaker reproduction.

Matrix H, Regular Matrix, BMX (such as Nippon Columbia UD-4 issues) and SQ systems have an obvious purpose, and the B-format mode is intended for studio three-channel recordings in ambisonic B-format. The spare mode, presently unused, is provided to allow for the possibility of the decoder being
updated when three-channel discs or broadcasts in System 45J become available, although it can be used by experimenters to test further decoding ideas.

The switching is done by ten interdependent push-button switches; only one switch remains depressed at a time. In the circuit diagrams following, the switches are illustrated in their out position, and the poles of each switch are lettered as listed in Table 1.
Five other push buttons also provide the facilities listed in Table 2. Forward preference, which is operative only in the 45 J , Matrix \(\mathrm{H}, \mathrm{RM} / \mathrm{QS}\) and BMX system decoding modes, enables the

Fig. 1. Two of these phase shift circuits are used, one to handle the sum signal \(\Sigma\), and the other to handle the difference signal \(\triangle\). Input and output signals in the \(\Delta\) case are given in brackets; the \(M\) output path is used only in the \(\dot{\text { L circuit }}\) and is omitted from the \(\Delta\) case. The i.c. numbers in brackets are the numbers for the \(\Delta\) case.



Figs. 2-5. Resistor matrix and switching circuits fed from phase shifter circuits of Fig. 1 and feeding corresponding numbered inputs to Fig. 6. Inputs marked \(\mathrm{W}, \mathrm{X}\) and Y in these circuits are the B-format inputs to the decoder. The spare switches are for future developments. Switch poles with the same letters belong to the same switch, and all switches are shown in the out position.

Table 1. List of systems for which decoding is provided. Switch code is the letters by which poles of the switch are indicated in circuit diagrams. Number of switch poles used in each case is listed, although the switches in the available kit have 4 poles each except for the spare position which has 6 . The fourth pole of the SS switch is in a part of the circuit to be given in part 3.
\(\left.\begin{array}{lll}\hline \text { Decoding } & \text { Switch } \\ \text { for system }\end{array} \quad \begin{array}{l}\text { Number } \\ \text { of } \\ \text { podes }\end{array}\right]\)

Table 2. Other pushbutton operated facilities. The three switches \(L, X, Y\) are interdependent, only one remaining depressed at a time.
\(\left.\begin{array}{lll}\hline & & \begin{array}{l}\text { Switch } \\ \text { code }\end{array}\end{array} \begin{array}{l}\text { Number } \\ \text { of } \\ \text { poles }\end{array}\right]\)
user to choose the decoding mode most suited to his requirements. The in position gives low phasiness for predominantly front-stage material e.g. most classical music and much pop, and the out position gives higher front-stage phasiness but better rear-stage sound quality, e.g. for drama and "easy listening" music. Distance compensation compensates for the effect of the distance of the loudspeakers from the centre of the listening area. The in position is for a nominal speaker distance of 2.4 m , corresponding to an \(11 \mathrm{ft} \times 1 \mathrm{ft}\) square lay for distances of \(\leqslant 3 \mathrm{~m}\). The out position is for speaker distances greater than 3 m , being nominally exact for a 4 m speaker distance. Finally, three inter-' dependent pushbuttons select whether

the decoder is to be used for a rectangular－shaped four－speaker layout，or for the two alternative hexagon layouts，which are wired up as shown in Fig． 5 last month．In the rectangular mode，the shape of the rectangle is compensated for by the layout control potentiometer．
To minimize the possibility of constructional errors and to keep the already rather complicated circuit as simple as possible，the circuit has been based on integrated circuit operational amplifiers．Such a construction requires special precautions in terms of signal levels and input bandwidth to minimize the risk of transient intermodulation distortion．The input stages that include these precautions are described in part 3 ， along with details of the recommended
op－amp types and their connections． The input stages include low－noise input stages，Bessel filters to prevent t．i．d．and slew－rate distortions，preset gain adjustments to cope with a variety of input levels，a sum and difference matrix to produce the sum signal \(\searrow=L+R\) and difference signal \(\Delta=L-R\) ， and a ganged volume control affecting the sum and difference signals rather than left and right，to minimize the subjective effects of small tracking errors between the potentiometers．
The rest of the circuit performs the signal decoding and is shown in Figures \(1-6\) ．Resistors are \(\pm 2 \%\) tolerance unless otherwise indicated，when a lower \(\pm 5 \%\) tolerance is adequate．Similarly all capacitors are \(\pm 2 \%\) or \(21 / 2 \%\) tolerance unless otherwise indicated．These rela－
tively high tolerances are necessary for good subjective results，as one is producing a \(360^{\circ}\) sound stage from the two－channel inputs in place of the \(60^{\circ}\) wide stage of stereo．Such a magnifica－ tion of the size of the sound stage means that errors are also magnified to a degree that the ears can hear faults that would be negligible in stereo．In addi－ tion，there are sufficiently many pro－ cessing stages that small errors can accumulate．If the decoder were designed for a lower quality of direc－ tional reproduction，for example in a music－centre application，tolerances could be relaxed．
To minimize possibility of construc－ tional error，resistors or capacitors of the same value have the same tolerance， although a few resistors－some of those used in series or parallel combin－ ations to make up non－preferred values －could be of lower tolerance than stated．For studio and laboratory appli－ cations，the \(2 \%\) tolerances may be replaced by \(1 \%\) tolerances，because no precision resistor or capacitor values in the circuits given deviate from their ideal values by more than \(1 \%\) ，and most by considerably less．

The sum and difference signals are each fed into a separate phase－shifter stage as in Fig．1．Because it is impossi－ ble to produce an absolute \(90^{\circ}\) phase shift in physically realisable circuits， these shifters consist of two all－pass networks one of whose outputs phase－ leads the other by \(90^{\circ}\) ．The design shown is a high－quality unity－gain eight－pole design giving \(90^{\circ}\) relative phase shift over the frequency range 30 Hz to 16 kHz ，ideally with an error of \(\pm 1^{1 / 3^{\circ}}\) ，but with an error of \(\pm 3^{\circ}\) approximately using \(2 \%\) tolerance com－ ponents．A phase inverter at the output of the \(90^{\circ}\)－lead circuit produces a \(90^{\circ}\) lagging signal．The phase shifters used for the \(\searrow\) and \(\lrcorner\) signals are identical circuits，except that for the \(\searrow\) signal only， a path bypassing the phase shifter is also provided（marked M in Fig．1）． Because of the duplication of circuits， two each are needed of the resistors \(\mathrm{R}_{174}\) to \(\mathrm{R}_{147}\) and of the capacitors \(\mathrm{C}_{10}\) to \(\mathrm{C}_{17}\) ． Seven outputs are provided from the phase shifters，namely M，Ц゙，jジ，\(-j \check{,}\) ，\(\Delta\) ， \(j\rfloor\) and \(-j \Delta\) where \(j\) indicates a relative \(90^{\circ}\) phase shift．

These outputs feed an elaborate switched resistor matrix，shown in Figs \(2-5\) ．The elaboration is，of course，a consequence of providing ten different options for decoding．For mono decod－ ing，the signal M is taken from before the phase shifters，to minimize phase distortion．Although by present day standards，the type of low－Q phase distortion produced by the phase shifters is not very audible，it does have some audible effect，and so should be avoided where possible．It is not possi－ ble to avoid phase distortion in two－ channel surround－sound systems with currently available technology，and the justification for allowing such phase distortion is that the beneficial effects of


Fig. 6. Shelf filters, distance compensation and output matrices, including forward preference switch, distance compensation switch, rectangle and hexagon selector switches and layout control. Switch poles with the same letter (as in Table 2) correspond to the same pushbutton, and all are shown in out position. See text for selection of resistors \(R_{28}\) and \(R_{29}\) associated with the linear \(5 k \Omega\) nominal layout control potentiometer \(V R_{1}\). Circuit fed from Figs 2-5, and outputs \(L_{B}, L_{F}, R_{F}, R_{B}, W^{\prime \prime}\) and \(C_{B}\) or \(C_{R}\) feed power amplifiers or "quadraphonic" preamp. Switch X selects \(C_{B}\) output and switch \(Y\) selects \(\mathrm{C}_{\mathrm{R}}\) output.
surround sound can easily outweigh any small quality losses thus caused.

The switching shown in Figs 2-5 selects the required matrix resistors and modifies the action of the shelf filter circuitry following to obtain the shelf filter characteristics required for each system. The poles of each push-button switch are marked with the same letter (eg J) as indicated in Table 1, but with a number running from 1 to 4 indicating the pole used. All switches are shown in their out position. For example, switch pole RM4 is the 4th pole of the regular Matrix/QS push button. Pole SS4 (not
shown) us used in the input stages to be described in the next article.

Apart from the seven signals \(M, \Sigma, j \Sigma\) etc already discussed, another three inputs marked W, X, Y also feed the resistor matrix, and are taken from a separate input socket. These three inputs are for studio B-format signals, previously discussed in ref. 1. The ten output connections of Figs. 2-5 are fed to the corresponding numbered points at the input of Fig. 6, which includes the rest of the decoder.

The circuits surrounding the operational amplifiers \(\mathrm{IC}_{8-11}\) are the shelf filters, which have a resistive input impedance of \(22 k \Omega\) to terminate the resistor matrix, and which except in the SQ mode give a phase at their output \(90^{\circ}\) in advance of their inputs at a frequency of 400 Hz , thereby ensuring virtually identical phase responses. The amplitude gains (ignoring phase) of these filters at frequencies much less than 400 Hz and at frequencies much more than 400 Hz are shown in Table 3.

Including the effect of these filters and the effect of the summing circuit at \(\mathrm{IC}_{7}\), a pressure signal \(\mathrm{W}^{\prime \prime}\) and two velocity signals \(\mathrm{X}^{\prime \prime}\) and \(\mathrm{Y}^{\prime \prime}\) are produced at the outputs respectively of \(\mathrm{IC}_{11}, \mathrm{IC}_{10}\) and \(\mathrm{IC}_{7}\) in Fig. 6, that at frequencies well above 400 Hz satisfy the following

Table 3. Amplitude gains of shelf filters at low ( \(<400 \mathrm{~Hz}\) ) and high ( \(>400 \mathrm{~Hz}\) ) frequencies for the decoding systems in Table 1, for the signal paths handling pressure signal \(W^{\prime}\), velocity signals \(X^{\prime}\) and \(Y^{\prime}\) and phasiness compensation signal \(P\) (through \(\mid C_{g}\) ). The \(P\) signal for spare mode is as for \(J, H, R M\) and \(U\) systems.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Signal path} & \multicolumn{2}{|l|}{J, H, RM, U} & \multicolumn{2}{|l|}{M, S, SS, B, SPARE} & \multirow[b]{2}{*}{} \\
\hline & I.f. & h f & \(1 f\) & h.f & \\
\hline W' & 3.73 & 5.65 & 3.73 & 4.56 & 3.73 \\
\hline \(\mathrm{X}^{\prime}\) and & Y' 3.73 & 2.91 & 3.73 & 3.23 & 3.73 \\
\hline P & 1.38 & 3.73 & & & \\
\hline
\end{tabular}
matrix equations for the various decoding modes. For systems J, H, RM, U, the expression for \(\mathrm{Y}^{\prime \prime}\) is the sum of two bracketed terms, the second of which is deleted for the forward preference switch in the out position.
Mode M (mono)
\(W^{\prime \prime}=0.707 \mathrm{M}, \mathrm{X}^{\prime \prime}=0.707 \mathrm{M}\)
Mode S (stereo) and SS (superstereo)
\(\left.W^{\prime \prime}=0.717 \Sigma-0.291 \mathrm{j}\right\rfloor\)
\(X^{\prime \prime}=0.717 \Sigma+0.291 \mathrm{j} د\)
\(Y^{\prime \prime}=0.583 \Delta\)
For superstereo, the signal gain is modified in the input stages as well.
Mode B (B format)
\(\mathrm{W}^{\prime \prime}=1.288 \mathrm{~W}\)
\(X^{\prime \prime}=0.911 \mathrm{X}\)

\section*{Resistors}

Tolerance \(\pm 2 \%\), except when marked with asterisk when \(\pm 5 \%\) is adequate.
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}_{1.4}\) & 200k & \(\mathrm{R}_{92}\) & 91k \\
\hline \(\mathrm{R}_{5.10}\) & 68k & \(\mathrm{R}_{93}\) & 100k \\
\hline \(\mathrm{R}_{1+13}\) & 33k & \(\mathrm{R}_{\text {94* }}\) & 3.9k \\
\hline \(\mathrm{R}_{14}\) & 200k & \(\mathrm{R}_{95}\) & 47k \\
\hline \(\mathrm{R}_{15.17}\) & 33k & \(\mathrm{R}_{\text {96* }}\) & 3.3k \\
\hline \(\mathrm{R}_{18}\) & 27k & \(\mathrm{R}_{97}\) & 150k \\
\hline \(\mathrm{R}_{19}\) & 100k & \(\mathrm{R}_{\text {98* }}\) & 8.2k \\
\hline \(\mathrm{R}_{20}\) & 150k & \(\mathrm{R}_{\mathbf{9 9}}\) & 33k \\
\hline \(\mathrm{R}_{21}\) & 110 k & \(\mathrm{R}_{100.101}\) & 82k \\
\hline \(\mathrm{R}_{22 *}\) & 1M & \(\mathrm{R}_{102}\) & 68k \\
\hline \(\mathrm{R}_{23}\) & 270k & \(\mathrm{R}_{103}\) & 100k \\
\hline \(\mathrm{R}_{24}\) & 6.8 k & \(\mathrm{R}_{104}\) & 56k \\
\hline \(\mathrm{R}_{25}\) * & 39, & \(\mathrm{R}_{105.106}\) & 68k \\
\hline \(\mathrm{R}_{26}\) & 2.7 k & \(\mathrm{R}_{107}\) & 330k \\
\hline \(\mathrm{R}_{27.30}\) & 1.6 k & \(\mathrm{R}_{108}\) & 56k \\
\hline \(\mathrm{R}_{28.29}\) & see text & \(\mathrm{R}_{109}{ }^{\text {\% }}\) & 2.2Ni \\
\hline \(\mathrm{R}_{3133}\) & 6.8 k & \(\mathrm{R}_{110}{ }^{\text {\% }}\) & 1 M \\
\hline . \(\mathrm{R}_{32.34}\) & 10k & \(\mathrm{R}_{111}\) & 56k \\
\hline \(\mathrm{R}_{35.36}\) & 120k & \(\mathrm{R}_{112}\) * & 4.7k \\
\hline \(\mathrm{R}_{3738}\) & 27k & R \(\mathrm{R}_{13114}\) & 82k \\
\hline \(\mathrm{R}_{39.42}\) & 47k & \(\mathrm{R}_{115}\) & 68k \\
\hline \(\mathrm{R}_{148}\) & 22k & \(\mathrm{R}_{116 *}\) & 240k \\
\hline \(\mathrm{R}_{43}{ }^{*}\) & 3.3k & \(\mathrm{R}_{117 *}\) & 2.2M \\
\hline \(\mathrm{R}_{44}\) & 27k & \(\mathrm{R}_{118 *}\) & 390k \\
\hline \(\mathrm{R}_{45}\) & 12k & \(\mathrm{R}_{1.19}\) & 22k \\
\hline \(\mathrm{R}_{46}\) & 150k & \(\mathrm{R}_{120}{ }^{\text {* }}\) & 1.8 M \\
\hline \(\mathrm{R}_{47.48}\) & 22k & \(\mathrm{R}_{121.122}\) & 220k \\
\hline \(\mathrm{R}_{49.56}\) & 82k & \(\mathrm{R}_{123}\) & 180k \\
\hline \(\mathrm{R}^{\mathbf{R 0 . 5 7}}\) & 39k & \(\mathrm{R}_{149.156}\) & 390k \\
\hline \(\mathrm{R}_{51.58 *}\) & 680k & \(\mathrm{R}_{157 *}\) & 390k \\
\hline \(\mathrm{R}_{52.59 *}\) & 56S2 & & \\
\hline \(\mathrm{R}_{53.60 \text { * }}\) & 1k & \multicolumn{2}{|l|}{Two off of the} \\
\hline \(R_{5461}\)
\(R_{55.62}\) & 22k & \multicolumn{2}{|l|}{\(\mathrm{R}_{124125} 47 \mathrm{k}\)} \\
\hline \(\mathrm{R}_{63}\) & 82k & \(\mathrm{R}_{126 *}\) & 1.8k \\
\hline \(\mathrm{R}_{64}\) & 18k & \(\mathrm{R}_{127.132}\) & 22k \\
\hline \(\mathrm{R}_{65}\) * & 820k & \(\mathrm{R}_{128.133}\) & 47k \\
\hline \(\mathrm{R}_{66 \text { * }}\) & 1.1k & \(\mathrm{R}_{129 *}\) & 3.9k \\
\hline \(\mathrm{R}_{67}\) * & 1.8k & \(\mathrm{R}_{130.134}\) & 47k \\
\hline \(\mathrm{R}_{68}\) & 22k & \(\mathrm{R}_{131135}\) & 12k \\
\hline \(\mathrm{R}_{69}\) & 100k & \(\mathrm{R}_{136 *}\) & 2.0 k \\
\hline \(\mathrm{R}_{70}{ }_{\text {* }}\) & 910k & \(\mathrm{R}_{137}\) & 33k \\
\hline \(\mathrm{R}_{71}\) & 100k & \(\mathrm{R}_{138144 *}\) & 5.6k \\
\hline \(\mathrm{R}_{72 *}\) & 2.2k & \(\mathrm{R}_{139145}\) & 100k \\
\hline \(\mathrm{R}_{73}\) & 430k & \(\mathrm{R}_{140}\) & 39k \\
\hline \(\mathrm{R}_{74}\) & 8.2k & \(\mathrm{R}_{141147}\) & 22k \\
\hline \(\mathrm{R}_{75.78}\) & 270k & \(\mathrm{R}_{152 *}\) & 3.3k \\
\hline R 79 & 100k & \(\mathrm{R}_{143}\) & 47k \\
\hline \(\mathrm{R}_{\text {80* }}\) & 5.6k & \(\mathrm{R}_{146}\) & 56k \\
\hline \(\mathrm{R}_{81}\) & 91k & గ148 & 22k \\
\hline \(\mathrm{R}_{82}\) & 120k & & \\
\hline \(\mathrm{R}_{83}\) & 110 k & & \\
\hline \(\mathrm{R}_{84}\) & 270k & & \\
\hline \(\mathrm{R}_{85}\) & 56k & & \\
\hline \(\mathrm{R}_{\text {86** }}\) & 360k & & \\
\hline \(\mathrm{R}_{87}\) & 100k & & \\
\hline \(\mathrm{R}_{88}\) & 68k & & \\
\hline \(\mathrm{R}_{89}\) & 160k & & \\
\hline \(\mathrm{R}_{\text {90** }}\) & 8.2k & & \\
\hline \(\mathrm{R}_{91}\) & 56k & & \\
\hline
\end{tabular}

\section*{Capacitors}

Tolerance \(\pm 2\) or \(21 / 2 \%\), except when marked with asterisk when \(\pm 10 \%\) is adequate.
\begin{tabular}{lll}
\(C_{1: 2 *}\) & \(680 n\) \\
\(C_{3}\) & \(1 n\) & \\
\(C_{48}\) & \(10 n\) & \\
\(C_{9}\) & \(15 n\) & \\
\(C_{18-26}\) & \(47!1\) & 10V Iow tolerance
\end{tabular}

Two of of the following
\begin{tabular}{ll}
\(\mathrm{C}_{1011}\) & 470 p \\
\(\mathrm{C}_{1213}\) & 100 n \\
\(\mathrm{C}_{1415}\) & \(27 n\) \\
\(\mathrm{C}_{1611}\) & \(1 n\)
\end{tabular}
\(Y^{\prime \prime}=0.911 \mathrm{Y}\)
Mode J (two-channel system 45J)
\(W^{\prime \prime}=0.998 \Sigma+0.107 \mathrm{j} \Delta\)
\(X^{\prime \prime}=0.374 \Sigma-0.772 \mathrm{j} \Delta\)
\(Y^{\prime \prime}=(0.132 \mathrm{j} \Sigma+0.798 \Delta\)
\(+(-0.295 j \Sigma+0.032 \Delta)\)
Mode H (BBC Matrix H)
\(W^{\prime \prime}=\Sigma+0.219 j \Delta\)
\(X^{\prime \prime}=0.215 \Sigma-1.037 j \Delta\)
\(Y^{\prime \prime}=(0.044 \mathrm{j} \Sigma+0.736 \Delta)\)
\(+\left(-0.186 \mathrm{j} \sum+0.041 \Delta\right)\)
Mode RM (Regular Matrix/ QS)
\(W^{\prime \prime}=0.728 \Sigma-0.728 \mathrm{j} \Delta\)
\(X^{\prime \prime}=0.515 \Sigma+0.515 \mathrm{j} \Delta\)
\(Y^{\prime \prime}=(-0.515 \mathrm{j} \Sigma+0.515 \Delta)\)
\(+(0.310 \mathrm{j} \Sigma+0.310 \Delta)\)
Mode U (BMX)
\(W^{\prime \prime}=1.018 \Sigma, \mathrm{X}^{\prime \prime}=-0.720 j \Delta\),
\(Y^{\prime \prime}=(0.720 \Delta)+(-0.406 j \Sigma)\)
Mode SQ (for SQ recordings)
\(W^{\prime \prime}=0.73 \Sigma\)
\(X^{\prime \prime}=-0.73 \mathrm{j} \sum\)
\(Y^{\prime \prime}=0.73 \Delta-0.73 j \Delta\)
These decoding equations include some allowance for maximizing the number of preferred resistor values, and are arranged so as to give substantially the same loudness in all decoding modes.
The shelf filters in the \(\mathrm{X}^{\prime \prime}\) and \(\mathrm{Y}^{\prime \prime}\) paths are followed by a passive RC high-pass filter for distance compensation, with switched resistors \(\mathrm{R}_{35-38}\) arranged so that switch \(D\) changes its time constant and the hexagonal-mode switching does not alter the relative time constants in the \(\mathrm{X}^{\prime \prime}\) and \(\mathrm{Y}^{\prime \prime}\) paths. The hexagonal-mode switching activiates a summing circuit to derive the signals \(C_{B}\) or \(C_{R}\) described in part 1, and which alter the matrixing coefficients for the \(L_{B}, L_{F}, R_{F}, R_{B}\) outputs. Switches are shown in their out position, and as before the numbering indicates the pole number of the switch lettered as in Table 2.
In the rectangular decoding mode, a linear-law potentiometer \(\mathrm{VR}_{\mathrm{l}}\) is switched into circuit to enable the output matrix to be varied continuously so as to compensate for layout shape. This potentiometer should ideally have a total track resistance equal to \(5 \mathrm{k} \Omega\) within \(2 \%\), but this would be extremely expensive and not very practical. Thus two padding resistors \(\mathrm{R}_{28}\) and \(\mathrm{R}_{29}\) are provided so that the total track resistance be brought up to the desired exact value. They should be chosen to have identical values \(R\) such that \(2 R+V R_{1}\) has a total resistance of \(6.2 \mathrm{k} \Omega 2\). If precision measurement of resistors is not available (and if the circuit is not being built from a kit with \(R_{28}\) and \(R_{29}\) provided to match \(\mathrm{VR}_{1}\) ), then choose \(\mathrm{R}_{28}\) and \(R_{29}\) to have values identical to within \(5 \%\) such that the total measured resistance of \(\mathrm{R}_{30}, \mathrm{R}_{29}, \mathrm{VR}_{1}, \mathrm{R}_{28}\) and \(\mathrm{R}_{27}\) in series is the same as that of two \(4.7 \mathrm{k} 2 \%\) tolerance resistors in series.

The layout control is connected so that a long and narrow loudspeaker layout involves a setting with the wiper near the \(\mathrm{X}^{\prime \prime}\) end of the potentiometer, and conversely for a short and wide layout. This arrangement may be found confusing because many people feel
(incorrectly) that it should be the other way round. The central setting of the potentiometer corresponds to a square loudspeaker layout, and the end settings correspond to a rectangle whose long side is twice its short side. Calibrations for the layout control are provided in kit versions, and calibration instructions for do-it-yourselfers will be provided later. The equations describing the action of the output matrix and layout control were given in part 1.
Details of the input stages and of recommended op amps are given in part 3.

\section*{Reference}
1. Gerzon, M. A. Ambisonics. Part two Studio techniques, Studio Sound, vol. 17, Aug. 1975, pp. 24-6, 28, 30. Correction ibid vol. 17, Oct. 1975, p. 60.

\section*{Literafure Received}

Publications produced by the ITU (conference documents, lists, statistics, etc.) are classified in the List of Publications Nos. 1 and 2 (1977). Listings cover those publications devoted to telegraphy and telephony, radio, those common to both fields Administrative Council documents and miscellaneous publications. International Telecommunication Union, General Secretariat. Sales Service. Place des Nations. CH-1211 Geneva 20, Switzerland. WW401

A brochure and number of leaflets describe a Rugby time-code clock, an off-air standard frequency receiver, a crystal chronometer, c.c.d. television cameras and a frequency tracking receiver with print-out. The products are from European Electronic Systems Ltd, Unit 3. West Station Industrial Estate, Maldon, Essex.

WW402
General electronic components, audio accessories, semiconductors and integrated circuits are listed in a catalogue recently received from Bi-pak. The Maltings, 63a High Street, Ware, Herts.

WW 403
A short-form catalogue, describing a range of temperature controllers, timers and motor speed controllers is obtainable from Solid State Controls Ltd, Brunel Road, Acton, London W. 3

WW404
Cassette mechanisms and electronics for digital applications are discussed and the Phi-deck described in a catalogue, sent to us by Triple I, 4605 N. Stiles, P.O. Box 25308 , Oklahoma City, OK 73125, U.S.A. WW405

A catalogue from Bear Microcomputer Systems describes a series of designs for microcomputers using both microprocessors and t.t.l. i.cs, design notes on accessories and stationery. The catalogue is obtainable from Bear at 24 College Road, Maidenhead, Berks SL6 6BN

WW406

\section*{New Products}

\section*{Digital test meter}

A digital meter, designated PM-10, is capable of measuring signal levels from -50 to +10 dBm in the frequency range 200 Hz to 4 kHz . The PM-10 also incorporates an internal generator which will send a 820 Hz signal at fixed levels of -10 and -27 dB . A liquid crystal display offers a resolution of 0.1 dB and an internal battery provides 100 hours of continuous operation. To minimise current drain, the meter switches off automatically after 5 minutes use. Input impedance is switchable between \(600 \Omega\) ? and \(100 \mathrm{k} ?\). Overall dimensions of the instruments are approximately \(90 \times 160\) \(\times 40 \mathrm{~mm}\) and the weight is about 500 g . Wandel \& Goltermann (UK) Ltd, 40-48 High Street, Acton, London W. 3 .
WW 301

\section*{Processing voltmeters}

Two new digital meters from Solartron, the 7055 and 7065 , are current, voltage and resistance meters with \(51 / 2\) and \(61 / 2\)-digit displays respectively. Both use


WW 301
the pulse-width a.-to-d. conversion method with calibration balance, a technique which Solartron claim to enable cheaper input circuits to be used. Settling time is 2.7 ms , input resistance \(10 G \Omega\) and c.m.r.r. is 144 bB . Sensitivity, resolution and linearity are all that one would expect in an instrument of this standard. In addition, however, a microprocessor option, 70556 , is available and provided for in the design, and enables the basic instrument to process the 'raw' readings in various ways and to display the processed data instead of the original measurement. Nine programmes can be selected to multiply the measurement by a constant, provide percentage deviation from a chosen nominal value, subtract a constant, compare with a chosen reference in a linear or logarithmic manner to give \(d B\) or squared to give power, to present maxima or minima of series of readings, to show measurements which exceed chosen limits, to present a series of statistical data (standard deviation, up-dated r.m.s. etc.) and to linearize and zero-suppress the characteristic of thermocouples. All these programmes can be governed by a built-in clock. Further information on these instruments can be obtained from Solartron Electronic Group Ltd, Farnborough, Hants GUl4 7PW.
WW 302.

\section*{Wide-range sweep/function generator}

Two swept function generators are used in the Exact 757, which covers the range 0.0001 Hz to 50 MHz . The ramp and step generator, which runs between 0.001 Hz and 1 MHz , triggered or astably, triggers the main generator, which produces sine, square and triangular waveforms. A large variety of duty cycles, repetition frequencies, amplitude and polarities are available and there is \(\pm 15 \mathrm{~V}\) of variable offset, unaffected by the attenuator. The main generator can be voltage-controlled directly from the front panel or by the ramp generator, in either a linear or logarithmic mode. Start and stop frequencies of the
internally-generated sweep are independently adjustable by means of front-panel dials. The instrument is obtainable at \(£ 1125\) from Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW 303

\section*{Portable digital meter}

The 8020 A is a very small. battery-powered digital multimeter which provides for the measurement of direct and alternating volts and current, resistance and a conductance reading of high resistances. The battery life of up to 200 hours is assisted by the use of a liquid-crystal display and a mains unit is an accessory. The instrument is a \(31 / 2\)-digit unit, reading 1.999 mV to 1000 V d.c. ( 750 V a.c.), 1.999 mA to 1999 mA a.c. and d.c., \(199.9 \Omega\) to \(19.99 \mathrm{M} \Omega\) and 1.999 mS to 199.9 nS on the conductance range. which is equivalent to \(500 \Omega-10 \mathrm{G} \Omega\). Input resistance is \(10 \mathrm{M}!\) on all voltage ranges, while voltage drop on the current ranges is 250 mV up to 200 mA and 700 mV at 2 A . A diode test facility is able to turn on silicon junctions, but the low-power ranges are used for in-circuit resistance measurements, ignoring semiconductor junctions. Errors in measurement vary from \(\pm 0.25 \%\) reading +1 digit on direct voltage to \(\pm 2 \%\) of reading plus 10 digits on the 200 nanosiemens range. A group of optional accessories permit the determination of temperature from \(-50^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\), high voltage to 40 kV d.c. ( 28 kV r.m.s.), and r.f. voltages at frequencies from 100 kHz to 100 MHz , and there is a clamp-on current transformer for alternating-current measurements up to 600 A . The instrument is available at £99 from Fluke International Corporation, Garnett Close, Watford WD2 4TT. WW 304

\section*{Trimmer capacitors}

The 101120 series of air trimmer capacitors are manufactured using a single milling operation. This process is claimed to reduce the cost and offer

high mechanical and electrical stability. Capacitance values range from 1.2 4.0 pF to \(2.3-21 \mathrm{pF}\) and the temperature coefficient is \(+45 \times 10^{-6} /{ }^{\circ} \mathrm{C}\) with a loss factor of \(2 \times 10^{-4}\) at 1 MHz . All of the devices mount on 10 mm centres. Steatite Insulations Ltd, Hagley House, Hagley Road, Birmingham B16 8QW. WW 305

\section*{Alphanumeric keyboard}

A keyboard comprising a 55 key-switch matrix controlling a 2376 bit r.o.m. will produce a 7 -bit ASCII output with upper and lower case codes. The manufacturers claim that a new switch construction, which uses a spring to connect two coding wires, reduces the cost of the keyboard and gives more than two million operations. The layout complies with ISO standards and the unit features a full range of non-printing functions within the CCITT No. 5 alphabet. Input requirements are -17 V \(\pm 1 \mathrm{~V}\) at 20 mA , or \(-12 \mathrm{~V} \pm 0.75 \mathrm{~V}, 0 \mathrm{~V}\), and \(+5 \mathrm{~V} \pm 0.25 \mathrm{~V}\). Elliott Relays, Associated Automation Ltd, 70 Dudden Hill Lane, London NW10 lDJ.
WW306

\section*{Silicon photocell arrays}

A family of photocell arrays, available with up to nine matched silicon cells mounted at 0.1 in spacing on a one-piece metal base, has been introduced by National Semiconductors. Designed for readout from punched cards, tape, code wheels etc., the NSL-701 range has a response rate of typically \(8 \mu\) s. The spectral response range of 0.4 to \(1.1, \mathrm{~m}\) extends across the whole visible spectrum into the near infrared. and matches with the output from gallium arsenide light emitting diodes. Cell leakage current is \(10, \mathrm{~A}\) maximum when reverse biased by 1.5 volts. The output is claimed to remain constant "over long periods of time." Each cell has a sensitive area of \(0.080 \mathrm{in} \times 0.160 \mathrm{in}\) and


WW 307
the family of arrays will operate over a temperature range of \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\). National Semiconductors Ltd, Stamford House, Stamford New Road, Altrincham, Cheshire WAl4l DR. WW 307

\section*{Low-bounce switch}

Push-button switches from Highland, Series 31LL, are claimed to reduce the amount of contact bounce by means of multi-section contacts. Each pole is provided with four self-cleaning contact sections and it is arranged that each section has a different natural vibration period. The maximum time of bounce has, it is said, been kept to \(100!\mathrm{s}\). Two poles, arranged as 2 n.o., 2 n.c., or 1 n.o. +1 n.c., shorted or non-shorted, are available and are rated at \(100 \mathrm{~mA}, 60 \mathrm{~V}\) a.c. or d.c. The switches are illuminated and are equipped for either printedboard or socket mounting. Highland Electronics Ltd, Highland House, 8 Old Steine, Brighton BNl IEJ.
WW 308

\section*{Capacitor microphones}

Four capacitor microphones for studio use have been introduced by Beyer. Constructed on the modular principle, each head unit (or transducer capsule) fits on to a common compatible amplifier module, which is available with male DIN connector or 3-pin Switchcraft, Cannon XLR or equivalent connector. The four microphone units are: the MC711, a pressure transducer with omnidirectional characteristics; the MC712, similar to the MC7ll but with elastic suspension of the capsule system and an integral windscreen to reduce wind and pop effects; the MC713, a pressure gradient transducer with cardioid pick-up pattern; and the MC714, similar to the MC713 but with elastic suspension of the capsule system and an integral windscreen. The amplifier module incorporates switchable 10 dB
attenuation, and also has a switch for bass attenuation \((10 \mathrm{~dB}\) at 50 Hz ref. 1 kHz ) to compensate for the bass boost which occurs when the microphone is used in a close talking position. The system requires power from a 48 V \(+6 /-8\) V' phantom circuit to DIN 45596 . and has a current consumption of 4001 A . The frequency range of all capsules is 40 Hz to 20 kHz . Pick-up pattern is claimed to be virtually frequency independent. Input impedance is \(200!\) and the rated load impedance not less than 1.000 g. Equivalent noise level (DIN 45405 ) is 3.6 י! p-p and the signal-to-noise ratio ref. 1 Pa is 69 dB . Maximum s.p.l. for \(0.5^{\circ} \mathrm{t}\).h.d. is 132dB s.p.l. and the A weighted equivalent sound pressure level is approximately 18dBA. Beyer Dynamic (GB) Ltd, 1 Clair Road. Haywards Heath. Sussex RH16 3DP
WW 309

\section*{Motor with tacho}

A small d.c. motor with an integral tachogenerator, the Escap 16 GIC \(204 / 104\). is intended for use in miniature drive or servo systems in electromechanical instrumentation. The built-in tachogenerator enables the motor speed to be controlled without a separate tacho unit. The tacho coil is wound directly on to the ironless rotor motor coil, thereby eliminating mechanical resonance, and the motor and tacho coils are arranged in such a way' that the voltage induced by the motor current is reduced by half. The motor measures 16 mm diameter by 18 mm long, has a moment of inertia of 0.26 gcm , and can be mounted on any of the maker's El6 series of reduction gearboxes. The motor part has a nominal voltage of \(6 \mathrm{~V}^{\circ}\), a mechanical time constant of 90 ms , a no-load speed of 10.500 r.p.m., and a stall torque of \(3.3 \times 10^{+} \mathrm{Nm}\). The tacho section has a voltage output of 0.28 V per 1000 r.p.m., with a peak-to-peak ripple of \(10^{\circ}{ }^{\circ}\). Portescap (L'K.) Ltd, 204 Elgar Road. Reading RG2 0DD WW 310

nW305


\section*{Hoc opus, hic labor est}

In the Toranomon-Tachikawa Building, in Tokyo, there is probably a bigger pile of various countries' Standards publications than in any of the standards organizations themselves. The reason I mention this is because the Wireless World library has recently been presented with an enormous tome, entitled "World Standards Mutual Speedy Finder" on Electrical and Electronics. According to the foreword, about 18000 standards were obtained, examined and re-classified in a way that makes sense - and in English. I haven't counted the entries, but the foreword says "about . . . items", which seems to indicate that someone else ran out of patience and didn't finish counting either. Lack of patience, though, is not something these Japanese compilers appear to have trouble with. To sort through the publications of the USA, UK, France, West Germany, Japan and the IEC, coping with language, problems, different ways of classifying standards and any amount of hassle in actually getting hold of the things is a job I'm glad someone else had to do.

\section*{Eggs with chips}

There are very probably some exceedingly puzzled birds at the Slimbridge Wildfowl Trust. There they sit, brooding away for all they are worth, and all the eggs do is lie smugly in the bottom of the nest, humming nonchalantly. The reason for this unnatural lethargy is that the eggs are made of glass fibre and, furthermore, have electronic yolks.
It seems that the Wildfowl Trust, in cooperation with the University of Bath, are trying to improve their breeding programme. Incubators, says Paul Howey of the university, who runs the study, are not in the same league as a mother bird when it comes to hatching eggs, and the glass eggs are containers for instruments to measure the conditions underneath broody birds with a view to duplicating them artificially. The eggs, which can be as small as a pigeon's egg, contain thermistors.

CdS cells, and six mercury switches with a resistive matrix to measure temperature, humidity, light and egg attitude. The data is sampled and used to modulate a crystal-controlled carrier in the 29 MHz region, which is transmitted, by way of a transponder, to a remote data-logger. The whole inside of the egg, including seven c.m.o.s. chips and power, can be kept down to a weight of 40 g .

\section*{Crossed lines}

Only one thing is preventing me taking an active part in amateur radio. Well, two, actually, but I'll pass over the fact that I stand about as much chance of being able to afford it as does Joe Bugner of being chosen to play Tinkerbell. No, the problem I have is that I can't understand a word anybody says.
'I've listened for some time now to my colleagues chattering away and offering seemingly intelligent replies to what I an only describe as the gruntings of Cro-Magnon Man spoken through a mouthful of cornflakes. Several times, when writing the log, I have been on the point of writing Munster for Plumstead and Belgrade instead of Belgravia, only being stopped by the realization that the majority of Jugoslavs don't adopt a Mayfair accent.

The sideband chopping, random noise and the ludicrous s.s.b. chipmunk effect do nothing to help comprehension and I am very worried that, if I were doing the operating, G8LWW would gain a reputation for being either deaf or thick. And it all makes me wonder a bit about military radio. I can now easily understand the reason for the message "Send reinforcements - we are going to advance" being received as "Send three-and-fourpence - we are going to a dance"; the possibilities for disaster are endless.
Headquarters to "A" Company: "Retreat!"
"A" Coy. to H.Q.: "That's alright, sir latrines were set up by the advance party."
H.Q. to "A" Coy: "No, don't advance, you fool, retreat!"
"A" Coy to H.Q.: "We can't advance now, sir, the enemy is in front of us. Sorry about your feet, sir."
H.Q. to "A" Coy: "Listen, I'm coming over."
"A" Coy to H.Q.: "Oh, that is good news, sir. If it's over, I'll just pop across to their lines with a few chaps and take their weapons away. Thank you, sir."
H.Q. to "A" Coy: "No, you idiot, don't . . hallo?"

\section*{All dressed up . . .}

In the early days of the laser, it became a cliché to say that it was a solution looking for a problem. Any exhibition of electronic equipment worthy of its name had its regulation laser spitting
away at perfectly good razor blades and it always seemed rather a misdirection of effort. Later, of course, the potential measuring and cutting power of the laser was put to work with good effect.

We seem now to be in a similar position with the current 'in' device, the microprocessor (we really can't go on using a word like that - two people standing face-to-face would quickly become saturated). At a conference on d.i.y. computing, held at the IEE in May, it was revealed that a lot of amateur users have equipped themselves with several hundred pounds worth of micro and peripheral equipment and find themselves with, as it were, nowhere to go.

Maybe this kind of pressure to spend money on shiny new devices simply because they can now be made rather than because we need them will be the standard way of doing things in the future. There must now, for instance, be several thousand people in Britain who, while otherwise innocent of any mathematical knowledge or desire for such knowledge, are able to tell you without a flicker of expression that \(\arcsin 0.46\) is equal to \(27.3871075^{\circ}\). They can do this because they have bought (or, more likely, been presented with) a beautifully-made pocket-calculator, the lack of which had made them neurotic and not nice to know. Many of us can now tell anyone who expresses an interest the time to the nearest nanosecond and can locate beer cans quite a long way down in the earth.

Let us hope that it doesn't soon become possible to visit Alpha Centauri by building a d.i.y. matter transference machine - I don't want to go because I don't know anyone there and I'm quite sure the weather will be absolutely dreadful.

\section*{CQ Two - after you!}

I had my first taste of amateur radio in earnest this last weekend and was very impressed by the extreme courtesy and orderliness in which the operators conduct themselves. I was only listening - no call-sign yet - but my colleague is an experienced operator and our station. G8LWW/P, was pulling them in on two metres s.s.b. from Europe and the far North of England with no trouble at all, perched as we were on Headley Hill, near Dorking. The procedure in these contests is to exchange call-signs, signal reports and locations as rapidly as possible and to press on with the next contact. But, in spite of the need for speed, everyone seemed to find time to exchange good wishes for the contest and to express the hope that we would "meet" again further down the log. Operators are very careful not to butt in on a contact and it all seems very civilised. Then, I expect, they all climb into their cars and turn into wild-eyed, road-hogging monsters.


\section*{NEW PRODUCTS!}

\section*{NRDC-AMBISONIC 45J}

\section*{SURROUND SOUND DECODER}

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug and Sept. 77
The unit is designed to decode not only 45 J but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC Matrix \(H 10\) input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit

Complete kit, including licence fee \(£ 45.00+\) VAT

\section*{INTRUDER 1 RADAR ALARM}

\section*{With Home Office Type approval.}

As in this issue of "Wireless World", designed by Mike Hosking, 240 V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet. Complete kit. Exclusive designer approved kit \(£ 46.00+\) VAT.

\section*{}


Featuring
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Complete Kit PRICE: \(£ \mathbf{3 9 . 9 0}+\) VAT
Aiso available ready built and tested
Price \(£ 54.00\) +VAT

Calibration tapes are available for open-reel use and for cassette (specify which)
Price \(£ 2.20+V A T\)
Single channel plug-in Dolby PROCESSOR BOARDS (92 \(\times 87 \mathrm{~mm}\) ) with gold piated contacts are available with
all components
Price £8.20 + VAT

Single channel board with selected fet
Price £2.50 + VAT

Gold Plated edge connector
Price E1.50 + VAT
Selected FETs 60p each + VAT, \(\mathbf{1 0 0 p}+V A T\) for two \(\mathbf{£ 1 . 9 0}+V A T\) for iour
Please addVAT@121/2\% unless marked thus", when \(8 \%\) applies (or current rates)

We guarantee fuil after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

\section*{Typical performance}

Noise reduction better than 9 dB weighted
Clipping level 16.5 dB above Dolby level (measured at \(1 \%\) third harmonic content)

Harmonic distortion \(0.1 \%\) at Dolby level typically \(0.05 \%\) over most of band rising to a maximum of \(0.12 \%\)

Signal-to-noise ratio \(75 \mathrm{~dB}(20 \mathrm{~Hz}\) to 20 kHz , signal at Dolby level) at Monitor output

Dynamic Range \(>90 \mathrm{db}\)
30 mV sensitivity

\section*{S-2020TA STEREO TUNER / AMPLIFIER KIT}

\section*{SOLID MAHOGANY CABINET}

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.


Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than \(0.1 \%\) at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tunıng range \(88-104 \mathrm{MHz} .30 \mathrm{~dB}\) mono \(\mathrm{S} / \mathrm{N} @ 1.2 \mathrm{NV}\). THD \(0.3 \%\). Pre-decoder 'birdy' filter.

PRICE: £58.95 + VAT

\section*{NELSON-JONES STEREO FM TUNER KIT}

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.


Brief Spec. Tuning range \(88-104 \mathrm{MHz} .20 \mathrm{~dB}\) mono quieting @ \(0.75 \mathrm{\mu V}\). Image rejection -70 dB . IF rejection - 85dB. THD typically \(0.4 \%\).

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

Mono £32.40 + VAT
With ICPL Decoder \(£ 36.67+\) VAT
With Portus-Haywood Decoder
\(£ \mathbf{3 9 . 2 0}+\) VAT


Sens. 30dB S/N mono @ \(1.2 \mu \mathrm{~V}\) THD typically \(0.3 \%\)
Tuning range \(88-104 \mathrm{MHz}\)
LED sig. strength and stereo indicator

\section*{STEREO MODULE TUNER KIT}

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £31.95+VAT

S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
Typ Spec. \(24+24 \mathrm{~W}\) r.m.s. into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input \(\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}\). Radio input \(\mathrm{S} / \mathrm{N}\) \(\overline{2 d B}\). Headphone output. Tape \(\ln /\) Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £33.95 + VAT

\footnotetext{
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS
}
\begin{tabular}{|c|c|c|c|}
\hline BASIC NELSON-JONES TUNER KIT & £ \(14.28+V A_{i}\). & PHASE-LOCKED IC DECODER KIT & \(£ 4.47\) +VAT \\
\hline BASIC MÖDULE TUNER KIT (stereo) & £16.75 + VAT & PUSH-BUTTON UNIT & ¢ \(\overline{\mathbf{5}} \mathbf{. 0} \mathbf{0}+\mathrm{VAT}\) \\
\hline PORTƯŚ-HAYWOOD PHASE-LOCK & STEREO D & OER KIt & \(8.00+V A T\) \\
\hline
\end{tabular}

\section*{Wenáen'tange modular annpolifiers}

A range of communications amplifiers having power ratings from 15 to 200 watts,
plug-in input facilities ensure
individual requirements can be provided.

Manufacturers of sound systems and electronics

Station Road, Wenden
Saffron Walden
Essex CB11 4LG
Saffron Waiden (0799) 40888

\section*{핖x}


\title{
TMIR I.C.E. MULTIMETERS \\ information in Half the size \\ The I.C.E. range of multimeters provides an
} unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, case. test leads. etc and a 50 -plus page. fully detailed and illustrated Operating and Maintenance Manual
Now avalable from selected stockisis Write of phone for ist or for detals of direct mal-orde, service

Supertester 680R (illustrated)
20k.! V - 1 /n fsd on dc \(4 \mathrm{k} \cdot \mathrm{V}-2 \%\) fsd on a V
80 Ranges -10 furicuicns \(140 \times 105 \times 55 \mathrm{~mm}\) E25.25 + VAT (For Mall Order add 80n P\&P)

Supertester 680G \(20 \mathrm{k}: ? \mathrm{~V} \cdot 2 \%\) tsd on \(d \mathrm{c}\)
\(4 \mathrm{k}: 1 \mathrm{~V} \cdot 2 \%\) isd on a \(c\) 48 Ranges - 10 Functions \(109 \times 113 \times 37 \mathrm{~mm}\) £19.95 + VAT (For Mall Order add 80p P\&P)
Electronic Brokers Ltd 49-53 Pancras Road, London NW 12 OB Tel. 01-837 7781

Microtest 80
\(20 \mathrm{k}: \mathrm{V} \mathrm{V}+2 \%\) fsd on dc 40 Ranges - 8 Function Complete with case only \(93 \times 95 \times 23 \mathrm{~mm}\) E 14.95 + VAT \(\underset{\text { (For Mall Order add } 80}{\mathbf{£ 1 4 . 9 5}}\)

\title{
INDEX TO ADVERTISERS
}

Appointments Vacant Advertisements appear on pages 110-127

AEL Ltd.
AEL Crystals Lid.
Amateur Components
PAGE
\(\ldots .6\)

Amateur Electronics
Ambit International
Antex
Antex ..................
Astra-Pak
Astra-Pak
Avo Ltd.
Barrie Electronics Ltd.
Bayliss. A. D. \& Sons Ltd
Bentley Acoustic Corp. Ltd
Bever Dynamics (G.B.) Ltd
\(\mathrm{Bi}-\mathrm{Pak}\) Semiconductors Ltd.
Boss Industrial Mouldings Ltd.
Cambridge Learning
Catronics
CEC Corporation
CHL. Components
Chiltmead Ltd
Circuit Designs
Cliffpalm L.td.
Coles Electro Acoustics Ltd.
Colomor (Electronics) Ltd.
Commercial Access \& Equip
Compcor Electronics
Computer Appreciation
Crimson Elektrik
Crofton Electronics Litd.

Data Dynamics
Datong Electronics
Dema Electronics International
Doram Electronics

Eagle International
Electronic Brokers Lid. ............................... 20
Electro-Tech Components Lid.
Erie Electronics Ltd.
.................. . . 98
ES Electronics
E.S.P.

Fairchild Semiconductor Ltd
Farnell Instruments Ltd.
Future Film Developments
Greenwood Electronics Litd.
Harmsworth Townley \& Co. Ltd
Harris Electronics (London) Ltd.
Harris. P
Hart Electronics
Home Entertainments
ILP Electronics Ltd.
Industrial Tape Applications
Integrex Ltd.
Iskra Ltd.
ITT Instrument Services

\author{
.
}

Loose insert.
JPS Associates
Langrex Supplies Ltd.
Leevers-Rich Equipment Ltd.
Levell Electronics Ltd.
Lion House
Lowe Electronics Lid.
Lynx (Electronics) London Ltd.
McKnight Crystals
McLennan Servo Supplies Ltd.
PAGE

MacInnes Laboratories Ltd.
Mail Order Scheme
Maplin Electronic Supplies
Marconi Instruments Ltd. .
Marshall. A. (London) Ltd.
Mayware Ltd. .
Microwave Modules
Mills, W.
Modern Book, The.
Monolith Electronics Co. Ltd.
Multicore Solders Ltd.
Pattrick, J. B.
Pinnacle Electronic Comps. Lid.
Portescap Ltd. . . . . . .
Powertran Electronics
Precision Petite Ltd.

Radio Components Specialists PAGE
Radio Components Specialists . . . . . . . . . . . . . . . 84
Radio Shack Ltd.
Ramp Electronics
R.C.S. Electronics

Royal Air Forces Association
R.S.T. Valves Ltd.

RTVC
Sabtronics (UK) Ltd. .... ............. . . . . . . . . . . .
Scopex Instruments Lid. . . . . . . . . . . . . . . . . . . . . . . . 80
Servo \& Electronic Sales Lid. . . . . . . . . . . . . . . . . . 103
Shure Electronics Ltd. . . . . . . . . . . . . . . . . . . . . Cover iii
Simplatroll Ltd. . . . . .
Sinclair Instruments Ltd.
Sintel .........................
Sonic Sound (Astor Hi-F
Sonic Sound (Astor Hi-Fi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
South Midlands Const'n Ltd. . . . . . . . . . . . . . . . . . . . . . 102
S.M.C. (Yaesu Musen) . . . . . . . . . . . . . . . . . . . . . . . 13

Sowter. E. A.....
Special Products Ltd.
Spectrum .......
SST Distributors
Stirling Sound
\begin{tabular}{ll} 
\\
Stringer Clark ............................................. . . . . . . . 103 \\
106 \\
\hline
\end{tabular}
Stringer Clark Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Strumech Engineering Ltd.
Sugden, J. E. \& Co. Ltd.
Sullivan. H. W. Ltd.
Surrey Electronics Ltd.
Swanley Electronics Ltd.
Swift of Wilmslow
Sy-Pak ........
Technomatic Ltd.
Teleprinter Equipment Lid.
Teleradio Hi Fi
Tempus
Trampus Electronics
Transistor Devices
West Hyde Developments Ltd. . . . . . . . . . . . . . . . 93
West London Supplies
Western Electronics Ltd.
Wilmslow Audio
Z. \& I Aero Services Itd ............... 4. 19.99

Zettler (UK) Division 84
62
93

\section*{OVERSEAS ADVERTISEMENT AGENTS:}

France: M D Soubeyran Compagnie Francaise D Editions. Oivision Internationale, 40 Rue du Colisee Paris 8 e Telephone 225-77-50 -- Telex 280274
```

Hungary: Mrs Edit Bajusz Hungexpo Advertising Agency
Budapest XIV, Varosliget
Telephone 225 008.-- Telex Budapest 22-4525

```
INTFOIRE

Iraly: Sig C Epis Etas-Kompass Spa - Servizio Estero Via Mantegna 6 20:54 Milan

Japan: Mr Inatsukı, Trade Media - IBPA (Japan), B212 Telephone (03) 585-058

United States of America: Ray Barnes
IPC Business Press. 205 East 42 nd Sireet. New York, NY 10017 - Telephone (212) 6895961 - Telex 421710 Mr Jack Farley Jnr, The Farley Co. Suite 1584, 35 East Wacker Orive, Chicago, Illinois 60601 -- Telephone (312) 6 3074
Mr Richard Sands Scott Marshall Sands \& Latta inc 5 th Telephone (415) 4217950 - Telegtams Dascontico San Fidncisco
Mr. William Marshall, Scott, Marshall. Sands \& Latta Inc
1830 West Eighth Street, Los Angeles. California 90057
Telephone (2 13) 3826346 - Telegrams Dascottco. Los Angeles

M: Jock Mente The Fdiley Co Sume 650 Ranma Bulding Cleveland Ohoo 4415 -- Telephone (216) 6211919 Mr Ray Rickles. Ray Rickles \& Co PO Box 2008 Miam Beach. Flonda 33140 - Telephone (305) 5327301 Mr Jim Parks. Ray Rickles \& Co, 3116 Maple Drive NE Atlanta, Georgra 30305 Telephone (404) 2377432 Mike Loughlin. IPC Business Press 15055 Memonal Ste 119 Houston. Texas 77079 - Telephone (713) 783 8673

Canada: Mr Colin H MacCulloch International Advertising Consultants Lid. 915 Cartion Tower 2 Carlton Street
Toronto 2 - Telephone (A16) 3642269

ENAMELLED COPPER WIRE
\begin{tabular}{cccc}
\(s w g\) & 1 & lb & \(40 z\). \\
\(14-19\) & 2.40 & .69 & .50 \\
\(20-29\) & 2.45 & .82 & .59 \\
\(30-34\) & 2.60 & .89 & .64 \\
\(35-40\) & 2.85 & 1.04 & .75 \\
inctusive of \(p \& p\) and \(V A T\)
\end{tabular}

SAE brings Catalogue of copper and resistance wires in all coverings THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9BW 17347)

\section*{ELECTRONIC ASSEMBLY AND WIRING CAPACITY AVAILABLE}
M.O.D. approved
J.N. Electronic Supplies Osiers Road, London, SW 18 Tel. 01-874 6162

SMALL BATCH PRODUCTION wiring, assembly to sample or drawings. Specialists in printed curcuit assembly. Rock Electronics, 41 Silver Street, Stansted, Essiex. Tel. Stansted (0279) 33018/814006. (119 AIRTRONICS LTD. for coil winding Large or small production runs. Bobbin - Layer - Wave - Bifilar Limited Gardner Industrial Estate Kent House Lane. Beckenham. Kent BR3 1UG. Tel. 01-659 1147 .

\section*{ARTICLES FOR SALE CONT}

\section*{MY/LIMSORS RELAYS в.p.o. 3000}
L. WILKINSON (CROYDON) LTD., LONGLEY HOUSE, LONGLEY ROAD, CROYDON, CRO 3LH

Phone 01-684 0236.
Grams: WILCO CROYDON


Built to your own specifications and requrements The best known of all relays with a large variety of contact arrangements
Known throughout the world Complete bank of contacts made to order and component parts supptied thighest quality al competitive prices with a quick delivery service Quotations by return home and overseas Twin relays Latching Relays and Relays with high voltage contacts made to order We are suppliers of mountings to house B PO Type 3000 Relays and associated components BPO Uniselectors Relay sets and Relay Selector units B P O 2000 and 4000 type Use this Form for your Sales and Wants

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI QLU
}

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate £1.10 PER LINE.Average six words per line Minimum THREE lines
- Name and address to be included in charge if used in advertisement
- Box No Allow two words plus 50p
- Cheques, etc payable to 'Wireless Woild and crossed "\& Co

\section*{CLASSIFIED ADVERTISEMENTS}

NAME
ADDRESS PP3 f4.98. Matching chargers 559 PP3 f4.98. Matching chargers \(£ 5.91\)
each except PP3 charger
\(£ 4.99\) each except PP3 chatger \(£ 4.99\).
Charging holders for 2.3
5 \(\underset{6}{ }\) Charging honders for \({ }^{2}, 3^{3}{ }_{D}^{4}:{ }^{5}\) wr holders, 4 cell only 50 p . Prices in. clude VAT. Add \(10 \%\) post. package and insurance, erders under \(£ 20\). \(5 \%\) over 520 . SAE for fult details plus 50p for 'Nickel Cadmium Power booklet. Mail orders to SANDWELL PLANT LTD.. 1 Denholm Road Sutton Coldfield West Midlands. Tel. 0213549764 Callers to T.L.C. 32 Craven Street. Char.
ing Cros. London. W.C.2.
, 7306 ,

TELEPHONE ANSWERiNG Machines for sale New \&120. Answers anu Records. Plus 2-way Conversatuons and Dictation. Free Accessorsations an guaranteed l year Callsaver. C.R.V. Flectronies Lid \(01-249\) U41u, 01.580 1s00. 30 (inodge sirect Lom, jon W1. (7096)
ENAMELLED COPPER WIRE


60 KHz MSF Rugby Recciver. BCD「IME OF DAY OUTPUT. High performance, phase locked loop radio receiver. sV operation with 1
second LED indication. Kit complete with luned ferrite rod aeriat t14.08 including postage and VAT). Assembled circuit and casedup version alsn avallable. Send for details Tonlex. Sherborne (4359), Drorset.

LINSLEY HOOD 75 watt amplifiers constructed and repaired. Brand rew, guaranteed, spares by return. BDY5: f1 85 . KD5 2955 p. BD 53055 p . 2N54.59 45p. Interference suppres. sion kit. with instructions £1.35 Inclusive prices \(P\) \& \(P\) 15p. SAE for list. - A Genue lowman. 59 Fowe Avenue, Torquay \(s\). Devon. 17368

TELETYPE, 15 cps, upper/lower case, punch/reader, V24 I.F. unit 2290. Details. Patterson, Peniculk
\((09671\) ( 72644.

RECHARGEABLE BATTERIES. AA. pencell (HP7) \&1.26; Sub C 1.29
KAY SONOGRAPH model 6061B. Audio Spectrum Analyser produces
printed frequency, intensity and time. Enquiries to Dept. of Linguistics. University of Lancaster. Tel. Lancaster 65201 Ex. \(316 . \quad 17364\)

> MTV
> Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies.

> Midland TV Trade \& Retail Services.
> Worcester Road. Kidderminster, England Tel: Kidderminster 61907 or 67390 .
-

\section*{ARTICLES FOR SALE}

2 NCR 500 COMPUTERS, 800 words 48 bit memory, console printer, paper tape reader/punch. Installed 1968. Seen working Dumfries. 42. Mr Haywood. : 7408

CHART RECORDER, H3100. Immac. ulate. 6 speed, 8 om width imA, 140 ono. - Roger. 127 Portnall Road. London W9. (740ष

APPARATUS RACKS, Post Office standard 7 ft with U-channel, sides drilled for 19 inch panels, with base and cable fixing clamps, finstraw. - Wilco International, Straw - Wilco International, \(\begin{array}{cl}\text { Longley } & \text { House, Longley } \\ \text { Croydon, } & \text { Road, } \\ 3 \mathrm{LH} \text {, } 01-684 & 0236 \text {. }\end{array}\)

FOR DISPOSAL, in fair to good condition, a number of AVO Wave Winders on stands, complete with Similar ETA Transformer Winders. Prices \(£ 45\) plus. - Jones, 18 Tower Close, Liphook. Hampshire. (7405

WIRELESS WORLD, very good condition, 428 between 1927-1939. Offers. - Tel. \(021+354\) 7953. 17402

REGULAC AUTO - TRANSFORMER 3 kva portable type, RK13-PSVA with voltmeter ammeter and overvoltage provision, Perfect condj713964 . - Ring Corsham (0249)

TELEQUIPMENT D54. Oscillio-
scope. Two years old, hardly used. scope. Two years old, hardly used.
Irnmaculate. Cradley Heath 60892 . (7365)
 \(\dagger\) Electralytice
4700. 40v 60p (15p), 2200~63v 40p
 Paper Caps
\(\qquad\)
\[
\text { Papst fans ex eqpa } 41 / 7,
\]
\[
\begin{aligned}
& \text { Papst fans ex eqpt } 41 / 7 \times 41 / 2 \times 2 \ln 100 \\
& \text { CFM } \\
& \text { Humidity switches adjustable } \quad \mathbf{£ 3 . 5 0}(65 p) \\
& \hline \mathbf{8 0 p}(15 p)
\end{aligned}
\]
\[
\begin{aligned}
& \text { Humidity switches adjustable } .80 \mathrm{p}(15 \mathrm{p}) \\
& \text { Relay mains coll } 11 \text {-pin } 3 \mathrm{p} \text { c/o ex } \\
& \text { egot }
\end{aligned}
\]
\[
\begin{array}{ll}
\text { eqpt } \\
\text { Relay } 12 v \text { cot } 8 \text {-pin } & \mathbf{7 5 p}(15 p) \\
\end{array}
\]
\[
\begin{array}{lr}
\text { Relay } 12 \mathrm{v} \text { coH 8-pin } & \text { \&1(15p) } \\
\dagger & \text { MPU131 } \\
\text { unjugnction } & \text { Programmable } \\
\mathbf{2 5 p}(10 p)
\end{array}
\]
\[
\begin{array}{lc}
\text { unifunction } & \mathbf{2 5 p}(10 \mathrm{p}) \\
115 \mathrm{v} \text { tans chassis. } 2 \text { for } & \mathbf{£ 2 . 5 0 ( 6 0 p )}
\end{array}
\]
\[
\begin{aligned}
& \text { Res thermistors } 20 \text { C } 250 \mathrm{R} \text { C } 1 \mathrm{~K} 2 \mathrm{~K} \text { 20K } 220 \mathrm{~K} .
\end{aligned}
\]
\[
\begin{array}{ll}
\text { Kes at } \\
1 \mathrm{m4} 4 \\
\text { Mans latching relavs } & \mathbf{8 0 p}(10 \mathrm{p}) \\
\hline
\end{array}
\]
\[
\begin{aligned}
& \text { Maiss latching relays } \\
& \text { Bulk Itoms car }
\end{aligned}
\] PTFE Bulk Itoms ca
\[
\begin{gathered}
60 p(10 p) \\
80 \mathrm{p}(20 p)
\end{gathered}
\] EXTRA Yoltow ... Eqp wire \(\overline{\mathrm{\varepsilon}} / 02 \mathrm{~mm}\) PTFE SINGLE SCREENED WHITE Ideal for 14 mistor probes 1A reed inserts TXE/4 type E15/1000
£30/£45/1000m
P\&P shown in brackets. min order £2
Add \(121 / 2 \%\) VAT to items marked \(\dagger\)
KEYTRONICS
332 KEY STREET ILFORD. ESSEX
Shop open Mon-Sat \(930-2 \mathrm{pm}\) Telephone 5531863

\section*{WANTED}
for immediate cash
ALL MAKES OF OLD RADIOS AND GRAMOPHONES PRIOR TO 1940

Offers with dotails and photos (re-
Wallfass PO tumed) to:
chenglathach Box 244. D.
(7357)

Wanted: Test Equipment, RF power transistors, and components of VHF/UHF type
Immediate cash available
Wanted Philips E10-12 scope tube
Modular Electronics
95 High Street, Selsey
95 High Street, Selsey
Chichester Sussex PO20 00 Tel: 024-361 2916


WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS. ETC.

\section*{CHILTMEAD LTD.}

7, 9, 11 Arthur Road Reading, Berks.
Tel. (0734) 582605

ARTWORK LAYOUTS by experienced draughtsmen, manufacturing facillities available to every requirement. For ad enquiries pllease write to \(H\). C. Artwork Designs 3
Roden Street, Ilford Essex. 17348

LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy Ltd., 1-5 Rectory Lane, Guisborough (02873-4443). Yorks, U.K.

CLOSED CIRCUIT television equipment and systems for industry. banks, stores and general security applications. Also for home and
studio functions - Technical Services (Luton) Ltd. 111 Cutenhoe Road, Luton, Beds Luton 29673/ \begin{tabular}{l} 
Road, Luton, Beds. Luton \(29673 /\) \\
\hline 7406
\end{tabular}

\section*{RECEIVERS AND AMPLIFIERS}

HRO Rx5s, etc. AR88. CR100, BRT400. G209, S640, etc.: etc., in stock. \(\dot{R}\). T. \& I. Electronics, Litd., Ashville Old Hall, Ashville Rd. Loridon, E11. Ley 4986.
( 65
SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., etc. in Stock R. T. Hall, Ashville Rd., London. E.11. Hall, Ashville Rd., London. E. 11.
Ley 4986 .

ARTICLES WANTED
* MINICOMPUTERS
* PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH offer, phone
COMPUTER APPRECIATION Godetone (088 384) 3221

WANTED, all types of communica tions receivers and test equipment Details to R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville
Rd., London, E.11. Ley 4986.

SURPLUS COMPONENTS, Equipment and computer panels wanted for cash. Ring Southampton 772501

WE BUY new valves, transistors and clean new components, large or small quantities, all detalis, 55 Worcester St. Wolverhampton. ( Worcester Solverhampton

WILL BUY ANYTHING, any quantity if price is right ring Stan Willetts, West Bromwich, 021553 0186.

ALL SURPLUS or used equipment wanted. Radio telephones - complete systems purchased. Ships equipment and small boat radio's chassis etc, etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited 40/42 Portland Road, worthing, Sussex.
(7307)

\section*{BOOKS}

TV REPARRS SIMPLIFIED. Full repair instructions any British TV for \(£ 4.50\). Circuit Diagram on request; details unique books, e.g. Every mono British TV circ. diag./ layout 69.50 Also colour. Aus + Lanarks. Church Street. Larkhall,
"VINTAGE CRYSTAL SETS 1922 1927', Just published by Wireless World, contains 128 pages. Chap tens on the first days of broadcasttens on the Crystal Set. Vintage Wireless Trademarks. Also catalogue sections listing and describing crystal sets together with their original prices in \(f: s: d\). A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us Please send E2.80 inclusive to IPiC Business Press Ltd., Room 11. Dorset don W1.

\section*{COURSES}

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write: Principal, Nautical College, Fleetwood, FY7
\(\begin{aligned} & 8 \mathrm{JZ} \text {. }\end{aligned}\)

\section*{ARTICLES FOR SALE CONT.}

300,000 MULLARD C280 \& C281 for sale, values from oluf to above lut \(250 / 400 \mathrm{~V} / \mathrm{w}\), price per mixed pack,
\(100 / \varepsilon 1.50 \quad 500 / £ 6.00\). P\&P (export 50p). Electronic Mailorder Ltd. Kamsbottom, Bury, Lancs.

ELECTRONIC INSTRUMENTATION If you are interested in the buying or selling of good quality usea Reading 51074. Martin Associates Reading 51074, Martin Associates and converse with our Sheila with your enquiry. heoundant ELECTRONIC \& COMPUTER MATERIALS

\author{
with precious metal content
}

\section*{TRANSISTORS} \& PRINTED
CIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL

\section*{MINICOMPUTERS PERIPHERALS INSTRUMENTATION}

\title{
For fastest, better
}

\section*{CHILTMEAD LTD. \\ Reading (0734) 586419}

WANTED: ELECTRONIC KITS for the DIY fan, such as speakers, mixers, amplifiers, digital clocks, and components. - Contact B. C Brooklyn at Citronics, 36 Coles Road, Milton, Cambridge. Tel.
\(\mathbf{0 2 2 3 8 6 1 3 0 5 ,}\)

\section*{EQUIPMENT WANTED}


\section*{BUSINESS OPPORTUNITIES}

\section*{TO ALL PRODUCERS}

\section*{of Hi-Fi equipment, complete systems
components who are developing ne} techniques and are looking for a distribution outlet WE CAN OFFER
WE CAN OFFER
保 yout products strategically on the lucrative
Swiss and German market Oui young organisation is endeavoured to enable you returns
Interested manufacturers apply to TONAG.
Hi-Fi-Produkte, Schmelz-bergstrasse 51. CH-8044 Zürich. Schweiz. Telex
onag imper ch 58378

\footnotetext{
CONTRACTOR/INSTRUMENT Maker required to produce 1,000 unipivot Pick-up arms monthly. Box No.
}



 thamsistons i.c.:
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8c107//9 & & - E2 \(^{2} 12 / 2121\) & 12p & \(2 \times 5058\) & p \\
\hline *BCIIA & 129 & "BC213/213 & 11 p & DC11/2 & + \\
\hline -3C147/ /9 & 10 & -EC214/214 & 11 & -15efs Timm & 61 p. \\
\hline \({ }^{4} \mathrm{Cl} 153\) & 16 & -bflim/5 & 12p & *74189m Dr & 32 \\
\hline BC154/7/8/9 & 12 & ariso/1/2 & 20p & 2 m 14 & \&1.15 \\
\hline \(4{ }^{4} 1818 / 1821\) & 11 & N178 & mop & 5177601300 & ¢1.50 \\
\hline -BC183/183 & 118 & N239 & \(33^{\text {p }}\) & 517602330 & ¢1.50* \\
\hline -8ciatilial & 12 & "213702/4 & 11 P & thamios & [1.42* \\
\hline
\end{tabular}

\section*{
 \\ 
 \\ 
 \\  \\  \\ 

 \\ Send S.A.E. Tter addineonal slach lisks. \\ MARCO TRADING (Dept P5)
}

\section*{WE INVITE ENQUIRIES from any} where in the world. We have in stock several million carbon resistors \(\frac{1}{2}\) th. \(1, \frac{1}{2}\). and 1 watt. \(\frac{1}{2}\) million
wire wound resistors 5 and 10 watt wire wound resistors 5 and 10 watt electrolytic condensers - \(\frac{1}{2}\) million transistors and diodes. thousands of potentiometers, and hosts of other components. Write phone or call at our warehouse. - Broad fields and Mayco Disposals Lid. 21 Lodge Lane. North Finchley
London, N.12. \(01-4450749,4452713\)

TEST EQUIPMENT FOR SALE. H-P Spectrum Analyser 851B. Marconi PCM Regenerator. Marconi Quanti-
sation Distortion Tester TF2343 Sation Distortion Tester TF2343. Electron Probe Micruanalyser. Electron Probe Microanalyser.
Solartron Attenuator 4980 . Gertsch Complex Ratio Bridge CRB-1B. Solartron D.V.M.'s 1420.2: 1480.3: 1867 . Radiometer Stereo Generator
SMG. Solartron logger System Fur further information and prices please contact Miss Hatch. Martin Associates. 34 Crown Street Read
ing. Tel: Reading ro734) 51074 .

\footnotetext{
\(\begin{array}{ccccc}\text { MARCONI TF } 995 \mathrm{~A} / 5 & \text { AM-FM yen } \\ \text { erator } 1.5 \text { to } 200 \mathrm{mhz} \text { V.GC, } \\ £ 325\end{array}\) TF 1374/l precision crystat callora lur. 175 Sandall Ambeer Croft.
Higham Derby DE5 6 EH . 17362
}

\footnotetext{
W IRELESSS WORLD bound offers. Also volumes "E.E." HiF有 tape rec.. etc. - Edmunds 30 Beech Hill, Hadleywood. Herts
101,449 0145.
}
 TEKTRONIX 150 MHz portable oscil-
loscope Type 454 with sweep delay. loscope Type 454 with sweep delay handbook but we are Sorry to say no probes. Price i985. VAT extra. House, Abbey Park Road Leicester
Tel 0533 58128.
COLOUR, UHF AND TV SPARES IVEW COMEINED COLOUK BAK LENERATOR PLUS CROSS HAICH KII (MK4) UHr Aerial input type. Atso gives K-y', B-Y', Luminance
combinations. Grey scale etc push combinations. Grey scale etc, Push E35, Case £1.80, battery holder: sop, p/P 85p.
cKUSS HAICH KIT, UHF aerial input type, also gives peak white and black levels, battery operated Al, \(p / p\) 4.p Add-on urey Scalt bat kit (MKis) \(£ 20\), cases \(£ 1.40\), p/p
 CEEFAX parts shortly available -Wileless World"
FM Tuiser Projects by \(D\) Tuner and Kits of parts available. CRT Ke activator kit for colour and mono £18*. pp \(\ddagger 1\). Signal Strengh Meter kıt \(218 *\) p/p \(85 p\). \(625 \mathrm{TV} 1 F\) Unit,
Hi-ki aups or tape recording \(26.80 \mathrm{p} / \mathrm{p} 6 . \mathrm{p}\). Decca Colour iv Thyristor Power Supply Unit. inci. p/p 95 p . Bush CTV 25 Power Sup ply Unit incl. H.T. L.T., etc. £3.zo p/p \(£ 1.20\). Bush CTV 25 Conver gence panel plus yoke. blue lateral
\(£ 3.60 \mathrm{p} / \mathrm{p}\) yop. Philips single stand convergence linits complete stand controls. \(£ 3.75 \mathrm{p} / \mathrm{p} \quad 75 \mathrm{p}\). Colour controls. \(£ 3.75 \mathrm{p} / \mathrm{p}\)
Scan Coils. Mullard or Plessey
St \(\mathrm{p} / \mathrm{p}\) gilp. Mullard AT1023/05 Con verg. Yoke \(£ 2.50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}\). Mullard ur Plessey Blue Laterals 75 p p/p
30 p . BHC 3000 type scan conls f 2 p,'p 80p. Bush ('TV 25 Scan Coils \(\pm 2.50 \mathrm{p} / \mathrm{r} 80 \mathrm{p}\). Delay Lines: DL20 £3.50. DL40 £1.50 DL1E. DL1 85p \(\mathrm{p} / \mathrm{p}\) 40p. Lum. delay lines 50 p p/p
30 p . Bush/Murphy CTV 25 3/174 \(\begin{array}{llll}30 \mathrm{p} . & \text { Bush/Murphy CTV } & 25 & 3 / 174 \\ \text { EHT } & \text { quadrupler } & \text { f8.50 } & \mathrm{p} / \mathrm{p} \\ 85 \mathrm{p} .\end{array}\)
 \({ }^{75}\) G8 panels. part complete Philips plus/salvaged: Decoder E2.50. T Base 11 p/ 70 p. CRT Base 75p or spares \(f 3.50 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\) VARICAP TUNERS UHF: ELC 1043 E4.20. ELC \(1043 / 05\) \&5, VHF, ELC 1042
E4.40, Philips VHF 3.80 . Salvaged f4.40, Philips VHF £3.80. Salvaged
UHF \& VHF Varicaps 51.50 p/p 35p. SPECIAL OFFER: RBM 6 psn. Varicap control unit \(£ 1 \quad p / p\) 35p. UHF Tuners transd. incl. Slow ino-
tion drive \(£ 3\) 80. 4 Psn . and 6 Psn. push button ransd \(84.20 \mathrm{p} / \mathrm{p} 85 \mathrm{p}\). 20 p . Thorn 850 dual stand. time pase panels 50 p . Philips \({ }^{625}\) IF panel incl. cct. 50 p p/p 75 p . VHF theright. Philips 19 TG 170 . GEC 2010. etc. \(£ 2.50\). Fireball tuners Ferguson. HNV. Marconi sop p/p
all runers 75 p . Mullard Mona scan coils for Philips. Stella. Pye. Ekco. Ferranti. Invicta \(£ 2\) p/p 75 p . Large selcetion LOPTs FOPT:s available for most popular makes MANOR SUP. PLIES. 172 West End Lane. London. N.W.6. Shop premises. Callers welcome. Thousands of additional
ittems available not normally advertised. Nos. 28. 159 buses or British Rail). Mail Order: 64 Gold. British Rail, Mail Order: 64 Gold-
ers Manor Drive. London. N.W.ll. Tel.: 01-794 :751. V.A.T. Please (EDDT WHERE MARKED * V.A.T


PHロTO ETCH
Fal LIMITED FL 9 LOWER QUEEN STREET PENZANCE, CORNWALL TR18 4DF
Prototype or long run - we will supply your printed circuit require ments.
Also facilities for Design. Assembly and Test
Prompt and efficient service assured

\section*{VHF POCKET PORTABLE RADIO} tuning \(108 / 138 \mathrm{MHz}\). High sensitiv14 MHz band. \(£ 16.50\) (inc. postage 144 MHz band. \(£ 16.50\) (inc. postage
\(\&\) VAT). Romak Ltd, 10 Hibel Road. \(\&\) VAT). Romak Ltd, 10 Hibel Road,
Macclesfield, Cheshire.
17152

INDUCTION HEATERS \(\frac{3}{2} \quad 1 \quad 1 \frac{1}{2}\) Kw. New and second-hand. From £450. - Western-Whybrow Engincering. WECO Works, Praa Sands Cross, Penzance \((073\) 676) 2265.

HUDSON/I.T.T. AM200TER 50 Watt base station - CU9 Ext. Control good condition. 3 AM108 moblles vith workshop manuals. Best offer - Dawes, Swanley, Kent (0322) 62211.

EDDYSTONE Com. Rec. Model 1830120 KHZ to 31 MHZ . Brand new. Fully guaranteed. Cost \(£ 1,400\). Bargain
Guildford 66543 eves.
ensighton.
(7370)

EPO COMPONENTS ex-stock, incl large stock of miniature lever keys and multiway fexible cable. TW Led. 147
NW9 TEA. Tel. \(01-2032814\).

1935/6 HMV 15 valve authradiograin in inllaid wooden cabinet. 110 gn new. Offers: Witlis, 56 Grafton Way
W1. 7374
T.V, TUBE REBUILDING - FAIRCREST ENGINEERING LTD. offer a comprehensive range of equipment for processing all types of picture tubes. Standard or custom businesses. Full training courses Individually tailored \(\&\) backed by nd years' experience in tube mak ing. FAIRCREST ENGINEERING ing. FAIRCREST ENGINEERING 2XX. Tel: 01,689 8741. (7305)

TRANSFORMERS one thousand \(9 \cdot 0 \cdot 9 \mathrm{v}, 25 \mathrm{VA}\) output 240 V input with screen, resin dipped finish. Price £2. 15 each or 0.n.o. for the lot Ltd. Boston House, Abbey Park Koad. Leicester. Tel. Abbey Park

MUIRHEAD D649 D/A Weather Chart Recorder including support paper and handbooks. \(£ 180\). Creed 75R MK4 Teleprinter. Synch motor dual speed gearbox, handbook, \(£ 55\) Racal Synthesizer MA150 series mint condition, handbook. \(£ 70\). Buyer must collect. - Bolton

MARCONI TR \(2300 B\) FM-AM modulation meter as new, used for onty c750. Phont any time Sihureham By-Sea 2608

\section*{THE TTL DATA BOOK FOR BESTGN ENGINEERS \\ By Texas Instruments} PRICE: \(£ 5.50\)
RADIO, TV \& AUDIO TECHNICAL REFERENCE BOOK by S. W. Amos. Price \(£ 24.70\). MICROPROCESSOR MICROPROGRAMMING HANDBOOK by B. Ward Price \(£ 4.00\)
WORLD RADTOTV, HAND. BOGK. J. M. Frosty Price

BUIED YOUR OWN WORK. ING ROBOT by t. Heiser-
THE-RADTO AVIATEMR'S
HANDBOOK 1977 by
A.R.R.L. Price \(\mathbf{£ 6 . 6 0}\).

THE MEMONT \& MICRO.
PBQCESSOR DATA BOOK
FOR DESIGN ENGINEERS by Texas. Price \(£ 3.40\)
TOWERS'INTERNATION.
AL TRANSISTOR SELEC.
TOR by T. D. Towers 1977 Price \(£ 5.00\)
SOUND RECORDING
PRACTICE by Borowick, J.
Price £16.60.
\(\star\) Prices include postage \(\star\)
THE MODERN BOOK CO.
SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET
LONDON W2 1NP
Phone 7234185
Closed Sat 1 p.m.
APPOINTMENTS CONT.
SOUTH EAST THAMES REGIONAL HEALTH

ELECTRONIC
ENGINEERING
Join a smail specialised group within the Regional Engineer's Department based in Tunbridge Wells. and make worthwhile contribution to the application of electronics in our hospitals in Kent, East Sussex and outer London.

You must have a suitable ONC plus seven years relevant experience or an HNC plus five years relevant experience. You will assist with a range of problems arising from communication, electronic control and electro-medical equipment. An ability to develop electronic equip ment, prepare and carry out technical procedures to a high standard with he minimum of professional guidance is essential.
Salary - depending upon experience and qualifications, will be in the range \(\{3.802-£ 4.996 \mathrm{p}\) a inclusive. Further details regarding qualifications and application form from The Personnel Division. South East Thames Regional Health Authority, Road Croydon CR9 30A. 01-686 8877. Ext. 55. Closing date 9th August, 1977

\section*{SERVICES}

STORAGE SPACE is expensive, why store redundant and obsolete equipment, for fast and efficient supplies. PC boards. Components etc Regardless of condition or \begin{tabular}{llll} 
etc Regardaless of \\
qualities. & Call & 01.771 & 9413. \\
\hline
\end{tabular}

\section*{Classified \\ CUSTOMER SERVICE ENGINEERS \\ }
\(\square\)


\section*{for overseas assignments}

The continual development of scanning equipment for the brain and body has brought world wide acclaim, and an impressive flow of orders. To maintain an efficient and highly professional customer service we now wish to increase our force of Customer Service Engineers.

Primarily responsible for installation. commissioning and servicing of Scanner systems, your technical competence and personal attributes must be of the highest quality. You will need the confidence to communicate well. preferably in more than one language, and must have the energy, flexibility and interest to work alone on overseas assignments anywhere in the world lasting from weeks to months. Several vacancies also exist for seasoned, product specialists/troubleshouters.

As leaders in this highly innovative field we can offer exceptional opportunities for technical and career development to those with at least an ONC in Electromics and previous experience on complex electronic equipment. including computer-based systems. These appointments would call for overseas travel throughout the world.

We are also seeking suitably qualified non-British nationals who would like to return on a permanent basis to their country of origin after their period of training in the U.K.

Salaries will be competitive and benefits reflect the importance attached to remaining the industry's pace setters.

Ours is a challenging and highly competitive industry offering real stimulation and job satisfaction to ambitious professionals.

To apply please telephone or write for an application form to Nikki Kirkland, Personnel Officer, EMI Medical Ltd.. Windsor House, Albert Street, Slough, Berks. Telephone Slough 23855 Ext 448 and 439.

- SITUATIONS VACANT

RECORDING STUDIO ELECTRONICS ENGINEER required to work on high quality audio equipment work alone. Some electronics work alone. Some electronics qualifications or experience neces-
sary. Good opportunity to expand sary. Good opportunity to expand
into manufacturing. Someone with initiative, early 20s. Phone for in initiative, early 20s. Phone for in
terview \(01-4997173\). 7813
\[
\begin{aligned}
& \text { COLOUR FILM SERVICE LTD. } \\
& \text { Jngently required a maintenance } \\
& \text { Sngineer for their sound depart } \\
& \text { ment to undertake the alignment } \\
& \text { and calibration of audio dubbing } \\
& \text { and mixing equipment. There may } \\
& \text { be opportunities to assist with } \\
& \text { operational work. The appointment } \\
& \text { will be made within the terms of } \\
& \text { the ACTT/FSFA agreement. Start. } \\
& \text { ing salary although depending on } \\
& \text { experience will not be less than } \\
& \text { £3.500 pa. Apply to R. J. Venis of } \\
& \text { Colour Film Service Limited. 22- } \\
& \text { 25 Pontman Close, London W.1. } \\
& \text { Telephone 01- } 4862881 \text {. } \\
& \hline
\end{aligned}
\]

\section*{ARTICLES FOR SALE}

VALVES RADIO - T.V. Industrial Transmitting. We dispatch valves to all parts of the world by return of post, air or sea mali. 1930 to 1976 obsolele types a speciality List rop uuotatypes a spectality List 20p. Quota
tion SA.E.Open to callers Monday to Siturday 9.30 to 5.00 Closed Wednesday 1.00 . We wish to purchase all types of new and boxed valves. Cox Radio (Sussex) Lto. Dept WW, The Parade. East Wit tering, Sussex PO20 SBN West Wit tering 2023 (STD Code 024366)
5392)

> PROFESSIONAL TV TUBE REBUILDING PLANT designed and manufactured With 20 years experienco of tube rebuilding. Also all assuctated supplies including Electron guns. Regular training courses, Western-Whybrow Engineering. WECO Works, Penzance, TR20 9QT (073676) 2265.

MAGNETIC MICROPHONE SPEAKERS


\section*{RECHARGEABLE BATTERIES}


\section*{EXCLUSIVE OFFER}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{HIGHEST QUALITY \(19^{4}\) RACK MOUNTING CABINETS Over 60 lypes avalathe from \(12^{\prime \prime}\) to \(90^{\circ "}\).high} \\
\hline \multicolumn{4}{|l|}{Also twins. uples \& consoles Below are only a lew types Please sehd for full hiss} \\
\hline Rei \(\mathrm{Ht}^{\prime \prime}\) & Width" & & \\
\hline PE - . 10 & 21 & 13 & c10.00 \\
\hline LL10 . 54 & 21 & 18. & c2e.00 \\
\hline TY 64 & 25 & 26 & [45.00 \\
\hline Si 71 & 25 & 26 & C50.00 \\
\hline PT 72 & 20 & 21 & \(¢ 20.00\) \\
\hline \(\begin{array}{ll}\mathrm{Tl} & 75\end{array}\) & 22 & 21 & c20.00 \\
\hline 518 & 22 & 24 & c70.00 \\
\hline Racal cabinets for' RA 17 & 117 & & c30.00 \\
\hline
\end{tabular}

AUDIO AND INSTRUMENTATION TAPE RECORDER-REPRODUCERS


\footnotetext{
All our aerial equipment is professional MOD quality
}
 * 5 fitia Parabuicic Dish * Larmbdia 36v 25A Reg Power Supplies * Diloster Digniasters
* Cieneral Radir Sirobotacs.
* Data Efficiency Respooler. 240v * Belling Lee 100 Amp Inverierence Fite
* Alrmec 201 Sig. Gen 30 KC 30 MCS * Armec 201 Sig. Gen 30 KC 330 MCS
* Valradiol lavertors 12 DC DC \(240 \mathrm{~V}^{\text {AC }} 500 \mathrm{~W}\) * Osclloscopes Gien purpose * Alrmec 702 Sig Gen 3030
 * 1 BMZP C CRTs.
-
Venner 5336 Counter


* Marconi TF2381 Dinhortum Meter

* Racal UA 1978 Pre Selectors
    * MarcomTF. KR8 Receiver Testers
* Collins 500 will 2 It mics Transmu

    * Rack Mounting Operatur Tables
* Gisumnnt Kalee 569 Flutur Meters
* Hewlett Packard 618 BB Sig Gen 3.8



    * Ralcal Recording Ma A Meverts
* Filiot Re
* 75 Aluminum Lat ice Masís. 20
    * Plessey peak distortion mesers

    * 45 feen Uniradio 4 Cor-at 50 nhms.






PLEASE ADD CARRIAGE ANO V.A.T.

\section*{P. HARRIS}
organford-dorset BH16 6BR'
BOURNEMOUTH (0202) 765051

\section*{EDITOR Practical Wireless \\ A stimulating job in congenial surroundings}

The Practical Group of IPC Magazines Ltd．，who publish Britain＇s highest selling monthly Electronics consumer publications，require an Editor for Practical Wireless．Working from offices in Poole， Dorset，this important position provides an excellent opportunity to combine a challenging，stimulating job with the environmental advantage of living in one of the finest parts of Southern England．

This publication is the market leader and has pioneered electronic home construction projects to the mass consumer market
The position of Editor，therefore，calls for maturity of judgement， flair，imagination，knowledge of electronics and communication techniques together with the ability to identify readers＇needs and ensure fulfilment through the editorial pages．

Applications are invited from men and women from the radio， audio and publishing fields，preferably with an appreciation of magazine production techniques．

Excellent salary and career advancement opportunities．
Please write giving full details，stating present salary，age and qualifications to：

Mr．R．Muggleton，Publisher
IPC Magazines Ltd
Fleetway House
Farringdon Street
London EC4A 4AD
7333）

\section*{Electronics Technician}

Leatherhead

Opportunity occurs for an experienced Technician to join group whose activities，include research and development on failure mechanisms in integrated circuits，high frequency measurements on cables，connectors and dielectric materials and development of methods for component fabrication，including hot－pressing and hand casting

Assistance required with the development and construction of prototype apparatus demanding wide technical background coupled with City and Guilds or similar

Contact the Personnel Manager，ERA Lid．，Cleeve Road， Leatherhead，Surrey KT22 7SA，Leatherhead 74151
（7397）

\section*{ERA}

\section*{V．H．F．SERVICE TECHNICIAN RE－} QUIRED with full experience of Mobile Radio，mobile and base station equipment．Applicants will work in our modern and well equipped workshops in Croydon with occasional work in the field， Applicants should be responsible and fast expanding company sal． and fast expanding company．sal－ experience with ample opporiunity experience with ample opportunity
for overtime if required－Tele． phone Jonothan Clark，London Car Telephones．01－680 1010． 17293

ELECTRONICS TECHNICIAN Computer Communications for computer Communications．Com puter centre．Construction and maintenance of wide range communication equipment，prefer． ably HNC／ONC and several years experience in logic work，givea on computer communtcation techni－ ques．Salary scale \(£ 2,889-£ 3,367\) p．a． Ref， \(660 / \mathrm{C} / 130\) ．－Apply Assistant Secretary，Personnel office．Uni－ versity of Birmingham．P．O．Box 36．3，Birmingham．B15 2TT．（7394

\section*{SUNNY SOUTH COAST}

Expansion on the South Coast in the Electronics industry now demands urgently the following personnel Electronic Engineert（Red D ），Design Engineers， Software Programmers，Systems En－ ginears，Developmant Engineors，Sales Enginears，Trials Enginears，OA Engin－ ears，Test Engineers，Production Engin－ ors，Design Draughtsmen，Inspoctors
Buyers．
All thes
and prese positions offer excellent salaries and prospects and in most cases relocation expenses Ring or write CBS Appoint－ ments． 224 Old Christchurch Road． Bournemouth 292155 or Wimbourne 4891 evenings
（17423）

\section*{Exeter College of}

\section*{Art and Design}

Technician（Electronics）in Fine Art Dept． to maintain video and other light／sound equipment and to advise B．A．students and staff on means of achieving envisaged projects．
Appropriate experience in industry or education necessary，with preferably elevant F．N．C．or C．G．L．I．Final certifi－ S．A．E．for details and application forms Chief
Chief Administrative Officer
Exeter College of Art and Design
Earl Richards Road North
Exeter EX2 6AS．

\section*{ARTICLES FOR SALE}

\section*{■ TEST EQ．}

Logic Probes－Hi，Lo．O／C．Pulse
TTL．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．79．75
CMOS－allvoltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．75 9 －75
Function Gen．
～ルヘヘー6．
Scope \＆Probe Calibrator
freq．，amp． \(0.5 \%\) ，to10 MHz from \(£ 28\)
Logic Analysers．．．．．．．．．．\(£ 26\)
CWO prices include VAT \＆postage UK
LOGIC APPLICATIONS LTD．，
6，Swan Close，St．Pauls Cray，
Orpington，Kent． \(\qquad\) Tel； 30908

\section*{HIGH PERFORMANCE AUDIO MOOULES}

MIC．PRE－AMPS
MAGNETIC PRE－AMPS
CHANNEL MODULES \(\quad £ 3800\)
TONE CONTROLS
MIC．TRANSFORMER f7． 00
MIC．TRANSFORMER \(£ 5.50\)
POWER SUPPLIES
E
\(£ 1200\)
full details
Pragressue Electromic Praduets
593 HIGH RO．，LEYTON，E． 10
（01） 5580678

\section*{SYSTEMS TEST ENGINEERS £3,500-£4,000}

Several interesting opportunities are available for Test Engineers, qualified to O.N.C./H.N.C., degree standard, or ex-military personnel, to join our Test Engineering Department which is currently located in North London but will be moving to new premises in East Anglia/East Midlands later this year. Therefore, we would be interested in receiving applications from candidates who are either currently seeking a new appointment, or who may be interested in changing their jobs later in the year.

Suitable applicants will have had 1-5 years' practical experience of testing, modifying and repairing electronic systems. A knowledge of analogue and digital electronics is required and an understanding of computers would be an advantage. Full training will be given.

These positions offer progressive salaries with regular reviews and good employment benefits.

Please telephone or write for an application form quoting reference \(\mathrm{G} / 1013\), to:-

Linda Geers, Personnel Officer, CROSFIELD ELECTRONICS LIMITED,
766 HOLLOWAY ROAD,
LONDON N19 3JG, ENGLAND
Telephone:01-272 7766.
A member of the De La Rue Group of Companies.


RADIO - TELEPHONE ENGINEERS equipment. Top salaries for top ability. We are a young. progressive company currently the busiest. and fastest expanding radio-telephone firm in London. Ring London Communications on 01-328 5344 ask for Mike Rawlings or \(\underset{\text { Cill }}{\text { Bill }}\) Clarke.

TECHNICAL STAFF Grade 5 (Elec tronics) vacancy. Duties include construction and maintenance of computing equipment and peripherals including tape and disc drives. card readers and line printers. besirable qualifications Technicians part ruilds Electrical Technicians Part 1 certificate or equivalent. Excellent staff facilities. sports and social clubs. Salary clusive of London Weighting and permitted supplement. - Apply as soon as possible to Assistant Direc. tor Department of Computing and Control, Imperial College. South Kensington, London. SW7. (7389

\section*{The Polytechnic of NorthLondon}

\section*{DEPARTMENT OF CHEMISTRY}

LABORATORY TECHNICIAN (Grade 4)
is required in the Spectroscopy Laboratory of the Department either to operate the Mass Spectrometer or to be actively involved in the electronic and mechanical maintenance of Spectroscopic instruments. A good basic knowledge of electronics and practical experience of fault finding and rectification on electronic circuiting, although not
essential, would be an advantage.
Candidates should normally hold ONC, C\&G Ordinary Cerfificate or an equivalent qualification and have at least seven years' experience inclusive of the training period.

\section*{Salary scale}
£3024-£3405 (inclusive of London Allowance)
In addition, \(5 \%\) earnings supplement is applicable.

\footnotetext{
Apply for further details and application form to the Head of the Department of Chemistry, The Polytechnic of North London, Holloway Road, London N7 8DB.
}

\section*{ThePolytechnic of NorthLondon}

\section*{Department of Electronic} and Communications Engineering

\section*{LABORATORY TECHNICIAN (Grade V)}

Applications are invited for the appointment of a Laboratory Technician Grade V.
The work involves the operation and maintenance of High Grade test equipment in a Microwave and Radar Engineering Laboratory, together with the general responsibility for the efficient running of the day to day requirements for students' experiments and project work, and includes participation in Research work.
Normal background experience required is at least 8 years. Education to ONC or OND level in appropriate subjects. Salary scale: \(£ 2751-£ 3207\) plus \(£ 465\) London Weighting and \(5 \%\) earnings supplement.

Application from obtainable from the Establishment Officer The Polytechnic of North London, Holloway Road, London N7 8DB Telephone; 01-607 2789 extension 2019
Further detalls from Mr. S. A. Elliott, extension 2176

\title{
Radio Communications Systems Planning Engineers
}


Racal Communications Systems Limited, pleasantly situated in Bracknell, Berkshire, is a member of the highly successful Racal
Electronics Group and a world leader in H.F./S.S.B. telecommunications techriques.

Racal design a wide range of systems from small networks to major radio communications projects, which include Point-to-Point, Ground-to-Air and Shore/Ship complexes. With the continued growth in demand for Racal communications systems there has resulted a need for Engineers, at all levels, to undertake the planning of radio systems in many parts of the world.

The Engineers selected will be capable of accepting responsibility for the systems from inception to final implementation, and have experience, both operationally and technically, in H.F. radio systems and associated ancilliary equipments. They will be required to ljaise on a technical basis with customers, at all levels, throughout the world, and this will necessitate overseas travel of limited duration from time to time.

For these positions Racal offers competitive salaries, over 4 weeks annual holiday, and a first class pension and free life assurance scheme

\section*{Communicate with Racal}

If you are interested in, and wish to be considered for, these positions please write, stating age, experience and present salary, for an application form to :

The Personnel Manager,
RACAL COMMUNICATIONS SYSTEMS LTD, Western Road
Bracknell, Berks

BE A SUCCESSFUL TV ENGINEER. Join our full-ime Two-lear College Diplorna Course spectally designed to cover the examinations of tie City and cuild Radio. Tele vision and Electronices Technician certificate. Full theoretical and practical instluctoon on all tbres of modern receivers including lle latest colour sets Enrolments are now under way for September
1977 Minimum 1977. Minimum entrance require ments are Senior Cambridge or o Level or equsialent in Mathentatic: and English Seplember includes it
specialised colour ry and pos sterer servicing course pland duct year rechnicians" ('ourse contac us for free prospectus - THE PEM BRIDGF COILEEGE OF ELEC TRONJCS Dept. WW , Bta Hereford Rd.. Landon W? इA: Tel 01.22! !11\%

CUCKFIELD HOSPITAL. SFNIOR EIEFCTRONICS TECHNICIAN. FOR servicing, mainienance, repar and testing rif electro medical and electronic equipment Applicants mast possess A.N.C (electronics) or equivalent or preferably H.NC relectronici and nol lass than seven years relevant experience. The salary is in the cale le.93!
to \(£ 3,824\) p.a. plus supplementary to \(£ 3,824\) P.a. plus supplementary payments of f312 and ber cent
pa. for 40 hours per wepk. The pacesor 4 hours per week. The quired to be on call oulside normal working hours. Application farms from District warks office. St. Francis Hospital. Havwards Heath, Susses. Telephone: Hay. wards Heath \(57411 / 2\). Closing date 3017 .1319. 1977

17401

\section*{UNIVERSITY OF SHEFFIELD TELEVISION SERVICE}

\section*{TECHNICIAN ENGINEER}

\section*{(Sound)}
in the Television Service The per. son appointed will be expected to assume the creative responsibolity for the sound components of all the Service s outpul his will entail unsupervised work. ances muxing sound tracks for film productions and the recording of speech and effects in and out of the two television studios
The post also involves the maintenance of all television studio and film sound equipment to a high level and candidates will be expected to have qualifications at HN.C. level or equivalent the main studio is fully operational in PAL Colour but operates with a full staff. Candidates will therefore be expected to demonstrate knowledge of colout television studio specialism related to television studios. preferably helical scan videorape record. prefe
ing
Exp
Experience of television sound operations elevision service would bea considerable advantage Salary on scale Techmician (Grade 4) - 〔2689-£3087 per annum University employees enjoy security. good working conditions in pleasant surroundings. excellent holiday entitlement and sick pay arrangements and a generous Superannuation scheme. Pease write to S750 (WW). The University Sheftield S 102 TN

\section*{RADIUM INSTITUTE \\ Regional Department of Medical Physics and Biocngineering MEDICAL PHYSICS TECHNICIANS TWO POSTS}
(a) Required primarily on Radioactive Isotope and Ultrasonic Equip. ment. Duties include repair, planned preventive maintenance and calibration work on equipment throughout the Rexion, and some development work. A car and current driving licence are needed. (b) For repair, planned preventive maintenance and calibration of patientorientated and labordiory equinment serviced by the Depart. ment and related test gear: some Technicians work
rechnicians work with minimum supervision after initial tratnink period Applicants require onc/ III posts require at least three years' relevant experience since qualifying
Salary Grade III £2.931 x 7 inere. ments -- \(\{3.843 \mathrm{p.a}\)
Grade IV \(£ 2.346 \times 9\) increments \(\ddagger 3.267\) p.a
Saiary supplement \(£ 312\) v.a. Dlus 5 per cent subject to maximum of t208 p.a. A higher starting salary experience pabove the minimum re quirements
quirement
Further detals from Mr K. Nel. son, Tel. 061445 8123. ext 319 stamped addressed envelope fur application form tor Sectur Admins. strator, Christie Hospital. Wilmslow Road. Withington. Manchester MO MBX. Ref. No. NH/12. 73.52

\section*{GULMERSHE COLLEGE OF HIGHER} EDUCATION RESOURCE CENTRE Television Technician Grade 3/4 ©2,922-£3.702 plus supplement of the p.a. required to work under television technician the principal initially have a mian and would ity for recording and re-play facflities. In additoon he will acsuct with the generat maintenance and uperatlun of a small TV Studn and © \(B\) equipment \(A\) versatile and methodical upproach are looked for thd City and guilds fuallications 1ti Kadio atid TV sersicong would Fe an advantage. Applacallon orms and further particulary ob ainable from the semor Admanis. trathe officer Bulmershe Coblage If Higher Educalion. Woodlands 7392

\title{
SHARE THE CHALLENGE AND INVOLVEMENT OF LINAC, AN EXCITING DEVELOPMENT IN MEDICAL ELECTRONICS
}

The advanced Linear Accelerator (Linac), developed and manufactured by M.E.L., a division of Philips Electronic and Associated Industries Limited, is now in use in major hospitals throughout the world, playing an important role in the treatment of cancer. It involves a highly sophisticated and rewarding area of medical electronics in which continual development and a sustained demand for the equipment has created the following new appointments.

\section*{Service and Installation Engineers}

Self-reliant, adaptable engineers are required to install and service our equipment throughout the world Periods of six to sixteen weeks will be spent away from base. Applicants should be qualified to HNC level or equivalent, have a good knowledge of semi-conductor circuitry and preferably have expertence of modern high power radar systems

\section*{Sales Engineer}

To market our equipment in the U.K. and overseas in conjunction with the world-wide Philips national sales organisations. The successful applicant will be involved in the preparation of tenders, the supply of technical and commercial information and as the Product Specialist during negotiations with chents
Applicants should be qualified to BSc level or equivalent, preferably in the physical sciences, and have experience in the sales and export marketing of complex electronic equipinent

\section*{Senior Mechanical Development Engineer}

To work on the mechanical design of the Linac, in a cost effective environment.
Applicants should be qualified to BSc HNC level with some years development experience.

\section*{Development Engineex}

A young graduate is required to liaise closely with Philips Restarch Laboratorıes in the acquisition of design information and the investigation of development problems.
A Physics graduate with an interest in electronic design is preferred

\section*{Technical Support Engineer}

Our Technical Support Group requires a highly literate HNC level engineer to liase with the service department and laboratory in the preparation of data for equipment manuals. This will also involve participating in the writing, editing. updating and production of all technical Iterature Previous experience in this field would be advantageous

informaton it E. Manor Ropal. Crawley
Sussix Tol (02, 2 ) 28787


\section*{Dhofar Region Television Service}
- Very Good Salary
- Free Family Passage
- No Income Tax Payable in Oman
- Free Furnished

Accommodation
- Special End of Contract Bonus
- We pay Local Education Fees
- Comprehensive Free Insurance, Health Dental, etc.
- Hard work is necessary

We are recruiting on initially one year contracts and have vacancies for the following and other positions.

\section*{PROGRAMME STAFF}
--Production Director
--News
--Transmission Controller
--Administration

\section*{OPERATIONS STAFF}
--Telecine
--V.T.R.
--Sound Supervisor
--Sound Dubbing \& Mixing
--Film Processing
--Film Cameramen

\section*{ENGINEERS}
-Studio
--Transmitters
--Microwave
-O / B Van
--Technical Administration

\section*{ADMINISTRATION}
--Training Officer
--Film Librarian

\section*{PLUS}
-Aerial Rigger/Mechanic
--Electricians
--Diesel Mechanic
Let us discuss with you your abilities for these interesting
and important positions.
Would previous applicants re-confirm their interest
Write or phone: Tony Owers, 01-573 8333
for more information
PERSONNEL \& ELECTRONICS LTD.

Triumph House
1096 Uxbridge Road
Hayes, Middlesex UB4 80H

\section*{Appointments} 118

We need
Graduates Programmers Design Engineers

\section*{Process Engineers Product Engineers Systems Sales Engineer Mask Making Engineer}

To join GEC Semiconductors who supply both custom and standard integrated circuits to internationally accepted civil and military specifications.

GEC Semiconductors are based on one site in Wembley, Middlesex and have a complete integrated circuit facility covering Design, Mask Making, Wafer Fabrication, Assembly, Test and Quality Assurance and manufacture in p-Channel Metal Gate, p-Channel Silicon Gate, n-Channel Silicon Gate, CMOS and Bipolar processes.

GEC Semiconductors are looking for men or women with a degree of HND qualification, who have sound practical experience in any one of the disciplines of semiconductor engineering and are now seeking an opportunity to develop their career within an expanding company. We are also seeking recent GRADUATES with degrees in Electronic Engineering or Physics.

As a member of a large organisation, we are able to provide a highly competitive salary and an attractive range of company benefits, including where appropriate assistance with relocation.

Please write or telephone Jim Warren now for an application form from -



\section*{TRANSMITTER ENGINEERS SHORT WAVE MEDIUM WAVE LOW \& HIGH POWER}

We have immediate vacancies on overseas projects - AFRICA AND MIDDLE AND FAR EAST

You are invited to phone TONY OWERS for more information and we are especially anxious to acquire staff on a permanent basis operating from the United Kingdom.

Would previous applicants please re-confirm their interest.


\section*{SENIOR ELECTRONIC ENGINEERS INTERMEDIATE ELECTRONIC ENGINEERS}

The company has vacancies for the above positions in their Repair and Servicing Department.
Applicants for the senior positions should be qualified to at least ONC, ET5 or equivalent level and must have several years proven experience in the field of mini digital computers and a wide range of peripheral devices e.g. lineprinters, paper tape equipment, magnetic disc/tape storage, power supply units, video display units, etc.
Applicants for the intermediate positions would be expected to work on similar equipment to that as above and have a good technical background in electronics. Where necessary appropriate training will be given.
It is important that all applicants should be self motivated and work with minimal supervision
The department is expanding and there are excellent career prospects for people really interested in fault finding, repair and servicing complex equipment.
Those interested should apply by telephone or in writing to Mr. D. F. Watts, Personnel Department, GEC Computers Limited, Elstree Way, Borehamwood, Herts, WD6 1RX. Tel: 01-953 2030. Ext. 3697

\section*{GEC Computers Limited}


\section*{International Broadcast Sales Engineers}

RCA Broadcast Systems has openings for Sales Engineers to assume responsibility for the marketing and sale of our range of professional television and radio studio and transmitter equipment in areas of Europe, Africa and the Middle East. The positions will be based in Sunbury on Thames, Middlesex, and each salesman/woman will have direct responsibility for the aggressive promotion and sale of our products in an assigned area
As a considerable amount of time has to be spent in the countries concerned, applications are invited only from persons willing to spend up to \(50 \%\) of their time in their sales territory
Ideally, we seek persons with past experience of selling broadcast or associated products, preferably internationally. However, we will also consider for training, candidates with experience in the operation and maintenance of broadcast equipment who are
interested and keen to enter commercial and selling activity We are looking for persons who are interested in overseas travel and who have the initiative, dedication and personality to operate effectively in the challenging environment of international sales A knowledge of French and/or Ger man would be an asset for some posts.
Salaries are negotiable but will certainly be in keeping with the responsibilities and demands of these posts. Competitive Company fringe benefits, etc., exist
Applications outlining past experience, age. etc., should be sent as early as possible to
Pam Torma
RCA International Ltd.
50 Curzon Street

\section*{London, W1}

England.

\section*{INTERNATIONAL FIELD SERVICE ENGINEER}

Required for our International Mass Spectrometer Service Division based in the UK A sound knowledge of modern electronics is essential and a working knowledge of high
vacuum system would be an advantage. vacuum system would be an advanlage,
although training will be given Applicants although training will be given Applicanis
should possess City and Guild or equivalent Should possess City and Guild or equivalent
qualifications Due to the extensive travel qualifications Due to the exprobably more suitable for a single person aged between 20 sulable for a s
and 30 years

The Company is internationally renowned for the quality of its products and offers excetlent working conditions including company car pension scheme super
tion and profit sharing bonus scheme

Write or telephone for an application form

\section*{LKB}

Service Manager
G Division
LKB Instruments Limited
232 Addington Road Selsdon. South Croydon Surrey CR2 81
\(01-6578822\)

THE OPEN UNIVERSITY Electronics Technician An Electronics Technician iCalibration) is
required to join the general electronic fachities team of the Open University
The main duties of the post are
- To provide a \(95^{\circ} \mathrm{u}\) in house calibration and maintenance seivice for all measuring equipnent sering mand elenic technigues
ro assist all ou staff racademic research ternimians and maintenance)
vitl; plectronic problems and the use of the:I equpment
To set tp and maintam the necessary incord systein to operate such a service Experience: Tell vears in electronics five years of whic
thove duties
Qualifications: HNC or City and Guldes in an approphate subject
Salary: Technician Grade 5 \& 2889 in : \(336 /\) ber annurn
Holidays: 20 working days plus 6 imerersily closed days plus 7 national days
IIf phat is within the New City of Milton Keynas and there is a University Officer to assist with housing the apolicant mate or femate may tort eligible for development expenses fiom the Open University
Application torms and further particulars are avalable hy posicad request please from
The Personnel Manage, (ET2) The Open University PO Box 75 Walton Hall Miton Keynes MK 7 6AL or hy telephone from \(\begin{array}{cc}\text { Milton Keynes } 63868 \text { Closing date for } \\ \text { applicatons } 10 \text { th August } 1977 & 7388\end{array}\)

\footnotetext{
GARNETT COLLEGE
Downshire House
Roehampton Lane
(01-789 6533)
TECHNICIAN GRADE 4
ELECTRICAL
ENGINEERING/
RESOURCE CENTRE
Fechmein with an electrical engineering. electronc- but kground and at interest audio equipment required to join the college's technctan team. Opportunity to br involved in development work in both Electrical Engineering and the Resource Centre. Training in the operational aspects of closed circurt television will Ordinary ('ity and Guilds or equivalen qualificatons and a minimum of seven years experience. Salary scale \$2.599-£2.940 plus \(£ 276\) per annum London Weighting plus earnings related supple ment.
Details and apphacation form, returnable within ten days, available from the Chief lechnician at the college.
}

\section*{Test Engineers}

\section*{The reliable name in radio communications}

Pye Telecommunications are a well established company, involved in the field of radio communications, both at home and overseas. The Pye trademark is synonymous with systems that are highly reliable. To ensure that reliability, we need test engineers to check our VHF/UHF systems to very exacting specifications prior to delivery.
We are looking for skilled men and women with experience of fault diagnosis, alignment and testing of electronic equipment, preferably communications equipment. Formal qualifications are desirable, but less important than sound practical ability. Armed Forces experience would be particularly acceptable.

We can offer you job security and long term em. ployment prospects.
We have openings at Haverhill in Suffolk (where there is the possibility of local authority housing) and at Cambridge, both being attractive places in which to live. Relocation expenses are available.
Write or phone (reversing charges if necessary) to: Catherine Dawe, Pye Telecommunications Ltd, Colne Valley Road, Haverhill, Suffolk CB9 8DU Tel: Haverhill 4422
or Clare Barton, Pye Telecommunications Ltd, Elizabeth Way, Cambridge.
Tel: Cambridge 58985

\section*{}

114

\section*{Theres only oneperson who can get you agood job... ...and that's you.}

But we've already made the right contacts.
They're yours - and we don't need to interview or to see you first.

All you have to do is to complete our special highly confidential - application form.

Then we'll simply pass on your particulars to those - and only those - companies really keen to meet a man or woman with your credentials and, aged between 20 and 45 years.

And they Il approach you direct.
We guarantee to safeguard all your correspondence and never to get in touch with any company you specity -from among our list of clients.

Like all good ideas - ours is very simple. It's simply the best way to find a new job.
Try it and see
Phone us today for an application form or, clip the coupon for our comprehensive and confidential information pack.

Lansdowne Appointments Register, Design House, The Mall, London W5 5 LS. Tel: 01-579 6585
(24 hour answering service)

\section*{WIRELESS TECHNICIANS}

There are vacancies at Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems etc
Applicants must be able to drive a car and be in possession of a current United Kingdom driving Licence

\section*{Salary}
is £2010 (at 17), £2450 (at 21) and £2905 (at 25) rising to \(£ 3385\), plus a 1976 pay supplement of f 313.20 a year and a 1977 pay supplement of \(5 \%\) of total earnings, subject to a minimum of \(£ 101.79\) a year and a maximum of E 208.80 a year

\section*{A Secure Future}
with a non-contributory pension scheme good prospects of promotion and a generous leave allowance. There are opportunities for day release to gain higher qualifications

Qualifications
Candidates, male or female, must hold a City and Guilds Intermediate Telecommunications Certificate or equivalent qualification and have had good experience in Telecommunications

\section*{Interested?}

Then write or telephone for further details and an application form to :- Mr C B Constable. Directorate of Telecommunications, Home Oftice, 60 Rochester Row London SW1P 1 JX. Teleohone: 01-211 6420

\section*{M.F. DEVELOPMENT ENGINEER}

\section*{Cambridge}

Pye TVT Limited are amongst the world's leaders in the field of professional broadcast equipment. Expanding activities in our transmitter engineering laboratory now create the need for a Senior Development Engineer to join a team working on the design and development of MF Broadcast Transmitters. The successful candidate is likely to have a degree or equivalent qualification but more importantly should have had several years' design experience on MF transmitting equipment.
Relocation expenses to this pleasant part of East Anglia will be given in approved cases. Please write or telephone : Dave Barnicoat, Pye TVT Limited, PO Box 41, Coldhams Lane, Cambridge CB1 3JU. Telephone Cambridge 45115.

Name
Address
Lansdowne
influence in high places
\[
\begin{aligned}
& \text { DESIGN/DEVELOPMENT } \\
& \text { EncINEERS } \\
& \text { Ferranti wins Army contract. }
\end{aligned}
\]

\section*{Ferranti land space order}

\section*{1200 MORE JOBS FE MOD} FERRANTI EXPANS

\section*{Come andmake headlines with us.}

Headlines like these are only possible when you're acknowledged internationally as one of the world's leaders in avionics. To keep us at the forefront we need highly motivated design development engineers keen to make their mark. And at Ferranti there's plenty of opportunity to do just that. On projects like the Tornado, Sea Harrier, Jaguar and Lynx.

And headlines like these also mean expansion. Which explains why we're looking for more graduate mechanical and electronic engineers to join our airborne radar and inertial navigation teams. They must have the design/development experience to spearhead the progress of equipment from drawing board through to production.

We are particularly interested in talking to engineers with backgrounds in the design of:-

\section*{Digital/analogue circuitry. \\ Advanced instruments.}

Microwave and laser techniques.
Small digital computers.
Optics. on our wavelength.

Think about it. Then ask the family how they'd like living in Edinburgh, freely acknowledged as one of Europe's finest cities.

Salaries are negotiable and, of course, we operate a contributory pension and life assurance scheme and pay realistic relocation expenses.

For an application form, write to John McPhee at the address below:

\section*{Ferranti Limited}

Ferry Road

\section*{EDINBURGH EH5 2XS}

Tel: 031-332 2411.


\title{
Radio Officers-now you can enjoy the comforts of home.
}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\) according to age. In addition, a supplement of \(£ 312\)
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House,
St. Martins-le-Grand, London ECLA 1AR.

Post Ofifilice Tellecominnuinicaicions

\section*{RADIO TECHNICIANS}

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or ovér.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear
Duties cover highly skilled Telecommunications/electronic work. indluding the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer an analytic machinery
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualification.
Salary scale from \(£ 2,230\) at 19 to \(£ 2.905\) at 25 (highest pay on entry), rising to \(£ 3.385\) with opportunity for advancement to higher grades up to \(\mathbb{K} 3.780\) with a few posts carrying still higher salaries.
Pay supplement of \(£ 313.20\) per annum
Annual Leave allowance is 4 weeks rising to 6 weeks after 27 years service
Opportunities for service overseas
Candidates must be UK residents.

Further particulars and Application forms available from
Recruitment Officer
Government Communications Headquarters
Oakley, Priors Road
CHELTENHAM, Glos GL52 5AJ
Tel. Cheltenham 21491 Ext. 2270
(STD 0242-21401)

\section*{KING ALFRED'S COLLEGE \\ WINCHESTER SO22 4NR}

\section*{CCTV STUDIO TECHNICIAN}

Duties will include the setting-up of television equipment, first-line maintenance and participation in produc tıon and training.
Applicants should have some qualification in electronics or experience in the use and maintenance of CCTV equipment.
Salary scale £ 2841-£3165. Further details and application from the Bursar. Tel 096262281
Closing date for applications, 29th July.


\title{
Commmunicalions Engineering South Coast to \(25,000 \mathrm{p}, \mathrm{a}\).
}

Our Client is a leader in the design, manufacture and development of Advanced Radio Communications Equipment and systems for UK and Worldwide markets. Their continued market penetration creates a number of new highly-challenging and rewarding opportunities for ELECTRONICS ENGINEERS at a variety of levels. The opportunities offer excellent career prospects and, in the main, require a minimum qualification of a Degree or equivalent.

\section*{HF Receiving Systems}

Exciting new opportunities in the design of systems for Commercial applications. This includes design of HF Receivers, their remote control and digital interface and related equipment. Experience of HF/VHF/UHF and Digital techniques is necessary There is also scope for the new Graduate.

> HF/VHF Military Radio
> New appointments in the design of new products and related equipment for complete systems. Projects are of a short-time scale development for the Export market and offer a broad range of interest. A further Senior opportunity for an Engineer is to liaise with a number of major project teams in order to integrate their efforts into complete systems. This will include co-ordinating equipment trials. Experience is required in the design of Radio, Radar and other
> telecommunication equipment.

\section*{Radio Relay Systems}

New appointments connected with the design, for commercial applications, of UHF\& SHF Transmitters and Receivers and IF Amplifiers for multi-channel Radio Relay Equipment. The more senior appointments will include liaison with suppliers and other key departments within the company. Experience is required in UHF/SHF Transmitter and Receiver design.

\section*{Mobile Radio Telephone Systems}

New opportunities for professional Engineers and Technicians involved with the original design, development, build and test of VHF Transmitters and Receivers integrating RF \& Logic Modules. There will be involvement with equipment evaluation and recommendation of design changes. Experience required ranges from the design and evaluation of complex communications equipment, to circuit design using modern integrated circuits and RF techniques.

Attractive salaries will be negotiated. There is a comprehensive range of large company henefits. The company is located in a pleasant area close to excellent housing, educational, recreational and other amenities. Relocation assistance will be given where necessary. Applications are invited from either sex. Please telephone BOB THORPE - Portsmouth (0705) 815241: P E R, 54 Arundel Street, Portsmouth PO1 1NL.


Thames Television will again be running their Technical Training Scheme for young entrants in to the Studio and Engineering Section. This one year course is held at the Teddington Studios and is for Cameras, Sound and Technical Operators and Television Engineers.

Previous successful candidates have been between twenty and twenty-five and have completed a course at a specialist college or have a qualification of HND or Degree Level in Electrical Engineenng. Other candidates may be considered who have expenience in relevant areas of broadcasting or electrical engineering.

These permanent positions have an initial salary of approximately \(£ 2250\) p.a., nising at six monthly intervals to a 2 nd year technicians rate after eighteen months.

The course will commence in early October.
Applicants should send full details to: The Training Department, Thames Television, Teddington Lock, Teddington, Middlesex.

THAMES

\section*{Ireland ENGINEER / TECHNICIAN}
for etectronics company which manufactures and repairs a wide range of professional equipment.
* Experience of analogue digital and R F. techniques desirable
* Practical ability more important than academic qualifications.
* Salary not less than £4000 per annum
* Assistance with relocation expenses.

Written applications to
PHOENIX ELECTRONICS LTD.
24 South Cumberland Street
Dublin 2, Ireland

\section*{Appointments}

Advertisements accepted up to 12 noon Monday, August 1, for the September issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: \(£ 7.50\) per single col. centimetre ( min .3 cm ). LINE advertisements (run on): \(£ 1.10\) per line, minimum three lines.
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\title{
Marconi Instruments ELECTRONIC TECHNICIANS
}

\section*{Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton.}

Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates.
Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts.tel: St. Albans, 59292

A GEC-MARCONI ELECTRONICS COMPANY

\section*{DESIGN TEST \\ FIELD SERVICE}

Immediate vacancies exist in most areas for engineers qualified to BSc/HNC/C\&G with analogue, digital or R.F. experience. Phone or write

APEX PERSONNEL
800 FULHAM ROAD LONDON S.W. 6
\(01-7314353\)

\section*{ELECTRONIC RESEARCH AND}

DEVELOPMENT TECHNICIAN
required with an automolive bias to S.E. 1

Applicant should be qualified to at least HND level and have some knowledge of or interest in the knowledge of interest in the automoble application
Salary by negotiation. Four weeks annual leave and non-contributor pension scheme by qualification. Contact Mr. D. Bland, on 01-407 7311 for appointment.

\section*{AVIONICS TECHNICIAN}

Douglas Airways Pty Ltd. Papua New Guinea invite applications for the position of Avionics Technician in their overhaul shop at Jacksons Airport, Port Moresby. This workshop is one of the most comprehensively equipped in the Southern Hemisphere

Successful applicant will have at least ten years experience of which a proportion will be bench work on VHF and HF radios. He will also have a good understanding of navaids and hold appropriate licences.
Specialists on one system only need not apply
Salary negotiable according to experience and qualifications Free accommodation in Port Moresby

All applications in writing giving full details of experience and qualifications to

DOUGLAS AIRWAYS PTY. LTD
C/O NORMAN BUTCHER AND JONES LIMITED
120/122 Southwark Street
London, SE1 OSW

\section*{[4i) CAPTIAL APPIS. \\ FREE LISTS \\ and Tesi Jobs. \\ Permanent and Contra To £6,000 \\ 6375357 day 3500836 ev \\ INSTRUCTOR IN MARINE RADIO}
is required by
College of I.M.R.
Communications
160-176 Chorlton Road Brooks Bar Manchester M16 7WT
Suitable applicants for the above position will have served in the Merchant Navy and will have an up-to-date knowledge of electrical fundamentais

Salary scale £2.900-£4.500 Write to the Principal, giving details of qualifications and experience. (7349)

\section*{RELAYS-UNISELECTORS SWITCHES}

MINIATURE PLUG-IN RELAYS (Siemans/Varley) with perspex dust cover and base
6.12-24-48v D.C. In Stock
\(2 \mathrm{c} / 0\) 50p: 6 make 60p
\(4 \mathrm{c} / \mathrm{o} \mathrm{75p:} \mathrm{\&} \mathrm{\&} \mathrm{10p}\)
S.t.C. MINIATURE (P.C. Mounting)
with dust cover
\(2 \mathrm{c} / \mathrm{o}(18 / 24 \mathrm{v}) 45 \mathrm{p}\) P.P. 10 p
\(4 \mathrm{c} / \mathrm{o}(24 / 36 \mathrm{v})\) 50p P.P. 10p
\(6 \mathrm{c} / 0(36 / 48 v) 75\) p P.P. 10p
I.T.T. 240v A.C. Plug-In RELAYS
with perspex cover) 10 amp contacts
3 c/o 75p P.P. 10 p
H.D. TIME SWITCHES (100 amp contacts) \(1 \mathrm{on} / \mathrm{off}\) in condition \(240 \mathrm{v}-50 \mathrm{hz}\) £6.50 P.P £1.00 UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm 55.50 P. P. 50p
6 Bank Full Wipe 75 ohm \(\mathbf{E 6 . 2 5}\) P.P. 50p
8 Bank Full Wipe 75 ohm e7.50 PP bup
12 Bank Half Wipe 68 ohm E. 50 P.P. 60 p
SMALL 12VUNISELECTORS 4 Bank 11 way E2.50́p p 50p

101b Pull. 20 mm Stroke. Size \(50 \times 48 \times 42 \mathrm{~mm}\) 75p P.P. 15p
TELEPHONE HANDSET with Press-to Speak Switch E1.50 P P 40p
CITENCO GEARED MOTORS. \(240 v 50 \mathrm{hz} 19 \mathrm{rpm}\) rorque \(145 \mathrm{~kg} / \mathrm{cm}\) E6.75 (new) PP 50p
DECADE INDICATOR SWITCHES with plus \& minus Push Buttons. 6 mm digits 75 p each P.P 10p
KEY SWITCHES • 1000' TYPE
\(4 \mathrm{c} / 0\) each way locking 60 p P.P. 10 p
Bank of \(4.4 \mathrm{c} / 0\) each way. 1 biased \(\mathrm{E1.25}\) P.P. 15p
MAGNETIC COUNTERS
3 DIGIT RESET COUNTERS ( \(12 v\) DC) £1.50 (EX Equip) P P 20p
3 DIGIT RESET COUNTERS ( 240 v 50 hz ) £1.75 (new) PP 25p
6 DIGIT RESET COUNTERS ( \(24 v\) D.C) \&4 (new) P P 25p
4 DIGIT NON-RESET (24vD C.) £1 (New) P.P 20p 5 DIGIT NON-RESET ( \(24 \vee\) D.C.) \(£ 1\) (Ex Equip) P.P 20p 6 DIGIT NON-RESET (48v D.C.) £1.50 (New) P P 20p

\section*{MULTICORE CABLES}

4 CORE RIBBON (RAINBOW) CABLE \(4 \times 10 / 2 \mathrm{~mm}\) forming \(1 / 4\) in wide strip \(10 \mathrm{~m}-75 \mathrm{p}\) : \(50 \mathrm{~m}-\) E3: \(100 \mathrm{~m}-\mathrm{E6}\) 8 CORE RIBBON (RAINBOW) CABLE
\(8 \times 14 / 76\) Forming \(1 / 2\) in wide strip
10m-£1.50: 50 m -£6.50: 100 m -£12.00 P \(p\) ip per
5 CORE H.D. CABLE \(5 \times 70 / 76\) P V.C
Black Outer P.V.C. O.D. \(1 / 2\) in
Black
\(10 \mathrm{~m}-\mathrm{E2.50}\) : \(50 \mathrm{~m}-\mathbf{£ 1 2 : ~} 100 \mathrm{~m}-\mathbf{E 2 2 . 5 0}\) P.P 2 p per metre
10 CORE CABLE \(10 \times 7 / 76(10\) COlours \()\) PVC OO \(7 \mathrm{~m} . \mathrm{m}\)
\(10 \mathrm{~m}-\mathbf{E 2}: 50 \mathrm{~m}-£ 8.50: 100 \mathrm{~m}-£ 16\). P P. 2p per metre 16 PAIR RIBBON CABLE \(16 \times 2\) core P.V.C. double sheathed forming \(55 \mathrm{~m} . \mathrm{m}\). wide strip \(10 \mathrm{~m}-£ 3\) PP 2p per metre
EQUIPMENT COOLING FANS ( 100 C.F.M)
PAPST-LUFTER \(120 \times 120 \times 38 \mathrm{~mm}\) i 15 v 50hz \(\mathbf{C 5 . 7 5}\) (New) P P 50p
PAPST \(112 \times 112 \times 55 \mathrm{~mm} 220 \vee 50 \mathrm{mz} \mathbf{E 3 . 5 0}\) (Ex Equip) P.P. 50p
MUFFIN TYPE \(120 \times 120 \times 38 \mathrm{~mm}\) £ (Ex Equip) P P 50 p
SMPALL TRANSFORMERS \(240 \% 115 \mathrm{v} 40 \mathrm{p}\) each
WOODS EXTRACTOR \(130 \times 130 \times 80 \mathrm{~mm} 240 \mathrm{v} 50 \mathrm{hz}\)
£3.50 (Ex Equip) P P 75p
PAPST (SQUIRREL CAGE) 9 Blade Less Mounting £3.50 (new) 240 V 50 hz P P 50p

\section*{VARIOUS}

AIR PRESSURE SWITCHES 0.10 It varable switcol contacts 15 amp thange-ove
plated bitssi \(£ 1.50 \mathrm{PP} 25 p\)
E.H.T. MODULES. Input \(190-260 \mathrm{v} 50 \mathrm{HZ}\) Output 137 Kv PK@ \(0.50 \mathrm{~m} / \mathrm{a} .(150 \times 95 \times 70 \mathrm{~mm}) £ 12\). P.P. £ 1
MYRIA MEGOHMMETER TYPE 35A. 20.200K MYRIA MEGOHMMETER THPE SHA. © £ 2.50
SYNCHRONOUS GEARED MOTORS (Smiths) 2 ipm 3 rpm 30
eapp 25p
P.C. EDGE CONNECTOR

32 way ( 1 pitch) finished ends 45p P P 10p
56 way ( 1 pitch) cuttable 65p P P 10p
64 way ( 1 pitch) cuttable 75p P P 10p
Mounting Pillars for \(56 / 64\) way 15p pai
Gold Plated Contacts 15p extra
32 way ( 15 pitch) Double-Sided Gold Plate Contacis 50p M. Al
H.D. ALARM BELLS (Ext, Int USe) \(\mathbf{4}\) in Dome 50 P \(\mathbf{f 1} 00\)

 10 in Dome int Gongl 24 48vOC £5.00 PP £1.50 D.C. POWER SUPPLIES Input \(240 v\) A C TYPE 120 v O.C. at 1 amp. Fully regulated \(155 \times 155 \times 75\) mm totally enclosed \(£ 5\) P.P. 75p

PLEASE ADD 8\% V.A.
> J. B. PATTRICK

> 191/193 LONDON ROAD ROMFORD. ESSEX RM7 9DJ ROMFORD 44473

IF YOU NEED
JaGKFFILISS
WHY NOT TALK
To THE
SPEEALLISTS?

Our new Bantam range gives a space saving of up to 50 per cent.


\section*{PANELS AND ASSEMBLIES}

No supplier offers a wider range of panels, inserts and accessories for just about any configuration. And you can get them in any stage of assembly . . . individual components, sub-assemblies, or complete pre-wired and connectorised assemblies ready to install.


\section*{JACKS AND PLUGS}

Singles . . . twins . . . back-to-back \(2 \div 1\). . patch and switchboard cords most standard types are available for immediate off-the-shelf delivery.

For information on these and our range of B.P.O. type components contact: COMMUNICATION ACCESSORIES and EQUIPMENT LIMITED.

\section*{CAE LIMITED}

70/80 AKEMAN STREET,
TRING, HERTS HP23 2PJ
Tel. (044 282) 4011
Telex: 82362 A/B BATELCOM

\section*{DEMA ELECTRONICS INTERNATIONAL}
\begin{tabular}{|c|c|c|c|c|}
\hline TTL 7400 SERIES & \multicolumn{4}{|c|}{NEW LOW PRICES} \\
\hline 7400 £0 09 & 7448 & L0.60 & 74145 & \(£ 0.57\) \\
\hline \(7401>0.09\) & 7450 & 0. 12 & 74150 & 0.75 \\
\hline \(7402=-10\) & 7451 & D. 12 & 74151 & 0.59 \\
\hline Heir 010 & 7453 & 0.12 & 74153 & 069 \\
\hline 74040 & /454 & 0.12 & 74154 & 105 \\
\hline 7405013 & 7460 & 511 & 74155 & 0.69 \\
\hline 74060.22 & 7470 & 024 & 74156 & 0.69 \\
\hline \(3407 \quad 0.22\) & 14.72 & 027 & 74157 & 069 \\
\hline \(7408 \quad 0.13\) & 7473 & 025 & 74158 & 069 \\
\hline \(7409 \quad 0.13\) & 7474 & 0.25 & 774160 & 089 \\
\hline \(1410 \quad 0.09\) & 24.75 & 0.35 & 74162 & 089 \\
\hline \(7411 \quad 0.16\) & 7476 & 0.24 & 74163 & 089 \\
\hline \(7413 \quad 025\) & 7483 & 069 & 74164 & 105 \\
\hline \(7416 \quad 022\) & 7485 & 0.85 & 74165 & 1.05 \\
\hline 7417022 & 7486 & 0.25 & 74165 & 1.05 \\
\hline \(7420 \quad 0.11\) & 7488 & 1.45 & 84170 & 1.65 \\
\hline 7426 0.23 & 7490 - & 0.32 & 74175 & 0.85 \\
\hline 7430 0N1 & 7491 & 0.65 & 74180 & 080 \\
\hline 7432 0.22 & 7497 & 0.35 & 74181 & 2.00 \\
\hline 7437 - 2.75 & 7493 & 035 & 74182 & 0.80 \\
\hline 7438 0.19 & 7494 & 0.40 & 74192 & 0.95 \\
\hline \(7441-0.58\) & 7495 & 0.45 & 74193 & 095 \\
\hline \(7442 \quad 0.48\) & 7496 & 055 & 74194 & 085 \\
\hline 7443048 & 74100 & 0.89 & 74195 & 0.78 \\
\hline \(7444 \quad 0.60\) & 74107 & 0.23 & 74198 & 120 \\
\hline 7445070 & 74121 & 023 & 74199 & 1.70 \\
\hline 74460080 & 74122 & 0.37 & & \\
\hline 7447065 & 74123 & 0.45 & & \\
\hline CMOS 4000 & & & & \\
\hline 4000A , EO 14 & 4013 & £0.36 & 4027 & 50.36 \\
\hline 4001 - 014 & 4944 & 0.65 & 4028 & 0.59 \\
\hline 4002 014 & 40.15 & 0.65 & 4030 & 0.36 \\
\hline \(4006) \quad 075\) & 4016 & 0.38 & 4035 & 0.75 \\
\hline \(4007-0.14\) & 4029 & 0.251 & 4042 & 0.55 \\
\hline \(4007-466\) & 4021 & 065 & 4049 & 0.35 \\
\hline \(4009 \quad 036\) & 4022 & 0.14 & 4050 & 0.35 \\
\hline \(4010-36\) & 4023 & 065 & 4006 & - 0.46 \\
\hline \(4011 \quad 014\) & 4024 & 050 & \(4069=\) & 30.15 \\
\hline \(4012 \quad 014\). & 4025 & 014 & 4074 & 0.15 \\
\hline LINEARS & & 562 & B DIP & £2.45 \\
\hline LM300 T099 & £0.45 & 565 & A DIP & 140 \\
\hline 301 V DIP & 0.25 & 66 & \(\checkmark\) DIP & 1.40 \\
\hline
\end{tabular}

MEMORIES W/DATA
1101 MEMORIES W/DATA
\(1103-1024\) Bit 103
7489 (8225) 64 Bit Ram TL

> CALCULATORS \&
> CLOCK w/DATA

82s23 Programmable \(\begin{array}{ll}\text { ROM } \\ 105 & 5002 \\ \text { Cal Chip } & \text { E0.79 }\end{array}\)
\begin{tabular}{ll|llr} 
& 1.95 & 5005 & Cal Chip & 2.79 \\
5260 & 1024 Bit Ram Low Pwr & 5055 & Cal Chip & 0.79 \\
& & 1.45 & 535 & Cal Chip \\
5261 & 1024 Bit Ram L Power & 5316 & Clock Chip & 2.10 \\
& & & Clock Chip & 3.95
\end{tabular}
\begin{tabular}{ll} 
\\
& \(1702 A\) \\
2048 & Bit Ram \\
\hline
\end{tabular}
21021024 Bit Status Ram
\(V=\) Mini \(\operatorname{Dip} A=14 \mathrm{~L} \operatorname{Dip}\)
\(B=16 \mathrm{~L}\) Dip TO99 8.Pin Header
Data sheets supplied on request. Add 20 ea. excepted as noted
\begin{tabular}{|l|c|c|}
\hline DISCOUNTS \\
\(10^{\circ} \%\) on orders over £10 \\
\(15^{\circ} \mathrm{c}\) on orders over £25
\end{tabular}\(\quad\)\begin{tabular}{c} 
MIN \\
ORDER \\
E2.00
\end{tabular}\(\quad\)\begin{tabular}{c} 
All Items \\
Guaranteed by \\
OEMA \\
ELECTRONICS
\end{tabular}

TERMS: PRICES LISTED ARE BRITISH POUMNS \& PENCE. SEND CHEQUE WITH ORDER. ACCESS CARD. BANKAMERICARD. BARCLAY CARO ACCEPTED. [Card No. and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITU TIONS.

PDSTAL AND HANOLING Charges SHIPMENT VIA AIR MAIL
under 4.99
under 4.99
\(5.00-9.99\) oddd .45
add .35
f 10 and over
No Eharge

\section*{DEMA ELECTRONICS INTERNATIONAL \\ P.O. Bax 407 \\ San Remo. CA 94583 USA}

\section*{AMATEUA CDMPDNENTS ORCHARD WORXS. CHURCH LANE. WalLIMGTON. SURREY SH6 7 TNF}

For Semiconductors Capacitors Resistors I/C Sockets L.E.D's and




 \begin{tabular}{|c}
\(\substack{A C \\
A C \\
A C \\
A C \\
A C}\) \\
\hline
\end{tabular}


\({ }^{4}+\)
\(\stackrel{A}{A E}\)
\(A A\)
\(A\)
\(A\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
ASTRA-РАк \\
92 GODSTONE ROAD \\
WHYTELEAFE SURREY CR3 OEB
\end{tabular}}} & & \multicolumn{5}{|l|}{NEW FULY GUARANTEED COMPONENTS*} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{7}{*}{} & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline  & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

WW - 088 FOR FURTHER DETAILS

\section*{MAIL ORDER PROTECTION SCHEME (Limited Liability)}

M you order goods lrom mail order advertisers in this magazine, ixcept for classified advertisaments, and pay by post in advance of detivery. Wirsless World
1. You have not recgived the geods or had your monily raturned: and

You write te the pobilsher of Wroissi World explaining the pessition not earlier than 28 days from the day you sent your order and nol later than \(Z\) months from that day.
Please do mat wail until the lat moment to inform us. Whan you write. we will tell you how to make your claim and what evidence of payment is required.
We paramter to meet ciaima from readers made in accordance with the above procedure is soen is \(\$ 7.500\) per mem for any one advertiser so atfected and up to \(£ 10\) of per anoum in raspect ol all buokemt encrisers clasme may be paid for higher amounts. or when the ebowe procedure has not beme compliad with, at the discretion of Wreleass World: but we do not guarantee to do so in view ol the need to set some limit to this commitment and to learn quickly of renders difficultios
Thas parrateo cownrs enty advence paymeats sent in direct responst to an advertisement in this magaine fant. For oxample. paymenis made in rosponsi to cabled maswering such adverlisemenisi. Pers onal advertisements are oxcluded.

\section*{SINTEL for KITS}

FAST SEnvice we guronice thet Tecephone Oreve for goode in moek. received by \(4.15 \mathrm{p} . \mathrm{m}\).


COMING IN A FEW MONTHS - A COMPUTER USING THE Z8O IN KIT FORM AND READY-BUILT

\section*{SINTEL INDUSTRIAL MODULE KITS}

Kits for ttl latched counter modules




Order as
721412 \(£ 25.66\)
ml counter pca sets

 mit counter set
A set of three TTLICs consistung of 7447 decoder diver 7475 Quad Latch and 7490 decade counter Order as 628.172 ..... 2.92
TLL AND DISPLAY COUNTER SET
Latched Counter module you only need one of our TITC Common Anode \(05^{\text {" Red LED display Yo buld a TT }}\) AND DISPLAY sets resistors
OHel is \(215-172 \ldots\) [2.92

 holds the remaining compone

cmos Counter pch sets
The PCBS used in our kits tor Latched CMOS Counters are also avallable separately Each sel consists of the




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
CMOS \\
Manly RCA
\end{tabular}}} & CD4020 & 1.28 & CO4040 & 1.11 & CD4066 & 0.63 & C04096 & 1.08 \\
\hline & & . 04021 & 1.04 & CD404 1 & 0.86 & CD4067 & 3.85 & CO4097 & 3.85 \\
\hline & & CD4022 & 0.94 & CD4042 & 0.86 & 5.4068 & 0.23 & C04098 & 1.13 \\
\hline CO4000 & 0.17 & C04023 & 0.23 & CD4043 & 1.01 & CD4069 & 0.23 & C04099 & 1.90 \\
\hline 504001 & 0.18 & CO4024 & 0.80 & CD4044 & 0.96 & CD4070 & 0.53 & CO4502 & 1.24 \\
\hline CD4002 & 0.17 & CO4025 & 0.23 & CO4045 & 1.45 & CO407 \({ }^{\text {c }}\) & 0.23 & CD4510 & 1.41 \\
\hline CD4006 & 1.20 & CD4026 & 1.78 & CO4046 & 1.37 & C04072 & 0.23 & CD4511 & 3.72 \\
\hline CD4007 & 0.18 & CD4027 & 0.58 & CO404 \({ }^{2}\) & 1.04 & CD4073 & 0.23 & CO4514 & 2.84 \\
\hline C04008 & 1.00 & CD4028 & 0.92 & CO4048 & 0.58 & CD4075 & 0.23 & CO4515 & 3.24 \\
\hline CD4009 & 0.58 & CD4029 & 1.18 & CD4049 & 0.58 & CO4076 & 9.34 & C04516 & 1.40 \\
\hline CO4010 & 0.58 & CD4030 & 0.58 & CD 4050 & 0.58 & CD4077 & 0.45 & C04518 & 1.25 \\
\hline CO4Oil & 0.20 & CO4031 & 2.30 & C04051 & 0.94 & CO4078 & 0.23 & CD4520 & 1.19 \\
\hline CD4012 & 0.23 & C04032 & 1.02 & CD. 1052 & 0.94 & C04081 & 0.23 & CO4527 & 1.64 \\
\hline CO4013 & 0.58 & C04033 & 1.44 & C04053 & 0.94 & CO4082 & 0.23 & C04532 & 1.39 \\
\hline C04014 & 1.04 & CD4034 & 1.97 & CD4054 & 1.20 & CO4085 & 0.74 & CO4555 & 0.90 \\
\hline CD4015 & 1.04 & CO4035 & 1.22 & CO4055 & 1.36 & CD4086 & 0.74 & CO4556 & 0.90 \\
\hline CO4016 & 0.58 & C) 11536 & 3.29 & CO4056 & 1.36 & C04089 & 1.60 & MC14528 & 1.22 \\
\hline C04017 & 1.04 & Cul037 & 0.98 & CD4059 & 4.93 & C04093 & 0.92 & MC14553 & 4.68 \\
\hline CO4018 & 1.03 & CO4038 & 1.10 & CO4060 & 1.15 & C04094 & 1.94 & IM6508 & 8.05 \\
\hline 4019 & 0.58 & C04039 & 3.20 & CO4063 & 1.13 & C04095 & 1.08 & & \\
\hline
\end{tabular}

COMPONENTS Send for Free Catalogue


OFFICIAL ORDERS ARE WELCOME Prome Companien, Gove Depte, Netn. Inds., Unive., Polye, etc. OFFICIAL ORDERS ARE WELCOME from Companisi, Govt. Depti., Nmtn. Inds., Unive., Polve., etc.

SINTEL
SEND YOUR SINTEL
ORDER TO PO BOX 75C, OXFORO
Tel. 086549791


\section*{Direct from the makers}

\section*{ \\ NEW ELECTRONIC TENTIION UNIT THAT SAVES MONEY AND IMPROVES PERFORMANGE}

ADAPTABLE TO＋OR－ EARTH AS REQUIRED REV．LIMITED CONTROL INSTANT REVERT－TO－NORMAL IGNITION SWITCH
ON－OFF SWITCH TO IMMOBILIZE ENGINE
FULLY GUARANTEED
VALUE SUPREME！．EASY TO INSTALL Nothing extra to pay for
With SUPERR SPARK MK． 5 you get all the advantages of electronic ignition tor your car－year－round easier starting，fuel economy better working lite from the
engine PIUS essential features which come as extras in other makes Built from heavy duty components on improved circuit board．now in heavy gauge aluminium case \(6^{3 / 4^{\prime \prime}} \times 4 \% /^{\prime \prime} \times 2^{\prime \prime}\) with neon indicator and colour coded leads（approx 27
OVER 14.000 SUPER SPARK UNITS HAVE ALREADY BEEN SOLD


Made in \(U K\) by STIRLING SOUND（Dept WW87） 37 VANGUARD WAY，SHOEBURYNESS．ESSEX Shop－220－224 West Road Westcliff－on－Sea Essex SSO 9DF

\section*{RADFORD HD250}

High Definition Stereo Amplifier


A new standard
for sound reproduction in
the home！We believe that no other amplifier in the world can match the overall specification of the HD250．

Rated power output： 50 watts av，continuous per channel into any impedance from 4 to 8 ohms，both channels driven．

Maximum power outpur： 90 watts av．per channel into 5 ohms
Distortion，preamplifier：Virtually zero（cannot be identified or meazured as it is below inherent circuit noise．）
Distortion，power amplifier：Typically \(0.006 \%\) at 25 watts，less than \(\mathbf{0 . 0 2 \%}\) at rated output（Typically \(0.01 \%\) at 1 Khz ）
Hum and noise：Disc，－83dBV measured flat with noise band width 23 Khz （ref 5 mV ）：\(-88 \mathrm{dBV}{ }^{\prime} \mathrm{A}^{\prime \prime}\) weighted（ref． 5 mv ）

Line－ 85 dBV measured flat（ref 100 v ）
\(-88 d\) BV＂\(A\)＂weighted（ref 100 v ）
Hear the HD250 at

\section*{SWIFT OF WILMSLOW \\ Dept．WW， 5 Swan Street，Wilmslow，Cheshire （Tel：26213）}

Mail Order and Personal Export enquiries：Wilmslow Audio．Swan Works，Bank Square．Wilmslow（Tel．29599）
Now available ZD100 power amplifier and ZD22 pre－amplifier

\section*{QUALITY}

The 诌吅品 COMPREHENSIVE stereo tuner is just that．

\section*{EM} Also available in kit form．
Developed over several years it offers all necessary functions plus many UNIQUE features，to ensure the highest standards／ease of operation／value for money． BUT ITS NO GOOD trying to tell you any more about it here－our booklet runs into several pages．

Just send s．a．e．for further details．

59A ST AUBYNS HOVE EAST SUSSEX BN3 2TJ
WW－062 FOR FURTHER DETAILS


\section*{SURROUND SOUND KITS}


WW－072 FOR FURTHER DETAILS


WW－1 21 FOK FURTHER DETAILS

\title{
Brokers Itd
}

\section*{}

Eight plug.ins provide maximum versat lity Easy to calibrate and mamtan few adjustments no distrituted amplifiers or delay line adjustments Positive syncing over entire handwidth Plug in Units \(40 \mathrm{MHz} 50 \mathrm{mV} / \mathrm{cm} 17818\) Sween Delay Generator Sweep Selector provides Main Sween (b) Delaying Sweep brightened segment ut race indicates sweep display and main sween delaying Man Delayed Sweep (d) Mixed Sweep (e) Single Sweep of than sweep \(£ 295.00\) PHILIPS
PM6507 Tiansistor Curve Tracer Solid request


M3233 2 mV seam Oscmoscope beam \(8 \times 10 \mathrm{~cm}\) screen Signal delay in ac vertical channets Triggering Auto PROBES \(\begin{array}{ll}\mathbf{X} 10 \text { Part No } 91 & \mathbf{E 6 . 5 0} \\ \mathbf{X 6 5 0}\end{array}\) switchable) Part No 95 SOLARTRON
\(\begin{array}{lll}\text { CD } 1740 & 50 \mathrm{MHz} \text { Scone Sysiem C w } \\ \text { CX174 } & \& \quad \mathrm{CX1/44} \text { Dual Trace }\end{array}\) OC. \(50 \mathrm{MHz} 10 \times \mathrm{Bcm}\) display Sensiti vityeep. Solid State \(\quad \mathbf{E 4 8 5 . 0 0}\) Portable Scope DC-6MHz Double Beam CT436
Portatle Scope CD \(1400 \mathrm{c}-15 \mathrm{MHz}\) Plug 1571 £180.00

\section*{TEKTRONIX}


Time Mark Generator 1 B4 \(\mathbf{£ 2 7 5 . 0 0}\) fisec Pulse Generator Model 2105 C
 Pulse Generator Model \(110 \quad \mathbf{£ 9 5 . 0 0}\) C. 15 MHz Portalle Oscilloscope 422 Cual Trace Smal size and lighiweight
10 mV div to 20 V div \(\mathbf{£ 5 9 5 . 0 0}\) DC. 30 MHz Osclloscope 545 A c wCA R

\section*{TRANSMISSION TEST EQUIPMENT}

AIRMEC/RACAL
Wave Analysel \(248 \mathrm{~A} \quad 5.300 \mathrm{MHz}\) £250.00-£300.00 5 MHz 300 MHz 24 Freq range Modulation Meter \(409 \quad £ 295.00\) ype 210 Modulation Meler (earlies
version of 210 A ) \(\mathbf{£ 8 5 . 0 0 - £ 1 0 0 . 0 0}\) Type 210 A Modulation Meter
25.300 MHz AM Range \(0.100 \%\) FM Range 0 to 100 KHz in 4 ranges HEWIETT PACKARD \(\mathbf{£ 1 8 5 . 0 0 . £ 2 4 5 . 0 0}\) Plug.nt for use with 3590 a 3595 A Analyser Freq lange 20 Hz to 620 kHz

Carriage and packing charge extra on all items unless otherwise stated


AM/FM Modulation Meter TF23008 Measures F.M deviation up to 500 KHz depth up to \(95 \%\) at carrier freqs AM 400 MHz Equipment in unused condition
\(\mathbf{£ 9 4 5 . 0 0}\) MF Transmission Test Set TF 2333 . Freq. range 30 Hz to 550 KHz Measures esponse of active and passive transmission nerwork. Full spec on request Distortion Factor Meter TF 142 F Fundameasuning ranges \(0.5 \% \quad 0.50 \%\). Dist sures all spurious components Mea \(30 \mathrm{KHz} \quad £ 60.00-£ 80.00\) AF Transmission Measuring Sel Model \(20 \mathrm{KHz} \quad \begin{aligned} & 20 \mathrm{~Hz} .10 \\ & \mathbf{£ 4 0 0 . 0 0}\end{aligned}\) RADIOMETER
Wave Anayser Fra 273 Special version of FRA 2 with facilises for intermodula ion measurements and selective mea Sulements of frequency esponses Frea
range 30 Hz to 16 KHz incremental freq range 30 Hz to 16 KHz incremental freq
OHz to .60 Hz Selectivity 3 (urves wit following 1 dB points \(-125 \mathrm{~Hz}_{\mathrm{H}}-125 \mathrm{~Hz}\) \(\cdot 63 \mathrm{~Hz}\) and 60 dB points \(\cdot 40 \mathrm{~Hz}\)

Volage range \(100 . \mathrm{V} \cdot 1 \mathrm{KV}\) Auxiliary Oscillaror Range 0 Hz to 16 KHz and : 5 o 16 KHz ofp imp valiate Impedance 1 Kohms BRIDGES
 If936 Impedance Bridge
Universal Bridge TF1313A \(101 \%\) )
\(\mathbf{E 5 2 5 . 0 0}\)


CR Budge TF868B \(\qquad\) \(£ 115.00\)
 ROHOE \& SCHWARZ LC Bridge Type LCB BN 620 Used as Used as Capacitance Bridge 10 nF 10 WAYNE KERR COMPONENT BRIOGE B521 (CT375) Self-contained peitatile mains-operated measurements over an exiremely wide range of resistance capacitance inductance and impedance values Resistance
10 ranges from 1 M ohm to 1000 M ohn Capacitance 10 ranges from \(50 \mathrm{k}-\mathrm{F}\). Capacitance 10 ranges from 50 k -F
500 pF Inductance 10 ranges from 1 to 500 KH Capable of measuring

\section*{FREQUENCT} COUNTERS
adovance


\section*{FLUKE}
\(5 \mathrm{~Hz}-40 \mathrm{MHz} 40 \mathrm{mV}\) sensitivity 1941 A VENNER
10 MHz Freq counter TSA \(6674 £ 80.00\) ACAL
9520 Period Average measurement

\section*{MISCELLANEOUS}

AOVANCE
Ditgutal Panel Meters OPM \(102 \quad 103\) 343 Price and specs on applicatio BIRO
oad resistostor B053 10W RF coaxia Wattmeter Termaline \(6835 \quad £ 20.00\) \(0.120 / 0-600 / 0-1200 \mathrm{~W} 30-500 \mathrm{MHz}\) Wanmeter Termaline 673 ranges 0.25 \(0.100 \quad 0.500 \mathrm{~W} \quad 30-500 \mathrm{MHz}\) BRUEL \& KJAER Awhatic Vibration Exciter 1018
\(\mathbf{~} 495.00\)

\section*{AC/DC Resistance Box. \(5 \begin{array}{r}\text { decade } \\ £ 70.00\end{array}\) GENERAL RADIO \\ ultiptier \\ 1112 A \\ }

VHF Field Strength Meter HFV 25.300 MHz in 1 band Measurement Standard Steredecoder MSD \(£ 1750.00\) Polyscop 1 \(\quad \underset{\text { E855.00 }}{\text { Eq500 }}\)
 \begin{tabular}{lr} 
- Selektomat USWV & \(\mathbf{£ 1 4 0 0 . 0 0}\) \\
Frequency Indicator FKN & \(\mathbf{£ 8 0 0 . 0 0}\) \\
\hline \(\mathbf{4 7 5 . 0 0}\)
\end{tabular}
(



\section*{PHILIPS \\ YOOUPPHILPS Hi-Fixitice}

The top sellers for home assembly in Europe - now available in the U.K.

Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN


most impressed with its performance Micro-Acoustics Corp. USA my Shure V15/3 has never sounded better, superb arm, speakers suddenly in phase C. Tchalekian, Canada using Sonus Blue Label the sound was best of all by a very wide margin over the finest other arms tried \(\quad\) S Golombeck. USA finest tonearm to date with ADC XLM Mk. 2 and SUPEXMMC Louis Kalamaras, USA World's best tonearm, makes a Decca track that ought to be Audiogram, USA JVC X-1 fitted at last, someone has designed a pick-up arm complementary to the best cartridges avalable
more listening pleasure than with any other tone arm Collyer. London 81 EEE ADC 26 \& Fidelıty Research Au Chu Chused Stanton Leaflet on request

MAYWARE LTD. (Dept. WW8)
15 Heather Walk, Edgware, Middlesex HA8 9TS England
LIt





A full frequency range graphic equaliser YOU can afford ! !
For JUST \(£ 38.85\) plus VAT You can tune out all unwanted noises at seven different frequencies!
Bring all your recordings, P.A., discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider ! !
No more annoying amplifier noises - just clear, true sound! Frequencies from 60 Hz to 10 kHz ! Cut or boost each frequency by maximum of 15 dB ! Hi and lo gain inputs.
Powered by just two PP3 batteries which last for ages. Or mains powered unit available. \(£ 49.95\) plus VAT
Try it and you'll buy it - it will change your concept of sound.
Trade enquiries welcomed.

WW-042 FOR FURTHER DETAILS

\section*{CIMbit International NEW SSB MECHANICAL FILTER-MFL-}

TOKO announce an entirely new SSB mechanical filter, with 6 elements, ultra smooth passband, easy transformer matching, 2.1 kHz at -6dB, at an unbeatable price of \(£ 9.95\). (including two matching transformers)
Type MFL455. \(-6 \mathrm{~dB}: 2.1 \mathrm{kHz},-60 \mathrm{~dB} ; 5 \mathrm{kHz}, F \mathrm{Fc}: 453.5 \mathrm{kHz}, 5 \mathrm{k}\) ohms in/ 1 k out

\section*{NEW'UNIBAND' TUNER MODULES}

Based on the incomparable HA1197 radio system, the 7122 has three stage tuning - either varicap or crystal controlled. The varicap control will cover any \(3: 1\) frequency range in the region 100 kHz to 30 MHz , with the correct coil pack. Kit - with varicaps - \(\mathbf{f 9 . 0 0}\). MW coil pack standard. Use the Uniband tuner for tuneable IFs/dual conversion, or simply to provide AM facilities on FM only equipment.
\begin{tabular}{|c|c|}
\hline The Bionic Ferret 4000 VC0 metal locator. & Tunermodules: The Best:
\end{tabular}
The Bionic Forst All IF systems have deviation muting, AGC, The sophisticated metal detector system All IF systems have deviation That can be aligned with just a test meter Complete kit now \(\mathbf{E 3 3 . 7 5}\) inc PP and VAT. Complete tuner and amplifier kits The Larsholt signalmaster Mk8 comes with a preadjusted RF/IF tunerset and decoder and is thus a sophisticated performer with a simple construction. Suitable for even the relatively inexperienced. \(\mathbf{5 8 5 . 0 0}\) ex VAT And the 25W per channel matching audio amplifier, the Audiomaster. Torroidal PS and very wide dynamic range. \(£ 79.00\) 7020 twin ceramic filter/single der 7030 linear phase/double detector 6.95 7253 stereo tunerset with varicap tunerhead 7253 sterio tunerset with varicap tunerhead
(4 stage) IF and decoder integral \(\quad 26.50\) (4 stage) IF and decoder integra
7252 mono MOS tunerset EF5800 dual MOS RF stages, 6 varicap tuned circuits, AGC etc. 14.00 E5801 as 5800/with. EF5801 as 5800 / with osc op (osc hi) 17.45 EF5600 5 cct varicap tunerhead 91196 hi-spec PLL decoder/filters 91196 hi-spec PLL decoder/filters 12.99
TOKO coils, chokes, ceramic, mechanical and LC filters for radio, audio, TV, MPX.

TOKO coils, chokes, ceramic, mechanical and LC filters for radio, audio, TV, MPX MFHT 455 mech. filters 195 p Chokes \(\left(\begin{array}{l}\text { MFHK } 455 \text { mech filters } 165 \\ \text { CFU } 470 \text { ceramic filt } \\ \text { 1uH to } 1 \mathrm{mH} \\ \text { E }\end{array}\right.\) New coils for \(S W\). formers. (CFU 470 ceramic filt. \(65{ }^{2} 1 \mathrm{mH}\) to 22 mH mos
\(\left\{\begin{array}{l}16 p \\ 19 p \\ 33 p \\ 30 p\end{array}\right.\) New cols for
coils for VHF
 CFSE 10.7 FM ceramic 50 p 5.1 and 43 mH , 30 P SAE for price list shortform.
 \(310719 / 38 \mathrm{kHz} \mathrm{mpx} \quad 190 \mathrm{p} \quad 7 \mathrm{~mm}\) types.

\footnotetext{
ICs, varicaps, trimmers, discrete semiconductors, varicap tuning pots, MOSFETs etc.
}
 MVAM115 C0.95, MV104 C0.45. BF25OS CO. 34. MEM680 CO.75 \({ }^{\circ}\). TBAB10AS 11.09 .


TERMS: CWO pse. Postage 25p per order \(£ 3.00\) for complete tuners/amplifiers kits. Catalogue 40p, SAE wiţh enquiries pse. VAT \(12.5 \%\) except where shown. Write to:Ambit International, 37 a High Street, Brentwood, Essex. CM14 4RH relephone ( 0277 ) 216029

\section*{Transistor Devices Limited \\ Suite E, Georgian House, Trinity Street, Dorchester} C-MOS, SSS,TTL, NSC
\begin{tabular}{|c|c|c|c|c|c|}
\hline TYPE & PRICE [P] & TYPE & PAICE (p) & TYPE & PAICE [ p ] \\
\hline 4000 & 20 & 7400 & 15 & 7472 & 29 \\
\hline 4001 & 20 & 7401 & 17 & 7473 & 33 \\
\hline 4002 & 20 & 7402 & -17 & 7474 & 34 \\
\hline 4006 & 114 & 7403 & 17 & 7475 & 44 \\
\hline 4007 & 20 & 7404 & 22 & 7476 & 34 \\
\hline 4008 & 99 & 7405 & 22 & 7480 & 49 \\
\hline 4009 & 62 & 7406 & 41 & 7481 & 98 \\
\hline 4010 & 62 & 7407 & 41 & 7482 & 77 \\
\hline 4011 & 20 & 7408 & 23 & 7483 & 86 \\
\hline 4012 & 20 & 7409 & 25 & 7484 & 93 \\
\hline 4013 & 51 & 7410 & 17 & 7485 & 117 \\
\hline 4014 & 107 & 7411 & 26 & 7484 & 33 \\
\hline 4015 & 114 & 7412 & 26 & 7489 & 306 \\
\hline 4016 & 51 & 7413 & 35 & 7490 & 39 \\
\hline 4017 & 114 & 7414 & 88 & 7491 & 73 \\
\hline 4019 & 62 & 7416 & 32 & 7492 & 50 \\
\hline 4020 & 132 & 7417 & 36 & 7493 & 39 \\
\hline 4021 & 114 & 7420 & 17 & 7494 & 87 \\
\hline 4022 & 113 & 7421 & 39 & 7495 & 68 \\
\hline 4023 & 20 & 7422 & 25 & 7496 & 81 \\
\hline 4024 & 104 & 7423 & 33 & 7497 & 306 \\
\hline 4025 & 20 & 7425 & 30 & 74100 & 105 \\
\hline 4027 & 60 & 7427 & 36 & 74104 & 54 \\
\hline 4028 & 95 & 7430 & 17 & 74105 & 54 \\
\hline 4029 & 123 & 7432 & 31 & 74107 & 33 \\
\hline 4030 & 48 & 7437 & 34 & 74109 & 87 \\
\hline 4041 & 84 & 7438 & 34 & 74110 & 50 \\
\hline 4042 & 93 & 7440 & 17 & 74111 & 72 \\
\hline 4043 & 89 & 7441 & 77 & 74116 & 198 \\
\hline 4044 & 89 & 7442 & 68 & 74118 & 81 \\
\hline 4046 & 140 & 7443 & 117 & 77120 & 127 \\
\hline 4049 & 53 & 7444 & 117 & 7.1121 & 29 \\
\hline 4050 & 53 & 7445 & 98 & 74122 & 48 \\
\hline 4060 & 140 & 7446 & 98 & 74123 & 66 \\
\hline 4069 & 23 & 7447 & 81 & 74125 & 63 \\
\hline 4071 & 23 & 7448 & 81 & 74126 & 69 \\
\hline 4072 & 23 & 7450 & 18 & 74128 & 81 \\
\hline 4510 & 123 & 7451 & 18 & 74132 & 69 \\
\hline 4511 & 137 & 7453 & 18 & 74136 & 73 \\
\hline 4516 & 123 & 7454 & 18 & 74141 & 77 \\
\hline 4518 & 123 & 7460 & 18 & 74142 & 270 \\
\hline 4520 & 123 & 7470 & 29 & 74145 & 81 \\
\hline
\end{tabular}

\section*{I-C INSERTION TOOLS}

LEDS \& DISPLAYS
TYPE OESCRIPTION PAICE TYPE COLOUR SIZE PAICE 1787.5 "C.A.O \(9 \quad 130\) 209A Red T-1 20 \(1788 \cdot 5^{\prime \prime} \mathrm{C} . \mathrm{C} .09130\) 229R Red T-1: 21


C-MOS 14/16pin 3.50
24pin to
40pino.6"8.70
Bipolarl4/16pin2. 50 24 40pin6. 70

MICROS \& REMORIES
\begin{tabular}{ll}
502 & 16.28 \\
03 & 13.70 \\
04 & 13.70 \\
05 & 13.70 \\
06 & 13.70 \\
12 & 16.28 \\
13 & 13.70 \\
14 & 13.70 \\
15 & 13.70 \\
O2A & 24.65 \\
O3A & 20.45 \\
O4A & 20.45 \\
O5A & 20.45 \\
O6A & 20.45
\end{tabular}

KIM 1 - microcomputer with keyboard, LED
display
FUL MANUALS WITH UNIT TTY, AUDIO TAPE INTER FACES
MANUALS ONLY £ 10.50 . Set
\begin{tabular}{lr}
12 A & .24 .65 \\
13 A & 20.45 \\
14 A & 20.45 \\
15 A & 20.45 \\
20 & 7.21 \\
22 & 9.25 \\
\(30-004\) & 18.14 \\
\(30-005\) & \\
or 6553 & 11.85 \\
32 & 13.95 \\
& \\
6102 & 2.70 \\
6111 & 2.70
\end{tabular}

\section*{DPM}

DPM - 999 with 0.3"
CMR 7OdB at \(D C \mp 5 V\) supply
100 mV FSD 100 MQ DI/P DFF I/P
imited quartity avail. 525 .

MISCELLANEOUS BARGAINS!
"Only while stocks last"
E304 Sill
MJE 2955
21
80
100
MJE 2955
BC 173 C
BC
74173 C
74 DIL
1710
72709
2 N 5295
8w w w w

LM309K

UM4 COLOUR-BOOSTER • M4 VHF BOOSTER • FM2 VHF RADIO BODSTER
These units produce remarkable improvements in colour and picture quality in tringe or difficult areas with signilicant reduction in noise (snow).
High gain - very low noise. Fitted liy lead - installed in seconds. Highest quality components.
WHITE PLASTIC CASE \(31 / \times 31 / \times 1 / 2\) FELT BASE
Channels Group A, hed Code \(21-33\) BATIERY MODEL \(\mathbf{c 7 . 7 5}\)
FOR UHF: Group B. YELLOW Code \(39-51\) SELF CONTAINED MAINS \([9.95\)
When ordering M4 unit please speciity band and channel.
Nominal gain 16.18 dB both bands
TERMS: ADD \(8 \%\) (or current rate) VAT to total. All orders under \(£ 10\) add postage and packing 25 p. Orders over \(£ 25\) (lor components only) - \(10 \%\) discount. Mailorder only but trade enquiries welcomed. If goods not available for despatch in 7 days. cash automaticalily refunded. Delivery by post in U.K. so allow time lor delivery even on same day despatch. Export charged at cost. Please quote journal.
\begin{tabular}{|c|c|c|c|}
\hline  & &  & \begin{tabular}{l}
PLEASE NOTE \\
Unless offered as as seen ALL EQUIPMENT \\
ordered from us is completely oveihauled mechanically and elec irically in our own laboratortes TF 995A/1 or A/2 of A/2M or A5 SIGNAL GENERATORS
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
eh research laboratories NC. MODEL \\
133 PULSE Generator. Features Ulinalin amp ise and tal udependently variable \\
 gating, all soldd slate \(\mathbf{E 2 7 5} \mathbf{0 0}\) \\
MODEL 122 GENERATOR Featues Hep rales to 200 MHz Nanosecond Baseling times syn chrorious yaing Pulsetiop £295.00
\end{tabular}} & \begin{tabular}{l}
Source CM 50:1 oulput impeoance modulation at 1 KHz at up to \(90 \%\) \\
MUIRHEAD
\end{tabular} & TF 1041 B VALVE MULTIMETER. DC vNiage fiom 300 mV 101000 V AC yoltage from 300 mV to 300 V at up to 1000 MHi Way isorc oscillator for square a sine wave
\(\qquad\) & Please ask for technical details and prices of all equipment. \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
MUIRHEAD \\
Pametrada wave analyser type D.489.G
\(\qquad\) ANCILLARY EQUIPMENT: D-625-A LOW FREQ. MODULATOR. Freg range \(2 \mathrm{c} / \mathrm{s} 20\) \(\mathrm{c} / \mathrm{s}\) down to \(1 \mathrm{c} / \mathrm{s}\) when analyser is used in
High \(O\) ) Freg Accuracy \(0.1 \mathrm{c} / \mathrm{s}\) iproviding supply freg is first measured) Price E275.00.
DECADE OSILLATOR D-890 A. Fiequen accuracy without cyrystal check lacility \(\times 1\) range ange \(-04 \%\) labove \(10 \mathrm{kc} /\) s) \(\mathbf{E 2 4 9 . 0 0}\).
\end{tabular}} & TF 6600 secondary pulae Unit tF 455 E WAVE ANALYSER.
\(\qquad\) E98.00. RADIOMETER TYPE MSIIT SIGNAL generator & \begin{tabular}{l}
acision potentiometer scorpio type 0.7 with modicalo and volt talio box \\
ggered vacuum spark gap type zr
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
RHODE \& SCHWARZ \\
Oirectiy measures muline minal networks phiase Shlt phase angle wil complimentily POWER
SIGNAL GENERATOR TYPE SMM MIGh tiea frequency synthesizer type xua \\

\end{tabular}} & & \begin{tabular}{l}
\(10 \mathrm{KH} / 2110 \mathrm{MHz} 5200\) \\
redifon ssb transistorised trans CEIVER GR410
\end{tabular} & \begin{tabular}{l}
w resistance headphones type cle \\

\end{tabular} \\
\hline & &  &  \\
\hline  & SANDERS MICROWAVE SIGNAL GENERATOR CT 478 from ' 5 kMHz to 45 MHz CT 47945 to 65 CI 480 rom \(7 \mathrm{kMHz} 10 \quad 12 \mathrm{kMHz}\) & 545A. Bandmunth OC 10 30MH/ Bue B down plug.in unit type ca & \begin{tabular}{l}
 \\
SO LINL NUTOMATIC PRIVAIE IELFPHONE \\
SWICHBOARDS
\end{tabular} \\
\hline fREQUENCYINOICATOR TYPE FKM FIOM 30 OHF SIGNAL GENERATOR TYPE SOR from 300101000 MHz Im Btanges Prices on application &  &  & Le Laying apparatus no in. New \\
\hline \begin{tabular}{l}
Vibration/displacement meter type b \({ }^{731}{ }^{\circ} \mathrm{A}\) \\
£ 195.00
\end{tabular} & h.f. Signal generator type 201. M Thands Stablity beller than \(0005 \%\) Price \(\mathbf{6 6}\) E & Valves \& transistors. Telephone enquiries for valves H131sistiors. elc relall 749 &  \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
HEWLETT-PACKARD \\
AUDIO GENERATOR MODEL 206.A. Fieq 20 c to 20000 c matching
impedance 50,150600 ohms Price \(£ 85.00\)
\end{tabular}} & (tands Stablity betler than \(0005 \%\) Price \(\mathbf{E 6 E}\) & SOLARTRON
SIGITAL VOLTMETER. (MIa 20 IM & \begin{tabular}{l}
62 Transceivers \\

\end{tabular} \\
\hline & Vat for test equipment & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
KANN SSE ADAPTOR TYPE RSSB - 62 - 18 . ( max ) npur \(£ 65\) \\
HR 23 TAIPLE DIVERSITY SSB RECEIVERS. FIICO \\
\(3-275 \mathrm{MHz}\) VFO a! 6 nlat positions Receplion at \\
Full spec on application \(\mathbf{\text { C }} \mathbf{3 5 0}\)
\end{tabular}} & 8\% PlEASE ADD 8\% & INTEGRATED CIRCUITS AT BARGAIN PRICES & \multirow[t]{3}{*}{\begin{tabular}{l}
COLOMOR \\
(ELECTRONICS LTD.) 170 Goldhawk Rd.. London. W. 12 \\
Tel. 01-743 0899 Open Monday to Friday 9-12.30. 1.30-5.30 p.m.
\end{tabular}} \\
\hline & \begin{tabular}{l}
LĒVEL OSCILLATORS made by SIEMENS. 3 fype \\
tf 934 deviation meter
\end{tabular} & \begin{tabular}{l}
AT BARGAIN PRICES \\

\end{tabular} & \\
\hline PLEASE SEND STAMP WITH ENQUIRIES & \begin{tabular}{l}
500/250 MEDTUM WAVE bROADCAST TRANSMITTERS \\
- url plicat.0
\end{tabular} &  & \\
\hline
\end{tabular}


WW-091 FOR FURTHER DETAILS

\section*{}

TRANSISTORISED 3cm RADAR AMPLIFIER SWITCH: with 24 v waveguide switch. \(9 \times .4 \mathrm{~cm}\) ins. with crystal \(C V .2355\) and spark gap \(V \mathrm{X} .1046\). £16.20 \(+£ 1.00\) post.
TRANSISTORISED VIDEO INDICATOR (used with above amplifier): \(11 / 2^{\prime}\) C.R.T. \(£ 10.80+£ 1.00\) post.

RADAR RECEIVING ANTENNA TYPE X443 Mk. D: Suitable for detecting signals on \(\mathrm{X}, \mathrm{K}, \mathrm{J}\) and Q bands. \(9 \mathrm{gHz}-60 \mathrm{gHz}\). Complete with waveguide horns, associated crystals. Transistorised amplifier and geared motor, etc. \(£ 135.00\) carr. approx. \(£ 5.00\).

\section*{DIODES: CD. \(384-\mathbf{£ 2 . 0 0}\) per \(100+20\) p post.}

VACUUM \& PRESSURE SEAL TEST EQUIPMENT: Complete with \(3 \times 4^{\prime \prime}\) gauges indicating \(0-20 \mathrm{lbs}\) p.s.i.. \(0-30 \mathrm{lbs}\) vacuum. With stand, hand pump, etc. £32.40 + £3.00 carr
ASHCROFT DEADWEIGHT GAUGE TEST SET TYPE 1300: 0-251bs \(\mathbf{£ 6 4 . 8 0}+\) E3.00 carr.
E.A.L. ANALOGUE DIGITAL CONVERTER TYPE MPD. 120-0: 7 -bit or 8 -bit mode. \(£ 70.00\), carr. \(£ 2.00\).
PAIGNTON dB SWITCH: High quality instrument stud switch, 20 -way, 2 -pole. Dial marked \(0-60 \mathrm{~dB}\). As new. \(£ 3.78+60 \mathrm{p}\) post.
UNISELECTORS: Reversible action. Twin coils \(120 \Omega 25\)-way 6 -bank. \(\mathbf{£ 4 . 9 0}+\) 75 p post.
FAMOUS 1154 TRANSMITTER as used in Lancasters in World War II (collector's item). £12.50, carr. £4.00.
RACAL RA-17 RECEIVER \(500 \mathrm{KHz}-30 \mathrm{mHz}\), s/hand, good condition. \(\mathbf{£ 3 6 5 . 0 0}\) (including V'AT \(122^{1 / 2 \%}\) ).
EVERSHED SAFETY OHM METER: Max 10 mA . Test pressure 30 v . Complete in leather case. \(£ 27.00\), post \(£ 1.00\).

\section*{AVO TRANSISTOR ANALYSER CT.446: \(£ 37.80\), carr. \(£ 2.20\)}

MARCONI FREQUENCY METER \(1026 / 4: 2000-4000 \mathrm{mHz}\) 'as new' condition £32.40 or secondhand condition £24.30.
\(1026 / 2\) : \(100-160 \mathrm{mHz} £ 32.40\) 'as new' or \(\mathrm{s} /\) hand \(£ 24.30\). Carriage for all type \(£ 2.00\) ANTENNA MAST 36 ft : Aluminium, diameter at base \(3^{\prime \prime}\), tapering to \(2^{\prime \prime}\) at top, complete with red hazard lights, stays, guys, etc. Normally used with direction finding equipment. Approx. weight 3cwt. £106.90 (including \(121 / 2 \%\) VAT), carriage rates on request. W1TH rotating Antenna suitable for \(200-400 \mathrm{mHz}\) £16.90 extra (including \(121 / 2 \%\) VAT).
BURGLAR ALARM BELL: 6 -8v. d.c. \(£ 3.24+£ 1.00\) post
MEGGER (Record): 500 volts \(£ 21.60 £ 1.00\) post
R-216 RECEIVER MANUAL (Photostat copy): \(£ 1.50 \mathrm{inc}\). post
MUIRHEAD ATTENUATORS: 75 ohms \(0-8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}\) MAK 3 ranges \(0-5,0-25\) \(0.50 \mathrm{~dB} . £ 3.24+75 \mathrm{p}\) post.
'POWER UNIT TYPE 234: \(200-250 \mathrm{v}\). a.c. input, \(250-0-250 \mathrm{v}\). d.c. at 100 mA and 6 3v at 4 amps output. £8.10, carr. \(£ 2.50\).

REDIFON TELEPRINTER RELAY UNIT NO. 12: ZA-41196 and power supply \(200-250 \mathrm{v}\). a.c. Polarised relay type 3 SEITR \(80-0-80 \mathrm{v} .25 \mathrm{~mA}\). Two stabilised valves CV-286 Centre Zero Meter \(10-0-10\). Size \(8^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime}\). New condition. \(£ \mathbf{1 0 . 8 0}\), carr £2.50.
SOLARTRON PULSE GENERATOR TYPE G1101-2: \(£ 81.00\), carr. \(£ 2.50\) TELEPRINTER TYPE 7B: Pageprinter 24v. d.c. power supply, speed 50 bauds p min . S /hand cond. (excellent order), no parts broken \(\mathbf{£ 2 1 . 6 0}\), carriage \(£ 3.50\). AUTO TRANSFORMER: \(230 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}, 1000\) watts. Mounted in strong steel case \(\times 61^{\prime \prime} \times 2^{\prime \prime}\). Bitumen impregnated. \(\mathbf{5 1 2 . 9 6}\), carr. \(£ 2.00\).
CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range \(3,000-10,000 \mathrm{kHz}\). Mains 230 v 50 hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction with a freq. meter. \(£ 27.00\), carr. \(£ 2.00\)
CATHODE RAY TUBES: \(5^{\prime \prime}\) screen, tupe CV-1536 £4.32 \(+£ 1.00\) post. Type \(95 J 20\) square face \(5^{\prime \prime} \times 3^{\prime \prime} \mathbf{E 8 . 1 0}^{(10}+£ 1.00\) post.
WEATHERPLOTTER RECEIVING SET AN/GMH-5: Facsimile reproducing system for weather maps. Further details on request. \(\mathbf{£ 4 5 9 . 0 0}\) (inc. 8\% VAT), CLASS 'D' WAVEMETER NO. I: Crystal controlled heterodyne frequency meter covering \(2-8 \mathrm{mHz}\). Power supply 6 v . d.c. Good s/hand cond. \(£ 9.20+£ 2.00\) carr
RING TOROIDAL DUST CORES: Size \(21 / 2^{\prime \prime}\) outside, \(1^{3} /^{\prime \prime}\) inside, \(5 / 16^{\prime \prime}\) thick. Box of two \(£ 1.10+30\) p post
ROTARY INVERTERS TYPE PE-218E: Input \(24-28 \mathrm{v}\). d.c. \(80 \mathrm{amps}, 4,800 \mathrm{rpm}\) Output 115 v. a.c. \(13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}\). IPh. P.F. \(9 \mathrm{£} 21.60+£ 3.00\) carr.
FREQUENCY METER BC-221: \(125-20,000 \mathrm{kc} / \mathrm{s}\) complete with original calibration charts. Checked out, working order. \(\mathbf{£ 2 2 . 7 0}+£ 2.00\) carr.
RECTIFIER UNIT: \(200-250 \mathrm{v}\). a.c. input, 24 v . d.c. at 26 amps output continuous rating. \(£ 37.80\), carr. \(£ 5.00\)
PAPER TAPE: \(1 / \mathbf{2}^{\prime \prime}\) roll (teleprinters, etc.). Box of ten rolls \(\mathbf{£ 1 . 5 0 + \boldsymbol { £ } 1 . 0 0 \text { post } . ~ . ~}\) CREED 75 TELEPRINTER: Rec./Tx, s/hand, good condition \(\mathbf{£ 4 8 . 6 0}+\mathbf{~} 4\) Carr. CREED TELEPRINTER TABLE: £25.00 + £5 Carr.

Large stocks of unused U.S.A.F. surplus maps, weather charts, etc including:-
ONC-E1 - U.K. in full and part N.W. Europe. Scale 1:1,000,000.
JNC-9N - N. Europe, U.K., Scandinavia. Scale 1:2,000,000.
JN-21N - Europe (Mediterranean). Scale 1:2,000,000
SIZE: 58" x \(42^{\prime \prime}\), colour. Many others. Please send S.A.E. for list. Price each 70p (inc. \(p+p\) )
\(25 \times \mathrm{Maps}\) (either same type OR assorted) \(\mathbf{E 1 0 . 0 0}+£ 1.00 \mathrm{p}+\mathrm{p}\).
\(10 \times \mathrm{Maps}\) (either same type OR assorted) \(\mathbf{£ 6 . 0 0}\) (inc. p+p).
Above prices include VAT at \(8 \%\) [except where stated) Carriage quotes given are for 50 -mile radius of Herts.

\section*{}


\title{
EIFBIND.TEHH \\ HITITDIETIS ITI
}

315, 317, 364 EDGWARE ROAD, LONDON W2 TEL: 01-723 5667 \& 01-402 5580

Shops and mail order dept (mall to 364) open 9 to 6 Mon to Sat inc
Prices include VAT Carr./p \& p quoted U.K. only
ACCESS \& BARCLAY accepted. Minimum order \(£ 5\) otherwise C.W.O For credit on


MINIATURE LAMPS


\section*{RELAYS}


SYLVANIA SWITCH
 ACADEX shaded pole molor Open frame 230 Ov 50 Hz
Double ended \(5 / 32^{\prime \prime}\) dia spindie each \(134^{\prime \prime}\)




\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & (Da) & Vott Curr & Type & & Vall/Cure \\
\hline \({ }^{\text {a }}\) & & 5.6V 60 MA & 0 & змм & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & 100 MA & & & 14 V 40 MA \\
\hline & & \(\checkmark 75 \mathrm{MA}\) & F & 4 M & 27 V 60 ma \\
\hline & & 28 V 40 MA & & & \\
\hline & 5 MM & 28 V 40 M & & & , \\
\hline
\end{tabular}


\section*{BENDIX MAGNETIC CLUTCH}


PCB EDGE CONNECTOR

MEM LIMIT SWITCH
PRESSURE SWITCH

\section*{UNI-SELECTOR}


SODECO PRINTING IMPULSE JABSCO (ITT) ROTARY PUMP

\author{

}



\title{
SCOOP - up to 45\% OFF manufacturer's list prices
}

\section*{EXCLUSIVE PURCHASE FROM HAZELTINE -WORLD LEADERS IN CRT TERMINALS}


HAZELTINE 1000
Compact terminal providing 12 line by 80 character display ( 960 chs.), full/half Duplex, MOS-shift register memory with constant refresh, Underline cursor New List Price \(£ 900\)
OUR PRICE £525.00
ڤ Teletype-compatible
\(\star 12^{\prime \prime}\) Diagonal Screen
\(\star\) TTY Format Keyboard
\(\star 64\) ASCII Character Set
\(\star 5 \times 7\) Dot Matrix
\(\star\) Switch-selectable Trans-
mission Rate up to 9600
baud
\(\star\) Switch-selectable Parity
\(\star\) Standard CCITT V. 24 In-
terface

\section*{HAZELTINE 1200}

All the features of the Model 1000 but with double screen capacity of 1920 characters ( 24 lines of 80 ). Reverse block image Cursor
New List Price \(£ 941\)
OUR PRICE £725.00


\section*{HAZELTINE 2000}

Superb buffered terminal with full edit facilities. 1998 character capacity (27 lines of 74), detachable ASCII keyboard including 10 -key numeric pad and 13-key edit/cursor control cluster Selectable transmission full/half Duplex or batch New List Price \(£ 1649\)
OUR PRICE £895.00


Minimum Mail Order £2. Excess postage refunded. Unless stated - please add \(£ 2.75\) carriage to all units VALUE ADDED TAX not included in prices - Goods marked with \(121 / 2 \%\) VAT, otherwise \(8 \%\) Offical Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 am to 5.30 pm . Mon to Sat


\section*{Two books from Wireless World}

These books are of very special appeal to all concerned with designing. using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.


PWilliams J Carruthers JHEvans JKinsler


A WIRELESS WORLD PUBLICATKON

\section*{BOOK 1}

Basic active filters Switching circurts Waveform generators AC measurements Audio circuits

Constant-current circuits
Power amplifiers Astable circuits Optoelectronics Micropower circuits


\section*{BOOK 2}

Basıc logic gates Wideband amplifiers Alarm circuits
Digital counters
Pulse modulators

Cdas-signal process'ng
C d.as-signal generation
C d as - measurement and
detection
Monostable circuits
Transistor pairs

\section*{ORDER FORM}

To: General Sales Department.
IPC Business Press Limited.
Room 11. Dorset House.
Stamford Street. London SE1 9LU
Please send me.
Conse................cy/copies o
Circuit Designs -- Number 1 at \(£ 10.40 \square\) Circuit Designs - Number 2 at \(£ 12.50 \square\) each inclusive. I enclose remittance value \(£\) (cheques payable to IPC Busıness Press Ltd.)

Name (please prınt)
Address


\section*{TAPE HEADS}

FIT A BRAND NEW HEAD
AND TRANSFORM THE QUALITY
OF YOUR TAPE PLAYER
AN EXTENSIVE RANGE ALWA YS IN STOCK
ASK FOR OUR SHORT FORM CATALOGUE

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
STANDARO HEADS TO FIT MOST TAPE PLAYERS AT BULK DISCOUNT PRICES. \\
ENCLOSE 15p PR P WITH OROER
\end{tabular} & \begin{tabular}{l}
MONO CASSETTE 90p \\
STEREO CASSETTE E2.00 \\
STEREO 8 \\
CARTRIDGES £. 00 \\
M/S CASSETTE \\
ERASE \\
60p
\end{tabular} \\
\hline
\end{tabular}

WW-044 FOR FURTHER DETAILS

ANTENNA DESIGN E PRODUCTION

We are specialists in the design, development and production of all types of antennas and controls, including those to military specifications.

We invite your enquiries


BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION


\section*{THE INETRUMENT}

CABE BRECHALHEME

\section*{THE TWENTY WATT BREADBOARD IS HERE.}

Power semiconductor devices can't easily be used on breadboards. Now Ramp's Power Board solves the problem. T03 and T066 metal devices, and T03P. T066P, T0127 and T0220 plastic devices fit rapidly onto two ten watt heatsinks, and connect simply into the breadboard without soldering. T092 devices can be fitted for thermal stabilisation.

Ramp's Power Board is part of a new system that complements and extends the new . 1 " matrix DIL compatible breadboards, speeding up prototyping and design work. All the details are in our free catalogue.

\section*{RAMP}

ELECTRONICS PO Bох hH2 Leeds LS8 4Hg
WW - 066 FOR FUIPTHER DETAI!

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
NEW COMPONENTS \\
Resistors. \(5 \%\) carbon E12 1 1) to 10 M
\end{tabular}} & \begin{tabular}{l}
TV GAMES CHIP \\
A. \(8500 £ 11.50\). Printed urcuit and Add-on colour kı PO O
\end{tabular} \\
\hline & BATTERY ELIMINA \\
\hline  & , \\
\hline O20 & \\
\hline & \\
\hline & \\
\hline & \\
\hline  & ¢5.4 \\
\hline \multirow[t]{3}{*}{} & \\
\hline & \\
\hline &  \\
\hline \multirow[t]{4}{*}{} & \\
\hline & \\
\hline & \\
\hline & \\
\hline decs and todecs*. & £12.45. 2 AmP E14.9 \\
\hline \multirow[t]{4}{*}{} & JC12 AND JC40 AMPLIFIERS \\
\hline & \\
\hline & \\
\hline & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
 bi-pak auoio modules \\
 \\
E.25. 217.95. SPM8O £3.75. Вмт
\end{tabular}} & \[
\frac{\mathrm{s}_{11}}{}
\] \\
\hline & \\
\hline & \\
\hline & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
FERRANTI ZN414 \\
a pasts and pety foi \\
udm \(£ 3.85\). Case \(£ 1\). SAE for dala
\end{tabular}} & \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
SWANLEY ELECTRONICS \\
DEPT. WW, PO BOX 68, 32 GOLDSEL ROAD, SWANLEY, KENT BR8 \(8 T Q\)
\end{tabular}}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

TV GAMES CHIP AY. 3.8500 £ 11.50 . Printed circuit and \(k\)
of extra parts \(£ 8.95\). Rifle kit \(£ 4.95\).

BATTERY ELIMINATOR BARGAINS 3.WAY MODELS
\(341 / 2 \mathrm{~V}\) at \(100 \mathrm{~mA} £ 2.30\). Type -2 100MA RADIO MODELS
 \(6+6 \vee \in 5.45\)
 FULLY STABILIZED MODEL

BATTERY ELIMINATOR KITS 100 mA radio rypes with press stud battery
terminais \(41 / 2 \mathrm{~V} \in 2.10\). 6 V € 2.10 QV £2.10 \(41 / \mathrm{V}+42.10\) £ \(50 \mathrm{6V}+6 \mathrm{~V}\) Stabilized 8 -way types transistor stabu-
 Heavy duty 13 -way types \(4 / 2 / 6 / 7,81 / 7,11 / 13,14 / 17 / 21,25\),
\(28,34 / 42 \mathrm{~V}\) AA \(£ 4.95\). \(2 \mathrm{~A} £ 7.95\). Car Converter Kir. Input \(12 \vee D\) Stabilized Laborazory P f12.45 2 Amp 30 V in 01 v steps 1 Amp

JC12 AND JC40 AMPLIFIERS
Uh) amp with datd
J(-h) 20 W mindel
will pet \(£ 3.95\). SINCLAIR IC2O
pinted circuit £6.95. PZ20 power supply for above \(£ 3.65\). Vf 20 control and preamp
kit
£8.95. Send sate for data SINCLAIR MICROWONDERS Sinclair pockel iV £165. Cambridge Cambidge scientific \(\mathbf{£ 8 . 4 5}\). Oxford scienti-

OAD, SWANLEY, KENT BR8 8 TO others


\section*{ Marshall's}

Our range covers over 8,000 items. The largest selection in Britain. Top 200 ICs. TTL, CMOS9inears
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CA & 2.29 & LM382N & 1.25 & & 1.05 & & & tcaz80a & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{thyRIStors}} \\
\hline CA3028A & 1.01 & LM384N & 1.45 & NE565 & 1.30 & tAA570 & 2.30 & TCA290 & 3.13 & & \\
\hline CA3028B & 1.29 & LM386N & 0.80 & NE566 & 1.65 & tast1日 & 1.85 & tcaszoa & 1.84 & 100 V & 0.35 \\
\hline CA3030 & 1.24 & LM387N & 1.05 & NE567 & 1.80 & TAA62 & 2.15 & TCA 730 & 3.22 & 5A 200 V & 0.40 \\
\hline CA3036 & 0.97 & LM388N & 1.00 & SAS560 & & TAA661日 & 1.32 & TCA740 & 2.76 & 5a 400 V & 0.49 \\
\hline CA3045 & 1.40 & LM389N & 1.00 & SAS570 & & TAA 100 & 3.91 & & & BA 100 V & 43 \\
\hline CA3046 & 0.89 & LM 702 C & 0.75 & SO42P & & taA930a & 1.00 & TCA & 1.38 & 84 2000 & 0.49 \\
\hline CA 3048 & 2.23 & (m) 09 C & 0.65 & 76001 N & 1.57 & & & tCA & 3.13 & 8 A 400 v & 0.62 \\
\hline CA3049 & 1.66 & LM709N & 0.45 & 76003i & 2.55 & tad 100 & 1.95 & UAA170 & 2.00 & & \\
\hline CA3052 & 1.62 & LM \({ }^{\text {L }} 10\) & 0.60 & 76008 & 2.50 & tbal20 & 0.65 & UAA180 & & & \\
\hline CA 3053 & 0.60 & LM710 & 0.60 & 7601 & 1.70 & tBa400 & 1.50 & CD4000 & 0.20 & & \\
\hline CA3080 & 0.68 & & 0.88 & 76013 ND & 1.57 & t8a500 & 2.21 & CD4001 & 0.20 & RECTI & RS \\
\hline  & 1.88 & LM & 0.75 & 16018k & 2.50 & tra5000 & 2.30 & CO4OO & 0.20 & & \\
\hline CA3086 & 0.51 & [M741 & 0.65 & 16023N & 1.70 & tBasio & 2.21 & CO. & 1.10 & & 0.33 \\
\hline CA3088 & 1.5 & LM/4in & 0.50 & 76023ND & 1.57 & 18a5100 & 2.30 & C040 & 0.20 & W02 & 0.34 \\
\hline CA 3089 & 2.52 & LM741.8 & 0.40 & 76033 N & 2.55 & tBA520 & 2.21 & CD400 & 0.97 & woa & 0.40 \\
\hline CA3090 & 3.80
0.94 & LM747N
LM 748.8 & 0.90
0.50 & 76110 N
76115 N & 1.46
1.87 & iba520 & 2.30 & \({ }^{\text {CO4 }}\) & 0.57
0.57 & W06 & 0.50 \\
\hline LM301A & 0.65 & LM & 0.90 & 76116 & 2.06 & tras300 & 2.07 & C04011 & 0.20 & & \\
\hline (m30IN & 0.44 & LM 1800 & 1.76 & 76131 & 1.30 & tBa540 & 2.21 & CO4012 & 0.20 & \({ }^{840 C 3200}\) & \\
\hline LM304 & 2.45 & (M180 & 1.92 & 76220 N & 1.94 & tBa540 & 2.30
3 & \({ }^{-} \mathrm{CO} 4\) & 0.57 & \(880 C 1500\) & \\
\hline LM 307N & 0.65 & LM & 1.75 & 16227 N & 1.51 & iba550 & 3.13 & \begin{tabular}{l}
CD4014 \\
CD4O15
\end{tabular} & 1.01 & B80C3200 & \\
\hline LM 3088 & 1.17 & LM330 & 0.85 & 16228 N & 1.75 & tBA5500 & 3.22 & CD4015 & & & \\
\hline ¢M309k & 2.10
3.00 & LM3302 & 1.40
1.50 & 76530N & 0.91 & tBa5600 & 3.22 & & 0.58 & & \\
\hline LM318N & 2.25 & tM3900 & 0.75 & 76533 & 1.30 & - BA5700 & 1.38 & DIL & & PPTO.ELE & \\
\hline LM323K & 6.40 & tм3у05 & 1.60 & 76544 N & 1.44 & tbabaio & 2.50 & SOCKEt & & LED. & \\
\hline LM339N & 1.75 & LM3909 & 0.68 & 76545 N & 2.09 & tBA651 & 1.80 & \(8{ }_{8}{ }^{\text {PIn }}\) & 0.1 & 3 mm Red & \\
\hline LM348N & 1.91 & MCi035 & 1.75 & 16546 N & 1.44 & iba700 & 1.52 & 14 PIII & 0.16 & 5 mm Rud & 0.20 \\
\hline LM360N & & MCl303 & 1.47 & 76550 N & 0.41 & tBa7000 & 1.61 & 16 Pin & 0.18 & 3 mm Gir & 0.25 \\
\hline iN & 3.00 & MC1305 & 1.85 & 76552 N & 0.65 & tbay 200 & 2.30 & 22 Pin & 0.30 & 5 mm G & \\
\hline LM371N & 2.25
2.15 & MC1306 & 1.00 & 7657 & 2.08 & Ba7 & 1.98 & 24 Pt & 0.35 & 3 mm & 0.25 \\
\hline LM373N & 2.25 & & 1.91 & 76620 N & 1.10 & TBA7500 & 2.07 & \({ }^{28} 8 \mathrm{Pm}\) & 0.45 & 5 mm Yel & 0.26 \\
\hline [M374N & 2.25 & MC1312 & 1.98 & 76650 N & 1.10
0.60 & TBA880 & 1.20 & 40 Pin & 0.5 & & \\
\hline & 1.75 & MC 1330 & 0.92 & 76666 & & tbag20 & 1.03 & TRIAC & & 2101.2 & \\
\hline LM 378 N & 2.25 & MC1350 & 0.75 & TAA310a & 1.50 & tBagzo & 1.79 & & & 2102.2 & \\
\hline 1 M 3795 & & MCl351 & 1.20 & IAA320a & 1.15 & tBA9200 & 2.99 & & 0.70 & 21112 & 4.14 \\
\hline LM3808 & 0.90 & MC1352 & 0.97 & TAA350A & 2.48 & TBA940 & 1.62 &  & & 2112.2 & 4.14 \\
\hline LM380N & & 37 & 1.45 & taab? 1 & 1.00 & 'CA160C & 1. & 1UA duov & 0.90 & 2513 & 3 \\
\hline & 1.60 & 458 & . 91 & & 1.90 & 08 & 1.61 & 124 & 1.10 & MMS204 & 32.30 \\
\hline IM3iN & 1.60 & 5 & 53 & taAb50 & 0.60 & icaz10 & 2.25 & , & & MM5214 & 26.9 \\
\hline
\end{tabular}

We also stock a comprehensive range of capacitors resistors, switches, etc.
A. MARSHALL (LONDON) LTD., Dept W W LONDON - 40-42 Cricklewood Broadway, NW2 3ET Tel: 01-4520161/2 Telex: 21492

GLASGOW - 85 West Regent St, G2 2QD Tel 041-3324133 BRISTOL - 1 Straits Parade. Fishponds Rd, BS 16 2LX Tel: 0272654201

\section*{NEW CATALOGUE 77}

POPULAR SEMICONDUCTORS (A very small selection from our vast stocks, please enquire about devices not listed.]


\section*{COMPUTER APPRECIATION}

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone ! 088 384) 3221

DEC PDP 8 System comprising 4 K processor. KSR 35 TELETYPE, High Speed Tape Reader/Punch and 2 fixed-head DISCS \(£ 1,100.00\).
PDP 8L with 4 K memory; \(£ 550.00\).
KSR 35 TELETYPE, ASCII coded and with 20 mA interface £200,00.
SAGEM RO Electronic Teleprinter, 5 -unit, 60 mA interface. £40.00.
DIABLO Model 30 DISC unit; \(£ 495.00\)
SPC-12 MINICOMPUTER with 4 K memory and with TTY interface \(\mathbf{£ 2 2 5 . 0 0}\)
DATEK Model 40 Paper Tape Reader, BRAND NEW: \(£ 35.00\).
EKCO Field Ratemeter Model N645C, BRANO NEW; £45.00.
SOLARTRON Model LM1604/05AC DIGITAL VOLTMETER £195.00

JAC ELECTRONICS Model 331 FREQUENCY METER \& STANDARD £250.00.
FACIT High-Speed PUNCH, NEW: \(£ 125.00\)
SINGER Tape Punch with mains PSU and IC Logic. NEW
£75.00.
IBM Compact CARDREADER; £68.00
OLIVETTI Model 349 Intelligent TERMINAL £375.00.
FLEXOWRITERS from £ 120.00
HONEYWELL Key-punches from \(£ 50.00\)
pLEASE NOTE
* Prices exclusive of VAT and Carriage
* Callers very welcome, but by appointment please
- We are keen to bid competitively for dood used eaumment

High quality modules for stereo, mono and other audio equipment.


\section*{£20.45}

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.
Used with your existing audio equipment or with the BI-KITS STEREO \(\mathbf{3 0}\) or the MK60 Kit etc Alternatively the PS \(\mathbf{1} 2\) can be used if no suitable supply is available. together with the Transformer T 538.
The S450 is supplied fully buith, tested and aligned The unit is

\section*{Fitted with Phase Lock-loop Decoder}
* FET Input Stage
* FET Input Stage
* VARI-CAP diod
* Switched AFC
* Multched AFC
* LED Stereo Indicato

Typical Specification
Sensitivity \(3 \mu\) volts
Stereo separation 30db Supply required 20-30v at 90 Ma max.

\section*{MPA 30}

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridg
it is provided with a standard DIN input socket for ease of connection Full instructions supplied


The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit surtable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs. main switch. fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth cabinets of your own construction or the cabinet available Ideal for the beginner or the advanced constructor who requires Hi.Fi performance with a minimum of installation difficulty (can be installed in 30 mins) TEAK CASE E5.25 plus \(62 p\) p \& \(p\).
ONLY £3.60

\section*{PA 100 12 \(2 / 2 \%\)}

AL30A
10w R.M.S. AUDIO AMPLIFIER MODULE
The AL30A is a high quality audio amplifier modul replacing our AL20 \& 30 The versatility of its design makes it ideal for record players, lape recorders, stereo amps, cassette and cartridge players. A power supply is
available comprising a PS 12 together with a transformer T538, also for stereo, the pre-amp PA12 SPECIFICATION:
Output Powar 10 w. Supply 22 to 32 volts - RM. \(S\). - Load Impedance 8 to input impedance 50K. - Sensitivity ouiput. Total Harmonic Oisiortion Frequency Response Max. Heat Sink Temp
60 Hz to \(25 \mathrm{KHx}+2 \mathrm{db}\). 80 c . - Dimensions \(90 \times 64 \times 27 \mathrm{~mm}\)

NEW PA12 Stereo


\section*{AL 60}

25 Watts (RMS) Pre-Amplifier completely redesigned
for use for use with Modules. Features include on/off volume. * Max Heat Sink temp 90C. Frequency response 20 Hz to \(100 \mathrm{KHz} *\) Distortion better than 0.1 at \(1 \mathrm{KHz} \star\) Supply voltage \(15-50 v \star\) Thermal Feedback \(\star\) Latest Design Improvements Load - 3,4,8, or 16 ohms Signal to noise ratio \(80 \mathrm{db} \star\) Overall size 63 mm . 105 mm 13 mm .

\section*{\(€ 4.35\)}

Especially designed to a strict specification Only the
hinest components have been used and the atesi
solid state circuitry incorporated in this powerful litte solid state circuitry incorporated in this powerful hitle
anplitier which should satisty the most critical A F

Stabilised Power Supply Type SPM80
SPM 80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 15 A at 35 V . Size 63
Transformer BMT80 £2.60 +62 p postage
input voltage \(15-20 v\) A C Output voltage \(22-30 v\) D C OUR PRICE Output current 800 mA Max. Size \(60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}\) \& \(\mathbf{Z 1}\) Transformer T538 £2.30


\section*{SEMICONDUCTORS - COMPONENTS}

TR!ACS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 A & \multicolumn{2}{|l|}{tos Cose} & \multicolumn{3}{|l|}{10 Amp TOAs core} \\
\hline Yotis & Tha \({ }^{\text {Na }}\) ( 1000 & \({ }_{\text {Prics }}\) & Volis
100 & Th1104 \({ }_{\text {No }}\) & Prict \\
\hline 200
400 & TR12A/200
TR124.400 & \(\underset{\substack{60.51 \\ 60.71}}{ }\) & 200
400 & TR110A 200
TR110A 400 & \({ }_{\text {¢ }}^{\text {¢ }} 1.922\) \\
\hline 6 Am & \multicolumn{2}{|l|}{Care} & \multicolumn{3}{|l|}{10 Amp tozzo caso} \\
\hline ¢ & TR16A 100 & ¢0.51 & & IR110a & \({ }_{\text {Price }}^{\substack{\text { P1,12 }}}\) \\
\hline 200 & TR164/200 & £0.61 & & & \\
\hline 400 & TR16A/400 & ¢0.77 & & diacs & \\
\hline
\end{tabular}

\section*{SUPER UNTESTED PAKS}


\section*{COMPONENT PACKS}
\begin{tabular}{l} 
Ressisor mux \\
weight) \\
\hline
\end{tabular}


Cariactiors mixed vatue approx Count \(16165 \quad\) E0.60
 auces somone tewneos



 single strana Reed swichies
Micro swiches
Assorted pots Assorted pots
Metal jack sackets
slandard switch ivpes
mixed values
boits grommets dw
Mans slide switiches as
Assoried lag stips and pa
As sorted contiol knobs
Rotary wave change switches
Relays \(6-24 \mathrm{~V}\) operaling
Pak cooper laminate approx 200 sq
\(\qquad\)
\(\qquad\) 6. \(\quad \mathbf{c} .60\)
\(16: 85 \quad \mathbf{c 0 . 6 0}\)
\(\begin{array}{cc}16188 & -60.60 \\ 16186 & -60.60 \\ 16187 & \mathbf{6 0 . 6 0}\end{array}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SLIDER PAKS} \\
\hline  & Order No. Price \\
\hline  &  \\
\hline \begin{tabular}{l}
CERAM \\
Contarning a fang
Unrepuatable value MC1
\end{tabular} & \begin{tabular}{l}
IC PAKS \\
Order No. Price \\
16160 - \(\mathbf{6} 0.50\) \\
\(16161 \quad £ 0.60\) \\
\(16162 \quad 60.60\) \\
16163 -E0.60
\end{tabular} \\
\hline \begin{tabular}{l}
ORDERING \\
Please word your orders exactly as prinied not pari number
\end{tabular} & \begin{tabular}{l}
V.A.T. \\
Add \(12 \% \%\) to prices marked * Add \(81 / 2 \%, 10\) otiiers excepting those marked I these are Zero
\end{tabular} \\
\hline
\end{tabular}

CARBON POTENTIOMETERS


LINEAR PAKS


 Wil 30 ASSORTED LINEAR TVPES
 Y76 So fm stereo decoder
 \(\underset{\substack{\text { HERS } \\ \text { fiks }}}{27}\)
Anour
Data supplied with pak

74 SERIES PAKS
\begin{tabular}{|c|}
\hline aut \\
\hline
\end{tabular}
246 100 Gaies assorice 7400.01 .0410 .50 .60


VEROBOARD PAKS

ELECTROLYTIC PAKS


            C280 CAPACITOR PAK
    CARBON RESISTOR PAKS


            PLUGS AND SOCKETS
            PLUGS


WORLD SCOOP!
SEMICONDUCTOR PACK
\(\qquad\)


20 Phonotree plasilic
210 C 2 pluy
Jys

INLINE SOCKETS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{LINEAR TRACK} & \multicolumn{3}{|c|}{LOG TRACK} \\
\hline Value & No. & Price & value & No. & Pricen \\
\hline 4 k \% & 185; & - 0.68 & 4 K 7 & 1860 & - 50.68 \\
\hline \({ }^{10 \mathrm{k}}\) & 1855 & -0.68 & \({ }^{10 \mathrm{~K}}\) & 1861 & -E0.68 \\
\hline \({ }_{4}^{22 \mathrm{~K}}\) & \begin{tabular}{l}
1853 \\
\hline 854 \\
\hline 189
\end{tabular} & - 0.6 .68 & 22k
1
1 & 1862 & -c0.68 \\
\hline \begin{tabular}{l} 
47k \\
\hline 100 k
\end{tabular} & & - \(0.68{ }^{\text {c }}\) & \({ }^{4 / k}\) & 1863 & E0.68 \\
\hline 220 K & 1856 & -60.68 & \({ }_{2} 20 \mathrm{~K}\) & \({ }_{1}^{1865}\) & - 60.68 \\
\hline  & 18858 & - 00.688 & 4, \({ }^{\text {m }}\) & 1866 & -60.68 \\
\hline 2 M 2 & 1859 & - 60.68 & \({ }_{2} \mathrm{M}^{2}\) & \(\begin{array}{r}1867 \\ 1868 \\ \hline\end{array}\) & - \\
\hline
\end{tabular}
-

LINEAR TRACK
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{LOG TRACK} \\
\hline Price & value & No. & Price \\
\hline -60.48 & \(4 \mathrm{k} /\) & 1879 & -60.48 \\
\hline -60.48 & 10 k & 1880 & -60.48 \\
\hline -60.48 & 22k & 1881 & \({ }^{60} 0^{48}\) \\
\hline -60.48 & 47\% & 1882 & -0.48 \\
\hline -60.48 & 100k & 1883 & - 0.48 \\
\hline - \(¢ 0.48\) & 220 K
470 K & 18884 &  \\
\hline -t0.48 & & & \\
\hline \({ }^{\text {¢ }} \mathbf{6 0 . 4 8}\) & 2M2 & 1887 & - \\
\hline
\end{tabular}

VEROBOARDS
DRILLED COPPER P.C.B.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) pitch & & & & 15 Pitch & & \\
\hline 25:5 & & 220. & ¢0.46 & \({ }^{5128} \times 1\) & & \({ }_{2209}\) &  \\
\hline 25 \(\times 3.75\) & & 2202 & \({ }_{\text {¢ }} \mathbf{8 0 . 3 9}\) & \(25 \times 5\) & & 2210 & ¢0.42 \\
\hline \(25 \times 17\)
\(375 \times 5\) & & \({ }_{2204}^{2203}\) &  & 25
\(375 \times 1 / 6\)
3 & & 2211
2212 & \({ }_{\text {c }}^{60.51}\) \\
\hline (ex & & \begin{tabular}{l}
2204 \\
2205 \\
\hline 2065
\end{tabular} & E0.46 & 375:5 & & 2213 & c0.57 \\
\hline \begin{tabular}{l}
375 \\
475 \\
475 \\
\hline 179
\end{tabular} & & 2206
2207 & \({ }_{\text {c }}^{61.82}\) & \({ }^{3} 75 \times 375\) & & \({ }_{2}^{2214}\) & \({ }_{60.42}^{60.42}\) \\
\hline \({ }_{25} \times 1{ }^{1}\) & (pack of tive) & 2208 & \({ }_{60.57}\) & \(25 \times 1\) & lpack of & 2216 & co. 52 \\
\hline
\end{tabular}

DRI


PLUGS AND SOCKETS


\section*{STABILIZER}



WW 052 - FOR FURTHER DETAILS


WW - 016 FOR FURTHER DETAILS

\section*{HART ELECTRONICS}

The Only Firm for Quality Audio Kits

\section*{Are proud to offer the only DESIGNER APPROVED kit for the}
J. L. Linsley-Hood High Quality Cassette Recorder


As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price We have therefore spent a little more on professional hardware. allowng us to This enables a more satisfactory electro cal layout to be achieved, particularly around the very critical input areas of the replay preamps These are totally stable with this bayout and require no extra stabilising components Many othe advantages also come from this system which has separate record and replay amps for each channel plugging in to master board with gold-plated sockets The most obvious is the reduction of cause trouble on a single plane board with our modular system the layout is compact but there is no component crowding Testing is very easy with separate identical modules and building with the ald of our component-by-com ponent instructions is childishly simple but the finished result is a unit designed not to normal domestic standards bu tothe best protessional practic
All printed circuits are of glassfibre material, fully drilled with a tinned finish
for easy and reliable soldering Compon ent locations are printed on the reverse side of the board and are arranged so tha all identification numbers are still visible after assembly
71x Complete set of parts for Master Board, includes bias osciliator. relay controls, etc \(£ 983+£ 123\) VAT
72x Parts for Motor Speed and Solenold Control for Lenco CRV deck This is the proper board layout as give
the articles \(£ 352+440\) VAT
73x Complete set of parts for stereo Replay Amps and VU Meter drive £B \(12+£ 102\) VAT
\(74 \times\) Complete set for stereo Record Amps \(£ 674+84 p\) VAT
75x Complete set of parts for Stabilised Power Supply to circuit given in Artucle This uses a special low hum field transformer with better characteristucs than the commonly used
torond \(£ 879+£ 110\) VAT

00M2 Individual High Quality Vu Meters with excellent ballistics \(£ 848+£ 106\) VAT Per Pa

700C/2 High Quality Custom built steel Case Complete with Brushed aluminium front plate, mains switch ecord microswi bolts, nuts and mounting hardware All necessary holes are punched and all surfaces are electroplated Complete step-by-step assembly instructions are included The cove s finished in an attractive black crackle surface \(£ 1650+£ 20\) VAT

LENCO CRV CASSETTE MECHANISM
High Quality robust cassette transport for Linsley-Hood recorder Features fast orward. fast rewind, record. pause and ull auto stop and cassette ejection tacidities Fitted with Record / play and erase heads and supplied complete with Data and extra casserte ejection spring fo f. 270 VAT

Toral cost of all narts \(£ 8358\)
Special offer for Complete Kits \(£ 8150\) + £. 1019 VAT

Optional extra solid teak end cheeks, \(£ 3\) paı \(+38 p\) VAT

Reprint of 3 Linsley-Hood Cassette Pecorder articles 45 p post and VAT free

We also supoly complete kits to make filly integrated 30 watl stereo amplifier asing the Balley Power Amplifier circurt with Bailey Burrows Pre-amplifier tion
Printed circuits and components are avaitble for the Stuart tape circuits These aricles described a high quality tape link circuit for use with a reel-to-reel deck Reprints of the three articles are availabl from us price 40 p Post Free (No VAT)

\section*{ALL PARTS ARE POST FREE}

Please send \(9 \times 4\) SAE for lists giving fuller details and Price breakdowns
Penylan Mill, Oswestry, Salop
Personal callers are always welcome
but please note we are closed all day Saturday

\section*{Give for those who Gave}

Thousands of men and women who served in the Royal Air Forces have given their health or even their lives in the defence of Freedom and many of them or their dependants are now in need of help. Please assist by giving al you can for an emblem during WINGS WEEK or please send us a donation.

PLEASE
WEAR THIS EMBLEM DURING

in September

N
Royal Air Forces Association, 43, Grove Park Road, London, W4 3RU.
Charities Act 1940 and Charities Act 1960).


\section*{AUDIO KIT SUPPLIERS TO THE WORLD}


\section*{T20 + 20 and T30 + 30 20W, 30W AMPLIFIERS}

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroidal transformer and additional
improvemenis. the slimiline \(T 20+20^{-}\)delivers 20 W per channel of true Hi-t, at exceptionally low cost The design is based on a single F/Glass PCB and features all the normal facilties found on quality amplifiers, including scratch and rumble filters. adaptable input selector and heäd phones socket In a follow up aticle in Practical Wireless further modifications were suggested and these have been incorporated into the \({ }^{-} T 30+30^{\circ}\) These include AF interference filters and à tape monitō" facility ower output of this new model is 30 W per chamel
\begin{tabular}{|c|c|c|c|}
\hline Pact & T20 & T30 & Prack \\
\hline I. Sut M liw mise restriors & 1.60 & 1.70 & 8. Toroital transforner - 240 V prim. \\
\hline  & 2.60 & 3.40 & 1.3. screan \\
\hline 3. Sed in power supply capaciters & 2.20 & 2.50 & 9. Fitreglass PCA \\
\hline 4. SA if miocculsonoms parts & 3.50 & 3.50 & 10. Sel of metalwork. fixing parts \\
\hline  & 1.50 & 1.50 & 11. Set of cables. mains lead \\
\hline 6. St an math, savector sultich & 2.80 & 2.80 & 12. Handbook firse with comple ic \\
\hline 7. Sel of semitenductors. ICs. skts. & 7.25 & 7.75 & 13 Teak cabine! \(15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}\) \\
\hline
\end{tabular}

T20 r30 1
\(\begin{array}{ll}5.60 & 7.20 \\ 3.50 & 3.90\end{array}\) \(\begin{array}{ll}3.50 & 3.90 \\ 5.20 & 6.20 \\ 0.40 & 0.40\end{array}\) \begin{tabular}{ll}
0.40 & 0.40 \\
& 0.25 \\
\hline
\end{tabular} \(\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}\)

SPECIAL PRICES

\section*{FOR COMPLETE KITS!}

T20+20
KIt PricE only \(£ \mathbf{3 4 . 2 0}\) T30 + 30
2 MATCHING TUNERS!
WW SFMT II
ollowing the success of our Wireless World FM Tuner kn we are now pleased to introduce our new cost reduced model. designed to complement the T20 and T30 amplifiers. The frequency meter of the more advanced model has been omitted and the mechanics simplified, however the circuitry is identical and this new kit offers most exceptional switchable muting. channel selecuion by slider or readily adiustable prese. jush-bution controls and LED tuning indication. Individual pack prices in zur free list.


\section*{POWERTRAN SFMT}
his easy construct tuner using our own carcuit design includes a KIT PRICE pre-aligned front end module. PLL stereo decoder. adjustable, switchable muting. switchable atc and push-button channel selection As with all our uil kits, all components down to the last nut and bolt are supplied ogether with full constructional detais

\section*{CONVERT NOW TO QUADRAPHONICS!}


SQM1 - 30 KIT PRICE \(£ 40.75\)

Wirelese Work Ampltioer Designe. Full kits are not avairbble for these projects bui Linsley Hood designs. together with an efficient regulated power supply \({ }^{4}\) class \(A B\) dessen Suitabie for driving the evamplititers is the Bailey Burrows ore-amplitier and our wide range tone controis which may be aither rotary or slider oparating For those intending to get the best out of their speakers, we also offier an active filter system into three cy \(C\) Read. which splits the output of each channel from the pre-amplifier amplifiee The Read/Texas 20 W . or any of our other kits are suitabier for these for tape ty tems a set of three PCBs have been prepared for the integrated circuit based. high periormance stereo Stuart design Detals ol component packs are in out iree calalogue \begin{tabular}{l}
\(30 W\) Bailey Amplifier \\
BAIL Pk t F/Giass PC \\
\hline
\end{tabular}
Ball Pk. 2 Renstors. Capacitore. Potentiómoter
\(20 W\) Lindey Hood Class AB
LHAB \(\operatorname{Pk}\). 1 F/Glasy \(P\) PCB
LHAB PK 2 Resistor. Cappechor.'
LHAB Pk, 3 Semuconductor set
LHA B Pk. 3 Somuconducto
Regulator Power Supply
BOVS Pk. 1 F/Giass PCB

6OVS Pk. 3 Semiconductor sot.
GOVS Pk 8 A Taroidal transtormer for uio with Bailey)

Baisey Burrowe Srereo Pre-Amp
BBPA Pk 1 F/Glass PCB , stereo
BBPA Pk 2 Resistol capacitor semiconductor set istereo
GBPA Pk 3S Slider Potentiometer set with knods. Stereo.
Active Pk 1 F/Glase PCE
FILT Pk. 2 Recistor. Capacitor aet (metal oxide \(2 \%\), polystyrene \(2 \% \%\) )

Red/Texas 20 W Amp
REAO PK. 2 Remitar. Capscior 201
REAO PE. 3 Samiconductior
6 ott phe 1, 2.3 required for tiereo active filter iyntem
Stuar fape Recorder
TRAC Pk 1 Recora Amp + Glass MCB Stere
TROS Pk 1 Blas. Erase/Stabilizer F Glans PCB , steraO.
E.2.85
E3. 10
\(E .10\)

E1.40
c. 4.20
f. 2.25
61.00
1.20
12.30
61.30
61.70
61.20

With 100 s of titles now available no longer is there any problem over sutable software No problems with hardware etther Ou new unit the SQM \(1-30\) simply plugs into the tape monitor socket of your existing amplitier and drives two additional speakers a volume. bass. treble and balance are provided as are comprehensive switching facilities enabling the unit to be used for either front or rear channels. by-passing the decoder for stereo-only use and exchanging left and right channels The SO matrix decoder is based upon a single integrated circuit and was -designed by CBS whilst the power and tone control sections are identical to those used in our T3O +30 amplifies which the


\section*{SO QUADRAPHONIC DECODERS}

\section*{erom most pre-amplifiers or amplifier}
on outis) into any one of our decoders and take 4 channels out whin overall signal level reduction on the logic enhanced decoders Volume. Front-Back. LF-RF balance LB-RB balance and Dimension controls can all be implemented by simple single gang potentiometers
hese state-of-the-art circuits used under licence from CBS are offered in kits of superior quality with close tolerance capacitors. metal oxide resistors and fibre-glass PCBs designed for edge connector insertion All kit prices include 11 Basic matrix decoder with fixed 10-40 blend All components. PCB
 components PCB
L2A. More advanced full logic decoder with "variable blend" for increased front back separation All components. PCB.... .......... \(\quad\) E22.60 increased frequency response. All components (carbon film resistors). PCB ............... \(\mathbf{E 2 5}\) Also available with MO resistors, cermet preset - add (esistors). PCB

SEMICONDUCTORS as used in our range of quality audio equipment.

\section*{EXPORT NO PROBLEM}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 -
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline co. 10 & BF259 \\
\hline co. 12 & BFR39 \\
\hline co. 15 - & BFR79 \\
\hline co.t5 & BFY51 \\
\hline ¢0.10 & BFY5 \\
\hline co. 12 & CA3046 \\
\hline co. 10 & LP1186 \\
\hline co 11 & MC1310 \\
\hline co. 12 & MC1351 \\
\hline co.14 & MC1741 \\
\hline 60.13 & A.FC4(1) \\
\hline co.s6 & MJ481 \\
\hline & MJ491 \\
\hline E1.60 & MJE 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}


filters

\section*{POWERTRAN ELECTRONICS \\ HI-FI NEWS 75W/CHANNEL AMPLIFIER}


In H1-Fi News there was published by Mr Linsley-Hood a series of four articles (November, 1972-February, 1973) and a subsequent follow-Up aricle (April. which 4) on a design for an amplifier of exceptuona direct coupled fully protected output stage, power in excess of 75 watis direct coupled fuly protected output stage, power in excess of 5 watts
whist mantaining distortion at less than \(001 \%\) even at very low power evels The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier reierred to as the Liniac which is employed in the two most critical points of the system namely the equalization stage and tone control stage positions where mos conventional designs run out of gan at the extremes of the frequency spectrum. Unusual features of the design are the variable transitio requencies of the tone controls and the variable slope of the scratch filter There is a choice of four inpuls, two equalized and iwo linear. each having hdependenly ad, has been made practic


3. Sel of somiconenctors for power anil … \(£ 6.50\) 4. Phi of 2 drilled. finned heal sinks



7. son of how molso. high gain zamicondecters tor
8. Sat of poitentionelers fincluding mainins switchn \(\varepsilon 3.50\)

Prok Filrodasas printod-circuit board tor power Price

12. Set of resisiors. espaciori. secondary lusis.
13. Sed of miscellamous perts inctudionj oin skin. mains mpor sich. tuse holder. inter-cennecting cable, control
\(£ 6.20\)
14. Snot of mo............................ E6. 20 tascia panel and all brackets. fixing parts. alc
15. Handhoak |lrea with complete kill . . . . . . \(\sum_{\text {£0.30 }}^{\text {£8.20 }}\)

10. Torotsal iransioriener compioti with engatic 2 each of packs 1.7 hachasive are raquirad for compinte


FREE
TEAK CASE WITH FULL KITS
«rrace onv \(£ 79.80\)

WIRELESS WORLD FM TUNER

Designed in response to demand for a tuner to complement the worid-wide acclamed Linsley Hood 75W Amplifier, this kit provides the perfect match. The Wireless World (Skingley and Thompson - April, May 1974) published original circuit has been developed turther for inclusion into this outstanding rejection and andes a.m. controlled either continuously or by push button pre-selection Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set The PLL stereo decoder incorporates active filters for birdy" suppression and power is supplied via a torordal transformer and integrated regulator for long term stability metal oxide resistors are used throughout.

1. 2. Sat al motal oxito restators. thermister. capectiors. 12. Sel of capacitors. rectifiers. valtage rogulator for

 4. Premtion or pack 1 . ................. £5.25 thelder. fuses. inler-connecling wire. atc.... £2.05
 5. Piren curs pritur
8. Sh of motal oxibe resizters. capaciters. carmel 15. Construction notes firee with complate kit)


8. Sef of compenents for chamael solactor \(\mathbf{\Sigma 2 . 9 0}\) modile including fitr eqlass primied eircuil board, oush-bettiois switchas. knobs. EDEs. praset adjusiors.

One sach of packs 1.16 inclusive are required tor complete? sloreo FM Iuner. Tolal cost ol individually purchased. packs


Complete with SAU2 arm, template and easy-to-follow instructions. Ready for operation in a short time.

\section*{MANY BIG FEATURES \\ Wow Flutter \(15 \%\) peak}
- Rumble-60dB weighted
- Removeable headshell笆 Viscouse damped
- Easily adjusted tracking force and bias setting - Two speed. 16 pole synchronous motor

BRAND NEW IN SEALED CARTONS 12 MONTHS GUARANTEE OUTSTANDING VALUE

\section*{OUR PRICE £16.95}

Plinth, cover and cartridge available, P.O.A
Call in or send a cheque, P.O, M.O. or Access, Barclaycard
Lion house

\section*{ELECTRONIC STOPWATCH and CALCULATOR ONLY £29.95 THE CASIO ST-1 5}

Another brilliant world first from CASIO. The capabilities of an electronic stopwatch costing up to E100 or more, PLUS a very useful calculator
FOUR STOPWATCH FUNCTIONS: STANDARD. TIME IN/TIME OUT AND TWO KINDS OF LAP TIMES. At a touch of the TOTAL button, the overall EVENT TIME, to 9 hours, 59 minutes, 59.9 seconds with rollover after 10 hours Around 18 hours continuous use from one
AA size alkaline battery. Quartz crystal accuracy. Bright digitron display
CALCULATOR: \(+\ldots, \times\) Hrs, mins secs. Converts Hrs, Mins \& Secs to decimal Hours and back again. Direct access memory lightweight. Size \(\% 0^{\prime \prime} \mathrm{H} \times 2 \%^{\prime \prime} \mathrm{W} \times 53 / 8^{\prime \prime} \mathrm{D}\) Single button stopwatch action

SPECIAL OFFERS on Casiotron Watches. Eg the R16B, 8 functions, £34.95.
THIS MONTH'S VERY SPECIAL OFFER: Fairchild LCD Timeband TC413 £28.95 PLUS choice of FREE Papermate gold-plated pen worth \(£ 570\) or chrome set worth E7. 90

Send 15 p for our illustrated mall order catalogue
Prices include VAT, P \& P Access. Barclaycard. Cheque or PO 10
Dept. W.W

19/21 Fitzroy Street Cambridge, CB1 1EH Telephone (0223) 312866


\section*{TRANSFORMERS}

ALL EX-STOCK - SAME-DAY DESPATCH



\begin{tabular}{crr}
\(07 \star\) & 20 & \(\mathbf{4 . 4 0}\) \\
149 & 60 & \(\mathbf{6 . 2 0}\) \\
150 & 100 & \(\mathbf{7 . 1 3}\) \\
151 & 200 & \(\mathbf{1 1 . 1 6}\) \\
152 & 250 & \(\mathbf{1 2 . 7 9}\) \\
153 & 350 & \(\mathbf{1 6 . 2 8}\) \\
154 & 500 & \(\mathbf{1 9 . 1 5}\) \\
155 & 750 & \(\mathbf{2 9 . 0 6}\) \\
156 & 1000 & \(\mathbf{3 7 . 2 0}\) \\
157 & 1500 & \(\mathbf{4 5 . 6 0}\) \\
158 & 2000 & \(\mathbf{5 4 . 8 0}\) \\
159 & 3000 & \(\mathbf{7 9 . 0 5}\) \\
\(\mathbf{* 1 1 5}\) or \(\mathbf{2 4 0}\) sec only \\
\hline \multicolumn{4}{c}{ 50 VOLT RANGE } \\
Primary 220-240V
\end{tabular}

30 VOLT RANGE
OOV
P\&P
78
96
1.14
1.32
1.50
164
208
\(0 A\)

TAPS 0-12-15-20-25-30 \(V_{P}\)


METERS




DECS SOLDERLESS
BREADBOARDING Dec 70 contacts
Dec 208 contacts 1 Dec A IC's etc U Dec 'B'

BRIDGE RECTIFIERS
\(\begin{array}{lr}\text { U4315 } & \mathbf{£ 2 6 . 0 0} \\ \text { Includes steel carry case } & \mathbf{£ 1 4 . 9 5} \\ & \end{array}\)
Avo Cases and Accessories

TI MINI-MULTIMETER
DC-1000V AC-1000V
OC- 100 mA Res -150
Bargain at \(£ 5.30\)
Bargan at \(£ 5.30\)
VAT \(8 \%\) P\&P 620
STEREO F.M. TUNER
4 Pre-selected statuons
Swithed AFC
Supply 20-35v 90Ma Max
£21.63. P\&P 40p VAT 121
MAGNETIC TO CERAMIC
CARTRIDGE CONVERTER Operating Voltage \(20 / 45 v\)
ONLY \(£ 2.85\) P\& 360


\section*{Barrie Electronics Itt. \\ 3,THE MNƠORIES, LONDONECBN IBJ TELEPHONE: 01-488 3316/8}

\section*{RETURN OF POST MAIL ORDER SERVICE}

R.C.S. "MINOR"' 10 watt AMPLIFIER KIT his kit is suitable for record players. guitars. tape playbac electrable Mono. E11.25; Stereo. E18. Post 45p. Spec,fication 10 W per channel; input 100 mV , size \(91 / 2 \times 3 \times 21 \mathrm{n}\), appro
S.A.E. details. Full instructions suppled AC mains powered

\section*{VOLUME CONTROLS}

S 35p. D P 60p. STEREO 85p. D P f1. Edge 5 K OUTLET BOXES 50p. 18p. asy to ll speed contrioller/LIGHT DIMMER KIT. £ \(\mathbf{3 . 2 5}\) Post \(35 p\)
RCS STEREO PRE-AMP KIT. All parts to buld this pre-amp Inputs for high. medium or low imp per channel, with volume mixers \(£ 2.95\) post 35 p
E.M.I. \(131 / 2 \times 8\) in. SPEAKER SALE!
\begin{tabular}{ll} 
With tweeter and \\
crossover. 10 watt. & Ditto \\
State 3 or 8 ohm \\
As illustrated
\end{tabular}

BLANK ALUMINIUM CHASSIS. \(6 \times 4 \times 70 p ; 8 \times 6-90 p\);
 ALUNINIUM PANELS. \(6 \times 4-17 p ; 8 \times 6-24 p ; 14\) 6-43p; \(14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p\) p MANY ALI BOXES IN STOCK. MANY SIZES
\(\left\{\begin{array}{cc}\text { ELAC } 9 \times 5 \operatorname{in} \text { HI-FI } & \mathcal{S} 3.45 \\ \text { SPEAKER TYPE 59RM } & \text { Post } 35 \mathrm{p} \\ \text { This famous unit now available, } 10 \text { watrs. } 8 \text { ohm. }\end{array}\right\}\)
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
\(£ 2.95\)
printed circuit rectifiers and double wound transformer input \(200 / 240 \mathrm{~V}\) a.c. Output
voltages avallable. 6 or 7.5 or 9 or 12 Vdc . up to 100 mA
R.C.S. POWER PACK KIT
\(£ 3.35\)
17 VOIT 300 MAKIT E3.15. 9 VOLT 1 AMP KIT, E3.35.
R.CSSENERALPURPOSETRAANSISTOR
PRE-AMPLIFIER - BRITISH MADE
Ideal for Mike. Tape. \(P U\). Gutar, etc. Can be used with battery
\(9-12 \mathrm{~V}\) or H . T. line \(200 \cdot 300 \mathrm{~d} \mathrm{~d}\). operation Size \(13 / 4 \times 1 / 4 \times\)
3/4in Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~d} 8\) gain.
£1.45
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
PENDULUM MECHANISM \\
15 V d.c operation over 300 hours continuous on SP2 battery. fully adjustable swing and speed Ideal displays. teaching electro magnetism or for metronome, strobe, etc. \\
\(950 \begin{gathered}\text { Post } \\ 30 p\end{gathered}\)
\end{tabular} \\
\hline MANS TRANSFORMERS ALL \\
\hline \(\overline{2} 50.0 \cdot 250 \mathrm{~V} 70 \mathrm{~mA}, 65 \mathrm{~V}\). 2 A \\
\hline 0.0 .25080 mA \\
\hline \(350-0.35080 \mathrm{~mA}\). 6.3 V 35 AA .63 V 1 A or 5V 2 A \\
\hline \(300-0-300 \mathrm{~V} 120 \mathrm{~mA}\). \(2 \times 63 \mathrm{~V} 2 \mathrm{ACT}\). 5 V 2 A \\
\hline \(2 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}\) \\
\hline HEATED TRANS. \(63 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{am}\) \\
\hline ERA PURPOSE \\
\hline ¢ 3, 4, 5. 6. 8, 9, 10, 12, 15, 18, 25 and 30V £4.60. \\
\hline mp 6. 8, 10. 12. 16. 18, 20. 24.30. \\
\hline 6. 8. 10. 12, 16. 18. 20. 24. 30. 36. 40. \\
\hline \\
\hline \({ }^{40} 0.48,60 £ 8.70 .5 \mathrm{amp}\) 6, 8, 10, 12, 16. 18, 20. 24 \\
\hline \\
\hline 2 V 300 mA . \(£ 1\) \\
\hline \\
\hline \\
\hline \(16 \mathrm{~V} .1 / 2 \mathrm{amp}\). E1.95, \(20 \mathrm{~V} 1 / 2\) \\
\hline \(20,20 \mathrm{Jamp}\), 22.50, 20 \\
\hline 50. 30-0.30V 3 A \\
\hline AUTO TRANSFORMERS \\
\hline 150W £5: 250W £6; 400W £7; 500W ¢8. \\
\hline \\
\hline \\
\hline CHARGER TRANSFORMERS \(11 / 2 \mathrm{amp}\) £2.75; 4 amp £4. \\
\hline 2 V 11⁄2A HALF WAVE Selenium Rectifier. 25p. \\
\hline
\end{tabular}

\section*{R.C.S.}

BOOKSHELF SPEAKERS
\(13 \times 10 \times 61 \pi\)
501014.000
£ 16 pair Post \(£ 130\)
KUBA-KOPENHAGEN
STEREO
TUNER-AMPLIFIER CHASSIS AM-FM \(5+5\) WATT This Continental 4-band radiogram chassis uses first class quality
components throughout Features Large facia panel with 7 push components throughout Features Large facia panel with 7 push
buttons for medium, Iong, shor, VHF-FM. AFC, phono. mains buttons for medium, long, short. VHF-FM. AFC, phono. mains
on-off 4 -rotary controls, tuning, volume. tone, balance. Facia size \(17 \times 41 / 2\) inches. Chassis size \(17 \times 41 / 2 \times 51 / 2\) inches size \(17 \times 41 / 2\) inches. Chassis size \(17 \times 41 / 2 \times 51 / 2\) inchers phono pick-up. external FM-AM aerrals. Automatic stere beacon light Built-in ferite rod aerial for medum longwave
AC 240 V mains Circuit supplied \(\mathrm{E} \mathbf{3 3 , 5 0}\).
Ahnve spankers are suitahle
LOW VOLTAGE ELECTROLYTICS
\(500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ; 420 / 500 \mathrm{~V} £ 1.30\) \(1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}\). \(2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}\). \(2500 \mathrm{mF} 50 \mathrm{~V} 82 \mathrm{p} ; 300 \mathrm{mF} 2 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}\).
\(3900 \mathrm{mF} 100 \mathrm{~V} £ 1.60 .4700 \mathrm{mF} 63 \mathrm{~V} 1.20\)

MANY OTHER ELECTROLYTICS IN STOCK
SHORT WAVE 100 pF ar spaced gangable tuner. 95p. TRIMMERS 10pF, 30 pF , 50 pF . 5p. \(100 \mathrm{pF}, 150 \mathrm{pF}\). 15 p . PAPER 350V-0 \(117 \mathrm{p} ; 0513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p}: 2 \mathrm{mF} 150 \mathrm{~V}\) 20p; \(500 \mathrm{~V}-001\) to 005 5p; 0.1 10p; \(02513 \mathrm{p} ; 047\) 25p MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change o TWIN GANG, \(385+385\) pF 50p: 500pF standard 75 p \(365+365+25+25 \mathrm{pF}\). Slow motion drive 65 p .
120 pF TWIN GANG, \(\mathbf{5 0 p}\); 365 pF TWIN GANG, NEON PANEL INDICATORS 250V Amber or red 30p NEON PANEL INDICATORS 250V. Amber or red 30p.
 Ditto \(5 \%\) Preferred values 10 ohms to 10 meg 5 p .
WIRE-WOUND RESISTORS 5 watt, 10 watt, 15 wa 10 ohms to 100 K 12 p each
TAG STRIP 28-way 12p.
TAPE OSCILLATOR COIL. Valve type, 35p
BRIDGE RECTIFIER 200 V PIV \(1 / 2 \mathrm{amp}\) 50p.
TOGGLE SWITCHES S P 20p. DPS T 25p. DPD T 30p
TOGGLE SWITCHES S P 20p. DPS T 25p. DPD T 30p
MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS GP91
SONOTONE STETEO £2.00. SHUREM75 ECS £8.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{BAKER "BIG-SOUND" SPEAKERS. Post El. 00 eac} \\
\hline & 'Group 35' & \({ }^{\text {'Group 50/15}}\) \\
\hline \[
\begin{aligned}
& 12 \mathrm{n} \\
& 30 \mathrm{w} \\
& 12.00
\end{aligned}
\] & & \\
\hline 4 or 8 or 16 ohm & 4 or 8 ope 6 ohm & 8 or 16 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
BAKKER LOUDSPEAKER, 12 INCH. 60 WATT. \\
GROUP 50/12, 8 OR 15 OHM HIGH POWER \\
FULL RANGE PROFESSIONAL QUALITY \\
RESPONSE 30-16.000 CPS \\
\(£ 21.00\) \\
MASSIVE CERAMIC MAGNET WITH \\
Post \(£ 160\) \\
aluminium presence Centre dome.
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
TEÄK VENEERED HI-FI SPEAKERS AND CABINETS \\
For 12 n or 10 m speaker \(20 \times 13 \times 12 \mathrm{n}\) £ \(£ 14.50\) Post \(£ 2\) \\
For \(13 \times 8\) in or 8 m speaker \\
8.50 Post 11 \\
For \(61 / 2 \mathrm{~m}\) speaker and weeter \(\{2 \times 8 \times 6\) in \(£ 5.80\) Post 75 p \\
Many other cabinets in stock Phone your requrements
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
R.C.S. 100 watt

\section*{VALVE}

\section*{AMPLIFIER}

CHASSIS

our inputs four way mixing. master volume, treble and bass controls. Suits all speakers. This protessional quality amplifier chassis is sutable for all groups, disco. PA , where high quality power is required 5 speaker outputs \(A / C\) mains operated Slave pout socket. Produced by demand for a quality valve amplifer Suitable carrying cab \(£ 16.50\) Price \(\mathbf{£ 8 5}\) carr \(£ 250\) SPEAKER COVERING MATERIALS. Samples Large S A E LOUDSPEAKER CABINET WADDING 18 m wide 20 p f . Horn Tweeters \(2.16 \mathrm{kc} / \mathrm{s}\). 10W 8 ohm or \(16 \mathrm{ohm} £ 3.60\) CROSSOVERS TWO-WAY 30 . 30 W .8 ohm . \(£ 7.50\). CROSSOVERS. TWO-WAY \(3000 \mathrm{c} / \mathrm{s} 3\) or 8 or 15 ohm 1.90. 3-way 9 cps

E1 50; \(61 / 2 \mathrm{in}\). £ \(1.80 ;\) \(\times 5\) in \(£ 1.90 ; 81 \mathrm{n} ., £ 1.95\)
SPECIAL OFFER: \(80 \mathrm{ohm} 21 / 4 \mathrm{in}, 23 / 4 \mathrm{in}, 35 \mathrm{ohm}\). \(3 \mathrm{in} ., 25\) 5 in ., \(15 \mathrm{ohm}, 31 / 2 \mathrm{in}\) dıa, \(6 \times 4 \mathrm{in}, \quad 7 \times 4 \mathrm{in} .3 \times 2 \mathrm{in}\) PHILIPS LOUDSPEAKER, 8 in, 4 ohms. 4 watts. \(£ 1.95\) RICHARD ALLAN TWIN CONE LOUDSPEAKERS Bin diameter \(4 W £ 2.50\). 10 in . diameter \(5 \mathrm{~W} £ 2.95\); 12 in diameter \(6 \mathrm{~W} £ 3.50\). \(3 / 8 / 15\) ohms, please state
PIEZO ELECTRIC HORN TWEETER. Handles up PIEZO ELECTRIC HORN TWEETER. Handles up to 100 Tweeter Volume Control 15 ohms 10 W with one inch long
 All purpose transistorised and PA 4 inputs speech and music 4 way mixing
Output \(4 \quad 8 / 16\) ohms ac Mains Separate treble and bass controls Master volume control ©68 Guaranteed Details S A E 208 NEW MODEL MAJOR - 50 watt, 4 input. \(£ 49\)

\section*{100 WATT DISCO AMPLIFIER}
volume, treble, bass conitils 500 MV or 1 volt input \(£ 59\)
Four loudspeaker 0 outputs 4 to 16 ohm All transistor


\(2 \times 21 / 4^{\prime \prime} 65 p\) BALANCED TWIN RIBBON FEEDER 300 ohms. \(5 p\) Yd. JACK SOCKET Std. open-circuit \(20 p\), closed Chrome Lead-Socket 45p. Mono or
JACK PLUGS Std Chrome 30p; Plastic \(25 \mathrm{p}: 3.5 \mathrm{~mm} 15\) STEREO JACK PLUG 30p. SOCKET 25p.
STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chassis 3 -pin 10p. 5-pin 10 p
DIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5-pin 25p. VALVE HOLOERS, 10p; CANS 10p. TV CONVERGENCE POTS
\[
\begin{aligned}
& \text { R.C.S. SOUND TO LIGHT KIT } \\
& \text { Kit of parts to buid a } 3 \text { channel sound to light unit } \\
& 1.000 \text { watts per channel } £ 14 \text {. Post } 35 p \\
& \text { Easy to build Full instructions supplied Cabinet } £ 3 \text {. }
\end{aligned}
\]

PERIOD LOUDSPEAKER CABINETS. Two styles available, Regency and Queen Anne. Size approximately \(34 \times 19 \times 16 \mathrm{in}\). These cabiners are slightly soiled and are priced from \(f 10\) each. Callers only
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{24} \\
\hline  &  &  &  &  &  &  &  &  &  &  \\
\hline  &  &  &  &  &  &  &  &  &  &  \\
\hline BASES &  &  &  &  &  &  &  &  &  & \\
\hline \multicolumn{11}{|l|}{\begin{tabular}{l}
Termso t businoss: Cwo. Posstage and packing valves and semiconductiors 25 p per order. CRTs 75 p. Hems marked -add \(12 / 2 \%\) \\
 \\

\end{tabular}} \\
\hline
\end{tabular}

DIY SPEAKER KITS
15-WATT KIT IN CHASSIS FORM
When you are looking for a good speaker, why not build your own from this kit. t's the unit which we supply with the enclosures illustrated below Size-13" • 8^ (approx.) woofer (EMI),tweeter, and matching crossover companents. Power handling capacity
15 watts rms. 30 watts deak.
\(\uparrow 1700\) PER STEREO PAIR \(+P\) \& P \(\{3.40\)


\section*{EASY-TO-BUILD WITH ENCLOSURE}

Specially designed by RT-VC for cost-conscious hi.fi enthusiasts, these kits incorporate two teak. simulate enclosures, two EMI 13"~8" (approx.) woofers. two tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Input 15 wattsims. 30 watts peak, each unit (approx.).
\(+p \boldsymbol{p} \mathrm{f} 5.50\)

\section*{COMPACT' FOR TOP VALUE}

How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only \(£ 7.50\) - just what you need for low power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures \(12^{* *} \times 9^{* *} \times 5^{7}\) (approx.) deep, and is in wood simulate. Complete with iwo \(8^{\text {" }}\) (approx.) speakers for max. power handling of 7 watts.


SPEAKERS Twa models - Ouo llb. teak
eneer. 12 watts rms. 24 watts peak.
\(18 \frac{1}{2} \cdot{ }^{\prime \prime} \cdot 13 \frac{1}{2} \cdot 7{ }^{\frac{1}{2}}\)

\section*{(approx.)}
\(\mathcal{S} 34\) PER PAIR
+ \(\mathrm{pq} \mathrm{p} \mathrm{f6} .50\)
Ouo III. 20 watts rms.
40 watts peak.
\(27^{-} \cdot 13^{\prime \prime} \cdot 11 \frac{1}{2}{ }^{\prime \prime}\) (approx.)
\(\div 52\) еहि Pair
\(+p\) +pE 7.50


Complete with speaker, baffie and fixing strip. The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons. four medium band and one for long wave band. The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control. The modern style fascia has been designed to blend with most car interiors and the finished radio will slot into a standard car radio aperture. MOTOR Size approx. \(7^{7 *} \times 2^{*} \cdot 4 \frac{1}{2}\) ". TOP 10 Power Supply Nominal 12 volts AWARD positive or negative earth (altered internally) Power \(£ 12^{50}\) Output 4 watts into 4 ohms. +p 5 p f 1.50

PERSONAL SHOPPERS ONLY Viscount IV \(20 \times 20\) Amplifier as illustrated plus 1 pair of speakers finished in teak with melamine panels \(8^{\prime \prime}\) drive !nit and \(3 \frac{1}{2}^{\circ}\) approx tweeter size approx.
\({ }^{£} 45^{00}\)
SPECIAL

\section*{OFFER}
illustrated \(20 \times 20\) WATT STEREO AMPLIFIER
Superb Viscount IV unit in teak-finished cabinet. Silver fascia with alimunium rotary contols and nitin teak-k inished cabinet. sive fascia whatimuniu Function switch for mic magnetic and crystal pick.ups tape, tuner and \(\mathbf{f}^{\mathbf{2}} \mathbf{9}^{\mathbf{9 0}}\) Function switch for mic. magnetic and crystal pick-ups. hape. (uner, and \(+\mathrm{p} \& \mathrm{p} £ 2.10\) sockets. plus tuse. \(20+20\) watts rms. \(40+40\) watts peak.


\section*{SPECIAL OFFERS}

\section*{deductid). peduct To\%. \\ on complete stereo systems using}

For example-
starred Products
ospeaker system il or ili Viscount Ampatier, MP60 type lurnable complete PERSONAL SHOPPEAS ONLY
DECCA DC1000. Stefé Cassette, roady huilt tape dock, roplay / E \(3^{3 g n}\), record P.C.B. with pair record / replay heads Ain. FM. TUNER P.C.B. with Mullard L.P. 1186, 1185 118] modeles \(\mathrm{YG}^{50}\)
 outputt. ione control complete with speaker and fixing kit, in dash type STEREO CASSETTE TAPE PLAYER Negative earth only. 3 watts \(\mathbf{f 1 6} 6^{50}\) per channel output
AM. FM. STEREO MULTIPLEX CAR RADH/cassette player in \(\mathbf{5}^{\mathbf{3}} 6^{00}\) dash fixing Negative earth 5 watts output
1.C. Stereo 8 Track to Cassette adaptor converts. any 8 track \(\mathbf{f 1 8}^{95}\) player to cassette player.
GLOBAL Spherical speaker 8 ohms. 5 watts
look Multiturn Varicap tuning pots 6 for


\section*{BSR TURNTABLES} BSR MP6O TYPE
Single play record player (Chassis form) \(£ \mathbb{\$ . 9 5}\) less cartridge. P \& \(\mathrm{P}\{200\) Cartridges to suit above ACOS MAGNETIC
STERED ....... £4.95 CERAMIC STEREO \(\mathbf{f 1 . 9 5}\)
 TURNTABLE illus. diamond stylus, and Popular BSR MP 60 de luxe plinth and £29 type. complete with cover. magnetic cartridge. Ready wired f4.50
\(30 \times 30\) WATT AMPLIFIER KIT Specially designed by RT-VC for the experienced constructor, this kit comes complate in every detail. Same facilities as Viscount IV amplifier Chassis is ready punched, drilled and formed Cabinet is finished in teak veneer. Silver fascia and easy-to. handle aluminium knobs.


Outpul \(30+30\) WATTS rms. \(60+60\) paak.
£2900 \(+p \delta p £ 2.10\)


Order giving yaur credit card number ONLY

 wimp witheert notici We are unable co shon. Hl bur poot uts so
Send stamped addie ssed enveiope end our fulive descripivive catalictue and dal
EcI Our tulis vescripive

323 EDGWARE ROAD. LONDON W2
 ACTON: Mail Order only No callers

with muilt-in pre-amplifiers
Here's the big-value portable disco console from RT. VC! It features a pair of BSR MP 60 type autoreturn, single play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. p\&pf6.50 Simply connects into your f/5400

35-WATT MONO DISCO AMP

\(13 \frac{3}{3^{\prime \prime}} \cdot 5 \frac{1}{4}{ }^{\prime \prime} \cdot 6 \frac{3}{4}\)
Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms. 70 watts peak output. Big features include iwa disc inputs, both for ceramic cartridges. tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.

without fuss or bother. Brushed alumimium fascia and rotary controls. Five smooth acting, verticallymounted slide controls - master volume, tape level mic level, deck level, PLUS INTER.OECK FADER for perfect graduated change from recard deck No. 1 to No. 2, or vice versa. Pre-fade level control (PFL) lets YOU hear nexi disc before fading \(\mathbf{E} \mathbf{S}^{00}\) it in. VU meter manitars output level. Output 100 watts RMS 200 watts peak. p \&p \(£ 4.00\)

PRACTICE GUITAR AMPLIFIER WITH BUILT-IN SPEAKER This budget practice amplifier, has been
specially designed for the amateur, who requires a quality self-contained unit with all facilities. 2 inputs -1 for mic or guitar, the 2nd for record player or cassette deck, it also can be used for cine-sound amplification. 2 volume controls, 1 for each input. also base and ireble controls. Power output with internal speaker, 12 watts RMS, with remote speaker (not supplied) 20 watts \(£ \mathbf{3} 2^{50}\) RMS. Size approx. \(17^{*}+9^{*} \times 11^{\prime \prime}\). + \& \(\& p\{3.00\)

\section*{HOME 8 TRACK} CARTRIDGE PLAYER Autamatically switches
programmes monitored by indicators, with manual override track selection. This unit will match with the Unisound modules and is compatable with the Viscount IV amplifiei with Sim teak 960 cabinet. approx. \(9^{\circ} \quad 8^{\circ} \quad 33_{2}^{\prime}\). p \& p \(\mathrm{ft} .50^{5} £ 4^{60}\)

\section*{\(4 \times 4\) STEREO AMP}

KIT E14.50 P \& P
For the experienced constructor who wants to design his own stereo
Kit includes all necessary components including constructors manual. Plus Pair of easy to build 4 watt speakers in kit form, with teak simulate finish cabinets \(12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}\) approx.


Complete ready to install-Wave bands LM, VHF STERED. VHF MONO. Controls for tuning volume. balance, bass and treble. Power output 7 watts R.M.S per channel 14 watts peak 8 ohms \(2^{\prime \prime} \times 8^{\circ}\) approx chassis speakers and BSR auto record player deck. PERSONAL SHOPPERS DNLY \(£ 3500\)



Balance a system...Balance a budget.

Quick and occurate adjustment of sound system frequency response is finally within the reach of most budgets. The Shure M615AS Equalization Analyzer System is a revolutionary breakthrough that lets you "see" room response trouble spors in sound reinforcement and hi-fi systems-without bulky equipment, and at a fraction of the cost of conventional analyzers.
The portable, 11-pound system (which includes the analyzer, special microphone, accessories, and carrying case) puts an equal-energy-per-octave "pink noise" test signal
into your sound system. You place the microphone in the listening area and simply adjust the filters of on octave equalizer (such as the Shure SR107 or M610) until the M615 display indicates that each of 10 octaves are properly balanced. You can achieve occurocy within \(\pm 1 \mathrm{~dB}\), without hoving to "ploy it by eor. Send for complete descriptive brochure

Shure Electronics Limited
Eccleston Road
Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

\section*{TECHNICORNER}

The MO15 Analyzer's display contains 20 LEDs thor indicate frequency response evel in each of 10 octave bands from 32 Hz to 16.000 Hz
A rotary hillo envelope control adjusts the HI LED threshold relarive to the LO LED threshold. At minimum serting, the resulting frequency response is correct wirhin \(\pm 1 \mathrm{~dB}\). Includes inpur and microphone preamplifier overload LEDs A tront panel switch selects either flat or "house curve equalization
The ES615 Omnidirectional Analyzer Microphone (also-available separately) is designed specifically for equalizarion analyzer systems



Applications don't'come much more critical than digital watch manufacture.
Here, discrete deposits of Multicore, Oxide-Free Solder Cream are scieened onto the PCB. A precisionjob, with no risk of operator error or fatigue. And, a conventent temporary adhesive for the positioning of components:


Solder-flow is accomplished by simply passing the units over a - hot plate.

Fast. No oxide to contend with. No dirty residues.
This manufacturer says Multicore Oxide-Free SolderCream has reduced reject rate substantially and offers superior soldering quality.

Wroinary solder creams cannot matchthis ( Wiotitable performance.Here's why...
tevigh darysolder creams or pastes contain rosinbyeofidx mixed with solder powder produced by atomisation. This means that sery particle of the powder is ccvered with a layer cy px . Stowing down the soldering process, leaving a dirty fiux residue and causing solder globules to stizk to the flux and possibly fallloose into the equipmentafter shockorvibration. But, Multicore hayc teveloped a very special method of producing solder powdets that are virtually oxide-free.
These can be used cream form-comprising an homogeteous stable mixture of , zailoyed powder and flux, dessigned specifically for hybrie ailorocircuits, PCB's, and critical component joints.
When heatec Multicôre Oxide-Free Solder Creams melt and flow as quic, Jand cleanly as rosin-cored solder wire, leaving. a pale clear residue without solder globules.
The in-b, quality of Multicore Oxide-Free SolderCreams make them thetereal specification for almost any application calling for low eost yet high reliability.
They are available in a wide range of combinations of solder alloys, fluxes, particle sizes, fux contents and viscosities - often replacing solder preforms.
However, if you have an application that specifically requires preforms, remember that Multicore supply a wide variety of those as well.
Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Compare these electron-microscope enlargements at \(\times 240\) magnification:

'Ordinary' cream solder powder, revealing poor particle shape and dross.


Solder powder from Multicorè Oxide-Free Solder Cream displays clean, uniform particles.

For full information on Oxide:Free Solder Creams orany otherMulticore products, letterheaddirectio:

Telephone:HemelHempstead 3636. Telex:82363.```


[^0]:    Marconi Instruments Limited - Longacres . St. Albans . Hertfordshire • England AL4 OJN. Telephone: St. Albans 59292 - Telex: 23350.

[^1]:    Current issue price 40p. back issues (if available) 50p. at Retail and Trade Counter, Paris Garden. London SE1. By post, current issue 55p, back issues (if available) 50p, order and payment to Room 11. Dorset House, London SE1 9LU.
    Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
    Telephones: Editorial 01-261 8620. Advertising 01-261 8339.
    Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables: Ethaworld, London SE1. Subscription rates: 1 year: $£ 7.00$ UK and overseas ( $\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas ( $\$ 9.10$ USA and Canada).
    Distribution: 40 Bowling Green Lane. London EC1R 0NE. Telephone 01-8373636.
    Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH
    Telephone 044459188 . Subscribers are requested to notify a change of address.
    USA mailing agents: Expediters of the Printed Word Ltd., 527 Maidson Avenue, Suite 1217.
    New York, NY 10022 . 2nd-class postage paid at New York. ${ }^{\text {c }}$ I.P.C. Business Press Ltd. $1977^{\circ}$

[^2]:    ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA - EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS - RADFORD - RAM - RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE

[^3]:    With the CP-LX1 - the latest in the expanding range of MAGNUM AUDIO MODULES - you can
    buid an active crossover network for any multiple speaker system. using one CP-LX1 per crossover frequency In addition to the improved loudspeaker damping and transient response resulting from such systems, the CP-LXI scheme is readily adjustable so that a desired speciftcation may be actioved
    with an ease and confidence not possible with passive systems. Moreover any subsequent adjustments may be made for a few pence so that optimum performance is always achievable As $w$ adjustmenis may be mide fora dLe fe so that optimum performance is always achievable As with provide your CP-LX1 preset to your choice of frequency (order as CP-LX 1-P and frequency)
    $\begin{array}{lll}\text { CPLX1 } & £ 8.65 & \text { VAT £1.08 } \\ \text { CP-LX1-P } & £ 9.65 & \text { £1.21 }\end{array}$
    Cliffpalm

    SEND SAE for details of the CP-LX1 and other MAGNUM AUDIO MODULES
    
    

    EXCLUSIVE UK REPRESENTATIVE
    FOR BIRD ELECTRONIC

    ## ASPEN ELECTRONICS LTD. <br> 2 KILDARE CLOSE, EASTCOTE, MIDDX.

    Tel. 01-868 1188. TELEX 8812727
    WW-058 FOR FURTHER DETAILS

    ## JES AUDIO INSTRUMENTATION

    

    Illustrated the Si452 Distortion Measuring Unit-low cost distortion measurement down to $01 \% \quad £ 48.00$

    Si451
    $£ 60.00$
    Si453
    $£ 60.00$
    Comprehensive Millivoltmeter Low distortion Oscillator
    $350 \mu$ Volts 20 ranges
    sine - square - RIAA
    prices plus var
    J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET, CLECKHEATQN, W. YORKSHIRE B19 5LA

    WW - 010 FOR FURTHER DETAILS

    ## ELECTRONORGTECHNICA

    ## carbon film RESISTORS

    $1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
    EX-STOCK
    £4.90
    PER 1,000 PLUS
    OF ONE VALUE V.A.T \& POSTAGE
    Minimum export order £100
    Contact John Gingell
    

    WW-020 FOR FURTHER DETAILS
    

    Here's a brand new multimeter from Eagle: 100,000 opv, 3-colour scale anti-parallax mirror, taut band movement, electronic protection, reversible polarity, 15 amps AC range. Complete with real leather carrying case, shoulder strap and probes.

    And all that for a retail list price of
    

    WW - 006 FOR FURTHER DETAHS
    

    WW-037 FOR FURTHER DETAILS

    ## NEW 3000 TWEETER

    ## Technical Data

    ## Frequoncy response.

    2 Kcs to 8 Kc Kc with in 3 db .
    Impedence:
    15 oims or 8 ohms
    Flux Density:
    10.000 g3uss

    Dimensions Front Mounting
    Body $2+\left(70.2 \mathrm{~mm}\right.$ ) dia. x $1 \frac{1}{d}$
    $(31 \mathrm{~m} \mathrm{~m})$ deep
    Flange $34^{\prime \prime}$ ( 95 m
    $(3 \mathrm{~mm}$ ) thick
    o. all 1: $(35 \mathrm{~mm})$

    Power Handling:
    For use on 30-50 watt Amplifiers
    Suggested Crossover:
    

    ## FREQUENCY COUNTERS

    $1 / 10 \mathrm{~Hz}$ to 1.2 GHz
    High performance instruments measuring frequency, period, time. treq./ratio and calibrated output facilly. Fast delivery. Specials by arrangement.
    

    TYPE 801B
    CRYSTAL OVEN
    OPPRATINGMA
    OPFRATING MANUAL
    IWO TONF BLUE CAS
    Sensitivity 10 mV . Stability 5 parts $10 .^{10}$ Resolution $\pm 1$ Count

    | 301 m | 32MHz 5 Digit £95 | 401A | 32MHz 6 Digit £132 |
    | :---: | :---: | :---: | :---: |
    | 501 | 32MHz 8 Digit £188 | 701A | 80MHz 8 Digit. £205 |
    | 8018/M | 250MHz 8 Digit £274 | 901 M 1001 M | 520 MHz 8 Digit $£ 375$ <br> 1.2GHz 8 Digit $\mathbf{E 6 7 0}$ |
    |  | versions plus $£ 15$ | Memor suffixe | ons available if not £25 extra |

    Type 101 IMHz 100KHz 10 KHz Crystal Standard $£ 95$ Type 103 0ft/Air Standard $£ 95$
    SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depte., Crystä Manufacturers and Electronic Laboratories world-wide
    
    R.C.S. ELECTRONICS 6 WOLSEYROAD. ASHFORU MIDOX. TW15 2RB Telephone: Ashford (Code 69) $53661 / 2$
    WW-056 FOR FURTHER DETAILS
    
    $100 \%$ tested

    ## Long life

    High precision
    

    Stringent quality control
    All inhouse manufacture
    Special designs giving high
    packing density
    Range: miniature to heavy duty
    Enquiries for volume specials are welcomed

    ## Simplatroll Ltd.

    CAXTON ROAD BEDFORD MK 41 OHT
    Telephone 023446161 Telex 825308
    WW-022 FOR FURTHER DETAILS

    ## buy, lease or rent:

    - Teletype 33 and DD 390 ( 10 cDs ) printer termunals
    - DECWRITER LA36 and DD303 (30cDs) printer terminals
    - OKIDATA $110(66 \mathrm{lpm})$ and Teletype $40(300 \mathrm{lpm})$ high-speed printers
    - Lear Siegler ADM 1,2 and 3A video keyboard display
    * Teletype 40 (7200 baud) asynchronous and synchronous displays
    - DD Paper tape punch range (up to 110 CDS )
    
    for prompt delivery
    telephone London(O1) 8489781 Edinburgh (031) 2268201 Manchester (061) 2243306 935429

    WW-04I FOR FURTHER DETAILS
    

    ## Audio Connectors

    Broadcast pattern jackfields, jackcords, plugis and jacks.

    Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
    Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers.
    Low cost slider faders by Ruf
    Future Film Developments Ltd. 90 Wardour Street London W1V 3LE
    01-437 1892/3

    ## Join the Digital Revolution

    ## Understand the latest developments in calculators,

    computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories. counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
    Uesign of Digital Systems
    
    $£ 6.20$
    plus 80 p packing and surtace post anywhere in the world.
    Payments may be made in loreign currencies.
    Quantity discounts available on request.

    VAT zero rated

    Also avaılable - a more elementary course assuming no prior
    knowledge except simple arithmetic.
    Digital Computer Logic and Electronics.
    In 4 volumes
    $\begin{array}{ll}\text { 1. Basic Computer Logic } & \text { Logical Circuit Elements } \\ \text { 2. } & \text { plus } 80 p \text { P. \& r } \\ \text { 3. Designing Circuits to } \\ \text { Carry Out Logical Func- } & \text { Offer Order both courses } \\ \text { tions } & \text { for the bargain price } \mathbf{E 9 . 7 0}, \\ \text { 4. Flipflops and Registers } & \text { plus } 80 p \text { P. \& P. }\end{array}$

    Designer
    Manager
    Enthusiast
    Scientist
    Engineer
    Student

    These courses were written so that you could teach yourself the theory and application of digital iogic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

    ## Guarantee-no risk to you

    If you are not entirely satisfied with Design of Digita. Systems or Digital Computer Logic and Electronics. you may return them to us and your money will be refunded in full, no questions asked.

    WW-033 FOR FURTHER DETAILS

    ## BUY FLUKE'S NEW DMM AND POCKET THE DIFFERENCE

    

    Never before has a DMM packed so much into such a small space. Fluke's new 8020 offers 24 ranges of AC/DC volts, amps and ohms plus two ranges of conductance, teamed with an $0.25 \%$ VDC accuracy.

    Ideal for dozens of applications from Hi-Fito engineering, it's particularly suitable for work in the field. Features include one hand operation, a new design LCD
    display you can see even in poor light, tough construction and a 9 V battery life of 200 hours. TheFluke 8020 is only available from ITT Instrument Services, an incomparable service that can put it in your pocket.immediately from stock. Write, phone or telex for full details.

    ITT Instrument Services, Edinburgh Way, Harlow, Essex. Telex: 81525.
    

    # wireless world 

    Editor:
    TOM IVALL, M.I.E.R.E

    Deputy Editor:
    PHILIP DARRINGTON
    Phone 01-261 8435

    Technical Editor:
    GEOFFREY SHORTER, B.Sc
    Phone 01-261 8443

    Assistant Editors<br>MIKE SAGIN<br>Phone 01-261 8429<br>RAY ASHMORE, B.Sc., G8KYY<br>Phone 01-261 8043<br>JOHN DWYER<br>Phone 01-261 8620

    Production:
    D. R. BRAY

    Advertisement Controller:
    G. BENTON ROWELL

    Advertisements:
    PHILIP NOSSEL (Manager)
    Phone $\overline{01}-261 \overline{8} \overline{6} 22$

    LEO KEMBERY
    Phone 01-261 8515

    CHRIS PRIER
    Phone 01-261 8037

    Classified Manager
    BRIAN DURRANT
    Phone 01-261 8508 or 01-261 8423

    EDDIE FARRELL (Classified Advertisements) Phone 01-261 8508

    JOHN GIBBON (Make-up and copy)
    Phone 01-261 8353

    Publishing Director:
    GORDON HENDERSON

    ## Can sound quality be quantified?

    Anyone who has read that curious book Zen and the art of motorcycle maintenance will recall that the narrator apparently drove himself into a mental hospital by his obsessive attempts to discover by pure reason the essence of "quality". Even Socrates had trouble with such universals. It is still difficult when one descends to particular, concrete instances. Those who design audio equipment have the problem that even after the application of the most precise, thorough and foolproof engineering their products are still finally submitted to the vagaries of subjective assessment. They would really like to have an objective measure of sound quality, perhaps a figure of merit obtained from measurements of electrical and/or acoustic variables, which would be causally independent of personal preferences but at the same time correlated with subjective experience.

    A correspondent writing in this issue (letters) is right to assert the primacy of subjective evaluation but perhaps a bit harsh in condemning the concept "loss of information" because it cannot at the moment be expressed in engineering terms. Engineers certainly do follow Lord Kelvin's dictum that you can't properly understand a phenomenon until you can express it in numbers. Galileo, though, after saying something similar, added "what is not measurable, make measurable". "Loss of information" presumably could be measured on the basis of quantisation (as in p.c.m.) and information theory. "Musicality" is more difficult.
    Apart from the variations from listener to listener depending on circadian rhythm, degree of tiredness etc., a big problem with subjective assessment is that hearing is not merely a passive registering of impressions but an active process of attention and even intention. (See C. A Malcolm, Hi Fi News, June 1977, on this.) To some extent you hear what you want to hear. An engineer may
    listen for a particular type of distortion and suppress the emotional or intellectual effect of the programme content. A musician may listen for features of musical performance and "not hear" quite obtrusive distortion. Whereas an engineer carries in his mind a distinct a priori concept of frequency, which he may regard as the primary characteristic of sound, it is possible for a musician to say "I cannot accept the distinction between tone colour and pitch as it is generally stated. I find that tone makes itself noticed through colour, one dimension of which is pitch." (Arnold Schoenberg in his Harmonielehre.)

    Attempts to arrive at a numerical index which correlates with subjective evaluation of sound quality have already been made but nothing workable has emerged yet. It's interesting to note, though, that parallel searchings have been going on in other fields such as linguistics and the behavioural sciences. The most recent is an attempt to formulate and measure value judgments of the kind made in ethics, religion, politics and aesthetics (J. Pearl, "A framework for processing value judgments", Trans. IEEE, vol. SMC-7, No. 5, May 1977). The paradigm in this case is that "value judgments and probability statements are the same thing". Both are "codes of experiential data... constructed by the same mental procedures".

    Probability may be a clue. One approach to measuring sound quality might be based on the principles of pattern recognition, using the known statistics of successive values in the waveforms of musical or other sounds as references. (By analogy, in written English the probability of letter "u" coming after letter " $q$ " is some precise value in excess of 0.9 .) With integrated analogue-to-digital converters, high density memories and microprocessors, the instrumentation required should not be beyond the capabilities of today's digital electronics.

    # Shortwave broadcasting efficiency 

    # A method of measuring the success of a broadcasting service in achieving its target coverage 

    by George Jackson, Radio Canada International

    Before doing an analysis of how successful we can be in reaching our listeners, "ve must know what it is we are ur ingainst. We could go into great detail and list such factors as type of listener, his habits, his tastes and so forth, but these are parámeters which we can assume are taken into consideration by those who are providing the programmes for the region involved. This analysis is based on the need to reach the target in the first place. If you do not reach your audience physically, it is impossible to stimulate them mentally, no matter how good your programmes are.

    Considering this fact, then, we must ask ourselves three main questions about our shortwave service:

    - How well do we overcome the inconsistent nature of shortwave eption?
    $\boldsymbol{x}$ How successful are we in overcoming interference to our broadcasts caused by severe crowding of the high-frequency broadcasting bands?
    

    Fig. 1. Comparison of number of transmissions in the 6 MHz band of scheduled and observed shortwave stations in CIRAF zone 28 (see footnote) over a twenty-four hour period.

    How well do we tailor our transmissions to the best possible listening periods in our target area?

    These questions relate directly to the three major factors influencing shortwave broadcasting. These are: ionospheric propagation; band crowding; and programme timing. The degree to which a broadcaster can control these factors will determine the success or failure of his target service.

    A broadcaster can successfully overcome, or at least diminish, the negative effects of the major influencing factors by carefully manipulating four variables. These parameters are completely within his power to control and, used correctly, can make a second-rate broadcaster into a dominating force on shortwave. The four variables are: programme timing; frequency diversity; transmitted power; and transmitter location. This article shows how to best combine these four parameters to achieve a ninety to one hundred percent probability of success which we shall call "efficiency".
    $\dot{s}$

    ## Programme timing

    We will define prime listening times as $0600-0900$ and $1800-2400$ hours local. Although, admittedly, these times vary for certain regions according to working hours and listening habits, audience research and current broadcasting practice* indicate that this definition is correct.

    Outstanding programmes can draw listeners to periods outside the prime hours, but only if the other variables are combined in such a way as to produce a highly "receivable" programme. Such occurrences as this are quite rare and


    usually happen in conjunction with an event of special interest to a certain target area or group of areas.

    Length of programmes within prime times is the next factor to consider. It has been generally established that a broadcaster's "presence" in a given target area need not be excessively long to be effective. Surveys have shown that a two-hour presence (not necessarily continuous) during prime time would be sufficient to either hold audience interest or to capture the greatest number of listenerst. Longer periods tend to become repetitive and tedious while shorter periods make it difficult to programme all available information. Also, the chances of losing an entire day's programmes due to interference or propagation become greater as presence is decreased.

    Individual programme lengths can vary within the two hours according to the material to be aired and the policies of the broadcasting organization. Radio Canada International uses half an hour as its basic block because this time is manageable, because it best uses, and to a degree compensates for, staff limitations, and because it permits us to fit our multiplicity of languages into the desired prime time segment. On the other hand, Radio Netherlands uses an eighty-minute format which can be easily handled by an adequate technical plant and relatively few languages.

    Even after a timing format has been developed by a broadcaster, he cannot be sure the plan can be followed. Technically, a transmission may not be propagated from the transmitter locstion to the target at the desired time. Interference patterns may be such that programmes are not heard at the desired times due to inadequate technical facilities. This is why it is important that the second, third and fourth variables (above) be considered in conjunction with programme timing when one is considering a target service.

    To summarize then, we have outlined prime time ( $0600-0900$ and $1800-2400$ local), language or broadcasting presence (two hours ideal), optimum programme length ( 15 minutes to two
    hours) and technical limitations to programme timing.

    ## Frequency diversity

    The factor which can be varied the most and which can have the greatest single effect on the success or failure of a transmission is that of frequency. In general, frequencies between 2 MHz and 30 MHz can carry, with varying degrees of success, voice or data transmissions over long distances. International broadcasting has been allotted bands of frequencies within the 2 MHz to 30 MHz spectrum. These areas occur in the $6,9,11,15,17,21$ and 26 MHz bands and comprise some 40 to 70 discrete frequencies in each band. The 7 MHz band is also used, although not in the western hemisphere.

    A shortwave transmitter can be tuned to any one of these discrete frequencies. The antenna system associated with the transmitters is, on the other hand, constructed on the basis of one or more antennas per shortwave band per target area. The number of discrete, frequencies allotted to each programme is therefore directly related to the number of transmitters and antennas available for use at that particular time. The importance of this fact cannot be over-emphasized in that our analysis will define the optimum amounts of hardware and their ideal dispersion based on our overall priorities.

    It is relatively easy to put a frequency on the air - but which one, or indeed, which ones? Ionospheric theory and past results have shown that the ability of a certain frequency to reach a given target depends on the time chosen for its operation. The ability of the ionosphere to support a given frequency depends on time of day, season of the year and period of time within the 11 -year cycle of sunspot activity. (See, for example, H.F. Predictions in this journal.)

    To determine correct frequency usage, a frequency manager will consult his charts for a certain time of day and season of the year and come up with a maximum usable frequency (m.u.f.) for a given path. He will check his records for a similar period in the preceding year and then select a frequency band which should allow transmission to the target area desired. Depending on available transmitters, he will then select one or two other bands below that m.u.f. band. The purpose in doing this is to allow for m.u.f. variation throughout the season he is planning. Once he has chosen the bands, he will begin the difficult task of choosing discrete frequencies within each band.

    The frequency manager then goes to his transmitter plant and surveys his equipment. If he has enough. transmitters and antennas he will assign a minimum of two and as many as five or six frequencies to that particular programme. Diägrams will show that the more frequencies you
    have, the better are your chances of being received.
    To use Sackville to Western Europe as an example of a route, lét us suppose we wish to broadcast a German programme at 1800 local time. All the data available show that 15 MHz is the m.u.f. at that time. The frequency manager would then choose two 15 MHz , two 11 MHz and two 9 MHz frequencies. Say these were $15.280,15.325,11.875,11.860$, 9.680 and 9.625 MHz . He would then look at his available transmitters and find, say, four were free at that time. Next, he would look at his antennas. There he would find one Európean antenna array capable of transmitting one frequency only in each of the 6,9, 11, 15 and 17 MHz bands. His only option then is to use $15.280,11.875$ and 9.680 MHz even though six frequencies would have been ideal and four could have been used with the available transmitters. This time the limitation was antennas. Another time it could be transmitter or frequency availability.

    One can easily see that management of frequencies goes far beyond choosing correct operating bands for a given programme. Propagation, interference patterns and equipment availability all play their roles in allowing frequency diversity. The next step is to consider the equipment requirement.

    ## Transmitted power

    It is said, and rightly so, that one or two watts of transmitted power on the correct high frequency, if it is completely clear, will permit communication between such far-flung regions as the Middle-East and North America, Europe and Australia, or South America and the Soviet Union. This type of communication was successfully used by both broadcasters and radio amateurs in the early days of short waves. As time passed however, and more institutions began using the h.f. spectrum, the possibility of finding a completely clear frequency became increasingly difficult. The only alternative, once one is sure one is using the correct frequency, to finding a clear channel, is to increase the radiated power of the transmissions. In this way, the communicator can out-muscle other users of his frequency and achieve his end.

    This situation has been developing in h.f. broadcasting over the past three decades and has now reached crisis proportions. The broadcasting bands are now so crowded that there can be up to ten listings on any one shortwave frequency. This makes for fierce competition and, ultimately, a transmitted power race.

    Transmitted power is, of course, the result of two variables, the output power of the transmitter and the gain of the antenna. The product of these variables is the effective radiated power of a transmitting location. For example. a broadcaster could be transmitting a
    programme with a 250 kW transmitter and an antenna with gain of 12 dB . Since 12 dB is an amplification factor of approximately 16 , this means that the effective 'radiated power of the transmission is $250,000 \times 16=4 \mathrm{MW}$. This is mentioned just to illustrate the point which broadcasters have now reached in the power struggle. Where 1 watt of power was effective in the early ' 30 s, we now require power in the order of 10 megawatts just to compete.
    Broadcasters today are using antennas whose gains vary anywhere from 16 to 23 dB with the average being around 18 or 19 dB (amplification factors of 63 to 80). Radio Canada International is in the process of constructing one antenna array for each target area which will be of this magnitude.

    At the same time, broadcasters are, little by little, increasing their transmitter power. Whereas in the 1950 s , transmitters of 50 and 100 kW were adequate, the 1970 s and ' 80 s will require 250 and 500 kW transmitters. Already, most broadcasters are using 250 kW and 300 kW for their long-haul circuits (BBC, Voice of America, Deutsche Welle and Radio Netherlands among others are in the 500 kW club) and 100 to 200 kW for their shorter distance circuits. In the case of RCl , we have been using our new 250 kW transmitters for European programmes and the old 50 kW transmitters for our North American, South American and African circuits. Ideally, 500 kW with 20 dB antennas are needed for Europe, Africa and South America, while 250 kW with 16 dB antennas would serve North America.

    ## Transmitter location (programme source)

    The last of the engineering considerations involves the "source of the transmitted programme.

    As already discussed, the aim of a shortwave broadcasting service is to put the strongest possible signal into a target area. Good frequency selection and powerful and diversified transmitting equipment are two ways of accomplishing the objective. The third and perhaps most significant way to "outmuscle" competitors is to be within one "hop" of your target. That is to say the strongest shortwave signal occurs in the area approximately $1500-3000$ miles from the transmitter. Depending on antenna specifications and the frequency chosen, this distance represents the landing area of a wave which has been transmitted upwards and has been reflected once from one of three or four layers of the ionosphere. Obviously, the mixture of good frequency selection, high transmitted power and proximity to the target will allow for the optimum received signal strength.

    Larger organisations such as Voice of America, BBC and Deutsche Welle have used the "one-hop" formula to advantage by installing relay stations around the world which are a distance of one
    hop from the transmitter or from each other. RCI is not in a position, financially, to provide such a relay system for its listeners, although over the years, co-operation with the BBC and DW has resulted in relay exchanges with those broadcasters. This has resulted in a viable service to the USSR for RCI which, even with high power and good frequency selection, would not otherwise have occurred from Sackville.

    ## Efficiency calculation

    The purpose of this analysis is first to determine the degree to which a broadcaster is successful in overcoming the largely uncontrollable factors of ionospheric inconsistencies and interference caused by overcrowding of the shortwave bands, and second to produce a plan by which this degree of success can be enhanced by intelligent manipulation of resources.
    We will use a system of weighting for the various factors over which we have some control in order to derive a formula which we can use to calculate a numerical efficiency which will indeed be a measure of our success in overcoming the odds. To put it more simply, how great a chance are we giving ourselves to place a competitive signal in our target areas? Further, how much greater can these chances be if we change a few things? These are the questions we hope to answer in this brief.
    The controllable factors are those outlined in the preceding sections and can be listed as follows: programme timing (controllable, but constrained by operating finances, possible deployment of manpower and propagation); number of frequencies (controllable, but limited by equipment availability and band crowding); transmitted power (controllable, but limited by equipment availability, hence finances); and location of transmitters (programme source) (controllable, but subject to political and financial considerations).
    We can assign points to these various factors in proper combination with one another. Programme timing can be measured against its "presence" within defined prime times locally. Number of frequencies and transmitter location in relation to target area must be considered together as they are directly related, as are transmitted power and transmitter location in relation to target area. The point system is constructed, then, as follows:

    Programme timing - 6 points are allotted if the target area service (by language) occupies a "presence" of 2 hours within prime time. 5 points are allotted if this "presence" is $11 / 2$ hours. 4 points are allotted if it is 1 hour. 3 points are allotted if it is $1 / 2$ hour.

    Frequencies transmitted as a function of programme source (Fig 2). 3 points are allotted for each frequency trans-
    

    Fig. 2. Probability of successful reception vs. number of frequencies.
    (Power constant at 250 kW ).
    

    Fig. 3. Probability of successful reception vs transmitter power. (Number of frequencies constant at 4.)
    mitted, one "hop" from the target ( $1,500-3,000$ miles). 2 points are allotted for each frequency transmitted, two "hops" from the target ( $2,500-4,000$ miles). 1 point is allotted for each frequency transmitted, three "hops" from the target ( $3,500-5,000$ miles).

    Transmitted power as a function of programme source (Fig 3). $\Rightarrow 4$ points are allotted for each 500 kW transmitter, one "hop" from the target. 3 points are allotted for each 500 kW transmitter,
    two "hops" from the target; also each 250 kW transmitter, one "hop" from the target 2 points are allotted for each 500 kW transmitter, three "hops" from the target; also each 250 kW transmitter, two "hops" from the target; also each 100 kW transmitter, one "hop" from the target. 1 point is allotted for each 250 kW transmitter, three "hops" from the target; also each 100 kW transmitter, two "hops" from the target; also each 50 kW transmitter, one "hop" from the target.

    We can now define three specific measurable categories for our transmissions. These are: (A) Evaluation of individual programmes. (B) Evaluation of a language service to a target area. (C) Evaluation of the overall service (several languages) to a target area.
    In category (A) only "frequency/ source and power/source points" can be assigned as "programme timing" is based on overall language presence during prime time and therefore is not applicable to individual programmes. In category (B) all factors can be assigned and a language efficiency calculated. In category ( $C$ ) all factors can be averaged and a target area efficiency can be calculated.

    Definition of the "ideal" point total. In order to determine the efficiencies for categories (B) and (C) above, we must define an "ideal situation" combination of factors and hence, an ideal point total for these categories.

    For programme timing, it is quite obvious that the ideal score is 6 in that we wish to achieve the two-hour "presence" per language within prime target area time. Any less would compromise the overall objective. The ideal point total is 6 .

    For the frequency/source factor, an ideal situation would constitute a four frequency service no more than one hop away. Frequency diversity can be used to lessen the effects of the ionosphere and band congestion. The provision of two frequencies in each of the two optimum bands, or two frequencies in one band and one in each of two others will provide an "ideal" situation. Naturally more frequencies one -"hop" away would better the situation still further, but overall efficiency would vary only slightly for each frequency added (see Fig. 2). The ideal point total is $4 \times 3=12$.

    For the power/source factor, the best situation would occur if each of the frequencies mentioned above were powered by a 500 kW transmitter one "hop" away. This situation, however, is considered overkill, as the best use of 500 kW is in $2-3$ "hop" situations, or for emergency use in congested bands. We will therefore define the ideal as four 250 kW transmitters one "hop" away from the target (see Fig 3). The ideal point total is $4 \times 3=12$.

    The result of an addition of the three factors (programme timing, frequency/source, power/source) gives us an ideal point total of $6+12+12=30$ points. This total we will use as a base for the efficiency calculations which follow.

    ## An example . . . . .

    Calculate the efficiency of a shortwave service to Argentina from a transmitter site in Los Angeles, California. The plant consists of two 500 kW and two 250 kW transmitters and broadcasts
    

    Fig. 4. Language efficiency target of Radio Canada International for North America.
    

    Fig. 5. Language efficiency target of Radio Canada International for South America and Caribbean area.
    

    Fig. 6. Overall broadcasting efficiency of Radio Canada International by target area.
    occur between 0730 and 0800 local time and between 1930 and 2000 local time.

    ## ..... and the solution -

    Programme timing score: Both halfhour programmes are within the defined prime times so the total presence is $1 / 2+1 / 2=1$ hour. Points for 1 hour presence are 4 . (Ideal is 2 hours for 6 points.)

    Frequency/source score: Argentina is two hops from Los Angeles. We will assume all four transmitters are used for both time periods. This would result in four frequencies, two hops away. Points
    then are $4 \times 2=8$. (Ideal is 4 frequencies, one hop away for $4 \times 3=$ 12 points.)

    Power/source score: Argentina is two hops from Los Angeles. Assuming again that all four transmitters are used, we have two 500 kW transmitters, two hops away for $2 \times 3=6$ points and two 250 kW transmitters, two hops away for $2 \times 2=4$ points. Total power/source points then are $6+4=10$. (Ideal is four 250 kW transmitters, one hop away for 4 $\times 3=12$ points.)
    Totalling the points for each of the three factors gives us a grand total for the service of $4+8+10=22$ points. The ideal total is 30 points. Thus the service efficiency is $22 / 30 \times 100=$ 73.3\%.

    ## Summing up

    Many conclusions can be drawn from an analysis such as this. Once a level of efficiency has been calculated, a broadcast service can clearly see which of the four major parameters needs to be improved in order to reach the desired ninety to one hundred percent efficiency level.
    Radio Canada International, for example, has found that the large number of languages (11) which it broadcasts, coupled with a relatively small number of transmitters ( 5 owned and operated) have combined to produce low scores in all but one of the key areas, programme timing, frequency diversity, transmitted power, and programme source. An overall efficiency level of forty-five percent was calculated for RCI . This factor, translated into equipment requirements means an additional seven 250 kW transmitters are required at the Sackville plant together with associated antennas if current programme levels are to be maintained. These requirements, if maintained, would raise the overall efficiency level to the desired ninety per cent.

    The calculation allowed RCI another means of increasing its efficiency. The number of languages broadcast or the number of target areas covered could be reduced, leaving the equipment at present levels. The overall effect would be that RCI would do a better job of broadcasting to fewer targets, thereby again achieving its ninety percent level.

    A method, totally divorced from highly subjective audience surveys or inconclusive levels of audience maii, has been developed whereby a shortwave broadcasting organisation can measure itself. It is a device which has been sorely needed by broadcasters, whatever their size. How does your organisation rate?

    George Jackson is head of the Engineering Department of Radio Canadd International. a post he has occupied for three years.

    # Distortion in low-noise amplifiers 

    ## 1 - Distortion analysis

    by Eric F. Taylor, Electrical Engineering Laboratories, The University, Manchester.

    The principles of low-noise circuit decign are now well established and have been the subject of several articles in this journal, refs $1 \& 2$. In comparison the design of low distortion clrcuits has received relatively litto attention. In this article distortion in feadback amplifiers is considered in detail with special reference to the distortion produced by the common-mode input signal in series feodback amplifiers. Distortion reanding from the exponential dependence of the collector current of a tranaistor on base-mitter voltage is aleo considered in detail, both theoretically and experimentally, and the andyels can be used to predict the offect of this non-linearity on the distortion performance of an amplifier.

    In the second part of the article a premmplifier design will be described which embodies the design guidelines developed. Harmonic distortion, measured with magnetic pickup equalization, is less than $0.005 \%$ at all frequencies up to 20 kHz and all overtond levels up to 30 dB .

    The inequality derived in the panel on page 31 expresses mathematically the requirement that a series feedback amplifier should have good common mode performance to minimize distortion. Unfortunately, design for good common mode rejection conflicts with the low-noise design requirements of operating the input transistors at low collector-emitter voltages.

    ## Non-linearity due to common mode input

    Operation of a transistor with a low collector-amitter voltage minimizes the noise due to leakage currents ${ }^{1}$ but the transiator is obviously more sensitive to changer in the collector-base voltage (which occur as a direct result of a common mode input signal) than if the trangiator were operated at a higher collector-base voltage. Changes in the collector-base voltage of a transistor
    manifests itself as a variation in the input base current and a common mode input voltage to a transistor amplifier therefore results in a common mode input current. The common mode input voltage and input current are related by common mode input admittance and it is the non-linearity of this which is primarily responsible for the distortion which arises from a common mode input signal.

    The common mode input current would not be important if the source impedances seen by the inverting and non-inverting input of the amplifier were low or equal. However, in a series feedback amplifier designed for example for use with a magnetic pickup, the impedance seen at the non-inverting input is predominantly inductive whereas the impedance presented by the feedback network to the inverting input is normally kept low so that the equivalent noise voltage generator of the feedback network is small. At the higher audio frequencies therefore there is a serious mismatch in source impedances. Under these conditions the common mode input current can produce a significant differential mode input which is indistinguishable from the input signal. A common mode input voltage is also capable of producing a differential mode input current but with a serious mismatch of source impedances the effect due to the common mode input current will be dominant.

    The variation of base current of a transistor with collector-base voltage has been investigated with the circuit shown in Fig. 1 in which, for convenience the collector base voltage is modulated by a transformer in series with the collector d.c. supply. Figure 2 shows the waveform observed at the base of the transistor due to a 20 kHz , 1.0 V r.m.s. sine wave modulation of the collector-base voltage, a modulation level which might well be achieved in a series feedback amplifier when driven by a magnetic pickup at high overload. The waveform was obtained with a quiescent collector-base voltage of 2.0 V and a G800E magnetic cartridge used for $Z_{b}$ to simulate the source conditions of a practical amplifier. Notice that the
    

    Fig. 1. Arrangement to investigate variation of base current of a transistor with collector-base voltage.
    

    Vertical scale $5 \mathrm{mV} / \mathrm{div}$
    Horizontal scale $10 \mu \mathrm{~s} / \mathrm{div}$
    Fig. 2. Voltage developed at the transistor base with a G800E magnetic pick-up cartridge used for $Z_{b}$. (Collector modulation $20 \mathrm{kHz}, 1.0 \mathrm{~V}$ r.m.s. sinewave. $V_{C B} 2: 0 \mathrm{~V}$.)
    base voltage waveform contains a high proportion of distortion products and harmonic analysis shows that the total harmonic distortion (t. h. d.) referred to the 1.0 V r.m.s. sine wave is $0.17 \%$. If used as an input stage of a series feedback amplifier these distortion products would be indistinguishable from the input signal and no amount of feedback would reduce the t.h.d. of the amplifier to less than $0.17 \%$.

    The mechanism primarily responsible for the variation of the base current of a transistor with collector-base voltage is base-width modulation, otherwise
    known as the Early effect. Base-width modulation occurs because of changes in the width of the depletion layer of the collector-base junction as the collector-base potential is varied. Thus an increase in reverse bias causes the depletion layer to extend further into the base region of the transistor which reduces the effective base width and results in an increase in $\beta$ because of increased base transport efficiency. The increase in width of the depletion layer is also accompanied by a decrease in the collector-base junction capacitance which varies according to

    $$
    C \propto V^{-x}
    $$

    where $V$ is the reverse bias on the junction and $x$ normally has a value between $1 / 2$ and $1 / 3$ according to the impurity profile across the junction.
    The relative contributions of these two effects to the base current modulation have been investigated with the circuit shown in Fig 1 and the results are presented in Fig. 3 in which the fundamental and distortion products of the base current are plotted as a function of frequency for various values of $I_{c}$, and constant $V_{c E}$ of 5.0 V . At low frequencies base current modulation is independent of frequency but varies with collector current and it is reasonable to attribute this behaviour to variations in $\beta$ of the transistor. At higher frequencies however base current modulation is independent of one collector current and approximately proportional to frequency which indicates that the collector-base capacitance is the dominant mechanism.

    The break point in the characteristics at which the effects of the collector base capacitance starts to dominate over the effect of variations in $\beta$ shifts to higher frequencies as the collector current is increased as would be expected if the mechanism described above are responsible for base current modulation. At the collector current levels normally encountered in the first stages of low noise audio amplifiers ( 10 to $100 \mu \mathrm{~A}$ ) and for frequencies greater than 500 Hz , the variation of the collectorbase capacitance is primarily responsible for the distortion products present in the modulated base current.

    Base current modulation has been plotted in Fig. 4 as a function of the quiescent collector-emitter voltage modulated by a 10 kHz sinewave. At this frequency and a collector current of $100 \mu \mathrm{~A}$ the collector base capacitance is the dominant base current modulation mechanism. Qualitatively the results agree with the prediction that base current modulation decreases with increasing $V_{c E}$ and although a powerlaw dependence is indicated it has not been possible to obtain quantitative agreement with the distortion that would be expected from the non-linearity of the collector-base junction capacitance.
    
    

    Fig. 4. Variation of the distortion components of base current with quiescent collector-base voltage. (Collector-base voltage modulation frequency 10 kHz .)

    Reduction of the common mode input signal
    The common mode input signal present in a series feedback amplifier can produce distortion by generating harmonic components at the input which are indistinguishable from the input signal. Differential negative feedback can do nothing to reduce this type of distortion but common mode feedback
    can give an improvement. As the name implies common mode feedback uses the common mode output signal to reduce the common mode signal at the amplifier input. The application and advantages of common mode feedback, which is fully treated elsewhere, ${ }^{4}$ will not be pursued in this article as a very simple technique for reducing the common mode signal which is more
    relevant to audio applications is to use the feedback connection shown in Fig. 5. In this connection the input signal is introduced in the feedback path of the amplifier so that the differential negative feedback subtraction process is performed external to the amplifier and the common mode signal at the amplifier input becomes identical with the common mode signal which occurs in the shunt feedback configuration. This circuit therefore has the overload capability of the shunt feedback connection but retains the noise performance of the series feedback connection.

    This type of connection does of course require that the signal source is floating. Fortunately this is normally the case in audio applications as the use of series feedback can only be justified in pre-amplifier stages for use with low-level signal sources, e.g. magnetic pickup or tape head.

    The pre-amplifier design which is presented in the second part of this article utilises series feedback and the input can be connected conventionally as shown in Fig. 6 or in the feedback path as shown in Fig. 5. With the amplifier equalized for a magnetic cartridge, the last-mentioned connection gives a reduction in t.h.d. by a factor of 40 at high frequencies and high overload levels.

    ## Non-linearity of the differential mode gain

    A voltage-driven transistor is an inherently non-linear device because of the exponential relation between collector current and base-emitter voltage. A more linear mode of operation results if the transistor is current driven, but as
    

    Fig. 5. Series feedback connection with reduced common-mode input signal.
    

    Fig. 6. Equivalent circuit used for distortion analysis of a common-emitter stage - see Fig. 7, curve (g).

    ## Use of feedback

    Negative feedback can be applied to an amplifier by feeding back to the input an antiphase current or voltage which is derived from the output. The inverting amplifier shown in Fig. (a) uses current . feedback in what is generally referred to as a shunt feedback configuration, whereas the non-inverting amplifier in Fig. (b) uses voltage feedback in a series feedback configuration.
    

    The relative merits of shunt and series feedback in low-noise pre-amplifiers has been the subject of many letters to this Journal. ${ }^{3}$ Walker has shown conclusively ${ }^{1}$ that with the source impedances associated with a magnetic cartridge, the thermally limited signal-to-noise ratio of the series feedback connection is 13.5 dB better than that of the shunt feedback connection. It is generally agreed, however, that the shunt feedback connection
    has a better overload capability, i.e. lower distortion at high signal levels.

    The inferior overload capability of the series feedback connection is a result of the large common mode signal which appears at the amplifier input terminals with voltage feedback but which is not present in the shunt feedback connection. To understand the effect of this common mode signal on the amplifier performance it is necessary to characterise the amplifier by a differential gain $A_{d}$ and a common mode gain $\mathbf{A}_{c}$ Thus for the basic amplifier shown in Fig. (c) the output voltage is

    $$
    V_{0}=A_{\alpha}\left(V_{1}-V_{2}\right)+A_{d}\left(V_{1}+V_{2}\right)
    $$

    

    If series negative feedback is now applied to the amplifier as shown in Fig.(d)this equation becomes

    $$
    \begin{gathered}
    V_{0}=A_{d}\left(V_{i n}-\beta V_{0}\right)+A_{d}\left(V_{i n}+\beta V_{0}\right) \\
    \therefore A_{f}=\frac{V_{0}}{V_{i n}}=\frac{A_{d}+A_{c}}{1+\beta\left(A_{d}-A_{\partial}\right)}
    \end{gathered}
    $$

    most audio signal sources approximate to voltage sources the distortion arising from the exponential relation of the input transistor of an amplifier can be significant. Large signal levels can also produce distortion because of the dependence of many transistor parameters on collector current and collec-tor-emitter voltage but these problems can, with suitable design, be confined to the output stage of the amplifier.

    Local negative feedback can be used to linearize the output stage of a pre-amplifier but this same technique cannot be used on the input stage without compromising the noise performance. Distortion due to the input stage is therefore a limiting factor in the gain linearity of a low noise pre-amplifier because in theory, if not in practice, the output stage can be made as linear as required simply by increasing the feedback. Information concerning the distortion resulting from the exponential $\mathrm{i}_{\mathrm{c}}-\mathrm{v}_{\text {BE }}$ characteristic of a transistor is therefore necessary to allow the ultimate distortion performance of a preamplifier to be predicted.
    The distortion of a transistor can be found by expressing the collector
    current as a function of the input signal and then expanding the expression in a Fourier series which enables the distortion terms to be identified. Thus for the common-emitter stage shown in Fig. 6.

    $$
    \begin{aligned}
    & i_{\mathrm{c}}=i_{\mathrm{S}}\left|\exp _{\frac{e}{k T}}\left(V_{\mathrm{B}}+V \cos \omega t\right)-1\right| \\
    & \approx I_{\mathrm{c}} \exp \frac{e}{k T}
    \end{aligned}
    $$

    where $i_{s}$ is the reverse saturation current of $b-e$ junction, e electron charge, $k$ Boltzmann's constant, $T$ temperature in Kelvins, and $I_{c}$ quiescent collector current.
    This equation now has to be expanded as a Fourier series by writing

    $$
    \begin{aligned}
    & \exp \frac{\mathrm{e}}{k T}(V \cos \omega t) \\
    & =a_{0}+a_{1} \cos \omega t+a_{2} \cos 2 \omega t+\ldots
    \end{aligned}
    $$

    Unfortunately this expression cannot be solved analytically and it is necessary to resort to numerical methods.
    The method adopted takes the first ten terms of the Fourier series and gives $\cos \omega t$ ten equally spaced values between 0 and 1.0 thus enabling a set of ten simultaneous equations with ten
    where $A_{f}$ is the closed loop gain. The equation for $V_{0}$ can be rearranged in the form

    $$
    \begin{aligned}
    & V_{\mathrm{o}}=A_{\mathrm{d}} V_{\mathrm{tn}}\left[\frac{1-2 \beta A_{\mathrm{c}}}{1+\beta\left(A_{\mathrm{d}}-A_{\mathrm{c}}\right)}\right] \\
    & +A_{\mathrm{c}} V_{\mathrm{in}}\left\lceil\frac{1+2 \beta A_{\mathrm{d}}}{1+\beta\left(A_{\mathrm{d}}-A_{\mathrm{c}}\right)}\right]
    \end{aligned}
    $$

    which allows the differential mode signal $\mathrm{V}_{\mathrm{d}}$ and the common mode signal $\mathrm{V}_{\mathrm{c}}$ at the amplifier input to be identified in terms of the signal input voltage $\mathrm{V}_{\mathrm{ar}}$ Thus

    $$
    \begin{aligned}
    & V_{\mathrm{d}}=\frac{\left(1-2 \beta A_{\mathrm{c}}\right) V_{\mathrm{tn}}}{1+\beta\left(A_{\mathrm{d}}-A_{\mathrm{c}}\right)} \approx \frac{V_{\mathrm{tn}}}{1+A_{\mathrm{d}} \beta} \\
    & V_{\mathrm{c}}=\frac{V_{\mathrm{tn}}}{2}\left[\frac{1+2 \beta A_{\mathrm{d}}}{1+\beta\left(A_{\mathrm{d}}-A_{\mathrm{c}}\right)}\right] \approx V_{\mathrm{in}}
    \end{aligned}
    $$

    The approximations in these two equations make the assumptions $A_{d} \beta \gg 1, A_{d}$ $>A_{c}$ and $2 A \mathbb{B}<l$. Comparison of the two equations shows that in an amplifier with series negative feedback the common mode signal is approximately equal to the input signal and is greater than the differential mode signal by a factor ( $1+$ $A(B)$. In an amplifier with a high differential gain and a large amount of negative feedback the common mode signal can therefore be very much greater than the differential mode signal and the effect of the common mode gain on the amplifier performance may not be insignificant despite an apparently high commonmode rejection ratio.

    The effects of non-linearities in the differential and common mode gains on the closed-loop gain can be found by partial differentation of the equation for $\mathrm{A}_{\mathrm{f}}$ which gives

    $$
    \frac{\partial A_{f}}{\partial A_{d}} \approx \frac{1}{1+A_{d} \beta} \cdot \frac{A_{f}}{A_{c}} \text { and } \frac{\partial A_{f}}{\partial A_{c}} \approx 2 \frac{A_{f}}{A_{d}} .
    $$

    The approximations make the same assumptions as before. Using the relation

    $$
    \begin{aligned}
    & \delta A_{\mathrm{f}}=\frac{\partial A_{\mathrm{f}}}{\partial A_{\mathrm{d}}} \cdot \delta A_{\mathrm{d}}+\frac{\partial A_{\mathrm{f}}}{\partial A_{\mathrm{c}}} \delta A_{\mathrm{c}} \text { gives } \\
    & \frac{\delta A_{\mathrm{f}}}{A_{\mathrm{f}}}=\frac{\delta A_{\mathrm{d}}}{A_{\mathrm{d}}} \cdot \frac{1}{1+A_{\mathrm{d}} \beta}+\frac{2 A_{\mathrm{c}}}{A_{\mathrm{d}}} \cdot \frac{\delta A_{\mathrm{c}}}{A_{\mathrm{c}}}
    \end{aligned}
    $$

    This equation gives the well-known result that differential negative feedback reduces the effect of changes in differential gain on the closed-loop gain by a factor $(1+A \beta)$. However, differential negative feedback has no effect on the non-linearity of the closed-loop gain due to changes in the common mode gain and the resulting distortion ultimately limits the closed-loop performance of the amplifier. Thus, if the non-linearity of the common mode gain is of the same order as the non-linearity of the differential mode gain, any increase in differential negative feedback is only worthwhile in reducing distortion provided

    $$
    1+A_{\mathrm{d}} \beta<\frac{A_{\mathrm{d}}}{A_{\mathrm{c}}}
    $$

    In a practical amplifier design the useful limit of negative feedback will probably be reached well before this as some consideration will have been given to obtaining a linear differential gain characteristic.
    unknowns to be generated. The solution of these equations is relatively painless with a digital computer and the Fourier coefficients have been evaluated for values of the peak input signal amplitude, $\hat{V}$, incremented in 1.0 mV steps up to a maximum of 25 mV . The t.h.d. is then readily calculated from the Fourier coefficients and the results of this analysis are presented graphically in Fig. 7(g). Experimental points plotted on the computed curve were determined from measurements made with a Marconi Instruments wave analyser type TF2330A on a 2 N 5087 transistor operating at a collector current of $100 \mu \mathrm{~A}$. There is excellent agreement between the theory and the experimental results.

    Fig. $7(\mathrm{~g})$ clearly confirms that the transistor is an inherently non-linear device; even with input signal ampli-

    Fig. 7. Distortion curves calculated from coefficients in Fourier expansion of collector current as a function of input signal. Experimental points were measured on 2N5087 transistors with circuits of Figs. 6 and 8.
    tudes as low as 1.0 mV the t.h.d. is $1 \%$ whereas at 10 mV the t.h.d. has risen to $10 \%$. The application of this distortion characteristic to the prediction of the distortion performance of an amplifier is perhaps best explained by an example. Consider an amplifier with a common-emitter input stage designed for a maximum output level of 2 V peak with an open-loop gain of 2000 and a closed-loop gain (with feedback) of 200. Under these conditions the differential input signal to the amplifier is 1.0 mV and the distortion generated in the input stage is, from Fig. 7(g), 1\%. The amplifier has a loop gain of 10 and as feedback reduces the distortion by a factor $(1+A B)$, the distortion of the amplifier with feedback will be approximately $0.1 \%$.
    If better distortion performance is required the simplest design change is to increase the open-loop gain which, in addition to increasing the amount of feedback available to correct the overall non-linearity of the amplifier, reduces the input differential signal with a corresponding reduction in input stage distortion. (The effect of increasing the open-loop gain on the amplifier distortion is analysed in more detail in Appendix I). Ultimately, however, the maximum open-loop gain is limited by stability requirements and the distortion cannot be reduced indefinitely. In any case if very low distortion is the primary specification of an amplifier a better approach is to design for low inherent distortion rather than to try and straighten everything out with negative feedback. ${ }^{5}$
    An alternative to the single transistor ${ }^{\prime}$ input stage is the two transistor longtailed pair input stage. This type of transistor configuration has the advantage of being symmetrical so that
    even-order harmonics are not generated and therefore second harmonic distortion, which is the predominant distortion component in the case of a single transistor, is eliminated.

    Analysis of the long-tailed pair stage shown in Fig. 8 is given in Appendix II and the relation between collector current of $\mathrm{Tr}_{1}$ and input signal has been Fourier analysed using a similar technique to that used for the single transistor stage and the results are presented in curves (a) to (f) of Fig. 7. If the collector currents of $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{2}$ are equal, i.e. $\lambda=1$, second harmonic distortion is virtually eliminated and for input levels of less than 3 mV the distortion is two orders of magnitude lower than that of a single transistor. Thus if a balanced long-tailed pair stage were substituted for the single transistor input stage in the design example previously described the t.h.d. would now be $0.0004 \%$, a very respectable performance considering the small amount of feedback employed.
    An interesting point which emerges
    from the analysis is that distortion is independent of the $\mathrm{V}_{\mathrm{BE}}$ match between ${ }^{\text {- }}$ the transistors and this is confirmed by the close agreement between the computed curves and experimental points which were obtained using two transistors deliberately selected from a batch for the largest $V_{B E}$ mismatch, the mismatch being 24 mV at $\mathrm{I}_{\mathrm{c}}$ of $100 \mu \mathrm{~A}$ and $\mathrm{V}_{\text {CE }}$ of 5.0 V . Matching of the collector currents however is essential to obtain the lowest distortion. Examination of the harmonic content of the collector current shows that the increase in distortion as the collector currents are progressively mismatched is due, almost exclusively, to increased second harmonic generation.

    The experimental points plotted on the computed curves of Fig. 7 were obtained from measurements performed at 10 kHz but further experiments have verified that the results are valid over the whole audio frequency range.

    To be concluded

    ## References

    1. Walker, H. P., Low-noise audio amplifiers, Wireless World, May 1972, pp.233-7.
    2. Baxandall, P. J., Noise in transistor circuits, Wireless World, Nov. 1968, pp.388-92 and Dec. 1968, pp.451-9.
    Walker, H. P., Stereo mixer, Wireless World, May 1971, pp.221-5.
    3. Linsley Hood, J. L., Feedback amplifiers, Wireless World Letters, Jan. 1973, pp.11/12. Walker, H. P., Feedback amplifiers, Wireless World Letters, April 1973, pp.193-4.
    Taylor, E. F., Feedback amplifiers, Wireless World Letters, April 1973, p. 194.
    4. Middlebrook, R. D., Differential amplifiers, Wiley, 1963.
    Graeme, J. G., Applications of operational amplifiers, McGraw Hill, 1973.
    5. Stuart, J. R., An approach to audio amplifier design, Wireless World, Aug. 1973, pp.387-91.

    Appendix I - Effect of differential negative feedback on amplifier distortion

    $$
    \begin{equation*}
    =\frac{\mathrm{d} A}{\mathrm{~d} v_{1 n}(1+A \beta)^{2}} \tag{3}
    \end{equation*}
    $$

    Consider an amplifier with a non-linear gain A which can be expressed in terms of the input voltage $V$ in by the Maclaurin series.
    $A=A_{n}+\nu_{m n} \frac{d A}{d \nu_{m n}}+\frac{\nu_{m} d^{2} A}{2!d_{1 m}^{2}}+\ldots$

    If this amplifier is now incorporated in the feedback configuration shown in Fig. Al the
    
    closed-loop gain $A_{i}$ can similarly be expressed as a Maclaurin series of the form
    $A_{1}=A_{1}+v_{m n} \frac{\mathrm{~d}_{A_{1}}}{\mathrm{~d} v_{i n}}+\frac{v_{i n}{ }^{2} \mathrm{~d}^{2} A_{1}}{2!\mathrm{d} v_{i n}{ }^{2}}+$

    Now $A_{1}=\frac{A}{1+A \beta} \quad \therefore \frac{\mathrm{~d} A_{1}}{\mathrm{~d} A}=\frac{1}{(1+A \beta)^{2}}$

    So that $\frac{\mathrm{d} A_{1}}{\mathrm{~d} \nu_{i n}}=\frac{\mathrm{d} A_{1}}{\mathrm{~d} A} \cdot \frac{\mathrm{~d} A}{\mathrm{~d} v_{i n}}$

    Also $\frac{\mathrm{d}^{2} A_{1}}{\mathrm{~d} v_{1 n}{ }^{2}}=\frac{\mathrm{d}}{\mathrm{d} v_{1 n}}\left(\frac{\mathrm{~d} A_{1}}{\mathrm{~d} v_{1 n}}\right)=\frac{1}{(1+A B)^{2}} \cdot \frac{\mathrm{~d}^{2} A}{\mathrm{~d} v_{1 n}{ }^{2}}$
    $-\frac{2\left(\mathrm{~d} A / \mathrm{d} v_{\mathrm{in}}\right)^{2}}{(1+A \beta)^{3}} \approx \frac{1}{(1+A \beta)^{2}} \cdot \frac{\mathrm{~d}^{2} A}{\mathrm{~d} v_{\mathrm{in}}{ }^{2}}$

    Substituting equations 3 and 4 in 2 gives

    $$
    \begin{aligned}
    \left.A_{1}=\frac{1}{1+A \beta} \right\rvert\, & A_{11}+\frac{v_{1 n}}{1+A \beta} \cdot \frac{\mathrm{~d} A}{\mathrm{~d} \nu_{1 n}} \\
    & \left.+\frac{v_{1 n}^{2}}{2(1+A \beta)} \cdot \frac{\mathrm{d}^{2} A}{\mathrm{~d} v_{\mathrm{m}}}{ }^{2}+\ldots \right\rvert\,
    \end{aligned}
    $$

    Comparison of this with equation 1 shows that the effect of negative feedback has been to reduce the coefficients of the terms of the power series representing the non-linearity by a factor $(1+A \beta)$ compared with the open-loop configuration.
    Increasing the open-loop gain of a feedback amplifier is therefore doubly beneficial in the case of distortion which is dependent on the amplitude of the differential input signal e.g. distortion associated with the exponential $I_{C} V_{C B}$ characteristic of the input transistor(s); not only is the input differential signal reduced but the amount of feed-back available to correct for non-linearity is increased.

    Appendix 2 - Analysis of the long-tailed
    pair pair

    The collector currents of a long-tailed pair (Fig. A2) are
    
    $i_{1}=i_{\mathrm{S}}\left|\exp \frac{e V_{1}}{k T}-1\right| \approx i_{\mathrm{s} 1} \exp \frac{e V_{1}}{k T}$
    $i_{2}=i_{\checkmark 2}\left|\exp \frac{e V_{2}}{k T}-1\right| \approx i_{s 2} \exp \frac{e V_{2}}{k T}$
    $\therefore \frac{i_{1}}{i_{2}}=\frac{i_{-1}}{i_{\zeta_{2}}} \exp \left|\frac{e}{k T}\left(V_{1}-V_{2}\right)\right|$
    $=\frac{i_{\hookrightarrow}}{i_{\hookrightarrow 2}} \exp \left|\frac{e}{k T}\left(\hat{V} \cos \omega t+V_{H}\right)\right|$
    When $\hat{V}=0$, i.e. in the absence of any signal input, let $i_{1} / i_{2}=\lambda$. Then
    $\frac{i_{1}}{i_{2}}=\lambda \exp \left|\frac{e \hat{V} \cos \omega t}{k T}\right|$

    But $i_{1}+i_{2}=i$
    $i_{1}=\frac{i \lambda}{\lambda+\exp -\left|\frac{e \hat{V} \cos \omega t}{k T}\right|}$.

    ## News of the Month

    position, which will not happen until next March or April. There was, at one time, some doubt as to whether the satellite could last longer than six months because of the hostile environment in which it is now working. However, ESA are fairly optimistic that they will be getting information from the satellite for at least a year. In addition, had the Geos programme been fully successful, there would have been another mission, this time on ESA's own Ariane rocket, using the flight spare from this mission to carry out experiments in a similar orbit to that now forced on the original satellite, so the information coming back is of some value. Nevertheless it is not backed up by data from a successful Geos mission

    The seven Geos experiments were designed to measure magnetic, electric and particle fields at various fixed longitudes in the Earth's outer magnetosphere. Before the launch ESA said it "will improve our knowledge of the behaviour of the Earth's magnetosphere when perturbed by particles emitted in solar flares. It will also provide a unique opportunity for mag-netospheric-ionospheric conjugate experiments." The Geos was to have been used as the reference satellite for the International Magnetospheric Study (IMS), a three-year research programme with experiments launched on sounding rockets, balloons, spacecraft and aircraft by America, Europe. Japan and the Soviet Union.

    What is remarkable about the Geos experiments is that the fields they are
    examining are so weak: the instruments aboard can detect magnetic variations, for instance, one thousand millionth of the strength of the Earth's magnetic field. Indeed, one of the difficulties of designing Geos was that the experiments would interfere with one another. For that reason, once in orbit, Geos sprouted four axial, two long radial and two short radial booms each carrying different sensors. Thus each experiment has least effect on its fellows. The long radial booms carrying the two electric sensors, for example, are 25 m long, and had to be extended over a period of a fortnight.
    A decision will be taken in September on whether or not to launch a second Geos, depending on whether the money can be found - the NASA contract frees NASA of any liability and the satellite was not insured - and bearing in mind that the next launch date would be at around the same time as Geos I will prove most useful, Spring next year.
    A spokesman for one of the experimenters said that he thought the rocket malfunction was "fishy". The launches of ESA and other satellites planned for this year have had to be rescheduled by NASA following damage caused in May to another American Delta rocket, allegedly by a sheared bolt. This has affected ESA's Orbital Test Satellite (OTS), which was ready for luunch on June 16. The spokesman said it was strange that these accidents should be happening in a launcher which had had so much success in the past.

    ## IEE urges Home Office to discuss spectrum allocations in open forum

    Saturation of frequency bands up to at least 20 GHz may be approached in the next ten years, the Institution of Electrical Engineers says in a report to the Home Office on the use of the radio spectrum. "This is a major matter of public concern and steps should be taken to widen the recognition and understanding of this problem beyond those directly concerned with the allocation of this resource." The IEE proposes that, to overcome the shortage, users should no longer have the right to assume that, once allocated, a frequency or set of frequencies is theirs in perpetuity. "Assignment of frequencies should be carried out in a similar way to the leasing of land. Any frequency assignment would be made for, say, ten to 30 years . . . but reviewed every, say, five years . . " C harges could be levied depending on location in the spectrum, aerial coverage, radiated power, time-bandwidth product and nature of service. The revenue could be used to develop and, if necessary. replace equipment.

    The IEE also recommends that "the
    problems of frequency allocation should be considered in open forum by an advisory body which comprises sufficient independent members to provide a wide range of expert opinion." The body would have six tasks.

    * To review demands for radio sertices,
    * To review technical developments which might alter the use of the spectrum.
    * To recommend long term policies on spectrum use.
    = To show how long and short term use of the spectrum can be balanced.
    = To say what research could help make better use of the spectrum. The report adds that international bodies like the International Telecommunications Union could encourage other countries to take much longer term view of the allocation of radio frequencies.
    The Institution stresses that land mobile radio is one of the most important parts of the radio service: "It can be argued that this is the major service for which complete justification of spec-
    trum allocation can be made." Ihe report also says: "Mobile Services and navigational aids should have a high priority compared to services such as broadcasting to fixed locations where alternatives to radio communication, like cable transmission, are available." Television should abandon the frequencies between 41 and 68 MHz (Band 1) in favour of the mobile services, though these might have to share frequencies with rural radio services. Band 2, however ( 87.5 to 100 MHz ) should be allocated exclusively to f.m. sound broadcasting because of congestion on medium wave and the expanding needs of education, but the broadcasters should, in general, be more ready to share channels. "Cable is not at present a viable alternative for nationwide coverage," though it could be considered an alternative means to distribute sound programmes in towns. "It would be technically possible to accomplish most tv broadcasting by cable, including optical fibre, but it would not be economically feasible in the near future. If the demand for frequencies ultimately forced a change to cable for to the change would be most practicable in urban areas where the requirements for frequencies for mobile services is (sic) also most acute. The freeing of spectrum for mobile services in urban and suburban areas, while still providing a broadcast service in rural areas, will provide a severe challenge for the planners of the future. Meanwhile cable is likely to be the means of providing additional services without making extra demands on the spectrum." Where cable is suitable its use should be encouraged if it will be economic in the long term.
    - The report was initiated by the IEE Electronics Divisional Board long before the Home Secretary asked for submissions on the 1979 WARC. But although work began a year ago the authors seem pleased that its publication coincided with submissions from other sources as part of a widening campaign for more openness in the Home Office. The report contains no information about its authors, at least one of whom did not want to be named, and this may tend to weaken its argument about more open transactions elsewhere. However, at the meeting to publish the report some of its authors did identify themselves. The chairman of the working party was Mr Charles Sandbank of STL, and its membership included Mr Charles Hughes of Post Office Research, Mr David Withers, also of the Post Office, and Dr Kenneth Milne of Plessey. Total permanent membership was nine, with two or three occasional additions. The BBC, for example, say they took part in only one meeting.

    At the meeting Mr John Brinkley of Redifon said the leasing idea held dangers for radio users, and Mr James

    Redmond, the director of BBC Engineering, said he would be taking it very seriously because, if adopted in whatever form, it would cost the Corporation a lot of money. This recommendation seems likely, then, to cause some controversy.

    But the reaction to the proposal about openness was universally welcomed. Mr

    Sandbank told Wireless World that the working party had encountered "strong feeling" in favour of the open forum approach to both frequency allocation in this country and on the British attitude to the World Administrative Radio Conference. He said those in favour of opening up the discussion had been very vociferous.

    Radar: without clutter, and with better legibility
    Forty years after Watson-Watt helped to develop radar its marine users are beset by six main problems: sea clutter, caused by reflections from rough seas or patches of shallow water; rain clutter; radar interference from other vessels; receiver noise from the user's own ship, giving poor contrast; weak echoes, faint at any range and hard to see; and small echoes, which are difficult to see at long range. Some of these can be overcome by the now standard provision of manual gain, sea clutter and rain clutter controls. However, these need constant and skilled adjustment, and all echoes may be reduced in level, some being lost entirely.

    Now Decca have developed a new radar technique called Clearscan which appears to reduce these considerably.
    

    Photographs show the improvement obtained with Decca's new Clearscan radar circuitry. Above, the improved picture.
    

    To begin with the sea and rain clutter are reduced by electrically disconnecting the normal gain, sea clutter and rain clutter manual controls. The gain of the video amplifier now has an adaptive signal superimposed upon it. The signal is slow acting but, according to Decca, "generally follows the shape of the clutter returns on the incoming video while being largely unaffected by the normal wanted signals from ships, navigational marks and coastlines." In effect the adaptive signal varies with the amount of clutter about. Large blocks of echoes are thus broken up. This thins the coastline, but enables the navigational features to be picked out. The slow response of the adaptive signal is such that it has to be supplemented by a further signal to reduce clutter in the first mile. This is derived from the amount of the clutter on the previous radar pulse.

    The next step, the VP2 circuitry, is to make reductions in the other causes of illegibility. First, receiver noise is suppressed by a threshold circuit. Second, signals above the noise threshold are amplified to a nearly-uniform brightness level, causing weak echoes to become almost as bright as strong ones. Interference is then removed by pulse correlation circuits which compare succeeding echoes with the stored previous echo. Only echoes shown on both and at the same range are displayed. This filters out interference from transmissions by other ships, since these do not usually occur at the same range on successive pulses.

    Finally, to make small echoes more discernible, particularly on the longdistance ranges, any pulses longer than half a microsecond beyond 2.5 miles are enlarged by the addition of an internal-ly-generated artificial pulse to the real one.

    The basic circuitry is added to the equipment merely by replacing the existing video board with one which contains the normal video amplifier and a marine radar processor which contains the appropriate automatic circuitry. This will be standard on all new equipment. The VP2 is an optional extra, available from early next year, say Decca, for around $£ 500$. Existing equipment can be adapted, but the VP2 is not available by itself.

    ## APRS attracts even more visitors

    Each year the elaborateness of concert sound reinforcement equipment, particularly that used by rock groups, approaches what has been taken for granted in recording studios for a long time. This becomes rapidly apparent as you walk round the exhibition organised by the Association of Professional Recording Studios. This year's, held at the Connaught Rooms on June 15 to 17 . was the tenth. Cadac, for example, had a photograph on their stand of a mixing console they had built for live performances by Jethro Tull that would do credit to any studio, and the thought occurs that moving such equipment around must be difficult and costly, especially when the power levels used, according to an engineer on the Gauss stand, are typically around 10 kW for a Pink Floyd concert. Gauss have long specialised in high power speaker equipment. Their design includes a cone suspension that seems unique to this company in that there are two spiders, separated by a light spacer, so that the cone is supported at three places instead of the normal two. This means that the speakers are much easier to assemble, and that the cone is more stable, according to Cetec Audio, who import the speakers. Just as last year, they were also showing the 1200 series tape duplicating system, also from Gauss.
    In contrast with the sound reinforcement equipment, that used by the broadcasters seems to grow more compact in certain applications. Alice, for example, were showing a portable mixer with six channels and two groups which measured only 0.5 m by 0.4 m , yet it managed to combine microphone or line inputs, three equalisation ranges, echo or foldback send and panning on each input channel, and limiting with variable threshhold and bypass on the outputs. There is an internal power supply which Alice say has a $400 \%$ current overload margin. It's also well-finished and thoroughly British.
    Tweed Audio were showing similar mixers. Some of those on the stand were already marked out for delivery to such customers as radio Monte Carlo and Border TV, and other orders are coming from Tyne Tees and Yorkshire TV, they say. While Alice have been making mixers for many years, however, Tweed's product has been around for less than a year, and the firm is making only its third appearance at APRS. They are now also moving into the test equipment market, and were showing for the first time a microvolt meter with IEC, DIN, CCITT and CCIR filters, average, true r.m.s, peak and slow reading. Its range is between $110 \mu \mathrm{~V}$ and 110 V and there is a self calibration facility and outputs for oscilloscope and pen recorder. Tweed say they will next produce a low distortion oscillator.

    Another instrument on show, this time by Court Acoustics, was a real time spectrum analyser, the RTA C2. This is a suitcase design with an l.e.d. display showing relative levels at 28 points along the frequency scale from 31.5 Hz to 16 kHz at $1 / 3$ octave intervals. Eleven levels are shown. In addition there is a full range l.e.d. meter which reads r.m.s. or p.p.m. for voltage ( dBm ) or sound pressure level measurements. There are two line and one microphone inputs, and a built in pink or white noise generator which can drive either speakers from an internal amplifier or a balanced line.
    The 1977 show was an occasion for looking back as well as forward, since this year is the 100th of recorded sound. For many the industry has become obsessed with technology at the cost of the musical content. The technical distance covered was well-illustrated on the Neve stand, where they also looked back, but only fifteen years, to the first console they built. This was displayed with the information that it had been bought by Recorded Sound Ltd, which about five years ago changed its name to Nova Sound. Neve say that to date their consoles have been sold into 58 countries. In contrast they also showed the Neve Computerised mixer, which we described in March, 1977, p. 39.

    AKG, at their first APRS since the recent management changes, showed a number of new products, including a two-diaphragm, variable-pattern condenser microphone; a series of multichannel mixers and a new portable model, the SM2000, in six and 16. channel versions; and a family of five new disc cartridges.

    BASF seemed to be going all out to promote their Unisette quarter-inch tape cassette. As always in such a case their main difficulty is in providing the machines in which the cassettes can be used, but such a machine was on display on the BASF stand. The Unimatic machine, shown for the first time in the UK, was made by Nordisk.

    Among the tape machines on display was a bright yellow multitrack from Telefunken, available from Hayden Laboratories. The M15A can accommodate up to 32 tracks and a built-in Telcom C4 compander, but the model on show was a quarter-inch version.

    Easy tape location is now a standard requirement in studios, either from add-on locator units, or built in. The Studer A80, for example, shown by F. W. O. Bauch, is a well-established machine ${ }_{r}$ with an automatic tape position locator. A less well-known name in studio than in broadcast and semi-professional use is Technics, a National. Panasonic brand name. They were concentrating on showing disc turntables, amplifiers and cassette machines.
    from their 1977 range, but they did show the RS 1500 reel to reel machine, a three speed, three motor unit with an iso-loop capstan and head layout which may be familiar to those who have watched 3M professional tape machines over the years. National say the RS1500 has a wow and flutter figure of $0.018 \%$ r.m.s. at $38 \mathrm{~cm} / \mathrm{s}$. Certainly it was very effectively demonstrated at a recent seminar in Japan.
    To commemorate the centenary the organisers had arranged an exhibition of items borrowed from the London Science Museum, some with spoken commentaries giving examples of the sound from the early sound machines, such as the voice of Florence Nightingale. This appears to show a change, however slight, in the organiser's policy of discouraging any activity which might siphon potential customers away from the exhibition. The APRS committee has even got as far as discussing whether or not to change the venue in future to a place where they could also present papers, a development that many would welcome, and would go some way to convincing the APRS's critics that it was interested in more than delivering customers to the manufacturers.

    That the show was well-attended is shown by the fact that the catalogue was sold out by the third day. APRS committee chairman Jacques Levy told Wireless World that he estimated the number of foreign visitors at over a quarter of the total, some 2,400 . Last year the number of foreign visitors was about 14\%, then a record. This year's visitors saw over 80 exhibitors on more than 100 stands. For the recording industry the APRS is still, as one exhibitor put it. "The only major exhibition in this country".

    ## Blumlein lived here"

    The first electronics engineer to be honoured with a "lived here" plaque is the prolific Alan Dower Blumlein, 1903-1942, inventor of stereo recording and reproduction, a form of negative feedback pre-dating Black, the cathode follower, the so-called "Miller" integrator, the inductively-coupled ratioarm bridge, the long-tail pair - which are only a few of his 128 patents. The blue and white plaque was put up by the Greater London Council on Blumlein's one-time home at 37 The Ridings, Ealing, and was unveiled on June 1 by Sir Alan Hodgkin, Fellow of Trinity College, Cambridge, who had worked with Blumlein on radar during the 1939-45 war.

    Most of Blumlein's inventions were made while he was working for EMI (which he joined in 1929 as the Columbia Gramophone Company) and it was EMI who organized the
    unveiling ceremony. They say they hope the plaque "will belatedly bring to the public's notice Blumlein's historic achievements in the field of electron-- ics." The whole event was the result of a petition to the GLC by Mr F. P. Thomson, a one-time colleague of Blumlein at EMI, who is writing a biography of the inventor.
    Blumlein was killed in an aircraft accident in 1942 while testing an $\mathrm{H}_{2} \mathrm{~S}$ radar prototype. A full account of his work was written by M. G. Scroggie, "The Genius of A. D. Blumlein" in September 1960 issue, pp. 451-456. We record the death of Percy Wilson, long associated with the Gramophone and an early audio experimenter and writer. He was responsible for what is recognised as the first book on audio, "Modern Gramophones and Electrical Reproducers," written in 1929 with G. W. Webb. He was born in Halifax on March 8, 1893, went to Oxford and had a distinguished career in the Navy, during the first World War, at the Board of Education and at the Ministry of Transport. He was technical adviser to the Gramophone from its founding in 1924 until 1938 and technical editor from 1953 to 1966. He was a leading figure in the Audio Engineering Society, the British section of which he chaired when it began. He was made an honorary member of the AES in 1972 and was on the Awards Committee for several years. He leaves a widow, Winifred, and two sons.

    ## EEA soldiers on courtesy of the USSR

    The latest annual report of the Electronic Engineering Association underlines the heavy reliance of the industry on military contracts. No detailed figures are available, but unofficial estimates put the proportion of EEA members' total sales of capital equip. ment for military use at around a quarter. The proportion of radio and radar equipment thus sold is much higher.

    The annual report for 1976 stresses that, like the other European countries and America, "much of our industry relies heavily on defence work to advance the state of the art." A recent agreement between the US Department of Defense and our Ministry of Defence enabling British manufacturers to sell to the American market means that the dependence of those manufacturers on defence projects is likely to increase. Even though British military projects, in the words of the report, "bear more than their fair share of public expenditure cuts," it concedes that the electronic content of British defence spending is increasing, and the industry is anxious that imports of defence equipment be avoided where possible.
    As a supplement to the main report

    EEA has published a statistical analysis of the industry's performance during last year. Sales in every sector increased and, though once again no figures are available, military spending overshadows the accounts. "The value of exports." the report says of the Aerospace industry, "of complete new aircraft remained at just over $£ 103$ million, but home deliveries of aircraft and helicopters appear to have doubled in value from the $£ 183$ million of 1975 and sales of guided weapons and parts have risen by about one quarter from £109 million." While the civil aircraft industry continues to decline, "a number of military aircraft and helicopters are in full production."
    Exports of new airborne radar and navigational equipment, partly influenced by demand for weapons systems, rose a staggering $164 \%$ to nearly $£ 50$ million. Yet UK deliveries of medical equipment to the home market fell despite a surge of private donations of computerised axial tomography equipment. Imports of medical equipment rose $40 \%$ to $£ 22.8$ million, and exports went up to $£ 50$ million as a result of scanner sales. The positive trade balance in medical equipment was £19 million.
    Altogether EEA members sold $£ 806.3$ million worth of radio and radar equipment and E 629.4 million of computers. Exports were $£ 295.2$ and $£ 318.8$ million respectively, or $47 \%$ when account is taken of work done. This compares with total sales of $£ 1097.2$ in 1975, $£ 438.3$ million of which was exported, or $43.8 \%$ accounting for work done.
    The new president of the EEA is MrR. H. Newham, leader of the UK delegation to the NATO industrial advisory group. As at March this year the EEA had 40 full and five associate members.

    ## BBC, NRDC move closer

    The two paths followed by the BBC's matric $H$ development and the NRDCsponsored Ambisonic work are not yet merged despite a recent press statement from the BBC, which said the two parties involved had agreed "to share their knowledge and experimental experience ..." But it is progress, for at least it means the two are now talking to each other.

    The announcement follows periods of difficulty in getting the two together: their relationship with overseas interests has been better than between themselves. As pointed out in our January issue, the Ambisonic scheme was not included in the BBC tests results of which were given in the May issue - because of a last-minute change in terms of reference. It took contact at the top level to bring about tests of certain aspects of the Ambisonic scheme.

    The position of the BBC in surround sound changed when, prompted by suggestions that the BBC was holding back introduction of a service even though tests had reportedly shown a preferred system, it decided to go ahead with matrix $H$. Since then the pace has quickened and the BBC has been engaged in a public relations exercise to promote H at home, in Europe and in the U.S.A.

    With a meeting of Working Party S of the EBU technical committee due (June 14-17), the BBC was anxious to avoid appearance of a split in the UK camp, especially with the IBA in the midst of evaluating the Ambisonic 45J system, as well as H .
    The statement does however appear to mark an interesting alteration in the BBC's terms of study of surround-sound systems. It says the object is to obtain "the optimum unified coding specification for a system which can be used with both gramophone records and tapes as well as broadcasting". (The italics are ours.)
    Acknowledging the similarities between H and 45 J , the BBC say, "It is expected that any system refinements that may be agreed will be sufficiently small not to impair the performance of existing matrix H or 45 J decoders". This could be an indication that the BBC may decide that the H and 45J options are close enough in two-channel form that there is little to be gained by alteration. Indeed it has been remarked that the BBC is only interested in the NRDC decoding technology.

    But the similarities in their twochannel codings tend to cover up that the Ambisonic scheme is an overall technology embodying all parts of the chain and incorporating a range of codes to satisfy differing needs, whereas the H code is a particular one designed to meet the BBC's need.

    - As part of Liverpool's jubilee celebrations, IBA station Radio City, specially commissioned a performance of Mahler's Eighth Symphony from the Anglican Cathedral. Using the Ambisonic 45J codel the two-channel broadcast took place on June 23. According to an IBA engineer who listened to the decoded result "it was much better than stereo could have been - it sounded real". The IBA has not made any further formal application for such broadcasts, but it seems almost certain that it will.

    It could only happen in the US department. It is now possible (our American correspondent George Tillett writes) to buy a computerised, solar-powered tombstone that automatically sprinkles water round the grave of the deceased. And when a visitor comes within range a proximity switch operates a tape recorder and dispenses incense .

    # Microwave intruder alarm - 2 

    # Construction of Doppler radar to detect movement 

    by M. W. Hosking, M.Sc., M.I.E.E., British Aircraft Corporation

    Based on the Doppler frequency shift principle, this domestic intruder alarm system uses straightforward and simple techniques, together with materials that are readily available to everyone and brings what has hitherto been a costly and professional system within the reach of a domestic. budget. Most of the components can also be used to make a simple voice communications link, with the main addition of an audio modulator. Construction of a voice link, including the microwave transmitter and receiver will be described in a later article.

    The Dopper transmitter/receiver module described so far uses a separate detector diode in what is really a single-ended superhet receiver, with the transmitter playing the role of local oscillator and mixing with the reflected signal at the detector. Mixing and the extraction of the Doppler beat frequency takes place by virtue of the non-linear voltage-to-current relationship of the Schottky barrier detector diode. Mixing would take place whatever type of semiconductor device were used as the detector so long as it had a non-linear characteristic. The Gunn device transmitter has a decidedly non-linear current/voltage relationship and thus may be used as a self-oscillat.ing mixer, thereby eliminating the detector diode and associated waveguide cavity.
    A means of achieving this is shown in Fig. 7(a) wherein the Doppler frequency is extracted from across a suitable resistor, $R_{26}$, inserted in the Gunn bias circuit. For best results and stable periormance, $\mathrm{R}_{26}$ has been chosen as 56 ohm . As the full Gunn drive current also passes through this

    Fig. 7. Gunn device cán be used as a self-oscillating mixer and (a) shows how the Doppler signal can be extracted from a series resistor in the supply line. A general view of the transmitter/mixer is shown in (b).
    
    resistor, the supply voltage $V$ must be increased to compensate for the resulting voltage drop. With the chosen value of $R_{26}$, the new supply requirements can be provided by the existing circuitry and no changes are needed other than adjusting the voltage with $\mathbf{R}_{30}$. At the nominal supply current of 140 mA , the voltage drop across $\mathrm{R}_{26}$ will be almost 8 V and thus $V$ must be adjusted to about 15 V to maintain the necessary 7 V across the transmitter.

    A further consequence of this technique is that the power supply ripple, albeit small, appears across the input terminals of the amplifier by virtue of their being connected across $\mathrm{R}_{26}$. This ripple lies within the Doppler passband and, as the returned Doppler signal is of the order of microvolts, the signal-to-noise ratio will be degraded. The additional components $\mathrm{R}_{27}$ and $\mathrm{C}_{25}$ provide further filtering of this rectified ripple. If this system is used, do not fit $\mathrm{R}_{10}$ to p.c.b.

    The Gunn device is, of course, designed primarily as a microwave signal generator and lays no claim to fame as a low-noise detector of microwave signals. Consequently, its receiver noise figure is very high and its effective range is much less than that of the previous transmitter/receiver module. For this reason, it is best to operate with a higher gain antenna than the 5 dB one used before. As a compromise between a higher directivity to give greater range and a wide beamwidth to give angular coverage, a gain figure of 13 dB has been chosen, giving a 3 dB beamwidth of about $22^{\circ}$. Fig. 8(a)
    

    Fig. 8. Small horn antenna can be fabricated as in (a) to increase the $s / n$ ratio and is fitted as in (b).

    Fig. 9. Complete intruder alarm system, designed to fit in a book sleeve is shown in (a) and a view of the controls on the back panel in (b).
    shows constructional details of the antenna and Fig. 8(b) gives a general picture of the complete assembly.

    For use as a self-oscillating mixer, the preferred Gunn transmitter assembly is the Mullard CL 8630S. This has an almost identical transmitter specification to the CL8960 given previously; it is supplied set to the correct frequency (without antenna) and is fully compliant with the Home Office transmission regulations. The cost of the CL8630 is approximately half that of the CL8960 but the trade-off is a greatly reduced range. Successful operation of this alternative system with the 13 dB antenna was obtained up to a range of about 3 m which is good enough for the protection of $a$ medium-sized room, a hallway or the stairs.

    For those who wish to construct their own transmitter module, then the design for the voice link transmitter could be used. The cost, however, would not be very much different and the final unit would have to be vetted by the Home Office. As the frequency tolerance on radar intruder alarms is only $\pm 12 \mathrm{MHz}$ as opposed to $\pm$ 200 MHz for the voice link, home construction of the microwave cavity in this instance is not advocated unless suitable frequency measurement is available.

    ## Power supply

    Due to the sensitivity of the amplifier and trigger, together with the low Doppler voltages, it is important to have ripple-free, well-regulated supplies to
    
    the Gunn transmitter and electronics. The transformer has two independant secondary windings, each rated at 3VA and an interwinding screen which is taken to mains earth. Use of the i.c. $-\mathrm{Tr}_{7}$ series regulator combination has several advantages: it is relatively cheap, it allows fine adjustment of the Gunn supply voltage via $R_{30}$ and it gives about 70 dB of mains ripple rejection. Ripple on the $\pm 8 \mathrm{~V}$ supplies to the amplifier is very small as only about 5 mA per rail is consumed under quiescent conditions.

    When connected to the Doppler module, the negative side of the Gunn supply is automatically joined to the 0 V rail of the amplifier. This is because one terminal of the Gunn device and one terminal of the detector diode are both connected to the casing of the module. It was also found preferable, from the point of suppressing mains transients, to have the 0 V rail floating and only the transformer screen actually earthed.

    The prototype was constructed in the style of a book and has operated from my own bookshelf for weeks without trouble. Fig. 9 gives a general view of the final assembly which in the case of the prototype fitted very neatly inside the covering of a well-known cookery book set. A printed circuit board has been designed for the electronic components; overall size of the board is about $80 \mathrm{~mm} \times 115 \mathrm{~mm}$. Construction of the intruder alarm is straightforward and the following sequence os operations is suggested.

    - Select a suitable material for the back panel such as 3 mm hardboard or plywood and cut it out to the same width as the printed circuit board but about 20 mm longer. Lay the blank p.c. board on the panel, aligning one end of each and mark out the four fixing holes. Drill out these holes in the panel, together with those for the controls as shown in Fig. 10.
    - Cut out the base from 12 mm thick plywood or wood to the same width as the back panel and 110 mm long.
    - Position the mounting structure for the Doppler module and transformer as shown in Fig. 9 and drill out the fising holes. Ensure that the front face of the Doppler module is 10 or 11 mm back toward the back panel from the edge of the base.
    - Attach the Doppler module, alarm and transformer to the base using countersunk bolts with the mains input tags on the transformer closest to the back panel.
    - Assemble the panel-mounted components and screw the panel to the base.
    - Assemble the components onto the p.c. board bearing in mind that care and neatness at this stage can save hours of frustration later with dry joints and mistakes.
    - Solder the connecting wires to the components on the back panel and the mains lead to the transformer. Clamp the mains lead to the baseboard with an insulated wire staple to avoid strain on
    

    Fig. 10. Back panel control layout showing hole positions.
    

    Fig. 11. The p.c.b. is clamped in position to the back panel as shown leaving a clearance for the panel controls.
    the transformer tags. Solder the earth lead to the transformer screen ${ }^{-}$terminal and connect with a piece of wire to one of the bolts securing the transformer down.

    * Bolt the main board to the back panel as shown in Fig. 11, leaving at least 20 mm clearance between the two.
    * Solder the connecting wires to the main board and to the transformer and check that the l.e.d. is properly located in its clearance hole on the back panel.

    It is very important to keep connecting lead lengths to the absolute minimum to avoid interference pick-up. If preferred, a piece of heavy-gauge aluminium sheet could be used as the back panel and base; in which case this would be earthed via the transformer clamping bolt.

    The kit available for the system contains a suitable enclosure, but some constructors may wish to design their own. Complete freedom of choice is possible as regards style, materials and shape except for the area immediately in front of the transmitter/receiver module. No electrically conducting material, in any form, must cover any part of the radiating aperture or the performance will be impaired. Dielectrics such as paper, cloth, wood, plastic can be used, but the material in front of the antenna should be less than 1 mm thick and should come no closer than the 10 mm mentioned above. A complete enclosure will muffle the alarm, so either the top of the box should be left off or else cut a 25 mm diameter hole above the alarm.

    ## Operation

    The intruder alarm has been designed to sit neatly and unobtrusively on a table or shelf for long periods of time and to operate reliably when required. This type of radar Doppler system is superior in all-round performance to most other systems and thousands per year are installed in professional and commer-
    
    cial premises. The cost is high, but this project brings a well-proven, professional technique within reach of domestic budgets.

    The electrical supplies to the circuits are activated on plugging in to the mains supply and, in view of the low power consumption, it is recommended that a 500 mA fuse be fitted into the mains plug.

    Two controls are possible with the system to suit various sensitivity requirements and to give some choice over the size of reflection needed to trigger the alarm. Firstly, $\mathrm{R}_{28}$ controls the voltage gain of the second stage which, in effect, determines the range at which a given moving, object will trigger the alarm. Secondly, $\mathrm{R}_{29}$ can be used to set a voltage threshold which must be exceeded before the $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ combination will switch on.
    Control $\mathrm{R}_{29}$ is useful as a supplement to the gain control and also to offset interference such as refrigerators switching on and off.
    After assembly carry out the following procedure:

    - Leave the supply lead disconnected from the Gunn device and check the $\pm$ 8.2 V supply rails to the p.c. board.
    - Connect a 47 to 56 -ohm, l-watt resistor across the Gunn supply in place of the Gunn device and adjust $\mathrm{R}_{30}$ to give $7 \pm 0.1 \mathrm{~V}$ across this resistor.
    - Connect the +7 V line to the Gunn terminal, applying the soldering iron for no longer than five sconds.
    - With $\mathrm{R}_{28}$ set to give minimum gain, adjust $R_{29}$ to maximum sensitivity, that is minimum resistance between $D_{10}$ and emitter of $\mathrm{Tr}_{3}$.
    - Turn the gain up with $\mathrm{R}_{28}$ until a level is reached when self-oscillation occurs; indicated by the l.e.d. being permanently lit. At this point. turn the gain down with $R_{28}$ until the l.e.d. goes off and remains off. The system is now at maximum sensitivity and the l.e.d. will flash only when something is moving - a point to observe when setting up.

    If the system is to operate close to a source of interference, then $\mathrm{R}_{29}$ can be adjusted to set a threshold level to prevent false triggering.

    The on-off control to the alarm is a matter of personal choice. Either the switch on the back panel can be used with the built-in delay, or else an extension switch connected via the jack plug and socket.

    ## Regulations

    In common with other devices that transmits radio waves, a licence is required for its operation. The intruder alarm system here, which has been given the name Intruder 1, has been tested by the British Home Office and has been given official type approval. This means that, provided it is built exactly to the design given, the constructor or ready-built purchaser of the Intruder 1, will be granted a licence on application. Cost of the licence is $£ 1.20$
    

    Kit version of intruder alarm features different p.c.b. from author's original. as supplied by M. R. Sagin.
    and lasts for five years and an application form is included with each kit or ready-built system.

    | Transmitter specification is |  |
    | :---: | :---: |
    | Frequency | $10.687 \cdot 12 \mathrm{M}$ |
    | Max. power | 10 |
    | Antenna gaın | less than 20 |
    | Out of band radia below carrier | reater than |
    | Temperature range | 5 to + 40 |

    ## Circuit alteration

    Due to the wide variation generally found in s.c.r. holding current and the tolerance on relay resistance, it is possible in some cases for the s.c.r. in Fig. 5 to latch due to leakage current through the relay coil while the full rail voltage is building up through the RC delay. This could be caused by the operator moving out of the room and could result in an effective delay of about 10 s as opposed to the designed $45-60 \mathrm{~s}$. To preclude this inconvenience, an improved delay circuit has been suggested by Tony Haywood of Integrex which prevents latching occurring until the voltage has built up to the vicinity of the board rail voltage. The alarm kit and associated p.c.b. have been changed to take this improvement into account, and the revised circuit diagram will be published in the September issue. A series combination of $\mathrm{C}_{4}$ and $R_{4}$, from the emitter of $\mathrm{Tr}_{1}$ to 0 V , should have been included in Fig. 5. Capacitor $\mathrm{C}_{8}$ should be $1 \mu \mathrm{~F}$ not $\ln \mathrm{F}$ and $C_{13}$, shown as 10 nF , was incorrectly labelled $\mathrm{C}_{12}$.
    ACKNOWLEDGEMENT. I would like to acknowledge the help and advice given by my friend and colleague Ken Griffiths in the design of the electronics circuitry and his unerring knack of fault-finding.

    HF predictions
    Circuit reliability is the product of the probability of ionospheric reflection and the probability of achieving a desired signal to noise ratio and is thus at a maximum somewhere between FOT and LUF. The term FOT, which is the French equivalent of OWF (optimum working freqency), is thus a misnomer since it relates only to skywave probability. However since LUF is dependent on many factors which cannot be generalised it is found satisfactory in practice to take FOT as being what it says it is.
    
    
    
    

    ## RADIO AND AIR SAFETY

    I was disturbed by your leader in the June issue attacking the quality of air/ground v.h.f. communications, particularly since you appear to have pre-judged the result of an incomplete accident investigation on the basis of unconfirmed "leaks".
    It is disingenuous to compare the quality of aeronautical communications with broadcasting, since the requirements are completely different. In broadcasting the aim is high-fidelity music reception with a good signal. The prime requirement for air/ground communications is intelligible speech reception under marginal conditions. The audio bandwidth of 2.5 kHz is near optimum for this purpose, and also enables the 60 dB adjacent channel rejection requirement to be met with 25 kHz channel spacing. (V.h.f. broadcast receivers have minimal adjacent channel rejection with 200 kHz channel spacing.) Channel spacing is dictated by frequency planning constraints; the radio horizon of an aircraft at $40,000 \mathrm{ft}$ is 450 km , and only 18 MHz of the v.h.f. spectrum is allocated to aeronautical communications - less than to sound broadcasting.

    The audio quality of the airborne transmitter is limited mainly by the bandwidth and the microphone. The microphone must above all be robust, lightweight, reliable and have good noise-cancelling properties.

    The choice of a.m. was made thirty years ago, but the capture effect of f.m. would be undesirable, since it can be important for a weak and distant transmitter to be able to break into a crowded channel.
    As for "crude technology," an aircraft v.h.f. transmitter/receiver must be capable of tuning 720 channels at the turn of a switch, with a frequency stability of $\pm 0.003 \%$ under extreme environmental conditions. I have not seen comparable capability in broadcasting equipment. In general state-of-theart technology is employed throughout.
    It should be borne in mind that air/ground communications have to cater for all airspace users, from Concorde to a Tiger Moth, without imposing excessive costs on anyone; and that full international standardisation is essential.

    The best prospect for improvement in the future is offered by the L-band data link systems currently under development. These
    will use keyboards and alphanumeric displays to supplement v.h.f. voice communications.
    R. A. Keall,

    Hawker Siddeley Aviation Ltd,
    Hatfield,
    Herts.

    I read with interest your leader in the June issue "Radio and air safety" and feel obliged to support your remarks regarding the diabolical audio quality of air-ground communications.

    A recent search for a reasonable quality 720-channel airborne radio that would produce a little more than muffled noises revealed that none was available of British manufacture and that the complete light and general aviation communications equipment market is dominated by the Americans. I was informed that British manufacturers ignore the civil avionics market because it is too small to support the enormous investment required due to complex Civil Aviation Authority regulations, approvals, environmental tests, requirements for spares holdings and handbooks etc.

    Can it really be that British bureaucracy has effectively strangled a prospectively lucrative manufacturing area that could certainly provide better equipment, employment and overseas earnings? If this is so, then we've only got ourselves to blame if the audio quality obtainable from the overpriced imported equipment is below par since the lack of competition promotes the lack of improvement.

    ## T. R. Wiltshire,

    Mortimer,
    Reading,
    Berkshire.

    ## NO CO-ORDINATION ON MOBILE RADIO

    In your February 1977 issue, your editorial suggests the need for a public debate of the needs of private mobile radio and the formulation of clear and specific recommendations to be put to those who will represent the UK at the forthcoming WARC 1979.
    The debate seems to be taking place; due in no small measure, I suspect, to your own promotional activities. Articles, reports and readers' letters continue to appear in the relevant technical publications; the Mobile Radio Users Association has conducted a survey and published its findings; the Home Secretary has asked for (and presumably received - although we may never be privileged to know) submissions from anyone interested; Pye has made its Pannell Report publicly available. The EEA has reported its findings to the Home Office and it has been reported that the Conference of European Manufacturers' Association has reached some unanimous conclusions also. The academics have not been slow getting into print either, and recently the IEE have held a discussion meeting on spectrum management.
    I suppose none of this can be considered to be "public" debate but neither is it secret, classified or held to be confidential.

    The problem now is that whilst a researcher might detect a common and vital thread running through all of this activity, no one is picking up the ends and tying them
    together. There is no coordination. There is no central body for the public production of a distilled viewpoint. The Home Office have opted out of such a role, and perhaps rightly so - after all no other United Kingdom government authority conducts its administrative affairs in public.
    John Brinkley recently suggested in the May letters column that as far as mobile radio is concerned, WARC 1979 may turn out to be a non-event. Well, that would be a shame at the least. It will, however, be extremely serious for our economy if it is also the view held by our delegation, in so far as future spectrum management in the UK is concerned.
    Perhaps Mr Brinkley has hit upon the underlying principle of the often criticised, yet secret Warden report?

    Time is running out, yet all that is needed is recognition of the national value to the community at large which would stem from the increased use of mobile radio and a determination to encourage its expansion by making sure now that adquate frequency space is available in the future.
    The only debate required is one seeking common agreement on four major issues: 1 . The instrinsic national value of mobile radio; 2. The standard of service required; 3. The expansion rate to be encouraged; and 4. The balance between the cost of technology and the return to the user. The rest will fall into place.
    H. W. Whelan,

    Ely,
    Cambridgeshire.

    ## ADVANCED PRE-AMPLIFIER

    I read with interest Mr G. Nalty's contribution in June letters. I should like to refute his imputation that I do not know what I am talking about as follows.

    I do not think I have failed to grasp the point of Mr Nalty's letter, as he implies in the June issue. However, he appears himself to be not quite perfect in his grasp of some of the principles of electronics.

    Firstly, it is not realistic to regard an amplifier with a finite slew rate as a combination of an infinitely fast amplifier and a subsequent low-pass RC filter. Slew rate limitation normally arises because the main voltage-amplification stage can only drive a finite amount of current into and out of a capacitor (usually that component providing dominant-pole compensation), and hence the normal symptom of a poor slew rate is a linear approximation to the desired output signal rather than an exponential waveform. For example, a sine-wave suffering slew-limiting takes on the shape of a triangle waveform. It is therefore more meaningful to consider a finite slew rate as placing bounds on the maximum positive and negative values of $\mathrm{d} V / \mathrm{dt}$, since this is after all the way in which this quantity is usually measured. These constraints may well be different in the positive and negative directions - another factor that Mr Nalty's model does not reproduce.

    Secondly, I find it remarkable that Mr Nalty's equations show that increasing the amount of negative feedback on an amplifier increases the closed-loop gain. The correct equation for the closed-loop gain of a
    feedback amplifier with finite open-loop gain is of course:

    $$
    A_{\text {closed-loop }}=\frac{A}{1+b A}
    $$

    where $A=$ open-loop gain and $b=$ feed-back factor

    $$
    =\frac{A}{1+A / G} \quad \text { if } \quad G=1 / b
    $$

    I assume that Mr Nalty's point in this section is to show that closed-loop gain is affected by open-loop gain variations. This is of course true, but a simple calculation using ball-park figures of $1000 \times$ for open-loop gain and $10 \times$ for closed-loop gain shows that the gain deviation from the ideal (infinite loop gain) case is less than 0.1 dB . I do not think that a gain error of this order can give rise to audible effects, no matter which of Mahler's symphonies is used as a test signal. In the practical case, the tolerances of the equalisation components may well exceed this figure, and this is of course true for both active and passive methods of equalisation.
    Finally, having been made aware of Mr Nalty's concern with "very small differences" in subjective effect, I am amazed that he lightly shrugs off the fact that his passive equalisation design is so desperately short of headroom that audible clipping is a common occurrence. This underlines the need to consider disc input overload as a parameter of primary importance in the design of modern audio equipment.

    ## D. R. G. Self,

    London E17.

    ## REALITIES BEHIND HIGH TECHNOLOGY

    When will engineers and technologists pull their heads from the sand and refuse to perpetrate the industries of death and destruction?
    Are the individuals involved so mindless that they cannot imagine the desolation of having a near and dear one ripped to bloody shreds or charred and twisted beyond recognition. Over emotional? Possibly - but these are the realities behind the facade of high technology.
    Your leader "The dugs of war" (November 1975 issue) listed "spin offs" of nuclear missile development. I am sure an equally impressive list would follow the development of a totally non-aggressive defence system a shield. For immediate employment the fields of safety, medicine and energy supply offer an abundance of opportunities for innovation.
    Will the technology of the 1970 s be remembered as brutal weapons systems and tv games machines? I hope not.
    James V. Cousins,
    Reading,
    Berkshire.

    ## ELECTROLYTIC CAPACITOR TESTER

    The article in your May issue by $A$. Drummond-Murray describing an electrolytic capacitor tester is misleading in its initial, general comment.

    While I agree with the statement that the dielectric is formed in the first instance, from this point onwards it is either too general or it
    totally ignores the existence of the families of capacitors with the prefix "solid."
    In the case of the solid tantalum electrolytic, as manufactured by my company, one of the main advantages is its inherent stability and lack of depolarisation. This aspect is continually under proof through a comprehensive environmental programme which includes long-term "shelf life." In addition I have a wide range of samples which have lived in a Stevenson screen on the factory roof since 1965 , subject to all the vagaries of an English, industrial, climate: these are checked at three-monthly intervals, without any reforming, and apart from some surface corrosion are as good today as they were in the beginning.
    While I cannot speak with authority on the "solid aluminium" 1 have always been under the impression that it also was resistant to natural depolarisation.
    E. Nelson,

    Union Carbide U.K. Ltd,
    Durham.
    Mr Drummond-Murray replies:
    I read Mr Nelson's letter with great interest, and broadly agree with his comment. I would, however, point out that a survey of electrolytic capacitors that is contained in $11 / 2$ column inches could not reasonably be described as complete. Certainly the opening lines are loosely worded, and I did not wish to imply that tantalum capacitors were especially prone to depolarise, which as Mr Nelson points out is not so with his capacitors.
    The capacitor tester was specifically designed for use with the commoner "domestic aluminium" capacitors, as Mr Nelson perhaps suspects. Naturally in any specific application the tester could be modified, but the equipment would lose versatility if the "reform" facility was removed. which on the tester described is bypassed with a switch. A. J. Drummond-Murray.

    ## 'LOSS OF INFORMA. TION" CONCEPT

    Mr Vereker's rather confused letter in the June issue does not seem to introduce any new single thought, let alone concept, on the matter of amplifier evaluation.

    In engineering terms a "concept" must be a term of analytic if not synthetic value allowing scientifically valid explanations to be proposed and preferably also predictions to be made. "Loss of information" is not such a concept, being merely the result of a mental slithering on the skid-patch of subjectivity.

    Thus we are asked to understand that from Mr Vereker's "wider point of view" (how wide can a point be?) intermodulation distortion does not lead to "loss of information". Then on to his disclosure (para. 7) that "loss of information" occurs during amplification "latch-up" - when, as we all know, periods of $100 \%$ intermodulation distortion occur. Such a flexible notion as this is hardly going to appeal to the right people.

    Bringing matters more in line with other current discussions, it does seem clear that a purely subjective approach to amplifier performance appraisal can sift out extremes of performance and often also help identify quality groups. In this respect - and to show how truthfully subjective one can afford to be - I am prepared to say that in my experience the very best of transistor pre-amps, when compared with the very best
    of valve pre-amps, seem to show marked loss of information right across the audio range and an equally important loss of overall realism.
    Of course this observation, which I believe to be quite as valid as the claim that Beethoven's 9th Symphony is very good music, has itself no direct impact on engineering as it stands at present.
    John Greenbank,
    Tangent Acoustics Ltd,
    Hardwick,
    Cambs.

    ## CALCULATORS AS STOPWATCHES

    Your January 1977 issue had a Circuit Idea under the heading "Stopwatch facility for calculators". A multivibrator was applied to a Sinclair Memory calculator. Now that programmable calculators are coming down in price, it may be interesting to consider the stopwatch facilities offered by such calculators, without requiring additional electronics. Here are some available on the Texas SR56:

    - Simple stopwatch (with no display until the end of the programme). Register 1 (RI) holds a total which increases by unity each time the programme completes a loop. RI is initially set to zero. When we execute a programme based on the flow chart:
    
    we find that the programme counts to 532 in 60 seconds. When we wish to time an eyent, we press the R/S key at the beginning and end of the event and then recall the contents of R1. Simple proportion (which can of course be done on the calculator) gives the duration of the event in seconds.
    - Simple digital counter with display of seconds. Whereas the simple stopwatch above could measure duration in seconds and decimal fractions of a second, but had no display during the event to assure the operator that everything was working correctly, this method gives assurance that all is well, but does not allow time to be measured in fractions of a second. As the seconds go by, the time that has elapsed from the start of the event is displayed in seconds. Initially R1 holds zero. The action begins and
    ends when we press the R/S key. When we press this key at the end of the event which is being timed, the display may not hold the desired number of seconds, since we may press the key at any step in the programme which is being executed by the calculator; we therefore recall the contents of R1 and read off the duration of the event in seconds.
    Before we give a flow chart, we have to refer to the "pause" and "no operation" instructions. When the programme comes to the "pause" instruction, the calculator is instructed to display the contents of the display register for about half a second. It is necessary to kill time so that the calculator may take just one second to run through a loop. The calculator has a "no operation" function, associated with a NOP key, the effect of which is to transfer control to the next step. The transfer of control takes a short time and we can use it as a means of killing time. We can vary the number of NOP instructions to regulate the time required for one loop. If we have too few, the calculator is "fast"; too many, and it is "slow". My calculator required 17 successive NOP instructions to keep time.

    The flow chart is given below:
    

    - The calculator used as a digita clock, with display of minutes and seconds. In this application, the display shows $\mathrm{M}_{1} \mathrm{M}_{2} 0000 \mathrm{~S}_{1} \mathrm{~S}_{2}$; the digits at $\mathrm{M}_{1}, \mathrm{M}_{2}$ represent minutes; those at $S_{1}, S_{2}$ represent seconds (Because the calculator suppresses leading zeros, in the first minute, digits corresponding only to $\mathrm{S}_{1} \mathrm{~S}_{2}$ can be seen.) Register 0 (R0) holds the sum of the minutes. Register I (R1) holds the sum of the seconds. Register 2 (R2) holds 1000000 . The $t$-register holds 61 . R0 and RI initially hold zero. The flow chart above should explain the way the programme works

    The effect of this programme is that, towards the end of the first minute, the
    display is $58,59,60,1000001,1000002,1000003$
    . We have not much scope for regulating the clock, with only two NOP instructions to play with; however, with the programme as given, my calculator loses only two seconds in ten minutes. Those who want a clock with the accuracy of a quartz crystal are not likely to be interested; those who want some fun writing a programme, may be.

    Those who have calculators which permit "direct register arithmetic" will find that this facility shortens programmes slightly; I used it in the programmes given above.
    T. Palmer,

    Acton Technical College,
    London, W3

    ## R.F. BREAKTHROUGH IN AMPLIFIERS

    C. Streatfield of Dorset, in his "criticism of the criticism" of the advanced pre-amplifier (April letters), comments adversely against the connection of a capacitor directly between base and emitter of the first disc input stage, and asked "why not to earth?"

    Being a retailer who handles transmitting equipment as well as high fidelity equipment. I have probably become involved more than most in the suppression of high fidelity amplifiers for radio frequency breakthrough. The reason for putting a capacitor between base and emitter for radio frequency suppression is that "it works". Unfortunately the input transistor of most pre-amplifiers is apt to operate as a crystal diode detector, and by far the most effective cure is putting a capacitor in this position, whereas connecting it between the base and the chassis with some designs seems to affect the high frequency response. What is probably far more important, this is far less effective at
    suppressing shortwave transmissions and is completely ineffective in preventing pick-up in the v.h.f. range.

    It does seem ridiculous that still so many items of audio equipment are completely unprotected from r.f. breakthrough. Quite apart from the absolute chaos which would occur if an a.m. citizens' band were to come into operation, proper r.f. suppression much reduces clicks and plops from refrigerators, and also seems to improve the reliability of high fidelity equipment by removing "spikes" from the circuit.

    On recent legislation, retailers who sell equipment which picks up unwanted shortwave transmission have technically "supplied equipment which is not of the quality demanded", and while I have never heard of anyone being prosecuted, they would seem to be in a rather shaky position if someone were to make an official complaint.

    Our reaction has been to try and get our suppliers to fit 10 p worth of disc ceramics, but we have not always been successful
    Harry Leeming, G3LLL.
    Holdings Photo Audio Centre,
    Blackburn.

    ## INTERFERENCE <br> FROM AMATEUR STATIONS

    1 was glad to see Mr Doo's letter in the June issue indicating BREMA recognition of television interference problems. However, in the light of past experience I, and no doubt other radio amateurs, would like to be assured that any filter fitted to tv sets is not yet another "cure all" which works perfectly in the lab between wideband 75 -ohm termin ations but in the field may only marginally reduce or even enhance both the reception and radiation of interference.

    Thanks to the work of RAE Farnborough it is now possible to design filters with a guaranteed minimum loss irrespective of termination. Surprisingly, engineers seem reluctant to exploit this possibility. Further information would be welcome.
    B. Priestley,

    Langley.
    Slough,
    Berkshire.

    ## Rhythm unit - 3

    ## Rhythm selection for M253

    Switching circuit of Fig. 14 is for selection of the 12 rhythms of the M253AA i.c. Remaining circuitry of a 12 -rhythm generator using this i.c. is shown on page 74 of the April issue, also the basis of a 15 -rhythm unit using the M252* i.c. A suggested printed board pattern and component layout are available for the M253 i.c. and sound generators shown, and boards made to this SGS-Ates design are available (see April issue).
    In the "keyboard" switching circuit, Fig. 14, inset diagram shows connections that are common to all 12 switches, one section serving to connect output three to the snare drum (SD) or claves (CL) circuits in Fig. 12, as determined by the rhythm selection. Output three can also be used to modulate a chord played on an organ.
    In organ use, output one allows a "basso alternato" accompaniment using two chosen notes. Each time a beat of the bass drum occurs (output two) a note emerges from the basso alternato; output one serves only to establish which of two notes will be played. In Fig. 15 the tonic appears when output one is absent and output two is present. The other note, a fifth, appears when both outputs one and two are present.

    ## Concluding note

    - By resetting the clock generator to zero instead of to one (positive logic), a bar will begin half a clock period later than the release of the reset.
    - By leaving the clock generator free and resetting only the M252 or 253 . there are two possibilities at the release of reset
    - if the clock is at ' 0 ' the rhythm starts immediately from the beginning of the bar
    - if the clock is at ' 1 ', the bar begins as soon as the clock switches over. and there is therefore a random delay which varies from about zero to half a clock period.
    - With no reset applied, the clock running and no rhythm selected, the down beat signal occurs every 32 elementary times, or every 64 clock pulses (for both i.cs).
    * Keyboard/mechanical encoder for the M252 circuit is available on request.

    Fig. 15. For organ use, this circuit switches between two chosen notes for an alternating bass effect, and is driven from outputs one and two of M253.
     switch contacts can be eliminated if the snare/clave switching is not required.
    

    # Montreux television symposium 

    Exhibition impressions of 10 th TV symposium

    by J. F. Golding

    To the Briton visiting the Maison des Congres in June, 1977 the first impression was one of satisfying familiarity. Of the exhibitors from fifteen countries more than a quarter were British firms, outnumbering their nearest rivals, the Americans, by $40 \%$ and with more stands than the French and Germans put together. One became accustomed to seeing Benny Hill or Bruce Forsyth on monitor screens since EMI had distributed a PAL signal feed to certain other stands. Such encouraging signs of British marketing overseas seemed appropriate when the BBC were mounting the world's biggest outside broadcast to cover the Queen's Silver Jubilee celebrations.

    The most spectacular technical advances in equipment on display were in the electronic news gathering (e.n.g.) and outside broadcast fields, and in the application stemming from the development of microprocessors and associated devices, of digital techniques to signal switching and special-effects applications. New equipment was, however, on show in all areas including telecine, video and sound recording, picture displays and test instrumentation.

    ## Electronic news gathering

    The growth of e.n.g. stems from the development of broadcast quality portable colour cameras, which may, in varying degrees, be used instead of 16 mm film cameras for television journalism. The approach to television journalism varied considerably with each manufacturer, enabling the broadcaster to choose between high mobility or local studio facilities according to his needs.

    Marconi Communications Systems, for instance, were showing a studio quality miniature o.b. vehicle, the Mini Mobile, equipped with two Mk VIIIP portable cameras. a v.t.r, vision and sound mixers, picture and waveform monitors and a microwave-link transmitter, all powered from an on-board generator. This compact unit was driven right into the main exhibition hall at Maison des Congres, illustrating its ability to bring the news studio very
    close to many locations, and to allow considerable mobility for the portable camera into otherwise inaccessible places.

    Similarly EMI were using a number of their latest type 2008 portable colour cameras on their stand and, with their o.b. vehicles, for outside shots both in man-pack form and tripod mounted. This new unit is somewhat smaller and lighter than the Marconi Mk VIIIP, the camera head weighing only 3.63 kg with its $12: 1$ zoom lens and three-inch viewfinder. It is used with an a.c. powered electronic unit about the size of a small suitcase and weighing 10.4 kg .
    

    Fig. 1. The new colour monitor from Bosch Fernseh. The basic instrument can be expanded by the addition of plug-in boards into a PAL, NTSC, SECAM, or PAL-M monitor: in one form it may display the input test signals as levels.
    

    Fig. 2. Ampex VPR 10 portable videoproduction recorder complements the VPR 1, and can be used in electronic news gathering.

    Philips were showing for the first time a British-built lightweight portable colour camera system identified as the LDK15L. It comprises three mobile units: the camera head, a back pack carried by an assistant and a final processing unit, which feeds the radio or cable link to the base station. Lightweight cable links allow the camera to operate up to 200 metres from the processing unit, which can be powered from the a.c. mains supply or via a converter from a $12 / 24$ volt battery. From the same company's Eindhoven works they were showing an extremely versatile modular camera system known as the Video 80 which can rapidly be converted for studio, electronic field production (e.f.p.) or e.n.g. use as well as a number of specialised applications. In its e.n.g. form the camera becomes a one piece unit, powered from a rechargeable battery belt, capable of delivering a fully encoded colour signal directly to a Philips portable video cassette recorder or to a short-haul radio link transmitter. When used with the cassette recorder this system is the electronic counterpart of the cine film camera, allowing one-man operation complete with sound channel.

    A very light portable colour camera system, the Microcam, was also shown by Thomson-CSF. Complete with its belt-carried electronics pack this system weights a mere 5.27 kg plus the weight of its batteries, given as 0.9 kg per conservative hour. This unit can provide direct video drive to a radio link transmitter or to a portable v.t.r. again forming the true electronic counterpart of the film camera for one-man operation.
    Other e.n.g. camera systems included the Sony self-contained portable colour camera complete with a sound channel and companion portable 1 -inch video recorder, while Ampex took the ambitious step of fitting their lightweight BBC-2 colour camera to the new Wescam stabilized mounting on board a helicopter - which ran into trouble with the local authorities for landing on Lake Léman. This incident was tele-
    vised by the EMI o.b. team and appeared on a number of monitor screens at the exhibition.

    Of course, the camera equipment is only part of the complete e.n.g. system, which shows its advantage over cine film only when the pictures can be relayed back to the broadcasting station for live transmission or direct recording in a news programme. Although several exhibitors were able to supply various link systems, Microwave Associates Limited of Dunstable offered a complete microwave transmission system from camera to studio. They have engineered a three-hop link, (1) from camera to a mobile relay van, (2) from the van to a fixed omnidirectional receiver terminal at 2 GHz and (3) from this terminal to the studio via either a cable or microwave link. The second and third links follow largely standard practice, although the high maximum power exceeding 15 W - of the mobile 2 GHz transmitter is something of an achievement, giving up to 40 miles range with a good line of sight transmission path. It is the short haul link from the camera to the van that usually presents the difficulty, requiring a highly portable system with acceptable immunity from loss of quality due to multiple reflection.

    Microwave Associates seem to have solved the problem with their MA-13CP miniature link operating in the 13 GHz band. Specially shaped horn antennas produce a circular-polarized wave, which considerably reduces multipath fading effects because the direction of polarization of the reflected wave is reversed so that it is not accepted by the receiving antenna. The transmitter is extremely compact, weights only 3.2 kg and may be operated from a rechargeable battery pack that can provide power for eight hours continuous operation. The wide beam angle allows
    rapid setting up, so that the system can be set up by the cameraman and "on air" within a few minutes at city hall, stadium, parade route or other location.

    ## Studio Equipment

    If e.n.g. presented the novelty, it was studio equipment that provided the spectacle. The magnificent Bosch Fernseh set-up was more like a miniature television theatre than an exhibition stand; a miniature studio complete with cameras, colour monitors, control equipment and seats for the audience, the scene being dominated by an Eidophor projection system with a screen 3 m wide showing brilliant colour picture of superb quality. The show matched the equipment. A female pop trio, making full use of an audio system that seemed to deliver at least a hundred watts, attracted a considerable audience who applauded enthusiastically when the entertainment finished, but melted away when the stand manager took the microphone to comment on the equipment.

    The excellence of the products was undeniable but there seemed a lack of technical innovation. A very much smaller EMI display of chroma-keying with scene-sync was more interesting. A foreground camera focused on a dart player throwing at a plain blue board on a plain blue wall while a second camera focused on a fixed background card showing the inside of an English pub.

    Fig. 3. Marconi's Mini-mobile. It can be equipped with two Marconi MkVIIIP portable television cameras, a v.t.r. vision mixer, audio mixer. sync generators, colour and monochrome monitors, a waveform monitor, vector display and a microwave transmission link. The generator is on the truck.
    

    The well known chroma-keying technique was employed to give a final picture of the player in the pub throwing at the dart board. The new technique of scene-sync employs a servo link between the foreground camera and the scene-card holder, which moves the card horizontally as the foreground camera pans to follow the actor, thus maintaining the realism.

    Studio cameras, dollies, tripods and so on were shown by all the leading manufacturers, together with lighting equipment by Thorn and Rank. An important item of studio equipment that has, however, received little attention until recently is the colour camera test chart and some interest was shown in the Porta-Pattern range of test chart systems shown by Crow of Reading. These include an advanced spherical illuminator for transparencies, which gives completely even illumination over the whole test chart area regardless of camera angle, a portable test chart system for e.n.g. applications, and in Porta-Pattern format the new BBC Test Card 61 which may be used instead of a live model for final matching adjustments on colour cameras.

    ## Monitors and Displays

    Without question, the most arresting television picture display at Montreux was the Eidophor projector. The workings of the system were described in Wireless World in October, 1976, p68.

    Conventional colour and monochrome picture monitors were, of course, seen on many stands, and a high proportion of them came from Crow, whose own stand was backed by an array of colour and monochrome monitors showing off-air pictures and pictures supplied on a PAL signal feed by EMI. Although primarily a television systems engineering company, Crow are also international distributors of Barco colour monitors; and, at the Montreaux exhibition, they launched their Windsor range of broadcast quality monochrome monitors, built to Crow specifications by Cotron Electronics Limited of Coventry.

    Both Barco and Cotron monitors from Crow were to be found on several other stands. The Crow Berkshire multi-standard colour receiver/moniitor, for instance, does not claim full broadcast standard of picture quality, but provides a very acceptable colour picture on the 26 -inch screen of its precision-in-line (p.i.l.) tube. Moreover it can function as a multi-standard monitor, instantly switchable to PAL, SECAM or 4.43 MHz NTSC colour coding, or as a receiver tunable over all European broadcast bands, switchable to system codes $G, H$ and $I$ and delvering a colour coded video output to drive other monitors or equipment. The advantages of this versatility on the exhibition stand, where compatibility
    with other equipment is needed, are obvious, and even Philips were glad of the British company's loan of three Berkshires.

    Most manufacturers are critical of the p.i.l. tube and Trinitron tube as studio picture monitors on the grounds that resolution is generally slightly inferior to that of a broadcast quality shadow mask tube operating in a properly adjusted scanning system. Tektronix, however, take an opposite view, claiming that the shadow mask tube is susceptible to moiré effects due to interference between the scanning line structure and the triad dot structure. Montreux provided an ideal opportunity for comparing the Tektronix Trinitron monitors with shadow mask monitors by other manufacturers and it seems that either tube can provide excellent results provided the associated electronic circuits are tailored to compensate for its shortcomings.

    Where resolution is the critical factor, such as camera focusing, most engineers would, in any case, use a monochrome display, although the Barco HIREM colour monitor, using a shadow mask tube with a triad dot spacing about half that of a conventional broadcast monitor, can provide the equivalent of monochrome sharpness from an RGB input signal.

    ## Video Recording

    For better or worse an "Ampex" is a video tape recorder in the minds of many, just as a Hoover is a vacuum cleaner. At Montreux the owner of the name demonstrated that an Ampex could also be a high quality camera, a character generator or even a complete system, but the name has crept into our language to mean a v.t.r., and that is likely to stay with us for a long time. The Ampex v.t.r. equipment on show did little to change this view. Both helical and quadruplex recorders were on display. Helical recorders (for colour-encoded and monochrome signals) included examples of the very successful VPR series, and there were special demonstrations of model VPR-10, the new portable 2 -inch machine designed for e.n.g. The company were also showing their AVR series of quadruplex recorders (RGB plus luminance), with three AVR-3 recorders, claimed to be the first "intelligent" v.t.r. in the world, having computerized editing features and super high-band pilot capability.

    Ampex were not showing their com-puter-controllable ACR-25 automatic cassette recorder, designed for rapid selection of short items such as commercials or trailers. This was perhaps a pity because Crow were showing their remote control unit for this machine, designed in conjunction with Southern Television to permit simple and flexible programming of the ACR-25 from a television station's presentation control desk. The Crow unit effectively adapts
    

    Fig. 4. The Bosch KCK studio camera with automatic line-up and operational technology as used in the Bosch Fernseh studio demonstration at Montreux.
    the ACR-25 to the special needs of the British and European commercial television broadcaster, which are rather different from the Americans for whom the machine was originally designed.

    Video tape equipment was demonstrated by a number of other manufacturers, including Philips, ThomsonCSF, RCA and Bosch Fernseh. Only Ampex and RCA appeared to be showing both helical and quadruplex machines, but all manufacturers offered machines with built-in or add-on digital editing facilities. These facilities naturally varied from one manufacturer to another, but the basic principle employed is that of storing individual frames in a digital memory. The frames are immediately displayed on the associated monitor, giving a good quality, sustained still picture for editing without risk of wear or damage to the tape.

    Bosch Fernseh carry the principle a stage further with provision for storing individual frames on an archive tape, with automatic search and access to any desired frame, which is then held in the digital memory to provide a still picture output signal. Over 100,000 single pictures can be stored on a standard 90 -minute tape, and the maximum access time is claimed to be about three minutes.

    A much simpler single picture storage system, the Arvin Echo, was demonstrated at Montreux by Crow, who market it in the UK and certain other European countries, and by its manufacturer the Echo Science Corporation. In the Arvin Echo each complete frame is recorded on a separate track of a double-sided interchangeable flexible magnetic disc, which can store up to 200 frames on each side, making a total maximum of 400 pictures per disc. The
    tracks on a single side are numbered sequentially so that, in the replay mode, any one of up to 200 recorded frames can be called up instantly by simply pressing the appropriate buttons of a standard numeric cluster. Alternatively the machine can be set to replay a sequence of tracks under either manual or automatic control. In the recording mode, the track is selected and a "Record" button pressed. On releasing the button the machine records the next complete frame of an incoming colour or monochrome video signal.

    In contrast with the bulky equipment normally associated with still-picture television signals, the Arvin Echo machine is the size of a small suitcase and weighs only 38 lb .

    ## Signal Switching and Control

    The routing of the large numbers of video and audio signals that go to make up a television programme is now effected by electronic crosspoint switching matrices operated by digital control systems based on computer logic techniques. Switchers were on display by the Grass Valley Group, ELA (a Telefunken subsidiary), Bosch, Sandar and Crow.

    The basic job of the switcher is that of routing sound, vision, test and ident signals from a number of sources to the appropriate destinations. Within a broadcast station, sources may range from individual cameras, video recorders, telecines and so on to complete studios or even other stations while final destinations are usually transmitters, other stations or networks. Because of the wide variation in individual requirements modern switchers are invariably of modular construction, normally built up in banks of video crosspoints with associated distribution amplifiers, audio crosspoints, and control logic together with a keyboard for mounting on the control desk.
    

    Since the distribution tasks are tending to become increasingly complex the trend in switcher design is to exploit the development of logic devices and techniques to simplify the actual desk panels required to achieve complex switching sequences. In the latest systems it is possible to commit several matrix formats to a storage memory in advance and to call them up individually when required at the touch of a single push button. In the latest systems the logic circuits are clocked by the field sync pulses so that the actual switching action takes place during the vertical interval, giving minimal visual interference with the displayed picture.

    ## Special Effects

    Development of high-speed I.s.i. logic devices has opened the door to a wide variety of digital television signal processing techniques, ranging from timebase correctors to versatile standards convertors such as the now famous DICE developed by the IBA.

    Perhaps the most fascinating area of application, however, lies in the field of special effects, where a single microcomputer-controlled unit can now produce all the well-known effects previously achieved with optical methods, such as insertion picture compression and positioning, hall-of-mirrors and kaleidoscope effects, and a large number of other effects outside the scope of optical or analogue electronic systems.

    Several of the leading television equipment manufacturing companies are using digital techniques in varying degrees.

    Quantel Ltd of Caterham, Surrey, who have just introduced a small, low-cost digital standards converter and a timebase corrector, were demonstrating a range of versatile frame-store and synchronizer systems. These permit insertion of a second still or live image of any size into any part of the display. Joystick positioning and continuously variable expansion or compression of the second image display enable the system to be used for any of the effects hitherto achieved by optical methods,

    Fig. 5. The Berkshire Colour receivermonitor can function as a line-fed sound and vision monitor or as a master receiver with video and audio line-feed outputs.
    controlled by a single operator and without the inevitable loss of picture quality that results from analogue or optical techniques. Indeed, the discriminating viewer at home could probably recognise the use of digital equipment for these effects by the excellent quality of the inserts.
    The American Grass Valley Group's equipment ranges from signal routing switchers to comprehensive digital mixers and special effects equipment with built-in chroma-key switching and character generators. In addition to normal mix and fade effects, provision is made for a wide variety of pushbutton-selected geometric wipes with either hard or soft transitions, together with some very spectacular and seemingly impossible effects such as the simulation of a magnifying glass of variable strength and size, which can be positioned anywhere on the screen.

    One of the most useful effects available is the shadow key system, which allows natural shadows to be included in a chroma-keyed insert for added realism. And, not surprisingly, provision is also made for digital scene-sync whereby a digitally stored background maintains the correct perspective with a panned foreground insert.

    ## Test Equipment

    In as complex a system as colour television transmission, test instruments for accurate setting up equipment and for continuous monitoring of the transmitted signal are essential to preserve good picture quality. Most of the major manufacturers, therefore, also produce associated measuring instruments, which often form part of fixed installations.
    Tektronix have become leaders in c.r.t. display equipment with their well-known range of vectorscopes, waveform monitors, and television-or-
    ientated oscilloscopes. A representative range of this equipment was on show at Montreux together with the associated test signal generators. A new product from Tektronix was a synchronous demodulator for accurate recovery of the video waveform from the vestigial sideband r.f. signal. This is an essential piece of equipment for overall transmitter equalization tests using sine-squared-pulse and bar test waveforms, since the use of a simple envelope detector introduces a degree of quadrature distortion owing to the loss of high frequency components in one sideband.
    In modern transmission systems, where conditions may vary during the programme the picture quality is now monitored continuously by the use of special insertion test signals imposed on certain unoccupied lines of the vertical interval. To maintain a constant vigil on these waveforms using visual waveform monitors is virtually impossible and a degree of automation at the monitoring terminal is essential.
    Marconi Instruments Limited of St. Albans showed a convincing demonstration of a fully automatic monitoring system based on their new 24-parameter Insertion Signal Analyser. This was scanned continuously by a data monitor programmed to initiate an alarm when any "out-of-limit" result occurred and to take executive action to switch to a standby transmitter or video feed as appropriate. The automatic system shown also included the company's data selector interface unit to a transmission/recording system e.g., a line printer or teletype - for remote automatic monitoring.

    In addition the Insertion Signal Analyser was shown operating in its semi-automatic mode in which it can be interrogated by operation of the appropriate push button to give the status of any one of the monitored parameters as a digital readout on an LED display, with a printed record on an associated teletype.

    This equipment is representative of a new generation of monitoring instrumentation that is becoming essential in order to meet the picture quality required in the widespread national and international networks, and the company claims to have established an international leadership in this field. Philips in the Netherlands and Rohde and Schwarz in Germany have also developed automatic monitoring systems, which were shown at Montreux.

    It is encouraging to be able to end this review on a note of British leadership. It has, of course, been possible to mention only a few of the companies who participated, but it is worth noting that, contrary to the situation on the consumer television market, Japan was represented by only one exhibitor. Sony, although it must be admitted that many of the colour c.r.ts and probably all the shadowmasks originated from that country.

    ## AMATEUR RADIO EQUIPMENT WITH PROFESSIONAL PERFORMANCE!

    ## FOR 144 MHz QUALITY PERFORMANCE .. .

    THE TOP TRANSVERTER FROM THE PEOPLE WHO KNOW! MMT144/28-28 MHz TO 144 MHz 10 WATT TRANSVERTER
    As you may already know. we are now manufacturing a 144 MHz ait mode solid state linear transverter. MMT144/28 as pictured below
    This 144 MHz unit is fully compatible with any 28 MHz drive source and provides 10 watts continuous power output from power transistors capable of withstanding severe mismatch
    An internal aerial changeover relay of the PIN diode type is incorporated which has a through-loss of less than 0.2 dB . The combination of a low distortion balanced transmit mixer incorporating protected dual gate MOSFETS, to produce a spurious-free linear signal and a low noise receive converter, makes the unit ideal for all modes of transmission at 144 MHz . particularly where a high degree of stability
    linearity and sensitivity are of prime importance
    The unit is housed in a highly durable black diecasi case. and all circuitry is constructed on high quatity glass-fibre printed circuit board The high power linear amplifier stages are housed in a separate niternal compartment thus ensuring excellent electrical and thermal stability. If you have an H.F. Bands rig and you're thinking of moving on to 2 metres. the MMT $144 / 28$ must be the transverter for YOU.

    ## 500 MHz DIGITAL

    FREQUENCY METER MMDO50/500
    

    ## General Description

    Recent advances in MOS technology have made possible the development of this extremely compact frequency meter which for the first time offers the user a convenient cost-effective means of frequency measurement

    A close tolerance quartz crystal in the 5 MHz range together with CMOS binary divider integrated circuits generate the accurate 400 mS gating period for the main counter MOS LSI circuitry.
    This LSI circuitry drives a multiplexed 6 digit LED display through current amplifiers This display is fed from an internal store which is constantly updated from the main counter register and thus the display is continuous and flicker-free for a constant frequency reading. The display uses the latest high efficiency red LED's with a digit height of 10 mm and overall display width of 45 mm
    The counter has two ranges which are selected by supplying +12 volts to one of two pins on the DIN socket. Interna! diode switching brings the input in the $0.45-50 \mathrm{MHz}$ range to a wide-band amplifier which drives a high speed TTL divider in the main counter logic. On the $50-500 \mathrm{MHz}$ range the diodes switch in a high speed ECL prescaler and the decimal point is changed accordingly
    A low angle AT cut quartz crystal is used giving a typical temperature stability of 0.5 ppm per degree C Provision is made for setting the crystal frequency, and the accuracy of reading is normally better than 200 Hz at 50 MHz . or 2 kHz to 500 MHz .
    The counter has reverse polarity protection and operates satisfactorily from a nominal 12 VDC supply. A suitable 5 pin DIN plug is supplied

    Digit Height
    Display Width
    Case Size
    Frequency Ranges
    Sensitivity
    Input Connector
    Input Impedance Power Connector Power Requirements

    ## Specification

    10 mm
    45 mm
    $111 \times 60 \times 27 \mathrm{~mm}$
    $0.45-50 \mathrm{MHz}$
    $50-50 \mathrm{MHz}$
    Better than 50 mV RMS over $0.45-50 \mathrm{MHz}$
    Better than 200 mV RMS over 50.500 MHz
    50 ohm BNC
    50 ohm
    5 pin 270 locking DIN socket
    PRICE: $£ 85.32$ inc. VAT

    ## PROFESSIONAL SERVICE FOR COMMERCIAL AND AMATEUR ALIKE

    For nearly 20 years we have manufactured antennas and masts and now boast the biggest range in the U.K
    Our amateur division has probably the largest selection of specialised communications equipment in Europe.
    Try Us For AEC, Alimast, Ampere, Atlas, Bantex, Burns, Belcom, B\&K, CDE Cushcraft, Coax, CIR, Decca, Drake, Dentron, ETO, Electronic Developments, FDK Beam, Mosley Microwave Modules Ma Gain, Holdings, Hi Mound, ICE, Icom, JD, Junker, JayBeam, Ken, Kyokuto, KDC, Katsums, KLM, Leader, Leson, Min Seam, Mosley, Microwave Modules, Maeden Sound, Modular Electronics, Metron, MFJ, Naigai Nana, Nagasawa, NSK, Omega, R.K Int Sommer, Strumech
    THE FRG7 GENERAL COVERAGERECEIVER £145 (+ VAT) FROM YAESU MUSEN Synthesised for stablity. Mains $\uparrow 2$ Volts DC and internal battery pack Synthesised for stabylity. Mains 92 Volts DC. and internal battery pack
    The FRG7 is a general coverage solid state receiver with specifications unparalleled in its price range it uses a Barlow Wadley Triple-mix drift cancelling loop for continuous, spin-tuned inclusive coverage of .5 to 30 MHz with calibration accuracy better than 5 KHz Frequency selection is accomplished by setting the RF (pre-selector and range switch) dialling up the required number of megahertz, then tuning the VFO knob as normal
    The receiver is sensitive $10.5 . V$ for $10 \mathrm{~dB} . \mathrm{S}+\mathrm{N} / \mathrm{N}(\mathrm{SSB})$ ) and stable (within 500 Hz for any 30 minutes after warm up) with AM, SSB, and CW modes catered for. A 3 position audio filter, RF attenuator, dial lamp conservation switch, recorder and phone sockets are fitted

    OUR STOCK LINES ALSO INCLUDE:
    Yagi-Rhombics TFD-Dipoles Quad-Colinears Caged Monopoles Biconicals HF Discones VHF Log Periodics Trapped Dipoles Trapped Beams Whips mobile Ground planes Guy Stakes

    ## Antenna Trap

    Antenna Rotor Control cable Rotary bearings Coax connectors R.F CablesLightning Arrestor Baluns Insulators

    Guy Stakes

    Power Meters Reflectometers Wave Meters Frequency Standards Multimeters Monitor Scopes Dip meters Impedance Meters Counters Preselectors Noise Bridges

    Receivers HF Receivers Paging Receivers Scanning Transceivers Transmitters Transvertors Linear Amps VHF Counters Pre Amplifiers
    Digital readouis
    

    Crystals quartz Crystal filters Crystal flle
    Coax relays Coax relays
    Plugs \& Socket Plugs \& Sockets
    Thermionic Valves Thermionic Valves
    Semiconductors Marse Keys Microphones Audio Filters Speech processors Power supplies

    THE YC 500 COUNTER A.C. + 12V D.C. FROM £155 + VAT!! The YC500 range of frequency counters registers a 25 mV to 20 V RMS (Abs) signal (into 1 M is or $50 \%$ inputs) from 10 Hz to 500 MHz on an 8 digit switched range bright 1 cm readout
    $100-234 \mathrm{~V}$ A.C. $50 / 60 \mathrm{~Hz}$ and 12.145 V D C. $3^{\prime \prime} \times 8^{1 / 2^{\prime \prime}} \times 9^{\prime \prime} 7 \mathrm{lbs}-$ Assures world-wide portability
    YC500J $10 \mathrm{ppm} \boldsymbol{£ 1 5 5}$ YC500S 1 ppm £225 YC500E 0.02ppm £285 (+VAT)
    By Post. Road. Sea or Air freight we despatch to over a 100 countries from a single coax plug to a mighty Rhombic installation from the Antarctic to the Equator Commercial:- Your specific enquiry and request are most welcome Amateur:- 30 p stamps for 24 page stock/price list Yaesu catalogue etc

    SOUTH MIDLANDS COMMUNICATIONS LTD.
    SM HOUSE, OSBORNE ROAD, TOTTON NR. SOUTHAMPTON SO4 4DN

    ## !NOITCERID THGIR EHT NI GNIDAEH DETRATS UOY EMIT SI TI

    Western Westower
    

    * STANDARD TYPES. RATED AT 75 MPH WITH FULL load quoted
    * HEAVY DUTY TYPES, RATED AT 100 MPH
    * MODELS FROM 25-119'. ALL TELESCOPE DOWN AND TILT OVER
    * MODELS FOR ALL SOIL CONDITIONS WITH / WITH OUT CONCRETE
    * DESIGNED BY CHARTERED ENGINEERS TO BRITISH STANDARDS
    * CONSTRUCTED OF HIGH QUALITY SPECIAL ALLOY STEEL.
    * STANDARD model 40\% STRONGER THAN SIMILAR TYPES

    Manufacturers of all types of steel lattice towers for commercial or amateur use
    BUYING A TELESCOPIC STEEL TOWER?
    Firstly ine head load (horizontal load due to wind) wh
     But there ts the second consideration At what wind come into the picture and the cosis go up very considerably in achieving strength
    There is a British Standard Code a! Pratice ICP3 Ch5 P12 : which relares to
    Edinburgh and 20 m Ph Edinburgh and; 20 mph for the North of No leland This Basic Windspeed
    figure tor England is theretore 100 mph Commercial instal atons are designed
    magazine carry the slated headloat
    
    

    Wertern Electronice (UH) Itd

    FAIRFIELD ESTATE LOUTH, LINCS LN11 0JH
    (Tel. Louth (0507) 4955/6)
    Cables: Westronics, Louth
    Telex: 47388 Westronics
    

    ## Transformerless d.c. to d.c. converter

    This converter operates by charging a bank of capacitors and connecting them in series periodically to give a higher voltage at the output. Transistors $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{2}$ form a multivibrator which
    produces a square wave. When the output of $\mathrm{Tr}_{2}$ is positive $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ are charged through $\mathrm{Tr}_{3}, \mathrm{Tr}_{5}, \mathrm{Tr}_{6}, \mathrm{Tr}_{10}$ and $\mathrm{Tr}_{11}$. When the output of $\mathrm{Tr}_{2}$ is zero, these transistors are cut off and $\mathrm{Tr}_{4}, \mathrm{Tr}_{7}$, $\mathrm{Tr}_{8}$ are switched on, which connects the capacitors in series. In the prototype circuit the output voltage was 30 V at
    $\operatorname{lmA}$ although, using high current/ voltage switches, an improved performance is possible. This system is also lighter in weight compared to transformer type converters.
    H.R.S. Andrew,

    Hyderabad,
    India.
    
    

    ## Optically coupled grid blanking

    Grid blanking for c.r.ts can be a problem due to the high direct voltage difference between the blanking amplifier and c.r.t. grid. This often necessitates the use of a second h.t. winding to provide a floating supply. In this circuit an opto isolator is used with unity gain loading to provide d.c. and low frequency control. the 10 nF capacitor takes over at higher frequencies. In order to maintain linearity within $5 \%$, the isolator is biased to deliver $130 \mu \mathrm{~A}$ and can deliver 60 p.i.v. at the c.r.t. grid. Temperature stability is adequate, and the brilliance control can be mounted in the low voltage section of the circuit. It is advisable to mount the blanking amplifier as close to the tube base as possible in order to maintain bandwidth and immunity to interference.
    J. M. Rubery,

    Rotterdam,
    Holland.

    ## Economic timer

    Many electronic timers require excessively high values of capacitance and resistance when used for long delays. If extreme accuracy is not required, this circuit overcomes the problem. When the mains voltage is applied capacitor C is initially discharged. The rising edge of the rectified sine wave causes a voltage across $R$ which supplies a charging current to capacitor $C$. When the voltage across $R$ reaches the thyristor

    | $C(\mu F)$ | 0.01 | 0.1 | 1.0 |
    | :---: | :---: | :---: | :---: |
    | $R(\Omega)$ | time (min-sec) |  |  |
    | $10 k$ | - | $0-15$ | $2-43$ |
    | $22 k$ | - | $0-35$ | $5-51$ |
    | $47 k$ | $0-04$ | $1-09$ | $11-47$ |
    | $100 k$ | $0-09$ | $2-10$ | $23-25$ |
    | $220 k$ | $0-15$ | $3-54$ | $46-50$ |
    | $470 k$ | $0-27$ | $7-39$ | 98 |
    | $M M$ | $0-45$ | $13-51$ | 220 |

    
    trigger voltage it turns on and stops the charging of C . The relay is turned on and load current flows. On the next rising edge, triggering occurs at a higher voltage i.e. later in the cycle because there is a residual charge on C . Therefore, each successive mains cycle increases the charge on $C$. The circuit remains turned off when the voltage on C reaches the peak supply voltage.
    The $180 \Omega$ resistor and 220 nF capacitor supplies the initial current pulse to ensure a fast turn on of the thyristor. Using a low leakage capacitor for C the delay times shown in the table were obtained. Timing is stable to within $10 \%$
    if the zener diode and thyristor are mounted together on a heat sink, and best results are obtained with low values of $R$ and high values of $C$. Full wave rectification of the supply may be used to halve the delay times. In certain applications, where retriggering may occur due to voltage surges, a clipping circuit can be used on the supply. Certain thyristors, which have an internal resistor from gate to cathode, are unsuitable in this circuit.
    G. J. Thompson,

    Codnor,
    Derbys.
    

    ## F.m. tuner wobbulator

    The discriminator coil in an f.m. tuner should be set up with a wobbulator. If this equipment is not available a varicap f.m. tuner can be used as its own wobbulator in the following way. Tune to an unmodulated station near the top of the band, or to an r.f. signal generator connected to the aerial and tuned to about 97 MHz . Connect an oscilloscope to the discriminator output, and an a.f. signal generator, via a capacitor, to the front-end tuning input, as shown in the diagram. Increase the 200 Hz a.f. generator sine output until the whole
    discriminator characteristic is seen. For the LP1186 this corresponds to about 0.3 V pk to pk . The oscilloscope should be on the normal time base, and triggered from the audio generator. The 1186 tuning law is $f=\left(22 \log { }_{10} V+81\right)$ MHz , and a 500 kHz sweep is 3.3 kHz out at the centre due to the logarithmic characteristic. This error is too small to be visible. Other varicap front ends will probably follow a similar law.
    R. D. Hore, Basingstoke,
    Hants.

    ## Keypad encoder

    A simple and inexpensive solution to the problem of encoding a push-button numerical keypad can be achieved using the following circuit. Whenever an odd-value key is pressed, transistor $\mathrm{Tr}_{2}$ saturates and provides the $2^{0}$ output. The other outputs are pulled
    down as appropriate for the depressed key. When an even-value key is depressed, $\mathrm{Tr}_{1}$ saturates and drives the strobe line low. Because the strobe line is also pulled low by $\mathrm{Tr}_{2}$ through $\mathrm{D}_{3}$, it indicates than any key has been pressed. Outputs $2^{1}, 2^{2}$ and $2^{3}$ are pulled low as appropriate. Keys 6 and 7 are required to pull down both $2^{1}$ and $2^{2}$
    outputs. This is done through $D_{1}$ and $D_{2}$.
    The output swing is between $+V$ and about IV, and will therefore interface directly with c.m.o.s. logic.
    A. F. Cross,

    Old Windsor,
    Berks.
    

    ## GivT/BST converter

    As an alternative to using full adders, a GMT/BST converter for use with MSF clocks can be constructed using a synchronous 4 bit up/down counter and a synchronous b.c.d. up/down counter, together with two AND gates plus an inverter. For GMT, the data presented to the inputs of $\mathrm{IC}_{1}$ and $\mathrm{IC}_{2}$ will be transferred to the outputs when a negative pulse from the parity detector is applied to the load input. If the parity is invalid then no pulse will be generated and the previous data will remain displayed.

    For BST all that is necessary is a positive going edge, following the load pulse, at the clock input to modify the decimal output by one. Carry out from $\mathrm{IC}_{2}$ to the clock input of $\mathrm{IC}_{1}$ must be connected. The 100 n capacitor differentiates the inverted load pulse to produce a delayed positive going edge. Gating of $\mathrm{IC}_{1}$ output B , and $\mathrm{IC}_{2}$ output $C$, is required to reset the i.cs at 24.00 hrs .
    C. G. Armstrong,

    London N.W.I.
    

    # World of Amateur Radio 

    ## Conditions set fair on h.f.

    May and early June provided the long-awaited signs that sunspot cycle 21 is really beginning to bite. On 14, 21 and, at times, 28 MHz , it was as though someone up there in the Hams' Happy Hunting Grounds had decided it was time to wipe clean those long-distance windows on the world. West Coast Americans and Canadians, stations in the Far Eastern oblasts of the USSR (including the rare zone 23), Japanese, South Americans, Australians . . . all came roaring through once again, at strength, often with European signals arriving on 21 and 28 MHz by means of Sporadic E openings. Not only were the maximum usable frequencies very high for $F$ layer propagation but the $D$ layer attenuation seemed at times particular--ly low.

    Even those of us who take DX as it comes, without dedicated "chasing," found our logs filling up with stations in all continents in a manner very different from the struggle of recent sunspot minimum years. At such times the various propagation prediction charts tend to get left far behind: unexpected paths open up and stay open for long hours. Suddenly the prospects for a high peak in cycle 21 , perhaps as early as 1979-80, seem to have become much brighter. Whereas up to a year or so ago most forecasters were talking in terms of an even lower peak than for cycle 20 in 1968-69, more and more seem prepared to predict that we may be starting towards another exceptionally high peak, such as we experienced in 1958.
    It is quite likely that by this autumn we shall be able quite often to eavesdrop on the 27 MHz North American citizens' band explosion, where the industry has been trying hard to unload at cut prices stocks of 23 -channel models to make way for 40 -channel models.

    ## Amateur pioneers

    One of the highlights of the RSGB's Alexandra Palace convention and exhibition was the opportunity to listen to that doyen of v.h.f. columnists, Ed Tilton, WlHDQ, review the role of radio amateurs in uncovering and showing
    how to exploit so many of the odd quirks of v.h.f. radio propagation over the period 1932 to 1977. He also made some pretinent comments on the growth of "repeater" operation although he was able to reassure British amateurs that in North America there are still plenty of other forms of operation, even though there are very few amateurs anywhere in the United States who cannot access at least one repeater station. One of the problems resulting from so much repeater and mobile operation is the question of mixed vertical and horizontal polarisation now used and he clearly felt it a pity that there are not more horizontallypolarised repeater stations.

    Ed Tilton is a firm believer in the theory that new propagation modes are first discovered by accident - but that whereas professional research and communications people have to keep their eyes firmly on commercial or orthodox objectives, the amateurs are exceptionally well placed to follow up accidental discoveries.
    He quoted the original amateur contacts by Sporadic $E$ on 56 MHz in the early 1930s; the work of Ross Hull (an Australian amateur who joined the ARRL staff in the 1930s but who was later electrocuted while working on television equipment) who investigated the early reports of tropospheric propagation; the historic 50 MHz F-layer transatlantic contacts that Ed Tilton made with Dennis Heightman, G6DH, in 1947; the discovery by amateurs of transequatorial (t.e.p.) propagation, including the painstaking experiments between Cyprus and Rhodesia.

    When first reported, many of these now familiar discoveries had been written off by the experts as "freak propagation."

    ## Scanning the bands

    Peter Blair, G3LTF, has now joined the select band of amateurs who have "worked all continents" on u.h.f. through the medium of "moonbounce" (earth-moon-earth paths). The first British amateur to achieve this distinction, his recent 432 MHz moonbounce contacts have included those with JAlVDV Japan; ZE5JJ Rhodesia; and FY7AS French Guiana.

    Gordon Knight also reports in Radio Communication that Paul Widger, G8AGU in South Molton, Devon, is using 400 -watts p.e.p. s.s.b. output on the 432 MHz band and is able regularly to make contacts up to 250 miles despite local screening even in average conditions. He keep daily schedules with amateurs in Manchester and Southend. With a high-gain multi-element antenna his effective radiated power is of the order of tens of kilowatts.

    The A9XC 28 MHz beacon on Bahrein has been heard a number of times in the United Kingdom. Several new beacon stations are currently being built for such places as Gough Island (ZD9GI)
    and Peru (OA4VHF) and the privatelyrun beacon on Florida is now using the call sign $N 4 R D$ on 28.2075 MHz . All beacons are gradually being moved to the frequency range 28.2 to 28.25 MHz and should prove exceptionally useful as a check on 28 MHz openings this autumn, as well as for scientific studies. Altogether 17 of these 28 MHz beacons in all continents are either operational, under construction or in the planning stage, states IARU Region 1 News.
    Project Vesna is a new attempt to span the Atlantic on v.h.f. by means of the Sporadic E mode of propagation. As part of this project a new 50.1 MHz beacon (F3THF) has been approved by the French authorities and should by now be operational on the north coast of Brittany, beaming west, with f.s.k. keying ( 170 Hz shift) to provide identification every 50 seconds.
    It is easy to work American amateurs on 144 MHz if you are prepared to pay a hefty telephone charge. You simply phone an American v.h.f. repeater station via transatlantic cable or Intelsat satellite and then start working the local American amateurs using your own callsign.

    ## In brief

    Amateur $A$ licences in the sequence G4GAA are now being issued. Class B licences will soon have exhausted the G8NAA series . . A. G. Godfrey, ZLlHV and formerly G3DAF, is the current president of the New Zealand Amateur Radio Transmitters Society . . . The 42 national societies who make up the IARU Region 1 division have 94,350 members. From next year the member-societies will be asked to contribute one Swiss franc for every licensed member to help meet the rising costs involved in preparing for the 1979 WARC meetings where all radio frequency allocations come under discussion. The central IARU headquarters in the United States has contributed $\$ 10,000$ to the Region 1 fund. The Region 1 division is to hold a conference in May 1978 at Miskolc-Tapolca in north-eastern Hungary . . . Dr Dain Evans, G3RPE, is now "microwaves manager" for the RSGB . . . The RSGB National Mobile Rally has been put back into the annual calendar of events this year. Location is Woburn Abbey. Date is August 7 . . Other August rallies include Derby (Ryknled School) on August 14; Pembroke "Bucket and Spade Party" on August 14 at Regency Hall, Saundersfoot; Preston on August 21 at Walton le Dale County Secondary School, Bamber Bridge; and Torquay on August 28 at Haldon Racecourse near Exeter . . . The Italian national amateur radio society "Associazione Radiotechnica Italiana" celebrates its 50th anniversary this year and a special convention/exhibition is being held in Florence from September 24 to October 3.

    PAT HAWKER, G3VA

    # Rate sensor testing and precision motion systems 

    # Methods of measuring and calibrating angular velocity transducers 

    by R. G. Bent Cranfield Unit for Precision Engineering

    Outside the field of avionics very few people have any detailed knowledge of the rate sensor. The purpose of this device is to sense or measure a rate of change of angle. Any form of servo control for stabilization of weapon systems, radar antennae, and space vehicles uses the rate sensor for the measurement of vehicle behaviour. More precisely, the rate sensor measures the rate of change of angular relationship between the vehicle and a fixed earth plane. As with any transducer, performance and specification is of great importance to the system designer. The advent of non-rotating sensors has highlighted the need for standardization of test and calibration procedures, and is emphasizing the design requirements of specialized test equipment.

    There are several types of rate sensor and these can be split into three main categories. These are: H rate sensors ( H being the symbol denoting angular momentum); angular acceleration rate sensors; and non-rotating rate sensors. Non-rotating sensors use techniques such as the measurement of Coriolis forces induced in vibrating wires, or the deflection of ionized jets of gas between hot wires. A practical application of the theory of relativity is also used as with the ring-laser gyroscope. The most

    Fig. 1 (left) Torque, spin and resulting rotational axes of gyroscope.
    commonly used sensor is the rate gyroscope which has a high angularvelocity spin-rotor of constant angular momentum held in a gimbal arrangement.
    When a torque is applied to a gyroscope the spin axis does not move in the direction of the applied torque, but rotates, or precesses, about an axis in quadrature to both spin and torque vector axes as shown in Fig. 1. Directions of vectors are established by the right hand thread rule. The spin vector tries to move into the torque vector, as visualised using the right hand rules thumb points to spin vector, index finger points to torque vector, and middle finger points to precession vector. The relationship between torque and precession is given by the law of gyroscopics where torque $\mathrm{T}=$ inertia $I$ $\times$ spin velocity $\omega_{s} \times$ precession rate $\omega_{p}$ or, given that angular momentum equals $I \times \omega_{s}$, then $T=H \omega_{p}$.

    A gyroscope can be considered as a bilateral device because, if a torque is applied then the gyro precesses at an angular rate, but if the gyro is subjected to an angular rate then the result will be an output torque proportional to the input rate. It is this last mentioned feature which is used in the rate sensor gyroscope. The torque resulting from the applied rate is counter-balanced by a restraining torque which is translated into an electrical signal.

    An angular accelerometer converts
    an input angular acceleration into an output voltage proportional to that acceleration, see Fig. 2. The accelerometer is sensitive to angular accelerations about the input axis IA and is rotated at a constant speed $\omega_{s}$ about spin axis SA. If the system is now subjected to an input rate $\omega_{x}$ about axis RA, the instantaneous rate about axis IA will be $\omega_{o}=\omega_{x} \sin \omega_{s} t$ and the input rate will change to a time-varying angular acceleration. The rotating accelerometer acts as an integrator that provides, for constant spin rate $\omega_{s t}$ an a.c. output voltage whose amplitude is directly proportional to the input rate $\omega_{x}$ at a frequency equal to the spin rotation frequency.

    ## Rate transfer test

    Recently, moves toward standardization of test procedures for rate sensor calibration have been made, as suggested by the IEEE gyro and accelerometer panel in America, (1. 2 and ${ }^{3)}$ and the Inertial Components Assessment Laboratory at the Royal Aircraft Establishment ${ }^{4}$. One of these test procedures, which provides the inputoutput characteristics of the sensor, is the rate transfer test where the sensor is progressively exposed to different input rates over its operating range. Rates are

    Fig. 2 Input axis IA, spin axis SA, and rate input axis RA of an angular accelerometer.
    
    control for driving the rate table assembly is a velocity-error servo-system as illustrated in Fig. 6. The tachogenerator output is compared with the required rate derived from the precision voltage reference. The error signal feeds a d.c. amplifier which drives the torque motor and maintains the required rate. Long term performance of the servo loop will be affected by drift in either the preamplifier or the feedback tacho amplifier, so operational amplifiers exhibiting minimal changes in input offset voltage against both time and temperature are used.

    A typical system incorporating a 600 W d.c. power amplifier, a $0.1 \%$ tachogenerator and a 30 Nm torque motor, will provide a performance specification as listed in Table 2. The system uses a precision voltage reference and divider network for the control signal to the servo-system. If this reference is set at zero and an externally generated signal is injected in its place, the rate can be programmed remotely. Also, the rate can be varied continuously through zero and monitored from the tachogenerator. Response of a system is controlled by the power available from the amplifier, characteristics of the torque motor, inertia of the moving parts, and the elimination of electro-mechanical resonance.
    

    Fig. 3 Rate transfer characteristics.
    

    Fig. 4 Cross section of a direct drive rate table.

    Table 2. Typical performance specification of a standard rate table.

    \begin{tabular}{|c|c|c|c|}
    \hline Speed \& \begin{tabular}{l}
    Full scale ranges \\
    Resolution on digital speed setting Accuracy at temp. of calibration, Averaged over one revolution \\
    Temperature coefficient Speed variation, wide-band-averaged over \(1^{0}\)
    \end{tabular} \& \begin{tabular}{l}
    \[
    0 / \mathrm{sec}
    \] \\
    \% of full scale \\
    \(\%\) of set speed \\
    \(+\%\) of full scale \\
    \(+{ }^{\circ} / \mathrm{sec}\) \\
    \(\%\) of set speed \(/{ }^{\circ} \mathrm{C}\) \\
    \(\%\) of set speed \\
    \(+\%\) of full scale \\
    \(+0 / \mathrm{sec}\)
    \end{tabular} \& \[
    \] \\
    \hline Acceleration \& \begin{tabular}{l}
    Maximum, no load \\
    Time for full reversal,
    \[
    +1000^{\circ} / \mathrm{sec} \text { to }
    \] \\
    \(1000^{\circ} / \mathrm{sec}\), with no load
    \end{tabular} \& \begin{tabular}{l}
    \[
    \begin{aligned}
    \& 0 / \mathrm{sec}^{2} \\
    \& \mathrm{rad} / \mathrm{sec}^{2}
    \end{aligned}
    \] \\
    sec
    \end{tabular} \& \[
    \begin{array}{r}
    16.000 \\
    275 \\
    0.2
    \end{array}
    \] \\
    \hline Peak torque \& at stall \& Nm lbf. ft \& \[
    \begin{aligned}
    \& 30 \\
    \& 22
    \end{aligned}
    \] \\
    \hline Table top \& \begin{tabular}{l}
    Diameter \\
    Material \\
    Flatness \\
    Load capacity \\
    Inertia
    \end{tabular} \& ```
    mm
    in
    mm T.I.R.
    in. I.I.R.
    kg
    lb
    kgm2
    lbf. ft. sec 

