

The Most Advanced Spectrum Analyser

> You've neverseen a faster, more accurate way of measuring frequency response from 30 Hz to 110 MHz

The TF 2370 Spectrum Analyser employs advanced technology to provide a complete system for measuring response, level, frequency, signal purity, modulation and much more, with a speed and degree of accuracy previously unobtainable. A digital memory permits the use of a standard monitor tube and internal logic selects gain ratios and sweep speeds for optimum performance. The specification speaks for itself:

* Flicker-free 100 dB display of frequency response from 30 Hz to 110 MHz on a high brightness c.r.t.
* Electronic graticule, with a $\pm 15 \%$ variation of horizontal divisions for pin-point positioning against waveform display. * Three amplitude scales: one linear and two logarithmic with expansion to $1 \mathrm{~dB} / \mathrm{div}$. with an accuracy of $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$. * - -digit electronic counter automatically gives centre frequency, reads any other frequency corresponding to manually-adjusted 'bright line' position on display, or the difference frequency between the two, at the press of a
button. All to an accuracy of $\pm 2 \mathrm{~Hz} \pm$ reference frequency accuracy on high resolution and manual. Internal reference frequency provided with setting accuracy of 1 in 10^{7} * Internal generator supplies synchronous signal source for measuring such items as networks and filters. * For comparative measurements, unique memory storage system will retain one display indefinitely as required, for simultaneous display with response produced by items under test
* Automatic adjustment of amplifier gains to give optimum lowest-noise performance with full protection against input overloading.
* Automatic selection of optimum sweep speed.
* With the 5 Hz filter, signals 100 Hz from a response at 0 dB can be measured to -70 dB .

Please send for full information or ask for a demonstration seeing is believing!

LOW COST VOLTMETERS

These highly accurate instruments incorporate many useful features, including iong battery life All A type models have 83 mm scale meters, and case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$.

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/4408686

Prices are ex works with batteries. Carriage and packing extra. VAT extra in U.K. Optional extras are leather cases and mains power units Send for data covering our range of portable instruments

New portable DMMs.
 Only Fluke make themonly ITT sell them.

New Fluke DMMs Fluke have introduced two new digital multimeters. That is big news in itself, because when you are already producing the best selling instruments on the market, how do you bring off another success? The answer has been to take an outstanding specification and shrink it into a truly portable instrument.

True RMS a.c. This is the most important feature - especially when you realise that it is incorporated in a battery operated instrument that measures less than $6 \times 5 \times 2 \frac{1}{2}$ in and weighs only $2 \frac{1}{2} \mathrm{lb}$. It means that you can take lab. quality measurement out in the field, free from the shackles of size, weight and power points.

Two versions - $8030 \& 8040$ Both models offer five ranges over
five measurement functions and include autozero. The 8030 is a $3^{1}{ }_{2}$ digit instrument with a useful diode test facility. The 8040 has $4 \frac{1}{2}$ digits and incorporates autoranging.

The only way to buy Both these briefcase sized DMMs are available from ITT Instrument Services; and from nobody else, not even from Fluke. Which brings together the best sellers among portable DMMs and the biggest riame in the instrument distribution business. That means no-delay telephone ordering, streamlined internal processing, and delivery from stock.

Ask for a spec. sheet now. Or better still, get ITT to arrange a demo. You will be more amazed by the performance than the price!

instrument services
The only way to buy. Harlow (0279) 29522.

once is enough!

 totally balanced OTARI product, and better service.

Trust through experience - one encounter with OTARI equipment and from then on, You will trust the OTARI name.

DTARI

Why scrap good mono cameras?

EEVistill making image orthicons.

Why change equipment which has many more years of useful life ahead?

EEV is still making image orthicons in very large numbers. And we're constantly developing them with improved performance.

So you can be sure of continuity of supply of highquality $3^{\prime \prime}$ and $4 \frac{1}{2}^{\prime \prime}$ tubes.

Our prices are competitive. Our service backup is worldwide. All the knowhow and skill of 24 years production goes into every EEV image orthicon.

Our tubes are all you need - to keep on getting good pictures, colour or black and white, from older generation cameras.

Write for data and prices. If you have a specific requirement, contact your local EEV agent or call Camera Tube Sales at Chelmsford, England.

EEVand M-OV know how

Members of GEC- turnover $£ 1902$ million delighted to put it to work for you. Long run, short run, even something special - a prototype maybe All in the coil of duty! Our Hivotronic Division sets exceptionallv critical standards in their own work and they can apply the same technology to your needs. The high voltage area is their speciality, with coil test facilities up to 200 kV for example - but try us with any spec. Ring us and hear about our full capability. $\overline{Y o u}$ 'll wind up using KGM

Clock Tower Road, Isleworth, Middx TW7 6DU, England Tel: 01-568 0151 Telex: 934120 WW-038 FOR FURTHER DETAILS

HIGH POWER DC-COUPLED AMPLIFIER

* UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise (20-20kHz)

DC- 20 kHz a 150 watts +1 db . Odb. 500 watts rms into 2.5 ohms
+0. -15 DC to 20 kHz . 1 watt 8Ω Below 0.05\% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 88 ? At least 110 db below 150 watts

Other modets in the range: $\mathrm{D} 60-60$ watts per channel
Other models available from 100 watts to 3000 watts

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

8 volts per microsecond 1 ohm to infinity
175 V'for 150 watts into 88 ?
10k ohms to 100 K ohms
Shor. mismatch \& open cct protection $120-256 \mathrm{~V}, 50-400 \mathrm{~Hz}$
19*Rackmount. 7 High, $9 \frac{3}{4}{ }^{*}$ Deep

ThankstoTRW Inolonger watch the Four Ronnies

The new TRW TP393 wide band $40-860 \mathrm{MHz}$ gold metallized transistor gives significantly improved.master TV aerial amplifier performance at no increase in cost.

The TP393 gives higher gain and higher output and a lower noise figure. It has a similar input impedance to competitive devices and is mechanically identical, enabling it to be dropped into existing circuits, with noticeably better results.

Check the parameters listed below then send for full data.

WW - 027 FOR FURTHER DETAILS

New low cost microcomputer for learning the how of microprocessors

Now, there is a new Microcomputer to provide "hands on" experience to master and apply microprocessors - the Limrose MPT8080

It comes ready to use. Nothing else to buy debug or assemble. Just plug it in and you have a powerful microcomputer ready to use. No need for a Teletype, but if you have one, it can be hooked on using a plug-in card

The comprehensive instruction manual is so straight-forward that even a person with limited technical knowledge can rapidly learn how mictoprocessors work

The Microtutor MPT 8080 is not just a learning module - it's a full 8-bit, parallel, microcomputer with an 8080 CPU , IK RAM, and various input and output ports. It can be single-stepped or run continuously to facilitate a thorough understanding of hardware/software interaction and programming of microprocessors.

The MPT 8080 can also be used as a prototyping computer and expanded with
For instant information, please contact additional memory and ports.

\square

limrose electronics limited
prices \mathbf{f} from $\mathbf{£ 2 4 9}$
241-243 Manchester Road, Northwich, CW9 7NE
Tel. 0606 41696/7

The new Maplin Catalogue is no ordinary catalogue...

Catalogue includes a very wide range of components hundreds of different capacitors; resistors; transistors; I.C.'s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styll; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY VANY MORE. Semiconductor section Inci. TV.games, Rhythm range of fascinating i. and off limer / clock - mono generator Pres amps, voltage regu
radio IC's. op amps, ic's etc
and stereo pow

SENOTHISCOUPONFORYOURCOPY OFOURCATALOGUE SENO THISCOUPONFOR - SENO NO MONEY NOW. $1977 / 78$ catalogue the
ON APPROVAL! Price 50 P please rush me a copy of your brand completely satisfied that it if 1 am instant it is published. will send 50 p within to you within 14 day worth every penn, may return the catalisfied, I need not purchase not satisfied,
without obligation I understand thould choose to keep it. without obligation your catalogue shoul
anything from

Maplin Electranic Supp Owing to warehouse, catalogue will be delayed by up to four weeks - so there's still sime to order before publication and get your pack of ten super special offer coupons, giving big discounts on ten differ ent popular items. YOU COULD SAVE POUNDS! - SO DON'T OELAY -

FILL IN AND POST COUPON NOW!

*

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy)

กาำค니Iํ

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 BLR Shop: 284 Lendon Road, Westcliff-on-Sea, Essex (Closed on Moncay) Telephone: Southend (O7O2) 47379

BULK ERASURE PROBLEMS?

LR71

MAX REEL SIZE $111 / 2^{* \prime}$

LR70
MAX REEL SIZE $81 / 4^{\prime \prime}$

If it's personal we can only advise a diet or joining weightwatchers. If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes; cartridges and reels of tape up to a maximum reel size of $111^{\prime \prime}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement.
The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry Moderately priced and available from:

LEEVERS-RICH EQUIPMENT LIMITED

 INCORP. BIAS ELECTRONICS319 Trinity Road, Wandsworth, London SW18 3SL Telephone 01-8749054
Cables: Leemag London SW18. Telex 923455 Wembley

Our Radio/TV Programme

If you service radio or television receivers, Avo has Slgnal Generators to meet your requirements.
Pride of place goes to the new HF136 which goes one step further than the widely used HF135 (an AM Signal Generator which gives coverage up to 240 MHz and 30% am at 1 kHz). The Avo HF136 combines an AM Generator and FM Generator in one case. Covering $4-120 \mathrm{MHz}$, it has a choice of outputs $\mathrm{cw}, \mathrm{am}, \mathrm{fm}$, or sweep +cw , or sweep + am and also 400 Hz for modulation or as an af signal for servicing audio stages. One of these units, incorporated into your re-equipment programme, could increase your throughput and optimise the use of your skilled manpower. If you would like to know more about our AM and AM/FM Signal Generators, get in touch
We will gladly put you in the picture

Avo Limited,
Archliffe Road, Dover, Kent. CT17 9EN.

WW-047 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

DID YOU KHOW ?

That the British rifle team won 5 gold, 5 silver and 16 bronze medals at last year's International Matches. Probably 'notl The media has a habit of overlooking our achievements. Therefore, it is unlikely you will know that a member of the team. Mr. D. A. Hodson, a keen amateur sound recordist. loaned his Coles 4119 twin ribbon microphone to a member of the Canadian Broadcasting Corporation who was televising the events. He was very pleased with its performance.
We at Coles are pleased with both performances and would like you to try the 4119 for yourself

DETAILS AVAILABLE FROM
coles electroacoustics
PINDAR ROAD HODDESDDN. HERTS.

TEL. HODDESDON 66685

AND

HAMPSTEAD HI-FI
high Sthéet, hampstead LONDON. NW3

TEL. 01-435 6377

THE
4119 f0R SOUND RECORDIST

Our thanks to the Adjutant, C. S. O'Brien, and Mr. D. A. Hodson for the use of the above information

Mini-C-Dekade Type 5-100
Range 100 pF to $11 \mu \mathrm{~F}$
Accuracy 2\%
Rating $100 \mathrm{~V} D$
Price $£ 74$
ex vat
Size $10 \times 15 \times 4 \mathrm{~cm}$
Fits neatly in to the palm of the hand

Price £84 exvat

Universal Timer $1 u \sec$ to 1000000 secs The Mini-T-Dekade has unique features offering engineers a new fast, accurate means of designing and building electronic circuits Time range $-1,1 u s$ to 9.999999 secs 11. switched in 7 decades using BCD code Output $-25 \mathrm{~mA}, 30 \mathrm{~V}$ and $10 \mathrm{~W}, 0.5 \mathrm{~A}, 200 \mathrm{~V}$ DC Quartz crystal-2 MHz . Stability: 50 ppm Power supply $-N$. Cd cell 12 V 225 m Ah

Price £195 exvat

Nini-R-Dekade Type 236A Range 1 ohm to 11 Mohm Accuracy 1\%
 Max Dissipation 0.5 W
 Size $10 \times 15 \times 3 \mathrm{~cm}$
 Fits neatly into the palm of the hand

Price £64 ex vat

Auto ranging Automatic Capacitance Bridge Model ESP 300A 1pF to 2000μ F

A complete range of British-made instruments designed to simplify capacitance measuring

- Accurate and sensitive
- Requires no manual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Electronic Services and Products Limited Cross Lane, Braunston, Near Daventry, Northamptonshire NN11 7HH Telephone: Rugby (0788) 890672

Send for technical literature and free booklet: "Modern methods of capacitance measuring'
Suppliers to: Ministry of Defence, Fost Office. B. B.C., Government departments and Electronic Laboratories world-wide.

WW - 057 FOR FURTHER DETAILS

F. M. TUNER MODULES BY
 These modules are fully assembled, tested and guaranteed units, as featured in our tuner. Designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.

 The Electronic Design Specialists

M1 MAIN TUNER MODULE

including ten turn manual tuning pot
$£ 28.50$
£7.60
$£ 15.95$
£6.30
£17.54
All items (except M5) are available in kit form, or as individual I.C.s, P.C.B.s, etc.

Full metalwork and teak cabinet is also available to complete the finest tuner on the market today

WATCH FOR FURTHER ADDITIONS TO OUR RANGE

M2 STEREO DECODER
 including L.E.D. indficator

M3 PUSH BUTTON PRE-SELECT UNIT
six channel \& provision for manual tune

M4 REGULATED POWER SUPPLY
 $20 \mathrm{v}, 100 \mathrm{~mA}$ output, 240 v input

M5 TOUCH TUNE PRE-SELECT UNIT
A touch switched replacement for M3

Write for full lists today

Fully illustrated leaflets describing the above modules are available for the asking

A booklet is available for 50p (post free U.K.) Fully describing the completely updated tuner. Prices subject to 12.5% VAT

To:

WW-007 FOR FURTHER DETAILS

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery. Specials by arangement.

Sensitivity 10 mV . Stability 5 parts 10 . 10 Resolution ± 1 Count

301 M	32MHz 5 Digit $\mathrm{EPS}^{\text {a }}$	401A	32MHz 6 Digit £132
501	32MHz 8 Digit E188	701A	80MHz 8 Digit £205
801A/M	400MHz 8 Digit £305	901 M	520MHz 8 Digit £375
8018/M	250MHz 8 Digit £274	1001 m	1.26Hz 8 Digit £670
	versions plus £12	Memor suffixe	ons available if not £25 extra
Type 101 1MHz 100KHz 10 KHz Crystal Standard $£ 85$ Type 103 Of//Air Standard £85			
Manufacturers and Electronic Laboratories world-wide			
	R.C. Tel		TRONIC S D, ASHFORU V15 2RB ord (Code 69) $1 / 2$

WW - 058 FOR FURTHER DETAILS

Gardners
 The Best of British

Where performance

is paramount, professionals prefer Gardners.

We, at Gardners, have been in the communications business for many more years than we care to remember - so have our Audio Transformers. Used throughout the world by leading broadcasting and recording companies of wherever only the highest technical standards and levels of reliability are good enough our products are still preferred by professionats who know

From microphone to tape (or film), speakers or head phones, studio consoles, manpacks, amplifiers, modems, we phones, studio consoles, manpacks, amplifiers, modems, we tion (yes!) plus good performance (yes!) through to excep tional performance (of course!). Impedance changing. coupling, isolation, bridging, low and high power, with or without D.C. Choose from our standard range of 95 models Every one an example of sheer professionalism

All have low loss, low distortion, low phase-shift, low pick-up, BUT wide frequency range

Gardners)

Gardners Transformers Lid. Christchurch Dorset BH23 3PN Telephone 02015-2284 elex 41276 Gardners XCH Approved manufacturers of electronic transformers, modular power supplies, inverters and converters to Defence Standard 05.21

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present

NEC CQ 110 E DIGITAL

allband, HF, 300wattstransceiver, $160 / 80 / 40 / 20 / 15 / 11$ $10 \mathrm{~A} / 10 \mathrm{C} / 10 \mathrm{C} / 100$ /WWV, modes FSK, USB, LSB, CW, AM, with separate 8 pole X-tal lattice filters for each mode fitted. Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low - noise beam, deflection mixer tube.

This feature alone makes of the NEC CQ 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course

NEC co 301

allband HF, 3 KW . linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ 10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110 E or other exciters capable of about $50-100$ watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!
Sole distributor in Europe:
CEC Phone: (091) 4426 51. Telex: 79959 CH

BIMEOAFD

Stop Ruining Your I.C.'s And Wasting Time Soldering

Plug Into The Revolutionary New

 BIMEDARDThe Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins
Incorporates Bus Strips For Vec And Ground Includes A Component Support Bracket

Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors $=\leq \leq$ INDUSTRIAL MOULDINGS ITD
Higgs industrial Estate, 2 Hernẹ Hill Road, London, SE24 OAU England Telephone 01.7372383

Looking for value in Timer Counters?

The TC311, 312 and 314 make up a whole new family of instruments, offering a very wide range of applications with the bandwidth DC to 100 MHz . And to tell you all about them, we've just issued a brand new full-colour data sheet that's yours for the asking.

Look at the pictures first, and you'li see that all the functions and controls are grouped clearly and sensibly on the front panels for ease of use. Look a little closer, and you'll notice that the TC300 series offer the kind of facilities for which you'd expect to pay a lot more.

Try our specs.

Browse through the specification. You'll find all the normal requirements plus extras not normally found at this price. There's a wide range of functions including frequency, time, period, count, totalise and ratio. And of course, every instrument is fully guaranteed for 2 years, another cost saving. But don't just take our word for it, read all about it for yourself - and see how the advantages stack up.

Gould Advance Limited,

 Instrument Division, Roebuck Road, Hainault, Essex IG6 3UE.Telephone: 01-500 1000 Telex: 263785

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems.

plus 80 p packing and surtace post anywhere in the world.

Payments may be made in foreign currencies.

Quantity discounts avalable on request.

VAT zero rated

Also available -- a more ϵ lementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics
In 4 volumes.

1 Basic Computer Logic
2. Logical Circuit Elemerts

3 Designing Circuits to Carry Out Logical Functions
4 Flipflops and Registers

$£ 4.20$

plus $80 p$ P. $\&$ P
Offer Order both courses for the bargain price £9.70. plus 80 p P. \& P.

Designer

Manager Enthusiast
Scientist
Engineer
Student

These caurses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceedirg to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

ZD22 Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, Iuner, and two tape machines, providing comprehensive recording and reproducing facilities. Sensitivities: Disc 1 mV , and Auxilliaries 50 mV ., for 1 V output Exceptional signal/noise ratio. Output at clip level 18 V r.m.s.

ZD50 Power Amplifier

A stereo power amplifier of all aluminium construction. Output of 110 watts per channel into 4 ohms and 70 watts into 4 ohms at typically less than 0.002% distortion.

2D100 Power Amplifier

A stereo power amplifier of all aluminium construction with high therma mass and designed for continuous operation at high output level. Provides 150 watts per channel into 4 ohms and 90 watts per channel into 8 ohms at virtually zero distortion

ZD200 Power Amplifier

Characteristics as 2D100 amplifier but provides an output of 250 watts per channel into 4 ohms and 150 watts per channel into 8 ohms

HD250 Stereo Integrated Amplifier

Uses 2D22 pre-amplifier with a power amplifier having a power output in excess of 50W per channel into $4-8 \mathrm{ohms}$. Distortion: less than 0.02% at rated power, typically less than 0.01%. True complementary symmetry output. Headphone output. Inputs: Disc, tuner, and two tape machines Sensitivities: Disc 1 mV . Auxilliaries 50 mV for 20 W output.
Full descriptive leaflets available from:
RADFORD ELECTRONICS LTD
Audio Division
Ashton Vale Road, Bristol, Avon BS3 2HZ. Tel: 0272-662301

WW - 018 FOR FURTHER DETAILS

INSTANT CIRCUIT DESIGN WITH THE BUG SYSTEM

THE PROFESSIONAL BREADBOARDS FOR STUDENTS \& HOBBYISTS! NO SOLDERING! USE ICS AGAIN \& AGAIN!
SK10. Takes up to eight 14 pin. DILs. All components insert directly. Insertion life of 10.000 cycles. Contact
resistance 5 milliohm average.

Housing is acetal copolymer. £13.38

SK50. Half size version of SK10 for tight places and student use. Takes 4 DILs. £7.80.

LABEL THOSE ICs.
Self adhesive 'Bug Backs' for many 7400 series TTL ICs. identify pins and device. Saves tıme and temper! Pack of $500 \mathbf{£ 6 . 4 0}$.

"BuGBOKI LEARN DIGITAL ELECTRONICS

Bug Books Part I \& II 750 page learning system including 90 experıments on 50 different 7400 series'TTL ICs. $£ 13.50$ each.

LR25. A useful control package for digital
circuits on SK10/SK50 sockets. Generates

 pulsers. Variable frequency clock. £41.75

All prices include VAT and P. \& P.
Send for the Bug System leaflet and order form or cheque with order.

HEPWORTH ELECTRONICS

Hepworth House. Worcester Road, Kıdderminster DY10 1BG
Telephone Kidderminster 221213

NABRA complete the picture...

...with theirnew NAGRA E

A dilemma Nagra were suffering for some time, was how to produce a self. contained Professional Tape Recorder which incorporated all the qualities of their highly acclaimed Nagra 4.2, but could be marketed in the lower price range. Almost anyone can manufacture a cheaper version of a successful product but Nagra were determined not to sacrifice standards for economy. Well, we are happy to announce they have achieved the perfect solution with the new Nagra E
The astounding saving of around 50% has been principally achieved by the simplification of the speed stabiliser-a single operating speed of $7 \frac{1}{2} \mathrm{ips}$ is provided. The tape deck and transport mechanism are closely similar to that
used on the Nagra 4 Series, which has become renowned worldwide for its reliability and performance.
Good news, for the operator in the field, is that the new model is slimmer and lighter than the 4.2 and comes complete with a measuring probe, circuit diagram and some essential spares. This means that bas adjustment resulting from lape lype change can be easily carried out away from base. A single microphone input is provided which can be switched to accept dynamic or condenser types.
A sound level metermay be directly connected if required.

TECHNICAL DATA

Dimensions: $13.8 \times 9.3 \times 4$ in ($351 \times 336 \times 104 \mathrm{~mm}$

Weight: $12.6 \mathrm{lbs}(5.75 \mathrm{~kg})$ with tape and batteries
Wow and flutter: $\pm 0.1 \%$
Reels: 7 in cover open, 5 in cover closed
Loudspeaker: 1.0W both switchable TapelDirec
Headphones output
Frequency response recorded at $-20 \mathrm{~dB}: 30-15.000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$
S/N ratio, ASA" $A^{\prime \prime}$ better thian 66dB
Temperature range: $4^{\circ}-158^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$


```
Please send me further details of the new NAGRA E and other models
    in the range
    Name
    Address


WW - 036 FOR FURTHER DETAILS


WW - 025 FOR FURTHER DETAILS

\section*{ELECTRONORGTECHNICA \\ carbon film RESISTORS}
\(1 / 8\) and \(1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%\) tol. E. 12
EX-STOCK


\title{
MORE POWVER= MORE TORQUE with the -NEW MK.IIDRILL•
}

SPEED 10,000 r.p.m.

TORQUE
120 cmg
VOLTAGE
9-14v d.c.
DRILL ONLY £8.79
(p\&p 35p)
STAND £4.40 (p\&p 35p) Inc. VAT (Together 50p p\&p)
Send a \(9^{\prime \prime} \times 4^{\prime \prime}\) SAE for illustrated leaflet and order form to:


PRECISION PETITE LTD. 119A HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-9770878

\title{
DATA AND COMMUNICATIONS TERMINALS
}

Teletype 28, 32, 33, 35, 40
TermiNet 30, 300 \& 1200 ( 30 and 120 cps )
Teleterm. 1132 and 1200 series (portable / fixed 30 cps ) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)
* Spares, repairs, overhauls and maintenance
* Other types and models available
* Refurbished units also available
* Short and long period rentals
* Minicomputer interfaces
* Quantity discounts \(\star\) Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., U.K.


\section*{Hi-Fi Systems that GROW with you}

At last someone has come up with a flexible approach to quality hi-fi that doesn't become obsolete as you become more discerning.

Take an initial standard 20 W r.m.s. +20 W r.m.s. stereo and with simple nodifications this can be expanded to give a powerful \(40 \mathrm{~W}+40 \mathrm{~W}\) stereo system together with additional multi frequency rumble, hiss and stereo image width controls.

\section*{Currently available from stock:-}

\section*{Stereo Pre-Amp Module CP-P1}
- 2 channel pre-amplitier
- Ideal tor use with record player, tape. microphone, tuner inputs etc
- No externa components required other than potentiometers for bass. treble. balance, volume controls and input selector switch
- The CP-P1 is internally protected aganst accidental reverse power connection PRICE \(£ 13.30\) Specification


\section*{Stereo Amplifier Module CP2-15-20}
*The CP2-15-20 is designed to give either a 20W + 20W stereo amplifier or alter natively a 40 W single channel amplifier
- Noexternal components required
* Satety features include built-in protection against accidental reverse power connection and thermal shut down facility to prevent over dissipation
Specification:
PRICE \(£ 12.85+£ 1.61\) VAT

\section*{Power output:}

40W r.m.s. into \(8 \Omega\), thannel; or
30W r.m.s. Into 158. 1 chanciel: or
20 W r.m.s. +20 W r.m.s. into \(4 \Omega, 2\) 15W.r or
+15 W r.m.s. into \(8 \Omega, 2\) Channel
nput sensitivity: IV r.m.s.s, Frequency response: \(20 \mathrm{~Hz}-20 \mathrm{kHz}\), at -3 dB ; Dis tortion: \(0.04 \%\) at 15 W ; Supoly Voltage. \(\pm 18 \mathrm{~V}\) nominal; Size: \(5.1 \times 4 \times 1.25 \mathrm{in}\) \((130 \times 102 \times 32 \mathrm{~mm})\).


Also available:-

\section*{Audio Function Module CP-FG1}

For those requiring a wider range of tacilities this module provides rumble and hiss reduction
- Stereo seoparation control \(\quad\) PRICE \(£ 11.75\)
- Stereo separation control
* Complete except for switches and potentiometers
+ £1.47 VAT

\section*{Power supply: Module CP-PS 18/2D}

Surtable for one \(20 \mathrm{~W}+20 \mathrm{~W}\) complete system. A \(40 \mathrm{~W}+40 \mathrm{~W}\) system can be produced using 2 power supplies

PRICE \(£ 5.75+72 p\) VAT

\section*{These products carrya 2 year guarantee.}

\section*{Cliffpalm Ltd.}

DEPT. HF/WW 13 HAZELBURY CRESCENT LUTON; BEDS LU1 1DF
Prices include full application data, post and packaging

\title{
Build up the network you need with Barr \& Stroud Active Filter Modules
}

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment. Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.
BARR \& STROUD LIMITED London Office: 1 Pall Mall East, London SW1 Y 5AU Tel : 01-930 1541 Telex: 261877
'WW-076 FOR FURTHER DETAILS


\section*{THRULNE \({ }^{\circ}\) WATTMETER}
\(0.45-2300 \mathrm{MHz} / 0.1-10,000\) watts
The Standard of the Industry What more need we say..

\title{
We guarantee 730 bright days ahead.
}


Take a look at the Alpha II Multimeter, and the first thing you'll notice, apart from the surprisingly low price, is the display. Big, bright and clear, - even in high ambient light conditions.


Use the instrument for a little while, and something else will impress you: its accuracy. The Alpha II is
accurate to within \(0.2 \%\) - better than many a more expensive instrument.

Keep on using it, and you'll begin to notice that it is also outstandingly reliable.
Mains or battery operated, it is fully protected against overload, and so confident are we of the Alpha Il's reliability that we offer a full 2-year guarantee with every one. Now doesn't that make the outlook seem brighter?

Contact us now for further details.

Gould Advance Limited, Instrument Division, Roebuck Road, Hainault, Essex IG6 3UE. Tel: 01-500 1000
Telex: 263785

-) GOULD adanace
WW-08I FOR FURTHER DETAILS

\section*{TELETEXT DECODER \(\pm\)}

PLATEDTHROUGH PCBS AVAILABLE
 (2) 6 (6) \(4310^{\circ}\) REPRINT OF ARTICLES £1.50

Build the W.W. Teletext Decoder as described in 'Wireless World' (November 1975 to June 1976 )
Our kit contains all the printed circuit boards and components necessary to build the complete decoder. The power supply and video switching circuitry are normally installed within the television cabinet and the main decoding control and memory circuitry in a separate cabinet positioned on top of the television. PRICES ARE AS FOLLOWS

> Standard version using 2513

New version with Texas \(\times 887\)

\section*{Qatronics \\ VHF FREQUENCY COUNTER}


200 MHz D.F.M. for direct readings up to the mobile radio VHF 'High Band' * Full 7 dign \(035^{\prime \prime}\) amber display
* C memory giving a non-blinking display * C memory giving a non-blinking display
* Automanc suppressed zeros on 3 leading digits to reduc power consumption
TTL and ECL ic.s used to give a high dégree of reliability * 10 MHz master oscillator tor high accuracy PRICE ONLY E125.00 + VAT ( \(8 \%\) )

\section*{TCXO VERSION} For laboratory use and others requiring a precision reference oscillator a special high stability version is available using a Frequency stability is betler aven oscilator range 0 to +60 C after a 5 minute warm up period
Model DFM/5 \(16000+\) VAT \((8 \%)+150\) cars

\section*{JES AUDIO INSTRUMENTATION}


Illustrated the Si452 Distortion Measuring Unit-low cost distor tion measurement down to \(01 \% \quad £ 48.00\) Si451 £60.00 Si453 Comprehensive Millivoltmeter Low distortion放tortion Oscillato \(350 \mu\) Volts 20 ranges sine - square - RIAA prices plus VAT
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET. CLECKHEATON. W. YORKSHIRE B 19 5LA


WW-n. 51 FOR FURTHFR DETAILS
servos
synchronous steppers d.c. motors control systems gearboxes friction clutches instrument couplings
for a technical advisory service and off the shelf delivery, contact


\section*{Britain's biggest and best-known exhibition of home entertainment, audio and hi-fi.}
( UNIQUE - for reputation and scope. This is our 23rd year, and no other fair offers such a comprehensive showcase for home electronic entertainment, plus the traditional appeal to audio and hi-fi specialists.
LONDON'S OLYMPIA - the industry's favoured location, where the people and the money are ... and the only venue with the size, scope and facilities for this great trade and public festival.

SEPTEMBER 12 to 18,1977 - the preferred preChristmas selling-time period ... and opening with a day and a half for the trade only.
- BACKED by major IPC specialist, trade and consumer publications, commanding a combined readership of \(1,750,000\).

ORGANISED by the IPC Business Press specialist exhibition company, with a remarkable record and reputation for handling specialist fairs.

To: Audio Fair, lliffe Promotions Ltd, Dorset House, Stamford Street. London SE1 9LU

YES, I MUST find out more about the 1977 International Audio Festival and Fair.
Please send me an exhibitor's brochure right away.
```

Name
Position in firm
Address
Products we want to exhibit

```


\section*{AMBIT international (dept 85)}

The Dynamic Twosome: Signalmaster/Audiomaster After long and thorough deliberation, we are proud to announce a new unit from Larsholt - the Audiomaster. As ever, the instructions are designed to lead the unwaryand the inexperienced- through point-to-point steps that culminate in a professionally styled and finished amplifier to complement the Signalmaster FM tuner. Price \(£ 79.00\)
 Power: \(25+25 \mathrm{~W}\) RMS THD: Less than 0.3\% Dynamic range: an exceptional 80 dB (Signalmaster shown on top of the Audiomaster)
The Signalmaster Mk. 8 is equally simple to assemble, and results reflect the superb Scandinavian styling and careful electronic engineering. \(£ 85.00\).


International Mk.2: A choice of tuners for the more experinced constructors.
A chassis, cabinet and front panel designed to be used with a variety of electronics inside. The standard set, with the Larsholt 7253 varicap FM tunerset, plus all necessary parts to complete costs \(£ 65.00\). Alternative modules for the signal processing stages are available for the more advanced F.M. radio enthusiast/constructor. (EF5800/7030/91196)


From left to right, the EF5800 6 circuit varicap FM tunerhead. Two MOS RF stages, both with AGC control, and an ultra stable oscillator. Next the 7030 Linear Phase 10.7 MHz IF. Distortion \(0.08 \%\), muting , AGC, meter, auto stereo switch outputs. Finally the new 91196 mpx decoder and combined birdy filter. Mono THD \(0.05 \%\), stereo sep. 55 dB at \(1 \mathrm{kHz}, 42 \mathrm{~dB}\) at 10 kHz - the best decoder module yet. EF5800.... \&14.50 7030....£10.95 \(91196 \ldots . . £ 12.99\) (Built). Overall performance of the three modules when correctly assembled:\(30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) at 0.85 uV input. 60 dB at 5 uV . THD \(0.09 \%\). AFC holds THD below \(0.2 \%\) over 400 kHz if required. AGC effective over a 90 dB range. Image rejection -90 dB . Noise floor -73 dB .


Terms: Vat extra, \(12.5 \%\) unless marked \({ }^{*}\), which is \(8 \%\), all complete tuners require \(£ 3.00\) for packing and carriage. The standard P\&P rate remains at 22 p per order. Catalogue 40 p . Phone (0277) 216029 (After 3pm please). SAE for free price lists.

\section*{Switching problems? Rely on Zettler.}

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.


\section*{Our product range} comprises
Low profile (flatform) Timing Miniature Low contact capacity Herme tically sealed - Stepping Mains switching Latching Contact stacks. Solenoids


We resolve your switching problems rapidly and expertly. Please contact us for further details


Zettler UK Division
Brember Road
Harrow, Middx. HA2 8AS Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est 1877
WW—006 FOR FURTHER DETAILS

\section*{ELECTRONIC INDUSTRIAL THERMOMETER}


THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery. etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal 11/2 volt standard size battery.
Model "Mini-2 \(1^{\prime \prime}\) ' measures from- \(40^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) Price £25.00
Model "Mini-Z \(2^{\prime \prime}\) measures from- \(5^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\) Price \(£ 25.00\) Model "Mini-on Hi" measures from \(+100^{\circ} \mathrm{C}\) to \(+500^{\circ} \mathrm{C}\) E20.00 (VAT 8\% EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)
WW - 021 FOR FURTHER DETAILS

\title{
Uniquefull-function 8-digit wrist calculator... available onlyas akit.
}

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket.calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable \(£ 9.95\) (plus 8\% VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself

\section*{How to make 10 keys do the work of 27}

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it \({ }^{\prime}\) ). But in addition, it offers a \(\%\) key; plus the convenience functions \(\sqrt{x}, 1 / x, x^{2}\); plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.
1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys
3. and hold it to the right to use the functions to the right above the keys
The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.



\title{
this 25MHizdual trace, Cual sween , clear disp awh high versatile roya pertormance scope
}

\section*{TheD67A aWORLDPREMIÈRE}


If you use oscilloscopes, you should know about the D 67 A , one of the newest in a strong cast of star performers from 'relequipment.

Superbly enginecred, elegantly styled, this robust and compact oscilloscope captures the spotlight with its 25 MHz bandwidth, its dual trace dual time base versatility and an extensive repertoire which includes delayed and mixed sweep routines. Sensitive, (up to \(1 \mathrm{mV} /\) div) yet without a trace of temperament, due to F.E.T input circuitry. High speed presentation, (up to fons/div) with excellent timing ( \(\pm 3 \%\) to \(\pm 5 \%\) ) -a blending of talent and technical expertise that could come only from a Telequipment production.

You will applaud it on performance and encore it on price. Secure your front row seat today, ask us for a brochure and a demonstration.
' Pektronix U.K. Limited,
P.O. Box 69, Reaverton House, Harpenden, Herts Tel: Harpenden 6314r 'Telex:25559
Telequipment <e>

Capable~that's our scope

\section*{wireless world}

Electronics, Television, Radio, Audio

\section*{Contents}

31 Attitudes to mobile radio
32 Viewdata by S. Fedida
37 Transient intermodulation in amplifiers by Bert Sundqvist
39 H.F. predictions
40 News of the month
Unique optical link
Television "sound" for the deaf
Band II ferrite rod aerials
44 Circuit ideas
46 "Telecomms industry needs reorganization"
47 Nickel cadmium cells by K. C. Johnson
48 Announcements
49 Logic design - 2 by B. Holdsworth and L. Zissos
54 Letters to the editor
WARC 1979 and official secrecy
Aural sensitivity to phase
Advanced pre-amplifier design
57 Electronic systems by W. E. Anderton
59 Further notes on the Wireless World teletext decoder by J. F. Daniels
61 Literature received
62 Weather satellite picture facsimile machine - 3 by \(G . R\). Kennedy
66 Transistor arrays - Circards 32 by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

68 Mystery Soviet over-the-horizon tests
69 Digital angle modulation - 2 by \(R\). Thompson and \(D . R\). Clouting
75 Electronica 76
76 Sixty years ago
77 Characteristics and load lines \(-\mathbf{4}\) by S. W. Amos
80 World of amateur radio
81 New products
123 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS

\footnotetext{
Current issue price 35p, back issues (if available) 50 p, at Retail and Trade Counter, Paris Garden, London SE1. By post. current issue 55p. back issues (if available) 50p, order and payment to Room 11, Dorset House, London SEl 9LU
Editorial \& Advertising offices: Dorset How'c. Stamford Sireet. London SEI YLu Telephones: Editorial of 2618620 : Advertising 012618339.
Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SE1
Subscriphon rates: 1 year: \(£ 7.00\) UK andoverseas ( \(\$ 1 \times 20\) USA and Canada). Student rate: 1 year, E3.50 UK and overseas ( \(\$ 9.10\) USA and Canada).
Distribution: 40 Bowling Green Lane. London ECIR ONF. Telephone 01.837 .3636
Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Susser RH16 3DH. Telephone 044459188 . Subacribers are requested to notify a change of address. \(\overline{\mathrm{C}}\) I.P.C. Business Press Ltd, 1977
}


Front cover shows a group of silica optical fibres made by Standard Telecommunication Laboratories for use in optical communication systems. Photographer Paul Brierley

\section*{IN OUR NEXT ISSUE}

Electronic rhythm accompaniment. Constructional design for a "rhythm section" which controls the musical timing of sources giving percussion sounds and can be used with an electronic organ.

Interference from amateur stations with television, sound and audio equipment - how bad is it? Results of a RSGB survey that attempts to assess the situation fairly.

Television test generator. Construction of a laboratory instrument giving crosshatch, dot matrix, colour bar and grey scale patterns. Simple design based on t.t.I. integrated circuits.


\section*{PHILIPS}

\section*{The Generation Gap}

Fill your Generation Gap with these 5 generators. You will then ensure that your workshop is the most efficiently equipped and that your service engineers' home visits are the fastest and most effective. Good service means more sales so make yourself the most successful TV businessman and get these Philips instruments now. You'won't find better value for money.


Pye Unicam Ltd
Philips Electronic Instruments Dept.
York Street Cambridge England CB1 2PX
Tel: Cambridge (0223) 58866 Telex: 817331

\section*{1 PM5501 PAL TV Pattern}

\section*{Generator}

Extremely light portable instrument for service in customer's home. Five different test patterns for, colour and black/white installation and service. RF output switchable : VHF Band III or UHF Band IV. 1 kHz tone for sound performance checks.

\section*{2 PM5509 PAL TV Pattern}

\section*{Generator}

The ultimate in pattern generators. Full IF coverage : band I. III. IV and \(V\). Electronic tuning with preset channels. 10 test patterns (colour and black/white). Adjustable chroma burst and HFamplitude. Special sync. video and VCR outputs.

\section*{3 PM6456 FM Stereo}

\section*{Generator}

Has stereo transmission started in your area? The PM 6456 gives a complete stereo signal, L\&R signal. Internal L. F. modulation: 1 and 5 kHz . External stereo modulation possibility. \(X\)-tal controlled pilot. Adjustable multiplex signal.
4 PM5324 HF Generator
Frequency range \(100 \mathrm{kHz}-110\) MHz . X-tal calibration. Special band spread ranges. High frequency stability. Electronically stabilised output max. 50 mV rms in \(75 \Omega\). Facilities for internal and external AM and FM modulation.

\section*{5 PM5334 TV Sweep}

\section*{Generator}

Ideal for overhauling rental sets. 8 frequency ranges, \(3 \mathrm{MHz}-860\) MHz . Sweep with continuously adjustable. 8 - 50 Hz . One variable and 3 fixed markers. Signal frequency is accurate and thermally stable. Stabilised output into \(75 \Omega\) load
6 Write today for a 16 page fully illustrated brochure and price list on the whole range of Philips instruments for radio and TV service. And remember. All the instruments in the Philips range are endowed with the Philips Plus', the quality of design. specification and appearance - particularly in terms of human engineering - of every instrument A total test and measuring range capabilitywhich includes'scopes. meters. counters. pulse generators. power supplies, recorders and generators. The ability to supply all your needs from a single source.

\title{
wireless world
}

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
PHILIP NOSSEL (Manager)
Phone 01-261 8622

LEO KEMBERY
Phone 01-2618515

OWEN BAILEY (Classified Advertisements)
Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Publishing Director:
GORDON HENDERSON

\section*{Attitudes to mobile radio}

If the government has done nothing to promote public discussion on frequency reallocations in preparation for the 1979 World Administrative Radio Conference, at least a start has been made by one British.manufacturer, Pye Telecommunications, in the important field of private mobile 'radio (p.m.r.). While the Home Office's "Warden report" on this subject remains secret, Pye has issued a 71-page study on "The future frequency spectrum requirements for private mobile radio in the United Kingdom" which is notable for being well researched, thorough and honest. This is in fact the "Pannell report" (named after W. M. Pannell, its principal author) referred to in last month's article on citizens' band radio.

Of course it would be naive to expect a report emanating from a manufacturer not to be sympathetic to that firm's commercial interests, and in fact the Pannell report is openly expansionist (not to say slightly predatory, about other people's frequencies) in its general approach to the development of p.m.r. By contrast the secret Warden report, we are informed, tends to be conservative and restrictive. For example, while both reports agree there will certainly be a shortage of frequency spectrum for p.m.r., Pannell says the UK will need at least 190 MHz by the year 2000 but Warden reckons no additional spectrum will be needed till 1985 and after that only an extra 33 MHz beyond the 36 MHz at present available. Pannell thinks the present p.m.r. growth rate of \(10 \%\) per annum could accelerate to \(15-20 \%\), resulting in about 2 m mobile radios by the year 2000 , while Warden says \(15 \%\) growth is unrealistic and estimates 1.3 m mobiles by that date. Pannell considers the present channel loading (in mobiles per channel) to be "uncomfortably high" while Warden says that even higher channel loadings will be necessary and the use of exclusive channels will rarely be sanctioned. To permit working with this greater congestion Warden emphasizes the necessity for technical aids such as signalling systems using sub-audio tone squelch and sequential tone and digital signals, while Pannell plays these down in relation to the need for more channels and speaks of avoiding "expensive development of new types of equipment." As for their attitudes towards the user, while Pannell stresses in general terms the economic benefits, such as vehicle fuel saving, to be expected from wider use of mobile radio, Warden, starting from a conservationist position, concludes that each demand for frequency space will have to be supported by a particular proof of real need and a resulting benefit to the public - and also that comparisons will have to be made between different users on this basis.
Clearly there is a strong subjective element in forecasting the future. Both reports are biased by the priorities of the organizations that produced them. The truth may lie somewhere between. What we need now is a public conference, perhaps run by one of the engineering institutions, that would allow free comment from as many people as possible concerned with p.m.r. and would formulate clear and specific recommendations to be put to those who will represent the UK at the forthcoming WARC 1979.

\title{
The Post Office's textual information and communications system: 1 - background and introduction
}

\author{
by S. Fedida, B.Sc.(Eng.), M.Sc., F.I.E.E., A.C.G.I. Post Office Research Centre
}

Viewdata is a system for disseminating and retrieving computer based information, using the domestic telephone line for communication and the domestic television set for display. It differs from teletext which is a specific system of broadcasting textual information interleaved with pictorial information: the two systems are complementary rather than competitive. This article looks at earlier systems of accessing computer data banks from remote points using telephone lines and then introduces the Viewdata system now on pilot trial in the UK.

Essentially the concept of accessing a computer data bank from a remote point using telephone lines is not new. The technique was demonstrated in the mid-60s by Dr Sutherland of the Massachusetts Institute of Technology, and has been used increasingly ever since, but mainly by the professional computer user. Indeed networks of computers have been installed in various parts of the world for this purpose and for the purpose of computation. In the US an ambitious computer network ARPANET has been in operation for some years and has been extended to provide world wide coverage. In Europe a new system EURONET \({ }^{i}\) is in process of being implemented to provide a computer network for scientific and technical information in the European Community.

Many private computer networks have also been installed world wide to provide business and scientific computer facilities on in-house bases. Viewdata on the other hand belongs to a family of computer-based information systems which are intended for the general public, i.e. users who have no computer training whatever and indeed who do not intend to undergo such training.

Systems of these kinds have to be specifically tailored to this class of users who may well have, and indeed will have, considerable expertise and intel-


Viewdata index displayed on a commercial teletext/Viewdata receiver.
lectual ability but not necessarily in the intricacies and minutiae of computer programming. In general they are anxious to use the capabilities of computers both, for the purpose of information retrieval and other purposes, but have neither time nor indeed the inclination to submit to the usually tiresome computer protocol. (The protocol is the set of rules and instructions which govern access to computers and the use of their programmes.)
Several attempts have been made in the recent past to bring computer-based information to the people.

The Reston experiment. A well documented attempt is the Reston experiment \({ }^{2}\) in Virginia USA, using the Mitre Corporation interactive television system TICCIT which stands for "time-shared, interactive, computercontrolled information television" uti-
lising a standard television receiver as a display.
Essentially the system requires that the user be connected to a cable television network, over which are transmitted a number of still tv frames, 60 different frames per second. Thus assuming an information cycle time of 10 seconds, i.e. each user accesses a different frame every 10 seconds, the system can support 600 users simultaneously on a dedicated tv channel, each user receiving his own selection of information.
Associated with the user television receiver is a video tape recorder, which takes a recording of the frame intended for the user and plays it back to the tv at the rate of 60 times a second.
The individual selection of information frames is carried out using a telephone connection from the user to the computer centre, together with the push-button set on the telephone with which the user may key the number of the frame required. When this is done the computer transmits this frame followed by a user address, which is
coded on line 480 or 481 (for even and odd frames) of the tv scan. A coupler/ decoder at the user end examines this address and connects the video recorder to cable for the duration of the following frame, thus capturing the frame selected.

The home equipment needed in this system is not only a tv set but also a video tape recorder and a special adapter, while the communications medium consists of a wideband cable and a telephone connection.

In-Touch. This computer information service \({ }^{3}\) was launched in Seattle, Washington in 1973 with the backing of the Seattle First National Bank for the purpose of providing a number of financial and budgeting service to the home user and the small business. It uses the push-button telephone, to send instructions to the computer, which then provides a voice response. Thus the terminal equipment is minimal. The main problem of course is to so organise the seryice that the obvious limitations of the terminal equipment both in transmitting and receiving information are effectively overcome. The other problem noted by the originators of the scheme, and somewhat related to the above but clearly much more complex, is to so arrange the dialogue between computer and user that the latter needs no special computer training whatever. It is believed that this system closed down after an intial one-year experimental period.

DIALS (calculation by telephone). This system \({ }^{4}\) was developed by NTT (Nippon Telegraph and Telephone Co.), the public telephone administration in Japan, to provide a calculation service to telephone subscribers, on an on-line, real-time basis. The public service was initiated in 1970/71. In this case also the push-button telephone is used as a transmit and receive terminal, outgoing instructions being keyed on the pushbutton keypad and transmitted to the computer as a sequence of audio tones. The computer response is a voice signal which gives the result of the computation.

The calculation facilities offered by DIALS are fairly complex. They include the simple arithmetic operations + , ,\(- \times, \div, \forall^{\prime}\) and also basic facilities such as trigonometric functions, logarithms and so forth. It is also possible to input an algebraic expression with dummy arguments which is memorised by the computer. This is then followed by sets of arguments supplied by the user on which the computer operates. Finally it is possible to call some library programmes, for example for statistical work, compound interest and the like.

Clearly the standard 12 -button telephone keyboards cannot be used without substantial modifications to transmit the required instructions. This is


Fig. 1. Overlay template attached to push-button telephone used in DIALS calculation service
overcome by superimposing a remiovable template on to the dial and using groups of numbers and symbols for each of the required calculation symbols. A diagram of the overlay is shown in Fig. 1. For example, an expression such as
" \(4 \times(3+5)-6.2\) "
is transmitted as
\(4^{*} 7^{*} 13^{*} 05^{*} 2^{*} 86^{*} 52^{* *}=\)
The end group of symbols \({ }^{* *}=\) signifies the "go" instruction (instructing the computer to go ahead with the computation).

Trigonometric and logarithmic functions are transmitted as a number preceded by \(F\) and followed by the argument in brackets, e.g. \(\log _{10}(\mathrm{X})\) is transmitted as \(F 2(X)\), while library programmes are given a number preceded by L, e.g. the integrating function is L36.
The use of the template has been explained at some length to indicate the complexity introduced in a system of this kind, if one is limited to using just the 12 buttons of the telephone pushbutton set. This complication is avoided in Viewdata in a number of ways to be described later.

The use of a voice response system for imparting the kind of information mentioned above is obviously fraught with pitfalls, and the complexity of the coding needed to pass instructions no doubt added to the difficulties.

Bell Picturephone computer access system. As part of the development of Picturephone in the USA, means were developed to display computer generated intormation on the Picturephone station set.5. Picturephone is a Bell Telephone development which provides face to face communication between telephone subscribers - a two way video telephone. Special lines (video access lines) must be installed to transmit Picturephone information to the subscribers. These consist of two pairs of lines equalized to transmit satisfactorily, at least in the initial stages, a bit rate of 6.312 Mbit per second. In addition the normal telephone connection is also required. A typical local arrangement is shown in Fig. 2.

Given an environment which has already been designed and established
to support Picturephone, it is clearly possible to enhance the video facility by providing the option of displaying computer-based information ás an alternative to the normal pictorial information. To do this a display data set (equivalent to a modem in UK terminology) was developed to provide computer access to Picturephone users. Essentially this data set, which is sited at the exchange, acts as an interface between the computer and the Picture \({ }^{\text {² }}\) phone station at the user's premises.

Instructions to the computer are sent by the customer to the exchange using the push-button telephone (m.f. signalling) as in the previous systems. This is converted by the display data set to ASCII* characters and transmitted to the computer along a narrow-band data line, which could be a standard voice circuit. The computer response, which is a string of ASCII characters, is received by the display data set and stored therein. It is converted in the data set to a video signal which is then transmitted to the Picturephone station as if it were a standard Picturephone signal. Since there is no storage at the subscriber's end this information needs to be sent repeatedly, television fashion;, to keep the display refreshed, at 30 times per second.

Clearly this technical solution to the retrieval and display of computer based information is satisfactory in an environment where the Picturephone is already established as a viable communication service, and its development might then have followed the lines of Viewdata in terms of protocol, extra facilities etc., had it been persevered with.

Viewed however, as a means of providing simply a new information and communications service to the general public, its association with Picturephone delayed and indeed hindered its proper development and timely introduction, since it depended on the establishment of a wideband Picturephone capability across the country to achieve the penetration needed to make the service economically viable and truly available to the general public.

\section*{Development of Viewdata}

The Viewdata concept began in the Post Office Research Department in 1970/71, more or less concurrently with the systems mentioned earlier. As with these systems there was the notion that there was an important potential for applying computer-based information systems to the public service area, but that, while technologically there were no insuperable hurdles to overcome, nevertheless there were fundamental problems that had to be resolved before practical and economically viable systems could be designed and engineered to be usable by the general public.
* American Standard Code for Information Interchange.


Fig. 2. (above). Basic local arrangement used in the Picturephone system developed by Bell Telephone; (right) Picturephone computer access system


In common with all these systems, Viewdata set out to solve these problems. As was to be expected, each solution turned out to be somewhat different, partly to adapt to a different environment, but also because of different design philosophies. These problems are in the following areas:

\section*{- the terminal}
- the transmission system
- the computer relationship
- the system potential

The terminal. The terminal used to communicate with the computer clearly has to be a low-priced, attractively styled and reliable piece of electronics to ensure a wide market penetration with the general public.
The push-button telephone is clearly such a terminal. Indeed in the standardisation of m.f. telephone systems, this possibility has been kept firmly in view, and has resulted in proposals for enhanced push-button sets containing 16 keys.

While the push-button telephone is a suitable transmission terminal, for many users it has obvious limitations for the more advanced applications. Indeed attempts at squeezing a large alphabet from the limited number of keys only leads to confusion and irritation on the part of the user. As a receiving terminal it requires that the computer response be a voice response: Here also this could well be acceptable some time, but it suffers from very serious limitations. Where the amount of information is fairly limited, e.g. one or two items of information, voice response is probably acceptable to many users. Even then, the fleeting nature of the voice response hinders comprehension very seriously and messages need to be repeated several times to allow full understanding, the taking of notes etc.

Two of the systems described above used the pushbutton telephone, but the extent and versatility of the service planned for Viewdata made the push-
button telephone associated with voict response quite unsuitable for a good general purpose information system capable of growing to meet the needs of the users.

The alternative to a voice response system is the visual display. This is easier to implement and vastly cheaper as far as the computer is concerned and to the user it offers unparalleled scope in comprehension and in the range of information that can be put over. It can lend itself to multilingual and graphical information fairly readily. One of the important aspects of Viewdata is the possibility of implementing a wide range of information services across multi-national boundaries.

Visual displays have been in widespread use in the computer field for some years, but their cost is still well above that considered acceptable to the mass market. It is therefore not surprising that many information systems have sought to capitalise on the domestic television display, which, with suitable
modifications, may be adapted to become the ideal information terminal for home use. It also has considerable attractions in the form of a dedicated communication station for office use what we have called the Viewdataphone (see below).

Ideally an unmodified tv set, with an adapter box capable of transforming it into a computer terminal, is the best approach, and while this is technically quite feasible for Viewdata, where transmission data rates are low, and colour is not an essential facility, it is much less suitable for teletext. In the last-mentioned case and where a colour display is required in Viewdata (and there is no doubt that the addition of colour gives considerable visual appeal), a built-in adapter is preferable.

It is hoped that tv sets with integral adapters, and external adapters for existing tv sets, will be available on the market quite soon.

The transmission system. Initially the major impetus to the development of information systems for the home was provided by the availability of spare bandwidth in cable tv systems. Clearly this makes sense, since the spare bandwidth is available at marginal cost, the main use being to convey television programmes. Hence in countries where cable tv networks are fairly extensive, such as the USA and Canada, the emphasis has been on using this medium for the transmission of information.

The Reston experiment mentioned above is an example of such a system and clearly provides a great deal of information, e.g. pictures, which cannot be easily accommodated with narrow band systems such as those depending on telephone lines. This system, however, requires the use of the telephone

Fig. 3. (below). Displayed index from which the user selects the topic he requires. Fig. 4 (right). Index to magazine 3 as listed on the Fig. 3 display, showing the progressive nature of the Viewdata index.
network as well, to provide the selection means and thus lose the advantage of marginal costing of unused bandwidth of the tv cable installation.

Alternative systems based on the "frame grabbing" principle and transmitting the whole data base continuously over a tv broadcast channel on cable or off air are also possible and indeed could become very attractive. In these systems the page selection is carried out at the receiving point and hence they do not require a return communications channel. Properly designed they are capable of transmitting a great deal more information than the Reston system, provided pictorial information is not required. A single tv channel, for example, could provide the equivalent of 30,000 pages of alphanumeric information \({ }^{6}\).

The absence of a return channel to the information source obviously implies that the system is not interactive, i.e. the user cannot respond to the information provided, or generate information himself. Thus the system is completely passive and cannot provide services requiring user interaction.

Where spare tv channels are not available, either off-air or in a cable tv environment, or when interactive operation is required to support a broad range of additional services as provided by Viewdata, then the telephone transmission medium is the best available.

This is why Viewdata has been implemented as an "intelligent" communications medium using the telephone system. In order to impose the minimum of constraints on the rapid build up of the service and ensure rugged and reliable operation, only the current well-proven transmission performance of the telephone network is postulated; as indeed is the existing telephone switching environment. Thus the current experimental Viewdata system on pilot trial uses 1200 bits per second for computer to terminal and 75 bits in the reverse direction. As developments and enhancements take place in this area, they will be gradually introduced in Viewdata with the aim of improving performance and reducing costs.

The computer relationship. In Viewdata as in the other systems noted earlier, the problem of how to enable users with no special computer training to access and instruct a computer loomed large, mainly because computer programming had developed from the very beginning, and with very few exceptions, into an increasingly complex set of routines. These demanded a great deal of concentration, attention to detail and constant and continuous practice to be mastered effectively.

In a sense the computer programmer is a designer of a logic system, who uses logical instructions instead of using logical circuit interconnections like his colleague who designs hardware logic systems. But whereas we do not expect the user of a piece of logic hardware to be able to design it, in the computer field there is not a great deal of distinction between the design programmer and the user programmer. This is in part due to the extraordinary flexibility of the computer. Dedicated and trained users are able to modify a programme or if necessary write new ones to suit their specific applications.

To quote from the originators of In-Touch, "There is the problem of how to communicate with someone who only had a high school education or less". "How do you get them to operate a computer error free?" "Having done that you must program the computer to respond satisfactorily to the communication by that customer. You also have to configure the hardware (and the software) consistent with customers who are not sophisticated and therefore do not expect anything to break."

These comments are particularly relevant to the situation prevailing in Viewdata and some of the above systems, where the range of services extend far beyond the provision of a simple set of information. But in Viewdata the designers of the system have taken a substantially more enlightened view. They do not look down on the user as being "naive", " unsophisticated" or slightly below par as regards educational standards. It is rather a question of specialised training, which few people outside the ranks of

those who do computer programming as a full time occupation have the opportunity or even the willingness to acquire.

A clear distinction is drawn between computer programmers who design programmes and computer users who use them and are thus enabled to instruct the machine (computer) to do all that the designers intended them to do.

The first objective is to get the machine to the people, and when this has achieved a high degree of penetration, then is the time to refine it to attempt to meet the needs of those who may want to do more with the machine than most people.

The computer dialogue. How then is it possible to overcome the very considerable problem of ensuring adequate communications between user and computer? The key is in the dialogue between the two.

The computer must first of all "understand" what the user wants. The usual method of communicating with computers is to design a special programming language which the user has to learn and which the computer is programmed to "understand." This works adequately in conventional computer programming but is clearly far too complicated in this application. Another approach is to use a prompting system: the computer offers a number of choices from which the user selects the one most appropriate to his requirements. This clearly limits the user's freedom but nevertheless avoids many of the problems connected with formal computer languages.
The simplest of these dialogues is an index from which the user selects the topic he requires (see Figure 3). This of course is the technique used in teletext. But the index in Viewdata is progressive (see Fig. 4), unlike that in teletext, where since the total amount of information on offer is very limited, the whole index may be displayed on one frame only.

In Viewdata the information is subdivided in a tree structure. The top of


Fig. 5. Information in Viewdata is sub-divided in a tree structure. This gives an example of main topics (at the top) being sub-divided down to subtopics (at the bottom).
the tree is a list of main topics, each of which is then subdivided into sub-topics all the way down to the piece of information required. (See Fig. 5.) Some of the branches in Viewdata may extend down to perhaps 8 to 10 levels, thus implying a choice from several hundred million pages.

The reason for the difference is to do with the scope and depth of treatment of the information supplied. Whereas in teletext the content of a magazine of which only one is transmitted at present is 100 pages, in the proposed Viewdata system a small local system might contain as many as 50,000 to 100,000 pages of information. Clearly it is therefore necessary to subdivide this into a number of sub-sections, accord-
ing to an easily understood classification which enables the user to find the bit he wants quickly and simply.

Some of the information is given in great detail and the corresponding page number could have 6,7 or even 8 digits (see Fig. 6). It would clearly be impracticable to offer such a complex index in one lump. Hence the selection system chosen.

At every selection step the user only needs to key a single digit to move to the next level down, thus considerably simplfying and speeding up the whole operation.

Other selection or retrieval systems are, of course, possible. For example, it would be possible to print the total computer index and have it available like a directory to all users. This entails the additional expense in printing and distribution, presents serious updating problems and may confuse many users. By incorporating the index in the system this is made self-contained and flexible.

A fundamentally different approach to the step by step index is that used in many information retrieval systems This is the use of "key-words." An example of the use of keywords would be to key "football results". There are several problems associated with a selection by keywords. These are fairly easy to resolve in computer data bases intended for the professional, but not so easy for a public service.

First the keyword approach requires a "thesaurus," a dictionary of terms used together with their synonyms which are meaningful to the computer. Secondly, the user would require a much more complex keyboard than the basic keyboard normally provided. Thirdly the use of keywords involves the computer in what could be a considerable search, and hence would cause the computer costs to escalate probably beyond the means of the general public.

It is for all these reasons that the index selection was chosen. With this arrangement the whole system is kept basically simple and easy to understand.

\section*{(To be continued)}

\section*{References}
1. The Euronet Project, by G. W. P. Davies, Proceedings of the European Computing Conference, London, September 1975.
2. The Reston, Virginia, Test of the Mitre Corporation, Interactive Television System. The Mitre Corporation, Washington, Report MTP352, May 1971.
2. In Touch Services, Computing, November 1973, report by Pamela Evans.
4. DIALS (Calculation by Telephone), Yoshijuki Mima and Toshiaki Shibagama, Japan Telecommunications Review 1970.
5. P. S. Warwick and G. W. Phipps, The Picturephone System, Computer Access, BSTJ. Vol. 50, No 2, February 1971.
6. S. Fedida, Viewdata - An Interactive Information Medium for the General Public using the Telephone Networks. 6th International Broadcasting Convention, 20-24 September 1976.

\title{
Transient intermodulation in amplifiers
}

\title{
Simpler design procedure for t.i.m.-free amplifiers
}

\author{
by Bert Sundqvist
}

\begin{abstract}
The usual way to avoid transient intermodulation distortion in an audio power amplifier is to use a very large open-loop bandwith and a high-frequency preamplifier roll-off.

In this article it is shown that this is not necessarily the only way; it is possible to reach the same goal by making the first stage inside the feedback loop determine the openloop bandwith. This bandwidth can then be arbitrarily low, permitting the use of standard lag compensation stabilization.
\end{abstract}

During the last few years it has become more and more obvious that the traditional steady-state measurements of harmonic and intermodulation distortion in an audio system do not give the whole truth about the qualities of the system when handling complex signals like music. As a result, much work has been done in studying the dynamic behaviour of different links of the audio reproducing chain.
The most interesting work in this field in recent years is probably Professor M. Otala's identification of the mechanisms producing transient intermodulation distortion. Work by Otala and others \({ }^{1-5}\) show that negative feedback, when incorrectly used in an amplifier design, may make the amplifier sound worse than it did without feedback, while measurements of steady-state harmonic and intermodulation distortion show an improvement in amplifier quality (Jan., pp. 41-3).
Transient, intermodulation arises when heavy negative feedback is applied to an amplifier with low openloop bandwith. It is basically an overload phenomenon, giving an audible result that resembles crossover distortion. Transient intermodulation can be avoided by careful design \({ }^{1-3}\) and probably the best known of the design rules that have evolved is that the amplifier open-loop bandwidth should be greater than the bandwidth of the preceding preamplifier or transducer, which must therefore not be unnecessarily large. A preamplifier bandwidth of several hundred kilohertz might give, power
amplifier troubles and should be rolled off using a passive RC filter.

In a power amplifier, a large openloop bandwidth is not easy to obtain. Firstly, fast power transistors are neither easily obtained nor cheap. Secondly, the simplest way to stabilize an amplifier is to use lag compensation. which requires a dominant low-frequency pole to be inserted in the open-loop frequency response of the amplifier. Whe pushing this pole above 20 or even 50 kHz , the rest of the amplifier must be designed for a bandwidth of perhaps several megahertz. This method can, of course, be used and has been very successfu \(4^{4 .}{ }^{6}\). The first difficulty can be overcome by using the output transistors in the emitter-follower configuration, thus increasing their cut-off frequency. The second can be evaded by using lead compensation \({ }^{3,6}\) instead.
There are other drawbacks with extremely , wide-band amplifiers; for example, such an amplifier must be very well shielded, as it is prone to pick up radio transmissions inside (and outside) its passband, High frequency noise could also be a problem, from the intermodulation point of view. However, there is no doubt that designing a t.i.m.-free amplifier is a rewarding task for the serious listener, as it is particularly annoying \({ }^{4,5}\); a t.i.m.-free amplifier sounds better than most traditional designs, especially on transient-rich musical material.

Is there, then, a way to design a t.i.m.-free amplifier without having to rely on a very high open-loop


Fig.1. Single stage amplifier.
bandwidth? To answer this question we take a close look at the mechanisms producing t.i.m.

\section*{Feedback in an amplifier}

Suppose that we have a one-stage amplifier as in Fig. 1. The gain of this stage can be approximated by \(V_{\text {out }}=\) \(G\left(V_{2}-V_{2}\right)\) where \(G=A a /(a+s)\), with \(s=\mathrm{j} \omega\); we have a low frequency gain of \(G=A\) and an upper cut-off frequency \(2 \pi f_{\mathrm{a}}=a\). If we now apply the input signal \(V_{\text {in }}\) to input 1 and a feedback signal \(\beta V_{\text {out }}\) to input 2 we get \(V_{\text {out }}=V_{\text {in }} G /(1+\beta G)=\) \(V_{\text {in }} A a /(s+a(1+\beta A))\).

From this equation the low-frequency gain with feedback is \(A /(1+\beta A) \approx \beta^{1}\), and the upper cut-off frequency is now \(2 \pi f_{c}=a(1+\beta A)\). Further analysis shows that low frequency distortion, rise time and output impedance have been reduced and input impedance has been increased by a large factor. Thus, on this single stage, negative feedback has nothing but beneficial effects.

If the two similar single-stage amplifiers of Fig. 2, with gains \(G_{1}=A a /(a+s)\) and \(G_{2}=B b /(b+s)\), are cascaded, total gain is \(G=G_{1} G_{2}=A B a b /(a+s)(b+s)\), see Fig. 3. If we now apply feedback in the same way as before we obtain
\[
\begin{aligned}
V_{\mathrm{out}} & =V_{\mathrm{in}} \frac{A B a b}{(s+a)(s+b)\left[1+\beta \frac{A B a b}{(a+s)(b+s)}\right]} \\
& =V_{\ln } \frac{A B a b}{s^{2}+s(a+b)+a b(1+\beta \overline{A B})}
\end{aligned}
\]

The non-inverting configuration has


Fig.2. Two-stage amplifier with overall. negative feedback.


Fig.3. Gain vs frequency plot for the amplifier in Fig.2; both axes logarithmic.
been chosen to avoid confusion in signs. The open-loop gain for this cascaded amplifier has two poles, at \(a\) and \(b\). To obtain a stable amplifier it is necessary that the open-loop gain diminishes by less than 12 dB /octave at the intersection of the open-loop gain curve and the desired closed-loop gain line (broken line in Fig. 3). Supposing A and B to be large we thus have, with feedback, a stable amplifier in which we probably have reduced harmonic and intermodulation distortion to very low values and which has a very large closed-loop bandwidth.

\section*{Dynamic considerations}

To see how transient intermodulation arises and thus how it can be avoided consider the voltage at point \(P\) (Fig. 2). The voltage \(V_{p}\) at this point is
\[
\begin{align*}
V_{\mathrm{p}} & =V_{\text {out }} / \mathrm{G}_{2}=\mathrm{G}_{1}\left(V_{\text {in }}-\beta V_{\text {out }}\right) \\
& =V_{\text {in }}^{\prime} \frac{A a(b+s)}{s^{2}+s(a+b)+a b(1+\beta A B)} \tag{1}
\end{align*}
\]

As a suitable transient-signal we can apply a unit step voltage to the input, that is
\[
V_{\text {in }}(t)=\left\{\begin{array}{l}
0, t<0 \\
1, t>0
\end{array}\right.
\]

The voltages \(V_{p}\) and \(V_{\text {out }}\) can easily be found as functions of time by using standard Laplace transform techniques. First we solve the equation \(s^{2}+s(a+b)\) \(+a b(1+\beta A B)=0\) to find the roots \(p_{1,2}=\) \(-0.5(a+b) \pm 0.5\left((a-b)^{2}-4 a b \beta A B\right]^{1 / 2}\). We then find, for \(p_{1}\) and \(p_{2}\) both real and \(t \geqslant 0\) :
\[
\begin{gathered}
V_{\text {out }}(t)=\frac{A B}{1+\beta A B}\left\{1+\frac{p_{2} \mathrm{e}^{p_{1} t}}{p_{1}-p_{2}}-\frac{p_{1} \mathrm{e}^{p_{2} t}}{p_{1}-p_{2}}\right] \\
V_{\mathrm{p}}(t)=\frac{A}{1+\beta A B}\left[1+\frac{\left(b+p_{2}\right) p_{2} \mathrm{e}_{1}^{p_{1} t}}{\left(p_{1}-p_{2}\right) b}\right. \\
\left.\quad-\frac{\left(b+p_{1}\right) p_{1} \mathrm{e}^{p_{2} t}}{\left(p_{1}-p_{2}\right) b} \right\rvert\,
\end{gathered}
\]

By taking the time derivative of these two equations we find that \(V_{\text {out }}\) is -always monotonically rising with no overshoot, and that the derivative of \(V_{p}\) with respect to time is zero for \(t=t_{\mathrm{o}}=\left(p_{1}-p_{2}\right)^{-1} \log _{\mathrm{e}}\left(\left(b+p_{2}\right) /\left(b+p_{1}\right)\right)\)

This means that for \(t_{0} \geqslant 0\) we must have a maximum in \(\mathrm{V}_{\mathrm{p}}\) at time \(t=t_{\mathrm{n}}\). This
maximum value of \(V_{p}\) might be very large, and here is the mechanism that produces t.i.m. If the maximum value \(\left(V_{p m a x}\right)\) of \(V_{p}\) is larger than the maximum voltage capability of the amplifier at point \(P\), we get an overload situation in which the amplifier may be blocked for several milliseconds, thus causing severe intermodulation. Fig. 4 shows a plot of \(V_{\text {pmax }} / V_{\mathrm{p}}(t \rightarrow \infty)\) versus a for \(b=10^{3}\) and \(b=10^{4}\) and for different values of \(\beta A B\). The value of \(V_{\text {pmax }} / V_{\mathrm{p}}(t \rightarrow \infty)\) is approximately equal
to \(\beta A B\) if \(a\) is large. To see why, let \(a \rightarrow \infty\) in equation 1 :
\[
V_{\mathrm{p}}=V_{\mathrm{in}} \frac{A(b+s)}{s+b(1+\beta A B)} .
\]

With \(V_{i n}\) a unit step voltage as before this gives
\(V_{\mathrm{p}}(\mathrm{t})=\frac{A}{(1+\beta A B)}\left[1+\beta A B \mathrm{e}^{-\mathrm{tb}(1+\beta A B)}\right]\)
and \(V_{\text {pmax }}=(1+\beta A B) V_{p}(t \rightarrow \infty)\),
in agreement with Fig. 4 (cf also Fig.5,


Fig. 4. Plots of \(V_{\text {pmax }} / V_{p}\) \((t \rightarrow \infty)\) vs \(f_{a}=a / 2 \pi(\) in Hz\()\) for \(\beta A B=10,20,30,100\), and 300 . Broken lines: \(b=10^{4}\), solid lines: \(b=10^{3}\).

Fig. 5. Gain vs frequency plot for the amplifiers in the example (logarithmic axes).


Fig. 6. Plot of \(V_{i n}(t), V_{p}(t)\), and \(V_{\text {out }}(t)\) for two amplifiers with a step voltage input signal. \(V_{i n}\) and \(V_{\text {out }}\) are the same in both cases; for \(V_{p}\) we have: solid line: case 1, broken line: case 2 (see text).

ref. 1 , for \(\gamma=0\) ). Thus for \(a \gg b\) we always get, for a step input, a maximum voltage \(V_{p}\) that is approximately \((1+\beta A B)\) times the steady state voltage at infinite time.

To eliminate t.i.m. we want to minimize or, still better, avoid this overshoot. One way to do this is to use a low value of \(\beta A B\). By limiting the bandwidth of the pre-amplifier we can then decrease the overshoot still further or even eliminate it by slowing down the rise of the input voltage \({ }^{1}\), and in this way it is thus possible to design an amplifier with very low t.i.m.

There is, however, another way. If \(t_{0}<0\) we see that \(V_{p}\) rises monotonically towards its final value and no overvoltage blocking is possible. From equation 2 we see that \(t_{0}<0\) is equivalent to \(\left(b+p_{2}\right) /\left(b+p_{1}\right)<1\), which is equivalent to \(a-b<\left((a-b)^{2}-4 a b(3 A B)^{\prime 2}\right.\). Thus, if \(a<b\) no blocking can occur and no t.i.m. is generated, however small \(a\) is! This possibility seems to have been overlooked earlier.

Look at a simple example. Suppose that a two-stage amplifier has openloop stage bandwidths \(a\) and \(b\). We study two cases: case \(1 a=10^{\circ}, b=10^{4}\) (this resembles those studied in refs 1 and 4; it is shown as point Q in Fig. 4) and case \(2 a=10^{4}, b=10^{6}\). In both cases \(1+\beta A B=21\). The gain vs frequency plot in Fig. 5 describes both amplifiers equally well, and shows two things. The amplifier is probably stable and has a closed-loop bandwidth of approximately 30 kHz . And secondly, as the amplifier open-loop bandwidth is only \(10^{4} / 2 \pi \approx 1.6 \mathrm{kHz}\) this amplifier might give rise to appreciable values of t.i.m., even if preceded by a pre-amplifier with 20 kHz bandwidth \({ }^{1}\).

Fig. 6 plots what happens if we apply a unit step voltage \(V_{\text {In }}\) to the amplifier input. (All voltages have been normalized to give \(V_{\text {in }}=V_{\mathrm{D}}=V_{\text {out }}=1\) at infinite time). \(\ln\) both case 1 and case 2 we have the same \(V_{\text {in }}(t)\) and \(V_{\text {out }}(t)\), if the amplifiers have infinite voltage capabilities. \(V_{p}(t)\), however, differs strongly between the two cases, and we see that while the amplifier in case 1 might produce severe ti.m. with a transient input, this is not possible in case 2. It should be pointed out that if the amplifier in case 1 was designed with this situation in mind and the gain \(A\) before the "slow" stage 2 was kept low; an overshoot of this magnitude might be within the voltage capabilities of stage 1 and thus no harm, that is, t.i.m.. would be done in either case. However, from Fig. 6 and the preceding discussion it seems wise to let the first stage in the feedback loop determine the overall open-loop bandwidth.

\section*{Conclusions}

A good design procedure to obtain a t.i.m.-free amplifier is given in refs 1-3,6. From the preceding discussion in this article, however, it seems that this procedure could be simplified. Simply stated: instead of designing the power
amplifier for an open-loop bandwidth greater than that of the pre-amplifier. all that is needed to avoid t.i.m. is to let: the first stage in the power amplifier determine the open-loop bandwidth This bandwidth could then, theoretically, have any value; even with an open-loop bandwidth of 1 Hz we would still have no t.i.m.! On the other hand. what should always be avoided is to let the last stage be the slowest, especially if this has a low gain.

Low first stage bandwidth could be obtained in several ways, for instance by input lag compensation \({ }^{2}\), by using a very-high-impedance current source as collector or by using a very low collector current in the input stage. The low current technique has the advantage of giving at the same time very low input noise. One drawback is that the second stage in this case must have high input impedance and low input capacitance so as not to exceed the first stage output current capability and thus cause t.i.m. in this way instead \({ }^{2}\).

The stages following the first can be designed using accepted "rules" 2.3 .6 Transistors should be run at high collector currents and voltages to give large overload margins and local feedback used to obtain a high bandwidth. Distortion can be reduced by using a symmetrical design. If the input stage bandwidth is not low enough to give a stable amplifier at the desired feedback lead compensation can be used to enhance stability.

By designing the power amplifier in this way it would also be possible to use larger amounts of feedback than in an amplifier relying only on a wide bandwidth to eliminate t.i.m., and thus very low harmonic and intermodulation distortion could easily be obtained. However, this possibility should be used with caution, as there is always a possibility of current or voltage limiting at some stage in a real amplifier with heavy enough feedback.

No experimental work has been done on this subject yet because of lack of available time, but it would certainly be very interesting to see or listen to the result of some experiments along these lines!

\section*{References}
1. M. Otala, Transient distortion in transistorized audio power amplifiers, IEEE Trans., vol.AU-18, 1970, p.234-9.
2. M. Otala, Circuit design modifications for minimizing transient intermodulation distortion in audio amplifiers, J. Audio Eng. Soc., vol.20, 1972, p.396-9.
3. W. M. Leach, Transient IM Distortion in power amplifiers, Audio, Feb.1975, p.34-41.
4. J. R. Stuart, Approach to audio amplifier design, Wireless World, vol.79, 1973, pp.387-91, 439-46, 491-4
5. H. Levitt et al.. Perception of slope-overload distortion in delta-modulated speech signals, IEEE Trans. vol.AU-18, 1970, p.240-7. 6. J. Lohstroh and M. Otala, Audio power amplifier for ultimate quality requirements. IEEE Truns. vol.AU-21, 1973, p.545-51.

HF predictions

Recurrent type magnetic disturbance is due on the last few days of both January and February. This series of disturbances started in August 1975, replacing a pattern of two disturbed periods per month which had lasted for two years. The new pattern started to break up in April 1976 but revived and is now the only series present

The disturbances referred to are abnormal variations in the strength and direction of the earth's magnetic field which are usually accompanied by poor ionospheric conditions in temperate latitudes.






\section*{Satellite broadcasting conference}

A conference opened on January 10 to attempt to establish a worldwide plan for satellite broadcasting in the 12 GHz band, now shared with fixed and mobile radio. "In certain parts of the world," said an ITU communiqué, "there is an urgent need to use frequencies in this band for terrestrial purposes. This reason was evoked in Resolution number 27 of the ITU plenipotentiary conference (Malaga-Torremolinos 1973) which led to the conference being held at the beginning of 1977 . . . By holding the conference at an early date, countries wishing to use this frequency band for terrestrial services will be able to to do so without causing excessive interference to, or suffering excessive interference from, stations in the broadcasting-satellite service which may be introduced later. Countries that do not intend to use broadcasting satellites for many years to come may be confident that suitable frequency channels and orbital positions will be avilable when required in the future."
The conference, held in Geneva and expected to last five weeks, will be administering more than the 11.7 to 12.2 GHz frequency band. Another "limited natural resource" besides radio frequencies is the geostationary satellite orbit. A previous ITU conference in Geneva in 1971 resolved that "all countries have equal rights in the use of both the radio frequencies allocated to various space radiocommunications services and the geostationary satellite orbit for these services and that the radio frequency spectrum orbit are limited natural resources and should be effectively and economically used."
Because the 12 GHz band is already shared the ITU administrative council asked all telecommunications administrations to submit their requirements for a broadcasting satellite service, including the area to be served, the number of channels, the television
standard to be used and the hours of operation, to the International Frequency Registration Board. As a result the IFRB has prepared means of determining: the minimum required technical criteria for sharing; a frequency and orbital position assignment plan; and the interference likely to result from the use of such a plan. Characteristically, preparation for the conference has involved more committees than you could shake a stick at. Two CCIR study groups met in February and March, 1976 and four more in May and June. They in turn formed a "Joint Working Group" to prepare a report for the conference. Yet another working group, set up by yet another conference in New Delhi in 1970, is preparing yet another "comprehensive report" to help the present conference reach a decision. All this is necessary to ensure that the result is a series of decisions which have the widest possible approval; behind each study group and working party is a plethora of yet more committees which, in the democratic countries at any rate, have been formed to see that each country gets its view, arrived at by wide consultation, across to the conference. In such matters, of course, that does not apply to the United Kingdom.

\section*{Unique optical link}

Given the right pricing, optical fibres will play a substantial part in the Rediffusion radio and television cable distribution network. This was one of the consequences of the Rediffusion trial link at Hastings, described by A. E. Cutler of Rediffusion Engineering Ltd at a recent IEE lecture.
Low-loss step-index optical fibres are now available with a transmission capability of the order of tens of MHz-km, making possible television links over a kilometre long without the need for equalization. Whilst they have been demonstrated in the laboratory, the Hastings link was the first to be installed in a normal operational environment and was undertaken to obtain experience of the problems in this field. Rediffusion believe it to be the first optical link to serve the public.
The cable, drawn into ducts containing existing network cables, replaced a section of a vision trunk route feeding 34,000 homes.

Although optical fibres have been made with attenuations of only a few \(\mathrm{dB} / \mathrm{km}\), the only cabled fibres available in mid-1975 produced an overall link loss of 18 dB , which was almost on the upper limit of acceptable loss for an 8.9 MHz carrier system using then current components. Because microbending of the fibres causes increased attenuation, BICC put the fibres in a hollow cavity between steel strength members, within a polyethylene tube. The fibre, a Corning germanium-doped
silica type, has an \(85 \mu \mathrm{~m}\) core with \(125 \mu \mathrm{~m}\) silica cladding of refractive index \(0.8 \%\) different.

The terminal equipment used a Plessey infra-red l.e.d. radiating several milliwatts, but coupling only \(50 \mu \mathrm{~W}\) of this into the fibre. Because of the non-linear current-light characteristic of the diode the drive waveform is predistorted by a feedback loop containing a non-linear element. Receiver used a H-P p-i-n diode and cascode preamplifier circuit with the low noise level of \(0.9 \mathrm{pA} / \mathrm{VHz}\). Improved devices have become available and been installed - the RCA avalanche photodiode with its a.g.c. characteristic - but Dr Cutter felt that the p-i-n would eventually supplant the a.p.ds on account of their inherently higher noise level. (A p-i-n diode and bipolar preamp can give 5 dB lower noise with \(2 \mu \mathrm{~W}\) of input power.)

\section*{Tv "sound" for the deaf}

Anyone who doubts whether sound conveys most of the information in a television programme should try watching without the sound, then listening without the picture. For most programmes the deaf gain much less from television than the blind, who can, if registered, get \(£ 1.25\) off the price of a television licence. The deaf are also deprived of the use of the telephone. Deaf-fax is a research and development group mainly specialising in the making and distribution of teletext decoders to enable the deaf and hard of hearing to receive visual subtitles, which they are pressing the broadcasting authorities to transmit. Although the electronics industry hopes that the cost of teletext decoders will fall as volume increases, just as the costs of calculators and digital watches have done, Deaf-fax note that increased labour costs and taxation have driven costs up. "So it seems the greatest possible help can be given to the deaf either by self-employment or by volunteer skilled labour. Another alternative is to use deaf or disabled persons in either the skilled or semi-skilled aspect of the manufacture of the decoders or recruit skilled volunteer labour to complete the decoders." All the units will be for hire.

Deaf-fax have decided to use the decoder design published in Wireless World beginning in November 1975. They have approached many manufacturers and suppliers to see if they can get components at a discount, though so far the only positive reaction has come from Orchard Electronics. Orchard, who are based at Wallingford in Oxfordshire, hold an electronics club every Friday night. According to Mr D. M. Trueman of Orchard, "It is fascinating to hear the enthusiasm. Members include plumbers, bus drivers, farmers, video engineers, computer engineers, accountants and schoolboys. They
come 15 miles and more." They have already built one Wireless World teletext decoder. Another Deaf-fax project is a video-writer, which enables the deaf to "talk" to one another over a PO line by using a keyboard and the television set.

So far the interest of the BBC has been very discreet, but it is understood that the editor of the Ceefax service, Colin McIntyre, is very interested in the project, and the Royal National Institute for the Deaf and the National Deaf Children's Society may put their weight behind efforts to persuade the government to support a captioning service. The NRDC has put the organisers in touch with the inventor of CHIT, a method of conveying freehand drawings over telephone lines now commercially available as Datapad from Quest Automation.

Similar pressure is being put on the German government by the German Society to support the hearing and speech impaired.

\section*{Domestic "post fade'}

Somewhat belatedly, perhaps, Philips are promoting a special feature of their N2219 cassette and N4506 reel to reel tape decks. A press release describing the introduction of what they have called "post fade" was issued at the beginning of December even though the machines have been available, according to Philips's spokesman, since the middle of 1976. This was a result of pressure from the trade, he said. Dealers had suggested that the "post fade" feature was unique to the Philips machines and ought to be more strongly promoted. It allows users to operate the erase head during playback so that unwanted noises can be removed from previously recorded material. The amount of erasure can be controlled by a slider which fades both channels at once.
- The term "post fade" is normally used in professional recording circles to describe the monitoring of a signal on the speakers after it has been faded. The alternative, "pre-fade" listen, indicates that the signal heard will not be affected by the fader, even though the signal going on to tape may be faded. Post fade has nothing to do with erasure, and were it not for Philips's explanation that their facility allowed one to fade "post" the recording process, one might be driven to conclude that they had picked up a half-understood recording studio term with which to overawe prospective purchasers.

What the Philips press release did not say, although the spokesman said the subject had been discussed, was that to use what might better be called "controlled erasure" effectively may be difficult. The only way to know if an
unwanted signal is on the tape is to hear it. It can only be heard if it passes over the replay head, by which time it will have travelled, on the N4506, two inches on from the erase head which is supposed to remove it. To remove the signal the user would have to operate the erase head some time before the signal reached the playback head. At the highest speed; \(15 \mathrm{in} / \mathrm{s}\), this would mean \(2 / 15\) s before the mistake and at the lowest speed \(4 / 7 \mathrm{~s}\). The only accurate way to do this is to mark the tape, when the mistake reaches the playback head, at a point exactly as far ahead of the playback head as the erase head is behind it. When this mark passes over the playback head on the next pass the mistake will then be over the erase head and the erase head can be operated.

In recording studios the nearest approximation to such a process is the "drop-in", where a section of freshlyrecorded material is slotted into a previously-recorded passage during playback. The junior member of the recording team, the assistant sound engineer or tape operator, pushes the record button at exactly the right moment to allow the tape to travel from the erase head to the record head off which the music is being played back. It is a skilled operation, one that takes a great deal of practice to do consistently well. The facility on the Philips machine seems a useful one, but whether it will enable "the most amateur enthusiast" to obtain the "professional results" they claim for it may be open to argument.

\section*{More public US preparation for WARC}

The FCC have announced the appointment of a programme manager, a full time staff of three engineers, three economists and secretarial staff to a
special task force reviewing u.h.f. frequency allocations. Pressure for space in the 470 to 890 MHz band has increased, since what was once a mainly broadcast slot for high quality television has now become increasingly used for non-tv applications. According to a report in the American trade paper Electronic News, land mobile communications ( \(470-512 \mathrm{MHz}\) and \(806-890 \mathrm{MHz}\), the so-called 900 MHz region); offshore telecommunications and industrial \((488-499 \mathrm{MHz}\), shared with u.h.f. channel 17); radio astronomy ( \(608-614 \mathrm{MHz}\) ) and "government nuclear preparedness" \((470-546 \mathrm{MHz})\) have all been allocated to the band in the last few years, and now the Office of Telecommunications Policy has suggested that some of the 900 MHz band should be allocated to an expansion of the citizen's band radio service.

The task force will consider the tv service to be provided; the needs of those non-tv services seeking to use part of the band; and an analysis of the best means of reconciling the two. The increasing use of the band has made it necessary to study how satisfied the public are with present u.h.f. tv services and whether there would be a market for a high quality set with higher tolerance of the increased interference that has resulted.

The support for the task force is drawn from the FCC's broadcast, cable television, safety and special radio services, the chief engineer's and plans and policies offices and bureaux, and the FCC has also approved research funds to help support the force's work.

On the c.b. front the FCC has found that some of the 40 channel c.b. sets submitted to it perform so impressively that they may tighten the specification further. The minimum allowable harmonic suppression may be increased from 60 dB to 100 dB . Television interference had led the Association of Maximum Service Telecasters to ask


The British North Pole expedition is due to take place in 1977, and an exercise was recently carried out in Greenland preparatory to the expedition. Here a member of the expedition curries a personal survival radio, Sarbe 5, made by Burndept. It provides distress beacon and speech transmissions on an aviation distress frequency and speech on a second frequency selected by the user.
the FCC to delay the introduction of the 40 channel service for further studies, and the AMST and the ABC to ask for suppression regulations to be tightened to exclude television interference completely. But no amount of filtering on the receivers will block out the interference from the second harmonic on American television's channel two, and the FCC has maintained that a lot of the interference complaints stem rather from poor receiver design than noisy c.b. equipment.

\section*{Band II ferrite rod aerials}

One reason why so few people in Britain listen to sound radio on v.h.f/f.m. \(-18 \%\) of the population say the BBC - is thought to be the inconvenience of the telescopic aerial on portable sets. It has to be pulled out and re-adjusted for each new position of the set in the house. An answer to this problem was demonstrated by the BBC's director of engineering, James Redmond, in his Appleton Lecture to the IEE on January 6. This was an internal ferrite rod aerial for v.h.f. developed by the BBC Research Department. The aerial coil is tuned by a varactor diode. At least one set manufacturer will be introducing a receiver incorporating this type of v.h.f. aerial at the spring trade shows this year. Mr Redmond also said, "we now impatiently await the push-button portable v.h.f. radio."
-In the evening only about 7 per cent of the population settles to listen to a fixed installation stereo receiver which may do justice to the quality of the v.h.f./f.m. transmission, said Mr Redmond.
- Another BBC Research Department development mentioned by. Mr Redmond was a technique to improve the BBC's proposed "dedicated" motoring information service that uses a network of m.f. transmitters in a single-frequency t.d.m. system (see News, May 1976, p.41). For the motorist to get the most effective briefing it is necessary to. ensure that only the transmission of the nearest station which will be carrying the relevant information is reproduced. In the new technique "the control signals to activate the car receiver to reproduce a message (and then return it to standby when the message is completed) are conveyed by frequency modulating the medium-wave transmitter carrier. The message itself may be by conventional amplitude modulation of the same carrier, or it could employ any one of the alternative systems of modulation. The well-known capture effect of f.m. transmissions, applied here to the control signals, enhances the discrimination between wanted and unwanted messages by some ten to twenty times."

\section*{Electronic systems syllabus approved}

The proposed ' \(A\) ' level syllabus in electronic systems, which has formed the basis of the Wireless World series, I has now received approval from the Schools Council to be run as a full Mode 1 syllabus. This means that it is now available to run in any school under the auspices of the Associated Examination Board (A.E.B.). The syllabus was compiled at the University of Essex by a team under the chairmanship of Professor G. B. B. Chaplin and comprises three main sections: processing, feedback and communication systems, and a section on systems components (see News, June and December 1975). Copies of the new syllabus can be obtained from the A.E.B. at Wellington House, Aldershot, Hampshire GUll 1BQ.

Teaching texts and experiment notes intended to support courses using the syllabus can be obtained from Mr R. A. Smith, Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ. The teaching texts also provide further reading for the Wireless World electronic systems articles. Equipment recommended for a group of eight students carrying out the course experiments includes four oscilloscopes, six multimeters, eight stabilized power supplies, a television set and earphones. The course also suggests the use of a set of experimental boards and Locktronics equipment. The last-mentioned items may be obtained from Feedback Instruments Ltd, Park Road, Crowborough, Sussex TN6 2QR at prices ranging from \(£ 550\) to \(£ 1000\) depending on individual requirements.

A course being run by the University of Essex for teachers intending to teach electronic systems using the ' \(A\) ' level syllabus will be held this year June 18-20. It will concentrate equally on the subject matter of the syllabus and on practical sessions, when teachers will have the opportunity to gain experience in doing the experiments. This course costs \(£ 26\), including meals and accommodation, and applications should again be made to Mr R. A. Smith of the University of Essex.

\section*{Audio Fair optimism}

The organizers of the London Audio Fair, Iliffe Promotions, are much more hopeful that the event will go ahead this year (Olympia, September 12-18) than they were at the corresponding time in 1976. Last year the Fair had to be cancelled because of lack of support from potential exhibitors. In late December over 5,000 metres ' of floor space had been earmarked by 32 prospective exhibitors. For demonstration of audio equipment a \(5 \mathrm{~m} \times 6 \mathrm{~m}\)
studio has been designed and demonstrated. It is claimed to have acoustic characteristics equivalent to those of the average domestic sitting-room in which audio equipment is used, with a minimum of sound reaching the exhibition area.

\section*{Community television arrives}

Channel 40, the independent noncommercial television station set up by the Post Office and the Milton Keynes Development Corporation, began a three year experimental period on December 19 with a message from Lord Harris, minister in charge of broadcasting at the Home Office. There has been increasing pressure in recent years to make technical facilities available to local groups or individuals for producing their own programmes: Perhaps the best case was made in Anthony Smith's book The Shadow In the Cave, now just reissued in a new paperback edition The philosophy behind the development is that the large broadcasting organisations are either not attuned to or incapable of providing for the needs of ordinary people in a community. Stations such as Channel 40 could provide a means of by-passing the broadcasters, enabling the television audience to communicate among themselves rather than be merely passive receivers of what is produced by those who think broadcasting should be used as a megaphone.
In Milton Keynes 10,000 homes are connected to the cable system, roughly one-third. By the end of the experiment it is hoped that that number will double, covering about half the population. Channel 40 has three producers, an assistant producer, a technical manager and a secretary. Many groups have borrowed the station's equipment to record their own programmes. At the moment the station will broadcast for an hour on Sunday evening, starting at 1800 h , repeating the programme at the same time on Monday night, broadcasting a new programme on Tuesday and repeating that on Wednesday.

The Cable Television Association commented sourly on the experiment in their annual report, published in November: "It is understood that plans continue to be developed for a local community service on the cable television network at Milton Keynes, with funding from Development Corporation funds. It should be noted that this service will have the support of public funds, something expressly forbidden by the Home Office to private companies for the community services pioneered by [our] members."

The report also notes that in the United States \(15 \%\) of homes are connected to cable, a total of 10.8 million. In Canada the proportion is two-thirds, in Belgium 49\%, in Luxembourg \(30 \%\), in

Holland more than half, and in Switzerland 14\% "In Great Britain, the country which pioneered cable television, cable systems operating on a speculative basis are now declining and are likely to do so whilst they are not allowed to do more than relay the broadcasters' programmes, and are subject to licensing by the Post Office."

\section*{Surround sound progress}

In an engineering press statement issued last August, the BBC said that ". . . little doubt remains that the BBC experimental matrix system, which is known as matrix H , is superior for broadcasting to other systems tested." And more recently, a BBC engineering information sheet says that the matrix H gives "stereo and mono compatibility much superior to that of any of the systems previously examined." The choice of words in both cases appears to have been deliberately picked to exclude systems not tested. Natural scientific caution, one might think. But witness also the recent BBC article in \(E B U\) Review which says that the decoded result can be made to match more closely that from a four-channel discrete system than is possible with any current commercial system . . ." The word "commercial" here quite clearly excludes the one major system which has not quite reached the market place, but which its inventors believe offers advantages over matrix \(H\).

The reason why the Ambisonic coding wasn't included in the BBC's most recent tests appears to be in part due to some disagreement over how it should be tested and partly due to the equipment not being ready in time. The developers would have liked it to be tested to its best effect but the BBC are more interested in how it performs under normal operational conditions. It is like testing five television systems in black and white, with four black and white sets and one colour, says Michael Gerzon. It may be that the colour set could come off worse had it been optimized for colour.

Though the BBC have no plans to start a regular 'surround-sound service, the recent statement says ". . . it would, in the light of its present knowledge, choose matrix \(H\) to encode the transmissions," clearly leaving itself the option of changing. The Corporation plan to make pilot transmissions in the second half of 1977 (at which time decoder details will be published) but C . B. B. Wood, head of engineering information, made it plain that when it causes the public to buy new equipment in significant quantities they will be unable to change.

A recent demonstration of matrix H at Broadcasting House gave an elevated unstable centre front sound with precious little sound from the sides, and
generally unconvincing reverberation was reported, due possibly to the non-linear circuitry. There were mixed views about the overall effect, ranging from very good to fatiguing. One listener after a Monteverdi piece remarked "I must be odd, quad doesn't do anything for me." (We were delighted to find that the nearest loudspeaker was not the most prominent, as often seems the case.)

The BBC matrix arose out of work by T. W. J. Crompton and P. A. Ratliff details were given in Research Department report 29 in 1974 - in an effort to get a better mix of mono-stereosurround performance than existing codings offered at the time. But since their earlier work Peter Fellgett's NRDC-backed Ambisonic scheme has been modified and developed with the help of Michael Gerzon to the point where Ambisonics must now represent the most advanced thinking in surround sound technology.

Matrix \(H\) is reported in the \(E B U\) Review article to give "very accurate directional information for a central stationary listener" but the sound sensation on normal programme material, although "extremely pleasant," is reported to be very close to the listener, i.e. sound images seem much closer than the loudspeakers. This, together with a loss of directional information away from the central listening position, no doubt prompted work on the peculiarly-named "logicenhanced" decoder, which really means a programme-dependent decoding, to try and improve matters. Early experiments had used commercial decoders modified for the \(H\) matrix (Sansui's decoders could be used with around \(60^{\circ}\) phase shift in one channel), but the recent statement says superior results have been obtained with a specially designed decoder but using Sansui's non-linear Variomatrix technique.

The Ambisonic 45J coding, as it is called, uses a circle locus and can be improved by linear means - in particular by addition of a band-limited third channel, which nowadays is well within the capability of the disc record industry. It is argued that matrix H cannot be satisfactorily augmented in this way because its locus on the phase-amplitude sphere is a bent circle (Electronics Letters, 11 Dec 1975).

Although perfect mono and stereo playback compatibility are conflicting requirements, both H and 45 J fall within fairly well-defined limits of acceptability. In the trade between back attenuation in mono playback and phase difference in stereo, there is room for a range of balances. In mono, matrix H gives a total gain variation of 3.6 dB over the \(360^{\circ}\) range of source angles and 2 dB in stereo. The Ambisonic 45J gives slightly more variation in mono and slightly less in stereo. In stereo, H is slightly less wide than 45 J . Phase difference for a centre front signal is \(48^{\circ}\) for H and \(45^{\circ}\) for 45 J (hence its name),
though it is claimed that \(H\) gives significantly more blurred images. (These figures are for optimal or kernel encodings; they are different for pairwise mixed material).

But the differences between Ambisonics 45 J and other codes doesn't just centre on the \(2 \rightarrow 21 / 2 \rightarrow 3\) channel augmentation ( \(21 / 2\) means two channels at h.f. and three channels at l.f.) - the Cooper-Shiga UMX series also has this property and in theory the Sansui code could be similarly augmented. The technology built up over the last few years by the Ambisonic team has allowed major advances in microphone design for natural, surround use. In addition novel signal processing techniques for surround information have been developed, and criteria have been established for a family of frequency dependent "psychoacoustic" decoder designs that take account of listener-to-speaker distance and can be adapted to different loudspeaker layouts. And theoretical studies have provided and adapted the analytical tools needed to handle kernel systems as well as matrix systems (the distinction is one of a continuum of directions as opposed to a selection of a few of those directions).

A visit to Peter Fellgett's experimental three-channel set up at his home a short time ago produced just about the most natural reproduced sound experience we have yet heard. At its best it was totally involving, much more so than any commercial surround-sound demonstration (so much so that the writer had twice to be gently reminded it was time to leave; all too often one is glad to leave surround demonstrations).

The job they now have is to put down all they have developed and discovered over the years on paper - if only to make it available to its licensees. Already an agreement with one wellknown manufacturer is about to have its i's dotted and t's crossed and interest is being shown by other broadcast organisations.
- The 4-4-4 and 4-3-4 configurations studied by the BBC are "of no interest since they could not be broadcast satisfactorily through the three nationwide v.h.f. networks operated by the BBC." The BBC would naturally wish to avoid curtailment of its existing coverage by introducing a third channel of information, but Michael Gerzon feels the possibility of adopting a \(2 / 3\)-channel system ought not to be ruled out until more thorough investigations have been made. By using a reduced level and band-limited third channel they believe it possible that the mono and stereo signal levels need only be reduced by half a dB. Of course, as David Mears pointed out, the service area of threechannel reception would then be considerably reduced. But the elegance of the hierarchical approach, as in the Ambisonic proposal, is that the extra channel can be deleted anyway and still maintain a surround performance, arguably better than matrix H .

\section*{Circuit Ideas}


\section*{Three coupled astables}

This circuit produces three symmetrical square waves at \(120^{\circ}\) to each other. By inverting these, outputs at \(60^{\circ}\) can be produced. Three comparators from the MC3302P are used, and the device can
be operated from 4 to 12 volts. With the component values shown, output frequency is approximately 17 Hz .
L. J. Bell,

Evesham,
Worcs.

\section*{Binary state indicator}

A simple circuit for displaying the four possible states on two binary lines uses four l.e.ds and one inverter which may be a spare gate or transistor. When \(x=\) \(y, A\) and \(B\) will have both sides at the same level and will therefore be off. Because \(y\) is inverted, \(C\) and \(D\) will have both sides at different levels, so one l.e.d. will be turned on. When \(x\) is opposed to \(y\) the reverse situation occurs.
David Straker,
Dwyran,
Gwynedd.
 minimum distortion of the sine wave output. Output amplitude is set by \(\mathrm{R}_{6}\), and a d.c. level of between \(\pm 14 \mathrm{~V}\) may be added to the output by \(\mathrm{R}_{7}\). Frequency of the waveform is switched in decades by \(S_{1}\). The power supply should be rated at 150 mA .
Graham R. Wilson,
Gwent College of Technology,
Newport.


\section*{Peak and trough detector}

In data-logging systems it is often necessary to measure the peak and trough of a waveform superimposed on ad.c. level. This circuit uses two i.cs and offers acceptable performance down to about 10 Hz . Measurements are made with a conventional d.c. voltmeter.

Input signals are fed to a precision peak detector, which outputs the peak voltage "max". The input signal is also
passed through an active low pass filter and inversion amplifier, whose output at TP2 is the mean value. A differential amplifier subtracts the maximum value from the mean, to give the minimum value of the input. A compromise is necessary between response time and lowest operating frequency but the \(100 \mu \mathrm{~F}\) capacitor can be reduced for higher speed operation. The circuit is
set up by shorting the input and adjusting \(R_{1}\) until \(0 \mathrm{~V} \pm 1 \mathrm{mV}\) appears at TPl. Resistor \(R_{2}\) is then adjusted so that 0 V also appears at TP2. With +5 V \(\pm \operatorname{lmV}\) applied to the input, \(\mathbf{R}_{3}\) is adjusted until TPI measures +5 V \(\pm 1 \mathrm{mV}\), and \(R_{4}\) is adjusted until TP2 measures \(-5 \mathrm{~V} \pm 1 \mathrm{mV}\). Finally, \(\mathrm{R}_{5}\) is adjusted until \(+5 \mathrm{~V} \pm 1 \mathrm{mV}\) appears at the "max" output.
K. R. Brooks,

University of Bristol.


\section*{Small signal amplifier}

There are two basic types of small signal amplifier, the virtual earth type as shown in Fig. 1 (Linsley Hood's Liniac), and the high input impedance type as shown in Fig.2. In certain applications, such as a record amplifier, these two configurations can be economically combined as shown in Fig.3. This circuit provides several times as much gain as the Liniac.
D. Rawson-Harris,

Ferranti Ltd,
Manchester.


\section*{Grounded gate thyristor}

A conventional p-gate thyristor can be triggered by a negative-going pulse as shown in the circuit. When a contact to earth is made via the switch, \(C_{1}\) applies a negative pulse to the thyristor cathode which reverse biases the diode. When the thyristor conducts, the diode is forward biased and only adds about a 0.7 V drop. The diode must be rated for the full load current but need only be a low voltage device. In the author's design, opening of the relay contacts causes the circuit to switch off.
R. V. Hartopp,

Saffron Walden,
Essex.



\section*{Sync-pulse delay}

In t.v. broadcasting it is sometimes necessary to delay a composite signal. Passive elements can be used but these only offer delays of a few hundred ns. If
a longer delay is required, several of these elements are used. This circuit replaces these passive networks and allows a variable delay up to \(7.0 \mu \mathrm{~s}\).
C. M. Wong,

Kowloon,
Hong Kong.

\section*{"'Telecomms industry needs reorganisation" - ASTMS}

The erratic investment record of the Post Office, coupled with the reliance of the ielecommunications companies on Post Office contracts, has led the Association of Scientific, Technical and Managerial Staffs to recommend, in a policy document on the telecommunications industry, the setting-up of a new publicly-owned company to manufacture telecommunications equipment. ASTMS is against either splitting the Post Office into a postal and a telecommunications corporation, or involving it in the manufacture of equipment now supplied by firms such as Plessey, GEC and STC. "Even though the postal side is more prone to make a loss than is telecommunications, there is no evidence that the overall financial performance of the two divisions operating as separate corporations would be better than their overall performance within one corporation. If there is any question of postal losses acting as a drain on the financial resources of Post Office telecommunications this would argue for more rational housekeeping techniques rather than a divorce." In any case, ASTMS argue, future technology will increasingly blurr the distinction between the two forms of communication: "For example the growth of data transmission tràffic will bridge the two operations."

As to the widening of the Post Office's remit to embrace manufacturing, "The Post Office's poor
record stems both from problems within its own organisation, particularly at senior management level, and from its relationship with the supplying companies. These problems cannot be solved by extending the Post Office's remit. ASTMS would rather see a complete overhaul of the way in which decisions are taken within the Post Office."

The telecommunications industry could only survive if it adopted "more dynamic strategies" towards its employees, the Post Office, research and development, investment, and marketing. "ASTMS believe that the only way that the industry can work successfully is for the government to take over the telecommunications sections of the supplying companies and form a new company." The government, through the National Enterprise Board, should have a majority shareholding in the new company, to be called British Telecommunications Ltd, which would carry out a plan agreed with the Post Office, the trade unions and the Government. "The idea of a company where the public sector has a majority shareholding, but which then operates sufficiently independently not to be come a victim of excessive bureaucracy and arbitrary state intervention, is not in itself new. Cable and Wireless Ltd is such a company, operating on the whole successfully." The new company would carry out research and
development, design, manufacturing, and installation work, pooling the expertise of the various suppliers into one company. Money from the NEB could be used to manufacture and design components, a capital injection the need for which grows as telecommunications technology concentrates increasingly on large scale integration. ASTMS argue that, in the past, the Post Office has insisted on specifications which the suppliers know are unnecessarily detailed, which impede production, and which reduce the chance to export. For this reason BTL should be in a position to insist that the Post Office either orders equipment meeting international standards or pays a premium reflecting the true cost of making special equipment.

Throughout the document ASTMS emphasises the need to modernise and re-equip the telecommunications industry, and to speed up the progress towards all-electronic telephone exchanges even though this will mean, they estimate, a reduction of \(80 \%\) in the number oi skilled and semi-skilled engineers in the industry in the next ten to 20 years.

Towards the end of November the managing director of posts, Mr Alex Currall, told a Coventry meeting of the Institute of Administrative Management that his personal view was that posts and telecommunications should be separated.

\title{
Nickel-cadmium cells
}

\title{
Experiments in reviving cells you would otherwise discard
}
by K. C. Johnson, M.A.

The use of nickel-cadmium cells in tape-recorders, pocket calculators and other "cordless" appliances is increasing rapidly. They owe their popularity to the fact that they are both rechargeable and sealed. This is possible because they contain a built-in chemical constant-voltage action, like a sort of zener diode, which enables them to continue to carry current after they have reached full charge with only a small rise in voltage and without any net internal effects. Thus they can operate satisfactorily when connected in series in a battery, no gases are evolved, no water need be added and, according to the manufacturers, they last more or less for ever.
Unfortunately, though, many users tell a different story and this type of cell has acquired a reputation for being unreliable and rather short lived. Since the cells are far from cheap this seems to be an unsatisfactory state of affairs, and the author wondered whether there was any simple explanation. It seems possible that there is, and that cells are being thrown away unnecessarily. Readers may like to help prove or disprove my theories. The secret seems to be to "treat' 'em rough". The manufacturers get good life results when they test under severe conditions, while it is the cells that have an easy time that die.

In this type of cell the negative plate is cadmium. As the cell is discharged this material is oxidised from the metallic form to an insoluble hydroxide. The positive plate is nickel, but this is never in the metallic form at any stage. As the cell is discharged it changes from one hydroxide to another, both being insoluble. When the cell is charged both these reactions are reversed and metallic cadmium is reformed. This reversible process is associated with the normal voltage, of about 1.25 V , between the plates.
If the charging process is continued after this reaction has gone to completion, the makers arrange that it is the nickel side which is exhausted first. Thus oxygen ions arrive but can find no material left to oxidise. They therefore form into oxygen molecules and go into solution in the electrolyte where they
diffuse around the cell. In due course they reach the cadmium and are able to oxidise the metal. Thus current is carried across the cell by the recirculation of oxygen, which flows as negative ions in one direction and as neutral molecules in the other. Because of the pressure required to keep sufficient gas in solution the current in this overcharge state must be limited to about 0.1 C , the ten hour rate.* A voltage of about 1.30 V is associated with the recirculation process, so that it provides a very convenient limiting mechanism.

\section*{Over-discharge}

If a cell is over-discharged, as can happen if it is the first to go flat in a multi-cell battery, then damage may be done. If the nickel side is again exhausted first, then damage may be done. If the nickel side is again exhausted first, as it normally will be, then hydrogen gas will be formed at a voltage a little below zero. Once formed into gas the hydrogen can never be recovered and represents a permanent loss of electrolyte. In some cells the makers put a bit of cadmium hydroxide in the positive plate alongside the nickel, and if this is done the cell will pass current at a voltage of almost exactly zero until this material is in turn exhausted and the generation of hydrogen starts. Clearly if all the cells in a battery are balanced within the appropriate margin the chance of damage will be much reduced. It would seem likely that a semiconductor diode connected across each cell could offer similar protection even if the cells were not carefully balanced.
What then is the mysterious mechanism that makes cells fail prematurely when they are given gentle treatment? It seems that the trouble is that cadmium, like zinc, is a metal that has a "hexagonal", rather than a "cubic", crystal structure. Thus, if it is allowed the choice, it will prefer to form crystalline whiskers rather than a smooth surface, and the atoms in these whiskers will be just a tiny bit, a few tens of millivolts perhaps, less chemi-
cally active than those in more randomly built metal. Although the electrolyte is alkaline, cadmium ions will still have some slight solubility and will be able to move about the cell in small numbers. Thus the metal will slowly form itself into crystals even if the cell is left idle, while gentle cycles of charging and discharging are likely to accelerate the process.

If these whiskers build up until they actually penetrate the inter-plate barrier they can obviously cause internal short-circuiting. But as soon as the current rises high enough to give a voltage drop down a whisker equal to the few tens of millivolts energy difference growth will cease. Each whisker thus provides a steady leak of a very small current only. When the cell is discharged, though, the growth can be resumed and a solid short-circuit becomes possible.
Normally the whiskers will grow as the cell is being charged, so that a cell in the early stages of the disease may behave perfectly well until it is perhaps half charged. The whiskers will reach across and bypass the current so that little further charging takes place. After the full charge time the cell is put into service and goes flat much too soon. It is said to have "lost capacity". Only later does it become obviously impossible to get any charge in at all and only then is the cell said to be "short-circuit". It will probably be thrown away as worthless.

\section*{Reviving process}

If readers have any cells of this type that they are about to discard after this sort of trouble they might like to try to revive them by a process that I have used with some success. Make sure that each cell has the customary safety vent, or beware of explosions if a high gas pressure is generated inside. If a cell is open-circuit then it has probably lost electrolyte, Gue to leakage or excessive current in either direction, and there is no point in giving it this treatment.
Take each reject cell and apply the usual 0.1C (ten hour rate) charge current to it. Watch the voltage with a meter, but there is no need to worry if
no significant amount appears at this stage. Arrange to be able to add a very much larger charge current, 10 C (six minute rate) perhaps, to just one cell at a time. A connection across the headlamp switch of a car might be suitable, or two charged healthy cells in series with an appropriate resistance. Arrange also a dummy load that will discharge a normal voltage cell at about the 10 C rate. This may well be a metre or so of quite thick copper wire and will get fairly warm in use. Use this dummy load to make sure that the cell under treatment is in fact flat before starting to charge it.

Now add the heavy charge current to the low one for bursts of about five seconds, allowing intervals of perhaps fifteen seconds between the bursts to avoid undue heating. Don't worry too much about the voltmeter reading while the heavy current is flowing remember that you were going to throw the cell away - but notice the voltage to which the cell settles between bursts. This may start at zero, but even the most obstinate cell will "come unstuck" after a few bursts and will reach a value of around 1.25 volts. After perhaps twenty bursts the cell ought to be a little more than a quarter full and it is unwise to go much further at the heavy current as the cell will lose electrolyte and be permanently damaged if it reaches full charge. Use the dummy load then to discharge the cell completely, again working in bursts to avoid undue heating.

The theory behind this rough treatment is that the heavy charge current will melt any whiskers causing shortcircuits, thus destroying their crystal structure or fusing them altogether, while depositing cadmium metal back on the plate to give a useable amount of charge. The heavy discharge will then oxidize the metal in any remaining whiskers first, despite the lower activity of the crystalline material, simply because the metal offers a much lower electrical resistance path than the electrolyte.
Now recharge the cell to the quarter full state with a further twenty bursts of the heavy current. Then leave it on just the low current for ten hours or more, and if the treatment has been successful it will go through to the oxygen regeneration state. It is difficult to establish for sure when this has been achieved, but measure the voltage carefully and then, without disturbing the 'harge current, discharge the cell with the dummy load for about 30 seconds and compare the voltage to which it recovers in a minute or so. If this is significantly lower, say 50 mV , then the cell was probably fully charged and will be so again after a further hour on charge. In any case it seems that this sort of discharge will probably do the cell good, and it is certainly a good thing to leave a cell which has had short-circuit trouble on low current overcharge for at least another 24 hours.

This is because the most effective whisker removal action comes only when the oxygen recirculation process is established. The dissolved oxygen diffusing across from the nickel plate finds the troublesome whiskers first and will attack the cadmium in them. Any metal ions which may be formed are then driven back towards their proper electrode by the electric field. Even detached pieces of metal will be oxidized and so returned for further service. Only during overcharge is the field in the right direction to pack the cadmium down on its plate while the metal is being oxidized and may go into solution as ions.

\section*{More drastic}

When a cell that was on the point of being rejected reaches the overcharge state, as several of mine have done, it can be considered to have been successfully rehabilitated. If a cell fails to respond to the treatment described, then, before you throw it away, try more drastic treatment. If it never made volts at all, try a larger initial current to "unstick" it. If it charged but never reached overcharge, continue the bursts of heavy charge current until it is half full or even more before discharging it: The author has only been able to experiment on a very few cells of a single type. The experience of readers may help to improve the process and make it more successful.

In any case, if only a small fraction of the cells treated recover sufficiently to be of further service it will still be well worth trying, as the cells are expensive and the treatment is comparatively simple. The results may not be quite as good as new cells, but they may be very much better than scrap.

\section*{Appendix}

Typical capacities and charging currents are as follows:
\begin{tabular}{lcc} 
Cell size & Capacity & 0.1 C current \\
AA, R6 or U7 & 500 mAH & 50 mA \\
C, R14 or U11 & 1500 mAH & 150 mA \\
D, R20 or U2 & 3500 mAH & 350 mA
\end{tabular}

\section*{Announcements}

Ritro Electronics (UK) Ltd has been formed as a fifty-fifty partnership between Ritro Electronics bv. component suppliers of Holland and Belgium. and Tahold Investments Ltd to distribute electronic components in the UK. Tahold is a company formed by Peter Tagg (a founder and former managing director of GDS Sales Ltd) and he is the major shareholder. Ritro is at Grenfell Place Maidenhead. Berks.

Syston-Donner have appointed Electroplan of Royston UK distributor for four of their range of pulse generators, the model 99 , the 100 A . the 110 B and 110 C .

NRK, Oslo, the Norwegian broadcasting authority. have ordered a \(£ 100,000\) non-computerised routing control system from Prowest. The system provides switching for forward and reverse vision, forward
and reverse programme sound, forward and reverse communications, vision and sound cueing and synchronising pulses. The system used 60 kbits of p.r.o.m. and 5 kbits of c.m.o.s. store which memorises the routing if the power fails.

An unnamed Arabian country has placed a £7million order for a microprocessor-based system to enable computer data to be transmitted over h.f. links. It will be used in a data retrieval system consisting of a central base and 13 h.f. and v.h.f. out-stations, offering data or voice communications between them and the central base. The order was awarded by a company called Scicon (Scientific Control Systems Ltd) to Racal Communications. Scicon was formed at the beginning of the year "to export and manage the skills of our resource companies in England and Germany in the Arabian Middle East."

The international Short-Wave Club is conducting its tenth poll to find the most popular short wave broadcasting station. The poll has been held once every three years since 1950 . The present one began on November 1 and will finish on February 28, 1977. Any listener may participate, though eligible stations are confined to those recognised by the ITU. A list of five stations in order of preference should be sent to Mr G C Gibbs, 118 Bournemouth Park Road, Southend-on-Sea, Essex, SS2 5LS. The 1974 winner was Radio Nederland, followed by the BBC.

A series of lectures on radio navigational aids begins January 19. Lecturers will be from Decca Navigator. Marconi-Elliott Avionic Systems, Redifon, and the School of Engineering, Merton Technical College, where the course will be held Further details from Mr R. B. C. Copsey, Merton Technical College, Morden Park, London Road, Morden, Surrey.

Automatic Control Engineering Ltd say details of courses at their training centre in Sidcup are available from Mr R. W. Leach. Training Manager ACE Training Centre, Roxby Houses, Station Road, Sidcup, Kent. The only qualification needed to enter courses is conversational ability in English. The centre specialises "in the practical training and theoretical tuition of instrumentation and control engineering.'

Largely because of the desire to receive British television. Irish viewers tend to be at the receiving end of cable relay systems. The Minister of Posts and Telegraphs, Mr Conor Cruise O'Brien, has now said that for those areas of Ireland unable to receive pictures so far by this method, the South and West of the country, there will be no difficulty in arranging for the signals to be relayed to them. The co-operative relay companies beaming the signals from Dublin will be charged \(£ 200,000\) for the privilege - in direct contravention of the Berne Copyright convention.

Zaire has contracted with a French company for a national space communications network to broadcast radio and tv programmes over its territory and to supplement its telephone and telegraph links. The country already has radio and tv stations, microwave links and a satellite earth station linking it with the rest of the world. The work will be undertaken by Thomson-CSF, and will consist of 12 satellite earth stations with 14.5 m aerials, 16 tv transmitting stations, and additional complementary telephone, telegraph and television equipment. A repeater on one of the Intelsat satellites will be leased to Zaire.

African developing countries are to be provided with education and information through the French and German "Symphonie" communications satellite. The first earth station was installed in Kigali, Rwanda, late in 1976, where it is relaying programmes from Cologne.

\section*{Awards}

Derek Tilsley. marketing director of Rupert Neve \& Co. the Energy Services and Electronics Ltd subsidiary, has been elected vice president, International, of the Audio Engineering Society.

Sir Karl Popper has been elected a Fellow of the Royal Society.

\title{
Logic design - 2
}

\section*{Combinational logic}

\author{
by B. Holdsworth* and L. Zissos \(\dagger\) \\ †Department of Computing Science, University of Calgary, Canada. *Chelsea College, University of London
}

\begin{abstract}
Two of the most essential features that must be met in the design of logic circuits are the imposed gate fan-in restrictions and hazard-free operation. Gate fan-in is the number of imput terminals provided in a gate, i.e. the maximum number of input signals to a gate. Race-hazards are unwanted transient signals (signal spikes), which under certain changes of an input signal and with certain relationships of circuit delays appear in a logic circuit.
\end{abstract}

Combinational circuits can be constructed using AND, OR and INVERTER gates, NOR gates or NAND gates. It is possible to construct curcuits using all of the above elements but such circuit configurations are not, at present, common. Circuits composed entirely of NAND or entirely of NOR gates are generally more economical and convenient to use than circuits using AND, OR and INVERTER gates.
The truth table for a two-input NAND gate is shown in Fig. l(a) and that of a two-input NOR gate in Fig. 1(b). A NAND gate can be used as an INVERTER if all except one of the inputs are tied to logic 1 , a practice which, though not always necessary, is strongly advised. For example, if the input A of the gate shown in Fig. 1(a) is tied to logic 1 , then the output of the gate is \(\overline{\mathrm{B}}\) as indicated by the entries in the bottom two rows of the truth table.
Similarly a NOR gate can be used as an INVERTER if all except one of the inputs are tied to logic 0 . The remaining input then appears inverted at the output of the gate. In the case of the gate shown in Fig. I(b), if input A is connected to logic 0 the output of the gate is \(\overline{\mathrm{B}}\), as indicated by the entries in the top two rows of the truth table.
NAND and NOR gates can also be used to generate the OR and AND functions. For example, the output of a NAND gate driven by signals \(\bar{A}\) and \(\bar{B}\) is \(\overline{\mathrm{A}} \overline{\mathrm{B}}\). which may be written as \(\mathrm{A}+\mathrm{B}\), as shown in Fig. 2(a). The AND function can be generated by connecting two NAND gates in cascade, the first one generating the NAND function of the two input variables A and B, whilst the second gate acts as an INVERTER, as
shown in Fig. 2(b). It follows that a NOR gate fed with inverted variables generates the AND function of the true values of the input variables, whilst two NOR gates in cascade generate the OR function of the variables fed to the inputs of the first gate.
Two levels of NAND gates generate a two-level sum-of-products expression, as shown in Fig. 3(a), which indicates the one-to-one relationship that exists between a sum-of-products expression and its NAND implementation. The reader's attention is drawn to the fact that the realisation of a minimal sum-of-products expression does not necessarily result in a minimal circuit. For example, the implementation of the "Exclusive OR" function \(f=A \bar{B}+\overline{\mathrm{A}} \mathrm{B}\), which is a minimal expression, requires five gates, if inverted variables are not available as shown in Fig. 3(b), whereas the NAND circuit satisfying its non-
minimal form \(f=\mathrm{A}(\overline{\mathrm{A}}+\overline{\mathrm{B}})+\mathrm{B}(\overline{\mathrm{A}}+\overline{\mathrm{B}})\) requires one gate less, as shown in Fig. 3(c).

In order to implement a function, such as \(f=(\overline{\mathrm{A}}+\mathrm{BC}) \mathrm{E}+(\overline{\mathrm{G}}+\overline{\mathrm{H}}) \mathrm{F}\) using NAND gates, it is simpler to work backwards from the output gate. The equation is of the form \(P Q+R S\), where
\[
\begin{array}{ll}
P=(\bar{A}+B C) & R=F \\
Q=E & S=(\bar{C}
\end{array}
\]

This type of two-level sum-of-products has already been realised in Fig. 3 (a) and is repeated with the relevant input signals in Fig. 4(a). The input line \(\overline{\mathrm{G}}+\overline{\mathrm{H}}\) to gate 3 is the output line of a two-input NAND gate, whose inputs are found by inverting the variables \(\overline{\mathrm{G}} \& \overline{\mathrm{H}}\). Similarly, the input line \(\bar{A}+B C\) to gate 2 is the output line of a two-input NAND gate, whose inputs are found by inverting the variable \(\bar{A}\) and the product \(B C\), as
(a)

(b)


Fig. 1. Symbols and truth tables for NAND (a) and NOR (b).


Fig. 2. The OR function using a NAND gate at (a) and the AND using NANDs at (b).

(a)

(c)

Fig. 3. The use of NAND gates to obtain a sum-of-products function (a). The minimal form of expression need not give a minimal circuit; minimal expression \(f=\bar{A} \bar{B}+\bar{A} B\) in (b) needs one more gate than non-minimal expression \(f=A(\bar{A}+\bar{B})+B(\bar{A}+\bar{B})\) at (c).


Fig. 4. Building up the expression
\(f=\bar{A}+B C) E+(\bar{G}+\bar{H}) F\) from the output end in three levels.


Fig. 5. Dualizing \(f=A B+C D\) with NOR gates.
shown in Fig. 4(b). For the final stage in the implementation it is only necessary to precede gate 5 with a two-input NAND gate whose input variables are B and C as shown in Fig. 4(c).
If the NAND gate in Fig. 3(a) were replaced by NOR gates as shown in Fig. 5 the output function, which the reader can check for himself, will be
\[
f_{\mathrm{D}}=(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})
\]
which is the dual of the output function of the circuit shown in Fig. 3(a). Hence to implement the NOR circuit of a

Boolean function first derive the NAND-circuit of the dual function and replace the NAND gates by NOR gates.

Example. Implement the function
\[
f=\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\mathrm{ABC} .
\]

Dualise:
\[
f_{\mathrm{D}}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}})(\mathrm{A}+\mathrm{B}+\mathrm{C})
\]

Express in Sum-of-Products form:
\(f_{\mathrm{D}}=\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{A}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{B}}+\overline{\mathrm{B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{C}}+\mathrm{B} \overline{\mathrm{C}}\) minimising using the method of Part 1 :
\(f_{\mathrm{D}}=\overline{\mathrm{A}} \mathrm{B}+\overline{\mathrm{B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{C}}\).
The NAND circuit of this function is shown in Fig. 6(a) and the NOR function \(f=\bar{A} \bar{B} \bar{C}+A B C\) is given by replacing the NAND gates by NOR gates, as shown in Fig. 6(b).

\section*{Hazard-free operation}

Race-hazards are unwanted transient signals (signal spikes) which, under certain changes of an input signal and with certain relationships of circuit, delays, appear in a logic circuit. The NAND circuit of Fig. 7 shows a combinational logic circuit in which "spikes" are generated during a change of input signal \(A\) from 1 to 0 when \(B=C\) \(=1\). The cause of the race-hazard is that immediately following a change in the signal \(\mathrm{A}, \mathrm{A}=\overline{\mathrm{A}}=\) either 0 or 1 . Hence if a Boolean expression of a signal in a circuit reduces to either \(\mathrm{A}+\overline{\mathrm{A}}\) or \(\mathrm{A} \overline{\mathrm{A}}, \mathrm{a}\) race-hazard exists at the output of the corresponding gate, otherwise the signal is hazard-free.

In the example shown in Fig. \(7, f=\) \(A B+\bar{A} C\) reduces to \(A+\bar{A}\) when \(B=C\) \(=1\), revealing the existence of a race-hazard at the output of gate 4. Race-hazards in a circuit can be suppressed by preventing its Boolean expression from reducing to either \(A+\bar{A}\) or \(A \bar{A}\). This is achieved by the application of the theorem of race-hazards in Part 1. Hence
\[
A B+\bar{A} C=A B+\bar{A} C+B C
\]
or, alternatively, expressing the same function as a product-of-sums
\((\bar{A}+B)(A+C)=(\bar{A}+B)(A+C)(B\)
\[
+C
\]

The introduction of the third term prevents the first expression from being reduced to \(\mathrm{A}+\overline{\mathrm{A}}\), since when \(\mathrm{B}=\mathrm{C}=\) \(1, \bar{A} B+A C+B C\) now reduces to \(A+\bar{A}\) \(+1=1\). Similarly, the second expression, when \(B=C=0\), reduces to \((\bar{A}+0)\) \((\mathrm{A}+0)(0+0)=\overline{\mathrm{A}} \cdot \mathrm{A} \cdot 0=0\).

\section*{Fan-in restrictions}

The implication of a fan-in restriction (the number of gate inputs) on the realisation of a Boolean function is equivalent to imposing a restriction on the maximum size of the products and sums in the expression of the function to be satisfied. For example the direct realisation of the function \(f=\mathrm{AB}+\) \(A \bar{C}+A \bar{D}\) shown in Fig. 8 requires one three-input NAND gate, three two-input NAND gates and two single-input NAND gates, six gates in all.

If the fan-in restriction is two, implying the use of two-input NAND gates, there are two possible methods of


Fig. 6. Generating a function using NOR gates. Function \(f=\bar{A} \bar{B} \bar{C}+A B \quad C\) is first dualized, minimized and implemented in NAND logic, as at (a). This circuit is then converted to NOR gates to provide the required output.


Fig. 7. Mechanism of "spike" generation.


Fig. 8. "Direct" generation of \(f=A B+A \bar{C}+A \bar{D}\) when 3-input gates can be unused.
rearranging the given function to satisfy this restriction.

Method 1: bracket two of the three products.
The function is \(f=A B+A \bar{C}+A \bar{D}\)
bracketing: \(f=(A B+A \bar{C})+A \bar{D}\).
The implementation of this function is shown in Fig. 9(a). It meets the fan-in restriction of two but it requires eight gates, two more than in Fig. 8.

Method 2: remove a common factor:
The function can then be written
\[
f=\mathrm{AB}+\mathrm{A}(\overline{\mathrm{C}}+\overline{\mathrm{D}}) .
\]

The realisation of this function is shown in Fig. 9(b). It meets the fan-in restriction of two and requires only four gates, two less than in Fig. 8. Alternatively the function may be written
\[
f=A(B+\bar{C})+A \bar{D}
\]

The implementation of this function is shown in Fig. 9(c). Again it meets the fan-in restriction of two and it requires
the same number of gates as realised in Fig. 8. There is one further factorization of interest and that is
\[
f=A(B+\bar{D})+A \bar{C}
\]
but this function has the same form as \(f=\mathrm{A}(\mathrm{B}+\overline{\mathrm{C}})+\mathrm{AD}\) and can be implemented with six NAND gates, the same number as in Fig. 8. Obviously the optimal implementation is given when the function is written in the form \(f=\) \(\mathrm{AB}+\mathrm{A}(\overline{\mathrm{C}}+\overline{\mathrm{D}})\) even if a fan-in restriction of two had not been imposed.
A systematic method can be úsed to arrive at an optimal expression for a logic function which to be realised using gates with a specified fan-in. The method described is based on the use of the merging table \({ }^{1.2}\).
For the case of NAND circuits the starting point is the irredundant sum-of-products expression of the function to be implemented.
\[
f=\mathrm{AB}+\mathrm{A} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{D}}
\]

The function is dualised and the brackets numbered:
\[
f_{\mathrm{D}}=(\mathrm{A}+\mathrm{B})^{1}(\mathrm{~A}+\overline{\mathrm{C}})^{2}(\mathrm{~A}+\overline{\mathrm{D}})^{3}
\]

Next the change in the gate count \(\Delta N\), which occurs when pairs of brackets are merged is determined with the aid of the merging table shown in Fig. 10, which has been developed for the case when, there is no increase in the size of the sum ( \(\lrcorner Z=0\) ) upon merging brackets.
Merging is the process described in the Fan-in theorem in the first article of this series, where two brackets are replaced by a single bracket i.e.
\[
\begin{gathered}
\left(\mathrm{H}_{1}+\mathrm{T}_{1}\right)\left(\overline{\mathrm{H}}_{1}+\mathrm{T}_{2}\right)= \\
\mathrm{H}_{1} \mathrm{~T}_{2}+\overline{\mathrm{H}}_{1} \mathrm{~T}_{1}
\end{gathered}
\]

It is essential to note that merging does not affect terms which are present in both brackets i.e.
\[
(I+X)(I+Y)=I+X Y
\]

To determine the value of \(\Delta \mathrm{N}\) the components of the two brackets are counted in the following manner.
\(x=\) the number of terms in the smaller bracket, excluding common terms.
\(y=\) the number of terms in the larger bracket, excluding common terms.
\(r=\) the number of terms in the head section of the smaller bracket.
\(n=1\) if a group of terms in one bracket, called the head, is the complement of a group of terms in the other, otherwise \(\mathrm{n}=0\).
\(l=\) the number of variables true or inverted counted in \(x\) and \(y\).
\(t=\) the number of true variables in \(x\) and \(y\) such that for each
(1) its complement does not occur as a variable in any of the other brackets.


Fig. 10. Merging table for \(\Delta Z=0\).
(2) it does not occur in its true form in a product within the expression.
\(i=\) the number of inverted variables such that for each
(1) it is not repeated in the expression as an inverted variable
(2) it does not occur in its true form in a product within the expression.
\(N\) is the gate count and \(\Delta N\) is the change in the value of N caused by merging two brackets.
The quantities detailed above are tabulated below for each bracket pair of
the dual function, \(\Delta N\) being obtained from the table of Fig. 10 .
\[
f_{D}=(A+B)^{1}(A+\overline{\mathrm{C}})^{2}(A+\overline{\mathrm{D}})^{3}
\]
\begin{tabular}{llllllllrr}
\hline \(\mathrm{b} / \mathrm{p}\) & \(n\) & \(x\) & \(y\) & \(r\) & \(t\) & \(l\) & \(i\) & \(l-i\) & \(\Delta N\) \\
\hline \(1 / 2\) & 0 & \(l\) & \(l\) & - & \(l\) & 2 & 1 & 1 & 0 \\
\(1 / 3\) & 0 & \(l\) & 1 & - & 1 & 2 & 1 & 1 & 0 \\
\(2 / 3\) & 0 & 1 & 1 & - & 0 & 2 & 2 & 0 & -2
\end{tabular}

The above tabulation shows that merging brackets 1 and 2 or brackets 1 and 3
does not result in a change in the gate count but that merging brackets 2 and 3 gives a reduction in the gate count by 2 , which is the same result obtained working directly with the circuits in Fig. 9.

Merging \(1 / 2\) gives \(f_{\mathrm{D}}=(\mathrm{A}+\mathrm{B} \overline{\mathrm{C}})(\mathrm{A}+\overline{\mathrm{D}})\). redualising
\[
\begin{aligned}
& f=\mathrm{A}(\mathrm{~B}+\overline{\mathrm{C}})+\mathrm{A} \overline{\mathrm{D}} \\
& \text { see Fig. } 9(\mathrm{c})
\end{aligned}
\]

Merging 1/3 gives \(f_{\mathrm{D}}=(\mathrm{A}+\mathrm{BD})(\mathrm{A}+\overline{\mathrm{C}})\)
redualising: \(\quad f=\mathrm{A}(\mathrm{B}+\overline{\mathrm{D}})+\mathrm{A} \overline{\mathrm{C}}\)
Merging \(2 / 3\) gives \(f_{\mathrm{D}}=(\mathrm{A}+\overline{\mathrm{C}} \overline{\mathrm{D}})(\mathrm{A}+\mathrm{B})\) redualising:
\[
f=A(\overline{\mathrm{C}}+\overline{\mathrm{D}})+\mathrm{AB}
\]
see Fig. 9(b).

This part will be concluded with two examples, the first one demonstrating the process of minimal design using the merging table and the second one demonstrating the development of a minimal, hazard-free design.
Example 1 Design a minimal two-input NAND circuit to realise the following Boolean function.
\[
f=\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{C}}+\mathrm{C} \overline{\mathrm{D}}
\]

This equation is already in its minimal form.

Dualise: \(\quad \hat{\rho}_{\mathrm{D}}=(\mathrm{A}+\mathrm{B})^{\prime}(\overline{\mathrm{A}}+\overline{\mathrm{C}})^{2}(\mathrm{C}+\overline{\mathrm{D}})^{3}\)
Attempt merging:
\begin{tabular}{cccccccc}
\hline \(\mathrm{b} / \mathrm{p}\) & \(n\) & \(x\) & \(y\) & \(r\) & \(t\) & \(l-i\) & \(\Delta N\) \\
\hline \(1 / 2\) & \(l\) & 2 & 2 & \(l\) & 2 & \(4-2=2\) & +1 \\
\(1 / 3\) & cannot be merged \\
\(2 / 3\) & 1 & 2 & 2 & \(l\) & 1 & \(4-3=1\) & -1
\end{tabular}

Merging 2 and 3 will result in a


Fig. 11. Minimal circuit for \(f=A B(\bar{A}+C)(\bar{C}+\bar{D})\), using the merging
operation operation.


Fig. 12. Two-input NANDS used to realise \(f=\mathrm{B}(\overline{\mathrm{A}}+\overline{\mathrm{C}})+\bar{A} C\), which is hazard-free form of \(=\bar{A} C+B \bar{C}\).
reduction of the gate count by 1
Merge 2, and 3: \(f_{D}=(\mathrm{A}+\mathrm{B})(\overline{\mathrm{A}} \mathrm{C}+\mathrm{C} \overline{\mathrm{D}})\).
Redualise: \(\quad f=\mathrm{AB}+(\overline{\mathrm{A}}+\mathrm{C})(\overline{\mathrm{C}}+\overline{\mathrm{D}})\) Implement as in Fig. 11.

Example 2. Under what circumstances will a spike be generated at the output gate if a direct NAND implementation of the function \(f=\bar{A} C+B \bar{C}\) is made?

Derive an equivalent hazard-free expression that can be implemented minimally using two-input NAND gátes.
If \(A=0\) and \(B=1\) the function \(f=\bar{A} \bar{C}+B \bar{C}\) reduces to \(f=A+\bar{A}\) which is the condition for generating a spike when C changes from 1 to 0 .

The hazard-free ex-
pression is \(f=\bar{A} C+B \bar{C}+\bar{A} B\)
Dualise: \(\quad f_{\mathrm{D}}=(\overline{\mathrm{A}}+\mathrm{C})^{1}(\mathrm{~B}+\overline{\mathrm{C}})^{2}(\overline{\mathrm{~A}}+\mathrm{B})^{3}\)

Attempt merging:
\begin{tabular}{llllllcc}
\hline b/p & \(n\) & \(x\) & \(y\) & \(r\) & \(t\) & \(l-i\) & \(d \mathrm{~N}\) \\
\hline \(1 / 2\) & 1 & 2 & 2 & 1 & 2 & \(4-1=3\) & +2 \\
\(1 / 3\) & 0 & 1 & 1 & - & 1 & \(2-0=2\) & +1 \\
\(2 / 3\) & 0 & 1 & 1 & - & 0 & \(2-1=1\) & -1 \\
Merge 2 and 3: & \(f_{\mathrm{D}}=(\mathrm{B}+\overline{\mathrm{A}} \overline{\mathrm{C}})(\overline{\mathrm{A}}+\mathrm{C})\) \\
Redualise: \\
Implement, as in Fig. \(\mathrm{f}=\mathrm{B}(\overline{\mathrm{A}}+\overline{\mathrm{C}})+\overline{\mathrm{A}} \mathrm{C}\)
\end{tabular}

\section*{References}
1. Logic Design Algorithms, D.Zissos, Oxford University Press, 1972.
2. "Fan-in Restrictions in Logic Circuits," D. Zissos and F. G. Duncan, Proc. I.E.E., Vol. 118, No. 2, Feb. 1971.

\section*{Mystery Soviet over-the-horizon tests}

It is now common knowledge that a large portion of the h.f. band of the radio frequency spectrum has been suffering over the past few months from interference caused by a very powerful transmitter, or transmitters, located somewhere in Russia or the Ukraine. The interference became so bad that most of the communication services within the band have complained, through their respective organisations, to the Home Office and to the Frequency Registration Board of the International Telecommunication Union (ITU). Other countries (including the USA) who have been similarly affected by the transmissions, have also forwarded complaints to the ITU and the Russian authorities.

A Home Office representative recently informed Wireless World that they have made a complaint direct to the Russian authorities and have been told that they are conducting tests and are taking steps to reduce the interference.

What we, the public still do not know, and are not likely to be told, either by the Russians or our defence organisations and industries, if they know, is what these tests are for. We can only speculate, and perhaps the best way to do this is to study the information at hand and then compare it with systems which we know are within the realms of our present technology, or could be feasible.

Reports indicate that the transmitter is located in the area of Gomel, an industrial town in Byelo-Russia (see Pat Hawker's comments, November issue), and this, according to a recent Daily Mail report, has now been confirmed by NATO direction-finders. Monitoring station engineers agree that the actual powers involved are in the tens of megawatts and Mr Dafydd Williams, chief engineer of the BBC External Broadcasting is reported to have estimated them as 20 or 40 MW or more, and audible in every part of the globe.

Some American publications have claimed that the interference was first brought to the attention of the Federal Communications Commission (FCC) in July, principally by radio amateurs. Mr S. A. Cook G5XB of Intruder Watch \({ }^{1}\) told Wireless World that the transmissions, which have a pulse configuration with a basic pulse-repetition frequency (prf) of ten per second, occur between about 5 and 22 MHz , are widely scattered and appear to depend on the maximum-usable-frequency (m.u.f.) for propagation. For example, at dawn they can be expected between 14 and 22 MHz and by 3 p.m. they may be at 14 MHz or lower. When the interference first started it persisted for 10 to 12 hours at a time and, at one stage, completely obliterated the 14 MHz amateur band. Another report, said to have come from the BBC, indicated that Cairo Radio had
also been obliterated. However, a spokesman for the BBC monitoring station said that while this was an exaggeration the interference has been a considerable nuisance and has occasionally made monitoring impossible. Their experience of the interference was that it appeared at various times, on different frequencies and for varying durations within the range 6 to 15 MHz . A representative of the Home Office international monitoring station completed the picture by saying that the signals have been affecting frequencies from 4 to about 27 MHz - almost all of the h.f. band.
Amateurs and broadcasters have not been the only ones to be affected by the interference; almost every service has been troubled - except the television services, which are on higher frequencies. Public services such as Post Office radio communications have experienced interference and so have h.f. maritime communications. It would be unrealistic to suppose that these high power signals have not had some effect on the h.f. military services too.
According to Mr Cook, the period of the \(10 \mathrm{p} / \mathrm{s}\) signal comprises a pulse train of up to 20 different squarewave pulses, some less than 2 ms in length - an estimated pulse frequency of at least 800 pulses per second. Although the signals

Continued on page 68

The article on re-invention by F. G. Canning ; exemplies his own thesis - that early inventions can be overlooked. He supposes that the Stentorphone of 1921 may have been the first loudspeaking gramophone. But the Hon. Charles Parsons in 1903 patented \({ }^{2}\) the Auxetophone, which reproduced gramophone records audible "over the whole village'; and Parsons refers to an Edison patent \({ }^{3}\) of 1877 of a similar, though complicatedly crude, air relay amplifier.

Parsons' instrument was well designed, using a small movement on a 9 -carat gold comb providing \(7^{1 / 2}\) inches of controlled air slit for only 80 mg mass. Linearity was studied, and resonances were carefully kept out of the pass band. Thought was given to the self-cleaning of grit, but a later description \({ }^{4}\) remarks that the problem of impalpably fine dust was never solved (no electrostatic precipitator!).

The same air comb and horn were fitted by Parsons to stringed instruments? It is reported that an auxetophone-cello gave orchestral quality.
J. M. Little,

Welwyn Garden City,
Herts.
References
1.Wireless World, December 1976.
2. Fatent 10468, 1903.
3. Patent 2909, 1877.
4. Musical Opinion, Dec. 1938.
5. Patent 10469, 1903.

\section*{WARC 1979 AND \\ OFFICIAL SECRECY}

You are to be congratulated on a bold editorial (December 1976) that touches on fundamentals in our country. Put simply, in Great Britain unlike for example the USA, the ordinary citizen has on radio or most other matters little or no right of access to much government information, even if it is not classified and he has paid to gather it. The situation may well get worse as we move closer into Europe with its traditions of subservience to bureaucratic power, and as the provisions of our own outdated secrecy
laws are revised, not necessarily for the better. The basic principle may well become "can you produce a reason why you should be allowed to know", as opposed to "can the civil servant produce any good reason why you should not know"

There may appear to be little difference between the attitudes, and since some citizens have overall doubts of the patriotism of parliament and government alike, it could seem that the difference is small compared to this great problem. Given the basic premise that legislature and government are \(100 \%\) for the continued wellbeing of the country and are not prepared to delude themselves or prepared to put party, departmental, or personal, good above their country's good, then good sense and co-operation should and often does (since we still have some fine people in the civil service) produce the desired result. Unfortunately some of us have seen how insidiously conditions changed in the many countries of the pre-war world. We are now perturbed at what is happening here.

Moreover in radio at least there are other considerations. Any government decisions should be made with the wellbeing of the electronics industry in mind and this factor has all too often, in the past, been neglected, or even worse decisions have been neglected or made on wrong grounds.

Those who like to indulge in research into this aspect, could check on the late UK development of telex, the loss of the second British long wave allocation, the non-use of crossbar switching, the virtual loss, for years, of any UK market for v.h.f. broadcast receivers, or for disc seal triodes. They might enquire what happened to the UK lead in h.f. cathode-ray direction finding. Had different decisions been made in such areas, the UK might have gained hundreds of millions of pounds in exports . . But this is in the past, the UK must make sure such opportunities are not missed in the future. In order for this to happen there must be, as nearly as possible, an open forum on such matters, especially on frequency allocations. It should be possible, too, for decisions to be appealed against, preferably in the courts. When a decision is due to be made, this move should be published openly and an invitation cast out to all who may wish to comment. The way not to do it is to form a clique of "yes men", and even worse to classify their discussions be they good or bad.

We must also enquire into another growing area for concern. Not only are we in danger that the conduct of radio affairs may come to be handled on a "need tó know" basis within the UK. Such affairs can and are being discussed by a body "CEPT" "Conférence Européenne des PTTs" and this would interpose yet another bureaucratic barrier, for CEPT at present is, by its very terms of reference, a secret body. Its original purpose was a sort of club to discuss. telecommunication tariffs - another restrictive system to which our UK delegates with or without governmental sanction, have to conform. Bad enough when they discuss tariffs, but quite unacceptable when such matters as marine single sideband receivers are under discussion, or to make radio policy for the UK, e.g. for the WARC. At least until they open their discussions - at least to users.

All this adds up to something like an FCC, a rather unpopular idea in some European government circles. They claim the FCC is lawyer ridden, too liable to lobbying. Perhaps so, but it is open. In the US the "spooks" and defence people have to settle
their little games elsewhere - in the office of telecommunication policy, and what is left is open to the people.
As regards preparation for the WARC 1979, the FCC is required by law to publish open invitations for suggestions and has compiled several preliminary, but freely available, summaries of needs, given to them by people and organisations in response to their invitation. They also have met many associations of specialised users and included their demands for due consideration. Eventually their considerations will lead to a policy document open to all and which, since it represents a compromise for a continent, may be somewhat inflexible. Secret formulation of a national policy makes the life of a WARC delegate much easier, he may not even have to ask anyone in order to be able to change. But the results could be catastrophic. Can the UK afford to lose another \(\$ 100,000,000\) for exports?

It has been said that the UK has much to contribute to the EEC in the way of administration, but unless it puts its own house in order in the radio field it can all too easily contribute to unnecessarily hindering the progress to more open regulation of telecommunications and radio in Europe generally.

In the UK for example, no open citizens' band is available, and so the UK has no part in this multi-billion dollar US market. Some say this shows a weakness of our industry, others consider the industry has never had a chance to get in from a home base. Meanwhile the gear is no doubt still being used illegally by bank robbers, and by governmental and nationalised bodies. Perhaps the real reason for the attitude is that our masters know that a people who can freely communicate are more likely to remain free, but they may not see this as a desirable end.

Some spectrum conservers see their task as to restrict use, not realising that a frequency whose range goes down from some tens of miles to some few miles because it is being used by people may be better used than a frequency kept, for example, for defence use, that is only used on the odd exercise. Moreover, is only used in such a case in an artificial environment that assumes no opposition will have the ill grace to use it or jam it. It is also worth remembering, as was said only a few days ago by Professor Gosling of Bath University, the spectrum comes up as bright as ever when it is abandoned by one user in order to be taken over by another.
J. D. Parker,

Buckhurst Hill,
Essex.

\section*{AURAL SENSITIVITY TO PHASE}

Mr Driscoll's declared reluctance to prolong the discussion on aural phase sensitivity did not prevent him from leading off his December letter with a nice piece of misrepresentation by partial quotation - in. the September Letters l wrote that Mr Moir, in his article "Phase and sound quality", had failed to define the relative phases of the sine-wave components of a complex waveform, and that that was "not good enough".

Mr Driscoll's subsequent strictures on my attempt to define reference phases in terms of a "synchronising time" suggest that he like Mr Moir (December letters), is not aware that a waveform of finite duration can be represented through its Fourier transform as the sum (strictly the integral) of a set of sine-wave components whose phases and amplitudes are all constants, independent of time. The waveform may be produced by anything from a single harpsichord note, with its starting transient and subsequent decay, to a performance of a complete symphony. It is this pure frequency domain description of an input waveform which must be married with the frequency response of an amplifier or loudspeaker to obtain the pure frequency domain description of the output waveform

The mixed time and frequency description adopted by Messrs Moir and Driscoll is the commonsense one, which when it works is usually simpler to follow than the pure frequency description, for example in most applications of frequency modulation. In dealing with sine-wave tone bursts however, one must remember that the edges of the burst can shock-excite circuit components whose response bands are far removed from the frequency of the carrier sine-wave. Tone bursts which differ in the framing or "phase" of the sine-wave with respect to the burst envelope have spectra of different shapes, thus invalidating Mr Driscoll's third paragraph interpretation of his own observations.

The pure frequency domain description always works, provided one is dealing with a linear system, but is usually much more difficult to apply. Fortunately Gabor's Acoustical Uncertainty Principle makes it possible to determine when the mixed description can safely be used, and when the pure frequency description must be employed instead

\section*{C. F. Coleman,}

Wantage,
Oxfordshire

Only rarely, during the many years I have read Wireless World, has a subject aroused so much interest, correspondence and heat, as that of phase distortion in audio signals. In spite of your voluminous postbag there are some relevant points that still have not been made. May I therefore at this late stage add further to your correspondence?
Firstly, allow me to horrify some, at least, of your correspondents by categorically stating that phase distortion is quite audible. Its audibility does depend on the circumstances and on the degree of distortion Phase distortion is not normally audible in complex continuous tones which the ear assesses in a manner essentially similar to Fourier analysis, only the frequencies and levels of any harmonics being significant. With transient signals of less than about 200 milliseconds duration, however, the situation is very different. The ear seems to assess such sounds by analysing the signal envelope shape and the phase relationships are then very important. Anyone who wishes to prove my statement for himself should tape record a continuous complex note and also a slowly repeated transient note (e.g. piano) and then play the tape in reverse (admittedly a little difficult without a suitable recorder). The continuous note will sound unaltered. The transient note will sound entirely different.

The result of the reverse play is to change all phase lags to phase leads and vice versa - a rather gross form of phase distortion but it does provide a starting point and the question of the audibility of phase distortion can then be accepted as one of degree rather than of principle.
Another point not so far mentioned at all is that if an input signal of varying frequency is applied to a phase shifting network, the output will have a different frequency v. time characteristic. In other words, a frequency modulation has occurred. The extent of this depends upon the rate of change of frequency \(v\). time of the input signal and the rate of change of phase \(v\). frequency of the network. Various elements of an audio chain such as pick-ups, filters, cross-over networks, loudspeakers, tape recorders and so on, can exhibit quite rapid rates of change of phase \(v\). frequency over some portions of the pass-band. It is thus in principle possible that input signals exhibiting rapid frequency modulation (e.g. piano or guitar notes) might emerge from the system with subjectively noticeable frequency distortion.
It has been obvious for many years that the piano is one of the most difficult instruments to reproduce with high fidelity. I once owned a famous brand of hi-fi amplifier, whose exact identity shall remain anonymous, but whose top cut filter whilst very effective, produced the most unpleasant side effects especially on speech and some types of music. Measurement of the filter performance showed frequency response to be about as one would expect and harmonic distortion was very low. The only noticeable oddity was the phase shift which, due to the circuit design, was greater than it need have been for the response slope achieved. Every single note produced by a piano or guitar, as well as by some other musical instruments, is frequency modulated. The rate of modulation is high and a number of harmonics are involved. Under ideal conditions the human ear can be sensitive to frequency shifts as small as one-tenth of a semitone. If the various harmonics of a complex transient signal were frequency shifted to a different but noticeable extent, then various inhar monic relationships might become apparent Further, theory tells us that frequency cannot be modulated without producing sidebands.
The whole situation is potentially very complicated and before embarking on detailed investigations we need to be quite clear as to whether distorted phase relation ships are subjectively audible or not. Your previous correspondents have largely been concerned with the possible effect (often on static test signals) of absolute phase shifts Personally I am questioning the effect of rate of change of phase on a dynamic frequency modulated signal

I wilt leave it to the theoreticians to argue whether the unwanted frequency modulation I have postulated is synonymous with phase shift, or adequately regarded as time delay. They can also ponder the concept (not original) of instantaneous frequency. I regret that the more pragmatic pressures of my professional life will also prevent me from carrying out any calculations or experiments on this interesting subject in the foreseeable future. I hope therefore that readers will accept my point as being questions as much as statements, and not accuse me of claiming to have heard phase distortion whilst not being able to prove it
A. G. Gorman,

Ruislip,
Middx.

\section*{ADVANCED PREAMPLIFIER DESIGN}

If that was an "Advanced preamplifier design" in your November 1976 issue then I can only hope that when it is fully developed it will look different from the circuit published.
First a few fundamentals
1. Magnetic cartridges give output voltages dependent on the velocity of the needle; keeping the recorded amplitude fairly constant with frequency, the record makers therefore force the output of the cartridge to rise at +6 dB /octave.
2. Normal cartridges today, because of development in magnetic materials (stronger, smaller magnets), give outputs of much more than 2 mV , around 10 mV at 1 kHz for \(5 \mathrm{~cm} / \mathrm{s}\) velocity.
3. If the disc is cut with an overhead of +20 dB (peaks of \(50 \mathrm{~cm} / \mathrm{s}\) ) and the frequency is 20 kHz not 1 kHz , giving another rise in output of +20 dB , then you can see the signal at 20 kHz can be IV.

Reality is not as bad as this since the spectral density of music is not constant with frequency and falls off at high frequencies. However, outputs from cartridges do rise to 200 mV peaks and do have fast slew rates.

Mr Self's talk of overload margins is a little confused when he compares amplifier performance. If the normal operating ( 0 dB ) level of an amplifier is 10 mV input then to cope with IV inputs there must be no limiting of distortion anywhere before a gain control for signals of +40 dB above normal This is best known as an overhead of 40 dB and is required at 20 kHz relative to 1 kHz .

Now RIAA amplifiers have some peculiar problems coping with the high transient signals from magnetic cartridges just because the output does rise with frequency: this rise causes a high spectral density of high frequency signals and high slew rates. The prime requirements in the input stages are therefore wide bandwidth (to give fast slew rate) and low transient distortion when handling the excess high frequency spectral density.
Mr Self's preamplifier does little for either of these: the open loop bandwidth is not clearly defined. If the second stage is guessed at 100 then the stage has a -3 dB point of 3 kHz . The bandwidth of the amplifier is further limited by the input capacitor (ln5) and by the output loading network \(\mathrm{R}_{1} / \mathrm{C}_{1}\) on the output: in fact what can the amplifier drive into \(\mathrm{C}_{1}\) at 20 kHz to. give a respectable overhead margin?

More problems!
The input impedance will fall rapidly to high frequencies because the output signal is fed back via 10 nF to the emitter of \(\mathrm{Tr}_{1}\) then by 1.5 nF to the input itself. Therefore the magnet won't be given a chance to generate the correct h.f. signals, for to do so it must have a resistive load right up to 20 kHz .
More problems!
The first two transistors are connected in a classic phase shift oscillator configuration. I have often had this configuration burst into l.f. oscillations when fed from a low impedance (which a cartridge has at l.f.). The reason is simple: there are two phase shift networks, first the \(r_{e}\) of \(\mathrm{Tr}_{2}\) and the decoupling capacitor \(22 \mu \mathrm{~F}\) ( \(\phi=90^{\circ}\) below 10 Hz ), the second the resistor 220 k and the input capacitor \(1 \mu \mathrm{~F}\left(\phi=90^{\circ}\right.\) at 0.1 Hz ). Thus towards l.f. even if the circuit
has insufficient loop gain to oscillate (it fortunately has by a factor of about four) it will have a characteristic 1.f. peak of a few dB.
All amplifier designs of this type have some sort of I.f. peak; it could be suppressed by increasing the \(22 \mu \mathrm{~F}\) to \(2200 \mu \mathrm{~F}\), thus reducing the feedback by 100 times, or best of all don't use this configuration.

Actually the component values don't seem to have been chosen consistently: the input capacitor of \(1 \mu \mathrm{~F}\) has a \(f-3 \mathrm{~dB}\) point of about 1 Hz but the decoupling capacitor has a \(f-3 \mathrm{~dB}\) point about 100 Hz which is rather the wrong way round to achieve a proper control of the l.f. response.

Only one more eyebrow to raise on the input amplifier! I quote, "insufficient cut at frequencies above 10 kHz " (to give the correct RIAA which should be \(6 \mathrm{~dB} /\) oct. fall from 2.1 kHz to \(>50 \mathrm{kHz}\) ). 1 shudder to think what is happening to this amplifier's phase response with all the "tricky dicky" empirical networks hung on it. This really is the last straw.

Shall I go on to the l.f. amplifier? O.K., I will. But first some comments on the system. I don't agree with the gain control where it is, the amount of gain following it is over 65 dB at maximum bass boost. No matter how good the noise performance of \(\mathrm{Tr}_{\downarrow} \downarrow \mathrm{Tr}_{5}\) some l.f. hum and noise will be present at the output all the time. By all means vary the input preset gain to allow for high output cartridges but the system volume control must be later on in the chain, or does Mr Self have another control on his power amplifier? The l.f. boost amplifier is a nightmare: why not use any one of the perfectly good op-amps available (L148Tl, TBA23l)? Why use a design with an obviously wide bandwidth and enormously high gain to do a job that a lower bandwidth, lower gain (more stable) amplifier can do? There isn't, you see, the problem in this stage of lots of hiff. spectral density and fast slew rates - this has all been removed by the input amplifier!

The design here has the following major problems:
1. The open loop gain depends on the transistor \(h_{\text {Fes }}\) (very variable).
2. The open loop compensation is not calculated to ensure good transient response and/or stability. Is it calculated?
3. The response of the network \(270 \mathrm{k}+22 \mathrm{k}\) \(+(\ln 5 / / 12 n F)\) does not give anything like the correct I.f. response for RIAA. This should start to fall at 50 Hz , all 20 dB at \(6 \mathrm{~dB} /\) oct. to 500 Hz then go flat to \(>20 \mathrm{kHz}\). Mr Self's circuit, if he wants to know, starts to fall at 37.4 Hz and falls at \(6 \mathrm{~dB} /\) oct. for 24 dB .

Finally, the tone control is the usual "Baxandall" horror, for two reasons. The first, the lift and cut of \(\pm 15 \mathrm{~dB}\) is too large, giving audible phase shift problems, and anyway whose power amplifier can handle more than 10 dB ? The other reason is that the bass lift and cut varies both amplitude and frequency at once. On top of which there is the absurdity of providing selected treble roll frequencies alongside completely unknown and variable bass roll frequencies!
O.K. I am willing to accept the challenge, if Wireless World is. [Yes - Editor.] I will describe my alternative version of preamplifier, with details of each design decision and performance objective.
Until then, Mr Self . . . ?
A. J. Watts,

SGS-ATES (United Kingdom) Ltd,
Aylesbury,
Bucks.

Mr Self replies
To deal with Mr Watts' main points in the order that he makes them:
He is correct in stating that the outputs from cartridges have high frequency peaks and large slew rates, and that this represents a potential problem in the design of RIAAequalized disc input stages. However, if the treble-cut portion of the RIAA curve is incorporated in the first stage, in the form of frequency-dependent negative feedback, the falling high-frequency gain means that the signal the stage puts out is substantially "tamed" and so enormous slew rates are simply not required; the open-loop bandwidth of the published disc input stage is quite adequate.
He is wrong in stating that the closed loop bandwidth is limited by the \(\ln 5\) input capacitor; this component, in conjunction with the associated \(820 \Omega 2\) resistor, forms an r.f. attenuation network to prevent breakthrough of radio signals, and has no effect within the audio band. This is because the input stage is in a series feedback configuration, and hence almost the same signal voltage appears on the emitter of the first transistor as at the base, due to the high open-loop again; hence at audio frequencies the capacitance is "bootstrapped" and has no effect.

Similarly Mr Watts is incorrect in saying that the input impedance of this stage will fall significantly at high audio frequencies. A.c. feedback is returned to the emitter of the first transistor, and not the base; this series feedback raises the input impedance of the stage, in accordance with the elementary laws of feedback, so that it has a negligible effect on the impedance seen by the cartridge, which is completely defined by the parallel combination of the 68 k and 220 k resistors. This gives a constant impedance across the audio band.

The first two transistors are not connected in a classic phase shift oscillator configuration; this requires three RC networks, not two. Hence the circuit cannot oscillate at low frequencies, though it is possible for diminishing phase margins at low frequencies to cause an l.f. hump, if the d.c. feedback time constants are poorly chosen. This is why the input and decoupling time constants are markedly different. I would prefer not to comment on Mr Watts' phase-shifts and frequencies as of course a single pole cannot ever give a \(90^{\circ}\) lag; it can only approach it asymptotically.

If a low gain input stage is used to allow a very high overload margin, then there will always be a problem in persuading the stage to give less than unity gain at the highest extremes of the RIAA curve. The extra treble cut network ( \(560 \Omega\) and 6 n 8 ) does not alter the overall phase response, as its extra phase lag is compensated for by the falling phase lag of the input stage due to the h.f. gain levelling out at unity. Since we are dealing with a minimum-phase system (in the sense of having no all-pass filters), then the amplitude/frequency response completely defines the phase/frequency response. In other words, if the RIAA curve is correct, then the phase response will be indistinguishable from that of a more conventional circuit using only one treble-cut time constant.

\section*{And now to the next stage}

Mr Watts appears to have overlooked the system volume control at the end of the preamplifier chain; one can hardly have a volume control later in the proceedings than this. Since this control is used for day-to-day volume manipulation, and hence is rarely fully up, the residual hum and noise is
attenuated with the signal, as Mr Watts suggests; and the desirable "zero noise at zero volume setting" condition is in fact attained.

If this stage is a nightmare to Mr Watts then I venture to suggest he will find trying to extract the same performance from a TBA231 even more of a bad dream. Integrated circuit operational amplifiers were not chosen as they give an inferior noise performance, due to the processes involved in integrating the input stages, and in general only accept lower supply voltages, hence giving less overload margin. As for the "major problems": l. The open-loop gain - certainly does depend on the transistor current gains. However, since this is the case for every amplifier ever built, I am unrepentant. To return to the laws of feedback, one of the prime motivations of negative feedback is to render closed-loop gain predictable by making the effect of open-loop gain changes negligible.
2. If Mr Watts can calculate the phase and gain stability margins of this stage, then I shall be interested to see his results. I find a flat assertion unconvincing and I imagine others will too.
3. If Mr Watts rechecks his calculations, or better still, measures the actual circuit instead of theorising, he will find that the combined response of the first two stages is very close indeed to the RIAA curve.

As for the tone control stage, I suggest it is probably impossible to design a tone control without phase shift.

As explained in the text, the variable turn-over frequency over the bass control is advantageous rather than otherwise. I fail to see how this makes the provision of switched treble turn-over frequencies "absurd."

In conclusion, I can only say that I would like to thank Mr Watts for the friendly and constructive nature of his comments. I can hardly wait to see his own preamplifier design.

\section*{CITIZENS' BAND IN THE UK?}

I note with regret that R. C. S. Withers' organization (UK Citizens' Band Campaign) is advocating the use of 27 MHz for a citizens' band service in the United Kingdom ("Letters" December 1976).

Such a service is essentially short range and therefore the selected frequency range should not be one usable for long distance communication when the maximum usable frequency is high.

A u.h.f. band remote from broadcast television and amateur frequencies would be a first choice. Alternatively a v.h.f. band could be used but there would appear to be many demands for the use of v.h.f. for other services.

There exists a Citizens' Band Association which is promoting the establishment of a v.h.f./u.h.f. citizens' band service in the United Kingdom. They have published proposals for a service, including a technical specification.
H. Turner,

Derby.

\title{
Electronic systems - 6
}

\title{
More about reception and demodulation
}

\author{
by W. E. Anderton
}

A good a.m. receiver must be both sensitive and selective. To improve the selectivity of the receiver it is necessary to design sharp tuning characteristics. This can only be achieved by using more tuned circuits. The sensitivity can be improved by introducing radio frequency amplification prior to the demodulation stage. The tuned radio frequency receiver (t.r.f.) achieves these objectives by employing tuned amplifiers prior to demodulation. In general there are two, three or more of these tuned amplifiers in the receiver. The frequency response of this block of tuned amplifiers has a much steeper slope than that of a single tuned stage. This response is far more able to reject adjacent stations and thus the selectivity is vastly improved. The amplification given by each stage enables the demodulation of weak signals from very remote transmitters.

Fig. 1 shows the block diagram of a t.r.f. receiver capable of driving a loudspeaker. The dotted lines connecting the arrowheads show that the tuning of the stages is mechanically linked. If all the tuned stages were identical this mechanical linkage would ensure that in tuning over a wide frequency range the response curves of each individual stage would remain in step. This is referred to as "tracking".

The major disadvantage with a t.r.f. receiver is that the tracking is extremely difficult to achieve. To be successful the tuned stages would be required to
track accurately over a large frequency range, say from 150 kHz up to 10 MHz .

\section*{Superheterodyne principles}

The superheterodyne (superhet) receiver overcomes the tracking difficulties of a tuned radio frequency receiver. It employs amplification at a constant frequency irrespective of the carrier frequency of the received signal. These amplifiers are termed intermediate frequency (i.f.) amplifiers.

The i.f. is produced by multiplying the received signal with the output of an oscillator. The oscillator frequency is set a fixed amount away from the received carrier frequency. Part 4 (July 1976) described how two frequencies can be multiplied to produce sum and difference frequencies. The sum and difference frequencies become the input to the i.f. amplifier section of the receiver. Generally the i.f. amplifier is tuned to amplify the difference fre-. quency and reject the sum frequency.

Most domestic a.m. receivers utilize the superhet principle. The intermediate frequency in common usage is 470 kHz . A typical block diagram as shown in Fig. 2.

The multiplier circuit is generally referred to as the "mixer". The oscillator is termed the "local oscillator". If it is desired to listen to a programme which is transmitted on a carrier of 2.4 MHz , then the oscillator has to be set at a frequency of 2.87 MHz . The difference frequency produced by the mixer is at 470 kHz and is subsequently
amplified by the i.f. amplifier. The output of the i.f. amplifier is demodulated using similar circuits to those used in the crystal set.

\section*{Radio frequency amplifier}

Fig. 2 shows that the input signal is partially selected and amplified by a tuned r.f. amplifier, prior to the mixing process. The reason for the inclusion of this circuit is as follows. Suppose that we wished to receive a transmission which has a carrier frequency of 1 MHz . The local oscillator would be set at a frequency of 1.47 MHz and the sum and difference frequencies produced by the mixer would be 2.47 MHz and 470 KHz . If there exists a transmitter with a carrier frequency of 1.94 MHz , then the outputs of the mixer, due to the presence of this signal, would be 3.41 MHz and 470 kHz . The i.f. amplifier would amplify the 470 kHz components from both of these stations. The result would be an intolerable interference from the second station. It can be seen that this state of affairs will exist for each station selected, and that the desired transmission will be received along with the signal from any transmitter with a carrier frequency differing by twice the i.f. value. To eliminate this source of interference the superhet needs a pre-mixing stage of r.f. tuning. This stage does not have to be highly selective and the bandwidth can generally be much wider than the transmission bandwidth. The bandwidth must be narrow enough to reject the unwanted signal. This technique is known as "image rejection". The r.f. amplifier is usually a single tuned circuit. It is desirable to have the r.f. amplifier and the oscillator tracking and thus maintaining the image rejection when tuning over the radio spectrum.

\section*{Intermediate frequency amplifier}

In the t.r.f. receiver, selectivity was achieved by employing multiple tuned


Fig. 3. Frequency responses for an intermediate frequency (i.f.) amplifier showing the ideal case and the coincident and staggered responses expected in practical circuits.

1


Fig. 5. The f.m. demodulator characteristic, shown in
Fig. 4, can be approximated by operating on the flank of a tuned circuit's response curve, as shown.
Demodulator is tuned so that the nominal frequency is halfway down the response curve


Fig. 4. Ideal response curve for an f.m. demodulator.




Fig. 6. Block diagram of a typical f.m. receiver.
circuits all of which had to track together over the radio spectrum. This combination of amplifiers had a combined frequency response curve which was very sharp and centred on the carrier frequency of the received signal. In the superhet the i.f. amplifiers are all tuned close to a fixed frequency which does not change when the radio is tuned to different transmitters.

The response of the i.f. amplifier is set at the time of manufacture and does not generally need to be re-adjusted. Most domestic receivers have three i.f. amplifiers. The resonant frequencies of the circuits are not all coincident, but are staggered either side of the intermediate frequency. This staggering produces a better response curve which more nearly matches the ideal curve. Fig. 3 shows the frequency response for an intermediate frequency amplifier along with coincident and staggered tuned responses.

\section*{Frequency modulated receiver}

In Part 4, frequency modulation techniques were discussed briefly. Most
domestic f.m. receivers use the superhet principle to achieve sensitivity and selectivity. One of the basic differences between a.m. and f.m. superhets is that the latter has circuits which are designed to have a much higher bandwidth. The higher bandwidths used in f.m. transmissions require the use of a higher intermediate frequency to achieve adequate image rejection in the r.f. amplifier. The i.f. is generally 10.7 MHz .

\section*{Demodulation of an f.m. signal}

The signal radiated by an f.m. transmitter has an instantaneous frequency deviation from a nominal carrier frequency, which is directly proportional to the instantaneous amplitude of the modulation signal. Conseqeuently to demodulate the received f.m. signal requires a circuit which produces a voltage proportional to instantaneous frequency deviation. Fig. 4 shows the response curve for an ideal f.m: demodulator. The nominal carrier frequency is marked on the curve.

This characteristic can be approximated by operating on the flank of a tuned circuit's response curve. This requires tuning the demodulator so that the nominal carrier frequency is halfway down the response curve. Fig. 5 shows this characteristic. It can be seen that for small frequency deviations the frequency versus amplitude response approximates to a straight line.

Unfortunately a circuit of this kind would still be sensitive to any amplitude variations in the input signal. This problem is óvercome by incorporating a limiting or clipping amplifier prior to demodulation. This limiter will provide a constant amplitude signal to the demodulator for a wide variation in input amplitude, thus ensuring that amplitude variations caused by noise or atmospheric attenuations do not reach the demodulator. Fig. 6 shows a block diagram of a typical f.m. receiver.

Announcement. See news item on p42 regarding Schools Council's approval for the proposed ' A ' level syllabus to run as a full Mode 1 syllabus.

\title{
Further notes on the Wireless World teletext decoder
}

\title{
Modifications and fault-finding
}

\author{
by J. F. Daniels
}

In September, 1976, a new broadcast teletext specification was published which contains extra control character allocations and details of a number of other facilities to be offered by the service. This article describes some of the new facilities and also looks at the changes necessary to the Wireless World decoder to ensure correct performance under the new specification. Also, some of the more common problems experienced by readers building the decoder are considered, more advice being offered on fault finding and installing in domestic television receivers.
Since the earlier series of articles finished, I have received a large number of letters from people describing their experiences with the decoder and I think it may be helpful to other readers to mention some of the more common problems encountered. Constructors of the decoder can be divided into two categories: there are the computer engineers who have no trouble getting the digital side of the decoder functioning correctly, but have trouble interfacing it into their tv receivers, and there are the tv engineers who have problems with the digital circuits but no trouble installing the decoder into their tv sets!

\section*{Fault finding}

Looking first at the problems associated with the digital circuitry, there appear to be only three recurring problems and two of these are not particularly common. By far the most frequent has been vertical jittering of the teletext display. This looks similar to an incorrect field hold adjustment on the tv receiver, but is, in fact, caused by incorrect dividing in the line-divider circuitry of the decoder. The fault is caused by poor noise immunity on the input to \(\mathrm{IC}_{6}\), pin 3 (Jan, Fig. 1), due to too many volts being dropped across \(\mathrm{R}_{3}\). The fault is simply cured by reducing the value of \(R_{3}\) from 470 to 270 ohms.
A somewhat less frequent problem, but one that has occurred on more than one occasion, is caused by the clamp pulse on the analogue board being too wide. If this pulse stretches into the
start of the clock run-in, a large spike is generated at this point on the video waveform, causing incorrect operation of the automatic-slice-level circuit and results in very poor data separation. The fault seems to occur in cases where \(\mathrm{C}_{10}\) (April, Fig. 3) is too large in value due to a poor tolerance component being used. The fault can equally well be cured, however, by reducing the value of \(\mathrm{R}_{16}\) from 390 to 270 ohms.
Another somewhat infrequent problem has been due to the page header (row zero) occasionally being written into another row, as well as into its designated one at the top of the page. This is caused by decoding spikes on the output of \(\mathrm{IC}_{42}\) (Jan, Fig. 6) causing incorrect loading of the row number information into \(\mathrm{IC}_{20}\) (Jan, Fig. 1). The spikes are somewhat variable and will depend to some extent on the delay time through \(\mathrm{IC}_{1}\) (Jan, Fig. 6). (It is best to use a 7493A in this position.) A very simple solution to the problem is to feed \(\mathrm{IC}_{7}\) pin 9 (Jan, Fig. 6) from a different output of \(\mathrm{IC}_{42}\), since not all the outputs will contain spikes; which ones do will depend on the various i.c. delay times. It is best to use as low a pin number as possible on \(\mathrm{IC}_{42}\) since this will also determine the start of the line blanking waveform and if a later output of \(\mathrm{IC}_{42}\) is used it may not be possible to make the blanking wide enough to encompass the full 40 -character-wide row.
A more elegant solution suggested by one reader is to change \(\mathrm{IC}_{1}\) for a synchronous counter such as a 74161. This cures any spikes on the outputs of \(\mathrm{IC}_{42}\) but does involve some hard wiring on the p.c. board, the connections being rather different to the 7493. The clock and reset inputs are also inverted with respect to the 7493.
The above faults are the only ones which appear to have "recurred" on more than one or two decoders, but a few more notes on do's and don't's and general fault finding methods might be useful. I make no apology for the fact that some of these points were mentioned in the original series of articles.
Use fairly thick connecting wire for the 0 V and +5 V rails between the
power supply and the decoder to ensure that the i.c.s are working within their specified voltage limits. Any reduction in voltage to the i.c.s will cause their delay time to increase and may cause the decoder performance to suffer accordingly.
If a 'scope is being used to fault find, don't expect all the waveforms to appear as perfect square waves. Some people have spent a considerable amount of time chasing red herrings purely due to the fact that the 'scope they were using had insufficient bandwidth to display some of the faster waveforms correctly. In my experience, faulty t.t.l. gates either have no output at all, or else one of their inputs draws excessive current, causing the previous gate output to be reduced substantially in level. If the waveform appears to have "clean" transitions between about 0.5 volts and 3.5 volts the waveform can almost certainly be assumed to be correct. If the transitions are not clean, that is if there appear to be three distinct levels to the waveform rather than just the two previously mentioned, the reason is almost certainly that two different gate outputs have been shorted together. I would estimate that about \(85 \%\) of the faults people have experienced have been due to either incorrectly soldered, connectedthrough holes, or to slivers of solder shorting together tracks on the p.c.b. Faulty i.c.s seem to be fairly rare, and not nearly so difficult to locate as shorted p.c.b. tracks.
If the decoder does not produce the correct display when first switched on, i.e., random characters only in the correct display area, and the settings of the sync separator, horizontal shift and width have all been optimized, start' by checking the line and clock dividers. It is not worthwhile spending a lot of time at this stage trying to see that all the timings of the waveforms are correct; if a waveform is present it is probably correct.
If line and clock divider waveforms are all present, then the fault is probably in the output circuitry between \(\mathrm{IC}_{57} / 58\) (Mar, Fig. 4) and the decoder output.

Once a display has been obtained, faults can be diagnosed more easily. When lining up the decoder in the "roll" mode it is essential that \(\mathrm{IC}_{9}\) (Jan, Fig. 5) pins 13 and 14 are shorted together thus eliminating the effect of \(\mathrm{VR}_{2}\) (April, Fig. 3 ). There is almost no chance of getting the decoder working unless this is done. Because of the fairly critical nature of the timing of \(\mathrm{IC}_{17}\) (Jan, Fig. 5) it is advisable to use a polystyrene capacitor as the timing component of this monostable to prevent drift with temperature.

Although originally I said that I intended to describe an improved analogue circuit, the results obtained with the circuit already described have been far better than I hoped, often proving better than some commercial designs under similar signal input conditions. One possible improvement which might give marginally better results under adverse signal conditions, however, is to provide an adjustable delay of the clock signal relative to the data. This can be achieved fairly easily by connecting the gates of a 7404 in series and inserting 2, 4 or 6 gates in series with either the clock or data signal to see if any improvement in error rate can be achieved. I stress that I only
set and put.a 75 ohm resistor in series with the coaxial cable leading to the decoder. This will reduce any chance of interference from the decoder getting back into the i.f. strip of the receiver, and also enable a longer coaxial lead to be used to feed the decoder without impairing the video signal too much. The actual point of connection in the receiver should be after any 6 MHz sound traps but before any 4.43 MHz chroma filters. The signal fed to the decoder should not be less than 1 volt peak-to-peak, and marginally better results will be achieved if the signal is somewhat larger than this: up to about 4 volts peak-to-peak.

\section*{Modifications}

I think the above points cover most of the more common queries I have received and I will now move on to describe a few possible modifications. The only change in the specification which may cause the decoder to actually malfunction concerns the transmission of "interleaved" magazines. This allows for rows of different magazines to be transmitted during the same field blanking interval, i.e. magazine 1 may be transmitted on lines 17 and 18 , and at the same time magazine 2

consider this would make an improvement under adverse signal input conditions.

\section*{Interfacing}

The problems of feeding the decoder output into the tv receiver are rather difficult to give detailed information on, because of the large number of different types of set on the market. One problem which has cropped up, however, occurs if the switching board is inserted at a fairly tow-impedance point in the video amplifier circuits. This carr result in "streaking" or trailing after the teletext characters which is caused by low-frequency loss in the decoder video path. If a higher-impedance point cannot be found at which to install the switches, then the coupling capacitors-in the switching circuit should be increased in value.
Finding a suitable video signal to feed into the decoder has been less of a problem than I anticipated, but there are still a few points worth noting. Use an emitter follower mounted in the tv

Fig. 1. Modification to cope with transmission of interleaved magazines.
could be transmitted on lines 14 and 15, for instance. Since the Wireless World decoder only checks the magazine number on the page header and not on all the rows of a page, the displayed page would contain some rows from the correct page and some from those currently being transmitted in the other magazine. The following modification, which does not require any extra i.c.s, will ensure that the decoder performs correctly if pages are actually transmitted in this way.
(1) Break the tracks leading to \(\mathrm{IC}_{45}\) (March, Fig. 1) pin 10 and \(\mathrm{IC}_{63}\), pin 13, joining both these i.c. pins to \(\mathrm{IC}_{79}\), pin 8 . (2) Break the track to \(\mathrm{IC}_{79}\), pin 3 and connect this pin to \(\mathrm{IC}_{80}\), pin 4.
(3) Break the tracks at \(\mathrm{IC}_{63}\), pins 8 and 9. Connect \(\mathrm{IC}_{47}\), pin 2 to \(\mathrm{IC}_{63}\), pin 9 and connect \(\mathrm{IC}_{63}\), pin 8 to \(\mathrm{IC}_{54}\), pin 9 .
(4) Connect \(\mathrm{IC}_{54}\), pin 10 to \(\mathrm{IC}_{48}\), pin 12 and \(\mathrm{IC}_{54}\), pin 8 to \(\mathrm{IC}_{71}\), pin 8. (Parts \(3 \& 4\)
of the modification are drawn out in Fig. 1.)

This modification will ensure that the decoder is not confused when two different magazines are "interleaved". The "roll" mode will also function correctly when interleaved magazines are transmitted, i.e. only pages of the selected magazine number will roll through. The page header will, however, still read out headers from both magazines and this may be somewhat confusing. One modification which some readers have said they would like, is to have the page header continually rotating. (The page selected is indicated on the thumbwheel switches anyway.) This modification can be conveniently combined with one to only allow the page headers of selected magazines to be displayed, as follows.
(1) Break the track leading to \(\mathrm{IC}_{46}\), pin 5 (March, Fig.1).
(2) Connect \(\mathrm{IC}_{46}\), pin 5 to "IC \(\mathrm{I}_{71}\), pin 11.

The clock time displayed in the top 'right hand corner of the page will be continuously updated at all times irrespective of these modifications.

Although I originally only intended the "roll mode" to be an aid to lining up the decoder, it seems that some people find this a useful method of locating pages, and for this reason it is worthwhile describing a modification to prevent the Hamming-coded characters being written into the top, left-hand corner of the page, and causing the neader to turn to graphics. This modification does not require any extra i.cs, merely a switch with changeover contacts rather than the push button originally suggested. Remove the wire from the "select time" edge-connection and connect the wiper contact of the new roll switch to this edge connection. The wire originally going to this edge connection then goes to the "roll off". contact of the switch. The "roll on" contact of the switch should be connected to \(\mathrm{IC}_{5,5}\) pin 8 (March, Fig. 1).
Before going on to describe the new control codes and their functions there is one more modification which has been suggested by a reader which although I have never found to be necessary on any decoders is probably worth mentioning. This concerns the width of the write pulses fed to the random access memories. There are two conflicting requirements in this area, one being that a short write pulse is necessary to prevent its occurring during an address transition (due to internal address decoding in the ra.m. different character locations on the screen can have somewhat different address set-up times) and the other is that being an m.o.s. device, a relatively long write pulse is desirable. I originally tested over 200 r.a.ms and found them all to work perfectly satisfactorily with the write pulse specificied in the original circuit, and I was against making it any longer because of the possibility of it occurring during address changes at
s.ome locations on the screen. There is also the problem of not being able to initiate the write pulse until after the parity checker has had a chance to decide whether the character should be written into the store at all. Despite these conflicting requirements I have never experienced any problems, as I said earlier. However, one reader has suggested the following modification which he found to be necessary.
(1) Disconnect \(\mathrm{IC}_{70}\), pins \(10 \& 11\) (March, Fig.1).
(2) Connect the above two pins to \(\mathrm{IC}_{42}\), pin 13 (Jan. Fig:6).
This has the effect of increasing the write pulse length considerably, but it may also cause some of the problems mentioned above and I would therefore suggest that it is only tried if some problem with the r.a.m.s is experienced.

\section*{New control characters}

The latest teletext specification contains a number of new display facilities which enhance the appearance of the display in the manner described below. It should be pointed out that these facilities will only be receiyed on decoders with the extra circuitry necessary for each of the respective features. Unmodified decoders will still function correctly, but without the added features.

\section*{Graphics hold}

This allows for the spaces normally occupied by control characters to be displayed as the previously transmitted graphics character. This allows abrupt changes of colour to be made in the graphics mode across a display row with a resulting improvement in the appearance of maps, pictures, etc.

Two characters have been allocated for this feature, the graphics hold character located at position \(1 / 14\) in the code table and the release graphics character at position 1/15 in the code table. Following the transmission of the hold character subsequent control characters are to be displayed as the most recent character with bit \(6=1\) in its character code. (This allows the character to be displayed correctly even after characters transmitted in the blast through mode). The graphics release character implies that control characters are once more to be displayed as spaces.

\section*{Double height}

Two control characters have been allocated to allow the display of some characters in the double height mode. The double height character is located as position \(0 / 13\) in the table, and the normal height character is at position \(0 / 12\).
Decoders which are capable of displaying double height characters must ignore any information contained in the row following one which contains a double height character. Characters following a double height character
should be extended downwards into the following display row, while those following a normal height character should be displayed normally, on the first row only, of a double height pair of rows.
The switch between double and normal height may be made any number of times in a given pair of double height rows.

\section*{Separated graphics}

Two more control characters allow switching during a row between the normal, contiguous graphics, mode and the new, separated graphics mode. Separated-graphics characters are displayed with a boundary between the six separate graphics cells which can enhance the appearance of portraits and some other graphics pictures.

The separated-graphics character is at position \(1 / 10\) in the code table, and the contiguous-graphics character is at position 1/9.

\section*{Background colour}

This is in my opinion the most impressive of all the new display modes. Whereas the background of all normal teletext displays is black, two new control characters allow for the background colour of specified character rectangles to be any of the normal display colours. This is achieved as follows. Whenever the new background control character (position 1/13 in the table) is detected, the background of following characters is switched to be the same as the display colour currently in force during the detection of the new control character. This implies, of course, that the display colour must
then be changed before transmitting any new information. (Otherwise the characters would be the same colour as the background and therefore invisible!) This facility not only allows alphanumeric characters of any colour (except black) to be displayed on a background of any colour, but also graphics characters may be displayed on any colour background without any intervening black spaces even around graphic cell boundaries. (The graphics hold mode only allows direct colour changes between character rectangle boundaries.) Also, newsflashes and subtitles may be inset into the tv picture with a "box" colour other than black as at present.

The "black-background" character located at position \(1 / 12\) in the code table allows the normal black background to be restored during a display row.

\section*{Corrections to circuit diagrams.}

Jan. Fig. 5: Pin 1 of \(\mathrm{IC}_{11}\) is CLR not CLK
Feb. Fig 1: Data input \(B\) to \(\mathrm{IC}_{21}\) is pin 2 fed from \((81,9)\).
Feb. Fig. 4: Pin 13 of IC \({ }_{53,34}\) (chip enable) should be grounded.
March Fig. 1: Connection to roll switch from ( 71,6 ) is omitted.
March Fig. 4: Pins 9 and 10 on \(\mathrm{IC}_{{ }_{57}}\) should be interchanged.
March Fig. 4: IC \(_{\text {t+ }}\) pin 2 is fed from output blanking edge connector.
April Fig. 3: \(\mathrm{IC}_{8,2}\) pin 12 is fed from \(\mathrm{IC}_{3}\) pin 1. April Fig. 2: \(\mathrm{IC}_{\mathrm{k}, \mathrm{s}}\) pin to +5 V should be pin 24 . May Fig. 1: Inputs to CD4016 switches (IC, and \(\mathrm{IC}_{2}\) ) reading from top of diagram are: pins \(11,11,1,1,4,4,8,8\).

I would like to thank readers for their interest shown in the series of articles, especially those who offered suggestions for some of the modifications mentioned above.

\section*{Liferature Received}

Radio microphone transmitters and receivers are the subject of a brochure sent to us by EDC. The transmitters, operating in the band \(174.1-175 \mathrm{MHz}\), are of either the hand-held or pocket type. EDC are at Leweston, Organford Road, Holton Heath, Poole, Dorset BHI6 6JY .......................... WW 401

Toroidal transformers from Avel-Lindberg are described in a new brochure. The transformers are rated from 15 to 130 VA at up to 40 V and are contained in resin-filled plastic cases. The toroidal construction is said to reduce the stray magnetic field by up to eight times. Avel-Lindberg Ltd, South Ockenden, Essex RM15 5TD . . . . . . . . . . . WW 402

New entries in the winter catalogue from Heathkit include three speakers, a receiver with a digital frequency meter and audio distortion meters. The catalogue is obtainable from Heath (Gloucester) Ltd, Gloucester GL2 6EE . .

WW 403
Silver mica capacitors from Matthey are tabulated in a leaflet, which provides brief mechanical and electrical data on all capacitors available. The leaflet can be had from Matthey Printed Products Ltd, William Clowes St, Burslem, Stoke-on-Trent ST6 3AT.

WW 404

We have received from Advance a leaflet on the OS3300B 50 MHz , dual-trace oscilloscope, which is a portable instrument with a full complement of display facilities. Main and delayed sweeps can be mixed. The leaflet is available from Gould Advance Ltd, Roebuck Road, Hainault, Essex.... . WW 405

A catalogue from Electronic Brokers lists and describes a range of used test equipment, computers and their peripherals and a new section on multimeters, function generators, stroboscopes and recording equipment is included. The publication is obtainable from 49-53 Pancras Road, London NWl 2QB.

WW 406

The use of s.s.b., a.m. and f.m. modes enables the use of the Harris AN/URC-94(V) transceiver at long and short range. The frequency coverage is 1.5 to 80 MHz in 100 Hz synthesized steps. A leaflet describing the equipment can be obtained from the Marketing Dept, Harris RF Communications Division, 1680 University Avenue, Rochester, \(\dot{\text { N. Y., }}\) 14610, U.S.A.

WW 407

A brochure from RCA Solid State gives basic characteristics of six c.m.o.s memories. Five r.a.ms and a r.o.m. are described, including three silicon-on-sapphire r.a.ms. RCA Solid State Europe are at Sunbury-on-Thames, Middx.

WW 408

Helical aerials for u.h.f. and v.h.f. mobile transceivers and boot-mounting, whip aerials and bases are briefly described in two leaflets from the Panorama Radio Company Ltd, 73 Wadham Road, London, SW14 2LS . . . . . . . . . . . . . . . . . . . WW 410

\title{
Weather-satellite picture facsimile machine - 3
}

\title{
Drive amplifier, motors, light source and constructional details
}

\author{
by G. R. Kennedy
}

The square wave signal from the \(S R\) line divider is selected by \(\mathrm{S}_{3 \mathrm{a}}\) and amplified in the motor-drive power amplifier to give an approximately 220 V sinewave at 28.8 to 48.0 Hz . In Fig. 12 the input signal is amplified by the common emitter stage \(\operatorname{Tr}_{11}\) and a.c. coupled to the emitter follower \(\mathrm{Tr}_{12}\) which feeds the primary of a small mains transformer, \(T_{1}\), used here as a phase splitter. The centre-tapped secondary paraphase feeds output transistors \(\mathrm{Tr}_{15}\) and \(\mathrm{Tr}_{16}\). The bias is set by \(\mathrm{RV}_{11}\), and the collectors are connected in push-pull by transformer \(\mathrm{T}_{2}\), which is a mains transformer reverse connected. The d.c. supply to the output transistors is switched by \(\mathrm{S}_{4}\), the drum motor on/off switch. To obtain a near-sinusoidal output, the centres tapped winding of \(T_{2}\) is broadly tuned to 38 Hz or so by means of the non-electrolytic capacitor \(\mathrm{C}_{27}\); due to hysteresis the value has to be found empirically for the \(1 / 4\)-line frequency \((38.4 \mathrm{~Hz})\) with the motors both running - a typical value is \(12 \mu \mathrm{~F}\). A safety bleed resistor \(\mathrm{R}_{58}\) is placed across \(\mathrm{C}_{27}\).

Clamp. In Fig. 12, if the drive into \(\mathrm{C}_{24}\) should fail for some reason while \(\mathrm{S}_{4}\) is
made, the output stage could be damaged due to excessive current flowing through \(\mathrm{T}_{2}\) and the output transistors. A clamp circuit is included to prevent this. A small portion of the current drive from the \(\mathrm{Tr}_{12}\) emitter is taken via \(R_{55}\) and \(D_{11}\) to charge \(C_{26}\). When the potential on this rises, \(\operatorname{Tr}_{13}\) turns on and shorts the base of \(\operatorname{Tr}_{14}\) to ground, thus turning it off. Since the off resistance of the silicon transistor \(\mathrm{Tr}_{14}\) is very high, there is no effect on the bias to the output transistors and the motor drive power amplifier acts normally. If the drive to \(\mathrm{Tr}_{11}\) and hence \(\mathrm{Tr}_{12}\) fails, no current flows from the \(\mathrm{Tr}_{12}\) emitter and \(\mathrm{C}_{26}\) discharges through the \(\mathrm{Tr}_{13}\) baseemitter junction. \(\mathrm{Tr}_{13}\) turns off, its collector potential rises and turns on \(\mathrm{Tr}_{14}\). The wiper of \(R V_{11}\) is effectively shorted to ground, and the output transistors \(\mathrm{Tr}_{15}\) and \(\mathrm{Tr}_{16}\) are safely biased off.

Drum motor. Several motors were tried before a suitable one was found to turn the drum under controlled conditions. After a d.c. motor and its control system were tried, the speed/load performance of the inexpensive brush motor was found to be wanting, and the electronics
became very complicated when improvements were sought. A stepping motor was found to be an ideal but expensive solution, and as a more economic compromise a small medium-torque synchronous motor was chosen. Philips make a moderately priced range of synchronous motors, and the model 9904-111-05-111, is suitable. This is a two-stator, reversible motor for use on a 220 V 50 Hz supply giving \(250 \mathrm{rev} / \mathrm{min}\) with a 3.3 W input power and a \(37.7 \times\) \(10^{-3} \mathrm{Nm}\) working torque (approximately 3.7 gcm ). The starting torque is \(32.5 \times\) \(10^{3} \mathrm{Nm}\), which was marginal for the drum used, and therefore a little persuasion by hand is sometimes necessary to start it turning. A phasing capacitor of \(0.12 \mu \mathrm{~F}\) at 330 V a.c. working was supplied with the motor and simple switching gives reverse direction running. For about \(£ 15\) or so the motor performs well, the maximum equivalent pull-out rate being more than sufficient for facsimile machine use. With a supply frequency of 48 Hz the shaft rotation is \(240 \mathrm{rev} / \mathrm{min}\). (A suitable stepping motor is the Philips 9904-112-05-101 which has a maximum torque of \(65 \times 10^{-3} \mathrm{Nm}\). This

Fig 12. Motor-drive power amplifier
+40 V

would need a different drive system of course. Small quantities of Philips motors are obtainable from McLennan Engineering Ltd., Kings Road, Crowthorne, Berks). In passing, various clock-type synchronous motors designed for a \(250 \mathrm{rev} / \mathrm{min}\) shaft speed at 50 Hz were tried, but the torque ratings were too low and the motor either could not maintain even rotation of the drum, or stalled when the drive frequency changed.

Drum pulse sensor and amplifier. For phasing the edge of the picture, it is necessary to sense the picture drum rotation and the instantaneous position. In the prototype the sensing comprised a small piece of so-called "rubber magnet" cemented to the edge of the drum and a \(600 \Omega\) audio replay head from an old cheap Japanese pocket tape recorder placed nearby on a rigid mount. The magnet is similar to the narrow strip magnets used on refrigerator doors and on the backs of nursery spelling letters which are used on steel blackboards. Since the tape head was small and of light construction, cementing to a small metal bracket with epoxy resin was found to be the most expedient method of mounting.

The drum-sensing pulse amplifier (Fig. 13) is a simple three stage circuit. The gain of the two common-emitter stages \(\mathrm{Tr}_{17}\) and \(\mathrm{Tr}_{18}\) is set by \(R V_{12}\) and the output is taken to an external socket from the emitter follower stage \(\mathrm{Tr}_{19}\) via \(\mathrm{C}_{32}\) and via \(\mathrm{R}_{66}\) to the light-emitting diode \(D_{12}\) to give a visible indication of drum rotation. The unstabilized supply is tapped from the +40 V supply and smoothed by \(R_{67}\) and \(C_{33}\).

Strobe pulse generator (Fig. 14). This produces the strobing pulse which causes the light source driver, on SR pictures, to be off for a period, and to be on for a shorter period while just the picture line of part of the VIS or IR section is printed. The 0.8 Hz signal from the divided clock-rate signal is a.c. coupled by \(C_{34}\), shunt rectified by \(D_{13}\) and applied to the trigger input of monostable \(\mathrm{IC}_{22}\). The on-period is selected according to the line division in use by \(S_{3 b}, R_{69}, C_{35^{*}}\) and one of \(R V_{13}\), \(R V_{14}\) or \(R V_{15}\). This output is taken via \(\mathrm{R}_{70}\) to limit the output current. A simple semi-stabilised +5 V rail is derived from the +12 V line by \(\mathrm{R}_{71}, \mathrm{D}_{14}\) and \(\mathrm{C}_{36}\).

The light source is possibly the most specialised item of the whole machine. Since a tungsten filament lamp cannot be switched at the rate required for a weather satellite picture - at least 2 kHz - due to thermal inertia, and since a Xenon flash tube cannot be brightness modulated at low output levels, the only practical devices available are the laser and the glow modulator. The laser was not considered for reasons of cost and availability and so the glow modulator was chosen. This light source, also known as a crater tube, is a cold cathode


Fig 13. Drum-pulse amplifier


Fig 14. SR strobe-pulse generator
device with a narrow, hollow cathode which gives a high ionization density. The tube actually used by the author was the 1B59 which has an equivalent luminous intensity of 300 milli-candela at 30 mA cathode current from a near point source 1.4 mm in diameter. The striking voltage is approximately 128 V and the maximum cathode current is 75 mA . The tube has an octal type base, is the same size as a 6SN7/GT valve and can be mounted in any plane. The particular features which make it ideal for facsimile use are that it can be modulated at up to 1 MHz , has a blue-violet emission \(\left(2870^{\circ} \mathrm{K}\right.\) colour temperature) and has an average life at 30 mA of 250 h . It is also inexpensive, being available in small quantities for about \(£ 15\). It is made, amongst others, by English Electric in England and Sylvania in the USA, where it carries the equivalent type number R-1130B.

The British military type number is CV5207. Further technical information is given in refs 8,9 and 10 , and qualitative tests on crater tubes in facsimile service is given in ref. 11.

The crater tube produces virtually a point source of light and requires a lens to focus it to a small spot. As the tube does not become hot when running it can be held by interference fitting in the end of a piece of thin-walled metal tubing of internal diameter 31.8 mm . The lens can be mounted in a screwed assembly at the other end of the light tube. The inside of the tube should be painted matt black and an iris plate fitted to stop off-axis light, scattered from the glass envelope end wall, from entering the lens. A good quality short-focus compound lens should be used; cheap single element glass lenses were tried but the minimum attainable spot size was found to be too large. For a final picture 20 cm or so square, the spot


Fig 15. Traverse-drive scheme.
diameter should be better (smaller) than 0.3 mm . For example, the ESSA-8 picture has 800 lines per picture and a 200 mm picture height, which is four lines per mm. The tube base has only two pins, but the spigot is of the international octal type and a normal i.o. socket can be used, the flange holes being used to mount an insulated safety cap (old aerosol can cap) to protect one from the +165 V supply. When testing a crater tube remember that it is a negative resistance device, like a neon lamp, and that once struck will conduct to destruction unless a series resistive load is inserted in the power supply line. A series 60 mA fuse, as mentioned earlier, is a wise precaution.

Traverse motor. It was found that the motor which traverses the light beam along the drum needs to be servo controlled rather than merely driven at a constant rate. Clock-type mains synchronous motors are readily available giving usable output shaft torques in the range 1.9 Kgcm ( 26 ounce-inches) to 10 Kgcm ( 139 ounce-inches) at l rev/ min. Some manufacturers are: Crouzet in Brentford; Stirling Instruments in Crewkerne; Urimatic Engineering in London NW2 and Memotrace in Northampton. If heavier duty motors are required, professional synchronous motors can be obtained, at greater cost, from such suppliers as Philips, Evershed and Vignoles, TI Supply (Slosyn) and Walter Jones. In the prototype, the motor from a surplus elapsed-time indicator was found quite adequate.

The power supplies required for the electronics are +165 V for the crater tube; \(+40 \mathrm{~V},+12 \mathrm{~V}\) and +5 V for the bulk of the electronics and -12 V for the expander alone. In several places in the
prototype the +5 V is derived from the +12 V rail for convenience. The +165 V supply must have very low ripple if hum patterning is to be avoided on the final print. The author used an unstabilised supply with three pi-filter networks, each of 10 H and \(8+8 \mathrm{~F}\). Since the crater tube is a current fed device, a drop in the 165 V rail with modulation is tolerable providing the mains ripple does not become greater than about 10 mV pk-pk, and the voltage across the tube does not fall below the maintaining voltage - typically 130 V . It is also advisable to use screened cabling to the light source and to include high frequency decoupling with feed-through capacitors.

\section*{Mechanical construction}

The physical construction of the machine is generally straightforward and need not be described in detail. The parts which may present problems are examined below.

The picture drum. The physical size of the picture drum determines the final picture size. If standard size bromide paper is to be used without guillotining, the drum diameter should be chosen accordingly. The writer found it more economic to buy bulk bromide paper in rolls and to cut it to size. In spite of the bother of cutting, this meant that the drum diameter was not critical. When wrapping the paper around the drum, a few millimetres of overlap should be allowed to avoid edge-to-edge butting which can make it loose on the drum. Double-sided sticky tape is used to retain the paper. One strip of this will usually last for about 50 prints.

To allow longer sections of SR passes to be printed, the length of the drum should be about \(11 / 2\) times it's circumference. The writer's machine uses a drum of 6 cm diameter by 30 cm long
made from Paxolin tube cemented to end plugs of lathe-turned aluminium on a 6 mm diameter shaft. To avoid chatter, the drum shaft must be run in ball or roller bearings which should be kept in good condition and well greased. These should be held rigidly on solid brackets or plummer blocks, and coupled to the motor shaft by a semi-flexible springdisc or metal bellows coupling. The motor should likewise be firmly mounted. Any vibration of the drum will show up on the print as patterning. The drum should initially be turned in a lathe between centres and finally a lathe tool should temporarily, be clamped to the traverse and used to dress the surface of the drum in situ. For the motor mentioned earlier, a drum weight of about 300 to 400 g is optimum. It is important to see that the drum mass is evenly distributed radially, and that it is balanced.

The traverse comprises a sledge block running on two straight rails. The prototype used a heavy Paxolin plate approximately \(18 \times 8 \times 2 \mathrm{~cm}\) thick with two square-section slots \(1.0 \times 0.7 \mathrm{~cm}\) milled across the width. The rails are 1.8 \(\times 1.0 \mathrm{~cm}\) rectangular-section brass rods, selected for straightness and surface planed for smooth running. The slots were milled approximately 0.15 mm over width and the Paxolin was oil impregnated, again, to improve running. The rails were mounted with the fixing screws in slotted holes so that they could be adjusted to lay parallel to each other. These were finally set and locked when the traverse plate could be pulled along the rails from end to end with a pulling force (measured on a spring balance) not exceeding 10 g . Any tendency to stick gives uneven line spacing on the picture. Initially, a lead-screw was tried for the traverse drive. A good quality 1 mm pitch (OBA) piece of steel studding was rotated between the rails, acting on a tapped brass bush in the traverse plate. This gave alternate cramping and stretching of the lines on the picture due, it was thought, to the thread being slightly skewed to the axis of the studding. No doubt with better engineering this method could be made to work since lathes work on this principle, usually with square-profile Acme-type thread lead-screws. However, a much simpler solution is to use end rollers. As shown in. Fig. 15, two identical rollers are mounted between ball bearings, and at the ends of the rails. At each end of the traverse plate a length of drive cord is attached, run to one roller, wound round twice, run back under the plate to the other roller, wrapped twice and run back to the plate and attached. One roller is driven by the motor and the other idles. If the roller diameter is chosen correctly for the traverse motor shaft rotation speed, the correct rate of picture writing can be achieved. For example, for a picture of height 20 cm to be written in 200 s (c.f. ESSA-8 real time picture) and using a 1
rev/min motor, the periphery of the drive roller must pay out 20 cm in 200 s , 6 cm in 60 s . The circumference must therefore be 6 cm and the diameter 19.1 mm . The advantages of this system are relative simplicity, equal pull on the traverse plate at each end, obviating skewing and jamming, and the ability to be able to return the traverse to the start position by hand. If a lead screw is used the engineering requirements to stop cocking sideways are severe and a method of disengaging the drive has to be found, unless the slow process of reverse running of the drive is carried out. With the roller system there is just enough slip for the cord to be run over the rollers if held and moderate hand force used. This does, however, tend to stretch the cord - ordinary radio dial drive cord. A better way to reset by hand is to use a clutch coupling between the driven roller shaft and the motor shaft. A very successful and very cheap coupling can be made from two 6 mm collet-type potentiometer spindle locks. A short piece of hollow bushing from an old potentiometer should be cut off and used to lock the collets back to back. Both locking cones should be lightly put on and the device slid onto the end of the motor shaft. The cone on that half is tightened really hard and the drive roller bearings are clamped down. The other cone is tightened for picture writing and loosened for running the traverse back to the starting point. Although limit switches should be fitted to the traverse drive system to cut off the motor supply, the use of drive cord and a collet clutch will ensure that no harm can come to the motor or rollers if the switches should fail. For the production of SR pictures of different magnification by simple electrical switching, it was found expedient, with the dimensions given, to drive the feed roller directly for APT/WEFAX and tr use a \(2: 1\) step down drive to give a drive roller rotation speed of \(0.5 \mathrm{rev} / \mathrm{min}\). The synchronous running of both traverse and drum motors with this gearing gives the correct index of co-operation of the final pictures. A simple gearing using somewhat coarse gears was tried, but chatter bars showed up on the finished picture. A finer gear train was then used which gave satisfactory results. (The coarse gears had a diametrical pitch of 48 and the fine gears had a diametrical pitch of 100 , according to the train. Gear teeth ratios were as follows: motor-to-shaft 60:60 and shaft-to-roller 45:90, these numbers indicating the number of teeth on the gears). The light source assembly can be mounted on the traverse plate with large capacitor clips. It was found useful to put jacking screws under the clip at the lens end of the light tube so that the light beam could be put exactly on a radius from the axis of the drum Although the spot of light is very small, adjustment of the spot height was found to affect the clarity of the final picture. The cable to the crater tube


\section*{Meteor 25 Satellite Pictures}

11 September 1976, 09.19z, revolution 1671, printed live using the linear detector. Facsimile was set for a high contrast to show coastlines. Numbers down edge of the picture are transmitted by satellite and are timing, calibration and housekeeping data. \(S R\) distortion can be seen by the elongation of Italy at low left. Greece is lower centre, the Black Sea is right.

11 September 1976, 09.19z revolution 1671, printed from a tape recording of the live signal.
Logarithmic detector was used giving a larger dynamic range to the picture. Cloud patterns are more easily seen, as are some geographical features such as mountains and rivers, compared with the picture produced using the linear detector. Black lines on the picture are due to oxide drop-outs on the recording tape. Crete and Turkey can be seen at the bottom of this picture.
should be firmly clamped at both ends and should be flexible, to avoid hampering the movement of the traverse. It should also be screened to avoid undue pick-up. If a threaded lens mount is not to hand, a practical alternative is to cement or solder the outer shell of a redundant round multi-way cable socket to the end of the light tube. The lens can be made to push fit into the mating plug shell and this can be screwed in and out of the socket. Once focussed the thread can be locked with a set screw. The near obsolete military series of connectors MS/AN are suitable.
Equipment housing. For convenience the drum, the traverse and the two motors can be mounted on the top of an instrument case. The space required to produce pictures \(21 \times 25 \mathrm{~cm}\) is about 50 \(\times 45 \mathrm{~cm}\) or so, since room must be left for mounting the bromide paper onto the drum. The electronics can then be built into the space below the mechani-
cal items and the whole presented as one machine. Since the lens, traverse rails and the sticky strip on the drum must be kept clean, and to avoid stray light problems during printing, sides should be built up around the mechanical section and a lid should be fitted. The whole compartment thus formed should then be painted matt black to further reduce reflections. For rigidity it is recommended that the top plate of the instrument case is surfaced with a substantial sheet of metal - say, 5 mm thick aluminium. Mountings can then be tapped into this, and it will allow removal and servicing from the top. The electronics drawer underneath should be removable and connected to the section above by multi-way plugs and sockets. Screened cables are recommended for the signal and motor supply lines, and these should be kept separate from each other.
(To be continued)

\section*{Transistor arrays}

\title{
Practical circuits using transistor arrays are given in the latest set of Circards
}

\author{
by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams, Paisley College of Technology
}

Integrated circuit amplifiers have a different internal structure to those constructed from discrete components. While the earliest i.cs simply copied or adapted established ideas, more efficient use of the i.c. "real-estate" demanded changes in the design approach. Over the years many brilliant solutions have been found that exploit the characteristics of monolithic i.c. technology - in contrast to the earlier efforts that inevitably tried to get around their apparent disadvantages. We now have access to amplifiers, oscillators, regulators and the like, whose performance in many respects exceed the discrete circuits with which they compete. In cost terms i.cs dominate over a wide front.

There remains a large number of gaps in this front, perhaps because the number of units needed is not large

Fig. 1

enough to warrant a separate i.c., but for which existing i.cs cannot easily be adapted. Often this is because the operating conditions lie outside the range for which the standard i.cs are designed. Examples include low or high voltages or currents, high or low frequencies, and circuits with non-linear or power law transfer functions. While each of these categories has been successfully tackled using discrete circuit designs, this article looks at a family of devices that using borrowed terminology might be called "naked i.cs".

These are the transistor arrays which consist primarily of transistors and diodes with at most a few additional resistors. The configurations give a wide choice between flexibility and complexity. In the first category are i.cs consisting simply of a set of identical transistors, while the last-mentioned is represented by circuits containing a mixture of \(n-p-n, p-n-p\) and super beta transistors already interconnected to form the input stage of an operational amplifier. In this article we discuss some of the transistor and diode arrays, outline their common properties and indicate how these properties are exploited. The set of Circards prepared
to accompany this article, covers a wide range of practical circuits, from d.c. to high frequencies, linear and non-linear. It also contains a more detailed account of the characteristics, advantages and limitations of presently available arrays.

One of the earlier forms of array contained only diodes as shown in Fig.1. Although the code numbers given are for RCA devices, many manufacturers produce equivalents, particularly for the more popular packages. Others, notably Plessey, have changed the process used, while retaining some of these configurations. Using tighter control, over diffusion depths and doping levels, the transistor bandwidths have been pushed beyond 1 GHz . This is particularly important in the design of wideband amplifiers where the improved frequency response need not be at the expense of good matching and low drift as needed for operation down to d.c. This combination of close matching and high speed is equally important in diode ring modulators and diode gating circuits, for which application the device of Fig. 2 is well-suited.
Another specialized area of operation is that of display driving. Using seven



Fig. 2

segments to display any number from 0 to 9 , the display devices may be filament or l.e.d., and the currents required might be up to 100 mA per segment. In addition, the preceding drive circuitry may require common emitter or com-mon-collector configurations. These options are indicated in Figs. 3 and 4 and it is interesting that the transistors can be accommodated in a 16 -pin standard package leaving just one spare pin as a separate substrate connection.

This last point is important. From each transistor to its neighbour there is a possible conductive path via the substrate if the p-n junctions become wrongly biased. To avoid this the substrate is normally connnected to the most negative potential in the system, leaving all the inter-device p-n junctions reverse biased. There the packing pin-count is insufficient, the substrate may be internally connected to one of the emitters. If a common point between the transistors is undesirable then the number of transistors that can be contained in a package is reduced by about \(30 \%\). Thus Fig. 5 shows five independent transistors plus separate substrate connection in a l6-pin package. Any mixture of \(n-p-n\) and \(p-n-p\) transistors can be similarly accommodated and Fig. 6 shows an example with three n-p-n and two p-n-p types. In early forms of i.c., the p-n-p devices that could be produced were miserable specimens with current gains barely in excess of unity. It took great ingenuity on the part of designers to incorporate the advantages of complementary operation, without destroying the over-
al performance. In these recent transistor arrays, the p-n-p the current gains are good ( \(>40\) ) and the only serious; limitation is the low gain-bandwidth product: \(<10 \mathrm{MHz}\) as compared to the: 200 to 600 MHz range for some of the n-p-n devices.

If more complex functions are to be performed without recourse to larger packages, then a number of internal connections have to be made and Fig. 7 illustrates this point with seven semiconductor devices plus a separate substrate connection in a 14 -pin package. The double current-mirror is useful in amplifier circuits, as an active load network for n-p-n transistors, to maximise their gain, possibly coupling the output into the Darlington pair.

As the reverse-biased base emitter junction breaks down around 7.5 V with a temperature drift of 3 to \(4 \mathrm{mV} / \mathrm{K}\), zener diodes based on these junctions offer the possibility of good temperature stability. This can be obtained by adding two forward-biased junctions each with a drift of around \(-1.9 \mathrm{mV} / \mathrm{K}\). A circuit incorporating transistors, zeners and diodes makes a convenient starting point for the design of regulated power supplies and similar power control circuitry. Fig. 8 shows an example of this type.

One of the more complex array i.cs is shown in Fig.9. The degree of internal interconnection is such that it might be fairer to describe it as a sub-circuit. It is particularly intended for high inputimpedance amplifiers, since \(\mathrm{Tr}_{1}, \mathrm{Tr}_{2}\) are so-called super- \(\beta\) transistors having very high current gain. The processes
which produce gains well in excess of 1,000 also bring the collector-emitter breakdown voltages to but a few volts. The biasing network must ensure that the p.d. across these transistors is severely restricted and the whole input stage is effectively bootstraped with \(\mathrm{Tr}_{3}\), \(\mathrm{Tr}_{4}\) withstanding the full common-mode input swing.

The i.cs discussed so far have been bipolar types and it is worth noting that matched pairs of bipolar transistors are widely available and are convenient as low drift and/or gain-boosting input stages for operational amplifiers. The choice with m.os. devices is less wide. Again matched pairs and triples are available and these can be of advantage in devising high-input-impedance amplifiers. The best-known array in this area (CD4007) was designed as part of the first family of c.m.o.s. logic i.cs. Although not characterised for linear applications it has been pressed into service on many occasions, with the result that devices are now available with the same configuration but with specifications more suited to the analogue field (CA3600). Presumably other combinations will be produced, particularly as recent op-amp designs show that the problems of producing m.o.s. and bipolar transistors on a common chip have been overcome.

Transistor arrays offer a challenge to the designer. Though standard i.cs must reign supreme in the areas for which they are designed there are, and will remain, a number of applications to which they are not suited or for which they would not be an economical


CA3083
Fig. 5



CA3084
Fig. 7



CA3093
Fig. 8

Fig. 6



CA3096
solution. With care the advantages of both i.c. and discrete techniques can be used by tackling these problems with transistor arrays - combining the close tolerance and matching available from the monolithic process, with the flexibility normally associated with the use of separate transistors.

\section*{Topics in set 32 of Circards}

Device arrays
Triangular-to-sinewave converter
Low-voltage square triangle generator
RC oscillator with automatic amplitude control
Emitter-coupled voltage-controlled astable
Sine/cosine to d.c. converter
Low-voltage astable
Temperature stabilized chip
Band gap level sensing circuit
A.g.c. amplifier

\section*{How to get Circards}

Tested circuits on these topics are given in set 32 , obtainable for \(£ 2\) post free from:

IPC Electrical-Electronic Press Ltd
General Sales Dept, Room 11
Dorset House
Stamford Street
London SE1 9LU
Subjects covered in Circards are:
1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
a.c. measurement
audio circuits (equalizers, etc.) constant-current circuits
power amplifiers (classes A, B, C, D) astable multivibrator circuits optoelectronics: devices and uses micropower circuits basic logic gates wideband amplifiers alarm circuits digital counters pulse modulators
16 current-differencing amplifiers signal processing
17 c.d.as - signal generation
18 c.d.as.-measurement and detection 19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators
23 reference circuits
24 voltage regulators
25 RC oscillators-1
26 RC oscillators-2
\(2 \overline{7}\) linear \({ }^{-}\)c.m.o.s.-1
28 linear c.m.o.s.-2
29 analogue multipliers
30 non-linear functions
31 digital multiplers
32 transistor arrays (available shortly)
33 differential amplifiers \&c.
34 analogue gate applications - 1
35
        analogue gate applications -2

\section*{Continued from page 53}
are very difficult to observe, even on a high-speed oscilloscope, he is convinced that there are as many as four sources all transmitting the same, or nearly the same, information, perhaps from different locations. What is equally interesting is that the signals are no longer remaining for periods of hours in one frequency band but are moving up and down the h.f. spect rum in about 100 kHz steps, remaining at the chosen frequencies for 30 s to 10 min .

The use of pulse signals suggests either over-the-horizon (o.t.h.) radar or communications. In either case a complicated system would be necessary to compensate for propagation variations, and this may involve the use of more than one source. The variations in carrier frequency could either be an attempt at remaining at the most propagatable frequency or they could be a security procedure. It is understandable that the Russians should wish to keep h.f. communications in addition to satellite communications using microwaves because, in the event of a war, the satellite is very vulnerable. However, it is not clear why tens of megawatts would be needed, even for communications to submarines.

Over-the-horizon radar seems to be far more probable. This is not new, \({ }^{2}\) the USAF and the, Defence Advanced Research Projects Agency (DARPA) have been actively interested in o.t.h. radar for about 15 years and distances of at least 1850 km are possible.

It is interesting to note that the frequencies chosen for o.t.h. radar are normally between three and 30 MHz . The system would almost certainly use o.t.h.-b. (backscatter) radar which depends upon energy reflected from the target reaching a receiver antenna array via ionospheric reflections. \({ }^{2}\) Radar of this kind is often ineffective within a certain skip distance from transmitter. \({ }^{2}\) This may explain why an American radio amateur visiting a Soviet amateur organisation as a representative of the ARRL was told that their amateurs were unaware of any high power transmissions from their country.

Systems using more than one radar source are also in existence today. These multiradar tracking systems \({ }^{3}\) use some of the signals received to update others so that the best estimate can be made of the target position. Although it is argued that \(10 \mathrm{p} / \mathrm{s}\) is too slow for tracking anything but ships, the higher frequency components within the basic pulse train could surely contain enough information for faster moving, smaller aircraft - especially using multiradar.
If the Russians are really being adventurous they could be testing a four-source system capable of detecting the actual shapes of their targets. Recent results in the study of electromagnetic impulse response of objects \({ }^{4}\)
have indicated that the information required for the determination of the approximate shape of the objects can be contained in the low frequency range, where the wavelength is longer than the overall dimensions of the object. This means that the h.f. band could be used for targets from 120 m down to 10 m length or less and this would include the majority of aircraft and rockets. It is also interesting to note that the most troubled , frequency ( 14 MHz ) corresponds to 20 m , about the size of an aircraft.
The study" showed that "below four frequencies are sufficient in most cases to provide reliable classification in the presence of substantial amounts of noise". Using only four frequencies or less, the study showed that four aircraft models (F-104, 18.24 m long by 16.6 m wingspan, F-4, MiG 19 and MiG 21), scaled to approximately the same size, could be reliably identified. In comparison the distinction between winged rockets and other aircraft would be a simple matter.
Is it feasible that the Russians are testing a system which incorporates both o.t.h. radar and shape recognition by radar returns? The most likely targets for such a radar would be the US B-1 swing-wing bomber and the US Navy and Airforce cruise missiles (only 4 to 6 m long). Positive identification of approaching \(\mathrm{B}-1\) bombers and cruise missiles would be a valuable asset to the Russian forces and would probably be worth any diplomatic embarrassment caused by interference with Western radio services during preliminary trials.

\section*{References}
1. Intruder Watch is an organization which monitors the amateur frequency bands and reports to the Home Office any persistent intruders within those bands. In the UK there are currently 22 observers reporting an average of 100 serious intruders per month in the amateur bands alone. Throughout the world the figures are nearer 1200 per month. 2. Janes Weapons Systems.
3. Tracking in a multiradar environment, H . W. Thomas, G. Maignan and J. T. Storey, Proc. IEE, vol. 123, No. 3, March 1976.
4. Identification of complex geometrical shapes by means of low frequency radar returns, Y. T. Lin and Professor A. A. Ksienski, The Radio and Electronic Engineer, vol. 46, No. 10, Oct ober 1976.

\title{
Digital angle modulation
}

\section*{2 - Comparison of methods}

\author{
by R. Thompson, M.I.E.E. and D. R. Clouting, Ph.D., B.Sc.(Eng.).
}

When selecting a modulation method many factors have to be considered. The most significant of these (though not necessarily in order of importance) are:
- equipment complexity,
- noise performance,
- performance sensitivity to equipment design tolerances,
- the propagation characteristics of the transmission medium.

The equipment complexity required to implement the chosen method is obviously very important, since this will have a significant effect on the cost of the developed equipment. Similarly, to ensure that the equipment is "commercially viable" it is essential that, for a given degradation in performance, the permissible equipment design tolerances are maximized. This will result in equipment which can be manufactured and tested by relatively unskilled labour.

The noise performance, that is the signal to noise ratio necessary at the demodulator input to give the required error rate ( \(P_{e}\) ), is obviously very imnortant since this is a major factor in determining the range of the radio link. In other words, for a given receiver sensitivity it will determine what transmitter power is required. The objective is therefore to select a modulation method which requires the minimum signal-to-noise ratio at the receiver to obtain the required \(P_{e}\).

Due to the introduction of large numbers of new systems in recent years the frequency spectrum is becoming more and more congested. This means that the spectrum available to support new systems is severely restricted. Consequently, spectrum occupancy is likely to have a major influence on the choice of modulation method to be used in future systems. In general, spectrum economy can only be achieved at the expense of noise performance, which means that a compromise must be made.

The last factor, the susceptibility of the modulation method to external interference and the operating environment, is very difficult to quantify. This is

Part 1 of this article reviewed various methods of generating and detecting angle-modulated signals carrying digital information. This part discusses the comparative perfor-- mances of types of modulation.
primarily due to the fact that, in general, very little quantitative data is available upon which this performance can be compared. Consequently, no attempt is made in this paper to compare quantitatively the methods considered from the operating environment point of view. However, in general it can be stated that all angle modulation meth-


Fig. 1. Noise performance curves.
ods are likely to perform in a similar manner although four-level systems will be less robust than the equivalent binary systems.

\section*{Performance comparisons}

During recent years considerable attention has been paid to the performance of digital modulation methods. The performance figures presented in this section are probably the most up-to-date available, having been collected from many sources, primarily by computer simulation.

It is obviously not possible to cover all the large number of angle modulation methods. The results included have been restricted to cover the following:
- binary and four-level f.s.k. with and without premodulation shaping, - binary and four-level d.p.s.k. with and without premodulation shaping, - four-level d.p.e.k.

In all cases the performance figures related to systems having the optimum design parameters derived in the studies published in references 1 to 4. These are summarised in Table 1.

Noise performance. Fig. 1 shows how the error rate varies with signal-tonoise ratio for each of the methods under consideration. The tegends used are those given in Table 1. The signal to noise ratio ( \(\mathrm{s} / \mathrm{n}\) ) is defined as the ratio of the peak signal power appearing at the receiver input and the noise power
\begin{tabular}{|c|c|c|c|}
\hline Modulation method & Legend & Receiver bandwidth & Frequency deviation ratio (H) \\
\hline Binary d.p.s.k & 2D & 1.1 & \(N / A\) \\
\hline Binary d.p.s.k with premodulation shaping & 2DS & 1.1 & \(N / A\) \\
\hline 4-level d.p.s.k. & 4 D & 0.55 & N/A \\
\hline 4-level d.p.s.k. with premodulation shaping & 4DS & 0.80 & N/A \\
\hline 4-level d.p.e.k. & \(4 D E\) & 0.5 & N/A \\
\hline Binary f.s.k. & 2F & 1.0 & 0.65 \\
\hline \begin{tabular}{l}
Binary f.s.k. with premodulation shaping \\
4-lèvel f.s.k.
\end{tabular} & \(2 F S\)
\(4 F\) & 1.0
0.6 & \[
\begin{aligned}
& 0.65 \\
& 0.4
\end{aligned}
\] \\
\hline 4-level f.s.k. with premodulation shaping & 4 FS & 0.8 & 0.5 \\
\hline Note: All parameters are normalised & bit rate. & & \\
\hline
\end{tabular}


Fig. 2. Adjacent channel rejection' factor.


Fig. 3. Minimum channel spacing versus s/iratio.


Fig. 4. Effect of filter bandwidth on noise performance.
contained within a bandwidth equal to the bit rate of the digital data being conveyed. The results for the binary and 4-level f.s.k. system have been derived from those published in references \(l\) and 2 and were obtained by computer simulation. Similarly, the results for the binary and 4 -level d.p.s.k. and d.p.e.k. system have been extracted from those presented in references 3 and 4.

The results show that the noise performance of all the binary systems considered are likely to be within 1 dB of each other. This tends to lead to the conclusion that, if a binary system is to be employed, noise performance is not an important factor in determining which particular method to use. The performance of the 4-level systems, on the other hand, vary considerably. This is due to the fact that their noise margin is considerably less than that of the binary system, which means that the difference in performance of the various methods is much more pronounced. The results show that the noise performance of a 4 -level f.s.k. system is about 6 dB worse than that of the equivalent 4-level d.p.s.k. or d.p.e.k. system. They also show that if premodulation shaping is employed in the d.p.s.k. and f.s.k. systems to reduce spectrum occupancy a degradation in noise performance of 1 to 2 dB will result. Whether or not this penalty is cost-effective will be dependent on the relative importance of spectrum occupancy and noise performance. It will be observed that when compared on a peak-power basis 4-level d.p.e.k. and 4 -level d.p.s.k. with premodulation shaping give almost identical noise performance. This is to be expected since the two methods are simply variants of 4-level differential phase modulation, the difference being in the technique used to reduce spectrum occupancy. However, in the d.p.e.k. approach spectrum control is achieved by introducing amplitude modulation. This means that if noise performance is compared on a mean power basis d.p.e.k. is superior by almost 2 dB . In some cases where mean power rather than peak power is the constraining factor this may be particularly importance and make d.p.e.k. very attractive.

Spectrum occupancy. The spectrum occupancy of each of the methods under consideration is compared in Figs. 2 and 3. The figures show how the adjacent-channel rejection factor and the permissible signal to interference ratio ( \(\mathrm{s} / \mathrm{i}\) ) for a given degradation in the \(P_{e}\) vary with the spacing between adjacent channels. The results have been derived from the same sources as the noise performance curves discussed above.

The adjacent-channel interference factor is defined as the proportion of transmitted power which will fall in the passband of a receiver operating on an adjacent channel. As such it is only concerned with the transmitted spec-
trum and does not take into account the performance of the receiving end of the radio link. The curves included in Fig. 2 clearly indicate the advantages to be gained in terms of spectrum occupancy by the use of premodulation shaping, 4 -level coding or f.s.k. rather than d.p.s.k. They also clearly show that the advantages gained increase significantly with channel spacing. The 4-level d.p.e.k. shows that this method is theoretically very attractive from the spectrum usage point of view. However, it should be pointed out that for this method the adjacent channel rejection factor is highly dependent on the linearity that can be achieved in the transmitter. This is because its amplitude modulation component will cause spectrum spreading to occur in the transmitter, the amount being dependent on the degree of linearity achieved. The curve presented is the best which it is considered can be achieved with present day transistor r.f. power amplifiers.

As stated above, the adjacent-channel rejection factor does not take into account the performance of the receiving end of the radio link. The curves presented in Fig. 3 overcome this shortcoming by indicating how the maximum permissible level of an interfering like signal at the input to the receiver varies with channel spacing. The curves show the same general trends as those of adjacent-channel rejection.

\section*{Sensitivity to design tolerances}

So far the paper has considered the comparative performance of the various modulation methods with their design parameters optimized. We now attempt to quantify the performance degradations which can be expected if the parameters deviate from their optimum values. This gives an indication of how critical the various parameters are and hence how difficult it is to achieve near theoretical performance in practice. The parameters considered are:
- filter bandwidth,
- group delay distortion,
- frequency stability,
- demodulator timing errors,
- f.s.k. deviation ratio.

In each case, the performance degradation is expressed in terms of the noise-performance penalty incurred as a function of the deviation of the parameter from its optimum value. In many cases figures for all the methods under consideration are not available. In such cases the likely degradation is discussed in qualitative terms by extrapolation of the available results.

Filter bandwidth. The effect of the filter bandwidth on the noise performance of the binary f.s.k. and the binary and 4-level d.p.s.k. systems is illustrated in Fig. 4. In this figure the noise penalties are plotted as functions of the devia-
tions in the filter bandwidths from the optimum values given in Table 1. The curves have been prepared from results published in references 1 and 3. They show that, in general, the performance degradation is more pronounced if the bandwidth is reduced below the optimum value. The one exception is 4 -level d.p.s.k. employing premodulation shaping (4DS). For this system the degradation is slightly more pronounced for increases in bandwidth. This is due to the fact that in a 4DS system a larger proportion of the signal power reaches the detector. The subject is fully discussed in reference 3.

Extrapolating the results given in Fig. 4 to the other systems under consideration (i.e. 4-level d.p.e.k. and 4 -level f.s.k.), leads to the conclusion that in a 4-level d.p.e.k. (4DE) system the degradation is likely to be somewhat worse than illustrated for the 4D system. This is based on the fact that the 4D system is simply a 4DE system with no shaping. Since shaping is certain to make the system more critical this must be the case. It is not possible to estimate how much worse this is likely to be, however. Similar extrapolations to the 4-level f.s.k. systems ( 4 F and 4 FS ) indicate that they are likely to behave in a similar way to the 4D and 4DS systems.

Group-delay distortion. A parameter which can seriously affect the performance of any digital modulation system is the overall group delay distortion introduced by the transmission and receiving equipment. To date, few results have been published on the effects of this parameter and, of the results available, those most applicable to radio systems concern binary f.s.k. systems. These are fully discussed in reference 5 .

The curve in Fig. 5 shows the noise performance degradation which can be expected as a function of the peak-topeak group-delay variation over the receiver 3 dB bandwidth. The curve indicates that for binary f.s.k. systems the degradation is not serious ( \(\sim 1 \mathrm{~dB}\) ) provided the peak group-delay variation is kept well below a symbol period. This is a much more satisfactory state than was originally anticipated before the results became available. The results of the study described in reference 5 also indicate that there is good correlation between the peak-to-peak variation in group delay and noise penalty. In other words, for a given peak-to-peak group-delay variation, the results show that the same noise penalty will be incurred whatever the group delay profile.

The effects of group delay distorition on binary d.p.s.k. and 4 -level systems are more pronounced than for binary f.s.k.

Frequency stability. Fig. 6 shows the effect of system frequency stability on
the noise performance of binary f.s.k. 'and 4-level d.p.s.k. and d.p.e.k. systems. The horizontal axis represents the total frequency offset from all long term causes at both ends of the radio link. The effect of short term stability (i.e. synthesizer phase jitter) cannot necessarily be deduced from the results. presented, although an indication of its effect can be obtained if the r.m.s. value of the short-term offset is considered equivalent to a long-term frequency error.
The results for the f.s.k. have been extracted from those published in reference 5 , while those for the 4 -level systems have been obtained from reference 4. They indicate that the required frequency stability for a binary system is approximately a fifth of that required for a 4 -level system. In particular, for systems operating at 100 MHz and conveying binary information at 20 kilobit/s, the required, overall longterm frequency stabilities to keep the noise performance degradation due to this parameter alone below 1 dB are 1.2 parts in \(10^{5}\) for binary f.s.k., and 2 parts in \(10^{6}\) for 4 -level d.p.s.k. and d.p.e.k.

Demodulator timing errors. It has been apparent for a very long time that the design of the phase-lock loop in the demodulator is one of the most critical aspects of any digital communications system. For this reason a considerable amount of theoretical and practical work has been carried out in this area. The results of some of this work related to binary f.s.k. and 4-level d.p.s.k. and d.p.e.k. systems are illustrated in Fig. 7. These show the likely noise performance penalties which will be encountered as a function of the timing errors. They indicate that for all three systems the performance degradation will not exceed \(1 d B\) provided the timing errors are kept less than a tenth of the symbol period. This may not always be easy to achieve with radio links because of other factors which affect the phase-lock loop design. However, practical results which have recently been achieved indicate that, provided care is taken in the design, no major problem exists.
F.s.k. deviation ratio. Fig. 8 shows how the noise performance of binary f.s.k. systems is degraded when the peak-topeak frequency deviation ratio varies from the optimum. It will be observed that the degradation is not very great. For example, it is less than 1.5 dB for a reduction of \(H\) from 0.7 to 0.5 (i.e. a reduction of approximately \(30 \%\) ). This is an interesting fact since by reducing \(H\) the spectrum occupancy of the system can also be reduced. It therefore may be possible to reduce the spectrum occupancy so that it is comparable with 4-level systems without degrading the noise performance significantly beyond that possible with 4 -level systems. This means that, in many applications,


Fig. 5. Effect of group delay distortion on noise performance.


Fig. 6. Effect of system frequency stability on noise performance.


Fig. 7. Effect of demodulator sampling instant errors on noise performance.


Fig. 8. Effect of f.s.k. deviation ratio on noise performance.
because of its simpler circuit configurdtion, binary f.s.k. may be preferred to 4 -level systems even though there is a tight spectrum occupancy requirement.

\section*{Overall comparisons}

An overall comparison of the modulation methods under consideration is given in Table 2. In this table each method is given a figure of merit for each of the aspects considered. The right hand column gives the sum of the individual figures of merit for each method assuming equal weighting is given to each parameter. In such a case
tABLE 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Modulation method & Equipment complexity & Noise performance & \begin{tabular}{l}
Paramater \\
Spectrum occupancy
\end{tabular} & Sensitivity to equipment tolerances & Propagation characteristics & Overall (Assuming equal weighting) \\
\hline 2 D & 1 & 1 & 3 & 1 & 1 & 7 \\
\hline 2DS & 2 & 1 & 3 & 1 & 1 & 8 \\
\hline 4D & 2 & 2 & 3 , & 2 & 2 & 11 \\
\hline 4DS & 3 & 2 & 1 & 2 & 2 & 10 \\
\hline 4DE & 3 & 2 & 1 & 2 & 2 & 10 \\
\hline 2 F & 1 & 1 & 3 & 1 & 1 & 7 \\
\hline 2FS & 2 & 1 & 2 & 1 & 1 & 7 \\
\hline 4 F & 2 & 3 & 2 & 2 & 2 & 11 \\
\hline 4FS & 3 & 3 & 1 & 2 & 2 & 11 \\
\hline
\end{tabular}
it will be noted that the overall figure of merit of the binary systems are significantly better than those of the 4 -level system. The general conclusion can therefore be reached that if spectrum occupancy is not of overriding importance then, of the methods considered, binary f.s.k. and d.p.s.k. appear to be superior. On the other hand, if spectrum occupancy is of overriding importance then it is necessary to employ a more complicated method such as 4 -level d.p.e.k. and accept the inevitable equipment implementation and noise performance penalties.

\section*{References}
1. D. R. Clouting, "The Effect of Neighbouring Like Chamels on the Performance of Binary FM Systems". Ph.D. thesis, University of Southampton, August, 1968.
2. R. A. Harris, "An Analysis of Inter-channel Interference in Quaternary FSK Systems". Ph.D. thesis, University of Southampton, December, 1970.
3. T. J. Hewson, "The Analysis of DPSK Systems". Ph.D. thesis, University of Southampton, September, 1970.
4. T. J. Hewson, Private Communication, The Plessey Co. Ltd., Roke Manor, Romsey, Hampshire.
5. D. R. Clouting, "An Investigation into Binary FSK Modulation Systems". Plessey Report No. 52/70/73, February, 1970.

\section*{Crisis in scientific and engineering education}

In the last six years the number of teachers taking part in the Royal Society's Scientific Research in Schools scheme has fallen from 111 to 47 , according to the schene's 19th annual report. "It is regretted that apparently so few teachers throughout the country are able to use the facilities offered." During the year the Royal Society made grants totalling \(£ 2,600\) to support schools projects which included: the* use of analogue computers and other control engineering techniques for teaching science, especially physics. in schools (Ampleforth College); solar noise on 150 MHz (Gipsy Hill College, Kingston-upon-Thames); field emission microscopy of thin metallic layers (Highdown Comprehensive School, Reading. Berkshire); and investigation of the velocity of light from moving sources by an improvement of the method of Kantor (The Queen's School, Chester). The scheme is supported by the United Kingdom Atomic Energy Authority and six companies, including Mullard and the Imperial Group.
The scheme's committee says in the report that they have tried unsuccessfully to publicise it. They are anxious to see applications of scientific merit which involve the pupils a great
deal and which teach them that knowledge is largely gained by empirical enquiry. Less important, they say, is that a teacher may be doing work towards a higher degree. Projects may be suitable even though not fully worked out, not in pure science, and not lengthy. Even though the quality of the work done has been "high" the committee finds the declining numbers of those involved a matter of concern.

The Royal Society's report for the year to August 31 notes that on that date the number of projects was 45 , a further reduction of two.
The publication of these reports coincides with a critical report on the training of engineers and scientists from the Select Committee on Science and Technology. The standards among graduates were low, industry told the committee, and they suffered from a "lack of industrial orientation," especially post-graduates. Yet again, industrialists who, two years ago, were calling for pay restraint, drew attention to "lack of incentive" for the best graduates to make a career in industry. More important, research objectives were considerably removed from industry's needs. The Select Committee recommends that the NRDC should become a body supporting high risk applied research for which no commercial sponsor was available, that universities should be encouraged to set up liaison bureaux and form industrial
consultancies, being free to exploit the results of their research wherever they wished, and that employees in industry wishing to co-operate with universities should be given time to do so as part of their normal activities. At the moment, as Wireless World pointed out in November 1975, most consultancy work carried out in universities is done by individual lecturers on a freelance basis who pocket some or all of the proceeds even though they are using equipment paid for from public funds.

\section*{Post Office post}

Professor James Merriman, the Post Office's senior director of development, who retired at the end of 1976, was succeeded on January 1 by Mr John, Stuart Whyte, 53. Whyte was vicepresident of the Roval Institution for two years and had been the Post Office's director of purchasing and supply since June 1975. Eefore that he was director of operational programming and from 1958 to 1971 he planned the modernisation of local telephone exchanges which led to the adoption of TXE4 switches for large local exchanges. He began his career at Dollis Hill's Radio Branch where he worked on data transmission and pulse code modulation, among other things.


\title{
Howeveryhifi dealercan increasehissales and improve his service
}


The Ferrograph RTS 2 is a complete, single-unit audio arialyzer. Used by leading manufacturers and dealers throughout the world, it is the only single equipment available that can run exhaustive checks on hi-fiincluding amplifiers, tape recorders, equalisers and mixers-making it an invaluable aid to sales and service.

\section*{Increase your sales!}

By using the RTS 2 in your hi-fi store, your salesman can quickly prove to customers that the hi-fi system he is demonstrating is as good as it sounds. In a matter of seconds, up to ten different tests can be carried out, using just one pair of leads. (The push-button operation is so simple, even
unskillect staff can make accurate measurements.)
Result'? The customer is reassurecl, confident he is getting value for rnoney. So you sell more, more easily.

\section*{Improve your service!}

But the FiTS 2 is much more than a cost-effecitive sales aid. Used in your seivice: department, it quickly identifies faults, making your after-sales b.ack-up more efficient. And more profitable. You don't need a variety of incompatible test gear-so thert? are fewer connections, no hum-loops, no time-consumirig frustrations. All of which means you save money.

The RTS 2 is ar unbeatable demonstrator. It's so simple! And as test equipment. there's nothing faster


Photograph by courtesy of Sewards in Reading.

\section*{Ferrograph RTS 2}
the complete, single-unit audio test set.
\(\square\) Send me more information about the RTS 2 audio test set.
\(\square\) I would like a demonstration. Phone me to arrange an appoints ment.
Name
Address
Company

Wilmot Breeden Electronics Limited. 442 Bath Road, Slough, SL1 6BB. England. Telephone: Burnham (06286) 62511 Telex: 847297
\(\qquad\)

\title{
Electronica 76
}

\author{
Audio test set - non-volatile r.a.m. - two-chip microprocessor
}

This year's biennial Munich show, claimed to be the world's biggest forum of its kind, had about 1,650 exhibitors from 31 nations housed in 16 halls. The most impressive (or depressive for the less athletic) aspect of the exhibition was its size, around \(81 / 2\) acres of occupied floor space. This fact alone indicates West Germany's disregard for the "economic recession" scapegoat currently in use by less successful countries. Britain was well represented with 55 exhibitors, which placed us third in the league behind America and the host country.

\section*{Instrumentation}

Philips were demonstrating several new additions to their range of test gear. The PM3243 storage oscilloscope, an extension of the 3240 family, offers a bandwidth of 50 MHz , variable persistence dual trace, and a 40 MHz multiplier. The last-mentioned feature can be used to display transient power waveforms by multiplying a voltage and current waveform. Three new timer counters, types PM6622, 24 and 25 , are 80 MHz , 520 MHz and 1 GHz instruments respectively with switchable a.c. or d.c. coupling. The 80 MHz device features a hold-off facility, variable from \(10 \mu \mathrm{~s}\) to 100 ms . This control is used to prevent false triggering when measuring a signal that suffers from contact bounce or ringing. All three of the counter/timers have several options including four types of internal oscillator, b.c.d. or analogue output boards, and internal rechargeable battery supply. Sensitivity of these counters is 20 mV or 200 mV and the trigger level is variable from -2.5 to +2.5 V or -25 to +25 V .
Also on show was the PM5716. This is a new pulse generator which will be available in the UK shortly. The instrument, which is suitable for both t.t.l. and c.m.o.s. circuitry, has a range from 1 Hz to 50 MHz with a rise time variable between 6 ns and 100 ms . An interesting facility on the 5716 is an output level clamp. Two vertical slider potentiometers set the upper output level to within \(\pm 10 \mathrm{~V}\) and the lower level to within \(\pm 20 \mathrm{~V}\).
Systron Donner were exhibiting the 1702 synthesized signal generator which offers a single frequency range from 100 Hz to 999.9999 MHz with a 100 Hz resolution. A three digit l.e.d. display is used to indicate f.m. or a.m. deviation, and modulation modes can be operated internally or externally. Output level is variable from 1 V to \(0.1 \mu \mathrm{~V}\). Also on the stand was the model

50 microprocessor analyzer. This box of tricks is basically an address and data. bus monitor. The manufacturers say that it is functionally equivalent to a 32-channel logic analyzer, with most of the features tailored for microprocessor software/hardware debugging.

National, part of the Matsushita empire, have introduced a low distortion oscillator, type VP-7220B, and a complementary distortion meter. type VP-7702B. The oscillator offers spot and variable frequency signals between 1 Hz and 99.9 kHz . The distortion content is \(0.002 \%\) between 50 Hz and 50 kHz , and the makers say that the typical value at 1 kHz is \(0.0005 \%\). The 7702B measures total distortion down to \(0.01 \%\) f.s.d. at any frequency between 5 Hz and 150 kHz . The frequency range is continuously variable up to 150 kHz .

Another interesting exhibit from National was the VP-3702A memory monitor. This instrument looks like a television monitor but is an oscilloscope designed to display and record various electrical signals. The screen can display up to four waveforms simultaneously with a resolution of 8 bits \(\times 512\) words for each channel. Input data is plotted from right to left on the c.r.t. with no fade-out in intensity. A freeze button allows a waveform to be examined for one minute, and i.c. memories provide a flicker-free display even with slowly changing signals.

The recently launched 7DOl logic analyzer from Tektronix was publicly demonstrated for the first time in Germany. This unit is a plug in module


Tektronix's 7DO1 logic analyzer stores and displays data in three formats.
for use with the 7000 series of oscilloscopes. Data is stored and displayed in three formats, 16 channels \(\times 254\) bits, 8 channels \(\times 508\) bits, or 4 channels \(\times\) 1016 bits. Timing and binary information are displayed simultaneously, and the trigger point is marked with an intensified spot on each waveform in the timing display. A built-in word recognizer can also be used to trigger the analogue portion of the oscilloscope by producing an output when the logic states of the input channels match the states of the corresponding word recognizer switches. A filter, variable from 10 ns to 300 ns , inhibits the recognizer output to prevent false triggering.

AEG-Telefunken have introduced a miniature c.r.t. suitable for "pocket" television sets or test instruments. Type D5-100 has a useful screen_size of \(40 \times\) 30 mm and an overall length of 116 mm . The tube is equipped with a 35 mW directly heated cathode and has a resolution for tv pictures, of 3 MHz . Acceleration voltage is 2 kV and the deflection coefficients are \(53 \mathrm{~V} / \mathrm{cm}\).

\section*{Semiconductors}

A particularly interesting device on Toshiba's stand was the TMM142C 1024-bit non-volatile static r.a.m. This device is organized as \(256 \times 4\) bit words. Each memory cell within the i.c. is composed of a conventional static p-channel m.o.s. flip flop and a pair of metal nitride oxide semi-conductor (m.n.o.s.) f.e.ts. This! principle of charge storage has been known for some time and adopted in certain r.o.ms. In conventional r.a.ms. however, the m.n.o.s. devices suffer severe degradation because of the constant erasure. This problem has been avoided in the TMM142C by using the m.n.o.s. f.e.ts. only when there is a power down situation. The m:n.o.s. devices are in series between the driver and load f.e.ts of the flip-flop, and in parallel with a p-channel f.e.t. switch. When the device is used in the read write mode the flip-flops act as the memory cells and the m.n.o.s. f.e.ts are switched out. If the power supply fails, the contents of the memory cells are transferred to the respective pairs of m.n.o.s. f.e.ts and this information is stored for at least one year. When the voltage returns the data is transferred back to the conventional memory cells. External circuitry is used to detect the power on and off timing, which is arranged to be a ramp function, and generate pulses to operate the f.e.t. switches. Using the NR input, data


Philips type PM3243 storage oscilloscope has a bandwidth of 50 MHz .
stored in the m.n.o.s. devices can be read out at any time during the normal power-on state. The chip is housed in a 16 -pin d.i.l. package and we understand from Toshiba that the device is in volume production.

General Instrument Microelectronics announced the PIC 1640 programmable interface controller for use with the CP1600 system. This microcircuit can be programmed to perform the timing, data formating and control operations for one of several peripherals. The device is basically an eight-bit microcomputer, and any number of the devices can be interfaced to a system bus. Internally, the 1640 is composed of 32 addressable 8 -bit registers, an arithmetic logic unit, and a control room.

Another new device on display was the AY-3-9800 tone decoder. This device can be used in private PABX tone signalling exchanges for interfacing to Strowger external exchanges. Although not new, the AY-5-8100 video games chip was also shown. GIM say that they are now the world's largest supplier of these i.cs and about 5 million of their devices have now been produced since production started about one year ago.
Motorola was able to give Wireless World preliminary details of a new monolithic two-chip 8-bit microprocessor system which will be available around June 1977. The two devices, which are an extension of the standard MC6800 system, will be suitable for large volume usage. The MC6802 has an on-chip clock circuit, and a \(128 \times 8\)-bit r.a.m. with the first 32 bytes being retainable in the event of a power failure. The MC6846 contains a programmable timer module, one input/ output port and a r.o.m. The complete system offers 16 -bit memory addressing, two interrupt lines, the option of expanding to 64 k words, and t.t.l. compatibility.
Also on the Motorola stand was the new PDS "polyvalent development system", which has been developed in Europe. Basically, this provides a terminal and development system comprising a 5in v.d.u., keyboard, complete microprocessor board, display interface board, and connecting cables. This package is priced at below \(£ 1000\) and
allows the user to develop simple programmes or just gain experience.
The only necessary item that is not included is a power supply. The next step is an optional printer which connects directly to the system and is priced at around \(£ 600\). If the user wants to extend the system still further, larger memories are available, or, for the wealthy, a complete "exorciser" can be added. In this way the initial equipment does not become redundant.

Siemens were showing an interesting alternative to the ultrasonic remote controls currently used with domestic radio and television receivers. The system, known as SIRSYS uses two m.o.s. circuits, the SAB3210 and SAB3209, to transmit and receive an infra-red signal via several 1.e.ds and one photodiode. Binary coded outputs make channel identification via a seven or nine-segment display relatively easy.

A matrix of \(8 \times 4\) buttons is used to select up to 31 instructions by merely combining the lines and columns. The receiver i.c. includes three memories and corresponding digital to analogue converters for variable controls like volume, colour-saturation and brightness. Supplementary features such as


Philips type PM6622 timer / counter operates up to 80 MHz .
instant sound muting, and standardsetting are also included in the devices. Another interesting exhibit, although announced prior to the show, was Siemens "T"LS" family of high-speed, high noise immunity logic. This is similar to conventional t.t.l. but offers an immunity to static noise, for both logic states of roughly \(40 \%\) of the swing. In this family the switchover threshold is typically 2.1 V . At the moment the range comprises four devices. FLYY971 is an expander with 1 \(\times 5,1 \times 4\), and \(1 \times 3\), inputs. FLH961 is two AND-OR/NOR gates with \(1 \times 2\) and \(1 \times 3\) inputs. FLH981 is two NAND gates each with two inputs, and two AND/NAND gates also with two inputs. FLH951 is an AND-OR/NOR gate with \(2 \times 2,2 \times 3\) and expander inputs. These devices can be used with standard t.t.1. by inserting a \(2.5 \mathrm{k} \Omega\) resistor between the interface and operating voltage.

\section*{Sixty Years Ago}

The recent (in February 1917) existence of Wireless World as the Marconi Company's house journal was possibly the reason for the somewhat wholehearted references to products from that source. A vacuum current meter was introduced by Marconi's in February 197.1 and an extended "New Product" turned into a complete article on the device.
"The demand for a small, sensitive, robust instrument suitable for use equally on alternating and continuous current circuits is not new, and inventors have made many attempts to satisfy it. It has remained, however, for the Marconi Company to produce just what is required, and a great demand for the new gauge is anticipated.
"The instrument is designed primarily as a maximum current gauge to indicate the condition of syntony in wireless circuits, and may be employed as a substitute for a thermo-junction and galvanometer combination in the measurement of wavelengths and decrement. The principle involved is that of the bifilar suspension, one pair of the filament ends being fixed, and the other pair attached to, a pivoted arm, the rotation of which is controlled by a spring acting against the tension of the filaments. When a current passes through the filaments, heating them and causing them to elongate, the arm takes up a new position and the angular displacement as indicated on the scale is a measurement of the current.
"The movement is enclosed in a glass bulb exhausted of air. The sensitiveness is thus greatly increased, 'and the movement protected against damage and preserved from dust or corrosion.
"The variation in zero which is characteristic of hot wire instruments in general is negligible in this type of instrument, and the natural damping renders the movement especially dead-beat.
"The instrument, suitably calibrated, may also be used as a low reading voltmeter or ammeter, or as a shunted ammeter. The normal resistance of the commercial type of vacuum instrument is approximately 12 ohms.
"The new instrument has been greatly admired for its neat appearance, which can be well judged from the photograph showing one of the gauges standing upright in its silk-lined case."
In contrast, a device named the "Detectometer" from America, which was a crystal detector and indicator - a "very sensitive form of milliampere-meter" - received a mere two-paragraph mention.

\title{
Characteristics and load lines
}

\section*{4 - Linear load lines (continued)}

\author{
by S. W. Amos, B.Sc., M.I.E.E.
}

For most transistors the \(I_{c}-V_{c}\) characteristics are more crowded at low values of collector current and thus the two half cycles of a sinusoidal input signal are reproduced with significantly-dif--ferent peak values. As shown in Fig. 15 the peak value of the positive half cycle of current output is greater than that of the negative half cycle. Because of the unequal peak values the area under the positive half cycle is greater than that under the negative half cycle and the mean collector current \(I_{\text {mean }}\) in the presence of an input signal is greater than \(I_{0}\) the no-signal collector current.

Fig. 15 is the form of wave obtained from a device with a parabolic characteristic and it can be analysed into a fundamental component of peak value \(I_{1}\) and a second harmonic component of peak value \(I_{2}\) as shown in Fig. 16. This diagram also shows that \(I_{\text {mean }}\) is greater than the no-signal current \(I_{0}\) by \(I_{2}\) the peak value of the second harmonic component. Thus the increase in collector current for a transistor with a parabolic characteristic is a direct measure of the amplitude of the second harmonic component.

The percentage of second harmonic distortion can be calculated from the values of \(I_{\text {max }}, I_{\text {min }}\) and \(I_{\text {mean }}\) in the following way. The phase relationship between \(I_{1}\) and \(I_{2}\) is such that they add to form the large-amplitude half cycle \(\left(I_{\text {max }}-I_{\text {mean }}\right)\) and subtract to form the small-amplitude half cycle ( \(I_{\text {mean }}-I_{\text {min }}\) ). Thus:
\[
\begin{aligned}
I_{\text {max }}-I_{\text {mean }} & =I_{1}+I_{2} \\
I_{\text {mean }}-I_{\text {min }} & =I_{1}-I_{2}
\end{aligned}
\]

Adding
\[
I_{\max }-I_{\min }=2 I_{1}
\]

Subtracting
\[
\begin{equation*}
I_{\max }+I_{\text {min }}-2 I_{\text {mean }}=2 I_{2} \tag{1}
\end{equation*}
\]

Thus
\[
\frac{I_{2}}{I_{1}}=\frac{I_{\max }+I_{\min }-2 I_{\text {mean }}}{I_{\max }-I_{\text {min }}}
\]

The percentage of second harmonic distortion is thus given by
\[
\begin{equation*}
\frac{100 I_{2}}{I_{1}}=\frac{\left(I_{\max }+I_{\min }-2 I_{\operatorname{mean}}\right)}{I_{\max }-I_{\min }} \tag{2}
\end{equation*}
\]

This is not a convenient way of calculating the second harmonic content from load line plots because the value of \(i\) \(I_{\text {mean }}\) is not readily obtainable from such graphs. However, the load line does give the value of \(I_{0}\), the no-signal or quiescent current, and it is a simple matter to recast expression (2) in terms of \(I_{0}\) in place of \(I_{\text {mean }}\). We know that \(I_{\text {mean }}\) is equal to ( \(I_{0}+I_{2}\) ) and substituting for \(I_{\text {mean }}\) in expression (1) above we have
\[
I_{\max }+I_{\min }-2 I_{0}=4 I_{2}
\]
from which
\[
\frac{I_{2}}{I_{1}}=\frac{I_{\max }+I_{\min }-2 I_{0}}{2\left(I_{\max }-I_{\min }\right)}
\]

Thus the percentage of second harmonic distortion is given by
\[
\frac{100 I_{2}}{I_{1}}=\frac{50\left(I_{\max }+I_{\min }-2 I_{0}\right)}{I_{\max }-I_{\min }}
\]

As an example we can calculate the second harmonic distortion for the output stage represented by Fig. 14. Substituting the appropriate values in the above expression we have
percentage of second harmonic distortion
\[
\begin{aligned}
& =\frac{50(1.22+0.24-2 \times 0.75}{1.22-0.24} \\
& =2 \text { per cent approximately } .
\end{aligned}
\]
\(I_{c}-V_{c}\) characteristics are sometimes more crowded at high currents and low currents than at intermediate values of collector current. The consequent waveform distortion tends to be symmetrical and this is symptomatic of the introduction of odd-order harmonics. It is possible, in fact, to deduce an expression for the percentage of thirdharmonics. It is possible, in fact, to deduce an expression for the percentage of third-harmonic distortion analogous to that just derived for second-harmonic distortion.

\section*{Limiting amplifiers}

In linear amplifiers the crowding of \(I_{c}-V_{c}\) characteristics at low or high currents leads to unwanted harmonic distortion but in other applications the non-uniform spacing of the characteristics is exploited. For example consider,


Fig. 15. Type of waveform distortion given by a device with a parabolic characteristic


Fig. 16. Fundamental and second-harmonic components of the waveform of Fig. 15

Fig. 17: this shows a linear load with a slope corresponding to 6 kilohms superimposed on a set of \(I_{c}-V_{c}\) curves for a bipolar transistor. This diagram could apply to a circuit with a directconnected collector load resistor of 6 kilohens and a supply voltage of 12 . It could equally apply to a stage with a


Fig. '17. (a) Load line exhibiting limiting characteristic and (b) the input-output characteristic for the \(6 \mathrm{k} \Omega\) load line of Fig. 17 (a)


Fig. i8. \(I_{c}-V_{c}\) characteristics and load lines showing the action of reverse a.g.c.


Fig. 19. \(I_{c}-V_{c}\) characteristics and typical a.c. and d.c. load lines for forward a.g.c.
transformer-coupled load of 6 kilohms (effective primary resistance) and a supply voltage of 6 . As a third possibility the diagram could apply to a transistor with a tuned collector circuit, the effective dynamic resistance at the primary winding being 6 kilohms. The quiescent collector current and collector voltage are the same for all three circuits.

The load line enters a region at \(P\) where the transistor characteristics are crowded: in fact near zero collector voltage the characteristics all merge into a straight line OP through the origin which is sometimes described as the coalescent characteristic. Fig. 17 shows that any increase in base current beyond \(30 \mu \mathrm{~A}\) can produce no corresponding increase in collector current or reduction in collector voltage. At this point the transistor is saturated. If, therefore, a sinusoidal signal is applied to the base of the transistor and if the amplitude is increased until the point \(P\) is reached on positive half-cycles then further increase in input can produce no corresponding increase in output. The limiting action is illustrated more effectively by plotting base current against collector current as in Fig. 17(b). The curve levels off at a base current of \(30 \mu \mathrm{~A}\) and a collector current of 2 mA . This is the form of input-output characteristic required in a limiting amplifier, e.g. in the i.f. stage of an f.m. receiver. The limiting action helps to make the receiver insensitive to amplitude modulation of the input signal.

\section*{Reverse a.g.c.}

Transistors for which the \(I_{c}-V_{c}\) characteristics are more crowded at low currents can be used for reverse a.g.c. This is illustrated in Fig. 18 where PQR is the a.c. load line when the transistor is biased back (by a large received signal) to a mean current of \(0.4 \mathrm{~mA} . \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}\) is the a.c. load line for the same collector load but with the bias adjusted (for a weaker signal) to a mean collector current of 3.1 mA . For load line PQR an input current swing of \(10 \mu \mathrm{~A}\) gives an output current swing of 0.33 mA , a current gain of 33 . For load line \(P^{\prime} Q^{\prime} R^{\prime}\) the same input
current swing gives an output current swing of 0.75 mA , a current gain of 75 . Thus approximately 7 dB of gain control is achieved in this example by adjustment of base bias current: by a suitable choice of transistor a greater range of control is possible.

\section*{Forward a.g.c.}

An alternative method of controlling the gain of a transistor by adjustment of bias is by forward control. In this system the transistor is biased forward for reception of strong signals. The transistor must be specially designed for this form of control and its \(I_{c}-V_{c}\) characteristics must become more crowded as the collector current increases. This may not be immediately, obvious from Fig. 19 but the upper characteristics are plotted for \(1-\mathrm{mA}\) base-current increments compared with \(0.1-\mathrm{mA}\) increments for the lower characteristics. In spite of this disparity in increment the upper characteristics are more crowded than the lower ones particularly at low values of collector voltage. Thus the quiescent point should be located in the top left-hand corner of the diagram for low gain and in the bottom right-hand corner for high gain. This movement of the operating point is achieved automatically by inclusion of the decoupled collector resistor R in Fig. 20 which is an essential feature of the forward-control circuit.
The d.c. load line for 1 kilohm resistance is shown by \(\mathrm{QQ}^{\prime}\) in Fig. 19 and two positions of the a.c. load line (for 600 ohms resistance) are shown at PQR and \(\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}\). For PQR the base bias current is 0.15 mA and an input current swing of 0.1 mA yields an output current swing of 3.2 mA , a current gain of 32 . For \(P^{\prime} Q^{\prime} R^{\prime}\) the base bias is 3 mA and an input current swing of 2 mA yields an output current swing of 2.5 mA a current gain of only 1.25 . This range of gain control amounts to 28 dB but 60 dB can be realised in practical circuits.

\section*{Load lines on mutual characteristics}

The load lines so far considered have been drawn on a graph of output


Fig. 20. Essential features of circuit for forward a.g.c.
current plotted against output voltage e.g. a set of \(I_{c}-V_{c}\) characteristics. Such a load line represents conditions in the output circuit of the active device. Resistors are, however, included in other circuits of active devices and it is sometimes useful to construct load lines for these too. For example consider Fig. 21 which shows a depletion-type f.e.t. biased by a resistor \(R_{s}\) in the source circuit. Conditions in the input circuit of the transistor can be represented on a diagram such as Fig. 22 which shows the \(I_{d}-V_{g}\) characteristic of the transistor and a load line OA drawn through the origin and with a slope corresponding to the value of \(R_{s}\). The intersection \(A\) gives \(O C\) as the value of drain current and \(O B\) as the gate bias voltage achieved in the circuit. A smaller value of \(R_{s}\) gives a load line such as \(D E\) which gives a smaller negative bias voltage and a higher drain current: a higher value of \(\mathrm{R}_{\mathrm{s}}\) gives a load line such as DF indicating a large negative bias voltage .and a smaller drain current. Thus this graphical method could be used to determine the value of \(R_{s}\) needed to give a required drain current or the drain current given by a chosen value of \(R_{s}\). However there is a considerable spread in \(I_{d}-V_{g}\) characteristics for f.e.ts and so predictions from constructions such as that illustrated in Fig. 22 should be treated as approximate.

The load line concept can, however, be used to suggest a method whereby the effects of the spread in drain current can be reduced. To illustrate this Fig. 23 shows the \(I_{d}-V_{g}\) characteristics for a particular type of depletion f.e.t. The centre curve is the characteristic for the average transistor and the other two curves show the upper and lower limits of drain current likely to be met in manufacture. For a given gate voltage the drain current can lie anywhere within a range of \(3: 1\) and this is the spread likely to be encountered if the transistor is biased by a simple source resistor as in Fig. 22. Examination of this diagram shows that the current given by a 1 -kilohm source resistor can lie between 0.8 and 2.3 mA , the average being 1.6 mA . A better performance would be possible by increasing the value of the source resistance, so making the load line more horizontal. This is possible provided the gate is biased positively so as to keep the drain current at the required value. The effect of such a biasing circuit in reducing the effect of manufacturing spreads in drain current can be assessed in a load line diagram in the following way.

In source biasing circuits such as that of Fig. 21 the gate voltage is fixed (at 0 V ) and bias is achieved by varying the source voltage. Thus the characteristic in which we are interested is that of \(I_{d}\) plotted against \(V_{s}\). This is the same shape as the \(I_{d}-V_{g}\) characteristic but laterally reversed because the effect of -2 V on the gate is the same as \(+\overline{2} \mathrm{~V}\) on the source. It is, however, quite con-


Fig. 21. A depletion-type f.e.t. biased by a resistor in the source circuit


Fig. 22. Load lines on \(I_{d}-V_{g}\) characteristics showing bias value achieved


Fig. 23. The \(I_{d}-V_{s}\) characteristic is the same as the \(I_{d}-V_{g}\) with the voltages reversed in sign
venient to retain the familiar shape of the \(I_{d}-V_{g}\) characteristic and to reverse the signs on the voltage axis as in Fig. 2:3. The intersection with the load line gi ves the source and gate potentials as indicated. On this diagram we can now shiow the effect of biasing the gate positively and using a high-value source resistor. As an example suppose the gate is biased to +10 V . Then the load line should meet the voltage axis at -10 V as shown in Fig. 24 which shows the load line giving the same value of draili current as for the 1 -kilohm resistor considered earlier. The slope of the liew load line shows that the resistance is approximately 7 kilohms. Fig. 24! shows that the drain current for limit tı•ansistors does not greatly differ from that of the average specimen: in fact the: total variation in drain current 'is from, 1.5 to 1.75 mA , the average being 1.6 mA a s before. The penalty to be paid for the increased stability of the operating point: is that a higher value of supply voltage iss required. If the gate voltage is +10 V , the source voltage is nearly +12 V as shown in Fig. 24 in the lower voltage scale. To give a reasonable voltage across the transistor itself and the drain luad a supply of at least 20 V is desirable.

The author would like to thank Mullard Ltd' for supplying the transistor characteristics on which Figs. 19 and 24 were based.

The next article in this series, Part 5, will examine the forms of non-linearity of load lines tha.t can occur and the effect this has on circuit performance.

Fig. 24. Improvement in bias stability by use of positive gate bias and a high-value source resistance



\section*{The new licences}

Since January 1, a new compre'nensive licence has been introduced by the Radio Regulatory Department. of the Home Office and replaces the earlier "sound", "mobile" and "te"levision" licences. Any holder of an Amateur Licence " \(A\) " or " \(B\) " is now e'ntitled to operate fixed; mobile; peidestrian mobile; r.t.t.y.; television; slow-scan television; facsimile; data (on 144 MHz upwards); and d.s.b.s.c.

Thus at one stroke many of the old requirements to make special applications or obtain special-purpose licences have vanished. Similarly, in logging it is no longer necessary to enter actual transmission frequencies, only the band being used.

New clauses forbid operation from aircraft or public transport vehicles; for high-definition tv it is now necessary that the callsign identification is adjusted to the centre of the video channel.

Separate prefixes for Jersey (GJ) and Guernsey (GU) superssede the former joint GC prefix.

All applicants now have to sign an undertaking that frequency-checking equipment of sufficien.t accuracy will be used to ensure that all transmissions are within the permitted bands, together with equipment to confirm that harmonic and spurious emissions are "suppressed" (to what degree is not stated). This statement also includes a formal recognition thy the applicant that out-of-band-working is a "serious misdemeanour" that could result in withdrawal of the licence.
Annual fee is now \(£ 5.50\) and the fee for the Post Office Morse Test has recently been raised to \(£ 4\). Radioteleprinter operation is restricted to International Telegraph Code No. 2 at 45.5 or 50 bauds. Most of the other conditions remain basically the same although some obsolete clauses (for example specifically prohibiting the use of "spark") have 'seen dropped. Only for the 24 GHz band and for the use of pulse techniques is it still necessary to obtain prior written permission. During data
transmissions ( 144 MHz upwards) the station callsign must be given in morse or telephony at least once in every 15 minutes.

This is the first major revision to the UK licence for many years and most amateurs will warmly welcome most of the changes

\section*{US licence problems}

The marked differences between the British and American way of amending licence regulations can be detected in some of the questions now facing the FCC. These range from the hint that the FCC may ban the use of separate linear amplifiers for both the amateur service and Citizens' Band operation to proposals that could eliminate all conventional a.m., d.s.b.s.c., narrow-band f.m. on the h.f. bands and fast-scan tv on 70 cm (Docket 20777).
As Don Chester, K4KYV/l points out "there is still a small but substantial minority of amateurs in the USA who wish to continue using conventional a.m. Many of us have built our own transmitters and designed them to minimise distortion. We operate mostly on \(1.8,3.5\) and 7 MHz and receive very few complaints of splatter and believe that excessive bandwidths on any mode are often due to distortion products or overmodulation, and that natural sidebands do not cause excessive interference on adjacent frequencies.
"We have used every available means of influence to block the passage of this proposal and there are rumours that the FCC is scrapping its plan to put us off the air."
This is not the first attempt to eliminate A3 on the h.f. bands and petitions were made to the FCC on this in 1967. At that time the Commission stated: "While the Commission has, in the interest of spectrum economy, encouraged the use of s.s.b. in other services via the rule making process, it is not believed necessary or desirable in the Amateur Radio Service. One of the unique features of the Service is the wide choice of emissions and operating frequencies . . . continuation of this freedom of choice is considered desirable."

\section*{New handbook edition}

The RSGB has just published vol. 1 of its new (5th) edition of its standard book on amateur radio - "The Radio Communication Handbook". In its almost 40 years of publication (originally as "The Amateur Radio Handbook") over 250,000 copies have been printed and found wide use not only by amateurs but also by many with a professional or Services interest in communications. During World War 2 it was widely used as an approved text book by the RAF.

The new edition has for the first time been split into two separately bound volumes, with volume 2 due this spring.

Vol. 1 covers: fundamental principles; valves and semiconductors; h.f., v.h.f. and u.h.f. receivers; h.f., v.h.f. and u.h.f. transmitters; keying and break-in; modulation systems; and r.t.t.y.

A foreword by M. Mili, Secretary General of the ITU, states: "The role of radio amateurs in technical training seems to be little known for all its great importance. The ITU is engaged on a vast programme of technical co-operation to aid developing countries to expand their telecommunication services. In this programme training plays a vital role. There is no doubt that the development of an amateur radio service makes a substantial contribution to the execution of this immense task, and a contribution moreover that costs the community so little."

\section*{In brief}

European amateurs have abandoned hope of obtaining an allocation around 220 MHz at the 1979 World Administrative Radio Conference although the RSGB and some other European societies are continuing to press for a small allocation at 50 MHz , as currently available to amateurs in Regions 2 and 3

CT2BB in the Azores has heard both British and American 144 MHz amateurs during Sporadic E openings and may soon provide a beacon signal on 144.1 MHz , raising hopes once again of an eventual spanning of the Atlantic on 144 MHz . . Durham beacon, formerly GB3DM, is now operational as GB3NEE on 144.935 MHz . . . "Some of the things I hear through GB3LO make me ashamed to be associated with it. There have been suggestions that GB3LO should be closed down completely, and more specifically that it should be closed in the evenings" states Chris Roberts, G4EVA, chairman of the UK FM Group (London). A meeting of the Group has debated a motion that "the continued 24-hour operation of GB3LO is detrimental to the original aims and objectives of the UK FM Group and to the aims of Amateur Radio in general"

A fully automatic telecommand system for use with Oscar 6 has been commissioned at the University of Surrey. For the past \(11 / 2\) years this station has had the responsibility of ensuring that the amateur satellite is switched off when the internal batteries are being recharged, and to switch it on for European activity and for the news, bulletins sent via Oscar from HG5BME at Budapest Technical University. Oscar 6 should complete its 20,000 th orbit during February . . . The GB2RS news bulletins now go out on Sunday mornings on 3650 kHz instead of 3600 kHz ; the two-metre frequency remains 144.5 MHz . . . The British Amateur Television Club has recommended to the RSGB the use of 144.230 MHz as an sstv calling frequency, 144.750 MHz as a fast scan calling frequency, and 144.70 MHz for facsimile.

PAT HAWKER, G3VA


\section*{Programmable calculator}

In addition to over 30 pre-programmed functions and ten independent memories, using full memory arithmetic, the PR100 scientific calculator can store 72 programme steps. The instrument has a ten-digit calculation accuracy with an eight-plus-two digit l.e.d. display. This calculator, which also has parenthesis, algebraic notation and seven pre-programmed conversions, is supplied with an adaptor/charger and carrying case and is priced at \(£ 49.95\). Commodore (UK) Limited, 446 Bath Road, Slough, Berks.
WW 302 for further details

\section*{Solder pot}

The Litesold LSP solder pot, which is designed for improved operator safety and longer element life, will run on existing 24 V soldering-iron power units or low-voltage power supply systems. Its 130 g-capacity crucible is machined from fine-grain cast iron and has a tinning depth of 31 mm . At normal ambient temperatures the 48 W element gives a soldering temperature of approximately \(300^{\circ} \mathrm{C}\). Light Soldering Developments Ltd, 97-99 Gloucester Road, Croydon, Surrey.
WW 303 for further details


\section*{Rugged oscilloscope range claims low cost of ownership}

The Tektronix T900 series of oscilloscopes, first announced over a year ago but only recently available in the UK, fills the gap between their high-cost, high-performance \(R\) \& D oscilloscopes on the one hand and the low-cost, low-performance Telequipment instruments on the other. The range is aimed at situations where a specific set of measurements on one type of product or process is needed but without the expense of comprehensive triggering and display facilities, such as arise in production and maintenance/ service applications.
But Tektronix UK admit that because of high inflation upsetting a general sense of values the traditional division between low and high-cost oscilloscopes isn't very clear. Keith Retallick, UK Sales Manager, says there are now two kinds of potential customer: one is the out-of-date user who still thinks that instruments should cost little more than five years ago, and the other is largely unconcerned, and is prepared to pay almost anything. He sees the T900 range as providing excellent value where low-to-medium performance is required by users who are not forced by economic circumstances to buy only the cheapest. "Most serious buyers are looking not for the lowest price but for value for money," he says.

Main feature of the range is not electrical performance so much as low "cost of ownership", though Tektronix claim that cost/performance ratio is good. Ruggedness, ease of servicing, modular construction, unified sub assemblies throughout the range, negligible hand wiring, ease of operation (fewer and less critical calibration controls), active device and other tests,


\section*{WW 301}
and maintenance of accuracy are the aims that Tektronix have set themselves.
The models, costing from \(£ 500\) to \(£ 1000\) (plus v.a.t.) are
- two 15 MHz units, one single and one dual trace (T921, T922)
- two dual trace 35 MHz units, one with delayed timebase (T932, T935)
- 10 MHz storage oscilloscope, dual trace (T912)
- rack-mounted version of T922.

Five of the models use an \(8 \times 10 \mathrm{~cm}\) 12 kV c.r.t., with post deflection acceleration to keep power low in the deflection circuits, and measure only \(18 \times 25\) \(\times 48 \mathrm{~cm}\), with a weight of around 7 or 8 kg . Smallest vertical deflection factor is \(2 \mathrm{mV} / \mathrm{div}\), input impedance the standard \(1 \mathrm{M} \Omega\) plus 30 pF , and rise time 10 ns . Phase difference between x and y amplifiers is quoted at \(3^{\circ}\) at 50 kHz . Z . input bandwidth is 5 MHz .
WW 301 for further details


WW 302

Ferrite cross-over chokes
Research into ferrite characteristics by Aladdin Components, in conjunction with a loudspeaker manufacturer, who for commercial reasons wishes to remain anonymous, has resulted in the development of a range of ferrite-cored cross-over chokes which are claimed to give up to \(40 \%\) less harmonic distortion than is normally associated with conventional ferrite cores. Actual test figures are still to be released. The chokes, which use a ferrite called LDC, are available to customers specifications and, because of copper savings achieved, can be made economically i.e. from 50p, depending on quantity and current rating required. Aladdin Industries Ltd, Western Avenue, Greenford, Middlesex UB6 8UJ.
WW 304 for further details

\section*{Spectrum analyser}

A spectrum analyser covering the range 1 MHz to 1 GHz has been introduced by Dana Electronics. The Cushman analyser has interlocked controls, to ensure that it is always calibrated, and permits levels from +20 dBm to -115 dBm to be measured directly from a 70 dB -range display. A.m. and f.m. signals, received on its whip aerial, may be monitored audibly and the analyser, which also has frequency and level calibration outputs and a marker input, can be made portable using an optional 12 V battery facility. Price is about \(£ 3600\). Dana Electronics Limited, Collingdon Street, Luton, Bedfordshire.
WW 305 for further details

\section*{Pt 100 simulators}

A range of platinum resistance thermometer-element simulators, made by Delristor Limited, is intended for use wherever resistance thermometer values require to be simulated. The instruments are calibrated directly in degrees centrigrade and cover the range -200 to \(+500^{\circ} \mathrm{C}\) in 25,50 or 75 discrete steps, depending on the model selected. Two optional accuracies of \(\pm 0.5\) or \(\pm 0.3^{\circ} \mathrm{C}\) are available and each unit includes a facility for lead resistance simulation. A model is also available for Ni 100 element simulation. Delristor Limited, 21 Windsor Street, Uxbridge, Middlesex.
WW 306 for further details


WW 305


WW 306

\section*{Tape-cassette controllers}

Three tape-cassette controllers, suitable for microprocessor and other high-quality recording systems, are available from Tekdata Limited. Model 2 , which is a variable-speed controller for 0.4 to 10 i.p.s. recording, is t.t.l., d.t.l and c.m.o.s. compatible and has four drive motors. Wow and flutter and jitter are said to be a minimum because the capstan motor is used to drive the capstan only. Other main features include remote-control facilities, less than 30s rewind (C60), and a power requirement of 7 V at about 600 mA . Model 1 is a fixed speed unit and Model 3 , the Superdeck, is a 0.4 to 20 i.p.s variable-speed unit. Tekdata (Trading) Limited, Westport Lake, Canal Lane, Tunstall, Stoke-on-Trent, Staffs ST6 4PA.
WW 307 for further details

\section*{Impulse noise analyser}

An impulse noise analyser, the LEA BAT-1, will count the number of positive and negative pulses having amplitudes which exceed a selected threshold during a pre-determined time interval. The analyser, which has a \(600 \Omega\) input and a high-impedance (over \(60 \mathrm{k} \Omega\) ) input, may be adjusted for thresholds from -50 to 0 dB and dead times of less than \(100 \mu \mathrm{~s}, 5 \mathrm{~ms}, 50 \mathrm{~ms}\) and 125 ms . This instrument complies with ITTCC recommendations and includes two
plug-in filters. Wessex Electronics Ltd, Stover Trading Estate, Yate, Bristol BS17 5QP.
WW 308 for further details

\section*{Frequency synthesizer}

The PRD 7838 is a programmable frequency synthesizer which covers the range 1 kHz to 80 MHz in 1 Hz steps with an output level of 10 mV to 1 V r.m.s. into 50s2. Its stability, when locked to the internal crystal frequency is one part in \(10^{6}\) per month, with an optional standard of five parts in \(10^{9}\) per day. The spurious output figures are typically 70 dB (non-harmonic) and 40 dB (harmonic). The unit may be programmed by b.c.d. code, permitting the digital frequency-control functions, which are r.t.l., d.t.l. and t.t.l. compatible, to be performed remotely. Microwave and Electronics Division, REL Equipment and Components Limited Croft House, Bancroft, Hitchin, Herts. WW 309 for further details

\section*{Low-cost Variomatrix}

The QSD-2, made by Sansui, is a low-cost Variomatrix decoder capable of decoding both QS and SQ material. This unit, which also permits playback of conventional stereo material via four loudspeakers, gives 20 dB separation between adjacent channels, 30 dB between diagonal channels and has a frequency response of 20 Hz to 30 kHz

with a distortion of up to \(0.1 \%\) at 1 kHz . Price is expected to be well under \(£ 100\) per unit. (See surround-sound decoder, articles in June-September issues.) Sansui Audio Europe SA, 39/41 Maple Street, London Wl.
WW 310 for further details

\section*{Cleaners and lubricants}

It is claimed that regular use of two aerosols, available from N.S.F. Limited, will prolong the life of rotary wafer-switches. The products, a cleaner and a lubricant, are in 450 g cans and are claimed to be harmless to the majority of materials used in present-day components. The cleaner is used first to remove deposits which form after long periods of use or storage and the lubricant is then applied to provide a thin, even film over contacts and other relevant surfaces. N.S.F. Limited, Switches and Controls, Keighley, Yorkshire BD21 5EF.
WW 311 for further details

\section*{Psophometer}

The type 2429 psophometer is a compact instrument suitable for measurements in accordance with International Standards CCITT-P53 and CCIR-468-1. This meter, which is suitable for both subjective and objective determination of signal-to-noise ratios, has been designed for use with communication systems. Four filters are incorporated in the meter, these being: unweighted,

WW 315

telephone, Radio 1 and Radio 2, and in addition the detector can be set for either quasi-peak or quasi-r.m.s. Amplification is calibrated and is adjustable in 10 dB steps, the input impedance can be set to either \(600 \Omega\) or greater than \(10,000 \Omega\) symmetrically and a.c., d.c. and earphone outputs are provided. To avoid the possibility of errors an overload detector automatically operates a flashing warning light if an incorrect attenuator setting is selected. B \& K. Laboratories Ltd, Cross Lances Road, Hounslow, Middlesex.
WW 312 for further details

\section*{Temperature-controlled iron}

The Oryx 75 soldering iron is designed for fast production-line work and for applications requiring a carefully-controlled soldering temperature. Fast thermal recovery is achieved by a unit in the handle of the iron, which controls the current pulses to the element, and a temperature sensor close to the element tip. This unit eliminates the need for a cumbersome control box. The tip temperature can be adjusted over the range 300 to \(425^{\circ} \mathrm{C}\). A wide range of soldering tips is available and the tip or element may be changed in less than two minutes. Electroplan Ltd. P.O. Box 19, Orchard Road, Royston, Herts SG8 5 HH .
WW 313 for further details

\section*{Stabilized power supply}

The Triple-Output Power Supply (TOPS), from Farnell, is designed as a power source for i.c. and op-amp breadboard circuitry, providing 5 V at 1 A and \(15-0-15 \mathrm{~V}\) at 200 mA . Adjustment ranges are \(4-6 \mathrm{~V}\) on the 5 V rail and \(12-17 \mathrm{~V}\) on the balanced twin 15 V rail. This unit, which contains overcurrent protection and a l.e.d. overload indicator, has a line stabilization of \(0.05 \%\), load regulation of \(0.1 \%\) and a temperature coefficient of \(0.02 \% /{ }^{\circ} \mathrm{C}\). Ripple is less than 1 mV on the 5 V output and 2 mV on the twin output. Farnell Instruments Limited, Sandbeck Way, Wetherby LS22 4DH.
WW 314 for further details

\section*{Switching power supply}

A four-output, 400W switching power supply, designated as the Trio model 674 , is designed specifically for microprocessors, memories and other multiple output applications. The unit has a main output for logic, a second output for a memory and two additional outputs for accessory power needs such as \(+5 \mathrm{~V},-9 \mathrm{~V}\) and \(\pm 15 \mathrm{~V}\). Mean-time-before-failure is calculated to exceed \(30,000 \mathrm{~h}\) and the unit, which has an efficiency of \(60 \%\), measures \(127 \times 203 \times\) 355 mm and weighs only 6.8 kg . Trio Laboratories Limited, Grove House, Grayshott, Hindhead, Surrey GU26 6LE. WW \(\mathbf{3 1 5}\) for further details

WW 313


WW 314

\title{
Solid State Devices
}

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

\section*{Power Darlingtons}

Complementary Darlington transistors, in the BDX85 to BDX88 and 2N6053 to 2N6056 series', have minimum gains of up to 1000 at 5 A and power dissipations up to 120 W . The range, from SGSATES, includes both \(\mathrm{p}-\mathrm{n}-\mathrm{p}\) and \(\mathrm{n}-\mathrm{p}-\mathrm{n}\) transistors having \(\mathrm{V}_{\mathrm{CEO}}\) and \(\mathrm{I}_{\mathrm{C}}\) ratings of up to 100 V and 12 A respectively.
WW 316
SGS-ATES

\section*{U.h.f. dividers}

Six two-modulus u.h.f. dividers have been added to Plessey Semiconductors' range. Types SP8740 and SP8745 are 300 MHz divide-by- 5 or 6 counters with a.c. and d.c. coupled inputs respectively. Types SP8741 (a.c.) and SP8746 (d.c.) are 300 MHz divide-by- 6 or 7 counters and types SP8743 (a.c.) and SP8748 (d.c.) are 500 MHz divide-by- 8 or 9 counters. The d.c. devices require PECL 111 inputs and the a.c. devices have a wide dynamic input rantge of 400 to 800 mV pk-pk. Each device, contained in a 16-lead d.i.l. package, is specified for a supply of \(5.2 \pm 0.25 \mathrm{~V}\) and consumes typically 50 mA .
WW 317 Plessey Semiconductors

\section*{Low-power r.a.ms}

Two low-power versions of the 2102A lk by 1 r.a.m. are now available from Intel. The devices, type 2102AL with an access time of 350 ns and type 2102AL4 with a speed of 450 ns , have \(I_{\text {cc }}\) ratings of 33 mA and are t.t.l.-compatible on both the inputs and outputs.
WW 318
Intel

\section*{Static r.a.ms}

Three static r.a.ms, from Texas Instruments, are suitable for 4,8 or 16-bit microprocessor systems and are each available in 1000,650 and 450 ns maximum-access and read-and-write cycle times. Type TMS 4039/2101 has separate input and output enables, an output enable and two chip enables. The

TMS \(4042 / 2111\) is the same but has bus-oriented common input and output enables. Type TMS 4043/2112 has common input and output enables and a chip enable. The t.t.l.-compatible devices have typical power dissipations of 175 mW .
WW 319
Texas

\section*{C.m.o.s. multiplexers}

Two industrial 16 -line to one-line multiplexers are available in c.m.o.s. from National Semiconductor. The devices, type MM74C150 and the tristate version MM82C19, use four-bit addresses and invert the data from input to output. A strobe pin, which overrides the input data, places the output of the MM74C150 in the logic 1 state, and the output of the MM82C19 in a high-impedance state.
WW 320 National Semiconductor

\section*{Teletext character generator}

The lk by 8 m.o.s. r.o.m., designated as type 2608 CN0040, has been programmed to give the fully-approved teletext character fount of 7 by 5 upper. and lower-case characters. It uses no clocks, has an access time of 650 ns and is t.t.l.-compatible on both the inputs and outputs. The r.o.m., which is in a 24-pin package, has tri-state outputs and uses n-channel silicon-gate technology. Maximum power dissipation is 400 mW . WW 321 Mullard

\section*{Input-output buffer}

The addition of the 10B 1680 input-output buffer microcircuit to GIM's CP 1600 16-bit microprocessor can provide a user with a complete microprocessor system which requires the minimum of additional components. This buffer, in a 40 -lead d.i.l. package, is claimed to have all the external data management functions previously performed by about 12 t.t.l. m.s.i. packages. WWW 322
G.I.M.

\section*{Bridge rectifiers}

Rectifers in the range 26 MB 5 A to 26MB80A have been introduced as improved versions of International Rectifier's 25 A bridge rectifiers. The devices, which are rated from 50 to 800 V (maximum reverse repetitive voltages), are claimed to give greater voltage stability and isolation than the superseded ones and will deliver 19A when mounted on a heatsink of \(1^{\circ} \mathrm{C} / \mathrm{W}\). WW 323

International Rectifier

\section*{Multiplier-divider}

Differential-input multiplier-dividers in the 4231 range have a claimed noise specification of \(120 \mu \mathrm{~V}\) r.m.s. from 10 Hz to 10 kHz ; a factor of five improvement over comparably priced units. Three versions are available: type 4231 BM providing better than \(0.5 \%\) accuracy, less than 25 mV output offset and less than \(0.7 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) drift over the range -25 to \(+85^{\circ} \mathrm{C}\), type 4231 SM which is a MIL temperature range version of this, and the 4231 AM having an accuracy of \(1 \%\), offset of less than 50 mV and drift of less than \(2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) over the working temperature range. Small quantity prices are from \(£ 24.00\) each.
WW 324
Burr-Brown

\section*{Wideband op-amps}

Two operational amplifiers, types A970 and A975, are wideband, high slew-rate units in TO-99 packages. The A970 has a. typical gain-bandwidth product of 100 MHz for small signals, a slew rate of \(35 \mathrm{~V} / \mu \mathrm{s}\) and an open loop gain of 95 dB . Type A975 has a typical slew-rate of \(120 \mathrm{~V} / \mu \mathrm{S}\) and a gain-bandwidth product of typically 20 MHz . Both units have input impedances of greater than \(100 \mathrm{M} \Omega\) and operate over a temperature range of 0 to \(70^{\circ} \mathrm{C}\).
WW 325
Hybrid Systems

\section*{Suppliers}

Burr-Brown International Ltd, Permanent House, 17 Exchange Road, Watford, WD1 7EB.

Hybrid (Component) Systems U.K. Ltd., 12a Park Street, Camberley, Surrey.
General Instrument Microelectronics Ltd, 57/61 Mortimer Street, London WIN 7 TD.

Intel Corporation (UK) Ltd, Broadfield House, 4 Between Towns Road, Cowley, Oxford OX4 3NB.

International Rectifier Co. (GB) Ltd, Hurst Green, Oxted, Surrey.
Mullard Ltd., Mullard House, Torrington Place, London WCIE 7HD.
National Semiconductor U.K. Ltd, 19 Goldington Road, Bedford MK40 3LF.
Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW.
SGS-ATES Componenti Elettronici SpA, Via C. Olivetti, 2, 20041 Agrate Br. za, Milan, Italy.
Texas Instruments Ltd, Manton Lane, Bedford MK41 7PA.

All you need is
an ultra-violet light source and a 3 M oneNotraining needed.


Precise
Perfect reproduction of simple or complex images from any black on translucent
artwork. circuit diagrams, badges etc.


\section*{JWOOLYARDS \\ Manager}

COLOURFUL A choice of colour combinations for maximum eyeappeal and visibility.
TOUGH Indefinite indoor life.
1-3 years outdoor life.
SELF-ADHESIVE No screws to fix, no holes to drill.
ECONOMICAL Labels cost about 21/2p per square inch.
QUICK Easy, three stage process takes 5-15 minutes. No darkroom, no waiting for outsiders.

\section*{FREE DEMONSTRATION}

Return coupon to arrange a free demonstration on your premises. And discover for yourself why corporations like British Rail, BAC and the RAF are making their marks with ‘Scotchcal' Photolabels from 3M


\section*{£3 INTRODUCTORY KIT}

If you prefer, send \(£ 3\) with the coupon for a complete introductory kit. All you need is an ultra-violet light source. Your \(£ 3\) kit contains everything else for your first set of photolabels. (Sorry, only one kit per person.)
3M UNITED KINGDOM LIMITED
Regd Office 3 M House Wigmore Street London WIA IET Eıe Telephone Dublı 851555


The main difference between our new low price multimeter and most multineters is that ours is an AVO. Through and through. It starts with some innovations-most of them unique at the price: real overload protection, sensitivity of \(20,000 \Omega / V D C\) a really useful set of ranges including AC current. If you try to measure the 240 V mains on the \(75 \mu \mathrm{ADC}\) range, it's only the instrument fuse that blows. Then there's the case--really rugged enough to take the toughest knocks. And in this case, beauty's more than skin deep-inside vou'll find it orderly and well laid out. That means that, if servicing is ever necessarv, it'll be worth doing. Because when AVO make an instrument, they make one that's worth keeping

In short, the new AVO Model 73 is much more multimeter for vour monev- -and that's what makes it an AVO.


UK Trade Price \(£ 33\) - VAT from Distributors
AVO Limited, Archcliffe Road, Dover Kent Telephone: Dover (0304) 202620
I Thom Measurement Control and Autorration Division


WW - 068 FOR FURTHER DETAILS

\section*{PHILIDS}


The top sellers for home assembly in Europe - now available in the U.K.

Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd.,

West Road, Tottenham, London N17 ORN


\section*{UERO. THE BOHING CHAMPIONS \\ Vero offer an outstanding range of small} enclosures and cases of high quality. atrractive appearance and economic prices with immediate delivery.
Development and expansion of the small anclosure range is a continuing process with the sole objective of having on the shelf" at Vero the item you need when you need it.
Verobox (R) Plastic -a range of attractive moulded boxes for housing, wall or bench mounted, purtable or hand held electranic equipment
To the successtul Mki Verobox (R) plastic enclosure has been added a Mk 11 range \(154 \mathrm{~mm} \times 85 \mathrm{~mm}\) in three panel heights and with a unique clip together design. Both MkI and Mkll contain built-in facilities for housing boards horizontally or vertically and are complete with front and rear anodised luminium panels which may be blanked aluminiom panels which ray be blanked for instrument mounting, er
Verobox (R) extruded aluminium enclosures - a range of low cost small boxes, supplied in kit form in 36 different sizes from sock.
Veropak - a case range designed to provide an attractive but inexpensive housing for the smaller type of project: High quality finish, in Moonstone coloured P.V.C. clad steel. Five sizes available from stock, supplied packed flat for convenient storing. Assembled in 5 minutes.
D Series slim line case 277 mm wide in 2 depths and wide range of panel heights made from light gauge steel. Full range stocked in RAF blue/grey popular sizes in Moonstone.
Available world wide through 3 subsidiary companies and 25 agents.

Vero Electronics Lid
Industrial Estate, Chandier's Ford
Eastleigh, Hampshire SO5 32R
Telephone: Chandler's Ford 2956
Telex: 47551


WW-073 FOR FURTHER DETAILS


\section*{Wireless World Dolby noise reducer \\ Trademark of Dolby Laboratories Inc.}

We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring
- switching for botti encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- na eqúupment needèd for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed for minimum wiring
--solid mahogany cabınet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: \(£ \mathbf{3 7 . 9 0}+\) VAT
Also available ready built and tested
Price \(552.00+\) VAT
Calibration tapes are available tor open-reel use and for cassette (specify which)
Price \(\mathbf{E} \mathbf{2 . 0 0}+V A T *\)
Single channeT plug-in Dolby \({ }^{(M 14)}\) PROCESSOR BOARDS \((92 \times 87 \mathrm{~mm})\) with gold plated contacts are available with all components

Price \(£ 7.20+\) VAT
Single channel board with selected fet
Price \(\mathbf{£ 2} \mathbf{2 0}+\mathrm{VAT}\)
Gold plated edge connector
Price \(£ 1.40\) +VAT*
Selected FET's. 60p each + VAT, \(\mathbf{1 0 0 p}+\) VAT for two, \(\mathbf{£ 1 . 9 0 + V A T}\) for four
Please add VAT \(121 / 2 \%\) unless marked thus*, then \(8 \%\) applies
We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

P Please send SAE for comolete lists and snecifications
INTEGREX LTD.
Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT

\section*{IIITECREK}

\section*{S-2020TA STEREO TUNER / AMPLIFIER KIT}

\section*{SOLID MAHOGANY CABINET}

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facilitv (for noise reduction unit, etc), THD less than \(0.1 \%\) at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses 3302 FET module requiring no RF alignment, ceramic IF, 1 INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range' \(88-104 \mathrm{MHz}\). 30dB mono \(\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}\). THD \(0.3 \%\). Pre-decoder 'birdy' filter

PRICE: £53.95+VAT

\section*{NELSON-JONES STEREO FM TUNER KIT}

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.


Brief Spec. Tuning ranqe \(88-104 \mathrm{MHz} .20 \mathrm{~dB}\) mono quieting @ \(0.75 \mu \mathrm{~V}\). Image rejection - 70 dB . IF rejection -85 dB . THD, typically \(0.4 \%\)
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders
Compare this spec. with tuners costing twice the price
Mono £29.15 + VAT With ICPL Decoder \(£ 33.42+\) VAT

With Portus-Haywood Decoder \(£ 35.95\) +VAT

\section*{STEREO MODULE TUNER KIT}

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter

Sens. 30dB S/N mono @ \(1.2 \mu \mathrm{~V}\)
THD typically \(0.3 \%\)
Tuning range \(88-104 \mathrm{MHz}\)
LED sig. strength and stereo indicator

PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on /off' FET transient protection.

Typ Spec. \(24+24 \mathrm{~W}\) r.m.s. into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input \(\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}\). Radio input \(\mathrm{S} / \mathrm{N}\) 72 dB . Heaaphone output. Tape In/Ouf facility (for nose reduction unit, etc.). loroidal mains transformer

PRICE: £31.95 + VAT

> ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALVVORK, SOCKETS, FUSES,
> NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT £14.28 + VAT
BASIC MODULE TUNER KIT (stereo) £16.75 + VAT

PHASE-LOCKED IC DECODER KIT PUSH-BUTTON UNIT
\(\mathbf{£ 4 . 4 7 + V A T}\)
\(\mathbf{£ 4 . 5 0}+\) VAT


\section*{WW－023 FOR FURTHER DETAILS}

RADFORD HD250
High Definition Stereo Amplifier

the home！We believe that no other amplifier in the world can match the overall specification of the HD250．

Reted power output： 50 watts av．continuous per channel into any impedance from 4 to 8 ohma，both channols driven．
Maximum power output： 90 watts av．per channel into 5 ohms
Dissortion，preamplifier．Virtually zero（cannot be identified or menaured as it is below inherent circuit noise．）

Distortion，power amplifier：Typically \(0.006 \%\) at 25 watte，leas than \(0.02 \%\) at rated output（Typically \(0.01 \%\) at \(1 \mathbf{K h z}\) ）

Hum and noise：Disc，－83dBV moseured flat with noise band width 23 Khz （ref 5 mV ）；-88 dBV ＂\(A\)＂ weighted（ref． 5 mv ）

Line－ 85 dBV measured fiat（ref 100v）
－88d BV＂A＇weighted（rof 100v）
Hear the HD250 at

\section*{SWIFT OF WILMSLOW \\ Dept．WW， 5 Swan Street，Wilmslow，Cheshire （Tel：26213）}

Mail Order and Personal Export onquiries：Wilmslow Audio，Swan Works，Bank Squere，Wilmslow（Tel．29599）
Now available ZD100 power ampl／fier and 2022 pre－amplifier
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
SINCLAIR CALCULATORS AN WATCHES＊ \\
Cambridge Scientific £8．95．Oxford 3 £13．30．Mains adaptors \(£ 3.20\) Programmable Scientific with tree ma unit 224．95．Grey watch＋brace £16．45．
\end{tabular} \\
\hline \begin{tabular}{l}
XON ENTERTAINMEN ODULES＊ \\
1208 £20．50．SA1204
\end{tabular} & IC20 \(10 \mathrm{~W}+10 \mathrm{~W}\) stereo amp kit printed circuit \(£ 4.95\) ．P220 Power su
for above \(£ 3.95\) ．VP20 Conirol preamp kit \(£ 7.95\) ． \\
\hline £11．30．PM1202／8 £15．PM1201 £11．30．PM1202／4 £15．PM601 £11．30．PM601／4 £11．30． & \multirow[t]{4}{*}{\begin{tabular}{l}
JC12 AMPLIFIER \\
6 W IC audio amp with free data and printed circuit E2．25． \\
DELUXE KIT FOR JC12 \\
Volume and tone controls and extra parts for the pct Mono £2．33．Stereo \(£ 4.95\) ． JC12 POWER KIT Supplies 25V 1 Amp £3．75． \\
JC12 PREAMP KITS \\
Type 1 for magnetic pickups mics and tuners Mono \(£ 1.50\) ．Stereo \(£ 3.00\) ．Type 2 for ceramic or crystal pickups Mono SEND SAE FOR FREE LEAFLET
\end{tabular}} \\
\hline New integrated circuir 20W ampl chip with pch and data \(£ 4.45\) ． & \\
\hline IC radio chip £1．44．Extra parts and pc for radio £3．85．Case £1．Send sae for free leaflet & \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
BATTERY ELIMINATORS＊ \\
millenia kits \\
5 Transistor highly stabilized power units Switched 1 to 30 V in \(0 i \mathrm{~V}\) steps Send sae for free leallet 1 Arnp kit 1245 ？ \\
Amp kir £14 95 Cases \(\mathrm{E}_{2} 95\) \\
RADIO MODELS \\
50 mA with press stud battery connec－ \\
1ors． \(9 V £ 3456 V £ 34541 / 2 V £ 345\) \\
\(9 V+9 V \leq 545 \quad 6 V+6 V 1545\) \\
\(41 / 2 V+41 / 2 V E 545\) \\
CASSETTE MAINS UNITS \\
\(71 / 2 V\) with 5 pin DiN plug 150 mA \\
t3．\({ }^{2} 95\) ． \\
S－WAY MODELS \\
Switched output and 4 way multi－fack \\
Type \(13 / 41 / 2 / 6 \mathrm{~V}\) at \(100 \mathrm{~mA} £ 320\) \\
TYPLLY STABILIZED MODEL £5．45 \\
Switched \(3 / 6 / 7 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}\) Stab． \\
lized \\
CAR CONVERTORS \\
input 12 V DC Outpit \(6 / 7 \frac{1}{2} / 9 \mathrm{~V}\) DC 1 \\
Amp Transistor stabilized \(£ 5.10\)＊．
\end{tabular}} & \\
\hline & \begin{tabular}{l}
S－DECS AND T－DECS \\
S．DeC \(£ 2.24\) \\
T－DeC £4．05 \\
u－DeCA \(£ 4.45\) \\
－DeC8 \(£ 7.85\) \\
16 dil IC carrers
\end{tabular} \\
\hline & \multirow[t]{6}{*}{\begin{tabular}{l}
BATTERY ELIMINATOR KITS \\
100 mA radio types with press stud battery terminals \(41 / 2 \mathrm{~V} \ddagger 210.6 \mathrm{~V} \ddagger 210\) \(9 \mathrm{~V} \pm 210 \quad 41 / 2 \mathrm{~V}+41 / 2 \mathrm{~V} £ 280.6 \mathrm{~V}+6 \mathrm{~V}\) さ2 \(809 V+9 V £ 280\) \\
100 mA cassette type： \(71 / 2 \mathrm{~V}\) din plug さ2 10 \\
Stabilized 8－way types：transistor stabilized to give low hum \(3 / 41 / 2 / 6\)／ \(71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}\) model £3．50． 1 Amp model \(£ 6.50\) ． \\
Heavy duty 13－way types： \(41 / 2 / 6 / 7\) \\
\(81 / 2 / 11 / 13 / 14 / 97 / 21 / 25 / 28\) \\
\(34 / 42 \mathrm{~V}\) 1A £4．95．2A £7．95． \\
Car convertor kit：Input 12V DC Output \\
\(6 / 71 / 2 / 9 V\) DC 1 A regulated \(\mathbf{£ 1 . 9 5}\) ．
\end{tabular}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \begin{tabular}{l}
PRINTĖD CIRCUITT KIT＊ \\
Make your own printed circuits Contain etching dish 100 sq ins of copper clad board，lib ferric chioride etch resist pe drill bit and laminate cutter £4．25．
\end{tabular} & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
SWANLEY ELECTRONICS \\
DEPT．WW，PO BOX 68，SWANLEY，KENT BR8 8 TQ \\

\end{tabular}} \\
\hline
\end{tabular}

PROJECT 80 AUDIO MODULES
PZ5 £4．95．PZ6 \(£ 8.70 .240 £ 5.75\) Project 8050 £ 18.95
BI－PAK AUDIO MODULES
S450 tuner \(£ 20.95\) ．AL60 £4．33． £A100 £13．45．MK60 Audio Kit
£27．20．Teak 60 £10．95．Stereo 30 £16．95．SPM80 £4．25．BMT80 £3．70． fleo data
SAXON ENTERTAINMENTS
MODULES
SA1208 £20．50．SA1204 £19．SA608 £12．SA604 £10．30．PM1 \(201 / 8\) £11．30．PM1202／8 £15．PM1201／4
£11．30．PM1202／4 £15．PM601／8 £11．30．PM601／4 £11．30．
JC40 AMPLIFIER
New integrated circuir 20 W amplifier
FERRANTI ZN414
IC radio chip £1．44．Extra parts and pcb tre

BATTERY ELIMINATORS＊
MILLE NIA KITS
Transistor highly stabilized power units
Swiched 1 to 30 V in 0 iV sieps Send sae for free leallet 1 Arno kiteit 1245 2 Amp kir£ 1495 Cases \(\ddagger 295\) RADIO MODELS
tors． 9 V £ \(345 \quad 6 \mathrm{~V} £ 34541 / 2 \mathrm{~V} £ 345\) \(9 V+9 V \quad 545 \quad 6 V+6 V\) \＆ 545 CASSETTE MAINS UNITS i3 95 Din plug 150 mA 3－WAY MODELS
Switched output and 4 way mult－fack Type \(26,71 / 2 / 9 \vee\) at 150 mA i 330 FULLY STABILIZED MODEL \(£ 5.45\) lizea CAR CONVERTORS
input 12 V DC Output 6／71／2／9V DC 1
PRINTED CIRCUIT KIT
Make your own printed circuits Contans
etching dish 100 sq ins of copper clad etching dish 100 sq ins of copper clad drill bit and laminate cutter \(£ 4.25\) ．

WATCHES
Cambridge Scientific £8．95．Oxford 300 13．30．Mains adaptors \(£ 3.20\) unit 624.95 ．Grey watch + bracelet

SINCLAIR IC20
IC20 10W +10 W stereo amp kit with for above £3．95．VP20 Control and

JC12 AMPLIFIER
6W IC audio amp
with free data a
E2．25．
DELUXE KIT FOR JC12
Eher
for the Mono 2.33 Stextra parts JC12 POWER KIT
Supplies \(25 V 1\) Amp \(£ 3.75\)
JC12 PREAMP KITS
Type 1 for magnetic pickups mics and
tuners Mono \(£ 1.50\) ．Stereo \(£ 3.00\) ．Type 2 for ceramic or crystal pickups Mono 88p．Sterec £1．76．

な DECS ANDT－DECS
S．DeC \(£ 2.24\)
T．DeC \(\mathbf{£ 4 . 0 5}\)
T－DeC \(£ 4.05\)
u－DeCA \(£ 4.45\)
16 －DeC8 \(£ 7.85\)

BATTERY ELIMINATOR KITS
100 mA radio types with press stud
battery terminals \(41 / 2 \mathrm{~V} \geqslant 2106 \mathrm{~V} \div 210\) \(9 V £ 210 \quad 41 / 2 V+41 / 2 V \pm 280.6 V+6 V\) ¿2 \(809 v+9 v i 280\)
100 mA cassette type： \(71 / 2 \mathrm{~V}\) din plug
Stabilized 8－way \(\mathbf{t y p e s : ~ t r a n s i s t o r ~}\)
stabilized to give low hum \(3,41 / 2 / 6 /\) \(71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}\) model Heavy duty 13 model \(\mathbf{£ 6 . 5 0}\) ，
\(81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28\) ， Car convertor Car convertor kit：Input 12 VDC Output
\(6 / 71 / 2 / 9 \mathrm{DC} 1 \mathrm{~A}\) regulated \(\mathbf{£ 1 . 9 5}\)

SWANLEY ELECTRONICS
ost \(30 p\) on orders under \(£ 223\) otherwise free Prices include VAT（Oversea
op on orders under \(£ 223\) otherwise free Prices include VAT（Overseas cu
deduct \(7 \%\) on items marked \(\#\) ，otherwise \(11 \%\) ．Official orders welcoma


\section*{HVS VIDEO PROCESSORS}
for Industry, Education, Research


Fast, non-contact measurement of position and size, using input from standard CCTV cameras.
Automatic visible-flaw detection
Graphical and message displays on standard CCTV monitors. interfaces for hard-wired and computer systems
VP 101/102 Video Target Locators
(for automatic positioning systems).
VP 103 Video Target Height/Position Indicator
VP 104 Visible Flaw Detector
VP 105/106 Video Level Indicators
VG 101 Bar Grash Generator
(displays on CCTV monitor)
Specials designed and manufactured
Further information from
HAMPTON VIDEO SYSTEMS LTD. Heath Road, Twickenham TW1 4BN

Tel: 01-891 1974

\section*{stiving audio modules}
for cost-conscious constructors A NEW 100 WATT r.m.s. POWER AMP

\author{
SS. 1100 £9.45*
}
with heatsink-type bracket Large heatsink


Most recent addition to Stirling Sound's wide range of power amplifiers, the SS 1100 is a solidiy constructed heavy duty module, to deliver 100 watts r.m.s. into \(4 \Omega\) using 70
volts Ideal for discos. P.A. and similar applications With buitt-in output capacitor and volts. Ideal for discos. P.A. and similar applications With buitt-in output capacitor and
hearsink mounting bracket. Size approx \(140 \times 76 \times 32 \mathrm{~mm}\) A guaranteed Stirling Sound av module Compatible with other Stirling Sound modules Supreme value Designed and built for long unbroken spells of work

\section*{POWER AMPLIFIERS FROM 5 TO 40 WATTS}

\section*{SS. 105}

5 watts RM.S into 4 ohms using I2V supply ideal for use in in-car entertain.
( \(\mathbf{C 2} 25\)
S. 110

Similar in size and design to SS. 105, this QV module delivers 10 watts R.M.S. into 4 ohms using a 24 V supply, e g. SS. 324
Of great use in domestic applications.

\section*{SS. 120}

Using a 34 volt supply such as SS. 334 this amplifier will deliver 20 watts into a 4
ohm load Same dimensions as above. \(\begin{array}{r}\text { © } \mathbf{~} \mathbf{3 . 2 5}\end{array}\)


SS. \(140^{\circ}\)
Mk 3 version, complete with output capacitor and heatsink-type bracket Delivers 40 watts R.M.S. into 4 ohms from a 45 volt supply such as the SS 345 Designed specially for long and heavy
work.
£3.95 FOR POWER SUPPLY UNITS SEE BELOW

\section*{STIRLING SOUND PRE-AMP/TONE CONTROL UNITS}

radio. etc

\section*{POWER SUPPLY UNITS}

COMPIETE WITH TRANSFORMERS and 13.16 V take-off points. Add 50 p p/p for any
model. \(\operatorname{AT} 8 \%\) V.A.T.
SS 312 12V/1A £3.75; SS 318 18V/1A £4.15; SS 324 24V/1A £4.60; SS 334 34V/2A £5.20; SS. 345 4SV/2A £6.25; SS 350 50V/2A £6.75: SS 300-Powe stabilisıng unit \(10-50 \mathrm{~V}\). adjustable (no ransformer, p/p 35p) £3.25; SS \(310 / 50\) Stabilised power supply variable from 10 to \(50 \mathrm{~V} / 2 \mathrm{~A} £ 11.95\)
THE BUILT-TN OV FACTOR is the symbol of Stirfing Sound's guarantee of Quality snd Value which gives you roday's best buys all round. It is YOUR gumrantes of satisfaction
TO ORDER add \(35 p\)
when the rate is \(8 \%\)
when the rate is 88
Every effort is mad
Stiring Sound
220-224 WEST ROAD, WESTCLIFF-PNK GROUP
220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF
Phone: Sountend (0702) 46344 . PERSONAL CALIERS WEICOME

\section*{EXPO DRILLS}

Illustrate
A TITAN DRILL mounted in a MULTI PURPOSE STAND This drill is a powerful tool running on 12 v DC at approx. \(3.00 \mathrm{~m} / \mathrm{m}\). The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in hammer blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx. speed 9000 \(\mathrm{rpm} .12 \vee \mathrm{DC}\), torque 35 grm cm . Capacity \(2.4 \mathrm{~m} / \mathrm{m}\)

\section*{TITAN DRILL}

ONLY Cat No. 175
\(£ 9.61+35 p p \& p\) inc. VAT
RELIANT DRILL
ONLY Cat. No. 0150
\(\mathbf{5} 5.64+18 p p\) \& \(p\) inc. VAT
MULTI-PURPOSE STAND
ONLY Cat. No. 0200
\(£ 11.44\)
ADAPTOR COLLAR
FOR RELIANT DRILL
£O. \(\mathbf{4 3}+11 p p\) \& \(p\) inc. VAT
These are only two examples of the extensive range of power tools designed to meel the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids.
To back up the power tools Expo offer a comprehensive selection of Drills, Grinding Points and other tools


SEND S.A.E. (foolscap) for full details to main distributors

\section*{A. D. BAYLISS \& SON LTD.}

Pfera Works, Redmarley, Glos GL19 3JU
Tel: Bromesberrow (STD 053 181) 273 and 364
Stockists: Richards Electric, Worcester and Gloucester; Hoopers of Ledbury Hobbs of Ledbury D\&D Models. Hereford

\section*{WW - 060 FOR FURTHER DETAILS}


\footnotetext{
At last you can enoloy the benefit of thgh quality TV sound This unit offers a high fidelity alernative to the audio stage of a TV set and is completely independent The 4 -channel push-button Varicap tuner nicks up a UHF signal systems the aerial, the oulput being sultable for feeding through most hi-ti SPEC INPUT 10 aV Typ for 26 dB quieting OUTPUT 100 mV (5-pin DIN) LED runing indicalor
\(£ 36.95+\) H VAT (Order code 991 -928)
}
\[
\begin{aligned}
& \text { O seas orders-add } 15 \% \text { for } P+P \text { All items offered for sale } \\
& \text { subject to the Terms of Business as set out in Doram Edition } \\
& 3 \text { catalogue price 60p. The Doram Kit brochure is also } \\
& \text { available price } 25 \text { p. Combined price only } 70 p \text { which also } \\
& \text { entitles you to } 2 \times 25 p \text { vouchers, each one usable on any order } \\
& \text { placed to the value of } E 5.00 \text { or more (ex. VAT). } \\
& \text { DORAM ELECTRONICS LTD. PO BOX TR8 } \\
& \text { WELLINGTON RD. IND. EST., LEEDS LS } 12 \text { 2UF } \\
& \text { An Electrocomponents Group Company }
\end{aligned}
\]

\section*{EASY－TO－BUILD}

\section*{WITH ENCLOSURE}

Specially designed by
RT－VC for cost－conscious hi－fi enthusiasts，these jits incorporate two teak－ simulate enclosures． two EMI \(13^{\prime \prime} \times 8^{\prime \prime}\)
（approx．）woofers，two
tweeters and a pair of matching cross－ overs．Easily constructed，using afew basic tools．Supplied complete with an easy－to－ follow circuit diagram，and crossover components．Input 15 watts rms． 30 watts peak，each unit £2550 Cabinet size \(20^{\prime} \times 11^{\prime \prime} \times 9^{1 / 2 "} \quad\) PER PAIR （approx）．
p\＆p£550

\section*{＇COMPACT＇FOR TOP VALUE}

How about this for incredible booksheff value from RT－VC！A pair of high efficiency units for only \(£ 7.50\)－just what you need for low－power amplifiers．These infinite baffle enclosures come to you ready mitred and professionally finished．Each cabinet measures \(12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}\)（approx．） deep，and is in wood simulate Complete with two \(8{ }^{\prime \prime}\) 8750 （approx．）speakers for max．per par power handling of 7 watts．

\section*{15－WATT KIT IN \(\varepsilon^{850}\) ？ \\ pso} CHASSIS FORM
When you are looking for a good speaker，why not build your own from this kit．It＇s the unit which we supply with the above enclosures．Size \(13^{\prime \prime} \times 8^{\prime \prime}\) approx．）wooter（EMI），tweeter and matching crossover．Power handling capacity 15 watts rms． 30 watts peak．

\section*{DECCA 20 WATTS STEREO SPEAKER This matching loudspeaker system is hand－made，as only Decca know how． built to a specification，not down to a pnce \\ The kit comprises of two \(8^{\prime \prime}\) diameter approx．base drive unit，with heavy die cast chassis laminated cones with rolled PVC surrounds Two \(3^{1 / 2 / 2}\) diameter approx． domed tweeters complete with crossover networks \\ Our pance per stereo par ะ3000 D\＆ 19400 \\ }

\section*{\(20 \times 20\) WATT STEREO AMPLIFIER \＆2990}


Superb Viscount IV unit in teak－finished cabinet．Black fascia with aluminum rotary controls and pushbuttons，red mains indicator and stereo jack socket Function switch for mic，magnetic and crystal pick－ups，tape，tuner， and auxiliary．Rear panel features two mains outlets，DIN speaker and input sockets，plus fuse． \(20+20\) watts rms， \(40+40\) watts peak

\section*{HOWTOUGAMEAV／A}

SYSTEM 18 for only \(£ 80\) ，you get the \(20+20\) watt Viscount IV amplifier． a pair of our 12－watt－rms Duo Type IIb matched speakers；a BSR MP 60 type deck complete with magnetic cartidge，de luxe plinth \(£ 80^{00}\) and cover．

SYSTEM 2 Comprising our \(20+20\) watt Viscount IV amplifier：a pair of our large Duo Type III matching speakers which handle 20 watts rms each，and a BSR MP 60 type deck with magnetic cartridge，\(£ 92^{00}\) de luxe plinth and cover．．p \＆p \(£ 760\)

SPEAKERS Two models－Duo lib teak veneer， 12 watts rms， 24 watts peak， \(18^{1} / 2^{\prime \prime} \times 13^{1} / 2^{\prime \prime} \times 71_{1}{ }^{\prime \prime}\) approx． £34 \({ }^{\text {PER PAIR }}\) p\＆ 1650 Duo III． 20 watts rms， 40 watts peak， \(27^{\prime \prime} \times 13^{\prime} \times \underset{\text { approx }}{111^{\prime \prime}}\) \({ }^{2} 48\) PER PaIR

\section*{\(30 \times 30\) WATT AMPLIFIER KIT}

Specially designed by RT－VC for the experienced constructor，this kit comes complete in every detail． Same facilities as Viscount IV amplifier

\section*{TURNTABLE Popular BSR} MP60 type，complete with magnetic cartridge，diamond stylus，and de luxe＿plinth



Chassis is ready punched；driled and formed Cabinet is finished in teak veneer．Black tascia and easy－to－handle aluminium knobs．\(£ 2000\) Output \(30+30\) watts rms， \(60+60\) peak．


\section*{8－TRACK CARTRIDGE}

BSR T145


\section*{PLAYER MECHANISM}

Requires some atten－\＆ 95 tion．Complete with built in pre－àmp，A．C． 240 V
\(6^{95}\)
 £ \(3^{95}\)


35－WATT DISCO AMP
Here＇s the mono unit you need to start off with．Gives you a good solid 35 watts rms， 70 watts peak output．Big features include two disc inputs，both for ceramic cartridges，tape input and microphone input．Level mixing controls fitted with integral push－pull switches Independent bass and treble 2750


PORTABLE DISCO CONSOLE with built－in pre－amplifiers
Here＇s the big－value portable disco console from RT－VC！It features a pair of BSR MP 60 type auto－retum，single－play professional series record decks．Plus all the controls and features you need to give fabulous disco performances．Simply
connects into your existing
：5500
slave or external amplifier．
p\＆D 8.50

\(70 \& 100\) WATT DISCO AMPS
Brilliantly styled for easy disco performance
Sloping fascia，so that you can use the controls without fuss or bother．Brushed aluminium fascia and rotary controls．Five smooth－acting，vertically mounted slide controls －master volume，tape level．mic level．deck level．PLUS INTER－DECK FADER for perfect graduated change from record deck No． 1 to No．2，or vice versa．Pre－fade level control （PFL）lets YOU hear next disc 170 WATT before fading it in．VU meter
monitors output level 70 watts rms， 140 watts peak output． All the big features as on the 70－watt disco amplifier，but with a massive 100 watts rms 200 watts peak output power

IOO WATT
16500 －p\＆pe4

\section*{STEREO CASSETTE DECK KIT}

Again，this kit is specially designed for the experienced constructor－for mounting into his owncabinet．Features include solenoid－assisted AUTO－STOP 3－digit counter，record／replay
PCboard，mains transformer and input \(£ 3250\) and output controls．AC BIAS AND ERASE．

DELUXE ACCESSORY KIT Comprises of a matched pair of dynamic mics and two replacement slider level controls．
This item post POST FREE when purchased with Cassette Deck kit

Send stamped addressed envelope

ALL PRICES INC．VAT．AT \(12 \frac{1}{2} \%\)
GOODS NOT DF SPATCHED OUTSIDE UK
All thems subpect th：avalah wity Proce correct at回田证回

Weare unable to show an our
products．so dlease

1E HIGH STPEET，ACTON，LONDON W3 6NG 323 EDGWARE ROAD，LONDON W2 Personal Shoppers EDG．VARE ROAD 9 am \(-530 \mathrm{p} . \mathrm{m}\) ．Hatf day Thurs
ACTON 930 m .5 pm Closed all day Wednesday and hall day Saturday ve catalogue and any further information

Minimum order on Access and Barclaycards ：15


Tourist IV has five push buttons，four medium medium band and one for long wave
band．The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control．
The modern styile fascia has been designed to blend with most car interiors and the finished radio will slot into a standard car radio aperture approx \(7 \times 2 \times 4:\) Power Supply Nominal 12 volts positive or negative \(\mathbf{E} \int 50\) earth（altered internally）Powet Ouptut 4 watts into 4 anms


\section*{MOTOR TOP 10 AWARD}

Complete with speaker，baffle and fixing Strip．The Tourist IV for the experienced constructor only．The －

\section*{TOURIST IV PUSH BUTTON} CAR RADIO KIT


\title{
The detectors
}


Null Detectors. There is a wide span of ranges available, with battery operation, portability and high quality being common to all. NEW Model 3336DC Detector is a versatile production and laboratory instrument offering discrimination of \(1 \mu \mathrm{~V}\) in \(10 \mathrm{k} \Omega\) and sensitivity of \(10 \mu \mathrm{~V}\). This instrument offers low zero drift,linear or logarithmic response and high stability.
NEW Model 3337 Microvolt Detector has 9 centre zero ranges from 10 V to \(1 \mu \mathrm{~V}\). It has a resolution of \(0.1 \mu \mathrm{~V}\) into \(10 \mathrm{k} \Omega\). Battery operation eliminates mains voItage interference. There are many other features, too, not least of which is a surprisingly competitive price.

Model4444 AC Detector is a specially designed,
 battery operated solid state AC detector for the detection of very low level imbalance signals from modern AC bridge and potentiometric measuring systems.
Model 33340 C Null Detector is a compact unit specially designed for null point measurement. It is small in size.low cost and rugged and these are just three of the features that make it ideal when replacing pot galvanometers in potentiometers and bridges. For fuller facts about sulivan Detectors, simply contact:

H.W.Sulivan Limited, Archcliffe Road, Dover Kent CT17 9EN Tel: 0304202620 Telex: 96283
L ThornMeasurement Control and Automation Division


BSR HI-FI AUTOCHANGER STEREO AND MONO Maynual A high quality unit backed by BSR reliability with 12 months guarantee A C 200/250V. Size \(131 / 2-111 / 4\) in 3 speeds Above motor board \(33 / 1 \mathrm{in}\). Below motor board \(21 / 2\) in with STEREO
CARTRIDGE
\(£ 11.95\) Post 75p CARTRIDGE
BSR SINGL BSR SINGLE PLAYER similar to above with stereo PORTABLE PLAYER CĀBINET
Modern design Rexine covered
Vynair front grille Chrome fittings \(\mathbf{£ 4 . 5 0}\) Post 75 p
Size \(17 \times 15 \times 8\) in approx.

\section*{HEAVY METAL PLINTHS}


\section*{COMPLETE STEREO SYSTEM}

Two full stze loudspeakers \(13^{3 / 4} \times 10 \times 3^{3 / 4}\) in. Player unit size only \(133 / 4 \times 10 \times 81 / 21 n\).. 3 watts per channel, plays all records 33 rpm .45 rpm Separate volume and tone controls. Attractive teak finish.
£22.50
240 V a.c. mains.


SPECIAL OFFER
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES £2.95 Posi 35p
Single pole two-way Surface mounting
with fixing screws will replace existing wall switch 10 give light for return home. garage, automatic anti-burglar lights, etc
Variable knob Turn on or off at full or ntermediate settings Brand new and


TEAKWOOD LOUDSPEAKER GRILLES will easily fit to
baftle board Size \(101 / 2 \times 7 / \not / 1 I^{-45 p}\).
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players. guitars, tape playback,
electronic instruments or small P.A. systems. Two versions electronic instruments or small P.A. Systems. Two versions avalable Mono. £11.25; Stereo £18. Post 45 p Specification
1 OW per channel: input 100 mV : size \(91 / 2 \times 3 \times 2\) in approx. A E details. Full instructions supphed AC mans powered
\begin{tabular}{|c|c|}
\hline VOLUME & 800 hm Coax 8 p yd. \\
\hline CONTROLS & STANDARD TYPE VHF \(\mathbf{1 5 p}\)
FRINGE LOW LOSS \\
\hline 5 k ! to 2 MO LOG or LIN & Ideal 625 and colour yd. \\
\hline L/S 25p. DP 40p. STEREO & PLUGS 10p. SOCKETS 10p. \\
\hline L/S 65p. D P 85p. Edge \(5 k\) & LINE SOCKETS 18 \\
\hline SP Transistor 30p. & OUTLET BO \\
\hline \multicolumn{2}{|l|}{ELAC M|-F SPEAKER} \\
\hline \multicolumn{2}{|l|}{8in TMM CONE} \\
\hline \multicolumn{2}{|l|}{dual cone plasticised roll surround Large} \\
\hline \multicolumn{2}{|l|}{ceramic magnet \(50-16.000 \mathrm{c} / \mathrm{s}\). Bass} \\
\hline \multicolumn{2}{|l|}{resonance \(55 \mathrm{c} / \mathrm{s} 8 \mathrm{ohm}\) impedance.} \\
\hline 10 watts music power \(£ 3\) & \\
\hline
\end{tabular}
E.M.I. \(131 / 2 \times 8\) in. SPEAKER SALE!

With tweeter and
crossover 10 watt
\(\begin{array}{ll}\text { crossover } 10 \text { watt } & 15 \text { watts. } \\ \text { State } 3 \text { or } 8 \mathrm{ohm} & 8 \text { or } 15 \text { ohm }\end{array}\) State 3 or 8
\(£ 5.95 \quad £ 8.50\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
With tweeter and cross- \\
over 20 watt. \\
Bass res 25 cps \\
Flux \(=11.000\) gauss \\
Post 75p \\
8 or 15 ohm 20 to 20000 cps
\end{tabular} & - \\
\hline \begin{tabular}{l}
Bookshelf Cabinet \\
Teak finish. for EMI \(13 \times 8\) speakers
\end{tabular} & \[
\begin{aligned}
& \mathbf{£ 7 . 5 0} \\
& \operatorname{Post} 100
\end{aligned}
\] \\
\hline the "instant" bulk tape eraser ANO HEAD DEMAGNETISER. Sutable for cassettes and all sizes of tape reels AC mans 200/250V Leaflet SAE Will aiso demagnetise small £4.50 tools & \\
\hline
\end{tabular}

BLANK ALUMINIUM CHASSIS. \(6 \times 4-70 p ; 8 \times 6-90 p\);
 ALUMINIUM PANELS. \(6 \times 4-17 p ; 8 \times 6-24 p ; 14 \times\) 3-25p; \(10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times\)
\(6-43 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p\). \(16 \times 2\).


RCS LOW VOLTAGE STABILISED POWER PACK KITS
printed \(£ 2.95\) circuit rectiters and \(200 / 240 \mathrm{~V}\) a.c Output Post 45 p voltages available. 6 or 7.5 or 9 or 12 V d.c up to 100
less Size \(3 \times 21 / 2 \times 11 / 2 \mathrm{n}\). Please state voltage required
RCS POWER PACK KIT
\(£ 3.35\)
12 vir .750 mA . Complete with printed Post \(30 p\)
£3. 35 \(\frac{12 \text { VOLT } 300 \text { IA KIT } 53.15,9 \text { VOLT } 1 \text { AMP KIT } \mathrm{f} 3.35 \text {. }}{\text { R.C.S. GENERAL PURPOSE TRANSISTOR }}\) PRE-AMPLIFIER - BRITISH MADE deal for Mike. Tape, P U. Guitar, etc. Can be used with Battery

or use with valve or transistor equipment
ELECŤRO MAGNETIC PENDULUM MECHANISM
15 V d c operation over 300 hours continuous on SP2
battery. fully adjustable swing and speed Ideal displays,
teaching electro magnetism or for
metronome, strobe. etc

\section*{MAINS TRANSFORMERS \\ 50 p
\(£ 3.45\)}
 3000 \(300-0.300 \mathrm{~V} 120 \mathrm{~mA} .63 \mathrm{~V} 4 \mathrm{~A}\) C.T.. 6.3 V 2 A MIDGET 22OV 45 mA .6 3V 2A HEATED TRANS \(63 V 1 / 2\) amp \(£ 1 ; 3\) amp amp \(3.4 .5 .6 .8 \quad 9 \quad 10-12 \quad 15.18\) apped outputs at 2 amp 3, 4, 5, 6. 8, 9, 10, 12, 15. 18, 25 and 30 V £4.60.
1 amp, \(6,8,10,12,16,18,20.24,30.36,4048,60\)
£4.60. 2 amp. \(6,8,10,12.16,18,20.24 .30,36.40\). 48. 60 £7.00. 3 amp 6. 8. 10, 12. 16. 18. 20. 24. 30.
36. 40.48 .60 £8.70. 5 amp 6.8 .810 .12 .16 .18 .20. \(24.30 .36 .40 .48,60 £ 11.25 .606 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1\) amp \(£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}\). \(£ 1,10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp} . . \mathrm{£2.75}, 20 \mathrm{~V}, 3 \mathrm{amp}, £ 2.45\).
\(40 \mathrm{~V}, 2 \mathrm{amp}, £ 2.95,30 \mathrm{~V} 5 \mathrm{~A}\) and 34 V 2 ACT £ \(3.45,16 \mathrm{~V}\).

 amp £2.75. 20v. \(40 \mathrm{~V}, 60 \mathrm{~V}\) or \(20-0.20 \mathrm{~V}\) 1A. £3.50. \(150 \mathrm{~W} £ 5\); 250 W £6; 400W £7; 500W £8. FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 V outputs. \(11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}\).
CHARGER TRANSFORMERS \(11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp} £ 4.60\).
R.C.S.

ROSEEWOOD
SPEAKERS
Size \(121 / 2\) in \(\times 93 / 4\) in \(\times\)
\(51 / 2\) In Response 50 to
14.000 cps 8 watts ims
£12 pair \({ }_{\text {Pos } 75 p}\)

\section*{KUBA - KOPENHAGEN STEREO}


TUNER-AMPLIFIER CHASSIS AM-FM \(5+5\) WATT This Continental 4 -band radiogram chassis uses firs! ctass qua ity
components throughout Features Large facia panel with 7 push components throughout Features Large facia panel with 7 puish
butions for medium long short VHF.FM AFC phono mains on-off 4 -rotary contrals. tuning volume tone balance Facia size \(17 \times 41 / 2\) inches Chassis size 17 /playback loudspeakers
DIN-conneter phono pick-up external FM.AM aerials Automatic stereo beacon light Built-in ferrite rod aerial
£33.50

\section*{LOW VOLTAGE ELECTROLVIICS}
1.2,4.5.8, 16 25, \(30.50,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}\)

1000 mF 12V 17p; \(25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}\).
\(1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}\)
\(2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 4 \mathrm{p} ; 50 \mathrm{~V} 57 \mathrm{p}\). 50 l . 5000 mF 6 V 25p; \(12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}\); 50 V 95 p. SHORT WAVE 100 pF ar spaced gangable tuner 95 p . TRIMAIERS 10 pF . \(\mathbf{3 0} \mathrm{pF}, \mathbf{5 0 p F}\). \(\mathbf{5 p}\). 100 pF . 150 pF . \(\mathbf{1 5 p}\).
CERAIAIC, 1 pF to \(001 \mathrm{mF} \mathbf{5 p}\). Silver Mica 2 to 5000 pF . CERAFAIC, 1 pF to \(001 \mathrm{mF} \mathbf{5 p}\). Silver Mica 2 to 5000 pF 5p. PAPER 15 p ; \(500 \mathrm{~V}-0 \mathrm{~V}\)-0 1 to 005 5p; 0 ; 10p; 025 13p; 047 25p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TVIN GANG, \(385+385 \mathrm{pF}\) 50p; 500 pF standard 75 p ; \(365+365+25+25 \mathrm{pF}\) Slow motion drive 65 p . 120pF TWIN GANG, 50p; 365pF TWIN GANG, 50p. NEON PANEL INDICATORS 250V. Amber or red 30p. RESISTORS. \(1 / 4 W, 1 / 2 W, 1 W, 20^{\%} 2 \mathrm{p}\); 2 W 10p; \(10 \%\) ) to 10 M HIGH STABILITY. \(1 / 2 \mathrm{~W} 2 \% 10\) ohms to 6 meg . 12 p . WIRE-WOUND RESISTORS 5 watt, 10 watt. 15 watt 10 olms to 100 K 12 p each
TAPE OSCILLATOR COIL. Valve type 35p
BRIOGE RECTIFIER 200 V PIV \(1 / 2\) amp 50 p
TOGGLE SWITCHES S P 20p. DPST 25p. D PD T 30p
MANY OTHER TOGGLES IN STOCK.
PICK-UP CARTRIDḠES ACOS GPYI \&
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{BAKER MAJOR \(12^{\prime \prime} £_{\text {post }}^{14.95}\)} \\
\hline & \multirow[t]{5}{*}{\(30-14.500 \mathrm{c} / \mathrm{s} .12 \mathrm{in}\). double cone mooter and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of
14.000 gauss and a fotal flux of 145.000 Maxwells. Bass resonance 15 ohms must be stated.} \\
\hline &  \\
\hline & \\
\hline
\end{tabular}

BAKER "BIG-SOUND" SPEAKERS. Post \(\ddagger 100\) each
'Group 25' 'Group 35' 'Group 50/15'


BAKER LOUDSPEAKER, 12 INCH. 60 WATT.
GROUP 50/12, 8 OR 15 OHM HIGH POWER FULL RANGE PROFESSIONAL QUALITY
30-16.000 CPS
MASSIVE CERAMIC MAGNET
\(£ 20.95\)
centre domium presence
TEAK VENEEREO HI-FI SPEAKERS ANO CABINE̋TS
For 12 n or 10 n Speaker \(20 \times 13 \times 121 \mathrm{n} \quad \mathrm{E} 14.50\) Post 95 p
Fin
\begin{tabular}{ll} 
For \(13 \times 8\) in or 8 in speaker & \(£ 7.50\) Post 75 p \\
For \(8 \times 5\) in speaker \(12 \times 8 \times 6\) in. & \(£ 5.80\) Post 50 p
\end{tabular}
R.C.S. 100 watt

\section*{VALVE \\ AMPLIFIER}

CHASSIS


Four inputs Four way mixing, master volume, treble and bass
controls Suits all speakers This professional quality amplifier controls Suits all speakers This professional quality amplifier chassis is suitable for all groups. disco. P.A.. where high quality power is required 5 speaker outputs A/C mains operated. Slave
output socket. Produced by demand for a quality valve amplifier 100 V line output to order 585 Send for leafle Sultable carrying cab \(£ 14\). Price \(£ 85\)\begin{tabular}{c} 
cend \(£ 250\) \\
\hline
\end{tabular}
SPEAKER COVERING MATERIALS. Samples Large 5 AF LOUDSPEAKER CABINET WAODING 18 in wIde 20 p Horn Tweeters \(2-16 \mathrm{kc} / \mathrm{s}\). 10 W 8 ohm or \(15 \mathrm{ohm} £ 3.60\)
De Luke Horn Tweeters \(3.18 \mathrm{kc} / \mathrm{s}\). \(30 \mathrm{~W} 8 \mathrm{ohm}, ~ £ 7.50\). CROSSOVERS. TWO-WAY \(3000 \mathrm{c} / \mathrm{s} 3\) or 8 or 15 ohm £1.90. 3-way \(950 \mathrm{cps} / 3000 \mathrm{cps}\) £2.20.
LOUDSPEAKERS P.M. 3 DHM \(7 \times 4\) in £1.50; \(61 / 2 \mathrm{~m}\) £1.80; \(8 \times 5\) іп. £1.90; 8 וп. £1.95.
SPECIAL OFFER: 80 ohm \(21 / \mathrm{in}, 23 / 4 \mathrm{in}, 35 \mathrm{ohm} .3 \mathrm{mn}, 25\)

 PHILIPS LOUDSPEAKER, 8 in 4 ohms, 4 watts \(£ 1.95\) RICHARD ALLAN TWIN CONE LOUOSPEAKERS
8 In diameter \(4 W \mathrm{~W} 2.50\). 10 in diameter \(5 \mathrm{~W} £ 2.95\) : 8in diameter \(4 W\) £2.50. 10 in diameter \(5 W\) £2.95: VALVE OUTPUT TRANS. 40p; MIKE TRANS. 50 1. 40p. Mike trans mu metal \(1001 £ 1.25\).
Tweeter Volume Control 15 ohms 10 W with one inch long threaded bush for wood panel mounting. \(1 / 4\) in spindle 65 p.
BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER
All purpose transistorise
ldeal for Groups. Disco

and PA 4 inputs speech and music 4 way mixing Output \begin{tabular}{l} 
Ontrols Master volume control \\
bas \\
\hline 68
\end{tabular} Guaranteed Details S £68
2 WODEL MAJOR - 50 watt. 4 input
2 volitier \(\quad\) £ 49 Carr. £ 1
100 WATT DISCO AMPLIFIER CHASSIS Four loudspeaker outputs 4 to 16 ohm . All transistor. £52
BARGAIN 4 CHANNELTRANSISTOR MONO MIXER Add musical highlights and sound effects to recordings. Will mix Mıcrophone. records. tape and tuner
with separate controls into single output 9 V \(\quad £ 5.95\) TWO STEREO CHANNEL VERSION £7.50 BARGAIN 3 WATT AMPLIFIER. 4 Transistor
Push-Pull Ready Built with volume Treble \(\mathbf{£ . 9 5}\) Push-Pull Ready Bull, with volume Treble £3.95
and bass controls 18 volt d \(c\) Mains Power Pack \(£ 3.45\) BALANCED TWIN RIBBON FEEOER 300 ohms. \(5 p\) yd. Chrome Lead Socket 45 p . Mono or Stereo
Phomo Plugs 8p. Phono Socket 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15 p STEREO JACK PLUG 30p. SOCKET 25p.
OIN SOCKETS Chassis 3-pin 10p. 5-pin 10p.
OIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS
OIN SOCKEIS 3 pin 25p; 5-pin 2.5p. VALVE HOLOERS, 10p; CANS \(10 p\)
R.C.S. SOUND TO LIGHT KIT

\section*{Kit of parts to buid a 3 channel sound to ligh}

1,000 watts per channel. e12.50. Post 35p
E.M.I. TAPE MOTORS. 240 V a c 1.200
pm 4 pole Spindle o \(187 \times 0\)
\(31 / 4 \times 21 / 2 \times 21 / 4\) in £ z . Post 500

Collaro gram motor 20 V 75p.

\title{
FAST RESPONSE STRIP CHART RECORDERS \\ Made in USSR
}

\section*{Series H3020}


Basic error 2.5\% Sensitivity 8 mA F.S.D Response 0.2 sec Width of each channel Single and three-pen recorders \(\quad 80 \mathrm{~mm}\) Five-pen recorders 50 mm

Chart speeds, selected by push buttons 0.1-0.2-0.5-1.0-2.5-5.0-12. \(5-25 \mathrm{~mm} / \mathrm{sec}\) Chart drive \(200-250 \mathrm{~V} 50 \mathrm{~Hz}\)
Recording Syphon pen directly attached to moving coil frames. Curvilinear co-ordinates
Equipment Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc

H3020-1 (Single pen): 285 mm wide \(\times 384 \mathrm{~mm}\) deep \(\times 165 \mathrm{~mm}\) high PRICE \(£ 108.00\) H3020-3 (Three pen): 475 mm wide \(\times 384 \mathrm{~mm}\) deep \(\times 165 \mathrm{~mm}\) high PRICE £160.00 H3020-5 (Five pen): 475 mm wide \(\times 384 \mathrm{~mm}\) deep \(\times 185 \mathrm{~mm}\) high

\section*{Series H327}


Polarized moving iron movements with syphon pens directly attached Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided.
Basic error 4\%. Frequency response from DC to 100 Hz 2 dB

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5volts \(/ \mathrm{cm}\) Width of each recording channel 40 mm
Chart drive: \(220-250 V 50 \mathrm{~Hz}\)
Chart speeds 1-2-5-10-50-1 25-250mm/sec
Type H3271-1. Single pen: Dimensions \(259 \times 384 \times 165 \mathrm{~mm}\) Weight 15 kilos PRICE \(£ 265.00\) Type H327-3. Three pen: Dimensions \(335 \times 384 \times 165 \mathrm{~mm}\) Weight 20 kilos PRICE \(£ 520.00\) Type H327-5. Five pen. Dimensions \(425 \times 385 \times 165 \mathrm{~mm}\). Weight 25 kilos

Note Prices are exclusive of VAT
Available for immediate delivery

\section*{Z \& I AERO SERVICES LTD. \\ 44A WESTBOURNE GROVE, LONDON W2 5SF}

Tel. 01-727 5641
Telex: 261306

\section*{011 \\ }


Above: Red LED, R Threaded chrome LED. O, S. PCG, PCE, PCH, PCI,
PCF, PCC, PCB, PCA, PPA, PPB. LEDs in red, green on own or in threaded chromium housing. 5.5 mm d. hole. \(S\) neon 5.5 mm Q neon 7 mm d. Neons in PC housings 9.5 mm d. 3 cap colours. dome, top-hat.
square. Pp 12.5 mm d. \(6^{\prime \prime}\) leads std., \(30^{\circ}\) extra cost; neon onty. 110,220 or

 vibration.

THIE INETRUNGNT


WW-055 FOR FURTHER DETAILS


\section*{Get a great deal from Marshall's}
A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, London NW2 3ET
Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 20D Tel: 041 1-332 4133 \& 1 Stiaits Parade Fishponds Bristol BS 16 2LX Tel: 0272 654201/2
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Please enquire for types not listed NEW 168 PAGE CATALOGUE WITH 500 NEW LINES 55p post paid (40p to callers)

WE ARE NOW AT NEWCASTLE-ON-TYNE!
Marshall Aitken Ltd., 35 High Bridge, Newcastle-on-Tyne. Tel: 063226729


SEND FOR OUR NEW 168 PAGE CATALOGUE WITH 500 NEW LINES
55 p post paid or 40 p to callers

POPULAR SEMICONDUCTORS (A very small selection from our vast stocks, please enquire about devices not listed.) \begin{tabular}{ll|ll|ll} 
2N696 & 0.35 & \(2 N 2907 A\) & 0.22 & \(2 N 3794\) & \(\mathbf{0 . 2 0}\) \\
2N697 & 0.30 & \(2 N 2924\) & 0.15 & \(2 N 3819\) & 0.36
\end{tabular}
 2N2924
2N2926
2N3019
2N3053
2N3054
2N3055
2N3390
2N3391
2N3391A
2N3392
2N 3393
2N3394
2N3439
2N3440
2N3441
2N3442
2N3638
2N3638A
2N3639
2N3641
2N3702
2N3703
2N3704
2N3705
2N3706
2N3707
2N3708
2N3709
2N3710
2N3711
2N3712
2N3713
2N3744
2N3715
2N3716
2N3771
2N3772
2N3773
2N3789
2N3790
2N3791
2N3792
 ZNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN \begin{tabular}{l} 
7919 \\
8820 \\
3823 \\
3904 \\
4036 \\
4037 \\
4058 \\
4060 \\
4061 \\
4062 \\
40126 \\
4289 \\
4919 \\
4920 \\
4921 \\
4922 \\
4923 \\
5190 \\
5191 \\
5192 \\
5195 \\
5245 \\
5294 \\
5295 \\
5298 \\
5447 \\
5448 \\
5449 \\
5457 \\
5458 \\
5459 \\
5484 \\
5486 \\
6027 \\
\hline 6101
\end{tabular}






Prices correct at 20 th December 1976, but please add V.A.T. Post \& Packing 30p

\section*{CECOD}

\title{
Sculptured foam speaker fronts allow creative design flexibility! Cost savings can be effected
}


If your aim is to produce an eye-catching styled speaker the fitting of a Declon front could realise that objective. Individual designs can be created for specific purposes and reserved for one purchaser only, thus allowing considerable scope for identification with a particular model or manufacturer. Declon fronts can be back sculptured to allow for cone movement thus
making sub-baffles optional rather than obligatory. New look cabinets can be readily achieved by simply altering the design of a Declon front. Cost savings can be effected in terms of labour and materials when fixing to the speaker cabinet. The material being flexible allows some latitude in the matter of finished cabinet dimensions
- Acoustically Transparent - Wide Design Scope - Colour Options

Declon Speaker Fronts are made from reticulated foam which is acoustically transparent over all audible frequencies. Other Declon products for the Hi Fi Industry: Speaker Gaskets, Damping Foam and Packing Pieces.


Declon Foam Plastics Limited Humphrys Road, Woodside Estate Dunstable, Beds., LU5 4TW Phone: 0582605141 . Telex: 826749 Trade enquiries only

\section*{SIVTEL for MEMOBIES－CMOS－DISPLAYS－MPUS－BOOKS Cmenerm}

\section*{FAST SERVICE}
\begin{tabular}{|c|c|c|c|}
\hline  & & & \\
\hline 000 & & \({ }_{\substack{1.35 \\ 3.65}}\) & 0.24 \\
\hline  & & 1．29 & 78 \\
\hline  & & \({ }^{3.25}\) &  \\
\hline C00008 & & 0．96 &  \\
\hline （c） & & \({ }^{1.15}\) & \({ }^{78}\) \\
\hline \({ }^{\text {cosal }}\) & \({ }_{\substack{\text { cosen }}}\) & ． 61 & \({ }_{94}{ }^{3} .1 .15\) \\
\hline Coaold 0.16 &  & 29 & 96 \({ }^{\text {9，20 }}\) \\
\hline 5040160.64 & & 0¢ & 9\％\({ }_{98}{ }^{4.28}\) \\
\hline 18 & COO455 & \({ }^{0.64}\) & （1893 \\
\hline （eater & & 1.07 & （1．80 \\
\hline coater & & \({ }_{1.51}^{1.33}\) & 3．15 \\
\hline  & & \({ }_{\text {1．48 }}^{1.51}\) &  \\
\hline 24 & & 1．28 & \({ }_{43}\) \\
\hline  & & & ． 65 \\
\hline  & & & \\
\hline 迷 & & 0．67 & \\
\hline \(\begin{array}{ll}132 & 1.23 \\ 033 & 1.60\end{array}\) & & & 1 M 65088. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{OTHER COMPONENTS} \\
\hline ctock chips & memoryic \\
\hline \({ }^{4} \times 51202\) 2．89 & \({ }_{21024.6}^{\text {Mem }}\) \\
\hline AY51224 3.50 & 211244 \\
\hline MK50253 5.60 & IM6508C 8．05 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Flat cable}} \\
\hline & \\
\hline 10 mfor 8.00 & Mm6100CCD \\
\hline verocases & 8080 （22．51） 32.25 \\
\hline \({ }_{751410 J} 3.36\) & \(\begin{array}{lll}\text { MC6800 } & 33.87\end{array}\) \\
\hline 75141103.77 & \({ }_{\text {SC／MP }}\) \\
\hline \({ }^{7512375} 2.15\) & \(\begin{array}{lll}\text { 1SPA } & 100 & 18.75 \\ 2650\end{array}\) \\
\hline & \(2650 \quad 27.00\) \\
\hline \multicolumn{2}{|l|}{751239 K 3.58} \\
\hline soldercom & mpu kits \\
\hline 1 ICPINS & MEK680001 137.00 \\
\hline （100 & INTROKIT \\
\hline for
19000
34.00 & ISPRK／200E 93.55 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{displars}} \\
\hline & \\
\hline Tli321 1.30 & sumories \\
\hline T11322 1.20 & CA3130 114 \\
\hline XAN652 2.45 & \({ }_{\text {1．A } 741} \quad 0.35\) \\
\hline XAN654 2.45 & （RCA 8 DIL．） \\
\hline 5LTO1 5.80 & 78LL2WC 0.77 \\
\hline
\end{tabular}



LYNX ELECTRONICS（LONDON）LTD．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & \(\stackrel{0}{0.15}\) & \({ }^{\text {BC3 }} 301\) & 0.32 & BT116
BU105 & \({ }^{1.80}\) & \({ }_{\text {cter }}\) & \({ }^{0.88}\) \\
\hline \({ }^{\text {ACLI27 }}\) & 0.15 & \({ }^{\text {BC }} 323\) & 0.60 & BU105 & \({ }^{1.80}\) & TiP42A & 0.72 \\
\hline AC128 & 0.13 & \({ }^{\text {ec }} 327\) & \(0.1{ }^{-1}\) & BU105／02 & 1.90 & IN2069 & 0.14 \\
\hline AClizek & 0.25 & BC328 & \(0.10^{*}\) & BU126 & \(1.50{ }^{\circ}\) & IN2070 & 0.18 \\
\hline \({ }^{\text {AC14 }} 14\) & 0.18 & \({ }^{\text {BCC337 }}\) & \(0.17{ }^{\circ}\) & \({ }^{\text {Br206 }}\) & 0.15 ． & IN4001 & 0.05 ． \\
\hline AC141K & 0.28 & \({ }^{\text {BC }} 338\) & \(0.17^{\circ}\) & BY207 & \(0.20{ }^{\circ}\) & In4002 & \(0.05^{\circ}\) \\
\hline AC142 & 0.18 & вC¢70 & 0.12 & － \(\mathrm{BYX}^{\text {36－－}}\) & & IN4003 & \(0.0{ }^{\text {\％}}\) \\
\hline AC：42k & 0.28 & BCr71 & 0.18 & 300 & \(0.12^{\circ}\) & IN4004 & 0.07 \\
\hline \({ }_{\text {ACP }}{ }^{\text {c }} 176\) & 0.16 & BCY72 & 0.12 & 600 & \({ }^{0.155^{\circ}}\) & IN4005 & \(0.08{ }^{\text {P }}\) \\
\hline  & － 0.28 & 80115 & － 0.55 & 900 & － \(0.11^{\circ}\) & IN4006 & \({ }^{0.080}\) \\
\hline  & \(\stackrel{0.25}{ }\) & \({ }^{80131} 8\) & 0.36
0.40 & 8y＞\({ }^{1200}\) & 0.21 & in 4007
2N695 & 0.14 \\
\hline AC188 & 0.18 & 80135 & －． 36 & 300 & 0.50 & 2N697 & 0.12 \\
\hline  & － 0.28 & \({ }^{80136}\) & 0.38 & 600 & 0．565 & 2N706 & 0.10 \\
\hline \({ }_{\text {AD } 142}\) & － 0.50 & － 80137 & －0．48 & ， 1200 & \({ }^{0.85}\) & 2 N 929
2N930 & \({ }_{0}^{0.14}\) \\
\hline AD143 & 0.48 & \({ }_{80139}\) & 0.58 & \(82 \times 61\) & Serres & \(2 \mathrm{Nil3} 1\) & 0.15 \\
\hline \({ }^{\text {AOP }} 149\) & 0.45 & B0181 & 0.86 & Zeners & 0.20 & 2 N 1132 & 0.18 \\
\hline \({ }_{\text {AD }}^{\text {AD } 16162}\) & － 0.35 &  & \({ }_{0}^{0.92}\) & \(82 \times 83\)
\(82 \times 88\) or
Serie & & 2N1304
2Nt 305 & 0．4．45 \\
\hline Al102 & 0.95 & \({ }_{80232}\) & 0.80 & zeners & 0.11 & 2 N 1711 & 0.18 \\
\hline \({ }^{\text {All }} 103\) & 0.93 & 80233 & \(0.48{ }^{5}\) & \({ }^{\text {c } 1064}\) & 0.40 & 2 N 2102 & 0.44 \\
\hline  & 0.20
0.20 & 80237 & － \(0.55^{\circ}\) & C1068
\(C 1060\)
C10 & －0．45 & \({ }_{2}^{2 N 2369}\) & 0.14 \\
\hline AFY 16 & 0.20 &  & \({ }^{0.200}\) & \({ }_{\text {c }}\) & \({ }_{0}^{0.35}\) &  & \({ }^{0.14}\) \\
\hline AF117 & 0.20 & 8 BY 20 & 0．80 & CRS1 05 & 0.25 & 2 N 2646 & 0.50 \\
\hline AF118 & 0.50 & BDY38 & 0.80 & CRS1 10 & 0.25 & 2 N 2905 & 0.18 \\
\hline AF 139 & 0.35 & 日0y60 & 1.70 & CAS1 20 & 0.38 & 2N2905A & 0.22 \\
\hline \({ }_{\text {ACL }}^{\text {Af } 239}\) & O．37 & \({ }^{80} \mathrm{BY61}\) & 1.65 & CFSI 40 & 0，40 & \({ }_{2}^{2 N 2926 R}\) & \({ }^{0.10}\) \\
\hline \({ }_{8 C 1078}^{\text {BCL }}\) & \({ }_{0.16}\) &  & \begin{tabular}{l}
1.15 \\
\(\mathbf{2 . 5 2}\) \\
\hline 1
\end{tabular} & CASt 600 & \({ }_{0}^{0.65}\) & \({ }_{\text {2N2926r }}\) & \({ }^{0.090^{\circ}}\) \\
\hline \({ }^{8 C 108}\) & 0.13 & B0r9a & 2.14 & Cas3 10 & 0.45 & 2 N 2926 G & \({ }^{0.10}\) \\
\hline \({ }^{\text {BC109 }}\) & 0.14 & B0Y95 & 2.14 & Cas3 20 & 0.50 & 2 N 3053 & 0.15 \\
\hline \({ }_{\text {BC1 }} 1097\) & \({ }_{0} 0.12\). & \({ }^{\text {B0Y96 }}\) & \({ }_{3}^{4.63}\) & CRS3 40 & \({ }^{0.80}\) & \(2{ }^{2} 3054\) & 0.40 \\
\hline  & \({ }^{0.19}\) &  & 3．93
3.56 &  & －\({ }_{0}^{0.85}\) & \({ }_{2}^{2 N 3055}\) & － \\
\hline \({ }_{\text {BC }} 126\) & \(0.20^{\circ}\) & \({ }_{8 F 178}\) & 3．28 & M M 481 & \({ }_{1}^{1.05}\) & \({ }_{2} \mathrm{~N} 3442\) & 1.20
1.20 \\
\hline \({ }^{\mathrm{BC} C 141}\) & 0．28 & BF179 & 0．30 & mj490 & 0.90 & 2 N 3525 & 0.75 \\
\hline \({ }_{8 \text { 8C143 }}\) & － 0.23 & \({ }_{8}^{8 F 194}\) & \({ }^{0.10 .}\) & M 4910 & 1.18 － & 2 N 3570 & 0.80 \\
\hline \({ }_{\text {BC }}\) 44 & 0.30 & BF196 & \(0.12{ }^{\text {P }}\) &  & \({ }_{0.60}\) & \({ }_{2}\) N3703 & \(0.10^{\circ}\) \\
\hline BC147 & \(0.08{ }^{\circ}\) & BF 197 & 0.12 － & MJE520 & 0.45 & 2N3704 & \(0.10^{\circ}\) \\
\hline \(\mathrm{BC}^{1} 148\) & 0.09 ． & BF224， & \(0.18{ }^{\text {0 }}\) & MJE521 & 0.55 & 2 N 3705 & \(0.10^{\circ}\) \\
\hline \(\mathrm{BC}^{149}\) & \({ }_{0}^{0.255^{*}}\) & BF244 & \({ }^{0.17}{ }^{0.30}\) & OA5 & \(0.50^{\circ}\) & 2 N 3706 & \({ }^{0.10}\) \\
\hline \({ }_{\text {BC }}^{\text {BC } 152}\) & 0.18 ． & \({ }_{86258}^{\text {日F257 }}\) & & OA9\％ & \({ }_{0}^{0.088}\) & \({ }^{2} \mathrm{~N} 3714\) & 0．10 \\
\hline \({ }_{8 C 15}{ }^{\text {BCL }}\) & 0.08 ． & \({ }_{88357}\) & 0.32 & \({ }_{\text {OC4，}}\) & \({ }_{0}^{0.15}\) & \({ }_{2}\) N3715 & 1.15 \\
\hline \({ }_{\text {BC }} 158\) & \(0.08{ }^{\circ}\) & bfw60 & \(0.1{ }^{\circ}\) & OC44 & 0.32 & 2 N 3716 & 1.25 \\
\hline BC159 & \(0.09{ }^{\circ}\) & 日F×29 & 0.26 & 0 Cas & 0.32 & 2N3771 & 1.80 \\
\hline BC160 & 0.32 & bF× 30 & 0.30 & 0C70 & 0.30 & 2 N 3772 & 1.60 \\
\hline \({ }_{80}^{8 C 161}\) & 0．38． & \({ }^{\text {日r }} \times 8 \times 84\) & 0．23 & 0 C 71 & 0.35 & 2 N 3773 & 2.10. \\
\hline \({ }_{\text {BC1 }}{ }^{\text {Cl } 1868}\) & 0．09． & \({ }_{\substack{\text { Bra } \\ 8 \times 8 \times 88}}\) & － 0.25 & \(\mathrm{OCl}^{\mathrm{O}} \mathrm{O}\) & 0.22 & \({ }_{2}^{2 N 3819}\) & \({ }^{0.288^{\circ}}\) \\
\hline  & \({ }_{0}^{0.110}\) &  & 0.20
0.20 & －\({ }_{\text {Of84 }}^{\text {OC84 }}\) & \({ }_{0}^{0.46}\) & － \(\begin{aligned} & 2 \mathrm{~N} 3904 \\ & 2 \mathrm{~N} 3906\end{aligned}\) & 0．14． \\
\hline \({ }_{8 C 183}\) & 0.10 & bFY51 & 0.18 & SC40A & 0.73 & \({ }_{2} \mathrm{~N} 4124\) & 0.14 \\
\hline \({ }_{8 C 18183 L}\) & 0．10， & \({ }^{\text {BFF5 } 24}\) & 0．19 & \({ }_{5 C 408}\) & 0.81 & 2 N 4290 & 0.12 \\
\hline \(\mathrm{BCH}^{\text {ect }} 8\) & 0.11 ． & \(8 \mathrm{BrY64}\) & 0.35 & SC400 & 0.98 & 2 N 4348 & 1.30 \\
\hline  & 0．11． & \({ }_{8}^{8 F 990}\) & －0．65 & SC40F & \({ }_{0}^{0.65}\) & \({ }_{2}^{2 N 4870}\) & － \\
\hline BC 212 & \(0.11{ }^{\text {P }}\) & bry 39 & 0.40 & SC418 & 0.70 & 2 N 4919 & 0.70 \\
\hline  & \({ }_{0}^{0.11^{\circ}}\) & \({ }_{\text {BSX }}^{\text {BS } 20}\) & － 0.16 & \({ }_{\text {SCA1 }}\) & 0．85 & 2 N 492 O & 0．50 \\
\hline \({ }_{\text {BC2 }}\) & \({ }^{0.12}{ }^{\text {0．}}\) &  & － 0.18 & \({ }_{\substack{\text { Sca } \\ \text { ST }}}\) & \({ }_{0}^{0.80}\) & 2N4922 & \({ }^{0.58 .}\) \\
\hline \({ }_{\text {ac }} 114\) & \(0.14{ }^{\text {．}}\) & BSY95A & 0.12 & tip 29a & 0.44 & 2N5060 & 0.25 ． \\
\hline \({ }_{\text {BC2 } 2142}\) & 0.14 ． & \({ }^{\text {BT }} 106\) & 1.00 & tip 30A & 0.52 & 2N5061 & 0．28． \\
\hline \({ }^{8 \mathrm{BC} 237}\) & 0．16． & \({ }^{\text {BT }}\) BT107 & 1.80 & TIP31A & 0.54 & 2 N 5062 & 0．30． \\
\hline вС300 & 0.34 ． & \({ }_{\text {BT1 }} 109\) & 1.00 & T1P34 & 1.05 & 2N5496 & 0.65 \\
\hline
\end{tabular}


92 BROAD STREET．CHESHAM，BUCKS．Ṫel．［02405］ 75154
VAT－Please add \(8 \%\) except items markea＂which are \(121 / 2 \%\) P\＆P 20p．Overseas 80p
ACCESS WELCOME

\title{
(4) TMATIPIS \(=\) ELEATMDTISSm \\ \\ 58.60 GROVE RD. \\ \\ 58.60 GROVE RD. WINDSOR,BERKS WINDSOR,BERKS \\ \\ SL4 1HS. \\ \\ SL4 1HS. \\ TEL. 54525
}

SE


\section*{FGST SERVME \\  \\ BRIGHT DI.707 COM ANODE \&}


RED LEDS ID.

\section*{}

TOP DISCOUNTS


NEW LOW PRICES.









Full spec devices

\author{
Tan
}
 Hen disco triac 15 SA 400 E2* CAPACTITORS 22 2pt -. 01 5p
 potent romiltras ab etc 20 D Hentiove
 SWITCHES SPST 20p Dpdt 29
GAS DETECTOR TGS 308 etcos 4

\section*{vero}
varo o., prtrec coprectan \(33 \times 17^{-1}\) \&2 Face cuttir 65 p .



ANUFACTURERS EXCESS STOCKS

DIL SOCKETS PROFESSIONAL, QUALITY

DA10
Full spec devices


\section*{The Finest}

The "S. K.A." Plastic Keyboard was developed by Kimber Allen Lid in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted.
The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)
\begin{tabular}{lll} 
GJ-SPCO: & 24 p each & GE-4 pairs : 45 p each \\
GB-2 pairs: & 27 p each & GH-5 pairs \(: 57 \mathrm{p}\) each \\
GC-3 pairs: & 36 p each & \(4 \mathrm{APS}-\) SPCO \& 3 prs: 53 p ea
\end{tabular}

We also stock kits and PCBs for the P.E. Synthesiser, P.E. Joanna (electronic piano), P.E. Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p).

PHONOSONICS

\section*{DEPT. WW72, 22 HIGH STREET SIDCUP, KENT DA 14 6EH}

\section*{KEYBOARDS}


\author{
U.K. POST \& HANIILING: \\ Keyboards: \(£ 1.50\) each Contacts: \\ Orders under £15.110: 25p \\ Orders over £15.00: 50p
}


37 Note C-C Keyboard : £24.85
49 Note C-C Keyboard £29.50
61 Note C-C Keyboard £34.50

VAT: Add \(121 / 2 \%\) to final total on all U.K. orders EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNEL ISLES \& B.F.P.O. classify as Export.

MAIL ORDER AND C.W.O. ONLV - SORRY BUT NO CALLERS PLEASE
Prices are correct at time of Press, E. \& O.E. Delivery subject to availability



Spain United Arab Emirates New Guinea ssrael Guernsey Cyprus Belgium Uganda Brunei

\section*{POWERTRAN wesmosmes ELECTRONICS}

\section*{HI-FI NEWS 75W / CHANNEL AMPLIFIER}


Pack Price 1. Fiervilass priatodeircen board for powor supply Sol of rasistars. capacitors. sacondary fusas. sem-condsctors lor power supphy . . . . . . © \(\mathbf{£ 4 . 6 0}\) 13. Sen of mixcollaneous parts including Din skis. malas mpot zut, fuss moter. inior-cennecting twis. conifrol lachs. ............................. £5.35
 thecta pand mind all lrackets. fixinin Parts. itc. \(£ 7.30\)


2 mech of packs \(1-7\) melmelva are requirsed for complete derm sydom. Tolal cast of Individally purchased
```

Pack
2 Sen of resisters. capscitters. Wr|-sats for power inf
3. Sut al zomicumctory for power amp

```


```

 pro-m
 Solmy low ma.................. Es.40
 pro-mp...................... £2.40
    ```

```

 9. Set 4 mush-urton switches. rotary mede
 10. Teredal irmaiormer compoto with magnotic
    ```


```

Designed in response to demand for a tuner to complement the world-wide The Wireless World published original circuit has been developed further for toroidal transformer and integrated regulator. For long term stability meta oxide resistors are used throughout

```
```

Puek

1. Fibrupass pritad beard for treat ond Price.
```





```

suction curaich fihar E8.50

```

```

6. Sef al motul axide rexiaters. capeciors. cormel
7. set al trateders Ifn inte............. E2.60

- 12.90
B. Set of campeasis ler channel selactor swith madut imetation filireqgass primed circeit beard push-vitien switches. kacos. Lells. protel sajusier

9. Futction swich. io worn tunion poientiometer, hnobs
```

``` printad elresill baard . . . . . . . . . . . . . . 8.45
``` acclaimed Linsley Hood 75W Amplifier. this kit provides the perfect match. and mon ins oustanding slinhe unit and features a pre-aligned front
 pre-selection. Frequencies are indicated by a frequency mer by push button indicators, Frequencies are indicated by a requency meter and shding LED incorporates active filters for "birdy"" suppression and power is supplied via a
Prica

12. Sen of capseitors, rectifiers, valiaga rapulator tor

13. set ol miscelawews parts. incluing sockats. luss
14. Sof of metal work-comnacting wire, atc. .. £1.50
14. Sot of metal work parts including silk screen printed indicsior panel insert. internal screen. lixing parts. mc. .................................... \(\mathbf{1 7 . 5 0}\)

16. Teak cabinet \(18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots \ldots .\).

Dine each of packs \(1-16\) inclusive are required lor compiete stiereo FM tuner. Tdtal cos! of individu ally pur chased
packs . . . . . . . . . . . . . . . . . . . . . \(\quad\) ¢76.85
in H1-F1 News there was published by Mr, Linsley-Hood a series of four articles (November, 1972-February, 1973) and a subsequent follow-up performance which has as its principal feature an ability to supply troma direct coupled fully protected output stage. power in excess of 75 watts whilst maintaining distortion at less than \(0.01 \%\) even at very low power levels The power amplifier is complemented by a pre-a mplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the equalization stage and tone control stage. positions where mos conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition requencies of the tone controls and the varable slope of the scratch filter here is a choice of four inputs, wo equalized and iwo linear, each having has been made practual by highly compact PCBs and a specially designed has been made practical by highly compact PCBs and a specially designe
toroidal transformer

\section*{FREE teak case with full kits \\ arracte ouv \(£ 73.90\)}

WIRELESS WORLD FM TUNËR

FREE teak case wit full kits
\&rmenemen \(\mathbf{E 6} 6.75\)
NEW KIT!
LINSLEY-HOOD CASSETTE DECK

Published in Wíreless World (May, June. August 1976j by Mr. Linsley-Hood, this design. although straightforward and relatively low cost nevertheless provides a very high standard of performance. To permit circuit optimization separate record and replay amplifiers are used, the latter using a discrete component front-end designed such that the noise fevel is below that of the tape background. Push button switches are used to provide a choice of equalization time constants, a choice of bias evels and also an optionsed is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of operation. Speed control and automatic cassette ejection are both
 operation. Speed control and sutomatic cassette ejection are both transformer and uses metal oxide resistors throughout offers an excellent match for the Wireless Wortd Tuner and the Linsley-Hood 75 Watt Amplifier

\section*{PRICE STABILITY}

Orcer with contidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices All resistors except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts.

Fach Slerse PCB |accommodates 2 rep, Perse 2 Pres
. amps. 2 maler amps. bias/erase asc. reter 2 rec. 35 .
anps. 2 maler amps. bias/orase asc. relayles 3.35
2. Steree set of capiters. m.0. resisters.
potantimaters tor abave. . . . . . . . . . . 59.20
3. Star mot sel of semiceondaclers lor above. . E8.90
4. Micisiart roiay with socket........... E2.45
circuits compennts for solenoid. speed centrol
Circuits L........................... E3.29
7. Furction switck, tusbis . . . . . . . . . . . . \(\mathbf{£ 1 . 6 0}\)
8. Dual VU meter wilh illuminating lamp ... \(\mathbf{E 7 . 2 0}\) Taroital traastarmer with E.S. screen prim.

\section*{SPECIAL PRICE FOR}

\section*{COMPLETE SETS}

Pack
Sol of capacitors. Pica tor power supphy Pawertraa desime! ragulater
 and iscellaneens parts. inalimian suchets. tuse Sot of eathuart laclection wirt. atc. © \(£ 2.50\) matahwark hackolimy silt serotined facl panel. internal scress. fiximy prots. atc. . 87.10 3. Construction neten … .............. \(\varepsilon 0.25\) 4. Tuain cam of packs \(1-14\) meluaive 83.85 required for compote starse cassetto dock. Totat cost of individually purchased packs

Further details of above given in our FREE LIST
DEPT. WW2
EXPORT ORDERS: No VAT charged. Postage charged at actual cost plus 50 p㲘 No VAT charged. Postage charged at actual cost plus 50 p Intemational Money Order in sterling
SECURICOR DELIVERY: For this optional service (U.K. Mainland only) add
E2.50 (VAT INC.) per kit. \(121 / 2 \% \star\) surcharge for VAT. Carriage free
U.K. ORDERS. Subject to \(12 \%\). 2. MAIL ORDER ONLY. (楽r at current rate if changed

\section*{POWERTRAN ELECTRONICS}

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NN Indonesia Brazil Switzerland Canada Saudi Arabia New Zealand Norway Iceland Sweden


T20 \(\mathbf{+ 2 0}\) and our new \(\mathbf{T} \mathbf{3 0}+\mathbf{3 0}\) 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Pracical Wireless the Texan was an immediate success Now developed further in our laborationes to include a Toroidal transformer and additional
improvernents, the slimline \(+20+20\) delivers 20 W per channetof true Hi-Fiat exceptionallylow cost. he design is based on a single F/Giass PCB and features all the normà facilites found on quality amplifiers, including scratch and rumble filters, adaptable imput selector and head phones socket. In o follow up anticle in Practical Wireless funher modifications were suggested and these have beer incorporated into the \(T 30+30\) These ind lude RF interference filters and a tape monitor facility
Power output of this new model is 30 W per channel
\begin{tabular}{|c|c|c|}
\hline Pack & T20 & 530 \\
\hline 1. Sel of low nelse resistors & 1.40 & 1.50 \\
\hline 2. Set of small capacitors & 2.20 & 2.80 \\
\hline 3. Sel of powar supply capac hors & 1.90 & 2.30 \\
\hline 4. Set of misceliantous parts & 3.20 & 3.20 \\
\hline 5. Ses of elida. maios. P.B. En witcies & 1.20 & 1.20 \\
\hline 6. Sell of pots. zalactor switc il & 2.80 & 2.80 \\
\hline 7. Set of semicemutiors. ICs . shits. & 7.25 & 7.75 \\
\hline
\end{tabular}

SPECIAL PRICES FOR COMPLETE KITS!


\section*{2 NEW TUNERS!}

WW SFMT II
Following the success of , pur Wireless World FM Tune, kit we are now pleased to introduce of ir new cost reduced model. designed to
complement the \(T 20\) and \(T 30\) amplifiers The frequency meter of the more advanced model has. been omitted and the mechanics simplified more advanced model has. been omitted and the mechanics simplitied. value for money. Faciliti ss included are switchable afc, adjustable. switchable muting. channel selection by slider or readily adjustable pre-sei push-button controls and \(\mathrm{LI} \equiv \mathrm{D}\) tuning indication. Individual pack prices in our tree list


CONVERT NOW TO QUADRAPHONICS!


SQM1 - 30

KIT PRICE \(£ \mathbf{£ 7 . 1 5}\)
㲘 design Sultable for driving these ampl ifiers is the Bailay Burows pre-amply of our own arcuit board, tor the stereo version of it teatures 6 inputs scratch and rumble filters and hending to get the best whit of may be either cotary or speakers, we also offer an active ting for those described by D C Read, which soliss til le output of each channel an active fither system three channeis each of which is ft id to the appropriate speaker by its own powe ampditer The Read/Texas 20 W or any 01 our other kits are suitable for these For rape
systems a set of three PCBs have been prepared for the integrated circuit based. high periormance stereo Stuart de sign Detall 3 of Component packs dre in our free list
30W Barley Amplifier
BAIL Pk 2 Resisstors. Capactiors. Potentı ometer set
BAlL Pk 3 Semiconductor ser
OW Linsley Hood Class AB
LHAB Pk \(1 \mathrm{~F} / \mathrm{Glass} P \mathrm{PCB}\)
LHAB Pk 2 Resistor. Capacior. Potention veter set
LHAE PK 3 Semiconductor sel
Regulator Power Sypply
60VS Pk \(\dagger\) F/Glass PCB
\(\begin{array}{lll}\text { 60VS Pk } & 2 \text { Resistor. Capacitor set } \\ \text { 60VS Pk } & 3 \text { Semiconductor set }\end{array}\)
GOVS Pk 6A Torondal transtormer (tor use with Bailev)
GOVS Pk
6 S Toroudal transformer (tor use with
6OVS Pk 68 Torndal transformer (for use with 20 W LH)
Barley Burrows Stereo Pie-A
BBPA Pk \(1 \mathrm{~F} /\) Glass PCB
B8PA Pk 2 Resistor, capachor semicondur :tor set
BBPA Pk 3R Rotary Potentometer sel
BBPA Pk 3 Slider Porentometer set

FILT Pk 2 Resistor Co 81.40
FILT Pk 3 Semiconductor set
2 off Pks \(1,2.3\) rqd tor stereo sctive filter : whsterm
Read/Texas 20 W Amp
READ Pk /F/Glass PCB
READ Pk 2 Resistisor. PCB
READ Pk 3 Semiconductor ser
6 off pks \(\uparrow 23\) required for st
Stuart Tape Recorder
TRRP Pk 1 Reptay Amp F/Glass PCB
TRRC Pk 1 Recard Amp F/Glass PC TRRC Pk 1 Record Amp F/Glass PCE
TROS Pk 1 Bias/Erase/Stalluzer F/Glass PC!

\section*{EXPORT NC) PROBLEM}

With 100s of tittes now avaliable no longler is there any problem over suitable software No problems with hardware either. Ou of your existing amplifier and duges two additional speakers at 30W per channel A full complement of controls including volume. bass, treble and balance are provided as are comprehensive switching facilities enabling the unit to be used for either front or rear channels, by-passing the decoder for stereo-only use and exchanging left and right channels The SQ
matux decoder is based upon a single iniegrated cincuit and was designed by CBS whist the power and tione control sections are identical to those used in our \(130+30\) amplifier which the SOM1.30 matches perfectly. Kit price includes CBS licence fee


\section*{SQ QUADRAPHONIC DECODERS \\ Feed 2 channels 1200.1000 mv as obtamable trom most preamolifiers or amplifer}
tape monitor outters) into any one of our 3 decoders and take 4 channets out with no overal! signal level reduction On the logic entanced decoders volume Front-Back \(\overline{\mathrm{F}} \overline{\mathrm{F}} \overline{\mathrm{R} F}\) balance \(\overline{\mathrm{L}} \mathrm{B}-\overline{\mathrm{R}} \overline{\mathrm{B}}\) balance and Dimension these state-of-the-art circuits used under licence from CBS are offered in \(k\) capacitors, metal oxide resistors and fibre-glass PCEs designed for edge of superior quality with close tolerance connectorinsertion All kit prices includè 1 Basic matrix decoder with fixed 10.40 blend All components. PCB \(€ 5.90\) 11 Full logic controlied decoder with wave matching and front back logic for enhanced channel separation All
components PCB L2A. More advanced full logic decoder with "variable blend" for increased front back separation. All com . \(£ 22.60\) L3A Decoder similar to L2A but with discreet component front end with high precision 6 -pole ohase shift networks for
increased frequency response All compunents (carbon film resistors), PCB .
\(\mathbf{£ 2 5 . 9 0}\) Also avalable with MOnse All compunents (carbon film resistors). PCB
SEMICONDUCTORS as used in our range of quality audio equipment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2 N 599 & ¢0.20 & 40361 & ¢0.40 & BD529 & c0.55 & MJE521 & ¢0.60 & & \\
\hline 2N1613 & ¢0.20 & 4036 ? & ¢0.45 & B0530 & c0.55 & mu'saus & \({ }_{6} \mathbf{6} 0.25\) & IIP30C & \({ }^{60.50}\) \\
\hline 2N1711 & \(\mathrm{c}_{0.25}\) & BC 107 & ¢0. 10 & 80756 & ¢1.60 & MPSA12 & \({ }_{60.35}\) & TIP41A & \({ }_{\text {co. }}\) \\
\hline 2N2926G & ¢0.10 & BC. 108 & ¢0.10 & BF257 & ¢0.40 & MPSA14 & E0.30 & TTP42A & ¢0.80 \\
\hline 2N3U55 & ¢0.45 & \({ }^{8 C 1} 109\) & co. 10 & BF259 & ¢0.47 & MPSA55 & ¢0.25 & Tipale & ¢0.75 \\
\hline \(2 \mathrm{~N} 344 \%\) & ¢1.20 & BC 109 C & c0. 12 & EFF39 & c0. 30 & MPSA65 & \({ }_{60.35}\) & TIP42B & co.e0 \\
\hline 2N3711 & ¢0.09 & BC) 25 & ¢0.15 & bertg & ¢0 30 & MFSA66 & ¢0.40 & 1N914 & [0.07 \\
\hline 2N3904 & ¢0. 17 & BC, 26 & ¢0. 15 & BFY5, & £0. 20 & MPSU05 & ¢0.50 & 1N916 & E0.07 \\
\hline 2N3906 & ¢0. 20 & BC182 & ¢0. 40 & BFY52 & ¢0. 20 & MPSU55 & ¢0.50 & 15920 & ¢0.10 \\
\hline \(2 \mathrm{Na062}\) & ¢0.11 & BC212 & ¢0. 12 & Ca304n & £0.70 & SBA750a & ¢1.90 & & \\
\hline 2 N 4302 & ¢0.60 & 日a, 3 k & ¢0. 10. & (P1186 & ¢6.50 & St301 & E1.30 & & \\
\hline 2N5087 & ¢0.25 & BCF12k & c0.12 & MC1310 & ¢2. 20 & SL3045 & ¢1.20 & filters & \\
\hline 2N5210 & ¢0.25 & BC1821 & c0.10 & mC1331 & E1.05 & SN72741P & co. 40 & FM4 & \(\underline{81.00}\) \\
\hline 2N545/ & ¢0.45 & \(8 \mathrm{BC1841}\) & ¢0. 11 & MC1741C6 & ¢0. 65 & SN72748P & & SFG 10 7MA & E1.50 \\
\hline 2N5459 & ¢0.45 & 8 C 212 l & ¢0.12 & mfeathe & ¢0.95 & TH209 & co. 20 & Sfio tha & \\
\hline 2N5461 & ¢0.50 & BC2141 & c0. 14 & M \({ }^{\text {a }}\) 8. & ©1.20. & TIP29A & f0.40 & & \\
\hline
\end{tabular}

Our Export Department will be pleased to advise on postal costs to any country in the world Some of the countries to which we sent kits in 1976 are shown
Tunisia Germany IVauru Hong Kong Australia Eire Gambia Denmark France Muscat \& Oman


QUADRAPHONIC KIT MODULES
The following modules, currently being described in Wireless World, are oftered,
Each kit comprises of glass fibre PCBs and Components. Each module functions
independently, but a universal system may be constructed by means of a master switch


WW-045 FOR FURTHER DETAILS


 Please add 25p. Overseas add extra for airmail Minimum order
£1.00 WINTER JALE:

\section*{74 SERIES TTL ICs}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type} & \multicolumn{2}{|r|}{Quantity} & \multirow[t]{2}{*}{Type} & \multicolumn{2}{|r|}{Quantity} & \multirow[t]{2}{*}{Type} & \multicolumn{2}{|r|}{Quantity} \\
\hline & 1 & 100 & & 1 & 100 & & 1 & 100 \\
\hline & Ep & £p & & Ep & Ep & & £ \(p\) & E \(p\) \\
\hline 7400 & 0.09 & 0.08 & 7448 & 0.70 & 0.68 & 74122 & 0.45 & 0.42 \\
\hline 7401 & 0.11 & 0.10 & 7450 & 0.12 & 0.10 & 74123 & 0.65 & 0.62 \\
\hline 7402 & 0.11 & 0.10 & 7451 & 0.12 & 0.10 & 74141 & 0.68 & 0.65 \\
\hline 7403 & 0.11 & 0.10 & 7453 & 0.12 & 0.10 & 74145 & 0.75 & 0.72 \\
\hline 7404 & 0.11 & 0.10 & 7454 & 0.12 & 0.10 & 74150 & 1.10 & 1.05 \\
\hline 7405 & 0.11 & 0.10 & 7460 & 0.12 & 0.10 & 74151 & 0.65 & 0.60 \\
\hline 7406 & 0.28 & 0.25 & 7470 & 0.24 & 0.23 & 74153 & 0.70 & 0.68 \\
\hline 7407 & 0.28 & 0.25 & 7472 & 0.20 & 0.19 & 74154 & 1.20 & 1.10 \\
\hline 7408 & 0.12 & 0.11 & 7473 & 0.26 & 0.22 & 74155 & 0.70 & 0.68 \\
\hline 7409 & 0.12 & 0.11 & 7474 & 0.24 & 0.23 & 74156 & 0.70 & 0.68 \\
\hline 7410 & 0.09 & 0.08 & 7475 & 0.44 & 0.40 & 74157 & 0.70 & 0.68 \\
\hline 7411 & 0.22 & 0.20 & 7476 & 0.26 & 0.25 & 74160 & 0.95 & 0.85 \\
\hline 7412 & 0.22 & 0.20 & 7480 & 0.45 & 0.42 & 74161 & 0.95 & 0.85 \\
\hline 7413 & 0.26 & 0.25 & 7481 & 0.90 & 0.88 & 74162 & 0.95 & 0.85 \\
\hline 7416 & 0.28 & 0.25 & 7482 & 0.75 & 0.73 & 74163 & 0.95 & 0.85 \\
\hline 7417 & 0.26 & 0.25 & 7483 & 0.88 & 0.82 & 74164 & 1.20 & 1.10 \\
\hline 7420 & 0.11 & 0.10 & 7484 & 0.85 & 0.80 & 74165 & 1.20 & 1.10 \\
\hline 7422 & 0.19 & 0.18 & 7485 & 1.10 & 1.00 & 74166 & 1.20 & 1.10 \\
\hline 7423 & 0.21 & 0.20 & 7486 & 0.28 & 0.26 & 74174 & 1.10 & 1.00 \\
\hline 7425 & 0.25 & 0.23 & 7489 & 2.70 & 2.50 & 74175 & 0.85 & 0.82 \\
\hline 7426 & 0.25 & 0.23 & 7490 & 0.38 & 0.32 & 74176 & 1.10 & 1.00 \\
\hline 7427 & 0.25 & 0.23 & 7491 & 0.65 & 0.62 & 74177 & 1.10 & 1.00 \\
\hline 7428 & 0.36 & 0.34 & 7492 & 0.43 & 0.35 & 74180 & 1.10 & 1.00 \\
\hline 7430 & 0.12 & 0.10 & 7493 & 0.38 & 0.35 & 74181 & 1.90 & 1.80 \\
\hline 7432 & 0.20 & 0.19 & 7494 & 0.70 & 0.68 & 74182 & 0.80 & 0.78 \\
\hline 7433 & 0.38 & 0.36 & 7495 & 0.60 & 0.58 & 74184 & 1.50 & 1.40 \\
\hline 7437 & 0.26 & 0.25 & 7496 & 0.70 & 0.68 & 74190 & 1.40 & 1.30 \\
\hline 7438 & 0.26 & 0.25 & 74100 & 0.95 & 0.90 & 74191 & 1.40 & 1.30 \\
\hline 7440 & 0.12 & 0.10 & 74104 & 0.40 & 0.35 & 74192 & 1.10 & 1.00 \\
\hline 7441 & 0.60 & 0.57 & 74105 & 0.30 & 0.25 & 74193 & 1.05 & 1.00 \\
\hline 7442 & 0.60 & 0.52 & 74107 & 0.30 & 0.25 & 74194 & 1.05 & 1.00 \\
\hline 7443 & 0.95 & 0.90 & 74110 & 0.48 & 0.45 & 74195 & 0.80 & 0.75 \\
\hline 7444 & 0.95 & 0.90 & 74111 & 0.75 & 0.72 & 74196 & 0.90 & 0.85 \\
\hline 7445 & 0.80 & 0.75 & 74118 & 0.85 & 0.82 & 74197 & 0.90 & 0.85 \\
\hline 7446 & 0.80 & 0.75 & 74119 & 1.30 & 1.20 & 74198 & 1.90 & 1.80 \\
\hline 7447 & 0.70 & 0.68 & 74121 & 0.28 & 0.26 & 74199 & 1.80 & 1.70 \\
\hline
\end{tabular}

Devices may be mixed to qually for quanty

LINEAR IGs

NE555 Timer
NE556 Dual Time

\section*{I.C. SOCKETS}

TRIACS


\section*{ZENER PAKS}

400 mW
1 containing \(203 \mathrm{v}-10 \mathrm{v}\)
2 containing 2011 v -
DIACS
D32

\section*{RESISTOR PAKS}
\(62131 / 8 \mathrm{th} 100 \mathrm{ohm}-820 \mathrm{ohm}\)
6214 1/8th 1 K-8 2 K
162161/8th 100k
BUY ONE OF EACH
Special Price £1.60* the 4
\begin{tabular}{|c|c|c|c|c|}
\hline AC128 & 10p & BFY53 & 12 p & \\
\hline AC153K & 18p & OC44 & 12 p & \\
\hline AC176 & 19p & 0 C 45 & 12p & \\
\hline AC176K & 22p & 0 C 71 & 9p & \\
\hline AC187K & 22p & OC72 & 14p & \\
\hline AC188 & 12 p & OC81 & 14p & \\
\hline AC188K & 22p & ZTX107 & \({ }^{6} \mathbf{6 p}\) & 111E \\
\hline BC107 & 6p & ZTX108 & \({ }^{6} \mathbf{6 p}\) & OA47 \\
\hline BC108 & 6p & ZTX109 & * 6 p & OA81 \\
\hline BC109 & 6p & ZTX300 & \({ }^{7} \mathbf{7 p}\) & OA85 \\
\hline BC1 18 & *10p & ZTX301 & \({ }^{7} 7 \mathrm{p}\) & OA91 \\
\hline BC 154 & -16p & 2TX302 & -9p & OA200/BAX \\
\hline BC147 & \({ }^{8} 8 \mathrm{p}\) & ZTX500 & -8p & \begin{tabular}{l}
OA202/BAX \\
|N914
\end{tabular} \\
\hline BC148 & \({ }^{8} 8\) & ZTX501 & -10p & IN4148 \\
\hline BC149 & 8p & ZTX502 & -12p & - N 4001 \\
\hline BC 157 & -10p & 2N696 & 10p & IN4002 \\
\hline BC158 & -10p & 2N697 & 11p & IN4003 \\
\hline BC159 & -10p & 2N706 & 7p & IN4004 \\
\hline
\end{tabular}
V.A.T.

Add 8\% Add \(121 / 28\)
to items marked


VOLTAGE REGULATORS
MVR 7815
MVR 7812
MVR 7812
MVR 7815

OPTOELECTRONICS
L.E.D. DISPLAYS DL \(70703^{\prime}\)
DL \(74706^{\prime}\) L.E.D.s

TIL 209 RED \(125^{\circ}\)
FLV 117 RED 2"
PHOTO DEVICES
ORP 12
OCP 71 Pack of 5
1515
1520 fr .00

\section*{THYRISTORS}


\section*{DIY PRINTED CIRCUIT KIT}

CONTAINS 6 pieces copper laminate, box of etchant powder, measure, tweezers, marker pen, high quality pump drill, Stanley knife \& blades, 6 in metal rule.
Full easy-to-follow instructions
£7.80 £5.50


\section*{B/-PAK other audio equipment. \\ OÜR PRICE ONLY \\ \(£ 20.45\) \\ Fitted with Phase Lock-loop Decoder}

High quality modules for stereo, mono and

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls used with your existing audio equipment or with the BI-KITS STEREO \(\mathbf{3 0}\) or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

FET Input Stage - VARI-CAP diode tuning
- Switched AFC

Multi turn pre-sets
LED Stereo Indicator
Typical Specification
Sensitivity \(3 \mu\) volts
Stereo separation 30 db Supply required 20-30v at 90 Ma max.


Enjoy the quality of a magnetic cartriaye with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridg It is provided with a standard DIN
input socket for ease of connection Full instructions supplied
\(€ 2.85\)
(a)

POSTAGE 8 PACKING
Postage \(\&\) Packing add 25p unless otherwise shown. Add extra for airmail. Min. E1.00

\section*{STEREO 30}

COMPLETE AUDIO
\(7+7 \mathrm{~W}\)
R.M.S.


\section*{AMPLIFIER MODULES}

\section*{The AL20 and Al 30 units are} similar in their appearance and in heir general specification How ever, careful selection of the plastic ever, careful selection of the plastic range of output powers from 5 to

The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and car tridge tape players in the home.

Sensitivity for Rated \(0 / P-V s=25 v . R L=8 o h m i=1 K H z 75 \mathrm{mV}\). RMs
AL20 5w R.M.S. £2.95 AL30 10w R.M.S. £3.25

Frequency Response + idB 20 H
20 KHz Sensitivity of inputs
A top quality stereo pre-amplifier and tone control unit The six vides a choice of inputs togethe with two really effective filters for hin and low frequencies, plus tape

MK. 60 AUDIO KIT: Comprising K AL60's \(1 \times\) SPM80 and knobs 1 Kit pant pane on/off switch. neon indicator stereo headphone sockets plus RICE Booklel COMPLETE TEAK 60 AUDIO KIT Comprising Teak veneered cabinet size \(16^{3 / 4^{\prime \prime}} \times 111 / 2^{\prime \prime} \times 3^{3 / 4}\) ". Other parts include aluminium chassis heatsink and front panel and appropriate sockets etc KIT PRICE \(£ 10.70\)

20 KHz Sensitivity of inputs
1 Tape input 100 mV into 100 K ohms
1 dib from 20 Hz to 20 KHSupply \(-20-35 \mathrm{~V}\) at 20 mA

10 watts R.M.S \(\mathrm{f}=1 \hat{\mathbf{k}} \mathrm{~Hz} \mathbf{0 2 . 5} \%\)
Harmonic Distortion Po \(=3\) watts \(\mathrm{f}=1 \mathrm{KHz} 02.5 \%\)
Load Impedance \(8-16 \mathrm{ohm} \quad\) Size: \(75 \mathrm{~mm} \times 63 \mathrm{~m}\)
() Frequency response \(\pm 3 \mathrm{~dB}\) Po \(=2\) watts \(50 \mathrm{~Hz}-25 \mathrm{~Hz}\)

SPECIFICATION
Harmonic Distor Watts \(50 \mathrm{~Hz}-25 \mathrm{H}\)



\section*{AL6ノ 25 Watts (RMS)}
* Max Heat Sink temp 90C. * Frequency response

( 2.45 plus 62 p p \&p
TEAK CASE \(£ 5.25\) plus \(62 p p \& p\)
The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs ie high quality ceramic pick-up stereo tuner stereo tape deck etc Simple to install capable of producing really tirst class results, this urut is supplied with full insiructions. black front panel knobs min switch fuse and fuse holder and universa mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabine avalable ldeal for the beginner of the advanced constructor who requires Hi-Fi performance with minimum of installation difficulty (can be installed in 30

\section*{£16.25} 20 Hz to 100 KHz * Distortion better than 0.1 at 1 KHz Supply voltage \(\mathbf{1 5 - 5 0 v} *\) Thermal Feedback \(\star\) I atest Design Improvements \(\star\) Load \(-3,4.8\), or 16 onms Signal to noise ratio 80 db * Overall size 63 mm . 105 mm 13 mm .

\section*{\(£ 4.35\)}

\section*{Stabilised Power Supply Type SPM80}

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transtormer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size \(63 \mathrm{~mm}, 105 \mathrm{~mm}\). 30 mm . incorporating short circuit protection
Transformer BMTBO
\(£ 2.60+62 p\) postage
\(£ 3.75\)

Input valtage \(15-20 \mathrm{v}\) A C Output voltage 22.30 vDC OUR PRICE
 Transformer T538 £2.30


\section*{MARCONI TEST EQUIPMENT}

TF329G circuit magnitication meter
TF455E Wave analyser
TF801D RF signal generator
TF868 Universal bridge
TF995A/2 AM / FM generator
TF1041B V.T. Voltmeter
TF2200 Oscilloscope
TF1100 Sensitive v/voltmeter
TF1152A/1 RF power meter.
TF1245 Q-meter
TF1417 200 mHz frequency counter
TF1342 Low capacitarice bridge
TF1370 Wide-range RC oscillator
TF2163 UHF attenuator DC-1 GHz
TF2500 Af power meter
TF2600 Sensitive v/voltmeter
TF2604 Electronic voltmeter
TF2606 Differential DC voltmeter
TF2660 Digital voltmete
MARCONI TF995B/2. AM/FM GENERATORS.
\(200 \mathrm{kHz}-220 \mathrm{mHz}\) in 5 bands. \(0.1 \mathrm{uV}-200 \mathrm{mV}\). Continuously variable \(F M\) in two ranges to 75 kHz . Price and full spec upon request.
MUIRHEAD DECADE OSCILLATORS type 890A.
\(1 \mathrm{~Hz}-110 \mathrm{kHz}\) in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator. \(£ 135\).

\section*{ROHDE \& SCHWARZ EQUIPMENT}

Midget crystal clock type XSZ. BN15221 Selective UHF v/meter, bands \(4 \& 5\). USVF Selectomat. RF Voltmeter. USWV BN15221
Standard attenuator \(.0-100 \mathrm{db} \quad 0.300 \mathrm{mHz}\) DPR
UHF Signal generator type SCR
UHF Test receiver type USVD

\section*{P. F. RALFE ELECTRONICS \\ 10 CHAPEL STREET, LONDON, NW1} TEL: 01-7238753

NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first class operational condition and most items carry our three months guarantee. welcorne. Prices quoted are subject to an additional \(8 \%\) VAT


ADVANCE TCD500 Frequency diviriers to \(500 \mathrm{mH}_{7}\) £ 100

APT 504 Power supply 0.500 V a 250 mA £ 35 BRANDENBURG High voltage generator type S. \(0530 / 10\) 020 KV and MR50 type \(0-50 \mathrm{KV}\). 88 CAMBRIDGE 44228 Portable polentimer OM Model 2001 Mk in Digital volt
GERTSCH Frequency meter and deviation meter GR Standard sweep frequency generator \(400 \mathrm{kHz} \cdot \mathbf{~} \mathbf{2 3 0 - 1 0 0 0}\)
£48 Hewlett-Packard 612 signal generator 400.1000 mHz Hewlett-Packard 208A Battery powered oscillato \(5-500 \mathrm{kH} 2\)
Hewlet-Packard type 432A power meter
HEWLETT PACKARD 693D sweep osčillator £350 MEDISTOR fype A. 75 A Potentiometric microvoltmeter
PYE EHT scalamp voltmeter \(0-40 \mathrm{KV}\) £ 125
 RADIOME £160 SCHNEIDER type cf \(252 \quad 100 \mathrm{mHz}\) frequency \(\begin{array}{r}\text { countes } \\ \text { £ } 235\end{array}\) SCHOMANDL Frequency meter type FD SOLARTRON Pulse generator type G01101 2 £65 TEKTRONIX type 575 Transister curve trace TEKTRONIX 585A oscilloscope with 82 P! DC- 80 mHz

ADVANCE RF SIGNAL GENERATORS
\begin{tabular}{lr} 
E1 \(100 \mathrm{kHz}-60 \mathrm{mHz}\) & \(£ 30\) \\
\(0175-230 \mathrm{mHz}\) & \(£ 35\) \\
\(62100 \mathrm{kHz}-220 \mathrm{mHz}\) & \(£ 40\) \\
P1 \(100 \mathrm{kHz}-100 \mathrm{mzz}\) & \(£ 35\) \\
SG63A \(75-230 \mathrm{mHz} \mathrm{FM}\) & \(£ 75\) \\
\hline
\end{tabular}

SG63A \(75-230 \mathrm{mHz}\) E40

BRIDGE RECTIFIERS
following avanable
200 a at 12 Amps
£ 2.50

\section*{AVO MULTI-METERS}

Type Multi-minor Mk4 Light, small size instrument ( \(14 \times 9 \times 31 / 2 \mathrm{cms}\) ). Measures volts ranges \(10 \mathrm{~K} \Omega / \mathrm{V} . D C .1 \mathrm{~K} \Omega / \mathrm{V} A C\). Tested, and in

EDDYSTONE' TUNNG DIALS
Type 898 Drive unit. All complete with unmarked scale piate, fiywheel, knob. pointer. etc. This is a horizontal slide-rule type Brand new. boxed. With panel cuting
template List price is over E15. OUR PRICE ONLY
£8.50
BECKMAN TURNS COUNTER DIALS
Miniature type ( 22 mm diam.) Counting up to 95 turn
\(£ 2.50\) ameh
Wew 8 -hole paper-tape punches ..... \(£ 95\)
\(£ 95\)

MUFFIN INSTRUMENT COOLING FANS
Made by Rotron Holitand These aravery high quality,
guiet running fans specially designed for the cooling of all types of elecrronic equipment Measures \(4.5 \times 4.5 \times 1.5^{\prime \prime} \quad 115 \mathrm{VAC} 1\) equipment Mats. The list price of \(^{\text {W }}\) hese is over E1O each We have a quantity available brand new for only \(£ 4.50\) asch LOW-VOLTAGE POWER SUPPLIES
Manulactured by Harmer \& Simmons. England Variable from 12 to 20 V at 1 A Stabilised output
Housed ingrey finsh ventiated case \(£ 12.50\) each 500V TRANSISTORISED INSULATION TESTER
Ligitweight. small size ( \(13 \times 7 \times 4 \mathrm{cms}\) ). Reads insulation \(02-100 \mathrm{Mn}\) at 500 V pressure. Runs from
fitandard 9V.PP3. Brand new FRACMO Geared motors 24V AC. 0 5RPM 68A Torque 401 b in Price including starting capacitor CENTRIFUGAL TYPE Blowers 12 V .DC Outler diam 7 cms Overall diam 15 cms and 17 cms deep Very
powertu! fars
\(\mathbf{£ 9 . 5 0}\)



\section*{COMPUTER APPRECIATION}

\section*{86 High Street, Bletchingley, Surrey RH1 4PA. Tel: Godstone (088 384) 3221}

ASR 33 TELETYPE with 20 mA current loop interface: \(\mathfrak{E} 350\)
ASR 35 HEAVY DUTY TELETYPE with 20 mA interface, extended control
unctions and punch mechanically separate from printer: 350
Other ASCII coded TELETYPES available from 150
PDP 8L MINICOMPUTER with 12 K memory TTY interface and data MOTOROLA 6800 evaluation card assembled tested and with memory slots filled, \(£ 85.00\)
FLEXOWR Model 6840 9-track, phase-encoded magnetic tape drive \(£ 475\) writing math Model 2201 PROGRAMATIC. Ausomatic paper tape programmable control options; £385
FLEXOWRITERS Model SPD, etc, from \(\mathfrak{E} 120\). These machines are correspondence and for data prep The provision of an I/O socket makes
them a viable low-cost alternative to the Teletype for microprocessor evaluation Appropriate interfacing and code conversion are howeve
DATEK Model R40 READERS
ICL Model 2640 High-Speed photo-electric TAPEBRPE 110 High-Speed TAPE PUNCHES: 17800
EKCO 6-digit TTL COUNTER TIMERS having a wide variety of \(1 / 0\)NEW £48 00

DIABLO Model 31 DISC DRIVE with 12 MBII capacity £495
IBM Model 1056 CARD READER with \(\log \mid c\), etc. \(£ 68.00\)
MOHAWK Model MDS 1103 key-to-magtape encoder with on-line
PLESSEY Type 68/1669 memory planes \(16 \mathrm{~K} \times 13, £ 20.00\)

TAPE HEADS
Fí A BRAND NEW HEAD ANO TRANSFORM THE QUALITY OF YOUR TAPE PLAYER AN EXTENSIVE RANGE.ALWAYS IN STOCK ASK, FÖR OUR SHORT FORM CATALOGUE


STANDARD HEADS TO FIT MOST TAPE PLAYERS AT BULK DISCOUNT PRICES. ENCLOSE 15p P \& O WITH ORDER

MONO CASSETTE 90p STEREO CASSETTE E2.00 STEREO 8

\section*{CARTRIDGES \(E 1.00\)}

M/S CASSETTE
ERASE

\section*{MAIL ORDER PROTECTION SCHEME (Limited Liability)}

If you arder goods from mail order advertisars in this magazine. except for classilied advarlisemenis. and pay by posi in advance ol delivery. Wireless World will consider you for compensation it the atvertiser should hecome insolvent or bankrupl. provided
1. Yow have nol received the poods or had your monity raturned: and
. You write to the pubtisher of Wrrbless World explaining the pasition not earlier than 28 days trom the day you sent your order and nol later than 2 menths Irom thal day.
Please do net wait until the last moment io intorm us. When you write, we will tell you how to make your ctaim and whal evidence of payment is required.
We gearanise to ment ciaims trom readers made in accordance with the above procedure as soon as possibie after the adventiser has been dectared bankrupt or insolvent up io a limit of msolvent advertisers. Claims may be paid for higher amounts. or whan the above procedure has nol been complied with. at the discretien of Wireless World: but we do mol guarantee to do so in view of the need to sel same limit to this commilment and to tearn quickly of readers' difficultes.
This guarambe covers only advance paymants sent in direct rasponss to an advertisement in this magazine (not. for example. payments made in response to catalogues, etc.. received as a result of mswering such advertisemenis). Personat advertisements are excluded.


\section*{FAIRCHILD TIMEBAND LCDs}

TC4 11 Chrome \(£ \mathbf{2 8 . 9 0}\); TC4 \(\mathbf{1 0}\) Gold \(£ \mathbf{3 1 . 9 0}\) on leather strap; TC4 13 Chrome £33.90; TC412 Gold \(£ \mathbf{3 6 . 9 0}\) with matching bracelet (illustrated).
CASIO CASIOTRON X- 1 probably THE BEST WATCH IN THE WORLD. R.R.P \(£ 129.95\). OUR PRICE \(£ 98.50\). Full range of CASIO LCD from \(£ 44,50\).

IBICO. The full range of these quality Swiss LCDs from \(£ \mathbf{4 2 . 5 0}\). Ladies* Electronic watches from \(£ 19.95\).
SEND 10 p for our CATALOGUE Probably the widest range of electronic watches in Britain at the LOWEST PRICES. Prices include VAT at \(8 \%\) and P\&P. Free battery/s No quibble one-year guarantee
Access and Barclaycards welcome

\section*{TEMPUS}

Talk of the town
19/21 Fitzroy Street, Cambridge CB1 1EH Telephone: (0223) 312866


A full frequency range graphic equaliser YOU can afford!!
For JUST \(£ 38.85\) plus VAT Condensed Technical Spec You can tune out all unwanted Max. output: terminated to \(600 \Omega\) noises at seven different fre quencies!
Bring all your recordings, P.A., discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider!!
No more annoying amplifier noises - just clear, true sound! Frequencies from 60 Hz to 10 kHz ! Cut or boost each frequency by maximurn of 15 dB !
Hi and lo gain inputs.
Powered by just two PP3 batteries which last for ages. Or mains powered unit available. £49.95 plus VAT
Try it and you'll buy it - it will
change your concept of sound.
Trade enquiries welcomed.
\(10 \mathrm{~dB} \mathrm{~d}>1.6\) yolts peak to peak, 2.5 volts R.M.S. Signal to noise ratio: input terminated with 47 K resistor. All filters at max. better than - 70 dB . Frequency response: All filters at
central better than -2 dB . central better than \(\neq 2 \mathrm{~dB}\). Filter slope: Better than \(\pm 13 \mathrm{~dB}\) Filter ranges: Max. +15 dB at 60 , \(180,480 \mathrm{~Hz}, 1.2 \cdot 4.5\) and 10 kHz . To: E.S. Electranics, 2 Upper Fant Road, Maidstone, Kent. Please send me \(\square 1, \square 2, \square 13, \square 4, \square 5\) of your Graphic Equalisers.
cheque or postal order for \(£\) cheque of post 50 for for 2 having ordered and VA. P. \& D. on each that two batteries are included.
Name
Address

Tel.

TELERADIO sPECIALISTS IN DESIGNS by John Linslay Hood Example VERY LOW DISTORTION AUDIO OSCILLATOR
An ideal instrument for checking Hi i-Fi Amps

SINE AND SQUARE WAVE


REF AO1 13

Kit Price \(£ 17\)
Made, \(£ 21\) Tax \(8 \%\) Also available, THD Analyser, FM Sig Gen. AC Millivoltmeter. P S U Frequency Meter, etc. In addition we have amplifier designs by Blomley Linsley Hood, Bailey, Mullard, etc.

\section*{TELERADIO ELECTRONICS}

325 Fore Street, Edmonton, London, N9 OPE
Telephone: 01-807 3719
Closed Thursdays

\section*{8 DECADE RESISTANCE BOX}

\(\star\) Colour coded digits, \(\Omega\) yellow, \(K \Omega\) white, \(M \Omega\) red

\section*{TIME ELECTRONICS LTD.}

Botany Industrial Estate Tonbridge, Kent
Tel. Tonbridge (0732) 355993
WW - 013 FOR FURTHER DETAILS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \begin{tabular}{l}
GEARED MOTORS \\
100 R.P.M. 115 Ibs. ins.!!
\end{tabular} \\
\hline & & \\
\hline \multirow[t]{2}{*}{WHY PAY MORE?!
\(\qquad\)
\(\qquad\) 032 kg . SERVICE TRADING CO Petce \(\mathbf{5 5} 50\). VAT \& Pos: E6.48.)} &  & \\
\hline & \multirow[t]{2}{*}{} & \\
\hline \begin{tabular}{l}
TRIAC. Ayynheon tag symmetrical trac. Typer Tag \(250,500 \mathrm{~V} \quad 10 \mathrm{amp}\) \\
 Shenl Sulabie Diac 20 p.
\end{tabular} & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
0 to 60 MINUTES CLOCKWORK timer. \\

\end{tabular}} & \begin{tabular}{l}
AUTO TRANSFORMERS \\

\end{tabular} & BODINE TYPE N.C.I. \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
300 V.A. ISOLATING TRANSFORMER
\(\qquad\) \\

\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
HONEYWELL PUSH BUTTON PANEL MOUNTING MICRO SWITCH ASSEMBLY \\
Etr bank COmprises of a change-over faled a \\
0 amp 250 v. A.C Black knobs \({ }^{\prime \prime}\) dia. fixing \\
Three bank 60p. Mirn order 5 paces \(50 p\) \\
50p
\end{tabular}} & & \\
\hline & \multirow[t]{2}{*}{GENTS 4"' ALARM BELL.} & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
230 VOLT FAN ASSEMBLY \\

\end{tabular}} & & \multirow[t]{2}{*}{\begin{tabular}{l}
R.P.M. 230 voriAC Connmuousty rated Mig Myralex Ex.equis \\
P.M. \(230 / 240\) voit A. s. symerronous! Exx equipment \\
testerd and guaranteed ONLY 11.50 . Post 20
\end{tabular}} \\
\hline & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
21 WAY SELECTOR SWITCH \\
with reset coil \\
The ingenious electro mechanical device can be \\
any position. energising the reset coll \(230 / 240 v\) A C operation. Unit is mounied on swong chas
Complete with cover Pfice \(\mathbf{5} 5 \mathbf{5 0}\). P\&P 75 p
\end{tabular}} & * hy-light strcbe mk. IV & R.P.M. GEARED MOTOR. \(230 / 240\) voll 20 rp.m mato 00. Post 20p \\
\hline & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PRECISION CENTRIFUGAL BLOWERS 2300240 OaCO \\
M1g by Smiths indusinies Mmiature modei Series
SF/200 Size \(95 \mathrm{~mm} \times 82 \mathrm{~mm}\) aperture 38 mm \\

\end{tabular}} & \[
{ }^{*} \text { socin S. A. for tull dealals }
\] & \begin{tabular}{l}
REVERSIBLE MOTOR \\
 \\
Price \(\mathbf{\text { C3.25. P8PP } 7 5 p}\)
\end{tabular} \\
\hline & \begin{tabular}{l}
 \\
* FLUORESCENT TUBES \\
* 4 thi 40 war 66.00 Cala
\end{tabular} & Hec Mrior \(230 / 240 \mathrm{~V}\) A.C Mig by Smuhs E1: PRP 20 P \\
\hline  & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{BLOWER UNIT} & & \\
\hline & \multirow[b]{2}{*}{SQUAD LIGHT} & \multirow[t]{2}{*}{BENDIX MAGNETIC CLUTCH Superb exampte of electro-mechanics Main body
in iwo sections Coll section is fixed and has the" sleeve the drive section rotaring on the out perimeter When enpaged the transmission is
exurnely powerful Diameter "1/3" Tolal widit
\(1^{1 / 4} 24 \mathrm{VDC}\) op Price \(\mathbf{~} \mathbf{3 . 5 0}\) plus pRp \(45 p\)} \\
\hline miniature uniselector & & \\
\hline UNISELECT &  & \multirow[t]{2}{*}{TIME SLVITCH} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
MINIATURE ROLLER MICRO SWITCH Mon \\
 LEVER OPERATED 20 amps \(\mathrm{c} / 0 \mathrm{M} / 9\) oy Unimax USA
10 tor E4.00 plus 50 P PP (min order 10 )
\end{tabular}} & & \\
\hline & range of AC and DC relays avatlable from slock Phone & \multirow[t]{2}{*}{a.C. Mains MER UNIT} \\
\hline \begin{tabular}{l}
NEW HEAVY DUTY SOLENOID \\
 \\
appror \\
pull at 1.25
\end{tabular} & \multirow[t]{2}{*}{Colour wheel projector TYPE P150 INTACHANGE
\(\qquad\) nluchange nccessories and full ramge of lenses £33.70).} & \\
\hline & & (1) RHEOSTATS \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
insulation testers (NEW) \(\qquad\) \\
 \(\mathbf{5 0 0}\) VOLTS 500 megatms \(\quad \mathbf{£ 4 0 . 0 0}\) Post \(80 p\)
\(\mathbf{1 0 0 0}\) VOLTS 1000 megohms \(\mathbf{£ 4 6 . 0 0}\) Posi \(80 p\)
\end{tabular}} & \multirow[t]{2}{*}{} \\
\hline 240 A.C. SOLENOID OPER FLUID VALVE & & \\
\hline  & & \begin{tabular}{l}
PROGRAMME TIMERS \\
 \\
tor lighting eftects. displays
tested Simuliar to illustration \\
6 CAM model \(\mathbf{5 5 . 0 0}\) \\
2 CAM model \(£ 6.50\) \\
Posi 60p Asso available for 50 voli A C. operanon. Prices as above
\end{tabular} \\
\hline BRIDGMAN
ON: WA \({ }^{\text {ase. }}\) (iosed & S NOW OPEN & \\
\hline
\end{tabular}

 Stabilised Power Supplies 10 MHz Dual Trace 10 mV Sensitivity


WW - 050 FOR FURTHER DETAILS


\section*{The magnificent nine... an open and closed case for selecting Celestion.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Masat} & \multicolumn{2}{|c|}{Masauremenis} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Poww Hendicne Pook Muste} & \multicolumn{2}{|l|}{Suggettid Aenp Worte RMS} & \multirow[t]{2}{*}{Fequarcy} \\
\hline & Conamavim & Inchees & & & min & max & \\
\hline Ohrron 11 & 35*20:25 & 14*8*10 & 99 & 25 w & 15 & 30 & \(35 \mathrm{~Hz}-24 \mathrm{KHz}\) \\
\hline anten 15 & \(53 \times 24 \times 23\) & \(21 \times 91 \times 81\) & 42 & 30 w & 10 & 30 & \(30 \mathrm{Mt}-15 \mathrm{KHz}\) \\
\hline Onton 38 & O1 \(\times 35 \times 28\) & \(24 \times 14 \times 10^{4}\) & 35 & 40 W & 20 & so & \(40 \mathrm{Mz}-23 \mathrm{KHz}\) \\
\hline Orien 44 & 76 \(n 37 \times 25\) & \(30 \times 141 \times 14\) & 40 & 44 w & 20 & 50 & \(30 \mathrm{Kz}-43 \mathrm{KHz}\) \\
\hline Ditsom 26 & \(81 \times 36 \times 28\) & 32 \(\times 14 \times 11\) & 2.9 & 60 W & 15 & 60 & \(20 \mathrm{~Hz}-60 \mathrm{KHz}\) \\
\hline Driten en & 100 \(438 \times 29\) & \(40 \times 15 \times 11\). & 48 & sow & 20 & 80 & \(18 \mathrm{~Hz}-40 \mathrm{KHz}\) \\
\hline UL* & 29 \(\mathrm{m} 41 \times 22\) & \(114 \times 16=81\) & 13.0 & 40 w & 20 & 40 & \(35 \mathrm{~Hz}-28 \mathrm{kHz}\) \\
\hline ULE & \(58 \times 28 \times 23\) & 23*11 * 91 & 8.4 & 50 w & 15 & 50 & \(30 \mathrm{~Hz}-3 \mathrm{mHz}\) \\
\hline UL 10 & 67 \({ }^{31} 38 \times 38\) & \(281 \times 122^{*} 15\) & 180 & 100 w & 25 & 100 & 20 Hz - 40 KHz \\
\hline
\end{tabular}

\section*{Celestion \(\square\)}

Send this coupon for literature or ask your dealer for a demonstration. I am interested in large, medium, small speakers.

the sound to be experienced!

\section*{Strobes, Tachos, Meters, Generators and Telecommunicafions Test Equipment}


WW-086 FOR FURTHER DETAILS


Cisin
This year
6-2 mixer
\(\begin{array}{lcccc}\text { Floating Each } & \text { RSA } & \text { PPM } & \text { All- } \\ \text { transformer with } & \& & \text { to } & \text { metal }\end{array}\) inputs 5 modes pan-pot. BS 4297 case
Plus: Pre-fade listen, break jacks on four channels,
A-B tape monitoring, Built-in 1 KHz line-up osc.,
XLR-type connectors, 24 -volt power input
For broadcasting and recording. less than \(£ 400\) plus VAT

\section*{SOUNDEX LIMITED}

728 High Road, Leytonstone, London. 539.4347 wW-083 FOR FURTHER DETAILS

\section*{ANiPLIFIER MÖDULES \\ 25-100 W rms FROM TAMBA ELECTRONICS \\ LOW COST QUALITY POWER AMPLIFIER MODULES POWVER SUPPLIES \& MIXERS FOR HI-FI, DISCO, P.A GROUP \& CLUB APPLICATIONS \\ TAM1000 100 watts rms into 4 ohms, 65 v supply \(£ 9.80\) \\ TAM500 50 watts rms into 4 ohms, 45 v supply \(£ 7.50\) \\ TAM250 25 watts rms into 8 ohms, 45 v supply \(£ 4.75\) \\ \(20-20,000 \mathrm{HZ} \pm 1 \mathrm{~dB}\) SILICON CIRCUITRY THROUGHOUT \\ High sensitivity ( 100 mV 40 K ) Low distortion (typically Low profile ( 1 in high \(\times 3 \frac{1}{2} \times\) Four simple connections Gour stmple conne \\ MODULAR MIXER PRE-AMP £6.50 \\ High grade components used throughout eg. Texas, Mullard, R.C.A. Plessey etc \\ POWVER SUPPLIES: \\ For one TAM \(1000 \quad £ 9.80\) For one or two \\ TAM 250/500 £7.50 (Carr 50p on supplies) \\ MP £6.50}
\(\square\) Built-in supply smoothing
\(\square\) Operates from main supply

ADD \(8 \%\) VAT TO ALL PRICES except TAM 250 \& Mixer Modules Heath, Surrey
\(\square 60 \mathrm{~mm}\) slider volume \(\quad \square\) Modular style anodised alu-
\(\square\) Full range bass \& treble \(\square\) High \& medium sensitivily \(\square\) mputs Form systems

Access \& Barclaycard accepted Write or telephone (01) 6840098 Callers welcome COD 60p extra

\section*{TAMBA ELECTRONICS}

Bensham Manor, Road Passage, Bensham Manor Road, Thornton

minum facia
\(\qquad\)
inputs _mas Mage, Bensham Manor Road, Thornton Y.

\title{
15-240 Watts!
}

\section*{HY5}

Preamplifier

HY30
15 Watts into \(8 \Omega\)
and thermal protection The kit consists of । \(C\) heatsink \(P C\) board 4 resistors. 6 capacitors and thermal protection The ktt consists of I C heatsink, PC board 4 resistors, 6 capacitors,
mounting kit, together with easy to follow construction and operating instructions This ainplifier is deally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short, Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio SPCIILCIOR
OUTPUT POWER \(15 W\) WMS into 8 :) DISTORTION \(01 \%\) at : 5 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE +18 V
Price \(£ 4.75+59\) p VAT P\&P Free
HY50
25 Watts into \(8 \Omega\)
The HY 50 leads I.L.P's total integration approach to power amplifier design The amplifier features an integral hearsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
EATURES: Low Distortion - Integral Heatsink -- Only five connections -- 7 Amp output transistors APPLICATIONS: Medium
SPECIFICATIONS: INPUT SENSITIVITY 500 -- Low power disco -- Guitar amplifier
OUTPUT POWER 25W RMS in 8Q LOAD IMPEDANCE 4-16:2 DISTORTION \(004 \%\) at 25 W at
SIGNAL/ NOISE RATIO 75 d 8 FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\)
SUPPLY VOLTAGE 25 V SIZE 10550.25 mm
Price \(\mathbf{E 6 . 2 0 + 7 7 p}\) VAT P\&P free.
HY120
60 Watts into \(8 \Omega\)
The HY120 is the baby of IL.P's new high power range designed to meet the mosi exacting requirements including load line and thermat protection this amplifier sets a new standard il modular FEATURES: Very low distortion - Integrat Heatsink - Load line protection ..- Thermal prctection APPLICATIONS: Hi-Fi -- High quality disco ... Public address .- Monitor amplafier .- Guitar and Organ SPECIFICATIONS:
NPUT SENSITVITY 500 m
OUTPUT POWER GOW RMS inIO 8:? LOAD IMPEDANCE 4. \(16!2\) DISTORTION \(0.04 \%\) a1 60W at SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(+35 \mathrm{~V}\)
Price £14.40 \(+£ 1.16\) VAT P\&P free

\section*{HY200}

120 Watts into \(8 \Omega\)
Hug FEATURES: Thermal shutdown - very low distortion - Load line protection .. integral Heatsink
APPLICATIONS: HI.F: - Disco - Monitor -- Power Slave -- Industrial - Public address
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into \(8: 2\) LOAD IMPEDANCE 4-16:2 DISTORTION \(0.05 \%\) at 100 W at
 SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price E21 \(20+£ 170\) VAT P\&P free.
HY400
240 Watts into \(4 \Omega\)
The HY400 is I.L.P \$ Big Daddy of the range producing 240 W in to \(4 \Omega\), to has been designed for high priwer disco or public addiess applications the amplitier is to be used at continuous high power levels a cooling fan is recommended The amplitier includes all the qualities of the rest of the family to Lead the market as a true high power hi-fidethty power module
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No externa
APPLICATIONS: Public address - Disco -- Power slave -- Industriai
SPECIFICATIONS:
OUTPUT POWER 24OW RMS inio 40 LOAD IMPEDANCE 4-16! DISTORTION \(01 \%\) at 240 W a
SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\) - 3 dB SUPPIY VOLTAGE INPUT SFNSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 29.25+£ 2.34\) VAT P\&P free.
POWER
SUPPLIES
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartidge, tuner etc.) are catered for internally, the desired function is achieved either by a merely require connecting to external potentiometers (note included) The HY5 is and wible with alt merely require connecting to external potentiometers (not included) The HY5 is compatible with all power amplifers and power supples To cose construction and mouning a PC. connector EATURES: Complete pre-amplif
(- Multi-function equalization - Low nolse - Low APPLICATIONS: Hi-Fi - Mixers - Disco -- Guitar and Organ .- Public address
SPECIFICATIONS:
NPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV . Microphone 10 mV Auxiliary \(3-100 \mathrm{mV}\) input impedance 47 ks at 1 kHz
UUTPUTS Tape 100 mV : Main output 500 mV R.M.
ACTIVE TONE CONTROLS Treble \(\pm 12 \mathrm{~dB}\) at 10 kHz ; Bass \(\pm\) at 100 Hz
OISTORTION \(01 \%\) at 1 kHz : Signal/ Noise Ratio 68dB
OVERLOAD 38 dB on Magnetic Pick-Up: SUPPLY VOLTAGE \(\pm 16.50 \mathrm{~V}\)




TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

\author{
I.L.P. Electronics Ltd Crossland House \\ Nackington, Canterbury Kent CT4 7AD
}

Tel (0227) 63218

Please Supply.
Total Purchase Price
I Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name \& Address

OFFER till FEBRUARY 1977.
For purchases of any goods value £25 or above deduct \(10 \%\).
MARCONI TF675F WIDE RANGE PULSE GENERATOR delay. Small compact unit \(\mathbf{E 2 2 . 5 0}\) ea.

\section*{COMPRESSOR/VACUUM PUMP}

Twin Cylinder opposed with Integral \(1 / 2 \mathrm{H} . \mathrm{P}\). \(220 / 110 \mathrm{~V} 50 \mathrm{~Hz}\) Single Phase Moror Tested \& Checked. \(£ 17.50\) ea.

MARCONI NOISE GENERATOR TF987/1.
4 Ranges 0-5; 0-10:0-15; 0-30
Due to large purchases now priced at \(£ 17.50\) ea.

\section*{PRECISION EX-MINISTRY} SIGNAL GENERATOR
type 62 by DECCA. 95 to 160 MHZ Two front panel
switches connected to a motor driven system lor rapid switches connected to a motor driven system lor rapid
frequency change due to dial length (can also be frequency change due to dial length (can also be
operated manually). Precision attenuator system. Internal/External AM Modulation. Carrier level meter \& Provision for external crystal I Marker Crystal Markers. Provison for external crystal as marker This equipment Complete with leads etc Standard 240 V ONLY \(£ 15\)

\section*{THE HONEYWELL KEYTAPE UNIT}
is a multi-channel Keyboard to Magnetic Tape System recording Keyboard entered data on \(1 / 2^{\prime \prime}\) tape in 80 or 120 character records in a form easily usable as a computer input/output and verifier. 240 Volt operation.


Honeywell Keytape Unit as picture. Checked, tested with Manual, £215 ea.
As above but less data boards. Tested forward / backward tape movement and control, etc. Data entry / exit via read / write boards \(£ 105\) ea.
Exactly as above but less keyboard and table \(\mathbf{£ 8 0}\) ea All units carriage paid. KEYBOARDS as pictured also available at \(£ 20\) each. Carr. E2.50.

From the simple to understand electro mechanical / vacuum system to the \(+15-15+5\) Power Supply and hinged wire wrapped card frame, the flexibility and reliability are outstanding, this coupled with the ease of interfacing to a VDU. Mini/Micro computer, etc.,
make all the Honeywell Keytapes on offer very fine value make all the Honeywell Keytapes on offer very fine value.
We are increasing our stocks of PUNCHES, READERS, PRINTERS, SYSTEMS etc - CALL and SEE

\section*{TEKTRONIX OSCILLOSCOPE TYDE 5B5A with eype 82 plug-in \(\mathbf{6 5 0 0}\).
RHODE \& SHWARZ POLYSCOPE SWOB1 \\ RHODE R SCHWARZ POLYSCOPE SWOB1 \&500.}

RHODE \& SCHWARZ GENERATOR BN \(41022300-1000 \mathrm{MHZ}\) E195.
R\&S DIAGRAPH \& GENERATOR 3.300 MHZ V VRY Y ice condition \(£ 500\)
RHODE SCHWARZ ADMITTANCE METER
RHODE \& SCHWARZ ADMITTANCE METER BN3511. As n N \(£ 65\).
POLARAD RECEIVER MOdel FIM-B2 Complete \(1-10 G H Z\) E450
POLARAD RECEIVER Model FIM-B2. Complete 1-10GHZ £450.
TELONIC SWEEPER 2000-1 with LA-1M 20 HZ . 20 KHZ £120. Other freq available
MARCONI OSCILLATOR TF \(110120 \mathrm{HZ}-20 \mathrm{KHZ}\) Nice condito MARCONI OSCILLATOR TF 110120 HZ -20KHZ Nice condition. Special price \(£ 50\).
MARCONI Wide Range Oscilator Tf 1370 . Freq. range 10 HZ to 10 MHZ Sine W
 MARCONI Generalor TF867. 15 KHZ to \(30 \mathrm{MHZ} \mathbf{£ 6 0}\) ea . Fantastic value at \(£ 90\) ea MARCONI ADAPTOR TM6113 for TF2700; TF1313 SFB6BB \(\mathbf{£ 2 0}\) ea
AIRMEC 4 Irace scope Type 279 Large screen \(£ 120\).
COLLINS REEIVER UNITS
COLLINS RECEIVER UNITS with built-in Tube and Power Unit 90 MHZ to 10 GHZ . No information - ex. Ministry Type IP 10 ULR. Limited quantity \(£ 60\) ea
MARCONI TF 142F DISTORTION FACTOR METER giving
 directly calibrated dial and includes all spurious components up to \(30 \mathrm{KHZ} £ \mathbf{~} \mathbf{3 7 . 5 0}\) ea
AVO TRANSISTOA ANALYSER CT446 \(£ 30\) ea MARCONI PORTABLE FREQUENCY METER T
Condition E27.50 ea.
DECCA NAVIGATOR DISPLAY UNIT. Very impressive \(\mathbf{E 1 2 . 5 0}\) ea
COURTENAY MAJOR Mk. 2. 250 joules, 5 outputs Can be combined - 1250 joules No heads \(\mathbf{~} 555\) ea.
MARCONI SIGNAL GENERATORS. TF801B from E140; TF801D from £190. Usually MARCONI DEVIATION METER. TF7910 £75 ea
RHODE \& SCHWARZ POWER METER. BNRD-BN2412/50 £50.
MARCONI RF POWER METER. TF \(1020 \mathrm{~A} / 150\) ohmn \(£ 65\)
HEWLETT PACKARD 11 Channel Numerical Printer \(£ 30\).
MEWRCONI 2OMHZ SWEEP GENERATOR. TF 1099 EA5
MARCONI DOUBLE PULSE GENERATOR. TFi400S with TM6600/S \(\mathbf{£ 2 0}\)
MARCONI TRAVELLING WAVE TUBE AMPLIFIER. TF 127 B \(£ 15\).
RACAL Frequency Generator MA 250 . Any multiple of 100 HZ from 16 MHZ to 31.6 MHZ
1V RMS: 50 ohm output impedance \(£ 120\).
MARCONI UNIVERSAL BRIDGE. TF868. \(\mathbf{£ 8 5}\) ea
AIRMEC' Generator type 304A 50 KHZ to. 100 MHZ E 120 .
AIRMEC MODULATION METER 210 .
AIRMEC MODULATION METER 210. £140.
SOLARTRON Oscillator C \(0546 \quad 25 \mathrm{HZ}\) to 50.
SOLARTRON Oscillator CO546. 25 HZ to 500 KHZ Constant amplitude. Very reliable Highly recommended. In good condition \(\mathbf{£ 1 8} \mathrm{ea}\)
PETROL GENERATOR. \(115 / 230 \mathrm{~V} 60 \mathrm{HZ}\) IOKW

TELEQUIPMENT OSCILLOSCOPE. Type S32 Very good condition Smail, compact. size \(7 \times 9 \times 14\), 9 approx. Ideal for colour TV servicing. Superbly reliable FANTASTIC
VALUE at \(\mathbf{E 8 5}\) ea

HILGER \& WATTS SPECTROMETER H 1170 E350.
OUR PRICES TOO HIGH? - THEN MAKE US AN OFFER WE CAN CONSIDER

CUSTOMERS - WE ARE INCREASING THE AREA GIVEN OVER TO INDIVIDUALLY PRICED ITEMS AND HAVE IMPROVED THE ACCESSIBILITY. Every week hundreds of fresh items are added to our shelves and lists. We are sure you will find a visit to us worthwhile,
FOR CALLERS ONLY. MANUAL TYPEWRITERS REMINGTONS-OLIVETTI eIc from \(£ 12.50\) each.
ROYAL INVERTORS manufactured USA 28 V DC Input. Output 115 V AC 400 HZ up to
2 KVA . Brand new. Crated \(£ 12.50\) ea
EDWARD VACUUM PUMPS type 1SC30A. Only \(\mathbf{£ 8 0}\) each.
SOLARTRON CD1212 SB 40 meg £85. DB24meg twice £120. Many other types available.
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC-6MHZ \(\mathbf{£ 9 5}\) each
ONLY £10EACH STABILISED POWER SUPPLY. 240V 50HZ input Outputs - 15 V @ on each voltage rail with push button resets. Many OTHER POWER SUPPLIES - call and on each
see.
\(\star\) tiEL
*TELEPHONES. Post Oftice style 746 Black or two-tone grey \(\mathbf{E 6 . 5 0}\) ea. Modern style
706 . Biack or two-tone grey \(£ 4.50\) ea. P\&P 75 p ea. Old black style \(£ 1.50\) ea. P\&P \(75 p\). TELEPHONE EXCHANGES. eq 15 -way automatic (exchange only) from \(\mathbf{\varepsilon 9 5}\).
MUFFIN FANS. Size \(5 \times 5 \times 11 / 2^{\prime \prime}\). Superbly quiet and raliable. Ex-eq. but tested. \(230 \mathrm{~V} @\)
PHOTOMULTIPLIER Type 931A E4 ea P\&iP 75p. Other types available, also suitable Power Supplies.
丸POTENTIOMETERS - All \(5 p\) ea. P\&P extra. Metal bodied AB Linear. PCB Mount Brand New. 10K, 100 K ganged; 250 K ganged, 100 K ganged, concentric shafts.太BEEHIVETRIMMERS 3/30pt. Brand New. 10 off 40p P\&P15p; 100 off \(\mathbf{£ 3 . 5 0 ~ P \& P}\) \(75 \mathrm{p}, 500\) off \(£ 15\) P\&P£ \(1.25 ; 1,000\) off \(£ 25\) P\&P \(\& 150\). LARGE RANGE ELECTROSTATIC VOLTMETERS. From 0 -300V \(2^{\prime \prime} £ 3\), to 20KV Max

VARIACS 240 V input \(0-240 \mathrm{~V}\) output \(8 \mathrm{EA} £ 18\) ea.: 20A £30 ea. Carr. \(£ 2.50\)
E.H.T. TRANSFORMERS \(20 K V 2 K V A ~ £ 85\) ea, Many other EHT transformers and EHT

OON'T FORGET YOUR MANUALS. S.A.E with requirements
TUBES. All 8rand New Boxed. Electrostatic deflection. Type 408A \(11_{2}^{\prime \prime}\) dia \(7 / 2^{\prime \prime}\) long Blue Trace £2.50 ea P\&P 75p. Type CV1526 (3EG 1) \(3^{\prime \prime}\) dia. £3 ea. P\&PE1
TYPE DB7/36 (Replacement for Telequipment S31) 111 ea P\&P 150 TYPE DB7/36 (Replacement for Telequipment S31) £11 ea P\&P £150
FOR THE VDU BUILDER. New stock of Large Rectangular Screen \(30 \times 20 \mathrm{~cm}\) tube Type M38 at the ridiculous price of \(£ 4\) ea. And also still available the CME1220 \(24 \times\)
15 cm at \(£ 9\) ea.

\section*{SEMICONDUCTORS}

Manufacturer's markings.
\(B C 147 B C 158\)
 BC348E. BC171A/B; 2N \(3055 R C A\) 50p ea. P\&P 8p.
2N5879 with 2N5881 Motorola 150 Watt. Comp pair \(£ 2\) pr. P\&P \(15 p\)
(Linear Amp 709 25p ea P\&P \(8 p\).
GSPECIAL OFFER
Guaranteed full spec devices. Manufacturers markings BC 204 \& BC2O7A 4p ea. P\&P

\section*{CREED 5-LEVEL \\ PAPER TAPE READER \(£ 25\) each}

\title{
CREED 7B \\ TELEPRINTER CRATED £40 each
}

\section*{SPECIAL OFFER}

CREED 7B TELEPRINTER LATE MODEL WITH PERFORATOR. FREE WITH ALL PURCHASES PLESSEY READER £60 each.

Minimum Mail Order \(£ 2\). Excess postage refunded. Unless stated - please add \(£ 2.50\) carriage to all units VALUE ADDED TAX not included in prices - Goods marked with \(\star 121 / 2 \%\) VAT, otherwise \(8 \%\) Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
CHILTMEAPLTD
7/9 AKTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

\section*{Two hooks fromWireless World}

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.


\section*{ВООК 1}

Basic active filters Switching circuits Waveform generaturs \(A C\) measurements Audio circuits

Constant-current circuits Power amplifiers Astable circuits Optoelectronics Micropowercircuits


\section*{BOOK 2}

Basic logic gate's Wigeband amplifiers Alarnicircuits Digitat counters Pulze modulaturs

C das-signai process ng C d as--signal generation Cdas - measurement and detection
Monostable circuits Transistor pairs

\section*{ORDER FORM}

To: General Sales Department
IPC Business Press Limited,
Room 11. Dorset House.
Stamford Street, London SE1 9LU
Please sendme copy/copies of
Circuit Designs -- Number’1 at £10.40 [?
Crrcuit Designs - Number 2 at \(£ 12.50\) [] eachinclusive I enclose remittance value \(f\) (cheques payable to IPC Busıness Press Ltd.)

Name (please print)
Address

Company registered in England and a subsidiary of Reed International L nited Refistered No. 677128 Regd. office Dorset House. Stémford Sireet. Lundon SE1 9LU

\section*{'SIGNAL SOURCES}
advance

Electronic Brokers Lrd. are one of the leading electronic ingrumentation companies in We have the largest stocks of secondhand

Electronic Brokers Lrd. have fully equipped

WRITE NOW. . .
the UK, providing a full range of cervices to Universicies, Induatry, Colleges and Govemments both at home and overseas. teat equipment in Europe as well as a selacted rayse of new products. These are on display at arr London showrooms where customers can examine the equipment of their choice and see it working. workshops on the promises to teat and roport on the majority of equipment we sell.

for a FREE copy of our latest Test Equipment Catalogue. Please apply on headed paper.


\section*{}


Video Oscillator 0222 . \(7 \mathrm{KHz}-8 \mathrm{kHz}\) in 6 ranges \(¢ 75\)
WANDEL \& GOLTREMAN

\section*{}

\section*{OSMALLLOSCOPES}

devialion model of \(T\) F 995 S Signal 2 FM (deneratior Nartion KHz
 UHF S. nnal Geenerato MSAML Frea Range 96 MHz to
 PHILIPs





Sine and Square E2 F.F Signal Generator \(10 \mathrm{KH}_{7} .100 \mathrm{MH}\), \(\mathrm{E76.00}\)

\section*{Brand New
AIRMEC}

Genly GERAL RADIO
 HEWLETT PACKARD

 undes red harmonics are well suppressed Brand
new
2094.00 209a Audto Generator anf to 2 MHz (6 rangea)
distorion Sine wave and Squarp wave 600 ohm
impedance
\(\mathbf{E 1 7 5 . 0 0}\)


 MARCONI INS TRUMEMTS


F2005A two Yone Source the instrument comprises monitored attenuator untr, to form a compact test sel
for the measurement of inter-modulation distortion
using the methods fecommended by \(S M P T E\) and
CCI F Frequency range 20Hz to 20KHz in Six bands cach oscillator can be adiusied and used indepen
dentiv) Harmonic distortion Less than \(0.05 \%\) beiwee
3 Hz and 6 KHz when using thainc Generally less than 0 io under other conditions
niermodulation Below -80 dB with respect to the +10 dBm from each oscillator Oulput attenualo
1118 in oidB steps Oulpur impedance 600 centre tapped or 600 , 150 ) of \(75 \%\) balanced and
\(\mathbf{E 4 8 5 . 0 0}\) Ohms \(A M\) Signal Generator TF \(995 \mathrm{~A} / 3 \mathrm{~S}\) Minist
FM
\(M\) \begin{tabular}{c} 
Mod Faclitites \(V\) \\
E385 \\
\hline
\end{tabular} n bands Signal Generator 200 mV FM up to +120 KHz Irom /p (1) \(2 u \mathrm{~V} \cdot 200 \mathrm{mV}\) (2) with terminating unit
\(1 / \mathrm{LV} 100 \mathrm{mV}\) tm mod treas 400 Hz 1 KHz \& 15 KHz
Distortion (1) on internal FM -25 Hz (2) on internal


 Q. \(4.22 \mathrm{MH}_{2}\)
AM Signa 20 Hz . 200KHz Output Direct into 600 range
rabie Attenuator 0 . variabie Attenuator 0.6 dB in 10 dB steos. Imoedance
600 D Distomion Direct or via Attenuator Less than \(\left.05 \% \quad \begin{array}{l}50 \mathrm{~Hz}-20 \mathrm{KHz} \\ \text { less than } 1 \% \\ £ 120-\mathbf{E 1 5 0}\end{array}\right]=200 \mathrm{~Hz}-200 \mathrm{~Hz}\)
 condition
TF995B/2FM AM
E500 to E650 200 KHz -220MHz Output 200 mV to Fieg rang
 \(\mathbf{5 8 5 . 0 0}\) \(\frac{1}{2}\)

\section*{HEWLETT PACKARD}





\[
\begin{aligned}
& \text { 549 Storage Osclloscope (Mainfr } \\
& \text { WANDEL GOLTERMANN }
\end{aligned}
\]

\section*{PROBES (Now)}
\begin{tabular}{c} 
Power \\
\\
\hline 25.00
\end{tabular}
66.50
c8.50
\(\mathbf{E 1 0} 50\)

\section*{MISCELLANEOUS}

ADVANCE
Frequency Counter 1 C 16
Recorder Calibrator HC2O
AIRMEC
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline nil Time intervals 100 nsecs to 30 msecs & secs Superb \\
\hline Hon & £95.00 \\
\hline \multicolumn{2}{|l|}{CKMA} \\
\hline Transier Oscllizor 7580 H DC. 15 GH ; with \(75 \mathrm{MHz}-15 \mathrm{GHz}\) withour counier Sensulivity & th counter vity 100 mV \\
\hline \multicolumn{2}{|l|}{\(75 \mathrm{MHz}-15 \mathrm{GHz}\) withour countier Sens invity 100 mV
SPECIAL OFFER E250} \\
\hline \multicolumn{2}{|l|}{BELL} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Baussmeter Type 120 complete with Probe}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Deviation Bridge 1504} \\
\hline \multicolumn{2}{|l|}{B. P.L.} \\
\hline Component Compararor CZ45? & P.O.A. \\
\hline \multicolumn{2}{|l|}{bruel e kjaer} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Aulomatic Vibration Exciter Con
cohu}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{DC Voltage Standard Mod 3216 Oecade Volt Ranges} \\
\hline \multicolumn{2}{|l|}{decca} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Power Supply for Noise Source MW6
Etdorado}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{eldorado} \\
\hline
\end{tabular}
C.rriage and packing charge extra on all ixems unless otherwise stated

On these pages you will find just the briefeat selection from the vest range which we hold in stock at any one time.

If you are seeking a specific itom and it is not listed, it will pay you to ing us first - wo believe we offer the best prices and the beat service.
WORLD WIDE EXPORT
Enquiries and tenders wetcome from any pert of the world.
HOW TO REACH US
We are easy to reach, ho maner where you live. Minutes away from Kings Cross on St. Pancras main-line atations, and a bue rice from Euston; only just ovar hall an hour from Absthrow Aiport. Parking is easy too.

\section*{49-53}

PancrasRa London NW 1 2QB Telephone: 01-8377781

\section*{POWER SUPPLIES}


\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
MAŔCONI \\
Sensitive Valve vortmeter TF :10C \(100 \mathrm{uV}-300 \mathrm{~V} \mathrm{AC}\) Frea coverage \(10 \mathrm{~Hz}: 10 \mathrm{MHz}\) Meter has dB \(\${ }^{5}\) ale tacily
Valve Volmeter Tf 1041 B General Spec 0.300 V Ac \\
Q.1KV DC Resisance up \(10500 \mathrm{Mahms} \quad 660 /: 95\) Electronic Voltmeter TF2604 \\
Voltmeser No CT 208 TF 958 AC \(100 \mathrm{mV}-1\) EV \\
50 mV -100V Feq Range 20 Hz -1 100 MHz \\
Valve Volimeter TF2600 \\
PHILIPS \\
HF Millivoltrreter GM 6014 Meanuring Ramge \\
FSO = Amplitule Char \(1 \mathrm{KHz} \cdot 30 \cdot \mathrm{~Hz} / \mathrm{har}\) within -5 \\
DC Microvotneter GM6020 10.0 .1 KV curen \\
10pA 10 A A Acuracy \(5 \%\) (FSD) \(0.100 \mathrm{HV} 3 \%\) (ISSD \\
AU other ranges Recorder o/p fachay 56 E \\
SWEP GENERATORS \\
hewlett packaro \\
Sweep Oscillalor 69202.4 GHz weeps from \(57 \pi\) \\
to slop frea \\
Sweep Oscillatm 693B \(4-8 G H z\) \\
SPECIAL OFFER E32: \\
Sweep Oscillater 6930 4-BGHz \\
JERROLD \\
Sween Signa Generator gors Contral Feqs \\
500 KHz 1200 AH , Sweep widths narrmw as 10 KE E tc \\
400 MHz wide 50 ohms o \(p\) imperianca \\
e40c \\
M.E.S.L \\
Swept Signal Source MH883 7.1 ? 5G-4z
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{TELEPHONE TEST EQUIPMENT} SiEMENS
Level Meter

\section*{TRANSMISSION TEST EQUIPMENT}


Please note: Alkinstruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated


OVNAMCO \({ }^{\text {OVM DM } 2022 S} 10 . \mathrm{V} \cdot 2 \mathrm{KV}\) Max reading 39999


SIGN/ROGERS
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{VIDAR}
\(\qquad\)

REMEMBER . . . We also buy We are interested in providing quotations unused Test Equipment.


AMATELUA CDMPDNENTS
ORCHARD WORIS. CHURCH LANE WALLINGTON. SURREY SMGG TNF For Semiconductors Capacitors Resistors I/C Sockets L.E.D's and


 Hi-Fi Accessories


Add C\% Yat to 9 pices chown. crinis on request

ELECTRONIC BROKERS LIMITED (Computisobse Senvees Ditston) 49-53 Pancras Road, London NW1 2eB Tel:01-837 7781

\title{
Plug into world-wide coverage with the new T1000
}
solid-state 2-30MHz Linear Amplifier

This compact desk-top package incorporates the following features
- New generation high power transistors giving 1000 P PEP, 600WCW output.
- Broadband requires no operator tuning
- Full VSWR protection
- Drive requirements 70-120W

Full technical information is available on request from the sole distributors in the UK

ABLAero Electronics (AEL) Ltd.
Gatwick House, Horley,
Surrey, England RH6 9SU
Cables Aerocon Telex Horley; Telex 87116 (Aerocon Horley)

\section*{Wilmslow Audio THE firm for speakers!}

Baker Group 25, 3, 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3, 8 or 15 ohm Baker Regent, 8 or 15 ohm
Baker Superb 8 or 15 ohm Baker Superb, 8 or 15 ohm
Celestion HF 13008 or 15 oh Celestion MH 1000 horn, 8 or 15 ohm Coles 4001 G super tweeter Coles 4001 K super tweeter Decca London and \(X\) over Decca DK 30 and \(X\) over EMI 5" Mid range
\(£ 13.00\) \(£ 14.50\) \(£ 17.50\) \(£ 15.00\) £12.50 \(£ 12.50\)
\(£ 22.50\) \(\begin{array}{r}\text { £ } 22.50 \\ \hline\end{array}\) £13.50 \(£ 5.90\) \(£ 5.90\)
\(£ 5.90\) \(£ 5.90\)
\(\mathbf{E} 6.90\)

EMI 5" Mid range £36.90

EMI \(61 / 2^{\prime \prime}\) d/cone roll surr 8 ohm \(£ 3.15\)
\(£ 3.15\)
\(£ 3.93\) EMI \(14^{\prime \prime} \times 9^{\prime \prime}\) Bass 8 ohm , roll/s 8 ohm E3.75 Elac 59RM \(10915 \mathrm{ohm}, 59 \mathrm{RM} 1148\) ohm \(£ 3.38\) Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Fane Pop 15 watt 12
Fane Pop 33T 33 watt \({ }^{12} 2^{\prime}\)
Fane Pop 50 watt. 12
Fane Pop 55, 12" 60 watt
Fane Pop 60 watt, \(15^{\prime \prime}\)
Fane Pop 70 watt \(15^{\prime \prime}\)
Fane Pop 100 watt, 18
Fane Crescendo 12A or B, 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 18. 8 or 15 ohm Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\), rolls \(/ \mathrm{s}, 8\) or 15 ohm Fane 801T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12 P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 12P-G 8 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8" 8 or 15 ohm Kef T27
Kef B1 10
Kef B200
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13
Richard Allan HP8B 8'" 45 watt Richard Allan CG8T \(8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s Baker Major Module, each
Goodmans Mezzo Twinkit, pair Goodmans DIN 20, 4 ohm, each Helme XLK35, pair Helme XLK40, pair Helme XLK30, pair
Ketkit 1, pair
Richard Allan Twinkit, each Richard Allan Twinkit, each
Richard Allan Triple 8, each Richard Allan Triple 8, each.
Richard Allan Triple 12, each Richard Allan Super Triple, each Richard Allan Super Triple,
Richard Allan RA8 kit, pair Richard Allan RA8 kit, pair
Richard Altan RA82 kit, pair Richard Allan RA82 kit, pair Wharfedale Denton \(2 \times P\), pair
Wharfedale Linton \(3 \times P\), parr. Wharfedale Linton \(3 \times\) P, parr.

ALL PRICES INCLUDE VAT
Cabinets wadding, Vynair. Crossovers etc Send stamp for free 38 page booklet Choosing a Speake
FREE with all orders over \(£ 10\) -Hi-Fi Loudspeaker Enclosures Book All units are guaranteed new and perfect Prompt despatch
Carriage Speakers up to \(12^{\prime \prime} 60 \mathrm{p}\); \(12^{\prime \prime} \mathrm{E} 1.15^{\prime \prime}\) \(£ 175 ; 18^{\prime \prime} £ 2.50\). Kits \(£ 1\) each ( \(£ 2\) per pair).

\section*{WILMSLOW AUDIO}

Loudspeakers 8 Export Dept: Swan Works Bank Square, Wilmslow, Cheshire SK9 1 HF. Discount Hi-Fi, PA etc: 10 Swan Street Wilmslow. Radio, Hi-Fi, TV: Swift of Wilms Wilmslow. Radio, Hi-Fi, TV: Swift of Wilms-
low, 5 Swan Street, Wilmslow. Tel. (Loudlow, 5 Swan Street, Wilmslow. Tel. (Loud-
speakers) Wilmslow 29599, (Hi-Fi, etc.) speakers) Wilm
Nilmslow 26213
Access and Barclaycard orders accepted by
WW - 014 FOR FURTHER DETAILS

\section*{RELAYS-UNISELECTORSSWITCHES \\ MINIATURE PLUG-IN RELAYS (Siemans/Varley)} with perspex dust cover and bas 6-12-24-48v D.C. In Stock \(2 \mathrm{c} / \mathrm{o} 50 \mathrm{p}: 6\) make 60 p
\(4 \mathrm{c} / \mathrm{o} 75 \mathrm{p}: \mathrm{P} \& \mathrm{P} 10 \mathrm{p}\)
S.t.C. MINIATURE (P.C. Mounting)
with dust cover
\(2 \mathrm{c} / 0(18 / 24 \mathrm{v}) 45 \mathrm{p}\) P.P. 10 p
\(4 \mathrm{c} / 0(24 / 36 \mathrm{v}) 50 \mathrm{p}\) P.P. 10 p
\(6 \mathrm{c} / 0(36 / 48 \mathrm{v}) 75 \mathrm{p}\) P. 10 p
CLARE-ELLIOTT MINIATURE RELAYS
Hermatically sealed) \(2 \mathrm{c} / 0675 \mathrm{ohm}\)
24v D.C. Coils (2
I.T.T. 240v A.C. Plug-In RELAYS
with perspex cover) 10 amp contact
mains ( 230 v A.C.) RELAYS OPEN TYPE
Chassis mounting ( \(60 \times 60 \times 35 \mathrm{~mm}\) )
2 c/o 5 amp contacts 60p \(P\) P. 10p
REED RELAY 3 MAKE ( \(50 \times 20 \times 20 \mathrm{~mm}\) )
3500 ohm coil \(24 v\) D.C. 50p
REED SWITCHES (1 MAKE)
Type \(2(48 \times 5 \mathrm{~mm}) 8\) for \(¢ 1\)
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam f1 P.P. 20p
UNIS ELECTORS 25 WAY
6 Bank Full wipe 75 hmm \(\mathbf{5 . 5 0} \mathbf{~ P . P . ~ 5 0 p ~}\)
12 Bank Half Wipe 68 ohm E6.50 P.P. 60p
CLARE TYPE 11 UNISELECTOR (Ex Equipment)
6 Bank 10 way 100 ohm e2.50 PP. 25 p
D.C. SOLENOIDS 24 v (Cont. Rated)

101b Pull 20 mm Stroke. Size \(50 \times 48 \times 42 \mathrm{~mm}\)
75p P.P 15p
FOOT SWITCH "SQUARE-D" H.D
20 A Make/10A Break at 240 V A
600 v A.C. \(/ \mathrm{D}\). C Max. 44 P P 75 p
BURGESS MICRO SWITCHES (VCSP)
Ingle Pole c/0 8 for E1 P.P. 10p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits 50 p each Bank of 8 with mounting brackets \(£ 3\)
P.P. 20p

DECADE INDICATOR SWITCHEXS with plus \& minus
Push Buttons 6 mm digits 75p each P.P. 10p
KEY SWITCHES ' 1000 ' TYPE
\(4 \mathrm{c} / 0\) each way locking 60 p P. P. 10p
6 make each way locking 60 p P.P. 10 p
Bank of \(4.4 \mathrm{c} / 0\) each way. 1 biased E 1.25 P.P. \(15 p\)

\section*{MULTICORE CABLES}

\section*{\(\times 14 / 76\) Forming \(1 / 2\) in wide strip}

10m-£1.50: 50 m -£6.50: 100 m -£12.00 P.P 1 p per (
5 CORE H.D. CABLE \(5 \times 70 / 76\) P.V.C.
Black Outer P.V.C. O.D. \(1 / 2 \mathrm{in}\)
\(10 \mathrm{~m}-£ 2.50\) : \(50 \mathrm{~m}-£ 12\) : \(100 \mathrm{~m}-\mathrm{E} 22.50\) P.P. 20 per metre
6 CORE ARMOURED \(6 \times 40 / 76\) P.V.C. INS
Outer Sheath-Flexible Galvanised Tubing. O.D. 3/6in 10m-£3: \(50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-£ 25\). P.P. 2 p per metre
6 CORE SCREENED \(6 \times 7 / 760.0 .6 \mathrm{~mm}\).
\(10 \mathrm{~m}-£ 1.50\) : \(50 \mathrm{~m}-£ 6.50: 100 \mathrm{~m}-£ \mathbf{1 2 . 0 0}\) P.P. 2 p per meire
36 CORE SCREENED \(36 \times 7 / 76\) ( 36 colours) O.D.
10m-£3: \(50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-£ 25\) P.P. 2 p per metre

\section*{VARIOUS}
E.H.T. MODULES. Input \(190-260 \mathrm{v} 50 \mathrm{HZ}\). Output 137 KV PK @ PRESSURE SWITCH 0 IO
- ib Variable
10.7 MH2 CRYTAL FILTER (IT T. 901 B ) 25 Khz
0.7 MHZ CRYSTAL FILTERS (I.T.T. 901B) 25 Khz 6/W. £4.00
H.D. THYRISTORS 65 amp 100 P.I.V.
'BLEEPTONE" AUDIO ALARMS
12vD.C 50p P.P. 10p
GEARED MOTORS 230v A.C. (Int. Rating)

\section*{10 r.p.m. £}

MAGNETIC COUNTERS
6 digit 4BvD.C. (Non-Reset) \(92 \times 32 \times 22 \mathrm{~mm}\)
New/Boxed £1 ea P.P 15p
NUMICATORS 0-9 (L.H/R.H. Decimal Point)
light conducted from individual 12 v butbs onto display 150 P P 25p \(\times 10 \mathrm{~mm}\) overall size \(25 \times 60 \times 68 \mathrm{~mm}\)
D.C. POWER SUPPLIES Input 240 v A.C

YPE 1 2OV D.C. at 1 amp. Fully regulated \(155 \times 155 \times 75\)
mm 1 20v D.C. 1 anp. Fuly
YPE 2 20v D.C. at \(500 \mathrm{~m} /\) a stabilised on open chassis 170 \(\times 100 \mathrm{~mm}\) E2.50 P.P. 75 p
PHILIPS MOBILE RADIO P.S.U.

TELEPHONE HANDSET with "Press to Speak" switch E1.50 P.P 25p

\author{
J. B. PATTRICK \\ 191/193 LONDON ROAD ROMFORD, ESSEX RM7 9DJ ROMFORD 44473
}


SPECIAL RESISTOR KITS (CARBON FILM 5\%) Prices include post \& packing!
10 E 12 y W or \(1 / 4 \mathrm{~W}\) KIT 10 of each E1 2 value \(25 E 12 \mathrm{VW}\) or \(\mathrm{V} / 4 \mathrm{~W}\) KIT 250 of 5.29 net
ohns-1M a total of 1425 E 12.64 net

\section*{SPECIAL CAPACITOR KITS}

C280 Kii-PC Mounting polyester 25045 of each value 0.01. 0.022 \(0047.0 .1,22 \mu \mathrm{~F} .2\) of 0.47 . \(1 \mu \mathrm{~F} \mathrm{E} 1.98\) net
C296 kil-Tubular polyesier 400 v 5 of each value 0.01 .0 022. 0.047. 0.1 \(0.22 \mu \mathrm{~F}, 2\) of 0.47 HF E2.67 nel
Coramic Kil-spuare plaque 50 V 5 of ach value 22.33.47. 100. 220, 330 . \(470.1000 \mu\) F, \(2200.4700_{\mu} \mathrm{F}\). \(0.01_{\mu \mathrm{F}} \mathrm{E} 1.66\) aet.
2504 Paper Kil-Tubular melal case. 3 of each value 0.05. 0.1. 025
500 Y Paper Kit-Tubul
5000 025 - Tubular metal case. 3 of each value 0025.0 .05 .01
1000V Paper Kii-Tibular metal case, 3 of each value 0.01, 0.025, 0.05, 0.1 IIF \(£ 1.63\) nel
B.H. COMPONENT FACTORS LTD.

MULTIMETER U4341
\(6700!/\) Volt
Vdc-0 3 - 900 V in 8 ranges \(\mathrm{Vac}-15-750 \mathrm{~V}\) in 6 ranges
Idc- \(006 .-600 \mathrm{~mA}\) in 5 ranges lac \(-03-300 \mathrm{~mA}\) in 4 ranges lac \(-03-300 \mathrm{~mA}\) in 4 ranges Resistance--2K -2 M ! in 4 ranges ac \(-4 \%\) of FSD
hite \(-10--350\) in 2 ranges
Stze \(-115 \times 215 \times 90 \mathrm{~mm}\)
Stre \(-115 \times 215 \times 90 \mathrm{mn}\)
Complete with steel carrying case, test
leads and battery. PRICE £16.68 net


Accuracy-5\% of FS D
OSCILLATOR--1
OSCILLATOR-- KHz and 465 KHz (A. M) at approx Volt Size \(-160 \times 97 \times 40 \mathrm{~mm}\)
battery complete with carrying case test leads and
PRICE \(£ 13.96\) net

\section*{MULTIMETER U4324}

200000 Righ sensitivity
20 000!? vole
Vdc-0.6-1200V in 4 ranges
vac \(-3-900 \mathrm{~V}\) in 8 ranges
idc \(-006 .-3 \mathrm{~A}\) in 6 ranges
lac -0 3--3A in 5 ranges
Resistance- \(-25!\) ranges
Accurac \(V\)-dc and \(R-21 / 2 \%\) of \(F\) s
SIze-167 \(\times 98 \times 63\) and \(4 \%\) of FS D
Suppled complete with storage case test
leads, spare diode, and battery
PRICE £16.66 net
(WW), LEIGHYON ELECTRONICS CENTRE, 59
NORTH STPILEI, LEIGHTON BUZZARD, LU7 7 EG

\section*{Appointments}

Advertisements accepted up to 12 noon Monday, January 31, for the March issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: £6.50 per single col. centimetre (min. 3 cm ) LINE advertisements (run on): \(£ 1\) per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

\title{
Radio Officers-now you can enjoy the comforts of home.
}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\) according to age. In addition, a supplement of \(£ 312\)
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

\section*{Posit Ofifilice Tellecommuinications}

\section*{(CA) GAPITAL}

FIELD SERVICE ENGINEERS
(ELECTRONICS)
If you re not earning over £3,500 p.a. plus a car - then you had better contact us!


SOUTH COAST
Several of our clients requine the following
personnet urgently offering excellent personnet urgently oftering excellent
saartes and relocation expenses where sadries a
necessary
PROJECT ENGINEERS ELECTRONIC ENGINEERS
TEST ENGINEERS AND TECHNICIANS
QUALITY ASSURANGE ENGINEERS TECHNICAL AUTHORS SYSTEMS PROGRAMMERS
DRAUGHTSMEN/WOMEN, Electro. Mechanical
and BUYERS
Ple ase witue or ring CBS APPOINTMENTS 224 Old Christichurth Ras.. Bournemouth. Bournemoulh 224155 or Wimbarne 4891 atter 7 p.m.
2921

\section*{PRODUCTION ENGINEER (ELECTRONICS)}

Dolby Laboratories, the successful and progressive London manufacturers of professional audio noise reduction equipment, require a first-class production engineer. Duties will include the design and fabrication of test and assembly equipment, method study and application of techniques to maximise production from a limited area.
Qualifications Several years' experience in electronics manufacture (preferably as production engineer), a degree or equivalent, and the ability to work projects through to successful conclusions without close supervision.
Excellent employment conditions; salary negotiable
For application form, contact
Paul Garrard
DOLBY LABORATORIES, INC.
346 Clapham Road, London, SW9
01-720 1111

\section*{CAPITAL}
appoumments ito.
JOB HUNTING?
We have more vacancies for DESIGN, DEV., TEST AND FIELD SERVICE ENG, than ever before. All areas and applications. Salaries to
\(\mathbf{£ 5 , 0 0 0}\)
34 Porcy Street, London, W1
\(01-6369659\) (day) or
5500836 (evg.) 5500836 (ovg.)

\section*{DESIGN TEST}

\section*{FIELD SERVICE}

Immediate vacancies exist in most areas for engineers qualified to \(\mathrm{BSc} / \mathrm{HNC} / \mathrm{C} \mathrm{\& G}\) with analogue. digital or R.F. experience.
Phone or write
APEX PERSONNEL
800 FULHAM ROAD LONDON S.W. 6
-1-7314353 (6760)

\section*{Appointments}

\section*{ELECTRICAL/ \\ ELECTRONICS ENGINEERS \\ a consultancy/managerial/designer role}

The Government Communications Headquarters has a constant demand for specialised complex equipment and systems designed by its own engineers, as well as readily available commercial equipment

The successful candidates will undertake engineering project officer duties These will include interpreting non-technical briefs; advising clients on the best method of approach; preparing specifications and designs; costing; and managing projects right through to implementation.

Currently there are vacancies in the following fields Radio Communication Systems across the range from VLF to microwaves and the millimetric bands; Line and Data Communication Systems including computer application; and Main Computer Systems together with a wide range of peripherals,

Candidates must have a degree in electrical or electronic engineering or be academically qualified for corporate membership of the IEE or IERE. They must have general appreciation of project officer responsibilities and had at least 2 years' appropriate training and experience
-Starting salary between \(£ 3,760\) and \(£ 5,030\), depending on qualifications and experience. Prospects of promotion. Non-contributory pension scheme

For further details and an application form (to be

Cheltenhain returned by 10 February, 1977) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please Quote \(T(24) 85\)

\section*{DESIGN/DEVELOPMENT ENGINEER}

PARK AIR ELECTRONICS LIMITED, a subsidiary of International Aeradio Limited Group, seeks to appoint an Engineer to assist in the design and development of the Company's range of VHF communications equipment.

The successful applicant will be a self-motivated engineer capable of working alone or as part of a small team responsible for design and development from conception through to production. He/she will have formal qualification to HNC/Degree standard with relevant experience in the VHF communications field. Familiarity with modern stripline techniques and receiver front end design would be an advantage.

The Company offers an attractive salary package which includes a Contributory Pension Scheme, subsidised canteen and concessional fare rebates on holiday air fares for his or her family.

Applicants who are keen to join a small, stable Company with excellent growth prospects should apply in the first instance for an Application Form to

\section*{UNIVERSITY OF DURHAM}

\section*{ELECTRONICS} TECHNICIAN

For the DEPARTMENT OF MUSIC

Applications are invited from suitably qualified Electronics Technicians for the above post, starting March / April 1977. Duties will include servicing and maintenance of the existing analogue electronic music system; candidates should have an aptitude and enthusiasm for undertaking the design and development of both analogue and digital sound-processing circuitry in collaboration with the senior Experimental Officer and have relevant experience. Salary at a point on the University's Grade 5 scale ( \(\mathbf{I} 2,889-£ 3.367\) ) dependent upon education, qualifications and experience. Applications in writing giving full details of age, education. qualifications and experience, together with names and addresses of 2 referees, to the Personnel Office Old Shire Hall, Durham, by 28 th February, 1977, from whom further particulars are available

\section*{LONDON BOAOUGH OF BRENT} WILLESOEN COLLEGE OF TECHNOLOGY department or electrical engineefing Applications are invited as soon as possible, for

\section*{LECTURER}

Grade 1 posis with specialism in one of the following fields Electrical installation; Electronic Craft Practice; Electronic Technician
SALARY SCALE:
Lecturer Grade । \(£ 2,469\) to 84.377 plus 4402 London Allowance. plus \(£ 312\) Supplement at all points.
increments above the minimum may be given for relevant industrial experience and degree qualifications.
Chief Administrative Officer at the College (Denzil Road, London NW10 \(2 \times 0\). Tel \(01-4590147\) ) and should be returned within two weeks from the appearance of the advertisement.
The Authority has a scheme for assistance with removal expenses including legal fees. etc, travelling and lodging allowances

\author{
(6775)
}

\section*{EAST MIDLANDS AIRPDRT RADIO TECHNICIAN}

TECHNICAL OFFICERS GRADE 4

Applications are invited from men and women for the above post at East Midlands Airport Intending applicants should posses either a City \& Guilds qualification and/o Service qual
experience

The post involves the installation and maintenance of Navigational Aids and other electronic equipment.
National Joint Council Conditions of Service apply Salary £3366-£3702 pa +5312 apply Salary £3366-£3702 pa \(+£ 312\) Government Supplement An alternating
shift system is in operation for which a shitt allowance of \(14 \%\) of basic salary is paid Enhanced pay for weekend work and a standby allowance of \(\mathbf{~} 588.60\) pa is payable
The cost of telephone rental is rembursed by the Authority

Application forms are obtainable from the Arport Director. East Midiands Airport. Alrport Director, East Midlands AIrport.
Castle Donington, Derby DE7 2SA to whom they should be returned by 17th January 1977

\section*{S.E. LONDON}

\section*{DEVELOPMENT ENGINEERS PROJECT ENGINEERS PRINTED CIRCUIT DESIGNER TEST ENGINEERS INSTALLATION ENGINEERS}

\section*{C \(£ 4500\) \\ C £3800-£4500 \\ C \(£ 3800\) \\ C £3000-£3600 \\ UP TO £3200}

Electrosonic Ltd, is a leading company in the rapidly expanding fields of lighting control, audio and audio-visual systems situated in South-East London within easy reach of rural Kent

\section*{DEVELOPMENT ENGINEERS}

Senior Development Engineer (audio visual products). A professional engineer is sought having wide experience of electronic control circuit design both analogue and digital (CMOS). Minimum qualifications HNC or equivalent. The applicant will be expected to carry the development through from initial design and breadboarding to final production including development or programming of the associated test equipment
This is a challenging nosition and will appeal to those engineers who enjoy combing both their theoretical and practicai abilities.

\section*{PROJECT ENGINEERS}

Engineers are required with experience of planning and detailing special projects. They will be required to handle medium sized projects from the order/specification stage to final on-site commissioning, also assisting with major projects.
The work involves the integration of the company's standard products into systems, the design of special equipment as part of the system, the preparation of detailed information for production and contractors, also close liaison with production, contractors and the customer
Applicants should be qualified to HNC standard and have at least three years' experience in system engineering in relevant fields.

\section*{PRINTED CIRCUIT DESIGNER}

An experienced and creative engineer is required to design and layout printed circuit boards from logic and circuit diagrams The work will entail the preparation of artwork, component reference masters and other essential P.C.B. documentation The ability to produce fast and accurate results is essential. This will be a new appointment

\section*{TEST ENGINEERS}

Electronic engineers are required for testing and fault finding on a wide range of electronic control and audio equipment employing digital and analogue circuitry
On-the-job training will be given in the company's products.
Applicants should have at least two years' continuous experience in industry additional to industrial training periods, academic training to. ONC/HNC level or equivalent qualification is desirable.

\section*{INSTALLATION ENGINEERS}

The hire department requires an engineer to set up equipment in the factory and instal and operate on site. The equipment is principally for exhibition and audio presentation and includes lighting and audio systems.
Essential requirements are attention to detail with a mature and a presentable manner. The job will appeal to young engineers with an interest in electronics and travel. A clean driving licence is desirable. Salary according to age and previous experience up to \(£ 3200\) plus overtime and allowances

The company offers an attractive working environment and excellent conditions of employment
Applications to: Mr. R. D. Naisbitt, Personnel Director
Electrosonic Ltd., 815 Woolwich Road, London SE7 8LT
Telephone: 01-855 1101

\section*{תRN}

DESIGN \& ELECTRONIC ENGINEERS R \& D ENGINEERS JUNIOR ELECTRONIC ENGINEERS TECHNICIANS
INSTRUMENT \& CONTROL ENGINEERS PCB, E/M, ORAUGHTING CUSTOMER SERVICE 8 TEST ENGS SALES ENGINEERS
Middx., Surrey, Merts., Hants
Berks., Bucks., Essex, London \& U.K

Sunbury on thames
Tel \(09 \quad 327\)



\section*{ELECTRONICS TECHNICIAN}

\section*{(Medical Physics Technician III)}
required for maintenance and repair of electromedical equipmerit in Chelsea/Westminster District, based at St. Stephens Hospital, Fulham. Opportunities exist for development of equipment in the department of Clinical Measurement. Westminster Hospital.
Salary Scale- \(£ 3243 £ 4146\) plus \(£ 312\) London Weighting
Applications in writing to:- The Secretary, Department of Clinical Measurement, Westminster Hospital, London SW1, naming two referees

\section*{AUDIO TEST ENGINEERS}

Allen \& Heath Ltd, and Brenell Engineering are expanding their production of mixers and tape recorders i, North London

Test Engineers with a good under standing of basıc audio cırcuits are tanding of bas and finished produc equired test This is an opportunity fo capable fast workers to join a young team
Bonus scheme in operation. For interview call Ted Rook on 01-607 8271

\section*{Appointments \\ ELECTRONICS SERVICE ENGINEERS}

\section*{An early challenge for 1977}

S E. Labs is an expanding Company within the highly successful EMI Group manufacturing a wide range of Electronic and Electro Mechanical equipment The high standard of our products and our commitment to investment and further development means more and more orders - as a result of which we can offer the following four challenging opportunities

1 Field Service Engineer (Feltham, Middlesex) - to service a range of digital tape systems and computer display terminals. Previous experience of servicing computer peripherals is essential
2 Inside Service Engineer (Feltham, Middlesex) - to service a range of analogue magnetic tape systems. A thorough knowledge of analogue techniques is required
3 Field Service Engineers (Oldham, Lancs) - to service a wide range of electronic instrumentation equipment. Previous experience in a service environment and the ability to communicate with customers would be an advantage
4 Inside Service Engineers (Stapleford, Notts.) - to service a range of Electromechanical and Turbo-driven recorders, signal conditioning equipment and oscilloscopes. Previous experience in a service environment would be an advantage
For each of the above vacancies candidates should be qualified to at least ONC level or have equivalent in-depth experience Applicants should preferably reside in or near to the locations quoted \(A\) Company car will be provided in the two Field Service Posts
Salary will take full account not only of experience but also ability and qualifications You will be entitled to the full range of EMI group employees benefits
To apply please telephone or write to Ray Flower. Personnel Manager, S.E Labs (EMI) Ltd North Feltham Trading Estate, Feltham. Middlesex. Telephone \(01-8901477\)
SE
LA
\(0<\infty\)

A meniber of the EMi
Group of companies.
International leader in electronics and leisure.

THOMSON FOUNDATION TELEVISION COLLEGE
PROFESSIONAL BROADCAST television ENGINEER
required to join a team specialising in training broadcast technicians and Senior Engineers from overseas television stations in studio / transmitter / communication techniques.
Desirable qualifications: Degree, HND or equivalent, with several years' experience in television studios and/or transmitters. Salary: £4.266-£5.997 incremental. Starting salary dependent on experience. Contributory pension scheme.
The post is based in Glasgow with occasional trips abroad. Applications in writing to the Principal, Thomson Foundation Television College, Kirkhill House, Broom Road East, Newton Mearns, Glasgow, G77 5RH.
(6795)

\section*{ROYAL COLLEGE OF ART}

The Department of Environmental Media

\section*{TECHNICIAN}

Applications are invited from candidates with a thorough knowledge of the following equipment to fill the post of full-time TECHNICIAN in the Department
16 mm cine projector. \(1 / 2^{\prime \prime}\) Sony video recording and editing facilites multi-screen encoder/decoder and cross-fade unit: Sound recording mixing and synthesising equip ment
The successful candidate will be required to assist and advise in the creative use of the equipment in the design and building of or modulate the standard departmenta facilties and to maintain the equipment The starting salary will be in the range The starting salary will be in the range
\(\ddagger 3024-3405+41 / 2 \%\) under Stage 11 of the government pay policy

Please write giving full details of age qualifcations and previous expenence Kensington Gore, London SW7 2EU.
(6781)

\section*{PIPCO \\ (S \& W SERVICES)}

For Electronic Engineers. Technicans
\& TV Service Engineers.
26a High Street
Hounslow, Middx
Tel: 01-572 7363
Telex Pipco Hounsiow 935413
(6552)

\footnotetext{
ELECTRONICS Mail O=der Company requires Manager wio has some design and development experience with amplifiers and instrumentaand investment. N. London. - Box No. EW 6785.
YOUNG ELECTRONICS TECHNICIANS required for assembly and testing work on Electronic equipment, very varied work. Qualifications ONC or CN.G (or studying) or ex apprentice or simitar desirable. Excellent opportunity for right person with a small expanding company. Application forms from
Young Electronics Ltd. 184 Royal College Street London NW1 Nal (01-267 0201.
}

\section*{TEST TECHNICIAN}

To carry out all aspects of testing on a wide range of electricalelectronic apparatus and components used in the manufacture of modern \(X\)-ray eqiupment. General testing experience is essential, although not necessarily in this particular field.

Write in the first instance to The Personnel Officer, G.E.C Medical Equipment Limited, 14 Progress Way, Waddon, Croydon, Surrey. Telephone: 01-688 7495
(6802)

VHF SERVICE engineer required to work on Pye, GEC ITT, etc. Mobile radio and base stations experience preferred. Excellent
prospects with ample opportunity prospects with ample opportunity for overtime if wanted. Well equip-
ped and bus work shops in Croyped and bus work shops in Croy-
don. Friendly atmosphere. London Car Telephone. 01-680 1010. (6767


Thorn Consumer Electronics Limited, the leading manufacturer of television, radio and audio equipment in the U.K. wish to appoint an experienced Design Engineer for their research and engineering centre at Enifield.

\footnotetext{
\(\mathrm{He} /\) she will be of degree or equivalent standard, preferably under 35 years of age with at least 2
} years background of television design and some digital design capability,
He/she will join a team investigating new ideas and systems and be required to work on his/her own initiative larasing with internal development departments and outside suppliers

\author{
Applications in writing giving detaits of age, experience and qualific ations to. \\ The Personnel Manager (DE/WW) \\ Thorn Consumer Electronics Ltd. \\ Great Cambridge Road, Enfield, Middiesex EN1 1 UL
}

\section*{TSR EXPORT PROJECT ENGINEERS}

TSR SYSTEMS are expanding their Hotel Systems Division.
We are market leaders in the supply, installation and maintenance of sophisticated communication and management systems to the hotel industry.
We have a rapidly increasing commitment in the export market, a fast-developing order book and continued success in obtaining overseas contracts.
We require additional technicians and engineers with practical experience in industrial communications. They will have a proven capability in successful systems project work and their background will include all or most of the following

Audio; PA; HF \& VHF MATV, CATV, CCTC: and modular data
communications, although other similar areas of expertise will be considered.
These positions are specifically concerned with export business and an ability and willingness to take the opportunity for travel and make overseas project and site visits when required is essential.
Applications to:

\section*{B. Boswell}

Television Systems \& Research Lid.
Station Field Industrial Estate
Kidlington, Oxford
Telephone Kidlingțon (08675) 4190

INSTRUMENT TECHNICIAN (preferably single) needed for 2 years at the institute of Scientific Instrumentation in Bangladesh to set up a small instrument servicing and repair laboratory, advise on the maintenance and repair of eleotronic/electrical equipment and train local technicians in this work. The volunteer terms of service include a modest allowance accommodation, fares and expenses. Gain the experience of a jifetime helping this developing country. Further information from Mr Jan Davis, Voluntary Service Overseas. WW) 14 Bishop's Bridge Road. London W2 6AA (Tel: 262 2611). (6805)

ENGINEER who has had considerable experience in the manufacture of smalp magnetrons. We have an of smal. magnetrons. We have an
interesting situation for the right interesting situation for the right
person which coufld be very reperson which could be very rein business and manufacturing abilities. Write in confidence, giving details of experience, etc, to Box No.. W/W 6808 .
AUDIO VISUAL COMPANY requires electronic engineers with digital and analogue experience for challenging work on teletext decoders. advanced audio systems and microprocessor video games. Sal ary negotiable. Also required are copywiremen/women for interesting work with overtime, in pleaMiss Manzi. Tel: \(01-730\) 1801. (6809)

\section*{Lowestoft, Suffolk ELECTRONICS ENGINEER}

\section*{To develop advanced Radio-Telemetry for Ecological Studies}

The post involves developing and improving radio-telemetry equipment for tracking the movement of vertebrate pests, particularly foxes, badgers, rats, coypu and polecats, in a variety of habitats. The work has important implications regarding the prevention of health hazards, both to humans and animals, particularly the spread of rabies by foxes and bovine tuberculosis by badgers.

There is considerable scope for research and development and it is envisaged that multi-channel telemetry will play an important part in future studies.

The successful candidate will be based at Lowestoft, at an outer station of the Pest Infestation Control Laboratory. The headquarters are at Worplesdon, Surrey.

Candidates (normally aged under 27) must have a 1 st or 2 nd class honours degree or equivalent in Electronics Engineering or Physics and a good knowledge of radio wave propagation. Final Year students will be considered. considered.

Appointment will be as Scientific Officer \((£ 2460-£ 3840\) ). Starting salary according to qualifications and experience. Non-contributory pension scheme. Good promotion prospects.

For further details and an application form (to be returned by 2 February, 1977), write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours).

\author{
Ministry of Agriculture, Fisheries and Food Pest Infestation Control Laboratory
}

\title{
Gilbert Islands Telecomms Technicians
}

If you have a C \& G (Telecomms) Certificate or equivalent and have specialised in either marine electronics or radio with a minimum of two years' relevant experience, you can apply for one of the following posts in these beautiful and friendly Pacific islands.

\section*{Marine Electronics}

You will be responsible for the installation, maintenance and repair of ships' stations on locally registered vessels, and for advising ship owners on spares requirements and holdings. You may have to undertake similar land work. Supervisory and training duties are also involved. (MX/11125/WD)

\section*{Telecomms}

You will be responsible for the installation, maintenance and repair of telecomms equipment in commercial, marine coast and aeronautical services, and for the supervision and training of local staff. (MX/11126/WD)
Starting salary is equal to \(£ 4000\) pa to \(£ 5925\) pa and includes a substantial and normally tax-free allowance paid under Britain's overseas aid programme. Basic salary attracts a \(25 \%\) tax-free gratuity.
Benefits include free passages, generous paid leave, children's holiday visit passages and education allowances. outfit allowance, subsidised housing. appointment grant and interest-free car loan.

For full details and application form write, quoting appropriate reference to

\section*{Crown Agemis A}

The Crown Agents for Oversea Governments and Administrations, Appointments Division. 4 Millbank, London SW1P 3JD.

\section*{SERVICE ENGINEERS}

Fluke International urgently require Service Engineers to work in their Customer Service department. Experience of D.V.M.s, Counters and Calibration equipment is essential as is a good all-round knowledge of Digital and analogue techniques
Fluke are an International Corporation and leaders in their field. Our well equipped Service Laboratory is located at our UK Headquarters in Watford.
A good salary will be paid commensurate with experience, plus a pension and Bonus Scheme, plus three weeks' annual holiday.

Please send your résumé to:
Mr. Bob Coton, Service Manager
Fluke International Corporation

\section*{Garnett Close}

Watford
\(\square \square\)

\section*{WIRELESS TECHNICIANS}

There are a limited number of vacancies in the Home Office Wireless depots at Bishops Cleeve, Glouces. tershire: Bridgend. Glamorgan: Cranbrook, Kent; Hannington, Hants; Harrow, Middlesex and Taplow. Bucks for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems. Applicants must be able to drive a car and be in possession of a current United Kingdom driving licence.

\section*{Salary}
is \(£ 2.010\) (at 17), \(£ 2.450\) (at 21) and \(£ 2.905\) (at 25) rising to \(£ 3.385\), plus a pay supplement of \(£ 313.20\) a year and an Outer London Weighting allowance of E275 a year at Harrow.

\section*{A Secure Future}
with a non-contributory pension scheme, good prospects of promotion and a generous leave allow ance. There are opportunities for day release to gain. higher qualifications.

\section*{Qualifications}

Candidates, male and female, must hold a City and Guilds Intermediate Telecommunications Certificate Guilds Intermediate Telecommunications Cen good or equivalent qualification and
experience in Telecommunications.

Interested?
Then write or telephone for further details and an application form to:- Mr C B Constable. Directorate of Telecommunications, Home Office, 60 Rochester Row, London SW1P 1 JX. Telephone 01 - 8289848 Row, London
Extension 734 Exien, Lo SW1P 1JX. Telephone 01-828 9848 xtension 734
 *宙臬


\section*{WITH PROTOTYPE WIRING EXPERIENCE}

The appointment offers scope for Project Engineering, Technical Drawing, Installation and Servicing work, but of prime importance is the ability to achieve high standards in "one off" wiring of light duty relay and control circuitry including Audio equipment. Applicants should be prepared to travel and hold a current driving licence. Salary commensurate with experience and ability.
Sound Logic is a young, expanding company producing Audio, Communications and Control equipment for a variety of venues.

Apply in writing to
Chris Taylor
SOUND LOGIC LTD.
17 Fingal Street, Greenwich, London SE10 0JL

\section*{Iran \\ Telecommunications}

OSCO - The Oil Service Company of Iran, a Consortium of International Oil Companies engaged in the exploration and production of oil and gas for the National Iranian Oil Company have the following vacancies

\section*{Head Telecommunications Special Projects}

\section*{(US \$30,000 per annum nètt)}

Responsible for the planning, co-ordinating and management of the telecommunication projects which include:- microwave, UHF, VHF and HF radio systems, trunk line and cable carrier systems, telegraph networks telephone exchanges and local telephone line distribution

Candidates should be graduates in Electronics/ Telecommunications and have at least 10 to 12 years experience in telecommunication engineering and administration with at least 5 years at supervisory level

\section*{Head Telecommunications Services}

\section*{(US \$25,000 per annum nett)}

Responsible for all-over supervision and control of the drilling radio operation, maintenance of exchange and line trunk telephone/telegraph network and all radio and electronic systems throughout the area of operations

Candidates should be graduates in Electronics/ Telecommunications with at least 10 years experience in all telecommunication engineering aspects including administration with at least 5 years at supervisory level Must additionally have experience relating to radio band/frequency and a good background of radio, exchange and line maintenance

Both appointments will be located in Ahwaz in South-West Iran and the tour of duty will be for two years with a
possibility of extension

In addition to a generous salary free of local Income Tax, the following benefits will apply
1. Married accommodation available after short initial period of single status
2. Free medical attention in Iran for staff and families
3. Home leave earned at the rate of 4 days per month of foreign service.
4. Primary schooling available locally
5. Financial assistance towards boarding school costs.
6. Additional school children's passages for children at boarding school in the country of origin.
7. Substantial terminal bonus on satisfactory completion of contract.

Iranian applicants will be considered under the regulations existing for the employment of Iranian staff.

Please forward full details of experience and qualifications to Brian Doyle, Selection Consultant, Ref. 8381/WW,
Whites Recruitment Limited
72 Fleet Street, London EC4Y 1JS

\section*{THE FASTEST GROWING AIRLINE IN THE MIDDLE EAST}

Sandia, the airline of the King dom of Saudi Arabia, is seching, as part of a planned programme of expansion, two thoroughly experienced techntians, aged under 45 , to sustain the existing level of operations and also to worh on new communications equipnent which is currenty beine installed.

\section*{SENIOR \\ TELEPRINTER TECHNICIAN \\ Starting salary c. \(£ 7,600\) (income tax free)}

Dutics will includ.
 equipmen
- the installation of cireuitry and weleprinter machines
- conductingperiodicests to check he qualisy of the telepriner
- routine preventativemaintenanceoncequipment andmachinery
- the maintenance of service reconds for equipment in use
- mamenancesadrevision of ectonical manuals

Applicanes should hold acertilicate of raning in the fiedd of telepronter/system mainemance and have \(3-5\) yenes practical experience. (Please quoterétronce A-503-762 when applying for this job).

\section*{SENIOR RADIO TECHNICIAN Starting salary c. \(£ 7,600\) (income tax free)}
() uties will include
```

* rounimemaintenanceand roubleshooving onvadiocquipment

```

    aderess systems. cto
- work oncommunications syotem installations includting antemas, teeder facs, power lines and cables
- the mantemance of ccobnical joumals
- hecping up-to-dneregardingsame of the an procederes in clectronies maintenance
- lieldtrips
- themaintenanceolservicerecordsoncequipment and logs of ihe utilisation of spare parts
- participation in on-iod traming of Sadi National emploveres Applicants showd havecompletedatade schoolcourse or have equivalent experiente. 3-5 years experionce of electronics equipment serviciag is essential. (Please quotereferace A-504-762 when applying for this iob)

Thesc whs. whath we for 22 year (remewable) contrat period are based in Jeddah. Saudia offer cacellent (incume tas tree) salaries wegether whh free unfumished acommodation for vou and you familien, fice and reduced antickers, todays leaveper annum and a re-ocation allowance.
 or an applation tom, quoting the appropraterefernce, io

Miss Connic Mulshaw,
Siudia's U.K. Personnel Representatise.
Saludi Arabian Airlines.
Koom216, 93, Regent Street,
London W.I. Til: 01-4391661.
Closing date for completed applications \(2+\) th Jantary 1977.

\section*{Avery Hill College}

\author{
Bexley Road, London SE9 2PQ
}

\section*{Closed Circuit Television Studio Engineer}

Required as soon as possible a CCTV Studio Engineer. The person appointed will be responsible to the Head of the Television and Film Section for the efficient operation and maintenance of a small but well equipped television studio and its distribution system. There will be opportunities to take part in programme production.
The present engineer is leaving to take up a new post. Salary \(£ 4393\) - \(£ 5191\). Appointment may be made above the minimum where appropriate.

Application forms, obtainable from the Senior Administrative Officer at the College, should be returned within 14 days.
(6762)

\section*{Telecommunications Engineering}

These vacancies are in the Telecommunications Division of the Central Computer Agency, London, which supplies a consultancy service to Government Departments on all technical aspects of the use and procurement of non-telephony telecommunications equipment and services.

One post is mainly concerned with assisting in the design and evaluation of data transmission networks including those using packet switching.

The second post is concerned with audio and video teleconferencing, facsimile, closed circuit television and all aspects of telegraphy including message switching. The work also includes exploration of the available field in order to advise on, and satisfy, the telecommunication requirements resulting from dispersal of Government Departments.

Candidates must have HNC, or equivalent, in Electrical or Electronic Engineering, and several years' relevant experience

Starting salary between \(£ 4700\) and \(£ 5500\) depending on qualifications and experience. Prospects of promotion. Non-contributory pension scheme.

For further details and an application form (to be returned by 10 February, 1977) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1 JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote T/9455

\section*{Civil Service Department}


\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
GPO TYPE SPARES \& SURPLUS COMPONENTS \\
5 Dight Countere (10 per sec, 24-48v non-reset) brand new @ 85p ea inc pp \\
8traigh corde (9, \(654 \& 3\) core. 15, \(10641 / 2 \&\) 3ti) Ask tor pricelisi \\
Traneformere (Lo-volt 100. 115. 200, 220 \& 24 úv prı, 28, 24. \(7 \mathrm{\&} 6 \mathrm{vsec}, 1 \mathrm{amp}\) @ 28v) Salvaged but in excellent condifion and fitted with fuses t2 50 inc pp \\
SAE for list of many other items Trade enquiries welcome \\
B. B. Supplien, 141 ghalmsford Street Nr. Centerbury, Kent CT4 702
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

PRECISION
POLYCARBONATE CAPACITORS
Al High stability - extremely Low Leakag
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{440Y a.c. Ramge
Value Dimen-}} & \multirow{4}{*}{Price each} & \multicolumn{4}{|l|}{} \\
\hline & & & & \multicolumn{4}{|l|}{63V D.C. RAMge Vatue laff Tol.} \\
\hline (uf) & sions & |mm| & & & \(\pm 1 \%\) & & \(\pm 5 \%\) \\
\hline & ! & 0 & & 0.018 & & & \\
\hline 0.1 & 27 & 12.7 & 68p & 0.1 & £1.28 & 150 & 509 \\
\hline 0.15 & 27 & 12.7 & 80p & 0.22 & ¢1. 32 & 77p & 51p \\
\hline 0.22 & 33 & 16 & 86p & 0.33 & ¢1.32 & 77p & \(51 p\) \\
\hline 0.25 & 33 & 16 & 92 p & 0.47 & £1.32 & 77p & \(51 /\) \\
\hline 0.33 & 33 & 16 & \(99 \%\) & 0.68 & £1.44 & 84p & 56p \\
\hline 0.47 & 33 & 19 & E1.10 & 1.0 & ¢1. 56 & 919 & 60p \\
\hline 0.5 & 33 & 19 & \(\underline{1.16}\) & 1.5 & \(\underline{1.74}\) & £1.16 & 67p \\
\hline 0.68 & 50.8 & 19 & E1.25 & 22 & \(£ 1.98\) & £1.32 & 75p \\
\hline 1.0 & 50.8 & 19 & £1.37 & 3.3 & £2.40 & £1.60 & 99\% \\
\hline 1.5 & 50.8 & 25.4 & £1.64 & 4.7 & ¢2.82 & £1.88 & £1.23 \\
\hline 2.0 & 50.8 & 25.4 & £1.95 & 6. 8 & 53.48 & E3. 32 & £1.47 \\
\hline & & & & 10 & ¢4.98 & E3. 32 & E2.01 \\
\hline & & & & 15 & £7.14 & ¢4.76 & ¢2. 88 \\
\hline & & & & 22 & \(\underline{9} .66\) & E6.44 & \\
\hline
\end{tabular}

 100.0

\section*{thawsations i.c.is}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8С107/8/9 & \$p & HC212/2121 & 120 & 2 200ss & \\
\hline *BC114 & 12 & *CC213/213 & \(11 p\) & OC71/2 & 2 \\
\hline \({ }^{81} \mathrm{CL147/7}\) & 10 & -BC214/21al & \(11 p\) &  & p \\
\hline \({ }^{*} \mathrm{CC} 153\) & 18 & * & 12p & *7a1 8m 0 On & P \\
\hline 8C154/7/8/9 & 12 & 8FY50/1/2 & \(20 p\) & 2 mm 14 & \(\underline{1.15}\) \\
\hline -16182/1821 & \(11 p\) & *178 & 40p & su7601310 & 1.50 \\
\hline *ВС193/1831 & 11 & afz39 & 35p & sm7atrzmo & c1.50* \\
\hline 8C184/Imal & 12 p & -213372/4 & H1 & tBAttas & ¢1.42 \\
\hline
\end{tabular}

\section*{
} 200 \%im: 007 3\%:




 ach viteo 2.20 的 \(22 \Omega 1730\) resittory C5 \({ }^{\circ}\)


 50, 100: 220: 470: 680 itm: IK 2 KK .

MERSE ADO 2D POST ANO PACXIIGG OM NLL OROEAS. EXPORT-NDO COS


MARCO TRADING (Dept P5)



\section*{IBM GOLFBALL 735 I/O TYPEWRITERS}

Coding similar to EBCDIC. WB actopt mermal or sprockrted papar. Suppllod with saltala cowy of itim miontate minuil. ExC £100 and \(8 \%\) VAT 110 phetil \(\varepsilon 125+\) to taka office ramge of golthalle Oversess air Iroight or aurtact at cas

Typawriter orders ouly to:-
Kaytronics
Saul Lodges
Soul. Glautestershirs
Tel: Saul [045-274) 612
+ ELECTROLYTICS
\(4700 \mu 40 \mathrm{y} 50 \mathrm{p}(15 \mathrm{p}) \quad 4000 \mu \mathrm{HOV} 80 \mathrm{P}\) [25p)

\({ }^{150} 40 \mathrm{~L} 275 \mathrm{~V}\) ams motor start 50 p (20p)
+ small electrolvics
\(2.2 \mu 10 \mathrm{~V}, 10 \mu 35 \mathrm{~V} .50 \mu 40 \mathrm{~V} .100 \mu 40 \mathrm{~V}, 100 \mu 6 \mathrm{~V}\). \(150 \mu\) 10V. \(64 \mu\) 10V. \(300 \mu 10 \mathrm{~V}\). \(200 \mu\) 1ov
+ PMEER PRESETS 100 mw 220, 470. 1k. 4k7. 10k. 100k. 220k

\section*{TRAMSFORMERS}

31 V 330 mA 60 p ( 3 OW ). 12 V 2 A £1.60 ( 50 p ). 17 V 5 A EX-EOPT Ez.25 [65p]. TOROLO 2OV \(14 \mathrm{E2.25}\) BPOpl. gy ex eqpt \(\{1\) [ 35 p ].

\section*{vanious}


\section*{A. \& S. T.V. COMPONENTS \\ 3 High Street, Elstree, Herts. Tel. 01-2070520}

Appointed G.E.C. stockists - Able to give you quick Mail Order return service and also repars to all panels Available L OPTs -- Panel Boards - Droppers - Scan Coils - Tuners. etc Our Trade Counter will be cipen in the New Year where there will be a clearance on certam ONLY Onturers' stock items
excluding \(\vee A T\) and if your order is \(£ 2000\) and over excluding \(\vee A T\) a further \(5 \%\) making total of \(20 \%\).

TRANSISTORS \& I.C.s
\begin{tabular}{|c|c|c|c|}
\hline AC127 & 18p & BU108 & ¢2.40 \\
\hline AC128 & 18 p & BU208 & £2.50 \\
\hline AC188 & 18p & BYT26 & 12p \\
\hline AD149 & 53p & BY127 & 16 p \\
\hline AD161 & 42p & BY164 & 45p \\
\hline AD162 & 42p & BY238 & 14p \\
\hline AF139 & \(36 p\) & BZV15/24R & 40 p \\
\hline AF178 & 53p & BZX79 & 20p \\
\hline AF239 & 42p & C8F16848N & £1.13 \\
\hline BC107 & 13p & ETTR6016 & £3,00 \\
\hline 8 C 108 & 13p & OA90 & 10p \\
\hline BC109 & 13 p & 2N1711 & 30p \\
\hline 8C147 & 9 p & P2010B & £1.90 \\
\hline BC148 & 9 p & SN 1686 NG & £1.62 \\
\hline BC159 & 14p & SN76544N & ¢1.40 \\
\hline BC187 & 20p & TAA550 & 40p \\
\hline BC337 & 20p & TBA120AS & c1.00 \\
\hline BD 124 & 78p & T8A4800 & ¢1.10 \\
\hline BD 131 & 40p & T8A5200 & \(\underline{C 2.60}\) \\
\hline BD 132 & 40p & TBA5300 & c1.90 \\
\hline BD253 & £1.85 & TBA5400 & ¢2.00 \\
\hline B0×32 & E2.10 & TBA5500 & E.3.00 \\
\hline BF 180 & 31p & TBA5600 & c2.80 \\
\hline BF196 & \(11 p\) & TBA7500 & E2.00 \\
\hline BF197 & 14p & tBA800 & E1.20 \\
\hline BF25B & 55p & TBA673 & £1.65 \\
\hline BF336 & 40p & TBA9200 & ¢3.00 \\
\hline BF337 & 40p & TBA9900 & E3.00 \\
\hline BF362 & 45p & TCA2700 & £.3.00 \\
\hline BFY50 & 24p & TCA8000 & £3.25 \\
\hline BT 106 & £1.00 & SN76013NO & £1.10 \\
\hline BU105/04 & £1.80 & G8 Droppers & 42p \\
\hline
\end{tabular}
(Many other transisior devices available)
WHOLESALERS, HENTAL COMPANIES ANO TRAOERS SUPPLIEO SPECIAL QUOTATIONS GIVEN
Quantity discounts given on 100 lois ar 100 mixed lots and upwards Certain stock lines avalable at generous discount Enquiries invited
All Goods Branded of High Quality and New
Please add \(12 \frac{1}{2} \%\) for VAT, or the highest current rate it changed Minimum order £ \(\mathbf{3 . 0 0}\) Under \(£ 10.00\) please add 30 p p\&p for I.C. and transistore listed. Other components according to weight charged at G.P.O. rates.
Terms of Business C.W.O.
(6752)

ELECTRONIC INSTRUMENTATION. If you are interested in the buying or selling of good quality used Electronic Test Instruments, ring Reading 51074, Martin Associates Hatch who will deal our Sheila with your enquiry deal promptly
Wh your enquiry. (6758)

YDU C/W K/B and Monitor. 110/ 300 BAUD. 21 Lines of 80 CharacAuto Tx. Al Condition \(\mathrm{C} / \mathrm{W}\) Manual. £350. Delivery at cost. - Box WW/ 6776.

LINSLEY-HOOD 75 watt amplifiers constructed and repaired. Brand new guaranteed spares by return, BDY56 £1.85, BD529 55p, BD530 \(\begin{array}{llll}\text { 55p } & \text { BF259 } & \text { 35p, 2N5459 45p. BFR39 } \\ \text { 25p, } & \text { BFR79 } & \text { 25p, Interference sup- }\end{array}\) pression kit (also reduces preamp nolse) with instructions \(£ 1.35\). Inclusive prices. P\&P 15p. Free list Fowey Avenue, Tonquay, S. Devon.
(6797


PROFESSIONAL TV TUBE REBUILDING PLANT desjigned and manufactured with 20 years' experience of tube rebuilding. Aliso and associated supplies .including Electron guns. Regular training
courses. Western-Whybrow Engineering, WECO Works, Penzance, TR20 9QT (073676) 2265. (6542)

1SOLATED Tab 10A 400v Triac type TXAL 2210 B . Price 98 p inc. VAT P\&P 20p C.W.O. Data sheet on re-
quest. S.N. (Electrical), 71 A High Street, Stevenage, Herts.

CRYSTAL FILTERS \(10.7 \mathrm{MHz}, ~ I 5\) KHz unused, \(\mathrm{E}_{\mathrm{E}} .50\) each. Polar
Electronics N3191, Horten, Norway. Electronics N3191, Horten, Norway,

DIGITAL DATACHARTS: 4-digit display/counter: 16-channel recorder; programmable clock calendar: 22 range FET DMM: £1.20 Publications, Highlands. Needham Market, Suffolk (6769)

\section*{STANDARD CRYSTAL UNITS}

\section*{clock}

\(\begin{array}{lll}327680 \mathrm{MHz} \mathrm{C2} .70 \text { each } & 838 \\ 4154304 \mathrm{MHz} & \mathrm{E2.70} & \text { each }\end{array}\)
TV. MPU erc
B4320 MHz E3.70earh
\(3579545 \mathrm{MHz} \mathbf{4 . 0 0}\) CaCh
REFERENCE
1000
 20 MHZ £1.60 each

\section*{VAT extra OEM and tr}

INTERFACE QUAATZ DEVICES LTD
29 Mrarket Street, Crewkerne. Somerse
Tel [046031|/4433. Telex 46283

\section*{EXCLUSIVE OFFER}

\section*{WORLD-WIDE RANGE}

NEVER BEFORE OFFERED PHILCO HC-150 POINT-TO-POINT STRIP
RADIO HF RECEIVERS 230 m cs TE TUIIY tuneable channels to 05 kcs with synthesisers
Single and diversity reception on \(15 B\) DSB SSB wrines sub-bands to
prices on application

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS
ENQUIRIES INVITED FOR NEW STOCKS NOW AVAILABLE

\section*{AUDIO AND INSTRUMENTATION-}


Prices of above \(£ 40\) to \(£ 400\)


All our aerial equipment is professional MOD quality
\begin{tabular}{|c|c|}
\hline Rohn 95ft masts latice 12" sic & U.R. \\
\hline 30 h Latice Masis 14" sides & ¢55 \\
\hline 15 te Lattice Mast sections 12 " stde & ¢35 \\
\hline 120ft Lattice Masts \(15^{\prime \prime}\) sides & P.U.R. \\
\hline 75/90t1 Sky Towers sell-supporing & ¢475 \\
\hline Heavy Aerial Rotators & P.U.R. \\
\hline - 75t Aluminum Latice Masts 20¢1 sides & \(¢ 400\) \\
\hline - Large Aerial Turning Units & U.R. \\
\hline - 25 ft Telescoprc Aerral Masts & E24 \\
\hline Racal SA- 20 Countet Timers & c25 \\
\hline 100 amp Belling Lee Interterence Filters & c75 \\
\hline Solartion CD1014 Oscilloscopes & 660 \\
\hline - Marconltf 2331 Distortion Melers & ¢120 \\
\hline - avo vt volimeters CT 471a & ¢75 \\
\hline * Solarion Digial Voltmeters LM 1420 & E175 \\
\hline - Twin Noich Fillers 500/1600 mcs & ¢12 \\
\hline Hacal MA:97 Pre Selectors & E65 \\
\hline Marconi TF.888 Recetver Testers & ¢60 \\
\hline Collins 500 watt 218 mcs Transmitters & E1000 \\
\hline - Collins KWTG 5S8 500w Transcevers & ¢1250 \\
\hline * Collins kWT6 200 m w AM Transceive & ¢750 \\
\hline - STC Rx5 225 mos Receivers Diversity & ¢ 140 \\
\hline Rack Mounting Operator Tables & ¢ 10 \\
\hline Gaumont Kalee 564 Flutter Meter & c 75 \\
\hline Hewtett Packard 5188 Sig Gen 3872 GH & £120 \\
\hline Raral SA 504 Voltage converters & ¢25 \\
\hline Elliot Recording M A A Meters & ¢ 75 \\
\hline Autophon Vhr 20120 m is Ax & ¢85 \\
\hline - Plessey peak distornon meters & ¢ 35 \\
\hline Polarad Microwave power meters & 555 \\
\hline - Rnode \& Schwar SBR sig cen 1624 gmc & ¢70 \\
\hline Airmec 702 sig gen 30 tyr 30 kcs & £26 \\
\hline SE 4000 Systern Units & P.U.R. \\
\hline 45 teet Uniradio 4 Co ax 50 onms & ¢2 \\
\hline Sielmia RTI Y Scopes & ¢20 \\
\hline * Baluns Protessional Exterior 60075 ohnis & \(¢_{6} 6\) \\
\hline * Addo 58 Track Tape Punche & ¢48 \\
\hline Oigital Casselle Recorders ", 1000 do & ¢250 \\
\hline Qualty Weather Vanes 8 conlacts iunuscdi & ¢25 \\
\hline B C C Conneciors 200 tor & 542 \\
\hline Racal RA17 Front Panels inew & ¢15 \\
\hline - Racai MA-17515 8 Modulators inew & ¢45 \\
\hline * Imside Camine1 Smelf Siiders & ¢ 3 \\
\hline OG-7 32 ordg 5 CRT 5 & £3 \\
\hline 3 AzP 2 CRTs & £ 14 \\
\hline Advance \(\mathrm{HI}^{\text {Stgnal Generators } 15} 50 \mathrm{kcs}\) & £18 \\
\hline - Tally 58 Track Tape Readers 60 cu & ¢48 \\
\hline Tally 58 Track Tape Readers Track Spool & \({ }_{6} 65\) \\
\hline Cawkell FU 4 Band Pass Filter Tpsters Avo Gerger Countera inews & \[
\begin{aligned}
& £ 60 \\
& £ 14
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{}
- Racal RA \(\operatorname{ER}\) SSB Adalor nem

19 Blank Rack Panels 7in hury ne ne
Apeco Dial a Cony Photo Coper Ele
Porable Mans Batery Hospural Lied

\section*{monews bumd}

PLEASE ADO CARRIAGE AND
V.A.T.

\section*{P. HARRIS}

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 765051

COLOUR, UHF AND TV SPARES. NEW colour bar generator kit Mk 3 aerial input type, R-Y, B-Y etc. (adds on to Manor Supplies cross hatch units) \(£ 25^{*} \mathrm{pp} 85 \mathrm{p}\). Also Mx and cross hatch kit \(£ 35^{*}\)
 pp \({ }^{85 p}\) "Wireless M Tuner Projects by D. C. Read. Kits of parts available. Read. Kits of parts avallable type. No other connections. Battery operated, portable. Incl. Battery operated, portablor units
Sync \&11* Add-on Grey Scale kit. £2.90* p/p 45p. CRT Reactivator p/p 80 p . Signal Strength Meter kit £18*. p/p 70p. 625 TV IF Unit, for \(\mathrm{Hi}-\mathrm{Fi}\) amps or tape recording \(\varepsilon 6.80\) p/p 65p. Decca Colour TV Thyristor Power Supply Unit, inel. H.T., L.T.. etc. Incl. circuits \(£ 3.80 \mathrm{p} / \mathrm{p}\) 95p. Bush CTV 25 Power Supply
 p/p \(£ 1.20\). Bush CTV 25 Conver-
gence panel plus yoke, blue lateral \(£ 3.60 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Philips single stand controls \(£ 3.75\) p/p 75p, Colour
 Scan Coils, Mullard or Pilessey P/pessey Converg. Yoke \(£ 2.50 \mathrm{p} / \mathrm{p}\) 55p. Mullard or Plessey Blue Laterais \(75 \mathrm{p} p / \mathrm{p} 30 \mathrm{p}\). BRC 3000 type scan coils \&2 p/p 80p. Bush CTV Lines: DL20 83.50 DLA0 \(£ 1.50\) DL1E DLi \(185 \mathrm{p} \mathrm{p} / \mathrm{p} 40 \mathrm{p}\). Lum. delay lines \(50 \mathrm{p} \quad \mathrm{p} / \mathrm{p}\). 30 p . Bush/Murphy \(88.50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}\). Special quadrupler riplers. ITT TH25 1TH \(£ 2\) GEC 2040 f1.75 p/p 50 p . Philtps G8 Panels. part complete, surplus/salvaged: Decoder \(£ 2.50\), IF incl. 5 modules £2.25. T. Base \(£ 1 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). CRT Base 75 p \(^{\circ} \mathrm{p} / \mathrm{p} 30 \mathrm{p}\). GEC 2040 Decoder panel for spares \({ }^{\text {cos }} 3.50 \mathrm{p} / \mathrm{p}\)
 VLF: ELC 1042 E4.40, Philips VHF ¢3.s0. Salvaged UHF \& VHF Vari-
 rol unit \(f 1 \mathrm{p} / \mathrm{p} 35 \mathrm{p}\). UHF Tuners transd. incl. slow motion drive \(\mathrm{Ea}_{3} 80.4 \mathrm{Psn}\). and 6 Psn . push button transd. \(£ 4.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Philips, Bush Decca integrated UHF/VHF transd. tuners \(£ 4.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Thorn 850 dual stand. time base panels 50 p . Philips 625 IF panel incl. cet.
50 p . p/p 65 p . VHF \({ }^{\text {Turret tuners }}\). 50 p . p/p \({ }^{6}\) 85 for VHF Turret tuners Philips 19TG170, GEC 2010, etc. £2.50. Pye miniature incremental tuners f1. Fireball tuners, Ferguson. HMV, Marconi \(80 \mathrm{p} p / \mathrm{p}\) all tun-
ers 70 p . Mullard Mono scan coils ers 70p. Mullard Mono scan cons Ferranti, Invicta 12 p/p 70p. Large serrantion LopTs, FOPTS available for most popular makes MANOR SUPPLIES, 172 West End Lane, London. N.W.6. Shop premises. Calor West Hampstead-Bakerloo Line and British Rall). Mail Order: 64 Golders Manor Drive, London. N.W.11. Tel: \(01-794\) 8751. V.A.T. Please ADD \(12 \frac{1}{2} \%\) TO ALL PRICES \(8 \%\) )
(60)

METAL FILM RESISTOR for sale Due to minor change of specifica tion 50.000 pieces in mixed value to E96 preferred values available in watt rating at 1 per cent tol-
erance. All in manufacturer's original hoxes. Ideal for prototvpe stock/educational. Price: f500 the lot. Ring 01-568-7791 for list. (676h)

CONNOISSEUR VARIGROOVE DISC LATHE. M/C cutter. amplifier. stolus heating metered currentl. in use. Spare stylii, Henerous supply blanks. Purchaser collects. Proprietor retiring. Any sensible offer considered. Eox No. W/W 6765 .

PYE COMMUNICATIONS EQUIPMENT - UHF Transmitter/receiver. four years old. Cat No. L470. Ser No. 010 D Volts 240. Frea. TX 463.200. RX 457.70. Code Path Fair. London. E.C.1. 16789

Venner TSA 3336 Timer Counters \(\begin{gathered}1 \mathrm{MHz} \\ \mathbf{E 4 0}\end{gathered}\)
or with 15 MHz convertors
Solartron \(\mathrm{CA5} \uparrow 2\) Voltage standing
wave ratio indicator
wave ratio indicator
Philips GM6014 Valve Voltmeter c35

Siemens 3W29K Level Oscillator
Marcon TF455E Wave Analyser
Boonton 2028 Signal Generator
Ribbet -- Desjardins Type 411B
Sweep Signal Analyser
HAWK SECURITY LTD.
90 SPON STREET, COVENTR
WEST MIDLANDS, CV1 3BB
(0203) 20609

\section*{OFF-THE-SHELF CRYSTALS} Britans Largest Stock in HC6U / HC18U HC25 Holders Over 40 000 now in only E: 50 each post, VAT pard Reduction for quan itites \(90 \%\) are new and latest grade
frequencies
W. H. WEStLAKE

CLAWTON, HOLSWORTHY, DEVON

A SKANTI 100 WATT TRANSMIT TER/RECEIVER. 16 Switchahle ransmitting frequencies between 1.6 and \(3.8 \mathrm{M} / \mathrm{Hz}\). Builtin Loud Hailer, suitahle for use on a boat Direction-finding unit. For AM or CW use Power supply 32v. DC
from ship's hatteries. landmark Trust. 43 Cloth Fair. London ECl

Low cost quartz crystal uscilators, TTL compatible. Two plastic encapsulated styles give high package \(12.5 \quad x \quad 20 \quad\) x 10 mm \(\begin{array}{lcccccc}\text { package } & 12.5 & x & 20 & X & 10 & \mathrm{~mm} \\ \text { (QC1313) } & 5 & 10 & 25 \mathrm{mHz} & \text { priced } & \text { from }\end{array}\) f 7 and a \(2 x\) D.I.L. spacing, 20 x \(6 \times 12.7 \mathrm{~m} \cdot \mathrm{~m}\) (ecin 5 10 mHz mrom fa prices apply for produc rion quantities For full specifica ion quantities. for full specifica or Alan Pearson on Heywood 69911 Salford Electrical Instruments Limited. Peel Works Barton Lane Eccles, Manchester. M30 0HL \(\qquad\)

PHILIPS OSCILLOSCOPE. Mode PM 3230. Dual Beam 10 MHz band width. We have upgraded our equipment and this excellent ittle used scope is now redun dant. Complete. in first class con dition \(£ 250\) o.n.o. Ian Lewis Drake Video Services. 212 Whitchurch Road. Cardiff. Tel: (0222) 24502.
(6807)

PL508 - PL509 - PLS19 - PY500 A, tested 30 p each. p\&p 20 p . Electronic Mailorder Lid., 62 Bridge St... Ramsbottom. Bury. Lanes. Tel.
\((070\) 682) 3036.

RECHARGEABLE NICAD BATTERIES. 'AA' (HP7) f1.26. 'Sub C 51.29 (HP11) £2.38. 'D' (HP2) 2.92. PP 'C' \(£ 4.89\). Matching char gers respectively \(£ 4.48\). £4.48. £5.24
\(£ 5.24\). £3.98. all prices include VAT Add \(10 \%\) post \& package. SAE for full list, plus if wanted 35p for Nicke! Cadmium Power' booktet. Sandwell Plant Led.: 1 Denholm Road. Suttot: Coldfield. West Mid-
 \$764.

COLLECTOR'S ITEM - 1937 HMV race. Redruth. Cornwall. Redruth 214850 .

FRIDER FLEXIWRITER. electric typewriter-7 track ISO papertape read and punch. Offers \&40 or near.
Details Basingstoke 22406 . 6787 )


NON-TRADING COMPANY IN HIFI field with unique name and registered trade mark associated with loudspeakers for sale for moderate sum. Interested partie Director Omal Group Limited. omal Hisuse, North Circular Road L.ondon. NWin 7UF, England. (655.)

WE INVITE ENQUIRIES from anywhere in the world. We have in stock several millisn carbon million tors sth i. 2 , and 1 watt. \(\frac{1}{2}\) mition wire willion capacitors - million - 1 million capacitors - 1 milion electrolytic condensers - mousands transistors and diodes, thousands of potentiometers. and hosts of
uiner components. Write phone or chall at our warehouse. - Broadfields and Mayco Disposals Ltd. \({ }_{21}\) Lodge Lane. North Finchley London. N.12. 0t-445 0749, 4452713.

MINIATURE CCTV SYSTEM with 3 cameras lin screen made by National, bran 2 KN ) \(£ 79\) each. Stan Willetts 37 High St, West Brom wich Staffs Tel. 0215530186.
(6814)

\section*{BUSINESS OPPORTUNITIES}

EXPORTER requires high quality turntables, pick-up arms. cart. ridges and amplifiers for own tribution. Box No. W/W 6774.

\section*{SITUATIONS WANTED}

ELECTRONIC TECHNICIAN capable of assembly Cableforms PCBs and general wiring either from ping. B. Brooklyn. 36 Cloes Road. Milton. Cambridge. \(\quad 6750\)

\section*{ARTICLES WANTED}
* MINICOMPUTERS
\(\star\) PERIPHERALS
* INSTRUMENTATION

\section*{For fastest. best CASH offer, phone COMPUTER APPRECIATION} Godstone (088 384) 3221

RADIO GEAR, fixed. mobile. com mercial, military or amateur; also urplus new electronic components wanted. 01-692-2009, 20A Waddon Road, Croydon. (6734)

WANTED, all types of communications receivers and test equipment. Details to \(R\). T \& I. Electronics Ltd., Ashville Old Hatl, Ashville Rd., London, E.11. Ley \(4986 . \quad\) ( 63

SURPLUS COMPONENTS Equipment and Computer panels wanted for cash. Ring Southampton 772501.

WE BUY new valves, transistors and clean new components, large or small quantities, all details, quotations by return. - Walton's, 55 Worcester St., Wolverhampton
( 62
R. F. INDUCTION HEATER about \(\underset{\text { Croydon, CRO 2QP. }}{1.5 \mathrm{KW} .}\) Barrett, 1 Mayo \(\underset{(6038)}{\text { Road }}\)

ALL SURPLUS or used equipment wanted. Radio telephones - comaplete systems purchased. Ships equipment and small boat radio's chassis components, partly assembled years. For prompt attention Mr Grout at Worthing 34897 GWM Radio Limited 40/42 Portland Road Worthing, Sussex. (6594)

ELECTRONIC INSTRUMENTATION. If you are interested in the buying or selling of good quality used electronic test instruments, ring Reading 51074. Martin Associates and converse with our Sheila Hatch who will deal promptly with
your enquiry.

WILL BUY ANYTHING, any quan tity if price is right ring quan Willetts, West Bromwich, \(021 \quad 553\) 0186.
0.021553
\((68115)\)

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest telephone our Miss Hughes, Peter. borough (0733) 265219.

P.C.B. ARTWORK DESIGN - East Anglia. Fast precise work at com panel designs, etc. Contact instrument Electronics, 136 Whitehall Road Norwich. Norfolk. Tel (0603) 28015.

PRINTED CIRCUIT BOARDS Quick dellveries competitive prices quotations on request, roller tin nings, drilling, etc., speciality small batches, langer quantities availlable Jamiesons Automatics Ltd, 1-5 Westgate, Bridilington. N. Humber Side, for the attention of Mr .
Harrison. Tel: \((0262) 4738 / 77877\)

PCB ARTWORK DESIGN SERVICE Component screens solder resis and assembly masters. Pads Elec trical Ltd. 01-850-6516, 45 South Wood Road, New Eltham SE9
(6755)

QUALITY DESIGN. DEVELOPMENT small production facilites. Any job considered. Equipment modificalion \(\begin{aligned} & \text { Specialists. } \\ & \text { Sparks } \\ & \text { Developmpetitive }\end{aligned}\) Sparks Developments, 85 Stanhope Street, Derby.
(6756)

\section*{EQUIPMENT WANTED}

BROADFIELDS AND
MAYCO DISPOSALS
21 Lodge Lane, N. Finchley Iondon. N12 8JG
Telephone: 01-445 2713
01-445 0749
\(01-9587624\)
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.


\section*{EQUIPMENT WANTED}

WANTED radilo communication equitpment. Large or smaill quanCambridge (0223) offered. Telephone Cambriage (0223) 860555 or 50688. (6713)

\section*{RECEIVERS AND AMPLIFIERS}

HRO RX5S, Btc., ARSE. CR100, BRT400. G209, S640, etc., etc., in stock. R. T. \& I. Eiectronics. Lud., Ashville Old Hall, Ashrille Rd. London, E11. Ley 4986.

SIGNAL Generators, Oscilloscopes Output Meters, Wave Vollmeters Frequency Meters, Multi-range Meters etc., etc in stork. R. T Hall Ashyille Bd I.ey 4986. Ra., London. E.11.

\section*{COURSES}

RADIO and Radar M.F.T. and C.G.L.I. Courses. Write: Principal, Nautical College, Fleetwood. FY7
8 JZ .


LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts Ltd. \(^{\text {borough }}{ }^{\text {l-5 Rectory }}\) (02873-4443), Yorlss, Guis

\section*{BOOKS}
"VINTAGE CRYSTAL SETS, 1922 1927'. Just published by Wireless World, contains 128 pages. Chaptens on the first days of broadcasting. The Crystal Set. Vintage Wireless Trademarks. Also catalogue sections listing and describing crystal sets together with their original prices in \(f: s: d\). A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us Please send \(£ 2.80\) inclusive to IPC Business Press Ltd., Room 11 Dorset House, Stamford Street, London. SE1 9LU.
(6125)

\section*{TAPE RECORDING ETC.}

YOUR TAPES TO DISC. MONO OT Stereo Cutting. Vinylite Pressings Sleever/labels. Top professiona quality. S.A.E. for photo leafliet DEROY Records, "Eastwhood,
Cove Dunbartonshire, Scotland.

University of Wales


DEPARTMENT OF PHYSICS ELECTRONICS AND ELECTRICAL ENGINEERING

\section*{M.Sc./DIPLOMA COURSE IN ELECTRONICS}

Applications are invited for places in the full-time one-year MSc/Diploma course in Electronics, commencing 28th September, 1977
Further details and application forms (returnable as soon as possible) may be obtained from the Academic Registrar. UWIST, Cardiff CF1 3NU.

RADIO AMATEURS EXAMINATION,
RADIO AMATEURS EXAM important examination, and obtain your G8 examination, and obtain your G8 licence. With an Rrse for details of this, and other courses (GCE Professional Examinations, ete), write or phone The Rapid Results College, Dept. JW Rapid Resultion House London, SW19 4DS. Tel. 01-947 7272 (Careers Sdvisory Service), ior for a prospectus only ring 01-946 1102 (6706) hour recording service).

UNIVERSITY OF BRADFORD
 INDUSTRY


Electrical and Electronic Engineering graduates Electrical and Electronic Engineering graduates programme, approved by the Science Research Council Total Technology Pane!
A blend of management courses, development or design work in indusiry and individual research on a problem identified during the stay in industry offers the outstanding student an immediately relevant foundation for his subsequent career Science Research Council Studentships are available, and it is hoped that these will be augmented for the industrial period
For further detalls, write or telephone to Professor D P Howson. Postgraduat School of Electrical and Electronic Engineering. University of Bradford. Bradford West Yorkshire BD 7 10P (Tel 0274.33466, Ext 232)

\section*{WANTED!}
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS with precious metal content

\section*{TRANSISTORS} \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS The COMMERCIAL SMELTING \& REFINING Co. Lid.
171 faraimgion road
lomdon ecir 3al
Tel. 01-837 1475.
Cables: COMSMELT. ECI
Works: FLECNNEY. nr. LEICESTEA (6050)

\section*{FOR \\ CLASSIFIED ADVERTISING}

\section*{WANTED IN LARGE QUANTITIES}

Electronic components resistors capacitors, potentiometers. chassis loudspeakers, semi-conductors diodes. TV tubes, especially colours. etc, etc.. etc. First or second grades. Finıshed or incomplete products record players, amplifiers, radios, tuners, tape recorders, enclosures
etc., etc etc.
We will buy complete factories and pay cash

TEL. 01-4914636
E.C.E. AVON HOUS

360/366 OXFORD STREET
LONDON, W. 1 REE

\section*{CLASSIFIED ADVERTISEMENTS}

\section*{Use this Form for your Sales and Wants}

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI GLU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
- Rate \(81 p\) PER LINE Average seven words per line Minimum THREE lines
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus 45 p
- Cheques, etc., payable to "Wireless World" and crossed "\& Co.

NAME

ADDRESS


\section*{SPECIAL LOW PRICE ARRANGEMENTS FOR VISITING OVERSEAS TRADE FAIRS}


\footnotetext{
-
To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469

International Fair for

Household Appliances DOMOTECHNICA

International Audio
Exhibition - Festival
du Son
International Exhibition of Electronics Components

Hanover Fair
Hanover
April 20.281977

International Electric
Vehicle Exhibition and
Conference
Cologne
February 10-17
1977

Paris

Paris
March 7-131977

March 31
April 61977

Chicago April26-291977

Computer, Systems \& Peripheral Exhibition \& Conference-COMPEC EUROPE

Brussels May10-121977
International Radio \& TV Exhibition

Berlin
August 26
September 41977
International Exhibition of
Computers and Peripheral
equipment - SYSTEMS
Munich
October 17-21
1977
International Exhibition for
Electronic Production PRODUCTRONICA

Munich November 22-26 1977

Please send details of the tours indicated above.
\(\qquad\)

ADDRESS
}

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 123-134
\begin{tabular}{|c|c|c|c|c|}
\hline PAGE & & PAGE & & PAGE \\
\hline AEL Crystals Ltd. . . . . . . . . . . . . . . . . . . . . . 20.121 & Hampton Video Systems Ltd ... & -i 91 & Radford Elect ronics Ltd. ... . & \[
\begin{array}{r}
18,22 \\
\ldots \quad 95
\end{array}
\] \\
\hline Amateur Components . . . . . . . . . . . . . . . . . . . 120 & Harris Electronics (London) Ltd & 12.26
132 & Radio Component Speciatists & . 91 \\
\hline Ambit International . . . . . . . . . . . . . . . . . . . . . . . 26 & Harris P.. .. & 132
91 & Radio Shop. The
Ralfe, P....... & - 108 \\
\hline Arrow Electronics Ltd . . . . . . . . . . . . . . . . . . . . 114 & Hart Electronics. . . . . . .
Hayden Laboratories Lid & 91
19 & R.C.S. Electronics & . 14 \\
\hline \begin{tabular}{l} 
Aspen Electronics Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 \\
\hline
\end{tabular} & Henson R. Ltd. . . . . . . . . & . 133 & REW Audio Visual & 133 \\
\hline Audio Fair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
Audix Lid. . . . . . . . . & Hepworth Electronics. & . 18 & Rola Celestion Lid. & 113 \\
\hline \begin{tabular}{l}
Audix Lid \\
Avo Ltd........................................... . . . 11.86
\end{tabular} & Hepworth Electronics. & & R.S.T. Valves Lid. & - 104 \\
\hline & Icon Designs. & . 14 & RTVC & \\
\hline & ILP Electronics Ltd & 115 & & \\
\hline Barr \& Stroud Lid . . . . . . . . . . . . . . . . . . . . . . . . 22 & Industrial Tape Applications. & 108 & & \\
\hline Barrie Electronics Ltd. . . . . . . . . . . . . . . . . . . . . 105 & Integrex Ltd............. & 88, 89 & Samsons (Electronics) Ltd. & 100 \\
\hline Bayliss, A. D. \& Sons Ltd. . . . . . . . . . . . . . . . . . 92 & ITT Instrument Services & . 2 & Scopex Instruments Ltd. . . & . 112 \\
\hline B. H. Component Factors Ltd . & & & Service Trading Co. ... & . 111 \\
\hline Bi-Pak Semiconductors Ltd. . . . . . . . . . . . . . . 106, 107 & KEF Electronics Ltd & \({ }^{\prime} 73\) & Servo \& Electronics Sales Ltd & . 120 \\
\hline Boss Industrial Mouldings Ltd . . . . . . . . . . . . . . . . 16 & KEF Electronics Ltd & 131 & Shure Electronics Ltd . . . . . . & Cover iii \\
\hline Brenell Engineering . . . . . . . . . . . . . . . . . . . . . . 10 & KGM Electronics Lid & & Sinclair Instruments Ltd & \[
\ldots 27
\] \\
\hline & & & Sintel & \[
\text { . } 99
\] \\
\hline & & & Soundex Ltd. & 114 \\
\hline Cambridge Learning. . . . . . . . . . . . . . . . . . . . . . 18 & Leevers-Rich Equip Ltd. & & Sowter, E. A. Ltd. & 130 \\
\hline Catronics Ltd..... . . . . . . . . . . . . . . . . . . . . . . . . . 24 & Levell Electronics Ltd. & . 1 & Special Products Lrd. & 20 \\
\hline CEC Corporation. . .. . . . . . . . . . . . . . . . . . . . . . . 16 & Limrose Electronics Ltd & . 8 & Stringer Clark Antennas Lid & 94 \\
\hline Chiltmead Ltd . . . . . . . . . . . . . . . . . . . . . . . . . . 116 & Lloyd J. J. Instruments Ltd & . 10 & SST Distributors (Electronic Com & Ld . . 86 \\
\hline Cliffpalm Ltd ................. . . . . . . . . . . . . . 21 & Lyons Instruments & - 13 & Stirling Sound (Bi-Pre-Pak Ltd.) & 92 \\
\hline Coles Electroacoustics . . . . . . . . . . . . . . . . . . . . 12 & Lynx (Electronics) London Lid. . & 99 & Sugden, J. E., \& Co. Ltd & \\
\hline Colomor (Electronics) Ltd. . . . . . . . . . . . . . . . . . 97 & & & H. W. Sullivan Ltd. . . & 94 \\
\hline Commercial Trade Travel . . . . . . . . . . . . . . . . 135 & & & Surrey Electronics Lid & 104 \\
\hline Communication Accessories \& Equipment Lid . . 90 & MacInnes Laboratories Ltd ... & & Swanley Electronics Lid & 90 \\
\hline Compcor Electronics . . . . . . . . . . . . . . . . . . . . 104 & McLennan Servo Supplies Ltd & & Swift of Wilmslow. . . . . & 90 \\
\hline Computer Appreciation . . . . . . . . . . . . . . . . . . . . 109 & McKnight Crystal MCP Electronics Lid. &  & & \\
\hline Crimson Elektrik . . . . . . . . . . . . . . . . . . . . . . . . . 87 & MCP Electronics Lid. Mail Order Protection. & \[
\begin{array}{r}
7 \\
110
\end{array}
\] & & \\
\hline & Maplin Electronic Supplies & - 9 & Tamba Electronics & 114 \\
\hline Declon Lid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 & Marconi Instruments Ltd. & Cover ii & Technomatic Ltd & . 109 \\
\hline Dema Electronics International . . . . . . . . . . . . . 105 & Marshall, A. \& Sons (London) Lid & 98 & Tektronix (Telequipment) Ltd. & 28 \\
\hline Doram Electrocomponents Ltd . . . . . . . . . . . 87, 92 & Mills, W. & 101 & Teleprinter Equipment Ltd & 21 \\
\hline Drake Transformers Ltd . . . . . . . . . . . . . . . . . . . . 8 & Modern Book Co.. & 132 & Teleradio Hi Fi. . . . . . . . . & . 110 \\
\hline & Monolith Electronics Co. Ltd. & . 110 & Tempus & 110 \\
\hline & Multicore Solders Lid. & Cover iv & 3 M (UK) Ltd. & 85 \\
\hline Edicron Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . 20 & & & Time Electronics & . 110 \\
\hline Electronic Brokers Ltd. . . . . . . 114, 118, 119, 121, 136 & North East Audio Lid & & Trampus Electronics. & . 100 \\
\hline Electrovalue Ltd . . . . . ..... ..... ....... . 94 & North East Audio Ltd & & Turner Electronics.. & . 16 \\
\hline English Electrıc Valve Co Ltd....... . . . . . . . . . . . . . 110 & & & & \\
\hline ES Electronics ........ ...................... 110 & Otari Corp. . & .... 3 & & \\
\hline ESPLtd .... ..... ......................... . . 13 & & & Vero Electronics Lid. & \\
\hline Euro Circuits ....... ........................ . 133 & Pattrick, J. B. & 122 & Vero Electronics Lid. & \\
\hline & PB Electronics Scotland Ltd & . 86 & & \\
\hline Fitch Tape Mechanisms Ltd . . . . . . . . . . . . . . . . . 24 & Phonosonics. & 101 & West Hyde Developments Ltd & \\
\hline Future Film Developments . . . . . . . . . . . .... 87 & Powertran Electronics & 102. 103 & Wilkinson L. (Croydon) Ltd ... & 94 \\
\hline Future Fim Developments... ........... 8 & Precision Petite Ltd. & . 21 & Wilmot Breeden Electronics Ltd & \\
\hline & Pye Unicam Ltd & .. 30 & Wilmslow Audio & 122 \\
\hline Gardners Transformers . . . . . . . . . . . . . . . . . . . . 15 & Purnell. & se insert & & \\
\hline Gould Advance Ltd. . . . . . . . . . . . . . . . . . . . . 17, 23 & & & Z \& I. Aero Services Ltd & 12,20,96 \\
\hline Greenbank Electronics. ...................... 131 & Quality Electronic & 120 & Zettler (UK) Division... & \\
\hline
\end{tabular}

\footnotetext{
Prnted in Great Britain by QB Itd. Sheepen Road. Colchester and Published by the Proprietors IPC El.ECTRICAI.ELECTRONIC PRESS LTD. Dorser House, Stamford St London, SEI 9LU. telephone 01-261 8000 Wiretess World can be obtaned abroad from the following: AUSTRALIA and NEW ZEALAND Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service Lid, Gordon \& Gotch Ltd. S
UNITED STATES: Eastern News Distributors Inc., 155 West \(15 t h\) Street, New York. N W 10011
}


\title{
M95ED: A Significant Technological Innovation
}


Shure now introduces a superb, moderately priced pick-up cartridge with a performance second only to the renowned V-15 Type III. The technologically advanced electromagnetic structure with a newly designed pole-piece virtually eliminates hysteresis loss. The frequency response from 20 to \(20,000 \mathrm{~Hz}\) remains essentially flat. Operating at extremely light tracking forces of between \(3 / 4\) and \(11 / 2\) grams, the exceptional trackability of the M95ED enables it to trace the very high recorded velocilies encountered on many modern recordings with the result that in addition to providing faithful reproduction of the recorded sound, stylus and record wear are reduced to minimum proportions. The M95ED: A notable addition to the Shure range with a performance never before available at such a competitive price.
Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881


\title{
Multicore Solder Creamsare oxide free!
}

Multicore's newest solder creams are designed specifically for hybrid microcircuits P.C.B's and critical component joints. Unlike ordinary creams which suffer from the problem of oxide around each atomised solder powder particle - they're completely oxide-free. The advantage is faster soldering with clear flux residues and no solder globules.

The new range can be made in any quantity and with a very wide variety of soft solder alloys, fluxes, particle sizes and viscosities They're suitablefor screen printing, stencilling or application by automatic precision dispensers. Add to that the speed, simplicity, reliability and low application cost of solder creams in many operations and you have a product that takes the art of soldering one step further.

Multicore's solder cream can often be used instead of solder preforms. No tool costs are involved and inventories of individual shapes are avoided. The cream can often be applied more quickly and has more uniform flux content than preforms. But for those assemblies where preforms are preferred

\section*{...don't forget Multicore preforms}

These precision-made solder preforms come in virtually any size and shape. Rings, washers, discs, pellets and lengths of solder tape in most soft-solder alloys, with or without flux cores, are easily placed
 between the parts to be soldered.

Whether cream or preforms are used, just raise the temperature of the metal surfaces to around \(50^{\circ} \mathrm{C}\) above the melting temperature of the solder. The solder cream or preform does the rest. Heating techniques can include gas flame, hot plate, oven conveyor, induction coils, resistance/electrode soldering, hot gas and infra-red.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Multicore Solders Limited,


Maylands Avenue, Hemel Hempstead, Herts. HP2 7EP
Telephone: Hemel Hempstead 3636. Telex: 82363```

