


## mis TF 2015 a wider view of signal generation...

The TF 2015 is a versatile $10-520 \mathrm{MHz}$ signal generator with calibrated a.m. and f.m. and an accuracy of output level setting normally found only in instruments costing three times as much. A special system gives very fast tuning across the bands yet provides smooth control within the narrowest of passbands. Leakage radiation is carefully screened out to enable accurate measurements to be made even at levels below $1 \mu \mathrm{~V}$.

## Matched Synchronizer

The clip-on Synchronizer TF 2171 transforms the performance of TF 2015 into the equivalent of a synthesizer at less than half the comparable cost. The frequency is locked to crystal stability and can be dialled in 100 Hz . steps. Tuning is quick and easy - set the decade dials, switch to "lock" and tune the generator to the approximate
frequency and the synchronizer will finish the job for you. Now you can change the frequency by up to $2 \%$ using the decade dials without touching the generator and all to an accuracy of 2 parts in $10^{2}$. It stays locked all day and doesn't degrade any aspect of the generator performance.

## I.F. Probes

These are an invaluable aid to the testing of receivers with squelch or battery economiser circuits. These circuits are inactivated when the crystalcontrolled signal from the probes is brought into the proximity of the receiver's i.f. strip. This makes it easy to tune the generator to a receiver when its channel frequency is unknown. The probes can also be used to check exact tuning by adjusting for zero beat.


## The world overYou get the best service from Haltron

For high quality electronic valves semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haliron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House.
Cray Avenue, St. Mary Cray,
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

## ssophon Our Dome Tweeters have reached the pinnacle of success...

KK 7 DOME TWEETER


The latest addition to the range. For use in systems up to 40 wates RMS and available in both 4 and 8 ohm versions


## Why scrap good mono cameras?



# EEVis still making image orthicons. 

Why change equipment which has many more years of useful life ahead?

EEV is still making image orthicons in very large numbers. And we're constantly developing them with improved performance.

So you can be sure of continuity of supply of highquality $3^{\prime \prime}$ and $4 \frac{1}{2}$ "tubes.

Our prices are competitive. Our service backup is worldwide. All the knowhow and skill of 24 years production goes into every EEV image orthicon.

Our tubes are all you need - to keep on getting good pictures, colour or black and white, from older generation cameras.

Write for data and prices. If you have a specific requirement, contact your local EEV agent or call Camera Tube Sales at Chelmsford, England.


# EEV and M-OV know how 

 Members of GEC- turnover $£ 1902$ millionNot a win on the pools, a trip to a Pacific paradise. or a reduction in income tax, but distortionless "current dumping"
Z's 1 to 4 are the four passive components which interconnect the current dumpers, (the output transistors which supply the power), to the small high quality amplifier which provides the error signal, so that when the above condition is met the current in the load, the loudspeaker, is independent of the current in the dumpers and hence distortion is solely dependent on the quality of the error amplifier, which because it is small can be very good
Wonderful indeed
For further details on current dumping and other Quad products write to Dept. WW
The Acoustical Manufacturing Co Ltd.. Huntingdon. Cambs. PE18 7DB Telephone (0480) 52561
"Something wonderful happens when $\mathrm{Z}_{1} \mathrm{Z}_{3}=\mathrm{Z}_{2} \mathrm{Z}_{4}{ }^{\prime \prime}$


## once is enough!

 the duplicating process can we provide product which fill the professional's need for the most perfect reproduction of live sound that is possible.

## Trust through experience - one encounter with OTARI equipment and from then on, You will trust the OTARI name.

## TUAEII

[^0]

New from Dana is the Cushman CE-15 spectrum analyser, with a total range of 1 MHz to 1 GHz . Portable 12 -volt operation is offered as an option, making it a valuable tool in radio service work.

Interlocked controls ensure simplicity of operation, and levels from +20 dBm to -115 dBm can be measured directly from the display, which has a range of 70 dB .

Measuring only 240 by 220 by 470 mm , the CE-15 takes up little bench space and, weighing in at 13.6 kg , is easily carried. How have you managed (so far) without one?

D月П|
Others measure by us.

Makers of High-quality Instruments : Frequency Counters
Dana Electronics Ltd. Collingdon Street, Luton, Beds. Telex : 82430 Telephone : 058224236

Digital Voltmeters Waveform Generators Communications Test Equipment Microwave Counters Frequency Synthesizers

## The new Maplin Catalogue is no ordinary catalogule... <br>  <br> Another <br> addition is the disco secti: $: w$ - including a very hi an light show to build operat ed power speaker and suita igh casinet - specification ble stereo dit- yourself $10($ of disco sories. <br> Catalogue includes a very wide ra nge of

 components: hundreds of differe nt capacitors; resistors; transistors; I.C.'s; diod es; wires and cables; discotheque equipment; organ components; musical effects units; micropho nes; turntables; cartridges; styli; test equipmen't; boxes and instrument cases; knobs, plugs ; and sockets; audio leads; switches; loudspei akers; books; tools AND MANY MANY MORE.

Our bi-monthly newsletter kee aps you up to date with latest guaranteed prices - our latest $t$ special offers (they save you pounds) - detailes of new proje cts and new lines. Send 30p for the next six issues (5p disf sount voucher with each copy).


## ELECT`RONJIC SUPPLIES

 P.O.BOX B, RAYL.EIGH, ESSEX SS6 8LRShop: 284, 1'ondon Fioad, Westcliff-on-Sea, Essex (Closed on Monday) Tel ephone: Southend (0702) 44101

# F. MM. TUNER MODULES BY <br> These mo dules are fully assembled, tested and guaranteed units, as feature:d in our tuner. Designed by experts in integrated circlit technology and applications, they represent the finest available modules, ideal for incorporatic in in to top quality home built systems. <br>  <br> The Electronic Design Specialists 

M1 MAI'N TUNER MODULE<br>includin: $g$ ten turn manual tuning pot

M2 STER 'EO DECODER
including L.E.D. modicator

## M3 PUSH BUTTON PRE-SELECT UNIT <br> six channel \& provision for manual tune

# M4 REGUL ATED POWER SUPPLY <br> $20 \mathrm{v}, 100 \mathrm{~mA}$ output, 240 v input 

M5 TOUCH TUNE PRRE-SELECT UNIT
£28.50
£7.60
$£ 15.95$
£6.30
$£ 17.54$

Write for full lists today
To:


33 Restrop View
Purton, WILTS SN5 9DG

## HIGH POWER DC-COUPLED AMPLIFIER

 * UP TO 500 WATTS RMS FROM ONE CHANNEL $\star$ DC-COUPLED THROUGHOUT

* OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Researı sh applicatio'ns in this country. It is DC-coupled throughout so providing a power bandwidth from DC t() over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while del 'ivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has establisi hed the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as $\|$ ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts; RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment pl ease let us; know.

```
Power Bandwidth
Power at clip point (1 chan)
Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise ( \(20-20 \mathrm{kHz}\) )

> DC- 20 KHz a 150 watts \(+1 \mathrm{db} . \quad \mathrm{db}\). 500 watts rms into 2.5 ohms \(+0-15 \mathrm{DC}: 1020 \mathrm{kHz}, 1\) watt \(8 \Omega\) Below \(0.05 \% \mathrm{DC}\) to 20 kHz
> Below \(0.05 \% 0.01\) watt to 150 watts
> Ireater than 200 DC to 1 kHz at \(8 \Omega\)
> At least 110 clb below 150 watts
Other models in the range: \(060-60 \mathrm{n}\) 'atts per charmel
Other models available from 100 watts to 3000 watts
```

```
CINIES LABORATORIES LTD.
MACTNDES LABORATORI
Saxmu ndham, Suffolk IP17.2NL. Tel: (0728) 22622615
```

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply
Power supply
Dimensions
Dimensions

``` Saxin
```

8 volts per microsecond
ohm to infinity
1.75 V for 150 watts into 88

1 OK ohms to 100 K ohms
Short mismatch \& open cct protection
$120-256 \mathrm{~V}, 50 \cdot 400 \mathrm{~Hz}$
19"Rackmount. 7" High. 93* Deep


## Ion out your quality control problems

The AVO Breakdown and lonisation Tester RM215-L/2 is specifically designed to help solve all manner of quality control problems.

It measures resistive leakage current under both AC \& DC voltage testing conditions as well as total AC leakage current. Test voltages up to 12 kV DC and 6 kV AC are continuously variable and breakdown current level is adjustable up to 1 mA. A built-in loudspeaker gives audible detection of ionisation and there are connections for earphone or an oscilloscope.

The circuit features low internal resistance yet at the same time limits the maximum output current, even at short circuit.

With the RM215-L/2 you can carry out general flash testing, measurement of breakdown voltage -even after breakdown-and the detection (and counting) of spurious flashovers.

Equally suited to both destructive and non-destructive testing, the RM215-L/2 is a piece of test equipment you carnot afford to be without. If you have some problems that need to be 'ioned' out, get in touch for full details.

## APPLICATIONS

Flash testing of electrical components.
Measurement of breakdown voltage on electrical components and marerials.
Measurement of insulation resistance at high voltage.
Measurement of d.c. leakage current.
Measurement of a.c. Ieakage current and total current.
Non-destructive insulation testing of materials and components.
Detection of ionisation in electrical assemblies.
Designed to meet B.S., V.D.E. and I.E.C. Safety Requirements.


WW047 FOR FURTHER DETAILS


## Problem

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

## Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100 W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850 V H.T.

## EEVand M-OV know how

Members of GEC turnover $£ 1902$ million


## nawatiomatiomodmeter



* Frequency range 1.5 GHz to 26 Hz
* A.M. and F.M. measurement over full range
* Automatic tuning and level setting
- Positive indication of lock and level
* 'Psophometric ' A ', 750 S de-emphasis and standard audio weightings
* Remote control of all functions
* Mains/battery version available (AMM-B)
* Rackmounting option (AMM-R)

Details from:

FARNELL INSTRUMENTS LTD.
SANDBECK WAY. WETHERBY
WEST YORKSHIRE LS22 4OH
TEL: 09373541 TELEX 557294
WW-025 FOR FURTHER DETAILS

## Join the Digital Revolution

## Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation . . .

Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 814^{\prime \prime}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
'Design of Digital Systems.

plus 80 p packing and surtace post anywhere in the world
Payments may be made in foreign currencies.
Quantity discounts available on request.
VAT zero rated

Also avaiable - a more e elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

## $£ 4.20$

plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9.70$, plus 80 p P. \& $P$.

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

## Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked



## TheBest of British



Based on ambient $20^{\circ} \mathrm{C}, 100 \mathrm{sq}$. in heatsink - modules facilitating polarity changes Addifional designs are fully described in GT.21B. AC Input - Minimod Series

- P.C. mounting interchangeable with most American types
- Linear stabilization
- Foldback current limiting
- Wide temperature range
- Modules available for U.K (210-250v), European (200-


240 v ) and American (106-121v) requirements

- Supply Frequency 50.400 Hz

| Type number | OUTPUT |  | Short Circuit Currentma (Typical) | \% Regulation line \& load (Typical) |
| :---: | :---: | :---: | :---: | :---: |
|  | Voltage ${ }^{\text {e }}$ | Amps |  |  |
| Pu01 | 5 | 0.5 | 370 | 0.3 |
| PU02. | 5 | 1.0 | 770 | 0.5 |
| PU03 | 15.015 | 0.10 | 37 | 0.1 |
| P $\cup 04$ | 15015 | 0.20 | 84 | 0.1 |
| Pu05 | 120.12 | 0.12 | 45 | 0.1 |
| Pu06 | 12012 | 0.24 | 120 | 02 |
| Pu11 | 18.018 | 0.15 | 50 | 0.1 |
| PU10 | 15 | 0.10 | 37 | 0.1 |
| PU12 | 12 | 010 | 45 | 0.1 |
| PU13 | 18 | 0.065 | 23 | 01 |

Nickel-Cadmium Cell Charger Units
Constant current outputs permitting up to 10 cells to be charged in series. DC INPUT NV7304 AC INPUI PUO7
ALL UNITS DESCRIBED ARE NORMALLY AVAILABLE
FROM STOCK. SPECIALLDESIGN SERVICE. CUSTOM
RUILT UNITS FOR APPLICATIONS REQUIRING
DIFFERENT SPECIFICATIONS AREPRODUCEDAS
PART OF OUR STANDARD SERVICE. TRY US FIRST.


## Gardners

Gardners Transformers Limited Christchurch-Dorset BH23 3PN Telephone 020152284 Telex 41276 Gudners $\times \mathrm{CH}$ Approved manufacturers of electronic transformers. modular pomer supplies, inverters and converters tó Defence Srandard 05-21

Safe, tough, efficient and versatile - that's our new miniature CX iron.

Safe because it is virtually leak-free (leakage current less than $1 \mu \mathrm{~A}$ ). Earth it if you like three core lead. It is made to conform with B.S. 3456 and has a breakdown voltage of more than 4000 V .

Tough because the handle is almost unbreakable and the certmic shaft is covered by a stainless steel shaft.
Efficient because the element is situated right inside the soldering bit and the heat generated by its 17 watts is not wasted.
Versatile because the iron can be used for a wide variety of soldering jobs; with six easily interchangeable, slide-on bits, ranging from $\frac{1}{4}$ " right down to $\frac{3}{6!} "$ ( 1 mm ). It's suitable for small, miniature and micro miniature joints.

Available for $\mathbf{2 2 0 - 2 5 0}$ volts or $\mathbf{1 0 0 - 1} 20$ volts. Weight $-1 \frac{1}{2} \mathrm{oz}$ ( 40 gram ). Lengith $7 \frac{1}{2}{ }^{\prime \prime}(19 \mathrm{~cm})$. Price - $\mathbf{8 3 . 2 0}$.fitted with standard bit $\frac{3}{32}{ }^{*}$ $(2.3 \mathrm{~mm})$. Spare bits $\mathbb{C 0 . 4 6 ; ~} \mathbf{E 0 . 7 2 ; ~} \mathbf{C 0 . 8 4}$ exclusive of VAT.

Stocked by most of the well-known wholesalers and many retailers. Or direct from us if you are desperate.

Send for colour catalogue from:
Antex Freepost. Plymouth PL1 1 日R

Model $\times .25$ is a general purpose soldering iron, also with two shafts for toughness and perfect insulation. Available for $220-250$ volts or 100-120 volts at 25 watts and priced at £3.20 exclusive of VAT.


Stand model S.T. 3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at $\mathbf{E 1} .40$ exclusive of VAT.

$\langle\sqrt{A} \sqrt{B} \sqrt{B})$
Mayflower House, Plymouth.
Telephone (0752) 67377/8 Telex 45296 Giro 2581000

## Forget all you've ever read about miniaturised soldering irons. This is the NEW ANJOK.K.

Two Versions.

## Experimentor 60).

The world's first breadbyard specially designed for 0.6 pitch devices. It gives you all the fan-out you need for complex MSIs, Micro-processors, Memories, Displays etc.,(40 pins (or more) with plenty of roxm for other components alongside.

Experimentor 300.
This one is designed to be ideal for 0.3 pitch DILs, any kind, from 6 pins up. Excellent fan-out. (You can also use it for 0.6 devices, though for these the 600 version is recommended. )


## Easy to Buy.

There's no problem buying from USA.
Just send name, address (block letters please), quantity of each required, and a perfectly normal UK bank cheque, made out in Pounds Sterling, to Continental Specialities Corporation.

Or you can use an International Money Order, from any Post Office. We also accept your American Express Card or Access number:

Then we post by return aimail, and you should receive the goods within 2.3 weeks.
Dealer empuries insited hote that any I' $k$ taxeson dutuen
chargeable are wilely the we ponsibility of the buyer.

Apart from ICs, both versions take TO ) 5 transistors, diodes, LEDs, capacitors, resistors; any component with lead size between . 015 and .032 inch diameter. And for interconnections you use standard solid hook-up wire.

## Unique Construction.

Each version of the Experimentor gives you 94 fivecontact terminals, arranged in two rows of 47, plus two integral bus-strips for Ground and Power, with 40 contacts on each.

That's 550 ) contacts in all! (See diagram).
All terminal strips are recessed into the bottom of the plastic body, and covered with a stick-on vinyl backing, so you have no insulation problems.

The contact rows are numbered $1-5-1.0$ etc. and A-B-C.-.J lengthways, so each position is clearly def ined. The bus-strips are labelled $X-Y$, each end.

The plastic body is rigid, strong and longlasting, with a recessed screw-hole at each corner, and all four edges have a special quick-locking lip so that you can build rigid arrays of two or more boards.

## The Domino Theory.

See how the Experimentor boards fix together, side by side, end to end, or at right-angles, to give unlimited scope for circuit building, planning, extending, reartanging.

You can mix 0.3 and 0.6 IIL.s in any arrangement you like.

And all your displays can face the way you want them.

## And look at these price's!

Experimentor 300, $£ 7.20$, Experimentor 600, $£ 7.90$. All made to top CSC professional quality, and every one is fully checked before dispatch.

## Free Catalogue!

Page after page of fascinating CSC products. Just write and ask.


WW027 FOR FURTHER DETAILS

METER PROBLEMS?


137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

## Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

AUDIO LABORATORY INSTRUMENTS


## LDO3 Low Distortion Oscilator

A continuously variable-frequency laboratory oscillator with a range $10 \mathrm{~Hz}-1.00 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time
LD03.8 Low Distortion Oscillator, balanced output
A LDO3 but fitted with an output amplifier and screened balanced transformer providing a 600 ohm floating / balanced output, and 150 ohms unbalanced output
DMS3 Distortion Measuring Set (IIlustrated)
Measures total harmonic distortion down to $0.001 \%$ speedily and accurately. Direct reading from calibrated meter
HSV1 High Sensitivity Volimeter
An accurate voltmeter with 16 ranges, $10 \mu \mathrm{~V}$-300V f.s.d. Average responding
HSV2 High Sensitivity Voltmeter.
As HSV1 but true r.m.s reading
ANM1 Audio Noisemeter
An accurate voltmeter and noisemeter with 16 ranges, $10 \mu \mathrm{~V}-300 \mathrm{~V}$ f.s.d. Fitted weighting characteristics: Wide band, DIN Audio Band, IEC/DIN Curve ' $A$ : and CCIR. Average responding
ANM2 Audio Noisemeter
As ANM1 but true r.ms reading
ANF1 Audio Noisefilter
An active fitter to CCIR weighting characteristic for use with external voltmeter. (Ref Dolby Laboratories Inc. Bulletin No. 43. Mar. 76).

Full descriptive leaflets available from
RADFORD ELECTRONICS LTD.
Laboratory Instruments Division
Ashton Vale Road, Bristol, Avon BS3 2HZ Tel. 0272662301

# SPECIAL LOW PRICE ARRANGEMENTS FOR VISITING OVERSEAS TRADE FAIRS 

\footnotetext{

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Lid., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

| International Lighting Exhibition | Paris | $\begin{aligned} & \text { January 12-17 } \\ & 1977 \end{aligned}$ |
| :---: | :---: | :---: |
| International Fair for Household Appliances DOMOTECHN:CA | Cologne | $\begin{aligned} & \text { February 10-17 } \\ & 1977 \end{aligned}$ |
| International Audio Exhibition - Festival duSon | Paris | March 7-131977 |
| International Exhibition of Electronics Components | Paris | $\begin{aligned} & \text { March } 31 \text { - } \\ & \text { April } 61977 \end{aligned}$ |
| Hanover Fair | Hanover | April 20-281977 |
| International Electric Vehicle Exhibition and Conference | Chicago | April 26-291977 |

Please send details of the tours indicated above.
Computer, Systems \&
Peripheral Exhibition \&
Conference-COMPEC
EUROPE
Brussels May 10-12 1977

International Radio \& TV
Exhibition
Berlin
August 26
September 41977
International Exhibition of Computers and Peripheral equipment - SYSTEMS

Munich October 17-21 1977

International Exhibition for
Electronic Production PRODUCTRONICA

Munich November22-26 1977
$\qquad$
COMPANY



## AMBIT international (dept 85)

The Dynamic Twosome: Signalmaster/Audiomaster After long and thorough deliberation, we are proud to announce a new unit from Larsholt - the Audiomaster As ever, the instructions are designed to lead the unwaryand the inexperienced- through point-to-point steps that culminate in a professionally styled and finished amplifier to complement the Signalmaster FM tuner. Price $£ 79.00$
 Power: $25+25 \mathrm{~W}$ RMS THD: Less than 0.3\% Dynamic range: an exceptional 80 dB (Signalmaster shown on top of the Audiomaster)
The Signalmaster Mk. 8 is equally simple to assemble, and results reflect the superb Scandinavian styling and careful electronic engineering. $£ 85.00$.


International Mk.2: A choice of tuners for the more experinced constructors.
A chassis, cabinet and front panel designed to be used with a variety of electronics inside. The standard set, with the Larsholt 7253 varicap FM tunerset, plus all necessary parts to complete costs $£ 65.00$. Alternative modules for the signal processing stages are available for the more advanced F.M. radio enthusiast/constructor. (EF5800/7030/91196)


From left to right, the EF5800 6 circuit varicap FM tunerhead. Two MOS RF stages, both with AGC control, and an ultra stable oscillator Next the 7030 Linear Phase 10.7 MHz IF. Distortion $0.08 \%$, muting AGC, meter, auto stereo switch outputs. Finally the new 91196 mpx decoder and combined birdy filter. Mono THD $0.05 \%$, stereo sep. 55 dB at $1 \mathrm{kHz}, 42 \mathrm{~dB}$ at 10 kHz - the best decoder module yet. EF5800....£14.50 7030.....£10.95 91196..... 12.99 (Built) Overall performance of the three modules when correctly assembled: $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at 0.85 uV input. 60 dB at 5 uV . THD $0.09 \%$. AFC holds THD below $0.2 \%$ over 400 kHz if required. AGC effective over a 90 dB range. Image rejection -90 dB . Noise floor -73 dB .
Components: Coils, ICs Filters, etc.
Radio 1 Cs : (and modules)
CA $3089 \mathrm{E} / \mathrm{HA} 1137 \mathrm{~W}$ FM
CA $3089 \mathrm{E} / \mathrm{HA} 1137 \mathrm{~W}$ FM 1.94 Coils and filters:
CA 3090 AQ mpX $\quad 3.75$ YRCS/YHCS types ( 10 mm ) 0.30 $\begin{array}{llll}\mathrm{MC1310} / \mathrm{KB4400} \\ \mathrm{HA} 1196 \mathrm{mpx} & 2.20 & 7 \mathrm{MCS} \text { types }(7 \mathrm{~mm}) & 0.30\end{array}$ HA1 196 mpx HA1197 AM radio TBA120AS FM IF UA720/CA3123E AM rad LM380N $2 W$ Audio TBA810AS $7 W$ Audio TCA940 low Audio TDA2020 20W Audio LM381N stereo preamp 483900 Quad amp $78 \mathrm{M12-20-24}$ volt reg ea:1.20* 3132 linear phase NE550A variable reg $0.80^{*}$ BLR 3107 ( $4 \mathrm{k7} \mathrm{imp}$ ) TAA550B varicap reg 32v0.50* BLR2007 (3k3 imp) NE5618 PLL IC ea: 3.50 TH Therheads: (\& tunersets) NE $565 \mathrm{~A} / 567 \mathrm{~V}$ PLL ea: 2.50 EF56005 gang varicap 12.80 810 k kit for TBA8 10 amp 2.75 EC3302 3 gang varicap 5.50 2020 k kit for 2020 amp $9.35 \quad 8319$ (Larsholt) 12.00 92310 kit for mpx decoder $5.35 \quad 7252$ tunerset complete 26.00 $\begin{array}{lll}7020 \mathrm{kit} \text { for } 3089 \text { FM IF } \\ 971197 \text { kit for varicap AM } & 6.65 & 7253 \text { stereo tunerset } \\ \text { Standard transistors also kept in }\end{array}$ 971197 kit for varicap AM
radio tuner radio tuner
7700 built TV sound tuner 27.00 stock - 9 and price information.

Terms: Vat extra, $12.5 \%$ unless marked *, which is $8 \%$, all complete tuners require $£ 3.00$ for packing and carriage. The standard P\&P rate remains at 22 p per order. Catalogue 40p. Phone (0277) 216029 (After 3pm please). SAE for free pricelists.

| Write to: $\begin{array}{l}\text { 37a High Street } \\ \text { Brentwood, Essex: CM14 4RH }\end{array}$ |
| :--- |



WW-036 FOR FURTHER DETAILS


WW-033 FOR FURTHER DETAILS


* or any other of nearly 2,000 components and spares.



## "He's asking fora reed relay fora reed relay assembly with a 30kV isolated coil" 



People of ten bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'normally open' or 'changeover' contacts. Around them, a coil operating from 8, 12,24 or 50 V supply, 30 kV isolated from the contacts. The whole unit mounting on a $0.25^{\prime \prime}$ insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.
manufacturing your electrical and electronic requirements.

## Whiteley <br> Whiteley Electrical Radio Co. Ltd.

Mansfield, Notts NG18 5RW, England. Tel: 062324762.
WW-062 FOR FURTHER DETAILS

## FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

## PRODUCTION TESTING $\star$ DEVELOPMENT SERVICING <br>  <br> TYPE 250VRU/30/25 <br> Input $200-250 \mathrm{~V} 50 \mathrm{~Hz}$ or $100-120 \mathrm{~V} 60 \mathrm{~Hz}$ to order. Output 1 0-30v 25A DC. Output 2: $0-70 \mathrm{v} 10 \mathrm{~A}$ AC. Output 3: $0-250 \mathrm{v} 4 \mathrm{~A}$ $A C$. <br> PRICE: £201.35 excluding VAT <br> Regulated and unregulated outputs with output voltages of $12,24,50,110$ or $220 v$ DC are also available at very competitive prices. <br> Send for further details of these versatile units to:- <br> Vatradio <br> BROWELLS LANE, FELTHAM, MIDDX. TW13 7EN <br> PHONE: 01-890 4242 or 4837 <br> WW-034 FOR FURTHER DETAILS <br> POWER UNITS Valradio

 .

MRYRATINLimANUAL
TWOTONE BIIC CASL
$£ 670$
1.2 GHz
Sensitivity 10 mV . Stability 5 parts 10 . Resolution $\pm 1$ Count
301M 32 MHz 5 Digit £85 $401 \quad 32 \mathrm{MHz} 6$ Digit £125 $501 \quad 32 \mathrm{MHz} 8$ Digit £178 701A $\quad$ 80MHz 8 Digit £195 $801 \mathrm{~A} / \mathrm{M} \quad 300 \mathrm{MHz} 8$ Digit £305 $901 \mathrm{M} \quad 520 \mathrm{MHz} 8$ Digit $£ 375$ 801B/M 250MHz 8 Digit £265 1001M 1.26Hz 8 Digit £670

Start/Stop versions plus £12
Memory versions available if not suffixed M E25 extra
Type 1011 MHz 100 KHz 10 KHz Crystal Standard $£ 85$ Type $1030 \mathrm{ff} /$ Air Standard $£ 85$
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depis., Crystal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS 6 WOLSEYROAD, ASHFORU MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

WW-018 FOR FURTHER DETAILS


## Britain's biggest and best-known exhibition of home entertainment, audio and hiffi.

UNIQUE - for reputation and scope. This is our 23 rd year, and no other fair offers such a comprehensive showcase for home electronic entertainment, plus the traditional appeal to audio and hi-fi specialists.

- LONDON'S OLYMPIA - the industry's favoured location, where the people and the money are ... and the only venue with the size, scope and facilities for this great trade and public festival.
- SEPTEMBER 12 to 18, 1977 - the preferred preChristmas selling-time period . . . and opening with a day and a half for the trade only.
* BACKED by major IPC specialist, trade and consumer publications, commanding a combined readership of $1,750,000$.
- ORGANISED by the IPC Business Press specialist exhibition company, with a remarkable record and reputation for handling specialist fairs.


# MADEINBRITAIN? 



You could be forgiven for being surprised.

After all, the market is flooded with Japanese equipment.

But now, for the first time, a tape deck with full solenoid transport function is available from a British manufacturer. It's the MK 7S from Brenell.
A sturdy machine of studio quality, that includes features like front panel bias. accessibility and dual standard equalisation.

It can be seen and heard at our demo studio. Pembroke House, Campsbourne Road, Hornsey, London N8.

Or for more information call Andrew Stirling 3403291

Also available - a complete range of multi-channel recorders, to customers own specifications

## brenell

WW-068 FOR FURTHER DETAIL.S

## PRECISION PETITE LTD. <br> 119a HIGH STREET, TEDDINGTON MIDDX, U.K. TEL. 01-977 0878 (24-hr. enquiry service) <br> NOW PRESENT THEIR NEW DRILL!

(MODEL P. 2)

## WITH OUR CURRENT MODEL P. 1 "THE PERFECT PAIR'"

## SPECIFICATIONS

## MODEL P2

## (Illustrated)

- Diam. $170 \times 40 \mathrm{~mm}$

Weight 300 g .

- Torque 320 cmg . RPM 12,000
- 4 collets $0-3.5 \mathrm{~mm}$
- 3 Amp 12 v D.C

Price inc. VAT£ 16.50 p.p $65 p$

## MODEL P1

(As per previous advertisement)

- Diam 33 mm
- Length 125 mm
- Weight 160 g
- 3 collets 0.2 .5 mm
- R.P.M. 10,000
- Torque 120 cmg
- 2 Amp 12 V DC

Price £8. 79 incl VAT, p.p
35p

P2 STAND SOON!

Model P2


## EIMEOARO

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New


The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket Has Over 500 Individual Sockets

And Allows You To Use And Re-Use IC's. Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors


Only $£ 9.72$ (cheque with order) tncluding VAT and P.P. Special Quantity Discounts Available For
Radio Clubs, Retail Outlets, Distributors

# Uniquefull-function 8-digit wrist calculator... available only as akit. 

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it, offers a genuinely comprehensive range of functions, with a full-size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\%VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself.

## How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a $\%$ key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.


1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys 3. and hold it to the right to use the functions to the right above the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readily available hearing-aid batteries to give weeks of normal use.


## Assembling the Sinclair Instrument

 wrist calculator The wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron. It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and useful calculator.
## BLOB BOARDS

Circuit diagram to circuit board in minutes. Layout circuit plan on . $1^{\prime \prime}$ graph paper. Select Blob Board, lay components out with leads on copper strip. Blob of solder onto lead and your circuit is complete. Blob Boards normally half price of competitive boards. Roller tinned to solder components directly. No drilling or mounting. Modifications in seconds. Blob Board is re-usable

Blob Boards are circuit boards designed exclusively for the home constructor and prototype engineer and are normally half the price of competitive boards. Blob Boards are roller tinned for ease of soldering, most require no cutting or breaking of contact rails HALF PRICE AND RE-USABLE. That is NEW!

| Blob Board . $1^{\prime \prime}$ or . $15^{\prime \prime}$ | 1 off | 3 off | Dip Blob Boards | 1 off | 3 off |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ZB1V $2.5 \times 5$ | £0. 30 | £0.75 | ZB11C 4.5. $\times 3$ | £0.36 | £0.90 |
| Z82V $2.5 \times 3.75$ | £0.23 | £0.57 | 2B21C 4.8. $\times 3.2$ | $£ 0.40$ | £0.96 |
| ZB3V $3.75 \times 5$ | £0.46 | £1.14 | ZB41C $4.75 \times 7.5$ | ¢0.85 | £2.13 |
| ZB4V $10 \times 6$ | £1.51 | £3.78 | 2881C $9.5 \times 7.5$ | £1.70 | £4.26 |
| Discrete Blob Board | 1 off | 3 off | Sample pack: 1 off ZB1V + 1 off ZB8D + 1 off ZB21C normally $£ 2.32$ only $£ 2.00+$ free Blob Board. <br> Many other sizes and patterns available add 30 p post $+8 \%$ VAT to all orders. |  |  |
| ZB5D $3.6 \times 2.4$ | £0. 20 | £0.51 |  |  |  |
| Z860 $2.4 . \times 7.3$ | £0.42 | £1.05 |  |  |  |
| ZB7D $4.9 \times 7.3$ | £0.69 | £1.75 |  |  |  |
| ZB8D $9 \times 7.5$ | £1.62 | £4.05 |  |  |  |



## S-DeC

Take an S-DeC, take a small stock of components. Plug components into S-DeC, no soldering, make a radio receiver, light operated switch, 3 stage amplifier. When circuit is made unplug components and use them again to make a morse practice osciltator, LC oscillator, binary counter and any other discrete circuitry. See Practical Wireless for new series of S-DeC projects. S-DeC + step by step instructions to build above projects and 3 more + which components to use + free control panel for mounting switches, lamps etc. + free Blob Board. S-DeC only £1 $98+37 p$ (VAT + post) send only $£ 2.35$.

## Thy <br> DRILL•SAW GRIND•BURR BRUSH-POLISH

PB announce a precision British built drill for the home constructor Works better than most bigger drills and can be used for fine detailed work. Drills through any circuit board, need to break copper strip simply grind it off.
9000 RPM Drill +20 Assorted tools $£ 11.20$ (+VAT + post) Send £13.00.
9000 RPM Drill only $£ 5.22$ + post + VAT send $£ 6.00$
Multi-purpose Drill stand $£ 10.60$ + Post + VAT send $£ 12.00$.


## T-DeC

If you are using IC's to build circuits use T-DeC for 1 chip circuits and U-DeC A for 2 chip circuits. Draw circuit on graph paper, plug IC into Adaptor and plug into DeC No soldering, no bent leads, no wasted IC chip. Eines on DeC show contact rails, plug discrete components in. Cross overs, connections are made using different coloured leads Circuit completed and working unplug components and use for next circuit. No soldering, no damage to components. Use vour DeC and small stock of components over and over again. T-DeC send $£ 4.30$. U-DeC " $A$ " send $£ 4.60$. Adaptor send $£ 2.30$.

## POT LUCK

Off cuts of fibre glass
circuit board $5 \mathrm{sq} . \mathrm{ft}$.
Double sided fibre glass p.c.b. 5 sq. ft.
Ferric chloride 5 litre mix
Negative developer 1 litre

Add $£ 0.75$ p. to all above for Post + VAT.


- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm )
- Simple operation
- 100\% British
- Burr-free holes no jagged edges
- 57 Metric and Linear sizes (Lists on application)
Used all over the world by Government services Atomic, Military, Naval, Air, G.P.O. and Ministry of Works; Radio, Motor and Industrial manufacturers Plumbing and Sheet Metal Trades, Garages, etc

Wholesale and Export enquiries to

# "Q•MAX"(ELECTRONICS)LTD 44 PENTON STREET•LONDON N1 9QA Tel:01.278 2500 

## ELECTRONIC <br> INDUSTRIAL THERMOMETER



THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal 11/2 volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ " measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Price £25.00 Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-on $\mathrm{Hi}^{\prime}$ " measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} \mathbf{£ 2 0 . 0 0}$ [VAT 8\% EXTRA]

Write for turther details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

## Hi-Fi Systems that GROW with you <br> At last someone has come up with a flexible approach to quality

 hi-fi that doesn't become obsolete as you become more discerningTake an initial standard 20W r.m.s. $+20 \mathrm{Wr.m.s}$ stereo and with simple modifications this can be expanded to give a powerful $40 \mathrm{~W}+40 \mathrm{~W}$ stereo system together with additional multi frequency iumble, hiss and stereo image width controls. Currently available from stock:-

## Stereo Pre-Amp Module CP-P1

- 2 channel pre-amplifier
- Ideai for use with record player, tape, microphone, tuner inputs etc
* No external components required other than potentiometers tor bass. treble. balance, volume controls and input selector switch
- The CP-Pl is internally protected against accidental reverse power connection

PRICE $£ 13.30$

+ £1.66VAT


| Specification |  |  |  |
| :---: | :---: | :---: | :---: |
| Input | Sensitivity | Signal/Noise | Impedance |
| Magnetic | 3 mV | $>70 \mathrm{~dB}$ | $47 \mathrm{k} \Omega$ |
| Tuner | 100 mV | $>70 \mathrm{~dB}$ | $10 \mathrm{k} \Omega$ |
| Tape | 100 mV | $>70 \mathrm{~dB}$ | $10 \mathrm{k} \Omega$ |
| Auxiliary | $1-100 \mathrm{mV}$ | 60dB-70dB | $200 \mathrm{k} \Omega$ |
|  |  |  |  |
| Magnetic i/p overload: 33 dB ; |  |  |  |
| Output: 1 V r.m.s. into $10 \mathrm{k} \Omega$ : |  |  |  |
|  |  |  |  |
|  | Supply voltage: +18 V nominal $\mathrm{O}^{\text {a }}$ |  |  |
| $\text { ble } \pm 12 \mathrm{~dB} \text { at } 10 \mathrm{kHz} \text {. }$ |  |  |  |

Stereo Amplifier Module CP2-15-20

- The CP2-15-20 is designed to give either a $20 \mathrm{~W}+20 \mathrm{~W}$ stereo amplitier or alternatively a 40 W single channel amplifier
- No external components required
- Satety features include built-in protection against accidental reverse power connection and thermal shut down facility to prevent over dissipation

Specification:
PRICE $£ 12.85+£ 1.61$ VAT
Power output
40 W r.m.s. into $8 \Omega, 1$ channel: or
$30 \mathrm{Wr.m.s}$ into $15 \mathrm{si}, 1$ channel; or
20 W r.m.s. +20 W r.m.s. Into $4 \Omega, 2$
channel; or
15 W r.m.s. +15 W r.m.s. into $8 \Omega .2$
channel.
Input sensitivity: IV r.m.s.: Frequency response: $20 \mathrm{~Hz} \cdot 20 \mathrm{kHz}$, at -3 dB , Distortion: $0.04 \%$ at 5 W : Supply voltage
+18 V nominal; Size: $5.1 \times 4 \times 1.25 \mathrm{in}$ ( $130 \times 102 \times 32 \mathrm{~mm}$ ).


## Also available:-

## Audio Function Module CP-FG1

For those requiring a wider range of facilities this module provides Bass and treble filter controls including switchable cut-off frequencies to rumble and hiss reduction

PRICE £ 11.75

- Stereo separation control.
+£1.47 VAT


## Power supply: Module CP-PS 18/2D

Suitable for one $2 \mathrm{CW}+20 \mathrm{~W}$ complete system. $\mathrm{A} 40 \mathrm{~W}+40 \mathrm{~W}$ system can be produced using 2 power supplies $\quad$ PRICE $55.75+72 p$ VAT

## These products carry a 2 -year guarantee

## Cliffpalm Ltd.

DEPT. W/W
13 HAZELBURY CRESCENT LUTON, BEDS. LU1 1DF

Prices include full application data,
post and packaging



Si451 Millivoltmeter
$\star 20$ ranges also with variable control permitting easy reading of relative frequency response

## JES AUDIO INSTRUMENTATION

## Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

* very low distortion content-less than 0.03\%
$\star$ an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
$£ 60.00$
a/so available
Si452 Distortion Measuring Unit
$\star$ low cost distortion measurement down to $0.01 \%$ with comprehensive facilities including L.F. cut switch, etc.
£48.00


## ALL PRICES PLUS VAT

Tel. 0274-872501
WW $\mathbf{- 0 3 9}$ FOR FURTHER DETAILS

## Switching problems? Rely on Zettler.



Producıng 30 basıc types of relay and 15.000 variants with regard to contact stacks, terminats, energizıng current and contact material, Zettier is among the largest manufacturers of electro-mechanical

Our product range comprises: Low profile (flatform) Timing Miniature Low contact capacity Hermetically sealed. Stepping Mains switching Latching Contact stacks Solenoids

components.<br>



We resolve your switching problems rapidly and expertly Please contact us for further details.


Zettler
UK Division
Brember Rnad
Harrow. Middx HA2 8AS Tel (01) 4220061 A member of the woridwide ZETILER electrical engineering yroun wit 1817

## DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30, $300 \& 1200$ ( 30 and 120 cps ) Teleterm. 1132 and 1200 series (portable/fixed 30 cps ) with integral coupler and RS 232C) Other page printers (by Siemens, ITT Creed, etc.)
$\star$ Spares, repairs, overhauls and maintenance * Other types and models available

* Refurbished units also available
$\star$ Short and long period rentals
$\star$ Minicomputer interfaces
* Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables rahno Tring
Telex 82362
A/B Batelcom Tring


WW-014 FOR FURTHER DETAILS

## Audio versatilily by TWEED



The Tweed Twin-100 Monitor Power Amplifier - designed for a high peak output capability, this robust amplifier delivers 100 watts per channel into 8 ohms. Full performance specification on request.
If you require superb quality, top performance, proven reliability and electronics designed with music in mind, write or phone:


TWEED RUDIO
mosemoon industhial tstate necsi hoxburghthite scotland phone 2 ge3 stoosh32

## r RADFORD high Performance amplifiers

## for the enthusiast and professional



## ZD22 Stereo Pre-amplifiar Control Unit

A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and wo tape machines, providing comprehensive recording and reproducing facilities. Sensitivities: Disc 1 mV , and Auxilliaries 50 mV ., for 1 V output Exceptional signal/noise ratio. Output at clip level 18 V r.m.s.

ZD50 Power Amplifier
A stereo power amplifier of all aluminium construction. Output of 110 watts per channel into 4 ohms and 70 watts into 40 hms at typically less than $0.002 \%$ distortion.

ZD100 Power Amplifier
A stereo power amplifier of atl aluminium construction with high thermal mass and designed for continuous operation at high output level. Provides 150 watts per channel into 4 ohms and 90 watts per channel into 8 ohms at virtually zero distortion

2D200 Power Amplifier
Characteristics as ZD 100 amplifier but provides an output of 250 watts per channel into 4 ohms and 150 watts per channel into 8 ohms

HD250 Stereo Integrated Amplifier
Uses ZD22 pre-amplifier with a power amplifier having a power output in excess of 50W per channel into $4-8$ ohms. Distortion: less than $0.02 \%$ at rated power typically less than $0.01 \%$. True complementary symmetry atput Head Sensitivities: Disc 1 mV . Auxilliaries 50 mV for 20 W output

Full descriptive leaflets available from
RADFORD ELECTRONICS LTD.
Audio Division
Ashton Vale Road, Bristol, Avon BS3 2HZ. Tel: 0272-662301

## 745 COUNTER TIMER

## DC-32 MHz

## FREQUENCY, PERIOD, TIME \& TOTALISE

$\pm 5 p p m$ STABILITY @ $25^{\circ} \mathrm{C}$


745 COUNTER TIMER $£ 88$ + £2 p\&p WWV078 Other products include:
744 Counter Timer $£ 79$
WW 079
643 Function Generator E95 WW 080 643A Function Generator $£ 79$ WW 081
631 Filter Oscillator $£ 98$

OMB electronics, Riverside, Eynsford, Kent. Tel: 0322863567 TICK THE APPROPRIATE REPLY NO. FOR DETAILS

WW-020 FOR FURTHER DETAILS

## TEAC

TEAC A3340(S) 4-CHANNEL RECORDER


Industrial version upgraded to studio requirements. with increased signal to noise performance and improved reliability Four totally independent channels each with sel sync, input mixing, switchable vu s and all the facilities for easy multritracking. This
model is in more studios than any other version.

Available only from ITA
(Semi-pro version also available) IMMEDIATE DELIVERY

REVOX REVOX A-700 SERIES

immediate delivery
The new brg
Revox Revox
ideal for ideal for all
studio resludio re-
quirements
Highly so. Highly $50-$
phisticated design fea-
dures in. clude servo tape tension,
tull deck logic, crystal controlled
servo ele servo elec-
ironics. 3 speeds tape speeds ta
footage counter
$\left.\begin{array}{c}\text { The famous: } \\ \text { A } 77 \\ \text { has }\end{array} \mathcal{A}-7\right]$ SERIES NAK 4 been consis-
tently improved over the past 8 years and is now avail able in the latest Mk version The wide
choice of specifications includes versions fo duplicating and logging applications Backed by
UK's latest UK's latest
tastest
vice.


ITA 10-4 MODULAR MIXER


Ten balanced inputs: four output groups, 4 limiters. bass mid and treble EQ, modular construction, headphone monitoring Extremely high quality §1,000.
$10-4 \quad £ 690$
$20-4$ £1190
EIGHT OUTPUT E1260
IMMEDIATE DELIVERY Also available for hire

PRICES EXCLUSIVE OF V.A.T.

# this 25 Milizdual trace, dualsweer, clear display heghy versatile roya perormance scope 

TheD67A
aWORLD PREMIÈRE


Capable~that's our scope

If you use oscilloscopes, you should know about the D 67 A , onc of the newest in a strong cast of star performers from 'Telequipment.
Superbly engineered, elegantly styled, this robust and compact oscilloscope captures the spotlight with its 25 MHz bandwidth, its dual trace dual time base versatility and an extensive repertoire which includes delayed and mised sweep routines. Sensitive, (up to $1 \mathrm{mV} /$ div) yet without a trace of temperament, due to F.E.'T'. input circuitry. High speed presentation, (up to fons/div) with excellent timing ( $\pm 3 \%$ to $\pm 5 \%$ ) -a blending of talent and technical expertise that could come only from a Telequipment production.

You will applaud it on performance and encore it on price. Secure your front row seat today, ask us for a brochure and a demonstration.

Tektronix U.K. Limited
P.O. Box 69, Beaverton House, Harpenden, Herts Tel:Harpenden $631+1$ Telex: 25559

Telequipment < >

## wireless world

## Electronics, Television, Radio, Audio

## JANUARY 1977 Vol 83 No 1493

## Contents

31 The case for citizens' band
32 The citizens' band debate by John Dwyer
38 News of the month
Carter wants better use of mobile radio
Waveguide go-ahead
Teletext and cable
41 Distortion in audio amplifiers by Matti Otala
44 World of amateur radio
45 Letters to the editor
Citizens' band in UK?
Four-channel sound
Shortwave band congestion
47 Weather satellite facsimile machine - 2 by G. R. Kennedy
51 Logic design - 1 by B. Holdsworth and L. Zissos
55 Morse keyboard and memory by C. I. B. Trusson
59 H.F. predictions
60 Identifying European television - 1 by G. Smith and K. Hamer
64 Microwave device developments by M. W. Hosking
65 Digital event timer - 2 by P. A. Birnie
68 Literature received. Announcements
69 Progress in millimetric waveguides
73 Circular insert generator for television by D. E. Burgess
76 Circuit ideas
Op-amp Wien bridge oscillator
Motor revolutions control
Zero-crossing detector
79 Conferences and exhibitions
80 New products
127 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS

[^1]

Front cover, by Paul Brierley, shows a Tektronix B32 oscilloscope with modules opened out for servicing.

## IN OUR NEXT ISSUE

Viewdata, the Post Office's textual information system using the telephone line and the tv set. First of a series explaining how it works.

Transient intermodula-
tion distortion. An article by Bert Sundqvist argues that use of a very large bandwidth in a power amplifier is not the only way to avoid transient intermodulation distortion.

Nickel cadmium cells. Reviving these re-chargeable cells, which are sometimes found to be unreliable and short-lived.

# New portable DMMs. Only Fuke make themonly ITTsell them. 

New Fluke DMMs Fluke have introduced two new digital multimeters. That is big news in itself, because when you are already producing the best selling instruments on the market, how do you bring off another success? The answer has been to take an outstanding specification and shrink it into a truly portable instrument.

True RMS a.c. This is the most important feature - especially when you realise that it is incorporated in a battery operated instrument that measures less than $6 \times 5 \times 2^{\frac{1}{2}}$ in. and weighs only $2 \frac{1}{2} \mathrm{lb}$. It means that you can take lab. quality measurement out in the field, free from the shackles of size, weight and power points.

Two versions - $8030 \& 8040$ Both models offer five ranges over
five measurement functions and include autozero. The 8030 is a $3 \frac{1}{2}$ digit instrument with a useful diode test facility. The 8040 has $4 \frac{1}{2}$ digits and incorporates autoranging.

The only way to buy Both these briefcase sized DMMs are available from ITT Instrument Services; and from nobody else, not even from Fluke. Which brings together the best sellers among portable DMMs and the biggest name in the instrument distribution business. That means no-delay telephone ordering, streamlined internal processing, and delivery from stock.

Ask for a spec. sheet now. Or better still, get ITT to arrange a demo. You will be more amazed by the performance than the price!


## ITT

 instrument services The only way to buy. Harlow (0279) 29522.
# wireless world 

## The case for Citizens' Band

## Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller
G. BENTON ROWELL

Advertisements:
PHILIP NOSSEL (Manager)
Phone 01-261 8622

NIGEL LITTERICK
Phone 01-261 8037

LEO KEMBERY
Phone 01-2618515

OWEN BAILEY (Classified Advertisements)

- Phone 01-261 8508 or 01-261 8423

[^2]Publishing Director:
GORDON HENDERSON

# The citizens' band debate 

Reporting the attitudes of the UK protagonists

By John Dwyer


#### Abstract

If citizens' band radio is never heard of again at least it will have given us something other than Denis Healey to remember 1976 by. In America the growth in the c.b. market, worth \$1.5 billion in 1975 if accessories are taken into account, has left its administrators breathless. As a comparison the entire US record industry was worth $\$ 1$ billion. On this side of the Atlantic the interest in c.b. has been largely expressed by newspapermen and television pundits: what the man in the street thinks about it, or whether he would even know what it was, remains obscure. More certain is that those who supervise radio here aren't keen to see his interest develop. The Home Office regard c.b. as a kind of electronic hula hoop, a vulgar catchpenny diversion, the pressure for which will evaporate as soon as it becomes clear that they intend to adhere to a strictly-controlled, highquality communications service. Those the Home Office descry across no-man's-land are just as determined that this time the bureaucrats will be routed.


The protagonists in the controversy are the Radio Regulatory Division of the Home Office (the successor to the Ministry of Posts and Telegraphs, itself the successor to the Postmaster General's office); the Radio Society of Great Britain, which is the largest body representing amateurs; the manufacturers (whether those who would like to supply for or make c.b. equipment, or those who already make other kinds of communications equipment, generally represented by the Electronic Engineering Association); the mobile radio users; and the general public.

At the moment there are two Acts which prevent the use of citizens' band equipment: Section 1 of the 1949 Wireless Telegraphy Act prevents the installation and use of any piece of any
wireless telegraphic apparatus without a licence; and Section 7 of the 1967 Wireless Telegraphy Act gave the Postmaster General powers to introduce prohibiting orders at any future time to prevent the spread of equipment that caused interference to licensed users of other apparatus. It was as a result of this latter Act that, on April 1, 1968, the Postmaster General, Mr Edward Short, issued Statutory Instrument 61:1968, the Radiotelephonic Transmitters (Control of Manufacture and Importation) Order 1968. This prohibited the making or importing of radiotelephone equipment which transmitted on any frequency between 26.1 and 29.7 MHz and 88 and 108 MHz . It was aimed at 27 MHz walkie-talkies from Japan which had begun to appear as a result of the introduction of the Class $D$ citizens' band on that frequency in the United States ten years before. In addition to these two Acts the Post Office Act, 1969, gives the Post Office a complete monopoly of electromagnetic communication. If the letter of this Act were ruthlessly pursued one presumes that it would make illegal, among other things, the red rear lights on cars and bicycles.
Note that there is no provision preventing the sale of c.b. equipment. SI61 dealt with the immediate problem but took no account of the fact that c.b. sets with a 29.8 MHz channel crystal in them could be imported, then sold with a 27 MHz channel crystal in them. It is probably safe to say that that is how most of the c.b. sets freely available in shops came to be there, and equally justified to assume that the Home Office wished there were some effective method of preventing their sale.
Any introduction of c.b. in the UK would bring these sets back into legal use, especially if 27 MHz a.m. were to be adopted. Once you admitted the legal use of two way radios it would be difficult to tell which were new, approved sets and which had come in before or during the ban.

## The Home Office view

There is a further legal flaw in the Wireless Telegraphy Act in that, although it is illegal to use equipment without a licence, the Act requires that an offender be caught in the act of using it, something that makes the Act quite difficult to enforce.

Students of official inconsistency should note that despite our prohibition of the import, manufacture, installation or use of even the 100 mW walkietalkies that need no licence at all in America, Customs and Excise have overcome their distaste sufficiently to issue a notice (VAT News No 8) showing that walkie-talkie radios "of a kind suitable for domestic or recreational use" would attract the higher rate of value-added tax.
The Home Office view is that at the moment the 27 MHz band cannot be used for c.b. because it is already occupied by model controllers and paging systems, including some in hospitals, as well as all sorts of other non-speech devices. More important, the frequencies just aren't available to put either them or c.b. elsewhere. The performance of the transmitters would have to be good if they were not to cause gross interference and overcrowding, as they say has happened in the United States. That would put the cost of the sets up to the point where the system defeated its own object. There had been gross overcrowding in the United States and a lot. of illegal use, both in the sale of unlicensed sets and in the way the sets were used. The use of the radio spectrum had to be ordered and the Home Office would have to agree the use of any unallocated frequency with France, Holland, Ireland and Scandinavia. With all the chaos in America, they say, it would need an army to police the thing properly. "We don't want to deprive people at all," a spokesman said. "It's the art of doing what is possible." Even for business use there was a limited amount of space available, saturation might be reached,
and "business use is more important than private chit-chat."

## Citizens' Band Association

Indeed a recurring theme in the opposition to citizens' band was that somehow the use of radio was justified for commerce but not for mere private communication. C.b. is thought a "trivial" use of radio, even though $60 \%$ of the spectrum between 30 and 1000 MHz is taken up by broadcasting, mostly used for entertainment. But Redifon managing director John Brinkley found the argument about overcrowding shaky: "Experience hasn't shown this. People are going for this in a big way and they don't spend the money unless they are getting use and enjoyment out of it." The secretary of the Mobile Radio Users' Association, which represents commercial users of private mobile radios, Alan Ford, thought that if the bands allocated to c.b. became overcrowded this would be "self-correcting" and might encourage the use of more sophisticated radio. Speaking of the illegally imported c.b. sets already in use he said, "We have so far not had a complaint of interference from any of these devices from any of our members." Although J. O. Stanley, chairman of the Air Call radio telephone answering service, is opposed to the introduction of citizens' band radio, he said it "wouldn't affect our paging service", and Brinkley agreed that the problems with the hospitals could be overcome. Not so easy to deal with would be the radio modellers, whom the Home Office says number 40,000 , but this assumes that any British c.b. service would be on 27 MHz a.m.

James Bryant, applications manager of Plessey Semiconductors, said he formed the Citizens' Band Association because "I saw that the other groups were campaigning for 27 MHz and I felt that this was a mistake. I became very worried about the Home Office attitude. They would dig their heels in until forced to change their minds by a change of government or a change of minister, even, and would go for 27MHz."

He proposed $40,25 \mathrm{kHz}$ channels at a power of 2 W on f.m. with an audio bandwidth of 3.4 kHz and specified tight tolerances on maximum deviation and spurious emission. Where would the frequencies come from? "There are gaps between some of the tv channels. The v.h.f. channels are no longer very heavily used. There is 6 MHz between channels that is allocated and not used

We are not broadcasting in this country between 100 and 108 MHz . The police are there but they're moving out and there would be no harm if they kept back a megacycle there, but broadcasting will hold on to that on the basis that what you have you keep."

## Why not f.m.?

What was his objection to 27 MHz ?
" 27 MHz has lots of long-range radiation
problems, and it would put hundreds of thousands of pounds' worth of model control equipment out of service." He advocated a strict licensing policy. "Each set would have a built-in station identification signal. It would be the duty of the person selling the equipment to copy the auto ident from the bottom of the set on to a form which he has for sending off to the Home Office." The person responsible for the set would be the last registered owner. If you didn't register the new owner you were liable. There would be penalties for the sale of non-type-approved sets without the auto ident.

It has frequently been said that the American Federal Communications Commission, given the chance again, would go straight for their proposed Class E system. This, at 220 MHz , would provide $80 \mathrm{f} . \mathrm{m}$. channels designated for specific uses. The 27 MHz band, which the FCC hopes will eventually be turned over entirely to 80 single-sideband channels, is being expanded from 23 to 40 a.m. channels from January 1, 1977.

Pye Telecommunications, in their Pannell report suggesting mobile radio frequency allocations for the 1979 World Administrative Radio Conference, say that for any c.b. system set up in the UK, "a likely solution may be that section of the band currently being considered by the USA, namely 220 to 225 MHz ," but add that there may be some advantage in the use of a lower portion of the v.h.f. band "and that part of the band just above 100 MHz would seem to offer a compromise between range, interference possibilities, antenna size, etc'".

## The Japanese

One of the Home Office's comments on all this was that any c.b. set which had all the features Mr Bryant wanted to incorporate would cost "more than personal mobile radio." Mr Bryant doesn't think so: "High or low band, you could do it for under $£ 80$. In the US, a.m. sets meeting the FCC spec (which is tough) are imported f.o.b. for under $\$ 40$. They sell for about $\$ 100$. In some respects it's easier to make an f.m. set than an a.m. set. Less tuning is needed. Land mobile sets have to be made broadly tuned and then specially tuned individually to the frequency allocated to the customer. C.b. sets are all the same."

But there are those who think, as John Brinkley does, "that it might be quite wrong to do it on a pattern different from the American pattern." Alan Ford of MRUA agreed: "I'm not convinced of the objections to 27 MHz ," and his view was even echoed by a Home Office source who said, "I don't know that the American way of doing it isn't the right way". Brinkley thought there were sound commercial reasons for sticking to. 27 MHz which would ,outweigh any threat from Japanese imports: "I'm against getting up some grotty special that we sell to nobody.

We could become a prime exporter, and I would hope that if an intelligent and constructive view of c.b. is taken by the administrators and industry we could get a good result without creating a spec that you can't sell elsewhere."
The threat of Japanese imports looms large in the thoughts of those who have considered c.b. Bryant suggested that a c.b. service on f.m. in the v.h.f. band would preserve us from the worst effects of Japanese competition and would make sure that the sets used here were of a high standard. Others who have been to America say, on the contrary, that the standard of Japaniese sets, which account for up to $90 \%$ of the market, is very high. "We are concerned," said Roy Pierce, managing director of mobile radio communications equipment makers Burndept, "that if we do establish a new type of market that UK industry has at least an equal chance in supplying this market. This can be achieved either by tariff barriers, to which I am generally opposed, or by specifying the requirement in a way which starts our development off on an equal basis."

## Does allocation equal use?

Elsewhere it has been suggested that the specification for the type-approval of sets might be used, as safety regulations already have been, as a trade barrier. J. O. Stanley didn't think this was either a good idea or that it would work. "The Japanese would get typeapproval, the good Japanese anyway." More fundamentally, our World of Amateur Radio columnist, Pat Hawker, wondered, "How are we justified in saying we don't want Japanese equipment in?" Brinkley thought public access was much more important: "In considering whether there should be c.b. or not the most important thing is whether it would be useful and valuable to the public. It's important but it's not the first consideration as to whether .imported equipment should be eligible."

There was widespread agreemeńt that the spectrum was poorly used and that the Home Office had confused the availability of frequencies with the fact that they were "allocated". However, our Home Office spokesman did admit that "there are parts of the spectrum where allocation is not entirely satisfactory." Also recurrent was Bryant's and Pye's suggestion that the allocation of Band I might be transferred to two-way radio. It appears that we are one of the few countries in the world that uses television channel I, which often turns up under freak conditions in Australia and South Africa. J. O. Stanley feels strongly about Band I: "To have 405 -line channels warming the ether for the benefit of a couple of thousand sets that are mainly in the Western Isles is indefensible."

## The amateur view

The Home Office have tried to make clear that the only frequencies that
could be used for any future citizens' band would have to come from the radio amateurs. They must know that this is untrue, but it would be considerably easier to nip the c.b. fad in the bud if the amateurs thought they might suffer from c.b. and so mobilised themselves against it. The amateurs are very influential and have considerable prestige.

British amateurs seem to have mixed feelings about c.b. I have yet to meet one who is opposed and one even wrote to this journal to suggest that his colleagues ought to give up some space to it, but others have said that some amateurs are bitterly antagonistic to c.b. In the United States they formed a "Save 11" campaign to oppose their being moved from the 27 MHz ( 11 m ) band. A similar feeling is developing over amateur space above 200 MHz . Amateurs are all too aware that there are 250,000 of them sharing 42 MHz of American radio space, while around ten million c.b. enthusiasts have only 250 kHz .
Some ill-feeling was also caused in the early days when misdemeanours by c.b. users were attributed by ignorant journalists to radio amateurs. Coupled with this is a notion shared by a number of amateurs here that they are an elite, a select group who, unlike others, have earned by their knowledge and exerience the right to transmit and take a pride in doing so responsibly. The thought of anyone being allowed to use radio without having to take a test and for such trivial matters as seem to preoccupy its American users appals him because he feels it lowers his own status.

But many amateurs already use their licences just as a citizens' hand licence would be used. Such amateurs are not interested in radio any more than was necessary for them to get their licences. They are less often inclined to join in what they regard as the esoteric chatter about technical matters that tends to preoccupy other users of the amateur bands. By law amateurs are not allowed to transmit business messages or information for or:about third parties. They also have to keep a log. The introduction of c.b. would be the excuse for a lot of these amateurs to abandon their licences and many of the rest would not be opposed to their departure since the general level and status of the true amateurs who remained would be enhanced. There is also the hope that a generally-available, two-way or multiway radio service might encourage those who had not had any previous contact with radio to find out more about it.

In many European countries the relationship between the amateurs and the c.b. fraternity is said to be very close. In the German Federal Republic the amateur and c:b. magazines emanate from the same publishing house in Stuttgart.
The Radio Society of Great Britain,
with a membership of 19,000 , about $1 / 3$ of whom are listeners-only, out of a possible 20,000 or so, claims to represent all UK radio amateurs. When interest in c.b. first began to be shown in this country the RSGB wrote an editorial in their journal, Radio Communication, saying that "At the present time the opinion of the council is that no support can be given to the establishment of a communications band in this ( 27 MHz ) part of the spectrum." The editorial reflected closely the present Home Office view, confining its discussion entirely to the impracticality of using 27 MHz , taking no account of the possibility of moving elsewhere, and pointing to the violations that had taken place in the US. No attempt was made to draw any comparison between the numbers of violators prosecuted and the total number of those using c.b., or to point to the occasions when c.b. radio had helped the police catch criminals or had saved life.
During the months since that editorial was published last April, however, the RSGB has considerably changed its stance. The November editorial repeated a statement issued by the Society at the beginning of October. "The RSGB is aware of the numerous items that have appeared on this subject in various journals both as correspondence and as feature articles. It is apparent that much of this material has been generated by those who will profit financially from the introduction of the facility rather than by potential users."
The RSGB was "not opposed to the introduction of a short-range personal communications facility", provided that its frequency and the equipment used for it were suitable -27 MHz was not because it was too near the 28 MHz amateur band, it allowed long distance propagation and consequent increased interference during the sunspot cycle, and it interfered with television reception in Band I.
Significantly the editorial, unlike the statement said: "Having regard to equīpment now available it would appear that a v.h.f. or u.h.f. f.m. service with power limitation, crystal control and type-approved apparatus could be suitable."

One reason for the change, slight though it may seem, is that, as RSGB General Manager and Secretary George Jessop explained, the Society might benefit financially from the introduction of c.b.: "The administration of c.b. could be serviced by us out of which we could take money to support the amateur." The RSGB was not supported by any industry or organisation or by the government, he said, despite the charity work it did. No other organisation was as well suited to ministering to the needs of future c.b. users, and the Post Office counter staff were already so overloaded that it was unlikely they would accept the extra burden of handing out c.b. licences. He thought 27 MHz was bad because with the
powers some of the Americans were using they could be picked up over here. As to where the service could be put he was non-committal: "Somebody has got to do a lot of homework; somebody needs to think about it, about whether it's going to be a useful thing." He was emphatic, however, that the spectrum wasn't full, and that the allocations, particularly those for the military, needed looking at. He would choose somewhere between 300 and 400 MHz . "Between a quarter of a million and 400,000 people would want this. facility and this would be a dreadful thing unless it were properly controlled, but I can't see how you can stop people having access to a legitimate development."

## The military

The Home Office has no control over frequencies used by the military, and so any mention of these is notably absent from discussion of possible candidates for a c.b. slot. But it was surprising how often those who might have been expected to defend the amount of space the military has access to suggested, without prompting, that the military were not using their frequencies properly. From other sources it is widely known that the forces leave 10 MHz of the 225 to 400 MHz band fallow because these frequencies are also used by countries signatory to the Warsaw Pact.

Our forces operate their allocations as what one observer called "a mobile radio right of way", meaning that as long as they were used once a year or so the military had established their right to keep them. In the case of the "red" 10 MHz , when it is used, usually on an exercise, the arrangements are agreed secretly in advance with the Warsaw Pact. The Ministry of Defence will not confirm or deny any of this information on the grounds that it is classified, but their NATO allies across the Atlantic have publicly acknowledged that, apart from objections by Canada and Mexico, one of the difficulties about establishing a Class E service in America was that the US Army used it for radar installations and tracking stations. There is no more depressing contrast between American government and our own than that, in June, the acting assistant director of the American Office of Telecommunications Policy, Edward Probst, announced the OTP's intention to examine all federal government frequencies between 50 and 900 MHz as a direct result of the pressure for more space for citizens' band.
Since the technical objections to citizens' band could, on balance, be so easily overcome, why is the Home Office so steadfastly refusing to allow it? One suggestion, made only halffacetiously, was that most of those concerned with such matters are due to retire in 1979 and don't want to face the effort of introducing c.b. before their successors take over. There's no doubt that a lot of work would be involved,
but one is forced to ask who pays for it to be done.

## Security

The real reason for the Home Office attitude may be a concern for internal security. Many of those opposed to c.b. see it being used for bank robberies and other capers, and one explained: "I can't see the army in Northern Ireland being all that pleased if everybody over there had walkie-talkies, can you?" One informed commentator noted that in Northern Ireland the Wireless Telegraphy Act was a dead letter even for the security forces. Deeper down is a political worry. It hasn't escaped the notice of civil servants that the beginning of the c.b. boom was its use to block roads during a strike.

Many are worried about its use at demonstrations. The magazine Autocar said in August: "Naturally, it is an opening to what some would call misuse of radio, warning other drivers of police speed traps - with which we are in sympathy - in another, lone case, to
co-ordinate a riot, with which we are not."

Others argued that if rioters killed as many people as motorists did then we'd be under martial law. As to the illegal use of c.b., Redifon managing director John Brinkley said, "Bank robbers and people like that are going to have two-way radios anyway, whether they're legal or not. Two things would prevent their use for such things if you had a citizens' band: firstly the politeness and formality of the operators; and secondly you're on an open circuit and everybody can hear everybody else." The police in America were in favour of c.b. and put sets in their cars, he said.,

The Home Office believed that the police in the United States didn't like c.b., partly because it interfered with their communications. On the other hand, according to Tom Graham, editor of Canadian Transceiver, writing in Electronics Today International, the Ohio police have done a survey which "proved conclusively that c.b. mobile operators are a positive benefit to the
general public." The state of Mississippi has installed c.b. transceivers in 140 patrol cars and one report, in The Sunday Times, has said that their police rapidly caught 21 fugitive lawbreakers and 221 other offenders as a result of tip-offs from c.b. users. The state of Missouri has installed c.b. radios in all 750 patrol cars. In Atlanta, Georgia, a man with c.b. in his van spotted a car that c.b. messages had told him was carrying three men who had just killed a policeman. He rammed it, causing the three to be arrested. The New York police are reported to be working with the local Radio Emergency Action Citizens' Team (REACT).

## Social effects

A visitor to the United States even noted a profound change in social attitudes: "If you want to pass on a attitudes: "If you want to pass on a
message people relay everything for you. Everyone's falling over themselves to be helpful to each other. And you know what motoring is like. The motor car itself is a selfish thing. Drivers used
 ith

Growth in applications for licences to run citizens' band radio stations. Source: Federal Communications Commission
The astonishing growth of $C B$ in the United States is usually attributed to the oil crisis of late 1973. This led to fuel shortages and 55 m.p.h. speed limits on the inter-state highways. For the truckers, who had already been subjected to a price and wage freeze at a time of rocketing costs, the speed limit was the last straw, and they went on strike. Millions of Americans saw news bulletins showing truckers with two-way radios mobilising their
blocking of the tollgates and inter-state highways, and motorists bought CB sets to hear the truckers telling one another, after the strike was over, where scarce petrol and predatory patrol cars could be found. Our graph shows that the reduction in the licence fee also had a pronounced effect at a critical time, and the significance of this is unlikely to be lost on the administrators of any citizens' band service that is established here. In America there is already talk of putting the fee back to the original $\$ 20$.


 r a

not to care about one another, but a friend of mine said to me, 'We're all talking to each other now'." An article in the New York Times Color Magazine predicted, "If the people who regulate its use can prevent it from becoming a monster, it might well have a cultural and social impact on American life almost as profound as the last electronic communications gadget to sweep the country - the television set."

One of the most compelling weapons that the pro-c.b. lobby has in its armoury is that it would provide farmers, doctors and others with a method of continuous communication. The Home Office counter this by saying that such people already qualify for personal mobile radio, since they can prove a case for using it for business.

Those in the mobile radio industry have little but praise for the way the Home Office administers mobile radio: "It's not that bureaucratic," said Roy Pierce. But the difficulty with p.m.r. is that you have to prove your case for having it, you need to spend a great deal of money on the equipment, and, even more important, no real effort is being made to encourage its use. The Post Office radio telephone has a similar drawback in that it is not widely advertised in Post Offices. The advantage of citizens' band would be that the sets would be so cheap and so easy to get that nothing need stop the district nurse, the pensioner, the doctor, and the housebound from getting them; for the last in the list the telephone is no use unless you have someone to phone or are phoned. C.b. would enable them to talk to the outside world, not just members of their own circle. Getting p.m.r. is so difficult, several sources told me, that very often the supplier has to fill in all the forms for the customer.

Selling p.m.r. seems quite difficult. With another product a customer is usually reacting to having seen someone else using it and wanting to try it out. The p.m.r. salesman can't let the customer near the set until a frequency has been allocated by the Home Office. Mobile radio frequencies are so short that the authorities have to work out complicated regional variations which take account of the greater demand for frequencies in areas that are already congested. This can take nine months. All of this applies equally, of course, to the amateur, who has no opportunity to try radio out before he has been through all those tedious exams.

## But who can use it?

If c.b. were allowed there is a danger that the big users of mobile radio, from taxi firms to the electricity, gas and water authorities, British Rail, large petrol companies and, to a lesser extent, the fire and ambulance services, might in these inflationary times turn to c.b. rather than carry on with p.m.r. This explains the reticence of some of those in the industry. For the users Alan Ford said: "We can see problems and we can
see advantages. Over $80 \%$ of mobiles in this country are owned by our members, on our estimate. Anything that harms them we are against. But if, as I suspect, the introduction of citizens' band in the UK were to make the public generally more radio conscious then this could clearly be an advantage, and could only be a good thing for radio users and the industry."

The chief concern of the mobile radio industry is the effect it would have on their businesses. Mr Stanley thought c.b. "about as likely to happen as the nationalisation of the banks." He wouldn't welcome its coming because of the shortage of frequencies and the need, with mobile radio growing at 15 to 20\% a year, for p.m.r. to get more. He agreed however that "there are a lot of channels that have got to be utilised better," and that a lot of groups, the newspapers, the Post Office and so on, "have generous allocations that they are using less efficiently than they could." But he said he was against anything that gave radio a bad name. "The amount of damage c.b. does and the bad reputation it gets is worse than the amount of selling it would get."

Pye Telecommunications said they had not committed themselves one way or the other. "We are taking a considerable interest in what's happening in America," sales promotion manager Bill Wheel told me. "If it were to come in with a bang we would want our share of it, but whether we would actively campaign for its introduction is another matter." Like Mr Stanley he was worried that it might "give the wrong impression of mobile radio." It was a totally different business, as demonstrated by the high Japanese interest in it: "They want something that can be made in thousands and put in a box with their label on it, and they have no interest for what use that is put to after they sell it. C.b. falls into that category. They're looking for mass production goods that can be sold over the counter. That's not our business because we as professionals provide a professional service in the design, installation and maintenance of whole systems."

## It's not on

Paradoxically there are many, many reasons why c.b. will never be allowed here and just a few, though they are compelling ones, why it is inevitable. As we have seen, the technical objections can be overcome, if the will is there. The greatest obstruction is that the will is absent. To begin with, although the American and European citizens' radio services take advantage of the 27 MHz spot frequency assigned by the ITU to "industrial scientific and medical" use on the condition that users accept any "harmful interference that may be experienced," there is no mention of citizens' band radio or anything like it in the document published after the last conference in Geneva in 1959. As far as the international control of radio is concerned, therefore, Citizens' band
radio does not exist. The countries that operate a service are taking advantage of another agreement made in Geneva that countries may use frequencies allocated elsewhere provided such use has no effect outside their own borders. It was because of this provision that the FCC had to shelve their plans to introduce a Class $E$ service on 220 MHz . Canada and Mexico said it would interfere with their television services.

It is not entirely realistic to say that because other countries can operate a citizens' band service there is no reason why we should not. There are several important differences between conditions in Europe and the United States. Nearly all of the European "Public radio" services are run by small businessmen and are not as generally available to the public as is believed.

The social and political differences between the United States and the: United Kingdom as they affect radio' communications are not generally realised. The most elementary is that the United States has a written constitution, the first amendment to which forbids congress to pass any law restricting freedom of speech. The second amendment allows citizens to carry guns, and there would be something absurd about a national law which allowed its populations to carry 0.45 s and not walkie-talkies. America also has a Freedom of Information Act and a civil service which resigns upon the election of a new president. Consequently the government is more accountable than here.

More fundamental even than these things, however, is that there had never been a government monopoly of radio. Planning of any kind, notably town planning, is suspect, and state ownership is anathema. This also applies to the American telephone service, which is shared, generally speaking, between the Bell Telephone Company and AT\&T. Like our own telephone service it is profitable but, unlike our own, it does not have to support a costly postal service. For that reason, in many cities in the US, local telephone calls up to a certain number are free. Thus there is no reason to fear the undermining of the telephone service by c.b. in the States because the service is cheap enough to be accessible to everyone anyway.

It must be remembered that until a year ago 15 of the 23 c.b. channels in the US were set aside solely for the use of calls between different transceivers belonging to the same station. These are the calls that would compete directly with the telephone service. The rule change by the FCC allowing interstation calls to be made on any c.b. channel may be as much a reflection of the effect on the telephone service as on the need to ease some of the congestion on the other channels and the fact that, since so many people have them, fewer c.b. stations are now bought for intra-station communication.

## The Post Office block

What may worry the Post Office as much as the loss of local calls is that so much of its revenue is derived from recorded information services, which receive hundreds of millions of calls a year. If the American evidence is any guide at all, the motoring information service would be severely hit; information from a motorist travelling north along the M1 would be more reliable than anything the Post Office could manage.

In addition the Post Office has just announced the extension of its own Radiophone service to Scotland. It now covers London, South Lancashire, the Midlands, East Pennines, Severnside, South East Wales and the North East of England. Motorists in these areas can call anywhere in the UK, principal towns in Ireland, the Isle of Man and the Channel Islands and most of Western Europe, the United States and the Far East. The cost of a local call, however, is 8 p a minute with a three minute minimum, and a trunk call costs $6 p$ a minute over normal rates. These charges do not include v.a.t.

This service is far too expensive for the normal "I'll be home in 20 minutes" type of message that the public could easily pass on with present technology. Even more significant perhaps is that the Post Office's Viewdata will, if it is ever introduced on a large scale, provide just that. Callers will be able to leave messages which will appear on the television screen. On present form the service is unlikely to be cheap, to us at any rate, and c.b. would affect it badly.

The Post Office and the Home Office are likely to receive substantial support in their objections to c.b. from the BBC, who are now pressing for their own radio motoring information service and who wish to retain their Band I frequencies either for a "re-engineered" 625 -line tv service or a dedicated teletext service. The broadcasting organisations in the USA have presented some opposition to the expansion of c.b. there on the grounds of excessive television interference, and Senator Barry Goldwater, no less, has retorted in congress that the trouble was not the poor quality of the transmitters but the poor standard of television set manufacture. More worrying for the broadcasters here, perhaps, are US reports that local radio stations have been losing audiences since the c.b. explosion.

## Who wants c.b.?

Another difference between here and America, and indeed between here and Europe, is that road distances are so much shorter. While it is true that the last twenty years have seen a massive motorway building programme, providing less opportunity for drivers to have the company of hitch-hikers, the American trucker can travel for days in an unchanging landscape. It has also been said that Englishmen can be
travelling in the same train for years and never talk to one another, that the Ameicans are more garrulous than we are, and that we are "too conservative" to make use of c.b. And social class is not based on the spoken word in the United States; one view was that alorry driver and an executive would have nothing to say to one another. Yet another difficulty that occurs to people is that if you are one of the first people to have a c.b. set you will have very few to talk to. After all, c.b. had been dormant 27 years in the United States before it made any impact, although for much of that time it was available only on 456 MHz .

All these difficulties are insuperable unless public pressure for citizens' band radio becomes so intense that the Home Office is no longer able to resist $i t$. There seems very little evidence that public pressure has reached anything near that point, and it is difficult at the moment to see how it ever could. Although the Citizens' Band Association had been going for something like four months when I'spoke to him, James Bryant told me that he would get his hundredth member by the middle of the following week. That doesn't seem to show overwhelming public interest in c.b.: as one comment had it, "Last week I heard that a club had been formed for people who had walked from John O'Groats to Lands End. In a week 600 people had joined."

The precedents for changes in telecommunications policy aren't all that numerous. One was the introduction of commercial television and the other was the introduction of commercial local radio. In both cases the campaigns took a long time even though they were conducted on a massive scale by powerful industrial and financial interests who saw the money that could be made from advertising. There is no money to be made from advertising in citizens' band since the only possible form of advertising would be a sort of swop-shop on one channel. Even that might upset local newspaper and publishing interests, who have the ear of the Home Office because most use some personal mobile radio frequencies.

Another crucial point is that in both those previous cases, as in most other things, the public were willing to back the lobbyists because they had seen the product and wanted more. In the case of commercial television they wanted a second channel to compete with and destultify the one they already head. and in the case of commercial radio they had heard the pirates and wanted more of the same. Until mobile communications and two-way radio become so plentiful through normal p.m.r. use then the public will now know what they are missing. It was noticeable in America. that it was not until people bought c.b sets to find petrol and dodge speed limits, that they discovered they had other uses.

It is noteworthy too that after pirate radio began to operate in 1964 succes: sive Postmaster Generals, Bevins, Benn, Short and Stonehouse, were told that it was interefering with vital services. One comment on this was, "Had [the Postmaster General] known anything about it he would have known that this wasn't the case, but the same people that advised him are still advising at the Home Office."

## Distrust of the media

At the moment there are some factors that may worry the Home Office into changing its position. The first is that the Home Office is split over attitudes to its entire policy, and its resistance to public accountability may not be as solid as its official statements suggest. Another sign that may help the pro lobby is that many who expressed serious reservations for the record told me as soon as our interview was over: "Mind you, if it does come in I can't wait to get a set." Some of the mobile radio industry are already falling off an already-crowded fence; Pye's Pannell reports, their submission to the Home Office on frequency allocation, is broadly quite favourable to c.b. Last of all, though they sometimes seem to behave like it, those at the Home Office are not totally unameable to argument. The murrain that grips this civil service is that they do not understand, never mind sympathise with, the view that it is up to them to prove their case, and not up to us to prove ours. So far, on the arguments they have advanced, they could be said to have failed. What is wrong is that this will make no difference.

Citizens' band reflects a growing distrust in popular sources of information, a desire to tell one another what is going on without the intermediary news editors or tv chat experts. No less important is that the so-called triviality of the messages that are passed belies their importance. This is not just true of c.b. When a lorry driver is told over p.m.r. "There's a load of fish'eads waiting to be collected from Billingsgate," the deeper meaning of the message is "Do this and we'll make some money." The c.b. lobby cannot see why that is more important than giving a man or woman in a lonely community, which can exist in the middle of a city or in the unwelcome gregariousness of a traffic jam, the opportunity of talking to someone they haven't met, and going away feeling that the other person is just the same as they are.

Whoever seeks to deny them that contact in a world that gets more difficult and dangerous by the minute had better have a good reason.


Analogue quarts into
digital pint pots

The $B B C$ is examining a digital frequency-division multiplex companding process which may save enough bits to allow a 7 kHz speech channel to be coded into a $64 \mathrm{kbit} / \mathrm{s}$ bit rate. This is the bit rate for a single telephone channel in the national and international digital communications networks now being introduced, "and access to such channels for data links and other purposes may ultimately be possible," say the BBC .

The companding process, one of many the corporation is looking at, digitally compands programme components in three separate bands: up to $1.75 \mathrm{kHz} ; 1.75 \mathrm{kHz}$ to 3.5 kHz ; and 3.5 kHz to 7 kHz . Six bits are transmitted for each of the first two ranges and three for the third, "a near-instantaneous companding technique enabling moderately good speech quality to be achieved. Only a single analogue-to-digital converter is required, acting on the three audio bands in time-division multiplex."

The sampling rate for the top two bands need not be twice the maximum frequency of the band concerned. Since they are only an octave wide, sampling each band at its maximum frequency yields alias components which meet but do not overlap the wanted part of the spectrum and 'which can therefore be eliminated by filtering. A similar effect, say the $B B C$, can be obtained less economically by frequency-shifting each band down to baseband before coding and restoring to correct frequency after decoding.

## Teletext and cable

The Home Secretary has authorized the BBC and IBA to continue the transmission of teletext services up to July 31, 1979. (When started, BBC's Ceefax in 1974 and IBA's Oracle in 1975, the
services were intended to run only for an experimental period of two years.) Announcing this at the annual luncheon of the Cable Television Association, Lord Harris, Minister of State for Home Affairs, said: "We shall, of course, have to look again at the position in the light of any recommendations made by Lord Annan's Committee. But I hope that the extension of the authority I have just announced will encourage industry rapidly to provide equipment which can be put within the reach of members of the public at large."

Lord Harris also said that, as a result of discussions between the CTA and the Home Office, it had been agreed that telext services will be available in decoded and modified form on some of the cable networks. This statement was in fact an authorization of what has been going on experimentally for some time at Swindon, Brighton and Hull. At the last-mentioned two towns, for' example, Rediffusion decode the teletext signal at the distribution centre and put it out in analogue form on their h.f. network, using the BBC 2 channel in those hours when the BBC is not transmitting programmes. Of course the subscribers cannot select pages themselves, and Rediffusion are using an automatic "page turner" which presents selected pages at about one per minute.

In a statement issued after Lord Harris's announcement, the BBC said that television sets with integral Ceefax decoders would be available to the public during 1977 and at least two manufacturers were beginning limited production of add-on adaptors which would enable viewers to receive the service on their present sets.

## Doping an amorphous semiconductor

A p-n structure has been made from non-crystalline. silicon by a group at the University of Dundee. This demonstrates that amorphous material can be doped by impurities, an achievement not previously thought possible. A silicon film was made either p-type or n-type by the addition of boron or phosphorus, although more dopant was needed for this "amorphous" (glassy or disordered) film than would have been the case for the ordered, crystalline silicon used in present transistors and solar cells. The Dundee workers, under Professor Walter Spear and Dr P. G. Le Comber, deposited the silicon films by glow-discharge decomposition of silane (silicon hydride) on glass, using phosphine or diborane as dopant gases. This is a well-known technique but this is the first technologically successful study of the product.

They found that the conductivity of the films could be controlled in
unprecedented fashion. For amorphous materials, conductivity values could be varied over five orders of magnitude. In the past, amorphous semiconductor films, which can be deposited very cheaply, were not very useful because they would not conduct well enough for use in a device (excepting the abortive "Ovshinsky devices"). This new ability to control conductivity could open up the technological uses of thin film amorphous silicon, a very desirable thing because of the cheapness and large possible areas of such films; even thin film tv displays have been talked about.

However, some formidable fundamental and technological barriers may need to be surmounted before devices which compete with those made from single-crystal silicon can be manufactured. The efficiency of doping as it affects conductivity is still quite poor, because many carriers are immobilised in a class of energy states special to amorphous semiconductors, the socalled "mid-gap states". The achievement of Spear and LeComber is to reduce these states until at least a small proportion of the electrons and holes, freed from the dopant atoms, appear in conduction states. Further research may show how to free more carriers and also answer some fundamental questions about this new "second generation" of amorphous semiconductors.

## Carter wants "'better use of mobile radio"

President-elect Jimmy Carter says telecommunications represent perhaps "the greatest potential area of application for space research and technology." The effective use of telecommunications technology - including the telephone, mobile radio, television, satellites and computers - were an important part of a comprehensive energy conservation programme.

Carter had been asked, in the journal of the American Society of Mechanical Engineers, what he saw as the future role, priorities and funding of NASA, and what importance he attached to aeronautical research and development, space science and space applications. "In a time of widespread inflation and high unemployment telecommunications is one of the few sectors of the economy which has consistently provided more jobs with increased productivity.
"I am pleased to note the efforts at NASA and a number of universities and research institutes to evaluate the potential of telecommunications for increasing the efficiency of energy-intensive activities such as travel. New ways of using telecommunications such as telephones linked to computers or video conferencing via satellite -
bring the promise of substantial time, money and energy savings in the use of transportation. In other areas we can, for example, make better use of mobile radio or satellites and computers for on-the-spot diagnosis of heart attacks and delivery of emergency medical services. The technology is here today. What we need are the institutional mechanisms and commitment in both the public and private sectors to make best use of our assets.'

Asked how he intended to use the Office of Science and Technology, he said: "It is crucial that the advice of the scientific and engineering community of this nation be actively and permanently sought by elected officials in the evolution of national policy dealing with the complicated, unpredictable and rapidly changing technological problems of this modern world. The day when political leaders could make effective policy decisions independently and turn to the scientific community only for assistance in implementation has long passed.

On engineering education he said imaginative reforms were needed to strengthen colleges and universities in times of financial difficulty.

Carter said he felt that one of the greatest failures of national leadership in the USA had been the failure to convince Americans of the urgency of the energy problem. The national policy for energy must combine energy conservation and development. Ironically, in view of his remarks about mobile radio, his list of conservation measures included "rigid enforcement of energy-saving speed limits.'

## Waveguide go-ahead

The Post Office have decided to install their first main line millimetric waveguide between Reading and Bristol, a distance of 123 km , to come into revenue service by 1982 .
Announcing this decision at the opening of the IEE November conference on millimetric waveguide systems, Professor J. H. H. Merriman of Post Office Telecommunications HQ made it clear that this was still subject to Post Office Board approval, which probability one source put at $80 \%$. (Amounts over £ $11 / 2$ million require board approval.) Value of the work is thought to be around $£ 41 / 2$ million, with Marconi Communication Systems supplying terminals and repeaters (worth about a third of the value) and a joint P.O.-BICC venture providing the waveguide, which will be similar to that used in the P.O. Research Centre field trial (see report on page 69). BICC have recently mentioned a price of $£ 20$ per metre for their waveguide but the Post Office say this figure is based on developmental quantities; they are "certainly hoping to pay much less for production quantities" said a spokesman.


Ten women leave England in January to film and study the great Atrato Swamp in Columbia. They will be away about three months. Tony Wright of Racal-Tacticom (left) shows Carolyn Oxton (second right), the leader of the expedition, and two other members of the team, how to work the Syncal radios which will link them with a base camp which may be up to 500 miles away.

Work over the last decade by the Post Office, culminating in the 14 km field trial from the P.O. Research Centre at Martlesham Heath to Wickham Market in Suffolk, has "been extremely successful in demonstrating that the design, construction and installation of an operational waveguide system could be achieved" said C. A. May, director of research at the centre.
And with the Post Office belief that their system is the most cost-effective they are naturally hopeful for its export potential. The high density nature of the system limits the market of course and the USA, Japan, France and Italy have made their own investment and deve-, loped systems tailor-made to their own requirements. Nevertheless the Post Office-industry team (Marconi and BICC) believe its features are attractive enough to interest Middle Eastern countries and some smaller European countries. And now the conference has finished and the international scene appraised the team will be starting to sound-out the market.
One of the attractions of the system is its modular basis; a basic capacity of approximately 60,000 voice circuits could be provided initially and further capacity added later at little extra cost. Another feature is the repeater spacing, of the order of 20 km compared to the 2 km of cable systems. The waveguide itself is simple to make, light in weight, easy to handle and joint, and is cheap to make, say the Post Office. More details on page 69.

## Europe a net electronic importer

European electronics production should reach $\$ 39,536$ million in 1977, an increase of $12.9 \%$ over the previous year, according to the latest edition of the Mackintosh Yearbook of West European Electronics Data 1977. Output increased only $4 \%$ during 1975 compared with the previous year, compared with a mean growth rate of around $14 \%$ in previous years. During 1974 total European production was $\$ 31,239$ million, while Japan produced $\$ 16,400$ million, and the US $\$ 39,000$ million. The following year the European figure was $\$ 34,068$ million and even that was inflated by a $5 \%$ devaluation of European currencies against the dollar. Mackintosh have prepared a table from the previous four editions of the yearbook which eliminates currency fluctuations and shows the real growth of European electronics output: taking 1972 as the base at 100 , the production figures given for the following five years are $104.7,106.2,97.5,110.8,125.1$.

In 1975 Europe exported $\$ 15,878$ million, an increase of $\$ 2,101$ million over the 1974 figure, but imports were $\$ 16,380$ million, up $\$ 1,337$ million, a trade deficit of $\$ 502$ million. Every country in Europe had a deficit with the exceptions of West Germany and France.

The deficit in computers was $\$ 1,020$ million, with imports running at $\$ 3,396$ million; video and audio consumer goods with imports of $\$ 3,475$ million had a deficit of $\$ 976$ million; and active, passive and audio components had a deficit of $\$ 741$ million with imports of \$5,394 million.

France became a net exporter of electronics products for the first time in 1975, with a surplus of $\$ 32$ million on imports of $\$ 2,523$ million. Mackintosh point out that French government heavily subsidises the electronics industry. West Germany, however, has been in surplus since the first edition of the yearbook in 1972. In 1975 the West Germans had a $\$ 1,264$ million surplus on imports of $\$ 2,974$ million.

In communications, telecommunications and control and instrumentation equipment Europe is a net exporter, with exports of $\$ 6,350$ millions compared with imports of $\$ 4,115$ million in 1975. The United Kingdom, however, has a positive trade balance only in communications and telecommunications. In 1975 exports, at $\$ 2,370$ million were $\$ 137$ million less than imports.
Turning to the electronics market, video and audio consumer goods show the smallest increase, $17 \%$, projected for the period from 1976 to 1980, while components, the largest market, is expected to increase $41 \%$.

## Who is warden over the Wardens?

The International Telecommunication Union will, if it keeps its present membership, have delegates from 152 countries at the World Administrative Radio Conference in Geneva in 1979. The latest country to claim membership is the People's Republic of Angola, which registered with the ITU on October 13 last. The unwieldiness of such a gargantuan talk-fest beggars the imagination, and the obstacles of procedure and language will be such that, while a little matter like independence for Rhodesia can take only a few weeks, sorting out the world's demands on the electromagnetic spectrum is expected to take two and a half months from the September 24 opening date.

Those interested in telecommunications policy also expect results to depend on the demands of the newlyindependent nations such as Angola. Some have said that their views will not affect Western Europe much. Others, notably our own Home Office, are saying that the distribution of the whole spectrum could look vastly different as a result of the emergence of countries that hardly mattered when the last conference was held in 1959.

The Agenda includes a review, and where necessary, revision of the provision of the regulations relating to terminology, the allocation of frequency bands and the associated regulations (articles 1 to 7); a review and, where necessary, revision of the provisions applicable for the co-ordination, notification and recording of frequency assignments (articles 9 and 9A), except those articles relating to a single service; a review and, where necessary, revision of other regulations applicable to services in general (articles 12 to 20); and a review and report on the activities of the International Frequency Registration Board.
The International Radio Consultative Committee (CCIR) is now studying recent technical advances, new services, more intensive use of the frequency spectrum and the use of higher frequencies than those now used so that the information will be available to the conference. A special joint meeting of the CCIR study groups is expected to be convened next autumn.
In the United States the process of public consultation is well under way. In March the Federal Communications Commission issued a 127 -page public notice tabulating the non-government requirements submitted to it for 1979. "These requirements stem from comments and reply comments to the second notice of enquiry," said the first page of the document, released September 19, 1975; . . . Additional formal notices of inquiry regarding preparatory work for the 1979 WARC, includ-
ing proposed changes to the international allocations table will continue to be issued wherein comments will be solicited from the general public

In the table of frequencies and present allocations, each frequency band shows the requirements placed on it by interested parties, and a key shows the source of the request, any of 17 categories including citizens' band (category 35), even though c.b. does not yet exist in the eyes of the ITU.

In Britain there is no consultation and, at the moment, there are no plans for any. Two years ago an engineer in the Radio Regulatory Division of the Home Office, James Warden, was asked to begin a series of reports which would form the basis for briefing delegates to the 1979 WARC. The delegates will be instructed by the minister, now Lord Harris, who in turn is responsible to the Home Secretary. In reality the instructions will be delivered, and indeed drawn up in their final form, by the minister's permanent secretary, who receives reports from a number of committees he has formed to agree policy on various aspects of telecommunications. The committees brief the permanent secretary after discussing their proposals with a selected group of those outside the Home Office who have a direct interest in each committee's subject but who can be trusted to be discreet, for the reports are secret. The basis for the secrecy is that in theory the delegates are told what "Britain's attitude" is to be at the conference by the Home Secretary himself, and we cannot learn anything of what our officials will say on our behalf because to do so would be to break Cabinet secrecy.
Warden has now finished two of his main reports, as well as a number of minor ones, and is at present engaged on a third. The first was on the largest activity within the Home Office's jurisdiction, broadcasting. The second was on mobile radio, and was presented to the Mobile Radio Committee of the Home Office about a year ago. The information we have been able to gather about this report is an interesting example of how telecommunications policy is decided. Like the others, it was restricted to ten or 20 numbered copies. Some of these were passed out to the mobile radio industry for comment, and this meant the senior officials of the Electronic Engineering Association, which represents nearly all the mobile radio equipment manufacturers. The Home Office Mobile Radio Committee is not composed entirely of full-time civil servants, and the joint secretary of the MRC is also secretary of the Mobile Radio Users Association, Alan Ford, who can give the users' view.
The Warden report on suggested allocations for mobile radio frequencies contained 16 recommendations. The EEA agreed with some of these, disagreed with others, and were unable to agree among themselves about the rest.

The report had reached the conclusion that the growth in mobile radio use was small or static and that there was therefore no further need for any allocation above what it had already got. Any further channels that did become available should go to the Post Office, and any unforeseen growth in the demand for mobile radio could be handled by new technology, particularly digital techniques, already evident in the United States. Here Warden may have been influenced by technical developments he had seen in America when he stayed for two months as a guest of the FCC.

It is fair to say that the report astonished those in the industry who were privy to it. They had minor reservations about its lack of detail, as they saw it, but they could not accept the major conclusions about the growth in their industry. To begin with, of the portion of the spectrum from 1000 MHz down to 30 MHZ , broadcasting takes $60 \%$ of the available space, the military another $30 \%$ and mobile radio has a mere $3 \%$ share. Even a member of the Home Office telecommunications directorate, Willam Nicol, had to admit in a speech at the Communications ' 76 conference at Brighton in June that the allocation "would scarcely reflect very strong interest or a fair share of the frequency spectrum for mobile radio..."

The Post Office's own estimate of the growth of the market is that the number of mobiles will double to over 500,000 by 1985, rising to about 1.5 million by the year 2000. J. R. Humphries of Marconi Communications Systems wrote in Electronics Weekly recently: "It is generally agreed that the growth of land mobile radio services in the United Kingdom will mean an expansion in the number of users by at least 2.5 times within ten years." The rest of the article showed that, like everyone connected with mobile radio, he was aware of the pressing shortage of frequencies for mobile radio.
In addition to all this the industry has the evidence of the American Frost and Sullivan report, which predicted a rise in the mobile radio market in the US from $\$ 900$ million in 1975 to over $\$ 4.2$ million by 1984, and asserted that digital techniques would supplement existing radio signals and channels, not replace them.
Another irritant was that mobile radio users had accepted channel reductions from 100 kHz to 12.5 kHz in 20 years and that now there was talk of a further reduction to 6.25 kHz while Post Office channels were still 25 kHz .

The result of all this was that the report was sent back for further work to be done on it in consultation with the industry's representatives in the EEA. It would be interesting to know what else the Home Office is preparing to take away to Geneva, and fascinating to discover how different it would look if we did.

# Non-linear distortion in audio amplifiers 

# Why do some amplifiers pass static distortion tests but fail listening tests? 

by M. Otala, Technical Research Centre, Oulu, Finland

The debate about amplifier distortion and especially its audibility has always been an interesting subject. Most of us still remember the battle over triodes and pentodes, and a few years ago such epithets as "transistor sound" were discussed intensely. Right now we are in the middle of "operational amplifier sound", and although these negative attributes may seem ridiculous at first glance, there really seems to be some clearly audible differences. These differences must be "distortion", whatever that may then mean.

It is a commonplace to divide distortion in amplifiers into two classes: linear distortions, i.e. linear departures from straight frequency or phase characteristic, and non-linear distortions, i.e. distortions caused by non-linear amplitude relationship between the input and output signals. This article concentrates on the last-mentioned form of distortion and divides it into two groups according to their dependence on the signal

- static non-linear distortion, dependent solely on the amplitude of the signal, and
- dynamic non-linear distortion, dependent not only on the amplitude but also on the time properties or frequency composition of the signal.


## Historical perspective

In the early valve era the cost of gain was high. This led to the use of few active devices and careful design to yield acceptable harmonic and intermodulation distortion figures. When the benefits of feedback were discovered, it was applied mostly locally. The presence of an output transformer with its stray reactances made the amplifier transfer function so complicated and dependent on the momentary signal and load conditions at high frequencies that heavy overall feedback could not be used without loss of stability. The average overall feedback varied between 15 and 30 dB , and the static harmonic and intermodulation distortion were the primary sources of audible amplifier quality impairment.

The introduction of transistors and especially the transformerless amplifier circuits permitted the use of heavy
overall feedback. This led to the unwarranted myth of the amplifier being the better, the higher the feedback. The following advantages were attributed to the use of feedback
-static distortions decreased to practically zero
-bandwidth of the amplifier increased
-output impedance of the amplifier decreased and hence the damp. ing factor increased
The decreasing cost of components and the trend toward monolithic integration made possible the use of almost-unlimited gain resources, and consequently the main trend in the design philosophy has been the use of very high open-loop gain and high values of feedback.

This trend has been further intensified by the use of operational amplifiers, which more and more are finding their way into audio equipment as low-level amplifiers and power amplifier drivers. The need to minimize the size, weight and power dissipation of amplifiers also led to another trend: the minimization of the class A operation region of an amplifier. The result is cross-over distortion, which sounds ghastly and is difficult to eliminate with feedback or any circuit tricks.

Those two effects, the overdose of feedback, causing dynamic non-linear distortion, and the almost class $B$ operation causing near-incurable cross-over distortion, seem to be the main distortion problems of present-day audio amplifiers.

## Static non-linear dist ${ }_{(\cdot t i o n}$

Every stage of an amplifier has a more or less non-linear transfer function. Fig. 1 shows the typical static non-linearities usually encountered in audio amplifiers, namely s-type, cross-over and clipping distortions.

S-type non-linearity. There are numerous reasons for the s-type non-linearity. In the case of transistors it may, for instance, be caused by the non-linear dependence of current gain, versus collector current and voltage, by the non-linear base-emitter voltage characteristic, or by possible avalanche-type


Fig. 1. Different kinds of static non-linear distortions (a) s-type, (b) clipping and (c) cross-over.
collector current non-linearity due to collector-emitter voltage. In the case of vacuum tubes, the list of sources for non-linearity includes the space-charge effects around the control grid, the change of mutual conductance and anode resistance as function of voltage, the possible negative impedance contribution of screen grid in beam tetrodes and pentodes, etc.

On the circuit side the most notable method of minimizing the non-linearity is the choice of interstage resistors to ensure that the stage interface transfer function is as linear as possible. If transformers are used, their non-linearities are important too. All of these sources of s-type non-linearity are well understood and design rules exist for their minimization. The effects are, however, too numerous to be considered here. Furthermore, the remaining s-type non-linearities can easily be decreased with the use of local or overall feedback.

Cross-over distortion. The operation of power amplifiers in class $B$ presents some important special problems. The first is cross-over distortion, and the second the time asymmetry of the amplifier halves, Fig. 2. Both occur around the class $B$ transition from one circuit half to another. The source of these distortions is the decrease of the gain of each half to almost zero at
almost zero collector current, and the different transition frequency behaviour of each half. In the cross-over region, therefore, the open-loop gain of the amplifier drops drastically. Feedback has little effect on this type of distortion, as there is no open-loop gain available for the feedback. The only possibility is to allow sufficient quiescent current to ensure the full gain at all times. These two forms of distortion are very clearly audible, probably because they generate harmonic and intermodulation products of high odd order. In the case of harmonic products, the high order components are non-musical and therefore annoying. In the case of intermodulation products, a high order means a multiplicity of products falling within the audio band. Being non-musical, the musical masking of these kinds of products is small. However, the sensitivity of the ear may also stem from the strong phase modulation they introduce in heavily feedbacked amplifiers. The details of this effect are outlined later in the section on dynamic non-linear distortion.

Clipping occurs when an amplifier is overloaded. Therefore it is not an operational non-linearity in the proper sense of the definition. However, as overloading peaks do exist in usual programme material, the amplifier overload performance becomes important. The audibility of clipping is dependent on the clipping mechanism, soft s-type clipping being less audible than hard limiting, which may be aggravated further by saturation recovery effects. This increased audibility depends again on the generation of higher-order harmonic and intermodulation distortion products.

It would be desirable to "soften" the clipping. The problem is, however, that the overall feedback effectively linearizes the clipping, making it hard, and may also cause an internal excess drive signal within the feedback loop during the clipping, thus aggravating the saturation problems and delaying recovery. The desire for a soft clipping and the present use of feedback are therefore incompatible, and it remains to be seen which one will be considered more important in the future.

## Static distortion versus feedback

Suppose that in a given circuit all the possible means for minimizing distortion in situ have been used by selecting linear active devices, by choosing optimum load and generator impedances for all stages, and by careful selection of the working points. Suppose further that so far no feedback has been used. The interesting question then arises: whether one should use local feedback stage by stage, or overall feedback around the whole amplifier to reduce remaining static distortion. Most present-day amplifiers seem to be constructed according to the last men-


Fig. 2. Cross-over distortion caused by time asymmetry of the class $B$ amplifier halves.


Fig. 3. Division of a feedback amplifier incorporating the driver $A_{p}$, the output stage $A_{2}$ the compensation network $R \mathrm{C}$ and the feedback network $\beta$.


Fig. 4. Bode plot of the feedback amplifier.
tioned principle, i.e. the main design objective has been to realize as high (and often very non-linear) a gain as possible and to rely on overall feedback to make the amplifier behave correctly.

The use of local feedback has some drawbacks which make its use unpopular
-it increases the number of parts in the amplifier
-if the amplifier uses i.cs, linear unbypassed emitter resistors may be difficult to manufacture
-local feedback often limits the available voltage swing of the stage (Crucial at driver stages and may necessitate separate power supplies for them)
-large unbypassed resistors at the output transistor emitters may severely limit output power
However, local feedback has some
advantages:
-it linearizes and stabilizes each stage separately, eliminating certain difficult cross-coupling linearity and stability troubles between stages.
-it decreases the effect of individual device tolerances, which may cause
some working point problems, especally in d.c.-coupled multi-stage amplifiers.
-it increases the cut-off frequency of the stage
The last remark is important. For the same total gain, the use of overall feedback alone yields the same distortion figures as the use of local feedback alone but with one significant exception: whereas local feedback increases the usable frequency range of the amplifier, the overall feedback usually decreases it. This apparent contradiction may be explained as follows:

To ensure stability, the amplifier open-loop frequency response must have a -6 dB /octave roll off. For heavy overall feedback, the amplifier must then be frequency compensated to eliminate the influence of the second, third, etc. poles of the transfer function ${ }^{1}$. If overall feedback is increased, this compensation must be made proportionally heavier, resulting in the closed-loop small-signal frequency response remaining the same. The generally held belief that overall feedback increases the small-signal frequency range is thus invalid in the case of multiple-stage amplifiers. However, the large-signal frequency range usually decreases with increasing feedback. This is caused by the heavier frequency compensation requiring more error signal headroom from the driver stages. If there is not much of this headroom available, and such is usually the case, the driver stages will clip at proportionally lower frequency as the compensation is made heavier. High overall feedback therefore has the tendency of decreasing the powerbandwidth of an amplifier.

The optimum choice with presentday components is probably to use all the possible local linearization methods available, and thereafter to use local feedback until the open-loop large-signal total harmonic distortion is around 0.2 to $2 \%$. Moderate overall feedback is then added, the optimum value being around 20 to 40 dB . It seems possible with this kind of technique to obtain harmonic distortion figures as low as $0.05 \%$ without increased risk to dynamic non-linear distortions.

## Dynamic non-linear distortions

If the frequency content or the time properties of the input signal affect the transfer function of the amplifier, the resulting non-linearities may be called dynamic. We know at present of at least one dynamic distortion of this kind, namely the transient intermodulation distortion (t.i.m.) which has been described in detail elsewhere ${ }^{2}$. It stems from overall feedback in the following way.

Consider an amplifier with heavy feedback, and consequently heavy compensation, shown in Fig.3, having the Bode plot of Fig.4. The raw, open-loop gain is $A_{0}$ and the corre-
sponding open-loop upper cut-off frequency is $\omega_{0}$, typically 5 to 500 Hz . The open-loop transfer function of $\mathrm{A}_{0}$ is shown in Fig. 5.

Now consider an input signal consisting of a transient and a sinusoid. The error voltage $V_{2}$ is proportional in amplitude to the frequency of $\mathrm{V}_{1}$ (Fig.6) due to the compensation network RC. Suppose that the input transient has sufficiently low rise time to let $V_{2}$ excurse to $\mathrm{V}_{2}^{\prime}$. The incremental openloop gain now drops to $\mathrm{A}_{0}{ }^{\prime}$, also shown in Fig. 4 with a dashed line. If the feedback is large, the closed-loop gain A is not affected, but the closed-loop upper cut-off frequency $\omega_{c}$ (typically 20 to 200 kHz ) drops momentarily one or two decades to $\omega_{c}^{\prime}$ during the rise of the transient. This causes phase modulation of the sinusoid if it is smaller in frequency than $\omega_{c}{ }^{\prime}$, and combined amplitude and phase modulation of the sinusoid if it is between $\omega_{c}^{\prime}$ and $\omega_{c}$ in frequency. In both cases, the phase and amplitude modulations give rise to interference components between the transient and the sinusoid, thereby creating non-harmonic audible components in $\mathrm{V}_{4}$, the output signal ${ }^{3}$. In an extreme case, driver $A_{1}$ is driven into saturation and $A_{0}$ drops to zero. This corresponds to momentary $100 \%$ intermodulation distortion of the sinusoid.

This effect is phenomenologically equivalent to intermodulation distortion caused by rapidly sweeping the upper cut-off frequency of the amplifier in synchronism with the frequency content of the input signal. Whereas t.i.m. is principally caused by the overall feedback, similar effects occur with the so-called dynamic noise limiters, although there the speed of the sweep is limited. A similar effect occurs in power output transistors, where the cut-off frequency $f_{\beta}$ depends on the instantaneous collector current and collectoremitter voltage.

Heavy cross-over distortion causes almost identical phase and/or amplitude modulation effects to those produced by t.i.m. although in principle it is a static non-linearity. This is due to the fact that it causes the same kind of momentary variation in the open-loop gain.

## Amplifier distortion budget

The distortion compromise that a designer must make in designing an amplifier consists of at least the following parts:

1. The smooth, s-type non-linearity of the transfer function caused by device and circuit non-linearities. These are easy to correct to a certain extent by local feedback, optimum load and generator impedances and by overall feedback. Usually this type of distortion is neither difficult to handle nor severely audible, the only prerequisite being the necessity of a few extra stages to compensate for the losses of gain caused by the corrections mentioned above.


Fig. 5. Open-loop transfer function of the amplifier $A_{0}$ is the incremental gain.


Fig. 6. Error voltage $V_{2}$ as function of frequency.
2. The abrupt distortion such as crossover distortion. These are difficult to cure, sound very bad and usually overall feedback has little effect on them. The possibility is to allow operation deeply enough in class A, a practical target specification being 14 to 20 dB below maximum output power ${ }^{4}$. As compared to many present designs, this leads to higher quiescent power losses and consequently a larger heatsink.
3. The dynamic non-linear distortions. As the dynamic distortions are principally effects caused by poor frequency behaviour of an amplifier, they can be cured completely by following certain simple rules in the design ${ }^{1,5}$, and not by using too much overall feedback.
4. Some presently unknown dynamic distortion mechanisms such as the clear effect of loudspeaker load on the audible sound quality of some amplifiers.
-phase modulation effect, probably caused by power transistor cut-off frequency sweeping with the output power
-possible importance of reproducing faithfully the higher derivatives of the signal.

Of these distortions, cases 1 and 2 may be made very small with good design of the amplifier, and by a readiness to meet the cost of added components and a larger heatsink. Case 3 is easy to eliminate totally by proper design with practically no increase in parts cost. Case 4 remains to be studied
but at least until it has been solved, the final sound quality measuring instrument must be the ear.

## Conclusion

Dynamic distortions were unknown until recently. There seems to be some correlation with the phenomenology presented above and subjective listening tests. It is commonplace to find an amplifier having a good harmonic and SMPTE intermodulation distortion specification (and thus probably high overall feedback) which fails in the listening tests. It has also been shown that irrespective of unmeasurable harmonic and SMPTE intermodulation distortion, an amplifier may produce dynamic intermodulation products having amplitudes of tens of percent ${ }^{3}$. The t.i.m. seems to explain a part of this dilemma but, certainly, there must be other similar effects.

With the static non-linearity measurements, we have only stated that an amplifier must be capable of reproducing the absolute value of the signal correctly. What the dynamic non-linearity considerations show is that the amplifier must in addition be capable of reproducing faithfully the first and the higher-order derivatives of the signal as well. The t.i.m. is part of the non-linearity of first derivative reproduction. What the other parts are and what requirements the higher-order derivatives of the signal impose on the amplifier remains to be discovered.
At this moment we are living through a very exciting phase in electro-acoustics, the challenge of explaining the clear contradiction between our measurements and our subjective sound quality sensation. I forecast lively activity in this field in the near future.

## References

I. Otala, M., Lohstroh, J., Audio power amplifier for ultimate quality requirements, IEEE Transactions, vol. AU-21, 1973, pp.545-51.
2. Otala, M., Transient distortion in transistorized audio power amplifiers. IEEE Transactions, vol. AU-18, 1970, pp.234-9.
Otala, M. \& Leinonen, E., Theory of the transient intermodulation distortion. Monitor - Proc. IREE, vol.37, March 1976, pp.53-9. 3. Otala, M. \& Leinonen, E., Possible methods for the measurement of transient intermodulation distortion. 53rd AES Convention, New York, October 1976.
4. Daugherty, D. G. \& Greiner, R. A., Some design objectives for audio power amplifiers. IEEE Transactions, vol.AU-14, 1966, pp.43-8. 5. Otala, M., Circuit design modifications for minimizing transient intermodulation distortion in audio amplifiers. Journal of the Audio Engineering Society, vol.20, 1972, pp.396-9.

## World of Amateur Radio

## Second thoughts

The Home Office is to be congratulated on having "second thoughts" on the double-sideband suppressed-carrier mode (see "World of Amateur Radio" October 1976). It has reversed its decision to ban this mode which will, it seems likely, be made available to all British amateurs under the terms of the new consolidated licence due to be introduced during 1977 - a sensible and generous decision to think again.
The RSGB has modified its official attitude towards the introduction of Citizens' Band facilities in the UK (now legally available in most European countries including several in East Europe). In a recent statement of attitudes, the Council of the Society insists that anything less than the ability of the administration to exercise complete and effective control would not be acceptable. However, it is no longer opposed to the introduction of a short-range personal communications facility with power limitation, crystal control and type-approved apparatus on v.h.f. or u.h.f. The Society urges that this should not be within or close to any existing amateur allocation, but in a part of the spectrum sufficiently remote from any amateur frequencies as to discourage illegal operation of CB equipment in the amateur bands.

## Here and there

1976 will long be remembered by v.h.f. and u.h.f. enthusiasts. Apart from the 10 GHz 521 km record (November issue) other notable contacts included Norfolk (G4BYV) to Sweden (SK6AB) on 1296MHz; East Suffolk (G3LQR) to Denmark (OZ90R) on 2.3 GHz ; Scotland (GM30XX/P) to Northern Ireland (GI30LK/P) on 10 GHz . In the United States the use of "moonbounce" techniques has enabled Allen Katz, K2UYH, to gain the first-ever 432 MHz "worked all continents" award (contacts over three years with C3LTF, VE7BBG, JAlVDV, ZE5JJ, VK2AMW and HKITL) while Dick Hart, K0MQS, has completed a 7 -year task of achieving the first "Worked All States" on 144 MHz . There were also more California-to-

Hawaii contacts on the 144 MHz and the first USA to Bermuda contacts on that band. Unusual "openings" also occurred on 28 MHz , not accountable by scatter or double-hop sporadic E, and usually in the evening rather than the noon peaking of m.u.f.

Lord Wallace of Coslany is being installed as the 1977 presidenct of the RSGB on January 22 . . . F. J. ("Dud") Charman, G6CJ, made a big impact on Australian and New Zealand amateurs with his new 3.3 GHz solid-state "aerial table" which he uses to demonstrate techniques from dipoles to circularly polarized helical aerials . . . Although most British amateur direction-finding contests are on 1.8 MHz , the U.K. FM Group (London) recently held a successful 144 MHz "fox hunt" won by M. H. Tooley, G8CKT in 1 hour 23 minutes. J. F. C. Johnson, ZL2AMJ, has suggest: ed that there is need for a new "award" that does not show merely that an operator has had time on his hands. He wants to see one that combines operating skill, technical skill and experience and suggests that the award could be based on the ability to work the antipodes (e.g. Europe from New Zealand) "using a station of own design and construction". He feels this would show the recipients have enough technical knowledge to build a transmitter, receiver and aerial from scratch; enough code experience to obtain a full operating licence; and enough operating experience to put out an effective signal on the right frequency at the right time to achieve the ultimate "Iong distance" contact.

With the closing of the American "Milliwatt" publication, "Sprat" - the newsletter of the G-QRP-Club appears to be the only specialist publication concerned exclusively with low power operation: One member, Bruno Settinger, OE1SBA, after working all continents with 2 watts s.s.b. from his home in Vienna is now concentrating on low-power mobile operation.

In the 1976 All-Asian Contest, c.w. section, participants are expected to indicate their age in the form of a "serial number". An analysis of the first 20 Asian stations heard indicated an average age of 29 years, with a range of 17 and 44 years.

## Power f.e.ts

Over the past decade, amateur radio has been absorbing a large number of new semiconductor techniques such as small-signal f.e.ts, digital, linear c.m.o.s. integrated circuits, Schottky doublebalanced diode mixers and the like. But of late it has seemed as though the pace of development of entirely new devices may have slowed down. However, this year has seen the appearance of verti-cal-structure power r.f. mosfets (such as the Siliconix VMP-1 and VMP-4 series) opening the way to greater use of mosfet devices in transmitters. Examples of designs using this approach
include a transverter providing 10 -watt p.e.p. output on 144 MHz when driven by lmW 28 MHz ssb input (described in Ham Radio and using a pair of VMP-1 devices) and a broadband driver extending from 40 to 265 MHz using a single VMP-4 device (Siliconix note TA76-1 by Ed Oxner). These devices appear to have some useful advantages over bipolar rf power devices in not being subject to thermal runaway or secondary breakdown and having no minority carrier storage time. Apart from transmitter applications such devices also provide receiver front-end amplifiers of wide dynamic range and low noise.

## The next OSCARs

Although the prospects for an early launch of the next phase of Amsat-Oscar satellites seem to have receded to 1979-80, a recent bulletin from AmsatUK suggests four launch possibilities over the next few years: (1) the ITOS launch around June, 1977 may be able to carry an Oscar 6 type satellite; (2) the new National Space Translocation Systems (the new name for the "Shuttle" reusable vehicles) may be able to carry communications satellites into low orbit; (3) military synchronous communications satellite launches, although it is recognised that the problems presented by a truly synchronous satellite (particularly the need for good operating discipline) are formidable; (4) European "Ariane" launches from French Guiana.

Several active transposers are currently being planned or built, including a 21 -to- 29 MHz unit by the British group, although much work and experienced assistance is still sought; a Japanese "Jamsat" unit for 70 cm to 2 m has been built and is currently being tested on a mountain site; the highly sophisticated "Phase 3" long-life, highorbit satellites with output powers of up to 50 watts p.e.p. for $70 \mathrm{~cm} / 2 \mathrm{~m}$ and $2 \mathrm{~m} / 70 \mathrm{~cm}$ are, as indicated earlier, unlikely to be launched before 1979-80.

## RTTY - the easy way

The British Amateur Radio Teleprinter Group has been very active recently promoting more extensive use by amateurs of radio teleprinter techniques and has recently published an entirely new edition of a useful 32-page (plus parts list) booklet "RTTY - the easy way" by Brian Hodgson, G3YKB, with contributions from G2FUD, G3LLZ, G3NTT, G3VDB and W6FFC. This includes, a good deal of down-toearth information on available surplus machines and the construction design and alignment of terminal units, afsk oscillators and fsk circuits, operating practices, some recommended further reading and a glossary of terms. Copies are available from Brian Hodgson, BARTG, 234 Gillingham Road, Gillingham, Kent ( 85 p post free).

PAT HAWKER, G3VA

## CITIZENS' BAND IN UK?

One small organization campaigning vigorously for CB is the Citizens' Band Association, which advises its members to write to government ministers, Members of Parliament and magazine editors to presumably create the illusion that there is massive public support for CB. No doubt there are other vested interests doing the same thing. However, have any of these groups commissioned a proper, professional, unbiased survey to discover the true demand? If not, then on what evidence do they base their assumptions?

The proponents of CB suggest that cheap two-way radio would be an asset to hikers, mountaineers, bored or lost motorists, lonely people and those living in remote areas. As so succinctly reasoned by Mr Friel (September 1976 Letters) they could become radio amateurs with very little effort, thus having at their disposal a number of frequency bands and a network of v.h.f. and u.h.f. repeaters.

Crowd control and marshalling at public functions have been cited as instances where CB would be useful. At the numerous amateur radio mobile rallies and exhibitions in the UK, amateur radio operators often provide excellent "talk-in" for visitors. There is no reason why other organizers of fêtes and shows should not contact a local amateur radio club to invite them along to assist. It need not necessarily be an infringement of the licensing conditions to pass information about crowds.

A recurring theme is that a CB service in the UK would create big business for the British electronics industry. However, we should recall that in the mass market for radio, tv, hi-fi and amateur radio, foreign. exporters have a king-size slice of the action. Even Mr Bryant, the president of the Citizens' Band Association, himself an employee of a large British electronics company, only names Japanese firms as potential suppliers (June 1976). As to cost, the prices of Post Office approved v.h.f. or u.h.f. transceivers are bound to be higher than those of comparable, single mode amateur products.

Let nobody fool themselves into thinking that the Home Office could take in its stride the processing of a large number of CB licences without a considerable increase in staff. Some time ago, the Radio Regulatory Division stopped the issue of a few special amateur callsigns and says it cannot contemplate the re-writing of the amateur licence for some time, due to pressure of
work. One has visions of another white elephant like the Vehicle Licensing Centre in Wales being created.

Mr Jenkins (May 1976 Letters) stated it was not too costly to track down illegal operators. In many cases in the amateur bands, the identities of illegal operators or those breaking the rules are known. The problem is to catch them in the act and this can be very time consuming, all the more so if mobile stations are involved. One can envisage a huge increase in Post Office engineering staff to cope with similar situations on the CB band, in dealing with both deliberate and unintentional interference. It would be revealing to learn if the Home Office has looked into the costs overall of licensing and monitoring say, half a million CB sets, all over the realm.

So far in this correspondence, the question of law and order has not been mentioned in the CB context. There can be no disputing that many crimes can be more effectively perpetrated if two-way radio is used. At present, any non-uniformed person using a walkie-talkie is regarded with curiosity and suspicion. Should the use of walkie-talkies become commonplace, the police could be at a disadvantage in spotting and preventing a wages snatch, for example. Furthermore, it is inconceivable that the military and police forces in Ulster should be faced with this situation.

Perhaps it is time that those who oppose CB in the UK, for whatever reason, formed an association as vociferous as those supporting the idea. Meantime, they should adopt the advice the CBA gives to its members and bombard MPs, ministers, magazine and local paper editors with letters opposing CB by reasoned argument in reply to any published support for it.
Norman Fitch,
Purley,
Surrey

## SHORTWAVE BAND CONGESTION

As an h.f. user, may I be permitted to comment on Jim Vastenhoud's article in the November issue? His solution appears to be based on the long-established creed of expansionism: if something you have is running out, go out and grab someone else's. instead of making the best use of your own resources. A glance through a list of broadcasting stations is enough to indicate that a few organisations in particular use several frequencies in the same band for the same broadcasts, and a listen across the bands will verify this.

Accepting, reluctantly, that the majority of current stations will continue, there is still an important factor in the inefficiency of s.w. broadcasting. Seventy-five per cent of the information and fifty per cent of the frequency-space of an a.m. signal is redundant and in a lot of cases is detrimental because of selective fading. It must not be beyond the skills of the manufacturing companies to produce and market cheap, reasonable equipment for h.f. s.s.b. reception. And once that step has been taken, it cannot be beyond the budgets of government propaganda departments to convert a.m. transmitters to cope with s.s.b. This will immediately lighten the pressure on h.f. broadcasting allocations by about a third.
1 also feel concerned about the wish of the
broadcasters to remove restrictions in the use of the 41 m broadcasting band. The 40 m amateur band is in a bad enough state with Radio Tiranë and Radio Pekin every 10 kHz in the world-wide section and European stations "illegally" beaming to the Americas above 7.1 MHz , but to allow broadcasting stations, now, to beam to America is likely to increase friction between two traditional h.f. users.

Mr Vastenhoud hopes that the broadcasters can settle their differences by WARC 1979. I hope they do. I also hope that the broadcasters, amateurs, aeronautical and maritime services and the various security services can settle their differences, and if not before 1979 then at least I hope they won't turn the conference into a slanging and grabbing match.
P. V. Rose, G3ZZA,

Manchester

## PHASE AND SOUND QUALITY

I write in response to the letter from Paul Furindie in the July issue. Mr Furindle described an experiment in which he listened to two tones nearly an octave apart and was unable to hear beats. He conducted the experiment to see if his ear could tell the difference as the phase relationship between two sinusoids changed. He reported a negative result except when gross intermodulation was deliberately caused "by introducing a diode across the loudspeaker terminals."

I was interested in, and concerned by his negative result, particularly as he tried it at "various levels and ratios of level."

In a paper in the Journal of the Acoustical Society of America in September 1954, entitled "Onset and growth of aural harmonics in the ovetloaded ear," M. Laurence and P. A. Yantis describe a very similar experiment. Their aim was to measure distortion in the ear by listening for beats between a harmonic born of aural distortion of a low frequency note. They found that the beats were detectable over a wide range of "levels and ratios of level" indicating that there is significant distortion in the ear detectable at sound pressure levels as low as 60 dB .

These results seem to be very significant to the high fidelity enthusiast. What's the point in setting up a system that can go to 115 dB s.p.l. without significant distortion if your little pinkies are going to muck it all up?

Another hint that aural distortion is significant was picked up by a local audio engineer who was given the task of elimin. ating some gross distortion in the sound system during the run of the rock opera "Hair" in Melbourne. He fixed the distortion, but arranged for the levels to be as before, only to find that some of the teenage. audience found the comparatively distor. tionless signal to be "not loud enough." It appears that distortion in low level signals reminds us of the aural distortion we experience with louder ones, and makes us think the sound we hear is louder than it is.

The moral appears to be: Unless you have distortionless ears of the "Furindle type", listen to reproduced music at the same level that you would hear it in real life. Perhaps "loudness" controls should add distortion as well as bass and treble boost at low settings. R. Schürmann,

## Hawthorn East,

Victoria,
Australia.

## THE VU METER

In his article "Low-noise, Low-Cost Cassette Deck" (May 1976) Mr Linsley Hóod describes a "VU meter." It is clear from the description that the device concerned is very far from being a VU meter, particularly in respect to its impedance and ballistic response. It could properly be referred to as a "recording level meter" or "level indicator," but never as a "VU meter."
A VU meter has its properties rigorously defined by the relevant American Standard, and it is very bad practice to use this name for signal level indicators which do not meet that standard. While it is to be deplored that commercial organisations are regularly guilty of this mistake, it is tragic that a quality journal such as Wireless World either does not know what constitutes a VU meter, or does not bother to ensure that the term is used correctly.

It is ironic that this apparent carelessness occurs in the issue with an editorial headed "Plain words to the word-bound."
E. G. Warren,

West Ryde,
N.S.W., Australia.

## SURROUND SOUND

In his review of the Harrogate exhibition (November issue) J.T.D. mentioned the decline and possible demise of four-channel sound. In the scramble for recognition of alternative surround sound systems, I wonder if adequate consideration has been given to priorities among the various requirements.

Excessive emphasis has been placed on the exact positioning of individual sound sources and their distribution completely around the listener, while neglecting far more important factors such as clarity and cleanness of sound, depth perspective and natural reverberation.

The advantage of $60^{\circ}$ stereo over mono is that it separates individual sources from each other and from the reverberation. For small groups of performers it would be quite adequate provided the reverberation was extended to $360^{\circ}$. For large orchestras, big bands and particularly choral music, opera and drama an extended spread of sound images to $180^{\circ}$ would be a considerable advantage and quite adequate provided full use was made of depth perspective and $360^{\circ}$ of reverberation. The further spread of sound images to $360^{\circ}$ would only give a marginal, if any, advantage.

The problem with two-channel matrices is in getting a satisfactory compromise between relative phase shift; evenness of sound image distribution; cross-talk and compatibility.
The relative phase shift between speakers has no great significance for reverberation as it has random phase. On the other hand, if sound images have too much relative phase shift between speakers and image becomes blurred and less distinctive from the reverberation, listening position and other factors which influence phase become more critical; compatibility deteriorates; positional distribution and balance are affected.

If the principle of restricting sound images to $180^{\circ}$ in the front sector while allowing $360^{\circ}$ of reverberation could be accepted, a two-channel matrix could be chosen, which should have relative phase balance between
right and left. The whole of the front sector could then be shifted in relative phase after encoding to provide optimum phase conditions for compatibility. If required the incoming signal would again be shifted in relative phase to provide the conditions required for decoding each of the four output channels. After decoding the four output signals would be finally adjusted in relative phase to provide optimum subjective results for images in the front sector.
Such a system could give a better combination of performance and compatibility than any two-channel full surround system.
Although at the time of writing the BBC have not yet published details of their "H" matrix, if one may assume that the " H " refers to the shape of its relative phase/relative amplitude characteristic, then it would probably be an ideal matrix for the suggested purpose.
D. Kirkman,

Ifield,
Crawley.
Editor's note: The $H$ matrix was described in a BBC Research Department report dated November 1974.

## ADVANCED RADIO MONITORING

Those of your readers who have ever been interested in h.f. surveillance, either professionally or as amateurs (for amateur radio has much in common with this facet of communications), will have read "Advanced radio monitoring" (November 1976) with great interest - but a little sadness and puzzlement.

It is no criticism of this interesting computer-enhanced system to regret that according to the authors, h.f. surveillance has become if only in part "a soul destroying, time consuming and very boring task." Or to wonder how it becomes less so by taking away from the operators the responsibility for tuning to the correct frequency at the correct time with the correct aerial etc.

In the wartime days when "ultra" and "pearl" and the intercept stations and voluntary interceptors feeding Bletchley Park - as revealed in recent books - made a significant contribution to military intelligence, such work was not usually regarded as particularly "soul destroying" but rather an interesting, often exciting, responsible and highly skilled form of radio operating. If it has since become "boring" then may not that be a question of how the work is organised and rewarded, and whether the operators are able to feel that they are not just human-computers still carrying out those functions for which the computer proper is unsatisfactory: signal identification, knowledge of h.f. propagation and the ability to read bad morse from a possible drifting, weak, fading and interfered-with signal?
The work of Geoffrey Perry and his team of schoolboys at Kettering Grammar School is a recent example of how much information can be obtained by diligent monitoring and the intelligent evaluation of results, using just the basic tools of the trade to unravel much information about the Cosmos space satellites.

The authors state "the existing pool of highly skilled operators has begun to dry up and it is proving difficult to find replacements." This may well indeed be true, not only for surveillance but for other forms of
radio operating. This is the inevitable result of many years of neglect and down grading in this country of the skills of manual telegraphy and the radio communicator, and the long-term efforts of industry to de-skill all such systems, rather than to encourage the use of human as well as electronic skills.

This is very far from suggesting that surveillance, and other forms of radio communication, should not take full advantage of modern technology, as in CERES. But rather it is a mild protest at the implication that h.f. c.w. reception or monitoring is necessarily any more "boring, time-consuming or soul destroying" than computer operating.
Pat Hawker,
London SE22.

## CITIZENS' BAND IN THE USA

In my Letter from America in the September issue, I said "the average CB mobile transceiver has 23 channels selected by a motary switch and it would most likely use four crystals in a synthesis circuit." This should read "fourteen crystals" and the extra "synthesized" frequencies are obtained by heterodyning two crýstals together to produce a third frequency. Some designers use only 11 crystals - a triumph of ingenuity! However, the more recent models with p.1.1. circuitry need only 3 or 4 crystals and those now at the drawing board stage designed for use with the Siemens S187 digital frequency synthesizer require only a single crystal - which make the makers of these items very unhappy.
G. W. Tillett,

Seminole,
Florida, USA.

## HARROGATE SOUND DEMONSTRATION

Contrary to your statement that Sansui were demonstrating four-channel equipment through two speakers, in the article "Alive and just kicking," in the November issue, 1 would point out that at the Harrogate exhibition we did not in fact demonstrate any four-channel equipment, due to the limitations on space available. Most people would agree that an area of 10 ft by 18 ft would not allow adequate definition of position to warrant demonstration to the public.

We therefore demonstrated our stereo equipment only. The four-channel equipment was on show only and not in use.
Peter Gibson,
Vernitron Ltd
Southampton

## Correction

In the article by J. H. Cook on the Remote Control Servo published in our December issue a number of errors appeared. Fig. 2 and 4 became transposed and line 9 of the centre column of page 60 should read "the conditions in Fig. 2 prevail". The caption to Fig. 4 should refer to $\mathrm{I}_{3} \mathrm{G}_{2}$, not $\mathrm{C}_{2}$.

# Weather-satellite picture facsimile machine - 2 

## Sample-and-hold detector and line dividers

by G. R. Kennedy

Video detector and amplifier. Unlike the case of modulating an oscilloscope c.r.t., as described in the previous article ${ }^{4}$, the 2.4 kHz signal cannot be applied directly to the light source because the light beam needs to be bright for a low signal and dim for a high signal to give a positive print. A conventional diode-capacitor detector has a certain inherent time constant, but to demodulate a 2.4 kHz signal, this would need to be rather long. The sample-and-hold detector used in this machine has a time constant or integration period of one cycle of the 2.4 kHz waveform and can virtually change from a low to a high modulation level in one cycle. Its bandwidth then extends
from zero to approximately the carrier frequency. Although a little complex to arrange, it is an ideal detector for relatively fast modulation of a slow carrier. The principle is shown in Fig. 6. A modulating waveform is applied to a carrier and the resulting modulated carrier is sampled at each peak. The amplitude of each sample is held until the next sample, which then holds that value, and so on. Assuming the settling time of the holding circuit is very short, then even with a slow carrier a squarewave demodulated waveform is possible. In practice the settling time will not be infinitely short and there will be some leak or droop of the holding level from one peak to the next.

However, :he frequency response of this type of demodulator is much higher than that of the simple diode-capacitor detector. Fig. 6 shows actual sample-and-hold detector waveforms.

Fig. 6. Diagrams show the basic principle of the sample-and-hold detector, see text. (a) - original modulating waveform. (b) - modulated carrier. (c) - sampling pulses. (d) idealized demodulated waveform. Photographs show actual detector waveforms. Upper traces are from the light source monitor ( $200 \mathrm{mV} / \mathrm{div}$. inverted). Lower traces show the 2.4 kHz modulated carrier input ( $5 \mathrm{~V} /$ div.) Horizontal scale is $30 \mathrm{~ms} /$ div.

(a)

(b)

(c)




Fig. 7. Sample-and-hold detector and light-source drive amplifier. S5 is the crater tube on/off switch.

The detector circuit and the following amplifying stages are given in Fig. 7. The 2.4 kHz input signal is applied to the sample-and-hold section $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ (Ref. 7). $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ form a voltage follower which drives the store capacitor $\mathrm{C}_{7}$. The input bias network $\mathrm{R}_{22}, \mathrm{RV}_{5}$, $R_{23}$ set the zero input following level and in practice set the brightness level of the final picture. $\mathrm{Tr}_{4}$ is a switch which, when off, allows $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ and hence $\mathrm{C}_{7}$ to follow the input voltage. When $\mathrm{Tr}_{4}$ turns on due to a positive sample pulse via $R_{28}$, diodes $D_{5}, D_{6}$ and $D_{7}$ reverse bias; $\mathrm{Tr}_{2}$ turns off, turning $\mathrm{Tr}_{3}$ off isolating $\mathrm{C}_{7}$. If the internal and external leakage paths of $C_{7}$ are of high resistance and the holding period is not long, the voltage across $C_{7}$ will remain virtually constant until the next input voltage following period. Since the circuit driving $C_{7}$ has a low output impedance, it is capable of conducting a high current in and out of $\mathrm{C}_{7}$, and therefore the circuit is able to rapidly follow changing sampled levels. Diode $D_{5}$ ensures that the input transistor base-emitter voltage is not exceeded when $\mathrm{Tr}_{4}$ switches on: $\mathrm{D}_{7}$ balances the forward voltage drop of $D_{5} . D_{8}$ is a speed-up diode to stop $\mathrm{Tr}_{4}$ saturating during fast following. The maximum input signal is approximately 9 Vpk-pk. The sampled voltage on $\mathrm{C}_{7}$ is followed by the very high input impedance stage $\mathrm{Tr}_{5}$ and voltage amplified by $\mathrm{Tr}_{6}$. Transistor $\mathrm{Tr}_{9}$ is the light source modulator which is current driven by the d.c.-coupled emitter follower $\operatorname{Tr}_{8}$. The gain is set by the un-decoupled $50 \Omega$ 10-turn potentio-
meter $\mathrm{RV}_{6}$ in the emitter of $\mathrm{Tr}_{6}$, and the maximum safe drive to the light source is set by $\mathrm{RV}_{7}$ in the base feed to $\mathrm{Tr}_{9} . \mathrm{C}_{8}$, $\mathrm{C}_{9}, \mathrm{R}_{36}$ and $\mathrm{L}_{1}$ prevent high-frequency ringing of the light source signal, and the transistor by-pass $\mathrm{R}_{38}$ provides a "keep-alive" path for the light source, once struck. The light source current is monitored by a 50 mA meter in series with its supply, and is protected against mishap by the 60 mA fuse $\mathrm{F}_{1}$. This has appreciable resistance and forms a small resistive collector load. The light-source modulating waveform is monitored across the $10 \Omega$ resistor $\mathrm{R}_{37}$ in the emitter line of the output transistor $\mathrm{Tr}_{9} . \mathrm{Tr}_{7}$, which is a shunt switch controlled by the t.t.l.-level strobe pulse, keeps the light source at very low drive during the off period, when it is fully on, and allows light source modulation

Fig. 8. Sample pulse generator.
during the strobed-on period. The 40 V supply which is used for the later stages is dropped by $\mathrm{R}_{39}$ and partially stabilized by $D_{9}$ and $C_{10}$ to form a +10 V supply for the input stages. The light source supply is +165 V and $\mathrm{Tr}_{8}$ and $\mathrm{Tr}_{9}$ have very high voltage ratings to allow for all contingencies.
Since a positive print is required from the bromide papur - iself a reversing medium - the sample-and-hold detector and light-source drive circuit reverse the sense of the signal modulation. A high (white) signal virtually cuts off the light beam, whereas a low (black) signal turns the light source fully on. Typical waveforms are shown on the circuit diagram.

The sample-pulse generator, see Fig. 8 , uses two integrated circuit monostable chips. Monostable $\mathrm{IC}_{6}$ is triggered by the 2.4 kHz clock-rate signal, producing a delay pulse, the duration of which is



Fig. 9. Block diagram of SR line divider. Divide-by-5 and divide-by-2 dividers are paired, each pair being derived from a 7490 i.c.
set by $R V_{8}$ and $C_{12}$. The trailing edge of this pulse triggers $\mathrm{IC}_{7}$, which produces the sample pulse, the duration of which is set by $R V_{9}$ and $C_{13}$, from the $Q$ output terminal. The supply rail is decoupled by $\mathrm{C}_{14}$ and $\mathrm{C}_{15}$ to prevent power supply transients from falsely triggering the monostables.

A low frequency drive for the drum and traverse motors is generated by the SR Line divider. The drum rotation is then locked to each SR line so that $1 / 3$, $1 / 4$ or $1 / 5$ th of the line is printed, according to the setting of the line division switch. The traverse is driven from the same frequency as the drum so that the correct aspect ratio (index of co-operation) of the final picture is maintained. Drive frequency generation for the $1 / 3$ and the $1 / 4$ lines is difficult to arrange since a simple division of the satellite sub-carrier or clock frequency of 2400 Hz is not possible. For a synchronous drum motor giving $240 \mathrm{rev} / \mathrm{min}$ at 48 Hz drive, one drum revolution takes 250 ms , which is $1 / 5$ th of an SR line period. For the same motor, the frequencies are 28.8 Hz for the $1 / 3$ rd line and 38.4 Hz for the $1 / 4$ line. Fig. 9 shows how these rather
awkward frequencies are produced so that SR picture magnification can be achieved. A phase-lock-loop, with a 28.8 kHz v.c.o., is arranged with a divide-by- 12 circuit inserted in the loop between the v.c.o. and the phase-sensitive detector (p.s.d.). This compares the phase of the divided oscillator with the clock signal and keeps the v.c.o.

Fig. 11. Picture slip oscillator. A squarewave signal generator which, when switched into the motor drive chain divider, may be used to adjust the drum rotation speed for setting the picture edge position.
phase-locked to the clock frequency. The 28.8 kHz v.c.o. frequency is divided by 125 giving 230.4 Hz , which is then divided in parallel by 8 and 6 to give 28.8 Hz and 38.4 Hz for the $1 / 3$ and the $1 / 4$ lines respectively. The $1 / 5$ line frequency is obtained by simple division of the 2.4 kHz clock signal by 50 . Details of the $1 / 3$ and $1 / 4$ line division circuitry are shown in Fig. 10(a). $\mathrm{C}_{16}$ couples the clock signal to the phase-lock-loop chip $\mathrm{IC}_{8}$. The v.c.o. output at 28.8 kHz is buffered to t.t.l. level by $\mathrm{Tr}_{10}$ and taken via $\mathrm{C}_{22}$ to $\mathrm{IC}_{9}$, the divide-by-I2 stage, and via $C_{22}$ to $\mathrm{IC}_{10}$, one of the divide-by- 10 chips. The divided signal, at 2.4 kHz , is fed back to the loop via $\mathrm{C}_{21}$ to the p.s.d. These are arranged as a divide-by- 5 and a divide-by- 2 on each chip. The divide-by- 5 output of $\mathrm{IC}_{10}$ is connected to the subsequent stages in $\mathrm{IC}_{11}$ and $\mathrm{IC}_{12}$ and the 230.4 Hz thus obtained is then passed through the divide-by- 2 stages in $\mathrm{IC}_{10}, \mathrm{IC}_{11}$ and $\mathrm{IC}_{12}$ to give the $1 / 3$ line 28.8 Hz output from $\mathrm{IC}_{12}$. The 230.4 Hz is also divided by 6 in $\mathrm{IC}_{13}$ to give the $1 / 4$-line 38.4 Hz output. Since the final stages of both $\mathrm{IC}_{12}$ and $\mathrm{IC}_{13}$ are bistables, the outputs are square waves of equal mark-space.

The 1/5th line division circuit is shown in Fig. 10(b). Here, an alternative divide-by-5 circuit is shown, which can also be used in the previous section if more convenient. It uses two synchronous modulo- 5 unweighted upcounters, $\mathrm{IC}_{14}, \mathrm{IC}_{15}$ and $\mathrm{IC}_{16}$, and $\mathrm{IC}_{17}$, $\mathrm{IC}_{18}$ and $\mathrm{IC}_{19}$, and a divide-by-2 toggle IC $_{20}$. It is shown in generalised form for utilizing any cheap surplus J-K flip-flop integrated circuits. The feedback of each modulo- 5 counter modifies the count of the three bistables to give 5 instead of 8 . As before, the final stage gives a 1:1 mark-space ratio square wave. It should be noted that the $1 / 5$ th line 48.0 Hz output is used when printing APT and WEFAX.

Picture slip oscillator. A square-wave signal is generated, which can be switched into the motor drive chain divider to give a slightly different drum rotation speed for setting the picture edge position. The signal cannot'be derived from the 2.4 kHz clock signal since servo action of the whole circuit


2.4 kHz
input


Fig. 10. Top $-S R$ line divider for $1 / 3$ and $1 / 4$-line division. Bottom $-S R$ line divider for $1 / 5$-line division.
keeps the drum locked to the picture, wherever the edge happens to be. Almost any multivibrator would be adequate, with fine adjustment to bring the frequency near to 2.4 kHz . A suitable circuit, given in Fig. 11, uses half a dual. Schmitt trigger i.c. as a feedback square-wave oscillator. The action is as follows: assuming the output of the Schmitt trigger to be high, $\mathrm{C}_{23}$ charges through $\mathrm{R}_{49}$ and $R V_{10}$ until the voltage across it equals the Schmitt rising trigger level and the circuit switches turning the output low. The potential across $\mathrm{C}_{23}$ falls until the falling trigger level is reached, when the circuit switches and the output goes high again, and so on. Diode $D_{10}$ prevents the circuit from being reverse biased at the moment of switching, and also ensures that the output has an approximately $1: 1 \mathrm{mark} / \mathrm{space}$ ratio. The frequency is determined by the time constant of $\mathrm{C}_{23}$, $\mathrm{R}_{49}$ and $\mathrm{RV}_{10}$.

## Correction

In the list of capacitors, published last month, C 31 should be $0.1 \mu \mathrm{~F}$ not $2 \mu \mathrm{~F} / 25 \mathrm{~V}$ as stated.

## CRANFIELD AUDIO WEEKEND

Wireless World, in association with the Cranfield Institute of Technology, will be holding an Audio Weekend at the Institute on Saturday, 1st and Sunday, 2nd April, 1978. Designed for those involved in the manufacture, sale and use of the highest quality audio equipment, the event will make use of the unique resources of Cranfield, the national postgraduate university for advanced technology and management. The programme will cover the complete sound reproducing chain, turntables, arms and cartridges, amplifiers and tuners, loudspeakers, tape cartridge and cassette recorders, microphones and headphones and programme sources.

- Lectures and demonstrations will be given by internationally known experts. A live versus recorded sound demonstration will form part of the programme. An associated exhibition of equipment will run throughout the weekend and delegates will have full opportunities
to assess and inspect equipment and to discuss their requirements with experts, not only during formal sessions but informally.
- A special social programme will include a recital of discs and tapes, a "live" musical recital and a buffet dance. Also planned is a non-technical alternative ladies' programme.
- All meals and refreshments will be provided and will be included in the fee. Limited accommodation in single study bedrooms will be available at Cranfield for an additional charge.
- Cranfield is in a pleasant country situation mid-way between London and Birmingham, ten miles from Bedford. It is four miles from the M1 motorway, and is approached from junction 13 or 14.
- The Cranfield Audio Weekend provides a unique opportunity to study in a perfect environment the present and future of sound reproduction. If you are interested in participating, please write to the following address and full details will be sent to you as soon as possible:

The organisers, CRANFIELD AUDIO WEEKEND, IPC Business and Industrial Training Limited, Surrey House, Throwley Way, Sutton, Surrey SM1 400. (Tel. 01-643 8040.)

# Logic design 

# 1 - Boolean algebra and Karnaugh maps 

by B. Holdsworth and L. Zissos Che/sea College, University of London

Up to 1969, when the Boolean sequential equations were developed, the design of sequential circuits was achieved through an empirical choice of unrelated informal techniques paying little attention to engineering constraints until, in most cases, the implementation stage. The advent of the sequential equations has made possible the development of clear-cut step-by-step design procedures in which realistic circuit constraints are taken into account at the design level. No engineering or other specialist knowledge is necessary to use these design procedures.

The design philosophy adopted in this series is one that allows the emphasis to be placed on optimal rather than minimal design. This is to enable technicians, users with no specialist knowledge of electronics, and the less experienced designer, to produce sound and economical designs, while at the same time providing the means whereby the specialist designer may improve his technique in dealing with more sophisticated assemblies involving such devices as r.o.ms, r.a.ms, microprocessors, and so on.
The primary design objective is to produce sound and reliable digital systems which are meaningful not only to the designer but also to the user.

## Basic concepts

As in conventional algebra, so in Boolean algebra variables are combined into expressions with operators that obey certain laws. The Boolean variables, denoted by letters of the alphabet such as A,B,C etc., are binary variables and may assume one of two values, 0 or 1 , or they may be alternatively read as 'false' and 'true' respectively. They are not the 'zero' and 'one' of arithmetic and the operations that can be performed on them are somewhat different and more limited than the normal arithmetical processes.
Although there exists a wide number of Boolean operators, such as NAND, NOR, etc., we need only consider three
operators at this stage - all other operators can be expressed in terms of these three. They are:

- Boolean addition,
- Boolean multiplication,
- Boolean inversion.

The addition operator is written as + and may be interpreted as 'OR'. A + B may be read 'A or B' or 'A plus B'. It is true if either $A$ is true or $B$ is true or both are true, otherwise it is false. Thus,

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+1=1 \\
& 1+0=1
\end{aligned}
$$

The multiplication operator is written as . or $\times$, or omitted when its factors are variables denoted by single letters, and may be interpreted as 'AND'. A.B (or $A B$ ) may be read ' $A$ and $B$ ' or as ' $A$ times $B^{\prime}$. It is true if A and B are both true, and false otherwise. Thus,

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 1=1 \\
& 1 \times 0=0
\end{aligned}
$$

The inversion operator is written as a bar over the variable and the bar may be interpreted as "NOT". For example, $\bar{A}$ may be read as "NOT A".

$$
\begin{array}{rr}
\text { If } A=1 & \text { then } \bar{A}=0 \\
\text { and if } A=0 & \text { then } \bar{A}=1
\end{array}
$$

## Boolean theorems

Redundancy.

$$
A+A B=A
$$

Fig. 1. The redundancy theorem implemented in a relay circuit. From the three relays giving $f=A+A B$ is derived the single-relay circuit giving $f=A$, since $A B$ contains $A$ and is therefore redundant.

$$
\text { Proof: } \quad \begin{aligned}
A+A B & =A .1+A B \\
& =A(B+\bar{B})+A B \\
& =A B+A \bar{B}+A B \\
& =A B+A \bar{B} \\
& =A .1 \\
& =A
\end{aligned}
$$

This theorem states that in a sum-of-products Boolean expression, a product that contains all the factors of another product is redundant. As a consequence it allows the elimination of redundant products in a sum-of-products expression. For example, in the Boolean function $f=A B+A B C+A B D$, the products $A B C$ and $A B D$ can be eliminated, because each contains all the factors present in AB .
The application of this theorem to a relay circuit is shown in Fig. 1.
Race-hazards. The main interest of the logic designer in this theorem is in its use in logic circuits for the suppression of race-hazards, which result in the generation of unwanted spikes. For example consider the Boolean function $\mathrm{f}=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}$. Following changes in A , there is a race-hazard when $B=1$ and $C=1$, since the function then reduces to $\mathrm{f}=\mathrm{A}+\overline{\mathrm{A}}$. The use of an inverter to generate $\overline{\mathrm{A}}$ from A implies a delay between the waveforms of $A$ and $\bar{A}$ as shown in Fig. 2. This leads to the generation of a transient signal as indicated in the same diagram.

The unwanted transient can be averted by the introduction of an optional product, that is a Boolean product whose presence in an expression does not affect the value of the Boolean function. A suitable optional product for the function $\mathrm{f}=\mathrm{AB}+\overrightarrow{\mathrm{A} C}$ is formed by taking the product of the coefficients $A$ and $\bar{A}$.
Hence, $\quad \mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}$



Fig. 2. A race hazard. $\bar{A}$ is obtained by inverting $A$ and is subject to a delay, resulting in the interval during which neither $\bar{A}$ nor $A$ is 'up.' The output $f=A+\bar{A}$ is therefore not true, or 'down' during this time.

Proof: $\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}$

$$
\begin{aligned}
& =A B+\bar{A} C+(A+\bar{A}) B C \\
& =A B+\bar{A} C+A B C+\bar{A} B C \\
& =A B(1+C)+\bar{A} C(1+B) \\
& =A B+\bar{A} C
\end{aligned}
$$

The product BC is optional so long as its parent products, $A B$ and $\bar{A} C$ remain in the expression. Should, however, one of its parent products be eliminated (by applying the redundancy theorem), then such a product is no longer optional and cannot be removed from the expression.
If now $B=C=1$ the expression $f=A B+\bar{A} C+B C$ reduces to $f=A+\bar{A}+1$, which always has the value $l$ irrespective of the values of $A$ and $\overline{\mathrm{A}}$.

The use of optional products will now be demonstrated with the aid of three examples.
(1) Elimination of parent product.

$$
\mathrm{f}=\mathrm{A}+\overline{\mathrm{A}} \mathrm{BC},
$$

Form the optional product BC :

$$
\mathrm{f}=\mathrm{A}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{BC}
$$

Eliminate parent product $\bar{A} B C$ using theorem of redundancy:

$$
\mathrm{f}=\mathrm{A}+\mathrm{BC}
$$

(2) Elimination of non-parent product.
$f=A B+\bar{A} C+B C D$
Form the optional product $B C$ :
$\mathrm{f}=\mathrm{AB}+\bar{\Lambda} \mathrm{C}+\mathrm{BC}+\mathrm{BCD}$.
Eliminate non-parent product $B C D$ using theorem of redundancy:

$$
\mathrm{f}=\mathrm{AB}+\bar{A} \mathrm{C}+\mathrm{BC}
$$

But BC is an optional product and is redundant, hence

$$
\mathrm{f}=A \mathrm{~B}+\overline{\mathrm{A}} \mathrm{C}
$$

(3) Elimination of non-parent product and parent product.

$$
f=A B+\lambda B C+B C D
$$

Form the optional product BC :

$$
\mathrm{f}=\mathrm{AP}+\overline{\mathrm{A}} \mathrm{~B}^{\bullet}+\mathrm{BCD}+\mathrm{BC} .
$$

Climinate non-parent product BCD and parent product $\vec{A}$ 保 using theorem of redundancy:

$$
r-A r+B C
$$

De Norgan's theorem. The complement of a Boolean exprescion can be obtained by replacing eact variable by its complement in the corresponding dual exprossion. For example, the dual of $f=A+B C$ is obtained by replacing. the
operator + by . and vice versa.
Hence the dual expression is

$$
f_{D}=A(B+C)
$$

and

$$
\overline{\mathrm{f}}=\overline{\mathrm{A}}(\overline{\mathrm{~B}}+\overline{\mathrm{C}})
$$

that this is so can be confirmed with the aid of a truth table as shown in Fig. 3. Examination of columns 8 and 10 of this table show that $\bar{A}(\bar{B}+\bar{C})$ is the complement of $A+B C$.
$A \cdot B C \bar{A} \bar{B} \bar{C} B C A+B C \bar{B}+\bar{C} \quad \bar{A}(\bar{B}+\bar{C})$

| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

Fig. 3. The truth table shows that $\bar{A}(\bar{B}+\bar{C})$ is the complement of $A+B C$.

Example. Find the complement of $f=A(B C+\bar{B} \bar{C}+B C D)$.
Apply redundancy

$$
\begin{array}{ll} 
& f=A(B C+\bar{B} \bar{C}) \\
\text { dualise: } & f_{D}=A+(B+C)(\bar{B}+\bar{C}) \\
\text { invert: } & f=\bar{A}+(\widetilde{B}+\bar{C})(B+C) \\
& f=A+B \bar{C}+\bar{B} C
\end{array}
$$

Fan in. This theorem has its application in those logic circuits where there is a fan-in restriction placed on the designer by the availability of gate inputs. This matter will be dealt with more fully in a later article.

It is frequently convenient, when multiplying out two Boolean sums to refer to one section of the sum as its head, $H$, and to the remaining section as its tail, T. The statement of the theorem then is:

$$
\left(\mathrm{H}_{1}+\Gamma_{1}\right)\left(\bar{H}_{1}+\mathrm{T}_{2}\right)=\mathrm{H}_{1} \mathrm{~T}_{2}+\bar{H}_{1} \mathrm{\Gamma}_{1}
$$

Proof: l.h.s. $=\left(\mathrm{H}_{1}+\mathrm{T}_{1}\right)\left(\mathrm{H}_{1}+\mathrm{T}_{2}\right)$

$$
=\mathrm{H}_{1} \overline{\mathrm{H}}_{1}+\mathrm{H}_{1} \mathrm{~T}_{2}+\overline{\mathrm{H}}_{1} \Gamma_{1}+!
$$

Now $\mathrm{H}_{1} \overline{\mathrm{H}}_{1}=0$ and $\mathrm{r}_{1} \mathrm{I}_{2}$ is redundant by theorem of race-hazards: therefore l.h.s. $=H_{1} \mathrm{~T}_{2}+\mathrm{H}_{1} \mathrm{~T}_{1}$

This theorem allows us to multiply out two Boolean sums, two sections of which are the complement of each other, without generating algebraically redundant products.

The partition of a Boolean sum into head and tail is arbitrary. For example in the case of the Boolean sum $A+B+C$ any of the following partitions is allowable

| Mead | tall |
| :---: | :---: |
| $A$ | $B+C$ |
| $B$ | $A+C$ |
| $C$ | $A+B$ |
| $A+B$ | $C$ |
| $A+C$ | $B$ |
| $B+C$ | $A$ |

Example. $f-(\hat{A}+\mathrm{B}+\mathrm{C})(\overline{\mathrm{A}}+\Gamma) \mathrm{E}+\mathrm{F})$ Let $H_{1}=A$ and $C_{1}=B+C$

$$
H_{2}=\bar{A} \text { ind } T_{2}=D E+F
$$

then $(A+B+C)(\bar{A}+D E+F)$

$$
=A(D E+F)+\bar{A}(B+C)
$$

$$
=\mathrm{ADE}+\mathrm{AF}+\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{A}} \mathrm{C}
$$

If there are terms common to both of the sums to be multiplied the process of multiplication can be further simplified by noting that such terms appear in the product in their original form. For example

$$
\begin{aligned}
& (A+B C)(A+D E) \\
& =A A+A D E+A B C+B C D E \\
& =A+B C D E
\end{aligned}
$$

Hence, if $P=(I+X)$ and $Q=(I+Y)$ where $I$ is the common term,
then $\mathrm{PQ}=(\mathrm{I}+\mathrm{XY})$.
Finally, if $P=\left(H_{1}+T_{1}+I\right)$ and $\mathrm{Q}=\left(\overline{\mathrm{H}}_{1}+\mathrm{T}_{2}+\mathrm{I}\right)$,
then $\mathrm{PQ}=\mathrm{H}_{1} \mathrm{~T}_{2}+\mathrm{H}_{1} \mathrm{~T}_{1}+\mathrm{I}$

## Boolean reduction

A Boolean function is said to be irredundant, or reduced, if it contains no optional products. For example, the factor $\bar{A}$ in the function $f=A+\vec{A} B$ is redundant, since $A+\bar{A} B=A+B$. Redundancies in two-level Boolean expressions can be removed in three steps, using the theorems of redundancy and racehazards. If an expression contains more than two levels, it is converted into its two-level sum-ofproducts form by multiplying out.

The three steps for eliminating redundancies in Boolean expressions are:
(1) Multiply out.

Consider the Boolean function

$$
f=B C+(A B+C) \bar{C}+A
$$

Apply (1):

$$
\begin{aligned}
& =B C+A B C+C \bar{C}+A \\
& =A+B C+A B \bar{C}
\end{aligned}
$$

(2) Apply redundancy theorem:

In (I) the expression $\mathrm{f}=\mathrm{A}+\mathrm{BC}+\mathrm{AB} \overrightarrow{\mathrm{C}}$ was derived. Step (2) is commenced by considering the first product, in this case A. Now scan the products to the right of A , looking for a product that contains the factor $A$. Here $A B \bar{C}$ is such a product and this is eliminated, resulting in $f=A+B C$. Since there are no products to the right of $B C$ the step is not repeated.
(3) Apply theorem of race hazards: The first variable in the first product is selected and the remainder of the expression is scanned for a product that contains the complement of the selected variable. When such a product is found, an optional product is formed using the second theorem. The optional product is used to eliminate non-parent products and/or to replace parent products as previously described. If a parent product has been replaced, the optional product is inserted at the beginning of the expression and (3) is repeated. If the optional product has not been used, it is discarded. Step (3) is repeated until all first-level optional products have been generated. Repeat (3) if necessary using higher level optional products'. For example:

$$
\mathrm{f}=\mathrm{A}+\overline{\mathrm{A}} \mathrm{~B}+\mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{D}
$$

Form the optional product $B$ :

$$
\mathrm{f}=\mathrm{A}+\overline{\mathrm{A}} \mathrm{~B}+\mathrm{BC}+\overline{\mathrm{A}} \bar{B} \mathrm{D}+\mathrm{B}
$$

Eliminate parent product $\overline{\mathrm{A}} \mathrm{B}$ and nonparent product $B C$ :

$$
f=B+A+\bar{A} \bar{B} D
$$

Form optional product $\bar{A} D$ :
$f=B+A+\bar{A} \bar{B} D+\bar{A} D$.
Eliminate parent product $\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{D}$ :

$$
\mathrm{f}=\overrightarrow{\mathrm{A}} \mathrm{D}+\mathrm{B}+\mathrm{A}
$$

Form optional product $D$ :
$f=\bar{A} D+B+A+D$.
Eliminate parent product $\overline{\mathrm{A}} \mathrm{D}$ :
$\mathrm{f}=\mathrm{A}+\mathrm{B}+\mathrm{D}$,
which is the required result.

## Minimisation

A Boolean sum-of-products expression is said to be minimal if (a) no other sum-of-products expression for the same function has fewer products, and (b) of other sum-of-products expressions for the same function with the same number of products, none has fewer factors.

There are three main methods for minimising Boolean expressions.

These are:

- The Karnaugh map method. In this method the function is displayed on a map and by suitable looping arrangements the minimal form is obtained.
- The Quine-McCluskey method ${ }^{2}$. In this method all irredundant forms of a given Boolean function are generated and the shortest one chosen.
- A step-by-step algebraic method ${ }^{3}$ which does not involve expansion of the function.
In this article the Karnaugh map method will be described.

Consider the Boolean function:

$$
\begin{aligned}
\mathrm{f} & =\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B C+\bar{A} B \\
& =(A+\bar{A}) B C+(A+\bar{A}) \bar{B} C+\bar{A} B \\
& =B C+\bar{B} C+\bar{A} B \\
& =(B+\bar{B}) C+\bar{A} B \\
& =C+\bar{A} B
\end{aligned}
$$

The original expression has been transformed algebraically into a simpler Boolean function which requires less hardware for implementation. Certainly in the era before the advent of the integrated circuit, minimization of Boolean functions was a positive advantage. In these days of integrated circuits the advantages of Boolear. minimisation at the gate level are less obvious and the designer is now thinking in terms of minimizing the number of chips, both from the point of view of economy of space and cost. However, the formal process of simplification does lead the designer to a facility for handling Boolean equations and in that sense it is still useful.

The simplest and most widely used method of simplification employs a mapping technique. Maps for two, three, four and five variables are shown in Fig. 4, and are called Karnaugh maps.

For the two-variable map there are four cells, each of which represent one of the four possible combinations of the two variables. In the top left hand cell of the $\operatorname{map} A=0$ and $B=0$, that is, the ceil represents the minterm $m_{0}=\bar{A} \bar{B}$, where a minterm may be defined as a Boolean product which contains all the variables in their true or inverted form. The decimal number in a cell is the decimal equivalent of the binary representation
(a)




| (c) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $A B \quad 0001011 \quad 10$ |  |  |  |  |
| 00 | 0 | 1 | 3 | 2 |
| 01 | 4 | 5 | 7 | 6 |
| 11 | 12 | 13 | 15 | 14 |
| 10 | 8 | 9 | 11 | 10 |

(d)

Fig. 4. Karnaugh maps for two(a), three(b), four (c) variables. In the case of five variables, two maps are needed, as shown at (d).

Fig. 5. The Karnaugh map for $f=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B C+\bar{A} B$. The ringed 'l's show that the expression can be minimized to $f=C+\bar{A} B$.
of the minterm associated with that particular cell. For example, the minterm associated with the top right hand cell of the two variable Karnaugh map is $\overline{\mathrm{A}} \mathrm{B}$ and its binary representation is 01 which has a decimal equivalent of 1 .
Any Boolean function of a given number of variables can be plotted on a Karnaugh map. For example, consider again the function:
$\mathrm{f}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{B}$
The first term in the expression $\bar{A} \bar{B} C$ has a binary representation of 001 and the cell corresponding to 001 on the map shown in Fig. 5 is marked with a 1. It follows that the terms $\bar{A} B C, A \bar{B} C$, and $A B C$ can be plotted on the map using the same method. The remainıng term $\bar{A} B=\bar{A} B(C+\bar{C})=\bar{A} B C+\bar{A} B \bar{C}$ and the binary representation of these two terms is 011 and 010 respectively, corresponding to cells 2 and 3 , but cell 3 has already been covered by the term $\bar{A} B C$ and it is only necessary to enter a 1 in cell 2 to complete the plot of the function.
The above example has shown that a 3 -variable term occupies one cell only on a 3 -variable map, a two variable term occupies two adjacent cells on the map and a single variable term will occupy four adjacent squares on the map. For example, the term A would be plotted in the cells marked 4, 5, 7 and 6 on the map and these four adjacent squares represent that term.

Fig. 6. Minimal function of $f=B D+\bar{A} \bar{B} C+A \bar{B} \bar{C} A B C+\bar{A} C \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}+A B \bar{C} \bar{D}$ is shown to be $f=B D+\bar{A} C+A \bar{C}+\bar{B} \bar{C} \bar{D}$.

$f=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} C+A B C+\bar{A} B$

The process of simplification therefore reduces to the process of identifying plotted adjacencies on the Karnaugh map and then looping these adjacencies as shown in Fig. 5. The four-cell adjacency represents the term C and the two cell adjacency represents the term $\bar{A} B$ and the minimal function is

$$
\mathrm{f}=\mathrm{C}+\overline{\mathrm{A}} \mathrm{~B}
$$

as was previously determined by algebraic methods.
Clearly to get the minimal form of the function the largest possible adjacencies should be chosen.
Example Minimize the Boolean function:

$$
\begin{gathered}
\mathrm{f}=\mathrm{BD}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{C} \overline{\mathrm{D}}+ \\
\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}} .
\end{gathered}
$$

The function is shown plotted on the Karnaugh map in Fig. 6 and the adjacencies giving the minimal function are shown looped.


From the map

$$
\begin{aligned}
\mathrm{f} & =\mathrm{BD}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{A} \overline{\mathrm{C}}+\overline{\mathrm{B}} \overline{\mathrm{C}} \overline{\mathrm{D}} \\
\text { or } \mathrm{f} & =\mathrm{BD}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{A} \overline{\mathrm{C}}+\overline{\mathrm{A}} \overline{\mathrm{D}}
\end{aligned}
$$

Example Minimize the Boolean function shown plotted in Fig. 7.
For five-variable functions two maps are required as shown in Fig. 7 and the minimisation process can then be carried out in two steps:
Step (1): Minimize the functions plotted in the $E=0$ and $E=1$ maps as if dealing with two separate four-variable problems.
This gives $\quad f_{1}=\bar{B} \bar{D} \bar{E}+A B D \bar{E}+B C D \bar{E}$ and $\quad f_{2}=B D E+A \bar{B} \bar{D} E+A \bar{C} \bar{D} E$ Note that in this case there are two equally valid minimal solutions for the $E=1$ map, one of which has been chosen.
Step 2: Look for combinations between cells on the $E=0$ and $E=1$ maps which will lead to the elimination of factors from any of the terms in $f_{1}$ or $\mathrm{f}_{2}$.

For example, the term $\bar{B} \bar{D} \bar{E}$ in $f_{1}$, may be written as $\bar{B} \bar{D} \bar{E}+A \bar{B} \bar{D} \bar{E}$ and the term $\mathrm{A} \bar{B} \overline{\mathrm{D}} \overline{\mathrm{E}}$ can be combined with the term $A \bar{B} \bar{D} E$ in $f_{2}$ to generate the term $A \bar{B} \bar{D}$ thus eliminating the factor $E$ between these two terms. The minimal sum is then given by the logical sum of $f_{1}$ and $f_{2}$ after all possible combinations have been made between the two maps. This leads to the following minimal solution.

## $\mathrm{f}=\overline{\mathrm{B}} \overline{\mathrm{D}} \overline{\mathrm{E}}+\mathrm{BDE}+\mathrm{ABD}+\mathrm{BCD}+$

$$
\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{C}} \overline{\mathrm{D}} \mathrm{E}
$$

Obviously, the process of minimization using maps becomes more complicated as the number of variables in a problem increases. However, the method is readily usable up to six variables.

It was shown earlier in this article in the section on the race-hazard theorem that unwanted transient signals can be averted by the introduction of optional products. For example, for the Boolean function $f=\bar{A} B+A C$ a race-hazard occurs, following changes in $A$, when $\mathrm{B}=\mathrm{C}=1$, and it is eliminated by introducing the optional product BC so that the function becomes $f=\bar{A} B+A C+B C$. The original function is shown plotted in Fig. 8(a) and the new function including the optional product is plotted in Fig. 8(b).
Before the introduction of the optional product the Boolean function was irredundant in that it contained no loops, when plotted on Fig. 8(a), that are already covered by other loops. The function was also minimal. However with the introduction of the optional $\because 0$ duct a loop BC is formed which is airndy covered by the loops for $\overline{A B}$ and $A C$. The function is now no longer mininal in that it contains a redundant product $B C$. This example shows that the introduction of redundancy into a Boolean function is necessary to eliminate race hazards and that the minimal solution is not always the best solution.

Clearly the possibility of a race-


Fig. 7. A further example of minimization.


Fig. 8. The use of optional product BC in (b) eliminates the race hazard with changes in $A$.


Fig. 9. More elimination of race hazards, shown by arrows in (a) by optional products shown at (b).
hazard occurring can easily be spotted on a Karnaugh map plot of the Boolean function to be minimized.

The minimal form of the function shown plotted in Fig. 9(a) is $\mathrm{f}=\overline{\mathrm{A}} \mathrm{D}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}$ but race-hazards will occur at the places indicated by arrowheads on the map. To eliminate these race-hazards two extra loops should be added to the Karnaugh map

(b)

$f=\bar{A} D+A \bar{B} C+A B \bar{C}+B \bar{C} D+\bar{B} C D$
plot as shown in Fig. 9(b) and the minimum hazard-free function becomes

$$
\mathrm{f}=\overline{\mathrm{A}} \mathrm{D}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{B} \overline{\mathrm{C}} \mathrm{D}+\overline{\mathrm{B}} \mathrm{CD}
$$

## References

1. "Problems and Solutions in Logic Design," D. Zissos, Oxford University Press, 1976.
2. "Minimization of Boolean Functions," E. J. McCluskey, Bell System Technical Journal, November 1956.
3. "Boolean Minimization," D. Zissos and F. Duncan, The Computer Journal vol. 16, No. 2, May 1972.

# Morse keyboard and memory 

## The key to perfect c.w. sending

by C. I. B. Trusson, M.Sc., M.I.E.E., G3RVM Plessey Semiconductors

The keyboard-and-f.i.f.o. morse keyer uses an RC oscillator to accurately control the mark/space ratio of morse characters and the duration of intercharacter and inter-word spaces. The keyer also uses a basic oscillator clock which is divided down and switched to allow morse code outputs at $6,12,24$ and 48 words-per-minute, four discrete speeds being sufficient for amateurband operating. Six w.p.m. is suitable for sending to very weak DX stations and 12 w.p.m. can be used for DX stations and novice operators. 24 w.p.m. is the speed used for $90 \%$ of QSOs (contacts) and 48 w.p.m., which demands a fair degree of typing skill, is only suitable for sending to extremely good operators. During sending, the c.w. output is fixed at one of these speeds while the character input speed is controlled by the operator via the keyboard.

When using a keyboard sender without a f.i.f.o memory the operator has to monitor the outgoing c.w. and accurately synchronise his typing to it. However, because c.w. characters are of very variable length and typing speed is difficult to keep constant from one character to the next, the resulting c.w. can include very variable operator-determined inter-character spaces. A f.i.f.o. memory is incorporated in this design so the operator only needs to ensure that his typing speed is faster than the outgoing c.w. speed. Each character is then immediately available at the output of the f.i.f.o. with no operator delay. The fi.f.o. will hold up to 63 characters, which represents a message of about 12 words. A line of five l.e.ds on the front panel indicates how full the memory is at any time. This indication provides the operator with a crude method of controlling his typing speed so that there are always a few characters in the memory, but not sufficient to exceed its capacity. As a result, there is no need to monitor the outgoing c.w. when using this keyer.

The f.i.f.o. may also be used as a pure memory for storing messages of up to 63 characters for later transmission. The message is keyed in with the store/send switch in the "store" position and is keyed out when the switch is returned to the "send" position. A reset key is provided for


#### Abstract

This article describes a c.w. keyer which enables the operator to send perfect morse simply by typing out the messages on an alphanumeric keyboard. A f.i.f.o. (first in - first out) memory is used to store the keyboard output before it is converted into morse code, suitable for keying a transmitter. The prototype keyer was constructed by the author who was motivated by a desire to send good high-speed c.w., particularly during amateur-band contests. Despite his persevering with an el-bug for eight years, perfectly-timed error-free high speed c.w. was never achieved. With this keyer, however, perfect international c.w. is guaranteed at very low error rates, determined only by the operator's typing skill.


clearing the memory of messages keyed into the keyboard, but no longer required for transmission. Circuitry is incorporated to reset the memory automatically when the power is switched on.
Fig. 1. Front panel of morse keyboard showing the alpha-numeric, punctuation, reset, space bar and special character keys, the four-position switch for the selection of morse speed and the store-end switch which allows storage of messages for later transmission.

The morse code output, used to key the transmitter, is provided by a high-speed reed relay having a 400 V , $0.5 \mathrm{~A}, 10 \mathrm{~W}$ rating, which should present no transmitter interfacing problems. A second reed relay output is provided for automatic transmit/receive switching. This relay switches on just before the first character of a message is keyed out and stays on as long as there are still un-sent characters in the f.i.f.o. memory. When the memory empties, the transmit/receive relay switches off just after the last character has been keyed out. This relay avoids the need for manual transmit/receive switching by the operator, which can waste valuable seconds in amateur contest operating. Alternatively, most s.s.b./c.w. transceivers use their v.o.x. circuitry for automatic transmit/receive switching on c.w. These systems, which switch to transmit on detecting the start of the first morse character, tend to cause clipping of the first dot/dash which would be particularly significant at the high speeds attainable with a keyboard sender. Also, to ensure that the switch from transmit to receive does not occur during interword spaces at slow speeds, the transmit hold time is normally set fairly long. As a result, the first few characters being sent by the next transmitting station may be missed. This keyboard sender, with its own automatic transmit/receive relay,



Fig. 2. Encoder for converting outputs from keyboard into a 15 -bit code. Typical silicon switching diodes are IN914 or equivalent.
avoids both of these problems.
In addition to the alphabet and numbers $0-9$, morse code characters exist for punctuation marks and special operating instructions. These characters are often thought of as normal alphabet characters strung together without inter-character spaces. Examples are $\overline{I M I}$ for ? and $\overline{V A}$ for "end of transmission". The keyboard sender, however, automatically inserts intercharacter spaces so that it is not possible to use the alphabet keys to generate these characters. Additional keys are therefore added to the basic alpha-numeric keyboard. On this keyboard sender, the following keys have been included: $\overline{V A}, \overline{A R}, \overline{\mathrm{BK}}, \overline{\mathrm{IMI}}$ (?), $\overline{\mathrm{XE}}$ (/), $\overline{\mathrm{BT}}$ and an eight-dot error code. These keys are quite sufficient for normal operating on the amateur bands, but additional ones are easily added if required. In fact the keyer can generate any morse character up to seven 'bits in length by suitably programming a diode r.o.m. Some special logic had to be added to cater for the eight-bit error code.

Having described the basic facilities provided by the keyboard sender, its
operation will now be described in detail.
The basic controls on the front panel of the prototype keyer are shown. in Fig. 1. This includes the keyboard containing the alpha-numeric, punctuation, and reset keys, the inter-word space bar and the special character keys; a four-position switch to select the morse output speed; an on-off switch with a l.e.d. indicator; a store/send switch to allow the entry of messages into the memory ready for later transmission, and five l.e.d. indicators to indicate the fullness of the memory.

The outputs from the keyboard switches are converted into a 15 -bit code by means of a diode r.o.m. as shown in Fig.2. This code was especially chosen for ease of conversion into serial c.w. characters. The upper seven bits, which drive into the MP3812B/l, represent the dot/dash content of the characters. The lower eight bits, which drive into the MP3812B/3, determine the length of the characters. A diode in the seven-bit word corresponds to a dash, with the word being read sequentially starting at the top. This particular polarity was chosen as there are less dashes than dots in morse code. For the eight-bit word, a diode in the top line corresponds to an inter-word space, a diode in the second line corre.ponds to a one-bit long character and a diode in
the third line corresponds to a two-bit long character etc., up to a diode in the eighth line which corresponds to a seven-bit long character. The error code, which is the only eight-bit morse character, uses a special unique code with a diode in the first and last bit positions of the eight-bit word. As an example of the coding, the letter ' A ' key. line contains no diode in the top line of the seven-bit word, to represent the dot, followed by a diode in the second line to represent the dash. A diode in the third line of the eight-bit word indicates that the character is two-bits long.

The possibility of encoding the keys into a shorter code such as a.s.c.i.i. was considered in order to reduce the width of the f.i.f.o. memory. A keyboard encoder i.c. could possibly be used instead of a diode r.o.m. This would be followed by a f.i.f.o. memory containing two MP3812Bs instead of four. However, after the memory the code would have to be decoded into a line per key and encoded into a morse-related code similar to the one already proposed. The decoder, realised as a diode r.o.m., would be enormous and for this reason, together with the added complexity of the system, the technique was abandoned.
The logic diagram of the keyboard sender is illustrated in Fig. 3. All the logic elements are marked with the commercial number of the i.c. which

contains them followed by a unique number and letter. The number represents an arbitrary numbering of the i.c. packs and the letter represents an arbitrary lettering of the elements within those packs. For example, the c.m.o.s, dual D flip-flop i.c., commercial number 4013, pack 2, contains two flip-flop elements marked 4013/2A and $4013 / 2 \mathrm{~B}$. In addition, the pin numbers of the i.cs are marked on the logic diagram to aid the constructor and to make references to the logic diagram clearer in the text. A positive logic convention is used throughout.

When the power is switched on, a logic 1 is applied to input 6 of gate $4001 / 1 \mathrm{C}$ via the discharged $16 \mu \mathrm{~F}$ capacitor which forces a 0 onto the output of this NOR gate and resets all four MP3812B f.i.f.o. i.cs. The $16 \mu \mathrm{~F}$ capacitor is charged via the $120 \mathrm{k} \Omega$ resistor, while the power supply voltages reach their correct level and the f.i.f.o. memory reset takes place. After approximately 1.5 s , the input voltage to pin 6 will pass below the mid-supply voltage and charge to a 0 . This removes the reset signal and the keyer is ready to be operated. Input 5 to gate $4001 / 1 \mathrm{C}$ is fed directly from the reset key on the keyboard to allow manual reset of the f.i.f.o.

The system clock is obtained from an RC oscillator which uses two c.m.o.s. inverters, gates $4011 / 2 \mathrm{C}$ and $4011 / 2 \mathrm{~A}$, and the output frequency is preset to 80 Hz . The oscillator drives into four series connected divide-by- 2 circuits, $4013 / 2 \mathrm{~A}, \quad 4013 / 2 \mathrm{~B}, 4013 / 1 \mathrm{~A}$ and $4013 / 1 \mathrm{~B}$. The first divider generates anti-phase clocks for the memory load/anti-bounce logic and also the clock to all the logic, which converts the 15 -bit characters from the keyboard encoder into morse code when 48 w.p.m. is selected. The second, third and fourth dividers generate the clocks for operation at 24,12 and 6 w.p.m. respectively.

Before any keys are operated, the 15 lines from the keyboard encoder are all at a 0 . When any key is pressed one of the eight lines into the MP3812B/3 always goes to a 1 , causing pin 11 of gate $4011 / 2 \mathrm{~B}$ to go from 0 to 1 . On the next positive going clock from the $\overline{\mathrm{Q}}$ output of $4013 / 2 \mathrm{~A}$ this 1 is clocked into $4013 / 3 \mathrm{~A}$. On the following negative edge the 1 is also clocked into 4013/8B causing the output of gate $4025 / 1 \mathrm{C}$ to go from a 0 to a 1 . On the next positive clock edge a 1 is clocked into $4013 / 3 B$ which causes the output of gate $4025 / 1 \mathrm{C}$ to return to a 0 . This logic 1 pulse from gate $4025 / 1 \mathrm{C}$ drives the parallel load inputs of the MP3812B/1 and $/ 3$ f.i.f.os causing the 15 -bit word to be loaded. With the 80 Hz oscillator frequency, the period of the clock from the $4013 / 2 \mathrm{~A}$ is 25 ms . From the start of a key depression, the positive edge of the parallel load pulse is delayed between 0.5 and 1.5 clock periods, i.e. 12.5 to 37.5 ms , depending on the phase relationship between the key depression and
the clock. This delay ensures that contact bounce will have ceased before the f.if.o. memory is loaded. A key depression should last for a minimum period of 50 ms to ensure that the memory load logic completes its cycle. Following a key depression, there must be a further minimum period of 50 ms before the start of the next key depression to allow 4013/3A, /8B and $/ 3 \mathrm{~B}$ to be clocked back to all 0 s . This input timing circuit, despite its simplicity, has been found to operate reliably at typing speeds up to the maximum necessary for 48 w.p.m. sending.

The f.i.f.o. memory uses four MP3812B $32 \times 8$-bit p-channel m.o.s. i.cs to make up a f.if.o. 15 bits wide and 63 bits long. The MP3812B/1 is operated in parallel with the MP3812B/3 and the MP3812B/2 in parallel with the MP3812B/4. The MP3812B/1 is connected in series with the MP3812B/2 and the MP3812B/3 in series with the MP3812B/4. The first 15 -bit word to be parallel loaded, seven bits into the MP3812B/1 and eight bits into the MP3812B/3, ripples through them, into the MP3812B/2 and MP3812B/4, reaching their output registers after a few microseconds. The output ready signal from pin 3 of the MP3812B/4 goes to al indicating that there is a character waiting at the end of the f.i.f.o. memory. Subsequent characters queue behind the first in order of entry. If the store/send switch is in the "store" position the data is held in the memory for later transmission. If it is in the "send" position, the data is serially clocked out of the Q7 outputs of the MP3812B/2 and MP3812/4. The data from the MP3812B/2 is converted into morse code dots and dashes until the end of the character marker is detected from the MP3812B/4 at which time the inter-digit pause is timed, and a parallel dump signal is generated. This shifts all the data in the fi.f.o. one row nearer the output and the next character is clocked into the output registers of the MP3812B/2 and MP3812B/4 ready to be sent next. The process continues until the memory empties and the output ready signal returns to a steady 0 .

The number of characters stored in the memory at any time is indicated by five l.e.d.s. The output ready signal of MP3812B/4 drives the first l.e.d. to indicate when at least one character is in the memory and returns to a 0 during serial and parallel dump pulses. Therefore, when this l.e.d. is flickering it provides an indication that the keyer is outputting morse code. The second l.e.d. is driven from the flag output of the MP3812B/4 which goes to al when the MP3812B/4 is half full, i.e. when the total f.if.o. is at least a quarter full. Similarly, the third, fourth and fifth l.e.d.s are driven from the MP3812B/4 $\overline{\mathrm{IR}}$ pin, the MP3812B/3 FL pin and the MP3812B/3 $\overline{\mathrm{IR}}$ pin respectively to indicate when the f.i.f.o. memory is half, three-quarters and completely full.

The remaining logic circuitry which
converts the 15 -bit characters from the f.i.f.o. memory into morse code will now be described in detail. It has already been mentioned that the first character arriving at the output registers of the f.i.f.o. causes the output ready signal from MP3812B/4 to go to a 1. If the store/send switch is in the "store" position with the switch open, the output of gate $4011 / 1 \mathrm{D}$ remains at a 1 and this inhibits sending until the switch is closed. When the switch is closed and the output ready is a 1, the output of gate $4011 / 1 \mathrm{D}$ goes to a 0 and is then clocked into 4013/8A causing its $\overline{\mathrm{Q}}$ output to go to a 1 . This signal operates the transmit/receive relay which switches the transmitter on and the receiver off ready for the first morse character to be sent. The inputs 11 and 13 to gate $4023 / 1 \mathrm{C}$ are at a 1 . Input 12 is also a 1 for all characters except the inter-word space. Therefore, the output of gate $4023 / 1 \mathrm{C}$ goes to a 0 removing the reset to $4013 / 4 \mathrm{~B}$. If the first bit to be sent is a dash, input 12 to gate $4011 / 1 \mathrm{~B}$ is a 1 and this also causes the reset to be removed from $4013 / 4 \mathrm{~A}$. The two-stage serial counter, consisting of $4013 / 4 \mathrm{~B}$ and $4013 / 4 \mathrm{~A}$, is then clocked through states $10,01,11$ and back to 00 . Gate $4011 / 1 \mathrm{~A}$ gives a 1 output for the three states 10,01 and 11 which corresponds. to the period of a dash. For a dot, input 12 to gate $4011 / 1 \mathrm{~B}$ is a 0 so that the second stage of the counter, $4013 / 4 \mathrm{~A}$. is held reset. Therefore, in this case, a pulse of one clock period width is produced at the output of gate $4011 / 1 \mathrm{~A}$. The keyer, therefore, generates the correct $1: 3$ ratio between the width of a dot and that of a dash, to comply with the requirements of international morse code.

The dot and dash pulses were generated on the negative edge of the clock from the w.p.m. switch. On the positive clock edge the output from gate $4011 / 1 \mathrm{~A}$ is clocked into $4013 / 6 \mathrm{~B}$ and the $Q$ output of this D-element then drives the morse output relay via an interface circuit. The output of gate $4011 / 1 \mathrm{~A}$ also feeds a gate $4025 / 1 \mathrm{~B}$ together with the Q output of $4013 / 6 B$ such that, on the negative edge of the logic 1 pulse from $4011 / 1 \mathrm{~A}$, a half clock-period pulse is generated to drive the serial dump inputs of MP3812B/2 and / 4 ready to start the generation of the next dot/ dash.

The serial dump following the last dot/dash in a character causes the end of character logic 1 marker to be clocked to the Q7 output of MP3812B/4. This inhibits the dot/dash counter by applying a 1 to input 9 of $4011 / 2 \mathrm{D}$ which in turn puts a 0 into $4023 / 1 \mathrm{C}$ and resets $4013 / 4 \mathrm{~B}$ and 40134 A . At the same time the output of gate $4023 / 1 \mathrm{~B}$ goes to a 0 , removing the set input to $4013 / 7 \mathrm{~B}$ and 4013/7A and enabling the space counter. The special logic used to generate the error code will be described later, but for all other characters $4013 / 5 \mathrm{~A}$ and $4013 / 5 \mathrm{~B}$ remain in the 10 state so that input 2 to gate
$4025 / 1 \mathrm{~B}$ remains at a 0 , and input 8 to gate $4011 / 2 \mathrm{D}$ and input 2 to gate $4023 / 1 \mathrm{~B}$ remain at a 1 during the above logic sequence. The $0.22 \mu \mathrm{~F}$ capacitor on the output of gate 4025 / 1 B was added to ensure that decoding spikes from gate 4011/1A, during the generation of a dash, do not cause spurious serial dump signals to be generated.

The space counter is enabled by a 1 from the Q7 output of MP3812B/4 which is applied to input 8 of $4023 / 1 \mathrm{~B}$ after every character has been keyed out and also when a space character occurs. The space counter is a divide-by-3 feed-back shift-register consisting of $4013 / 7 \mathrm{~A}, 4013 / 7 \mathrm{~B}$ and $4023 / 1 \mathrm{~A}$, and is followed by $4013 / 6 \mathrm{~A}$ and $4001 / 1 \mathrm{~B}$ which generates a half clock period pulse to drive the parallel dump inputs of MP3812B/2 and /4. The parallel dump pulse occurs after the counter has been clocked twice such that the total delay between the end of the last dot/dash of one character and the start of the next one is three clock periods. When a space character occurs. the counter remains enabled and continues to be clocked for two periods before another parallel dump pulse is generated, such that the overall space between two words is six clock periods. These inter-character and inter-word spaces, of three dots width and six dots width respectively, conform with the requirements of international morse code.

The coding of the eight-bit word, which determines the length of the morse characters, can accommodate any character from zero length (the interword space) to seven bits in length. To accommodate the eight-dot error signal, a special code is used with a 1 in the first and last bit positions, and logic is incorporated to decode and generate this one awkward character. The l's at the Q0 and Q7 outputs of MP3812B/4 are decoded by gate $4011 / 1 \mathrm{C}$ causing a 0 to be clocked into $4013 / 5 \mathrm{~A}$. The output of gate $4025 / 1 \mathrm{~A}$ then goes to a 1 and masks the normal serial dump pulse to MP3812B/2 and /4 after the first dot causing that dot to be repeated. Meanwhile a 0 is clocked into $4013 / 5 B$, the output of $4025 / 1 \mathrm{~A}$ returns to a 0 and the remaining seven dots are sent in the normal way.

Finally, when the last character of a message has been parallel dumped from the f.i.f.o. memory, the output ready signal from MP3812B/4 goes to a steady 0 and this is clocked via gate $4011 / 1 \mathrm{D}$ to the $\overline{\mathrm{Q}}$ output of $4013 / 8 \mathrm{~A}$ to switch off the transmit/receive relay. The $\bar{Q}$ output of $4013 / 8 \mathrm{~A}$ is prevented from going to a 0 when output ready goes to a 0 during parallel and serial dump pulses by clocking the $4013 / 8 \mathrm{~A}$ just before output-ready changes.
Having described the facilities provided by the keyer, its design philosophy and its operation, the last section of this article outlines methods of construction. The prototype keyer used an old keyboard modified to give the
arrangement as shown in the front panel layout of Fig. l. The arrangement of the alpha-numeric keys should be as a normal typewriter; however, the other keys can be placed as desired. An alternative to modifying an existing keyboard is to purchase the individual keyboard switches and mount them on veroboard or a printed circuit board The diode encoder r.o.m. was constructed using double-sided veroboard, with the tracks in the $x$ and $y$ directions, mounted underneath the keyboard. The key switches are connected to the $x$ tracks with the $y$ tracks connected to the f.i.f.o. memory and the diodes are soldered at the appropriate crosspoints. The logic i.cs and the relay and l.e.d. driver components were mounted on a single $8 \times 8$ in veroboard, specially designed for point-to-point wiring of d.i.l. i.c. packs (part number 12490). To make the whole keyer r.f. proof it was enclosed in an aluminium case connected to the mains earth and the 0 V supply.

The c.m.o.s. i.cs are produced by many manufacturers and can be obtained through most i.c. distributors. The f.i.f.o. i.cs used in the design are dual-sourced. Suitable i.cs are the Plessey Semiconductor MP3812B or the A.M.D. 2812.

Once constructed, only the period of the clock oscillator needs adjustment to calibrate the $6,12,24$ and 48 w.p.m. keying speeds. The output period of the oscillator can be trimmed, using the preset potentiometer, to 12.5 ms with an oscilloscope. Alternatively, if the w.p.m. switch is set to six w.p.m. and four error characters are typed in, the morse code output, as timed with a watch, should last for 15 secs. The keyer is then ready to use.

## Printed circuit boards

If a sufficient number of readers are interested, a double-sided glass fibre printed circuit board will be made available for this design. It is anticipated that the layout will accommodate the logic circuitry and the diode matrix. Enquiries should be sent to M. R. Sagin at 11 Villiers Road, London N.W. 2.

## Announcement

This year the annual Wireless World index will be published separately. It will cost $50 p$ including postage from the General Sales Department, Room 11, IPC Business Press Ltd, Dorset House. Stamford Street, London SE1 9LU. The date of publication will be announced shortly

# HF predictions 

lonospheric absorption or skywave loss is greater during winter than in summer months. This is known as the winter anomaly as it is the opposite effect to that deduced from simple reasoning of the seasonal changes in sun/earth relationship.

The high absorption is continuously present over a large area for several days and then shifts to another area, for example Europe to Western Russia. This results in short routes having "patchy" conditions and long routes having day-to-day variations in signal strength about four times greater than in summer.

However, with the availability of higher frequencies (compare this month's Montreal chart with that for June) winter daytime communication is overall better than that experienced during summer.





# Identifying European television - 1 

by G. Smith and K. Hamer

In the September 1969 issue of Wireless World an article was published which gave details of certain European television test cards. Since that article appeared, the interest in receiving long distance television has increased and many new test cards have been introduced including electronically generated types. A selection of these test cards is shown here. Readers requiring further information should obtain the Guide to World-Wide Television Test Cards from HS Publications, 17 Collingham Gardens, Derby.

The various transmission standards are shown in the table and the standard used by a particular service is shown next to the appropriate test card.

| System | Line No. | Channel bandwidth ( MHz ) | Vision bandwidth ( MHz ) | Sound/ <br> Vision spacing ( MHz ) | Vision modulation | Sound modulation | Areas in use |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 405 | 5 | 3 | -35 | + | a.m | UK Eire (v.his) |
| B | 625 | 7 | 5 | +5.5 | - | f.m. | Western Europe, parts of Africa, Middie East Australasia (v.h.f) |
| c | 625 | 7 | 5 | +55 | + | a.m | Belgium (v.h.f.) |
| D | 625 | 8 | 6 | +6.5 | - | f m | Eastern Europe USSR. China (v.t.f.) |
| E | 819 | 1.4 | 10 | $\pm 1115$ | + | a m | France (v.h.if) possible future change to systern Lon vh. $f$ |
| G $/ \mathrm{H}$ | 625 | 8 | 5 | +55 | - | f.m | Western Europe (u.h.f.) |
| 1 | 625 | 8 | 5.5 | +6 | - | f.m | UK (uh.f.) Eire (v.h.f.) |
| K | 625 | 8 | 6 | +65 |  | f.m | French territories overseas |
| L | 625 | 8 | 6 | +6.5 | + | am | France (u h.f.) <br> Luxembourg (v.h f./u.h.f.) |
| M | 525 | 6 | 42 | +45 | - | f.m | North \& South America. <br> Caribbean parts of Pacific, <br> Far East, US Forces broadcasting (AFRTS) Japan |
| N | 625 | 6 | 42 | $+4.5$ | - | $f \mathrm{~m}$. | Argentina Uruguay. Bolivia |



Philips PM5544 - This electronically generated test card is now used by most European services.


East Germany (B, G). DDR-F - Deutscher Fernsehfunk's identification caption.


Spain RTVE (B, G) - Electronic test card which includes a digital clock. RTVE are experimenting with PAL colour.


Spain RTVE-2 (B, G) - Identification caption. The second Network has one high-powered transmitter in the v.h.f. band.


Turkey TRT (B) - This electronic test card is used by most E.B.U. Members with suitable identification.


West Germany (B, G) A.R.D. PAL colour. - Electronic test card used by Bavarian Television.


West Germany (B, G) A.R.D. PAL colour. - The FUBK test card is used by most members of the A.R.D.


Belgium BRT/RTB (C. H) PAL colour - BRT produce programmes in the Dutch language and RTB produce programmes in French.


Monaco TMC (E, L) SECAM colour - Also on u.h.f. with Canal 35 identification.


Netherlands NOS (B, G) PAL colour - The First Network also uses this electronic test card with appropriate identification.


Austria ORF (B, G) PAL colour - O.R.F. uses a similar test card to BRT/RTB.


Bulgaria (D) B.T. - Boghlarskoie Televidenie also uses test card "G"


Iceland RUV (B) - This electronic test card does not
normally carry identification. There are three high-powered v.h.f. transmitters.


Hungary MTV (D, K) SECAM colour - The "Szunet" caption indicates an interlude between programmes. (Off screen photograph.)


USSR TSS (D) SECAM colour - An identification caption used by Televidnie Sovietskogo Soiuza, Latvia.


Norway NRK (B) PAL colour - Test Card "F" as used by Norsk Rikskringkasting. (Off screen photography.)


Yugoslavia JRT (B, H) PAL colour - Telefunken TO5 test card transmitted by JRT-Zagreb. JRT have three high-powered Band I transmitters.


Czechoslovakia CST (D, K) SECAM colour -
Ceskoslovenska Televize have two Band I and two Band II high-powered television transmitters which can be received in the UK


Poland TVP (D, K) - Normally identification is not included on this PM5544 which has a dark background. (Off screen photograph.)


USSR TSS (D) SECAM colour -An alternative caption from Latvia. T.S.S. reception is very common in the UK.


Portugal RTP (B, G) - RMA 1946 test card used by Radiotelevisao Portuguesa on their second u.h.f. network.


Finland YLE (B, G) PAL colour - Oy-Yleisradio Ab, can be received in the UK even though their highest powered transmitter in Band I s only 20 kW (e.r.p.)

# Microwave device developments 

## M. W. Hosking reports the 6th European microwave conference from Rome

Each year sees a steady increase in the understanding, performance and application of acoustic surface-wave devices with most emphasis on their role in signal processing and waveform shaping. However, another important function they can perform is as stable oscillators at relatively high fundamental frequencies. An article by A. Schaer of Thompson-CSF compared such oscillators using both surface acoustic wave and bulk acoustic wave devices. The technique is to use the acoustic wave device as a delay line of defined bandwidth and insert it into the feedback loop of a low-noise amplifier. If $\phi_{D}$ and $\phi_{A}$ are the phase shifts caused by the delay line and amplifier respectively and if $d$ is the delay then, oscillation can occur when $\phi_{D}+\phi_{A}=$ $\omega d$ and will be self-sustaining if the gain of the amplifier is greater than the losses of the loop. Thus, many frequencies are possible, each of them spaced at $1 / d$ intervals and the desired one is selected by giving the acoustic wave delay line a narrow-band frequency response such that only one spectral line can pass. However, as the amplifier phase shift is a function of gain, a means exists for varying the operating frequency.
Surface wave oscillators had been built on quartz substrate with the crystalline cut chosen for optimum temperature performance. Centre frequencies in excess of 400 MHz with 100 mW output power and short-term stability of $5 \times 10^{-9}$ per second were achieved with the complete device packaged to about the same size as a 14-pin dual in-line package.

Bulk wave oscillators are generally more suited to higher frequencies and, in this instance, were fabricated from sapphire or quartz rod with lithium niobate transducers at each end. A similar performance to the surface wave oscillators was achieved at a centre frequency of about 1 GHz .

Continued development of these acoustic wave oscillators will be followed with interest as they offer a compact and cheap replacement of stable v.h.f. and micro-wave sources and transmitters, reducing the need for conventional frequency - multiplier chains. In general, experimental surface wave oscillators have already been built in the $1-2 \mathrm{GHz}$ region and corresponding bulk devices up to 10 GHz .

Of the 32 papers devoted to aspects of semiconductor devices, one quarter were involved with microwave f.e.t. operation, acknowledging the importance and interest of this topic. As reported last year, f.e.ts exist as low-noise and high-power devices to

X -band ( 8.2 to 12.4 GHz ) and above and many are now commercially available. Emphasis at the conference was given to improvements in fabrication and characterization. With most attention being paid to the various aspects of low-noise pre-amplifiers, it was interesting to review a presentation by P. Harrop et al. of L.E.P. (France) in the use of f.e.ts as microwave mixers. Much of the work to date has been carried out by RCA and many of the advantages highlighted. Primarily, these are: the possibility of obtaining conversion gain, as opposed to loss with diode mixers; intrinsically good decoupling between I.o., i.f. and r.f. ports, and operation with a low power local oscillator.

Four different mixer designs were investiagated using a microwave input signal of 7 GHz , local oscillator of 8 GHz and a 1 GHz i.f. The active device was a $0.8 \mu \mathrm{~m}$-gate m.e.s.f.e.t. which had a 3 dB noise figure with 10 dB associated gain when used as an amplifier. Firstly, a single m.e.s.f.e.t. was used with r.f. fed to the gate and the l.o. to the source. With the gate biased near pinch-off, the source voltage is modulated at the l.o. frequency and mixing takes place by virtue of the non-linear relationship between this voltage and the drain current. The i.f. is extracted at the drain. A minimum noise figure of 7.8 dB with 8 dB associated gain was achieved.

Secondly, a balanced arrangement used two m.e.s.f.e.ts with earthed source and with split r.f. and l.o. signals fed to each gate. The i.f. was extracted from each drain and an output power combiner was used to add both signals Mixing occurs, once again, in the non-linear transconductance variation caused by modulation of the gate voltage. In this case, the noise figure was 10.8 dB at 5 dB gain.

The third arrangement used two m.e.s.f.e.ts with their sources coupled by a resistor. Power from the l.o. was fed to the gate of one and the r.f. signal to the gate of the second with the i.f. being extracted from the drain of the second transistor. In similar fashion, a fourth method used the two f.e.ts in series with l.o. and r.f. injected into one gate each. The required i.f. thus exists in the current flowing between the two transistors and is extracted from the appropriate drain port. Both of these last two techniques gave a lower gain of 4 dB , a noise figure of 9.8 dB but could operate with low l.o. signals of about 1 mW .
A further semiconductor device which has seen steady development is the trappatt or trapped plasma avalanche and transit time diode. Similar in many respects to the more-frequently
encountered impatt diode (see for instance Realm of Microwaves, Part 1 . Wireless World Feb. 1973) the device is forced to operate in the trappatt mode by the microwave circuit design at a frequency many times lower than the natural impatt resonance. The result is a device capable of delivering high peak powers with very good efficiency.

Five years ago trappatts were mainly confined to the 1.5 GHz and below region and faced a short career due to competition from pulsed, bi-polar transistors. However, some significant work has gone on in this country since then and two papers, from Plessey and Mullard sum-up very well the state of the art. C. H. Oxly et al. of Plessey reported results in X-band with diodes mounted in both co-axial and microstrip circuits. The trappatts were made from n-type silicon, with a major design improvement being the electroplating of a gold heat sink directly to one side of the device, plus a small gold "button" to the other, to suppress thermal transients, such as occur in short-pulse operation. As oscillators, peak powers of $10-12$ watts at 9 GHz were obtained with efficiencies up to $35 \%$. Second harmonic extraction produced several watts around 20 GHz with $10 \%$ efficiency. Using the same types of circuit, the devices could also be operated as amplifiers and small-signal gains of 7 dB with efficiencies up to $25 \%$ were achieved.

From Mullard Research Laboratories, J. G. Summers et al. reported the continuing trappatt work in the 1 to 5 GHz region with specific applications in all-solid-state radar systems. Peak powers up to 120 watt with $44 \%$ efficiency were achieved at 2.3 GHz with associated mean powers of 1 watt. Once again, considerable attention was paid to the thermal design of the diode and circuit, a necessary factor as the trappatt's were operating at power densities up to $10,000 \mathrm{~A} / \mathrm{cm}^{2}$. A good picture of reliability, failure mechanisms and circuit-interaction effects was being built up as the result of testing several hundred devices.

On the exhibition side, there were about 100 exhibitors from many different countries, all of whom had done an excellent job in re-deploying their stands in a new building at short notice. Most people spoken to on the stands were happy at the extent of the enquiries and my own impression was that the exhibition was better attended than the previous year's.
Venue for 1977 will be the Bella Centre, Copenhagen from 5th to 8th September. Professor P. Gudmandsen will be the conference chairman.

## Digital event timer - 2

## Construction

by P. A. Birnie

The construction is based on two double-sided printed circuit boards,(see Fig. 7, which are made from 1 mm glass fibre. The layouts can be drawn using an etch resist pen although the accuracy required presents a few difficuities. Both boards should be first drilled using
a 0.8 mm bit and a piece of 0.lin Veroboard as a template. The tracks are then drawn in on both sides of the board. Care must be taken to ensure registration between both sides of the board.

The display is mounted on the p.c.b.

Fig. 7. Printed circuit board layout diagram actual size. Note that due to inaccuracies of the printing process and small distortions in the paper, correct registration of the layouts cannot be guaranteed.

(a) board 1

(b) board 2


Fig. 8. Component location diagrams. Some of the discrete components are mounted on undrilled pads. Capacitors $C_{5,6,7,8}$ decouple the supply. Five links are fitted on board (b), three on top and two underneath as shown.


Fig. 9. Button mechanism as used in calculator keyboards.


Fig. 10. Component side of p.c.b.2, showing the mounting position of four mercury cells, two blocks for securing the back plate, and the change-over battery switch.


Fig. 11. Construction details for the ancillary p.c.bs. Boards 4 and 5 are identical and single sided. Bcard 3 is double sided, the back areas of copper are used to solder the 8BA nuts in place.
using Soldercon i.c.-socket pins. Thirty six of the sockets are mounted and soldered onto the component side of the board and these should be trimmed to remove the unwanted pin. Four socket pins go through the board and are soldered on both sides. All of the pins should be kept in the carrier while they are soldered in place as this makes alignment easier.

The 19 i.cs should be mounted as shown in Fig. 8(a) and (b) using an earthed soldering iron and taking the normal c.m.o.s. precautions. Some of the discrete components do not have holes drilled in the board and these are soldered onto pads on the component side. The TO5 can crystal is mounted upside down with the legs bent over and through $180^{\circ}$. When mounting the display great care should be taken because the pins are delicate. Orientation of the display can be determined by examining the readout under strong light. If any of the sockets become detached during insertion, it is safer to continue, and resolder the sockets when the display is in place. Links interconnect pin 9 of $\mathrm{IC}_{5}, 6,7,8$ via a track on the component side as shown in Fig. 8(b), pin 11 of $\mathrm{IC}_{15}$ to pin 15 of $\mathrm{IC}_{13}$, and pin 9 of $\mathrm{IC}_{14}$ to pin 1 of $\mathrm{IC}_{7}$ via pads on the track side of the board.

Switches in the prototype were constructed from a scrap calculator keyboard, and the mechanism, which is based on a flexible disc of gold-plated metal, is shown in Fig. 9. Construction details of the switches are not given because these components can be adapted to suit the individual.
Four RM675H mercury cells are mounted on p.c.b. 2 as shown in Fig. 10. Three small boards are made using 1 mm double sided fibre glass, see Fig. 11, and two of these have the copper removed from one side. Gold battery-contacts are made by carefully removing the goldplated edge connector strips from a scrap board. These strips should be cleaned and soldered in the appropriate positions. It is important to use only a small amount of solder, otherwise contact will be made with the solder rather than the gold. Two 8 BA clearance holes are drilled in board 3 and 8BA nuts are soldered to square pads on this board. Using two narrow strips of lmm Perspex as spacers, board 3 is glued to the non component side of board 2, ensuring that the gold pads align with the 0.5 in holes. To make subsequent construction easier, a flying lead is soldered to each end of p.c.b. 3 before assembly. The four cells are placed into the cavities which now exist so that the top flying lead is at +5.2 V with respect to the bottom lead. Boards 4 and 5 are screwed to board 3 using short 8BA screws threading into the nuts already provided.

A change-over switch is needed for the battery because when the power is turned off the decoupling capacitors supply sufficient current to operate the stopwatch for about 8 seconds. After


Fig. 12. Case construction details. Panels are cut from 1 mm black Perspex by scoring and snapping over a block. The back plate has the same overall dimensions as the front.
this period the crystal oscillator stops and d.c. is applied to the display for a few seconds. To prevent this potentially damaging situation a $1 \mathrm{k} \Omega$ resistor is placed across the supply when the switch is in the off position. The switch is connected to board 2 so that the toggle projects out of the case.

## Case construction

The author's case was made from 1/16in black Perspex and Fig. 12 shows the parts required. The panels should be cut from a Perspex sheet by scoring deeply with a sharp knife and snapping off over a block of wood. This produces a clean edge which should be smoothed off using fine wet and dry paper. Holes for the buttons and display should be cut using the completed p.c.b. 1 as a guide. When the case has been glued using a Perspex cement three blocks are built to support board 1 . The blocks are glued to the front plate as indicated in Fig. 12, but exact positions require checking to

| Connection on p.c.b. 1 | Signal |  | Connection on p.c.b. 2 |
| :---: | :---: | :---: | :---: |
| ${ }^{16} 1_{19} \cdot{ }_{4}$ | +5.2V |  | $\mathrm{IC}_{1},{ }_{16}$ |
| $\mathrm{IC}_{18}{ }^{\text {, }}$ ? | EARTH |  | $\mathrm{IC}_{5}$. ${ }^{\text {8 }}$ |
| $\mathrm{IC}_{17}{ }^{\text {\% }}$, | RESET |  | IC, ${ }_{1} 15$ |
| $\mathrm{IC}_{19}{ }^{11}$ | RESET |  | $\mathrm{IC}_{15}{ }^{\text {, }{ }^{\prime}}$ |
| $\mathrm{IC}_{19.8}$ | SELECT $\times$ |  | $\mathrm{IC}_{5}{ }_{9}$ |
| $\mathrm{IC}_{19}{ }^{\text {c }} 10$ | SELECT Y |  | IC ${ }_{5}$, ${ }^{14}$ |
| ${ }_{\text {IC }}^{19} 192$ | ENABLE X |  | $\mathrm{IC}_{1}$, 1 |
| $\mathrm{IC}_{18} \mathrm{~B}^{\text {\% }}$ | enable Y |  | IC1, 9 |
| ${ }^{\prime} C_{16}{ }^{14}$ | 10 Hz |  | IC $\mathrm{C}_{2}$ |
| IC $_{9}{ }_{5}$ |  | $2^{0}$ | $\mathrm{IC}_{5}{ }^{10}$ |
|  | TENTHS | $2{ }^{1}$ | $\mathrm{IC}_{5}{ }^{\text {, }} 11$ |
|  | SECONDS | $2^{2}$ | $\mathrm{IC}_{5}^{5}{ }^{12}$ |
| $\mathrm{IC}_{9.4}$ |  | $2^{3}$ | IC $\mathrm{C}_{5}$. 13 |
| $\mathrm{IC}_{10 \cdot 5}$ | UNITS | $2^{0}$ | ${ }^{1} \mathrm{C}_{6} \cdot{ }^{10}$ |
|  | SECONDS | $2^{1}$ |  |
| $\mathrm{IC}_{10} \mathrm{IC}^{2}{ }^{2}$ |  | $2^{2}$ | ${ }^{1} \mathrm{C}_{6} \cdot 12$ |
| ${ }^{\text {IC }} \mathrm{Cl}_{10}{ }^{\prime} 4$ |  | $2^{3}$ | ${ }_{1 C} \mathrm{C}_{6} \cdot 13$ |
| $\mathrm{IC}_{1} 1.5$ | TENS | $2^{0}$ | $\mathrm{IC}_{7}{ }^{\text {\% }} 10$ |
| $\mathrm{IC}_{11} \mathrm{Cl}_{1}$ | SECONDS | $2{ }^{1}$ | $\mathrm{IC}_{7} \mathrm{IC}^{11}$ |
| $\mathrm{IC}_{11.2}$ |  | $2^{2}$ | IC7. 12 |
| ${ }^{1 / 2} \mathrm{C}_{12} \mathrm{Cl}^{2} 5$ | UNITS | $2^{0}$ | $\mathrm{IC}_{8}$, ${ }^{10}$ |
| ${ }^{\text {IC }} \mathrm{Cl}_{12} \mathrm{IC}^{\prime}$ | minutes | $2^{1}$ | $\mathrm{IC}_{8}{ }^{\text {. }} 1$ |
|  |  | $2^{2}$ |  |
| ${ }^{\text {IC }}$ IC2, ${ }^{\text {I2, }}$ |  | $2^{3}$ | $\mathrm{IC}_{8} \mathrm{IC}_{8}$, 13 |
| $\mathrm{IC}_{13}{ }^{\text {a }}$ | TENS minutes | $2^{0}$ | $\mathrm{IC}_{7} \cdot 13$ |
|  |  |  | Keypad connections |
| $\mathrm{IC}_{18.5}$ |  |  | RUN |
| $\mathrm{IC}_{10}{ }^{\text {. }}$, |  |  | SPLIT |
| $\mathrm{IC}_{19} \mathrm{f}$ |  |  | X |
| $\mathrm{IC}_{18 .}{ }^{\text {\% }}$ |  |  | Y |

ensure that no projections exist on the non-component side of board 1. Holes are carefully drilled through this board and into the blocks to accommodate self tapping screws. A similar approach is adopted for board 2 except that the blocks are glued, using Araldite, to board 1 as shown in Fig. 8. Care should be taken not to cut or bridge any pads while drilling the p.c.bs. The back of the case is also secured to board 2 by Perspex blocks. If the block positions shown in Fig. 8 are not used, board 1 should be supported around the pushbutton switches to prevent excessive flexing during use. The case can be polished using metal polish or T-cut.

## Final assembly and testing

The two main component boards are interconnected by two groups of miniature flat ribbon cable as listed in the table. Pads are provided on both sides of the boards for these wires. The first group contains 16 wires interconnecting the outputs of the data selector stages to the display decoder drivers. The second group of wires provides clock and control signals from board 1 to board 2. Connections from the four push-buttons to board I are also shown. Final connections are by flying leads from the battery holder to the positive supply rail on board 2 , and the negative supply rail, via a multimeter, to the switch. After a final check, and with the multimeter on the 10 mA range, switch on. An initial large deflection should take place as all the decoupling capacitors charge. The current should then drop to about $200 \mu \mathrm{~A}$ and the display should be active. If this is the case, the button functions can be tested. When all of the operations have been success-


Fig. 13. Internal view of the timer with p.c.b. 2 hinged open. Board 2 is supported on board 1 by three Perspex blocks.
fully tested the two boards should be inserted into the case and secured in position. It should be noted that the display segments have a relatively long response time. This is normal especially in warm ambient temperatures. It is possible to use other liquid crystal displays in this design provided that they use the same drive of five volts r.m.s.

## Printed circuit boards

Two double-sided p.c.bs will be available for this design. The boards, which are based on the author's layouts, are priced at $£ 6.00$ for the set and are available from M. R. Sagin at 11 Villiers Road, London N.W. 2.

## Literature Received

A wallchart produced at regular intervals by DATA I/O provides basic information on all programmable read-only memories being currently made ( 140 from 18 manufacturers, in the newest chart). The company's programming equipment is able to programme all devices mentioned. DATA I/O (U.K.), 11 Duke Street, High Wycombe, Bucks WW 401

The latest edition of ERA News contains a brochure on the ERA electron microscopy service for industry, using a Cambridge Stereoscan IIA with magnification of 14 to $50,000 \times$, at a resolution of $200 \AA$. There is also a list of published reports on electrical power engineering from 1963-76. ERA Ltd, Cleeve Road, Leatherhead, Surrey KT22 7SA

WW 402
The two latest volumes of the IBA Technical Review (Nos. 8 and .9) are "Digital Video Processing - Dice" and "Digital Television

Developments." The former contains seven articles describing various aspects of the IBA's digital intercontinental conversion equipment (DICE) for two-way television standards conversion, while the second - No. $9-$ is concerned with digital techniques in a more general way. Teletext is described in three articles and there is discussion of digital transmission techniques. A glossary of "digital" terms is included. Engineering Information Service, IBA, Crawley Court, Winchester, Hants SO21 2QA . . . . WW 403

Livingston Hire's new bulletin illustrates additions to the range of equipment for hire, including an instrumentation tape recorder, digital thermometer, Rugby standard-frequency receiver, logic analyser, air-velocity meter and mains interference recorder. Livingston Hire Ltd, Shirley House, 27 Camden Road, London NW1 9NR. WW 404

Relays and counters are described in a catalogue from 1TT. Military-style rellays are covered, including the M series miniature printed-board variety and the $R$ series medium-power relays. ITT Component Group Europe, Electro-mechanical Division, Edinburgh Way, Harlow, Essex CM20 2DE................................. WW 405

Papers read at the IEE conference on millimetre waveguides are now published in a volume entitled Conference Publication 146, which is obtainable from Marketing Department, IEE, PO Box 8, Southgate House, Stevenage, Herts SG1 1HQ, at a cost of $£ 10.35$ in the UK, $£ 12.10$ overseas.

Magnetic pick-offs, shaft encoders, photoelectric probes and proximity switches are all covered in a catalogue now available from Orbit Controls, Lansdown Industrial Estate, Cheltenham, Gloucester GL51 8PL WW 406

Sescosem, a division of Thomson-CSF, produces a monthly bulletin giving details of its semiconductor products. The June and July/August issues, which reached us in October, described a microprocessor, a voltage regulator for cars, a car tachometer i.c., a 2 k r.e.p.r.o.m., a 400 V car ignition transistor and a motor speed control i.c., among others. Thomson-CSF United Kingdom Ltd, Ringway House, Bell Road, Daneshill, Basingstoke, Hants

WW 407

## Anmouncemenis

Peter Eardley has left AKG Equipment Ltd after 14 years. Eardley formed AKG (UK) Ltd in 1969 as the British subsidiary of the Austrian parent company. He will retain a shareholding in the company, though his main activity from now on will be in a new photographic studio. Eardley told Wireless World he had "inherited" G E Electronics (London) Ltd, which imported colour tv parts from West Germany, and had a number of "semiconductor and similar agencies from the US." Another subsidiary sold British goods. Mr Eardley said the reason for the move was that he felt he had "reached all I could do in microphones." The present general manager of AKG (UK), Mr Cecil Woolf, will take over.from Mr Eardley at the end of 1976.

Macro Marketing have been appointed Motorola semiconductor distributor in the UK from February 1, 1977. Motorola's agreement with Semicomps comes to an end on December 31. Motorola's agents now are Celdis, Cramer, GDS, ITT, Jermyn, Lock and Macro.

Miss Geisla Burg has been appointed the first woman chairman of the Federation of British Audio. Some time ago the FBA announced that it would start to promote its activities more aggressively and, after her appointment on October 20, Miss Berg said "During the next year the FBA must become a really effective body presenting the members' views to government and promoting the activities and interests of the British audio industry."

From November 1, Tannoy's R\&D, sales and head offices, have been at St John's Rd, Tyler's Green, High Wycombe, Bucks HP10 8 HR .

Apex Components, who already distrlbute Signetics i.cs, ilave been appointed distributors for the whole range of Mullard discrete semiconductors. They now have Mullard stock worth $£ 80,000$.

# Progress in millimetric waveguide 

## Post Office announce field trial results

Details of circular waveguide field trials in the UK and overseas were given at an international conference on millimetre waveguide systems, held in London during November. Post Office engineers almost dominated the IEE conference with their 20 papers, not only reporting results of the field trial but also covering recent work on waveguides, multiplexing, repeaters, semiconductor devices, filters, system and planning aspects. Bell Telephone Laboratories gave no less than 10 papers, with first announcement of their 14 km field trial on their dielectric waveguide system. And the Post Office chose the occasion to announce its planned Bristol to Reading waveguide link (see News, page 38).

The ability of circular waveguide to provide low loss transmission was demonstrated in the 1950s at University College, PO Research Department at Dollis Hill and at STL, yet it was not until 1967 that the Post Office mounted a comprehensive R \& D programme. Out of fifteen possible waveguide structures, four were chosen for detailed cost-benefit comparison, with the conclusion that whilst other organisations had developed helix waveguides with a steel sheath, the Post Office view was that a lightweight helix guide encased in fibreglass/epoxy resin and housed in a steel duct would be easier to install and joint. "The aim has been to develop a sound costeffective system that could, while showing substantial savings if introduced on routes where only a small proportion of its bandwidth will be used initially, also cater for the very high bandwidth demand of the future".

The 50 mm guide is made by a joint PO/BICC plant (BICC Research Engineering Ltd) in 3 m lengths. A 40 s.w.g. two-start copper helix is wound on a stainless steel mandrel and surrounded by a layer of lossy ironloaded resin reinforced with glass fibres. Aluminium foil is wound over this to provide a water and oxygen
barrier (the waveguide is normally nitrogen filled to avoid oxygen absorption band at 60 GHz ) and the whole is enclosed in epoxy-resin impregnated binding tape.
A virtue of this helix guide is its high loss to spurious modes but this has to be set against its attenuation at bends. Two solutions for sharp bends are mitre joints or mode conversion and reconversion in curved reduced-diameter dielectric guides, but Ritchie and Childs reported a modified guide for more gradual bends. By reducing spacing between the helix and the aluminium screen, say to 0.6 mm , loss peaks can be moved out of the transmission band.
Actually, the penalty of higher attenuation is "very largely the additional cost of closer repeater spacing, therefore a value can readily be placed on a change in attenuation", say Ritchie and Childs. "A discounted cash flow calculation based on current estimates of repeater costs and assumed growth rates results in a value of $£ 0.6 / \mathrm{m}$ for each $0.1 \mathrm{~dB} / \mathrm{km}$ saving in attentuation at 110 GHz . Considering the relatively high cost of waveguide production and installation this is a low value and generally makes it difficult to justify the introduction of sophisticated techniques."
Attenuation of the field trial route was less than $2.5 \mathrm{~dB} / \mathrm{km}$ over most of the band, permitting repeaters to be considered at intervals of more than 20 km . An error rate of 1 in $10^{9}$ per repeater section can be achieved with a carrier-to-noise ratio of 22 dB at the


Measured attenuation of 11 km of field trial route.
demodulator input. Attenuation curves show some expected losses due to bends at 44,66 and 93 GHz and due to sagging between supports at 56 and 86 GHz .
While some unanticipated problems arose in installing the guide, the Post Office are well pleased in general. They expect that improvements made to new waveguide - bétter duct laying, less joint tilt, increased longitudinal stiffness, in addition to the reduced bending loss - should reduce attenuation at 110 GHz by $1 \mathrm{~dB} / \mathrm{km}$ without much extra cost.
Propagation is by a low-loss $(0.002 \mathrm{~dB} / \mathrm{m}$ at 100 GHz$)$ transverse electric mode, $\mathrm{TE}_{01}$, with its property of falling attenuation with increasing frequency, until checked by geometrical limitations. The region from 30 to 110 GHz is divided into eight 10 GHz bands, each subdivided into 16 channels of about 500 MHz bandwidth. For transmission over the guide, pairs of digital traffic at $140 \mathrm{Mbit} / \mathrm{s}$ (1,920 telephone channels) are multiplexed to $280 \mathrm{Mbit} / \mathrm{s}$ on r.f. carriers. Modulation can be at an i.f. of 1.4 GHz followed by up-conversion or, more efficiently, directly with an impatt source. The receiver has an i.f. of 1.4 GHz and a meander line circuit to equalize the systematic group delay of the waveguide. Differential demodulation, in which carrier phase is compared between adjacent bits, is preferred to coherent demodulation - despite its 2 dB lower carrier-to-noise ratio for comparable performance - to avoid the complexities of carrier recovery.

Given certain assumptions (one is a $7 \%$ annual growth of traffic) "there could be an important place for waveguide in the truck transmission network of the UK', say D. J. Beckley and A. C. Pigott of the PO network planning department. "However, the quantity and timing of the provision of waveguide links is likely to be very sensitive to changes in estimates."

Waveguide economics are quite different from conventional line systems. There is a very high expenditure in the first two years when waveguide has to be laid in its special steel duct, giving a


Marconi and BICC have been associated with the Post Office development of the new high capacity waveguide communication system which is planned for operational trunk service between Bristol and Reading. Marconi's contribution, consisting of terminal and repeater equipment, was developed by Marconi Research Laboratories following three Post Office contracts for feasibility, development and experimental work on the waveguide system. Photograph shows a waveguide band-branching and channelling unit instakled in a field trial terminal. Marconi, BICC and the Post Office are collaborating to market this waveguide system overseas as a package, covering initial planning, manufacture, installation. commissioning, training and maintenance.
high circuit-independent cost, and because of the $20+\mathrm{km}$ repeater spacing there is a low circuit-dependent cost. This means that added-circuit cost will be very low and that savings made will be very dependent on annual growth rates. Savings made by a $500 \mathrm{Mbit} / \mathrm{s}$ guide over a coaxial cable that might be justified on the basis of a $7 \%$ growth could easily be wiped out by an annual circuit growth of $5 \%$.

The Bell WT4 system is committed to a 60 mm dielectric-lined waveguide. with small amounts of helix guide ( $1 \%$ ) to filter unwanted modes. The 3.7 mm thick steel tube is electrolytically plated on its inner surface with a $5 \mu \mathrm{~m}$ copper lining, up on which a $180 \mu \mathrm{~m}$ polyethylene dielectric is deposited by a complicated bonding process.

Detailed results and techniques used in the Bell System field trial were announced at the conference, the most outstanding result being the extremely low loss achieved. Over the 14 km of route loss was $1 \mathrm{~dB} / \mathrm{km}$ or less over the entire band, and about $0.5 \mathrm{~dB} / \mathrm{km}$ midband. One paper, with its 11 authors, showed good agreement between measured loss and curvature-predicted loss using a new theory that took account of $\mathrm{TM}_{11}, \mathrm{TE}_{12}, \mathrm{TM}_{21}$ mode conversion. This loss is a rapidly increasing function of frequency and limits the highest transmission frequency.

Work is also under way in France, Germany, ltaly, Japan - some of it reflected in the 24 contributions from those countries - but an author from Germany admitted that in that country
there is "no actual need for such a high capacity long-haul transmission medium'’. Newly-developed alumin-ium-alloy dielectric waveguide with electrochemically-produced aluminium oxide as dielectric to avoid peeling problems will not now be installed in the 48 km Darmstadt-Heidelberg test link as originally intended, though it will be tested in 1 km ducts before experimental work finally ceases.

Like the American programme, the Japanese work has relied on the most costly dielectric waveguides mixed with helical absorbing guides. Whilst progress in the US, UK and Japan has been described as "fairly level pegging", the Japanese are talking of promising results above 100 GHz and together with a new multilevel modem technique makes a 1.2 million voice channel capacity over $40-120 \mathrm{GHz}$ possible. They reported silicon IMPATT diode output powers of 62 mW at 200 GHz and 8 mW at 285 GHz early in 1976 and oscillation has been observed at 394 GHz .

Post Office trunk routes are not the only use of millimetre waveguide; there is a wide variety of applications that can benefit from the wide bandwidths, narrow beamwidths and small size and weight. A $120 \mathrm{Mbit} / \mathrm{s}$ digital data link operating over 2 km at 20 GHz , developed at RSRE, Malvern, weighs only 12 kg . The narrow beamwidth and low sidelobe levels give a secure link for security surveillance, ship-to-ship and inter-building communications, and disaster area control.

In radar, the trend is to specialist radars having outstanding short-range surveillance capabilities through improved angular and radial resolution, for such applications as harbour traffic control, airport surface detection, railway marshalling yard control, and precision survey work. One Marconi Doppler radar at 90 GHz allows large oil tankers to perform delicate docking manoeuvres by resolving speeds of a few $\mathrm{ft} / \mathrm{min}$ with $1-2 \mathrm{ft}$ discimination.

The oxygen absorption at 60 GHz breaks up into narrow resonances above a height of $40,000 \mathrm{ft}$ and it is thought that aircraft could communicate with one another or with a satellite between these lines without risk of interference from ground stations. And investigations into communicating through the ionized shock wave associated with re-entry vehicles have shown that a system operating at 110 GHz could sustain a link through the plasma sheath, normally opaque to radio waves.

Other uses are in radio astronomy, propagation studies, weather radar, a 33 GHz radiometric sextant, 94 GHz altitude and sink speed indicator for use in snow and ice fields, a 35 GHz sea ice detector, control of reagents and catalysts in chemical reactions, and its use in diathermy is being investigated. GBS

## Suddenly, other 2 -head cassette decks look like toys.



Takealsok at the nin NakamishiDT600above.
Such an astonishing cassette recorder, that it makes the competition ook like nocor petition at all.

For a stazt, compare its dynam c range.
With the 600 , you cenrecord up to +7 AB without cistartion. This is unpreacdented by any other cassette deck. because no other model has the Intermodulation Distortion Suppressor that makes it possible.

Secondly, take the frequency response.
Other cassette dech makers may be proud ofreaching $15,000 \mathrm{~Hz}$ Guaranteed rainimum specification of the 600 is $40-18,000-1 Z \pm 3 \mathrm{~dB}$. As for wow-and-flutter, at $0.08 \%, y \mathrm{ou}$ can virtually forget it.

It desn't stop there. Here is a combination o other "eaturesyol won't find on any other 2 -head deck.

Na <amichi's exclusive focused-gap crystal pernalloy head.
Buit-in test tone anc record level calibration controls.
User adjustable bias.
Peak: reading meters from -40 to +7 dE .
A memary tape counter.
Master recording lezel contro.
Even a system for unattended recording ar play aaç.
Wecould go on.
Only Nahartichi could heve made the DT600.
For the first time. 3 -head performance in a 2 head machine.


## ${ }^{\text {Whendentrange }}$ muedularamplititers

A range of communications amplifiers having power ratings from 15 to 200 watts, plug-in linput facilities ensure


Manufacturers of sound systems and electronics

Station Road, Wenden Salfron Walden Essex CB11 4LG Saffron Walden (0799) 40888

## ELIC

## 66 where can I get an RF Generator nowadays that's easy to use, reliable, robust but not too expensive? 9


"Here"-AVO's new HF 135 - a really useful professional RFgenerator ideal for repair bench or test lab

Wide frequency range - eight bands from 100 kHz to 240 MHz Calibration accuracy conservatively rated at $\pm 1 \%$ right across the range Output level from $1 \mu \mathrm{~V}$ to 100 mV $(=6 \mathrm{~dB})$. AF Signal source facility ( 1 kHz ). Input for external modulation. All wrapped up in a tough metal cabinet with ergonomically designed front panel and complete with coninectors, crocodile clips and the AVO guarantee of reliability, serviceability, and accuracy at a sensible price.

For descriptive leaflet and name of your nearest stockist, phone or write


# Circular insert generator for television 

# A circuit which allows part of a television picture to be inserted into a circular "cut-out" in another picture 

by D. E. Burgess, B.Sc., Ph.D. Royal Signals and Radar Establishment, Malvern

Commercial television special effects generators which are used to insert part of one television picture into another generally have a number of options on the shape of the inserted picture, for example a square or rectangle, or a circle, and consequently are rather expensive. When the inserted picture is required to have only horizontal and vertical boundaries the experimenter may be tempted to construct a video switch with a timing unit using monstable multivibrators triggered by the television field and line drive pulses, but the choice between building or buying may be a more difficult one when an accurate circular insert is required. However, when a compact low powered unit was specified for a particular application needing only a circular insert, it was decided that construction was still the most sensible choice, and the circuit described here was developed to meet the requirements.

By timing from the television line and field synchronising pulses, the circuit is required to produce two switching points on each television line, the first blanking the primary video signal and replacing it by the secondary inserted signal, the secondary doing the reverse; these switching points being chosen so that the boundary of the insert appears as a circle. A secondary requirement of the circuit was that the position and the size of the circular insert should be variable.


Fig. 1. Representution of the circular insert a secondary signal into the primary television picture.

## Theory of operation

The circle, shown in Fig. 1 within the outline of a television monitor, with a radius of $c$ and centred at the point $a b$ is represented by the equation

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=c^{2} \tag{1}
\end{equation*}
$$

From this equation the values of $x_{1}$ and $x_{2}$, the switching points for the insert along one television line, are given by

$$
\begin{aligned}
x_{1} & =a-\sqrt{c^{2}-(y-b)^{2}} \\
\text { and } x_{2} & =a+\sqrt{c^{2}-(y-b)^{2}}
\end{aligned}
$$

or the switching interval $x_{1}$ to $x_{2}$ is defined by the relationship
$-\sqrt{c^{2}-(y-b)^{2}} \leqslant x-a \leqslant+\sqrt{c^{2}-(y-b)^{2}}(2)$
and it is this equation that forms the basis for the circuit.

A sawtooth waveform $y$ is generated in phase with the television vertical field scan and is shifted by an amount $b$ corresponding to the centring of the circle in the vertical direction. The result $(y-b)$ is then squared to give $(y-b)^{2}$ and this signal is subtracted from. $c^{2}$, the square of the circle radius. The square-root operation is then performed and the result, the right hand side of equation (2), and its negative, the left hand side of the equation, are compared with a second offset waveform $(x-a)$ which is in phase with the television horizontal line scan. During the interval along each line for which equation (2) holds, a switch is operated to blank the primary video signal and to insert the secondary one.

## Circuit description

The circuit diagram is shown in Fig. 2, with the associated waveforms photographed from an oscilloscope in Fig. 3. A decision was made initially to use integrated circuits wherever possible in order to simplify the circuit development and to minimise space, but if cost or the use of readily available components were a major consideration some of the operations could be performed
using discrete components. Two synchronising signals are required to operate the circuit, one at the television line frequency and the other at the field frequency. Normally line drive and field drive signals would be chosen but because mixed video blanking is used in another part of the circuit as described below, this same signal was used for synchronisation in the line direction so as to minimise the number of connections to the unit.

Vertical signal processing. Transistor $\mathrm{Tr}_{2}$ and its associated components $\mathrm{R}_{4}$, $R_{5}$, and $D_{1}$, form a $70 \mu \mathrm{~A}$ current source to drive the Miller integrator $\mathrm{IC}_{1}$, a 741 operational amplifier. During the field flyback time the two-volt negative-going field pulse is amplified to 24 volts by $\mathrm{Tr}_{1}$ to turn on the field-effect transistor switch $\mathrm{Tr}_{3}$, shorting the integrator output to a preset potential determined by the vertical shift control $\mathrm{R}_{43}$. This integrator produces the 11 volt peak to peak sawtooth waveform $(y-b)$ with a time period of 20 milliseconds which, with the shift control set to mid travel, is shown in Fig. 3(a). $\mathrm{R}_{43}$ allows for an 8 volt adjustment of the starting potential of the sawtooth and corresponds to the term $b$ in equation (2).

An analogue multiplier/divider circuit $\mathrm{IC}_{2}$ having a transfer function of $x y / 10$ is used to form the square of $(-b)$ by driving both the $x$ and $y$ inputs with the output of $I C_{1}$. The Analog Devices type AD530 amplifier ${ }^{(1)}$, which uses the transconductance technique, is used here and requires four offset nulling trimming resistors, $R_{8}$ to $R_{11}$ inclusive. The parabolic output waveform from $\mathrm{IC}_{2},(y-b)^{2} / 10$ is shown in Fig. 3(b). A second $741, \mathrm{IC}_{3}$, is operated as a unity-gain subtractor circuit to produce $\left(c^{2}-(y-b)^{2}\right) / 10$, with the circle radius control $R_{45}$ providing a voltage corresponding to $c^{2} / 10$. Here a linear potentiometer conveniently produces a circle area proportional to spindle rotation. Fig. 3(c) shows the waveform at the output of $\mathrm{IC}_{3}$.

Somewhere in the chain of operational amplifiers a control is required to set up the roundness of the circle for the situations when a television monitor is
poorly adjusted. This control, $\mathrm{R}_{46}$, is conveniently placed between $\mathrm{IC}_{3}$ and the following amplifier $\mathrm{IC}_{4}$, a second AD530. This time the AD530 is connected so as to have a transfer function of $-\sqrt{10 Z}$ for positive values of $Z$. For negative $Z$ the output is zero. Ignoring constants, the output of $\mathrm{IC}_{4}$, shown in Fig. 3(d) is $-\sqrt{c^{2}-(y-b)^{2}}$. Again, four offset nulling trimming resistors $\mathrm{R}_{16}$ to $\mathrm{R}_{19}$ inclusive are required with this amplifier. (A more compact but more expensive solution would be to use the internally-trimmed multiplier/divider type AD532 for both $\mathrm{IC}_{2}$ and $\mathrm{IC}_{4}$ ). The negative form of this function is also required by the switching point detector as shown in equation (2); hence the

Fig. 2(a). Circuit diagram of insert generator. (b) Device connections.

third 741, $\mathrm{IC}_{5}$, which inverts the output of $\mathrm{IC}_{4}$ and also attenuates it to a level compatible with the comparator, $\mathrm{IC}_{7}$.

Horizontal signal processing. A similar circuit to that described above for the production of the vertical ramp is again used to generate a ramp synchronized to the television line scan. In this case $\mathrm{IC}_{6}$ is a 709 operational amplifier to cope with the higher frequencies involved in the line direction, producing a 2.4 volt peak to peak sawtooth waveform with a time period of 64 microseconds. Twovolt negative-going mixed video blanking signals, amplified by transistor $\mathrm{TR}_{4}$ to 24 volts, are used to reset the integrator to a voltage determined by the horizontal shift control, $\mathrm{R}_{44}$. This ramp ( $x-a$ ) is compared with the positive and negative versions of $\sqrt{\mathrm{c}^{2}-(y-b)^{2}}$ by $\mathrm{IC}_{7}$, a 711 dual comparator. During each line whilst ( $x-a$ ) lies within the limits of equation(2), the output of $\mathrm{IC}_{7}$ takes up its t.t.l. compatible low state of 0 volts, and for the remainder of the line its output is at 3 volts. To ensure that the comparator is not triggered by noise during a line outside the required circle, when the output of $\mathrm{IC}_{4}$ is close to zero, a small offset voltage is applied to $\mathrm{IC}_{5}$ by means of resistors $\mathrm{R}_{25}$ and $\mathrm{R}_{26}$.

Horizontal sync. In the case where the synchronizing and blanking parts of the two television signals are not identical or where, for example, only a d.c. level is required for one of the signals, the switching of the comparator during line or field flyback (equation(2) applies equally to the trace and retrace part of the sawtooth waveforms) is not recommended, as interference would be introduced into the output signal. For this reason the mixed video blanking signal is added to the output of $\mathrm{IC}_{7}$ in


Fig. 3. Photographs taken of oscilloscope traces showing (a) ( $y-b$ ) the output of $\mathrm{IC}_{1}$, (b) $(y-b)^{2} / 10$ the output of $\mathrm{IC}_{2}$, (c) $c^{2}-(y-b)^{2} / 10$ the output of $\mathrm{IC}_{3}$, (d) $-\sqrt{ } \mathrm{c}^{2}-(y-b)^{2}$ the output of IC.4. Horizontal scale is 5 millisecond/division. Vertical scale is on volts.
the 7413 Schmitt trigger $\mathrm{IC}_{8}$, to ensure that the blanking and synchronizing portions of the primary video signal are not interrupted. Because the mixed video blanking waveform is needed for this function it was decided to use it also as the line synchronizing signal to save the additional connection of the line drive pulses. In a system where possibilities of interference in the flyback portions of the output video signal are of no consequence this circuit may be dispensed with, the 711 driving straight into the video switch, $\mathrm{IC}_{9}$. In situations where commercial equipment is available, the output of $\mathrm{IC}_{8}$ may be used as a drive for the keying input of a video mixer.

In applications such as circular blanking where the primary video signal is a direct voltage with no blanking or synchronizing information, the circuit may be simply modified to transmit the secondary waveform during the blanking period by connecting the junction of $R_{27}$ and $R_{28}$ to an input of the first half of $\mathrm{IC}_{8}$ instead of to the second half.
Video switch. During each line on which $\mathrm{IC}_{7}$ is triggered, a switch is used to insert a section of the secondary video signal into the primary signal. $\mathrm{IC}_{9}$, a gate-controlled video switch (Motorola MC1445) ${ }^{2}$, is a wide-bandwidth, two-channel amplifier with a pre-set internal gain of 9 . Whilst its gate input is held at 3 volts by $\mathrm{IC}_{8}$, the primary video signal on the A inputs is amplified and passed to the output, but when $\mathrm{IC}_{7}$ is triggered and the gate signal goes low the secondary video signal is transmitted through the device. Both video signals, assuming 1 volt composite video, are attenuated by a factor of 4.5 prior to the switch so that a one-volt output signal is produced when the circuit is terminated with the usual 75 ohm load. Transistor $\mathrm{TR}_{7}$ connected as an emitter follower provides the necessary low output impedance.

Typical switching transition times between the primary and secondary video signals are 20 nanoseconds, resulting in a very clean periphery to the circle, as shown in Fig. 4, which is a photograph of a television monitor displaying part of the BBC test card inserted in an electronically generated crosshatch pattern. This figure also shows the excellent accuracy of the generated circle.

## Power supplies

Integrated circuit regulators are used to produce the plus and minus 12 volts for the amplifiers $\mathrm{IC}_{1}$ to $\mathrm{IC}_{6}$ from unstabilized 15 volt supplies. Minus 5 volts for $\mathrm{IC}_{7}$ and $\mathrm{IC}_{9}$, and plus 5 volts for $\mathrm{IC}_{8}$ and $\mathrm{IC}_{9}$ are generated from the 12 volt supplies using 5.6 volt zener diodes and emitter-follower transistors. All power supplies are decoupled to earth at each integrated circuit package by 0.1 microfarad ceramic capacitors, but apart from this precaution no special care needs to be taken over the layout of the


Fig. 4. Photograph of a television monitor showing part of a BBC test card inserted into an electronically generated cross-hatch pattern.
components on a piece of Veroboard 8 inches by 4 . The measured power. consumption of the circuit is 3 watts.

## References

1, Analog Devices Product Guide 73 p. 170, 171.

2, Motorola product literature.
Acknowledgement
Contributed by permission of the Director of R.S. \& R.E.

| Components Resistors |  |  |  |
| :---: | :---: | :---: | :---: |
| 1 | 100k | 24 | 2k2 |
| 2 | 10k | 25 | 10k |
| 3 | 100k | 26 | 39 k |
| 4 | 5k6 | 27 | 10k |
| 5 | 29k | 28 | 3k3 |
| 6 | 2k2 | 29 | 100k |
| 7 | 2k2 | 30 | 10k |
| 8 | 10k select-on-test | 31 | 100k |
| 9 | 10k select-on-test | 32 | 2k2 |
| 10 | 10k select-on-test | 33 | 5 k 6 |
| 11 | 10k select-on-test | 34 | 8 k 2 |
| 12 | 10k | 35 | 1 k |
| 13 | 10k | 36 | 3k3 |
| 14 | 10k | 37 | 3 k 3 |
| 15 | 10k | 38 | 1 k |
| 16 | 10k select-on-test | 39 | 3k3 |
| 17 | 10k select-on-test | 40 | 1 k |
| 18 | 10 k select-on-test | 41 | 270R |
| 19 | 10 k select-on-test | 42 | 75R |
| 20 | 4 k 7 | 43 | 10 kpot |
| 21 | 47k | 44 | 2 k 5 pot |
| 22 | 1k2 | 45 | 1 k po |
| 23 | 10k | 46 | 10k pot |


| Capacitors |  |  |
| :--- | :--- | :---: |
| 1 | $10 \mu \mu$ electrolytic |  |
| 2 | $100 n$ |  |
| 3 | $10 \mu$ electrolytic |  |
| 4 | $22 n$ |  |
| 5 | $220 p$ |  |
| 6 | $22 p$ |  |
| 7 | $10 \mu$ electrolytic. |  |



## Circuit Ideas

## Temperature to pulselength converter

An output pulse whose length is directly proportional to temperature can be produced by using a thermistor in the circuit shown. The design is based on the similarity between the resistance/ temperature curve of a thermistor $R_{T 1}=R_{T 0} \cdot e\left(B / T_{1}-B / T_{0}\right)$ and the inverse function of voltage across a capacitor charging through a resistor from a voltage after time $\mathrm{t}, V_{1}=V_{0}-V_{0}$ e $\frac{-t}{c r}$ Temperature is measured by the thermistor which is supplied from a potential divider to reduce dissipation. The temperature dependent current through the thermistor appears as a voltage across $\mathrm{R}_{1}$. This is compared by $\mathrm{IC}_{1}$ with a fraction of the increasing voltage across $\mathrm{C}_{1}$. the output of $\mathrm{IC}_{1}$ goes negative and triggers the 555 which is connected as a monstable. The 555 output turns the transistor on for about $100 \mu \mathrm{~S}$ and discharges $\mathrm{C}_{1}$.

The timer output can be used to gate a clock oscillator so that the resulting number of pulses will be directly proportional to temperature. Alternatively, the output can drive a pulse-length to voltage converter for an analogue output. If a true reading in degrees $C$ is required, the pulse length corresponding to 0 deg $C$ must be subtracted. This may be achieved either by gating the output with a second monostable or by a digital counter operating on the gated clock pulses.

The prototype circuit produced a pulse length of $650 \mu \mathrm{~s}$ at 0 deg C , increasing by $20 \mu \mathrm{~s} / \mathrm{deg} C$, and was accurate to within $\pm 1.2$ deg $C$ over the range 0 to 60 deg C .
Other temperature ranges or thermistor types can be used with suitable changes of $R_{1}, 2$, and $R_{3}$.
T. P. Y. Sander,

Bembridge,
Isle of Wight.


Toronto,
Canada.


## Op-amp Wien bridge

 oscillatorThe CA3140 Bi-m.o.s. operational amplifier offers high input impedance, fast slew rate, and high output voltage capability which makes it suitable for use in a Wien bridge sine-wave oscillator. In the basic circuit, when $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$, the frequency equation reduces to the familiar $f=1 / 2 \pi R C$, and the gain required for oscillation is equal to 3 . If $\mathrm{C}_{2}$ is increased by a factor of four and $R_{2}$ is reduced by a factor of four, the gain required for oscillation becomes 1.5 , thus permitting a potentially higher operation frequency which is closer to the gainbandwidth produrt of the CA3140. Oscillator stabilization has to be precise

otherwise the amplitude will either diminish or limit. In the full circuit $R_{s}$ is formed by a zener diode shunting the feedback resistor $R_{f}$. As output signal amplitude increases, the zener diode impedance decreases and reduces the gain, thus stabilizing the output amplitude.
Combination of a monolithic zener diode and bridge-rectifier circuit provides practically a zero temperature coefficient for this regulating system. Because the rectifier circuit does not have a time constant there is no lower
frequency limit. For example, with $1 \mu \mathrm{~F}$ polycarbonate capacitors and $22 \mathrm{M} \Omega$ for the frequency-determining network, the operating frequency is 0.007 Hz .

Output amplitude must be reduced as frequency is increased to prevent the output from becoming slew-rate limited. An output frequency of 180 kHz will reach à slew rate of about $9 \mathrm{~V} / \mu \mathrm{s}$ when its amplitude is 16 V peak-to-peak.
Mike Bailey,
RCA Solid State-Europe,
Middlesex.

## Stopwatch facility for calculators

A calculator with a "constant" facility' can also be used as a stopwatch. The method will vary between different types of calculator and on a Sinclair Cambridge Memory, if the " +.1 " is keyed in and the " =" key is pressed at 10 Hz , the calculator will act as a stopwatch.

This function is achieved by wiring a thyristor across the " $=$ " contacts and triggering it from a 10 Hz multivibrator. The thyristor will automatically turn off in the absence of a gate pulse because the i.c. sequentially strobes the keys. Accuracy of this multivibrator is adequate for most stopwatch applications over a few minutes.
P. J. Booth,

St. Catherine's College,
Oxford.

## Amplifier output protection

Most power transistor protection circuits are a compromise because they have to limit the dissipation of each transistor and, at the same time, not limit the capabilities of the amplifier when driving a reactive loudspeaker load. This circuit avoids such a compromise.
During continuous a.c. drive into a normal load, $\mathrm{R}_{1}$ draws current from $\mathrm{C}_{1}$, via $D_{1}$, in opposition to $R_{5}$. Full drive into an $8 \Omega$ load will give an average $V_{C 1}$ and $V_{\mathrm{C} 2}$ of about 0.12 V which is sufficient to enable full drive into a load of $4 \vee^{2} \pm j 4 \vee / 2 \Omega$. Continuous drive into a short-circuit will produce an average $V_{\mathrm{Cl}}$ and $V_{\mathrm{C} 2}$ of about 0.55 V which will limit the average current in each output transistor to about 1.1A (2.2A peak). Diodes $D_{3}$ and $D_{4}$ ensure that $C_{1}$ and $C_{2}$ do not have a reverse voltage of more than 0.2 V . Diodes $\mathrm{D}_{5}$ and $\mathrm{D}_{6}$ are necessary to prevent current flowing from the base to collector of $\mathrm{Tr}_{1}$ and $\mathrm{Tr}_{2}$. M. G. Hall, Emsworth,
Hants.


## Beat-frequency indicator

The published circuit in the November issue shows four l.e.ds in a line. To obtain the rotating effect these diodes must be positioned in a square but, because the "firing order" is $2,1,3,4$ they should be arranged as shown here. Also, the reference frequency input should be via a BCl 108 as for the input frequency.


## Zero crossing detector

This circuit provides a zero-crossing signal and a d.c. output. Diode $\mathrm{D}_{1}$ is the only semiconductor which has to withstand the full mains reverse voltage. Positive going half cycles forward bias $D_{1}$, which allows $C_{1}$ to charge up to 14 V via $D_{3}$. Negative half cycles forward bias $D_{2}$ which turns $\operatorname{Tr}_{1}$ on and
passes current to the output from $\mathrm{C}_{1}$. The output is about IV less on negative half cycles and is given by $\left(V_{D 3}+V_{\text {sat Tr1 }}\right)$ less than $\mathrm{V}_{\mathrm{z}}$.
R. J. Torrens,

Scientronics,
Huntingdon.


## Digital alarm clock

IN the November' issue of Wireless World a digital alarm clock was published which used the MM5316 clock chip. National Semiconductor has informed us that the device was designed to supply a maximum segment drive current of $500 \mu \mathrm{~A}$ and therefore does not recommend its use with the l.e.d. displays. The MM5387 is a pin
compatible device which will supply up to 5 mA , and the MM5385, which is not pin compatible, will supply up to 15 mA per segment.
The author agrees that the MM5316 is operating out of its specification but points out that he has successfully built four such clocks and two of them have been running for over two years.

## Conferences \& Exhibitions

## LONDON

The All-Electronics Show
Apr. 19-2I
Grosvenor House
(The All-Electronics Show, Ars Electronica Ltd., 34-36 High Street, Saffron Walden, Essex.)

Audio Visual at Work (Ex.)
Apr. 19-2I Wembley Conference Centre
(Audio Visual, P.O. Box 109 Davis House, 69-77 High Street, Croydon CR9 1QH.)

## Sound 77 International

Apr. 19-21
Wembley's Avon Room
(Association of Public Address Engineers, 47
Windsor Road, Slough, Berks SLI 2EE.)
Remote Supervisory and Control Systems REMSCON 77 (Ex. and Conf.)
Apr. 27-29 Wembley Conference Centre (NETWORK, 84 High Street, Newport Pagnell, Bucks MK16 8EG.)

Ultrasonic Transducers (Conf.)
May 11-12 Royal Geological Society (The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

Electronic Components Show (Ex.)
May 17-20 Olympia
(Industrial and Trade Fairs Lid., Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG.)

Film 77 (Conf. and Ex.)
July 11-15 Grosvenor House Hotel (British Kinematograph, Sound and Television Society, 110-112 Victoria House, Vernon Place, London WC1B 4DJ.)

Audio Fair (Ex.)
Sept. 12-18 Olympia
(Iliffe Promotions Lit., Dorset House, Stamford Street, London SE1 9LU.)

Electron Diffraction 50th Anniversary (Conf.)

## Sept. 19-21

Imperial College
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

Power Semiconductors and their Applications
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

Radar 77 (Conf.)
Oct. 25-28
Savoy Place
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

European Noise Legislation 1977 (Conf. and Ex.)
Nov. 14-17 Wembley Conterence Centre (Institute of Acoustics, 47 Belgrave Square, London SWIX 8QX.)

## BIRMINGHAM

Distributed Computer Control Systems (Conf.)
Sept. 26-28
University of Aston
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

## BRIGHTON

Computer Systems and Technology (Conf.)
Mar. 29-31
University of Sussex
(IERE, 8-9 Bedford Square, London WCl 3RG.)
Precise Electrical Measurement - EUROMEAS 77 (Conf.)
Sept. 5-9 University of Sussex
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

Developments in Automatic Testing (Conf. and Ex.)
Nov. 30-Dec. 2 Metropole Convention Centre (Conference: IEE/IERE, Savoy Place, London WC2R 0BL. Exhibition: NETWORK, 84 High Street, Newport Pagnell, Bucks MK16 8EG.)

## CAMBRIDGE

Microprocessing and Microprogramming - EUROMICRO (Symposium)

Cambridge University
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

## GLASGOW

Electron Microscopy and Analysis - EMAG 77 (Conf.)
Sept. 12-14 University of Glasgow
(The Institute of Physics, 47 Belgrave Square: London SWIX 8QX.)

GUILDFORD
Nuclear Physics (Conf.)
Mar. 23-25
University of Surrey
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

HULL
Computer-Aided-Design of Electronic and Microwave Circuits and Systems (Conf.)
July 12-14 University of Hull
(Dept. of Electronic Engineering, The University, Hull, HU6 7RX.)

## LANCASTER

Displays for Man-Machine Systems (Conf.)
Apr. 4-7 University of Lancaster
(IEE Conference Department, Savoy Place, London WC2R 0BL.)

## LEEDS

Electron Transport/Molecular Solids (Conf.)
July 26-29 University of Leeds
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

LOUGHBOROUGH
Digital Processing of Signals in Communications (Conf.)
Sept. 6-8 University of Technology
(IERE 8-9 Bedford Square, London WCIB-3RG.)

## MANCHESTER

Solid State Physics (Conf.)
Jan. 5-7 University of Manchester
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

## NOTTINGHAM

National Conference on Reliability
Sept. 21-23
University of Nottingham
(National Centre of Systems Reliability, UKAEA, Wigshaw Lane, Culcheth, Warrington, WA3 4NE.)

## READING

Atomic and Molecular Physics (Conf.)
Apr. 4-7
Reading University
(K. Codling, Conference Secretary, J. J. Thomson
"hysical Laboratory, Whiteknights, Reading, RG6 2AF.)

## SALFORD

Low Energy Ion Beams
Sept. 4-8
University of Salford
(The Institute of Physics, 47 Belgrave Square, London SWIX 8QX.)

## SOUTHAMPTON

Quantum Electronics (Conf.)
Sept. 14-16
University of Southampton
(The Institute of Physics, 47 Belgrave Square,
London SWIX 8QX.)

## YORK

Surface Science (Conf.)
Mar. 27-30
University of York
(Dr D. P. Woodruff, Dept. of Physics, University of Warwick, Coventry, Warwickshire CV4 7AL.)

## OVERSEAS

Seminex (semiconductor technology) (Conf.)
Jan. 17-21
Frankfurt
(Seminex Ltd., 2 Old Stone Link, Ship Street, East Grinstead, West Sussex RHI9 4EF.)

## Audio Visual and Communication (EX

Jan. 24-30
Paris
(S.D.S.A., 20 rue Hamelin, F 75 I 16 Paris.)

## MPTE Winter TV Conference

Jan. 28-29
San Francisco
(Society of Motion Picture \& Television Engineers,
862 Scarsdale Ave., Scarsdale, NY 10583, USA.)

## Solid State Circuits Conference

Feb. 16-18
Philadelphia
(IEEE Conference Secretary: Gary L. Baldwin, Bell
Laboratories, Holmdel, NJ 07733, USA.)
AES 56 th Convention (Conf. and Ex.)
Mar. 1-4
Paris
(Audio Engineering Society, Inc., European Region Office, Zevenbunderslaan 142/9, B-1190 Brussels, Belgium.)

International Sound Festival (Ex.)
Mar. 7-13
Paris
(S.D.S.A., 20 rue Hamelin F 75116 Paris.)

Paris Components Show (Ex.)
Mar. 31 -Apr. 6
Paris
(S.D.S.A., 20 rue Hamelin F 75116 Paris.)

Communications Conference - Eurocon '77
May 3-6
Venice
(Eurocon '77, c/o AEI - Viale Monza, 259-20126 Milan, Italy.)

Irish Electronics Exhibition - ITRON
May 24-26
Dublin
(SDL Exhibitions Led., 68 Fitzwilliam Square, Dublin 2.)

Frequency Control Symposium (Conf.)
June 1-3
Atlantic City
(31st Annual Frequency Control Symposium, Headquarters United States Army Electronics Command, Fort Monmouth, New Jersey 07703, USA.)

Montreux Television Symposium and Exhibition

## June 3-10

Montreux
(International Television Symposium and Technical Exhibition, P.O. Box 97, CH-1820 Montreux, Switzerland.)

Electromagnetic Compatibility Symposium and Exhibition
June 28-30
Montreux
(EMC Symposium \& Exhibition, Box 97, 1820 Montreux, Switzerland.)

Psychoacousties of Music (Conf.)
July 11-13
Paris
(IRCAM (Relations Exterieures). 31 rue Saint-Merri 75004 Paris, France.)

## Berlin Radio and TV Exhibition

Aug. 26-Sept. 4 Berlin
(Ausstellungs-Messe-Kongress-GmbH, Messe-
damm 2L, D-1000 Berlin 19, W. Germany.)


## Bonded microwave packages

The application of p.c.b. experience to the production of microwave circuits such as ferrite circulators has enabled the microwave equipment designer to realise weight savings of up to $80 \%$ and volume savings of up to $50 \%$ compared with the more conventional stripline techniques. Exacta Circuits Limited, of Selkirk, Scotland, are now making microwave circuits from a glass-reinforced p.t.f.e. called RT Duriod, manu-

factured by Rogers Corporation of America. This involves bonding copper onto each side of a Duriod Substrate and then photo-mechanically etching one side to produce the precision conductor required for the circuit. Two such laminates are then bonded together in a temperature-controlled press to form the microwave bonded package, or m.b.p. as it is called.

Resistors, diodes and other active components are inserted into preformed cavities and secured using epoxy resins, and capacitors are milled from the dielectric. When all the holes, cutouts and formed edges have been machined, the m.b.p. is completely encapsulated (tinned) ensuring that the holes and edges are thoroughly plated. This ensures environmental screening and r.f. suppression. Standard, lowprofile coaxial connectors are used, these being generally smaller than those used on conventional stripline units, which consist of solid aluminium housings clamped together. Other advantages of the m.b.p. are that it is stable ans of predictable design, because the manufacturing process ensures that the dielectrics are uniform and that there are no airgaps. In conventional microwave circuits, any airgaps which are present may alter when parts move, causing dielectric variations with time.

RT Duriod has low loss characteristics and a dielectric content of 2.2 , making it suitable for applications in the 1 to 18 GHz range. M.b.ps can even be used to replace waveguides, and using the techniques described large antennas up to 40 in long can be produced. Less critical circuits can, however, be manufactured using woven materials. Exacta, who are anticipating the demands of the European microwave industry, are setting up a facility to produce prototype m.b.ps. Customers films may be used as a design layout or the circuit negatives can be prepared from dimensioned sketches by Exacta's design depart ment. The technique is expected to find a ready market in airborne equipment fields where space and weight are among the most important of the design parameters. Exacta Circuits Limited, Shawburn Factory, Selkirk, Scotland. WW 301 for further details


## Liquid-crystal watch circuits

Two four-digit, six-function watch circuits, the ICM7210 and the ICM7210A, are liquid-crystal c.m.o.s. circuits which are claimed to have the unique ability to give the same functions as four-digit l.e.d. wristwatch circuits. Type ICM7210A, which gives the month, day, hours, minutes and seconds, allows date and time changes to be made without affecting the accuracy. The calendar only needs to be reset every four years. Type ICM7210 also provides outputs for a.m./p.m. annunciators. Both circuits display a bar separating the day from the date and a flashing colon separating hours from minutes. Each contains an oscillator, a frequency divider, alphanumeric decoder, voltage multipliers and a 32 Hz display driver on a chip. The only external components required for a complete l.c.d. wristwatch are a 1.5 V silver oxide battery, a trimming capacitor, two s.p.s.t. switches and up to three capacitors. Since the operating voltage ranges from 1.3 to 1.8 volts, the circuits will continue to run accurately even with a weakening battery. The power consumption for the circuit only is typically $2 \mu \mathrm{~A}$ and the operating temperature range is -10 to $+60^{\circ} \mathrm{C}$. Prices are from $£ 4.96$ depending upon quantity. Intersil Incorporated, 8 Tessa Road, Richfield Trading Estate, Reading, Berkshire, RGl 8NS
WW 302 for further details

## Low-cost wire cutters

Microcutters, low-cost wire cutters from Litesold, are designed for production line use in the electronics industry The cutters have hardened-steel cutting blades which, it is claimed, will shear leads close to a p.c.b. or a terminal post. A spring retains the cut-off part of the lead until it is rejected by the operator. Microcutters are spring loaded and have soft plastic sleeves to ensure operator comfort during continuous use. Light Soldering Developments Ltd, 97-99 Gloucester Road; Croydon, Surrey.

WW 303 for further details
WW303


## Mag-tape reconditioner

The TCR2 Protectape magnetic-tape reconditioning unit is claimed to extend the useful life of tapes by as much as $80 \%$, to eliminate up to $90 \%$ of dropouts and to reduce the need for recording head replacements by up to $50 \%$. In addition, it is claimed to improve recording quality and increase tape deck utilization. These results are obtained by transferring and rewinding tapes on to the Protectape, which cleans the tape by passing it over the edge of a precision sapphire block while a moving roll of absorbent cleaning cloth, which snaps out of the way when not in use, gently wipes the particles of dust, dirt and oxide from the tape. During this process the Protectape can quickly rewind a complete spool, or any predetermined length, in either direction with uniform tension. It is adjustable to accept any width of tape up to two inches or spool up to the $12 \frac{1}{2}$ in NAB size, which it can rewind in less than three minutes. Crow of Reading Ltd, P.O. Box 36, Reading, RGl 2NB.

WW 304 for further details.

## V.s.w.r. indicator

A v.s.w.r. meter, type 6593A, offers a high sensitivity, an expanded scale for low ratio measurements and dualchannel facilities for bridge measurements. The instrument, from Marconi Instruments, uses a sensitive tuned amplifier, a meter and a built-in 70 dB precision attenuator. An analogue output is available for use with recording instruments such as an X-Y plotter. The meter can also be used with any square-law detector. Both high-impedance inputs have a maximum sensitivity of $0.5 \mu \mathrm{~V}$ f.s.d. and the bolometer
input has a maximum sensitivity of $0.15 \mu \mathrm{~V}$ f.s.d. The amplifier can be tuned to a centre frequency of $1 \mathrm{kHz} \pm 200 \mathrm{~Hz}$ with a variable bandwidth between 20 and 100 Hz . Trickle charge facilities are provided when operating from the mains and an optional internal rechargeable battery-pack is available to provide up to 20 h continuous operatio. Marconi Instruments Ltd, Sanders Division, Gunnels Wood Road, Stevenage SGl 2AU.
WW 305 for further details

## Power supply for mobiles

A d.c. to d.c. converter, the C301, enables radio-telephones and other electronic equipment to be operated from a 12 V car battery. The unit provides a 12 V isolated output, which is earth-free, and if required this can be added to the battery voltage to give a 24 V output for either positive or negative earth operation. This converter, which has a rated load current of 20 A in either configuration, is designed to withstand the severe vibration and shock often experienced in mobile applications. Overload protection is provided by a current-sensing circuit capable of isolating the oscillator, and two fuses protect the battery against short circuits. Filtering and r.f. decoupling protect the load equipment, and controls are included which balance the waveform to provide maximum efficiency $(75 \%$ at full load on a 12 V output and $85 \%$ at full load on a 24 V output) and minimum audio noise. The electrical noise across both the input and output is 200 mV pk-pk at full load. Avel-Lindberg Ltd, South Ockendon, Essex RM15 5TD
WW 306 for further details


## Bench power supplies

Power units, suitable for bench and laboratery applications, are available from Ver Controls Ltd. Stabilized bench units in the BP series may be either fully adjustable from 5 to 15 V at 1 A , or voltage-band units adjustable over a limited range in the bands 5 V .6 to 9 V , or 12 to 15 V at $3 \mathrm{~A}, 24$ to 30 V at 1 A and 40 to 50 V at 0.5 A . Unregulated units are also available. All units are protected against short circuits and the 5 V unit has an additional overvoltage protection. Units in the standard laboratory series are multiways suitable for t.t.l., c.m.o.s., relay and most test applications. They provide $\pm 5$ to $\pm 15 \mathrm{~V}$ outputs at 1 A on each rail, with options of extra fixed 5 V 1 A stabilized and 24 V 1 A unstabilized outputs. Current limiting and overvoltage logic protection are also included. Ver Controls (St. Albans) Ltd, 27b Townsend Drive, St. Albans, Herts.
WW 307 for further details

## Rotary-vane attenuator

A range of rotary-vane microwave attenuators, designated as series 11, may be used within the frequency range 1.14 to 140 GHz . The attenuation may be read directly from a scale and is accurate to 0.1 dB or $1 \%$ of the reading, whichever is the greater. Voltage standing-wave ratios are less then 1.15 and the insertion losses are from 0.5 to 1 dB depending upon the model. Model $11 \mathrm{~A} / 11$ has a c.w. rating of 10 W max, $\mathrm{an}^{-}$ insertion loss of 0.5 dB and it may be used over the range 3.3 to 4.9 GHz . Flann Microwave Instruments Ltd, Dunmere Road, Bodmin, Cornwall PL31 2QL. WW 308 for further details


WW306


WW305

# Solid State <br> Devices 

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

## Clock oscillators

The range of K 1100 A crystal clock oscillators from Motorola has been extended to cover any fixed frequency from 250 kHz to 32 MHz . The clocks are in hermetically-sealed d.i.l. packages and have stabilities of $0.01 \%$ inclusive of the effects of changes in load and supply voltage, shock, vibration and ageing. The Kllo0A can drive up to ten t.t.l. gates, while operating over a temperature range of 0 to $+70^{\circ} \mathrm{C}$. It has a maximum current consumption of 115 mA and requires a direct supply voltage of $+5 \mathrm{~V} \pm 0.5$.
WW 309
Auriema

## Low-noise amplifiers

An amplifier, from Ferranti, has a noise characteristic of only $\operatorname{lnV}$ per root of frequency ( Hz ) of the input noise (or $60 \Omega$ equivalent noise resistance) and a typical bandwidth of 15 MHz at -3 dB . The ZN459TC, as it is called, was first developed for the M.O.D. for thermal imaging applications, forming the buffer between cadmium mercury tellurides or c.m.t. detectors and c.c.d. arrays for signal processing. It has a gain of $60 \mathrm{~dB} \pm 1 \mathrm{~dB}$ and is contained in a six-lead T0-18 package.
WW 310
Ferranti

## U.h.f. prescalers

E.c.1. divide-by-64 prescalers, from the SP8750 series, operate at frequencies up to 1.2 GHz and are intended for use in u.h.f. phase-locked loops and counters. The devices have two input ports, u.h.f. and v.h.f., selected by a t.t.l./m.o.s.compatible band-change input signal. For a sinewave the v.h.f. input has a typical frequency response of 40 MHz . Both inputs are self-biased and require an a.c.-coupled signal of from 300 to 900 mV , pk-pk. The output is t.t.1. with an active pull-up. This device requires a $6.8 \mathrm{~V} \pm 0.35 \mathrm{~V}$ supply and consumes about 68 mA . Each dévice is in a 14 -lead d.i.l. package.

WW 311
Plessey Semiconductors

## Opto-coupled isolators

Three optically-coupled isolators, , which use gallium-arsenide infrared l.e.ds and silicon photo-transistors, have been made by Elfein. Two of the isolators, type 520 in a 14 -pin d.i.l. package and type 521 in a 24 -pin d.i.l. package, have minimum isolation resistances better than $10^{11}$. Type 525 is also in a 14-pin d.i.l. package and has a minimum isolation voltage of 10 kV and an insulation resistance of typically $10^{14}$.
WW 312
G.E.E.

## Mixer diodes

PMD500 series diodes operate either as zero-bias detectors or high sensitivity mixers over the frequency range 12.4 to 18 GHz . Over this frequency range the overall maximum s.s.b. noise figure is 6.2 dB . The diode junctions provide a detector sensitivity of -56 dBm at zero-bias, eliminating d.c. drift caused by biasing.
WW 313
Tranchant

## Fast-recovery rectifiers

Axial-lead silicon power rectifiers, designated the 1 N6079-81 series, have 30 ns reverse recovery times and peak-inverse-voltages of 50,100 and 150 V . The rectifiers, which are intended for high frequency applications, also have low forward voltage drops (typically .95 V at 5 A ), low thermal impedances and surge ratings of up to 175 A . These devices, from Semtech, are of monolothic, non-cavity construction and have fused - metal - oxide hermetic sealing.
WW 314
Bourns

## Low dynamic-impedance zener

A linear i.c., 6.9 V reference diode with a dynamic impedance of only $1 \Omega$, two orders of magnitude less than discrete zener diodes, is available from National Semiconductor. The LM129 operates from 0.5 to 15 mA and has characteristics which are independent of operating current. A sub-surface breakdown zener in the i.c. has a low noise characteristic, claimed to be less than $20 \mu \mathrm{~V}$ and a long term stability typically 20 p.p.m. This reference, which is in a TO-46 hermetic transistor package or a plastic TO-92 package, is available in selected temperature coefficients from 0.001 to $0.01 \% /{ }^{\circ} \mathrm{C}$ for use in either 0 to $70^{\circ} \mathrm{C}$ or -55 to $125^{\circ} \mathrm{C}$ temperature ranges.
WW 315 National Semiconductor

## Fast hybrid op-amp

The model AM-500 hybrid operational amplifier combines the characteristics of a low drift d.c. amplifier with those of a fast a.c. amplifier to give fast settling and an open-loop gain roll-off of 6 dB per octave to beyond 100 MHz . The output. settling time is $200 \mathrm{~ns}(\mathrm{max}$ ) to $0.01 \%$ and 70 ns to $1 \%$, for 10 V step changes. Other characteristics include a slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$, for positive output transitions, and $1800 \mathrm{~V} / \mu \mathrm{s}$ for negative transitions, allowing for an undistorted reproduction of a full-load, 20 V pk-pk sinewave output up to 16 MHz . Direct current characteristics include an open-loop gain of 106 dB , a $30 \mathrm{M} \Omega$ input impedance and a $\ln A$ bias current.
WW 316
Datel Systems'

## C.m.o.s. quartz oscillators

A range of c.m.o.s.-compatible quart oscillators has been developed for frequencies from 250 kHz to 10 MHz . The type QC1579 oscillators are housed in hermetically-sealed cans measuring $36.1 \times 26.7 \times 19 \mathrm{~mm}$ and are suitable for any supply voltage from 5 to 15 V . A buffered output stage will drive up to ten c.m.o.s. devices or, if used with a 5 V supply, will drive two standard t.t.l. unit loads. The normal adjustment tolerance is $\pm 25$ p.p.m. and over the temperature range -10 to $+60^{\circ} \mathrm{C}$ the stability is $\pm 25$ p.p.m. Devices meeting tighter frequency tolerances, or devices with similar specifications for frequencies ranging from 38 Hz to as low as 1 Hz are also available.
WW 317
Salford Electrical
Instruments

## Suppliers

Auriema Limited, 442 Bath Road, Slough, SL1 6BB.
Bourns (Trimpot) Limited, Hodford House, 17/27 High Street, Hounslow, Middlesex TW3 1 TE.
Datel Systems Incorporated, 1020 Turnpike Street, Canton, Mass. 02021 U.S.A.

Ferranti Limited, Electronic Components Division, Gem Mill, Chadderton, Oldham, OL9 8NP.
G. E. Electronics (London) Ltd, Eardley House, 182/4 Campden Hill Road, Kensington London W8 7AS.
National Semiconductor (U.K.) Ltd, 19 Goldington Road, Bedford MK40 3LF.
Plessey Semiconductors, Cheney Manor, Swindon, Wiltshire SN2 2QW.
Salford Electrical Instruments Ltd, Peel Works, Barton Lane, Eccles, Manchester M30 0HL.
Tranchant Electronics (U.K.) Ltd, Tranchant House, 100a High Street, Hampton, Middlesex.

## Why do we have over 200 orders from customers in 20 countries on 5 continents for BCN VTR's?



BCN VTR's are superior:
They combine quality of Quad's with economy of 1 inch VTR technology and portability.

## BCN VTR's are proven:

Thousands of hours of operation at many customer sites, in studios and outside broadcasting.

## BCN is really portable:

The light-weight version BCN 20 operated successfully in boats, helicopters, cars and during the Olympic's in Innsbruck and Montreal. BCN 20:
69 min tape reel, 80 min battery, 23 kg light-weight, auto-take assentle. $B C N$ is the advanced solution:
3 high-quality audio tracks continuous recording - no gap, adaptable to digital recording, single frame display, cassette operation.

## BCN is available:

4 leading broadcast equipment manufacturers supply you with the BCN VTR's for NTSC, PAL, PAL-M and SECAM. You don't have to wail For further information contact your local Bosch-Fernseh representative

## BOSCH FERNSEA



BCN 20
portable

Robert Bosch Fernseh-Division in D-6100 Darmstadt/West-Germany, POB

## D5MA ELEOTRONICS Dena international ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST



TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE
 SEND CHEQUE WITH ORDER. ACCESS CARD BANKAMERICARD, BARCLAY CARD ACCEPTED (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS POSTAL AND HANDLING CHARGES
SHIPMENT VIA AIR MAIL SHIPMENT VIA AIR MAIL under 4.99 add 45 £ 10 and over

63
5.00-9.99 add . 35 $\qquad$
DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL

## FMLDE

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.


49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560
Fylde
Electronic Laboratories Limited.

WW-052 FOR FURTHER DETAILS

## WOPE $\mathrm{EN}=1 \mathrm{FFOR}$ rouradude.

XL99 - Standard features include: -100 mV .1 V fsd - BCD outputs - fast ( $100+\mathrm{con} / \mathrm{sec}$ )
differential outputs

- $3^{\prime \prime}$ leds (0.43" optional)

- $0.05 \%$ accura



XL35 - Standard features include: ONE OFF anto polarity - Overange to $2999-0.05 \%$ accuracy

- Mains or 5 V dc power

WW-028 FOR FURTHER DETAILS


## ELECTRONORGTECHNICA carbon film RESISTORS

$1 / 8$ and $1 / 4 w 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
EX-STOCK
$\mathbf{£ 4 . 9 0}$ PER 1,000 PLUS ONE VALUE V.A.T. POSTAGE
Minimum export order £100
Contact John Gingell


AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SF
TEL 01-7275641 TELEX 261306.
WW-030 FOR FURTHER DETAILS


## DATEST 1: THE NEW TIME SAVER

## Automatic device tester and identifier

> DATEST 1 saves valuable repair time by automatically testing diodes vansistors. and all types of FETs, both in and out-of-circuit. plus common op amp icsout-of-circuir
> To carry out a test simply connect the device and switch on if tee display thashes its. No Go If you get a steady pattern it s Go' No prior knowledge is required of device polaity or whether it is bipolar or FET
> Un the contrary the clear six-LEU display telis you aia glance the polarity ot the device (NHN PNH N-chamel Pchannelf and If out-or-circuit tesis whether it is bipolar. depletion FET. or enhancement FET
> If you then tinck the test current switch you can instantly place limits on current gain. leakage current and FET parameters Finally if you need to you can even plug in a multimeter and actually measure some of them
> DATEST 1 with its advanced four c and six transistor circuil ( $p a t$ appl for) rapidly pays for itself in skilled man hours saved and in expensive mistakes avoided for complete user confidence DATEST 1 even stops working abruptly and gives a special DATEST 1 is available now and comes conplete with battery
> Write for full detals or send now for your own time saver pasy-to-use probes tor in-circuit tests and detalled handbook

## Vaco STRIPEX Wire Stripper <br> Precision Stripping Tool for most types of PVC

 wire and cable from 38-10AWG. - Solid or stranded.Features include: 33 self adjusting cutting knives penetrate and remove insulation without nicking the wire. Depth Control adjusts for different insulation thick. nesses.
Wire cutter with transparent finger guard snips cable clean. Lightweight moulded nylon body reinforced with fibreglass, reduces fatigue in continuous operations.
Packed in contoured plastic case. Individually cartoned.
Model No. 70285
No. 70286. Metric wire plier Crimpsterminals, cuts and measures bolts, cuts and strips wire. Combines the most used cable operations in a single tool


Oistributed by
Special Products Distributors Limited 81 Piccadilly, London W1V OHL

Tel. No. 01-629 9556 Cables: Speciprod London W1 WW-064 FOR FURTHER DETAILS

## AGEMTSDIREMTORS REQUREDIDEVROP: <br> by C.P.C. the U.K. <br> hased International Suppliers of T.V. and Radio Components C.P.C offer you: * Price-highly competitive * Service-fast and efficient *Quality - <br> only Leading Manufacturers. <br> CONTACT ROBIN PRATT <br> Export Manager <br> 

| Valves |  |  |  | Semi Conductors |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Price (p) |
| OY87 | 43 | PCF802 | 52 | AF126 | 38 | BC214L | 15 |
| DY802 | 43 | PCL82 | 54 | AF127 | 38 | BC237 | 11 |
| ECC82 | 44 | PCL84 | 55 | AF139 | 39 | BC238 | 11 |
| EF80 | 34 | PCL85 | 57 | AF178 | 69 | BC301 | 30 |
| EF183 | 39 | PCL86 | 52 | AF180 | 69 | BC303 | 30 |
| EF184 | 39 | PFL200 | 65 | AF181 | 69 | BC327 | 13 |
| EH90 | 40 | PL36 | 63 | AF239 | 45 | BC328 | 13 |
| PC86 | 58 | PL84 | 30 | AF240 | 20 | BC337 | 12 |
| PC88 | 58 | PL504 | 90 | AL102 | £1.40 | BC338 | 12 |
| PC900 | 30 | PL508 | 85 | AL103 | £1.30 | BC546 | 13 |
| PCC89 | 46 | PL509 | ¢1.35 | AU107 | £1.35 | BC547 | 12 |
| PCC189 | 47 | PY88 | 43 | AU110 | $£ 1.20$ | BC548 | 12 |
| PCF80 | 41 | PY500A | $\underline{11.25}$ | AU113 | $\underline{11.05}$ | BC549 | 13 |
| PCF86 | 44 | PY800 | 47 | BC107 | 10 | BC550 | 14 |
| PCF801 | 46 |  |  | BC1078 | 15 | 8C557 | 13 |
| Integrated Circuits |  |  |  | BC108 | 12 | $\frac{8 C 558}{8 C Y 72}$ | $\frac{12}{16}$ |
| $\begin{aligned} & \text { Type } \\ & \text { MC1351P } \\ & \hline \end{aligned}$ |  |  |  | BC109C | 14 | $\frac{\mathrm{BCY72}}{\mathrm{BD115}}$ | 16 |
|  | Price (p) | Type | Price (p) | BC113 | 15 | B0116 | 59 |
|  | 70 | TA 7072P | £1.53 | BC114 | 15 | 80124 | 75 |
| ML 231B $\quad £ 4.20$ (Equiv.ETTR6016) |  | TA 7074P | ¢1.34 | BC115 | 174 | B0131 | 35 |
|  |  | TA7124P | 73 | BC116 | $17{ }_{1}^{17}$ | 80132 | 39 |
| ML 2328 | £4.20 | TA7141AP | $\underline{1} .40$ | BC115A | 25 | 80133 | 45 |
| SL 414A | £1.68 | TA 7171P | £1.55 | BC117 | 14 | 80135 | 29 |
| SL 415A | £2.20 | TA 7172P | 11.65 | $8 \mathrm{BC118}$ | 15 | B0136 | 30 |
| SL 1310 | $\underline{11.54}$ | TA 7173P | ¢2. 20 | BC119 | 27 | B0137 | 30 |
| St 3046 | 73 | TA 7176P | $\underline{1}$ | BC125 | 171 | B0138 | 33 |
| SL 76544 | $\underline{1.50}$ | tAA550 | 32 | BC125B | 18 | B0139 | 37 |
| SN76003N | E2.35 | taA 570 | $¢ 1.30$ | BC126 | 15 | B0140 | 39 |
| SN76013N | ¢1.43 | taA 661B | 81 | 8C132 | 15 | BD144 | $¢ 1.99$ |
| SN76013ND | 0 ¢ $£ 1.25$ | TAA700 | £2.56 | BC135 | 15 | 80160 | ¢1.65 |
| SN76023N | $\underline{11.43}$ | tBA120S | £1.14 | BC136 | 15 | B0181 | 85 |
| SN76023ND | 0 £1.20 | tbal20AS | 60 | BC137 | 20 | B0182 | 90 |
| SN76033N | £2.15 | TBA120SQ | ¢1.00 | BC138 | 30 | B0183 | 80 |
| SN76110N | £1.75 | tba4800 | ¢1.40 | BC139 | 28 | B0184 | ¢1.10 |
| SN76226N | £2.20 | tBA5200 | £2.06 | BC140 | 32 | BD222 | 47 |
| SN76227N | ¢1.45 | TBA5300 | £1.30 | BC141 | 28 | BD225 | 47 |
| SN76532N | £1.45 | tBA5400 | £2.00 | BC142 | 20 | BD232 | 50 |
| SN76533N | £1.50 | tba5500 | £2.56 | BC143 | 25 | B0233 | 43 |
| SN76544N | ¢1.70 | tBA560CQ | - $£ 2.56$ | BC147 | 8 | 80234 | 49 |
| SN76650n | £1.15 | TBA7500 | £1.43 | BC147A | 11 | 80235 | 49 |
| SN76660N | . 60 | tBA800 | £1.10 | BC148 | 9 | B0236 | 53 |
| SN76666N | 90 | íBA9200 | £2.64 | BC149 | 10 | BD237 | 49 |
| TA 7050P | £1.13 | tidagoo | £2.56 | BC153 | 20 | 80238 | 55 |
| TA 7051P | 11.45 | TCA2700 | ${ }_{\text {E } 2.64}$ | BC154 | 20 | B0×32 | £2.40 |
|  |  | TCA 800 | £4.60 | BC157 | 11 | BDY20 | 80 |
| Semi Conductors |  |  |  | $\frac{8 C 158}{8 C 159}$ | 10 | BF115 | 38 |
|  |  |  |  | $\frac{8 C 159}{\text { BC160 }}$ | 11 | $\frac{8 F 152}{\text { BF158 }}$ | 20 |
| Type P | Price (p) | Type | Price (p) | BC161 | 33 | BF160 | 35 |
| AC107 | 25 | AC188 | 18 | BC171 | 10 | BF167 | 24 |
| AC126 | 24 | AC188K | 30 | BC172 | 10 | BF173 | 25 |
| AC127 | 20 | AC193K | 36 | BC173 | 15 | BF178 | 33 |
| AC128 | 15 | AC 194K | 35 | BC178 | 18 | BF179 | 38 |
| AC128K | $2^{4}$ | AD140 | 65 | BC178B | 20 | BF180 | 31 |
| AC141 | 24 | AD142 | 62 | BC179 | 22 | BF 181 | 35 |
| AC141K | 28 | AD143 | 65 | BC182 | 11 | BF182 | 30 |
| AC142 | 18 | AD149 | 65 | BC182L | 12 | BF183 | 30 |
| AC142K | 31 | AD161 | 47 | BC183L | 12 | BF184 | 29 |
| AC151 | 28 | AD161/2PR | R $£ 1.00$ | BC184 | 12 | BF185 | 30 |
| $\overline{\text { AC154 }}$ | 18 | AD162 | 38 | BC186 | 25 | BF 186 | 26 |
| AC155. | 18 | AF114 | 25 | BC187 | 25 | BF194 | 8 |
| AC156 | 28 | AF115 | 22 | BC204 | 14 | BF195 |  |
| AC176 | 22 | AF116 | 22 | BC212 | 11. | BF196 | 10 |
| AC176K | 34 | AFI17 | 20 | BC2122 | 11 | BF 197 | 11 |
| AC187 | 20 | AFI18 | 52 | BC213 | 11 | BFF 198 | 23 |
| AC187K $\quad 30$ |  | $\frac{\text { AF124 }}{\text { AF } 125}$ | 38 | BC213L | 11 | BF 199 | 25 |
|  |  | AF 125 | 27 | BC214 | 13 | BF 200 | 28 |

## Valves

## Integrated Circuits

# Iow cost - top quality COMPONENTS 

## -Siemens • A.E.G. Telefunken Teleng and Toshiba Components

| Semi Conductors |  |  |  |
| :---: | :---: | :---: | :---: |
| Type | Price (p) | Type | Price (p) |
| BF218 | 40 | BU205 | £1.67 |
| BF224 | 20 | BU206 | £1.95 |
| BF240 | 17 | BU208 | £2.20 |
| BF241 | 17 | BU208/02 | 2 £2.75 |
| BF257 | 28 | BUY69B | £2.50 |
| BF258 | 26 | BUY69A | £2.65 |
| BF259 | 30 | E1222 | 38 |
| BF336 | 37 | MJE340 | 45 |
| BF337 | 35 | MJE520 | 44 |
| 8F338 | 34 | 2N696 | 30 |
| ®F355 | 50 | 2 2N706 | 15 |
| $\overline{\text { BF } 457}$ | 37 | 2 N 3053 | 20 |
| 日F458 | 37 | 2 N 3054 | 55 |
| $8{ }^{8} 459$ | 38 | 2 N 3055 | 55 |
| BFT42 | 35 | $2 \mathrm{N3702}$ | 12 |
| BFT43 | 35 | 2 23703 | 12 |
| $8 \mathrm{BF} \mathrm{\times 29}$ | 29 | 2 23704 | 10 |
| BFx84 | 29 | 2 N 3705 | 10 |
| BFx85 | 30 | 2 23706 | 10 |
| BFX86 | 28 | 2 N 3819 | 38 |
| BF×88 | 25 | 2 N5296 | 40 |
| BFY50 | 19 | 2 25496 | 53 |
| BFY51 | 19 | OC71 | 29 |
| BFY52 | 20 | 0 C 72 | 29 |
| BFY90 | ¢1.10 | R2008B | 11.90 |
| BR100 | 32 | R20108 | £1.90 |
| BR101 | 38 | RCA16334 | 80 |
| BRC4443 | 80 | RCA16335 | 80 |
| BRY39 | 38 | \$2802 | £2.99 |
| BSY52 | 30 | S6080 A |  |
| 8 日ri06 | £1.20 |  | £4.90 |
| BT108 | $\underline{1.50}$ | IIP31A | 52 |
| -1116 | £1.25 | IIP32A | 62 |
| Bu105/02 | £1.60 | IIP41A | 60 |
| BU108 | ¢1.80 | IIP42A | 75 |
| BU126 | £1.49 | S91 | 27 |
| BU204 | £1.80 |  |  |

## Diodes

| Type BA115 | Price (p) | $\begin{aligned} & \text { Type } \\ & \text { OA90 } \\ & \hline \end{aligned}$ | Price (p) <br> 6 |
| :---: | :---: | :---: | :---: |
| BA145 | 16 | OA91 | 7 |
| BA148 | 16 | OA95 | 5 |
| BA154/201 | $1 \quad 12$ | OA202 | 8 |
| BA155 | 15 | 1N914 | 6 |
| BAX13 | 6 | [N400] | 4 |
| BAX 16 | 6 | IN4002 | 5 |
| BY126 | 11 | IN4003 | 5 |
| BY127 | 10 | IN4004 | 5 |
| BY199 | 25 | IN 4005 | 5 |
| BY206 | 17 | IN4006 | 6 |
| BYX10 | 14 | 1N4007 | 6 |
| OA47 | 8 | IN4148 | 4 |

$\star 20$ p or less. Minimum 5 items


## Aerial Accessories

## Type

Coax Plugs each $10.5 p$ Standard Superverters each £13.50 Superverters with variable
gain
superverters with variable
gain and frequency each $£ 17.45$ Broad Band Amplifier

DY7331 each £16.50

* All Teleng products availabie
through C.P.C

DISTRIBUTORS

WEST YORIKSHIRE
Briden Componemts
Brearton Street
Manningham Lane
Braciord
Tel. 0274-29375
MSIDE CHESHIRE SALOP
Scientific Instrument
Distributor Services
Distributor Services
29b Beam Street
Nantwich, Cheshire
Tel: Nantwich (0270) 626853
WALES
Swansea Aerial Co. Ltd. Siloh Road
Swansea sal 2NT
Tel. Swansea 50393/5483E
WEST MIDLANDS
Gettavision
35 Far Gosford Street Coventry
Tel. Coventry 56476-50359:

## EAST MIDLANDS

## Eelvair TV A Audio

 Components,66 MIII St., Melton Mowbray, Leicestershire LE 13 1AZ Tel. 06645686

CAMBS. BEDS. HERTS.
Cambridge Electronic Components
236 High Street
236 High Street
Cottenham Cambridse Coltenham 095450292

## EAST ANGLIA

Norwich Electronic Components 16 Denbish Road, Norwich. NR2 3AA Tel. 060328625
S.LONDON\&S EAST

Paul Electrical Lid. 250/252 Grand Drive. Raynes Park.
Lel. 015426546
DORSET HANTS, 10 W
Double D. Distributors. 16 Highfield hoad. Bournemouth BH9 2SG Tel. 0202519562

## SOUTH WEST

D. B. Components,

1 Devonshire Street,
Greenbank, Phmouth, Devon
Tel. (0752) 24369

## *PRICE

Highly competitive

* QUALITY

Leading manufacturers

* RELIABILITY

Fast efficient service


Good people to deal with

COMBIIIED PREGISION COMPONENTS LTD.
C.P.C., Dept. EET $194-200$ NORTH FOAD, PRESTON, LANCASHIRE, ENGLAND Phone: Preston (STD 0772) 55034. Telex 677122
WORLD WIDE EXPORT SERVICE ask for ROBIN PRATT New price list 1.1276

## PAKS - PARTS - AUDIO MODULES

## PANEL METERS

$4^{\prime \prime}$ RANGE<br>$\qquad$ Price

$£ 4.50$
$£ 4.50$
$£ 4.50$
$£ 6.00$
$£ 6.00$ $2^{\prime \prime}$ RANGE $\begin{array}{ll}\text { Vize } & \text { No. } \\ \text { val } & \text { No. } \\ 0-50 U A & 1307 \\ 0.100 U A & 1308\end{array}$ 0.500UA 0.1 MA
0.50 V $\qquad$ $\underbrace{£ 3.50}$

## MR2P TYPE

$\qquad$ Price
$\mathbf{£ 4 . 8 0}$
$\mathbf{£ 3 . 2 0}$
EDGEWISE
$\qquad$ Price
£4.05
$\mathbf{£ 4 . 0 5}$ MINIATURE BALANCE/TUNING METER



## HIGH SENSITIVITY TEST METER

|  |  |
| :---: | :---: |
|  |  |
| oc Vols | 0.5600/500 |
| oc Current | 25 |
| Resstance 0.100 ohms in 10 Reranges |  |
| Oectiels |  |
|  |  |
| ${ }_{\substack{\text { No } \\ 1324}}$ |  |
|  |  |
|  |  |
|  |  |

## DIODES

| DIODES |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{\text {Troe }}^{\text {Tro }}$ | ${ }_{\substack{\text { Price } \\ \text { co. }}}^{\text {ces }}$ | lype |  | 8pel | Typo | 0085 | ¢0.09 |  |  |
| ${ }_{\text {a }}^{\text {AAY30 }}$ AR213 | ${ }_{\text {co }}^{60.09}$ | 88104 | ¢0.15 |  | ${ }_{6}^{60.16}$ |  | ${ }_{\substack{\text { ¢0. } \\ \text { ¢0. } \\ \hline 16}}$ | ${ }_{\text {OPa }}^{\text {OAPO }}$ | ${ }_{\text {co.0\% }}^{60.0}$ |  |  |
|  | ${ }_{\text {co }}^{60.10}$ |  | (60.08 ${ }_{\text {coic }}$ | ${ }_{\text {Bry }}^{\text {Br133 }}$ | (to.21 | ${ }_{\text {drz18 }}^{\substack{\text { erz218 }}}$ | ¢0.36 | ${ }_{\text {OAAS }}^{\text {OAP }}$ | $\underset{\text { c.0.07 }}{\substack{\text { ¢0, }}}$ | ${ }_{\text {lis }}^{1 / 24}$ |  |
|  |  | ¢ | ${ }_{\text {co }}^{\substack{90.12 \\ \text { c. } \\ 18}}$ | cirlict | -6.75 | ${ }_{\substack{\text { OA1 } \\ \text { OAP }}}$ | ¢0.35 | $\xrightarrow{\text { OAP } 200}$ | ¢0.08 | , |  |
| ${ }_{8 A 154}$ | ${ }^{\text {fo. } 12}$ | BYY 14 | ${ }_{60.12}$ |  | ${ }_{\text {co. } 36}$ |  | ¢0.07 |  | ¢0.06 |  |  |
| ${ }_{\text {EA }}^{\text {BA } 1556}$ | ${ }_{\text {¢0, }}^{\substack{\text { ¢0, } \\ 0.14}}$ | - | ع0.12 | ${ }_{\text {arz21 }}^{\text {arzil }}$ |  | OA79 $0 \times 81$ | ¢0.07 |  | ${ }_{\text {coioc }}^{\substack{0.06}}$ |  |  |

## TRANSISTORS

BRAND NEW - FULLY GUARANTEED

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| c0. 14 | BFY52 | E0.14 | TiP2955 |
| co. 14 | B1P19 | c0. 38 | TIP3055 |
| c0. 13 | B1P20 | 60.38 | TiS43 |
| c0.12 | B1P19 |  | TIS90 |
| c0. 14 | 20 MP | c0.80 | UT46 |
| co. 50 | BRy39 | c0.45 | $21 \times 107$ |
| co.bo | BU105 | $\underline{1.90}$ | 21 $\times 108$ |
| c0.65 | BU105/02 | $\underline{1.95}$ | $21 \times 109$ |
| c0.65 | 8U204 | E1.70 | 2T×300 |
| ¢0.70 | BU205 | E1.70 | $21 \times 500$ |
| co. 35 | BU208 | ¢2.40 | 2N1613 |
| c0.38 | BU208/02 | $\underline{4.95}$ | 2 N 17 |
|  | E1222 | ¢0.38 | 2N1889 |
| c0.80 | MJE2955 | $\underline{0.888}$ | 2N1890 |
| $\underline{0.60}$ | MJE 3055 | c0.60 | 2 N 1893 |
| ¢0.36 | MJE3440 | $\underline{50.45}$ | 2 N 2147 |
| 60.36 | MP8113 | $\underline{0.45}$ | 2N2148 |
| c0.38 | MPF 102 | c0.35 | 2N2160 |
| $\underline{0.45}$ | MPF 104 | c0. 39 | 2N2192 |
| ¢0.54 | MPF 105 | c0.39 | 2N2193 |
| $\underline{0.60}$ | MPSA05 | - $\mathbf{C} .20$ | 2N2194 |
|  | MPSA06 | -E0.20 | 2N2217 |
| 1.20 | MPSA55 | - 6.20 | 2N2218 |
| 10.80 | MPSA56 | - 5.20 | 2N2218A |
| c0.60 | OC22 | c1.50 | 2N2219 |
| c0.60 | OC23 | c1. 50 | 2N2219A |
| c0.68 | OC24 | $E 1.40$ | 2N2904 |
| ${ }^{6} 0.68$ | OC25 | c0.60 | 2N2904A |
| 60.75 | OC26 | c0.60 | 2N2905 |
|  | OC28 | 60.90 | 2N2905A |
| E1.70 | OC29 | ¢1.00 | 2N2906 |
| ¢0.80 | OC35 | C0.90 | 2N2906A |
| 60.80 | OC36 | c0.90 | ${ }^{2} \mathrm{~N} 2907$ |
|  | OC70 | c0. 15 | 2N2976G |
| C0. 80 | OC71 | c0.15 | 2 N 2926 Y |
| c0.90 | THC44 | - 60.29 | 2N29260 |
| c0. 37 | TIP29A | E0.44 | 2N2926R |
| 60.37 | TIP298 | E0.52 | 2N2926B |
| c0.38 | T1P29C | E0.62 | 2N3053 |
| co. 15 | tip30a | $\underline{60.50}$ | 2N3054 |
| C0.17 | TIP30B | ¢0. 60 | 2N3055 |
| c0. 25 | TIP30C | E0.70 | 2N3414 |
| ¢0. 25 | TIP31A | E0.54 | 2 N 3415 |
| c0. 28 | TIP318 | $\mathrm{E}_{0} .66$ | 2N3446 |
| - 60.28 | TIP31C | E0.68 | 2N34 |
| 60.25 | TiP32A | ¢0.64 | 2N3614 |
| ¢0.30 | TIP328 | to. 76 | 2N3615 |
| c0. 23 | TiP32C | ¢0.80 | 2N3616 |
| ¢0.24 | Tip41A | co. 66 | 2N3646 |
| 60.25 | Tip 41 B | ¢0. 70 | 2N3702 |
| ¢0. 22 | TIP41C |  | 2N3703 |
| c0. 22 | T1P4 |  | 2N3704 |
| ' $\mathbf{0 . 5 5}$ | TIP42A | ¢0.72 | 2N3705 |
| ¢0. 14 | TIP +2 2 B | ¢0.78 | 2N3706 |
| ¢0.14 | 1P42C | ¢0 | 2N3707 |

## c0.95 2 N 370

## NEWNES TECHNICAL BOOKS

| No 229 BEGINNERS GUIDETO ELECTRONICS PRICE £2. $25 \dagger$ | No <br> 238 TRANSISTOR POCKET BOOK PRICEE3.90 $\dagger$ |
| :---: | :---: |
| No. 230 BEGINNERS GUIDE TO TELEVISION PRICE $2.25 \dagger$ | No. 225 <br> 110 THYRISTOR PROJECTS USING SCRS \& TRIACS PRICE£2.50 $\dagger$ |
| No. 231 BEGINNERS GUIDE TO TRANSISTORS PRICE E2. $25 \dagger$ | No 227 <br> $110 \mathrm{COS} / \mathrm{MOS}$ <br> DIGITALIC PROJECTS <br> FOR THE HOME |
| No 233 BEGINNERS GUIDE TO RADIO <br> PRICEE2 $25 \dagger$ | CONSTRUCTOR PRICEE2.25 $\dagger$ <br> No 226 |
| No 234 BEG!NNERS GUIDE TO COLOUR TELEVISION PRICE $22.25 \dagger$ | 110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR |
| No. 235 ELECTRONIC DIAGRAMS PRICEE1.80 $\dagger$ | No 242 ELECTRONICS |
| No 236 ELECTRONIC COMPONENTS PRICE£1.80 $\dagger$ | POCKET BOOK PRICE£3.75 $\dagger$ <br> No. 239 |
| No. 237 PRINTED CIRCUIT ASSEMBLY PRICE£1 80 $\dagger$ | 30 PHOTOELECTRIC CIRCUITS \& SYSTEMS PRICEE1.80 $\dagger$ |

74 SERIES TTL ICs


| Type | Pric* | Typ | Price | Type |
| :---: | :---: | :---: | :---: | :---: |
| 7441 | $\underline{50.64}$ | 7482 | ¢0.85 | 7493 |
| 7442 | c0.64 | 7483 | c0.95 | 7494 |
| 7445 | ¢0.90 | 7484 | c0.98 | 7495 |
| 7446 | co.90 | 7485 | E1. 20 |  |
| 7447 | ¢0.78 | 7486 | ¢0.30 | 74100 |
| 7448 | $\mathrm{E}^{\mathbf{0}} \mathbf{8 0}$ | 7489 | ¢2.90 | 74110 |
| 7475 | ¢0.48 | 7490 | c0.42 | 74118 |
| 7480 | ¢0.50 | 7491 | £0.75 | 7411 |
| 7481 | ¢0.95 | 7492 | ¢0.45 |  |

## ORDERING

Please word your orders exactly as printed not forgetting to include our part number.

## V.A.T.

Add $12 \frac{1}{2} \%$ to prices marked $*$. Add $8 \%$ to others excepting those marked $\dagger$. These are

## SILICON RECTIFIERS

| Ty9e |
| :--- |
| 15920 |
| 1592 |
| 1592 |
| 1592 |
| 1592 |
| 1 iN40 |
| in40 |


| N 4001 | $\mathbf{0 0 . 1 0}$ |
| :---: | :---: |
| N 4002 | 80.06 |

BI-PAK
P.O. BOX 6, WARE, HERTS

## BI-PAK <br> High quality modules for stereo, mono and other audio equipment.

## PUSH-BUTTON

 STEREO
## OUR PRICE ONLY

 FMTUNER

## £20.45 Fitted with Phase Lock-loop Decoder <br> * FET Input Stage

The 450 Tuner provides instant program selection at the touch a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

* VARI-CAP diod
- Switched AFC
* Multi turn pre-sets - LED Stereo Indicator

Typical Specification Sensitivity $3 \mu$ volts Stereo separation 30dh Supply required 20-30v at 90 Ma max.

## STEREO PRE-AMPLIFIER



PA100
OUR PRICE £13.75

SPECIFICATION

## Harmonic Distortion Po $=3$ watts $f=1 \mathrm{KHz} 02.5 \%$

- Load Impedance $8-16 \mathrm{ohm}$ Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ Frequency response $\pm 3 \mathrm{~dB} \quad \mathrm{Po}=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$
- Sensitivity for Rated $O / P-V_{s}=25 \mathrm{v}$. $\mathrm{RL}=80 \mathrm{hm} f=1 \mathrm{KHz} 75 \mathrm{mV} . \mathrm{RMS}$ AL20 5w R.M.S. £2.95 AL30 10w R.M.S. £3.25



## 1 A 0 (RMS) 25 Watts (RMS)

* Max Heat Sink temp 90C. * Frequency response 20 Hz to 100 KHz ( Distortion better than 0.1 at 1 KHz Supply voltage $15-50 v \star$ Thermal Feedback * Latest Design Improvements *Load - 3,4,8, ur 1 b ohms Signal to noise ratio 80 db * Overall size 63 mm . 105 mm 13 mm .
Especially designed to a stict specitication Only the tnest components have been used and the latest
solid-state curculty incorporated in this powerful hitie solid-state
ampolifer


## stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amphtiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm . incorporating short circuit protection
Transformer BMT80 $£ 2.60+62$ p postage

Power supply for AL20/30, PA12, SA450 etc

The Stereo 30 comprises a complete stereo pre amplifier power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs $i$ e high quality ceramic pick-up stereo tuner, stereo tape deck etc. Simple to install capable of producing really first class results, this unit is supplied with full instructions. black front panel knobs main switch. fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires $\mathrm{Hi}-\mathrm{Fi}$ performance with a minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER £2.45 plus 62pp \&p TEAK CASE $£ 5.25$ plus $62 p p$ \& $p$.

# HART ELECTRONICS <br> The Only Firm for Quality Audio Kits <br> J. L. Linsley-Hood High Quality Cassette Recorder 



As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price We have therefore spent a little more on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished reşult is a unit designed not to normal domestic standards but to the best professional practice.


ENCO CRV CASSETTE MECHANISM
High Quality, robust cassette transport for Linsley Hood Recorder. Features fast forward, tast rewind, record, pause and automatic cassette ejection facilities. Fitted with ejection spring for above horizontal use. Ex-stock $£ 1910+£ 2.38$ VAT.
71x Complete set ot parts for Master Board, includes Bias oscillator Relay, Controls, etc. $9.83+£ 1.23$ VAT
$72 x$ Parts for Motor Speed and Solenoid Control for Lenco CRV Deck $£ 3.52+44$ p VAT.
73x Complete set of parts for stereo Replay Amps and VU Meter Drive £8. 02 + £1 VAT
$74 \times$ Complete set for Stereo Record Amps. £6. $64+83 p$ VAT $75 \times$ Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate $3.5^{\prime \prime} \times 5^{\prime \prime}$ PCB designed so that the motor control board fits above it to save space. $£ 8.29+£ 1.03$ VAT
700 M . VU Meters Individual high quality meters with excellent
ballistics and built-in illumination. $£ 6.48+81$ p VAT PER PAIR.

## ALL PARTS ARE POST FREE

Please send $9 \times 4$ SAE for lists giving fuller details and Price breakdowns,

## A suitable Metalwork and Front Plate will be available soon <br> Penylan Mill, Oswestry, Salop

Personal callers are always welcome, but please note we are closed all day Saturday


WW-048 FOR FURTHER DETAILS

## HRNIU FIEGINDIIES ITI. (J) <br> Our New "CAT" now available price 40p. Genuine fastest

 service in the U.K. Most modern components shop in East Anglia. Best Semiconductor selection in the South East. 15 years in Mail-Order Electronics. Over 2.000 square feet of Stores.I'M YOURS FOR 40p!!

## Name

Address

Please print clearly

## For those who appreciate Quality...

 a complete electronic kit The Forgestone 400 high quality colour television receiver SUPERB PICTURE QUALITY TOGETHER WITH PROVEN RELIABILITY- 9 integrated circuits
- Fully isolated power supply
- Thick film resistor units
- Plugs and sockets for easy panel removal
- Ready-built and aligned IF module
- Each module kit available separately
- Glass epoxy printed circuit
- Full technical construction panels manual
- High quality components - LT supply regulator

The isolated chassis makes the receiver ideal for the addition of Teletext decoders, remote controls etc. Please send stamp for further details of these quality products.
Forgestone Colour Developments Limited
Ketteringham, Wymondham, Norfolk, NR18 9RY, U.K.
Telephone: Norwich 810453 (STD 0603)
MAIL ORDER - Barclaycard \& Access accepted


## Let US GEI DOWN TO CASES!



INJECTION AND COMPRESSION MOULDING TO YOUR REQUIREMENTS ALSO INDELIBLE PRINTING OF G.R.P. ALUMINIUM AND COATED PANELS.

WE ARE SUPPLIERS OF GLASS FIBRE INSTRUMENT CASES TO INDUSTRY AND COMMERCE. NOW THESE ARE AVAILABLE TO YOU!

GLASS FIBRE CASES. D.M.C. OR S.M.C. GREY, BUT OTHER COLOURS BY ARRANGEMENT.

SIZES
$8^{\prime \prime} \times 5^{1 / 2^{\prime \prime} \times 5^{\prime \prime}}$
$9^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$
$6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$
$5^{\prime \prime} \times 3^{\prime \prime} \times 1^{1 / 2^{\prime \prime}}$
$4^{\prime \prime} \times 4^{\prime \prime} \times 11 / 2^{\prime \prime}$

£1.94
£1.30
£1. 10
£0. 51
£0. 54

* WITH FRONT PANEL. INSIDE PANEL (BOTH ALUMINIUM) AND 4 RUBBER FRET.
trade prices ón request


## THOMAS MAUGHAN \& ASSOCIATES (DEPT. AW) <br> CLARENCE MILL, BOLLINGTON <br> NR. MACCLESFIELD, CHESHIRE. Tel: BOLLINGTON 74294

WW -038 FOR FURTHER DETAILS

| Audio COnnectors |
| :--- |
| Broadcast pattern jackfields, jackcords, plugs <br> and jacks <br> Auick disconnect microphone connectors <br> Anyphenol (Tuchel) miniature connectors with <br> Hirschmann nut Banana piugs and test probes <br> xLR compatible in-line attenuators and <br> reversers. <br> Low cost slider faders by Ruf. |
| Future Film Developments Ltd. <br> 90 Wardour Street <br> London W1V 3LE <br> O1-437 1892/3 |

WW026 FOR FURTHER DETAILS


## NEW! The Semicon 1st EDITION £ 10.60 (UK) Elsewhere $£ 11.90$ International <br> ISBN 0904944026

A COMPANION VOLUME TO THE PROVEN

SEMICON
INTERNATIONAL
TRANSISTOR INDEX ISBN 0904944018

6th EDITION £ 9.60 (UK)
Elsewhere £11.90

The price includes postage \& packing by surface mail, anywhere in the world. Airmail extra.

Each volume has a unique easy reference alpha-numeric listing of the maximum ratings and characteristics of over 25,000 discrete devices of international origin-European, USA and Japanese. Essential to all Engineers, Technicians and Buyers. Accepted worlawide as the best of its kind available-and with a 12 -months guarantee of validity.

* ALPHA-NUMERIC LISTING OF ALL DEVICES
* EXTENSIVE SUBSTITUTION GUIDE
* CV DEVICES AND COMMERCIAL EQUIVALENTS
* TERMINATIONS
* ALTERNATIVE MANUFACTURERS \& AGENTS

ACCESS/BARCLAY/INTERBANK accepted. Quote card No. Please remit with order.
Refund if not satisfied and book is returned within 14 days. Semicon Indexes Ltd: 7 Kings Parade, Kings Rd., Fleet, Hants. GU139AB TEL: FLEET (02514) 28526
wW - 055 FOR FURTHER DETAILS

## ROTATABLE LOG PERIODIC ANTENNA

range communication circuits. They can be constructed on site wher use on medium to long range communication circuits. They can be constructed on site where minimal space may be available and in many cases these types of antennas can be erected on buildings. Fixed station and transportable versions are available<br>These antennas are horizontally polarised therefore giving a performance that is virtually unaffected by ground conditions No loaded elements are used, the antenna comprising arrays of half wave dipole elements. The LDA 10 is rated at 1 Kw power handling, and a 10 Kw version is in advace stage of testing<br>If required we can carry out irstallation of the array including the foundation work of the

## RADIO MASTS LTD.



BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION Instrument cases
 , Bentrumenent cases




# ath TMATITILIC 5 WINDSOR, BERKS. <br> SL4 1HS. <br> TEL. 54525 



HEW LOW PRICES.










## ETIDS TTL Fint



Full spec devices
DAIO pen 75p

TCH RESIST PEX 2 TIP

FEC ETCH PAK TUB GOOgm £ 1 **
SCR AND TRIACS BR 100 25p*
TAG 1 A400V 50 p * 1 A600V 69p* RTACS SC. C106D 4a400 60p DISCO TRIAC $15 A 400 \mathrm{~V}$ e2*
audible harning bleeper
12 V 35 ma £ $1.20: 10$ of f £ 1 *
CAPACITORS 22pf - . 01 5p
EIECTROLYTIC IN $10 \& 25 \mathrm{~V}$
200/500 10p. $1000 / 25 \quad 20 \mathrm{p}$
POTENTIONETERS AB etc20p
PRESETS 6p ERESISTORS 2p
T03 16p. T03 4 'ifinned 50p DIN:PLUGS all 15p.Sock 10p
vero
Vro 0.1 . pitcil coppraclan

 black plastic cases 42 mix


## RETURN OF POST MAIL ORDER SERVICE


R.C.S. "MINOR" 10 watt AMPLIFIER KIT This $k$ it is sutable for record players. gutars. tape playback,
electronic instruments or small PA systems Two versions avalable Mono, £11.25; Stereo. £18. Post $45 p$ Specification SAE details Full insiructions supplied AC mains powered

| VOLUME <br> CONTROLS <br> 5 k ! to 2 MO LOG or LIN L/S 25p. D P 40p. STEREO L/S 65p. D P 85p. Edge 5K S P Transistor 30p. | 800hmCoax 8pyd. <br> STANDARD TYPE VHF FRINGE LOW LOSS Ideal 625 and colour yd. PLUGS 10p. SOCKETS 10p. LINE SOCKETS 18p. OUTLET BOXES 50p. |
| :---: | :---: |
| ELAC HI-FI SPEA 8in. TWIN CONE <br> Dual cone plasticised roll surro ceramic magnet 50-16.000 resonance $55 \mathrm{c} / \mathrm{s} 8 \mathrm{ohm}$ 10 watts music power $\mathcal{E} 3$. | ER |

E.M.I. $131 / 2 \times 8$ in. SPEAKER SALE! With tweeter and
crossover 10 watt
State 3 or 8 ohm

15 watts.
$B$ or 15 ohm

| £5.95 |  |
| :---: | :---: |
|  | $£ 9.50$ |



[^3]
## MANY ALI BOXES IN STOCK



RCS LOW VOLTAGE STABILISED POWER PACK KITS
£2.95 All parts and instructions with Zener diode transformer In and double wound mans Post 45 p voltages avalable, 6 or 75 or 9 or 12 Vdc up to 100 mA or less Size $3 \times 21 / 2 \times 11 / 21$ Please sta 12 VOLT, 750 mA . Complete with printed $£ 3.35$ circuit board and assembly instructions Posi 30p R.C.S.GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape, P.U. Guitar. etc. Can be used
$9-12 \mathrm{~V}$ or H T line $200-300 \mathrm{~V}$ d.c operation. Size $3 / 4$ in Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}$ ga
For use with valve or transistor equipment

E1.45
Full instructions supplied. Details S.A.E.
Post 30p

## ELECTRO MAGNETIC

## PENDULUM MECHANISM

 15 V dc . operation over 300 hours continuous on SP2battery, fully adjustable swing and speed Ideal displays.
teaching electro magnetism or for
metronome, strobe, etc.

## MAINS TRANSFORMERS

$250-0-25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 63 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A
$350.0-35080 \mathrm{~mA}, 63 \mathrm{~V} 3 \mathrm{~A} .63 \mathrm{~V} 1 \mathrm{~A}$ or 5 V 2 A. $3000-300 \mathrm{~V} 120 \mathrm{~mA}, 63 \mathrm{~V} 4 \mathrm{AC}$. 6 . 6 V 2 A MIDGET $220 \mathrm{~V} 45 \mathrm{~mA}, 6.3 \mathrm{~V} 2 \mathrm{~A}$ HEATED TRANS 63 V 1/2 $\operatorname{amp} £ 1 ; 3 \mathrm{amp}$ POST
50 p
$\mathbf{£ 3 . 4 5}$ GENERAL PURPOSE LOW VOLTAGE. Tapped outputs at 2
 £4..60. 2 amp. $6,8,10,12,16,18,20,24,30,36,40$
$48,60 £ 7.00 .3 \mathrm{amp} .6,8,10,12,16,18,20,24,30$ 36. $40,48,60$ £8.70. 5 amp 6. 8. 10, 12, 16, 18, 20. $24,30,36,40,48,60 £ 11,25.606 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$
amp $£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~V} 500 \mathrm{~mA} . £ 1.12 \mathrm{~V} 750 \mathrm{~mA}$. amp $£ 1,12 \mathrm{~V} 300 \mathrm{~mA}, ~ £ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1$. 12 V 750 mA .
$£ 1,10 \mathrm{~V}, 30 \mathrm{~V} .40 \mathrm{~V}, 2 \mathrm{amp}, £ 2.75,20 \mathrm{~V}, 3 \mathrm{amp} . \mathrm{£2.45}$,

 AUTO TRANSFORMERS 115 V to 230 V or 230 V to 150W £5; $250 \mathrm{~W} £ 6$; $400 \mathrm{~W} £ 7$; $500 \mathrm{~W} £ 8$.
FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
CHARGER TRANSFORMERS $11 / 2 \operatorname{amp} £ 2.75 ; 4$ amp $£ 4.60$.

## R.C.S.

ROSEWOOD

## SPEAKERS

Size $121 / 2$ in $\times 93 / 4$ in $\times$
$51 / 210$ Response 50 to
14,000 cps 8 watts ims
£12 pair post 75 p

## KUBA - KOPENHAGEN

## STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT This Continental 4 -band radiogram chassis uses inst class quality components throughout Features Large facia panel with 7 push on-off 4 -fotary con long. shori, VHF-FM. AFC. phono. Main size $17 \times 41 / 2$ inches Chassis size $17 \times 41 / 2 \times 51 / 2$ inches
DIN.connector sockets for tape record/playback. loudspeakers DIN-connector sockets for tape record/playback. loudspeakers phono pick-up external FM-AM aerials Auto matic stereo beacon light Built-in ferrite rod
£33.50 Circuit supplied
LOW VOLTAGE ELECTROLYTICS
LOW VOLTAGE ELECTROLYTICS
$1.2 .4 .58 .1625,3050,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 92 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2500 mF 50 V 62p; 3000 mF 25V 47p; 50 V 65p. 5000 mF 6 V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V}$ 85p; 50 V 95p. SHORT WAVE 100pF aır spaced gangable tuner 95p.
TRIMMERS 10pF, 30pF. 50 pF . 5p. 100pF, 150 pF .15 p . TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$. 50 pF . 5p. 100 pF . 150 pF . 15 p .
CERAMIC, 1 pF to 001 mF . 5 p . Silver Mica 2 to 5000 pF . CERAMIC, 1 pF to 001 mF . 5 p . Silver Mica 2 to 5000 pF 5 p . PAPER 350V-0 1 7p; 05 13p; 1 mF 150 V 15p; 2 mF 150 V
15p; 500V-0.00 100.05 5p; $0110 \mathrm{p} ; 025$ 13p; 047 25p. $15 p ; 500 \mathrm{~V}-0.001$ to 0.05 5p; 01 10p; $02513 p ; 04725 p$
MICRO SWITCH SINGLE POLE CHANGEOVER 20p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p.
SUB-MIN MICRO SWITCH, 25p. Single pole change o SUB-MIN MICRO SWITCH, 25p. Single pole change over
TWIN GANG, $385+385 \mathrm{pF} 50 \mathrm{p}$; 500 pF standard 75 p : $365+365+25+25 \mathrm{pF}$ Slow motion drive 65 p . 120 pF TWIN GANG, 50p; 365pF TWIN GANG, 50p NEON PANEL INDICATORS 250V. Amber or red 30 p . RESISTORS. $1 / 4 \mathrm{~W} .1 / 2 \mathrm{~W}$. $1 \mathrm{~W} 20 \%$ 2p; 2 W 10 p ; 10.2 to 10 M HIGH STABILITY. $1 / 2 W \mathrm{~W} 2 \% 10$ ohms to 6 meg .12 p .
Ditto $5 \%$ Preferred values 10 ohms to 10 meg . 5 p . Ditto $5 \%$ Preferred values 10 ohms to 10 meg . $\mathbf{5 p}$.
WIRE-WOUND RESISTORS 5 watt 10 watt. 15 watt, 0 ohms to 100K 12p each.
TAPE OSCILLATOR COIL. Valve type $35 p$
BRIDGE RECTIFIER 200 V PIV $1 / 2$ amp 50 p
20p. D S T 25p. D P D F 30p
MANY OTHER TOGGLES IN STOCK.

## SONOTONE stereo $£ 2.00$



BAKER "BIG-SOUND" SPFAKERS. Posi 50p each.
'Group 25' $\quad$ Group 35' Group 50/15'


BAKER LOUDSPEAKER, 12 INCH. 60 WATT
GROUP 50/12, 8 OR 15 OHM HIGH POWER
FULL RANGE PROFESSIONAL QUALITY
30-16.000 CPS
MASSIVE CERAMIC MAGNET
$£ 16.50$
WITH ALUMINIUM PRESENC
Post 80p CENTRE DOME
TEAK VENEERED HI.FI SPEAKERS AND CABINETS
For 12 n or 1 Oin. speaker $20 \times 13 \times 12$ n. $£ 14.50$ PoSt 95 p
For $13 \times 8$ in or 8 m . speaker
For $8 \times 5$ in speaker $12 \times 8 \times 6 \mathrm{in}$
R.C.S. 100 watt

VALVE
AMPLIFIER
CHASSIS


Four inputs four way mixing, master volume. treble and bass controls Suits all speakers. This professional quality ampliter ower is required. 5 speaker output socket. Produced by demand for a quality valve amplifier. 100 V line output to order. 885 Send for leaflet. Suitable carrying cab £14. Price $£ 85$ carr $£ 2.50$ SPEAKER COVERING MATERIALS. Samples Large SAE LOUDSPEAKER CABINET WADDING 18in. wIde 20p Horn Tweeters $2.16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm of $15 \mathrm{ohm} £ 3.60$
De Luxe Horn Tweeters $3-1 \mathrm{kkc} / \mathrm{s} 30 \mathrm{~W} 8$ ohm $£ 7.50$ De Luxe Horn Tweeters $3-1 \mathrm{Bkc} / \mathrm{s}$, 30W 8 ohm . $\mathbf{£ 7 . 5 0}$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ E1.90. 3-way 950 CPS 3000 cps. £2. 20 .
£1.80; $8 \times 5 \mathrm{in}, £ 1.90 ; 8 \mathrm{in} . . \mathrm{£} 1.95$.
 ohm $21 / 2 \mathrm{mn} .3 \mathrm{~mm}, 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{nn}$. B ohm $21 / 2 \mathrm{in}, 3 \mathrm{in} .31 / 2 \mathrm{in}$ $3 \mathrm{onm}, 2^{1 / 21 n} .25 / 1 / \mathrm{In}^{21 / 2 n}, 31 / 2 \mathrm{n}$.. 5 in dia. $£ 1.25$ each PHILIPS LOUDSPEAKER, Bin, 4 ohms, 4 watts. © 1.95 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in diameter $4 W \mathrm{E} 2.50$. 10 in diameter $5 \mathrm{~W} £ 2.95$; VALVE OUTPUT TRANS. 40p; MIKE TRANS. $501,40 \mathrm{p}$. VALVE OUTPUT TRANS. 40p; MI
Mike trans mu metal $1001 \mathbf{£ 1 . 2 5 .}$.
Tweeter Volume Control 15 ohms 10W with one inch long threaded bush for wood panel mounting $1 / 4 \mathrm{in}$. spindle 65 p.
BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER All purpose transistorise
Ideal for Groups. Disco

 bass controls Master volume control
Guaranteed Details S A E Guaranteed Details SAE
 2 vol Treble and bass Ideal disco

£49

E 1
100 WATT DISCO AMPLIFIER CHASSIS volume, treble, bass controls. $500 \mathrm{M} . \mathrm{V}$. or 1 volt input
Four loudspeaker outputs 4 to 16 ohm . All transistor. £52
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER Add musical highlights and sound effects to recordings
Will mix Microphone, records, tape and tuner
with separate controls into single output, 9 V . $£ 5.20$
TWO STEREO CHANNEL VERSION £6.85 BARGAIN 3 WATT AMPLIFIER 4 Tran
Push-Pull Ready Built, with volume Treble £3.95
and bass controls. 18 volt d c Mains Power Pack $£ 3.45$
BALANCED TWIN RIBBON FEEDER 300 ohms. 5p yd.
JACK SOCKEV Std. open-circuit 20p, closed circuit 25p;
Chrome Lead-Socket 45 p . Mono or Stereo.
JACK PLUGS St Cho 30 .
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15p. DIN SOCKETS Chassis 3 -pin 10 p 5 25p.
DIN SOCKEIS FREE 3-pin 25 p. 5-pin 10 p .
DIN SOCKEIS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS
3 -pin 25 p; 5 -pin 75 p. VALVE HOLDERS, 10 p; CANS 10 p

R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to light unit
1.000 watts per channel $£ 12.50$. Post 35 p.

E.M.I. TAPE MÓTORS. 240 V a c 1.200
rom 4 pole Spindle $0187 \times 0$
$31 / 4 \times 21 / 2 \times 21 / 4$ in $£ 2$. Post 50 p
Collaro gram motor $120 \vee 75$ p.

LYNX ELECTRONICS (LONDON) LTD.

| AC126 | 0.15 | вс301 | 0.3 | BT116 | 1.00 | Tipsita | 0.88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {AC127 }}$ | 0.16 | ${ }_{\text {BC }} 323$ | 0.60 | Bu10 | 1.800. | TIP42A | 0.72 |
| AC128 | 0.13 | 8c327 | 0.1 | Bul05/02 | 1.20 | in2069 | 0.14 |
| AC128K | 0.25 | вс328 | $0.16^{-}$ | Bu126 | 1.8 | 1N2070 | 0.16 |
| ${ }_{\text {ACl141 }}$ | 0.18 | вc337 | $0.17{ }^{\circ}$ | 8 8206 | 0.1 | IN4001 |  |
| AC141K | 0.28 | ec338 | 0.17 | BY207 | 0.20 . | IN4002 |  |
| ${ }^{\text {ach }} 142$ | 0.18 | BCY70 | 0.12 | Byx36- |  | IN4003 | 0.00 |
| AC142K | 0.28 | BCY71 | 0.18 | 300 | 0.12. | IN4004 |  |
| AC176 | 0.16 | BCY72 | 0.12 | 600 | ${ }^{0.15}$ | 1N4005 |  |
| AC176K | 0.26 | B0115 | 0.65 | 900 | 0.18. | 1 N 4006 |  |
| ${ }^{\text {ACl }} 187$ | 0.18 | B0131 | 0.36 | 1200 | 0.21 | IN4007 |  |
| AC187K | 0.25 | 80132 | 0.40 | BYX38- |  | ${ }_{2} \mathbf{N 6 9 6}$ |  |
| AC188 | 0.18 | 80135 | 0.36 | 300 | 0.50 | ${ }^{2} \mathbf{N 6 9 7}$ | 2 |
| AC188k | 0.26 | 80136 | 0.38 | 600 | 0.55 | 2 N 06 | $1{ }^{1}$ |
| ${ }^{\text {ADT }}$ AO | 0.50 | BD137 | 0.40 | 900 | .es | ${ }^{2} \mathbf{N 9 2 9}$ | 14 |
| ${ }_{\text {AD1 }} 12$ | 0.50 | 80138 | 0.48 | 1200 | 8. 38 | 2 Ng 3 | 14 |
| ${ }^{40143}$ | 0.46 | 80139 | 0.58 | $82 \times 61$ | Sories | 2 N 113 | 18 |
| AD149 | 0.45 | 80181 | 0.36 | 2eners | 0.20 | 2 N 1132 |  |
| ${ }^{\text {AD161 }}$ | 0.38 | 80182 | 0.92 | Bzx83 ${ }^{\text {or }}$ |  | 2 N 1304 |  |
| ${ }_{\text {AD1 } 162}$ | 0.35 | 80183 | 0.97 | $82 \times 88$ Serie |  | 2N1305 |  |
| Al102 | 0.98 | 80232 | $0.60^{\circ}$ | Zeners | 0.11 | 2 N 171 | 18 |
| Al103 | 0.93 | 80233 | $0.45^{\circ}$ | C1064 | $\bigcirc$ | 2N2102 |  |
| AF114 | 0.20 | 80237 | $0.55^{\circ}$ | C1068 | 0.46 | 2 N 2368 |  |
| AF115 | 0.20 | 80238 | 0.60 | C1060 | -.50 |  |  |
| Af 116 | 0.20 | 80184 | 1.20 | Cl06F | 0.38 | 2 N |  |
| AF117 | 0.20 | ${ }^{\text {Bor20 }}$ | 0.80 | Chsi ${ }^{\text {ch }}$ | 0.25 | ${ }_{2}{ }^{\text {N26965 }}$ | 18 |
| Afti8 | 0.5 | 80r38 | 0.80 | Casi 20 | 0.20 | 2 N 2905 | 0.22 |
| ${ }_{\text {af } 239}$ | ${ }_{0}^{0.38}$ | $80 ¢ 60$ | . 10 | CRSI 140 | 0.30 | ${ }_{2 N 29268}$ | . |
| ${ }_{\text {BC1 }} 107$ | 0.14 | 80761 | 1.65 | CASI 60 | ${ }^{0} 5$ | 2 N 29260 |  |
| ${ }_{\text {BC1 }}$ (1078 | 0.18 | $80{ }^{8} 892$ | ${ }^{1.52}$ | CRS3 305 | 0.34 | 2 N 2926 Y |  |
| ${ }_{\text {BC1 }} 108$ | 0.13 | ${ }^{80} 8094$ | ${ }_{2.14}$ | CRS3 ${ }^{10}$ | 4 | 2N2926G |  |
| ${ }_{\text {BC109 }}$ | 0.14 | ${ }_{\text {BOY95 }}$ | 2.14 | CRS3 20 | 0.50 |  |  |
|  | 0.12 | B0Y96 | ${ }_{4.63}$ | CRS3 40 | 0.00 |  |  |
| ${ }_{8 C 117}$ | 0.18. | ${ }_{\text {B0r97 }}$ | ${ }_{3.93}$ | CRS3 60 | 0.85 |  |  |
|  |  | 80Y98 | 3.56 | MJ480 | 0.80 | 2 N 3440 |  |
| ${ }_{8 C 126}$ | $0.20^{\circ}$ | ${ }_{\text {BFiP8 }}$ | 0.28 | MJ481 | 1.05 | 2 N 3442 |  |
| ${ }_{\text {BC141 }}$ | 0.28 | 8Fi79 | 0.30 | мJ490 | 90 | 2 N 3525 |  |
| ${ }_{8 C 142}$ | 0.23 | 8F194 | $0.10^{\circ}$ | MJ491 | 15 |  |  |
| ${ }_{\text {BC1 } 143}$ | 0.23 | 8 F 195 | $0.10^{\circ}$ | MJE340 | 4. |  | $1{ }^{\circ}$ |
| ${ }_{\text {BC144 }}$ | 0.30 | BF 196 | 0.12 | M 5 E371 | 0.00 |  | $1{ }^{\circ}$ |
| ${ }_{8 C 14}$ | $0.08 \cdot$ | ${ }_{\text {BF197 }}$ | 0.12 | MJE520 | 5 |  | $10^{\circ}$ |
| ${ }_{\text {BC1 }} 148$ | 0.04 |  | $0.18^{\circ}$ | MJE521 | 0.65 |  | $1{ }^{\circ}$ |
| BC149 | 0.00 | BF244 | 0.17 | OAS | 0.50. | 2N3706 | $10^{\circ}$ |
| ${ }_{\text {BC1 }} 52$ | $0.25{ }^{\text {- }}$ | BF257 | $0.30^{\circ}$ | OA90 | 0.08 |  | $10^{\circ}$ |
| BC153 | $0.10^{*}$ | ${ }^{\text {BF } 258}$ | 0.35 | OA91 | 0.08 | 2N3714 | 1.05 |
| ${ }^{8 C 157}$ | ${ }^{0.004}$ | 8 8337 | 0.32. | ${ }^{0} \mathrm{C} 41$ | 0.18 | 2 N 3715 | 1.15 |
| ${ }^{\text {BC158 }}$ | ${ }^{0.009}$ | 8 8F60 | 0.17 | ${ }^{0} \mathrm{C} 44$ | 0.32 | ${ }^{2 N 3716}$ | 1.28 |
| ${ }^{\text {BC1 } 159}$ |  | 8F×29 | 0.30 | $\bigcirc{ }^{\text {OC45 }}$ | ${ }^{\text {0.32 }}$ |  |  |
| ${ }^{\text {BC160 }}$ | 0.32 | ${ }_{\text {BFY }}$ | 0.23 | $\mathrm{OC}_{71}$ | 0.35 | ${ }_{2 \text { N3773 }}$ | 2.10 |
| BC161 | ${ }_{0}^{0.38 .}$ | ${ }_{8 \times \times 85}$ | 0.25 |  | 0.22 | 2 N 3819 | $0.28^{\circ}$ |
| ${ }_{\text {BC }} 182$ | 0.11. | BFx8B | 0.20 | OC84 | 0.46 | 2N3904 | $0.16^{\circ}$ |
| BC182L | $0.11^{\circ}$ | Bfy50 | 0.20 | OCB4 | 0.14 | 2 N 39 | $1{ }^{\circ}$ |
| BC183 | $0.10^{\circ}$ | BFY51 | 0.18 | SC40A | 0.13 | 24 | 0.14 |
| BC183L | 0.10 | BFY52 | 0.19 | SC408 | 0.81 | 2 N 4290 | 0.12 |
| ${ }^{8 C 1} 184$ | $0.11{ }^{\text {c }}$ | BFY64 | 0.35 | ${ }^{\text {SC400 }}$ | 0.88 | 2 N 4348 | 1.20. |
| BC184L | $0.11{ }^{0}$ | BFY90 | 0.05 | SC40F | 0.65 | 2 N 4870 | ${ }^{0.355^{\circ}}$ |
| ${ }^{\text {BC20 }}$ | 0.11. | Bry39 | 0.20 | ${ }_{\text {SC418 }}$ | 0.70 | ${ }_{\text {2N4919 }}$ |  |
| ${ }_{\text {BC2 }}$ 22L | $0.11{ }^{\text {- }}$ | ${ }_{85 \times 19}$ | 0.16 | SCA10 | 0.85 | 2 N 492 O | -. $50^{\circ}$ |
| BC213 | $0.12^{*}$ | BS× 20 | 0.18 | SC4 | 0.60 | 22 | $0.55^{5}$ |
| BC2 13 L | $0.12^{*}$ | BS×21 | 0.20 | ST2 | 0.20 | ${ }^{2} \mathbf{N 4 9 2 3}$ | 0.45 |
| BC214 | 0.14* |  | 0.12 | TIP29A | 0.4.4 | $2 \mathrm{2N} 5060$ | - $0.25^{0 .}$ |
| BC214L | ${ }^{0.144^{\circ}}$ |  | 1.00 | TIP30A | 0. ${ }^{\text {P2 }}$ |  | ${ }^{0.38}$ |
| 8c237 | ${ }^{0.16}$ | BT107 | 1.60 | TiP31A | O. 5 | ${ }^{2} \mathbf{2 N 5 0 6 2}$ | ${ }^{0.35}$ |
| ${ }_{\text {BC300 }}$ | 0.34 | ${ }_{\text {BT109 }}$ | 1.00 | TIP34 | 1.05 | 2N5496 | 0.65 |

## DIGITAL DISPLAYS \& LEDs

| $\begin{aligned} & \text { DL704 } \\ & \text { pilo } \\ & 01727 \end{aligned}$ | $\begin{array}{r} 99 p \\ \begin{array}{c} 99 p \\ \varepsilon 1.85 \end{array} \end{array}$ |  |  |  | 2 RED LED ONLY GREN TL209 |  | 13 20 10 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THYRISTORS |  |  |  |  |  |  |  |
|  | 088 (1092) | ${ }_{(105)}^{1 / 29}$ | $(C 106 \mathrm{~A}$ | (\%A40) | ${ }_{\text {cois }}^{68}$ | (10220) | ${ }_{\text {(10220 }}^{108}$ |
| 50 | $0.25{ }^{\text {¢ }}$ | 25 |  | 38 | 41 |  | ${ }_{54}$ |
| 100 200 | ${ }^{0.288^{\circ}}$ | ${ }_{35}^{25}$ |  | ${ }_{51}^{42}$ | 58 |  | ${ }_{68}^{58}$ |
| ${ }_{400}$ | ${ }^{0.30^{\circ}}$ | 380 | ${ }^{50}$ | ${ }_{50}$ | ${ }^{58}$ | ${ }_{80}$ | ${ }_{88}^{88}$ |
| ${ }_{600}^{40}$ | $0.35{ }^{\circ}$ | ${ }_{68}$ | 70 | 8 | 1.09 | 1.18 | 1.28 |

TRIACS (PLASTIC TO-220 PKGE ISOLATED TAB)

100 V
200 V
400 V

| (a) | (b) |
| :---: | :---: |
| $0 . .00$ | 0.50 |
| 0.04 | 0.64 |
| 0.77 | 0.78 |

(13)
0.70
0.75
0.80

$\begin{array}{ll}(a) \\ 0.78 & 0.78 \\ 0.87 & 0.87 \\ 0.87 & 1.01 \\ 0.21 & 1.25\end{array}$ $\begin{array}{ll}\text { (a) } & \text { (b) } \\ 0.83 & 0.83 \\ 0.87 & 0.87 \\ 1.13 & 1.18 \\ 1.82 & 1.50\end{array}$

N.B Triacs without internal trigger ilac are priced under column (a). Thacs win internal triggor dac
are priced under column (b) When ordering please indicate ciearly the type required.

## TTL 74 SERIES PLASTIC

| 0 | 0.16 | 7420 | 0.16 | 7447 | 0.8 | 7483 | 1.12 | 74119 | 1.92 | 63 | . 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7401 | 0.16 | 7422 | 0.38 | 7448 | 0.81 | 7484 | 0.85 | 741 | 34 |  | 0.93 |
| 20 | 0.16 | 7423 | 10 | 7450 | 5 | 7485 | 1.25 | 47122 | 0 | 74165 | 0.93 |
| 7404 | 0.18 | 7427 | 0.48 | ${ }_{7453}$ | 0.18 | 7489 | 2.92 | 74125 | 0.7 | 74174 | 1.06 |
| 7405 | 0.18 | 7428 | 0.53 | 7454 | 0.18 | 7490 | 0.45 | 74141 | 0.75 | 24175 | . 94 |
|  |  |  | 16 | 7460 | 0.18 | 74 |  | 74145 | 0.74 | 74176 | . 86 |
|  | 0.18 |  | 0.37 | 7470 | 0.32 | 74 |  | 74150 | 1.20 | 74180 | 23 |
|  | 0.18 |  |  | 7472 | 0.26 | 74 |  | 74151 | . 77 |  | ${ }^{20}$ |
| 9 | 0.18 | 7437 | 5 | 7473 | 0.30 | 7494 | 85 | 74153 | . 08 | 74190 |  |
|  | 0.16 | 7438 | 35 | 7474 | 0.32 | 74 | 0.67 | 74154 | 1.62 | 74191 | 33 |
| 2 | 0.25 | 7440 | 0.16 | 7475 | 0.47 | 7496 | 0.78 | 74155 | . 32 | 74192 | 1.39 |
|  | 0.25 | 7441 | 0.76 | 86 | 0.36 | 749 | 4.32 | 74157 | 0.78 |  |  |
| 7414 | 0.72 |  | 15 | 80 | 0.55 | 74100 |  | 74160 | . 20 |  |  |
| 7416 | , |  |  |  | 1.28 |  |  |  |  | 97 | . 81 |
|  | 4 |  |  | 7482 | 0.75 |  |  |  | 1.20 | 74198 | ${ }_{2} 2.74$ |

## LINEARICs

LM307
LM380
NE555
NE555
NE565
NE566
NE567
$0.85^{5}$
$0.00^{\circ}$
0.48
2.00
$1.600^{\circ}$
$2.00^{\circ}$

T10-3 Transisfor mounling kils |  |
| :--- |
|  |
| $.177^{\circ}$ |
| 0.91 |
| $0.45^{\circ}$ |
| 1.31. |
| 1.25 |
| $1.85^{\circ}$ |



HIGHAM MEED, CHESHAM, BUCKS. Tel. [02405〕 75154
VAT - Please add $8 \%$ except items marked " which are $12 \frac{1}{2} \%$ P\&P 20p. Overseas 80p
ACCESS \& BARCLAYCARD ORDERS ACCEPTED


## 8 DECADE RESISTANCE BOX



TIME ELECTRONICS LTD.
Botany Industrial Estate Tonbridge, Kent
Tel. Tonbridge (0732) 355993



## Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for stereo processor
-regulated power supply components
--board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: $£ 37.90$ +VAT
Also available ready built and tested
Price $£ 52.00+\mathrm{VAT}$
Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ 2.00+$ VAT*
Single channel plug-in Dolby ${ }^{(M M)}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with ali components

Price $£ \mathbf{7 . 2 0}+\mathrm{VAT}$
Single channel board with selected fet
Price $£ \mathbf{2} \mathbf{2 0}+$ VAT
Gold plated edge connector
Price $£ 1.40$ +VAT*
Selected FET's. 60p each + VAT, 100p + VAT for two, $\mathbf{£ 1 . 9 0 + V A T}$ for four
Please add VAT $12 \frac{1}{2} \%$ unless marked thus*, then $8 \%$ applies
We guarantee full after-sales technical and servicing facilities on all our kits, have
you checked that these services are available from other suppliers?

## IITEEREK

## S-2020TA STEREO TUNER / AMPLIFIER KIT

## SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than $0.1 \%$ at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range' $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD $0.3 \%$. Pre-decoder 'birdy' filter.

PRICE: £53.95 + VAT

## NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.


Brief Spec. Tuning range $88-104 \mathrm{MHz}, 20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection-85dB. THD typically 0.4\%
IC stabilized PSU and LED tuning indicators. Push-button funing and AFC unit. Choice of etther mono or stereo with a choice of stereo decoders
Compare this spec with tuners costing twice the price

Mono £29.15 + VAT<br>With ICPL Decoder $£ 33.42$ +VAT<br>With Portus-Haywood Decoder<br>$£ 35.95$ + VAT



Sens. 30dB S/N mono@1.2 VV
THD typically $0.3 \%$
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

## STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter

PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input $\mathrm{S} / \mathrm{N}$ Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than $0.1 \%$ THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio in

PRICE: £31.95 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT
$£ 14.28$ +VAT
$£ 16.75$ + VAT

PHASE-LOCKED IC DECODER KIT PUSH-BUTTON UNIT
$\mathbf{£ 4 . 4 7 + V A T}$
$£ 4.50$ +VAT


EMUIRHEAD D－658 18＂MUFAX CHART TRANSMITTE
E Further details on request．For $110 / 250 \mathrm{v}$ a．c．operation $£ 325.00$
EMEGGER（Record）： 500 volts $£ 20.00 £ 1.00$ post
EMEGGER（Evershed Vignoles）： 250 volts $£ 17.50 \mathrm{E} 1.00$ post
－R2I6 Receiver MANUAL（photostat copy）：$£ 1.50$ inc．post
－RACAL I．S．B．ADAPTOR RA－95A：£65．Carr．£2
巨MUIRHEAD ATTENUATORS：$\overline{75}$ ohms $0-8 \overline{\mathrm{M}} \mathrm{C} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $0-5,0-25$ ， － $0-50$ DB $\mathbf{6 3 . 0 0}+75$ p post
ECREED MODEL 75 TELEPRINTER：Receiver only $\mathbf{£ 3 0 . 0 0}$ ．Carr．£3
EDDDYSTONE TELEPRINTER ADAPTOR TYPE 937：£45．Carr．£1
－WILD BARFIELD ELECTRIC FURNACE MODEL CCI．22X：With ether Eindicating temperature controllers Model 990．0－1400 ${ }^{\circ} \mathrm{C}$ ．£250．Carr．£5
CAPACITOR： 10 mfd 20 Kv working．$£ 35.00$ each． $\bar{C}$ arr．$£ 5.00$
POWER UNIT TYPE 234：200－250va．c．input，250－0－250v d．c．＠100mA and 6．3v ＠ 4 amps output．$£ 7.50$ each．Carr．$£ 200$
EREDIFON TELEPRINTER RELAY UNIT No．12：ZA－41196 and power supply －200－250V a．c．Polarised relay type 3 SEITR， $80-0 \mathrm{~V}$ ． 25 mA ．Two stabilised values
－CV 286 ．Centre Zero Meter $10-0-10$ ．Size 8 in ．x 8 in ．x 8 in ．New condition．£ió －Carr．75p．
ESOLARTRON PULSE GENERATUR TYPE GiIul－2：£75．00 each．Carr．£2．00
ETELEPRINTER TYPE 7B：Pageprinter 24 V d．c．power supply，speed 50 bauds per min．second hand cond．（excellent order）no parts broken．$\in 20$ each．Carriage $£ 3$ ． $5^{\prime \prime} \times 6 y^{\prime \prime}$（ CRYSTAL Bitumen impregnated £I200．Carr €l． 5
CRYSTAL TEST SET TYPE I93：used for checking crystals in freq．range
$3000-10.000 \mathrm{KHz}$ ．Mains 230 V 50 Hz ．Measures crystal current under conditions and the equivalent resistance．Crystal freq．can be tested in
contunction with a freq．meter．E25．Carr．£1．50
SOLARTRON VARIABLE POWER UNIT S．R．S． $1535: 0-500$ volts at 100 inA and
6.3 volts C．T． 3 aınps d．c． $110 / 250$ volts a．c．input．$£ 18.50$ ．Carr．$£ 1.50$

ECATHODE RAY TUBES． $5^{\prime \prime}$ screen，type CV－1536．£4．00 + £ 1.00 post．Type 95J20 square face $5 \times 3 \times 7.50+£ 1.00$ post．
ADVANCE A．F．SIGNAL GENERATORS HI：Sinesoidal or square wave output． $15-50 \mathrm{kHz}$ ．Adjustable level between 200 uv and 20 v ．Overall distortion less than $1 \%$ ．Output adjustable $1.4 \mathrm{mV}-140 \mathrm{v}$ ．Waveform ratio $50: 50$ up to 25 kHz ． Standard a．c．mains input Secondhand condition．£25．00．Carr．£2．00．
POWER UNIT： $110 / 230 \mathrm{v}$ ．a．c．input，28v．d．c．＠ 40 amps output．£30．00．Carr． E3．00．
SMOOTHING UNIT：（for the above Power unit）£10．00．Carr．£2．00
ECLĀSS＇D＇WAVEMETER NO．1：Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$ ．Power supply 6 V d．c．Good secondhand condition E8．50．Carr．£1．50．

All U．K．orders subject to Value Added Tax
PRECISION PHASE DETECTOR TYPE 205：Freq． $0.1-15 \mathrm{MHz}$ in 5
Variable time delav microseconds $0-0.1 \mathrm{C}, 115 \mathrm{~V}$ input．£55 each．Carr．£1 RING TOROIDAL DUST CORES：Size $21 / 2^{\prime \prime}$ outside $13 / 4$ inside $5 / 16^{\prime \prime}$ thick．Box of wo £I．00．Post 30p．
MUIRHEAD PHASEMETER TYPE D729：A．M．£95．00．Carr．£3． 00
CT． 420 SIGNAL GENERATOR： $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning．Two fixed frequencies 9000 and 10,000 ．Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$ ．$£ 75$ each carr．$£ 2$ ． NOISE GENERATOR TF－1106：Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration．Output impedance 70 ohms $£ 65$ each．Carr．$£ 1.50$ ．
MW－59 UNIVERSAL KLYSTRON POWER SUPPLY：£85．Carr．£3．
TF－I278／I TRAVELLING TUBE WAVE AMPLIFIER： $\mathbb{E 1 2 5}$ ．Carr．$£ 2$
BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk．3： 2 millivolts－ 2 volts， 6 ranges．£30．Carr．£1．
C＇i iWKELL REMSCOPE TYPE 741 ：Memory scope．＇as new＇cond．£150．00． MANSON＇SYNTHESISER QII5－URC： $2-30 \mathrm{mc} / \mathrm{s}$ ．£I75．00．
FIREPROOF TELEPHONES：$£ 25.00$ each，carr．$£ 1.50$.
BACKWARD WAVE OSCILLATOR TYPE SE－125： 6.3 heater． 105 V Ànode， .9 mA ．Mnfr．Watkins \＆Johnson．£85 each．Carr．E
X－RAND MODULATOR CALIBRATOR TYPE MC－4420－X：Mnfr．James Scott 125 each．Carr．£1
ROTARY INVERTEKS：TYPE PE． 218 E －input 24.28 V d．c．， $80 \mathrm{Amps} .4,800 \mathrm{rpm}$ Output 115 V a．c． $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$ ．IPh．P．F． $9 . £ 20.00$ each．Carr．$£ 2.50$
FREQUENCY METER BC－221：125－20，000 Kcs coniplete win onginal calibration charts．Checked out，working order．$£ 21.00+£ 1.50$ carr．
RECTIFIER UNIT： $200-250$ v a．c．input， 24 v d．c．（a） 26 amps output continuous rating．£35．00 each．Carr．$£ 5.00$ ．
EVERSHED SAFETY OHM．METER：Max luila．Test pressure 30v．Lumplet in leather case．$£ 25.00$ each，post $£ 1.00$ ．
AUTOMATIC VOLTAGE STABILIZERS：Input $207-242 \mathrm{v}$ a．c．Output 230 v a c t 2.80 amps．$£ 17.50$ ，carriage $£ 1.50$.
AVO TRANSISTOR ANALYSER CT．446：£35．00．Carr．£2．00． HEWLETT PACKARD PUL．SE GENERATOR Type 2I5A； $1 \mathrm{kHz}-1 \mathrm{mHz}$ Pulse width 0－110 Nsecs．Attenuator 0－12db．£75．00．Carr．£2．00 ADVANCE TCD． 40 FREQUENCY DIVIDER： $0-40 \mathrm{mHz} . £ 10.00$ each．Post $£ 1.00$ ． MARCONI FREQUENCY METER $1026 / 4: 2000-4000 \mathrm{mHz}$＇as new＇condition． $\mathbf{3 0 . 0 0}$ ，or secondhand $£ 22.50$
$1026 / 2: 0-100 \mathrm{mHz} £ 30.00$＇as new＇，or s／hand $£ 22.50$ ．Carriage for all types $£ 2.00$ ． ANTENNA MAST 36ft．：Aluminium，diameter at base $3^{\prime \prime}$ tapering to $2^{\prime \prime}$ at top complete with red hazard lights，stays，guys．etc．Normally used with direction inding equipment．Approx．weight 3 cwt ．$£ 95.00$ each．carriage rates on request Vith rotating Antenna suitable for $200-400 \mathrm{mHz}, £ 15.00$ extra．
BURGLAR ALARM BELL： $6-8 v$. d．c．$£ 3.00, \mathfrak{£} 1.00$ post．
Carriage quotes given are for 50 －mile radius of Herts．

## $20 \times 20$ Watt STEREO AMPLIFIER

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panet features two mains outlets, DIN speaker and input sockets
plus fuse $20+20$ watts rms, $40+40$ watts peak.

## TOW YOUCAISAVI

## SYSTEM 1B

For only $£ 80$, you get the $20+20$ watt Viscount IV amplifier; a pair of our 12-wattrms Duo Type Ilb matched speakers; a BSR MP 60 type deck complete with magnetic cartridge, de luxe plinth and cover

## SYSTEM 2

Comprising our 20+20 watt Viscōunt IV amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts rms each; and a BSR MP 60 type deck with magnetic cartridge.
de luxe plinth and cover.
£g200
£2990
23?
(1b


DIY STEREO SYSTEM
COMPLETE WITH SPEAKERS Here's real value in DIY! Comprises ready-built amplifier module, 3-speed Garrard auto-return deck, and teak-veneer simulate cabinets with clear plastic top.
Easily built by hobbyists.

Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is
ready punched, drilled and formed. Cabinet is finished in teak veneer. Black fascia and easy-to-handle aluminium knobs. Outpul $30+30$ watts
$£ 2900$
rms, $60+60$ peak.

- $\&$ p. $£ 2.10$


STEREO CASSETTE DECK KIT
Again, this kit is specially designed for the experienced constructor - for mounting into his own cabinet Features include solenoid assisted pap free menem AUTO-STOP. 3-digit counter, PLP FREE record/replay PC board, mains ransformer and input and outpu £325 conirols. AC BIAS AND ERASE

## 4

35-WATT DISCO AMP
Here's the mono unit you need to start off with. Gives you a good solid 35 watts ms , 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral
push-pull switches. Independent bass and treble controls and master volume $\mathbf{\Sigma 2 7 5 0}$

## 70 and 100 WATT DISCO AMPLIFIERS

ar bother Brushed aluninumintascia ald rotary
master volume, rape level, nuc level deck leve
gradualed change tron I fecorit

before lating it in VU nielet
warts mis. 140 uarls peak
ourpu! All the big train
ampl tiver but wistha a IIrassuve
85400

ELECTROLYTIC CAPACITORS AT BARGAIN PRICES
All brand new from repuizabe international manutacturers PACK 1. Conlaining 30 mixed Electrolplic valiés frow 4.7 mtd to 47 mid. Minimum 16 volt working.
${ }_{55 p}^{55}+20 p \mathrm{p} 8 \mathrm{p}$.
PACK 2. Conataining 17 mixed Electrolylic valves irom 100 mitd 102200 mto . Minimum 16 vall working. Mzjarity 40 voh working.

## Sirnclair <br> 1.C20,20WATS STEREOAMPLIFIER KIT WITH P22OPOWERUNT

 power amplitier with latest integrated circuitry. 10W RMS per channel outpu:, full short-circuitand overheat protection. and oveheas protection.
LISTE14.50 OUR PRICE
O.

## TOURIST IV PUSHBUTTON CAR RADIO KIT

[mOTOR TOP 10 AWARD]
Complete with speaker, batfle and fixing strips The Tourist IV for the
only.
only.
The Teurist IV has five push-butsons. four modiven band and oun ler long wave band.
The
The luning acale is illumimated and attractive apun aluminium conirol knobs are usad
coalrol.


PORTABLE DISCO CONSOLE with built-in pre-amplifiers Here's the big-value portable disco console from RT-VC! It features a pai of BSR MP 60 type auto-return single-play protessional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply
£5500 connects into your existing slave or external amplifier

The modern styla lacia has treas dasignad to biend with masi car interior a and the finishod radio will zlot into : spprox. $7^{\prime \prime} \times 2^{\prime \prime} \times 43^{\prime \prime}{ }^{\prime \prime}$
approx. $\times 2 \times 4 \%$
Powor Supply: Mominal 12 volla positive or negativi earth (altured internaly). Power outur: 4 watts lato 4 ohma
$\mathbf{£ 1 0 . 5 0}+\mathrm{ptp} \mathrm{E} 1.50$

## ALLPRICESNC.Vai

GOODS NOT DESPATCHED OUTSIDE UK All items subject to availability Price correct at 1 st November 1976 and subject to change without notice
We are unable to show all our products so please send S.A.E. for our fully descriptive catalogue and any further information

EASY-TO-BUILD, WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI $13^{\prime \prime} \times 8$ (approx.) woofers, two 31/4" (approx.) tweeters and a pair of matching crossovers. Easily constructed. using a few basic tools. Supplied cemplete with an easy-to-follow circuit diagram, and crossover 'СОМРАСТ components. Input 15 watts rms, 30 watts peak,
 15-WATT KIT VOUCANER
IN CHASSIS FORM DOBETIEI
When you are looking for a good speaker why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) EM wooter, $3^{1 / 4^{\prime \prime}}$ (approx.) iweeter, and matching crossover

E750
 Power handling capacity 15 watts rms, 30 watts peak. PER SET

How about this for incredible bookshelf value from RT-VC! A pair of ghe efficiency units for only E7.50 just what you need for low-power amplifiers. The infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5$ (approx.) deep. and is finished in rosewood. Complete with Iwo -8" (approx.) speakers for max. power handling of 7 watts
$£ 750$
p\&p£1.70 per pair

## DECCA 20 WATTS STEREO SPEAKER

The kit comprises of two 8" diativer approx base drive unit with heawy the cast chassis lathntatet

## ones with rolle $P$ V C surrounds of two $3 \frac{1}{2}$ " diameter amprox

$\mathbf{5} \mathbf{3 0 . 0 0}+E 400 \mathrm{P}$ \& P

## 무ㄴㅣㅣㄷ

21E HIGH STREET, ACTON, LONDON W3 323 EDGWARE ROAD, LONDON W2 Personai Shop
Half day Thurs
ACTON: 930



|  |  |  |
| :---: | :---: | :---: |
| RELA |  |  |
| WHY PAY MORE?$\qquad$$\qquad$ 3 k . drmensions $120 \times 80 \times 44 \mathrm{~mm}$ Weigh32 kg SERVICE TRADING CO. Price $\mathbf{E 5 . 5 0}$ AT 8 Post $\mathbf{E 6 . 4 8}$.) |  | gearbox 27 Jmm Height 135 mm . Width 1 Veight 8.5 Kilos. BRANO NEW. Price E10 |
|  | LT TRANSFORMERS |  |
|  |  |  |
| 0 to 60 MINUTES CLOCKWORK TIMER. Double pole 15 amp 230aC Contacis fitted with 2 hole fixing | AUTO TRANSFORMERS At 75 watt $£ 3.00$ Post $40 p$. 150 watt $£ 4.30$ post $50 p$. 300 watt $£ 6.20$. Post $60 p .500$ watt $£ 9.20$ post $75 p$ 1000 watt $£ 13.50$ Post gop |  |
|  | 300 V.A. ISOLATING TRANSFORMER$\qquad$ |  |
|  |  |  |
|  |  | $6 / 9$ VOLT D.C. GOVERNED $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ Spindle 10 mm Dia 2 mm £1.00 Posi Paid Two tor $£ 1.65$ Post Pard. |
| 230 |  |  |
|  |  |  |
| 21 WAY SELECTOR SWITCH with reset co $\qquad$ switched up to 21 positions and can be reset fromany position energising the resetcoil $230 / 240 \mathrm{v}$ A.C. operatıoComplete with $\qquad$ | * hy-light strcbe mk. iv |  |
|  |  |  |
| PRECISION CENTRIFUGAL BLOWERS$\qquad$ |  | REVERSIBLE MOTOR <br>  |
|  |  | EV. PER HOU |
|  | big black light | METERS NEW somm inasion$\qquad$ |
|  |  |  |
|  |  | ROTARY VACUUM AIR COMPRESSOR AND PUMP |
|  |  |  |
| uniselector switch operation Ex now equmprent 75 p Total price sinc VAt E5.40 |  | TIME SWITCH |
| MINIATURE ROLLER MICRO SWITCH <br>  $\qquad$ |  |  |
|  | TRIAC |  |
| NEW HEAV SOLENOID | COLOUR WHEEL PROJECTOR TYPE P150 INTACHANGE <br>  |  |
| 230-250 VOLT A.C. SOLENOID Agproximately $11 / 210$ pull Size of leet $1 \%$, $3 / 16$ |  | GR REOWER |
|  |  |  |
| 240 A.C. SOLENOID OPERATED FLUID VALVE |  | $\qquad$ <br> PROGRAMME TIMERS |
| W00 WAT DIMMER SSWITCH |  | PROGRAMME TIMERS $\qquad$ $\qquad$ <br> 6 CAM model $£ 5.00$ $\qquad$ $\qquad$ $\qquad$ |
| 57 BRIDGMAN ROAD. CHISWICK. ONDON. W4 58B. Phone: 01 -995 156 Closed Sourroys. | SERVICE TRADING CO. | O. ${ }_{\text {O }}^{\text {PERSONAL CALERS ONLY }}$ |

Bahrain Singapore Thailand Iceland Brazil Sweden Germany Iran Jamaica St. Kitts Tunisia

## POWERTRAN ncomesemmo ELECTRONICS <br> AMBEIrcousITITS <br> HI-FI NEWS 75W/CHANNEL AMPLIFIER



In HI-Fi News there was published by Mr Linsley-Hood a series of fou articles (November, 1972-February, 1973) and a subsequent follow-up article (April. 1974) on a design for an amplifier of exceptiona performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts levels. The power amplifier is complemented by a pre-amplifier baw powe discrete component operational amplifier referred to as the Liniac which is asceled in the two most critical points of the sysiem, namely the equalization stage and tone control stage. positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter here is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed

Torordal transformer

```
Pyck
2. Sed of reulotors, capecturs. pro-sats for powar amp
```








```
    9. Sed of 4 mushboutton switches. rotary mode
```




Plack
11. Fervelas minted-circuit ward tor power Prices
12. Set of resistern. crpacilora. secendary 80.85

13 san of entuctors for power apply....... $£ 4.60$
13. Sed of mitccolionopus parts including Din akis. mains

 14. sarela paral sad et trackets. fixinis puts. ote. $£ 7.30$

16. Teak catinat $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$ £9.85

2 ach of packs $1-7$ maclusiwa are rauired for complete sterse sycten. Tutal cest of imdividually purchasad
packa ............................ $\mathbf{E 8 3 . 7 5}$

TEAK CASE WITH FULL KITS

## FREE

xrmace onv $£ 73.90$

WIRELESS WORLD FM TUNER

Designed in response to demand for a tuner to complement the world-wide acclamed Linsley Hood 75W Amplifier, this kit provides the perfect match. The Wireless World published original circuit has been developed further tor inclusion tnto this outstanding slimline unit and features a pre-aligned front
end module. excellent a.m. rejection and temperature compensated varicap end modute. excellent a.m. rejection and temperature compensated varicap
tuning. which may be controlled etther continuously or by push bution tuning. which may be controlled elther continuously or by push button
pre-selection. Frequencies are indicated by a frequency meter and sliding LED indicators. attached to each channel selector pre-set. The PLL stereo decoder indicators. attached to each channel selector pre-set. The PLL stereo decoder
incorporates active filters for "birdy" suppression and power is supplied via a torordal transformer and integrated regulator for long term stability metal


Pack Price Toroidal transformer with alectrostatic screen. Set of capacitors. rectifiers vollage regulator for power supply $£ 2.95$ 3. Sow of supply ........................ 22.95 13. saf of miscalianocus parta. including sockets. 1458 holder. wases inter-connecling wire. atc. .- L1.50 14. Set of metal work garts including silk screan printed bria panel. scrytic silk screen prinited tuning indicator panel insert, internal screen. fixing paris. | 15. Cit. ................................... 87.50 |
| :--- |
| Construction notes lif reith conplete kill . 80.25 |
| I6. |
| 9.85 |

One each of packs 1.16 inclusive are required for complete One each of packs 1.16 inclusive are required for complese packs

## FREE

wrex $£ 66.75$ NEW KIT! LINSLEY-HOOD CASSETTE DECK

Published in Wireless World (May, June, August 1976) by Mr. Linsley-Hood. this design, although straightforward and relatively low cost nevertheless provides a very high standard of performance. To permit circuit optimization separate record and replay ampliers are used, component from-end designed such har are used to provide a choice of tape background. Pualization time constants, a choice of bias fevels and also an option of using equalization time constants, a chooce preamplifier for microphone use. The mechanism used is the Goldring-Lenco CRV. a unit distinguished in its robustness and ease of operation. Speed control and automatic cassette ejection are both implemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excelien match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier

## PRICE STABILITY

Order with confidence! |rrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts


Pack Price Sierso PCB [eccommodates 2 rep. amps. 2 rec. maps. 2 mater amps. bias/erise osc. relayje 3.35 Steret set of cipiters. M.0. resistors.
 3. Stermo sut of semicanductors for above. . 88.90
4. Winiture ralay with socket . . . . . . . . $£ 2.45$ 4. Mninturs ralay with socket ........... $£ 2.45$
5. PCB. all companents far solenoid. sped control circuits ......................... E3.20 6. Goldrimy Lase mechanism as specified. $£ 19.10$ 7. Function swith. knobs . . . . . . . . . . . . $£ 1.60$ 8. Dual We metter with illuminating lamp ... $£ 7.20$ 9. Torodidel transtormor with E.S. scrên prim.
$0-117 \mathrm{~V} .234 \mathrm{~V}$. Sec. 15 V . . . . . . . . . 4.45

## SPECIAL PRICE FOR

## COMPLETE SETS

Further details of above given in our FREE LIST
DEPT WW 1 Set el capacitors. rectificiers. I.C. voltage regulalor for power supply [Powartran design] ... $£ 2.80$
 2. Sot il matalwork lieluding silk seremed lacis prasel, inarnal scraen, fixing parts, ste. . 87.10
 14. Thak tabinat $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots \ldots$. one each of packs $1-14$ inchusive are required for compele stareo cassatte deck. Total cost of individually pur chased packs .................. $\varepsilon 82.55$

## £78.50

EXPORT ORDERS: No VAT charged Postage charged at actual cost plus 50 p packing and handling. Please make payment by Bank Draft. Postal Order internationat Money Order in sterling.
SECURICOR OELIVERY: For this optional service (U.K. Msinland only) add
\$2.50 NAT INC.) per kit. $12 \%$ * surcharge for VAT. Carriage free. MAIL ORDEA ONLY. (wor at current rate if changed)
Cr/and Portugal Mozambique Belgium Sumatra

Hong Kong Jersey Australia St. Lucia India Barbados Antigua Jordan Spain Israel Mauritius St.

## AUDIO KIT SUPPLIERS TO THE WORLD


$\mathbf{T} \mathbf{2 0}+\mathbf{2 0}$ and our new $\mathbf{T} \mathbf{3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described if Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroidal transformer and additional
improvements, the slimine $+20+20$ delivers 20 W per channel of true Hi-F The design is based on a single F, Glass PCB and features all the normal tacilues found on qualuy amplifiers. including scratch and rumble filters. adaptable input selector and head phones socket. In al follow up article in Practical Wireless further modifications were suggested and these have been incorporated into the $130+30$ These include RF interference filters and a tape monitor facility Power output of this new model is 30W per thannel

| Prock | T20 | T30 |
| :---: | :---: | :---: |
| 1. Sef of low neiza rasistors | 1.40 | 1.50 |
| 2. Set of small capachors | 2.20 | 2.80 |
| 3. Set of power supply capacitors | 1.90 | 30 |
| 4. Sef of miscellaneous parts | 3.20 | 3.20 |
| 5. Set of alder, mains. P.B. switches | 1.20 | 1.20 |
| 6. Sot of pots. selector swith | 2.8 |  |

8. Toroidal transfarmer - 240V prim. 9. F.8. screan . 9. Firreplass PCB
9. Set of matalwork. fixing parts 1. Set of cables. mains le ad 12. Handbook fir ree with complete kit) 13 Teak cabinet $15.4^{\prime \prime} \times$ 6.7" $\times 2.8^{\prime \prime}$

T20 130
$\begin{array}{ll}4.95 & 6.80 \\ 3.20 & 3.50\end{array}$
$3.20 \quad 3.60$
$\begin{array}{ll}4.20 & 4.80 \\ 0.40 & 0.40\end{array}$
$\begin{array}{ll}0.40 & 0.40 \\ 0.25 & 0.25 \\ 4.50 & 4.50\end{array}$

SPECIAL PRICES
FOR COMPLETE KITS!
T20 + 20
KIT PRic: ony $£ 28.25$

## 2 NEW TUNERS!

## WW SFMTII

following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model designed to complement the $T 20$ and $T 30$ amplifiers. The frequency meter of the
more advanced model has been omitted and the mechanics simplified. more advanced model has been omitted and the mechanics simplified. however the circuitry is idenical and this new kit offers most exceptionai value for money Facilities included are switchable atc, adjustable, push-bution controls and LED tuning indication Individual pack preses pushbule list

## KIT PRICE <br> $£ 45.50$

T30 +30
KIT PRICE only $\{32,95$

POWERTRAN SFMT
This easy to construct tuner using our own circuit design includes a muting surd fre atc and push-button channel adjustable switchable full kits. all components down to the last nut and bott are supplied together with full constructional details


CONVERT NOW TO QUADRAPHONICS!


SQM1 - 30
KIT PRICE
Wrotese word Amplifier Designe. Full kits are not avalable for these prosicher Component packs and PCBs are stocked tor the highly regarded Bailey and 20 W class $A B$ Linstey Hood designs, together with an efficient regulated power supply of our oun
design Sutiable for driving these amplitiers is the Balley Buriows pre-amplitier and arcuit board for the stereo version of it features 6 inputs, scratch and fumble fifters and wde range tone controls which may be ether rotary or stider operating for those intending to get the best out of their speakers, we also offer an active filter system
described by C Read. which splits the output of each channel from the preample into three channels each of which is fed to the appropriate speaker by its own power amplifier The Read/Texas 20W or any of our other kits are sultable for these for tape systems a set of inree PCBs have been prepared for the megrated circuit based. high

30W Barley Amplifier
BAIL Pk 2 Ressistors. C
BAIL Pk 3 Semisticonductor se Capaciors, Potentiometer set
20W Linsley Hood Class AB
LHAB Pk 1 F/Glass PCB
LHAB Pk 2 Resistor Capacitor
LHAB Pk 3 Semiconductor se
LMAB Pk 3 Semiconductor
Regulator Power Sypply
$60 \mathrm{VS} \mathrm{Pk}_{\mathrm{k}}$
$1 / \mathrm{F} /$ Glass $P C B$
$\begin{array}{lll}\text { 60VS } \rho_{k} & 2 \text { Resistor. Capacitor sel } \\ \text { GOVS } \mathrm{P}_{k} & 3 \text { Semiconductor }\end{array}$

6OVS Pk 6B Toroidal ransformer (for use with 20 W LH)
BaBPA Pk 1 F/Glass PCB
BBPA PK 2 Resistor, capacitor semiconductor set
BBPA Pk 3R Rolary Potentiometer set
解
FILT Pk ; F/Glass PCB
FILT Pk 2 Resistor. Capacitor
FILT Pk 3 Semiconductor set
$\begin{array}{ll}\text { FIT Pk } 3 \text { Semiconductor se } \\ 2 \text { off Pks } & 1 \\ 2.3 \text { rad for ster }\end{array}$
Read/Texas 20 W Amp
READ $\mathrm{Pk}_{\mathbf{k}}$ I F/Glass PCB
READ Pk 2 Resistor, Capacitor se
READ Pk 3 Semiconductor set
Stuart Tape Recorder
TRRC Pk Replay Amp F/Glass PCB
TROS Pk 1 Bras/Erase/Stallizer F/Giass PCB
Flas/Erasel

## EXPORT NO PROBLEM

With roos of titles now available no longer is there any problem over suitable software No problems with hardware either Our new unit the SQM1.30 simply plugs into the tape monitor socke of your existing amplifier and drives two additional speakers 30 W per channel. A full complement cf controls including volume, bass, treble and balance arrs provided as are for euther front or rear channels, by-pasting une to be used stereo-only use and exchanging left and richt channels The SO matix decoder is based upon a single intecrated circuit and was designed by CBS whilst the power and tona control sections are idenucal to those used in our T30 +30 amplifier which the SOM 1.30 mathes perfectly Kit price inchudes CBS licence tee


## SQ QUADRAPHONIC DECODERS

and a
tape monitor outlets) into any one of our 3 decoders and take 4 channels out with no overall signal leve reduction. On the logic enhanced decoders Volume. Front-Back. LF-RF balance LB-RB balance and Dimension These state-of-the-art circuits used under licence from CBS are offered in k of superior quality with close tolerance (insertion All kit prices include M1 Basic matrix decoder with fixed $10-40$ blend Alt components, PCB

SEMICNNDUCTORS as used in our ranqe of quality audio equipment.


[^4]Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla fir

MULTIMETER F4313 (Made in USSR)


SENSITIVITY 1200 V DC range. $10.000 \mathrm{\Omega} / \mathrm{V}$ Other DC ranges: $20.000 \Omega / \mathrm{V}$ 1200 AC range: $6.000 \mathrm{\Omega} / \mathrm{V}$ 600V AC range: $15.000 \Omega / \mathrm{V}$ 300 V AC range: $15,000 \mathrm{\Omega} / \mathrm{V}$ Other $A C$ ranges. $20,000 \Omega / \mathrm{V}$
$A C / D C$ current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$
$A C / D C$ voltage ranges: $60-300 \mathrm{mV} \cdot 1.2 \cdot 6-30-120-300-600-1200 \mathrm{~V}$
Resistance ranges: $300 \Omega$-10-100-1000 K
Accuracy: $1.5 \% \mathrm{DC}$ : $2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all $A C$ ranges thus achieving a common linear scale for both $A C$ and DC ranges.
Meter is protected by a transistorised cutout relay circuit. Range selection is achieved by clearly marked piano keys. Power source. 515 V dry cells. Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$.

PRICE $£ 37.50$ plus VAT
Packaging and postage $£ 1.10$

## OSCILLOSCOPE CI-5

## Made in USSR

Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate. 3 in . tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base. suitable for displaying pulses from $0.1 \mu \mathrm{sec}$. to 3 m sec . A.C. mains operation.

Price $£ 55.00$ ex. works, plus VAT
Packing and carriage (U.K. only $£ 2.50$ )

 $\dot{r}$ FULLY GUARANTEED
 $\begin{array}{llll}0.38 & \text { EFB5 } & 0.45 & 6731\end{array}$
 0.70 elude VAT


high gain darlington pairs
Plastic 3-Lead Case Darlington Pairs Typical current gan 30.000 Max collector voltage VCbo 40 V Max collector current 400 mA IC80-10nA BC517 NAN

TRANSISTORS FOR TV.

| R2008B | $\mathbf{0 . 9 5}$ |
| :--- | ---: |
| R2010B | $\mathbf{1 . 6 5}$ |
| BU126 | $\mathbf{1 . 5 5}$ |
| BU133 | $\mathbf{1 . 5 5}$ |
| BU208 | $\mathbf{2 . 0 0}$ |
|  | Plus VA |

Z \& I AERO SERVICES LTD.
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF
Tel.: 7275641

Retail Branch:
85 Tottenham Court Road
London W1. Tel: 5808403

WW -042 FOR FURTHER DETAILS

## HIGH-SENSITMTY <br>  <br>  <br> 

The Hi-Fi Year Book is more than just a handy reference. It is a sensitive instrument enabling you to pinpoint and track down the finest Hi -Gi items on the market. There are 500 pages of products, photos and expert articles to help you in your choice. Separate illustrated sections cover every major category of equipment-telling you what each item does, what it costs, who makes it and where to buy it. What's more, there are authoritative articles on the latest developments and how to apply them. Order your copy today, before it sells out ....and you'll be tuned in to the finest in Hi-Fi all through 1977!

Available direct from the publishers @ £3.40 inclusive or from leading booksellers and newsagents price $£ 3.00$


Everything from a jack plug to a receiver.

## © ctirling sound audio modules

for cost-conscious constructors A NEW 100 WATT r.m.s. POWER AMP

SS. 1100<br>£9.45*

## with heatsink-type

 $-£ 1$ ' extra

Most recent addition to Stirling Sound s wide range of power amplifiers. the SS 1100 is a soldly constructed heavy duty module to deliver 100 watts r.m s into 412 using 70 heatsink mounting bracket Size approx $140 \times 76 \times 32 \mathrm{~mm}$ A guaranteed Stirling Sound QV module Compatible with other Stirling Sound modules Supreme value Designed and built for long unbroken spells of work

POWER AMPLIFIERS FROM 5 TO 40 WATTS ss. 105
5 watts R.M S into 4 ohms using 12 V supply. Ideal for use in in-car entertain
ment Size $-89 \times 51 \times 19 \mathrm{~mm}$ S. 110

Similar in size and design to SS 105 this OV module delivers 10 watts R.M S into
4 ohms using a 24 V supply, eg SS 324 Of great use in domestic applications

## SS. 120

Using a 34 volt supply. such as SS. 334
this ampitier will deliver 20 watts into a 4 STIRLING SOUND PRE-AMP/TONE CONTROL UNITS UNIT one
$\qquad$
$\qquad$


## POWER SUPPLY UNITS

COMPLETE WITH TRANSFORMERS and 13 16V take-off points Add $50 \mathrm{p} \mathrm{p} / \mathrm{p}$ for any model
ALL AT $8 \%$ V.A.T
SS 312 12V/1A £3.75; SS 318 18V/1A £4.15: SS $32424 \mathrm{~V} / 1$ A £4.60; SS 334 34V/2A £5.20; SS, $34545 \mathrm{~V} / 2 \mathrm{~A}$ £6.25: SS 350 50V 2 A £6.75; SS 300 - Power stabilising unit 10.50 V . adjustable (no transformer, p/p 35p) £3.25; SS 310/50
Stabilised power supply variable from 10 to $50 \mathrm{~V} / 2 \mathrm{~A}$ £ 11.95 .
which gives vou today's best buys alt round th is Your guaranter of satisfaction
 Every ettort is made
Stiring Sound
SS. 140
Mk 3 version complete with output capacitor and heatsink-iype bracket Delivers 40 watts R.M.S into 4 ohms Designed specially for long and 34 Designed specially for long and heavy
work
$£ 3.95^{\circ}$ OR POWER SUPPLY UNITS SEE BELOW

Pre-amp with active
tone control circuits.

## TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH MAINS ISOLATING VAT $8 \% 12$ and/or 24-VOLT PRI $120 / 240 \mathrm{~V}$ SEC $120 / 240^{\circ}$
Centre Tapped and Screened

| Scre |  |  |  | Ref | Primary $220-240$ jolis |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ref. | VA (Warts) | £ | P\&P |  | 12v | 24 v |  |
| 07. | 20 | 3.57 | 66 | 111 | 0.5 | 0.25 | 1.77 |
| 149 | 60 | 5.39 | 80 | 213 | 10 | 0.5 | 2.14 |
| 150 | 100 | 6.13 | 95 | 71 | 2 | 1 | 2.77 |
| 151 | 200 | ¢. 82 | 1.25 | 18 | 4 | 2 | 3.42 |
| 152 | 250 | 11.87 | 1.53 | 70 | 6 | 3 | 5.09 |
| 153 | 350 | 14.34 | 1.53 | 108 | 8 | 4 | 5.85 |
| 154 | 500 | 16.48 | 179 | 72 | 10 | 5 | 6.33 |
| 155 | 750 | $2!.23$ | OA | 116 | 12 | 6 | 6.67 |
| 156 | 1000 | 35.16 | OA | 17 | 16 | 8 | 3.60 |
| 157 | 1500 | 41.12 | OA | 115 | 20 | 10 | 12.55 |
| 158 | 2000 | 44.76 | OA | 187 | 30 | 15 | 16.33 |
| 159 | 3000 | 71.70 | OA | 226 | 60 | 30 | 20.32 |
|  | 240 sec |  |  |  |  |  |  |



50 VOLT ANGE
$\qquad$ V
$\mathbf{P} \mathbf{1 P}$
.65
80
.95
1.10
1.25
1.37
1.73
04

30 VOLT RANGE

| 60 VOLT RANGE <br> Primary 220-24CV |  |  |  |
| :---: | :---: | :---: | :---: |
| SEC TAPS 0-24-30-40-48-60V |  |  |  |
| Ref. | Amps | $\varepsilon$ | P\&P |
| 124 | 0.5 | 2.85 | 80 |
| 126 | 10 | 4.23 | 80 |
| 127 | 2.0 | 6.13 | 95 |
| 125 | 3.0 | 9.09 | 1.10 |
| $\dagger 23$ | 4.0 | 10.57 | 1.53 |
| 40 | 5.0 | 11.78 | 137 |
| 120 | 6.0 | 13.88 | 1.53 |
| 121 | 80 | 18.11 | 8RS |
| 122 | 10.0 | 22.31 | BRS |
| 189 | 120 | 23.30 | BRS |
| HIGH VOLTAGE MAINS ISOLATING Pri $200 / 220$ or $40 \mathrm{C} / 440$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
| $\operatorname{Sec} 100 / 120$ or 201/240 |  |  |  |
| va | Ref. | ¢ | P\&P |
| 60 | 243 | 5.03 | 1.10 |
| 350 | 247 | 12.57 | 1.53 |
| 1000 | 250 | 30.26 | 8RS |
| 2000 | 252 | 50.74 | BRS |

DECS SDLDERIEESS
BREADBDARDING
$\begin{array}{lr}\text { Dec } 70 \text { contacts } & \mathbf{£ 1 . 9 8} \\ \text { Dec } 208 \text { contacts } & \mathbf{£ 3 . 3 6}\end{array}$


## BRIDGE RECTIFIERS

## Get a great deal from Marshall's

A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, London NW2 3ET
Tel: 01-452 0161 / 2 Telex: 21492
\& 85 West Regent St Glasgow G2 20D Ter: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS16 2LX Tel: 0272 654201 /?
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Please enquire for types not liste NEW 168 PAGE CATALOGUE WITH 500 NEW LINES 55p post paid ( 40 p to callers)

WE ARE NOW AT NEWCASTLE-ON-TYNE!
Marshall Aitken Ltd., 35 High Bridge, Newcastle-on-Tyne. Tel: 063226729


SEND FOR OUR NEW 168 PAGE CATALOGUE WITH 500 NEW LINES
55p post paid or 40 p to callers

POPULAR SEMICONDUCTORS [A very small selection from our vast stocks, please enquire about devices not listed.]

## 





OVER 2,000 ELECTRONIC COMPONENTS INA


WORKSHOP TEST EQUIPMENT Designed by Mr. J. L. Linsley Hood 1. AUDIO OSCILLATOR
$10 \mathrm{HZ}-100 \mathrm{KHZ}$ Sine/Square output Kit Form $£ 16$
Made and tested $£ 20$
Fibuct
His famous $30-75$ watt HI-FI AMPLIFIER £70 (tax $121 / 2 \%$ p. 12.50 Distortion is below normal measurement Available in pack form or made up units.
P.L.L. F.M. STEREO TUNER $\begin{array}{l}\text { Requires no } \\ \text { adjustments. }\end{array}$ Kit $\left.\mathbf{£ 4 0}{ }_{(T a x ~}^{121 / 2 \%}\right)^{£ 1.50}$


# DECTOD Sculptured foam speaker fronts allow creative design flexibility! <br> - Acoustically Transparent - Wide Design Scope - Cost Savings can be effected - Allow Creative Design Flexibility <br> - Colour Options 



If your aim is to produce an eye-catching styled speaker the fitting of. a Declon front could realise that objective. Individual designs can be created for specific purposes and reserved for one purchaser only, thus allowing considerable scope for identification with a particular model or manufacturer. Declon fronts can be back sculptured to allow for cone movement thus
making sub-baffles optional rather than obligatory. New look cabinets can be readily achieved by simply altering the design of a Declon front Cost savings can be effected in terms of labour and materials when fixing to the speaker cabinet. The material being flexible allows some latitude in the matter of finished cabinet dimensions

Declon Speaker Fronts are made from reiculated foam which is acoustically transparent over all audible frequencies. Other Declon products for the Hi Fi Industry: Speaker Gaskets, Damping Foam and Packing Pieces.


Declon Foam Plastics Limited Humphrys Road, Woodside Estate Dunstable, Beds., LU5 4TW Phone: 0582605141 . Telex: 826749 Trade enquiries only

Member of the Airfix Group

| PROJECT 80 AUDIO MODULES <br> PZ5 £4.95. PZ6 € 8.70 . $240 \quad £ 5.75$ <br> Project 8050 £18.95. <br> BI-PAK AUDIO MODULES <br> S450 tuner $£ 18.95$. AL60 £4.33 <br> PA100 £13.45. MK60 Audio Kil <br> £27.20. Teak 60 £10.95. Stereo 30 | SINCLAIR CALCULATORS AND WATCHES <br> Cambridge Scientific e8.95. Oxford 300 £13.30. Mains adaptors $£ 3.20$ <br> Programmable Scientific with free mains unit £24.95. Grey watch + bracelet £16.45. |
| :---: | :---: |
| $\begin{aligned} & \text { PS } 12 \text { £1.60. T } 538 \text { £2.95. Send Sae } \\ & \text { for free data } \\ & \text { SAXON } \\ & \text { MODULES } \\ & \text { SATERTAINMENTS } \end{aligned}$ | 1C20 10W +10W stereo amp kit with printed circuit £4.95. PZ20 Power supply for above £3.95. VP20 Control and preamp kit $£ 7.95$. |
| £11.30. PM $1202 / 8$ £15. PM $1201 / 4$ £11.30. PM1202/4 £15. PM601/8 £11.30. PM601/4 £11.30. | JC12 AMPLIFIER <br> 6W IC audio amp with free data and printed circuir E2.25. <br> DELUXE KIT FDR JC12 <br> Volume and tone controls and extra parts for the pob Mono £2.33. Stereo £4.95. JC12 POWVER KIT Supplies 25 V 1 Amp £3.75. <br> JC12 PREAMP KITS <br> Type 1 for magnetic pickups, mics and tuners Mono £1.50. Stereo £3.00. Type 2 for ceramic or crystal pickups Mono 88p. Stereo E1.76. <br> SEND SAE FOR FREE LEAFLET |
| New integrated circuit 20W amplifier chip with pcb and data $\mathbf{£ 4 . 4 5}$. |  |
| FERRANTI ZN414 <br> IC radio chip £1.44. Extra parts and pcb for radio £3.85. Case 90p. Send sae for free leaflet. |  |
| BATTERY ELIMINATORS <br> MILLENIAKITS <br> 5 Transistor highly stabilized power units Switched 1 to 30VinO.1V steps. Send sae for free leaflet. 1 Amp kit $£ 12.45$. 2 Amp kit $£ 14.95$. Cases $£ 2.95$. <br> RADIO MODELS <br> 50 mA with press-stud battery connectors <br> $9 V$ £ 3.45. 6 V £3.45. $41 / 2 \mathrm{~V}$ £3.45. <br> $9 v+9 v \quad £ 5.45 . \quad 6 V+6 V \quad £ 5.45$. <br> $41 / 2 v+41 / 2 v £ 5.45$. <br> CASSETTE MAINS UNITS <br> $71 / 2 \mathrm{~V}$ with 5 pin DIN plug $150 \mathrm{~mA} \mathbf{£ 3 . 9 5}$. <br> 3-WAY MODELS <br> Switched output 4 -way multi-jack Type $3 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 3.20$. Type 2 $6 / 71 / 2 / 9 \mathrm{~V}$ at $150 \mathrm{~mA} £ 3.30$. <br> FULLY STABILIZED MODEL $\mathbf{f 5} 45$ <br> Switched $3 / 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}$ Stabifized. <br> CAR CONVERTERS <br> Input 12V DC Output 6/71/2/9V DC 1 <br> Amp Transistor stabilized <br> PRINTED CIRCUIT KIT* <br> Make your own printed circuits Contains etching dish, 100 sq ins of copper clad board, 1 lb ferric chloride, etch resist pen, drill bit and laminate cutter E4.25. |  |
|  | S.DeC $£ 2.24$ <br> T-DeC £4.05 <br> u-DeCA $£ 4.45$ <br> u-DeCB $£ 7.85$ <br> 16 dil IC carriers. <br> with sockets $£ 2.05$ |
|  | BATTERY ELIMINATDR KITS <br> 100 mA radio types with press stud battery terminals. $41 / 2 V$ f2.10. 6 V £2.10. $9 \vee$ £2.10. $41 / 2 v+41 / 2 v \quad £ 2.80$. $6 v+6 v$ £2.80. $9 v+9 v £ 2.80$. <br> 100 mA cassette type: $71 / 2 \mathrm{~V}$ din plug f2. 10 . <br> Stabilized 8-way types: transistor stabilized to give low hum 3 /41/2/6 $71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 50 \mathrm{~mA}$ model |
|  | Heavy dury 13-way types: $41 / 2 / 6 / 7 /$ $81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28$ 34 / 42 V 1A £4.95. 2A £7.55. Car convertor kit: Input $12 \mathrm{~V}!\mathrm{C}$ C Output $6 / 71 / 2 / 9 \mathrm{VDC} 1 \mathrm{~A}$ regulated $£ 1.95$. |
| SWANLEY <br> DEPT. WW, PO BOX 68 <br> Post 30 p on orders under $£ 2.23$ otherwis deduct $7 \%$ on items marked*. | Prices include VAT. (Overseas <br> $11 \%$ ). Official orders welco |



The world's most famous company in communication, the Nippon 'Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present:

## NEC co 110 e digital


allband. HF 300 wattstransceiver, $160 / 80 / 40 / 20 / 15 / 11$ 10A/10B/10C/10D/WWV, modes FSK, USB, LSB, CW, AM, with separate 8 pole $X$-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC $100-235$ volts and DC 13.5 volts power supplies are built in of course

## NEC CQ 301


allband HF, 3 KW , linear amplifier, 160/80/40/20/15/11/ 10 meter, for modern amateur communication. Two EIMAC 3-500 z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110E or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!
Sole distributor in Europe
CEC Corp.. Via Vaidani 1 - CH 6830 CHIASSO-SWITZERLAND Phone: (091) 4426 51. Telex: 79959 CH
the indispensible


THRULINE*
WATTMETER

Read RF Watts Directly
$0.45 \cdot 2300 \mathrm{MHZ}_{2} 1-10,000$
Insertion VSWR - 1.05 .
nly the element(s) and flexibility: Buy requency and (s) covering your presen ranges later if your requirements expand QUICK-CHANGE Connectors mate with $N$


## uk representative for BIRD ELECTRONIC

## aspen electronics limited

2 KILDARE CLOSE EASTCOTE MIDDLESEX HA4 Tel 018681188 9UW
wW-046 FOR FURTHER DETAILS

## NEW FROM E.S.E.



A full frequency range graphic equaliser YOU can afford!!

For JUST £38.85 plus VAT
You can tune out all unwanted noises at seven different frequencies!
Bring all your recordings, P.A discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider ! !
No more annoying amplifier noises - just clear, true sound Frequencies from 60 Hz to 10 kHz Cut or boost each frequency by maximum of 15 dB !
Hi and $l o$ gain inputs
Powered by just two PP3 batteries which last for ages. Or mains powered unit available. $£ 4995$ plus VAT
Try it and you'll buy it - it will change your concept of sound.
Trade enquiries welcomed.

Condensed Technical Spec Max. output: terminated to $600 \Omega$ $10 \mathrm{~dB}>1.6$ volts peak to peak. 2.5 volts R.M.S. Signal to noise ratio: input terminated with 47 K resistor. A!l filters at max. better than - 70 dB . Frequency response: All filters at central better than $\pm 2 \mathrm{~dB}$.
Filter slope: Better than
+13 dB per octave.
$180.480 \mathrm{Hanges}:$ Max. $\pm 15 \mathrm{~dB}$ at 60 , $180.480 \mathrm{~Hz}, 1,2.4,5$ and 10 kHz . $\overline{\text { To }}$ : E.S. Electronics, 2 Upper Fant Road, Maidstone, Kent. Please send me $] 1, \square 2,[3,[4, \square 5$ of your Graphic Equalisers.
cheque or postal order for $E$ having added $£ 1.50$ for $p . \&$ p. on each item ordered and V.A.T. I understand that two batteries are included.

Tel.

SINTEL for MEMORIES-GMOS-DISPLAYS-MPUS-BOOKS
Components from
laading manu facturers only

FAST SERVICE


DISPLAYS
FNOSOO C C
Red $05^{\prime \prime}$ LED 5 TIL322 C.C. $\mathbf{E 1 . 3 0}$


AOO Vat an $8 \%, 250$ parp an an orders Price List sent with orders or tree on reauest.

- Exposs anders very werd orders very welcome. wo vatithen or phoned (by phone min. £S),
postage rates on books contect us firss.).

SINTEL Po Box 75c. OxfoRD
Tel. 086549791


CAR CLOCK 'AUT-CK £17.85
trequency quarta crestal limebase. Internal battery backuo Full instructions Suitable for all liequency quartz crestal limebase. Internal batery back


SOHz CRYSTAL TIMEBASE KIT: provides an ex emely sadded to aul types of digital clocks to improve accuracy. to
 synchronisation Monitoring or improving turniable speed

OIGITAL CLOCK KITS WITH CRYSTAL CONTROL \& BATTERY BACK.UP


These two kis incorporate our Cryssal Timebase Kit (XTK), rogether with components for
battery back-up All components, plus a PP3.type battery fit neatly in the clock cases battery back-up All components, plus a PP3.type battery, fit neatly in the clock cases
Accurate to nithin a fow seconds a month. If mains power is disconnected through a power
cut accidental swithing off or moving clock) the clocks will sill keep perfect tume While on cut. accidental switching off of moving clock) the cloc

ATTRACTIVE 6-DIGIT ALARM CLOCK: Uses Red D. $5^{\prime \prime}$ displays. Features bleep alarm Touch swich sntoze control and awtomatic intensity control. Alarm remains futly
 SLIM GREEN CLOEX. Atractive 4-digit Mantelpiece Clock with bright $05^{\prime \prime}$ Green display Complete kit includhng case Order as GCK + XTK + GBB 619.65
$\mathbf{E 1 4 . 4 0}$

## microprocessors

| Please Microp answer technic | only be y dala | erienced constructor our selection below | e cannot |
| :---: | :---: | :---: | :---: |
| IM6100CCOL | ¢45.38 | (SPA/ 100 (SC/MP) | ¢18.75 |
| 80804 (2 2 S ) | $\underline{532.25}$ | 2650 | £27.00 |
| 6800 | ¢33.87 |  |  |

- 

SPBK 2001 - with the 6800 MPU
ISPBK/200E-SC, MP Intro KıI
MCS-80 Kit C - wind EOBOA (no PCB)

\section*{The SECOND-USER CTR Systems, Peripheral Compuler Specialists <br> Mini- Ponnputer Ixehence <br> SAVE UP TO 60\% ON LIST PRICES <br> | ADVANCE COPY-DETAILS SOON AVAILABLE <br> FABULOUS BRAND NEW POPBM BK PROCESSORS EX CANCELLED ORDER | civeranampanmin |
| :---: | :---: |
| PDPB1 8K Processor with TTY control <br> PDP9 24K Processor compiete with KEO9 Extended Arithmetic. TCO2 DECtape controller +2 TU55 drives, PCO 9 Paper Tape Reader and Punch. AFO1B A/D Converter ( 8 -channel). DA098 I/O Bus LT198 Mutti-telerype station. <br> ALPHA LSI-2/20G 8 K processor with 6 meg Disk and many teatures - BRAND NEW |  |
|  |  |
|  |  |
|  |  |
| ANALOGIC AN5800-8 AD-DA Converter Chassis Accommodates |  |
| ace, connecting cables and diagnostics for Data General N |  |
| Price E1. 250 |  |
| RPO2 30 Meg Free-standing moving-head disk drive and control TU10 Magnetic Tape Units, 9 -track 800 bpt, rack-mounted |  |
|  |  |
| tu20 Magnatic Tape Unit, 9 track 45 ips TU55 DECtape drives |  |
| DF32 Disck Orive and Control.OS32 Slave Drives also available |  |
| os32 Slave Drives also available |  |
| CENTHONICS 101 Line Printer and Control RK11/RK 05 Disk Drive and Control |  |
|  |  |
| ruso Dual Cassette Drive and Control |  |
| RTO2 Alphonumeric Data Entry Oisplay and Control. |  |
| DEC interlace and Feature Bo | OC11-AC. OC11-DA, OL1 1 C |
| DL11E, KD8E, KL8E, KE1仵, KW11, KCBE, MC8EJ MM11F |  |
|  |  |
|  |  |
| RACK CABINET'S with cooling |  |
| CIPHER $\times 100$ Magnetic Tape Units, 9 -track 800 bpI. Control Unit avallable for PDP8E series |  |
|  |  |
|  |  |

[^5]$\square$ ELECTRONIC BROKERS LIMITED (Compter Soles EServices Diviton)
49-53 Pancras Road, London NW1 2QB. Tel:O1-837 7781


With the precision of the Jackson G10 Gearbox, you get ten turns of input equalling one effective turn of output. This makes the G10 ideal for decimal presentation for analog control. The Gear Box itself is packaged within 70 mm by 35 mm by 19 mm . The output shaft drive torque is greater than 700 gm cms . Input shaft diameters are 6 mm . All the gears are fully anti-backlash loaded. The Jackson G10, the compact, versatile gearbox.
All Jackson Products are backed by 50 years' experience in the communications field. Highly skilled men, and Jackson Brothers'. good name.


Write for further information to:
JACKSON BROTHERS (LONDON) LIMITED
Kingsway, Wad don, Croydon CR9 4DG Tel: 01-681 2754/7 Telex 946849
U.S. Office: Swedgal Electronics Inc., 258 Broadway, New York, N.Y. 10007
B.S. 9000 Approved. DEF STAN 05-21.

$4 \mathrm{~S} \cdot 6 \mathrm{GMHz}$ Bandwidth.
$10 \mathrm{mV} / \mathrm{cm}$ Sensitivity.
$1 \mathrm{~S} / \mathrm{cm}-100 \mathrm{mS} / \mathrm{cm}$ Timebase
( 16 Calibrated ranges). Glarecheq Non-reflective graticule.
45-6 LS . . (£115) Designed for LOW SPEED Measurements. $10 \mathrm{~s} / \mathrm{cm}-1 \mathrm{sec} / \mathrm{cm}$ Timebase.

(b) Regd Trade Mark


## QUALITY ELECTRONICS LTD.

 FOR SANUA MULTITESTERScatalogue on request or readers service no
mulland diaital displays.
 Overail size $86 \times 26 \mathrm{~mm}$ CA. 30 inc . VAT $8 t$
P\&P. Reduction in price for ques. $>10$ off woseulator. Sannel \& Hutton CT501. excellent condition $\mathbf{E 3 2 5}$ inc carr $U K$

WEE MEGGERS 500 V £17.50 inc P \&P \&VAT
 $\underset{\text { LABORATORY }}{\text { TYPE SAESE }}$ Dims TYPETAD
 WW 097
LEMANIA AIRCREW CHRONOGRAPHS Stanless steel case with screw back. luminous hands and markngs One.fitth sec swoep hand controled independently of man movement by press to start and stop and return to zero overhsuled and checked for accuracy Firted strap. White face $£ 18.80$. Black face $\mathbf{£ 1 9 . 7 5}$

ANALYTICAL EQUIPMENT
GAS CHROMATOGRAPHY RESEARCH OVEN
PV4051/4056 (other GC hems in stock)
A large capacity oven of low thermal mass for use between 35 and $400^{\circ} \mathrm{C}$ Provides a forced ar circulating system yrelding 1000
changes of an per min the oven has forced air cooled outer surlaces thanges on internal temperature is high $210-240 \mathrm{~V} .50 \mathrm{~Hz}$. 26 kW
when the c31.50 (C Pd England and Wales)
IONISATION AMPLIFIER PV4075
A modern high grade 10 w nolse solit state amplifier to feed a
porentioneter recorder 18 input ranges from $10-12$ to $5 \times 1$ (10-7 potentometer ecorder to 100 mV Linearity $01 \%$ \& s Noise less than $05 x$ is at max sensitivity Back off facility Dimensions $28 \times 10$
$\times 43 \mathrm{~cm}$ deep $\times 43 \mathrm{~cm}$ deep With operating information E 28.50 (C Pd UK) Details of these three and other gas chromatogra
(C W O. only). Handbooks (complete) available

STAINLESS STEEL VACUŪM STAINLESS STEEL VACUŨM
CONTANERS FOR LIQUIDS Capacty 2 US GALLS FITTED WITH
DELIVERY TAPS Brand new in DELIVERY TAPS Brand new
carrons $\mathbf{E 2 5}(\mathrm{CPd} \mathrm{K}$ )

TAPE STORAGE CANS. Brand new thished steel cans originally intended 7 in reets of tape Our last supply these trems was quickly exhausted at 30p amch but as a resull of a massive new purchase we can now offer a case
of 55 an $£ 6.80$ inc $P \& P$ and VAT

For detais on these and many other products including analytical equipmen: actuators synchros serv
motors. connectors, reed swatches, stopwatches. Plessey VHF equipment tanialum capaciors relays met motors, connectors. reed switches, stopwat power supplies see our Sept WW advert or advise requirements

Taman
ENVIRONMENTAL TEST EOUIPMENT A atandmed Ranges offering the fotlowing fecillitios
High temperatures to $500^{\circ} \mathrm{C}$
Pressure cycling High temperatures to $500^{\circ} \mathrm{C} \quad$ Pressure cyching
Low temperatures to $-75^{\circ} \mathrm{C}$
Sand and dust exposu $\begin{array}{ll}\text { Humdity cycling } & \text { Cond and dust exposure } \\ \text { Thermal shock } & \text { Explosive gas exposure }\end{array}$
$\begin{array}{ll}\text { Est }\end{array}$ Thermal shock
vioration
for full informat
 WW 098
Serso $\varepsilon 8$ Electronic Sales Ltd. 'Bays', 24 High Street, Lydd. Kent VAT No. 201-1296-23 Telephone: Lydd 20252. Telex: 965265 (AB Servolyap)

## JOYSTICKS



Precise, reliable, long-life Joystick Control Units, in single, dual or triple axis forms. Sprung to centre, or held by adjustable friction locks. Choice of wirewound, cermet or plastic film potentiometers (all standard $3 / \mathbf{B}^{\prime \prime}$ bush types) - or rotary switches.
Already in quantity production for remote control, TV games electric wheelchairs, audio control panels, etc., etc. Any quantity from one-off to hundreds per month. Typical one-off prices: Single axis $£ 4.50$. Dual $£ 6.50$. Trıple $£ 1 \mathbf{1 . 0 0}+$ VAT.

## TELEVISION GAME JOYSTICKS

We have finalised the design of an ULTRA LOW COST dual axis Joystick for the home television game market. and wish to arrange mass production fc. Vlarge scale manufacturer of such games, in the UK or overseas.

# FLIGHT LINK CONTROL LTD. 

Bristow Works, Bristow Road
Hounslow, Middlesex, 01-570 4065


Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successfui Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where recessary, and is preceded by an explanatory introduction. Circuit designs (1) is the first collection of its kind.

Book 1 Circuits covered are

Basic active filters Switching circuits Waveform generators AC measurements Audio circuits

Constant-current circuits Power amplifiers Astable circuits Optoelectronics Micropower circuits

* Book 2 Out Dec. 76 covering

Basic logic gates Wideband amplifiers Alarm circuits Digital counters Pulse modulators
C.d.as-signal processing
C.d.as-signal generation C.d.as-measurement and detection Monostable circuits
Transistor pairs


Collected Circards

PWiliams JCaruthers JHEvans JKinsler


A WIFIzLESS WORID PUBLICATION

## A new book fromWirelessWorld

## ORDER FORM

To: General Sales Department
IPC Business Press Limited,
Room II. Dorset House.
Stamford Street, London SEI 9LU.

Please send me
copy/copies of
Circuit Designs - Number 1 at $£ 10.40$.
Circuit Designs - Number 2 at $£ 12.50$
each inclusive. I enclose remittance
value $£ . .$. ... (cheques payable to
IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company egistered in Engiand and a subsidiary of Reed International Limited Regis:ered No 677128 Regd. office Dorset House. Stamford Street, London SEI 9LU.

## The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing Springs, felts, and contact actuators are supplied ready-fitted.
The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)

| GJ-SPCO: | $24 p$ each | GE-4 pairs : $45 p$ each |
| :--- | :--- | :--- |
| GB-2 pairs: | $27 p$ each | GH-5 pairs $: 57 p$ each |
| GC-3 pairs: | $36 p$ each | 4PS-SPCO \& 3 prs: $53 p$ ea |

We also stock kits and PCBs for the P.E. Synthesiser. P.E Joanna (electronic piano), P.E. Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p)

## PHONOSONICS

DEPT. WW71, 22 HIGH STREET SIDCUP, KENT DA14 6EH

## KEYBOARDS

 \& CONTACTSU.K. POST \& HANDLING: Keyboards: £1.50 each Contacts:
Orders under £15.00: 25p Orders over £15.00: 50p

37 Note C-C Keyboard : E24.85
49 Note C-C Keyboard: £29.50
61 Note C-C Keyboard : £34.50

VAT: Add $121 / 2 \%$ to final total on all U.K. orders EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNELISLES \& B.F.P.O. classify as Export.
mail order and c.w.o only - Sorry but no callers please
Prices are correct at time of Press, E. \& O. E. Delivery subject to availability

High Definition Stereo Amplifier

## E E b

A new standard
for sound reproduction in
the home! We believe that no other
amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av, continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically $0.006 \%$ at 25 watts, less than $0.02 \%$ at rated output (Typically $0.01 \%$ at 1 Khz )

Hum and noise: Disc, -83dBV measured flat with noise band width 23 Khz (ref 5 mV ); -88 dBV " $A$ " weighted (ref. 5 mv ) Line -85 dBV measured flat (ref 100 v )
$-88 d B V$ " ${ }^{\prime \prime} A^{\prime \prime}$ weighted (ref 100 v )
Hear the HD250 at
SWIFT OF WVILMSLOW
Dept. WW, 5 Swan Street, Wilmslow, Cheshire (Tel: 26213)
Mail Oraer and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
Now available ZD 700 power ampıfier and ZD22 pre-amplifier

## QUADRAPHONIC KIT MODULES

The following modules. currently being descrited in Wireless World. are offered. independently, but a universal system may be constructed by means of a master switch into which the boards may be plugged

DEMODULATOR £35 + VAT (£4.38) VARIOMATRIX DECODER £31 + VAT [£3.88] SYNTHESIZER OS. QS Variomatix and QS Synthesizer are registered trade marks of SANSUI ELECTRIC COMPANY LIMITED OF JAPAN

> DECODER (Type L3A) £25.50 + VAT (£3.19)

Variable Blend + Wave Matching Logic)
MASTER SWITCH KIT ${ }^{\text {E8.50 }}+$ Vat $^{\text {( } £ 1.06\}}$
Add $k 1$ postage packing and insurance per parcel. Overseas customers neglect VAT, but
add 320 per kit to cover airmail postage.
COMPCOR ELECTRONICS LIMITED
9 DELL WAY, LONDON W 138 sJH
or telephone 01-998 8221 on weekdays between 7.30 p.m. and 10 p.m anty WW - 087 FOR FURTHER DETAILS


OFFER till FEBRUARY 1977.
For purchases of any goods value £25 or above deduct $10 \%$
MARCONI TF675F WIDE RANGE PULSE GENERATOR
delay. Small compact unit $£ 22.50$ ea

## COMPRESSOR / VACUUM PUMP

Twin Cylinder opposed with Integral $1 / 2 \mathrm{H} . \mathrm{P}$. $220 / 110 \mathrm{~V} 50 \mathrm{HZ} \mathrm{Sin}$

MARCONI NOISE GENERATOR TF987/1.
4 Ranges 0-5, 0-10; 0-15, 0-30
Due to large purchases now priced at $£ 17.50$
Due.

## PRECISION EX-MINISTRY

 SIGNAL GENERATORtype 62 by DECCA 95 to 160 MHZ . Two front panel switches connected to a motor driven system for rapid trequency change due to dial length (can also be operated manually. Precision attenuator systerm,
Internal/External AM Modulation. Carrier level meter \& Internal/ External AM Modulation Carrier level meter \& \% Modulation meter 1 MHZ \& 10 MHZ Crystal Markers Provision for external crystal as marker This equipment was used for aligning service type Aircraft receivers etc.
Complete with leads etc Standard 240 V ONLY $£ 15$

## THE HONEYWELL KEYTAPE UNIT

is a multi-channel Keyboard to Magnetic Tape System recording Keyboard entered data on $1 / 2^{\prime \prime}$ tape in 80 or 120 character records in a form easily usable as a computer input / output and verifier. 240 Volt operation


Honeywell Keytape Unit as picture. Checked, tested with Manual, £215 ea
As above but less data boards Tested forward / backward tape movement and control etc. Data entry / exit via read write boards. £105 ea. Exactly as above but less key. board and table $£ 80$ ea All units carriage paid. KEYBOARDS as pictured also available at $£ 20$ each. Carr. £2.50.

From the simple to understand electro mechanical/vacuum system to the $+15-15+5$ Power Supply and hinged wire wrapped card frame, the flexibility and reliability are outstanding, this coupled with the ease of interfacing to a VDU, Mini/Micro computer, etc.. make all the Honeywell Keytapes on offer very fine value.

We are increasing our stocks of PUNCHES, READERS, PRINTERS, SYSTEMS etc - CALL and SEE

POLARAD SPECTRUM ANALYSER TYPE SA84 10 MHZ to 40 GHZ £ $\mathbf{~} 375$.
RHODE \& SCHWARZ POLYSCOPE SWOB $1 £ 500$
RHODE S SCHWARZ GENERATOR BN4 $1022300-1000 \mathrm{MHZ} \mathbf{£ 1 9 5}$.
RHODE \& SCHWARZ ADMITTANCE METER BN3511 AS new £65.
POLARAD RECEIVER Model FIM-B2. Complete $1-10 \mathrm{GH}$ £ 475 .
12-CHANNEL CHART RECORDER fsd 5V 20MA per channel £17.50.
TELONIC SWEEPER 2000-1 with LA-1M 20HZ-20KHZ £120. Other freq available
MARCONI OSCILLATOR TF $110120 \mathrm{HZ}-20 \mathrm{KHZ}$. Nice Condition. Special price $£ 50$.
MARCONI Wide Range Oscillator TF1370 Freq range 10 HZ to 10 MHZ Sine Wave
10 HZ to 100 KHZ Square Wave High outputs up to 316 V Fantastic value at $\mathbf{\varepsilon} 90$ ea
10 HZ to 100 KHZ Square Wave. High outputs up to 31.6 V . Fantastic value at $£ 90$ ea
MARCONI Generator TF $867 \quad 15 \mathrm{KHZ}$ to 30 MHZ 60 ea
MARCONI Generator TF867,15KHZ to 30MH2 £60 ea.
MARCONI ADAPTOR TM6113 for TF2700; TF1313: TFB68B £20 ea
AIRMEC 4 trace scope Type 279 Large screen £.120.
COLLINS RECEIVER UNITS with built in Tube and Power Unit gom
information - ex.Ministry. Type IP"1OULR. Limited quantity $£ 60$ ea
information - ex-Ministry. Yype IP'O FACTOR METER giving ea
directly calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} £ 35$ ea
AVO TRANSISTOR ANALYSER CT446 £30 ea
MARCONI PORTABLE FREQUENCY METER TF $1026 / 11 \quad 100$ to 160 MHZ Very fin MARCONI PORTABLE FREQUENCY METER TF1026
CONdIIIO. SOITY, now £27.50 ea
DECCA NAVIGATOR DISPLAY UNIT. Very impressive. £12.50 ea
PRECISION SIGNAL GENERATOR. Type 62 Ex-MInistry. $110-150 \mathrm{MHZ} \mathbf{£ 1 5}$ ea
PRECISION SIGNAL GENERATOR. Type 62 Ex-Ministry. 110-150MHZ $\mathbf{\varepsilon 1 5}$ ea
COURTENAY MAJOR Mk. 2. 250 joules, 5 outputs. Can be combined -1250 joules.
COURTENAY MAJOR Mk. 2. 250 joutes,
No heads. $£ 55$ ea.
MARCONI SIGNAL GENERATORS. TFB01B from £140; TFB01D from £190. Usually available ex stock.
MARCONI DEVIATION METER. TF791D £75 ea
MARCONI RF POWER METER. TF102OA/1 50 ohm E65.
HEWLETT PACKARD 11 Channel Numerical Printer $£ 30$.
MARCONI $20 M H Z$ SWEEP GENERATOR. TF1099 $£ 45$.
MARCONI 20MHZ SWEEP GENERATOR. TF1099 £45.
MARCONI DOUBLE PULSE GENERATOR. TF1400S with TM6600/S £20.
MARCONI TRAVELLING WAVE TUBE AMPLIFIER. TF $1278 / 1$ £15.
RACAL Frequency Generator MA 250 Any multiple of 100 HZ from 1.6 MHZ to 31.6 MHZ
IV RMS: 50 ohm IV RMS; 50 ohm output impedance $£ 120$.
RHODE \& SCFiNARZ Synthesizer BN444911 O-30MHZ. Nice Condition $£ 175$.
AIRMEC Generator type 304A. 50 KHZ to 100 MHZ £120.
AIRMEC MODULATION METER 210, £140.
SOLARTRON Oscillator C0546. 25 HZ to 500 k
SOLARTRON Oscillator C0546. 25 HZ to 500 KHZ Constant amplitude Very reliable Highly recommended in good condition $£ 18$ ea
PETROLGENERATOR. $115 / 230 \mathrm{~V}$ 60HZ 10 KW att Stand by rating Fine condition $£ \mathbf{3 5}$.

RUBIDIUM FREQUENCY STANDARD by VARIAN. U.S.A. Model $4700 B$ Price £950. Output treq. 5 MHZ . $1 \mathrm{MHZ} ; 100 \mathrm{KHZ}$ 1V RMS into 50 ohms. Stability $5 \times 10-11$
in any one year period. INPUT 28 V DC $+1-4 \mathrm{~V} 25 \mathrm{~A}$. Suitable Nife batteries can be supplied, if required, at extra cost.

HILGER \& WATTS SPECTROMETER H1170. £350.
OUR PRICES TOO HIGH? - THEN MAKE US AN OFFER WE CAN CONSIDER

CUSTOMERS - WE ARE INCREASING THE AREA GIVEN OVER TO INDIVIDUALLY PRICED ITEMS AND HAVE IMPROVED THE ACCESSIBILITY. Every week hundreds of fresh items are added to our shelves and lists. We are sure you will find a visit to us worthwhile:
FOR CALLERS ONIY MANUAL TYPEWRITERS. REMINGTONS-OLIVETTI ete from $£ 12.50$ each.
 2 KVA Brand new. Crated $£ 12.50$ ea.

> SOLID STATE 10MHZ OSCILLOSCOPE made by PLESSEY for the MINISTRY. Small, compact Size approx $7 \times 10 \times 14 \mathrm{in}$. 10 MV Sensitivity. 30 Volt DC input. These new releases at Bargain price of ONLY \&65 ea. LIMITED QUANTITY.

SOLARTRON Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC.6MHZ $£ 95$ each
ONLY §10 EACH STABILISED POWER SUPPLY. 240 V 50 HZ input. Outputs - 15 V @ $10 \mathrm{~A}:+15 \mathrm{~V} / 4 \mathrm{~A}-4.5 \mathrm{~V} @ 12 \mathrm{~A}-21.5 \mathrm{~V} @ 1.5 \mathrm{~A}$. Size $16 \times 20 \times 9^{\prime \prime}$ Auto overload trips on each voltage rail with push button resets. Many OTHER POWER SUPPUES - call and see. \$TELEPHONES. Post Office style 746. Black or two-tone grey $\mathbf{E 6} \mathbf{5 0}$ ea Modern style 706 Black or twotone grey $£ 4.50$ ea. P\&P 75p ea. Old black style $£ 1.50$ ea. P\&P $75 p$. TELEPHONE EXCHANGES. eg ${ }^{15}$-way automatic (exchange only) from £.95.
MUFFIN FANS. Size $5 \times 5 \times 112^{\prime \prime}$. Superbly quiet and raliable Ex-eq but tested 230 V @ MUFFIN FANS. SIz
£2.50 ea. P\&P 75 p
PHOTOMULTIPLIER Type $931 \mathrm{~A} £ 4$ ea. P\&P 75 p . Other types available, also suitable Power Supplies
*POTENTIOMETERS - All $5 p$ ea P\&P extra. Metal bodied AB Linear PCB Mount Brand New. $10 \mathrm{~K} ; 100 \mathrm{~K}$ ganged; 250 K ganged, 100 K ganged concentric shafts.
 75p. 500 off £15 P\&PE1.25, 1,000 off £25 P\&PE1.50 LARGE RANGE ELECTROSTATIC VOLTMETERS. FTom 0-300V $2^{\prime \prime}$ e. $3,1020 \mathrm{KV}$ Max General guide $5 \mathrm{KV} 31 /{ }^{\prime \prime} £ 5$. Thereatter $£ 1$ per KV. P\&P 75 p .
VARIACS 240 V input $0-240 \mathrm{~V}$ output $8 \mathrm{E} \mathbf{1 8}$ ea 20A $\mathbf{£ 3 0}$ ea Carr £ 2.50
E.H.T. TRANSFORMERS $20 \mathrm{KV} 2 \mathrm{KVA} \mathbf{£ 8 5}$ ea Many other EHT transformers and EHT E.M.T. TRANSFOR

Capacitors available DON'T FORGET YOUR MANUALS. S AE. with requirements
TUBES. All Brand New Boxed Electrostatic deflection Type 408A $11 /{ }^{\prime \prime}$ dia. $71 / 2^{\prime \prime}$ iong Blue Trace £2.50 ea P\&P 75p. Type CV1526 (3EG1) $3^{\prime \prime}$ dia. £3 ea P\&P £1
TYPE DB7/36 (Replacement for Telequipment S31) $\mathbf{E 1 1}$ ea P\&P $£ 1.50$.
FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube Type M 38 at the ridiculous price of $£ 4$ ea. And also still available the CME $1220.24 \times$
15 cm at $£ 9$ ea. SEMICONDUCTORS
Manufacturer's markings $\mathrm{BC} 147, \mathrm{BC} 158$ : $2 \mathrm{~N} 3707, \mathrm{BC} 107$, BF 197 : BC327: 2N4403: BC1728: BC261B: BC251B BC348E. BC171A/B. 2N3055RCA 50p ea. P\&P 8p
2N5879 with 2 N 5881 Motorgla 150 Watl Comp pair $\mathbf{\epsilon 2} \mathrm{pr}$ P\& P 15 p
*LInear Amp 70925
-SPECIAL OFFER
Guaranteed full spec. devices. Manufacturers' markings: BC204 \& BC207A 4p ea P\&P

## CREED 5-LEVEL COMBINED PRINTER AND PERFORATOR CRATED £35 each

CREED 5-LEVEL
PAPER TAPE READER $£ 25$ each

CREED 7B
TELEPRINTER CRATED $£ 40$ each

## SPECIAL OFFER

CREED 7B TELEPRINTER LATE MODEL WITH PERFORATOR. FREE WITH ALL PURCHASES PLESSEY READER $\mathbf{£ 6 0}$ each.

Minimum Mail Order $£ 2$. Excess postage refunded Unless stated - please add $£ 2.50$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $121 / 2 \%$ VAT, otherwise $8 \%$ Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order


7/9 ABTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605


## BARGAINS IN ELECTRONIC TEST EQUIPMENT

Here are just a few of some 200 different types of Test Instruments and accessories from the world's leading manufacturers now available for sale from our own stocks in England or Germany. Many items are only 2 years old. Full details in the November Carston list available FREE from our companies in England, Germany or Holland


High Quality Electronic Test Equipment at a fraction of original price


Shirley House, 27 Camden Road
London NW1 9NR, England. Tel: 01-267 4257
OR: Euro Electronic Rent GmbH
6100 Darmstadt, Bismarckstrasse 114, Germany
OR: Euro Electronic Rent B.V
Dorpsstraat 20, Nijmegen, Netherlands
For FREE technical data, circle $X X$ on postcard

## Wilmslow Audio THE firm for speakers!

Baker Group 25, 3. 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm .
Baker Major, 3 . 8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 13008 or 15 ohm Celestion MH 1000 horn, 8 or 15 ohm Coles 4001 G super tweete Coles 4001 K super weeter Decca London and $X$ over Decca DK 30 and $X$ over EMI $5^{\prime \prime}$ Mid range
EMI $6^{1 / 2^{\prime \prime} d / c o n e ~ r o l l ~ s u r r . ~} 8 \mathrm{ohm}$ EMI $8 \times 5,10$ watt, $d / c$, roll/s 8 ohm EMI 14" ${ }^{\prime \prime} 9^{\prime \prime}$ Bass 8 ohm Elac 59RM 10915 £11.92 Elac 61/2" $\mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 33 T 33 watt 12 Fane Pop 50 watt, 12 Fane Pop 55, $12^{\prime \prime} 60$ wat Fane Pop 60 watt, $15^{\prime \prime}$ Fane Pop 100 watt. 18 Fane Crescendo 12 A ol B. 8 or 15 ohm Fane Crescendo 15, 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm Fane Crescendo 18,8 or 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls/s, 8 or 15 Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls $/ \mathrm{s}, 8$ or
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8" 8 or 15 ohm Goodmans Twinaxiom $\mathbf{G}^{\prime \prime} 8$ or 15 omm Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN8
Kef DN12
Kef DN13
Richard Allan HP8B 8 " 45 watt
Richard Allan CG8T 8" d/c roll/s
Baker Major Module, each
Goodmans Mezzo Twinkit, pair.
Goodmans DIN 20, 4 ohm, each
Helme XLK35. pair
Helme XLK40, pair
Helme XLK30.
Kefkit 1, pair
Kefkit 1, pair
Kefkit III, each
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Triple 12, each
Richard Allan Super Triple, each
Richard Allan RA8 kit, pair
Richard Allan RA82 kıt. pair Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 XP kit, pair Wharfedale Dovedale 3 kıt, pair £47.70 Radford, Gauss, Castle, Jordan Watts, Eagle Lowther. Peerless Tannoy units in stock

## Prices correct at $11 / 11 / 76$

ALL PRICES INCLUUE VAT
Cabinets wadding, Vynair. Crossovers etc
Send stamp for free 38 page booklet
FREE Choosing a Speake
Hi-Fi Loudspeaker Enclosures Book
All units are guaranteed new and perfect
Prompt despatch
Carriage: Speakers up to $12^{\prime \prime} 60 \mathrm{p}: 12^{\prime \prime} £ 1: 15^{\prime \prime}$

## WILMSLOW AUDIO

## Dept. WW

Loudspeakers 8. Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount Hi-Fi, PA etc: 10 Swan Street, Wilmslow. Radio, Hi-Fi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (Hi-Fi, etc.) Wilmslow 26213
Access and Barclaycard orders accepted by
WW - 011 FOR FURTHER DETAILS


SPECIAL RESISTOR KITS (CARBON FILM 5\%) (Prices include post \& packing)
$10 \mathrm{E} 12 \mathrm{~V} / \mathrm{WW}$ or $1 / 4 \mathrm{~W}$ KIT 10 of each E1 2 value 22 ohms -1 M , a total or $570 \mathrm{E5.29}$ net 25 E 12 1//W or $1 / 4$ W KIT 25 of each E 12 value. 22

## SPECIAL CAPACITOR KITS

C280 Kit-PC Mounling palyester 250V 5 of each value 0.01. 0.022 $0.047 .0 .1,22 \mu \mathrm{~F} .2010 .47$, $1 \mu \mathrm{~F} E 1.98$ net
 $0.22 \mu \mathrm{~F} 2$ of $0.47 \mu \mathrm{~F} £ 2.67 \mathrm{nel}$
 470. $1000 \mu F, 2200.4700 \mu F .0 .01 \mu \mathrm{~F} £ 1.66$ nst

250y Paper Kil-Tubular metal case. 3 of each value 0.05. 0.1. 0.25
$0.51 \mu \mathrm{E} \mathrm{E} .41$ nel.
500 V Paper Kit-Tubular metal case. 3 ol each value 0.025 .0 .05 , 0.1
I OOOV Paper Kit-Tuhular metal casg, 3 of each valua 0.01. 0.025. 0.05, $0.1,1 \mathrm{~F} 51.63 \mathrm{nel}$
B.H. COMPONENT FACTORS LTD. MULTIMETER U4341
27 Ranges plus Transistor Tester
Vac-03-900V in 8 ranges
Vac $-15-750 \mathrm{~V}$ in 6 ranges
t dc. $-006-600 \mathrm{~mA}$ in 5 ranges
rdc-0 $06-600 \mathrm{~mA}$ in 5 ranges
lac $-03-300 \mathrm{~mA} 4$ ranges
lac $-03-300 \mathrm{~mA}$ in 4 ranges
Resistance $-2 \mathrm{~K}!-2 \mathrm{M}!$ in 4 range
Resistance-- $2 \mathrm{~K}: 8-2 \mathrm{M}$
Accuracy - dc $-21 / 2 \%$
Accuracy - dc-2
ac $4 \%$ F D
hfe $-10-350$ in 2 ranges
Size $-115 \times 215 \times 90 \mathrm{~mm}$
Complete with steel carrying case, tes
leads and battery PRICE $£ 16.6 €$ net


Accuracy-5\% of F S D
OSCILLATOR 1 KHz and 465 KHz (A. M) at approx
Volt Size $-160 \times 97 \times 40 \mathrm{~mm}$
Supplied complete with carrying case test leads and
PRICE
MULTIMETER U4324
34 Ranges High sensitivity
200002 /Volt
$\mathrm{Vdc}-06-1200 \mathrm{~V}$ in $y$ ranges
Vac $-3-900 \mathrm{~V}$ in ranges
$\mathrm{vac}-3-900 \mathrm{~V}$ in 8 ranges
idc $-006-3 \mathrm{in} 6$ rances
idc $-006-3 A$ in 6 range
tac-0 3--3A in 5 ranges
Resistance -25 ? 5 M ? in 5 ranges
Resistance- -25 ? -5 M ? in 5 ranges
Accuracy-dG and $R-21 / \% \%$ of $F S D$
Size $-167 \times 98 \times 63 \mathrm{~mm}$
Supplied complete with storage case test
leads spare diode, and battery
leads spare diode,
PRICE E16.66 net
U4324
(WW), LEIGHTON ELECTRONICS CENTRE, 59 NORTH STRIEI, LEIGHTON BUZZARD, LU7 7EG

## RELAYS-UNISELECTÖRSSWITCHES

miniature plug-in relays (Siemans/Varley) with perspex dust cover and base. 6-12.24.48v D.C. 6 . 6 p c/0 75p: P \& P 10p S.T.C. MINIATURE (P.C. Mounting)
$2 \mathrm{c} / 0(18 / 24 \mathrm{v}) 45 \mathrm{p}$ P.P. 10p $4 \mathrm{c} / 0(24 / 36 v)$ 50p P.P. 10p

CLARE-ELLIOTT MINIATURE RELAYS
(Hermatically sealed) $2 \mathrm{c} / 0675 \mathrm{ohm}$
$24 v$ D.C. Coils $(22 \times 22 \times 10 \mathrm{~mm}) 75 \mathrm{p}$
i.T.T. 240v A.C. Plug-In RELAYS
(with perspex cover) 10 amp contacts
2c/o65p 3c/075p P.P 10p
mains ( 230 v A.C.) RELAYS OPEN TYPE
Chassis mounting ( $60 \times 60 \times 35 \mathrm{~mm}$ )
$2 \mathrm{c} / \mathrm{o} 5 \mathrm{amp}$ contacts 60 p P.P 10 p
REED RELAY 3 MAKE $(50 \times 20 \times 20 \mathrm{~mm})$ 3500 ohm coil 24 V D. C. 50p
REED SWITCHES (1 MAKE)
Type $1(18 \times 3 \mathrm{~mm}) 12$ for $\mathbf{E 1}$
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam. £1 P.P. 20p UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm $£ 5.50$ P.P. 50p
6 Bank Full Wipe 75 ohm 6.25 P. 50 p
12 Bank Half Wipe 68 ohm $\varepsilon 6.50$ P.P. 80
CLARE TYPE 11 UNISELECTOR (Ex Equipment)
6 Bank 10 way 100 ohm £2.50 P.P. 25p
D.C. SOLENOIDS $24 v$ (Cont. Rated)

101b Pull 20 mim Stroke. Size $50 \times 48 \times 42 \mathrm{~mm}$
15p
FOOT SWITCH "SQUARE-D" H.D.
20 A Make/10A Break at 240v A.C
BURGESS MICRO SWITCHES (VCSP)
Single Pole c/o 8 for E1P.P. 10p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits. 50p each. Bank of 8 with mounting brackets $£ 3$ P.P 20p

DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons. 6 mm digits 75p each P.P. 10p
Also in B C.D
KEY SWITCHES '1000' TYPE
$4 \mathrm{c} / 0$ each way locking 60 p P. P 10 p
6 make each way locking 60 p P P 10 p
6 make each way locking 60 p P P 10p
Bank of 4.4 c/o each way. 1 biased E1.25 P.P. 15p

## MULTICORE CABLES

8CORE RIBBON (RAINBOW) CABLE

5 CORE H.D. CABLE $5 \times 70 / 76$ P V.C
Black Outer P.V.C. O.D $1 / 2$ in
$10 \mathrm{~m}-\mathbf{2} .50$ : $50 \mathrm{~m}-\mathbf{£ 1 2 : ~} 100 \mathrm{~m} \mathbf{- £ 2 2 . 5 0 ~ P . P . ~ 2 p ~ p e r ~}$
6 CORE ARMOURED $6 \times 40 / 76$ P.V.C INS
Outer Sheath-Flexible Galvanised Tubing. O D. F/in.
$10 \mathrm{~m}-£ 3: 50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-£ 25$. P.P 2 p per metre
6 CORE SCREENED $6 \times 7 / 760 . \mathrm{D} .6 \mathrm{~mm}$
10m-£1.50: 50 m -£6.50: $\mathbf{1 0 0 m} \mathbf{m} \mathbf{£ 1 2 . 0 0}$ P.P. $2 p$ per metre
36 CORE SCREENED $36 \times 7 / 76$ ( 36 colours) 0.0 $11 \mathrm{~m} . \mathrm{m}$

## VARIOUS

E.H.T. MODULES. Input $190-260 \mathrm{v} 50 \mathrm{HZ}$. Output 137 Kv PK @ $0.50 \mathrm{~m} / \mathrm{a} .(150 \times 95 \times 70 \mathrm{~mm})$ E12.P.P. £ 1
AIR PRESSURE SWITCH 0.10 lb Variable
Switch Contacts 15 amp . Change-Over $£ 1.50 \mathrm{P} . \mathrm{P} .28 \mathrm{p}$ 10.7 MHZ CRYSTALं FILTËṘS (I.T.T. 901B) 25 Khz B/W. $£ 4.00$
H.D. THYRISTORS 65 amp 100 P.I.V

On deep finned heat sink. £2.50 P P. 50p
"BLEEPTONE" AUDIO ALARMS
12vD.C. 50p P P. 10p
GEARED MOTORS $230 v$ A.C. (Int. Rating)
110 r.p.m. £2.25 P.P 75p
MAGNETIC COUNTERS
6 digit 48 v D.C. (Non-Reset) $92 \times 32 \times 22 \mathrm{~mm}$
NUMICATORS O-9 (L H/R
NUMICATORS 0-9 (L.H/R.H. Decimal Point)
Character size $20 \times 10 \mathrm{~mm}$ overall size $25 \times 60 \times 68$ day 61.50 P P. 25p
D.C. POWER SUPPLIES Input 240 VA C
TYPE 120 v D.C. at 1 amp. Fully regulated $255 \times 155 \times 75$ TYPE 120 V.C. at 1 amp. Fully regulated $2.55 \times 155 \times 75$ TYPE 220 vDC at $500 \mathrm{~m} / \mathrm{a}$ stab
$\times 100 \mathrm{~mm}$ E2.50 P.P. 75p
PHILIPS MOBILE RADIO P.S.U.
Input 240 V A.C Output 32 V at 15 Amp D.C C 5.25 P.P
TELEPHONE HANDSET with "Press to Speak" switch £1.50 P P. 25p

J. B. PATTRICK<br>191/193 LONDON ROAD<br>ROMFORD, ESSEX<br>RM7 90J ROMFORD 44473

## Appointments

Advertisements accepted up to 12 noon Tuesday, January 4, for the February issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre ( min .3 cm ). LINE advertisements (run on); $£ 1$ per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Sireet, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

# SENIOR SYSTEMS ENGINEERS \& LOGIC DESIGNERS ELECTRONIC ENGINEERS INTERMEDIATE/JUNIOR LOGIC DESIGNERS 

The company has vacancies for the above in their Engineering Hardware Department
Applications for the senior systems engineer and logic designer vacancies must have a relevant degree or equivalent qualification and have had several years experience in the computer field including complex digital equipment. They must have the ability to understand sophisticated central processor design under development and be able to play a significant part in that design

Electronic engineers are required for the design and development of computer memories, power supply units, displays, processors and peripheral equipment. Applicants must have a relevant degree or equivalent qualification e g. HNC, and a minimum of $1 / 2$ years' practical experience.
Junior Logic designers are required to work on either the development of computers and associated equipment or the design and development of special purpose test equipment. Applicants must have a relevant degree or equivalent qualification e.g. HND, ET5, etc., and have had some practical experience of logic design. Simple programming experience would also be an advantage although this is not essential.

Specialist training will be given for all of the above positions and there is a company training scheme for junior staff.

These positions attract competitive starting salaries and career progression is based on ability and performance. There is a contributory pension scheme and other fringe benefits normally associated with a large organisation.

Those interested should apply in writing or telephone to Mr. D. F. Watts, Personnel Department, GEC Computers Ltd., Elstree Way, Borehamwood, Herts. Tel: 01-953 2030, ext. 3697.

## GEC Computers Limited

University of London
Institute of Laryngology and
Otology
330/336 Gray's Inn Road, London, W.C. 1

## (Close to King's Cross Station)

## ELECTRONICS TECHNICIAN II

for research Institute for maintenance and design of audiological electronic equipment HNC in electronics equivalent qualification essential Salary scale 6 , commencing in the range of $£ 3,918- \pm 4,119$ rising to $£ 4,524$ (including London Weighting and pay supplement)
Applications to the Secretary-Administrator, at above address quoting referees
(6758)

## CCTV/AV TECHNICIAN £2,841-£3,165

A vacancy exists for a technician in a developing colour CCTV studio in an attractive location. The fully equipped studio uses new types of colour studio uses new types of colour
camera, editing VTRs, etc. for camera, editing VTRs, etc. for training and production. Studio
operation and maintenance of this and operation and maintenance of this
other $A / V$ equipment is required.

Further details and application forms are obtainable from the Personnel Officer, Brighton Polytechnic Moulsecoomb. Brighton, BN2 4GJ. Tel. 0273-67304 Closing date 2 weeks after publication of this adver weeks aft
tisement

## PIPCO

(S \& W SERVICES)
For Electronic Engineers. Technicians \& TV Service Engineers

26a High Street
Hounslow. Middx
Hounslow, Middx.
Tel: $01-5727363$
Telex Pipco Hounslow 935413


KING'S HEALTH DISTRICT (TEACHING)
Department of Biomedical
Engineering, Dulwich Hospital

## ELECTRONICS TECHNICIAN

required to foin the Department o Biomedical Engineering to assis research groups within the depart and maintenance of electronic signal and maintenance of electronic signal processing equipmentusing analogue
digital and radio-frequency tech digital
niques.
niques.
Applicants should possess an ONC or equivalent in electronics as a mini mum. Additional industrial experience would be an advantage.
The post is tenable for 1 year in the first instance but is renewable up to a maximum of three years. Initial salary will be within the range of
E2,808-£2.922 including London Weighting and salary supplemen commensurate with experience and qualification

Application forms available from the Personnel Office. King's College Personnel Office, King s London
Hospital. Denmark Hill. London S.E.5. Tel. 01-274 6222, ext. 2753 (Medical Staffing), should be com pleted and returned by Decembe 31st. 1976
(6745

## Kingston Polytechnic CCTV ASSISTANT ENGINEER/PRODUCER

 for the maintenance and operation of The ability is required to help staff and students in preparation and making of short TV programmes. HND electron short TV programmes. HND electron-ics or applied physics or equivalent ics or applied physics or equivatent necessary plus keen interest in
photographic presentation problems photograph
of TV work. of TV work.
Salary grade AP3/4E2.922 - E3. 702 $+£ 312$ supplement, + E261 London Allowance.
Application form from Assistant Registrar, Kingston Polytechnic Penrhyn Road, Kingston upon Penrhyn Road, Kingston upo
Thames KT1 2EE. 01-549 1366.
(6730)

## MARINE BIOLOGICAL ASSOCIATION OF THE U.K

## ELECTRONICS TECHNICIAN

required at the Plymouth Laboratory to assist with the maintenance and construc-
tion of a wide range of electronic tion of a wide range of electronic
instruments used in biological research instruments used in biological research
Minimum qualifications ONC or equivalent Salary (based on the Civit Service scale for $P$ \& TO IV) at age $21 £ 2,425$, rising by 12 annual increments to $£ 3.450$. plus £313.20 per annum special pay award. Apply in writing, giving details of age qualifications and experience, and naming two referees, to: The Director, The 2PB

# Radio Officers-now you can enjoy the comforts of home. 

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the -Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St: Martins-le-Grand, London EC1A1AR.

# ROYAL COLLEGE OF MUSIC 

## Audio Electronic Technician Full-time non-residential vacancy late January

Interest in and knowledge of music essential.
Responsibilities: general maintenance and repairs in Electronic Music and Recording Studios plus other equipment, storekeeping, ordering supplies, assisting P.A. and recordings, some work with students.

Salary range $£ 3,500$ to $£ 4,000$.

Apply in writing by 17 th January latest to Bursar, Royal College of Music, Prince Consort Road, London, SW7, giving relevant experience.

## LINK TELEVISION



Increasing orders for our sophisticated equipment, from both the home and export markets. give us the opportunity to recruit additional electronic engineers. Our products cover a complete range of monochrome and colour cameras as well as a whole variety of studio broadcast equipment.


## TEST ENGINEERS

Experience of working with broadcast TV equipment is more important than the academic level of degree/HNC In any case, you must have had some years working with modern communications equipment and experience solely of domestic television is not sufficient. Knowledge of the latest circuit techniques is essential as you will be expected to have the ability to rapidly come to terms with our designs

## DEVELOPMENT ENGINEERS

You would be working with our R \& D team on design and development of anything from amplifiers and coders to broadcast colour cameras Some knowledge of television would be a gteat advantage as experience could have been gained in your present job or at university
We have a modern factory in a very pleasant part of Hampshire, within easy reach of several major towns, London, the South Coast and the Midlands are all easily accessible. Our terms of employment are excellent and include free life and health insurance. pension scheme, generous holidays. staff restaurant and relocation expenses where necessary.

Please write or phone (reverse charge) Mic Comber, Parsonnel Manager, Andover (0264) 61345. Brief details only at this stage as we will ask you to complete an application form on which you can give as much details as you think relevant.


## ELECTRONICS

Re advertisement for Link Electronics in December issue. Wireless World would like to apologise for the ommission of the Company's name from this advertisement.

## Service Engineers

F W Bauch Limited is a principle supplier of professional recording and broadcast equipment and has recently becomé sole UK agents for a range of quality $\mathrm{Hi}-\mathrm{Fi}$ equipment.

Arising from this broadening of the product range, we are currently seeking experienced engineers to work in our service department on the entire product range.

If you have a good knowledge of tape recorders and audio equipment and would like to work in our modern laboratory, write in confidence to:

The Managing Director F W O Bauch Limited
49 Theobald Street, Boreham Wood Herts WD6 4RZ

## R. \& D. ENGINEERS

Required to work on cable television systems for the domestic and surveillance market. Engineers should hold a degree, or equivalent qualifications, and have some knowledge of either linear H.F., video, or modulator / demodulator circuit design.

One of the posts will be at a senior level and in this case relevant experience is expected.

Salaries will be commensurate with qualifications, age. and experience.

Fringe benefits include a contributory pension / life assurance scheme, subsidised canteen and outdoor facilities for mini-golf, tennis and free car parking

If you are seeking a responsible position in R. \& D. write, giving full details of your career to date, or telephone:

```
Dr. G. O Towler, B.Sc., Ph.D. (Manager) Research \& Development Establishment British Relay (TV) Ltd.
Cleeve Road
Leatherhead, Surrey
Tel. Leatherhead 76056
```


## Appointments

## Revitalised economy - superb location!

Together with most other countries. Zambia has recently been affected by the worldwide economic recession. Now our economy is surging forward strongly again, revitalised partly by significant advances in the country's agricultural industry and rising copper prices on world markets. Come here on a 3 -year contract and your skills will be welcomed - and broadened. You'll enjoy the warm, pleasant climate in this totally land-locked country, larger
than France, Belgium, the Netherlands and Switzerland combined. You'll enjoy the scenery too: although mainly a broad plateau, Zambia also features spectacular mountains, a certaın amount of dense forest, imposing rivers, vast lakes and extensive game reserves. Its many large cities and towns contain all the normal modern facilities and are linked by excellent roads and rail services.

## Post \& Telecommunications Corporation

## Chief Engineers

K6756-K7200 (c. ©5067-65400).
Supplement $\mathbf{6} 4902$ (married), $\mathbf{6 2 7 8 4}$ (single)
Requirements:
Electrical or Telecommunications Degree plus senior management experience.

## Responsibilities:

Either: planning switching and external plant networks; or planning budgets and methods including long-term income/ expenditure forecasts, staffing and training requirements and long/medium/short-term national planning: some training is involved and you will report to the Assistant. Director, Planning.

## Principal Engineers

K6324-K6756 (c. E4755-65067).
Supplement 64704 (married), 62586 (single)
Requirements:
Electrical, Electronic or Telecommunications Engineering degree; senior management experience.

## Responsibilities:

Either: (a) controlling switching planning groups, including major projects management, requiring crossbar/electronic switching systems experience; or (b) controlling, advising on planning, budgets methods, staff; co-ordinating long/medium/short-term plans and preparing capital estimates; some staff training. You will report to the Chief Engineer

## Senior Engineer

K5700-K6108 (c. £4275-£528I).
Supplement $£ 4524$ (married), $\mathbf{£ 2 4 0 6 \text { (single) }}$
Requirements:
C \& G Final or equivalent initiative and responsible managerial experience of at least 3 years.

## Responsibilities

(a) For external plant - preparing development scheme and contract specifications; familiarity with latest overhead and underground system methods is essential,
(b) For switching - implementing plans, preparing for and evaluating tenders; crossbar systems experience is essential.
(c) For planning, budgets, methods - preparing plans and engineering instructions, studying/reporting on new techniques, recommending new methods in radio/transmission, switching and external plant.
(d) Planning, budgets and methods - preparing/maintaining an annual works programme, preparing time/resource diagrams, monitoring project progress.

Engineers<br>K5316-K5700 (c. £3987-£4275).<br>Supplement $\mathbf{6} 1296$ (married), $\mathbf{6} 2232$ (single)<br>Requirements:

$C$ \& G Final or equivalent plus initiative.
Responsibilities:
Either for: (a) telegraph and subscribers' apparatus including specifications/tender evaluation/type approval;
(b) power and accommodation - liaising with field staff/contractors in such areas as power plant maintenance:
(c) Liaison with engineering, sales, traffic sections, special investigations, co-ordination of such staff as aerial riggers and diesel mechanics. In all cases staff training is probably involved.

## Tecmaician poses <br> K4416-K5136 (c. $£ 33$ 12- 63852 ).

Supplement 44134 (married), 62070 (single)

## Requirements:

$C \& G$ Intermediate or equivalent plus appropriate experience.

## Responsibilities:

Either: (a) External (underground/overhead) plant: (b) switching (c) radio and transmission; (d) power and air-conditioning (e) stores liaison; (f) power/accommodation maintenance (g) diesel maintenance: (h) shift leader - earth station (nonautomatic satellite ground station and its links); (i) day-to-day maintenance of a small rural area; (i) switching construction supervision: (k) transmission construction supervision. In all cases staff training may be necessary.

## Technician III posts

K3756-K4416 (c.E2817-£3312).
Supplement $\mathbf{6 8 4 6}$ (married), f 1830 (single)
Requirements:
C \& G Intermediate or equivalent plus appropriate experience
Responsibilities:
Either: (a) external plant - including line surveys, and estimate preparation: (b) external works supervision - cable/duct installation by contractors, underground/overhead work by Government staff. In botith cases staff training will be included in duties

## Technician III posts

K2388-K4410 (〔1791-£3308).
Supplement $£ 3804$ (married), $£ 1788$ (single) Requirements:
$C \& G$ Intermediate, initiative, 4 years' experience after training Responsibilities:
Either: (a) Microwave maintenance; (b) strowger maintenance (c) Pentaconta maintenance ( $\mathrm{BXB}||2|$ ); (d) LM Ericsson maintenance (ARK, ARF, and/or ARM): (e) Multiplex maintenance (f) PABX maintenance.

## Strong financial attractions

As well as the salary quoted, you will enjoy TAX-FREE supplements, a TAX-FREE terminal gratuity, low-cost accommodation. low taxation and free passages. Together, these add up to exceptional real earnings. Starting salaries relate to qualifications/ experience, while gratuities total $25 \%$ of basic salary. Salaryrelated supplements are reviewed annually and paid by the British Government to designated British nationals (annual maximum is shown), while appointment grants, education allowances.
car loans. medical aid assistance and free holiday visits for children educated in Britain are also provided for those receiving supplements. N.B. Sterling equivalents given are approximations only due to constant exchange rate fluctuations.
For further information please send full personal/professional details (without obligation and in total confidence), indicating which position interests you to Recruiting Officer (Room 33), Zambia High Commission, 7-11 Cavendish Place, London W:


## AMPEX

require

## PROJECT LEADERS <br> around £6,500 PROJECT ENGINEERS <br> around £5,500 PROPOSAL ENGINEER around £5,500

AMEPX, the world's leading manufacturer of broadcast video recorders, is successfully established in the field of studio and mobile systems manufacture. Now, with our complete range of colour TV cameras, we have the key items to strengthen our position.
We are in the process of expanding our systems activity, based in Reading, and are therefore seeking highly experienced staff to deal with our customers in East and West Europe, Africa and the Middle East.
We have positions for:
PROJECT LEADERS who will be capable of working independently and be responsible for supervision of construction, cost control, site commissioning and customer liaison. It is essential that the successful applicants have experience in all of these areas.
PROJECT ENGINEERS who will have actual experience of television systems planning, installation and maintenance of TV studios and O.B. mobiles, and who will report to the Project Leaders.
Both the above positions involve travel abroad and applicants should preferably have already travelled to countries with in our market area.
PROPOSAL ENGINEER to join our existing team preparing proposals based on the customer's specification. It is essential that applicants have operational experience in TV studios and mobiles and are familiar with the characteristics of video and audio switchers, lighting, power and air-conditioning.
Starting salaries for each of the positions will be commensurate with experience and ability. Assistance with relocation expenses is available where necessary. The Company operates a contributory Pension Scheme and subsidised cantreen facilities are available.
Applications, together with curriculum vitae, should be sent to the Personnel Manager, Ampex Electronics Limited, 72 Berkeley Avenue, Reading RG1 6 HZ , quoting reference "Systems'
(6754)

## TEST ENGINEER

We are a small but well established company, designing and manufacturing advanced scientific instruments.
An Engineer is required for our Test Department in which the responsibilities include fault finding, testing and calibration of electronic equipment.
The jwork is varied, as most systems are specified to match customers particular requirements
A mature person with several years' industrial electronic exper ience and qualifications to HNC or equivalent is desirable.
This is a permanent position. Good working conditions including $371 / 2$-hour, 5 -day week, pension scheme, 18 days holiday and free canteen facilities
For further information please write of telephone:

Mrs. S. Hutchinson Personnel Officer John Hadland (PI) Limited Newhouse Road Newhouse
Bovingdon
Bovingdon
Hemel Hempstead Hemel
Herts.
Tel. Hemel Hempstead 832525


# ELECTRONIC MAINTENANCE 

MEDICAL PHYSICS TECHNICIAN II SALARY £4,182-£5,205

To implement a máintenance, calibration and repair service for electronic equipment at St. George's Hospital, SW17. The work will involve a wide range of electronic equipment both from Clinical Departments and from Works Services.

The person appointed will have at least 5 years' experience in elecronics, either in industry or in the N.H.S or similar fields Knowledge of maintenance systems would be an advantage.

Minımum qualifications are ONC in electrical engineering or equivalent but HNC would normally be expected. The post combines responsibility in the Physics and Engineering Departments and provides a challenging opportunity for the right calibre of person to build up a vital service to the hospital.

For further information please contact Mr. D. Ritchie on 01.6721255 ext. 58

For a job description and application form please write to or telephone: Miss M. R. Felsenstein, Personnel Officer (Recruitment) Wandsworth and E Merton Teaching District 72 St James Drive, LONDON SW 177 RS Telephone $01-672$ 1222, ext 41

## UNITED NATIONS FIELD SERVICE

Openings for RADIO OPERATORS to service United Nations missions on rotating basis in any part of the world.

Requirements: Must hold 1st or 2nd class Radio Operator's licence from Telecommunications Authority. Minimum International Morsecode speed 30 wpm on semi-automatic key (Vibroplex), teletype minimum 50 wpm - must be able operate and maintain telegraph and voice radio transmitters, receivers, and ancillary equipment such as trailer power units, TTY, TD, etc and be familiar with erection of mobile radio stations antennae and emergency repairs.

All candidates must have a valid driver's licence Appointments are for 1 year, with possibility of renewal, and are subject to medical examination. Starting salary US $\$ 9,240$ gpa (net after Staff Assessment $\$ 7,430$ ), plus monthly allowance varying from US $\$ 137$ tc US $\$ 507$ depending on duty station, payable in local currency. Good additional benefits.

Candidates may apply in writing to
Mr. Soleiman Tarbah, Office of Personnel UNITED NATIONS

New York, N.Y. 10017
(6733)

## Are You Interested In

## Radio or Television


and do you have practical experience in either of these fields
if you have City and Guilds Intermediate Certificate in Electronics or
Telecommunications; ONC; or an equivalent qualification
then the Metropolitan Police may have a job for you as a Radio Technician.

## we offer

Good pay
Excellent prospects Secure employment
4 weeks holiday
Day release

Phone our Engineer Mr. H. G. Fielding on 01-653 0881, during office hours, to arrange an informal interview, or write to Metropolitan Police, Room 1634, New Scotland Yard, Broadway, London SW1H OBG.

## Electronics Maintenance Engineer

To an Electronics Engineer with an HND/HNC or equivalent technical knowledge and some experience in either design or maintenance of electronic equipment we offer the opportunity to join our maintenance team responsible for laser systems and automatic test equipment. Consequently experience with digital systems or precision measuring instruments would be advantageous.

While we are an electronic component manufacturing company which has been established at this seaside resort for over 30 years, our recent merger into ITT Components Europe has necessitated a re-invigoration of our automatic testing and machine control activities in order to build for the growth of our exports of multi-liayer capacitors, microcircuits and resistors. We will help to re-locate you if necessary.
interested? Write in confidence for an application form to R. Walpole, Personnel Manager, Erie Electronics Ltd., South Denes, Gt. Yarmouth NR30 3PX, or telephone Gt. Yarmouth 730688 after $8 \mathrm{p}, \mathrm{m}$. for an informal exploratory discussion.

A British Company of ITT

## - Radiomobile

Britain's Car Radio Specialists

## Production Engineering Opportunities

The following vacancies have arisen within our Production Engineering Department.

## Production Engineer (Electronics)

Working in the electronic engineering section, and reporting to the Senior Electronic Engineer you should have experience of audio and radio or engineering and be qualified to HNC Level. You will most probably be in your mid-twenties, and keen to be involved in the entire range of the Company's products

## Electronic Engineer (A.T.E.)

The Company is investing heavily in automatic testing equipment, and consequently requires an energetic engineer to assist in its introduction on the full range of the Company's products

You will be required to work with a minimum of supervision. and should be in your late twenties with some general electronic experience within a manufacturing environment. Qualifications should be ONC/HNC level

Starting salaries will be negotiated. Fringe benefits are those associated with a large and progressive organisation.

These posts are open to applicants of either sex
Telephone or write for Application form and Job Specification to

## Miss I. S. Thom <br> Personnel Manager <br> Radiomobile Limited

Goodwood Works
North Circular Road
London, NW2
Tel. 01-452 3333 ext. 4518
a subsidiary of $\square$ SMITHS INDUSTRIES LIMITED


ARTICLES FOR SALE

Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies.

Midland TV Trade \& Retail Services Worcester Road. Kidderminster, Englan Tel: Kiddermınster 61907 or 67390


VACUUM is our speciality, new and secondhand rotary pumps dit fusion outfits, accessories, coaters. etc. Silicone rubber or varnish out gassing equipment from £40. V. N Barrett (Sales) Ltd., 1 Mayo Road,
Croydon. $01-684$
9917.

60 KHz MSF Rugby Receiver, BCD TIME OF DAY OUTPUT. High per formance, phase locked loop radio receiver 5 V operation with second LED indication. Kit com plete with tuned ferrite rod aeria £14.08 (including postage and VAT). Assembled circuit and cased up version also available Send for detanls Toolex, Sherborne
$(4359)$, Dorset.

RECHARGEABLE NICAD BATTERIES. AA (HP7) \&1.05, Sub C2 22 PP (MP11) 22.02 D (HP2) £2.92, PP C' 4.89 . Matching char: \% 5.24 . 53.98 all prices include VAT Add $10 \%$ post \& package. SAE for Add $10 \%$ post \& package. SAE for
full list plus if wanted 35p. for full list plus if wanted 35 p . for Nickel Cadmium Power
Sandwell Plant Ltd., 1
Denholm Road, Sutton Coldfield. West Mid. lands. B73 6PP. Tel. No. $021-354$
9764.

## FOREIGN AND COMMONWEALTH OFFICE COMMUNICATIONS DIVISION

has a continuing commitment for

## BROADCAST RELAY ENGINEERS

To serve a one year (unaccompanied) tour of duty on the island of Masirah (off the coast of Oman) Applications are invited from engineers with experience of the operation and maintenance of high-powered radio transmitters, and who hold a third year City and Guilds Certificate in Telecommunications or its equivalent
SALARY: £8,575 per annum, plus a tax-free allowance of $£ 810$ per annum for a single officer, or $£ 1,295$ per annum for a married unaccompanied officer
Free furnished accommodation and passages are available.

For an application form and further details please write to:

Recruitment Section
Foreign and Commonwealth Office Hanslope Park, Hanslope Milton Keynes, MK19 7BH

## ARTICLES FOR SALE

## DOKORDER 4 CHANNEL TAPE DECKS for MiniStudiouse

DOKORDER 8140
Ideal machine for mini domestic studio use. Allows with built-in sync facility. High specification at low price. Superb for making demotapes.
DOKORDER 7140
Basically similar to 8140 but slightly less luxurious version.
DOKORDER 1140
Top quality high speed multi-sync, 4-channel recorder.

DOKORDER 1120
Two channel $\frac{1}{4}$-track deck offering facilities and performance normally found in much higher priced decks. DOKORDER 7100
Budget priced stereo deck.
ideal for the domestic user


P46 Charing Cross Road,
London WC2. Tel: 01-240 3064/5
TRADE ENQUIRIES: D.E.S. Technical Co., $10-12$ High St., Colliers Wood, London SWI9. Tel: 01-540 8944.


## [CA] GAPIAL <br> APMMTME:TS LTD.

FIELD SERVICE ENGINEERS (ELECTRONICS) If youre not earning over £3,500 p.a. plus a car - then you had better contact us!

34 Forcy Street, London, w. 1 01.6359659 (day) or
5500836 (ovening)

ELECTRONICS TECHNICIAN (Grade 5) required for geology department. Duties include fault finding and maintenance of a wide range of electronic equipment, also mainly solid state. from instructions. Experience of digital and linear circuitry essential. Vacuum and X-ray control systems knowledge an advantage. Preferred qualifications: ONC C\&G electronic engineering, and not less training. Salary range including £3.856 gross according to qualifica tions gross according to qualificaforms from Departmental Superintendent. Geology Department. Imperial College, London SW7 2BP.

SOUTH COAST VACANCIES. If you would like to get out of the rat race and enjoy the pleasures of certainly help. We have hundreds of jobs in Electronics at all levels. along the South Coast. Just drop us a line or phone with your name and address and well do the rest. No fees. Jeff Minards, CBS Appointments 224 Old Christchurch Rd. Bournemouth. Tel. 292155 or after 7 pm and weekends. Wimbourne

## BUSINESS OPPORTUNUTIES

EXPORTER REQUIRES CONTRAC TOR able to produce $50 / 100$ belt drive turntables weekly. Pick-up arms supplier also required. Box No W/W (6541).


# CALIBRATION ENGINEERS 

## MEASURE YOUR SUCCESS BY OURS

EMI's commitment to excellence in its electronic products is achieving best ever sales and creating many new opportunities for expansion and development
We depend upon very high standards of quality assurance. so we are looking for professionals who work to these standards and who have the ability to extend them still further
The work is varied and involves the calibration and maintenance of electronic and electro-mechanical test equipment, covering a wide range of test and measuring techniques such as optical, thermal, digital and computer.
Qualified to City \& Guilds (full certificate), ONC or equivalent in electronics, candidates should have experience of fault diagnosis and current measuring techniques. Knowledge of micro-wave techniques, and/or the utilisation of automatic test equipment would be an advantage
To appreciate the satisfaction of working to EMI standards, come and see for yourself. You can also be sure that the salaries and benefits we offer - including the security of working for a highly successful organisation - reflect our awareness of the importance of your skills.

For further details and an application form, please telephone or write to: Barry Page, Personnel Department, EMI Limited, 135 Blyth Road, Hayes, Middlesex.
Tel: 01-573 3888 ext. 639 or Record-a-Call anytime on 01-5735524

The international music, electronics and leisure Group

## ARTICLES FOR SALE

## SOWTER TRANSFORMERS

 FOR SOUND RECORDING AND We are suppliers to many well-known companies.studios and broadcasting authorities and were
established in 1941 Early dellveries. Compentive prices. Large or small quantities Let us quote
SOWTER TYPE 3678 A recent release
MULTITAP MICRPHONE TRANSFORMER Primary windtngs tor 600 ohm, 200 ohm and 60 ohm with Secondary loadings from 2 Kohm to 10 K ohm Frequency response plus/minus $1 / d \mathrm{~dB} 20 \mathrm{~Hz}$

to 25 KHz . Contained in well finished Mumeral box | to 25 KHz . Contained in well finished Mumeral box |
| :--- |
| 33 mm diameter ty 22 mm high. with colour coded | 33 mm dianeter by 22 mm high, With colour coded

and leads. low disiortion DEliVERY ismall quanities) EX-STOCK HIGHLY COMPETITIVE PRICE FU SOWTER ITD
E. A. SOWTER LTD.
$\qquad$


VALVES RADIO - T.V.-IndustrialTransmitting. We dispatch valves to all parts of the world by return of post, air or sea mail, 2,700 types
in stock 1930 to 1976 Obsolete types a speciality. List 20p. Quotation S.A.E. Cnen to callers Monday to Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish to purchase all types of new and boxed valves. Cox Radio (Sussex) Ltd. Dept WW The Parade, East Wit tering, Sussex PO20 SBN. West Wittering' 2023 (STD Code 024366)
(5392) MARX LUDER STACKABLE EPI-
CYCLIC GEARED 6VDC Motors. $1 \frac{1}{2}-$ 30 watts $2 \cdot 10 \mathrm{~kg} . \mathrm{cm} ; 3.360$ ratios 30 watts $2 \cdot 10 \mathrm{~kg}$. cm ; $3-360$ ratios.
For details refer to Nov issue p 138 , For detais SAE for data sheets. AID. US Products, Dept. 15, 8 Hillview Rd. Pinner. Middx. (6765)
"MOTIVATOR" Curtain Cord Controllers. Mains battery models and kits for use with corded domestic curtains. From £18-£30. Aid-Us Products Dept 1 . Hilview A5 4PA, Middlesex.
(6764)

KERABOARD PCB $18 \times 12$ covered with Ultraviolet negative photo resist. Packs of five. Single sided Including posiage. Harpum 82 Shrubcote, Tenterden Kent.

CAPACITORS, mixed bags of elec trolytics, approximately 500 untested for $\mathfrak{f} 1$. Mullard metallised polyester, mixed bags of $501 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$ ( 250 V d.c.) cosmetic imperfections so $£ 1$. Add $40 \mathrm{p} \quad \mathrm{P} \& \mathrm{P}$ to all orders. R. Wardle. 3 Erpingham Road. SW15 1BE.

TELEPHONE ANSWERING machines for sale. New $£ 120$ answers and records. Plus 2 -way conversations and dictation. Free accessories and Guaranteed 1 year C.R.V.E. Ltd.. 30 Goodge Street, W1. 01-249 0416/ 01 -580 1800 .
PROFESSIONAL TV TUBE REBUILDING PLANT designed and manufactured with 20 years' experience of tube rebuilding. Also all associated supplies inoluding Electron guns. Regular training courses. Western-Whybrow Engin eering $90 T$ (073676) 2265 (6542)

FOR SALE Shori Wave Magazine. necember 1946 to March 1956 inclusive and January 1962 to may 1974 Kingston-unon-Thames area. Telephone 01-942-1230 after $5 \mathrm{p} . \mathrm{m}$ phone 01-942-1230 after 5 D.m. (6752)

ENTHUSIAST REARRANGING workshop. VF52 Millivoltmeter. perfect \&40. 5002 Doubledulse Generator IMHZ/50y, £25. TF14005 Doublenulse Generator with TM6600S. $100 \mathrm{~Hz} / 200 \mathrm{v}$ f 150 СТ378B 2-230 MHz AM f35. All recently recalibrated. Aldershot 21173 .

## articles for sale

## PRECISION

POLYCARBDNATE CAPACITORS
All High Stability - extremely Low Leakage

| $440 V$ A.C. RANGE |  |  |  | G3v D.C. RANGE Vakue ( $\mu$ ค Tot. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Value } \\ & {[\sim F \mid} \end{aligned}$ | sions | (mm) | each |  | =1\% | $\pm 2 \%$ | -5\% |
|  | $\llcorner$ | $\square$ |  | 0.018 | 28 | 75p | 50p |
| 0.1 | 27 | 12.7 | 68p | 0.1 |  |  |  |
| 0.15 | 27 | 12.7 | 80 p | 0.22 | $\underline{1} 1.32$ | 77p | 5ip |
| 0.22 | 33 | 16 | 86p | 0.33 | £1.32 | 77p | 51p |
| 0.25 | 33 | 16 | 92p | 0.47 | £1.32 | 77p | 5ip |
| 0.33 | 33 | 16 | 99p | 0.68 | £1.44 | 84p | 56p |
| 0.47 | 33 | 19 | E1.10 | 1.0 | ¢1.56 | 91p | 60p |
| 0.5 | 33 | 19 | $\varepsilon 1.16$ | 1.5 | £1.74 | £1.16 | 67p |
| 0.68 | 50.8 | 19 | £1.25 | 22 | £1.98 | £1.32 | 75p |
| 1.0 | 50.8 | 19 | E1.37 | 3.3 | £2.40 | £1.60 | $99 p$ |
| 1.5 | 50.8 | 25.4 | ¢1.64 | 4.7 | ¢2.82 | £1.88 | £1.23 |
| 2.0 | 50.8 | 25.4 | E1. 95 | 6.8 | E3.48 | £3. 32 | £1.47 |
|  |  |  |  | 10 | £4.98 | £3.32 | £2.01 |
|  |  |  |  | 15 | £7.14 | ¢4.76 | £2.88 |
|  |  |  |  | 22 | £9.66 | ¢6.44 | 93.90 |


 ${ }^{100 .}$
tramsistors i.c. 3
${ }_{{ }^{8} \mathrm{BC} 1071 / 4 / 9}$

8C183/183i
 5p. 14 tor 90 p : 1544 5p. 11 for 50 p . 24 ior $£ 1.00$, 144 $1485 \mathrm{5p} .6$ to

-
LOW PGICE ZEMER OIOOES - 400 mW . Tal $=5 \%$ I 5 FmA 3v: 3V3: 3V6:

 .

AESSSTOAS-High tatallity. tow noise carbon film $5 \%^{1 / 2 w}$ a $40^{\circ} \mathrm{C}$. $1 / \mathrm{w}$



Squcom plastic rectifiers-1.5 amp. wirb-anatd 0027: 10


BHIDGE RECTIFIERS- $2 / 2 \mathrm{mof}$ 200V 40p: 350V 45p: 600V 55p



## 

 Of SEA/ NGMALI. Ado 8\% YAT to ali liems excepl those marked withnd S.A.E. tor actational slock lists


MARCOTRADING (Dept P5)
Tal: whixail 454/465 [ST0 094872 ]
PPropre. Minitesas Trading Lla.

ISOLATED Tab 10A 400 v Triac typ TXAL 2210B. Price $98 p$ inc. VAT P\&P 20 p C.W.O. Data sheet on re-


## PHOTD ETCH

# pl 

Limiteo pl

## LOWER QUEEN STREET

 PENZANCE, CORNWALL TR184DFPrototype or long run - we wil supply your printed circuit require ments
Also facilities for Design. Assembly and Test

Prompt and efficient service assured
sontoct Dovio wobotor

## STANDARD CRYSTAL UNITS <br> ctock 20971 <br> ach <br> $3.27680 \mathrm{MHz} \mathbf{E 2 . 7 0}$ each $194304 \mathrm{MHz} \mathbf{E 2 . 7 0}$ <br> $8388608 \mathrm{MH}_{2} £ 2.70$ <br> 433619 MHz c 1.00 <br> $184320 \mathrm{MHz} \mathbf{~} \mathbf{2 . 7 0}$ each <br> REFERENCE 1000 KHz <br> K K $\mathrm{Hz}_{\mathrm{I}} \mathbf{6} .75$ eac <br> $10 \mathrm{MHz} £ 2.75$ each $2.0 \mathrm{MHz} \mathbf{1 1 . 6 0}$ each <br> $50 \mathrm{MHz} \mathbf{E 2 . 2 5}$ each $10.0 \mathrm{MHz} \mathbf{E} \mathbf{2 . 2 5}$ each <br> , $M$ R2

INTERFACE QUARTZ DEVICES LTD.
29 Market Street. Crewkerne. Somerse
Tel. (04603i) 2578. Telex 46283

## EXCLUSIVE OFFER

## WORLD-WIDE RANGE NEVER BEFORE OFFERED <br> PHILCO HC-150 POINT-TO.POINT STRIP RADIO HF RECEIVERS 2 on m cen fulty Single and diversils reception on ISB. DSB SSB uth 4 sub-banda to each channel Full detaik and

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS
ENQUIRIES INVITED FOR NEW STOCK

AUDIO AND INSTRUMENTATION TAPE RECORDER-REPRODUCERS


##   <br> - Racal RA 6iss Sb Adapture. nure - Racid RA 237 I. W Convertior- neu Purtable Marse Battery Hopputal tight Hel Channel    Andyannel Pulse Hetght spe trum <br>  reque"

PLEASE ADD CARRIAGE AND V.A.T.

## P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 765051

## ENGINEERS At home or overseas, your future looks good with IAL

IAL, a pace-setter in telecommunications for over a quarter of a century, is expanding - fast.
From our West London headquarters,
we control a diverse group of Companies with operations worldwide. Our activities cover all aspects of electronics technology from the latest fully automated telephone exchanges to airport communications and radar systems. Major new contracts in the UK and in the Middle East mean immediate vacancies in the following fields

## Data Communications:

We need development engineers to support our growth in the manufacture of specialised communications equipment. You need Hardware / Software design experience to be involved with mini-micro processor techniques and Bipolar/MOS technology.

## Telephone Planning:

A detailed knowledge is required in at least two of the following areas: Exchange network planning Teletraffic engineering
Common control/SPC systems Telegraph / Telex Data engineering
Telecommunications:
For our projects in the Gulf, we need specialists in: Broadband Radio and Transmission
External Plant Works


Auto-Exchange maintenance Development and Planning

## Aviation:

In W. Africa, Iran, Saudi Arabia and the Arabian Gulf, our requirements are for experience in
Multichannel and multiplexing radio systems
Navaids, including ILS, VOR, DME,
CADF
Automated ATC systems

## Instructors:

Scheduled expansion of our training commitments means that we require top calibre engineers with a good practical background in telecommunications and airport systems. Although vacancies at present are at our London college future requirements will be to fill instructor posts overseas.
If you are contemplating a move from your present job, this could be the opportunity you have been waiting for. We offer most attractive conditions of employment and our salaries, which are TAX FREE overseas, are highly competitive

Write now to: John Davies, Senior Recruitment Engineer, International Aeradio Limited, Aeradio House, Hayes Road, Southall, Middlesex.

R.C.S. $501 / \mathrm{M}$ counter/timer plus
R.C.S. $501 / \mathrm{M}$ counter/timer plus
250 inz. Prescaler $£ 185.00$ o.n.o.


## Engineers <br> TO TEST THE EMI-SCANNER

Few stories of commercial and technological achievement in recent years can match the success of the EMI-Scanner. This revolutionary medical diagnostic X.Ray technique has created an international market worth many millions of pounds.

In order to meet world demand we are significantly expanding our manufacturing facilities at Hayes and consequently need more high calbre Test Engineers. Right now we're keen to meet:

## SYSTEMS TEST ENGINEERS

who have worked on testing advanced electronic devices and have at least ONC qualification, or recent testing and fault finding experience either in industry or with H. M. Forces would be most suitable. Work involves the testing of logic-based digital and analogue circuitry, advanced electro-mechanical devices, related to $X$-ray scanner systems.

MECHANICAL TEST ENGINEER
is aiso required to test and reparr X -ray Scanning Machines during final test and when necessary, to carry out modification.
Applicants should have some production experience and be conversant with mechancial testing techniques.

An engineering apprenticeship is desirable and training to $C \& G$ level is essential.

Salaries reflect EMI Medical's high regard for experience and ability. All successful candidates will enjoy the full range of EMI Group employee benefits.

To apply please telephone or write to Barry Page, Personnel Dept., EMI Limited, 135 Blyth Road, Hayes, Middlesex. Tel: 01.5733888 Ext. 639. Or Record a call anytime on 01.5735524.

Applicants of either sex will be considered.

## Em EMI Limited

The international music. electronics and leisure Group.

## ARTICLES WANTED

## WANTED IN LARGE QUANTITIES

## Electronic components resistors,

 capacitors. potentiometers. chassis loudspeakers, semi-conductors. diodes. TV tubes, especially colours. etc., etc., etc. First or second grades Finished or incomplete products record players, amplifiers. radios, record plapers, tape recorders, enclosures, etc., etc., etc.etc., etc., etc.
We will buy pay cash.

TEL. 01-491 4636
E.C.E. AVON HOUSE

360/366 OXFORD STREET LONDON, W. $1 \quad 6563$

WANTED, all types of communications receivers and test equipment Details to R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley $4986 . \quad(63$

SURPLUS COMPONENTS, Equipment and computer panels wanted for cash. Ring Southampton 772501

WE BUY new valves, transistors and clean new components, large or small quantities. all details, quotations by return. - Walton's 55 Worcester St.. Wolverhampton.

# * MINICOMPUTERS PERIPHERALS INSTRUMENTATION 

COMPUTER APPRECIATION Godstone (088 384) 3221

## B-D ELECTRONICS offer prompt

 settlement for your surplus components. Our main field of interest is consumer electronics. PleaseDelephone our Miss Hughes, Sandy belephone our Miss Hughes, Sandy
(0767) 81616 .
R. F. INDUCTION HEATER about 1.5 KW . - Barrett, 1 Mayo Road. Croydon, CRO 2QP. (6038)

WANTEO MARCONI Mobile Radio Test Set TF2950 series for cash. Tel. 01-527 4358 Ext. 8.

ALL SURPLUS or used equipment wanted. Radio lelephones - com plete systems purchased. Ships equipment and small boat radio's - components, partly assembled chassis etc, etc, Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited $40 / 42$ Portland Road Worthing, Sussex. (6594)

## WANTED AMERICAN

## 110 v 2 - or 3 -pin

plugs and sockets Any quantity

Telephone:
01-723 7851
01-262 5125

WANTED MM5316 PCB for alarm loading by a national SC/MP CPU also paraldel output kitbug prom Write Saunders, Box 108 Patavhrn New Zealand.

6717

REQUIRED Wireless World, 1928 1932 Publishers Bindings. For sale $935 / 1938$ loose. Litherland, 11 Birch Chippenham 50707, Wilshire. 6716 Chyppenham 50707.

RADIO GEAR FIXED, mobile, com mercial, military or amateur; also surplus new electronic components ward Croydon 200, 20A (6734) Road, Croydon

ARTICLES FOR SALE
COLOUR, UHF AND TV SPARES. NEW colour bar generator kit Mk 3 aerial input type, R-Y, B-Y etc. (adds on to Manor Supplies cross Mk 4 combined colour bar generator and cross hatch kit $£ 35^{*}$, pp 85p "Wireless World" TV Tuner and FM Tuner Projects by D. C. Head. Kits of parts available. Cross Hatch kit, Aerial Input type. No other connections. Battery operated, portable. Incl. Sync \& UHF Modulator units fi1*. Add-on Grey Scale kit. £2.40* $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. CRT Reactivator kit for colour and mono. £17.48* $\mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Signal Strength Meter kit i18*: p/p 70p. 625 TV IF Unit, for H1-Fi amps or tape recording $f 6.80$ p/p 65p. Decca Colour TV Thyristor Power Supply Unit, incl. H.T., L.T., etc. Incl. circuits $£ 3.80 \mathrm{p} / \mathrm{p}$ $95 p$. Bush CTV 25 Power Supply Unit, incl. H.T., L.T., etc. $£ 3.20$ gence panel plus yoke, blue lateral ${ }^{\mathrm{e}} 3.60 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Philips single stand convergence units complete, incl 16 controls, $£ 3.75 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Colour Scan Coils, Mullard or Plessey $£ 6$ $\mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Mullard AT1023/05 or Plessey Converg. Yoke $£ 2.50$ p/p 55p. Mullard or Plessey Blue Laterals 75p p/p 30p. BRC 3000 type scan coils $£ 2 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Bush CTV 25 Scan Coils $£ 2.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Delay Lines: DL20 £3.50 DL40 £1.50 DL1E, DL1 $85 \mathrm{p} \quad \mathrm{p} / \mathrm{p}$ 40p. Lum. delay lines 50 p p/p 30p. Bush/Murphy CTV 25 3/174 EHT quadrupler $48.50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Special offer colour triplers, ITT TH25 1TH £2 GEC 2040 £1.75 p/p 50p. Philaps G8 Panels, part complete, surplus/salvaged: Decorder 22.50 , 51 modes £2.25, T. Base $£ 1$ p/p 70p. CRT Base 75 p p/p 30 p . GEC 2040 De coder panel for spares $\mathfrak{\text { fan }}$.50 p/p ELC $1043 £ 4.00$ ELC $1043 / 05 £ 4.50$. VLC: ELC 1042 f4.40. Philips VHF £3.00. Salvaged UHF \& VHF Varicaps $£ 1.50 \mathrm{p} / \mathrm{p} \quad 35 \mathrm{p}$. SPECIAL OFFER: RBM 6 psn. Varicap control unit $£ 1 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. UHF Tuners tra:sd. incl. slow motion drive £3.80. 4 Psn. and 6 Psn. push but ton transd $£ 4.40 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Philips, Gush. Decca integrated UHF/VHF transd. tuners $£ 4.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Thorn 850 dual stand, time base panels 50 p . Philips $625^{\prime}$ IF panel incl. cct. 50p. p/p 65p. VHF Turret tuners AT 7650 for KB Featherlight, Philips 19TG170, GEC 2010, ete 2.50. Fye minature incremental tuners ${ }^{2}$. Fireball tuners, Fergu ers 70 p 'Mullard Mono scan coils for Philips Stella, Pye, Ekco Ferranti Invicta $£ 2 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$ Large Ferranti, invicta $£ 2 \mathrm{p} / \mathrm{p}$. p . Large
selection LOPTs, FOPTs available selection Loprs, Foprs avainable SUPPLIES, 172 West End Lane. London. N.W.6. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakerloo Line and British Ra'1). Mail Order: 64 Golders Manor Drive, London, N.W.11. Tel: 01-794 8751. V.A.T. Please ADD $12 \frac{1}{9}$ TO ALL PRICES (EXCEPT WHERE MARKED * VAT 8\%).

## CAPACITY AVAILABLE

ENAMELLED COPPER WIRE

| swg | 1 | lb | 4 oz. |
| :---: | :---: | :---: | :---: |
| $14-19$ | $\mathbf{2 . 4 0}$ | .69 | .50 |
| $20-29$ | $\mathbf{2 . 4 5}$ | .82 | .59 |
| $30-34$ | $\mathbf{2 . 6 0}$ | .89 | .64 |
| $35-40$ | $\mathbf{2 . 8 5}$ | $\mathbf{1 . 0 4}$ | .75 |
| inclusive of $\mathrm{p} \& \mathrm{p}$ and VAT |  |  |  |

SAE brings Catalogue of copper and resistance wires in all coverings
THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9BW

PRECISION TUNED PARTS - spa cers pillars, shafts etc. Large small batches. Quotations by re turn. Send for plant/service cap acity specials, no problem. Drury Bros., Unit 6, Hedley Road, St Albans, Herts. Phone: 65094.

[^6] Tel. Stansted (0279) 33018/814006

IBM GOLFBALL 735 I/O TYPEWRITERS
Coding simillar to EBCDIC. WIII accept normal or sprocieted paper. Supplled with photo copy of IBM intertace manual. Exch machine serviced and tusted. f100 and 8\%, VAT.
As atove but modified to take office range of golftalla [ 10 pltch] $£ 125+8 \%$ VAT [inc. new golitalll). Overisas atr freight or surface al cost.

Typawriter arders only to:-

## Keytronics Sul Lodge

Saul, Gloucestershire
Tall: Saul [045-274] 612

+ ELECTROLYTICS
$4700 \mu 40 V 50 \mathrm{p}$ (15pp) $4000 \mu$ 70V 80p (25p) $5000 \mu 60 \mathrm{~V} 7 \mathrm{pp}[25 \mathrm{p}] \quad 10.000 \mu \mathrm{H} 16 \mathrm{~V} 50 \mathrm{p}$ [15p] $2200 \mu 63 \mathrm{~V} 38 \mathrm{p}(14 \mathrm{p}) 2500+2.500 \mu 30 \mathrm{y} 40 \mathrm{p}$ ${ }^{[15 \mathrm{p}}{ }^{40}$


## + small electrolytics

$2.2 \mu 10 \mathrm{~V} .10 \mu 35 \mathrm{~V} .50 \mu 40 \mathrm{~V} .100_{\mu} 40 \mathrm{~V} .100_{\mu} 6 \mathrm{~V}$.
$2.2 \mu 10 \mathrm{~V} .10 \mu 35 \mathrm{~V} .50 \mu 40 \mathrm{~V}, 100_{\mu} 40 \mathrm{~V}, 100_{\mu} 6 \mathrm{~V}$.
$150 \mu \mathrm{~V} .64 \mu 10 \mathrm{~V} .300 \mu 1 \mathrm{~V} .200 \mu \mathrm{~V}$

+ PIMER PRESETS 100 mw

220. 470.1 k .4 k 7.10 k .100 k .220 k 12 for 60 p (12p)

## TRAMSFORMERS

 EX.EQPT $£ 2.25$ (65p). TOROIO 2OV 14 £2.25 ( 60 pl ]. 9 V
 ex eqpl £1 (35p).

## various

Humidity switch [adjuslable)
50 mains lacthing relay
3m plaslic magnetic atrip $3^{\prime \prime}$ wide tight aclivated SCA 504
 MPN 131 PROG UMI 20 p ( 10 p ) qty ayalle 2N3702K 13 for $\mathrm{E} 1 \quad 50$

PAPST FANS (or aimilar) reconditioned $41 / 2 \times 4 / 1 / \times 2$ in. 100 c.1.m. $50 / 60 \mathrm{c} / 8 \mathrm{~s} \quad £ 3.60$ [65p] $]$ + reed inserfs $70 \mathrm{~mm} \mathrm{~m} / \mathrm{d}$ contacts 10 tor $£ 1$ (12p) + reed inserts $45 \mathrm{~mm} \quad 20$ for El \{12 WhT add $121 / 2^{\prime} / \mathrm{to}$ to itexs marked + . others $8 \%$

## KEYTRONICS

Shop open Mon-Sal 9.30 a.m. 2 p.m. 332 Ley St., Ifford, Essex 01-553 1863

## CAPACITY AVAIL ABLE

PRINTED Circuits. Ultra fast turnaround. Very competitive prices graphy, and drilling service khoto more Circuits, 120 Garlands Road Redhill, Surrey. Phone 68850 .

BATCH Production Wiring and Assembly to sample or drawings. McDeane Electricals. 19B Station Parade, Ealing Common, London, W.5. Tel: 01-992 8976.
P.C.B. ARTWORK DESIGN - EaSt Anglia, Fast. precise work at competitive prices. Also instrument panel designs. etc. Contact tangent Electronics. 136 Whitehall Road, Norwich. Norfolk. Tel (0603)

AIRTRONICS LTD., for Coll Winding - large or small production runs. Also PC Boards Assemblies Suppliers to P.O., M.O.D. etc. Ex port enquiries welcomed, 3a Tel: 01-852 1796 .

WIRING AND ASSEMBLY capacity available. Prototype or batch, circuit boards, cableforms. Ful facture of complete units. Com petitive prices and quality service - C.M.N. (London) Lid, Unit 1 Numefield Works. Pump Lanc. Hayes, Middlesex. Tel: 01-573 7360 1985 (6.512)

## ORINTEL CIRCUIT BOARDS -

 Quick deliveries competitive prices quotations on request, roller tin nings. drilling, etc., speciality smal Jamiesons Automatics Ltd, I-5 Jamiesons Automatics Ltd, $1-5$Westgate, Bridlington. $N$. HumberWestgate, Bridlington. N. Humber
side, for the artention of Mr J Harrison. Tel: (0262) 4738/77377.

## Telephone Engineering

 Saudi ArabiaA major international consulting engincering firm is looking for a number of key technical experts to supervise installation and conduct acceptance tests of II national and 3 international telephone exchanges. All equipment, valued at more than $£_{1} 13 \mathrm{~m}$., is supplied by L. M. Ericsson of ARF and ARM design and will be installed during 1977 and 1978 . There are further appointments covering coaxial cable links ( 960 channel)

## Chief Supervisor

about $£ 13,000$ Aged 30 to 50 years, should be graduate or equivalent, with at least 4 years' experience of ARF and ARM Ericsson exchanges. Practical knowledge of hardware and software, including computer testing, is necessary. Ref. ZH.IO34-I.

## Supervisors/Testers

about $£$ io,000
Aged 25 to 50 years, should be apprentice or technically trained and with at least 4 years' experience with common control crossbar equipment, preferably of Ericsson (ARF or ARM) design involving installation, supervision of installation and testing.
Ref. $\mathrm{ZH} .1034-2$.

## Multiplex Engineers

about $£ 10,000$ Aged up to 50 years, technically trained, with 5 years' experience in large multiplex systems, preferably with Philips or Ericsson equipment.
Ref. ZH.1034-3.
and radio links (Collins 300 channel).
All posts, listed below, carry tax free salaries, free single limited married accommodation and 6 weeks' annual vacation with up to twice yearly return fares and one two year contracts.
Please write - in confidence - indicating appropriate reference, with brief carepr details to W. J. Angus.

## Cable Engineers

about $£ 10,000$
Aged up to 50 years, technically trained with at least 5 years' coaxial cable experience, preferably with 12 MHZ systems. Ref. ZH.1034-4.

## Microwave Engineer <br> about $£ 10,000$

 Aged up to so years, technically trained with at least 5 years' microwave experience.
## Ref Z ZH. 1034 s.

## Television Engineer

about $£ 10,000$
Aged up to 50 years, technically qualified with experience in video cable systems. Ref. ZH. 1034-6.

## Systems Engineer

about $£ 10,000$ Agec up to 50 years, technically qualified with at least 5 years' experience in large long distance telecommunication systems.
Ref. ZH.1034-7.

- Canada Holland South Africa - Switzerland


## EQUIPMENT EXCHANGE

## FOR EXCHANGE

Recent expansion of our telecine facilities has made available one Fernseh 35mm Colour Film Scanner Type FC 35L 40 for 625 line 50 Hz operation. The unit has been used for spot commercial transfer only, and is in excellent condition, and includes selected optical and mechanical spare parts.

We are interested in exchanging for a good used Ampex or RCA VTR with colour replay accessories.

> For further information contact: The Chief Engineer VID-COM LIMITED
> P.O. Box 8859, Auckland, New Zealand

## Classified

## TELEVISION RECEIVER PRODUCTION ENGINEERING APPOINTMENTS

Rediffusion Consumer Flectronics Lid invite atpolications for appointments in the E.nginerring SENIOR TELEVISION ENGINEER
An engineer is to be apponted to carry out a variety of projectsassociated with the production
colour television recenvers. This will include the solution of problems connected with receiver manutachure, testing and subsequent performance. developmert for mans production would be a distinct adrantage

## SENIOR TEST EQUIPMENT ENGINEER

 Applicants should preferably have a background associated with the design commissioning and calibration of test equipment. whith an understanding of pertormance standards of the spectalised

## ENGINEERS AND TECHNICIAN-ENGINEERS

These appoin memts would be suitable for enpinecrs who wish w further the experience in
television or electronics, or for recembequalifed persons who wish to enter the field of television engineering.
Abilits. tac and espectally a desire to get involved to promote team spirit and prextuction efficuency
$\qquad$
Please appls in confidence to -
Mr. I Dasison
Engineering Manager
Rediffusion Consume
Bishom Auckland

## REDIFFUSION

SERVICE AND REPAIRS


PROFESSIONAL PRINTED CIRCUITS
Smail-Medium-Large Barch Auns
QUALITY

## EQUIPMENT AVAILABLE,

 Cas filedinticator
tuhes
alweys
avajifile,
enaterements 8.135 mm KGM


RECEIVERS AND AMPLIFIERS
HRO Rx5s, ètc. AR88, CR100 BRT400.
stock.
G209,
T stock R. T. \& I. Electronics, Ltd Ashville Old Hall,
London, E11. Ley 4986.
SIGNAL Generators, Oscilloscopes, Sutput Meters, Wave Voltmeters Frequency Meters, Multi-range Meters, etc., etc., in stock. R. T $\$$ I. Electronics. Ltd. Ashville Old Hall, Ashville Rd., London. E. 11 Ley 4986.
YOUR TAPES TO DISC. MONO OF Stereo Cutting. Vinylite Pressings Sleeves/labels. Top professionail quality. S.A.E. for photo leaflet Cove Dunbartonshire, Scotland.
P.C.B's FAST - 24 hour service irom your tape or film art. Quality omm glass fibre plus $10 z$ copper plus solder varnish in (VAT \& PP inc). SAE for quantity discount and special quotes. Prototype services available include circuit design, artwork, as sembly plus test. Micronics Eng. Southport, M/side PR8 4RZ. (6715)

REPAIRS TO ELECTRONIC INSTRUMENTS 'Scopes, Signal Generators Digitals etc. Estimates given free for further information and instru. for further information and instru- 10 Bromley Drive. Leigh, Lancs. Tel: Leigh 78624.

LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts Ltd., 1-5 Rectory Lane, Guis borough (02873-4443). Yorks, U.K.

SPEECH-PLUS RECOBDINGS LTD
Specialists in Recording for Education. Commerce, Industry AN Programmes/
Pulsing for Tranning and Sales Cassette and Open-reel Duplicating 32 PAGES WALK. LONDON SEI Telephone: 01-2310961/2 (6250)

## 'Westower'

'The Stronger One

## TELESCOPIC TILT-OVER STEEL TOWVER SYSTEM

$\star$ Designed by Chartered Engineers to BS CP3 Ch5. Pt. 2 (1972)

* Constructed of High Quality Special Alloy Steel.
$\star$ Fabricated using the latest Electronically Controlled Techniques.
$\star$ Standard types rated at $120 \mathrm{~km} / \mathrm{h}$.
* Heavy duty types rated at $160 \mathrm{~km} / \mathrm{h}$.

Non-telescopic guyed or self supporting towers made to your requirements plus antennas, military/commercial, antenna rotors.

FORSSB POWER MEASUREMENTS peak reading wattmeter


* MEASURES accurately peak envelope power on ssb $\star$ RMS WATTS ON AM/CW $\quad$ SW. R.

The PM-2000 is a precision built in-line wattmeter providing P.E.P and R.M S power indication With a SSB Transmitter the output power occurs only sporadically during voice transmission and has no direct relationship between the peak and average power.
The ratio of peak to average power varies widely with voices of different characteristics.
The power contained in the signal at the maximum peak is the basic transmitter rating and is the peak envelope power (usually called p.e.p.) This makes the peak reading wattmeter essential for SSB General power meters indicate average pr R.M.S. values and are calibrated using a continuous sine-wave signal which a voice modulated signal defintely is not Such a power meter is meaningless in terms of "p.e.p.
5-30 0 . 500 . 1000 and 2 kW Impedance 50 ohms; Frequency range 3.5-30 MHz Measuring Accuracy 7\%; Power source (SSB ONLY) $100 / 117 / 234 \mathrm{v}$ A.C Overseas
enquiries invied PRICE: $£ 55$ ONLY - VAT.

## Neflefn Electronics (UK) Ltd. <br> HEAD OFFICE (All Mail/Enquiries)

FAIRFIELD ESTATE, LOUTH, LINCS. LN 11 OJH. Tel. LOUTH (0507) 4955

# Newnes Colour Television Sefvicine Manual coboon jkna 

VOLUME 3: This volume deals with the servicing of important solid-state chassis and models launched in 1974 and 1975 and reflects several trends; one being towards the all solid-state design and another the introduction of thyristor power supplies as exemplified in the Thorn 9000 chassis.
CONTENTS: RBM Z179 Chassis. Hitachi CSP-680 Receiver. ITT CVC8 Chassis. B \& O Beovision 4000 and 5000 Receiver. Decca Solid State 40 Series Receiver. Thorn 9000 Series Chassis. Philips G9 Chassis. Appendix I Inline Picture Tubes. Appendix 2 Picture Tube Faults. Appendix 3 Component Symbols and Fuse Ratings. Appendix 4 Quick Vision Picture Tubes. Appendix 5 UHF Aerial Evaluation, General Index. Index to Models.

$$
\begin{array}{lllll}
\text { November } 1976 & 240 \text { pages } & 252 \times 192 \mathrm{~mm} & 0408002409 & £ 7.80
\end{array}
$$

## ALSO AVAILABLE

VOLUME 1: Covers models containing the following chassis: $B \& O 3000$, BRC 2000 and 3000. Decca Bradford and CTV25, GEC dual standard, ITT CVC5 and CVC7, Pye 691 and RBH A823 and A823A.
$1973 \quad 240$ pages $\quad 252 \times 192 \mathrm{~mm} \quad 040800089 \mathrm{~g} \quad £ 6.40$

VOLUME 2: Contains details of models using these chassis ASA 5003 and 5004, BFiC 8000,8000 A, and 8500 , GEC 2040 and 2047, Grundig 717GB, Philips G8, Pye 713, Saba 2700 and Telecommender G, Sobell 1040, 1060 and 1010 and Telefunken 710.
$1975 \quad 240$ pages $\quad 252 \times 192 \mathrm{~mm} \quad 0408001348$ £6.40


## INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 122-134


[^7]

## M24H: A superb new stereo cartridge ...but that's only half the story.



Shure's new M24H stereo + quadriphonic cartridge offers uncompromised stereo with the bonus of stake-of-the-art full four-channell capability for the hi-fi enthusiast in transition from stereo to quadriphony. It features several breakthroughs by Shure: the M24H has exceptionally low ( 0.39 mg ) effective stylus mass for truly outstanding trackability at minimal forces . . . its optimized 20 to $50,000 \mathrm{~Hz}$ frequency response curve is essentially flat in the stereo range and rises smovthly to accommodate CD-4's supersonic FM carrier frequencies . . . its hyperbolic "\|ong-contact" stylus tip geometry results in a solid groove-tip interface . . . it has a new "Dynetic® ${ }^{\circledR}$ '" highenergy magnet assembly and low-loss laminated electromagnetic structure ... and high-performance trackability at 1 to $11 / 2$ grams. If you are considering adding CD-4 capability, but intend to continue playing your stereo library, this is the one cartridge for you.

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881


## "There's a lot more to Multicore...



Multicore Solid Solders. In Bars, Ingots, Sticks, Wire or Pellets.

## cocthan mects dheiren?

Multicore Oxide-free Solder Creams. For microcircuits and P.C.'s. Also


The name that stands for quality and quantity.?
Please write on your Company's letterhead for further details on your particular application. Multicore Solders Limited,
Maylands Avenue, Hemel Hempstead, Herts HP2 7EP. Tel : Hemel Hempstead 3636. Telex: 82363.
ray sins


## The magnificent nine... an open and closed case for selecting Celestion.

| Model | Moasuateman |  | $\begin{aligned} & \text { Sancilivity } \\ & \text { mink NoIse } 4 \mathrm{y} \\ & \text { M } 7 \mathrm{M}=90 \text { on } \end{aligned}$ | Powne MinadingPaal. Muric |  Amp Wavs 1 M M |  | Friviusicy R1* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Contumarian | Imehes |  |  | man | max |  |
| Disten 11 | 35:20.25 | $14 \times 8 \times 10$ | -9 | zw | 1 \% | 30 | $35 \mathrm{~Hz}-38 \mathrm{kHz}$ |
| Ditton 18 | $53 \times 24 \times 23$ | 21 $\times 94 \times 98$ | -2 | 『* | 14. | 30 | 30 Hz - 15 KHz |
| Diteen 38 | $51 \times 35 \times 25$ | $24 \times 14 \times 15^{-}$ | $\pm 5$ | * w | 2 | 50 | $40 \mathrm{~Hz}-28 \mathrm{KHz}$ |
| brtaon 44 | $78 \times 37 \times 25$ | $30=141 \times 10$ | 40 | aw | 20 | 00 | $30 \mathrm{Mz}-10 \mathrm{KHz}$ |
| Diteen 26 | $81 \times 36 \times 28$ | $32 \times 14 \times 11$ | $z 8$ | ๗ษ | 18 | 0 | $20 \mathrm{~Hz}=40 \mathrm{KHz}$ |
| Ditton es | 100 * $38 \times 29$ | $40 \times 15 \times 113$ | 41 | sow | 26 | 0 | $15 \mathrm{Mz}-10 \mathrm{kMz}$ |
| UL* | $29 \times 41 \times 22$ | $111 \times 18 \times 8$ | 130 | 4aw | 20 | 40 | $35 \mathrm{~Hz}-23 \mathrm{KHz}$ |
| UL | $58 \times 28 \times 23$ | $23 \times 11 \times 91$ | 8.4 | 51. | 16 | 85 | $30 \mathrm{~Hz}-25 \mathrm{KHz}$ |
| UL 10 | 67 $\times 31 \mathrm{c} 38$ | 284 $\times 12 \mathrm{l}$ ] 15 | 180 | 10.n | 28. | 100 | 20 Hz - $\operatorname{cosanHz}$ |

Celestion 5

```
Send this coupon for literature or ask your dealer for a demonstration. I am interested in large, medium, small speakers.
```

$\qquad$

Atheme

Re la Celestion Lid. Ditron Works. Foxhall Resad. I Pswich. Suffolk 1 P3 83 P
the sound to be experienced!

## SIGNAL SOURCES

## 

 $\operatorname{Sin}_{\substack{\text { Sine and Square } \\ \text { E2 } \\ \text { R } \\ \text { Signal Go } \\ \hline}}$
 Signat Generator Type
olly
GEMERAL
general radio

 Oi $=0$ OMW Wactoss band
HEWLETT PACKARD
HEWLETH PACKARD
10515A Frequency Doubler. Extands the useable
trecuency tange of signal generaiors. Operaling on


new.
209 A Audio Generasor. 4 Hz to 2 MHz (6 ranges). $0.1 \%$
E 0.00 distortion. Sine wave and Square wave. 600 ohm
impedance
2175.00 211 A Square Wave Generator 1 Hz -1 MHz $\quad \notin 75.00$
F.M. A.M. Signal Generator $202 \mathrm{H}=$ M. A.M.C.W pu se coverage 54 to 216 MHzR F. $0 / \mathrm{p} 0.1 \mu \mathrm{~V}-\mathrm{O} .2 \mathrm{~V}$
50 enms lmpedance
E450
 MARCONI INSTS.


 10 KHz -72MHz
TF2005R Two Tone Source The instrument comprisen
two identical low-distortion ait oscillators and a manitored attenuator unit, to orm a compact ant test sel
foo the measurement of inter-modutation distortion
using the methods recommended by Lusing the methods recommended by S.M.P'T.E and
C.C I.F. Frequency range 201 2 to 20 KHz in six band each oscillator can be adjusted and used indepen
dentry. Harmonic distortion Less then $0.05 \%$ beiween
63 Hz and 6 KHz . 63 Hz and 6 KHz when using unbalanced output
Generally less than $0.1 \%$ under other conditions
Irtermadulation Be Intermodulation Below 80.1 under other conditions respect to the
Indent signal Amplitude Reference Level wanted signal Amplitude Reference Level Up to
$+10 d B m$ from each oscilltor. Output atienuator $111 d 8$ in 0.1 es seps. Ouput impedance $600 \Omega$
unbalanced. or $600 \Omega 150$ or $75 \Omega$ balanced and
S.H. F. Signal Generator $618 \mathrm{C} \quad 2.8 .76 \mathrm{GHz}=1 \% .50$
ohms $\quad \mathbf{E 5 0}$
F.M./AM Signal Generator TF $995 \mathrm{~A} / 3 \mathrm{~S}$ Minisiry zuV-200mV Internal \& External Mod Factlites. $£ 3$, V




 I.S W.R. 1.2 or less A.M. Signal Generator TF8310/is Miliaty Version
10.485 MHz
E450- 800







 | condition |
| :--- |
| U...F. F.M. Signal Generator TF $2012,400-520 \mathrm{MHz}$ | Low noise \& freq. dilit For narrow band f.m receivé

measuremenis. Price rew ca $£ 1,300$ OUR
PRICE PRICE MARCONI INSTRUMENTS
TA995B/2 $\mathrm{FM} / \mathrm{A} . \mathrm{M}$. Sig 7 al Generator Freq. range
$200 \mathrm{KHz}-220 \mathrm{MHz}$. Outpus 200 mV to $0.1 \mu \mathrm{FM}$. normal deviation. Conntinuously variable in 2 ranges
$\pm 25 \mathrm{KHz} \&=75 \mathrm{KHz}$ up to $50 \%$. Ext. A.M. \& F.M.


 NEUWIRTH (WEST GERMANY)
HF Signal Generator MS4/U.Freq Range 9 . 6 MHz to
230MHz Turret Osc for gach band Accuracy 120
 Mod. 0.100
PHILIPS M5324 HF Signal Generator. Freq range
$100 \mathrm{KHz}-110 \mathrm{MHz}$ Crystal calizration. Special band spread ranges High Freq. stability Electronically
stabilised output max. 50 mv (RMS) in 75 ohms 100 mV open circuit Calibrated oulput attenumator
Facitities for internal and external A.M. 8 F.M
Wobbulating with sweep width contiot. Simultaneous
 PM 5367 Function Generator Sine irtangle square
positive pulse negative pulse and ramp 9 and 19
0 OOI Hz to 10 MHz (samiooth and puise uo to max

Electronic Brokers Lid, are one of the lesding electronic instrumentation companies if tha UK, providing a full range of services to Universities, Industry, Colleges and Covemments both at home and overseas. We have the largest stocks of secondhand text equipment in Europe as well as a selected range of new products. These are on display at or London showrooms where custombrs can examine the equipment of their choica and see is working.

Electronic Brokera Ltd. have fully equipped workshops on the premises to test and report on the majority of equipment we sell.


WRITE NOW. . .
for a FREE copy of our latest Test Equipment Catalogue. Please apply on headed paper



RADIOMETER
Stereo signal generator SMGiC. Full spec. on request.
Suphe RHODE \& SCHWARTZ

Video Oscillalor 0.222 .7 KH z
WANDEL GOLTERMAN
WANDEL \& GOLTERMAN

## $\begin{array}{lr}\text { Oscilat } & \text { Type LO-4 } \\ \text { Type } 10-40 & 41 \mathrm{MHz} \\ \text { Type } 10-170 & 40-108 \mathrm{MHz} \\ \text { Ty } & 170-330 \mathrm{MHz}\end{array}$

RECORDERS

## RECORD Single Cha 500 A M Mo <br> Single Channed $500 \mu \mathrm{~A}$ Movern


avo MULTIMETERS
OSCILLOSCOPES




SOLARTRON
Porlable Scope


## ELEOTRONIE


[^0]:    OTARI CORPORATION: 981 Industrial Road, San Carlos, California 94070, U.S.A. Phone: California 415.593 .1648 Telex No. 259103764890 OTARICORP SCLS OTARI ELECTRIC CO., LTD 4-29.18, Minami Ogikubo, Suginami-ku, Tokyo, 167 Japan Phone: (03) 333-96.31 Cable: OTARIDENKI TOKYO Telex: J25604 OTRDENkI

[^1]:    Current issue price 35 p. back issues (if available) 50 p, at Retail and Trade Counter, Paris Garden Lond SE1. By Post current issue 55 p, back issues (if available) 50 p , order and payment to Room 11 Dorset Hinuse, London SE1 9LU.
    Fditorial \& Advertising offices: Dorset Housc. Stainford Sireet. London SEI gLU. Telephonas: Editorial 012618620 : Advertising 012618339.
    Telegrams Telex. Wiworld Bisnevpres 251.37 London. Cables, "Ethaworld. London SE1."
    Subscrptoon rates: 1 year: $£ 7.00$ UK and overseas ( $\$ 18.20$ USA and Canada). Student rate: 1 year. E3.50 UK and oserseas (\$9.10 USA and Canada).
    Distribution: 40 Bowling Green Lane, London FCIR ONE. Telephone 018373636.
    Subscripioms: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RHI6 3DH. Telephone 0444591 sx. Subscribers are requested io notify a change of address. C I.P.C. Business Press Ltd. 1976
    (if avalable) 50 p order and payment to Room 11

[^2]:    JOHN GIBBON (Make-up and copy)
    Phone 01-261 8353.

[^3]:    
     ALUMINIUM PANELS. $6 \times 4-17 p ; B \times 6-24 p ; 14 \times$
    $3-25 p ; 10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times$ 6-43p; $14 \times 9-52 \mathrm{p}$;

[^4]:    Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1975 are shown

[^5]:    AdNOVAT to IN
    cree shown.
    dotatis on raquast

[^6]:    SMALL
    BATCH PRODUCTION wiring, assembly to sample or drawings. Specialists in printed oircult assembly. Rock Electronnes 41 Silver Street, stanisted, Essex

[^7]:    Printed in Great Britain by QB Ltd., Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD.. Dorset House, Stamford St.. London, SE 9LU telephone 0I-261 8000 . Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon $\&$ Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service, Ltd. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd.: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News Distributors Inc., 155 West 15th Street. New York. N.W. 10011.

