

Until now
 £1995 bought only half the synthesized Signal Generator youwanted.

RACALINSTRUMENTS'9081.

- 5 to 520 MHz
- Synthesized Performance-Analogue Tuning
- Channelised or continuous operation
- Stability ± 3 parts in 10° per day

AM, FM and Phase Modulation

- Output automatically levelled - £1995
- Write today for a copy of our Technical Brochure

Bradley Services have the expertise and manufacturing capability necessary to make the most sophisticated electronic systems and electro-mechanical devices. However, equally important are the facilities we have for repair and calibration. We can handle virtually any type of instrument within the frequency range DC to 36 GHz - irrespective of manufacturer

We also have a Post Design Services Group which provides every type of
after-sales engineering support, from the provision of technical literature to the upgrading of complete systems.
These facilities all approved to MOD Def. Stan. 05-21, have been developed over more than 20 years and during that time we've handled practically every type of instrument in use. So, if you've got a problem with some equipment, the chances are that, even if we didn't make it, we can still make it work

Bradiey Electronics

G \& E Bradley Limited Electral House, Neasden Lane London NW10 1 RR Telephone : 01-450 7811 Telex : 25583
7811

TYPICAL TRANSIPACK NO-BREAK POWER SUPPLY AS DELIVERED TO C.E.G.B.

INDUSTRIAL INSTRUMENTS LIMITED tRAMSIPACK

120 BASIC RANGES

$A C V, 1 \& d B$
DCV, I \& NULL
RESISTANCE
LEAKAGE at $3 V$ VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $\mathrm{R}=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zerolin/log scale covering ± 4 decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits. Uses $3 V$ source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 20+$ VAT.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $\mathrm{AC} / \mathrm{DC}$, using HV Probe. Price $£ 14+\mathrm{VAT}$.
$1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $\mathrm{AC} / \mathrm{DC}$, using Current Shunt. Price $£ 14+\mathrm{VAT}$.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 36+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, $A C$ mains when optional Power Supply Unit is fitted. Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is. 140 mm . Leather case is available at £12+VAT.

MOXON STREET, BARNET, HERTS.. ENGLAND. EN5 5SD. TEL: 01-449 5028/440 8686

once is enough!

MX-5050-8SD MK-1I
Performance comparable to 1 inch. 8 channel unit. High S N ratio eliminates need for noise reduction mechanizm-DC direct drive servo how much they value this steady, precise performance under hard use.
We don't have to claim our machines are sturdy the machines, and their satisfied users,
speak for themselves.

> Trust through experience - one encounter with OTARI equipment and from then on. You will trust the OTARI name.

DTARII

isophon
 Our Dome Tweeters have reached the pinnacle of success...

KK 7 DOME TWEETER

The latest addition to the range. For use in systems up to 40 watts RMS and available in both 4 and 8 ohm versions

KK 8 DOME TWEETER

Two models are available, suitable for use with systems up to 50 watts or alternatively, 80 watts. 4 or 8 ohm models can be supplied.

KK 10 DOME TWEETER

Similar to the $K \mathbb{K} 8$ but with narrower sound dispersion angle. Available in both 50 watt and 80 watt versions, with 4 or 8 ohms impedance.

For further information on these dome tweeters and other loudspeaker drive units manufactured by Isophon, complete the coupon and post to HAYDEN LABORATORIES LIMITED Hayden House, Churchfield Road, Chalfont St. Peter, Bucks, SL9 9EW Tel: Gerrards Cross (028I3) 88447 dome tweeters as one of their biggest success storics. Loudspeaker manufacturers in countries throughout the world now incorporate one of the above dome tweeters in their system designs.

HAYDEN

The Experimento:

Two Versions

Experimentor 600.
The world's first breadboard specially designed for 0.6 pitch devices. It gives you all the fan-out you need for complex MSIs, Micro-processors, Memories, Displays etc., (40 pins or more) with plenty of room for other components alongside.

No soldering. No spoilt devices.
No fuss.
No fiddling.
No wasted time.
Now you can put circuits together as quickly as you think them up.

Just plug your devices in, pull them out, plug them in again, as many times as you want.

Easy to Buy.
There's no problem buying from USA.
Just send name; address (block letters please), quantity of each required, and a perfectly normal UK bank cheque, made out in Pounds Sterling, to Continental Specialities Corporation.

Or you can use an International Money Order, from any Post Office. We also accept your American Express Card or Access number.

Then we post by return airmail, and you should receive

Apart from ICs, both versions take TO-5 transistors, diodes, LEDs, capacitors, resistors; any component with lead size between .015 and .032 inch diameter. And for interconnections you use standard solid hook-up wire.

Unique Construction.

Each version of the Experimentor gives you 94 fivecontact terminals, arranged in two rows of 47 , plus two integral bus-strips for Ground and Power, with 40 contacts on each.

That's 550 contacts in all! (See diagram).
All terminal strips are recessed into the bottom of the plastic body, and covered with a stick-on vinyl backing, so you have no insulation problems.

The contact rows are numbered 1-5-10 etc. and A-B-C \cdots. J lengthways, so each position is clearly defined. The bus-strips are labelled X-Y, each end.

The plastic body is rigid, strong and longlasting, with a recessed screw-hole at each corner, and all four edges have a special quick-locking lip so that you can build rigid arrays of two or more boards.

The Domino Theory.

See how the Experimentor boards fix together, side by side, end to end, or at right-angles, to give unlimited scope for circuit building, planning, extending, rearranging.

You can mix 0.3 and 0.6 DILs in any arrangement you like.

And all your displays can face the way you want them.
And look at these prices!
Experimentor 300 , $£ 6.85$, Experimentor 600, $£ 7.50$. All made to top CSC professional quúáhity, and every one is fully checked before dispatch.

Free Catalogue!

Page after page of fascinating CSC products. Just write and ask.
 the goods within 2.3 weeks.
Dealer enquiries invited Note that any Uk taxes or duties
chargeable are solely the responsibility of the buyer.

Once upon a time Britain made the best industrial cathode ray tubes in

Our catalogue is over 1 inch thick - ask for it.*

66 where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune? 9

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take - with no calculations thanks to the mechanical in-line digital display and interlocking units selector.

The B150 Mk. 3-for use in production, quality control, development labs-even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise. From good distributors everywhere

Ring us for the name of your nearest stockist or for fuller details of AVO's Universał Bridge B150 Mk. 3

(10)
Avo Limited, Archcliffe Road, Dover, Kent CT17 9EN. Tel: 0304202620 Telex: 96283.
mand Thorn Measurement Control and Automation Division
WW-040 FOR FURTHER DETAILS

A completely flexible personal mobile which meets todays need for high power person to person communication

COST EFFECTIVE COMMUNICATION FOR YOUR USE IN THE FIELD...
on the shoulder...
on the motorway.

> in the hand... in the office.. in the car...

Please send details of the Nolton Sabre Personal Mobile
Name

Address

Nolton Communications Ltd

Radiotelephone Division Fieldings Road Cheshunt Hertfordshire EN8 9TX Telephone Waltham Cross 33555 Telex 28952

The new Maplin Catalogue is no ordinary catalogue...

Barr \& Stroud are pleased to announce a further advance in the continued development of their acclaimed EF3 Electronic Filter System. The new

EF3-01 High Pass Cut-off frequency variable from $0.01 \mathrm{~Hz}: 0.10 \mathrm{kHz}$

EF3-02 Low Pass Cut-off fequency variable fiom 0.01 Hz to 10 kHz

EF3-03 HighPass Cul-off flequency variabie fromi. 0.1 Hz to 100 kHz

Now 6 Modules for the EF3

Write for technical literature giving full specifications.
 London \& Glasgow Barr \& Stroud Limited 1 Pall Mall East, London SW1Y 5AU Telephone 01-930 1541 Telex 261877.
modules 05 and 06 so extend the capabilities of the system that it could well meet all your filtering requirements.

EF3-04 LowPass Cut-off frequency variable from 0.1 Hz to 100 kHz

EF3-05 High Pass Cut-off frequency variable from 1 Hz to 1 MHz

EF3-06 Low Pass Cut-off frequency variable from 1 Hz to 1 MHz

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and $D C$ Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05%, damping factor of at least 400 from DC to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads

M600
750 watts into 8 ohms 1.350 watts into 4 ohms $D C$ to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime}-15^{\prime} \mathrm{DC}-20 \mathrm{kHz}$ $16 \mathrm{~V} / \mathrm{usec}$ ond
120 db below 600 Watts
$19^{\prime \prime}$ std rack, $8^{3 / 4^{\prime \prime}} \mathrm{H}, 16^{1 / 2^{\prime \prime}}$ Deep

DC 300A

500 watts mis into 2.5 ohms (1 chan) 200 watts into 2.5 ohms (1 chan) $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ +0 . $-15^{\prime} \mathrm{DC}$ to 20 kHz 8 volts per microsecond At least 110 db below 150 watts 19" Rackmount, 7" High, 93/4" Deep

D150A $\mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$ $+0^{\prime},-15^{\prime} \mathrm{DC}$ to 20 kHz 6 volts per microsecond At least 115 db below 90 watts $19^{\prime \prime}$ Rackmount, $51 / 4^{\prime \prime} \mathrm{H}, 83 / 4^{\prime \prime} \mathrm{D}$

Slew rate
Hum $\&$ nois
Dimensions

How everyhi-fidealer can increase his sales and improve his service

The Ferrograph RTS 2 is a complete single-unit audio analyzer. Used by leading manufacturers and dealers throughout the world. it is the only single equipment available that can run exhaustive checks on hi-f including amplifiers tape recorders equalisers and mixers-making it an invaluable aid to saies and service

Increase your sales!

By using the RTS 2 in your ht-it store your salesman can quickly prove to customers that the hi-fi system he is demonstrating is as good as it sounds. In a matter of seconds. up to ten different tests can be carried out using just one pair of leads. (The push-button operation is so simple. even
unskilled statt can make accurate measuremenls.)

Result? The customer is reassured confident he is getting value for money. So you sell more more easily.

Improve your service!

But the RTS 2 is much more than a cost-effective sales aid. Used in your service department. it quickly identifies taults. making your after-sales back-up more efficient And more profitable You don't need a variety of incompatible test gear - so there are fewer connections. no hum-loops. no time-consuming frustrations. All of which means you save money.

The RTS 2 s an unbeatabie amonstrato is so simpee' And as test oquipment.

Photograph dy courtesy of Sewaros
Reading

Ferrograph RTS 2

the complete, single-unit audio test set.
Wilmot Breeden Electronics
Ferrograph Rendar
Wayne Kerr

\squareSend me more information about the RTS 2 audio lest set
I would like a demonstration. Phone me to arrange an appointment
Name
Address

Wimo Breeden Electronics Limited Durban Road South Bersied Bognor Regis. West Sussex. PO22 9RL Telephone Begnor Regis 25811 (STD Code OE433)

WW-050 FOR FURTHER DETAILS

Grampian introduced the modular plug-in concept for building multi facility sound installations, together with solid state audio switching over three years ago. Since then many hundreds of complex installations have been supplied and have set a st.andard for reliability under the most stringent conditions. All equipments are built 10 a necessary engineering standard and not down to a price with its ultimate high cost of ownership.
All amplifying equipments supported by an extensive range of manufactured microphones, loudspeakers and all items required for sound installations by the firm of forty years standing in the sound business.

GRAMPIAN REPRODUCERS LTD.
 HANWORTH TRADING ESTATE. FELTHAM, MIDDLESEX, ENGLAND.
 TEL: 01-8949141

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency, period, time. freq./ratio and calibrated outpull facility. Fast delivery. Specials by arrangement.

Sensitivity 10 mV . Stability 5 parts 10 . ${ }^{\text {IN }}$
Resolution ± 1 Count
301 M
$501 \quad 32 \mathrm{MHz} 8$ Digit £178
$801 \mathrm{~A} / \mathrm{M} \quad 300 \mathrm{MHz} 8$ Digit $£ 305$
801B/M 250MHz 8 Digit £265
401
32MHz 6 Digit £125
1001M $\quad 12 \mathrm{GHz} 8$ Digit E 75
Start/Stop versions plus $\mathbf{£ 1 2}$ Memory versions available if not suffixed M

Type 1011 MHz 100 KHz 10 KHz Crysial Standard $£ 85$ Type $1030 \mathrm{ff} /$ Air Standard $£ 85$
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depts., Crystal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS

6 WOLSEY ROAD, ASHFORU MIDDX. TW15 2RB Telephone: Ashford (Code 69) $53661 / 2$

WW - 033 FOR FLRTHER DETAILS

when is a box not a box?

Instrument boxes are often sold in standard sizes - not always the most practical sizes for your needs. When bought they take up a lot of storage space.

WIDNEY DORLEC Series 3 is a new, simple
constructional system for building cases, boxes, chassis, frames, drawers etc. etc. Just 3 basic extrusions and 3 simple brackets- available as components for DIY, kits,
or fully finished products to your design Custom made cases at prices you pay for standards Ideal for Laboratories, Universities, small workshops. Call Cyril Vaughan on 021-359 3044 for more details.

> Northern Stockist
> Widney Dorlec (Northern) Ltd.
> 181a Bramhall Lane.

Telephone: 061

WW-014 FOR FURTHER DETAILS

HWMiDsGismomic ficiorion
Introduced to meet the demand for a simple, high quality, FOR for those who do not require full recording oscilloscope capabilities; the FOR-7 has a rectangular CRT which provides strip chart, $X-Y$ plot and single frame recording on low cost paper.
WIDEBAND BRILLIANCE MODULATION
-for video imaging with good grey scale
HIGH FREQUENCY DEFLECTION AMPLIFIERS
-for trace recording with faithful transient response
VARIABLE SENSITIVITY AND POLARITY REVERSAL -for easy interfacing with displays, and systems

BENCH, RACK OR BUILD-IN VERSIONS

-for general purpose laboratory or OEM applications
For further information or a demonstration of the FOR-7 or any other Medelec unit please contact:
MEDELEC LIMITED. Woking . Surrey GU22 9JU
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking
 medelec 落

WW 049 - FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc. etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ voit standard size battery.
Model "Mini-Z $1^{\prime \prime}$ " measures from-40 \mathbf{C} to $+70^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-Z 2^{2} " measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} £ 20.00$ [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)
WW - 027 FOR FURTHER DETAILS

EIMEOARD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMBOARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket

Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors \equiv ESE IMOLSTRIAL MOULDNGS ITD
Higgs Industrial Estate, 2 Herne Hill Road, London. SE24 OAU, England Telephone 0177372383 Telex 919693

AMBIT international (dept 85)

The Dynamic Twosome: Signalmaster/Audiomaster

 After long and thorough deliberation, we are proud to announce a new unit from Larsholt - the Audiomaster. As ever, the instructions are designed to lead the unwaryand the inexperienced- through point-to-point steps that culminate in a professionally styled and finished amplifier to complement the Signalmaster FM tuner. Price $£ 79.00$ Power: $25+25 \mathrm{~W}$ RMS THD: Less than 0.3% Dynamic range: an exceptional 80 dB (Signalmaster shown on top of the Audiomaster)
The Signalmaster Mk. 8 is equally simple to assemble, and results reflect the superb Scandinavian styling and careful electronic engineering. $£ 85.00$.

International Mk.2: A choice of tuners for the more experinced constructors.
A chassis, cabinet and front panel designed to be used with a variety of electronics inside. The standard set, with the Larsholt 7253 varicap FM tunerset, plus all necessary parts to complete costs $£ 65.00$. Alternative modules for the signal processing stages are available for the more advanced F.M. radio enthusiast/constructor. (EF5800/7030/91196)

From left to right, the EF5800 6 circuit varicap FM tunerhead. Two MOS RF stages, both with AGC control, and an ultra stable oscillator. Next the 7030 Linear Phase 10.7 MHz IF. Distortion 0.08%, muting , AGC, meter, auto stereo switch outputs. Finally the new 91196 mpx decoder and combined birdy filter. Mono THD 0.05%, stereo sep. 55 dB at $1 \mathrm{kHz}, 42 \mathrm{~dB}$ at 10 kHz - the best decoder module yet. EF5800....£14.50 7030....£10.95 $91196 \ldots . . \& 12.99$ (Built). Overall performance of the three modules when correctly assembled:$30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at 0.85 uV input. 60 dB at 5 uV . THD 0.09%. AFC holds THD below 0.2% over 400 kHz if required. AGC effective over a 90 dB range. Image rejection 90 dB . Noise floor -73 dB .
Components: Coils, ICs Filters, etc.

Radio ICs: (and modules) $\begin{array}{ll}\text { CA3089E/HA1137W FM } & 1.94 \\ \text { CA3090AQ mpx mpx } & 3.75 \\ \text { MC1310/KB4400 mp } & 2.20 \\ \text { HA1196 mpx } & 4.20 \\ \text { HA1197 AM radio } & 1.40 \\ \text { TBA120AS FM IF } & 1.00 \\ \text { TBA651 AM radio } & 1.81 \\ \text { UA720/CA3123E AM rad } & 1.40 \\ \text { LM380N 2W Audio } & 1.00 \\ \text { TBA810AS 7W Audio } & 1.09 \\ \text { TCA940 10W Audio } & 1.80 \\ \text { TDA2020 20W Audio } & 2.99 \\ \text { LM381N sterco preamp } & 1.81 \\ \text { LM3900 Quad amp } & 0.68\end{array}$ 78M12-20-24 volt reg NE550A variable reg TAA550B varicap reg 32v0.50* NE560/2B PLL IC NE561B PLL IC NE565A/567V PLL ea:2.50 810 k kit for TBA8 10 amp 2.75 2020 k kit for 2020 amp 9.35 $2020 k$ kit for 2020 amp 9.35 92310 kit for mpx decoder 5.35 7020 kit for 3089 FM IF 6.65 971197 kit for varicap AM radio tuner 9.65 7700 built TV sound tuner $\mathbf{2 7 . 0 0}$	Coils and filters:- AM IFTS TOKO YRCS/YHCS types $(10 \mathrm{~mm}) 0.30$ 7 MCS types (7 mm) FM IFTS:- KACS/KALS types(10 mm) 0.33 94 A types $(10 \mathrm{~mm}) \quad 0.30$ AM filters:- CFT types ceramic CFU type ceramic $\begin{array}{ll}(455) & 0.55 \\ (470) & 0.60\end{array}$ SFD470 types (470) 0.75 FM filters:- $\begin{array}{lr}\text { CFS/SFE ceramic (10.7) } & 0.50 \\ \text { SFEGMA (TV sound) } & 0.80 \\ 3132 \text { linear Phase } & 2.25 \\ \text { MPX } 19 \& 38 \mathrm{kHz} \text { notch } & \\ \text { BLR3107 (4k7imp) } & 1.75 \\ \text { BLR2007 (3k3 imp) } & 1.75 \\ 23 \text { or } 36 \mathrm{mH} \text { chokes } & 0.33 \\ \text { Tunerheads: (\& tunersets) } & \\ \text { EF5600 } 5 \text { gang varicap } & 12.80 \\ \text { EC3302 gang varicap } & 5.50 \\ 8319 \text { (Larsholt) } & 12.00 \\ 7252 \text { tunerset complete } & 26.00 \\ 7253 \text { stereo tunerset } & 26.00\end{array}$ 7253 stereo tunerset $\quad 26.00$ Standard transistors also kept in stock - see lists for further detail and price information.

Terms: Vat extra, 12.5% unless marked *, which is 8%, all complete tuners require $£ 3.00$ for packing and carriage. The standard P\&P rate remains at $22 p$ per order. Catalogue $40 p$. Phone (0277) 216029 (After 3pm please). SAE for free price lists.

A continuously variable-frequency laboratory oscillator with a range $10 \mathrm{~Hz}-1.00 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.
LDO3. B Low Distortion Oscillator, balanced output.
A LDO3 but fited with an output amplifier and screened balanced transformer providing a 600 ohm floating / balanced output, and 150 ohms unbalanced output.
DMS3 Distortion Measuring Set (Illustrated)
Measures total harmonic distortion down to 0001% speedily and accurately. Direct reading from calibrated meter
HSV1 High Sensitivity Voltmeter
An accurate voltmeter with 16 ranges, $10 \mu \mathrm{~V}-300 \mathrm{~V}$ f.s.d. Average responding.
HSV2 High Sensitivity Voltmeter.
As HSV1 but true r.m.s reading.
ANM1 Audio Noisemeter
An accurate voltmeter and noisemeter with 16 ranges, $10 \mu \mathrm{~V}-300 \mathrm{~V}$ f.s.d. Fitted weighting characteristıcs: Wide band. DIN Audio Band, IEC/DIN Curve ' A ', and CCIR. Average responding
ANM2 Audio Noisemerer
As ANM 1 but true r.m.s. reading.
ANF1 Audio Noisefilter
An active filter to CCIR weighting characteristic for use with external voltmeter. (Ref Dolby Laboratories Inc.. Bulletın No 43. Mar 76)

Full descriptive leaflets avallable from RADFORD ELECTRONICS LTD. Laboratory Instruments Division
Ashton Vale Road, Bristol, Avon BS3 2 HZ Tel. 0272662301 WW 056 - FOR FURTHER DETAILS

of research..."on commonents and accessoriese tor dictating machines, tele-communications, hearing aids

F. M. TUNER MODULES BY

These modules are fully assembled, tested and guaranteed units, as featured in our tuner. Designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.

M1 MAIN TUNER MODULE
 including ten turn manual tuning pot
 M2 STEREO DECODER
 including L.E.D. indicator

M3 PUSH BUTTON PRE-SELECT UNIT

six channel \& provision for manual tune
M4 REGULATED POWER SUPPLY
M5 TOUCH TUNE PRE-SELECT UNIT
A touch switched replacement for M3

The Electronic Design Specialists
£17.54
£25.30
$£ 6.36$
$£ 14.50$
All items (except M5) are available in kit form, or as individual I.C.s, P.C.B.s, etc.

Full metalwork and teak cabinet is also available to complete the finest tuner on the market today

WATCH FOR FURTHER ADDITIONS TO OUR RANGE

Fully illustrated leaflets describing the above modules are available for the asking
A booklet is available for 50p (post tree U.K.) Fully describing the completely updated tuner. Prices subject to 12.5\% VAT

Write for full lists today
To:

EXPO DRILLS

Illustrate:
A TITAN DRILL mounted in a MULTI PURPOSE STAND This drill is a powerfut tool running on 12 v DC at approx 9000 rpm with a torque of 350 grm gm . Chuck capacity $3.00 \mathrm{~m} / \mathrm{m}$.
The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in hammer
blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx speed 9000 $\mathrm{rpm}, ~ \uparrow 2 \mathrm{vDC}$, torque $35 \mathrm{grm} . \mathrm{cm}$. Capacity $2.4 \mathrm{~m} / \mathrm{m}$.
TITAN DRILL
ONLY Cat. No 175
$\mathbf{£ 9 . 6 1 + 3 5 p p \& p i n c . ~ V A T ~}$
RELIANT DRILL
ONLY Cat No 0150
£5.64 + 18pp \& pinc VAT
MULTI-PURPOSE STAND
ONLY Cat No. 0200

ADAPTOR COLLAR
FOR RELIANT DRILL
Cat. No. 0201

These are only two examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids.
To back up the power tools Expo offer a comprehensive selection of Drills, Grinding
 Points and other tools
 $7 / /^{\prime \prime}$ and $15 / /^{\prime \prime}$ ElA flange. no adaptors needed
uk representative for BIRD ELECTRONIC

2spen electronics limited

2 KILDARE CLOSE EASTCOTE MIDDLESEX HA4 9UW Tel 018681188

Telex 8812727

BLOB BOARDS

Circuit diagram to circuit board in minutes. Lavout circuit plan on . $1^{\prime \prime}$ graph paper. Select Blob Board, lay components out with leads on copper strip. Blob of solder onto lead and your circuit is complete. Blob Boards normally half price of competitive boards Roller tinned to solder components directly. No drilling or mounting. Modifications in seconds. Blob Board is re-usable.

Blob Boards are circuit boards designed exclusively for the home constructor and proto type engineer and are normally half the price of competitive boards. Blob Boards are roller tinned for ease of soldering, most require no cutting or breaking of contact rails HALF PRICE AND RE-USABLE. That is NEW!

Blob Board .1" or .15" 1 off All approx. inch sizes ZB1V 2.5×5 ZB2V 2.5×3.75 ZB3V 3.75×5 ZB4V 10×6

Discrete Blob Board ZB5D 3.6×2.4 ZB6D 2.4. $\times 7.3$ ZB7D 4.9×7.3
ZB8D 9×7.5
f0. 30
£0. 23
£0.46
£1.51

1 off
£0. 20
£0.42
f0. 69
$£ 1.62$

3 off Dip Blob Board
£0.75
$£ 0.75$
$£ 0.57$
$£ 1.14$
$£ 3.78$
ZB11C 4.5×3
ZB21C $4.8 . \times 3.2$
ZB41C 4.75×7.
-
£0. 40
£0.85
£1.70
£0.90 £0. 96 $€ 2.13$
£4.26

Sample pack: 1 off ZB1V +1 off ZB8D + 3 off $\quad 1$ off ZB21C normally $£ 2.32$ only $£ 2.00+$ £0.51 free Blob Board.
£1.05 Many other sizes and patterns available add $£ 1.75 \quad 30$ p post $+8 \%$ VAT to all orders.

S-DeC

Take an S-DeC, take a smal stock of components. Plug components into S-DeC, no soldering, make a radio receiver, light operated switch 3 stage amplifier. When circuit is made unplug components and use them again to make a morse practice oscillator, LC oscillator, binary counter and any other discrete circuitry See Practical Wireless for new series of S-DeC projects S-DeC + step by step instructions to build above projects and 3 more + which components to use + free control panel for mounting switches, lamps etc. + free Blob Board. S-DeC only $£ 1.98+37$ p (VAT + post) send only $£ 2.35$.

DRILL-SAW GRIND•BURR BRUSH-POLISH

PB announce a precision British built drill for the home constructor Works better than most bigger drills and can be used for fine detailed work. Drills through any circuit board, need to break copper strip simply grind it off.
9000 RPM Drill + 20 Assorted tools £11.20 (+VAT + post) Send £13.00
9000 RPM Drill only $£ 5.22+$ post + VAT send $£ 6.00$.
Multi-purpose Drill stand $£ 10.60$ + Post + VAT send $£ 12.00$.

POT LUCK

Off cuts of fibre glass circuit board $5 \mathrm{sq} . \mathrm{ft}$. Double sided fibre glass p.c.b. $5 \mathrm{sq} . \mathrm{ft}$. Ferric chloride 5 litre mix Negative developer 1 litre

Add $£ 0.75$ p. to all above for Post + VAT

MADEINBRITAIN?

You could be forgiven for being surprised

After all, the market is flooded with Japanese equipment.

But now, for the first time, a tape deck, with full solenoid transport function is available from a British manufacturer

It's the MK 7S from Brenell.
A sturdy machine of studio quality, that includes features like front panel bias accessibility and dual standard equalisation.

It can be seen and heard at our demo studio. Pembroke House, Campsbourne Road, Hornsey, London N8.

Or for more information call Andrew Stirling 3403291

Also available - a complete range of multi-channel recorders, to customers own specifications.

hrenell

WW 082 - FOR FURTHER DETAILS

2D22 Stereo Pre-mmplifiar Control Unit

A stereo pre-amplifier of virtually zero distortion Inputs for disc, tuner, and two tape machines providing comprehensive recording and reproducing facilities. Sensitivities: Disc 1 mV . and Auxilliaries 50 mV ., for 1 V output Exceptional signal/noise ratio. Output at clip level 18 V r.m.s.

ZD50 Power Amplifier

A stereo power amplifier of all aluminium construction Output of 110 watts per channel into 4 ohms and 70 watts into 4 ohms at typically less than 0.002% distortion

ZD100 Power Amplifier

A stereo power amplifier of all aluminium construction with high thermal mass and designed for continuous operation at high output level. Provides 150 watts per channel into 4 ohms and 90 watts per channel into 8 ohms at virlually zero distortion

ZD200 Power Amplifier

Characteristics as ZD 100 amplifier but provides an output of 250 watts per channel into 4 ohms and 150 watts per channel into 8 ohms.

HD250 Stereo Integrated Amplifier

Uses ZD22 pre-amplifier with a power amplifier having a power output in excess of 50W per channel into $4-8$ ohms Distortion less than 0.02% at rated power, typically less than 0.01%. True complementary symmetry outpui Headphone output. Inputs: Disc, tuner, and two tape machines. Sensitivities Disc 1 mV . Auxilliaries 50 mV for 20 W output
Fulf descriptive leaflets available from:
RADFORD ELECTRONICS LTD
Audio Division
Ashton Vale Road, Bristol, Avon BS3 2HZ. Tel: 0272-662301

WW—领 FOR FURT̈HER DETAIIS

The ARA1 Test Set quickly gives you accurate traces of audio system frequency responses. In just a few seconds, this self-contained instrument clearly displays response as a gain/frequency plot on a long-persistence CRT. Outputs are provided for operating an XY plotter. Whether you use the internal sweep oscil ator. or an external signal, the ARA1 requires no synchronisation and adjusts automatically to the incoming frequency. I covers 20 Hz to 200 kHz , with resolution down to 0.1 dB over a very wide dynamic range.
 level and input sensit vity ensure fast and precise evalualion of all audio devices, whether having nomineily flal response or a steep-cut characteristic. You can adjust the sweep rate, set upper and lower limits independently, and use one-shot or repetitive sweeps triggered electricaly or manually.

The Ferrograph Professional ARA1.
Frst. Ascurate, And easy to use.
Send for full information today.

FERROGRAPH PROFESSIONAL ARAI.
 Wilmot Breeden Electronics
 Ferreraph
 Rendar
 Wayne Keri

[^0]
transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER
WITH UNIVERSAL END FRAMES AND turret lug connections

```
Drake Transformers Limited
Telephone:
Billericay 51155
Kennel Lane, Billericay, Essex.
Drake Transformers Limited Billericay 51155
```


$\bar{W} \bar{W}-024$ FOR $\overline{\text { FURTMER }}$

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet 30, $300 \& 1200$ (30 and 120 cps) Teleterm. 1132 and 1200 series (portable / fixed 30 cps) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)
\star Spares, repairs, overhauls and maintenance
\star Other types and models available
\star Refurbished units also available
\star Short and long period rentals
\star Minicomputer interfaces
\star Quantity discounts
\star Immediate delivery

TELEPRINTER EQUIPMENT LTD.
70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables rahno Tring
Telex 82362
A/B Batelcom Tring

WW - 018 FOR FURTHER DETAILS

So make United-Carr Supplies your SINGLE SOURCE for:-

CINCH Electronic Components

Some examples: - Barrier terminal strips. Printed circuit board edge connectors. D Subminiatures. Multi way plugs and sockets. Audio sockets.
United-Carr Supplies Ltd.,
112 Station Road, llkeston, Derbyshire, DE7 5LF
Tel: IIkeston 328711 (STD 0602 328711) Telex 377117
WW - 017 FOR FURTHER DETAILS

PHILIPS

The Generation Gap

Fill your Generation Gap with these 5 generators. You will then ensure that your workshop is the most efficiently equipped and that your service engineers' home visits are the fastest and most effective. Good service means more sales so make yourself the most successful TV businessman and get these Philips instruments now. You won't find better value for money.

(0)

Pye Unicam Ltd

Philips Electronic Instruments Dept.
York Street Cambridge England CB1 2PX
Tel: Cambridge (0223) 58866 Telex: 817331

1 PM5501 PAL TV Pattern

Generator

Extremely light portable instru ment for service in customer's home. Five different test patterns for colour and black/white installation and service RF output switchable - VHF Band III or UHF Band IV 1 kHz tone for sound performance checks.

2 PM5509 PAL TV Pattern

Generator

The ultımate in pattern generators. Full IF coverage . band I, III, IV and V. Electronic tuning with preset channels 10 test patterns (colour and black/white) Adjustable chroma burst and HFamplitude Special sync, video and VCR outputs

3 PM6456 FM Stereo

Generator

Has stereo transmission started in your area? The PM 6456 gives a complete stereo signal, L\&R signal. Internal L. F. modulation: 1 and 5 kHz . External stereo modulation possibility X-tal contralled pilot Adjustable multıplex signal
4 PM5324 HF Generator
Frequency range $100 \mathrm{kHz}-110$ MHz . X-tal calibration Special band spread ranges. High frequency stability Electronically stabilised output max 50 mV rms in 75Ω Facilities for internal and external $A M$ and FM modulation.

5 PM5334 TV Sweep

Generator

Ideal for overhauling rental sets. 8 frequency ranges. $3 \mathrm{MHz}-860$ MHz Sweep with continuously adjustable. 8 - 50 Hz . One variable and 3 fixed markers Signal frequency is accurate and thermally stable Stabilised output into 75Ω load.
6 Write today for a 16 page fully illustrated brochure and price list on the whole range of Philips instruments for radio and TV service And remember. All the instruments in the Philips range are endowed with the 'Philips Plus'. the quality of design. specification and appearance - particularly in terms of human engineering - of every instrument A total test and measuring range capabilitywhichıncludes'scopes, meters, counters, pulse generators, power supplies. recorders and generators. The ability to supply all your needs from a single source.

66 where can I get an RF Generator nowadays that's easy to use,reliable, robust but not too expensive? 9

"Here"-AVO's new HF135-a really useful professional RFgenerator ıdeal for repair bench or test lab.

Wide frequency range-eight bands from 100 kHz to 240 MHz . Calibration accuracy conservatively rated at $\pm 1 \%$ right across the range Output level from $1 \mu \mathrm{~V}$ to 100 mV (: 6 dB). AF Signal source facility (1 kHz) Input for external modulation. All wrapped up in a tough metal cabinet with ergonomically designed front panel and complete with connectors, crocodile clips and the AVO guarantee of reliability, serviceability, and accuracy at a sensible price.

For descriptive leaflet and name of your nearest stockist. phone or write:

Avo Limited, Archcliffe Road,
Dover, Kent. CT17 9EN.
Tel: 0304202620 Telex: 96283.
$\frac{1}{r-h o t e t}$ Thorn Measurement Control and Automation Division
WW-095 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.	Our product range comprises: Low profile (flatform). Timing - Miniature - Low contact capacity Hermetically sealed - Stepping Mains switching - Latching Contact stacks Solenoids
	Miniature Relays AZ 420 ... 439 International standard relay. 2. 4 , or 6 change-overs. Plug-in type saves maintenance costs. Coil voltages 1.2 to 180 Volts D.C 6 to 240 Volts A.C. Life expectancy to 100 million operations. Balanced spring-held armature allows operation in any mounting position. Relay extends only $3 / 4^{\prime \prime}$ from PC bcard when used with right-angle socket.

We resolve your switching problems rapidly and expertly. Please contact us for further details.

A member of the worldwide ZETTLER electrical engineering group. est 1877

American Beauty

An Ultrasonic Cleaner specially designed to accommodate long objects.

Cleaning long, narrow items in a bench-top ultrasonic cleaner is simplified with the introduction of American Beauty's Model S-80. This unit has a stainless steel tank $193 / 4^{\prime \prime} \times 53 / 4^{\prime \prime} \times 6$ ". Laboratory glassware, motor shafts, long printed circuit boards, machine components and surgical instruments can be cleaned without the use of secondary containers.

Like all American Beauty units, the S-80 is self-contained and selftuning. All circuitry is solid state. Lead zirconate titanate transducer is virtually indestructible. No fans or other moving parts. Operates on 240 V AC, 60 Hz , has 3 -wire cord. NEMA plug. Stainless steel cover included. Trays, timers and other accessories available.
Also available for operation on 120 volts AC.
Full details of complete range of cleaners available on request.

SPECIAL PRODUCTS DISTRIBUTORS LTD

 81 Piccadilly, London W1V OHLTel: 01-629 9556 Cables: Speciprod London W1

The new generation of professional STUDER tape recorders is designed for the use in broadcasting, television and recording studios as well as theatres and scientific laboratories. The low-cost STUDER A67 includes a wide range of modern features:

3 servo controlled AC motors - Crystal controlled capstan servo - Variable tape speed ($21 / 2^{\prime \prime} \ldots 22^{1 / 2^{\prime \prime}}$) with external frequency Tape tension control during all operating modes - Control logic with memory - Illuminated push buttons - Remote control of all tape transport operating modes - Automatics for continuous program - Mechanical counter, indicating Min \& Sec - AC-Mains supply 50 or $60 \mathrm{~Hz}, 110 \ldots 250$ Volts Opto electronic end of tape sensor - Head block with aluminium die-cast frame -

Tape lifter, may also be operated manually Long life heads - Audio electronics module with plug-in cards in front of tape deck Playback, record and bias amplifier boards have all necessary adjustments accessible from the front of the recorder - Switchable for equalization CCIR or NAB - Optional: VU-Meter/panel with peak indication (LED) Head phone jacks - Available with or without VU-panel, as portable or console version or as chassis for $19^{\prime \prime}$ rack mounting - $1 / 2$-inch, 4 track version in preparation.

STUDER

STUDER INTERNATIONAL AG
Professional Audio Equipment CH-5430 Wettingen, Switzerland

Jack-of-our-trade

Following the success of our range of Bantam Components and Jackfields, we have now introduced on the U.K. market the first-ever Jack designed specifically for PCB mounting.

Half the size of Bantam Jacks, the new PCB Jacks are only $1.25^{\prime \prime}$ long, $0.435^{\prime \prime}$ high and $0.365^{\prime \prime}$ wide. Mount directly on PC Boards wherever access is required. Normal through-jack configuration allows

splitting or isolating the signal for test. monitor or patch.
Available in single or dual configuration. Interfaces with Bantam telephone plugs

Six colours available for coding purposes: red, white. blue, orange, yellow and black.
For further information on the above, and our range of Telephone-type Components. Jack Panels and Prewired Assemblies. contact:

COMMUNICATION ACCESSORIES AND EQUIPMENT LIMITED

70-80 Akeman Street. Tring, Herts, HP23 6AJ
Telephone Tring (044282) 4011 Telex 82362
Ans. Back: Batelcom Tring.

GROOVAC

vacuum record cleaner
and
anti-static brush

Groovac III overcomes the problems associated with dust and static, problems which otherwise interfere with the faithful reproduction of your records.
Groovac III offers complete record and stylus care in one highly efficient unit. It tracks in like a second pick-up arm and operates while your record is playing.
"Highly recommended" by John Peel in Hi-Fi Weekly, 18th September. For further details contact:

PRECISION PETITE LTD.

119 A HIGH STREET, TEDDINGTON, MIDDX. TEL: 01-977 0878
(24-hr. telephone enquiry service) Now with the:

NEW MK. IIDRILL•

10,000 r.p.m., 120 cmg .

"MORE POWER MORE TORQUE"

12v.-14v. DC
DRILL ONLY £8.79
(p\&p 35p)
STAND £4.40
($\mathrm{p} \& \mathrm{p} 35 \mathrm{p}$)
Incl VAT
(Together 50p p\&p
SAE for illustrated
 leaflet and order form

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm)
- Simple operation
- 100\% British
- Burr-free holes no jagged edges
- 57 Metric and Linear sizes (Lists on application)

Used by Government services and most industries Wholesale and Export enquiries to

"Q:MAX"(ELECTRONICS)LTD 44 PENTON STREET•LONDON N1 9QA Tel:01-278 2500

WW - 060 FOR FURTHER DETAILS

 MULTIRAIL

$5 \mathrm{~V} 5 \mathrm{~A}, \pm 15 \mathrm{~V} 1 \mathrm{~A}$ \& 24 V 1 A (SMOOTHED) £65.00

TTL \& LOGIC
DUAL 5-15V 500mA £25.00
SINGLE 5V 1 AMP £15.75

CARD DUAL 9-15V 250mA£15.00 CHASSIS

SINGLE 24V 2 AMPE31.80
Also many other specs including laboratory and smoothed only supplies
VER CONTROLS (ST. ALBANS) LTD.
27B TOWNSEND DRIVE, ST. ALBANS, HERTS
ST. ALBANS 54113

WW-006 FOR FURTHER DETAILS

AUDIO MODULES
 A NEW APPROACH TO QUALITY HI-FI

Clitpalm Lid introduce a flexible range of high quality modules to enable a sophisticated hi-fi system 10 be built up form simple beginning
An intial give a range of frequencies; and a stereo image width control

STEREO PRE-AMP: CP-P $1:$
PRICE £13.30
Specification

Input	Sensitivity	Signal/Noise	Impedance
Magnetic	3 mV	$>70 \mathrm{~dB}$	47 K
Tuner	100 mV	$>70 \mathrm{~dB}$	10 K
Tape	100 mV	$>70 \mathrm{~dB}$	10 K
Auxillary	$1-100 \mathrm{mV}$	$60 \mathrm{~dB}-70 \mathrm{~dB}$	200 K.

Magnetic i/p overload 33dB
Distortion 0.04% at 1 KHz : Output ivem.s. into Supply voltage $\pm 18 \mathrm{v}$ nomin
Tone controls. Bass $\pm 12 \mathrm{~dB}$ at 100 Hz . Treble +12 dB at 10 KHz

Description: This is a general purpose 2-channel pre-amplifier suitable for use with gramophone, tape microphone or tuner inputs. It requires no external components orher selector switch. The unit is internally protected against accidental reversed supply connection

AMPLIFIER: CP2-15-20
PRICE:£12.85

40W r.m.s. single
$20 \mathrm{Wrms}+20 \mathrm{Wrm.s}$ stereo
Specification
Power output; $40 \mathrm{Wr.m.s}$ into 8, 1 channel
or 30 W rms. into 15,1 channe
or $20 \mathrm{Wrms}+.20 \mathrm{Wrms}$ into 4, 2 channel

Input Sensitivity 1 v rms . Frequency response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ at -3 dB : Distortion 0.04% a: Supply Voltage $\pm 18 \mathrm{v}$ nominal; Size $5.1 \times 4 \times 1.25$ inches. $130 \times 102 \times 32 \mathrm{~mm}$

Deacription: This module is designed to give either a $20 \mathrm{~W}+20 \mathrm{~W}$ stereo amplifier or alternatively a 40W single channet. It has buit-in protection against accidental reversed over-dissipation No external components are required

FUNCTION GENERATOR: CP-FGI
PRICE £11.75
For those requiring a wider range of facilities, this module provides bass and treble filter controls, comprising switchable cut-off frequencies for "rumble" and "hiss" reduction Also included is a stereo separation control The unit is complete except for the potentiometers and switches

POWER SUPPLY: CP-PS 18/2D
PRICE $£ 5.75$
VAT 72p
This suitable for one $20 \mathrm{~W}+20 \mathrm{~W}$ conplete system For $40 \mathrm{~W}+40 \mathrm{~W}$ system. two ower supplies are required

Full application notes are provided. Post and packing are free on all orders. All units are guaranteed for two years

ELififpalm Ltd.

Dept. HF/WW
13 HAZELBURY CRESCENT
LUTON LU1 1 DF , BEDS.

The easy to use, easy to buy, general purpose scope~the D61a

D61adualtrace Lightweight Oscilloscope

The to $\mathrm{MH} \%$ 'soope that makes others seem expensive at any price!
It took years of Telecuipment experience and intensive design effort to arrive at that unigue combination of effortless higher performance and remarkable low cost which makes the DGIa so outstanding for general purpose duties in the laboratory, the classmom and the 'I'V service department.
Who else offers an oscilloscope with two 10 mV vertical channels with a full 10.11 Hz band width. PI.US' automatically switched, chopped or alternate display modes, Pl ITS antomatically switched TV line or field triggering, PIUS an $8 \times 10 \mathrm{~cm}$ display driven at 3.5 kV and the choice of single trace, dual trace or $\mathrm{X}-\mathrm{Y}$ presentation?
And who will send you full details on request ?
Who else but Telequipment
Tektronix U.K. Limited,
P. O. Box 69, Beaverton House, Harpenden, Herts.

Tel: Harpenden 63141 Telex: 25559
Telequipment

Versatile -that's our scope

wireless world

Electronics, Television, Radio, Audio DECEMBER 1976 Vol 82 No 1492

Contents

31 WARC talk
32 Digital event timer by P. A. Birnie
35 Re-invention - how often? by F. G. Canning
37 Designing battery chargers by Thomas Roddam
41 Circuit ideas
Linear/logarithmic sweep generator
Two-phase v.c.o.
Peak reading r.f. probe
44 News of the month
Switched liquid-crystal prism
Air traffic control advances
Britain ahead in X-ray astronomy
48 Acoustic noise units by James Moir
52 Letter to the editor
Citizens' Band
Future of television
Magnetic pick-up preamplifier
55 Mobile radio communications - 2 by D. A. S. Drybrough
59 Remote-control servo by J. H. Cook
60 Announcements
65 Earthing, shielding and filtering problems -2 by R.C. Marshall
66 H.F. predictions. Literature received
67 Optical fibre communication - 2
by M. M. Ramsay, A. W. Horsley and R. E. Epworth
71 Digital angle modulation by R. Thompson and D. R. Clouting
76 Announcements
77 Weather satellite picture facsimile machine by G. R. Kennedy
81 Sixty years ago
82 New Products
86 Real and imaginary by "Vector"
130 APPOINTMENTS VACANT
144 INDEX TO ADVERTISERS

[^1]

Front cover shows an impression of the CV3 Superscreen colour television projector marketed by Speywood Communications. The three separate Schmidt optical systems are mounted in line and use 75 mm tubes.

IN OUT NEXT ISSUE

Distortion in audio amplifiers is discussed by Professor Matti Otala in a paper on static and dynamic non-linearity distortion.

Logic design. The first in a series of articles on logic, this part dealing with the use of Boolean algebra. The series will cover a range of topics, from basic, combinational logic to microprocessors.

Identification of European TV stations consists of a series of photographs of test cards from continental stations, together with brief notes about the transmitters.

For every viewpoint. EEV makes a vidicon.

If you use closed circuit TV, you need EEV vidicons.

Our tubes ensure reliabie round-the-clock operation, and cover all TV pick-up applications.

In mono or colour. For most cameras. In electrostatically focused and magnetically focused types (separate or integral mesh). With a range of photosurfaces.

And special rugged types are made to withstand shock or vibration.

EEV makes the dependable, high quality vidicons you need.
At attractive prices. For quick delivery now.
Contact your local EEV agent or write for data and price lists to

Camera Tube Sales at Chelmsford, England.

EEVand M-OV know how

Members of GEC- turnover $£ 1902$ million

At the Communications ' 76 conference in Brighton this summer, Professor James Merriman, senior director of development at the Post Office, emphasized the responsibility which lay on the British delegates to the 1979 World Administrative Radio Conference in Geneva: "It seems obvious," he said, "that the processes of creating the briefs for that conference . . . should give ample opportunity for open debate for appeal and for resolution of conflicting claims."

The need for open debate does not seem obvious to the Home Office, which will be responsible for presenting our case at that conference, the first in 20 years. Two years ago it entrusted an engineer at the Radio Regulatory division with the preparation of a series of reports intended as a basis on which to brief

Two reports, on broadcasting and mobile radio, have been prepared and a third is being written, but they are secret. A formal request by Wireless World to see the documents has been refused. So although the Home Office has invited comments on them from a small coterie of discreet trusties the delegates will' otherwise go to the conference armed, not with the results of a full public debate conducted among all those interested enough in radio to put forward a point of view, but with the politically preordained baggage of a small number of

That those who wish to perpetrate this misuse of their influence are well-meaning men who believe they act honourably is not in doubt. Neither is it relevant. There are many others in and out of the communications industry who are concerned, for example, that BBC is not obliged to relinquish any of the frequencies its self-avowed poverty prevents it from using efficiently, that it and the IBA continue to hold on to Band I and III frequencies no longer needed anywhere but on the edges of the British Isles, and that the Home Office should prepare a secret report on broadcasting before the Annan Committee has finished its work. The man in the street wonders whether any serious thought has been given to growing demands for greater public use of radio. Or will the functionaries have nothing more in their minds as they fly to Geneva at his expense than closing the loophole in the 1969 Post Office Act that allows the sun to communicate to him, by electromagnetic means, the time of day. The man in the street may have something worthwhile to say on such matters, the readers of this journal certainly so, yet they continue to be taxed too much and told too little.

We are determined that, for once, something which affects us will be widely discussed in advance; lamentations in the face of a fait accompli carry a certain futility. No discussion which takes place after the British delegation leaves Heathrow can have any effect. If that discussion does not begin now the sickness that grips so much of the administration of British life will have overtaken radio and telecommunications, and our leaders' recent absurd protestations that the only alternative to themselves is totalitarianism will be seen, after all, to have been trailing all too far behind events.

wireless world

WARC TALK

 delegates as to the "British view" about the reallocation of radio frequencies. self-interested bureaucrats.Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-2618043
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller: G. BENTON ROWELL

Advertisements:

PHILIP NOSSEL. (Manager)

NIGEL LITTERICK
Phone 01-261 8037

LEO KEMBERY
Phone 01-261 8515
OWEN BAILEY (Classified Advertisements)
Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy)
Phone 01.2618353

Publishing Director:
GORDON HENDERSON
Editor:

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc Phone 01-261 8443

A versatile and compact c.m.o.s. design

by P.A. Birnie

This timer is intended to replace the expensive mechanical stop watch counterpart by offering a small size of around $100 \times 70 \times 25 \mathrm{~mm}$, about $\mathbf{6 0 0}$ hours of continuous operation from a set of inexpensive mercury cells, and several facilities including two timing channels. Discrete i.cs are used, instead of an l.s.i. device, because they reduce the cost and increase the number of facilities.

When the design of this stopwatch commenced, I expected that an I.s.i. integrated circuit would be used with a few discrete i.cs added to increase the number of facilities. Several designs were constructed using a commercial stopwatch/counter i.c. driven from a 100 kHz crystal oscillator, and an I.e.d. display. These were functionally satisfactory but suffered from high power consumption, the need for two different supply voltages, small display size and poor legibility in mild sunlight. The circuit was also difficult to adjust due to the critical monostable elements.

Calculation showed that c.m.o.s. devices, driving a $4^{1 / 2}$-digit liquid crystal display from a 5 V supply, would require only a few hundred microamps and could give over 600 hours continuous use. The final design allows timing of two events with simultaneous start times, and displays up to 19 min 59.9 s . After this time the tens of minutes stays at 1 and the units cycle through 0 to 9 . A split facility enables the display to be temporarily held while individual events are timed independently from the two channels which continue to count. Cumulative timing of several consecutive events on one channel is also possible and remains independent of the other channel, which can be timing a continuous event. The design can be modified to increase or decrease the number of facilities as required. A block diagram of the circuit is shown in Fig. 1.
Accuracy of the stopwatch is determined by the characteristics of the crystal oscillator components, and in the prototype a 100 kHz Statek device was used because of its small size. This

Fig. l. Block diagram of the stopwatch. Total power consumption for this circuit is between 200 and $300 \mu \mathrm{~A}$.

Fig. 2. Crystal oscillator and dividers. A standard Pierce circuit is used with the crystal, C_{2}, and input capacitance of the gate acting as the feedback network.
type of crystal is stable and rugged, with an initial setting accuracy of $\pm 0.02 \%$ and a temperature coefficient of +0.0075 to -0.032% from 0 to $70^{\circ} \mathrm{C}$. If required a trimmer may be used in the oscillator circuit for more accurate tuning of the resonant frequency. Variations in supply voltage are kept small by using mercury batteries, and the effect of these variations is minimized by selection of the feedback resistor R_{7} in the oscillator circuit of Fig. 2. The crystal oscillator output is divided in two dual decade counters to
provide a 50 Hz drive waveform for the display and a 10 Hz timing signal. Four buttons control two $41 / 2$-digit counter chains which count up to 19 m 59.9 s , and a $2: 1$ data selector is used to route one of these chains to the decoder drivers. The button logic and the main circuit diagram are shown in Figs. 3 and 4.

Circuit operation

The crystal is used in a standard Pierce oscillator circuit with one gate of IC_{18} acting as an inverting amplifier. The crystal, C_{2} and the input capacitance of

Operation Timing function
Run Resets all logic and starts counters
Split While depressed, the display is held without interfering with timing functions
$X \quad$ Stops channel X and displays content. When the button is released the channel can be restarted by operation of Run. without affecting channel Y.

Stops timing of channel Y. Subsequent depression of Run resets all logic.

Fig. 4(a) Button logic, (b) timing function for the buttons.
the gate act as the feedback network. Care has been taken to limit the crystal drive voltage to below 2 V pk-pk for reliable operation. A physically larger crystal has been tried in the circuit and, with the addition of a $3-30 \mathrm{pF}$ trimmer from the gate input to ground, proved to be entirely satisfactory. The manu-
facturers of the specified crystal do not recommend the use of such a trimmer. A decoupling capacitor, C 6 , of $0.01 \mu \mathrm{~F}$ should be placed across the supply and as near to IC_{18} as possible to prevent 100 kHz appearing across the supply lines to other devices. If an oscilloscope is used to check the oscillator a $10: 1$ or, better still, $100: 1$ probe is necessary to prevent significant loading of the circuit.

The oscillator output is applied to the clock input of an up decade counter, $1 / 2$ of IC_{17}, and the D output is fed to the enable input of the other half of the device. This produces a 1 kHz waveform on the second D output which is fed to the enable input of IC16 which also divides by 100 . Use of the enable inputs rather than the clock ensures that a negative-going edge is only produced after 100×100 input pulses when the two devices have been reset. The second stage of IC_{16} produces a 50 Hz square wave for driving the display, and a 10 Hz waveform for timekeeping purposes.
When the "run" button in Fig. 4 is depressed, the bistable NAND gates are set which makes the enable X and Y lines go low. A negative-going pulse is therefore applied to IC_{18} via C_{1} which produces a high reset pulse for a short period, determined by the time constant $\mathrm{C}_{1} \mathrm{R}_{1}$. Because two parts of the circuit require a negative-going reset pulse, a gate of IC_{19} is used to generate the $\frac{\text { reset }}{}$ function. The reset pulses act on all of the divider and counter stages in the circuit. When these pulses end, division and counting begins.
Because both clock inputs of IC_{1} are low, the first 10 Hz falling edge to arrive at the enable inputs of IC_{1} causes one increment of the X and Y counters. If no buttons are depressed at this time the select X line will be high and the select Y will be low which causes IC_{5} to accept data from the Y counter. This data is passed to IC_{9} where it is decoded and used to drive the display. Subsequent negative-going 10 Hz clock edges cause further incrementing of the counters in IC_{1} until negative-going edges at the two D outputs cause incrementing of

Fig. 5. Generation of the alternating drive voltage. Voltage doubling and cancellation causes the segments to turn on and off respectively.
the X and Y counters in IC_{2}. This process continues until a further button depression displays the contents of the Y counters. The gates in IC_{15} are used to modify the count sequence so that IC_{3} counts from 0 to 5 and then resets. This circuit uses the reset pulse at the start of a timing sequence. Gates IC_{14} forms two edge-triggered bistable circuits which are set when the D outputs of IC_{4} produce a negative-going edge. Because IC_{3} counts up to $5, \mathrm{IC}_{7}$ only has to select a 3 -bit word. The spare selector is used to choose the X or Y output from IC_{14}. The last-mentioned circuit therefore stores the state of the $1 / 2$ digit used to indicate tens of minutes.
Depression of the "split" button disables the data inputs of the decoder drivers and the internal data latches in these devices hold the information until the split button is released. The X

Fig. 6. Liquid crystal display connections.
button has two functions. Firstly, IC_{19} is reset which produces a high on the enable X line to disable the X counter input in IC_{1}. This prevents further incrementing of the X counter chain. Also, while this button is depressed, the select X line is kept low and the Y line high which allows $\mathrm{IC}_{5,6,7,8}$, to display the X counter information. When the button is released the Y counter information is again displayed. The Y button resets IC_{18} and produces a high on the enable Y line. This disables the Y counter in IC C_{1} and stops further incrementing of the Y counter chain. Note that until the Y button is depressed, the reset pulse is not operated if the run button is used. This feature allows cumulative timing using only the run and X buttons.

Display

A reflective field-effect display was used in the prototype, which can be powered from 3 to 10 V . An alternating drive voltage prevents degradation of the display cell and the circuit arrangement for producing this is shown in Fig. 5. The 50 Hz square wave is a compromise between a minimum frequency set by flicker, and a maximum set by increasing display dissipation due to the charge and discharge of display segments. The CD4056 display driver produces antiphase square waves for segments which are to be displayed, and in-phase signals for segments which are turned off. These waveforms are relative to the square wave on the backplane so voltage doubling and cancellation occurs. Display corrections are shown in Fig. 6.

Components List

Integrated circuits	
$1,2,4,4,16,17$	CD4518
$5,6,7,8$	CD4019
$9,10,11,12,13$	CD4056
18,19	CD4011

Resistors all $1 / 10 \mathrm{~W}$

$1-5$	$1 \mathrm{M} \Omega$
6	$22 \mathrm{M} \Omega$
7	$150 \mathrm{k} \Omega$
8,9	$1 \mathrm{M} \Omega$
10	$1 \mathrm{k} \Omega$

Capacitors	
1	100 pF polystyrene
2	10 pF silvered mica
3,4	100 pF polystyrene
5	$47 \mu \mathrm{~F} 6.3 \mathrm{~V}$ tantalum
$6,7,8$	$10 \mu \mathrm{~F}$ ceramic

Display - LXD 7545 (Transworld Scientific, High Wycombe, Bucks)

Crystal - SX-1V'A'S, 100 kHz (Interface Quartz Devices, Crewkerne, Somerset)
Battery $-4 \times$ RM 675 H mercury cells

Printed circuit boards

Two double-sided p.c.bs will be available for this design. The boards, which are based on the author's layouts to be described next month, are priced at $£ 6.00$ for the set and are available from M. R. Sagin at 11 Villiers Road, London N.W.2.

Why does engineering history repeat itself with such uncanny accuracy?

F. G. Canning F.Inst.R.E.E.(Aust) Consulting Electronics Engineer

Anyone like myself, whose personal experience covers almost the same time interval, must have found Wireless World's feature "Sixty Years Ago" a stimulant to long-dormant memories. I wonder if such readers may have been reminded, as I was, of the frequency with which certain inventions or developments, well-known and even commercially exploited in those distant days, have seemingly sunk into oblivion only to be re-discovered or even claimed as new inventions after the passage of relatively few years.

Musing over such things, one must wonder how far these duplications may be due to chance, to national insularity, to conscious plagiarism, or (more seriously, perhaps) to inadequate familiarisation with prior art at the educational level. Illustrations of all these causes could probably be cited, but the last-mentioned seems to me the most serious and intractable problem, given the breakneck and accelerating pace of development in the electronics and allied fields. How can time be found in an undergraduate course to trace the historical development of even a limited sector - e.g. radio transmission of intelligence - from, say, the beginning of this century? How many of today's engineers-in-training have ever been told, for instance, how an electric arc can be, and was, used commercially for long-distance radio transmission? Obsolete the method may be, but the principle underlying it is still valid and further use may yet be found for it, perhaps in a very different context. 'Later, I will mention one similar case within my own knowledge.

Permeability Tuning

One day late in 1939 my managing director said "what are we going to do about this?" He handed me a letter from a gentleman in the USA (no names, no pack-drill) claiming retrospective royalties for several years' use, in broadcast receivers, of "his patent covering the tuning of radio-frequency circuits by movable iron-dust cores." The claim was, of course, laughable to anyone acquainted with European activities, but memory stirred in its

Abstract

Whether through ignorance, insularity, chance, plagiarism or some other cause, inventions and ideas that once held great hope are abandoned then resuscitated, often without any credit being given to the originator. The author offers a few case histories and leaves us to draw our own conclusions.

sleep and suggested a really resounding anticipation of this "invention." Reference to the local public library produced the files of Wireless World for the years 1919 and 1920 and in the issue of Februcry 1920, pages 672/673, we find some details of the Marconi Amplifier Type 55B, then in commercial production, and also mentioned a year earlier in the issue of February 1919. This was a radio-frequency amplifier intended for, roughly, the $200-600 \mathrm{~m}$ wave-band, having six radio-frequency amplifier stages and a detector, with ganged permeability tuning of the r.f. stages using a single control! The tuning cores were, admittedly, crude, consisting of fine iron filings dispersed in cores of hard wax mounted on a single control handle and the tuning was broad, but no one could dispute the anticipation of the principle. This gives some indication of how far Capt H. J. Round and his Marconi engineering team were ahead of their time in certain directions at that period.

Cone Loud-speakers.

The moving-coil speaker with coneshaped diaphragm is nowadays generally credited to Rice and Kellogg in the USA and indeed they probably produced the first commercially-successful design. But how many people realise that this design was really little more than the wedding of two features, both derived from Europe, which were already many years old?
The cone diaphragm, in principle very much as it is used today, first came to my notice in the remarkably efficient "Type A" headphones of S. G. Brown in

England. I do not know their year of origin but they were already well-established when I first wore a pair in 1918. The original diaphragms in those headphones were exactly analogous to today's cone speaker - a very light cone, of spun aluminium in this case, suspended by a ring or "surround" of very thin and flexible parchment paper between its edge and a more substantial cylindrical aluminium support which carried the whole assembly in proper relation to the magnetic drive system; this latter was, not a moving coil, but a tuned steel reed attached to the apex of the cone. The paper surround ring was. later found unduly susceptible to moisture and failure of the glueing and was replaced by a flexible aluminium surround integral with the cone. I know of at least one pair of these remarkably sensitive headphones still perfect and in regular use.

As for the moving-coil drive, that certainly goes back at least to a patent ' of Sir Oliver Lodge of much earlier date and perhaps even further. Once, when attending a lecture on loudspeakers where I mentioned this patent, I was called to order by someone who pointed out that it was for a moving-coil relay and had nothing to do with loudspeakers. Granted; all the same, anyone who has ever dissected one of the first commercial moving-coil speakers (a Magnavox model with metal diaphragm and gooseneck horn, circa 1916) is likely to suspect the origin of the idea. The coil and its attachment to the metal diaphragm might have been made directly from one of Lodge's patent sketches. Coincidence, perhaps?

Compressed air and the loudspeaker

A fair example of re-invention seems to have occurred here. Around 1921 there appeared in England what may have been the world's first loudspeaking gramophone, the "Stentorphone," whose source of sound was compressed air rather than a vibrating diaphragm. It was, I believe, a brain-child of Mr. Gaydon, at that time Chief Engineer of the Creed Printing Telegraph Co. of London. It was a large cabinet-type
instrument whose tone-arm carried, not the conventional sound-box with diaphragm but a clever spring-balanced comb-type valve whose motion, when displaced laterally by the stylus, released a proportional amount of compressed air at around five pounds per square inch into the tone-arm and thence to a large horn built into the cabinet. A small motor-driven compressor in the cabinet base supplied the air. By the simple action of a by-pass valve in the air line the volume of sound could be controlled smoothly from zero to an overwhelming roar. I fancy that anyone who ever heard a Stentorphone in full cry will clap his hands over his ears at the mere memory. I have a clear recollection of an occasion when Caruso's top note in "O Paradiso," from "L'Africaine," drove us pell-mell into the street and brought the neighbourhood running to the scene of the supposed crime. Yet in skilled hands and with delicate adjustment of the comb valve the quality of reproduction was ahead of its time.
Time passed and by 1926 or so the Stentorphone might never have been, so completely did it seem to slip from public ken. However, in the mid-1930's the identical principle re-appeared in the USA with a blare of publicity as an American invention intended primarily for the exhortation of mere groundlings by announcers in slow-cruising aeroplanes. "The Voice from the Sky" was, I think, ostensibly aimed at traffic control and military uses, but it was speedily enlisted in the eternal struggle to sell more of so-and-so's soap and like commodities and in this capacity it soon became such a day-long public pest that within a short time it was made illegal in Australia and other countries and disappeared from current knowledge. But it re-appeared, once again as a nominally new invention, during the 39-45 war, this time as a maritime loudhailer and no doubt for other good uses. By that time, presumably, the air-valve was being operated by a transducer driven by an amplifier from a microphone.

The Quenched Spark Gap

I am not sure in what year the quenched gap went into service commercially in radio transmitters, chiefly through the painstaking work of the Telefunken Company in Germany, but by the early 1920's it was well-established in many countries, including America, as possibly the best device for spark transmission (when properly maintained) and was in wide-spread use in ship-to-shore telegraphy. Its operating principle was by no means as simple as it looked and was worthy of study. Used in the primary, high-voltage circuit of a spark transmitter, it aimed to give a very rapidly-quenched spark discharge consisting of only one or two oscillatory cycles, thus providing, in effect, pulsed excitation of the tuned secondary and
aerial circuit which was then left to oscillate at its own frequency. Reflection of energy back to the primary circuit was prevented by the open-circuit at the gap. The result was a sharply-tuned, highly efficient spark transmitter with a beautiful note, at the receiving end, of 800 to 1000 Hz , but this depended heavily on proper operation and maintenance. The "gap" consisted of a number of finned air-cooled spark gaps in series, of a number just sufficient to be broken down by the available primary voltage; one gap too few could spoil the quenching action somewhat and broaden tuning, while one too many would sometimes give sparking at half the proper frequency, i.e. on every second cycle. The theory of the device involved the combined quenching effects of rapid cooling, magnetic blowout by the radial field surrounding the discharge, and the difficulty of maintaining an arc between pure silver surfaces in an atmosphere of nitrogen. The effect aimed for was a single spark per cycle as nearly as possible - not a continuing arc. If the silvered gaps were made absolutely air-tight, a period of operation would burn out all oxygen and thereafter quenching could be almost perfect.
However, the early twenties saw the rapid development of the thermionic valve in continuous-wave transmission and by 1925 or so the spark transmitter, of whatever type, was on its way out and presumably was no longer mentioned in engineering education. So when, around 1943, a Governmentowned laboratory, manned mostly by the cream of recently-graduated electronics engineers, was working on a specialised radar transmitter and decided that a spark discharger was the simplest quickly-available device for use with a pulse-forming line, effort was concentrated on a rather simple and crude version of the Marconi rotary spark gap, a type never notable for very good quertching. Enquiry produced the surprising information that no one involved had ever heard of the quenched gap and they were glad to be told about it, though it was already too late to be of use for that project.
So it seems that a highly developed and commercially effective device had disappeared from engineering training and knowledge in the space of little more than fifteen years; it was not even known as a historical fact.
En passant, Telefunken was responsible for many other design features of high efficiency, especially in radio reception. We tend to think of small, totally-enclosed and robust signal rectifiers as a very modern product of the semiconductor age, but I have not forgotten my astonishment when, in 1920, I saw the radio operator of a German-built ship pull the crystal detector of his receiver out of its two-pin socket and nonchalantly drop it into his pocket prior to going ashore. And this was not even the relatively
robust but insensitive carborundum rectifier of those days - it was a galena crystal, quite the most delicate and tricky detector then in use, which normally responded only to infinitely careful and breathless searching with the point of a long wire "cats-whisker" and could become insensitive at the lightest jar.
Telefunken's insistence on air dielectric tuning capacitors when competitors were mostly committed to solid - and lossy - dielectrics, their careful use of ceramic insulation in radio-frequency circuits, their introduction of "Litzendraht" (specially stranded) conductors in tuning coils to reduce r.f. resistance and their use of the low-capacitance "bank-winding" in these coils to further reduce r.f. losses, all testified to their recognition that in those days the only signal you heard was one that developed enough r.f. voltage to operate a rectifier, unaided by any amplification whatsoever except that of the " Q " of tuned circuits. I wonder how many engineers could bank-wind a coil now, though the method is still a sound one for raising coil efficiency at the lower radio frequencies.

Negative-resistance Oscillators

In the very early 1920's some interest arose in amateur radio ranks over what became known as the "Numans" oscillator. At that time the Dutch Philips concern had made available what was possibly the first valve having two concentric grids. The application of a modest positive voltage to the extra grid partially neutralised the space charge and so enabled the anode voltage to be reduced to, I think, something under 20 V , very low for those days. Mr. Numans, a Dutch radio amateur, used one of these valves (by means which were probably not then understood by anyone) to produce what I recall as a two-terminal oscillator with no obvious means of feedback - and a good frequency-stable oscillator too. I no longer have a record of the actual circuit, but looking back it does seem possible that Mr. Numans may have independently invented, and perhaps forestalled, the Dynatron negativeresistance tube of Dr. L. M. Hull, of the General Electric Co., USA. However, I cannot be sure of the relative dates and have not tried to confirm them. Later, of course, other specialised negativeresistance valves were designed and, to a limited extent, produced; for example the "Negatron" of J. Scott-Taggart which was, I think, used in certain marine receivers.

These reminiscences may or may not be relevant to the initial question of how far, if at all, historical survey of prior art should rightly have a place in engineering education. But few as my examples are, I rather think that most of them will be unfamiliar to the present generation of active engineers. If they stimulate any thinking on the subject, that might perhaps be no bad thing.

Designing battery chargers

Difficult-to-find design curves and an inexpensive over-charging protection circuit

by Thomas Roddam

Have you ever seen a simple account of how to design a battery charger? It was with some surprise that I realised recently that I could not recall any description at all of the design characteristics of a transformer-rectifier system for pumping energy into a battery. Yet we are all using batteries nowadays. In my earliest days there was a simple procedure: you seized the leather strap, and headed for the local bicycle shop. Later there was the great array of cells in a battery room: two lots at 13 volts and two at 24 volts. Fred, in permanent attendance, living in a permanent sulphuric atmosphere, spent all his day charging and discharging 'his' batteries. Now we have float n-eration and if we are very rich, sensors for cell temperature, electrolyte specific gravity, the F.T. index, and a small computer to decide just what current to deliver.

I just want to charge my batteries, though I may add a cut-off device. How do l choose the transformer and the rectifier. The essential conditions really boil down to the following. If the mains voltage is high, and the battery voltage is low we must not overheat the transformer or overload the rectifiers. I assume we are not in a mad panic to get the battery charged again, so that we are well below the safe charging current of the battery. If the mains voltage is low and the battery is not particularly low we want to go on feeding energy into the battery.

There is a G.E. application report which can be used to guide the designer, although I found, when I tried to use the equations provided, that I fell rather quickly into confusion. The alternative method which I have now adopted involves some guess and try, but does provide a very simple approach. The starting point is a very useful set of curves for the design of rectifier circuits with capacitor input filter which are out of print in the original publication and which are reproduced in Fig. 1.

To use these curves we consider what happens.when we charge a battery. The charging current is, or so the meter says, a direct current, while the terminal
voltage remains nearly constant. This is very much the behaviour of a parallel capacitance and resistance. The only difference is that instead of thinking of a load current we must now think of a charging current. The battery capacitance is very large, so that we can replot the ratio curves as a single graph for $\omega C R$ large, with simply output voltage
Fig. 1. $E_{d c} / E_{T(\max }, \%$ as a function of $\omega R_{L} C$ for full-wave circuits. C in farads and R_{L} in ohms, $\omega=2 \pi f$.
as a function of the ratio of source resistance to load resistance. This is what we have in Fig. 2.

Let us assume that we are dealing with a nominal 24 -volt battery, with 12 cells. The float level of this battery will in practice be 2.25 volts per cell, giving 27 volts. The reason for operating at 2.25 volts per cell is that this is the point at which we have the maximum energy storage combined with the longest possible life. When a battery has been used it is not uncommon to boost it up

Fig. 2. Characteristics of full-wave rectifier for $\omega C R$ large, as is the case in battery charging.
to 2.6 to 2.7 volts per cell. I am not sure why, but it may be to make sure that all the cells are fully charged. This can bring us to a terrifying 32.4 volts, when lamps and transistors start to pop. Actually, the terminal voltage falls back once the charging current is cut.
Let us allow a meagre 1.2 volts drop in the rectifier bridge and our extreme condition corresponds to a direct voltage of 33.6. For the purpose of this analysis I shall assume that on a day when the mains input is 6% low it will take forever to reach 2.7 V per cell. I shall therefore have $I_{\text {Ioad }}=0$, so that $R_{\text {load }} \rightarrow \infty$ and $R_{\mathrm{S}} / R_{\mathrm{L}}=0$. For a peak voltage E_{T} of 33.6 we must have $E_{\text {mms }}=23.8 \mathrm{~V}$. This, however, is for a low mains input, and the nominal value must be 6% higher, or 25.3 V r.m.s. We have thus defined the turns ratio of the input transformer.

When the mains are 6% high we shall get $E_{\mathrm{ms}}=26.8 \mathrm{~V}$, and $E_{\mathrm{T}}=37.8 \mathrm{~V}$. Now we must subtract, say, 1.3 V for the rectifiers, and we have an effective E_{T} of 36.5 volts.

It must be accepted that if you are sharing a battery, the other users will run it down to 1.8 volts per cell. When at last you can switch on the charger the terminal voltage will be only 21.6 volts. Sooner or later this condition coincides with the high mains input and we must consider the condition where $E_{\mathrm{dc}} / E_{\mathrm{T}}=21.6 / 36.5$, which is pretty close to 60%.

This max-min-max-min rate gives us our entry point to Fig. 2. We find that we must have a value of $R_{\mathrm{S}} / R_{\mathrm{L}}=27 \%$. Let us say that to save money, not time, we have a nominal charge rate of 6 amps. For this current, and 24 volts, the value of R_{L} is 4 ohms. Immediately we see that we must make $R_{\mathrm{S}} 1 \mathrm{ohm}$. This includes the resistance of the transformer secondary and the primary resistance as seen at the secondary. Usually we can simply take twice the secondary winding resistance as a reasonable approximation. The transformer is, roughly, a 150 W size, and will certainly not have 36 watts of copper loss: a physical resistor will be needed.

We do not know if this design is even roughly right, however. Let us go to design centre conditions. We shall then have a nominal 23.5 V r.m.s., giving $E_{\mathrm{T}}=33.2$, from which we take off 1.2 V (the exact figure is chosen to get round numbers) to get $E_{\mathrm{T}}(\max)=32 \mathrm{~V}$. The battery voltage is assumed to be at the 2.25 volts per cell level, or 27 V so that $E_{\mathrm{dc}} / E_{\mathrm{T}}=85 \%$. Returning to Fig. 2, we find $R_{\mathrm{S}} / R_{\mathrm{L}}=4 \%$, to that R_{L} must be about 25 ohms. At the float level, then, the charging current is only a little more than 1 amp. We probably need to change something. What has happened is that we have been overcautious with our boost condition, but I shall stick with this transformer for a moment longer.

I do not work with a simple float system, because it is really too noisy and although it does not affect the way my equipment works, it gives a fuzzy trace on the oscilloscope. Now a battery which is roughly 20 to 80% fully charged is operating fairly close to 2 volts per cell. Under these conditions, when the battery is being topped up at lunchtime, for example, $E_{\mathrm{dc}} / E_{\mathrm{T}}=24 / 32=75 \%$. This means that $R_{\mathrm{S}} / R_{\mathrm{L}}=10 \%$. If we take a desirable charging current as 4 amps , this will make $R_{\mathrm{L}}=6$ ohms, and so $R_{\mathrm{S}}=0.6$ ohms. My guess for the effective copper loss resistance of the transformer is 0.2 to 0.3 ohms. We then have the possibility of putting in an external resistor to give the extra 0.3 to 0.4 ohms , with an additional 0.4 ohms which is switched into circuit to limit the current under flat battery conditions. We could
Fig. 3. The ratio r.m.s. rectifier current/average current per rectifier plotted against $n \omega R_{L} C$. C in farads, R_{L} in ohms. $n=1$ for half-wave, $n=2$ for full-wave and $n=0.5$ for voltage doubler.
have changed the resistance to suit 2.25 volts per cell, but then we should have needed to check the 2.0 V condition. However, let us see what happens at 2.25 volts per cell with 0.6 ohms. We have $R_{\mathrm{S}} / R_{\mathrm{L}}=4 \%$, so that R_{L} must be 15 ohins. The charging current has fallen from 4 to 1.8 amps . At a rough guess, I should say this was about the right size of float unit for a system in which the load varied from, say, 1 to 3 amps .

It is quite easy to work out the charging current at various values of $E_{d c}$, an invented regulation characteristic for the charger. If the current is found to be excessive, a new value of R_{S} must be used, and we can choose to switch this into circuit. There are advantages in putting this resistance on the primary side. In our example the transformer will be roughly 10:1 for 240 volts working. It is much easier to find a 33 -ohm resistor than a 0.33 -ohm unit. At 6 amps the dissipation will be about 12 watts. An inductor, in the a.c. part of the circuit, can be used. A 1 mH inductor will give 0.3 ohms effective impedance at 50 Hz , and will reduce the amount of heat generated - at a price.

Rectifier circuits

A figure for rectifiers in the ordinary power supply is shown as Fig. 3. Again we just use the right-hand edge of this set of curves. We had a condition of 6 amps average with $R_{\mathrm{S}} / R_{\mathrm{L}}=27 \%$, and 4 amps average with $R_{\mathrm{S}} / R_{\mathrm{L}}=10 \%$. For use in Fig. 3 we need to take $R_{S} / 2 R_{\mathrm{L}}$, because the rectifier is full-wave, and so we have either $(2.1 \times 6) / 2$ or $(2.5 \times 4) / 2$ as our criterion. It boils down to a rectifier r.m.s. current of 6 amps as our design figure. The reverse peak voltage follows the usual rule of being either E_{T} or $2 E_{\mathrm{T}}$ but everyone is conservative

Fig. 4. The ratio repetitive peak current/average current per rectifier, plotted against $n \omega R_{L} C$. C in farads and R_{L} in ohms, $\omega=2 \pi f$ and f is line frequency. $n=1$ for half-wave, $n=2$ for full-wave and $n=0.5$ for voltage-doubler.
when it comes to the choice of rectifier and step-down circuits are notoriously sensitive to mains spikes.
It is useful to check the rectifier peak circuit, using Fig. 4. There is no single inrush problem with a battery, as it is a charged capacitor when it starts. Under running conditions we shall get a ratio of $I_{\mathrm{pk}} / I_{\mathrm{o}}$ of about 6.5 or a current of about 13A. The rectifier designer has usually taken this into account, but this figure enables us to guess an order of magnitude for the ripple voltage. A battery will have an internal resistance in the region of 10 milliohms, though it is not easy to get more than a rough number. But 10 milliohms will give 0.13 volts peak-to-peak ripple on the battery. It is a spiky ripple, as the peak-to-average current ratio indicates and is acoustically more of a nuisance than the numerical value indicates.
The use of half-wave rectification for battery charging was quite common at one time. Whether this was simply an economy measure in the days when copper was cheap and rectifiers were expensive, or whether it was the result of a mildly magical belief that the battery needed 15 milliseconds rest after a 5 millisecond current injection it is hard to know. Half-wave circuits have been used recently with thyristor controllers and it is useful to have on record the essential design curves, even if only to use them for their original purpose. Fig. 5 is the half-wave version of Fig. 1 and, as before, we can construct Fig. 6 to cover the very-large-capacitor or battery application. The regulation is seen to be even worse than the regulation of the full-wave system. The curves for the rectifier requirements are applicable to both modes of operation, so that we have a complete basis for the design of the half-wave system.

Information about the transformer, and all those odd factors which appear as utilisation factors, can be found in any reference book and in a good many rectifier catalogues. It is hardly necessary to repeat them here. One detail is worth mentioning, however, because it does sometimes get designers confused. If we use a half-wave rectifier we naturally have current flowing in the transformer secondary only for, say, the positive half-cycles. This means that a meter will show d.c. flowing through the winding. We all know that if you have d.c. in an iron-cored coil you will probably need to provide an air gap in the core. The unwary designer thinks of his transformer secondary as an inductor carrying d.c. and arrives at an unnecessarily large structure. The conditions in the core are set by the

Fig. 5. $E_{d c} / E_{T(\text { max })} \%$ as a function of $\omega R_{L} C$ for half-wave circuits. C in farads, and R_{L} in ohms, $\omega=2 \pi f$.
applied voltage: the flux density is the time integral of the voltage, with turns and area as factors, and the voltage is symmetrical. The use of half-wave rectification does not produce any flux offset under any normal operating conditions. The high $I_{\text {rms }} / I_{\text {dc }}$ ratio makes the transformer pretty inefficient anyway, but there is no advantage in making it even worse.
The full-wave rectifier circuit was
designed as an example to show the use of the design curves and with the criterion that it should just haul the battery up to the 'boost' voltage, combined with a maximum current at the start of charge, we found that the charging current fell smartly as charging progressed. We should call this 'taper charging' if we wanted to sell a cheap charger with this performance, and would point out the essential safety of the drooping current characteristic. Some users, however, do not want to wait forever, to get a really full charge into the battery.

Examination of Fig. 2 shows that the curve is pretty close to

Fig. 6. Characteristics of half-wave rectifier for $\omega C R$ large.

$$
\frac{E_{\mathrm{dc}}}{E_{\mathrm{T}}}=\frac{R_{\mathrm{L}}}{R_{\mathrm{L}}+2 R_{\mathrm{S}}} .
$$

Let us choose to have 6 amps charging at 21.6 volts, which makes $\mathrm{R}_{\mathrm{L}} 3.6$, and 4 amps charging at 27 volts, the normal float level, which makes R_{L} 6.7. We can then write

$$
\frac{E_{\mathrm{T}}}{21.6}=\frac{3.6+2 R_{\mathrm{S}}}{3.6}
$$

and

$$
\frac{E_{\mathrm{T}}}{27}=\frac{6.7+2 R_{\mathrm{S}}}{6.7} .
$$

It is a quick step to get $E_{\mathrm{T}}=37.2$ volts and $R_{\mathrm{S}}=1.3 \mathrm{ohms}$.

We can, if we wish, construct a full regulation characteristic, but the resistor is now going to be rated at, in practical terms, 48 watts. This charger, left on indefinitely, will try to bring the battery up to just over 3 volts per cell.

Over-charging protection

It is not expensive to provide some protection against over-charging. The cost starts to rise if we write a very tight specification. At one time the method was to use a voltage-sensitive trip circuit, but it is probably cheaper to use solid-state switching, and we can make the system fully automatic. This means that it will be permanently connected to the battery. The disadvantage is battery noise, but in many applications the equipment must be designed to put up with this, anyway.
The circuit is shown in Fig. 7. Ignore D_{2} and R_{4}, which are simply there to provide 50 to 100 mA trickle into a charged, idle battery, and possibly some lamps. The main charging path is through the thyristor Th_{1}. If Th_{2} is not conducting, Th_{1} will start to conduct as soon as point P rises enough above the battery voltage to get triggering current through R_{1} and D_{1}. For a BTY79, which can be obtained easily, and which will carry the 6 amps of d.c., we might make $R_{1} 100$ ohms, and D_{1} a small half-amp rectifier diode.

As soon as the voltage at P reaches about 3 to 4 volts above the battery voltage the thyristor triggers and current flows into the battery.

Now let us operate Th_{2}. The cathode of Th_{1} is at not less than 21.6 volts, while P will peak up to $37.2+6 \%$, say 40 volts under worst mains conditions. We can make $R_{2}=R_{1}$, and the gate of Th_{1} will only be 20 volts above the negative line, so that Th_{1} will not trigger. The current through $R_{1}+R_{2}$ will be, at its peak, $40 / 200$, or 200 mA , which makes Th_{2} a small device and R_{1} and R_{2} conveniently 3 -watt resistors. A suitable cheap device ($£ 0.50$) for Th_{2} is the BTX18, which needs up to 5 mA to trigger it, and which may trigger at anything from 0.5 to 2 volts. The trigger current is provided by the capacitor, C, which is only needed to be, say, a 5 -volt unit and can be 10 to $100 \mu \mathrm{~F}$. Resistor R_{3} is needed to let C leak away, and 1000 ohms is as good a value as any.

The choice of P_{1}, the resistor in series with it, and the zener diode are pretty arbitrary. For a 24 -volt battery it seems reasonable to choose a 10 or 12 V zener diode. Value of P_{1} is conveniently 1000 ohms, and the series resistor should be worked out so that the slider of the potentiometer is fairly near the top. Indeed, it is probably better to use a 500 or 200 -ohm potentiometer and put resistors both above and below it, to limit the range of adjustment.
There are three phases of the control operation. If the battery is low, Th_{1} fires but Th_{2} does not. As the critical region is
approached, after Th_{1} has fired, the ripple voltage across the battery will be enough to tip Th_{2} on, although as Th_{1} has already fired this does not matter. When the battery voltage is high enough for the necessary few milliamps to be flowing through the zener diode, Th_{2} will fire as soon as its anode volts permit. This is before Th_{1} has reached the trigger point, and the firing of Th_{2} cuts off the trigger supply to the gate of Th_{1}. Charging, except through D_{2} and R_{4}, stops.

The circuit can be set up fairly quickly if a large capacitor and, say, a 6 -ohm resistor are used in place of the battery. The low current through the zener diode and the range of values for the trigger conditions of Th_{2} make it impossible to calculate the exact setting. In practice a unit of this kind will have a transition region of about half a volt, which is good enough for general applications. The use of an operational amplifier or comparator, in a control section of the style shown in Fig. 8, will give a very high precision, but such precision is meaningless when the ripple voltage is greater than the setting accuracy.
Perhaps the only justifiable improvement is to go the whole hog. The equipment is supplied from a stabilised power supply and the battery is merely a stand-by system. The problem we have considered is basically different from, and simpler than, this. The design curves are the necessary aids to its construction.

Fig. 7. Automatic charger control. Circuit can be simply set up by using a large capacitor and suitable resistor in place of battery.

Fig. 8. Use of precision control section is only meaningful if ripple voltage is less than required setting accuracy.

Two-phase v.c.o.

The standard method of obtaining an oscillator that will deliver a two-phase output (i.e. sin and cos) is to follow a conventional oscillator by a phaselocked loop, thus generating the quadrature signal. This has the disadvantage that, if a variable frequency is required, the capture range of the p.1.1. may be exceeded, or there could be a large phase error.
This oscillator is based on the above approach, but is a symmetrical version which does not have a restricted range or phase error. The circuit consists of two v.c.os, and pin connections are shown for the 8038 which gives a sinusoidal output. The i.cs are driven

Voltage divider

When working with i.cs it is often necessary to have positive and negative supplies, and it is desirable that each supply remains steady with changes in load current. This circuit has been a useful addition to an adjustable 0 to 15 V stabilized supply. For +5 and -5 V , potentiometer R_{1} is set to the mid position and the current through the output transistors is set to 20 mA by R_{2}.
Voltage difference between the non inverting input and the output earth varies by about 1 mV when the input voltage is adjusted between 4 and 15 V , or if the current from one half is changed from 0 to 100 mA .
C. H. Banthorpe,

Northwood,
Middx.
from a standard NE5596 multiplier circuit via a low pass filter. The two oscillators are locked together in frequency and 90° apart in phase by taking their triangular outputs to the multiplier imputs. A 90° phase difference between them causes equal d.c. collector voltages, and any deviation from 90° produces a voltage difference across the collectors which restores the phase.
Frequency of the oscillators is varied by producing a common-mode output voltage in the multiplier. This is
achieved by altering the bias current. Thus, the oscillator is tuneable over a wide range, with nominally zero phase error.
The frequency adjust potentiometer and resistors are set to give the required range, but the potentiometer can be eliminated if v.c.o. operation is required. If sinusoidal outputs are not needed the cheaper 566 type of v.c.o. can be used.
J. M. Worley,

Colchester,
Essex.

Peak reading r.f. probe

This peak-reading r.f. probe has no d.c. offset adjustments, does not suffer from temperature instability, and is capable of measuring r.f. levels from 1 mV to about 4 V . It is designed to be an add-on circuit, for a multirange meter, and measures frequencies in excess of 100 MHz . A CA3046 is arranged as two symmetrical d.c. Darlington pairs, and the maximum output offset was found to be $700 \mu \mathrm{~V}$. The temperature coefficient is (according to the CA3046 data) $1.1 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$, and the input impedance is $50 \mathrm{k} \Omega$ in parallel with 3 pF . To maintain this low capacitance the circuit must be constructed in a small screened case with a short probe tip and no i.c. socket. Current consumption is under $\operatorname{lm} A$.

Linear/logarithmic sweep generator

This circuit provides a logarithmic or linear sweep facility for the Intersil 8038 function generator i.c. In the linear mode Tr_{3} acts as a constant current generator which charges C_{1} almost linearly. Transistors Tr_{1} and Tr_{2} reset the capacitor as the voltage across it reached about $1 / 3 \mathrm{~V}_{\mathrm{cc}}+0.9 \mathrm{~V}$. In the logarithmic mode, positive feedback
allows exponential charging of the capacitor. Capacitor C_{2} shunts the narrow spikes that may occur from the circuit, and R_{3} sinks a low starting current without affecting the sweep characteristic. D_{1} improves the stability of frequency versus temperature but can be omitted with R_{4} to extend the range of the output waveform. Point A
has a short positive pulse which may be processed to reset the 8038 capacitor, and to sync an oscilloscope. Voltage at point B must be set experimentally, and is dependent on $V_{c c}$ An overall frequency control may be achieved by making R_{5} variable.
Sergio Villone,
Turin,
Italy.

Waveforms-in-quadrature generator

Phase locked loop systems used for the detection of a.m. signals require either a two-phase signal or a two-phase local oscillator, the phases being $\pi / 2$ radians apart. The Signetics a.m. phase locked loop i.c. requires the signal to be split into two phases, which causes the lagging phase to be attenuated. If the system is to be tuned over a range of frequencies, the phase relationship is only correct at one frequency. However, sufficient information is present to extract the other phase from the local oscillator signal without using any time-sensitive components. In addition, it is possible to make a circuit using the same configuration of transistors that would use this principle to detect a.m. The additional element required is $1 / 2$ NE5 10 and a block diagram is shown in Fig. 1. It is not possible to make a connection to the input of the second multiplier in the p.l.I. because it is internally connected to the output of the Schmitt trigger. Therefore an external connection is used.

When making a p.l.l. from scratch, t.t.l. can be used to obtain quadrature signals as shown in Fig. 2. To obtain two waveforms in quadrature, information is required at twice the repetition rate of the output. A Schmitt trigger is used to

square a sinewave oscillator at twice the required frequency or as a v.c.o. Its output is inverted by the second Schmitt trigger in the i.c. Waveforms at either side of this inverter are shown in above. These waveforms are

divided by two using the 7474 flip-flop. Output waveforms from the flip-flops are at half the input frequency and in quadrature. This system has only one time sensitive component which makes tuning over a large range possible. High
speed circuitry such as e.c.l. can also be used to extend frequency range of the quadrature signals.
John de Rivas,
Harlow,
Essex.

Line-powered microphone pre-amp

In this circuit the usual collector resistance R_{2} is built into an existing amplifier. The rest of the circuit can be fitted into the microphone case.
W. H. Jarvis,

Rannoch School,
Perthshire.

North Sea communications mess

Some of those responsible for North Sea communications have been guilty of ineptitude if the word of Plessey subsidiary EAE Group Ltd's telecommunications director, Mr Laurie Buttriss, is to be believed. Speaking at the World Offshore Oil Conference in London on October 5 he accused Government, oil companies and equipment manufacturers of lack of organisation and foresight. The weaknesses, he said, were that essential and sensible regulations had taken too long to be compiled and issued, government departments had been slow to set up facilities onshore to cope with either traffic of different kinds or back up engineering, oil companies had been slow to invest in equipment, and major manufacturers had been slow in delivery and had taken too long to recognise the oil field as a source of sales, failing to produce the necessary specialised equipment in time.
Mr Buttriss would not name the companies or departments involved, but he told Wireless World that he could back up everything that he had said. EAE was formed in 1970 as a dedicated company to supply a service for North Sea oil development. In that capacity they bought in equipment and built a range of communications equipment for barges and oil rigs. They had about 30 such h.f. radio stations in the North Sea, he said, and, excluding more sophisticated equipment of the tropospheric scatter type, this represented about 80% of the market. During the last few years, Mr Buttriss said, "no preference was given to the oil field by manufacturers. The Americans expect immediate attention and good service, and it's only in the last two years that any attention has been paid to the needs of the North Sea oil producers. In the past we have been let down on many many occasions by poor deliveries."
He emphasised, however, that his remarks had not been aimed at the people supplying sophisticated systems,
such as tropospheric scatter equipment. As to the government departments mentioned, the criticisms could also apply to the Post Office. All, he said, "were generally slow on the uptake".
As to the regulations needed, one difficulty was that vessels which were not self-propelled could not be classed as merchant navy vessels, and the regulations governing oil rigs and other towed vessels should have been made clear 10 years ago.
In his paper to the World Oil Conference Mr Buttriss contended that the use of satellites for the European oilfields, while initially expensive, is an attractive proposition for the future. "Starting with a survey to be carried out in the not too distant future by a major British company, I believe we can look forward to European oilfield satellite systems operational in the early 1980s."
Here he was referring to a report that Marconi has been asked by the European Space Agency to conduct a survey of satellite communications in the North Sea.

Who's recording profits?

In their annual report, Decca say they made increased profit from records and tapes, although depressed conditions in the home market meant that television contributed hardly anything. On the consumer side, turnover was down by $£ 1$ million to $£ 81,800,000$, producing a profit before tax on the year to March 31, 1976 of $£ 5.8$ million compared with £6.7 million in 1975. According to Decca's report, "Sales of consumer products in the current financial year to date are lower than last year." Profits on capital goods increased, however, with Navigator and Decca Radar going up by an unspecified amount and profits in Decca Survey decreasing. Total turnover in capital goods increased by £6.7M to $£ 88.2$ million, making a profit of $£ 10.5$ million, an increase of nearly 17\%.
Usually the entertainment industry does quite well in a recession but sales of records and tapes have been depressed for two years now. According to a report in The Times record sales are steady or increasing in the under- 25 age range, but older people find recorded music easier to go without. The top 20 accounts for something like half the total record sales, which at retail prices were worth about $£ 250$ million last year and are expected to reach $£ 273$ this, an increase largely due to price inflation. It has been suggested that the industry would have benefited from the slump but for the illegal copying of records; last year 25 million blank cassettes were sold, and they can't all have been used to record birdsong.

Switched liquid crystal prism

Two scientists at the Royal Radar Establishment have devised an electrically switched optical prism which uses liquid crystals to deflect a laser beam. Angular deflections up to $\pm 20^{\circ}$ have been obtained with a layer of liquid crystal 1 mm thick, according to a statement issued by the National Research and Development Corporation, who backed the project, but owing to electromigration effects the device only works with an alternating field. Until now the only comparable deflections have been those obtained using revolving mirrors. The Kerr cell, a device which rotates the plane of polarisation according to an applied potential, gives deflections of only a fraction of a degree, and acousto-optic methods also give less than 1° deflection. It consists of a cell 1 to 2 mm thick and 3 to 4 mm wide containing a positive nematic crystal. The crystal molecules can be aligned parallel to the cell walls by applying a transverse alternating electric field using four electrodes. In this state a polarised beam will pass through undeflected since the device acts as a uniaxial crystal with its optic axis parallel to the cell wall. If, however, the ratio of electrode potentials is altered the optical axis can be curved, and the light will follow a curved path through the cell. The effect is to alter the refractive index electrically instead of, as with a conventional device, altering the thickness of a material with a constant refractive index. "The angle through which the beam is deflected depends on the cell dimensions, the optical anisotropy of the liquid crystal and the ratio of the electrode potential. The absolute values of the electrode potentials determine the speed of the deflection only." The angle of deflection varies across the cell since the optical path length is constant.

An obvious application of the device is in scanning, but the region producing maximum deflection, say the NRDC, is that in which switching produces turbulence in the crystals, so continuous scanning is not possible at maximum deflection. In this region the device is still capable of optical switching. At 1 kV the beam can deflect full scale and return is less than 1 ms , though return is faster than deflection. Losses due to absorption and scattering are greater than half.
Possible uses, say the NRDC, include laser beam deflection in computer storage, image modulation for pyroelectric devices; coherent or incoherent light torches for hazardous environments; as an artificial horizon for instrumentation; and as an optical waveguide switch. The inventors were Dr D. Jones and Mr A. Fray of RRE, now RSRE, Malvern.

Air traffic control advances

The United States' Federal Aviation Administration has placed a $\$ 1.5$ million contract to revise and redesign its Enroute air traffic control system. Enroute is the computer based system which gives control information during the bulk of an aeroplane's journey, the beginning and end of the flight being handled by Terminal Area computer systems. It is a real time central monitoring system used by air traffic controllers in 20 centres to store and manipulate information about crosscountry flights.
The contract, placed with Computer Sciences Corporation, is to add equipment to compare all flight plans for times and places of "potential conflict" between flights; to compute and display for air traffic controllers several alternatives to predicted conflicting demands for air space; to speed delivery of routine messages through teleprinters or computerised voice terminals; and to compute and improve the timing of aircraft arrivals at busy airports. The equipment will be interfaced with existing automated terminal systems, and its installation is expected to take about three years.
The announcement of the contract comes at a time of great activity in ATC circles, much of it stimulated by the recent mid-air collision over Zagreb. In September pilots, airline representatives and aircraft manufacturers met in Washington to see if they could agree on a system that would make mid-air collisions less likely. There are two main computer-based alternatives, the Bea-con-based Collision Avoidance System (B-CAS), a secondary radar system which involves putting a computer aboard each aircraft and allowing the pilot to make the decisions necessary to avoid a collision, and the Conflict Alert system, which is also a secondary radar system but which allows a computer on the ground to make the pilot's decisions for him. Primary radar systems are entirely ground based, and provide only white dot displays on the traffic controllers radar screen, making no distinction between one plane and another. Secondary radar labels each dot with the help of information from a radar source on each plane.
The B-CAS system is on test in the United States, but the British Civil Aviation Authority is thought to favour the ground based conflict alert system. It may be significant that Computer Sciences Corporations statement announcing the order places emphasis on the need to make better use of existing computers and avoid the expense of new equipment, and on the requirement to interface with existing automated terminal equipment.
Although the Zagreb tragedy has focussed attention on air traffic control

A radio frequency test on Marisat 3 in the anechoic
chamber at the Hughes Aircraft Company plant in California. Launched on October 14, it supplements Marisats 1 and 2 launched in February and June and will be in stationary orbit over the Indian Ocean.

problems a feeling has grown steadily over the last few years that ATC secondary radar systems will need to adapt to the growing volume of traffic. At the moment beacons at the airport send out interrogatory pulses on 1030 MHz and a transponder replies at 1990 MHz , shutting off for 100 ms or so. With the number of radar signals reaching aeroplanes the transponder may be unable to shut off, and radar signals emanating from other aircraft would complicate the problem. If B-CAS systems are to be acceptable they will have to overcome the difficulties caused by information satura: tion, and the US and the UK each have a different proposal for such a system. Work is now under way, however, to devise a compatible system combining the merits of the two.

Radio research move

Responsibility for radio propagation research at the Appleton laboratory under the auspices of the Science Research Council has been transferred from the SRC's Astronomy, Space and Radio Board to the Engineering Board, who will now decide the level of expenditure and the programme. According to the SRC's annual report, "Measurements have been made in collaboration with the Royal Signals and Radar Establishment, Malvern, of optical scattering by water vapour. At
relative humidities above 95% the scattering is greater than that corresponding to a linear dependence on water vapour pressure, a result which provides further evidence of the presence of molecular complexes at high values of relative humidity."

The laboratory has also investigated, with the Post Office, the effect of precipitation (rain) on microwave links in the waveband 8 mm to 3 cm . Analysis so far of the investigation, finished at the end of 1975, has shown that for links operating over distances of a few km or more, the effects of multipath propagation in areas such as Suffolk, where conditions favour this type of propagation, are at least as important as the effects of precipitation.

The possibility of changing responsibility for such work was first mooted in mid-June and has since been confirmed by the council. The decision may have been the result of a feeling that, while astronomy and space research were moving closer together, the best example of this being Ariel 5, research on such matters as Post Office links was much more an engineering matter than the purer science being conducted by the ASR Board. Radio research funded by the SRC in British Universities has been under the control of the engineering board for some time, and the change merely brings all the work under the same umbrella. Although responsibility for the work at Appleton will change once enough time for the takeover to take effect has elapsed, the work itself will carry on there.

Britain ahead in X-ray astronomy, for how long?

Ariel 5, the first satellite dedicated to X-ray astronomy and described by the director of the Appleton Laboratory, Dr Saxton, as "the UK's most successful scientific satellite", may continue in full operation for another year and limited operation for perhaps another year after that. When the satellite was launched two years ago on October 14 it was expected to produce good results for only a year. "It has put this country right in the forefront of this new and very important branch of astronomy," Dr Saxton said. But he added: "It may also be the last. Funds for space and astronomy are being eroded, and there is little possibility of another satellite of this kind."

There are many reasons why Ariel 5 is considered a success. The satellite carries six experiments all of which, say the Science Research Council, who funded the project, have produced outstanding results, partly because they were so complementary and so well co-ordinated. Five of the experiments are British, Imperial College London's experiment is a scintillation telescope, Leicester University has two, including a sky survey experiment supported by another experiment conducted by NASA's Goddard Space Centre all-sky monitor, and Birmingham University and the Mullard Space Science Laboratory of University College London collaborated on a rotation modulation collimator experiment, Mullard also having a proportional counter spectrometer aboard.

The last four experiments point along the spin axis and together form an X-ray observatory pointed by ground commands from Appleton's Ariel 5 control centre to various points in the sky. The commands go via NASA data links to ground stations at Quito, Ecuador, or the Ascension Islands, where they are radioed up to the satellite as it passes over once every 90 minutes. At the same time data is taken from memories aboard the spacecraft giving information gathered from the experiments in the preceding 90 minutes.
The attitude of the craft is altered by propane jets, and one of the limits of the life of the craft is set by the amount of fuel the craft has left. At the moment 70 per cent has been used, and some problems have been caused by the corrosion of the reducing valves controlling the gas. Sun sensors used to determine a position reference have also failed but a reserve set has been brought into use.
Ariel 5 has updated the catalogue of 162 X-ray sources produced by its predecessor, UHURU, launched four years before it. Ariel has added something like 60 new sources, and, just as important, failed to confirm another 30
sources previously catalogued. The most exciting finds have been the "burster" and "transient" sources. The transient sources turn on rapidly and 'then decay, reaching a pitch of brightness in a few days and dying over the next few hours, days or weeks. Since they are so difficult to observe, only four had been detected before Ariel 5 , but the spacecraft has enabled observation of 14 over the last two years. "They probably occur at a rate of about 100 a year," said Professor Willmore of Birmingham University, the project scientist. Two more transients were found to be modulated with periods of 6.75 and 1.73 minutes. Mullard Laboratories, who also have an experiment aboard the Copernicus satellite, subsequently found six more such stars, the modulation being caused by slowly spinning neutron stars.

Bursts and biack holes

Even more important, possibly, are the burst sources, which emit isolated bursts of X-rays at intervals, usually of several hours, though one emitted bursts every 15 to 20 s . A possible explanation of the phenomenon is that material, emitted by the companion star in a binary system in which that star orbits a neutron star, collects in the atmosphere of the neutron star. The neutron star has a gravitational pull 10^{13} times that of earth, and when the material cascades down on to the star's surface a burst of X-rays is emitted, and material begins to collect for the next burst.

The possible significance of the burst sources provided an interesting illustration of conflict between scientific schools of thought. Imperial College suggest that X-ray bursts and cosmic gamma ray bursts are connected, and go on from this to say that most of the evidence for the existence of "black holes" in space, areas so dense that not even light can escape from them, has come from X-ray astronomy. The experiments on Ariel 5, they say, tend to confirm the existence of black holes. When B. A. Cooke of Leicester University was asked whether he would agree, however, he remarked wryly: "It depends how anxious you are to have a black hole there." Those for and those against the black hole theory tended to stretch the available evidence in either direction to suit their case, he said.

Professor Elliot, chairman of the Astronomy, Space and Radio Board of the SRC, was asked if the Ariel 5 satellite or the information it was transmitting would be put to any military use. He replied that he didn't think so. "This is a purely scientific project which produces knowledge and information, although like other knowledge and information it usually can be put to some military use." The SRC's statement notes that their agents for the procurement of the spacecraft were
the Ministry of Defence, and that the research and development authority was the Royal Aircraft Establishment at Famborough.

Typical of our current obsession with national housekeeping to the exclusion of almost anything else, most of the questions at the press conference, as at the one launching the SRC's annual report a few days later, were concerned with the cost effectiveness of such research. Professor Elliot, asked to say of what benefit the Ariel project would be, said, "We are not the richest country in the world, but we are not the poorest. The future of technology and the wealth that flows from that is dependent on work like this and it is incumbent on those nations that do have the resources to uncover the basic laws of nature on which the future of man depends. In this respect we have been pulling our weight compared with other nations. Another benefit is the importance of these activities in the training of our people. Universities are always being accused of training people who are pure scientists with no knowlege of the outside world. Projects such as this help students to know industry and how it works and the need to produce things to a time scale and so on, to see how things work outside." Another advantage was that technology tended to act as an accelerator to progress, the best example being the US space programme. Ariel 5 offered the opportunity to do basic physics one couldn't do in terrestrial conditions. It was no good trying to decide which science you could afford and which you couldn't: "Science can only advance on a broad front," he maintained, "or it doesn't advance at all."

Although the SRC has had to make extensive cuts in its forthcoming programme - the annual report points out that by 1980 the council's budget in real terms will be at least one sixth less than it was in 1973 - plans for Ariel 6 are so far advanced, and the project has such high priority, that it is unlikely to be cancelled. In any case it largely replaces the aborted Skylark mission. Ariel 6, however, will carry only a limited number of X-ray experiments, and is not expected to produce anything like the information about this branch of science that Ariel 5 did.

In his opening remarks Dr Saxton defended expenditure on space research by pointing out that the money spent on Ariel 5, between $£ 4$ million and $£ 6$ million depending on how you work it out, came to two or three gin and tonics per family. The total spent on astronomy was "one or two per cent of the cost of feeding the dog population. I find it personally hard to believe," he continued, "that people would wish to see our scientific pre-eminence thrown away." It was no good saying we could leave such projects and pick them up again when the nation was in better shape. "Once the edifice crumbles it is difficult to re-erect."

Any energy you like as long as it's nuclear

None of the studies of geothermal and solar alternative energy sources made so far by the UK Atomic Energy Authority has indicated that they would make any significant contribution by the year 2000 . This announcement was made by Sir John Hill, chairman of the UKAEA at a press conference on publication of the UKAEA's annual report. His rather unsurprising conclusion was that it was therefore essential to continue with the nuclear programme.
"The world energy situation is no better now than it was in 1973-4: it is just that we have forgotten about it." Pointing out that the world's largest user of energy, still mainly derived from fossil fuels, the United States, was still increasing its demands, and that what we could produce from the North Sea would barely keep up with America's annual increase in demand, his deputy, Dr W. Marshall, said that we would be in serious difficulty long before the world's oil ran out: "It is when the amount of energy available stops increasing that the trouble starts - not when you have used the last drop of oil."

The method of reviewing alternative energy sources reveals a serious lack of intent on the part of the Energy Department. The studies to which Sir John referred have been carried out by the UKAEA's Energy Technology Support Unit, which the Department set up in April 1974 to liaise with international organisations, such as the EEC and the International Energy Agency, on energy matters and to assist the Department of Energy to review and develop alternative sources of energy. Until now the assessment of these alternative sources of energy has been a major part of the ETSU's work but it is now gradually taking over the management of some research projects and will, for example, be spending $£ 1$ million over the next two years on a feasibility study of wave power.

So far the ETSU has already submitted to the Department of Energy reports on geothermal and wave power, both of which have been published, and a submission on solar energy is in the course of publication. A spokesman for the department of Energy said they did not intend to commission a full-scale feasibility study on tidal power as this would be too expensive, but they would be examining both barrage closing and the effect of such closure on tidal regimes. Studies of wind-power, the last of the five with which they were immediately concerned, "are at an early stage." Another part of the Study Unit's work is to report ways in which consumption of energy, from whatever source, can be cut down, and to this end
the unit is about to publish a separate report on energy conservation. The clash of interests between ETSU and the UKAEA is, or should be, intense, yet ETSU is not only responsible to the UKAEA, it is even based at Harwell.

Wireless World asked the Authority how objective its assessments of other energy sources could be. Dr W. Marshall, Deputy Chairman of the UKAEA, replied: "A high proportion of the growth in ETSU is made up of people who have not been concerned in the reactor research programme in the past." They would be "pretty dispassionate," he said, and in any case the studies would be published so that people could judge for themselves how objective the studies were. He added that a considerable amount of work was being done elsewhere on alternative energy sources, of which the Energy Department would be aware. "We will make our own assessment from our own study of the facts without being influenced by the work done by these other groups." The way to alternative energy sources would be "an iterative process."

Dr Marshall, as well as being deputy chairman of the UKAEA, is chief scientist of the Department of Energy.

SITE successor

The Indian government is constructing ground transmitters in the six village "cluster" areas served by the Satellite Instructional Television Experiment to resume the educational television programmes in early 1977.

SITE, now concluded, was described by Jack Dinsdale in our September issue. Because of their limited range the new transmitters will reach only about 40% of the villages covered previously, but other villages near the transmitters will be added to the audience, according to NASA. The Indian Space Research Organisation is also defining an operational satellite system for the whole of India which could be operating by 1980. ISRO will have finished evaluating the results of SITE by the middle of 1977. Already, however, some beneficial effects have been noted. The popularity of children's programmes, for example, increased school attendance. A teacher in Mahya Pradesh village said he thought moving pictures of distant places made a lasting impression in Geography lessons. Other examples were the preparation of more nutritious food as a result of the programmes and the insistence on better hygiene.
"One year of experimental television is not going to change the face of our villages" said the director of ISRO's space applications centre in Ahmedabad, Professor Yash Pal, "but it has had many wholesome effects."

According to a report in Forbes Magazine in September, the Russians are considering a competitive international system to be called Intersputnik. The system would compete with Intelsat, and the Russians are said to have approached the Indian Government to see if it is interested in using Intersputnik for rural educational tv, the service provided until now by the American ATS-6.

Traffic information experiment

A system of traffic-information broadcasting, which has been in use in West Germany since June 1974, is being tested in this country for one month. The system, known as ARI (automotive road information), was developed by Blaupunkt Radio, the West German company, owned by Robert Bosch Limited. ARI decoding equipment has been fitted to thirty journalists', police, and other public representatives' vehicles to help them tune to radio LBC on 97.3 MHz v.h.f./f.m. or 261 m medium wave whenever traffic information is broadcast. The system works as follows: before each traffic-information broadcast the radio station transmits a single almost-inaudible 2.35 kHz tone, frequency modulated with a 123 Hz squarewave, from a prerecorded tape. This tone triggers the decoder and one second later the message is broadcast. On manual receivers the tone triggers an audible note overriding the tuned station and a pilot light. This indicates to the listener that their traffic information is about to be broadcast and he can then manually tune to the only audible station, which will be the LBC station. On automatic receivers the ARI station will be tuned in automatically. At present the decoder does not facilitate the automatic return to the initial station, but this refinement is expected within a year. If the radio is switched off the decoder may be arranged to switch the radio on for the duration of the traffic information broadcast only. The decoder, which will cost $£ 10-£ 28$, may also be used to switch a cassette player in and out for reception of the traffic information broadcast. When the system was first developed in Germany it was used with long and medium wave receivers, but was modified for v.h.f./f.m. when it was later introduced to some European countries. Yugoslavia also use the system for their tourist information services. It is hoped that if the system tests, which are taking place from October 19 to November 18, are successful other commercial stations throughout Britain will follow LBC's lead to provide the motorist with a more widespread ARI service. Hitachi, Grundig and Philips already manufacture the decoders for the European markets.

Acoustic noise units

A pathway through the decibel jungle

by James Moir, F.I.E.E.

The proliferation in recent years of Acts and Statutes setting limits to the level of acoustic noise inside and outside the home, in public places and in workshops, has resulted in an almost equal proliferation of units in which the noise level may be measured. It is very difficult indeed to duplicate by objective measurements the brain's analysis of its pleasure or annoyance. Thus we now have a large number of units in which the "loudness' (using the word in its widest sense) of a noise may be measured, all of them attempting to achieve agreement between objective measurements and subjective impressions. This article is an attempt to present a coherent picture of the problem.

The first sound level meter was merely a microphone, amplifier and indicating meter, the whole system having a repsonse that was substantially independent of frequency. The readings obtained were the mean (average) value of the input waveform, oxidetype rectifiers being used to convert the amplifier output to d.c. to operate the moving-coil meters. The parameter
measured was the average value of the sound pressure at the microphone diaphragm and, within the limitations of the microphones available at that time, the reading was independent of the acoustic frequency.
To deal with the vast range of sound pressures met in nature, the system had to read over a sound pressure range of roughly $10^{6}: 1$ so a logarithmic unit, the decibel, was adopted from the telephone industry. Any logarithmic scale requires an empirically chosen zero point and this was fixed at a sound pressure level of 0.0002 dynes $/ \mathrm{cm}^{2}$ (now 20μ newton $/ \mathrm{m}^{2}, 20 \mu$ pascal.) At the time this was thought to be the minimum audible sound level but it is now known to be about 5 dB higher. Using this base, sound pressure levels in dB are then expressed as:

$$
\text { s.p.l. }(\mathrm{dB})=20 \log _{10} \mathrm{P} / \mathrm{P}_{0}
$$

where P_{0} is the reference pressure of 0.0002 dynes $/ \mathrm{cm}^{2}$, and P is the measured sound pressure.
Early experience indicated that there was only moderate agreement between the objective readings taken with the meter and a subjective judgement of the loudness of the noise by a group of

observers. It was soon appreciated that the discrepancies were in part due to the sensitivity/frequency relation of the hearing system. Experiment indicated that not only did the sensitivity of the hearing system vary with frequency but that it also varied with the absolute intensity of the noise, particularly at the low-frequency end of the spectrum. Thus the hearing system has a substantially uniform frequency response to sound at high intensity but it is relatively bass deficient at low sound intensities. Fletcher and Munson, and later Robinson and Dadson, found that the frequency response of the hearing system to pure tones was as shown in Fig. 1. The Robinson and Dadson data is now an international standard.

Decibels A, B, and C

This change in frequency response with intensity was dealt with by adding a switch to the metering system to change the amplifier frequency response in the three steps shown in Fig. 2. The response labelled ' A ' was to be used when making measurements at sound levels below about 40 dB , response ' B ' when the sound level was between about 40 and 70 dB and the flat response, labelled ' C ' used for all levels above about 70 dB . The weighting used was indicated by adding the appropriate suffix to give, for example, dBA or $d B(A)$. In practice the only safe course was to record the A. B, and C readings for every noise, for it was rarely clear which switch position should be preferred. A noise with much of its energy in the low frequency range might well measure 35 dBA or 60 dBC and the correct switch position was then rather indeterminate.

The use of a three-position switch was a logical decision in the light of the data then available, because it matches

Fig. 1. Fletcher and Munson equal loudness contours. (Note that the loudness level of a sound is defined as n phons when it is judged to be equal in loudness to a pure 1000 Hz tone with a sound pressure level of $n d B$ above the standard reference pressure.)

Fig. 2. Weighting curves showing the significance of $d B A, d B B, d B C$ and $d B D$.
the frequency response of the meter to that of the ear at the sound level being encountered, but increasing experience began to suggest that the best agreement between meter readings and a subjective judgement of the "loudness" or "noisiness" of a sound was obtained by using the A weighting, quite irrespective of the intensity of the noise. This has now been substantiated for many kinds of noise and in consequence noise level readings relating to annoyance are now almost always quoted in dBA. Indeed, many later versions of the standard sound level meter only include the A-weighting network. This apparent contradiction of the earlier data has been shown to be due to the assumption that the ear's reaction to a wide-band noise would be indicated by its reaction to pure tones. It is now known that the hearing system does not sum the energy in bands of noise in the way suggested by the Fletcher-Munson curves for pure tones, the summation/frequency response being more accurately indicated by the A-weighting curve at all intensity levels.

Decibel 'D'

Though general experience and many investigations have shown that noise levels measured in dBA are in good agreement with subjective opinion of the loudness of most intruding noises, it appears probable that the agreement could be improved in a specific situation by the adoption of a special weighting curve for each type of noise. Kryter has shown, for example, that the noisiness of jet aircraft can be more accurately assessed by the adoption of a weighting curve that places greater emphasis on the higher frequencies and the relation shown in Fig. 2, the D-weighting curve,
also known as the N curve in (ISO) Draft Recommendation 1761, has been internationally standardized for this purpose. However ISO Recommendation No. 507 requires the noise level in the vicinity of an airport to be expressed in still another unit, the Perceived Noise Level (PNdB). This is to be obtained from measurements of the sound pressure level in octave bands and the perceived noise level determined from these readings by a summation process detailed in the Recommendation.

In general, use of D weighting results in readings some 13 dB higher than a measurement of the same noise using the A-weighting curve. The increased accuracy of agreement between objective measurement and the subjective

Fig. 3. Noise criteria curves of Beranek for obtaining better agreement between measured values and subjective loudness of a complex noise.
opinion of the "noisiness" of the noise from jet aircraft is not thought to justify the confusion that has resulted from the introduction of D weighting. The environmentalists in particular have often reached alarming conclusions by comparing aircraft noise measured using D weighting, or the deduced level in PNdB , with road traffic or similar noise measured using A weighting. Similarly alarming conclusions can be reached if the A-weighting noise level of an existing type of aircraft is compared with the D-weighted noise produced by Concorde. It is reasonably certain that agreement with subjective judgement could always be improved by adoption of a weighted curve appropriate to each type of noise source but the overall result would be mild chaos, for the noise levels of different sources could not be compared.

Noise Criteria system

In an attempt to obtain better agreement between measured values and subjective opinion of the loudness (noisiness) of a complex noise, Beranek introduced the Noise Criteria system, still widely used in the heating and ventilation field. Instead of taking one reading of the weighted average value of the sound pressure of a wide band noise (i.e. dBA), he proposed to take readings with a frequency selective meter at each of eight octave band frequencies and to plot these on special graph paper (see Fig 3). An NC (Noise Criteria) rating was obtained by quoting the NC reading on the right hand scale immediately above the highest octave band sound pressure level. Thus a noise having the frequency spectrum shown in Fig. 3 would be given a Noise Criteria rating of NC65, the curve immediately above the highest sound pressure reading in any octave band. This appears to be good common sense and the system is widely used.

In Europe a slightly different set of contours was produced following the same basic approach but these were quoted as Noise Rating curves, the number obtained being quoted"as. NR 65. Except for special noise spectra there is no significant difference between the NC and NR numbers and in retrospect there appears to be no good reason for the existence of two sets of Noise Rating and Noise Criteria curves. In practice the situation was further confused by the appearance of a third set of Noise Rating curves in the 1967 issue of British Standard 4142. Experience suggests that they have no real advantage over either of the earlier NR or NC curves. Indeed many users believe that they are not as useful as the earlier curves and that they have only served to add further confusion to an already confused situation.

Though this curve fitting procedure should take into account the shape of the frequency spectrum of a complex noise, experience has shown that there
is a substantially constant numerical difference between the NC or NR value and an instrumental reading in CBA of the same noise, the NC or NR level being 5 units lower than the measured level in IBA. A determination of either the NC or NR level requires an octave band analyser to produce separate readings of the noise level in the eight octave bands and plotting of the data on special graph paper. Thus the technique can only be justified if experience shows it to have some considerable advantage over the single measurement of noise level in dBA, for this only requires a relatively simple sound level meter. Surprisingly, perhaps, experience appears to show that NR or NC numbers do not have any real advantage over the use of dBA to express noise levels, but the curves have considerable advantage when analysing noise data to obtain guidance on which part of the noise spectrum is responsible for criticism.

The phon

There are obvious advantages in having a unit that is an indication of the "loudness" of the noise and for this purpose the phon was originally proposed. British Standard 661 defines the phon as:
"The loudness of a noise in phons is numerically equal to the sound pressure level of the 1000 Hz tone that is judged to be equally loud."
This apparently simple definition is the real reason for the failure of the phon to achieve widespread use. It requires a group of people to judge the level at which a locally-generated 1000 Hz tone is considered to be as loud as the unknown noise being assessed. This is a subjective judgement and it is one that is extremely difficult to make even by a skilled observer. Thus as phons cannot be measured directly by a meter the phon has died.

The sone

Though the decibel scale is almost universally used for the measurement of sound intensity, its logarithmic structure makes it difficult for the non-technical to use or even understand. A unit so fashioned that a noise level of two units is twice as loud as a noise of one unit should have advantages in such situations. This requires units that express loudness on a simple arithmetic scale. Such a unit is the sone, defined by British Standard 661 as:
"The unit of loudness on a scale designed to give scale numbers proportional to the loudness."

The reference loudness of one sone is that of a 1000 Hz note having an intensity of 40 dB , the relation adopted being shown in Fig. 4. Thus a sound intensity of 2 sones corresponds to an intensity of 50 dB and 10 sones to 73 dB . Surprisingly perhaps the sone scale is not widely used, though the reasons for

Fig. 4. Relation between loudness in sones and sound pressure levels in decibels. Scale numbers on the sone scale are proportional to loudness.

Fg. 5. Recorded chart of typical traffic noise.

Fig. 6. Recorded chart of typical aircraft noise.
its neglect are not very obvious. There are no simple meters available that read in sones directly and as it is easy to remember that an increase in sound intensity of 10 dB generally corresponds to a doubling of the subjectively judged loudness, the sone, if not dead, is not prospering.

Time-varying noise levels

Except in some industrial situations, noise is rarely constant, the more usual situation being one in which the noise level is varying continuously rather as shown in Figs. 5 and 6, charts of typical road traffic and aircraft traffic noise. In such a situation there is a real problem
in deciding on the objective level of the noise that is related to the level of subjective criticism. This is likely to depend not only on the noise in dBA but also on the fraction of the relevant time that the noise reaches or exceeds this acoustically effective level.
There have been many attempts to define a single-number parameter that includes both the noise level in IBA and the length of time that the noise reaches or exceeds this level. The simplest is merely to specify the noise level that is exceeded for 10% of the length of time that is significant in the particular situation. Thus when dealing with the noise from road traffic it has been found from social surveys that the extent of criticism is related to the level that is exceeded for 10% of the 18 hours between 6 a.m. and midnight. In traffic planners' parlance, the significance noise level is the " 18 -hour $L_{\text {l }}{ }^{10}$ ".

Other aspects of a time-variable noise that are significant are the level exceeded for 90% of the 18 hours, effectively the minimum level, denoted by L_{90}, and the "average" level L_{50}, the value exceeded for 50% of the 18 hours. Note that all these levels are measured in dBA. A statistical analysis of the time-varying noise level data is required to obtain L_{10}, L_{50}, L_{90} etc., but analysers are now available that provide a continuous display of the required parameter over the period up to the time of display.

Noise and Number Index

Robinson has shown that the subjective annoyance aroused by an intruding noise is a function not only of the noise level but also of the extent of the excursions above the mean average level and the frequency with which these excursions occur. Much personal experience in other applications supports this view: A client's bedroom having an ambient noise level of 20 dBA with occasional peaks up to 40 dBA was pronounced as "noisier" than another room in which the ambient level was around 38 dBA , but with excursions of only about $\pm 2 \mathrm{dBA}$. To evaluate the noise climate around airports, Robinson first proposed the use of a "Noise and Number Index" (NNI) that takes into account both the average noise level in dBA, the extent to which the noise level rises on peaks and the number of times in twenty four hours that the peaks appear. This is the unit used in the Report on Noise by the Wilson Committee. The Noise and Number Index can be calculated from:

$$
\begin{aligned}
N N I= & \text { Average peak noise level } \\
& +15 \log N-80
\end{aligned}
$$

where N is the number of aircraft per day.

On this basis a reasonable Noise and Number Index for the areas adjacent to an airport is around 50 during the day,
but probably around, 35 during the night.

Noise pollution level

At a later date, Robinson suggested another unit, the "Noise Pollution Level", that also takes into account the effect of the variability in level on the nuisance rating of typical noises. This parameter can be computed from:

$$
L_{N P}=L_{e q}+2.56 \sigma
$$

where σ is the standard deviation of the instantaneous noise level and $L_{\text {eq }}$ is the equivalent noise level. There is sound justification for the use of this unit for it would appear to be applicable to all forms of nuisance noise and to allow the "noisiness" of different forms of noise to be compared. At present it is really waiting large scale confirmation of its value, for though noise experts are almost unanimous in approval, it has not been specified in any legislation.

Traffic noise index

The Building Research Station have also suggested a unit that is directly applicable to the specification of the "noisiness" of a noise of variable intensity, though it is primarily intended for dealing with traffic noise. It has been shown by social surveys that there is a high degree of correlation between this Traffic Noise Index and the degree of dissatisfaction expressed by residents exposed to high levels of road traffic noise. The Traffic Noise Index is defined as:

$$
T N I=L_{90}+4\left(L_{10}-L_{90}\right)-30
$$

and as this is likely to be used in legislation both here and in America it will presumably displace the other units suggested, although it does not appear to have such a sound theoretical base as $L_{N P}$. Note that the noise levels used in all these units that combine level and variability are expressed in dBA.

Hearing damage and $L_{\text {eq }}$

High levels of noise, 90 dBA and above, are known to result in eventual damage to the hearing, the damage being approximately proportional to the product of noise level in dBA and duration of the exposure. In the simplest case where the noise level is constant, the damage to the hearing system is directly proportional to the length of exposure. However, this is not the usual condition, for in an industrial situation the noise level is fairly constant at one value for a few seconds (or minutes) and then changes to a higher or lower level which is only maintained for a short period.

In such a situation an equivalent noise level can be defined that would, if held constant for the whole 8-hour working day, result in the same damage to the hearing system as would have resulted from the noise of variable level This is known as the equivalent noise level, $L_{\text {eq }}$, and ajain is expressed in dBA.

The Department of the Environment Code of Practice specifies 90 dBA as the maximum permissible value for $L_{e q}$ in an industrial situation.

Units and their application

It will be seen that there are a bewilderingly large number of units that can be used to indicate the "quantity" of noise present in a situation. A reasoned choice requires that we be sure that we know what we are trying to measure. If we are trying to measure sound intensity, i.e. power flow/unit area, then the sound pressure level in dBC is the appropriate unit. However, sound intensity is rarely the aspect that is really significant in a situation involving human exposure to noise. More usually we are trying to measure something that might be described as the "loudness", "noisiness", "annoyance" or "intrusiveness" of the noise.

Loudness, noisiness or the degree of intrusion are not always the same thing, though the noisiness or intrusiveness usually increases with increase of loudness, provided there is no change in the spectrum of the noise. If the noise is the subject of complaint and we wish to have a measure of the "noisiness" then the sound pressure level in dBA is the best of the current units, but this simple measurement of noise level in dBA fails as an indication of "intrusiveness or annoyance" if the noise being measured contains pure tones or is characteristically irregular. At the moment irregularity in occurrence or the presence of pure tones requires the measured noise level in dBA to be empirically corrected by the addition of 5 or 10 dBA to the measured levels (see British Standard 4142). This corrected level is then known as the "Corrected Noise Level" (CNL) and is expressed in dBA (CNL).

However, the degree of annoyance aroused by a noise is a function not only of the intensity of the noise, but also of the duration of the noise and of the "time on/time off' ratio in the period of time that is significant, usually the day of 18 hours. The level of the ambient noise is then best indicated by L_{90}, the level exceeded for 90% of the time, while the level of the intruding noise is indicated by a statement of L_{10}, both in dBA.

NC or NR ratings, though widely used at the moment, particularly in the heating and ventilating industry, do not appear to have any significant advantage over the simple measurement of sound pressure level in dBA when attempting to estimate annoyance and in consequence these units do not appear to have any future.

Where the noise levels of individual aircraft are being compared, dBD or PNdB is the correct unit, but the semi-empirical addition of 13 dBA to the level measured in dBA gives a very good indication of the degree of annoyance or the intrusiveness of the noise from one aircraft. If it is required to have an
indication of the overall level of annoyance due to aircraft activity at an airport, then NNI or $L_{n p}$ (Noise Pollution Level) are the proper units to employ, but $L_{N P}$ values are not yet in widespread use in spite of their basic merits.
Where damage to hearing due to exposure to high noise levels is under consideration, there is in this country only one unit, $L_{e q}$ to consider. Other countries use different rates of 'tradeoff' between time and noise level although using dBA units in which to indicate the noise level, so this may lead to some further changes in the unit of noise exposure to obtain a greater degree of international agreement.

When assessing traffic noise, DBA is the appropriate indication of noise level, but it is now rarely that value read from a sound level meter directly. The quoted noise level is derived from a statistical analysis of the meter data, the quoted value being that exceeded for some specified percentage of the relevant time period, usually 18 hours in this country. Thus we have $\mathrm{L}_{10}, \mathrm{~L}_{50}$, and L_{90} as the levels exceeded for the quoted fraction of the total time.

Traffic Noise Index (TNI) or the Noise \& Number Index (NNI) or $L_{\text {NP }}$ are met more infrequently and then chiefly in official publications, but this may change for they have real merit in indicating the nuisance value of a noise over an extended period.

This discussion covers the majority of units now in use in measuring the loudness of acoustic noise but there are many others waiting to make their appearance. Annoyance as subjectively judged, is a difficult reaction to quantify and, though many of the present units achieve this fairly well, there is need for a unit that will allow widely different types of noise to be rated on a common scale of annoyance.

Further reading

Sound level meters British Standard 4197
Equal loudness con-
tours for pure tones

British Standard 3383
Airport noise meas-

> urement

ISO Recommendation No. 1761
Noise rating curves ISO Recommendation 1996
Method of rating industrial noise
Glossary of Acoustical terms
Housing and road traffic noise
The Noise and Number Index

Noise Pollution Index

The Traffic Noise Index

Hearing damage assessment

British Standard 4142
British Standard 661
Dept. of Environment
Wilson Committee
Report on Noise
NPL Report No. AC59

BRS Report No. CP38/68

DOE Code of Practice

PHASE

I have followed with interest the articles by Harwood and Moir on aural phase sensitivity, and have seen very little in the subsequent correspondence which, I feel, importantly detracts from their viewpoint. I would not have prolonged the discussions, but it is one thing to describe Moir's review of the subject as "not good enough" (C. F. Coleman, his letter, September issue) and quite another to use false or ill-considered arguments in support of that opinion.
The frequency proportional phases which Coleman so laboriously describes are, of course, steady-state quantities and are applicable when equilibrium has been reached, not during the transient response times of the systems (loudspeaker or room) under consideration. Perhaps it was these factors which deserved more consideratioin in the review.

This is not to say that there is no evidence of the audibility of steady-state phase differences, introduced into periodic functions. Schroeder used a flat spectrum sint/t function of 10 ms period, whilst I have used a tone-burst waveform, and varied the phase of the carrier or tone. It is true that upper frequency linear distortion from a loudspeaker can be easily detected, during the few milliseconds of its transient response to music spectra, or following each transition of a periodic transient test function, such as those described. This is so even when this response is greatly diluted by phase randomising room reverberation.

Finally, I am not aware that a "linear phase" loudspeaker does not introduce phase errors which are not linear functions of frequency. The steady-stage phase distribution of any loudspeaker does at least show that it is a dispersive system, exhibiting not only group-delay changes but many smaller deviations from a mathematically "smooth function" behaviour.
The Quad electrostatic system, to which others have referred, is not a "linear phase" loudspeaker, it is a minimum-phase system, and in this respect may be likened to other designs, not just the "linear phase" types with their space-staggered baffles. At low frequencies, of course, a loudspeaker is designed to radiate usefully at its bass resonance frequency, and then (steady-state) acoustic phase distortion is inevitable.
Roger C. Driscoll,
Polytechnic of North Ldondon.
I am sorry that Mr Coleman feels that I should have dealt more fully with the
problem of defining phase shift in a circuit excited by a number of sine waves of different frequencies. It would require several issues of Wireless World to cover all the information we have on phase shift and its effects, but I doubt whether many readers would find it of sufficient interest to justify reading all that could be written. The definition of phase shift under conditions that are of no importance is clearly a subject of no great interest.

The phase shift arising from a particular circuit configuration, or the phase shift that results in a stationary wave system can certainly be defined by the choice of a reference time to which all times are referred, but this is not of value in a circuit where the amplitudes, frequencies and phases of all the components including those that are not integral multiples of the basic wave are continuously changing as they do in any programme circuit. It complicates the issue without adding to our understanding.
I do not invite anyone to believe that it is unnecessary to maintain wave shape to maintain the quality of the sound. Rather I invite everybody to test the suggestion for themselves, but I would say that after many years experience we cannot find any such requirement provided always that the differential time delays are inside the CCIR specified limits. The failure to find any effects are not due to the use of loudspeakers in lively rooms as Mr Coleman suggests, for the waveform distortions due to phase are no more obvious when the best available headphones are used.
I am very familiar with Whitfield's work on the brain's reaction to waveforms, but it's a field in which there is a great deal of contradictory evidence. The work of Galambos, Whitfield and others have shown that there appears to be a constant phase difference between the applied acoustic wave and either the peak or the axis crossing at which the resultant nerve impulse appears. However this is an area in which only the most highly refined experiments will produce significant data, but it is not of real significance in considering the acoustic effects of phase and as I noted earlier it is impossible to include a discussion of every aspect of the subject in any one contribution.
Instead of criticising all the experiments that apparently show that phase effects are of little significance I would invite the critics to suggest an experiment that shows it to be important.
James Moir,
Chipperfield,
Herts.

CITIZENS BAND

There has been a lot of talk recently about Citizens Band, with articles appearing in many publications, The UKCBC (United Kingdom Citizens Band Campaign) was formed in the summer of 1975 after discussions with many interested persons and radio amateurs. Our format is based upon CB clubs abroad, with emphasis on 27 Mhz , although any frequency band allocated for a CB would be welcome. We were represented at the last European CB Convention in Elsbach, West Germany and we encouraged our members to take an active interest in 27 Mhz by listening and exchanging "QSL" cards; in this way interest is extended and not lost after a time. We at
present have some 80 members, many of whom are licensed amateurs.

There are many who say CB is a bad thing. Introduction in Germany recently (0.5 W 12chs. 27 Mhz) has been an enormous success, the model control fraternity have their existing channels, and equipment has to meet government (FTZ) approval to ensure non-interference. Many CBers go on to become radio amateurs.
CB means company for the sick and disabled, for the old and infirm, for the motorist, for mountain rescuers and national disasters, and can be operated by citizens of all ages. Is it not time we had a secondary means of communication available to all in the United Kingdom?
R. C. S. Withers, G8KZH, GCB009

Secretary UKCBC
Halesowen

WAS BAIRD FOOLING THE PUBLIC?

R. W. Burns comments at length in your issue of October 1976 regarding my letter (April 1976) arising from the article by Dr. Waddell, V. W. Smith and J. Sanderson (January 1976). Other letters appeared in Wireless World of June and August.
Being well aware of the events, I do not choose the references to Baird publicity as a history of his achievement. Headings such as "Television Perfected (1926)", "First public demonstration Selfridges' (1925), 'Television, first successful test of new apparatus' (1926), 'Radio motion pictures, now we see by radio' (1926), etc., etc., belong to fiction rather than technical reporting. According to Mr Burns, as many as fifty Baird related articles can be found in Wireless World over the period or one each month. These were not, I think, descriptive articles of Baird's work, the absence of such reports being the cause of much complaint. An assurance that the Selfridge demonstration would make full disclosure, that questions would be answered and photographs permitted proved to be a disappointment. Instead, the demonstration stand was boxed in, maybe for light exclusion, though it was ascertained that but a single revolving shaft provided both scanning and viewing. There was no synchronizing, no phasing and no photosensitive device, the accepted essentials of the Baird elementary system. Members of the public, invited by posters to see television, came in their numbers. They saw images of thick black line drawings to the accompaniment of a machine-generated flicker. The audience was not impressed yet misguided into believing that this was television. Such is the history of one important event, typical of others of 1925-28.

Broadcasting was bringing new enterprises into being. New capital issues to suit inventors and investors filled much space in the daily papers. Dr Waddell in his Wireless World article, tells us that Baird filed no less than 178 patents. These were made available for constructor use by licence issued through Television Press Ltd., a rather unpalatable idea to experimenters, whatever their interests.
Obviously, neither the Post Office nor the B.B.C. would act in a way to support or condemn. To cite the names of experienced senior officials is inappropriate to the 1925/28 situation.

Mr Burns mentions photocell use. Selen-
ium was unsuitable. The practical caesium cell (G.E.C. and B.T.H.) was in common use for picture transmission, sound on film, alarm devices, etc. Baird, however, gave attention to the soft potassium cell (Cambridge SI Co) in uncertain combination with a three-valve ex-service C M. II amplifier. As early as 1926 Baird revealed his visual purple cell, first in confidence and later mentioned in print through a contributor. This biological cell shown in the form of a 2 oz. glass container with a colourless clear liquid is of no interest. It was a stupid notion that dispelled belief in genuine demonstration.
I trust that Mr Burns will see that I have not consulted primary documents, unpublished and published, as he recommends that I should. So much was published yet so little is known of essentials.
F. H. Haynes,

Overleat,
Bovey Tracey,
Devon

FUTURE OF TELEVISION

With the recent increase in TV display sources, may I voice a plea for standardization before we are presented with the confusion that besets so many other aspects of electronics today.
The television set is about to become the main display unit of a variety of new devices. To date the foremost is still off-air material, but already available are "games" of varying complexity; teletext decoders; v.c.r. and v.t.rs and cameras. In the foreseeable future we will also have the P.O. Viewdata, microprocessors and display memories (for short-term messages and notes?); video synthesizers for use with stereo hi-fi for sound-to-visual displays; and gimmicks like 'phone and door-bell indication on screen, baby-alarms, alpha-rhythm feedback, etc.

May I therefore make the following suggestions:
i) television sets as such be phased out in favour of tuners and monitors;
ii) manufacturers adopt a standard video and audio signal level. Video is already fairly universal at IV p-p, 7:3 video to sync, earthed and unbalanced, negative sync.
A modular approach has several advantages: expansion and improvements to an individual's equipment is simplified; servicing is easier and a faulty device will not incapacitate the whole system.

May 1 further suggest a central video/audio switcher analogous to the contemporary hi-fi amplifier. A simple switcher would be mechanical, while a sophisticated unit may include a processing amplifier to clean up noisy signals, a simple colourizer for games and displays. This unit will route signals from tuner, v.c.r., memory, camera and synthesizer to a suitable monitor and hi-fi amplifer, or v.c.r., memory, etc.
Should this modular approach be adopted. I would recommend manufacturers do so at once before further development of the "half-line" chassis type of power supply for colour TV sets. Already v.c.rs sport every conceivable combination of u.h.f. and video inputs and outputs on a bizarre array of plugs. Some games incorporate modulators others not. The excellent sound broadcast by the television companies is still forced through "toy" loudspeakers on even top price colour sets.

I should just like to register my plea for a little sane forward planning before the domestic TV begins to incorporate odd games or simple teletext and Dad still has to change leads behind the set when the kids want to play noughts and crosses with the home computer or Mum wants to check the microprocessed accounts.
Mike Feeney,
Morpeth,
Northumberland

In a recent letter by Dr D. A. Bell (October "Letters") entitled 'The future of television', questions were asked regarding where and when 3D. colour television would appear. Mention was also made of discarded experiments in 3D. colour television colour: discarded by whom?

The question is not where and when such a system will appear but rather when will it re-appear. The first demonstration of such a system was by John Logie Baird in London during 1928 ${ }^{\text {1 }}{ }^{2}$. Professor Cheshire of Imperial College, President of the Optical Society of Britain stated in an article on Baird's system ${ }^{2}$, 'a man sitting at the transmitter was very clearly seen in the receiver in another laboratory in the same building, in perfect relief'. A colour demonstration with a c.r.t. receiver was given to the Lord Selsdon TV Committee in 1934 and colour television was given to cinema audiences in London from late 1937 until the outbreak of World War II. Baird, now reduced to two assistants, Mr W. Oxbow and $\mathrm{Mr} \mathrm{E} . \mathrm{G}$. Anderson (still alive and well, in Hythe) and no income, produced and demonstrated in the garage of his bombed house at Sydenham no less than six different variations of 3D. colour television. Systems included to 1000 line definition, all electronic scanned, screen sizes to thirty inches by twenty-four inches and 3D. imaging with and without viewer glasses.

Wireless World and other magazines favourably reported his demonstrations ${ }^{3}$. It was little wonder that a record attendance of over 600 attended Baird's lecture on 3D. colour television at the I.R.E. in London, November 1943. One article ${ }^{4}$ referring to Baird's images, stated, 'the images were in colour as natural as any colour film . . . and the effect of distance on the screen was quite natural'. Baird was using the world's first multi-electron gun single c.r. tube receiver, the "Telechrome". The bandwidth used by Baird was stated to be the same as that used by the BBC in 1939 and Baird's sets could also receive the normal black and white $B B C$ images.

Regarding holographic 3D. colour television, even with greatly reduced bandwidths, it may prove to be a sledgeh ammer to crack a nut. Interesting military work on 3D. colour displays, of a non-holographic nature, is being presently undertaken and there may be a spin off into civil television.

The Hankey Committee in their 1945 white paper, referring to 3D. colour television, clearly stated, 'vigorous research on such a system should begin immediately, staff are available etc., the adopted system should not embody any patented devices which might be prejudicial to the general interest of British manufacturers'. One wonders how that statement bears comparison with the existing state of affairs today. Since Baird, until late 1945, was the only person to publicly demonstrate such a system, the Hankey Committee were in fact endorsing

Baird's system as the proposed new British system. Baird's premature death in 1946 removed all effective competition for 3D colour television.

Teletext is a descendant of Baird's 1944 facsimile television. Video recording is descended from Baird's video recording on gramophone records (1926) and magnetic discs (1927) and Baird also demonstrated the first public colour television in July 1928 Eurovision was preceded by Baird in the Germany - Britain - Denmark - Holland link (1929-1932), the Telstar satellite was preceded by Baird's transatlantic television of February 1928 and for the future with crowded bandwidths we should have television over fibre optics, again pioneered by Baird, of course, in 1926!
Dr P. Waddell,
East Kilbride,
Glasgow.

References

1. Tiltman, R. F. "How Stereoscopic Television Is Shown', Radio News, November 1928, pages 18-19.
2. Verne, D. A. 'The Stereoscopic Televisor' Television, September 1928, pages 20-21.
3. 'Baird Telechrome'. Wireless World, August 1944, page 316.
4. 'Baird Gives Television, Colour and Depth'. News Chronicle, August 16, 1944.

CRYSTAL DETECTION

It says a great deal for the regard in which the carborundum wireless detector was held ca. 1915, that a ship's receiver was adequately equipped with this kind of detector alone, supposing its spares had not been stolen (Sixty Years Ago, Wireless World, October 1976, page 81).

I have started to assemble a history of the early years of the crystal detector, with particular emphasis on the carborundum detector because of its commercial importance. The most curious feature that has come to my notice (K. Weedon, private communication) is that patent applications for crystal detectors (e.g. Dunwoody) and articles and papers on crystal detectors (Braun, Brandes, Pickard etc.) for use in wireless, only begin to appear (1906) after Fleming had publicly demonstrated the use of his thermionic diode as a wireless detector (Feb. 1905).
If readers of Wireless World have pertinent information of any kind, particularly relating to the first decade of this century, that would amuse, instruct, or generally help to resolve the enigmas of this topic, I should be grateful if they would write to me. Dr. D. P. C. Thackeray, Dept. of Chemical Physics,
University of Surrey,
Guildford

MAGNETIC PICKUP PREAMPLIFIER

It appears that Mr Wolfenden, in his magnetic pick-up preamplifier design published in your September issue, has ignored the reason why designers have, in the past avoided placing a stage with gain before an R.I.A.A. equalization stage, namely the problem of overload capability.
R.I.A.A. equalization initially boosts signals at 20 kHz by 20 dB with respect to signals at 1 kHz ; these subsequently receive 20 dB less gain than signals at 1 kHz , in the preamplifier. For this reason, high frequency (20 kHz) signals appear 20 dB greater at the input and output and $\mathrm{ICI}_{\mathrm{A}}$ than 1 kHz signals and therefore have 20 dB less overload margin. This leaves an overload margin of only 20 dB at 20 kHz , which is not compatible with high fidelity reproduction.
A. N. Barker

Bradford-on-Avon,
Wilts.

Mr Wolfenden replies

Mr Barker appears to have only presented part of the story. An examination of the figures presented by S. Kelly (Wireless World, Dec. 1969) shows that the maximum theoretical velocity that a stylus with an effective tip radius of 0.25 thou can attain is approximately +18 dB with reference to $5 \mathrm{~cm} / \mathrm{sec}$ (the chosen reference in my article), and this occurs at a frequency of approximately 2 kHz . Even this situation is unlikely to arise since the maximum velocity accepted by the recording industry is shown as being approximately +9 dB , occurring at a frequency of about 3 kHz . These peak levels are well within the capabilities of the preamplifier and hence no overload problems should arise.
This situation is born out by tradeability figures published for some pick-ups. For a Shure V15 in a SME3009 arm tracking at lgm the figures quoted are $26 \mathrm{~cm} / \mathrm{sec}$ at 400 Hz , $38 \mathrm{~cm} / \mathrm{sec}$ at $1 \mathrm{kHz}, 35 \mathrm{~cm} / \mathrm{sec}$ at 5 kHz and $26 \mathrm{~cm} / \mathrm{sec}$ at 10 kHz . These figures show the expected peak at frequencies around 1 kHz , the maximum velocity being approximately 17.5 dB above $5 \mathrm{~cm} / \mathrm{sec}$.

It should be mentioned that this situation in no way precludes the use of the high frequency boost used during recording since the energy content of a musical signal declines rapidly above 1 kHz and hence very large stylus velocities are most unlikely to occur. The use of pre-emphasis on recording and de-emphasis on playback in this way does, however, result in a reduction in noise at the frequencies where it tends to be most audible.

DIGITAL FILTER DESIGN

With reference to the article on digital filter design which appeared in the October 1976 issue, there are one or two points which I would like to make.
Firstly, there seems to be some confusion over the title, which is given in the contents as "Use your pocket calculator as a digital filter" and in the article as "Programming a microprocessor to act as a digital filter'". If a calculator is to be used, then considerable dexterity will be needed to operate the filter program in real time!

Secondly, it is not clear from the article that the two coefficients " a " and " $e^{\text {laT", }}$ are constant and thus do not have to be calculated in real time. The algorithm for the first order low pass filter thus reduces to:
$y_{n}=A x_{n}+B y_{n-1} \quad\binom{A=a}{B=e^{-a \tau}}$
Where x_{n} and y_{n} are the input and output values at sample n and y_{n} is the previous output value. Indeed, one of the virtues of
this digital filter is that the calculation only consists of two multiplications and one addition per sample.

Thirdly, the speed of the microprocessor must be carefully considered. If we take high quality speech with a bandwidth of 5 kHz as a typical input waveform, Nyquist's sampling theorem requires a minimum sample rate of 10 kHz or a sample period of 100 microseconds. This means that two multiplications, an addition and some housekeeping functions (input/output, storing the last output etc.) must be done in $100 \mu \mathrm{~s}$. The time problem is exacerbated by the use of double precision arithmetic to increase the resolution as the most common microprocessor wordlength is only eight bits. One particular microprocessor takes 46μ s to perform a subroutine jump. To be fair, this is the slowest but the example serves to illustrate that microprocessors are (with a few exceptions) really quite slow.

We will not see the combination of microprocessors and digital filters until cheap processors and stores which are an order of magnitude faster are available. J. Brazier,

Dept. of E.E.S.,
Univ. of Essex,
Colchester.

PHASE IN THE EAR

I should like to comment on Mr Neate's letter in the October issue. He says that each fibre in the basilar membrane of the ear has its own natural frequency, responding only to that frequency. Hence he argues that the ear is not sensitive to phase. Also, he is seeking an explanation for how the ear can insert a missing fundamental when only the 2nd and 3rd harmonics can be heard.

The ear is a complex mechanism, but I will try to describe both its mechanism and its preceptiveness. Alternating air pressure is converted into movement at the eardrum and this is 'geared down' (i.e. amplitude reduced, force increased) by a system of small bones called ossicles, which move a membrane, the oval window in the cochlea. The cochlea is a helical tube filled with fluid, and is shaped like a snail, with 3 turns. The tube is divided along its length partly by a bony shelf and partly be the basilar membrane, but a small hole, the helicotrema of area $0.25 \mathrm{~mm}^{2}$, which is situated at the centre of the "snail", connects the two chambers. The basilar membrane carries the organ of Costi which has hair cells connected to the brain by several thousand nerves.

Forces applied through the oval window set up wave motions in the fluid such that transverse displacement occurs in the basilar membrane. The position of maximum displacement of the membrane corresponds to the sound frequency, the position along the length of the membrane being logarithmicly related to frequency, with high frequencies causing maximum displacement near the oval window (i.e. at the wide end of the snail, but the basilar membrane is narrowest at this point, the remainder of the dividing wall being formed by the bony shelf).

From the foregoing description it would be difficult to argue that the ear is similar to a large number of very sharply tuned resonant circuits. Measurements of the ear's ability to perceive sounds indicate a response time far less than that which would be obtained by
sharply resonant circuits. The circuits seem to be about criticially damped. The fine discrimination of pitch possessed by most people is achieved by analysis in the brain itself, but approximately 200 ms is needed for accurate discrimination of pitch. The intensity of a sound is signalled to the brain by the number of impulses persecond (up to about 300) along the nerves. Also, nerve fibres ending close to a given point on the basilar membrane have a range of sensitivities.

Sounds reaching each ear will differ

1) In intensity
2) In time of arrival (transients)
3) In phase (continuous tones)

At a frequency of 700 Hz , the spacing between one's ears is about $1 / 2$ a wavelength, and below this frequency phase differences can be perceived, but such differences will decrease with frequency.

Above 700 Hz , the difference in intensity is an important factor in determining the location of a sound. Also, time differences of less than Ims can be perceived. Just how we locate the direction of a sound is one of the mysteries of the brain itself, but it is believed that a process of cross-correlation takes place between the signals from each ear. It is interesting to note that frequencies below 100 Hz are signalled to the brain by direct modulation of the periodicity of nerve impulses. There is no doubt that phase information can be conveyed by this method of signalling. However, phase differences from a point source would be 25° or less at such low frequencies.

From the above description of the hearing process the aim should be

1) At frequencies above 700 Hz , to concentrate on balancing the frequency response between the two (or more) channels
2) At frequencies below 700 Hz , to concentrate on balancing the phase response of the channels
These two aims are far more important than the overall frequency or phase response from microphone to loudspeaker. The ear is very poor at determining changes in the level of sounds, so an overall frequency response of $\pm 2 \mathrm{~dB}$ should be undetectable provided the various channels are balanced.

The ear has a limited ability to perceive distortion products. For example a tone of 1200 Hz at a level of 60 phons raises the threshold of audibility of its 3rd harmonic by 10 dB . Allowing for the lower threshold level of these higher frequencies, this means that a sound pressure level of about 6 dB of 3 rd harmonic is required to overcome the masking effect of 60 dB sound pressure at 1200 Hz . This means that low order harmonic distortion of 0.2% is only just audible. At higher sound levels the masking effect is even greater, and at lower sound levels the absolute threshold of hearing is the limit.

However, high order harmonic distortion is more audible due to the decrease in the masking effect, and intermodulation difference frequencies are also audible due to the rapid decrease in masking effect at frequencies below the masking tone. Hence a sound of 8 dB pressure level at 500 Hz could be heard simultaneously with a sound of 100 dB pressure level at 1200 Hz .

Thus intermodulation distortion of only 0.0025% could be heard under these circumstances. Although the ear can itself produce distortion at high sound levels, the "Tartini" effect described by Mr Neate is probably an effect of the brain itself and not in the ear. D. T. Ovens, B.A.(Cantab),

Havant,
Hampshire.

Mobile radio communication-2

Aerials, equipment and systems used in the UK

by D. A. S. Drybrough, B.Sc., M.I.E.E., Drybrough Communications Ltd.

All the mobile radio services use vertical polarization, basically because it is easy to obtain an omni-directional polar diagram with simple aerial configurations. The standard low-band mobile aerial is a quarter-wave whip, mounted on the roof of the vehicle or some other metallic ground plane as high as possible above ground. In the higher bands, collinear arrays or end-fed half-wave aerials are usual. Low-profile units, encased in tough plastic covers are available for use when height is limited.

Aerials for base stations are open or folded half-wave elements, suitable for mounting on tubular masts or lattice towers. In the u.h.f. band, more gain is usually necessary and arrays of separate dipoles, mountedin a tapering

Fig. 4. Block diagram of typical low-power a.m. mobile transceiver.
fibreglass tube or individually, are then fitted. The last-mentioned may also be so mounted that gain is obtained in both horizontal and vertical planes. Directional aerials, usually of the Yagi type,. are used for links and some discrimination against unwanted signals may be obtained by using cross-polarization.

Portable set aerials are limited in length by their environment and so helical types, about 0.1 wavelength long, are popular, despite their narrow bandwidth and low efficiency. Body absorption distorts the radiation pattern of aerials mounted close to the body and dips of 15 to 20 db according to band, are normal.

Attempts have recently been made to reduce the amplitude of signal fluctuations which are so evident when a moving vehicle is involved. Trials have shown that it is possible to reduce such fluctuations from peaks of over 27 dB to

15 dB or less. Such aerials with their associated circuitry are somewhat expensive but may well be justified for important long-range f.m. systems or where data signalling is in use.

As systems multiply so the better sites are becoming more and more crowded. Some relief from the consequent maze of aerials is sometimes achieved by using multiplexing devices to combine several transmitters or receivers from one aerial.

Typical equipment

A block diagram of a typical low-power a.m. mobile transceiver is given in Fig. 4. The receiver output signal to noise ratio is at least 8 dB for an input e.m.f. of $1 \mu \mathrm{~V}$ with 30% modulation and the unmodulated transmitter output is 6 W , averaged over the v.h.f. bands. All but the heavier components are mounted

on a single printed circuit board, alongside which is fitted the transmitter strip in a screened box. The whole assembly is mounted in an aluminium case with a plastic front bezel, flanged to protect the controls without constituting a hazard in the event of an accident to the vehicle. The loudspeaker and microphone are connected to the main unit by multiway leads, the latter coiled to prevent it dangling round the feet of the operator. A pair of heavier leads connects the unit to the battery supply of the vehicle.

The receiver is a single superhet with an i.f. of 10.7 MHz , shaped by a multipole crystal. A peak-clipping noise limiter precedes the dual-purpose audio amplifier which feeds the loudspeaker on receive or modulates the transmitter on transmit. Operating controls are limited to an on/off switch volume control, channel selector and mute level adjuster, all on the front panel of the main unit, plus a press-to-talk switch on the microphone. Current demand at 12 volts is about 250 mA on full receive and 1.5 A on transmit.

Public radiotelephone mobile units are basically commercial high-power f.m. v.h.f. mobile units, modified to meet the requirements of the UK Post Office Radiophone service. They operate in the upper maritime band in one of ten preset frequencies, one of which is a control channel to which it returns after a call. A mobile unit is simplex but the base station is duplex. The selective calling system adopted for this service is similar to the maritime C.C.I.R. system but with different tone frequencies for each digit of a five-unit code number.

Point-to-point radio links may be employed by almost any type of service to interconnect control points to distant base stations when suitable telephone lines are not available or would be too expensive to install. The simplest installations comprise outward and return links, using one radio-frequency channel in each direction, and carrying one voice channel, possibly with some superimposed tone or control signalling. These operate mainly in the v.h.f. and u.h.f. bands. More complex systems, using ' $1+1$ ' multiplexing circuits to provide two speech channels or one speech channel plus many signalling and control tones, usually operate in the u.h.f. band, whereas larger-capacity multichannel installations employ frequencies in the $470 \mathrm{MHz}, 1500 \mathrm{MHz}$ or s.h.f. bands. Directional aerials confine radiations to the required direction, and powers are kept low in accordance with the type approval specifications for these systems, which usually cover the performance of complete installations as well as of individual transmitters and receivers. Link transmitters, at least for the return path, usually radiate continuously to enable supervisory signals to be sent at all times to the control point. When more than one speech channel, or
when speech combined with important ${ }^{\text { }}$ data or control signals are carried, the radio units are usually duplicated and operated from low-voltage d.c. power supplies, derived from storage batteries with float-charging facilities to safeguard communication for at least the time needed by a serviceman to reach the base station and repair a power fault.
In spaced-carrier systems, the control point has to feed signals in several directions simultaneously to its base stations. The link transmitter in such cases may have two or more parallel output stages feeding two or more directional aerials, arranged in such a way that failure in one section has little effect on the remainder. Except in special cases, the frequency stability of link transmitters and receivers need not be higher than for normal base station units but it is advisable for their audio fidelity to be as high as possible to minimise degradation of the signals carried by them.

Paging systems

Probably the most important services using the mobile radio bands but not strictly mobile radio are the paging services, in which one carries a receiver which alerts the wearer when called by a base station. There are many variations on the basic theme, ranging from the fireman's call system, in which relatively large numbers of receivers are alerted by each call, to systems in which a few receivers are fitted to accept not only individual calls but also several different coded signals per call. In some systems a verbal message is permitted and in some a voice reply can be transmitted using a very low power v.h.f. or u.h.f. transmitter. Such systems are scarcely paging systems as a reply by radio is excluded in the C.C.I.R. definition.

In addition to the many private paging systems the Post Office is about to open a service similar to that in the Thames Valley area covering the London area. Up to 100,000 rented pagers will be catered for and calls will be possible from anywhere in the UK. The Home Office operates an extensive system of paging for firemen, whereby a selected crew can be called out for duty at any time if they are within the range of the high-band v.h.f. base stations fitted at fire stations.

On-channel repeaters

It sometimes happens that a small but important area within the nominal coverage of a base station is not adequately covered. By the use of on-channel repeater techniques such areas can be covered without involving extra frequencies and without the complication of the selective switch-ing-in of transmitters and receivers. The technique is based on achieving very good front/back ratios for two aerials, between which is interposed an ampli-
fier. So far, such systems have been confined to the u.h.f. band because of the problems in achieving sufficiently good isolation with small aerials in the lower bands. The aerial looking towards the main base station has high directivity to exclude unwanted signals and maximize pickup of the wanted signal. The other aerial is arranged to cover the required area which must overlap on the beam of the first. Beamwidths of up to 150° are practicable. A second set of similar aerials provides the return path, the signals traversing this link in the opposite direction.

Working gains of up to 90 dB are possible with a margin of stability to guard against changes in effective isolation between the aerials due to aircraft and other movements or changes to path losses. This gain, and the auxiliary control functions, are not readily obtainable by straight amplification and a drift-cancelling fre-quency-changing system is used with most gain at an i.f. of about 21.4 MHz . Great care is necessary in the design of amplifiers for both inward and outward paths. In the inward case, the input signal is fairly constant and at a good level, and the problems are to ensure that the output to the second aerial does not exceed the permitted power level and that it contains the minimum possible distortion products and noise. In the return amplifier, the input signal is variable and probably low in level, and it is necessary to avoid re-transmitting a very poor signal, or even just noise, and so the gain of the amplifier must not be allowed to rise so high that oscillation takes place. In both cases, spurious responses and emissions must be low in the presence of an on-channel signal. Repeaters may be used in tandem, and can be extended to cover a linear area such as a railway or a motorway when the numbers of vehi-. cles does not exceed the capacity of one radio channel.

Selective signalling

The average land-mobile radio system, consisting of a base station and 10-12 mobiles, is similar in essence to a party line in telephone practice. It therefore suffers from the same difficulties of lack of privacy, of lack of guaranteed immediate access and, to a rather smaller extent, of limitation to the numbers of subscribers who can share the circuit. One school of thought claims that the fact that all users in one channel hear all messages on the channel leads to very efficient use of that channel because the users naturally queue up and interject their messages in breaks in traffic as they occur. This is true if the users can all pay close and continuous attention to traffic on the channel for some time before making a call, but this is not always possible and could be time-wasting. A stream of messages of no direct concern to the listener can be very tiring to listen to
and leads to inattention or to irritation, with consequent action to reduce audio level to the extent that intended calls are missed. In such circumstances, and where the channel is exclusive to one user such as the power industries, selective calling can be of great benefit. The use of selective calling on shared channels is not encouraged because the calling tones could cause more irritation to users not fitting the system than the usual voice calling.

A large number of selective signalling systems'have been developed, and there has been little standardisation in the land services except that signals emitted when calling must not exceed the channel width allowed for speech. The tones used for the codes may be in the audio band or may be below it. When subaudio tones are used, the bandwidth available is narrow and so the spacing between tones in a system with sufficient code numbers for normal use has to be very small. In the American EIA system known as continuous tone-coded selective signalling, two groups of tones are specified between 67 and $250.3 \mathrm{~Hz}, 33$ in all, with a ratio of about 1.15:1 between successive tones in each group.

Frequency stability of generators and of detectors must be good, and small reeds have been widely used to control their frequencies with minimum demands on space. This use of high-Q factor circuits prevents rapid keying of tones, and it is customary to switch the calling tone on for the duration of a transmission, so that it serves as an unlocking signal rather than a code call. This is specially useful when a mobile wishes to call one of a number of control points or base stations operating on the same frequency, or when control wishes to contact only one of several groups of mobiles. Because of the narrow bandwidth, modulation depth for the tone can be low, and it can readily be filtered out from the speech path.

Where a large number of alternative codes are required, one of the many systems using in-band tones must be chosen, since there is little, if any, space above the audio speech band in 12.5 kHz channel systems. Popular choices are the multiple, simultaneous-tone systems and the sequential tone systems. The signalling time rarely exceeds 2 s and may be shorter than 0.5 s and thus does not use up excessive channel airtime. In the maritime services, the sequential tone system specified by the CCIR is used both for v.h.f. and for m.f. and h.f. calling.

This system is a sequence of five digits, each represented by a specific tone except when a digit is repeated in the number, in which case an eleventh tone is used to indicate second (repeated) digit. Each call is repeated twice, and there is provision for the insertion of additional information, such as the identity of the calling station, between the repeats. An 'all station' call is possible by the transmission of the
whole series of ten tones in rapid succession several times. In the international aeromobile service, the standard system consists of two pulses, each of two simultaneous tones (Selcal). The tones lie in the range $312-1047 \mathrm{~Hz}$ and are modulated on the carrier to a total depth of at least 60% at peak.

Area coverage systems and voting

When the area to be covered by one v.h.f. or u.h.f. system exceeds that provided by one base station, special arrangements can be made to obtain the required result. One method is to provide selector switches for several base stations so that the operator can choose the station which he thinks will provide the best communication. As a refinement on these arrangements, the base-station receivers can be fitted with a signal-level assessor which transmits back to the operator a level-indicating signal. Next, automatic means can be provided at the control point for selecting the best signal from the outstations and switching it to the operator (voting system), usually with control of the associated transmitter. Time constants are made short enough to allow change from station to station when signal levels change but not to switch for normal fades lasting some tens of milliseconds. The next step is to activate all transmitters simultaneously, especially where there is a need to reach all mobiles urgently.

The first successful method, proposed by Brinkley in about 1946, was the a.m. spaced-carrier method in which all the transmitters operated in the same channel but their carrier frequencies were spaced by several kilohertz, a spacing so chosen that the beat notes produced in receivers when two or more signals were received simultaneously were at frequencies higher than the unwanted audio band and could be filtered out. This arrangement was widely adopted by the police and aeromobile services and is still in use today, although the channel widths of 25 kHz now in force allow only three carriers, spaced 6 or 8 kHz apart and kept closely to these spacings by highly stable crystal oscillators at each transmitter.

Alternative f.m. systems were also developed about the same time, using synchronous or quasisynchronous carriers. Great care was taken to equalize phase shifts in the links from control to outstations and to make audio and modulator responses alike for all transmitters. In the early systems, the link frequencies were used as reference frequencies for the main area-coverage carrier frequency. The outgoing link carrier frequency was chosen to have some simple numerical relationship, such as $3 / 2$, to the area-coverage carrier frequency and so could easily be translated to it by simple dividers and multipliers.

Later systems have used rather less

Base station assembly (Pye)

exact relationships and a stable offset frequency has been added to obtain the required carrier frequency. In other schemes very stable crystal oscillators generate the desired carrier frequency at each outstation, and the oscillators are set to yield carrier frequencies within a few hertz of one another and of the nominal frequency. Good results have been obtained using such systems in 25 kHz channels, and satisfactory operation in 12.5 kHz channels has been demonstrated.

Difficulties, in the shape of distorted signals, are met in some areas of overlap between coverage areas of two or more base stations, but radiated powers can sometimes be manipulated and aerial directivities chosen to position such poor areas where they cause least upset to the service. In all cases, the maintenance of equipment, once set up, muit be of a high standard if good results are to be sustained.

Under the aegis of the Home Office, the University of Swansea has carried out field trials of three alternative area-coverage systems, simultaneously in South Wales. The systems used were the a.m. and f.m. systems based on stable crystal oscillators and a similar system using double-sideband diminished carrier (d.s.b.d.c.) modulation which was selected by the university as a likely alternative to the existing police 50 kHz systems, usable in 25 kHz or narrower channels. This system did show good results but the a.m. system was also acceptable and has been developed into commercial installations with good results. The work is continuing with more emphasis on independent sideband signals, especially for data transmission.
Other simpler systems may be adopted where the area to be covered is comparatively small. The on-channel repeater system is one such arrangement, and Fig. 5. shows one large system which uses several o.c.rs, in one case two in tandem, to help cover the Greater London area.

Where permitted by authority - and permission is generally restricted to thinly populated areas with a low density of radio systems - hill-top repeaters may be used to extend coverage for mobile-to-mobile working or for mobile to a 'fixed mobile' used as a control point. It is highly desirable that a specific unlocking code be provided for each repeater, since their high sites may be subjected to many cochannel interfering signals from distant installations. Subaudio tones are often used for this purpose.

In future it is possible that satellites may be used by the more important services covering very large areas. Such satellites are already under intensive study for maritime and aeromobilecommunication services. They will also provide navigational information and rescue facilities which will be of great value in these services. Frequencies in the L band, around 1500 MHz , have already been allocated for these satellite services. Designs for shipboard equipment are available, and operational systems are in an advanced planning stage.

Cellular systems

Public radiotelephone services require better than average coverage over wide areas. Once contact has been established between a mobile and a base station connected to the public tele-
phone network it should preferably not be broken during the conversation, however far the mobile travels in that period. On the other hand, the maximum number of conversations should be handled by the available channels. One system of achieving these ends is the 'cellular' system in which groups of cells, each tailored in area to suit local conditions, use a small group of frequencies which are repeated for other groups of cells not far removed geographically. Base stations are of low power to reduce cochannel interference and cell sizes are very small, about 1.5 to 10 km radius, to ensure capture within the cell by the local transmitter. Cell radii are chosen to cater for average journeys within them but a 'hand-off' system is provided, by computerized control of the base stations, so that the mobile is passed automatically from one cell to another when signals materially change in level. No system of this type is yet installed in the UK but its attractive frequency economy has made it the subject of recent study.

Interrogating systems

The power industry operates interrogating systems for the collection of data

Fig. 5. Typical use of "on-channel repeaters" in an area-coverage system for Greater London.

from outstations, some of which may be fixed and located at fairly inaccessible points and some, especially in other applications such as in public transport, may be mobile, e.g. in buses. A central base station sends out a selective call to each outstation in turn and receives from each the data stored in a memory at that point and sent, with an identifying code, back to base. A similar system is under study and experimental investigation by the Home Office for the rapid transfer of data to and from police vehicles.

Because these fleets of vehicles can be large, and rapid updating of information is desirable, fairly high data rates are necessary, and systems working at around 1200 bauds are under test. Such systems would feed into automatic displays and recording systems at the control point and into the police computer. One of the facilities under study is the provision of a vehicle-location map, kept constantly up to date by signals from each vehicle according to data entered by the driver, possibly on a gridded touch map of the area.

Other systems

Data transmission. Although a mobile radio system is very far from the ideal medium over which to transmit data signals, pressure on the available radio spectrum is high and the saving in time to be achieved through the use of data is too great to be ignored. Equipment and systems specifically designed for data transmission have therefore increased greatly in numbers in recent years and are proving their value in all but the simplest schemes. Problems of flutter and noise are still not fully solved and signal levels higher than could be used for speech signals are often necessary to guarantee reliable results. Some systems manage to combine speech with data signals by inserting the latter in a slot filtered out of the speech band, but data rates are then necessarily slow. Automation is also being applied in another area, that of base station control. The choice of the best signal and the best transmission path can be made by computer instead of by an operator, leading to economies in systems in which a number of people may wish to contact mobile stations.

Leaky-cable systems Recently, a partial answer has been found to the problem of transmitting radio signals down tunnels or in severely screened areas. It has been found that the signals leaking. from a cable laid along the tunnel can be received by portable sets of standard design up to a few metres from that cable. Transmissions from the portable sets is also transmitted by the cable to a receiver coupled to it at a suitable point. Tunnels many kilometres long can be covered by using several cables in series, possibly with a return link by telephone line above ground.

Remote control servo

An alternative design to that proposed in M. F. Bessant's article on multichannel proportional control

by J. H. Cook

In a time-division multiplex system, the command to an individual servo amplifier has to be expanded so that the motor current will be sustained in the interval between commands, which in this case is approximately 20 milliseconds.
In the original design ${ }^{1}$ this expansion is realised by charging C_{E} during the control pulse and maintenance of this charge keeps the motor turning. In practice, the charge leaks away after about 5 milliseconds. This causes the motor to turn slowly, since it is not supplied with current for most of the cycle time. Another disadvantage is that, as the servo nears its end point the pulse charging C_{E} becomes narrower; hence, there is less charge on C_{E} and the servo movement is even slower. Increasing the value of C_{E} to $4.7 \mu \mathrm{~F}$. causes the servo to move faster but then the dead space becomes impractically wide and renders small, accurate movements of the servo impossible.

New design

The present circuit completely separates the mechanisms which set the dead space and which ensure that the motor is driven hard even when it is near its end point. It can be seen from the circuit in Fig. 1 that it is developed from the original and I_{2}, G_{9} and G_{10} in Fig. 1 are equivalent to I, G_{1} and G_{2} in the original. G_{5} and G_{6}, G_{7} and G_{8}, G_{11} and G_{12}, G_{13} and G_{14} form set-reset latches, while I_{1} and G_{1}, I_{4} and G_{3}, I_{5} and G_{4} give negative-going pulses on a positive-going edge ${ }^{2} . I_{3}$ and G_{2} are similar but the pulse length is longer and variable. This pair acts as a monostable which is used to set the dead space time.
It is necessary for G_{15} and G_{16} to be open-collector gates and one package can be saved by also making G_{9} and G_{10} open-collector gates, providing them with $1 \mathrm{k} \Omega$ resistors at their outputs. These four gates are in an SN7401N package. The rest of the gates are in

Fig 1. Circuit of improved servo design.

Fig 2. Waveforms when servo is stationary.

SN7400N packages and the inverters are an SN7404N.

Channel X is the channel currently controlling the servo and channel $\mathrm{X}-1$ is the previous channel. If X is the first information channel, then X-1 is the synchronizing pulse.
The functioning of the servo circuit can best be followed by study of the waveforms at the points marked in lower case letters in Fig.1. These waveforms are shown in Figs. 2, 3 and 4 for different states of the servo; $\mathbf{b}, \mathrm{g}, \mathbf{h}$, and i are shown longer than they actually are for clarity. Pulse \mathbf{b} is derived from a as explained above and resets all the set-reset latches, while \mathbf{c} is the control pulse for the servo.
Fig. 2 shows the waveforms when the servo is stationary. For the motor to turn there must be a negative going pulse at either m or 1 to set one of the latches $\mathrm{G}_{11}, \mathrm{G}_{12}$ or $\mathrm{G}_{13}, \mathrm{G}_{14}$. In the conditions as in Fig. 2 neither of these things happen. It is arranged that \mathbf{k} becomes logic 0 before \mathbf{d} becomes logic 1. If both these are switched "simultaneously," there is sufficient propagation. delay through the gates for a momentary pulse to be present at m, enough to set G_{11}, G_{12}. It is also arranged that d reverts to logic 0 before \mathbf{k} becomes logic 1 , again to ensure no pulse at m. (The same applies to $\mathbf{e}, \mathbf{j}, \mathrm{i}, \mathrm{G}_{13}$ and G_{14}.) Hence both q and r remain at logic 1 and the motor does not move.
Fig. 3 shows the waveforms when the input pulse length at \mathbf{c} is shorter than

Fig 3. Waveforms when input pulse length at c is shorter than the output pulse length from the monostable SN74121N.
the output pulse length from the monostable SN74121N. In this case, \mathbf{j} will revert to logic I before e becomes logic 0 . Therefore a negative-going pulse will appear at 1 . This will set the $\mathrm{G}_{13}, \mathrm{G}_{14}$ latch, which will cause n to go to logic land r to become logic 0 . This will turn on the motor, which will turn until the conditions in Fig. 3 prevail, when the motor will stop.

It can be seen that once the set-reset latch is set it will remain set for nearly the whole cycle time (20 milliseconds). It does not matter how short the pulse at 1 is, which means that the motor speed is independent of the distance from the end point.

Fig. 4 shows the waveforms when the output pulse from the monostable SN74121N plus $\mathrm{I}_{3} \mathrm{G}_{2}$ is shorter than the control pulse at \mathbf{c}. In this case the servo is driven in the opposite direction, in a similar manner to that described above.
The dead space is adjusted by setting the 220 ohm trimmer to as small a value as possible compatible with the servo not hunting.

References

1. Bessant, M. F. "Multichannel proportional remote control," Wireless World, vol. 79, No. 1456, pp. 479-482, Oct. 1973.
2. Cole, H. A. "T.t.l. trigger circuits," Wireless World, vol. 78, No. 1435, pp. 31-32, Jan. 1972.

Fig 4. Waveforms when the output pulse from the monstable SN74121N plus $I_{3} C_{2}$ is shorter than the control pulse at c .

Announcements

Repairing semiconductors

On page 52 of the November 1976 issue we published a letter from a reader who had found it possible to remove the protective casings from some defective transistors and effect repairs. We have since received a number of letters pointing out that many semiconductor devices contain poisonous substances. The danger of beryllium oxide poisoning particularly concerned readers. It appears that semiconductor manufacturers are aware of this and other dangers beryllium oxide is only one of many toxic substances used in semiconductors. At least one manufacturer, concerned about his liabilities under the Health and Safety at Work Act, wrote to his customers in October to point out that the dangers from breakage in use and disposal, though small, did exist and were worthy of the customer's attention. The equipment maker is responsible for any such danger and would normally be obliged to label the product accordingly. In the case of semiconductor components, however, there is usually no room for a label.

In view of all this we must strongly advise against any tampering with the packaging of transistors. We thank those who drew our attention to the problem.

New portable DMMs. Only Fluke make themonly ITT sell them.

New Fluke DMMs Fluke have introduced two new digital multimeters. That is big news in itself, because when you are already producing the best selling instruments on the market, how do you bring off another success? The answer has been to take an outstanding specification and shrink it into a truly portable instrument.

True RMS a.c. This is the most important feature - especially when you realise that it is incorporated in a battery operated instrument that measures less than $6 \times 5 \times 2^{\frac{1}{2}} \mathrm{in}$. and weighs only $2^{\prime}, 2 \mathrm{lb}$. It means that you can take lab. quality measurement out in the field, free from the shackles of size, weight and power points.

Two versions - $8030 \& 8040$ Both models offer five ranges over
five measurement functions and include autozero. The 8030 is a $3^{\prime}{ }_{2}$ digit instrument with a useful diode test facility. The 8040 has $4 \not / 2$ digits and incorporates autoranging.

The only way to buy Both these briefcase sized DMMs are available from ITT Instrument Services; and from nobody else, not even from Fluke. Which brings together the best sellers among portable DMMs and the biggest name in the instrument distribution business. That means no-delay telephone ordering, streamlined internal processing, and delivery from stock

Ask for a spec. sheet now. Or better still, get ITT to arrange a demo. You will be more amazed by the performance than the price!

Motorola introduces POLYVALENT Development System.

a. To evaluate the M6800 family.
b. As a total development system.
c. As the multi-terminal.
3. 8 components available in several combinations, or separately:-

- Stand-alone computer on a single board.
- Display interface module (unique interface with
a TV system).
- Internal connecting cable sets.
- 5" display monitor. Medium speed printer (not shown) at a separate cost of $£ 611$.

[^2]Motorola Ltd., Semiconductor Products Division,
York House, Empire Way, Wembley. Tel: 01-902 8836.
UK DISTRIBUTORS
Celdis Limited, Reading. Tel: (0734) 582211.
Cra'ner Electronics, Ealing. Tel: (01) 5793001.
GDS (Sales) Limited, Slough. Tel: (75) 31222.
ITT Components, Harlow. Tel: (0279) 26777.
Jermyn Industries, Sevenoaks. Tel: (0732) 50144.
Lock Distribution, Oldham. Tel: (061) 6520431.
Semicomps Limited, St. Albans. Tel: (61) 24522.
-Recommended resale price. Subject to currency change. VAT extra.

Motorola offers a complete Microprocessor library for just $£ 13 \cdot 50$

Three books for the price of two.

This library comprises:-

1. M6800 Microprocessor Programming Manual (worth £3.75.)
2. M6800 Microprocessor
3.

With Motorola's complete MPU library at your disposal you're equipped to make your next move into Microprocessors

```
Please send me and invoice my compan THE COMPLETE LIBRARY \(£ 13.50^{*}\) \(\square\) M6800 Programming Manual only £3.75* \(\square\) M6800 Applications Manua only \(£ 950^{*}\) \(\square\) Understanding Microprocessors only \(£ 2.75^{*}\) "(p\&pextra)
```


Name

Company

```
Address
```


Tel No

(A) MOTOROLA

```
Semiconductors
```

MotorolaLtd. Semiconductor Products Division. York House. Empire Way. WemJley Tel No 01.9028836

How to make the most of your free time.

Heathkit make the world's largest range of electronic kits. Including hi-fi, amateur radio, test equipment and general interest kits.
Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, besides making an attractive, useful piece of equipment, youill also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon well send you our latest catalogue.
Heath (Gloucester) Ltd., Dept.WW-126, Bristol Rd., Gloucester, GL2 6EE.
Tel: Glos (0452) 29451.

HEATHKIT

BETTER BUILT BECAUSE YOU BUILD IT YOURSELF
The new Heathkit catalogue.Out now $\overline{F R} \bar{E}$
To: Heath (Gloucester) Ltd..Dept.WW-126, Gloucester,
GL2 6EE Please send me my Heathkit catalogue.
I enclose an 11p stamp for postage.

Name
Address
I
Postcode

Showrooms at 233 Tottenham Court Road. London and Bristol Road, Gloucester.

We have the right contacts

In fact we think one can never do enough
to be near customers. That's why we always do our utmost to make our distribution network tighter, more efficient.

Both through our sales office - for the larger
supplies - and through our franchised distributors. The following is a list of our contacts with you in the U.K. and Eire.

Distributors: Distronic Ltd. 50/51 Burnt Mill, Harlow, Essex.
Tel: (0279) 32947.
Electronic Component Supplies Ltd. Thames Avenue, Windsor, Berks.
Tel: (07535) 68101
24 Broughton Street, Manchester.
Tel: (061) 831-7428
192 Moulsham Street, Chelmsford, Essex.
Tel: (0245) 69543
Hawnt Electronics Ltd.
Firswood Road, Birmingham.
Tel: (021) 784-2485

ITT Electronic Services Ltd. Edinburgh Way, Harlow, Essex. Tel: (0279) 26777

30 Denmark Street, Bristol Tel: (0272) 290125

142 Phibsborough Road, Dublin.
Tel: Dublin 307522
62 High Street, Johnstone,
Renfrewshire. Tel: Johnstone 24357 56 Welford Road, Leicester.
Tel: (0533) 548292
110 Corn Exchange, Manchester.
Tel: (061) 834-7827
Quarndon Electronics (Semiconductors) Ltd. Slack Lane, Derby.
Tel: (0332) 32651

And that's why

SGS-ATES (U.K.) Ltd., Aylesbury, Tel (0296) 5977

Earthing, shielding and filtering problems

4-Magnetic pickup problems

by R. C. Marshall, M.A., M.I.E.E. Xerox Research (UK) Ltd.

Problems resulting from ineffective or insufficient grounding, shielding or filtering are not easily anticipated or understood, yet this is one of the least-taught aspects of the electronic engineer's art. Difficulties arise from components not shown on circuit diagrams, modes of operation not contemplated by the designer and, worst of all, several such modes operating at the same time. Cure of one mode may not eliminate the symptom - only when all spurious couplings are removed at the same time will correct operation occur.

Magnetic coupling is a problem in low frequency, low impedance systems. The relevant distinctive design techniques are discussed in this, the last article of the present series.

Current flow around one circuit induces a voltage in series with another circuit in accordance with the laws of electromagnetism. The effect exceeds electrostatic couplings only in low impedance, low frequency circuits. Power supplies, dynamic microphones and industrial magnetic transducers are commonly involved. White ${ }^{1: 3}$ has concluded that for frequencies below 100 kHz , magnetic coupling will be dominant if the product of the impedance of culprit and victim circuits is less than $300 \mathrm{ohm}^{2}$, and electric coupling will be the major effect if the impedance product exceeds a value of $10,000 \mathrm{ohm}^{2}$. The exact breakpoint depends on the circuit geometry.

Case 8

Situation: Two circuits running adjacent to one another as in Fig. 8(a).
Symptom: Signal transferred from one circuit to the other, despite non-ferrous shielding.
Problem: Inductive coupling (that is, transformer action) between current flow in the source circuit loop and the receiving circuit loop ${ }^{14}$.
Cures: Reduce the area of either loop, thus reducing the flux generated or

linking the receiving loop. This can be done by careful layout particularly of printed circuit boards, by avoiding ground returns and by twisting together go and return conductors ${ }^{15}$ see Fig. 8(b).
Separate power and signal cables into distinct bundles.
Re-route cables.
Enclose ground and return conductors together in one magnetic shield, such as steel conduit or a lapping of high-permeability magnetic tape.

Case 9

Situation: Two circuits adjacent to one another, one involving a transformer, motor, saturable reactor, relay, or electromagnetic transducer. These may be physically separate from each other. Symptom: Signals, particularly at
supply frequency, are transferred from one circuit to the other, despite non-ferrous shielding.
Cures: Reduce loop areas. Separate or shield cables as in case 8.
Shield transformer with magnetic material ${ }^{16}$. Attenuation of 30 to 60 dB at 50 Hz is normal. Copper or aluminium boxes only provide such attenuation at 10 kHz and above, but will be useful for high-frequency power transformers and line-scan components for cathode ray tubes.

To be effective, magnetic shielding boxes should be made of high permeability material, and be of small physical size. They are therefore best used around signal transformers rather than power transformers. To preserve the high permeability, these shields should not be bent, cut or drilled after annealing. Joins should be overlapped.
Two concentric magnetic shields are much less prone to poor performance caused by leakage at joints. One shield will also protect the other from saturation, allowing the use there of a very high permeability alloy.
Provide a thick copper shading ring around the whole transformer, coaxial with the windings. Unlike a magnetic material, this cannot be saturated, but attenuation is limited. However, the technique is used in American TV receivers.

Were there are transformers in each circuit, orient them so that there is minimum coupling. Likewise, in the vicinity of cathode ray tubes transformers should be so positioned that their stray field is along to the electron beam.

Often the transformers will be in different pieces of equipment and this technique cannot be used. (Try standing an audio pre-amplifier on top of a large constant voltage transformer!). Use a uniformly-wound toroidal transformer or a balanced construction such as the double-bobbin transformer of Fig. 9.
Avoid the use of signal transformers by using amplifiers with balanced inputs.

Concluded on page $6 \overline{6}$

Avoid the use of saturating power devices such as megnetic amplifiers and constant-voltage transformers.

Conclusion

The four articles are a brief survey of a wide subject, intended to ease design synthesis and problem solving. Sometimes this seems a black magic subject, but the magic lies in being methodical and considering all sources of interference, abd being careful to solve one problem without causing another.
Where a design comes close to the
limits of what is possible, reference should be made to the bibliography.

References

13. EMI control methods and techniques, in Efectromagnetic Interference and Compatibility Series, vol. 3, D. R. J. White, Germantown, Maryland, 1973.
14. Interference coupling - attack it early, R. J. Mohr, EDN July 1969, p. 33. Theoretical treatment of unshielded cable coupling, for short cables over a ground plane. Bibliography.
15. Shield grounding and circuit grounding effectiveness in interference reduction in the 15 kHz frequency region, G. M. McDonald and G. R. Taylor. IEEE Trans. vol. EMC8 no. 1 March 1966. In shielded twisted-pair systems no single-shield grounding scheme is optional for all circuit grounding schemes. Balancing a circuit gives about a fold improvement.
16. Magnetic Shielding, publication T28/1274/DP Telcon Metals, Crawley, Sussex.

Literafure Received

A wall-chart of U.S. minicomputer makers and their equipment available in the UK is being distributed free. Forty companies are listed and the tabular information is concerned with c.p.u., I/0, main memory, software, peripherals and prices. The chart can be obtained from Computer Automation, Hertford House, Denham Way, Maple Cross, Rickmansworth, Herts WD3 2XD . . WW401

Voltage regulators are the subject of a booklet, sent to us by Lambda. Devices are available in TO-100, TO-23 or chassismounting package, covering the range $150 \mathrm{~mA}-30 \mathrm{~A}$ and up to 30 V . The address is Lambda Electronics Ltd, Abbey Barn Road, High Wycombe, Bucks.

WW402
A c.m.o.s. data book, part of Motorola's Semiconductor Data Library, is now available. In 566 pages, the book gives full specifications of 13 series components and includes information on reliability and handling. It is obtainable from Motorola franchised distributors at $£ 2.50$.

Measuring instruments, repair and calibration services offered by Euro Electronic Instruments are described in a new brochure, which can be had from Shirley House, 27 Camden Road, London NWIE IYE. WW403

A a.m. signal generator, the SG2000 from Advance, is described in a new leaflet. Frequency range is 160 kHz to 230 MHz and leakage radiation is quoted as less than 1 microvolt below and better than $3 \mu \mathrm{~V}$ above 35 MHz . The leaflet is obtainable from Gould Advance Ltd, Roebuck Road, Hainault, Essex WW404

Moving-coil meters and accessories are shown in a brochure, sent to us by BPL. Four ranges of instruments are described, includ-
ing the sub-miniature full-scale movement. BPL, who are approved to Defence Standard 05-24, are at Radlett, Herts, WD7 7HJ.

WW405
Paper tape formats for the programming of p.r.o.ms and field-programmable logic arrays are specified in a leaflet from Rapid Recall. ASCII/hexadecimal, ASCII/octal, binary and BPNF formats are described for p.r.o.ms and binary and ASCII/hexadecimal for f.p.l.as. Rapid Recall Ltd, 9 Betterton Street, Drury Lane, London WC2H 9BS ... WW406

The Newport series of electromagnets are illustrated and specified by Oxford Instruments in a new brochure, NEM10. The magnets are designed for wide application in industry and in teaching. Oxford Instruments, Osney Mead, Oxford, OX2 0DX

WW407
High-reliability devices is the title of a data book from RCA, which describes c.m.o.s. and bipolar integrated circuits, m.o.s.f.e.t. devices, low and high-frequency power transistors, thyristors and triacs for applications where reliability is essential and application note abstracts are included. The book is available from RCA Ltd, Solid State Europe, Sunbury-on-Thames, Middlesex.

Linear transducers of both potentiometric and differential-transformer types are made by Penny and Giles, who describe the range in a new publication. Full mechanical and electrical information is included. Penny and Giles Ltd, Mudeford, Christchurch, Dorset

WW408
BSI has just published BS 5394 - Radio interference limits and measurements for lighting equipment: Part 1 Luminaries for tubular fluorescent lamps. This is another in the series of specifications dealing with the abatement of radio interference. It is divided into three parts, Part 1 dealing with radio interference from fluorescent lighting equipment. The other two parts are still under consideration. BS 5394 may be obtained from BSI Sales Department, 101 Pentonville Road, London NI 9ND. Price $£ 2.40$.

HF predictions

As previously reported there were first signs of a new sunspot cycle in September and October of 1975 but no further evidence appeared until March 1976. The new cycle does now seem to be firmly established.

Optical fibre communication - 2

Transmission equipment for field demonstration

by M. Ramsay, A. W. Horsley and R. E. Epworth Standard Telecommunication Laboratories Ltd

The introduction of an optical-fibre communication system into an existing network is possibly a more far-reaching step than any that has been taken since the inception of these networks. Because of this, a great deal of engineering confidence has still to be established. A largescale field demonstration could achieve this, but many sub-systems must be engineered before this can be held. With careful design, such a demonstration will assist in determining the targets to be set for a field trial.

This article (part 1 appeared in the November issue) describes work being carried out to produce the key sub-systems which will enable realistic field demonstrations to be mounted, thus paving the way to field trials of optical fibre communication systems.

Fig. 3. CW laser output versus drive characteristic shows almost linear relation for an l.e.d. and abrupt threshold for laser.

Optical transmitter

The drive requirements for l.e.ds and lasers differ considerably; l.e.ds have a light versus current characteristic that is nominally linear, whereas lasers produce little light until the current reaches a threshold. Above that current the light output increases very rapidly for a small increase in current, full output being obtained with typically about 20 mA additional current (Fig. 3). The laser threshold might typically be 150 mA ; therefore such a laser would require $160 \pm 10 \mathrm{~mA}$ direct modulation current. On the other hand, l.e.ds are simpler to drive but require a high modulation current.

When lasers are modulated at high bit rates, it is very important that the laser never be allowed to fall below threshold, e.g. during the zero level in a binary signal. The reasons are twofold. Firstly, lasers exhibit a turn-on delay of several nanoseconds when driven from below threshold and this would cause considerable intersymbol interference, particularly for a non-return-to-zero (n.r.z.) code ${ }^{27}$. Secondly, when low dispersion fibres are used, material dispersion becomes significant. This is a function of source spectral width, and lasers driven from below threshold with short

Fig. 4. Variation of spectral width of laser biased just above threshold (a) and just below (b) (after Selway \& Goodwin, see ref. 28).
pulses exhibit spectral widths of 3 nm or so, whereas biasing above threshold ensures spectral widths of only $0.5 \mathrm{~nm}^{28}$; and thus minimizes material dispersion see Fig. 4.

If the laser bias is set too high there is the possibility of damage due to the high optical power levels. Also, operation at high power levels is often associated with excessive laser noise. The range of operation of the laser must be tightly controlled if its advantages are to be used to full effect. The laser threshold increases with temperature and life, and varies from device to device, so it is essential in any practical system to provide optical feedback to control the laser bias. This can be done by monitoring a fraction of the light from the laser with a photodetector, and comparing the output with a reference which sets the demanded light output, then feeding back to increase or decrease the bias current accordingly. Thus the bias current is made to track any variations in threshold. A current limit may be incorporated to prevent excessive current being drawn and to allow the signalling of incipient laser failure towards the end of its life.

The same variations that occur in laser threshold also apply to the laser slope efficiency. These can also be corrected by a second feedback loop in which the modulation depth is measured, compared with a reference and the error signal fed back to adjust the modulation current appropriately" (Fig.

(a)

(b)

Fig. 5. Feedback from laser output ensures correct laser bias despite variations in threshold due to temperature effects and ageing.
5). This second loop requires a wideband detector and amplifier to the monitor, whereas the first loop alone would only require a slow detector. One detector can provide the monitor signal for both feedback loops. The end result is an optical transmitter with a normalized output level, analogous to the normalized output voltage of the conventional cable driver circuit.

Optical receiver

Avalanche photodetectors have been chosen for the field demonstration as they offer higher sensitivities than p-i-n diodes at high bit rates, for the reasons outlined in part 1. A further advantage is that the amplitude of the electrical signals at the amplifier input will be larger than with a p-i-n diode, resulting in increased immunity to electrical pickup and crosstalk.
Avalanche photodiodes have two main disadvantages: first, they may exhibit tailing, i.e. the frequency response may not be flat, and this will require equalization. There are "reach-through" a.p.ds ${ }^{29}$ in which the tailing problem has been overcome but these are more expensive. The second disadvantage is the need for a high voltage supply. Typical a.p.ds require a bias voltage in the range 100 to 500 volts for optimum operation which varies with temperature.
There is a great reluctance to use high voltages in PTT systems, but a closer consideration of the requirements suggests that there should be no problem. The diode requires only a few microamperes of current and this can be provided by a small, low consumption d.c. converter. This, together with a temperature-compensated voltage regulator and the diode itself, could be mounted in a sealed module (Fig. 6). Such a module could contain the
following amplifier and the detector equalization and therefore becomes a complete optical receiver module.
The avalanche gain characteristic is such that the bias can be varied to control the gain thus enabling manual

Fig. 6. Optical receiver could include d.c. converter and temperature compensation in sealed module.
or automatic gain control (Fig. 7). In its simplest form, the bias supply has a high source resistance R_{s} (Fig. 8). When more light falls on the detector, the current increases, the bias voltage drops and hence the gain falls, decreasing the current. Conversely, when the optical power decreases, the gain increases. If R_{s} is infinite, the a.p.d. is biased with a constant-current source. This could be set to $I_{\mathrm{c}}=I_{\text {pmin. }} . A_{\text {opt, }}$ where $I_{\text {pmin }}$ is the primary photocurrent $(A=1)$ produced by the minimum optical signal, and $\mathrm{A}_{\text {opt }}$ is the optimum avalanche gain. Such a biasing technique will produce a flat a.g.c. response over the range of the avalanche gain, the two limits being the point at which the gain falls to unity on larger signals (the diode will saturate unless clamped with a diode) and when the optical power falls to zero in which case all the current will be produced by microplasmas.
One novel means of providing this current source is to use a second photodiode, with no avalanche effects over the range of voltages considered, placed between the bias supply and the a.p.d. and illuminated with an adjustable light source (Fig. 9).

Throughout this discussion it has been assumed that there is no background illumination. In practice this ambient illumination can be eliminated

Fig. 7. Avalanche photodiode characteristic allows manual or automatic gain control by bias variation.
but there may be some detector leakage which must be taken into account.

The choice of low noise amplifier design depends on the information transmission rate. The photodetector basically looks like a current source shunted with junction capacitance. This capacitance can be made very small as the detector area required is extremely small. Trans-impedance bipolar amplifiers offering a low input impedance are suitable for higher bit rates, whereas high impedance f.e.t. amplifiers and variouspre-emphasis/post-amplification de-emphasis techniques are suitable for lower bit rates.

If required, equalization of detector tailing can usually be achieved with a simple RC network but this may have to be tailored to the individual photodiode.

The performance achieved by several optical receivers for binary transmissions is already close to the theoretical limits set by the Poisson distribution of photon arrival time; therefore it is unlikely that there will be any dramatic performance improvements in this area. It is more likely that the high-sensitivity laboratory receivers of today will be refined to make them suitable for use in real systems.

Device packaging

A stripe geometry laser, such as would be used in a system operating at bit rates higher than $50 \mathrm{Mbits} / \mathrm{s}$, has a source size of about 20 by $0.2 \mu \mathrm{~m}$ and a corresponding beamwidth of 6 and 30° half-angle. The multimode fibre core diameter can be anywhere between 30 and $100 \mu \mathrm{~m}$, the acceptance angle of the fibre typically varying between 10 and 20°, depending on the system. It is evident that for efficient launching of light into the fibre, positioning of the laser-fibre will need to be accurate to a few microns.

There are two means of laser-fibre coupling, one a simple butt joint, the other a lens coupling. The butt joint will require a small spacing of a few $\mu \mathrm{m}$ between the laser and the fibre to prevent mechanical damage to the front face of the laser. The lens coupling enables us to modify the polar diagram of the laser to optimize the launch efficiency, but involves additional reflection losses and presents considerable difficulties in alignment of the lens elements. Lasers are being developed which will more closely match the fibre, i.e., the beam angle in both axes will match the fibre acceptance angle ${ }^{30}$.

There is also the requirement for an optical monitor, as discussed. This can be provided by using the light from the rear face of the laser. It is possible to build a monitor photodetector into the same package; but the choice of detector type predetermines the application for the resulting package, and electrical crosstalk can be a problem. It is more satisfactory to make use of the available optical isolator by placing the monitor photodetector outside the package.

Fig. 9. Novel method of providing current source for biasing uses second photodiode, illuminated with adjustable light source.

This results in a package with one electrical input and two optical outputs. One of these can be an optical fibre for coupling into the system and this fibre can also provide the hermetically sealed window. The monitor output can be a light guide such as a fibre or a simple glass window.

The electrical connection needs to be of low inductance to enable the laser to be used at very high bit rates and this can be provided either by a stripline or by some kind of pill package. Environmental conditions necessitate the hermetic sealing of the package to prevent laser degradation due to contamination. The optical fibre butt joint must be aligned with the front face of the laser and may be combined with hermetic sealing. Two such packages are shown in Fig 10 (a) and (b). These packages are of course also suitable for l.e.ds.

The photodetector package is much less of a problem because the sensitive area is usually many times that of the fibre core which illuminates it; also it

Fig. 10. Hermetic sealing of laser diodes prevents degradation due to contamination. Both stud type (a), above, ānd planar type (b), right, can also be used for l.e.ds.
has a very wide acceptance angle and so is comparatively insensitive to the direction of illumination. A package developed to meet the laster requirements would be suitable for a detector without much modification. On the other hand, a cheaper simpler solution might make use of an existing windowed package but with the addition of an external lens to focus the light onto the sensitive area.

Detector junction capacitance may be dominated by the capacitance of the connections to the package. If the low capacitance made possible by the small detector area required is to be used to most advantage, it may be preferable to mount the detector in the same package as the following low-noise amplifier. This could lead to a hybrid package containing the a.p.d., a high-voltage temperature-compensated regulator, low-noise amplifier and possibly the detector tail equalizer, the complete hermetically sealed package having a fibre input or lens coupling.

Coder/decoder

A suitable code for the field demonstration should have the following properties and capabilities: it should - have sufficient timing content to satisfy the timing extraction circuit

- remove the d.c. component to enable the receiver to be d.c. coupled and to minimize dissipation fluctuation in the source
- permit in-traffic error rate monitoring at the terminals and possibly also at the repeaters so that faulty repeaters can be located
- make adaptive equalization possible - make efficient use of the information capacity
- permit the use of simple repeater circuitry.

Discrete pulse-position modulation with its high peak-to-mean ratio is

attractive for optical systems because of the square-law sensitivity of the photodetector, but is only suitable if the available channel bandwidth is not fully used. Redundant binary coding, in which a block of bits is coded into a longer block, is a possibility (e.g. 5B6B), but it is a compromise between increased transmission bit rate and higher circuit complexity of coders, decoders and error detectors. Errors can be detected by looking for unallowable codes in the regenerated data. Scrambled binary has all the required properties except for the error monitoring and this can be provided by the insertion of a parity bit. The extra redundancy can be very small, but again it is a compromise with circuit complexity at the repeaters.

For a field demonstration a scram-bled-binary-plus-parity check seems most appropriate as it will permit evaluation of the optical system without a heavy commitment to a particular code. A field demonstration itself would provide much information from which to choose an ideal code for a future optical field trial. The particular code chosen is one in which a parity check bit is inserted after every 17 bits. This increases the bit rate by $18 / 17$. The reasons for this choice are the small increase in bit rate against the minimum number of integrated circuits required to implement the logic at the regenerator. The parity bit improves the timing content by ensuring the presence of a 1 in a sequence of 17 zeros, and one zero. in a sequence of 17 ones. Phase-locked loops would be used at the send and receive terminals to increase and decrease the clock rate respectively.

Dispersion equalizer

Equalization is necessary primarily to correct for distortion introduced by fibre dispersion, although additional equalization may be necessary to correct for photodetector deficiencies. If the dispersion is small compared with the bit period, then little or no equalization will be required as may be the case at low bit rates. If the dispersion is comparable with the bit period, or greater, then it must be equalized out with a resulting power penalty.

The ideal output pulse from the equalizer should reach a peak at time $t=0$ and pass through zero at all instants $\bar{t}=m T$ where T is the bit period. The signal can then be reconstituted with zero intersymbol interference by sampling at times $t=m T$. This will result in an optimized eye diagram. A good open eye is necessary to ensure low error rates.

Equalization can be performed either by an RLC filter or a transversal filter or a combination of the two. The transversal equalizer on its own is unsuitable when the dispersion has a long tail, since it would require a large number of delay elements.
The main problem of equalization is the varying degree of equalization required. It may vary between samples
of fibre and will certainly vary with distance between repeaters. In contrast, specifications on electrical cables are very tight due to the close dependence on skin effect and the many years of development which have taken place.' There is also a direct dependence of dispersion on cable length and this, together with the knowledge of launched signal levels, enables equalization to be derived from the attenutation. This is not possible with present day fibres as no similar dispersionattenuation relationship exists.
It seems therefore that the first equalizers must be flexible to allow for these variations. The ideal solution would be some kind of adaptive equalizer. Such a device could follow slow variations of dispersion with time, such as might occur due to temperature effects, and would avoid complex setting-up procedures. Implementation of this equalizer would require suitable coding to enable the dispersion to be measured by the equalizer.

A possible adaptive equalization scheme is as follows: using a randomized coding technique such as the scrambling technique chosen, it is possible to predict the spectrum of the received signal for the zero fibre length case where no dispersion occurs. If we measure the spectrum of the received signal at the end of a dispersion length of fibre and compare the two, we have an error signal as a function of frequency which can be fed to an adjustable equalizer to minimize the error, thus equalizing the dispersion. In practice it should not be necessary to measure the entire spectrum but merely compare the output from a small number of fixedfrequency filters spaced through the band. If the nature of the dispersion variations is fairly predictable then as few as two filters may be required, one as a reference at a comparatively low frequency and one near the bit rate. Outputs from the filters would be envelope detected with a long averag. ing time to avoid fluctuations due to data variations and the imperfect randomisation.
A more elegant method of adaptive equalization, also possible with a scrambling technique, makes use of the fact that a comparatively error-free replica of the undispersed transmitted waveform is available at the output of the regenerator. It is possible to crosscorrelate between the received signal and the regenerated signal to obtain a direct measurement of intersymbol interference at integral numbers of bit-periods delay. These measurements are integrated over a sufficient period of time to remove any sensitivity to data and fed to the adjustable equalizer to minimize the intersymbol interference which is of course the object of equalization. The transversal equalizer represents a particularly suitable equalizer as the cross-correlation measurements at $t=1,2,3 \ldots$ bit periods are simply fed to the appropriate tap
adjustments on the equalizer. This method similarly can be simplified considerably if the nature of the dispersion variations is known, perhaps to the extent of only requiring a single intersymbol interference measurement at one bit delay. This cross-correlation method should allow adaptive equalization at quite high error rates.

Regenerator

The function of the regenerator is to remove noise and jitter from the received signal and thus produce a regenerated replica of the original signal prior to transmission. Main components of a regenerator are automatic gain control to compensate for variations in received signal level; timing extraction, to generate a coherent clock, and a threshold detector, which is sampled by this clock, Fig. 2.'
Timing extraction is achieved by narrow band filtering of the component of the signal at the clock rate. This spectral line will always be present if the coding is chosen appropriately. Filtering can be performed by a high-Q tuned circuit or a phase-locked loop.
The tuned circuit method is simple but temperature effects limit the usable Q to 100 or so and this imposes some constraints on the coding. Good a.g.c. is particularly required for this kind of timing extraction if timing jitter is to be minimized.
The phase-locked loop method allows very much larger effective Q values to be obtained, relaxing the coding requirements, but is more costly and consumes more power.
The sampling gate is the decision making circuit which decides whether the received signal is a one or a zero. I^{\dagger} is usually some form of comparator which is sampled at the clock frequency, thus retiming the regenerated data.

Acknowledgements. - The authors gratefully acknowledge many helpful discussions with colleagues within ITT, Government research establishments, universities and the Post Office, particularly to M. Chown and A. Jessop with regard to the system aspects, P. R. Selway with regard to semiconductor injection lasers, D. G. Dalgoutte on splices and P. W. Black on fibre manufacture.

References

27. P. R. Selway. Semiconductor lasers fer optical communications. IEE Proceedings. vol. 123. 1976 pp. 633-41.
28. T. Ikegami. Spectrum broadening and tailing effects in directly modulated injection lasers, IEE Conf. on Optical fibre communications. London, 1975. P. R. Selway, A. R. Goodwin. Effect of d.c. bias level on the spectrum of GaAs lasers operating with short pulses. Submitted to Electronic Letters.
29. J. Conrad, $\overline{\mathrm{P}} . \overline{\mathrm{P}} . \overline{\mathrm{W}}$ ebb and R. J. McIntyre. Silicon reach-through avalanche photodiodes for dibre optic applications, IEE Conf. Optical fibre communication. London, 1975. 30. M. Chown and K. C. Kao. Some broadband fibre system design considerations. ICC Conf. Proc. Philadelphia, 1972, pp 12-I to 12-5.

Digital angle modulation

Frequency and phase modulation techniques used in the transmission of digital data

by R. Thompson, M.I.E.E., and D. R. Clouting, Ph.D., B.Sc.(Eng.)

The term "angle modulation" covers those systems which convey information by altering the instantaneous phase of a carrier. In normal broadcast systems conveying analogue information, these forms of modulation are described as f.m. (frequency modulation) or p.m. (phase modulation). The difference between f.m. and p.m. in such systems is often minimal, since one form of modulation can be converted to the other with the use of differentiation or integration on the analogue information. In digital systems, the same similarities exist, since frequency is the differential of phase, but differences in implementation tend to be more marked.

Although digital signals are a simple form of analogue information the modulators and demodulators employed are normally more complex than those used in analogue systems. This occurs because the digital links are usually employed where high performance, in terms of spectrum occupancy and noise performance, is required. In these situations it is normally economic to incorporate comparatively elaborate and expensive circuits rather than accept the system penalties involved with simpler ones. It should also be appreciated that digital modulation techniques suitable for data transmission at low frequencies, say by line, are not always satisfactory for radio links. This is not necessarily because of transmission characteristics such as bandwidth and group delay but more usually because of equipment practical limitation such as frequency stability and spurious responses. The modems which are discussed in this paper are presented in terms of their suitability for radio links.

The description "shift-keyed" is often used in association with digital modulation and follows from the simpler form of modulators which simply select one of a number of possible frequencies or phases. As a result of this terminology, digital frequency modulation is normally referred to as f.s.k. and digital phase modulation as p.s.k. It will be seen later that with many modulators "shift-keyed" is slightly misleading

The first part of a two-part article on the use of angle modulation for the transmission of digital data over radio links. In this part, methods of generating and detecting angle-modulated signals are described.
because of the gradual transition employed in the modulation. However, the term remains a convenient way of indicating digital rather than analogue modulation.

In conveying digital data it is possible for a particular change in frequency or phase to represent any number of digits. The simplest system is binary or two-level, where each change conveys one of two possibilities, a 1 or a 0 . In a four-level system each change conveys one out of a possible four combinations of two digits, $00,01,11$, or 10 . The period allowed by the system for a change of

Fig. 1 Two kinds of frequency modulator. The variety shown at (a) simply selects one of two constant frequencies, while the
voltage-controlled oscillator at (b) is varied by the data.
frequency or phase to occur is called a "symbol" period.
In binary f.s.k. a data 1 may select an instantaneous frequency of the carrier frequency plus an increment, $f_{c}+f$, while 0 selects $f_{c}-f$. The selection of f requires consideration of the available bandwidth, noise performance and implementation problems. A case of particular interest is narrow-band f.s.k. where $2 f$, the frequency deviation, is about 0.7 times the bit rate of the data. Premodulation shaping of the data is usually employed in order to restrict the tails of the spectrum of the transmitted signal. This, in turn, minimizes the "cross talk" between channels which are adjacent in frequency. The adja-cent-channel rejection of a system is a factor of considerable importance when seeking efficient use of available frequency bands.
P.s.k. is the phase-modulation equivalent of f.s.k., with the phase of the modulated signal conveying the digital information. As in f.s.k. it is desirable that the width of the transmitted spectrum is restricted. There are two different approaches to this problem and these have been classified as p.s.k. , and p.e.k. (phase exchange keying).
P.s.k. systems employ premodulation

(b)
shaping which enables the constantamplitude feature of the modulated signal to be retained. The disadvantage of this method is, however, that strict band limiting of the modulated signal cannot be achieved and finite energy is spread over an infinite frequency band. Some of this energy will therefore fall
into adjacent channels and cause interference. The p.e.k. approach to spectrum control is that by using a linear modulation process direct control of the spectrum of the modulated signal can be achieved by passive filtering of the baseband modulating signal. The disadvantage of this method is that it

Fig. 2. The v.c.o. of Fig. 1 can be included in a phase-lock loop as in (a) to increase the accuracy of control. In the variation at (b) the variable divider enables the phase comparison to take place at the low reference frequency.

(a)

Carrier frequency is altered by varying the division ratio.

Fig. 3. An f.s.k. modulator using sideband cancellation.

$$
\text { Data }=0
$$

Data $=1$
A $=\prod_{f_{c} \rightarrow \Delta t}^{4}$
B
B

B

$$
\text { Data }=1
$$

(b)
causes amplitude modulation to be introduced into the modulated signal. This means that when it is passed through a practical power amplifier spectrum spreading occurs due to the amplifier non-linearities. In practice, therefore, it is not possible to achieve a strictly band-limited signal.

This paper is concerned with p.s.k. and p.e.k. systems where the information is extracted from the modulated signal by measuring the change in phase between symbols rather than the absolute phase of the signal. Such systems are called differential p.s.k. or p.e.k. and this is abbreviated to d.p.s.k. or d.p.e.k. Four-level forms of d.p.s.k. and d.p.e.k. have received considerable attention during the past few years because of their suitability to radio links between mobile stations.

Frequency and phase modulators

Two common forms of frequency modulator are shown in Fig. 1. In (a) the data simply selects one of several available frequencies which are each continuously generated. The arrangement has disadvantages for radio links at high r.f. If the frequencies are generated directly at r.f., high-stability crystal oscillators will be required and it will therefore be difficult to alter the channel frequency. If the frequencies are generated at a fixed intermediate frequency then a frequency translation process is necessary which can lead to difficulties if low spurious levels are required. Another disadvantage of this arrangement is that the transition in frequency is abrupt, resulting in a wide output spectrum.

Arrangement (b) offers a solution to these problems. A voltage-controlled oscillator is used to generate the instantaneous frequency demanded by bandlimited data. Although bandlimiting the data does not produce an equally bandlimited f.s.k. signal it does result in a significant narrowing of the output spectrum. The oscillator can be designed to operate directly at the transmission frequency and this transmission frequency "channel" can readily be altered over a wide band. However, there are difficulties since the oscillator sensitivity, in kHz /volt, will depend on the part of the band in which the oscillator is being operated. It is also a problem to achieve a "carrier" frequency directly at r.f. with sufficient stability.

In Fig. 2. (a) the voltage-controlled oscillator of the previous modulator has been included in a phase-locked fre-quency-control loop. The output frequency of the v.c.o. is phase compared against a reference and an "averaged" correction voltage generated. In this way the "carrier" frequency can be accurately controlled. The low-pass filter prevents the loop responding to the variation in frequency due to the modulation. However, if the data produces long sequences of the same frequency deviation the loop will even-
tually cancel this frequency offset. This can be a problem in some circumstances.

The modulator in Fig. 2 (b) shows an extension of that in (a) in which the phase comparator is run at a frequency substantially lower than the "carrier" frequency. A variable divider is used to bring the "carrier" down to the reference frequency. By simply varying the division ratio the carrier frequency can be altered. Also, in some situations the division ratio can be altered by the data so that repeated message frequency offsets are not cancelled by the loop correction action.

Fig. 3. shows an interesting form of f.s.k. modulator which employs the sideband cancellation techniques used in some single-sideband modulators. The "carrier" is generated independently of the modulator and this can be a useful feature. The required frequency deviation of $\pm f$ is generated at low frequency and hence can be accurately defined. Two balanced modulators are used and these are fed with signals which are identical apart from the phasing. The data switches the low frequency signals, f, between the two mixers. With a data 0 the balanced modulators produce double-sideband suppressed-carrier signals and the phasing of the f signals is such that simple addition results in a cancellation of $f_{\mathrm{c}}-f$, leaving a signal $f_{\mathrm{c}}+f$. Similarly, with a data 1 and the f signals exchanged between modulators an output signal of $f_{c}-f$ is generated.

This form of modulator is very suitable for generating accurate frequency deviations directly at carrier frequencies and operating over a wide bandwidth. The lack of perfect rejections of the carrier and the "unwanted" sideband is not as severe a problem as it is in s.s.b. situations. This is because the modulator output spectrum is symmetric about the carrier, since the data causes the frequency to hop between + and $-f$ about the carrier. It is not necessary to generate a radiation-free band on one side of the carrier as in s.s.b.

Fig. 4 shows a more general form of the previous modulator. The two balanced modulators are fed as before with quadrature-phased carrier signals. Depending on the sign and magnitude of their "baseband" input signals the output signal phase can be controlled.

By choice of suitable baseband signals the resultant output can be a constant-amplitude signal whose phase can be altered by altering the baseband signals. To achieve this the amplitude of the two baseband signals must be sine/cosine related. A versatile sine/cosine function generator for this type of modulator is shown in Fig. 5. The multistage ring counter has the ability to circulate a logic 0 backward or forwards round the ring at a rate determined by the clocking frequency. Each stage in the ring produces a weighted output when the logic 0 is in it.

Fig. 4. General form of the modulator shown in Fig. 3.

Fig. 5. Sine/cosine generator for the modulator of Fig. 4.

The number of stages and the weightings are chosen such that if the ring is clocked regularly in one direction the output of the "sine" weighted circuits produces a synthesised sinewave of the form shown. By connecting a similar set of weighted circuits to the ring but rotated several stages round the ring a "cosine" output is achieved. Therefore, however the ring is clocked the instantaneous amplitude of the two outputs will always be sine/cosine related. To produce a suitably modulated wave the data selects the appropriate counter direction and clocking rate. The two "baseband" signals produced are fed to the two balanced modulators of the previous circuit to generate the appropriate frequency deviation of the carrier. Shaping of the frequency transitions and multiple level deviation are readily achieved simply by operating on the counter clocking frequency.

This form of modulator provides accurate control of a "carrier" phase and this has been used to produce f.s.k.
signals. It is of course also a modulator very suited to phase modulation. As in f.s.k. applications, it is possible to generate "multilevel" signals and spectrum control can be achieved by time-domain shaping of the phase transitions. However, as in the case of time-shaped frequency transitions the output spectrum cannot be strictly bandlimited by this technique. This form of modulator therefore produces p.s.k. type modulation.

Strictly bandlimited phase modulated signals of the p.e.k. type can be generated by the methods shown in Fig. 6 , in which a binary modulator is shown at (a). The balanced modulator produces two possible output phases, 180° different, depending on the sign of its baseband input. The balanced modulator provides a linear modulation action and, if fed with bandlimited baseband signals, will produce strictly bandlimited output signals. The binary data is therefore bandlimited, producing changes ir amplitude which occur

(b)

Fig. 6. Binary p.e.k. modulator \boldsymbol{A} producing band-limited output signals is shown at (a) while (b) shows a four-level p.e.k. modulator.

Fig. 7. F.s.k. demodulator, with strobing to achieve increased noise-immunity. \mathbf{V}

Fig. 8. Quenched-resonator type of f.s.k. demodulator.

slowly and take about one digit period to change from 0 to 1 or vice-versa. As a result of this, the output amplitude of the balanced modulator will vary as shown. It can be seen that in this case bandlimiting the signal results in abrupt phase transitions occurring when the signal amplitude is zero.
The combination of amplitude and phase variations is a characteristic of very narrow band angle modulation.

A modulator for bandlimited four-level p.e.k. is shown at (b). The r.f. portion of the modulator is in the form used in the f.s.k. modulator shown in Fig. 4. It provides the ability to vary the phase of the "carrier". However, in this case the baseband signals do not originate in a sine/cosine function generator. Instead, the data is first arranged in pairs, each pair of digits forming a symbol which is associated with one shift in phase. The required phase is produced by suitable amplitude signals at the two baseband inputs. These are generated in the encoder as abrupt amplitude changes at the start of each symbol. The signals are then passed through bandlimiting filters before reaching the modulators, to produce a bandlimited r.f. out put signal. However, since the two baseband signal amplitudes are not always instantaneously sine/cosine related, the output amplitude will vary depending on the message content. The illustration shown is for a form of p.e.k. called symmetric differential p.e.k.

Demodulators

Demodulation in radio equipment is usually carried out at some convenient intermediate frequency. Filtering of the signal may be carried out before or in the demodulator. The filtering referred to here is the narrow band filtering designed to optimise the link noise performance. Wider filtering of the type occurring in r.f. stages does not usually affect link noise performance. In the following demodulators, where filtering is not shown it is assumed that optimum filtering is carried out before the demodulators.

One form of f.s.k. demodulator is seen in Fig. 7. The frequency discriminator generates baseband signals from the frequency modulated input and may be any of the types frequently used in analogue systems such as the FosterSeeley or pulse counter circuits.
In order to achieve the lowest error rate in regenerating the data, it is essential to sample the baseband signal, with its noise, at a time in each symbol when the instantaneous signal-to-noise ratio has reached a maximum. To achieve this a timing regeneration circuit is required. This is normally some form of very narrow band filter tuned to the symbol rate. Because of its narrow bandwidth it is able to regenerate fairly steady symbol timing even at very poor signal to noise ratios. All the following demodulators use regenerat-
ed timing to strobe the decision circuits which produce the data output.
Fig. 8(a) shows an f.s.k. demodulator which employs quenched resonators for detection. The resonators are tuned circuits having very high Q, approaching infinity, and are often $L C$ circuits employing Q multipliers. One resonator is provided for each of the frequency possibilities. These frequencies are usually chosen such that when the output from the required resonator is a maximum, the output from all others is zero.
The operation of the demodulator is illustrated in Fig. 8(b). During the first symbol the received frequency is f_{1} and the f_{1} resonator integrates the received signal during symbol period. The f_{2} resonator also responds to the signal; the fact that it has infinite Q and is not tuned to f_{1} does not prevent this. However if suitable frequencies are used its output will be zero at the end of the symbol period. The resonator outputs are envelope detected and sampled to regenerate the data. The resonators are then quenched, that is all stored energy is dumped, and the process repeated on the second symbol.
Coherent and differential binary phase demodulators are shown in Fig. 9.
In a coherent demodulator the unmodulated carrier phase is regenerated from the received signal. There are several ways of doing, this, most of which employ very narrow band filters tuned to the carrier (as it appears at i.f.). The regenerated carrier and the signal are compared in a phase comparator. This may be a balanced modulator (or some other device providing a multiplication operation) with a low pass filter on the output. The phase difference between the regenerated carrier and the signal is then sampled in a decision circuit to produce the data.

In a differential demodulator the process is identical except that the regenerated carrier is replaced by a delayed version of the modulated signal. This is usually obtained by a delay line of delay time equal to one symbol period. The phase comparator output is therefore a measure of the phase difference between two adjacent symbols. As before the data is regenerated by sampling this phase measurement every symbol.

For four level differential phase modulation, the form of demodulator shown in Fig. 10 can be used. The circuit shown is specifically for the "symmetrical" type of differential phase modulation. Each symbol will be different from the preceding one by either $\pm 45^{\circ}$ or $\pm 135^{\circ}$. The delay and top half of the circuit form a differential detector identical to that in Fig. 9(b). The detection criteria for it can be represented as shown in Fig. 10(b). Phase changes between symbols which fall between 0 and $\pm 90^{\circ}$ generate negative phase detector outputs and are read as 0 . Changes of $180^{\circ} \pm 90^{\circ}$ generate posi-

Fig. 9. Coherent (a) and differential (b) binary phase demodulators.

Fig. 10. Demodulator for symmetrical differential phase modulation.

tive outputs and are read as 1. The lower half of the circuit is similar to the top, apart from the 90° rotation of the delayed signal. This causes a 90° rotation of the decision thresholds of that channel as indicated in Fig. 10(b). The combination of these two decisions in each symbol provides the information to produce the single stream of regenerated data. The delays used in this demodulator have to provide very accurate time delay of i.f. signals. A small time error here produces a large phase error at the phase comparator. Where long symbols are used, that is greater than about $100 \mu \mathrm{~s}$, the accuracy requires the use of expensive quartz
delay crystals. It may in fact be impossible to get suitable accuracy.

Fig. 11 shows a very simplified representation of another form of demodulator which does not employ an i.f. delay line. This employs a non-phase-locked i.f. reference to make the phase measurement. Two baseband signals are generated by phase detectors fed with quadrature-related references. At the end of symbol 1 the two baseband signals are sampled to give an instantaneous measure of the signal phase with respect to the reference. The angle is handled in two parts. One is an entirely digital number defining the angle quadrant: as shown it is ' 00 '. The

Fig. 11. A further type of demodulator not using a delay line.
other is an analogue signal representing the arc angle within the quadrant. This information is stored for one symbol period, at the end of which the baseband signals are again sampled. The difference between the old and new quadrant number, modified by the change in arc angle, gives the change in angle and hence the required output data.

The virtue of this form of demodulator over the type using a delay line is that it is substantially cheaper. The detailed processing, which I have not detailed here, involves mostly digital circuitry which, when integrated circuits are used, is extremely cheap.

The second part of this article will compare performances of various modulation systems, including aspects such as noise performance, spectrum occupancy and sensitivity to equipment design tolerances.

Surround-sound broadcast

The Radio Clyde experiment in sur-round-sound reported in our September issue (page 46) was "a little disappointing", as far as off-air listening in the quadraphonic mode was concerned, according to John Lumsden, chief engineer of the commercial station. "But in view of the separation quoted for QS and other systems, it is not surprising - something for nothing being impossible to achieve" he adds. Off-air stereo monitoring, in the absence of a direct comparison, was difficult but "our impressions were that the compatibility was more than satisfactory. This was borne out by the general consensus of opinion from my colleagues and the listeners themselves". As recorded in our September note, off-air mono "provided the biggest surprise in as much as subjective mono compatibility seemed to be better than the normally achieved during normal stereo." The live performance, as monitored from the four microphone channels, "was excellent and considerable realism was noted due to the additional dimension. The impression of the actual shape of the Kelvin Hall and the audience location was also evident."
The experiment necessitated the use of Post Office lines to link the signals from an outside broadcast vehicle to. Radio Clyde. "Here lay our first obstacle: although the Post Office supply good music-quality circuits, they at present do not supply stereo circuits, i.e. circuits which are phase equalized." But they can sometimes supply co-routed circuits and usually good phase compatability results. "We obviously required four circuits and the Post Office were very helpful indeed and supplied the circuits co-routed." In spite of this, phase non-compatability existed
between the front and rear pairs, and had to be eliminated with phase-corrector circuits.

During the initial listening, mike problems were evident. To achieve good stereo, the mike arrangement (four AKG414's) was moved closer to the orchestra than normal. "This resulted in poorer quad, since the rear mikes picked up a larger ration of the direct orchestra sound than the acoustical reverberant sound. To hold the front pair 'tight' and achieve a good separation on the rear pair, a system of baffling was employed between front and rear, and also between the two mikes making up the rear pair. This was built of dense chipboard and covered with thick rubber-backed carpet in an effort to reduce the reflection at mid frequencies. The arrangement worked well and no phasing effects of the mid frequencies were evident."
"The broadcasts were undoubtedly a success" concludes Mr Lumsden. "However, in quad, we seemed to suffer from an impairment of the signal-tonoise ratio. This was manifest in the rear speakers when facing forward and in the front speakers when facing rearward. It would therefore appear that the human ear is more sensitive, or less tolerant, to noise (hiss) from the rear. Unfortunately, the problem is aggravated further by the generally lower signal level from the rear speakers. The problem might not have been so evident had the "surround" mode been used rather than the "hall" mode.

Radio Clyde would like to continue these experiments and hope that in the near future, with I.B.A. and Home Office approval, "we will be able to broadcast 'surround' mode pop quadrophonics."

Announcements

The Association of Public Address Engineers has organised four exhibitions for November, one each in Bristol, Gateshead, Leeds and Renfrew. The Bristol exhibition will be held at the Unicorn Hotel on the 23rd, that at Gateshead at the Five Bridges Hotel on the 18th, that at Leeds at the Windmill hotel on the 25th, and the Renfrew exhibition will be held at the Normandy Hotel on the 16th. The joint title of the exhibitions, which will be open from 10 a.m. to 6 p.m. on those days and for which admission will be free, is "Circuit 76." The organisers say visitors will be able to see traffic control and crime detection equipment, closed circuit television services, electronic timing devices and scoreboards for sporting events as well as sound reinforcement, internal communication and other sound equipment.
The electronics component show will be held at Olympia from May 17 to 20, 1977. The organisers note that lower cost bench displays without stands, on offer at $£ 200$ each for the first time, have not sold well, even though the innovation was suggested by exhibitors at the last show.
The 1977 Audio Fair will be held at Olympia from September 12 to 18.
The inaugural journey of British Rail's high speed train at the end of September should also have been the occasion of the first live television transmission from a moving train. Protracted negotiations between ASLED, the locomen's union, and the British Rail Board, however, meant that the final go-ahead for the service took place too late for arrangements to be made between British Rail, the Post Office and the BBC. The broadcast will now wait until another time, possibly when the London to Edinburgh Route opens in 1978.
In our September issue on page 45 we showed a photograph of the Miranda mobile microwave intercept system. We omitted to say that this was designed at Mullard Research Laboratories and is now being developed by MEL Equipment Co Ltd.

Weather-satellite picture facsimile machine

Hard-copy cloud cover pictures from APT, SR and WEFAX transmissions

by G. R. Kennedy

In order to produce permanent pictures of weather-satellite-viewed cloud cover without the aid of a professional facsimile machine, some form of photography must be used. Photographs taken from an oscilloscope screen have poor definitions because the spot size is relatively large compared with the total screen diameter. Screen persistence, dispersion and refraction within the glass face also reduce the definition. If a large television type c.r.t., having a smaller spot size and larger dynamic range of phosphor than an oscilloscope tube, is used the definition will be better but the picture edges will be distorted.

This means that, for example, successive ATS-3 Mercator projection maps cannot be mated together due to the curved edges of the map grids. A light-sensitive rotating drum facsimile machine does not suffer from these particular drawbacks because there is no glass layer between the picture and the photograph, no phosphor problems and the picture linearity is good. This electro-photomechanical device is not ideal: it requires fine engineering to build it, needs a dark-room environment in its simplest form and, if bought commercially, is very expensive. A scanning galvanometer facsimile machine is generally a better device but beyond the engineering. skills of most electronic workshops.

The machine described here is a basic design specifically for producing APT pictures from ESSA-8, whilst still transmitting, SR pictures from the NOAA satellites in the ITOS series and from the Russian METEOR satellites, and WEFAX computer-derived weather maps and orbital written data from ATS-3 and the SMS/GOES series. It is manually controlled, no attempt having

[^3]This article describes a prototype rotating drum facsimile machine for producing weather satellite automatic picture transmission (APT), scanning radiometer (SR) and weather facsimile (WEFAX) transmission pictures. With the dimensions given in the text, prints approximately 22 cm square, with a line width of 0.25 mm , can be produced, of sufficient quality for meteorological work. Three magnifications are available for SR pictures by simple switching. All electronics are solid state with the exception of the light source, which is a cold-cathode device. The article offers a basic design for further developments and should be read in conjunction with a previous article entitled "Weather Satellite's Ground Station" published in Wireless World November, December 1974, January 1975.

Fig. 1. Cloud cover picture production. This principle requires dark-room (red light) conditions. Traverse, drum rotation and modulation are synchronized to weather satellite transmissions.
been made to automate the processes. Nevertheless, considerable effort was needed to produce a reliable machine with a modest budget in mind.

The principle of a rotating drum facsimile machine is not new: for many years the world's press agencies have used radio and wire drum picture printers and, more recently, amateur machines using valve circuitry have been described ${ }^{1,2,3}$.

The older press "wire photo"" receivers used heat or pressure sensitive paper but amateur and general service machines and the newer press machines use photographic materials. The machine described here uses fast-bromide enlarging paper which can be handled and used in a reasonably bright red safelight. Cut film can be used, but this adds the problem of working in total darkness to produce a picture.

The picture is produced as illustrated in Fig. 1. A sheet of photosensitive paper is wrapped around a drum which can be rotated by a motor. A light source is mounted on a traverse platform together with a lens arrangement to focus a light beam onto the paper. The platform is driven slowly along parallel to the rotating drum axis so that the spot of light describes a fine helix on the paper. The light beam is made brighter or dimmer by a modulating signal waveform such that when the paper is removed from the drum and developed, it has a picture on it made up of fine

lines, dark or light according to the original scene; the lines being very slightly off-square relative to the edge of the picture, but all parallel to each other. The drum motor, traverse drive and modulating signal are all synchronised. If the picture is to be produced in real time, the drum rotation speed should be identical to the line rate of the original picture. The light-source luminous flux, drum rotation speed, drum diameter and paper sensitivity or photographic "speed" are all interdependent. Also, the writing speed of the beam must be sufficient to cause an effect on the paper at whatever rate it happens to be travelling along the paper surface. Further constraints on the system are that the traverse must move smoothly without sticking, that the drum motor responds rapidly without overshoot to synchronising signal rate changes, and that the drum mass is large enough to give some flywheel effect to prevent bearing chatter showing on the print, yet small enough to allow the drum motor to change speed rapidly. In addition the drum must be of constant diameter to prevent de-focusing of the spot of light. The most stringent requirement is that the light source must be capable of being modulated at the input signal raie. Lastly, the paper must be held firmly on the drum to avoid focus variations, yet must be removable without damage for processing.

Fig. 3. Detailed block diagram of machine.

Fig. 2. Basic block diagram of machine.

Block diagrams

Fig. 2 shows the basic block diagram for the machine. The 2.4 kHz video input signal, which may be taken directly from the receiver or from a tape recording, is applied to both a video detector and a clock-rate detector. The output signal from the video-detector is amplified and used to modulate a light source, while the clock signal is used to produce a gating or strobe waveform, which turns the light source on and off when $S R$ pictures are being produced,
and to drive the drum and traverse motors synchronously.
Fig. 3 shows the complete block diagram for the machine. The input signal is split after the input potentiometer into signals for deriving the clock rate, for detecting the video, and optionally for auto-starting ESSA-type APT pictures. The clock chain comprises a limiter/filter, a phase-lock loop and an output buffer. The voltage controlled oscillator (v.c.o.) signal from the phase-lock loop is used as the clock signal and is buffered out by a Schmitt trigger. This part of the system is not critical and a zero-crossing detector or Wien bridge, followed by a gate or an

emitter follower, could be used. The clock signal, which has a square waveform phase-locked to the satellite sub-carrier frequency, is divided to produce a sync signal to trigger the strobe generator. This sync signal may also be used externally. Pulses from the strobe generator, which can be disabled and monitored externally, switch an amplifier in the video chain on or off.

The video chain comprises a contrast expander, | a logarithmic amplifier, which is used mainly for SR pictures and can be bypassed, a sample-and-hold detector, the strobe pulse controlled amplifier, which is solely for SR pictures, and a power amplifier which drives the light source. The sampling pulse for the detector is derived by the pulse generator from the clock-rate signal, which is also divided and amplified by a protected power amplifier to give the drum and traverse motor a.c. supply at one of three frequencies determined by the line divider. This is used in producing SR pictures of various magnifications corresponding to $1 / 3,1 / 4$ or $1 / 5$ th of a complete line width. The drum can also be run from a separate oscillator, for picture edge positioning, and its rotation sensed by a magnetic transducer and amplified to give an externally-available drum position pulse.

Circuit details

Some of the circuits used in this machine were described in a previous article ${ }^{4}$ and the reader is referred to this for details of the clock-rate, start sync, divider and APT/SR switching circuitry. (Experience has shown that, in Fig. 23b of this article, C_{93} in the clock phase-lock loop should be switchable in steps of $0.1,1.0$ and $3.3 \mu \mathrm{~F}$ Mylar to accommodate both live and tape-re-

Fig. 4. $S R$ expander.
corded signals). The expander is the same as the Baylis and Brush contrast expansion processor described in their paper ${ }^{5}$, but the feedback resistor values have been altered to utilize standard
values. After SR signals have been expanded it is advantageous to compress the white portion while allowing the darker levels to be fully expanded. This is done by the logarithmic amplifier (see ref. 6 and Fig. 5). Signals from the expander are full-wave rectified by the pi-connected bridge rectifier D_{3}, and applied to the operational amplifier IC_{3}.

Meteor 25 picture. Visible light scanning-radiometer picture from the Russian Meteor 25 satellite 08.36 Z on 28th June 1976, revolution 619 south to north path. Part of Sweden and all of Denmark can be seen in the north, with Italy, Sicily and the North African coast in the south. Note the sun glinting off the sea near Greece. Satellite was at a height of approximately 900 kilometres (560 miles).

Components list
Resistors $(1 / 4 \mathrm{~W} 20 \%$ unless otherwise stated).

3	$10 k$		
4	$10 k$	38	$100 k$
5	220	39	$1 k 1 W$
6	$22 k$	40	$1 k$
7	$22 k$	41	$1 k$
8	220	42	$10 k$
9	$10 k$	43	100
10	$3.3 k$	44	820
11	$3.9 k$	45	$3.9 k$
12	$15 k$	46	220
13	$10 k$	47	$1 k$
14	$15 k$	48	$1 k$
15	$1 k$	49	390
16	$2.2 k$	50	220
17	$15 k$	51	$12 k$
18	$15 k$	52	470
19	$22 k$	53	$4.7 k$
20	$15 k$	54	$4.7 k$
21	$4.7 k$	55	$47 k$
22	$47 k$	56	$47 k$
23	$15 k$	57	$1 k$
24	$1 k$	58	$100 k$
25	$8.2 k$	59	$82 k$
26	47	60	$4.7 k$
27	$100 k$	61	$100 k$
28	$5.6 k$	62	$10 k$
29	$8.2 k$	63	$4.7 k$
30	$10 k$	64	$1 M$
31	470	65	$1 k$
32	$47 k$	66	100
33	100	67	$5.6 k 1 W$
34	$4.7 k$	68	$1 k$
35	100	69	$15 k$
36	10	70	$1 k$
37	10	71	$1501 W$

Variable resistors (all 10 -turn presets unless otherwise stated)

Capacitors ($\mu \mathrm{F}$ unless otherwise stated)

1	2.2 Mylar	19	$0.015+680 \mathrm{p}$
2	0.1	20	0.068
3	0.01	21	0.01
4	680 p	22	0.47
5	330 p	23	1.0 Mylar
6	0.15	24	$80 / 25 \mathrm{~V}$
7	0.033	25	$100 / 50 \mathrm{~V}$
8	0.001	26	6.8 Mylar
9	0.05	27	See text
10	$100 / 12 \mathrm{~V}$	28	$25 / 25 \mathrm{~V}$
11	$50 / 50 \mathrm{~V}$	29	$2 / 25 \mathrm{~V}$
12	0.1	30	0.01
13	0.05	31	$2 / 25 \mathrm{~V}$
14	0.001	32	4700 p
15	$100 / 12 \mathrm{~V}$	33	$100 / 25 \mathrm{~V}$
16	0.068	34	0.22
17	0.47	35	11 Mylar
18	0.068	36	$100 / 25 \mathrm{~V}$

Inductors

1 V.h.f. choke: $10 \mu \mathrm{H}$
2 Tape head 600Ω or similar

Switches

3 pole 9 way wafer
2 pole changeover toggle
2 pole 3 way wafer
1 pole make/break toggle
51 pole make/break toggle

Transformers

1 Mains 3 V subminiature, RS Components Ltd
2 ILV-857, Mains $2 \times 25 \mathrm{~V}$ Gardners Transformers Ltd

Transistors

1	2N2333A	11	BFY51
2	2N3702	12	BFY51
3	2N3704	13	2N3704
4	2N3704	14	BFY51
5	2N3819	15	2N3055
6	BFY51	16	2N3055
7	BFY51	17	2N3704
8	BF258/BF259	18	2N3704
9	BU105	19	2N3704
10	2N3704		
Diodes			
1	1N914	8	OA91/1N270
2	1N914	9	$10 V 400 m W$
3	RS REC70		zener
	or similar	10	OA91/1N270
4	OA200	11	1 N914
5	OA200	12	RS LED 3
6	OA200		or similar
7	OA200	13	OA200
		14	5.1 V4OOmW
			zener

Expander feedback resistors

Switch position	$\mathbf{R e} \mathbf{e}_{\mathbf{1}}$	$\mathbf{R} \boldsymbol{e}_{\mathbf{2}}$
1	$82 k$	$2.7 k$
2	$82 k$	$2.7 k$
3	$56 k$	$4.7 k$
4	$47 k$	$8.2 k$
5	$33 k$	$15 k$
6	$33 k$	$22 k$
7	$27 k$	$33 k$
8	$27 k$	$39 k$
9	$27 k$	$68 k$

ATS-3 picture. Ground computer process chart of NOAA-4 scanning-radiometer visible data transmitted from the geosynchronous satellite ATS-3 when on station at 75 degrees west. Blank areas are where the computer has not received data in time for the scheduled broadcast from ATS-3 (black) or poor data was received (white). This print was obtained at 4 degrees elevation, slant range 41,000 kilometres (25,500 miles). Satellite has now drifted to 105 degrees west, out of sight from Great Britain.

NOAA-4 picture. Infra-red scanning radiometer picture from the NOAA-4 satellite, 19.25Z 21st November 1975 revolution 4647 south of north path. Typical 'milk bottle' distortion of unlinearized $S R$ pictures can be seen here by the cloud alignment at the picture edges. Cold is white, warm is black. Norway, the Swedish lake, most of Great Britain and France can be seen. Note the white (cold) Alps and Pyrenees. The log detector and an unsteered omni antenna were used in reception.

A static bias of +1.0 V is derived from the potential divider R_{10}, R_{11} and summed with the video signal at the inverting input of the amplifier. Transistor Tr_{10} is placed in the feedback line of IC_{3}. For small forward potentials, the base-emitter voltage characteristic of a transistor is the logarithm of the current, within certain constraints. One of these is temperature, so a second similar transistor, $\mathrm{Tr}_{1 \mathrm{lb}}$, feeds the logging transistor under similar thermal conditions, and maintains a temperaturecorrected current into the logging transistor via operational amplifier IC_{4}. Diode D_{4} prevents excessive drive to the transistors under transient conditions, and the potential divider $\mathrm{R}_{14}, \mathrm{R}_{15}$ provides bias for $\mathrm{Tr}_{\text {ib }}$. Although a dual transistor is shown on the circuit diagram, a pair of almost any n-p-n transistor type may be used. For the best temperature stability, the two transistors should be physically close and in the same thermal environment. For example, if two 2N3704 transistors are used they may conveniently be cemented together with epoxy. The accuracy of the logging process, which should have a dynamic range of 20 dB or so using the circuit given, is set by the value of the bias voltage fed into IC_{3}. The small output voltage is amplified by operational amplifier IC_{5}, and the gain and zero level adjusted by preset pots $R V_{4}$ and $R V_{3}$ respectively. For linear video signal printing, the log amplifier is bypassed by switch S_{2}.
To be continued.

Fig. 5. Logarithmic amplifier.

References

1. Anderson W G, "Amateur Reception of Weather Satellite Picture Transmissions", QST Vol. 49 No. 11 Nov. 65 ppll-17.
2. McKnight CH , "Evolution of an Amateur Weather Satellite Picture Station", QST Vol. 52 No. 4 April 68 pp28-34.
3. Strong C L (ed), Ruperto E F, "The Amateur Scientist", Sci American Vol. 230 No. 1 Jan. 74 ppl14-120.
4. Kennedy G R, "Weather Satellites Ground Station", Wireless World Nov. Dec. 74, Jan. 75.
5. Baylis P E, Brush R J H, "Contrast Expansion Processor", Wireless World Dec. 73 pp611-613.
6. Clayton G B, "Experiments with Operational Amplifiers - Part 7", Wireless World Jan. 73 pp33-35.
7. Kilvington J, "Circuit Ideas", Wireless World June 72 p275.
8. Benson F A, "Voltage Stabilisation", MacDonald, 65 pp18-23.
9. Brit. I. R.E., "Symposium on Cold Cathode Tubes', Cambridge, March 64.
10. White A D, "Cold Cathode Device", J.App.Phys. Vol. 30 No. 5 May 59 .
11. Myers R F, "Factors Affecting the APT Picture Quality", Air Force Cambridge Laboratories AFCRL-68-0517, Instrumentation Papers No. 149, Office of Aerospace Research, United States Air Force, Oct. 68.
12. Nagle J J, "A Method of Converting the SMS/GOES WEFAX Frequency (1691 MHz) to the Existing APT/WEFAX Frequency (137 MHz)", NOAA/NESS Office of System Engineering, Suitland, Maryland, April 74.
13. "Meteorological Fascimile Broadcasts", WMO Publication No. 9, Vol. D, Part F(2); World Meteorological Organisation, Palace des Nations, Geneva CH 1211, Switzerland.

Atomic clocks and digital data transmission were many years in the future in December, 1916. The simple operation of providing a time signal in the Panama Canal entailed transmission by cable from Washington to Key West, from where it was transmitted by wireless to Darien. The procedure at Darien, where the signal was transmitted by cable to port captains was as follows:
"The signal is sent from Key West in a series of dots. Five minutes before noon the wireless begins counting off the seconds by dots. After the twenty-eighth second there is a pause, the 29th dot being omitted; similarly there is a pause from the 54th to the 60th second. The count is resumed exactly on the minute. This procedure is kept up until 10 seconds before 12 o'clock, when there is a pause followed by a long dash at exactly 12 o'clock. The aerial transmission is recorded at Darien by a current too slight to permit ordinary relaying. Consequently an operator with a wireless receiver at his ears sends dots through an ordinary telegraph wire to the port captains. With practice he can strike the dots on bis sending key in almost perfect synchronism with the dots received. The principal difficulty is in sending the final dash after a wait of 10 seconds. Here the tests show that the lag is between two-tenths and three-tenths of a second. By making allowance for this lag the chronometers in the Canal Zone can be adjusted to within about one-tenth of a second of the correct time.'

Switch modules

Spectradil is a range of single-throw laterally-operated dual-in-line module switches, available from Erg Components. The switches have arrow-shaped sliders, coloured in accordance with the international colour code, and are available in $2,4,6,8$ or 10 -pole modules, from 5 to 25 mm in length. Gold-plated spring-loaded wiping contacts are used, enabling the switches to be used for microvolt and low-power switching. Specifications claimed include a typical resistance of $10 \mathrm{~m} \Omega$, with a repeatability of less than $\operatorname{lm} \Omega$ over several hundred operations, and a life of 10,000 operations at the full 10VA rating. Erg Industrial Corporation Limited, Luton Road, Dunstable, Bedfordshire, LU5 4LJ.
WW301 for further details

Packaged mixer

A low-cost double-balanced mixer, designed for r.f. signal processing applications, is packaged in a four-pin TO-5 can measuring only 0.3 in high x 0.4 in diameter. The M105 mixer, introduced by Merrimac Industries, is totally r.f. shielded and complies with MIL-STD-202, within an operating
temperature range of -55 to $+100^{\circ} \mathrm{C}$, and the environmental specifications MIL-E-16400F Class 1 and MIL-E-5400L Class 2. The mean time-before-failure is rated at $650,000 \mathrm{~h}$ for ground fixed equipment and $100,000 \mathrm{~h}$ for airborne equipment (to MIL-HDBK-217B). Specifications include a frequency range from 1 to 500 MHz , typical losses of 6 dB from 1 to 200 MHz and 7.5 dB from 200 to 500 MHz , minimum isolation 30 to 40 dB at 1 to 50 HMz and 18 to 25 dB at 50 to $5 \overline{0} 0 \overline{\mathrm{MHz}}$, a noise figure within $\pm 1 \mathrm{~dB}$ of the loss, and a maximum input power of 50 mW . Merrimac Industries Inc., 41 Fairfield Place, West Caldwell, N.J. 07006, U.S.A.
WW302 for further details

Microwave sweep oscillator

The Model 554 is a compact sweep oscillator providing a power output of greater than 10 mW c.w. over the frequency range 8.0 to 12.4 GHz . Frequency limits of the sweep can be set to the nearest 10 MHz by two digitallycalibrated and independent thumbwheel controls on the front panel. The sweep oscillator may be operated at fixed frequencies using the manual scan, or in slow single or fast automatic sweep modes, depending on the display used. An external voltage may be applied to the oscillator, via an external connector, to remotely control or phase lock the output frequency. The oscillator is YIG-tuned, features low noise (e.g. in the c.w. mode residual f.m. is typically 15 kHz peak at 10 kHz bandwidth, with filter) and provides an r.f. output of spectral purity. An isolator is fitted to avoid frequency pulling by output loading, and a low-pass filter is included to suppress harmonics. Flann Microwave Instruments Ltd, Dunmere Road, Bodmin, Cornwall, PL31 2QL.
WW303 for further details

WW301

Toggle and rocker switches

Switches in the 7100 series, from Roxburgh Electronics, are designed for direct mounting to p.c.bs. The toggle and rocker switches have contact ratings of 0.4 VA at 20 V a.c. or d.c., maximum contact resistances of $10 \mathrm{~m} \Omega$, minimum insulation resistances of $1000 \mathrm{M} \Omega$ and dielectric strengths of 1000 V r.m.s. Their contacts are made of gold on nickel-plated brass. Both sin-gle-pole double-throw and double-pole double-throw versions are available in these switches, which are designed to be vertically supported by means of separate brackets which extend parallel with the terminals. The terminals are also designed for direct soldering to the p.c.b. Five terminal lengths are available giving the switch a height ranging from 0.46 in to 0.95 in from the shoulder of the switch to the p.c.b. Roxburgh Electronics Limited, 22 Winchelsea Road, Rye, Sussex.
WW304 for further details

Op-amp power supply

A low-profile power supply module, designed for energizing operational amplifiers or other devices requiring a balanced dual rail supply, comprises a single printed circuit board assembly, carrying all the components, with a metal cover that also serves as the heatsink. The Weir op-amp power supply operates from an a.c. mains input in the voltage range 100 to 130 or 200 to 260 V and delivers a balanced d.c. output which is adjustable over the range ± 12 to $\pm 15 \mathrm{~V}$ by means of a preset control. Maximum load current is 250 mA on each rail, with both load and line regulation better than 0.02%. For accurate load voltage stabilization, provision is made for external voltage sensing with sense-lead lengths up to 1

WW304

WW302
metre without the need for compensation. External control of the d.c. output, separate control of voltage and current using external resistors, and remote programming by external control voltages may also be facilitated. The unit measures $100 \times 160 \times 55 \mathrm{~mm}$. Weir Instrumentation Limited, Durban Road, Bognor Regis, Sussex.
WW 305 for further details

Low-cost oscilloscope

A dual-trace 10 MHz oscilloscope, from Scopex Instruments Ltd, has an accuracy of $\pm 3 \%$ on both time and voltage measurements and is priced at only $£ 150$. The model 4D10A, as it is called, is an improved version of the model 4D10 oscilloscope. This improved performance has been obtained by using stabilized power supplies throughout, enabling mains supply variations of $\pm 10 \%$, and by redesigning the attenuator to allow measurements up to $50 \mathrm{~V} / \mathrm{cm}$. Other changes include the use of Glarecheq non-reflective filters with reverse side graticules, for low parallax error, and a re-designed trigger to include a mode allowing triggering from composite video waveforms at TV field rate. In addition, the use of aluminium panels instead of steel has given a weight reduction of 25%. Cost savings were made by bulk-buying precision components and by replacing many of the electrolytic capacitors by circuitry. Scopex Instruments Limited. Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Herts. SG6 1JJ.

WW306 for further details

Resistance bridge

A precision a.c. resistance bridge, from J. J. Lloyd Instruments, has a calibration accuracy of 5 p.p.m. and a discrimination better than 0.1 p.p.m. for resistance values up to 444Ω. The instrument is especially useful for calibration and measurement with resistance thermometers, strain gauges and other in cases where very precise observation of relatively low resistance values is required. A multi-dial transformer ratio system compares the unknown resistor with a built-in standard, giving a stable direct read-out of resistance value, or deviation. A fourterminal pair network minimizes errors due to lead resistance without the need for a dummy load, and the use of relatively low frequency $(320 \mathrm{~Hz})$, together with automatic feedback of the quadrature signal from the built-in detector, eliminates any need for manual balance of the non-resistive element, ensuring that precision measurement is achieved easily and quickly. Low power dissipation, both in the resistor under test and in the high-stability low-temperature-coefficient

WW305

WW306

WW307
metal-film reference standard, minimizes the effect of self-heating. An off-limit indicator is available as an optional extra, which gives lamp indication of deviation in three pre-set bands above and below the nominal value, and which also increases the resolution by a further factor of ten. Reed relay outputs are provided to operate sorting systems or data recording equipment. Outputs are available both from the decade switches and the detector of the main instrument to facilitate external recording, either. digitally or on a chart recorder. J. J. Lloyd Instruments Limited, Brook Avenue, Warsash, Southampton, SO3 6HP.
WW307 for further details

Meter calibrators

Two meter calibrators, the model 25A for r.f. milliwattmeters and the model 26A for r.f. millivoltmeters, have been introduced by Boonton Electronics. Both instruments provide accurate, stable 1 MHz output signals with rotary switches selecting levels to conform to full-scale readings, and separate push buttons for selecting incremental steps within each range to check meter linearity. Output ranges of the instruments are -69 to +20 dBm in 1 dB steps, accurate to 0.05 dB , for the model 25 A and $60 \mu \mathrm{~V}$ to 3 V in 10% full-scale steps, accurate to 0.5%, for the model 26 A . Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NWI 1YE.
WW308 for further details

Soldering bits

Stiron soldering bits are designed to give long trouble-free life in any iron taking interchangeable bits in $1 / 8,3 / 16$, $1 / 4,5 / 16,3 / 8 i n$ and 14 mm diameters. The design accommodates a variety of tip forms, and the iron-plating ensures low deformation throughout the working

life. These bits, which are pre-tinned, are chromium plated (except where tinned) to prevent solder creepage. Screwdriver bits in the three larger diameters can be supplied tinned on one side only, to prevent damage to adjacent solder joints. Stiron bits were developed to the requirements of the Swedish Post Office and Ericson Telephones and are now available in the U.K. for use with many makes of iron. Tele-production Tools Limited, 28b Hamlet Court Road, Westcliff-on-Sea, Essex.
WW 309 for further details

Diagnostic servicing aid

Usijet is a small, light universal signal injector made in the form of a pen for clipping into the pocket. The circuit consists of two signal generators, one operating at audio frequency and the other at radio frequency. The impulse waveform derived from a blocking oscillator-type circuit, produces a signal with a wide range of harmonic frequencies up to 500 MHz . This instrument may be used to trace breaks and component failures by injecting the signal at various points in circuits and may be applied to fault finding in a.f., i.f. and r.f. amplifier stages, l.w., m.w., s.w. and f.m. wavebands and TV v.h.f. and u.h.f. channels up to 500 MHz . The fundamental frequencies are 1 kHz and 500 kHz , with an output voltage of 20 V pk-pk, and the maximum permissible direct voltage at the probe tip is 500 V . Usijet costs $£ 7.50+$ v.a.t., is powered by a 1.5 V cell and has a current consumption of about 25 mA . Precision Instrument Laboratories, Instrument House, 212 Ilderton Road, London SE15 1NT. WW3 10 for further details

Receiver protection unit

A range of receiver protection units, designed to protect the inputs of m.f. and h.f. radio receivers from the effects of r.f. voltages and currents induced in
the antenna, has been developed by Callbuoy Marine Electronics. One of the principal needs for such a unit is in marine applications where radio energy from the vessel's own transmitter can induce high voltages and currents in the receiver antenna. The units, models RPU250, RPU500, RPU100/75 and RPU100/50, protect receiver inputs against $250 \mathrm{~V}, 500 \mathrm{~V}$ and 100 V r.m.s. respectively. The two 100 V models are low loss units matched to 75Ω or 50Ω feeders. All models operate over the frequency range 0 to 30 MHz , with a minimum of insertion loss at normal signal levels, measure $200 \times 55 \times 50 \mathrm{~mm}$ and weigh 1.1 kg . Callbuoy Marine Electronics Limited, 6 Somerset Road, Cwmbran, Gwent NP4 1QX.
WW311 for further details

Switch seals

Amiseals are one-piece seals for toggle, push-button and rotary shaft switches. The seals are moulded to hexagonal nuts and are claimed to provide complete dust-proof and water-tight protection for switch actuators, and also seal the panel holes. The hexagonal nuts are available in a range of thread sizes to allow use on switches of various manufacturers. These seals are manufactured in the U.S.A. and meet the requirements of MIL specifications B5423. A. F. Bulgin \& Co. Ltd, Barking, Essex.
WW3 12 for further details

High-brightness l.e.ds

A Tl-packaged l.e.d. lamp, the RL-2000, has a typical luminous intensity in excess of 3.5 mcd . The lamp is designed for panel mounting with either rear or front mounting clips and provides radiation with a wide viewing angle. It may be driven from existing i.c. circuitry, requiring no additional power supply, and offers the user the choice of

WW308

WW309
either extremely high intensity operation or low power consumption at lower brightness levels. A typical characteristic of the RL-2000 is a luminous intensity of 3.5 mcd at 100 mA and a peak inverse voltage of 3 V . Litronix, 24 Sun Street, Hitchin, Herts SG5 IAH.
WW313 for further details

Scanning motors with mirrors

A range of scanning motors fitted with mirrors has been produced by Techmation Ltd for electronic, optical and medical applications such as raster generation and pattern generation, as in visual evoked response. These motors, in the S 4 range, are based on the proven MFE miniature galvanometers and are tangent-corrected, exhibiting a linearity of up to 0.5% with 0.05% repeatability. The motors give mirror deflections of up to $30^{\circ} \mathrm{pk}-\mathrm{pk}$ and work at frequencies up to 100 Hz or more. Four motor sizes are available, each with a one-wavelength flatness mirror. Techmation Limited, 58 Edgware Way, Edgware, Middx HA8 8JP.
WW314 for further details

Electronic ice-point

An electronic ice-point, available from Ancom Limited, is built into a thermocouple connector and is powered from a self-contained battery. The Omega MCJ (miniature cold junction), which is compatible with any thermocouple quick-disconnect connector, is claimed to give 2500 hours continuous operation from one battery. The standard reference temperature setting is $0^{\circ} \mathrm{C}$, with a compensation accuracy of $\pm 0.5^{\circ} \mathrm{C}$ from $15^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, and the output impedance is less than 200Ω. Internal balance adjustment is provided for high accuracy requirements. Ancom Limited, Devonshire Street, Cheltenham GL50 3LT.
WW315 for further details

Data-communications test set

On display at the Virginia Electronics Exhibition, held in the U.S. Trade Centre in October, was a test set from Dynatech Laboratories Incorporated. The TC-100 is a programmed test set for locating and defining faults in data communications systems. It is claimed to simulate and test all components in the data network including the communications circuits, modems, terminals and computer ports - both the hardware and software. Tech-lit Services Incorporated, 1519 Highwood Drive, Arlington V.A. 22207.
WW316 for further details

Tantalum chip capacitors

A high-reliability range of Tantalum chip capacitors, available from Waycom Limited, are manufactured to MIL-C-55365A standards and are intended for direct substrate mounting in high-quality thick and thin film assemblies. The BNS series covers the capacitance range 0.1 to $100 \mu \mathrm{~F}$, for working voltages up to 50 V . The solder mounting terminals are claimed to be shock and vibration proof and the body has an insulating coating of inert polymer to avoid contaminating transistors or other sensitive components on the same substrate. Tolerances of $\pm 20 \%, \pm 10 \%$ and $\pm 5 \%$ are available, and the capacitors may be worked over the full military temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Waycom Limited, Wokingham Road, Bracknell, Berks.
WW317 for further details

Solid Stafe Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

H.f. transistor

The MRF905 n-p-n silicon high-frequency transistor, from Motorola, is designed for low-cost radiosonde service and microwave communications relay links. It is an oscillator transistor which is emitter ballasted and has the collector connected to its TO-46 metal can. Typical characteristics include low current density, a current-gain bandwidth product $\left(f_{2}\right)$ of 2500 MHz , and an output power, measured at 1.68 GHz , of 500 mW . The maximum collector-emitter voltage $\left(V_{\text {CEO }}\right)$ is 20 V , collector current is 150 mA and power dissipation at $25^{\circ} \mathrm{C}$ is 2.5 W .
WW318
Motorola

Low-noise f.e.ts

A family of gallium-arsenide Schottky barrier f.e.ts, designated as the model HFET-1000 series, is now available from Hewlett-Packard. The transistors offer a 14.5 dBm linear 25 mW power output at 10 GHz . At this frequency the transistors have typical noise figures of 3.6 dB with 6.9 dB associated gain, and maximum available gains of 11.0 dB . These chips, which are intended for use in low-noise amplifiers in the 2 to 12 GHz range. have 1 by 500 micrometer gates.
WW319
Hewlett-Packard

High-voltage rectifiers

A low-cost high voltage rectifier range, the 1N5181-84 series, has been introduced by Semtech. Peak inverse voltages range from 4 to 10 kV , the average rectified current is 100 mA (at $55^{\circ} \mathrm{C}$), the maximum forward voltage drop is 10 V , and the maximum reverse current at $25^{\circ} \mathrm{C}$ is $1 \mu \mathrm{~A}$. The cylindrical rectifiers have axial leads and operate over a temperature range of -65 to $+175^{\circ} \mathrm{C}$. WW320

Bourns

Microwave transistor

A range of low-cost high-power microwave transistors, from Microwave Semiconductor Corporation, operate in the frequency range 1.5 to 2.3 GHz . The devices, designated as the Impac series, are input matched. Output powers range from 5 to 30 W with an option of 24 or 28 V . Applications for these transistors include satellite up and down links and missile telemetry. Prices range from $£ 15$ to $£ 50$.
WW321
Tranchant

Low-resistance switching transistors

Complementary p-n-p/n-p-n silicon epitaxial switching transistors with low inverted dynamic-saturation resistances (typically 4Ω) are available from Crystalonics. Other characteristics include typical collector/base and emitter/base leakage currents of 0.5 nA , $V_{\text {CF }}$ of $20 \mathrm{~V}, V_{\text {BE }}$ of 30 V , and an offset voltage of 0.7 mV . Collector/base and emitter/base capacitances are 6 pF and 5 pF respectively. The transistors, which operate over a temperature range of -65 to $+200^{\circ} \mathrm{C}$, are packaged in a TO-46 can.
WW322
GEE

Suppliers

Bourns (Trimpot) Ltd, Hodford House, 17/27 High Street, Hounslow, Middlesex TW3 1TE:
G.E. Electronics (London) Ltd, 182/4 Campden Hill Road, Kensington, London W8 7AS.
Hewlett-Parkard Limited, King Street Lane, Winnersh, Wokingham, Berkshire RGll 5AR.
Motorola Limited, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0PR.
Tranchant Electronics (UK) Ltd, 100a High Street. Hampton, Middlesex TW12 2ST.

BAIRD ON TRIAL

ONE of the many strange phenomena of our time is the growth of nostalgia. Victorian bric-a-brac, not so long ago the object of derision, is now eagerly sought after. And the stuff needn't be so old at that. A nameplate of a steam locomotive scrapped only a couple of decades ago can now command upwards of $£ 5,000$ in the market place. Bits and pieces from axed branch lines change hands at fantastic prices. Tram tickets can be worth their weight in gold, while anyone who has in his loft a 1923 valved radio in mint condition is probably sleeping under a platinum mine.
The 'twenties phase has also hit the journal's correspondence columns with the John Logie Baird controversy not, I'm thankful to note, that hardy annual as to whether or not he is indeed the Father of Television, but whether he was fooling the public. This has stirred up a rare old ding-dong, with many revered names cutting and thrusting in the best traditions of the late Mr Errol Flynn, including, I see, a former editor and an assistant editor of WW.

But, with the utmost respect to all participants in the story so far, it seems to me that to attempt to solve the question primarily by studying the business and technical aspects of Baird's 30 -line activities is to create a cart-before-the-horse situation. Surely the initial approach should be to examine Baird's psychological makeup to see whether he was inherently capable of chicanery?

Ideally, I suppose, only unbiased witnesses who knew Baird intimately would be in a position to judge his integrity, but although there are many living who knew him well, hardly any, I imagine, could be completely objective. Failing that, one must turn to the literature, such as "John Baird," by Sydney Moseley, one of Baird's friends and business associates.

His account of Baird's pre-television days is illuminating. Baird, it seems, had a horror of poverty, yet no over-riding ambition towards riches. His early essay into diamond manufacture when he
mounted terminals at the ends of a carbon rod, immersed it in a bucket of concrete and then connected the output of a power station (where he was an employee) across the terminals, isn't one to engender confidence in his technical abilities and judgement. Baird anticipated the sack by getting out of electrical engineering in a hurry and plunged into a series of one-man business ventures. The Baird Undersock, "Medicated, Soft, Absorbent. Keeps the feet warm in winter and cool in summer" was the first. These were ordinary socks, sprinkled with borax; Baird promoted their sale by means of "carefully prepared home-made testimonials" (his own words).
Next there was a disastrous excursion into jam-making in the West Indies, the climax of which came when he returned to England with kerosene tins full of mosquito-ridden jam which he was unable to sell until a sausage maker bought it to mix into his products. Other abortive ventures followed, including "Baird's Speedy Cleaner" a soap which Baird himself described as rubbish, but which sold well. Glass razor-blades and pneumatic soles for shoes were his first inventions - both abysmal failures.
We now move on to June 1923, by which time Baird had somehow latched on to Nipkow's apparatus and, with the aid of a selenium cell and valve amplifiers, had made it work to the point where it would transmit shadows. Still broke and needing more money for components, he inserted the advertisement in The Times:
"Seeing by Wireless - Inventor of apparatus wishes to hear from someone who will assist (not financially) in making working models ..."

This, according to Sydney Moseley, was a "con." Eventually it brought a financial backer to the tune of $£ 200$. That soon vanished - not into Baird's pocket, but into equipment - and for some time afterwards he lived hand-to-mouth until investment by relatives eased matters a little.

The next incident, in terms of Baird's integrity, concerns the morning after the celebrated demonstration to members of the Royal Institution in January 1926, when Baird's premises in Frith Street were beseiged by pressmen. The press (says Moseley) were courteously received and "were told only what Baird and Hutchinson (another associate) chose to tell them".
In 1927 a company was formed; thereafter Baird's personal finances were considerably easier and he had considerable sums at his disposal for research. But in one major respect his problems multiplied. He was no longer a lone inventor, responsible only to himself. He had shareholders - speculators who wanted a return on their investments as early as was possible. Baird had to whip up public interest to a point where a television service could be started. Only then could his company sell Televisors. Accordingly Baird
plunged into an orgy of demonstrations while Moseley, an ex-Fleet Street journalist and completely non-technical, whipped up enthusiasm in the newspapers and banged the big drum. In record time Baird demonstrated colour television stereoscopy, and Noctovision as well as long-distance 30 -line transmissions. All held considerable experimental interest. None of them had entertainment value.
Which brings us to the question before the meeting. Did Baird employ any degree of rigging in staging his demonstrations? Certainly the temptation must have been great. He had been first in the field with a moving picture containing a degree of light and shade, but only by a short head. By this time others were demonstrating; moreover, he had no master-patent to protect the overall system, so it was essential that he should be seen to be in the lead. At the same time, however, he must not give away too much technical detail to rivals.

When in 1930, the BBC rather reluctantly permitted Baird the use of two Brookman's Park transmitters one for vision and one for sound - for limited experimental broadcasts, the Baird Televisor was launched in two forms; a complete model and a constructor's kit. I have a copy of the original brochure. It contains no salient technical information. No mention (naturally) is made of the "hunting" problem which still existed. It contains such phrases as "perfect reception is guaranteed", "see the world from your own fireside" and "The day is not far off when owners ... will be able to witness a whole film performance ..." (Six years, as it transpired - but not with the 30 -line system!).

If it transpires that Baird did consciously fool the public (and he certainly seems to have had an amoral approach in his earlier life) it may well have been with the best of intentions. Most inventors have a blind spot concerning the deficiencies of their brain-children; Baird had a sublime belief in his system; he was convinced that in the end mechanical scanning would provide a 100% entertainment medium and so he might have argued that the employment of any means was justified in order to win through. And, before we dismiss him as an unqualified crank who stuck obstinately to mechanical scanning, let's not forget two things. One is that his early experiments triggered several large organizations into television research and their highly qualified engineers all followed the mechanical road for some years. The other is that in the famous trial against the Marconi-EMI system, Baird's $240-$ line Nipkow disc system was defeated not so much on picture quality as on being less flexible in operation.
I've sometimes wondered how Baird would have fared if he had lived in the days of NRDC. But that's another set of conjectures altogether!

British Central
Electrical Ltd.
Briticent House 172 Honeypot
Lane
Stanmore
Telephone
01-2049111
Branches at:-
Slough 28616
Mitcham
01-6409121
Cosham (07018)
83621
Yeovil 5596
Twickenham
01-8947561
Chingford
01-529 3715

D.T.V. Group Ltd

126 Hamilton Road West Norwood
London SE27
Telephone:
01-6706166

Farnell
Electronics Ltd Canal Road Leeds LS12 2TU
Telephone: Leeds (0532)636311

Lock Distribution Neville Street Middleton Road Oldham
Telephone: 061-6526166

Spenco Electronics (Phoenix) Ltd 79 Carron Place Kelvin Industrial Estate East Kilbride, Scotland
Telephone:
East Kilbride
(C3552) 36311

Your nearest phone will solve your encapsulant problems.Immediately.

Whatever your encapsulant, potting or sealant requirements, your local specialist Dow Corning distributor is able to supply you immediately.
Wherever you are, there is a local Dow Corning siliconetrained electrical/ electronics productexpert to help you.

now consing

WW-094 FOR FURTHER DETAILS

BULK ERASURE PROBLEMS?

LR71
MAX REEL SIZE $11 \frac{1}{\prime \prime} \mathbf{z}^{\prime \prime}$
LR 70
MAX REEL SIZE $81 / 4 "$

If it 's personal we can only advise a diet or joining weightwatchers If it's to do with tape, then why not consider the LR70/71 bulk tave erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1 / 2^{\prime \prime}}{}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement.
The LR70/71 buik erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry Moderately priced and available from
LEEVERS-RICH EQUIPMENT LIMITED INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley

fault finding-風 no fiddle
 With the AVO TT 169 in-circuit transistor tester. Co/No Go tests almost any transistor, diode or thyristor without de-soldering, without damage Find out how it can save you time, save you money.
 You'll find the price is no fiddle either Contact your local wholesaler, or us:

WW-044 FOR FURTHER DETAILS

Solid State Colour Television Circuits

G. R. WILDING

The book contains, firstly, a clear and concise explanation of how the various semiconductor devices used in solidstate receivers function, and how they are utilized in the complicated and often highly ingenious arrangements of modern designs. Secondly, concentrating on the most modern c.t.v. designs, explanations are given of how these circuits operate, providing excellent back-up material to the manufacturers' service manuals, which can contain only the minimum of 'circuit notes' to aid fault diagnosis.
The information covering the most up-to-date innovations in c.t.v. design in major British, European and Japanese receivers will be useful to service engineers, technicians and students and to amateur enthusiasts as a lucid exposition of the modern design of colour television receiver.
CONTENTS: Devices and Principles. Power Supplies. Timebase Circuits. Sync Separators. Convergence and Degaussing. Tuners and I.F. Amplifiers. Luminance Circuits. Chromi nance Circuits. Burst Gates and Reference Oscillators. Demodulator and PAL Switch Circuitry. Signal Amplifying and Output Stages. Beam Limiters. Index
1976208 pages $252 \times 160 \mathrm{~mm} \quad 040800228 \times$ £5.75

Order from your bookseller or, in case of difficulty, from
NEWNES-BUTTERWORTHS
Borough Green, Sevenoaks, Kent, TN15 8PH
Telephone 0732884567

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW - 028 FOR FURTHER DETAILS

Audio versatility by TUEEI

The Tweed Twin-100 Monitor Power Amplifier - designed for a high peak output capability, this robust amplifier delivers 100 watts per channel into 8 ohms. Full performance specification on request.
If you require superb quality, top performance, proven reliability and electronics designed with music in mind, write or phone:

THEED RUDIO
ROSEWOOD induStrial estatl aElSO hoXburghitire scotland phone 2sen stoosh32 Specialists in Audio Control Equipment for the Broadcast and Sound Recording Industries WW-089 FOR FURTHER DETAILS

Switched output of $3 / 6 / 71 / 2 / 9 \mathrm{~V}$ stabi. lized at $400 \mathrm{~mA} £ 5.45$.
3-WAY MODELS
With switched output and 4-way
multijack connector Type $1: 3,41 / 2$
 6V at 100 mA E2.94. Type $2.6 / 71 / 2 /$ 9V at 250 mA E3. 10.
RADIO MODELS
50 mA with press-stud battery connectors
for radios etc 6 V £.3.45. 9 V £3.25. $41 / 2+41 / 2 \mathrm{~V} £ 5.45 .6+6 \mathrm{~V}$ £5.45. $9+9 \mathrm{~V}$ £5.45. Also 9 V 300 mA E3.95.
CASSETTE MAINS UNITS
$71 / 2 \mathrm{~V}$ output with 5 pin DIN plug. 50 mA model $£ 3.45$. 300 mA model $£ 3.95$. CAR CONVEKTORS
Input 12 V DC. Output 6. $71 / 2,9 \mathrm{~V}$ DC 1A egulated E5.10t.
PRINTED CIRCUIT KIT
Make your own printed circuits Contans etching dish. 100 sq ins of copper clad boerd, 1 lb ferric chloride, etch resist pen.
drill bit and laminate cutter $\mathbf{£ 3 . 9 5}$.

SINCLAIR WATCHES

WATCHES:
Cambridge Scientific cses. £13.30. Mains adaptors $\mathbf{E 3 . 2 0}$
unogrammable Scientific with free mains E16.45.

SINCLAR IC20

IC20 $10 \mathrm{~W}+10 \mathrm{~W}$ stereo amp kit with printed circuit £4.85. PZ20 Power supply for above £3.95. VP20 Control and preamp kit $\mathbf{8 7 . 9 5}$.
JC12 AMPLIFIER
6WIC audio amp
with free data
printed circ
$\mathrm{E} 2.25 *$.
E2.25*.
TRes"
Volume and tone controls and extra parts
for the pcb. Mono $£ 2.33$. Stereo $£ 4.95$ for the pcb. Mono £2.33. Stereo £4.95,
Supplies 25 V 1 Amp
JC12 PREAMP KITS
Type 1 for magnatic pickups, mics and tuners. Mono £1.50. Stereo £3.00. Type 2 for ceramic or crystal pickups. Mono 88p. Stervo £1.76.
SEND SAE FOR FREE LEAFLET
S-DECS AND T-DECS \star
S.DeC E2.24

T-DeC E4.05
u-DeCA E4.45
U-DeCB E7.45
16 dil IC carriers
with sockets $\mathbf{E 2 . 0 5}$
BATTERY ELIMINATOR KITS
100 mA redio types with press stud battery terminals $41 / 2 \mathrm{~V} £ 1.95$. $6 \mathrm{~V} £ 1.95$.
9 V . $1.95 .41 / 2 \mathrm{~V}+41 / 2 \mathrm{~V} £ 2.60 .6 \mathrm{~V}+6 \mathrm{~V}$

$100.60 .9 V+9 \vee € 2.60$.
100mA cassette type: $71 / 2 \mathrm{~V}$ din plug
Stabiliz
Stabilized 8-way types: transistor
stabilized to give low hum $3 / 41 / 2 / 6 / 4$ $71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 50 \mathrm{~mA}$ model E3.15. 1 Amp model £6.50.
Heavy duty 13-way rypes: $41 / 2 / 6 / 7$ /
$81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28$,
$81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 /$
$34 / 42 \mathrm{~V}$ 1A £4.95. 2A £7.55. $34 / 42 \mathrm{~V}$ 1A £4.95. 2A £7.55.
Car convertor kit: Input $12 \mathrm{~V} D \mathrm{C}$ Car convertor krt: Input 12V DC Outpu:
$6 / 71 / 2 / 9 \mathrm{VDC} 1 \mathrm{~A}$ regulated E1.95.

SWANLEY ELECTRONICS

post 30 p on orders under E2.23 otherwise tree Prices include VAT
on orders under $£ 2.23$ otherwise free. Prices include VAT. (Overseas customers deduct 7% on items marked*. otherwise 11%). Official orders welcome

ELECTRONORGTECHNICA
 carbon film RESISTORS

$1 / 8$ and $1 / 4 w 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK
$£ 4.90$
PER 1,000
PLUS
of ONE VALUE
V.A.T

Contact John Gingell

AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SF
TEL: 01-7275641 TELEX 261306
WW 052 - FOR FURTHER DETAILS
 distortion meter for Sinad Measurements. Just connect it to the audio output and read SINAD directly. No adjustments to make. Automatic circuitry does the level setting for you

£ 120 +р. \& р. \& VAT

LYONS INSTRUMENTS

Hoddesdon Herts EN11 9DX Tel: 67161 Telex 22724 A Claude Lyons Company

COMPUTER APPRECIATION

86 High Street, Bletchingley, Surrey RH1 4PA. Tel: Godstone (088 384) 3221

DIGITAL COMPUTER CONTROLS D1 12
MINICOMPUTER SYSTEM comprising 4 K Processor. 32 K disc unit, high speed paper tape reader/punch. ASR 33 Teletype \& Software including BASIC, FOCAL \& FORTRAN; 11550
IBM 1130 COMPUTER SYSTEM comprising $4 \mathrm{~K} \times 16$ Processor, I/O 'golfball' typewriter, high speed paper tape reader/ punch. communications golfball' typewriter, high speed paper tape reader/punch, communications
unit and an additional printer. Software includes diagnostics and an unit and an additional printer. Software includes diagnostics and an assembler. A modern compact machine designed for scientific applications £695
PDP 8/S 4K MINICOMPUTER with TTY interface and software; $£ 385$
DF 32 disc unit suitable for interface to PDP 8/S; $£ 295$
IBM I/O TYPEWRITERS, BRAND NEW; £280.
IBM 1053 RO Golfball printers; E49.
IBM Model 1056 CARD READERS. very compact: é 68
IBM Model 1058 (24 Series) printing CARD PUNCH with adapter for on-line use; £225.

ASR 33 TELETYPE with 20 mA current-loop interface: $\mathfrak{£} 325$.
Other ASCII coded TELETYPES from E150.
ASR 35 TELETYPE -- as ASR 33 but heavy-duty and with extended control functions: E 350 .
EKCO 6 -digit TTL counter-timers NEW, but untested, $£ 38$ Tested, $£ 48$
EKCO FIELD RATEMETER, NEW: $£ 48$
BRPE High Speed TAPE PUNCHES; $£ 78$
ICL High Speed TAPE READERS; $£ 78$
DATEK 40 c.p.s. TAPE READERS, mechanically (not brush) operated NEW and boxed; $£ 28$ (substantial reductions for quantities).
COSSOR VDU with keyboard; $£ 95$.
HONEYWELL printing card punches/verifiers: from E50
DURA paper tape golfball typewriter: £225.
PLESSEY 16K x 13 core memories without electronics: $£ 27$ Case mounted alpha-numeric keyboard with 200 ch . buffer and display: $£ 17.50$

HI Fl YEAR BOOK 1977

Available direct from the publishers @ £3.40 inclusive or from leading booksellers and newsagents price $£ 3.00$

The Hi-Fi Year Book is more than just a handy reference. It is a sensitive instrument enabling you to pinpoint and track down the finest Hi-Fi items on the market. There are 500 pages of products, photos and expert articles to help you in your choice. Separate illustrated sections cover every major category of equipment-telling you what each item does, what it costs, who makes it and where to buy it. What's more, there are authoritative articles on the latest developments and how to apply them. Order your copy today, before it sells out ... and you'll be tuned in to the finest in Hi-Fi all through 1977!

 PICKUP

 HGH-SENSITMITY
 INFORMAtION

WW-083 FOR FURTHER DETAILS
Wilkin

BUILT TO YOUR SPECIFICATION HIGHEST QUALITY AT COMPETITIVE PRICES WITH BY RETURN HOME AND OVERSEAS
HIGH SPEED RELAYS. Single and Double Pole various resistances. RESISTORS
P.O. Type 9 and 12, and complete RELAY SELECTOR UNITS available now at
PLUNGER KEY P.O. No. 308 with 3 C. O Competitive prices.
LAMP JACK. PO ty e tor tubular wo OPERATED WAFER SW MULTLINDICATORS 0 to 9 , or A to K, or L to $Z \%$ \%n characters dimensions 1 in wide 3-5/16in deep 1.5/16in high, illuminated by 28 v single contact midget flanged lamps 08 amps $\& 250$ each, can be assembled in banks of five to your own specification for $\& 10$
\qquad fuses regulated by a 4 -position switch and sliding resistance \& 15 each GEARED MOTORS. 1 if $p \mathrm{~m}$ or 3 rp m 4 watts. very powerful, reversible 24 V A L wILKINSON (CROYDON) LTD., LANGLEY HOUSE, LANGLEY ROAD WW -069 FOR FURTHER DETAILS

Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit Course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experi ments on basic electronic circuits and see how they work.

Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL
P.O. Box 156, Jersey, Channel Islands.

[^4]ADDRESS

WHF 12

HART ELECTRONICS
 The Only Firm for Quality Audio Kits

 J. L. Linsley-Hood High Quality Cassette Recorder

 J. L. Linsley-Hood High Quality Cassette Recorder}

As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have therefore spent a little more on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished result is a unit designed not to normal domestic standards but to the best professional practice

LENCO CRV CASSETTE MECHANISM
High Quality, robust cassette transport for Linsley Hood Recorder Features fast forward. Record/Play pause and automatic cassette ejection facilities fitted with ejection spring for above horizontal use. Ex-stock $£ 19.10+£ 2.38$ VAT.
$71 \times$ Complete set of parts for Master Board, includes Bias oscillator Relay, Controls, etc. $£ 9.83+£ 1.23$ VAT
72x Parts for Motor Speed and Solenoid Control for Lenco CRV Deck $£ 3.52$ + 44p VAT.
$73 x$ Complete set of parts for stereo Replay Amps and VU Meter Drive. $£ 8.02+£ 1$ VAT
$74 x$ Complete set for Stereo Fecord Amps. £6.64+83p VAT
$175 x$ Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate $3.5^{\prime \prime} \times 5^{\prime \prime}$ PCB designed so that the motor control board fits above it to save space. $£ 8.29+£ 1.03 \mathrm{VAT}$
700 M . VU Meters Individual high quality meters with excellent ballistics and builtin illumination. £6.48 + 81p VAT PER PAIR

ALL PARTS ARE POST FREE

Please send 9×4 SAE for lists giving fuller details and Price breakdowns
A suitable Metalwork and Front Plate will be available soon

Penylan Mill, Oswestry, Salop

Personal callers are always welcome, but please note we are closed all day Saturday

BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION

[^5]
$0 \cdot=1=-=1 \sim=1 \%=$

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1 / 4^{\prime \prime}}{}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital כystems

$£ 6.20$

plus 80 p packing and surtace post anywhere in the world
Payments may be made in foreign currencies

Quantity discounts
available on request
VAT zero rated

```
Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes
```

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Fliptlops and Registers

£4.20

plus 80p P. \& P
Offer Order both courses for the bargain price 19.70 plus $80 p$ P. \& P

Designer

Manager
Enthusias
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita। Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

Amperand WHAT?."

The

 JAMESSCOTT Alignment Units for D.R. and F.M. Multi-Channel Tape Recorders.

The FM Alignment
Unit Type FMU/1 illusirated was designed at
the Royal Radar Establishment, Malvern, to suit
Ampex Recordels working on the \mid RIG intermediate
band specification (using ES $\$ 00$ Electronics) e.g. Model
Numbers FR 1200, FR 260, FR 1300, FR 1800L, FB 400, PR 500
If you have a scphisticated Ampex RecorderAlign it to the Manufacturers specification using our Alignment Units for D.R. \& F.M Systems.

Speedr and inexpensive
For Further information and Technical Literature Write or telephone

WW - 025 FOR FURTHER DETAILS

THE RADIO SHOP

16 CHERRY LANE BRISTOL BSI 3NG

 TELEPHONE 0272-421196

OFFICIAL ORDERS WELCOMED GOVT /EDUCATIONAL DEPTS ETC TRIACS

1.6 AMP PLASTIC		
NAS 0161w	100 V	. 31
NAS 0161x	100 V	. 31
NAS 0162w	200 V	. 34
NAS $0162 x$	200 V	. 32
NAS 0164w	400 V	. 45
NAS 0164x	400 V	43
NAS 0166 w	600 V	. 56
NAS 0166 x	600 V	. 53
3.5 AMP CLIPPED TAB		
NAS 0351w	100V	. 58
NAS 035ix	100V	. 57
NAS 0352w	200 V	. 64
NAS 0352x	200 V	. 61
NAS 0354w	400 V	. 75
NAS 0354x	400 V	. 74
NAS 0356w	600 V	. 95
NAS 0356x	600 V	. 92

6 Amp isolated ta			
NAS	0651w	100 V	68
NAS	0651x	100V	
NAS	0652w	200 V	72
NAS	0652x	200 V	72
NAS	0654w	400 V	80
NAS	0654x	400 V	78
NAS	0656 w	600 V	97
NAS	0656x	600 V	
8 Amp isolated tab			
NAS	0851w	100 V	
NAS	0851x	100 V	
NAS	0852w	200 V	86
NAS	0852x	200 V	84
NAS	0854w	400 V	97
NAS	0854x	400 V	94
NAS	0856w	600 V	E1.21
NAS	0856x	600 V	E1.16

Abstract

10 AMP ISOLATED TAB $\begin{array}{llll}\text { NAS } & 1004 \mathrm{x} & 400 \mathrm{~V} & \mathbf{E 1 . 1 4} \\ \text { NAS } & 1006 \mathrm{w} & 600 \mathrm{~V} & \mathbf{E 1 . 4 9}\end{array}$

15 AMP ISOLATED TAB $\begin{array}{lll}\text { NAS } & \text { 501w } & \text { loov } \\ \text { WAS } & \mathbf{E 1 . 1 5} \\ 1501 x & 100 V & \mathbf{E 1 . 0 5}\end{array}$ $\begin{array}{llll}\text { NAS } & 1502 w & 200 V & \mathbf{£ 1 . 1 4} \\ \text { NAS } & 1502 \mathrm{n} & 200 \mathrm{~V} & \mathrm{f1.12} \\ \text { NAS } & 1504 w & 400 \mathrm{E} & \mathrm{£} 1.65\end{array}$

 \begin{tabular}{lll} NAS 0356 w \& 400 V \& .74

NAS \& 035 \& 600 V

\hline
\end{tabular}

THYRISTORS

1.6 AMP TO5				4 AMP isolated tab					6 AMP ISOLATED TAB			
NAS	${ }^{006 p}$	50 piv	. 28	NAS	106p	50 piv	29	-	NAS	206p	50 piv	40
NAS	006	100piv	. 31	NAS	106a	100piv	. 33		, NAS	206a	100piv	. 46
NAS	006 r	200piv	34	NAS	$106{ }^{1}$	200piv	40		'nas	206 !	200 piv	. 55
NAS	006s	400 pm	. 44	NAS	1065	400piv	. 63		NAS	206s	400pir	. 85
NAS	006t	600piv	. 57	NAS	$106 t$	600 piv	99					
8 AMP ISOLATED TAB ${ }_{\text {N }}$				16 AMP TO 48								
				16 A		50 V	. 60					
NAS	306q	100pir	. 52	16A		100 V	. 64					
NAS	$306 r$	200 piv	. 65	16A		200 V	70					
NAS	3065	400piv	. 93	16 A		400 V	85					
				16A		600 V	£1.17					

\qquad
TRANSISTOR SPEAKERS

707 LED 3"' Common Anode Disppay
704 LED 3." Common Cathode Display
747 LED $6^{\prime \prime}$ Common Anode Display

- Please add $121 / 1 \%$ VAT Remainder 8% P\&P 20 p

ANTENNA DESIGN E PRODUCTION

Distributors for Plessey • Remo

We are specialists in the design, development and production of all types of antennas and controls, including those to military specifications.

We invite your enquiries

STRINGER CLARK ANTENNAS LTD.
CHILD OKEFORD • DORSET - DT118EH Telephone : 025886-8293
WW - 020 FOR FURTHER DETAILS
MINIMUM TID POWER AMPLIFIER MODULES we believe our modules are unequalled in sound QUALITY, OVERALL PERFORMANCE \& VALUE FOR MONEY
\qquad bandwidit) can actually sound worse than one with a poorer spec. This has been altirobute
todistortioncausedbytransientstiol Carefutiy positioned compensation a pise-time ot 10ps.
 amplifiers ayaitabie, regardiess of cost.
\qquad CE $1008100 \mathrm{~W} \mathrm{mms} / 8 \Omega, \pm 45 v £ 21.55$ Cheque/P.O. to: CRIMSON ELEKTRIK
A.E. for fulldetalls 74 STATION ROAD
Tol 9510533386211 RATBY. LEICESTER

WW-043 FOR FURTHER DETAILS

PIIIR *PRICE * QUALITY * RELIABILITY

low cost top gualizy COMPONENTS

-Siemens • A.E.G. Telefunken Teleng and Toshiba Components

Semi Conductors

Type	Price (p)	Type	Price (p)
BD132	39	8F338	34
80133	45	BF355	50
80135	29	8F 457	37
8 8136	30	BF 458	37
80137	30	BF 459	38
80138	33	$8 \mathrm{FFT42}$	35
BD139	37	BFT43	35
BD140	39	BF×29	29
BD144	$¢ 1.99$	BF×84	29
BD160	$¢ 1.65$	BFX85	30
BD181	83	BF×86	28
B0182	90	BFX88	25
8D183	80	8FY50	19
8 8184	$\underline{1.10}$	BFY51	19
BD222	47	BFY52	20
8D225	47	BFY90	$\underline{1.10}$
BD232	50	BR100	32
BD233	43	BR101	38
BD234	49	8RC4443	80
8 8235	49	BRY39	38
B0236	53	BSY52	30
80237	49	BT106	¢1.20
B0238	55	BT108	$£ 1.50$
80×32	£2.40	BT116	¢1.25
BDY20	80	BU105/02	¢1.60
BF115	38	BU108.	11.80
BF152	20	BU126	C1.49
BF158	20	BU204	¢1.80
BF160	35	BU205	¢1.67
BF167	24	BU206	$¢ 1.95$
BF173	25	BU208	¢2.20
BF178	33	BU208/02	¢2.75
BF179	38	BUY69B	£2.50
BF180	31	8UY69A	£2.65
BF181	35	E1222	38
BF182	30	MJE340	45
BF 183	30	MJE520	44
BF184	29	2N696	30
BF185	30	$\underline{2 N 706}$	15
BF186	26	2N3053	20
BF 194	8	2N3054	65
BF195	8	2N3055	55
BF196	10	2N3702	12
BF197	11	2N3703	12
BF 198	23	2N3704	10
BF199	25	2N3705	10
BF200	28	2N3706	10
BF218	40	2N3819	38
BF224	20	2N5296	40
BF240	17	2N5496	53
BF241	17	OC71	29
BF257	28	0 C 72	29
BF258	26	R20088	11.90
8F259	30	R2010 ${ }^{\text {B }}$	11.00
BF336	37	RCA16334	80
BF337	35	RCA16335	80

Semi Condiuctors

Type	Price (p)	Type	Price (p)
S2802	£2.99	TIP32A	62
\$6080	A KIT	TIP41A	60
	¢4.90	TIP42A	75
TIP31A	52	TIS91	27

$\star 20 \mathrm{p}$ or less. Minimum 5 items

Diodes

Type	Price (p)	Type P	Price (p)
BA115	9	0447	8
BA145	16	0490	6
BA148	16	OA95	$5 \frac{1}{2}$
BA154/201	12	OA202	8
BA155	15	in60/0A91	$1-7$
8A×13	6	IN914	6
BAX16	6	in4001	4
BY126	11	IN4002	5
BY127	10	in4003	5
BY199	25	in4004	5
BY206	17	in4005	5
BY238	25	in4006	6
BYX10	14	in4007	6
		in4148	4

$\star 20 \mathrm{p}$ or less. Minimum 5 items
EHT Multipliers

Type	Order Code	Price
Thorn 950 MK 111400	D101P	¢2. 07
Thorn 15003 stick	D102Y	$£ 1.98$
Thorn 15005 stick	D103G	£2.17
Thorn 1590 Stick	D104E	£0.35
ITT, Philips Mono Large Screen	D105C	£0. 61
Rank 2718	D106A	£1.54
Thorn 3000/3500	01075	£5.34
Thorn 8000	D108H	£. 1.98
Thern 8500	D109F	£4.14
Thorn 9000	D110Y	£6.50
Decca Doubler	D1116	£2.74
Decca 30 Series	0112E	£4.96
Decca 80 Series	0113C	$£ 5.30$
G.E.C. Hybrid	D114A	¢4.96
G.E.C. Solid state	D1151	£5.30
ITT CVC 1.5	D116H	$£ 4.96$
17 TVC 20	D117F	¢5.30
Philips 68	D1180	C4.96
Philips 550	01198	¢496
Pye 691/693	D120E	¢3.66
Pye 731	D121C	¢4.92
Rank A823	D122A	¢4.96
Kouting	D125F	¢4.96
	01260	
Telpro/Carnival/ Hamilton/ Steepletone		£5.35

Now Mono Túbes (100)

Scrisen Type Equivalent Price

12" Toshiba TMT 31/101.		
E2117A	A31/250W	E17.75

$14^{\prime \prime}$	Toshiba	
	M6529 FZP TMT $34 / 101$	$£ 17.35$

20" A50.140W CME 2013 £15.50
$24^{\text {iI }}$ A61-140W CME $2413 \quad £ 17.30$

New Colour Tubes (so)

Screen Type Equivalent Price 19" A49.191X, A49-192 and A49-120X $£ 57.70$ | | | A49-120X | £57.70 |
| :--- | :--- | :--- | :--- |
| $20^{\prime \prime}$ | 510DJ822, | A51-110X | £61.35 |
| $22^{\prime \prime}$ | A56/120X | £ 61.50 | |

Aerial Accessories

 Standard superverters each 10.50 Superverters with variable gaineach $£ 15.95$
Superverters with variable
gain and frequency each £17.45 Broad Band Amplifier each $£ 16.50$

- All Teleng products availatule through C.P.C.

SCOTLAND

Elcomatic Ltd.
Kirktonfield Road
Kirktonfield Road,
Neliston, Glasgow GT8 3PL
Neliston, Giasgow
Tel. 041-881 5825

N.IRELAND

lilectronic Sales
(Uister) Limited,
4 Tates Ave., Lisburn Road,
Tel. Belfast (0232) 668718
LANCASHIRE
Moorside Eiectrical Co.
70 Moorside avenue.
Smithilis
Bolton. Tel. 02044091

WALES

Swansea Aerial Co. Lid.
Slion Road.
Landore
Tel. Swansea $50393 / 54836$

WEST MIDLANDS

Geetavision

- 5 Fal Gosford Street

Coventry
Tef. Coventry 56476-503598
EAST MIDLANDS
Belvoir IV \& Audio
Companents
66 Mill St., Meiton Mowbray Leicestershire LE13 1 AZ
Tel. 05645655 Tel. 05645666

CAMBS. BEDS. HERTS.
Cambridge Electronic Components
286 High Street
Cottenham Cambridge Tel. 095450292

EAST ANGLIA

Norwich Electronic Components 16 Dentigh Road
Norwich. NR2 3A
TeI. 0603 28625
S.LONDON\&S EAST

Paui Electrical Lid.
250/252 Grand Drive Raynes Park.
Tel. 015426546

AVON GLOS WILTS

Cheltenham Electronics Ltd. 297/299 High Street Cheitenham,
Gloucestershire GL50 3HS DORSET HANTS, 10 W
D. B. Components, 1 Devanshire Street, Greenbank, Plymouth, Devon Tel. (0752) 24369

SOUTH WEST

Double D. Distributors. 16 HIEhfield Road, gournemouth 8H9 2SG
Tel. 0202519562

Good people to deal with

COMBINED PRECISION COMPONENTS LTD,
 C.P.C., Dept. WW 194.200 NORTH ROAD, PRESTON, LANCASHI $\overrightarrow{R E}$, ENGLAND

 Phone: Preston (STD 0772) 55034. Telex 677122WORLD WIDE EXPORT SERVICE ask for ROBIN PRATT New price list 1.11 .76

Wireless World Dolby ${ }^{\text {© }}$ noise reducer

Trademark of Dolby Laboratories Inc.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring:

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes:
-complete set of components for stereo processor
--regulated power supply components
-board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: £37.90 + VAT

Also available ready built and tested	
Calibration tapes are available tor open-reel use and for cassette (specify which)	
Single channel plug-in Dolby PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts components	
Single channel board with selected fet	
Gold plated edge connector	
Selected FET's. 60p each + VAT, 100p + VAT for two, £1.90+VAT for four	
Please add VA We guarántee full after you checked tha	

 (1) -........... master charge

Typical performance

Noise reduction: better than 9 dB weighted
Clipping level: 16.5 dB above Dolby level (measured at 1% third harmonic content)

Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%
Signal-to-noise ratio: $75 \mathrm{~dB}(2 \mathrm{OHz}$ to 20 kHz , signal at Dolby level) at Monitor output.
Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity.

Also available ready built and tested
Price $£ 52.00+V A T$
Calibration tapes are available tor open-reel use and for cassette (specify which)
Price $£ 2.00$ +VAT*
Single channel plug-in Dolby ${ }^{(10)}$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $\mathbf{£ 7 . 2 0 + V A T}$
Price $\mathbf{£ 2 . 2 0 + V A T}$
Price £1.40 + VAT*
Selected FET's. 60p each + VAT, $\mathbf{1 0 0 p}+$ VAT for two, $\mathbf{£ 1 . 9 0}+$ VAT for four
Please add VAT at 12% unless marked thus*, when 8% applies
We guarántee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifıer: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc). THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses 3302 FET module requiring no RF alignment, ceramic IF,I INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range) $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter

PRICE: £53.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}, 20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection-85dB. THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £29.15 + VAT
With ICPL Decoder $£ 33.42+$ VAT
With Portus-Haywood Decoder
$£ 35.95$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
THD typically 0.3\%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable iNTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter

PRICE: Mono £26.85 + VAT Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60 dB . Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: £31.95 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BI-PA

 K

 High quality modules for stereo, mono and other audio equipment.

STEREO FM TUNER

OUR PRICE ONLY

$£ 19.95$

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 preselected stations any of which may be altered as often as you choose. by simply changing the settings of the preset controls
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK 60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538
The $\$ 450$ is supplied fully built, resisted and aligned. The unit is easily installed using the simple instructions supplied

* FET Input Stage * VARI-CAP diode tuning - Switched AFC * Multi turn presets * LED Stereo Indicator
ypical Specification
Sensituriy 3μ volts
Stereo separation 30 db Supply required 20-30v at 90 Ma max.

STEREO PRE-AMPLIFIER

OUR PRICE $£ 13.50$

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pres amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only it is provided with a standard DIN input socket for ease of connection. Full instructions supplied

VAT ${ }^{\text {ADO }}$ PACKING

Postage \& Packing add 25p unless otherwise shown. Add extra for airmail. Min. E1.00

2000 20-30

AMPLIFIER MODULES

The AL 20 and AL 30 units are

 similar in their appearance and inSPECIFICATION:
Harmonic Distort
Distortion P heir general specification. How ever, careful selection of the plastic power devices has resulted in a
range of output powers from 5 to range of output powers from 5 to 10 watts R.M.S
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and car - Frequency response $\pm 3 \mathrm{~dB}$ Po $=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$

Sensitivity for Rated $O / P-V s=25 v$. RL=8ohm $f=1 \mathrm{KHz} 75 \mathrm{mV}$ RMS AL20 Sw R.M.S. £2.65 AL30 10w R.M.S. £2.95

A 6025 Watts (RMS)

* Max Heat Sink temp 90C. Frequency response ${ }_{2} \mathrm{OHz}$ to $100 \mathrm{KHz} \approx$ Distortion better than 0.1 at 1 KHz Supply voltage 15.50 V * Thermal Feedback * Latest Design Improvements $*$ Load $-3,4,8$, or 16 ohms * Signal to noise ratio 80 db . Overall size 63 mm .105 mm 13 mm .
2NWPA12 NEW PA 12 $=$
TRANSFORMER $\mathbf{E 2 . 4 5}$ plus 62 pp \& Balance, Bass and Treble controls. Complete
Frequency Response 20Hz-20 KHz
$1-3 a d B$. Bass and Treble range
$12 d B$. Input lmpedence 1 meg ohm.
Input Sensitivity 300 mV V . Supply
requirements 24 V .5 mA . Size 152 mm
$\times 84 \mathrm{~mm} \times 33 \mathrm{~mm}$. $\times 84 \mathrm{~mm} \times 33 \mathrm{~mm}$. 5 mA . Size 152 mm

The Stereo 30 comprises a complete stereo preamplifier power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs ie high quality ceramic pick-up stereo tuner, stereo tape deck etc. Simple to instal capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabine available deal for the beginner or the advanced constructor who requires Hi-Fi performance with minimum of installation difficulty (can be installed in 30
miss). Especially designed to a strict specification Only the
finest components have been used and the latest
solid-state circuitry incorporated in this powerful little
amplifier which should sate amplifier which should satisfy the most critical A.F
enthusiast

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 15 A at 35 V . Size 63 mm .105 mm . 30 mm incorporating short circuit protection
Transformer BMT80
$£ 2.60+62 p$ postage

PRO. BOX 6 , WARE, HARTS.

[^6]MULTIMETER F4313 (Made in USSR)

SENSITIVITY
$1200 \mathrm{~V} D C$ range: $10.000 \Omega \mathrm{~V}$ Other DC ranges: $20.000 \Omega / \mathrm{V}$ 1200 AC range: $6,000 \Omega / \mathrm{V}$ 600 VAC range: $15.000 \Omega / \mathrm{V}$ 300 VAC range: $15.000 \Omega / \mathrm{V}$ Other $A C$ ranges: $20,000 \Omega 1 \mathrm{~V}$
$\mathrm{AC} / \mathrm{DC}$ current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$
$A C / D C$ voltage ranges: $60-300 \mathrm{mV}-1.2-6-30-120-300-600-1200 \mathrm{~V}$ Resistance ranges: $300 \Omega-10-100-1000 \mathrm{~K}$
Accuracy: 1.5% DC; $2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both AC and $D C$ ranges.
Meter is fully protected for a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source $5 \quad 1.5 \mathrm{~V}$ dry cells Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$.

PRICE £37.50 plus VAT
Packaging and postage $£ 1.10$

OSCILLOSCOPE CI-5

Made in USSR

Extremely simple and easy to use single beam oscilioscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate. 3 -in. tube giving a 50 $x 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and ree-running time base, suitable for displaying pulses from $0.1 \mu \mathrm{sec}$. to 3 m sec . A.C. mains operation.

Price $£ 55.00$ ex. works
Packing and carriage (U. K. only £́2.50)

Z \& I AERO SERVICES LTD.
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF
Tel.: 7275641 Telex: 261306

 Tel: 54525 . For Industrial. Trade \& Export
Telex: 27950. Ref 1617
LOW PRICES. FAST SERVICE
Add 8% to prices marked $\#$. Add $121 / 2 \%$ VAT 10 all other prices, or as current V.A.T. legislation. Send C.W.O except Government Dept., etc. Post and packing 20p U.K.
Barclay Card and Access by post or $£ 5 \mathrm{~min}$ by telephone. List free send s.a.e Money back if not satisfied
All full spec. devices. Normally 24 hour turnround on stock items Industry Excess Stock purchased (written offers only)
ic:s All price each

cs All price each		TRANSISTORS	
		${ }^{2} 161$	50p*
555	35p*	${ }^{0} 162$	50p*
703 Pf/If	29p	8C107	10p*
709 T099	25p*	$\operatorname{BCl}^{1078}$	13p*
723 Reg.	49*	8 Cl 108	9p*
741 D1L8	22p*	- 1088	13p*
741.1099	33p*	${ }^{86109}$	9p
7410 OL 14	35p*	BC109C	15p*
7472×741	c9p*	8C177/8/9	20p*
748 D1L8	33p *	BC182/3/4	10p
7805 wic.	£1.50*	BE212/3/4	12 p
AY51224	c3.49*	BCT70/2	18p*
ca3048	65p *	80131	39p
LI380	¢1.50*	80132	39 p
LH301	30p*	ETY501	15p *
$153003 \times$	¢2*	M2955	95p *
113880	89p	MELS355	95p *
143900	60p*	M M E3055	65p *
WC1310	E2	TTP29/30C	85p *
WFC4000	75p	TTP31/32C	¢1*
ME536	¢2*	TP41C	E1.35*
ME555	35p ${ }^{\text {\% }}$	TP42C	E1.50*
ME556	99p*	TP2955	99p*
Tacoo	80p	TP3055	69p*
TB4810	95 p	Tis43	27p *
thaszo	80p	212645	49p*
2014	E1.20	272905	29p*
LEDS 10 p ea.		2×29266	$11 p$
Red Hoclip	10p*	2103053	18p*
TL209 8 Cup	12p*	$213702 / 3$	10p
O2F hod \& Cmp		231304/5	10 p
	${ }_{\text {1 }}^{\text {14p }}$ \%	$2133706 / 7$	12p
Colour LEDs	s 29p*	213709/9	12p
displays		238819	$16 p$
03- $0.704 / 7$	7 fl	213904/6	17p
20'0 ${ }^{\text {a }} 747$	£1.25	Bush Sets	${ }^{51} \mathrm{p}^{*}$
D=10 Pem	75p	Bargain paks in	sper. price

TIL	CNOS		
7400	15p*	4000	15p*
7401	16p*	4001/2	19p*
7402	16p*	4006	¢1*
7404	19p*	4007	19p*
7410	19p*	4010	50p *
7413	28p*	4011	18p*
7420	23p*	4012	19p*
7430	22p*	4013	50p*
7440	16p*	4015	94p*
7441	75p*	4016	50p*
7442	65p*	4017	94p*
7447	79p*	4023	19p*
7470	29p*	4024	72p*
7472	25p*	4025	19p*
7474	31p*	4028	87p*
7475	49p*	4040	94p*
1476	36p*	4042	78p
1490	42p*	404	
1491	75p*	4050	50p*
1492	45p*	4528	E1*
14121	32p*	4553	£4

DIODES OABT/791 5p

N4148 \& IN 1 N14 Silicon 4p BZY88 Zeners 400 mW 10p Bridge 1A50V 22p*6A 100V 55p* SCR \& TRIACS (BR100 25p*) C106 4A 400V SCR 55p* SC146 10A 400V Trac £1* DIL SOCKETS 8/14/16 all 14p* Soldercon 100 65p* $212^{\prime \prime} \times 5^{\prime \prime} 40 p+3^{3} 4^{\prime \prime} \times 5^{\prime \prime} 45 \mathrm{p}$ * $21 / 2^{\prime \prime} \times 3^{3} /^{\prime \prime} 36 p+33^{3 / 4^{\prime \prime} \times 17^{\prime \prime}} \mathrm{E}^{2}$ Resistors $2 p$ ea. POTS AB 20p Electrolytics 7p. Presets $6 p$ Heat Sinks TO5 \& 18 7p*TO3 16p*

RADFORD HD250
High Definition Stereo Amplifier

A new standard
for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watte av. continuous per channel into any impedance from 4 to 8 ohme, both channels driven

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z}$)

Hum and noise: Disc,-83dBV measured flat with noise band width $\mathbf{2 3} \mathbf{K h z}$ (ref 5 mV): -88 dBV "A" weighted (ref. 5 mv)

Line - 85 dBV measured flat (ref 100 v)
Hear the HD250 at

SWVIFT OF WVILMSLOW

Dept. WW, 5 Swan Street, Wilmslow, Cheshire (Tel: 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, "'Swan Works, Bank Square, Wilmslow (Tel. 29599)

Now available ZD100 power amplifier and ZD22 pre-amplifier

E5PCapacitance measuring

ESP 200 A 1 pF to $50 \mu \mathrm{~F}$

Wide scale laboratory model $\mathbf{£ 9 0 . 0 0}+$ V.A.T.
 capacitance bridge $\mathbf{£ 2 2 5 . 0 0}$ + V.A.T.

Electronic Services and Products Limited
Cross Lane, Braunston, Near Daventry,
Northamptonshire NN11 7HH
Telephone: Rugby (0788) 890672

A complete range of British-made instruments designed to simplify capacitance measuring

- Accurate and sensitive
- Requires no manual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Send for technical literature and free booklet: "Modern methods of capacitance measuring"
Suppliers to: Ministry of Defence, Post Office, B.B.C., Government departments and

Electronic Laboratories world-wide.
KWPIESP2 7619.

WW - 008 FOR FURTHER DETAILS

EMUIRHEAD D-658 $18^{\prime \prime}$ MUFAX CHART TRANSMITTERS (Model GA).
Eurther details on request. For $110 / 250$ v a.c. operation $£ 325.00$
EMEGGER (Record): 500 volts $£ 20.00 £ 1.00$ post
EMEGGER (Evershed Vignoles): 250 volts $£ 17.50$ £1.00 post
ER216 Receiver MANUAL (photostat copy): $£ 1.50$ inc. post
ERACAL I.S.B. ADAPTOR RA-95A: £65. Carr. £2.
EMUIRHEAD ATTENUATORS: 75 ohms $0-8 \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $0-5,0-25$, E0-50 DB $83.00+75 p$ post.
ECREED MODEL 75 TELEPRINTER: Receiver only £30.00. Carr. £3.
EEDDYSTONE TELEPRINTER ADAPTOR TYPE 937: £45. Carr. £1.
EWILD BARFIELD ELECTRIC FURNACE MODEL CCI.22X: With ether Eindicatung temperature controllers Model $990.0-1400^{\circ} \mathrm{C} . £ 250$. Carr. £5.
틀 CAPACITOR: 10 mfd 20 Kv working. $£ 35.00$ each. Carr. $£ 5.00$
E POWER UNIT TYPE 234: 200-250va.c. input, 250-0-250v d.c. @ 100 mA and 6.3v
E@4 amps output. $\mathbf{E 7 . 5 0}$ each. Carr. £200.
EREDIFON TELEPRINTER RELAY UNIT No. 12: ZA-41196 and power supply E200-250V a.c. Polarised relay type 3 SEITR $.80-0 \mathrm{~V}$. 25 mA . Two stabilised valves
 Carr. 75p.
ESOLARTRON PULSE GENERATOR TYPE G1101-2: £75.00 each. Carr. £2.00.
ETELEPRINTER TYPE 7B: Pageprinter 24 V d.c. power supply, speed 50 bauds per - TELEPRINT Emin. second hand cond. (excellent order) no parts. Mounted in strong steel case EAUTO TRANSFORMER: $5^{\prime \prime} \times 1^{\prime \prime} \times 7^{\prime \prime}$ Bitumen impregnated. £12.00. Carr. £1.50.
ECRYSTAL TEST SET TYPE 193: used for checking crystals in freq. range CRRYSTAL TEST SET TYPE 193: used tor checking crystals in freq. range
$\mathbf{0} 3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory Eonditions and the equivatent resistance. Crystal freq. can be tested in Econjunction with a frea. meter. £25. Carr. £i.50.
ESOLARTRON VARIABLE POWER UNIT S.R.S. 1535: $0-500$ voIts at 100 mA and与 6.3 volts C.T. 3 apmps d.c. $110 / 250$ volts a.c. input. $£ 18.50$. Carr. $£ 1.50$.
ECATHODE RAY TUBES. $5^{\prime \prime}$ screen, type CV-1536. £4.00 $+£ 1.00$ post. Type E 95 J 20 square face $5^{\prime \prime} \times 3^{\prime \prime} £ 7.50+£ 1.00$ post.

- ADVANCE A.F. SIGNAL GENERATORS H1: Sinesoidal or square wave EADVANCE A.F. SIGNAL GENERATORS HI: Sinesoidal or square wave Eoutput. $15-50 \mathrm{kHz}$. Adjustable level between 200 uv and 20 v . Overall distortion Eless than 1%. Output adjustable $1.4 \mathrm{mV}-140 \mathrm{v}$. Waveform ratio $50: 50$ up to 25 kHz EStandard a.c. mains input Secondhand condition. £25.00. Carr. £2.00
- POWER UNIT: $110 / 230 v$. a.c. input, 28v. d.c. @ 40 amps output. $£ 30.00$. Carr. E E 3.00 .
ESMOOTHING UNIT: (for the above Power unit) £10.00. Carr. £2.00.
- CLASS 'D' WAVEMETER NO. 1: Crystal controlled heterodyne frequency Emeter covering 2.8 MHz . Power supply 6 V d.c. Good secondhand condition. EE8.50. Carr. £1.50.

All U.K. orders subject to Value Added Tax

PRECISION PHASE DETECTOR TYPE 205: Freq. $0.1-15 \mathrm{MHz}$ in 5
Variable time delav microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. £55 each. Carr. £1.
Variable time delav microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input. $£ 55$ each. Carr. $£ 1$. RING TOROIDAL DUST CORES: Size $21 / s^{\prime \prime}$ outside $13 / 4$ inside $5 / 16^{\prime \prime}$ thick. Box of two £1.00. Post 30 p.
MUIRHLAD PHASEMETER TYPE D729: A.M. £95.00. Carr. £3.00.
CT. 420 SIGNAL GENERATOR: $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning. Two fixed frequencies 9000 and 10,000 . Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$. $£ 75$ each carr. $£ 2$. NOISE GENERATOR TF-1106: Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration. Output impedance $70 \mathrm{ohms} \mathbf{£ 6 5}$ each. Carr. £1.50.
MW-59 UNIVERSAL KLYSTRON POWER SUPPLY: £85. Carr. £3.
TF-1278/1 TRAVELLING TUBE WAVE AMPLIFIER: £125. Carr. £2.
BPL A.C. MILLIVOLTMETER TYPE VM.348-D Mk. 3: 2 millivolts- 2 volts, 6 ranges. £30. Carr. €1
CAWKELL REMSCOPE TYPE 741 : Memory scope, 'as new' cond. £150.00. MANSON| SYNTHESISER Ol15-URC: $2-30 \mathrm{mc} / \mathrm{s}$. £175.00.
FIREPROOF TELEPHONES: $£ 25.00$ each, carr. $£ 1.50$.
BACKWARD WAVE OSCILLATOR TYPE SE-125: 6.3 heater, 105 V Anuue, 7.9 mA . Mnfr. Watkins $\&$ Johnson. $£ 85$ each. Carr. $£ 1$.

X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James Scott £125 each Carr fl
125 each. Carr. El. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F.9. $£ 20.00$ each. Carr. $£ 2.50$
FREQUENCY METER BC-221: $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts. Checked out, working order. $£ 21.00+£ 1.50$ carr.
RECTIFIER UNIT: $\mathbf{2 0 0}-250 \mathrm{v}$ a.c. input, 24 v d.c. @ 26 amps output continuous rating. $£ 35.00$ each. Carr. $£ 5.00$.
EVERSHED SAFETY OHM. METER: Max 10 Ma . Test pressure 30 v . Complete in leather case. $£ 25.00$ each, post $£ 1.00$
AUTOMATIC VOLTAGE STABILIZERS: Input' $207-242 \mathrm{v}$ a.c. Output 230 v a c at 2.80 amps. $£ 17.50$, carriage $£ 1.50$.
AVO TRANSISTOR ANALYSER CT.446: $£ 35.00$. Carr. $£ 2.00$.
HEWLETT PACKARD PULSE GENERATOR Type 215A; $1 \mathrm{kHz}-1 \mathrm{mHz}$ Pulse width $0-110$ Nsecs. Attenuator $0-12 \mathrm{db}$. $£ 75.00$. Carr. $£ 2.00$
ADVANCE TCD. 40 FREQUENCY DIVIDER: $0-40 \mathrm{mHz}$. $£ 10.00$ each. Post $£ 1.00$. MARCONI FREQUENCY METER $1026 / 4: 2000-4000 \mathrm{mHz}$ 'as new' condition. $£ 30.00$, or secondhand $£ 22.50$.
1026/2: $0-100 \mathrm{mHz} \mathbf{£ 3 0 . 0 0}$ 'as new', or s/hand $£ 22.50$. Carriage for all types $£ 2.00$. ANTENNA MAST 36 ft .: Aluminium, diameter at base $3^{\prime \prime}$ tapering to $2^{\prime \prime}$ at top complete with red hazard lights, stays, guys, etc. Normally used with direction finding equipment. Approx. weight 3 cwt . $£ 95.00$ each, carriage rates on request With rotating Antenna suitable for $200-400 \mathrm{mHz}, € 15.00$ extra.
BURGLAR ALARM BELL: 6.8 v. d.c. $£ 3.00, £ 1.00$ post.
Carriage quotes given are for 50 -mile radius of Herts.

THE QREN DOOR TO AUALITY
 ELEGTROVALIE
 This catalogue - Electrovalue Catalogue No. 8 (Issue 2, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted

gahrain Singapore Thailand Iceland Brazil Sweden Germany Iran Jamaica St. Kitts
 HI-FI NEWS 75W/CHANNEL AMPLIFIER

In Hi-F1 News there was published by Mr. Linsley. Hood a series of four
articles (November. 1972 . February, 1973) and a subsequent toilow-up articles (November. 1972. February, 1973) and a subsequent toilow-up
article (April, 1974) on a design for an amplifier of exceptional article (April, 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from
direct coupled fully protected output stage. power in excess of 75 watts direct coupled fully protected output stage. power in excess of 75 warts levels The power amplifier is complemented by a pre-amplifier based on discrete component operational amplifier referred to as the Limiac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition Irequencies of the tone controls and the variable slope of the scratch filter There is a choice of four inputs, two equalized and two linear. each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Torordal transformer


```
2. Sel of resitiors. capuctiors. presots for power smp
vclori 垪 puwe......
    Pain ol}2\mathrm{ dritlow.fluad hast sinks
```



```
    mase resitiors. capactors. mo-suts for
    Mremen ....................... E3.40
```



```
    9. Sed of 4 mast-mattin switches. ratary made
    10. Teroital trausformer compota with magnatic
        sersee/mosin}\mathrm{ pravry 0 117.234 V; secomborim:
```

Pact
11. Flureqlass platedectrecill basid for power Prite
12. Sin of resitions. capachers, seco.... co.

13 somi-comeleters tor pawn supply......

14. Seat of
 Hacta pand and ail br cetrots. Fiximp parts, otc. $\mathbf{E 7 . 3 0}$

1. Toun ent

2 exch of meta 1.7 inecmavive ard requirul for complote stirew sydim. Total cest of forvitually purchase meks

TEAK CASE WITH FULL KITS
FREE
viracac onve $£ 73.90$

Lesigned in response to demand for a tuner to complement the world-wide acclaimed Linsley Hood 75 W Amplifier. this kit provides the perfect match. The Wireless Worid published original circuit has been developed further for
inclusion into this outstanding slimline unit and feavures a pre-aligned front inclusion into this outstanding slimline unit and features a pre-aligned front
end module, excelient a.m. rejection and temperature compensated varicap end module, excelent which may be controlled ether continuously or by push button pre-selection. Frequencies are indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set. The PLL stereo decoder incorporates active filters for "birdy" suppression and power is supplied via a torodal transformer and integrated regulator. For long term stability metal oxide resistors are used throughout
fract

11. Toroubal transtarmar with electrasiatic Price
 12. SM © capscitors. rectiors. voltafo rajaiatur for

 13. midtr. huses inter-comecting wirc. etc. . $£ 1.50$
 tacis panel, serytic sillt scraen primest lusing indicator panel insert. internal sereen. fixing parts. 15. Constraction me. 87.50 15. Construction oles झrees with complate kitt . . \quad E0.25 Oane sach of packs 1.16 inctusive are required for cemplete steren fll tuam. Toted cast mindinidualiy purchased pack

FREE
 TEAK CASE WITH FULL KITS

 wrme... $£ 66.75$ NEW KIT! LINSLEY-HOOD CASSETTE DECKPublished in Wireless World (May. June. August 1976) by Mr. Linsley-Hood this design, athough straightforward and relatively low cost nevertheless provides a very high standard of performance. To permin circuit optimization separate record and replay amplifiers are used, the latter using a discrete

component fromtend designed such thar are used to provide a choice of ape background Push button switches are used also an option of using an additional pre-amplifier for microphone use. The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of operation. Speed control and automatic cassette ejection are both implemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellen match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier.

PRICE STABILITY

Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted'with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts.

EXPORT ORDERS: No VAT charged. Postage charged at actual cost plus 50 p pecking and handling. Please make payment by Bank Draft. Postal Order der in sterling.
(UELVERY: For this optional service (U.K. Mainland only) add
2. U2.50 NAT INC.) per kit. $121 / 2 \%$ * eurcherge for VAT. Carriage free MAIL ORDER ONLY. (wor at current rate if changed)
r/and Portugal Mozambique Belgium .Sumatra

Pact

10. Sal of capacitors, rectitiors, Picice 0. Sol of capacitors. ractifiers. I.C. voltaga rogulator tor pawer supply (Powertran dasiga)...E2.e0 11. Set of misenilameess parts. includiap seckals. fuse
 2. 3. Constructien motes $\mathbf{\varepsilon 0 . 2 5}$
 One each of packs $1-14$ inclusive are required for compele stareo casselte dack. Total cosi of individually purchased packs E82.55
11. Fuction swich kuobs $\varepsilon 1.60$
12. Oual vu mater with illumuating lemp ... $\varepsilon 7.20$ g. Tercidal trasuformur with E.S. screta prim.

SPECIAL PRICE FOR

COMPLETE SETS

£78.50

Further details of above given in our FREE LIST
DEPT. WW 12 smps. 2 enter angs hias/erase ose. res. 2 rec. 3.35 meps. 2 meter amps. hias/arase ose. relaylf3.35 sierce sel of casiters. m.0. resisiars. Stereo sat of semicourctors for above. Es 90
3. Starmo sull of seaicodsctors for above. . Es.90
5. PCBitart rellay will secket E2.45
 6. Gadrim leace eschunism as specitiad. $£ 19.10$ Torwidal trasiformur with E.S. screes prim.
O.11TY. $234 y$. Sec. $15 Y$. e4.45

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T} \mathbf{2 0 + 2 0}$ and our new $\mathbf{T} \mathbf{3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wreless the T exan was an immediate success. Now developed further in our laboratories to include a Toroidal transformer and additional The design is based on a single F/Glass PCB and teatures all the normal facilities found on quality i amplifiers, including scratch and rumble filters, adaptable input selector and head phones socket. In al follow up article in Practucal Wireless further modifications were suggested and these have been. incorporated into the $130+30$ These include RF interferences fifters and a tape monitor facility.

Pach	T20	T30	1 Pack	120	T30
1. Sed of low molse resistors	1.40	1.50	8. Toroidal transiormer - 240 V prim.		
2. Set of small capacitors	2.20	2.80	8.8. scraen	4.95	6.80
${ }^{\text {'3. Sel of power supply capacitors }}$	1.90	2.30	9. Fbreglass PCB	3.20	3.60
4. Sef of milscellancous parts	3.20	3.20	10. Set of metalwerk. fixing parts	4.20	4.80
5. Sel of dilito. maims. P.B. switches	1.20	1.20	11. Set ol cables. mains lead	0.40	0.40
6. Set of pots solector switch	2.80	2.80	12. Handbook (trea wilh compleie kitt,	0.25	0.25
7. Sel of zemicondectors. ICs, sits.	7.25	7.75	13 Teak cabinet $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$	4.50	4.50

2 NEW TUNERS!

WW SFMT II

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model, designed to more advanced model has been omitted and the mechanics simptied however the circuiry is idenical and this new kit offers most exceptional value for money Facilities included are switchable afc, adjustable switchable muting, channel selection by slider or readily adjustable pre-set push-bution controls and LED tuning indication Individual pack prices in our free list.

POWVERTRAN SFMT

This easy to construct tuner using our own circuit design includes a pre-aligned front end module, PLL stereo decoder, adjustable, switchable muting, switchable afc and push-button channel selection. As with all our full kits, all components dowis to the last nut and bolt are supplied
together with full constructional details

CONVERT NOW TO QUADRAPHONICS!

SQM1 - 30
KIT PRICE $£ \mathbf{3 7 . 1 5}$
Wroless World Amplifier Designe. Full kuts ar it available for these projects bu Limsiey Hood designs, together with an efficient regulated power supply of our ow design Suitable for driving these amplifiers is the Bailay Burrows pre-amplfitier and our
arcuit board. for the stereo version of 1 features 6 , inputs, scrath and tumble filters and arcuil toard. for the stereo version of 1 f features 6 , inputs. scratch and rumble filters and
wide range tone controls which may be either rotary or slider operating for those intending to get the best out of their speakers, we also offer an active filter system, described by D . C. Read. which sphits the output of each channei from the pre-amplifier into three channels each of which is fed to the appropriate speaker by its own power
amplifier The Read/ Texas 20 W . or any of our other kits are suitable for these For tape amplifier The Read/Texas 20 W . or any of our other kits are sutable for these For tape
systems a set of three PCBs have been prepared for the integrated crrcuit based high performance stereo Stuan design Details of component packs are in our free list
30W Bailey Amplifter
BALL Pk $\$$ F Glass PCB
BAlL Pk 2 Ressistors. Capacitors. Potentiometer set
2OW Linsiey Hood Class AB
LHAB Pk. 1 FIGlass PCB.
LHAB Pk.

tor sel
Rogulat Power Sypply
6ovs Pk 1 F $/$ Glass PCB
60VS Pk. 2 Resistor, Capacitor set
6OVS Pk. 3 Semiconductor set
60VS Pk. 6 SA Toroudal transformer (ior use with Bailey)
60VS Pk 6B Toroidal transtormer (tor use with 20 W LH)
Baitey Burrows Stereo Pre-Amp
BRPA Pk $1 F / G 1 a s s ~ P C B$
BBPA Pk. 2 Resistor, capacitor semiconductor sel
GBPA Ph 3R Rotary Potentiometer se
Active Fitter Sider Potentiometer set with knobs
FILT Pk 2 F/Glass PCB
FILT Pk 2 Resistor, Capacitor ser (matal oxide 2%, pelystyrene $21 / 2 \%$)
2 of Pks $1,2,3$ rad tor set
READ Pk 1 F/Glass PCB
READ Pk 2 Resistor, Capacitor ser

Stuart Tape Fecorder
TRAP Pk 1 Replay Amp F/Glass PCB
TRRC Pk 1 Record Amp F/Glass PCB

EXPORT NO PROBLEM

SQ QUADRAPHONIC DECODERS Feed 2 channels ($200-1000 \mathrm{mV}$ as obtainable from most pre-ampuners or amplifier

tape monitor outlets) into any one of our 3 decoders and take 4 channets ant with no overall sianal level reduction. On the logic enhanced decoders Volume, front-Back, LF-RF balasce, LB-RB balance and Dimension controls can all be implemented by simples single gang potentiometers
These state-of-the-art circuits used under licence from CBS are offered in kits of superior quality with chose tolerance capacitors. metal oxide resistors and fibre-glass PCBs designed for edge connenctor insertion All kit prices include CBS licence fee.
 components PCB
L2A. More advanced full logic decoder with "variable blend" for increased front back se paration. Alt components.
L3A. Decoder similar to L2A but with discreet component front end with high precision 6 -pole phase shift neiw $£ 22.60$ increased frequency response. All components (carbon film resistors), PCB $£ 25.90$ Also available with M.O. resistors, cermet pre-set -- add
SEMICONDUCTORS as used in our range of quality audio equipment.

SERVICE TRADING CO

RELAYS :=9

OPEN TYPE RELAYS
6 VOLT D.C
9 VOLT D.C. RELAY
9/12 VOLT D.C. RELAY

100 VOLT A.C. $2 c / 075$ p. $3 \mathrm{c} / 6$ 85p. Posi 15 p.
ENCLOSED TYPE RELAYS
6 VOLT A.
$24 V$ D.C. $3 \mathrm{c} / 0$
24 VOLT A.C
55 VOLT A.C
230 VOLT A.C. RELAY
${ }_{3}^{220 / 2} \mathbf{2 4 0}$ VOLT A.C. RELAY
ARROW 230/240V AC
Amp connectors E1.10. Post 20p.
CLAREELLIOTT TYpe RP 7641 G8
MAMY OTMERS FROM STOCK. PHDME FOR DETAILS

BLOWER UNIT

MINIATURE

SOLENOID HEAVY DUTY MODEL
$\frac{\text { E2.50. Post } 50 \mathrm{p}}{} \mathbf{2 4 \text { VOLT D.C. SOLÉNOIOS }}$

ll mall orders. also calleas at 57 BRIDGMAN ROAD. CHISWICK. LONDON, W4 588. Phone: 01-995 1560

VARIABLE VOLTAGE TRANSFORMERS INPUT 230 v. A.C. 50/60

C	INPUT 230 v. A.C. 50/60
	OUTPUT VARIABLE 0/260v. A.C.
	BRAND NEW. All typas.
	200W (1 Amp) fitted A/C $£ 11.50$
	0.5 KVA (Max. $21 / 2 \mathrm{Amp}$) ... $£ 11.50$
	1 KVA (Max. 5 Amp) $\cdots \cdots . E 18.00$
	$2 \mathrm{KVA}(\mathrm{Max} .10 \mathrm{Amp}) \ldots . . \mathrm{E30.00}$
	3 KVA (Max. 15 Amp) $\ldots . . \mathrm{E33800}$
	4 KVA (Max. 20 Amp)e 660.00

LT TRANSFORMERS

TRANSF	
0.6 .12 voll 020 2mp	${ }_{\text {¢ }}^{113.00}$ Postit 1.00
	¢11.85 Post ${ }^{\text {ction }}$
0.4 .5 .24 .32 voh © 12 amp	

AUTO TRANSFORMERS

Step up step down 0115200220240 voll
At 75 watt $£ 3.60$ Post 40 p .150 watt $£ 5.15$ Post 50 p 300 watt $£ 6.20$ Post 60 p 500 watt $£ 11.00$ Post 75 p .1000 watt E16.20 Post 90 p RING TRANSFORMERS
RING TRANSFORMERS
 Trantiormer by simply hanc wind ing the
numbe of tums through the centro number of turs throught the centre opening
E.g. Using the RT 100 V . A. Model the outpu

TRIAC
 Past 10 p (inclusive of Daite and application sheet) Suitable Diac 18 p .

COLOUR WHEEL PROJECTOR TYPE P150 INTACHANGE
$200 / 240 \mathrm{~V}$ a.c. $50 \mathrm{H} \neq 150 \mathrm{~W}$ lamp. Complete with
oil filled colour wheel and motor plate. Takes

C A YAT AT 8% MUST BE ADOED TO ALL DRDERS
 FOR THE TOTAL VALUE OF GOODS INCLUOING POSTAGE UMLESS OTHERWISE STATED

SERVICE TRADING CO.

SHOWROOMS NOW OPEN AMPLE PARKING AMPLEBABMEK

GEARED MOTORS 100 R.P.M. 115 lbs. ins.!!

15 R.P.M.
 Weight 8.5 Kilos. BRANO NEW. Price E10.00, ca
Suitable transformer for use on $220 / 240$ voti A.C Suitable transtorm

DRAYTON MOTOR

RPM 9016. in. Reversible motor is fitted with limit switch tor 160° anguiar reversibie rotation it
required. Twin spindle size 100 mm by 140 mm by 125 mm Shat 50 mm

BODINE TYPE N.C.I. GEARED MOTOR
(Type 1) 71 r.P.m. rorque 10 ib in Reversible 1/70th h.p cycle 38 amp This US A motor is offered
in as new condition input voltage of motor 115 V A.C. Supplied
 Price type $\mathbf{6 6 . 2 5 \text { . Post } 7 5 p}$
(Type 3) 71 r.p.m. $\mathbf{2 3 0}$ Vp
Continuously reted. Non \qquad
6/9 VOT D.C. GOVERNED $40 \mathrm{~mm} \times 40 \mathrm{~mm}$ S
2 mm £1.00. Post Paid Two for $£ 1.65$. Post Padd
24 R.P.M. 230 volt A C CO
Fully tested $\mathbf{6 3 . 8 5}$. Post 75 p
1 R.P.M. 230/240 VOLT A.C. SYNCHRONOUS! EX Equipmen
20 r.p.m. GEARED MOTOR
REVERSIBLE MOTOR $230 V$ A.C
ant-vibration mounting bracket and capacitor O / A size 110 mm

METERS NEW
90mm Diameter

WHY PAY MORE?!

ranges. dimernsions $120 \times 80 \times 44 \mathrm{~mm}$. Weigh
032 kg SERVICE TRADING OO. Price $\mathbf{E 5} 50$
032 kg SERVICE TRADING $\times 0$ Price 5.50
incl. leads and battery. Post 50 p (Total price inc.
ROTARY VACUUM AIR COMPRESSOR AND PUMP

TIME SVJITCM

A.C. MAINS

TIMER UNIT

PROGRAMME TIMERS

6 CAM model $£ 5.00$
9 CAM model 66.50

LYNX ELECTRONICS (LONDON) LTD.

AC126	0.15	BC301	0.32	BT116	1.00	TIP41A	0.68
AC127	0.18	8C323	0.60	BU105	$1.80{ }^{\circ}$	TIP42A	0.72
AC128	0.13	BC327	$0.18{ }^{\text {c }}$	BU105/02	$1.90{ }^{\circ}$	IN2069	0.14
AC128K	0.25	BC328	0.15°	BU126	1.60	IN2070	0.18
AC141	0.18	BC337	0.17	BY206	0.15	in4001	0.04
AC141K	0.28	BC338	$0.17{ }^{\circ}$	BY207	$0.20{ }^{\circ}$	iN4002	$0.05{ }^{\text {a }}$
AC142	0.18	BCY70	0.12	BYX $36-$		iN4003	0.05^{*}
AC142K	0.28	BCY71	0.18	300	0.12°	in4004	$0.07{ }^{\circ}$
${ }_{\text {AC }} 176$	0.16	BCY72	0.12	600	0.15°	IN4005	0.03*
${ }_{\text {AC }} \mathbf{1 7 6 K}$	0.25	BD 115	0.55	900	0.18^{*}	1N4006	0.09
${ }_{\text {AC }} 187$	0.18	BD131	0.38	1200	$0.21{ }^{\circ}$	in4007	0.10°
AC187K	0.25	BD132	040	$8 \mathrm{P} \times 38-$		2N696	0.14
AC188	0.18	8D135	0.36	300	0.50	2N697	0.12
${ }_{\text {AC188K }}$	0.25	BD136	0.38	600	0.55	2N706	0.10
AD140	0.50	BD 137	0.40	900	0.60	2N929	0.14
AD142	0.50	80138	048	1200	0.65	2N930	0.14
AD143	0.46	80139	0.58	BZ×61	Series	2N1131	0.15
AD149	0.48	BD181	0.85	Zeners	0.20	2 N 1132	0.16
AD161	0.35	80182	0.92	BZx83 or		2N1304	0.45
AD162	0.35	80183	0.97	BZX88 Serie		2N1305	0.40
Al102	0.95	80232	$0.60{ }^{\circ}$	Zeners	0.11	2N1711	0.18
Al103	0.93	BD233	$0.4{ }^{\circ}$	C106A	0.40	2N2102	0.44
AF114	0.20	80237.	$0.65{ }^{\circ}$	C1068	0.45	2N2369	0.14
AF115	0.20	B0238 ${ }^{\circ}$	0.60	C106D	0.50	2N23694	0.14
Af116	0.20	BD184	1.20	C106F	0.36	2N2484	0.18
AF117	0.20	80Y20	0.80	CRS 105	0.25	2N2646	0.50
AF118	0.50	воү38	0.80	CRS1 10	0.25	2N2905	0.18
AF139	0.35	B0y60	0.60	Casi 20	0.35	2N2905A	0.22
AF239	0.37	BDY6 1	0.65	CRS 140	0.40	2N2926A	0.10°
BC107	0.14	BDY62	0.55	CRS1 60	0.65	2N29260	${ }^{0.09}$
8C1078	0.16	BDY93	252	CRS3 05	0.34	2 N 2926 Y	0.00*
BC108	0.13	BOY94	214	CAS3 10	0.45	2N2926G	0.10°
BC109	0.14	80 Y 95	214	CRS3 20	0.50	2N3053	0.15
BCl09C	0.12	80Y96	4.63	CRS3 40	0.00	2N3054	0.40
BC117	0.19°	B0r97	3.93	CRS3 60	0.85	2N3055	0.50
BC: 25	0.15°	B0Y98	3.56	MJ480	0.80	2N3440	0.58
BC126	$0.20{ }^{\circ}$	8F178	0.28	M 3481	1.05	2N3442	1.20
8C141	0.28	BF179	0.30	MJ490	0.00	2N3525	0.75
8 BC 142	0.23	BFI94	$0.10{ }^{\circ}$	MJ491	1.15	2N3570	0.80
BC143	0.23	BF 195	0.10°	MJE340	$0.40{ }^{\circ}$	2N3702	$0.10{ }^{\circ}$
BC144	0.30	BF196	$0.12{ }^{\circ}$	MJE371	0.60	2N3703	0.10°
BC147	0.00°	BF197	0.12°	MJE520	0.45	2N3704	0.100°
BC148	0.08	BF224J	$0.1{ }^{\circ}$	MJE521	0.65	2N3705	0.10°
BC149	0.00	BF244	$0.17{ }^{\circ}$	OA5	0.50°	2N3706	0.10°
BC152	$0.25{ }^{\circ}$	BF257	0.30°	OAgO	0.08	2N3707	0.10^{*}
BC153	$0.1{ }^{\circ}$	BF258	0.35	OA91	0.08	2N3714	1.05
BC157	0.08	$8 \mathrm{FF337}$	0.32	OC4 1	0.15	2N3715	1.15
8C158	0.09°	BFW60	0.17	$\mathrm{OC4}^{\text {O }}$	0.15	2 N 3716	1.25
BC159	$0.00{ }^{\circ}$	BFX29	0.28	0 C 44	0.12	2N3771	1.60
BC160	0.32	$8 \mathrm{BF} \times 30$	0.30	0 C 45	0.10	2N3772	1.60
BC161	0.38	8Fx84	0.23	$0<70$	0.10	2N3773	2.10
8C1688	$0.08{ }^{\circ}$	BFX85	0.25	0 C 71	0.10	2N3819	0.23
8C182	$0.11{ }^{-}$	BFX88	0.20	0 C 72	0.22	2N3904	0.16°
${ }_{8 C 1824}$	$0.11{ }^{\circ}$	BFY50	0.20	0 C 84	0.14	2N3906	0.16°
8 C 183	0.10	BFY51	0.18	SC40A	0.73	2N4124	0.14
8 Cl 183 L	0.10°	BFYS2	0.19	$5 \mathrm{SC40B}$	0.61	2N4290	0.12
BC184	$0.11{ }^{\circ}$	BFY64	0.35	SC40D	0.98	2 N 4348	1.20
BC184L	0.11°	BFY90	0.85	SC40F	0.65	2 N 4870	0.355
$8 \mathrm{BC207B}$	0.12	8R100	0.20	$\mathrm{SCA}_{1 / \mathrm{A}}$	0.65	$2 \mathrm{~N} 4 \mathrm{B71}$	${ }_{0}^{0.35}$
BC212	$0.11{ }^{\circ}$	BFY39	0.40	$5 \mathrm{SC418}$	0.70	2 N 4919	0.70°
$8 \mathrm{BC212L}$	0.11°	8S×19	0.16	SC410	0.85	2 N 4920	$0.50{ }^{\circ}$
BC213	$0.12{ }^{\circ}$	$8 \mathrm{BX} \times 2$	0.18	SC41F	0.60	2N4922	$0.88{ }^{\text {a }}$
8 BC 213 L	$0.12{ }^{\circ}$	${ }_{85 \times 21}$	0.20	${ }_{\text {STP }}^{\text {STP }}$	0.20	2N4923	$0.64{ }^{\text {a }}$ 0.25
BC214	$0.14{ }^{\circ}$	BSY95A	0.12	T1P29A	0.44	2N5060	$0.25{ }^{\circ}$
${ }_{8 C 214 \mathrm{~L}}$	$0.14{ }^{\circ}$	8T106	1.00 1.80	TIP30A	0.52	2N5061	0.28° 0.30°
8C237 8 BC 238	0.16	81107 BT108	1.80	T1P314 TIP32A	0.0 .5	2N5062 2N5064	0.30° 0.35
вС300	0.34 .	8T109	1.00	tip34	1.05	2N5496	0.65

DIGITAL DISPLAYS \& LEDs							
$\begin{aligned} & 01704 \\ & 0.107 \end{aligned}$				$\begin{aligned} & E 1.85 \\ & k 1.80 \\ & \hline 1.8 \end{aligned}$	$\begin{aligned} & 2 \text { RED L } \\ & \text { GREEN } \end{aligned}$		- ${ }^{-13 p}$
THYRISTORS							
	08 A	14	${ }^{34}$	${ }^{4 \mathrm{~A}}$	${ }_{\text {(0) }}^{68}$	${ }_{\text {84 }}^{802001}$	${ }_{\text {a }}^{1020}$
	(1092)	${ }^{(105)}$	${ }_{\text {(C106 }}{ }_{35}{ }^{\text {tree) }}$	(10220)	(T0220) ${ }_{41}$	${ }^{(10220)}$	(10220)
500 100	0.28.	25	40	42	47	48	54
$\begin{aligned} & 200 \\ & 400 \end{aligned}$	0.30*	35	45	51	58	8	${ }^{88}$
	0.35°	${ }_{65}^{40}$	50 70	80	$\begin{array}{r}87 \\ \hline 1.09\end{array}$	$\begin{array}{r}\text { \% } \\ \hline 1.19\end{array}$	1.88

TRIACS (PLASTIC TO-220 PKGE ISOLATED TAB)

N B Triacs without internal trigger diac are priced under columin (a) Triacs with internal trigger diac

TTL 74 SERIES PLASTIC

7400	0.16	7420	0.16	7447	0.81	7483	1.12	74119	1.92	74163	1.20
7401	0.18	7422	0.38	7448	0.81	7484	0.85	74121	0.34	74164	0.93
1402	0.16	7423	0.40	7450	0.85	7485	1.25	47122	0.47	74165	0.93
7403		7425	0.30	7451	0.16	7496	0.32	74123	0.40	74167	3.70
7404	0.18	7427	0.48	7453	0.18	7489	2.92	74125	0.79	74174	1.06
7405	0.18	7428	0.53	7454	0.18	7490	0.45	74141	0.75	74175	0.94
7406	0.51	7430	0.16	7460	0.18	749.	0.68	74145	0.74	74176	0.86
7407	0.18	7432	0.37	7470	0.32	7492	0.57	74150	1.20	74180	1.23
7408	0.18	7433	0.49	7472	0.26	7493	0.45	74151	0.77	74181	3.20
7409	0.18	7437	0.35	7473	0.30	7494	0.85	74153	1.09	74190	1.33
7410	0.16	7438	0.35	7474	0.32	7495	0.67	74154	1.62	74197	1.33
7412	0.25	7440	0.16	7475	0.47	7496	0.78	74155	1.32	74192	1.39
7413	0.25	7441	0.75	7476	0.36	7497	4.32	74157	0.78	74193	1.39
7414	0.72	7442	0.65	7480	0.55	74100	1.15	74160	1.20	74193	1.39
7416	0.43	7445	1.50	7484	1.26	74107	0.35	74161	1.20	74196	1.64
7717	0.43	7446	2.56	7482	0.75	74118	1.16	74162	1.20	74197	0.81
										74198 74199	${ }_{2}^{2.74}$

LINEAR ICs
Cs \quad T0-3 Transistor mounting kits LM307
LM380
LM 380
NE555
NE565
NE566
NE567

$\begin{aligned} & 0.36 \\ & 0.32 \\ & 0.35 \\ & 0.75 \\ & 0.56 \\ & 0.50 \end{aligned}$	

Fully - Tested but unmarked TO. 3 NPN Power Transistors Symlar to $2 N 3055$ type except. BVCEO $>50 \mathrm{~V}$ HFE>20 (3Amps 5 pes for $\$ 100$ 10 pcs for $£ 180$ 50 pcs for $£ 3.40$ 100 pes for $\$ 9300$	

HIGHAM MEED, CHESHAM, BUCKS. TeI. [02405] 75154
VAT - Please add 8% except items marked * which are $121 / 2 \%$ P\&P 20p. Overseas 80p ACCESS \& BARCLAYCARD ORDERS AC̄CEETED

SINTEL for MEMORIES-GMOS-DISPLAYS-MPUS-BOOKS

 FAST SERVICE| CMOS from
 CMOS | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | C. 40 | 1.79 | CD4051 | 0.8 | CD4085 | 074 | CLOCK CHIPS |
| | | | 89 | | | CO4086 | | 51202 2.89 |
| CiP4001 | -16 | cutaz9 | 116 | CO4054 | 1.20 | CD4093 | ${ }^{1.69}$ | Ars1224 3.50 |
| C4002 | - ${ }_{\text {O }}$ | | - $\begin{aligned} & 056 \\ & 224 \\ & 2\end{aligned}$ | | 1.37 | CO4094 | 194 | MK50253 5.60 |
| C14006 | ${ }^{1.22}$ | | | | | | | |
| CD4008 | 0 | | | | 4.95 | | 1.87 | Flatcabe |
| d | | | | 5 | 4.16 | | | ca |
| CO4010 | -56 | E04 | 1.22 | CO4062 | 9.07 | CD4502 | 129 | 10 mfor 8.00 |
| CD4011 | 017 | cot | 3.18 | CD4063 | 1.14 | CD4510 | 141 | |
| C04012 | 017 | 233 | 0.89 | CD4C | 0.64 | CO45 | 1.6 | |
| 8413 | 058 | 4038 | 1.27 | CO4067 | 3.87 | CO4514 | | verocases |
| C.14014 | | comiss | 3.09 | CD4068 | 0.22 | CO4515 | | 751410 J 2.64 |
| . 04015 | 1.05 | (cha | 1.11 | CD4069 | 0.22 | CD4516 | 1.41 | |
| CD4016 | 0.55 | cma | 0.87 | CD | 0.60 | CD4518 | 1.30 | |
| CD4017 | 0.99 | cimace | 0.87 | C0407 | 0.22 | C04520 | 1.30 | 2.15 |
| 04018 | 0.99 | crata | 1.0 | C04072 | 0.22 | CD4527 | 1.64 | |
| C04019 | | 504024 | | C04073 | 0.22 | CD | | |
| C34020 | ${ }^{1.16}$ | 205 | 145 | CO | 0.22 | CO4555 | 094 | |
| | 00 | | | | | | | CA3130 1.14 |
| | | CV4047 | 0.98 | | | MC14 | | |
| ${ }^{\text {cosem }}$ | 10.17 0.81 0.17 | | | | | | | (RCA B DIL |
| 654025 | ${ }_{0.17}^{0.81}$ | çatmo | ${ }_{0}^{0.55}$ | CD4082 | ${ }_{0}^{0.22}$ | ${ }_{196508}$ | ${ }_{8.05}^{5.24}$ | B. 12 WC 0.77 |
| Books and Datauhoets (do not add any Var) | | | | | | | | |
| New New 1976 RCA Powel and M, Mrowave Ditabook | | | | | | | | c4.95 |
| | | | | | | | | ${ }^{63.45}$ |
| | | | | | | | | |
| | | | | | | | | |
| Intel Memory Design Mandbook ¢ 280 ¢ | | | | | | | | $\mathrm{cc}_{6} .85$ |
| | | | | | | | | 217 |
| | | | | | | | | 512.45 |
| Motorola M6800 Programme Manual 200 pages | | | | | | | | 6.85 |
| | | | | | | | | E11.56 |
| | | | | | | | | |
| Intersil $6100{ }^{12}$-btr CMO National SCAMP 8 -bit | | | E0.75 | Rilog 280 (enhanced 8080) | | | | |
| | | | 60.75 | | | | | 0.75 |
| (DL704. DL7750. MAN 3640 . etc) as they are all etectrically identical (bbut may have different pinnouts) Similaty | | | | | | | | |
| | | | | | | | | | | | | |
| 586/699, etc)
 Many Display PCB salso available | | | | | | | | |
| | | | | | | | | | | | | | |
| FND500 C C Red 05^{11} f. 1.02 | | | Red $05^{\prime \prime}$ LED | | | | | |
| | | | XANE5 XANES | $\begin{aligned} & { }_{4}^{4} C A \\ & C A \end{aligned}$ | |

SINTEL Official Orders Wotcomed. Terms 30 days tor written or phoned
orders from Companies. Govt Depts. Nat Industies. Univs Polys. prc Fast detivery for R\&D.

Direct from the makers

 UNTT THAT SAVES MONE AND IMPROVES PERFORMMEE

Why be without when you can fit one so easily and for so little?
Wetl over 10.000 "Super Spark" Units have been sold in four years and no wonderl Youknow the advantages of
capacitor discharge ignition - more mpg. less capacitor discharge ignition - more mpg . Iess
mechanical wear, easier starting from cold Super Spark'" Mk. 5 gives you these and more - simple rev limiting adjustment, pos and neg earthing, switch for instant revert to normal ignition, on-off switch io immobilise against car thieves, neon indicator, improved circuitry, rugged construction and totally enclosed strong metal case size $63 / 4 \times 4^{5 / 6} \times 4^{1 / 8}$ in. $170 \times 118 \times$
$55 \mathrm{~mm})$. Super Spark Mk 5 comes to you direct from $55 \mathrm{~mm})$ "Super Spark" Mk. 5 comes to you direct from our Southend iactory. is guaranteed and offers or in kit of parts (fightwerght solder iron needed) Inc or in kit of parts frightwergh
transtormer in both versions.
For delivery by return from the makers
Parts for the kit or the complete unit are guaranteed for 12 months subject to being used as instructed by the 12 months subj
manufacturers

Esintinsouni
er of the Bi-Pre-Pak Group of Co 220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF Phone: Southend (0702) 46344

PERSONAL CALLERS WELCOME

INSTANT CIRCUIT DESIGN WITH THE BUG SYSTEM

THE PROFESSIONAL BREADBOARDS FOR STUDENTS \& HOBBYISTS! NO SOLDERING! USE ICS AGAIN \& AGAIN!

SK10. Takes up to eight 14 pin \quad..........: :....: :.........: :....: :...: :...: :...: DILs All components insert directly. Insertıon life of 10,000 cycles. Contact
resistance 5 milliohm average.
Housing is acetal copolymer $£ 13.38$
 temper! Pack of $500 \mathbf{£ 6 . 4 0}$

pulses. Monitors outputs. 8 LED indicators. 4 logic switches. 2 pulsers Variable frequency clock £41.75.

All prices include VAT and P. \& P
Send for the Bug System leaflet and order form or cheque with order

HEPWORTH ELECTRONICS

Hepworth House. Worcester Road, Kidderminster DY 10 1BG
Telephone: Kidderminster 2212/3

20×20 Watt STEREO AMPLIFIER

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse. $20+20$ watts rms, $40+40$ watts peak.

TOW YOUCANSAVE

SYSTEM 1B

ror only $£ 80$, you get the $20+20$ watt Viscount IV amplifier; a pair of our 12-wattims Duo Type lib matched speakers; a BSR MP 60 type deck complete with magnetic cartridge, de luxe plinth and cover
£8000
p \& p. $£ 6.50$

SYSTEM 2

Comprising our $20+20$ watt Viscount iv amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts ims each; and a BSR MP 60 tyoe deck with magnetic cartridge. de luxe plinth and cover
£2990 m 1b 2.50 , System 2 \&5
 SPEAKERS Two models- Duo llb. teak veneer, 12 watts $\mathrm{ms}, 24$ watts peak, $81 / 2^{\prime \prime} \times 131 / 2^{\prime \prime} \times 71 /{ }^{\prime \prime}$ "appro

TURNTABLE Popular BSR MP 60 type, complete with magnetic cartridge, diamond styius, and de luxe plinth and cover

Whive

STEREO CASSETTE DECK KIT
Again. this kit is specially designed for the experienced constructor - for mounting into his own cabinet
Features include solenoid-assisted AUTO-STOP 3-digit counter record/replay PC board, mains transformer and input and output $\mathbf{£ 3 2 5 0}$ controls. AC BIAS AND ERASE

DELUXE ACCESSORY KIT Comproses of a matched pair of dymamic mics. and two replacemant slider livesi controus. $\mathbf{£ 3 . 9 5}+\mathrm{D} \mathrm{\& D} \mathrm{E} 1.00$

Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is eady punched, drilled and formed. Cabinet is finished in teak veneer Black fascia and easy-to-handle aluminium knobs. Output $30+30$ watts rms, $60+60$ peak.

DIY STEREO

 SYSTEMCOMPLETE WITH SPEAKERS
Here's real value in DIY! Comprises ready-built amplifier module, 3-speed Garrard auto-return deck, and teak-veneer simulate cabinets with clear plastic top. Easily buill by hobbyists.
£2695

TEM Sirnclair STEREO AMPLIFIER KIT WITH PZ2OPOWER UNTT

TOURIST IV PUSHBUTTON CAR RADIO KIT

 [(WOTOR TOP 10 AWARD]Complote whe speaker, Baftim and fxing strips. The Jourist IV for the expertenced constructor onty. The Tourtit IN thes five push-mittons. foer modium band and one for long wown band.
The tuaing scale is illuminated am itractive spun alumintum centrol keobs Ira used
central.

- modern syyn hicia has haen desieqnod to blond with mosi car interiors and the finished radio will siat inlo: tandard car radio aperturs. Stas: merax. $7^{\prime \prime} \times 2^{\prime \prime} \times 4^{23 / 4}$
Power Supply: Momimal 12 volis pasitive or agoaltus earth lalterod internally). Powor uriput: 4 watts inte 4 shme. £10.50 + plp £1.50

PORTABLE DISCO CONSOLE with built-in pre-amplifiers Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-return, single-play protessional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply £5500 connects into your existing + 88 P6860 slave or external amplifie

35-WATT DISCO AMP
Here's the mono unit you nieed to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume $\mathbf{\Sigma 2 7 5 0}$
70 and 100 WATT DISCO AMPLIFIERS
Brimantiy sryled for easy disco periorimance! Sloping lascia. So that you can use the confois whout tuss master volume, tape level, mic level deck leve quartuated change from record

deck No 1 to No 2. ar vice versa Pre-fade level conirol (PFL) lets YOU hear next disc before fading it in. VU meter monitors output level 70 watts sims. 140 watis peak outpur All the big teatures as on the 70 wall disco amplifier. but with a massive 100 watts rins, 200 watts	

ELECTROIYTIC CAPACITORS AT BARGAIN PRICES
All bried now from rapyitile intarnational manulacturers PaCk 1. Contrialimg 30 mixed Electrontic valuas trom $55 \mathrm{p}+20 \mathrm{p}$ p 8 p .
PACK 2. Containing 17 mixed Electrontilc valves trom 100 mind to 2200 midd. Mininimum 16 volt working. Majerity 40 wolt werking.
$15 \mathrm{p}+20 \mathrm{p} \mathrm{p}$

EASY-TO-BUILD, WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) wooters, two $31 / 4^{\prime \prime}$ (approx.) tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied cemplete with an easy-to-follow circuit diagram, and crossovet components. Input 15 watts rms, 30 watts peak each unit. Cabinet size
$20^{\prime \prime} \times 11^{\prime \prime} \times 9^{\prime} / 2^{\prime \prime}($ approx $) .250+0 \& \rho$
$£ 5.50$

15-WAT KIT YOU CANTER
 IN CHASSIS FORM DOBS

 why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) EMI woofer, $3^{1 / 4^{\prime \prime}}$ (approx.) tweeter, and $\begin{array}{ll}\text { matching crossover. } \\ \text { Power handling capacity }\end{array} \quad \mathbf{E 7 5 0}+\mathrm{p} \mathrm{\&}$ \& Power handling capacity15 watts rms, 30 watts peak. PER SET

FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only $£ £ 7.50$ - just what you need for low-power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finisted. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime}$ (approx.) deep, and is finished in simulated teak. Complete with two $8^{\prime \prime}$ (approx.) speakers for max power handling of 7 watts.

E750
DECCA 20 WATTS STEREO SPEAKER
p\&p 1.70
per pair
$\mathbf{f} \mathbf{3 0 . 0 0}$ ع400 \& \& P

21E HIGH STREET, ACTON, LONDON VV3 323 EDGWARE ROAD, LONDON W2 Personal Shoppers EDGWARE ROAD: 9 a.m. -5.30 p.m Half day Thurs.
ACTON: 9.30a.m.-5p.m. Closed all day Wed Access and
Barclaycards E15
DO NOT SEND CARD

Just wrie your order givi
your credit cort number

KINNIE
COMPONENTS
10 NELMES WAY
HORNCHURCH
ESSEX RM11 202
HORNCHURCH 45167

CIRCUIT BOARD

P.C.B. $1 / 161 \mathrm{oz}$ COPPER

FORMICA

Dim. 8.4×7.7 in 3 pcs 80p.
Dim. 9.4×8.1 in 3 pcs. 90p
Dim. 10.1×7.9 in 3 pcs. £1.00.
Dim. 13.1×9.4 in 3 pcs. $£ 1.20$. Dim. 17.0×9.0 in 2 pcs. $£ 1.20$. P.P. 35 p on each pack

BARGAIN PACK
10 pcs. $10.1 \times 7.9 \mathrm{in}$. (Formica) plus free $1 / 2 \mathrm{lb}$ etching \times tals, $\mathbf{£ 3 . 3 0}$
FIBRE GLASS P.c.b.
Dim 6×6 in, 55 p each
Dim 12×6 in, 85 p each P.P $15 p$
Dim. 12×12 in, $\mathbf{£ 1 . 4 0}$ each.
FIBRE GLASS P.C.B.
DOUBLE SIDED
Dim 6×6 in, $45 p$ each
Dim. 12×6 in, 70 p each
Dim. 12×12 in. $\mathbf{£ 1 . 3 0}$ each
ETCH RESIST PENS (55p, P.P 5p)
RESIST COATED P.C.B.
10.1×7.9 in, 70p ea (Formica) 6×6 in, 75p ea (Fibre glass).
bLUE P.C.B. INK
Etch resist use with any pen. Much cheaper than ready loaded pens. 50 c.c. 55p, p.p. 10 p.
FERRIC CHLORIDE ETCHING XTALS
lib-1 litre pack, 70p, p.p. 35p.
$5 \mathrm{lb}-5$ litre pack, £2.20, p p 65 p
PRINTED CIRCUIT KIT
The no-frifls-all-value kit containing 4 pcs 8×7 Formica laminate. 1 pce 6×6 Fibre glass laminate, 1 ib Etching Crystals, 50 c.c. Resist ink with instructions. £2.40, p.p. 65p.
BARGAIN PACK FIBRE GLASS P.C.B.

200 sq in all usable pieces, $£ 1.40$. EDGE CONNECTORS, 54 WAY 1 Spacing
Vero size, etc. Can be cut to any length. 65p, p.p. 10p. Side guides to suit
above, 15p each.

DIALS

(new), £1.25, p.p

EXTENSION

TELEPHONES

(Type 706). Various colours. £5. 25 p.p. 75 p.

MINIATURE UNISELECTOR

12 volt 11 -way, 4 bank (3 non-bridg ing, 1 homing), £2.50, p.p. 35 p 24 volt 11 -way, 6 bank (5 non-bridg ing, 1 bridging), $\mathbf{£ 2 . 0 0}$, p.p. 35 p UNISELECTORS
(new). 25 -way half wipe 12 bank (non-bridging), 68ohms, £6.50, p.p
F.M. FRONT END
Geared tuning. AFC
88/108 MHz. A.M.
GANGS FITTED. Full
circuit diagram and
conn. details supplied
£3.50,pp. $25 p$.
OUTPUT METER
$500 \mu \mathrm{a} 11 / 2 \times 11 / 2$ clear plastic panel
type. £1.30.

AM/FM TUNING METER
125-0-125 на Edgewise £1.10.

SIGNAL STRENGTH METER
250μ a illuminated edgewise $11 / 2 \times 1 / 2$ £1.10.

Miniature meters

500 micro-amp (level-stereo beacon etc.) scaled half black/half red Size 1 $\times 1$ in, 65 p, p.p. 15 p.

3 GANG TUNING CAPACITOR
8 5pf to 320pf, 80p, p.p. 20p.
S.T.C. CRYSTAL FILTERS
(10.7MHz) 445-LQU-901A (50KHz
spacing), £3, p.p. 20p.
445-LQU-901B $(25 \mathrm{KHz}$ spacing) £4.00, p.p 20 p
V.H.F./U.H.F. POWER TRANSISTORS
(Type BLY 38). 3 watt ourput at 100-500 Mhz, £2.25, p.p. $10 p$

PANEL METERS

$23 / 8$ in $\times 17 / 8$ S 8500 mA
S $150 \mu \mathrm{~A}$ S 91 Amp
S2 $100 \mu \mathrm{~A}$
S2 100μ A S 1050 va c.
S3 $500 \mu \mathrm{~A}$ S 11300 v
a.c.

S4 1 mA S $1250 / 0 / 50 \mu \mathrm{~A}$
S5 10 mA S 13 100/0/100 $\mu \mathrm{A}$
S6 50mA S 14 500/0/500 4 A
S7 100 mA All at $\mathbf{£ 3 . 7 5}$, p.p. $15 p$.

HANEL METERS

$41 / 2$ in $\times 31 / 4 \mathrm{~L} 3200 \mu \mathrm{~A}$
L1 $50 \mu \mathrm{~A}$ L4 $500 \mu \mathrm{~A}$
L2 $100 \mu \mathrm{~A}-$ All at £5, p.p. 15 p

HIGH SPEED MAGNETIC COUNTERS

4 digit (non reset) 24 v or $48 \mathrm{v}, 4 \times 1 \times 1$ in, $£ 1$, p.p. 20p.

5 digit (non reset), $24 v$

£1.50, p.p. 20 p.
3 digit 12 v (Rotary Reset), $21 / 4 \times 13 / 4 \times$
$11 / 4 . \mathbf{£ 1 . 4 0}$, p p. $15 p$
6 digit (Reset). 240 v , mains, $\mathbf{5 5 . 0 0}$.

RESET COUNTER (BRAND NEW)

5 digit 24v 25 I.P.S.. £4, p.p 25p.
BULK COMPONENTS OFFER
Resistors/Capacitors 600 new components, £2.75, p.p. 40p. Trial order 100 pcs, 75p, p.p. 20p

HIGH CAPACITY ELECTROLYTICS
$250 \mathrm{mfd} / 63$ volt 20 p p.p. $8 p$ $\uparrow .000 \mathrm{mfd} / 100$ volt 70 p p.p. 25 p $2.200 \mathrm{mfd} / 100$ volt $90 p$ p.p. 25 p $4.700 \mathrm{mfd} / 25$ volt 65 p p.p. 20 p $6.800 \mathrm{mfd} / 16$ volt 50 p p.p. 15 p $10.000 \mathrm{mfd} / 25$ volt 75 p p.p. 25 p $25,000 \mathrm{mfd} / 40$ volt $£ 1.25$ p.p. 30 p $47.000 \mathrm{mfd} / 40$ volt $\mathbf{£ 2 . 0 0}$ p.p. 50 p $47.000 \mathrm{mfd} / 40$ volt $\mathbf{£ 2 . 0 0}$ p.p. 50 p $60.000 \mathrm{mfd} / 10$ voit $\mathbf{£ 2 . 0 0}$ p.p. 50 p

BULK COMPONENTS OFFER

Resistors/Capacitors 600 new com ponents, £2.75, p.p 36p
Trial order 100 pcs. 75p, p p. 20p
SMITHS GEARED MOTORS 240V AC

$\mathbf{3}$ rev. per min.	$\mathbf{£ 1 . 5 0}$ p.p. 25 p
4 rev. per min.	$\mathbf{£ 1 . 5 0}$ p.p. 25 p
6 rev. per min.	$\mathbf{£ 1 . 5 0}$ p.p. 25 p
2 rev per hr	$\mathbf{£ 1 . 5 0}$ p.p. 25 p
6 rev. per hr	$\mathbf{£ 1 . 5 0}$ p.p. 25 p

RELAYS

SIEMANS MINIATURE RELAYS $6 \mathrm{v} .4 \mathrm{c} / \mathrm{o}, 65$ p. $24 \mathrm{v} .2 \mathrm{c} / 0,50$ p. 24 v 4 c/o, 65p. p.p $5 p$

MINIATURE RELAYS
$\left(1 \times 1^{1 / 4} \times 1 / 2\right), 24 v, 4 \mathrm{c} / 0,35$ p, p.p. $5 p$.
MAINS RELAY 240V A.C.
$3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$ contacts, 80p with base. p.p. 20p

Miniature reed relay
$(1 \times 1 / 4), 12 v, 1 \mathrm{c} / \mathrm{o}, 50 \mathrm{p}, \mathrm{p}, \mathrm{p} \cdot 10 \mathrm{p}$

S-DECS AND
T-DECS
S-DEC £1.90
£4.20
T-DEC. £3.60
U-DEC B.
£6.90
S.C.R. - THYRISTORS
1 amp 400 PIV. 35p
5 amp 400 PIV. 40p

POWER UNIT 2OV D.C

500 MA rectified and smoothed by 1250 Mid cap and OC25 Trans. circuit, £2.50, p.p. 55p.
POWER UNIT OUTPUT $171 / 2 V$ RECTIFIED. UNSMOOTHED, £2.00, p.p. 50p

OVERLOAD CUT OUTS

Panel mounting $800 \mathrm{M} / \mathrm{A} 18 \mathrm{amp} 10$ amp. 55p ea

H.D. ALARM BELLS

6 in . Dome $6 / 8 v$ d.c. Heavy cast housing for exterior/interior use $\mathbf{£ 3 . 7 5}$, P.p. 1
1,000 TYPE KEY SWITCHES
Single 2×6 make locking centre off,
60p, p.p 10p
BANK of $4-2 \times 4 \mathrm{c} / \mathrm{o}$ ea switch (one
bias

TRANSFORMERS

H. TRANSFORMERS Prim $110 / 240 \mathrm{v}$. Sec. $400 \mathrm{v} .100 \mathrm{M} / \mathrm{A}$ £3, p.p. 65p
T TRANSFORMER Prim 240 V Sec 27-0-27 at $800 \mathrm{M} / \mathrm{A}$
£2.35, p.p. 50 p.
L. TRANSFORMER P
$110 / 240 \mathrm{v}$. Sec. 50 v at 10 amp.
£10, p.p. E1. 50 L.T. TRANSFORMER. Prim 240 V Sec. 18 v at 1.5 amp and 12 v at 1 amp . £2.25, p.p. 65 p. LT TRANSFORMER Prim 240V Sec 18 v 1 amp $\mathbf{£ 1 . 1 0 , ~ p . p . 3 5 p}$ T T. TRANSFORMER
$110 / 240 \mathrm{v}$. Sec $23 / 24 / 25 \mathrm{v}$ at 10 $110 / 240 \mathrm{v}$. Sec $23 / 24 / 25 \mathrm{v}$ at 10
amps.
E7, p.p. E1. L. T. TRANSFORMER Frim. $110 / 240 \mathrm{v}$. Sec. $20 / 21 / 22 c$ at 8

amp.

E6, p.p.E1.

1. T TRANSFORMER Prim.
$110 / 240 \mathrm{v}$. Sec $0 / 24 / 40 \mathrm{v}$ at $11 / 2$ amp. (Shrouded). E1.95, p.p. 50p L.T. TRANSFORMER Prim. $200 / 250 \mathrm{c}$. Sec. $20 / 40 / 60 \mathrm{v}$. at 2 amp. (Shrouded). £3, p.p. 70p. L.T. TRANSFORMER (H.D.) Prim $200 / 250 v$. Sec $18 v$ at 27 amp .40 v at 9.8 amp 40 v . at 3.6 amp 52 v at 1 amp. 25 v . at 3.7 amp
£17.50, p.p. £2 50 L.T TRANSFORMER Prim 240 V Sec 20 v at $2.5 \mathrm{amp} \quad £ 2$, p.p. 65p. L.T. TRANSFORMER ("C" CORE). 200/240v. Secs. 1-3-8-9c. All at 1.5 amp. 50v. at 1 amp. £2.50, p.p. 50p. L.T TRANSFORMER ("C" CORE). Prim. 120v/120v. SECS. 1-3-9-20v. 10 amps. $£ 7.50$, p.p. E1. 25. L T. TRANSFORMER ("C" CORE) $200^{\prime \prime} 240 \mathrm{v}$. Secs. 1-3-9-27v. All at 10 amp $£ 7.50$, p.p. £ 1.50 L.T. TRANSFORMER ("C' CORE) $200 / 240 \mathrm{v}$. Secs 1-3-9-20v. All at 4 amp $£ \mathbf{~} 5.50$, p.p. 75 p L.T. TRANSFORMER (${ }^{\prime}$ ' CORE) $120 / 120 \mathrm{v}$. Sec. $1-3-9-9 \mathrm{v}$. All at 10 amp $£ 6.50$, p.p. £1.50. L. TRANSFORMER ('C' CORE) $110 / 240 v$. Secs. 1-3-9v 10 amp. $35 \mathrm{v} .1 \mathrm{amp} 50 \mathrm{v}, 750 \mathrm{M} / \mathrm{A}$.

MAINS MOTOR

Type used in quality record decks and tape recorders suitable for extractor fans, heaters etc,
7/8" stack. 85p. 1" stack. $\mathbf{E 1}$
both 30 p

MAINS MOTOR (EX-EQUIP.)
24 pole as used in quality tape 24 pole as used in quality tape
equipment $1360 \mathrm{r} . \mathrm{p} . \mathrm{m}$.. size $3^{3} / 4 \times 33 / 4$ $\mathrm{x} 31 / 2, \mathrm{£2.25}$, p.p. 50 p.

MULTICORE CABLE

6-core (6 colours) 14/0076 Screened P.VC. 30p per yard 100 yds at £16.50, p.p. $2 p$ a yard 7 -core (7 colours), $7 / 22 \mathrm{~mm}$. Screened P.V.C. $\mathbf{3 0} \mathbf{p}$ per yard, 100 yards $\mathbf{£ 1 6 . 5 0}$. P.P 4 p per yard

MAIL ORDER ONLY : CALLERS BY

 APPOINTMENTWW-073 FOR FURTHER DETAILS

8 DECADE RESISTANCE BOX

* Colour coded digits, Ω yellow, $K \Omega$ white, $M \Omega$ red

TIME ELECTRONICS LTD.
Botanv Industrial Estate Tonbridge, Kent
Tel. Tonbridge (07322) 5993 (J ines)
WW-045 FOR FURTHER DETAILLS

AC/DC MULTIMETER TYPE U4324.
With taut band suspension movement
High sensitivity movemen and full coverage of $A C$ and DC current
voitage ranges

- Volts DC
36 15-60.150-300 600-900

45 to 20.00 DHz Freq Range
5001 ? $5-50-500 \mathrm{k}$
251.0
5
50 k ?
25U!. 5 50k!
5 M ! Res Range

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers
Today we present

NEC Co 110 E DIGITAL

allband, HF, 300 watts transceiver, 160 / $80 / 40 / 20 / 15 / 11$ 10A / 10B / 10C / 10D / WWV, modes FSK, USB, LSB, CW AM, with separate 8 pole X-tal lattice filters for each mode fitted Eurther features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube
This feature alone makes of the NEC CQ 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course

NEC CQ 301

allband HF, 3KW, linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ 10 meter, for modern amateur communication. Two EIMAC 3-500 z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ $110 E$ or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these best sellers!

Sole distributor in Europe
CEC
Corp., Via Valdani 1 - CH 6830 CHIASSO-SWITZERLAND Phone: (091) 4426 51. Telex: 79959 CH

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH

va		
Ref.	(Watts)	E
07*	20	3.57
149	60	5.39
150	100	6.13
151	200	9.82
152	250	11.87
153	350	14.34
154	500	16.48
155	750	25.23
156	1000	35.16
157	1500	40.12
158	2000	44.76
159	3000	70.70
$\cdot 115$	40 sec o	

	Ref
P\&P	
66	11 t
80	213
95	7
1.25	18
1.53	78
1.53	108
1.79	7
8RS	116
BRS	17
BRS	115
8RS	18:
BRS	. 22 ¢

50 VOLT RANGE

If case and transformer ordered
logether - fused, with cable in and cable out

3 watt RMS Amplifie 5 watt RMS Amplifie 10 watt RMS -mplifier 25 watt RMS amplifier
Pre-Amp for $3-\overline{5}-10 w$ (ne Pre-Amp for 3-5-1
Pre-Amp for $25 . \mathrm{w}$
Power Supplie: for 3.5 .10 w
Power Supplies for 25 w
Transformer fo 3 w $\begin{array}{cc}\text { Transformer to } & 3 \mathrm{w} \\ \text { Transtormer fo } & 5-10\end{array}$
Transtormer fo 5-10w
Transformer fo 25 w / Powner Supplies
P\&P Transforters
12 and / or 24-VOLT

$P \& P$
36
65
65
80
80
95
95
1.10
110
1.73
173
$8 R 5$

0
5
5
5
5
37
53 $8 \mathbf{P}$
59
80
80
95
37
73
BRS
BRS
BRS H
$\mathrm{Pr}_{\mathrm{r}} \mathrm{M}$
Se
1.1
1.10
1000
2000 MAINS VOLTAGE Pri $200 / 220$ or $400 / 4$
$£ 2.30$
$£ 2.65$
$£ 2.95$
$£ 3.95$
$£ 6.50$
$£ 13.87$
$£ 1.20$
$£ 3.00$
$£ 1.90$
$£ 2.30$
$£ 2.60$
18 p
58 p

NEW STEREO 30

Complete chassis, inc. $7+7 \mathrm{w}$ f.m.s. amps, pre-amp. powe supply, front panel, knobs (needs veneered cab. E3.65. P\&P 88p. VAT $121 / 2 \%$.

POWER UNITS

3. $4.5 \mathrm{v} .6 \mathrm{v} \quad 7.5 \mathrm{v}, 9 \mathrm{v} \quad 12 \mathrm{v}$ at 500 mA

ANTEX SOLDERING IRONS
15 W £2.10. 1 BW E2.75. 25W £2.45
Stand for above £1.13. P\&P 25ρ. VAT 8%
PLEAJE ADD VAT AFTER P\&P ELECTRCSIL AND SEMICONDUCTOR STOCKISTS. ADIO ACCESSORIES \& BARGAIN
PAKS CALLETS WELCOME (MON.FRI) OR SE VO STAMP FOR LISTS

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST.

LDVPROFESSIONAL POWER AMPLIFIER MODULES

 FEATURES
 SHORT \& OPEN CIRCUIT, IMPEDANCE OVERLOAD, MISMATCH AND THERMAL PROTECTION. ONLY 5 EXTERNAL CONNECTIONS REQUIRED
 Full 2 Year guarantee
 -NEW•100w MODEL

Power Output	$\begin{array}{ll} \text { JPS } & \text { price } \\ \text { BO } & \text { (} 18.75 \text {) } \end{array}$	$\begin{aligned} & \text { JPS } \\ & 100 \text { price } \\ & \sum(£ 23.50) \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { JPS } & \text { price } \\ 150 & (£ 29.85) \end{array}$
	70watts RMS 7.5 ohms	$110 \text { warts RMS } 7.5 \text { ohms }$	170 watts RMS $7.50 h m s$
Frequ. Response	$10.30 \mathrm{kHz} \cdot 0.5 \mathrm{~dB}$	10.30 kHz - 0.5 dB	$10-30 \mathrm{kHz} \cdot 0.5 \mathrm{~dB}$
Slawing Rate	7.3 V per microsec.	8 V per microsec.	8.4V per microsec
T.H.D.	0.05\% @ 1 kHz	0.05\%@ 1kHz	0.05\% @ 1kHz
Damping Factor	200	400	400
Hum \& Noise	$\begin{array}{\|c\|} \hline 115 \mathrm{~dB} \text { be low } 70 \\ \text { walts } \\ \hline \end{array}$	115 dB below 110 walts.	115 dB below 170 watts.
Input Sensitivity	OdB(0.775V) 70	OdB (0.775V) $\begin{gathered}110 \\ \text { watts }\end{gathered}$	$\begin{aligned} & 0 \mathrm{OdB}(0.775 \mathrm{~V}) 170 \\ & \text { watts } \end{aligned}$
Input Impedance	47k	47k	47 k
Power Requirement $\pm 36 \mathrm{~V}$ olts		$\pm 45 \mathrm{Volts}$	± 55 Volts.
Overall Dimens.	$\begin{aligned} & 5.8^{\prime \prime} \text { Long } \times 3^{\prime \prime \prime} \\ & \text { wide } 9^{\prime \prime} \text { High. } \end{aligned}$	$\begin{aligned} & 5.8^{\circ} \text { Long } \times 3^{\circ} \\ & \text { Wide } \times 1^{\circ} \mathrm{High} \end{aligned}$	

For Industrial usage the frequency response of the amplifiers can be
extended down to DC + OdB $-0.2 d B$ Input Impedance \& Sensitivity can extended down to DC + OdB-0.2dB Input Impedance \& Sensitivity can be

POWER SUPPLIES
PS60 powers 1 JPS60 price $£ 12.30$ PS 100 powers
PS150
powers
9 All Prices Are Subject To 8% Vat

BELMONT HOUSE - STEELE ROAD PARK ROYAL - LONDON NW10 7AR TELEPHONE 01-961 1274

WW-104 FOR FURTHER DETAILS

FOR MONITORING MONO OR STEREO LEVELS there is nothing to quite match the easy perceptibility of pointer instruments. One of the principal reasons for this is that the meter display moves in an arc while most other things in the operator's fieid of view are straight lines. Combine this with fast but defined attack, slow fall-back, uncluttered logarithmic scaling and a white pointer on a matt black background and ft's a peak programme meter. We produce a standard performance PPM drive circuit which meets BS4297, the proposed revision of BS4297 and the proposed new IEC Type 2 meter specifications and fulfils the requirements of the BBC, IBA. EBU and BPO. Reviewed Studio Sound Sept. 1976. Emest Turner PPM movements 642,643 and TWIN avalable from stock PEAK DEVIATION METER. For monitaning mano or stereo FM stations either off aif or at the transmitter This is a rack mounling unit, calibrated in KHz . percent and decibels, including a 75 KHz deviation standard and a high impedance probe head for use with a monitor recenver A 20 dB increased sensitivity switch allows checking of pilot and signaling tone levels Observation here shows that many UK and continental stations overdeviate al tumes and this explains some of the sibilant splashing complaints familiar 10 HI-FI retailers Monitoring the true peak multiplex deviation with a very tast attack tume meter gives much more insight into modulation levels and limiter overshoots than standard programme meters displaying the decoded and deemphasised stereo signals	STABILIZER FOR HOWL REDUCTION, BALANCED AND UNBALANCED VERSIONS BOXED OR RACK MOUNTING +5 Hz Fixed ShiftCircuil Boards lor WW July 1973 article. Small enough to be buitt inside the cabinets of many amplifiers. Complete whl and board 524 inchuding Beard bett ant PSU A mains APRIGNER SURREY ELECTRONICS The Forge, Lucke Graen. Crandeigh Surrey GU6 7BG (STD 04866) 5997 CASH WITH ORDER less 5% UK POST FREE ADD VAT al 8%

Plus: Pre-fade listen, break jacks on four channels, A-B tape monitoring, Built-in 1 KHz line-up osc XLR-type connectors, 24 -volt power input. For broadcasting and recording. less than $£ 400$ plus VAT

SOUNDEX LIMITED

728 High Road, Leytonstone, London. 539.434
WW - 019 FOR FURTHER DETAILS

DFI ELEOTRONICS MTERNATONAL ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER. ACCESS CARD, BANKAMERICARD, BARCLAY CARD ACCEPTED (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS

DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL

YC-500 SERIES OF FREQUENCY COUNTERS

Models: YC-500-J YC-500-S YC-500-E
The YC-500 utilizes advanced IC techniques and a dual range system to provide accurate 8 digit readout to cover 500 MHz Both MHz and KHz indications can be selected with ease over this range with a flip of a switch on the front panel. A built-in AC and DC supplier enables complete portability and a double-sided epoxy circuit board ensures stable and accurate operation with reliability for many years. The YC- 500 series consists of 3 models and the top model (YC-500-E) provides a professional accuracy of 0.02 PPM

SPECIFICATIONS

Frequency Range
Accuracy

Display Digit
Display Time
Counting Time
Input Voltage

Input 1-10 Hz to 50 MHz Input $2-50 \mathrm{MHz}$ to 500 MHz
YC. 500 -J model- 10 PPM
YC-500-S model-1 PPM
YC-500-E model-0.02 PPM
6 digits
0.1 or 2 seconds
0.001 or 1 second

- Input 1-25 mV to 20 V RMS

Input 2-100 mV to 2V RMS

Input Impedance
Input Capacitance
Operating Temperature Power Requirement

Input 1 - HIGH 1 Meg. LOW 50 ohms input 2-50 ohms
Input 1 -Less than 20 PF
Input 2-Less than 25 PF 0 to 40 C
$\mathrm{AC}-100 / 110 / 117 / 200 / 220$ or 234 V $50 / 60 \mathrm{~Hz}$
DC -12 to 14.5 volts
$220 \mathrm{~W} \times 89 \mathrm{H} \times 235 \mathrm{D} \mathrm{m} / \mathrm{m}$
Approximately 3.2 kg

WESTERN ELECTRONICS (UK) LTD
 FAIRFIELD ESTATE, LOUTh, LINCOLNSHIRE, LN 11 OJh, ENGLAND

Speywood has the Television Projectors you require

Whether you are educating, training company personnel, organising conferences, or entertaining in clubs, bars and hotels, Speywood's projectors will work for yau. Each projector is suitable
for a different audience size and the range caters for 10 to 10,000 people. The Eidophor projectors are for hire; the others are for sale or for hire. Leasing and hire purchase terms can be arranged.

For further information and demonstrations write to or telephone: Speywood Communications Ltd, 26 Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex. Telephone 01-903 3381. Telex 377138

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and reversers

Future Film Developments Ltd. 90 Wardour Street London W1V 3LE 01-437 1892/3

TELERADIO SPECIALISTS IN DESIGNS by John Linsley Hood
Example VERY LOW DISTORTION AUDIO oscillator
An ideal instrument for checking Hi-Fi Amps

Kit Price, £16 Made, £20 Tax 8\% Also available. THD Analyser, FM Sig Gen AC Millivoltmeter, PS.U Frequency Meter, etc In addition we have amplifier designs by Blomley Linsley Hood, Bailey. Mullard, etc

Send S A.E. (f'scap) for comprehensive lists
TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London, N9 OPE
Telephone: 01-807 3719
Closed Thursdays

Plug into world-wide coverage with the new T1000 solid-state 2-30MHz Linear Amplifier

This compact desk-top package incorporates the following features

- New generation high power transistors giving 1000 P PEP, 600 WCW output.
- Broadband requires no operator tuning
- Full VSWR protection
- Drive requirements 70-120W

Full technical information is available on request from the sole distributors in the UK

WW - 098 FOR FURTHER DETAILS

geta a reat deal baom Marshall's

A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, Loncion NW2 3ET
Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 20D Tel: 041-332 4133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: 0272 654201/2
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome.
Please enquire for types not listed
New 160 page Catalogue price $40 p$ (30 p to callers)

OUR RANGE COVERS OVER 7,000 ITEMS. THE LARGEST SELECTION IN BRITAIN. TOP 200 IC'S, TTL, CMOS \& LINEARS

 - e.g. NATIONAL, MULLARD, SIGNETICS, SIEMENS, TEXAS, R.C.A., MOTOROLA, ETC.

POPULAR SEMICONDUCTORS.(A very small selection from our stocks, please enquire about devices not listed.)

 \&~\&

Prices correct at 1 st November 1976, but pleqaze add V.A.T. Post \& Packing 30p

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER
 with STEREO and MONO CARTRIDGE
£11.95 Post 75p B.S.R. SINGLE PLAYER similar to above with stereo cartridge and cueing device, large turntable.
PORTABLE PLAYER CABINET
Modern design. Rexine covered.
$£ 4.50$ Post 50 p
Motor board cut for BSR or Garrard deck
HEAVY METAL PLINTHS £5.95
With P.V.C. Cover. Cut out for most
or Garrard decks. Silver grey finish.

Extra large plinth \& cover. wood base. Size

COMPLETE STEREO SYSTEM

 clips to loudspeakers making it extremely compact overall size only $13^{3 / 4} \times 10 \times 81 / 2 \mathrm{in}, 3$ watts per channel, plays all records 33 r.p.m., 45 r.p.m Separate volume and tone 240 V a.c. mains.£22.50

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-60 MINUTES £2.95 Post 35p
Single pole two-way. Surface mounting
with fixing screws. Will replace existing wall switch to give light for return home, garage, automatic anti-burglar lights. etc Variable knob. Turn on or off at full or
intermediate settings. Brand new and intermediate settin
fully guaranteed.

TEAKWOOD LOUDSPEAKER GRIILLES Will easily fit to
batfle board. Size $101 / 2 \times 7 / 8 \mathrm{~m}-45 \mathrm{p}$.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kıt is sutable for record players. guitars. tape playback,
electronic instruments or small P.A systems. Two versions electronic instruments or small P.A systems. Two versions avalable Mono, £11.25; Stereo, £18. Post 45 p . Specification
10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2$ in. approx S.A.E. details. Full instructions supplied AC mans powered.

E.M.I. $131 / 2 \times 8$ in. SPEAKKR SALE!

With tweeter and
State 3 or 8 ohm .
As illustrated
E5.25
Post 35 p

BLANKALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p$;
 ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14 \times$ 3-25p; $10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times$
$6-43 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p$ 6-43p; $14 \times 9-52$ p; $12 \times 12-68$ IN
MANY ALI BOXES IN STOCK

ELAC 9×5 in HI-FI SPEAKER
$£_{\text {posit }} \mathbf{3 5 0}$
TYPE 59RM
RCS LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode, printed
circuit rectifiers and double wound mains 2.95 circuit rectifiers and double wound mains Pos 05
transformer. Input $200 / 240 \mathrm{~V}$ a.c. Output Post 45 p transformer. Input $200 / 240 \mathrm{~V}$ a.c. Output Post 45 p
voltages available. 6 or 7.5 or 9 or $12 \mathrm{Vd.c}$. up to 100 mA or voltages available, 6 or 7.5 or 9 or $12 \mathrm{~V} \mathrm{d.c}$.up to 100
less. Size $3 \times 21 / 2 \times 11 / 2 \mathrm{in}$. Please state voltage required less. Size $3 \times 21 / 2 \times 1 / 2 i n$. Please state
$£ 3.35$
$12 \mathrm{VOLT}, 750 \mathrm{~mA}$. Complete with printed 2.30 $\frac{12 \text { VOLT } 30 \text { MTA KIT } £ 3.15 .9 \text { VOLT I AMP KIT G3.35. }}{\text { R.C.S. GENERAL PURPOSE TRANSISTOR }}$ R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal for Mike, Tape. P.U., Guitar, etc Can be used with Battery
$9-12 \mathrm{~V}$ or H.T. line $200 \cdot 300 \mathrm{~V}$ d.c. operation Size $13 / 4 \times 11 / 4 \times$ 9.12 V or H.T. line $200-300 \mathrm{~V}$ d.c. operation Size. $13 / 4 \times 11 / 4 \times$
$3 / 4 \mathrm{in}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} .26 \mathrm{~dB}$ gain C —5 For use with valve or transistor equipment
$\varepsilon 1.45$
Full instructions supplied. Details S.A.E.
ELECTRO MAGNETIC

PENDULUM MECHANISM

 1.5 V d.c. operation over 300 hours continuous on SP2battery, fuly adjustable swing and speed. Ideal displays, teaching electro magnetism or for
metronome, strobe, etc.

MAINS TRANSFORMERS

$2500-25080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6 \mathrm{BV} 1 \mathrm{~A}$ or 5 V 2 A £4.60 $350-0-35080 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}$. 6.3 V 1 A or 5 V 2 A . $£ 5.80$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{AC}$
MIDGET 220 V 45 mA 6.3 V 2 A

$£ 7.00$
$-\quad 7.75$ amp. 3, 4, 5, 6, 8, 9, 10, 12, 15, 18. 25 and $30 \mathrm{~V} £ 4.60$ 1 amp. $6,8,10,12,16,18,20,24,30,36,40,48,60$ $£ 4.60$. 2 amp. 6. $8,10,12,16,18,20,24,30,36,40$
$48,60 £ 7.00$. 3 amp. $6,8,10,12,16,18,20,24,30$. $\begin{array}{ll}36,40,48,60 ~ £ 8.70 .5 \\ 24 & \text { amp. } 6,8,10,12,16,18,20,\end{array}$ 24. 30, $36,40,48,60 £ 11.25,6.06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1$

 20 V 3 amp . £2.50, $20-0.20 \mathrm{~V} 1 \mathrm{amp} . £ 2.95$, 30 V 1 AUTO TRANSFORMERS, 115 V to 230 V or 230 V to 115 V 150 W £5; 250W £6; 400W £7; 500W £8.
FULL WAVE BRIDGE CHARGER RECTIFIERS:
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
CHARGER TRANSFORMERS: $11 / 2 \mathrm{amp} \mathrm{E2.75;} 4 \mathrm{amp} . £ 4.60$.
R.C.S

ROSEWOOD

SPEAKERS

Size $121 / 2$ in. $\times 9^{1 / 4}$ in. \times
$51 / 2 \mathrm{in}$. Response 50 to
' 14,000 cps 8 watts rms.
3, or 8 , or 16 ohms.

£12 pair post 75.

KUBA - KOPENHAGEN

STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT This Continental 4 -band radiogram chassis uses first class quality components throughout. Features: Large facia panel with 7 push on-off. 4 -rotary controls, tuning, volume, tone, balance. Facia size $17 \times 41 / 2$ inches. Chassis size $17 \times 41 / 2 \times 51 / 2$ inches. DIN-connector sockers for tape record/playback, loudspeakers. phono pick-up, external FM-AM aerials. Automatic stereo beacon light. Built-in ferrite rod aerial for medium /
longwave. A.C. 240 V . mains. Circuit supplied.

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000mF 6V 25p; 25V 42p; 50 V 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$; 50 V 65p. 5000 mF 6 V 25p; 12 V 42p; 25V 75p; 35V 85p; $50 \vee 95 p$. SHORT WAVE 100 pF aIr spaced gangable tuner. 95p.
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} .15 \mathrm{p}$ TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}$. 5 p . $100 \mathrm{pF}, 150 \mathrm{pF}$. 15 p .
CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 \mathrm{p}$. Silver Mica 2 to 5000 pF . 5 CERAMIC, 1 pF to 0.01 mF , 5p. Silver Mica 2 to 5000 pF . 5 p . $15 p ; 500 V-0.001$ to 005 5p; 0.110 p; $0.2513 p ; 04725 p$. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. TVIN GANG, $385+385 \mathrm{pF} 50$ p; 500 pr standard 75 p ; $365+365+25+25$ pF Slow motion drive 65p. 120 pF TWIN GANG, 50p; 365 pF TWIN GANG. 50 NE ON PANEL INDICATORS 250 V . Amber or red 30p. RESISTORS. $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 20 \%$ 2p; $2 \mathrm{~W}, 10 \mathrm{p} ; 102$ to 10 M HIGH STABILITY. $1 / 2 W 2 \% 10$ ohms to 6 meg. 12 p .
Ditto 5%. Preferred values 10 ohms to 10 meg. $5 p$. Ditto 5%. Preferred values 10 ohms to 10 meg.. $5 p$.
WIRE-WOUND RESISTORS 5 watt, 10 watt. 15 watt, 10 ohms to 100K 12p each.
BRIDGE RECTIFIER 200V PIV $1 / 2 \mathrm{mp}$ 35p
TOGGLE SWITCHES S.P 20p. D.P S.T 25p. D P.D T. 30p.
MANY OTHER TOGGLES IN STOCK.

BAKER MAJOR $12^{\prime \prime} £ 10.35$

$30-14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}$. double cone. woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 15 ohms must be stated.
Module kit. 30-17.000
tweeter crossover, baffle with
and instructions.
£13
Please state 3 or Post 8 or 15 ohms.
BAKER "BIG-SOUND" SPEAKERS. Post 50p each.
'Group 25' \quad 'Group 35' \quad Group 50/15'
 3 or 8 or $15 \mathrm{ohm} \quad 3$ or 8 or 15 ohm
BAKER LOUDSPEAKER, 12 INCH. 60 WATT GROUP 50/12, 8 OR 15 OHM HIGH POWER FULL RANGE PROFESSIONAL QUALITY
30-16.000 CPS
MASSIVE CERAMIC MAGNET
$£ 14.50$
WITH ALUMINIUM PRESENCE
Post 80p

TEAK VENEERED HI-FI SPEAKERS AND CABINETS For 12 in . or 10 in speaker $20 \times 13 \times 12 \mathrm{in}$. £ 12.50 Post 95 p For $8 \times 5 \mathrm{in}$ speaker $12 \times 8 \times 6 \mathrm{in}$ £4.95 Post 50p
R.C.S. 100 watt

VALVE
 AMPLIFIER

CHASSIS
Four inputs. Four way mixing, master volume, treble and bass controls. Suits all speakers This professional quality amplifier chassis is suitable for all groups. disco. P.A.. where high quality power is required. 5 speaker outputs A / C mains operated. Slave output socket. Produced by demand for a quality valve

SPEAKER COVERING MATERIALS. Samples Large S.A.E LOUDSPEAKER CABINET WADDING 18 in wide 20 p f De Luxe Horn Tweeters $3-18 \mathrm{kc} / \mathrm{s}$. $30 \mathrm{~W}, 8$ ohm, $£ 7.50$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}, ~ £ 2.20$.
LOUDSPEAKERS P.M. 3 OHMS. $7 \times$
£1.80; 8×5 in. £1.90: Pin. $\mathbf{3}$ © OHMS. 7×4 in $£ 1.50$; $61 / 2 \mathrm{in}$ £1.80; $8 \times 5 \mathrm{in} .$, £1.90; $8 \mathrm{in} .$, £1.95.
SPECIAL OFFER: $80 \mathrm{ohm} 21 / 4 \mathrm{in}$.
 in. 15 ohm. $31 / 21 \mathrm{n} \quad$ dia. $6 \times 4 \mathrm{in} . . \quad 7 \times 4 \mathrm{in}$., $5 \times 3 \mathrm{in}$ PHILIPS LOUDSPEAKER, Bin, 4 ohms, 4 watts, $£ 1.95$ RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in diameter $4 \mathrm{~W} £ 2.50$. 10 in diameter $5 \mathrm{~W} £ 2.95$;
12 in diameter $6 \mathrm{~W} £ 3.50$. $3 / 8 / 15 \mathrm{ohms}$, please state 2in diameter 6W E3.50. 3/8/15 ohms, please state
VALVE OUTPUT TRANS. 40p; MIKE TRANS. 50.1 . 40 VALVE OUTPUT TRANS. 40p; MIKE TRANS. 50.1. 40p.
Mike trans. mu metal 100 i £1.25. Tweeter Volume Control 15 ohms 10 W with one inch long
threaded bush for wood panel mounting $1 / 4$ in. spindle. 65 p. threaded bush for wood panel mounting $1 / 4$ in. spindle. 65 p. BAKER 150 WATT PROFESSIONAL. MIXER AMPLIFIER
Ail purpose transistorised
and PA 4 inputs speech and music
Output $4 \quad 8 / 15$ ohms a c Mains. Separate treble and bass controls Master volume control Guaranteed Details S A.E
£68 :1 50 cart
NEW MODEL MANOR-50 watt. 4 input.
2 vol Treble and bass Ideal disco
amplifier

100 WATT DISCO AMPLIFIER CHASSIS
volume, treble, bass controls, $500 \mathrm{M} . \mathrm{V}$. or 1 volt input.
Four loudspeaker outputs 4 to 16 ohm . All transistor. $£ 52$
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER
Add musical highlights and sound effects to recordings with separate controls into single output. 9 V £5.20
TWO STEREO CHANNEL VERSION £6.85
BARGAIN 3 WATT AMPLIFIER. 4 T
Push-Pull Ready Built, with volume. Treble $£ 3.95$

ALANCED TWIN RIBBON FE EDER 300 JACK SOCKET Std. open-circuit 20p, closed circuit 25p; Chrome Lead- Socket 45 p. Mono or Stereo.
Phono Plugs 8p. Phono Socket 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5 mm 15 p
STEREO JACK PLUG 30p. SOCKET 25 p . IN SOCKETS PLUG 30p. SOCKET $25 p$.
DIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS
3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p.

$\begin{array}{llll}\text { E.M.I. TAPE MOTORS. } 240 \mathrm{~V} \text { a c } & 1.200 \\ \mathrm{rpm} & 4 \text { pole Sindle } 0 & 187 \times 0 \text { in } & \text { Size }\end{array}$ $p \mathrm{~m}$
$31 / 4 \times 21 / 2 \times 21 / 4 \mathrm{mpln}$ Spinde 0 . Post 50 p
Collaro gram motor 120 V 75 p .

DID YOU KNOW ?

That the British rifle team won 5 gold, 5 silver and 16 bronze medals at this year's International Matches. Probably not! The media has a habit of overlooking our achievements. Therefore, it is unlikely you will know that a member of the team, Mr. D. A. Hodson, a keen amateur sound recordist, loaned his Coles 4119 twin ribbon microphone to a member of the Canadian Broadcasting Corporation who was televising the events. He was very pleased with its performance.
We at Coles are pleased with performances and would like you to try the 4119 for yourself.

SIGNAL SOURCES

 Sine and Square Wave GENERATOR 15 Hz - 50 KH
H1 Audio Signal Generator, earlier version of H 1
at ion above
ER ReF.
AIRMEn
Signal Generator Type $70130 \mathrm{KHz}-30 \mathrm{MHz}$
only
GENERAL RADIO
Uni Oscillator 1209 C.
Freq. $250-920 \mathrm{MHz}$
Accuracy
 Unit Oscillator $1218 \mathrm{~A} \quad 900.2000 \mathrm{MHz}$. Power output HEWLETT PACKARD
10515 A Frequency Doubler. Extends the useation
frequency range of signal generators Operating on
input frequencies 0.5 MHz to 500 MHz it provides and input tequencies 0.5 MHz to 500 MHz it provides a
doubled output in the range of 1 MHz to 1 GHz . The frequency, response of this 50 ohm device is very flat
i< ± 208 typically) over the entire frequency range and $i \leq \pm 2 \mathrm{~dB}$ typically) over the entire frequency range an
undesired harmonics are well suppressed. Brand new 209A Audio Generator, 4 Hz to $2 \mathrm{MHz}(6$ ranges), 01% distortion Sine wave and Square wave, 600 ohm 211 A Square Wave Generator $1 \mathrm{~Hz}-1 \mathrm{MHz} \begin{array}{r}\mathbf{£ 1 7 5 . 0 0} \\ \mathbf{£ 5 . 0 0}\end{array}$ M. A M M Signal Generator 202H. F.M. A.M C.W \& pulse coverage 54 to 216 MHz R.F.F o/p $0.1 \mu \mathrm{M}$ V. O \&
50 V

accuracy LEVEL

Square Wave
ARCONI
INST
Oscillator
Its.
M. Signal

TF2005R Two Tone Source. The instrument comprises
two identical low distortion a. oscillators and a
monitored attenuator unit, of form a compact rest sot
for the measurement of inter -modulation distortion
 (each oscillator can be adjusted and used independent
(y) Harmonic distortion Less than 005% terween
63 Hz and 6 KHz when using unbalanced output Generally less than 01% under other conditions
intermodutation Below 80 dB with respect to the

 AM/ FM SIGNAL GENERATOR IF $1066 \quad 10-470 \mathrm{MHz}$
RF Output $2 山 V-200 \mathrm{mV} z=50$ Ohms $\mathbf{E 2 0 0 . 0 0}$

 2uV-200mV Internal \& External Mod Facilities V
good condition
Ea

 $1 \mu \mathrm{~V} \cdot 100 \mathrm{mV}$ Int mod treas. $400 \mathrm{~Hz}, 1 \mathrm{KHz} \& 15 \mathrm{KHz}$
Distortion (1) on internal $\mathrm{FM}=25 \mathrm{~Hz}$ (2) on internal

 Low Noise \& freq deft For narrow band for recenter
measurements Price new ca E 1.300 - OUR PRICE Muirhead LF Decade Oscillator DB80a 2680
 Decade OSCillator D890D $1 \mathrm{~Hz}+112 \mathrm{KH}$
NEUWIRTH (WEST GERMANY)
VHF Signal Generator MS 4/U Area Range 9.6 MHz to
230 MHz Turret Osee for each band Accuracy 1.2%
Mod 30 mV - 10
Mod 0.100%
SANDERS
SANDERS
RADIOMETER
Stereo signal generator SMG IC Full spec
RHODE \& SCHWARTZ
SHF generator SMCB-BN $41042 \quad 1700-5000 \mathrm{MHz}$
WAYNE KERB
We o Oscilla 10 : $0222 \quad 7 \mathrm{KMz}_{2}-8 \mathrm{MHz}$ in 6 ranges $\mathbf{7 7 5}$
WANDEL \& GOLTERMAN
UHF Power OScillator LMS-68 cow plug in
Oscillators

Electronic Brokers Led. are one of the leading electronic ingtrumemtation companies in the UK. providing a full range of services to Universities, Industry, Colleges and Governments both of home and overseas. We have the largest stocks of secondhand text equipment in Europe as well as a selected rinse of now products. These are on display ot our London showrooms where customers can examine the equipment of their choice and see it working.

Electronic Brokers Ltd. have fully equipped workshops on the promises to teat and report on the majority of equipment we sell.

for a FREE copy of our latest Test Equipment Catalogue. Please apply on headed paper.

$\begin{array}{lr}\text { Type LO. } 4 & \text { 4. } 41 \mathrm{MHz} \\ \text { Type LO-40 } & 40.108 \mathrm{MHz} \\ \text { Type LO.170 } & 170.330 \mathrm{MHz}\end{array}$
 RECORDERS

 RECORD Ex:MULTIMETER

OSCILLOSCOPES

 175A 50MHz Oscilloscope e/w Plug-ms, 1750B Dual
Trace Vert Amp. $50 \mathrm{mV} / \mathrm{cm}, 1780 \mathrm{~A}$ Auxiliary Plug in

 SOLARTRON $\begin{array}{ll}\text { 6M Hz Double Beam CT436 } & \text { e95 } \\ \text { ع90 }\end{array}$
 DC.40MHz Scope CT484 Dual Trace Displays
Sensitivity $50 \mathrm{mV} / \mathrm{cm}$ Collection from our premises Sensitivity
only 90 day Warranty TEKTRONIX
 within 1% dorm Monitor 525 Freq Response Flat -
stair steps elmer 60 Hz 5 MHz Low Pass Passes

2-x, 5 -x Keyed Ciando-ivoe DC Restorer Gain stability
E 125
witfinerential 1%

WRITE NOW NOW...

n

?

THE HONEYWELL KEYTAPE UNIT
is a multi-channel Keyboard to Magnetic Tape System recording Keyboard entered data on $1 / 2^{\prime \prime}$ tape in 80 or 120 character records in a form easily usable as a computer input/output and verifier. 240 Volt operation.

Honeywell Keytape Unit as picture. Checked, tested with Manual, £215 ea
As above but less data boards. Tested forward / backward tape movement and control, etc. Data entry / exit via read; write boards. £105 ea
Exactly as above but less key board and table $£ 80$ ea All units carriage paid KEYBOARDS as pictured also available at $£ 20$ each. Carr. E2. 50 .

For the simple to understand electro mechanical / vacuum system to the $+15-15+5$ Power Supply and hinged wire wrapped card frame, the flexibility and reliability are outstanding, this coupled with the ease of interfacing to a VDU, Mini / Micro computer, etc make all the Honeywell Keytapes on offer very fine value.
ALWAYS SOME PUNCHES, READERS, PRINTERS, SYSTEMS. ETC.

FURZEHILL VALVE VOLTMETER VZOOA Audio to 10 MHZ with probe 1 mV FSD. Fine condition.

THE LATE MODEL MARCONI OSCILLATOR

 TF885A/l in superb condition covering 25 HZ to 12 MHZ sine wave in 3 ranges and 50 HZ to 150 KHZ square wave High output 31.6 V Meterdbs.

MARCONI TF675F
WIDE RANGE PULSE GENERATOR
50 V Optional delay Small

MARCONI TFI 106 NOISE GENERATOR
 4 ranges 0.5, O-10, 0.f. 0.30 .

COMPRESSOR / VACUUM PUMP

 Twin Cylinder opposed with Integral $1 / 2 \mathrm{H} . \mathrm{P} .220 / 110 \mathrm{~V}$50 HZ Single Phase Motor Tested and guaranteed.

> ALL ITEMS $\mathbf{£ 2 2 . 5 0}$ ea. SPECIAL OFFER - pick different items of the 5 for $\mathbf{£ 6 0}$ Carriage $£ 2.50$ each or $£ 5$

R.F. WATTMETER TS118A BIRD ELECTRONIC CORPORATION

FREQ. RANGE 20 MHZ to 1400 MHZ POWER 2 WATTS TO 300 WATTS 4 RANGES IMPE DANCE 50 OHMS. Designed also to be used as a Dummy Load. Small portable instrument Supplied in transit case with MANUAL AND SPARES £75 each.

CUSTOMERS - WE ARE INCREASING THE AREA GIVEN OVER TO INDIVIDUALLY PRICED ITEMS AND HAVE IMPROVED THE ACCESSIBILITY Every week hundreds of fresh

ROYAL INVERTORS manufactured USA 28 V OC Input. Output 115 V AC 400 HZ up to 2 KVA . Brand new Crated $£ 12.50$ each

SOLARTRON CD1212 SB 40 meg £85. DB24meg twice £120. Many other types Exailable
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC-6MHZ $£ 95$ each
ONLY £1O EACH STABILISED
ONEY £10EACH STABILISED POWER SUPPLY. 240V50HZ input. Outputs - 15 V @ $10 \mathrm{~A}:+15 \mathrm{~V} / 4 \mathrm{~A}-4.5 \mathrm{~V} @ 12 \mathrm{~A}-21.5 \mathrm{~V} @ 15 \mathrm{~A}$. Size $16 \times 20 \times 9^{\prime \prime}$. Auto overload trips
on each voltage rail with push buton resets Many OTHER POWER SUPPLIES - call and on each voltage rail with push button resets Many OTHER POWER SUPPLIES - call and
setelephones. Post Office style 746 Black or twotone grey $£ 6.50$ ea. Modern style \$TELEPHONES. Post Office style 746 Black or two tone grey $£ 6.50$ ea. Modern Sty
706 . Black or two-tone grey $£ 4.50$ ea P\&P $75 p$ ea Old black style $£ 1.50$ ea. P\&P 75 p TELEPHONE EXCHANGES. eg is-way automatic (exchang only) from $\mathbf{£ 9 5}$.
MUFFIN FANS. Size $5 \times 5 \times 1 \frac{1 / 2^{\prime \prime}}{}$. Superbly quiet and raliable. Ex-eq but tested 230 V @ E2.50 ea P\&P 75p.
PHOTOMULTIPLIER Type 931A £4 ea P\&P 75p Other types available, also suitable Power Supplies.
©POTENTIOMETERS - All 5p ea. P\&P extra. Metal bodied AB Linear. PCB Mount Brand New 10K, 100 K ganged: 250 K ganged, 100 K ganged, concentric shatts.
\#BEEHIVE TRIMMERS 3/30pf Brand New 10 off 40 p P\&P $15 \mathrm{p}: 100$ off $\mathbf{£ 3 . 5 0} \mathbf{P \& P}$ $75 \mathrm{p}: 500$ off $£ 15$ P\&P $£ 1.25 ; 1,000$ off $£ 25$ P\&P £ 1.50
LARGE RANGE ELECTROSTATIC VOLTMETERS FI
LARGE RANGE ELECTROSTATIC VOLTMETERS. From 0-300V $2^{\prime \prime} £ 3,1020 \mathrm{KV}$ Max General gulde $5 \mathrm{KV} 31^{\prime \prime}$ € 5 Thereatter £ 1 per KV. P\&P 75 p
VARIACS 240 V input $0-240 \mathrm{~V}$ output 8 A £ 18 ea. $20 \mathrm{~A} £ 30$
 phase input $£ 50$ ea Many other EHT transiormers and EHT Capacitors available. DON'T FORGET YOUR MANUALS. SA.E with requirements TUBES. All Brand New Boxed. Electrostatic deflection Type 408A $11 / z^{\prime \prime}$ dia. $71_{2 \prime \prime}^{\prime \prime}$ long
 TYPE DB7/36 (Replacement for Telequipment S3 1) $£ 12$ ea P\&P £1 50

```
FOR THE VDU BUILDER. New stock of Large Rectangular Screen \(30 \times 20 \mathrm{~cm}\) tube Yype M 38 at the ridiculous price of \(£ 4\) ea. And also stitl available the CME1220, \(24 \times \mathrm{x}\)
15 cm at \(£ 9\) ea
```

SEMICONDUCTORS
Manufacturer's markings at 8p ea *. P\&P extra Guaranteed all full spec devices BC147; BC15B, $2 \mathrm{~N} 3707, \mathrm{BC} 107, \mathrm{BF} 197$, BC327: 2N4403, BC172B, BC261B: BC251B BC34BB, BC171A/B, 2N3055RCA 50p ea P\&P Bp
2N5B79 with 2N5BB1 Motorola 150 Watt Comp pair $£ 2$ pr P\&P $15 p$
*SPECIAL OFFER
Guaranteed full spec devices Manufacturers markings BC204 \& BC207A 4p ea P\&P

MICROCOMPUTER - GOT TO BE ON THE CHEAP SORRY, 35RO's ALL GONE BUT NOW OFFERING

CREED 5 LEVEL COMBINED PRINTER AND PERFORATOR NEW CRATED $£ 35$ each

CREED 5 LEVEL PAPER TAPE READER £25 each
 CREED 7B
 TELEPRINTER CRATED £40 each

Minimum Mail Order 22 . Excess postage refunded Unless stated - please add $£ 2.50$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

$$
\text { Open } 9 \mathrm{a} \mathrm{~m} \text { to } 530 \mathrm{p} . \mathrm{m} \text {., Mon to Sat. }
$$

perciancuen il

NEW FROM AMERICA

LIQUID CRYSTAL DISPLAY WATCHES FROM FAIRCHILD TIMEBAND

$5+4$ functions. Continuous readout of $\mathrm{Hrs}, \mathrm{Mins}$ and pulsating Secs. Single command button. push once for Month/Date - auto reset: twice for Secs - manual reset.
*PLUS Programmed 4-Yr. calendar, backlight for night viewing, optional continuously alternatıng Time / Date display. AM/PM setting indicator

High contrast L.C.D. display visible in bright sunlight Supplied in Presentation Boxes, these are superb watches selling in jewellers' shops for up to $£ 80$
TC 411

White $£ 29.50$
On Leather Strap
TC 413
Gold £32.50

TC 412
White $£ 34.50$
Gold $£ 37.50$
Matching adjustable bracele

OUR SPECIAL L.E.D. OFFERGALA $6+3$ functions At the touch of a button - Hrs, Mins Secs. Alpha Day Month and Date *PLUS Programmed 4-Yr calendar Auto Hold and Fadeout, AM/PM setting indicator Available in S/S or Gold Plated with S/S back and matching adj. bracelet. Sold elsewhere at $£ 22.90$ OUR PRICE 18.95

No moving parts to wear out, clean or oil. Accuracy to a tew secs/month We believe our prices are the lowest anywhere and include V.A.T at 8% and P. \& P. Free battery/s. No quibble 1 -year guarantee
Send Cheque / Money Order to
 CAMBRIDGE, CB1 2LD. Tel: 55094
A LOT OF TIME FOR THE MONEY

WW-090 FOR FURTHER DETAILS

MAIL ORDER PROTECTION SCHEME (Limited Liability)

It you order goods trom mail order advertisers in this magazine. except for classitiod advertisements. and pay by post in advance ol detivery. Wirelass World will consider you for compensation if the advertiser shoutd bacome insolvent or bankrupl. provided
You have nol received the goods or had your maney returned: and
2. You write to the publisher of Wirsless World explaining the position not eartier than 28 days from the day you sent your order and nol later than 2 months from thal day.
Please do not wait until the last moment to intorm us. When you write. wa will tell you how lo make your claim and what evidence of payment is required.
We guaranlee to meet claims from readers made in accordance with the above procedure as soon as possible after the advertiser has been. dechared bankrupt or insolvent up to a limit of E3. 550 per annum for any one advertiser so atifected and up to $£ 10.000$ per annum in raspect of an insolvent adverlisers. Claims may be paid tor higher amounts. or when late above procedure has no been complied with, at the discretion of Wrieless world; but we do nol guaranter to do so in view of the need to set some limit to this commitment and to learn quickly of readers' ditticulties.
This guarantbe covers only advance paymants sant in direct response lo an advertisement in this magazine (not. for example, payments made in response to catatogues. etc. received as a result of answering such advertisements) Personal advertisements are excluded

Stining

for cost-conscious constructors A NEW 100 WATT r.m.s. POWER AMP

SS. 1100
£9.45*
with heatsink-type bracket Large heatsink

Most recent addtion to Strling Sound's wide fange of power amplifiers. the SS 1100 is a solidly constructed heavy duty module, 10 deliven 100 watts $\mathrm{r} . \mathrm{m} \mathrm{s}$ into $4 \mathrm{\Omega}$ using 70 volts Ideal for discos, P. A and similar applications With buit-in output capacitor and
heatsink mounting bracket Size approx $140 \times 76 \times 32 \mathrm{~mm}$ A guaranteed Stirling Sound QV module Compatible with other Stirling Sound modules Supreme value Sound module Compatible with other Stirling
Designed and built for long unbroken spells of work

POWER AMPLIFIERS FROM 5 TO 40 WATTS SS. 105
5 watts RM.S into 4 ohms using 12 V
supply. Ideal for use in in-car entertain
ment Size $-89 \times 51 \times 19 \mathrm{~mm}$
€2. 25
S. 110

Similar in size and design to SS. 105 , this 4 ohms using a 24 V supply R . M S S into of great use in domestic applications

SS. 120
Using a 34 volt supply. such as SS. 334 . this amplifter will deliver 20 watts into a 4 ohm load Same dimensions as above.

SS. 140°

Mk. 3 version complete with output capaeitor and heatsink-type bracket. Delivers 40 watts R.M.S. into 4 ohms
from 45 volt supply such as the SS 345 Desicned specially such as the SS. 34 work. specially for tong and heavy. FOR POWER SUPPLY UNITS SEE BELOW

STIRLING SOUND PRE-AMP/TONE CONTROL UNITS unit one
Combined pre amp with active tone control
cricuits 200 mV oulpur for 50 mV 10 KHz Bass +15 dB Treble +15 Hz de at erance vol treble and bass controls
$\begin{array}{ll}\text { SS. } 100 \\ \text { Active tone control bass and treble } & \text { E1.60 }\end{array}$
SS. 101
Pre-amp for ceramic carridges, ere passive
sS. 102 Stereo pre-amp

Presmp with active
tone control circuits

POWER SUPPLY UNITS

COMPLFTE WITH TRANSFORMERS and 13.16 V take-off points Add $50 \mathrm{p} \mathrm{p} / \mathrm{p}$ for any ALL AT $\mathbf{8} \%$ V.A.T
SS $31212 \mathrm{~V} / 1 \mathrm{~A} £ 3.75$; SS 318 18V/1A €4.15: SS. $32424 \mathrm{~V} / 1 \mathrm{~A}$ £4.60; SS 334 tabilising unit 10.50 V 45V/2A £6.25; SS 350 50V/2A £6.75: SS 300 - Power Stabilised power supply variable from 10 to $50 \mathrm{~V} /$ ZA EA 11.95 .
THE BUILT-IN OV FACTOR is the symbol of Stirling Sound's guarantan of Quatity and Value which gives you today's best buys all round. It is YOUR guarantee of satisfaction TO OROER add 35
when the cate is 8%

10 (ELENTRONICS) LTD.

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-723 7851
01-262 5125
AD.JACENT TO EDGWARE ROAD MET. LINE STATION
PLEASE ADD 8% TO ALL ORDERS INC. CARE.
CURRENT RANGE OF NEW L.T. TRANSFORMERS

AUTO TRANSFORMERS FOR AMERICAN EQUIPMENT sockets and 3 core mains lead Send sae for price list We have England's largest selection of American electrical $2-3$ pin plugs. recessed and surtace type. $2-3$ grounding adaptors. Cable type inckets	
bulbs. Industrial plugs and sockets Let know your requirements.	POTTED H.T. TRANSFORMERS BY FAMOUS MAKERS
ht TRANS BY FAMOUS MAKER ALL PAIMARIES 240 V . OPEN TYPE TAG COMNECTIONS	$408-200-0.20 \mathrm{M} / \mathrm{A} 5.50$, carr 11 No 2 Pr 115-220-240A Scr sec 400-0-400v
Sec $350.0-350 \mathrm{v} .120 \mathrm{M} / \mathrm{A} .6 .3 \mathrm{v}$ CT 4 A .5 v	$400 \mathrm{M} / \mathrm{A} \mathrm{E5} .75$, carr E1 No ${ }^{\text {3 Pr }}$ P
	No. $4 \mathrm{Pri} 115 \cdot 220-240 \mathrm{vecr} \mathrm{sec} 330-0-330 \mathrm{v}$
¢3.50. pp 75p $250.0-250 \mathrm{v} 80 \mathrm{M} / \mathrm{A}$ 6.3v	
5 A 6.3v 1a. 5 v . 2 A . Fully shrouded	
00-0-500v 200M/A E4.50, carr £i C	
core types $250-0-250 \mathrm{v}, 50 \mathrm{M} / \mathrm{A}, 6.3 \mathrm{v} 1 \mathrm{~A}$	
Single ended type 250 v 20 $2 / \mathrm{A}$, 6.3 v / 1 A	$110-220-240 \mathrm{v}$ Ser sec 230v. 200M/A
shrouded $\mathbf{E 1 . 2 5}$, pp 50 p . 220 v . $20 \mathrm{M} / \mathrm{A}$	$63 \mathrm{v} 7 \mathrm{~A}, ~ £ 3.00$, cart 75 p No 8 Pri
ORMERS	
	A.E.R.E. HIGH VOLTAGE INSULATION "C" CORE TRANSFORMERS. EX EQUIP
ar Som A. Single 7.7-1 10 80.1 P.P	Prt 200-220-240v sec 2.5 v 45 Amps 30 kvDC wkg. 67.50 , carr 11.50 Sec 5 v 5 Amps
load 5000 ohms sec 15 and 3	30 kv OC wkg $£ 3.00$, carr $£ 1$ Potted types
¢3.00, pp 50 p	Pri $230-240.250 v$ sec $100 \mathrm{v} 60 \mathrm{~m} / \mathrm{A}$. and
	$200-220-240 \mathrm{v} \sec 80.8 \mathrm{~g} \quad 20$ Amp 5 kv OC
,	
	Amps 40 kv DC wkg $\mathbf{E 5} .00$, carr $\mathrm{l}^{2} 2$. Parmeko oil-billed ported types pri $110-220-240 \mathrm{v}$ ser
tapped 10-5-2-1	oil-filled potted types pri $110-220-240 \mathrm{v}$ set 5v. CT 30 Amps twice $£ 10$, carr $£ 2$ Pri
	$10-220-240-250 \mathrm{v}$ Sec 2.5 v CT 30 Amps 4v 52 Amps twice $64 v 0.3 \mathrm{~A}$. 84.50 cart
REPANCO INVERTOR TRANSFORMERS	
Type $\Pi 5112 \mathrm{v}$ OC	
f3.00, pp 50p. Type TT24 10 Watt	
PA or car radie. £3.00, pp 50p.	
MINIATURE LT TRANSFORMERS Pri 240 v Sec $24 \cdot 0.24 \mathrm{v} 100 \mathrm{M} / \mathrm{A}$. Size 45 x $35 \times 30 \mathrm{~mm}$ 1.00, pp 30p Pri 240 c . Sec tapped $4060100 \mathrm{v} 50 \mathrm{M} / \mathrm{A}$. Size $50 \times 45 \times$ 45 mm £ 1.00. pp 30p	$890-710.0-710-890 \mathrm{~V}, 120 \mathrm{M} / \mathrm{A}$. Open type$\mathrm{T} T \mathrm{~T}$ connections. $\mathrm{E3.75,pp75} \mathrm{p} \mathrm{Parmeko}$ potted type pri $110.220-240 \mathrm{v}$ sec 1875 v $60 \mathrm{M} / \mathrm{A}$ 64y 6A 5v 3A 55.50 cart E 1
	H.T. SMOOTHING ChOKES
0.220240 V Scr sec. 240 V .13 A	25M/A, £1.00, pp 35 p . $15 \mathrm{H} \quad 75 \mathrm{M} / \mathrm{A}$ f100 PP 35 P Swinging orpe 5 H 0044.4 H
nnservativety rated Open type terminal block	f.1.00, pp 35p Swinging type 5H 0.044.4H 025 A £1.75, po 50 p Gasdners 100H
connections ¢ $\mathbf{3 5 . 0 0}$, carr E4 Prl	20M/A ¢1.25, pp 35p 20H 120m/A
$200 \cdot 220-240 \mathrm{v}$ Sci sec 240 v 700 Wa	¢1.25, pp 35p $20 \mathrm{OH} 80 \mathrm{M} / \mathrm{A}$ ¢1.00, pp 35p
115 v 13.5 Amps Shrouded lype	C core type 10 H 350M/A $\mathbf{6 3 . 5 0 , ~ p p ~ E 1 ~} 00$ $4.5 \mathrm{H} 28 \mathrm{M} / \mathrm{A} £ 2.00, \mathrm{pp} 75 \mathrm{p}$
	LT chokes $4.8 \mathrm{M} / \mathrm{H} 10 \mathrm{Amps} .54 .00$, carre'
arr ¢3. Pri 200.220-240v. Sec tapped	$100 \mathrm{M} / \mathrm{H} 2$ Amps potred type EL .00 , carr \& 1
100-i 10-120v	$10 \mathrm{M} / \mathrm{H} 3.5 \mathrm{Amps}$ open type $\mathbf{6 3 . 0 0}$, carr E1 $13 \mathrm{M} / \mathrm{H} 115 \mathrm{~A}$ potted type $\mathrm{E1.50}$. on 50 p
rated Shrouded type. Table top connections. f19,	
£19.50, carr £2	

MARCONI
 TEST EQUIPMENT

TF329G circuit magnification meter
TF455E Wave analyser
TF801D RF signal generator
TF868 Universal bridge.
TF995A/2 AM/FM generator
TF1064B/5 AM/FM generator.
TF1065A Output test set.
TF1100 Sensitive v/voltmeter
TF1152A/1 RF power meter
TF1245 Q-meter.
TF1417 200 mHz frequency counter
TF1342 Low capacitance bridge.
TF1370 Wide-range RC oscillator
TF2163 UHF attenuator $\mathrm{DC}-1 \mathrm{GHz}$.
TF2500 Af power meter.
TF2600 Sensitive v/voltmeter.
TF2604 Electronic voltmeter.
TF2606 Differential DC voltmeter.
TF2660 Digital voltmeter

TF1101 RC OSCILLATORS. Marconi

 $20 \mathrm{~Hz}-200 \mathrm{kHz}$.Distortion . 5% (via filter 0.1%). 60db step attenuator, continuously variable output up to 20 V . Limited quantity available for only $£ 75$ ea.

ROHDE \& SCHWARZ EQUIPMENT

Midget crystal clock type XSZ. BN15221 Selective UHF V/meter, bands $4 \& 5$. USVF Selectomat. RF Voltmeter. USWV BN15221.
Standard attenuator $.0-100 \mathrm{db} .0-300 \mathrm{mHz}$. DPR.
UHF Receiver type ESM300
UHF Signal generator type SCR
UHF Test receiver type USVD.

P. F. RALFE ELECTRONICS
 10 CHAPEL STREET, LONDON, NW1
 TEL: 01-723 8753

NOTICE. All the pre-owned equipment shown has been carefuliy tested in
our workshop and reconditioned where necessary. It is sold in first class our workshop and reconditioned where necessary. It is sold in first class
operational condition and most items carry our three months' guarantee Calibration and centificates can be arranged at cost. Overseas enquiries welcome. Prices quoted are subject to an additional 8% VAT.

ADVANCE TCD500 Frequency dividers to $500 \mathrm{mHz} £ 100$ AIRMEC 210 A Modulation meter $3-300 \mathrm{mHz}$
APT 504 Power supply. 0.500 V at 250 mA
BPL Capacitance decade (5) CD $133.100 \mathrm{pf}-9 \mathrm{u}$
BPL Capacitance decade (5) CD 133. 100pt- 1 uf $£ 45$
BRANDENBURG High voltage generator type S.0530/10 RUEL \& KJDER Microphen
CAMBRIDGE 44228 Portable potentiometer 2603 €85
EVERSHED \& VIGNOLES Megger series 2500 V £45
FLUKE 891A OC Differential voltmeter.
GERTSCH Frequency meter and deviation meter
$20-1000 \mathrm{mHz}$
GR Standard sweep frequency generator $400 \mathrm{kHz}-230 \mathrm{mHz}$
HEWLETT PACKARD type 185 A sampling scope
$\mathrm{DC}-3 \mathrm{GHz}$ With 187 B and $188 \mathrm{~A} \mathrm{OB} \mathrm{amps}+$ delay line

MEDISTDR type A-75A Potentiometric microvoltmeter
PYE EHT scalamp voltmeter 0-40KV SACAS £125
RADIOMETER Wave analyser type FRA2B. $0-16 \mathrm{kHz}$
SCHNEIDER type ct $252 \quad 100 \mathrm{mHz}$ frequency $\begin{array}{r}\text { counter } \\ \text { E235 }\end{array}$
$\begin{array}{ll}\text { SCHOMANDL Frequency meter type FD } 1 . & \\ \text { SOLARTRON Pulse generator type GO1 } 101.2 & \text { E65 } \\ \text { TEKTRONIX type } 575 \text { Transistor curve tracer. }\end{array}$
C65
TEKTRONIX 585A oscilloscope with ' 82 ' P.I.DC-80m Hz.

AOVANGE RF SIGNAL GENERATORS

E2. $100 \mathrm{kHz}-100 \mathrm{mHz}$	¢35
Q1 $17.5-230 \mathrm{mHz}$	¢35
$62100 \mathrm{kHz}-220 \mathrm{mHz}$	¢40
P1 100 kHz .100 mHz	¢ 35
SG63A $7.5-230 \mathrm{mHz}$.FM	¢75

BRIDGE RECTIFIERS

Encapsulated type. Following available
400 V at 12 Amps
$£ 2.50$
$£ 1.25$

AVO MULTI-METERS

Type Multi-minor Mk4. Light. small size			
instrument $1 \mathrm{KV} \times 9 \times 31 / 2 \mathrm{cms}$). Measures volts$A C / D C$ to 1 KV . OC from 0.1 mA .1 A . Resistance			
ranges $10 \mathrm{~K} \cap / \mathrm{V}$. $\mathrm{DC} .1 \mathrm{~K} \Omega / \mathrm{V} . \mathrm{AC}$. Tested, and in			

ang.AC. Tested, and
e8.50
'EDDVSTONE' TUNING DIALS
Type 898 Drive unit. All complete with unmarked scale plate, flywheel, knob, pointer, etc. This is a horizonta template. List price is over E15. OUR PRICE ONLY

BECKMAN TURMS COUNTER DIALS
Miniature type (22 mm diam.) Counting up to 15 turn 'Helpors'. Brand now with mounting insiructions. Onty

$\begin{array}{ll}\text { ICL type } 2640 \text { Paper tape readers } 250 \mathrm{cps} \\ \text { New } \\ \text { Westrex } 8 \text {-hole paper-tape punches } . . & \text { £95 } \\ \text { Sol }\end{array}$
 Sound-proof case available punches
 £15.

MUFFIN INSTRUMENT COOLING FANS

Made by Rotron, Holland These are very high quality, all types of electronic equipment. Measures
$45 \times 5 \times 1$. 115 l . $4.5 \times 4.5 \times 15^{\prime \prime} \quad 115 \mathrm{VAC}$. 11 Watts. The list price of
these is over f 10 each We have a quantity available these is over $£ 10$ each We have a quantity available
brand new for only
LOW-VOLTAGE POWER SUPPLIES
Manufactured by Harmer \& Simmons. England Variable from 12 to 20 V at A . Stabilised output
Housed in grey finish ventiated case $\mathbf{£ 1 2 . 5 0}$ each 500Y TRANSISTORISED INSULATION

TESTER

Lightwerght, small size ($13 \times 7 \times 4 \mathrm{cms}$). Reads insulation from 0.2 .100 MQ at 500 V pressure. Runs from
standard $9 \mathrm{~V} . \mathrm{PP}$. Brand new........ $\mathrm{E18.50}$
FRACMO Geared motors. 24V.AC.0.5RPM. .68A Torque 401b. in Price including starting capacitor CENTRIFUGAL TYPE Blowers. 12 V V. OC. Outlet diam 7 cms . Overall diam 15 cms and 17 cms deep. Very
powertul fans
$\mathbf{E 9 . 5 0}$

QUADRAPHONIC KIT MODULES
 Each kit comprises of mules. currently being described in Wireless World are offered independently, but a universal system may be constructed by means of a master switch
 \qquad
 DEMODULATOR £35 + VAT (£4.38)
 VARIOMATRIX DECODER SYNTHESIZER £31 + VAT (£3.88)
 OS. QS Variomatrix and QS Synthesizer are registered trade marks of
 SANSUI ELECTRIC COMPANY LIMITED OF JAPAN
 DECODER (Type (3A) $£ 25.50+$ vat (£3.19) (Variable Blend + Wave Matching Logic)

 Add $£ 1$ postage packing and insurance per parcel. Overseas customers neglect VAT, but add $£ 3.20$ per kit to cover airmail postage
 COMPCOR ELECTRONICS LIMITED
 9 DELL WAY, LONDON W13 8JH

OVER 2,000 ELECTRONIC COMPONENTS INA

QUALITY ELECTRONICS LTD. FOR SAПUA MULTITESTERS

catalogue on request or readers service no

LEMANIA AIRCREW CHRONOGRAPHS controlled independently of mask movement by press to start and stop and return 10 hand

ANALYTICAL EQUIPMENT
GAS CHROMATOGRAPHY RESEARCH OVEN
PV4051/4056 (other GC items in stock)
A large capacity oven of low thermal mass for use between 35 and
400 C Provides a forced all circulating system yielding 1000 changes of ait per min The oven has forced arr cooled outer surfaces
when the internal temperature is high 210.240 V 50 Hz 26 KW when the internal temperature is high $210.240 \mathrm{~V}, 50 \mathrm{~Hz}, 2.6 \mathrm{KW}$
E 31.50 (C Pr England and Wales) IONISATION AMPLIFIER PV4075
IONISATION AMPLIFIER PV4075
A modern high grade low rise solid state amplifier 10 teed a
potentiometer recorder 18 input ranges tron $10-12$ io $5<10-7 \mathrm{~A}$
with 5 outputs of 1 mV to 100 mV Linearity 0 i ty is Noise less than
05% in
05% is at max sensitivity Back off facility Dimensions 28×10
$\times 43 \mathrm{~cm}$ deep With operating information $\mathbf{E 2 8 . 5 0}$ (C Pd Y K)
Details of the se three and other gas chromatography rems. price 25p
(CWO orly) Handbooks (complete) available
For details on these and many other products including analyicat equipment actuators synchros serve
motors. connectors reed switches stopwatches. Plassey VHF equipment tantalum capacitors relays metal
oxide. resistors automobile test equipment power supplies see our Sept WW advert or advise requirements
ide resistors automobile test equipment power supplies see our Sept WW advert or advise requirement

Newlines Colour Television Servicing Manual GORDON J KING

VOLUME 3: This volume deals with the servicing of important solid-state chassis and models launched in 1974 and 1975 and reflects several trends; one being towards the all solid-state design and another the introduction of thyristor power supplies as exemplified in the Thorn 9000 chassis.
CONTENTS: RBM Z179 Chassis. Hitachi CSP-680 Receiver. ITT CVC8 Chassis. B \& O Beovision 4000 and 5000 Receiver. Decca Solid State 40 Series Receiver. Thorn 9000 Series Chassis. Philips G9 Chassis. Appendix I Inline Picture Tubes. Appendix 2 Picture Tube Faults. Appendix 3 Component Symbols and Fuse Ratings. Appendix 4 Quick Vision Picture Tubes. Appendix 5 UHF Aerial Evaluation. General Index. Index to Models.
November 1976
240 pages
$252 \times 192 \mathrm{~mm}$
0408002409
$£ 7.80$

ALSO AVAILABLE

VOLUME 1: Covers models containing the following chassis B \& O 3000, BRC 2000 and 3000, Decca Bradford and CTV25, GEC dual standard, ITT CVC5 and CVC7, Pye 691 and RBH A823 and A823A.

1973240 pages $252 \times 192 \mathrm{~mm} \quad 0408000899 \quad £ 6.40$

VOLUME 2: Contains details of models using these chassis ASA 5003 and 5004, BRC 8000, 8000A, and 8500, GEC 2040 and 2047, Grundig 717 GB, Philips G8, Pye 713, Saba 2700 and Telecommander G, Sobell 1040, 1060 and 1010 and Telefunken 710
$1975 \quad 240$ pages $\quad 252 \times 192 \mathrm{~mm} \quad 0408001348 \quad £ 6.40$

Order now direct from your bookseller or from:
NEWNES-BUTTERWORTHS, Borough Green, Sevenoaks, Kent TN 15 PH

RELAYS—UNISELECTORS— SWITCHES

 porspex dusi cover and base 6-12-24-48v D.C. In Stock 4 c/o 75p: P \& P 10p S.t.C. MINIATURE (P.C. Mounting) with dust cover$2 \mathrm{c} / 0(18 / 24 \mathrm{v})$ 45p PP 10p $4 \mathrm{c} / \mathrm{o}(24 / 36 \mathrm{v})$ 50p P.P 10p $6 \mathrm{c} / 0(36 / 48 \mathrm{v}) 75 \mathrm{p}$ P P 10p
CLARE-ELLIOTT MINIATURERELAYS (Hermatically sealed) $2 \mathrm{c} / 0675 \mathrm{ohm}$ $24 v$ D.C. Coils $(22 \times 22 \times 10 \mathrm{~mm}) 75 p$ I.T.T. 240v A.C. Plug-In RELAYS $2 \mathrm{c} / 065 \mathrm{pex} \mathrm{c} / 075 \mathrm{p}$ P P 10p
mains (230v A.C.) RELAYS OPEN TYPE Chassis mounting ($60 \times 60 \times 35 \mathrm{~mm}$

REED RELAY. $\mathbf{3}$ MAKE $(50 \times 20 \times 20 \mathrm{~mm})$ 3500 ohm coll 24 vD C. 50p
REED SWITCHES (1 MAKE)
Type $1(18 \times 3 \mathrm{~mm}) 12$ for $\mathbf{£ 1}$
Type $2(48 \times 5 \mathrm{~mm}) 8$ for $\mathbf{E 1}$
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam. £1 P.P. 20p UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm $\mathbf{5 5 . 5 0} \mathbf{P . P} \mathbf{5 0 p}$ 6 Bank Full Wipe 75 ohm $\mathbf{E 6 . 2 5}$ P P 50p 12 Bank Half Wipe 68 ohm E6.50 P.P. 60p CLARE TYPE 11 UNISELECTOR (EX Equipment) 6 Bank 10 way 100 ohm £2.50 P.P 25p
D.C. SOLENOIDS 24v (Cont Rated)

10lb Pull 20 mm Stroke Size $50 \times 48 \times 42 \mathrm{~mm}$ 75p P.P 15p
FOOT SWITCH "SQUARE-D" H.D 20 A Make/10A Break at 240 V A C
600 v A $/ \mathrm{D}$ C Max 44 PP 75 p
BURGESS MICRO SWITCHES (VCSP)
Single Pole c 108 for E1 P P 10 p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits 50 p each Bank of 8 with mounting brackets $£ 3$ P 20p
DECADE INDICATOR SWITCHES with plus \& minus Push Buttons. 6 mm digits $\mathbf{7 5 p}$ each P.P 10p
Aiso in BC
KEY SWITCHES ' 1000 ' TYPE
$4 \mathrm{c} / \mathrm{o}$ each way locking 60 p P. P 10p
6 make each way locking 60 p P P. 10p
6 make each way locking 60 p PP. 10p
Bank of $4.4 \mathrm{c} / 0$ each way I biased £1.25 P.P 15p

MULTICORE CABLES

8 CORE RIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
10m-£1.50: 50 m -£6.50: $100 \mathrm{~m}-£ \mathbf{1 2 . 0 0} \mathrm{P}$ P 1 p per
5 CORE H.D. CABLE $5 \times 70 / 76$ PVC
Black Outer P.V C. O.D. $1 / 2$ in
0m-£2.50: $50 \mathrm{~m}-£ 12: 100 \mathrm{~m}-\mathbf{£ 2 2 . 5 0} \mathrm{PP}$. 2 p per metre
6 CORE ARMOURED $6 \times 40,76$ P.V C INS
Outer Sheath-Flexible Galvanised Tubing O D. 5/8in.
10m-£3:50m-£14:100m-£25. P P 2p permetr
6 CORE SCREENED $6 \times 7 / 76$ OD 6 mm .
 metre
36 CORE SCREENED $36 \times 7 / 76$ (36 colours) OD. $11 \mathrm{~m} . \mathrm{m}$
10m-£3: $50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-$ E25 P P. 2 p per metre

VARIOUS

E.H.T. MODULES. Input $190 \cdot 260 \mathrm{v} 50 \mathrm{HZ}$ Output 137 KV PK@0.50m/a. (150×95×70mm) E12.P.P. E1 AIR PRESSURE SWITCH 0-10 1 b Variable
Switch Contacts 15 amp Change-Over £1.50 P.P. 25p
10.7 MHZ CRYSTAL FILTERS (I.T.T. 901B) 25 Khz B/W £4.00
H.D. THYRISTORS 65 amp 100 P.I.V.

On deep finned heat sink. £2.50 P P 50p
"BLEEPTONE" AUDIO ALARMS
12vDC 50p P
GEARED MOTORS 230vA.C. (Int Rating)
110 rpm £2.25 P.P 75p
MAGNETIC COUNTERS
6 diall $48 \mathrm{~V} D \mathrm{C}$ (Non-Reset) $92 \times 32 \times 22 \mathrm{~mm}$
New/8oxed £1 ea pr $15 p$
NUMICATORS 0-9 (L.H/R H Decimal Point)
light conducted from individual 12 v bulbs onto display Character size $20 \times 10 \mathrm{~mm}$ overall size $25 \times 60 \times 68 \mathrm{~mm}$ £1.50 P P 25p
O.C. POWER SUPPLIES Inpli 240v A C

TYPE 120 v D.C. at 1 amp . Fully regulated $155 \times 155 \times 75$ mm totally enclosed $£ 5$ P.P. 75p
TYPE 220 V D C at $500 \mathrm{~m} / \mathrm{a}$ stabilised on open chassis 170 $\times 100 \mathrm{~mm}$ £2.50 P P 75p
PHILIPS MOBILE RADIO P.S.U Input
$75 p$
TELEPHONE HANDSET with '-Press to Speak' switch E1.50 P P 25p

J. B. PATTRICK
191/193 LONDON ROAD ROMFORD, ESSEX RM7 9DJ ROMFORD 44473

SPECIAL RESISTOR KITS (CARBON FILM 5 ' (Prices include post \& packing)
$10 E 121 / \mathrm{sW}$ or $1 / 1 / \mathrm{W}$ KIT 10 of each E12 value $220 h n / s-1 \mathrm{M}$, a total or 570 E5. 29 net
$25 \mathrm{E} 12 \mathrm{~V} / \mathrm{BW}$ or $1 / \mathrm{WW}$ KIT 25 of each E12 value. 22 ohnis - 1 M a total of $1425 \mathbf{£ 1 2 . 6 4}$ net

SPECIAL CAPACITOR KITS

C280 Kıt-PC Mounting polyester 250v 5 al each value 0.01. 0.022 0.047. 0.1. 22|F, 2 ol 0.47 . If F $E 1.98$ net

C295 K.1-Tubular polyester 400 V 5 of each value $0.01,0.022,0.047$. 0 . $0.22_{11} \mathrm{~F} 2$ of 0.47 , If $£ 2.67$ nat
Ceramic Kil-square plaque 50 V 5 ol each value 22, 33, 47, 100 2?2Q, 330
470. 1000μ F. $2200.4700 \mu \mathrm{~F}$. 0.01 作 $£ 1.66 \mathrm{net}$

250 Y Paper Kit-Tubular metal case. 3 of each value 0.05. 01.0 .25 0.51 If E 1.41 nat
500 y Paner Kit-Tuh

500 V Paper kin -Tubular metal case. 3 ol each value $0.025,0.05$. 0.1 1000 P Paper Kil- rubular metal case, 3 of each value $0.01 .0 .025,0.05$ $01, F £ 1.63$ net

nfe $10-350$ in 2 ranges
Complete with steel carrying case, tes
leads and battery PRICE $£ 16.66$ net
MULTIMETER U4313

Accuracy- 5% of FSD
USCILLATUR-1 KHz and 465 KHz (A M) al approx Sit Size $160 \times 97 \times 40 \mathrm{~mm}$
Suppled complete with carrying case test leads and
PRICE $£ 13.96$ net

Wilmslow Audio THE firm for speakers!

Baker Group 25, 3. 8. or 15 ohm $€ 9.00$ Baker Group 35, 3. 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3, 8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion HF 13008 or 15 ohm Celestion MH 1000 horn. 8 or 15 ohm Coles 4001 G super tweeter Coles 4001 K super tweeter Decca London and X over
Decca OK 30 and X over.
EMI 5" Mid range
EMI $61 / 2^{\prime \prime} \mathrm{d} /$ cone rotl surr. 8 ohm
EMI $8 \times 5,10$ watt, d/c, roll/s 8 ohm EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm lac 59RM $10915 \mathrm{ohm}, 59 \mathrm{RM}$ Elac $61 / z^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Pop 15 watt 12
Fane Pop 33T 33 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt, 18^{\prime}
Fane Crescendd 12 A or B, 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm
Fane Crescendd 18,8 or 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls $/ \mathrm{s}$. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Goodmans 8P 8 or 15 ohm
Goodmans 10 P 8 or 15 ohm
Goodmans 12 P 8 or 15 ohm
Goodmans 12 P-D 8 or 15 ohm
Goodmans 12 P-G 8 or 15 ohm Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8" 8 or 15 ohm Goodmans Twinaxiom 10"18 or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B1 39.
Kef DN8
Kef DN 12
Kef DN 12
Richard Allan MP8B 8" 45 watt
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
Baker Major Module, each
Goodmans Mezzo Twinkit, pair
Goodmans DIN 20. 4 ohm, each
Helme XLK35, pair
Helme XLK40, pair
Helme XLK 30, pair
Kefkit 1, pair
Kefkit III, each
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Triple 12, each
Richard Allan Super Triple, each
Richard Allan RA8 kit, pair
Richard Allan FA882 kit, pair
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale $3 \times P$ kit. pair
Wharfedale Dovedale 3 kit , pair

10.25

10.25
$f 13.38$
10.69

E 9.00
ع16.31
$\begin{array}{r}16.31 \\ \hline 6.98\end{array}$
$£ 6.98$
$£ 13.50$
$£ 5.90$
$\mathbf{E 5 . 9 0}$
$\mathbf{£} 36.90$
$£ 36.90$
$£ 24.70$
$£ 24.70$
$£ 3.93$
$£ 3.75$
$£ 11.92$
m£3.38
$£ 3.95$
$\mathbf{6} 50$
69.50
75
$\begin{array}{r}\text { E. } 2.50 \\ \hline 12.50\end{array}$
\&16.75
$£ 19.95$
19.95
$\& 2175$
21.75
$\mathbf{8 3} .95$
$£ 33.95$
£42.95
£54.95
$£ 75.95$
$\mathbf{£ 5 . 1 8}$
$£ 8.96$
£6.50
f 6.95
$\varepsilon 16.50$

18.75
17.75

17.75

E 8.50
£22.00
£ 10.60
10.95
$\mathrm{f5} .18$
10.75
$\mathbf{6 6 . 7 5}$
$£ 7.85$
$£ 16.50$
$£ 2.08$
$£ 5.39$
$\mathbf{£ 4 . 0 5}$
$£ 4.05$
$£ 12.50$
£7.95
£ 13.28
51.95
£26.75
$£ 38.50$
£21.95
£51.00
£46.00
$£ 13.95$
$£ 20.75$
£25.95
£29.50
$£ 37.80$
$£ 59.40$
$£ 21.50$
$£ 47.70$
$£ 59.40$
All Radford, Gauss, Castle, Jordan Watts, Eagle.
Lowther, Peerless Tannoy units in stock
Prices correct at $1 / 11 / 76$
ALL PRICES INCLUDE VAT
Crossovers etc
Send stamp for free 38 page booklet Choosing a Speaker
FREE with all orders over $£ 10$ -
Hi-Fi Loudspeaker Enclosures Book
All units ane guaranteed new and perfect Prompt despatch
Carriage Speakers up to $12^{\prime \prime} 60 \mathrm{p}$: $12^{\prime \prime} £ 1$; 15" £1 $75 ; 18^{\prime \prime} £ 2.50$. Kits $£ 1$ each ($£ 2$ per pair)

WILMSLOW AUDIO

Loudspeakers 8. Export Dept: Swan Works,
Loudspeakers Wilmplow, Cheshire SK9 1HF Discount Hi-Fi, PA etc: 10 Swan Street, Wilmslow, Radio, Hi-Fi, TV: Swift of Wilmslow, 5 Swan Street, Wilmslow. Tel. (Loudspeakers:) Wilmslow 29599. (Hi-Fi, etc.) Wilmslow 26213.
Access and Barclaycard orders accepted by
WW-029 FOR FURTHER DETAILS

Appointments

Advertisements accepted up to 12 noon Monday, November 29 , for the January issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre (min. 3 cm), LINE advertisements (run on): £1 per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House,
St. Martins-le-Grand, London EC1A 1AR.
Posit Ofifice Telecomimunications

Thorn Consumer Electronics Limited, the leading manufacturer of television, radio and audio equipment in the U.K. wish to appoint an experienced Design Engineer for their research and engineering centre at Enfield.

[^7]Applications in writing giving details of age, experience and qualifications to:
The Personnel Manager (DE/WW)

Thorn Consumer Electronics Ltd.

Great Cambridge Road, Enfield, Middlesex EN 1 1UL

UNIVERSITY COLLEGE OF NORTH WALES BANGOR
SCHOOL OF PHYSICAL AND
MOLECULAR SCIENCES ELECTRONICS TECHNICIAN GRADE 5

Applications are invited for the post of

 Electronics Technician Grade 5 in the above mentioned SchoolThe successful applicant would be concerned with the development, construction equipment for a wide range of research work and teaching in the School
Applicants should have had several years relevant practical experience coupled with theoretical knowledge preferably to H.N.C. standard or equivalent
Salary at an appropriate point on scale \&2. $889 \AA 3,367$ per annum. Pension Scheme.
Applications (two copies). giving details of age, education and experience, together
with the names and addresses of with the names and addresses of two
referees, should be submitted to the referees, should be submitted to the
Assistant Registrar. (Personnel). University College of North Wales, Bangor. Gwynedd 457 2DG, to reach him not later than 31 st December. 1976 .

REDIFFUSION INDUSTRIAL SERVICES LTD.

As a result of planned expansion, a number of vacancies have arisen in the U.K. based Division of this Muli-national Group whose market areas include closed circuit television, public address, television distribution and many other forms of industrial telecommunication systems. Our customers on a worldwide basis include Government and Local Authorities, Airlines, Hotel Chains, Entertainment Complexes and Industrial Plants of all types.

Applications are therefore invited for the following positions and unless stated otherwise, salaries are negotiable

1. PROJECT MANAGERS (C.C.T.V.)
 MALE OR FEMALE
 LOCATION: SURBITON

To take control of all aspects of C.C.T.V. projects from initial systems design and costing tc final installations and commissioning. Applicants must have a wide experience in this field and should preferably have high educational/professional qualifications. A company car will be provided.

2. SYSTEMS ENGINEERS

MALE OR FEMALE
LOCATION: SURBITON
To provide engineering backup to our sales force and control all engineering aspects of implementation of successful tenders. Applicants must have a wide background extending over at least 5 years in the electronics industry coupled with a formal qualification to HNC or equivalent standard. A company car will be provided.

3. SENIOR TEST ENGINEER
 MALE OR FEMALE

LOCATION SURBITON
The successful applicant will be responsible for the pre-despatch commissioning of equipment and systerris. A minimum of 5 years' experience in a similar field is essential, preferably supplemented by a qualification to HNC standard.

4. INTERMEDIATE TECHNICAL AUTHOR MALE OR FEMALE LOCATION: SURBITON
A background in similar work in an electronics environment and the ability to convert basic information into finalised technical documentation is essential, together with a good command of the English language.

5. MAINTENANCE ENGINEERS
 MALE OR FEMALE
 LOCATION: FULHAM

We are seeking to recruit qualified maintenance engineers with specific experience in closed circuit television. The salary/wage will depend on experience and qualifications and in addition a company estate car will be provided.

6. TECHNICIAN SUPERVISOR
 MALE OR FEMALE LOCATION: SURBITON

Who will, under the direction of the Systems Manager, supervise the workshop technicians and assemblers. Several years' practical experience in one or more of our market areas together with an aptitude in controlling staf and delegating work is essential. The position is salaried

Fringe benefits include a self-contributory pension and insurance scheme, discounts on a wide range of goods including television rental, pleasant working conditions and in the case of Surbiton, a subsidised canteen.

Applications, in the first instance, should be made, stating which position is being applied for, to:

B. L. Hall, C.Eng., M.I.E.R.E., Chief Engineer
REDIFFUSION INDUSTRIALSERVICES LTD.

Development Engineers Video and Audio - Cambridge

Pye TVT Ltd is a highly successful company in the international field of broadcast engineering. We are urgently seeking Electronic Development Engineers to join a team in our studio engineering laboratory working on the development and design of equipment and systems in the video and audio engineering areas.

We would like to meet ambitious men and women, aged 25-35, who are capable of handling responsibility and hold an appropriate degree or equivalent qualification. Several years' experience in the design of video, digital or switching-type equipment, or the design of professional audio equipment, is highly desirable.

Operational Engineer for CCTV Studio

The CCTV studio of a major advertising agency requires an engineer experienced in the operation and maintenance of colour cameras, video recorders, monitors and associated control equipment. The studio, which has been in monochrome operation for seven years, is in the process of changing over to colour operation and the person appointed will be required to liaise between the studio manager and suppliers in the selection of equipment and will supervise its installation.
In normal operation, the post involves taking charge of the CCTV control room and ensuring the uninterrupted and efficient use of its equipment.
Applicants should be familiar with non-'oroadcast colour equipment of the type widely installed in advertising agencies and industrial staff training units.
Salary is open to negotiation and will be dependent on experience and qualification.
The company operates profit sharing and pension schemes. Applicants should write, giving details of age, education, qualifications, relevant experience and present post to Mr. P. Sowerby
Ogilvy Benson \& Mather L.td., CCTV Studio,
7 Exchange Court, London WC2

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear
Duties cover highly skilled Telecommunications/electronic work indluding the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer an analytic machinery
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualification
Salary scale from $£ 2,230$ at 19 to $£ 2.905$ at 25 (highest pay on entry). rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries Pay supplement of $£ 313.20$ per annum
Annual Leave allowance is 4 weeks rising to 6 weeks after 27 years service
Opportunities for service overseas
Candidates must be UK residents

Further particulars and Application forms available from
Recruitment Officer
Government Communications Headquarters
Oakley, Priors Road
CHELTENHAM, GIos GL52 5AJ
Tel. Cheltenham 21491 Ext. 2270
(STD 0242-21401)

Revitalised economy - superb location!

Together with most other countries, Zambia has recently been affected by the worldwide economic recession. Now our economy is surging forward strongly again, revitalised partly by significant advances in the country's agricultural industry and rising copper prices on world markets. Come here on a 3 -year contract and your skills will be welcomed - and broadened. You'll enjoy the warm, pleasant climate in this totally land-locked country, larger
than France, Belgium, the Netherlands and Switzerland combined. You'll enjoy the scenery too; although mainly a broad plateau, Zambia also features spectacular mountains, a certaın amount of dense forest, imposing rivers, vast lakes and extensive game reserves. Its many large cities and towns contain all the normal modern facilities and are linked by excellent roads and rail services.

Post \& Telecommunications Corporation

Chief Engineers

K6756-K7200 (c. E5067- £5400).
Supplement $£ 4902$ (married), 12784 (single)
Requirements:
Electrical or Telecommunications Degree plus senior management experience.

Responsibilities:

Either: planning switching and external plant networks; or planning budgets and methods including long-term income/ expenditure forecasts, staffing and training requirements and long/medium/short-term national planning; some training is involved and you will report to the Assistant Director, Planning.

Principal Engineers

K6324-K6756 (c. E4755- ©5067).
Supplement $£ 4704$ (married), $£ 2586$ (single) Requirements:
Electrical, Electronic or Telecommunications Engineering degree: senior management experience.

Responsibilities:

Either: (a) controlling switching planning groups, including major projects management, requiring crossbar/electronic switching systems experience; or (b) controlling, advising on planning, budgets methods, staff; co-ordinating long/medium/short-term plans and preparing capital estimates; some staff training. You will report to the Chief Engineer.

Senior Engineer
 K5700-K6108 (c. ©4275-65281).
 Supplement 64524 (married), $\mathbf{E 2 4 0 6}$ (single)
 Requirements:

C \& G Final or equivalent; initiative and responsible manageria experience of at least 3 years.

Responsibilities:

(a) For external plant - preparing deveiopment scheme and contract specifications; familiarity with latest overhead and underground system methods is essential.
(b) For switching - implementing plans, preparing for and evaluating tenders; crossbar systems experience is essential. (c) For planning, budgets, methods - preparing plans and engineering instructions, studying/reporting on new techniques, recommending new methods in radio/transmission, switching and external plant.
(d) Planning, budgets and methods - preparing/maintaining an annual works programme, preparing time/resource diagrams, monitoring project progress.

Engineers

K5316-K5700 (c. £3987-£4275).
Supplement $£ 4296$ (married), $£ 2232$ (single)

Requirements:

C \& G Final or equivalent plus initiative.

Responsibilities:

Either for: (a) telegraph and subscribers' apparatus including specifications/tender evaluation/type approval;
(b) power and accommodation - liaising with field staff/contractors in such areas as power plant maintenance:
(c) Liaison with engineering, sales, traffic sections, special investigations, co-ordination of such staff as aerial riggers and diesel mechanics. In all cases staff training is probably involved.

Technician I posts

K4416-K5136 (c. $23312-63852$).
Supplement 64134 (married), 62070 (single)
Requirements:
C \& G Intermediate or equivalent plus appropriate experience Responsibilities:
Either: (a) External (underground/overhead) plant; (b) switching; (c) radio and transmission: (d) power and air-conditioning (e) stores liaison: (f) power/accommodation maintenance (g) diesel maintenance; (h) shift leader - earth station (nonautomatic satellite ground station and its links); (i) day-to-day maintenance of a small rural area; (i) switching construction supervision; (k) transmission construction supervision. In all cases staff training may be necessary.

Technician II posts
 K3756-K4416 (c.62817-63312).

Supplement 63846 (married), 61830 (single)
Requirements:
C \& G Intermediate or equivalent plus appropriate experience Responsibilities:
Either: (a) external plant - including line surveys, and estimate preparation: (b) external works supervision - cable/duct installation by contractors, underground/overhead work by Government staff. In both cases staff training will be included in duties

Technician III posts

K2388-K4410 (61791-63308).
Supplement 63804 (married), 61788 (single) Requirements:
C \& G Intermediate, initiative, 4 years' experience after training.

Responsibilities:

Either: (a) Microwave maintenance; (b) strowger maintenance (c) Pentaconta maintenance ($B \times B 1 \mid 21$); (d) LM Ericsson maintenance (ARK, ARF, and/or ARM); (e) Multiplex maintenance (f) $P A B X$ maintenance.

Strong financial attractions

As well as the salary quoted, you will enjoy TAX-FREE supplements, a TAX-FREE terminal gratuity, low-cost accommodation, low taxation and free passages. Together, these add up to exceptional real earnings. Starting salaries relate to qualifications/ experience, while gratuities total 25% of basic salary. Salaryrelated supplements are reviewed annually and paid by the British Government to designated British nationals (annual maximum is shown), while appointment grants, education allowances,
car loaris, medical aid assistance and free holiday visits for children educated in Britain are also provided for those receiving supplements. N.B. Sterling equivalents given are approximations only due to constant exchange rate fluctuations.
For further information please send full personal/professional details (without obligation and in total confidence), indicating which position interests you, to: Recruiting Officer (Room 33), Zambia High Commission, 7-11 Cavendish Place, London W1

Appointments

EIECTRONCDESGM/
 DEVEIOPM EMI ENGII IERS FERRANTI OFFERS YOU FREEDOM

freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:-
Digital and analogue electronic circuitry design.
Design and application of small digital computers.
Microwave and laser techniques.
Advanced instrument design including gyroscopes of inertial quality.
Design of small mechanical structures and analysis of stress.
In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should have some design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sport and entertainment, is one of the ideal cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiableand the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications, to Staff Appointments Officer, Ferranti Limited, Ferry Road, EDINBURGH,EH5 2XS.

DATEK SYSTEMS LTD.

A leading Company in the Phototypesetting Industry requires a:

SENIOR TEST ENGINEER

The position requires a man with several years' experience of digital systems with the ability to faultfind 74 series T.T.L. to chip level. A background in the data prep. or V.D.U. market would be most appropriate and an academic level of at least H.N.C. would be expected.

The job involves some field service support and a driving licence is essential. Salary $£ 4,000$ p.a.

JUNIOR TEST ENGINEER

This position requires a young engineer with a degree or Dip. Tech in Electrical Engineering with an electronics bias
Some experience in T.T.L. logic or microprocessors would be useful. Salary about $£ 2,750$ p.a

The company offers 4 weeks' holiday and a sickness and pension scheme
Phone or write for application form to
Miss L. Bux
DATEK SYSTEMS LTD.
849 Harrow Road, Wembley, Middx.
Tel. 01-904 0061

ELECEROBONIC

WE ARE MARKET LEADERS IN THE FIELD OF MULTIVISION, AUDIO AND LIGHTING CONTROL SYSTEMS DUE TO CONTINUED EXPANSION WE REQUIRE THREE POSITIVE THINKING SALES EXECUTIVES TO JOIN THE U.K. TEAM BASED AT OUR MODERN OFFICE IN S.E. LONDON

A.V. SYSTEMS SALES ENGINEER

With a Commercial, Technical and Operational Understanding of Slide-Sound Audio Visual Systems and their Markets.

AUDIO SYSTEMS SALES ENGINEER

With a wide knowledge of Professional Audio Products. Experience in Contract Negotiations. Technical Spacifications and Operational Requirements for Theaters, Conference and P/A Audio Systems

LIGHTING SYSTEMS SALES ENGINEER

Experienced in Contract Negotiations, Technical Specifications and Operational Requirements for Industrial, Commercial and Entertainment Lighting Control Systems.

Applicants should be 25 to 40 years old with strong technical background and at least five years' commercial experience in systems engineering Capable of negotiating major contracts with architects, consultants and government. Basic salaries negotiable up to £5,000 p.a. Company car, applications with career and salary details to: S. F. GIDDINGS, SYSTEMS MARKETING MANAGER, ELECTROSONIC LIMITED, 815 WOOLWICH ROAD, LONDON SE7 8LT.

DLECTRONIC ENGINELRS
 (Lighting Control Systems)

The Theatre Lighting Division of Thorn Lighting Limited design, manufacture and install one of the world"s finest ranges of control systems for TV and theatre lighting. Installations cover every continent, with 80% of our equipment being exported.
Systems currently in production employ core store, floppy disc' and MOS memories, and microprocessor based peripherals: modern techniques are also employed in our extensive range of power dimmers.
There are vacancies at several levels for experienced electronic engineers in our DESIGN, SALES, PROJECTS and TEST departments. Applicants having an interest in TV or theatre lighting will be especially welcome.
Our approach is very flexible - if the above interests you please write to or telephone Peter Balchin, Enyineering Mamager, for an application form and further 'stails at Thorn Lighting Limited, Theatre Lighting Division, Angel Road Works, 402 Angel Road. Edmonton, London N18 3AJ. Teiephone: 01-8079011

ELECTROSONIC

S.E. LONDON

Electrosonic Ltd, a leading company in the rapidly expanding fields of audio, audiq visual and lighting control systems require a printed Circuit Designer and Test Engineers

PRINTED CIRCUIT DESIGNER
 Salary@c£3,800

An experienced and creative engineer is required to design and lay out printed circuit bcards from logic and circuit diagrams. The work will entail the preparation of artwork, component reference masters and other essential P.C.B documentation. The ability to produce fast and accurate results is essential This will be a new appointment

TEST ENGINEERS

Starting salary c $£ 2,900$
Vacancies exist for Electronic Engineers having a minimum of two years experience of control and/or audio systems. An academic training to ONC/HNC level or equivalent qualification is desirable. On the job training will be given and opportunities for advancement are available
The company offers an attractive working environment and excellent conditions of employment.

Applications to Mr. R. D. Naisbitt, Personnel Director, Electrosonic Lid.. 815 Woolwich Road, London, SE7 8LT. Telephone: 01-855 1101

Appointments

SERVICE AND TEST
 At Stanmore we
 maintaining

are involved in
the provision of spares and the repair, maintenance and overhaul of a wide range of British and American airborne electronics equipment.
It's skilled work calling for the highest standards of craftsmanship and with the continuing growth of our
servicing programme we are now looking for additional personnel to join our teams of Service and Test Engineers working both in the aircraft and in our extensively equipped workshops.
Youshould have a goodknowledge of radio and electronics theory, ranging from audio to microwave, and at least two years' experience in servicing and

MARCONI ELLIOTT AVIONICS
complex electronic equipment, including fault diagnosis using sophisticated test gear. A recognised qualification would also be desirable but sound practical experience is more important.
A good salary will be offered together with an attractive range of benefits. Working conditions are excellent and the establishment is conveniently situated in pleasant surroundings within easy reach of the A 1 and M 1 .
Write with details of experience to Mrs. E. Wagg, MarconiElliott Avionic Systems Limited, 22-26 Dalston Gardens, Stanmore, Middlesex HA71BZ. Tel:01-204 3322.

THE UNIVERSITY OF LIVERPODL
Institute of Child Health Alder Hey Children's Hospital

TECHNICIAN

To assist with research. Work will include assistance with the design and development of medical electronic instruments and operation of the Institute's digital computer. Applicants must possess ONC or equivalent as a minimum qualification and be experienced in fault diagnosis and use of digital and analogue integrated circuits. Knowledge of programming an advantage. Salary within range up to $£ 2,940$ per annum (under review) according to qualifica tions and experience.

Application forms may be obtained from the Registrar, The University, P.O. Box 147 Liverpool L69 3BX. Quote Ref: RV/905/WW.
(6536)

GAPIAL
 APPONTMENTS LTD.

JOB HUNTING?

We have more vacancies for DESIGN DEV. TEST AND FIELD SERVICE ENG. than ever before. All areas and applications. Salaries to
£5,000
6566
34 Percy Street, London, W1
$01-6369659$ (day) or

Home Office, London RADIO PROPAGATION RESEARCH
 up to $£ 6700$

This post, in the Propagation Section of the Directorate of Radio Technology, is concerned with the study of the latest worldwide researches in the field of radio propagation and the quantification of the effects so that they can be applied in practice. The work includes: liaising with research establishments; stimulating propagation research activities in areas of interest to the Directorate; and participating in the work of the International Radio Consultative Committee's study groups relating to the propagation of radio valves in ionized and non-ionized media

Candidates must have a degree, or equivalent qualification, in Electrical Engineering or Physics, and should be Chartered Engineers. They should have specialised in radio wave propagation for about five years, and preferably have some research experience.
Starting salary betwen $£ 5490$ and $£ 6700$ depending on qualifications and experience. Prospects of promotion. Non-contributory pension scheme.

For further details and an application form (to be returned by 13th December, 1976) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote $T(21) 85$

ALADDIN INDUSTRIES LTD.

require an

ASSISTANT DEVELOPMENT

ENGINEER

to assist in the development and preparation of sample chokes and transformers. As such, he or she will be involved in the development of test equipment, testing ferrite components and providing an advisory service to production and inspection departments. Candidates, aged 20 to 24 years, should ideally have progressed to the final year of City and Guilds in Radio and TV Electronics Technicians Course or be studying for an HNC in Electrical Engineering, 2-3 years' experience of working in the electrical / electronic industry is essential
Salary will be commensurate with age and experience up to $£ 2,200$ per annum and benefits include four weeks annual holiday and contributory pension scheme

For further details, telephone or write to
Mrs. L. Cooper, Personnel Department
Aladdin Industries Ltd Aladdin Building
Western Avenue
Greenford, Middlesex
Telephone: $578 \mathbf{2 3 0 0}$

ELECTRONICS - TELEVISION

Increasing orders for our sophisticated equipment, from both the home and export markets, give us the opportunity to recruit additional electronic engineers. Our products cover a complete range of monochrome and colour cameras as well as a whole variety of studio broadcast equipment.

TEST ENGINEERS

Experience of working with broadcast TV equipment is more important than the academic level of degree/HNC. In any case, you must have had some years working with modern communications equipment and experience soley of domestic television is not sufficient. Knowledge of the latest circuit techniques is essential as you will be expected to have the ability to rapidly come to terms with our designs

DEVELOPMENT ENGINEERS

You would be working with our R \& D team on design and development of anything from amplifiers and coders to broadcast colour cameras. Some knowledge of television would be a great advantage as experience could have been gained in your present job or at university. We have a modern factory in a very pleasant part of Hampshire, within easy reach of several major towns. London, the South Coast and the Midlands are all easily accessible. Our terms of employment are excellent and include free life and health insurance, pension scheme, generous holidays, staff restaurant and relocation expenses where necessary
Please write or phone (reverse charge) Mic Comber, Personnel Manager, Andover (0264) 61345 . Brief details only at this stage as we will ask you to complete an application form on which you can give as much detail as you think relevant

STROBE EQUIPMENT LTD

Manufacturers of High Powered Studio Electronic Flash Equipment, which is used all over the world by
top photographic companies. require

SERVICE/CONSTRUCTION MECHANICS

To be generally involved in maintaining and building power units. accessories and allied devices Basic electronic knowledge is sufficient but applicants should be capable of handling bench tocls and light machinery and hold a current driving . licence.

Phone or write (preferably)
Mr. Cecil, Strobe Equipment Lto 56 Turnmill Street, London, EC 1 M5QR
$01.2530791 / 3$

Opportunities in the ELECTRONICS FIELD

We have selected from many vacancies those which offer ex ceptional career prospects and jub interest. If you have experi ence in design, test, sales or service and wish to progress your career, please telephone Mike Gernat B.Sc who is advising on these opportunities.
E.M.A. Management Personnel Litd Burne House, 88/89 High Holborn London WC1V 6LR 01.2427773

SOUTH COAST VACANCIES. If you
would like to get out of the rat race and enjoy the pleasures of living on the South Coast we can certainly help. We have hundreds of jobs in Electronics at all levels. along the South Coast. Just drop us a line or phone with your name and address and we'll do the rest. No fees. Jeff Minards CBS Appointments 2214 Old Christchurch Rd, Bournemouth. Tel. 292155 or after 7 pm and weekends, Wimbourne 4891. (6600)

COURSES

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write: Principal Nautical College, Fleetwood, FY Naut.

TELEVISION BROADCAST ENGINEERS

STV have vacancies for Engineers and Senior Engineers in the V.T.R. and Telecine Departments.

Applicants should be qualified to H.N.C. standard or equivalent and preference will be given to those with experience in television broadcasting equipment

Please apply in writing to
(6590)

The Personnel Department SCOTTISH TELEVISION LIMITED

Cowcaddens GLASGOW G2 3PR

Senior Test \& Commissioning Engineers for Television Broadcast Equipment c. $£ 5,000$

Our new range of Telecine products are selling in ever-increasing numbers to customers worldwide. If you have experience of testing or servicing similar prodiucts and would like to join a growing Company exporting 90% of its equipment we would like to hear from you
We have vacancies for
U.K. based (Ware) Service and Installation Engineers to install and service equipment in the UK, USA, Europe and Asia
Factory Final Test Engineers responsible for ensuring that our equipment meets the extremely high specifications we have set, and to conduct Customer Acceptance Trials
For the right applicants we will pay a salary of up to $£ 5,000$, in addition some vacancies include a Company car. Relocation expenses will be paid by the Company for the more senior positions.

Please telephone or write to

The Personnel Department Rank Cintel
Watton Road
WARE, Herts SG12 OAE
Telephone: Ware 3939

Brighton Polytechnic Learning Resources
 MAINTENANCE ENGINEER CCTV and A / V

£3,678 to £4,407
to work in an expanding TV and AV service. High maintenance skills required with a wide range of A / V equipment from 16 mm projectors to advanced Colour TV studio. This challenging job will need organising skills, and will be part of a technical team working in a newly built centre in a pleasant area.

VTR ENGINEER

£3,678 to £4,407
Qualified in electronics, with a background in broadcasting, large CC TV studio or other connections with television, preferably colour, to work in educational establishments breaking new ground in CC TV. Will have proven ability to maintain studio Helical VTR's but the interest and willingness to maintain a quantity of open reel portable and editing VTR's and VCR's
Details and application forms from Personnel Dfficer, Brighton Polytechnic, Moulsecoomb. Brighton BN2 4GJ. Tel: 027367304

Closing date 15 th December
16591

Radio Engineers

K2388-K 3756 (c. £1791-£2817)

Supplement $\mathbf{\$ 4 1 2 2}$ (married), $\mathbf{2} 2058$ (single)
Together with most other countries. Zambia has recently been affected by the worldwide economic recession. Now our economy is surging forward strongly again, revitalised partly by significant advances in the country's agricultural industry and rising copper prices on world markets. Come here on a 3 -year contract and your skills will be welcomed - and broadened. You'll enjoy the warm, pleasant climate in this totally land-locked country, larger than France, Belgium, the Netherlands and Switzerland combined. You'll enjoy the scenery too: although mainly a broad plateau, Zambia also Peatures spectacular mountains, a certain amount of dense forest, imposing rivers, vast lakes and extensive game reserves. Its many large cities and towns contain all the normal modern facilities and are linked by excellent roads and rail services.

Requirements:

Either 5 -year apprenticeship, service trade certificate, ICAO certificate or equivalent; knowledge of medium-powered HF transmitters, frequency key shifting, SSB and equipment, medium-frequency non-directional radio beacons plus low and high-powered VHF AM equipment; and knowledge of either (a) VHF, omni-range, automatic VHF, direction finders, distance measuring equipment, (b) instrument landing systems, (c) radar X -band terminal and PPI talkdown equipment, (d) audio and remote control equipment, public address equipment, airport magnetic tape equipment, interoffice communications, underground control cables, impulse and DC switching systems or (e) teleprinter telegraphy (torn tape) and associate page printers, tape recorders (auto heads), printing reperforators, semi-automatic message switching systems.

Responsibilities:

Installation/maintenance/overhaul of ground terminal radio communication equipment and navigational aids.

Strong financial attractions

As well as the salary quoted, you will enjoy TAX-FREE supplements, a TAX-FREE terminal gratuity, low-cost accommodation, low taxation and free passages. Together, these add up to exceptional real earnings. Starting salaries relate to qualifications/experience, while gratuities total 25% of basic salary. Salary-related supplements are reviewed annually and paid by the British Government to designated British nationals (annual maximum is shown), while appointment grants, education aflowances, car loans, medical aid assistance and free holiday visits for children educated in Britain are also provided for those receiving supplements. N.B. Sterling equivalents given are approximations only due to constant exchange rate fluctuationsl
For further information please send full personal/professional details (without obligation and in total confidence), to Recruiting Officer (Room 33), Zambia High Commission, 7-11 Cavendish Place London. W1
(6539)

FREELANCE CONTRIBUTORS quired for user orientated vid magazine to be launched early 77. Applications enclosing samples of recently published wrok should
be sent to the Publisher Creauve be sent to the Publisher, Creative Herts. EN5 4 HU . Box 152, Barnet,

AGENCT WANTED

AGENCY WANTED
WANTED. successfu! salesman seeks ajgency marketing electronic equipinent/components
and wishes to meet manufacturer with suitable new/established pro ducts of particular interest products of particular interest: electronic industrial aids, data collec.
tion terminals Modest available. Box No. W/W 5557.

SUBSTANTIAL JAPANESE instrument company requires sub-agents to franchised U.K distributors in all European countries with OEM and or direct marketing experi. ence preferably covering panel meters. instruments and amateur radio equipment. Box No. W/W 6565.

BUSINESS OPPORTUNITIES

EXPORTER REQUIRES CONTRAC-

 TOR able to produce $50 / 100$ belt drive turntables weekly. Box NoW/W 6541 .

UNIVERSITY OF KENT AT CANTERBURY

PHYSICS LABORATORY

ELECTRONICS TECHNICIAN

The Physics Laboratory requires two TECHNICIANS for the Elec tronics Workshop Candidates should have experience in the construction, modification and repair of Electronic Equipmen and for one of the appointments some expertise in Digital Elec tronics will be required. Salary scales - Grade £2,455-£2,788; Grade 5 $£ 2,889 £ 3,367$. The Grade and placing will depend on qualifications and experience. Application forms and particulars may be obtained from the Assistant Registrar, Faculty of Natura Sciences, The University, Can terbury, Kent
Closing date 26 November 1976. Please quote Ref T76/9

WANTED

EXPERIENCED
RADIO-TELEPHONE ENGINEERS
to foin London's faste
radio-telephone company
Experience of V.H.F and U.H required, with knowledge of Pye and G.E.C equipment for maintenance service engineering and field work

The successful applicants will be part of a young and enthusiastic team Good aptitude Five day week Free lunches

Write or call now with detalls of past experience to Mike Rawlings or Bill Clarke

30 Boundary Road, London NW8 Telephone 01-328 5344

London

Communications

(Equipment) Ltd
(6519)

LAB-CRAFT LIMITED equire an ELECTRONICS DEVELOPMENT ENGINEER

for the design of new projects and development of existing products in he light electro-mechanical field nvolving solid state techniques Preterence will be given to an experienced engineer of HNC standard who can be relied upon to work unsupervised on own projects
Some experience in the design of Emergency Lighting, Low Voltage Fluorescent Lighting; or inverters, would be an advantage but is not would be
essential
Applications giving full details of experience and salary expectations should be submitted by letter in the rst instance to

The Technical Director LAB-CRAFT LIMITED Church Road, Harold Wood Romford, Essex RM3 OHT

NEWCASTLE AREA HEALTH AUTHORITY (TEACHING) ENGINEERING DIVISION FREEMAN HOSPITAL

CHIEF ELECTRONICS TECHNICIAN, GRADE I

Required to be responsible to the Area Engineer for all technical aspects of the Medical Electronics Deppartment. This department is chieffy involved in maintaining and repairing all forms of electronic equipment

Extensive experience in the field of medical equipment is required, together with a minimum qualification of HNC Electronic Engineering and preferably Corporate Membership of the Institution of Electronic and Radio Engineers

Salary scale: £4,419£5,136 plus £6 per week supplement. Whitley Council conditions of service apply. (Closing date November 30th, 1976)

Application form, job description and further details available from: Senio Personnel Assistant. Freeman Hospital. Cheviot Court, Freeman Hospital Staff Residences, Melville Grove, Newcastle upon Tyne NE 77 DF Tel 815926
(6523)

FIELD SALES ENGINEER

is required by Aladdin Components, a division of Aladdin Industries Ltd, to sell electronic components in the West and South of England and to provide technical support to customers

Applicants, male or female, who are resident in the Bristol area should be aged 22 to 40 years, possess a sound tectinica education and have had working experience in an engineering or sales biased company. Salary will be £3,000 to $£ 3,500$ per annum, plus car, plus bonus and other benefits will include fou weeks annual holiday and contributory pension scheme

For further details, telephone or write to

> Mr. P. Crosby
> Aladdin Industries Ltd
> Aladdin Building
> Western Avenue
> Greenford, Middlesex
> Tel. 01-578 2300

Industrial Development (Bangor)
The Commercial Unit of the University College of North Wales

RADIO ENGINEER

A qualified engineer with radio and digital circuit experience is required to join an active group working on the development of novel remote position monitoring systems employing existing radio navigation transmissions
The engineer appointed will be concerned with the development and control of final test procedures on production equipment and will be required to accept overall responsiai lity for field trials.of both standard and special systems
Starting point on the salary scale of :3174 to £4602 will be commensurate with experience
Applications should be sent to Professor P. E. Secker, I.D.(B), U.C.N.W., Dean Street, Bangor, Gwynedd LL57 1UT, not later than 30th November, 1976
(6558)

SUTTON

(LONDON BOROUGH OF)
CARSHALTON COLLEGE OF FURTHER EDUCATION Nightingale Road Carshatton, Surrey

Principal:

L. P. LAWRENCE, M.Sc C.Chem., F.R.I.C.

Telephone: 01-647 0021 DEPARTMENT OF
ELECTRICAL ENGINEERING
For 1st January, 1977, or as soon as possible thereafter

LECTURER I

for general Electrical subjects especially in the Radio. $T V$ and Electronics Sections. Candidates should have had industrial experience and be capable of teaching both the theoretical and practical aspects to technician and craft students Salary $£ 2781$ to $£ 4689$ per annum plus E298 per annum London Allowance.
A stamped addressed envelope should accompany a request to the Principal for further particulars and an application form

Appointments

140

SHIFT MANTENANCE ENGINEERS

We need conscientious and skilled maintenance engineers for our expanding cassette tape production department at our Uxbridge Road, Hayes site.

We are seeking engineers who have practical experience up to City and Guilds final level in electronic and mechanical maintenance. We are particularly interested in individuals who can show practical and theoretical expertise of professional tape recording machines and associated electronic equipment.

The Department works a double-day shift system, 40 hour week. The very nature of the production system means that adaptability will be. a prime characteristic of the successful applicants.

As befits a well known international company, a good salary and excellent conditions of employment are offered.

To apply for these interesting positions please telephone or write for an application form to: David J. Lunt, Personnel Officer, EMI Records Ltd., 1/3 Uxbridge Road, Hayes, Middlesex. Tel: 01-561 8722 ext. 210.
*Applicants of either sex considered.
EMI RECORDS EMT

COMETMARTV

WESTWARD TELEVISION
have a vacancy for an

ELECTRONICS maintenance ENGINEER

to work on studio Broadcast Equipment including cameras and video and audio equipment. Shift working may be involved. Salary up to $£ 4750$. Excellent conditions of service and relocation assistance may be available. Written applications giving full details should be forwarded to the Personnel Manager Westward TV
Derry's Cross
Plymouth PL1 2SP

TEST TECHNICIAN

To carry out all aspects of testing on a wide range of electrical-electron apparatus and components used in the manufacture of modern Xray equipment. General testing experequipment. General testing exper-
ience is essential, although not ience is essential, although field.

Write in the first instance to: The Personnel Officer, G.E.C. Medical Equipment Limited, 14 Progress Way, Waddon, Croydon, Surrey. Telephone 01-6887495.
(6509)

ARTICLES FOR SALE

ELECTRONICS TECHNICIAN

(Medical Physics Technician III)

required for maintenance and repair of electromedical equipment in Chelsea/Westminster District, based at St. Stephens Hospitat. Fulham. Opportunities exist for development of equipment in the department of Clinical Measurement, Westminster Hospital.
Salary Scale:-£3243-£4146 plus £312 London Weighting.
Applications in writing to-The Secretary, Department of Clinical Measurement, Westminster Hospital, London SW1, naming two referees.
(6530)

Servotest Limited, leading manufacturers of electro-hydraulic servo equipment, have vacancies for competent engineers to work in testing. commissioning and servicing.
Some travel is involved, both in the Some travel is involved, both in the
U.K. and abroad. The successful U.K. and abroad. The successiul candidates will have a sound practical
and theoretical electronics back. ground with a knowledge of several of the following:
Analogue circuits using integrated and discrete components: operational amplifiers. simple digital circuits. servo systems, hydraulics.
Appropriate qualifications would be HNC, C \& G Radio and Television, etc. The ability to work without supervision and to deal with customers at all levels is essential. Applicants must hold a current driving licence. Salary hold a current drivi
Telephone: Mr. Crabtree on 01-998 1552 for interview.
SERVOTEST LIMITED
Sarsfield Road, Perivale
Greenford, Middx. UB6 7AA (6562)

INNER LONDON
 EDUCATION AUTHORITY
 London College of Printing
 Elephant \& Castle, SE 1
 faculty of
 VISUAL COMMUNICATIONS
 TELEVISION TECHNICIAN/ ENGINEER

Applications are invited for the above post in the expanding Department of Photography, Film and Television.

Candidates should be conversant with modern $1 / 2^{\prime \prime} .3 / /^{\prime \prime}$ and $1^{\prime \prime}$ black and white and colour equipment and be capable of electronic maintenance. Experience in professional broadcasting would be an
advantage. as well as an interest in advantage. as well as an interest in
experimental video work. The successful experimental video work. The successtul running studio productions and video tape editing.

Selmory ecale: $£ 3,190-£ 4,702$ (ST1/2).
Application forms, returnable within 14 days. from the Senior Administrative Officer
(6592)

ARTICLES FOR SALE

VACUUM is our speciality, new and secondhand rotary pumps. ditfusion outfits, accessories. coaters, etc. Silicone rubber or varnish outgassing equipment from f 40 . V. N. Barrett (Sales) Ltd., 1 Mayo Road, Croydon. 01-684 9917.

60 KHz MSF Rugby Receiver. BCD TIME OF DAY UUTPUT. High performance, phase locked loop radio receiver. 5 V operation with 1 second LED indication. Kit complete with tuned ferrite rod aerial f14.08 (including postage and VAT). Assembled circuit and casedup version also available. Send (4359) details Toolex, Sherborne

REED RELAYS, ex-equipment, 12 V coil, 2 n.d. or 2 n.c. contacts, 5 for £1 inclusive. Other multiway reed relays available. - s.a.e. details.
Baker, 12 Hampton Gardens, Blackfield, Southampton, S04 IWP. (6512)

1017 mHz 15 kHz Filties min x-tal filter $£ 3.50$ each. Polar Electronics N3191 Horten, Norway. (6513)

RADIO TELEPHONE sales, service, new and used Pye, G.E.C., Xtals fast delivery, aerials always in stock, quantity discount. systems supplied home office approved. Halton Comm Services, Runcorn 68695.

RHODE AND SCHWARZ u.h.f. signal generator slsd £200, u.h.f. power signal generator slrd $£ 300$, Marconi wave analyser TF455E $£ 85$.
All good condition. Box No. W/W ${ }_{6516 .}$

COSSOR 4100 oscilloscope upgraded to 100 MHZ by Cossor, owned privately, little used. £385. Maiden
head 34362 . 6517) head 34362 .
(6517)

COPIES " WIRELESS WORLD" 1928-1955. Bellieved complete. 28-3iI bound. Offers. -
(6527)

SPOTWELDERS new from 185. Sameside from 82200 . - Ring 01don don Road Londion S.W.19. (6518)

LOW COST QUARTZ CRYSTAL OSCILLATORS, TTL compatible. Two plastic encapsulated styles give high accuracy and stability. A D.I.L. package $12.5 \times 20 \times 10 \mathrm{~mm}$ (QCi313) 5 to 25 mHz priced from £7 and a 2 x D.I.L. spacing. 20 $\mathrm{x} 26 \times 12.7 \mathrm{~mm}$ (QCl453) for it to 4 mHz from $£ 8$ or for 5 to 110 mHz from f6. Prices apply for production quantities. For full specificachaw write or phone Ann Open. shaw or Alan pearson on
wood 69911 .
(6559)

0. 20			4053	1.04	4086						
20						1.74	${ }^{14174}{ }^{1.08}$				5
4002 4006 0.20 1.31	${ }_{4031}^{4030}$	${ }_{2.46}^{0.60}$	${ }_{4056}$	${ }^{1.46}$	${ }_{4094}^{4093}$	${ }_{2}^{0.08}$		${ }_{1}^{14528}$		145699 1457	${ }^{3.72}$
40070.20	4032	1.19	4057	29.81	4095	1.16	144192.67			14580	8.35
4008 1.07 4009 0.60	${ }_{4034}^{4033}$	1.55	4059	${ }_{1}^{6.24}$	${ }_{4097}^{4096}$	${ }_{4.13}^{1.16}$	$\begin{array}{ll}14490 & 6.51 \\ 14501 & 0.20\end{array}$	${ }_{1}^{14531}$		${ }_{14582}^{14581}$	4.30 1.64
40100.60		1.31	4061	25.80	4098	22	${ }_{14502} 1.38$	14534			-
$\begin{array}{ll}4011 & 0.20 \\ 4012 & 0.20\end{array}$	${ }_{4037}^{4036}$	${ }_{1}^{3.09}$	${ }_{4062}^{4063}$	$\underset{1.22}{10.10}$	${ }_{40101}^{4099}$	2.03 1.76	145030.75 14505488	${ }_{1}^{14536}$			1.10
40130.68	4038	1.20	4066	${ }_{0} .69$	40102	2.16	145060.57	14539		${ }_{74 C}$	-
$4014 \quad 1.12$	4039	3.09	4067	,	40103	2.16	145070.60	14541			0.25
40151.12		1.19	4068	0.24	40104	2.26	145083.08			${ }^{74 C 08}$	0.25
$\begin{array}{ll}4016 & 0.60 \\ 4017 \\ 1.12\end{array}$	4041	0.93 0.93	${ }_{4070}^{4069}$	- 0.65	40107 40108	${ }_{\text {O. }}^{0.65}$	14510 14511 1.51 1.74	14549 1455 1		74 C 10 $74 C 20$	- 0.25
40181.12	4043	1.12	4071	0.24	40109	2.21	145121.03	14553	4.6	${ }^{744} 36$	0.25
$\begin{array}{ll}4019 & 0.60 \\ 4020 & 1.24\end{array}$	${ }_{4045}^{4044}$	${ }_{1}^{1.56}$	${ }_{4072}^{4073}$		40181 40182	${ }^{4.73}$	14514.3 .47 14515 3.47	$\xrightarrow{1} 14554$	1.61	${ }_{74 \mathrm{C}}^{72}$	1.8
$4021 \quad 1.12$		1.48		24	40194	2.26	145161.51	14556	1.01	${ }^{74} 48$	2.26
40221.07		1.01	4076	1.71	40257	2.28	145174.02	14557	4.65	${ }^{74} 473$	0.67
	${ }_{4049}^{4048}$	${ }_{0}^{0.60}$	4077 4078	0.24	${ }_{7}^{4700}$	1.75	14518 14519 18.39 1.57	${ }^{14558}$		${ }_{74 \mathrm{Cl} 90}$	0.80
4025 4020 4026 0.20		0.60	1		14160	1.18	$14520 \quad 1.39$	14560			
(1026 $\begin{array}{ll}4026 & 1.92 \\ 4027 & 0.80\end{array}$	${ }_{4051}^{4051}$	${ }_{1}^{1.04} 1$	32	0.24		1.18	145212.77				. 25
TERMS: Add VAT to all prices at 8%. Postage etc. UK 25 export E. 2.00 (no VAT). Orders processed same day											
CREENBANK ELECTRONISS (Dept MITW											

PRECISION
POLYCARBONATE CAPACITORS All High Stability - extremely Low Leakage

atov a.c. rangeValue Dimer-			Price each	G3V D.C. RANGE Value $\{\mu \mathrm{fl} \mathrm{Tol}$.			
		,		0.018			
0.1	27	12.7	$68 p$	0.1	£1.28	75p	50p
0.15	27	12.7	80p	0.22	£1.32	77p	51p
0.22	33	16	$86 p$	0.33	£1.32	77p	51p
0.25	33	16	92 p	0.47	£1.32	77p	51p
0.33	33	16	99p	0.68	£1.44	840	56p
0.47	33	19	E1.10	1.0	$\underline{1} .56$	$91 p$	60p
0.5	33	19	£1.16	1.5	£1.74	£1.16	67p
0.68	50.8	19	£1.25	2.2	£1.98	£1.32	75p
1.0	50.8	19	£1. 37	3.3	£2.40	£1.60	99p
1.5	50.8	25.4	¢1.64	47	92.82	£1.88	¢1. 23
2.0	50.8	25.4	£1.95	6.8	£3.48	£3.32	£1.47
				10	¢4.98	£3.32	$\underline{2} .01$
				15	£7.14	£4.76	£2.88
				22	¢9.66	£6.44	E3, 90

 100.0
99°
tramsistors i.c.s

86107/8/9	9 p	- C212/212	12p	2 k 3055	S0p
*BC14	2p	*BC213/213	11p	Octi/2	p
147//9	108	*BC214/214i.	11p	-we55s Timer	61p
*8C153	169	"日F 194/5	12p	-741 8pir oil	2p
BC154/7/8/9	12 p	Befrofre	20 p	Ima14	\& 1.15
*BC182/1821	11 p	${ }^{\text {N } 178}$	40p	SM 75013	. 50
*8¢183/183	118	af239	$3{ }^{\text {¢ }}$	sM76023m0	¢1. 50

VIT to all stems

MARCO TRADING (Dept P5)

[^8]
IBM GOLFBALL 735 I/O TYPEWRITERS

Coding similar to EBCDIC. Will accepl normal or

 sprocketed paper. Supplied with pholo copy of 18 m intertace manual. £100 and 8\% VAT 110 pilch bul moditifed 110 pilch $\mathrm{E} 125+8 \%$ VAT finc. new goilbalil Gwerseas air treighl or surface al cost.Typewriter orders only to

$$
\begin{aligned}
& \text { Keytronics } \\
& \text { Saul Lodge }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Saul Lodge } \\
& \text { Saul. Gioucestershire }
\end{aligned}
$$

$$
\text { Tal: Saul (045-274) } 612
$$

ELECTROIVTICS

$4700 \mu 40 \mathrm{~V} 50 \mathrm{p}(15 \mathrm{p}] \quad 4000 \mu \mathrm{VOV} 80 \mathrm{p}$ [25p] $5000 \mu 60 \mathrm{~V} 75 \mathrm{p}$ [25pl $10.000 \mu \mathrm{pl} 16 \mathrm{~V} 50 \mathrm{p}$ (15p)
$15 \mathrm{p})$. 275 V AMS motor start 50 p [20p]
.sman hecran mes
$2.2 \mu 10 \mathrm{~V} .10 \mu 35 \mathrm{~V}, 50 \mu 40 \mathrm{~V} .100{ }^{\mu} 40 \mathrm{~V} .100 \mu 6$
$150 \mu 10 \mathrm{~V}$. $64 \mu \mathrm{IOV} .300 \mu 10 \mathrm{~V}$. $200 \mu \mathrm{IOV}$
PIMER PRESETS 100 mw
220, 470. 1k. 4kT. 10k. 100k. 220
TAANSFORMERS
3iv 330 mA 60 p [30pl. I2V 2 A £1.60 [50p]. 174 5A
 ЗА $£ 1.60$ (60 p). I2V 10A $£ 3.50$ (90 pl . 0.3.14-17 1.5A ex eqpt $£ 1$ [35pl.

various

Humidity switch |adjustable $\quad 80 \mathrm{p} \mid 13 \mathrm{pl}$
 ight aclivaled SCA 50Y
ight aclivaled SCR 50Y 1.6A.
$60 p(8 p p)$
$35 p(10 p)$ E2.50p/100 2N3702K 13 tor $£ 1$

APST FANS |ar similar) recondiliane
$4 / \mathrm{x} \times 4 / \mathrm{s} \times 2 \mathrm{in} .100 \mathrm{c} .1 \mathrm{~mm} .50 / 60 \mathrm{c} / \mathrm{s} \quad £ 3.60|65 \mathrm{p}|$

+ reed inserts $70 \mathrm{~mm} h / d$ conlacls 10 lor $\mathrm{E\mid}$ (12p|
+ reed inserts 45 mm
WAT add $121 / \%$ to texs marked + alhers $8 \% / \%$
KEYTRONICS
Shop open Man.Sal 9.30 a.m. 2 p.m $01-5531863$

Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies.

Midland TV Trade \& Retail Services. Worcester Road, Kidderminster, England
Tel: Kıdderminster 51907 or 67390 .

The

 Scunalonafismen 20-12A Graphic Equalizer Exclusive to is

 21 CD SmaximREW are proud to present the Soundcraftsmen Eraphic Equalizer-undoubtedly the fin st unit of its kind for both Hi-fi and professional use. Each of the stereo and cut of 12 dB is proyided on each band and a gain control adjusts the Boost to match any amplifier. The unit has a champagne gold anodised front panel,
 ments. Alternatively it can be used to produce a near-perfect flat frequency response in any domestic conditions by compensating for either poor room coustics or various deficiencies in Loudspeakers. Also perfect for equalizing

Full range of Equalizers by other feoding manufacturers olso in stock including

- REW Centrepoint 20-21 St Gites High Street London WC2 Tel 01-2403066/
- 146 Charing Cross Road London WC2 Tel $01.2403064 / 5$

Mall orders to REW House (dept WW). 10-12 High Street
Colliers Wood London SW19 Tel $01.5409684 / 5 / 6$

SOWTER TRANSFORMERS

hor souno recording ano heproducing

年

arouest
E. A. SOWTER LTD.

2 Dedhem Place. Fore Susat
in

CAPACITORS, mixed bags of elec rolytics approximately 500 un
ested for 11 Mullard metallised tested for £1. Mullard metallised
polyester. mixed hags of $50 \quad 1 \mu \mathrm{~F}$ polyester. mixed hags of $501 \mu \mathrm{~F}$
and $2.2 \mu \mathrm{~F}$
$(250 \mathrm{v}$
d.c. $1 . ~ c o s m e t i c ~$ imperfections so f1. Add 40p P\&F ingham Road. SW15 1BE.

MUST CLEAR Colour T.V's work ing/non working. 3-PYE - CTTO CT104, 2-GG 1-Decca CTV 25,2 GEC 2023 1-Bush 25 in. All complete others for spares. various prices Mr West. Falkirk (0.324) 27055 afte

FAX. - Quantity of spares avail
Fable. Phone Mr Grout, Worthing
34897.

[^9]
QUARTZ CRYSTAL
 UNITS from
 - fo-so. omary diven
 - high stanlitty

 WRITE FOR
 McKNIGHT
 CRYSTAL Co. LId. habdiey inoustralal STO CODE 0703
 (6044)

FOR THE PERSON WHO WANTS THAT BETTER QUALITY SOUND AT A REASONABLE COST

assemblies for producing almost any ype of Audio Mixer from a simple nit for the Disco Operator to a mult an!ell sub units are available kit form or fully assembled and tested Complete mixer kits from 1698 plus VAT or fully assembled and tested rom E25 48 plus VAT
Government Departments. education uthorities, military establishments commercial and hospital radio sta ns er

PARTRIDGE ELECTRONICS

ssex SS7 3PB Ref. WW

EXCLUSIVE OFFER

WORLD-WIDE RANGE NEVER BEFORE OFFERED PHILCO hC -159 POINT-TO-POINT STRIP Single and diversity reception, on ISB. DSB. SSB suth 4 sub-bands to each channel. Full details and prices on application

highest quality 19"

 RACK MOUNTING CABINETS \& RACKSENQUIRIES INVITED
FOR NEW STOCK FOR NEW STOCK
NOW AVAILABLE AUDIO AND INSTRUMENTATIONTAPE RECORDER-REPRODUCERS

```
* Plessey LD33 Digital Units. 7 track \(1 / 2\)
```



``` * Ampex FR 800,4 speeds. 7 tracks. \(/\) /h - EMI TR90 2 speeds. 1 track \(s^{\prime \prime}\) - EMI BTRII 1 speed, 1 track \(/ 4\) ",
```



``` - Mincom CMP-100, 6 speeds, 7 tracks \(1 / 1 / 1 / 2\), - Leevers Rich Console 2 tra
Prices of above \(£ 70\) to \(£ 400\)
```


We have a quantuly of Power Transformers 250
watts to 15 KVA at voltages up
qualty at low prices Lists available

PLEASE ADD CARRIAGE AND

P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (O2O2) 765051

COLOUR, UHF AND TV SPARES. NEW colour bar generator kit Mk 3 aerial input type, R-Y, B-Y etc. (adds on to Manor Supplies cross hatch units) $£ 25^{*}$ pp 85 p . Also Mk 4 combined colour bar genera tor and cross hath, kit Tuner pp ${ }^{85 \mathrm{p}} \mathrm{FM}$ Tuner Projects by D . C Read. Katch kit Aerial Input cross Natch other connections. Battery operated, portable. Incl. Sync \& UHF Modulator units f11* Add-on Grey Scale kit. 12.90^{*} p/p 45p. CRT Reactivator kit for colour and mono, £17.48* p / p 8up. Signal Strength Meter kit \&18* p/p 70p. 625 TV IF Unit, for Hi-Fi amps or tape recording f6.80 p/p 65p. Decca Colour TV Thyristor Power Supply Unit, incl. H.T., L.T., etc. Incl. circuits $£ 3.80 \mathrm{p} / \mathrm{p}$ 95 p.
Unit Bush CTV
inct
25
H.T.T. etc. Unit, inct. H.T., L.T., etc. $£ 3.20$
p / p £1.20. Bush CTV 25 Convergence panel plus yoke, blue lateral $\$ 3.60 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Philips single stand convergence units complete, incl 16 controls, $£ 3.75 \mathrm{P} / \mathrm{p}{ }^{75 \mathrm{p}}$. Colour
Scan Cous Mullard or Plessey $\mathbf{f 6}$ pcan Cons, Mullard or AT1023/05 or $\mathrm{p} / \mathrm{p} 80 \mathrm{p}$ Mullard AT1023/05 or
Plessey
Converg. Yoke
$\mathbf{2 n} 2.50$
p / p Plessey Converg. Yoke $22.50 \mathrm{p} / \mathrm{p}$
55p. Mullard or Plessey
Blue Laterals 75 p p/p 30 p . BRC 3000 type scan colls $£ 2 \mathrm{p} / \mathrm{p}$ 80p. Bush CTV 25 Scan Colils 22.50 p $/ \mathrm{p} 80 \mathrm{p}$. Delay Lines: DL20 $\mathrm{E}_{3.50}$ DL40 f1.50 DL1E, Dines: DL20 $85 / \mathrm{p}$ 40p. Lum. delay lines $50 \mathrm{p} \quad \mathrm{p} / \mathrm{p}$ 30p. Bush/Murphy CTV $25 \quad 3 / 174$ EHT quadrupler $68.50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Special offer colour triplers, ITT TH25 1TH £2 GEC 2040 f1.75 p/p 50 p . Philips G 8 Panels, part complete, surplus/salvaged: Decoder $£ 2.50$, IF incl. 5 modules £2.25, T. Base $£ 1 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. CRT Base 75 p p/p 30p. GEC $2040 \mathrm{De}-$ coder panel for spares $\{3.50 \mathrm{p} / \mathrm{p}$ 0p. VARICAP TUNERS. UHF: ELC 1043 £4.00, ELC $1043 / 05 £ 4.50$. VHF; ELC 1042 f4.40, Philips VHF
 OFFER: RBM 6 psn. Varicap control unit $£ 1$ p/ p 35p. UHF Tuners
transd. incl. slow motion drive £3.80. 4 Psn. and 6 PSn. push but ton transd. $£ 4.20 \mathrm{p} / \mathrm{D} 70 \mathrm{p}$. Philips, Bush Decea integrated UHF/VHF transd. tuners $54.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Thorn 850 dual stand, time base panels 50 p . Philips 625 IF panel incl. cet. $50 \mathrm{p} . \mathrm{p} / \mathrm{p}$ 65p. VHF Turret tuners
 £2.50. Pye miniature incremental tuners f1. Flreball tuners, Ferguson, HMV, Marconi $80 \mathrm{p} p / \mathrm{p}$ all tuners 70p. Mulland Mono scan colls for Philips, stella, 10 , Large Ferranti, Invicta 2 p/p ap. Large for most popular makes MANOR for most popular makes ${ }_{172}$ West End Lane, London, N.W.6. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakerloo Line and British Rall). Mail Order: 64 Golders Manor Drive, London. N.W.11. Tel: 01-794 8751. V.A.T. Please ADD $12 \frac{1}{2} \%$ TO ALL PRICES (EXCEPT WHERE MARKED * VAT 8%).

TELEPHONE ANSWERING machines for sale. New £120. answers and records. Plus 2 -way conversations and dictation. Free accessories and Guaranteed 1 year. C.R.V.E. Ltd., 30 Goodge Street, W1. 01-249 (6216)
$01-580$ 1800.
(6210)

COMPARASCOPE. Gives alternate enlarged images of both master and sample automatically. Example of use comparing components on circuit boards etc. Makes identifica-
tion and comparison a simple task tion and comparison a simple task
without eyestrain

Costs without eyestrain Costs over | Tel: | | |
| :--- | :--- | :--- |
| Tel- 689 | 5295 days' $01-684$ | 3765 | Tel: 01-689 5295 days 01-684 (6573)

eves.

ENAMELLED COPPER WIRE

SALE - ELECTRONIC SPARES NUMERICAL CONTROL

The following items are offered for sale

TAPE READER - Creed Type 92
POWER SUPPLY UNITS - Gresham Type GX15/10/11 GX15/10B, GX15/10/14.
SCOPE P.S.U. Type 22
RESOLVERS - 11 RS 146
ROTAPULSE - 191 / A Type 1000 and 2000.
VALVES - Type 13D3, PCC84, CV345, 6D2EB91, EA76, ECC91, PCF80, PCF84.
VALVES - Dowty Type: 300538001, 4553-145-91, 101 278-001 300243-003, 100299-003, 100299-004, 300243003 and 300301001.

PEGASUS Servo Valve 130A
P.C.B. Various.

If you are interested please telephone POOLE 6311 or write to: PLESSEY NUMERICAL CONTROL DIVISION, CUSTOMER ENGINEER SERVICE, SOPERS LANE, POOLE, DORSET

6524)

Closed circuit ty bārgains. GRUNDIG FA 30 Camera with Voitlander zoom lens, new, bargain. £240. 4 Grundig FA 30 and control units all as seen for $£ 130$. Various other FA 30 spares. Grundig heavy duty pan and tilt unit, new f150. 9 MARINE/INDUSTRIAL CAMERA HOUSINGS with wipers, heaters and weathershield all new but soiled, only $£ 150$ each. 1 Dennard heavy duty pan \& tilt unit, new fi40. s/hand 665.4 Grundig BG 360 14in. S/hand 665 . 4 Grundig BG 360 14in. monitors all for f60.00, 142 A.E.L. trol units, new but very solled, all for $£ 300$. 12 Dallmeyer B (turret gear) lens f1.90, 8in. $f 2$ each, gitto $£ 1.9 \mathrm{~g}_{2} \mathrm{MM} £ 2$ each, 500 YDS. BICC MULTICORE screened PVC covered cable 22 ways including 2 coax fraction of new cost, £750. VIDEO LINE TRANSMISSION EQUIP 3 complete sets of Grundig GPO approved line transmission equip, consisting transmitter, booster \& receiver allows video to be sent over 1800 metres without loss, fraction of new cost $£ 450$ per set. 1 only booster to extend above EMI VIDICONS 9677 M Brand new type 9672C f12 each 1 Som Berthiot lens $£ 4.5$, 145 MM tele-cinor 668
 $\begin{array}{llllll}\text { Som } & \text { Berthiot } & £ 1.8 & 25 \mathrm{MM} & \mathrm{f} 20 & 2\end{array}$ Schnider Xenon $£ 1.4$ 25MM. £25. Pair of GRUNDIG LIGHT BEAM TELEPHONES very rare, line of sight electronic telephones, ideal for experimental work a mere fraction of cost $£ 200$. Telephone enquiries $01-4351811$ or $01-9594625$ (6574).

FOR SALE. Miscellaneous electronic equipment. Obsolete due to introduction of new instruments N. Bill Surrey England RH1 2HL Redhill' 65000, England RH1 2HL Redhill 65000

16 mm BELL HOWELL $631 \quad 750 / 100$ W lamp, separate speaker and transformer. $£ 150+$ VAT. Hilton's 20009. Hil, Dartford, Kent. TWel.

COMPONENTS: integrated circuits, digital analogue panel meters unis, valves, etc. New and ex Box No. WW/6560.

MULLARD 1.5uf C281 capacitors 10,000 in stock. Price $£ 4.00$ per 100 price includes VAT, p\&p 20p. Elec ironic Mail Order Limited, 62 Bridge Street, Ramsbottom, Bury Lancs. Tel. Rams (070 682) 3936 . (6556)

FERROGRAPH

TAPERECORDERS FOR SALE. Series Six, new 1968 Up to 20 in very goad condition. $£ 40$ o.n.0. Also five needing some repair, £20 onno. Make known for durabulity. Avallable south London Offers and inquiryes to Box W / W 6543

RECHARGEABLE NICAD BAT-

 gers respectively $£ 4.48$, $£ 4.48, \mathfrak{6 5 . 2 4}$, f5.24, £3.98, all prices include VAT. Add 10% post $\&$ package. SAE for
full list. plus if wanted 35 p for full list plus if Wanted ${ }^{35 p}$ for Sandwell Plant Ltd.. 1 Denholm Road Sutton Coldfield. West Midlands, B73 6PP. Tel. No. 021-354 9764. (6554)

LINSLEY-HOOD 75 watt amplifier spares. BDY56 f1.85, DB529 55p. BD530 55p, 2N5457 35p, 2N5459 45p BF258 35p MPSA12 45, BFR39
 BCp, LS920 5 pp , power amp update kit ${ }^{\text {p9.20, interference suppression }}$ kit (also reduces pre-amp noise)
with instructions
\&1.35 inclusive prices, P\&P 15 p . All components brices, new, guaranteed and des patched by return. SAE for list. I. G. Bowinan (Dept WW), 59 Fowey Avenue. Torquay, S. Devon.
(6564)

Phone 7234185
Closed Sat. 1 p.m.

RIVERSIDE ELECTRONICS

Wholesalers and other large users of consumer electronic components are invited to send for our monthly list of special offers. We stock semi-conductors, i.c s, capacitors, resistors etc. Export enquiries welcome
P.O. BOX 4, WISBECH, CAMBS
Telephone: 09454188

BURGLAR ALARMS
 Supplies and Equipment

* SPECIAL OFFER - LARGE SIZE PRESSURE MATS £1.20 *

MAGNETIC CONTACTS
Bells, Sirens, Alarm Units. Bell covers, indow Foil. Cable, Vibration contacts
S.A.E. FOR FREE CATALOGUE
Complete kit. fantastic value, everything ou need, only $£ 40.00$
Add $\sqrt{\text { AT }{ }^{2} T 21 / 2 \text { 多 to all orders }}$
D. ELECTRONICS, Warbrack MO Aintree, Liverpool, L9 0HU 051-525 3440

BEST BUYS. MOTOROLA. 10A $\begin{array}{lllll}\text { Comps } & \text { 2N } 3713 / 3789 & £ 3.85 & \text { pair. } \\ \text { 2N3055 } & \text { 37p } & 4 N 25 & \text { OPTO/15 } & 22 \mathrm{p} .\end{array}$ MONSANTO. MAN 74 AlphaNumerics 51.35 M1CRO-E. BSY85 11 p . NiO PAR 25 v 1 pp Painton. 10 K Multiturn 11p. Many bargains in Test Gear. Transistors. I-CS. Motors. Heat Sinks. Capacitors. SATE for list add 30 p p p\&p over free. BEST GARDEN CITY, HERTS (6599)

SERVICE AND REPAIRS
P\|PCO
(S \& WV SERVICES)
For Electronic Engineers. Technicians
\& TV Service Engineers.
26a High Street
Hounslow, Middx.
Tel: $01-5727363$
Telex Pipco Hounslow 935413
(6552)

METER REPAIRS, ammeters, voltMeter Repairs Heet, Essex. SS7 1HA.
LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts Ltd., ${ }^{1-5}$ Rectory Lane, Guis-
borough $(02873-4443)$. Yorks, U.K. (5305) R. F. INDUCTION HEATER about
1.5 KW . Barrett, 1 Mayo Road

EDUCATIONAL

INTERTEXT GROUP

INTERNATIONAL CORRESPONDENCE SCHOOLS (ICS)
SCHOOL OF ACCOUN
TANCY (SOA)
INSTITUTE OF DOMES
TIC ARTS (IDA)
In Ramsden
ICS 807 N
Intentext House
Stewarts Road, London S.W. 8 01-622 9911

NON-TRADING COMPANY I:N HIFI field with unique name and
registered trade mark asisociated registered trade mark assocnated
wioh loudspeakers for sale for Wioh loudspeakers for sale for
mocerate sum. Interested parties please write to:- Managing Director Omal Group Limited, Omal House, North Circular Rioad,
PROFESSIONAL TV TUBE REBUILDING PLANT designed and manufactured with 20 years' experience of tube rebuilding. Allso and
assocliated isupplies including Electron guns. Regular training courses. Western-Whybrow Engin-

WE INVITE ENQUIRIES from any where in the world. We have in stock several million carbon resistors $\frac{1}{6}$ th $\frac{1}{2}, \frac{1}{2}$, and 1 watt. $\frac{1}{2}$ million wire wound resistors 5 and 10 watt - 1 million capacitors - 1 million electrolytic condensers - $\frac{1}{2}$ million ransistors and diodes, thousands of potentiometers, and hosts of
other components. Write phone or other components. Write phone or
call at our warehouse Broadcall at our warehouse. Broad ${ }_{21}$ Lields and Mayco Disposals Lane, North Finchley, 21 Lodge Lane, North Finchiey,

BROADFIELDS AND MAYCO DISPOSALS

21 Lodge lane. N. Finchiey London, N12 8JG
Telephone: $01-4452713$
01-445 0749
01-958 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND
CLEAR MATERIAL BY RETURN.

RECEIVERS AND AMPLIFIERS

 HRO Rx5s, etc. AR88, CR100,BRT400, G209, S640, etc. etc. in stock. R. T. \& I. Electronics. Litd., Ashville Old Hall, Ashville Rd.,

ARTICLES WANTED

WANTED IN LARGE QUANTITIES

Electronic components: resistors, loudspeakers, semi-conductors, diodes, TV tubes, especially colours etc. etc. . etc. First or second grades. Finished or incomplete products: record players. amplifiers, radios

```
etc etc etc.
```

We will buy complete factories and

pay cash

TEL. 01-4914636
EC.E. AVON HOUSE 360/366 OXFORD STREET LONDON, W. 1

* MINICOMPUTERS

\star PERIPHERALS
\star INSTRUMENTATION

COMPUTER APPRECIATION Godetone (088 384) 3221

[^10]SURPLUS COMPONENTS Equipment and Computer panels wanted for cash. Ring Southampton 772501 (16)

WE BUY new valves, transistors and clean new components, large or small quantities, all details, 55 Worcester St. Wolverhampton.

B-D ELECTRONICS offer prompt
B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest telephone our Miss Hughes, Sandy telephone our Miss Hughes, Sandy
(0767) 81616.

CAPACITY AVALLABLE

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also PC Boards Assemblies.
Suppliers to P.O., M.O.D. etc. Ex-
 port enquiries welcomed,
Walerand Road, London SE13
$7 \mathrm{TPE}^{32}$ Tel: 01-852 1706

WIRING AND ASSEMBLY capacity available. Prottotype or batch, cir cuit boards, ctableforms. Fu sheet-metalworkfacilities for manu petitive prices and quality service
C.M.N. (London) Ltd, Unit 1 Numefield Works, Pump Lane' Hayes, Middlesex. Tel: 01-573 736i0/
1985.
(6512)
PRINTED CIRCUIT BOARDS Quick delliveries competitive prices quotations on request, roller tinnings, drilling, ete., speciality small batches, larger quanitities available Jamiesons Automatics Ltd, $1-5$ Westgate, Bridlington. N Humber Harrison. Tel: (0262) 4738/77877.

PROFESSIONAL WIRING AND ASSEMBLY of electronic equipment to sample or drawings, any quantity. - Tuo Yaw Projects, The Street, Kirby-le-Soken Essex. Tel:
Frinton-on-Sea 71428.

WANTED!

all types of scrap and
REDUNDANT ELEGTRONIC \& COMPUTER MATERIALS
with precious metal content
TRANSISTORS \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
The COMMERCIAL SMELTING \&
REFINING Co. Ltd.
171 farbingaon road
LONDON ECIR 3AL
Tel. 01-837 1475
Cables: COMSMELT, EC1
Works: FLECKHEY. mr. LEICESTER (6050)

APOLLO SCRIBEMASTER, Wayne Ferr Bridge H.P. Spectrum Analyser. Branson, 111 Park Road
Peterborough.

SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Roing Southampton 772501

WANTED, surplus or slightly used P.O. type 2 or equivalent heavy duty unislectors. ${ }^{22-50 v}$. 4 (6097)
ALL SURPLUS or used equipment wanted. Radio telephones - com pete systems purchased. Ships - components, partly assembled chassis etc, etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited $40 / 42$ Portland Road, Worthing. Sussex.
(6594)

ENAMELLED COPPER WIRE

14.19	2.40	.69	.50
20.29	2.45	.82	.59
$30-34$	2.60	.89	.64
35.40	2.85	1.04	.75

inclusive ot p \& p and $\mathrm{VA1} .75$
SAE brings Catalogue of copper and
resistance wires in all coverings
THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9日W (6243)
SMALL BATCH PRODUCTION Wiring, assembly to sample or
drawings. Specialists in printed drawings Specialists in printed 41 Silver Street Stansted, Essex Tel. Silansted (0279) $33018 / 814006$

PRECISION TUNED PARTS - spa cers. pillars, shafts etc. Large small batches. Quotations by re turn. Send for plant/service cap acity specials, no problem. Drury Bros., Unit 6, Hedley Road,
Aloans, Herts. Phone: 65094.
(6548)
P.E.B. ARTWORK DESIGN SERVICE Prompt, Jugh quality competitive and accurate work. $01-8506516$ for quote from Hartley. 45 Southwood Road, New Eltham SE9. (6537)

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 130-143

Aero Electronics Ltd.
Ambit International
Aspen Electronics Ltd
Audix Ltd
Avo Ltd.
Barr \& Stroud Ltd.
Barrie Electronics Ltd.
Bauch F.W.O., Ltd.
Bayliss, A. D. \& Sons Ltd.
Bentley Acoustic Corp. Ltd
B. H. Component Factors Ltd

Bi-Pak Semiconductors Ltd.
Boss Industrial Mouldings Ltd
Bradley, G. \& E. Ltd.
Brenell Engineering
British National Radio

Cambridge Learning

CEC Corporation
Chiltmead Ltd
Cliffpalm Ltd.
Coles Electro Acoustics
Colomor (Electronics) Ltd
Combined Precision Components Ltd.
Communication Accessories \& Equipment Ltd. Communication Acce
Computer Appreciation
Continental Specialities Corp
Crimson Elektrik.
Danavox (G.B.) Ltd.
Dema Electronics International
Doram Electrocomponents Ltd
Dow Corning
Drake Transformers Lid

Edicron

Electronic Brokers Lid.
Electrovalue Ltd
English Electric Valve Co. Ltd
12

ESP Ltd .
Euro Circuits
PAGE

Farnell Instruments Ltd
Future Film Developments
Grampian Reproducers Ltd
Greenbank Electronics
Greenwood Electronics Ltd
Harris Electronics (London) Ltd Harris P.
Hart Electronics
Hayden Laboratories Ltd
Heathkit Ltd.
Heathkit Ltd.
Hepworth Electronics
Hi-Fi Y/bookIcon Designs.Industrial Instruments LtdIndustrial Tape Applications.
Integrex Ltd
Interporte Mainstore
ITT Instrument Services
JPS Associates Ltd
Keytronics
Kinnie Components Ltd
Leevers-Rich Equip. Ltd
Levell Electronics Ltd.
Lynx (Electronics) London Ltd
Lyons Instruments
MacInnes Laboratories Ltd
McKnight Crystal
Mail Order Scheme
Maplin Electronic Supplies
Marshall, A., \& Sons (London) Ltd
Medelec Ltd.
Mills, W.
Modern Book Co.
Motorola Semiconductors
Multicore Solders Ltd.
Nolton Communications Ltd.
Orchard Electronics
Otari Corp.

Patrick, J. B.
PB Electronics Scotland Ltd
Powertran Electronics
Precision Petite Ltd.
Purnell Books
Pye Unicam Ltd.
Q.Max Ltd.

Racal Instruments Ltd.

Ltd.

Radio Component Specialists
Radio Shop, The
Ralfe, P.
R.C.S. Electronics

REW Audio Visual
R.I. Audio

Rola Celestion Ltd.
R.S.T. Valves Ltd.
R.S.T. Valves Ltd

RTVC

PAGE
Samsons (Electronics) Ltd126Scopex Instruments Ltd112
Scott, J. (Electronics Eng.) Ltd 93
110Semiconductor Supplies Ltd.Service Trading Co........Servo \& Electronic Sales LtdSGS-ATES (U.K.) Ltd.Shur Electronics LtdShure
Sintel
Soundex Ltd
Soundex Ltd over iii
107Sowter, E. A. Lt
Special Products Ltd 141
Speywood Communications Ltd. 117
Stirling Sound (Bi-Pre-Pak Ltd.) 108, 125
Stringer Clark Antennas Ltd
Sugden, J. E., \& Co. Ltd94
88
Surrey Electronics Ltd. 115
Swanley Electronics Ltd 100
Tandy Corporation (U.K.) 128
Technomatic Ltd. 18
28Tektronix (Telequipment) Ltd
Teleprinter Equipment Ltd 22
118Teleradio $\mathrm{Hi}-\mathrm{Fi}$
Telford Communications Ltd 18
89
Tempus 125
Thorn Radio Valves \& Tubes Lid Time Electronics 110
Trampus Electronics 100
Turner Electronics 16
90
United-Carr Supplies Ltd. 22
VER Controls (St. Albans) Ltd. 27
Vintage Crystal Sets 108
Western Electronics (U.K.) Ltd 116
West Hyde Developments Ltd 92
Wilkinson L. (Croydon) I.td. 91
Wilmslow Audio 129
Z. \& I. Aero Services Ltd 12, 90, 1
Zettler (U.K.) Division 100
24

[^11]

The Test of Time

Critics were most generous in their praise when the Shure V-15 Type III pickup cartridge was introduced. The ultimate test, however, has been time. The original engineering innovations, the uniquely uniform quality and consistent performance reliability of the V-15 Type III have made it THE classic choice as the source of sound for the finest music systems, both here and abroad.
Consider making the relatively modest investment of a new cartridge to upgrade the performance of your entire hi-fi system. Why not ask Shure Electronics Limited for their recommendation?

Shure Electronics Limited
Eccleston Road Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
The original manuscript by J. S. Bach shown is reproduced by kind permission of the Trustees of The British

"There's a lot more to Multicore...

Multicore Solid Solders. In Bars

"The name that stands for quality and quantity.

Please write on your Company's letterhead for further details on your particular application.

Multicore Solders Limited,

Maylands Avenue, Hemel Hempstead, Herts HP2 7EP. Tel : Hemel Hempstead 3636. Telex: 82363

[^0]: Please send me information about the Ferrograph Professional ARA. 1 Name
 Position
 Company
 Address

[^1]: Price 35p (kack numbers 50p, from Room 11, Dorset House, Stamford Street. London SEI 9LU.) Editorial \& Adsertizing offices: Dorset Houre. Stamford Street. London SE1 9LU.
 Telephones: Editorial 01261 8620: Advertising 012618339.
 Telegrams:Telex. Wiworld Bintespres 25137 London. Cables. "Ethaworld. London SEI."
 Subserption rates: 1 year: $\mathfrak{f} 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year. £3. 50 UK and overseas (\$9.10 USA and Canada).
 Distribution: 40 Bowling Green Lanc. London ECIR 0NE. Telephone 01-837 3636.
 Subscriptions: Oahfield House. Perrymount Rd. Haywards Heath. Sussex RHIG 3DH. Telephone 044459188 . Subscribers are requested to notify a change of address

[^2]: - Bus system card.
 - Minibug.
 - Input/output supervisor.

 Price for this Autonomous Development System (all components, except medium speed printer) £771. * For further details, contact us today.

[^3]: The author
 Gerry Kennedy is a Higher Scientific Officer with the Science Research Council at the Appleton Laboratory, Chilbolton Observatory. His private project (ref. 4) was started in the Falkland Islands with Nimbus 3 ice cover pictures. This work was continued on his return to the UK to encompass more recent satellites. He is a radio amateur with the call signs VP8LZ and G30GK.

[^4]: NAME

[^5]:

[^6]: SHOP 18 BALDOCK ST., WARE, HARTS AT OPEN 9 to 5.30 Mon. $/$ Sat Tel. 61593

[^7]: He/she will be of degree or equivalent standard, preferably under 35 years of age with at least 2 years background of television design and some digital design capability
 $\mathrm{He} /$ she will join a team investigating new ideas and systems and be required to work on his/her own initiative liaising with internal development departments and outside suppliers.

[^8]: MODERN LANGUAGE teachin tenth of today's cost this offer can not be repeated. Ring Mr Wrighi

 CRT REGUNNING PLANT and secondhand reconditioned B/w Baretts Mayo Boad Coy don. Surey. CRO 2QP. 01.684 9917
 "MOTIVATOR"' Curtain Cord con. trollers. Malls battery models an curtains. From fi8-£30 AidUs Products Dept wW14 \& Hillview Road Pinner HA5 4PA Middesex $\begin{array}{r}16546\end{array}$

[^9]: VALVES RADIO TV TRANSMIT
 TING INDUSTRIAL 1936 to 1975 many obsolete types, list 20 p s.a.e for quotation. Postal export ser vice. We wish to buy all types o
 valves new and boxed. Whole salers, Dealers, etc. stocks pur chased. Cox Radio (Sussex) Lid The Parade East Wittering, Sussex West wittering 2023. (5392)

[^10]: WANTED, all types of communica tions receivers and test equipment Details to R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley $4986 . \quad$ (63

[^11]: Printed in Great Britain by QB Ltd., Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL.ELECTRONIC PRESS LTD.. Dorset House, Starnford St., London, SE1 9LU telephone $01-2618000$. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lid. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service, Ltd. Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Lid.: William Dawson \& Sons (S.A.) Ltd. UNITED STATES: Eastern News Distributors Inc., 155 West 15th Street, New York, N.W. 10011.

